
'(*=**H 'w'mWitttfftttt··ttw"fM¢f.···t',ttn1:t$j"· .. "ttrt j' ht tt·M;U'wt'mjo .. ··p't"af'f" "ifM"'''f'rt .. itJfi1Hr"X ""wNit • '0"- f"o .' t' "'wn·1t t't'ii .. · ... " .. p,d"N'tsWiW

-

;0

.---,-----------~------------.---.----

ComputerAutomation
NAKED MINI®Division

18651 Von Karman, Irvine, California 92715
Telephone: (714) 833-8830 TWX: 910-595-1767

OMEGA

ASSEMBLY SYSTEM

96007-00E3 August 1976

PRINTED IN THE U.S.A.

-

I'
I

Rivision

AO

Al Thru E2

E3

REVISION HISTORY

Issue Date

August 1976

1ft t t* If tit,

Conunents

Original Issue

Misc. Updates

Eliminates references
to Omega 3/05

*

r

r

C

. ""~,

..... MW'"iI!jl!!Mi"' ... _ '&=1 .. · .',"uiIOM.!!Gf'"'B'A'

ComputerAutomation ~

TABLE OF CONTENTS

Paragraph Page

1.1

1.2

1.3

1.4

2.1
2.1.1
2.1. 2
2.1. 3
2.1. 4
2.1.5
2.1. 6
2.1. 7

2.2
2.2.1

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Section 1. THE OMEGA ASS~MBLY SYSTEM

INTRODUCTION. . 1-1

ASSEMBLER DEVICES 1-2

SYNTAX NOTATION . . 1-3

SOURCE STATEMENT FORMAT

Section 2. OPERAND EXPRESSIONS

TERMS ..
Self-Defining Terms
Symbolic Terms.
Defined Terms .
Undefined Terms .
Absolute Terms.
Relocatable Terms
Unary Operators •

COMPLEX EXPRESSIONS
Binary Operators.

ABSOLUTE AND RELOCATABLE EXPRESSIONS ..

OPERAND EXPRESSION PREFIXES . . .

Section 3. CODING MACHINE INSTRUCTIONS

CLASS 1: WORD REFERENCE.

CLASS 2: BYTE IMMEDIATE.

CLASS 3: CONDITIONAL JUMP .

CLASS 4: SINGLE REGISTER BIT CHANGE.

CLASS 5: REGISTER AND CONTROL ..

CLASS 6: INPUT/OUTPUT ..

CLASS 7: DOUBLE REGISTER BIT CHANGE.

CLASS 8: BYTE REFERENCE.

iii

1-4

2-2
· 2-2
· 2-4
· 2-4
· 2-4

2-5
2-5
2-5

2-6
2-6

· 2-7

2-7

3-2

· 3-3

3-4

3-5

3-6

3·-7

3-8

3-9

c'

tiN .. 'WNWfflY

ComputerAutomation ~

TABLE OF CONTENTS (Cont'd) ,-

Paragraph Page

3.9

3.10

CLASS 9: DOUBLE REGISTER ARITHMETIC.

CLASS 10: STACK REFERENCE ..•.•..

Sectlon 4. ASSEMBLER CONTROL
I

End of Source Program (END) . •
End of Input Segment (up-arrow)
Heading Title (TITL) ..
New Page (period) • .

I

: I
. 'I

Comment Line (asterisk) • i • '.1
• • • • .! •

Machine Instruction Set (MACH). ,:
Conditional Assembly Control (IFT/IFF/ENDC)
Define New Op Code ($class) .. ,I •••••

Subroutine Structure Mnemonics (CALL/ENT/RTN)

Section 5. SYMBOL AND DATA DEFINITION

Data Definition (DATA), ...
Equate Symbol Value (EQU)
Set Variable Value (SET).
Reserve Storage (RES) • . • ,
Text Definition (TEXT). ,
Byte Address Constant (BAC)

Section 6. LOCATION CONTROL

Absolute Object Code (ABS). .
Relocatable Object Code (REL)
Origin of Object Code (ORG) .

section 7. OBJECT PROGRAM LINKAGE

Entry Declaration (NAM/SNAM) ..
External Declaration (EXTR)
Demand Load (LOAD).
Reserve Chain Link (CHAN) . .
Example of Chain Structure and Usage.
External Reference Constant (REF/SREF).

section 8. LITERALS

3-11

3-12

4-2
· 4-2

4-3
4-3

· 4-3
4-4
4-5
4-6
4-9

5-2
5-3

· 5-4
· 5-5

5-6
· 5-7

6-2
6-3
6-4

7-2
7-3
7-4
7-6
7-7
7-8

Allocate Literal Pool (LPOOL) . . • 8-4

iv

r

, hrfl* 'W· ... wI'R" f t ttt"tltt I ftt#·,

TABLE OF CONTENTS (Cont'd)

Paragraph Page

Section 9. SCRATCHPAD LITERALS

Scratchpad Literal Only (SPAD). • . . • . . 9-2

Section 10~ INTERPRETATION THE ASSEMBLY LISTING

Section 11. SAMPLE LISTING

I

I
Section 12. EDITING AND ASSEMBLING A SOURCE PROGRAM ,

:' CONNECT DEVICE (C).
INITIALIZE (I). .
RESTART . . • . .
END OF MEMORY SET (E)

• • r·

READ INPUT (R) .•
SKIP INPUT (S) .•
ADD AFTER BUFFER LINE (A)
DELETE BUFFER LINES (D)
BUFFER CLEAR (B) ..•..
LIST BUFFER LINES (L) .
PUNCH BUFFER LINES (P).

,
'.

RESET LAST INPUT LINE NUMBER (T) .•
MEMORY AVAILABLE DISPLAY (M).
EXECUTE ASSEMBLER (X) .
OMEGA PROGRAM VARIABLES
OMEGA COMMAND SUMMARY .

Section 13. MESSAGES ON THE TELETYPE

Appendix A. ASCII CHARACTER SET

Appendix B. MACHINE INSTRUCTION SETS

Appendix C. LSI-2 INSTRUCTIONS

Appendix D. LSI-3/05 INSTRUCTIONS

v

12-2
12-2
12-3
12-3
12-4
12-4

· 12-6
12-6

• 12-8
12-8

· 12-8
· 12-9
• 12-10

12-11
12-13

· 12-14

c

~."""""

ComputerAutomation ~

section 1

THE'-OMEGA ASSEMBLY SYSTEM

1.1 INTRODUCTION

This pUblication describes the assembler langu •. agelfor Computer Automation i6-bit,
minicomputers and millicomputers, and the three sl~and-alone programs which convert
this language into object code. . I

OMEGA2 is the general-purpose assembler for all models of the LSI-2 and ALPHA-16. It
runs on an LSI-2 (or an ALPHA-16) with a minimum configuration of SK of memory and one
ASR-33 Teletype (or an equivalent device) .

Support is provided for this additional hardware:

Memory, to a maximl~ of 32K
Card Reader
Line Printer
High Speed Paper Tape Reader/Punch

OMEGA3 is a cross-assembler -- a variant of OMEGA2 which can be executed only on an
LSI-2, but which generates object code executable only on an LSI-3/0S. The paper tape
Object Program is usually loaded into a 3/05 with the LAMBDA3 Object Loader.

Beca1se the source language defined for these two programs is identical, this publica­
tionluses the name OMEGA or the phrase "the assembler" to denote whichever assembler
is bfing used to accomplish the translation from Source Program to Object Program, and
desi$nates the assembler by name -- OMEGA2 or OMEGA3 -,.- only when there is, in fact, a
mean~ngful distinction to be made.

OMEGA is called an "assembly system" because it includes a conversational Source
Program editor, as well as a two-pass assembler. A Source Program can be constructed
in memory, either from pieces of existing programs, or from scratch, and then assem­
bled. The new Source Program, the corresponding Object Program, or both, can be
punched out for future use.

Editing commands are entered thru the Teletype; listing and punching can be directed
dynamically to any attached device. Input can be switched back and forth from the
Teletype keyboard to a card reader, to a paper tape reader, and to the memory con­
taining the newly-constructed Source Program.

The OMEGA editing commands are described in detail in Section 12, which includes a
Command Summary chart suitable for use at the Teletype.

1-1 Revised 7/76

i
"
,

dt #tit •• Ik h, frmt , &I"""1l f n r

1.2 ASSEMBLER DEVICES

Source Input Device

During the editing or assembly of a program, OMEGA obtains statements to be processed
from the Source Input Device.

The maximum length of a Source Input'-r-ecord is 80 bytes. A keyboard or paper tape
record is terminated with a Carriage Return; extraneous Line Feeds, Rubouts, and Nulls
are dropped during input.

Input supplied during the editing process is termina ed witn a record which starts
with an Up-Arrow or a Slash. Input supplied during he assembly process is terminated
with an END statement.

If a Source Input record starts with an
readies another segment of input on the

Listing Device

j
Up-Arrow:, 0 GA halts. The operator then
same device, I and hits the RUN switch.

!
I
I
!

The assembly process, and the List command during the editing process, generate printed
output on the Listing Device. A page of output is usually 66 lines of 72 characters
each. These values can be changed, as explained under Omega Program Variables.

Sections 10 and 11 contain a sample Assembly Listing, and a detailed explanation of
the layout.

Punch Output Device

The generation of an Object Program, and the Punch command during the editing process,
generate records on the Punch Output Device.

A punCh~ld Object Program is in a format acceptable to LAMBDA2 or LAMBDA3. Section 7
explain why some tapes may not be directly usable by BLD or Autoload without first
being p ocessed thru LAMBDA.

I
A punched Source Program is in a format acceptable to OMEGA thru the Source Input
Device.

1-2

z" \:

r

....

ComputerAutomation ~

1.3 SYNTAX NOTATION

This reference manual adopts a familar meta-linguistic notation to spl!cify thu valid
syntax for (~ach type of source statement. Each statement type is displ ay,~d ,lsi f it
were a card located flush with th~ .. left edge of the narrative text; the distinction
between the various fields will be self-evident from their contents and horizontal
spacing.

Syntax elements which begin with a capital lettqr, but are otherwise in lower case,
are generic terms, and are explained in the corlcsponding narrative.

A syntax element in upper case is a fixed part ~f ~he language.

I
An element surrounded by square brackets is :opt1onal.

A vertical stack indicates a choice of one Ontry from the stack.

Three periods following a right square brac~et indicate an arbitrary repetition of
C the contents of the last pair of brackets.

The following syntax chart illustrates the complete not'ation:

MNEM [operand [operan~ ... [comments]]

1-3

ComputerAutomation ~

1.4 SOURCE STATEMENT FORMAT

Each source statement occupies the first 72 bytes of an isolated logical input
record; any bytes remaining are discarded. Each statement is in the usual free-fo~m
arrangement --four variable-length fields delimited by blank columns.

Label Field

The Label Field starts in Column 1 of each source statement. If Column 1 is blank,
then the Label Field is said to be empty, and ends lith the first non-blank character

that is, with the start of the Operation Field. ,

If Column 1 is not blank, then every column up to t e next blank is either a Label I

or some type of assembler directive, such as a Cornrn~nt Line, a New Page, or a New Op
Code Definition. I

If Column 1 is an alphabetic character, then th~ field contains a Label -- the name
of a symbol or variable. ' The alphabetic character may be followed by 0 thru 5 C' alphanumeric characters, followed in turn by at: least one more blank.

Operation Field

The Operation Field starts with the first non-blank column after the Label Field.
It contains a character string identical in structure to a Label -- 1 to 6 alpha·- ,
numeric characters, the first of which must be alphabetic. This string is called a r
Mnemonic, and indicates a machine instruction, a New Op Code, or an assembler
directive.

Except for a directive, any Mnemonic can have its meaning changed at any point thru
facilities built into the assembler language.

I
At leasjt one blank column must follow
may be iused to separate the Operation

I

the Mnemonic; an arbitrary number of blanks
Field from the next field.

1-4

ComputerAutomation ~

Operand Field

The existence of the Operand Field depends upon the definition of the Mnemonic used
in the Operation Field. For some Mnemonics, no operands are meaningful, and the
assembler never processes any source statement columns to the right of the Operation
Field. For other Mnemonics, one_or. more operands are always required, and the
assembler expects them to start with the first non-blank column after the Operation
Field.

There are two types of statements which sometimes have an Operand Field, and sometimes
do not:

END directives
LPOOL directives

For these, the programmer must either supply an ~erand Field, or leave the
the source statement blank.

rest of

Each operand is of arbitrary length, and is determined by the nature of the source
(l; statement involved; the only restrictions are:

1. Single Quote characters must be paired.

2. Blanks and commas cannot occur outside of quoted text strings.

3. The last operand cannot extend past Column 72. The assembler does not allow
continuation of the Operand Field onto another logical input record.

Each operand is separated from the next by a comma, and the last operand
it extends to Column 72 -- must be followed by at least one blank column.

1-5

unless

c

ComputerAutomation ~

Comments Field

The Comments Field starts with the first non-blank column after the previous field,
and extends to the rightmost column of the source statement. The assembler 40es not
process the Comments Field, except to align it for a formatted listing.

If a given Mnemonic always requires an Operand Field, the Comments Field is not
shown on syntax charts in this publication, because it cannot affect the validity of
a statement.

If a Mnemonic never involves an Operand Field, the ~yntax chart may show the generic
element Comments to emphasize that no operands are ~ec~gnized.

For the few statement types which allow a Commehts ield only if an Operand Field is
also present, the syntax chart will show this cpnst uction:

[Label] Mnemonic [operand [comments]]

statement Fields as Listed

i

The assembler reformats each source statement before listing it, to provide uniform,
more readable columns. If the source statements are keypunched on 80-column cards,
the usual coding practice is to use the same fixed columns maintained on the listing:

01 06
07
08 13
14
15 72
24 72
73. 80

I
I

I

Label Field
Blank
Operation Field
Blank
Operand Field
Comments Field (if ColUmn 23 is blank)
Discarded on Input

1-6

r

"'." ~"

ComputerAutomation ~

Section 2

.QP·ERAND EXPRESSIONS

Each operand of an assembler language source statement may be a simple term a
number or name -- or it may be a complex express~on -- a formula consisting of several
terms and operators. I

This section is devoted to the various ways cif c1ding terms and expressions. Subse­
quent sections will refer to the categories ~sta11ished here.

I

2-1

1 Mft*&fr'= tv, * b' Y P ttt tdt S * T

ComputerAutomation ~

2.1 TERMS

A term may be characterized in several different ways:

Self-Defining or Symbolic
Defined or Undefined
Absolute'or Relocatable

2.1.1 Self-Defining Terms

A self-defining term represents an immediately ~vai~able value in one of these
notations:

Decimal Number
Octal Number
Hexadecimal Number
Character Value

Decimal Numbers

A decimal number consists of 1 thru 5 decimal digits. It is distinguished from an
octal number by having no leading zeros. The largest acceptable decimal number is
32767.

Octal Numbers

An octal number consists of 1 thru 7 octal digits -- the characters 0 thru 7.
distinguished from a decimal number by having at least one leading zero. The
acceptable octal number is 0177777.

!
I
I

Hexadec~mal Numbers

It is
largest

A hexadbcimal number consists of 1 thru 4 hexadecimal digits -- the characters 0
thru 9 and A thru F. It is distinguished from a symbolic term by having a colon
prefixed. The largest acceptable hexadecimal number is :FFFF.

,---

Character Values

A character value consists of 1 or 2 ASCII characters. The value is delimited with
a preceding and a following Single Quote (or Apostrophe) character. If a Single
Quote is actually part of the value, it must be represented by two successive Single
Quotes. Printable ASCII characters, and their corresponding hexadecimal values, are
charted in Appendix A of this publication.

2-2

ide."

r

c

Here are some examples of self-defining terms:

Decimal Numbers:

1
70
777
32000

Octal Numbers:

o
03
0777

Hexadecimal Numbers:

:0
:E
:64
:OFF
:FFFF

Character Values:

'A'
'* ,
, XX'

'T '
, T'

2-3

ComputerAutomation ~

" f "i'±'&"

ComputerAutomation ~

2.1.2 Symbolic Terms

A symbol is the name of a value defined by the assembly process. Ordinarily, a
symbol consists of 1 thru 6 alphanumeric characters. As in most programming languages,
the first character of a symbolic name must be alphabetic -- that is, in the ASC:)::):
character range A thru Z.

The assembler accepts embedded colons in symbolic names, but the use of colons is
reserved for CA-supplied software.

I
One symbolic name has a special construction.
Symbol -- represents the current value of the
the $ is referenced.

An i$olated character $ -- or Currency
Locatton Counter at the point where

I

2.1.3 Defined Terms

A defined term has a value known to the assembl~r. A self-defining term is,
course, defined by its own representation. At any point within an assembly,
is predefined if its nominal value has already been conclusively determined.
nominal value of a symbol is the value it will have after load processing if

I
relocation bias is specified to be zero.

Each use of a symbol before it becomes defined is called a forward reference.

of
a term

The
the

Because the assembler performs two passes over the Source Program, forward references
are allowed in almost all contexts. However, certain directives which control Pass
1 processing will accept only predefined terms.

A symbol may be declared External by certain directives. An External symbol is
considered a kind of forward reference which does not become defined until load time.
An External reference may be used in certain restricted contexts, as specified in
the detailed descriptions of each assembly language feature.

i

2.1.4 pndefined Terms

If a S~Olic name is found to be neither defined, nor declared External, at the end
of an assembly, it is considered undefined. Reference to an undefined term is

;, usually an error, and the source statement is flagged on the listing.

Undefined terms may appear without error in SPAD statements, and in statements skipped
by an IFT False or an IFF True.

2-4

("

'ri'b"

ComputerAutomation ~

2.1.5 Absolute Terms •
An absolute term has the same value during the assembly as it will have after load
processing, regardless of the relocation bias specified to the loader. It follows
that self-defining terms are always absolute.

d"" iM#4.

Symbolic terms are established as absolute if they are defined in certain ways. For
example, a symbol defined thru cC"'SET or EQU to an absolute expression is absolute.
Similarly, a symbol defined as the Label of a statement within range of an ABS
directive is absolute.

2.1. 6 Relocatable Terms ,
I

A relocatable term has a nominal value during t~e assembly, but the value is subject
to change during load processing. It follo~s t,at'Externals are always considered
relocatable.

Symbolic terms are established as relocatable if they are defined in certain ways.
For example, a symbol defined thru a SET or'EQU to a relocatable expression is
relocatable. Similarly, a symbol defined as the Label of a statement within range of
a REL directive is relocatable.

2.1.7 Unary Operators

The value represented by a term, whether self-defining or symbolic, may be adjusted
by a unary operator prefixed to the term when it is the first in an expression.

Unary Plus (+)

A + character prefixed to a term has no effect upon its value. It may be used to
emphasize that a term does not have a Unary Minus prefixed, or for any similar
clarification of the source statement.

unJry Minus (-)

i
A -I character prefixed to a term indicates 2 I S complementation of the signed ari th-
me~ic value of the term.

!
Here are some examples of unary operators:

Expression
1
+1
-1

Word Value in Hex
:0001
:0001
:FFFF

Assume that WN is a relocatable symbol with a nominal value of +1:

WN
+WN

:0001
:0001

This expression is an error, because it violates the rules explained under Absolute
and Relocatable Expressions:

-WN

2-5

c'

I

i"w··"·",;;"r-... '.t6'{+"d' +"p.

ComputerAutomation ~

2.2 COMPLEX EXPRESSIONS

Terms are combined into complex expressions by using binary operators. An expression
is always evaluated from left to right.

As expression evaluation proceeds from--left to right, the current partial result of
the evaluation, or intermediate value, is maintained as 16-bitbinary number. An
incoming term is limited to a 16-bit absolute or IS-bit relocatable value, as is the
final evaluated result, or expression value.

As relocatable terms enter the expression evaluation they cause the intermediate
value to fluctuate between absolute and relocatable, according to rules explained in
a following section. The nature of the final re~ult determines whether the entire
evaluated expression is called an absolute expressior or a relocatable expression,
and whether its Load Attribute is Absolute or Reloca able.

To clarify the discussion which follows, these symbols are adopted:

V

T
ABS

The intermediate value of the expression evaluation process
The leftmost unevaluated term, about to enter the expression evaluation
Any absolute value, either intermediate or finali

REL Any relocatable value, either intermediate or final

2.2.1 Binary Operators

Addition (V+T)

The expression V+T indicates the arithmetic addition of the values of V and T.

Subtractlion (V-T)

The expression V-T indicates the arithmetic subtraction of the value of T from V.

!
I

2-6

c

~ ~; ".1

2.3 ABSOLUTE AND RELOCATABLE EXPRESSIONS

As expression evaluation proceeds, an assembler artifact called R (for Relocation
Factor) is associated with the current intermediate value V. At any point in the
evaluation, R has some signed numeric value.

It is the manipulation of R which-determines whether or not an expression is accept­
able to the assembler, and whether the final expression is absolute or relocatable.

These are the rules for determining R at any int1ermediate or final point.

1. Set the initial value of R to O. I
I
I ,
jrelocatable, If the very first term of the expression! is

set R = -1. I

2. 1. set R For -~L,

3. As the evaluation proceeds, for each V+~L, set R R+l.

4. For each V-REL, set R = R-l.

At any point, R = 0 indicates that the intermediate or final value is absolute.

If R is not 0, the intermediate or final value is relocatable.

When the evaluation is completed, R must be either 0 or 1. Any other final R is an
error.

2.4 OPERAND EXPRESSION PREFIXES

For some classes of machine instructions and assembler directives, the entire operand
expression may be immediately preceded by certain characters which indicate a machine
Addressing Mode. The effect of each prefix is held off until the assembler has
obt~ined a final expression value.

i

Theiprefix characters are:
r

*
@

*@

Indirect Address
Indexed
Indirect Post-Indexed

The assembler also accepts this special prefix for Word Referenc,-, operands only:

Literal Pool Reference

This prefix cannot be used for Byte Reference instructions. Refer to Sections 3
and 8 for details.

2-7

ComputerAutomation ~

Section 3

CODING"MACHINE INSTRUCTIONS

This section presents the valid assembler languagJ syntax for each standard machine
instruction. The instructions are divided into Syntax Classes, corresponding to the
number of operands and to the Addressing Mode~ which 'are meaningful at machine level.

Syntax Class Machine Function I I '

For each
Examples
abstract

1
2
3
4
5
6
7
8
9

10

Word Reference
Byte Immediate
Conditional Jump
Single Register Bit Change
Register and Control
Input/Output
Double Register Bit Change
Byte Reference
Double Register Arithmetic
Stack Reference

class, the rules for the source statement Operand Field are specified.
are given, to aid the programmer in visualizing the connection between
syntax chart and a real Source Program.

An a~phabetical list of every standard machine instruction mnemonic -- and which
Synt4x Class it falls into -- is included in this publication as Appendix B.

an

The Jachine instruction functions are described in the relevant Computer Handbooks:

LSI-2 Series Minicomputer Handbook, Publication 91-20400-00
LSI~3/05 Series Millicomputer Handbook, Publication 91-10005-00

3-1 Revised 7/76

! I

...

3 . 1 CLASS l: WORD REFERENCE

Operand Field

Exactly one expression.
Any absolute or relocatable value.
External allowed.

Addressing Mode Prefix

No Prefix

*
@

*@
=

Examples

1. Direct:

Direct
Indirect Address
Indexed
Indirect Post-Indexed
Literal POol Reference

LDA :34
STA ABC+2

2. Indirect:
I
! LDA
I STA
i
I

i
3. Ind~xed:

4.

LDA
STA'

Indirect

LDA
STA

*:34
*PTR

@:34
@TABLE

Post-Indexed:

*@:34
*@PTR

5. Literal Pool Reference:

LDA =1000
LDX =TABEND-TABLE

3'

ComputerAutomation ~

(

,.
3-2

~.

:/

.;:'

" ...
';,

C

..... '.*1·) kW 'tft,:, ttr to. ·"W 'ntm?r 'J"," " "t'

ComputerAutomation fA
3.2 CLASS 2: BYTE IMMEDIATE

Mnemonic Operand

Operand Field

Exactly one expression.

Any absolute value equivalent to the range :00 ~hru :FF.

External not allowed.

Examples

1. Self-defining decimal operand:

CAl 16

2. Self-defining character value operand:

CAl 'z'

3. Symbolic Operand:

BANG EQU ' !'
CAl BANG

3-3

ComputerAutomation ~

3. 3 CLASS 3: CONDITIONAL JUMP (
Mnemonic Operand

Operand Field

Exactly one expression.
(For special case of LSI-2 mnemonic JOC, refer to Appendix C)

Any absolute or relocatable value in the range

$-63 thru $+64

External not allowed.

Examples

4[) 1. Symbolic operand:

JAZ PARTY

2. Explicit relative location:

JAZ $-7

c

r

3-4

..

I

!

ComputerAutomation ~

3.4 CLASS 4: SINGLE REGISTER BIT CHANGE

Mnemonic Operand

Operand Field

Exactly one expression.

Any absolute value, within the limits of the imstruction function:

o thru 15 for BAO and BXO
1 thru 6 for SIN
1 thru 8 for Shifts

External not allowed.

Examples

1. Self-defining operand:

LRA

2. Symbolic operand:

sz EQU
LRA

6

7
SZ

3-5

!

',I

ComputerAutomation ~

3.5 CLASS 5: REGISTER AND CONTROL

Mnemonic [comments]

Operand Field

None. Comments may immediately follow the Operation Field.

Examples

1. Label, mnemonic, no operands, comments:

COpy TXA TRANSFER X TO A

c

r
;,,::;,1 ,

;,·1 -

~,"I' t r-

3-6

c

3.6 CLASS 6: INPUTj.OUTPUT

Mnemonic Operand [operand]

Operand Field

Either 1 or 2 operands.

Each operand must be an absolute value.

Externals not allowed.

If only 1 operand is used, its value specifies
Address and Function Code.

'Hit ,. \'"' r

ComputerAutomation ~

I

t~ combined bits of the Device

I

If 2 operands are used, the first specifies the 5-bit Device Address, and the second
specifies the 3-bit Function Code.

Examples

1. One hex operand:

SEA :3C

2. Two decimal operands:

SEA 7,4

3. Two symbolic operands:

TTY EQU 7
INIT EQU 4

SEA TTY,INIT

3-7

...

,t f" I

3.7 CLASS 7: DOUBLE REGISTER BIT CHANGE

~abelJ .Mnemonic Operand

Operand Field

Exactly one expression.

Any abso~ute value, from 1 to 16.

External not allowed.

Examples

1. Self-Defining Operand:

LRR

2. Symbolic Operand:

SZ EQU
LRR

6

7
SZ

3-8

- bdtj t'.n '!f"'iJ5r7""Wi""%'U"" "5

ComputerAutomation ~

o

i

~

, it dt tUttE " li'

3.8 CLASS 8: BYTE REFERENCE

Mnemonic [~JOperand

Operand Field

Exactly one expression.

Any absolute or relocatable value, except for

External not allowed.

Addressing Mode Prefix

No Prefix

*
@

*@

Direct
Indirect Address
Indexed
Indirect Post-Indexed

Expression Evaluation for Class 8

t ttn rt itl.ttC ttt:'2 $') **iIle8'

ComputerAutomation ~

cases described on the next page.

Each self-defining term represents a byte address value.

LDAB :04

addresses the 4th byte of memory.

I

Eac~ symbolic term represents a word address value, and is multiplied by 2 before
expression evaluation:

Q I
FLd

EQU
TEXT
LDAB
STAB

7
'WXYZ'

Q
FLD

The LDAB addresses the 7th word of memory, or the 14th byte. Similarly, the word
value of FLD, whether absolute or relocatable, must be doubled to produce a byte
value.

LDAB FLD+3

addresses a location 3 bytes after the byte location of FLD -- the character 'Z' in
the assembled text.

3-9

o

r 1 $ td 't",""y-t"'

ComputerAutomation ~

Operand Locations Not Acceptable

For reasons explained in the section on Scratchpad Literals, the assembler rejects a
Byte Reference instruction which attempts Explicit Indirect Addressing of a location
which is beyond Direct Addressing Range:

xxxB *ABSBIG

in which ABSBIG is Absolute, but higher than directly addressable Scratchpad;

xxxB *RELFAR

in which RELFAR is Relocatable, but beyond Direct
Byte Reference instruction.

Examples

1. Direct:

LDAB
STAB

2. Indirect:

PTR

3. Indexed:

STAB
BAC

LDAB
STAB

:34
ABC+2

*PTR
CHAR+l

@:34
@TABLE

4.
I •

I~dlrect Post-Indexed:

I
! LDAB *@:34
!
I

(At Word Location :34)

BAC CHAR+I

3-10

Addressing Range of the

(
....

r

~,

c

:Itt. I:r!t'W,*' .. I

3.9 CLASS 9: DOUBLE REGISTER ARI'rHMETIC

Mnemonic [*]operand

Operand Field

Exactly one expression.

Any absolute or relocatable value.

External allowed.

Addressing Mode Prefix

Direct No prefix

* Indirect Address

Examples

1. Direct:

MPY JKL+3

2. Indirect:

DVD *DVSR

3-11

h trmtttr"stmtrrtttrz11:tt rtt z '-«n.

ComputerAutomation ~

Mi1nH:'t tbI "'t: ' FA eh Irce·M ... 'hntrrl·'w·M• ?En ··'·M' !I!,'i'yMmp"iIJ'i''±l!i''ktr $- ... , 'R E' i" . "Witbh ". rl . HeM· *.', .,,*

Com -Automation I'PIM .--' i~\\

3.10 CLASS 10: STACK REFERENCE

Mnemonic [,@]
Operand :~

Operand Field

Exactly one expression, optionally followed by an Addressing Mode Specification.

Any absolute or relocatable value.

External allowed.

Addressing Mode Specification

Direct (Value of Pointe'r)
Indexed (Pointer + Inde'x Register)
Pop (Increment Pointer ~fter Access)
Push (Decrement Pointer Before Accrss)

STK

STK,@

STK,+

STK,-

3-12

r

;.:

t
!.!
r
t.1

o

ComputerAutomation ~

Section 4

ASSEMBLER CONTROL

The types of statements described in this section are not machine instructions, but
directives -- they cause the assembler itself td take some action, or to recognize
certain information presented to it. . i

The result is some variation
Program is translated, or in

I
in the assembly prjcess -- either in the way the
the appearance !Of 1he Assembly Listing, or both.

i

4-1

Source

ComputerAutomation ~

End of Source Program (END)

END [operand [comments]]

This directive terminates the assembly of the Source Program.

If a Source Program contains at leas't-·one LPOOL statement, a Literal Pool may be
allocated by the assembler when an END is reached. The Pool will appear on the
listing, and in the generated object code, before the END. Further details may be
found in the section on Literal Pools.

The optional label of an END statement has the curr~nt value and Load Attribute of
the Location Counter, after any Literal Pool gen ... era~iO~. Unless a currently effect~ve
Location Control Directive has disturbed the co~tin ity of the object code -- for
example, a backward ORG -- the label on an END is t e address of the first word
following the end of the Object Program. • , ,

The optional operand specifies an execution-time Transfer Address. The operand may
be any absolute or relocatable expression with ~redefined terms, except that reference
to an External is not allowed.

The assembler communicates the Transfer Address -- or the f:act that one was not
specified -- to the loader. When a program is executed, the resolved Transfer
Address receives initial control.

If several different Transfer Addresses are available in a number of Object Programs
being loaded together, the loader will use the last Transfer, Address processed.

The programmer should observe that no Comments may be used in an END statement which
has no Operand.

End of iInput Segment (up-arrow)
I

t Commelnts

This di:rective indicates the end of the current physical segment of the Source Input.
The directive consists of an up-arrow in Column 1 of a source staternent. The assembler
displays "PAUSE" and halts the computer. The operator readies the ne:vt segment of
Source Input and hits RUN.

4-2

r

,.
0/:"

o

___ *,:,**+J!!I!

H tiH,,#' ee, ... t ** t tnt

ComputerAutomation ~

Heading Title (TITL)

TITL Title

This directive supplies the title which appears in the page heading of the assembly
listing. Starting exactly one blank after the last letter of TITL, the remaining
characters of the source statement are taken to be the desired title. The title
is initially blank, and each new title completely replaces the previous one.

A TITL statement is never listed.
listing, the effect of a New Page

New Page (period)

. Comments

At the point where it would have appeared on the
directive is s~mulated.

i

I

I

This directive causes the next line listed tp appear on a new page if at least 3
lines have appeared on the current page. It consists of a period in Column 1 of the
source statement. The statement itself is never listed, and the Comments are ignored.

Comment Line (asterisk)

*Comments

A Comment Line appears on the assembly listing, but is not otherwise processed. The
directive consists of an asterisk in Column 1 of the source statement. Any combination
of printable characters and blanks may follow.

4-3

o

ComputerAutomation ~

Machine Instruction Set (MACH)

MACH Operand

This directive is meaningful only for a Source Program assembled with OMEGA2, not with
OMEGA3. It specifies the machine for which the program is intended, so the assembler
can disallow those standard machine ~Bfrtruction mnemonics which would not be
meaningful.

Each disallowed Mnemonic is flagged "0" as if it were an invalid Operation Field.
However, the Operand Field is still processed correctly, and the generated object
code is still the right code for the instruction. I

i
The required operand must be an absolute expression ~ith predefined terms. The
binary value of the operand may specify any comblnat~on of the following machines:

, i
I

Bit Hex Value Instruction Set

02 :04 ISI~2

01 :02 LSIi-l
00 :01 ALPHA-l 6

The instruction subset common to all machines is always valid, and is equivalent to
an explicit MACH value of binary 000.

The assembler initially sets the MACH~value to binary 010~ Each MACH value is
retained until replaced by the next.

An appendix to this pUblication specifies the members of each machine instruction
set.

4-4
I

Revised 7/76

o

I
wi

, 'tt "··-t·,· " ,,/

Conditional Assembly Control (IFT/IFF/ENDC)

1FT
IFF
ENDC

Operand
Operand
Comments

. # ' i =d,***Wt!tH ' \

ComputerAutomation ~

These directives specify whether a group of source statements is to be processed or
discarded. Conditional assembly begins each time an 1FT or IFF statement is encoun­
tered, and ends when the corresponding ENDC is found.

The required operand of an IF statement is an apsolute expression with predefined
terms •. The operand is always analyzed for its Irruth Value:

I

a means False
I means True
Any other value means True

1FT means Assemble If True. All the statements bounded by an 1FT and its corre­
sponding ENDC are assembled if the operand 9f the 1FT is True, and skipped otherwise.

IFF means Assemble If False.. All the statements bound~d by an IFF and its corres­
ponding ENDC are assembled if the operand of the IFF is False, and skipped otherwise.

If the value of V is True, the LDA/LDX statements in the following example will be
assembled, and the STA/STX statements will be discarded without being processed at
all.

1FT V
LDA FLDA
LDX FLDX
ENDC

* *
IFF V
STA FLDA
STX FLDX
ENDC

Conversely, if the value of V is False, the LDA/LDX statements will be skipped, and
the STA/STX statements will be assembled.

Every IF must have corresponding ENDC somewhere below it. An 1FT True or an IFF
False with a missing ENDC will not affect the assembly, but will be flagged. An 1FT
False or an IFF True with no ENDC, however, will skip all the way to the END state­
ment.

4-5

I

1

0

C

ri' B , iiht .,,1,' .. t b Uri

Define New Op Code ($class)

$class Mnemonic :hhhh

This directive communicates to the assembler the Mnemonic to be used for a new
machine instruction (or a variant of an existing one), and specifies the object code
to be generated by the new Mnemonic~---

The directive consists of a Currency character in Column 1 of the source statement.;
This character is never used in Column 1 for any other purpose. The immediately
following 1 or 2 columns contain the Class Number o~ a standard assembler ~yntax
Class. I;

; I

The detailed operand requirements for each Synt~x c~'ass' are described in another :
section. The machine level representations of the perands are described in the
Appendix for each machine. The Syntax Classes and heir most distinctive features

I

are summarized in the following table. I'
i ,

Class Words Machine Operands Indirect Indexed Other
Number Generated Function Allowed MOde Mode Mode

1 1 Word Reference :1 *' I @ =

2 1 Byte Immediate 1

3 1 Conditional Jump 2

4 1 Single Register 1

5 1 Register and Control 0

6 1 Input/Output 2

7 1 Double Register 1

8 1 Byte Reference 1 * @

9 2 Double Register 1 *
Arithmetic

10 2 Stack Reference 1 @ + or -

The $class directive must appear in the Source Program before any statements which
generate object code.

OMEGA3 does not accept $7, $9, and $10.

4-6 Revised 7/76

r

r

,.,

ComputerAutomation ~

The new Mnemonic consists of 1 to 4 alphanumeric characters, the first of which must
be alphabetic. Embedded colons are permitted by the assembler, but are reserved for
CA-supplied software.

The New Op Code Mnemonic may replace any existing Mnemonic for a machine inst~uction
or a previously defined New Op Code. The new Mnemonic cannot replace a standard
assembler directive.

The required operand is a 4-digit hexadecimal number. It specifies which bits in the
first word of the generated object code are to be forced to l's by the assembler.
This bit pattern is called the Skeleton of the ~nstruction.

I
The operands used with the New Op will
code. Appendices C and D describe how
calculated from the operand values, or

dete~min~ the final appearance of the object
the cont~nti of certain bit fields are efther
set :y v1rious Address Mode specifications.

i I

As examples of defining a New Op Code, some 'Skeletons built into the assembler for
convenient coding of LSI-2 instructions will be reconstructed.

C! The following two statements are equivalent:'

JMP
WAIT

$

WAIT has no operands, so it must be in Class 5.
one operand, and generates a fixed word of code,
defined by:

$5 WAIT :F600

The following two statements are equivalent:

JMP
RTN

* NAME
NAME

JMP $ is a Class 1 instruction, with
:F600. The New Op Code is thus

Bot~ RTN and JMP require exactly one Word Reference operand; both are in Class 1.
The! Skeleton for JMP, flagged Indirect, is :FIOO. The definition of RTN, therefore,
is:

$1 RTN :FIOO

4-7

o

ComputerAutomation ~

Finally, consider the following sequence, which might be used to transfer control in
a uniform way to external subroutines:

JST
DATA

*$+1
SUBR

Suppose a New Op Code were desired,so-the two lines could always be replaced by:

DO SUBR

DO has exactly one operand. The generated
must contain the address of the operand in
intended source statement format.

object code must
I

the sec01d word.
I

i

be two words long, and
Syntax Class 9 fits the

The existing machine instructions in Class 9 are USj!d for Double Register Arithmeti~
functions, but the machine level functions of a NewOp need not be related to the
functions of any other instruction in the same clas~.

The Skeleton for JST *$+1 is the fixed word :FBOO. The New Op Code definition is:

$9 DO :FBOO

4-8

("

".,
'Ii
r'

'* 1m,.. it sf it· drtt rot tite ."Sm"

ComputerAutomation ~

Subroutine Structure Mnemonics (CALL/ENT/RTN)

[Label] CALL Name

Name ENT Comments

[Label] RTN Name

These Mnemonics provide a uniform way t.o communicate with a closed subroutine. They
are not directives, and may be replaced by other definitions.

CALL is used as an executable operation, equival~nt to the machine instruction JST.
It performs two functions: !

i

1. Store the Return Link -- the address of :the rext instruction after the CALL i -- at
the effective memory location of the ope:rand.

i , , .

2. Transfer control to the first word after1 the: stored Return Link.

The operand of a CALL may be any operand valiid for a Word Reference instruction.
Ordinarily, the name of an ENT is used. If 'the name has been declared External, an
implicit indirect reference thru a Literal Pool or thru' Scratchpad might be used. An
explicit indirect reference thru a REF is another possipility.

ENT is used as the destination of a CALL and of a RTN. The generated machine code is
not intended for inline execution; it is simply a word of storage reserved for the
Return Link by assembling a HLT instruction. The first executable instruction in
.the subroutine is coded immediately following the ENT. The ENT name may be local to
the program, or declared a Primary or Secondary Entry as needed.

RTN is used to return to the calling program. It is equivalent to JMP *Name, and
will perform an unconditional transfer of control indirectly thru the Return Link.
The operand of a RTN is therefore identical to the name of the corresponding ENT.

4-9

J

" "e)t t' ti "1i'h'""'W?"''P''H5f'g'·'t'M''l'il2e&W-V5?'I'"e'l';'7'-'n~~e m "j'"" i1""0'R5 0 "6'" n"e'."

ComputarAutomation

Section 5

SYMBOL AND DATA DEFINITION

The directives in this section
to define symbols as the names

The directives DATA, TEXT, and
meaningful at machine level:

are used to gene~ate non-executable object code, and
of locations or ralues within the Source Program.

BAC correspo~d t the three data types which are
i

Word Value, or Word Address
Byte Value, or Character String
Byte Address

I

4[) The directives EQU and SET use terms or expressions to'assign values to symbols. EQU
fixes a symbolic value for the entire Sourc'e Program; rET allows the symbolic value
to vary.

5-1

J"

ii:,

i
i

w.,t ""!:Ibl 'St. j,' - wn'g-'i?Wfr .. t'f.,¥#"~,,,. 'k"""
'. 4 "·*"'.··

ComputerAutomation ~

Data Definition (DATA)

[Label] DATA

The DATA directive allocates storage for a number of words, and specifies the contents
of each word.

The optional label is the location of the first allocated word.

The DATA statement requires at least one operand. Each operand may be any absolute
or relocatable expression. The contents of a generated word may be flagged as an
Indirect Address, by prefixing the corresponding op~rand expression with an asterisk.

An External symbol may be used as an operand. No I direct Address prefix is accep~ed
for an External reference. :. I

The operands may be supplied in an arbitrary mi~turb of absolute, relocatable,
direct, and indirect values. Reference to the Location Counter -- the symbol $

I
within an operand expression is taken to be the! location of the specific word
generated by that operand.

A

*
R

*
x

DATA 0,-132, 'LP' ,*:FF,32767 ,$-A

DATA $, R, * R+ 3 , * $

DATA SUBl,SUB2

Statement A generates 6 words, each containing an absolute value. The nominal
location and the 16-bit contents of each word appear on a separate line of the
assembly listing.

Statement R generates 4 words of relocatable data. The first 2 words contain the
same vflue -- the relocatable address of R -- and the last 2 words both contain the
indireft address of R+3.

If the, names SUBl and SUB2 are declared to be External in the Source Program, then
the 2 ~ords generated by statement X will not show any values on the listing. Later
processing of the Object Program by the loader will insert correct values in the low­
order 15 bits of each word.

5-2

n "s-"

(

r

r

o

'*'

I

""

",' +;"110\"\,, J t' If"' '+'.I+,;+'+"

ComputerAutomation ~

Equate Symbol Value (EQU)

Name EQU Operand

This directive is used to define a symbol and its value without allocating any
storage to the symbol. EQU statements may be used anywhere in the Source Program,
but they are particularly useful in defining symbols which will be used extensively
as terms in expressions.

The name of the symbol to be defined is specified in the required Label Field, and
must be unique among all the symbols in theSourice Program.

The EQU statement requires exactly one operand. ! The operand may be any absolut$ or
relocatable expression, except that referenc'.e td an External is not allowed. F6rward
references are acceptable, but a directive whic~ requires predefined operands (such
as an ORG or an IF) cannot use a symbolic term defined by an EQU with forward
references. i

This example uses EQU to establish the destination of a jump without attaching a
label to a line of executable code. This technique facilitates modification of the
Source Program.

*
*
DEST

The size

TAB
TABSZE

i

of

JMP

*
*
EQU

a table

DATA
EQU

may

DEST

$

be assigned

0,2,4,6,8
$-TAB

a symbol this way:

An ~rbitrary ASCII character, especially a non-printable one, may be given a symbolic
nam¢ as a coding convenience:

I
CR I EQU :8D

*
*

*
*
CAl CR

5-3

HI' .,

'*'-'''''Ori1' *'k'W+>"''''h'N''i&iimHQ,'""ri''tf'';';' ..."".iri g :ie'

ComputerAutomation ~

Set Variable Value (SET)

Name $ET Operand

This directive is used t:o define or to redefine .the value of a symbol. SE;T state­
ments may be used anywhere in the Source Program, but they are particularly useful in
the control of conditional assembly.----

The name of the symbol, or SET Variable, to be affected is specified in the required
Label Field. A SET Variable name is unusual in this respect: it may be used in the
Label Field of more than one source statement without being rejected as a mUltiple
definition. On the contrary, a SET Variable has ex~ctly one definition at any given
point in the_ Source Program, but that definition is ireplaced completely by another

I

SET for the same variable, even if the new SET has ~n invalid operand.
I ,

The name of a SET Variable must not appear in t~e L4bel Field of any type of state­
ment except a SET statement; such an appearance !wou1d constitute multiple definition.

The SET statement requires exactly one operand. i The operand may be any absolute or
relocatable expression, except that reference t:d an External is not allowed. Forward
references are acceptable, but a directive whic~ requires predefined operands (such
as an ORG or an IF) cannot use a symbolic term defined by a SET with forward
references.

As an example of using a SET Variable to control conditional assembly, suppose that
special debugging code -- perhaps a coded halt -- is scattered throughout the Source
Program, and is always surrounded by an IFT/ENDC pair:

1FT
STOP
EN DC

TEST
:77
TEST

To determine whether or not a specific part of the
I •

embeddEtd STOP, elther of these statements could be
in as ~any different places as needed:

I

program would be assembled with an
inserted into the Source Program

TEST
!

SE'l'
TEST SET

a
I

NO DEBUGGING STOPS
INCLUDE DEBUGGING STOPS

SET Variables are sometimes useful when a particular coding techniqu' -- for example,
heavy use of backward jumps to nearby labels -- adds too many entrie~ to the Symbol
Table, leaving insufficient room for accumulated Literals. In the following code,
each Jump instruction has the same operand, but the value of the operand, and there­
fore the assembled machine code, corresponds to the closest preceding SET for the
symbol BACK. Observe that forward Jumps cannot be coded with SET Variables. ------

BACK SET $

* *
* *

JAG BACK

* *
BACK SET $

* *
* *

JXZ BACK

5-4

,.
\.

o

,

ri'11 •• '.'..:",'# "fHjl"i' ~'''W')j'''5'$'''P ,,'

ComputerAutomation

Reserve Storage (RES)

RES Count [,value]

The RES directive allocates storage for a number of words. It may also be used to
fill all of the allocated words;;"Tth a uniform value.

The optional label is the location of the first
specifies the number of words to be allocated.
expression with predefined terms. The value of

allocated word. The required Count
,The Count must be an absolute
!the expression may be zero only if

no Value is supplied. The following two

RES
EQU

o
$

I •
statemerts, are equ~valent:

TAG
TAG ! I

The optional Value operand specifies the uniform contents of every allocated word.
The Value must be an absolute expression. Any combination of terms may be used,
except that reference to an External is not ~llowed. The following RES statement is
equivalent to the entire series of DATA statements shown.

TAG

*
TAG

RES

*
DATA
DATA
DATA

3, :FF

:FF
:FF
:FF

Note that a repeated DATA statement may have a relocatable expression as its operand,
but that a RES is more convenient to code if the desired storage contents represent
an absolute value.

If a Value field is not supplied, neither the assembler nor the loader will alter
the reserved locations. This facilitates either a source overlay, in which the RES
loc~tions are part of a backward ORG, or an object overlay, in which the loader does
not Idisturb existing values in memory while loading object code allocated by a RES
witB no Value specification.

5-5

:~ i

ComputerAutomation ((P\\

Text Definition (TEXT)

TEXT 'String'

The TEXT directive allocates storage for a number of words, and specifies the contents
of these words as a single ASCII character string.

The optional label is the location of the first word of allocated storage, which
always starts at the first available word location, even though the storage is
filled with byte values.

i
The required operand is an arbitrary string of ASCII icharacters, including any
desired blanks and non-printable characters. The st~ing must be delimited with a
preceding and a following Single Quote or Apostrophe Icharacter.

! I
If a character in the generated string must itself b~ a Single Quote, it is represente
by two successive Single Quotes in two columns of the source statement. This should
not be confused with a single character called D~uble Quote, which has no special
significance in a TEXT string, and is therefore useful in punctuating assembled
messages.

The characters in the TEXT string each represent one 8-bit byte, and are packed into
successive words until the string is exhausted. The assembler will fill the low­
order bits of the last word. if necessary, with :AO, an ASCII blank.

TAG
WHAT

TEXT
TEXT

'THIS IS A SIMPLE MESSAGE'
, "'" COMMENT

The contents of the two words starting at WHAT will be blank/quote/quote/blank:

:AOA7
:A7AO

Each wor~ generated by a TEXT statement appears on a new line of the assembly listing.

5-6

c'

ComputerAutomation ~

Byte Address Constant (BAC)

[Label] BAC Operand [, operand] ...

The BAC directive allocates storage for a number of words, and specifies that the
contents of each word is the address of a byte location.

The optional label is the location of the first allocated word.

The BAC statement requires at least one operand. Each operand may be any absolute
or relocatable expression, except that referehce to an External is not allowed.

I

Each self-defining term in a BAC operand is
the operand expression. For example,

u~ed without change during evaluation of
I
I

BAC :05 I
I

references the fifth byte of memory, and the word generated for the BAC contains
:0005. I

Each symbolic term, even if it was defined by a SET or EQU to a self-defining term,
is always considered a word value, and is multiplied by 2 before evaluation of the
operand expression.

Q
FLD

EQU
TEXT
BAC
BAC

7
'WXYZ'

Q
FLD

Each of these BAC operands is a symbolic term. The first references the seventh
word of memory, which is the fourteenth byte; the generated word contains :OOOE.
Similarly, the value of FLD, whether absolute or relocatable, must be doubled to
8roduce a byte value.

I
I

il odd-numbered byte -- that is, the low-order byte within a
~eferenced by using an odd self-defining term in the operand

BAC FLD+I,FLD+3

•
given word-- may be
expression:

This statement will generate two words, containing the byte addresses of the char­
acters "X" and "z" in the assembled text.

5-7

fi
i.

o

c

. t or rt to.

ComputerAutomation ~

Section 6

LOCATION CONTROL

The directives in this section specify a new value for the Location Counter -- the
I nominal location of the object code -- and f,or 1he Load Attribute -- Absolute or

Relocatable. I

The segment of code following each directivJ islcalled the range of the directiye.
A range terminates with the next Location Contr~l directive, or with an END statement.

; I
; I

within a given range, the symbol $ (which rapresents the current value of the Location
Counter), or a symbol defined as the Label qf a storage allocation or a machine
instruction, acquires the Load Attribute of!that range. Similarly, a Label defined
by a simple reference to $ has the same Load Attribute ,as $, and the same as the

i
current range:

TAG
TAG

EQU
SET

$
$

A label defined with an EQU or a SET to a multi-term expression, however, acquires
the Load ,Attribute of the evaluated expression, regardless of the current range.

6-1

""

ft.·' ,*,,:

ComputerAutomation ~

Absolute Object Code (ABS)

ABS Operand

This directive sets the Load Attribute to Absolute, and the Location Counter to the
value of the operand. The result is a segment of object code which is loaded to
begin at a fixed location in memory":--

The required operand is an absolute expression with predefined terms. The expression
must have a positive (or zero) value.

The source statements shown here are the first few ~ines of the assembler itself.
They begin at location :0000 Absolute, so the generrte? object code will always
occupy the first 6 words of memory. i

ABS
STOP
JMP

CORLM RES
MCHDEF DATA
LINES DATA
CHARS DATA

0
:99
*NXTP
1
2
-53
-72

I
I

POWER UP INtERRUPT
TO EDITOR
CALCULATED HIGH MEMORY LIMIT
DEFAULT VALPE OF MACH
LINES PER PAGE - 13 (NEGATIVE)
CHARACTERS PER LINE (NEGATIVE)

6-2

(

('

.. ',
'.~' i

o

f'"

ComputerAutomation ~

Relocatable Object Code (REL)

REL Operand

This directive sets the Load Attribute to Relocatable, and the Location Counter to
the value of the operand. The.!~~ult is a segment of code which is loaded to begin
at a location calculated as the sum of:

1. The REL operand value, plus
2. The Relocation Bias parameter supplied to ~he loader, plus
3. The next available location in memory, as ~L code accumulates in the successive

Object Programs being loaded together. I

The Location column on the assembly listinJ coJtai'ns the .. nominal location for Eilach
word in a Relocatable range -- that is, reiiativje to the REL operand.

I I
. I

The required operand is an expression with 'pre<lefined terms. The Load Attribute
of the evaluated expression may be either Absolute or Relocatable.

I
,

For almost all applications, the fa] lowinq itechnique is appropriate for the main
program, and for each separately assembled 'subprogram.

TITL PROGRAM XXX -- VERSION VV
NAM XXX AND OTHERS AS NEEDED
REL 0

* *
* * REST OF PROGRAM

* *
END (TRANSFER ADDRESS IF NEEDED)

This technique defers until load time the question of where in memory the plugram
will be executed. If fixed absolute memory locations are desired later, the Object
Pr~gram can be loaded, then punched out with the Binary Dump utility.

I

6-3

-

C

W+:' 'ri Inr· ... ,

ComputarAutomation ~

Origin of Object Code (ORG)

ORG Operand

This directive sets the Location Counter to the value of the operand. It does not
alter the current Load Attribute. The result is a segment of code which is loaded
to begin at a location discontinuous-Tram the previous segment, but with the same
bias applied.

The Location column on the assembly listing reflects the discontinuity in nominal
I

location caused by an ORG.

The required operand is an expression with predefine~ terms. In particular, no term
may be a forward reference -- this error often o,ccur!s when pieces of a Source Program
are rearranged. The Load Attribute of the expreissioWl must be consistent with the
ABS or REL range into which the ORG itself falls:. I

A forward ORG is equivalent to a RES with no sec,ond operand -- no specification of a
value to be filled in. This sequence reserves two card input buffers:

CARDSZ EQU 80
BUFFI EQU $

ORG BUFFI+CARDSZ
BUFF2 EQU $

ORG BUFF2+CARDSZ
REST EQU $

A backward ORG is used to overlay, at load time, an area previously defined. The
same location may be ORG'd back to as many times as needed. The last value assembled
will be the last one inserted by the loader.

The following sequence generates 256 conseoutive words filled with binary l's; then
ORGs back to the 64th word and clears it; then ORGs forward past the end of the
table, ~o unrelated data can follow.

TABLE RES 256, :FFFF

*
ORG TABLE+63

TABZRO DATA 0
ORG TABLE+256

*
MORE DATA 2,4,8,16

A common coding error, and a difficult error to detect, is a backward ORG without a
later forward ORG, or without enough code-generating statements to bring the Location
Counter forward as far as intended. If the last ORG were omitted in the preceding
example, all of TABLE beyond TABZRO would be destroyed at load time by the data
starting at MORE.

6-4

r

o

.. "H. ttHt 1 H' 6 'tv rH"Me '$ " WEk' i'i Ii!: #"

ComputerAutomation ~

Section 7

Q~~~CT PROGRAM LINKAGE

The directives in this section are used to estaqlish communication between separate
Object Programs. They generate records on the p~mch Output which contain
Loader Type Codes, meaningful to LAMBDA2 and ~DA3.

An Object Program which contains a Loader Ty~e dade' corresponding to any
in this section cannot be loaded with BLD2, BLD31, or Autoload. However,
Program can be processed thru LAMBDA and BDPj (o~ thru OS:LNK) to produce
acceptable to BLD or Autoload.

7-'1

distinctive

directive
the Object
a new tape

etfhrif!:eW"'e b' "'$' Wt' 'w' T "II y" kit,.., * ''Ytd! #'''YM'' t i

ComputarAutomation ~

Entry Declaration (NAM/SNAM) ~

·NAM Name ~ Name] .. .

SNAM Name G Name] .. .

These directives are used to declare-that certain names are to be made available to
the loader for possible matching against unresolved Externals in other programs.
Each name must be defined somewhere within the assembly, either asa relocatable or
as an absolute symbol. The name may be defined with an EQU statement, but it must
not be a SET Variable. I

I

NAM declares each name to be a Primary Entry. A prtmary Entry which matches an
unresolved Primary External will force selectiOn.' Of. the program which contains the
Primary Entry. A Primary Entry may also be resolve against a matching. Secondary
External, once both programs have already been sele ted.

I
SNAM declares each name to be a Secondary Entry, A Secondary Entry will never force
selection, but it will be available for matchin9 against an unresolved Primary or

4C), Secondary External, once both programs have alr~ady been selected.

All the Primary Entries in an Object Program must be presented to the loader before
the Object Program is processed. Therefore, the assembler imposes a restriction upon
the placement of NAM statements (but not SNAM statements) in a Source Program -- they
must appear before any machine instructions, and before any directive which generates
object output, including EXTR, LOAD, REL, and ABS. The recommended placement for NAM
statements is at the very beginning of the Source Program, preceded only by TITL and ~
Comment Line statements.

7-2

o

0

ComputerAutornation ~

External Declaration (EXTR)

EXTR Name [. Name] .••

This directive is used to declare that certain names may eventually appear as Entries
in other programs selected durfii'§""load processing. Each name must be acceptable as
a label, but must not be defined anywhere in the assembly •.

EXTR declares each name to be' a Primary External. An unresolved Primary External
which matches a Primary Entry will force selection of the program which contains the
Primary Entry. An unresolved Primary External ~ay also be resolved against a matching
Secondary Entry, once the program containing th~ Secondary Entry has already b~en
selected. I I .

i i
The mere appearance of a name in an EXTR statem~nt is not sufficient to create an

; I

unresolved External. The name must actually be' referenced somewhere in the assembly
before it is considered unresolved.

Because the value of an External Name is not available ,to the assembler, a symbol
declared in an EXTR statement can be used only in certain restricted contexts:

Word Reference machine instruction (Class 1)
Double Register Arithmetic machine instruction (Class 9)
Stack Reference machine instruction (Class 10)
DATA statement
SPAD statement

An External Name cannot be used as a term in a complex expression, but it can be used
in isolation in a context where an expression would be acceptable. Neither a Unary
Plus nor a Unary Minus can be prefixed, nor is an asterisk (indicating an Indirect
Address) valid as a prefix.

i
Hete are examples of all the contexts in which an External Name can appear.

I EXTR SUBR DECLARATION
*

I
* I
LDA SUBR CLASS 1, DIRECT
LDA =SUBR CLASS 1, LITERAL
LDA @SUBR CLASS 1, DIRECT INDEXED
MPY SUBR CLASS 9
XORS SUBR CLASS 10
DATA SUBR DATA OPERAND
SPAD SUBR SPAD NAME

7-3

,I
I

j. HeWt ff 'b xl ret .. e· tt t t tot 11k I', e t I
M II .'·it !\ t rt tt*t

ComputerAutomation ~

Demand Load (LOAD)

LOAD Name [Name] .•.

This directive is used to create unresolved Primary Externals. Typically, each name
is resolved against a matching Primary-or Secondary Entry by the loader.

A name declared in an EXTR is a Primary External, but is not considered unresolved
unless the name is actually referenced somewhere in the assembly. No such reference
is needed for a LOAD name. I

I
A name declared in a REF is an unresolved Primary E~ternal' but each REF allocates a
word of storage, and a name cannot appear in mo~e t an 'one REF in an assembly. No
storage is consumed by a LOAD, and a name can a~pea in any number of LOAD statements.

Suppose these two subprograms are placed on an ~bjeJt Program Library:

*

XA
XC

*
*

*

XB

*
*

SUB
NAM
REL
SNAM
EQU
EQU

*
*
END

SUB
NAM
REL
EQU

*
*
END

AC
XA
0
XC
$
$

B

XB
0
$

7-4

r

.0
I

o

J

ComputerAutomation ~

This ma.in program is assembled, and submitted to the loader first:

*

*
*
XA
XB
XC

MAIN
REL
LOAD

*
*
SREF
SREF
SREF
END

0
XL

One, and only one, of these two segments
before AC and B:

* XL VERSION A
NAM XL

XL RES 0
LOAD XA
END

I
I
!

I
is, sUIfit,ted to the loader after. MAIN,

I

I

* XL VERSION B
NAM XL

XL RES 0
LOAD XB
END

,

and

If XL Version A is used, MAIN is loaded with Subprogra.m AC. References to both XA
and XC are resolved. References to XB are left unresolved.

If XL Version B is used, MAIN is loaded with Subprogram B. References to XB are
resolved. References to both XA and XC are left unresolved.

Two points are of particular interest here:

1. MAIN has no use for XL itself. Except for the LOAD, no statement in MAIN even
references XL. What MAIN wants is some combination of XA, XB, and xc.

7-5

"5 'P75fl"'SW""'tI!5iW'Wi'$'Jr m- e'f t rt%z . r E 'V"Z''1t?,,&S m ?,15!1a!~'-"$R"'5P' 'EV "SfhPPTtlJ

ComputerAutomation

Reserve Chain Link (CHAN)

CHAN ~] Identifier

This directive facilitates the creation of a type of data structure known as a
"chain" or "linked list" or "threaded J .. J .. $t." An example of chain structure and
usage follows this description.

For each use of the CHAN directive, the assembler reserves one word of storage. The
optional label is the location of this word, and may qe used in any context as if it
were the label of a RES directive.

The required operand, called the Identifier, consists of .1 to 6 alphanumeric char­
acters, the first of ,which must be alphabetic. Embed ed colons are permitted by the
assembler, but should be reserved for CA-supplied isof are.

I
i i

All CHAN directives having precisely the same IdeI"itifi'er contribute storage to one
specific chain structure at load time, regardless jof whether the directives appeared

, in one assembly or in several programs loaded toge,ther.

~ i-I The use of a particular alphanumeric string as an :Identifier does not constitute a
definition of a symbol. The Identifier, as such, :cannot appear in any statement
other than a CHAN. In theory, the same string could be used as the label of a
statement, and references to that label would be valid. In practice, using the same
string both as a chain Identifier and as an ordinary label is confusing and in­
advisable.

An optional asterisk may be prefixed to the Identifier. At load time, a high-order
"I" bit will be set in the word reserved by the CHAN directive. The meaning attached
to this bit is defined by the user's own chain-processing routine.

The words which belong to a specific chain -- its links -- are filled in at load time.
It must bf understood that the mere appearance of a chain Identifier is not sufficient
reason fot a given program to be selected by the loader; which programs are selected,
andwhichiare not, is governed solely by resolution of External references, to which
the CHAN firective contributes nothing.

When a word reserved by the CHAN directive is encountered, its high-order bit is set
~according to the user's specification, and the remaining 15 bits are made a direct
~storage address. For a particular chain, the very first link processed is set to
, :0000 or :8000. This zeroed link is called the tail of the chain.

The second link in each chain contains the storage address of the tail; the third
link contains the address of the second link; and so on, until no links remain in
the program. It is the responsibility of the program to know where the last link,
or head of the chain, is located. This implies careful control over the order in
which Object Programs, and the CHAN directives within them, are presented to the
loader.

7-6

(

('

'"'''0 ..•]'" "±",

o

o

j
i

.I

''''''!''".Wii! •. '.'j or PUSY'j n t'CMlQ t Un89' '·tnnMse*"', 5'· td dtsfmMtt1'rtn¢'Y'W'rrmr'ctr'VPMt% m t"ltwm't tmm ttttttt , 't' ¥' ¥)1M

ComputerAutomation ~ --

I
i
I

Example of Chain Structure and Usage

This chain is created by the CHAN and DATA directives shown:

Cl~
C2~

* PROGRAM
CHAN

Al DATA
A2 DATA

Bll ... I ____
I II -+--1 -t·11 a I
f01·r-l Al II
~02 ~ A2 ~

A * PROGRAM B * PROGRAM C
W CHAN W CHAN W
a BOl DATA a Cl DATA 0
a B02 DATA a C2 DATA a

* STORAGE
* UNRELATED
* TO CHAIN W

CHAN *W
Bll DATA a

:The chain
I

is processed by this program, which must be loaded last:

AHDW
HEADW

*

LOOPW

*
*
*
*

ENDW

DATA HEADW
CHAN W HEAD OF CHAIN W

LDX AHDW INITIALIZE POINTER
LDX @O X NOW CONTAINS A LINK
LLX 1 ELIMINATE pOSSIBLE
LRX 1 FLAG FROM LINK WORD
JXZ ENDW IF LINK = a, NO MORE PROCESSING

PROCESS DATA AT @l AND @2 HERE
FLAG MAY BE CHECKED BY REFERENCE TO @O

JMP
EQU

LOOPW
$

7-7

I

I

· r !:

!"i

o

c
I

.~

t J 1 • t tt" It in T" d t 1 '1 • i j" **e'b en II td Ntd_'*' Mfr» t d' tt '

External Reference Constant (REF/SREF)

Name REF Comments

Name SREF Comments

These directives are used to declar&~hat certain names are to be considered both
internal and external references, so that explicit linkage to another program may be
used.

Within the assembly, the name is recognized as the label of a single word of storage,
which is reserved just as if the statement had \lsedtRES 1 rather than REF or SREF.
The name, therefore, must not appear in the labe.l f eld of any other statement in ~he
assembly. I , '

! i
I

.At load time, the name is presented to the loader af an unresolved External. If a
matching Entry becomes available in another Object Program, the word reserved by the
REF or SREF is filled in with the direct address of the Entry.

i
I

The statement sequence shown here involves an implicit indirect link thru a word in a
Literal Pool or -- if no such word is available; within addressing range -- a word in
Scratchpad:

EXTR
JST

SUBR
SUBR

The following sequence allows the programmer to control explicitly the storage
allocation for the link, or even to build a table of External pointers:

SUBR REF
JST *SUBR

A REF statement creates an unresolved Primary External. An SREF statement creates an
unreso~ved Secondary External.

I
I
I

.7-8

""

""!!:1M t f" * III'';'' 'M d

ComputerAutomation ~

Section 8

LITERALS

A Literal is a word of storage, allocated for the operand of a Word Reference or
Byte Reference machine instruction. Unlike a wo~d allocated by a DATA statement,
the exact location of a Literal is chosen not. byi the programmer, but by .the assembler
itself. In certain cases, the fact that a Liter~l was required is unknown to the
programmer until the assembly listing is ava~lab~e for inspection.

A collection of Literals, grouped together in one area of memory, is called a
Literal Pool. The programmer can exercise s~me control over the location and size
of a Literal Pool, but again the assembler makes some of the decisions by itself.

Two coding techniques always generate Literais. One is an Explicit Literal operand
that is, the source statement operand expre~sion is prefixed by an = sign. Rather
than writing:

ADD KIOOO

and remembering several pages later to include:

KlOOO DATA 1000

the programmer writes:

ADD =1000

and lets the assembler allocate the storage, fill in the value, and adjust the
mac~ine instruction address.

The I other technique which predictably needs a Literal is a reference to a name
alr¢ady declared External, and thus beyond any possible Direct Relative Addressing
Ran4e. Typically, a subroutine call is involved:

*
EXTR

*
JST

SUBR

SUBR

The assembler makes the machine instruction indirect, and allocates a word in a
Literal Pool for the subroutine address. The result is the same as if the programmer
had written something like:

*

XSUBR

JST

*
EXTR
DATA

*XSUBR

SUBR
SUBR

A related coding technique mayor may not generate a Literal. In this case, backward
reference is made to a location which has already been defined. If the assembler
calculates that the location falls too far back for Direct Relatlve Addressing, the
machine instruction is made indirect, and an intermediate link is created in a
Literal Pool.

8-1

-I

ComputerAutomation ~

PARTA EQU $

* *
* *
PARTB EQU $

* *
* *
CYCLE JMP PARTA

If the code in PARTA and PARTB is still under development, the distance between
CYCLE and PARTA may fluctuate in and out of JMP ran~e with each re-assembly. This
fact is ordinarily of no concern to the programmer, ibecause the assembler will
decide for itself which Addressing Mode is needed. .

The need for each Literal arises wi thin a segment 04 e~ecutable instructions. This!
is exactly where the assembler can not allocate'sto~age for the Literal, which is a
word of data. Instead, Literals accumulate until t~e programmer designates an
appropriate location for them with an LPOOL directive.

,

This process leads to the fourth, and final, coqing sequence which can generate a
Literal. Again, the assembler's helpfulness in ,the calculation of Relative Addressing
Ranges is involved.

LOOP LOA FLOB
LOX =1000

* *
JMP LOOP

* *
LPOOL

FLOA DATA 0,2,4,6,8,10
FLOB DATA 0

* *
* *

When th~ assembler first processes the source statement labelled LOOP, the reference
to FLOB! is still undefined. It is not an External, but it is a forward reference,

i
and ma~ or may not prove to be out of range. The assembler provisionally decides
that a iLiteral would guarantee access to FLOB, makes the LDA indirect, and adds the
Literal to the current accumulation. The Explicit Literal in the LDX also joins the
accumulation.

The programmer finishes writing executable code, and begins
But first, to provide for the Explicit Literals in the last
perhaps some other accumulated Literals, LPOOL is inserted.
ately allocated under the LPOOL, the assembler includes one
FLOB, another for =1000.

some DATA statements.
piece of code, and

Among the words immedi­
for the reference to

Now the assembler finds out where FLOB is, in relation to LOOP. If FLOB is out of
range, the Literal Pool entry really was needed, and the indirection already set in
the LOA is the only way to access FLOB.

Suppose, however, that FLOB turns out to be within range of the LDA. The instruction
is made direct to save execution time. The Literal Pool word, which would have been
a pointer to FLOB,is left unfilled.

The allocated storage.remains in the program. Removing the allocation would involve
reassembly of the entire Source Program.

8-2

(

r

t,

-i
I

1 'tSrt * h P wt tU' \ er·" let nt' nUrlM'r ft'! 'eM')· » \',"*'1: *' u 'hn r, rl '

ComputerAutomation ~

Literals take up storage. Te'chniques which generate Literals may use the storage
efficiently, and they may not. Only the programmer, not the assembler, c.an make
that decision.

To summarize, these techniques may_generate Literals for Word Reference or Byte'
Reference instructions:

l.
2.
3.

4.

Prefixing an operand with an = sign.
Reference to a location known to be External.
Backward reference to a location beyond,Dir,'ct Relative Backward Addressing
Range. .
Forward reference to a location not defined before the next LPOOL statement~

8-3

rtHt'W

e

1
I

t
i
t

II __ _

Nt _.ttW r ! t* t d te' '.,,9 teU 'e!I' ftt t t 1M! .kWH . t tiM lItt" t' t

ComputerAutomation ~,

Allocate Literal Pool (LPOOL)

LPOOL [Operand [conunentsJJ

This directive informs the assembler that it may allocate storage for ,whatever
Literals have been accumulated. The op±ional label is the location of the first
allocated word.

No words are allocated if no Literals have been accumulated. Even the use of an
Explicit Literal between one LPOOL and the next does not always require a new Literal
Pool entry. I

A LOA =1000
* *
B LDA =500*2
* *
Ll LPOOL
* *
* *
c LDA =4*250
* *
L2 LPOOL

The Literal for =1000 in Literal Pool LI, originally created for instruction A, is
shared with instruction B -- the assembler can see that the same value is involved,
even if the source expression looks different. Furthermore, when-c-IS processed,
the assembler checks for a matching value in all the Pools within backward range
before it assumes that a new value will be needed in a forward Pool. This can
result in very efficient sharing of Literal Pool allocations, if the programmer
places LPOOL statements judiciously.

For C to share the Literal created for A, the starting location of the Pool at Ll
must be within the Relative Backward Addressing Range of c. It is not sufficient
that the,word allocated for the =1000 be within range; the entire Pool must be close
enuugh. i
If Ll isjnot within range of C, a new Literal also containing =4*250 (that is,
=1000) btcomes part of the forward Pool at L2. The new value is available for
sh~rjng ~ith instructions beyo~d L2 but within range of it.

The optional operand of an LPOOL statement is an absolute expression with predefined
terms and a value greater than zero. It specifies the maximum numben of words
allowed in this Literal Pool, regardless of how many Literals have been accumulated.
If more words are needed, the leftover Literals will be held for the next available
Literal Pool.

The programmer should observe that no Comments may be used in an LPOOL statement
which has no operand.

If an assembly con.tains at least one LPOOL statement, than all the Literals still
accumulated when the END statement is reached are allocated just as if the END were
immediately preceded by an LPOOL. A dummy statement of LPOOL I at the start of the
assembly is sufficient to activate this provision for leftover Literals.

If an assembly. c'Ontains no LPOOL statements at all, then no Literal Pools a::ce ever
generated. Instead, every instruction which would have used Relative Addressing
into a nearby Literal Pool is set for Indirect Scratchpad Addressing. All of t.he
Literals are converted into Scratchpad Literals, which are described in the next
section of this manual.

8-4

r

"'Wi t'.HUt - ,*",MfH !tit' W h 'H·.·'M"'b' hl-W;;W8'ttJ iVWI!!w'* hr" '1 ',#'*"'='*" tM'" .. tte¥'±t":nIt't'Qf\'*ij Ii'd& 'lib u; f"IAk' '.b4!e!c:"!t:c! ',- 1 t_ -. r'.tf :",,~ "lilkiW'h' W .,.

ComputerAutomation ~

section 9

_.s.C.RATCHPAD LITERALS

A Scratchpad Literal is a word of storage allocated by the loader, and available to
a Word Reference or Byte Reference instruction ~hru Scratchpad Addressing Mode. The
need for a Scratchpad Literal is determined. dUr~i"ng the assembly process, and co.rnrnuni­
cated from the assembler to the loader thru a d"st,inctive Loader Type Code in the
generated Object Program. iii

I I

Two coding techniques result in Scratchpad ~ite~als. The more common situation is
that a Literal Pool Reference, either explibit or implicit, was used, but that no
Literal Pool space was available within range of the instruction which involved the
reference. This includes the extreme case of a Source Program which never uses an
LPOOL at all, such .as a program originally coded for CA-supplied assemblers lacking
such a directive.

If at least one LPOOL statement is found in a Source Program, it is assumed that the
programmer wanted to minimize or eliminate any requirement for Scratchpad Literals.
Therefore, the assembler will attach a Warning Flag to every Class 1 or Class 8
instruction which needed a Scratchpad Literal only because no LPOOL was within
Relative Addressing Range.

Certain ways of using instructions always need Scratchpad Literals, and will not be
flagged. Specifically, a Word Reference or Byte Reference operand with the prefix
@ -- which indicates Indexed Addressing -- will always be generated with a Scratchpad
Literal for indirect linkage if the operand value is either:

Relocatable, or

Absolute, but higher than the machine limit for Direct Indexed Addressing (:3F
for the 3/05, :FF for the other machines).

Even a combination of Literal Pool entries and Scratchpad Literals cannot guarantee
that a Byte Reference instruction has access to every location in memory. The assem­
bler rejects a Byte Reference instruction with Explicit Indirect Addressing if its
operand (presumably the location of a Byte Address Constant) is not within Direct
Addressing Range. Neither a Scratchpad link nor a Literal Pool word can be used to
access the BAC, and thru it the actual data, because only one level of Indirect
Addressing is available when the machine is in Byte Mode.

9-1

,.~ " tt

o

>"1 t d" In P W! bh'torlWt ")', b,'a'

ComputerAutomation ~

Scratchpad Literal Only (SPAD)

SPAD Name [, Name] ...

This directive declares that certain names are to be excluded from ordinary Literal
Pool allocation. If at least one t~!]!! of the operand expression of a Word Reference
or Byte Reference instruction is an SPAD name, and the assembler finds that a Literal
is needed, then the Literal will go into the Scratchpad Literal Pool.

Each name may be local to the assembly, or it may b~ declared External, or it may
never appear at all. An SPAD name may appear in a pumber of different SPAD statements.
An SPAD statement only affects other statementsafttr ~t, not before .

• An SPAD name is usually declared because the progr~er is using LPOOL directives, i

but anticipates that frequent references to a certa~n name would generate a consider­
able number of un shared words in many different'Literal Pools. In this situation, a
Scratchpad Literal is more conservative of storage, because the loader eliminates
duplicate values before allocating the Scratchp~d Literal Pool.

9-2

r ,
'"

('

'RIir3'*i'?'ff"""'7'C'&n _f'tZ'ttti" t t==uYm!,**"*# 'tttttf"t# tt eM tdtttt - 1" t b t zlth in , ti t tt'tMe

1
~"

l~ (i
~

ComputerAutomation ~

fi Section 10

o

,~

I

INTERPRETATION OF THE ASSEMBLY LISTING

This section describes the
follows the description.

information on the assembly listing. A sample listing
I
I
I

Page headings have already been discussed underlTITL. Two kinds of lines appe~r in
the body of the listing, Error Lines and St~temfnt'Lines.

I I
Error Lines

An Error Line starts with two asterisks and'a blank. Various flags follow, each of
which represents an error in the source sta~ement on the immediately preceding line.
The specific meaning of each flag is listed: for ready reference at the end of this
section.

At the very end of the listing, this message appears:

yyyy ERRORS eeee

The number yyyy is the total number of lines with Error Flags. The number eeee is a
chainback pointer. The last source statement which caused an Error Flag was statement
eeee on the listing. The Error Line under that statement contains a chainback to the
next-to-last statement which caused an Error Flag, and so on back to the first Error
Flag, which is easily recognized by its lack of a chainback pointer.

St~ tement Lines

A ~tatement Line is divided into 7 uniform columns, separated by one or two blanks:

1. Line Number
2. Location
3. Value

4. Label Field
5. Operation Field
6; Operand Field
7. Comments Field

10-1

id _ttO ".nM

ComputerAutomation ~

Li.ne Number

This colwnn·identifies each source statement.

Location

The current value of the Location Counter appears in this colwnn.

Value

The result of assembling each statement is shown hete.
a directive generates object code, each word ap~ear$ on
column can be updated. If a statement simply evalu~tes
value appears as a 16-bit word. I

If a machine instruction or
a new line, so the Location
an expression, the final

The Value colwnn also supplies information about. Literals. For an LPOOL statement,
the number of words allocated in the Literal Po6l is given. For a reference to an
entry in a Literal Pool, the location of the word is shown below the object code.
For a Scratchpad Literal, the value passed to the loader that is, the operand
expression value -- is shown. '

Source Statement Fields

The remaining colwnns on the assembly listing contain the four fields of the oriqinal
source statement, spread into uniform columns.

Symbol Table

The ma~n assembly listing is followed, on a new page, by the names and values of all
the S~ols and SET Variables in the Source Program. The names are alphabetized, and
displa~ed 4 across. Each name is followed by its 16-bit value. To the left of a
name, ~hese flags may appear:

M
U

X

I
Multiple Definitions
Undefined Symbol
External or Entry

If LPOOL directives were used, the alphabetized entries will be preceded by messages
of this form:

LPOOL@ hhhh

That is, "Literal Pool at location hhhh." Every Literal Pool, including the implicit
one before the END statement, will be identified in order of appearance.

10-2

r

ComputerAutomation ~

Error Flag.s

A Absolute expression was required, but operand here is Relocatable.
Value of operand expression is not an acceptable value for this Mnemonic
Destination of a Conditional Jump is out of range.

C ENDC not paired with an 1FT-or IFF.
1FT or IFF range still open when END was reached -- ENDC missing.

D Operand reference to a symbol with multiple definitions.

tor~ed
I

Expression could not be evaluated -- value to :0000 Absolute. E

L Label Field unacceptable.
I

M Multiple definition of a symbol. !

o Operation Field unacceptable -- processfd as if HLT.

P Pass 2 out of synch -- probable error in hardware qr software.

R Relocation Factor unacceptable -- value forced to JOOOO Absolute.

S Syntax error in operand expression.

T Self-defining term too large -- value forced to :0000 Absolute.

U Undefined symbol was referenced.

W Warning -- this Word Reference or Byte Reference instruction needs a Scratchpad
Literal. (This flag appears if a Source Program contains at least one LPOOL
statement. The same warning appears if no LPOOL statements were used, but the
hardware SENSE switch is ON during Pass 2 processing.)

OV Overflow of an intermediate value beyond 16-bit maximum.
Statement processing was unsuccessful because of Symbol Table overflow·.

10-3 Revised 7/76

t % d !L'

t
,
~
ii
~:.,

1:
(', PAG.F.. ~i 0001 SAMPL!: ASSEMf3L Y LISTING t-OR IWE6A

ji
t:
f 0002 ***
t! 0003 * SEC T HJN t 1

0004 *
ooo~ * SA~PLE ASSF-MRLY LISTING
OllO6 *
0007 ***
0001' *
OOOq NV1 ~1 A I N
{) (11 (I 0000 I~EL 0
o U 1 1 *
I) 0 1 2 0000 MAIN EQU $ I
OOI~ * AB~OLUTE 0014 OOO? ABS EQII +2
001') *
001h 0000 B802 ADO ARS
0017 0001 dAA5 AI)D =ABS

0
.0027

OOlt< 0002 OBO? AAI ARS
0019 000, l?OO JAr; AAS
** A
002(\ nOO4 4'113 AlB ABS,3
0021 ()U05 8804 AODB ARS
0022 * r" 0023 OOOh 0002 DATA AAS,ABS+.3,*AtiS

0007 0(105
OOO~ 8002

0024 000q 0f}04 f.3 A r. ARS,AAS+.s
OOOA un01

0.02'i 0002 SFTVAf.I SET ARS
002h .OOOR A2~B LDX =SETVAf.I

Inooe
{)O?7

OO~7 8fYl~ SUB =AA~+7-AHS

I
OU28

OO?l-\ *
0024 I 1? 34 ARSHIG FQU :1234 tdiSUL Ul E I3t:.YONf) SCRATCHPAO
00.30 *

CJ o () ~ 1 OOOD BRqH ADD ABSR}G
0029

0032 000(: 8A9A ll. I) I) =AHSRIG
0029

0033 OOOF ORO!) A A I ARSRIG
** A unlQ
11(134 OOlf' 1?(){) JAG ARSRJG
** " 0(1 j.~

0035 0011 It''iOO AIK ARSRIG,5
** t. ()O~4

00 ~6 0012 dAY7 Af)I)~ AHSRIG
OO2A

on 37 * @ 003f\ oon 12.34 DATA A~SHIG,A~~KTG+j,*~BSHJG

00 til 1251
0015 q? ~4

i;, 003Q OOlh 21lbH RAC ARS~JG,AI:ISBJ(;+3
l
f

rl
11-1

~:
1

'I
,

., 'l!Ht ' t a Z" "ks W :t 1t d wrew»' •• ftt t

,
t'
" t PAGF I) 0 ()?
11
~i

~ nOll 24011

fi t) 0 i~ (l 1 ;J C; £1 :iflVAW St::T ARSRIG
'.;!

lHI '. 1
/) (I 1 (I. Ar~YII L[)X =SFTVf\~

()(l.J.4

I) O'I? 0014 8f tlF SIIH
.. _--

=AI:iSt1TG+7-ARS~1r.

O()?~

() 0 I. _" *
.1 01144 HFF NlltiC) E Ill! -? NF,:t-;AT IVE AHSOllJTE

00'1"- '"
i

')(14/-. t) (l 1 A, M~OO AI)O NAI1S !

** t 005~
o ();~ (OOIH ti A IiF Mlf) =NARS

OO?B
OH4 A OOle OHO(f A A I NABS

** t>- O()/~h

i) (J I.l (, 0011> l?uO .I A(~ NABS

** f\ 004~

e 00')0 001E 45(H' IIIR rliARS
, ! 11 * t>- o () '.4

00,] OOlF RHI3C AIHHl NA~S

1I0?C

UO':l2 *
O()':J~ 0020 FFFt I) II r ,A NAB~,NAHS+3,*NA~S

0021 OllO1
0022 FF fl- t'

00':>4 OOi?~ Ff· Fe BAr: tJAfiS,"IAHS+3
00?4 Ff-FF

00'55 FFFF St T v A I~ SI:. T NABS
OO'Jo 002') A?8':J If)'I(=SFTVIIW

002H
UO,7 OO(?h fH ~ 1 SiJH =f\JAHS+7-NIlBS

01l2B
()0":1f1 *
dO,4 *
OObO (JOOn LPt LYllOL

nO;J7 0(\ (I (J

C
()O?~ 0001
00:>9 l? ~4
002A 246M
00211 FFFf-
oo;>c FFFC

0061 *
OOh? 0002 ~f.L F 1l1,1 MAIN+? ReUle A T AHLE
I) f) 6.5 *
OOh4 OO?D dJl'j4 ADD I~FL

006~ 002E BIIYP, ADI) =1H:l
UO/J7

OOb6 O(J2F 01100 A A 1 REL
*'1< A ()(I'j{l

OOb7 00 HI 1? 1 1 JAr, RfL
006B 00 q ''''JOO A Pi I~FL, 3 r
** A O(ihh

~ 006'1 f)(J3? R A1F. ADDB RFL
i'
~.
t 11-2 ,
i, .,

eM ±. 9 "Ere'" ! , "1'H"i b

~ PAGE 0003 SAiI4PU" ASS F. 1I-1Ij L Y

U070 *
0(111 OO_B (lOO? DATA I<FL, I.lFL-t-3, HIEL

UO ~ LI 0005
I)O~') KOO2

u072 00 _~~ 0110£1 BAC REL,t-H-L+'s
0037 0007

0073 OOO.? SETVAR SET REt
1)()74 OO.5P> A2M LOX =SFTVAR

(l(pn
(lOlr:, 0039 Br07 5U~ REL+7-RFL

I
I) 0' h * i ,
0071 ExT~ SUBR Fj(TERfIlAL
007B *

I 0(119 0031\ KB8LJ Aon SUBR
OO/~f\

008() on.sH 8AHt: ADI) =SIJI-iR
00£18

0 0081 003C OHOO A.Al SlIHR
** r: OOhf\
OOIj(l 003D 1200 J A I; Sll8R
** F {) 1/81
0083 () 0 ~F ~'i()O o\Il-l SlJRR, ~
** A 0082
008£1 o (l 3f ~81)O ADI)I-l SIIHR

r" ** F OflB3
0085 *
OOlih o 0 !~ (l nAT" SIIHI-.l, SIJHI-<+3, *SlJAR

0041

** f.: ()OHLI
004? KOOO

** E OOlih
lIOK7 0043 0000 fHr. SIIAR,SURI-<+3
** F 0086

0044 0000
** f. 0(l~7

O1l8~ OOO(l SETVAR SET 5111--11-<

G! ** t UOK7
0089 oo~o;:; A () II 0 LUX =SETVAI~

** lJ 008H
0040 0046 .~ C I) (i su~ Sllrl.?+7-SUfllol

i ** f 00134
I

~ OOYl *
I

004? * 0093 uoo~ LY2 L PilOt.
I 0047 o (I I) C'
I !lU4A 0000

I

004 Q

OO~lI *

I

009~ 4'i67 1-<1: U A 1< I: oJ I J HA T r-I+: 1~5b7 R E Ul CAl A R L E OUT OF RANr.E
O()9b * B 0097 004A H40n A l) I) f.'F LF!\ I~ .:",: '\I-

'~~';
.... ·1;.;

4~hl

,. ** A 0040
,,!l
~,

f
~~ I 11-3 i.!
~!
(I
';L
$;,

t mH t' =' nlY"ftt!r"=,it * , U :l.

" ~'

f· r ~, PAGE: 0004 SAMPLE ~SSEMBLY LISTING FOR u~Et;A

.~., i
~:
~I

~. 0098 004~ RAOO Aon =,RF. LF AFt
'. 4567

•• A OO'l7
OO'l9 OOQC O~I)O AAI RE.LF AR
-'II • A 009R
OIO(l 0040 1?00 JAG RELFAR
'II'll A 009~

0101 004F 4500 AlA RELFAP,3
Ie. A 0100
0102 004F 8YOO AOOIi RfLFAR

8ACE

** A () 1 01 I
I I

0103 * RELFAR'PElFr~+1,.HELFAR 0104 0050 4567 DATA
0051 456A
005? C5b7

JI0~ OO'j~ 8ACF HAC RFlFAQ,PELFAf<+.s

0 0054 ~A[)1

JI0b 4C;b7 SETVAH SET RflFAR
0107 00<;1) AllOO LOl(=SE.TVAR

4567
Ie. A 0102
010b 0056 8f51 SIlA :ABS+7-ABS

002H
010~ •
01 10 *
01 11 • Nt::XT SfATEMENT IS A 1\lF- w PA6~ DIRECTIVE (.)

•

r

11-4

o
011.3
() t 1 4
() 1 1 '='
o t 1 h

0117
011 R
011 q
0120
0121
0122
0123
0124
0125
012h
0127
0128

o ~~j~
o 1 .31
o 1 '~2
01 33
0137
0138

,.".,. 0 1 .s q
, '0140

0144
0145
014b
0147
0148
0149
0150

0057

OOS8

005Y

005A

(lOot
OO(JO

0001

0001
3C 71

0000

0000

0000
0000
3C 88

rdl,

.. CONUITIONAL A~SEMHLY nFM()N~TRATION

...
fRlIf SET 1
FALSI: St:T "-i)

1<

... TAKt 7 SOIJRC E ~HATt~1ENTS LIKE THIS --
*

HT TV
... STOP : 77

1< E t-.'DC
1< NOP
1< IFF T'V
1< STOP :8P

* ENDr.
1<

TV SET TRlJE

* FIRST, wIld TV = nwr::

* 1FT TV
SlOP : 77
ENDC
NOP

1<

TV SET FALSt
1< NOW, THE SAME 7 STATEtvlENTS WITH TV = FALSF

* NUt->
IFF TV
STOP :88
F.Nnc

*
1< NOH: THE: JUMP IN THE LH'E NUMHER
1< WHEN SOMETHING IS SKIPPFD

11-5

'I" "j" '"- ····'i'Wi''' .. W'ilW'T' 'M'iIiF"It'W·-"T"·!'h >'I"ii'''ai.l:iwrc'''fY''o;tn'S " H H 't ttHitttm '. " 'l,aIri' i'"S "'$,. t' *1dWh: "'= 4?:' I +"O''''",.,.W

t': t,
)'

t,

* ~
PAf;f 0006 r :i

" LEAVt: ~, nl'J? * THE NF:XT STAH~MEf\lT wILL ,.,10 LITERAL POOL
ti 01")3 * vHTHIN Fnf~WARO RANGE OF THF STATEMENTS
"

01')4 * I-ll~ '~FLFAR' AUT ~UME Uf THOSE STATfMENTS
!) 1 'j'i * l"i lLL AI-" ABLE TO USE FXISTING VALIIES IN POOL LP?

01,)£' *
01';7 Ot'j~ ORG $+:100

Ol'-)P *
015'-1 *
01~O O\S~ 8~UO ADn 0

01 b I I) 1 ':lC til\f\C ADD =0
010'1

016;> 015[) 01300 AAI 0

0163 ot':ll: 1?0(\ JAG 0

** A 0107
0164 015F 4'503 AIH 0,3
016') 0\60 8HOO At)I)fi 0
016E:- *

0 01b7 0161 0000 nATA 0,0+ 3, *:0

016? ()()O.3

016~ /iOOO
,) 1 f, ~ 0164 000(1 HAC 0,0+3

016') ()(\O3

i) 1 bq 0000 ;j t: I \I I\I~ SET 0
Ol70 0]06 A2fj2 Lf)X =SfTVAf.(

OH'Iq

u 1 11 Oth7 8f- R2 SUfi =0+1-0
01~A

01 12 1<

U 1l.~ 1<

J 1 74 01bA Oth£) DATA ENOlAG \'iORO ,AF TER END OF THIS PROGRAM

01 7 ') 1<

01lh * HER!: COIv1ES AN IMPLICIT LPOOL BEFORE END
0004

0164 oono
016A 0007
016H

(l. 016C
i) 1 I 7 OIlO(J trW''''; I-:i\ll) MAIN
()O24 ~ !·HWR.j 01h5

r

11-6

I

"1
I

.. 'iiMJ#tW 1M bstrtt*

PAl;/- OlJ07

n LPOOLill
Afi')

U·',J.
"lfL
rv

o

(JO,? 7
OlIO?
01 111{

o (l I)?

0000

0'! •• ,~', 'c,.··' . t 'htrlrlrte" "'tNrC

SIIMIJLr A SSErv1aL y llSlII\]!.1 FOK

LfJ()OL n) Oll47 LPUOL;j)
ENl)TAG Olb!) rALSF.

)(M A J 1\) o () (l 0 NAHS
SErVAR ooon X SlHHJ

11-7

UMEGA

0169
0000
FFFf:
QOOO

AI:1SHIG
LPI
HELFAR
TRUE

1 2 3/~
0027
4567
0001.

..
, ,
t,
\;
r
t,
I
~,
t r
~ t:

,~ I

~.1

~
1.

o

trl 'f''n • '0" '% M t
, rit\:n$"mHut

ComputerAutomation @\\

Section 12

EDITING AND ASSEMBLING A SOURCE PROGRAM

This section describes the commands used to edi1;: and assemble a Source Program. The
commands are conversational -- OMEGA requests alcommand and some parameters with a
question mark, and immediately either accepts or rejects the response.

Each command line on the Teletype is terminatedtwith a Period. If OMEGA reJects the
command, it will type out a Back-Arrow. Similafly, typing in a Back-Arrow indicates
that the current command line should be aba~don~d without processing.

In the command descriptions, lowercase lett~rs imply some number, and an underline
indicates a type-out from OMEGA.

Two kinds of source statement lines are manipulated by 'commands: Input Lines, and
Buffer Lines.

An Input Line Number is a decimal number between 1 and 32767. Leading zeroes are
optional.

The Buffer is the memory above OMEGA used to build an edited Source Program. A
command which refers to the Buffer can use a Buffer Line Number as low as 0 -- that
is, just before the first line in the Buffer -- and as high as the current number of
the final line. Because the Final Line Number is not always known exactly, the
letter F can be used instead.

12-1

0 1

,

o

.. ,

CONNECT DEVICE (C)

CId.
COd.
CLd.

"f "JiM Pi"","! If4WV'0,6"ti ."&ri' V'wW' 'Wid eilti.

The C command connects an OMEGA logical device to a physical device, or to the Buffer.
You can make all the connections just once, after loading OMEGA, or you can chang.e a
connection whenever OMEGA asks for a new command.

Source Input Devices:

n
12
13
14
IS
16
17

10

Teletype Keyboard
Teletype Paper Tape Reader
HS Paper Tape Reader
Card Reader
Buffer (as Input for X command)
Card Reader with Distributed I/O
HS Paper ,Tape Reader with Distributed I/O

Punch EOF Now

Punch output Devices:

01
02
03
04

00

Teletype Punch

HS Paper Tape Punch
HS Paper Tape Punch with Distributed I/O

(No Punch Out pu t)

List Output Devices:

Ll
L2
L3
L4
LS

LO

I
!

Teletype Printer
Data Products Printer
Centronics Printer
Data Products Printer with Distributed I/O
Centronics Printer with Distributed I/O

(No List Output)

You can enter several connections with one C command, by using one blank after each
device:

CI4 03 L2.

cn 00.

When OMEGA is first loaded, automatic connections are made to the Teletype, equivalent
to this command:

CI2 01 Ll.

12-2 Revised 7/76

:1
!

I

1
I

o

'I· !f'JI"" nft ' "4'-- . ~A -6 *'§''''S'1TR "M5""- "·"!ti$'SlPC1p "3t> *t' tnt '¢j r'" xllt". H'twetH ... _ It

ComputerAutomation ~

INITIALIZE (I)

I.

The I corrunand initializes OMEGA for input and editing. The Buffer is cleared, and the
last Input Line Number is set to·-O-.... This corrunand has no effect upon the· Device Con­
nections or the High Memory Limit.

An I command is automatically simulated when OMEGA is first loaded, and when an E
corrunand is entered.

RESTART

You can restart OMEGA at any
or assembly in progress. No
Input Line Count, the Device

I

I
I
I

time, and make it a~ndon any reading, printing, punching,
• I

initialization ~s done for a restart; the Buffer, the
Connections, and the High Memory Limit are intact.

There are three ways to cause a restart:

On an LSI-2, hit INT.
On an ALPHA-16, hit AUTO.
On all machines, hit STOP, set P to :0100, clear STOP, and hit RUN.

OMEGA will respond irrunediately with n?n and wait for the next corrunand.

SET END OF MEMORY (E)

Ehhhh.

TheE corrunand resets OMEGA's High Memory Limit. When OMEGA is first loaded, it deter­
·min~sthe size of memory, subtracts 16 words to allow for your bootstrap loader, and
cal~s the result the end of available memory. If you want to protect more high memory
thad 16 words, enter a new hexadecimal address.

I
The IE corrunand triggers an automatic I corrunand, clearing the Buffer and setting the
last Input Line Number to O.

If you need an E corrunand every time you load OMEGA, you should probably create a new
version of OMEGA with a fixed High Memory Limit. Refer to section on OMEGA Program
Variables.

For LSI-3/0S with Software Console loaded, setting the end of memory below the Soft­
ware Console will preserve the accessability of machine console.

12-3 Revised 7/76

0:

I

I

I Fl'g"fW"'Ar'j,r,'\ li"iN,' '.' .. 'u

ComputerAutomation ~

READ INPUT (R)

Rm.

The R command reads thru Input Line m, and adds the lines to the Buffer. If Input
Line m has already been passed, the command is rejected.

The last Input Line added is typed out for verification. If the end of the Source
Input is found before Line m is reached, this message is also typed:

END OF TAPE: LINE NO mmmm
,

You can read in all of the Source Input by enteringl R9999. Alternatively, you can
read the Source Input one piece at a time, with, S oJ:- A'commands between the R
commands, as illustrated on the opposite page.

SKIP INPUT (S)

Sm n.
Sm.

The S command skips over Input Lines m thru n (inclusive), or -- for Sm. -- skips
only Line m. If Input Line m has already been passed, the command is rejected.

If Line m is not the very next Input Line, all of the Source Input up to -- but not

t tad '

including Line m is read and added to the Buffer, as if an R command had been r
entered first.

The first and last Input Lines skipped are typed out for verification.

After an S command, you can replace the skipped lines immediately with an A command,
or continue with more Rand S commands, as illustrated on the opposite page.

12-4

"',

C

~

#! . ..

INPUT
INPUT
INPUT
INPUT
INPUT

INPUT
INPUT
INPUT

INPUT
INPUT
INPUT
INPUT
INPUT

INPUT
INPUT

(INPUT)

(LINE 001)
(LINE 002)
(LINE 003)
(LINE 004)
(LINE 005)

(LINE 006)
(LINE 007)
(LINE 008)

(LINE 009)
(LINE 010)
(LINE 011)
(LINE 012)
(LINE 013)

(LINE 014)
(LINE 015)

ComputerAutomation ~

(TELETYPE) (BUFFER)

?R5.
0001 INPUT (LINE 001)
0002 INPUT (LINE 002)
0003 INPUT (LINE 003)
0004 INPUT (LINE 004)
0005 INPUT (LINE 005)

INPUT (LINE OGl5)
I
I

?S9 13. I

I
I 0006 INPUT (LINE 006)

I 0007 INPUT (LINE 007)
I 0008 INPUT (LINE 008) I

INPUT (LI~E 0~9)

INPUT (LINE 013)

?R15.
0009 INPUT (LINE 014)
0010 INPUT (LINE 015)

INPUT (LINE 015)

? -

12-5

I

!

,I

rlttttt'"

ComputerAutomation ~

ADD AFTER BUFFER LINE (A)

Am.

The A command opens the
Buffer Line m. Type in
with a Carriage Return.

keyboard so you can insert Buffer Lines immediately after
successive lines of the Source Program, and end each line

To terminate the additions, enter a ,Carriage Return alone.

Backspace over typing errors with one or more Back-Arrows. Cancel a whole line by
ending it with a Back-Arrow and a Carriage Return.

To insert lines before the first line currently .in tre Buffer, use AD. To add lines
after the final line in the Buffer, use AF. I

i

Remember that additions force re-numbering of all t~e Buffer Lines after the added
lines, as illustrated on the opposite page. Add grdups of lines from the bottom up.

DELETE BUFFER LINES (D)

Om n.
Om.

The 0 command deletes Buffer Lines m thru n (inclusive), or -- for Dm. -- deletes
only Line m.

To delete the final line in the Buffer, use OF. To clear the entire Buffer, enter
01 F. The entire Buffer is also cleared when you enter the commands I, E, or B.

To replace a group of lines, first delete, then add:

?D41 42.
?A4D.
REPLACEMENT FOR OLD 41 cr
REPLACEMENT FOR OLD 42 cr
cr
?

Remember that deletions force re-numbering of all the Buffer Lines after the deleted
lines, as illustrated on the opposite page. Delete groups of lines from the bottom
up.

12-6

.. I
I

!

.,'

~

C

0001
0002
0003
0004
0005
0006
0007

-0008
-0009

0010

0001
0002
.0003
0004
0005
0006 --0007
0008

0001
0002
0003
0004
0005
0006
0007
0008

I

00011
0019

(BUFFER)

INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE

INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE

INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE
INPUT (LINE
INSERTION 1
INSERTION 2
INPUT (LINE
INPUT (LINE

ComputerAutomation ~

(TELETYPE)

001)
002)
003)
004)
005)
006)
007)
008)
014)
015)

?D8 9.
001)
002)
003)
004)
005)
006)
007)
015)

?A6. -
INSERTION 1 cr
INSERTION 2 cr
cr
?

001)
002)
003)
004)
005)
006)

007)
015)

12-7

1',

a

ComputerAutomation ~

BUFFER CLEAR (B)

B. ' ...

The B command deletes all the lines in the Buffer. The commands I and E also clear
the Buffer completely.

LIST BUFFER LINES (L)

Lm n.
Lm.

The L command lists Buffer Lines m
Line m. To list the final line in
enter Ll F.

thru n (inClusiv*,
the Buffer, U;se .

, I

!

or -- for Lm. -- lists only
To list the entire Buffer,

Each L command produces· a new formatted listing.1 Each Buffer Line is preceded by its
current Line Number. Each page has 54 printed Iines and 11 blank lines. If Device L
is connected to a Teletype, the final (or only) page is not formatted. This saves
paper if the listing is less than one page long.'

PUNCH BUFFER LINES (p)

P m n.
P m.

The P command punches Buffer Lines m thru n (inclusive), or -- for P m. -- punches
Line m only. Note the blank required before the specification for m.

Each line punched is terminated with the sequence:

Carriage Return
Linb Feed
Nul~

I This sequence makes manual splicing easier, and is also suitable for re-entering the
tape to OMEGA.

To punch the final line in the Buffer, use P F.

Some blank leader will be included if you follow the letter P with an L.

An Up~Arrow and some blank trailer will be included if you follow the P (or the L)
with a T. The Up-Arrow represents End-of-Tape to OMEGA. If the tape is later re­
entered with an R command, reading will stop at the Up-Arrow. If the tape is fed
directly into an X command, the Up-Arrow will allow another piece of input to be
used, unless an END statement was on the current piece.

To punch a complete program from the Buffer for future use, enter:

?PLT 1 F.

12-8

~." '+
&' #"1 (t,t ,\!' Q't!cbW'

RESET LAST INPUT LINE NUMBER (T)

Tm.

The T command is used to re-synchronize the Input Line Numbers with an assembly
listing, or with your latest list.i.Ll9 of the Buffer Lines. This is quite useful when
you're building a new program from several pieces of tape, or when a series of Rand
S commands has allowed the Source Input to get out of synch with the Buffer.

OMEGA uses the Line Number in the command as the .number of the last Input Line already
passed. The next line about to be accessed by a~ R or S command is therefore m + 1.

i
The value of m can be 0, making the next Inpu.t L~'ne ,into
is made automatically for any of these condition :

i

OMEGA just loaded.
I command entered.
E command entered.

12-9

Line Number 1. This setting

1
I
I

He ij" . +±b!:'tW f ", H't ztrtlf" " "W ".rlt¥'kerl! id"' 2' 1 '1.,< t t* t 11#,°,,". ffl"t Ie ts'Mmtt) it, &" t '"" mtl h **'hth,WlftN:rd** Wi,

ComputerAutomation ~

MEMORY AVAILABLE DISPLAY (M)

M.

The M command simply asks OMEGA to type out the amount of memory still available
between the fixed part of the assembler and the High Memory Limit. The number dis­
played is the decimal count of the woras (not bytes) left for building Buffer Lines,
Symbol Table entries, and Literal Pools.

If a source statement is added to the Buffer with an R or an S command, every two
characters consume one word of memory. A Carriage *eturn is appended to each line,
but extra blanks between the fields are compressed ~ut.

I
A statement added to the Buffer with an A command i~ not compressed, and should be :
typed in with only one blank separating adjacent fi~lds. Similarly, a source state­
ment fed directly to an X command thru the Teletypeikeyboard is not compressed as it
is when read from other devices.

After an X command is entered, and assembly begins, each new Label, SET Variable, New
4C». Op Code Definition, or Literal needs 4 words of ' memory.

0

If the memory available is exhausted during Buffer editing,! this message appears on
the Teletype:

BUFFER FULL: LAST SOURCE LINE IS mmmm

An M command would show a very low number of words left. Either delete a substantial ,.
number of characters from the Buffer (perhaps a page of Comment Lines, or a piece of
the Source Program not currently needed); or punch out a partial Source Program,
clear the Buffer, build the rest of the program, punch it out, initialize OMEGA, and
assemble from the complete tape:

?PL 1 F.

?B.

? (T, R, S, A, and D commands)

?PT 1 F.

?I.

?CL3 13.

?x.

12-10

I

I

I

* 'H ':It:t:tesz: .k rttt' ? ! t < tin ? :rl ri.zlt!' iUt tttH't

EXECUTE ASSEMBLER (X)

X.
XE.
XL.
X2.

ComputerAutomation ~

The X command ends the interactive editing of a Source Program, and begins an actua~
assembly. No more commands are accepted until an END statement has been processed.

If the Buffer is not empty, you can connect it
program directly:

?CI5 L3 03.
?X.

I

tel>
i

I

Device I and assemble your edited

To protect you against destroying an edited Buffer, OMEGA will not accept an X
command if Device I is connected to anythingiexcept the Buffer, as long as the
Buffer has some lines in it. For an assembly from cards or paper tape after an
editing session, initialize OMEGA, connect t~e reader, and start the assembly:

?1.
?CI3 L3 03.
?X.

A normal assembly, requested with a simple X command, does three things:

1. Performs two passes over the Source Input.
2. Generates a complete listing.
3. Punches one Object Program followed by an EOF.

You can suppress all printed output by connecting Device L to 0, or all punched
output by connecting Device 0 to 0:

?CLO.
?COO.

You can restrict the listing to only Error Lines by inserting the letter E before
4E) the period in the command:

?XE.

If each new Object Program you're punching is part of an Object Program Library
tape, you don't want an EOF following each program. Specify Library Format for the
Object Program by inserting the letter L before the period:

?XL.

OMEGA will immediately. punch one EOF on its output tape whenever you enter this
special command:

?CIO.

This lets you use a consistent XL command for a series of assemblies, and explicitly
supply the punched EOF later.

12-11

"W" 17mp' 19"5,' 'f'U # dwtW It trtmntrt dtHptlrrt '±rt *:!It::ttiiett te ! 'bed' . , "S t', i'j, Hnt t !I1:tr!tW"IsnM tatO

c'

.

ComputerAutomation ~

Once an assembly has terminated, you can produce another copy of the printed and
punched output by requesting OMEGA to repeat Pass 2 only:

?X2.

connections may be changed before each X2 command. For example, you may want another
listing, but not another punched Object"" Program:

?CI5 L3 03.
?XL.
?COO.
?X2.

The modifiers E, L, and 2 can be combined in any
period:

XEL.
'X2E.
XLE2.

12-12

, I

i I
:ord~r

. I
a'fter the X and before the

r

i"1

It·
~I

ComputerAutomation ~

OMEGA PROGRAM VARIABLES

Certain fixed locations in low memory contain values which control the operation of
OMEGA. Each value may be changed immediately after loading OMEGA, and a new paper
tape which preserves the modifications may be punched with BOP, the Binary Dump
Program.

High Memory Limit

When OMEGA is first loaded and executed, the high end of memory is determined, :0010
is subtracted, and the result is stored at locat~on :0002 Absolute. Unless an E
command is used to change the value later, OMEGAi will use the stored address as the
upper limit of its available memory. I

I

To prevent OMEGA from making the initial calcula~ion, replace the JST at location
:0100 Absolute with a NOP. Set loc.at}.on :0002 Absolute to the new fixed High Memory
Limit. . ,

MACH Value

If no MACH statement is supplied to OMEGA2, it uses the initial contents of location
:0003 Absolute as the MACH value. The distributed version of OMEGA2 has :0002 -­
binary 010 -- at this location, indicating the LSI-l instruction set.

Lines per Page

The maximum number of lines in the body of a page is carried as a negative number
in location :0004 Absolute. The distributed version of OMEGA uses :FFCB, or -53.
Thi~ value allows 13 lines for the top and bottom margins, and for the page heading
andititle.

I
i ,
I

Characters per Line

The maximum number of characters on each line of the assembly listing is carried as
a negative number in location :0005 Absolute. The distributed version of OMEGA uses
:FFB8, or -72.

12-13

__ ' ,..w +1. 11

I.
B.
Ehhhh.
M.
X.
XE.
XL.
X2.

I

I

Am.

DIn.

DIn n.

0 Lm.
Lm n.
P m.
P m n.
PL m n.
PT m n.
PLT m n.

Rm.

Sm.
Sm n.
Tm.

o Cd.

"',

·1

ComputerAutomation ~

OMEGA COMMAND SUMMARY

CONTROL

Initialize OMEGA -- clear Buffer and reset last Input Line read to O.
Buffer clear.
End of memory set to hexadecimal address.
Memory available displayed in decimal words.
Execute assembler.

Error list only.
Library Format for Object Program
Pass 2 again.

ho EOF.

BUFFER EDITING

Add after Line m.
Delete Line m.
Delete Lines m thru n.
List Line m.
List Lines m thru n.
Punch Line m.
Punch Lines m thru n.

With leader.
With trailer.
With leader and trailer.

INPUT EDITING

I
!

Read thru Line m, and add to end of Buffer.
Skip Line m, after reading thru Line m-l.
Skip Lines m thru n, after reading thru Line
Reset last Input Line read to m.

LOGICAL DEVICES

Connect devices:

Source Input Punch Output

Il Teletype Keyboard 01 Teletype
12 Teletype Paper Tape 02 N/A
13 HS Paper Tape 03 HS Paper Tape
14 Card Reader 04 HS Paper Tape

m-l.

(010)

List Ou.put

Ll Teletype
L2 Data Products
L3 Centronics
L4 Data Products (010)

15 Buffer Lines to X. 00 No Punching L5 Centronics (010)
16 Card Reader (010) LO No Listing
17 HS Paper Tape (oro)

10 EOF Now

12-14 Revised 7/76

o

o

",I

U \ Vii M'P Ie t'H 'tt we ht

ComputerAutomation ~

Section 13

MESSAGES ON THE TELETYPE

OMEGAn (rr)

CAUSE: OMEGA has begun execution.
ACTION: None.

FEED ME: RUN

Revision le~el of the program is rr.
I

I

CAUSE: The assembler could not save the source statements read during Pass 1,
because the Symbol Table needed the memory. ,
ACTION: Reposition the Source Program tapejto the start of the last program read,
and hit RUN.

PAUSE

CAUSE: Input ended with an up-arrow, indicating that more is to follow.
ACTION: Ready the next piece of input, and hit RUN.

PUNCH ON, RUN. AT HALT OFF, RUN.

CAUSE:
ACT,ION:
ana.! hit

I

The Teletype punch is about to be used.
Turn on the punch and hit RUN. At the next machine halt, turn off the punch

RUN again.

REqORD GT 80 CHARACTERS

CAUSE: An assembler language source statement was expected, but the tape record was
too long. The unacceptable tape is probably either an improperly delimited header,
or an Object Program.
ACTION: Correct the problem, and enter appropriate commands to continue editing or
assembly.

NO 'END' DIRECTIVE

CAUSE: Input to an X command has reached EOF before an END statement was processed.
ACTION: Edit the input into acceptable format, and repeat the assembly.

13-1

'I

"I

.. ,' ... " ... "," .. ",,'-"'"""', ••. *'" ' .. '&""""' ... '" "' .. _"' " __ ___ _ ' ' ' ',""-" ',_ ' _"c, "'_'",_',_"" _ ""'_"_. ",,",,,,",,'''''''' "_-____ ... _______ _

""'",' ,,--,.~

0

f""

0

A "",.'"

Graphic

Blank

"

$
g6

&

(

)

*
+

/

0
1
2
3
4
5
6
7
8
9

<
::.

>
')

@

Hex
Value

:AO

:A1
:A2
:A3
:A4
:A5
:A6
:A7
:A8
:A9
:AA
:AB
:AC
:AD
:AE
:AF

:BO
:B1
:B2
:B3
:B4
:B5
:B6
:B7
:B8
:B9

:BA
:BB
:BC
:BD
:J3E
:BF

:CO

ComputerAutomation @\\

Appondix A

ASCII Character Set

i
Hex

Card Code iGraphic Value Card Code
i
I

Blank I ,A :CI 12-1

I
B :C2 12-2

11-2-8 C :C3 12-3 ,
I

7-8 D :C4 12-4
3-8 E :C5 12-5

11-3-8 F :C6 12-6
0-4-8 G :C7 12-7

12 H :C8 12-8
5-8 I :C9 12-9

12-5-8 .J :CA 11 - 1
11-5-8 K :CB 1]-2
11-4-8 L :CC 11-:3
12-6-8 M :CD 11-4

0-3-8 N :CE 11-5
11 0 :CF 11-6
12-3-8

0-1 P :DO 11-7
Q : D 1 11-8

0 R :D2 11-9
1 S :D3 0-2
2 T :04 0-3
3 U :D5 0-4
4 V :DG 0-5
5 W :D7 0-6
6 X :D8 0-7
7 y :D9 0-8
8 Z :DA 0- 9
9

:DB 0-2-8
2-8 " :DC 11-7-8

11-6-8] :DD 0- 5-8
12-4-8 t :DE 12--~-8

(i-8 :DF 12--7'8
0-6-8
0-7-8

4-8

A-I

tebil±" H' b" 'iN' "H

ComputerAutomation ~

:'1..

Appendix B

MACHINE INSTRUCTION SETS

Assembler Syntax Alpha ~SI-l LSI-2 LSI-3/05
Mnemonic Class 16 /10. /20

AAI 2 X X X
ADD 1 X X X X
ADDB 8 X X X X
ADDS 10 X
AlB 6 X X X X

0 AIN 6 X X X X
ALA 4 X X X
ALX 4 X X X
ANA 5 X X X
AND 1 X X X X
ANDB 8 X X X X
ANDS 10 X

ANX 5 X X X
AOB 6 X X X ,X
AOT 6 X X X X
ARA 4 X X X
ARM 5 X X X
AiRP 5

!
X X X

AiRX 4
1

X X X
AlXI 2 X X X X
AXM 5 X X X

C AXP 5 X X X

BAO 4 X X
BCA 5 X
BCX 5 X
BIN 6 X X X
BOT 6 X X X
BSA 5 X
BSX 5 X
BXO 4 X X

CAl 2 X X X X

~ CAR 5 X X A :: : ',~' "~:r CAX 5 X X X
CID 5 X X X X

• B-1

H±Hti " 'b 'I flt6b ¥ & 1 tt .. • 'ttl at tttn.w_*w

Assembler Syntax Alpha LSI-1 LSI-2 LSJ-3/05 r
Mnemonic Class 16 /10, /20

em 5 x X x X
CMS 1 .~- X X X
CMSB 8 X X X X
CMSS 10 X
COY 5 X X X
CXA 5 X X X
CXI 2 X xi x x I

I CXR 5 X xl x
I I
I

I
DAR 5 X XI X
DAX 5 X xi X
DIN 5 X X X X
DVD 9 X X
DVS 7 X
DXA 5 X X X
DXR 5 X X X

EAX 5 X X
EIN 5 X X X X
EIX 5 X
EMA 1 X X X X
EMAB 8 X X X X
EMAS 10 X

HLT 5 X X X X
HTR 5 X

IAR 5 X X X

0 lAX 5 X X X
IBA 6 X X X
IBAM 6 X X X
IBX 6 X X X
IBXM 6 X X X
ICA 5 X X X
ICX 5 X X X

IMS 1 X X X X
IMSS 10 X
INA 6 X X X X
INAM G X X X
INX G X X X x r
INXM (i X X X

,.

lOR X X X X

U--2
1:"
~I
II' •

00' .. ""''''';J+,' '"'Mh!;" +#$ &+~' I."k' "'"nJ1aVi;1\''''''' 'M'k"''' ,.,' 'tFh"t''%''w'!V'''W b!\)h\'h ""I ,', ':ij''r'''\W',,1! "M' __ tO t '1nitll'± ""F7l1'%" V n' "Iww*ffl"" ·"f¥i;,;....;:;;WiIH eM "M \fmM" $'! ."@" .. ~''''!o*Nt''''

ComputerAutomation @\\

I (' Assembler Syntax Alpha]'SI-1 1..S[-2 LSI 3/05
Mnemonic Class 16 /lO. /20

IORB 8 X X X X
IORS 10 X
IPX 5 X X

1SA 6 X X X X
ISX 6 X X X X
IXA 5 X X X
IXR 5 X X X

,JAG 3 X X X X
JAL 3 X X X X
JAM 3 X X X X
JAN 3 X X X X
JAP 3 X X X X

0, JAZ 3 X X X X
JMP 3 X X X X
,JMPS 10 X
JOC 3 X X X
JOR 3 X X X X
JOS 3 X X X X
JSR 3 X X X X
,J 88 3 X X X X
J8T 3 X X X X
JSTS 10 X
,JXN 3 X X X X
,JXZ 3 X

I
X X X

I
I

I~AM 2 X X X X
I~AO 5 X X X

I

I~,AP 2 X X X X
LDA 1 X X X X

Cl LDAB 8 X X X X
1..DA8 10 X
LDX 1 X X X X
LDXB 8 X X X X

'·'1
LUXS 10 X
LLA 4; X X X X
LLL 7 X X X
LLR 7 X X X
LLX 4 X X X X
LRA 4 X X X X
Ll{J, 7 X X X
LRI{ 7 X X X

~ Lle\ 'I X X X - "'\!~"""
; "",,-.,,,

\,XI\\ .) X X X X
LXO fi X X X
LX\, .) X X X X

, I

B-3

......... _____ ,' ,""' """ .• 1_ ... ·· "M " _,''''''' __ .. ~,·.='"'''''N_.·~"'''''''_, _ .. _ ___ _, __ ,W._-"_'"' '_," ,...'1'"",,,_, "''''''''' u_ .. _ .. _,_".,_ .. w_. , ________ _

ComputerAutomation @\\

r
Assembler Syntax Alpha LSI-1 LSI-2 LSI 3/05 .,
Mnemonic Class 16 /10, /20

:'lIPS 7 X
1\1 py 9 X X

NAR 5 X X X X
NAX 5 X X X X
Nap 5 X X X X

I
NOR 4 X

I

I NRtvl 9 Xi X
I

I

NRA 5 X X! X
I

5 X xi X NRX
I

NXA 5 X Xl X X
NXR 5 X X X X

OCA G X X X
OCX G X X X
0'1'1\ 6 X X X X
OTX 6 X X X X
OT7, 6 X X X

PFD 5 X X x
I r PFE 5 X X X

RBA 6 X X X
RBAl\J 6 X X X
RBX

1
6 X X x

RBXM 6 X X X
RDA: 6 X X x
RDA!Vf 6 x X X
I{DX i 6 X X X
RnXM 6 x X X
RLA 4 X X X X
RLX 4 X X X X
ROV 5 X X X X
n,RA 4 x X x X

"'1 RRX 4 X X X x
I

RTCD 5 X
RTCE 5 X

SAl 2 X X X
SAO 5 X X X
S Hl\J 5 X X X
SCl\l 1 X X X r ~CMB R X X X
~CN x
S\,;/\ I) x X. x X

13-4

110" .. "rti I,'M t 'W'tl'b"" .'.'j ,"- , .. re'".';"'·'"· ··"6¥'·'W' A'pt ' -tH1 b n:!' 'ride '';':"'rirt * ' i:lrrtr!lJtc."~",,, .. ""'" ' '1' "'. 'y'& '*' , S "111'111j."I!!''''M'IJH'OJd't!rlc'i "W '.tit 'W' !

ComputerAutomation ~

n As::;cmblcr Syntax Alphu LS1-1 LSI-2 LSI :~ /05
l\lnemonic Class If) /1 O. /20

~ ,
SEL (i X X X

SEN G X X X X
SEX {) •• ___ ft X X X X
SIA 5 X X X X
SIN 4 X X X X ,

SIX 5 X X X X !

SLAS 10 X
SOA 5 X X, X X
SOV 5 X X X X
SOX 5 X X X X
SSN 5 X X X

I

I
I

STA 1 X X X X
STAB 8 X X X X I 0 STAS 10 X

I STOP 2 X X X X
STX 1 X X X X
STXB 8 X X X X I
STXS 10 X I SUB 1 X X X X ,

f" SUBB 8 X X X X
SUBS 10 X
SWl\1 5 X X X X
SXI 2 X X X X
SXO 5 X X X

TAX 5 X X X X
TfX 5 X
T~r 5 X X X
TK)\ 5 X X X X

C·) WAIT 5 X X X
WRA 6 X X X
WRX 6 X X X
WRZ 6 X X X

.. I

XOH 1 X X X X
XORB 8 X X X X
XORS 10 X
X l{ l\1 5 X X X

~ ,

XHI' 5 X X X

Z:\ I~ ,-
X X X ,J

(!!) :;, /\ \. :i X X X >.' "-'1'-"-

"-',",,",:, I,Xl{ 5 X X X

B-5

"

itr «. rt !). t t
? ".s4h" "'M 0#')Ote

ComputerAutomation ~

Appendix C

. .lSI- 2 INSTRUCTIONS

This appendix contains the mac'hine code layouts fqr all the im;tl'uctions ilvailahle Oil the'
LSI-l, LSI-2/10. and LSI-2/20.

The instructions are grouped by standard ass~mbrlr Syntax Class, and the Mnemoni'cs
are alphabetized within each class. For the p~ogr~mmer's convenience. the syntax charts
from Section 3 are reproduced. ! !

Class Machine Function

1 Word Reference
2 Byte Immediate
3 Conditional Jump
4 Single Register Bit Change
5 Register and Control
6 Input/Output
7 Double Register Bit Change
8 Byte Reference
9 Double Register Arithmetic
10 Stack Reference

Fori a detailed description of each instruction function, the programmer should refer to
the CA publication entitled Computer Handbook.

C-l

';'.
j

0

. be tot, ttl ** t • -w '" '4''''1''#'1'- i'J" t' t tad" '.UbtH) # ri d't .. u r' dMt'.

ComputerAutomation ~

CLASS 1: WORD REFERENCE

15 11 10 09 08 07 00

OP

M

I

D

Skeleton

8ROO
8000

~~!~ DB 0
All 0
FO .0
F800
BOOO
EOOO
CDOO
9800
E800
9000
A800

OJ> M

Operation Code

Addressing Mode:
00 Scratchpad: D
01 Relative Forward:
10 Indexed: X +D

P+D
i
!

11 Relative Backward: P-1-D '
!

Indirect Address Flag

Displacement

MNEMONIC

Mnemonic

ADD
AND

Function

Add to A
AND to A

D

CMS
EMA

Compare A with Memory, Skip (Low. High. Equal)
Exchange Memory with A

IMS
lOR
,TMP
.TST
LDA
LDX
SCM
STA
STX
SUB
XOR

Increment Memory, Skip on Zero
Inclw,ive OR to A
.T urn p Unconditional
,Jump and Store P
Load A
Load X
Scan P,lmnory
Store A
Store X
Subtract from A
Exclusive OR to A

C-2

.,

.. I
1

C' CLASS 2:

15

OP
B

Hex

OBOO
C200
COOO
C 100
C700
C600
C500
C400
ODOO
C300

;0800

ComputerAutomation ~

BYTE IMMEDIATE
.. --

08 07 00

I

-

OJ> U

Operation Code
Byte Immediate Value

MNEMONIC 1 OPERAND

i
Mnemonic Function

AAI Add to A Immcdinte
AXI Add to X Immediate
CAl Compare to A Immediate, Skip on Not Equal
CXI Compare to X Immediate, Skip on Not Equal
LAM Load A Minus Immediate
LAP Load A Positive Immediate
LXM Load X Minus Immediate
LXP Load X Positive Immediate
SAl Subtract from A Immediate
SXI Subtract from X Immediate

STOP Stop

(:··3

I

!

I
.",

o

CLASS 3: CONDITIONAL JUMP

IS 13 12 11

OP

or Operation Code

G Group Test:

o OR
1 AND

C Condition Bit

11 Magnitude of X
10 SENSE
09 OV
08 Magnitude of A
07 Sign of A

FB ,Jump Direction:

o Forward
1 Backward

D ,Jump Distance:

Forward
Backward

P+D
P-I-D

MNEMONIC

SPECIAL CASE

JOC

C

t't

ComputerAutomation ~

G = 0

X=O
Reset

07 06 05

Set (Resets OV)
A:::. 0

G = 1

XiO
Set
Reset
AiO

l)

A Negative A Positive

OPERAND

GC,OPERAND

00

GC is an absolute expression which specifies all the bits of the G and C fields.

C-4

=hi 't't)'''00 G",},,"¥"'iF13ta.bhGW"" ii¥'tiylR,zt",!ef'dMrt'HFrt' t'Hr0"&n:t

~~ : r, Skeleton Mnemonic
fl ----
~ ,

.\·1 ~'''''- '

" 3180 .JAG ... '
f." 2180 JAL H

2080 JAM
3100 JAN
3080 .lAP
2100 JAZ
3200 JaR
2200 JOS
2400 JSR
3400 JSR
3800 JXN
2800 JXZ

2000 Joe

e

o

tb WtH& I. IHt tid . .", d rt rir "'2* 'Mtt t etettrt

ComputerAutomation ~

Function: Jump When

A Greater than Zet'o
A Less than, or Equal to. Zero
A Minus
A-Not Zcr'o
A Positive
A Zero
OV ReHet
OV Set (and Forcr. OV Reset)
SENSE Reset '
SENSE Set
X Not Zero
X Zero

Conditions

C--5
\

I

I

""

e'

ComputerAutomation ~

CLASS 4: SINGLE REGISTER BIT CHANGE

15

OP Operation Code

C

Skeleton

1050
1028
10DO
10A8

1340
1 ~CU
1 :!2l0
l:vio

13510
1328
13DO
13A8
1150
1128
11DO
llA8

G800

For most instructions. C = Operand-I,
For SIN N, C = N+I
For BAO N and for BXO N:

If N is 0 thru 7, C = N
If N is 8 thru 15, C = 15-N

MNEMONIC

Mnemonic Function

ALA Arithmetic Left A
ALX Arithmetic Left X
ARA Arithmetic Right A
ARX Arithmetic Right X

OPERAND

BAO Bit of A to OV (1:) thru 8)
BAO Bit of A to OV (Othru7)
BXO Bit of X to OV (15 thru 8)
BXO Bit of X to OV (0 thru 7)

LLA Logical Left A
LLX Logical Left X
LRA Logical Right A
LRX Logical Right X
RLA Rotate Left A
RLX Rotate Left X
RRA Rotate Right A
RRX Rotate Right X

SIN Status Inhibit

C-6

0:3 02 00

c

,.

r

ComputerAutomalion ~

~
CLASS 5: REGISTER AND CONTROL

"

15 00

I:
OP

OP Operation Code

MNEMONIC TCOMMENTS]

Skeleton Mnemonic Function

! 0070 ANA AND of A and ,X to A
0068 ANX AND of A and X to X
0010 ARM Set A to -1
0350 ARP Set A to +1
0018 AXM Set A and X to -1
0358 AXP Set A and X to + 1
06CA BCA Bit Clear A
06C8 BCX Bit Clear X
068A BSA Bit Set A
0688 BSX Bit Set X
9210 CAR Complement A
0208 CAX Complement A and put in X
1600 COV Complement OV
~410 CXA Complemcnt X and put in A
0408 CXR Complement X
PODO DAR Decrement A
OOCS DAX Decrement A and put in X
I

(lOBO DXA Decrement X and put in A
00A8 DXR Decrement X
0428 EAX Exchange A with X
0218 EIX Execute Instruction pointed to be X
0510 IAR Increment A
0148 lAX Increment A and put in X
5804 ICA Input Console Data Register to A
5A04 ICX Input Console Dat:1 Register to X
0090 IPX Increment P and put in X
5801 [SA Input Console Sense Register to A
5AOl ISX Input Console Scnse Register to X
0130 IXA Increment X and put in A
0128 IXR incrcll1('nt X
13CO LAO Lcast si~llif'ie:lIlt bit of A to OV
13AO LXO Least significant bit of X to OV
0310 NAR Negate A
O:HlH NAX Nc~'lte A and put in X

(:-7

+ \ .. '#

ComputerAutomation ~

Skeleton Mnemonic Function ----

0610 NRA NOR of A and X to A
0608 NRX NOH. of A and X to X
1510 NXA Negate X and put in A
0508 NXR Neg.n.te X
4404 OCA Output A to Con~ole Data Register
4406 OCX Output X to Console Data Register
1200 ROV Reset OV
1340 SAO Sign of A to OV
1400 SOY Set OV
] :320 SXO Sign of X to OV
0048 TAX Tran~fer A to X
0030 TXA Transfer X to A
0008 XRM Set X to -1
0528 XRP Set X to +1
0110 ZAR Zero A

e 0118 ZAX Zero A and X
0108 ZXR Zero X

4006 cm Console Interrupt Disable
4005 cm Console Interrupt Enable r OCOO DIN Disable Interrupts
OAOO EIN Enable Interrupts
0800 HLT Halt
0000 Nap No Operation
4003 PFD Power Fail Interrupt Disable
4(1)2 PFE Power Fail Interrupt Enable
OEOO SBM Set Byte Mode
58~0 SIA Stntus Input to A
5AjOO SIX Status Input to X
GCOO SOA Status Output from A

e GEOO SOX Status Output from X
OFOO SWM Set Word Mode
4007 TRP Trap
F600 WAIT Wait for Interrupts

-.,1

C-8

I

. .;.1

't'" .. ''';' .. ffiH H ·'tiliflJ'lrp " '"$ 'TfIl" if r'" !s'-w'IJiit,.mr!rriu1t: t tit " Ct ** .. t" '1 1st at/net Hi H'W

ComputerAutomation ~

C LA.§ S_~=- __ J..~ PUT / OUT PU T

15

OP

DA

F

Skeleton

54UO
5000
6400
(i000
7100
7500
7800
7COO
7AOO
7EOO
5800
5COO
5AOO
5EOO
6COO
6EOO
6800
7~100

7DOO
7BOO
71"00
5900
!'il> no
!l BOO
5FOO

08 07 03 02 00

OP DA

Operation Code

Device Address

Function Code

(This is the nominal division 9f bits 07 -- 00. The exact interpretation
of the bits is left to the device; logic.)

!

MNEMONIC OPERAND [.OPERANDJ

Mnemonic Function

AlB Automatic Input to Memory -- Byte
AIN Automatic Input to Memory -- Word
AOB Automatic Output from Memory -- Byte
AOT Automatic Output from Memory -- Word
BIN Block Input to Memol'y
BOT Block Output from M(~m()ry
IBA Input Byte to A

lBAM Input Byte to A Masked
lBX Input Byte to X
lBXM Input Byte to X Masked
INA Input Word to A
IN AM Input Word to A Masked
INX Input Word to X
INXM Input Word to X Masked
OTA Output I\.

OTX Output X
OTZ Output Zeros
RBA Read Bytc to A
RBAM Read Bytc to A Mnsked
RBX Read Bytt' to X
RBXM Read Byte' to X Masked
IWI\. Read Wor'd to I\.

RDAM Re:ld Word to A Masked
Rl)X Head Word to X
RDXl\l Read Word to X Masked

C-9

H (0 #/10"*

Skdeton Mnemonic
-~.- .. --

4400 SEA
4000 SEL
4900 SEN
4600 SEX
4800 SSN
GllOO WRA
6FOO WRX
G!)OO WRZ

""

ComputerAutornation @\\

Function

Select and Present 1\

Select
Sense and Skip on Response
Select and Present X
Sen$.~UlIld Skip on No i{espons('
Write from A
Write from X
Write Zeros

C-IO

$.. £5 j. £ .

.-.I
I

.If' W·',iy'o'eI!.W'" 1'''' ''''''1' " ""j""'Ij''''!''''''''H'4WirIRWW'» ,'Slt' 'm"' "/I /fo.jt!j'.tjixM!'¥ . 19" d II,"", toC' n

ComputerAutomation ~

o CLASS 7: DOUBLE REGISTER BIT CHANGE

15 04 03 00

OP c

OP Operation Code

c Opcrand-1

MNEMONIC OPlm~NJ)
, I

Skeleton Mnemonic

1ROO LLL
1B80 LLR
1900 LRL
1980 LHR

Function

I
!

Long Logical Left
Long Logical Right
Long Rotate Left
Long Rotate Right

C 11

... 1

,
'I

I

I

C'

I' t'. Md' ".,.",", '+r..." .. ";k";:bt'" 't __

ComputerAutomation '~

CLASS 8: BYTE REFERENCE

15

or

i\1/l

D

Skeleton -,--

88~0
8000

1

Doioo
I

R800
AIlOO
f=\OOO

EOOO
CDOO
9800
E800
9000
/\800

11 10 08 07

OP D

Operation Code

Addressing Mode and Indirect Addre~s Flag":
000 Scratchpad Byte: D ,

1

010 Relative Forward, Byte o of Word: P+U
100 Indexed Byte: X+D : I
110 Relative Forward, Byte t of Word: P+D

001
011
101
111

Displacement

Indirect Scratchpad:l *D
Indirect Relative Forward: * (P+D)
Indirect Scratchpad Post-Indexed: *D+X
Indirect Relative Backward: * (l?-1-D)

MNEMONIC

Mnemonic Function

ADDB Add to A
ANUB AND to A

00

]

CMSB Compare A with Memory, Skip (Low, High. Equal)
EMAB Exchange Memory with A
TORR Inclusive OR to A
LDAB Load A
LDXB Load X
SCMB Scan Memory
STAB Store A
STXB Store X
SUBB Subtract from A
XORB Exclusive OR to A

C- 12

I

~J

$ t ""it ' .• '''ri''

ComputerAutomation ~

~ CLASS 9: DOUBLE REGISTER ARITHMETIC

15 14

OP

A

Skeleton

1970
1960
1940

OP

A

Operation Code

Indirect Address Flag

Address of Operand

MNEMONIC [*]OPERAND

Mnemonic Function

Divide DVD
MPY
NRM

Multiply and Add
Normalize

C 13

00

i

I

I
I

c;:

I

"'",,'b·'M' ;,**' """';"'iii..#h 1,.":""4Wi'j.;"'Ij.'.I·, "f" "''"k''!J t4 11'HIIWWR' tb'rli"'b'*i&rliiitli'""i".ft!'

CornputerAutomation ~

CLASS 10: STACK REFERENCE

15

OP

A

SAM

Skeleton

14318

14118
IG5i8

1·1 I'18
1 G78
1498
IGnS
16F8
141)8

HiE 8
IG18
1478
16B8
1458

14B8

02 01 00

OP SAM

A

Operation Code

Address of Operand

Stack Address Mode:

Value Symbol Mode:

00
01
10
11

blank
,@
,+

Direct (Value of Pointer)
Indexed (Pointer + X)
Pop <increment Pointer After Access)
Push (Decrement Pointer Before Access)

MNEMONIC OPERAND[:~]

Mnemonic

ADDS
ANDS
CMSS
EMAS
IMSS
IORS
JMPS
JSTS
LDAS
LDXS
SLAS
STAS
STXS
SUBS
XORS

Function ("SE" means "Stack Element")

Add SE to A
AND SE to A

Compare A with SE. Skip (Low, High. Equal)
Exchange A with SE
Increm~nt SE, Skip on Zero
Inclusive OR SE to A
Jump Unconditional to SE
Jump and Store P to SE
Load A from SE
Load X from SE
SE Location to A
Store A into SE
Store X into SE
Subtract SE from A
Exclusive OR SE to A

Cl4

(

r.;
t.

"til t.bHnt' tn'· t'M' • 1 i 125 3""§" 7111 9 !"T 11 'd!!5"f"i!' 'w 1M!: "rD1h' .• t

ComputerAutomation ~

I Appendix D

I

I

I
"'1

I

-.J.rSI-3/0r; IN~TlWCTIONS

This appendix contains the machine code layout~ for all thc instructions available on the
LSI-3/05. I

, !

The instructions are grouped by standard a~semble~ Syntax Class, and the Mnemdnics
are alphabetized withIn each class. ! I

Class

1
2
3
4
5
6
8

Machine Function

Word Reference
Byte Immediate
Conditional Jump
Single Register Bit Change
Register and Control
Input/Output
Byte Reference

; I

For a detailed description of each instruction function, the programmer should refer to
the CA publication entitled 90mputcr Handbook.

J) t

"'1
!

, 1-"

e

CLASS 1: WORD REFERENCE

15 10 09

OP 1--
OP Operation Code

MID Addressing Mode and Displacement

09 06

~ 0 0 D

09 07

1 0 D

O!:J 05

o o 1 o D

09 06

o 1 o D

09 07

1 1 D

()9 05

o 1 1 o D

» 2

ComputerAutomation @\

! 00

00

00

()()

00

00

00

MID

Scratchpad: D

Relative: P+D-128

Indexed: X +D

Indirect SCl'utchpad: *D

Indirect helative: * (P+D-128)

Indirect Scratchpad
Post-Indexed: *D+X

i !:

I

~I

"
'"

c

In
I

,.1

I

I

ComputerAutomation ~

MNEMONIC

Prefixes:

* Indirect Address
@ Indexed

*@ Indirect Post-Indexed
== Literal Pool Reference

Skeleton Mnemonic Function

8800 ADD Add to A
9400 AND AND to A
B800 CMS Compare A with Memory, Skip (Low. High, Equal)
9000 EMA Exchange Memory with A
DCOO IMS Increment Memory. Skip on Zero
B400 lOR Inclusive OR to A
9COO JMP Jump Unconditional
BCOO JST Jump and Store P
8000 LDA Load A
AOOO LDX Load X
8400 STA Store A
A400 STX Store X
8COO SUB Subtract from A
9800 XOR Exclusive OR to A

I) 3

o > "tie "'ti'W$F oS thttrt". mit.. t- eo t tHe"!! u ''Memtlf2'xtWc#¥'tHT*'HHttttMt

ComputerAutomation ~

CLASS 2:· BYTE IMMEDIATE

15

OP

F

B

Skeleton 0- __________ 0_

ORJO
I

2BQO
ocqo
2COO

I 0800

C (HlOO
2800
2900
OAOO
2AOO

3COO

09 08 07

OP }F I
Operation Code

Flag for Operand Value
F = 1 for:

AAI/ AXI
LAP/LXP

F = 0 for:
CAI/CXI

B

F = 1 when Operand = 0, but F = 0 otherwise, for:
LAM/LXM
SAI/SXI

Byte Immediate Value
If F= 1, B -= Operand
If F = 0, B = 256-0perand

MNEMONIC

Mnemonic Function -----.-- _0 __ . __ o_" __ ~o

AAI Add to A Immediate
AXI Add to X Immediate

OPERAND

CAl Compare to A Immediate, Skip on Not Equal
CXI Compare to X Immediate, Skip on Not Equal
lAM Load A Minus Immediate
LAP Load A Positive Immediute
LXM Load X Minus Immediate
LX}> Load X Positive Immediate
SAl Subtract from A Immediate
SXI Subtract from X Irmllcdint('

STOP Stop

D-4

00

r

JiIl'·"·.,!]%"wr m"l1I!I!I!J<j'"' "6'~~"_~I","";""'''Ie! '..t".,,_9tof_Hi_'''''''''''''''_' _' '"",,' ' " ' W''''''!~''''''l'-i-''''''it!_!it& ... · ... ,,,·, ... , ' ... ' tln""'· 1tt U ... i ti t ' ' ________________ _

ComputerAutomation ~

CLASS 3: CONDITIONAL JUMP

15 07 06 00

OP D
,

I
OP Operation Code

D Destination: P-64+D

MNEMONIC OPERAND

,

Skeleton Mnemonic Function: ,Jump When

1200 JAG A Greater than Zero
1280 JAL A Less than, or Equal to, Zero
1380 JAM A Minus
1180 JAN A Not Zero
1300 JAP A Positive
1100 JAZ A Zero
3680 JOR OV Reset
3600 JOS OV Set (and Force OV Reset)
1680 JSR SENSE Reset
1600 JSS SENSE Set
3180 JXN X Not Zero
3100 JXZ X Zero

1)-5

ln1,/II!!I!.IM" W * Mltrt"" '" "". hl'"' " ' .. 'N' j /""1 :d """hi 1 ·*tt1WW'fflW

ComputerAutomation ~

CLASS 4: SINGLE REGISTER BIT CHANGE

15 08 07 04 03 Oil

OPI C 0»2

OP1 Operation Code, Part I
"',1

C Operand-l

OP2 Operation Code, Part 2

MNEMONIC OPERAND

Skeleton Mnemonic Function -.--

OEOI LLA Logical Left A
2E01 LLX Logical Left X
OE09 LRA Logical Right A
2E09 LRX Logical Right X
OE03 RLA Rotate Left A
2E03 RLX Rotate Left X
DEOB RRA Rotate Right A
2EOB RRX Rotate Right X

OEQ,F SIN Status Inhibit

I
I
I
1

J
I

D-6 '--------------------_._-------_._---

.,,",

I

, "1 (#,·1 '". t' t W'·' 4 ft' 1·· t IMW'r' e.

ComputerAutomation ~

CLASS 5: REGISTER AND CONTROL

~ ... ;
. " ,.\~.' . '

.,~ I '

15

OP

Skeleton

0104
2104
0101
2101
0001
2001
0021
2021
0404
2404
OE17
OE15
2000

,2010

1
0020

I
IOE47
OE45
OE87
OE85

OEOD
0080
0000
OE57
OE55
OE25
OO:W
2030
3000
3020 .
OE27

OP

Operation Code

MNEMONIC [COMMENTS]

Mnemonic

ICA
ICX
ISA
ISX
NAR
NAX
NXA
NXR
OCA
OCX
ROV
SOY
TAX
TPX
TXA

cm
CIE
DIN
EIN

HLT
HTR
NOP
RTCD
RTCE
SBM
SIA
SIX
SOA
SOX:
SWM

Function
,
I

Input Consol~ Data Register to A
Input Consol~ Data Register to X
Input Console Sense Register to A
Input Console Sense Regjster to X
Negate A
Negate A and Put in X
Negate X and Put in A
Negate X
Output A to Console Data Register
Output X to Console Data Register
Reset OV
Set OV
Transfer A to X
Transfer P to X
Transfer X to A

Console Interrupt Disable
Console Interrupt Enable
Disable Interrupts
Enable Interrupts

Halt
Halt and Reset
No Operation
Real Time Clock Disable
Real Time Clock Enable
Set Byte Mode
Status Input to A
Status Input to X
Status Output fr'om A
Status Output from X
Set Word Mode

D-7

00

I

I

I
I

'~!

mwrt

cJ I

... I'b O "-.,'b21' t:t'#b't'r!t&!:!1:!'m'iz a *WWttel'*WW"M'"

ComputerAutomation ~

CLASS G: INPUT/OUTPUT

15 08 07 03 02 00

~ ______________ O_P ______________ .. ~ ________ D_A ________ -L[______ F ____ ~
or Operation Code

DA Device Address

I
Fe Function Code !

; I
I I

(This is the nominal division of bits ob -- 00. The exact interpretation
. I

of the bits is left to the device logjic.)

MNEMONIC OPERAND [, OPERAND]

Skeleton Mnemonic Function

4500 AlB Automatic Input to Memory -- Byte
0500 AIN Automatic Input to Memory -- Word
6500 AOB Automatic Output from Memory -- Byte
Z!)OO AOT Automatic Output from Memory -- Word
0100 INA Input Word to A
2100 INX Input Word to X
ozqo OTA Output A

220
1

0
OTX Output X

0400 SEA Select and Present A

06~0 SEN Sense and Skip on Response
24 9 SEX Select and Present X

r

D-8

gr H ' """0" .s" 't r "'$ "tttfs:'tM ¥ IIWltbtNm'Wrft:f"dtffl

_.~I--

~
\C"'~"~'

,",f.'

CLASS 8: BYTE REFERENCE

15 10 09

OP

OP Operation Code

MID Addressing Mode and Displacement

I
09 06

o o o D

() !)

00

MID

00

Scratchpad Byt(!: D

i

I

"I
!

i

0

\'d"*'* ,Ii

ComputerAutomation ~ _.

MNEMONIC [;] OPERAND
*(d

Prefixes:
* Indirect Address
@ Indexed

*~l Indirect Post-Indexed

Skeleton Mnemonic Function

8800 ADDB Add to A
9400 ANDB AND to A
B800 CMSB Compare A with ~cmory, Skip (Low, High, Equal)
9000 EMAB Exchange Memory with A
B400 IORB Inclusive OR to A
8000 LDAB Load A
AOOO LDXB Load X
8400 STAB Store A
A400 STXB Store X
8COO SUBB Subtract from A
9800 XORB Exclusive OR to A

D 10

i1

l-----------~--------------------f
I r
£

f,
~ .
• •

:!
i
I

~I

fr.'1 i'

~i
tl
f-
It
1'1::

o

0

CUSTOMER INFORMATION BULLET IN

CIB No. 1228 - Known problems with RTX4 package Revision C1

1. RTX4

a. It is not possible for the current activity to drop its own seniority
to allow another activity of equal priority to resume. If R:PAUS
is attempted the next (not the current) activity loses its seniority
and is scheduled behind a II ready-to-go tasks of the same priority
as the current one.

b. MDB:A macro generates an initial value of zero for the mailbox
usage semaphore (instead of 1).

c. FPMAX: no longer exists but is still described in the Manual
(Page 5.3).

2. IOS4

3.

a. When reading from a VDU IOS4 will not check for backspacing
beyond the beginning of a line.

b.

c.

d.

The SC (Skip lines) does not function for line printers.

Top of !Form is produced one line early for Centronics-type
printers {i.e. with the auto-linefeed capability.

If SB: is set when d9uble-line spacing or top-of-form is carried
out before a record :is output the EOL or TOF sequence is out­
put without thj leading character.

e. Unformattec;l R~ds through PR and TY /TR turn parity off on
incoming data.i

I

f. Formatted ASCf I input does not detect embedded' Rubout '
characters (except at the beginn ing of a record).

SFM

a. CREA:A macro defaults parameter 7 to zero instead of :7FFF.

CAl Limited
T echn ica I Support Group

c

~ComPUterAutomation,-------,

NOTES ON ITEMS ISSUED WITH RTX4 (C1)

1. RTX User's Manual (CO)

~

Appendix H describes the macro files (supplied with OS4 and RTX4 and their
contents. The contents described for GEN .MAC should include all RTX4/
IOS4/SFM service call macros.

2. IOS4 User's Manual. (CO) ..

2.1 Similar comment as given in 1, except that it is Appendix G.' Als~
page 8.1 refers to Appendix I instead of G :Jnd the Contents list hlas
omitted the Appendix altogether. .

2.2 Appendix B

The Introduction B. 1 should include reference to the Volume Control
Block and FUST described later in the Appendix.

3. IOS4(C1)

3. 1

3.2

The 10~ .HLP

This file includes d~scription of the 10SDEMO program files. This
demo is now called SFMDEMO.

, ,

The line Printer DI~ (Standard)

This is configur~d for 80 characters per line and 57 lines per page.
The DIB:LP madro also defaults to these values and not 133 and 39 as
described.

3.3 10SD .MAC

Note that this file equates the"'CRT DIO channel address to 2 instead
of 4 as one might expect.

I
.,1

I

o

o

NOTES ON ITEMS ISSUED WITH RTX4 (C1) (Cont.)

3.4

3.5

Write Direct Stream VO

There is a fault connected with this. If a program attemps to do
Write Direct Stream to a file in order to overwrite the exact number
of bytes remaining in the file, SFM ignores the request and indicates
an end of a block error (:4E). This fault may be overcome by
patching as follows:

Location Old Contents

F:CEOF+:A :9E82

i

New ContentJ

:0000

The address of F:CEOF may be determined by examining the link-map
produced by linking the user program with RTX/IOS/SFM.

TV/TK/TY End-of-Input Action

Currently, when carriage-return is required to terminate an input I/O
request, 1054 responds by repeating just that character, which means
that it is possible for subsequent output to overprint the previously
typed line. (In the case of OS4 message output, no overprinting
occurs because a,lin'e-feed is output first, before the message.)

To ensure that no overprinting occurs, users may modify the location
identified on Ii~k mpps by the symbol TYELI:. Normally this
location contains 1,i but 2 should be put in its place to ensure that
carriage -returnl is fc>lIowed by a line-feed after every input line is
terminated ,,'

4. RTX (C1)

4.1 The fault described in connection with the previous version of RTX4
namely R:IWAL still exists and . .tbe same patch applies. For the
benefit of those users new to RTX4, a copy of the EN issued just
before this C1 release is attached to these notes.

o

.. '

NOTES ON ITEMS ISSUED WITH RTX4 (C1) (Cont.)

4.2 R:PAUS

This service should allow an activity to de-schedule itself so that
it is placed at the end of the queued activities of the same prioity
as itself. However, R:PAUS de-schedules the next activity in the
queue. The following patch cures the fault:

Location Old Contents New Contents

R:PAUS+:8 :A022 :2922

4.3 MAILBOX

4.4

CAr Limited

MDB:A macro is wrong. It allocates word containing 0 for Mailbox
Usage Semaphore and it should contain 1.

Change source line 319 from "Word 0 - Mailbox Usage Semaphore"
to "Word 1 - Mai Ibox Usage Semaphore" .

RTX MACROS

TICK:A, WALL:A, MAIL:A,SDB:A,MDB:A Macros contain invalid
constructions for testing n umber of parameters supplied with the call,
e . g. O<t-(.?< 3 . '

There are no simple changes that can be made and users are advised
to ensure that trey P, rovide the correct number of parameters since
the macro defj1itio~s do not check correctly .

I

European Technical Support Group March, 1979
I I

, I

I

---..

-

.' ,
- - -_ .. _. -. .. - - - ,.' - . 1 ...

1-

, ~.~ - • t::,' ."
t..JO ,}'/#

~ ~.-Wlr f'i ... ~ .. ~~~ , !:·lr~~·~· ",....... ~~~a'c~n!l ENGINEERING . ~ ..),,...,.~a .. ;; ... _ _ • --.4V.......~

,b,9 i§J U,'~ NOTICE I 1 7 , I ~ ~ .18651 Von Karman. Irvine. Calif.

DOCUMENT NO. REV. TITLE INCORP. r(PE -
IS WAS DATE AEN r 1

l-"

C(B3410-XX 8'2.. B I RTX4 - R:rWAL STOP ORDER [J

DEVIATION 0
RELEASE 0
STANDARD IX

CLASS

I A·MANDiFUNC C{

B·NON·MAND/FUNC 0
C·RECORD CHG [J

i Of-FECTIVITY NOTES:

...

REASON FOR CHANGE:

CERTAIN COMBINATIONS O~

R: TODL AND USER -SPECIFIED
INTERVAL VALUES PRODUCE
INCORRECT SHORT TIME.

REA NO. 0444 7

CO-ORC WITH:

INTERVALS BE-CAUSE THE CODE ASSUMES
THAT THE A DD I NSTRUCTION· AFFECTS TOUCH Up" i I! I

I.!:T 7 _I I I.,.;
Flf'.J-(jOODS n I I I THE CAF,RY STAiUS BIT.,WHICH IT DOESN'T!

I "-0sl.RET. -i+Oi

ucSCRIPTION OF CHANGE:

A. PATCH AS FOLLOWS:

LOCATION
i

R : I vIA L + : '2. 2.

+ ='2.. 3
+:24
+: 2.5
t: 2<.0
+:27
+:2.8

OLD CONTENtS

:C844
:C4~3

:5'043
:SC?C I
:080 I
:84e'2.
:.9ESO

REV/K fEST REO'D \
r-C-O-N--II-N-U-ITf 0 I

CABLE SC \'N
CAPABLE
MEMOR"
CARD

, FINAL
NEW CONTENTS NOTESTREQ'D

gl
o
o
o

:OE07 RBIT O~S APPROV/~LS

: 4712J 'ENGR. -<~:.~/ :
I :0004)ADDC TL (Y), G .. ~~:'Tv\jARE c"";;1· l

:C483 copy Q,CC:TL (Xlii CAP. TEST "\,'f~)--. . I f"t';ST SCHED ~)~i_~._ I
·07/'2.) ADDC-:rU (Y) A MATERIALS . /';-'-;-;-:-1 ..J
:0003) 'II TEST ENGR. i-X~~L-_'
:8J.82COPY A,CC:Tu(X)jl ~~J~~~~~~ I .~;.-?z.._ ~-

II MFG. ENGR . I ~'.~~
(NOTE: JMP POST AT R:IWA,L +:'2.8 IS REDUN DANT i PU3L1CATIOW':.L Z-~-

I BECAUSE POST /S THE NEXT LOCAT~ON.) 1 g~·iD~:8e:~.~£:gM~~ .c-

RFI RY: !:. i 8, , •. ~

