: (
,©
NAKE-D MENE Dlvnsxon
18651 Von Karman, Irvine, California 92713 |
1) Telephone: (714) 833-8830 TWX: 910-595-1767
1)
- REAL-TIME EXECUTIVE (RTX)
; USER’S MANUAL
: 90-94500-00F2 ‘ j Ap}il 1977
e
1 | ¢ 1977 COMPUTER AUTOMATION. INC PRINTEDIN THEUS A,

()

~

REVISION HISTORY

Revision ‘ Issue Date
AO

Al to E6
FO November 13976
F2 April 1977

Comments
Original issue.
Misc. RTX/10X updates.

Adds Magnetic Tape Intelligent
Cable, Storage Module Disk, and
IEEE Intelligent Cable IOX
Handlers. Adds block diagrams
for IOB, UAT, DIB and CIB.

Adds IOX Handler 1listing.

Adds File Manager to IOX,
and overall documentation
cleanup. '

-

o

Section

TABLE OF CONTENTS
PART I. REAL-TIME EXECUTIVE (RTX)

INTRODUCTION TO RTX
1.1 WHAT IS RTX? & &+ o « o o o o o o o o o u o o o=
1.2 WHEN SHOULD RTX BE USED? « « « « o « « « = « « -

1.3 WHAT DOES AN APPLICATION PROGRAM LOOK LIKE? . .

1.4 DEFINITIONS . ¢ ¢ o ¢ o o o o o o o o o o o o =«

RTX ORGANIZATION v ,
2.1 WORK AREA (USER BLOCKS) + v o o &« & o « =« « «

FUNCTIONS . & 2o &« o o o o o o s o o o o o =
1 Initialize Work ARrea (RTX:) . . ¢ « o « =
2 1Initiate New Task (BEGIN:) . o o - « = .
3 Terminate Current Task (END:)
.4 Suspend Current Task (PAUSE:)
5 Coordinate Numbers . . « « « « o « « =« &
6 Inter Task Coordination (PUT:/GET:) . . .
7 Delay Current Task (DELAY:) . . v o« « o« &

NNNDMNMNNON
.

- INTERRUPT PROCESSING

3.1 SAVE ENVIRONMENT (INTSV:) - o o o « o o o « o -
3.2 RESTORE ENVIRONMENT (INTRS:) . « o « o « - - - .
3.3 INITIATE A NEW TASK FROM AN INTERRUPT SUBROUTINE
3.4 INTERRUPT SERVICE AND QUEUE TASK (INTQ:)
3.5 COMMON SUBROUTINES (REENTRANCE) . . = « « « « .«
3.6 WRITING COMMON SUBROUTINES
3.7 CALL A COMMON SUBROUTINE (SUBR:) . « « +« o « « .
3.8 EXIT FROM COMMON SUBROUTINE (SUBX:) . . - . - .
3.9 PROTECT A FACILITY (PROT:) « & v o o + o o - .
3.10 RELEASE A PROTECTED FACILITY (UNPR:) . . - . . .
3.11 LOCK OUT A PACIL;TY (LOCK:) + o « « o .

3.12 UNLOCK A LOCKED FACILITY (UNLK:)

iii

"

1/1-1
1/1-2

1/1-3

I/lj3

1/2-2

1/2-2
1/2-2
1/2-3
1/2-6
1/2-6"
1/2-7
1/2-7
1/2-8

I/3-2

I/3-2

1/3-2

I/3f3_~
I/3~-4
I/3-5

1/3-6"

1/3-6

1/3-7
1/3-8
I/3-10

1/3-11

i

ComptrterAutomation @% —

/
TABLE OF CONTENTS (Cont'd)
_Si don v - Page
: 3.13 RBORT A TASK(ABORT:) . . . « & &« & & & o 0 v v v 0 o o o = = . I/3-11
} 3.14 OBTAIN CURRENT PRIORITY (GETPR:) . « v v v v ¢ v o o o o o o = I/3-11
. 3.15 SET TASK PRIORITY (SETPR:) + ¢ & - @ % v v o o o o o « o « o = I/3-12

3.16 INCREMENT TASK PRIORITY (INCPR:z) . ¢ . < = o« o ¢ o o s « « = - 1/3-12
3.17 DECREMENT TASK PRIORITY (DECPR:) + « « « & =« = « o o o o <.+ = I/3-12
ADDITIONAL RTX REATURES

4.1 RTX DEBUG REATURE (ZBG) « o o o o o o o o o o o o oo e v o o 1/84-1

0_.

1 4.2 PROGRAM LOAIDNG WITH ZBG « « + = = o v v o o o e eee e o v o 1/4-a

4.3 POWER-FAIL, AUTO-RESTART (PWRFL:) . . . « « o o « o o o = « . 1/4-4

4.4 TELETYPE INPUT/OUTPUT . +¢ &« & o o o = o « o o« o o o o o o o I/4-4

o 4.5 LSI-3/05 SOFTWARE CONSOLE ROUTINE (CNSOL3) + « v o v v o« - o« . 1/4-4
5 RTX OPERATING PROCEDURES
(
6 A SAMPLE RTX PROGRAM - RTX DEMO
6.1 PROGRAM DESCRIPTION T 1/6-1
6.2 PROGRAM MODULE FUNCTIONS . « & o « + & & & o o & = ¢ o o « o . 1/6-2
_:> 6.2.1 BEGIN . . v v o ¢ 4 o o o o 2 o o o o o o o o o o« o o o o @ 1/6-3
. 6.2.2 TASKL & ¢ v 4 o o o o o o o o o o o e e e e e e e e e e e 1/6-3
6.2.3 TASK2 - i 4 4 e e e et e e e e e e e e e e ae . I/6-4
©-2.4 TBASK3 . © 4 4t v 4 o v e e e e e e e e e e e e e e e e e 1/6-4
g 6.2.5 TOTASK 4 v 4 v v v v o o o o o o o o o o o o o o e wuaT. 1/6-4
6.2.6 BDDL . . ¢ ¢ 4t ¢ ot e e e e e e e e e e e e e e e e e e 1/6-4

iv

———

ComputerAutomsaton (EZ;Q&
Y . } TABLE OF CONTENTS

PART II. INPUT/OUTPUT EXECUTIVE (RTX)

Section Page

1 I0X GENERAL DESCRIPTION

1.1 GENERAL DESCRIPTION . ¢ & & 4 v o & o o o = o o o o o o o « « « II/1-2

1.2 CALLING SEQUENCES . . . ¢ ¢ v o o7t v ¢ ¢ o o o o o o o o o oo TT/1-3

1.3 DEVICE DEDICATION & ¢ ¢ v & o o o o o o = « « = « . [IL/1-5

1.4 LOADING « + v v o v v o o o o o o o 4 o o o o o v o o ere o o I1/1=5
1.5 RESTARTABILITY . « « & & ¢ & o o o o o o o o o o o o o o o o . II/1-7

& 2 ~ IOB AND UAT ORGANIZATION : .
: 2.1 INPUT/OUTPUT BLOCK (IOB) - 10 Words . « - « = - « o « « o o . . 1II/2-1

2.2 UNIT ASSIGNMENT TABLE (UAT) . « « « v 4 = v = = = = = « « o . . 1I/2-6
2.3 STANDARD DIB NAMES . . . & & & & v v o « & o o o o o o o o - . II/2-7
2.4 SAMPLE UAT . . « « « « « = & o o o o o o = o + o o« o o o« o . . 1I/2-8

) 3 I/0 HANDLER ORGANIZATION - & v o v o o o o o o o o o o o o o o o o . II/3-1

3.1 THE STANDARD HANDLERS . 4 v « « ¢ « o o« o s o o o o o o o « « o« II/3-1
3.1.1 Character-Oriented Device Handler (Non-Fortran) 1I1/3-1
3.1.2 Fortran List Device Handler ¢ ¢ + ¢« « « <« « . . II/3-1
3.1.3 Card Reader Handler & ¢ + o« o o o« o « o o « II/3-1
3.1.4 Magnetic Tape Handler ¢« « « « ¢ ¢ o « o « o« o 1I/3-2
3.1.5 Disk and Storage Module Disk Handler (Non-Fortran). . . 3II/3-2
3.1.6 Floppy Disk Handler (Non-Fortran) . . « « =« o« o« « « . . I1/3-3
3.1.7 Disk, Storage Module Disk, and Floppy Disk Handler '

g : (Fortran) . .« ¢ v« ¢« 4 o o o« o o « o o o o o o o = o « « 1II/3-3
' . 3.1.8 Magnetic Tape Intelligent Cable (MTIC) Handler 1II/3-4

3.2 I/O HANDLER REQUIREMENTS . & o ¢« o & « o o o o « o = o« « o « . I1/3-4"
3.2.1 SINT: (Set up an instruction at the Word Interrupt
Location) . ¢ o« & & ¢ s e 4 o + o o o o. 6o o » o o « o - II/3-5.
SIO: (Start I/0 and Watchdog Timer) . .« v« o &+ o o « « . II/3=-5"
INTP: (End of Block Interrupt Returm Point) II/3-7
WAIT: (End of Record Delay Routine) II/3-9
"EQOFQ: (End of File Check Routine) II/3-9.
EOF: (End of FileRoutine ¢ . « 1II/3-10
EQR: (End of Record Routine) ¢« . + - . . « . II/3-10
« EORST: (Alternate Entry Point to ECR:) II/3-10
FETCH: (Input one character from an I/O device) 1II/3-11
0 BUFFQ: (Store input character into buffer) II/3-12
1 UNRES: (Unresponsive Device Routine) -II/3-12
2 IORTN: (Return to I/O Scheduler) II/3-13

WWWwwwwwwwww
.

NRNMOMNNNMNNDMNNN
L]

= O 0NN A WN

. (3 . .
.

v—) 3.3 CHARACTER-ORIENTED DEVICE HANDLER LISTING . . -« « . . - II/3-13

.V

Ckxnpuhu%hﬂcrnaﬁoﬁ (EZ&QS —

-

TABLE OF CONTENTS (Cont'd)

- 3ection ' Page
+ DIB AND CIB DESCRIPTIONS
4.1 DEVICE INFORMATION BLOCK (DIB) - 11 to 18 words 1II/4-1

4.2 REGULAR DIB CONFIGURATION (ALL HANDLERS) - WORDS O TO 10 . . . 1II/4-3

4.3 ADDITIONAL DIB CONFIGURATIONS - UP TO 18 WORDS - . . . 1I11/4-6
4.3.1 Distributed I/ODIB . . « v « v v v v v 4 ee o o o« « . II/4-6
4.3.2 Magnetic Tape Intelligent Cable DIB-. 1I/4-7
4.3.3 Disk DIB 4 4 4 4 4 4 e e e e e e e e e e e . . I1/4-9
4.3.4 Fortran Disk DIB . . . ¢ &4 4« 4 o o o o o o o o = « o« « IX/4-11
4.3.5 Storage Module Disk DIB (Fortran and MNon-Fortran) . . . 1II/4-12

4

SAMPLE DISK DIB & 4 4 v ¢ o v o« o o o o o o o =«

Vil

g
[
»
o

- - . 1I1/4-14

o 4.5 CONTROLLER INFORMATION BLOCK (CIB) - 38 WORDS (47 WORDS FOR
STORAGE MODULE DISK) e e e e e e e e e e e e e e e e e . .. IT/4-14

4.6 STANDARD CIB NAMES & ¢ ¢ 4 ¢ v ¢ o o o o o o o « o « o 1IXI/4-17
5 FILE MANAGER

‘> 5.1 FILE ORGAENIZATION . .+ & ¢ 4 4 o o o o o = o o o « o« o« o o o o @ I1/5-1

. 5.1.1 Sequential File ACCESS . « « « « ¢ 2 o« o « « « « « . . II/5-5
5.1.2 File Opening and Closing . . « « « ¢ <« v v« v v « . . . II/5-5

(5.1.3 ~ File Positioning+ . v« IL/56
5.1.4 File Functions ¢« ¢ ¢« ¢ ¢ ¢ &+ ¢ ¢ ¢ v o o =« « o 1I/5-7

5.2 TABLE ORGANIZATION . . . ¢ « & o o o o o o o o o o« o o« « o« « « II/5-9

5.2.1 File Device Information Block (DIB) II/5-9
) 5.2.2 Controller Information Block (CIB) I1/5-15
‘3> 5.3 RTX FILE LABEL UTILITY e o s o o o o 8 o o e o o o o e o e o 11/5-18
(5.3.1 Environment ¢ ¢ ¢ ¢ 4 ¢ ¢ e o o e« o « « . . II/5-18
/

5.3.2 Program Operation ¢ ¢« ¢ . . ¢ ¢« « . . II/5-18

6 DEVICE DEPENDENT CONSIDERATIONS . . ¢ o ¢ ¢ ¢ o & « = o « « = « « o II/6-1

e e o o o« o II/6-1
6.1.1 Line Printer. . . . ¢ & ¢ ¢ ¢ 4 4t 4 ¢ ¢ v ¢ ¢ v o o « . II/6-1
6.1.2 Teletype Keyboard (TK) « . . ¢ ¢ ¢ ¢ v © o« « . II/6-1
6.1.3 Teletype Console (TY) (implies tape reader or keyboard

for input, whichever is ready) « .« II/6-2
6.1.4 Teletype Reader (TR) . v ¢ &+ v ¢ ¢ o o o o o o o o« o . II/6-2
6.1.5 Teletype Punch (TP) II/6-2
6.1.6 Card Reader (CR) & & « ¢ ¢ ¢ ¢ v o o o o« . . II/6-3
6.1.7
6.1.8

6.1 STANDARD CHARACTER DEVICE HANDLERS

High Speed Reader (PR) « « II/6-3
High Speed Punch (PP) , II/6-3

vi

\.

N
I

111
NN

|
D WSO WN

2
4
4
5
5
5
5~
5
5
5
7
7
7
7

LIST OF ILLUSTRATIONS (PART 1)

Typical Example of RTX +« . .+ + « o o« «
RTX Software Configuration - . .
RTX Demo Program - Flow Diagram (Sheet 1) - - .

LIST OF ILLUSTRATIONS (PART 1I)

IOB Configuration
UAT Configuration ¢« « « « .« &

DIB Configuration . . « . . « ¢ . ¢« ¢ + ¢ o . .o

CIB Configuration ¢ & ¢ « & o « « o &+ =
Disk Directory Structure,.
Disk Description Table (DDT) in Volumn Table of
Disk File Linkage ¢ ¢ o « o o o « « + =
Sequential File Positioning Examples
Table Organization . . « « « « o « o « « o« « =
DIB Definition When used With the File Manager

-CIB Definition When Used With the File Manager

IEC IOB Configquration -- 9 to 12 woxrds
IEC Status Byte Configuration
IEC Set Mode Command Word Format
IEC CIB Configuration ¢« « ¢« « « . .

LIST OF TABLES

User Blocks for RTX Functions . . . « . « « .+ .

viii

Computersutomation (R ——

Page

1/1-4
1/1-5
1/6-5

11/2-2
11/2-6"
11/4-2
11/4-15
11/5-2

.I11/5-3

I11/5-4
II1/5-8
11/5-10
I1/5-11
11/5-16
I1/7-2
11/7-6
11/7-7
11/7-9

Page

1/2-4

o

=\

PART I

REAL-TIME EXECUTIVE (RTX)

Lompuisrinomsoon (L/\y —]

SECTION 1

() INTRODUCTION TO RTX

This section presents an overview of Computer Automation's Real Time-FExecutive (RTX)
program which operates on all ALPHA-16 and LSI- processors. The following discussion
is concerned with three basic questions:

1. What is RTX?

2. when should RTX be used?
3. What does an application program look like?

v

S.l WHAT IS RTX?

R e : .
‘ X is a modular package of service routines that handles both the overhead functions
("and the scheduling services associated with a real-time environment. Modular con-
struction allows you to select only the portions of RTX required for your application.
Real~time environment means that if your application requires that certain tasks be
performed at selected intervals or in response to an external signal or event, then
RTX will manage the orderly interruption and resumption of your program. RTX does
all the overhead functions to maintain and direct the execution of your application
ifring both normal and real-time processing.
RTX is also a powerful multi-task executive that controls all tasks of the overall
\pplication. These tasks include priority scheduling, response and assignment,
interrupt servicing, and communication among RTX tasks and user-developed handlers.
"Overall task control:

1. Allows the application program to be designed as a number of either inter-related
or subordinate tasks. The nature of the application determines the task relation-
ships. RTX will completely handle the switching from task to task as required.

b? Allows the application program to dynamically define (and redefine) the priority
(level of the various tasks in the application using RTX service routines. This

is a software priority which is then used by the RTX scheduler function to direct
the sequence of task execution.

3. Allows RTX priority scheduling, response and assignment to share the computer
among tasks with equal priority. When all tasks of the highest priority are -
temporarily waiting for some event to occur, the next highest priority level is
scheduled in the same manner. ' ’ ’)

4. Allows response to interrupts, as generated, because the user provides the
interrupt instructions which transfer control to an interrupt service routine.
This interrupt service routine will save status (using an RTX function), perform
the necessary instructions to assure no data loss, and then restore status (using
an RTX function). This routine can also cause a lower priority routine to be

I/1-1

Computechutomaion (G} ——

(”cheduled if additional processing of the interrupt data is required; the lower
prriority routine can be temporarily deferred until any higher priority tasks have
had- their turn at executing.

. Allows the various tasks in the application to communicate between themselves (or
with RTX) through RTX communication routines. These routines allow a task to

(uniquely identify the communication request and then post it. Posting consists
of presenting information to, or requesting information from, another task. This
facility may be used to operate simply as a signaling device, or it may be as
complex as both a signaling and parametric (pointer-passing) function. -

11 of these RTX features combine to produce a multi-tasking, real-time scheduling
xecutive that is, despite its small size, the most powerful and easy to use system
f its kind on the market. Flgure 1-1 illustrates a typical example of RTX.

.2 WHEN SHOULD RTX BE USED?

he most significant reason for using RTX is that your application program requires a
ea ime environment. Real-time environments are found in many circumstances,
ar®QPg from high speed data acquisition to occasional sampling of an electro-

w(.nical device such as a relay. The basic criterion is that a need exists for the
ppiication to communicate with some external device or event in a time-dependent
anner. If this criterion is met, then RTX is a suitable vehicle for defining the
‘elationship between the external device or event and the application programming
.asks which control and service that device or event. Some of the more obvious
pplications are:

(»ommunications
Message Switching
- Store-and-Forward
(Networks
Reservation Systems

Je Process Control
Plant Operations
; Flow Monitoring
Equipment Direction
é*; X-Y Positioning
(, Petro-chemical Applications
3. bata Acquisition
Test cells, such as automotive or airframe/aircraft
Traffic Control
Instrumentation Control
Source Data Entry
Oil Field Data Monitoring

1. Medical Data Processing
EKG/EEG Analysis
Patient Monitoring
Cardiac Monitoring
Patient Billing

I/1-2

|

5. Security Systems

Plant/Facility Security
X-Ray Security Systems
Video Transmission Systems

6. Financial Transactions
Point—-of-Sale
Automatic Banking
Inventory Control

1.3 - WHAT DOES AN APPLICATION PROGRAM LOOK LIKE?

RTX allows the user to construct his application in modules. These modules are then
combined with RTX during the loading process to produce the final application program.
The user may choose any arrangement of his program into modules .that suit his needs.
Figure 1-1 shows a general diagram of this type of arrangement. This modularity
ﬁmfoncept applies not only to the user's application, but also to RTX itself. The RTX

poackage is simply a library of separate subroutines which may be referenced by the
user's modules; certain of the RTX subroutines in turn reference others, and the
linking of all required modules (performed by the LAMBDA loader or by the OS:LNK
program) results in a configuration consisting of only those modules needed for the
application. Figure 1-2 shows how the modules and user programs are loaded into
memory and the size of the individual RTX modules. Keep in mind that the only RTX
modules actually loaded for a given program will be the ones regquired by the
particular program.

1.4 DEFINITIONS

1. Activity: A task which has been initialized (via BEGIN: for example) and is
receiving support from RTX.

2. Common Subroutines: Subroutines which may be used by two or more different
activities concurrently. These require special coding to provide reentrant
’ capability.

*:33. Coordination Number: A decimal integer used to identify a task to RTX. It is

analagous to a telephone number in that it is used to "connect™ a task to another
task or to the DELAY: process.

4. Interrupt Data Processing: That portion of code that processes the data obtained
by an Interrupt Service routine.

5. - Interrupt Service: That portion of code that must be executed imﬁediately after -
the interrupt occurs (so as not to lose data). It should be limited to only that
code which is necessary to assure no data loss.

6. Inter-Task Coordination: A method for tasks to communicate and pass parameters
using two 16-bit computer words. These words may contain any information, such
as a table address,‘a pointer to a list of values, or a value itself. ’

v

I/1-3

ComputerAutomation szﬁis —_—

’ Communications Task
R
T | "Peripheral Device Task 4] (2) CAI-Supplied Tasks
X : } . (10X)
Additional Communication AND :
| Peripheral Device Tasks as |
6 needed -
{ File Manager
N) T J
U
C
L
E
(’ 8}
) S Task 1
Task 2 (3) User-written Application
) Tasks (as many as
Task n » needed)

(1) RTX Nucleus provides control, scheduling, priority handling.

(2) CAI-supplied tasks provide handlers for I/0 (such as printers, tapes,
etc.,), for communications (such as BISYNC, ASYNC, etc.), and cthers.

(3) The user need only supply tasks which perform his application’'s work,

- while utilizing the CAI-supplied software for support. *

Figure 1-1. Typical Example of RTX

ol
! 1/1-4 Revised 1/77

e

—

" ADDRESS

Scratch Pad = :100

User Programs

KTX/IOX Library
Segment 1

MEMORY MODULE SIZE
: 0000
Literals and Interrupts .
1
:00FF 1
User - Mainline (i.e., RTX
Initialization), Tasks,
Data/Work Areas and
Interrupt Service Routines
Y
A
I0X - TTY, Line Printer, .
CRT and Paper Tape :200+
Tables and'Drivers 1
I0OX - Card Reader and)
Mag Tape :180+ .
Tables and Drive;s ‘. l
IOX - Disk T
Tables and Drivers :i§0+
I0X Scheduler :ﬁ?
RTX Nucleus. : T
RTX:, BEGIN:, END:, . . ., :CO
List Pinters and
Scheduler
Debug (ZBG) :2D4
IOX Controls T
IONIT:, EOR:, EOF:, : 290
s10:, . . ., SINT:, IO:
and EOFCK:
RTX Services T
DECPR:, DELAY:, GET:, PUT:, :130
- - ey SUBR:, SUBX:, INTG:
and RTOSZ:
File Manager 1600
:nFFF i

RTX/IJX Library
Segrent 2

Figure 1-2. RTX Software Configuration

1/1-5

ComputerAutomation <§;ZR5} ——————-’?

Kf' Main Line: A short initializing sequence which resets all task table pointers,

and then begins one or more tasks. (Tasks may also be begun by other tasks, or
ypon an interrupt from an external device.)

8. Priority: A software defined method for assigning (and re-—assigning) the rela-
(tive importance of a task to RTX.

9. Re-entrant Programs: A program specifically written such that it may be directly
entered by more than one program, concurrently. Under. RTX, this is necessary
only if two or more Interrupt Service routines require immediate use of the same
program. For example, Interrupt Service A calls routine C.

Interrupt Service B becomes active and also calls routine C.
entrant,

While C is executing,

If C were not re-
this second call to C would replace the return address at C's entry

point, causing the return address for routine A to be lost.

10. Task: A program or set of programs which operate to perform a specific function
within the real-time application.

11 Work Area: An area of storage dedicated to’table space for RTX. This table
£J>contains all the necessary information for RTX to perform its functions. Its

usage is dynamic and is dependent upon the maximum concurrent usage of RTX
{ functions.

[« »

I/1-6

{ The scheduler maintains a "Ready" list of each task in order of priority. The highest

SECTION 2

RTX ORGANIZATION

RTX is basically a collection of functions (subroutines) and a user-supplied work
area, which are linked to the user's Mainline sequence and tasks prior to execution.
Each RTX function may be called as a subroutine by the user as it is needed, to
perform a specific job. (See below for descriptions and calling sequences of these
functions.) RTX also includes a task scheduler (SCHED:) which is used to execute the
task of highest priority. The priority of a task is defined when the task is begun,
and may be changed by the task, using the SETPR:, INCPR:, and DECPR: functions.
ﬁt;riorities may range from 1 to 8191, with larger numbers representing the higher

/riority- ! o ’

priority task is executed until it suspends itself by calling any of the following
RTX functions:
DELAY: (unless altering or cancelling a previous delay)
‘(; GET: (if no corresponding PUT: yet, and not a cancel cali)
! SUBR: (if the comﬁon subroutine is busy)
(‘ PAUSE: (essentially reschedules the pausing task at the same priority)
I0: (BEGINs, at I/0 completion time, the normal or abnormal return at the

same priority)

SETPR: ~ (if the new priority is lower than that of another task)

DECPR: (if the new priority is lower than that of another task)

(Once the task has been suspended, RTX executes the new highest priority task. The
rule for determining the highest of equal priority tasks is, "first in - first out”.
Thus, if a task suspends itself, it thereby becomes "last in"™ within its priority.

| In addition to the user-invoked suspends listed above, occurrence of an ihterrupt :
will cause a task to be suspended, if the new priority is higher than that of the

current task. An interrupt is defined to be:
1. A haranre (gxternal) interrupt, with INTQ: ér INTAC: attached, or
2. A software (internal) interrupt:

a DELAY: expiring

a PUT: which satisfies an outstanding GET:
a SUBX, UNLK:, or UNPR:, with a higher priority task waiting

1/2-1

ComputsrAutomation (g;Z?QS —

Ig’addition, an Input Output Executive package (IOX) is available, which may be
linked to run in conjunction with RTX. Its function is to perform 1/0 operations to
the standard CAI 1/0 devices (teletype, high speed paper tape reader and punch, card
reader, magnetic tape units, and disk) and resolve confilicts of concurrent 1/0
('Tlization.

A File Manager operates in conjunction with IOX. It enables the user to communicate
with data files by name, independent of the physical medium storing the filec.
Requests for access are made through IOX using Logical Units (LUNs).

2.1 WORK AREA (USER BLOCKS)

The user must supply a contiguous work area for RTX to build its tables. The address

and length of this work area is specified in the call to the RTX: function. It is

grouped by RTX into blocks of five words each, and there must be at least two of

these blocks (10 words) reserved; otherwise an error return will be made from the
tialization routine. Table 2-1 gives a list of the RTX functions which allocate

aEE}de-allocate this area. The left hand column’ denotes the number of blocks allo-

c d (+) or de-allocated (-) by the function in the right-hand column. The user

I st supply sufficient work area for the maximum number of five-word blocks which
may be allocated at any one time.

2.2 RTX FUNCTIONS:
2.2.1 1Initialize Work Area (RTX:)

Calling Sequence:

N , EQU ' (NUMBER OF TASK BLOCKS)
WKAREA RES N+N+N+N+N, 0 AREA FOR BLOCKS
JsT RTX:
DATA N # OF CONCURRENT ACTIVITIES
’ DATA WKAREA
&: 'ERROR ‘ RETURN WORK AREA EXCEEDED
) NORMAL RETURN

()

Returns With:

INTERRUPTS ENABLED
OVERFLOW RESET
WORD MODE

A REGISTER --- CURRENT RTX REVISION NUMBER IN ASCII
X REGISTER --— CURRENT RTX REVISION NUMBER IN ASCIIX

This subroutine is called in the user's Mainline sequence to initialize the working
area of RTX. The work area is broken into N blocks of five words each, which are
then used by the remainder of RTX during system operation. The number N must be
large enough to allow for all concurrent activities. Work area overflow will cause a

jump to the RTX: routine's error return at any subsequent time during the running of
the program, not just during the call to RTX:.

C !

1/2-2 Revised 1/77

T TP B SR SRS T

bty iraaionictis

w

 Computerautomation () ——

. PHOTE

* A call to this subroutine causes activation of the RTX Scheduler.
Upon return, the calling program (normally the user's Mainline
sequence) is thenceforth considered a task with a priority of 8172.

In addition to initializing the work area, the RTX: subroutine can also reset all I/0O
tables, if desired; this feature will insure restartability of a user's program. The
feature may be referenced in the user program, if restart capability is required;
otherwise it may be omitted, thereby shortening the overall length of the program.
(Upon initial loading, I/O reset is not required before execution.)

To include this feature in the RTX: subroutine, simply reference the module “IONIT-"
in the Mainline sequence. elther of the following directives:

IONIT: REF

d e . ‘ »
‘:ﬁ' or v 4
(LOAD IONIT: . , 7

will serve this purpose.

2.2.2 Initiate New Task (BEGIN:) .

Calling Sequence:

JST BEGIN: -
(DATA (*) START ADDRESS OF NEW TASK

N ' DATA PRIORITY OF NEW TASK

Returns With:

INTERRUPTS —--- ENABLED
OV —-—- UNCHANGED
&}' A REGISTER --- UNCHANGED

X REGISTER --- UNCHANGED

NOTE

When the new task starts executing, the A and X registers will
contain the values at the time of the JST to.BEGIN:, OV will be
reset, and the computer will be in word mode.

This subroutine is called to initiate a new task. The task is scheduled and BEGIN:
then exits to the task Scheduler. This means that the calling program will not
receive control back immediately if the new ("begun") activity is of higher prlority,
or if another task of higher priority is ready to begin execution.

1/2-3

CompiiterAutomation (g;Z?QS ——

; (f . Table 2-1. Uscr Blocks for RTX Functions
ﬂ No. of
" Blocks Function
+1 RTX:
| +1 BEGIN:
|
il .
-1 END:
0 ' PAUSE:
+1 PUT: (If a new,'unique PUT: and no corresponding GET: is waiting
for it) ,
.0 PUT: (If a new unique PUT: and the corresponding GET: is already
6 ‘waiting for it) o
4 0 PUT: (To change the information in a previous PUT:)
-1 PUT: (To cancel an outstanding PUT:)
0 GET: (If a new, unique GET: and no corresponding PUT: is waiting
for it)
(;:1 GET: (If a new, unique GET:; and the corresponding PUT: is already

waiting for it)

(, -1 GET: (To replace a previous task currently waiting for a PUT:
with the current task; the new GET: must be called with the
same coordination number as the task to be replaced)

-1 GET: (To cancel an outstanding GET:)
(ﬂ] DELAY: (To initiate a new delay)
,‘3>0 DELAY: (To change the length of an outstanding delay) :
(\ -1 DELAY: (To caﬁcel an outstanding delay)
- . 0 " INTSV:
) INTRS:
+1 INTAC:
+1 INTQ:
| +1 SUBﬁ: (If the common subroutine is not already in use)
é 4] SUBR: (If the common'subroutine is already in use)

1/2-4

K
#

Bl

Table 2-1. User Blocks For RTX Functions (Continued)

ComputerAutomation (g;?ﬁis —

("\

No. of
Blocks Function

-1 SUBX:.(If no other tasks are waiting to use the common sub- .

routine) :
0 SUBX: (If one or more tasks are waiting to use the common sub-
routine) .
+1 PROT: (If the facility is not already protected)
(o} PROT: (If the facility is already protected)

-1 UNPR: (If no other tasks are waiting to protect the facility)

0 UNPR: '(If one. or more tasks are waiting to protect the facility)
+1 LOCK: (If the facility is not already locked)
0 LOCK: (If the facility is already locked)

-1 UNLK: (If no other tasks are waiting to LOCK: the facility)

-1 ABORT: (In addition, -1 for each resultant SUBX: call where no
other tasks are waiting to use the common subroutine, and -1 for
each resultant UNPR: and UNLK: call where no other tasks are
waiting to PROT: or LOCK: the facility)

0 GETPR:
0 SETPR:
0 INCPR:
0 DECPR: i
(0] IOREL:
0 IOWAT:
3 or 4 IO: (as follows:)

+1 For the immediate return +1 For setting a watchdog .timex |
+1 For scheduling ' +1 If I/O completes before i

{

scheduling completes

1/2-5 ;

i <>on6puﬁoniu¢ornaﬁku1 (E;ZGQB —

NOTE

CoN Priorities are integers from O (lowest) to 8191 (highest). Users
should limit priority to less than 7000 because certain RTX functions
use those of 7000 and higher.

.2.3 Terminate Current Task (END:)

Calling Segquence:
JST END:

he current task may terminate itself with a call to END:. No arguments are required
nd‘ajntrol will not return. ' '

4

(B - HOTE

The Mainline sequence (as a result of the JST to RTX:) has a priority
of 8172. This sequence should begin other necessary tasks and then
terminate itself by a call to END:. If it does not terminate, no
tasks of a lower priority can execute.

3:.2.4 Suspend Current Task (PAUSE:)
(Calling Sequence:

JST PAUSE:

Returns With:

INTERRUPTS --- ENABLED

STATUS --- UNCHANGED '
p A REGISTER —--~ UNCHANGED
RS X REGISTER --- UNCHANGED

 this subroutine is called by a program which desires to allow other tasks at the same
" Sriority level to get service. This is useful if a program is unusually long or is a

:losed loop. PAUSE: is essentially similar to a BEGIN:, END: ‘pair, but is less de-
' aanding on work area space in RTX.

NOTE

Programs which loop indefinitely are perxrmissible, but should be used
carefully since they will block execution of all activities of a
lower priority. Tasks should begin in response to a stimulus,
generate the appropriate reaction, and end.

(S

¢l ' 1/2-6

ComputerAutomation @ S

il .
?i g 2.2.5 Coordination Numbers

4 Before discussing GET:, PUT., and DELAY: the concept of coordination number must be

| understood. A coordination number is a 16-bit value which is supplied ‘as an argument
-! to GET:, PUT:, DELAY:, PROT:, UNPR:, LOCK:, UNLK:, IO: and IOREL:. This number

(. serves to identify the activity so that it may be referenced by a later call.

For GET:, PUT: AND DELAY:, the same coordination number used in the same type of call
supersedes the previous call. The negative (2's complement) of a coordination

number cancels the previous call. FORTRAN uses the following coordination numbers,
and the designer should avoid their re-use:

F:RBPG address (for LOCK:)
:FFDC (for LOCK:)

In addition, all DELAYs performed in I0X and COMX use memory addresses as coordination
numbers. These memory addresses fall within the IOX or COMX boundaries, or their
iE@assoclated tables (CIB's). Thus, it is strongly suggested that the system designer

follow this practice, and use as coordination numbers, only memory addresses of
locations within his program. Basically, it is the system designer's responsibility
to allocate coordination numbers ‘so that no conflicts arise. . §

I HOTE
Zero has no separate identifiable two's complement, and therefore a
coordination number of zero should not be used. »
|

2 2.6 Inter Task Coordination (PUT:/GET:)
(These two facilities are generally used together as a pair. In general, PUT: passes
32 bits (the A and X registers) to a GET:. Coordination numbers are used to insure
* proper reference. There are no timing restrictions on associated PUT:/GET: pairs.
(If a task calls GET: before another task has made the corresponding PUT: call, the
GETting task will suspend until the PUT: is made.)

PUT:
(' Calling Sequence:
JST PUT:
DATA COORDINATION NUMBER

Returns With:

INTERRUPTS —-- ENABLED
STATUS --- UNCHANGED

A REGISTER --- UNCHANGED
X REGISTER --- UNCHANGED

This subroutine is called to do one of three things:

‘| 1. Pass 32 bits to another task; call PUT: with the same (positive) coordination
,1 number which will be used in the call to GET;

S

1/2-7

I, . .
- nis subroutine is called for one of three reasons:

Computsehutomation (), ———

the information in a previous PUT:; call PUT: with the same coordination
number used previously.

Delete an outstanding PUT:; call PUT: with the 2's complement of the coordination
(' number of the PUT: to be deleted. ’

ROTE

If a PUT: is issued before the associated GET: is called, one block
is used from the work area in RTX. If the GET: is called first no
additional demands are made on the work area.

3T:
Calling Sequence:.
- JST GET: ,
& DATA COORDINATION NUMBER :
Returns With:
INTERRUPTS --- ENABLED
STATUS --- UNCHANGED
A REGISTER --- FROM ASSOCIATED PUT
(\ X REGISTER --- FROM ASSOCIATED PUT

. (T'o obtain 32 bits (A and X registers) from another task: call GET: with the
positive coordination number to be used with PUT:.

. To delete a task currently in a GET: waiting for the associated PUT:; call GET:
with the 2's complement of the coordination number.

. » replace a task currently waiting for a PUT: with the current task; call GET:
rith the same coordination number as the task to be replaced.

fét GET: is called, control will not be returned until the associated PUT: is
ssued.

.2.7 Delay Current Task (DELAY:) (Requires Real-Time Clock Option)

Ca.ling Sequence:

JST DELAY:

DATA _ # OF TICKS ON THE CLOCK FOR DELAY
DATA COORDINATION NUMBER

" Returns with:

A INTERRUPTS --- ENABLED
(Q STATUS --- UNCHANGED

1/2-8

I1f deleting or changing an outstanding delay:

A REG1STER --— UNCHANGED
X REG1STER -—- UNCHANGED

If actually executing a delay:

A REGISTER —-- CCORDINATION NUMBER
X REGISTER —--- UNDEFINED

subroutine is called for one of three reasons:

To delay the current task for a specified period of time. (The number of ticks
referred to above is the number of time interrupts from the Real-Time Clock.
These interrupts normally occur every 10 msec but may be changed by a Jjumper
wire. (See the appropriate ALPHA-16 or ALPHA LSI Computer Reference Manual).
For this call, supply a currently unused positive coordination number.

To delete an outstanding delay. A call'to DELAY: with the 2's complement of the
coordination number of any current delay will delete the delay request (and the’
task that called it). This is useful for deleting a watchdog routine.

To change an outstanding délay. A call to DELAY: with the coordination number of
a currently active delay will change the outstanding delay. This is equivalent

to deleting a task in a delay and immediately starting the same task with a new
delay.

1/2-9

Computsrautomation (A

SECTION 3

INTERRUPT PROCESSING

Most interrupt service routines can be divided into two sections. First, the recog-

.| nition that the requesting device usually has an immediate need which will result in

data being lost if it is not met. Second, a subsequent need to perform some pro-
cessing upon that data. 1In the case of output, the device may not continue to operate
" at full speed if its request is not answered within a certain interval. After meeting
this very high-speed requirement, the need for continued rapid servicing diminishes
considerably, until the next request is made. -

' TX provides two alternative methods for interrupt servicé. One is the INTQ: service,
yhich combines the functions of saving status, queueing or scheduling of support
tasks, and then dismissing the interrupt since it has been honored. The second is to
use the INTSV;, INTAC:, and INTRS: services to provide each of those three functions
separately. Use of these three functions is described below.

Upon receiving control after an interrupt, the interrupt handler should immediately
call INTSV:, to preserve the register status. When control returns, the handler may
utilize the registers as required. Processing, at this point, should be restricted

(\) the very high speed "lost data" requirements. The handler may then schedule other
activities, by calling INTAC:, with the start address and priority as arguments.

; Processing is ended for this phase, by issuing a call to INTRS:, which resunes pro-
:essing. Normally, the newly scheduled activity will have a high priority. Note,
however, that the programmer may assign this priority, as distinct from those systems

..where the hardware has the device priorities wired in. When the scheduled processing
activity receives control, it will be considered a normal activity, and may make use
of all RTX functions. Interrupts will be enabled, so that other devices which require
service may receive control during their "lost data® intervals, after which the

(7stem Scheduler will return control to the highest priority processing program.

‘m%e A and X register are passed between the scheduling and the scheduled routines, so
‘hat word or byte transfer devices can pass the data itself to the processing pro-

'grams. After the processing program has finished its task, it may terminate, or it
may schedule other responding tasks.

By using INTSV- and INTRS: to save and restore status, the user is relieved of one of
the most important and error-prone types of coding. With INTAC:, he can schedule

routines which are normal, interruptable programs, and which can utilize all of RTX's
capabilities. _ -

Note that the INTSV:, INTRS:, INTAC:, and INTQ: routines are necessary only for the
user who is using RTX in conjunction with his own special (non-standard) device and
has written his own interrupt handler for it. The RIX I/O Executive (IOX), discussed
in Chapter 2 of this manual, contains the necessary /0O handler routines for the
standard CAI-supplied I/C devices {card reader, teletype, high speed paper tape punch .
and reader, magnetic tape, disk and floppy disk). These standard handlers within IOX
g:?ke use of the INTQ: routine internallv. / ’

’ .

\

1/3-1

g o

ComputsrAutomation Qizgws —

-

8 3.xf_SAVE ENVIRONMENT (INTSV:)

Cailing Sequence:

JST INTSV: INTERRUPTS MUST BE DISABLED
DATA *PLOC LOCATION OF ENTRY POINT TO INTERRUPT ROUTINE

~~,

Returns With:

INTERRUPTS---STILL DISABLED
STATUS---OV_ RESET, WORD MODE

- A REGISTER---SAVED P REGISTER
X REGISTER---UNCHANGED

Ahis_subroutine must be called by an interrupt subroutine to save the current
nvironment. :

J!E*ESTORE ENVIRONMENT (INTRS:)

{

4alling Sequence:
{ A

JST INTRS:
——- DOES NOT RETURN

his subroutine is called by an interrupt subroutine to exit. If RI'X was interrupted,
ontrol is returned to RTX. Otherwise, task control is moved to the block at the top
£ t(; scheduler ready chain and the system Scheduler is entered.

.(INITIATE A NEW TASK FROM AN INTERRUPT SUBROUTINE (INTAC:)
*+ Calling Sequence:

JST © INTAC: (MUST BE IN WORD MODE)
DATA (*) START ADDRESS

DATA PRIORITY
&“;
turns With:

(.

INTERRUPTS-~--UNCHANGED
OV---INDETERMINATE

A REGISTER---DESTROYED
X REGISTER---DESTROYED

C

I/3-2

cm-

—

3.4 INTERRUPT SERVICE AND QUEUE TASK (INTQ:)

This service may be used in place of the INTSV:, INTRS:, INTAC:, sequence. It is
functionally identical to the combination of those three services-when they are used

as follows:

SUBENT

ENT
JsT INTSV: SAVE ENVIRONMENT

DATA *PLOC -

JST INTAC: QUEUE "TASKC" AT "PRIOR"

DATA TASKC, PRIOR

JsT INTRS: : DISMISS INTERRUPT AND GO TO RTX

SCHEDULER i

The advantage to using INTQ: is that it is faster; i.e., it shortens the period of

- b Calling Seqﬁence:

Returns With:

ample Usage

EOBENT

“ime during which.interrupts are disabled.

rd

JST * INTQ: : :
DATA $,0,0,0 CALLING LOCATION, 3 TEMPS REQUIRED
DATA TASK-ADDRESS FOR TASK WHICH IS QUEUED

DATA PRIORITY FOR QUEUED TASK

DATA A-REGISTER VALUE PASSED TO QUEUED TASK IN A
DATA X~REGISTER VALUE PASSED TO QUEUED TASK IN X
DATA P-LOC » LOCATION OF SAVED P-REGISTER AT

TIME OF INTERRUPT

DOES NOT RETURN. QUEUES TASK FOR SCHEDULER AND DISMISSES
INTERRUPT. ‘

1. Interrupt for End-of-Block

ENT ‘ VECTORED INTERRUPT

JST INTQ: ' : S .
DATA $,0,0,0 ‘

DATA TASKB,PRIORB, 0, 0, EOBENT

1/3-3 Revised 11/76

¢

2. Interrupt for Data (Input) Ready
DATENT ENT : : VECTORED INTERRUPT
‘ - SIN 3 BLOCK BYTE MODE
; STA AREG SAVE A-REG
! INA ADDR,FCN INPUT THE DATA VALUE
EMA AREG * RESTORE PROPER A-REG AND PASS INPUT
1 VALUE TO QUEUED TASK
JST - INTQ:
DATA - $,0,0,0 .
S DATA TASKA, PRIORA
‘* BREG DATA 0 . A-REG VALUE FOR TASK
: XREG DATA 0 -7 X-REG VALUE FOR TASK

DATA - - DATENT " RETURN POINTER FROM INTERRUPT

3.5 COMMON SUBROUTINES (REENTRANCE)

Nob,slly, different activities are independent of’each other. However, it is not
un®bhal to have two unrelated programs use the same utility subroutines, therefore
de ning a "common" subroutine. -One example would be mathematical functions library
routines. Rather than duplicating ccpies in each using program, a single copy is

loaded, and entered with subroutine calls (JST instructions). If control is within

the common subroutine when an interrupt occurs, and another program gains control and
re-calls the subroutine, the second call will destroy the return location of the
first. When control finally returns to the middle of the interrupted subroutine
(ckiaring the interrupt), it will complete its execution, and again return to the
se¢. .d caller. The original caller never sees control come back. The later caller
gets two returns from one call. This dilemma is referred to as the common subroutine
prr° lem, and it occurs in any system which allows interrupt processing. It is solved
in' _ifferent ways. Most simply, common subroutines can be forbidden. Alternatively,
push-down stacks are utilized, scratch storage is forbidden, (except in the stack),
and. the programming task is made significantly more imposing.

RTX has implemented an alternative solution to this problem, that of a “shared"

facility. 1In our context a shared facility is a body of code which may be called
cok_ arently from more than one task. In this sense, a shared facility is then
cofn to several tasks.

-

Th(implementation consists of two services which are contained in RTX. These are:

SUBR: To initiate the execution of a shared facility
SUBX: To return from a shared facility

To illustrate usage of these services,’consider the following example. If the
subroutine CUP is a common subroutine to two tasks (named COFFEE and TEA), then it is

- possible that an interrupt could occur which causes task COFFEE to execute before

task TEA Finished. This means that subroutine CUP could be entered from COFFEE

| before it completed the processing due to its prior entry from TEA. In this case,
; subroutine CUP is in common usage. It is designated as a shared facility and must be

1/3-4

| ComputerAutomation (g;??Qs

-

4 (fesigned to accomodate that condition. The method here is to use the following
: sequence of code in both COFFEE and TEA whenever it is desired to call subrout ine
CUP:

JST SUBR: ACTUALLY CALL SUBR: SERVICE
. DATA Cup NAME OF COMMON SUBROUTTNE
{

instead of the usual method

JST cup

NOTE

NEVﬁR éall a common subroutine directly; that is, with a JST name.
ALWAYS call a common subroutine using

Jgsr - SUBR: = CALL THE SUBR: SERVICE

DATA NAME NAME OF COMMON SUBROUTINE
&w) (oi using the LOCK: or PROT: routines described below).

3.6 WRITING COMMON SUBROUTINES

The rules for writing a common subroutine are very simple. They apply to the sub-
routine exit instruction. There are two rules:

(‘. Instead of the traditional RTN instruction, use a JMP to the location directly
before the subroutine entry point.

2. In the location directly before the subroutine entry point, place a JST SUBX:.

" Use of these two rules will allow an orderly exit from the common subroutine. In our

previous example, subroutine CUP looks like this:
) NAM cup
&E EXTR SUBX:
» JST SUBX: _
cup ENT ENTRY TO COMMON ROUTINE CUP -
(JMP CuP-1 o EXIT COMMON ROUTINE

When SUBR: and SUBX: are used, all subsequent calls to the common subroutine are
"locked out” until the current call to the subroutine has completed and the jump to

SUBX: has been made. Then, each subsequent call (made while the common subroutine was
busy) is completed in priority order. '

If this procedure is not followed, the system behavior. will appear to be very erratic.
Although the system will probably correct itself, when the doubly-returned task
finally terminates, one activity has been lost, and one has been duplicated, probably
incorrectly. If the user understands this section thoroughly, he can have the con-
venience of library subroutines, without the difficulty of accidental re-entry.

ﬁ 1/3-5

i sl

3.(F CALL A COMMON SUBROUTINE (SUBR:)

This subroutine is called by a user task to schedule a subroutine which may

be used by more than one task.

.

. Calling Seguence:
JST SUBR: .
DATA (*) ADDRESS OF COMMON SUBROUTINE

(

3.8. EXIT FROM COMMON SUBROUTINE (SUBX:)

rhis subroutine is called from within a common subroutine to return to the calling

: (”’-",
C
(

This subroutine does not return directly to the calliny program. Tt
exits through the Scheduler (SCHED:).

Enters Subroutine With:

INTERRUPTS---ENABLED
STATUS--—-UNCHANGED

A REGISTER---UNCHANGED
X REGISTER---UNCHANGED

The return address put in the entry point of the common subroutine is
the location following the data in the above call. That is, it
appears to the subroutine as if it were called from the location of
its address (Not the location of the "JST SUBR:").

This subroutine does not return directly to the calling program. It
exits through the Scheduler (SCHED:).

Calling Sequenée

SUB

JST
ENT

JMP

ComprrterAutomaton cgj&QS —

NOTE

HOTE

MOTE

SUBX:

where: SUB is the entry point of the common
subroutine. This call must immediately
precede the entry so that RTX can keep
its chains straight.

SUB-1 RETURN

1/3-6

LR

N
v
N

_routine itself.

Returns to calling task with:

INTERRUPTS--ENABLED
STATUS---UNCHANGED
A REGISTER---UNCHANGED
X REGISTER--=-UNCHANGED

MOTE

Each SUBR: call made must have a corresponding call made to SUBX: once
the routine has completed. If a call to END: (to terminate the calling
task) is made from within a subroutine called by SUBR:, all other tasks
will be permanently denied the user of that routine. To terminate a task
from within a SUBR'd subroutine, the ABORT: routine should be used.

3.9 PROTECT A FACILITY (PROT:)

. s -
PROT: is called by a user's subroutine to protect itself from usage by other tasks.
It is in a way similar to SUBR: in that reentrance to a common subroutine is prevented
during its usage; however, in SUBR:, the determination to protect the subroutine is
made by the calling program, while in PROT:, the determination is made by the sub-

Calling sequence:

DATA 0
SUB ENT
- JsT PROT:
DATA $-3

The call to PROT: must be the first instruction following the entry point. The temp
cell SUB-1 is used by PROT: to store the contents of SUB (the return address from the

caller). Note that exiting from the routine SUB must be done via the return address
in SuUB-1, not the address in SUB.

Returns with: .
INTERRUPTS-~-ENABLED
STATUS---UNCHANGED
A-REGISTER---UNCHANGED
X-REGISTER-—-UNCHANGED

PROT: may be called more than once using the same coordination number by the same

task. However, a different task is effectively locked out of the subroutlne untll it
is released by executlng a call to UNPR:.

1/3-7

NOTE

{ The INTRS: and INTQ: subroutines contain logic to preclude task-
switching caused by an interrupt occuring immediately before a JST
LOCK: ox JST PROT: instruction. This involves checking the inter-
rupted instruction to see if it is a JST LOCK: or JST PROT:. This
check is effective only if the instruction is a JST indirect through
a base page pointer to LOCK: or PROT:; that is, an :F9xx instruction.
To insure this protection feature, reference LOCK: or PROT: by means
of an EXTR dlrectlve, rather than a REF directive. This also implies
that if EXTR directives are used in conjunction with the LPOOL
directive, then an EXTR LOCK: or EXTR PROT: must be accompanied by a

SPAD LOCK: or SPAD PROT: directive to insure that the pointer remains
in the base page.

Sty RELEASE A PROTECTED FACILITY (UNPR)’

/

UL‘A. is called by a common subroutlne to delete its protected condition caused by a
previous call to PROT:

Calling Sequence:

S JST UNPR:
(DATA Coordination Number

Returns with: -

INTERRUPTS~-~ENABLED
STATUS--~-UNCHANGED

' A-REGISTER---UNCHANGED
X-REGISTER-~~UNCHANGED

In
as

EFfect, RTX treats the address of a common subroutine (as used in SUBR: and SUBX:)
' coordination number. These are shared with the coordination numbers used by

PT : and UNPR:. That is, the list in which the common subroutine addresses are
saved for SUBR: is the same list that saves the coordination numbers for PROT: and
LOCK:. Results will be unpredictable (and probably disastrous) if the coordination

number used by PROT:, UNPR:, LOCK: or UNLK: is also the address of a common subroutine
(called by SUBR:).

Because RTX maintains a single list for PROT: and LOCK: coordination numbers and
SUBR: common subroutine addresses, an alternative method for writing common sub-
routines exists. The rules for this type of common subroutine are:

1. Instead of the standard "RTN SUB" instruction, use a “JMP SUB-2".
2. In the 2 locations directly before the subroutine entry point, place:
JsT SUBX:

gf RES 1

I/3-8

w

s 3.
AN
(4.

| ComputecAutomation (g:??QS

In the two locations immediately following the subroutine entrv point, place:

JST
DATA

PROT:
SUB-1

Because PROT: moves the return address from SUB to SUB-1, references to parameters

must be made through SUB-1, rather than SUB.

For example, a typical routine,

that adds the arguments presented to it and returns the sum in the A register,

would normally be coded as follows:

Calling Sequence:

JST ADDM
DATA - 3
DATA .4
ADDM - ENT
' LDA *ADDM
IMS - ADDM *
ADD *ADDM
IMS . ADDM
RTN ADDM
BOTE

This may not be used as a common subroutine because it has no

protection from re-entrance.

Calling Sequence:

JST SUBR:
DATA ADDM
DATA 3
DATA 4
JST SUBX:
ADDM ENT
LDA *ADDM
IMS ADDM
ADD *ADDM
IMs ADDM
JMP ADDM-1
<

1/3-9

s+ Using the SUBR: common subroutine feature, the routine would appear as follows:

S A el K S S R R e

B eions

(hon%putefhxnninath1 (gzzak —

*

?pe alternative method, using the PROT: common subroutine féaturu, is as follows:
N
Calling Sequence:

JST " ADDM

(' DATA 3
DATA 4
JsT ‘SUBX:
‘ RES 1 '
ADDM ENT _
. JST : PROT: :
DATA : ADDM-1
LDA “*ADDM-1
IMS ADDM-1
- . : ADD * ADDM~1
. _ . . IMS ' ADDM-1
' - JMp " ADDM-2

‘ . 4
T“jcﬁdvantages of the last example, using the PROT:/SUBX: sequence, are:

1! The calling sequence is shorter than that calling SUBR: (the standard JST SUB is
used) . : :

2. The burden for insuring that the subroutine is common (re-entrance protected)
‘ lies solely with the subroutine writer, not the subroutine caller.

2. If the subroutine is capable of stacking multiple return addresses (not shown in
(; this example), the subroutine is then recursive, and may call itself. (Note that
if recursive, SUBX: should only be called on the last return (use RTN SUB-1 for
{ all returns but the last)).

3.11 LOCK OUT A FACILITY (LOCK:)

LOCK: was designed for use by Real Time FORTRAN, and is similar to PROT:. The only
difference between them is that the return address from the subroutine is stored in
thg ‘ocation following the coordination number, instead of the location in front of
th¥entry point, e.g.: - A

(

Calling Sequence:

SUB , ENT
JST . LOCK:
DATA Coordination Numbex :
. DATA 0 » : (Return address stored here)

Returns With:

INTERRUPTS---ENABLED
STATUS-~--UNCHANGED
A-REGISTER---UNCHANGED
X-REGISTER---UNCHANGED

The JST to LOCK: does not need to be placed immediately following the subroutine entry
p¢ , t, although JST to PROT: does.

1/3-10

e

i 2

R Eo-ariiasiai st

w!

'&mmMthmw&m @ZQ}~—-

Thé user should reference the LOCK: or PROT: subroutine with an EXTR directive,
rather than a REF directive. See the note in the PROT: description regardinq this.

Note that the PROT: /SUBX example shown above does not apply to LOCK:.

3.12 UNLOCK A LOCKED FACILITY (UNLK:)
UNLK: is similar to UNPR:. However, UNLK: permits the common subroutine to complete

processing, then returns control to the calling task, while UNPR: returns through the
Scheduler to the Ready list for the next task on the list. s

3.13 ABORT A TASK (ABORT:)

" ABORT: is called from within a common subroutine to terminate the task which called
the subroutine. :

In addition to performing the END: function, ABORT: also deletes any PROT:, LOCK: or
-SUBR: conditions previously set by the aborted task.

t Calling Sequenée:

JST) ABORT:

ABORT: exits to the scheduler (SCHED:) .

ROTE

(The duration of an ABORT: call is significantly longer than an END:

call, and therefore it should be called only if in a common subroutlne,
or 1n a PROTected or LOCKed condition.

3.14 OBTAIN CURRENT PRIORITY (GETPR:)

Calling Sequence:

JsT GETPR:
Returns With:

INTERRUPTS---ENABLED
STATUS---UNCHANGED

A REGISTER -CONTAINS TASK PRIORITY
X REGISTER---UNCHANGED

The subroutine is called to get the current priority of a task. It is usually
called sa that a task's priority may be restored after it is temporarily altered.

I/3-11

¢ N ‘ o

spascisyie

1.C

3.16

/
i

(,

SET TASK PRIORITY (SETPR:)

Cailing Sequence:

LDA DESIRED PRIORITY

JST SETPR:
Returns With:

INTERRUPTS---ENABLED

STATUS---0OV RESET, WORD MODE

A REGISTER---UNCHANGED
X REGISTER-—--UNCHANGED

INCREMENT TASK PRIORITY (iNCPRﬁ)
Calling Sequenéé:
JST " INCPR:
Returns With:
INTERRUPTS~--ENABLED
STATUS—---UNCHANGED

A REGISTER-—-UNCHANGED
X REGISTER-——-UNCHANGED

This subroutine is called whenever a task desires to alter its priority.

{' s subroutine will increment the priority of the calling task by 1. ‘No range
checklng is performed.

3.17 DECREMENT TASK PRIORITY (DECPR:)

c

(

Calling Sequence:
JST DECPR:
Returns With:
INTERRUPTS~--ENABLED
STATUS---UNCHANGED

A REGISTER--~UNCHANGED'
X REGISTER—~*UNCHANGED

This subroutine will decrement the calllng task's priority by 1. No range checking i
is performed.

1/3-12

f

£

4l

i

SECTION 4

ADDITIONAL RTX FEATURES

4.1 RTX DEBUG FEATURE (ZBG)

The standard CAI DEBUG program is included in the RTX library tape (Segment 1) under
the name ZBG. (Detailed descriptions of DEBUG are included in LSI-2 AutoMagic, CA
document 96045-00, or LSI-3/05 AutoMagic, CA document 93001-00). When this module is
linked, Relocation Register RF points to the RTX Linked list pointers for use with 2
function; the corresponding length required by the Z function is set to five words,
"“hich is the length of each block used in the RTX Linked lists. When displaying a

articular list with the 2 function, the first printed line is not an entry in the
list, but simply the pointer to the top of the list, followed by the next four higher
words in memory; this first line may therefore be ignored.

There are eight lists maintained by RTX, and the pointers to the top of each of these
lists reside within the RTX nucleus in eight consecutive memory locations, in the
following order:

k; ORF Pointer to the list of tasks awaiting execution (READY)
! 1RF Pointer to the list of INTQ: and INTAC: tasks awaiting execution (FIFO)
' 2RF Pointer to the list of tasks currently awaiting completion of a DELAY
((DLYCH)
- 3RF Pointer to the list of common subroutines currently requested (COMN)
4R¥ - Pointer to the list of tasks currently awaiting I/0 execution ({IOCH)
& 5RF Pointer to the list of tasks awaiting a PUT: response to a requested
i GET: (GETCH) ' '
: 6RF Pointer to the list of PUT: reguests awaiting a GET: response (PUTCH)
7RF Pointer to the list of currently unused blocks (FREE) '

The following is a description of the contents and manipulation of a user block i
yithin each of the lists: '

1. READY List (RF) Ready to Run (used by BEGIN:)

RTX maintains a list of all tasks which are ready to execute in the READY list.
This list is sorted into priority order, so that RTX simply executes .the task
at the top of the list. The format for a READY block is as follows:

- Word Contents"
0 Word address pointer to next block entry in the list. (The last °
element in the list contains a zero). .
1 Bits 15-3. Task priority number.

Bits 2-0. (LSI-2 only)
Bit 2. EIN indicator, for reference only. (RTX always

.((b(allows interrupts.)

Bit 1. BYTE mode indicator upon next resumption of task. -
Bit 0. Overflow indicator upon next resumption of task.

I/4-1 Revised 11/76

ke

Word Contents

Bits 2-0. (LSI-3/05 only)
. Bit 2. BYTE mode indicator upon next resumption of task.

‘ (' Bit 1. OVerflow indicator ‘upon next resumption of task.
o Bit 0. Unused
f 2 P register contents upon next resumption of task.
3 3 A register contents upon next resumption of task.
ﬂ 4 X register contents upon next resumption of task.

2. FIFO list (1RF) Ready to Run (used by INTAC: and INTQ:)

In order to avoid the problems of interrupting a linked list processor, INTQ;
and INTAC: put the entries for their tasks in the FIFO list. (BEGIN: operates
directly on the READY list). The RTX scheduler (which is never run as an
interrupt routine) empties the FIFO list into the READY list and sorts the

READY list. The format of a FIFO block is the same as a READY block.
3.8 DLYCH List (2RF) Delay (used by DELAY:) »
(A call to DELAY: (with a unique positive coordination number) causes the block
for the currently executing task to be deleted from the READY list and put on top
~of the DLYCH list. The format of a DLYCH block is as follows:

Word Contents

werd address pointer to next block in the list.

Status & Priority. Same as READY list entry.

The P register. Points to address of return from DELAY:
The coordination number.

Working number of ticks left in Delay.

¢

RWESE ™

Upon return, the A register will contain the coordination number. The X register
will contain the number of Real Time Clock "ticks" remaining (normally zero).

48 COMN List (3RF) Common Subroutine (used by SUBR:, SUBX:, LOCK:, UNLK:, PROT:,
UNPR:))

(‘ A call to SUBK:, LOCK: or PROT: zauses the COMN list to be searched for a block
for the common subroutine. If none is found, a block is deleted from the FREE
list and put on top of the COMN list. The format for a COMN block is as follows:

Word - Contents
o Pointer to the next block in the 1list
1 Busy flag (zero = not busy)
2 Pointer to the block of the highest priority task waiting to use

the common subroutine (0 = no task waiting)
Rddress of the common subtoutine {or coordination number)
Unused

oW

If SUBR: is called and a block for the common subroutine is found with the Busy
flag set, the block for the currently executing task is deleted from the READY
- 1list, and inserted into a secondary list pointed to by Word 2 above. At the same
é;, time, the P register is set so that the task will again call SUBR: when RTX next
executes the task. '

1/4-2 Revised 11/76

5. IOCH List (4RF) I/O Suspend (used by IOX:, Fortran Interface)

A call to IO: or IOWAT: when the busy flag is set in the IOB, or a Fortran call’
| for I/0 when no parameter block is currently available, will cause the task block
' to be deleted from the READY list and put on the top of the IOCH list. The P
register is set so the task will repeat the call when RTX next executes the task.
The format of an IOCH block is the same as for a READY block. The IOCH list is
emptied into the READY list each time any I/0 completes.

-

6. GETCH List (S5RF) Get (used by GET:)

. A call to GET: with a unique positive coordination number (and no matching PUT:
yet) causes the block for the currently executing task to be deleted from the
READY list and put on top of the GETCH list.

Word ~ Contents

Pointer to next block in the list
Status & Priority (same as Ready)

P register. Points to return from GET:
Coordination No.

Unused

_ 'gi
[
D W N O

When the associated PUT: is done, the block is deleted from the GETCH list, the
A and X register contents are stored into words 3 and 4, and the block is inserted
l‘ into the READY list in priority order.

7. PUTCH List (6RF) Put (used by PUT:)

A call to PUT with a uniqﬁe positive coordination number (and no waiting GET:)
(causes a block to be deleted from the FREE list (see below) and added to the top
| of the PUTCH list. The format for a PUTCH block is as follows:

- !
l Woxrd Contents ’ t

Pointer to next block in the list
Unused

A register contents to be passed
Coordination No.

X register contents to be passed

W N O

When the associated GET is processed, the block is deleted from the PUTCH llSt
and put on top of the FREE list.

8. FREE List (7RF) Available Storage

This list is initialized to contain the entire work space during a call to RTX:.
'~ As blocks are required, they are taken from the top of the FREE list. As blocks
are no longer required, they are deleted from the appropriate list and put onto
the tail of the FREE list. A FREE block has no specific format. Tt will simply
contain data frpm the function which last used the block. :

I1/4-3

smd v

gt

2

T R S

- CompirterAutomation (giZ?QS —
4.(# PROGKAM LOADING WITH ZBG

ZBG resides in the RTX library; to make use of ZBG, it is necessary to include a

, ZBG . REF

(4

instruction within the user's program. Thus ZBG is entered immediately upon execu-
tion, and may then be used to breakpoint through the mainline sequence and any parti-
cular task.

4.3 POWER-FAIL, AUTO-RESTART (PWRFL:)

If the computer being used has the Power Fail option, the user may utilize the RTX
program module which provides service for that device. The loader will cause the
routine to be loaded if the user has a REF to PWRFL:. He must, however, not actually
call that program at execution time. Instead, if a power failure begins, the inter-
rupt hardware will force control into that routine, saving the computer's register
s, and halt, to prevent loss of information *from core storage. When the power
rstored, the program will schedule a user-supplied routine, which must be named
P~ 'JP:, and must occur in a NAM directive. Re-initiation of the activity which was
i1, process (at the time of the power failure) will also be scheduled and control

will be passed to the system Scheduler.

RTX will schedule PWRUP: as a task at priority 8184 with the contents of the A
register nonzero if the power failure was detected. TIf power failure was not detected
(e.g., the computer was halted), RTX will transfer c(on*rol to PWRUP: with the

co(;;nts of the A register equal to zero. Note that PTX cannot resume the activity

in progress at the time of the power failure if the powe)r failure was not detected.

4 TELETYPE 1NIUT/OUTFPUT

RT¥ provides decimal, octal, and hexadecimal I1/0 on the standard Teletype, by using a
software interface to CAI's Teletype Utility Package (TUP). Thc :alls and usage are
identical to the standard version.

TUY ~lso provides the copability to read and print strings of text, (for headings,

1 is, etc.), and this capal:ility is retained in the RTX version.

R(¥ to the standard TUP documentation .{#96014) for a complete description of each
routine. Additionally, a specific limitation exists with respect to TUP usage through
RTX:. TUP must not be called concurrently by more than one task, because TUP itself

calls subroutines within it with JST instructions, and these subroutines are not
protected from re-entrance.

TUP re: 1des on the RTX Segment 2 library tape, and its routines should be referenced
with tl:e REF or EXTR directive.

4.5 LSI-3/05 SOFTWARE CONSOLT ROUTIFl*® (CNSOL3)
The LSI-3/05 version of RTX includes CNSOL3, the Sofiware Console Routine, which may

be linked by a reference to CNSOL3 in the user program module. Usage of the Software
Console Routine is described in the pSI—3/05 Software Manual (90-20010-00).

@«

1/4-4 Revised 11/76

Som RN

e R

6.

Compu‘terAutomaﬁonm————‘

SECTION 5

RTX OPERATING PROCEDURES

Assemble each of your application program modules. Be sure to reference each RTX
function that a module uses in either an EXTR or a REF directive.

when you have a useful object tape for each of your modules, you are ready to
create the executable application program. This requires that you first load
LAMBDA, the relocating, linking loader.

Using LAMBDA, force load the initializer task module of your application.

Then using LBMBDA, load the remainder of your group of application program
modules. You can use the Selective Load feature of LAMBDA to include only the
modules your program actually requires.

Still using LAMBDA, selectively load the RTX Library object modules from the two
RTX Library Tapes (70-93300-01 and 70-93300-02).

MOTE

If the user program does not reference PROT: and LOCK:, LAMBDA and
0S:LNK will declare these subroutines as undefined. This declaration
can be ignored since INTRS: and INTQ: (loaded after PROT: and LOCK:)
check to see if a call to either subroutine is the next instruction
after an interrupt is serviced.

PIOTE

When operating under the IOX File Manager, disk devices must be
labeled prior to their use. Labeling is done with the stand-
alone program, RTX File Label Utility (tape Nos. 70-93324-40Aal
and -41Al1). ‘Subsection II/5.3 gives a complete description of
this utility. . ’

Start execution of your program so that the initializer module (Mainline Sequence)
or ZBG, if used, is executed first. ’

T /e ’ Revised 3/77

oS £

C

Section 6

A SAMPLE RTX PROGRAM - RTX DEMO

6.1 PROGRAM DESCRIPTION

The RTX Demo Program (00-93300-13) demonstrates the basic functions of RTX in a
simple, straightforward manner. It consists of three main tasks (TASK1l, TASK2,
TASK3). The function of each of these tasks is to delay a specific amount of time,
and then call a routine to output a message to the teletype. The message consists of
the task name followed by the elapsed time in seconds since the start of the program.

'gxternal device to initiate a task. This example simulates the effect of three such
) . . ’ . .

devices which interrupt every 5, 7, and 11 seconds, respectively; that is, the delays
themselves simulate external devices. :

asén actual user's application of RTX might very well use the interrupt from some

Each task delays a different amount of time than the other tasks, before printing.

TASK1 delay: 5 seconds
TASK2 delay: 7 seconds
TASK3 delay: 11 seconds

"Thus TASKL will output

“"TASK1 0005"
"TASK1 0010"
YTASK1 0015"
etc.

. TASK2 will output

q:‘ “TASK2 0007"
"TASK2 0014"

L

q;

“TASK2 0021"
etc.

And TASK3 will output
- "TASK3 0011"
"TASK3 0022"

."TASK3 0033"
etc.

Because of teletype timing, each message takes moxe than one second to complete.
Thus the three tasks will contend with each other for the use of the teletype.

1/6-1

e ——————

R it

—_—

i e Lot

T

I(T,ddition; a fourth task called "IOTASK" outputs the actual teletype messaqges. This
task is bequn by each of the three main tasks whenever their delays expire, at the

following various priorities:

TASK1 begins TIOTASK at priority 5
(TASK2 begins IOTASK at priority 7
’ TASK3 begins IOTASK at priority 11

This means that if TASKl and TASK3 both begin IOTASK at the same time (which they
will, at 55 seconds), TASK3's message will be output first, since its priority to

begin IOTASK is higher than TASKl's.

To be more specific, and to demonstrate the priority sequence more fully, the actual

teletype output after 55 seconds appears as:

TASK3 0055, TASK2 0056, TASK1 OOSS,..‘because each message takes slightly more than
one second to print, thus causing the following sequence:

6. TIME
55 seconds after start

(

.56 seconds after start

(-

(57+ seconds after

After 80 seconds, the

TASK1
TASK2
TASK1

) TASK2

- TASK1
(TASK?2

TASK2
TASK2

0005,
0014,
0025,
0035,
0045,
0056,
0070,
0077,

TASK2
TASK1
TASK2
TASK1
TASK2
TASK1
TASK1

TASK1

message.

ACTION

TASK1 and TASK3 both begin IOTASK with a "55 seconds"
Since TASK3 has the higher priority, its
message is printed first.

TASK2 begins IOTASK with a "56 seconds” message.
TASK3's "55 seconds" message is still printing, and
TASK1's "55 seconds message"” is queued up. Since
TASK2 has a higher priority than TASX1l, the TASK2 "56
seconds" message gets output when TASK3's message

completes.

start TASK1's "55 seconds" message is output after TASK2's
"56 seconds" message is completed.

0007, TASK1
0015, TASK1
0028, TASK1
0035, TASK1
0049, TASK1
0055, TASK1
0070, - TASK1
0080,

0010,
0020,
0030,
0040,
0050,
0060,
0075,

teletype listing should

TASK3
TASK2
TASK3
TASK2
TASK3
TASK2
TASK3

(TASK3's message contains carriage return and

Let us now examine the RTX functions used in this program (refer to the flowchart in
figure 6~1 and the program listing at the end of this section).

" 6.2 PROGRAM MODULE FUNCTIONS

modules comprising the program:

BEGIN
TASK1

(g; TASK2

TASK3

IOTASK

ADD1

1/6-2

ComputerAutomation (O ———~

s

appear as:

0011

0021, TASK3 0022

0033 '

0042, TASK3 0044

0055 T
0063, TASK1, 0065, TASK3 0066
0077

line feed control characters).

There are six basic

6.2.1 BEGIN {Initialize and Begin Task:s)

The program start occurs at the BEGIN section of the flowchart. The first step is to
initialize RTX. This is performed using the RTX: function to define the maximum
number of RTX tasks which may be in concurrent operation and the requirced table space
for RTX management of those tasks. IJf insufficient table space is found or other
peculiarities occur during initialization, the error return is taken. In our example,
we halt the computer to remedy the problem. Using the BEGIN: function of KI'X defines
the task name (TASK1l, TASK2 and TASK3 in our example) and its software priority

number (100 for each in our example).

No other tasks have begun their activity at this point. This is because the first
task following the RTX: call (the initialization sequence itself) is automatically
scheduled at the highest software priority. wWhen the END: function is called, this
task is deleted and the Scheduler can then schedule the other tasks in relation to
their priority. :

Since the three tasks all have priority 100 and priority 100 is the highest active
priority value, the Scheduler will arrange each task in sequence according to the

= order in which it was initiated by the BEGIN: call, and will then start execution of

the first task in that sequence. The sequence is determined by a first-in, first-out
rule. Therefore, TASKl executes until it requests an RTX service which causes it to
be suspended.

When the task is re-scheduled (on completion of one of the above function calls), it
is put back in sequence at the end of all other equal priority tasks.

This type of organization allows for true priority scheduling within an application,
while also allowing the tasks themselves to be executed, interrupted, and resumed in
an orderly fashion.

, .

6.2.2 TASKl (Delay 5 seconds, Then Output Name and Elapsed Time)

When TASK1l is begun, it first performs a five second delay. This is done by a call
to DELAY: with parameters of 500 (number of ;N millisecond real time clock "ticks" to
delay) and 1 (a specific coordination number for this particular task's delay calls).
The coordination number is necessary mainly for identifying a delay to be changed or
deleted; however, it is also required when beginning a new delay, as in this example.
When the delay is completed, control is returned to TASK1l, which then calls the
subroutine ADD1l, which increments the elapsed time in the TASK]l message by five
seconds. Note that ADDl1 is called via SUBR:, because it is a common subroutine used
by all three tasks, and is not re-entrant; thus SUBR: prevents another task from
entering ADDl until this call is completed.

Upon return from ADDl, the mess.ns< is ready for output to the teletype. This is done
by a call to BEGIN: to initiatize the common task called "IOTASK," which in turn
makes the actual call to the I/O executive (I0X) to perform the output. Note that
"JOTASK" is a task, not a subroutine; this means that TASKl may now continue with its
next 5-second delay while the I/0 is in progress rather than upon its completion,
which would invalidate the elapsed time count. Also, the initiation of the common .
task is made with a priority of 5. IOTASK is also initiated by TASK2 and TASK3, with
priorities of 7 and 11 respectively, so that a predictable ordering of outputs is ’
achieved when two or three tasks are vying for the teletvpe at the same time.

1/6-3

RS o Ceie ot Su s SR

~

6‘;;3 TASK2 (Delay 7 Seconds, Then Output Name and Elapsed Time)

TASK2 is identical to TASKl in its logical functioning. The only difference between
them is in the parameters passed in their calls to DELAY:, ADD1l, and IOTASK. TASK2
ca’ DELAY: with a 7 second count and a coordination number of 2 (to differentiate
it ¢rom TASKl's delay call). The common subroutine ADDl is called to increment the

elapsed time by seven instead of five, and the common task IOTASK is begun at a
higher priority (7).

6.2.4 - TASK3 (Delay 11 Seconds, Then Output Name and Elapsed Time)

TASK3 is similar to TASK1 and TASK2. TASK3 calls DELAY: with an 11 second count and.

a coordination number of 3. It calls ADDl to increment the count by eleven, and
begins IOTASK at priority 11.

G;E S IOTASK (Call IOX To Output A Message On The Teletype)

IOWISK is a common task begun as a task by BEGIN: calls in TASK1l, TASK2 and TASK3.
Up.)entry, the X register contains an address pointer to the I/0 Information Block
(I0B) of the calling task. A call is then made to the IOX package (at its entry
point named I0:) passing the IOB address as a parameter. BAn error status from the

I/0 operation will cause the computer to halt. Otherwise, the task terminates itself
with a call to END:.

6.£l, ADDl (Common Subroutine To Increment The Elapsed Time for Printing)

ADD }s a common subroutine called by TASK1, TASK2 and TASK3 prior to printing their
messages. Upon entry, the A register contains the amount by which to increment the
elapsed time tally, which is pointed to by an address in the X register. The routine
performs the addition, and then returns to the calling task through SUBX:. This is

. because the subroutine was called via SUBR: to avoid re-entrance.

I/6-4

C

) - : ‘ Y -
: : ' / ~ RTX: \\
, | \Initialize /

&

) ‘ BEGIN ,

HALT FOR

CORRECTIVE
ACTION

BEGIN:

Start
TASK1

BEGIN:
Start
TASK2

BEGIN:
Start
TASK3

\

END: v
Terminate
nitialization

1/6-5

(.,; Figure 6-1. RTX Demo Program - Flow Diagram {Sheet 1) -

c

Sta.rt '
IOTASK at
priority 5

/
\

Y
, Increment
5 time
(’ count -
| y
Return
1 ((;' Figure 6-1.

IOTASK at
priority 7

| &

‘ IOTASK ’
A4

10:

I/6-6

Perform
1/0

11
seconds

T\

Add 11 to
time
count

Y
BEGIN:

Start
IOTASK -at
riority 11

Halt
for

corrective
action

RTX Demo Pfogrém - Flow Diagram {Cont‘'g)

PAGE
MACKII?

0vo02
n004Y
0008
VIR
0010
0011
0012,
0013
0014
0015
0016
0017
0018
0v19

0020

voet
noee
0023
0024
0025
VP
noe7
0024
0029

0030

0031
0035
U036
0037
0038
0039
0040
0ot
doude
0043

| 0o4dd

D001

000D

00FS

0000
00¢1
l)OU?

ugns

TRVRTR!]
V00S
noues

037307717
(A2) Si=

ou(p

000y

oty
Lo0O
T00N0
BUOO
9A89

DARY
QAAD
VALY
GAnY)
SAdL

DM

80B0O
R X1 5]
NDAC
Huayl
[TELEY¢)
wocCy
oucd

» % % W X A& N ¥ W ¥ ¥ X X X *» ¥

11225227

K=

AD

NOACTS
BEGIN

SINCE

IFF
E~vLC

THEN

A CUMMON
St CuNUuS Jis
TASK (IulasSK) TS
APPROPRIATE MESSAGLE,
AT . THREE (3) DIFFEKENI

32 TASK3=11) SO THAT, FOR

f+E MESSAGES SHOUULD APPEAR IN THE

TASK3, 1ASKZ, 1a5k1,

‘TASKZ=T,
OxDERS

NAH

EXTR
EXTR
EXTR
1FF

EXTR
EmDU

EQU -

REL
EGU
LDA
STA
STA
STA
STA
STA

"STA

LYPE OUT

; 7 g;f\

RIX DEMU PNOLRAS Y58060/01=13F1

LSI305

Trnld PRUGKAM CONCURKENILY EXECUTES
TASKS (TASKY, TASKZ2, & TASK3) wHICH DELAY ,
Tl MSELLVES FUK S5, 7, % 11 SECUNDS RESPECTIVELY
THEIR IDECTI1FTICATIUON FULLOWED
BY THE NUMIER OF SECUNUS 1HAT HaVE ELAPSED

1tit. PRUGRAM wWAS STARTED,
AxE ALL RUNNING AT Trt SAME PHIURITY AND CALL
SubruuT et 10 UPBATE Tt
THEIW JUTPUL MFSSALES.
THEN wut b JO. OUTPUT THE
THIS TASK 15 WUEURD
FrRIOKRITIES

PWRUP:

1:UAT

RTX:,BEGIN:,END:
SUBR:,SUBX:,DELAY:, To:
PAUSE:

L5T%505

D:TYOO

20
0

3

='00' RESET
T(L]
T4 +1 . ALL
T2 .
T2+1 .
T3 . L]
T3+1 .

ELAPSED
TIMES

=

ITHKEE (3) -

IHE THREE TASKS.

MUMEER UF
A UMM

(1ASKL=S, ,
eQuaL TIMES,
FQLanlwu

[

/'\ ’

Y&Qi» UORAUCUTLIRACUCY

PAuc

MACHuU? (A2)

00us
Voues
oou?
004R
0049
00%0
0051
0082
0053

Hone

unny?
o088

. 0009

N0NA
ooon
ooC

Quon
00Ut

YNNI

Sl=

FQoo
004
000E
usoo
F2obe

F900
IRVAVAY)

l)t MUS

JO00

wire

ufoQ

——

1125
Bo=

PHRFL:
*

PRRUP:
WRARE A

1

JsT
DATA
DATA
HLT
JMP
REF

JST
RES

™

e X by MY ULR e Y3850 /0] =

LSI=0 wlx 1E™0) unu-essnueJSLll

ka: START RTX
NOACTS NUMBER OF ACTIVKHES
WRAREA RTX BUFFER AREA .

START GO START INITIALIZE ROOTINE
FORCE LOAD THE POKER FAIL
ROUTINE
END ¢ |6NORE POWER UP RESTART TASk

 NOACTSHNOACTS+NOACTS+NOACTS+NOACTS, 0

gy ———

(%’ : 1;!“\ : 7S) ”g,f\,AA_ A | — -

PaLE aalCh us/an/Tt lieni2l ~1 X DEMO PryLRres Yasto/Ul=] 50T - ' -
SALKUY (A) Hlz ok=us nhz : LSL=/ =»Tx 1t) i ued$shu=19t] ' '
055 *) -
00586 * INLTIALIZE TASksS ' ' A i
0087 C ok :
0058 w0l¢ F90u 0oy START JIST BEGIN: g
OubY. c073 Ou?c DATA TASK1 START TASK 4 o
0060 H0TH Yubd " DATA 100 PRIORITAET VON TASK A
N062 A % x X & & A Rk Kk kA K F X KX A X X Xk X K R X & K X X « & % & % x %
0063 ' * . ' ‘
nued 0045 FUou DO JS1 stGINe
BO65 V076 OUYA DATA TASK? STanxl 1aSx 2
Q066 U0O/T Cubd DATA 100
S N067 ’ * ‘ : .
VU68 L2 A RLE A & R K A % X %A K Kk F R %k k Kk 2 Kk & A F % & % « % 2 % K %
0069 . * A
0070 ODT7B-FYOU 00uD -JdsT "HEGIN:
0071 - VOT9 OOHKY DATA TASKS
0072 007A 00b4 ' -DATA 160 - ~
0073 , * ’ St
0074 I X % X Kk Kk % Kk kA £ A * & & x % %X 2 A 2 %X X %X %X R F *x & £ - r X & kX 2 % X
0075 * ' ’

0076 V07t F90UL LOOUL JsT END: HALT INITIALIZE ROUTINE

“ 7awnut

0T-9/1

1ACRu2 (A2)

no76
.0o79
0URO

008t
nose
0083
008y
auess
JOBG6
0087
UOBH
R L
J0Y9Q
1091l
0092
w0y}

- 0094
00YS
0uYo

0097

i 009K

0v9y9

01v0

0101

0102

010%
0104

D108
, 0106

ugud

nor/C
XN AR)
uwurt

NQOTF

nQRY
004x1
6on?

UOR3
d0KI
vusY
UV0H6

0067

0088
VOs9
00HBA
HUoHH
no~C
HEVE-YD]

NO8E
008F
vogo

WS/ 832 (0

Nl=

FYOQ
0ifFy
anony

C7un
EQLD
900

6UDA.

Euw0o
FY00
VOCF

00605

FooB

vuHH
paCl
D3CH
H1AQO
HOHO
Bune
ACAYD
UUBE
0000

w0 ‘

000u

B RN IO

[VESRYAY]

wo8B
nypon

ONKE

(VALRVAVIR

VoL

ll‘”nggp\

[N R -4

*

TASK1

T1

1oB1

JS8T

DATA

TEXT

TEXT
Equ
DATA

Lacen RN LM ws_s‘-(”\ef‘ﬁt1
LOJme g2 ppet; !‘:H()“f‘S”\""lSET

DELAY: WAIT FOR
S500,1 5 SECONDS

S S TIMES TRROUGH ADD
=T1 POLINTER TO NUMBER
SUBR: CALL COMMON SUBROUTINE
ADDA1 TG ADD N BCD

***k**k**!kg*ii@\i*tﬁ*i*ifi*tt

=10B1 ADDRESS OF JQB1
BEGIN: START COMMON TASK .
10TASK,S5 T0 DO]/0 (PRIORITY 1S S)

* ok kA & F k Kk A KX . R R # £ Kk X R A £ £ KX 2 % F & & K K * x

TASKA KEEP GOING

Ak A &k X & ok 4 & 2 Kk K& A Kk Rk R 2 K R & K Kk kX £ # X %k Xk %

3 10B BLOCK
0,0,0:0

~ o o =B oy
PALE WO0S ud/szsu/s 11352527/ rbx bt PRULebal 9480070 =1 421
MACRIy (aef) Si= iz Loleys wilx vhwg guuedsdygu=14t]
0091 0uLo
0107 Lu92 C3CF DATA 'CO! LUN
0108 00935 0U05 DATA S FUNC CODE (UNFORMATTED WRT)
0109 0094 000C DATA 12 MESSAGE BYTE LENGTH
0110 0095 NDORY DATA - BOFF1 MS6G BOFFER - '
0111 v0Y6 LuLL DATA - 040 E
6097 vouu

T1-9/1

zZ1-9/1

e

PAGE

0118
0114
0ils

U116

0117

0118
011y
0120
01t
0122
0123
0124
0125
0126
0127
0128

0129 .

0130
0131

0132

0133
0134
0135
0130
0137

0138
0139

D140
0141

0o

QOQH
yowy
REVED)

V09
nu9l
N9y
vOvE

JUYF

_u0av

VOAL
00A2

D0AS

nvaud
NOAS
oAb
VOA7T
DJAR
BOAY

OUAhA
JUAD
JOAC

03/sw/17
MACRU?Z (AZ2) o= hEx0d

FQOOQ
0enC
0002

Cro7
FOQOn

FYou

nohaA

FOOO
F900
00CF
0007

Foe0s3

DUAU
puCl
D3CH
B2A0
Bubuy
HOBU
ACAY

(aAA

ouuy
(VEIEARY)
VIVRVRY)

000

g0AT
V090

00AA
0u0o0

VUIR

11:¢5
hus=

Te

Qun?

(= gl

ot

Js T
DATA

Lam
LiX
J61
DATA

LuX
JS&T
DATA

£y

Trxl

TEXT

Teal
Rl
DATA

SN

\

X RN W

1.91=¢

vel AYS
100,22

R T I

7

=T/
SURK ¢
AVU L

—

/\LHur Yisuyus R BET

wl¥ bwU ugU=933uu=15¢]

wAIT Fuw
7 St COUNDS

TS SN S N T Ik JEE URE N RN

{ Tiets TEROUGH ALU

PUT Tex Tu NUMBEK

CALL LUMMUN SULKOU!D INE

T AL IM BCD

x k kR k¥ R R X * * Rk Xk 2 x * Xk k X %

=]he
tEGINS
LOTASK, 7

TASK?

* * * [3
V1ASK2

Yoono!

' 1]
4

b

. UpUp()rU.

ALDESS U Tus KLUCK

START Cumm{ltv TASK

Tveowir 170 (PRIOWITY 1S 7) .

A % *x k& Kk % Kk X

Kkhbky GUING

£ 2 *X Kk X K& k%

Tun ULk

*

.

X

*x & %X 32 %

k. %X %k K %

€1-5/1%

PALE

MACRL? (A2)

nid2
0143
viud
0145

-01db

0007

U0AD
VOAE
00LF
GOKO
wubl

Vos2

00n3

W3Zsu2Tl 11ested

51=

00v
C3CF
vwooh
LRTEVI
DOAC
[JVEVRY)

ovou

S Yun nijs

DAT A

DATA

vafla
Dafa
DATA

R1x ulmu FhULNeM 93300/701=1 58]

LS1=2 14 .Eou #0U=9930u=15¢]

‘cu’
5 .
1<
HUFF¢
Uet)

LUN - _
Fust CODE C(HNFORMATTELD wil)
MES-AGE BYTE LEGIN

A%, BUrkec®

CpT-9/1

RAGE

014y
vi4a9
0189

nisi
0192
ulns
0154
Uins
T n1%06
0157
016K
015y
Ule0
0161
0162
0163

0164
1165
0166
D167
168
U169y
0170
0171
0172

01734

01/4
0175

doun -
ALCRU? (A7)

[VAVIR R
nNEsS
uLs6

a7
TETRLES
VRN)
SUBA

OMN
oul
HRVE-TV]
0uisk

AV 4

00co
hoCl
0ocCe
00C?3%
0G4

doLy
00Cs
waC /7
vuL s

O3/ <a/ il
OE Al

sl=

FQOu
vg4g¢

0005

Cl/uop
E00
Y
QODA

tuiv
F90v
00CF

0os

F6iy

uuco
naci
N3icH

REYX'S

gogo
BubBu
0aCS
U in
DuGo
Guul
Quiju

doan

1003
unno

UOCH
a0

9044

11
M -
+
TALNK S
&
2 £ &
&
*
X x *
+
<
£ £ %
x
*
* A *
&
wlixF s
1s
T4

LAM
LuoX
Jal
VAT A

tiwy
TEXT
TEX1

tuuy
wAala

UELAYS T AALL kUK
1t1uu, s

11 StCuUNus -

‘E’P\ w1 APl PwNNAR Y5300

Lidl=e wo 4 . thU nou-?éaun-lstli

*ti*kn)i*l!k*ﬁ-**k*.*
11 11 115y T=wtir AN

=73 Pl TE i nwULBER

SUtswe LaLl CuemMiN SUBKUUT INFK

ADU] T and In nCDO

A & & x* 4 x & Kk %k %k A& & X A kX Xk 2 R %

=IuHs . ADUWESS UF- 1us

REGINS

START CUOMMON TASK

[OTASK,11 TO DU 170 (PRIURITY 1> 11)

i*k.t*ii**t
1A5h5 REEP GuInGA
*# & kX A k& x 4 A X &
b

'TASKS !

Yuhou!

b Lt ol ueR

”l”f‘)r'l

*

A

k & A X % 2 %

~

-

IR R B SNSRI

A

. g&zz» CKEﬁUKQNQQQﬂduRK)

\
J
|
:
i

— . — . RN » “ oo) - . . X
-g;”\ . N 1ér? :)

VAGE WU09 u3/30//7 1125l <1x DEMO PRPUGRAS Y36GU/01=13F1

I.‘

ST-9;

MALKNZ (A2) Sl= VE~NUS BU= LS]=e wIX wutmi BRUO=Y55NG=14E]

0176 90CY C3CF DATA ‘'Cu’ LUN L

0177 00CA Q006 - UATA & ' FunC CULDE (A3CII welITR)

0178 00CHB 000A DATA 1v MESSAGE HYTe LE~GIH

vi79 00CC 00CO DaTs BUFF3 MESSAGE BUFFE= ALRESS -

0180 00l Q00U DATA Ve) P
ODOLE V000 »

91-9/1

‘e

PAGF

MACRUZ (a2)

(IR ETd
J1483
01»4
ul1ss
01K6
BRIV
IR E.T.
V149
0190
0\191
0192
0193
01494
019S
UlYo

votoe

00CF

VOLU
0001
w2
gunl
oy
DOUS

wl/zansly

31z e Mus

uHle

6303
taot
FI00
000v
FY00
00uo
L TU

yue
Jou

Yudu

DU

| 0TASK Eau 3

~

itelhie! w2 NP AN PRULREN 9550”/(’1'13t]
e Lol=¢ rlx BFmy #00U=93300-13K]

x
X IHLS IS 14n CUMMUN TASK “[0TASK" QUEUED

* BY TASk1, TASk2 AND TA$k3 So THAT THEY WILL

* NOT BE DELAYED WAITING FOR THE COMPLETION

* OF THE /0. NOTE THAT THE 10X PACKAGE (10:) .
*]S WSEOD. ' S :

X

]

" .COMNO. TASK ENTRY POINT
SIN 2 AVOID INTERRUPTS HERE

STX o8 STORE. 108 ADDRESS INTO CALL
JST 10: CALL lox _

foB DATA 3-8 10B ADDRESS STORED HERE
JST END: IMMEDIATE RETURN
NOP T LGNORE ERROR RETURN
JST END:

TERHINATE THE COMMAON TASK

o C’r\ . ‘,r\' (\ ' . ,ﬂ €,\ wf. E,

QMZ:» ;;“Kﬁuoo

LT-9/1

I AGE

MACLRUZ (A2)

0194
C019w
02040
0201
020e
0203
U’y
0205
0206
0eul
n2os
0PUY
0210
0211

uele

U2y
0214
021S
vetle
0217
0218
0219
0220

neet

0222
0,2y
v2ou
022y
Neele
vert
0ees
0°P9
07230
ne3l
(1232
uras

o1l

ARTER K.Y
ity
B DI
0voL9

VODA
uyon
gonc
UL

VOVE
DUDE

T00r

noel
yore
HUE3
(Ot d
uiEs
Vlch
QUET
VOER
DAV
J0r 4
OurF
oy C
uad)
N0

vuek

Fely

URY RNV
ol=s v,
OF 00
DALH Uk b
FP200 Ut
FY00 ¢Uuo
0800
9Atl Y UOFD
1326
Ceud
EALZ vkl
CTos
A1l vur?
E20F nurl
AV
3400 nuohd
FOuy wuo
()5S0 .
YLoo ooy
COHA
Fetl Gl A
Fols vano
Ceyrnd
glun Gnul
GOANR
0AQY ary
FoOon uvar s
TRV ER 1 »

fwésﬂ\ - — = | Es&\:f

11720 “tA DEMY P ULRAN u5>nn/v1?1&]

i1z A LSI=2 WX LEMU RUO=94300=1 4]
* .
T[S S Inb COMMUN SUBRULUTINE CALLEY BY TASKi,
x TASRKZ, ANu TASKS 10 UPuATE THE "NUMBER (F
€ BELAVSED SeLudauS I ITHF ARPRUPRTIATE Ot IPUT
* CudhALt, ALL TASKS CALLING THIS SUBROUTINE
t KRAVE THE SAME PRIORITY, SO THE CALL TO PAUSE:
* WILL CAUSE SOME ATTEMPTS AT RE-ENTRY.
&
NEXT ShM
[45 COUNT DONE 2
JMP Lx NO, CONTINUE LOQOP . :
JsT SUBRX: YES, RETURN FRON can«o~
2 SUBROUTINE
ADD1 ENT ENTRY poinT
STA COUNT
LLx 1 BYTE ADDRESS OF NUMBER
AXl 3 ADDRESS OF LEAST :
% . SIGNLFICANT DLGIT
STX SAVEX SAVE IT .
Lx LAM 4 PO ONLY. & DIGITS , ,

STA FOOR
LDOX =~ SAVEX GET ADORESS OF LSD

‘ SBM _
ADD2 LOAR @0 GET DIGIT
JST PAUSE: ALLOW RE=-ENTRY ATTEMPT
1AR . ADD ONE (1)
STAB Q0 PUOT T BACK
CAl '9'+1 WAS (T '9'2
JHP 3+2 YES:, GOTTA DO NEXT DIGIT
. JHP . NEXT NO, CHECKk FOR DONE
LAP 'o! CHAMGE TO ZERD ('0')
STAB Qo PUT IN DIGILT ‘
bXR POINT TO PREYIOUS DIGIT
LMS. FOUR .~ BUMP FOUR DIGIT COUNT
- JuP ADD2 ‘DO NEXT DIGLT
JHP NEXT CONTINpE

S Qgij) UORERUICHRERGNCLI0D)

G

ng¢*|;LMﬁ:|::: Va §10 X =[G

13¢1

“1N/00So A wyP v 4 W X |

e -

N/

~

Q
Q
o

s

VAR X(] ynQ
YIVQ X3AVS
ViYQ 1n00D

lisAt

1/6-18

A00n Za0n 9§eo
noaa 1400 Qe
DA 04006 /KE20

Sur 4o {6 (gv) dUN)YW
JH/ns /s 2106 39Vd (&

L
i

0000

AARNING

~ (7 ~ o
PALE 0013 08/s0/11 V1 ANseT ~LE DR PrGoreM 94300/ 01 =131
MACKIE (AP) SI= s LSI=¢ ~lx Ukird #L0=968u0-12E]
PR Y] x
' Ve 39 ¢ THIS 1S THE UNIT ASS16NMENT TABLE REQUIRED
0240 + BY [0Xx, THERE 1s ONLY ONE ENTRY, SINCE ONLY
yenl * ONE 1/0 DEVICE (TTY) 15 USED IN THE
neu,/ + PROGRAM,
LK) . '
0244 DUk% UATTOP EQU K¢ TOP OF UAT
D245 OOF3 C3CF DATA co! LUN
0246 Vu0o 1FF LS13¢s
0247 GOF4 Q009 DATA D:TYao DIB ADDRESS FOR STD TTY
o248 ENDC } Co
02572 UOFS FrFL L:UAT DATA UATTOP-5-2 LENSTH OF UAT
02%3% : % e
0254 CLuuan EAD BE&IN
ST 0000 rRRUFS
N
L
[Ve}

PART II

THE INPUT/OUTPUT EXECUTIVE (IOX)

N

SECTION 1

I0X GENERAL DESCR1PTION

IOX is a subsystem of RTX which operates under RTX control, and provides the user with
a complete, modular method of input/output device management and support. Appllcation
programming is faster since time-consuming input/output programming for standard
peripherals and communications devices need no longer be done by the user. Since IOX
. is open-ended, the user can ‘add capability for virtually any kind of device unique. to
his application ‘and program it under IOX control. All I/O performed by IOX is
interrupt—driven and allows other tasks in the system to execute even though 1/0 is in

progress.

) . . V) B
’ bWOrking in conjunction with IOX is the File Manager that enables the user to communi-
cate with data files by name, independent of the physical medium storing the file.
Requests for file access are made through IOX using Logical Units (LUNs). '

10X can perform one operation at a time for each peripheral device. Operations
‘requiring the use of the same device are done in I/O task priority order (i;e., the
highest priority request is honored whenever the device is available to be used).
Operations performed on different devices are done concurrently. All calls to 10X
_ specify a Logical Unit (LUN) on which to perform the I/O rather than physical units.

This feature allows a program to be debugged using one set of I/O a551gnments and
executed u51ng another. :

I0X satisfies the following I/0 requireménts of the system:
1. Selects the proper commands for communicating with external devices.

2. Processes device interrupts in the following manner:

b a. Saves the status of the currently executing task.

’ (‘ b. Determines the task priority of the interrupt. (Must it be serviced immedi-
ately or can it wait for the completion of a higher priority task and if S0,
is the higher priority task ready for execution?) K

c. Determines whether the task processing the interrupt is a re-entrant task, or
that the interrupt may .ot be serv1ced until each prior 1nterrupt has been ‘
fully processed.

d. Determines which of the I/0 tasks awaiting egecution has the highest

| ' priority, then restores the CPU status to the environment of that highest
priority and gives control to that task.

e. Ensuxes that no task may access a device while it is controlled (dedicated).r
by another task. : . S

((; f. Ensures that the interrupt system is not disabled for a period of time whlch
- would prevent a high speed device from performing I/O successfully.

I1/1-1 Revised 1/77 3

g e el -y SRR Y

- {*~cluding identical units) in a real time environment, IOX has been designed to make

‘may create a DIB and CIB (and a handler) for a non-standard device.

EE R T L D I

':f s _‘? j.“£. ‘. _ | .Q ‘ fC?;npuhuiuﬂonum&xz Gij?%& — ~

1.1 GENERAL DESCRIPTION

Because of the likelihood of having several similar devices attached to the computer

i casy to support several similar devices (differing only by device address) using
"shareable” code. 10X requires some space for flags, device addresses, etc. Since
the types of flags depend on the device, as well as the interface to which the device
is connected (there may be more than one device per controller), IOX maintains flags
"in two separate locations depending on whether the information is unique to the

device or to the controller. In order to utilize the minimum space in memory for
‘these flags and temporary cells, and to facilitate the allocation of these cells, IOX .
does most of .its interfacing by means of tables which define the type of device and
interface to wh1ch it is connected.

;Ox is primarily concerpgd with fqur,tables{

:lIOB " Input Outpuf'Bloék_ . -) R : I L

S LUAT . Unit Assignment Table L e ' L ST .
.. DIB Device Information Block - - A
.(CIB Controller Informatlon Block

%

(These tables are more fully described in section 2 (IOB and UAT) and section 4 (DIB
and CIB). The IOB is created by the user (task) and resides within the calling task.
It contains the Loglcal Unit Name or Number (LUN) as well as specifications for the
1/0 operation to be performed.

T(: UAT is also created by the user. It is a series of two-word entries, each of
which e equates the LUN (specified in the IOB) to a specific device.

{., DIB and CIB are tables which are used in communication between IOX and a parti-
cular handler. IOX contains within it DIB's and CIB's for each standard device.

Additionally, the user may create his own tables if he desires; for example, he may
reéscrve an extent on a disk by specifying its boundaries in his own disk DIB, or he

Jeneral, the usage of these tables by IOX is as follows: The user constructs the

» within his program and calls I0X, giving as the sole argument the address of this
I8, IOX must then transfer control to the handler associated with this request. To

so, it first obtains the logical unit number (LUN) from within the IOB, and com- -
pares it to each entry in the UAT until a match is found. The UAT is simply a list
of each possible Logical Unit Name/Number (LUN), associated with the address of the
DIB which defines the device assigned to that LUN. Thus for each LUN the UAT contains
a pointer to the appropriate DIB. In turn, each DIB contains a pointer to the CIB
which defines the interface to which the device is connected. Finally, the CIB
contains a jump table which pointé to the particular handlers (procedures) for pro-
cessing the specific request. Therefore, given an IOB and a UAT, IOX can find the
procedure to handle the request made in the IOB. '

The following steps are performed during a normal call ‘from the user to IOX:
1. The user calls IOX carrying the word address (may be indirect) of his IOB.
2. IOX examines the status within the IOB. If the IOB is busy (from a previous call’

(.. to I0X), the calling task is suscended and control is passed to the RTX task
scheduler. . .

rvr /1.9

-

—

Bt b e

T L o

>
ﬁnn [N VO I P

-3
.

’made to the caller after. setting the Invalid -LUN" “status- bit In'Lue“lUU.

. . | e s s .,M...,..*._‘.
b a -
N R 1Y uuxﬁhag(‘nﬁwb m« e \ian um.. second (o cornplete.,

T

' . ‘ B L ot e RS SIS A ST s ol 7 7ot & B3 SRS Gh0¢ T) LYW IR § C?\)A t,EYE
““If the IOB is not busy, it 15 than flagged as busy, and the UAT is searched to

G
e
T

find a LUN which matches the LUN in. tbq_lpB. If not found, an abnormal return is‘dﬁi

-

=

L3 ‘ .
If a matching UAT entry is found, the COrrect DIB is located (the DIB is refer-
enced WLthln the UAT entry) and the requested function code is compared to the-
permlssxble function code(s) within thq.D;B. If the requested function code is’

LI SO

found to be illegal, an abnormal-returnmls,made-to the-caller-after-setting the
"Error“ status b1t .in the IOB,_ Lt e

. - ’
:i""*'&";l iy e
v

g "./‘ ?i':"\;li“ . s ("'.9 l I“*"v .

10X next queues the I/o request with any previously pendlng I/0 requests for the)

requested device according to the priority of the calling task and passes control
to its internal I/O scheduling routine.

The scheduling routine then_monltors the request queue in each DIB; whenever it
becomes physically possible to begin an I/O request (the I/O device is available
and no higher priority request is pending), the scheduler calls the appropriate
I/0 handler routine (driver) according to the handler entry address within the

~CIB.

S 5

In general, the I/O handler rout;ne will set up the requlred interrupt locations,
select the device, and inltlate a watchdog tlmer, and then return control to the

- I/0 scheduler.

10.

1.2

The

The I/0 scheduler continues monitoring the I/O regquest queues and calling the
applicable I/0O handler routine(s) until each DIB has been examined gnce. Then
the 1/0 scheduler terminates with a call to END:.

when an end-of-block I/0O interrupt occurs, it causes a return to the I/0 handler
which initiated the I/0 operation. The handler will normally at this time, call
an end-of-block routine within IOX, which stores the I/O status and record count
into the IOB, releases the device from dedication (if desired), returns to the

calling task through either the normal or the abnormal return location, depending
on the status, and begins the I/0 scheduler. :

If an I/0 error should cause the watchdog timer to expire prior to I/0 completion,
it causes a return to the applicable handler, which will then normally execute an
initialize function to the device, store an "Unresponsive Device® status into the
IOB and return to the caller's abnormal return location.

CALLING SEQUENCES

threé entry points to I0OX are:
I0: To perform an I/O operation or special function

IOREL: To release a dedicated device
IOWAT: To wait for completion of an I/0 operation

11/1-3

i Leronl to conplete. -

o
'
e d

25}

a2l

. } (honﬁpu&on&utuwwﬂku1 (g;Z;QS B

‘acy~~»f these entries requires a parameter list (IOB). IOB format is described in

-1 in section 2. The IOB specifies the type and mode of operation, data area,
ata length, and the Logical Unit Name/Number. It also provides room for status
nformation to be returned to the calling task. All calls to IOX return with the
egisters as follows:

A Register Undefined

X Register Pointing to the IOB
OV Register Undefined
Word Mode '

LSI Console Data Register Unchanged

he format of a call to IOX to perform an I/O operation is:

© JsT . I0: ' '~ Call the I0X perform I/O routine

DATA ' (*)I0B Address of the Input/Output Block o
G .- Immediate Return .

-——— - o Operation complete———abnormal return '

- B _ - Operation complete—~—gormal return

ot&hat there are three exits from IO: -- two are always taken. As soon as the :

e st is propessed,.IOX BEGIN:'s a new task whose starting address is the immediate

eturn location. When the I/0 operation is completed, IOX returns to either the
bnormal or normal return depending on the success of the operation. Having an
mmediate exit as well as a complete exit from IOX provides the user with the option
f concurrently executing his program while the I/0 is in progress. If he does not
ish to continue execution until the I/O has completed, he simply codes:

(;,T END:

n e location of the Immediate Return.
lternatively, if a certain amount of concurrent processing can take place during the
/O operation, the immediate return location should contain a jump to the processing
outine. When the intermediate processing has finished, and it is neces-ary to await
/0 completion before contlnulng, a call to the IOWAT: routine is made, as in the
ollowing example:

JST I0: Initiate the I/0 operation
DATA . (*)I0B ~ IOB address

. JMP TAG Immediate return - continue processing
JST END: Ignore complete return

" e

JST END Ignore complete return
TAG EQU $: ' '
. : Concurrent processing
. _ during I/0°
JsT TOWAT: Wait until I/O completion -
DATA (*)10B: IOB address
- Operation complete - abnormal return
- Operation complete — normal return b

‘ote that a call to END: must be made at the "complete" returns from the call toc I0:,
. n order to terminate the I/O task. One of these two returns will be made if I/0

%'(;ftes before the call to IOWAT: is executed.

ple 11/1-4

e,

B

B b i i sl

(' : : MOTE

‘ A call to IO: is.equivalent to a call to BEGIN: (see chapter 1,
RTX Functions) with a starting address of the immediate return and

- a priority of the task which calls 10: except that the new task is
(queued before all tasks of equal priority.

An abnormal return may result due to the foliowing:

LUN not in UAT
Illegal Operation Request : . , o . ;
pevice Error : o : L

File Mark Input
End-of-Device

P

" A normal exit will result frqﬁ all otherxr conditions. | - f'{i' - .

aﬁ DEVICE DEDICATION o ' Co,) o -

W s gesired, the user may dedicate a device to specific IO: calls only. Word 3 of the
iOB provides the capability of establishing a specific (non-zero) coordination number
for an I/O call. Once such a call has established the dedication of a device, all
future I/O requests for that device will be held off (queued) until the device is
released, unless they contain the established coordination number. «

A device is released from dedication by a call to the IOREL: subroutine, as follows: =

(.’. _ JST - IOREL:
DATA (*)I0B
/ — _3eturn.

On return the A register will be zero if the device was released; otherwise, one or
more of the following A register bits will be set: o :

x.

Bit O set: the LUN entry in the IOB could not be found in the UAT.

"Bit 1 set: the IOB contains a coordination number of zero. e
Bit 2 set: ‘the coordination number in the DIB does not match the coordination
number in the IOB and no queued IOB has a matching coordination ‘-

nunmber. o

1.4 LOADING

The user is supplied with two .standard relocatable object segments, each residing'cﬁ":
two separate paper tapes: : ; v S ’ o -

Segment 1 (paper tape 70-93300/1-01):

This segmgnt contains the following'progrém modules, in the ordex shown: '

1. Character ‘'I/0 Drivers

2. Card Reader Drivers

3. Magnetic Tape Drivers

4. Disk Drivers - ‘ - ' .

- I1/1-5

i _ ‘ | ComputerAutomation @Z%>”—*T.

5. 1/0 Scheduler
6. RTX Nucleus
' 7. ZBG
8. CNSOL3 (if LSI-3 version)

Segment 2 (paper tape 70-93300/1-02):
This segment contains, in the following order:

1. JOX Control
2. RTX Services

-
[N

/

" In addition:to these two modules, the user wiil require:

Le An RTX Mainline sequence, which makes a call to RTX: to initialize the RTX envi-
ronment, and to BEGIN: for each task he wishes to initiate immediately.

RTX Description) . ,

P2, ‘E’One or more "task" programs to be run 51multaneously under RTX (See chapter 1,

3! Special device handler program(s) and the associated DIB and CIB tables, for use
in communicating with any device(s) for which a standard handler does not cur-
rently exist in IOX (see section 3, I/O Handler Organization below). These
handler programs are not necessary if using only the standard devices (teletype,
CRT, high speed paper tape reader and punch, line printer, card reader, magnetic
tape, disk, floppy disk).

C BOTE

(The user's special DIB's will each contain a CHAN directive to permit
‘ chaining to the other DIB's referenced during linking. The user
who does not have an OS system will need version DO or higher of
“. the OMEGA assembler in order to correctly assemble the DIB tables,
because lower versions do not recognize the CHAN directive.
4. A Unit Assignment Table module (UAT) contalnlng entries for each I/0 unit to be
& accessed (see sectlon 2, UAT Descrlptlon).

Tﬁ user may either load each module using LAMBDA, or produce a binary tape via the OS
Link Editor. The order of input of the object modules is as follows:

1. User's main line sequence.

2. User's various tasks.

3. Unit Assignment Table (UAT).

4. Special user-coded DIBs and CIBs, if any.
5. User-coded I/0 handlers, if any.

6. R1'X/IOX tape, Segment 1.

7. RTX/IOX tape, Segment 2.

The RTX/IOX tapes, Segments 1 and 2, are organized in library format. FEach routine on
these tapes is loaded conditionally until the last module of the tape is read. The
routines are organized so that only one pass through the loader is necessary. -

C

II/1-6

ey~

(a

HOTR

Fortran tasks to be run under RTX control require additional library
modules to be linked. Refer to the Fortran Operations Manual for a
complete description.

1.5 RESTARTABILITY

In general, if some I/0 error occurs during execution for which the operator wishes to
abort the program, it may not be restartable if the abort condition (e.g., the operator
halts the processor through the console) occurs during the period of any I/O request
(either pending or being serviced). This is because various "busy" flags within the
I/0 tables must be reset upon restarting the program. To insure resetting of these
flags, reference the "IONIT:" module from the Mainline sequence (see chapter 1,
section 2: description of the RTX: initialization routine).

’

11/1-7

SECTION 2

IOB AND UAT ORGANIZATION

The IOB (Input/Output Block) is created by the user and resides within the calling

task. It contains the Logical Unit Name or Number (LUN) as well as specifications for

the I/O operation to be performed

The UAT is also created by the user. It is a series of two-word entries, each of
whlch equate the LUN (spe01f1ed in the IOB) to a specific device.

he following IOB descrlptlon applies to all standard IOX handlers. The description
s annotated to include File Manager functions. IOB organization for non-standard
handlers (for example, the IEEE Intelligent Cable Handler) is described in Section 7.

2.1 INPUT/OUTPUT BLOCK (IOB) - 10 WORDS

The IOB must be set up by the user within his own program. Word 0 is temporary
storage and will be destroyed by IOX each time IO: is called. Words 1 and 2 are set
~*0 the device name by IO:. Words 3-7 are parameters passed by the user on calls to
&,O:. Words 5 (bits 8-15) and 8 contain information returned to the user from IOX.
Word 9 is used only on devices which support direct access 1/0 (i.e., disk, floppy
disk). (Note that IOB tables are not required for Fortran tasks. Refer to the
Fortran Operations Manual). Figure 2-1 illustrates the IOB configuration.

t'Sample IOB's ere included in TASKl, TASK2, and TASK3 of the RTX Demo Program. Refer
to Chapter 1, Section 6.

&er (0] Temporary Storage for Use by IOX. This word is used by IOX as a

pointer to queue requests for each device. It must NOT be altered by
the user. :

Word 1 Device Type (Two ASCII Characters). This word is set by I0:. It
contains the two character mnemonic for the device type.'

Word 2 Device Number. This word is set by IO:. By convention it contains two

ASCII digits (0-9) and is used to dlstlngulsh between multiple devices
of the same type.

CAUTION

Words 1 and 2 are used for temporary storage during calls to IO: and
are only valid after one of the complete exits has been taken. These
locations must not be changed when the busy bit in word 5 is set.

II/-Z-l Rewvicad 1/77

| . INPUT/OUTPUT BLOCK
. standard ‘ _ o
Name* 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 o word
| A CHAIN POINTER (RESERVED FOR USE BY IOX) ' 0
IDT ' o DEVICE TYPE 4 1
JCUN or : R R . ‘ |
ITCB. : L DEVICE NUMBER :© ‘ 2
6 ' .‘ . COORDINATION NUMBER | S 3
ILUN - LOGICAL UNIT NAME/NUMBER ' - 4
B |E F : :
ISTA,IOP u |R N0 |BAD | G |DEV.| DEVICE|INT.| RES.| S | OP op
s |olr/oluon | R [N | pos. |use O | cope MOD . 5
(Y | r M |RESP
IRCNT : REQUESTED COUNT _ 6
(.
_IBUFF : BUFFER ADDRESS ' - 7
F v . , , .
IACNT L ACTUAL COUNT/PROMPT CHARACTERS - | 8
G . '
éAA , - DIRECT ACCESS ADDRESS - _ ' N
, .
L
Figure 2-1. IOB €onfiguration
* refer to the I/0 Handler listing at the end of Section 3.
|
!
|
C
11/2-2

[-®

Word 4

I8 4 13 12

I/0 Coordination Number. This word is supplied by the user to
coordinate his I/O requests. If this word is non-zero, the device on
which the call is being made will be dedicated to the coordination
number supplied. When a device is dedicated to a specific coordination
number, only those requests with matching numbers will be honored. Aall

" others will be queued until the device is released. If device dedl~

catlon is not required, this word should be set to zZero.

Logical Unit Name/Number (LUN). This word is supplied by the user and
it describes the Logical Unit on which the I/0O should take place.
Although the LUN may be any 16-bit value, by convention all negative
numbers are considered to be ASCII character pairs (e.g., SI, ILO). All
positive numbers are con51dered to be FORTRAN unit numbers (e.g.,

5,6, 10)

Status, Function Code. This yprd uses the following format:

L ' 1 L)

Operation code
Special operatlon
Reserved

Internal use only
Device position
Device unresponsive
Bottom of form
Invalid LUN

. e S — Nt —— ' . . .
A) - I 4 .—I:::____OPeratlon modifier

No I1I/0 performed
Error :

Bits 15-8

Bit 15

Bit 14

Bit 13

Bit 12

Busy

Status returned to the user by IOX. The breakdown of bits is as
fcllows:

Busy (the operation has not been éompleted)

Error (an unrecoverable error has occurred); or bit 11 or 12 is
set for the File Manager. C

No I/0 performed (e.g., LUN is assigned to dummy device, device
cannot perform the requested operation, LUN not in assigmment
table, Read or Write wlth zero (0) count).

Invalid LUN (LUN cannot be found in Unit A551gnment Table); or
File Manager access mode error.

11/2-3 Revised 1/77

g — _ ‘ | chnmunnnauaumunkxa QEEGQS —_—

Q Bit 11 ‘ Bottom of form (listing device only); or File Manager end of

. medium, directory full, directory error, device not labeled or
i A partition busy.

Bit 10 Device unresponsive (the device has not responded to the request
’ in a reasonable length of time); not used by the File Manager.

Bits 9 Position of device:
and 8 00 ' Indeterminate - T
01 Beginning of device
.10 File mark found
11 End of device (disk and Magnetlc tape only) - For tape, the
~ EOT reflective marker was encountered. For disk, the last
sector in the extent was accessed. This status does not
necessarily mean that no data was transferred.

LU

Bit 7 This blt 1s for INTERNAL use only., Initialize to zero and
{ : do not ALTER.

Bits 6 Reserved for future expansion
.and 5 ;
Bits 4-0 Requested Function Code. This is supplied by the user and defines
the operation to be performed on the device. The breakdown of
(;i bits is as follows:
<~ Bit 4 Special Operation - If this bit is set, bits 3-0 are ignored.

This is to allow users to supply drivers for devices which perform
special functions.

Bits 3 ’ - Operation Code

and 2 ' - 00 Read
. 01 Write
10 ~ Position
& 11 Function
(‘ ‘Bits 1 Operation Modifier -~ These bits define the specific type of
and 0O operation to be performed. Their meaning depends on the operation

code. {Some operation modifiers vary for certain Handlers. These
differences are noted accordingly.)

For read: ' ' File Manager
00 Direct Access (MTIC only, Read Reverse) Random Access
01 Unformatted, Sequential Sequential
10 Formatted ASCIY, Sequential Sequential
11 Formatted Binary, Sequential Sequential
j For write: o , File Manager
} 00 Direct Access ' Random Access
ﬁ 01 Unformatted, Sequential . Sequential
4 10 Formatted ASCII, Sequential Sequential
H \((;. 11 Formatted Binary, Sequential Sequential

4 | _ 11/2-4 Revised 1/77

g B e 2 T P e BRI

S o b o

Word 6

Word 7

¥ Worxrd 8

00 Write File Mark

"calling the handler. This is done with an intermediate counter. IOB

_(for absolute position), or the actual record length in bytes (for read

'&mmMN&@mw&% @Z&;———~

For position: File Manager
00 Absolute, Records
01 Absolute, Files

10 Relative, Records

11 Relative, Files

No change
No change
No change
No change
For function: File Manager

No change
Reserved

Set file deleted
bit in DIB
Update directory
(New files only)

01 Punch leader

10 MTIC only, Control Edit; Line
Printer only, Eject to Top-of-Form

11 MTIC only, Control Erase "

Requested Count. This word is supplied by the user to specify the I/O
length, which is defined as follows:

For read or write functions, this word is the number of bytes to be
transmitted (1 to 65,535). (If the operation is Write Formatted ASCII,
I0X will alter the requested count to remove trailing blanks before

Word G,is.not altered.)

For relative record or relative file positioning, this word is the
number of records or files to skip. (A positive count means skip
forward, a negative count means skip backward).

For absolute record or absolute file positioning, this word is the
actual récord or file number to skip to. (For MTIC Handlers, the unit
is rewound and placed offline if this word is equal to minus one.)
NOTE: Positioning a file to absolute -1 (file marks or records) is a
close file operation for the File Manager (refer to Section 5.1.3).

Buffer Address. This word is supplied by the user to specify the start
address of the I/0 buffer. Note that this address is always a word
address and that indirect addressing is not allowed.

Actual Count/Prompt Characters. This word is returned to the user by
the File Manager. It contains the number of records or files actually
skipped (for relative position), the actual record or file skipped to

or write). The File Manager will NOT read more bytes into the user's
buffer than requested, but will continue to count characters to estab- .
lish the physical _.ecord length.

On devices which are capable of prompting, this word is used to.hold up
to two prompt characters.

NOTE

Word 8 contents will be assumed to be prompt characters if
negative (bit 15 set). Bits 7-0 not equal to zero indicate
two prompt characters; bits 7-0 equal to zero indicate only
one prompt character {in bits 15-8}.

I1/2-5

WO(T 9 " Direct Access Address. This word is the direct access data address
within the device (current record number), for devices. capable of
supporting direct access. For sequential access, this word will be
incremented to the current logical record number after each access.
For random access, the user stores the logical record number here.

’

2.2 UNIT ASSIGNMENT TABLE (UAT)
The Unit Assignment Table is not part of the standard IOX library; it must be "tailor-

made" by the user for the particular configuration of devices he requires. Figure
2-2 illustrates the UAT configuration.

UNIT ASSIGNMENT TABLE

15 ' o : o - "0 word
' & ‘ LOGICAL UNIT NAME/ANUMBER 0
. DIB ADDRESS ' 1
'LOGICKL UNIT NAME/NUMBER 2
DIB ADDRESS : 3
¢ r
(- . LOGICAL UNIT NAME/NUMBER N-2
DIB ADDRESS N-1
TABLE LENGTH = - (N + 2) N
S},v _ ‘ Figure 2-2. UAT Configurétion -)

s

{
The UAT is a table of two-word entries for each logical unit which can be referenced
in calls to IOX, plus a terminating word containing the UAT word length. The first
word of the entry is the Logical Unit Name/Number (LUN) which is referenced in the
user's IOB. It may be any value from O to 65535.

The secénd word of the entry is the address of the corresponding DIB table.

The last word in the table is.the count word. It is a negative quantity representing.
the number of words in the table, plus one; that is, two words for each entry, plus
the count word itself, plus one. Thus, if there exist four two-word entries, the
contents of the count would be minus 10, or -(4 x 2 + 1 + 1). The count word must be
the last word in the table, and must be labeled I:UAT, because this is the name used
by IOX when referencing the UAT. (Refer to the sample UAT at the end of this section).

€«

11/2-6 Revised 1/77

e

¢ .
: }(2.3 STANDARD DIB NAMES
I - The following table shows the DIB names for all devices for which standard and non-
i standard handlers exist within IOX. The label is to be used as the second word of the
b / UAT entry for each device the user wishes to include. '
Fortran V Fortran
Non-DIO Non-DIO DIO DIO
Teletype Console D:TY00 D:TYFO D:TYOD D:TYFD
" Teletype Keyboard ' - _ D:TKOO D:TKFO D:TKOD D:TKFD
.| Teletype Tape Reader _ D:TROO D :TROO D:TROD D:TROD
Teletype Punch . D:TPOO D:TPOO D:TPOD D:TPOD
CRT Console . D:TYOO D:TYFO D:TVOD - ’
CRT Keyboard ‘ D :TK0Q D:TKFO D:TVOD —
High Speed Paper Tape Reader ' : D:PROO D:PROO D:PROD D:PROD
High Speed Paper Tape Punch , D:PPOO D:PPO0 - - D:PPOD D:PPOD
Centronics Line Printer : o D:LPOO D:LPFO D:LPOD D:LPFD
~Tally Line Printer p D:LP10 D:LPF1 - -
WData Products Line Printer . D:LP20 - D:LPF2 - -
; Card Reader . ~ D:CROO D:CROO D:CROD D:CROD
Disk (43 series, fixed platter), unit O D:DKO0O D :DKFO -— —
Disk (43 series, fixed platter), unit 1 D:DKO02 D:DKF2 - -
Disk (43 series, fixed platter), unit 2 _ D:DK04 D:DKF4 - -
Disk (43 series, fixed platter), unit 3 D:DKO06 D:DKF6 - -
Disk (43 series, removable platter), unit 0 D:DKO1 D:DKF1 - -
Disk (43 series, removable platter), unit 1 D:DKO03 D:DKF 3 - -
Jisk (43 series, removable platter), unit 2 D:DKO5S D:DXF5 - -

l “Disk (43 series, removable platter), unit 3 D :DKO7 D:DKF7 -— —_—
Storage Module Disk, unit O (cylinders 0-201) D:SM00 D:SMFO - -
Storage Module Disk, unit O (cylinders 202-403) D:SMO1 D:SMF1 - -
Floppy Disk, unit 0 ' D:FDOO ‘D:FDFO — _—
Floppy Disk, unit 1 D:FDO1 D:FDF1 - -
Floppy Disk, unit 2 D:FDO02 D:FDF2 - -
Floppy Disk, unit 3 D:FDO3 D:FDF3 - -
Magnetic Tape, unit O D:MTO00 D:MT00 D:MCOO -

y* Magnetic Tape, unit 1 D:MTO1 D:MTO1 D:MCO1 -
Magnetic Tape, unit 2 oo D:MT02 D:MTO02 D :MCO2 -

) Magnetic Tape, unit 3 D:MTO03 D:MTO03 D:MCO3 = ==

(IEEE Intelligent Cable - -- ° D:IEOD -

I1/2-7

i

~ UATTOP’

2.4 SAMPLE UAT

(

.

C

C

- NAM

LXTR
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

DATA
DATA
DATA
DATA
DATA

4 St=>ndard DIB names in an EXTR directive, e.g.:

T:UAT

" When creating the UAT, the user must declare I: UAT in a NAM directive, and any of the

D:CROO, D:LP00, D:TKOO, D:LPFO

UCR'
D:CROO
ILPI
D:LPOO
ICII
D:TKOO

’ 'co’

D:TKOO
5 .
D:CROO
6

. D:LPFO

UATTOP I UAT-Z

I1/2-8

Card Reader Entry
Centronics Line Printer Entry
Command Input Entry

Command Output Entry

FORTRAN Unit 5
, FORTRAN Unit 6

‘Table Length

4
#
¥

|

SECTION 3

I/0 HANDLER ORGANIZATION

The purpose of an I/O handler routine is to set up and execute the actual I/O instruc- -
tions (normally interrupt-driven Auto-I/0O instructions) necessary to perform an input’
or output operation to a specified device. The I/O operation and the Logical Unit .
Name/Number are specified in the user's IOB, and the I/O must be performed within the

constraints of the device as specified in the CIB and DIB. (These tables are des-

cribed fully in section 4.) A listing of the Character-oriented I/O handler is
included at the end of this sectipn. ‘) : :

b'l THE STANDARD HANDLERS

Each standard IOX handler is described below. Refer to Section 7 for descriptions of
non-standard handlers and to PubXication No. 93325-00 for the A/D, D/A Handler.

3.1.1 Character—oriéhted Device Handler (non-Fortran)

This handler performs I/0, according to specifications within the applicable CIB,
(; for the teletype, high speed reader and punch, and line printer. (A complete
listing of this handler is found at the end of this section.)

3.1.2 Fortran List Device Handler

This handler exists for I/0O to the teletype console, teletype keyboard and line
printer when used as a list output device under Fortran. It differs from the
previously described handler in that it recognizes and processes Fortran carriage
control characters; i.e., a "1" character as the first print character signifies

function to the teletype consists of six consecutive line feeds).

éﬁ\ top-of-form, and a '0' signifies double spacing before printing. (A top-of-form

Note that the Fortran task does not use an IOB, but rather Fortran I/O state-
ments; these are passed through the Fortran/RTX I/0 Interface routine which sets
up an internal I0B for the user, according to the DIB's he has included in his
Unit Assignment Table. The Fortran I/0 handler is entered because the third
character of the device name in DIB Words 5 and 6 is an “F"; thus "“LPFO" will be

processed by the Fortran handler, and "LPOO" will be processed by the standard
character handler. ' o o

3.1.3 cCard Reader Handler

The card reader handler is similar to the standard character handler except'that'
input characters are converted to ASCII before returning.

C

11/3-1 Revised 11/76 -

Conuxﬁgfﬁuhxnﬁﬁon (gzzak'-———-——

3.1.4 Maynctic Tape Handler

Thé Magnetic tape handler processcs 1/0 for magnetic tape devices, and will
/ perform read, write, write end-of-file and reposition functions.
{

3.1.5 Disk and_Storage Module Disk Handler (Non-Fortran)

The IOX disk handler allows the RTX user to communicate with the disk. The
communication takes place through IOX and the standard calling sequence is used.

The user calls the IOX disk handler by making a standard call to IOX with an IOB
which contains a LUN assigned to a disk DIB. The op-code must be either read-
direct access or write-direct access.

Data Formats ‘ ' S .

reads (or writes) the number of bytes reques;ed by the user. The length of each
) "yecord" is unknown (supplied by calling program) and therefore the disk handler
is unable to read variable length records without some form of external format-

ting routines. .

itx'l‘he I0X disk handlerxr sﬁpplies no formatting information of its own. It just

The IOX disk handler can support multiple "extents" on each disk and can allow
access to them as if each were a separate disk unit. Extents are simply regions
on the disk which may be defined by the user to be handled separately. Without
. any outside action by the user, IOX will process contiguous records throughout
(;-the extent. Each record contains the number of bytes requested in the I/O call,
and each record starts at the beginning of a sector. Therefore, for fixed length
records, each extent may be considered as a sequential file.

N

In oxder to allow "direct access", each sector has a "relative sector number".
The usexr may direct the IOX disk handler to process a particular record by ini-
tializing IOB Word 9 (IOB Direct Access Address) in the IOB used for the I/0
call. At the completion of each request, this address is appropriately incre-
~ mented by the IOX disk handler so that the next request will process the next
record. If the record contains 1-512 bytes, the address will be incremented by
: " one; 513-1024 bytes, the address will be incremented by two; etc. Note that the
relative sector number and relative record number may not agree (in fact they
W\ will not agree if the records are larger than 512 bytes).

Extents are defined in the disk DIB's. The standard Disk DIB's (DKOO and DKO1l)
define an extent as an entire platter (200 cylinders, 2 heads). The user who
wishes to utilize several extents on a single platter may do so by creating his

own disk DIB's, using the following variables within each DIB to deflne the
parameters of the desired extent:

a. The number of sectors per track (may be less than the physical number).

b. ' The starting sector number (when added to the number of sectors per track
must be less than or equal to the physical number per track).

ﬁ Cc. The number of heads per cylinder (may be less than the physical number).
?
\

{(;;d. The starting head number (when added to the number of heads per cyllnder must
.. be less than or equal to the physxcal)

S, Bt A YYITTA

Y Spefriesee

il

(T e. The number of cylinders the extent occupies.

£. The starting cylinder (when added to the number of cylinders must be equal to
or less than the physical).

g. The drive number.

"The IOX disk handler does not check for validity of the resulting sector, head,

and cylinder numbers. It assumes that the dimensions and offsets supplied in the

DIB are valid. This allows the user to take advantage of the "flag" bits des-

cribed in the Disk Interface Manual.

Contiguous sectors occur in the following sequence:

a. Consecutive sectors on a single track (up to the number of sectors per track).

b. The same sectors on the next head (up to the number of heads per cylinder);
o c. The same sectors and heads on the next cylinder (up to the number of cylin-l

6 ders). .
The disk handler requires four additional words (five if under Fortran) in the DIB
which are not required for the other handlers. These are DIB words 11-14, (11-15

if under Fortran) and are described in section 4.

3.1.6 Floppy Disk Handler (Non-Fortran)

(An "extent” on a floppy disk is constructed as described for the disk handler,
- taking into account the size limitations in the number of cylinders, heads, and
sectors: : ’

Cylinders per Floppy Disk platter = 77 (00-76)
Heads per platter = 1 (single surface)

Sectors per track = 26 (00-25)

Words per sector = 64

defined as an entire platter. The user may define his own DIB's as described in -

451 There exists within RTX a standard Floppy Disk DIB (D:FDOO) whose extent is
| the disk handler description.

3.1.7 Disk, Storage Module Disk, and Floppy Disk Handler (Fortran)

Fortran tasks require a certain minimum amount of file management to be performed -

by the disk handler. The Fortran disk handler differs from the standard disk
handler as follows: ' ’

a. The random access address within the IOB is maintained by the Fortran aisk

‘handler itself, rather than the user, since the Fortran task does not create
its own IOB.

b. The Fortran disk handler can write and recognize an end-of-file mark. This
is a 2-character ASCII record comprised of "/*" characters. : .

I1/3-3 ‘ Revised 11/76

SRR ot Ml

o s e

s

c |

The determination as to whether a Fortran or a non-Fortran disk handler is to be
used is made on the basis of the device name in Words 5 and 6 in the DIB. If the
third character is an "F", it signifies Fortran, and the Fortran disk handler is
used.

In addition, a sixteenth word (Word 15) is required in a Fortran DIB. This word
is used for storage of the current relative record number, which would normally be
maintained in IOB Word 9. Since the Fortran user does not have access to the IOB,
the Fortran/RTX I/O Interface routine keeps this information in the DIB.

.1.8 Magnetic Tape Inteiligent Cable (MTIC) Héngler

_The MTIC handler controls data transfers between Pertec or Pertec-compatible
formattexrs and tape transports and the central processor. The handler performs
read, write, write filemark, rewind and offline, control edit, control erase, and
reposition functions. : :

s.l?bl/o HANDLER REQUIREMENTS

hé user may write his own handler routine for any type of I/O device he wishes. The
equirements for any I/0 handler to be run under control of IOX are as follows:

. Since all I/0 under RTX must be done under interrupts, the word and block inter-
rupt locations must be set up prior to I/O.

. (“, time-out sequence must be included to avoid the possibility of the device
"hanging-up" indefinitely without completing its operations. The real time

,(zlock, via the RTX DELAY: call is normally used for this purpose.

MOYTE

The user must not attempt to manipulate the real time clock by
any means other than through the DELAY: call, as this will
adversely affect the operation of RTX.

i éﬂbnce I/0 is initiated, the handler should pass control back to the I0X scheduler.
(' This permits other I/O operations to be executed simultaneously if requested.

. The I/0 handler should resume control upon either an end-of-block interrupt or
upon watchdog time-—-out, to check the status and return to the caller at either the
noxrmal or the abnormal return location.

. 5everal IOX- internal subroutines (described below) currently exist to aid the standard

1andlers in accomplishing the above requirements. The user-written handler may use any

' >f these routines he wishes. The names of any of these routines must be declared in

IXTR or REF directives within the user's handler.

Ravyicoad 1Y/74

ot AR

R R

el

Ve

c,

ere :XXXX represents a constant which is added to CIB Word 1 to form an interrupt

|

3.2.1

calling sequence:

EXTR SINT:
LDX CIB Address
JST SINT:
DATA : XXXX

Returns with:
INTERRUPTS---UNCHANGED
STATUS---UNCHANGED
A-REGISTER---UNDEFINED
X-REGISTER~-—--UNCHANGED

instruction:

SINT: does the following:

reside in CIB Word 21.

SINT: (Set ﬁp an Instruction at the Word

s

1. It determines the word interrupt location of the device.

C.

It calculates and stores an instruction into the word interrupt location.
actual instruction stored is the arithmetic sum of (contents of CIB Word 1) +
(:XXXX), where :XXXX may be any positive or negative value.

CompuiterAutomssdion m S

Interrupt Location)

This address must

The

NOTE

The standard CIB's contain a "SEL DA,7" instruction in word 1.

(the handler need not call SIO:, however).

ferring the contents of DIB Word 8 into CIB Word 12.

(In the standard DIB's Word 8 will contain various function codes which are required
for SELECT instructions in order to initiate an Auto I/O sequence during the SIO:
If the specific handler does not call SIO0:, DIB Word 8 need not be preset.)

routine.

3.2.2 SIO: (Start I/0 and Watchdog Timer)

Calling sequence:

EXTR SIO:
LDA DPTR
LDX CIB address
JsT SI0:

éé;. Preparation is then made for a subsequent call by the handler to the SIO: routine

I1/3-5

This preparation consists of trans-

N

I e

Ck;mwxﬂwwﬁuﬂmxnuﬁkum (gzzah —

¢

Returns with:

Does not return directly; if the INTP: subroutine is used, a return will ulti-
mately be made in the following state:

INTERRUPTS—---ENABLED
STATUS---WORD MODE OV RESET
A-PEGISTER-——UNDEFINED '
X-REGISTER---CIB Address

DPTR is an address pointer to a two-word information block:
Word l: Positive number of bytes to be transferred.
Wword 2: Word address of I/O buffer.

(Note that the standard handlers‘use CIB Words 26 and 27 for this information).

2

Tif;SIQ: routine does the following: -

] Negates the byte count pointed to by the A register, and stores it into the Word
! interrupt location plus one.
.2. Shifts the Buffer address pointed to by the A register to the left by one bit:

(converts to a byte address), then decrements the byte address and stores it into
the word interrupt location plus two.

(' NOTE

(Steps 1 and 2 above.complete the three-word Auto I/0 sequence.
‘The AIN/AOT instruction itself may be generated by a call to SINT:)

N

3. Calculates the delay count required for the watchdog timer, as follows (assume a
“~ ten millisecond Real Time Clock rate):

a. The negative byte count created in step 1 is loaded into the A register.
7 b. The contents of CIB Word 20 are .stored in-line and executed as an instruction.

c. The contents of the A register are then negated (converted to positive) and
incremented hy 1000.

=~
/ '

Steps a, b and c above compute the number of RTC "ticks" (normally 10 milliseconds
each) to delay during the I/0 operation. Since the number is constructed begin-
ning with the byte count (step a) and incremented by 1000 (step c¢) the minimum
delay possible is ten seconds, plus ten milliseconds for each data byte to be
transferred. The purpose of step b is to permit a larger delay, if necessary.
For example, CIB Word 20 can be set up by the user, when constructing.the CIB
pr.- r to execution, to be a shift instruction (e.g., "LLA 1") which would double
the value in the A register, and thus cause a twenty millisecond delay for each
data byte(plus the ten second constant). Note that the instruction in CIB Word 20
is executed before the byte count in the A register has been converted from
negative to positive, and before the cohstant 1000 is added. If the minimum delay
(ten seconds, plus 10 milliseconds for each byte to be transferred) is adequate,
then the instruction in CIB Word 20 should be zero (a no-op instruction). It is
the responsibility of the user when creating the CIB table for his handler to

((; determine how large a delay is required to permit completion of an I/0 operation,

and thus what instruction (normally LLA K, where K must be determined) is to be
stored into CIB Word 20.

TT/3-6

C

4.

ame

3.2.3 INTP: (End of Block Interrupt Return Point)

Sets up and executes the following X/0 instructions:

SEL DA,X Handler-determined function
SEL, DA,5 Set word transfer mask
SEL DA,6 Set block transfer mask
SEL DA,Y Handler-determined function

X and Y represent the function codes in bits 15 through 13 and 12 through 10,
respectively, of CIB Word 12. (These function codes were originally copied from
DIB Word 8 in a prior call to SINT:.) Note that if Select instructions of func-
tion X and/or Y are not required by the device, they can be organized in the DIB
so that X=5 and Y=6, so that each is executed twice, or they can be set to a
function code which has no meaning to the device, if such a code exists.

HOYE

- If these function codes are all zero, it indicates an operation .
under Distributed I/0. ’
. V4
If the device uses function codes 5 and 6 for other purposes than
to set the transfer masks, the user may wish to perform the Select
functions within the handler itself, rather than calling SIO:.

Once the Select instructions have been executed, a call to RTX DELAY: is made,
carrying the calculated delay time described in step 3 above.

If the Watchdog Timer expires before an end-of-block interrupt occurs, the in-
struction in CIB Word 1 (normally "SEL DA 7") is executed to disable interrupts
for the device, and the "Error" and "Device Unresponsive"” status bits are set in
the DIB, and control is then passed to the EOR: routine at EORST:.

NOTE

SY0: does not set up the end-of-block interrupt location. This
must be done in the handler.

The INTP: routine cancels the watchdog timer upon end-of-block interrupt, and passes
Control to the return address of SIO:. Thus INTP: is an extension of SIO:,
intended to be used only in conjunction with SIO:.

and is

II1/3-7

- where TAG is a short calling sequence to the RTX INTQ: subroutine,‘which points to

The above description is the method used by the standard I/O handlers for end-of-block

. CompuisrAutomeaidon QEZ;QS —

-

To(:all INTP: at end-of-block, the handler should, prior to calling SIO:, set up the
following sequence at the end-of-block interrupt location: :

JST *S+1
, DATA TAG
{
xample:
EXTR INTQ:, INTP:
"TAG ENT
JsT INTQ:
: DATA $,0,0,0
DATA INTP:,8180,0
DATA CIB Address
DATA TAG

INTP: as the task to be queued.

,

(T) user should first familiarize himself with the RTX INTQ: description in chapter 1
R(Functions). :

interrupts. For this purpose, the first 12 words of the applicable CIB may be used to
contain the calling sequence to INTQ:.

For example, the following is a representation of the first twelve locations within the
cI1{ ‘or the line printer:

(

C:LP@g-——-LINE PRINTER

LOC INST ADDR LABEL MNEM OPERAND COMMENT
ope9 ' NAM C:LP@ :
: ‘ EXTR INTQ:, INTP:, I :READ,I:RITE, 1:FUN

EE I A I I T S I - - N S

(*
*

w ol Ju 0 DA EQU 4
, goh2 INTAD EQU :42
(' *7’:3‘:;‘::‘::&***7‘:*:&***:\’:’:**;‘:***
%
2909 . REL 8@
[of o] C:LPg EQU 3§
pppg P8Y ciB ENT _ .
g8 Lp27 SEL- DA,7 SELECT --- FC = 7
pog2 Fapp JST INTQ: :
8993 PO83 DATA $,0,8,8, INTP:,8188,8,CIB,CIB
gooh o309 o
pEP5 £P0P
fop6 go99
pop7
P008 1FF4
2299 PogY
POPA PPPD

— $p0B 0000
' I11/3-8

N

SR s o s

Note that the end-of-block interrupt location contains a JST into the CIB itself; Word
1 of the CIB is the SEL DA,7 instruction used by the SIO: routine. It is also executed
at end of block, thus serving as a convenient method to turn off the interrupt masks
following an I/0 operation.

Following this instruction is a JST to INTQ: followed by the required parameters, of
which INTP: is the task to be executed. Note also that this sequence will automati-
cally cause the X register to be loaded with the CIB address upon entry to INTP:.

3.2.4 WAIT: (End of Record Delay Routine)
Cailing sequence:

LDX CIB Address
JST WAIT:

- ' .
‘eturns with:

(/ INTERRUPTS---ENABLED
STATUS—~--UNCHANGED
A-REGISTER~—-UNDEFINED
N X~-REGISTER---CIB Address
The WAIT: routine utilizes the delay length specified in DIB Word 7 to delay a suffi-
cient length of time at end-of-record to ensure that the device is physically ready to

(; erform the next I/O request. (Generally, one character time is sufficient for this
delay.)

(The routine loads the delay count from DIB Word 7 depending on the I/0 instruction at
the Word interrupt location; i.e., if bit 13 of the I/0 instruction is on, it is as-
sumed to be an output instruction, and bits 0-7 of DIB Word 7 are used as the delay

-count. If bit 13 of the I/O instruction is off, it is assumed to be an input instruc-
tion, and bits 8-=15 of DIB Word 7 are used as .the delay count. Once the delay count is
established, a call to RTX DELAY: is made; upon return from the delay, the routine

8zxits to the caller.

(3.2.5 EOFQ: (End of File Check Routine)

Once an end-of-block interrupt has occurred, EOFQ: may be called as follows:

LDX : CIB Address . . . ')
JMP EOFQ:

This routine does the following:

R Examines the first two input .characters in the buffer to determine whether they
are '/*!

2. I1f so, control is passed to the EOF: routine.

3. If not, control is passed to the EOR: routine.

C

L EE T e

C

7.2.6 EOF: (End of File Routine)
(r ing sequence:

LDX CIB Address
JMP EOF:

‘he EOF: routine is entered when it has been determined that an end-of-file has been

" 'ncountered (the routine EOFQ: may be used to determine this).

 he routine stores a zero value into CIB Word 28, loads the A register with an end-of-

‘ile status, and transfers control to the EOR: routine at EORST:.

.2.7 EOR: (End of Record Routine)

iealopg sequence:
(LDX ' CIB Address
JMP EOR:

his routine is entered when the handler has completed the requested I/O operation and
'ishes to return to the calling task.

‘he, ~outine loads the A register with the current status from CIB Word 32, and con-
ink. s at EORST:.

(,

:;.2.8 EORST: (Alternate Entry Point to LOR:)

EORST: and EOR: are alternate entxy points to the same end-of-record routine. The

ifference between the two is that EOR: loads the I/0 status word intoc the A register

‘rom the CIB. EORST: assumes that the status is already in the A register.

Talg 1y seequence:

l

(1.>X CIB Address
- LDA I/0 status (from handler)
JMP ‘EORS’I':

'he routine does the following:

. It cories the actual transfer count of the 1/0 operatlon from the CIB into word 8

“of ta:2 IO0B.

. It stores the status of the I/0 operation (1n the A register upon entry) into
bits 15-8 of ICB Word 5.

1. It performs an RTX BEGIN: call, passing as a parameter the normal or abnoxrmal

return address of the caller, depending on the status. The abnormal return
address is taken if any of bits 9, 10, 11, or 14 are set in word 5 of the I0B.

It calls WAIT: to perform an end-of-record deiay.

TY/3I-10) Reviced V1Y /4

&

——

1.

N
-
-

(

It loads CIB Word 1 (assumed to be "SEL DA,7), masks off the low order two bits
(to make it a SEL DA,4 or initialize instruction) and executes it in-line.

It empties the IOCH (I/O suspend) list into the READY 1list.

It then transfers to the IOX request scheduler routine to check to see if another
request is pending for any device on the controller just used.

3.2.9 FETCH: (Input one character from an I/O device)

Calling sequence:

EXTR FETCH:
LDA . CIB Address
JSsT . FETCH: . o ’

Returns with:

INTERRUPTS---ENABLED
STATUS—--UNCHANGED
A-REGISTER---CONTAINS INPUT BYTE
X-REGISTER-~-~UNCHANGED

he FETCH: routine calls WAIT: to wait one character time, then calls SIO: to perform
a one-character I/0.operation. Upon input of the character, it is checksummed, and
the subroutlne exits back to the caller.

The following assumptions are made by FETCH&.

The handler has previously zeroed out the checksum word (CIB Word 13) at the

start of the record.

There exists in CIB words 34 through 37 the following sequence:

DATA $+1 . Pointer to byte count
DATA 1 - Byte count (1 character)
DATA $+1 ' Buffer address

DATA 0 One-character input buffer

which are required for FETCH:'s call to SIO:. -)

Upon return from FETCH:, the input character is in CIB word 37 as well as in the
A register, and the cumunlative checksum is in5CIB§word 13.

I1/3-11 Revised 11/76

‘
)

g 1

C

3.

Ca

i

Re

T
is
i.
2.

3.

.

5.'..

6.

;3.

Ca

(

e

Computerautomation @

2.10 BUFFQ: (Store input character into buffer)
1ling sequence:

EXTR BUFFQ:

LDX CIB Address

JST BUFFQ:

turns with:

INTERRUPTS-~-ENABLED

WORD MODE

OVERFLOW---RESET (unless buffer filled)
A-REGISTER---CONTAINS INPUT BYTE

- X-REGISTER---UNCHANGED

’

BUFFQ: routine is.designed to be used following a call to FETCH:, in that it moves
CiB word 37 (stored into by FETCH:) into the user's buffer. The step-by-step procedure

The overflow register is reset.

The actual transfer
The actual transfer

If the actual count
buffer address (CIB

If the actual count
to by CIB Word 27.

If the actual count
» buf fer to be full),
& puffer

exits.

count (CIB Word 28) is incremented.
count is compared to the requested count (CIB word 26).

is greater (indicating that the buffer is already full), the
Word 27) is incremented and the subroutine exits.

is less, CIB Word 37 is copied into the user's buffer pointed
Then Word 27 is incremented and the subroutine exits.

is equal (indicating that this character will cause the
overflow is set and CIB Word 37 is copied into the user's

pointed to by CIB Word 27. Then Word 27 is incremented and the subroutine

2.11 UNRES: (Unxesponsive Device Routine)

1ling sequence:
EXTR UNRES:
LDX CIB Address
JMP UNRES:

C

I1/3-12

‘Comsuterauiomstion QE;?QS —_—
C

3.2.12 ICRTN:’(Return to I/0 Scheduler)

Calling sequence:

(EXTR IORTN:
LDX CIB Address
JMP IORTN:

‘]l In practice, an I/0 handler is a subroutine with an abnormal calling sequence (a JMP
instruction is used, rather than a JST). This is because I/O handlers are only
"called" from one location, and thus the return is known. This return address is
IORTN:. Therefore, once an I/0 operation has been initiated, a jump to IORTN: must
be made. Note that if the SIO: routine is called, it will exit to IORTN:.

8.3 CHARACTER-ORIENTED DEVICE HANDLER LISTING

{ The following listing illustrates the standard Character-oriented Device Handler
(non-Fortran) written for an LSI-2 processor. The code also includes.a table of
equates used by RTX, its subexecutives, and its library modules, as well as a listing
of the TTY console DIB (D:TY00) and TTY CIB (C:TY0). CONCORDANCE listings provide

an alphabetized map of all symbols.

C

11/3-13 Revised 11/76

¥ L L/ 44

geaGE oot

MACROZ (A?)

0003

- 0004

0005
0006
0007
onoa
0009
0030
0011
po1e
0013
0014
0015
U016
0017
001R
0019
0020
0021
0022
0023
o024
0025
0026
0027
0028
0029
0030
no31
0032
0033
0034
0035
0036
0037
0038

097017176

Sl=

0000
0001
ovngd
0002

0001
0002
0003
0004

uQsd
Bu=

X

*

A

*

‘r

*

*

*

+*

* * kX kX * % %
*

*

#

*

*

CHAIN EWU
PRI EOY
CN EQU
WUEUE EOQU

x

* % &k Xk x & %
*

A T CH
*x .
* % & X % * %
*

STAPRI EQU
PREG gEQn)
AREG ENuU
XREG EQU

*
k% & & Kk & %k

*
* 1 08
*
*

k * k x * %

0 Qusi0-104Tx, Inx

CPATES

RIXEQU === EMUATFS USED IN RTX

*

N W - O

*

A ok Rk kR Kk kR K Kk Ak Kk Kk * Kk Kk * Kk k Kk & %
THE EWUATES CONTAINED IN THIS ASSEMBLY
ARE USED 8Y RIX AND ITS SUBEXECUTIVES AND
ITS LIBRARY MNDULES

IT mUST BE ASSEMBLED AND THE SYMBOL TABLE
GENERATED BE PASSED TU THE RTX MODULE
BELING ASSEMBLED

x k k& k& * X A X X kX R KX R KX R

EQUATES CUMMON TO SEVERAL BLOCK TYPES

X X kK A kX X kX X kK Kk k Kk %k A Kk X % £ Kk K *

PUINTER 10U NEXT BLOCK
PRIOR]JTY (RITS 15-3)
COURDINATION NUMBER
TOP OF QUEUF

~

XA k k Ak & x kX A R Kk X K A * Xk A

+

E

*

PRI

2
3
4

*

*

Q U A T & S ,

* % 2 A % K * % k K A X X * %

*

*

x

STATUS (BTTS 0=2) R PRIORITY

PROGRAM REGISTER
ACCUMULATUOR REGISTER
INDEX REGISTER

(BIT8 15-3)

* k A kK Kk *x Kk 2 k k k K * Kk *x k K K £ kX A K K X

E

*

g U A T E S

* A ok X % & % Kk Kk K &£ k F Kk Kk Kk K

Rk & Kk K %

e - - e - . . S . R . - . G e .. e A e s i S A

ST-¢/II

PAGE 0002 09/01/76 09:46:43 24500-10 RTXx, 10X EQUATES

MACRUZ (A2) Sl= MACR0OS BO= RIXEQU === EQUATES USED IN RTX

0039 . *

0040 0001 107 Eny 1 DEVICE TYPE

004l 0002 JTCUN EQU 4 UNIT NUMBER

oouce 0002 ITCH EQU 2 ADDRESS 0OF USER'S TCH

Dou3l 0uoy ILUN ENU 4 LOGICAL UNII NAME/NUMBER

0044 0005 ISTA EWU S STATUS

oous 0005 10P EQU 5 o0rP=CODE

0046 0006 IRCNT EQU 6 REWUESTED COUNT

0o0u7 0007 IBUFF Euu 7 BUFFER ADDRESS

0048 0008 [ACNT EQU 8 ACTUAL COUNY TRANSMITTED
9 DIRECT ACCESS ADDRESS

0049 0009 IDAA EQU

91-€/1I

P AGE
MACROD

0051
0052
0083
0054
0055
0056
0057
005A
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
Q074
0075
0076
0077
0078
0079
0080
0081
0082
0083
poo8d
0085
0086

(A2) S1=

0000
0Vo1
0004
n00sS
0006
0007
0009
000A
000C
000D
000E
000F
0013
0014
0015
0016
017

ovts
0019
001A
0o1s
0oicC
0010

001E

MACRUS hi=

»> » » * w»

*

CHOR
CSEL/
CTMP
CTMP2
CTNPY
CEHTSK
CNEWA
CNEWX
CFUN
CCSuM
REWCNI
CJT8L
CSPLOP
COEL
CINTR
EXCESS
CEQF

*x

*

'

cIo8
coe
CRCNT
CBUFF
CTCNI
CDAA

coIB

0.

0ONY 0901776 UGy

EQU
EGU
EQU
EQu
EQU
EQu
EQU
OV
MY
EQU
EGU
EQu
EQuU
EQU
EQU
Euu
EQU

FILLED

tou
EQU
EOU
A Y
EVu
EQU

FILLED

EQU

QusnQp=i0 RTX, 10X
~=- EWUATFS USEL IN RTX

KIXEWU

E N

LI T S

O ~NTND —=O

1
12
13
14
1S,
19
20
2l
2¢e
23

FROM 108

24
25
2h
27
28
29

FROM DIB

30

”‘%uUAItS

W A 7T E S

X k kx * &k k * K Kk X * Kk K &

BEGINNING UF RECORD FLAG
SELECT FC = 7

TEMP CELL 1

TEMP CELL 2

TEMP CELL 3

END UF BLNOCK TASK POINTER
A REGISTER FOR EBTSK

X KREGISTER FOR EBTSK

TEMP CELL FOR I/0 INSTRUCT
CHECKSUM TEMP

JUMP TABLE

POINTER TO SPECIAL OP PROC
DELAY MODIFICATION

POINTER TO INTERRUPT ADDRE

I0B POINTER

OPERATION CODE
REQUESTED COUNT
BUFFER ADDRESS
TRANSFEK COUNT

DIRECT ACCESS ADDRESS

DIB POINTER

L]

&

*

*

*

*

*

®

* h A

L N

~ QEZ:» UORETLIOUTYANGLOD

LT-€/IX

PAGE 0004
MACROZ2 (A2)

o087
nosa
0089
0090
0091
0092
0093
0094
0095
0096

09/01/76

Sl=

001F

0020
0021
0022
0023
ooed
0025

(i gy 1 ‘ = B
Ng:46:43% 945p0=10 RTX, 10X FQUATES
HO= RIXEQU ce- EAUATES USED IN RTX
CFUNI EOU 31 TEMP CELL 2 FOK FUNCTIONS

*

*
*

STATUS
CRTN
COCHN
COCHNY
CDCHNZ
CDCHN3

TEMP STORAGE USED BY 10X AND 1TS DRIVERS

EQU 32 NEVICE STATUS WORD

EQU 33 * RETURN ADDRESS FROM 1:310
EQU LY} START OF DATA CHAIN

EQU COCHN+}

EWU COCHN#?

EQU COCHN+3

 SEas— QEZ:D UORE LI Ty 26 NCK IO

81-¢€/11

TEOPAGE 000S

MACROZ (A2)

oova
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109

0110

o111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131

0132

0133

na/soutl/ie

$1=

0001
0004
0005
0006
0007
0008
0009
000A
0008
0004
000C
000D
000E
000F

0000
nuoi
0002
0004
0005

va

6rud 94500=10 R1xX, 10X L WUATES

*

*

q

Q= RTXENQU - EQUATES USEN IN RTX
x k& kX X A k Kk k Kk Kk k k Kk % k *k * * % *k £ k 2 2 * Kk % * K *
IS
* D18 E Q U A 1 E S
* .
X ok Rk ok Ak kA kA A K Kk Kk 2 & %k K k Kk k * x Kk k * & Kk A~ * & *
N .
DCIB EQU ! CIB POINTER
DSKW EQU 4 DFEVICE SPECIFICATION WORD
DR Ewu 5 DEVICE TYPE
DCUN EQU 6 CONTROLLER & UNIT NUMBRERS
DOEL EQU 7 END OF HLUCK DELAY TIMES
DFUN. ENU 8 FUNCTION CODES & FLAGS
DULS ERQU 9 UPPER LIMITS
DERRC EQU 10 ERRDR COUNTER
NSTRI1 EQU 11 D1V START AUDDRESSES & MODES
NSECT Enu i VERIFY FLAG, DRIVE %, STARTING SECIOR
DHEAD ey 12 SECTURS/TRACK & STARTING HEAD
DCYL EnU 13 SECTORS/CYLINDER ® STARTVTING CYLINDER
DEOD EwU - 14 NUMBER OF SFECTORS IN FILE
DCSECT &QU 15 FORMATTED SECTOR NO
*
* k *x x % x k kX x *x A * x Ak & * K K A *k *x %k %k %k *x * * *k % k % *
N ,
* INTERRUPT BLOCK E @ U A T E S

A
X * Kk Kk Kk Kk X kK A k A A K Kk Kk Kk A Kk X K K X Kk Kk X * %
NTAIO EQU , 170 INSTRUCTION
NTCNT EQU COUNT FOR AUTO 1/0
NTBUFF EQU ‘BUFFER ADDRESS = 1
NTEOB EQU END-OF=BLOCK INTERRUPT
NTEOBA EQU ADDRESS FUR EOB INSTRUCTION
*
A ok ok % 2 Kk R Kk Kk % Kk Kk Kk k Kk kK Kk K k k kA K % % *

v BN —- O

*

*

% ~ MISCELLANEIOUS EQUATES
%

* & A X ¥

x * %

b

*

1
S

'\/

-1y — i 'fff"g

61-€/11

PAGE 000k 09/01/76 09:Ub:u3l QusS0U=10 RTX, I0X EQUATES

MACRNDZ2 (A2) SI= MACRNS BU= RIXEQGU === FNOUATFS USED IN RIX
0134 Ak A h A A R Ak Ak A kK A Xk h A K R A A X A R A K& Kk A *
0135 * :

0136 001D ARROW ENU 29 ‘BACKARRQOW FLAG SAME AS CDA
0137 0003 EORMSK EQU 3 END OF RECURD MASK

0138 0004 EOFMSK ELU 4 END OF FILE MASK
0139 4000 1:tFRR EQU 14000

0140 0800 [:BOP EQU t800

014} 0400 T:RES EQU 2400

0142 0200 I1:EOF EQU 1200

0143 0100 1:800 EQU 2100 BEGINNING OF DEVICE STATUS BI1T
0144 0500 ‘T:EOD EQU :300 .

014s 2000 1:NOID EQU 22000

0146 4900 ERKOR EQU $4000

0147 001F OPHMSK ENU 3

0148 0080 . I10REL EWU t80

0149 0003 EORTYP EQU 3

0150 0004 PROMPT EQU 4

0151 0006 EUFTYP EQU 8 .

0152 0000 1FF LSI1305

0153 0005 “IOREQ EQU 5

0154 ENDC

0z-€/11

{l AGE 0009 N9/701/74 09
MACRUZ (A2)

0218
0219
0220
0221
0222
0223
0224
G225
neee

0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
veuz
Nenas
0244

0246
02u7
0248
0249
0250
0251
0252

0253

0010

Sl=

Hi)=

DA
INTAD

i
01

|
94S00=-10

o
il

|
R1X
M ACROQOS
MACKRU LLL
1FF LS1305
LLbLee 1B, #1 =1
ENDC
IFT LSI30S
REPT Al
LLL?
ENDC
ENUM
MACRO LLL:
LLX 1
RLA i
ENDM
FORM LLLsz, 12,4
MACROQ INJSTF CIB INTERRUPT & DEVICE ADDRESS STPFF
SPACE 1 . ’
EQU 71 DEFINE DEVICE ADDRESS
EQu fe DEFINE TIHTEKRUPT ADDRESS (DATA)
ABS INTAD ORG TO AUTG 17768 LOCATIOUN
DATA 0,0,0
AHS INTADU ORG TO END=OF-BLOCK INTERRUPT
JS1 *H+ | GUu 10 CJ]B FOR
DATA ClR « END OF BLNOCK
REL 0 ORG TO RELATIVE ZERO (0)
SPACE 1
ENDM
MACRL) SINT GENERATE CALL TO SETUP INTERRUPTS
JST SINT: CALL SUBROUTINE
1FF #1(S])
DATA 13800 MAKES STOP
NOTE °~ U,FIRSI.PARAMETER
ENDC
IFF #211)
IFF #e (0)

12-€/11

PAGE

0254
0255
0256
0257
0258
0259
0260
0261

0262

0263
0264
02665
0266
0e67
0268

0269

02790
0271
0272
0273
0274

0276
0277

0278

0279
0280
0281
nese
0283
0284
0285
0286
0287
0288

0289

09701776
HMACRN2 (A2) Sl= MACRUS

09:ldbeul

BO=

cis
Citt

DATA
NOTE
ENDC
ENDC
1F1

IFT

DATA
ENDC
IFT

DATA
ENDC
ENDC
1FF

IFT

DATA
ENDC
IFT

DATA
ENDC
ENDC
ENDH

MACRO
TITL
TITL
NAM
EXTR
XDEF
XOEF
XDEF
INTSTF
EQU
DATA
1F1
SEA

CENDC

Fu4500=-10 RTX, 10X

o

ENUATES
M A CROS

13800 MAKES STOP
UsSECOND,.PARAMETER

LSI305
#e (1)
#34:1dOF9

5210)
H342160F9

LSI305
42111}
#3+213F9

%2 10)
#3+:23F9

cIn

'RIX/IUX CHARACTER 1/0 DRIVERS 93302-1XEOQ
Ciol,, .CONTROLLER,INFORMATION,BLOCK

Cul

SCH:, INTNR:, INTP:

tu :

85

e

P, tnd

%

"SCH?

LS1305

CDAYL+]

pii 0011 09701776 09:l6
MACRNZ2 (A2) SI= MACR('S HO=

0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307 -
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325

Dend

]

1FF
SEL
ENDC
JST
DATA
XREF
XREF
DATA
XKEF
DATA
LLA
DATA
RES
DATA
END
ENDM
MACRU
TITL
TITL
NAM
EXTR
CHAN
DATA
TEX
DATA
END
ENDM
MACR()
IFF
EXTR
ENDC
ENDM
MACRO
IFF

. DATA

ENDC

Q Y4500-10 KiX, [UX

Ce#3,0,0,:n4

co s | L .

M ACRUS

L5130
DAY1+1

INTQ:
t,0,0,0,INTP:,8180,0,C2%1,C2%#1,0,0,0
rd ’

25

)]

"6

0

)

INTAD

12,0

P+1,1,%41,0

NIy S
"RIX/I0X CHARACTER 1/0 DRIVEKS 93302=-1XEO0
Dl s ,DEVICE,INFURMAT[ON,BLOCK

Deut .

C:#3

Xz

L

(’l :”SI:#()'O' !"7

XDEF
1 (0]
IRED

XREF
21 (0)
Lol

AR T e T g A e Ayt

Ceaa

PAGE 0012 09/01/7b 09:u46:43 94500-10 RTX, IO0X EQUATES

MACRUZ2 (A2) SI= MACRUS HBO= M ACROS

0326 . IFT #Ltro)y '
0327 DATA 0

0328 ENDC

0329 ENDM -

0330 SAVE

0331 END

0000 " ERRORS
0000 HWARNING

£2-€/I1I

D) _vormuanressninios

W

vZ-c/11

I Hilll

| 1 Y , THH
PAGE 0001 09/701/70 09Uﬁ7€;7 RTX/[UWJLHARACTEH<]/”MU VERS 93302~1XEQ

MACRUOR2 (A2) SI= CHRDS RO= D Tt T Y 00 === JTFLETYPE CONSOLE
0125 S
0126 Ak k& x k Kk kK * &k A k Kk *k A Kk A Ak A k Kk %k A A A A & #%
0127 x
ote# 0000 NAM D:TYODO
0129 ' EXTR CeTYO
0130 * ' : .
0131 kR R A X A K Ak kX & K A X A Kk K A R A K % A R A *
0132 x
0133 0000 DITY00 CHAN Xi:
0134 0001 0000 DATA CtiY0,0,0,2:5066,'TY','00"
' 0002 0000
00U3 0000
0004 S066
0005 D4O9
o 0006 BOHO
0135 9007 020C DATA 120C, sABE, 2U800,0
U008 0DAGE
0009 4800
© 000A 0000 :
0136 END N

0000 ERRORS
0000 WARNING

P Q&g:» UOQBWICHTIUIKIUOD

sz-€/IT

T N -) Sl il ' T
. A . I ,’ Hi
PAGE 0001 09/01/76 09:54:16 RTX/10UX CHARACTEK 1/0 DRIVERS 93302-1X
X 0000 C:TYO 0129 0134
N V133 DL:TYO0O 0128
v 0000 Xzt 0133
0136 SUURCE L1NES

LEEEREH

0251
0252
0c535

0254

0254+
N2sus
0254+
0254+
0254+
0254+

0254+

0255
0256
0257

0258

0259
0263

0264

0265
0266

0267
0268

0000

0002
ooo02

0003
0004

0006
000V6
0007
0000

0000

0001

0002

0003
0004
0005
Vo0h
0007
0008
0009

"000A

000
0no0cC
000F
vol1o
0011
0012
0013
0014
0015

097017170
MACROZ (A2) SI=

0000
0000
0000

Fqo7
0000

nuov
0uno
0000
403F

FQ00
0no3
0000
0000
0000
0000
1FFa
0000
0000
noeo
0000
0000
0000
Vuouv
0000
Vooo
1353
0002

CHRDS

0007

0000

0947

BO=

C:TYO
cIB

i @

din I

37 RIX/10X CHARACIER 1/0 DRIVERS 93302=1XEOQ

C-*e TY () === TELETYPE
NAM C:1YO .
EXTR INTQ:, INIP:,] tREAD,ISRITE,ItFUN
EXTR SCH:
INISTF 7.2
EQU 3
DATA SCH:
IFF LSI30S
SEL DA, T SELECT === FC = 7
ENDC '
JS1 INTR?
DATA :SIOIOIOIINTP!RBIBOIOICIB;CIB
RES 3,0
DATA [eREAD,T1:RITE,O0,]1:FUN,0
LLA q
DATA INTAD

L w

LZ-€/11

PAGE 0002 09/01/76 09:47:37

MACRU2 (A2) SI= CHRDS RO=

0269 0016 0000
0270 (022 vUell
0023 0001
0024 0025
0025 0000
0271 ‘ :

0000 ERRORS
0000 WARNING

RES
DATA

END

RTX/10X CHARACVER 1/0 DRIVERS 93302~1XED

C: 1T YO

12,0
$+1,1,5+41,0

TELETYPE

Xl=0Ys6H SHIAIATHA 11/1 dI31IvVHVHI Xul/zxid

o

9G20 §S20
0920 L5220
¥¢920 220
h92o 2620
H920
9920 2%2u
9920 24920
Q920 28210
1920 G20
Q20 n4do
1620
g§2ingisn

$3INTT 328Nn0S 1L20

THJS
G0EISH
TOLNI
TdINT
gvinlg
ERR RN
av3ayel
IMAER
v

1D
VAL:D

9//10/60

nano
0000
0000
Hovo
1000
0oo0o
nooy
n0eo
0000
YGQ20
SR Y4

T X XD XD X

N

1000 3Juvd

11/3-28

62-¢/11

PAGE

0001

09/01776

MACRUZ2 (A?2) Sl=

oua7
ouces
0429
0430
043}
0432
0433
043y
0435
0436
0437
0438
0439
0uuo
04u1

ouug

0aul

ouay
UGS
ouue
ouy?
0uus
0uy9
0us0
0451
0use
04s3
0454
0455
0456
0457
0458

. 0459

0000
no74
v0BS
0083

ouo0o0

09:47:37 RTX/T10X CHARACTER 1/0 DRIVERS 93302-1XEOQ

* x % % * %

* % O % *

BO= CHARACTEK READ=WRITE PRUCEDURES

MACH 0 MUST wWORK UN LS] AND ALPHA/NM={6
A ok kK R A K X K Kk Kk A Kk R * & A Kk x k & A 4 Kk k Kk & %

OKRIGINATING NAMES

X ok ok ok X & k& X A A X *F & *x k Ak K * Kk Kk A K X K X A X &

NAM 1¢READ INPUT REGQUEST

NAM I:KRITE OUTPUT REWUFST

NAM [:FUN SPELLIAL FUNCITUNS PROCESSOR

NAM RITEZ ~ OUTPUI ENO OF KECORD (CR,LF,ETC)

A X R X K Kk K R £ A X k k k& Tk ok K A X *k K kX Kk K X % &k &
EXTERNAL NAMES
* kK kX k Kk R % % & k Kk k k. Kk Kk A * K Kk * & R £ Kk Kk K K K

EXTR HBEGIN: BEGIN TASK SERVICF

ExXTR END END TASK SERVICE

EXTR SURR BEGIN COMMON SUBROUTINE

EXTR SUBX: END COMMON SUBRNUTINE

EXTR DELAY: DELAY SERVICE ROUTINE

EXTR EQF ¢ END OF FILE TASK

EXTR EURr: END OF RECORD TASK

EXTR EORST SET STATUS AND END OF RECORD
EXTR SINT: SET INTERUPTS TASK

EXTR SI0: START 1/0

EXTR CKSUM: COMPUTE CHECKSUM TASK

EXTR FETCH: GET CHAKACTER

EXTR tOFCK? CHECK FUK END=~UF=~FILE

EXTR BUFFQ¢ PUT BYTE TINIU BUFFER

EXTR WATT: WAIT FUR DEVICE

EXTR EQF U CHELKR FUR ASCII EQF ('/+')

0€-€/11

ou61
0us?
ous6l
o464
0usbS
0466
ous7
0a68
0469
oa70
0471}
0472
0473
0474
0475
0476
0av7
0478
c479
0480
ouat
ouge
0483
oasBu
0485
0486
ouB7
0488
ous9
490
0u91
0492
0493%
o494

0495

0496

\-::::A GE

o002

0000

0000
0001
0002

0003
0004
0005
0006
0007
noos
0009
000A
0008

.000C

000D
000E
000F

ve/s01/176k
MACRO2 (A2) $I= CHRLS

0000

B418B

1350

9COot
0003

9C 18
Co601
9C23
0110
9C10
9C1C
RER R
108E
1357
210}
C601
0150
9C04

0018

000E

001B -

0023

0010
0o01cC
0016
0019

"000E

nouvd

¥ ¥ % ¥ O X X% X ¥ X X » * »

001 €3

RO=

REL
[:READ EQU
*

LDA

LLA

STA

RFAZ2 EQU

STA
LAP
STA
7AR
STA
STA
LOA
JAP
LLA
JAZ
LAP
1AR
STA

1:READ

X & k& Kk Kk Kk &k * &

Y
%

aCHBUFF
1
dREQCNT

3

wCBUFF
1
aCUCHN]1

adARROW

aCTCNT

wEXCESS
RF AX

8

Y+2

1

wCTHMP1

.RlxllﬂmnNHARALTtP r/n:u ---- ERS QSSOR-IXFO Bl

- CHAkAL1FR FEAD PROCEDUKRE

A R R R R x k h A A Kk K K % X &+ #®

THIS ROUTINE wILL PRUCESS ANY REQUESTS
TO INPUT FRUM A CHAKACTER OFVICE. '

ALL REQU&STFD WwILL BE ISSUED FUR UNE (l)
CHARACTER AT A TIME,

'IF THE TRANSFERRED COUNT CONTAINED IN THF
CIB IS NEGATIVE THE DEVICE WILL BE
PROMPTED WITH THE CHARACIER UR CHARACIEKS
CONTAINED IN THE CTCNT,

k****‘k****i**t*ik***'h******

SAVE FOR A RESTARI
RESTART

SET BUFFER ADDRESS TO BYTE
SET BYTE CUUNT TO ONE

CLEAR BACK ARRUwW FLAG
CLEAR TRANSFER COUNT
PROMPT CHARACTERS

IF NONE

CHECK FOR #

1F UNLY ONE

TWD PROMPT CHARACIERS
ADJUST COUNT

PUT IN MINI-IOH

¢K;/ —— Q&Zﬁ;) UOQBLUOIITYIEIKIUICD

,,,,,,, e I N - I IR i - - o I ~ I B P o G ks R TR AR e SRR

"l‘ ﬁim‘ﬁ .;?H!Q— qilit,
PAGE 0003 09/01/76 09:47:37 RIX/10X CHARACTER J/0 DRIVERS 93302~1XE0
MACRO2 (A2) Sl= CHRDS BU= [tREAD === CHAFACIEKR READ PROCEDURE
0497 0010 C6OB LAP 1ACNT _
0u98 001t ACIB 0018 - ALD aCl08 ADDHRESY OF PROMPT CHARACTERS
0499 0032 9CO0S 000S STA HCTMPi+1 PUT JN MINI-IO0H '
0500 0013 FBDC O00FO SINI STANDARD,QUTPUT, 0
N500+ 0014 23F9 .
0501 0015 0030 TXA CiB ADODRESS
0502 0000 [FF LSI305
0503 0016 8ADA 00F1 ADD =CTHP1 ANDRESS OF MINI-]UB
0504 , EnLC
0508 0017 FBDA 00F2 - JST SIo: DO OUTPUT
0509 0018 FBDA 00F3 JST WALT: - FOR DELAY .,
0510 0019 RFAX ENU $
0511 0019 FBD6 UVOFO SINT STANDARD, INPUT, 0
0511+ 001A 13F9
H 0512 0018 C607 LAP 7 OP CODE MASK
S0 0513 - 001C 8419 0019 AND aCOP MASK OFF OP CODE
&, 0514 001D D203 002t cHS Two COMPARE TO THWO
=~ 0515 O001E F203 0022 JMP UNFMTI UNFORMATTED .
0516 001F F234 0054 JMP BININ ~ BINARY
0517 0020 F20C 002D JMP RF AT FOXKMATTED ASCILI
0518 0021 0002 THO DATA 2 CONSTANT TwO (2)
0519 *
0520 *
0521 * TITL UNFMTI === UNFORMATTED INPUT
0522 *
0523 0022 UNFMTI EQU 3
0524 X ~
0525 0022 FBD1 0OF4 JST FETCH: GET NEXT CHARACTER
0526 0023 FBDI 00FS JST BUFFQ: GO PUT INTO BUFFER
0527 0024 3242 0022 JOUR UNFMTI GU GET NEXT CHARACTER

0528 0025 F3DO 00F6 JMP LOR: END UF RECORD

ZE-E/1X

il H €3 it 1 '
PAGE 0008 09/u)/76 . 09sdiye RIX/ZTOXHCHARACTEY (1/0 iVRY st 93302=-1XE0 i

MACRUO2 (A2) SI= CHRDS BU= RFA === READ FURMATTED ASCI1I
0530 *
0531 0026 ~ RFA10 FENU 3
0532 Tk : -
0533 0026 FBCC 00F3 JST WALT:
0534 0027 HUOE NOOE LDA AREQCNI
0535 0028 F625 0003 JMP RFA2 GO RESTARI
0536) A x : :
0537 0029 ~ RFA4 EQU $ MAYBE GOOD
0534 *
0539. 0029 9CiD 001D STA AARROW SET FLAG
0540 '002A COLF h CAl . tDF IS 17 BACK ARRUW?
0541 0028 F220 004C JMP RFA9 YES, BACK UP
osu2 002C FBCB 00FS JST BUFFO? PUT INTO BUFFER
0543 * ' ;
0su4 0020 RFAZ EQU $ ‘ LOOP
0545 *
0506 002D FBC6 OOF4 JST. FETCH:S GET CHARACTER
0547 002E FBCd VOF7 JST EOFCK? IF FILE MARK, GUODHYE
0548 0N02F A2CH 0UF8 " JUR =t80
0549 0030 9C25 0025, STA JCOCHN3 HIGH=0RUVEKR BIT ON
0550 0031 COFF CAl tFF. 1S 1T RUBOLUT?
0551 0032 F605 002D JMP HFA3 YES, IGNORE IT
0552 0033 D2CS ONFQ CMS =¢8D HOW AHUUT A CARRJIAGE RETURN?
0553 0034 F607.0020 JMP RFA3 100 SHMALL
0554 0035 F60C 0029 JMP RFAQ GO01 A LIVE ONE
0555 *
0556 * FOUND CAKRIAGE RETURN

0557 *

PAGE

0005

09/01/76

MACROZ2 (A2) SI=

05%9
0560
05461
0562
0543
0S64
0565
0566
0567
0568
0569
0570
0571
0571+
0572
0573
0574
0575
0576
05717
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0568
0589
0590
0591
0592
0593

0036
0037
0038
0039
0034
0038
003cC
0030
003k
003F
0040
0ouy
o042
0043
0044

004s
0046
vony
oouf
0049
004A
0048

0o0uc
0o4n
004E
VOUF

0050

co604
BUt{F
210C
Cho3

8uiF

cooe
Feol
F207
FBBY
FBRO
23F9
8250
9C25
B42e
FBAD

004sS

HCID
CODF
Foel
BUOE
13D0
9C1B
F3AE

ovdc

B41C
2160
0000
9Ci1C
8418

CHRDS

DO1LF
0045

001F

003E
0045
NOF3
00FO

0092
0025

0022
00F2

0010

0026
000K

0018
00FA

0vicC
00en

gotcC

0018

N9:u7:37

HO=

RFAI

RFAQ

FOUND CARRIAGE RETURN

LAP

" AND

JAZ
LAP
AND
Cal
JMP
JHP
JST
SINT

LDA
STA
LDA
JST

EQU

EMA
Csl
JMPp
LDA
LRA
STA
JMP

EQU

LOA
JAZ
UAR
STA
LDA

RIX/10X CHARACTER 1/0 DKHIVERS 93302~-1Xt0
RFA ==« READ FNDRMATTED ASCII

PROMPT
dCFUN1
RFAY
EORMSK
WCFUN]
l

$+2
RFAL
WAJT:

STANDARD,

CRLF+1
oCDCHNZ
o CDCHN
Slu:

M)

o AKROW
tDF
RFALOD
MREQCNT
)]
WCBUFF
EVFQ

$

aCTCNT
RFAJZ

WCICNT
odCBUFF

PROMPTABLE BI11

IS 1717

JIF NOT, GET OUI
MASK FUR ENR TYPE
GET EQR TYPE

I8 IT CR/LF 7

YES, ECHO LINE FEED
NO, FORGET LINE FEED
DO A HICCUP .
QUTPUT, 0

LINE FEFD

DATA CHARACTER
POINER TUO MINI-]10B
ouTPUT -

CHECK FOR VALID RECORD '

CORRECTIUN FLAG

LAST CHARACTER DACK ARROW
YES, DO JIT OVER

RESTART ADDRESS

MHAKE [T WORD

CHECK FOR END OF FILE
BACK ARROW FQOUND

CURRENT ‘COUNT

IF AT BEGINNING
DOWN ONE ~
RESTORE IT1

X %

pE-€/IT

e IR

'!1::!1 ‘!H!% Q ::::::: {
PAGE 0006 U9/01/76 09:47:37 RTX/10X CHARACTER 1/0 DRIVFRS 93302=-1XE0Q
MACRO2 (A2) SI= CHRDS BO= HFA «<= KEAD FORMATTED ASCII

© 0594 0051 000V DAR * DECREMENT BUFFER ADDRESS
0595 0052 9C1iB 0018 STA oCBUFF %
0596 0053 Felo 002D . JMP RFAY GO GET NEXT

- GE-E/IT

PAGE

MACRO2 (A2) Sl= CHRDS

0598
0599
0600
0601
0602
0603
o604
0605

0606 -

0607
0608

0609 -

0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0525
0626
0627
0628
0629
- 0630
0631
0632

0633

0007

0054
0055
v0S6
00s7
0058

0059
005A

0058

005C
0050
005t
00SF
0060
0061

0062
0063

0064
0065
0066
0067

N068

nq/s01/7176

0054
FBOF
COFF
Fane
FHOF
F604

0110
9CoD
FB9B
1357
9C10D
FB9S
AULD
3101
F399

031y
9CoE

0064
FBBF
FBBF

DCOE
F603

CoFF

00F4

0059
OOF7
0054

ooon -

00F4

0010
00F4
0010
0062
00FB

000E

00F4

00FS

000E
0064y

09:47:37

BO=

" BININ

*

»

NEXTI

RTX/I10X CHARACTER 1/0 DRIVERS 93302=1XE0
HININ ===

INPUT BINARY ROUUTINE

READ A BINARY RECORD
FINOD THE RECORD HEADER

EQU
JS§T
CAl
JMP
JST
JHP

GET

ZAR
STA
JST
LLA
STA
JST
IOR
JAY
JMP

3
FETCH:
tFF
$+3
FOFCK?
BININ

GET A CHARACTER

IS 1T A RUBOUT

YES GO GET BYTE COUUNT
CHECK FOR /%

THE BYTE COUNT

dCCSUM
FETCH:
8
ACDAA
FETCH:
dCUAA
$+2°
EUF ¢

CLEAR THE CHECKSUM

GET FIRST CHARACTER :
SHIFT TO HIGH ORDER BYTE
SAVE IN TEMP CELL

GET SECUND CHARACITER
MERGE THE TWU BYTES

NOT AN END OF FIJILE

AN END=-OF=-FILE

READ THE INPUT DATA

NAR
STA

EQU

JST
JsT
IMS
JMP

PERFORM CHECKSUM

LAP

dREQCNT
¥
. FETCH:
. BUFFQ:

dREGCNT
NEXTH

FF

SAVE REWUIRED COUNT
GET NEXT ONE
GO GET NEXT BYTE

GU WUFUE INTU BUFFER
INCREMENT NUMBER UF BYTES

AT R e e

HEEH RIS
IR H LS thai

1, i . D -
CAGE 0008 09/01/76 .oqedfis; RTX/10X "CHARACTER 1/0 DRIWERS 93302=1XEO

MACRO2 (A2) SI= CHRDS HO= BININ === INPUT HINAKY ROUTINE
0634 0069 840D 0UOVL AND WCCSUM MASK OFF LUW ORDER HIIS
0635 006A 9C1D 001D STA oCDAA SAVE RECORD CHECKSUM

0636 0068 FB388 LOF4Y JST FETCH: FIRST HYTE

0637 006C 1357 LLA 8 SHIFT 10 HIGH ORDER BYTE
0638 006D 9COF V0OOE STA DREACNT SAVE

0639 006E FHBYS 0OO0F4 JsT FETCH: SECUND CHARACTER

0640 006F A4OE 000E 10R aAlRENCNT MERGE 1wW0O BYTES

0641 0070 9ulp 001V SuB wCDAA SUHTRACT CUMPUTFD CHECKSUM
0642 0071 2101 0073 JAZ $+2 IF EVERYTHING OK

0643 U072 K289 0oFC LDA =ERROUR ERRUR CUDE

0644 0073 F389 VOFD JMP EORST: ERROR EXIT

9€~-£/11

LE-E/1I

PAGE

MACROZ (AZ2) 3I=

0649
06S0
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
U661
0661+
0662
0663
f664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0679
0680
0681
0682
. 0683
0684
0685
0686

0009

0074
0075
0076
0077

oo78
0079
007A
0078
0n7cC
0070

007E

007F

0080

0081
vose

V9/701/76
CHRDS

0074

FR78
23F9
Bd1A

9C1C

Co03
8419
9C19
Cool
FelE
0030
0000
BATF

007F

FB72
H419
cootl
F373

00F0

001A
001C

0019
0019

0098

00FE

00F2
00319

OUF6

¥ =t % % ¥ ¥ ¥ X% * X ¥ ¥

an

09:47:3
BO=

x kX

k %k %

tRITE

»

WHAT

RITEL

© — i

7 RTX/10x CHARACTER 1/0 DRIVERS 93302-1XE0
[tRITE === CHARACTER WRITE PRUCEDURE

A * kK kx k& Kk Kk &k &k K £ k K *k K& Ak K X K R KX & X Xk & &

THIS ROUTINE WILL PROCESS ANY REQUESTS
TO OUTPUT TO A CHARACTER DEVICE.

AFTER THE RFUWUEST HAS BEEN STARTED, CONTROL
WILL HE RETURNED TO THE 10 SCHEDULER

* ok kK k * k A Kk X kK %k Kk & Kk k &k x &k &k *k kX * £k * * &
EuU $

SINT STANDARD,OUTPUT, 0

LDA ACRCNT REQUESTED COUNT
STA ACTCNT SET TRANSFERED COUNI
WAS REQUEST .
- LAP 3
AND oCOP MASK OFF 0OP=-CODE
STA vCOP REPLACE NEW ONE
CAl 3 1F BINARY
JMP RITE10 FORMATTED BINARY
1 XA
IFF LSI305
ALV =CRCNT ADDRESS OF DATA CHAIN
ENDC
EOQU $ DUIT TUIT
JST SIO: STARY 1/0
LOA aCOP '
CAIl 1 IF UNFOPMATTED
JMP EOR? GO TO ENL UF RECURD

* \

ngig UORELLIO TYIeINCRUOT

G BRI 0

\
I
......

Hi PAGE‘

0687
0688
0649
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0706
0707
0708
0709
0710
0711
oT12

8E-€/1II

0713

0714

0715
0716
0717
0718
0719

0010

00H3
0084
0085
0086
0087
0088
0089
008A
0088
ooac

0os8o

008E
008F
0090

0091

0092
N093
0094
009s
0096
0097
0098
0099
009A

0098

09/01/7176

0UAR3
FH6F
Co08
841F
qCiH
BAO8
RCIAK
1300
0150
SC1A
0030
0000
BATO

~0u8E

FB63
F366
Non9t
8D8&A
8ABD
RUBA
AOBD
0nou
nuoo

MACKDZ (A2) SI= CHKOS

00F 3
001F
0018

0090
oold

001A

00FE

00F2 -

00F6

0000

FFOO
0000
AFAA
noa9n

0110

nng?
09eu7e37

RTX/1

B0= 1:RITE =~=- CHARACIER WRIIE PRUCEDURE
* OUTPUT TRAILER RECORD
*
RITE2 -EQU ¥
JST WATT: WATT AWHILE
LAP EGRMSK END OF RECORD MASK
AND dCFUN1 MASK OFF THE EUR FLAG
STA ACBUFF
ADD EURBAD ADD START UF BUFFER ADDRESS
EMA @COUFF PUT 1T ANU PICK UP FOR FLAG
LRA 1
ITAR CORRECT & 0OF CHARACTERS
STA ACRCNT PUT INTO DATA CHAIN
TXA - '
1FF LSI305 '
ADD =CRCNT DATA CHAIN ADDRESS
ENDC
*
LEAVE EQU 3 CALL SID: AMD GU TO EOR:
x - .
JST SIin: START 1/0 SN
JMP FOR: ALL. DUNE
EORBAD DATA CRLF

CRLF DATA
NULLS DATA
EOF1 DATA
EOF2 TEXY
*
RITE10 EQU
X

ZAR

tBDAA, t8BABD, tBDBA, :AD8BD

0,0,0

tFF00,0

|/*l

3

FORMATTED BINARY

6E-£/11

PAGE 001! 09/01/76
MACRU2 (A2) SI= CHRDS
0720 009C SCOD 000D
0721 0090 B214 00R2
0722 009E FBS53 0OF2
0723 009F FBS3 O0OF3
0724
0725 00AOQ
0726 ’
0727 00A0 HGi1A 001A
0728 00A1 9C25 0025
0729 00A2 Ce602
0730 00A3 9C23 0023
0731 00AU4 BU22 0022
0732 00OAS FA2E 00D4
0733 (00A6 FB4U4B 00F2
0734 OO0A7 FBUB O0OF3
0735
0736 0D0AS.
0737
0738 00A8 0030
0739 0000
0740 O0O0A9 BASU OOFE
oTuy
0745 QO0AA FA29 0004
0746 O00AB FBUG6 00F2
0747 0O0AC FBU6 O00F3
o748
0749 D0AD
0750
0751 O0UOAD CHKFF
0752 0O0AE 840D 000D
0753 OO0AF 9CeS5 0025.
0754 00BO0 B4g2e 0022
0755 0081 F623 008E
0756 0082 00B3
0757 0083 0005

: ooBu

0096

09:47:37

80=

x

RITE1LL

*

*

RITEL1Z
*

.

RITE13
x

RHEDAD
RHEAD

STA

LDA

JST
JsT

EQU

LDA
STA
LAP
STA

LDA-

JST
JST

JsT

EQU

TXA
IFF
AOD
ENDC
JST
JST
JST

EQU

LAP
AND
STA
LDA
JHUP
DATA
DATA

1:RITE

dCCSUM
KHEDAD
SI0:
WAIT:

h 3
dCHCNT

dCOCHNJS
2

 ACDCHN]

ACDCHN
1:0CS
S10:
WATT:

$
LS1305
=CHRCNT
1:0CS3
S10:
WALIT:
$

tFF
ACCSUM

aCOCHNZ

AJCOCHN

- LEAVE

RHEAD

R1X/I10X CHARACTER 1/0 DRIVERS 93302-1XED

CHARACTER WRITE PRULCEDURE

CLEAR THE CHECKSUM BYTE
RECURD HEADER TASK
START 1/0

WAIT AWHILE

OUTPUT BYTE COUNT

REQUESTFD COUNT

PUT INTU CIR
TRANSFER COUNT

PUT INTO DATA CHAIN
DATA CHAIN ADDRESS
GO COMPUT CHECKSUM
SIART 1/0 ;
WAIT AWHILE

OUTPUT BINARY RECOQRD

.

OATA CHAIN ADDRESS

COMPUTE CHECKSUM
START 1/0
WALT A BII

OUTPUT CHECKSUM

MASK OFF CHECKSUM

PUT 'INTO CIH

DATA CHAIN ADDRESS

LEAVE BFCAUSE YOU'RE ODOUNE"

S, NULLS#+]

0¥-c£/11

i

H

"PAGE

0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
076R¢+
0769
0770
0771
07172
0773

0774 .

0775
0776
0777.
0778

0779
0780
0781
0782
0783
0784
0785

0786
0787
0788
0789
0790
0791
0792
0793

0012

008BS
00B6
noa7
00HAR
00RQ
DOBA
008B
0oBC
oonL
00BE

00BF
00CO
00C1
00C2
0oC3
oocu
00CS

00C6
onc7
ooca
00CY

097017176
MACRUZ (A2) SI= CHRDS

0o8s

FB3A
2IF9
CoOF

8419

9C19
coo0C
Feos
coon
Feoa
F337

00BF

ROLF
1302
B2OF
3201
Foud
Bo1e2
Fuec

00C6

criu

9C16
FB2a
8204

00F0

0019
0019

00BF

00Cé

00F6

001F

oont

.00Cy

007/7F
0082

00F2.

0016
VOF3
00CE

L T

VERS 93302-1XE0D

095

BU= I ¢+ FUN === FUNCT1UNS
kﬁi***ﬂi**ﬁiﬁ***ii*v***ﬁ*i.i*iﬁ
* .

* THIS ROUTINE wWlLL PRUOCESS THE SPECIAL
* FUNCTIUNS REUUESTED FOK THE 1/0 DEVICES
"
A X KX A k %k A Rk £ KA Kk kA KA %k k * % k K %k A2 ® * Kk * * K &
*x
L¢FUN EGU ~ §
x
SINT STANDARD,QUIPUT, 0
LAP oF
AND wCOP MASK OFF OP CODE
STA ACOP o
Cal :C IF A C :
JMP FMARK JHMP TO wWRITE FILE MARK
CAl t0 IF A D
JMP PLEAD JMP TO PUNCH LEADER
JMP EOR? GO TO END OF RECORD
X ~
FMARK EQU $ WRITE FILE MARK
* . 1
LDA WACFUNY SPECIAL FLAGS
LRA 3 MOVE EOF B1T 10 DV
LDA SEOF '/x' FILE MARK
JOR $+2
JMP RITEL IF THAT'S 1T, DUIT TUIT
LOA FEOF RUBOUT=NULL=NULL
JsT SIo: WNRITE I71
X
PLEAD EQU $ PUNCH LEADER
*
LAM 20
"STA WEXCESS SET COUNT FOR 20 TIMES
JST WAITS WAIT A BIT
LDA LEADER ADDRESS OF LEADER CHAIN

Tr-€/I1

PAGE 0013 09/01/76 09:47:37 RIX/TOX CHARACTER 1/0 DRIVERS 93302~ IXEO
MACRNZ (A2) SI= CHRDS BO= I ¢ FUN === FUNCTIDONS
0794 0OCA FH27 00F2 JST - SI0: OUTPUT & NULLS
0795 00CB DCI6 VOL6 IMS oEXCESS AKE WE DONE
0796 00CC Fe60u 00C8 JMP $~-4 NO
0797 00CL F328 00F6 JMP EOUR: JHMP END OF RECURD
0798 00CE OOCF LEADER DATA $+41,6,NULLS

00CF 0006

00D0 0095 :
0799 00B2 FEOF EQU RHFDAD
0800 00DI 00D2 ~ SEOF DATA $+1,2,E0F2

0002 0002

00L3 009A

-6y il i - il

s
it

Zv-€/11

PAGE 0014 09/01/76

"MACROZ2 (A2) SI= CHRrDS

0802
0803
0804
0805
08ve6
08o7
080R
0809
0810
081l
0812
0813
0814
08195
0816
0817
0818
0819
0820

0821

0822
NR23
0824
0825
0826
0827
06828

- 0829

0830
0831
0832
0833
0H3U
08 3S
0836
0837

0004 0800

00DS 9A18 NOEE
0OD6 EALG QOED
00D7 BUOD 0000
0UDR 9ADA UOE3
0009 BS14 ONEE
00DA 0310

00UB 9A13 00OEF

— % . % 2 % % % A 2 W N % ¥ A X X N N A N AR NN X *

tUCS

\ : o,

phind
.....

.............
..........

RTX/1UX CHARACTER 1/0 DRIVERS 93302=1XEQ
I £ 0CS === OUTPUT CHECKSUM

Ak Ak kK A R A X Kk A Kk 2 A A Kk K Kk 2 * h k &k % b 4
THIS ROUTINE WILL SEARCH THRU THE OUTPUI
DATA CHAIN ANUL CREATE THE CHECKSUM FOR

IHF ENTIKE CHAIN

CALLING SEQUENCF:

Js1 1:0CS

A REGISVTER MUST CUNTAIN THE ADDRESS OF
THE FIRST PURTIUN OF THE CHAIN

THE CHECKSUM IS TO RE COMPUTED
X REGISTER MUST CONTAIN I1HE CIB ADDRESS

"RETURN STATUS:

A REGISIER CONTAINS A 8 BIT CHECKSUM

X REGISTFR UNCHANGED

STATUS: .
OVERFLOW ==« RESET : : g
REMAINDER 15 UNCHANGED . ' '

THE COMPUTED CHECKSUM IS PLACED BACK IN
THE CIB

X A Kk R K * Kk A K& ok kX Kk k Kk K Kk & *k Kk k K Kk Kk R Kk Kk K *

ENT

STA IMP3 SAVE DATA CHAIN ADDRESS
STX TMP2 ~SAVE CIR ADDRESS

LDA ACCSUH CHECKSUM BYTE

STA -~ T1:0CS5 INITIALTZE CHECKSUM

LDA xTMP} NUMBER OF BYTES IN RECURD
NAR

STA COUNT SET BYTt COUNTER

Ev-€/11

il ey Y T

PAGE 0015 09/01/76 09:47:37 RTx/10X CHARACTER 1/0 DRIVERS 93302-1XEOQ
MACRU2 (A2) SI= CHRDS 80=] ¢t 0CS === QUIPUT CHECKSUM
n838 0ODC DAYl 00EE IMS TMP3 BUMP CHAIN POINTER
0R39 vODLD E310 OOEE LDX xTHP3 BUFFEP ADDRESS
0840 VODE 1328 < LLX | SET TU BYIE ADDRESS
oBu4t *
0842 00DF 1:0CS4 EQU $ COMPUT CHECKSUM FOR NEXI
0843 *
0844 O00ODF OEOV SBM SET BYTE MODE
084S Q0EQ B400 0000 LDAB a0 LOAD QUIPUT BYITE
0846 O00EY OF00 SWM SFT WURD MODE
o847 O00E2 FBIC OOFF JST CKSUM: GO CUOMPUTE CHECKSUM
0848 O00EY 0000 1:¢0CSS DATA $-% CHECKSUM DATA CELL
0849 O0O0EU 0128 IXR INCREMENT BUFFER ADDRESS
0850 0O0ES DADY O0EF IMS COUNT [MCREMENT COUNT DONE
0851 00E6 F607 00DF JMP 1+0CS4 NOT DONE
0852 *
0853 00E7 1:0CS9 EQU 3 ALL DONE SU CLEAN HOQUSE
0854 * ’ '
0855 UDET B6&UL OO0ET LDA [:0CSS COMPUTED CHECKSUM
0BS6 00E8 E204 O00QED : LDX TMP2 RESTORE X KEGISTER
0RST7 0O0E9 9COD 000D STA o CCSUM PUT CHECKSUM IN CIB
0BS8 0VO0EA B203 OO0EE LDA TMP3
0B8S9 0Q0EH 00DO DAR REFSTORE A REGISTER
0860 00EC F718 00N4 RTN 1:0CS RETUEKN
0861 O00ED 0000 TMPR RES 1,0
0862 OVOEE 0000 TMP3 KRES 1e0
0863 OOEF 0000 COUNT RES 1,0
0864 Vo110 . LPUNL

00F0 0000

00F1 0004

00F2 0000

00F3 0000

00Fu 0000

00FS 0000

00F& 000U

00F7 0000

VOF8 0080

Po-€/11

I
mH$AGE

0865

- 0000
0000

0016 09/01/176
MACRUZ (A2) Sl= CHRDS

00F9 008D
D0FA 0000
00FB 0000
DOFC 4000
00FL 0000
VOFE 001A
DOFF 0000

ERRORS
WARNING

. l.‘ : . . I
e c iy | il

09%47237 - RTx/10X CHARACTER 1/U DRIVEKS 93302=1XE0
HO= I £t 0 C S === QUTPUT CHECKSUM

END

y

Sh-€/1I1

1)

PAGE 0001

> DK Xx CCC et AxcCccocoococaocax »

< Cx o

s

0000
0non
0600
0000
0000
0000
0000
o0on
0000
0000
0000
0noo
onoo
0000
0863
0000

0712
0000
0000
0noov
onoo
0000
0714
071s
0000
0000
0000
0000V
0711
0000
0000
0000
0000
0799

10000

09/01/7h

AKROW

BEGIN:

BININ
BUFFQ:
CBUFF
CCSUM
CDAA
CODCHN
CDCHN{
CUCHNDZ
CFUN{
c108
CKSUM:
cop
COUNT
CRCNTY

CRLF
CICNT
CTMP1
0
DELAY:
END:
tEOF 1
EUF2
EUF
EOFCK:
EOFD:
EOR:
EORHAD
EURMSK
EQORST:
ERROUR
EXCESS
FEOF
FETCH:

e

09:54:40
0d488%x 0539%
nuuy
0516 0605
0487 0526%*
0478 048u*
0610% 0634
0613x 0615
0574 0731
04B6x 0730%
0SU9x 0S73x
0563 0566
0U9R
0454 08BUT*
0513 0bb6H
0R37%x 0850
0662 0674
0743
0572 0711
0489+ 0SAR9
0496* 0UQYA
0500 0511
ouus
0445
0800
0449 U617
0456 0S5U7 %
0459 0585
0450 0528
0694
0565 069}
ousi 0644
0643
0490 0791*
078S
0455 0525%*

0639

i
LR EERN

RIX/7[UX CHARACTER 1/0 PRIVERS 493302=1X

0579+%

0S4de2x
0S84x
072U
0635
0754

0728%
0692
0669%
0677
0592

0503
0571

0604dx

. 0685

0795x%

0546%

0627%

0593 0595«
0752 0833
0n4d}

0753+

0780

06B3 077

0698« 07vul

0663%

0506

bo61 0768
0710 071@

060tx 0611

0693% 0695%
VBST*

0771x

0704 0727 0740

0797

0b614r angAr Py 4k

Ty e

' i N
e 000z narors7e vassTu@® wrxzroxlluaracter 170 1@« vevne=ys.

ccCczZzZz

0778
0766
0830
osue
0848
0RS3
0476
0659
0000
0000
0798
0707
0000

0624
0713
0000
0788
0000
0000
0s717
0531
oud2
0544
0537
0587

0510 .

0757
0756
0680
0717
0725
0736
0749
f6h9
0400
0000

FMARK
1:FUN
[:0CS
1:0CS4Y
1:0CSS
1:0C39
1 tREAD
JIRITE
IACNT
INPUT
LEADER
LEAVE
LSI305

NEXT1
NULLS
QuUTPUT
PLEAD
PRUOMPT
REWCNT
RF A1
RFALOQ
RFA2
RFA3}
RFA4
RFA9
RFAX
RHEAD
RHEDAD
RITE!
RITELO
RITEW
RITE1Z2
RITELD
RITEZ
SEUF

~SINT:

0773
0136
0732*
0851
0834x

043
043s
nu97
ns11
0793
075S
0502
0raee
0629
0757
ns0o0
0775
0562
0uB80x%

" 0ShU

05A1
0535
0517
0554
ns4d1
049}
0756
0721
0784
0671

0u3?
0782
ouse

0745*

0855

0505

0798
0S71

0534
0569

0551

0799

0860

ne64as

0661

058¢

0553

0673 0676 070u n70s

0768

0622% 0628B*x 0634+ LRI

~

0590 0596

139

lit

LYy-€/11

PAGE 0003 09/01/76
X 0000 SIU:
0000 STANDA

U
X 0000 SUHR:
X 0000 SUBX:

0861 TMPQ
0862 TMPY
0518 TWO

0523 UNFMTI
X 0000 wWAIT:

0865 SOURCE LINES

mine T

V9154248

0453
0786«
0500
04ds
0447
0832*
DAR3 I x.
0514
0s15S
0use
0792

050Hx
0794x»
0511

0856
0835

05°7
05094

1L 31lm
th ‘ , ’MWQ’V

RTX/1UX CHARACTER 1/0 DRIVERS 93302=1X
0575% 06R2#% 0709% 0722% 0733% 07Uk

0571 06K1 0768

0838x 0839 0858

0533+ 0S70% 0690%x 0723*x 0734%x Q747+

o SECTION 4 '

DIB AND CIB DESCRIPTIONS

The DIB and CIB are tables which are used in communication between IOX and a partic-
ular I/0 handler or the File Manager.

The following DIB and CIB descriptions apply to all standard IOX handlers. DIB and

CIB descriptions for non-standard handlers (for example, the IEEE Intelligent Cable
handler) are included in Section 7 and for the File Manager, in Section 5.

1 . . i | ’
4.1 DEVICE INFORMATION BLOCK (DIB) - 11 TO 18 WORDS

l Words 0 to 10 are used by all IOX device handlers. Words 11 to 17 are used by
specific handlers and the File Manager.

Figure 4-1 illustrates the DIB configuration.

II/4-1 Revised 1/77

Rt s focn

ZANDARD
NAME *

CHAIN

DCIB

QUEUE

(C

DEVICE INFORMATION BLOCK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 word
DIB CHAIN ADDRESS 0
CIB ADDRESS 1
USED BY IOX TO QUEUE REQUESTS 2
COORDINATION NUMBER 3
DEVICE SPECIFICATION WORD 4
DEVICE NAME ' 5) IOB
. ' Words 1
CONTROLLER NUMBER UNIT NUMBER 6) and 2
INPUT RTC TICKS OUTPUT RTC TICKS 7
FUNCTION FUNCTION FUNCTION |FUNCTION |Frig(, . [END OF | o
CODE CODE CODE CODE MARK RECORD
MAX BYTES-ASCII MAX BYTES-BINARY 9
. HARDWARE ERROR COUNT (except MTIC) : 10
11
ADDITIONAL WORDS USED :2%’
BY SPECIFIC HANDLERS
17

* refer to the I/0 Handler listing at the end of Section 3.

Figure 4-1. DIB Configuration

11/4-2

Revised 11/76

e

o~

4.2 REGULAR DIB CONFIGURATION (ALL HANDLERS) - WORDS O TO 10

Woxrd O

Word 1

Word 2

Word 3

Word 4

Word 5
and 6

" . Used by IOX as a pointer to queue requests for this DIB. 1Initialize

-file capability, the third character of the device name must -be.an "F",

— Cmmm m —

Chain pointer to next DIB (CHAN directive). Last DIB contains O.
The DIB CHAN operand is X::.

Associated CIB address. (See list of standard CIB names at the end
of Section 4.)

to zero. .
Device coordination number. 1Initialize to zero.

Device Specification Word (DSW). Each of the 16 bits corresponds to
the equivalent binary value described for bits 0-3 of IOB Word 5
(opcode); e.g., if the device is capable of reading Formatted ASCII
(which function, if requested by the IOB, would appear as 0010 in
bits 0-3 in IOB Word 5) then bit 2 should be set on in the DSW. If
the device can punch leader (1101 in bits 0-3 in IOB Word 5), then
bit 13 (:D) should be set on in the DSW. :

Device Name. These words are copied into IOB words 1 and 2, respective-
ly, upon finishing a call to IO:. These words contain four ASCII
characters. Word 5 contains the first two characters which specify

the device ("CR" for card reader, for example). Word 6 uses the
following format for the third and fourth characters:

1 14 13 12 11 W0 & 8 72 ¢ 6 4 3 2 1 O

1
‘ with ASCII 0)

Unit number (beginning
Controller number

(beginning with
ASCII 0)

For Fortran tasks using the teletype or lineprinter as a list device
with carriage control character recognition, or for a disk with end-of-

to serve as a flag that the Fortran handler is to be used.

Ix/4-3

#

(dord 7

| Word 8

This word uses the following format:

5 14 13 12 11 0 o 8 7 & 6 & 3 2 1 0

RTC ticks after EOB
(output)

RTC ticks after EOB
{input)

Bits 8-15. A binary value representing the number of Real-Time Clock
ticks to delay after an end-of-block interrupt for an input operation,
before the device is considered available for the next I/0 operation.

Bits 0-7. A binary value representing the number of Real-Time Clock
ticks to delay after an end-of-block interrupt for an output operation,

before the device is considered available for the next I/O operation.

This word contains function codes which are executed in Select instruc-
tions to initiate an I/0 operation if SIO: is called.

The order of execution of the Select instruction within SIO: is:

SEL DA,X
SEL DA,5
SEL DA, 6
SEL DA,Y

This word uses the following format:

1 4 13 12 11 W0 & &8 7 6 65 &4 3 2 1 0

End of record action

Prompt flag

File mark indicator

Function code Y
(output)

Function code X
(output)

Function code Y
(input)

Function code X
(input)

11/4-4

il
£
i
B
3
&
3

Bits 13-15. Contains function code X in the above sequence, for an
input operation.
Bits 10-12. Contains function code Y in the above sequence, for an
input operation.

Bits 7-9. Contains function code X in the above sequence, for an
output operation.

Bits 4-6. Contains function code Y in the above sequence, for an
output operation. ,

S~

Bit 3. A flaqg signifying the type of file mark to be used for the
device. . .

1 = slash/asterisk
0 = rubout/nll/null

Bit 2. A flag signifying whether the device is to be prompted before
an input operation.

) .

b . ‘1 = Prompt the device
0 = Do not prompt the device

TN

Bits 0-1l. These bits represent the end of record action to be taken
for Formatted ASCII output:

00 = Output carriage return only

01 Output line feed only

1 10 Output carriage return and line feed
(~ 11 Output space and carriage return .

i n

NOTE

Word B8 is set to zero for Distributed I/O‘and Disk DIB's.

word 9 This word uses the following format:

16 14 13 12 11 W0 ® 8 7 e S5 4 3 2 1 O

(T
: —Maximum record size
(ASCII 1/0)
Maximum record size
(Binary I/0)

Bits 8-15. Maximum record size (in bytes) for formatted ASCII 1I/0
operations. (Zero signifies unlimited record size.)

Bits 0-7. Maximum record size (in bytes) for binary I/O.operations.
(Zero signifies unlimited record size.) ,

(C

IT/4-5

Wg;;d 10 ‘Cumulative hardware error count (must be incremented by the individual
handler). 1Initialize to zero.

NOTE

Word 10 is used differently by the Magnetic Tape Intelligent Cable
DIB. See the additional DIB configurations section.

4.3 ADDITIONAL DIB CONFIGURATIONS - UP .TO 18 WORDS/

The following DIB configurations require additional words which are not required in
the regular DIB configuration.

4.3.1 Distributed I/0 DIB

J
8 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 word

' - - e e+ e <+ o = — e ———— “-T o

~

.

REGULAR DIB

CONFIGURATION
-~
(. 10
OUTPUT BRANCH | OUTPUT MODE | INPUT INPUT MODE 1
ADDRESS FIELD BRANCH ADDRESS | FIELD

(L - I1/4-6

word 11 DIO command fields. This word uses the following format:

15 14 13912 11 0 ¢ 8 7 & & 4 3 2 1 0

Input mode field
Input branch address
Output mode field
Output branch address

Bits 15-12. Branch Address Field of DIO Command Word for output.

Bits 11-8. Mode Field of DIO Command Word for output.

Bits 7-4. Branch Address field of DIO Command Word for input. .

Bits 3-0. Mode Field of DIO Command Word for input. '
2

4.3.2 Magnetic Tape Intelligent Cable DIB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 word

féz REGULAR DIB ji{

CONFIGURATION
-
) 9
| BARD ERROR
- - “RROR
NOT USED .| ErASURES HARD FRRORS RATE ERRORS | 10
TRANS

:FB 0 ADDR 11
MINIMUM RECORD LENGTH 12

11/4-7

B

-

b S S

B s Bk

(idord 10 " Three MTIC error counters. This word uses the following format:

5 34 13 12 11 10 8 8 7 & 6 &4 3 2 1 O

Rate errors
7 Hard errors
Hard error erasures

Bits 11-8. The number of erasures due to hard errors. .

Bits 7-4. The number of hard errors. This counter is reset whenever
an erasure occurs.

Bits 3-0. The number of rate errors. This counter is reset whenever a
hard error occurs.

4 .
6@6rd 11 Basic mode select word. This word uses the following format:

15 14 13 12 11 10 & 8 7 & 8 4 3 2 1 O

4
Binary. transport

11111 1}]1lof1}] 1
; <‘ address

Mode Select

Examples - :FBOO indicates transport O
:FBO3 indicates transport 3

Word 12 This word contains the minimum record length (in bytes). Records
smaller than this byte count are considered noise records. CIB word 35
must specify the word address of a buffer with a size greater than or

) equal to the minimum record length. The standard minimum record length
>) for the MTIC handler is 12 bytes.

(Write requests with a byte count less than the minimum record length
- will have additional characters appended to the record until the byte
count equals the contents of word 12. Blanks are appended to ASCII

records and zeros are appended to Binary records.

Read request will return only the number of characters requested.

((‘ - 11/4-8

—

-

word 11

4.3.3 Dpisk DIB

15 14 13 12 11 1o 9 8 7 6 5 4 3 2 1 0 word

0.
1
REGULAR DIB /
CONFIGURATION ;éfr
s
10
VER-| :
15y NOT USED DRIVE #| STARTING SECTOR |11
NUMBER OF SECTORS PER TRACK STARTING HEAD 12
g NUMBER OF SECTORS STARTING CYLINDER 13
, PER CYLINDER
NUMBER OF SECTORS IN THE EXTENT 14

This word uses the following format:

s 14 13 12 1N W0 ° 7 ¢ 6 4 3 2 1 0

|

"

. p——
I [——————————Starting sector

Drive number
Verify flag

Bit 15. Verify flag

If this bit is set, a verify operation will be performed after each
write. Two additional attempts will be made to re—wrlte the record
before the error bit in the status is set.

Bits 14-7. Not used.

I1/4-9

s rd 13

(C

Word 12

Bits 6-5. Drive Number -

This is the number of the drive attached to the controller. Its range
is from O through 3 inclusive.

Bits 4-0. Starting Sector

This is the sector number where the extent is to start. Its range is
from O through the number of physical sectors -1 per track.

This word uses the following format:

15 14 13 12 17 W 9o 8 7 ¢ S5 4 3 2 1 O

| S W SR T B S | I W W NS W S |
~— i I ——
T Starting nead
= Number of sectors per
. track

Bits 15-8. Number of Sectors per Track
This number defines the number of sectors on each track that this
extent is to occupy. The sum of the number and the starting sector may

not exceed the physical number of sectors per track.

Bits 7-0. Starting Head

This number defines the starting head number of the extent Its range
is from O through the number of heads ~1 on the disk drive.

This word uses the following format:

1 14 13 12 1Y 10 &8 & 7 €€ B85 4 3 2 1 O

Starting cylinder
number

Sectors per cylinder

Increments starting
cylinder number

Bit 15. 1If this bit is set, the contents of bits 7-0 are incremented
by 256.

Bits 14-8. Number of Sectors per Cylinder
This number equals the number of sectors per cylinder times the number
of read/write heads. This is the maximum value of any extent.

Bits 7-0. Starting cylinder
This number is the first cylinder that the extent is to.occupy.

I1/4-10

~
4' >

(€

word 14

Word 15

4.3.4 Fortran Disk DIB

15 14 13 12 11 10 9 8 7 -6 5 4 3 2 1 0 word

A ‘ <§:ZN§ o]

Number of Sectors in the Extent

This number is used to detect the end of the extent and to allow the
I0X disk handler to set the end-of-device status if access to the last
sector of the extent or beyond is requested. This number is equal to

the number of cylinders times the number of heads per cylinder times
the number of sectors per track.

)
,
REGULAR DIB
CONF IGURATION
10
11
DISK DIB CONFIGURATION 12
13
14
RANDOM ACCESS ADDRESS 15

Random Access Address
This word provides a location other than the user's IOB to store the
record number.)

I11/4-11

(r;3.5 Storage Module Disk DIB (Fortran and Non-Fortran)

15 14 13 12 11 10 9 8 7 6 5 4

[8]
[

0 word

NI\

.
10
VERT| DRIVE STARTING 11
IFY | NUMBER HEAD
STARTING SECTOR NUMBER 12
(;"; STARTING CYLINDER 13
NUMBER OF SECTORS 14
RECORD NUMBER (FORTRAN ONLY) 15
NUMBER OF SECTORS PER TRACK 16
NUMBER OF SECTORS PER CYLINDER 17

This word uses the following format:

1 14 13 12 11 10 & @ 7 & S8 4 3 2 1

s
4
»
=
-
4

.
7

Starting Head
Drive Number

II/4-12

Verify Flag

word 12

word 13

Word 14

Word 15

Word 16

Word 17

ComputerAutomation (O —

Bit 15. Verify Flag
If this bit is set, a verify operation will be performed after each

write. Two additional attempts will be made to re-write the record
before the error bit in the status is set.

Bits 14-11. Drive Number

This is the number of the drive attached to the controller. 1Its range
is from O to 15 inclusive.

Bits 10-0. Starting Head
This number defines the starting head number of the extent. Its range
is from O through the number of heads -1 on the disk drive.

Bits 15-0. Starting Sector
This is the sector number where the extent is to start. 1Its range is
from 0 through the number of physical sectors -1 per track.

Bits 15-0. Starting Cylinder “’
This number defines the starting cylinder number of the extent. Its

range is from O through the number of physical cylinders -1 on the disk
drive.

Bits 15-0. Number of Sectors

This number is used to detect the end of the extent to allow the IOX
Storage Module handler to set the end-of-device status if access to the
last sector of the extent or beyond is requested. This number is equal
to the number of heads per cylinder times the number of sectors per
track.

Bits 15-0. Fortran Record Number

This word is only required for Fortran to provide a location other than
the user's IOB to store the record number.

Bits 15-0. Number of Sectors per Track

This number defines the number of sectors on each track that this
extent is to occupy. The sum of this number and the starting sector
number may not exceed the physical number of sectors per track.

Bits 15-0. Number of Sectors per Cylinder

This number defines the number of sectors on each cylinder that this
extent is to occupy. It is numerically equal to the number of sectors
per track times the number of heads per cylinder.’ Note that the number.
of heads per cyllnder plus the starting head number must - not exceed the
physical.numbar of’ heads on the:drive. 3

[V

11/4-13

R

£
S
1
e
\X
Lo
Iy
X

*
o
% .
S T

;s 4 lz
h ' . :
! r
‘i Cosa - ! ' . ;gt
3 L. (« . - g'/%‘ .) : . .OJ‘ . . ﬂf,’,g.
1 ca :" -t e - v ..4.0«'-&7',,5.,5 -ﬁ%n PR N G U R IV N PESA

L
St
'»‘ﬂ\.

(SAMPLE DISK DIB .

Qets

¥
‘?.,'_-

: el et
? This DIB defines an extent on disk unit 0 of cylinders: 0 through 10, heads 2 and 3, mﬁﬁ
3 sectors 0-11; that is, all sectors of the firat elgven cylinders of the removable R -
IRV NAM . DiIDKXX .. i .pIBraM o 4
“e, E H - :' ey) s
2. EXTR C:DKO = ™ sy CIB Reference BN
75}“ o . : . . ‘ e ‘?*;E
o v | 2 Tl
% D:DKXX "~ EQU $ _ : '
CHAN Xs: ' Chain link to other DIB's ’
. _ DATA C:DKO CIB Address
" DATA 0 IOX temp cell
DATA 0 Coordination number
DATA : 0011 . DSW: Direct access Read/Write
DATA ’ 'DK, 'XX') Device name ' ST
DATA - 0 "EOB delay (none required)
DATA 0 FC's, flags. (none required)
DATA 0 ’ Max record size R e
s DATA . 0 Error count T
w DATA 0 : Drive 0, starting sector O ¥
(DATA :CQ2 Sectors per track = 12
*

Starting head number = 2

DATA :1800 Sectors per cylinder = 24
* Starting cylinder number = 0O
DATA :108 ' Sectors per extent = 264

(24 sectors x 11 cylinders)

C

.(' CONTROLLER INFORMATION BLOCK (CIB) - 38 WORDS (47 WORDS FOR STORAGE MODULE DISK)
éhe CIB is used for storing and/or transferring information between IOX and the I/0
andler. Words 15-19 must contain the described information upon initial entry to
JX. Words 22-31 have data stored in them while in IOX. All other words are used by
i1e standard I/O handlers and IOX routines, but may not be required by the user's
‘vecially written handler. Figqure 4-2 illustrates the CIB configuration.

ich{ B location and its usage is described below:
o Temp cell. Set to zero by the scheduler to be used for beginning of

record flag. Set to -1 by IORTN: or SIO:. Set to a number greater
than zero by an interrupt.

“rd 1 Temp cell. If the subroutine SIO: or EORST: is called, this word

should contain a SEL DA, 7 instruction where DA=the device address of
the device being accessed.

- zds 2-11 Temp cells. CIB's for standard I/O handlers contain a calling séquence

to the RTX INTQ: routine, which is executed upon an end-of-block inter-
rupt. (See INTQ: description.)

d 12 Temp Cell. The special function codes from DIB Word 8 are stored here
by SINT:, and used by SIO: in setting up the I/0 select instruction
: sequence.

C ‘ ; I1/4-14 Revised 11/76 -

—~

Standard
Name*

CBOR

CSEL7Y

CTMPY
CTMP2

CTmMP3
CEBTSK

CNEWA

CNEWX

CFUN
CCsuM
REQCNT
CJa7BL

csPLOP
CDEL

CINTR
EXCESS
CEOF
cios
coep
CRCNT
CBUFF
CTCNT
CDAA
cois
CFUN1
STATUS
CRTN

CDCHN
COCHN1

CDCHN2
CDCHN3

CONTROLLER 1NFORMATION 1110UCK

1S e 13 12 12 10 9 8 7 6 S5 4 3 2 1 o0
TC FOR SIO1-~BEGINNING ;l.‘ RECORD FLAG
- :l'l'- l-'O;.-Sié;..¢)R H‘ORS'I‘ s -:;l"l.';\-l.’. T
T ssr . aemas ’ T
DATA $ CALLING LOC
om0 R
DATA o TEMP 2
DATA \'o TEMP 3
DATA TASK ADDRESS
DATA PRIORITY FOR QUEUED TASK
DATA 'AREG .
DATA XREG
DATA p-Lo¢ ’ cIB ADDRESS

TC FOR SINT: AND SIQO:-—FUNCT. CODES (DIB wd 8)

TC POR CHECXSUM

C

ERTRY POINT TO READ

ENTRY "‘POINT TO WRITE

ENTRY POINT TO POSITIOM

ENTRY POINT TO FUNCTION

ENTRY POINT TO SPECIAL OPERATION

TC FOR SIO:—WATCHDOG TIMER INSTR.

TC FOR SINT: AND SIO:~—DEVICE WORD INTERRUPT ADDR.

TC FOR IOX--PROMPT CHARS (108 wd 8)

TC POR IOX--EQP, AND POR MAG TAPE--RETRY CTR

TC FOR IOX---IOB 'TOR

TC-POR IOX SCHED-—OP CODE AND STATUS -(I0B wd 5)

TC POR IOX SCHED——REQUESTED COUNT (IOB wd 6)

. TC FOR IOX SCHED--BUPPER ADDR (I8 s 7)

" "IC FOR IOX——ACTUAL BYTE COUNT

TC POR IOX SCHED--DIRECT ACCESS ADOR (I0B wd 9)

TC POR 10X SCHED--DIB ADDR AND BUSY FLAG

TC POR IOX SCHED--FUNCT. COES (DIB wd 8)

TIC FOR EOR:—STATUS

TC POR SIO: AND WAIT:--RETURN ADDRESSES

DATA $+1 POINTER TO BYTE COUNT
" DATA 1 BYTE COUNT

DATA s+l BUFPER ADDRESS

DATA 0

1 CHAR INRPUR BUFF

word

10

1

12

13

14

15

16

17

18

19

21

22

30

3

32

33

34

s

37

*refer to the I/0 Handler listing at the end of ‘Section

Figure 4-2. CIB Configuratien

I11,/4-15 ,

Canmkxm&onm —_—

NOTE: i
TC = Temp Cell

s Sat g

DAL LA

(a3

word 14

ords 15-18

‘Word 19

‘£§ a 20

Word 21
Word 22
é;fd 23

word 24

Word 25

Word 28

word 29

.Word 30

Word 31

Temp Cell. Used by the standard I/0 handlers for a checksum storage
cell. i
Temp Cell.

IOX requires these words to be set up as a jump table to various entry
points in the I/0O handler, as follows:

Word 15 Entry point to READ.
Word 16 Entry point to WRITE.
Word 17 Entry point to POSITION.
word 18 Entrxy point to FUNCTION.

) \
If any of the above functions have no meaning to the handler, the cor-
responding cell (Words 15-18) should be zero.

Entry point to SPECIAL OPERATION. If the handler does

special operation, this word should be zero.
.y ‘ .

not perform a

Temp Cell. This cell is assumed by'sIO: to be an instruction (e.g.,
LLA or NOP) to be used in calculating the watchdog timer. (See SIO:
routine description.) ' <

Temp Cell. SINT: and SIO: routines expect this word to contain the
device's word interrupt address.

Temp Cell. Used by IOX to store prompt characters from IOB Word 8, if
any. B -
‘Temp Cell. Used by IOX character handler in checking for end of file,

and by the magnetic tape handler as a retry counter.
Temp Cell, IOX scheduler routine stores IOB address here.

Temp Cell.
tus) here.

IOX scheduler routine stores IOB Word 5 (op code and sta-

Temp Cell. IOX scheduler routine stores IOB Word 6 (requested count)
here.

Temp Cell. 1IOX scheduler routine stores IOB Word 7 (buffer address)
here. :

Temp Cell. Used by IOX routines to count actual byte transfers.

Temp Cell. IOX scheduler routine stores IéB Word 9 (direct access ad- ‘

dress) here, if any.

I0X scheduler routine stores DIB address here, and later

Temp Cell.

‘uses it for a busy flag. (If non-zero, IOX assumes the device to be
busy.) :

Temp Cell. IOX scheduler routine stores DIB Word 8 (function codes)
here. - S :

I1/4-16

e

—_—

word 32 . Temp Cell. Used by FOR: routine f:r storaae of status.

Hord'33 Temp Cell. Used by the SIO: and WAIT: rewtines to store their i1eturn
addresses.

words 34-37 Temp Cells. Used by the standard 1/0 handlers as a byte count/buffer
address/l-character buffer sequence for l-character I/0O calls to
SI0:. (See FETCH: description.)

MTIC Handlers use CIB words 34 and 35 in the following manner:

the following
15 W 13 1

 NOTE

formgt:

' Word 34 Temp Cell. Used to store the MTIC Hardware Status. This word

11 % 9 8 7 ¢ 85 4°-3 2 Vv 0

uses

] N W] 3 | A 1 | P] 4 I 1
1§ v 12
Status byte two
-~ Status byte one
Word 35 Minimum Record Length Buffer Address. This word cointains a word

address of a buffer with a size greater than or equal to DIB word 12.

4.6 STANDARD CIB NAMES

" The following table shows the CIB names for all devices for which standard and
non-standard handlers exist within IOX.

The Ji=3bel is to be used as the second word of

the associated DIB(s). (A table of DIB names is shown in section 2 - Unit Assignment

Table description.)

Teletype

CRT

High Speed Paper Tape Reader
High Speed Paper Tape Punch
Line Printer

Card Reader

Disk

Storage Module Disk:

Floppy Disk

Magnetic Tape

IEEE Intelligent Cable

Non-DIO

C:TYO
C:TYO
C:PRO
C:PPO
C:LPO
C:CRO
C:DKO
C:SMO
C:FDO
C:MTO

11/4-17"

Fortran
Non-DIO DIO
C:TYF C:TYD
C:TYF C:TVD
C:PRO C:PRD
C:PPO C:PPD
C:LPF C:LPD
C:CRO -
C:DKF —
C:SMFO -
C:FDO -
C:MTO C:MCO
- C: IEOD

Revised 11/76

Fortran
DIO

C:TYFD
C:PRD
C:PPD
C:LPFD

By’

~—~

SECTION 5

FILE MANAGER

The File Manager provides directory and data management for file-oriented devices.

The devices supported by the File Manager are the moving head disk and the floppy
disk. It operates as a driver working in conjunction with RTX/IOX. By using the File
Manager, an application program may communicate directly with the data files by name,
independent of the physical medium storlng the file.

All requests for flle access are made' through IOX (IO) using Loglcal Units (LUNs).
The File Manager calls standard IOX device drivers using Logical Units for the
required physical I1/0. LUN assignments for files as well as LUNs for use by the File
Manager for physical I/O are made in the Unit Assignment Table (UAT). (See Section 2,
IOB and UAT Organization.) File information (name, file attributes, etc.) is con-
tained in a Device Information Block (DIB) for that file. The file DIB is not to be
confused with the device DIB described in Section 4 although the first ten words are
the same.. The file DIB is described in this section.

The File Manager requires that all File-oriented devices be labeled prior to use.

This invclves the creation of a Volume Table of Contents (VTOC) and directories on
each individual unit to allow later file processing by name. Do not confuse
"labeling” with the "formatting” of disk packs; ,the latter must be done with stand-
alone programs before labeling. The RTX File Label Utility (93324-40A1 and -41Al)

is a stand-alone program for labeling file-oriented devices. The device labeled using

‘this utility is compatible with the Computer Automation OS file format.

5.1 FILE ORGANIZATION

File organization in the File Manager is compatible with the Computer Automation OS
file format. Any file-oriented device accessed through the File Manager must contain
a directory. The directory describes by name all data files which reside on the
device. The physical medium containing a directory and files is called a Volume. The
first entry in the directory is the Volume Table of Contents (VTOC). This entry
contains information for the File Manager as well as volume name and creation date.
The remainder of the directory is segmented into file description entries, one for
each file on that volume. An entry contains the file name, creation date and time,
and File Manager information such as record size, block size and file length. See

Figure 5-1 for directory structure. Figure 5-2, the Disk Descriptor Table, defines
the disk partition limits. i

For disk volumes, multiple new file writes are supported through disk partitioning.
The disk is divided into as many as eight partitions, each of which may have a new
file open. If a file extends past the end of a partition, the file is linked to the
next available partition. File linkage is supported for forward sequential reading or

for positioning only (in either direction). Any number of old files may be open.
(See Figure 5-3 for file linkage.)

11/5-1 Revised 3/77

Computerutomation (/A

VTOCRD: SEQUENTIAL FILE

| RELATIVE (blocked 32 bytes per record, 510 bytes per block)
| SE(‘R — e — e — —
0 . RECORD O VTOC WORD O :BFBF
1 ASCII DATE
1 1 \ 2 DEVICE LABELED
¢ \
3
! \
2 . 2| FILE 1 \ 4 ASCII NAME
\ :
\ 5 OR VTOC
.3 3| FILE 2 \ 6 '
\
> _ \ 7| # DIRECTORIES USED g
4 4 \\ 8 TOTAL # DIRECTORIES
. A 9 DISC ADDRESS -
‘ .
5 5 \ 10 OF DDT -
-\ 1
@ 6 \\ 12 NOT
/ \ 13 USED
7 \ 14
— % \15
— — 8 —
184 9 0 ASCII
1 FILE NAME
1{ 10 \ 2
‘\ 3 ASCII FILE
20 DDT \ \ 4 CREATION DATE
\\ /Z/ 2 \ . ;3
& : \ \ 6 ASCII FILE o
-
\ \
.‘ \ 318 , \ 7 CREATION TIME &
= \ I 2
.. \
actory may begin at \ 319 \ 9 FILE ATTRIBUTES :
olute disk \ \ 10 PROTECTION KEY 5
ror :0 or :29 |\ S, \ a
\ 11 RECORD LENGTH (BYTES)
\\ 12 BLOCK LENGTH (BYTES)
: ATTRIBUTES: (13 TACH RATIO
Bit 15 - 1 - Deleted \ 14 STARTING RECORD #
. \
. BIT 14 - 1 = Random, 0 = Sequential \ 15 TOTAL # RECORDS
| (.

\ BIT 13 - 1 = Blocked, 0 = Unblocked
FILE LINKED FLAGQ

| Figure 5-1. Disk‘Directory Structure

- (C o 11/5-2

o

1y

i
5
5
[
e
i
k-
bl
&

«

WORD O

wwNNNMNNNMNNHP‘HD—'HH'—‘HHH
POQDG)\IGU‘I&NNHO\DCD\)O\U\:&(ANHO

Figure 5-2. Disk Description Table (DDT) in Volume Table of Contents

ST PHYSICAL SECTO
LA R 1 PARTITION

NUMBER IN PARTITION

W ©® N O D W N e

2
NOTE:
Entry is zero if
3 that partition
does not exist
4
5
’ 6
7
8

NEXT RELATIVE RECORD (ACTUAL)

1l PARTITION
NEXT RELATIVE RECORD (WORKING)

11/5-3

C

PARTITION #1 RECORD 1 NOTE: Each Block Represents
. RECORD 2 a Single Disk Record
RECORD 3
RECORD 4

FORWARD LINK:

RECORD NUMBER (2 WORDS)

~ PARTITION #2 I LINK BACK POINTER:
" RECORD NUMBER (2 WORDS)
,(,' _ . 4 PREVIOUS RECORD COUNT

1 4 NEW RECORD COUNT AND
LINK AGAIN FLAG

] RECORD 5

_ RECORD 6
C RECORD 7

RECORD 8

PARTITION #3 gl

RECORD 9

RECORD 10

» L Figure 5-3. Dpisk File Linkage
I1/5-4

—~.

1 Q | r/5os
I\

— 5.1.1 Sequential File Access

Sequential file processing is available to the user on the moving head disk and the
floppy disk. Sequential files are uniquely ordered by the File Manager: Given
logical record N, the next READ request will always return logical record N+l. A READ
or WRITE operation automatically advances the file to the next logical record.
However, records may be accessed out of order by using the POSITION operation.

The File Manager provides automatic blocking and deblocking of logical records under
sequential access. All I/O requests access a single logical record whose position in
the physical record is controlled by the File Manager and need not be known by the
user.

If the data security bit is set in the DIB, every sequential WRITE operatlon on that
file will cause a directory update on the disk.

For blocked files, the user must provide a record buffer and a blocking buffer. The
size and address of each"is in the appropriate DIB and IOB. The record buffer may be

smaller than the file record size; however, the blocklng buffer must be the block size
‘ﬂlus two bytes.

ly a record buffer is required for unblocked files. The record buffer may be
smaller than the file record size. The user MUST reserve a word (two bytes) at
address BUFFER -1 that is required for use by the File Manager. '

Random Access

With the File Manager, random access file processing is available only for disk
“wvices. Random files are accessed by physical records; automatic blacking/deblocking
is not provided. A random file must reside within a single partition. The number of
~ “ata bytes contained in each record is fixed at 512. The medium-capacity disk sector
! jze is 512 bytes. When using a floppy disk, four sectors are used for each random
file record; each sector has 128 bytes.

Although the record size of a random file is fixed, any number of bytes may be read or
written. The specified record number is relative to the beginning of the file.

& NOTE ,
. Q@# The record number is used to test for end-of-file. If more than 512
(bytes are written, the sector(s) beyond the end-of-file will be destroyed.

To access a file in the random mode, the file must have been created as a random file.

When a new file is opened with the random file type bit set in the DIB, a random file

is created. When closed, the file size is equal to the largest relative record number
accessed +1. ‘

5.1.2 File Opening and Closing

The File Manager provides automatic file opening. On the first access (read, write,
position, function) of the file, the File Manager will attempt to open the file. If
the file name is found in the directory, the open and first access is completed. If
the file name is not found, a new file is created. When creating a new file, the

. & a rewind. Positioning a file to absolute -1, will close the file. If the count

CompuhrAutomlﬁonm———

(jArtition number for placement of the file may be specified in the DIB. If not

supplied (zero), the File Manager will use the partition having the largest unused
space._ Position to absolute file -1 to close the file.

5.1.3 File Positioning

File positioning is provided for use with sequential files. It allows the user to
access logical records out of sequence. There are four basic types of positioning.

with each type of positioning a count is specified by the user in the Input/Output
Block (IOB word 6). (The IOB is defined in Section 2.)

flote that counting of records or file marks begins at zero, See Figure 5-4 for

examples of sequential file positioning.

1. Absolute by file mark. The count is the number of file marks to skip from the
beginning of the file. The next READ or WRITE will access the logical record
following the file mark. Note that a position to absolute zero is equivalent to

exceeds the number of file marks in the file, an "end-of-media" status is
returned with the file positioned after the last logical record.

2. Absolute by logical record. The count is the number of logical records to skip

from the beginning of the file (the count must be positive). If a file mark is
encountered before the count is exhausted, a "file-mark-found" status is returned
and the file is left positioned at the file mark. If the end-of-file is encoun-
tered before the count is exhausted, an "end-of-file" status is returned and the
file is left positioned after the last logical record.

3. Relative by file marks. The count is the number of file marks to skip from the
current file position. A positive count means skip forward; a negative count
means skip backwards. While skipping forward, if the end-of-file is encountered,

and "end-of-file" status is returned and the file is left positioned after the
last logical record. In like manner, when skipping backward, a "beginning-of-
file" status is returned and the file is positioned at the first logical record.

Relative by logical record. The count is the number of logical records to skip
from the current file position. While skipping forward, if a file mark is

4.
(M‘ encountered, a "file-mark-found" status is returned and the file is positioned at
‘E\ the file mark.

For backwards skips, if a file mark is found, a "file-mark-found" status is
returned and the file is positioned after the file mark. As with relative
positioning by file marks, the File Manager will not allow the position to go
beyond the beginning and end of file limits.

with a normal completion, the actual number of records/file marks skipped is returned
to the user in IOB word 8. For an error completion, the count returned is the number
successfully skipped when the error occurred. For a retry, the requested count should
be set to the REQUESTED count in the IOB minus the ACTUAL count.

{ L - I1/5-6

)

«

5.1.4 File Functions

The File Manager provides the functions described below. They are set by the user in
the IOB (see Section 2).

Write File Mark This function writes a sequential record (blocked
) or unblocked) that contains a :80 in the first
byte. When read, this record will cause a file-
mark-found status to be returned. Note that this
is a data separator, not an end-of-file.

Delete File This function sets the fi%e—deleted bit in the file
DIB and in the directory when the file is closed.
Note that this does not free the space on the file

device; it only enables a new file to be created
with the same name.

vUpdate Directory This function causes the directory to be updated
. with the current end of file. This function is
valid only for new files. This enables the user to

secure the data without performing a close on the
file. '

I1/5-7

TE: The number indicates the count supplied by the user.

(ABSOLUTE POSITIONING

FILE MARK OR RECORD -1 —sm=— CLOSE FILE
FILE MARK OR RECORD O S

€

FILE MARK 2___

N F‘Il_'..E MARK-lO'O. -

RELATIVE POSITIONING

RECORD 1

. BEGINNING OF DEVICE
FILE MARK -100

RECORD 3 __

RECORD 100___

—a— FILE MARK -1

FILE MARK 1___

| RECORD -~100

~e——RECORD -1

START HERE

RECORD +1

RECORD +2

RECORD +100

FILE

FILE MARK 3___ | MARK | FILE MARK +2

RECORD
0 .

RECORD
1

2

'RECORD"

JFILE MARK +1

FILE MARK +100

END OF FILE

Figure 5-4. Sequential i’-ile Positioning Examples

I1/5-8

5.2 TABLE ORGANIZATION

rhe File Manager may be considered as a "dummy® IOX driver in that it is a "data"
driver as opposed to a device driver.

The File Manager is only concerned with the
data contained on the device and not the device itself.

Since the File Manager is
independent of the file device, it calls a standard IOX device driver to access data
{ n the device.

These calls are made to I0: using the logical units associated with
the device.

Since the File Manager operates under IOX as a driver, it requires the same type
driver tables (i.e. DIBs and CIBs).

If the File Manager was equated to a device

driver, then a VTOC (directory) would be equivalent to a device controller, and a file
would be equivalent to a device unit.

The File Manager requires that one CIB for each
VTOC, and one DIB for each file be concurrently active (open).

A device containing a VTOC to be accessed by.the File Manager must have a unique
logical unit associated with it.

This logical unit is contained in the File Manager
CIB for that VTOC and is used to access the device. '

BEach File Manager DIB must have a logical unf£ associated with it. This logical unit
ii”~sed by the user to access the file described by the DIB.

1" Mcal unit associations are made in the Unit Assigmment Table (UAT).

A description
or the UAT, as well as of the Input/Output Block (IOB) that contains the LUN, is given
in Section 2. .

rigure 5-5 gives an example of a table configuration. In this example, the file
device is a moving head disk with two platters (unit 0 and unit 1).

Each unit
-ontains an independent Volume Table of Contents (VIOC) and file directory for that
1ni(:‘

‘he standard IOX moving head disk driver requires one controller information block
‘G) C:DKO and two device information blocks (DIBs) D:DKOO and D:DKOl for disk units
i and 1 respectively. .

he File Manager requires two CIBs, C:FMO and C:FMl, for VIOC 1 and VIOC 2, respec-
ively.

Since three files are to be active (open) concurrently, three DIBs are
:quired: D:FMCO for FILE 1, D:FMOl for FILE 2 and D:FMO2 for FILE 3.

ch(.le device (VTOC) has a logical unit associated with it which is used by the
AleOnager to access the device (LUN X for VIOC 1 and LUN Y for VTOC 2).

- ugser accesses the files through a standard IOX call to I0: using the logical unit
sociated with the file DIB. =~ (LUN A for FILE 1, LUN B for FILE 2 and LUN C for FILE 3.

2.1 PFile Device Information Block.(DIg).

; first ten words of the Device Information Block (DIB) have essentially the same
ctions for the File Manager as they have for IOX.

These stapndard functions are
cribed in Section 4, DIB and CIB Descriptions.

The functions for words 10 through
are given below. (Refer to Figure 5-6.) ‘
18 0-6 Standard for IOX.

113 7-9 Standard for IOX, but must be set to zero for File Manager.

i 0 (, ‘ I1/5-9

01~S/11

T0X
DISK
DRIVER

DIB | g

C :DKO

D:DKO1

DIB

C:DKO

\\\EEEE_Q,f\\\

UAT

:FMO1

D:FMO2

I:UAT

LUN Y

USER

LUN X

LUN A

DIB

IC : FMO

DIB

q;FMl

P
&:Es
-

O: ~==

LUN B

A\

LUN C

Figure 5-5.

Table Organization

\\
~
~
~
\\\
N
Cib]c:FMo[ciB
t
LUN Y LUN X
10X
FILE
MANAGER

;Q f;f
; -
- C
i 0
STANDARD
FOR
: 10X
9
10 PHYSI¢AL 1/0 ERROR STATUS DHST
h 11 FILE STATUS WORD DFST
&
. 12 DFNAM
13 FILE NAME .
14
_ : 15 RELATIVE RECORD NUMBER DRRN
Q 16 ABSOLUTE RECORD NUMBER DARN
17 RECORD SIZE DRS
18 BLOCK SIZE DBKS
19 PHYSICAL RECORDS PER BLOCK DPRB
] 20 PHYSICAL RECORD NUMBER DPRN
(&; ' 21 TOTAL RECORDS DTREC
22 DIRECTORY ENTRY NUMBER DDEN
23 CURRENT BLOCK ADDRESS ' DCBA
24 BLOCKING BUFFER ADDRESS DBBA
25 LAST PHYSICAL RECORD , DLPR
26 COMPLETION STATUS DCST
i Figure 5-6. DIB Definition when Used with the File Manager

I1/5-11

(T>WOrd 10 : Physical I/0 error status. The status (word 5) of the physical
I/0 I0B is stored here after each operation.

Word li File Status word. For old files, all bits are supplied by the
File Manager from the directory; therefore, all bits of word 11
(are initialized to zero. When creating a new file, those bits
-flagged with an asterisk (*) must be supplied by the user before
the first, access. The data security bit may be modified at any
time to enable or disable this function. After the first access
of a file (new or old), if the file delete bit (15) is set, the
file will be deleted when the file is closed. Bits 15-13 corres-
pond to the file attribute bits in the directory entry and are
transferred to the entry when a new file is closed.

Bit 15. 0 = keep file, 1 = delete file

Bit 14*. 0 = seﬁuential file, 1= random file

Bit 13*, O = unblocked records, 1 = blocked records
6 © Bit 12. 0 = file closed, 1 = file open

Bit 11. O = file open for sequential access
1l = file open for random access

Bit 10. O = old file, 1 = new file

Bit 9. 0 current block not modified
(1 = current block modified (blocked files only)

Bit 8. Data security bit. When set the directory is updated
after each sequential write (unblocked files) or after a block is
written (blocked files).

Bit 7. 0 = file not linked, 1 = file linked

Bits 6~-4. Reserved for future expansion.

‘&‘ Bits 3-0*. Partition number. For old files, contains the number.
. ’ For new files, specifies where the new file is to be created. If
!{ zero, the available partition with the greatest unused space is

o used and its number is stored here.)

Words 12-14* ASCII file name. Supplied by the user.

Word 15 Relative record number. Relative to the beginning of the current
file segment for linked files. With unlinked files, this word is
the same as the absolute record number.

Word 16 Absolute record number. The current file position relative to the
beginning of the file. Note that the first record is record zero.

Word 17+ Record size in bytes. Set to 512 for random files. Supplied by
user for new files.

* Information supplied by user.

((— ‘ 11/5-12

(Word

wWord

Word
Word
Word

Word
ﬁt’Word

Word

(;Word

-

18*

19

20

21

22

23

24*

25

26

* Information supplied by user.

Block size in bytes. Used for blocked files only. Supplied by
user for new files.

Number of physical records/block. Contains the number of 512 byte
physical records required for a file block (blocked files) or
record (unblocked files). Supplied by the file manager. Referred
to as "tach ratio" under CAI OS.

Physical record number of first record in file. Supplied by the
File Manager. ,

Total records in the file. For linked fileg, contains total
records in current segment. Supplied by the file manager.

Directory entry number for this file. Supplied by the file
manager.

Current block address. Contains the physical record number of the
last block read. Supplied by the File Manager.

Blocking buffer address, (Word address, no indirect). Supplied by
user when accessing blocked files. Buffer size must be block size
plus 2 bytes. Not required for unblocked or random files.

Last physical record in'partition. For new files, contains the
last available record number. Not used for old files. Supplied
by the File Manager.

Completion status. Cleared upon entry into file manager and set
when operation is complete. A bit is active when it is set to 1.

Bit 1S. Physical I/0 error. An abnormal status was returned
from physical I/0. The detail physical I/O status (DHST) word in
the DIB contains word 5 of the CIB IOB used for the physical I/O.

Bit 14. Device not labeled. A valid VTOC identifier was not
found. This error can only occur during a file open.

Bit 13. Directory full. No unused entries are available in the
directory for the creation of a new file.-

Bit 12. Directory error. An error was returned from physical I1/0
during a direction read or write. Detail physical 1/0 status
(DHST) word in DIB is set. This error can occur during a file
open, close, or directory update.

Bit 11. End of Media. The end of a partition was reached during

write on a new file. It is valid for both sequential and random
access modes.

Bit 10. Partition(s) busy. The required partition for a new file
creation already has a new file currently open, (partition is
busy), or required partition is full. If no partition was
specified, then all partitions are busy.

I1/5-13

(f Bit 9-8. Reserved for future expansion.

Bit 7. Access mode error.

A sequentail access was made on a
ramdom

file or a random access was made on a sequential file.

The
access type did not match file type in a new file open. ‘

1 Bits 6-2. Reserved for future expansion.

Bit 1. Unable to close. Indicates a close was in process when an
error occurred (file remains open).

Bit 0. Unable to open. Indicated an open was in progress when an
error occurred, (file remains closed).

—~

(C

I1/5-14

s

e g e R A BT

Word O

Words 1-10

Word 11

o -

o
Word 13

Word 14

C

(.
. Words 15-18

w&aw
4 .a 20

Word 21

‘Word 22

" uescribed below.
Handler as they are for IOX.

(’,.2 Manager Controller Information Block (CIB)

The' Controller Information Block (CIB) is used for storing and/or transferring infor-
mation between the File Manager and the IOX I/0 handler. Words 15-19 must contain the
described information upon initial entry to the File Manager (actually to IOX).

{gure 5-7 illustrates the CIB configuration. The functions of each CIB word are
Word 0, words 15-19 and words 24-33 are defined the same for the File

SI0O: beginning of record flag.

IOB used by the File Manager for physical I/0; includes user-
supplied LUN for the file device (IOB word 4 = CIB word 5). All
other data in IOB is supplied by the File Manager. The IOB status

word is transferred to the DIB physical I/0 erxor status word after
each I0: call.

Number of physical sectors per physical record (supplied by the
File Manager). o, ’

Physical sector address of Volume Table of Contents (VTOC).

Initialize to zero. The File Manager determines the VTOC address
(0 or :29) on first open.

Address of Disk Descriptor Table (DDT) (supplied by the File
Manager after first open). This is a physical record address.

Open/close buffer address. This word contains .the word address (no
indirection) of a 256-word buffer supplied by the user. This

buffer is used by the File Manager for directory searching during
open or close processing. ’

Entry point jump table.

Word 15 Read FM:REA
" Word 16 Write FM:WRT
Word 17 Position FM:POS
Word 18 Function FM:FUN

Special operation entry point. Not used; set to zero.

Current direction record number during open, or operation code
during position/function processing (supplied by the File Manager).

Number of directory entries used during open, or absolute file

position count during position processing (supplied by the File
Manager) .

Number of directory entries available during open or current file
position during position processing. Supplied by the File Manager.

I1/5-15

(C

10
11
12
13
14
*15
*17

*18 -
*19

20
21
22
23
*24
*25
*26
*27
*28
*29
*30
*31
*32
*33
34
35
36
37

39
40
41
42

SIO: BEGINNING OF RECORD FLAG

PHYSICAL I1I/0

~2~ 10B

1%/”

NUMBER OF SECTORS/RECORD

VTOC ADDRESS

DDT ADDRESS

OPEN/CLOSE BUFFER

STANDARD

FOR
CIB

CURRENT DIRECTORY RECORD

DIRECTORY ENTRIES USED

DIRECTORY ENTRIES AVAILABLE
PARTITION BUSY FLAGS
~ STANDARD

FOR

CIB
SUBROUTINE LEVEL 5
RETURN LEVEL 4
ADDRESS LEVEL 3
SAVE LEVEL 2
AREA LEVEL 1

FILE LINKAGE
BUFFER

a

DBOR

CSPR
cvToc
CDDT
coce

CCDR/CPFC
CVND/CAPC
CVDA /CCPC
CPBS

CR:xxx WHERE

xxx = SUBROUTINE NAME

CLKBF

- -

Figure 5-7. CIB Definition When‘Used With the File Manager

11/5-16

_Word 23

*Words 24-33

Words 34-38

words 39-42

—

L€

Partition busy flags. FEach partition on disk is represented by a
single bit. The bit position is equal to the partition number.
With a maximum of 8 partitions numbered 1-8, only bits 1-8 are
used. Bits O and 9-15 are unused. A partition busy flag is set
when a new file is open in that partition and cleared when it is
closed. Only one new file may be open in any one time. Supplied
by the File Manager.

Standard CIB definition.
Subroutine return address save area.

Word 34 Level 5 subroutines: FM:PS
. FM:FN
word 35 Level 4 subroutines: FM:RE
. FM:WR
FM:0P
) FM:CL
Word 36 Level 3 subroutines: FM:DM
FM:EQF
Word 37 Level 2 subroutines: FM:WBK
FM:RBK
FM:RLK
FM:RLR
Word 38 Level 1 subroutines: FM:PIO

Buffer forbprocessing partition file linkage.

I1/5-17

S A ST ARG T

(:3 RTX FILE LABEL UTILITY

The RTX File Label Utility is a stand-alone program for labeling file-type devices.
The RTX/IOX File Manager requires that all file-type devices be labeled prior to use.
This involves the creation of a Volume Table of Contents (VTOC) and directories on
ach individual unit to allow later file processing by name. Do not confuse
"labeling” with "formatting"” of disk packs; the latter must be done with stand-alone

programs before labeling. The labeled device is compatable with Computer Automation
OS File Format. -~

’

$~.3.1 Environment
The Label Utility requires an LSI-2 or LSI-3/05 CPU with a minimum of 4K words of

" memory. The tape numbers (binary paper tape) are 93324-40Al1 and -41Al1 for LSI-2 and
LSI-3/05, respectively.

3.2 Program Operation. ’
&er loading and executing, the Label Utility halts with P=:0100 and waits for the

{ jer to specify TTY I1/0 type:

1. Standard option board TTY, set Sense switch OFF.

2. DIO TTY, set Sense switch ON.

To continue execution, depress RUN after setting the desired I/0 Option. The Label
gram will then query the user for its variable information. When responding,
certain keys on the keyboard have special functions.

! 1. Return. The Return key indicates the end of a line of input and causes

a carriage return and line feed to be generated.

2. Back arrow (-—). The back arrow causes the previous character input to
be replaced by the next character typed. Multiple characters may be
replaced by typing the appropriate number of back arrows followed by the

é correction characters.

3

. Back arrow (-—)/Return. A back arrow followed immediately by Return

(’ causes the entire current line to be ignored and replaced by the next
line input. The Return causes a carriage return and line feed to be
generated. '

«C | | I1/5-18

9
|

/_\‘.

NOTE

il
i
El
£

{ An invalid response to a query will result in the query being
repeated.

The Label Utility begins with the first query:
DATE? (MMDDYY)

The user should respond with a Volume Identification. It must consist of one to six
characters, normally alphanumer%c,“although any characters are allowed.

Example: Feb. 4, 1977 would be input as 020477.

TIME? (HHMMSS)

- Enter the current time of day (hours, minute%, seconds). This time is saved in the
VTOC. This time is NOT incremented by a real-time clock. This is a 24 hour clock.

Example: 1:23 PM would be input at 132300.

~ VOLUME NAME?

The user should respond with a Volume Identification. It must consist of 1-6
characters, normally alphanumeric, although any characters are allowed.

TYPE AND UNIT NUMBER?

(The response is a two-character specifier of the physical device which is to be
labeled. The specifiers are:

DEVICE SPECIFIER
Moving Head Disk, Unit O DO
Moving Head Disk, Unit 1 Dl
Moving Head Disk, Unit 2 D2
(' Moving Head Disk, Unit 3 D3
Floppy Disk, Unit O FO
Floppy Disk, Unit 1 Fl
Floppy Disk, Unit 2 F2
Floppy Disk, Unit 3 F3

DOES xx CONTAIN OS?

If the device to be labeled (xx) contains a copy of the Computer Automation Operation
; System (OS) the user responds with "YES". Otherwise, the user's response is "NO",
i causing the next query to be suppressed. OS must be on the device before labeling.

‘ 11/5-19

4

Wmm—-—_

(f SAVE 0S?

If an operating system exists on the Unit and is to be saved, the user responds with
"YES", otherwise "NO".

€ the device to be labeled is a disk, the next query is:

NUMBER OF PARTITIONS? (1-8)

The user now selects the number of partitions (1—8) into which the disk is to be
divided and enters that value. Only the first digit entered is used. The number of
partitions selected is the limit to the number of new files which may be open
simultaneously (new file creation).

The labeling process then begins. When successfully completed, the following message
is output:

LABEL COMPLETE

:he selected device is off-line, not ready, write protected, or othewise mal
tions during the labeling process, the following message is output:

HARDWARE ERROR
RETRY?’

1f ﬁhe user responds with "YES", the program will retry the label process. If the
device still fails, the error message is repeated. If the user responds with "NO",
the labeling process is aborted and the Program continues with the next querxy.

<~ LABEL MORE?
5 user is offered the option of labeling another device or terminating the procéss.
A "YES" response will cause a restart with the query "VOLUME NAME?". If the user
wishes to change the date and time and continue, the response is "NO". A "NO"

response will halt the CPU. Depressing RUN will restart the program at the beginning.
At this point, a new I/0 option may be selected.

NOTE
‘2‘ The restart entry point is :0101. The LSI 3/05 version contains
(' a software console routine for restarting (CNSOL3).

/(, II/5-20

/“\ggf& M | lwggfs | -

)

v —————

TZ-S/11

PAGF 000Y 03711777 1S:¢lhe32 EXYAMPLE FTLF MANAREP APPLICATTIUNM
MACRD? (A?) SI= E¥X:S BOs 2+ IINTT ASSTUGNMENT TARLFE %2

000% x

0004 * UNIT ASSIGNMENT TARLF

0nos - A '

006 nong NE W £Ql) { MEW FILE LNGTICAL UNIT
0007 nong uLD EQU 2 OLD FILE LNGTCAL UNJT
0NpR non3 P10 F s 3 PHYSTCAL 170 LDOGICAL UNIT
0009 SAVF

0040 A

00§t 0006 NAM JsusT

0ngp FxTk NDSFMQ . :

0Nty ExTr DsFMy ,
onga FXTk DeDKO1

0018 0000 UATTOP EQU b}

00té6 0000 0002 ' DATA oLp LD FILE LNGTICAL UNIT
0ny7 0001 0000 DATA DeFMQ OLDh FILE DIR

0niR 0002 000} : NATA NF W - NEW FILE LNGICAL UMIT
onte 0003 NONQ) DATA DeFMY NEW FJILE OTn °

0nz2n Q004 0Qn3 DATA P10 PHYSTCAL 1/0 LNGTCAL UNIT |
0021 0ngs 000Q ‘ DATA DeDKO? PHYSTCAL I/70 LOGICAL UNIT
0n2? 0Nnpk FFFB TeUAT DATA UATT(QP=S=p ’

002% FND

0000 ERRORS

0NON WAKNING

Zz-s/11

. R

PAGF 0001 03211777 15:%6232 EYAMPLE FTILF MANAGER APPLTICATION

MACRQO? (A?) §T= FY:8 Bh= #x PTY MATNLIME CONDE #2

0026 * ‘

0ne? * RTY MATNLINE COQUF A

00H2”R ’ x v

on2e 0nQon (NAM MATM

on3n FXTR TASK

onit ' FXTR RTx:

0Nn3e - o FXTR BFGIN?

on3z ' FXTR END

0034 NOOA N Fuul i0 - MUMBFR 0OF WQRKTNG Rl NCKS

0n3s nooo MAIN EQU $:

0036 0000 FBO7 0NODA JsT RTXx? INTTTAI JZF RTX
0N37 o0oNnot1 00NA ' NATA N

0N3R o002 AQO0R ' DATA WKARE A

on39 000X NBOO HLT FRPOR

0Nd0 0Npa FROY4 0009 JSsT - BEGTNS START TASK

0nygs 0008 0000 NATA TASK '
0047 0006 0064 DATA 100 AT PRINRTIY 100

0n4aT 0007 FBO2 0NO0A JST END: -

onga 0on3 LPOOL

A 0002 0000 b

0002 0000
0N04 NO0go
004s Q00R 0000 AKAREA RES SN, 0 RIX WORK AREA
0ndé nong EnD MAIN

0n00 ERRORS
0000 WARNIMG

N QgZiD uowmununﬂey%au&s

~~

N —

&PELTCATION PROGRAM, THIS COPIFS EVERY THIRD <ECORD FORM
THF FXTSTING FTILF ®"OLD"™ (BLOCKED 72,.,510) TN A NtW

RECORD BUFFER SIZF IN RYTES
SET UP gYTE CUNNT TN TOR
LOGICAL UNTT OF FILE "oLn*

NPCUDE FOK SFOQUENTTAL PEAD

PEAD A RECORN FROM FILE "OLO"
THE FIRST READSWILL OPFN THE FILF

ABNORMAL KFTURN, TEST FUR END 0OF FILE
LUGICAL UNTT FNF FILF "NFw" '
APCUDE FOR SEQUENTTAL WRITF

WRITE THE RECORD TN FILE "NEW®
THF FIRST WRTTF WILL CREATE A NE# FILF

LOGTCAL UNTT OF FILE "0LD"

OPCONE FNR PNSTTION 9FLATIVE RFCORDS

~ -2 T

PAGF 0001 0%/41/77 18:361:32 EXAMPLE FTLF MANAGER APPLTCATTON
MACRUI? (A2) ST= EX:S BO= k% APPLICATTIUN PRAGRAM %1
onyeQ *
0nsn *
0051 *
ong? * FILE "NEW™ (UNRLNCKEDN, 80 RYTE RECNRDS),
0nsy %
0onsa non NAM TASK
0055 (N33 NANM DATF:
0NSAK 0036 NAM TIMF:
0ns7 FXTR 10
0NSA EXTR END®
gnso nooo T ASK- Fan $
Gh60 0000 ColUY ILAP 77
one6!l 0001 9AdS ONndS S18 INB+o
0062 0002 Co02 - ' lAP ot D
0N6T 0003 9ATF (0NUY STA INB+y

H 0nsd - 0008 Co0) LAP 10001}

'} 0NnesS Q0N0S QAR o0us STA INB+S

0 0Ne6 0NQ6 FHZZ2 0039 JST 10:

w one7 0007 003F DATA Ing
0068 0NDR FBIL 0N3A JsT END¢
0069 0009 F213 0n1N JMP CHECK
on7o : *
a0n71 0004 Co01 LAP NE®
0072 000R 9A37 0043 ST4 [0B+4 SET P 10K
0073 000C C605 LAP 10005
on7a . 000D 9ATe ON4a STA 108+S
0075 (@O0OF FBPA (030 JST In:
0nTA QONQOF 0Q3F NDATA 108
0077 0010 FB29 0N3A JIST ENDS AND NPFN IT
0078 0011 F20E 0020 JHMP ERRAK ABRNORMAL KFETURN
0n7o : * v
0ngn - 0012 Coe02 | AP oLb
0nsgt 0N1T QAPF 0NUR ST INB+4 SET UP 108
Nn8? 0014 C6NA 1.AP HODD Y
0NBY 0018 9A2E 0044 Q14 INK+S
0088 001A L AP °

rene

FORwWARD PECORD COUNT 10 SKI1P

vZ-G/11

)

i oy

’(\ PAGFE

0002 UI/YL7T77
HACRO?2 (AP) ST= EX:8
0085 0017 °2a2D 0N04S
0086 O0NIR FKDP2Q 0039
0087 0019 NO3F
0NBAR 0NiA FBIF 0N3A
0N&9 ONIR F2n1 001N
0090 001C F61C 0N0O
0091
0n9? NOIN
0N9T 001N R226 0044
0094 O00fF R21C ON3R
009S (001F 3102 Q027
on9s
00g7 noro
0NGR 0020 NANO
0nNeg 0n2t Fenil popn
0100
0101 0o
0107 .

0103 0022 €701

01048 0023 QA21 00485
010S 0024 CeNQ

0106 0025 SATE Q0044
0107 002k r602

0108 0027 QAIB 0043
0109 (0N28 FBIO 0039
0110 0029 NO3F

0111 OQON22 FBNF 0034
0112 O002B Fe&0B 0020
01173 : .
01314 002f C6NY
0115 002N QA1S 004R
011/ (QNeF FBOA 00309
0117 Q002F 0Q3%F

0t1RA 0030 FBNY (N34
0119 (0n3y Fei1l 0ON20
nien -

CHECK

EPRNR

DONFE

el

HN=

3714
JST
DATA
JST
JMP
JMp

Fou
LOA
AND
JAN

Fau
HLT
JmP

EQu

I AM
STA
LAP
STA
AP
STA
JST
NATA
JST

JMP

LAP
ST A
J8T
NATA
JS7T
Jup

— LN P
exam, _£) F manacer 8 YcatToN

*% APPLICATIUM PROGRAM ##

TNue+s
10
N8
END?
CHECK
TaSK

$
I0OR+S
=:0200
DONFE

b3
§=1
3

1
INK+6
10009
IDB+S
utn
INB+4

- IO

108
END?
ERRNR

" NFwW

INB+y
Ins
108

CEND:
 ERROK

SKIP TWO RFCNRDS ON FILE ™nLD®

ABNOPMAL RFTURN, TEST FOR END OF FILF
G0 BACK TO RFAD ANOTHER RECORD

GET TuR CUMPLETION STATUS

TEST FOK FTLF MARKR FOUND QR FND 0OF FILF
YES, CNPY COMPLETE

ND, SNOMF OTHER FRRUR NCCURED

FRROR HAI T

COPY COMPLETF,~CLOSE FILES

COUNT = =i
SET HP IﬂB

" QPCUDPE FOR POSTTION ABSOLUTE FILFS

’

LOGICAL_UNIT OF FILE 'OLD'

CLNSE PEAD FTLF *0LO™

ABNORMAL RETURN
LOGICAI IINTT OF FILE "NEW®

SET 1P INRB :
CLOSF WRTITF Fllr PNEW®

ABNORMAL RFTURN

[NV S V&Z:D uopEUIOMIZIKI®IO)

GT-6/1X

PAGF

o2
0122

012%

01en

012s
0126
0127
.N12A

0120
0130
0131
0432

0non
‘0000

nnpt

uh3?
0033
0034
0n3s
004%A
0n37
po3e

onio
0nia
003R
non3c

003F

003F
0040
0041
onar

0043

0044
0048
0n4ask
0047
ONUR

0nygo
0044

03/11777
MACRQU? (A2) 5T= pY:S

Fun7 0N3A
roco
c4cy
ngng
cacs
roro
nIng
nooe
npno
ngng
neno

0030

0000
0000
nanyg
nn0o
000
a0n0
nony
NQUA
nonu
nono
00UA
NONO
no00

ERRNRS
WARNING

15226237 EYAMPIE FTLFE MANAGER APPLTCAITON

Khe=
DATF:

TIMF S

10k

BUFFER

ar APPLICATTUN PHNGERAM #%
JIST ENDY ALL DONE
TEXT 'MMDDLYY'

TEXT 'HHMMSS'

LPNOL

INPUT AUTPIT RLOCK (T0R)

NATA 0,0,0,0,=%,%=5,3=5,HUFEER, 0,0

Foit $+1
naTA 0 REQUTKFD FOR

_ 1R UNBLOCKED F.ILF
?;; 36,0 72 BRYTE RECORD BUFFER 3

9Z-S/11

RVIRVIZE f%;;w:3?

—
PAGF 0001

HACRO2 (A2) yrT= HN=
A

0135 000N

0136 '

0137

0138

0139

014n &
nyayy nong C:kMp
0142 000N nonog

0143 0005 npn3

0148 000k NOND

014S 000F no2y

0186 0ONOF ngnp

0147 0010 nong

0148 0n11 ngno

014e 0012 noong

R 001 nong

0151 : *
0152 0N2R” np0g OrBLUF
0157 - '
goon ERRORS

000N WARNING

NAM

FXTR
ExTw
FXTw
FXTR

Fun
RES
NMATA
RFS
DATA
PATA
PATA
NATA
DATA
RES

RES
FND

—

EYAMPIE FiLF MANARER APPLICATTON

*¢ FTLEL MANAGEw CIp 2+

CetFMO

FM:REA
FMsWRT
FMsPOS
FM2IFUN

3

59 0
P10
8,0
OCRUF
FM:RER
FMewgy
FMePQR
F™e:EUN
24,0

256,0

FILE MANAGFR CTH

PHYSTCAL I/0 LNGTICAL UNTT

OPFN/CLDSE BUFFER ADDRFSS

PEAD ENTRY POINT
WRITF FNTRY PQINT
POSITINN ENTRY POINT
FUNCTINN ENJRY POINT

OPEN/CLOSE BUFFER

e

e w UopFIoi My seqnd ey ‘

" tZ-S/11

PAGF

0156

0157
0154

0159

0ten
VRN

. N16?

016
0164
0165
01656

0167

016R
0169

0170

01T

0177
0173
0174
0178
M17h

0noo
onon

0nut

onon

onon

6ot
0no?
onya
onos
000A
0007

. Q0OpR

gnor
nnonh
QNOF
00OF
0ngA

0019

onte

03/117177
MACR()? (AP) ST= EY:S

noono
nong
OF OF
C»CL

ROROD

06000
nooo
CFrC
rarg
AUAQ
000V
001C
nuno

nyoo

ERKRORS
WARNING

/-\—Q'
’

19:36 47 EYAMPLE FILF MANARGER APPLTCAITON
KN= +% FILE DTh =+ :

®
* NnLD FILE DTR. NEVICE STATUS WORD IS SET TO ALLOw FTLF READ
x NR_POSTTION NOPFRATIQONS (NLY,
*

NAM DeFVO

FxTk CeFMQ
*x
DeFEMOY CHAN e

NATA CeFMg FILE MANAGEk CTB ADULRESS

RES 2,0

NATA tOFNF DEVICE STATUS. NOPD

TEYT ftFMNQ! DFVTCF NAME

RES 4,0 ' - o

DATA t00N0 FILE STATUS WORD

TEYT roLn ' FTLF NAMF

"RES 9,0 L e

DATA BRUF RLNCKING RUFFER ADNRESS °

RES 3,0 L

e _ 4 ,

BRUF RES 51042/2,0 RIUCKING RUFFFR, SJI?F = RLOCK ST/7F+2 RYTES

END '

|
|
;

8Z-S/II

——

PAGE 0001 0311777 @™N32 Exa 1E/LF manace @\ rcatTOoNn ™

MACRNOD (AP) $T= EX:S K0= x4 FILE DTH %=
0179 x ,
0180 2 NEW FILE DX, DEVICE SPECIFICATION WORD IS SET TO ALIOW .
0181 * ANY FILE OPERATINN, THE FILt 1S UNRLOCKED WITH 80 RYTE RFCNKNS,
0187 * N HLOCKING RUFFFR 1S PEQUTRFUD,
018% , *
0188 000N NAM DeFML
0188 EXTR CtFMQ
0184 2
0187 o000 DeFMY CHAN Xs:e _
Q188 0001 0000 _ NDATA C:FMO FILE MANAGER CIB ADDRESS
0189 Q00?2 NONO RES 2,0
0190 0Nn08 FFFF NATA +FFFF NDEVICE STATUS WORD
0191 0005 rofD : COTEXT ‘Fmung! DEVICF MAME
: 0N0A BORY
0192 0NO7 0000 RES 4,0 o
0193 Q00R NQOO0Q NATA :N000 FILE STATUS WORD
0194 000C CECS TEXT 'YNEW ' FILE NAME

000D D740 :

0NOF AQAQ
0195 O000F NO0YO RES 2,0
0196 0011 0050 DATA Bo RECO®PD STI¢F
0197 0012 00NO DATA 0 RLOCK SIZt (UNBLOCKEDN) ,
01IgR 0o0fT 0000 RES S,0 . '
0199 ONiIR 00ND NATA 0 BLOCKING BIFFER. ADNRESS (NONE REAUTRFD)
0200 0019 0000 Rt S 3,0 .
0”201 * '
0207 : FND

0000 FRKNKS
0000 WARNING

UCD SUIOUTRLARNCEILICD

SECTION 6

DEVICE-DEPENDENT CONSIDERATIONS _ .
. _ i

The device-dependent functions of IOX are the responsibility of the individual device
handlers. Initially IOX performs all parameter validation and error checking before
control is transferred to the appropriate device handler. The device handler will

- execute the data transfer and perform the device testing. Note that the bit con-
“figuration for each function (bits 3-0 of IOB word 5) is listed below.each operation
‘in parentheses. . - T : T e A : N

b’.l STANDARD CHARACTER DEVICE HANDLERS Co e

5.1.1 Line Printer (LP)

Write (formatted ASCII) Outputs up to 132 (or less if the printer is not
(0110) that wide) characters.
Write file mark Outputs /* in columns 1 and 2.
(», (1100)
All other function codes No I/0

.6.1.2 Teletype Keyboard (TK)

Write (formatted ASCII) Outputs up to 72 characters. Carriage return, line

(0110) feed are appended to the end of each record.

Write (unformatted) Outputs up to 65,535 characters exactly as_in the
(0101) user's buffer. ‘ R

Read (formatted ASCIIX o Inputs from the keyboard until a carriage return is
(0010) read. Standard character editing isractive.

Read (unformatted) Inputs from the keyboard until the number of char-
(0001) acters requested is input.

Write File Mark /* is output followed by carriage return, line ‘
(1100) : feed. ’

All other function codes No I/O

T I1/6-1

6.1.3 Teletype Console (TY) (implies tape reader or kcyboard for input, whichever i:.

1 ready)

Q (T»Write (formatted ASCII) Outputs up to 72 characters. Carriage return and

£ (0110) line feed are appended to the end of each record.

|) ’ .

i

e Write (unformatted) Outputs up to 65,535 characters exactly as in the

éi '

i (' (0101) user's buffer.
Read (formattéd ASCII) Inputs (from the tape reader, if ready, otherwise
(0010) from the keyboard) until a carriage return is read.

Standard character editing is active.

Read (unformatted) Inputs (from the tape reader, if ready:; otherwise
* (0001) _ * from the keyboard) until the requested number of
characters is input.
Write File mark : /* is output, followed by carriagé return, line
(1100) feed. : '
All other function codes No I1/0 p

‘.l(Teletype Reader (TR)
Read (formatted ASCII) Inputs up to 256 ASCII characters from the reader

{0010) (does NOT echo on printer) until a carriage return
is read. sStandard character editing is active.

(Read (unformatted) Inputs from the reader (does NOT echo on printer)
| _ Jool) until the number of characters requested is input.
l A
i , "ead (formatted binary) Reads one binary record and checks the checksum. If
! v .0011) a checksum error is detected, the error status will
| be set.

All other function codes No I1/0

1. Teletype Punch (TP) -

vrite (formatted ASCII) Outputs up to 256 ASCIT characters. Carriage return
.110) . line feeds are supplied at the end of each record.

Write kfotmatteq binary) Outputs up to 65,535 bytes in IOX binary format.
(0111) ‘ '

! Write (unformatted) Outputs up to 65,535 bytes exactly as in the user's

! (0101) buffer.
Wi ite KFile Mark Output:s: Haboul -Null-Null) on the paper tapee.

i . :

} Punch Leader Outputs 12 inches of leader.

i (1101) .

ﬂ All other function codes . No 1I/0

g

!

GL' o 11/6-2 Revised 3/77

(Ti.l.6 Caxd Reader (CR)

. Read (formatted ASCII)
(0010)

Read (formatted binary)
(0011)

All other function codes

v : \
6.1.7 High Speed Readar (PR)

Read (formatted ASCII)
(0010)

Read (unformatted)

b . (0001)
Read (formatted binary)
(0011)

All other function codes

6.1.8 High Speed Punch (PP)

(» Write (formatted'ASCII)
(0110)

Write (formatted binary)
"(0111) '

:

Write {unformatted).
(0101)

&’ Write File Mark
’ 5 (1100)

Punch Leader
(1101)

All other function codes

6.2.1 Line Printer (LPF)

Write (formatted ASCII)
(0110)

contain /* an end-of-file is assumed.

 Inputs from the reader until the number of characterd

" the checksum is in error the error status is set.

6.2 FORTRAN LIST DEVICE HANDLER

One card will be read. The maximum number of bytes
transferred is 80. 1f the first two columns contain
/* an end-of-file is assumed. ‘

To be specified . . . if the first two columns

No I/O

Inputs from the reader until a carriage return is
read. Standard character editing is.active.

requested is input.

Reads one binary record and checks the checksum. If

'

No 1/0

Outputs up to 256 ASCII characters. Carriage return
line feeds are supplied at the end of each record.

Outputs up to 65,535 bytes in the IOX binary format.
Outputs up to 65,535 bytes exactly as in the user's
buffer.

Outputs Rubout, Null, Null on the paper tape. -

Outputs 12 inches of leader.

No I/0

Outputs up to 132 characters, preceded by a carriage
control character ("1" = top of form, "0" = double
upspace, any other = single upspace). ’

11/6-3 Revised 11/76

6.2.2 Tcletype Keyboard (TKF)

| 6.

(

Write file mark
(1100)

All other function codes

Write (formatted ASCII)
(0110) '

Write (unformatted)
(0101)

Read (formatted ASCII)
(0010)

8 Read (unformatted)

(0101)

Write File Mark
(1100)

All other function codes

Compu‘torhnoma&im@%————

Outputs “/*" in columns 1 and 2.

No I/0

Outputs up to 72 characters, preceded by carriage
control character ("1" = top of form = 6 upspaces,
"0" = double upspace, any other = single upspace).

Outputs up to 65,535 characters exactly as in the
user's buffer.

Inputs from the keyboard until a carriage return is
read. Standard character editing is active.

Inputs from the’ keyboard until the number of char-
acters requested is input.

/* is odtput followed by carriage return, line feed.

No I/0

Teletype Console (TYF) (implies tape reader or keyboard for input, whichever is

ready)

Write (formatted ASCII)
(0110)

write (unformatted)

(0101}

(',Read (formatted ASCII)

(

2 (0010)

Read (unformatted)
(0001)

Write File mark
(1100)

All other function codes

Outputs up to 72 characters, preceded by carriage
control character ("1" = top of form = 6 upspaces,
“0" ='double upspace, any other = single upspace).

Outputs up to 65,535 characters exactly as in the
user's buffer.

Inputs (from the tape reader, if ready, otherwise
from the keyboard) until a carriage return is read.

Standard character editing is active.

Inputs (from the tape reader, if ready; otherwise
from the keyboard) until the requested number of
characters is input.

/* is output, followed by carriage return, line feed.

No I1/0

1I1/6-4 Revised 11/76

-

..

(6.3 MAGNETIC TAPE HANDLER

6.3.1 Magnetic Tape (MT)

write (formatted ASCII,
formatted binary, orx
unformatted)

(0110, 0111, or 0101)

Read (formatted ASCIIX,
formatted binary, or
unformatted)

(0010, 0011, or 0001)

Position Relative Records
(1010)

Position Relative Files
(1011)

Position Absolute Records
(1000)

Position Absolute Files
(1001)

Write File Mark
(1100)

All other operations

. negative count indicates backward skips.

Outputs 1 to 65535 bytes as a single record.

Inputs one record up to 65,535 bytes. If the
actual record is longer than the requested number
of bytes, only the requested number will be input.
If the actual record is shorter than the requested
input, only the actual number of bytes are input.
Up to ten retries will be made in the event of a
parity error before an error status is returned to
the caller. ;

Skips the number of records in the requested count.
A positive count indicates forward skips. A

If a file
mark is encountered during the positioning, the
operation is terminated, and the number of records
actually skipped (not including the file mark) is
returned along with an end-of-file status. The
tape is left positioned prior to the file mark (the
file mark is never actually crossed and movement is
effectively bounded within a pair of file marks).
If an end of tape or beginning of tape marker is
found during positioning, the operation is te
terminated with the actual count returned and an
end-of-device status.

Skips the number of file marks in the requested
count. A positive count indicates forward skips.
A negative count indicates backward skips. Upon
return, the tape is positioned past the last file
mark skipped. If an end-of-tape or beginning-of-
tape mark is encountered, the operation is termi-
nated with the actual skip count returned, along
with the appropriate end-of-device status.

The tape is first rewound to load point, then
skipped forward the number of records requested.
The requested count must be positive. If the count
is zero, the tape is left at load point.

The tape is first rewound, then skipped forward the
number of files requested. The requested count
must be positive. If the count is zero, the tape
is left at load point.

A write file mark function is issued to the tape
unit.
No 1/0

11/6-5 Revised 11/76

- 6.4 DISK, STORAGE MODULE DISK, AND FLOPPY DISK HANDLER

¢ .

6.4.1 Disk-(DK), storage Module Disk (SM), and Floppy Disk (FD)

Write Direct Access Writes to the disk the number of bytes specified by
(0100) the user in IOB Word 6, to the relative record
number specified in IOB Word 9. Upon completion of
' the operation, this record number is incremented.

Read Direct Access Reads from the disk the number of bytes specified
(0000) by the user in IOB Word 6, from the relative record
: o number specified in IOB Word 9. Upon completion of
the operation, this record number is incremented.

All other function codes No I/O0

NOTE

- The Floppy Disk Handler supports only one flgppy disk controller. The
_handler must not be used concurrently with a storage module disk controller.

{ The Storage Module Disk Handler supports only one storage module disk

controller. The handler must not be used concurrently with a floppy disk
controller.

6.4.2 Fortran Disk (DKF), Storage Module Disk (SMF), and Floppy Disk (FDF)

(M#rite (formatted ASCII, Outputs to the disk the number of bytes specified
formatted binary) by the user, to the relative record number main-
(0110 or 0111) tained in DIB Word 15. Upon completion of the

operation, this record number is incremented and
stored into IOB Word 9.

'Read {formatted ASCII, Inputs from the disk the number of bytes specified -
formatted binary) by the user, from the relative record number main-
- (0010 or 0011) tained in DIB Word 15. Upon completion of the

operation, this record number is incremented and
stored into IOB Word 9.

(’osition Relative Records

" The requested count (positive or negative) is added
(1010) '

to the current relative record number maintained in
DIB Word 15. (No actual I/0 occurs). The new
record number is also copied into IOB Word 9. If
the resultant relative record number is greater
than the highest sector number in the extent, the
highest sector number is stored, and the end-of-
device status is returned. If the resultant rela-
tive record number is negative, a zero (represent-
ing the first record of the extent) is stored, and
a beginning-of-device status is returned.

1 .
|
?ﬂ ((»') 11/6-6

Revised 11/76

o

[

PN

Position Absolute Records
(1000)

Write File Mark
(1100)

All other function codes

| Computerdutomation (g;aﬂs —_—

The requested count (which represents the actual
record number to be positioned to), is stored into
DIB Word 15 and IOB Word Y. No actual 1/0 occurs.
If the record number is greater than the highest
sector number in the extent, the highest sector
nunber is stored, and the end-of-device status is
returned. If the record number is neqgative, a zero
(representing the first record of the extent) is
stored, and a beginning-of-device status is re-
turned.

A two character record containing "/*" is written
into the record pointed to by the Relative Record
Count, then this count is incremented and copied
into IOB Word 9.

No I/O.

PMOTE

The Floppy Disk Handler supports only one floppy disk controller. The

. handler must not be used concurrently with a storage module disk controller.

The Storage Module Disk Handler supports only one storage module disk
controller. The handler must not be used concurrently with a floppy

disk controller.

MAGNETIC TAPE INTELLIGNET CARBLE (MTIC) HANDLER

Write forward
(ASCII or Binary)
(0110 or 0111)

Outputs 1 to €5,535 bytes as a single record.
Records containing a byte count less than the
minimum record length (DIB word 12) will have
additional characters appended to the record until
the byte cow.t is equal to the minimum record
length. Blanls are appended to ASCII records and
Zeros are appended to Binary records.)

During write operation error recovery,. the tape is
backspaced one record and another write is attemp-
ted. Up to ten retries are made in the event of a
rate error (processor workload error). Up to three
retries are made in the event of a hard error (tape
error); subsequently, a fixed length erase function
is used to erase the hard error region and three
more retries are executed. This erase procedure is
executed up to ten times, at which point an error
status is returned. (Note: Hard error recovery is
modified if the Control Edit function is on. Refer
to the Control Edit description.) ' &

Error counts for each type of recovery are returned
to DIB word 10.

11/6-7 Reviced 11774 }

5 Read (forward, reverse)
‘ (AsSCII, Binary),

4 Read Reverse

Y (0610, 0011, 0000)

Position Relative Records
(1010)

(
Position Relative Files
(1011)

Position Absolute, Records
- (1000)

‘Position Absolute Files
, (1001)

7

4

Write File Mark
(1100)

Control Edit
(1110)

e

~file marks).

Inputs one record up to 65,535 bytes. If the
actual record is longer than the requested number
of bytes, only the requested number is input. .If
the actual record is shorter than the requested
input, only the actual number of bytes are input.

Up to ten retries are made before an error status
is returned. :

Skips the number of records in the requested
count. A positive count indicates forward skips.
A negative count indicates backward skips. If a
file mark is encountered during the positioning,
the operation is terminated, and the number of
records actually skipped (not including the file
mark) is returned along with an end-of-file status.
The tape is left positioned prior to the file mark
(the file mark is never actually crossed and .
movement is effectively bounded within a pair of
;ﬁ an end of tape or beginning of
tape marker is found during positioning, the
operation is terminated with the actual count
returned with an end-of-device status.

Skips the number of file marks in the requested
count. A positive count indicates forward skips.

A negative count indicates backward skips. Upon
return, the tape is positioned past the last file
mark skipped. If an end-of-tape or beginning-of-
tape mark is encountered, the operation is termina-
ted with the actual skip count returned with the
appropriate end-of-device status.

The tape is first rewound to load point, then
skipped forward the number of records requested.
The requested count must be positive. If the count
is zero, the tape is left at load point. If the
count is minus one, the unit is placed offline.

The tape is first rewound, then skipped forward the
number of files requested. The requested count
must be positive. If the count is zero, the tape
is left at load point. If the count is minus one,
the unit is placed offline.

A write file mark function is issued to the tape
unit.

This function causes the formatter to implement

special head positioning to allow record updating.

11/6-8 Revised 1/77

ComputerAutomation (S;g\b —_—

N

NOTE

(: Coritrol Fdit needs to be used with

caution because of possible "tape

creep”. Refer to the Distributed

I/0 System User's Manual, Publication

No. 91-53629-00B2, for a more '

detailed explanation.
Control Edit requires five calls to 10:. Call one
positions the tape at the end of the record to be
updated. (An inter-record gap containing an era-
sure or noise record might be found between the end
of this record and the beginning of the next rec-
ord.) Call two sets the edit function on. Call
three performs a skip or read reverse function for
the current record. Call four performs a write
forward function for the new record. The byte
counts for the new and old records must be equal.
Call five set the edit function off.

Hard error recovery for write operations is mod-
ified when Control Edit is on. Up to three retries
are made in the event of a hard error; subse-

(_; quently, an error status is returned.

Control Erase This function performs a fixed length (filemark) or
((1111) variable length erase. The erase mode bit is set

: to override a write operation. This function can
' be used with Control Edit to erase a record in
place.

Control Erase requires three calls to I0:. Call
- one sets Control Erase on. Call two performs a

write or write file mark function. Call three sets
Control Erase off.

All other function codes ~ No I/O.

6.6 STANDARD CHARACTER EDITING

In order to facilitate input from an operator, IOX supports character editing on input

from all keyboard and paper tape deviqes. Three editing functions are supported by
I0X.

1. Backsapce. Character backspace is implemented using the back arrow (-—) char-
acter. One character is erased for each back arrow character input. ~ Since it is
. impossible to physically backsapce on a teletype, the back arrows are echoed on
the printer. Note that the character editing will take place over the length of
the entire physical record, not just until the number of currently valid char-
acters equals the requested count.

P
r

11/6-9 . - Revised 1/77

it Lok s

Since an end-of-file is defined as a Rubout, Null, Null on paper tape, and since it is
difficult to enter Rubout, Null, Null on a keyboard, IOX recognizes two different end-
of-file marks in the standard character editing mode for formatted ASCII input. These

fi}~
th%.}eginning of a record will cause an end-of-file to be recognized.

(

S

Ckx1ﬁuutetﬁuﬂnrnatku1 <§;2?Qs —

Iynore entire input. Occasionally the operator decides it would be easier to
start over rather than backspace and correct all of the errors on the current

input. 10X supports this by deleting the entire input and restarting whenever
the back arrow is typed followed immediately by a carriage return.

Ignore this character. This is useful when the input is from a paper tape which
was prepared off-line on a teletype. The punch on a teletype has a local back-
space feature, and the most common means of correcting a tape such that it prints
proprely when read off line is to backspace the punch over the offending char-
acter(s) and punch rubout(s) on top of them. IO0OX will read such tapes properly
by ignoring all rubouts. In addition, IOX will read such tapes properly by
ignoring all rubouts. In addition, IOX ignores all line feeds and all other
characters whose ASCII code is less than :0D (e.g., bell, leader).

marks are Rubout, Null, Null or /*. Either of these character sequences input at

Revised 1/77

SECTION 7

q : NON-STANDARD HANDLER DESCRIPTIONS

Some IOX handlers do not conform to the standard IOB, DIB, and CIB configurations
described in sections 2 and 4. This section describes the software tables and device-
dependent functions of these IOX handlers. (The A/D, D/A handler is described in
Publication No. 93325-00.) -

7.1 IEEE INTELLIGENT CABLE (IEC) HANDLER

he IEC Handler controls the operation of the” IEEE Intelligent Cable. The IEC Handler
I and the IEEE Intelligent Cable together conform to the requirements for an IEEE (STD

(488-1975) interface system controller. The IEEE Intelligent Cable provides the hard-
ware to drive the IEEE interface ‘bus and the firmware to conduct both the Source :
Handshake and the Acceptor Handshake. It also senses the state of the IEEE Interface
Bus. The IEC Handler implements the remaining IEC functions. The interxfaced devices
must have no controller capabilities.

(: efer to the Distributed I/O System User's Manual (revision B2 or higher) and IEEE
document 488-1975, "IEEE Standard Digital Interface for Programmable Instrumentation"
t for detailed IEEE function descriptions.

(.

1 Note that an arbitrary distinction is made between the terms "control" and "data"™ with
respect to IEC handler message transfers. "Control" refers to bytes which are sent

" over the interface bus while ATN is true. "Data" refers to bytes which are sent or

received over the interface bus while ATN is false.

o

11/7-1

7.1 IEC 108 Configuration -- 9 to 12 words.

Nt

| igure 7+1 illustrates the IOB configuration for the IEC Handler.

o INPUT/OUTPUT BLOCK
| FOR THE IEEE INTELLIGENT CABLE HANDLER

Standard :
Name 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0 word
0
IDT . 'STANDARD IOB . 1
h\ . l
N or CONFIGURATION 2
(=B :
CN 3
ILUN 4
| C B | & [no |srD pE- Jop or [n- | Res. [//]op op
 1sTA,I0P| g | R |I/0JLUN| O |VICE[TERM [TERN 22? CODE | MOD. 5
- Y | R COND. A
IRCNT USED FOR ALL REQUESTED FUNCTION CODES 6
IBUFF . USED FOR ALL REQUESTED FUNCTION CODES 7
ji%nw USED FOR ALL REQUESTED FUNCTION CODES 8)
IRCNTU USED IF OP CODE IS 00 OR Ol : 9
IBUFFU ' USED IF OP CODE IS 00 OR Ol : 10
ITIME USED IF OP CODE IS 00 OR 0l 11

Figure 7-1. IOB Configuration
IEC Handler

11/7-2

SR T

B e e L

ords 0 through 4 are the same as the standard I10B conflguratlon. Refer to Section 2
for detailed descriptions of these words.

~Word 5 Status, Function.Code. This word uses the following format:

15 14 13 12 11 10 9 8 7 & 6 4 3 2 1 0

o] | 7

WA AL AT ‘

Operation Modifier
Operation Code
Reserved

A — — — Internal Use Only
%; - : Unresponsive operation/ -
Termination condition
Device Unresponsive
Invalid LUN
No I/0 performed
Error
Busy

(;11 bit positions, with the exception of bits 9 and 8, are described in Section 2.

Bits 9 and 8. These bits can have two meanings, as follows:

1) Unresponsive operation. If an error has occurred (bit 14 set),
bits 9 and 8 indicate what operation was being performed when the
error occurred, as follows:

01 while taking control of the IEEE interface
10 while writing control
11 - while reading or writing data

2) Termination condition. For a read data operation, if bits 10 and
14 are zero, bits 9 and 8 indicate the reason for terminating the
read data operation:

00 END message detected
10 Byte count reached zero (abnormal return)

Bits 9 and 8 are zero when all other operations are terminated.

11/7-3

(LonﬁmuhﬁihﬂuxTuﬂixn (g;za& —

i e T SRR

Je(f:rmat of the IOB after the first six words is determined by bits 3-0 of word 5.

e S

e vic: on. ok Sadkaatins o

} ' ' , Format 1
i (Op Code Op Modifier
© (bits 3 and 2) (bits 1 and 0) Function
00 | 0ol Write control and read data to FEND.
00 11 Same as 0001 with parity standardization
- 01 00 Write control and write data.
: 01 01 Write control and write data with END.
0l 10 Write control only. .
01 11 : Write control and ignore data.
S 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o word
iﬁF DATA REQUEST COUNT . A 6
(- . —
DATA BUFFER ADDRESS 7
ACTUAL DATA TRANSFER COUNT 8
CONTROL REQUEST COUNT 9
(_' CONTROL BUFFER ADDRESS 10
(- ' TIME LIMIT 11

‘>rd{\

Data Request Count. This word is supplied by the user to specify the
‘}3 number of data bytes to be transferred. This word must not be zero.

‘)rd 7 Data Buffer Address. This word is supplied by the user to specify the
‘ starting address of the data buffer. Note that this address is always
a word address and that indirect addressing is not allowed.
rd 8 Actual Data Transfer Count. This word contains the number of data

bytes transferred when the operation is completed. This word is
returned by IOX at the completion of I1/0.

R .

| 11/7-4

i S

- A S AR B S AR

kN

o~

(

" Word 9

Woxrd 10

Word 11

Control Request Count. This word is supplied by the user to specify
the number of control bytes to be transferred. No control bytes are
transferred if this word is zero. '

Control Buffer Address. This word is supplied by the user to specify
the starting address of the control buffer. Note that this address is
always a word address and that indirect addressing is not allowed.

Time Limit. This word is supplied by the user to specify the operation
time limit. If negative, there is no time limit. If positive, a
"device unresponsive" error will occur if the read or write operation
has not completed within the number of clock ticks specified. 1I1f zero,
the operation time limit will equal the number of data bytes (IOB Word
6) modified by the delay modification instruction stored into CIB word
20. (Refer to the SIO: description in Section 3).

, . .
aafote that the specified number of clock ticks (word 11 positive) applies to data

WHtransfers only. The time limit for control transfers is always determined by the byte

count and CIB word 20.

Format 2

Op Code Op Modifier

(Bits 3 and 2) (bits 1 and 0)
10 00 Wait for SRQ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O word
CLOCK TICKS 6
NOT USED .7
NOT USED ' 8 ’

Word 6 Clock Ticks. This word is supplied by the user to specify the number

of clock ticks before SRQ is found. No time limit is applied if this

" word is negative. If positive, a "device unresponsive" error will
14

occur if SRQ is not found within the number of clock ticks specified.
This word may not bhe zero.

Words 7 and B are not used but must be provided.

11/7-5

6 Pkt o

S e

}-rd(”3 and 7 are not used but must be provided.

Cmpuw,uhmmﬁm@%————, —

Format 3
Op Code Op Modifier
{bits 3 and 2) (bits l'and 0)
{ 11 00 Get IEC status
11 10 Get parallel poll response
15 14 13 312 11 10 9 8 7 6 5 4 3 2 1 (¢] word
) NOT USED - 6
NOT USED o ' 7
BYTE REQUEST S | 8

o

.
/

;)x_ 3

Byte Request. This word is returned to the user by IOX. It contains
the requested byte (either status or parallel poll response). Fiqure
7-2 illustrates the IEC status byte configuration. The parallel poll
response will be returned in the low order byte.

13 12

11" 10 9 8 7 @ 65 4 3 2 1 0

1

i

1

- 15
([0 0O 0 0O 0 0 0 O

i1 [l | N S | ? | 1 1 1
. 1§ 4

(,

«

4
i

AAAAA%A

Not Data Accepted (SNDAC)
IEC Busy (SBSY)

Not Ready for Data (SNRF)
Service Request (SSRQ)
End (SEOI)

Remote Enable (SREN)
Interface Clear (SIFC)
Attention (SATN)

Figure 7-2. 1IEC Status Byte Configuration

11/7-6

il ks e E i

. et B

|

(T ' Format 4

" Op Code Op Modifier
(bits 3 and 2) (bits 1 and 0)

11 0l Set IEC control 1lines
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (0] word
NEW CONTROL LINE VALUES 6
NOT USED , ' 7
NOT USED -~ . 8
Word 6 New Control Line Values. This word is supplied by the user to

specify the new value of the IEEE control lines. Only lines ATN,
REN, IFC, EOI, and SRQ can be changed. A “Get IEC status"”

- operation should be performed prior to a “Set IEC control lines"
operation to ensure that the values of other lines are not changed

inadvertently. Figure 7-3 illustrates the IEC Set Mode Cammand
Word Format. '

Words 7 and 8 are not used but must be provided.

<15Mu121110!.7.5l3210

0O 0 0 0 01 0 O 0O 0 O
L 1 i :

' LA

{

Service Request (MSRQ)

& End or Identify (MEOI)

Remote Enable (MREN)
Interface Clear (MIFC)
Attention (MATN)

Figure 7-3. IEC Set Mode Command Word Format

The following function codes are undefined:

Op Code Op Modifier
00 00
00 10
10 10
10 11

{V 11 10

11/7-7

7(.‘;. 2

IEC DIB Configuration -- 11 words

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 word
(0
REGULAR DIB ?
. 7 CONF IGURATION _
6
_ . ’ 0 o 7
. | o : 8
c ’ -
N 0 : 9
c 10

Words 0-6 correspond to the regular DIB configuration described in Section 4. Words
7-10 are zeros.

(

7.1.3 IEC CIB Configuration -- 34 words

{ _ure 7-4 illustrates the IEC Controller Information Block.

©I1/7-8

~

CBOR

CSEL?

CSPLOP
CDEL
CINTR
CADDLY
CSTPCH
C10B
cop
CRCNT
CBUFF
CTCNT
CRCNTU
CDi B
CBUFFU
STATUS

CRTN

IEC CONTROLLER INFORMATION BLOCK

15 14 13 12 11 10 9 B8 7 6 5 4 3 2 1 0 word
TC FOR IE:SIO--BEGINNING OF RECORD FLAG 0
TC FOR IE:SIO--SEL DA,?7 1
asT INTQ: : 2
DATA § ' caLLm roc 3
DATA O TEMP 1 4
DATA © TEMP 2 5
DATA O ,TEMP 3 6 .,
DATA INTP: TASK ADDRESS ‘ 7
“DATA 6180 PRIORITY ' 8 ‘
DATA O ’ . ' 9
DATA $-10 10
. oata s-1 n
CURNENT PICO IDLE STATE-- INITIALIZE TO 0 12
WATCHDOG FLAG FOR IE:SIO , 13
™ 14
DATA IECR: 15 NOTE:
DATA TECW: 16 TC = Temp Cell
DATA O© 17
DATA IECP: 18
DATA 0 19
TC FOR IE:SIO--WATCHDOG TIMER INSTR. (NOP) : 20
TC FOR IE:SIO-- 1EC WORD INTERRUPT ADDR. 21
TC FOR IOX--TIME DELAY FROM IOB 22
TC FOR IOX--STOP CHARACTER 23
TC FOR IOX--IOB ADDR. 24
TC POR IOX SCHED--OP CODE AND STATUS (IOB wd 5) 25
TC FOR IOX SCHED—REQUESTED DATA COUNT (I0B wd 6) 23
TC POR 10X SCHED--DATA BUFFE« ADDR (IOB wd 7) 27
TC FOR YOX--ACTUAL DATA BYTE COUNT (IOB wd 8) | 28
TC FOR 10X SCHED--REQUESTED CONTROL COUNT (IOB wd 9) 29
_ TC FOR IOX SCHED--DIB ADDR AND BUSY FLAG |
TC FOR IOX SCHED--CONTROL BUFFER ADDR (IOB wd 10) N
TC FOR EOR:--STATUS . 32
TC FOR TE:SIO--RETURN ADDRESS _ 33

Figure 7-4. IEC CIB Configuration
I1/7-9

7.1.
erte Control and Read
Data to END
{0001)

Write Control and Read
Data to END with Parity
-Standardization

(0011)

Write Control and
(;E‘Write Data
~ {(0100)

& Write Control and Write
Data with END
(0101)

Write Control Only
_(0110)

4 1EC DcVice-Dcpcndcnt Considerat ions

The contents of the control buffer (I0OB word 10)
are sent with the source handshake while ATN is
true. The control buffer will usually contain
interface commands which address a peripheral as .
the talker. The IEC then initiates the acceptor
handshake. The peripheral will transmit data when
ATN is false. The IEC receives data until an END
message was received with a byte or the Auto I/0
byte count reached zero.

The handler will set bits 9 and 8 of I0OB word S to
the appropriate termination condition. The number
of bytes transferred is returned to IOB word 6.

A read data to END only operation is performed by
issuing requested function code 0001 with the
control request count (IOB word 9) equal to zero.

This function is the same as function code 0001;
during input, however, the I/0 Distributor performs
parity standardization on all data bytes.

The control buffer is transmitted using the source
handshake while ATN is true. The control bytes
will generally address a peripheral to accept
device programming. ATN is driven false following
termination of the control sequence, and the data
buffer is transmitted using the source handshake.

A write data only operation is performed by issuing
requested function code 0100 with the control
request count (IOB word 9) egual to zero.

This operation is the same as function code 0100
except that the last byte of data is sent with the
EOX control line true, indicating an FND message..

A write data with END only operation is performed
by issuing function code 0101 with the control
request count (IOB word 9) egual to zero.

The control buffer is transmitted using the source
handshake while ATN is true. The data request
count (IOB word 6) must not be set to zero. The
IEC will maintain control of the IEEE interface
after the transfer by setting NRFD true.

11/7-10

o CommutecAuriomastion (g:gQB _—

control sequence. Peripheral to peripheral data
transfers may occur with the IEC in this state. {
(Any read or write request following this functs3

2 Write Control and The control buffer is transmitted using the source
é; I Ignore Data handshake while ATN is true. ATN is driven false
?{ i (0111) and remains false following termination of the

)

-
will be prefaced with a Take Control Synchronously'i
operation so the IEC will regain control of the
IEEE interface.

Wait for SRQ The IEC is instructed to wait until the IEEE
. ~ (1000) control line SRQ is found true. The handler will
. return immediately if SRQ is true when the reguest
is made.
Get IEC Status The IEC status is returned to IOB word 8.
(1100) '
o Set IEC Control Lines IEEE control lines ATN, REN, IFC, EOI, and SRQ
E?\’ (1101) assume the values contained in IOB word 6. This
(function allows the transmission of interface
: messages which involve these control lines, such as
"interface clear" and "remote enable". Note that
t the handler changes the values of all these lines
{ when performing other operations.
Get Parallel Poll Response An IDY remote message is sent for parallel polling.
(1110) When the IEC is ready, the handler returns the

result of the parallel poll to IOB word 8.

o All Other Function Codes No 1/0

j . ‘ I1/7-11

\ Crsmngmsiortmiameion B
(@7 Wil i 2. 4
== 0 Naked Mini. Division N Vi

| . S'AB/DB1OS :
1G5 VON KARMAN . IRVING, CALIFORIIA 92664 ‘ . November‘ 19 > 19 7 5

SUBJECT: THE RTX SCHEDULER

In a typical application system based on LSI-Series
computers, several independent external activities

must be processed in the same time frame (for instance,
a system may perform a test operation while the

line printer is printing the results of the previous test, ST ’*g;ﬁ
and the teletype is inputting parameters for the next Tfjé%__“{:%
test). :) o BT N D

. . n//,:’, v ¥ >4

This implies that the system will be able to recognize

. events (probably via interrupts) and schedule appropriate
. Gw service activities to process the events in a timely fashion.
(Generally, the most effective mechanism to accomplish this
recognition and scheduling process is the Real-Time

Executive (RTX). TAB/DB1Ou4 (TRN 93300-03-01-XX) discusses

the recognition process and the insertion of new activities
into the stream of ongoing activities (via INTQ:).

This TAB discusses the actual scheduling mechanism,SCHED:.

The function of SCHED: can be described quite simply:

If there are no activities to be performed wait until there

is one; if there are, merge'the list of new activities (created
‘by INTQ:) into the list of ong01ng activities, according to
priority,and cause the hlohest priority activity to be

executed. . . y

e .
‘\

The term "activity" 1s nebulous; describing a whole class of

"things to be processed," including interrupt service
subroutines, Auto I/0,.DMA, and tasks. The term "task"

gw' is much more definable, and in the context of RTX means

(@ precisely: "A program or set ‘of programs which operates
torperform a specific function within the Real-Time -application.”

A discussion of the difference between the two terms

will clarify the operation of the system. When a user
starts the execution of a task (by a call to BEGIN:

or INTQ:), he is starting one or more activities, depending
on the operation of the task.

For example:

1. A task 1is currently executing--this is one ‘
activity. Somewhere along the line an interrupt
occurs, and the executicn of the activities
required to service the interrupt temporarily
suspends the current task--and terminates the

' , current activity. When the task is resumed, it will

6- still be the same task, but of course, it is

now a different activity.)

TRN 933N0~-N2-N1-N1

- 'h/ \
(;\/"P""'\ll\"'l (l[-\’l /1'- \‘-\-".-' AN ;\)‘l’]:]oj:'J‘l.‘
/, \Q Seenls '/\. Ako.4-4/4~ 14L4\\~l,|lla.lal~1- ‘.{
L /
\ :
\ Naked Mini. Division "
I'AR/DB10S
WEHT VON KARMAL . IRVING, CALIFORMIA 97664 November 19, 1875

—

T I O N A R AW I R S O R BN

e

THE RTX SCHEDULER (continued)

2. A task--one activity--calls DELAY:, suspending
the task, and terminating the activity. There is
still an activity associated with the task

" though--the "active" delay.

Some activities such as an interrupt service subroutine,
occur without intervention by RTX. Other activities, like
those described above, must each be regarded by RTX as an
entity, and kept track of in some manner.

The RTX work area contalns a user—deflned number of S5-~word

‘blocks (see section 2 of the RTX User's Manual). One of

these blocks is used to record each activity known to the
system. The table in the RTX manual shows the number of
work area blocks allocated for each call for RTX service.
This number is also the net gain or loss-in number of
activities in the system.

The user's initial call to RTX: causes his defined work _
area to be broken up into 5-word blocks. €Each of these blocks
contains, in the first word (word 0), a pointer to the next

block, thus forming a "linked list" of available blocks-- the

FREE 1list. A pointer to the first of these available blocks 1is
maintained at the location called FREE (at 7RF--see section

4 of the RTX User's Manual). One of these blocks is immediately

allocated to contain 1nformat10n about the current activity--

. the initialization task. (This block is placed at the top
" of the READY 1list, see below.)

Besides the FREE list,.RTX maintains a number of other

lists. This TAB is concerned with only two of them, the READY
list and the FIFO list. The READY 1list (@RF) contains blocks,
linked in priority order, describing activities that are
"ready" for service by the processor. The first of these (the
“top" block) is the act1v1ty currently being processed, and

is always the highest priority activity on the list. If there
are no blocks on the READY list, this implies that--as far as
RTX is concerned--the processor is idle (actually it is

always doing something--note -the "wait loop" in the attached
flow chart). .

Since these lists are linked, they must be maintained carefully.
If an RTX service routine were in the process of changing
the links in one of these lists, and an interrupt ocurred,
the interrupt service activities could try to use the same list,

- which would be a disaster.

It is the responsibility of INTQ: to prevent this from
happening. This imposes two requirements: if an RTX

s N THCHNLCAL ALYy oenrtorn
, g) Y U BULLL 1
!(A\ z\.tM)CJLLJ:uL\FLliw:uauhydyJD "‘
\'_ /// \
\aked Mini, Divis
L Nakea Mini, Division TAR/DB10S
18G5 1 VON KARMAR . IRVINE, CALIFCIRINIA 92664 . . NOVQ!ﬂbQI‘ 19 i 1975

N

[}
- service routine is Jnterrupted it must be completed before

THE RTX SCHEDULER (continued)

any further service is performed and INTQ: must not alter
the linkage in any list that is also altered in a routine that
may have been interrupted.

Therefore, a special list is used for the "handshake" between
INTQ: and SCHED:-- the FIFO list (1RF,. the name means
nothing). This list is maintained very carefully. INTQ:
puts any new activities to be queued at .the top of this 1list,
and SCHED: carefully removes these, one at a time, and places
them in the READY list in priority order. Once all of

"these have been placed, the scheduler is ready to set up

the highest priority activity to be processed. - (Once it has
done this, it must check the FIFO list once more to see if
an interrupt ocurred during the schedullng process)

Each of the blocks on the READY and FIFO lists has the following

format:
pointer O-A I poiﬁter
from previous PRIO [_ to next block
block or head P ‘ or zero if
- of 1list no more
' A
. X
Where:) ~: 4
’ PRIO. . is the priority of the activity (exclusive

or'd with :1000 and shifted left three bits).
Bit ,2 of this word contains EIN indicator
from processor status--always enabled. Bit 1
contains the byte/word 1ndlcator Bit @ contains
the OV indicator.
is the contents of the program counter for
the activity (i.e., where it is to be entered).
A is the A register contents for the activity.
X is the X register contents for the activity.

Let's go through an example of the operafion of the scheduler.
The system is initialized by the following call:

WKAREA RES 25,8 Reserve 5 five-word blocks
MAIN JST RTX: Initialize RTX . .
’ DATA 5 ... using 5 blocks
DATA WKAREA ... a8llocdted here
HLT Return to here 1if

1)we run out of blocks, or
2)an RTX service other than INTQ:
is called when

8 N AN TET) RPN [P UL
\ (I‘~ AR ’)/.\'\1’1\ JI"J 1'.."‘-’.;‘\ -Jll.‘-.-.)l'.l;l‘l:}“)lJ !] ‘J ’
\
\) Naked Mini. Division AL /DBLOS
(‘ 1IB6S1 VON KARMAN . IRVINL, CALIFORIIA 82064 November‘ 19 b4 1975

BAAN P MO BI B e Vs P BT Nt e ———_—

]

THE RTX SCHEDULER (continued)

B e T e e

_there is no current activity
at the top of the READY
list.

. Return to here to continue
initialization

After completion of this call, the work area has the following
contents: e

R 5] ’
Ei" READY 8172 | 8! (initialization priority)
(' MAIN+Y4
{ ' rev ("rev" is the RTX revision
: o rev number, in ASCII)
g
(-‘ FIFO ,
' o o— o T
FREE B g g 6 §
\ - R
) g _) g l
g g) g i
) g 4]] .

RTEIN ,,_\ FLLCHNTCHAL ity ot

7,0t A-":','-_\:' ('] 1o 'r ~' u/-\ AN Rt HUI,] .':.l' | ': H

([(; el e N JB '
Z,

_I\ i VIL N} ““\J’Lt.n.\ll;n-)r

<-as 0\ Naked Mini. Division N
_ AB/DB10S
11651 VON KARMAN » IRVINE, CALIFORNIA 92064 . November lg’ 1975
e e ISR |

O AR R A SRR B AR 45 1

i e st

e

Mot W e st ————

THE RTX SCHEDULER (continued)

Now supposé the next thing in the initialization task,(at‘
" MAIN +4) is the following call to BEGIN:

JST BEGIN: Queue a task
DATA TASK1 ... to be entered here
DATA 1¢¢ ... at this priority

and return to here

After completion of this call, the work area has the following
contents:

e BN s I S R
READY - |8172 | @ 160 16|
MAIN+7 TASK1 .
_ _rev - [rev | (contents of A & X
x prev 1| '%é;""_? haven't changed)

I

FIFO o

| e——> e e :
FREE ’ g-] [
4} -9]
])]
o e | e

—— el e e . C e mme t e Am e b ce et b e d e [P —— -

f“f/\ | TLCIIICAL AP earton
g A e W L (AT AR BULLI
\} BV, .‘H l.- dbg"-,/’\J.lL i b J:.’;(L,‘:;,Ll
, \! l \ ' ‘
.) Naked iiini. Division o A /DBL0S
‘ 18651 VON KARMAN . IRVINE, CALIFORNIA 92664 . : November' 13 ’ 1975
| - - . ’ e e e
i (. THE RTX SCHEDULER

- The highest priority activity on the READY 1list is st4ll
the initialization task. Next (at MAIN +7) it does:

JST END: 7 Terminate initialization

The work area now looks like this:

v |
L ; g
| ' READY 166 (8
. G@ o « | TASK1
JS ' rev
' rev. H
g .
FIFO
| (_ h— —> ‘ :§ h ._"j I .
| ~ FREE ¢ . @ 8172 gl
(« g g _ _MAIN+7__|
| g : g rev 1
R RS g ..rev

Note that TASK1l is now the hlghest priority activity, and
will be executed next. Note also that blocks are returned to
the end of the FREE list to allow the user to examine the

" history of the system if something goes wrong.

Therefore, we will begin executing at TASK1l. Now suppose,
for purposes of illustration, that the appllcatlon program
has a service subroutine for the console interrupt as follows:

ABS CONINT interrupt location for console int

‘ JST #$+1 call service subroutine

| ‘ T DATA CONIS at this location

|- . REL 8 relocatable portion
: CONIS ENT save P here
ﬂ ' CID © turn off interrupt or switch bounces
| ((' JST INTQ: call INTQ:

DATA $,v,0,8 ...5ce TAB DB/10u
DATA CON'THK L2700

-1 AI1estten F Iy e - st d e adr et AN

—— e S Y et

: ,,.)\/ N ‘ | TECEHUTC/ Y AP ey e
3 PR |I'\ " s '\ -" 2 Xl . o \ru :‘; LR TG

z‘ . \ Q "v‘gl ;‘ /:‘_L -.(\1::/ \P/J\(- ’h?«db‘huu’ PR

‘ ', '.: - "/

S \3 Naied Mini. Division FAL/DBLOS

“ (16HT VON KARMAN . IRVINE, CALIFORNIA 92664 ‘ . November 19 ’ 1875

}’ - I ~—

THE RTX SCHEDULER

_ . .
DATA vala,valx ...pass these values in A & X
DATA CONIS ...address of entry point

Now suppose that after seven instructions of TASK1l, someone
pushes the console interrupt switch. The interrupt service
subroutine above will run, and call INTQ:, which will suspend
the current activity (at TASK1 +7) and queue the console service
task.

When INTQ: calls the scheduler, the work area looks like
this: .. .

.

o —> g
READY 186 Wxx (A, X, & status have changed,
. TASK1+7 | -and TASK1 has been suspended)
A contents |
<‘ . | X contents
(> g | ‘
FIFO 268 | 8| (CONTSK has been queued)
. - ~|__CONTSK - | |
. , : . vala |
- . vailx]
< "*_* o i =1 > e———-;éi ¢ o
" FREE g) 8172 |0
g . g __MAIN+7 ,’
4]] rev :
T | v

s

N

—
-

'

,-"\/‘\
, @

\f ”/

‘J

N Nv‘rr\ It >/\ v,\
BANE b

~
TR YT AN

‘. ..qu.bvu[:".v"“ CUNEIEY

,\
\\9 Na \ed Viini. Division

Voud i_ll';J

THCHEILCAL

TR E

PULLEY S

TAB/ DB105S

ran

10651 VO KARKAN . IRVINE, CALIFORNIA 92664 November 19, 1875
(THE RTX SCHEDULER
The scheduler will now merge the FIFO list into the ready
list, leaving the work area as follows:
o 3 |
READY . 206 !@ 1049 XX (the new task, CONTSK,
CONTSK TASK1+7 is higher in priority
-vala A contents than TASK1)
valx X contents o ’
g
FIFO
FREE - g g { 8172 | o
6 g . MAIN+7
| ¢ rev
' ¢ | B rev
Now there are two activities on the READY list. The higher

priority of the two, CONTSK, will be executed first
TASK1 +7, will be executed when CONTSK

other activity,

The

suspends or terminates (unless something else of a hlgher

priority comes in first).

MM 2Y Fa e e NaYal

Fralal Fatn

m 0N

1 ¢

c

(ﬁ SCHED: A)

enable inter-
[Fupts & pwr fl

N

set word mode

I

(

<7 _FIFO list
. 5

AL

v
/////;ny

tasks on

move top task
from FIFO list
to prio order
on READY 1list

any
tasks on

"wait loop"

READY 1list :

restore status/|
iA, X for top
ltask on READY
list, & place
P at SCHED:

N4

no

| @ (R‘FN SCHEDY)

any ‘
tasks on es
FIFO list 2 ‘
2

flow of SCHED:
| ~RTX task

scheduling
routine

[Iah R N} N NN A A ~ o~ ~ o~ - -~

.

(@

.

“ KUNDENINF GRMATION

CI8 NO 1128 a Real Time Cxecutive (RTX) Vercion F2

Mit dieser Information erhalten Sie die neue Version F2 von RiX.

Es enthdlt einen RTX Basis File Manager fir die Handhabung von
Files im Standard Computer Automation 0S File Format (siehe Section
5) und ein RTX File Label Utility.

Der File Manager, eingegliedert im 10X, enth#lt eine Directory und

File Verwaltung fiir sequentielle oder random disc storage devices,

welche dem Anwenderprogramm erlauben, mit Hilfe von Namen mit Daten
Files zu korrespondieren. '

Zusdtzlich enth< der File Manager ein automatisches Blocken und
Nichtblocken von Datens&tzen mit Zugriff in Speicherreihenfolge.

Das RTX Label Utility ist Bin‘binéres "stand-alone" Programm zum

Labeln von dateiorientierten Gerdten. Das Lsbeln mit diesen Utility
ist compartibel zum Computer Automation 0S Datei Format.

Folgende Dokumentation und Lochstreifen sind beigefiigt:
Dokumentation : RTX Users Manual Version F2

Lochstreifen : LSI 2 RTX/IOX Sequent 1 & 2
93300 - 30 F2 / 31 F2
LSI 2 RTX File Label Utility
93324 - 4O A1
LSI - 2 RTX Demo
93300 - 33 En

Technischer Support
Rohde

