
'i
(I

~I ~"i I
,! l c .
,:1 I
{! ... ,)
~ i

!

I

i (

tri t d tr"p' t'! j :"tt .' a M"·S'''''w'.tWe .. tH' .1 $)7 'ern'j't WtfttttheRW

'6
! [CompuierAutomation

I

I)
I '

!
I

...

! J,
!.~ ")'" o

{

.
i i~.;
I I

I
I I

I .

(')
i

,

NAKE=D MINIO!.Division
18651 Von Karman, Irvine, California 92713 .

Telephone: (714) 833~8830 TWX: 910·595·1767

REAl·TlrJlE EXECUTIVE (RTX)

USER'S MANUAL

::lO-94S00-00F2 Apr; 1 1977

I ~. 1971 Cl'J,1l-'lITERAUTOMATION,INC PRINT ED IN THE U.S A.
L-o--. ________ _ --------------------

'# .-

..

(

.. . --) ..

......) .. ,.'., '

..... :::'

o
I

()

.mwe_Blt tttlt"tt:!' t 't P*tttlr, t 1" t t , 1k 'tf *

REVISION HISTORY

Revision Issue Date

AD

Al to E6

FD November 1976

F2 AJ?ril 1977

•

sr tiN' P' tut

Comments

Original issue.

Misc. RTX/IOX updates.

Adds Magnetic Tape Intelligent
Cable, Storage Module Disk, and
IEEE Intelligent Cable lOX
Handlers. Adds block diagrams
for lOB, UAT, DIB and CIB.
Adds lOX Handler listing.

Adds File Manager to lOX,
and overall documentation
cleanup •

to' wi!:' g 't 'P4 It f' 1.

.\
........ ~

I
TABLE OF CONTENTS

I PART I. REAL-TIME EXECUTIVE (RTX)

(
section

I
i
I

I)
i

()
I

1 INTRODUCTION TO RTX

1.1 WHAT IS RTX? •

1.2 WHEN SHOULD RTX BE USED?

1.3 WHAT DOES AN APPLICATION PROGRAM LOOK LIKE?

1.4 DEFINITIONS

RTX ORGANIZATION I

2.1 WORK AREA (USER BLOCKS)

2.2 RTX FUNCTIONS ••• • • • • • • • •
2.2.1 Initialize Work Area (RTX:)
2.2.2 Initiate Ne\-1 Task (BEGIN:)
2.2.3 Terminate Current Task (END:)
2.2.4 Suspend Current Task (PAUSE:)
2.2.5 Coordinate Numbers •••••
2.2.6 Inter Task Coordination (PUT:/GET:)
2.2.7 Delay Current Task (DELAY:) ••••

3 INTERRUPT PROCESSING

3.1 SAVE ENVIRONMENT (INTSV:)

3.2 RESTORE ENVIRONMENT (INTRS:)

3.3 INITIATE A NEW TASK FROM AN INTERRUPT SUBROUTINE (INTAC:).

3.4 INTERRUPT SERVICE AND QUEUE TASK (INTQ:)

3.5 COMMON SUBROUTINES (REENTRANCE)

3.6 WRITING COMMON SUBROUTINES ••••

3.7 CALL A COMMON SUBROUTINE (SUBR:)

3.8 EXIT FROM COMMON SU~ROUTINE (SUBX:)

3.9 PROTECT A FACILITY (PROT:)
3.10 RELEASE A PROTECTED FACILITY (UNPR:)

3.11 LOCK OUT A FACILITY (LOCK:)

3.12 UNLOCK A LOCKED FACILITY (UNLK:)

iii

('n' 't

!'~

1/1-1

1/1-2

]/1-3

1/1-3

. "

1/2-2

I/2-2
1/2-2
1/2-3
1/2-6
1/2-6 '
1/2-7
1/2-7
1/2-8

1/3-2

1/3-2

1/3-2

1/3-3

1/3-4

1/3-5

1/3-6

1/3-7

1/3-8

1/3-10

1/3-11

Itt't'ttr' j'X b t' J

)
TABLE OF CONTENTS(Cont'd)

S(.ion

3.13 ABORT A TASK(ABORT:) .•••••

3.14 OBTAIN CURRENT PRIORITY (GETPR:) . . .
3.15 SET TASK PRIORITY (SETPR:) ••• ..
3.16 INCREMENT TASK PRIORITY (INCPR:)

3.17 DECREMENT TASK PRIORITY (DECPR:)

4 ADDITIONAL RTX. REATURES

()
,...~: .. '

·0 I

4.1 RTX DEBUG REATURE (ZBG)

4.2 PROGPAM LOAIDNG WITH ZBG

.I

4.3 POWER-FAIL, AUTO-RESTART (PWRFL:)

4.4 TELETYPE INPUT/OUTPUT

4.5 LSI-3/DS SOFTWARE CONSOLE ROUTINE (CNSOL3)

S RTX OPERATING PROCEDURES

6 A SAMPLE RTX PROGRAM - RTX DEMO

6.1 PROGRAM DESCRIPTION

6.2 PROGRAM MODULE FUNCTIONS ••
6.2.1 BEGIN •••• .'
6.2.2 TASKl
6.2.3 TASK2
b.2.4 TASK3 .-
6.2.5 IOTASK
6.2.6 ADDl

iv

Mdt tpt " .. t tB# ' ¥n' f

1/3-11

1/3-11

1/3-12

1/3-12

1/3-12

1/4-1

1/4-4

1/4-4

1/4-4

1/4-4

1/6-1

1/6-2
1/6-3
1/6-3
1/6-4
1/6-4
1/6-4
1/6-4

,.t . .' :r' ..

;

.. It 'eretttts,. j '."/00"

TABLE OF CONTENTS

PART II. INPUT/OUTPUT EXECUTIVE (RTX)

Section l?~llJ~

:~)

..

J

1 lOX GENERAL DESCRIPTION

3

1.1 GENERAL DESCRIPTION

1.2

1.3

CALLING SEQUENCES

DEVICE DEDICATION •

1.4 LOADING ••••
1.5 RESTARTABILITY

lOB AND UAT ORGANIZATION I

2.1 INPUT/OUTPUT BLOCK (lOB) - 10 words

2.2 UNIT ASSIGNMENT TABLE (UAT)

2 .3 STANDARD DIB NAl-A'.ES

2.4 SAMPLE UAT

I/O HAND~R ORGANI~ATION •

3.1

3.2

THE STANDARD HANDLERS
3.l.lCharacter-oriented Device Handler (Non-Fortran) • • • .
3.1.2 Fortran List Device Handler
3.1.3 Card Reader Handler •• ~ •••••••••••••••
3.1. 4 Magnetic Tape Handler • • • • • • • • • • • • •
3.1.5 Disk and storage Module Disk Handler (Non-Fortran).
3.1.6 Floppy Disk Handler (Non-Fortran) •••••••••
3.1.7 Disk, Storage Module Disk, and Floppy Disk Handler

(Fortran) • • • • • • • • • • • • • • • •
3.1.S Magnetic Tape Intelligent Cable (MTIC) Handler

I/O HANDLER REQUIREMENTS •••• • • • • • •
3.~.1 SINT: (Set up an instruction at the Word Interrupt

3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.S
3.2.9
3.2.10
3.2.11
3.2.12

Loca tion) ~ • • . • • .. .'. . .
SIO: (Start I/O and Watchdog Timer) • • • • • • • • • •
INTP: (End of Block Interrupt Return Point)
WAIT: (End of Record Delay Routine) • • ••
EOFQ: (~nd of File Check Routine)
EOF: (End of File-Routine ••
EOR: (End of Record Routine)
EORST: (Alternate Entry Point t.o· EOR:)
FETCH:. (Input one character fr~an I/O device) ••••
BUFFQ: (Store input character into buffer) .
UNRES: (Unresponsive Device Routine) •••••••• •
IORTN: (Return to I/O Scheduler)

3.3 CHARACTER~ORIENTED DEVICE HANDLER LISTING •

. v

H/1-2

H/I-3

rr/1-5

Il/1...,S

1I/1-7

1I/2-1

1I/2-6

II/2-7

II/2-S

11/3-1

II/3-1
II/3-1
:rr/3-l
11/3-1
II/3-2
'II/3-2
II/3-3

11/3-3
II/3-4

II/3-4

II/3-S.
11/3-5 -
11/3-7
II/3-9
II/3-9 -
11/3-10
11/3-10
11/3-10
11/3-11
11/3-:-12

. II/3-l2
II/3-f3

II/3-1,3

\
I

3ection

"i"M'ftttW·'Wn'wf#"#ri'dt metA 'dt"~ 9""'*# [I", &&"1'7ft

'rABLE OF CONTENTS (Cont'd)

DIB AND CIB DESCRIPTIONS

4.1

4.2

4.3

4.4

4.5

DEVICE INFORMATION BLOCK (DIB) - 11 to 18 words • _ .

REGULAR DIB CONFIGURATION (ALL HANDLERS) - WORDS 0 TO 10

ADDITIONAL DIB CONFIGURATIONS - UP TO 18 HORDS
4.3.1 Distributed I/O'DIB •••
4.3.2 Magnetic Tape Intelligent Cable DIB·. • • • .
4.3.3 Disk DIB • • • .• • •.•
4.3.4
4.3.5

Fortran Disk DIB . • • •
Storage Module Disk DIB (Fortran and Non-Fortr?n)

SAMPLE DISK DIB

CONTROLLER INFORMATION BLOCK (CIB) - 38 WORDS (47 HORDS FOR
STORAGE MODULE DISK) • • • .

4.6 STANDARD Clf3 NAMES

5 FILE MANAGER

')

(

6

I,

!

i C)

5.1 FILE ORGANIZATION . • • . • • • .

5.2

5.3

. 5.1.1 Sequential File Access .••.
5.1.2 File Opening and Closing
5.1.3 File Positioning ••••
5.1.4 .F~le Functions

TABLE ORGANIZATION
5.2.1 File Device Information Block (DIB)
5.2.2 Controller Information Block (CIB)

RTX FILE LABEL UTILITY
5.3.1 Environment ..
5.3.2 Program Operation

DEVICE DEPENDENT CONSIDERATIONS

6.1 STANDARD CHARACTER DEVICE HANDLERS
6.1.1 Line Printer •••••••••••
6.1.2 Teletype Keyboard (TK) ••••

• !" •

6.1.3 Teletype Console (TY) (implies tape reader or keyboard

6.1.4
6.1.5
6.1.6
6.1. 7
6.1.8

for input, whichever is ready)
Teletype Reader (TR)
Teletype Punch (TP) • • • •
Card Reader (CR) ••••
High Speed Reader (PR)
High Speed Punch (PP) •

vi

_WitffNt"l!:Ht'#

II/4-1

11/4-3

II/4-6
II/4-6
II/4-:7
II/4-9
11/4-11
II/4-12

11/4-14

II/4-14

II/4-17

II/S-1
11/5-5
II/S-S
11/5-6
II/5-7

11/5-9
II/S-9
11/5-15,

Il/S-18
11/5-18
11/5-18

11/6-1

11/6-1
11/6-1
11/6-1

II/6-2
11/6-2
.11/6-2
II/6-3
11/6-3
II/6-3

(

(

i

"<".-,"

Figure

-,
til

1-1
1-2
(.-1

2-1
2-2
4-1
4-2
5-1
5-2
5-3
5-4
5-5
5-6
5-7
7-1
7-2
7-3
7-4

Table

2-1

........ * tWfN " mt*w titt belOit r \Is. ' , , !1 , . • t W' iH.'rWitn' rttrtH "W\lN'\HwfW±b'Wntfdt'irt'SIZ""'¢' ,., ., .. R·t I

LIST OF ILLUSTRATIONS (PART I)

Typical Example of RTX '
RTX Software Configuration • . • • . •
R'I'X Dl:!mo Program - Flow Diagram (Sheet 1) •

LIST OF ILLUSTRATIONS (PART II)

lOB Configuration •
UAT Configuration
DIB Configuration •
CIB Configuration • •
Disk Directory Structure ,.

. '.

Disk Description Table (DDT) in Volumn Table of Contents .•
Disk File Linkage • • • • • ••• •
Sequential File. Positioning Examples •••••
Table Organization • • • • • • • • • •
DIB Definition When used With the File Manager

'CIB Definition When Used with the File Hanager ••••
IEC lOB Configuration -- 9 to 12 words • • • •
IEC Status Byte Configuration
IEC set Mode Command Word Format
IEC CIB Configuration • • • • • • •

LIST OF TABLES

1/1-4
1/1-5

· . I/fl-5

II/2-2
II/2-6 .

• II/4-2
• • I;r/4-15

• Il/5-2
• •. 11/5-3

· II/5-4
11/5-8

• • 11/5-10
· II/5-11

II/5-16
II/7-2

• . II/7-6
· . II/7-7

• 11/7-9

User Blocks for RTX Functions • • • • • • • • • • • • • • • • • 1/2-4

'.

viii
I

I ________ ~-------------------,---'----------~

;!
"I J

"f""

! (

I
I -)
! .

I
(

I

)
o

(

WHfS't"W''btse,'t'j' '1" ""j' "k rt "#hfstmm'Yn' "S""!'W'ii'Hffiri '"" &'"

PART I

REAL-TIME EXECUTIVE (RTX)

(
I
~

SECTION 1

INTRODUCTION TO RTX

This section presents an overview of Computer Automation's Real Time-Executive (RTX)
program which operates on all ALPHA-16 and LSI' processors. The following discussion
is concerned with three basic questions:

1. What is RTX?
2. When should RTX be used?
3. What does an application program look like?

\ 1 WHAT IS RTX?

I~x is a modular package of service routines that handles both the overhead functions
(~nd the scheduling services associated with a real-time environment. ~1odu1ar con­

struction allows you to select only the portions of RTX required for your application.
Real-time environment means that if your application requires that certain tasks be
performed at selected intervals or in response to an external signal or event, then
RTX will manage the orderly interruption and resumption of your program. RTX does
all the overhead functions to maintain and direct the execution of your application
jUring bot~ normal and real-time processing.

RTX is also a powerful multi-task executive that controls all tasks of the overall
'pplication. These tasks include priority scheduling, response and assignment,
interrupt servicing, and communication among RTX tasks and user-developed handlers.

'Overall task control:

L Allows the application program to be designed as a number of either inter-related
or subordinate tasks. The nature of the application determines the task relation.,..
ships. RTX will completely handle the switching from task to task as required. I.,)

o·
. (

Allows the application program to dynamically define (and redefine) the priority
level of the various tasks in the application using RTX service routines. This
is a software priority which is then used by the RTX scheduler function to direct
the sequence of task execution.

3.

4.

)

Allows RTX priority scheduling, response and assignment to share the computer
among tasks with equal priority. When all tasks of ~e highest priority are
temporarily waiting for sqme event to occur, the next highest priori1;y level is
scheduled in tne same manner.

Allows response to interrupts, as gen~rated, because the user provides the
interrupt instructio~s which transfer control to ~ interrupt service routine.
This interrupt service routine will save status (using an RTX function), perform
the necessary instructions to assure no data loss, and then restore status (using
an RTX function). This routine can also cause a lower priority routine to be

I/l-l

.,

Sf"'" ts

"

(-::heduled if additional processing of the interrupt data' is required; the lower
~riority routine can be temporarily deferred until any higher priority tasks have
had' their turn at executing.

(

Allows the various tasks in the application to communicate between themselves (or
with RTX) through RTX communication routines. These routines allow a task to
uniquely identify the communication request and then post it. Posting consists
of presenting information to, or requesting information from, another task. This
facility may be used to operate simply as a signaling device, or it may be as
complex as both a signaling and parametric (pointer-passing) function.'

lJ of these RTX features combine to produce' a multi-tasking, real-time scheduling
xecutive that is, despite its small size, the most powerful and easy to use system
f its kind on the market. Figure 1-1 illustrates a typical example of RTX •

• 2 WHEN SHOULD RTX BE USlID?

he,' ost significant reason for using RTX is that Hour application program requires a
eaime environment. Real-time environments are found in many circumstances,
ar .lg from high speed data a'cquisition to occasional sampling of an electro-
ie(.nical device such as a relay. The basic criterion i~ that a need exists for the
pp~ication to communicate with some e)cternal device or event in a time-dependent
lanner. If this criterion is met, th~n RTX is a suitable vehicle for defining the
elationship between the external device or event and the application programming
.asks which control and service that device or event. Some of the more obvious
pplications are:

.(

(

ommunications
Message Switching
Store-and-Forward
Networks
Reservation Systems

~ . Process Control

b
c

3.

Plant Operations
Flow Monitoring
Equipment Direction
X-y Positioning
Petro-chemical Applications

Data Acquisition
Test cells, such as automotive or airframe/aircraft
Traffic Control
Instrumentation Control
Source Data Entry
Oil Field Data Monitoring

1. Hedical Data
EKG/EEG
Patient
Cardiac
Patient

Processing
Analysis
Monitoring
Monitoring
Bil-ling

I/1-2

'r/

(

(

·!t!M"M"Io "_M§tiHtff"ttb' .. Utlf.W ttt '''#,.'·S''Mt:f.":it:b1, 'Vi "t"

(
5. Security Systems

6.

Plant/Facility Security
X-Ray Security Systems
Video Transmission Systems

Fi.nancial Transactions
Point-of-Sale
Automatic Banking
Inventory Control

sthh b'·

1.3 WHAT DOES AN APPLICATION PROGRAM LOOK LIKE?

»WrlZ'tib#t"b'cd&M*tR# tr tX' t fE"dr' "9" '''IViii

RTX allows the user to construct his application in modules. These modules are then
combined with RTX during the loading process to produce the final application program.
The user may choose any arrangement of his program into modules .that suit his needs.
Figure 1-1 shows a general diagram of this type of ~rrangement. This modularity
~oncept applies not only to the user's application, but also to RTX itself. The RTX
package is simply a library of separate subroutines which may be referenced by the
user's modules; certain of the RTX subroutines in turn reference others, and the
linking of all required modules (perfoXJlled by the LAMBDA loader or by the OS:LNK
program) results in a configuration consisting of only those modules needed for the
application. Figure 1-2 shows how the modules and user programs are loaded into
memory and the size of the individual RTX modules. Keep in mind that the only RTX
modules actually loaded for a given program will be the ones required by the

~ particular program.

I 1.4 DEFINITIONS

I 1.

2.

Activity: A task which has been initialized (via BEGIN:
receiving support from RTX.

for example) and is

r
Common Subroutines: Subroutines which may be used by two or more different
activities concurrently. These require special coding to provide reentrant
capability.

~\ 3. Coordination Number: A decimal integer used to identify a task to RTX. It is
analagous to a telephone number in thaf it is used to "connect" a task to another
task or to the DELAY: process. (

I
I I 4. Interrupt Data Processing: That portion of code that processes the data obtain~d

by an Interrupt Service routine.

5. Interrupt Service: That portion of code that must be executed immediately after .
the interrupt occurs (so as not to lose data). It should be limited to.on~y that
code which is necessary .to assure no data loss.

6. Inter-Task Coordination: A method for tasks to communicate and pass parameters .
using two l6-bit computer words. These words may contain any information, such
as a table address, a pointer to a list of values, or a value itself.

1/1-3

0"

(

c
(

b
(

. ,

i

:1
.1

WMdt. tt'tlrn'Ct: tv $,.. $11' II M¥ ., '1N t't twmrnttt tt
, *t1W 1ttttt .p' $* rs ...

J

R --I T
X

J
I

N

U

C
L

E
U
s H

I

Communications Task

'PeriEheral Device Task

Additional Communication AND
Peripheral Device Tasks as
needed

File Manager
.

Task 1

)

,

Computef'Automatioo ~

(2) CAl-Supplied Tasks
(lOX)

I

H
Task 2

Task n

(3) User-\.,.ritten Application

Tasks (as many as
needed)

(1) RTX Nucleus provides control, scheduling, priority handling.
(2) CAl-supplied tasks provide handlers for I/O (such as priuters, tapes,

etc.,), for communications (such as BISYNC, ASYNC, etc.), and ethers.
(3) The user need only supply tasks which perform his application's work,

while utilizing the CAI-~upplied software for support •

Figure 1-1. ° Typical °Example of RTX

1/1-4 Revi sed 1/77
:

I~
!

tM' me .It .'Wetltem. 't" dB'"I»"t $"
it to' '!' tk

HODULE SIZE t--
ADORES~S~ ______ ~M~EM_'~O~R~Y __________________ ~

:0000

:OOFF

Literals and Interrupts.

User - Mainline (i.e., RTX
Initialization), Tasks,
Data/Work Areas and
Interrupt Service Routines

SfCh Pad " :100

User Programs

lOX - TTY, Line Printer,
CRT and Paper Tape
Tables and'Drivers

lOX - Card Reader and --

:200+

Mag .Tape : 180+ -

Tables and Drivers I ~
1------. -t-

lOX - Disk .
Tables and Drivers :260+

I--------+-~
lOX Scheduler --

RTX Nucleus. --RTX: , BEGIN: , E~:, . . . ,
List Pinters and
Scheduler

Debug (ZBG)

lOX Controls
ION1T: , EOR: , EOF: ,
SIO: , . . . , SINT: , 10:
and EOFCK:

RTX Services
DECPR:, DELAY~, GET:, PUT:,
.•• , SUBR:, SUBX:, INTG:
and RTOSZ:

File Manager

:1,.0

:co

:204

1
:290

:130

RTX/IOX Library
Segment 1

RTX/I·)X Library
Se:gment 2

:9°0
:nFFF i ~ ____________________________ ~ ____ J-________ ~

Figure 1-2. RTX Software Configuration

(L
r 1/1-5

~,

ztrr « e'S'!""" "j" "HI,!

8 t tiM'''
it" .-

----"""'

8.

Main Line: A short initializing sequence which resets all task table pointers,
and then begins one or more tasks. (Tasks may also be begull by other tasks, or
4Pon an interrupt from an external device.)

Priority: A software defined method for assigning (and re-assigning) the rela­
tive importance of a task to RTX.

9. Re-entrant Programs: A program specifically written such that it may be directly
entered by more than one program, concurrently. Under. RTX, this is necessary
only if two or more Interrupt Service routines require immediate use of the same
program. For example, Interrupt Service A calls routine C. While C is executing,
Interrupt Service B becomes active and also calls routine C. If C were not re­
entrant, this second call to C would replace the return address at C's entry
point, causing the return address for routine A to be lost.

10. Task: A program or set of programs which operate ,to perform a specific function
within the real-time application.

ll~ Work Area: An area of storage dedicated to Itable space for RTX. This table
... contains all the necessary information for RTX to perform its functions. Its

. usage is dynamic and is dependent upon the maximum concurrent usage of RTX
(. functions.

(

(

1/1-6

i

. ,

(

I

atJ.' 'b' W"ir+!tV my.iIi t H t It < k '.-I*';-""*,'t" "b bit •

SECTION 2

RTX ORGANIZATION

RTX is basically a collection of functions (subroutines) and a user-supplied work
area, which are linked to the user's Mainline sequence and tasks prior to executioll.
Each RTX function may be called as a subroutine by the user as it is needed, to
perform a specific job. (See below for descriptions and calling sequences of these
functions.) RTX also includes a task scheduler (SCHED:) which is used to execute the
task of highest priority. The priority of a task is defined when the task is begun,
and may be changed by the task, using the SETPR:, INCPR:, and DECPR: functions.
Oriorities may range from 1 to 8191, with larger n~~ers representing the higher
riority.

The scheduler maintains a "Ready" list of each task in order of priority. The highest
priority task is executed until ~t suspends itself. by calling any of the following
RTX functions:

DELAY: (unless altering or cancelling a previous delay)

Ie GET: (if no corresponding PUT: yet, and not a cancel call)

(if the common subroutine is busy) I SUBR:
!

I
PAUSE:

10: ..

p SETPR:

DECPR:

(essentially reschedules the pausing task at the same priority)

(BEGINs, at I/O completion time, the normal or abnormal return at the
same priority)

(if the new priority is lower than that of another task)

(if the new priority is lower than that of another task)

(Once the task has been suspended, RTX executes the new highest priority task. The I rule for determining the highest of equal prioris..: tasks is, "first in - first out" •
• 1 Thus, if a task suspends itself, it tl1er.eby b~comes Itl~st 'in" within its priority •

In addition to the user-invoked suspeDds listed above, occurrence of an interrupt
will cause a task to be suspended, if the new priority is higher than that of the
current task. An inter~upt is defined to be:

1. A hardware (external) interrupt, with INTQ: or INTAC: attached, or

2. A software (internal) interrupt:

a DELAY: expiring
a PUT: which satisfies an outstanding GET:
a SUBX, UNLK:, or UNPR: ~ with a higher priority task waiting

1/2-1

If add~tion, an Input Output
linked,to run in conjunction
the standard CAl I/O devices
reader, magnetic tape units,
('.lization.

Executive package (lOX) is available, which may be
with RTX. Its function is to perform I/O operations to
(teletype, high speed paper tape reader and punch, card
and disk) and resolve confilicts of concurrent I/O

A F lIe Manager operates in conjunction with lOX. It enables the user to conununicate
with data files by name, independent of the physical medium storing the file.
Requests for access are made through lOX using Logical Units (LUNs).

2.1 WORK AREA (USER BLOCKS)

The use.r must supply a contiguous work area for RTX to ~)Uild its tables. The address
and length of this work area is specified in the call to the RTX: function. It is
grouped by RTX into blocks of five words each, and there must be at least two of
these blocks (10 words) reserved; otherwise an error return will be made from the
i~~t .. ialization routine. Table 2-1 gives a list ?f the RTX functions which allocate
a de-allocate this area. The left hand column denotes the number of blocks al10-
cd (+) or de-allocated (-) by the function in the right-hand column. The user
I jt supply sufficient work area for the maximum number of five-word blocks which
may be allocated at anyone time.

2.2 RTX FUNCTIONS:

2.(01 Initialize Work Area (RTX:)

Calling Sequence:

(
EQU (NUMBER OF TASK BLOCKS) N

WKAREA RES N+N+N+N+N,O AREA FOR BLOCKS

JST
DATA
DATA
ERROR
NORMAL

Returns With:

INTERRUPTS ENABLED
OVERFLOW RESET
WORD MODE

RTX:
N # OF
WKAREA
RETURN WORK
RETURN

•

A REGISTER CURRENT RTX REVISION NUMBER IN ASCII
X REGISTER CURRENT RTX REVISION NUMBER IN ASCII

CONCURRENT ACTIVITIES

AREA EXCEEDED

This subroutine is called in the user's Mainline sequence to initialize the working
area of RTX. The work area is broken into N blocks of five words each, which are
then used by the remainder of RTX during system operation. The number N must be
large enough to allow for all concurrent activities. Work area overflow will cause a
jump to the RTX: routine's error return at any subsequent time during the running of
the program, not just during the call to RTX:.

cc
1/2-2 Revised 1/77

,
I

,I
t

I
t
f! ',')

"

t:
U i,

*~l
t"i ,'!

ii

"'I

,i
I

'I
i-I

:1
;8,1

pi

, ttt

(

) l Nt l' 'k I 5#&)=.**"M , t1 I w. on r tt nnw: Me drere M

I NOTE I
• A call to this subroutine causes activation of the RTX Scheduler.

Upon return, the calling program (normally the user's t~inline
sequence) is the~ceforth considered a task with a priority of A177.

In addition to initializing the work area, the Rl'~: subroutine can also reset all I/O
tables, if desired; this feature will insure restartability of a user's proqram. The
feature may be referenced in the user program, if restart capability is required;
otherwise it may be omitted, thereby shortening the overall length of the program.,
(Upon initial loading, I/O reset is not required before execution.)

To include this feature in the RTX: subroutine, simply reference the module "IONIT:"
in the Mainline sequence; either of the following directives:

IONIT: REF
or

LOAD IONIT:

,

(
will serve this purpose.

I' -
2.2.2 Initiate New Task (BEGIN:)

r
I'
I

(
I

1

Calling Sequence:

JST
DATA
DATA

Returns With:

BEGIN:
(*) START ADDRESS OF NEW TASK
PRIORITY OF NEW TASK

~ •. INTERRUPTS ENABLED
OV --- UNCHANGED
A REGISTER --- UNCHANGED
X REGISTER UNCHANGED

(

I
"

~'

I

I NOTE I
When the new task starts executing, the~~-z registe~s will
contain the_y!:tl_~es at the time o~_th~S'l'-t.o.-BEGJ:.N.;., OV will be
reset, and the computer will be in ~rd mode.

This subroutine is called to initiate a ne~ task. The task is scheduled and BEGIN:
then exits to the task Scheduler. This means that the calling program will not
receive control back immediately if the new ("begun") activity is of hi9~er priority,
or if another task' of higher priority is ready to begin'execution.

1/2-3

(

(

'I

No. of
Blocks

+1

+1

-1

o

+1

o

-1

o

('1

-1

-1

(0
C\

o

-1

o

o

+1

+1

+1

o

1-zL

'1" t
!"'t f

t"

ComputerAutomation ~ --....... ~

Table 2-1. User Blocks for RTX Functions

Function

RTX:

BEGIN:

END:

PAUSE:

PUT: (If a new, unique PUT: and no corresponding GET: is waiting
for it)

'. ,

PUT: (If a new unique PUT: anft the corresponding GET: is already
'waiting for it)

PUT: (To change the information in a previous PUT:)

PUT: (To cancel an outstanding PUT:)

GET: (If a new, unique GET: and no corresponding PUT: is waiting
for it)

GET: (If a new, unique GET:, and the corresponding PUT: is already
waiting for it)

GET: (To replace a previous task currently waiting for a PUT:
with the current task; the new GET: must be called with the
same coordination number as the task to be replaced)

GET: (To cancel an outstanding GET:)

DELAY: (To initiate a new delay)

DELAY: (To change the length of an outstanding delay)

DELAY: (To cancel an outstanding delay)

INTSV:

INTRS:

INTAC:

INTQ:

SUBR: (If the common subroutine is not already in use)

SUBR: (If the common subroutine is already in use)

1/2-4

'" :~

~. i
J

No. of ,I

'I

Blocks

-1

0

+1

0

-1

0

+1

0

-1

l -1

I
I

(
0

0

0

0

t 0
I

I 0
.... ,i

I 3 or 4

I

ta ,,,

Table 2-1. User Blocks For RTX Functions (Colltinued)

Function

SUBX: (If no other tasks are waiting to use the common sub­
routine)

SUBX: (If one or more tasks qre waiting to use the common Slm­
routine)

PROT: (If the facility is not already protected)

PROT: (If the facillty i-s already protected)

UNPR: (If no other tasks are waiting to protect the facility)

UNPR: (If one. or more task~ are waiting to protect the facility)

LOCK: (If the facility is not already locked)

LOCK: (If the facility is already locked)

UNLK: (If,no other tasks are waiting to LOCK: the facility)

ABORT: (In addition, -1 for each resultant SUBX: call where no
other tasks are waiting to use the common subroutine, and -1 for
each resultant UNPR: and UNLK: call where no other tasks are
waiting to PROT: or LOCK: the facility)

GETPR:

SETPR:

INCPR:

DECPR:

IOREL:

IOWAT:

. !

'.

I
, I
I
I

10: (as follows:)
+1 For the immediate return
+1 For scheduling

+1
+1

I
For !?etting a watchdog -,timer 1

! If I/O completes before ;
sc~eduling completes

I/i-5

~ ..

. r 1 : 1 t t W l' tNt r' • t· '1 tet #,tMtttnmetM.r tsCtW##Wbt.N' r He t.Ftttw $tt WfW 'rti

.
(

I r~OTI I
Priorities are integers from 0 (lowest) to 8191 (highest). Users
should limit priority to less than 7000 because certain RTX functions
use those of 7000 and higher •

• 2.3 Terminate Current Task (END:)

Calling Sequence:

JST END:

he current
;nd,ontrol

task may terminate itself with a call to END:.
will not return.

[. NOTE'

No argurheh:Es. are required

(

(
i :.2.4

(

The Mainline sequence (as a result of the JST to RTX:) has a priority
of 8172. This sequence should begin other necessary tasks and then
terminate itself by a call to END:. If it does not terminate, no
tasks of a lower priority can execute.

Suspend Current Task (PAUSE:)

Calling Sequence:

JST PAUSE:

Returns With:

INTERRUPTS --- ENABLED
STATUS --- UNCHANGED
A REGISTER UNCHANGED
X REGISTER ---UNCHANGED

rhis subroutine is called by a program which desires to allow other tasks at the same
"I)riority level to get service. This is useful if a program is unusually long or is a

:losed loop. PAUSE: is essentially similar to a BEGIN:, END: -pair, but is less de­
~anding on work area space in RTX.

(~

I NOTE I
Programs which loop indefinitely are permissible, but sho~ld be used
carefully since they will bl,ock execution of all activities of a
lower priority. ~asks should begin in response to a stimulus,
generate the appropriate reaction, and end.

1/2-6

IfIHif " -t

2.2.5 Coordination Numbers

.
Before discussing GET:, PUT:, and DELAY: the concept of coordination number must be
understood. A coordination number is a 16-bit value which is supplied °as an argument
to GET:, PUT:, DELAY:, PROT:, UNPR:, LOCK:, UNLK:, 10: and IOREL:. Thi!? number:
serves to identify the activity so that it may be referenced bya later call.

For GET:, PUT: AND DELAY:, the same coordination number used in the same type of call
supersedes the previous call. The negative (2's complement) of a coordination
number cancels the previous call. FORTRAN uses the following coordination numbers,
and the designer should avoid their re-use:

F:RBPG address (for LOCK:)
:FFDC (for LOCK:)

In addition, all DELAYs performed in lOX and COl~ use memory addresses as coordination
numbers. These memory addresses fall within the lOX or COMX boundaries, or their
associated tables (CIB's). Thus, it is strongly suggested that the system designer

"follow this practice, and use as·coordinatio~ numbers, only memory addresses of
locations within his program. Basically, it is the system designer's responsibili~y

(to allocate coordination numbers so that no conflicts arise.

I
I
(

I NOTE I
Zero has no separate identifiable two's complement, and therefore a
coordination number of zero should not be used.

I 2.2.6 Inter Task Coordination (PUT:/GET:)

(.1 These two facilities are generally used together as a pair. In general, PUT: passes
32 bits (the A and X registers) to a GET:. Coordination numbers are used to insure
proper reference. There are no timing restrictions on associated PUT:/GET: pairs.
(If a task calls GET: before another task has made the corresponding PUT: call, the

~::::ing task will suspend until the PUT, is made.)

(' Calling Sequence:

JST
DATA

Returns With:

PUT:
COORDINATION NUMBER

INTERRUPTS --- ENABLED
STATUS --- UNCHANGED
A REGISTER UNCHANGED
X ~GISTER --- ~CHANGED

This subroutine is called to do one of three things:

1. Pass 32 bits to another task; call PUT: with the same (positive) coordination
number which will be used in the call to GET;

1/2-7

1 t' en, r t t tt' ttt ".j -tUrt 'p,,) Wlyf"" "," ·e'it , H t) , • t ieo " ab t tl'1!#t

(....:hange
numb.er

the information in a previous PUT:; call PUT: with the same coordindtion
used previously.

(

Delete an outstanding PUT:; call PUT: with the 2's complement of the coordination
number of the PUT: to be deleted.

I "lOT! I
If a PUT: is issued before the associated GET: is called, one block
is used from the work area in RTX. If the GET: is called first no
additional demands are made on the work area.

Calling Sequence:

c. u
JST
DATA

GET:
COORDINATION NUMBER

~.

r
Returns With:

(

INTERRUPTS --- ENABLED
STATUS --- UNCHANGED
A REGISTER FROM ASSOCIATED PUT
X REGISTER --- FROM ASSOCIATED PUT

~is subroutine is called for one of three reasons:

(fo obtain 32 bits (A and X registers) from another task:
positive coordination number to be used with PUT:.

call GET: with the

To delete a task currently in a GET: waiting for the associated PUT:; call GET:
with the 2's complement of the coordination number.

. L.· ~ replace a task currently waiting for a PUT: with the current task; call GET:
~ith the same coordination number as the task to be replaced.

GET: is called, control will not be returned until the associated PUT: is
ssued •

. 2.7 Delay Current·Task (DELAY:) (Requires Real-Time Clock Option)

Ca.ling Sequence:

DELAY: JST
DATA
DATA

OF TICKS ON THE CLOCK FOR DELAY
COORDINATION NUMBER

Returns with:

INTERRUPTS --- ENABLED
STATUS --- UNCHANGED

1/2-8

Pff

)s" W' eft' I' fi'# "';1? "" '<', ;!.

'Sf'W" 'i, i"¥t:t¥'V 15 zit Wi rib dWWrl(l#b .. %u-" * ..

If deleting or changing an outstanding delay:

A REGISTER
X REGISTER

UNCHANGED
UNCHANGED

If actually executing a delay:

A REGISTER
X REGIS'I'ER

COORDINATION NUMBER
UNDEFINED

This subroutine is called for one of three reasons:

1. To delay the current task for a specified period of time. (The nlnnber of ticks
referred to above is the number of time interrupts from the Real-Time Clock.
These interrupts normally occur every 10 msec but may be changed by a jumper
wire. (See the appropriate ALPHA-16 or ALPHA LSI Computer Reference Ma11 1Jal).
For this call, supply a currently unused positive coordination number.

I

'.0 2
'

To delete an outstanding delay. A call to DELAY: with the 2's complement of the
coordination number of any current delay will delete the delay request (and the
task that called it). This 'is useful for deleting a watchdog routine.

~
(

I

I

b
t

1

3. To change an outstanding d~lay. A call to DELAY: with the coordination number of
a currently active delay will change the outstanding delay. This is r:quivalent
to deleting a task in a delay and immediately starting the same task with a new
delay.

1/2-9

!

'W'wl:t't'dT' t H t&

SECTION 3

INTERRUPT PROCESSING

Nost interrcpt service routines can be divided into two sections. First, th'> recog­
nition that the requesting device usually has an immediate need which will t'esult in
data being lost if it is not met. Second, a subsequent need to perform some pro­
cessing upon that data. In the case of output, the device may not continue tq operate
at full speed if its request is not answered within a certain interval. After meeting
this very high-speed requirement, the need for continued rapid servicing diminishes .
considerably, until the next request is made.

LTX provides two alternative methods for interrupt service. One is the INTQ: service,
Ohich combines the functions of saving status, queueing or scheduling of support

. tasks, and then dismissing the interrupt since it has been honored. The second is to
{ use the INTSVi, INTAC:, and INTRS: services to provide each of those three functions I separately. Use of these three runctions is described below.

I I Upon receiving control after an interrupt, the interrupt handler should inunediately
call INTSV:, to preserve the register status. When control returns, the hancHer may I utilize the registers as required. Processing, at this point, should be restricted

:() the very high speed "lost data" requirements. The handler may then schedule other
i activities, by calling INTAC:, with the start address and priority as arguments.
I Processing is ended for this phase, by issuing a call to INTRS:, which reswnes pro­
(:essing. Normally, the newly scheduled activity will have a high priority. Note,

I however, that the programmer may assign this priority, as distinct from those systems
.. where the hardware has the device priorities wired in. When the scheduled vrocessing

activity receives control, it will be considered a normal activity, and may make use
of all RTX functions. Interrupts will be enabled, so that other devices which require
service may receive control during their "lost data" intervals, after which the

(,stem scheduler will return control to the highest priority processing program.

~e A and X register are passed between the scheduling and the scheduled routines, so
hat word or byte transfer devices can pass the data itself to the processing pro­

grams. After· the processing program has finished its task, it may terminate, or it
may schedule other responding tasks. . .

I· By using INTSV: and lNTRS: to save and restore status, the user is relieved of one of
the most important and error-prone types of COding. With INTAC:, he can gchedllie
routines which are normal, interruptable programs, and which can utilize all of RTX's
capabilities.

Note that the INTSV:, INTRS:, INTAC:, and INTQ: routines are necessary only for the
user who is using RTX in conjunction with his own special (non-standard) device and
has written his own interrupt handler for it. The RTX I/O Executive (lOX), discussed
in Chapter 2 of this manual, contains the necessary I/O handler routines for the
standard CAl-supplied I/O devices (card reader, teletype, high speed paper tape punch

I and reader, magnetic tape, disk and floppy disk). These standard handlers wjthin TOX
{'"''ike use of the INTQ: routine internal1y.

I\.....
\-

1/3-1

1 1 'W:I""'"' >, .. ,':'1 {,'e"""''' '1'· U'b?W

·,,,,,1' ""tef n ;'11' ad ti'" ''d' 'uWt' (.se_-V k."" 'tn'·· W' ti'" '"pn:!lli"ti "!'Oirflili·eh'KMtys"4!WfIi1!SttilT 'S"I@

3. ~ SAVE ENVIRONMENT (INTSV:)

.
Calling Sequence:

INTERRUPTS MUST BE DISABLED
(,

.IST
DATA

INTSV:
""PLOC LOCATION OF ENTRY POINT 'TO INTERRUPT ROU'I'INE

Returns with:

INTERRUPTS---STILL DISABLED
STATUS---OV.RESET, WORD MODE
A REGISTER---SAVED P REGISTER
X REGISTER---UNCHANGED

bis subroutine must be called by an interrupt subroutine to save the current
nvironment.

.2 CESTORE

'taIling

ENVIRONMENT (INTRS:)

Sequence:

.IST INTRS:
DOES NOT RETURN

his subroutine is called by an interrupt subroutine to exit. If RTX was interrupted,
~ntrol is returned to RTX. Otherwise, task control is moved to the block at the top
f t(scheduler ready chain and the system Scheduler is entered •

. (INITIATE A NEW TASK FROM AN INTERRUPT SUBROUTINE (INTAC:)

\. Calling Sequence:.

.IST
DATA

INTAC: (MUST BE IN WORD MODE)
(*) START ADDRESS

b::tur::T:ith,
PRIORITY

(C

INTERRUPTS---UNCHANGED
OV---INDETERMINATE
A REGISTER---DESTROYED
X REGISTER---DESTROYED

1/3-2

h Wi I ber cl'ts.

----~---------------------' ~~~ ~

I
(

{

\,

3.4 INTERRUPT SERVICE AND QUEUE TASK (INTQ:)

Th~s service may be used in place of th~ INTSV:, INTRS:, INTAC:, sequence. It is
functionally identical to the combination 'of those three services'when they are used
as follows:

(

SUBENT ENT
JST
DATA
JST

DATA

JST

INTSV:
*PLOC
INTAC:

TASKC, PRIOR

INTRS:

SAVE ENVIRONMENT

QUEUE "TASKC" AT "PRIOR"

DISMISS INTERRUPT AND GO TO RTX
SCHEDULER

The advantage to using INTQ: is that it is faster; i.e., it shortens the period of
+-,ime during which interrupts are disabled.

Calling Sequence:

Returns With:

ample Usage

,

JST INTQ:
DATA $,0,0,0 CALLING LOCATION, 3 TEMPS REQUIRED

DATA TASK-ADDRESS FOR TASK WHICH IS QUEUED
DATA PRIORITY FOR QUEUED TASK
DATA A-REGISTER VALUE PASSED TO QUEUED TASK IN A
DATA X-REGISTER VALUE PASSED TO QUEUED TASK IN X
DATA P-LOC LOCATION OF SAVED P-REGISTER AT

TIME OF INTERRUPT

DOES NOT RETURN. QUEUES TASK FOR SCHEDULER AND DISMISSES
INTERRUPT.

1. Interrupt for End-of-Block

EOBENT ENT
JST
DATA
DATA

VECTORED INTERRUPT
INTQ:
$,0,0,0
TASKB,PRIORB,O,O,EOBENT

1/3-3 Revi sed 11 /76

Interrupt for Data (Input) Ready

DA'fENT

AREG
X REG

ENT
SIN
STA
INA
EMA

JST
DATA
DATA
DATA
DATA
DATA

3
A REG
ADDR,FCN
AREG

INTQ:
$,0,0,0
TASKA, PRIORA
a
0
DATENT

3.5 COMMON SUBROUTINES (REENTRANCE)

'tS# t'. Uttl 'N i

VECTORED INTERRUPT
BLOCK BYTE MODE
SAVE A-REG
INPUT THE DATA VALUE
RESTORE PROPER A-REG AND PASS INPUT
VALUE TO QUEUED TASK

A-REG VALUE FOR TASK
X-REG VALUE FOR TASK
RETURN POINTER FROM INTERRUPT

NO(-~llY, different activities are independent of'each other. However, it is not
unDualto have t~o unrelqted programs use the same utility subroutines, therefore
de: ning a "corronon" subroutine. ·One example would be mathematical functions library
routines. Rather than duplicating copies in each using program, a single copy is
loaded, and entered with subroutine calls (JST instructions). If control is within
'the common subroutine when an interrupt occurs, and another program gains control and
rc-calls the subroutine, the second call will destroy the return location of the
first. When control finally returns to the middle of the interrupted subroutine
(cr~ring the interrupt), it will complete its execution, and again return to the
se .d caller. The original caller never sees control come back. The later caller
gets two returns from one call. This dilemma is referred to as the co~non subroutine
prr' ~em, and it occurs in any system which allows interrupt processing. It is solved
in' _ifferent ways. Most simply, common subroutines can be forbidden. Alternatively,
push-down stacks are utilized, scratch storage is forbidden, (except in the stack),
and .. the prograrroning task is made significantly more imposing.

RTX has implemented an alternative solution to this problem, that of a "!Shared"
facility. In our context a shared facility is a body of code which may be called
co(.rrently from more than one task. In this sense, a shared facility is then
coO)n to several tasks.

The implementation consists of two services which are contained in RTX. These are:

SUBR:
SUBX:

To initiate the execution of a shared facility
To return from a shared facility

To illustrate usage of these services, consider the following example. If the
subroutine CUP is a common subroutine to two tasks (named COFFEE and TEA), then it i~
possible that an interrupt could occur which causes task COFFEE to execute before
task TEA Finished. This tneans that subroutine CUP could be entered from COFFEE
before it completed the processing due to its prior entry from TEA. In this case,
subroutine CUP is in common usase. It is designated as a shared facility and must be

1/3-4

'''ct '1&'''.' " ¥ ' '»Ut1F''i'f*W'*''j*g""t'''W" '"&'''1 t "f "N'''i'i''¥&r ,,,.j #tim'nmrrl" '.''1 bffi h

edt , # "rl '¥".,' ''$$''II3''"42'''tO t j d t ":" nM '#' \" '>!:trenX'idIrN'"

(esigned
sequence
CUP,

to accomodate that condition. The method here is to use the foll uw i .111

of code in both COFFEE and TEA whenever it is desired to call Subrclilt ine

JST
DATA

SUBR:
CUP

ACTUALLY CALL SUBR: SERVTn~

NAME OF COMMON SIJBROTlTTNE

instead of the usual method

b

JST CUP

NEVER call a common subroutine directly; that is, with a JST name.
ALWAYS call a common subroutine using

JST SUBR: CALL THE SUBR: SERVICE
DATA NAME NAME 9F COMMON SUBROUTINE'

(or using the LOCK: or PROT: routines described below).

3.6 WRITING COMMON SUBROUTINES

The rules for writing a common subroutine are very simple. They apply to the sub­
routine exit instruction. There are two rules:

Instead of the traditional RTN instruction, use a JMP to the location directly
before the subroutine entry point.

In the location directly before the subroutine entry point, place a JST SUBX: •

... Use of these two rules will allow an orderly exit from the common subroutine. In our
previous example, subroutine CUP looks like this:

NAM CUP

b EXTR SUBX:
JST SUBX:

CUP ENT ENTRY TO COMMON ROUTINE CUP
JMP CUP-l EXIT COMMON ROUTINE

When SUBR: and SUBX: are used, all subsequent calls to the common subroutine are
"locked out" until the current call to the subroutine has completed and the jump to
SUBX: has been made. Then, each subsequent call (made whife the common subroutine was
busy) is completed in priority order.

If this procedure is not followed, the system behavior will appear to be very erratic.
Although the system will probably correct itself, when tn.e do~bly-returned task
finally terminates, one activity has been lost, and one has been duplicated, probably
incorrectly. If the user understands this section thoroughly, he can have the con­
venience of library subroutines, without the difficulty of accidental re-entry.

1/3-5

t'titl**MiJientlftWi'flt"!!!! '±z'i''';' 'e'tlt

Hi: t' % Wi t '

3.~ CALL A COMMON SUBROUTINE (SUBR:)

This subroutine is cnlled by a user task to schedule a subroutine which may
~. be used by more than one task.

(
\

(

3 • B.

[NOTIE)

This subroutine does not return directly to the calliny program. It
exits through the Scheduler (SCHED:).

Calling Sequence:

SUBR: JST
DATA (*) ADDRESS OF CO~~ON SUBROUTINE

Enters Subroutine with:

INTERRUPTS---ENABLED
STATUS---UNCHANGED
A REGISTER---UNCHANGED
X REGISTER---UNCHANGED

,

1_ NOTE I
The return address put in the entry point of the common subroutine is

• the location following the data in the above call. That is, it
appears to the subroutine as if it were called from the location of
its address (Not the location of the "JST SUBR:").

EXIT FROM COMMON SUBROUTINE (SUBX':)

rhis subroutine is called from within a common subroutine to return to the calling
:ask.

This subroutine does not return directly to the calling program. It
exits through the Scheduler (SCHED:).

Calling Sequence

SUB
JST
ENT

JMP

SUBX:

where:

SUB-l

1/3-6

SUB is the entry point of the cornmon
subroutine. This call must immediately
precede the entry so that RTX can keep
its chains straight.
RETURN

[

(

6' "I .#5"F '·'''W'' '$"""*'" "'w'w '(Lon '#iat 'f"'eet""iiW"'j

Returns to calling task with:

INTERRUPTS--ENABLED
STATUS---UNCHANGED
A REGISTER---UNCHANGED
X REGISTER---UNCHfu~GED

[HOVE I

Wt :Un»..... . hWt':ii i"('¢'t'

Each SUBR: call made must have a corresponding call made to SUBX: once
the routine has completed. rfa call to END: (to terminate the calling
task) is made from within a subroutine called by SUBR:, all other tasks
will be permanently denied the user of that routine. To terminate a task
from within a SUBR'd subroutine, the ABORT: routine should be used.

3.9 PROTECT A FACILITY (PROT:)

'r i'lU"t'

., PROT: is called by a user's subroutine to protect itself from usage by other tasks.
It is in a way similar to SUBR: ,in that reentrance to a common subroutine is prevented
during its usage; however, in SUBR:, the determination to protect the subroutine is
made by the calling program, while in PROT:, the determination is made by the sub~
,routine itself.

Calling sequence:

SUB
DATA
ENT
JST
DATA

o

PROT:

$-3

The call to PROT: must be the first instruction following the entry point. The temp
cell SUB-l is used by PROT: to store the contents of SUB (the return address from the
caller). Note that exiting from the routine SUB must be done via the return address
in SUB-I, not the address in SUB.

Returns with:

rNTERRUPTS---ENABLED
STATUS---UNCHANGED
A-REGISTER--~UNCHANGED

X-REG1STER---UNCHM~GED

PROT: may be called more than once using the same coordination number by the same
task. However, a different task is effe,ctively locked out of the subroutine until it
is released by executing a call to UNPR:. '

1/3-7

(

. (-:

$ Y W r T 7 t ,\ 1M do St 'h" nh trW. it • e , t" r - 3 tit! "" *"a'"wl!\geM".1 "ft

I NOTE I
The INTRS: and INTQ: subroutines contain logic to preclude task­
switching caused by an interrupt occuring immediately before a JST
LOCK: or JST PROT: instruction. This involves checking the inter­
rupted instruction to see if it is a JST LOCK: or JST PROT:. This
check is effective only if the instruction is a JST indirect through.
a base page pointer to LOCK: or PROT:;' that is,an :F9xx instruction.
To insure this protection fea'ture, reference LOCK: or PROT: by means
of an EXTR directive, rather than a REF directive. This also implies
that if EXTR dIrectives are used in conjunction with the LPOOL
directive, then an EXTR LOCK: or EXTR PROT: must be accompanied by a
SPAn LOCK: or SPAD PROT: directive to insure that the pointer remains
in the base page •

3.0 RELEASE A PROTECTED FACILITY (UNPR:)

*l!44w¢tt WNw

(
ill. __ ,: is called by a common subroutine to delete its protected condition caused by a
previous call to PROT:

(

(

'..

Calling Sequence:·

JST UNPR:
DATA Coordination Number

Returns with:

INTERRUPTS---ENABLED
STATUS---UNCHANGED
A-REG I STER---UNCHANGED
X-REG I STER---UNCHANGED

In~~fect, RTX treats the address of a common subroutine (as used in SUBR: and SUBX:)
asqcoordination number. These are shared with the coordination numbers used by
p\ : and UNPR:. That is, the list in which the common subroutine addresses are
saved for SUBR: is the same list that saves the coordination numbers for PROT: and
LOCK:. Results will be unpredictaqle (and probably disastrous) if the coordination

~, number used by PROT:, UNPR:, LOCK: or UNLK: is also the address of a common subroutine
i (called by SUBR:).

Because RTX maintains a single list for PROT: and LOCK: coordination numbers and
SUBR: common subroutine addresses, &n alternative method for writing cornman sub­
routines exists. The rules for this type of common subroutine are:

1. Instead of the standard "RTN SUB" instruction, use a "JMP SUB-2".

2. In the 2 locations directly b~fore the subroutine entry point, place:

JST
RES

SUBX:
:J.

1/3-8

·Ukt.

~,

ii£ et'MWUffl,h"dtte"t!i'w, t 't'.t:'C tft"me i'f't!:ttttWffl W#WMtftWt * . "*" .' Ht" I,· ',., NMd'Kh'ww*bW" '1'" I.· .. ,,·-te ytif""·" 'n H"H 1",# jf'1\tWl'r:tfnWtW"'j Httt dr' -bnoN!"

J 3. In the two locations immediately following the subroutine entry point, place:
l

I
4.

JST
DATA

PROT:
SUB-l

Because PROT: moves the return address from SUB to SUB-I, references to par~~eters
must be made through SUB-I, rather than SUB. For example, a typical routine,
that adds the arguments presented to it and returns the sum in the A register,
would normally be coded as follows:

Calling Sequence:

JST ADDM
DATA 3
DATA 4

ADDM ENT
LOA *ADDM
IMS ' ADDM '
ADD' *ADDM

{

I

IMS
RTN

. ADDM
ADDM

I
I [~O'T!J
I This may not be used as a common subroutine because it has no
~ protection from re-entrance.

" Using the SUBR: common subroutine feature, the routine would appear as follows:
(

! Calling Sequence:
I ..

JST SU,BR:
DATA ADDM
DATA 3
DATA 4

b/ , ,

JST SUBX:
(ADDM ENT

LDA *ADDM
IMS ADDM
ADD *ADDM
1MS ADDM
JMP ADDM-l

I

~ 1/3-9

'hW '(Y IE I , t!t'$ 11 b .. &ttl! ". tw He d,#e" H;;wi&e{",,'tti d' df! # "Hi ltd'· "ir

'~ alternative method, using the PROT: common subroutine feature, is uS follows:

\.
Cal~ing Sequence:

JST ADDM

(DATA 3
DATA 4

JST ·SUBX:
RES 1·

ADDM ENT
JST PROT:
DATA ADDM-l
LDA *ADDM-l
IMS ADDM-l
ADD *ADDM-l

.IMS ADDM-l
JMP ADDM-2

,
TCC"Odvantages of the last example, using the PROT: /SUBX: sequence, are:

11 The calling sequence is shorter than that calling SUBR: (the standard JST SUB is
used) •

2. The burden for insuring that the subroutine is common (re-entrance protected)
lies solely with the subroutine writer, not the subroutine caller.

3. If the subroutine is capable of stacking mUltiple return addresses (not shown in
(this example), the subroutine is then recursive, and may call itself. (Note that

if recursive, SUBX: should only be called on the last return (use RTN SUB-l for
all returns but the last».

'.
3.11 LOCK OUT A FACILITY (LOCK:)

LOCK: was designed for use by Real Time FORTRAN, and is similar to PROT:. The only
difference between them is that the return address from the subroutine is stored in
th~' .. ocation. following the coordination number, instead of the location in front of
thU:!ntry po~nt, e.g.:

(
Calling Sequence:

SUB

Returns With:

ENT
JST
DATA
DATA

INTERRUPTS---ENABLED
STATUS---UNCHANGED
A-REGISTER---UNCHANGED
X-REGISTER---UNCHANGED

LOCK:
Coordination Number
o (Return address stored here)

The JST to LOCK: does not need to be placed irranediately following the subroutine entry
i p(lt, although JST to PROT: does.

1/3-10

. ~
(

. ~ .

The user' should reference the LOCK: or PROT: subroutine' with an EXTR directiv~,
rather than a REF directive. See the note in the PROT: description regardin<] this •

.
Note that the PROT:/SUBX: example shown above does not apply to LOCK:.

3.12 UNLOCK A LOCKED FACILITY (UNLK:)

UNLK: is similar toUNPR:. However, UNLK: permits the common subroutine to complete
processing, then returns control to the calling task, while UNPR: returns through the
Scheduler to the Ready list for the next task on the list.

3.13 ABORT A TASK (ABORT:)

ABORT: is called from within a common subroutine to terminate the task which called
.the subroutine •

. In addition to performing the END: function'JABORT: also deletes any PROT:, LOCK: or
--SUBR: conditions previously set by the aborted task.

Calling Sequence:

JST ABORT:

ABORT: exits to the scheduler (SCllliD:) •

[~JOTI I
The duration of an ABORT: call is significantly longer than an END:
call, and therefore it should be called only if in a common subroutine,
or in a PROTected or LOCKed condition •

3.14 OBTAIN CURRENT PRIORITY (GETPR:)

Calling Sequence:

JST GETPR:

Returns With:

INTERRUPTS---ENABLED
STATUS---UNCHANGED
A REGISTER'CONTAINS TASK PRIORITY
X REGISTER---UNCHANGED

The.subroutine is called to get the current priority'of a task. It is usually'
called so that a task's priority may be restored after it is temporarily altered.

1/3-11

Y1 ' t at Mw ttiea -iewj" '*'** "iwreti'6f 1- \, t 'pH "'fW ... iW'",·",,,,,. 'j ! W . y'gi!lltWWfbi!! t, ,"J"'." '" &" tfftt# "WH'itb

3.(SET TASK PRIORITY (SETPR:)

(

.
Calling Sequence:

LDA
JST

Returns With:

DESIRED PRIORITY
SETPR:

INTERRUPTS---ENABLED
STATUS---OV RESET, WORD MODE
A REGISTER---UNCHANGED
X REGISTER---UNCa~NGED

Wrl'it''''trfSbi"d,¥i!* " ,", t· ,'t ',

This subroutine is called whenever a task desires to alter its priority • . (..

3.16 INCREMENT TASK PRIORITY (INCPR:)

:~: Calling Sequence:

(

JST INCPR:

Returns With:

INTERRUPTS---ENABLED
STATUS---UNCHANGED
A REGISTER---UNCHANGED
X REGISTER---UNCHANGED

I

~ s subroutine will increment the priority of the calling task by 1. Ho range
~hecking is performed • ...

3.17 DECREMENT TASK PRIORITY (DECPR:)

(

Calling Sequence:

JST DECPR:

Returns With:

INTERRUPTS---ENABLED
STATUS---UNCHANGED
A REGISTER---UNCHANGED
X REGISTER-~~UNCHANGED

This subroutine will decrement the calling task's priority by 1. No range checking
is performed.

(L
I/3-P

;
.!

i
I

.1 ,
q
I

(

r-

',.

i

SECTION 4

ADDITIONAL RTX FEATURES

4.1 RTX DEBUG FEATURE (ZBG)

The standard CAl DEBUG program is included in the RTX library tape (Segment 1) under
the name ZBG. (Detailed descript~ons of DEBUG are included in LSI-2 AutoMagic, CA
document 96045-00, or LSI-3/0S AutoMagic, CA document 93001-00). When this module is
linked, Relocation Register RF points to the RTX Linked list pointers for use with Z
functionJ the corresponding length requirep by the Z function is set" to five words,
nich is the length of each block used in the RTX Linked lists. When displaying a
articular list with the Z function, the first printed line is not an entry in the

but simply the pointer to the top of the list, followed by the next four higher
in memory; this first line may therefore be ignored.

There are eight lists maintained by RTX, and the pointers to the top of'each of these
lists reside within the RTX nucleus in eight consecutive memory locations, in the
following order:

ORF
lRF
2RF

3RF
4RF
5RF

Pointer to the list of tasks awaiting execution (READY)
Pointer to the list of INTQ: and INTAC: tasks awaiting execution (FIFO)
Pointer to the list of tasks currently awaiting completion of a DELAY
(DLYCH)
Pointer to the list of
Pointer to the list of
Pointer to the list of
GET: (GETCH)

common subroutines currently requested (COMN)
tasks currently awaiting I/O execution (lOCH)
tasks awaiting a PUT: response to a requested

6RF Pointer to the list of PUT: reqnests awaitil)g a GET: response (PUTCH) t, 7RF Pointer to the list of currently unused blocks (FREE)

~The following is a description of the contents and manipulation of a user block
within each of the lists:

1. READY List (RF) Ready to Run (used by BEGIN:)

RTX maintains a list of all tasks which are ready to execute in the READY list.
This list is sorted into priority order, so that RTX simply executes .the task
at the top of the list. Th~ format for a READY block is as follows:

Word

o

1

Contents'

Word address pointer to next block entry in the list. (The last
element in the list,contains a zero).
Bits 15-3. Task priority number.
Bits 2-0. (LSI-2 only)

(I
Bit 2. EIN indicator, for reference only. (RTX always
allows interrupts.)
Bit 1. BYTE mode indicator upon next resumption of task.
Bit O. OVerflow indicator upon next resumption of task.

1/4-1 Revised 11/75

.
(

2.

Word

2
3
4

FIFO list (lRF)

II tiNe W re'. wt'P"9UPItH'-¥5'WWAir't1'M1" 1»1*,*"""'&*"*_, '4 i#'¥IW "j . HHtih te Witt· ,I t'"

-.~ ... -) ...) .""",",,~.,",,""'" "-'-"....--.:,.

Com~~~

Contents

Bits 2-0. (LSI-3/0S only)

P
A
X

Bit 2. BYTE mode indicator upon next resumption of task.
Bit 1. OVerflow indicator upon next resumption of task.
Bit O. Unused

register contents upon next resumption of task.
register contents upon next resumption of task.
register contents upon next resumption of task.

Ready to Run (used by INTAC: and INTQ:)

In order to avoid the problems of interrupting a linked list processor, INTQJ
and INTAC: put the entries for their tasks in the FIFO list. (BEGIN: operates
directly on the READY list). The RTX scheduler (which is never run as an
interrupt routine) empties the FIFO list into the READY list and sorts the
READY list. Tne format of a FIFO block is the same as a READY block.

3.b DLYCH List (2RF) Delay (used by DELAY:)

(A call to DELAY: (with a unique positive coordination number) causes the block
for the currently executing task to be deleted from the READY list and put on top
of the DLYCH list. The format of a DLYCH block is as follows:

Word Contents

C' 0
I

Word address pointer to next block in the list.
Status & Priority. Same as READY list entry.

,(
2 The P register. Points to address of return from DELAY:
3 The coordination number.
4 "orking number of ticks left in Delay.

" Upon return, the A register will contain the coordination number. The X register
will contain t!'1e number of Real Time Clock "ticks" remaining (normally zero).

CO!1N List (3RF) Common Subroutine (used by SUBR:, SUBX:, LOCK:, UNLK:, PROT:,
UNPR:)

A call to SUBR:, LOCK: or PROr: ~duses the COMN list to be searched for a block
for the common subroutine. If none is found, a block is deleted from the FREE
list and put on top of the COMN list. The format for a COMN block is as follows:

Word

0'
1
2

3
4

Contents

Pointer to the next block in the list
Busy flag (zero ~ not busy)
Pointer to the block of the highest priority task waiting to use
the common subroutine (0 = no task waiting)
Address of the common subtoutine (or coordination number)
Unused

If SUBR: is called and a block for the common subroutine is found with the Busy
flag set, the block for the currently executing task is deleted from the READY
list, and inserted into a secondary list pointed to by Word 2 above. At the same
time, the P register is set so that the task will again call SUBR: when RTX next
executes the task.

1/4-2 Revised 11/76

I,:

(

togrt j't h tt" t m • ! •• f? b'j" 'fjbf"&ttit!!:i?WWtW' t"ttl t we #We . ' ", '11" Q Me?t' •

5. lOCH List (4RF) I/O Suspend (used by lOX:, Fortran Interface)

A call to 10: or IOWAT: when the busy flag is set in the lOB, or a Fortran call
for I/O when no parameter block is currently available, will cause the task block
to be deleted from the READY list and put on the top of the lOCH list. The P
register i~ set so the task will repeat the call when RTX next executes the task. I
The format of an lOCH block is the same as for a READY block. The lOCH list is I
emptied into the READY list each time any I/O completes. I

!
'1

6. GETCH List (5RF) Get (used by GET:) i

A call to GET: with a unique positive coordination nwnber (and no matching PUT:
yet) cau~es the block for the currently executing task to be deleted from the
READY list and put on top of the GETCH list.

Word

o
I
2
3
4

Contents

Pointer to next block in the list
Status & Priority (same as Ready)
P register. Points to return from GET:
Coordination. No.
Unused

When the associated PUT: is done, the block is deleted from the GETCH list, the

t 7.

A and X register contents are stored into words 3 and 4, and the block is inserted
into the READY list in priority order.

PUTCH List (6RF) Put (used by PUT:)

I
(

I

l

~
(

I
8.

A call to PUT with a unique positive coordination number (and no waiting GET:)
causes a 'block to be deleted from the FREE list (see below) and added to the top
of the PUTCH list. The format for a PUTCH block is as follows:

Word

o
I
2
3
4

Contents

Pointer to next block in the list
Unused
A register contents to be passed
Coordination No.
X register contents to be passed

When the associated GET is processed, the block is deleted from the PUTCH list
and put-on top of the FREE list.

FREE List (7RF) Available Storage

This list is initialized to contain the entire wO.rk space during a call to RTX:.
As blocks are required, they are taken from the to'p of the FREE list. As blocks
are no longer required, they are deleted from the appropriate list and put onto
the tail of the FREE list. A FREE block has no specific fo·rmat. It will simply
contain data from the function which last used the block.

1/4-3

1r4f'f'f' tn.' '$':,';** 'wmf'i¥ "Ie'edt' 'emM 1 d"'" 'b' * "s'''t'' ,," WW l' iWhiM ... -' .. ", "'E emf b t ., I't ;is db! eW'til!tftr!ii8wt"sw

4.(I'I<OC:kAM LOADING WITH ZBC

ZBG res'ides in the RTX library; to make use of ZBG, it js necessary to includp a

ZBG REF

instruction wi thin the user's program. 'rhus ZBG is entered immediately upon execu­
tion, and may theJl be used to breakpoint through the mainline sequence and any parti­
cular task.

4.3 POWER-FAIL, AUTO-RESTART (PHRFL:)

If the computer being used has the Power Fail option, the user may utilize the RTX
program Inodule which provides service for that device. The loader will cause the
routine to be loaded if the user has a REF to PWRFL:. He must, however, not actually
call that program at execution time. Instead, if a power failure begins, the inter­
rupt hardware wi 11 force cont.rol into that routine, saving the computer I s register
stL.;\S, and halt, to prevent loss of information 'from core storage. When the power
is.stored, the program will schedule a user-supplied routine, which must be named
~.- 'JP:, and must occur in a NAM direc.tive. Re-initiation of the activity which was
il< J?rocess (at the time of the power failure) will also be scheduled and control
will be passed to the system Scheduler.

RTX will schedule PWRUP: as a task at priority 8184 with the contents of the A
register nonzero if the power failure was detected. If power failure was not detected
(e.g., the comput.er was halted), RTX will transfer ... Qr!':rol to Pl'lRUP: with the
cor .. nts of the A register equal to zero. Note that P.TX cannot resume the activity
inrJrogress at the time of the power failure if the r~wel failure was not detected.

41 TELETYPE INl'l!T/OUTf'U'T'

R'l'·X provides decimal, octal, and hexadecimal I/O on t:he standard Tpletype, by using a
software interface to CAr I s Teletype utility PackagE {T';P). ':'1-)('-3! ~ ,- and usage are
identical to the standard version.

'rl~ .. 'lSO provide=,; Lhe CDlJ:l.bility .to read and print strings of text,
1 is, et c.}, and this capat·i 1 i ty is retained in the RTX version.

,'I)

(for headings,

R{ :r to the standard TUP documentation. (il ')6014) for a complete description of each
routine _ Additionally, a specific limitation ex ir.,;ts with respect to TUP usage t,hrough
RTX:. TUP must not be called concurrently by more than one task, because TUP itself
calls subroutines .within it with JST instructions, and these subroutines are not
protected from re-entrance.

TUP l~' ides on the RTX Segment 2 library tape, and its routines should be referenced
with t:'(~ REF or EXTR directive.

4.5 LSI-3IGS SOFTW\RE CONSOT~E ROtJT>fW (CNSOL3)

The LSI-3/0S version of RTX includes CNSOL3, the Sof~ware Console Routine, which may
be linked by a reference to CNSOL3 in the user program module. Usage of the Software
Console Routine is described in the ~SI-3/05 Software Manual (90-20010-00).

(~
1/4-4 Revised 11/76

OIU

(

(

, "j tnt

(:

SECTION 5

RTX OPERATING PROCEDURES

1. Assemble each of your application program modules. Be sure to reference each RTX
function that a module uses in either an EXTR or a REF directive.

2. When you have a useful object tape for each
create the executable application program.
LAMBDA, the relocating, linking loader.

of your modules, you are ready to
This requires that you first load

Using LAMBDA, force load the initializer task module of your application.

Then using LAMBDA, load the remainder of your group of application program
modules. You can use the Selective Load feature of LAMBDA to include only the
modules your program actually' requires.

5. Still using LAMBDA, selectively load the RTX Library object modules from the two
RTX Library Tapes (70-93300-01 and 70-93300-02) .

6.

[~OTE]

If the user program does not reference PROT: and LOCK:, LAMBDA and
OS:LNK will declare these subroutines as undefined. This declaration
can be ignored since INTRS: and INTQ: (loaded after PROT: and LOCK:)
check to see if a call to either subroutine is the next instruction
after an interrupt is serviced.

I i>lOVE I
When operating under the lOX File Manager, disk devices must be
labeled prior to their use. Labeling is done with the stand­
alone prog~am, RTX File Label Utility (tape Nos. 70-93324-40Al
and -4lAl). S~bsection 11/5.3 gives a c?mplete description of
this utili ty .

Start execution of your program so that the initializer module (Mainline Sequence)
or ZBG, if used, is executed first.

T 1"_1 Revised 3/77

(

(

(

'S' '"M' 'tt' 5' t'! t'

Section 6

A SAMPLE RTX PROGRAM - RTX DEMO

6.1 PROGRAM DESCRIPTION

The RTX Demo Program (00-93300-13) demonstrates the basic functions of R'l'X in a
simple, straightforward manner. It consists of three main tasks (TASKl, TASK2,
TASK3). The function of each of these"tasks is to delay a specific amount of time,
and then call a routine to output a message to the teletype. The message consists of
the task name followed by the elapsed time in seconds since the start of the program.

C',A. n actual user's application of RTX might very well use the interrupt from some
~xternal device to initiate a task. This example simulates the effect of three such
devices which interrupt every 5, 7, and 11 seconds, respectively; that is, the delays
themselves simulate external devices.

C

Each task delays a different amount of time than the other tasks, before printing.

TASKl delay: 5 seconds
TASK2 delay: 7 seconds
TASK3 delay: 11 seconds

Thus TASKl will output

"TASKl 0005"
"TASKl 0010"
"TASKl 0015"
etc.

TASK2 will output

"TASK2 0007"
"TASK2 0014"
"TASK2 0021"
etc.

And TASK3 will output

"TASK3 0011"
"TASK3 0022"

."TASK3 0033"
etc.

Because of teletype timing, each message takes more than one second to complete.
Thus the three tasks will contend with each other tor the use of the teletype.

1/6-1

.,

t .h t If'" ! t J)' j r 'tftitK'b't .' de. Httt t nw • b' '1' • t t H&'1 tw •• s'

I(.ddition; a fourth task called "IOTASK" outputs the
ta:,;k is begun by each of the three main tasks whenever
followinq various priorities:

actual teletypt: me:,;saqe:,;. This
their del~ys expire, at the

TASKl bet] ill::; lo'rASK at IJriori ty 5
TASK2 begins IOTASK at priority 7
TASK3 begins IOTASK at priority 11

This means that if TASK! and TASK3 both begin IOTASK at the same time (which they
will, at 55 seconds), TASK3's message will be output first, since its priori~y to
begin lOTASK is higher than TASKl's.

To be more specific, and to demonstrate the priority sequence more fully, the actu~l
teletype output after 55 'seconds appears as:
, '

TASK3 0055, TASK2 0056, TASKI OOSS, .•• because each message takes slightly more than
one second to print, thus causing the following sequence:

c...~.TIME

.- 55 seconds after start
(

56 seconds after start

C--.'·; ,

(57+ seconds after start

ACTION

TASKl and TASK3 both begin IOTASK with a "55 seconds"
message. Since TASK3 has the higher priority, its
mes~age is printed first.

TASK2 begins IOTASK with a "56 seconds" message.
TASK3's "55 seconds" message is still printing, and
TASKI's "55 seconds message" is queued up. Since
TAsK2 has a higher priority than TASKl, the TASK2 "56
·seconds" message g~ts output when TASK3' s message
completes.

TASKl's "55 seconds" message is output after TASK2's
"56 seconds" message is completed.

After 80 seconds, the teletype listing should appear as:

TASKl 0005, TASK2 0007, TASKl 0010, TASK3 0011 b TASK'
0014, TASKI 0015, TASKI 0020, TASK2 0021, TASK3 0022

TASKl 0025, TASK2 0028, TASKl 0030, TASK3 0033
TASK2 0035, TASK1 0035, TASKl 0040, TASK2 0042, TASK3 0044

(TASKl 0045, TASK2 0049, TASKl 0050, TASK3 0055
TASK2 0056, TASKl 0055, TASKI 0060, TASK2 0063, TASK1, 0065, TASK3 0066
TASK2 0070, TASK1 0070, ·T~SKl 0075, TA~~3 0077
TASK2 0077, TASKI 0080,

(TASK3's messag~ contains carri~ge return ~nd line feed control characters).

6.2 PROGRAM MODULE FL~CT10NS

Let us now examine the RTX functions used in this program (refer to the flowchart in
figure 6-1 and the program listing at the eDd of this section). There are six basic
modules comprising the program:

BEGIN
TASKl

~ TASK2

TASK3
IOTASK
ADDl

1/6-2

~, I t,
"I Ii
~,
f
,,~, ,I
~,'
t
!

i'
i<

I·i
"I

~ .1
i

itt t

(

(3

" (

:1 mat,s: '1 It db , . ''S'' f' 'r f t ,.t H 'hit " M , • tt .T#t' U$

•

6.l.1 BE(ilN (III i t i <11 ize dlld Ht'Y i 11'1' .. ~k::)

The program start occurs at the BEGIN section of the flowchart. The first step is to
in'itialize RTX. This is performed using the R'l'X: function to define the maximum
number of RTX tasks which may be in concurrent uperation and the requin~d tilhle space
for RTX management of those task::;. If in::;uffic:H!IIt tahle ::;I'al:(! is found t)(" otill'T
peculiarities occur during initialization, the C!rror return i::; t:dkeu. In our example,
we halt the computer to remedy the problem. U::;j IIlJ the BEGIN: function of ~'l'X defines
the task name (TASK1, TASK2 and TASK3 in our ~xample) and its software priority
number (100 for each in our example).

No other tasks have begun their activity at this point. This is because the first
task following the RTX: call (the initialization sequence itself) is automatically
scheduled at the highest software priority. When the END: function is called, this
task is deleted and the Scheduler can then schedule the other tasks in relation to
their priority~

since the three tasks all have priority 100 and priority 100 is the highest active
priority value, the Scheduler will arrange each task in sequence according Lo the
order in which it was initiated by the BEGIN: call, and will then start execution of
the first task in that sequence. The sequence is determined by a first-in, first-out
rule. Therefore, TASKl executes until it requests an RTX service which causes it to
be suspended.

When the task is re-scheduled (on completion of one of the above function calls), it
is put back in sequence at the end of all other equal priority tasks.

This type of organization allows for true priority scheduling wiLhin an application,
while also allowing the tasks ~hemselves to be executed, interrupted, and resumed in
an orderly fashion.

6.2.2 TASKI (Delay 5 seconds, Then Output Name and Elapsed Time)

When TASKl is begun, it first performs a five second delay. This is done by a call
to DELAY: with 'parameters of 500 (nUmber of ,;'1 millisecond real time clock "ticks" to
delay) and I (a specific coordination number for this particular task's delay calls).
The coordination number is necessary mainly for identifying a delay to be changed or'
deleted; however, it is also required when beginning a new delay, as in this example.
When the delay is com~leted, control is returned to TASKl, which then calls the
subroutine ADDl, which increments the elapsed time in the TASKl message by five
seconds. Note that ADDl is called via 5UBR:, because it is a conunon subroutine used
by all three tasks, and is not re-entrant; thus SUBR: prevents another task from
entering ADDI until this call is completed.

Upon return from ADDI, the mess.u~! is ready for output to the teletype. This is done
by a call to BEGIN: to initial~ze the conunon task called "rOTASK," which in turn
makes the actual call to the I/O executive (lOX) to perform tile output. Note that
"IOTASK" is a task, not a subroutine; this means that TASKl may nqw continue with its
next 5-second delay while the I/O is in progress rather than upon its completion,
which would invalidate the elapsed time count. Also, the initiation of the common
task is made with a priority of 5. IOTASK is also initiated by TASK2 and TASK3, with
priorities of 7 and 11 respectively, so that a predictable ordering of outputs is .
achieved when two or three tasks are vying for the teletype at the same time.

#' .,'

~L ______________________ ~_ _ 1/6-3

$' tt $' "'$ b" d by 'e'
b t' I &", I

\.

.. ,

6.\.3 TASK2 (Delay 7 Seconds, Then Output Name and Elapsed Time)

TASK2 is identical to TASKl in its logical functioning. The only difference between
them is in the parameters passed in their calls to DELAY:, ADDl, and IOTASK. TASK2
ca- r DELAY: with a 7 second count and a coordination number of 2 (to differentiate
it Lrom TASKl's delay call). The common. subroutine ADDl is called to increment the
elapsed time by seven instead of five, and the common task IOTASK is begun at a
higher priority (7).

6~2.4- TASK3 (Delay 11 Seconds, Then Output Name and Elapsed Time)

TASK3 is similar to TASK! and TASK2. TASK3 calls DELAY: with an 11 second count and
a coordination number of 3. It calls ADDI to increment the count by eleven, and
begins IOTASK at priority 11.

6~t, IOTASK (Call lOX To Output A Message on ~he Teletype)

IcGSK is a common task begun as a task by BEGIN: calls in TASKl, TASK2 and TASK3.
Up,)entry, the X register contains an address pointer to the I/O Information Block
(lOB) of the calling task. A call is then made to the lOX package (at its entry
point named 10:) passing the lOB address as a parameter. An error status from the
I/O operation will cause the computer to halt. Otherwise, the task terminates itself
with a call to END:.

ADDl (Common Subroutine To Increment The Elapsed Time for Printing)

AD[, is a common subroutine called by TASKI, TASK2 and TASK3 prior to printing their
)

mes~dges. Upon entry, the A register contains the amount by which to increment the
elapsed time tally, which is pointed to by an address in the X register. The routine
performs the addition, and then returns to the calling task through SUBX:. This is
because the subroutine was called via SUBR: to avoid re-entrance.

1/6-4

I

)

ir ... SW f bette °ot

.,

)

)

.'

}

WN ' 0'"$ n 0 t 'oj tH'rtrt

BEGIN

RTX:

Initialize

BEGIN:
Start
TASKl

BEGIN:
Start

TASK2

BEGIN:
Start

TASK3

HttMWt# ! .stri 0

YES

t '

HALT FOR
CORRECTIVE

ACTION

Figure 6-1. RTX Demo Program - Flow Diagram (Sheet I)

1/6-5

'd o.otf o ',#'_

(

(

(

i .-.,

,C:.·. 0-·0

(

TASK}

DELAY:
Delay.

5
seconds

ADD!
Add 5 to

time

ADDl

Increment
time
count

Return

TASK2

DELAY:
Delay

7
seconds

ADD!
Add 7 to

time

IOTASK

10:
Perform

I/O

END:

YES

TASK3

seconds

Halt
for

corrective
action

Figure 6-1. RT~ Demo Program - Flow Diagr~ (Cont' d)

I/6-6

--ir--ty'l --r ~ Vi "I

I
l~

0'1

I' .--.l

.. :1

~AGt 00nt O~/50/77 11:~~:~7 " 1)(l't" (J ~ ~ (H, .. h :-: (j ~ .0; l~ lJ / U 1 - 1 ~ ~ 1
"1 A C ~ I I 2 (/I. t!) :) j = ! \ t (h t' U =

0002
OOOLJ

OOOH
uIJ04
001u
0011
001i'.
0013
0014
001~

001h
0017
OOtH
0019
u020
nOll
n022
0023
0024
OO~5
002b
0027
00.1 K
00(19
00.$1)

0031
0035
U036
0037
oo-;~

00.$1.1
0040
0041
vOLli?
0043
OOllll

.M

000l)
OO~5

0000

o 1I (I 0

()OO0

.()ul~

U un 0
0000 MUOO BO.80
0001 '-1AM9 00.jH
\) n u ? () fI ~ ~ t.lO~C

vO(); CJI,A!> ~l 0" '/

1)i1I1i.1 I.JIII. , 1I(1~(,

tlOOS 'fAt'll) 00C3
f) 0 0 6 q A Ii II OtJ(;4

!..,~,...,,;.,---

*
*
/It

I(

*
*
*
* ..
*
'"
/It

/(

*
'It.

.A

IFF l5130~

t'\llJc.
inl:; PRUGWAM CONCLJI .. n~£NIL'Y EXtCI.lTES tHJ.(tE. (5)·
TASKS (lASKi, TASK2, ~ 1 AS 3J I'IHICHOElA'Y
TI1f >1SI.l.VES fUJo< t;" 7,). 11 SECllNDS tlfSPECll\lf'.l'l'
A~[) THeN lyt-lE- OuT THEI~ li)Er,TH1CATION I-OllC·w(lJ
~ Y T H t: rv U !WI Ii i-t'< 0 f- !.; E C U N lJ S 1 H /I T HAY f-_ . t: L A ~ S E. D
SIN C I::. I t If. ... K U Ii RAM \'I ASS 1 A f.(n () . I H £ T h..., n. T AS,.. $.
Akr ALL RltN''i!N(.; Af 1Mt:. ~)A"',C: PI-:ltJt~Jl,(A~~U LAll
A C I'M M 0 l\j ~~ u t. k L1 UtI ~ .. t: 1 U U I-' r; A T t: r Ii t: '" U M t' F '" I I F
~tC'.JNuS ji, ThEI uuTPul :"1f-5~Al1E~. A LLI~!"'(JI'~
lASt<. (ltJfA~K) l~ Tt,HI 1.~I.I~Ut() JOllliTPUr THt:
APP~O~RIAt~ M~S~A~t. THIS TASK' IS WUEU~U
A T I H R E E (3) D H F t R F. ~ I ~ k ll) R IT It S (I A;; K 1 = 5,
fASKc=7, ~ lAS,,3=11l SO lHAT, FOR t.(Wt>.L TIMeS,
r ~1 f M E S S A (; r. SSt tU U L l) A P P f A h' 1 NIH ~ f 0 L L 0 1'0' I N ~
OKUER: TA~K3, IASK~, lAS~l.

N~M PWRIJf>: ...
. NAM l:UAT

fXiR R T X : , Be bIN: , £ NO:
EXTR SUBR:,SU6X:,D£LAY:,IO:
r.xn~ PAUSE:
JFF Lt>JSOS
£XTR D:TYOO
E:. I·J () l:

NOAeTS EQU 20
REl 0

BEGIN, EQU $
LDA =' 0 0 ' RES~r
STA Ti •
STA 11 +1 • ALL
STA T2 •
S'tA T2+1 fL.APSE{)
STA T3 •

'.sTA T3+1 • TlHE.S

~

~

... " ~ " .. ~ , , '

··~f r~ .---,. ~ .,--" . --. . , .. ' .. ':: .
'r-' " r"\ ~. '

tJAI..''- 0(111; tdl ~L!III 1\ : t' ~ : ;> 7 .,. I tI x ;. f·<\ J ~. "lJ \, ~ ." \I ~ '>" il lUI - \ . . .

MACk\Jc' (A(!J S 1 = dl .. ltl.~ t\fJ= lSI-,J "lx 1'1"100\0 llIlLl-<-/\~nl1-1.s11

I ~ ..

I) 0 4 '-} tJ 0 n' F q 0 0 " {J 0 {I .JST RT~: .sTART RTX
u Oll ~ II 0 t' ~ 0 () ill DAiA NOACTS NUMBER Of ACil V Il/E.S
{'\()c~ 7 OO{)Q (lOOt J)ATA WRAREA RTX BuFFER AREA
0048 nOOA UBOO HLT
OOQq O(}CH:~ ~ ~bb 1)072 JMP STARr Go START INITrALIZE ROUilNf
lJOr,o IJfJOC P;i~FI..: REF FORCE LOAD THE PO~ER fAlL
onS1 " ~ou t I Nt:
00'12 \1 u 0 () f- q (I 0 \) 0 n \'1 PW~f.JP: JST END: t6NOR E' POWER up RESTART T.4 Sk
00')3 () () !J t. () U U \J WRAREA RES NO). CTS..-NOAC TS +WO,4c. rs HJiOACTS+NOACTS I 0

~

..

~
~ _____ ~I

) ~.

.... J;.;:.~::1~....:.::::"3"""'~~~~!:~ .. ~-:'.;::~~~:7:' ... -...

. ' -. ,.'

--';r' --e--' '-., (\ 0: \., ---'----""":3I>C~_:.:_--....,

..
i-' A I,t ",(,~ ""/';1./71 Il:c''"):011 --Ix "[MII ~H'UI,"·/.I' 1,"'PI,/I/1-15t'l.
''rA L 1'(" r (At" :,J = oJ t .'" It.' !"r,= L;;l-r' .. 1,1\ ,t ~II UIII-'/~~(I\I-l ~tl

"oSS *
OO')b * INlflALIZE TASkS ~ ,

0057 fr

u\1513 I) I) 1 C ~ ~ 0 v ,'OlliJ START JST ' BEGIN:
00'>"" I) () 7' () \1 7'e DAtA TASK1 STARr TA,SJ<1
(lOoO ,iillT'1 I) Ilbll DA'TA 100 PRIOR.fT,M5.1 VON TA~I('"
0061 -Ie

nOb? .. .,.
* '" .,. *" It If * 1(* '* * It ~ .. * If * ." * * It *

.,.. .. • 'It * ..
0063' It

I)Obtl 1/0 IS '" '1'\11 !l1l'1{", JS 1 t1t.Gl :
IJ06f:, d07h OU'iM DATA TASK'? STflwl IA~" r

,00"'6 U 0/7 lI(JblJ UATA' 100 .
110h 7 It

OUb8 .. *' .. * ',. * * * ~ " * :J: .. II" ." Ie .. * * If • *' .. If 'It • iI- .. '* * It ,It

I 0069 -Ie

~I. 0070 or)"lt).f\lOU OOuO J~T Hf.GIN:

. cr. I, 0071 o07Q Ol)Htl l)A1A TASK~ , ' 007? n07A 0004 ,OAIA 1UO '", I 0073 \. If

0074 • * It It • .,. -It .. * .. Ie I: '* " * .. ,. l It" * * .. . 9' * It .. " It -Ie

0015 * ",/',
0070 007U FI.IOO llOt}U 'JST END: ~ALT IN1T1AL1ZE -ROUTINE

-_... ." ~ ___ _ ~ .. : J

'r A (;1:. "I}!,.:.! \1'1/ '1':111 1 -,~
.., A L toll , t!. (A t!) :; I:: " ~ , .J "\ ' . If:.

H
..........
Cl\
f
~.

0

I

I) 0 7 h
. 00 lq

OUHO

o () 81
nOM?
00(\$
001-\4 00,.,,,
QO~b

(JOB7
UOHrI
OOIj'1
00'10
I) 041
uOQ2
0045

ooqLJ
OO'1'j
OiJ'1b
OOQ7
009M
0099
OlvO
0101
Otu?

010~

o 1 () I~
I) lot;
OlOn

4

..
(10 IL ~ '10(1 U CJ 'J U T .AS "'1
'-1071) 1I1F~

uU n 0(J1l1
I<

• • ..
'*

,LI 0 7f- e711,)
OOl'itl tUCIO " 088
OO~l ~ '/0 l) II v (1 0

.-
0011; ullOA.

* .. * ..
:I;

UOH) r..IJOO UIH~E:.

nOH~ F'10(l oouu
llV b ':> U ()CF
UOHb 000':>

* .. '" it

*
o-Ob 1 ~ hOt:' vOlt.

1/

.. I< * ..
llIJtiM BUFf1

t' 0 8 1; J) ~ C. 1
I.lUH9 03Cti
00i;A ~11 A 0
1.llJbH :10~i{) T1
,'0 "C ~ u"l)

...
;)()~I) ACAt>

\luBE 1081
IHI8E 000 (\
OOSF Ot/ull

0090 00011

JST
DATA

,. t- .,

LAM
LCl(
JST
DATA

.,
* *

L C}(
JST
DATA

..
'" *

JkP

'It * *
Et'J(J
TEXT

TEXT

TE~T
EQU
DATA

..

I<

*

I<

I).;' .:1........... ~).r-. w f. t-! '-; ') .'11" '-"~I:. ,., ..
\.:)1-, "1'1 I·~"'.; !:1:n-""~·~,1\'-l.H.l

DEL.AY:
500,1

WAlT fOR
S SECONDS

* 1\ ., ,. .. ,. .. • ~ .. ,. .* '* #I: ~

5 5 TIMES T~ROUGH ADD
=T1 ~OlNTER ro NOM6£R
SUeR: ('AL.L CO~MaN SUBROUTINE
ADD1 TO AOj) IN SCO

.. * .. It 11: .. 11: .. * ..
'" " '* It 11 :A *

=t081 ADDRESS Oli 1.08·1
BEGIN: STA~T COM~OW TASk
10TASk,S TO DO 1/0 (P/UORliY 'S s)

-t: .. :I; 00: .. * '" " *' • • #I: 'It
. ..

TASJ<1 KEEP GOING

* .. " I< * I< A - '* .. k :I; * 1\ ~ A -A

.$
'TASK1 I

'0000'

I , •
! JOB BL.O(k
0,0,0,0

• ~

.. :I; 11 '" *

* ... * *
,. *1\

* It " .,.. +

* '* '* '* '* * *

" * ..

4- t- t

.. * "

.. '* '*

~ .

* .,.

'" ...

11: "

.. *

~
I

··lJ
.j

-'
·" ~ ... "~""-t"~':"'"~~i!!~~:';~"'~~~~~" ~"""'"'':'-'~?'~~~~='

--::----~ r ~ 0- Ct: ~.

H

~
I

? A.I~ I: l.I U IJ C; \' 3/ '\ II I I I , 1 : t' ~ : " I I" , .. i'l: "I' ;''"'1)1.t''1.'·: f.J.~ \1!ll/lJl-1 h.l
MACRr 1c' l;.~ lSI = :'t "llh "~c): l 'j t - I" ,.. I II ': ~ ~ I I :S" II - 4 'J ~ U \l - l ~ 11

(10 <n Il tJ 0 ()
O\U7 Ot)Q2 C3CF DATA 'CO' LUN
0108 009.~ 0005 DATA 5 FUN' CODE (UNfORMATTEO WRtl
OlO'j (lOqq oooc OATA 12 MESSAGE BYTE LENGTH
01to tlC1~" oo~.~ OATA' BOFF" MSG BOFfER
u t t 1- 00'16 111100 £)ATA . 0,0

" 0 '17 U t/ liCI

"

--- g
_ ~---j

J

·rr I'AGt IItHlb iJ .~ I) I' I 1"1
,; I = I J l '-: U:, ,"'4C~lll If:.t!1

01 1 ~
0114 vt1<lH r 1..1 (J (, \! 0 U (I

\)1 1 ~ vO'-l9 OIKC
nO·H OU02

0116
0117
OllM
01 11..1 i) O:'.ltt C 1(11

0120 llu4L I- I) 0 I' 'J 0 A I
01~1 o n4LJ FI..IOll II fJ u ()
0122 \J 0 (;j E: IIUUA

0123
01t:'4
0121)
012b I) I) 'I F r () 0 0 00.H

H 0127
,(j) . 0\28
I I
!-J

OOAU f-900 (I U 0 0
llOAt OoCF
OOAd 0007

!'oJ o 12~ .
0150
0131
0132 I) 0 A,~ F b 0 ;; II (j "1 f'

0133
013Q
0135
0130 (lUAu
() t ; 7 00ALl D lj C 1

11 0 AS l>3 C H
() U A 6 l12 A 0

01311 UOA7 BUliu
U u A h H IH1I1

(J 1 ') 9 \J (I A Y ACAtJ
i) 1 411 1II1AA.

01 q 1 ih)f...A OlJuLl
.H) A h I) \I () U

,)0 AC uOOO

11.t~~ ;) . , .
/"""", :' . r-\ ____.

'. 1(i I r· 11 1-' ,~t'(u j. 'I ~.'d· \J ,I,WH 1 . "1
r-U= I.~I-(. ,.11 ·'t "~ll %JlJlJ-Q55111.-1 ~f:.t

*
I ASt<.I" J~T ut.I A'!': 1'1 .a I r ~ u

DATA I u () , 2. 7 ::H CtINPS

* .. A It •. It) .. It .. oft '* * it * 'f< • *'It •• '* '(* * ... * t. * 11 It ..
..

LAM "I (1 I t', t !, T H-<(lUGH AUu
ll.')(=TI I-'lJ] Tt~ 1 iJ NLJMIH k

.J s 1 ~u~R: CALL LUM/"IUN SlIbtWlIl 1 ~~.
DATA AULd rU Al)O IN HCD

..
*

,. .. Jr .. '* • * '* * .. * 11 * * .. * '* '* .. ,.. .. " .. '* .. * .. * *
It' .

Lt.·X =l\)H~ A I.: I) f· t. ~. S Ur 10M '~LU(' It.

JST d.GIN: ~T/;r-'l C (IM--il! ... TASK
VATlI lOlASK,7 II' ut:! 1/0 (~RIO·dTY 1S "f)

•
It * * ~ • * • * • ~ * , * * k * ~ *. * * * ~ * * * * * * • * * * .. * *
fie

JMP TASK? t<. U:Y I;U J N(.

*
fie • * ~ * * • * oft • ~ * * * * * • * * * .' ~ * * * * * * * * • • * * * •
*
oIJFF(f..i.IU

1 t·)(,

TI. If.Xl

1 ~1:1?
1 t ~ (
f: ·Jll
1) f, T A

'}

'lASKc 1

'OO!){)'

.h ll)o)t~IU(.K

O,IJ,0,1I ~
1

)

".

~. ~~~~":~-:"~~~,!,,~~~~~vt-~~~~IIf-~~~·

-...... . ,-....~~-~ 'v' :~I.------ ".
,,:'~'" ,", -:"'........... ;=-:C

~
(J\

, I
'1-'
W

nA~E 0007 U"lO/71 It:~~:?7
~ A C ~ IJ" (A. ~ J :; 1 = . i r· .., 0. I .- i.J:

OOAO VOOv
0142 OOAt. C~LF IJATlI

01 i.l3 OOt.F I} \} U" I) A T .1

\)144 Cj 0 tHJ illt 0 l. U 11 r A

O14~ uu01 I) I) A il I)A r ~
'014b IlOti2 OOOu IJA1A

i'lOrd 0,,0 li

. ,~ 1 -x Ii l ;'llJ 1-'1< U I~"" to,... 'i 3.3 (10 lUI· 1 ~ I: 1
l.SI-'> r<l.(,'r.·'l! lOilu-tj)3')\J-\H.l

'eu' lIJI'II
';) F LI~" r . CfW r. (ItNFOw.,.,ATTEr wKI)

l~ ;"\~~;/1Gt tH' Ttl. t. oj(; , tl

HIJ~rt' ," S I.' tH t" ~ r. c..'
U,I)

..

~
_____ ____ _. . I

'rA~f:.. ()"ul1' oJ31 ~'l/ /7
, Af~ J.l1 , r' (4? J ;) I: ') t A I , : _

Ot4b
014'1 II Ur;q ~ 41/!} ,ii/Oil

01'-10 (1 U t1 S u~tH':

'uOtib 000.$
') 1 ., 1
() 1 'j 2
u 1 ., ~

01">4 il Ol~ 7 C IIItl
lll""> " II ti M t 'JtilJ '.10(: ~
111')b II)' i4 ~ 91)\/ II (If) ()

01':>7 ·,H" A o II!)A

Cl15k
OlC;~

V 1-60
(/1 h 1 ;IOr1~(1".\) OU OOt;"

~
0162
\)1 h3

(1\
1

I-"

(IObC r 40V II!: d 0
(J 0 ::H) OOCF
o vl,f:.. tluOd

.t>o 0164
Illb5

, 01t'lb
0107 11 UiS" F-hOtj :)Ot~"
(110(3

lJ16C}
01TO
0171 VOlt}
01 7 C OOCO 1)4C1

II vel il~C t1

\I 0 C C li ~ A 0 '

01 7 S OOC') i.WtiO
)OCQ t1\IH \)

01 I ~ 0lC5
01 I r., ,'UC,) O.lClII

(lOCb o Ii CI 0
\ldC 1 o \) 1I (,

uuLK o II i) II

11:'~'~
-'I: _.

..
T A ~~ K $ Jsr

DAlr.

~

'""", . -' '

"11.;t)~1 Py-.,t1' a 1'1 lI,S30U a--~1.'
V; I -,.. w,...: ' t M U b (Ill- 9 ~lJ\l- LH,l

ul::.' "y:
11U0,5

,01 fl. I 1 ~ Uff
11 St'(.LllloUti

l".~ ~-".< --!-~_<

~,~ ~ ..
, ..-....

~.

* * ~ * • * * * * ~ ~ * ~ * _ l * * _. + * • * * * * * * * * * • * * .,

*

L~M

LUX
J;-;T
t) At:.

11
= 1 S
3UtH'<' :
AUI) 1

1 1 I 1 ~' t -1 ,,, (It) I ... i"f' A I H}
,~ '!I '. H 1.0 i It,,, U r ' Ii t. t<

L!lLl Cl''''MII:'>l :-;Ut3k(JU1INf..
T ! , ~ I) D (N Met)

* * * * k * ~ * * * * * * • * * * A * * A * • i * * * * * * * * * * * *
*

*

LUX
J,sT
()A)'A

= I Ij ti ~ A [; lW E !i S U f-. 1 U 1~
BEl; IN: S T Aki Clll1f040r-. T ASI<
Il)fASI",,1! TU Oil I/IJ (PRluRllY J~ 11)

* * * * • * k i * * * * * ~ * * * * * * * _ * * * * * * * * * * * * * *
* ..

,J"1P lA::il\j r\tt (~UIr4(;

•
* * • ~ * ~ * * ~ A * ~ * * ~ * * * * * * * * * * * ~ * * * • * • *
*
!"Il to F!I l: I"U

Tf xl

U IEX1

T ()!' .~ t' (.JU

Ut\IA

j,

'TASI<.5 '

'U(IOO'

1- lL~ ·"lfJl'"
() , Ct , I) , '/

. .J

~ , 10\
I

' IV!

'-':~"":--""-"-~-;o,.~~::-~~~- "-<:~'~"*~.,, ,*,:'1:"'~;;"~~~~~_

'r ---~:---~ -ct" ,-.

tJ A (, ~ 1I U 0 9 II 31 5 \)1 17 'I 1 : i,', : r! 1
I't A L ~ " t (A 2) ::s J = t:H M 11.:; M U =

<1110 'H"MU ~IPIJl;rlt:~': 4.t,~Ii\l/Ol-1,Hl
L S J - ('. k r X I) t I"tl} II 0 0 - 'I 3 5 I) (i - 1 H.l

017" ·)OC'l C3eF DATA t eil t . LlJ~

0171 onCA 000& uATA "
~u~C CUlll:. (ASCII" iIItdTt:.) .

0176 ()OCIj OOOA D41A 1 u f"F.S::'AGl tiYTt:. lEI\II~ltf

lI17<1 once 'OuCO I) t\ T ". bUFF) I1t.:SSAC.,f" ~\}F F to:-(1\1)t\t~~

0180 oocu OOOu OATt. \) , I)

r)OLE OI)(jO

. ,

..

~
...... _._ .••!:..... .. _._. 1

H
""-
0\
1
\oJ
'0\ ..

,~ ,~ ~"
-.", .

.~. .-•. ~

'~_-01 "' ('\

IJA(,f- IJO 1 (I \13/1,,)/ /I i 1 : c:''l: c:: I "< r, : I ~ -1\ I ~J ~ LJ I ... r(t. ''I q ~ _, 0 0 III 1 - 1 3 t 1
"'AC~IJ(I (AC J :; 1 = 1J~ .. ''''{i;:\ ~u= L :) 1 - i ,.' T ~ I) r- ," u tI 0 U - 4 3 3 0 () - 1 3 f. 1

()l~r

., 1 ~;
01':)4
ulM~

ClIMb
f)1~7

1I1HH
vl~q uott
() 1 </0 OOCf. ~d05

01'-'1 \)lh) U f" A 01
0'1 Y2 0001 F900
01 Y ~ " OIJ2 OOOv
01'14 1)01)3 I-'JOIJ
0145 f) (I I) 4 00110
ul\lo i) l) 0 r; ~ \I til I

vllj)2
~1I) /I U

IIIJOV

,) II'') 0

It

Ie 11-I1S 1:' '·11-. CU!'1''1'}''1 IA!:i1\ MJOTASk- OO£UEO
, * 8Y T,ASk1, "t4Sk2 ANO TA~k3 SC1 THAT THEY WiLl.

It NOT ae DELAYED WAITlN& FOR tHE" C.OMPLETION
I< OF THE (10. NOTt TUAT THE lOX PACk~GE (10:)
• 15 UlSf"O.

.. -
!aTASk EGU

SIN
SfX'
JST

toe DATA
JST
/JOP
JST

j
2
loa
10:
S-$
ENp:

ENl):

,COMHO. "tASk eNTRY P(}tIVr
A~OID lNiERRwPfS HERE
STOR~ tog ADDRESS INTO CALL
CAL l IO.k'
lOB ADPRfss STaRfO'HtR£
IMMEDIAtE'RfTtJRN
iGNORE ERROR RE1U~N
TERMINATE TH~ COHkOW T~SK

..

l'~

----- r'\;

, .

f

~
-' I

)
"

H ,,,-
0\
I

I-'
'-..J

'r --~. :'--0 -~

" t-. I~ ~ I J ') 1 1 1 I ~ I ~: J I I I 1 1 : ,J' .. : ,,'/ "1,, I)(:M:.1 ... ·Ul,t("~ \).';)\oI,I/vl"15t)

LSI-2 ,..rx I.r M LJ RII"-~BOO-l~El "1ALt<U~ (b,2J ,,1= "'V . .I', ,:1:

01'1/1
. 01 9 1J

O?r,t)
Ot!lIl
OrO?'
11203
U?04
Ot?O ':>
OrOh
(J 2 (J 7
()20tj

O?O\f
0210
0211
uc1?
~) (! 1 \
OelLi
i>t?1'J
Ot?lb
021 7
0218

'021\f
O.?20
!J~?t

0;>22
0(2)
02r'lJ

. Oc2S
112;6
U;,>7
O?rM
O??"
O?3f,
0(>31
fI?3;':
I) ~ ~ ~

,It/:lh OFOIi
ilUt)' 04111 JlI~11

tl I) () M f.? () 0 I) lhJ"

l) 0 l> q f- 'i 0 \l l' U \.l (/

UOIJA OROO
U U \) ~ q 1\ \ 4 \I 0 r j)
U I) l} C 1.S ? 8
U \10 lJ C ~ 1.1 •. S

uOuE EAlc (IVr 1
t) \) rH' . C 7 {J 4

OOt" (l qAt1 (.\It-;

IHI t. 1 f 2 Of- '1 II r 1
vOt? .OtU()
I) U t. 3 '3 i.l () 0 I) 11 0 0
(J 0 I Q r 1../ 1I IJ ;'1 I) ~I (l

1I0F~ 01'>0
\)Or.'" tJCO(, 1)\)1.111

OuE'! CUHA
,) 0 F A f r. 1I 1 I) () L A

n vt: IJ F b l.~ \ltlt 10

Qllt b. C/)"o
(1I)t-~ 9LUI) :{II\J(I

(1), C (I(lA~

\lM~f) OlOQ 1(1':;
• J(H t t= hOt) tl ,I' S
.'"Itt- ft'llf '.'1-''''

..
• r'1{:, I:; r,t! C(I!"\t·1()r~ SU~K('lITl~.;1:. C"LU,) tlY ThSK1,
k I "!j 1\ c> , AI/; 1 t. S K .~ i (J UP lJ A H. T t~ EN U M tj t. ~ OF
• rL.'4!·Srl) "itLI.l US I', 1t1f rd'~''''L1P .. IAI~ .. ltJlPUT
• "!.~;d\0t. ALL. TASkS C.AlrL-lNC» TI-H.5 S06ROOrINt;.

UAve THE SAME P~'OR~TY, SO T~E CAL.l TO PA~St:
* "'llL. C.AU5E SOME ATTEMPTS AT RE-fNfRY. .,
NtXi

'*
AP01

tc

LX

AOl)2

SWM
IMS
JMP
JST

fNT
STA
LLX
AX!

SiX
LAI1
.srA
LDX
S6M
LDAS
JST
IAR
StAB
CAl
JHP
JhP
LAP
STAG
CXR
!MS

.JMP
,JHP

~O()Nr

Lx
3U8)(:

COUNT
1
3

SAV~K
4
FOU~
SAVE>t

6)0
PAOSf::

QO
'9't1
$+2.
NEXT
• 0 '
rJO

FOUR
1'002
NEXT

I>ON£~
;JO, c.DtvrJNuE I..O<>p·
YES, RETURN fRo~ CO~HON

SlJBROuTlNE
tNTnY POINT

BYTE AO~R~SS OF NlJHBER
,40DRE.s.s OF L.f~ST

SLGNIFICA~r pLGlr
SA'V£" Ii ..
00 ~NLY 4 DIGITS

GET AQonESS OF LSD

GET OlGIT
ALLOW RE-~NTRY ATTeMPT
AOP ON/; (1)
P(}tT 1 T BACJ(
WAS IT 'g'~
t~S, GOTIA DO NEXT DlulT
NO, CH~Ck FOR DONE
C~.fA/JGf fa ZERO (' 0')
pur IN DIGiT
pOlNT TO PREVIOUS 01G1T
6UM? FOUR DIGIi CPUNT

'00 NExT" Q J (; l T
c.ONn A.ll.lf

1"".,'

f

~

'rlf'fflt

(

-. ,.,:
" ..,.. .. '

u
.." .::.

~ .. ~~ '" "': . - ::-. -
! "-, :: :;

-' -' '\ .:t ..,. ,. ..:J
~

:.:
...;.

"t:
x

~.

(c Y ...
\.

• ().'
...; . ,. ... -

'"
~ () -0 e
,-

'CIt <.<
t- ~'-
-< <~

b~
00 Q

..
'r II t- ~

(:: z J.cJ~
~ ~ :> ::)

0 <0
U<J')\+-

,
.....
..... :r
......
.,..
...... " -:.. ~ ...,. ;:. :::>
-:: ::- '0

~

"\I N :; - "\, '<l ..L.. .I- 1.1..
.j C C
':" .~ - ::.

"\,

.,lJ X .:r ./l ..c:
"':>...J "" N"\ ..-"\
« Cl I'\J I'\: '\..
:l s.- O ~ 0

"

CC
r/6-IS

'r

~~ .. :.!. ,". i~·
•• ° .-" ;.H "

""" ~ I
,U:>

--~ ('\ 0',

~~I.t;III.13 O!J/,O/II 11:';,",:~7 ... I It t.I 1-. "II I r' ,~ li I ,,- .. !'I 'I \.) I' lJ Il'1 - 1 3 H
fo'I4CJ-(')i! l ~r J 5 1= ')1 It:i 1':,= U:lJ -r: f"(I y. U!:i ' # V v· 4 ~.s uO-1.3t:]

I,r s~
uc3Q
02"'11
1,·2'. 1

lieU"
O2·d
024Q o lJ 1-. ~
02141) I) OF.3 C.3CI-
02t1b ouoo
02U/ IJ () F U (Ion!)

O?4~
O?C,? ,-,Of" J-H"L
01:',
02~q o Oil 00 /)

0000 I"R~u ... S
0000 f'(A~N J ~I;

*
~ THJS IS THe UNIT ASSIGNM~NT TABLe REQU1R~o
l BY lOX. TH£Re 15 ONLY DN~ ENTRY, SJN~f· ONLY
l ON~ 1/0 DFVl~E (TTY) 15 USfO ~N l1tf
• PROGRAM.
•
UAiTOP EQU

OAiA
IFf
DATA
eNi)c

1:tJ;AT DATA
*

.$
'CO'
LS l3G':>
D:TYOb

ro.p OF UAT
LU~

l) 1 B AODRESS FOR. SiD TrY

. U~TTOP-$-2 LENGTH OF UAT

E#JO BEG I t-J

.. ..

:: --'~~~~~~~~--~:-'~:-.~~?~-~~.~~:

~.

. _.. . ".. ~ . ~ I . .

(

de
\1
u ... , ,

(

(

I

PART II

THE INPUT/OUTPUT EXECUTIVE (lOX)

"

' ..

(

SECTION I

lOX GE~ffiRAL DESC~PTION

lOX is a subsystem of RTX which operates under RTX control, and provides the user with
a complete, modular method of input/output device management and support. Application
programming is faster since time-consuming input/output programming for standard
peripherals and communications devices need po longer be done by the user. Since lOX
is open-ended,' the user can 'add capability for virtually any kind of device unique, to
his application 'andprogram it under lOX control. All I/O performed by lOX is
interrupt-driven and allows other tasks in the system to execute even though I/O is in

;.

Working in conjunction with lOX is the File Manager that enables the user to communi­
cate with data files by name, independent of the physical medium storing the file.
Requests for file access are made thro':l9h lOX using Logical units (LUNs).

iox can perform one operation at a time for each peripheral device. Operations
'requiring the ~se of the same device are done in I/O task priority order (i.e., the
highest priority request is honored whenever the device is available to be used).
Operations performed on different devices are done concurrently. All calls to lOX
specify a Logical Unit (LUN) on which to perform the I/O rather than physical units.
This feature allows a program to be debugged using one set of I/O assignments and
executed using another.

lOX satisfies the following I/O requirements of the system:

1. Selects the proper commands for communicating with external devices.

2. Processes device interrupts in the following manner:

a. Saves the status of the currently executing task.
' . . '

b. Determines the task priority of the interrupt. (Must it be serviced immedi­
ately or can it wait for the completion of a higher prior,ity task and if ~o,
is ~he higher priority task ready for execution?)

c. Determines whether the task processing the interrupt is a re-entra:nt tqsk, or
that the interrupt may),.)t be serviced until each prior interrupt hq.s 'been
fully processed.

d. Determines which of the I/O tasks awaiting execution has the highest
priority, then restores the CPU status to the environment of that highest
priority and gives control to that task.

~. Ensures that no task may access a device while it is controlled (dedicated)
by another task. . !

f. Ensures that the interrupt system is not disabled for a period of time which'
would prevent a high speed device from performing I/O successfully.

11/1-1 Revised 1/77 ~

" dK tt r tt't «. rMmttttrftrm¢ nnw "***4tHHtrtth en *#* '" 0HtdtWt 'trM::!'±ttft:b:f± M t _ t t

... • __ •. !_: •• .r .. •• ,. ~,J;~ .. ~- ~ _ .. ~. r~·:-. __ ... "._ ... ~ •• .:.. ,_ .. __ . ":':".~',",,#>4I"'-," i-.._ _~ ~ .•• t·~._

'ComputerAuiomirtion

1.1 GENERAL DESCRIPJION

Because of the likelihood of having several similar devices attached to the computer
. (~~cluding identical units) in a real time environment, lOX has been designed to make
i easy to suppor~,several similar devices (differing only by device address) using
"shareable" code. lOX requires some space for flags~ device addresses, etc. Since
the types of flags depend on. the device, as well as the interface to which the device
is connected (there may be more than one device per controller), lOX maintains flags
in two separate locations depending on whether the information is unique to the
,device or to the controller. In order to utilize t~e minimum space in memory for
'these flags and temporary cells, and to facilitate the allocation of these cells, lOX
lloes most of.its interfacing by means of tables 'Which define the type of device and

,interface to which it is .connect~d. ' .
..... ,.. .

'lOX is primarily co~cer.ne.d with four, tables:
,,' . '-.-

Input Outpu't Slock .
Unit As~ignment ~able
Device Information Block
Controller Informat'ion Block

. ~.

J "

(These tables are more fully described in section 2'(IOB and UAT) and section 4 (DIB
and CIB). The lOB is created by the user (task)' and resides within the calling task.
It contains the Logical Unit Name or Number (LUN) as well as specifications f9r the
I/O operation to be performed.

T(UAT i~ also created by the user. It is a series, of two-word entries, each of
which equates the LUN (specified in the lOB) to a specific device.

{. _ DIB and CIB are tables which are used in communication between lOX and a parti­
cular handler. lOX, contains within it DIB's and CIB's for each standard device.
Additionally, the user may create his own tables if he desires; for example," he may
res~rve an extent on a disk by specifying its boundaries in his own disk DIB, or he

'may create a DIB and CIS (and a handler) for a non-standard device.

~')eneral' the usage of these tables by lOX is as follows: The user constructs the
, within his program and calls lOX, giving as the sale argument the address of this

I q. lOX must then transfer control to the handler associated with this request. To
l so, it first obtains the logical unit number (LUN), from within the lOB, and com­
pares it to each entry in the UAT until a match is found. The UAT is simply a list
of each possible Logical Unit Name/Number (LUN), associated with the address of the
DIB which defines the device assigned to that LUN. Thus for each LON the OAT contains
a pointer to the appropriate DIB. I~ turn, each DIB contains a point~~ to the CIS
which defines the interface to which the device is connected. Finally, the CIS
contains a jump table which points to the particular handlers (procedures) for pro­
cessing the specific request. Therefore, given an lOB and a UAT, lOX can find the
procedure to handle the request made in the lOB.

The following steps are performed during a normal calltfrom the user to lOX:

1.

2.

~

The user calls lOX carrying the word address (may be indirect) of his lOB.

lOX examines the status within the lOB. If the lOB is busy (from a previous call·
to lOX), the calling task is suspended and control is passed t~ the RTX task
scheduler.

TT/l_?

t:± J 'fs

'! ..

'.

. "! « N t crt' «4ftee' i • . , "$" aw

t ~ ;;.,
• • -', • ~ • ~YV"loI '~. <t
i '.; ... -.~---: . .' .'~----~' ~~~~4JA~===;:~
I .. t I:. ; .,'. . .
! ..,' ,.<t· .,': . "JI '1 ... l~:H1.~llil~~b Il\t.(~ \ 'I:HI \)'''.: ht::Con..1 t.o I;(.r.lplc:l~ •. t ~';"If' the 'lOB 'i~"'~C;t"'~'~~y';~rt!'i";1~tiJAt1fif~~e~!";rtb~~~! ~d~theJ~AT' ~~ "~earc ~ci to
! ~ find a LUN which matches the LUN in',tp,E\...;rpB. If not found, an abnormal return
l ' made to the caller after. setting the '!;J;nvaUd ·WN"·, statu~ b.i:t ±"It~L-tlnxe:r-;!"'OI"lPll~---";~-~ J : ,'q ::.. ,. ~:.

4.

i
~

J
i
I ."
, 5:. .

6.

8.

(~.

~.

10.

)

1.2

If a matching UAT entry is found, the correct OIB is located (the OIB is refer­
enced within the U~T entry) and the requested function code is compared to the".
permissible function code (s) wi thin t~,t\ .. .pp~. If the requested function code is' ~~ :
found to be .illegal, an .abnormal·-r~rn..-:ls·~lllade- to:'the-caller-after'" , .
"Error" status bit.in the IO~.. ',i ,,1':,:, '. ',' ,.liO:: /.sron,l t"C! CCJlOl:lete.· ',~~;~~.

".' , ! " .. -..... 'Iv· ," ~ .' • ':: ; ;··!.'::\.':f~· ~:: ":~ .. ;':_", ~. !"" _.' \It • .'

. ,'. ' . "f ,.,~. ' '. ~ . ti v ~ 1- , • f .' • , ' '.: r ' ... l· .. I" • 4' ~ ." ,
'lOX next queues 'the I/O 'reqUest 'with'any previously pending I/O requests for the .
requested device according to the priority 9£ the calling task and passes control
t~ its internal I/O scheduling routine. '

The scheduling routine then monitors the'request queue in each OIB; whenever it
beco~es physically possible' to begin an I/O request (the I/O device is available
and no higher priority request is pending), the ,scheduler calls the appropriate
I/O handler routine (driver) according to the handler entry address within the
CIB.

In general, the I/O handler routine will set up the required interrupt locations,
select the device, and initiate a watchdog time'r, and then return control to the
I/O scheduler.

The I/O scheduler continues monitoring the I/O request queues and calling the
applicable I/O handler routine(s) until each DIB has been examined qnce. Then
the I/O scheduler terminates with a call to END:.

When an end-of-block I/O interrupt occurs, it causes a return to the I/O handler
which initiated the I/O operation. The handler will normally at this time, call
an end-of-bloc~ routine within lOX, which stores the I/O status and record count
into the lOB, releases the device from dedication (if desired), returns to the
calling task through either the normal or 'the abnormai return location, depending
on the status, and begins the I/O scheduler.

If an I/O error should cause the watchdog timer to expire prior to I/O completion,
it causes a return to the applicable handler, which will then normally execute an
initialize function to the device, store an "Unresponsive Device" status into the
lOB and return to the caller's abnormal return location.

CALLING SEQUENCES

The three entry points to lOX are:

10:
IOREL:
IOWAT:

To perform an I/O operation or special function
To release a dedicated device
To wait for completion of an I/O ope~ation

II/1-3

th' tix·ttOtt' ot 'j r 'ft' b· tl7 a'tY"W thf"umt¢ti1!trtM

i: ~puterAutoma&n ~
II
l'
II J! :a~?f tllese, entries requires a parameter list (lOB). lOB format is described in
*' et_l in section 2. The lOB specifies the type and mode of operation, data area,
ti a!:.a lel1gth, and the Logical Unit Name/Number. It also provides room for status
1.;1 nformation to be returned to the calling task. All calls to lOX return with the
~ egisters as follows:
1";

;I
I

·1
I

A Register
X Register
OV Register
Word Mode

Undefined
Pointing to the lOB
Undefined

LSI Console Data Register Unchanged

'he format of a call to lOX to perform an I/O operation is:

JST
DATA

10:
(*)IOB

Call the lOX perform I/O routine
Address of the Input/Output Block
Immediate Return
Operation complete---abnormal return
Operation complete---normal return

ot~~at there are three exits from 10: -- two a:e always taken. As soon as the
e !st is processed, lOX BEGIN:'s a new task whose starting address is the immediate
eturn location. Whe~ the I/O operation is completed, lOX returns to either the
bnormal or normal return depending on the success of the operation. Having an
rnmediate exit as well as a complete exit from lOX provides the user with the option
f concurrently executing his program while the I/O is in progress~ If he does not
ish to con'tinue execution until the I/O has completed, he simply codes:

(,T END:

n' "'Ie location of the Immediate Return.
\

Iternatively, if a certain amount of concurrent processing can take place during the
/O'operation, the immediate return location should contain a jump to the processing
outine. When the intermediate processing has finished, and it is llect:)!,-'ary to await
/0 completion before continuing, a call to the IOWAT: routine is made, as in the

Ol~lo,.wing examPIJe
S
:
T

10: Initiate the I/O operation

(DATA (*)IOB lOB address
JMP TAG Immediate return - continue processing
JST END: Ignore complete return
JST END: Ignore complete return

TAG EQU $

JST
DATA

'IOWAT:
(*)IOB:

Concurrent processing
during I/O

Wait until I/O completion
lOB address
Operation complete
Operation complete

abnormal return
normal return

.;.\.-...
.. '.'

'ate that a call to END: must be ~ade at the "complete" returns from the call to 10:,
n order to terminate the I/O task. One of these'two returns will be made if I/O
ac~'tes before the call to IOWAT: is executed.

.... trk .II/l-4 I

" tt

.~

~. ,

"

,

. I
: ·t

, > .1

i,l

~i

II I ~.
l'
h.

~' ~I

~
tl

.,

It ,) '.. rbeiri r 'n' . ,t 'tt k' itNt t' t t Wtt'ttN t trw.,. l' f t tIIW' .. It. 'Wt' : C'rttttt •

(I rileTI I

-(

A call to 10: is equivalent to a call to BEGIN: (see chapter 1,
RTX Functions) with a starting address of the immediate return and
a priority of the task which calis 10: except that the new task is
queued before all tasks of equal priority.

An abnormal return may result due to the following:

LUN not in UAT
Illegal Operation Request
Device Error
File Mark Input
End-of-Device ": I

A'normal exit will result from ~ll other conditions •
. '

C:)~3 DEVICE DEDICATION ,

~~ desired, the u~er may dedicate a device to specific 10: calls only_ Word 3 of the
10B provides the capability of establishing a specific (non-zero) coordination number
for an I/O call. Once such a cal~ has established the dedication of a device, all
future I/O requests for that device will be held off (queued) until the device is
released, unless they contain the established coordination number.

(
\

A device is released from dedication by' a call to the IOREL: subroutine, as follows:

c JST
DATA

. IOREL:
(*) lOB
Return

\. On return the A register will be zero if the device was released; otherwise, one or
more of the following A register bits will be set:'

Bit 0 set:
Bit I set:
Bit 2 set:

1.4 LOADING

the LUN entry in the lOB could not be found in the UAT.
the lOB contains a coordination number of zero.

.the coordination number in the DIB does not match the coordination
number in the lOB and no queued lOB has a matching coordination .,
number.

The user is supplied with two.stan1ard relocatable object segments, each resi~ingon
.two separate paper tapes:

segment 1 (paper tape 70-93300/1-01): .' .

This segment contains the following program modules, in the order shown:

1-
2.
3.
4.

Character '1/0 Drivers
Card Reader Drivers
Magnetic Tape Drivers
Disk Drivers

11/1-5

< ,

..

I
, I

I

(

tedt'.'ttnt"# H

(
5.
6.
7.
B.

ti [«" E ¥tI

I/O Scheduler
RTX Nucleus
ZBG
CNSOL3 (if LSI-3 version)

Segment 2 (paper tape 70-93300/1-02):

This segment contains, in the following order:

1. lOX control
2. RTX Services

I
[n addition to these two modules, the user will require:

h' b ttmit "i.' Nt' 1 r r '!
" (t itti' 'W1 ¥ lliL

~. An RTX Mainline sequence, which makes a call to RTX: to initialize the RTX envi­
ro~ent, ~d t? BEGIN: for each task he wishes to initiate immediately.

2.'L. One or more "task" programs to be run simultaneously under RTX (See chapter 1,
gRTX Description) I

i I
3~ Special device handler program(~) and the associated DIB and CIB tables, for use

(

(

in communicating with any devic~(s) for which a standard handler does not cur­
rently exist in lOX (see section 3, I/O Handler Organization below). These
handler programs are not necessary if using only the standard devices (teletype,
CRT, high speed paper tape reader and punch, line printer, card reader, magnetic
tape, disk, floppy disk).

I NOTrE I
The user's special DIB's will each contain a CHAN directive to permit
chaining to the other DIB's referenced during linking. The user
who does not have an OS system will need version DO or higher of
the OMEGA assembler in order to correctly assemble the DIB tables,
because lower versions do not recognize the CHAN directive.

4~. A Unit Assignment Table module (U~T) containing entries for each
accessed (see section 2, UAT Description). .

':J

I/O unit to be

Ti' user may either load each module using LAMBDA, or produce a binary
Li.~Editor. The order of input of the object modules is as follows:

1. User's main line sequence.
2~ User's various tasks.
3. Unit Assignment Table (UAT).
4. Special user-coded DIBs and CIBs, if any.
5. User-coded I/O handlers, if any!
6. Rl'X/IOX tape, Segment 1-
7. RTX/IOX tape, Segment 2.

tape via the OS

The RTX/IOX tapes, Segments 1 and 2, are organized in library format. Each routine on
these tapes is loaded conditionally until the last module of the tape is read. The
routines are organized so that only one pass through the loader is necessary.

(~

II/1-6

f-
(

(i;SOTIL I

Fortran tasks to be run under RTX control require additional library
modules to be linked. Refer to the Fortran Operations Manual for a
complete description.

1.5 RESTARTABILITY

In general, if some I/O error occurs during executipn for which the operator wishes to
abort the program, it may not be restartable if the abort condition (e.g., the operator
halts the processor through the console) occurs during the period of any I/O request
(either pending or being serviced). This is because various "busy" flags within the
I/O tables must be reset upon restarting the program~ To insure resetting of these
flags, reference the "IONIT:" module from the Mainline sequence (see chapter 1,
section 2: description of the RTX: initialization. routine).

II/1-7

#' tHe. _

• ,h 'W+W e'x'd 'IT' rl 'M +ff

V!ti} 'hi!: i' ".,' I' y·"''5.!1;5H'''''''W ''iN'wil''M't'

,

(

SECTION 2

lOB AND UAT ORGANIZATION

The lOB (Input/Output Block) is created by the user and resides wtthin the calling
task. It contains the Logical unit Name or Number (LUN) as well as specifications for
the I/O operation to be performed.

The UAT is also created by the user. It is a series of two-word entries, each of
which equate the LUN (specified in the lOB) to a specific device.

~'he following lOB description applies to all ~tandard lOX handlers. The description
Os annotated to include File Manager functions. lOB organization for non-standard .

handlers (for example, the IEEE Intelligent Cable Handler) is described in Section 7;

2.1 INPUT/OUTPUT BLOCK (lOB) - 10 WORDS

The lOB must be set up by the user within his own program. Word 0 is temporary
storage and will be destroyed by lOX each time 10: is called. Words 1 and 2 are set

,~o the device name by 10:. Words 3-7 are parameters passed by the user on calls to
~ . .:>:. Words S (bits a-IS) and a contain information returned to the user from lOX.

Word 9 is used only on devices which support direct access I/O (i.e., disk, floppy
disk). (Note that lOB tables are not required for Fortran"tasks. Refer to the
Fortran Operations Manual). Figure 2-1 illustrates the lOB configuration.

' .. sample lOB' s are included in TASKl, TASK2, and TASK3 of the RTX Dano Program. Refer
to Chapter 1, Section 6.

(,.Jrd 0

Word 1

Word 2

Temporary Storage for Use by lOX. This word is used by lOX as a
pointer to queue requests for each device. It must NOT be altered-by
the user •

. Device Type (Two ASCII Characters). This word is set by 10:. It
contains the two character mnemonic for the device type.'

Device Number. This word is set by 10:. By convention it contains two
ASCII digits (0-9) and is used to distinguish·between mUltiple devices
of the same type.

words 1 and 2 are used for temporary storage during calls to 10: ~d
are only valid after one of the complete exits has been taken. These
locations must not be changed when the busy bit in word 5 is set.

Rp\/ i cOrl I 177

I:
.. 1

t • t

i
¥ ,
~.

1:

%~

ru " ,.

11

I
,I
i .. [~ .,
.t

(

(

Standard
Name *

IDT

ICUN or
ITCB.

ILUN

ISTA,IOP

I RCNT

IBUFF

IACNT

:
t t

15 14

. .

,

B E
U R
S R

0 Y R

F
L
A
G

H • f?'t:#MWW

ComputerAutomaUon

INPUT/OUTPUT BWCK

13 12 11 10 9 8 7 6 5 4 3 2

CHAIN POINTER (RESERVED FOR USE BY lOX)

-
.. ,

DEVICE TYPE

!

DEVICE NUMBER . -
..

. , . -.
COORDINATION NUMBER·

LOGICAL UNIT NAME/NUMBER

F NO BAD 0 DEV. DEVICE INT. RES. S OP
I/O LUN R UN- POS. USE 0 CODE

M RESP

REQUESTED COUNT

BUFFER ADDRESS

ACTUAL COUNT/PROMPT CHARACTERS

DIRECT ACCESS ADDRESS·

Figure 2~1. lOB Configuration

* refer to the I/O Handler listing at the end of Section 3.

tt" p' ht **

~

1 0 word

o

I

2

3

4

OP
MOD. 5

6

7

;

a

9

11 ((

ii
·'·.1

II/2-2 I
--------------------~~------------~.

*

(

(

$$' bWWMW rite Mihtttttttt

(
Word 3 I/O Coordination Number. This word is supplied by the user to

coordinate his I/O requests. If this word is non-zero, the device on
which the call is being made will be dedicated to the coordination
number supplied. When a device is dedicated to a specific coordination
number, only those requests with matching numbers will be honored. All
others will be queued until the device is released. If device dedi­
cation is not required, this word should be set to zero.

(

Word 4 Logical Unit Name/Number (LUN).This word is supplied by the user and
it describes the Logical unit on which the I/O should take place.
Although the LUN may be any l6-bit value, by convention all negative
numbers are considered to be ASCII character pairs (e.g., SI, LO). All
positive numbers are consi~ered to be FORT~ unit numbers (e.g.,

I

5,6~ 10) •

Status, Function Code. This word uses the following format:
.I

\5 M 13 11 11 ~ t I 7 • & 4 :I 2 , 0

I °1 I I I I J I I I I !)

I t t f .J: ~ ______ Operation modifier
~-------------Operation code

L-_________________ Special operation
L-_______________________ Reserved

~----------------------------Internal use only
~------------------------------__ Device position

L-____________________ ~ _______________ Device unresponsive
L-_______________________________________ Bottom of form

L-_______________________________________ Invalid LUN

L-________ ~-------------------------------No I/O performed L-___ Error

L-______________________________ ~-------------Busy

Bits 15-8

Bit 15

Bit 14

Bit 13.

Bit 12

Status returned to the user by lOX. The breakdown of bits is as
fellows:

Busy (the operation has not be~n completed)

Error (an unrecoverable error has occurred,); or bit 11 or 12 is
set for the File Manager.

No I/O performed (e.g., LUN is assigned to dummy· device, device
cannot perform the requested operation, LON not in assignment
table, Read or Write with zero (0) count).

Invalid LON (LUN cannot be found in unit Assignment Table); or
.(. File Manager access mode error.

~ 11/2-3 Revised 1/77 ''-------:--___ ~

rl

,s .

(

(

,-

Bit 11

Bit 10

Bits 9
~nd 8

Bit 7

Bits 6
"and 5

Bits 4-0

Bit 4

Bits 3
and 2

b
Bits 1
and 0

we w that. sttwrrttt '$"" '21 'W'" til 'W/I'O'" '.t '¥1I@*'z'"vb "wr·tr:' = •• ' t

Bottom of form (listing device only); or File Manager end of
medium, directory full, directory error, device not labeled or
partition busy.

Device unresponsive (the device has not responded to the request
in a reasonable length of time); not used by the File Manager.

Pos~tion of device: '
00 Indeterminate
01 Beginning of device
10 File mark found
11 ,End of device' (disk and Magnetic tape only). For tape, the

EOT reflective marker was encountered. For disk, the last
sector in the extent was' accessed. This status does not
necessarily mean that ~o data wa~ transferred.

,
This bit is for INTERNAL use only. , Initialize to zero and
do not ALTER.

Reserved for future expansion

Requested Function Code. This is supplied by the user and defines
the operation to be performed on the device. The breakdown of
bits is as follows:

Special Operation - If this bit is set, bits 3-0 are ignored.
This is to allow users to supply drivers for devices which perform
special functions.

Operation Code
00 Read
01
10
11

write
position
Function

Operation Modifier - These bits define the specific type of
operation to be performed. Their meaning depends on the operation
code. (Some operation modifiers vary for certain Handlers. These
differences are noted accordingly.)

«#it tM'

(

Word 6

Word 7

Word B

For
00
01
10
11

For
00
01
10

11

t t r'! • t t t

position:
Absolute, Re·c"ords
Absolute, Files
Relative, Records
Relative, Files

function:
write File Mark
Punch leader

tt ..

MTIC only, Control Edit; Line
Printer only, Eject to Top-of-Form
MTIC only, Control Erase

t Mt t'·

File Manager

No change
No change
No change
No change

File Hanager
No change
Reserved
Set file deleted
bit in DIB
Update directory
(New files only)

Requested Count. This word is supplied by the user to specify the I/O
length, which is defined as follows:,
For read or write functions, this word is the number of bytes to be
transmitted (1 ~o 65,535). (If the operation is Write Formatted ASCII,
lOX will alter the requested count to remove trailing blanks before

'calling the handler. This is done with an intermediate counter. lOB
Word 6 is .not altered.)

For relative record or relative file positioning, this word is the
number of records or files to skip. (A positive count means skip
forward, a negative count means skip backward) •

For absolute record or absolute file positioning, this word is the
actual record or file number to skip to. (For MTIC Handlers, the unit
is rewound and placed offline if this word is equal to minus one.)
NOTE: Positioning a file to absolute -1 (file marks or records) is a
close file operation for the File Manager (refer to Section 5.1.3).

Buffer Address. This word is supplied by the user to specify the start
address of the I/O buffer. Note that this address is always a word
address and that indirect addressing is not allowed.

Actual Count/Prompt Characters. This word is returned to the user by
the File Manager. It contains the number of records or files actually
skipped (for relative position), the actual record or file skipped to
(for absolute position), or the actual record length in bytes (for read
or write). The File Manager will NOT read more bytes into the user's'
buffer than requestp.n, but will continue to count characters to est~b­
lish the physica]~ec6rd length.

On devices which are capable of prcmpting, this word is used to hold up
to two prompt characters.

I NOTE I
Word 8 contents will be assumed to be prompt characters if
negative (bit 15 set). Bits 7-0 not equal to zero indicate
two prompt characters; bits 7-0 equal ,to zero indicate only
one prompt character (in bits 15-8).

II/2-5

~I
II
I" r
" !
~
':
t.
t' I':

t:
,Ii

he

we(9

(

hi't' f5 '-'''' 'I m i"U"HO'."'" 'r t etW.,t#Wt _1" "fltewer '''g' ''1 't' ... ,.7 ml

Direct Access Address. This word is the direct access data address
within the device (current record number), for devices, capable of
supporting direct access. For sequential access, this word will be
incremented to the current logical record number after each access.
For random access, the user stores the logical record number here.

2.2 UNIT ASSIGNMENT TABLE (VAT)

t ttl ttt*tMtf'tt

The Unit Assignment Table is not part of the standard lOX library; it must be "tailor­
made" by the user for the particular configuration of devices he requires. Figure
1-2' illustrates the UAT configuration.

UNIT ASSIGNMENT TABLE

15 . o word

." _. LOGICAL UNIT NAME/NUMBER

. DIB ADDRESS

o

1

LOGIC~L UNIT NAME/NUMBER 2

DIB ADDRESS 3

(,

(LOGICAL UNIT NAME/NUMBER N-2

DIB ADDRESS N-l

TABLE LENGTH = -(N + 2) N

Figure 2-2. UAT Configuration

C.
The UAT is a table of two-word entries for each logical unit which can be referenced'
in calls to lOX, plus a terminating word containing the UAT word length. The first

., word of the entry -is the Logical Unit Name/Number (LUN) which is referenced in the
user's lOB. It may be ~y value from 0 to 65535.

The second word of the en~ry is the address of the corres~onding DIB table.

The last word in the table is. the count word. It is a negative quantity representing
the number of words in the table, plus one; that is, two words for each entry, plus .
the count wo~d itself, plus one. Thus, if there exist four two-word entries, the
contents of the count would be minus 10, or ~(4 x 2 + 1 + 1). The count word must be
the last word in the table, and must be labeled I:UAT, because this is the name used
by lOX when referencing the UAT. (Refer to the sample UAT at the end of this section).

II/2-6 Rev i sed 1/77

(

W' .. WW'!!I!ts**t'i,N.· W*"t'e;w'fflWWi®'W':!I'Ur 1tk'!::n!'W ' '»,,",f"h' tlllefl'Hs< 't!t "1" [d'ib lai'imtifi' " g"" /''$'" '#iff' ,.' ',,1

2.3 STANDARD DID NAMES

The following table shows the DIB names for all devices for which standard and non­
standard handlers exist within lOX. The label is to be used as the second word of the
UAT entry for each device the user wishes to include.

1.

Non-DIO
Fortran
Non-DIO DIO

Fortran
DIO

~eletype Console
. Teletype Keyboard
Teletype Tape Reader
Teletype Punch
CRT Console
CRT Keyboard
High Speed Paper Tape Reader
High Speed Paper Tape Punch
Centronics Line Printer
~l'ally Line Printer I

ata Products Line Printer
Card Reader
Disk (43 series, fixed platter), unit 0
Disk (43 series, fixed platter),'unit 1
Disk (43 series, fixed platter), unit 2
Disk (43 series, fixed platter), unit 3

t Disk (43 series, removable platter), unit 0
Disk (43 series, removable platter), unit 1
jisk (43 series, removable platter)~ unit 2

I Disk (43 series, removable platter), unit 3
Storage Module Disk, unit 0 (cylinders 0-201)
Storage Module Disk, unit 0 (cylinders 202-403)
Floppy Disk, unit 0
Floppy Disk, unit 1
Floppy Disk, unit 2
Floppy Disk, unit 3
Magnetic Tape, unit 0
~agnetic Tape, unit 1
Magnetic Tape, unit 2
Magnetic Tape, unit 3

D:TYOO
D:TKOO
D:TROO
D:TPOO
D:TYOO
D:TKOO
D:PROO
D:PPOO
D:LPOO
D:LPlO
D:LP20
D:CROO
D:DKOO
D:DK02
D:DK04
D:DK06
D:DKOI
D:DK03
D:DK05
D:DK07
D:SMOO
D:SMOI
D:FDOO
D:FDOl
D:FD02
D:FD03
D:MTOO
D:MTOl
D:MT02
D:MT03

D:TYFO
D:TKFO
D:TROO
D:TPOO
D:TYFO
D:TKFO
D:PROO
D:PPOO
D:LPFO
D:LPFI
D:LPF2
D:CROO
D:DKFO
D:DKF2
D:DKF4
D:DKF6
D:DKFl
D:DKF3
D:DKFS
D:DKF7
D:SMFO
D:SMFl
D:FDFO
D:FDFl
D:FDF2
D:FDF3
D:MTOO
D:MTOl
D:MT02
D:MT03

D:TYOD
D:TKOD
D:TROD
D:TPOD
D:TVOD
D:'IVOD
D:PROD
D:PPOD
D:LPOD

D:CROD

D:TYFD
D:TKFD
D:TROD
D:TPOD

D:PROD
D:PPOD
D:LPFD

O:CROD

(IEEE Intelligent Cable

D:MCOO
D :MCOl
D:MC02
D:MC03
D:IEOD

eL
I II/2-7

~.I

" Ii
i l
• ~

'" "

.~ .(

tiM" ti@ ts W'W'C#'Mtmh't.eMerl'ttttblfrtte"r"Mt OW ... ,ft t "W','mb. 1 CS'rt'MrW"teHt tiUfttH '@ t"$ r $I t' b t Me', r II t t

1

~ ~:n creating the UAT, the user must declare I,UAT in a HAM directive, and any of the
"~I S,t":>lldard DIB names in an EXTR directive, e.g.:

SAMPLE UAT

~I

\

UATTOp·

. L.../ o·
I, \T

t
\

...

((
" ..

NAM
I::X'fH
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

T:UAT
D:CROO, D:L1'OO,
'CRt
D:CROO
'LP'
D:LPOO
'CI'
D:TKOO
'CO'
D:TKOO
5
D:CROO
6
D:I,.PFO
UATTOP-I:UAT-2

II/2-8

D:TKOO, D:LPFO
Card Reader Entry

Centronics Line Printer Entry

Command Input Entry

Command Output Entry

FORTRAN unit 5

, FORTRAN Unit 6

Table Length

"M' j"""'VMW**W't'irl*dt!4!""¥%'f;'t:"· \ i:r1ri M '\ef± '" 0" ri6timH 'b 6'b #i" • 'm t'. h '**" 'i'ti %nil'"

(

(

SECTION 3

I/O HANDLER ORGANIZATION

The purpose of an I/O handler routine is to set ~p and execute the actual I/O instruc­
tions (normally interrupt-driven Auto-I/O instructions) necessary to perform an input'
or output operation to a specified device. The I/O operation and the Logical Unit
Name/NUffiber are specified in the user's lOB, and the I/O must be performed within the
constraints of the device as specified in the CIB and DIB. (These tables are des­
cribed fully in section 4.) A listing of the Character-oriented I/O handler is
included at the end of this section .

(

• 1 THE STANDARD HANDLERS

Each standard lOX handler is described below. Refer to section 7 for descriptions of
non-standard handlers and to Pub~ication No. 93325-00 for the A/D, D/A Handler.

3.1.1 Character-oriented Device Handler (non-Fortran)

This handler performs I/O, according to
for the teletype, high speed reader and
listing of this handler is found at the

3.1.2 Fortran List Device Handler

specifications within the applicable CIB,
punch, and line printer. (A complete
end of this section.)

This handler exists for I/O to the teletype console, teletype keyboard and line
printer when used as a list output device under Fortran. It differs from the
previously described handler in that it recognizes and processes Fortran carriage
control characters; i.e., a "I" character as the first print character signifies
top-of-form, and a 10' signifies double spacing before printing. (A top-of-form
function to the teletype consists of six consecutive line feeds).

,jji"

Note that the Fortran task does not use an lOB, but rather Fortran I/O state­
ments; these are passed through the Fortran/RTX I/O Interface routine which sets
up an internal lOB for the user, according to the DIBls he has included in his
Unit Assignment Table. The Fortran I/O handler is entered because the third
character of the device name in DIB Words 5 and 6 is an "F"; thus "LPFO" will be
processed by the Fortran handler, and "LPOO" wil~ be processed by the standard
character handler.

3.1.3 Card Reader Handler

The card reader handler is similar to the standard character handler except·that
input characters are conv~rted to ASCII before returning.

II/3-1 Rev j sed 11/76

I

H" ""'dy;. '-'i l

(
1.1.4 MillJlwlic '1'''p'' II,lndler

'l'h~ Mi.l<Jllctit: tape h.:tndlcr proccs~;es J/O for maglletic tape devices, ,\lId wi 11
perform read, write, write end-of-file and reposition functions.

3.1.5 Disk and.Storage Module Disk Handler (Non-Fo~tran)

The lOX disk handler allows the RTX user to communicate with the disk. The
communication takes place through lOX and the standard calling sequence is used.

The user calls the lOX disk handler by making a standard call to lOX with an lOB
which contains a LUN assigned to a disk DIB. The op-code must be either read­
direct access or write-direct access.

Data Formats

The lOX disk handler supplies no formatting information of its own. It just
Lreads (or writes) the number of bytes reques}:ed by the user. The length of each
V" record" is unknown (supplied by calling program) and therefore the disk handler

is unable to read variable length records without some form of external format­

ting routines.

The lOX disk handler can support multiple "extents" on each disk and can allow
access to them as if each were a separate disk unit. Extents are simply regions
on the disk which may be defined by the user to be handled separately. Without
any outside action by the user, lOX will process contiguous records throughout

(the extent. Each record contains the number of bytes requested in the I/O call,
and each record starts at the beginning of a sector. Therefore, for fixed length
records, each extent may be considered as a sequential file. (
In order to allow "direct access", each sector has a "relative sector number".
The user may direct the lOX disk handler to process a particular record by ini­
tializing lOB Word 9 (lOB Direct Access Address) in the lOB used for the I/O
call. At the completion of each request, this address is appropriately incre­
mented by the lOX disk handler so that the next request will proceSb the next C record. If the record contains 1-512 bytes, the address will be incremented by

Cone; 513-1024 bytes, the address will be incremented by two; etc. Note that the
relative sector number and relative record number may not agree (in fact they
will not agree if the records are larger than 512 bytes).

Extents are defined in the disk DIB's. The standard Disk DIB's (DKOO and DK01)
define an extent as an entire platter (200 cylinders, 2 heads). The user who
wishes to utilize several extents on a single platter may do so by creating his
own disk DIB's, using the following variables within each DIB to define the
parameters of the desired extent:

a. The number of sectors per track (may be less than the physical number).

b. The starting sector number (when added to the number of sectors per track
must be less than or equal to the physical number per track).

c. The number of heads per cylinder (may be less than the physical number).

The starting head number (when added to the nunIDer of heads per cylinder must
be less than or equal to the physical).

., '

i," «

(e.

. f.

"h'" ", e\'Y'" pi "ifJf'W'P 't-ett'SWhnt ttmtr ttt"1tdd M
"! t 't t t 'tb

'The number of cylinders the extent occupies.

The starting cylinder (when added to the number of cylinders must be equal to
or less than the physical).

g. The drive number.

The lOX disk handler does not check for validity of the resulting sector, head,
and cylinder numbers. It assumes that the dimensions and offsets supplied in the
DIB are valid. This allows the user to take advantage of the "flag" bits des­
cribed in the Disk Interface Manual.

Contiguous sectors occur in the following sequence:

a. Consecutive sectors on a single track (up to the number of sectors per track).

b. The same sectors on the next head (up to the number of heads per cylinder).

c. The same sectors and heads on the ne~t cylinder (up to the number of cylin­
ders).

The disk handler requires four additional words (five if under Fortran) in the DIB
which are not required for tne other handlers. These are DIB words 11-14, (11-15
if under Fortran) and are described in section 4.

3.1.6 Floppy Disk Handler (Non-Fortran)

(An "extent" on a floppy disk is constructed as described for the disk handler,
taking into account the size limitations in the number of cylinders, heads, and
sectors:

Cylinders per Floppy Disk platter = 77 (00-76)
Heads per platter = 1 (single surface)
Sectors per track = 26 (00-25)
Words per sector = 64

There exists within RTX a standard Floppy Disk DIB (D:FDOO) whose extent is
defined as an entire platter. The user may define his own DIB"'s as described in
the disk handler description. "c ,.

.:S.l. 7 Disk, Storage Module Disk, and Floppy Disk Handler (Fortran)

Fortran tasks require a certain minimum amount of file management to be performed
by the disk handler; The Fort~an disk handler differs from the standard disk
handler as follows:

a. The random access address within the lOB is maintained by the Fortran disk
handler itself, rather than the user, since the Fortran task does not create
its own lOB.

b. The Fortran disk handler can write and recognize an end-of-file mark. This
is a 2-character ASCII record comprised of It/." characters.

11/3-3 Revised 11/76

ht .• r II "'e' "S • tt tr'n' q"Htt ,,'3' umtw ,. t t· . f 'M' r! t' t't*mr Hh mtt t!1 mo ee

(
l r: The determination as to whether a Fortran or a non-Fortran disk handler is to be
,I:; used is made on the basis of the device name in Words 5 and 6 in the DIB. If the
ti third Gharacter is an "F", it signifies Fortran, and the Fortran disk handler is

used.

In addition, a sixteenth word (Word 15) is required in a Fortran DIB. This word
i8 used for storage of the current relative record number, which would normally be
m.:liJltained in lOB Word 9. Since the Fortran user does not have access to the lOB,
the Fortran/RTX I/O Interface routine keeps this informatio~ in the DIB .

. 1.8 Magnetic Tape Intel~igent Cable (MTIC) Handler

. The MTIC handler controls data transfers between Pertec or Pertec-compatible
formatters and tape transports and the central processor. The handler performs
read, write, write filemark, rewind and offline, c9ntrol edit, control erase, and
reposition functions.

'·ISIIO -
HANDLER REQUIREMENTS

he user may write his own handler routine for any type of I/O device he wishes. The
equirements for any I/O handler to be run under control of lOX are as follows:

Since all I/O under RTX must be done under interrupts, the word and block inter­
rupt locations must be set up prior to I/O .

. ·C . time-out sequence must be included to avoid the possibility of the device
"hanging-up" indefinitely without completing its operations. The real time

(~lock, via the RTX DELAY: call is normally used for this purpose.

'. b,nce
f· This
\.

[NOiT~]

The user must not attempt to manipulate the real time clock by
any means other than through the DELAY: call, as this will
adversely affect the operation of RTX.

I/O is initiated, the handler should pass control back to the lOX scheduler.
permits other I/O operations to be. executed simultaneously if requested.

I. The I/O handler should resume control upon either an end-of-block interrupt or
upon watchdog time-out, to check the status and return to the caller at either the
normal or the abnormal return location.

,everal IOX- internal subroutines (described below) currently exist to aid the standard
1andlers in accomplishing the above requirements. The user-written handler may use any
)f these routines he wishes. The names of an~ of these routines must be declared in
~XTR or REF directives within the user's handler.

Revised 11/76

... 1

f¥#¥tbt -q 0''' f"f r1 \ *.. h

.(
3.2.1 SINT: (Set up an Instruction at the Word Interrupt Location)

EXTR

LOX
JST
DATA

Returns with:

SINT:

CIB Address
SINT:
:XXXX

INTERRUPTS---UNCHANGED
STATUS---UNCHANGED
A-REGISTER---UNDEFINED

. X-REGISTER---UNCHANGED

~here ,XXXX represents a constant which is ad;ed to CIa Word 1 to form an interrupt
(.Lnstruction:

(

SINT: does the following:

1. It determines the word interrupt location of the device. This add~ess must
reside in CIB Word 21.

c. It calculates and stores an instruction into the word interrupt location. The
actual instruction stored is the arithmetic sum of (contents of CIB Word 1) +
(:XXXX), where :XXXX may be any positive or negative value.

I N.oTlE 1
The standard CIB's contain a "SEL DA t 7" instruction in word 1.

trl

Preparation is then made for a subsequent call by the handler to the SIO: routine
(the handler need not call SIO:, however). This preparation consists of trans­
ferring the contents of DIB Word B into CIB Word 12.

(
(In the standard DIB's Word 8 will contain various function codes which are required
for SELECT instructions in order to initiate an Auto I/O sequence during the SIO:
routine. If the specific handler does not call S+O:, DIB Word.8 need not be preset.)

3.2.2 SIO: (Start I/O and Watchdog Timer)

. Calling. sequence:

EXTR SIO:

t LDA
LDX
JST

DPTR
crB address
SIO:

I
II/3-5

fr'tln'
~r> 1,"9 " .. 'S 'i '"j'tP''ft'it·'r' l'lt.'±& Y· 'W" ij'.,jH!'dl""

---...... ,--.,.

(
ReturJl~ wit.h:

(

Does not return directly; if the INTP: subroutine is used, a return will ulti­
mately be made in the following state:

INTERRUPTS---ENABLED
S'l'l\'l'US---WORD MODE OV RESET
I\-I!EGI S'I't-;R---UNDEf'INED
X-REGISTER---CIB Address

DPTR is an address pointer to a two-word information block:

Word 1: positive number of bytes to be transferred.
Word 2: Word address of I/O buffer.

(Note that the stan4ard handlers use CIB Words 26 'and 27 for this information).

'I~SIO: routine does the following:

J Negates the byte count pointed to

I

by the A register, and stores it into the Word
\, interrupt location plus one.

2.

(

(

Shifts the Buffer address pointed to by the A register to the left by one bit·
(converts to a byte address), then decrements the byte address and stores it into
the word interrupt location plus two.

(Steps I and 2 above complete the three-word Auto I/O sequence.
The AIN/AOT instruction itself may be generated by a call to SINT:)

3. Calculates the delay count required for the watchdog timer, as follows (assume a
" ten millisecond Real Time Clock rate):

a.
I b. C c.

The negative byte count created in step I is loaded into the A register.
The cont2nts of CIB Word 20 are.stored in-line and executed as an instruction.,
The content.s of the A register are then negated (converted to positive) and
incremented by 1000.

Steps a, band c above compute the number of RTC "ticks" (normally 10 milliseconds
each) to delay during the I/O operation. Since the number is constructed begin­
ning with the byte count (step a) and incremented by 1000 (step c) the minimum
delay possible is ten seconds, plus ten milliseco~ds for each data byte to be
transferred. The'purpose of step b is to pe~it a larger delay, if necessary.
For example, CIB Word 20 can be set up by the user, when constructing the CIB
pr-"' r to execution, to be a shift instruction (e.g., "LLA 1") which would double
the value in the A register, and thus cause a twenty millisecond delay for each
data byte(plus the ten second constant). Note that the instruction in CIB Word 20
is executed before the byte count in the A register has been converted from
negative to positive, and before the constant 1000 is added. If the minimum delay
(ten seconds, plus 10 milliseconds for each byte to be transferred) is adequate,
then the instruction in CIB Word 20 should be zero (a no-op instruction). It is
the responsibility of the user when creating the CIB table for his handler to
determine how large a delay is required to permit completion of an I/O operation,
and thus what instruction (normally LLA K, where K must be determined) is to be
stored into CIB Word 20.

II/3-6

(

I

(

(

b j' Iy M(ti·, ' •.. WI'#'

(

I

4. Sets up and executes the following I/O instructions:

SEL DA,X Handler-determined function
SEL DA,S Set word transfer mask
SEL DA,6 Set block transfer mask
SEL DA,Y Handler-determined function

x and Y represent the function codes in bits 15 through 13 and 12 through 10,
respectively, of CIB Word 12. (These function codes were originally copied from
DIB Word 8 in a prior call to SINT:.) Note that if Select instructions of func­
tion X and/or Yare not required by the device, they can be organized in the DIB
so that x=5 and Y=6, so that each is executed twice, or they can be set to a
function code which has no meaning to the device, if such a code exists.

I HOTe I
If these function codes are all zero, it indicates an operation
under Distributed I/O.

I

If the device uses function codes 5 and 6 for other purposes than
to set the transfe~ masks, the user may wish to perform the Select
functions within the handler itself, rather than calling SIO:.

5. Once the Select instructions have been executed, a call to RTX DELAY: is made,
carrying the calculated delay time described in step 3 above.

If the Watchdog Timer expires before an end-of-block interrupt occurs, the in­
struction in CIB Word 1 (normally "SEL DA 7") is executed to disable interrupts
for the device, and the "Error" and "Device Unresponsive" status bits are set in
the DIB, and control is then passed to the EaR: routine at EORST:.

["corm]
510: does not set up the end-of-block interrupt location. This
must be done in the handler.

3.2.3 INTP: (End of Block Interrupt Return Point)

The INTP: routine cancels the watchdog timer upon end-of-block interrupt, and passes
Control to the return address of SIO:. Thus INTP: is an extension of SIO:, and is
intended to be-used only in conjunction with SIO:.

II/3-7

~!

I

:I
:1
::1

, 1

<tht d j' ttM tn' it)! f' . F!9 '$ I n W'd'WUn Ii '!'to tri" tum e ttm tMfflf"p¢$tWd w th "I t 'p ht" h't

TOeall I'NTP~ at end-of-block, the handler should, prior to calling SIO:, set up the
followipg sequence at the end-of-block interrupt location:

JST *$+1
DATA TAG

\
:~xamplc:

EXTR INTQ:,INTP:
ENT
JST INTQ:
DATA $,0,0,0
DATA INTP: ,8180,0
DATA CIB Address
DATA TAG

where TAG is a short calling sequence to the RTX INTQ: subroutine, which points to
INTP: as the task to pe queued.

(T~USer should first familiarize himself with ~e RTX INTQ: description in chapter 1
Rr Functions).

The above description is the method used by the standard I/O handlers for end-of-block
interrupts. For this purpose, the first 12 words of the applicable CIB may be used to
contain the calling sequence to INTQ:.

For example, the following is a representation of the first twelve locations within Ule
eIC 'or the line printer:

(

~
(

&

C : L P ~ --- LIN E P R I N T E R

LOC INST ADDR
0000

0004
0042

0000
0000

000.0 0800
000; 4027
0002 f900
0003 0003
0004 0000
0005 0000
0006 0000
0007
0008 lFF4
0009 0000
000A 0000
0008 0000

LABEL MNEM OPERAND COMMENT
NAM C:LP0

EXTR INTQ:,INTP:,I:READ,I:RITE,I:FUN

*
*
* DA

INTAD

*

EQU 4
EQU :42

* **
*

C:LP0
CIB

RE~ °
EQU $
ENT
SEL' DA,7 SELECT --- FC = 7
JST INTQ:
DATA $.0,0.0,INTP:,8180,0,.CIB,CtB

II/3-B
I

;,1 ~i ___ -J

:i

WHM ,r, trMMO'Wd .ew , ffltfd" .,.,.-t't"t1t**WItN U t 't' 'trott' 'trw .

Note that the end-of-block interrupt location contains a JST into the CIa itself; Word
I of, the CIB is the SEL DA,7 instruction used by the SIO: routine. It is also executed
at end of block, thus serving as a convenient method to turn off the interrupt masks
following an I/O operation. ,

Following this instruction is a JST to INTQ: followed by the required parameters, of
which INTP: is the task to be executed. Note also that this sequence will automati­
cally cause the X register to be loaded with the CIB address upon entry to INTP:.

3.2.4 WAIT: (End of Record Delay Routine)

Calling sequence:

LDX
JST

'eturns with:

CIB Address
WAIT:

INTERRUPTS---ENABLED
STATUS---UNCHANGED
A-REG ISTER---UNDEFINED
X-REGISTER---CIB Address

I

The WAIT: routine utilizes the delay length specified in DIB Word 7 to delay a suffi­
cient length of time at end-of-record to ensure that the device is physically ready to
,erform the next I/O request. (Generally ,one charac.ter time is sufficient for this

delay.)

(The routine loads the delay count from DIB Word 7 depending on the I/O instruction at
I the Word interrupt location; i.e., if bit 13 of the I/O instruction is on, it is as­

sumed to be an output instruction, and bits 0-7 of DIB Word 7 are used as the delay
. count. If bit 13 of the· I/O instruction is off, it is assumed to be an input instruc­
tion, and bits 8-15 of DIB Word 7 are used as .the delay count. Once the delay count is
established, a call to RTX DELAY: is made; upon return from the delay, the routine
~xits to the caller.

(3.2.5 EOFQ: (End of File Check Routine)

"\ Once an end-of-block interrupt has occurred, EOFQ: may be called as follows:

(l.

I

LDX
JMP

CIS Address
EOFQ:

This routine does the follqwing:

1.

2.
3.

Examines the first two input :characters in the buffer to determin~ whether they
are '/*'
If so, control is passed to the EOF: routine.
If not, control is passed to the EOR: routine.

II/3-9

• !

'M w't.#1:d teWtttwwMtttr W' f "' ti .:

1:;01": (Elld of File Relutille)

ing sequence:

LDX
JI'1P

CIB Address
EOF:

til'" t n" . !. t' I't NiCht . _Wried t'deM .. ttt

'he EOF': routine is entered when it has been determined that an end-of-file has been
'ncountered (the routine EOFQ: may be used to determine this).

'he routine stores a zero value into CIB Word 28, loads the A register with an end-of­
I 'ile status, and transfers control to the EOR: routine at EORST: •

~I

• 2.7 E91<: (End of Record Routine)

JMP

crB Address
EOR:

,

'his routine is entered when the handler has completed the requested I/O pperation and
'ishes to return to the calling task.

'heC-Qutine loads the A register with the current status from CIB Word 32, and con­
.in .; at F~ORST:.

(
1.2.8 EORS'r: (Alternate Entry Point to LOR:)

EORST: and EOR: are alternate entry points to the same end-of-record routine. The
lifference between the two is that EOR: loads the I/O status word into the A register
rom the CIB. EORST: assumes that the status is already in the A register.

'dl~IY ~:':!'llHmc;e:
LDX CIB A\.ldress
LDA I/O status (from halluler)

Jt1P EORST:

'he routine does .the following:

\ .

It cflr·ies the actual transfer count 'of the I/O operation from the CIB into Word '8
of l.l:! rOB.

It stores the status of the I/O operation (in the A register upon entry) into
bits 15-8 of lOB Word 5.

It performs an RTX BEGIN: call, passing as a parameter the normal or abnormal
return address of the caller, depending on the status. The abnormal return
address is taken if any of bits 9, 10, 11, or 14 are set in word 5 of the rOB.

e (J f
It calls WAIT: to per orm an end-of-record delay.

IJ/3-10

rtttt2 ttMtDtwt" nsCWsrttt itT PUtt'WIt "'r''! 'r '" t tt . &tfttti'I'1!r"Qrp': h'fhY & de .'j' _

(

(
5.

6.

It loads CIB Word 1 (assumed to be "SE!. DA,7), masks off the low order two bits
(to make it a SEL DA,4 or initialize instruction) and executes it in-line.

It empties the lOCH (I/O suspend) list into'the READY list.

7. It then transfers to the lOX request scheduler routine to check to see if another
request is pending for any device on the controller just used.

3.2.9 FETCH: (Input one character from an I/O device)

Calling sequence:

EXTR FETCH:

b
LDA
JST

CIB Address
FETCH: I

Returns with:

INTERRUPTS---ENABLED
STATUS---UNCHANGED
A-REGISTER--~CONTAINS INPUT BYTE
X-REGISTER---UNCHANGED

~ he FETCH: routine calls WAIT: to wait one character time, then calls SIO: to perform
a one-character I/O ,operation. Upon input of the character, it iS,checksummed, and
the subroutine exits back to the caller.

The following assumptions ~re made by FETCH:.

1. The handler has previously zeroed out the checksum word (CIB Word 13) at the
,start of the record.

There exists-in CIB words 34 through 37 the following sequence:

DATA
DATA
DATA
DATA

$+1
I
$+1
o

Pointer to byte count
Byte count (1 character)
Buffer address
One-character input buffer

which are required for FETCH:'s call to SIO:.

Upon return from FETCH:, thP. input char~cter i~ in CIB word 37 as well as in the
A register, and the cumulative checksum is in: C.IB, word 13.

cl
11/3-11 Revised 11/76

,
'I

3.2.10 BUFFQ: (Store input character into buffer)

~ Call iJlg sequence:

EXTR

LDX
JST

Returns wi th:

BUFFQ:

crB Address
BUFFQ:

INTERRUPTS---ENABLED
WORD MODE
OVERFLOW---RESET (unless buffer filled)
A-REGISTER---CONTAINS INPUT BYTE

lsi

~ X-REGISTER---UNCHANGED ,

~ BUFFQ: routine is.designed to be used following a call to FETCH:, in that it moves
C'lB word 37 {stored into by FETCH:} ~ntothe userts buffer. The step-by-step procedure
is:

1. The overflow register is reset.

2. The actual transfer count (CIB Word 28) is incremented.

(
3. The actual transfer count is compared to the requested count (CIB word 26).

4(If the actual count is greater (indicating that the buffer is already full), the
buffer address (CIB Word 27) is incremented and the subroutine exits.

5. '" If the actual count is less, CIB Wor<1 37 is copied into the user's buffer pointed
to by CIB Word 27. Then Word 27 is incremented and the subroutine exits.

6.~• If the actual count is equal (indicating that thi,s character will cause the
, buf fer to be full) I overflow is set and CIB Word 37 is copied into the user' s

, . buffer pointed to by crB Word 27. Then Word 27 is incremented and the subroutine
C exits.

3.2.11 UNRES; (Unresponsive Device Rout,ine)

Calling sequence:

EX'fR

LDX
JMP

UNRES;

CIB Address
UNRES:

II/3-12

i'Wb'9"X"f'/"'t' 'f' ,t

! .
(

(

(

3.2.12 IORTN: (Return to I/O Scheduler)

Call~ng sequence:

EXTR

LDX
JMP

IORTN:

CIB Address
IORTN:

In practice, an I/O handler is a subroutine with an abnormal calling sequence (a JMP
instruction is used, rather than a JST). This is because I/O handlers are only
"called" from one location, and thus the return is known. This return address is
IORTN:. Therefore, once an I/O operation has be~n initiated, a jump to IORTN: must
be made. Note that if the SIO: routine is called, it will exit to IORTN:.

0. 3 CHARACTER-ORIENTED DEVICE HANDLER LISTING

The following listing illustrates the standard Character-oriented Device Handler
(non-Fortran) written for an LSI-2 processor. The code also includes.a table of
equates used by RTX, its subexecutives, and its library modules, as well as a listing
of the TTY console DIB (D:TYOO) and TTY CIB (C:TYO). CONCORDANCE listings provide
an alphabetized map of all symbols.

c

I II/3-13 Rev i sed 11/76

of
-4

."
oJ
I
J ,.

__________ _~~~~~ ~~·.1-=~~~.:!"!:~~~

,!illi. l!llH,.
'Ji\ll'GE lion 1 04/{J I /Ih lIQ ~'I!,U1L'W

"I" r!ilil

qUS(\O"'lol:\H.!'rx, IflX. 1121,DATE5 nl!!!l
. '

~ACRQ2 (~?) gJ= MAC~US HU= R r x E rw E (J lJ A r F S lJ SED I N R T x

0003
0004
0005
0006
0007
Oc)08
OOOq
00)0
0011
0012
0013
00 III
0015
001h
001 7
OOIA
OOlQ
0020
0021
0022
0023
002L1
0025
0021>
0027
0028
002Q
0030
0031
0032
0033
003LJ
0035
0036
0037
0038

0000
UIlOl
oun3
0002

01101
0002
0003
oooa

A ~ * * ~ ,. * * * * * * * * * * * * * * • * * * • * * * * • • • • * lHE E~UA1ES CONTA£NED IN THIS ASSEHALY
* ARF. lISEl1 tiY RTX AND ITS SUf:lEXfCU1IVE:S AND
* ITS LIBRARY HODULES '. ,. IT MUST BE ASSEMULED AND THE SY,",liOL TABLE
* GENERA TEO He PASSf::f) TO THE RTx ,",OOULE
* H~lNG ASSEMRLEO
*
* * * * * * ,. * * * * * * * * • * * * * • * * * * * * • * * * * *
* * EQUA1ES COH~ON TO SEVERAL BLOCK TYPES

*
* * * * l * * * * * * * * * * * •. * * * * .* * * * * * • * * •• * ..
CHI\IN
PRI
CN
I~UEUE

*
* * *
* •
I<

*

E(JU 0
t:. (~I) 1
F.QU :;
EQU 2

* * * *
T C 1$

PllINlfR T (J '~E. X T BLOCI\
PRr(H~J1Y (1-\ITS 15-3)
COURUINATJON NUMBER
TOP OF ClUf:UF

~

* * * I< * " I< * * * * *: 11 .. "* * *: *: .. 11 • ,. *:

E U U A f. S

*
* STAPRI
PREG
ARE.G
XREG

*

E (~IJ
E(J1J
ErJU
EI)U

PRJ
2
:)

4

STATllS CHTTS 0-2) 11. PRIORITY
PRUt;kA~ RFGlSTER
ACCUMULATllR REGlSll:.R
INUfX REGISTER

(tHT3 15-3)

* * * * * * * * * 11 * * * * * *: * * * .. * * * * * ,. *:

*
II:

*
lOB E QUA 1 ,E S •

* * * * * * * * • * * * *) * • * * * * * * * * * * t * * * • * • *

~

)

"II' I": i 1-;jIIIIi" !jl1;1! :!l~UI~

PAGE 0002 09/01/7~ 09:46:£13
MACRIl2 (1.2) 51= MACRO;; AO=

003Q * OOqO (l001 IDT t IJ lJ
VOlil 0002 ICIIN EQlJ
0041' 0002 ITce ElW
OOLJ3 OOOll ILUN E (jU
OO/~lJ 0005 IsrA ElJU
0045 0005 lOP ElJU
0046 OO()6 IRCNT Eew
0047 0007 I8UFF tl,lU
OOLIS 0008 IACNT EIW

H 0049 0009 IDA'" E(W
H
'-w
I

'""' l!1

Hll:: milo

91.1500-10 RTx, lUX EQUATf:S
RIXEQU EQU~l~S USEn IN RTX

1 DFVJCE. rYPE
2 UNIT NUMHtR
2 AOORESS Of USER'S TCH
Q LOGIC"L Uf'.Ill NAME/NUMl:JER
5 STATUS
5 OP-CODE
6 R UW E!11 E'O Co U N r
7 BUFFER AOORf5S
8 ACTUAL CUUNl lRANSHITTED
9 DIRECT ACCESS ADDRESS

~:~:1-2 '·,r,,~,-.:!==--- ~l!-'~'~'i!~Ja-~~.~ '''-~:<~~:!1-r-' "-

11il111

~

~
_I

H
H
"­w

1
t-'
(J\

_f

!ll,:. Inll,,..
'Hill' PAGE UOII\ 04/01/70 \J~lj!4Mlt~

MACR!t2 (A?) Sl= MACRII!1 I,ll:

noon
0001
OOOll
0005
0006
OU07
OOOq
OOOA
OOOC
0000
OOOE
OOOF
0013
0014
0015
0016
0017

I- " 10- fit •
•
oft C

"
" " it .. " ."

CHOR ElJU
CSELI E(,i1J
CH1P 1 E (JU

CTMP2 f (~ll
CH1P3 EQU
CEB T SK E(W
CNEWA E(JU
CNf.WX ErJu
CfUN F. rJ U
CCSUM E.(,)U
REIJC N J f{W
CJTI3L E{JU
CSPLOP trw
CDEL EQU
CINTR EQU
EXCESS ElJU
CEOf EfJU
#<

"
I

"

,'il" !i!i,~

4lJ~~o}liW RTX, HIX !inl~tJlI"Tt~
kIX!:.IJlI El,IUAHS ust.u IN RTX

"
.,. ." -to • " " #I .. " oft " #I " " II

f:J E Q 1/ A T E S

" 1< " " fit 11 " .. * 1< ,. oft .. " * * ..

0 HEGINNING L1F Rf:.CORO FLAG
1 SI:.LECT fe = 7
lJ 1EMP CELL J
5 TEMP CELL 2
~ TEMP CELL 3
7 ENLJ . UF HLOCK TASK POINTtR
q A REGISTER fOR EBTSK
1 u 1- ~EGI5TfR fOR EBTSK
I 2 TEMP CELL fOR I/O INSTRUCT
13 CH!:'CKSIJ~ TE~P

10
15 JUMPTABLF.
lq POINTER TO SPECIAL OP PROC
i:?O DELAY MOOJFICA~ION

21 POINTER TO INlfJ.?RUPT ADORE
22
2'5

00'i1
OO')?
OOc;3
005Q
0(155
00')6
005i
OOSR
uosq
OObO
0061
0062
0063
0060
006')
0066
00b7
OObR
006Q
0070
0071
0072
0073
0070
0075
0076
0077
0078

* FILLED FROM lOB

';0079
oot\o
OOBI
0082
0083
00130
00135
OOHo

OOIA
001Q
(lOlA
OOIH
OOlC
'0011)

(lOIE

" CIOB
COP
CRCNT
CBUfF
CTCNl
CIJAA

*
*
II:

COIB

ElJU 2Q IOH POINTE.f~

ErJU ?r:; OPERATlON CClDE
tlJU ?IJ REQUESTED COUNT
fr,JU 27 HUFFER AODRESS
EIJU 2H TRANSFER COUNT
EQU 29 OIRECl ACCESS ADDR[55

fILU:.fl FROM OIB

Er~u 30 DIH POINTfR

_-.2- "'-<-~",~~~"~~~~~.!r--

iii!!i:

" "
,.

" • • ..

" .. ,. • • • •

•

~

)

__ -:,lillb liili,,, 'iiii!. ,Hiia
:!lHP qHn'~~ :li!;!: H11:

H
H
"­w
I

..... 1

PAGE OOoil OQ/O\/7b 09:QI,:Ll3
HAC~02 (A2) 51= ~ACHOS HO=

OOR7 OOJF CFUN1 E.QU

*

9Q500-10 RTX, lOX FQUAlES
R 1 xI: Q U f ~ U A H S \J S E £) I N R T X

31 lE.MP CELL 2 FOk FUNCTIONS

0081'\
OOl:\q * TEMP STORAGE USE.D HY IllX AND ITS ['RIVERS

0090
0091 0020
0092 0021
0093 00?2
009Q 002.s
OOQ5 00211
OOQb 0025

*
STATUS EQIJ 32 nEVIC~ STATUS WURD
CRTN ECW 33 RETURN,ADDRESS FROM 1:510
C()CHN EQI) 34 START OF OATA CHAIN
CDCHN\ EQU COCHra 1
CDCHN2 ElJU COCHNt2
CDGHN3 EQU CnCHN+.3

~'-=~1~-'-~~,,:!_~~"-_""""~~~~'" '~-~.'~~:''''!.

iiii!!;

J
I
~

-----~

.:...' __ ::..:::<t.~';"E._==-:"'-~;1~ ~'''_~L''<~-~· __ -F.:"'~''~~~~~~_:::··~.

:iin"; liThO
l\l\n PAI,;E (1005 OQlUl/1h 'U~!~!~b:IH il![ll'i . li!liO

q 4 :, U 0 - f 0 4 T X, t II X t. (J U A Tf S
!!ill!!

MAC~02 (A2) 51= MACRuS HO= R T x E (J \) E IW ATE. S lJ S ff) IN H T X

OOqft * *- It 11 .. * *- 11 * 10 t - .. ." •
OOqq tr

0100 *- /) 1 H E Q U A 1 E. 5 • 0101 •
010? • ..)\ * It •. * 10 .. 10 .. * * *- .. * * 11 .. It
0103 •
Oloa 0001 OClt3 E:. rJU CUi POINTt~
0105 0004 DSW EllU I, DfVIC~ SPECIFICATIUN WORD
0106 0005 01 E IJlI 5 IJE:VICE TYPE
0107 0006 I)C UN ErjU 6 CONT~OlLER ~ UNIT NUMREHS
OlOR 0007 DDI:L ElJl.I 7 U';O OF 4LUCK DELAY TIMES
010q 0008 DFUN. E(W ~ FUNCTIUN CODES It FLAGS
01 10 OOOq DUlS EfJU q UPPE.H lPlI T S
0111 OOOA DER~C EQ\J 10 ERROR COUNTER
0112 OOOA OSTRl EfJU 11 OIU STftfH ADDRESSE.S &. MOUF.S

H
0113 000i:\ nSECT Elw 1 \ VERII-Y FLAG, DRIVE II, STARTING SECrOR H ,
0114 oooe DHEAD c.1)U 12 StCTURS/TRACK &. STARrING HEAO w

I
0115 00(10 OCYL f IJU 13 SECTHHS/CYLINOER ~ STARlING CYLINDEH

IOJ
0116 OOOE DEOD EIW 14 NUMhl:R 0F srCTONS IN FILE
0117 OOOF DC SEC T E. (HI 15 FONMAT1EO S~CTOR NO
0118 •

f
01 1 q * ** It .. * * * *
0120 ..
0121 * INTERRUPT I:3LOCK E ~ lJ ATE. S
0'22 •
0123 '" " * .. I< • 1r * #I If If ,. 'II

0124' ouoo NTAIO E(W 0 1/0 INSTRUCTION

I 0125 OUOI NTCNT ErJU 1 COUNT FUH AUlu 1/0
0126 0002 NT BUFF EIW 2 ~UFFE~ ADORESS - 1
0127 0004 NTEUB EQU II END-OF-BLOCK INTERRUPl
0128 0005 NTEOBA feW 5 AOO~ESS F(1R EOt; INSTRUC1ION
0129 * ~ 0130 .. * * "* * I; * "* * * * * * "* • * * * •
0131 *
0132 * MlSCE.LLANEIOUS tRUA1ES
0153 * j

'I
/

-,_-: ~~~~_~~~"'!o~""'~~-::~",!?:~~:~>

!lill!1 .---iIHlII. 0 I!!l!l 111Ii:101iijj)-------.....l·----,

H
H
"-w
I

'"

PAGE OOOh Uql01/76 Oq:Qb:LJ3
HACR02 (A?) SJ: MACHOS 8U=

9«50U-JO RTX, lOX EQUATES
~TxE(JU frHJATFS 115ft> IN R1X

0134 A * * * * A • * * * * * * * * * " * * * * * * • • * * * *
0135 *
0136 (lOll) ARROw EI~U 2q AAC~AHROW FLAG SAME AS COA
1.>1 ~ 7 0003 EORMSK EQU 3 E.N!) OF RECOtW MASK
01~A 0004 EOFMS'" ElJU LJ E~D OF' FILE MASK
01\9 llUOO I:ERR EtW :QOOO
o tiJ 0 0600 I : BOp· EQU :800
o 1 LJ 1 OLJOO T:Rf.S ElW :400
0142 0200 I:EOF EQU :200
0143 0100 I : ROll EQU :100 BEGINNING OF DEVICE STATUS All
Otlfll 0.500 . I: E 00 E(W :300
OlllS 2000 I:NOIO EQU :2000
01116 LtOOO ER~OR ElW :4000
OlQ1 OOIF OPMSK E(JU 31
o 1£lB OU80 JOREL EI,lU :811
0149 0003 EORTYP EQU 3
{}150 OOOll PROMPT EQU Q

0151 OOOb EUFTYP EQU 8 "
0152 0000 lFF LSI30S
0153 0005 ·IOREQ EQU S
ot51.1 F.NDC ., ~

.~

J
I
~

H
H
"­W
I

t-.)

o

III 1 1'1\ 'u'ij' Ii \ 1\1 A G f: 0 0 0 4 0 Q I 0 1 / 7 h 0 9': L~;: Q ,H!!!!
. 1':'1,

qqSOO-\():I:',·nx, }(lX
Illfi!n~ .. I !l,1

t JA H S
MAC~U2 (A2) ~I:: MACROS !ill:: 11 A C R () ~

02JA
0219
0220
0221
0222
0223
0224
0225
022b

0228
0229
0230
0231
02~2

0233
0234
0235
0236
0237
0238
023q
0240
02Ql
02112
f) 211 3
02 114

024b
02lH
021.18
02l.l9
OC50
0251
0252
0253

0010

MACHU lLL
IFF LSI30S
LLL:: :lHO,#1-1
ENOC
IFT LS1305
~tPT #1
lLL:
tNOC
tNLJM

MACRO
lLX
HLA
f.NDt-I
F Of~M
MACR(1
SPACE.

1>/1 EQU
INTAO E.QU

ABS
DATA
AHS
JSl
DATA
REL
SPACE
t:NOM

MACRO
JST
IFF
DATA
NOTE
fNf)C
IFF
IFF

LLL:
1
1

LLL::rl2,4
INTSTF C18 INTERRUPT f.. OEVIC£ ADORE.S3 STUFF
1
f1 t
#2
INTAD
O,(),(I
IN T "[H 0
*$+1
CIR
o
1

DEFJNt DEVICE ADDRESS
lJ!:FINE ItHERJ.<UPT ADDRESS (DATA)
() R r; 1 (1 A IJ HI 11 ~ UJ CAr I UN

DRr- TO tNO-OF-~lOCK INTERRUPT
GU 10 CJ~ FOR
• E NO OF BUJCK
ORG TO RELATIve If:HO (0)

SlNT GENt.HATE CALL Ttl SETUP INTERRUPTS
SlNT: CALL SUHROUTINE
til{S)

:3800 MAKES srop
u,FIHsr.PAHA~EIER

tl2[IJ
112(0)

,i! 1111
li'i'I'

1/

g

~

)

-

H
~

"-w
1
N

iii::! !il!![iO
PA~E 0010 OQ/Ul/7b 09:0b:43
MACR02 (A2) 51= ~ACRUS HO=

0254 OA1h
0255 NUTE
0256 f::.N[)C
0257 fNOC
0258 IFl
0259 1FT
0260 OATA
0261 ENDC
0202 1FT
02&3 OATh
026LS t:.NDC
0?65 ENUr:
02&6 IFF
0267 IF r
02b8 l)ATA

·0269 ENDC
0270 1FT
0271 OATA
0272 ENOC
0273 ENOC
02711 END",

;:

94S00-10 RTx, lOX

M " C R 0 S

1111:::0
EfJUA T E S

:3/jOO MAKt.-5 SlOP
I),SECl)NO.PARAMElt.H

LS1305
112(IJ
ti3t:t.lOF9

1+ 2 rUJ
113+:60F9

LS1305
#2 [IJ
tt3+:13F9

2 LOl
#3t:23F9

..

0270 MACRO eIe
0277 TIT L 'RtX/IOX CHARACTfH I/O URIVERS 93302-1XEO
0278 TITL c:n' ••. CONTHOLLE~.INFURHAllON.HLOCK
0279 NAM C:1I1
02[\0 f.xrn S c H : I I t-l T tJ : , I '" T P :
0281 XOEF Itt.!
0282 XOEF 115
0283 XOEF #6
02RQ INTSTF pZ,:tt3
0285 CIa EQU $

028h C:ts1 DATA 5CH:
02A7 1 F 1 LSI30S
028R SEA OA~ltl

0289 [NOe

L.~.·--- ----.-.--.------~---.----

.;,.

:::::;:

~I

____ t

dili. Ii!!!!,,,,
piJliD!£ 001 1 n q / U 1/7 h 0 q : 4 h !lIU!~
HAC R I) ? (A t?) ~ I = ''1'' C H (, S B (1 =

0290 IFr
0291 SEL
0292 ENUC
0293 JRT

9 4 500 .. 1 () ~:!x, I U x
'" A C ~ u s

LS130r;
OA X 1+ 1

INIG:

Eii~!~l fS

029Q DATA
O?9S XREF

$,O,O,O,INTP:,R180,O,C:#1,C:#I,O,0,o

0296 XREF
0297 UATA
029A XHEF
0?Q9 OATA
0300 LLA
0'01 DATA
0302 RES
0303 DATA
03U~ END
0305 ENDM
030b MACRO

#tJ

#5
o
itb
o
I: ,

INTAI)
12,0
$+1,1,$+1,0

nIH
0307 . TITL
0308 TITL
o30~ NAM.

'RrX/IOx CHAHACTER 110 DRIVERS 93302-1XEO
o:n1 ••• 0EVICE.INfURMATIUN.RLOCK

0310 EX1R
0311 0:111 CHAN
0312 DATA
031J rEX'
031Q DATA
0315 ~NU
0316 ~NOM

l>: 1# 1
C:1I3
x:
C:1I3,0,0, :111.1
112
0, :115, :#6,0, :tJ7

O.~J 7 MACRO XDFF
031/j IFF txl (O)
0319 fXTR 1 : II 1
0320 ENUC
0321 ENON
0322 MACRO XREF
0323 HF Itt (OJ
0324 UATA 1:111
0325 ENOC

..

:~~~~~~~~~ __ ~~":-'F '

iii:!::

~

)

H

~
w ,
'" w

dill! I!!!!!!-O dill!; !lii!!_
'!iii: . 111i"0 ')1:"--- "ii,'.

PAGE 0012 OqlOl/7b Oq:qb:~3

HACH02 (A2) 51= MACHUS ~O=
q~500-10 RTx, lOX

HACI,05
EQUATES

03?h
0327
0328
0329
0330
0331

0000 . ERRORS
0000 WARNING

1FT
(JAlA
ENDC
ENOM
SAVE
ENO

tllro)
o

"

---.:~:c~~\~\~~~~~~-~-~~'1--::~-'~~'';.~~~f,¥=--j~·

,1111 1:---------,

.,

i
© c:;

____ J

I! ill!
'::I"PAGE 11001 UQ/Ol/7b

M~CRIJ2 (A2) 51= CHROS

0125
012h
0127
012H 0000
0129
Ot30
o 1 ;\ J
01J2
013J 0000
0134 0001 (1)0(]

0002 0000
00U3 0000
OOOiJ 5066
0005 DiJ()</
000& 80HO

H
• 0'135 U007 020C H

'- uOOtl OAbE w
t

0009 ileoo N
,::..

nOOA 0000
0\3&

0000 ERRORS
0000 WARNING

11\11:1 A
0'9 Hj'7~7

HO=

"
* " * " " " ..

NAM
ExrR ..

* "
* 0: rvoo CHAN

DATA

DATA

ENO

.111!111 !!i1i!iA
R T X I Iljlj~: l H A fHC T E.II 1 IP'liiG'M'Vf R~) q 3 30?- t XE 0

Iliil' [Hi);:

o : T Y 0 0 TFLE1YPE CONSOLE

.. * " A " .. " to " " " " * .. * " * Il

O:TYOO
C:T YO

.. .. " .. .,.
"I, " • " " .. " ..

X·· ..
C:IYO,0,O,:5Qbb,'T~','OO'

:20C,:hbE,:4800,0

~
------__ J

')
I

----.l!llt ~II\1!,.-a-..
!;j\!P ::1lH" \t#

H
H
'­w

I
tv
In

PAGE OU01 Oq/Ol/7h 09:5Q:lb

X {'IOOO C:TYO
N U133 lJ:TYOO
U 0000 X::
0136 SlJURCt LlNES

012tl 0134
()lc?H
0133

,n!!fi- Ii!:!!!. .]1[il,
:::::' :H :;. ':;;:!

IHX/IllX CHARACll:.H I/O IlHIVEHS Q33u?-lX

..

@
~

______ 1

"lit
!ilH\!

PAGE 0001 Oq/Ol/lb
HACRU2 (A2) 51= CH~DS

025\ nooo
025?
0253

02<;0
025~+

0250t
0254+
02SlJt
0254+
0254+
025lJ+

0255
0256
0257
0258
02Sq
0263

·0264

026C)
O?hb

0002
0002
0003
.0 (\ 0 lJ
0006
OOU6
U007
0000

0000
0000
nooo

FQO'/ 0007
0000

0000
0000 OUoo

0000
0001 403F

0002 FQOO 0000
0003 0003
OOOlf nooo
0005 0000
uOOh nooo
OO{J7 0000
ooos lFFll
OOOQ OOOQ

'OOOA (JUOO
00013 nooo
none 0000
OOOF ('l000
(101(1 0000
0011 OtlOO
001? 0000
0013 0000

q!!!IO I,';::· • 'Iii:: ' .

oq:~7:37

AU=

~J A M
EXTH
E..<TR

,'ill! 1''11'0
~lX/IOX 2i~!A~ACff:.~ 1)0 lJ~!1!~EH5 Q3302-1XEO

C': T ,Y 0 1ELf.TYPE

C: 1 YO
1 N T (J : , r NIP: , I : REA 0, I : R 1 1 E , 1 : F II N

SCH:

INrSTF 7,2

C : T Y 0 fCJU
CIH DATA

IFF
SEL
ENDC
JST
DATA

3;

SCH:
LSI3U5
1)",7 SELECT --- FC = 7

IN1Q:
$,O,0,O,INTP:,8180,0,CIa;CIB

RES '3,0
()ATA I :REA(), I :RIIE,O, 1 :fUN,O

~_~~~~~:1~~~~:'*~_':;:'!~~' ~

"", H!Hp

0267 OOla 1353
0268 0015 0002

LLA ~ ~
VA 1 A INIAl) ~

---:--___ ---:---~l
\

... 1

~ll\ii:! . -11!:i!A- -:l\!l!: 'lllA

H
H ,
w
I

-N,

PAGE 0002 09/01/7b OQ:47:37
MACRU2 (A2) 51: CHRDS HO:

HTX/IOX CHARAClEP l/U OHIVEHS 93302-1XEO
C : T Y 0 TELEtYPE

RES 12,0
DATA $+1,1,$+1,0

02bQ 001h uooo
0270 U022 llu?3

0,023 0001
0024 0025
0025 0000

0271 E.NO

0000 ERRORS
0000 WARNING

,

.~

;li II

~

"t:t!: Wtiff

0\

0
......

>< ,
~
::::.
~ . ..,..
::1'

cr.:
J:;:

-,-'
>

J:;:

.......

:l..
W

U
<
.:r
q

u

><

--.......
~

'-

::l:

""" r'\J

:::r
I,{)

0-
-::::

.c,

--........

c
.......
0-
c

o
o

<
0..

.f\
I'\J
:::>

C
">-
~

u

r'k NT W'Ic''f \'t"eliIJ'iw

~
4)

t'\.s
C

~

.c
ru
0

u

D-C-D
.c...c.D'::'
f\J :"\J I'\J r\J
0:::>:::> C

,,;:-. :\J I'\J :'\; .:r
.f'\.f\I,{)U'-D
"'J:'\JI'\J:'\I("\J
C:::- 0 C:::>

:.IJ
Z < - .0 = ,.u <i
u.. ~ :::r ~

< :z
~

.f\.c.o::::::::>
;J'\IfICo:::> 0
~f\J-::--:>
cocCO

c -
00
?O
00

z

«
;:jr"'\O.D
-D-D.D1fI
I'\JI'\J("\JN
0000

t'\.s1'\Jt-"'"
Jl tr. 11", LI"
I'\J I'\J '\J '\.I
Oe.- 0 c

!f'\
c

~~t'l
~~ I
ZZ tnu

cr;
W
Z
...J

..... - -'CI')W
U
0::

c :::> 0 :::> ::)
c c 0 :::> 0
co c -;:, U')
00 C 0 -

'1'

-----..---,

II/3-28

H
H
"-w

I
N
ID

::iii ---!!!!!i'"
i\\\fj: ~ '!Hlil"~ \j: II \jil& \lilii

PAGE 0001 OQ/tll/76 OQ:47:37 RTX/IOX CHARACTE~ l/U DRIVt~S Q3302-1XfO
C.HA~ACTEk REAI)-WRI IE P~llCEIHIf.lE.S HACRU2 (A?l 51= CH40S eo=

0427 ouoo
0428
o lJ 2q
Oil30
0431
0432
0433
Otl34 0000
O'HS 11074
043h OOB5
Oil37 OOR3
OQ3R
O£13Q
0440
o lHJ I
04£12
04£13
OLJ44
OlHI5
OLJ4b
0447
0411H
Oll4Q
o I~ S 0
0451
01152
OLJ53
O1l511
0455
0456
0457
0458
OlJS9

MACH o MUST wORK UN LSI At-W ALPHA/NM-lb
~ • .. * * * .. * * * * * .. • * * * * * * * * * * • * * * * *
* * ORIGINATING NAMES

*
* * * * * * * * * * * .. * * * * * * * * * * * * * * * * .* •
*

* * *
*

NAM
NAN
NAN
NAM

*

l:READ
I:RITE
l:FIJN
RITE2
* A- * *"

* EX1ERNAL NAMES

*

1 N P II T JH. (J \J EST
OU1 PU r REIWF 51
SPELIAL FUNCIIUNS PROCESSOR
OllTPUI fNO OF kECORD (CP,LF,ETC)

* * * * * ~.. • .. • * * * * * * * * *

* .. * * • ..
EXTP
FXTR
EX T R
ExTf.<
EXTR
EXTR
tXTH
EXH~

Exn~

E.xTR
EXTR
EXTR
EXTR
EXTR
EXTH
EX1R

HEGPH
E:.NIJ:
SlIHR:
SllHX:
DELAY:
EClF:
E (I ~ :
I:.(JRsr:
SlNT:
SIfJ:
CKSlJM:
FETCH:
I:OFCK:
I-IUfFIJ:
-HAlT:
tOfLJ:

BEGIN TASK SER~lCf.

r.ND 1ASK Slk(VICE
BEGIN r.OMM()N SUt-:\ROUTINE
E N {) C (1 ,,\ '" U N S U ~ H nUl I f\J E
DELAY SEHYIC~ RUUTtNE
[Nt) Or- FILE. TASK
ENn OF RECOHO ldSK
StT SfATlJS AND f.NIJ (1F RECORD
Sfl [NrERIJPTS TASK
START IllI
COMPurE CHlr.KSUM 1ASK
GEl CHAr<ACTF.R
CHECK fUH [NU-UF-FILE
PUT HyrE INlU HUFfER
WAIT f-I)R DI::VICE
CH~L~ FUR ASCII (OF ('I.') ~

.. ' ". J
• , ,,~~ -10 .. :,,.', ~ ,' •. .i._'

lilll!
1;!IPAGE 00u2 O<1I01/Th

MACR02 (A2) 8J= CHRUS

Ollht
Oll62
OQ63
04611
OLJ65
0466
0467
0068
041>9
. 0470
0471
0412
O£l73
OQ7Q
oa7S 0000
0476 ooon

H oa77 H
........

OIHS 0000 H'HH ootA \.oJ
, I

\.oJ 0479 000\ 1350
0

OllBO 0002 9COt:. OOOE
Oll81
o 1~82 0003
0483
O1l84 0003 9L1B OOIB
0485 0004 C60l
0486 0005 9C?3 0023
0487 0006 0110
OlJ8a 0007 QC10 0010
0089 0008 tlCle OOIC
01.190 0009 B016 0016
04QJ OOOA 300E 0019
0 1• q 2 ooo~ 1357
0~93 .OOOC 2101 oonE
o 1.I 9£1 0000 C601
O£JtlS OOOE 0150
0496 OOOF QC04 OOOti

l'rllli,O 09 _,1',::_
'. 'II I!'. ~

. ,I!IIII IPi!I,O HD/:lf1iilH!l.HAHALTEP ,TIO 'iiii l : ~ I:.HS cn:SOr-!XFO
HO= 1:I-<EAO C~A'~AC1FR PEAl) P~(lUlJU~1:

II * * II • ,* 11 it II
" It It "

It 11 II It .. ''It .,., "- It .,. .. '*
" .. T HIS R fJ U 1 I N E ~ J L L P '" 0 C. E. 5 SAN Y "R F. lJU t S T S

* TO INPUT FROM A CHAf-<AtTfR IJfVICF::.
' *
* ALL REQUESTED WILL ~E. I SSUED FOR (JNE:. (1)

It CHARACTER AT A TIME.

* IF THE TRANSFERRED COUNT CONTAINED IN THf
It CIH IS NEGATIVE lHE UEVICf. WILL HF.
.. PROMPTEU WITH TH~ CHARAC1~H UR CHARAC1E~S
II CONTAINElJ IN THE CTCN1.
'It

it,. * * .,. .,. .,. .,. .,. " .,. It " *
Ie

REL 0
I :REAO f(W $

* LDA o/CtWF F
LLA 1
STA alREQCNl SAVE FOR A RESTARl ..

*
RFA2 EQU 31 RES T ART

* STA 'lIceUFF SET BUFF~W ADDRESS TO HY1F
LAP 1
Sf A olCUCHN 1 SET BYTE CUUNT TO (J~E

ZAR
STA alARROw CLEAR RACK A~RU~ FLAG
S1A ~IC' 1 C NT CLEAH TRANSFER COUNT
LOA .llf. XC r..ss PROM!'l (HfdHCTERS
JAP RFAX IF NUf'.lE
LLA B CHECK FOR /I.

JAZ :Hc IF UNlY ONE
LAP 1 TWO PRUt-lPl CHjRACI£~S

lAR AOJUSl COUNT
ST" tlIC 1 MP 1 PUT IN fo1INI-IO~

~~~<'~~"""~'~~"'~"'~'-

H!!!h 
'Hlp: 

.~ 

~ . 
1 

~-----------' 
"f.' 

, \ 
I' .:./ 



, 

,,'I ,'It __ 
-!n~!l !!~ In ~_I 

PAGE 0003 OQ/Ol/1b 09:Q7:]7 
HACR02 (A2) 51= CH~OS AU= 

OQ97 0010 ChOH LAP 
Oll9a o \) 1 1 ReI R () 0 1 A AlJD 
OQ99 0012 9C05 0005 51A 
0500 UUl3 FBOC OOFO SlNl 
0')00+ OOlit 23F~ 
0501 0015 0030 lX,A 
0502 ,0000 IFF 
0503 OOl6'8AOA 00f1 Al>D 
050Q ENIJC 

0506 0017 FUOA OOF2 JST 
0509 001~ FfWA OOF] JST 
0510 00J9 RFAX E IJlJ 
0511 o 0 1 q ,F BOb U 0 FO SINl 
0511+ OOlA 1~F9 

H 0512 OOlB Cb07 LAP 
H ,. 051'3 . 001 C 8 Q 1 q 0019 ANl> 
w 
I 0514 0010 0203 0021 CMS w 

...... 0515 001E F203 0022 JI"1P 
0516 OOH F~J4 005l.1 J~P 

0511 0020 F20C 0020 JMP 
0516 0021 0002 lwO OA1A 

0519 '1\ 

0520 '1\ 

q\!l!, i:!II:--

HIX/IOX CHARACTER I/O OHIVEHS 93302-1XEO 
I:HEAO --- CHA~ACrtH HEAD P~OCEOURE 

IACNT 
alCIOB AODRESS OF PHOMPT CHAHACTERS 
~CTMPltl pur )N ~l~I-I(lli 

STANOARD,OtJ1PUT,O 

CIH ADDRESS 
LSl305 
=CTMPI AnDRESS OF ~INI-IOA 

SIO: 00 OUTPUT 
WAIT: FOR DELAY. 
$ 

SlANOAHD,INPUT,O 

7 OP CODE MASK 
acop MASt< OFF OP CODE 
TwO COMPARE TO TWO 
UNF~T1 UNFORMA1TED .. 
IHNIN III NARY 
Hf- Id FO!-<''1ATTF.O "SCll 
2 CONSTANl lweI (2) 

0521 '1\ lITL UNFMTI UNFORHAITEU INPUT 

0522 11 

0523 0022 UNFMT I f.(JU .\ 

OS2L1 '1\ 

0525 0022 Fn01 OOFQ JST FETCH: GET NEXT CHARACTE~ 

052b 0023 FOOl OOF5 JST 8UFFlH GO PUT INTO BUFFER 

0527 002432LJ2'OOc2 J()R lJNFMTI GU GET NEXT CHARACTER 

0528 r, 0 2 '5 F 3D 0 0 () F 6 JMP lOR: END {IF HECORD 

______ ~·~1~'f;'!~~~~;~~""",·~:!5t~ ~-~~~~-==<_ 

iii!i!!: _____ ---, 
:;nn: 

I~· 

~ 
" 



,![!II! 
"~'AGE IIOOll 04/111/7b 

MACR()2 (A2) 5J= CHRD$ 

0~30 

0531 Ou21> 
0532 
0533 0026 FI:ICC OOF3 
0534 0027 I"\QO£ nOOE 
0535 0028 F625 0003 
0536 
0531 002Q 
053A 
0539· 002Q QC1V OOlD 
0540 '002A COOF 
05ul 002B F270 {lOUC 
05£12 002C Ft3C8 OOFS 
0543 

H 0544 002D 
~ 05a5 w 
1 05LJo 002D FBC6 OOF-4 

w 

"" 0547 002E FtlCti OOF7 
05Q8 002F A2CB'{)OF8 
05a9 0030 QC25 0025, 
0550 0031 COfF 
0551 0032 FbOC; 0021) 
0552 0033 D2C5 OOFq 
0555 ()034 fb07, 0020 
0550 0035 F60C 0029 
0555' 
055b 
0557 

11\\!\!~ o<1:u'n)' 
II!!!!, illiilQ 

,~n x'lI O*'L!(:HftHAC II:.I-' d 10 '(li~ F.J(S 93_~02-1 XEO 
tW= HfA --- HEAl) F(JRHATTED ASCII 

.. 
RFA10 F. fJ U $ 

-. 
JST WAIT: 
LOA ti1REGCNl 
JMf' RFA2 GO ... ~SlARl 

1( 

~FAa EflU $ MAYAE GUOD 

• 
STA nlARROw SET FLA(. 
CAl ' : OF IS IT, BACt< AR~uw1 

JHP RFA9 YES, UACK UP 
JST BUf-FlH PUT INTO BUFFER 

.. 
HFA3 EtJU $ LOU P 

* J5T FETCH: GET OfARAC1ER 
JST EOFCK: IF FILE. MARK, GUO{)HVE 
lUR =:80 
STA @CDCHN'; HIGH-OHOEH AIT ON , 
CAl :FF· IS IT RlfbOU1? 
J+W HFh3 YE$, I <.;NUHE. IT 
CMS =!~l) H(1W AHUUT A CARRIAGE RETURN? 
JMP HFA3 lOU SMALL 
J~\P HFALl GOl A LIVE ONE. 

* 
*. FOUND CARRIAGE RE1URN 
*. 

"". "1/' 

I!!!!!! ::::::' 

'\::~: ;~: ....... ! . ", 

~ 
I 

;) 
,.,.. \ .. ' "'\ :' , " 



I'!il: ·1'1:' "', .·1; ,'. 
-:::':; !,l.;;! e ill!!:: di!:!!O ",,!!,-----

"" O?'"7':'~7 RrXIIOX "~'~ARACnO 1/0 O~':'V[RS qHO?-IX~1) ">' ·l' PAGE 0005 09/01/7b 
MACH02 (A?) SI= CHHDS lin: RFA -- .. READ ff)~""ATTED ASCII ., 

05SQ 
0560 
0561 
056? 
OSb3 
OSblJ 

0565 
0566 
0567 
0568 
056'1 
0570 
0571 
0571+ 
0572 
0573 
0574 
0575 
0576 
OS17 
OS70 
0519 
05130 
() 'j {\ 1 
o (j B 2 
OSU3 
050~ 
0505 
OS86 
0587 
OS8A 
0589 
0590 
0591 
0592 
0593 

OO~h C604 
0037 1341F 00lF 
0036 210C OOLtS 
0039 Ch03 
003A {HtlF 00lF 
003R t002 
003C F 201 003E 
0030 F207 0045 
0031: FfiB4 OOF3 
003F FI3AO OOFO 
0040 23F9 
00111 1.1250 0092 
00/~2 9C25 0025 
OO1l3 ~1l22 0022 
OOQ4 Ft3AO OOF2 

I> 

'1\ 
A 

.,. 
0045 I~FAl 

0045 HCID 0010 
OOI~6 CODF 
OOIj" Ft.?1 OOi?1> 
o 0 (11\ n I~ 0 E () 0 0 E 
0049 1300 
0041\ 9C1B OOlA 
004A F3AE OOrA 

#< 

'1\ 

004e RFA9 

OOllC B~lC OOlC 
0041) 2160 0020 
OOllE (lUDU 
OOllF ~C1C OGle 
ooso tJl.llB 0018 

ic 

FOUND CARRIAG~ RETURN 

LAP 
·AND 
JAZ 
LAP 
AND 
CAl 
JMP 
JMP 
JST 
SINT 

LOA 
STA 
LOA 
JST 

f.rw 

E.HA 
CAl 
~J 11 P 
LDA 
LHA 
STA 
JHP 

EPU 

LOA 
JAZ 
DAR 
SlA 
LI)A 

PROMPT PRUMPTAHLE ~lT 
nlCFUNl IS IT? 
RFhJ Jf- ~Ol, GfT 0111 
EORMSK MASK FOR EOR lY~E 

rtlCFUNl (;Er EOR TYPE 
2 IS IT CR/LF 7 
:£ t 2 YES, E. OW LIN E F E c: D 
HFAI NO, FORGET LINE FEED 
~AJT: DU A HICCUP 
STANDARD,OUTPUT,O 

CRLFtl 
nlCDCHN3 
rtlCOCHN 
510: 

l> 

oIAI<JWW 
!IH 
I?Fl\lO 
1'I1H t (J C N T 
1 
fllC HUF F 
EUFQ: 

.\ 

alC T eN T 
RFfl3 

fJlClCNT 
alCIJUFF 

LINE FEFIJ 
DAT~ CHARACTER 
POINER TU MINI-lOB 
OUTPUT .. 

CHECK FOR VALID RECOR~ 

C I) IW Eel I UN f LAG 
LAST CHARACT[H BACK AHROH 
ns, Of.) IT ovrp 
RESl AHl Af)f)f~ESS 

MAl", E 1 T Ii 0 IW 

CHECK FOR END UF FILE 

BACK "RRO~ fOUND 

CURRENT COUNT 
IF AT BfljJNNIN(~ 

DOWN ONE 
RESTORE 11 
* * 

~ 
... ' .. , .1: 



H 
H 

" W 
1 
W 

"'" 

ill::l' dill!: ... 
~ :i;;:: ~-# 

PAGE OOOh U9/01/76 OQ:u7:31 
HAC FHl2 (A 2) S I =. C tHW S H 0 = 

05Q4 
OC;Q5 
05Q6 

0051 0000 
0052 QCIB DOlt; 
0053 Fb?b 0020 

DAR 
S1A 
JHP 

,::i:: 1 !jil!j!O 

HTX/IOX CHARACTER 1/0 ORIVfRS Q3302-1XfO 
HFA --- I1f:AD F()R~ATTE:.D ASCII 

oICBUFF 
RFA, 

* OEcuEMENT t;UFFER AODRESS 

* * 
GO GET ~IE X T 

... 

'ill:! 

~ 
1 

"' 'i .j 



_ __ _ _ ______ ~~~~~:=r=_::~~~"'!~~~L?:. .. "" .... ~~_~~""::~>- __ 

, ._-, 
-1111\! 'fiP'O . !inHi~ iiil!i! iiiliiO iii!!!! 

PAGE 0007 Oql01/76 09:LJ7:37 RTX/IOX CHARACTER 1/0 DRIVERS q33~2-JXEO 
MACR02 (A?) 51= CHRDS HU= HININ --- INPUT BINARY RUUfINE 

OS9R * READ A HtNARY RECORD 
OSQQ #( FINO THE RECORD HEADER 
0600 0054 BININ EQU S 
ObOI OOSlJ FB9F OOFlJ JST FElCH: GET A CHARACTER 
060? OO~5 COFF CAl :FF IS IT It. RUdOUT 
0603 0056 F202 0059 JMP $+3 YES GO GEl BYTE COUNT 
ObOll 0057 Fti9F OOF7 JST F.OFCK: CHEer.. FOR 1* 
0605 00S6 Fb04 005lJ JMP HININ 
0606 * 0607 * GtT THE BYTE CUUNT 
Ob08 * 060Q· 0059 0110 ZAR 
0610 005A 9COO ooor>' STA ciJCCSUM CLEAR lHE CHECKSUM 
0611 .oos~ F8qa 00F4 JST FETCH: GET FIRST CHARACTER 
0612 OO~C J 357 LLA 8 SHIFT TO HIGH ORDER aYT~ 

H Ob13 0050 9CI0 0010 srA ~CDAA SAVE IN TEMP CELL H 

"- 0614 005[: Ft\QS OOFa JST FE.TCH: GET SECUND CHARACtER !.oJ 
I 0615 005F AlJID 0010 lOR ~C{)A" HERGE THE TWU ~TES w 

VI ObIt> 0060 3101 0062 JM4 $+2 . NOT AN END OF FILE 
Ob17 0061 F3q9 OOFB J"'P EUF: AN END-OF-FILE 
0018 • 
061Q .. READ THE INPUT DATA 
Q620 It 

0621 0062 0310 NAR 
0622 0063 9COE OOOE SlA a1H[Q(.N r SAV~ REUUIREO COUNT 
0623 '" 0624 006lt NEXTI ElJU $ GET NEXT ONE 
0625 * 0626 0064 FH8F OOFll JST FETCH: GO GET NEXT ~YTE 
0627 0065 FBBF oaFS JST t3UFFQ: GU f"UF UF. INTU BUFFER 
Ot>2B 006b OCOE OOOE IMS olREf.JCN T INC~~M~NT NUH8~R UF ~YTES 

~ 
062Q 00b7 Fb03 OO~4 Jt'1P NEXfl 
0630 Ie 

0631 * PERFOR~ CHECKSUH 
0632 * 

I. 

0633 . 0068 CbFF LAP :FF 

. ~. I' . . ; ', .. 
....... ,.,.-~ .. .. 



H 
H 

........ 
W , 
w 
0'\ 

!Ill !! I 
i~~GE OOOA OQ/ryl/1b 
MACR02 (A2) 51= CHAOS 

Ob3Q 0069 RtJO() ouoo 
0635 o 0 b A q ell) l) 0 1 0 
0636 0068 FuBB UOFlI 
0637 (l06C 1 :\57 
0638 0060 QCOf. I)OOE:. 
063Q 006E F~8~ ()OF~ 

06QO o 0 '> F A Q 0 E 0 0 u E 
0641 0010 q/Jll> 001U 
OhQ2 00 7 1 2 I 0 1 00 7 3 
ObLJ3 U072 H28l1 UOFC 
0644 0073 F389 uoFD 

3_ 

IlIH!'A 
, () Q : u'Y: '!"f 

liO= 

ANU 
SlA 
JST 
LLA 
STA 
JST 
lOR 
SUH 
JAl 
LOA 
JMP 

!!I!II ,:!llla 
HTX/lO/!i~HARACTfP :1/U 6k'l'\"'ERS 93302-1XEO 

IHNIN ._ .. lNPUT hII'IAfH RUUllNE 

,vCCSUH MASK OFF LUW OROER ~lJS 

~CI)AA SAVE RECORO CHECKSUM 
FETCH: FIRST HY1E 
8 SHIFT 10 HIGH OPO~R HY1E 
@REnCNl SAVE 
FI:.TCH:' Sf:.CUNO Cl-IARAC1I:.R 
nlREIKN T MERr.E lwu BYlES 
oICDAA SUfHRACT COMPUTED CHECKSUp.4 
$t2 IF EVERYTHING OK 
=E.RRUR ERRUR CUOE: 
EORST: ERRQR E.XIT 

.. 

-, _4:~ .. t~_~t:~.~~~·~_~o,~-~~, ~"-":~"T~~-"-

III!I!\ 
:!inl 

~ 

:) 



-- ---- --

-\\:\[1 ,II!!!!) n l\!!!:i !lilil:-a"'~·~"-------- n!!!ir 

H 
H 

"­w 
I 

w 
-.J 

PAGE OOOq UqlOl/lb 09:47:37 RTX/I0x CHARAC1ER 1/0 DRIVERS 93302-tXEO 
HACH02 (A2) 51= CHHDS AU= I:HITE CHARACTfR WHIlE PRUCEDURE 

0649 
0650 
06St 
0652 
0653 
065Q 
0655 
0656 
Ob57 
065(\ 
0659 
0660 
06b1 
0661+ 
06b2 
0663 
0604 
06b5 
066b 
0667 
Ob68 
Obb9 
0670 
o b '11 
01;,72 
0673 
0674 
0675 
0679 
0680 
0681 
0682 
0683 
068~ 

0685 
0686 

007Q 

00711 FIH8 DOFO 
0075 23F9 
0076 !1ltlA OOlA 
0077 9CIC OOlC 

0078 C603 
0079 B419 OU19 
007A 9C1CJ 0019 
0078 C003 
n07C F21E 009U 
OO'/D 0030 

0000 
007E 8~7F (JOFE 

007F 

007F FB72 OOF2 
0080 t-\l.l19 OOJ9 
0081 COOl 
0082 F373 OOFh 

* * * * * * * * * * * * * * * * * * * * * * * * * t * * * * 
* * THIS RUUTINE WILL PROCESS ANY RtQUESTS 
* TO OUTPUT TO A CHARACTER DEVICt. 

* * AFTER THE RF.UUESl HAS HEEN STARTED, CON1ROL 
* WILL HE RETURNEO TO THe 10 SCH~DULER 
* 
* * * * .* * * * * * * * * * * * * * * • * * * * * * * * * * 
* 
InHTE ELIU $ 

'* SINT STANDARO,ourpUT,O 

* 

LDA 
STA 

,.CRCNT 
t\lCTCNT 

'* WHAl WAS REQUEST 

* 

* 

LAP 
AND 
STA 
CAl 
JHP 
IX" 
IFF 
AUt) 
ENoe 

R IT E 1 EQU 

* 

#I 

JST 
LOA 
CAl 
JI1P 

3 
ii1eop 
oICOP 
:> 
RITEtO 

LSI30c) 
=CRon 

$ 

510: 
nlCOP 
1 
EORl 

REQUEST~D COUNT 
SET TRANSFEREO CDUNl 

.. 

MASK OFF OP-C(lDE 
REPLACE. NEW ONE. 
IF BINARY 
FOHM"TTE:IJ HINt-BY 

AODRESS OF OATA CHAIN 

LJUIT TUIT 

srARl 110 

IF UNFUPMATTEU 
GO TO ENO UF ~EeURO 

~ 
J 



It._~"'~~oi"'~~-;~'~---~ - -- ~ 

,I!\lh 
tiu!r !lIH; " 

P~GE. 0010 ()Q/01/7b 'd!~:::UT':37 
MACI<1J2 (A2) Sl= Ctll<DS ao= 

. Ii!!li :!!llliO 
! ~: : : , • • : t: : : : _ 

tJ r X /l'u X C H A RAC.1 E H J 1';',' IW I V E ~ S t/ 3 ~ O? - J X EO 
l:R{fE CHA~ACltH WRIIE PRUCEOURE 

Ob87 * OUrpUT lRAILE~ RECORD 
06fP3 * 
ObR9 OOR3 ~JTE2 ·E.QU $ 

06110 00H3 FtlfJF OOF3 JST WAIT: WAIT AWHILE 
Ob<ll OOftll CbO.s LAP f.:ORMSK END Or RECORD MASK 
06Q;> 0085 641F OlllF Atlf) @CFUN1 MASK OFF THf EUR Fl~G 

0693 0086 9CtH OOIt! SlA ~IC 8UFF 
0694 '0067 BAOt' OO~O ADD f. ORIHIt) ADD START OF BUFFER ADDRESS 
0695 OO{l8 AeIH 0011:\ EMA oICHUFF PUT IT ANU PICK UP row FLAG 
064b 0089 1300 LRA 1 
06Q7 ooaA 0150 JAR CORRECT # UF CHARACTERS 
0698 .()-O813 9CIA 001A STA O>CHC"Ir PUT INTO DATA CHAIN 
0699 OOAC 0030 TXA . 
0700 0000 IFF LSl305 

H 07Ul 0080 BATO OOFE ADD =CRCNT U A T A tI i A 1 Ii A l> D RES S 
H 
....... 0702 ENUC 
w 
I 070b * w 

en 0707 .0Of\E LEAVE: EQU $ CALL SIU: ANO GO TO EOIH 
0708 It . 

07.09 008E F8bl OOF2 JST SIO: START 1/0 .. 
0110 ooaF F36b OOF6 JMP r:OR: ALL DONE 
071t 0090 0091 EORlUO'DATA CRLF 
0712 0091 8084 CRLF DATA :RU~A,:8A8u,:8D8A,:An8U 

0092 6ABD 
0093 fWUA 
009Q AUOD 

0713 00Q5 OOO() NULLS OATA 0,0,0 
0096 0000 
0097 00110' 

07IlI 0091\ FFOO EUFl OA1A :FFOO,O 
0099 0000 

0715 OpQA AFAA EOF2 TEXT t 1* t 

0716 * 
0717 009ij RItE 10 ECJU S f tHH1 A T T E U t3 J N " R Y 

0718 It 

0719 OQ9A 0110 ZAR 

• _. ~". A " 

'1ti:\1 
• 

~ 
J 

') .. '" 





,\jU\i 
''''PAGE ()O12 09/01/1b 
- KACfW2 (A?) 51= CHRD5 

075Q 
0760 
07bt 
07b2 
0763 
,0764 
0765 
0766 OOB5 
0767 
0.76R 001-15 FB3A OOFO 
07b;?'. OOHb ?3FQ 
0769 0087 CbOF 
0770 OOHH8l!lIJ 0019 
0771 OOl-lq q'Cl<J 001Q 

.' 0772 OOHA C'OOC 
H . 0773 00130 F203 OOBF H 

'" o 7.7 4 , U 0 B C C 000 w 
I .0775 OOHO F208 00C6 .t>. 

'0 0176 UOt;E F337 DOFb 
0777. 
0778 OOBF 
077'-1 
0780 o 0 B F H IJ 1 F () 0 1 F 
0781 ooeo 13D2 
0782 ooel !;20F OODl 
0783 00C2 3201 .00C4 
0784 00C3 Fb44 OOIF 
0785 OOCl! ~612 OOH2 
0786 OOC5 F~2C OOF2 
0787 
0788 00C6 
0789 
07QO 00C6 C1IQ 
0791 OOC7 9(16 0016 
07'-12 o 0 C A F t~ 2 A U 0 F 3 
0793 OOV-I H204 OOCE 

'njj!L~ 
0'9 ~:}h. 7 ~T~/II~T!' CHARACTER 1/OI:!!b~VEJ~S 93~02-1XEO 

eo= I FUN FlINC1111N~ 

* It * * '* * '* * '" * * * * * * '* * '" * '" '* I< I>. '* '* " * Ie • 

* 
'* lHIS ROUTINE WILL PRUCESS THE SPECIAL 

* FUNCTIUNS RtUUES1ED ~OH THE l/U D[VICES 
#< 

* '* * '* '" '" * I< I< '* '* *' I< '" * '* * * '* * '* " '* '* it .. 1\' '* * 
'* I:FUN E(~U $ 

* SINT STANOAHD,OIJIPUT,O 

LAP :F 
AND I'lICUP MASK OFF OP COOE 
S1A ~C(lP 

CAL :C IF A C 
JMP F"'ARK JMP TO ~Rll~ ~lLEMAW~ 

CAl :0 IF A 0 
JMP PLEAD JMP TO PUNCH LEAVER 
JMP EOR! GO TO END OF RECORD 

* .. 
FMARK E~U :1. WRITE rILE MARK 

* LOA .vC F LIN \ SPE.CIAL FLAGS 
LPA ~ MOVE EOF tHT TO OV 
LDA SE~F ' 1'* ' FILE MAliK 
JOH $+c? 
J ~1P HI 1 E 1 IF THAT'S IT, DUlT TUIf 
LOA FEOF RUB ()U T- NUL l - NUL L 
JST 510: WRITE IT, 

'* PLEAD EQU $ PUNCH LEA\)ER 
~ 

LAM 20 
'SlA oItXCE.SS SET COUNT FOR 20 lIMES 
JST WAIT: WAIT A !;IT 
LOA LEAOER ADlJRESS OF LEADER CHAIN 

!:liil: 

j,."# 

'" 

~ 

\ 
.J 



H 
H 

-....... 
w 
I. 

.e:.. 
I-' 

I . 

il!!i! ,Imln 0 iiil!!! J!llll!t) ii!l!!! 
~ 

P~GE 0013 OQIOl/71, 09:1.J7:37 H1X/IUX CHARAcrER 110 ORIVERS 93302-1XEO 
MACR02 (A2) S1= CHRlJS liO= I : FUN --- FU~CTIONS 

079Q nOCA Fi121 OOF2 JST SID: OUTPUT 6 NULLS 
0195 OOCI3 OClo 0016 l/"1S G.lEXCESS AkE wE (JONE 
0796 ooce Fooq 00C8 JMP $-4 NO 
0797 ooeu F32R OOF6 JMP EUR: JHP ENO OF RECURD 
0798 OOCf OUCF LEADER OATA. $+l,b,NULLS 

OOCF 0006 
OODO 0095 

0799 OOH2 FEOF ErJU RHFOAD 
0600 o Or) 1 0002 SEOF VAl A $tl,2,EOF2 

0002 0002 
00U3 009A 

.. 

~ ~ 

........ _._ .. ___ I 



~-~~~, -----~-~- ~-~. ----

H 
H 

....... 
w 
I 

01:>0 
.1\) 

,I11!! 
:iHii 
"':' PAGE U010 04/01/lb 

·MACH02 (A?) SI= CH!'lDS 

OR02 
OR03 
080Q 
O~O5 
ORUb 
0807 
OaOA 
Ofi09 
OR10 
081 1 
0812 
0813 
0814 
Of\l'51 
081b 
0817 
0818 
081Q 
0820 
0821 
Ots22 
OH23 
082Q 
OU25 
0026 
0827 
0828 
0829 
OH30 OODU 0800 
OH31 OOU5 9A}R OOEE 
0832 (Jonh EI\16 OOEn 
OR33 OOD7 Ij/JOO noon 
Ofi34 (lUUR 9Al)A 001:3 
Oti35 o 0 I) 9 A.s I q 0 () E E. 
0836 OUDA (J~l() 

0837 OOUR 9A13 OOEF 

_ -'_~..!:..':~::1~'::'::::~!"'~'.'!-:~_ ~_-:"~~,,,.~,,--.... ~<::-,,:,":!~'~':-" 

1 \ 

• Il!!!l,'" 
() C;riJ r1'3 7 

.1'[11. ",ll:,.. . 
Rlx,it)~ CHMOCTER 1/~!Wl"IIVEHS 93302-1XEO· 

'!I!!!l !!n!! 
.. 

uu=· 

" 
,. ,. 

#c 

* 
It 

#c 

* 
* • 
* 
* ,. 
"" 
If 

• ,. 
" 
* 
* 
* 
" 
" 
* 
." 

* 
* 
"" 
11: * 'It 

* 
I! OCS 

1 : 0 C S OUTPUT CHECKSUM 

" " * " 'It • " * * * " * ~ " it " • * ~ 'It * * * * * * 
THIS ROUTTNE WILL SEARCH THRU THE OUTPUT 
OA.TA CHAIN ANU CREATE. THE CHECKSUM FOf{ 
lHF ENTIkF. CHAIN 

CALLING SEQUENCf: 

JST I :UCS 

A Rt::GIS1ER MUST LUNT.AIN THE AIJIJHESS OF 
THE FP~ST PlJt?TIlJN Of THE CHAIN 
THE CHECKSUM IS TO At:: COMPUTED 

x REGIST~R HUSl CONrAIN I.HE CIB·ADDRESS 

. RETURN STATUS: 

A HEGISIER CONTAINS l BOlT CHECKSUM 
x REGISTFR UNCHANGED 
STATUS: 

OVERFLOW --- RESET 
REMAINIJER IS lINCHANGEO 

... 

THE COMPUTED CHECKSUM IS PLACED BACK IN 
THE ell:} 

* * ~ * * * ~ ~ * 'It 'It * * * * * * * * •. * 'It * If * • • 
ENl 
STA 
STX 
LOA 
STA 
LOA 
NAH 
STA 

IMP3 
TMP2 
iiiCCSUM 
I%OCSS 
*lMP3 

COllNl 

SAVE. DATA CHAIN AnDRESS 
. SAVl: CIR AO/JRI:.SS 

CHECKSUM BYTE 
INI1IALJZ~ CHECKSUM 
NurWER UF HYTF:S IN RECURD 

SE 1 AYH. COUNH:.R 

....... 

~ 

'\ 



p:. " (. , ! .. ,.. :!i":: --ill' 1111'1 e llilil .11111 10 
'il! d' d i!:! '_ l11l t! . ~::::' _ 

H 
H 

"­W 
I 
~ 
W 

PAGE 0015 09/01/'0 OQ:a7:37 
HAC~U2 (A2) SI= CHRDS HO= 

O1)3t\ 
ORY·l 
OAlI(l 
OHl.Jl 
0842 
0843 
OAiJl.J 
0845 
0846 
OH47 
OB48 
08llQ 
0850 
0851 
0852 
O~53 
0854 
0855 
Orl5t> 
0857 
085A 
QA5Q 
08bO 
08bl 
0862 
0363 
0864 

OOOC DAtl OOE£ 
oOOU £310 OOEE 
UQDE 1328 

ooDF 

OODF OtOO 
OOEO Rl.IOO 0000 
OOEI OFOO 
00E2 FH1C ~OFF 
OOE'3 0000 
OOt4 0128 
00E5 UAOq OOEF 
00E6 F607 OOOF 

00E7 

vOE7 8604 OOE3 
00E8 E204 ODED 
\) 0 E q 9 COD 0 0 0 l) 
UOEA H203 OOEE 
OOEt) OODO 
OOEC F71B OODlI 
OOED 0000 
UOEE DODO 
OOEF OUOO 

0010 
o OF 0 0 l) 0 0 
OOFt 0004 
OOF2 0000 
OOF3 0000 
OOFU 0000 
OOF5 0000 
OOFh OOOU 
OOF7 0000 
UOF-B 0080 

* 

1MS 
LUX 
lLX 

1:0CS4 EQU 
I\' 

SBM 
lOA8 
SWM 
JSr 

1:0CS5 DATA 
DR 
IMS 
JMP 

#( 

l:OCSQ EGU 

* 

TMP2 
TMP3 
COUNT 

LOA 
lOX 
SlA 
LDA 
DAR 
R1N 
Rl:S 
RES 
fiE.S 
LPUOL 

RTx/IOX CHARACTER 1/0 DRIVERS Q3302-1XEO 
1 : 0 C S uUtPUT CHE:.CKSUM 

lMP3 
*TMP3 
1 

~ 

;10 

CKSUM: 
$-~ 

COUNT 
I:OCSlJ 

$ 

1:OCS5 
TMP2 
oJCc'SUM 
lMP.3 

1:0CS 
1 , 0 
1 , IJ 
1 , 0 

BUMP CHAIN POINTER 
H U F F I:. P. .A IJ I> IH:. S S 
SET TU ~Y1E ADDRESS 

COMPUT CHECKSUM FOR NEXl 

SET A Y TE. M f) D E 
LUAD OU1PUT BYlE 
SF. T WURD ,"nlOE. 
GO CUMPUTE CHE:.CKSUM 
CHECKSUM O~TA CELL 
INC~EMENt HUFFER AOVRESS 
UICRE MENT COUNl VONE 
NOT D£lNE 

ALL DONE SO ClE~N HOUSE 

COMPUTED CHECKSUM 
RESTORE X HtGlSTER 
PUl CHECKSU'~ IN CIH 

RESTORE A HEGlSTI:.R 
R t: T lJ R N 

,]jjjil 
!: lHi 

i 
~ 
I 



H 
H 

"­w 
I 
~ 
~ 

!lllll! . PPAGE 0010 UQ/Ol/'l" 
Io1ACHU2 (A.?) 5}= CHRDS 

OOFQ OORD 
OOFA uooo 
o OF t3 '0000 
\.)OFC 1I000 
OOF\) 0000 
UOFE OOlA 
OOFF 0000 

.'\I\I\!O 
0t1:47:37 

HO= 

08b5 END 

0000 ER~OHS 
0000 WARNING 

\ ·H\!l! ,!:;:' 
t -1 111 d!ll_ 

; I!i!!\!. 'Hiliv 
RTX/IU~ CHARACtER I/U DRIVERS Q3302-1XEO 

I : (I C S OUTPUT CHECKSUM 

.. 

I 

~ 

) 



-!lil!ll . I11W-o I!I!II 
li H! ~ 'ilille) ~I Ill! h 

'1:1;' 

PAGE 0001 09/01/7h O<l:S4:ll0 RTX/IUX CHARACTER 1/0 f1~lvFI?S '1330c-tx 

U 0000 AI-mow O~H8* O~39* 0579* 
X 0000 BE.GIN: OLJLJ4 

0600 IHNIN OSlb Ob05 
X 0000 BUFFrJ: OQ57 0526* 0542* 0627* 
U 0000 CHUFF OLl76 0484'" 05RLI* 059~ OS9~* 0693* 0695* 
U 0000 CCSUM Obl0* 063Q 072!J* 07r:;2 08~3 ve57* 
u 0000 CDAA 0613* Ob15 063S* Oh41 
U 000 r) Cl)CHN 0514 0731 07511 
U 0000 Cl)CHNl Ollli6* 0730* 
U 0000 Ct)Ct-iN3 054Q* 0573* 072~* 07S3* 
U 0000 CFUNt 0563 0566 0642 07AO 
U 0000 CIOB Ol!913 
X onoo CKSUM: 045£1 01347* 
U 0000 CUP 0513 0661-\ 0669* 06R3 077i 077111 

01363 CUUNT 0837* OA50* 
U 0000 CRCNT 066? 0674 0677 0698* 07ul 0704 0727 U740 

H 
H 0743 

........ 
w 0712 CRLF 0572 0711 
1 

It. U 0000 CTCNT OU89* OSAQ 0592* 0663* " V1 

U 0000 CTMPl 0496* OlJ9(H 0C;03 0506 
U 0000 () orson 051 I 0571 Ob61 0768 
x 0000 l>El:~Y: 0448 
X 0\)00 END: OLlLl5 

0714 E:.OFl 
0715 EUF2 0000 

X 0000 EOF: o 1.1 lt9 Ub17 
x oodo EI.lFCK: 0456 O'ill7* 060lf* 
X 0000 [OFf): 0459 05U5 
x 0(100 EOR: OI~50 052B .0685 0710 017.6 0797 

0111 EORH"D Ob94 
U 0000 EURMSK 0565 0691 
X 0000 EO~ST: 0451 064« 
U 0000 ERRl)R 0643 

~ U 009!1 EXCESS 0490 0791* 0795* 
0799 FEOF o HiS 

X 0000 FETCH: OQ55 0525* OS46* 060\* 0611* Obllf~ '1 .., r' .., It t· '\ "(, l 

0039* 



_~~~~-",·t>-<-'-tr":_~~~~<,~~"!>;~~~-"'o_",,-:-":~-.:~~-~" _ 

II\I)IIA GE 0002 ()9/01/7b I) <I :, 51111lhlO "n l(;i lOX IIIII!H A I? ACT E'" 1/1' ,\111110 to", ~ q II ~~ I· " IIIIII1 ~, 

077'3 FMA~t< 0"/13 
N 076b 1 FUN 0/13& 

0830 I Oe5 0732* 07'15* Oli60 
Ofj42 1 OeSQ 0851 
064A 1 ness 0834* 0855 
O~S> I oeSq 

N OLl1b ] REAl> 043'f 
N 0659 1 RITE 04~5 

U 0000 I CNl 0497 
U 0001) INPUT os 11. 

0798 LEAt>F.R OlqJ 
0707 LEAVE 0155 

U 0000 LSI305 0502 05U5 0645 0673 0676 01011 II 11) ," " 13t.J 

0'102 
Ob2 11 NEXTl 062Q 
0713 NULLS 0757 0798 

U 0000 OUTPUT 0500 0571 Ob61 0168 
01f\t\ PLEAD 0775 

U {lOOO PROMPl O~b? 

U 0000 HE (JCN1 OLlRO* 053Q 0582 o 62 2 * U b 2 8 * 0 6 3 ~ .. \1 h ,'11! 

0577 RFAl '056« 0569 
~ 

0531 RFAIO OSA! 
OQH2 HFA2 0535 

f OS411 RFA3 0511 0551 0553 0590 0596 

0537 RFA4 055" 
0587 RFA9 0541 
0510 RF4X ()4ql 

075" RHEAD 0756 
075b RHEDAO 072l 0799 
ObAO RITEt 07all 
0717 RITE10 Ob11 
0725 RITE\1 
0736 RITE12 
07£&9 RITE13 ~ N 06139 RITE2 0437 

o~oo SEUf ' 0782 
X 0000 ,SIN1: 0«52 I 

, 
\ 



H 
H 

" !.oJ 
I 

.t>. 
-..J 

__________ ·'~n~:'1:-~~~-~:~~:t#¥~~~"!;~c.:...: 

ml1\:"I' 

!Iml! . r1ffi11!-O 1111111 mml'o dllffi ~ 

PAGE nOO3 ()c1/01/1b 

)( ooou SIU: 

U 0000 STANnA 
X 0000 SUBR: 
X 0000 St/HX: 

OR61 IMP? 
ORb2 TMP3' 
OS18 TwO 
0523 lJNFM1I 

X OO()O WAIT: 

0865 SOURCE LlNES 

uQlSl.1:Qe RTX/tux CHARACTER I/O nRIVERS Q3102-1x 

OIJ53 0508* 0575* 06R2* 010Q* 0722* 0733* 071.1h* 
07~6* 07'11.1* 
0,;)00 0511 0571 01>"1 07b8 
04116 
0IJtJ7 
0832* 0656 
(lA31*.083S 0838* OR39 0858 
0511.1 
0515 05?7 
oasa 050(1* 0533* 0570* 0690* 0723* 11734* 071.17* 
07Q2* 

.. 

, ,£.". 

~ 
I 



" 1 "·"pt "--r "hl:&Hi"Wf:!N',."""i""H"'"WU' ,j $< 1',,0'; #&1# ttm Ht "'c' "1 0 H M ft'ftt r ,., ei'fhmW# ditNH' :titl:t:!' .. d ..... etlfOOdt 'Nt 

~:.!' - , . 
( 

( 
SECTION 4 

DIB AND CIB DESCRIPTIONS 

The DIB and CIB are tables which are used in communication between lOX and a partic­
ular I/O handler or the File Manager. 

The following DIB and CIB descriptions apply to all standard lOX handlers. DlB and 
CIB descriptions for non-standard handlers (for example, the IEEE Intelligent Cable 
handler) are included in Section 7 and for the File Manager, in Section 5. 

I 

4.1 DEVICE INFORMATION BLOCK (DIB) - 11 TO 18 WORDS 

Words 0 to 10 are used by all lOX -device handlers. Words 11 to 17 are used by 
specific handlers and the File Manag~r. 

- Figure 4-1 illustrates the DIB configuration. 

(( 
II/4-l Revi sed 1/77 

I 



, 

'I 

( 

:ANDARD 
NAME * 
OiAIN 

DelB 

QUEUE 

CN 

DSW 

ii. 
I, 
I ( 

'lJuEL 

DFUN 

DULS 

r( 3.C 

,*," ""'* ,,! " ''''/'';I' 'e" il'i' "'tin .. 1" ,.",., '4wWI" '.....ul!o!b'" , " ... "" W'"'d'"t eDWN1N '"5''&''" ri Itt Hb'Off "Utet HWti *" • OMW"ttIi!ttU 

---- ,~ 

DEVICE INFORMATION BLOCK 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o word 

DIB CHAIN ADDRESS 

CIB ADDRESS 
~ 

USED BY lOX TO QUEUE REQUESTS 

COORDINATION NUMBER 

DEVICE SPECIFICATION WORD 

DEVICE NAME 

CONTROLLER NUMBER UNIT NUMBER 

. 
INPUT RTC TICKS OUTPUT RTC TICKS 

FUNCTION FUNCTION FUNCTION FUNCTION FILE END OF 
CODE CODE CODE CODE PF RECORD MARK 

MAX BYTES-ASCII MAX BYTES -BINARY 

. HARDWARE ERROR COUNT (except Ml'IC) . 

ADDITIONAL WORDS USED 

BY SPECIFIC HANDLERS 

* refer to the I/O Handler listing at the end of Section 3. 

Figure 4-1. DIB Configuration 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

1 

1 

I lOB 
Words I 
and 2 

o 

1 

7 

II/4-2 Revised 11/76 



" , 

( 

b ri it" HH a' \J ffl? if tt 
°t' btl" iff.,. Mwi"mllr·!!' "1 -&"$'\ro#* 

f.!t t&\rt"bi·,W" 1t • h t' "'*-¥*"jl1'ltH 

'-., 
.,:~ , 

4.2 REGULAR DIB CONFIGURATION (ALL HANDLERS) - WORDS 0 TO 10 

~ 
~ 
(' 

I 

( \ ',. 

J 
( 

b 
. I 
( I 

I 

I 

Word 0 

Word 1 

Word 2 

Word 3 

Word 4 

Word 5 
and 6 

Chain pointer to next DIB (CHAN directive). Last DIB contains O. 
The DIB CHAN operand is X::. 

Associated CIS address. (See list of standard CIB names at the end 
of Section 4.) 

Used by lOX as a pointer to queue requests for this DIB. Initialize 
to zero. 

Device coordination number. Initialize to zero. 

Device specification Word (DSW). Each of the 16 bits corresponds to 
the equiv~lent binary value described for bits 0-3, of lOB Word 5 
(opcode); e.g., if'the device is capable of reading Formatted ASCII 
(which function, if requested by the lOB, would appear as 0010 in 
bits 0-3 in lOB Word 5) then bi~ 2 should be set on in the DSW. If 
the device can punch leader (1101 in bits 0-3 in lOB Word 5), then 
bit 13 (:0) should be set on in the DSW. 

Device Name. These words are copied into lOB words 1 and 2, respective­
ly, upon finishing a call to 10:. These words contain four ASCII 
characters. Word 5 contains the first two characters which specify 
the device ("CR" for card reader, fc;>r example). Word 6 uses the 
following format for the third and fourth characters: 

11 ,.. 1~ 12 11 10 • .' 7 • I .. 3 2 1 0 

l 

I t_unit number (beginning 
with ASCII 0) 

~------------------------------------------------------------Controller number 
(beginning' with 
ASCII 0) 

For Fortran tasks using the teletype or lineprinter as a list 'device 
with carriage control character recognition, or for a disk with end-of­

, file capability, the third character of the device name must 'be, aJ') "F", 
to serVe as a flag ~at.'!:h!'Fortral) handle:r:: is t.o be used • 

• ~ I ", 

... " 
II/4-3 (~ . 

~-----------------------------------------------------------------------------~~------------



I 
i 
I 

Nord 7 

Ie 

( 
C 

(L 
\ 

",,'j' \In'! O!+i%«/"-" 

This word uses the following format: 

115 ,. 13 12 11 10 • • 7 • I .. :a 2 1 0 

I I 

I f'-______ RTC ticks after EOB 

(output) L-------------_________________________ RTC ticks after EOB 

(input) 

Bits 8-15. A binary value representing the number of Real-Time Clock 
ticks to delay after an end-of-block interrupt for an input operation, 
before the device is considered available for the next I/O operation. 

Bits 0-7 •. A binary value represenuing the number of Real-Time Clock 
ticks to delay after an end-of-block interrupt for an output operation, 
before the device is considered available fo~ the next I/O operation. 

This word contains function codes which are executed in Select ins truc­
tions to initiate an I/O operation if SIO: is called. 

The order of execution of the Select instruction within SIO: is: 

This 

115 ,. 

SEL DA,X 
SEL DA,S 
SEL DA,6 
SEL DA,Y 

word uses the following 

13 12 11 10 • • 7 tI 

format: 

a 4 3 

. 

2 1 0 

] 

~ End of record action 
Prompt flag 
File mark indicator 
Function code Y 

(output) 
Function code X 

(output) 
L-__________ ~ __ --------------__ --------_Function code Y 

(input) 
~ ______________ ~ ____________ ------------__ ----___ Function code X 

(input) 

II/4-4 J 



e 

;·1 
f! 
t 
. \~ 

! 
~' 
~'i 

~, 
~, 

'. 
~i 
11 
'" 
1:: 

",'I 

'$""+.'**_ 

...... 

( 

" l 

! 
I, 

, 
t 

( 

t· lit ±d t Vt!l 'lily!' ' aMi., t' , t t t #'1 wtM " " Wibt;" , 'g.'tt""".,·W tttrMt 

Word 9 

Bits 13-15. Contains function code X in the above sequence, for an 
input operation. 
Bits 10-12. Contains function code y in the above sequence, for an 
input operation. 

Bits 7-9. Contains function code X in the above sequence, for an 
output operation. 
Bits 4-6. Contains function code y in the above sequence, for an 
out,eut operation. 

Bit 3. A flag signifying the type of file mark to be used for the 
devic$. 

1 - slash/asterisk 
o = rubout/nl1/null 

Bit 2. A flag signifying whether the device is to be prompted before 
an input operation. 

'1 = Prompt the device I 

o = Do not prompt the device 

Bits 0-1. These bits represent the end of record action to be taken 
for Formatted ASCII output: 

00 = OUtput carriage retUX'n only 
01 - Output line feed only 
10 = OUtput carriage retUX'n and line feed 
11 = OUtput space and. carriage return. 

I NOTE I 
Word 8 is set to zero for Distributed I/O and Disk DIB's. 

This word uses the following format: 

11 ,. 11 12 11 10 • • 7 • I • 1 2 , 0 

I I I .... 
.. ... 

1 
t ~----------~-Maximum record size 

(ASCII I/O) 
~--------------~----------------------Maximum record size 

(Binary I/O) 

Bits 8-15 •. Maximum record size (in bytes) for formatted ASCII I/O 
operations. (Zero signifies unlimited record size.) 

Bits 0-7 •. Maximum record size (;in bytes)~for binary I/O:~perations. 
(Zero signifies unlim . .i:-ted record ,size .• ) 

II/4-S 

., 



tit i'I 'Ii( 2'"'" 1 ?... j'j'*I:Jt: rtF'it #iN ft 

Cumulative hardware error count (must be incremented by the individual 
handler). Initialize to zero. 

I NOTE I 
Word 10 is used differently by the Magnetic Tape Intelligent Cable 
DIB. See the additional DIB configurations section. 

4.3 ADDITIONAL DIB CONFIGURATIONS - UP TO 18 WORD& 

Th~ following DIB configurations require additional words which are not required in 
the regular DIB configuration. 

4.3.1 Distributed I/O DIB 

o 
f 
\ 

( 

bi 

( 

15 14 13 12 11 10 9 8 7 6 ,-----_ .. _._-_._ ... -----.- _._- .. __ . __ ._. ---_ .. 

REGUIAR DIB 

CONFIGURATION 

----- .. ---- ---------
INPUT 

" 5 4 3 2 1 o word .. -- -------l 0 

I 

I 

10 

OUTPUT BRANCH 
ADDRESS 

OUTPUT MODE 
FIELD BRAnCH ADDRESS 

InpUT MODE 
FIELD 

11 

II/4-6 



c. , Ntt ""tH? I « tdt 1 IS 'st ••• H , i we MP! am ':M¥ by) 1'S t '* WMWH ' 

~i 

'I ,~ 

" -.. 
l' 

,. 

( ?-' 

,'1 Word 11 
~1 

010 command fields. This word uses the following format: 
~,'i 
1'1 

II 
I:i 

, 

1. 1. 13 12 " 10 • • J • I • :I Z 1 0 

( , 
~ I I I ~ I I I ~ I [ I ~ I J 
A 

L __ LrDPut mode field 
Input branch address 

I output mode field 
- Output branch address 

Bits lSr12. Branch Address Field of 010 Command Word for output. 
Bits 11-8. Mode Field of 010 Command Word for output. 
Bits 7-4. Branch Address field of QI0 Command Word for input. 
Bits 3-0. Mode Field of DID Command Word for input. I 

4.3.2 Magnetic Tape Intelligent Cable OIB 

15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 o word 

,...-------------------------------------------, 
o 

c 

REGULAR DIB J ... 
CONFIGURATION 

9 

NOT USED ! HARD ERROR 
. I ERASURES HARD r.RRORS I RATE ERRORS 10 

:FB 0 I TRANS 
ADDR 11 

MINIMUM RECORD LENGTH 12 

(L II/4-7 



[ t dt ntU# wwtsiwv '. rt to'm "t 

. , 

Word 12 

C '> o 
( 

(L 

t 0 " 
#"d' . 't' ft" '* e ,r' t to' 'W'fMY' 

"',"' '1 It"Pffi't',.'._ 

Three MTIC error counters. This word uses the following format: 

115'. 13 12 11 10 • • 7 • I 4 :I 2 , 0 

I 

t LRat. errors 
Hard errors 

-----

Hard error erasures 

Bits II-B. The number of erasures due to hard errors. 
Bits 7-4. The number of hard errors. This counter is reset whenever 
an erasure occurs. 
Bits 3-0. The number of rate errors. 'This counter is reset whenever a 
hard error occurs. 

I 

Basic mode select word. This word uses the following format: 

This word contains the minimum record length (in bytes). Records 
smaller than this byte count are considered noise records. CIB word 35 
must specify the word address of a buffer with a size greater than or 
equal to the m~n~um record length. The standard minimum record length 
for the MTIC handler is 12 bytes. 

Write requests with a byte count less than the minimum record length 
will have additional characters appended to the record until the byte 
count equals the contents of word 12. Blanks are appended to ASCII 
records and zeros are appended to Binary records • 

Read request will return only the number of characters requested. 

II/4-B 



"*,M'tY""M"'r:!f:'!ttM 'nrnw'."", -H". 'f' 

-",f 
( 

4.3.3 Disk DIB 

( , 

( 

Word 11 

b 
( 

Cl 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o word 

o 

REGULAR DIB 

CONFIGURATION 

I 

10 

VER­
IFY 

NO!' USED I DRIVE .. I STARTIl-!G SECTOR 11 

I 
N 
C 

NUMBER OF SECTORS PER TRACK 

NUMBER OF SECTORS 
PER CYLINDER 

STARTING HEAD 12 

STARTING CYLINDER 13 

NUMBER OF SECTORS IN THE EXTENT 14 

... 

This word uses the following format: 

'II '14 1J 12 11 10 • • 1 I I 4 3 2 1 0 

( ~ 

1 t t Starting sector 
Drive number 
Verify flag 

Bit 15. Verify flag 
If this bit is set, a verify operation will be per~ormed after each 
write. Two additional attempts will be made to re-write the record 
before the error bit in the status is set. 

Bits 14-7. Not used. 

II/4-9 

.. . 



" .. we rt t 

( 

Word 12 

.~. 

( 
• rd 13 

\. 

i 

I 

k. ! ... 

$' t ! t"twmrwd"z' r .. MtttzmtffWtetHt 1 /'2' 'k M rut tnW't'd 

Bits 6-5. Drive Number 
This is the number of the drive attached to the controller. Its range 
is from 0 through 3 inclusive. 

Bits 4-0. Starting Sector 
This is the sector number where the extent is to start. Its ranye is 
from 0 through the number of physical sectors -1 per track. 

'I'his word uses the following format: 

115 14 13 12 11 10 • • 7 • I • :I 2 1 0 

t I t I I 
I t Starting head 

~--...~ Number of sectors per 
I track 

Bits 15-8. Number of Sectors per Track 
This number defines the number of sectors on each track that this 
extent is to occupy. The sum of the number and the starting sector may 
not exceed the physical number of sectors per track. 

Bits 7-0. Starting Head 
This number defines the starting head number of the extent. Its range 
is from 0 through the number of heads -1 on the disk drive. 

This word uses the following format: 

16 M 13 12 11 10. • 7 • I • :I 2 1 0 

I ! ... 
I I l 

t !L 'L Starting cylinder 
number 

------------------Sectors per cylinder 
--.. . Increments starting 

cylinder number 

Bit 15. lfthis bit is set, the contents of bits 7-0 are incremented 
by 256. 

Bits 14-8. Number of Sectors per Cylinder 
This number equals the number of sector$ per cylinder times the number 
of read/write heads. This is the maximum value of any extent. 

Bits 7-0. Starting cylinder 
This number is the first cylinder that the extent is to.occupy. 

II/4-10 

• 



.. n • • t.n 3M Z r. r *t·· # 

( 
Word 14 

d tt hd trihttttit Hrtb *. ) : f r! t" tre 

Number of Sectors in the Extent 
This number is used to detect the end of the extent and to allow the 
lOX disk handler to set the end-of-device status if access to the last 
sector of the extent or beyond is requested. This number is equal to 
the number of cylinders times the number of heads per cylinder times 
the number of sectors per track. 

4.3.4 Fortran Disk DIB 

c 
( 

<. 

Word 15 

(L 

15 14 13 12 11 10 9 8 7 . 6 5 4 3 2 1 o word 

o 

I 

REGULAR DIB 

CONFIGURATION 

10 

11 

DISK DIB CONFIGURATION 12 

l3 

14 

RANDOM ACCESS ADDRESS 15 

• 

Random Access Address 
This word provides a location other than the user's lOB to store the 
record number. 

II/4-11 



.s il' . :to t· h W± 'rttt * ¥trt' t,"t' ttwfd' 

W l' eeW!! 'ft"'WtWrr'tt't It em t l" t * 

I 
(.3.5 

(L 

Storage Module Disk DIB (Fortran and Non-Fortran) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o word r---'._. 
I 
I 
I 

VER-I 
IFY 

I 

. 

L' 

, 

, 

10 

DRIVE I NUMBER STARTING HEAD 11 

STARTING SECTOR NUMBER < •• 12 

STARTING CYLINDER 13 

NUr-iBER OF SECTORS 14 

RECORD NUMBER (FORTRAN ONLY) IS 

NUMBER OF SECTORS PER TRACK ·16 

NUt1BER OF SECTORS PER CYLINDER 17 

~--------------------------starting Head 
~--------------------------------------------~--------Drive Number 

~-----------------------------~-----------------------------------Verify Flag 

P/4-l2 

,- < 



( 

Word 12 

Word 13 

Word .14 

( word 15 

Word 16 

b 
( 

Word 17 

Bit 15. Verify Flag 
If this bit is set, a verify operation will be performed after each 
write. Two additional attempts will be made to re-write the record 
before the error bit in the status is set. 

Bits 14-11. Drive Number 
This is the number of the drive attached to the controller. Its range 
is frOm 0 to 15 inclusive. 

Bits 10-0. Starting Head I 

This number defines the starting head number of the extent. Its range 
is from 0 through the n~r of heads -1 on the disk drive. 

Bits 15-0. starting Sector 
This is the sector number where the extent is to start. Its range is 
framO through the number of physical sectors -1 per track. 

Bits 15-0. Starting Cylinder ~ 
This number defines the starting cylinder number of the extent. Its 
range is from 0 through the number of physical cylinders -Ion the disk 
drive. 

Bits 15-0. Number of Sectors 
This number is used to detect the end of the extent to allow the lOX 
Storage Module handler to set the end-of-device status if access to the 
last sector of the extent or beyond is requested. .This number is equal 
to the number of heads per cylinder times the number of sectors per 
track. 

Bits 15-0. Fortran Record Number 
This word is only required for Fortran to provide a location other than 
the user's lOB to store the record number. 

Bits 15-0. Number of sectors per Track 
This number defines the number of sectors on each track that this 
extent is to occupy. The sum of this number and the starting sector 
number may not exceed the physical number of sectors per track. 

Bits 15-0. Number of Sectors per Cylinder 
This number defines the number of sectors on each cylinder that this 
extent is to occupy. It is numerically.equal to the number of secto~s 
per track times the number of heads per cylinder.' Note that the number. 
of heads per cy~inder plus the starting ~e~d number:must~ot exceed. the 
phy~jc<a:l·.'numb&r ~f"' heads on.'the~.dr:~v,e, • 

. " 
, .' /) 

-."" ... 
" 

,.' 

" ' 

II/4-13 



;;ai' 

¢, Vi 
s'I'" g ',e ... 0" ."'"' 

t'M!, dttit'M 

» ff fane' 'ffl I'tttli'lt!iIti:i!& *. %,9/' 

..,. .. ft ,,_ \ , 

_ Ai. 
" .~ 

~------------------------------~' ~ ~; .. , 
~~~ ,. 
-(SAMPLE DISK DIB . ",A,1.'\I ,

"~'.~ "J'r. ~':ril 4 •

• 1 :"1". '.,,"

~s DIB defines an extent on disk unit 0 of cylinders; 0 through 10, heads 2 and 3,'
of the removable s~tors 0-11; that, is, all sectors of the.. firat, el~ cylinders

.....i tter:. "r '. ':,"!':., . .
t:" ... " ~~ ~ .. t

(~~~ ~ ~.~;j):.
·,'Ow

NAM ,#

EXTR

*
'D:OKXX EQU

CHAN
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

*
DATA

*
DATA

(

D:OKXX
C:DKO

$
X: :
C:DKO
0
0
:0011
'OK, 'XX,
0
0
0
0
0
:C02

:1800

:108

'_,,". '", .. " ,,';;' DIB NAM
'. ;:9":.{!::'~ >, CIB Reference

L .1,

Chain link to other DIB's
CIB Address
lOX temp cell
Coordination number
DSW: Direct access Read/Write
Device name
EOB delay (none required)
FC's, flags (none required)
Max record size
Error count
Drive 0, starting sector 0
Sectors per track = 12
Starting head number = 2

Sectors per cylinder = 24
Starting cylinder number = 0
sectors per extent .= 264
(24 sectors x 11 cylinders)

.r CONTROLLER INFORHATION BLOCK (CIB) - 38 WORDS (47 WORDS FOR STORAGE MODULE DISK)

he CIB is used for storing and/or transferring information between lOX and the I/O
~ndler. Words 15-19 must contain the described information upon initial entry to
)X. Words 22-31 have data stored 'in them while in rox. All other words are used by
1e standard I/O handlers and rox routines, but may not be required by the. user's
)ecially written handler. Figure 4-2 illustrates the CIB configuration.

lC ... hL,.B location and its usage is described below:

,q

rd 1

:ds 2-11

! :d 12

Temp cell. Set to zero by the scheduler to be used for beginning of
record flag. Set to -1 by IORTN: or SID:. Set to a number greater
than zero by an interrupt.

Temp cell. If the subroutine SID: or EORST: is called, this word
should contain a SEL OA, 7 instruction where DA=the device address of
the device being accessed.

Temp cells. CIB's for standard I/O handlers contain a calling sequence
to the RTX INTQ: routine, which is executed upon an end-of-block inter­
rupt. (See INTQ: description.)

Temp Cell. The special function codes from DIB Word 8 are stored here
by SINT:, and used by SIO: in setting up the I/O select instruction
sequence.

Revised 11/76 '

• - ~,1L'

;.'

I

(

& ."

!
\

(

(

e· ,
(

Standard
Narn.-

CDOR

CSEl7

CTMPt

CTMP2

CTMP3

CEBTSK

CNEWA

CNEWX

CFUN

.CCSUM

REOCNT

CJTBL

CSPLOP

COEL

CINTR

EXCESS

CEOF

CIOB

COP

CRCNT

CBUFF

CTCNT

COAA

COlD

CFUNl

STATUS

CATN

COCHN
COCHN1

COCHN2

COCHN3

.

,

.

....

M*," +4 • ...,' , '1Wt.!,;'1 "W'" ,- 'H T"" -'''' .. '''''' a·!I!!I

CatrrAOUoER lNf'ORHATIOH '''<'>cit

1S 14 13 II 11 10 9 8 7 6 ~ 4 o "",cd
- -- -

'I'C' fOR 510, --BEG T IlNING 01" ~U:ORD fLAG

'-~'-"O~'~;~:"nR r.~RST:,~;n,·;~. ;----.-- -~ 0

---. -'- ,._---,- ,_. --------_.
JST INTO' 2

--
DATA $ CALLING LOC

-
DA'l7t. 0 TI!;MP 1 4

DATA 0 TEMP l ~

DATA , 0 TEMP 1 6

DATA TABJ(ADDRESS 7

DATA PRI~ FOR QUEUED TlISJ(8

DATA lUI!IG 9 .
DATA XJU!G 10

DATA P-LOC
I

CIS ADDRESS 11

TC FOR SINT. AND 510. -f'UNC'l' • CODES (OIB "'" 8) 12

'l'C POR CllEClCBUH 13

TC 14

ENTRY POINT ro READ 15

ENTRY 'POIIn" ro WRITE 16

ENTRY POINT ro POSITICII 17 NOrI!:.
TC - T_p coin

l!JITRY POINT TO PUNC'l'I ext 18

ENTRY POINT ro SPECIAL OPERATION 19

TC POR SIO.-WATCHDOG TIMER THSTR. 20

TC FOR SINT. AND SIO.-DEVICll WORD Itn'ERRUPT ADDR. 21

TC POR IOX--PROoIPT CHARS (lOB wd 8) 2l

TC FOR IOX--EOl". AND FOR HlIG TAPE--REl'RY C'l'R II
--

TC FOR 10X-"IOB '70R ;u
.. --

TC-l'OR lOX SOlED--Qp CODE AND !:','A'I'US . (lOB "'" 5) 25

TC FOR lOX SCHED-Rl!:QUESTI':Il COUNT (108 "'" 6) 26

'!C FOR I-QI lIClED--BUPPER AIlOR lIe. ,M! 71 27

TC FOR IOX-IIC'nJAL BYTE ;:QUJft' 28

'l'C FOR lOX SOIED-OlRECT ACI:ESS IIDOR (100 M! 91 19

TC FOR lOX SCHED--DIII ADOR AND BUSY FLAG 30
,.,

TC !'<)R lOX SCII!:D--f'tnCT. COCES (DIB "'" 8) 31
.---.. lit··· .. . '

TC FOR EOlh-STA'l'\JS II
.--~

TC PaR S 10. AND WAIT. --RE'l'URN AllORESSZS 13

MTA $+1 POltn'EIl TO IIYft COUNT 14 .
DATA 1 arm COO1t'1' 35

Ol.TA $+1 BUFPER ADDI!:BSII 36

DATA 0 1 CHAR INl'UI' BtIPP 37
..

*refer to the .1/0 Handler listing at the end qf'Section 3.
Figure 4-2. CIB Configurati~n

II/4-l5

1
I
I

'r'"Vd"'f'rW'trI"H ,"@@ M '""tiM'

C.·d 13

Word 14

:>rds 15-18

I Word 19
I
I
16d 20

Word 21

Word 22

I £rd 23

I(
I'

Word 24

Word 25

l/
26

; ,~

, "')rd 27
\'"'

Word 28

Word 29

Word 30

Word 31

tht"¥,# 'I¥¥' 'W''''·' h .. wrt

Temp Cell. Used by the standard I/O handlers for a checksum storage
cell.

Temp Cell.

lOX requires these words to be set up as a jump table to various entry
points in the I/O handler, as follows:

Word 15
Word 16
Word 17
Word 18

Entry
Entry
Entry
Entry

point
point
point
point

\

to READ.
to WRITE.
to POSITION.
to FUNCTION.

If any of the above functions have no meaning to the handler, the cor-
responding cell (Words 15-18) should be zero.

Entry point to SPECIAL OPERATION. If the handler does not.perform a
special operation, this word should be zero.

,
Temp Cell. This cell is assumed by 510: to be an instr.uction (,e. g . ,
LLA or NOP) to be used in calculating the watchdog timer. (See 510:
routine description.)

Temp Cell. SINT: and 510: routines expect this word to contain the
device's word interrupt address.

Temp Cell. Used by lOX to store prompt characters from lOB Word 8, if
any;

Temp Cell. Used by rox character handler in checking for end of file,
and by the magnetic tape handler as a retry counter.

Temp Cell. lOX scheduler routine stores lOB address here.

Temp Cell. lOX scheduler routine stores lOB Word 5 (op code and sta­
tus) here.

Temp Cell. lOX scheduler routine stores rOB Word 6 (requested count)
here.

Temp Cell. lOX scheduler routine stores lOB Word 7 (buffer address)
here.

Temp Cell. Used by lOX routines to count actual byte transfers.

Temp Cell. lOX scheduler routine stores rOB Word 9 (direct access ad­
dress) here, if any.

Temp Cell. rox scheduler routine stores DIB address here, and later
uses it for a busy flag. (If non-zero, lOX assumes the device to be
busy.)

Temp Cell. lOX scheduler routine stores OIB Word 8 (function codes)
here.

II/4-16

'WOlf'" g ,*".' t' M V'I"WW" lttMft W' ''''''"(+''';)''$"''% 'f tlW>.:'rttj'*bb'#Wd" '$""& t" 'M' #W,·,'t:r>'Wt\H11H.wee.'(f

(

Word 32

Word 33

Words 34-37

Word 34

(I Word 35

q '.)..I. . .:.~~ __ ,. • l.. ..

Temp Cell. Used by POR: routi!le f'r storane of status.

Temp Cell. used by the SIO: and \~IT: rc>utjn~s to st()re thpir leturn
addresses.

Temp Cells. Used by the standard I/O handlers as a byte count/buffer
address/I-character buffer sequenc~ for I-character I/O calls to
SI0:. (See FETCH: description.)

I NOTE I.
MTIC Handlers use CIB words 34 and 35 in the following manner:

Temp Cell. Used to store the MTIC Hardware status. This word uses
the following format:

11,. 13 12' 11 ~ • • 7 • I 4' 3 2 , Q.

I I. , .

...

1- "------- Status byte two
~. ______________________________ --__ ~ Status byte one

Minimum Record Length Buffer Address. This word cOHtains a word
address of a buffer with a size greater than or equal to DIB word 12.

4.6 STANDARD CIB NAMES

,'The following table shows the CIB names for all devices for which standard and
I non-standard handlers exist within rox. The.1 "'.bel is to be used as the second word of
I

I the associated DIB(s). (A table of DIB names is shown in section 2 - Unit Assignment
I, Table description.)

bl
Teletype
CRT
High Speed Paper Tape Reader
High Speed Paper Tape Punch
Line Pr inter
Card Reader
Disk
Storage Module Disk
Floppy Disk
Magnetic T.ape
IEEE Intelligent Cable

Non-DIO ----
C:TYO
C:TYO
C:PRO
C:PPO
C:LPO
C:CRO
C:DKO
C:SMO
C:FDO
C:MTO

n/4-17 .

Fortran
Non-DlO

C:TYF
C:TYF
C:PRO
C:PPO
C:LPF
C:CRO
C:DKF
C:SMFO
C:FDO
C:MTO

DIO

C:TYD
C:TVD
C:PRD
C:PPD
C:LPD

C:MCO
C: lEOD

Rev i sed 11/76

,Fortran
DIO

C:TYFD

C:PRD
C:PPD
C:LPFD

,
.1

I
i

,:. Shire&, tl •• t j ttb t *v tn .1'" t
", . H1

SECTION 5

FILE MANAGER

The File Manager provides directory and data management for file-oriented devices.
The devices supported by the File Manager are the moving head disk and the floppy
disk. It operates as a driver working in conjunction with RTX/IOX. By using the File
Manager, an application program may communi~ate directly with the data files by name,
independent of the physical medium storing the file.

All requests for file access are made'through lOX (10:) using Logical Units CLUNs).
"q" The File Manager calls standard lOX device drivers using Logical Units for the
. required physical I/O. LUN assignments for files as well as LUNs for use by the File

" Manager for physical I/O are made in the Unit Assignment Table (UAT). (See Section 2,
(" lOB and UAT Organization.) File information (name, file attributes, etc.) is con­

tained in a Device Information Block (DIB) for that file. The file DIB is not to be
confused with the device DIB described in Section 4 although the first ten words are
the same •. The file DIB is described in this section.

The File Manager requires that all File-oriented devices be labeled.prior to use.
This invvlves the creation of a Volume Table of Contents (VTOC) and directories on
each individual unit to allow later file processing by name. Do not confuse
"labeling" with the "formatting" of disk packs; .the latter must be done with stand-
alone programs before labeling. The RTX File Label Utility (93324-40Al and -4lAl) I
is a stand-alone prOgram for labeling file-oriented devices. The device labeled using

·this utility is compatible with the Computer Automation OS file format.

5.1 FILE ORGANIZATION

~ File organization in the File Manager is compatible with the Computer Automation OS
'. file format. Any file-oriented device accessed through the File Manager must contain

,. a directory. The directory describes by name all data files which reside on the
~ device. The physical medium containing a directory and files is called a Volume. The

first entry in the directory is the Volume Table of Contents (VTOC). This entry
contains information for the File Manager as well as volume name and creation date.
The remainder of the directory is segmented into file description entries, one for
each file on that volume. An entry contains the file n~e, creation date and time,
and File Manager info;rmation such a~ record". size, bl~ck size and file length. See
Figure 5-1 for directory structure. Figure 5-2, the Disk Descriptor Table, defines
the disk partition limits.

For disk volumes, multiple new file writes are supported through disk partitioning.
The disk is divided into as many as eight partitions, each of which may have a new
file open. If a file extends past the end of a partition, the file is linked to the
next available partition. File linkage is supported for forward sequential reading or
for positioning only (in either direction). Any number of old files may be open.
(See Figure 5-3 for file linkage.)

II/5-1 Revised 3177

ZL "" "t?' t 't" t n 4 t
d't _ : t "

RECORD

1

2

.3

4

5

~.
(------1

l~

20 DDT
\
\
\

\
\
\

ectory may begin at
olute disk

\
\

\
\

1t)f

-
0 VTOC

1

2 FILE 1

3 FILE 2

4

.
5

6

7

8

9

10

~ ~

318

319

..-:;

l' ti' $*' j t

-

~
\
\
\
\
\

-

\
\
\

\
\
\

WORD 0

1

2

3

4

5

6

\ 7

\
\
\
\
\

, \
\
\

8

9

10

11

12

\ 13

\ 14
\ .
\15
L

-
\
\
\

o
1

2

3

4

5

6

7

8

9

\
\
\
\
\

tor :0 or :29 '--_ '-------1

\

\
\

10

11

12

13

14

ATTRIBUTES:

Bit 15 - 1 - Deleted

BIT 14 - 1 - Random, 0 = Sequential

BIT 13 - 1 = Blocked, 0 ~ Unblocked

\
\
\
\
\
\
\ 15
'--

(L
Figure 5-1. Disk Directory Structure

II/5-2

fir±' ! '1 t tWtt"

:BFBF

ASCII DATE

DEVICE LABELED

ASCII NAME

OR VTOC

* DIRECTORIES USED

TOTAL * DIRECTORIES

DISC ADDRESS·

OF DDT .

NOT

USED

ASCII

FILE NAME

ASCII FILE

CREATION DATE

ASCII FILE

CREATION TIME

FILE ATTRIBUTES

PROTECTION KEY

RECORD LENGTH (BYTES)

BLOCK LENGTH (BYTES)

TACH RATIO

STARTING RECORD #

TOTAL # RECORDS

FILE LINKED FLA~

t'! • wriw it,,"'·!!ti/H ! if hi f"j'

~I -\

(

WORD 0

1

\ 2

3

4

5

6

7

8

9

10

11

12

13

14

15

(I 16

17

18

19

20

21

22
(23

(q 24

25

26

27

28

29

30

31

Ve:,' ¢"HftP

LAST PHYSICAL SECTOR

NUMBER IN PARTITION

,

~

NEXT RELATIVE RECORD (ACTUAL)

NEXT RELATIVE RECORD (WORKING)

..

!'I'M 'n+wn 'jill' .! I MOO 'n. f

1 PARTITION

2
NOTE:

Entry is zero if
3 that partition

does not exist

4

5

6

7

8

1 PARTITION

2

3

4

5

6

7

8

Figure 5-2. Disk Description Table (DDT) in Volume Table of Contents

II/5-3

/"&,"'. 'm w"

(
PARTITION #1

(

N PARTITIO #2

.b· .
(

(

PARTITI ON #3

N' d "Mn'H 'f 'j'ttet
"'oj"t"""

RECORD 1 NOTE:

RECORD 2

RECORD 3

RECORD 4

:.u

::><:
..

i

4

1 I 4

RECORD 5

RECORD 6

RECORD 7

RECORD 8

,

><:

4

o I 2

RECORD 9

RECORD 10

Figure 5-3. Disk File Linkage

II/5-4

Ea
a

FO

RE

LI

itt: t"wWtHf&MRi e- W '. fl'WMtrl'''''fI'rlkIM H?JtiPIr'Wt ** 1ft" 'M·'" '

ch Block Represents
Single Disk Record

RWARD LINK:

CORD NUMBER (2 WORDS)

NK BACK POINTER:

RE

P

CORD NUMBER (2 WORDS)

REVIOUS RECORD COUNT

NEW RECORD COUNT AND
LINK AGAIN FLAG

(

, 'iii .. , e" rt' tila' tN@ "M.!

m 'm".' w"
" '"fr"'. '",' 'f' r F!

5.1.1 sequential File Access

sequential file processing is available to the user on the moving head disk and the
floppy disk. Sequential files are uniquely ordered by the File ~\anager: Given
logical record N, the next READ request will always return logical record N+l. A READ
or WRITE operation automatically advances the file to the next logical record.
However, records may be accessed out of order by using the POSITION operation.

The File Manager provides automatic blocking and deblocking of logical records under
sequential access. All I/O requests access a single logical record whose position in
the physical record is controlled by the File Manager and need not be known by the
user.

If the data security bit is set in the DIB, every sequential WRITE operation on that
file will cause a directory update on the disk.

For blocked files, the user must provide a record buffer and a blocking buffer. The
size and address of each" is in the appropriate DIB and rOB. The record buffer may be
smaller than the file record size; however, the blocking buffer must be the block size

.I

-Y'\lus two bytes.

~lY a record buffer is required for unblocked files. The record buffer may be
. ;maller than the file record size. The user MUST reserve a word (two bytes) at

address BUFFER -1 that is required for use by the File Manager.

Random Access

With the File Manager, random access file processing is available only for disk
(Vices. Random files are accessed by physical records; automatic biocking/deblocking
is not provided. A random file must reside within a single partition. The number of
~ata bytes contained in each record is fixed at 512. The medium-capacity disk sector
lze is 512 bytes. When using a floppy disk, four sectors are used for each random

file record; each sector has 128 bytes.

Although the record size of a random file is fixed, any number of bytes may be read or
written. The specified record number is relative to the beginning of the file.

I NOTE I
~ The record number is used to test for end-of-file. If more than 512

(bytes are written, the sector(s) beyond the end-of-file will be destroyed.

To access a file in the random mode, the file must have been created as a random file.
When a new file is opened with the random file type bit set in the DIB, a random file
is created. When closed, the file size is'equal t9 the largest relative record number
accessed +1.

5.1.2 File Opening and Closing

The File Manager provides automatic file opening. On the first access (read, write,
position, fWlction) of the file, the File Manager will attempt to open the 'file. If
the file name is found in the directory, the open and first access is completed. If
the file name is not found, a new file is created. When creating a new file, the

__ ~ _______________________ ~ ________ I_I_/5_-_5 ____________________________ ~

.. ,

hlp!" r rl t'bi*itftN:J, "stG$",rMIlWNcd ±iM t I ''i!t:t'$rt F "I"

~~rtition number for placement of the file may be spevified in the DIB. If not
supplied (zero), the File Manager will use the partition having the largest unused
~pace •. position to absolute file -1 to close the file.

5.1.3 File Positioning

File positioning is provided for use with sequential files. It allows the user to
access logical records out of sequence. There are four basic types of positioning.
With each type of positioning a count is specified by the user in the Input/Output
Block (lOB word 6). (The lOB is defined in Section 2.)

hote that coUnting of records or file marks begins at zero. See Figure 5-4 for
examples of sequential file positioning.

(
3.

4.

Absolute by file mark. The count is the number of file marks to skip from the
beginning of the file. The next READ or WRITE will access the logical record
following the file mark. Note that a position to absolute zero is equivalent to
a rewind. Positioning a file to absolute -L will close the file. If the count
exceeds the ntm\ber of file marks in the file, an "end-of-media" status is
returned with the file positioned after the last logical record.

Absolute by logical record. The count is the number of logical records to skip
from the beginning of the file (the count must be positive).. If a file mark is
encountered before the count is exhausted, a "file-mark-found" status is returned
and the file is left positioned at the file mark. If the end-of-file is encoun­
tered before the count is exhausted, an "end-of-file" status is rp.turned and the
file is left positioned after the last logical record.

Relative by file marks. The count is the number of file marks to skip from the
current file position. A positive count means skip forward; a negative count
means skip backwards. While skipping forward, if the end-of-file is encountered,
and "end-of-file" status is returned and the file is left positioned after the
last logical record. In like manner, when skipping backward, a "beginning-of­
file" status is returned and the file is positioned at the first logical record.

Relative by logical record. The count is the number of logical records to skip
from the current file position. While skipping forward, if a file mark is
encountered, a "file-mark-found" status is returned and the file is positioned at
the file mark.

For backwards skips, if a file mark is found, a "file-mark-found" status is
returned and the file is positioned after the file mark. As with relative
positioning by file marks, the File Manager will not allow the position to go
beyond the beginning and end of file limits.

With a normal completion, the actual number of records/file marks skipped is returned
to the user in lOB word 8. For an error completion, the count returned is the number
successfully skipped when the error occurred. For a retry, the requested count should
be set to the REQUESTED count in the lOB minus the ACTUAL count.

II/?-6

." :.

(

00
(

q
(

'fn'H'tJ " $M,,-'11"$ If" di''i!tl*('¢$ teNtt ... ·im •• ,,!lM?

5.1.4 F~le Functions

The File Manager provides the functions described below. They are set by the user in
the lOB (see Section 2) •

write File Mark

Delete File

Update Directory

This function writes a sequential record (blocked
or unbloCked) that contains a :80 in the first
byte. When read, this record will cause a file­
mark-found status to be returned. Note that this
is a data separator, not an end-of-file.

This function sets the fi1e-deleted bit in the file
DIB and in the directory ~hen the file is closed.
Note that this does not free the space on the file
device; it only enables a new file to be created
with the same name.

This function causes the directory to be updated
with the current end of file. This function is
valid only for new files. This enables the user to
secure the data without performing a close on the
file.

II/S-7

(~--.~~

~~
TE:' The number indicates the count supplied by thE' user.

I

(

L.·:'" o
(

b
(

ABSOLUTE POSITIONING

FILE MARK OR RECORD -1 ____ CLOSE FILE

FILE MARK OR RECORD 0 ...
RECORD

RECORD 1 0

RECORD

1

RECORD

RECORD 3 2

RECORD

RECORD 1 00 3

FILE

FILE MARK 1 MJl.RK

RECORD

0

RECORD

1

RECORD

2

RECORD

3

RECORD

4

FILE

" FILE MARK 2 Mnctr .
RECORD

0

RECORD

1

FILE

FILE MARK 3 MJ!.RK

RECORD

0

RECORD

1

RECORD'

FILE MARK 1 00 2
-

RELATIVE POSITIONING

... B

~F
EGINNING OF DEVICE

ILE MARK -100

F ILE MARK -1

RECORD -100

RECORD -1

S TART HERE

RECORD +1

RECORD +2

RECORD,+100

11' ILE MARK +1

F ILE MARK +2

r F
ILE MARK + 100

END OF FILE

Figure 5-4. Sequential File Positioning Examples

(<- 11/5-8

&'i"""
"4:1;"7 J ""*' 1" b if 'pM m ?

t t!
1 t j it 'hil? " ¥ »"' 1

"'eli' z! Hd l' ik¥ . p:ewb'O .' q

't' tB t "f
1"1 t" , h' r N'teW"

1M t!I',. '5 U "$'1

5.2 TABLE ORGANIZATION

('h~ File Manager may be considered as a "dumny" lOX driver in that it is a "data"
driver as opposed to a device driver. The File Manager is only concerned with the
data contained on the device and not the device itself. Since the File Manager is
independent of the file device, it calls a standard lOX device driver to access data

I (n the device. These calls are made to 10: using the logical units associated with
the device.

Since the File Manager operates under lOX as a driver, it requires the same type
driver tables (i.e. DIBs and CIBs). If the File Manager was equated to a device
driver, then a VTOC (directory) would be equivalent to a device controller, and a file
would be equivalent to a device unit. The ~ile Manager requires that one CIB for each
VTOC, and one DIB for each file be concurrently active (open).

A device containing a VTOC to be accessed by the File Manager must have a unique
logical unit associated with it. This logical unit is contained in the File Manager
CIa for that VTOC and is used to access the device.

,
Each File Manager DIB must have a logical unit associated with it. This logical unit
i\:..:sed by the user to access the file des'crihed by the DIB.

(,",cal unit associations are made in the Unit Assignment Table (UAT). A description
~r the UAT, as well as of the Input/Output Block (lOB) that contains the LON, is given
in Section 2.

Figure 5-5 'gives an example of a table configuration. In this example, the file
device is a moving head disk with tWo platters (unit 0 and unit 1). Each unit
~ontains an independent Volume Table of contents (VTOC) and file directory for that

mf('
'hP standard lOX moving head disk driver requires one controller information block
·c C:DKO and two device information blocks (DIBs) D:DKOO and D:DKOl for disk units
) and 1 respectively.

he File Manager requires two CIBs, C:FMO and. C:FMl, for VTOC 1 and VTOC 2, respec­
ively. Since three files are to be active (open) concurrently, three DIBs are
,quired: D:FMOO for FILE 1, D:FMOI for FILE 2 and D:FM02 for FILE 3.

;Ch(.le device (VTOC) has a logical unit associated with it which is used by the
l~Onager to access the device (LON X for VTOC 1 and. LON Y for VTOC 2).

J~ser accesses the files through a'standard lOX call to 10: using the logical unit
30ciated with t;he file DJ;,B. (Lt!N.A· for FILE 1, LON B for FILE 2 and LON C for FILE 3.

:.1 File Device Information Block (D~)

, first ten words of the Device Information Block (DIB) have essentially the same
ctions for the File Manager as they have for lOX. These stapdard functions are
cribed in Section 4, DIB and CIB Descriptions. The functions for words 10 through
rre given below. (Refer to Figure 5-6.)

is 0-6 Standard for r~x.

9 7-9 Standard for lOX, but must be set to zero for File Manager.

~~_<- _______________________________ II_/_5_-_9 ___ ~

~

r

H
H

" Ul
I
o

f

:rex
DISK
DRIVER

USER

.--...
~OO

OIB

C:OKO

O:OKOl

DIB

C:DKO

I:UAT

-10:

Figure 5-5.

....
.....

"-

D:FM02 DIB I ,
I

I
I

UAT

ruN Y

LUN X

10:

LUN"A

Lm, B

LUN C

Table Organization

~

.....
"-

....
"-

.....
"-

C:FMl CIB C:FMO CIB

/
I

I

I

I , ruN Y LUN X ,
I.

I

lOX

FILE

MANAGER

~

)
./

rl

+; """. ... ",.,"".,.* ", O/'M% HtM"rlUW W!,':I\f'lfr
'ftj "CIt') 'flo" 'M 'iI.II @ 'c-' 1" 'It"" 'H'

-.. J

(

o

(

STANDARD

FOR

lOX

PHYSICAL I/O ERROR STATUS DHST
I

FILE STATUS WORD DFST

DFNAM

FILE NAME .

RELATIVE RECORD NUMBER DRRN

ABSOLUTE RECORD NUMBER DARN

RECORD SIZE DRS

BLOCK SIZE DBKS

PHYSICAL RECORDS PER BLOCK DPRB

PHYSICAL RECORD NUMBER DPRN

TOTAL RECORDS DTREC

DIRECTORY ENTRY NUMBER DDEN

CURRENT BLOCK ADDRESS DCBA

BLOCKING BUFFER ADDRESS DBBA

LAST PHYSICAL RECORD DLPR

COMPLETION STATUS DCST

Figure 5-6. DIB Definition when Used with the File Manager

{ 11/5-11
"

. , .,

Word 10

Word 11

(

Words 12-14*

Word 15

Word 16

Word 17*

t"""'Mt

---................

Physical I/O error status. The status (word 5) of the physical
I/O lOB is stored here after each operation.

File Status word. For old files, all bits are supplied by the
File Manager from the directory; therefore, all bits of word 11
are initialized to zero. When creating a new file, those bits

·flagged with an asterisk (*) must be supplied by the user before
the firs~ access. The data security bit may be modified at any
time to enable or disable this function. After the first access
of a file (new or old), if the file delete bit (15) is set, the
file will be deleted when the file is closed. Bits 15-13 corres­
pond to the file attribute bits in the directory entry and are
transferred to the entry when a new file is closed.

Bit 15. o "" keep file, 1 .. delete file

Bit 14*. 0 = sequential file, 1= random file

Bit 13* • 0 "" unblocked records, 1 "" blocked records

Bit 12. 0 = file closed, 1 = file open

Bit II. 0 = file open for ~equential access
1 = file open for random access

Bit 10. 0 = old file, 1 "" new file

Bit 9. o = current block not modified
1 = current block modified (blocked files only)

Bit 8. Data security bit. When set the directory is updated
after each sequential write (unblocked files) or after a block is
written (blocked files).

Bit 7. o = file not linked, 1 = file linked

Bits 6-4. Reserved for future expansion.

Bits 3-0*. Partition number. For old files, contains the number.
For new files, specifies where the new file is to be created. If
zero, the available partition with the greatest unused space is
used and its number is stored here.

ASCII file name. Supplied by the user.

Relative record number. Relative to the beginning of the current
file segment for linked files. With unlinked files, this word is
the same as the a.bsolute record number.

Absolute record number.
beginning of the file.

The current file position relative to the
Note that the first record is record zero.

Record size in bytes. Set to 512 for random files. Supplied by
user for new files.

* Information supplied by user.

Cl II/5-12

--~~~ ~

(

Word 18*

Word 19

Word 20

Word 21

Word 22

Word 23

ord 24*

Word 25

('ord 26

Block size in bytes. Used for blocked files only. Supplied by
user for new files.

Number of physical records/block. Contains the number of 512 byte
physical records required for a file block (blocked files) or
record (unblocked files). Supplied by the file manager. Referred
to as "tach ratio" under CAl OS.

Physical record number of first record in file. Supplied by the
File Manager.

Total records in the file. For linked files, contains total
records in current segment. Supplied by the file manager.

Directory entry number for this file. Supplied by the file
manager .•

Current block address. Contains the physical record number of the
last block read. Suppli~ by the File Manager.

Blocking buffer address, (Word address, no indirect). Supplied by
user when accessing blocked files. Buffer size must be block size
plus 2 bytes. Not required for unblocked or random files.

Last physical record in partition. For new files, contains the
last available record number. Not used for old files. Supplied
by the File Manager.

Completion status. Cleared upon entry into file manager and set
when operation is complete. A bit is active when it is set to 1.

Bit 15. Physical I/O error. An abnormal status was returned
from physical I/O. The detail physical I/O status (DHST) word in
the DIB contains word 5 of the CIB lOB used for the physical I/O.

Bit 14.
found.

Device not labeled. A valid VTOC identifier was not
This error can only occur during a file open.

Bit 13. Directory full. No unused entries are available in the
directory for the creation of a new file.·

Bit 12. Directory error. An error was returned from physical I/O
during a direction read or write. Detail physical I/O status
(DHST) word in DIB is set. This error can occur during a file
open, close, or directory update.

Bit 11. End of Media.
write on a new file.
access modes.

The end of a partition was reached during
It is valid for both sequential and random

Bit 10. Partition(s) busy. The required partition for a new file
creation already has a new file currently open, (partition is
busy), or required partition is full. If no partition was
specified, then all partitions.are busy •.

• Information supplied by user.

II/5-L3

(

c
(

(

c' o

(L

Bit 9-8. Reserved for future expansion.

Bit 7. Access mode error. A sequentail access w~s made on a
ramdom file or a random access was made on a sequential file. The
access type did not match file type in a new file open.

Bits 6-2. Reserved for future expansion.

Bit 1. Unable to close. Indicates a close was in process when an
error occurred (file remains open).

Bit O. Unable to open. Indicated an open was in progress when an
error qccurred, (file remains closed).

II/S-14

..•.

(,.2 Manager Controller Information Block (CIB)

The'Controller Information Block (CIB) is used for storing and/or transferring infor­
mation between the Filu Manager and the lOX I/O handler. Words 15-19 must contain the
described information upon initial entry to the File Manager (actually to lOX).

tgure 5-7 illustrates the CIB configuration. The functions of each CIB word are
.... escribed below. Word 0, words 15-19 and words 24-33 are defined the same for the File
Handler as they are for lOX.

Word 0

Words 1-10

Word 11

~ 12

(

Word 13

Word 14

(

Words 15-18

wba 19

J. .d 20

Word 21

·Word 22

SIO: beginning of record flag.

lOB used by the File Manager for physical I/O; includes user­
supplied LON for the file device (lOB word 4 a CIB word 5). All
other data in lOB is supplied by the File Manager. The lOB status
word is transferred to the DIB physical I/O error status word after
each 10: call.

Number of physical sectors per physical record (supplied by the
File Manager). ,

Physical sector address of Volume Table of Contents (VTOC).
Initialize to zero. The File Manager determines the VTOC address
(0 or :29) on first open.

Address of Disk Descriptor Table (DDT) (supplied by the File
Manager after first open). This is a physical record address.

Open/close buffer address. This word contains .the Word address (no
indirection) of a 256-word buffer supplied by the user. This
buffer is used by the File Manager for directory searching during
open or close processing.

Entry point jump table.

Word 15 Read FM:REA
Word 16 Write FM:WRT
Word 17 Position FM:POS
Word 18 Function FM:FUN

Special operation entry point. Not used; set to zero.

Current direction record number during open, or operation code
during position/function processing (supplied by the File Manager).

Number of direr.tory entries used during open, or absolute file
position count during position processing (supplied by 'the File
Manager) •

Number of directory entries available during open or current file
position during position processing. Supplied by the File Manager.

-1<-~ _____________________________________ I~I/~5_-_l5 ______________________________________ ~

(

o
(

o SIO: BEGINNING OF RECORD FLAG

1 PHYSICAL I/O

~ lOB

10 ~
11

12

13

14

*15

*17

*18

*19

20

21

22

23

*24

*25

NUMBER OF SECTORS/RECORD

V'l'OC ADDRESS

DDT ADDRESS

OPEN/CLOSE BUFFER

STANDARD

FOR

CIa

CURRENT DIRECTORY RECORD

DIRECTORY ENTRIES USED

DIRECTORY ENTRIES AVAILABLE

PARTITION BUSY FLAGS

(*26

(

(

*27

*28

*29

*30

*31

*32

*33

34

35

36

37

39

STANDARD

FOR

CIa

SUBROUTINE

RETURN

ADDRESS

SAVE

AREA

FILE LINKAGE

40 BUFFER

41

42

LEVEL 5

LEVEL 4

LEVEL 3

LEVEL 2

LEVEL 1

I

tltt*' ".tled" eN H' ! 'Wd'" (''! '5 bt &" .

DBOR

CSPR

CVTOC

CDDT

COCB

CJTB

CCDR/CPFC

CVND/CAPC

CVDA/CCPC

CPBS

CR: xxx WHERE

xxx = SUBROUTINE NAME

CLKBF

--_. -
Figure 5-:-7. CIa Definitiofl When Used With the File Manager

(.<... II/S-16

", ') -,. cd" 'is '$"

word 23

*Words 24-33

WOrds 34-38

(

Words 39-42

(

((

it 'rl tm
'''h· '

Partition busy flags. Each partition on disk is represented by a.
single bit. The bit position is equal to the partition number.
With a maximum of 8 partitions nuxnbered 1-8, only bits 1-8 are
used. Bits 0 and 9-15 are unused. A partition busy-flag is set
when a new file is open in that partition and cleared when it is
closed. Only one new file may be open in anyone time. Supplied
by the File Manager.

Standard CIB definition.

Subroutine return address save area.

WOrd 34 Level 5 subroutines:

WOrd 35 Level 4 subroutines:

Word 36 Level 3 s~routines:

WOrd 37 Level 2 subroutines:

Word 38 Levell subroutines:

FM:PS
FM:FN
FM:RE
FM:WR
FM:OP
FM:CL

FM:DM
FM:EOF
FM:WBK
FM:RBK
FM:R.LlC
FM:RLR
FM:PIO

Buffer for processing partition file linkage.

II/S-l1

RTX FILE LABEL UTILITY

The RTX·File Label Utility is a stand-alone program for labeling file-type devices.
The RTX/IOX File Manager requires that all file-type devices be labeled prior to use.
~his involves the creation of a Volume Table of Contents (VTOC) and directories on

ach individual unit to allow later file processing by name. Do not confuse
"labeling" with "formatting" of disk packs. the latter must be done with stand-alone
programs before labeling. The labeled device is compatable with COOIputer Automation
OS File Format.

5_3.1 Environment

The Label Utility requires an LSI-2 or LSI-3/05 CPU with a minimum of 4K words of
memory. The tape numbers (binary paper tape) are 93324-40Al and -41AI for LSI-2 and
LSI-3/0S, respectively.

L3.2 Program Operation ,

~er loading and executing, the
1 (;er to specify TTY I/O type:

Label Utility halts with P=:OIOO and waits for the

(

1. Standard option board TTY, set Sense switch OFF.

2. 010 TTY, set Sense switch ON.

TO continue execution, depress RUN after setting the desired I/O Option. The Label
~ gram will then query the user for its variable information. When responding,
certain keys on the keyboard have special functions.

((

1. Return. The Return key indicates the end of a line of input and causes
a carriage return and line feed to be generated.

2. Back arrow (--). The back arrow causes the previous character input to
be replaced by the next character typed. Multiple characters may be
replaced by typing the appropriate number of back arrows followed by the
correction characters.

3. Back arrow (--)/Return. A back arrow followed immediately by Return
causes the entire current line to be ignored and replaced by the next
line input. The Return causes a carriage return and line feed to be
generated.

II/S-lS

'-'.

(

b
(

(

(

.. " t' ,,'
'u" d M 1:' H'ftt'fflkttt:' iMtdewl!r*"*"'!f:!Wm "WIitttL Mit

: _ _oJ:- »J..t,..

I NOTE 1
An invalid response to a query will result in the query being
repeated.

The Label Utility begins with the first query:

DATE? (MMDOYY)

The user should respond with a Volume Identification. It must consist of one to six
characters, normally alphanumer~c, although any ch~~acters are allowed.

Example: Feb. 4, 1977 would be input as 020477.

TIME? (HHMMSS)

Enter the current time of day (hours, minutes, seconds).
VTOC. This time is NOT incremented by a real-time clock.

Example: 1:23 PM would be input at 132300.

VOLUME NAME?

This time is saved in the
This is a 24 hour clock.

The user should respond with a Volume Identification. It must consist of 1-6
characters, normally alphan~ric, although any characters are allowed.

TYPE AND UNIT NUMBER?

The response is a two-character specifier of the physical device which is to be
labeled. The specifiers are:

DEVICE

Moving Head Disk, Unit 0
Moving Head Disk, Unit 1
Moving Head Disk, Unit 2
Moving Head Disk, Unit 3

Floppy Disk, Unit 0
Floppy Disk, Unit 1
Floppy Disk, Unit 2 I Floppy Disk, Unit 1

DOES xx CONTAIN OS?

If the device to be labeled (xx) contains
System (OS) the user responds with "YES".
causing the next query to be suppressed.

SPEC IF IE..l:1. ---
DO
01
02
OJ

FO
Fl
F2
F3

a copy of the computer Automation Operation
Otherwise, the user's response is "NO",

OS must be on the device before labeling.

II/5-l9

itit. 'W"""'''i't:tt.tH de .. ':., "e'
~e ' it:txMk bra *" M' em n'rlrtiteWt ... ,..... w=w

. ,

(SAVE OS?

If an operating system exists on the unit and is to be saved, the user responds with
"YES", otherwise "NO".

~ the device to be labeled is a disk, the next query is:

NUMBER OF PARTITIONS? (1-8)

The user now selects the number of partitions (1-8) into which the disk is to be
divided and enters that value. Only the first digit entered is used. The number of
partitions selected is the limit to the number of new files which may be open
simultaneously (new file creation).

The labeling process then begins. When successfully completed, the following message
is output:

LABEL COMPLETE
I

~.::he selected device is off-line, not ready, write protected, or othewise mal
~tions during the labeling process, the following message is output:

HARDWARE ERROR
RETRY?'

If the user responds with "YES", the program will retry the label process. If the
device still fails, the error message is repeated. If the user responds with "NO",
the labeling process is aborted and the Program continues with the next query.

(LABEL MORE?

; user is offered the option of labeling another device or terminating the process.
A "~ES" response will cause a restart with the query "VOLUME NAME?". If the user
wishes to change the date and t.iJne and continue, the.response is "NO". A "NO"
response will halt the CPU. Depressing RUN will restart the program at the beginning.
At this point, a new I/O option may be selected.

b
(

I NOTI I
The restart entry point is :0101. The LSI 3/05 version contains
a software console routine for restarting (CNSOL3).

~<-. _________________________________ I_I_/_5_-_2_0 ____________________________________ ~

I
~ ..

"""" r /'"', 0"-" ~- ('\ cr-\
------~------------------~

PAllF 0001 0'/11177
MACRO? CA?) S1= E~:~

000' .
0004
onOe:;
onOn oonl
0001 0002
onu~ nO{'3
onoq
0010
0011 OOOh
001?
onn
onll!
001e; nooo
onlh 0001"1 0002

i~
Oll17 0001 nooo
onl~ ono? 0001

I~ 0''1 q 000' nooo
I~ . 0(21) 00011 OOi'l

0021 01"10'5 001"10
002? OOOb FfF.8
Oni'

0000 ERROHS
01"101"1 I'IAkNJIIIG

tC\:'J,h:3' f'i'AIo4PLE tTlF J.lA~Hr,EP APPLICAT1Uf.'
An: * .. IINTT A~STGII/"'fNT TA~Lf: **

* .. IINIT ASSIGNMENT TARLF
•
Nfltl F.'QU 1 NtW FILE LOGICAL UNIT
1J1I) r:gU 2 nLO FILF. Ln~r(AL UII/IT
PTO r (~II .~ PhYSTC4L JIll LOG1(AL UIliIT

~AVf

•
NAM l:UAT
~)r.TH U:FMO
F.xTI-I o:pq
I="xTR D!{)I<OI

UATTOP F.WI ,.
nATA OLD OLn FILE LnGICAL UIliIT
I)A TA D:FMO nLo I="ILE orB
nATA NFw ~E~ FILE LOGICAL U~IT
nATA D:FMt ~EW FJLf. 01b
f\lTA 1-'10 PHYSTC6t 110 l 0 (~ T C • L LJ 1111 T
OATA O:OK01 PHYSTCAL 1/0 LOGICAL UNIT

I HI AT ['lATA UA1TOP-~-?
f:Nf\

.. ~
I

,--...

'f"'

H
H

'u\
. I

,'"
!'"

~~
PAGF On01 0"11/17 1~:'b:3?
~ACQO~ (A~) Sf: FY:~ ~n:

0026 'It

.--., ,~

(\ CS"
EYA~~LE fTLF ~ANA~f~ A~PLTC.T10N

** pry ~AT~LINE C"OE ••

0021 * Rl~~ATNlIN~ (QUF
002 A JII

0f't2() onon t..fA '" M A J ~J
OI')3n ~XTR lAS\(
on3t FXT~ ~T)':

003? J:XTW BFGTN:
003' J:XTR t NO!
on3/J nOOA N ~(JI , 1 (\ Hll~AFR (IF WOQI<' T N(; Rt nCKS
O/')JC\ 11000 MAIN frJII S
OO.S6 ooon FH01 onOR ~JS T RTX: T"IT T TAil Zt- IH~

.O()37 on01 oonA "ATA N

OO3 A OOO? O(lOFi rHTA wt< A I"?t:, A
on3Q ono~' OROO ~LT F~pnp

on~(') OOOll FA04 onoQ .J5 T . IjFGTN: t:;TAI-tT TA!iK
O()41 OOoc; oono nATA TASI<'
004?· on06 0064 OATA 100 AT PQrnPTIY 100
0(143 0007 FB02 OI)OA .JS T EN!):
onQ.!! 00(13 l POOL

oooP 0000 ",
000 0 not"lO
OOOA nono

OOqC; OOO~ 0000 i'lKAP.F.,A ~ES 5"'~,O RTX WORK AREA
On"6 oono ENn MAIN

onon f:.RHnR~

Ot)OO WARNP'G

,"

' .. ',

~_:~O~"''''~~-',,!,~_'_~''-;~~~:'~::~:':''_''''~'

"1

~

. ,)

l-I
H
"­(J1

I

'" W

1 ___ ~_._~'!~~~ -1.=.:....;..:....~:.'f:I'!_~_~~~~~~~~~!"~- '-!<.

-.
~~-----------~~~---0--:\ ~""' -..., CSCf)),:;, ------=---

PAGF' ono! O~/11/77 tt;:'h: P
M.\CQII? r~') 5T= E,X:S tin:

~XA~~L~ ~TLF ~ANA~ER APPLTtATTn~

** APPLIC"TT(JN PROGRA~ **

onl.lQ
OOSO
0051
on~?

oOS'
onSli
00~c;

onSft
0057
Of)5J;
onso
O~f,)(\

01)61
006'
on6'
o () 6 /1

o 1"1 bC;
01166
on67
006R
0069
0070
0071
007?
0073
01'\ 711 .
007e;
on7'"
on71
007A
007Q
01)80
0081
01'l6?
on~n

0080

unoo
ot:'n
O(l3ft

00(10
onOI
ODO?
ono'

, 000 11

ooot;
On06
OI){J7
OnOR
000 0

onOA
O(lOA
oooe
OOOr)
OOOJ:"
onOF
0010
0011

001'
Onl"
O"'llJ
onle;
0011,

,"000
r.ollM
qAa~ on£lc;
eMl,.? ,
QA'F O'll"
CbOI
qA~f:. on40
nn2 OOJQ
nO~f

F8~ 1 ·On3~
F'213.0 n10

Cbn,l
QA"l oOLn
C60S
qA36 On411
FB?A '003 0

oO~F
F~?q 003A
F'20E 0020

Cb02
QA?F Ot')4~

r.b()A
9A'E Onall
(,bn2

*
* •
*
*

1 ASI(-

*

*

AP~LTCA1ION PRnGRAM. THI~ COPIFS EVtRy lHIQO ~ECORO FORM
THF FXTSTI~G FTLF' ·OLD- (HLOCKED 7?~10) Tn A ~tW
FILE -N~W· (\~~LOCKEn, ~o qYT~ Rfcn~os'.

NA'" TA51(
NAt.! O.Tf;:
NA"
FXTR
,!)(T~

FQIJ
LAP
~1t.

I..A~

~T4

LAP
~T.A

.IST
OATA
.. TST
JMP

LAP

~TA

LAP
5TA
.JST
r)ATA
.T5T
.THP

I 4P
~T!

I./>p
~lA

lAP

T p1~:
In:
E~D:
:£
7")
lnH+b
Ol ()
lfHH4
:0001
In!-3+5
In:
Ins
END~
C~t:~K

NEW
IO~+4

:oon,)
IO~tS
In:
1('\~

E:.Nll:
EPROt<

01. 0
108+4
:O{JnA
10K+,
?

PECQRD BUFF"fR SI1F IN AyTE:.~
Sf T UP tWTr: CUUNT T~' T OB
LOGICAL lINTT OF FILF "OLO-

QPCIJOf FO~ SF"tJ"ENTTAL PfAO

PE A 0 A RF CORI' FROM f T LE - OLO·
THF FIRST PEAO,wILL OPFN THE FJLF

ABNORMAL FcFTUR.", TfST FUR END OF FILE

LUGIC~l UNTT F"F ~tlr -NF"-
qE: T UP l('\~ :
npCUOt FQH SEUU~NTTAL WRTTF

WRITE THF. RECORD Tn F'IL~ .-NEW-
THF FIRST WHTTF WILL CRflTE A N~~ FIL~
jNr) npFN IT
ARNCIRMAL RF.TnI-lN

·LOt;rCAL UNTT OF FILE -('ILO­
SET tiP lOA
opr.on~ ~nq pnSJ1JO~ 0FlATIVE RFCnwDS

FOR ... "R() PEt::(JPD cnUNl TO ~I<TP

f

~

---. . ~ ... - .-
E~AM. _f r:F "'1o~Ar.fR ~crrC'TTON 1""'\ r PAf,t ono? O~/11/77 ~ ~~

MACI?O? (AfJ) ST= E)(:~ f.ir)= ** APPLICATTU~ PRnG~A~ **

01)85 0017 0A?f) ol'ttJt; ~Tt' rntj+b
OOSh 00l~ r::'B?O 003Q .]ST lr: SKIP TWO RFC~kns O~ FILE -nLO·
0087 00lQ oO,F ru TA IOf;
onSA 01)1A F~1F Ot'lH ,T S T END:
Ol'l8Q OI'lP~ .~201 oo1.n .)MP C!-IECK ~BNOPM~L RFTIIRt.J, TEST FOR FND OF FTLf
0090 00li Fb1C 01)00 J"1 C TASK ~u RACK TO RFAD ANOTHE~ RECOQD
0091 *
O"f.J~ no 11) CHECK F' (J I J $

009' OOIf) ~??b 004'1 l.OA 108+1) GET Tu~ CU~PLfTlnN STATUS
00911 OOlf A21C 003~ AND =:0('00 TEST FnJ.< FTLF MARt\ FOUND OR FNF) 0 .. FTLI='
0095 001~ 3102 O('lr.' JAN OONF. YES, Cnpy COMPLETE
Ofl96 * Nn, sn~F 0THER FRRUR nCCuREO
0('\91 I"IO?O EPR'lR ~(W $
O~9A 0020 o~oo ~LT FRROQ ~AI T
Q09Q 01'21 FoOl 00;>" .1MP $-1

H 0100 * H
"- 0101 nOfJ? OnNF. fu)1l ;) COpy CO~PLETF, CLOSE FIl.ES lIl'

J 010? * tv
A oto~ OO?? r,701 I Atoe 1 rOIIP-lT·:: -1

! otOll 01)2, QA?l OOqc; 'n A I"H+6 SET UP InB
~ 0105 002~ C609 LAP :0009 OPCU~E FOR pnS~TION ABSOLUTE FTLFS .. .

§. 0106 002C; t:)A1r. 004£1 STl I08+5 '.
0107 002F-. ("602 tAP UI f) LOGICAL IJNIt QFFILt "OLO"
010R 0"27 CIA 113 OOln ~TA. JrlB + (~

I
010Q 00(.'8 F='810 on3Q .JST In: CLnSr: Pf-AO FTI.F ·OLD-

. 0110 002 Q oo'F ~ATA 10"
o t 1 , 002A FgnF 003l .1ST E"'O:
011 ? Of)2R Fb013 0020 .• JMP ERRnp ~BNOPMAL RfTURt-'
011' "
0' III onc>r. r6n1 LAP NFw LOGICAl II N T T 0 F' F r L E .. ~J E iii " g 0115 0"21') QA1S 004' c;TA Inlj+Q ~ET liP In~

0' 1 ~ 01'121=' F"HOA 003 0 .r S T In: CLOSF wh'JlF: FYI t "NF.W·
01 17 002F=' OOl,F I')ATA 10H

~ Of 1 R 0030 FBnq O()3~ JST E:~D:
01 1 Q 0 0 31 ~ 6 t 1 002(') JMP . t QRn~ AeNORMAL RFTURN
01(," *

-'I
./

t···" ... ··

r

H
H

" \JI
I

I\.)

\JI

PA,;r' (l"(I~ 0'7,/11/77
"1 ACIJOi' (h :>) :) T = t": ~

0121 ufl3? ~tjnl on~A

012' On33 ('Dro
003ll r.qr.1.I
O":\':; T)9r')9

01e''7, OO$F-. C8rH
Ot'l37 r()r.o
U03P. r')3r')3

ott>lJ nOOh
On~o nOno
003A nono
on3R n2no
003C

, .0(31)

O.O3~

ot2C;
012h
0'127

.1)1c.'P, OO.5~ t)000
oo~o nono
ot)Q1 nono
O('lll? nono
004~. C'O(l(J
OOlla I')ono
O(1(.1C; (LOt)o

on46 nOllA,
OO~7 no no
onLJR nooo

0120 O(HJA
013t"l On4 0 !'IOOO
01 5 f 004A nooo
013?

onon EPl1n~~

'00 0 n !'; A R '" I t-J G

~, ~ (l"; ..

tC;:'b:3? I: Y b ~. P I f:. FTlf M~~bG~P APPLTCAlTO~
t'\fl= * .• APPLTCATTON Okn(";PAM **

,T!) T E t<J II : All nONE
DATF: TEYT 'foA"'1'>IJYY'

TTMF: TEYT 'HHMM~S'

l pnOl

It

It TNPUT nUTPIIT BLOCK (TOP)
It

10e nATA (l, 0, 0, 0, :b -1 , $ - $, :J. - $, FWFfEP, 0, n

B UP F r. P F" Q" $+1
r)A T 1- 0 QEfHlT~ro FOR UNALDCKfD F.TL'=S
PE.~ 36,0 72 BYTF. Pf.CORf) BUFFER
FNf)

'"

~
.1

r

j,

I-f
H

" 'VI
I

'" '"

PAGF' onOl
~AC~()? (.;»

U 'I 1 t I 77 .-: I:\~ 3;>'
~j T: E 't : ~ H n =

~ f\ ~O'\
~YAMPI f:. FILF ~ANAfa.p APPLTC"TTOt.1

*. FJLl MA~AG~w CTH .+ , ,\.

ol3e;
013.6
0137
Ot.5A
01.5Q
O'4n
0'41
0'4;>
0'4~
0144
014Ci
'9146
0'£17
O'4~
0140
O'C,1l
0151
o 1S?,
01S~

ooon
onon

ooon

nooo
onon oono
oqol:i 1\003
O(lO~ noon
onOE n02H
OOOF nO(\O
OOln 00('\0
Onl1 nono
001;> oono
onl~ (')ono

Of)2~ nono

fQRnR~

WAR"'I~G

•

•

NAM
FxTJ<
F.xTto'
FJ(T~

F.xTR

C:H"o FIJIJ
Pf.S
~ATA

QFS
OATA
nATA
"ATA
nATA
DATA
PES

Or.SUF PES
FNO

C: P10
F"':~F.A
F~:W~T

FM:POS
F'M:FUN

J
&",0
PTa
R,o
Or.FltlF
FM:QE'A
P.':\oI~T
FIoI:pa~

P': f;"U~
2lJ,n

21:\6,0

FILE ~ANAGFH CTH

PHYSTC~l IIO lnr,rCAl UNIT

OPFNICLOSE BUFFE~ AODRFSS
PEAO ENTRy POINT
wRITF FNTRY POINT
PO~rTI"~ 'fNT~Y ~nrNT
F'U~CTrnN +Nrl)y P01"'T

npENICLO~f BUFFEr?

..

,~~~~...;..~i!t!t';f~"''!''''--~~~~~~~'

--,
r",.

f

,
f

~

)

H
H

'-U"I
I

N
-..J

- ~'O . - ' -r "
P , G r' 0 0 (J t 0 ~ 11 1 I 7 7 1 c:; : "h !S?
"1ACOIJ~ (A?) ST: EY:~ lin:

o 1 r,~- •

! '\ g\

tYA~PL~ FTlF ~A~AGEP APPlTCllTn~
** F 11,t:: nTH **

~,

Ot57 * nln FILE DTA. ~EVICE STATUS wURD 15 S~T TO ALL"~ FTLF ~EAO

01SA
Op;q
0 1 0(1 0(10(1

01 61
{)16?
016' OliOO
Ot6i1 0001 nooo
016S ono? nonO
0166 o (HJ II n F nr
0167 Oliot; r6CU

ono~ RORQ
016P. O()()7 0000

010Q OOOR nooo
0170 O/)Ur r.FI'"C

on ()I"l r Q A 0
onoF' AUAO

0171 O(\OF oonu
o t ,? Of)l~ OotC
o t 7~ . Mil Q nut)o
0' 7i1
01 7 c; ontr oc)OO

1I'7~

onon f.Rt-ln~<)

onon .. 4 ~~ pJt;

-. - , .

.;

* OR.POSTTION npFRATTONS ONI Y.

*

* O:f- lo4 i)

*
eRt/ F

~AM

F"T""

i.HAN
I"lATA
PE,~

nATA
TEXT

RE~
nATA
TEYT

Rt.:.S
nATA
RE~

PES
ENI"l

O:F"'O
C:FMO

I. • • . .
C:F Io4 0
2,0
:OFOF
'F'MOO t

",0
:0000
t("lLn

q,O

FIL~ ~ANAGEk CTH ADU?ESS

nEVlrE ~TATu~wOPD
DFV rCF NA-"1E

F'IL.E STATURWORD
FTLF' NA~F

..

t3R.UF' RLnCKINr. RUFFER ~DI"lRE'SS ~

3,0

5 1 0 + 2 12 , 0 HI 0 rl< T "J r, R I) FF F R, - !) I 7 f = PLOr.K ST/Ft~ ~YTE~

I
I
~

1"

H
'H i' , U1
I I
IN
ICO

~~GE on01 0;1'1/77
MACQO' CA?) ST: E'X:<\

017Q
OHiO
ot81
Ot8?
018'
01AO Ooon
0'85
Ot8h
OHH 0.00(\

018R 0001 1'\000
018Q OnO? nooo
o 1<~n oooa FrFF
0191 Of)OC:: rbrU

Q()OA ROPl
019? on07 r'lOf'O
0'9-; OOOR ('\000
019Q oooe CEC5

Ol\OO D7AO
OOOF 40AO

otl./~ ooor nono
0196 o ('t 11 0050
0197 OOt? oono
Ot9A onl' oono
ot9Q OillA oono
o~on OOJq oono
O?O\
O?O?

0000 ~Ql<nRC:

ooon wARN I ""C;

;CY"~?
HI1:

~_TC A l-T(lN ,.-..,
of:)(A I f:' 0 u=: MAN A r. •

*41 FILE nTH **

* * NEW FILE DT~. ntVrcE. SPE,r.TFlr.ATION rlnRD IS SET TO 4L1 nw
,. ANV FILl UPERAT[nN. THE rIlt ISUNRLOCKEO ~rTH HO RyTE ~Fcn~ns.

... NO HLOCI<TNr:: RIJFFFR l~ DEQIfTRFu.

*

,.
fJ:P~l

*

NAM
r:XTfJ

r.HAN
r)ATA
Rf:.~
nATA
TF Xl

I?E~

t')ATA
TE'XT

RE:S
f)A T A
DATA
I:.lf.S
OATA
I:.lt:S

FNr:>

O!FMl
C:F"'O

X· • . .
C:FMO
2,0
:FFFF
'F''''''J'

q,O
:1)000
I ~J E \II

2,0
tlO
o
5,0
o
3,0

FHf ~AN~GER CIS AODRESS

nEvIr.E STATUS WORU
!) F.: v T C r: ~I A M r:

r:ILf. STATUS WORD
FTLf NAME

REC'OPD STlF' ..
Rl(')CK ~I7f: (UNRLOCkEO)

~lOCI(ING BIJFFER .Al.)nRES~ (NONF REl'JuT~F'~))

',' ,.,. ~ ,'. ~ ...

i
i
~

~

~I
Il

·Ii.~." .. i "

,

! .,
f,i
f.·jl
~
f •.....] "

I

'UetHIMt lddtWtHsrWd.t'tdWNr# 'ft.eh'M Hl'rg t t t emt mlt'j '$wn ,tt Itt X·"! ,., .1.t" .. ' 1 t" 9" jj . 'k ",

(

SECTION 6

DEVICE-DEPENDENT CONSIDERATIONS

The device-dependent functions of lOX are the responsibility of the individual device
handlers. Initially lOX performs all parameter validation and error checking before
control is 'transferred to the appropriate device handler. The device handler will

" execute the data transfer and perform the device testing. Note that the bit con-
'. ~iguration for each function (bits.3-p of lOB word 5) is listed below, each operation ..
',in parent~eses.

~ :

0. 1 STANDARD CHARACTER DEVICE HANDLERS

6.1.1 Line Printer (LP)

(

Write (formatted ASCII)
(0110)

Write file mark
(1100)

All other function codes

_,.6.1. 2 Teletype Keyboar~ (TK)

Write (formatted ASCII)
(0110)

write (unformatted)
(0101)

Read (formatted ASCII
(0010)

Read (unformatted)
(0001)

Write File Mark
(1100)

All other function codes

outputs up to 132 (or less if the printer is not
that wide) characters.

: ..

Outputs /* in columns 1 and 2.

No I/O

outputs up to 72 characters. Carriage ~eturn, line
feed are appended to the end of each record.

~ .. :

outputs up to 65,535 characters exactly as in the
user's buffer.

Inputs from the keyboard until a carr~age return is
read. Standard character editing is active.

Inputs from the keyboard until the number of char- .­
a'cters requested is input.

/* is output followed by carriage return, line
feed.

No I/O

. II/6-1

"! '

ht

"I' q' W' em 1$ 'r" p'
t, s'

rc' '" n' pm rr
tl1'O"' """nt't' a"@''$"' '$"

t' 1 trW ' art ttl,' t t d' 1M?
1 *,g "t.,

k,.,
il .

1'16.'1." Teletype Console ITY,
',I, ready)

j (write (f~rmatted ASCII)

',1,;", (01,10)

~ Write (unformatted)
. ', ((0101)

Read (formatted ASCII)
(0010)

Read (unformatted)
(0001)

Write File mark
(l100)

.,11 other function codes

.l(Teletype Reader (TR)

Read (formatted ASCII)
(0010)

~ead (unformatted)
"'- JOOl)

I -~ad (formatted binary)
\ ,0011)

All other function codes

1.L Teletype Punch (TP)

~ite (formatted ASCII)
(,,110)

write (formatted binary)
(0111) -

Write (unformatted)
(0101)

WI I to)"11 e Mil rk
(1100)

Punch Leader
(1101)

(implies tape reader or kt!yboard for input, whi(;hevt!l

Outputs up to 72 characters. Carriage return and
lin,e feed are appended to the end of each record.

Outputs up to 65,535 characters 'exactly as in the
user's buffer •

Inputs (from the tape reader, if ready, otherwise
from the keyboard) until a carriage return is read.
Standard character editing is active.

Inputs (from the tape reader, if ready; otherwise
from the keyboard) until the requested number of
characters is input.

/* is output, followed by carriage return, line
feed.

No 'I/O ,

Inputs up to 256 ASCII characters from the reader
(does NOT echo on printer) until a carriage return
is read. Standard character editing is active.

Inputs from the reader (does NOT echo on printer)
until the number of characters requested is input.

Reads one binary record and checks the checksum. If
a checksum error is detected, the error status will
be set.

No I/O

Outputs up to 256 ASCII characters. Carriage return
line feeds are supplied at the end of each record.

outputs up to 65,535 bytes in lOX binary format.

Outputs up to 65,535 bytes exactly as in the- user's
buffer.

Outpllln IllIlofJut-Nllll-NIIIJ on the pup"r lill"-'

Outputs 12 inches of leader.

All other function codes _ No I/O

1.1/6-2 ~ Revised 3/77

"

,t. ..
- -

5Mb'fr I"%,' '*" "'r 't'
. (%' t"' "d'" ,§W#'S"'ET i r ."5 0 fMWP"Off'ft'"HN:Mict1amrerwtm 'f'$'S.M t ze:mrsnrrttttn"!3fiNYWmTIi'b-yww,&i kHZ"

~-----,---------- . CcmputorAutomation ~

(.. 1. 6 Card Reader (CR)

C

. Read (formatted ASCII)
(0010)

Read (formatted binary)
(0011)

All other function codes

\
6.1.7 High Speed Reader (PR)

Read (formatted ASCII)
(0010) .

Read (unformatted)
. (0001)

Read (formatted binary)
(OOll)

All other function codes

6.1.8 High Speed Punch (PP)

Write (formatted ASCII)
(0110)

Write (formatted binary)
. (Olll)

Wri te (unformat~ed).

(0101)

Write File Mark
(1100)

Punch Leader
(1101)

All other function codes

6.2 FORTRAN LIST DEVICE HANDLER

6.2.1 Line Printer (LPF)

Write (formatted ASCII)
(0110)

..

One card will be read. 'rtlC' maximum nnmber of bytes
transferred is 80. If the first two column:. contain
/* an end-of-file is assumed.

TO b~ specified • . • if the first two columns
contain /* an end-of-file is asswned.

No I/O

Inputs from the reader until a carriage return is
read. Standard character editing is. active.

Inputs from the reader until the number of characterf
requested is input •

Reads one binary record and checks the checksum.. If
the checksum is in error the error status is set.

No I/O

Outputs up to 256 ASCII characters. Carriage return
line feeds are supplied at the end of each record.

Outputs up to 65,535 bytes in the lOX binary format •

Outputs up to 65,535 bytes exactly as in the user's
buffer.

Outputs Rubout, Null, Null on the paper tape.

oUtputs 12 inches of leader.

No I/O

Outputs up to 132 chara~ters, preceded by a carriage
control character ("I" = top of form, "0" = double
upspace, any other = single upspace).

11/0 - 3 Revised 11/76

i

lIS:' 'MO' 't'ttlt"t ' t,l'
,. , em ,,,.j . to t '

(

(

Write file mark
(1100)

All otht!r function codes

6.2.2 Teletype Keyboard (TKF)

Write (formatted ASCII)
(0110)

Write (unformatted)
(0101)

Read (formatted ASCII)
(0010)

L·· Read (unformatted)
CJ (0101)
(

Write File Mark
(1100)

All other function codes

.. tn' "'r t ""j tP '$S'jtNttktt w-" Mtt"H.' Wtttltetnt"W .. ttWWbfflCtn .. 'Wbh'tffltt. Mtted.'

Outputs "/." in columns 1 and 2.

No I/O

Out~uts up to 72 characters, preceded by carriage
control character ("I" = top of form = 6 upspaces,
"0" = double upspace, any other = single upspace).

Outputs up to 65,535 characters exactly as in the
user's buffer.

Inputs from the keyboard until a carriage return is
read. Standard character editing is active.

Inputs from the keyboard until the number of char~
acters requested is input.

/f". is output followed by carriage return, line feed.

No I/O

i 6. (. Teletype Console (TYF) (implies tape reader or keyboard for input, whichever is
ready)

' ..

write (formatted ASCII)
(0110)

Write (unformatted)
(0101)

(. Read (formatted ASCII)
0(0010)

(
Read (unformatted)
(0001)

Write File mark
(l100)

All other function codes

~.

Outputs up to 72 characters, preceded by carriage
control character ("1" = top of form = 6 upspaces,
"0" ='double upspace, any other = single upspace).

Outputs up to 65,535 characters exactly as in the
user's buffer.

Inputs (from the tape reader, if ready, otherwise
from the keyboard) until a carriage return is read.
Standard character editing is active.

Inputs (from the tape reader, if ready; otherwise
from the keyboard) until the requested number of
characters is input.

/* is output, followed by carriage return, line feed.

No I/O

11/6-4 Re~ised 11/76

(

(

6.3 MAGNETIC TAPE HANDLER

6.3~1 Magnetic Tape (MT)

Write (formatted ASCII,
formatted hinary, or
unformatted)
(0110, 0111, or 0101)

Read (formatted ASCII,
formatted binary, or
unformatted)
(0010, DOll, or 0001)

position Relative Records
(1010)

position Relative Files
(1011)

position Absolute Records
(1000)

position Absolute Files
(1001)

Write File Mark
(1100)

All other operations

Outputs 1 to 65535 bytes as a single record.

Inputs one record up to 65,535 bytes. If the
actual record.is longer than the requested number
of bytes, only the requested number will be input.
If the actual record is shorter than the requested
input, only the actual number of bytes are input.
Up to ten retries will he made in the event of a
parity error before an error status is re~urned to
the caller.

Skips the rtumber of records in the requested count.
A positive count indicates forward skips. A

negative count indicates backward skips. If a file
mark is encountered during the positioning, the
operation is terminated, and the number of records
actually skipped (not including the file mark) is
returned along with an end-of-file status. The
tape is left positioned prior to the file mark (the
file mark is never actually crossed and movement is
effectively bounded within a pair of file marks).
If an end of tape or beginning of tape marker is
found during positioning, the operation is te
terminated with the actual count returned and an
end-of-device status.

Skips the number of file marks in the requested
count. A positive count indicates forward skips.
A negative count indicates backward skips. Upon
return, the tape is positioned past the last file
mark skipped. If an end-of-tape or beginning-of­
tape mark is encountered, ~e operation is termi~
nated with the actual skip count returned, along
with the appropriate end-of-device status.

The tape is first rewound to load point, then
skipped forward the number of records requested.
The requested count must be positive. If the count
is zero, the tape is left at load point.

The tape is first rewound, then skipped forward the
number of files requested. The requested count
must he positive. If the count is zero, the tape
is left at load point.

A write file mark function is issued to the tape
unit.

No I/O

II/6-5 Revised 1l/76

t • iN'" ') ,

f e lt tTl't'y"ltW
M t .. % we,ll

CompoterAutonvd!on ~

6.4 DISK, STORAGE MODULE DISK, AND FLOPPY DISK HANDLER

[4.1 Disk (DK), Storage Module Disk (SM), and Floppy Disk (FD)

W~ile Direct Access
(0100)

Read Direct Access
(0000)

All other function codes

Writes to the disk the number of bytes specified Ly
the user in lOB Word 6, to the relative record
number specified in lOB Word 9. Upon completion of
the operation, this record number is incremented.

Reads from the disk the number of bytes specified
by the user in lOB Word 6, from the relative record
number specified in lOB Word 9. Upon completion of
the operation, this record number ~s incremented.

No I/O

I NOTE]

, .. The Floppy Disk Handler supports only one f19PPY disk controller. The
Ohandler must not be used concurrently with a storage module disk con.troller.

The Storage Module Disk Handler supports only one storage module disk
controller. The handler must not be used concurrently with a floppy disk
controller.

6.4.2 Fortran Disk (DKF), Storage Module Disk (SMF), and Floppy Disk (FDF)

(;~rite (formatted ASCII,
formatted binary)
(OllO or 0111)

Read (formatted ASCII,
formatted binary)

~00l0 or 00111

(.>osition Relative Records
(1010)

Outputs to the disk the number of bytes specified
by the user, to the relative record number main­
tained in DIB Word 15. Upon completion of the
operation, this record number is incremented and
stored irito lOB Word 9.

Inputs from the disk the number of bytes specified
by the user, from the relative record number main­
tained in DIB Word 15. Upon completion of the
operation, this record number is incremented and
stored into lOB Word 9.

The requested count (positive or negative) is added
to the current relative record number maintained in
DIB Word 15. (No actual I/O occurs). The new
record number is also copied into lOB Word 9. If
the resultant relative record number is greater
than the highest sector number in the extent, the
highest sector number is stored, and the end-of­
device status is returned. If the resultant rela­
tive rec9rd number is negative, a zero (represent­
ing the first record of the extent) is stored, and
a beginning~of-device status is returned.

II/6-6 Revised IJ176

"'tW·

o
.·F

.,;

(

position Absolute Records
(1000)

Write File Mark
(1100)

All other function codes

The requested count (which represellts the actual
record number to be lJositioned to), is stored into
DIB Worn 15 alld lOB Word Y. No act.ua 1 1/0 occurs.
If the record 'lumber is grea ter than the highest
sector number in the extent, the highest sector
number is stored, and Lhe end-of-device status is
returned. If the record mlmber is negat:ive, a zero
(representing the first record of the extent) is
stored, and a beginning-of-device status is re­
turned.

A two character record containing "/*" is written
into the record pointed to by the Relative Record
Count, then this count is incremented and copied
into :rOB Word 9.

No I/O.

I NOTE I
The Floppy Disk Handler sup~orts only one floppy disk controller. The
handler must not be used concurrently with a storage module disk controller.

The Storage Module Disk Handler supports only one storage module disk
controller. The handler must not be used concurrently with a floppy
disk controller.

6.5 MAGNETIC TAPE INTELLIGNET CABLE· (MTIC) HANDLER

Write forward
(ASCII or Binary)
(0110 or 0111)

Outputs 1 to 65,535 bytes as a single record.
Records containing a byte count less than the
m~n~mum record length (DIB word 12) will have
additional (~haracters appended to the record until
the byte COnt.t is equal to the minimum record
length. Blan~s are appended to ASCII records and
zeros are appended to Binary records.

During write operation error recovery, the tape is
backspaced one record and another write is attemp­
ted. Up to ten retries are made in the event of a
rate error (processor workload error). Up to three
retries are made in the event of a hard error (tape
error); subsequently, a fixed length erase function
is used to erase the hard error region and three
more retries are executed. This erase procedure is
executed up to ten times, at which point an error
status is returned. (Note: Hard error recovery is
modified if the Control Edit function is on. Refer
to the Control Ed~t description.) ;

Error counts for each type of recovery are returned
to DIB word 10.

II/6-7 Rpvic;pn Il/7f..

i.. ',j"'i'''' "'"R

~ Read (forward, reverse)
(ASCII, Bir.!-ary),

(

(

(

(

Read Reverse
(0010, 0011, 0000)

Position Relative Records
(1010)

position Relative Files
(1011)

position Absolute,~cords
(1000)

~?Osition
,- (1001)

Absolute Files

(

Write File Mark
(1100)

Control Edit
(1110)

(L

Inputs one record up to 65,535 bytes. If the
actual record is longer than the requested number
of bytes, only the requested number is input. If
the actual record is shorter than the requested
input, only the actual number of bytes are input.
Up to ten retries are made before an error status
is returned.

Skips the number of records in the requested
count. A positive count indicates forward skips.
A negative count indicates backward skips. If a
file mark is encountered during the positioning,
the operation is terminated, and the number of
records actually skipped (not including the file
mark) is returned along with an end-of-file status.
The tape is left positioned prior to the file mark
(the file mark is never actually cross~d and
movement is effectively bounded within a pair of
file marks). If an end of tape or beginning of

I

tape marker is found during positioning, the
operation is terminated with the actual count
returned with an end-of-device status.

Skips the number of file marks in the requested
count. A positive count indicates forward skips.
A negative count indicates backward skips. Upon
return, the tape is positioned past the last file
mark skipped. If an end-of-tape or beginning-of­
tape mark is encountered, the operation is termina­
ted with the actual skip count returned with the
appropriate end-of-device status.

The tape is first rewound to load point, then
skipped forward the number of records requested.
The requested count must be positive. If the count
is zero, the tape is left at load point. If the
count is minus one, the unit is placed offline.

The tape is first rewound, then skipped forward the
number of files requested. The requested count
must be positive. If the count is zero, the tape
is left at load point. If the count is minus one,
the unit is placed offline.

A write file mark function is issued to the tape
unit.

This function causes the formatter to implement
special head positioning to allow record updating.

II/6-~ Revised 1/77

(
\

(

(

c'

I

I

(

(

1

'l-t '"II '"M 1"<, "" UrI!! 'ex". '!MUS' ems r =t ,

Control Erase
(1111)

-

All other function codes

6.6 STANDARD CHARACTER EDITING

t rI , .. , Iru n's r H l' 11 t 'W!"br"t'Ms'bdwlrlli. un @

I NOTE]

Control F.dit needs to he used with
caution because of possible "tape
creep". Refer to the Distributed
I/O System User's Manual, Publication
No. 9l-53629-00B2, for a more
detailed explanation.

M,rWft.

Control Edit requires five calls to 10:. Call one
positions the tape at the end of the record to be
updated. (An inter-record gap containing an era­
sure or noise record might be found between the end
of this record and the beginning of the next rec­
ord.) Call two sets the edit function on. Call
three performs a skip or read reverse function for
the current record. Call four performs a write
forward function for the new record. The byte
counts for the new and old records must be equal.
Call five set the edit function off.

Hard error recovery for write operations is mod­
ified when Control Edit is on. Up to three retries
are made in the event of a hard error; subse­
quently, an error status is returned.

This function performs a fixed length (filemark) or
variable length erase. The erase mode bit is set
to override a write operation. This function can
be used with Control Edit to erase a record in
place.

Control Erase requires three calls to 10:. Call
one sets Control Erase on. Call two performs a
write or write file mark function. Call three sets
Control Erase off.

No I/O.

In order to facilitate input from an operator, lOX supports charact~r editing on input
from all keyboard and paper tape devices. Three editing functions are supported by
lOX.

1. Backsapce. Character backspace ~s implemented using the back arrow (~) char­
acter. One character is erased for each" back arrow character input. ' Since it is
impossible to physically backsapce on a teletype, the back arrows are echoed on
the printer. Note that the character editing will take place over the l~ngth of
the entire physical record, not just until the number of currently valid char­
acters equals the requested count.

11/6-9 Revised 1/7l

.. tiM't!'tM

2.(

rtf

Iynore entire input. Occasionally the operator decides it would Le easier to
start over rather than backspace and correct all of the errors on the current
input. lOX supports this by deleting the entire input and restarting whenever
the back arrow is typed followed immediately by a carriage return.

3~ Ignore this character. This is useful when the input is from a paper tape which
was prepared off-line on a teletype. The punch on a teletype has a local back­
space feature, and the most cornman means of correcting a tape such that it prints
proprely when read off line is to backspace the punch over the offending char­
acter(s) and punch rubout(s) on top of them. lOX will read such tapes properly
by ignoring all rubouts. In addition, rox will read such tapes properly by
ignoring all rubouts. In addition, rox ignores all line feeds and all other
characters whose ASCIr code is less than :OD (e.g., bell, leader).

I since an end-of-file is defined as a Rubout, Null, Null on paper tape, and since it is
difficult to enter Rubout, Null, Null on a keyboard, rox recognizes two different end­
of-file marks in the sta,ndard character editing mode for formatted ASCII input. These fir:.: :ma:-ks. are Rubout, Null~ Null or /*. Either. of these charac~er sequences input at
theJeg1nn1ng ofa record w111 cause an end-of-fl.ie to be recogn1zed.

(

c
(

b
(

(L
II/6-10 Revised 1/77

'I

~I

if"" •• $ttrWMfR! trW Mdte,· me t tm "ew ,. t) '')0'"'' ") " 12 'Ire

(

SECTION 7

NON-STANDARD HANDLER DESCRIPTIONS

Some lOX handlers do not conform to the standard lOB, DIB, and CIB configurations
described in sections 2 and 4. This section describes the software tables and device­
dependent functions of these lOX handlers. (The A/D, D/A handler is described in
publication No. 93325-00.)

7.1 IEEE INTELLIGENT CABLE (IEC) HANDLER

~he IEC Handler controls the operation of thelIEEE Intelligent Cable. The IEC Handler
and the IEEE Intelligent Cable together conform to the requirements for an IEEE {STD

(488-1975) interface system controller. The IEEE Intelligent Cable provides the hard­
ware to drive the IEEE interface ~us and the firmware to conduct both the Source
Handshake and the Acceptor Handshake. It also senses the state of the IEEE Interface
Bus. The lEC Handler implements the remaining IEC functions. The interfaced devices
must have no controller capabilities.

~ efer to the Distributed I/O System User's Manual (revision B2 or higher) and IEEE
document 488-1975, "IEEE Standard Digital Interface for Programmable Instrumentation"

I for detailed IEEE function descriptions.

(

(

Note that an arbitrary distinction is made between the terms "control" and "data" with
respect to IEC handler message transfers. "Control" refers to bytes which are sent
over the interface bus while ATN is true. "Data" refers to bytes' which are sent or
received over the interface bus while ATN is false.

II/7-1

,.' IH! '% t'tt'

,.

lEC lOB Configuration -- 9 to 12 words.

igure 7~1 illustrates the lOB configuration for the IEC Handler.

INPUT/OUTPUT BLOCK
FOR THE IEEE INTELLIGENT CABLE HANDLER

Standard
Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 word

0

,

IDT STANDARD lOB 1

.~
I

or CONFIGURATION 2
i -:::B
\

CN 3

ILUN 4

(B ~ NO BAD DE- OP OR IN- RES. ~0 OP OP
ISTA, lOP U R I/O LUN 0 VICE TERM TERN I~ CODE MOD. S S 0

{
y R CONDo

IRCNT USED FOR ALL REQUESTED FUNCTION CODES 6
..

lBUPF USED FOR ALL REQUESTED FUNCTION CODES 7

b~r USED FOR ALL REQUESTED FUNCTION CODES 8
,

(
.

I RCNTU USED IF OP CODE IS 00 OR 01 9
____ - _____________ .a.- _____________

IBUFFU USED IF OP CODE IS 00 OR 01 10

ITIME USED IF OP CODE IS 00 OR 01 11

(<-

Figure 7-1. lOB Configuration
lEe Handler

1I/7-2

t"" '-w 'e'

·...--,.

n',. tit' 'w ,j('w'. ",4

c- ords 0 through 4 are the same as the standard rOB configuration. Refer to Section 2
for detailed descriptions of these words.

Word 5

16 14

[I I
13 12 11

I 10J

1

Status, Function Code. This word uses the following format:

10 , •
I

7 • a 4 3

~
:I 1 0

I .., .
I'

'---------- Operation Modifier
'------------- Operation Code

~------------------------------Reserved

~------~--~--------~-------------Internal Use Only

~--- Unresponsive operation/
Termination condition

~---Device Unresponsive
~--Invalid LUN

~---No I/O performed
L--Error

~--Busy

G ~,j o

bit positions, with the exception of bits 9 and 8, are described in Section 2.

Bits 9 and 8. These bits can have two meanings, as follows:

1) Unresponsive operation. If an error has occurred (bit 14 set),
bits 9 and 8 indicate what operation was being performed when the
error occurred, as follows:

01
10
11

wh~le taking control of the IEEE interface
while writing control
while reading or writing data

2) Termination condition. For a read data operation, if bits 10 and
14 are zero, bits 9 and 8 indicate the reason for terminating the
read data operation:

00 END message detected
10 Byte' count reached z,er:o (abnormal return)

Bits 9 and 8 are zero when all other operations are terminated.

II/7-3

~ec- ,rmat of the lOB after the first six words is determined by bits 3-0 of word 5.

~ Op Code
(bits 3 and

00
00
01
01
01
01

14

)-
r

(

)rd 8

Format 1

Op Modifier
2) (bits 1 and 0) Function

13

01
11
00
01
10
11

12 11· 10 9 8

DATA

DATA

7

write control and read data to END.
Same as 0001 with parity standardization
Write control and write data.
Write control and write data with END.
Write control only.
Write control and ignore data.

6 5 3 2 1 word
--

REQUEST COUNT 6

BU?'FER ADDRESS 7

ACTUAL DATA TRANSFER COUNT 8

CONTROL REQUEST COUNT 9

CONTROL BUFFER ADDRESS 10

TIME LIMIT 11

Data Request Count. This word is supplied by the user to specify the
number of data bytes to be transferred. This word must not be zero.

Data Buffer Address. This word is supplied by the user to specify the
starting address of the data buffer. Note that this address is always
a word address and that indirect addressing is not allowed.

Actual Dat.a Trat)sfer Count. This word contains the number of data
bytes ~ran~ferred when the operation is completed. This word is
returqed by ~OX at the completion of I/O.

Il/7-4

(

or' ---------------------------------------

Word 9

Word 10

Word 11

Control Request Count. This word is supplied by the user to specify
the number of control bytes to be transferred. No control bytes are
transferred if this word is zero.

control Buffer Address. This word is supplied by the user to specify
the starting address of the control buffer. Note that this address is
always a word address and that indirect addressing is not allowed.

Time Limit: This word is supplied by the user to specify the operation
time limit. If negative, there is no time limit. If positive, a
"device unresponsive" error will occur if the read or write operation
has not completed within the number of clock ticks $pecified. If zero,
the operation time limit will equal the number of data bytes (lOB Word
6) modified by the delay modifica~ion instruction stored into CIB word
20. (Refer to the SIO: description in Section 3).

, CtJote that
.~ransfers

(count and

,
the specified number of clock ticks (word 11 positive) applies to data
only. The time limit for control transfers is always determined by the byte
CIB word 20.

~.
(

(

Op Code
(Bits 3 and

10

15 14

Word 6

Format 2

Op Modifier
2) (bits I and 0)

13

00 wait for SRQ

12 11 10 9 8 7 6 5 4 3 2 1 0 word

CLOCK TICKS 6

NOT USED 7

NOT USED 8

Clock Ticks. This word is supplied by the user to specify the number
of clock ticks before SRQ is found. No time limit is applied if this
word is negative. If positive, a "device unresponsive" error will
occur if SRQ is not found within the number of clock ticks specified.
This word may not be zero.

Words 7 and 8 are not used but must be provided.

II/7-S

i
!

" *

(Format 3

Op C<ude
(bits 3 and 2)

Op Modifier
(bits I and 0)

11
11

00
10

15 14 13 12 11 10 9

Get lEC status
Get parallel poll response

8 7 6 5 4 3 2 1

NOT USED

NOT USED

BYTE REQUEST

and 7 are not used but must be provided.
I

o word

6

7

8

)1.' 3 Byte Request. This word is returned to the user by lOX. It contains
the requested byte (eitAer status or parallel poll response). Figure
7-2 illustrates the lEC status byte configuration. The parallel poll
response will be returned in the low order byte.

) :,: 13 12 11

0 0 0
I I I

(

, .

10 e •
0 0 0

I I ,
I

7 •
I I

15

,
.. 3 2 , 0

I I I I I
j

'-----"'- Not Data Accepted (SNDAC)
'------ lEC Busy (SBSY)

L-------------Not Ready for Data (SNRF)
L----------------Service Request (SSRQ)

1---------- End (SEOl)
1.-__________ Remote Enable (SREN)

L---~--------------------Interface Clear (SIFC)
L--.--------------------------Attention (SATN)

Figure 7-2. lEC ~tatus Byte C9nfi~uration

1I/7-6

:11*"' #teeMe tlt t rl "y t':I'''U,#l.ti& gl' 'X "v 'Ii' «'$'@.:I(',,')' >'Wiy"z'"" IZ)-l-'$b'" 7l' "'izl± '# '. " I' b b • '#

, .

(

Op Code
(bits 3 and 2)

11

Op Modifier
(bits 1 and 0)

01

Format 4

Set lEe control lines

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o word

Word 6 o

NEW CONTROL LINE VALUES 6

NOT USED 7

NOT USED 8

New Control Line Values. This word is supplied by the user to
specify the new value of the IEEE control lines. Only lines ATN,
REN, IFC, EOl, and SRQ can be- changed. A "Get lEC status"
operation should be performed prior to a "Set lEC control lines"
operation to ensure that the values of other lines are not changed
inadvertently. Figure 7-3 illustrates the lEC Set Mode Command
Word Format.

Words 7 and 8 are not used but must be provided.

L----------------------Service Request (MSFQ)
~----------------__ ------End or Identify (MEOl)

'----------------Remote Enable - (MREN)
L-------------------------------lnterface Clear (MIFC)

L---------------------------_------Attention (MATN)

Figure 7-3. lEC Set Mode Command Word Format

The following function codes are undefined:

9P. Code Op Modifier

00 00
00 10
10 10
10 11

{ 11 10
'-

II/7-7

1#'& H eM __ Me.". ttt t Intrtz St'f:i'**'l Hb ',1&1Mt!&t'fN¥l!iM'wmntSNN

('
7. ~. 2 lEC DlB Configuration -- 11 words

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o word

(o

REGUIAR DIB

~ CONFIGURATION .

6

.
0 7

0
,

0 i
8

9

C·
(

10

Words 0-6 correspond to the regular DIB configuration described in Section 4. Words
7-10 are zeros.

(
7.1.3 lEC CIB Configuration -- 34 words

I Jure 7-4 illustrates the IEC Controller Information Block.

o
(

--c (

- 11/7-8

';

CSF.L7

CTKPI

C'THP2
,.,

C'THPl

CEBTSIC

CNEWA

CNl:IfX

! ,

CAIOL

axJG

REQCNT

CJ'TBI.

(I
CSPLOP

CDE!.

CDlTR

CADDLY , CSTPCH

CIOS

(COP

(:RCNT

CBUFF

CTCNT

CRCNTU

cOle

CBUFFU

STATUS

CRTN

, (

p '*' e""fI'l!!!!!tt trw.' d"""***' """ .. !1M ... i"/M 'fiH

IEC CONTROLLER INf'ORKATIOH BLOCK

15 14 13 12 11 10 9 8 7 6 5 4 1 2

TC FOR IE.SI<r-BEGINNIHG OF RECORD FLAG

TC FOR IE:SIO--SEL DA.7

JST INTQ: . '
DATA ,$ CALLING we .
DATA 0 TEMP 1

DATA 0 TFMP 2

DATA 0 TEMP 1

DATA INTI': TASK ADDRESS

, DATA 8180 PRIORITY

DATA 0 ~

DATA $-10

DATA $-11 .
CURkENT PlCO IDLE STATE--INlTIALlZE TO 0

W-TCHo(x; FLAG FOR lE:510

TC

DATA lECR:

DATA lECW:

DATA 0

DATA lECli'.

DATA 0

TC FOR IE:SIo-WATCHoex:; TIMER INSTR. (OOP)

TC FOR IE:Slo-" JEC WORD INTERRUPT ADDR.

-.
TC FOR IOX--TIME DELAY FROM lOB

TC FOR IOX--5TOP CHARlICTER

TC FOR IOX--IOB ADDR.

TC FOR lOX SCHED--OP CODE AND STATUS (lOB wd 5)

,TC FOR lOX SCHED--REQUESTEP DATA COONT (JOB \ood 6)

TC POR lOX SCHEJ}--DATA BUFFE,(ADDR (lOB wd 7)

TC FOR 10X--ACTUAL DATA BYTE COUNT (lOB wd 8)

TC FOR lOX SCHED--REQUESTED CONTROL CClUm' (lOB wd 9)

TC FOR lOX SCHE.D--DIB ADDR AIm BUSY FLAG

TC FOR lOX SCHED--CONTROL BUFFER ADDR (IOB \ood 10)

TC FOR EOR:--STATU5'

TC FOR

Figure 7-4.

! E : 5 I <r-Rl,:1''U RN ADDRESS

lEC CIB Configuration

II/7-9

1 o word

o

2

3

4

5
. ,

6

7

8

9

10

11

12

13 .
14

15 NOTE.

16 TC ~ Temp Cell

17

18

19

20

21

22

23

24

25

25

27 I
I

, , 28
,
!
I

29 I
!

30 I
31 I
32 I

i
33 I

=

(
7.1.4 lEe f.>cvice-Ocpcntient Considerat ions

(

(

Write Control and Read
Data to END
(0001)

Write Control and Read
Data to END with Parity

-Standardization
(0011)

Write Control and
C;,' Write Data

(0100).

'.

and Write G""'wri te Control
Data with END

((0101)

(L

Write COntrol Only
(OllO)

The contents of the control buffer (lOB word 10)
are sent with the source handshake while ATN is
true. The control buffer will usually contain
interface commands which address a peripheral as .
the talker. The IEC then initiates the acceptor
handshake. The peripheral will transmit data when
ATN is false. The IEC receives data until an END
message was received with a byte or the Auto I/O
byte count reached zero.

The handler will set bits 9 and 8 of lOB word 5 to
the appropriate termination condition. The number
of bytes transferred is returned to lOB word 6.

A read data to END only operation is performed by
issuing requested function code 0001 with the
control, request count (lOB word 9) equal to zero.

T~is function is the s~e as function code 0001;
during input, however, the I/O Distributor performs
parity standardization on all data bytes.

The control buffer is transmitted using the source
handshake while ATN is true. The control bytes
will' generally address a peripheral to accept
device programming. ATN is driven false following
terminat~on of the control sequence, and the data
buffer is transmitted using the source handshake.

A write data only operation is performed by issuing
requested function code 0100 with the control
request count (lOB word 9) equal to zero.

This operation is the same as function code 0100
except that the last byte of data is sent with the
EOI control line true, indicating an FoND message.

A write data with END on~y operation is performed
by issuing function code 0101 with the control
request count (lOB word 9) equal to z~ro.

,
The control buffer is transmitted using the source
handshake while ATN is true. The data request
count (lOB \oI'Ord 6) must not ,be set to zero. 'l'he
lEe will maintain control of the IEEE interface
after the transfer by setting NRFD true.

IlJ7-10

"tf _

-)

(

(

I
i .

•
~ ..

(

I· I
I

i

~
(

I
i
l

I

i

(L
I

Write Control and
Ignore Data
(0111)

wait for SRQ
(1000)

Get IEC Status
(1100)

Set lEC Control Lines
(1101)

Get Parallel Poll Response
(1110)

All Other Function Codes

_t'" 'W 'M
MffleMwe'A .. dW' t.'W?! I!!I!tII '"Y'" H "" -MftC!+w!rtIMHltWW" .. Wb!:I .. t ¥dt"il!: "lr!t:'?!''@'' t :'tU/!rl

The control buffer is transmitted using the source
handshake while ATN is true. ATN is driven false
and remains false following termination of the
control sequence. Peripheral to peripheral data
transfers may occur with the lEC in this state. I
Any read or write request following this funct~~
will be prefaced with a Take Control Synchronously
operation so the IEC will regain control of the
IEEE interface.

The IEC is instructed to wait until the IEEE
control line SRQ is found true. The handler will
return immediately if sRQ is true when the request
is made.

The lEC status is returned to lOB word 8.

IEEE contr~l lines ATN, REN, !FC, EOl, and SRQ
assume the values contained in lOB word 6. This
function allows the transmission of interface
messages which involve these control lines, such as
"interface clear" and "remote enable". Note that
the handler changes the values of all these lines
when performing other operations.

An IDY remote message is sent for parallel polling~
When the lEC is ready, the handler returns the
result of the parallel poll to lOB word 8.

No I/O

II/7-11

..

Ii ..•.. !. ·1 I
" .,

([

" - " .. : .:t.·\ «.;". . 1\. l\ II r" ,.,.,. ,," r.' '.,·I":"-~I"I·'1 f! ~'''' .•• "'.,,\ 1" ·<./·h~-.""'t'\.·· ... ' 1"""-'
• I" ", • ,. .' J' •• " .,f " '4 '1 I « 1-." :",\\ ':;.' .l.Vo.! Ill! i,·J ",.1 ," ,(,_-..1 L • ..1. \ .. :~.l Li /;:..J : .. !,-<,'."JIJ

\~.".~"// \\\, r I I d· /l' . l)' .. '~-';.:/ '(y \!a~8·. 1\ lUll, . IVIS!CJll

llili!il VO:-J Kl\m.1MJ mVII.J[, (:l\lIronr'JlI\ !l2G(;<\

lHILi.I;·,., J!
,. ./

O ':) ," ," i . .. " '.. ' .. -', ~.,

TAII/DB10S
./ ,-

November 19, 1975
t (f, ________ h._.'" ______ ~_. --.a.---............ _____ . _____ :..J

~
.U _____ I ' __ ,'_ .. _ ... _ ____ _

f;'
~!
;:

(

I
\

c.
/
I

9
;::-~:·-----i
I r: ! ~ .. ;; t ! J: :: i

-----..... _-
Bili:.;;l~, i ::', I i _.--_. - _ _!
L'L·~~;·.r ! ~ .--".- -...:

rEI:l.;·~;;;, i I

SUBJECT:

0", :"(' J '~"J ; • ..,. .. ~ "-
i U .. " ~. (l J" : "

• \~, ~ j. '_:.J ~

THE RTX SCHEDULER

In a typical' application system based on LSI-Series "r.~:~;)L~~~~C~i
computers, several independent external activities If 1"':~::(-:1~ ~ \::
must be processed in the same time frame {for instance, Sic· .. !;:r~':-·--·!':"":f
a system may perform a test operation while the fUitz---'---j-i
line printer is printing the results of the previous test, (IT!~;--'-'' 1>< i
~~~t~~e teletype is inputting parameters for the next I.~r:)~c~ -!--~ 

.{I!.,~\. jCIT1 -------.-...:.. ....... This implies that the system will be able to recogniz~ 
events (probably via interrupts) and schedule appropriate 
service activities to process the events in a timely fashion. 
Generally, ·the most effective mechanism to accomplish this 
recognition and scheduling process is the Real-Time 
Executive {RTXl TAB/DBlb4 (TRN 93300-03-01-XX) discusses 
the recognition process and the insertion of new activities 
into the stream of ongoing activities (via INTQ:). 
This TAB discusses the actual scheduling mechanism,SCHED:. 

The function of SCHED: can be described quite simply: 
If there are no activities to be performed, wait until there 
is one; if there are, merge\the list of new activities (created 

'by INTQ:) into the list of on~oing activities, according to 
priority,and cause the highest priority activity to be 
~xecuted. \ , 

\ 
\ 

The term lIactivityll is nebulous;. describing a Hhole class of 
"things to be processed," including interrupt service 
subroutines, Auto 1/0, .DMA, and tasks. The -term "task" 
is much more definable, and in the context of RTX means 
precisely: "A program or set ·of programs "t-,Thich operates 
to: perform a specific function within the Real-Time -application." 

A discussion of the difference between the two terms 
will clarify the operation of the system. When a user 
starts the execution of a task (by a call to BEGIN: 
or INTQ:.), he is starting one or more activities, depending 
on the operation of the task. 

For example: 

1: A task is currently.executing--this is one 
activity. Somewhere· along the line an interrupt 
occurs, and.the execution of the activities 
required to service the inte·rrupt temporarilY 
suspends the current task--and terminates the 
current activity. When ihe ~ask is resumed, it will 
still be the same task, but of 6ourse, it is 
now ~ different activity. 



( 

( 

(" 

i~ .r 

( 

., 

Nal,cd r'v'iini. Divisioil 
lfIr,~,1 VON I:I\I!t!.'.lJ 

.& ... 1 tMtz!#'d!t±#·tcH WttttM'#tltt . II" , tt "H'" -t' 

TAB/DElOS 
November 19, 1975 

) \' .. 
. , 

---_. ----_._--....... _-----
THE RTX SCHEDULER (con.tinueid) 

, 
. 2. A task--one activity--calls DELAY:, suspending 

the task, and terminating the activity. There is 
still an ~ctivity associated with the task 
though--the "active" delay. 

Some activities such as an interrupt service subroutine, 
occur without intervention by RTX. Other activities, like 
those described above, must each be regarded by RTX as an 
entity, and kept track of in some manner. 

The RTX \..Jork area contains a user-defined number of S.-word 
.blocks (see section 2 of the RTX User's Manual). One of 
these blocks is used to record each activity known to the 
system. The table in the RTX manual shows the 'number of 
work area blocks allocated for each call for RTX service. 
This number is also the' net gain or loss-in number of 
activities in the system. 

The user's initial call to RTX: causes his defined work 
area to be broken up into 5-,word blocks. 'Each of these blocks 
contains~ in the first word (word 0), a pointer to the next 
block, thus forming a "linked list" of available.blocks-- the 
FREE list. A pointer to the first of these available blocks is 
maintained at the location called FREE (at 7RF--see section 
~ of the RTX User's Manual). One of these blocks is immediately 
allocated to contain information about the 'current activity--

. the initialization task .. (This block is placed at the top 
of the READY list, see below.) 

Besides the. FREE list, .RTX maintains a number of o'ther 
lists. This TAB is concerned with only two of them, the READY 
list and the FIFO list. The READY list (0RF) con'tairts blocks, 
linked in priority order, describing activities that are 
"ready!1 for service by the processor. The first of these (the 
"toptl block) is the activity currently being processed, and 
is alHay's the highest priority acti vi ty on the list. ' If there 
are no blocks on the READY list, this implies that--aS far as 
RTX is concerned--the processor is idle (actually it is 
always doing something--note ,the "wait loop" in the attached 
flow chart). 

Since these lists are linked, they must be maintained carefully. 
If an RTX service routine were ,in the process of changing 
the links in one of these lists, and an interrupt ocurred, 
the interrupt service activities could try to use the same list, 
which would be a disaster. 

It is the responsibility of INTQ: to prevent this from 
happening. This imposes two requirements: if an RTX 



( 

( 

( , 

c 

... \ trtMM=m='t't to'e119 ""0 .. "#"'0"'$ " .·t'" .,1.,', '·"·W&'± " 1 "'W d 

(
.:)-, n n " ".. . 

r r"·' ·~."'\""r·.'.' I· '':'t "'1.':\." Ill.' n r .... , .... "\ I-,,,\rr.·· >'1' ~":,\"." 
I ,- , I.'.' . I.,. 1 II # (,.:" ' ,li • , I .' *. - .' . ~ •. "4 \ .. ' I' ~'J ,:.. .•• ~~ JIIJ,,,,;.J,:..,,,, ...... J .:~u /J ; "' ..... ) , \ I~_·'·J U h ;.()\,.I .... ..;. ......... .,J U 

Naked r\~ifli. Division 
IrtVINl. CAlIFCmNI/\ 92G[;4 

'1'1:CI11J Lell/, Id'J·).! CFJ'.l ti::· 
BULJ.I.!' I i: 

'j'1\l\/DBI05 
November 19, 1975 

---~--------~-------...---- .. --- ,------_ .... ~-.-..,.-"' ....... -.---
THE RTX SCHEDULER (con.tinued) 

, 
serVlce routine 1S interrupted, it must be completed before 
any further service ~s performed; and INTQ: must not alter 
the linkage in any list that is also altered in a routine that 
may have been interrupted. 

Therefore, a special list is used for the "handshake" bet-v,:een 
INTQ: and SCHED:-- the FIFO list (lRF, the name means 
nothing). This list is maintained very carefully. INTQ: 
puts any new activities to be queued at .the top of this list, 
and SCHED: carefully removes these, one at a time, and places 
them in the READY list in priority order. Once all o£ 
these have been placed, the scheduler is ready to set up 
the highest priority activity to be processed .. (Once it has 
done this, it must check the FIFO· list once more to see if 
an interrupt ocurred during the scheduling process.) 

Each of the blocks on the READY and FIFO lists has the following 
format: 

Where: 

pointer 
from previous 
block or head 

of list 

-----> poi~ter 
to next block 
or zero if 

no more 

PRIO. 

P 

A 
X 

·X 

is the p'riority of the activity (exclusive 
or'd with :1000 and shifted left three bits). 
Bit.1 of this word contains EIN indicator 
from processor status--always enabled.. Bit 1 
contains the byte/word indicator. Bit 0 contains 
the OV indicator. 
is the contents of the program counter for 
the activity (i.e., where it is to be entered). 
is the A register contents for the activity. 
is the X register contents for the·activity. 

Let's go through an example of the operation of the scheduler. 
The system is initialized by the following call: 

WKAREA 
MAIN 

RES 
JST 
DATA 
DATA 
HLT 

25,0 
RTX: 
5 
\oJKAREA 

. 
Reserve 5 five-word blocks 
Initialize RTX 
... ~sing 5 blocks 
... allocctted here 
Return to here if 

l)we run out of blocks, or 
2)an RTX service other than 

is called when 
INTQ: 



( tOr.;'1 VON 1~J\nMJ\N 

±' * 

InVII,JI:. (;id IForU·JlJ\ 92GG4 

TAB/DBI05 
November 19, 1975 

---~-.. -,....,.--------..... ------...-~----.-•. ------ ---.--:".. ..... '4 ___ .... ........... __ ~ 

( 

\~ 
( 

.·C t 

THE RTX SCHEDULER (continued) 

.there is no current activity 
at the top of the READY 
list. 

Return to here to continue 
initialization 

After completion of this call, the work area has the following 
contents: 

[ ~"'------+---?>ir-. -0--l 
READY ~l23_L~j (initialization priority) 

FIFO 

1 
'-., 
/' 

FRE E 

MAIN+4 

rev 
1--------

rev 

~_l 

13 
-j 

. 
£1 

--
. £1 

13 

("rev" is the'RTX revision 
number, in ASCII) 

{1 

0 
1 {1 

I 
13 ! 

0 

{1 

{1 

{1 

0 

1 . 
~ 

I 

f _ .. 



," ',> ~ - ~ 

~(-.:':~>':.'~ ~:':,\ .' ..' ", , \ 
I '. I:,' , . 
'". . . : ." \ '0\ 
\ ~' ... ,. '.' \' ' .. '- .. / ,'\ 

'"~ ........ ~"". '~.'.I 

( 

'NtteMWt!tlWdM"n''tw' 

Naf,sd fv'lini, Divislon 

InV'IJI:. CI\UFClI1NIII 92CGII 

j'j.Ll;UJCh~. hi'J'J,I~:!~')'I\,. 
BU 1,1.1:',' Ii; 

TAU/DBIOS 
November 19, 1975 

______ ,_~JI'~ ___ ••• _~ __ .. _____ .~ _______ __. .. _~u.__ __ e_ ... ------._.- ------

.-. ........ , '. ' 

~~.~ , 

( 

( 

\ . ., 
( 

THE RTX SCHEDULER (continu~d) 

Now suppose the next thing in the initialization task, (at 
MAIN +4) is the following call to BEGIN: 

JST 
DATA 
DATA 

BEGIN: 
TASKI 

l"~ 

Queue a task 
to be entered here 
at this priority 

and return to here 

After completion of this call, the work- area has the following 
contents: 

, L. __ ... ~ __ j 
FIFO 

L. ~. __ ._j 
FREE 

MAIN+7 TASKl 
/------' 

rev' 1 ----·-----i· 
rev I 

r'- rev I 
- ... _-------, 

. ! 
rev '\ 

I 

,~ 13 --_ .. _ .... _--
11 

·11 

0 
----.------

" ,/ 

(contents of A & X 
haven't changed) 

< 

0 I ----. 
0 I 

I 
0 I 

0 
-- ---------I 

i 0 • ,- --- ---_ .... 



• ,, __ •• _ •. _. __ .4. __ ._._ .. _. j~.~ __________________ _ 

( 
10r.!'".1 VON 1(I\/lMI\/.,/ irWIN!:, CI\UI'OIlNII\ ~2GGI\ 

.ww. t trttW'P t 1.t'* '. 

------. --------_ ... 
'1'1:CIIIII C/,., hi')'1.: el'.T! ll:: 

Btl '.LL'!' I :: 

'fAB/DBIOS 
Nov~mber 19, 1975 

________ .e_ ..... __ ...... , ___ ~_. ___ _ • ____________ •. _. _____ '-1 ___ ._---."' __ ... ____ • _ _ .. ______ • 

( 

( 

THE RTX SCHEDULER 

The highest priority activity on the READY list is still 
the initialization task. Next (at MAIN +7) it does: 

JST END: Terminate initialization 

The work area now looks like this: 

.,....,--
1 

I " .'1 i ./ 0 

RE ADY --.1 00 10 
TASKl 

~.--. 

rev 

rev. i 

FIFO 

I .. II 
J...-------< 1 I~ I~ I 

o 
.. -B.l.72 J~ 
.J1AliL±'7_ 

FREE 

L_ 0· ': 0 '. 0 

_! 0. '; L_._.~ I " 

Note that TASKl is now the highest priority activity, and 
will be executed next. Note also that blocks are returned to 
the end of the FREE list to allow the user to examine the 
history of the system if something goes wrong. 

Therefore, we will begin executing at TASK1. Now suppose, 
for purposes of illustration, that the application program 
has a service subroutine for the console interrupt as follows: 

ABS 
JST 
DATA 
REL 

CONIS ENT 
CIn 
JST 
DATA 
IlATA 

CONINT 
;':$+1 
CONIS 
o 

interrupt location for console int 
call service subrou~ine 
at this location 
r'elocatable portion 
save P here 
turn off interrupt or switch bounces 

INTQ: call INTQ~ 
0,0,0,0 ••• !Jcc; TAB DBI10'1 
CONT:a\, i'(JO 

nll .. ,.I"..." "'l~~.., "I""."",:,.:~ •• _.f .............. 'lnrl 



( 

\ .•...... 
/ .~ , , 

( 
\ 

( 

),b· 
( 

L ( 

mV/tJE. Ci\Llf'ClIINIi\ 92GG4 

'l')'('j;l1IC:' I"')'j 1"/''', ". . . . ""'. \ I'. j \ '. , 

}Stu .1.1..,. I ;: 

'J'/)H/DBIOS 
November 19, 1975 

--_ ... --------_______ I ______ r .. ___ .-'-"-____ --...-____ .. __ ~ ....... __ • __ , 

THE RTX SCHEDULER 

DATA vala,valx ... pass these values in A & X 
DATA CONIS ... address of entry point 

Now suppose that after seven instructions of TASKl, someone 
pushes the console interrupt switch. The interrupt service 
subroutine above will run, and call INTQ:, which will suspend 
the current activity (at TASKI +7) and queue the console service 
task. 

When INTQ: calls the scheduler, the work area looks like 
this: 

i ........ r . 
" 0 /-

REA DY 

, l &-e ---+--

FIFO 

I I """-..... 
~ 

.J ./ . 
FREE 

A 

X 

10t'1 'jxx 

TASK1+7 

contentE, 

content~ 

CONTSK, 

vala 

vqlx 

.0 

j 

---
£1 

0 
--------

0 
-

I 0 
! -

~ 
,/ 

. 

(A, X, & status have changed, 
and TASK1 'has been suspended) 

• 
, 

(CONTSK has been queued) 

0 _._-----
0 

0 

0 

£1 

-... ... ..1 
./: 

/' 

[8172 10 
~ MAIN+7 

rev 

rev I 

" 

---. I -~-.--__ -1 



( 

( 

··w······· ',-' ./ , 

( 

( 

.... ~, .... , 'I' 
.J 

( 
'-

/ ;::.»-.... ::r.· .. 
. /: .. \ 

I I .':'i'· '; . , .. , \. 

1!t#"'V'tteWMtiWft'NJtM,,*lItW' W1b!t:Wf"-'Irlt'wtert:idt.'HMWGIt't'.'MWsM:'ff t 'Urllf" *TP 'jo"('!rt"(M ) m",I-,l b/""# '±dti 

'1 'I: C III) 1. C;" !. 111' J ' 1. I (:; ~ 'l' J( i " : 

l~ULI.l:·"J i; ~
'-;;'J..~ I'~.,\ 

~C~.~~.:J \\.~ 
"--~./ ~J N8ked fviini. Division 

TAU/ DB10S 
l~ovember 19, 1975 IRVIlJE. cr,lIrOnNIA 92664 

~-------~-----------------------.-~-------~,~-.~----~--------

THE RTX SCHEDULER 

, 
The scheduler will now merge the FIFO list into the ready 
list, leaving the work area as follows: 

[ 0--1--­

READY. 

FIFO 

I I 
y I 

FREE 
! -. 

) 

, 
./ 

. 

.... _-
200 ! 0 
CONTSK 

- vala 
'---. 

valx 

. 0 
-

0 

f1 . - . 

~ 

" . 

TASKl+7 

A content 

X content 

, Q 

0 -_. 
0 

I . . 

I 
'==r-=l ___ f1 I 

.. 

(the new task~ CONTSK, 

1S higher in priority 

than TASK1) 

'7, 0 

8172 I {1 

I MAIN+7 

! rev 
1-----.-1 

L_E.~v __ 

Now there are two activities on the READY list. The higher 
priority of the two, CONTSK, will be executed first. The 
other activity, TASKI +7, will be executed when CONTSK 
suspends or terminates (unless s~mething else of a higher 
priority comes in first), 



GEED: ) .. ~ 

( rna b le i-n-t-e-r----..., 

.. l"UPts_~t:':··fl 

~-------------, 

'. 

• . es 

;-:Cmo;~- top task 
from FIFO list 
to prio order 
on READY list 

~ .. 

an~ 
tasks on 

READY list 

?/ 
~ es· 

)(~l"est~l"e -~tatus 
, jA, &X for top 

P at SCHED: 

'I task on READY 
list, & place 

I --_____ ~ 

es 

= 
o 
o 
rl 

flow of SCHED: 
RTX task 

scheduling 
routine 

'..,n"l ,,""" ..... __ -- .- ... --

wry W"M.,.NOi' !Htfm r rnt"-. 



I 
" ; I 

'I 
I 

'#;" 

, , 
: i 

. , 
( 

e •. , eh "it! N 1# $"1' W't tltt .' ). , be t I U ' " 

.' 

': KUfiJOENIrJFOBMATION 

CIB NO 1128 a Real Time EX8cutive (HTX) Ver~ion F2 . 

Mit dieser Informatiun erhalten Sie die neue Version F2 von RTX. 
Es enthalt einen RTX Oasis File Manager fur die Handhabung von 
Files im Standard Computer Automation OS File Format (siehe Section 
5) und ein RTX File Label Utility. 

Der File Manager, eingegliedert im lOX, enthalt aine DirectoTY und 
File Verwaltung fur eequentielle oder random disc storage dEvices, 
welch~ dem Anwenderprogramm erlauben, mit Hilfe von Namen mit Daten 
Files zu korrespondieren. 

Zusatzlich enthalt der File Manager ein automatisches Blocken und 
Nichtblocken von. Datensatzen mit Zugriff in Speicherreihenfolge. 

Das RTX Label Utility ist ein binares "stand-alone II Programm zum 
~ Labeln'vo.n dateiorientierten Geraten. Das Labeln mit diesen Utility 

1st compartibel zum Computer Automation OS Datei Format. 

Folgende Dokumentation und Lochstreifen sind beigefugt: 

Dokumentation 

Lochstreifen 

RTX Users Manual Version F2 

LSI 2 RTX/IoX ~equent 1 & 2 
93300 - 30 F2 I 31 F2 

IC: 
\ 

LSI 2 RTX File Label Utility 
93324 - 40 A1 
LSI - 2 RTX Demo 
93300 - 33 E1 I 

I 

i 

Technischer Support 
Rohde 

" 


