- NAKED MiNI.Division

18651 Von Karman, Irvine, California 92715
Telephone: (714) 833-8830 TWX: 910-595-1767

FORTRAN IV REFERENCE MANUAL
90-96510-00B0 ' April 1976

PRINTED IN THE US.A.

Revisgion

A0
Al-A6

BO

REVISION HISTORY

DescriEtion

Original issue

Various minor updates

" New printing. Reflects capability of

running Fortran on LSI-3/05

Date

April 1976

stf g s g

COMPUTER AUTOMATION, INC.

TABLE OF CONTENTS
Chapter
INTRODUCTION

Chapter 1. PROGRAMS

KINDS OF PROGRAMS

CODING FORM.

COMMENTS
CONDITIONAL COMPILATION .
CHARACTER SET

SAMPLE PROGRAM.

Chapter 2. ELEMENTS OF EXPRESSIONS
NAMES

DATA TYPES
Integer
Real e
Double Precision
Complex.
Logical
Hexadecimal .
Hollerith ..
Alphanumeric String .
Boolean .

AUTOMATIC DOUBLE PRECISION .

VARIABLES
Arrays ..
Array Elements .
Subscripts

FUNCTIONS .

iii

Page

NN N (3] DN DN DNDNDNNNDN
1T DWW NN

© o oo ®

[3-]
=]

oo}

TABLE OF CONTENTS (Cont'd)
Chapter
Chapter 3. EXPRESSIONS AND ASSIGNMENTS
ARITHMETIC EXPRESSIONS.
Evaluation Hierarchy.
Mixed Mode Expressions .
Arithmetic Overflow .

RELATIONAL EXPRESSIONS

LOGICAL EXPRESSIONS
Evaluation Hierarchy. K

ASSIGNMENT STATEMENT .

' Chapter 4. CONTROL STATEMENTS
STATEMENT LABELS.

GO TO STATEMENTS Coe e
Unconditional GO TO Statement .
Computed GO TO Statement
Assigned GO TO Statement .

ASSIGN STATEMENT .
IF STATEMENTS .

Logical IF Statement . .
Arithmetic IF Statement

. DO STATEMENT .

DO Loop Ranges
CONTINUE STATEMENT
CALL STATEMENT .
RETURN STATEMENT
PAUSE STATEMENT
STOP STATEMENT .

END STATEMENT

iv

p A
COMPUTER AUTOMATION, INC. :— ————\]

Page

W W L W
DN~ =

>

LY N S Y

-10

.10
.11
.12
.12
.13

.13

L)
i

DO DN b=t

®

i o SR
1

. TABLE OF CONTENTS (Cont'd)
Chapter
Chapter 5. [INPUT/OUTPUT

INPUT/OUTPUT LISTS .
Simple Lists .
DO Controlled Lists

FREE FORM INPUT/OUTPUT
OUTPUT Statement .
INPUT Statement .

UNIT ASSIGNMENTS .

FORMATTED (ASCII) READ AND WRITE STATEMENTS.
UNFORMATTED (BINARY) READ AND WRITE STATEMENTS
END= AND ERR= OPTIONS .

INTERNAL DATA CONVERSION
DECODE Statement .
ENCODE Statement .

AUXILIARY INPUT/OUTPUT STATEMENTS.
REWIND Statement .
BACKSPACE Statement .
END FILE Statement .

FORMAT STATEMENT
I Format (Integer) . e
F Format (Fixed Decimal Pomt) ‘ .o
E Format (Floating Point with E Exponent)
D Format (Floating Point with D Exponent)
G Format (General) .. .
P Specification (Scale Factor or Power of 10).
$ Specification (Preceding Dollar Sign).
* Specification (Asterisk Fill) '
Numeric Input Fields
Comma Field Termination
Z Format (Hexadecimal) .
L Format (Logical)
A Format (Alphanumeric)
H Format (Hollerith).
' Format (Hollerith) .
X Specification (Skip) .
T Specification (Tab)
/ Specification (New Record)

o v an

(S 05 BS) S,

L
(S IS, IS) By RS B 5)) RS JEES L B) BB RER) B3) B2 B O IS R) B) B) |

COMPUTER AUTOMATION. INC. '=é' —_—

Page

o
=N

. 95.11

.12
.14
.14

.15
.15
.15
.16

.16
.18
.19
.21
.22
.22
.24
.26
.27
.28
.30
.32
.33
.34
.35
.36
.37
.38
.38

s e

S

b g

TABLE OF CONTENTS (Cont'd)
Chapter
Parenthesized Format Groups.
FORMAT and List Interfacing.
FORMATs Stores In Arrays

CARRIAGE CONTROL FOR PRINTING .

Chapter 6. DECLARATION STATEMENTS
CLASSIFICATION OF NAMES .
Explicit Declarations .
Implicit Declarations .

Conflicting and Redundant Declaratlons

DIMENSION STATEMENT .
Array Storage .

TYPE STATEMENTS
ALLOCATION OF VARIABLES .
COMMON STATEMENT .
Blank COMMON .
Labeled COMMON
EQUIVALENCE STATEMENT.,
INTERACTIONS OF COMMON AND EQUIVALENCE
EXTERNAL STATEMENT
DATA STATEMENT.

DATA Variable List
DATA Constant List .

Chapter 7. PROGRAMS AND SUBPROCGRAMS

MAIN PROGRAMS
TASKS

SUBPROGRAMS . .
FUNCTION Subprograms ..
SUBROUTINE Subprograms .
Statement Functions

vi

COMPUTER AUTOMATION. INC.

o

(=2}

- 3 a3
B W o

Page

. 5.39

.40

.43

[$2]

[o R« B> B2
N DN

[=2B=p)
= W

[=2)
D

. 6.10

.16

i R4 T T e B S T

-

TABLE OF CONTENTS (Cont'd)

Chapter

BLOCK DATA Subprograms
ARGUMENTS AND DUMMIES - .

Correspondence .

Dummy Arrays .

Adjustable Dimensions . .

Dummy Subprograms
LIBRARY FUNCTIONS

Intrinsic and Basic External Functlons .

Table of Library Functions.

Boolean Operations. .

Chapter 8. IN-LINE ASSEMBLY LANGUAGE

LINE FORMAT .
LABEL FIELD
OP-CODE FIELD .
KINDS OF OPERANDS
OP-CODE CLASSES

Class 1. Memory Reference . .
Double Word Memory Reference

Class 2.

Class 3. Immediate .
Class 4. Conditional Jump

Class 5. Shift .

Class 6. Register Change and Control

Class 7. SCM and SCMB

Class 8. BAO, BXO, AND SIN. .

Class 9. DATA, BAC .

Class 10. RES

Class 11. TEXT

Class 12. SET

Class 13. IFT, IFF .
FLOATING POINT INTERPRETER
CONDITIONAL ASSEMBLY

MISCELLANEOUS .

vii

COMPUTER AUTOMATION. INC.

Page

~ ~3 =3 ~3 3
- - 00 DD
— o

.11
.13
.13

=3 =3

00 00 00 00 OO0 00 0O 00 00 OO 0O GO 0O OO
O ¢ ¢ 00 00 00 00 ~3 ~1 ~3 D D D U

o (o o]
- [
w -

(o <]
Pt
>

-

TABLE OF CONTENTS (Cont'd)
Chapter
Chapter 9. COMPILER OPTIONS
SUMMARY .
ELIST Option
LOBJ Option. .
NBINARY Option
XON Option .
ADP Option
RSP Option
NSP Option
RTX Option .
TRACE Option .
ANSI Option .
AUTOMATIC DOUBLE PRECISION .
REAL TIME

RUN TIME TRACE .

Appendix A. STATEMENT ORDERING AND SIZE RESTRICTIONS

STATEMENT ORDERING

OBJECT PROGRAM SIZE RESTRICTIONS

Appendix B. COMPILER LISTINGS AND DIAGNOSTICS

COMPILER LISTINGS .

' COMPILER DIAGNOSTICS .

Appendix C. INTERNAL DATA FORMATS AND ASCII CODES

Appendix D. ANSI COMPATIBILITY

ADDITIONAL FEATURES
General Features
Data and Expressions
Statements. .
Syntax Relaxations.

viii

Page

O W WWWY WL O W
;\DL\DNNHD—‘D—‘O—‘)—I)—"—‘

o

Couuog
Cm W

Revised March 197¢

e i

s A appomen

o ode

W W
[ORI

TABLE OF CONTENTS (Cont'd)

List of Illustrations

Sample Program . .
Sample Compiler Listing .
Sample Diagnostic Listing

List of Tables

Permissible types in mixed assignments. .
Permissible A&'gument/Dummy Correspondence
Library Functions .

Permissible Operands for each Op-code Class.

Floating Point Interpreter Op-codes
Statements and Ordering .
ASCII Character Codes

ix

COMPUTER AUTOMATION. INc. b= B ———

ww -
S

Q> ®® 1w

Page

[o]

Page

Pt b et w3
N O

w N

INTRODUCTION

FORTRAN is an algebraic language designed primarily for use in scientific and
mathematical applications. The name stands for FORmula TRANslation, because
~many of the statements are represented as formulas. For example, the formula

X =8.1+Y - a'Y?/Beta
can be written in FORTRAN as
X=8.1+Y - A*¥Y**2/BETA

The first FORTRAN was developed in the middle 1950's. It was soon followed by

a version called FORTRAN II, in which several new features were added (notably
user subroutines and common storage). FORTRAN IV appeared in the early 1960's,
incorporating more new features, such as logical expressions, type declarations,
double precision and complex data, data initialization, and labeled COMMON. As
various manufacturers and universities continued to add other new features, a
committee of the American Standards Association (now called the American National
Standards Institute, ANSI) was formed to document "standard" FORTRAN. They
documented two: Basic FORTRAN, which was similar to FORTRAN II; and FORTRAN,
which was essentially FORTRAN IV.

This standard was intended to function, and has functioned, as a minimum acceptable
standard. Virtually every FORTRAN IV in existence includes additional features
beyond the standard.

Computer Automation FORTRAN IV contains ANSI FORTRAN as a subset. Some of the
additional features are:

» In-line assembly language (particularly for real time)

e Simplified input/output (no FORMAT statement needed)
e Generalized subscripts (any integer expression)

e Alphanumeric strings

o Memory-to-memory data conversion (ENCODE/DECODE)
e End-of-file processing (END= option)

e Automatic double precision

~ A more complete list of extensions to ANSI FORTRAN may be found in appendix D.

.

COMPUTER AUTOMATION. INC. '| —

st g

"

vThe FORTRAN compiler accepts programs written in the FORTRAN IV language (called
- source programs) and translates them into machine language programs (called objcct

programs), meanwhile producing a simulated assembly language listing of the object
program (called an object listing) and diagnostics for any errors detected in the use

of the FORTRAN IV language. The diagnostics and object listing in Computer Automation
FORTRAN IV are designed to be readable and understandable, to assist in understanding
what thc compiler has done.

The Computer Automation FORTRAN IV compiler runs on a large LSI machinc operating

with a Computer Automation Operating System, but is optimized to produce small object

programs that can run on small machines with RTX (the Computer Automation Real Time
Executive). There is also a library of subroutines to provide support operations, such
as input/output and floating point computations, as well as mathematical functions, such
as logarithm and square root. The library is as modular as possible, so that only those
portions actually needed will be loaded with the object program.

This reference manual describes the Computer Automation FORTRAN IV language and
makes it possible to write FORTRAN programs. Further information on the use of the
compiler, the run time library, linking, and system generation may be found in the
FORTRAN IV Operations Manual (96510-01).

Xi

COmpubrAutom-ﬂonm-———-

R R

Fhsite] * B s st

1o qec

COMPUTER AUTOMATION, INC.

CHAPTER 1
PROGRAMS

KINDS OF PROGRAMS

A FORTRAN program may be one of three things: a main program, a subprogram,
or a task. When loaded into memory for execution, there must be one and only one
main program. Execution begins at the first statement of the main program or task.
There may be any number (including none) of subprograms. A subprogram, which
may be either a SUBROUTINE or FUNCTION, always has a name with which it is
called by other programs. A task also has a name, but it is not called in the usual
way; it is connected to a real time interrupt. Subprograms and tasks are described
in subsequent chapters. All programs end with an END line.

CODING FORM

Lines of FORTRAN source language are prépared in 80-character, "card image"
form. Each line has four fields:

Columns 1-5 Label. A statement may have a label in order to be
~ referenced by other statements. A label is a decimal
integer in which all blanks and leading zeros are
ignored. Chapter 4 describes the use of labels.

Column 6 Continuation mark. Normally this column contains a
- blank (or zero). If a statement needs to be continued
on more than one line, the succeeding lines must have
some character other than blank or zero in this position.
Digits appearing in columns 1-5 of a continuation line
are ignored. Any number of continuation lines may be
used.

Columns 7-72 Statement. The FORTRAN statement may begin anywhere
in this field and may have blanks interspersed for reada-
bility (except within alphanumeric fields; see chapter 2).

Columns 73-80 Identification. These columns are ignored by the compiler
and may be used for program/subprogram names and/or

sequence numbers.-

If the source lines are prepared on a medium other than cards, it is not necessary that
all 80 columns appear. The line may be terminated at any point by a carriage return.

Figure 1-1 illustrates the use of these fields in preparing source language input.

1.1

COMPUTER AUTOMATION, INC. |

COMPUTER AUTOMATION IC.

e NARED MING ompomy
18851 donXo mon vene. (ol G2004

FORTRAN CODING FORM

tes 719 832 3830 w90 WS IR
PROGRAM OIJAXEAT)C! ZOLUTION) GRAPHIC Slolg |l L |T | L PAGE [OF [
PROGRAMMER POTTE)Q PUNCH oK | ok [ZERD EYE|E Y |ONE DATE -7 U
3 — C_FOR COMMENT
SATEENTZ FORTRAN STATEMENT IOENTIF C ATION
1 slelr w0 15 2 2 (i L] 40 4 50 55 60 8 10 12§ 1 80
. . GLNENS CAEREICIENTS A B G | T ST
SOoLVE EDR X IN QUARRATIC 1, o 0 ol DD WP U DU T SR
GRS DU\ <4'S 700 U 3 A T S <. WS I ENDDU EIDUII SIS IUUTIUNS AU S | .
{ D CQEEE ICHENTSI 1 i [S I A SRR SR SR | [N
IMP.uTA?;B’ACL RS N I TS TS NG BN I P o Lo
— VAL = - C1 [D A | S | 1 e [S I |
e gfliNaL ., A S g (A.; F HT 1 Lol | Lo
. 1FA(:\LAQ_21_4¢)__QQ‘IQ._1}_L..1 s U IR | D D DU N T B I
QUTRUT ‘'in REML. ROOTS. R A i ool F D | [S I
.*..lL‘Lﬁ.Q,..,_XA.L_&_hH_L“_H_J_.w“W_._J e i ;
T . e N [T I T [. 1 .
IS IS 1) EPPUS aatoaas ol o 01 N
A .. QMM&&)--.LLULU TN DD DAV I TP I I S
-AQM3 i — 1 - s | - | E J ‘,AJLAA_LLL Joa | A ad
i e | AT U IS DT SOV DA TN TP
um&mm_%bk NS JUUDURS TR SN (DU DUV Y WDV B
T FOR SIGNAL 7110 START DNMER . 4 vt oy deeva b b vaia S T S T
PAUSE [NN IENDY S DU T 1. S D Y O N T .
,Qmo,.lklu‘Lz“.*t.AJ.l...AL“LJJA,_.‘_L,___,_,J,,,.1,., I | . e
P DU deeed --JALLL.'___._J_‘,‘__.__“L,,_,_Ul....l““l, de e
NP U P IV B WO DA DTN I | el 1 N A
N IS DU B DU IS DIPEAPY ST T TP DU I (NP D D U
FENE I AP WA S DA DDA IPUURE I DD DDA I DTGP B I D

" COMPUTER AUTOMATION_

Figure 1-1 Sample Program

*

.

COMMENTS

Any line with a C in column 1 is a comment line and has no effect on the program.
The remaining columns are ignored and may contain anything in any position. We
recommend liberal use of comments to document the operation of programs. Comment

lines may appear anywhere except within a continued statement (i.e. preceding
continuation lines).

CONDITIONAL COMPILATION

For debugging purposes, a statement may be written on a line with an X in column 1.
How the statement is treated then depends on an option specified at the time the
program is compiled (see chapter 9). If the XON option is specified, the X is ignored
and the statement is processed normally. If the XON option is Not specified, the X is’
interpreted as if it were a C; that is, the line becomes a comment line.

During checkout, additional debugging lines can be included (for example, interme-
diate output) with an X in column 1. While the XON option is in force, these lines
will take effect. When checkout is complete, the program can be recompiled without
the XON option and these additional lines will become comments. As such, they both
document the debugging that was used and can be reinstated quickly if needed.

A statement beginning on an X line may be continued only on an X line. A normal

statement, however, may have a continuation line that either has an X or does not.
For example:

4 —C FOR COMMENT

et 3 FORTRAN STATEMENT
1 51817 10 15 20 25 30 35 40 45 50
Wusén- de et
o@ . lald vAmes N OOVAL L1
——— = * 2. 000 RS A T DS s
X ... E . P TA 1..“1-L.-J el
MMM&Q_&&W“.AUL A |
NP NP PR PN 1 N B P P PP R |
P DU] 1 L. [B I B

1.3

COMPUTER AUTOMATION, INC. .l..'.". 2

A .
COMPUTER AUTOMATION. INC. =- —\1

CHARACTER SET

Computer Automation FORTRAN IV accepts source programs (and data) in the ASCII l
(American Standard Code for.Information Interchange) standard character sct. The
characters normally found in source programs are the 26 letters, the 10 decimal

digits, and the following special characters:

+-*/=<>().,:'#$ @} blank

Other special characters may appear, for example in alphanumeric strings, but only
the following are printable on all Computer Automation supported devices:

0?7 % & 1o o~
The ASCII character set is shown in appendix C.

In some examples in this manual, the character blank is represented by b, so that
it is possible to see exactly how many there are.

SAMPLE PROGRAM

Figure 1-1 shows a sample FORTRAN program prepared on a typical FORTRAN
coding form. The lines with a C in column 1 are comments. Labels appear anywhere
in columns 1-5. Their value does not imply any ordering of statements. It is

simply an identification. The statements appear within columns 7-72. One of them
has a continuation line, marked in column 6. :

This program computes the roots of a quadratic equation, according to the formula

b +Vb2 -4ac

2a

X =

First it reads in the three coefficients, in a free form, separated by commas (or on

- separate lines). If the discriminant is negative, indicating no real roots, a message

is printed to that effect. Otherwise the two roots are evaluated and printed. The
program then waits for a signal from the computer operator to return to the beginning
and read in another set of coefficients.

This program is a main program, because it does not begin with a SUBROUTINE,

FUNCTION, or TASK statement. Therefore, when executed, processing automatically
begins at the first statement, which is the INPUT statement with the label 10.

1.4

i oo

P e

e -

K

COMPUTER AUTOMATION. INC. :-

CHAPTER 2

ELEMENTS OF EXPRESSIONS

At the heart of the FORTRAN language is the computation of formulas. This is
done with the assignment statement, which computes a value and assigns it to a
variable. For example, '

X = 4.5 + SIN(ALPHA)

The value to be computed is represented, on the right side of the equal sign, by an
expression. The elements of an expression are connected by various operators,
described in the next chapter. These elements may be one of three things: a
constant, a variable, or a function reference. In the above example, 4.5 is a

constant. It is referenced by value and never changes. There are various types

of constants, as described below. X and ALPHA are variables. They are like
"unknowns" in a formula. Their value can change, either by being input or by

being assigned a value, as with X above. SIN(ALPHA) is a function reference, calling
the function SIN with the one argument ALPHA.

NAMES

Variables and functions are identified by name (as are subroutines and COMMON
blocks, described in subsequent chapters). A FORTRAN name must begin with a
letter and may contain letters and digits. A name may be of any length, but only the
first six characters are significant. Names longer than six characters may be used
to improve readability, but care must be taken that no two of them have the same first
six characters.

Examples:

X A R234 NUMBER MASSACHUSETTS

In the last case, only the first six characters, MASSAC are recognized, so a name
such as MASS ACTION would be considered identical. Note that within names (as in

most pléces in FORTRAN), blanks are ignored, so MASS ACTION is the same as
MASSACTION.

Computer Automation FORTRAN IV has no reserved names that are unavailable to the
user. However, to avoid ambiguity we recommend that you avoid names that are the
same as FORTRAN commands (e.g. READ, DO, IF).

2.1

COMPUTER AUTOMATION, INC.

B T

isemere] =4

DATA TYPES

\

Computations in FORTRAN mdy be done in various modes. For each mode there is a
corresponding data type. In some cases types may be intermixed and in some they may
not. This is discussed in the next chapter. The most important distinction to keep in
mind is that between integer and floating point arithmetic.

Integer arithmetic deals only with integers (whole numbers) in a restricted range,
and is used mainly for counting and subscripting. It is the fastest form of arithmetic.
Floating point arithmetic handles the continuum of real numbers (including fractional
values) over a wide range. However, the values are binary approximations to
decimal numbers, which may or may not be exact. (There are two degrees of preci-
sion available, as described below.) Floating point computations are significantly
slower than integer computations.

Computer Automation FORTRAN IV includes these six data types, as described below:

]

Integer Complex
Real Logical
Double Precision Alphanumeric String

Integer

Integer values must lie in the range -32768 to +32767; that is, -2 '°sns+2'° -1.
(The value +32768 cannot be represented on a 16-bit 2's complement machine.
Therefore, be careful to use the negative value -32768 only when it stands alone,
such as on the right of an equal sign.) Examples of integer constants are:

1 27 -4197 0 30000
Normally, variables and functions whose names begin with I, J, K, L, M, or N are of
integer type. (This is called the IJKLMN rule.) It is possible, however, to explicitly
declare certain names to have a different type (see chapter €). In the absence of such
declarations, the following names would be integer:

NAKED MINI LSI2 I J KISMET

Integer constants may also be written in hexadecimal form or in Hollerith (alphanumeric)
form. These are described below.

Integer values occupy one word (16 bits) of machine storage .T

However, see Chapter 9 for the ANSI allocation option.

2.2

[t S Bl w i Tt

w

COMPUTER AUTOMATION. INC. ""E

Real

Real arithmetic is the single precision form of floating point arithmetic. Real values
must be in the range 1.7 x 108t0 1.47 x 10~39 , that is, 2127 to 27129,

or be zero. They may be positive or negative within this range. They have a precision
of somewhat more than 7 significant digits, and they occupy two words (32 bits) of
storage.

Real constants may be written in any of several ways. To be recognized as floating
point, they must have either a decimal point or an exponent included. An exponent
is a power of ten by which the value is to be multiplied. It follows the numeric value

and consists of the letter E and a signed or unsigned integer. For example:

3874.173 12. .0099 0.
6.601E15 9.E-T .37E 31 93E+6

In the case of 83E+6, this represents 93 x 108 , or 93,000,000, and could equally well
be written as 93000000. or .93E8. Note that the plus sign preceding the exponent
value is optional, and that the decimal point is not required if there is an exponent.

Real constants may be written with any number of digits, but only the first seven
significant ones will be processed. It is permissible, however, to write real constants
such as:

123456000000.0 or .0000054321

Unless declared otherwise, variables and functions whose names begin with anything
other than I, J, K, L, M, or N are of real type. For example:

ALPHA HEIGHT OHMS Z SNEWO FROG

Double Precision

Double precision arithmetic is the same as real arithmetic, except that it carries about
17 digits of precision. A double precision value must lie in the same range as a
real value. It occupies four words (64 bits) of storage.

A double precision constant must have a special exponent to identify it as double
precision. This exponent is the same as for real except that a D is used instead of an

E. Since the exponent is always present, a decimal point need not be. The following
are double precision constants:

2.718281828459046D0 1.D 19 .3D-10 7148838830D-7

2.3

|

R R e b

R e

COMPUTER AUTOMATION. INC.

Note in the first case that an exponent of zero is used, since there must be an exponent.
The mere presence of more than seven digits does not make a constant double precision.
However, if a floating point constant appears in a double precision expression, it will
-automatically become a double precision constant, regardless of how many digits were
written or whether a "D" exponent was used (see "Mixed Mode Expressions" in the
next chapter). There is also an Automatic Double Precision option that will force all
floating point constants into double precision (see below)

Since the IJKLMN rule classifies all names vas either integer or real, a variable or
function can only be double precision if it is explicitly declared to be so I as .

described in c'hapter 6. In this case, it makes no difference what letter the name
begins with, although "D" is mnemonically pleasing.

Complex

Complex numbers consist of a real and imaginary part, in that order. Each part is
itself a single precision (real) value, with the precision and range of a real value.
Complex quantities occupy four words (64 bits) of storage. The first two words are
the real part, the second two are the imaginary part.

Complex constants are written with the real and imaginary parts separated by a comma
and enclosed in parentheses. For example,

(3.37,2.0)
represents the complex number 3.37+2i, wherei = V—l. Other complex constants:
(.001,1E-T) (-4.,+7.5) (1.,0.) 0.,1.)

Note that the latter two examples, although represented in complex form, have values
that are purely real and purely imaginary, respectively.

As with double precision, a variable or function can only be complex if its name is
explicitly declared so (except for a few library functions). "C" is often used as the
first letter of such names. ‘

Logjcal

This is the last of the unique types. The others are variations of one sort or another.
Logical is a very special type that is not numeric at all. It is used for the testing of

TCertain library functions, such as DSQRT, are automatically recognized to be double
precision. See chapter 7.

2.4

A

COMPUTER AUTOMATION, INC. ‘: =

conditions and has only the values "true" and "false". A logical quantity occupies
one word (16 bits) of storage. However, only the first bit (the sign bit) is significant.
It is 1 when the value is "true", 0 when it is "false".

To a large extent, logical type is used mainly for testing the result of relational
expressions that compare numeric values. For example, the statement

IF (X+Y >3.5) STOP
contains no variables or constants of logical type, but the relational expression
(X+Y >3.5) has a logical value of "true" or "false". However, elements of logical type
may be used.

A logical constant may be either

.TRUE. or .FALSE.

. written exactly as shown with the periods at either end. Variables and functions are

logical only if their names are explicitly declared so. Logical quantities are combined
by means of a different set of operators than those used with numeric quantities. The
following chapter will describe logical expressions.

Logical operations should not be confused with Boolean operations, in which a whole

‘string of 1's and 0's are ANDed or ORed together (see below, under "Boolean

Operations").

Hexadecimal

Integer constants may also be written in hexadecimal form. This is mainly useful
where the value is not numeric but is a bit pattern of some sort, e.g. for testing or
masking, or to represent an unusual alphanumeric character that has no graphic
representation. A hexadecimal constant may be written in either of two forms:

I XXXX or nZxxxx

where: x is a hexadecimal digit, i.e.oneof 0123456 789ABCDEF
- n is the number of digits, between one and four

The :xxxx form is unique to Computer Automation and conforms with the representa-
tion of hexadecimal constants in our other software. Note that no count of the digits
is required.

The nZxxxx form is used by some other FORTRAN systems, and is provided for
consistency with those. '

2.5

COMPUTER AUTOMATION, INC.

A hexadecimal constant, since it is a form of integer constant, occupies one word
(16 bits) of storage. Thus there may be from one to four hexadecimal digits. If there
are fewer than four, they are right justified. For example, :A8 is the samec as 320A8

or : 00A8.

Chapter 6 explains the use of hexadecimal constants in DATA Statements, which is a
little different. There, such constants are not necessarily assumed to be integer nor
restricted to four digits.

; _

Hollerith

As with hexadecimal, Hollerith constants are usually a special form of integer constant.
(There are two exceptions, described below.) Integer quantities are usually used for
representing alphanumeric characters, since there is no "alphanumeric" type of data.
A Hollerith constant occupies one word (16 bits) of storage, and therefore can hold two
alphanumeric characters of 8 bits each. Longer strings of characters can be written.
These are called alphanumeric strmgs but cannot be used as elements of expressions.
(See the following section.)

‘A Hollerith constant is written:
nHaa

where: a is an alphanumeric character (see table C-1)
n indicates the number of characters, and must be 1 or 2

Note that the character blank is permissible in a Hollerith constant. . Therefore, this
is one of the few places where blanks are significant and cannot be introduced just
for readability.

Note also that the alphanumeric character "0" is not the same as the binary value zero,
so for example, 2H00 is not the same as : 0000.

- If a Hollerith constant has only one character, it is left-justified with a trailing blank.

Examples of some Hollerith constants and their hexadecimal equivalents:

2HXY = :D8DY9
1H$ = : A4A0
2H00 = :BOBO
1H = : ADAO '

The two places where a Hollerith constant is not treated as an integer constant are
standing alone on the right side of an equal sign (see chapter 3), and in a DATA
statement (see chapter 6). In both of these cases, it is treated as an alphanumeric string.

2.6

e R S

s et

o

Alphanumeric String

An alphanumeric string may be written in either of two ways:
nHs or 's'

where: s is a string of alphanumeric characters, of length < 255.
n is the number of characters

An alphanumeric string is not considered to have a data type and cannot be used in
the ordinary way as an element of an expression. It is simply a string of characters,
which occupies consecutive words in memory at two characters per word. It can

be used in the following situations, all of which are described in later chapters:

1. | Standing alone on the right side of an equal sign (see chapter 3)
2. In a DATA sta'tement (see chapter 6)

3. As an argument to a subroutine or fur;ction (see chapter 7)

4. In the list of an OUTPUT statement, 's' form only (see chapter 5)

Within a string of the form 's', the quote character (') can be represented by two
consecutive quotes. For example, the characters 'it's done' can be written

!llITIlS DONEH'

As with Hollerith constants, blanks are significant within alphanumeric strings.

Examples:

'MISCELLANEOUS CHARACTERS'
"(A+B)/C: !

22HACCORDING TO HIS NEED
SHAZAM!

1H?

Note that the last example could be used as either an alphanumerlc string or a
Hollerlth constant.

Boolean

Boolean operations are those in which logical operations (AND, OR, etc.) are performed
on a whole word full of 1's and 0's. This is not a standard mode in FORTRAN, but can be

accomplished using hexadecimal data to set up the bits and the Boolean functions
(described in chapter 7) to perform the operations. ’

2.7

COMPUTER AUTOMATION. INC. -—--.-_.T

e

~
»

COMPUTER AUTOMATION, INC. ':4\".;’ &ﬁ

AUTOMATIC DOUBLE PRECISION

A compiler option is available to automatically convert all real (single precision)
quantities and operations to double precision, so that constants, variables, and
functions do not have to be changed in the source program in order to obtain more than
7 digits accuracy. The ADP option is described in chapter 9. .

VARIABLES

Variables are identified by name and can change value during the program. A
variable always has one of the five types, integer, real, double precision, complex,
or logical, and can only assume values within the range specified for that data type.
(Any type of variable may contain an alphanumeric string, though integer variables
are recommended.) Unless declared otherwise by a type statement (see chapter 6),
a variable is integer if it begins with I, J, K, L, M, or N, and real otherwise.

There are two kinds of variables, simple variables (also called scalar variables) :
and arrays. A simple variable is a single value and is referenced by its name, as
illustrated in previous examples. E.g. N, ROOT, DHO, VOLUME, CAPACITY.

Arrays

An array is a set of values. It has a name and a type, just like a simple variable.

Each value is identified by its position within the array. For example, the weights

of ten items might be contained in an array called WEIGHT with ten positions. The

first value would then be WEIGHT (1), the second WEIGHT (2), and so on to WEIGHT (10).
An array may have more than one dimension. A matrix is a two-dimensional array,

and its values are identified by two positions, the first within the column and the
second within the row. For example, the temperatures at twelve points on a 3x4 grid
could be assigned to a 3x4 array called T. Its elements would then be:

T(1,1) - T(@,2) T(,3) Taa,4)
T(2,1) T(@2,2) T(2,3) T(2,4)

T@,1) Tv(3,2) T(3,3) T(@,4)

In Computer Automation FORTRAN IV an array may have any number of dimensions.
Chapter 6 discusses the declaration of array dimensions, including lower and upper
bounds and how arrays are stored in memory.

Array Elements

An individual element of an array is called an array element. It is identified by the name
of the array followed by subscripts enclosed in parentheses and separated by commas.
There must be the same number of subscripts as the array has dimensions.

Thus an array element looks like:

2.8

-

COMPUTER AUTOMATION, INC.

v(s,,s » Sp)

REE ’
where "~ v 1s the name of the array

s is a subscript expression

n is the number of dimensions declared for the array

In most cases where a simple variable can appear, such as on the left side of an
equal sign, an array element is equivalent.

Subscripts

A subscript may be any integer expression. (Many FORTRANSs restrict subscripts

to a limited form of expression.) In particular, a subscript may itself be subscripted.
This allows an entry in one array to identify the position of an entry in another array,
and so on. Examples of array elements, with subscripts:

A(3) MM {J) TEMP (3,1+K-2*LAST)
COORD (1,J,K,L) THREAD (LIST(MM (J)-K)+2) LIMIT (-1)

Negative or zero subscripting, as shown in the last example, requires special
dimensioning with a lower bound less than 1 (see chapter 6).

FUNCTIONS

Functions are subprograms that can be referenced as elements of an expression. A
function acts on one or more quantities, called its arguments, and produces a single
quantity, called the function value. For example, ATAN2 is the name of a library
function that computes an arctangent, given the ordinate and abscissa. ATAN2(Y,1.0)

is a function reference representing a specific value, namely the arctangent of Y and
1.0.

A function reference, then, consists of the function name followed by the arguments
enclosed in parentheses:

fa, va,, ...,a,)

where: f is the name of the function
n is the number of arguments
a is an argument.

Arguments may be constants, variables, expressions, or the names of arrays or
subprograms (see chapter 7). '

Except for certain library functions, the IJKLMN rule applies to the type of function
names. For convenience, the double precision and complex library functions (e.g.
DATAN2) are automatically recognized as having a speclal type. The type of a function
indicates the type of its resultant value.

2.9

COMPUTER AUTOMATION, INC. ' —'ﬁ

In addition to library functions, the user can define his own functions, cither in
FORTRAN (with the FUNCTION statement or the statement function definition, described
in chapter 7) or in assembly language (as most library functions are written). If

they are to have a type other than integer or real, they will have to be explicitly
declared in a type statement.

Examples of function references: '

F(X) SQRT (7T*A+BETA) DISTANCE (RATE,TIME)
MAXO0 (N+5,J**2,1000) F(F (X))

2.10

e

COMPUTER AUTOMATION, INC. '|

CHAPTER 3

EXPRESSIONS AND ASSIGNMENTS

There are three quite different kinds of expressions: arithmetic, relational, and
logical. Each is made up of operands separated by operators. The operands may be
constants, variables, or function references, or they may be subexpressions.

A subexpression is an expression enclosed in parentheses. In some cases, an operator
can be unary and act on only one operand, rather than separating two operands (for
example, "-" to indicate a negative value). :

ARITHMETIC EXPRESSIONS

An arithmetic expression is made up of integer, real, double precision, and/or
complex operands, combined by arithmetic operators, which are:

Operator Meaning

+ - Addition or Positive

- Subtraction or Negative
* Multiplication

/ Division

** op 4 Exponentiation t

Two operators may not appear in a row. To expfess Y*-3, you must write Y*(-3)
or -3*Y. *¥* is not considered two operators, but one.

Expressions can range from a single operand to long formulas of any complexity.
Some examples: :

F(X)

3.1417

X+Y

(A+B) * (A-B) |

RATE (J-1)+ (GAMMA+1/RATE (J)-8.72* (P+SQRT (R**2+T **2))) /DIST

Evaluation Hierarchy

Does the expression X+Y/Z mean (X+Y)/Z or X+(Y/Z)? In FORTRAN it means X+(Y/Z)
and this is determined by the hierarchy of operators, which is:

1.7 ** (highest)
2. * and / ‘
3. +and - (lowest)

t Complex exponentiation is only permitted to an integer power. See "Mixed Mode
Expressions".

3.1

~
)

This means that the expression
T-U **V *W

is interpreted as
T - ((U**V) * W)

Parentheses take precedence over all operators. Any subexpressions enclosed in

‘parentheses are evaluated first and then treated as single operands.

Successive operators of the same precedence are evaluated left to,fight ,4 so that
J/K/M*L means ((J/K)/M)*L. This includes **, the exponentiation operator. For
example, : .

2 *%¥ 3 * % 2
is interpreted as

(2 %k 3) *¥ 9
which is the same as

2 ** (3 *2)
and has the value 64, whereas

2 ** (3 * % 2)

would have the value 512. This is not consistent among FORTRANs, so we recommend
the use of parentheses to show exactly what you mean.

Note that when the results are equivalent, the compiler may reorder operations to obtain
more efficient object code. For example, E+F+G/H might be evaluated as G/H+E+F. To

-preserve desired groupings, use parentheses.

Mixed Mode Expressions

The type of an expression depends on the type of the operands in it. If it contains
only operands of one type, then it has that type. If it contains operands of more than
one type, it is called a mixed mode expression. Most mixed expressions are allowed,
but some are not. Some are allowed but not recommended, because of the varying
ways in which other FORTRANS treat them.

3.2

COMPUTER AUYOMATION, INC. 'l ——\‘ .

R

spamsnr|gooang

4]
s

A

COMPUTER AUTOMATION, INC. cl=

There is a precedence of types that determines the type of a mixed modc expression.
It is:

1. Complex (highest)
2. Double precision)

3. Real

4, Integer (low*.est)

in it. The exception is that function arguments are independent of the expression in
which the function reference appears. They have no effect on the mode of the outer
expression.

: i
With one exception, the type of an expression j's the same as the highest type apbenring

Within a mixed mode expression, each operation is done in the higher mode of its two
operands. In general this means that the lower type operand is converted to the higher
type before being used. (In integer exponentiation, however, this is not necessary.
See below.) The order in which the operands are selected depends on the precedence
of the operators connecting them. (The order of evaluation is not affected by the
precedence of the types of the operands.) Higher precedence operations ar« always
done first. For example, in:

X+J/K
the division is done first, in integer, with the fractional part truncated. Then the
result is converted to real and added to X. The same would be true if the expression
had been written:

J/K+X

When there is a succession of operands connected by operators of equal precedence,
they are grouped from the left, regardless of type. For example, in:

J+K+X
J is added to K in integer, then this is floated and added to X. All these operations
can be done "on the fly", without having to store intermediate results in temps. On

the other hand, if the expression had been written:

X+J+K

3.3

e

Sl

COMPUTER AUTOMATION, INC. : "| ——

the J would be floated and added to X, and this result would be stored away so that K
could be floated and then added to it. This can affect not only the speed but the results,
so keep it in mind when writing mixed mode expressions. Usually it is a good idea to
start with the lowest type operands-en the left and proceed to the highest type on the
right.

Parentheses have the highest precedence and can be used to control the modes in which
operations get done. For example: ‘

X + (J+K) | -

causes the J+K to be done in integer. x

Usually each mixed mode operation requires the lower type operand to be converted
first. Exponentiation to an integer power is an exception. For example:

X ** K

is done by repeated multiplication of X by itself K times, rather than by using
logarithm and exponential, which would be required by:

X ** FLOAT (K)

The ordinary numeric types, integer, real, and double precision, may be mixed in
any way, using all of the operators. Complex quantities may be mixed with the other
three when using add, subract, multiply, or divide, but the only complex

exp?nentiation allowed is complex to an integer power. Assuming CPX is complex:

3*CPX** (J+K) is legal

i CPX**2 .0

? AX¥*(1.0,1.0) are not legal
CPX**CPX

The latter is the only case where two operands of the same type may not be combined.

Logical quantities may not appear as operands in arithmetic expressions, since they
have no numeric value.

Here are some guidelines about using mixed mode expressions:

1. Integer operations are the fastest, so to take advantage of this, all
operands in an expression should be integer.

2. For maximum efficiency when operands are of various types, group the
lower types together, either left to right or with parentheses. For
example:

3.4

A it

£

41

COMPUTER AUTOMATION, INC. :21“.’

33*N/X*CPX
is more efficient than:
CPX*33*N/X

On the other hand, if 33*N is liable to overflow maximum integer size,
it may be preferable to sacrifice speed and do the multiplication in
floating point by writing: ‘

N/X*33*CPX . '
Constants that need to be con\(erteh to a higher type will be converted
at compile time, rather than during execution. For example:

3/X+10 is interpreted as 3.0/X+10.

This also means that constants that need to be double precision will
automatically be double precision, even though they do not have a D
exponent. For example, if DP is double precision:

.3 +DP is equivalent to .3D0 + DP
and the .3 will have the full 16 digits of accuracy.
When variables or function references of a lower type are used, they
will have to be converted during execution, at some cost in space and
time.
If complex and double precision quantities are mixed, the double

precision ones will be converted to complex thus losing their extra
precision.

Be aware that other FORTRAN systems may handle mixed mode arlthmetlc

differently, particularly in cases such as:

J/K+X
Other FORTRANSs may do all operations in the highest type in the whole
expression, rather than in the higher type of their two operands. Thus

in the above case the division would be done in real mode, not integer.
We think it best to avoid situations of this sort.

3.5

kg ‘?f RaR e St i

il b

COMPUTER AUTOMATION, INC. '|

Arithmetic Overflow

Chapter 2 discussed the ranges of values for numeric quantities.
the proper range, one of the following actions is taken, depending on the type and the

context:

1.

[$2]

In source programs, constants that are too large or too small are
diagnosed as errors during compilation. '

Input values read in at run time are also diagnosed if out of range.

Integer overflow resulting from calculations at run time is ignored.
The computer automatically returns the lower 16 bits. Therefore,

if you use large integer values, test them where necessary to avoid
overflow. ‘

Floating overflow at run time, either from arithmetic operations (add,
multiply, etc.) or from mathematical functions (e.g. exponential),
produces a diagnostic. In addition, the maximum possible value

(of the appropriate sign) is substituted and execcution continues.

Floating underflow at run time (magnitude too small) results in a
zero value and no error message.

RELATIONAL EXPRESSIONS

A relational expression compares two arithmetic expressions and produces a
logical result, i.e. true or false, according to whether the values have the rela-
tionsl‘éﬁp specified. The relational operators are:

i

Operator Meaning

.LT. or <« Less than
.GT. or > Greater than

.LE. Less than or equal
.GE. Greater than or equal
EQ. Equal

.NE. Not equal

The relational expression has the form:

€y ey

where: e, and e , are integer, real, double precision, or complex expressions

r

is one of the relational operators shown above

3.6

If a value exceeds

-

COMPUTER AUTOMATION, INC. '|

For example:

J .EQ. KEY

RADIUS**2 > 1

X+Y .LE. X*Y
In the first example, if J equals KEY the relational expression is true, otherwise it
is false.

If the two arithmetic expressions have different types, each one is evaluated in its
own type and then the one with the lower type is "converted to the higher type for
the comparison. If the value is a constant, the conversion is done at compile tlmo,
otherwise it must be done at run time. Thus: i

23 .GT. X is equivalent to 23. .GT. X

while
I/J .GE. SQRT(G)

causes the division to be performed in integer and the result converted to real in
order to compare with SQRT (G).

A complex value may only be compared for equal or not equal, since the others
are not meaningful. It may be compared with a non-complex value, in which case,
the latter acquires an imaginary part of zero.

Be careful about comparing ﬂoating point values for equality. Most values are binary
approximations, so during computations inaccuracy will creep into the low order
bits. This will make values that are essentially equal appear unequal. We can

guarantee however, that constants that have an exact bmary representation will be
exactly translated.

It is not permissible to concatenate relational operations, such as in
(A .LT. B .LT. C).

Relational expressions are a subset of logical expressions. They most often appear
in logical IF statements, such as

IF (N<0) GO TO 5

as described in the next chapter.

LOGICAL EXPRESSIONS

Logical expressions are made up of logical operands and the three logical operators:

3.7

e

e g s s

COMPUTER AUTOMATION, INC.

Operétor Meaning

.AND. True if both operands are true
.OR. True if either or both operands are true
.NOT. True if single operand is false, false if operand is true.

The first two are binary operators, while the third is a unary operator.

Each element of a logical expression has the value true or false, and each logical

operation produces one of those values. An element of a logical expression may be:
|

A relational expression '

A logical variable or function reference|

A logical constant ‘ i

Another logical expression enclosed in ?parentheses

Any of the above, preceded by .NOT.

QWD

Logical expressions most often contain relational expressions and are used in logical
IF statements, such as the one shown in the preceding section. A more complicated
one, using some logical operators, would be:

IF (A>B .AND. (J .EQ. KEY .OR. J .EQ. NEWKEY)) GO TO 23

This logical expression has the value true if A is greater than B and J equals either
KEY or NEWKEY. This double test on J cannot be performed by wrltmg

J .EQ. (KEY .OR. NEWKEY)

becaq'se first of all, KEY and NEWKEY are not logical values and so cannot be
connécte(l by .OR., and secondly, if they were logical values the subexpression
(KEY‘ -OR. NEWKEY) would have a logical value, not the integer value required
by the .EQ. operator.

The only time two logical operators may appear next to each other is when the second
is .NOT.. For example, assuming L is a logical variable:

N .EQ. 3 .AND. .NOT. L
Although less common than their use in IF statements, logical expressions may also
have their values assigned to logical variables (with the assignment statement,

described below), and these variables, as well as the constants .TRUE. and
.FALSE., may then be used in logical expressions.

3.8

S SR

A A

COMPUTER AUTOMATION, INC. : -

Evaluation Hierarchy

As with arithmetic expressions, there is a hierarchy that determines in which order
logical operations will be performed. For example, the expression

.NOT. L1 .OR. L2 AND. L3

might be interpreted as:
|
.NOT. (L1 .OR. (L2 .AND. L3))!
or: (.NOT. (L1 .OR. L2)) .AND. L3 |

Y

|
or various other ways. Actually it means i
|

(.NOT. L1) .OR. (L2 .AND. L3)

because the precedence of logical operators is:

1. .NOT. (highest)

2. .AND.
3. .OR. (lowest)

Parentheses may of course be used to define how operands are to be grouped. Also,
logical expressions may contain relational expressions, which are evaluated first.

The relational expressions may contain arithmetic expressions which, in turn,
must be evaluated first. Thus the overall hierarchy of all operations can be
expressed as:

: 1. Parenthesized arithmetic subexpressions, from innermost out.
! 2 . * % .

j 3. * and /

' +and -

The relational operators.

Parenthesized logical subexpressions, from innermost out.
.NOT.

.AND.

.OR.

WO~ 3D s

Let us apply this hierarchy to an example containing all of the above operations.
Here L, P, Q, and R are logic}él:

L.OR..NOT.P.AND.(Q.OR.R).OR.A>B+C/D**(E-F)
At the final step, this is the OR of three operands, as shown below:

L .OR. ((.NOT.P).AND.(Q.OR.R)) .OR. (A>(B+(C/(D**(E-F)))))

3.9

e R e ot 2 e € R s

COMPUTER AUTOMATION. INC. 'l

ASSIGNMENT STATEMENT

The assignment statement is the most important statement in FORTRAN. It specifies
most of the computations that are to be performed by a program. It is written:

v=e
where: v is a variable (simple or subscripted)
e is an expression . t

This computes the value of e and assigns it tov. It 'ps not exactly an equation,
since it does not declare that v is equal to e; it;setsi v equal to e. Thus a statement

such as: |
K=K-3 j !

is not a contradiction; it simply decreases the current value of K by 3.

Some examples:

X=Y

N = 3*MAX 0 (1,J)

MM () = MM (I-1) + K*2

FLAG = .TRUE.

TIME (LIME) = GOODOLD*GONEBY
E=M * C**2

Usually the expression has the same type as the variable. If it does not, then it is
computed independently of the variable (i.e. in its own mode) and converted to the
variable's type before assigning. This is called a mixed mode assignment and, as
with mixed mode expressions, some cases are allowed and others are not. In
parti!cular, a logical expression can be assigned only to a logical variable. A

comp;flex value cannot be assigned to a lower numeric type (such as real), because

this involves the loss of its imaginary part and, since this might happen inadvertently,
a warning diagnostic is more useful here. There is a library function provided for
doing complex to real conversions.

If the entire expression on the right of an equal sign consists of a single constant
(of a different type), then the constant will be converted at compile time. Otherwise
the conversion must be done at run time. For example:

X=0 . is equivalent to X=0.0

A special case is made for alphanumeric string constants that appear alone to the

right of an equal sign. These are considered to have no type and are simply stored
into the variable regardless of its type. The string constant must not be longer than
can be contained in the variable. Since character strings have two characters per
word, this means the maximum size is two characters for integer and logical variables,
four characters for real, and eight for double precision and complex. If the string is
shorter than the maximum length, it is stored beginning at the left (first word, first
byte) of the variable, and the rest of the variable is filled out with blanks.

3.10

e o

COMPUTER AUTOMATION, INC. Im——

We recommend integer variables (or arrays) for working with alphanumeric characters,
for several reasons:

1. It is hard to work with the individual words of a multi-word floating
point variable.

2. The arithmetic operations, such as addition and multiplication, are not
meaningful in floating point, since part of the word is a mantissa and
part an exponent. ‘ ‘

3. The Boolean functions, which can bé used for masking out certain

characters, operate only on integer quantities.

|
|

Note that in this situation, a Hollerith constant is considered a string constant, so
the statement:

X = 2HAB
is quite different from the two statements:

J = 2HAB
X=4J

since in the second case J will be converted to floating point, destroying any
resemblance to alphanumeric characters.

Table 3-1 shows the permissible mixtures of type in an assignment statement.

3.11

st e

COMPUTER AUTOMATION. INC. :&

Table 3-1 Permissible types in mixed assignments

e Expression Type
Variable
Type !
integer | real double ¢omplex | logical string
precision | ¢
integer D T T -—- -—= D
real F D P : R ——_— D
double
mf precision F P D j —— —— D
complex F,R R P,R D | --- D
logical - -—- -- -=- D D
Abbreviations:)
D Direct assignment, no conversion.
F The integer is converted to floating point of the appropriate
precision.
T The floating point value is truncated to integer. Any fractional

1 part is thrown away, which always results in a truncation

| towards zero. In other words, 33.6 is truncated to 33, and

| -98.999 is truncated to -98, not to -99. If the floating point
value is too large to be expressed in integer, then it is truncated
at the left end as well, with meaningless results. As in other
cases of Integer overflow, no error diagnostic is generated.

P Increase or decrease the precision. Conversion from double
precision to real is not rounded, but truncated.
R The value of the expression becomes the real part; the imaginary

part is zero.

3.12

COMPUTER AUTOMATION, INC.

CHAPTER 4
CONTROL STATEMENTS

FORTRAN statements are nermally executed in the order written, one after another.
Control statements are used to change this order by transferring control to some
point other than the following statement. :

STATEMENT LABELS

|
o
Statement labels (also called statement numBers$ are used to identify statements so that
control can be transferred to them from elsewhei‘e. A label is a decimal integer of up
to five digits (i.e. from 1 to 99999). As shown in chapter 1, the label appears in the
first five columns of the source line, which is called the label field, As with integer
constants, blanks and leading zeros are ignored.

Although a statement label is a number, its value has no significance and implies no
ordering. It is simply an identifying label. Two statements may not have the same label.

Most of the control statements reference labels to identify a transfer point. READ and
WRITE statements also reference the labels of FORMAT statements, although this doc¢s not

" involve any actual transfer.

GO TO STATEMENTS

. Unconditional GO TO Statement
i

'I,ihe GO TO statement transfers control to another statement. It has the form:
GO TO k
where: k is a statement label
For example:
GO TO 51
17 N = -N
51 OUTPUT N

The statement labeled 17 would be skipped.

4.1

A‘g‘s{‘@.{ e S A

e

COMPUTER AUTOMATION. INC.

Computed GO TO Statement

The computed GO TO transfers control to one of several places depending on the
value of a variable. It is written:

GOTO (ky,ky, ..., kp), v

where: ki is a statement label

v is a simple (unsubscripted) integer variable whose value is
between 1 and n. :'

The comma before v is optional and may be omitted. w

If the value of v is j, then the GO TO transfers to label kj . 1Ifjisless than 1or
greater than n, this is diagnosed as an error at run time.

Example:
GO TO (14,3,999,80), KEY

If KEY=1, the transfer is to statement number 14, if KEY=2 to statement number 3, and
SO on.

Assigned GO TO Statement

The assigned GO TO also enables transfer to various labels, but without having to know
what those labels may be. Instead of specifying any statement numbers, this statement
specifies a variable, which is expected to contain the location of some statement label.
Elsewhere in the program, an ASSIGN statement (see below) is used to assign the
desi.r«%zd label to the variable. The assigned GO TO has the form:

GO TO v

where: v is a simple integer variable that has previously been assigned a label
using the ASSIGN statement.

This feature can be used to make subroutines out of sections of the program, rather
than making each section a separate program and using CALL and RETURN (which are
described below). A section could end with the statement

GO TO JUMP BACK

Before transferring to this section, then, the desired return point would be assigned
to the variable JUMP BACK.

4.2

B e e

A

COMPUTER AUTOMATION. INC. '= N

Other FORTRANSs, including the ANSI standard, require that all of the possible
destination labels be listed in the assigned GO TO statement, as shown below.
Computer Automation FORTRAN IV accepts this form, but does not require it. Example:

GO TOM, (23,9,2)

Here 23, 9, and 2 are the only labels that may legally have been assigned to M. The
comma following the variable is optional. While a diagnostic will be generated at
compile time if an illegal label is specified, no telsting will be performed on the value
assigned to M at run-time. !

!!
|

ASSIGN STATEMENT

The ASSIGN statement is used to assign a statement label to a variable, and has the
form:

ASSIGN k TO v

where: k is a statement label
\' is a simple integer variable

For example, the "subroutine" described in the previous section ended with an
assigned GO TO via the variable JUMP BACK. Before transferring there, you would
use an ASSIGN, such as:

| ASSIGN 47 TO JUMP BACK

i

’I‘;he assigned GO TO would then transfer to statement label 47.

The label that is assigned must lie in the same program as the assigned GO TO. It is
not permissible, for example, to assign a variable in one program, allocate the
variable in COMMON storage, and then transfer to it from another program.

Also keep in mind that assigning a label is quite different from assigning a value
with an assignment statement. The statement

NUEVE =9
is not equivalent to
ASSIGN 9 TO NUEVE

since the 9 in the former case is not a label but a value. Attempting an assigned GO TO
on such a variable would be meaningless and disastrous.

4.3

el

COMPUTER AUTOMATION, INC. '|

Conversely, it is also not meaningful to do arithmetic on a variable that has been
assigned by an ASSIGN statement. For example, the statements:

ASSIGN 8691 TO NMR
NMR = NMR + 4 R

would cause the value of NMR to be unpredictable.

IF STATEMENTS

Logical IF Statement

|
|

The logical IF statement tests the truth of a logic;al expression to determine whether
or not to execute another statement. If that other statement is a GO TO, this acts as
a conditional transfer. The logical IF is written:

IF (e) s

where: e is a logical expression.
s is any executable statement other than a DO or another logical IF.

If e is true, the statement s is executed; otherwise it is skipped. In either case,
the next statement executed is the one following the IF, unless statement s causes
a transfer elsewhere. Often the expression e is a relational expression or several
relational expressions combined by .AND. and .OR.. Logical variables, constants,
and function references may appear too.

i
Examples:

f

IF (A~B) OUTPUT 'A TOO LARGE:',A
If A is greater than B (i.e. the relational expres‘sion A~ B is true), the program
outputs a message and the value of A; otherwise it does not. In the following example,
ERROR is a logical variable:

IF (ERROR .OR. N .EQ. 10) GO TO 31

If ERROR was previously set true or if N equals 10, the GO TO statement is executed
and control does not fall through to the succeeding statement.

A logical IF cannot control more than one statement. To achieve this effect, you have
to reverse the test and jump around the several statements, as shown here:

4.4

N arun

w3y

A

IF (TEMP .LE. 99) GO TO 7
FEVER = .TRUE.
OUTPUT TEMP, NAME

7 CG = .55555* (TEMP-32)

Arithmetic IF Statement

An arithmetic IF statement always transfers control to one of three labels, depending on

- whether the value of an arithmetic expression is negative, zero, or positive. It has

the form: |

|
i
:
IF (e) kneg ' kzero’ kpos ‘

where: e is an integer, real, or double precision expression.
Kneg 1is the statement label transferred to if e is negative.

kzero 1is the label transferred to if e is zero.
Kpos is the label transferred to if e is positive.

For example:

IF (N) 99,2,7
IF (SIN(THETA)*VEL) 1000,2000,3000
IF (ALPHA) 6,10,6

In the last case, the negative and positive labels are the same, so this statement is
equivalent to:

i IF (ALPHA .EQ. 0) GO TO 10
| GO TO 6

There are several points to keep in mind when deciding whether to use an arithmetic
IF or a logical IF. The arithmetic IF provides a three-way test. However, if only a
two-way test is needed, the logical IF is probably more readable. If you need to
compare two integer quantities, there is another consideration. You could write:

IF (J<K) GO TO 5

or:

IF (J-K) 5,6,6
6 next stateme_nt

4.5

COMPUTER AUTOMATION, INC. o

g

i

“\

A .

COMPUTER AUTOMATION, INC. : -

|

In the latter case, however, if J is very large positive and K is very large negative,
the differcnce (J-K) may be too large to represent and will overflow and cause an
incorrect test. The relational operator (<) always gives the correct answer, but
generates slightly more object code.

The section on relational expressions in the previous chapter cautioned against
testing for equality of floating point values. The same thing applies to the zero test

in an arithmetic IF statement, especially if the expression involves a subtraction.

DO STATEMENT i

The DO statement is used to control repetitive execﬂttion of a group of statements.

For example, if you wanted to set to zero all elements of an array of size 50, you could
write: : '

d=1
4 AJ)=0 ‘
=d +1 , ‘ i

IF (J .LE. 50) GO TO 4
The same thing can be done in two statements using DO:

DO2J=1, 50
2AU)=0

This says, "Do the following statements, up to and including statement number 2,
first with J equal to 1, then with J equal to 2, then 3, and so on up to J=50".

The general form of the DO statement is either of the following:
|
. DO k v=m,, m

2
DO k v=m,,m

»Ma

where: k is the label of the statement that is to end the loop.
v is a simple integer variable.
m,, m,, and m;are the DO parameters and must each be either a
simple integer variable or an integer constant (signed or unsigned).

A comma may optionally be used to separate k and v.

This statement causes the following actions:

4.6

mge el

sz

g

S

P——

COMPUTER AUTOMATION. INC. :./’.*. _—

1. Sct the variable v equal to in, . v is c¢alled the DO control variable
or the DO index. m, is called the initial value.

2. Execute the statements following the DO, up to and including the statoment
with label k. These statements constitute the range of a DO loop ‘
(see also below). ' |

3. Increment v by m, . myis called the increment and must be greater

than zero. If it is not specified, it;automatically has the value 1.
I

4, Test whether v is now greater than m, , which is called the limit.
If it is, the DO loop is finished. P{'oceed to the statement following :
statement k. If v is still less than lor equal to m, , go back to the
statement immediately following thé DO statement and execute the
loop again.

You can see that a DO loop will always be e;xecuted at least once, even though the
initial value is greater than the limit. For example, the DO loop:

DO 44 NR = 10,5

will be executed exactly once. It is a good idea to avoid writing DO statements like
this because some FORTRANs choose to execute intitially satisfied loops no times
instead of one time.

DO loops are not allowed to run downwards instead of upwards; that is, the increment,
m, , may not be negative.

Note that it is not necessary for the control variable to hit the limit exactly. It can

jump over the limit and the loop will terminate as soon as it does so. For example,
tihe loop:

DO 3, NAMA = -20, 0, 6

will execute four times, with NAMA equal to -20, -14, -8, and ~2. When NAMA
reaches +4, the loop will not be executed again.

In order to produce more efficient object code, there is one restriction on the para-
meters of a DO. In step 4 above, the control variable is compared with the limit
using a subtract operation, which means that they must not differ by more than
32767. To put it another way:

m,- (m1 +m3) < 32767

4.7

e o Lt

g

COMPUTER AUTOMATION, INC.

DO Loop Ranges

The statements executed as part of a DO loop (up to and including the terminal
statement) are called the range of the DO loop. There are some rules regarding
what you may and may not do within this range.

The terminal statement (the one with label k) may be any executable statement except:

GO TO (of any form) !
Arithmetic IF o
DO j
RETURN ;
STOP | |
If the terminal statement were a transfer, then control could never reach the loop
testing code. If it were a DO, then two loops would be incorrectly nested (see below).
However, a DO loop may end on a logical IF, even when it contains any of the above

(except DO), because then there is a way to reach the loop testing code.

If it works out that the last statement in a DO loop needs to be a transfer that is not
allowed, there is a dummy statement called CONTINUE that can be used instead as
the actual termination. For example:

Instead of You can write
DO 51=0,N DO 51=0,N
5 IF (VECT 1)) 4,6,6 fF (VECT {)) 4,5,5

5 CONTINUE

I'his brovides an avenue for control to get to the loop testing code. The same thing
could be accomplished by writing:

DOS5I=0,N
5 IF (VECT (1)<0) GO TO 4

Within the range of a DO loop, you must not alter the value of the control variable

(v) or any of the parameters (m, ,m, »m4). The DO statement needs to have complete
control over these; otherwise unpredictable actions may occur. On the other hand,

it is perfectly acceptable to use these values, as long as they are not changed. The

DO control variable is particularly useful, either as a subscript (to step through various
elements of an array) or as a counter. For example, you could set each element of a one
hundred position array equal to the value of its position using the following loop:

DO 131=1, 100
13 MM 1) =1

4.8

COMPUTER AUTOMATION, INC. _

It is also not permissible to jump into the range of a DO loop. The DO statement does
some special set-up for the loop that cannot be skipped over. On the other hand, it is
permissible to jump out of a DO loop before it has completed. For example, if a special
situation occurs during a DO loop that makes it unnecessary to do the rest of the loop,
you can transfer out instead of falling through the bottom of the loop. In this case,

the DO control variable will have-the proper value, namely the one it had at the time
the transfer was made. This is not true on normal completion of a DO loop. If the

loop terminates normally, the value of the control variable becomes undefined and
should not be depended on. For example, in the loop:

DO 4 N=1,10
IF. (A(N)<0) GO TO 20

4 A(N) =A(N) + MAX/3
10 OUTPUT N

20 OUTPUT N

the value of N at statement 20 would be somewhere between 1 and 10. The value of
N at statement 10 is unpredictable.

There is one exception to the rule that you cannot jump into a DO loop. If you first
jump out, and you make no changes to the DO index or parameters, you can jump back
in again and continue on with the loop. The part outside the loop is called the
extended range of the loop and is allowed by ANSI standard FORTRAN, but we do not
particularly recommend it. In most cases, the extended range can as easily be
included within the loop instead of outside. This is usually less confusing and may
produce more efficient object code.

It is permissible (and useful) for one DO Loop to lie within the range of another. These
are called nested loops. Nesting may extend to any level (like a group of smaller and
smaller boxes each inside the previous one) as long as each loop lies entirely within
the next outer one. That is, the ranges may not overlap. The following loops are

illegallz nested:

DO 1 DO 3 DO 5

DO 2 3 DO 4 | DO 6

1 CONTINUE 4 CONTINUE DO 7
2 CONTINUE | 6 CONTINUE
7 CONTINUE
5 CONTINUE

In the third example, loops 6 and 7 correctly lie within loop 5, but loop 7 does not
lie within loop 6. '

The following loops are correctly nested:

4.9

R I e B e et e R

A

COMPUTER AUTOMATION, INC. :&‘

DO 1 DO 3 DO 4§
DO 2 pos | pDos)
2 CONTINUE 3 CONTINUE | DO 6
1 CONTINUE = 6 CONTINUE
5 CONTINUE
o DO 4
4 CONTINUE

The second and third examples illustrate that two or more nested loops may terminate

on the same statement. When that happens, the compiler generates the various sets

of loop testing code in the proper order (inversely t¢) the order that the DOs appeared) .
|

The rules about jumping into and out of DO loopran(@i;es‘apply in the same way when the

loops are nested. You cannot jump from an outer loop into an inner loop. If more than

one loop ends on the same statement, only the inner one can jump to that statement.

The following example shows nested DOs used to multiply a 3x8 matrix (A) by an
8x5 matrix (B), producing a 3x5 matrix (C). (The DIMENSION statement will be
described in chapter 6.) ’

DIMENSION A (3,8) , B(8,5) , C(3,5)

DO2Jd=1,5
Do2I1=1,3
cd,d)=0

DO2K=1, 8

2 Cd,d)y=cd,d)y +Ad,K) *B(K,J)

CONTINUE STATEMENT

This 15 a ""do nothing" statement that only serves as a place to put a statement label for
the termination of a DO, when the DO would otherwise end on a transfer. The statement
is written:

CONTINUE

The discussion of DO ranges in the previous section contains an example of the use of
CONTINUE.

4.10

COMPUTER AUTOMATION. INC.

CALL STATEMENT

This statement transfers control to a subroutine. The subroutine is a separate
program that may either be written in FORTRAN (see the SUBROUTINE statement
in chapter 7) or in assembly language. The CALL may or may not pass arguments
to the subroutine, depending on the form used:

CALL sub |
CALL sub(a,,az. cea 8p) i
where: sub is the name of the subroﬁtine;.
a; is an argument, which may be a constant, variable, expression,

or the name of an array or another subprogram. Arguments
are discussed in greater ‘detail in chapter 7.

A subroutine differs from a function in two ways. First, it may be called with no
arguments, while a function may not. Second, it does not return a value through
its name and so may not be used in an expression. In fact, a subroutine has no

data type associated with it. It is simply the name of a block of instructions to be
executed.

A subroutine can return values in a sense by storing them in its arguments.
Arguments to a subroutine may be either input arguments or output arguments (or
both), depending on what the subroutine does with them. For example, a subroutine
to compute the roots of a quadratic equation might be called with:

CALL QUAD(A,B,C,R1,R2)

2

where A, B, and C are set up before the CALL. The subroutine, QUAD, uses these
arguments to compute R1 and R2, and the calling program can then use R1 and R2.

Arguments should be modified in this way only if they are variables or arrays. An
example of an argument used for both input and output might be:

CALL ROUND (X,4)

which could round X to four digits and store the new value back into X.

4.11

s s e e

COMPUTER AUTOMATION. INC.

Examples of CALL statements:

CALL AVERAGE (X-Y,A(1)**2,13.7)
CALL ERROR -

CALL OUTPUT (ALPHA , N.GE.0)
CALL HOME (GR4-6633,'l PI MOD E')

The last example shows the use of a long alphanumemc string as an argument. This
is descrlbed further in chapter 7. |

i

RETURN STATEMENT

|
I
i

CALL is used to transfer to a subroutine. RETURN is used to get back. It can "get
back" from either a subroutine or a function written in FORTRAN. When it returns
from a subroutine to a CALL, it goes to the statement immediately following the CALL.
When it returns from a function to a function reference, it goes back to the point of
reference in an expression and supplies the function value, so that the rest of the
expression can be evaluated. RETURN is written as simply:

RETURN

In any FORTRAN subprogram (SUBROUTINE or FUNCTION), a RETURN statement
must be the last statement executed. It does not have to be physically the last
statement in the program. There may be several RETURNs in a program, each
having the same effect.

|
PAUSE STATEMENT

I‘ .
PAUSE is used to temporarily suspend execution, usually to allow the computer
operator to perform some specified action (such as mounting a tape or deciding
whether to continue). The operator can then signal the program to continue execution,

beginning with the statement immediately after the PAUSE.

A PAUSE statement types out "PAUSE" to the computer operator and will also display
a number to him:

PAUSE (equivalent to PAUSE 0)
PAUSE n
where: n is an unsigned decimal integer.

PAUSE may not be a meaningful operation in a real time environment, especially if
there is no computer operator and/or no display device.

4.12

B g e e

COMPUTER AUTOMATION. INC. :ﬁ.

STOP STATEMENT

STOP is written in the same two formats as PAUSE, namely:

STOP (equiyvalent to STOP 0)
STOP n
where: n is an unsigned decimal integer.

|
STOP terminates execution of a program and causes control to be returned to OS or RTX.

It is usually the last statement executed in a maih program. If it appears in a subprogram
control is not returned to the calling program. }Fhe integer value will be output (if
possible) before termination. v

i

END STATEMENT

END must be the physically last statement in each program. It is not an executable
statement (such as STOP), but simply terminates compilation. However, if no
STOP or RETURN has been encountered, END will have the same effect as STOP in
a main program or RETURN in a subprogram. An END may be labeled.

The END statement introduces one restriction on the use of continuation lines.
Ordinarily statements may be broken at any point and continued on the next line.
However, once the compiler has found "END", it will not read another line to look
for continuation. Thus the statement:

END = 1.0

!
will properly be recognized as an assignment statement, while:

END
2 = 1.0

will not.

4.13

TSR T

COMPUTER AUTOMATION. INC. '| _

!

CHAPTER 5

INPUT/OUTPUT

INPUT/OUTPUT LISTS

There are several forms of input/output statements. All of them make usc of an

~ input/output list to specify the items to be procqlssed. In an output statement these

items have their values output, while in an inpqt statement these items have new
values read into them. : I

]
Simple Lists o

A simple list is composed of scalar variables, array elements, and array names,
separated by commas. Parentheses may also be used to enclose groups of items
if you desire; this has no effect. (On DO-implied lists, below, parentheses are
mandatory.) The OUTPUT statement, described in the next section, also permits
constants to appear in the list. |

Examples of input/output lists:

X

J, MAX, MATRIX(3,1,2)

ALPHA, B(J), MATRIX, (RATE,TIME)
Z2(1), 2(2), Z2(3)

When an unsubscripted array name appears, it represents all of the elements in the
array, one after another. The elements are taken in the same order that they are
stored in memory. (This is discussed in chapter 6.) Suppose that MATRIX is a
%xeZ array. Its elements would be processed in the following order:

MATRIX (1,1,1)
MATRIX (2,1,1)
MATRIX (3,1,1)
MATRIX (1,2,1)
MATRIX (2,2,1)
MATRIX (3,2,1)
MATRIX (1,1,2)
MATRIX (2,1,2)
MATRIX (3,1,2)
MATRIX (1,2,2)
MATRIX (2,2,2)
MATRIX (3,2,2)

Note that it starts with the lowest value for each subscript and ends with the highest

value for each subscript. In between, the first subscript varies most rapidly and
the last subscript varies least rapidly. This is sometimes called "columnwise"

5.1

g

s

COMPUTER AUTOMATION. INC. :‘&f

ordering, because in a two-dimensional array, the elements are taken by columns
rather than by rows. For example:

A(l,1) L-T1AL2) _4A(1,3)
A@, D T A .7 1A(2.3)
AGD -7 AB.2) .- A(3.3)

To process array elements in a different order, or to process only part of the array,

you have to specify the various elements, either individually or using DO control, as
described below. ’

|

I

DO Controlled Lists " t
‘ |

A DO controlled list is a simple list followed by a comma and then by a DO control,

with all of this enclosed in parentheses. An I/0 list DO control looks exactly like the
part of a DO statement that follows "DO k", namely:

V=n11 ,m2,m3

where: v is a simple integer variable.

m, , m,, mj3 are the DO parameters, each either a simple integer
variable or an integer constant.

The "range" of an 1/0 DO control consists of the items in the simple list preceding
the DO control. The meaning is then essentially the same as in the DO statement:
"Process these items over and over, first with v equal to m; and then incrementing
v by my until it exceeds m, ." If m5 is not present, it is automatically 1.

For q;xample, the first five elements of the array X could be specified by writing:
|

| (XM, I1=1,5)
This has exactly the same effect as writing:
X(1),X(2),X@3),X4),X(5)
A DO controlled list, enclosed in parentheses, becomes a simple list item and can be
intermixed with other items as if it were a variable or array name. In particular,
this means that one DO controlled list can contain another one (as one of its simple

list items), and this nesting can be continued to any level. This makes it possible
to step individually through each subscript range of a multi-dimensional array.

5.2

e i

COMPUTER AUTOMATION. INC.

For example, in the preceding section we showed how the 3x3 array A wns processed
columnwise when it appeared unsubscripted. You could do the same thing by writing:

((AU,K), J=1,3), K=1,3)

The inner loop is on J, causing the first subscript to vary most rapidly. Conversely,
if you wanted to print out the array by rows, you could write:

((AUJ,K), K=1,3), J=1,3)
The DO control variable (as well as the other pa1 ameters) are available (materialized)
within the list and may be used as list items, bui‘ only on output. Inputting into them
would change their values within a loop, which is not allowed. For example, the
following list could print out the values in two lﬁi)()—position arrays, with each two
values preceded by the position count: !

¢, X@), YJ), J=1,100)

The DO index might even appear only as a list item. Suppose you wanted to print the
odd numbers from 1 to 25 as headings to a table. You could do this by writing:

(N, N=1,25,2)

This assumes, of course, the use of a WRITE statement and the proper formatting,
which will be described in subsequent sections.

On input, every list item assumes its new value as soon as it has been processed, so it
can be used right away such as for a subscript. For example:

J, ALPHA(J), K, BETA{J,K), M1, M2, (X(I), I=M1,M2)

|
FREE FORM INPUT/OUTPUT

The standard form of input/output in FORTRAN involves the use of the READ and WRITE
statements and the FORMAT statement. The FORMAT statement is very ingenious and
can perform a lot of fancy editing, such as numbers in certain columns, decimal points
in certain positions, headings that line up, preceding dollar signs, etc. On the other
hand, its features, and the way they interface with the I/0 list, are rather complicated
to learn, even in simple cases.

Many programs need only to get some values in and some answers out, in an under—
standable way. The free form input/ocutput statements in Computer Automation
FORTRAN IV serve this purpose. The OUTPUT statement prints out values of any
type in an appropriate format. It also prints character strings for identification.
The INPUT statement likewise can read in all types of data, in essentially the same -
variety of forms as can be used for constants in a source program.

5.3

e

e

e e s

COMPUTER AUTOMATION, INC. '|

OUTPUT Statement

The OUTPUT statement is written:

OUTPUT list

The list is as described in the previous section. In addition, constants may appear in
the list (see below). |

i
Integer values and real values are printed with zl] decimal point and six
significant digits (also an exponent if larger than 9b9999 or smaller than .1).

‘Double precision is the same except with 16 SIgmflcant digits, which also means

that an exponent is not needed until the value reaches 10'7. Complex is output as
two reals. Logical produces either a T or an F. Values are separated by commas,

not only for readability but also for symmetry W1th the INPUT statement (below),
which requires a comma separator.

Values are printed across a line until there is not room for the next value. Then a
new line is begun. Line width is dependant upon the listing device.

For example, the statement:

OUTPUT K, X(K), ALPHA, AVOGADROS NUMBER
might produce the line:

2. . 23.7141, .427000, .602470E 24

Herei is another example, assuming the types shown:
| LOGICAL L
DOUBLE PRECISION D
COMPLEX C

ouTPUT L, D, C
This might produce:
T, 40000000.00018375, 0.00000, 1.00000

As described in the previous sections, an array name appearing without subscripts
represents all the elements of the array in storage order. DO control may also be
used on OUTPUT lists. For example:

OUTPUT (K, A(K), K=3,30,3)

In either case, array elements are output simply as a sequence of values (with as
many on each line as will fit), regardless of the array's dimensions.

5:4 Revised March 1975

i i B

o4
i G 3

A

COMPUTER AUTOMATION, INC. =

You may also use a constant in the list of an OUTPUT statement. This is provided
mainly to allow for alphanumeric string constants, although other kinds of constants
are acceptable too (except for a signed complex constant) .t

The string constant enables you-te-print messages indicating what is going on or
identifying other numeric values. For example:

OUTPUT 'ANALYSIS DONE', 'AVERAGE =',AV,'COEFS =',A,B,C

|
Each alphanumerlc constant always begins on a new line, so this might produce the

followmg lines: ; |
ANALYSIS DONE
AVERAGE = 4.53700 ‘
COEFS = 2.00000, -140.000, 0.00000
Blank lines can be introduced by using ’strin‘gs consisting only of blanks:

OUTPUT 'BEGIN TABLE OF RATES', '', ' ', RATE1, RATE2

Note that the second blank string was needed to begin output on a different line from
the first blank string.

All output begins in column 2 of the output line, in order to avoid any vertical
carriage control. (See "Carriage Control for Printing", later in this chapter.)

The OUTPUT statement always produces its output on the "standard output" device,

’whnch is arbitrarily assigned the unit number 6. (See "Unit Assignments", below.)

Ordmarlly you need not be concerned about this. Each installation will have the
standard input and output units assigned to some particular devices, such as a
card reader and printer or both to a typewriter. If you want your output on some
other device, however, you have to reassign unit 6 at run time.

Another thing that you need not be concerned about, but which may be of some interest,

is the formats used by the OUTPUT statement. These are shown below and will be
described in detail in a subsequent section ("FORMAT Statement").

Integer ‘ ~ G16.8,',"
Real G16.8,"',"
Double Precision G33.16,',’
Complex 2(G16.8,"',"
Logical L16,',"'

t Parentheses are always assumed to enclose a sub-list of items. A complex constant
will thus be correctly pro¢cessed as two real constants, but a sign before the left
parenthesis is not allowed::

e

(=)

The following comma is output on all but the last value on a line. These formats are
all multiples of seven columnsg in width, so that numbers will tend to linc up.

INPUT Statement

The INPUT statement has essentially the same form as the OUTPUT statement,

t

INPUT list |

except that the list may not contain constants. (It oes not make sense to read in
a new value for a constant.) '

The INPUT statement reads as many values as there are items in the list. There
may be any number of input values on a line, separated by commas. If there is no
value on a line (i.e. it is blank), this is assumed to be a value of zero.
The processing of input values by the INPUT statement is more like that of constants
in a source program than it is like that of other formatted input (i.e. the READ
statement) . For one thing, there is no fixed width for the values. They may be as
long as desired, terminating on comma or end-of-line. Also, blanks are not
significant; they are ignored. In other formatted input, embedded and trailing
blanks are usually treated as zeros. To avoid confusion, however, we recommend
that you avoid embedding blanks in input values. The line

2 3 4

may iook like three values, but it is only one. Preferably, this one value should be
written:

o
while three values should be written:
2,3,14
As an e'xample, the statement:
INPUT A, B, L, M, X(L,M), R(5)
might read just the following line:
714.6, -31, 4,6, 0, 3E-7

or it might read these four lines with the same effect:

5 6

COMPUTER AUTOMATION. INC. '| _

e o]

& SN

#

COMPUTER AUTOMATION. INC. '|

.T146E3
-31.0000, 4, 6.0

[blank]

.0000003
Note that the third line is blank, which indicates a value of zero. In general, a
new field begins at the start of each new line and at each comma. If no value is
found between there and the next comma or end-of-line, a zero value is assumed.
Thus the values above could also be represented) as:

714.6, -31.0, 4 -
6, , 3E-7 o

or as:

714.600, -31,4.,6,
.0000003

This latter example illustrates the fact that you should not write a comma after the
last value on a line unless you intend a value of zero to follow it.

You can also see from the above examples that numeric values can be expressed in
a variety of ways. Regardless of the type of the variable being input into, the

input value can be an integer or have a decimal point or an exponent (either E or D).

If necessary, the resulting value will be converted to the type of the variable. For
example, if a number with a decimal point is read into an integer variable, the
fractional part will be thrown away. '

|
Cq mplex values must be read in as two real values. Logical values may be any
string containing a T or F. The string is terminated by a comma or end-of-line.
If neither a T or F has been found, F (false) is assumed. Thus the first three values
below are true, the remaining four false:

T, TRUE, .TRUE., F, , FALSE, .FALSE.

Unsubscripted arrays may be used. There must then be enough values read in to
fill the array. Similarly DO controlled lists are also acceptable. For example, if
V and W are both ten-element arrays, the statement:

INPUT V, (W), J=1,5)

5.7

EE R B e i

2

sl

COMPUTER AUTOMATION, INC. »=-’“-

would expect to find ten values for V and five for W(1) through W(5).

If both the standard input and output are assigned to a typewriter console, then the
following statements could be used in a conversational manner to input values and
output results:

3 OUTPUT 'ENTER BASE AND EXPONENT
INPUT X, N ’
Y = X ¥* N :
OUTPUT 'X **N="',Y ,'"'
GO TO 3

|
This might result in the following: ’

(typed out) ENTER BASE AND EXPONENT
(typed in) 4.7, 2 ‘
(typed out) X ** N= 22.0900
(typed out)
(typed out) ENTER BASE AND EXPONENT
(typed in) 62, 8
(typed out) X ** N = 218340E 15
etc.

The INPUT statement always reads from the standard input device, which is unit
number 5. Like the standard output unit (6), this is associated at each installation
with a particular device, but can be reassigned at run time.

UNIT; ASSIGNMENTS

Wherﬁ you want to perform an input/output operation, it is necessary to specify

what device the operation is to be performed on. With the free form I/0 statements
just deseribed, this is handled autematically. INPUT always reads from unit 5,
OUTPUT always writes on unit 6. For all other 1/0 statements, you must specify a
unit number, which is an integer value from 1 to 99. Then, when your program is
loaded, the unit numbers you have used must be assigned to particular devices. Of
course, you can use units 5 and 6 (on READ and WRITE statements, for example) and
these are automatically assigned to the standard input and output devices respectively,
Each installation can determine which devices are to be designated as the standard (or
default) input and output units.

In any input/output statement (READ,WRITE,REWIND ,BACKSPACE, or END FILE) the
unit number is specified by either an integer constant or a simple integer variable.

5.8

b e SRR

COMPUTER AUTOMATION, INC. 'l _—

FORMATTED (ASCII) READ AND WRITE STATEMENTS

i
i
|
?
i
i

The formatted READ and WRITE statements deal with ASCII records (as opposed to binary
records). They always operate in conjunction with a FORMAT statement, which controls

the editing applied to the input or output. This editing may include decimal or hexa-
decimal conversion, selecting certain columns for the data to appear in, positioning of
decimal points, processing of alphanumeric strings, and determining exactly how many
records will be read or written. This allows, but also requires, a degree of control
over external formats that the INPUT and OUTPUT statements do not have.

The READ and WRITE statements have the follow%ng form:t

READ (u,f) list and wlkuT‘E (u,f) list
where: u is a unit number, represented by either an integer constant or a
simple integer variable- '

f is a FORMAT reference. Usually it is the label of a FORMAT statement.
It may also be the name of an array in which a FORMAT is stored (see
"FORMATS stored in Arrays", later in this chapter).

list is an input/output list, as described in the previous section, "Input/
Output Lists".

A READ always causes at least one record to be read from the specified unit. The data
read is converted into values which are stored in the items in the list, in order. The
conversion is controlled by the FORMAT statement, which is described in subsequent
sections. Here is a simple example:

READ(1,7) Y, K
7T FORMAT (F12.3 /16)

Y is the first variable to be read and F12.3 is the first format specification. This
sg)ecification says that the value to be read lies in the first 12 columns, with a default
decimal point 3 columns from the right end (i.e. between columns 9 and 10). The /
means read a new record, ignore the rest of what is on the current record. Kis
then the next list item and 16 is the next format. This says that the value occupies
six columns. If the two records had the following data on them: ‘

bbbb-6789012
bb34567

Y would be set to -6789.012 and K would become 3456 (since only the first six columns
are considered).

t See also "END= and ERR= Options", later in this chapter.

5.9

e i

T e

.

COMPUTER AUTOMATION, INC. 4:'.'.“-‘
A WRITE always writes at least one record on the specified unit. It takes the values in

the list and converts them into character strings to be written out, under control of
the FORMAT. For example:

WRITE(6,23) Y. K
23 FORMAT (4X , F8.1 , ' MOLTS ON TEST NR', 15)

The first format specification is 4X, which says to skip the first four columns. The
next is F8.1, which is used with the value Y. It says that the value must lic in the '
next 8 columns and have 1 digit after the decimal paint. The next format is an alpha-
numeric string, which operates without any list item, as the 4X did. It causes those
characters to be printed in the succeeding column's,{ Then the I5 causes K to be output
in a 5 column field, right-justified. Suppose that Y and K had the values read into
them above (-6789.012 and 3456). This WRITE .and‘FORMAT combination would producc

the following record:
bbbbb-6789.0 bVOLTSbONbTESTbNRb3456

The sections on the FORMAT statement describe the various things it can do and how
it interfaces with the I/0 list in more complicated examples.

The FORMAT statement determines the number of records processed, except that it
cannot suppress the processing of at least one record. In particular, you cannot

read the same record twice or use two WRITE statements to produce information on
one record. However, the same effect can be obtained using the DECODE and ENCODE
statements, described later in this chapter.

An ASCII record has a maximum size of 132 characters. On some media (cards for
example) the size is smaller. Keep this in mind because the READ and WRITE
statements do not automatically begin a new record when the old one is full. They
only begin a new record when the FORMAT tells them to. If you try to write too many
charncters on a record, the excess ones will be lost. If you try to read too many
characters from a record, the extra ones will be assumed blank.

On some devices a zero-character record is meaningful. For example, an input line
from a typewriter might consist only of a carriage return (which is treated as an end-
of-line, not as part of the record). This would be equivalent to a whole line of blanks.

Since some format specifications operate without list items, it is possible to have a READ
or WRITE statement without a list of variables. For example, the following statements

would print four blank lines and then one saying "END":

WRITE (3,9)
9 FORMAT (////' END')

When records are output to a print device, column 1 is reserved for carriage control
and will not be printed. See "Carriage Control for Printing", later in this chapter.

5.10

A
-

o b

g

o)

COMPUTER AUTOMATION. INC. =.‘§.

UNFORMATTED (BINARY) READ AND WRITE STATEMENTS

The unformatted READ and WRITE statements are not used by a program for communi-
cation with the outside world. They are used only to provide intermediate storage on
external devices, particularly magnetic tapes. They have the form:

READ (u) list and WRITE (u) list

where: u is a unit number.
list 1is an input/output list.

These statements process the list items in binary h using as many bits as the type of each
variable requires (16 bits for integer, 32 for‘reai, etc.). Each READ or WRITE statement
processes exactly one "logical" record. That is, the entire string of bits is considered

a discrete entity, called a logical record, even though, in fact, it may have to be broken
up into a number of physical records on the external medium. Each logical record
includes a count indicating its size. The size is determined by the WRITE statement that
produces it. A READ statement may subsequently read less data from a record than it
contains, but not more; this is an error. If less than the full record is read, there is no
way to get at the remainder. Thus there is a one-to-one relationship between binary
READs and WRITEs. This is particularly true because the control words and record
format are unique to a particular FORTRAN system. These statements are not intended
to create information for, or deal with information from, other computer systems.

Normally there should be a list specified on a binary READ/WRITE. A READ with no list
would just skip a record. A WRITE with no list is not very meaningful. A null record
would be produced, which could only be re-read by a READ statement without alist.
Examples of unformatted READ and WRITE statements:

|

‘ READ(7) (X(J), J=1,200)
WRITE (NU) MATRIX
WRITE (3) AA, BB, (CC({J,3), J=200,500)
READ (K) GRID, COEFFICIENTS

END= AND ERR= OPTIONS

These options are available on both the formatted and binary READ/WRITE statements
to allow you to process multiple files (on READ) and to deal with I/O transmission errors
(on both READ and WRITE). They have the following forms:

END=K, and ERR=k,

where: k is the label of a statement to transfer control to if an end-of-file
or error is encountered, respectively.

5.11

Ceesgmmemse o 0 D

I

COMPUTER AUTOMATION. INC. '|

Either or both of these options can appear in a READ/WRITE statement, in ¢ither order,
in the position shown below:

READ (unit,format,options) list
READ (unit,options) list

Examples:

READ(5,77,END=3) X, Y, Z

; I . . .
If this READ statement encounters an end-of-file, control is transferred immediately
to statement number 3, without processing the rest of the input list.

WRITE (6, ERR=99) MATRIX

If an unrecoverable hardware error occurs while trying to write out the contents of

'MATRIX, processing of the list stops and control is transferred to statement number 99.

There is no way of telling how far through the list the statement got before the error.
READ(1,100,END=20,ERR=30) L, M, N

An end-of-file transfers control to statement 20, an error to statement 30. It is not
possible for both to occur at the same time, because an error will be noticed before
an end-of-file can be recognized.

If no END* is specified, and an end-of-file is nonetheless read, an error message will
be prTintcd and the program will terminate.

i

INTEL{NAL DATA CONVERSION

Sometimes it is useful to be able to perform the data conversions that the FORMAT
statement does, without actually reading or writing any records. For example, suppose
you want to have input cards on which the first value determines how the rest of the
card should be processed. It might specify whether the remaining fields should be

read as alphanumeric or numeric, such as in the following:

1 ABCD
2 462 17
1 WXYZ

Here a card beginning "1" has two 2-character alphanumeric fields, while a card
beginning "2" has two integer fields, each four columns in width. It is not possible

5.12

T

COMPUTER AUTOMATION. INC.

to read and distinguish both kinds of records using the normal READ statement, since
the FORMAT statement has to be specified in advance and cannot be changed partway

through the record. Nor is it possible to read the same record twice (unless it is on

something like magnetic tape and you backspace and read again) .

The DECODE statement handles this kind of operation. It does the FORMAT conversion
without the READ. In fact, a formatted READ can be thought of as a two part operation,
the input of a record into a buffer and a DECODE on the buffer. Likewise, a formatted
WRITE is basically an ENCODE into a buffer and the writing out of the buffer. (This
writing out is not the same as an unformatted WRITE.) With a DECODE or ENCODE
statement, the buffer is specified by the user. It is usually an array or part of an array.
Conversions then take place into and out of that buffer area. These statements have the

following forms:
|

DECODE (c, f,s,n) list ENCODE (c,f,s,n) list
or o or
DECODE (c,f,s) list | ENCODE (c,f,s) list
where: c defines the number of characters per internal record (in the

buffer area). It is either an integer constant or a simple
integer variable.

f specifies a FORMAT statement. It is either a statement number
or is the name of an array in which a FORMAT has been stored.

] indicates the start of the internal buffer. It may be an array
name, an array element, or a simple variable. If it is a simple
variable, it is usually equivalenced to part of an array to

! provide room for the buffer (see EQUIVALENCE statement in

1! chapter 6).
|
I

n is a simple integer variable into which will be stored, on
completion of the operation, the number of characters actually
processed (scanned or generated).

list is an input/output list. .

In a READ/WRITE operation, the size of external records is predetermined; for example,

cards are eighty characters long. In a DECODE/ENCODE operation, there are no physical

considerations to determine this, so you can specify records of whatever length you like,
though we recommend a multiple of two characters. The "records" are simply consecu-
tive areas of memory within the buffer area. Each one begins right after the preceding
one ends. For example, if you specify 10-character records, the first five words of the

5.13

|

COMPUTER AUTOMATION, INC. '|

buffer constitute the first record, the next five words the second record, and so on.
As with READ/WRITE operations, the FORMAT statement determines when to start a
new record; over-flow from the previous record does not.

The characters in the buffer area are processed at two per word, without regard to

the type of the variable cr array used to define the start of the buffer.

DECODE Statement !

The DECODE statement causes the character string b?ginning at s to be decoded,
according to the FORMAT specified by f, and stored into the items in the I/0O list.
When the FORMAT specifies a new record, the rest of the current record (of length c)
is skipped. If you try to read more than c characters from a record, the extra ones
will be blanks.

As an example, consider the case described above of the two kinds of récords indicated
by a 1 or a 2 in the first column. These could be processed by the following statements:

DIMENSION KARD (39)
READ(5,9) KEY, KARD
9 FORMAT (I1, 1X, 39A2)
GO TO (1,2) KEY
1 DECODE (78,10,KARD) NAME1, NAME2
10 FORMAT (2A2)

2 DECODE(78,20,KARD) NUM1, NUM2
20 FORMAT (214)
The READ statement converts the value of KEY from column 1, skips column 2, and
storesithe next 78 columns in KARD (1) through KARD (39) at two characters per word.
(The 39A2 format does this.) Then if KEY is 1, the first DECODE is performed. It
processes two alphanumeric strings, each of length 2 characters (as specified by the
2A2) and stores them in NAME1 and NAME2. Otherwise, if KEY equals 2, the second

DECODE is done. It scans two 4-character integer fields (214), does the required
decimal to binary conversion, and stores them in NUM1 and NUM2.

DECODE essentially provides the capability of "rereading" an in‘put record.

ENCODE Statement

An ENCODE statement converts list items into ASCII character strings, according to
the format f, and places them in the buffer beginning at location s. If it tries to create
more than c characters in a record, the extra ones are lost. They do not flow over

5.14

e

T

Ao

spese

COMPUTER AUTOMATION, INC. :&* R

into the next record. When it writes fewer than c characters, the remainder are blanks.
In fact, like the formatted WRITE, the first thing ENCODE does with each rccord is to

set it to all blanks. This fact means that you cannot "rewrite" a record with two or

more ENCODE statements in quite the way that you can "reread" one with several DECODE
statements, since each ENCODE operation will blank out the prevous information. (How-
ever, the same effect can often be obtained by using small record lengths and only
encoding certain sections with each statement.)

For example, the statements:

DIMENSION JBUF (12)
X = 4.67 | |
N =-33 o
ENCODE (18,3,JBUF(3)) X, N

3 FORMAT ('"VALUES: ' , F5.1 , 14)

would produce an 18-character string occupymg JBUF(3) through JBUF (11), and this
string would consist of:

VALUES: bb4.7b-33bb

Since the FORMAT statement never spec1f1ed a new record, JBUF(12) would not be
affected.

~AUXILIARY INPUT/OUTPUT STATEMENTS

These three statements are used for manipulating magnetic tapes and equivalent
sequential files on disk.
l

f

REWIND Statement

REWIND u
where: u is the unit number, an integer constant or simple variable.

This rewinds tape unit u to its starting point. If end-of-files have been written, it
rewinds past all of them.

BACKSPACE Statement

BACKSPACE u

5.15

s it

COMPUTER AUTOMATION. INC. :&

where: u is the unit number, as described above.

Tape unit u is backspaced over one logicnl record. Usually this means one physical

-record. However, if the data was written by an unformatted (binary) WRITE statement,

then one logical record may consist of a number of physical records. In other words,
in binary, the BACKSPACE statement always backspaces over all of the information
written out by a single binary WRITE statement. This is made possible by the special
control words that the binary WRITE statement attaches to its records.

If a tape is positioned at its starting point, a BACKSPACE or REWIND has no effect.

END FILE Statement

END FILE u
where: u is the unit number.
This writes an end-of-file mark on tape unit u. If a tape is being simulated by a

sequential disk file, the END FILE statement writes a specia! indicator that can be
recognized as an end-of-file by the END= option, discussed above.

FORMAT STATEMENT

The FORMAT statement operates in conjunction with a formatted READ or WRITE, DECODE,

or ENCODE statement. It controls how the characters in each input record are to be
interpreted in assigning values to the list items, and how output list items are to be
conv*zrtod to character strings and where these strings are placed in output records.
Genelrally the conversion performed on output by any specification is the reverse of
that]Lwrformed on input.

The FORMAT statement has this basic structure:
k FORMAT (specifications)

The label, k, is shown here because this is one statement that should always have
a label. Otherwise it cannot be used.

There are a large number of different kinds of specifications, which are individually
described below. Usually they are separated by commas. Instead of a comma, one or
more slashes (/) may act as a separator. The slash is itself a specification (for new
record), but syntactically it acts as a separator rather than as one of the items to be
separated. In certain cases, the separator may be omitted entirely. This is permitted
following any H,', or X specification.

5.16

i g gt s i

COMPUTER AUTOMATION. INC.

Most format specifications operate on onc of the 1/0 list items. (In the case of a complex
item, two specifications are required, one for the real part and one for the imaginary
part.) Other specifications operate by themselves and do not involve a list item.,
FORMAT and list interfacing is described in detail in a later section, but basically it
works as follows. The FORMAT is processed from left to right. If a specification is
one that operates by itself, then its operation is performed and the next specification

is examined. If the specification is one that operates on a list item, then the next list
item is obtained and the appropriate conversion is performed. If, however, there were

,no more list items at that point, then the I/0O opeﬁ:'ation is finished, and processing of

the FORMAT is terminated, even if it has not all been used. If the end of the FORMAT

is reached, and there are still more list items, then the FORMAT is rescanned -- if

no more list items, processing is finished. Note that the I/0 list is always used completely
and only once, while the FORMAT may not bé finished or may be processed more than
once. Groups of specifications may also be enclosed in parentheses (up to eight levels

of nesting). This affects how the FORMAT is rescanned when it reaches the end, and

will be explained later. 3 ‘

Computer Automation FORTRAN IV includes sixteen format specifications, which
fall into five categories:

Decimal Non-decimal Alphanumeric Record
Conversion Modifier Conversion String Position
riw nP rZw nHs nX
rFw.d $ rLw 's' Tw
rEw.d * rAw /
i rDw.d
; rGw.d

The capital letters and $, *, ', and / are specifications. The small letters (except for s)
represent integer constants, which are counts with the following mecanings:

r is a repeat count that causes the specification to be repeated r
times (r >9). Ifr is not present, it is 1. Thus 415 means
15,15,15,15.

w specifies the total width of a field (w >0).

5.17

g e

s s s

COMPUTER AUTOMATION. INC. :&

d usually specifies the number of digits to the right of the
decimal point (except on G format output) (d=20).

n is a count of characters or of decimal scaling.

] is a string of alphanumeric characters.
These parameters are all discussed further in the sefctlons on the appropriate speci-
fications, below.

I Format (Integer) P

Form: riw

where: r is an optional repeat count. ‘

w is the total field width that will be created or scanned.
I format is intended primarily for integers, but it can also handle variables as well as
input fields that are floating point. In all cases, however, fractional parts will be lost.

Output. The integer value of the list item is converted to decimal and right-justified
in a field of width w characters. If negative, it is preceded by a minus sign. All of
this is preceded by blanks to fill out the field. If w is not specified large enough to

hold all of the digits or the minus sign, this is an error -- no value is output. Instead,

the whole field is filled with question marks to signal the overflow. A width of 6 is
always large enough to avoid overflow.

Here;are some examples of output using an I4 format:

|
|

! Value Output Field
7 bbb 7
-12 b-12
0 bbb0
+9999.73 ' 9999
-1000 2229

32767 2222

Input. A field of w characters is scanned for a decimal value, with or without a plus
or minus sign. Leading blanks are ignored. Embedded or trailing blanks are treated
as zeros. For this reason, you should be careful to right-justify input values in their
field. Otherwise each trailing blank will increase the value by a power of ten.

5.18

i e T A

At

If there is a decimal point and/or an exponent present in the field (i.c. a floating point
number), the fractional part of the resulting value will be lost. See "Numeric Input
Fields", later in this chapter, for more information on acceptable ways to write numeric
values for input.

!

For example, suppose the following input field were read into five variables using a
514 format specification: ‘

!

bbb1lb-23485937.9b3bb |

|

the resulting values would be 1, -23, 4869, 37, anf‘ld 300. Note that, unlike free-form
input with the INPUT statement, no separators are required between fields. The format

determines where one value ends and the next begins. Therefore, be careful in preparing

formatted input. If the values are off by even one column, the results will usually be
different. i

For added readability and safety, I format fields (and all other numeric input fields) may
also be terminated with commas, as described in a subsequent section, "Comma Field
Termination".

F Format (Fixed Decimal Point)

Form: rFw.d
where: r is the repeat count.
w is the field width.

d is the number of digits to the right of the decimal point (default value
; if no decimal point is input).

In standard FORTRAN, I' Format is used only with real type datz (or the parts of
complex data). In Computer Automation FORTRAN IV, it and the other numeric
formats (I,E,D,G) can be used with integer and double precision data as well.
Integers will simply be converted to floating point, and will always have a
fractional part of zero.

On input, F, E, D, and G formats operate exactly the same. On output, F produces no
exponent (c.g. 375.4), E uses an E exponent (e.g. .3754E 03), D uses a D exponent
(.3754D 03), and G uses either the F or E form, depending on the size of the number.

Output. The floating point value of the list item is converted to decimal, with d digits
after the decimal point. It is rounded at the last digit and then right-justified in a field

5.19

COMPUTER AUTOMATION, INC. 'l S

s

SO

Bt

= ‘Zfi ¥

COMPUTER AUTOMATION. INC. '|

i

of width w. As with integers, it is preceded by a minus sign if necessary, and then by
blanks to fill out the ficld to the left. If w is not large enough to accomodate all the
digits or the minus sign, an error is signaled by filling the entire field with question
marks.

The following examples are for output with an F8.3 format:

Value Output Field |

|

2.5 bbb2.750 |

~31.4886 b-31.489 |

.000477 bbb0.000 ’
8127 8127.000
-900.0007 -900.001
~999.9998 99992999
22650.0 99999999

To be sure that w is large enough, you have to have some idea how big the numbers
will get, since they require more space as they get bigger. If n is the number of digits
to the left of the decimal point and d is the number of digits to the right of the decimal
point, then to allow for these digits and the decimal point and minus sign, w must be
this large:

w>d+2+n

Input. The next w characters in the input field are scanned for a decimal value, which
may or may not have a leading plus or minus sign, a decimal point, or a trailing exponent.
Since i(hm'o are a large variety of forms in which the number may appear (it is even

possible to omit the E or D irn the exponent), please refer to "Numeric Input Fields", later

in this; chapter for complete details.

| .
As with [format, leading blanks are ignored, while embedded and trailing blanks are
treated as zeros. This will not be so harmful if a decimal point has appeared, since the
trailing zeros will have no effect, but keep it in mind.

If there is no decimal point in the input field, then by default one is assumed d positions
from the right. This usually means d positions from the end of the field, but if there is
an exponent it means d positions from the beginning of the exponent. Also, d positions
mean actual character positions, regardless of whether they have blanks or digits in
them.

For example, an F8.3 format would produce the following conversions:

5.20

propszion s

e R

*

s i v

COMPUTER AUTOMATION, INC. 'l

Input Field Resulting Value
bbbb1234 1.234
bbb1234b 12.34
bbl.234b T 1.234
-.756bE4 -7560.

‘bb3.Eblb 3.E10 ;
-b3bEbbl -.3.
bbbbbbbb 0.

|
|
E Format (Floating Point with E Exponent) ! ' i
o
Form: rEw.d ‘
where: r, w, and d are the same as for F format.

E format is similar to F format, except that on output it always attaches an exponent
to the value. This means that it can represent numbers of any size without needing
extra width.

Output . The floating point value is converted to decimal in the form of a fractional part
less than 1 followed by an exponent. The fractional part consists of a decimal point

and exactly d digits. It is round at the d'th digit. The exponent consists of E followed
by a space or a minus sign followed by a two digit decimal exponent. If the value is
negative, it is preceded by a minus sign. Then it is right-justified in a field of width
w and preceded by blanks. If w is not large enough, this is an error and the whole
field will be filled with question marks. To accommodate d digits, the exponent, the

decimal point, and a possible minus sign, this relationship should be observed:
; .
|

W::"d+6

‘These are some examples of output using an E10.4 format:

Value : Output Field
.76 0.7600Eb00
12.537 0.1254Eb02
-0.000632 -.6320E-03
-99999. -.1000Eb06
0. 0.0000Eb00

The P scale factor (described later) can be used to make the fractional part larger
or smaller than its normal range of from .1 to less than 1.

5.21

hal

COMPUTER AUTOMATION, INC. '|

Input. Originally E format may have been intended to read numbers with exponents,
while F format was for numbers without exponents. Now, however, they operate
identically on input, so the examples shown for F input also apply to E input. Secce
also the section on "Numeric Input Fields"”, later in this chapter.

D Format (Floating Point with D Exponent)

Form: rDw.d !
|

' |
where r, w, and d are the same as for E and F 'format .

D format is exactly the same as E format, except that ithe exponent on output values
contains a D instead of an E, to signal double precision. In ANSI standard FORTRAN,
D format may only be used with double precision list items, while E and F formats may

only be used with real ones, but in Computer Automation FORTRAN IV thecy may all
be used interchangeably. This means that D format is typically not used very much.

As an example of D output, D10.4 would convert:
12.537 to b.1254Db02

Input under D format is exactly the same as for E and F formats. See also the section on
"Numeric Input Fields", later in this chapter.

G Format (General)

For’m:I rGw.d

wherd: r is the repeat count (optional).
w is the total field width.

d on input, is the default position of the decimal point (as with E and
F). On output, however, it is the total number of significant digits
to be produced.

G format is a combination of F and E formats. On output, it acts like either F or E,
depending on which makes more sense for the size of number involved. It can be
used with integer, real, double precision, or either part of complex data. Integers
are converted to floating point first.

5.22

COMPUTER AUTOMATION. INC. 'l

Output. G format attempts to express numbers in the most natural way, which is in
F format unless they are too large or too small, in which case in E format. The d
(above) specifies the number of significant digits to be output, and this is exactly the
number of digits that will be produced. If the magnitude of the number is such that it
can be expressed by placing the decimal point anywhere within or at cither end of
those d digits, then that will be done and no exponent will be needed. llowever,

if preceding or trailing zeros would be required to express the value correctly (i.e.
more than d digits total), then E format will be used instead; the number will be
normalized and output with an exponent. |
To express this algebraically, let M be the m;agn"tude of the value to be output (rounded
to d significant digits). Then select an integer ;:1 such that:

10P-1< M <10° (if M:q. then p=0)

If the format is Gw.d, let j=w-4 and k=d-p. Then if 0< p < d, the format used is:
Fj.k,4X |

On the other hand, if p is less than 0 or greater than d, the format is:
Ew.d

This had best be illustrated by some examples. The first column contains the values.
The next two columns are the output fields produced by the formats shown.

‘ Value G8.3 G8.2
|

’ ' .07283 .728E-01 0.73E-01
; .7283 .728bbbb 0.73bbbb
| 7.283 7.28bbbb b7.3bbbb
72.83 72.8bbbb b73.bbbb
728.3 728 .bbbb 0.73Eb03
7283. .728Eb04 0.73Eb04

When the F form is used, and there is no exponent, those four positions are blank.
This causes the numbers to line up underneath each other better.

The size of w does not affect the choice of format; this is determined only by the size
of d and the size of the value. If w is not large enough, the field is filled with question

marks. To avoid this, the same rule applies as for E format:

w>d+6

5.23

I S

E s ey AR

i

‘The P scale factor, described below, has a peculiarity in its effect on G format. It
applies only when the E form is used, not the F form. This has two implications.
First, all numbers output in G format appear as their actual value, never off by a
power of ten. Second, values output in F form with a non-zcro P seale factor cannot
subsequently be input using the same format and obtain the same value. The scale
factor will take effect during input but-not during output. This is one of the fow

exceptions to the rule that what is output by a particular format can be input by the
same format.

!

|

The "d" field of a G format must always %be included, as a
positive non-zero value. For example, ‘ithe value "123.456"
output in a format of "G10.0" yields " | .E 03".

NOTE

input. G format input is exactly the same as F, E, and D input. See also "Numeric
Input Fields". ‘ ;

P Specification (Scéle Factor or Power of 10)

Form: nP

where: n is a positive or negative integer (or zero) that specifies the power
of ten to be used as a scale factor.

The P scale factor is a modifier that can be applied to any F, E, D, or G format to
change the position of the decimal point, i.e. to multiply or divide the value by a
power of 10. It is not separated from the format specification by a comma; it precedes

it immediately. If the format has a repeat count (or a $ or * modifier, described below),
the scale factor precedes that too. For example:

3PF10.2

-1P3E14.6

0PG9.3

-2P5*$F12.2

At the beginning of a FORMAT statement, no scale factor is in effect. This is equivalent
to a scale factor of zero. Whenever a non-zero P is used, it continues to apply to all
floating point formats thereafter until changed again. It is not reset to zero if the FORMAT
is rescanned due to additional list items. To reset it to zero, you must specify a OP.

Thus the following statements:

WRITE(6,1) A, B, C, D, E
1 FORMAT (F10.2 , E12.4 , 2PF7.3)

Process the list items with the following effective formats:

5.24 Revised March 1975

RS R

COMPUTER AUTOMATION, INC.

Variable Format

F10.2
E12.4
2PF7.3
2PF10.2
2PE12.4

moaOw»

Output. The internal value is multiplied by 10" before output. In other words, the
decimal point is moved right n places. (Of coursk if n is negative, the decimal

point is moved left.) On F format, this causes thfe number to appear larger or smaller
than it really is. However, on E and D formats,‘the exponent is decreased or in-

creased to compensate for the change in mantlssa so the actual value remains the same.

The only effect is to change the form of the number by introducing digits to the left of
the decimal point or zercs to the right of the demmal point. This is illustrated in the
following examples: »

P Value =7.3629 Value=9.9
Scale | F6.2 E9.2 F7.3 E10.3
2 736.29 - 73.63E-01 | 990.000 99.000E-01
1 - 73.63 7.36E 00 99.000 9.900E 00
0 7.36 .T4E 01 9.900 .990E 01
-1 .74 .07E 02 .990 .099E 02
-2 .07 .00E 04 .099 .001E 04
-3 .01 .00E 05 .010 .000E 05
-4 .00 .00E 06 .001 .000E 06

\Sdfaling on D format is exactly the same as for E. G format is a little strange. When it

chooses the E form, the scale factor works in the usual way, increasing the mantissa
and decreasing the exponent. This leaves the actual value the same. In order to be
consistent and say that G format always outputs the correct actual value, when it
chooses F form the scale factor (if any) does not take effect; itis ignored. Note,
however, that this introduces the inconsistency cy that if you output a number in G format
with a P scale factor, you may not be able to read it in again with the same format and
get the same value, since the P will apply during input (see below).

When a scale factor is in effect, numbers are rounded after the scaling has been performed

This can have an interesting affect on E format. In order to get the proper number of
digits left of the decimal point (or zeros right of it), an extra shift may be required.
This explains the discontinuous way that the exponents change in the above examples.

5.25

==

.

A

COMPUTER AUTOMATION, INC. =

The value zero is not affected by a scale factor.

Input. In general, the effect of a P scale factor on input is to reverse what it would
have done on output. (The only exception is the one above concerning G format.)
This means the external value is divided by 10", or the decimal point is moved left

n places. However, remember that in E form output, the exponent was changed to
compensate for the moved decimal point, leaving the actual value unchanged. There-
fore, on input, if a number has an exponent spemfled, it is assumed correct und no
shifting is done. In other words, a P scale factor aff?cts an input field only if it

does not have an exponent. For example: f

External Resulting value as !
Field function of P scale ‘ |
oP 1P | -2p :
0.68 .68 .068 68. |
0.68E0 .68 .68 .68

This is true for all of the floating point formats, F, E, D, and G, since they all work
identically on input.

Although there seem to be a lot of exceptions about the effect of P scale factors, these
two rules are always true, on both input and output '

1. If the number in the external field has an exponent, then it is
equal to the internal value, regardless of any P scale factor.

2. If it does not have an exponent, then:

external value = internal value x 10"

$ Specification (Preceding Dollar Sign)

Form: $

A special Computer Automation feature, the $ modifier enables you to print amounts
of money with a dollar sign immediately preceding, even with values of various sizes.
It applies to either F or I format and should be written immediately ahead of the F or |
(i.e. after a repeat count or any other modifier). For example:

$15 3$F10.2 -2P2*$F20.2

5.26

e

;,,,‘

S i e A s e

e

Output. After the value is right-justified in its field, a dollar sign will be placed
immediately ahead of the first character, which is usually a digit but may be a decimal
point or minus sign. The actual position of the dollar sign will depend on the size

of the number. If the field width (w) is not large enough to allow for the dollar sign
ahead of the number, this is an error and the overflow will be signalled by filling the
entire field with question marks. Itis a good idea, therefore, to allow plenty of width
on the format specification.

For example, here is how the value 46.35 would be printed using various formats with

the $ modifier: ;
i

Formai Output Fi’eld‘
$F8.2 bb$46.35'
$14 b$46

$F4.0 $46.

$F5.2 22229

The value -0.98 printed with a $F9.2 format would yield:

bbbb$-.98

Input. $is intended primarily for output. However, to be consistent, what it does
on input is to allow and ignore a dollar sign preceding a number. Thus these two
fields would be treated as the same:

bbb $4000. 00 and bbbb4000.00

|
Thée dollar sign must precede a minus sign if there is one. If the $ modifier does
not appear on the format specification, then a dollar sign may not appear in the field.

If one does, it will be detected as an error.

*Specification (Asterisk Fill)

Form: *

This is another special Computer Automation feature. It is often used in conjunction with
$ for printing checks. It causes the left part of the field to be filled with asterisks instead
of blanks. Like $, the * is a modifier that appears ahead of an I or F, but after any repeat
count. If both * and $ are used, the * should come first. (This is easy to remember, ,
because that is the way they will appear in the output field, with the asterisks first.) For
example:

5.27

e

A

COMPUTER AUTOMATION. INC. — -

*F10.4 3*120 *$F12.2

Output. All of the positions that would normally contain preceding blanks, to fill out
the field to the left, are changed to asterisks. The same is true if both * and § are

used at the same time; the dollar sign is inserted first and then the remaining positions
are filled with asterisks. It is not a error if there are no preceding positions to put
asterisks into. The asterisk is simply a substitute for blank, used if necessary to fill
out the field. Everything else must still fit in the field, including a dollar sign if
specified. ; |

1

: | .
Here are some examples of the use of *, some in c{omﬂination with $:
i |

Value , Format : ! Output Field
91.27 *F9 .2 i *HAKQ] 27
-4062.948 , *FQ9.2 f *-4062.95
3000 -2P*$F6.2 $30.00
27 *$110 : Kdkokkkkk$ T
0 *16 ’ *****0

Input. Like $, the * feature is intended mainly for output, but does something consistent
on input. It allows and ignores any number of preceding asterisks, up until it finds
something that is not an asterisk. For example, all of the above output fields could
be read as input fields using the same formats. If the * modifier does not appear in the
format specification, then the asterisk may not appear in the field. If one does, it will
be detected as an error.

|

|

Numer!ic Input Fields

,1

There are a variety of wayvs that you can express a numeric value for input, and they

are all equally permissible under any of the numeric formats, namely I, F, E, D, and G.
Any field that can be read using one of these formats can be read using any of the others.
The resulting value will be the same, too, except for the truncation performed by I
format. This means that numbers input by I format need not be integers (though they
usually are), numbers input by F format can have exponents, etc.. Free form input

(by the INPUT statement) is the same too, except for two things: blanks are ignored and
and there is no fixed field width (see below).

A numeric input field can be thought of as having two parts, a mantissa and an exponent.

If either part is missing, it is assumed zero. (Of course it is sort of pointless fo have an

exponent on a zero mantissa, but it is legal.) The mantissa may take any of these forms:
nnn nnn. .nnn nnn.nnn

(where nnn is a string of decimal digits). It may be preceded by a plus or minus sign.

5.28

gy

o T s RS

COMPUTER AUTOMATION, INC. '|

'

The exponent is normally written in one of these ways:
Eee , E+ee E-ec

wherce ee is a one or two digit power of 10 to multiply the mantissa by. If the plus

or minus sign is present, it is also permissible to leave out the E. We do not parti-
cularly recommend this form, since it is less readable and less like the form of source
program constants, but it is a traditional feature in FORTRAN and is thus allowed. In
this case, the field has the form:

i
mantissa+ee or | mantissa-ec
| |
A D may be used instead of E in the exponent, with no change in meaning. It is not
necessary to signal that an input value is double p'?recision, either by using a D
exponent or by using D format. If the variable in an input list is double precision,
then its input field will be processed in double precision regardless of the format or

exponent used. And if the variable is single prec1smn a D exponent on the data will
not make it double.

The rest of this discussion applies only to formatted mput not to free form input by
the INPUT statement.

When the mantissa contains no decimal point, the decimal point is assumed to be d
positions from the right end. (On I format d is automatically zero.) This means the
right end of the whole field unless there is an exponent. If there is an exponent, it
means d positions from th2 beginning of the exponent (which may begin with E, D,
+, or -). In other words, from wherever the mantissa ends, you count back d
positions (including tlanks) to place the deccimal point.

‘When using formatted input, remember that blanks will usually be treated as zeros and

can change the value of either the mantissa or the exponent. Leading blanks (on either
the/ mantissa or exponent) do not have any effect, except that they are counted as part
of the field width. However, once a digit or decimal point has been found, any embed-
ded or trailing blanks that follow are interpreted as zeros. Following are some

‘examples of permissible numeric input fields and how they are interpreted. Notice

that F, E, D, and G are interchangeable on input, and that when a decimal point appears
in the field, it makes no difference what the value of d is in the format.

Input Field Format Resulting Value

b23.b F5.2 23.
b2b.b E5.1 20.
b2bbb D5.1 200.
-b.b7 G5.0 -.07
b5bEbb3 E7.2 .5E 3
b5bEb3b E7.2 .5E30
4.60E+1 F7.0 46.
4.600+1 F7.0 46.
b-blb-blb G9.0 ~10.E-10
b+-b D4.2 0.

5.29

e st e

’

COMPUTER AUTOMATION, INC. ' —1

Some of the above are pretty strange and misleading representations, and we do not
particularly recommend them, but they illustrate how formatted processing works.,
To keep things simple and avoid mistakes, we recommend these conventions:

1. Do not embed blanks in strings of digits.

2. Make sure numbers are right- justified in their ficlds, so there will
not be trailing blanks. Or usc a comma terminator, described below .,

3. Use the E to introduce an exponent. \

|
4. Use a decimal point when needed, rather !tha'n relying on the default
value (d) in the format. : I

|

5. Use a value of zero for d (on input), so that the default decimal point
will be at the end of the number, where it naturally belongs.

Comma Field Termination

One of the problems with using formatted input, particularly, say, if you are typing
in numboers at a typewriter, is that you have to know the exact field width specified

in the format and then you have to count carefully to make sure you right-justify the
number in the field. This kind of input was really designed for cards, where columns
are clearly marked, and even there it is not always convenient.

Computer Automation FORTRAN IV provides a way of avoiding this problem. Any
field being processed by anl, F, E, D, G, Z, or L format may be terminated early
by a camma. When the comma is encountered, the field is treated as ending on the
previoitxs character, even though the field width (w) has not been used up. Thus
yvou can avoid trailing blanks. even when you do not know what the field width is.
For example, to read two values using a 216 format, instead of having to use:

bbbbl3bbbbb4
you can use:
13.4,

After a ficld is terminated by a comma, the next field begins immediately after the comma,
rather than where it would have begun if the full width had been used. The above example
illustrates once difference between this and free form input (by the INPUT statement).
There had to be a comma after the 4, cven though it was the last value on the line, becausce
otherwise the field would have had its declared width of 6, including five trailing blanks
that would be interpreted as zeros.

However, end-of-line is also treated as a terminator, in exactly the same way as comma.
This is significant mainly on typewriter input, where a carriage return indicates end-
of-line. Thus when typing in values, it is not necessary to follow the last onc on a line
by a comma to terminate it. The carriage return will have the same effect. The above
example could therefore be typed in as: '

13,4 (CR)

5.30

.

:4 B s b L s T

semprns

*|

COMPUTER AUTOMATION, INC. ' ""I

A comma terminator has another significant effect. It not only overrides the value of

w specified in the format, it also overrides the value of d. A default decimal point
makes some sense when fields end in a specific column, but when they can end
anywhere before that, it becomes more difficult to remember where the decimal point
is going to end up. So we have made the rule that, when numeric fields end on a
comma they should look like what they really are. If they have no decimal point,

they are an integer value. (In other words, the decimal point is assumed at the comma
or, if there is an expounent, at the beginning of the exponent.) For example, the four
values produced by a 4F20.3 format in reading the line:

bb12345,62bbb,b504E-3,bbb2.,

would be:

\

12345. , 62000. , .504, 2.

Notice that we used a very large field width on the F format, yet the input fields

need be only as long as required to express the numbers. It is a good idea to use
large widths in this case, especially in situations where the input values are being
prepared by someone who did not write the program. This will make sure that there
is plenty of room for the number and the comma. If the field is too short and the comma
falls beyond it, then it is too late to terminate the field. For example, if you used an

I3 format to read the line:

483,

the first field was already terminated at the third digit, so the comma falls in the
following field and terminates it.
|

A %blank or empty field aiways means zero, so you can use consecutive commas to
rq’present a group of zero values. For example;

1’)29 ’ ’ 3)
represents:

1,0,2,0,0,3

5.31

e e T

|

r

COMPUTER AUTOMATION, INC. 'I '_—__1

7 Format (Hexadecimal)

Form: rZw
where: r is the repeat count.
w is the field width.

\

7 format operates on internal values at the rate of four bits per hexadecimal digit ,
(four digits per word), regardless of the type of the value. Thus an integer contains
four hexadecimal digits, a real value eight, etc. The hexadecimal digits are:
1
0123456789ABCDEF oy

Output. If w is exactly the right size for the data type (e .g. 4 for integer), then the
entire value is output in hexadecimal, including leading zeros. If w is larger than
this, the hexadecimal number is right-justified in the fleld and preceded by blanks
(as with the other numeric formats) .

If w is smaller than needed, only the w rightmost digits will be output -- the ones on
the left will be skipped. This is not considered an overflow error, so no question

marks will be printed. Z format is—-épecifically designed to be able to print just part
of a number.

The modifiers P, *, and $ do not apply to Z format.

Examples:

List Item Type Value Format Output Fieid

1

|

| Integer : C102 z4 C102

| Logical : 0000 Z6 bb0000

. Real : 47D00A 80 75 ~ 00A80
Real : FF1234EB 7.9 bFF1234ER

Input. When w is exactly the right size, the list item is completely filled with the
hexadecimal digits in the field. If w is smaller, then the number is treated as a
hexadecimal integer; i.e., it is right-justified with preceding zeros in the list item.

5.32

T s I SR

COMPUTER AUTOMATION. INC. '|

If w is too large, the left-hand characters are skipped, and the required digits are
taken from the right end of the field. In all these cases, the operation on input is the
reverse of that on output.

Hexadecimal input fields may also be terminated early with a comma. In that case
the same rules apply, but w is counted as being the number of characters that
appeared before the comma. As in other numeric formats, blanks are treated as
Zeros. :

Examples: |
Input Field Format List lten{l ’l‘ype Resulting Value
et oes SRLELLUL ! |
3A22 Z4 Integer :3A22
ABCD Z2 " - :00AB
CID2E3 75 o : :1D2E
bb5CCbbb7b Z9 Real :05CC0007
A800, Z8 " ‘ : 0000A 800
123, Z2 Integer ‘ : 0012

L Format (Logical)

Form: rLw

where: r is the repeat count.
w is the field width.

L ;iformat operates only on list items of logical type and the values true and false.

|

|

:;
Output. The logical value is converted to either T or F and right-justified in the field
with preceding blanks. For example, a value that is true, when output with an L5
format, becomes: “

bbbbT
Input. Within the field of width w, the first T or F determines the value. If neither a T
nor F is found, the value is false. Characters appearing between the T or F and the

end of the field are ignored, except for comma, which terminates the field. The
followmg examples are input with an L6 format:

5‘33

e

COMPUTER AUTOMATION, INC. '|

Input Field Resulting Value
bbbbbT True
AFTERD False
X=Y+37 False
.TRUE. True -~—-
X,TRUE False

A Format (Alphanumeric) |
Form: rAw

where: r is the repest count.
w is the field width.

A format converts internal values to ASCII character strings (and vice versa) at the
rate of eight bits per character (two characters per word), regardless of the type
of the value. Thus an integer contains two characters, a double precision value
eight, etc. The ASCII characters and their hexadecimal equivalents are shown in
appendix C. '

Output. If w is exactly the right size for the data type (e.g. 4 for real), then the
entire value is output as a character string. If w is larger, the character string is
right-justified in the field and preceded by blanks (as with other formats) .

If w is smaller than needed, only the first w characters will be output -- the ones

to the right of this will not. This is the opposite of Z format (where information is
lost at the left) . In both cases, this is not an overflow error. Both A and Z format
are d(e:l;igxled to be able to process part of an item . -- A format the front part, and Z

|

format the back part.
|
Examples:
List Item Type Value Format Output Field
Integer : DAB3 A2 73
" :DAB3 A5 bbbZ3
Real : C3C1C9BF Ab5 bCAI?
" : C3C1CI9BF A3 CAI

Not all of the 256 combinations of eight bits correspond to printable ASCII characters.
(In fact, most of them do not.) Therefore you should not use A format to output
miscellaneous numeric values and expect to read what comes out. The variables
should already contain alphanumeric information, either previously read in by
another A format, or set up by a Hollerith or string constant, or even numerically
constructed.

5.34

e

COMPUTER AUTOMATION, INC. "]

Although integer variables only hold two characters, in many applications it is a
good idea to use them for working with alphanumeric information. They can be
operated on (e.g. masking, shifting) more casily. You can use integer arrays to
hold as many characters as you need.

For printing headings and other messages, H format (below) is generally more
convenient than A format, since it does not require any variables to have becn set

up.

Input. When w is exactly the right size, the list item is completely filled with the
ASCII characters in the field. If w is larger, thTi characters are taken from the
right end of the field. The left-hand characters aré skipped.

o
If w is smaller than needed, then the characters'in the field are left-justified in the
list item and followed by blanks to fill out the rest of it (as with Hollerith constants).
This is the opposite of Z format (and numeric formats in general), which locate short
input fields at the right end of the value. A general rule for alphanumeric data
is that internal values are left-justified, while external fields are right-justified.

Blanks have no significance in an A format input field as they are just another
character. The same is true of comma, which will not terminate an alphanumeric
field.

Examples:
Input Field Format List Item Type Resulting Value
up A2 Integer :D5DO (2ZHUP)
| DOWN A4 " :DTCE (2HWN)
$ TRUE Al Real :D4A0AOAO0 (4HTbbb)
| b3,b A4 " :AOB3ACAO (4Hb3,b)

i

H Format (Hollerith)

Form: nHs

where: s is a string of alphanumeric characters of any length.
n is the positive integer count of the number of characters
in the string, including blanks.

H format is one of the formats that operates without a list item. It transfers
character strings directly from the FORMAT statement into the external field or
(less often) vice versa. Note that the form of a Hollerith format is just like that of
a Hollerith or string constant.

5.35

e

e ‘1‘*"‘}":‘?‘“‘1{ S

COMPUTER AUTOMATION. INC. 'l

Output. The n characters following the H are transmitted to the next n positions
in the output field. For example, if R equals 12.75, the statements:

WRITE (6,10) R N
10 FORMAT (11EbINTERESTb=,F6.2,8H%/MONTH!)

would print the following line:
INTEREST = 12.75%/MONTH! \

a
Note that the blank after the equal sign came not from *he'H format, but from the
F format (a leading blank). }

Count the characters very carefully in an H string. If your count is too high, it
may extend over into some other format specifications; if it is too low, part of the
alphanumeric string will be interpreted as formats. Better yet, if the string

is very long, use the ' format (below), which does not require a count.

Input. H format is primarily designed for output, but there are occasions when
it can be useful on input. What it does is to take the next n characters from the
input field and insert them into the FORMAT statement, replacing the characters
that were there before. The original characters are then lost. This might be
used to change a title printed to identify each set of output values. For example,
if the statements:

READ(5,7)
7 FORMAT (35H)

read an& input line containing:
KOHOUTEK ORBITAL COEFFICIENTS
the FORMAT statement would be changed to:

7 FORMAT (35H KOHOUTEK ORBITAL COEFFICIENTS)

which could then be printed with a WRITE statement.

' Format (Hollerith)

Form: 's'

* where: s is an alphanumeric string of any length.

5.36

. e

A

COMPUTER AUTOMATION, INC. = -

This is an alternate form of the H format, with the character string enclosed
in quotes rather than being counted. For that reason, it is probably casier to
use, especially on long strings. '

Output. The characters between'the quote marks are transmitted to the output
field, which will have the same length. To include the single quote character
itself in the string, it should be written as two single quotes. For example:.

'JOE''S PLACE'

is equivalent to: ! ’
|

11HJOE'S PLACE o
In this case, the quotes must be truly consecutive. If there is even one blank
between them, they will be interpreted as the end of one string and the beginning
of another (since no comma separator is required). This is the only situation in
FORTRAN where a blank is significant in a statement without being contained in
an alphanumeric string. :

Input. As many characters are taken from the input field as are needed to fill
the positions between the quote marks. As with H format, this feature is less
often used. There should not be any quote characters in the input field. If

there are, they will be changed to blanks. Otherwise, they could have disastrous
effects on the FORMAT statement.

X Specification (Skip)

Fbrm: nXx

where: n is the positive integer count of how many positions
to skip over.

NOTE

An X with no "n" value preceding it will be ignored; it
is not equivalent to 1X.

X format skips over the next n characters in the external field. It transmits no
data.

Output. Normally you can think of X as creating n blank spaces in the output
field. For example:

FORMAT {5, 5X, 'SAMPLE'")
might produce this line:

bbb32bbbbbSAMPLE
5.37

s

o ——

COMPUTER AUTOMATION, INC. 'l

However, the T format (below) can be used to back up in a line. Using an X
then would not blank out what had previously been written. The only reuwson it
seems to do so normally is that all output lines are set to blanks initially.

Input. The next n character positions in the input field are ignored. The next
format will pick up processing at the n+1st position.

T Specification (Tab)

!

i
Form: Tw i l

|
where: w is the character position to tab to.

T is much like X, in that it transmits no data but merely changes the character
position. Instead of skipping forward a fixed amount, it skips to a particular
column. It works like the tab key on a typewriter, except that it can tab
backwards as well as forwards. This means, on output, that previously written

characters can be written over, and on input, fields can be read more than once.

(This is only occasionally useful.)

One useful thing that T does that X cannot is to get you to a particular input
column following a field that has been terminated early with a comma. Since you
do not know where the comma is going to be, you cannot skip forward with an

X to a fixed place. For ¢xample, you might have agents preparing cards with a
number somewhere in the first 20 columns and a name beginning in column 21.
If they use a comma to terminate their values (which is a good idea), the
following FORMAT would hendle this:

FORMAT (F20.0, T21, 10A2)
If a card did not have a comma terminator, then the T would have no affect.
The first position on a line is 1. You cannot tab to the left of that.

/ Specification (New Record)

Form: -/

Syntactically the slash acts &s a separator (i.e. like a comma) in a FORMAT
statement. Any number of slashes may appear between two specifications or at
the beginning or end of the list of specifications. A comma should not be used
before or after a slash. For example:

FORMAT (/F10.2,5X,4A2/2014//8710,'FINAL'///)

5.38

~——

e e

R

e

COMPUTER AUTOMATION. INC. '|

Whenever a slash is encountered, the current record is terminated and a new record

is begun. On output this means-that the old record is written out and processing starts
at column 1 of the new record. On input it means that any data remaining on the old
record is not processed. The next record is read and scanning starts at column 1.

If a slash is followed immediately by another slal$h (or the end of the FORMAT),
then the record just begun is terminated without any processing. On output '
this means a blank racord is written. On input it means that one record is
skipped. i

‘ I
In some FORTRANS, a slash preceding the final right parenthesis of a FORMAT
does not take effect on output (no blank record is produced). In Computer Automation
FORTRAN IV it does, so input and output are consistent. '

As an example, if the FORMAT shown above were used with an I/0 list with the
proper number of items (namely 33), it would write (or read) eight records,
with the 1st, 4th, 6th, 7th, and 8th being blank (or ignored).

Parenthesized Format Groups

A group of format specifications may be repeated by enclosing them in parentheses
and putting a repeat count in front.

For example:

|

| FORMAT (13 , 2(3A4,2X) , F10.2 , 3(5HRAH!))
1$ equivalent to:

FORMAT (13,3A4,2X,3A4,2X,F10.2,15HRAH! RAH! RAH!)

except for the way that rescan takes place (see below). Note that a Hollerith
format cannot have a repeat count, so the only way to repeat it is within parentheses.

Parenthesized groups may be nested within each other, to a depth of eight.

If the end of the FORMAT comes and there are still more list items, the FORMAT

is rescanned. However, if there are any parenthesized groups, the rescan

begins at the last such group, rather than at the beginning of the FORMAT .
Therefore, in the first example above, it would rescan only the 3(5HRAH!). This
would not do much good, since that part contains no formats that can transmit

any data. In this case, to get the whole FORMAT rescanned, you could write:

FORMAT ((I13,2(3A4,2X),F10.2,3(5SHRAH!)))

5.39

e

S

so that the last parenthesized group (determined by where it ends) is the large one
surrounding all of the specifications. The following section gives a more complete
description of how this works.

FORMAT and List Interfacing

[$3]

Formatte:d input/output cperations are controlled more| by the FORMAT statement than

by the 1/0 list. When a READ or WRITE (or DECODE jr ENCODE) statement is exe-
cuted, the FORMAT processor takes control. It proc leds by the following steps:

: Lo R

1. Each time one of these statements is begun, a new input record is read,
or construction of a new output record commences Thus each statement
must process at least one record.

2. A record is terminated (i.e. no longer scanned, on input, or written out, on

output) when any one of these three things happens:
a. A slash is found in the FORMAT .

b. The final right parenthesis is reached and there are still more list

items, so the FORMAT has to be rescanned. A rescan never processes
the same record.

¢. There are no more list items. This can happen either at the final right
parenthesis or at a format specification that would require another list
| item (e.g. F format).

|

3. A new record is begun on either condition a or b above. Condition ¢ is the

end of the statement, so no new record is begun.

4. Any specification that does not require a list item (i.e. H, ', X, T, or /) is

always processed when it is encountered, regardless of whether there are
any more list items.

A specification that does require a list item (i.e. I, F, E, D, G, Z, L, or A)
causes the FORMAT processor to look and see if there are any remaining.

If there is one, it performs the appropriate conversion and proceeds (unless
there is a type conflict between the format and the variable, which is detected
as an error). On the other hand, if there are no more list items, the current
record is terminated (written out if output), the input/output statement is
finished, and the next statement is executed.

6. When the final right parenthesis is reached, the FORMAT processor again

looks to see if there are any more list items. If not, the operation is terminated,

COMPUTER AUTOMATION, INC. =A ——————-1

e e

|
COMPUTER AUTOMATION. INC. '| S—

]

as described above. However, if there are more list items, the current

record is terminated, a new record is begun, and the FORMAT is rescanned.
The rescan takes place as follows:

o If there are no parenthesized groups of specifications in the FORMAT
statement, the whole FORMAT is rescanned.

o If there are any parenthesized groups, the rescan starts at the group
whose right parenthesis was the last one found before the final right
parenthesis of the FORMAT statement. To put it another way, the
outer parentheses are called l_‘evelfzero. Nested groups within are 5
then referred to as level one, level two, etc., according to their
depth of nesting. The rescan goes back to the most recent level one
group, if there is one, otherwise level zero. If the level one group
has a repeat count, it is included in the rescan. This is illustrated
in the following example:

[3Ad. | []
FORMAT (15,2(/3A4),Z28/3(F5.2,2(2X, (3A1,'ABC")),I3) ,E12.3,G13.6)

Rescan starts here. Last internal f Final right
closing parenthesis. parenthesis.

¢ If the part to be rescanned contains no format specifications capable of
transmitting data (i.e. no1, F, E, D, G, Z, L, or A), but there are
still list items that need to be transmitted, this is an error and will be
diagnosed. The same is true if the whole FORMAT statement contains
no data formats and there are any list items,

[—

Each list item requires one format specification (or one repetition of a repeated
format), except for complex variables, which require two, one for the real
part and one for the imaginary part.

8. Whenever a new record is read, or an old record written out, and an error

occurs or an end-of-file is found, and the ERR= or END= option has been
specified on the READ/WRITE statement, processing terminates immediately
and control is transferred to the specified statement.

FORMATSs Stored In Arrays

This feature makes it possible to use a variety of FORMATs without having to includc
all of them in the program as FORMAT statements, each one of which is referenced by
a different, but identical, READ or WRITE statement. Instead of referencing the label

5.41

s Rt i

g

st

e

COMPUTER AUTOMATION, INC. '|

of a FORMAT statement, any READ, WRITE, DECODE, or ENCODE statement can
reference the name of an array. The FORMAT can then be stored in the array, as
an ASCII character string.

The first character in the array should be the opening left parenthesis, The rest of
the format specifications follow, and then the closing right parenthesis. The
letters "FORMAT" do not appear. .

The FORMAT can be constructed in the array, using;jHollerith constants, DATA

statements, etc. However, more often it is read in at run time, using "A" format.
(In fact, this feature is sometimes called "FORMATSs #t run time".) For example,
these statements could appear first: l

DIMENSION MM (10) =
READ %,1) MM é
1 FORMAT (10A2) ’
and read in the line:
(2F10.3,17)

The array MM would then contain the following values:

MM (1) MM (2) MM (3) MM (4) MM (5) MM (6) MM (7) MM (8) MM (9) MM (10)

!(2! VFl' IO.' |3" II7I l)b' 'bb! lbb' 'bb' 'bbl

Now MM can be referenced as a FORMAT; for example:

|
| READ (5,MM) X, Y, K

|
The FORMAT processor will go to the first element of the array to begin, instead
of to a FORMAT statement.

You want to be careful to fill up all character positions of each of the array elements
that will be scanned; that is, two character per element if integer, eight if double
precision, etc. Otherwise there will be gaps between the FORMAT characters. This
can be disastrous, especially on the Hollerith formats, which will include these gaps
as part of character strings. This problem can also occur when using the ANSI
allocation option (see chapter 9).

5.42

COMPUTER AUTOMATION, INC.

CARRIAGE CONTROL FOR PRINTING

Normally printed cutput is single spaced; cach record appears on the next line. There
are provisions for double spacing, and cjecting to the top of a new page, and you should
be aware of them so that you will not activate them accidentally or lose information.

The first character position in any line that is eing output to a print device is
reserved for a vertical carriage control character. There are two such control
characters, and they cause the following actions to be taken:

o

|
Character Action |

0 Upspace two lines before printing (double space).
1 SKip to top of page before printing (page eject).

Any other character causes a normal single upspace before printing. (Overprinting

(+ in column 1) is not supported.) In any case, column 1 is never printed. It serves
only to control carriage action. The actual line is considered to begin in column 2, so
column 2 will be printed in column 1 on the paper (i.e. the whole line is shifted left one
position) .

Carriage control is usually specified with a 1Hx format at the beginning of the FORMAT
statement (1Hb provides normal spacing). However, information in column 1 could
result from almost eny format specification (e.g. F or A), in which case it would be
lost and might also produce an unexpected printer action. Therefore, if you are not
fooking for carriage control, be careful that your formats will not produce anything

n column 1. The free form OUTPUT statement always begins its output in column 2

80 that no carriage corntrol action will occur.

Note that if a record is output to some other device, such as a magnetic tape, column 1
will be included. If the tape is later listed, the same carriage control action will take
place as if it had been printed directly.

COMPUTER AUTOMATION, INC. '|

CHAPTER 6

DECLARATION STATEMENTS

CLASSIFICATION OF NAMES

Every name in a FORTRAN Program is classified as one of the following:

1 Scalar (simple variable) |
2 Array

3. Subprogram

4 COMMON block

If it is a scalar or array, it must have a type. Subprograms have a type if they

are functions, but rot if they are subroutines. Some of these classifications require
explicit declaration, using a declaration statement. Others result from implicit
declaration; that ic, the contexts in which the name is used.

Explicit Declarations

Explicit declarations include the following:

1.

Arrays. In order to be used as an array, a name must first have been dimen-
sioned. This can be done with a DIMENSION or type statement, or in a COMMON
statement.

Type. The IJXLMN rule (see below) determines the type of a name, unless
it is explicitly declared first, using an' INTEGER, REAL, DOUBLE PRECISION
COMPLEX, or LOGICAL statement.

Subprograms. Suoprograms can be defined or referenced within a program
(sometimes both). You define a subprogram with a FUNCTION or SUBROUTINE
statement, or by a statement function definition. These are described in the
next chapter. Most subprograms that are only referenced are classified
implicitly (see below). However, the EXTERNAL statement is used in certain
cases.

Storage Allocation. Normally the compiler chooses where to allocate

scalars and arrays. If you need to have them in a certain order, or overlapping,
or you want to share storage with other programs you can use the COMMON and
EQUIVALENCE statzments.

6.1

e

B

COMPUTER AUTOMATION, INC. =&

5. Data Initialization. FGRTRAN does not guarantee the initial contents of
variables upon loading, so you should not use a variable until it has been
assigned a value. The DATA statement assigns initial values upon loading,
so that you do not have to take the time and space to do it with assignment
statements at run time.

In general, declaration statements must appear at the beginning of the program,
EXTERNAL and DATA are exceptions. See appendix A

Implicit Declarations ‘ t

When you have not explicitly declared a name, it will be classified implicitly,
usually at its first appearance in the program This takes place according to the
following rules:

1. A name that begins with I, J, K, L, M, or N is integer type. Any other name
is real. Certain library functions are exceptions. See paragraph 6, below.

2. A name that is called with a CALL statement is a subprogram.

3. A name that appears in an expression, followed by an argument list enclosed
in parentheses, is a function, i.e. a subprogram. Of course, if the name has
previously been dimensioned, neither this nor the following rule would apply
to it.

4, A name that appears to the left of an equal sign, followed by a dummy list
enclosed in parentheses, is a statement function, i.e. a subprogram. These
are described in the next chapter.

|
Ij’ a name first appears in any other context (than the above or a declaration
tatement), it is automatically classified as a scalar (simple) variable.

w5

6. The complex and double precision functions in the library automatically have
a known type, as long as they are used_in the proper way as functions. Their
type does not have to be declared.

. Conflicting and Redundant Declarations

Conflicting and redundant declarations (either explicit or implicit) are not allowed.
For example, once a name has appeared in a type statement, it should not appear in
another one. A name may not be placed in COMMON twice, nor dimensioned twice.
Once it has been dimensioned, it may not be used without subscripts (except where

specifically allowed, such as in an I/O list or argument list). If a name has been

6.2

< e S

(

A

COMPUTER AUTOMATION. INC. - -

implicitly classified as a scalar, it may not be declared EXTERNAL. Errors such as
these will be diagnosed by the compiler.

DIMENSION STATEMENT -

The DIMENSION statement declares the dimensions of an array. It is written:

DIMENSICN Al' AZ’ A3, ces |

where A is an array declaration. Array declarat}tions (which may also appear in
type and COMMON statements) have the form: |
A

v(rl ,r2, “ee ,rn)

where: v is the name of the array.

n is the number of dimensions for the array. In Computer Automation
FORTRAN 1V, arrays may have any number of dimensions.

r defines the subscript range of each dimensions.

Usually the subscript range is specified by a single, unsigned integer representing
the upper bound of that subsecript. For example, a 3x10 array would be declared:

DIMENSION ALPHA(3,10)
This means that the first subscript runs from 1 to 3, the second from 1 to 10.

In Computer Automation FORTRAN IV, subscripts may have a lower bound other than 1.
In this case, both the lower bound and the upper bound must be shown, separated by
ajcolon. Thus the subscript range (r) can have either of the forms:

SU or SL : SU

The lower bound is assumed 1 in the first case. When both bounds are specified, they
may be positive, negative, or zero, as long as the upper bound is greater than the
lower bound. For example:

DIMENSION STEP (0: 10)

gives STEP a size of eleven elements, but the first is STEP (0) instead of STEP(1).

DIMENSION TIME (-60: +60)

declares TIME to have 121 elements, the first being TIME (-60), and the last being
TIME (60) .

6.3

D b i AR i

Ty

S

COMPUTER AUTOMATION, INC. ='-\

Whenever an array element is referenced in the program it must have the same
number of subscripts as dimensions, and each subscript must lie in the range
declared for it.

In a subprogram, when v is a dummy array, the subscript limits, s, and s, may
be unsigned dummy scalars instead of integers. This is discussed in the next
chapter, under "Adjustable Dimensions™.

Additional examples of DIMENSION statements:
DIMENSION PRICE (1900: 1980,12), ND (0: ‘100)
DIMENSION MGO(24), LTO(22), BB(36, 22,34)

DIMENSIGN KLBOT (6,6,10,20), NCENT (1—273 -100)
DIMENSION MATRIX (10,10)

Array Storage

-

An array cannot actually be represented in memory as a multiple dimensioned entity.
It can only be strung out in crder as a one-dimensional entity. Sometimes it is
important to know the order in which multi-dimensional arrays will be stored. Two
examples are : (1) when an erray appears without subscripts in an input/output

list, it is transmitted in storage order and (2) when an array is used to hold alpha-
numeric strings (e.g. read in A format or set up by the DATA statement), these
strings will be placed into consecutive array elements.

Arrays are stored starting at a lower memory address and moving to a higher memory
address. The array elements are in order such that the first subscript varies most
rapidly, the last subscript least rapidly. On a two-dimensional array, this is called
"column- wise", since the columns are stored consecutively, but the rows are not.
This rule applies whether the upper and lower bounds are positive or negative. For
cxample, Lere are two arrays listed in storage order, showing the element count for
each subscript combination:

DIMENSION X (2,3,2) DIMENSION Y (-2:1,3)
1 X@,1,1) 1 Y (-2,1)
2 X(2,1,1) 2 Y(-1,1)
3 X(1,2,1) 3 Y(0,1)
4 X(2,2,1) 4 Y(1,D
5 X(1,3,1) 5 Y(-2,2)
6 X(2.3,1) 6 Y(-1,2)
7 X(1,1,2) 7 Y(0,2
8 X(2,1,2) 8 Y(1,2)
9 X(1,2,2) 9 Y(-2,3)
10 X(2,2,2) 10 Y(-1,3)
11 X(1,3,2) 11 Y(0,3)
12 X(2,3,2) 12 Y(1,3)

6.4

e B

™

COMPUTER AUTOMATION. INC. 'l

i

TYPE STATEMENTS

There are five type statements, used to explicitly declare the type of a scalar, array,
or function. Since the IJKLMN rule implicitly classifies all names as cither integoer
or real, you will need a type statement for all double precision, complex, or logical
names (except certain library functions), plus whenever you want to override the
IJKLMN rule. The type statements have the form:

INTEGER '

REAL

DOUBLE PRECISION N 1 WNo,
COMPLEX E
LOGICAL

N}s,‘...
|

where N is either the nume of a scalar, array, or function, or it is an array declaration,
i.e. the name of an array followed by dimensions enclosed in parentheses (as described
in the previous section). Whenever an array declaration appears, the statement is
acting as both a type statement and a DIMENSION statement, so no DIMENSION statement
is nceded. For exemple, the statements: .

COMPILEX C1, Z
REAL ALPHA(8,10), MM, R

declare C1 and Z to be complex (it may not be known yet whether they are scalars,
arrays, or functions); declare ALPHA to be a real 8x10 array; and declare MM and
R to be real. R would he real anyway, by the IIKLMN rule, but can be declared if
desired. Declaring the type of a name does not affect unrelated attributes, such as
vyhether it is a scalar, array, or function. For example, the nhame MM in the above
gxample could also appear, either before or after the REAL statement, in a DIMENSION
s!}tatement or an EXTERNAL statement. '

There are a number of library functions that have a special type that is known to the
compiler (e.g. ABS is real). If you should declare a type for one of these names, it
will no longer be recognized as a special name.

Other examples of type statements:

INTEGER COUNT, P, DAY OF MONTH

REAL GEORGE (19, 65), THING(12) , ESTATE (50,135), MC COY
DOUBLE PRECISION X, DRATE, DTIME

LOGICAL L1, L2, TRUTH(0: 10)

If you need to convert a whole program from single precision to double precision,
you may not need a whole string of DOUBLE PRECISION statements. The ADP
(Automatic Double Precision) option, described in chapter 9, is designed to do that
for you.

6.5

s e S e g

A

COMPUTER AUTOMATION. INC. : -

ALLOCATION OF VARIABLES

Normally the compiler chooses where to allocate variables. It allocates the arrays
first, then the scalars. These come at the beginning of the program, ahead of the
object program instructions {see appendix B). Two methods of controlling the
allocation of variables are available to you. You can move some of the variables

out of the local area into a COMMON area that is shared with other programs, using
the COMMON statement. Or, within either the local or COMMON area, you can over-
lap some variables on top of others or cause them to be in a certain order, using

the EQUIVALENCE statement. l

To take advantage of these features, you may have to Lmow the amount of storage
occupied by each type of variable. In the case of arr%ys , this is the size of each
element of the array. If the ANSI allocation option is specified (see chapter 9), the
size of integer and logical variables is different, as shown.

Type Size in Words

Integer 1 (2 if ANSD
Real 2 '
Double Precision 4
Complex 4

1

Logical (2 if ANSI)

COMMON STATEMENT

The COMMON statement assigns variables to a special storage area that can be shared
by morne than one program. In earlier FORTRANs, there was only one COMMON area.
Later the capability was added of defining additional COMMON areas and giving them
names, These are called labeled COMMON areas, so the original COMMON is called
blank COMMON, since it has no name. Blank COMMON remains the more often used,

but both have some advantages.

Blank COMMON

Variables are usually declared in blank COMMON with a statement of the form:
COMMON vy , Vg, Vg, ...
where v is the name of a variable (scalar or array) or is an array declaration (array

name followed by dimensions). When an array declaration appears, it need not appear
in a4 DIMENSION statement.

6.6 : -

e S R s S e

(

COMPUTER AUTOMATION, INC. _—

This causes the variables named to be allocated in blank COMMON, in the order
listed, i.e. vy first, then v 9 » ete. If there is more than one blank COMMON
statement, the variable lists are strung together as if they had all been declared
in one statement. In other words, each COMMON statement picks up where the
previous one left off. S '

Blank COMMON begins at the same place for all programs that are loaded togethor,
so if two or more programs want to use the same variables, they should declare them
in COMMON in the same order. For example, ifl both programs have the statement:

COMMON CAUSE LAW, GHIA(70)

|
then they can pass information back and forth 1#@ the variables CAUSE and LAW and
the array GHIA. The variables must be in the same order, however, since it is the
location within COMMON that is important, not the names of the variables. In fact,
it is not necessary for the names to be the same, except that it makes it easier to
remember what corresponds to what. For example, another program could have
the statement: : /

COMMON SENSE, MARKET, THIEF (50)

causing SENSE to correspond to CAUSE, MARKET to LAW, and THIEF to the first 50
elements of GHIA. This points out two things. One is that the sizes of blank COMMON
do not have to be the same. Whatever corresponds, corresponds; whatever is left
over, does not. For example, the last 20 elements of GHIA in the upper program do
not correspond to anything in the lower program. The other point is that you have to
be very careful about the sizes of various types of variables, so that they really do
match up. If you make a real variable correspond to an integer one, two things will
happen. They will not be able to pass information back and forth in any straightforward
viray, because the values are expressed in quite different formats. And the variables
that follow in COMMON will not line up, because the real variable occupies two words,

rhile the integer occupies only one word. The only cross-type correspondence that
is really recommended is complex to two reals.

There is an exception to this rule about making types agree. Sometimes COMMON is
used, not to pass information back and forth, but simply to conserve memory by using
the same locations for two sets of variables. If the variables are used only temporarily
by each program, so that it does not matter if other programs destroy them, then
several programs can use the same COMMON area for their variables, without regard
to whether they match up or not. This is a less frequent use of COMMON.

As an example to show how COMMON is arranged in memory, the following shows how

two COMMON statements (in two different programs) would arrange the variables,
beginning at relative location zero in blank COMMON:

6.7

ey

A

COMPUTER AUTOMATION, INC. = -

COMMON X, Y, Z, N COMMON A (3), d
0000 X 0000 A(1)

0001 | 0001

0002 Y — 0002 A (2)

0003 0003 |

0004 7 - 0004 A (3)

0005 0005

0006 N | 0006 J

There is one restriction on variables in blank COMMON. They cannot be initialized
with the DATA statement (described later in this chap er).

Blank COMMON can also be declared using a specml form of the labelod COMMON
declaration, with the name blank, as shown below

Labeled COMMON

Labeled COMMON makes it possible to have more than one COMMON area. For example,
program A might have some data that it shares with program B but not with program C,
and some other data that it shares with C but not with B. Programs D and E, then,

might share some data with each other but not with A, B, or C. The usual technique,
when using only blank COMMON, is to put all the data in blank COMMON, and then each
program has to keep track of where the data it needs is. Generally this is done by "gang
punchipg" the same set of COMMON statements and putting them at the head of each
program. Using labeled COMMON can cut down on the amount of superfluous data

that has to be declared in each program. Also, labeled COMMON variables can be
initialized with the DATA statement, whereas blank COMMON variables cannot.

NOTE

Labeled COMMON block names may also be used within the
same program as names of variables, without conflict. Any
usage of the label other than in a COMMON declaration will
be assumed by the compiler to refer to a variable, and not
the COMMON block.

Labeled COMMON is declared in much the same way as blank COMMON, exécpt that cach
group of variables is preceded by the name of the labeled COMMON block, enclosed in
slashes. That is: : :

COMMON /block name/v1 Vosee ./block name/vl W ete.

For example, the situation described above, with the five programs A, B, C, D, and E,
might be handled with three labeled COMMON blocks, as shown here:

6.8 Revised March 1975

e R

R e

COMPUTER AUTOMATION, INC. "

Program A: COMMON /AB/DICK ,HIVE /AC/DC,LU,GULL
Program B: COMMON /AB/DICK ,HIVE

Program C: COMMON /AC/DC,LU,GULL

Program D: COMMON /DE/W90ML,K

Program E: COMMON_/DE/W90ML,K

Each program needs to define only the data that it wants to share with any other programs.
A block of COMMON may be used by any number of programs. As with blank COMMON, if
the same block is declared more than once in the éame program, the variables are strung -
out into a single list, in the order they appeared. ' In other words, each reference to the
same block picks up where the previous one left otf (in a single program). Thus the
statements: 5 l

COMMON /BLOCK1/P,Q,R /BLOCK2/S,T
COMMON /BLOCK2/U,V,W /BLOCK1/X,Y,Z

are equivalent to the single statement:
COMMON /BLOCK1/P,Q,R,X,Y,Z /BLOCK2/S,T,U,V,W

The size of a labeled COMMON block must be the same in all programs that use it.
(This is different from blank COMMON.) It is a particularly good idea, therefore,
to use exactly the same COMMON statements, with all the variables having the same
names. This is not necessary, but it makes it easier to assure the same size.

Labeled COMMON blocks are named with the same kind of names as variables, functions,
ete., i.e. beginning with a letter, containing letters and digits, and the first six char-
acters significant. A COMMON block must not have the same name as a subprogram

or hny other COMMON block, in order to avoid conflicts during loading.

E

Blank COMMON can be specified using the same form as for labeled COMMON, but with
the name (between the slashes) blank. This means that blank and labeled COMMON may
be intermixed in the same statement. If the blank COMMON declaration comes first,

the slashes may be omitted too, so that it looks just like the form shown above for

blank COMMON. For example, the statements:

COMMON /ALPHA/A,B // C, D
COMMON // E,F /ALPHA/ G

are equivalent to:

COMMON C,D.E,F /ALPHA/A,B,G

6.9

e i A0 e e st a8

WO

COMPUTER AUTOMATION. INC. "

Each labeled COMMON block is arranged in the same way as blank COMMON, with
the variables following one another in the order listed, starting at a low memory
address and moving to a higher memory- address.

In some FORTRANs, variables in labeled COMMON may only be initialized (with the
DATA statement) in a special program, called a BLOCK DATA subprogram. 'This is
not necessary in Computer Automation FORTRAN IV. Any program may initialize
labeled COMMON. The BLOCK DATA subprogram is aFccpted for compatibility,
however (see chapter 7). ! |

EQUIVALENCE STATEMENT !

The EQUIVALENCE statement is used to make two or more variables occupy the same
location or set of locations. It is written:

EQUIVALENCE set set2) set3 v e

1 ’

where set is an equivalence set of the form:

(VI;V2,...,Vn)

This says that the variables vy through v, are to occupy (or begin at) the same

location. Each variable (v) may be one of the following:

1. The name of a scalar variable or an array. When an array name appears, it
means that the first element of the array will occupy that location. The other
qlements will follow. For example:

i :
} DIMENSION MATRIX(11,11)
' EQUIVALENCE (X,Y), (M1,MATRIX)

determines that X and Y will lie in the same location, and that M1 will coincide

with the first element of MATRIX, i.e. MATRIX(1,1). An array must be

dimensioned before appearing in an EQUIVALENCE statement.

2. An array element, where the subscripts are signed or unsigned integers. For
example, the statements:

DIMENSION MCOL7(11), MATRIX (11,11)
EQUIVALENCE (MID,MATRIX(5,5)) , (MCOL7,MATRIX(1,7))

would allocate the scalar MID in the middle of the array MATRIX,

6 10

e T

~ st g

e 2

COMPUTER AUTOMATION, INC. '| -

coinciding with MATRIX (5,5), and would cause the array MCOL7 to overlay

the seventh column of MATRIX, by defining its starting location to be the
same as MATRIX (1,7).

3. A scalar or array name followed by a position count enclosed in parentheses.
This has the same meaning as if the variable were a one-dimensional array
with a normal lower bound of 1. In other words, X (1) means the same as
X, X (2) is the element position immediately after X, X(3) is the ncext, and so on.
Thus it is not a count of how many positions away from the variable; it is one
less than that. X (3) means 2 positions after X. By element positions, we do
not necessarily mean words. We mean steps of the number of words occupied
by the variable, depending on its type. [n other words, for integer variables
the position count is in one-word increménts. For real, the increment is two
words, for double precision four, etc. This is consistent with the statement
above that the variable is treated as if it were a one-dimensional array. For
example: '

EQUIVALENCE (Z,Y(2).X(3))

allocates X, Y, and Z one after the other in that order, even though they each
require two words.

For arrays, there is a potential conflict between a position count and a subscript.
If the array ALPHA has more than one dimension, then ALPHA (5) is clearly a
position count. But what if ALPHA has only one dimension? Is the 5 a sub-
script or a position count? The answer is that it is a subscript, if it makes

any difference. Usually it does not. If ALPHA has a normal lower bound of

1, then ALPHA (5) means the same thing either way. (That is why it was

defined that way.) However, if ALPHA has a different lower bound, for

example:

DIMENSION ALPHA (-3:12)

then ALPHA (5) means the same as it would in an expression, namely the ninth
element of ALPHA, not the fifth (which would be ALPHA (1)).

You should be very careful in equivalencing variables of different types to each other.
For one thing, the sizes may be different. More importantly, if you intend to pass
information back and forth, you have to know what you are doing. EQUIVALENCE is
not the same as an assignment statement -- types will not be converted. If you were
to write:

EQUIVALENCE (XK,X)

X =4.38
OUTPUT K

6.11

COMPUTER AUTOMATION. INC. '|

the value of K would be whatever was in the first word of the two-word floating point
value, and this depends on the particular computer's format for floating point numbers.
This is not, in general, a very safe kind of thing to do.

INTERACTIONS OF COMMON AND EQUIVALENCE -

An allocation statement must not cause conflicts with any previous allocation statements.

This means, for instance, that you can not put the sam;e variable into COMMON twice,
nor equivalence two variables that are both already in COMMON.

You may, however, equivalence an unallocated variable to something in COMMON,
thus causing that variable to be allocated in COMMON too. For example:

EQUIVALENCE (C,Y,X(2))

puts Y into blank COMMON coinciding with C, and X (2) i.e., X (1) coincides with B.
This could be written more clearly as:

EQUIVALENCE (C,Y) , (B,X)

An EQUIVALENCE never changes the order of variables already in COMMON. Those
are fixed by the COMMON statement. EQUIVALENCEs may simply overlay these
variables with others.

Equivalencing an array into COMMON (or using a position count) may increase the
size of that COMMON area. This is permissible if it extends COMMON at the end,

i.e. beyond the last position currently included. It is not-permissible to extend
COMMFj;\] backwards, i.e. ahead of the first position in COMMON. For example,given
the statements:

COMMON /BLK/ I,J, K
DIMENSION L (4)

this EQUIVALENCE causes a legitimate extension of the COMMON block, as shown:

-EQUIVALENCE (I,L(1))

0000 I L(1)

0001 J L(2) |
0002 K L(3) '
0003 L(4) Legal extension.

6.12

e

IS Fo e

A

COMPUTER AUTOMATION. INC. : -

However, the following EQUIVALENCE tries to extend the block in the other direction:

EQUIVALENCE (K,L(4))

L(1) .-—.lllegal Extension
0000 1 L(2)
0001 J L(3)
0002 K L(4)

|

This same rule applies to both blank and labeled COMMON. Note that if a labeled
COMMON block is extended by EQUIVALENCE, the resulting size must be the same as
the size declared in all other programs. : 1

EXTERNAL STATEMENT

Form: EXTERNAL $1189) 83y ...
where: s is the name of an external subprogram..

The EXTERNAL statement declares that the names listed are closed, external sub-
programs. It is not a statement that is needed very often, because most subprograms
can be recognized as such by their usage in the program. For example, in:

AB = F(X)
CALL FROG (Y)

the names F and FROG are automatically classified as subprograms. The EXTERNAL
statement has two special uses:
1. The name of one subprogram can be passed as an argument to another. For

‘ example:

CALL TEST (F,FROG)

If F and FROG had already appeared in statements such as the two shown above,
and were known to be subprogram names, there would be no problem. However,
if this was the first appearance of F or FROG, there would be no way to know that
they were supposed to be subprogram names: -- the compiler would implicitly
classify them as scalar variables. So the EXTERNAL statement would be needed
here to declare those two names. For safety, it is not a bad idea to always use an
EXTERNAL declaration in such cases. Some FORTRANs require this.

NOTE

The EXTERNAL statement is not required for references to
known subprograms (basic external functions) such as SQRT
(e.g., X =SQRT (Y)); however, it is required when a known
subprogram is used as an argument, if not previously referenced
as a subprogram. 6.13
Revised March 1975

L4

ke o me SRR T

e

w!

2. There are library functions whose names are specially recognized by the
compiler. For example, it knows that ABS is real and has one argument,
and that CMPLX is complex and has two arguments. Some of these functions
the compiler generates "in-line"; it does not call an external routine. If
you want to use one of these "intrinsic" names for an external routine of your own
choosing, you have to first declarc it in an EXTERNAI statement. This
makes the compiler forget what it knows about the name and treat it like
any other external subprogram. For example:

|
EXTERNAL FLOAT ;
- RATE = FLOAT (BOND)/100 }

Ihls is not, in general, something that we recdmmend It may make your
program confusing to understand. :

DATA STATEMENT

A DATA statement gives initial values to variables. Normally FORTRAN does not
guarantec the contents of variables upon loading, so you should not use a variable
until it has been assigned a value. If the variable is not going to change, then
instead of assigning it with an assignment statement (which takes time and space
at run time), you can assign it with a DATA statement, so it will be loaded with a
particular value. The DATA statement has the form:

DATA YV, /C,/ . V,/Cy/ , V3/Cy/ ,

where: \Y is a list of variables, separated by commas. This may include

! scalars, arrays, and array elements.
|
l

| C is a list of constants, separated by commas. A constant may be
f repeated several times by preceding it with a count and an
asterisk:
n*c

where n is a positive integer and c¢ is a constant.

Missing commas between V/C/ groups will cause a warning diagnostic to
be output.

There must be the same number of constants as variables in each group, so that
they can be assigned on a one-~to-one basis. For example:

DATA A,J,B(3)/4.6,-12,0.0/ , TITLE/'ABCD'/

6.14
Revised March 1975

COMPUTER AUTOMATION, INC. 'l O

gt R S gy

e e

COMPUTER AUTOMATION. INC. "'l |

has the same effect as:

A=4.6
J=-12 |
B(3) = 0.0 o

TITLE = 'ABCD'

except that the assignment is done during loading, not during execution.

; .
We do not recommend that you use the DATA staﬂement to initialize variables that
are later going to change value, because this makes initialization dependent on
loading, and therefore you can not restart the program without reloading it. It is
better to use assignment statements for values that are going to change, and the
DATA statement for values that are not. This means that the values become,
essentially, constants with names. This isuseful in several places.

For example, instead of writing out the speed of light as 2.997925E10 at every
reference, you can use the statement:

DATA C/2.997925E10/

and then refer to the value as C. This also simplifies updating the program, in
case the speed of light should change.

Of course, you could get the same effect using an assignment statement, with
only a small loss in time and space. There are other situations where the loss is
more significant. Suppose you want to write an ARCTAN function. You will want
td have a table of constants. But how do you build a table of constants? You can-
nbt use subscripts on constants, so you would have to execute a group of assignment
s#atements at the beginning of each calculation, such as:
|
| V(0) = 0.0
V(1) = .1243550
V(2) = .2449787
ete.

which would slow the program down quite a lot. This is an ideal application for the

DATA statement, since it takes no space or time during execution, and the values are
not going to change. .

6.15

¢

*4 e e R

e e e

COMPUTER AUTOMATION, INC. 'l ——-—1

DATA Variable List

The variable list consists of scalars, arrays, and array elements, separated by
commas. When an unsubscripted array name appears, it represents all the elements
of the array in storage order (the same as in an input/output list) . There must be
enough constants to fill up the whole array. It is not possible to initialize part of an
array. To do that, you have to write out the individual array elements. (Or you
can EQUIVALENCE a smaller array to the part you want to initialize, and use the
smaller array in the DATA statement.)

|
The subscripts used in an array element may only be jinteger constants. (A variable
subscript would not have a value at compile time.) I

With one exception, each variabie must be initialized ‘Ly a constant of the same type.
The type conversions performed by the assignment statement are not done by the
DATA statement. For example, you must write:

DATA X/3./ and not DATA X/3/

The one exception is that any type of variable may be initialized by a hexadecimal or
alphanumeric string constent, using as many digits or characters as required. This
is described below.

In the DATA statement, a complex variable is treated as a singled entity. This differs
from the input/output list, where a complex variable is treated as two real parts. Thus
a complex variable should be initialized by a complex constant (i.e. two reals enclosed
in parentheses) or by a single hexadecimal or alphanumeric constant. You cannot, for
example, initialize the real part in hexadecimal and the imaginary part in floating point.

Dumm;? variables may not be initialized (since they have no real existence at compile
time) , fnor may variables in blank COMMON (since that area is preempted by the loader).
However, you may initialize labeled COMMON, and you may do so in any program. It

is not necessary to use a BLOCK DATA subprogram, but you may if you prefer.

If a variable appears in more than one DATA statement in a program, the latest one

overrides the previous ones. Similarly, if more than one program initializes a variable
in labeled COMMON, the last one loaded will take precedence. We do not recommend this.

DATA Constant List

The constant list may contain constants of any type, including integer, real, double
precision, complex, logical, hexadecimal, or alphanumeric string. Numeric constants
may be signed or unsigned. Any constant may be repeated n times, using the form n*c,
where n is greater than zero. For example:

DATA A,B,C,D,E /2*-3E7,3*'CDE'/

6.16

s g 4 s

&l

A

COMPUTER AUTOMATION. INC. =

The total number of constants (including repetitions) must be the same as the total number
of variables: (including all the elements of unsubscripted arrays). except in the casc

of alphanumeric strings. One string constant can act as several constants, ns doseribed
below. However, two string constants cannot act as once.

These are the rules for using the various types of constants:

1.

An integer, real, double precision, complex, or logical constant must correspond
to a variable of the same type. Note that you must write the "D" exponent on a
constant that initializes a double precisiow‘ variable.

manner similar to Z format input. The constant may have as many digits as are
required by the variable type (i.e. four for integer, eight for real, etc.).

It may not have more. If it has fewer, they are right-justified in the variable.
Since a complex variable is handled as one value, it may accept up to sixteen
hexadecimal digits. If it finds fewer than nine digits, the real part will be zero.
Here is an example using hexadecimal constants:

A hexadecimal constant may initialize a vjriable of any type. It does so in a

COMPLEX CPX
DATA J,CPX /3ZA80,: 4E832FBOCES805EE7/

Alphanumeric strings may also initialize any type of variable, but they differ

in several ways from the other constants. For one thing, blanks are signifi-
cant within the strings. Also, when there are fewer characters than needed to
fill a variable, they are left-justified and followed by blanks to fill out the whole
variable. The most important difference, however, is that a string constant can
initialize more than one variable. If it contains more characters than needed by
the first variable, it goes on to the next, and keeps going until it runs out of
characters. If there are not enough characters to completely fill the last
variable, it is filled out with blanks. Usually this feature is used to initialize
arrays, as in:

INTEGER LC(20)
DATA LC/'THE WEED OF CRIME BEARS BITTER FRUIT. '/

(Note that some extra spaces were needed at the end of the string to provide

for all the elements of the array.) It is not necessary to use an array, however.
In fact, the string could fill up a variety of variables of different types, if such
a thing were needed. For example:

COMPLEX C1
DATA X,M,C1/9HABCDEFGHI/

is equivalent to:

DATA X/4HABCD/, M/2HEF/, C1/8HGHIbbbbb/

6.17

COMPUTER AUTOMATION. INC. '|

On the other hand, one variable may not be initialized by more than one string constant.
If the first constant is not long enough, the rest of the variable is filled out with blanks.
Thus:

DATA X /4HABAB/
is not the same as either:

DATA X /2HAB,2HAB/ -or- . DATA X /2*2HAB/
|

In the first case, X is assigned the four characters '"ABAB'. The latter two cases both
assign 'AR ' to X and have 'AB' left over (which is an error) .

6.18

L B

'COMPUTER AUTOMATION, INC.

CHAPTER 7

PROGRAMS AND SUBPROGRAMS

When a FORTRAN program is loaded and executed, it may consist of several different
kinds of units. There must be one, and only one, main program. There may be
subroutines, functions, and tasks written in FORTRAN. There will be system
routines and functions provided from the library. There may also be other

subprograms or tasks that you write in assembly language.

)

MAIN PROGRAMS

A main program is any program that does not begin (except for comment lines) with
one of the following statements: ; ‘
FUNCTION

SUBROUTINE

TASK

BLOCK DATA

Since those statements always have to come first, a main program may not contain any
of them, nor may it contain a RETURN statement. ‘

The starting location of a main program is defined as F: MAIN, and execution always
begins there. Thus if there were two main programs, there would be a double
definition of F: MAIN. You can write a main program in assembly language, by defining
the first location as F: MAIN and using that as the transfer address (operand of the END
line) .
T&I SKS

!
A task is a program that you connect to a real time interrupt. The first statement must
be a TASK statement, which is written:

TASK name
where name is a standard FORTRAN name, just like a subprogram.
A task is not the same as a subprogram, because it is not called in the usual way, and
because it exits with a STOP statement, rather than a RETURN. It also has no arguments.

On the other hand, it differs from a main program in that there may be several tasks
with various names, and they do not specify a transfer address to begin execution.

7.1

£

A

COMPUTER AUTOMATION, INC. : -

A task may have its own local storage and may also use variables in COMMON to
communicate with other programs. Since a task is not a subprogram, however, the
local storage is not protected if the task is re-entered. Since tasks are usually executed
under RTX, they should be compiled with the RTX option. For further information,

sec chapter 9. T

SUBPROGRAMS

Subprograms are programs that may be called by other programs. A subprogram is
either a function or a subroutine. Functions are referenced as elements of an .
expression, and return a value. Subroutines are'refe1renced with the CALL statement,
tnd do not return a value (except possible indirectly). These two classes can be
broken down further, as follows: |

Functions

1. FUNCTION subprograms

2. Statement functions

3. Intrinsic functions

4, Basic external functions

5. Assembly language functions
Subroutines

1. SUBROUTINE subprograms

2. Assembly language subroutines

|
|

FUN(?’FJONS and SUBROUTINEs are complete programs, written in FORTRAN. Statement
functions are defined in a single statement, and may be included within any FORTRAN
prograim. A basic external function is an assembly language function (usually), in the
library, whose name and attributes are known to the compiler. An intrinsic function is
also a library function known to the compiler, but it is not a closed external routine.

It is gencrated in-line by the compiler. (I.e. it is like an assembly language "macro".)
The library functions are listed and described later in this chapter. Except for intrinsic
functions, all of these are called with a standard calling sequence. In many cases, it is
not necessary for the compiler to know what kind of subprogram is actually going to
satisfy a reference. For example, in:

A=FX)

the function F might be a FUNCTION subprogram, a statement function, or an assembly
language function; it does not affect the way the statement is generated.

7.2

FUNCTION Subprograms

A FUNCTION is a subprogram whose primary purpose is to compute a value and return
it to the calling program. It must begin with a FUNCTION statement, which can be
written in either of the following-ways:

'FUNCTION f(d },dy,...,d,)
type FUNCTION f(d;,d,,...,d,)

where: f is the name of the function {

d is the name of a dummy, wthh corresponds to onc of the arguments
in the calling reference. See "Arguments and Dummies", below .

|
type is one of the type spemﬁcatlohs namely INTEGER, REAL, DOUBLI
PRECISION, COMPLEX, or LOGICAL.

The type of the function name determines the type of the result that is returned. If no
type is specified, the IJKLMN rule will apply.

A dummy is named with a regular FORTRAN name. Within the subprogram, it is
classified as a scalar, array, or subprogram name, and should correspond to a
similar entity in the calling program. Most dummies are simple scalar variables.

Other programs reference the name f as a function. Within the function itself, however,
the name f is treated as a scalar variable. This is the variable whose value is returned
as the result of the function. Therefore you should always assign it a value before
executing the RETURN statement. For example:

FUNCTION SQ (X)
SQ = X ** 2
IF (X<0) SQ = -SQ
| RETURN
‘ END

A FUNCTION must always have at least one dummy. Normally, function dummies are

COMPUTER AUTOMATION, INC. 'l _—

"input" values, and are not changed within the program. However, if the corresponding f

argument is a variable (and not an expression, constant, or subprogram name) , it is

permissible for a function to store values back into it by assigning values to the dummy .

If dummies are to have other than implicit type (IJKLMN rule), they must be declared
in a type statement. The type modifier attached to the FUNCTION statement does not
apply to the dummies, only to the FUNCTION name. For example:

DOUBLE PRECISION FUNCTION POLY (RAD,N)
DOUBLE PRECISION RAD, PI

DATA PI/3.14159265358979324/

IF (N<3 .OR. RAD .LE. 0) STOP 100
POLY = 2 * N * RAD * DSIN(PI/N) |

RETURN

END

7.3

e eaadpeis o s

rey oAy

COMPUTER AUTOMATION, INC. '|

SUBROUTINE Subprograms

A SUBROUTINE is a subprogram whose primary purpose is not to compute and return a
single value. Usually it performs more complicated operations, such as input/output,
matrix manipulation, or other blocks of computation. When a large program is broken
into modular units, the units are mostly SUBROUTINEs. A subroutine is referenced by
the CALL statement, rather than in an expression. It must begin with a SUBROUTINE
statement, of the form::

SUBROUTINE sub(d1 vdgsendy) i

or: j) ' | |
SUBROUTINE sub |

where: sub is the name of the subroutine.

d is the name of a dummy .

Note that a SUBROUTINE is permitted to have no dummies, while a FUNCTION must have
at least one. The rules for dummies of SUBROUTINEs and FUNCTIONSs are exactly the
same, and are described in the section "Arguments and Dummies", later in this chapter.

‘The last statement executed in a SUBROUTINE should be a RETURN statement. This

simply returns control to the statement following the CALL -- it does not return a
value. However, SUBROUTINEs often return values indirectly by storing them either
in COMMON or in the dummies. When a dummy is assigned a value, the corresponding
argument must be a variable (scalar, array, or array element).

Example of a SUBROUTINE:
{

! SUBROUTINE PRINT (VOLTS ,NR)
|

OUTPUT 'VOLTAGE ="', VOLTS , 'TEST NUMBER:' , NR
NR = NR +1 :

RETURN

END

Statement Functions

A statement function is similar to a FUNCTION subprogram, in that it computes and
returns a value. However, instead of being a separate program, it is defined in a
single statement, called a statement function definition, and can be included within
any other program, whether main program or subprogram. It is written:

i

7.4

S e e e

e B

A

COMPUTER AUTOMATION. INC. —c -

f(d,,dg,...,d,) =exp

where: f is the name of the statement function.
d is the name of a dummy scalar variable.
exp is the expression that defines the value of the function.

The type of the function is determined by the IJKLMN rule unless f has appeared in

a type statement. The expression must have a type that can legally be assigned to the
type of the function. The rules for this are the aame as for assignment statements (see
table 3-1). The expression should contain at least one reference to each of the dummies.
It may also reference other variables, arrays, and functions in the program, including
other statement functions that have been defined previously. A statement function may
not reference itself. (

A statement function must have at least one dummy. FORTRAN allows these dummies to
have the same name as any other quantity in the program, except for the other dummies
of that statement function. However, less confusmn results from using distinct names
for the dummies.

Statement functions must precede all the executable statements in a program, and must
follow most of the declaration statements. See appendix A.

Examples of statement functions:
RSQ(A,B) = SQRT (A**2+B**2)

F(X) =1/X - 3/X**3 + BASE
INC (K) = MATRIX (K+1) - MATRIX (K)

!
|

BLOCK DATA Subprograms
|

A'BLOCK DATA subprogram is a special program unit that may be used to initialize
variables in labeled COMMON. It has no name and generates no object code. It begins
with the statement:

BLOCK DATA

and may contain only declaration statements and an END' statement. In particular it
should contain COMMON and DATA statements to perform the initialization.

Some other FORTRANSs require a BLOCK DATA subprogram to initialize labeled
COMMON. Computer Automation's FORTRAN does not -- labeled COMMON may be
initialized in any program. However, BLOCK DATA is provided for compatibility.

Be careful to declare each COMMON block completely (listing all the variables, not just
those that are going to be initialized), so that the variables will be in the right position

‘to correspond with the declarations in other programs, and so that the size of the block

will also correspond.

7.5

B T

B L el

¢

For example:

BLOCK DATA

COMPLEX C1, C2

REAL MAT (35)
COMMON/BETA/C1,C2,VAL,KNUM,ARRAY (10,10) ,MAT
DATA VAL/.57721/(0.,1.),(0..-1.)/

END

Since a BLOCK DATA subprogram has no name, it muqti either be compiled along with
the main program in batch mode (so that it is uutom'atlcnlly included during linking),

or the module which includes it must be linked uncondi tionally; otherwisc it will be left,
out of the linking process, since no other module will ;}ave referenced it as an external

module. |

ARGUMENTS AND DUMMIES

Correspondence

The quantities passed to a function or subroutine when it is referenced are called arguments |
The subprogram must provide the same number of names by which to identify the arguments.
These are called dummies. They are formal parameters and have no real existence of their
own. A reference to a dummy is actually a reference to the corresponding argument. The
dummy list in a subprogram indicates the number, order, and type of the arguments.

An argument may be any of the following:

1. A scalar variable
2, An array element
3. An array name (unsubscripted)
| 4. An expression
| 5. An alphanumeric string constant
| 6. A subprogram name (with no arguments)

Note that a single element, such as a constant or a function reference, is considered

an expression. On the other hand, although a scalar or array element is also a simple c¢x
pression, these must be considered separately. 'This is because 9 subprogram can store
values back into a scalar or array clement, but it may not store into a constant or function
reference or other expression. An unsubscripted array name is the same as the first
element_of the array .

The address passed for an alphanumeric string is that of the first word (i.e. first two
characters). The word preceding this always contains the character count, identifying
how many characters are in the string.

A dummy is always specified as a name. It may be classified, within the subprogram, as
any of the following: ’

7-6

T 2R -1 SR E ks

COMPUTER AUTOMATION. INC. —_

1. A scalar variable
2. An array
3. A subprogram

This classification takes place using the same rules for implicit and explicit declarations
as apply to other names (see chapter 6). In general, the type of a dummy must be the
same as the type of the corresponding argument. For example, the following is
incorrect, because the types do not match:)

SUBROUTINE SUB (M,IMP)

COMPLEX IMP

COMPLEX Z
CALL SUB(Z,d)

Ll

If either of the arguments or the dummies were i’eversed, the types would match properly
There is one case where the types do not h@ve to match. An alphanumeric string
argument has no type and may correspond to a dummy of any type (though integer is
recommended). A SUBROUTINE name also has no type, but should correspond to another
SUBROUTINE name. : ' :

Table 7-1 below shows the permissible kinds of correspondence between an argument
and a dummy:

Table 7-1. Permissible Argument/Dummy Correspondence

Dummy

| Argument ‘ stored

scalar | array into subprogram

i scalar or array element yes (yes) .yes no

‘ array name (yes) yes yes no
alphanumeric string (yes) yes no no
expression yes no no no
subprogram name no no no yes

The correspondences marked " (yes)" are permitted, but may or may not be particularly
useful. This will be discussed further below, under "Dummy Arrays".

When a dummy corresponds to a variable (scalar or array) in the argument list, every
reference to the dummy is actually a reference to the argument variable. Thus not
only will the dummy initially have the value of the argument variable, but if the dummy
is changed, the argument variable is changed too. This is a way for both functions
and subroutines (mostly subroutines) to return results through the argument list.

7.7

o

A

COMPUTER AUTOMATION. INC. = -

For example:

CALL TRIG(A,SINA,COSA,SINHA) SUBROUTINE TRIG(X,SX,CX,SHX)
. ' SX = SIN(X)
i CX = COS (X)
i R SHX = TANH (X)
SHX = SHX / SQRT (1-SHX**2)
RETURN
END

On the other hand, when a dummy corresponds to an bxpression (or constant), the
latter acts only as an "input" value for the dummy. The dummy must not be changed.
For example, if X is a scalar variable and F is a funcjion: '

CALL GRUNCH (X,2.5,F(X) ,F) ‘ SUBROUTINE GRUNCH(A,B,C,D)

then A may be stored into, the others may not. A, B, and C should be dummy scalars,
while D should be a dummy subprogram.

CAUTION

Storing into improper dummies is not detected as an error,
due to the large overhead it would require at run time.
Therefore, be aware of this possibility, since it can cause
strange things to happen to your program (like changing
the value of constants that need to be used subsequently) .

Since a dummy has no real existence on its own, it may not be allocated or initialized.
That isis it may not appear in a COMMON, EQUIVALENCE, or DATA statement.

!

i
DummJ(Arrays
I

A dummy is an array if it is dimensioned in the subprogram. Normally the calling
argument is also an array, or else an alphanumeric string. As with all dummies,

a dummy array does not actually occupy any memory -- it just identifies an area in
the calling program. The subprogram assumes that the argument passed to it is the
address of the first element of an array, and it calculates subscripts from there. Of
course it has no way of knowing what the dimensions of the argument array are, so

-you have to be sure to give the dummy array appropriate dimensions. Usually this

means the same dimensions as the argument array, but occasionally it can be useful
to use different dimensions. For example:

7.8

COMPUTER AUTOMATION, INC. 'l

DIMENSION EDGAR(10,10) SUBROUTINE SUB(SNERD)
CALL SUB (EDGAR) DIMENSION SNERD (5,4)

Here the dummy, SNERD, is much smaller than the argument, EDGAR. This will
cause the subroutine to treat the first two columns of EDGAR as if they were a
5x4 array. If the CALL had said:

CALL SUB (EDGAR(1,8))

then SNERD would represent the eighth and nmth columns of EDGAR, instead of the
first and second.

It is also possible for the calling program to tell ’&he subprogram what dimensions
to use on a dummy array. This is described in the following section.

When an alphanumeric string is passed as an argument, it is usually received by a
dummy array. For example, in this situation:

CALL FOR ('PHILIP MORRIS") SUBROUTINE FOR (JY)
INTEGER JY (8)

The first seven elements of JY correspond as follows:

JY (1) = 'PH' JY (2) ="IL'
JY(3) ="IP' JY (4) = 'bM'
JY (5) = 'OR! JY (6) = 'RI'
JY (7) = 'Sh'

Note that the character string has an extra blank, if necessary, to fill up the last word.
The positions beyond this, however, are undefined, so JY (8) should not be used. Also,
smCe an alphanumeric string (when used as an argument) is filled out only to the nearest
whrd boundary, if the dummy array is any type but integer, there may be elements that
are only partly defined. For example, if JY were double precision, the first element
would contain a full eight characters, but the second element would contain only six.

The last two characters would be unpredictable. This makes it a good idea to use
integer arrays for alphanumeric strings.

An alphanumeric string is stored in memory as a string of characters, preceded by an
integer count of those characters. The address passed as the argument, however, is
that of the first two characters. The count is primarily intended to be used by assembly
language subprograms, but it can be accessed in a FORTRAN program, if you use an
out-of-range subscript (i.e. one less than the lower bound of the array). In the above
example, JY (0) would contain the character count. The compiler will let you do this.

The dummy array must be integer to access the character count.

7.9

)
H

Table 7-1 showed some argument/dummy correspondences marked " (yes)", which neced
some clarification. If a dummy array corresponds to a scalar, that means the first element
of the array corresponds to the scalar. The other clements will correspond to whatever
follows the scalar. This will be unpredictable, unless you use EQUIVALENCE on the

scalar to make sure something meaningful follows it.

On the other hand, if the argument is an array (or an alphanumeric string). and the dummy
is a scalar, then you will only be able to access the first element of the array (or the first
few characters in the string), since dummies cannot be equivalenced. In this case it would
be better to specify the first clement of the array (or u shorter string). to make it clearer
what you are doing. :

|

Adjustable Dimensions .j

A dummy array occupies no actual storage. Its dlmenLlonq are used only to locate its
clements, not to allocate storage for them. Therefore, it is not necessary for the sub-
program to know what the dimensions are at compile time. The dimensions nay also be
passed along as arguments. This means that any of the dimensions of a dummy array
may be specified by other dummies that are integer scalars. Thus the calling programs
can change the dimensions for each call. For example, you might call a matrix multipli-
cation subroutine with the following arguments:

DIMENSION A(5,8) , B(8,10) , C(5,10)
CALL MATMPY (A,B,5,8,10,C)

and the subroutine could be written like this:

SUBROUTINE MATMPY (A,B,J1,J2K1,K2,C)
DIMENSION A(J1,J2K1), , B(J2K1,K2) . C(J1,K2)
DO 2K =1,K2

DO 2J =1,dJ1

| CW.K) =
Do 2 JK = 1.J2K1
§ 9 C@.K) = C(I,K) +A(J ,JK)*B (JK,K)
l RETURN
END

Compare this with the example shown at the end of "DO Loop Ranges", in chapter 4.

Of course, when we say that a calling program can change the dimensions for cach call,
we mean only that the subroutine can be made to handle separate arrays of differing
dimensions. This does not mean that the same array should be described with different
dimensions in subsequent calls. If this is done, then the row/(.olumn relationship of

the dummy array won't match that of the actual array .

If A dummy array has both lower and upper bounds specified, either or both may be
adjustable. For example:

FUNCTION GAMMA (MM,J ,N)
- DIMENSION MM (0:N,J:N)

7-10

COMPUTER AUTOMATION, INC. "l

The dummies used as adjustable dimensions may be referenced elsewhere in the
subprogram, but they may not be changed. The dimensions must be determined

once and for all at the beginning of the subprogram. However, each call ean supply
different dimensions.

Dummy Subprograms

A dummy subprogram may only correspond to an argument that is a subprogram
name, and it is the only kind of dummy that may do so. A call on the dummy sub-
program is actually a call on the argument subpri'ogram.

For example, the function COMPARE, below, cmlld be used to compare the single’
and double precision versions of other functions and return the difference:

EXTERNAL ALOG,DLOG,EXP,DEXP FUNCTION COMPARE (F,DF,RV)

DOUBLE PRECISION DLOG,DEXP ‘ DOUBLE PRECISION DF,DV
A = COMPARE (ALOG,DLOG, X) ' DV = RV
B = COMPARE (EXP ,DEXP,Y) S COMPARE = DABS (DF (DV) -F(RV))

Note that the library routines had to be declared EXTERNAL in order to pass them as
arguments. This caused them to lose their special type, so the double precision
ones had to have their type declared too. The real ones did not have to, because
the IJKLMN rule gave them the correct type.

LIBRARY FUNCTIONS

FORTRAN includes a number of library functions, which perform calculations such
a#s square root, arc tangent, absolute value, maximum value, inclusive OR, type
conversion, etc. These are listed in a table 7-2. When you use one of these in
your program, it will automatically be provided, either as a closed routine at load
time or as in-line object code at compile time. The names of all of these functions
are recognized by the compiler as either basic external functions or intrinsic functions.

Intrinsic and Basic External Functions

Intrinsic and basic external functions are distinguished by the fact that their names
are known and recognized by the compiler. There are three reasons for doing this:

1. All library functions return a certain type of result, and this may not be the
type that the name would acquire by the IJKLMN rule (e.g. all the double
precision and complex functions). Instead of requiring you to declare these
if you want to use them, the compiler knows what type each should be.

7.11

i

g

0

2. All library functions also accept a certain type and number of arguments.
By knowing this information, the compiler can produce an error message
for any usage with too many, too few, or wrong type arguments.

3. Some of the functions' operations are so short that it is more efficient to
generate the necessary instructions to do them than to call an outside routine.

The thing that differentiates intrinsic and basic external functions is that intrinsic
functions are generated in-line, while basic external functions are called in from the
library. In other words, steps 1 and 2 above are performed on both kinds of functions,
step 3 only on intrinsic functions. E

i

Most of the time, you neced not be concerned about any of this. It is all handled automati-
cally. There are only two rare situations where it becomes important: when you want to
pass the name of a library function as an argument to anothcr subprogram; or when you

- want to write your own function with a name that is the same as a library function.

Suppose you want to write your own square root routine and use it instead of the standard
SQRT. You can do this, since SQRT is a basic external function and will be called.
However, if you tried to write your own [ABS function (integer absolute value), it .
would never be called, because IABS is intrinsic and generated in-linc. Also, if you
wanted to write some completely unrelated function called SQRT (e.g. Sam's Quick Roster
Tabulation, an integer function with three arguments), you would conflict with the com-
piler's knowledge that SQRT is real with one argument. Both of these problems can be
solved by declaring IABS or SQRT in an EXTERNAL statement. When that is done, the
compiler forgets everything it knows about the function.

i

|
'l‘heref are other ways besides being declared EXTERNAL that an intrinsic or basic
exterﬂ’wl name can lose its special recognition. If it is used in some other context than
as a function reference, it may become a scalar, an array, a dummy, etc. Appearing
in a type statement (e.g. INTEGER) also cancels special knowledge of a library function.

A FORTRAN library could consist of any combination of intrinsic, basic external, and
ordinary functions. Ordinary functions would work properly (some small FORTRANS'
only have these), but they just would not be as efficient or give diagnostics on improper
arguments. In Computer Automation FORTRAN IV, all of the standard library functions
are either basic external or intrinsic, as shown in the table below. You could add other
functions to your system library, and those would be ordinary functions.

7.12 Revised March 1975

S E i 1l

A

COMPUTER AUTOMATION, INC. =

Table of Library Functions

Table 7-2 lists all of the standard library functions. The first column gives the funetion
name. The X in one of the next two columns indicates whether the function is intrinsic
or basic external. The next twoe-eolumns contain the type of the function (i.e. the type
of the result) and the type of the arguments. The folldwing abbreviations arc used
here:
Integer
Real |
Double precision \

|

o=~

Complex
(There are no library functions with logical‘typé arguments or results.)

The sixth column indicates how many arguments the function expects. The indication
N - 2 means any number of arguments, but at least two.

The last column explains what the function does. When a formula is shown, it is not

necessarily used in evaluating the function but merely serves to help define the
operation.

Boolean Operations

Computer Automation FORTRAN IV provides the capability to do some Boolean oper-
ations (e.g. masking, merging) on all the bits in a word. You cannot do this with
the logical operators (e.g. .AND.,.OR.), because they deal only with the values

true and false. There are four library functions that perform the corresponding
ober‘ations on all sixteen bits. The functions IAND, IOR, and IEOR accept any number
of integer arguments and perform AND, inclusive OR, or exclusive OR on them,
rfespcctively. The function INOT takes one integer argument and returns the 1's
complement of it.

There is no "Boolean" type, so these operations are done in integer. Bit patterns can
be established using hexadecimal constants, which are also generally integer.

For example:

MASK = IOR(KEY,:F)
IF (JAND (NAME,4ZFF00) .EQ. 4Z2C100) GO TO 73
M =IAND(IOR(L,:3A00) , IEOR(M1,M2) , LAST)

These functions are intrinsic, i.e. generated in-line ,» so the cbject code for them is as
good as if they were special operators in the language. However, remember that not

only do the Boolean operations depend on a particular computer's word format, but
there is very little consistency among FORTRANs about how (or whether) such
operations may be specified.

7.13

ERE e 2ok o A tags: Kb io a0 o

)

5 B s

A

COMPUTER AUTOMATION, INC. = -

Table 7-2. Library Functions.

2
sa‘:“
o
¥y /o /&S &bg
& & /8/S) T
& /& /E) S
Sy & /8 /8] s
S o /&)
,s’ o pel) ~Q i
& 58/ S |
Name S g /8 /F & l)l'Ffinition of Function
|
‘ ' Absolute Value |
1ABS X | 1 Integer. f
ABS X R|R| 1 Real. ‘
DABS X D |D 1 Double precision.
CABS X| R |C 1 Complex (modulus). This is a real value,
namely:
CABS (x+iy) = Vx2 +y?
Maximum/Minimum Value
MAX0 X |1 I N>2 Integer maximum value of integer arguments.
MAX1 X|1I |R| N-2 Integer maximum value of real arguments.
MINO X |1 I N-2 Integer minimum value of integer arguments.
MIN1 X |1 R | N2 Integer minimum value of real arguments.
AMAX1 X|R|R|'N:2 Real maximum value of real arguments.
AMAXO0 X|R|T | N2 Real maximum value of integer arguments.
AMIN 1 X|R|R| N-2. Real minimum value of real arguments.
APleJjNO X R [I N.-2 Real minimum value of integer arguments.
DM/TXI X{ D |D| Nz22 Double precision maximum value of double
, precision arguments.
DMAX 0 X | D|I | N=22 Double precision maximum value of integer
arguments.
DMIN1 X | D|D| N22 Double precision minimum value of double
precision arguments.
DMINO X|DI|I N=22 Double precision minimum value of integer
arguments.
Modulus (remaindering)
Arg, (mod arg,), with the sign same as arg; .
Undefined if argy is zero.
MOD X |1 |1] 2 Integer. MOD(,k) =j - k*[j/k]
where the brackets indicate integer part.
AMOD X|R|R 2 Real. AMOD (x,y) = x - y*AINT (x/y).
DMOD X|D|D 2 Double precision. Same as AMOD.

7.14

COMPUTER AUTOMATION. INC. —

Table 7-2. Library Functions. (Cont'd.)

|
3’ Name i Definition of Function
il 1
{ | ; ' Boolean
/| IAND X I |1 | N22 | AND (i.e. extract).
A IOR X I [I | N22 Inclusive OR (i.e. merge) .
| | IEOR X I |1 | N=22 Exclusive OR.
I ¥ INOT X I |1 NOT (i.e. 1's complement).
Type Conversion
| FLOAT X | R|I 1 Convert integer to real.
i INT X |1 |R| 1 Convert real to integer.
| IFIX X|1 |R| 1 Same as INT.
— DFLOAT X | DI 1 Convert integer to double precision.
5l IDINT X|I |D 1 Convert double precision to integer.
d DBLE X|D|R 1 Convert real to double precision.
SNGL X|R|D 1 Convert double precision to real.
CMPLX X|C|R| 2 Convert two real values to complex.
’g CMPLX (x,y) = x + iy
REAL | X|R|C 1, Real part of complex value.
AIMAG X|R|C| 1 Imaginary part of complex value.
} ﬂ ‘ Truncation (integer part)
| AINT X|R|R 1 Truncate to integer and back to real.
i DINT X|D|D 1 Truncate to integer and back to double.
L Sign transfer
. Magnitude of arg, with sign of arg, .
! Positive if arg, is zero.
ISIGN X I |1 2 Integer.
SIGN X R|R 2 Real.
DSIGN X D|D 2 Double precision.

7.15

e o T

st

e

COMPUTER AUTOMATION, INC. 'l

Table 7-2. Library Functions. (Cont'd)

&
sq?
2
@
&, g A?? &A?‘ —‘&s’bo
o Qﬁ' & . é’
O X S/ &/ &
& &) 5% 5 |
Name SENAYA Ja Definition of Function
Positive difference
dim(x,y) = x - min(x,y)
IDIM X [|1 2 Integer. .
DIM X R| R| 2 Real.
DDIM X D D 2 Double precision.
Complex conjugate
CONJG X| C| C 1 CONJG (x+iy) = x - iy
Square Root
SQRT X| R| R 1 Real.
DSQRT X| D| D 1 Double precision.
CSQRT x| ¢l c| 1 Complex. CSQRT (Z) = utiv = e (108 £)/2
' allocated so that u: 0.
Logarithm
ALOG X} R| R 1. Real natural logarithm (base e).
ALOG10 X| R R 1 Real common logarithm (base 10).
1)1,0(:; X| D| D 1 Double precision natural logarithm.
DLOG10 X| D| D 1 Double precision common logarithm.
CLOG X| Cc| C 1 Complex natural logarithm.
CLOG(Z) = CLOG (x+iy) =u + iv =
loglzl + iATAN2(y,x)
allocated so that ~7< v < 7,
Exponential (e*)
EXP X| R| R 1 Real.
DEXP X| DI D 1 Double Precision.
CEXP X| C| C 1 Complex.
CEXP (x+iy) = EXP (x)*(COS (y)+i SIN(y))

7.16

T R

estespE AT o WSS wite

Table 7-2. Library Functions. (Cont'd)

COMPUTER AUTOMATION. INC. '1

2
§
¢
N
&
Name Definition of Function
" Sine (of angie in radians)
SIN X|R|[R| 1 Real.
DSIN X|D|D 1 Double precision.))
CSIN X|clc| 1 Complex. CSIN(Z) = (e'Z - e7'%)/ (2i)
. Cosine (of angle in radians)
COS X|R|R 1 Real.
DCOS X|D|D 1 Double precision.) o
CcCcos X|c|c| 1 Complex. CCOS(Z) = (e'Z+e~1%)/2
Tangent (of angle in radians)
TAN X|R|R 1 Real.
DTAN X|D|D 1 Double precision.
Arctangent (in radians)
When two arguments, arg; = ordinate (y), arg, =
abscissa (x). Result (R) is the arctangent of y/x,
‘ quadrant allocated in the range ~m<Rr -~ 7. If
both arguments are zero, the result is zero.
ATAN X| R|R 1 Real, one argument.
ATAN2 X! R| R 2 Real, two arguments (coordinates) .
DATAN X|{D|{D 1 Double precision, one argument.
DATAN?2 X{DJ|D 2 Double precision, two arguments.
Hyperbolic Functions
sinh (x) = (eX-e7X)/2
SINH X|R|] R 1 Real.
cosh (x) = (eX+c ¥)/2
COSH X|R| R 1 Real. »
tanh (x) = -i tan (ix) = (eX-c™¥)/ (eX+e™X)
TANH 1 Real.
DTANH 1 | Double Precision.

7.17
Revised March 1975

B s kiciis

s

e B

i

CHAPTER 8

IN-LINE ASSEMBLY LANGUAGE

v

Computer Auromation FORTRAN IV allows assembly ;anguage instructions to be used in a
FORTRAN procram. This does not include all of the features of a full-fledged assem-
bler (not a'l of the machine instructions or directives are accepted) and you should
not think o: it as taking the place of the ass bler. 1In general, it is better to
write FORTRi N programs in FORTRAN and remove maghine language sections to separate
subprograms that can be assembled by the assembler and called by the FORTRAN program.
This is esprcially true, of course, if you want to maintain compatibility of the
FORTRAN pro«rams from one machine to another.

There are tio situations that inline assembly language is primarily intended for:

1. When t.ming is critical and you want to perform some special short operation
that tlie FORTRAN language does not include. For example, a rotate shift.

2. When mcmory space or timing is critical, and you want to shorten a program
by hanc.coding some of the statements. For example, knowing exactly what
subscr: pts are used in a DO loop, you might rewrite the loop control and the
subscr:.pting more efficiently. This requires considerable familiarity with
the ob:r ect code and addressing techniques, and is kind of a desperation move.

LINE FORMAT

i
A section o inline assembly language begins following the appearance of the special
FORTRAN sta‘".ement:

ASSEMBLER

It ends Whén the assembly directive:
FORTRAN

is encounte:red.

within an assembly language section, the instructions may be written in free-form;
column 7 is no longer significant. However, it is probably a good idea to line up
your opcodes and operands for better readability. Note that the statement ASSEMBLER
is processel in FORTRAN and may not begin before column 7, while the directive
FORTRAN is >rocessed in assembly language and so may begin anywhere from column 2

on. Howeve.:, the FORTRAN directive is a special case; it does not have either an
operand field or a comment field. Additionally, the first in-line assembly language
statement miust not contain a character in column 6; if it does, it will be considered
a continuation of the ASSEMBLER statement.

8-1

COMPUTER AUTOMATION. INC. =

If an assembly line has a label, it must begin in column 1, unless there is an X in
column 1 (conlitional compilation), in which case the label must begin in column 2.
At least one blink must separate the label from the op-code. If there is no label,
the op-code may begin in column 2 or later (column 3 or later if there is an X in
column 1).

Similarly, the'e must be at least one-blank between the op-code and the operand,
and between t:.e operand and 4 comment, if any. Since blank is a separator, there
may not be an;’ blanks embedded in the label, op-code, or operand fields (unless
they are part «f an alphanumeric operand). Some op-codes do not use an operand,
so the field fol.owing the op-code is automatically treated as a comment. There are
no op-codes tl at can be used either with or without an operand. If an op-code
requires an operand, it does not matter how many blT‘anks must be skipped over to
find it. }

Here is a sam[.le section of assembly language:

KEY = J + MASK

ASSEMBLER
#12 LDA KEY
RRA 7

STA KEY THIS IS A COMMENT .

FORTRAN

CALL FIND(KEY)
°

LABEL FIELD

The labels us::d on assembly lines are ordinary FORTRAN statement numbers, except
that they are written with a preceding number sign, e.g. #45. The reason for the #
is that when tuch a label is used as an operand, it must be possible to distinguish it
from a decime! value. This problem does not occur in FORTRAN statements, because
labels and vaiues can never appear in the same place. The # should be in column 1
(or column 2 :f there is an X in column 1). '

8.2

A

COMPUTER AUTOMATION. INC. - -

You can use the full range of statement numbers, from #1 to #99999, and these are
tabulated right along with the labels on FORTRAN statements. A FORTRAN statement
may reference an assembly label and vice versa. There may not be any duplicate
labels. Note that a FORTRAN statement would reference an assembly label without
the preceding #. e

There is one other kind of label that is used only on the SET directive for conditional
assembly. It is a number preceded by #X and is described in the section on "Condi-
tional Assembly", later in this chapter.

OP-CODE FIELD

|
|
|

The op-code must be separated by at least one blank from the previous field, which
may be any of the mnemonics shown in the section "Op-code Classes", below. This
includes most of the standard machine instructions, except for input/output, which

is not generally safe to do in the middle of a FORTRAN program. It also includes the
asscmbler directives DATA, BAC, TEXT, RES, ENT, STOP, SET, II'l', IFF, ENDC, and
LPOOL, as well as the special FORTRAN mnemonic "FORTRAN," and the floating point

interpretive op-codes . which are described in the section, "Floating Point Interpreter",
below .

KINDS OF OPERANDS

A variety of different kinds of operands may be used, depending on the op-code. No
one op-code accepts all of them. Before listing these operands, let us set down some
of the ground rules that were established about what kinds of things may and may not
be referenced.

1., You can reference FORTRAN variables and subprograms. (However, see
| paragraph 6 below, concerning addressing.) You cannot define them. That
z is, you cannot use a FORTRAN name in the label field to simulate a SUBROUTINE
or FUNCTION statement, or to allocate a variable.

2. You can reference FORTRAN statement labels, by preceding them with #.

3. You can reference external system routines (e.g. floating arithmetic, input/
) output) . All such routines have names that contain a colon (:), so any name
with a colon is assumed to be an external system routine. (The name cannot
begin with a colon, because that indicates a hexadecimal constant.) These are
special names that may be used only on assembly lines, and only via base page
pointers (e.g., JST *BP (DELAY:) is correct, but JST DELAY: isn't.)

4. You cannot reference the temps (#T) generated by the compiler, since there is
no way of knowing how many the compiler will create. If you want a temp,

Revised March 197S

)

6.

vou should either use a variable instead, or elsc definc a temp with RES and
reference it via a statement label (#n).

You also cannot reference FORTRAN constants, including compiler generated
indirect addresses. To use a constant, you should define it with DATA and
reference it with a regular statement label.

A general rule is that in-line assembly operands always reflect what is
actually going on in the addressing. The compiler, unlike thc assembler,
will not generate something different from, or in addition to, what you write.
This gives you complete control over the output{, but requires you to do some
extra work to get it. For example, if the stand:?rd assembler encounters:

1

LDA M |

and M is not within range, it will change the instruction to an indirect refer-
ence through base page and create a word in base page pointing to M. This
is not necessarily the way the compiler would address M, so it leaves the
decision to you. If something is out of range, you can create an indircct
address pointer (using DATA) and reference it with a statement label, or you
may insert an LPOOI dirvective. LPOOL usage is described in the Operating
System Assembler Language Reference Manual (96552).

A third alternative is to use a base page pointer (using BP, described below) .
However, this method has one important limitation: you may not use BP to
create a pointer to a forward label (that is, one which occurs further along

in the coding sequence), but only to a label which has already been processed
by the compiler.

Creating indirect pointers will sometimes be neccessary when referencing a
FORTRAN variable or statement label, and usually when referencing an external
subprogram or system routine. For variables and labels, this will probably
I'oquire some trial and error, since you may not be able to determine in advance
whether a given variable or statement number will be in range -- it depends
rn what the compiler generates for other statements. If you try to reference

something that is out of range, this will be diagnosed as an error, and you can
then change it.

Normally the compiler decides what things it will allocate base page pointers

for; and it tries not to use too many. You can specifically request a basec page
pointer to be created by using BP(x), where x is the operand. Be carcful about
creating so many base page words that there is not room for them. Use this mainly
on operands that are referenced frequently. Note that what the compiler does

with BP is cssentially the same as what the assembler does with a preceding =.

The following, then, are the things that may appear in an operand field (given the
proper op-code):

1.

Indexing, indicated by a preceding @. The operand, in this case, must
be an absolute value in the range : 0-: FF.

Indirect addressing, indicated by a preceding *. If both @and * arc used,
they may be in either order. '

8.4 Revised March- 1975

if‘“;t“‘.;‘?.‘“.’ gt

-y

g ar uy)n

W toan \h&fn u).“hw J:“ @u\x*

3. A dicimal integer value. In certain cases (e.g. DATA) it may be signed
The parmissible size of a vsiue depende on the op-code, as shown in the
follc wing section. :

4. A hexadecimal value, preceded by : .

5. An zalphanumeric value, eﬁa(;sed in quotes.

6. Blai k (nio operand field) . |

(i Cur rznt location counter ($), optionally followed b}} a plus or minus sign and

gn ¢ ddend, which is a decimel or hexadncn.ui value.

mmﬁly followed Ly an addend, as above. Lo not

8. A z{tement labol n), .
3 it 1gt l lle"s vmx :be olutely have to. It i
Tl

Oy
t
use an add'*na cnoa vmw me
An ..adend on the labsi of a FORTRAN qgatement is particula rly questio mhle,

since there is no guarantee what the object code will be around that sialement.

9. A FORTRAN rname, optionally followed by an pddcnd This may be the name of
scalar, array, external subprogram, or statement function. It may alss be
the, 1ame of a COMMON bleck if there is no veriable in the program with
sam : name. Note that you cannot reference the entry point of a FUNCT
fror.. within it, because that name is used for the result variable.

’\

L\Z

10. An «xternal system name, as a base page reference only. Any name with
a: :n it is automatically assumed o be a system name, and must be provided
at load time, either from the library or in a program that you supply.

Lol ats)

11 A bise page reference, BP(x), where x is a FORTRAN name, a system n &

typ: allowed by DATA except an alphanumeric value (see below). Wher« appli-
cab e, this may inciude an addend (ns part of x), except for system nameas,

or ¢ ther external references. Note that BP of a value puts that value (nct a pointer

to the value) into the base page.

12. A conditional assembly label (#Xn), described in a later section.

The following section describes which cperands ray be used with which op-codes.

The op-cc ies can be dividad into thirteen classes, basad on the kinds of operands
they permit, For each class, we will list the op-codus it includes and the permissible
operands. Any operand thal is ailowed to have an addend may have one. This is not

previously defined statement label, the current location counter, or 8 value of any

o v K ot ik e

specifically mer tioned in each class.

Note that the classes shown below do not correspond exactly to the instruction
classes described in the CAI BETA Assembler or Macro Assembler manuals; in par-
ticular, I/0 Instructions are not supported in FORTRAN Assembly language.

Those opcodes below which are marked "with an asterisk will be executed by emulation

on the LSI-3/05 processor (see T3 option, Chapter 9), since they are not valid
LSI-3/05 instructions.

Class 1. Memory References

Op-codes: ADD AND LDA JIMP i L#R L , :
ADDB ANDB LDAB JST ! LDD .
SUB IOR LDX IMS ; ng
SUBB - IORB LDXB CMS | MPM
XOR STA CMSB . DVM
XORB STAB ' ~ ADX
STX
STXB
EMA
EMAB

The last column contains some of the special mnemonics for use with the floating
point interpreter. The rest are in class 6. These are all described in the fol-
lowing section.

Operand: Index:ng (@).

Indirect (*).

Decime.l or hexadecimal value in the range (0,255).

Currert location ($). Relative addressing on this or the next two
kincs of operands must be in the range (-255,256).

Stater ent label (#n).

| FORTRIN name, if in relative addressing range.

| Base lage (BP).

Class 2. Double Word Memory Reference

Op-codes: DVD¥* MPY* NRM*
These instructicns generate a two-word item.

Operand: Same «s for DATA (Class 9), except that alphanumeric strings are not
allowed.

ComputerAutomation m _—

o

COMPUTER AUTOMATION, INC. '|

Operand: Decimal or hexadecimal value in the range (0,255).
Single alphanumeric character ('a').
Base page (BP).

Class 4. Conditional Jump

Op-codes: JAG JAL JSS
JAP JAM JSR i
JAZ IXZ JOS |
JAN JXN JOR
Operand: Current location ($).

Statement label (#n).

Note that only relative addressing is allowed, and it must be in the range (-63,64).
The mnemonic JOC is not supported. :

Class 5. Shift

Op-codes: ARA LRA RRA LLL
ARX LRX RRX LLR
ALA LLA RLA LRL

ALX LLX RLX LRR

\

The first three columns are single shifts, the last column contains double shifts.

"Operand: Decimal or hexadecimal value in the range (1.8) for single shift, or

i (1,16) for double shift.

i

Noic that the value is rcduced by one when the instruction is generated. In other words,
a shift of one looks like a shift of zero in the generated hexadecimal word.

Class 6. Register Change and Control

Op-codes: ZAR TAX NAX ICA NOP NEG
CAR TXA NXA ICX ENT ABS
NAR EAX IAX SBM ENDC DIM
CXR ANA IXA SWM LPOOL SGN
NXR ANX IPX SIA FORTRAN ADJ
Sov CAX DAX SOA REL
cov CXA. DXA EIN DBL
ROV DIN CcPX

: INT
XIT
XNL

ENDC, LPOOL, and FORTRAN are special directives. The last column contains floating
point interpretive mnemonics, described in the following section.

8.7 Revised March 1975

o T

g T e TR

A

COMPUTER AUTOMATION, INC. : -

Operand: Blank (no opcrand allowed).

Class 7. SCM and SCMB
Op codes: SCM SCMB

Opcerand: Must not include indirect or indexing (* or @) . Either a base page
reference (BP) or a decimal or hexade?imal value in the range (0.255)

|

Class 8. BAO, BXO, AND SIN {
]

Op-codes: BAO BXO SIN ‘

Operand: Decimal or hexadecimal value in the range (0.15) for BAO and BXO, and
(1,7) for SIN.

Class 9. DATA, BAC

Op-codes: DATA BAC

Operand: Indirect (*) on DATA, but not on BAC.
Decimal or hexadecimal value of full word range. Decimal values may
be signed. '
One or two alphanumeric characters, enclosed in quotes. A single character
will be right justified and preceded by binary zeros.

Current location ($). There arc no restrictions on relative addressing
range. ‘

Statement label (#n).

FORTRAN name.

External system name.

Base page (BP).

Class 10. RES.

Op-codes: RES

There may be cither one operand or two separated by a comma. When a sccond operand
is used, RES acts like a multiple word DATA. When the first operand is zcro, it acts
like EQU $, and there must not be a second operand.

Ist operand (word count): Unsigned decimal or hexadecimal value.

2nd operand (fill value): Same as for DATA, in Class 9.

8.8

COMPUTER AUTOMATION. INC. "

Class 11. TEXT

Op-codes: TEXT
Operand: Any number of alphanumeric characters, enclosed in quotes. A single

quote i8 represented by two quotes. If the number of characters is odd,
the last one is left-justified in the word and followed by a blank.

Class 12. SET

l
Op-codes: SET l
! l

This and the following class are conditional asserﬁbly mnemonics, described below .
A SET directive must have a label in the label field, of the form #Xn.

Operand: The decimal value zero or one.

Class 13. IFT, IFF

Op-codes: IFT IFF

Operand: Conditional assembly label (#Xn).

8.9

e e

A

COMPUTER AUTOMATION. INC. : -

FLOATING POINT INTERPRETER

Floating point opcrations at run time are done interpretively, rather than using a separate
subroutine call for cach. The first thing generated is a call to the interpreter, followed
by a sequence of pscudo op-codes. ‘These op-codes have the same instruction format

as regular machine instructions, and in fact, some of them are exactly the sime mnemonice:
and generated values as some of the machine instructions. All of these op codes are
included in the in-line assembly feature, so that you can make usc of them to do floating
point operations. :

»

It is not necessary to exit and reenter the interp%ete‘r to change modc. ¢.g. from real

to double precision. It is only necessary to do a load of the proper type (e.g. LDR or
LDD) or a type conversion command (e.g. REL or DBL). The interprcter then keeps
track of what mode it is operating in, and all of the arithmetic operations (c.g. ADD,
MPM, STA) automatically operate in that mode.

The floating point equivalent of the A register is the floating point accumulator, which

is maintained in base page for efficient operation. During a sequence of floating point
operations, the value in the accumulator is kept in an unpacked format that is easier to
work with. It is only packed up into the usual floating point format when it has to be
stored into a variable or temp. On normal exit from the interpreter (XIT), the contents

of the floating accumulator are not guaranteed. If XNL is used, however, the accumulator
is preserved (e.g. when returning from a function).

The actual machine A register is always set up when exiting from the interpreter, so

that tests can be made on it (e.g. in relation expressions or arithmetic IFs). It is set

to a value that is negative, positive, or zero, according to the last value in the floating
accumulator. (This is accomplished by merging the sign bit of the floating value with

the first 15 bits of the true mantissa, which includes the normalized "1" bit. For complex .
bath the real and imaginary parts are merged. In this case the sign is meaningless;

orlly zero/non-zero can be tested for.) Thus it is possible to exit from the interpreter
and do a JAZ or JAP or JAM etc.

The normal entry into the interpreter is by calling F: RINT. The first op-code should
then be one that determines a mode to operate in, i.e. a load or a conversion. (f itis
a conversion, it would convert from the integer value in the A register.) For example:

JST *BP (F: RINT) LDA K
LDD DX -or- JST *BP (F:RINT)
REL

If there is already a value in the floating accumulator (e.g. after returning from a function
call), then there are three alternate entries to the interpreter, which automatically set

the mode to real, double precision, or complex. These arec F: RREL, F: RDBL, and

F: RCPX, respectively. For example: '

JST *BP (F: RREL)
STA X
XIT

8.11

'COMPUTER AUTOMATION. INC. Eg

Table 8-2 lists all of the op-codes recognized by the floating point interpreter, and what

they do.

This includes the mnemonics that are the same as for machine instructions;

these are marked with an asterisk.

Table 8-2. Floating-Point Interpreter Op-codes

Op-code Description

LDR Load real. Load the two-word quantity a‘:ddressed, and unpack it into the
floating accumulator. Set mode to real. |

LDD Load double. Load four-word quantity, set mode to double precision.

LDC Load complex. Load four-word quantity, unpack into two real values in
the floating accumulator. Set mode to complex.

REL Convert to real, from whatever mode is currently set. If none has been set,
this means assume integer in the A register. Set mode to real.

DBL Convert to double precision, and set mode to same.

CPX Convert to complex. This always involves adding an imaginary part of zero.
Set mode to complex.

ADD* Add by mode (i.e. in whatever mode is currently set).

suB#* Subtract by mode.

MPM Multiply by mode.

DVM ! Divide by mode.

NEG Negate by modec.

ABS Absolute value by mode. Does not apply to complex.

DIM Positive difference by mode. (See DIM and DDIM in Table 7-2.) Assumes
(argy-argq) in floating accumulator. Does not apply to complex.

SGN Sign transfer by mode. (See SIGN and DSIGN in Table 7-2.) Assumes arg
in floating accumulator, first word (with sign bit) of arg, in X register.
Does not apply to complex.

STA* Store accumulator by mode. Pack up floating accumulator into standard
format and storc as two- or four-word quantity.

LDX* Load index. Same as machine instruction.

8.12

l

. COMPUTER AUTOMATION, INC. 'l

Op-Code Description

LXP* Load index immediate positive. Same as machine instruction.

LXM* Load index immediate hegative. Same as machine instruction.

ADX Add to index. Add contents of addressed location to "X".

AXI* Add to index immediate. Same as ml,uchine instruction .

SXI* Subtract from index immediate. ; Sarf:w as machine instruction.

ADJ Adjust index by mode. Multipls} "X':' b;r two for real, or by four for double
precision and complex, to adjugt for the number of words per element.

STX* Store index. (Needed in case a;: subscript is to be used later.)

XIT Exit from interpreter. Floatingjaccumulator not guaranteed. A register

reflects negative, positive, or zero value of last floating value.

XNL Exit with no unlock. Meaningful only under RTX. Same as XIT but
guarantees contents of floating accumulator.

INT Convert to integer and exit. Once the floating accumulator has been con-
verted to integer, you have to exit to make use of it (in the A register).

CONDITIONAL ASSEMBLY

Sépctions of in-line assembly code can be conditionally assembled, based on the value of
special parameters that you set up. These parameters are called conditional assembly
labels, and they have the form #Xn, where n is a decimal integer. The value of each
parameter is established by a SET directive, whose operand is either one or zecro. For
example:

#X1 SET 0
#X73 SET 1

The SET op-code must have a #Xn label and an operand of zero or onc. Any other
usage is incorrect.

The conditional assembly label should then appear as the operand of an IFT (If True)

or IFF (If False) directive. The value zero is considered false. The value one is consi-
dered true (unlike FORTRAN logical operations, where negative values are true). The
section of assembly code follows the IFT or IFF and is terminated by an ENDC directive,
which has no operand or label. The section is processed if the appropriate condition

is met; otherwise it is ignored. For example:

IFT ' #X3
JMP #475
ENDC

8.13

i
'
i
|

G o i o

P

COMPUTER AUTOMATION. INC. 'l

The JMP would be assembled if #X3 is one, but not if it is zero.

The lines following an unsuccessful IFT or IFF are not processed at all. except to see

if they begin "ENDCbL". If not, they are completely ignored. This has the interesting
effeet that conditional assembly can be used to process or skip over FORTRAN statemonts
as well as assembly lines. Suppose that, in the section following an IFI', there is a
FORTRAN directive, some FORTRAN statements, an ASSEMBLER statement, and finally
an ENDC. When the IFT is true, all of these will be processed as written. When it

is false. everything will be skipped until the ENDC appears. The compiler will not
know that some of the lines are in FORTRAN instead oq assembly language, but it does

about is that a FORTRAN statement such as:

‘not matter, as long as it eventually finds an ENDC linj. The only thing to be careful

ENDC = 0 i I
would be interpreted as an ENDC line (if there is a blank after the C).
Note that the existence of the conditional assembly fecature does not invalidate the usc

of X in column 1 -- it extends it. Either or both features may be used on assembly
lines.

MISCELLANEOUS

Here are some additional pieces of information about the use of inline assembly language:

1. Compiler optimization and tracing features are suspended during sections of
assembly language. Furthermore, the compiler will try not to dump out literal
pools in the middle of assembly language, since it does not know where it would
be safe to do so. If a section of assembly language is long enough, or comes
:i’n such a place that the compiler needs to dump out literals, it will produce a
warning diagnostic, and then dump out the literals preceded by a jump around
them. Most of the time this will work properly, but not, for example, in the
middle of a CMS test or a group of floating point mnemonics or a table of DATA
values. To get around this problem (or to get rid of the diagnostic), you should
insert an LPOOL directive somewhere no later than the point at which the literals
were dumped. The jump around is not generated by the LPOOL directive, since
it sometimes is not needed. If you need one, you should write it. Note that
assembly language itself does not generate anything that requires literals. They
can only arise from preceding FORTRAN statements.

2. If you reference a FORTRAN name that has not previously been classified, it
will be implicitly classified as a scalar.

3. You may not reference the name of an intrinsic function, since it has no location.
If you declare it EXTERNAL, however, you can reference the corresponding
cxternal library routine.

4. Continuation lines are not allowed, since column six has no special significance.

8.14

!

Note tlat a decimal or hexadecimal value operand is not the same as a constant.

That is:

LA

does nct load the value 5 but the contents of location 5.
constarts would require the UsSt of literal pools or extra base page words, and
To reference a constant, you must define it with DATA.

this ic¢

5

not done.

To provide for

If

you need a floating point constant, you must express it in hexadecimal, using

two or more DATA lines.

The "FCRTRAN" directive, which causes you to exit from in-line assembly language
back irto FORTRAN, does not have either an

8.15

perand field nor a comment field.

COMPUTER AUTOMATION, INC.

CHAPTER 9

COMPILER OPTIONS

SUMMARY

Certain as»oects of the compiler's operation can be controlled by a number of options.
These options are specified on the control command that calls forth the compiler. There
are defaul: conditions for all of them, so that the compiler does something reasonable
when no ontions are specified. The options are listed below. Three of them are
described in more detail in the following sections,|.
I

ELIST OEH_QQ

Error listiag only. Normally the compiler produces a listing of all the source lines. When

ELIST is specified, only source lines with errors are listed, along with their diagnostics.

LOBJ Option

List object code. An object listing can be rather long, and is often not needed, so the
default is .0 not produce one. The object listing is printed separately from the source
listing, bu:t the source lines are interspersed at the appropriate places. Thus an
object list:ng includes a source listing.

NBINARY Option
|

1\35 binary output. Default is to produce a binary module.
i

XON Option

Compile conditional lines (with an X in column 1). Without this option, they are
treated as comments. See "Conditional Compilation", in chapter 1.

ADP Option

Automatic double precision. All single precision quantities are converted to double
precision. This is described below.

RSP _Opticn

Reduce scratchpad. If your program overflows the scratchpad when linked (which
requires cnormous usage, unless there are other, assembly language routines using
large amo:ants), there are two stages of reduction you can request in the compiler's use

901

.

=

ComputerAutomation (§§z§§§ ---+¥ﬁ

of base page re:.erences. Normally the compiler uses base paée to reference sub-
programs (inclucing library), arrays, and variables in COMMON. The RSP option
causes the comp: ler to call subprograms without using base page (i.e. by using a
literal pool adcress pointer instead). This may reduce scratchpad usage by 20-50
words, meanwhilc. increasing the size of the program by somewhat more than that
(depending on hcw many references there are to each subprogram and how spread out
they are). —

NSP Option

I
No scratchpad. If RSP doesn't do the job, you may ﬁave to resort to the NSP option,
which eliminate:r all base page usage from the generated code (except those speci-
fically request«d by in-line assembly language), at|the expense of significantly
increasing the :iize of the program. This is mostly| because subscripting without
base page is quite clumsy.

|

RTX Option

Real time. Thi:, option must be specified when the object programs are to be executed
under RTX. It causes slightly different calling and receiving sequences to be
generated for p.oper interface in real time. Without this option, execution under

0OS is assumed. See below for more information. ’

T3 Option

Type 3/05 execu:ion. This option causes the compiler to generate ILSI-3/05 object
code rather thai LSI-2. It also assumes that the RTX option is wanted, even if you
don't specify RXX. Since OS doesn't run on the LSI-3/05, RTX is obviously required.
Note that when 23 is requested, the compiler will generate an external reference to
the LSI-3/05 instruction emulator and software console routine (F3EMUL), because
certain|inline assembly instructions (those flagged with an asterisk in Section 8)
don't exist on :he LSI-3/05 and must be emulated.

|

TRACE o£tion

Run time trace. This causes the compiler to generate extra objeét code for tracing
execution at rua time. . See below.

ANSI Option

ANSI compatible allocation. ANSI standard FORTRAN specifies that integer, real, and
logical quantities occupy the same amount of storage. (Double precision and complex
occupy twice thait amount.) 1In most cases this does not matter, and it is more
efficient on a 16-bit computer to allocate one word for integers and logicals, and
two words for r2als. If your program requires ANSI allocation (because of COMMON or
EQUIVALENCE aligjnment), the ANSI option will allocate two words for integer and

logical variablzs. Only the first word will be used in computation; the other will

. be ignored. 1Its only purpose is to separate the values so that the required amount

of storage is taken.

e

R O S R

s

el

There is one exception to the statement that the second word is never used. 1In any
operation thit simply steps through memory word by word, without regard to the type
of variable, all words will be processed, including those that may be only separators
between inge:er values in ANSI mode. This will almost always cause such operations
to work inco:rectly. Therefore you should not request ANSI allocation on any program
that uses ENZODE or DECODE on an integer or logical type buffer, or that uses a
FORMAT storel in an integer or logdical array.

;
N

9.2a

o - s + ST M. iRt e 8 e vt

i S

Ep—

COMPUTER AUTOMATION. INC. :A _

In general, if a program is compiled in ANSI mode, any programs with which it
interfaces should also be compiled in ANSI mode. If there are not integer or logical
variables in COMMON, or arrays being passed as arguments, this may not be
necessary.

AUTOMATIC DOUBLE PRECISION

If you have programs doing computation in floating point, and you find that the single
precision accuracy of about seven digits is not sufficient, you can usc the ADP option
to convert the program to double precision. Wijhout the ADP option, this conversion

would not be as simple as it may sound. It éoul@ involve:

l. Declaring every real variable, array, and non-library subprogram in a
DOUBLE PRECISION statement. |

2. Changing each appearance of a real constant to have a D exponent. (Actually,
in Computer Automation FORTRAN IV, those constants that appeared in
expressions would become double precision anyway, but not those that stand alone.

3. Changing each appearance of a real library function reference to the corresponding
double precision version, if one exists.

4. Changing F, E, and G format specifications to D. (This would be necessary in
‘ ANSI standard FORTRAN, which does not permit those formats to be used with
% double precision data. Computer Automation FORTRAN [V does permit this.)

|
1
|

'ljherefore. when the ADP option is requested, the compiler proceeds cssentially as if

there were no such thing as single precision floating point. This mecans that it takes
the following actions: '

1. Any name that would ordinarily be typed real (either explicitly or implicitly)
is typed double precision.

2. All floating point constants are automatically double precision.

3. Every reference to an intrinsic or basic external library function of real type is
changed to reference the double precision equivalent, as shown below. Note
that in some cases, this requires a double call, while in other cases it means
removing the function call entirely.

9.3

*

COMPUTER AUTOMATION. INC. '|

Change To Change To
ABS DABS COS DCOS
AIMAG DFLOAT (AIMAG) DBLE Removed
AINT DINT o DIM DDIM
ALOG DLOG EXP DEXP
ALOG10 DLOG10 FLOAT DFLOAT
AMAX0 DMAXO0 REAL DFLOAT (REAL)
AMAX1 DMAX1 SIGN DSIGN
AMINO DMINO SIN .~ DSIN
 AMIN1 DMIN1 SNGL _Removed
AMOD DMOD SQRT DSQRT
ATAN DATAN TAN DTAN

ATAN2 DATAN2 ~ TANH | DTANH

As with the ANSI option, when one program is compiled in automatic double precision,
the other programs with which it interfaces should also be compiled in this mode, so
that arguments will be of the same type and COMMON will be correctly aligned.

Caution

If you know in advance that a program needs to be in double precision, it is better to
write it that way in the first place, rather than using the ADP option, because the
option is not entirely foolprcof. There are several areas where you must exercise
caution in its use. These are:

1. Since there is no double precision complex type, ADP does not work on complex
({)perations.
2. lif you declare a library function EXTERNAL, the compiler will no longer recog-

nize it and change it. What will happen is that the name (e.g. ALOG) will be
classified as double precision (like any other ordinary name) and then called.
However, the routine by that name in the library cannot know that it is supposed
to be double precision. It will neither accept a double precision argument nor
return a double precision result. You would have to provide a version that did.

3. If you use a real library function (e.g. ABS), but also use the name of the double
precision version (e.g. DABS) to identify something unrelated (like a scalar
or statement function), you may get diagnostics or strange results when the
compiler tries to substitute that name. For example, if this program were
compiled in ADP mode: : ‘ '

COMMON DCOS
DABS (X) = X/3
A = COS (B)
C = ABS (D)

9.4

v e

|

'

COS wo1ld get an error diagnostic, while ABS would call the statement function
DABS. Using the names of library routines for other purposes is not a very
good ilea in any case.

4. ADP do.s not affect inline assembly code. The operands will change to double
precis .on, but the opcodes will not work properly.

REAL TIME

Any FORTRAN programs that are to be executed under RTX must be compiled with the RTX
option. (T..e T3 option includes the RTX option!within it). This changes the calling
and receivii.g sequences somewhat, in order to camply with the RTX conventions that
are used to handle real time usage of subprograms.' If you want to run the same
program undcr both RTX and 0S, you should ndrma'ly compile it twice. ©Note that if
you have a :ingle task (beginning with a TASK statement), it may be compiled without
the RTX opt.on and executed under 0S, for debugging purposes. The execution address
will then bc the name of the task, rather than F:MAIN. (When the same task is
compiled with the RTX option, no execution address is generated; it is assumed that
F:MAIN, the RTX Mainline sequence, has been assembled separately, and will be linked
with the ta:rk prior to execution; thus the execution address is F:MAIN.)

i
In SUBROUTI!Es and FUNCTIONs, the local storage (variables and temps) is protected
in real time. COMMON storage is not, nor is the local storage of main programs or
TASKs. Thi: means that it is difficult to connect a OFRTRAN TASK to more than one
interrupt. If this is done, the TASK must have no local storage, which means it
cannot do much. About all it can do is to call a SUBROUTINE which does the useful
work.

Note that a TASK is essentially a main program with a name, but there must be exactly
one true ma:n program. There may be any number of TASKs.

RUN TIME TRiCE
when! the TRICE option is specified, the compiler generates extra run time calls in
the kompile(program that cause it to print out trace information (on unit 6) in
three places:
1. Whenever a labeled statement is reached, the message:
x> Xxxx LINE dddddd
is prirted before the statement is executed, where:

XX XXXX is the name of the program (F:MAIN if main program). If the
name is the same as that on the previous trace line, it is not
printed. 1In other words, the name will be printed once when the
program is entered, and not again until a new program is entered

(or returned to).

dcddd is the source line number of the statement about to be executed.

9.5

Computorhutomation @% —

e o AL e S T T . i i

Sxypireghe b A R e)

R e Bk Lk

COMPUTER AUTOMATION. INC.

l
When a { UBROUTINE or FUNCTION is entered, the message:

x:.xxxx ENTRY

e

is printed immediately after entry. Again xxxxxx is the subprogram name, which
will alw:.ys be printed. Note that the tracing is done upon entry, not upon call.
Therefol e only subprograms that are compiled in TRACE mode will be traced.

3. When a ILETURN statement is rcached (whether or not labeled), the message:
: !

|

|

This informaticn is sufficient to follow the flow ofithe program, since it will trace all
jumps (the traiisfer point will be labeled) and all calls, except to library routines (which
are assumed to operate correctly) and to subprograms not compiled in TRACE mode

(which are also assumed to operate correctly). It is not necessary that all of the programs
loaded be comgiled in TRACE mode. As soon as certain parts are checked out, they

can be compile i normally, so only the remaining parts are traced. Note that assembly
language subp:'ograms are not traced, nor are sections of in-line assembly language.

x2.xxxx RETURN LINE ddddd

is printed before executing the RETURN., |

9.6

R e S R

Appendix A

STATEMENT-ORDERING AND SIZE RESTRICTIONS

t

STATEMENT ORDERING |

There are a few rules about the order in which statements may appear in a FORTRAN
program. Some of these are inherent in the language (e.g. END must come last),
while others improve readability and compiler efficiency (e.g. most declarations
must come at the beginning). Table A-1 divides the statements into six groups,
labeled 1 through 5 and X. Groups 1 through 5 must appear in that order, with no
overlapping. For example, all the statements in group 2 must follow group 1 and
precede group 3. Any of the groups except group 5 may be empty. Within a
group. the statements may appear in any order. Note that there can be at most one
statement in group 1.

The statements in group X need not appear together; in fact, they may appear
anywhere after group 1 and before group 5. However, a DATA statement must
follow any declaration statements that affect the variables to be initialized. In
practice, EXTERNAL and DATA statements usually appear in group 1, and FORMAT
statements in group 4.

Table A-1 also indicates whether each statement is executable or not. Occasionally
it is important to know this. For example, a DO loop must end on an executable
statement.

|

l
|

A.l ; Revised March 1975

T

e

e e

e e

Table A-1.

Statements and Ordering

~Group

VO

1

Statement \
BLOCK DATA
FUNCTION
SUBROUTINE
TASK

* Executable

B

Non-executable

P

COMPUTER AUTOMATION, INC. ""

ST

COMMON
COMPLEX
DIMENSION

DOUBLE PRECISION

EQUIVALENCE
INTEGER
LOGICAL

REAL

PP K P K K KK

Statement Function

=

Assignment
ASSEMBLER
ASSIGN
BACKSPACE
CALL
CONTINUE
DECODE

DO

ENCODE
£END FILE
GO TO

IF

In-line assembly

INPUT

OUTPUT
PAUSE
READ
RETURN
REWIND
STOP
WRITE

>

XX A XX X KK X

bl T e e e e

END

DATA
EXTERNAL
FORMAT

Mok

anl

Computerautomation (O ——

OBJECT PROGRAM SIZE RESTRICTIONS

Due to object program layout, the total number of subprograms, unique arrays, dummy
arrays and unique common scalars rcferenced must be less than 248.

Due to the structure of the compiler, there are certain other program size restrictions.
The number of each of the following items must be less than 1023:

Scalar and Array Variables

Common Variables

Equivalenced Variable Names ;

Statement Numbers f

Names in Explicit Type Statements

Unique REAL DOUBLE PRECISION and COI\}IPLEX Constants
Unique INTEGER Constants

Unique Subprograms called ‘

Arithmetic Statement Function Definitions

The total length of all Hollerith constants must be less than 1023; this includes character
strings in OUTPUT statements but not in FORMAT statements. The length of a Hollerith
constant is the number of words (that is, half the number of characters) in the string,
plus 3.

A.3 . Revised March 1975

O e R S SR PR 7

COMPUTER AUTOMATION. INC. '|

APPENDIX B

COMPILER LISTINGS AND DIAGNOSTICS

COMPILER LISTINGS e

The full listing of a compiled program consists of four parts:

Source listing |
Variable storage allocation o
Object listing ‘ "
Summary ‘ }

|

W DD

When no special options are requested, the object listing is not produced, but the other
three are. The LO (List Object) option causes the object listing to be produced. If the
EL (Error List only) option is specified, the source listing is suppressed, except for the
first line and any lines that have errors.

Figure B-1 shows a complete program listing. For further explanation, please refer to
the FORTRAN IV Operations Manual (96510-01).

COMPILER DIAGNOSTICS

Figure B-2 is a sample program for illustrating the format of compiler diagnostics.

Most errors are detected during the Scan phase and are printed on the source listing
immediately following the statement in error. A dollar sign is printed underneath the
position at which the error was detected, followed by a bricf message. If the message

is]followed by W's, it is only a warning. If it is followed by E's, it is an error and

the statement has not been generated. Instead, a call to a run time error routine is
generated. Thus if any statement with an "E" type error is executed, a run time diagnos-
tic will occur.

If there is more than one dollar sign printed, the count at the beginning of each message
indicates which dollar sign it refers to, counting from left to right. Note on line 0013
that both messages refer to the same dollar sign.

A few error conditions are not detected until the Allocate phase (or even the Generation
phase), so the diagnostics for these would appear in the allocation map or in the object
listing. For example, the UNDEFINED LABELS and ALLOCATION ERRORS messages

in Figure B-2.

Most of the error messages are self-explanatory, but the FORTRAN IV Operations Manual
contains a complete list of them, along with descriptions of possible causes. The Opera-
tions Manual also describes the compiler abort messages (usually caused by hardware
failure) and the error messages produced at run time (when the program is executed).

Note that the last line of the summary (i.e. the last line printed in any program listing)
indicates how many errors have been detected.

B.1

seapn sy

Rt

PAGL

JYul

pu FILe:s

o901
Ly
PYal
P4
ALy
PYno
Pay/
P93
Py
tL1d
pAtl
vold
ol
Oula
nsld
we'lo
Gl
fwls
‘,WHV
Vi2J
vl
fe22

Bauld

L‘U"q
Bu?v
PW20

i)

w27
X 20?5

L

fyv

W4y

O

GLDLIMEIS TUNED FQEQFtEQEtE*EiEﬁE*E*EiE*EtEiEOEtftEiEiEkEtE*Eﬁh*EtftEtEiEx\v

-

|
i
i

Ul e 1 s

©9/20/74

FOUT UPTIONS: LO

10151125 FORY:4 (AD)

DEMONSTYRATE OBJECT LLISIING

INTEGEFR NN(25), LLC(1Q)
DNOUBLE PKRECISION DX, DY
LOMMUN MM(100), M /BLK/ Y
tNJTVALENCE (LoLL)

IS1 (kD) = KDw8 -
h = (L+3uB)*M = 74

MM(I) = K

A = ABg(Yy+4)

DX = NDARS(0Y/4.3) .
IF (UX LT. @) 60 19 70 o
LALL SUB(L+3u0,7HABCOE ,Y+4) '
WRITE(O;J@) Y : |
FORMAT(5X » I5 , v vALUES.!') l

(h LFG, M) GO TO 10
ASSEMBLER

LaP $2A

ALD K

STA #BP(MYSINAM)
JnpP #50

RES 32,
FURTRAN

[F-

1,17
() = =1
ASSYGN 40 TOU K
MM(3) = ©

«

STaP
LhD

Figure B-1.

(LOCAL VARTABLE IN RANGE)
(SPECIAL SYSTEM NAME)
(FORWARD REFFRENCE IN RANGE)
(10 FOURCE LITERAL POOL)

Sample Compiler Listing

B.2

o SR O

L s o

CPAGL ‘
oC FILL:

00/20/74 103513125 FORT:4 (AQ)
FOUT UPTIONS: Lo

(UMMON oL UCK/F sBCMN/ ALLOCATIUN 3$Bub5 WORDS

LOCN

tWAYE Mnm

TYPE WORDS LOCN NAME 1YPE WURDS

INTEGER 1oa 10064 M INTEGER 1

CUMMON BLUCA/BLK /7 ALLOCATION 0002 WORDS

LUCN

TyPE WORDS LOCN NAME TYPE WORDS
tudvo Y REAL ? i
ARKAY ALLUCAT1ON o
LUCN TYPE WURDS L OCN MAME; TYPE WURDS
LBL IMTEGER 25 '

EQUIVALENCE ALLUCATLION

LOCKN

tJ0022 L

TYPE WORDS LUCN NAME TYPE WURDS

INTEGER 1 002 LL INTEGER 12

SUALAR ALLOUATION

LUCKN

vl K
sJA2E X
:gﬂqd Dy

i

|
|

TYPF WGRDS LUCN NAME IYPE WURDS
INTFGER 1 *eaeDd INTEGER 1
ik Al 2 130 nX DOUBLE 4
LOURLE 4

Figure B-1. Sample Compiler Listing (Cont'd)

B.3

b

s e

e s L

PAGL O0WI UC/20/74 10:51325 FORT.d4 (AQ)

o bILk: FOUT UPFTUNGS L0
Puil DEMONSTIRATE URJECY LuSIING
Purg AINTROER NN(29), LLC(1E)
SIVIA R VDOUBLE PKRECISION DX, DY
0Ny COMMUN MM(1Q0), M /BLKZ Y
pony EQUIVALENCE (L,LL)
U LSF(KD) = KD#B Bl
' 10W38 tF200 | JMP wM7
:AW39 13804 wMY ENT
tP03A FyPR B JsT *BP (F{RDMY)
13y 1 unl DATA 1 |
3L 1 AYAY KD DATA @
A03p h701 LDA ahq
$P03L s1ude ALA 3
1203F F7P06 JMP .0#ﬂ8
L7 AN tu s 2 (L+43UB)*M - 74 i ;
14y wM7 EQY 3y B4q@
1Mydy 1820 F wlv LDA #IC1 1912C
t1541 8LLF ADD |
0’ 1AYd2 319409 F STA #TQ
tPudy F9QPA B JST *BP (FIRMPY)
tAydd Y64 L DATA M
1A045 LL4dA SAI 74
$0Ud6 90 3A STA K
LRIV S M (I) 8 A
10047 3EOH1A LOX I
teca8 19002 B SIA *0BP (MM ~-1)
VIR X = AR5 (y+4)
W4y FyYPy 4 187 *BP (FIRRFL) -
(ASAA T AANDY b LUR #RC1 1416030420
(P34 1Y %a o ADD *8P (Y)
. 1234 19aV | S1A #11
| 104D :2p"5 ABS
| P0Gl 1OL20 S1A X
REY } Dx = DARS(DY,/d,3)
i $A04F Hoelb LuD Dy
1PPSY tAZMY F nVM #RCZ2 1418989999193
tP351 :00@H ABS
‘} $N0Bg 3972 SIA DX
Putl B (DY JLT. ¥) GO 10 7¢
183 18900 XiT
T2354 2082 F JAM %M9
eule LALL SUM(L+3u?, 7HABCLE ,Y+4)
2955 FylAy B JST *BP (SUB)
1nYS50 1AYA3 DATA 3
1AUS57 @Y F DATA #10
1Pghs :APAy F DATA #HCY
tiUhY 100WBY F DATA #11
Qutd 26 aRITE(L,30) Y
tAL5A tFG0Y B w2p JST #8BP(FSRwF))
. 1PuSy 17000 F DATA #[C5)
10p5C 17909 DATA %37

Figure B-1. Sample Compiler Listing (Cont'd)

B.4

B Lo e B e e

)

|
|
|

*8P (F $RROL)
IBP(FSRSIO)
Y(5XyI5,"' VALUES,')!
K

*BP (M)

#M10
tpA4n

1002A

K

(SPECIAL SYSTEM NAME)

*8P (MY INAM)

LOCAL VvARIABLE IN RANGE)

(FORWARD RFFERENCE IN RANGE)

(10 FORCE LIVERAL POOL)

450

32, '

!
*pRP (MM -1)

1y
#M11
%44
sM12
#M9

LITERAL

POUL

D)) UuDl"LHsiuNtn ExEaENERE et aE A EAE A E A EaEAE R E A AEAE N ab *FExERF xEab o E #f wEwF +

PAGL YBwd u9/2u/74 10151:2% rORT.4 (AQ)
B0 FlLbts FOUT UPTIONS: Lo
10V5D 1F9PQ o JST
1705L 100029 C DATA
tASHE F903 B J§T
futd 39 FORMAT(X » IS , v VALUES.!
:wuﬂm':A585 %30 TE X
cYylYy ILF (K Fu, M) GLOTO 1@
1706y 31B634 LDA
17061 319108 O suB
tMR62 12102 F JAZ
HZP) wv1Q EQY
pdlo AOGSEMBLER
ruetl7 LaAP $2A
19963 :Co2A LAP
mayy ADD K
17064 18E38 ADD
Pdly STa *BP (MY SINAM)
$0u65 19979 o STA
0?22 JMP #5¢ .
tPQ66 1F2Q00 F JMP
PY”1 wdy RES 32,'
1AY67 :tAQAD wéy RES
N FORTRAN :
QU2 S DO bV I > §,140
10y87 :1C401 w50 LXP
1PuBb IEEDSH wMed STX
04324 Y MM(]) & =i
18y 310704 w6y LAM
1APBA 19070 B STA
P2y ASSTGN 4y TN K
tAp8p 10274 AX]
tNp8L 8030 TXA
| 17980 10DAA SAI
| $AL8L :121CH JAL
; tAUBF 1B2Ay F LDA
f 12490 tF270 F wl JMP
5 1Pp9Y sF20Q F JMP
1092 19E66 #M12 STA
ISIALS MNC3) = W
g
10093 1FyY0¥ 1ST
10094 :001A DATA
, 10095 0000 F NATA
gue’ 74 STUP
1AY96 w70 EQU
$NY96 F9MY B #M9 JST
$AW97 0000 NATA
Cu o ENO
10,498 1412C wiIC1t DATA
1AQ99 14189 »RC1 DATA
tNPOA :0p0a NATA
Figure B-1.

B.5

*BP (FIRERR)
26
4RC4

1096
*BP(F:RSTO)
@

300
16768
("

Sample Compiler Listing (Cont'd)

1630624167

e

R e LRy

———

PAGL J¢u5 $9,28/74 1031513125 FORT:4 (AR)

WO FILLs FOUT UPTJIONS: L0
1698 14189 #Ri2. DATA 16777
tAa9C 19999 DATA =26215
$AYYD 1999y DATA =26215
$AV9E 199Y0A DATA =26214
1AY9F 837 #ly DATA @
1AYAY :PpAY ®1L 7 DATA @
tRJA2 3167 DATA %40
10083 310087 _ DATA 7
tW3Aq :CHiC2 WH(O DATA 'ARY
100AS :C3C4 DATA 'CD?
17946 (CoA DATA ‘g ?
1RYA7 tAJAD DATA ! r ‘

$AUAB 10uM6 wICS DATA 6
10089 :163CHL #RC4 DATA 255t9
tMOAA 314167 DATA 167

SUNTRUGKAMS Lallty |

'

Q- YYPE ARGS NAME IYPE ARGS NAME TYPE ARGS
Lee ReAL 9 DAHBS DOUBLE 1 SUB ' REAL 3
by iwF RUNTIHE FeRROL RUNT 1ML : FIRSTQ RUNTIME
MY SNAM RN ITME F:RERR RUNTIME FIRSTO RUNTIME
Fakepu RUNTIME FiRREL RUNT1LME F:RDBL RUNTIME
boPr? RUNTIME FIRFF RUNTIME F:RDMY RUNTIMF

FiiMPy PUNTIME
STATESMENT LATLLS

LJLN LARLL USL ' LOCN | aREL USE LUCN LABEL USE

TUMNad w1y 13296 %70 1N054 #20 UNUSED
HOESI I I R Y FORMAT $)87 #5070 1dP67 H40Q
1U089 Woy 0N EnD 10940 M7 10039 M8
L dAY6 ump 14040 sM1Q t0A88 #MtL

tUAY? Wiy L2
© hveiovss
PROGRAM ST1Zbe:;VuAl WORDS

BASL cALP 'JSED=:290D wORDS
COMETLATION (CUMPLETE § EHRORS

Figure B-1. Sample Compiler Listing (Cont'd)

B.6

PAGLL V@43 09724274 11341316 FORT:4 (AD)
vo0 FILE: FOUT UPTIONS?

v L DEMONSTRATE COMPL{LER DIAGNOSTICS

nye2 DIMENSION MM(10,10)
ol COMMUN X, ¥, X T
$

81) DLCLARATIUN CONFLICT E#EWEAE®ENENEAESENEAERENEVEREAESECEREREAEsE#ELVE®

Pu4 EQUIVALENCE (X,Y)
P LOVICAL LGL, N
2V IS 1) INTEGER A, e C
$.

P1) EXTHA COMMA WaWaWANAHANRWAWRNANOWAN WO HaWA WA WA WA WA WS WaNaWaNaWaWa NN ab i

Ruin/ SF(P,R) 3 pP+Q/2
PJAg X s LE50 + LGL i
‘ $ $ »

D1) CONSTANT SIZE ENEatwEwEaEwEAEREAEwEAEAERFE aEwEREEoEdEaEfE2E L kEoEwEwEWE

Re) TYPEL CONFLICT EnEwEnFwl aC aEAEwE aEWEAEREaF aE aEsEnEnE o ExFEaEwEaE kEvEwE*EWE

PYaYy IF (a) 2,3,2
Puily 2 X = 3QRT(A) + SF(Y)
$ $

Pi) ARGUMEMNT CONVERTED WARKNNRKAWANRNAN AN AN S NN RN NN SO N RSN RN AR ¢
@2) ARGUMENT COUNT LAt wEwEwEsEnEwEeEnpwERERE s wERERERENEREERESEapaE#ESE L
|

Ut L i B(IN) = o

! $.
P1Y UNDLIYMENSTUNLD [tEtEQEQEtEtFtEQEtEQEiEiEﬁE*E*EtE‘EtEiEﬁEtEtEtE.gtEﬁEtEi[

Pute X & (RX+ABS(SX))/(VAL+3))

d
P1) SYNJAK ENLaLwp o N MM e N 4 W REAE*EWERERENEAEAEAEYERE#EaERE #E*E

putl J = MM(N)
s
B1) UT JTTLOER E«EAEAEAEAE R o EvEAErENE S EaEAEAEAEAENENEAEAEAEAEAEaE2E#EEwt

@1) MUMBER UF SURSCRIPTS EAbAE*EAEAL E#ENEALAEAEREAENESEAE#EAENENEAERERE*E

AR EMD

Figure B-2. Sample Diagnostic Listing

B.7

S s LS

PAGL ©WPW2 ©9/28/74 11:41:16 FORTid4 (AB)
BO FILLy FOUT UPTIONS?S

UNDEF INED LABELS bab ol dbaE sl wpapapnp ol oL AERENENEAENERCOEoERE S AL AE b ol wE WL ol s

3 FLIRST REF Al LINE 5

CUMMON Bt UCK/Zt 33CMM/ ALLOCATIUN 310Y04 WORDS

tJ WY X <EAl 2 HV AR RE

LULN NaYE TYRE WORDS LUCN NAML rvrt WORDS
rL‘ 2 i
!

AiiNY ALLuCATION

LUl NAMe TYPRE WORDS LOUCN NAME | TYPE WORDS
o“zﬂmud “ INTEGER 1un |

© SUA_AR A LOLATJUN | | ;

3 Luls NAHT TYPE WORDS LOCN NAME [YPE WURDS

|

| ¢t A INTEGEK i $0065 J INTEGER o1
i tVioA N LOGICAL 1

o ALLUCATLON ERRORS EhftEH’.thE*E*EtE*EtﬁtEtEaEtE«EaEaEﬁE‘aEaEaEtEtE,EaE-EaEaE«L\,

Y

Figure B-2. Sample Diagnostic Listing (Cont'd)

B.8

T L e

PAGL W@0Y 09720774 11141116 FORT:4 (AB)
B FILE: FOUT UPTIONS?

SUHPRUGRAMS CALLFOD

NAML TyPE ARGS NAMF = [YPE ARGS NAME TYPE ARGS
F:RERR RUNTIME SART REAL i FIRSTO RUNTIME
F:RRFL RUNTIML FIRDMY RUNTIME

STAVTEMENT LAKBELS

1

LUCN LABEL USL LUCN LABEL USE LUCN LABEL USE
LUTY w2 CLFFEF #3 } 10476 #M2
xV’dQB #M-‘

ENTRYe QWG Y

PROLRAM S 7b=:4p94 wORDS

BaSk PAGE USED=2:1@J0W4 WOKDS
COMPILAJIUN CUMPLETE 12 ERRORS

Figure B-2. Sample Diagnostic Listing (Cont'd)

B.9

i L ot SR

e e S

el (G £

COMPUTER AUTOMATION, INC. '| —-

APPENDIX C

INTERNAL DATA FORMATS AND ASCII CODES

Integer. 1 word, unless the"ANSI option is requested, in which case 2
words are allocated (for variables) but only the first is used. Bit 15 is
the sign bit, and the remaining fifteen bits are the right justified integer
value. The negative of a number is its two's complement.

15 0
| S| Integer ‘]

Real. 2 words. The first word contains the sign bit, an eight bit exponent (or
characteristic) of base two, which is biased by 128, and the high order seven

bits of the normalized mantissa. The second word contains the low order sixteen
bits of the mantissa. The high order 1-bit in the normalized mantissa is not
present, but only implied. This makes room for one more bit of precision.

It also means that there is no combination of bits that is not a legitimate normalized
floating point velue. And it means that even though the first word of a floating
number is zero’, the value may not be, since there may be bits in the lower order
mantissa. '

The exponent range is 27128 to 2+127, The resulting range of values is
1.469368E-39 to 1.701411E38. The 23 bits of mantissa (plus implied high order
bit) give an accuracy of somewhat more than seven decimal digits.

This is a sign-magnitude system. The negative of a number is obtained by
merely setting the sign bit; the mantissa and exponent do not change.

15 14 76 0
rS] Exponent Mantissa J
15 0
[Low order mantissa J

Double precision. 4 words. Exactly the same as real, except that there are
two additional words (32 bits) of mantissa following the first two words. The
exponent range is the same. The 55 bits of mantissa give an accuracy of
about 17 decimal digits.

15 14 ‘ 76 0
S Exponent Mantissa

Low order mantissa

Lower order mantissa

Lowest order mantissa

C.1.

s e

[S Lo, oo B

(52

6.

COMPUTER AUTOMATION, INC. '|

Complex. 4 words. Consists of two single precision (real) floating point
numbers. The first is the real part, the second the imaginary part,

Logical. 1 word, unless the ANSI option is requested, in which case 2 words
arc allocated (for variables) but only the first is used. Only the sign bit (bit
15) is significant in logical operations. Any word that is negative (bit 15 = 1) |
is true, while any word that is positive or zero (bit 15 = 0) is false. Note that
the compiler generates .TRUE. and .FALSE. as all ones and all zeros respec-
tively, but this is not necessary, since only the sign bit is tested in logical
operations. ; ’
i | i
Alphanumeric. Hollerith constants are 1 word I(two characters). Alphanumerigc
string constants can be any length, always with two characters per word, and
are preceded by a word containing the (rlght justified) integer count of the
number of characters in the string. :

Each alphanumeric character is an 8-bit ASCII code, with the high order bit
always set to one. There are thus 128 legitimate ASCII codes, but only 64
of them are graphic (printable) characters. These are shown in Table C-1,
along with their hexadecimal equivalents. We do not recommend that you
take advantage of knowing these hexadecimal values (i.e,by doing numeric
calculations with alphanumeric characters), because the values vary widely
on different computer systems. The table also shows the punched card code
for each character.

Note that the three characters L, \ , and] do not print on the teletype.

prp R e E

LSE (o ks

COMPUTER AUTOMATION, INC. ' '1

Table C-1. ASCIl Character Codes
Hex - Hex
Character Value Card code Character Value Card code
Blank t A0 Blank @ : CO 4-8
! 1Al 11-2-8 | :C1 12-1
"o tA2 7-8 Q ‘ :C2 12-2
:A3 3-8 :C3 12-3
$ 1 A4 11-3-8 { a :C4 12-4
% : A5 0-4-8 . E :C5 12-5
& : A6 12 . F :C6 12-6
' : AT 5-8 G :C17 12-17
(A8 12-5-8 . H :C8 12-8
) tA9 11-5-8 I :C9 12-9
* tAA 11-4-8 J :CA 11-1
+ :AB 12-6-8 K :CB 11-2
, tAC 0-3-8 L :CC 11-3
- : AD 11 M :CD 11-4
) : AE 12-3-8 N : CE 11-5
/ : AF 0-1 o} :CF 11-6
0 : BO 0 P : DO 11-7
1 : B1 1 Q :D1 11-8
2 : B2 2 R :D2 11-9
3 : B3 3 S :D3 0-2
| 4 : B4 4 T :D4 0-3
5 : B5 5 U : D5 0-4
6 : B6 6 \Y :D6 0-5
LT : BT 7 w :D7 0-6
8 : B8 8 X :D8 0-17
9 : B9 9 Y :D9 0-8
: : BA 2-8 Z : DA 0-9
; : BB 11-6-8 ‘[f :DB 0-2-8
< : BC 12-4-8 \f :DC 11-7-8
= :BD 6-8 M :DD 0-5-8
> : BE 0-6-8 4 : DE 12-2-8
? : BF 0-7-8 - : DF 12-7-8

t Not available on teletype.

Tl s o

COMPUTER AUTOMATION, INC. '| JE—

'APPENDIX D

ANSI COMPATIBILITY

The Introduction stated that ANSI standard FORTRAN is a subset of Computer Automation
FORTRAN IV, i.e., that any legal ANSI program will work the same way in Computer
Automation FORTRAN IV. There are two minor exceptions. The first was changed to
produce smaller object programs, but can be chénged back by the ANSI allocation option.
The other is quite obscure and rarely occurs, and we have implemented it differently
because we felt it made more sense. The two differences are:

1. Integer and logical variables occupy only one word, while real variables
occupy two. ANSI says they should be the same. It is hard to do this
efficiently on a 16-bit machine, so normally we do not allocate them that way.

However, you can request this by usihg the ANSI option (see chapter 9).
This difference is important only in certam cases of mixed mode alignment of
COMMON or EQUIVALENCE. ’

2. According to ANSI, a positive scale factor of value n used with an Ew.d
format produces n significant digits to the left of the decimal point and (d-n+1)
to the right. That is, as digits are added on at the left, they are taken off at
the right, beginning at n=2. The effect for n>d+1 is undefined. In actuality,
almost all FORTRAN systems keep constant the number of digits to the right
of the decimal point, as shown in chapter 5, under "P Specification".

ADDITIONAL FEATURES
j

cluded in Computer Automation FORTRAN IV, as well as some minor extensions. These
are listed below.

thhe other hand, there are a number of significant extensions to ANSI FORTRAN in-

General Features

1. In-line assembly language.

2. Conditional compilation (X in column 1),
3. Automatic Double Precision (ADP) option.
4. Any number of continuation lines.

e el

=R

vl

5.

Extra library functions:

DDIM DMAXO0 DTANH INOT
DFLOAT DMINO _IAND IOR
DINT DTAN [EOR TAN

Data and Expressions _ !

1.

!

Lower and upper subscript bounds on arrays. If a dummy array, both limits
may be adjustable (specified by another dummy).

Any number of dimensions on an array.

Any integer expression may be used as a subscript. This includes subscripted
subscripts. “

Names of any length (first six characters significant) . !
Hexadecimal constants.

Hollerith constants in expressions. If standing alone on the right side of an
equal sign, they may be as long as permitted by the type of the variable on the
left of the equal sign. Otherwise they are integer (one or two characters).

Long alphanumeric strings enclosed in quotes (in DATA statements or argument
lists).

g real constant in a double precision expression automatically becomes double
recision.

More cases of mixed mode expressions are allowed, including:

a. Integer may be mixed with real, double precision, and complex, using
the operators +, -, *, and /.

b. Double precision may be mixed with complex using the same sct of
operators. (The result is complex.)

c. An integer may be raised to a real or double precision power.

d. Integer may be compared with real or double precision, using any
of the relational operators. :

€. Cbmplex may be compared with integer, real, double precision, or
another complex, using only the operators .EQ. or .NE..

D.2

’
COMPUTER AUTOMATION, INC. e

=TT

ry

A

COMPUTER AUTOMATION, INC. - -

f. An assignment statement may have a complex variable on the left
and an integer, real, or double precision expression on the right.
(The latter involves a loss of precision.)

10. Boolean operations, using the intrinsic functions IAND, IOR, IEOR, and INOT
11. > and < may be used as relational operators, in place of .GT. and .LT..
12. { may be used for exponentiation .‘ in place of **,
13. The sequence .NOT. .NOT. is permitted.
Statements i
1. Free form I/O statements, OUTPUT and INPUT.
2. Internal data conversion statements, ENCODE and DECODE
3. TASK statement, for real time programs that are connected to interrupts.
4. END= and ERR= options on READ and WRITE.
5. New FORMAT specifications: T (Tab), Z (Hexadecimal), ' (Alphanumeric
string), $ (Preceding dollar sign), and * (Asterisk fill).
6. Other features in FORMAT statements:
a. All of the numeric formats (I,F,E,D,G) accept any of the numeric types
of data (integer, real, double precision, or either part of complex) .
| b. Comma termination of numeric input fields.
¢. Deeper nesting of parenthesized groups, to eight levels.
d. The first T or F in a logical input field determines the value, rather than
the first character (so .TRUE. is a permissible input field).
e. The A format also works with double precision variables.
7. Features in the DATA statement:

a. An unsubscripted array represents all of its elements.

b. A long alphanumeric string may initialize any number of var1ables
(or array elements).

D.3

.

|
_;
%

s

9.

10.

11.

12,

COMPUTER AUTOMATION, INC. '| _

|

c¢. Hexadecimal constants may be as long as required by the variable type.

d. Variables in labeled COMMON may be initialized in any program, not
~just in a BLOCK DATA subprogram.

DO control parameters may be negative or zero (except for the increment).

A statement function definition may reference array elements and Hollerith
constants. '

In EQUIVALENCE, a scalar may be followed by a position count enclosed in
parentheses (in the same manner as an array néme,). !
| ! i

PAUSE and STOP may be followed by a decimal #onstant. rather than octal.

The END statement may be labeled, and si@ulates a STOP or RETURN if necessary.

Syntax Relaxations : L |

1.

[3]

The parenthesized list of statement numbers in an assigned GO TO is optional.

There may be a comma in a DO statement between the terminating statement
number and the control variable.

There need not be a comma in the following place‘s:
~a. Inacomputed GO TO, after the right parenthesis.

!
! b. In an assigned GO TO, before the left parenthesis (if any).
|
|

<+

