ComputerAutomation
NAKED MINI, Division

18651 Von Karman, Irvine, California 92715
Telephone: (714) 833-8830 TWX: 910-595-1767

OMEGA

ASSEMBLY SYSTEM

96007-00E 3 August 1976

PRINTED IN THE U.S.A.

Rivision

AO

Al Thru E2

E3

REVISION HISTORY

Issue Date

August 1976

Comments
Original Issue
Misc. Updates

Eliminates references
to Omega 3/05

v

|
i
i

TABLE OF CONTENTS

Paragraph Page

Section:l. THE OMEGA ASSEMBLY SYSTEM
l

1.1 INTRODUCTION. & @ v o o o o o o oo o o o o o o o « v v . 1-1
1.2 ASSEMBLER DEVICES;. I T 1-2 |
1.3 SYNTAX NOTATIONg. P P
1.4 SOURCE STATEMENT FORMAT . . .g. R

|
Section 2. OPERAND EXPRESSIONS

|

2.1 TERMS © « « ¢ 4 o o e v e et e e e e e e e e e e e e .. 272
2.1.1 Self-Defining Terms« « ¢« o « & o« o« o « o « . 2-2
2.1.2 Symbolic TErmS. « « « & « = o o o« o « o « o « « « « o« 2-4
2.1.3 Defined Terms ¢« « ¢ ¢ v ¢ ¢ = &« o o« o o « « » 2=4
2.1.4 Undefined TEYMS . « « ¢ « o o o o o o « « o o o & « o« 2-4
2.1.5 Absolute TermS. . « « + « 2 « o o o o o o o o o o« « o 2=5
2.1.6 Relocatable TErms . . « « « o « 2 « = o « o o o« o « o« 2=5
2.1.7 Unary OperatorsS . « « o o « 2 o o « o o s o o o o« « o« 25
2.2 COMPLEX EXPRESSIONS . v & « o o ¢ o o o o o o o« o o« o« + « 2=6
2.2.1 Binary OperatorS. . « « o ¢ o & o o « « « o o + « « . 2-6
2.3 ABSOLUTE AND RELOCATABLE EXPRESSIONS. . . . « . o « « . o 2=7
2.4 OPERAND EXPRESSION PREFIXES . v v v v o« o o o o o o« o o o 2=7
Section 3. CODING MACHINE INSTRUCTIONS
3.1 CLASS 1: WORD REFERENCE. . +. &« v o « o « o« « o o « « « o 3=2
3.2 CLASS 2: BYTE IMMEDIATE. . . . <« & v o o « « « o« « « « « 3-3
3.3 CLASS 3: CONDITIONAL JUMP. . . +. v v @« @« o o« « o« « o« « . 3-4
3.4 CLASS 4: SINGLE REGISTER BIT CHANGE. . . . = « « « « . . 3-5
3.5 CLASS 5: REGISTER AND CONTROL. +« v ¢ « « o « o « « « « . 3-0
3.6 CLASS 6: INPUT/OUTPUT. . « &« & v o + v o o o o o o o « o 3=7
3.7 CLASS 7: DOUBLE REGISTER BIT CHANGE. +« « . . 3-8
3.8 CLASS 8: BYTE REFERENCE. « « « 4« « « « « « « + 3-9

iii

o

ComputorAubmaﬁonm S

TABLE OF CONTENTS (Cont'd)

Paragraph
3.9 CLASS 9: DOUBLE REGISTER ARITHMETIC.
3.10 CLASS 10: STACK REFERENCE.

. . o .

Section 4. ASSEMBLER FONTROL

End of Source Program (END) .
End of Input Segment (up-arrow
Heading Title (TITL).
New Page (period)
Comment Line (asterisk) . . .
Machine Instruction Set (MACH).

)

o

-

Conditional Assembly Control (IFT/IFF/ENDC) .

Define New Op Code ($class) .

-

. .

Subroutine Structure Mnemonics (CALL/ENT/RTN)

Section 5. SYMBOL AND DATA DEFINITION

Data Definition (DATA). . . .
Equate Symbol Value (EQU) . .
Set Variable Value (SET). . .
Reserve Storage (RES)
Text Definition (TEXT). . . .
Byte Address Constant (BAC) .

Section 6. LOCATION

Absolute Object Code (ABS). .
Relocatable Object Code (REL)
Origin of Object Code (ORG) .

Section 7.

Entry Declaration (NAM/SNAM).
External Declaration (EXTR) .
Demand Load (LOAD).
Reserve Chain Link (CHAN) . .

-

-

-

.

.

-

-

.

CONTROL

Example of Chain Structure and Usage.
External Reference Constant (REF/SREF). . . .

Section 8.

"Allocate Literal Pool (LPOOL)

iv

o o . .

e e e o

OBJECT PROGRAM LINKAGE

LITERALS

1

NN NN ? N NN
VO D WWwWN N

G\C{\O’\
W N

i

TABLE OF CONTENTS (Cont'd)

Paragraph

SegEion 9. SCRATCHPAD LITERALS

Scratchpad Literal Only (SPAD).
Section 10. INTERPRETATION OF THE ASSEMBLY

Section 11. SAMPIE A SEMBLY LISTING
f

!

Section 12. EDITING AND ASSEMBLING A SOURCE
CONNECT DEVICE (C). L e e e e e e e
INITIALIZE (I). « « v v v o o v e e e e e e o
RESTART . . v v v & o v o v e e e e e e e e e
END OF MEMORY SET (E) + v + & &« o o « o' v o « .
READ INPUT (R). « v ¢ v v 4 4 v o v o o o o o &
SKIP INPUT (S). v v v v v v o v e v e e e e v
ADD AFTER BUFFER LINE (A) . « + v v v v o o «
DELETE BUFFER LINES (D) . + &« v v &« « « v o « .
BUFFER CLEAR (B). « ¢ v & v v o v v o o o« o o .
LIST BUFFER LINES (L) + & « v o o o o o« o o « .
PUNCH BUFFER LINES (P). . « = « v v & « « o « .
RESET LAST INPUT LINE NUMBER (T).
MEMORY AVAILABLE DISPLAY (M). . « « « v « « . .
EXECUTE ASSEMBLER (X) + v « v &« v o« & o o o « .
OMEGA PROGRAM VARIABLES . . « + v ¢ « &« « - . .
OMEGA COMMAND SUMMARY . . « & & « & & v v « . .

Section 13. MESSAGES ON THE TELETYPE
Appendix A. ASCII CHARACTER SET
Appendix B. MACHINE INSTRUCTION SETS
Appendix C. LSI-2 INSTRUCTIONS

Appendix D. LSI-3/05 INSTRUCTIONS -

LISTING

Page

12-2
12-2
12-3
12-3
12-4
12-4
12-6
12-6
12-8
12-8
12-8
12-9
12-10
12-11
12-13
12-14

| The OMEGA editing commands are described in detail in Section 12, which includes a

Section 1

THETOMEGA ASSEMBLY SYSTEM

1.1 INTRODUCTION : |

This publication describes the assembler language for Computer Automation 16—bit:
minicomputers and millicomputers, and the three srand—alone programs which convert
this language into object code. i I
i !
OMEGA2 is the general-purpose assembler for ail models of the LSI-2 and ALPHA-16. It
runs on an LSI-2 (or an ALPHA-16) with a minimum configuration of 8K of memory and one

ASR-33 Teletype (or an equivalent device).
Support is provided for this additional hardware:

Memory, to a maximum of 32K

Card Reader

Line Printer

High Speed Paper Tape Reader/Punch

OMEGA3 is a cross-assembler -- a variant of OMEGA2 which can be executed only on an
LSI-2, but which generates object code executable only on an LSI-3/05. The paper tape
Object Program is usually loaded into a 3/05 with the LAMBDA3 Object Loader.

tion|uses the name OMEGA or the phrase '"the assembler™ to denote whichever assembler
is being used to accomplish the translation from Source Program to Object Program, and
designates the assembler by name -- OMEGA2 or OMEGA3 -- only when there is, in fact, a
meaningful distinction to be made.

Becaise the source language defined for these two programs is identical, this publica-

OMEGA is called an "assembly system" because it includes a conversational Source

Program editor, as well as a two-pass assembler. A Source Program can be constructed f
in memory, either from pieces of existing programs, or from scratch, and then assem- ;
bled. The new Source Program, the corresponding Object Program, or both, can be

punched out for future use.

Editing commands are entered thru the Teletype; listing and punching can be directed
dynamically to any attached device. Input can be switched back and forth from the
Teletype keyboard to a card reader, to a paper tape reader, and to the memory con-
taining the newly-constructed Source Program.

Command Summary chart suitable for use at the Teletype.

1-1 , Revised 7/76

ComputerAutomation (O ——

1.2 ASSEMBLER DEVICES !

Source Input Device

During the editing or assembly of a program, OMEGA obtains statements to be processed
from the Source Input Device.

The maximum length of a Source Input~récord is 80 bytes. A keyboard or paper tape
record is terminated with a Carriage Return; extraneous Line Feeds, Rubouts, and Nulls
are dropped during input.

Input supplied during the editing process is terminated with a record which starts
with an Up-Arrow or a Slash. Input supplied during the assembly process is terminated
with an END statement. i : ;
i
If a Source Input record starts with an Up-Arrow, OMEGA halts. The operator then
readies another segment of input on the same device,!and hits the RUN switch.

|

Listing Device g

The assembly process, and the List command during the editing process, generate printed
output on the Listing Device. A page of output is usually 66 lines of 72 characters
each. These values can be changed, as explained under Omega Program Variables.

Sections 10 and 11 contain a sample Assembly Listing, and a detailed explanation of
the layout.

Punch Output Device

The generation of an Object Program, and the Punch command during the editing process,
generate records on the Punch Output Device.

A punch!d Object Program is in a format acceptable to LAMBDA2 or LAMBDA3. Section 7
explainsg why some tapes may not be directly usable by BLD or Autoload without first
being processed thru LAMBDA.

A punched Source Program is in a format acceptable to OMEGA thru the Source Input
Device.

1.3 SYNTAX NOTATION

This reference manual adopts a familar meta-linguistic notation to specify the valid
syntax for each type of source statement. Fach statement type is displayed as if it
were a card located flush with the left edge of the narrative text; the distinction

between the various fields will be self-evident from their contents and horizontal

spacing.

Syntax elements which begin with a capital letter, but are otherwise in lower case,
are generic terms, and are explained in the corﬁesponding narrative.

A syntax element in upper case is a fixed part ?f the language.
i

An element surrounded by square brackets is{optﬂonal.

A vertical stack indicates a choice of one Qntry from the stack.

|

i .
Three periods following a right square bracket indicate an arbitrary repetition of
the contents of the last pair of brackets.

The following syntax chart illustrates the complete notation:

[Labe l] MNEM [Operand [, Operand] e [Comments] :l

e

1.4 SOURCE STATEMENT FORMAT

Each source statement occupies the first 72 bytes of an isolated logical input
record; any bytes remaining are discarded. Each statement is in the usual free-form
arrangement —--four variable-length fields delimited by blank columns.

Label Field

The Label Field starts in Column 1 of each source statement. If Column 1 is blank,
then the Label Field is said to be empty, and ends with the first non-blank character
-- that is, with the start of the Operation Field.

If Column 1 is not blank, then every column up to the next blank is either a Label |
or some type of assembler directive, such as a Commént Line, a New Page, or a New Op
Code Definition. é ?

If Column 1 is an alphabetic character, then the field contains a Label -- the name
of a symbol or variable. ' The alphabetic character may be followed by 0 thru 5
alphanumeric characters, followed in turn by at;least one more blank.

Operation Field

The Operation Field starts with the first non-blank column after the Label Field.
It contains a character string identical in structure to a Label -- 1 to 6 alpha-
numeric characters, the first of which must be alphabetic. This string is called a
Mnemonic, and indicates a machine instruction, a New Op Code, or an assembler
directive.

Except for a directive, any Mnemonic can have its meaning changed at any point thru
facilities built into the assembler language.

i
At leaﬁt one blank column must follow the Mnemonic; an arbitrary number of blanks
may be lused to separate the Operation Field from the next field.

f

|
|
!

Operand Field

The existence of the Operand Field depends upon the definition of the Mnemonic used
in the Operation Field. For some Mnemonics, no operands are meaningful, and the
assembler never processes any source statement columns to the right of the Operation
Field. For other Mnemonics, one..qr. more operands are always required, and the
assembler expects them to start with the first non-blank column after the Operation
Field. ‘

There are two types of statements which sometimes have an Operand Field, and sometimes
do not: “ '

END directives
LPOOL directives

For these, the programmer must either supply%an Lperand‘Field, or leave the rest of
the source statement blank. j
j

Each operand is of arbitrary length, and is determined by the nature of the source
statement involved; the only restrictions are:

1. Single Quote characters must be paired.
2. Blanks and commas cannot occur outside of quoted text strings.

3. The last operand cannot extend past Column 72. The assembler does not allow
continuation of the Operand Field onto another logical input record.

Each operand is separated from the next by a comma, and the last operand -- unless
it extends to Column 72 -- must be followed by at least one blank column.

1-5

R

Comments Field

The Comments Field starts with the first non-blank column after the previous field,
and extends to the rightmost column of the source statement. The assembler does not
process the Comments Field, except to align it for a formatted listing.

If a given Mnemonic always requires an Operand Field, the Comments Field is not
shown on syntax charts in this publication, because it cannot affect the validity of
a statement. :

If a Mnemonic never involves an Operand Field, the %yntax chart may show the generic
element Comments to emphasize that no operands are fecognized.

For the few statement types which allow a Commehts ield only if an Operand Field is
also present, the syntax chart will show this construction:

i

[Label] Mnemonic [Operand I:Comments]]

i
Statement Fields as Listed f

The assembler reformats each source statement before listing it, to provide uniform,
more readable columns. If the source statements are keypunched on 80-column cards,
the usual coding practice is to use the same fixed columns maintained on the listing

01 -- 06 Label Field

07 Blank

08 -- 13 Operation Field

14 Blank

15 -- 72 Operand Field

24 -- 72 Comments Field (if Column 23 is blank)
73 ,-- 80 Discarded on Input

ComputerAutomation m —

R s e

Section 2

-OPERAND EXPRESSIONS

Each operand of an assembler language source statement may be a simple term -- a
number or name -- or it may be a complex expression -- a formula consisting of several
terms and operators.

quent sections will refer to the categories established here.

i

This section is devoted to the various ways of c%ding terms and expressions. Subse-
i

o

2.1 TERMS

A term may be characterized in several different ways:
Self—Defining or Symbolic

Defined or Undefined
Absolute: or Relocatable

2.1.1 Self-Defining Terms

A self-defining term represents an immediately avaiqable value in one of these

notations:

Decimal Number
Octal Number
Hexadecimal Number
Character Value

Decimal Numbers

A decimal number consists of 1 thru 5 decimal digits. It is distinguished from an

octal number by having
32767.

Octal Numbers

An octal number consists of 1 thru 7 octal digits -- the characters 0 thru 7. It is
distinguished from a decimal number by having at least one leading zero. The largest
acceptaple octal number is 0177777.

i
i

|
Hexadeclimal Numbers
!

A hexadkcimal number consists of 1 thru 4 hexadecimal digits -- the characters 0

thru 9 and A thru F.

prefixed. The largest acceptable hexadecimal number is :FFFF.

Character Values

A character value cons

a preceding and a following Single Quote (or Apostrophe) character. If a Single

Quote is actually part

Quotes. Printable ASCII characters, and their corresponding hexadecimal values, are
charted in Appendix A of this publication.

[

H y
|

no leading zeros. The largest acceptable decimal number is

It is distinguished from a symbolic term by having a colon

ists of 1 or 2 ASCII characters. The value is delimited with

of the value, it must be represented by two successive Single

Here are some examples of self-defining terms:

Decimal Numbers:

1

70
777
32000

Octal Numbers:

0]
03
0777

Hexadecimal Numbers:

:0

:E
:64
:OFF
:FFFF

Character Values:
IAI

[R
Ixxl

ComputerAutomation 6@29‘5 EEE—

2.1.2 Symbolic Terms

A symbol is the name of a value defined by the assembly process. Ordinarily, a
symbol consists of 1 thru 6 alphanumeric characters. As in most programming languages,
the first character of a symbolic name must be alphabetic -- that is, in the ASCII
character range A thru 2. o
The assembler accepts embedded colons in symbolic names, but the use of colons is
reserved for CA-supplied software.

|
One symbolic name has a special construction. An isolated character $ -- or Currency
Symbol -- represents the current value of the Locatjion Counter at the point where
the $ is referenced.

Al

i |
2.1.3 Defined Terms ; l '

A defined term has a value known to the assembler. A self-defining term is, of
course, defined by its own representation. At ény point within an assembly, a term
is predefined if its nominal value has already been conclusively determined. The
nominal value of a symbol is the value it will have after load processing if the
relocation bias is specified to be zero.

Each use of a symbol before it becomes defined is called a forward reference.

Because the assembler performs two passes over the Source Program, forward references
are allowed in almost all contexts. However, certain directives which control Pass

1 processing will accept only predefined terms.

A symbol may be declared External by certain directives. An External symbol is
considered a kind of forward reference which does not become defined until load time.
An External reference may be used in certain restricted contexts, as specified in
the detgiled descriptions of each assembly language feature.

|

2.1.4 Dndefined Terms
r

If a sy%bolic name is found to be neither defined, nor declared External, at the end
of an assembly, it is considered undefined. Reference to an undefined term is
usually an error, and the source statement is flagged on the listing.

Undefined terms may appear without error in SPAD statements, and in statements skipped
by an IFT False or an IFF True.

A T T P

2.1.5 Absolute Terms

An absolute term has the same value during the assembly as it will have after load
processing, regardless of the relocation bias specified to the loader. It follows
that self-defining terms are always absolute. '

Symbolic terms are established as absolute if they are defined in certain ways. For
example, a symbol defined thru & SET or EQU to an absolute expression is absolute.
Similarly, a symbol defined as the Label of a statement within range of an ABS
directive is absolute.

2.1.6 Relocatable Terms : |

|
A relocatable term has a nominal value during the assembly, but the value is subject

to change during load processing. It follows that Externals are always considered
relocatable. |

Symbolic terms are established as relocatable if they are defined in certain ways.
For example, a symbol defined thru a SET orfEQU to a relocatable expression is
relocatable. Similarly, a symbol defined a% the Label of a statement within range of
a REL directive is relocatable. ‘

2.1.7 Unary Operators

The value represented by a term, whether seif-defining or symbolic, may be adjusted
by a unary operator prefixed to the term when it is the first in an expression.

Unary Plus (+)

A + character prefixed to a term has no effect upon its value. It may be used to
emphasize that a term does not have a Unary Minus prefixed, or for any similar
clarification of the source statement.

Uner Minus (-)

A - character prefixed to a term indicates 2's complementation of the signed arith-

metlic value of the term.

!
Here are some examples of unary operators:

Expression Word Value in Hex
1 :0001
+1 :0001
-1 :FFFF

Assume that WN is a relocatable symbol with a nominal value of +1:

WN :0001
+WN :0001

This expression is an error, because it violates the rules explained under Absolute
and Relocatable Expressions:

-WN

L

4t i

2.2 COMPLEX EXPRESSIONS

Terms are combined into complex expressions by using binary operators. An expression
is always evaluated from left to right.

As expression evaluation proceeds from left to right, the current partial result of
the evaluation, or intermediate value, is maintained as 16-bit binary number. An
incoming term is limited to a 16-bit absolute or 15-bit relocatable value, as is the
final evaluated result, or expression value.

!

As relocatable terms enter the expression evaluation, they cause the intermediate
value to fluctuate between absolute and relocatable,iaccording to rules explained in

a following section. The nature of the final result determines whether the entire |
evaluated expression is called an absolute expression or a relocatable expression,
and whether its Load Attribute is Absolute or Relocatable.

To clarify the discussion which follows, these symbols are adopted:

\Y The intermediate value of the expression evaluation process

T The leftmost unevaluated term, about to enter the expression evaluation
ABS Any absolute value, either intermediate or finall

REL Any relocatable value, either intermediate or final

2.2.1 Binary Operators

Addition (V+T)

The expression V+T indicates the arithmetic addition of the values of V and T.

Subtractlion (V-T)
|

The expﬁession V-T indicates the arithmetic subtraction of the value of T from V.

2.3 ABSOLUTE AND

RELOCATABLE EXPRESSIONS

As expression evaluation proceeds, an assembler artifact called R (for Relocation
Factor) is associated with the current intermediate value V. At any point in the

evaluation, R has

some signed numeric value.

It is the manipulation of R which determines whether or not an expression is accept-
able to the assembler, and whether the final expression is absolute or relocatable.

These are the rules for determining R at any intermediate or final point.

1. Set the initial value of R to O.

2. If the very first term of the expressioﬂ is
!

set R = -1.

|
{

|
relocatable, set R = 1. For -REL,

|
i

1
i

3. As the evaluation proceeds, for each V+§EL, set R = R+1.

4. For each V-REL, set R = R-1.

At any point, R =

I
!

0 indicates that the intetmediate or final value is absolute.

t

If R is not 0, the intermediate or final value is relocatable.

When the evaluation is completed, R must be either O or 1. Any other final R is an

error.

2.4 OPERAND EXPRESSION PREFIXES

For some classes of machine instructions and assembler directives, the entire operand

expression may be
Addressing Mode.

immediately preceded by certain characters which indicate a machine
The effect of each prefix is held off until the assembler has

obtéined a final expression value.
i

Thefprefix characters are:
|

* Indirect Address
@ Indexed
*@ - Indirect Post-Indexed

The assembler also accepts this special prefix for Word Reference operands only:

= Literal Pool Reference

This prefix cannot be used for Byte Reference instructions. Refer to Sections 3

and 8 for details.

This section presents the valid assembler languagg syntax for each standard machine
instruction. The instructions are divided into Sﬁntax Classes, corresponding to the
number of operands and to the Addressing Modes wh

Syntax Class

O WOIO U bW+

[

For each class, the rules for the source statement Operand Field are specified.
Examples are given, to aid the programmer in visualizing the connection between an

Section 3

CODING MACHINE INSTRUCTIONS

t

Machine Function

Word Reference f

Byte Immediate !
Conditional Jump

Single Register Bit Change
Register and Control
Input/Output .
Double Register Bit Change
Byte Reference

Double Register Arithmetic
Stack Reference

abstract syntax chart and a real Source Program.

An alphabetical list of every standard machine instruction mnemonic -- and which
Syntdx Class it falls into -- is included in this publication as Appendix B.

The %achine instruction functions are described in the relevant Computer Handbooks: i

ch 'are meaningful at machine level.

LSI-2 Series Minicomputer Handbook, Publication 91-20400-00 i

LSI-3/05 Series Millicomputer Handbook, Publication 91-10005-00

Revised 7/76

PR L o S e

3.1 CLASS 1: WORD REFERENCE

[%abeq

*

. @
Mnemonic *@ Operand

Operand Field

Exactly one expression.
Any absolute or relocatable value.
External allowed.

Addressing Mode Prefix

No Prefix Direct
* Indirect Address
Q@ Indexed

*@ Indirect Post-Indexed
= Literal Pool Reference

Examples

1. Direct:

LDA :34
STA ABC+2

2. Indirect:

!

{

; LDA *:34

| STA *PTR
|

3. Indexed:

LDA @:34
STA - @TABLE

4. Indirect Post-Indexed:

LDA *@:34
STA *@PTR

5. Literal Pool Reference:

LDA =1000
LDX =TABEND-TABLE

i

3.2 CLASS 2: BYTE IMMEDIATE

[;abei] " Mnemonic Operand

Operand Field

Exactly one expression.
Any absolute value equivalent to the range :00 thru

External not allowed. ; ;

Examples :]
1. Self-defining decimal operand:

CAI 16

2. Self-defining character value operand:
CAI 'z
3. Symbolic Operand:

BANG EQU N
CAI BANG

:FF.

iR

C

3.3 CLASS 3: CONDITIONAL JUMP

‘Mnemonic Operand

[ived]

Operand Field

Exactly one expression.

(For special case of LSI-2 mnemonic JOC, refer to Appendix C)

Any absolute or relocatable value in the range

$-63 thru $+64

External not allowed.

Examples

1. Symbolic operand:

JAZ PARTY
2. Explicit relative location:

JAZ $-7

3.4 CLASS 4: SINGLE REGISTER BIT CHANGE

: |
[Labe%] Mnemonic Operand ‘
» I

Operand Field -

Exactly one expression.
Any absolute value, within the limits of the imnstruction function:

|

0 thru 15 for BAO and BXO !
1 thru 6 for SIN z ’
1 thru 8 for Shifts . f E

i

External not allowed.

Examples

1. Self-defining operand:
LRA 6
2. Symbolic operand:

Sz EQU 7
LRA Sz

3.5 CLASS 5: REGISTER AND CONTROL

[Labe l] Mnemonic [Comments]
L
Operand Field B

None. Comments may immediately follow the Operation Field.

|

Examples !
1. Label, mnemonic, no operands, comments: | !)
COPY TXA TRANSFER X TO A !

|

|

| "" !

i

|

|

!

|

J | ‘

1 !

| |

S T

e b B e

3.6 CLASS 6: INPUT/AOUTPUT

[Labe 1] Mnemonic Operand [,- Operand]

Operand Field

Either 1 or 2 operands.

Each operand must be an absolute value.

Externals not allowed.

If only 1 operand is used,
Address and Function Code.

. N . . .
its value specifies thF combined bits of the Device
|

| '

If 2 operands are used, the first specifies the S-bit Device Address, and the second

specifies the 3-bit Function Code.

Examples

1. One hex operand:
SEA :3C
2. Two decimal operands:
SEA 7,4
3. Two symbolic operands:

TTY | EQU 7

INIT] EQU 4

: SEA TTY,INIT

!

e e

3.7 CLASS 7: DOUBLE REGISTER BIT CHANGE

Mnemonic Operand

[Labe 1]

Operand Field

Exactly one expression.
Any absolute value, from 1 to 16.

External not allowed.

Examples

1. Self-Defining Operand:
LRR 6
w 2. Symbolic Operand:

Sz EQU 7
LRR SZ

f"\

3.8 CLASS 8: BYTE REFERENCE

*

[Labe]] Mnemonic @ |Operand
*@

Operand Field

Exactly one expression. i
Any absolute or relocatable value, except for the cases described on the next page.

1

External not allowed.

i
|
|
|
|
|
i

Addressing Mode Prefix

No Prefix Direct é

* Indirect Address f
@ Indexed
*@ Indirect Post-Indexed

Expression Evaluation for Class 8

Each self-defining term represents a byte address value.
LDAB :04

addresses the 4th byté of memory.
Eacﬁ symbolic term represents a word address value, and is multiplied by 2 before
expression evaluation:

0 | EQU 7

FLD TEXT '"WXYZ'
LDAB 0
STAB - FLD

The LDAB addresses the 7th word of memory, or the 14th byte. Similarly, the word
value of FLD, whether absolute or relocatable, must be doubled to produce a byte
value. '

LDAB FLD+3

addresses a location 3 bytes after the byte location of FLD -- the character 'Z' in
the assembled text. '

-

Operand Locations Not Acceptable

For reasons explained in the section on Scratchpad Literals, the assembler rejects a
Byte Reference instruction which attempts Explicit Indirect Addressing of a location

which is beyond Direct Addressing Range:

XXxXB

in which ABSBIG is Absolute, but higher than directly addressable Scratchpad;

XXxB

in which RELFAR is Relocatable, but beyond Dlrect

*ABSBIG

*RELFAR

Byte Reference instruction.

Examples

1. Direct:

LDAB
STAB

2. Indirect:

STAB
PTR BAC
3. Indexed:

LDAB

STAB

: 34
ABC+2

*PTR
CHAR+1

@:34
@TABLE

4. Iédirect Post-Indexed:

LDAB

I
:
(At Word Location :34)

BAC

*@:34

CHAR+1

1
|
|
l

1
|
[

|
|
|
relatlve Addressing Range of the

|
|

T

3.9 CLASS 9: DOUBLE REGISTER ARITHMETIC

[{]Operand

[Label] Mnemonic

Operand Field

Exactly one expression.
Any absolute or relocatable value.

External ailowed.

Addressing Mode Prefix

No prefix Direct
* Indirect Address
Examples
1. Direct:

MPY JKL+3
2. Indirect:

DVD *DVSR

-

'[Labe#] Mnemonic Operand | ,+

3.10 CLASS 10: STACK REFERENCE

Operand Field
Exactly one expression, optionally followed by an Addressing Mode Specification.
Any absolute or relocatable value.

I
l
External allowed. i ! .
.
i
-

Addressing Mode Specification

No specification Direct (Value of Pointer)

,@ Indexed (Pointer + Index Register)

,+ Pop (Increment Pointer After Access)
- Push (Decrement Pointer Before Access)
Examples

1. Direct:

EMAS STK
2. Indexed:
| IORS STK, @
3. Po%:
% LDAS STK, +
4. Push:
 STXS STK, -

3

Section 4

ik i’ Lt

ASSEMBLER CONTROL

The types of statements described in this section are not machine instructions, but
directives -- they cause the assembler itself tg take some action, or to recognize
certain information presented to it.

| The result is some variation in the assembly prdcess -- either in the way the Source
‘ Program is translated, or in the appearance jof the Assembly Listing, or both.

1
| |
1 .
| |
;) |
i |
|
|

B S

(@
Y W "

I B

e

S e

End of Source Program (END)

[Labe l] END [Operand [Comments]]

This directive terminates the assembly of the Source Program.

If a Source Program contains at least one LPOOL statement, a Literal Pool may be
allocated by the assembler when an END is reached. The Pool will appear on the
listing, and in the generated object code, before the END. Further details may be
found in the section on Literal Pools. |

The optional label of an END statement has the curr%nt value and Load Attribute of

the Location Counter, after any Literal Pool generation. Unless a currently effective
Location Control Directive has disturbed the continuity of the object code -- for
example, a backward ORG -- the label on an END is the address of the first word
following the end of the Object Program. i

The optional operand specifies an execution-time Transfer Address. The operand may
be any absolute or relocatable expression with predefined terms, excépt that reference
to an External is not allowed. é

The assembler communicates the Transfer Address -- or the fact that one was not
specified -- to the loader. When a program is executed, the resolved Transfer

Address receives initial control.

If several different Transfer Addresses are available in a number of Object Programs
being loaded together, the loader will use the last Transfer, Address processed.

The programmer should observe that no Comments may be used in an END statement which
has no Operand.

End of Input Segment (up-arrow)

j
1 Comments

1
This directive indicates the end of the current physical segment of the Source Input.
The directive consists of an up-arrow in Column 1 of a source statement. The assembler]
displays "PAUSE" and halts the computer. The operator readies the nevt segment of
Source Input and hits RUN.

o TR

‘is initially blank, and each new title completely replaces the previous one.

ComputerAutomation (Z:ZRB]

Heading Title (TITL)

TITL Title

This directive supplies the title which appears in the page heading of the assembly
listing. Starting exactly one blank after the last letter of TITL, the remaining
characters of the source statement are taken to be the desired title. The title

A TITL statement is never listed. At the point where it would have appeared on the
listing, the effect of a New Page directive is sfimulated.

1

New Page (period)

i
|
|
.Comments l |

)

This directive causes the next line listed to appear on a new page if at least 3
lines have appeared on the current page. It consists of a period in Column 1 of the
source statement. The statement itself is never listed, and the Comments are ignored.

Comment Line (asterisk)

*Comments

A Comment Line appears on the assembly listing, but is not otherwise processed. The
directive consists of an asterisk in Column 1 of the source statement. Any combination
of printable characters and blanks may follow.

S

¥

. Sl bt L

Machine Instruction Set (MACH)

MACH Operand .
This directive is meaningful only for a Source Program assembled with OMEGA2, not with
OMEGA3. It specifies the machine for which the program is intended, so the assembler
can disallow those standard machine instruction mnemonics which would not be
meaningful.

Each disallowed Mnemonic is flagged "O" as if it were an invalid Operation Field.
However, the Operand Field is still processed correctly, and the generated object
code is still the right code for the instruction.

o
The required operand must be an absolute expression ywith predefined terms. The

binary value of the operand may specify any combinatﬁon of the following machines:
‘ I

Bit Hex Value Instruc%ion Set
02 :04 LSI-2

01 :02 LSI-1

00 :01 ALPHA-16

-

The instruction subset common to all machines is always valid, and is equivalent to
an explicit MACH value of binary 000.

The assembler initially sets the MACH.value to binary 010. Each MACH value is
retained until. replaced by the next.

An appendix to this publication specifies the members of each machine instruction

set. |

¥

t

3

\
'

4-4 Revised 7/76

I I

i

Conditional Assembly Control (IFT/IFF/ENDC)

IFT Operand
IFF Operand
ENDC Comments

These directives specify whether a group of source statements is to be processed or
discarded. Conditional assembly begins each time an IFT or IFF statement is encoun-
tered, and ends when the corresponding ENDC is found.

|

The required operand of an IF statement is an absolute expression with predefined
terms. The operand is always analyzed for its Truth Value:

1 means True

| y !
0 means False | ! ’
Any other value means True !

IFT means Assemble If True. All the statements bounded by an IFT and its corre-
sponding ENDC are assembled if the operand bf the IFT is True, and skipped otherwise.

IFF means Assemble If False. All the statements boundéd by an IFF and its corres-
ponding ENDC are assembled if the operand of the IFF is False, and skipped otherwise.

If the value of V is True, the LDA/LDX statements in the following example will be
assembled, and the STA/STX statements will be discarded without being processed at
all.

IFT v
LDA FLDA
LDX FLDX
ENDC
*x *

! IFF \4
STA FLDA

| STX FLDX

? ENDC

Conversely, if the value of V is False, the LDA/IDX statements will be skipped, and
the STA/STX statements will be assembled.

Every IF must have corresponding ENDC somewhere below it. An IFT True or an IFF
False with a missing ENDC will not affect the assembly, but will be flagged. An IFT
False or an IFF True with no ENDC, however, will skip all the way to the END state-
ment.

%p

C

l? OMEGA3 does not accept $7, $9, and $10. \

Define New Op Code ($class)

$class Mnemonic :hhhh

This directive communicates to the assembler the Mnemonic to be used for a new
machine instruction (or a variant of an existing one), and specifies the object code
to be generated by the new Mnemonic. ™~

The directive consists of a Currency character in Column 1 of the source statement.
This character is never used in Column 1 for any other purpose. The immediately
following 1 or 2 columns contain the Class Number of a standard assembler Syntax
Class. [;

|
The detailed operand requirements for each Syntéx Class are described in another |
section. The machine level representations of the gperands are described in the
Appendix for each machine. The Syntax Classes énd heir most distinctive features

are summarized in the following table. !
: |

Class Words Machine Opérands Indirect Indexed Other
Number Generated Function Allowed Mode Mode Mode
1 1 Word Reference E1 *| @ =
2 1 Byte Immediate ll
3 1 Conditional Jump 2
4 1 Single Register 1 !
5 1 - Register and Control 0
6 | 1 Input/Output 2 ! %
7 i 1 Double Register 1 _ 2
8 ; 1 Byte Reference 1 * @ h 5
| .
9 y 2 Double Register 1 * :
Arithmetic
10 . 2 Staék Reference ‘1 @ + or - i

The S$class directive must appear in the Source Program before any statements which
generate object code.

4-6 Revised 7/76 ;

|

The new Mnemonic consists of 1 to 4 alphanumeric characters, the first of which must
('~\ be alphabetic. Embedded colons are permitted by the assembler, but are reserved for
CA-supplied software.

The New Op Code Mnemonic may replace any existing Mnemonic for a machine instruction
or a previously defined New Op Code. The new Mnemonic cannot replace a standard
assembler directive. T

The required operand is a 4-digit hexadecimal number. It specifies which bits in the
first word of the generated object code are to be forced to 1l's by the assembler.
This bit pattern is called the Skeleton of the #nstruction.

i

The operands used with the New Op will determiné the final appearance of the object
code. Appendices C and D describe how the qont%nté of certain bit fields are either
calculated from the operand values, or set by various Address Mode specifications.

| As examples of defining a New Op Code, somefskeietons built into the assembler for

J convenient coding of LSI-2 instructions will be reconstructed.

J

| ﬁ\ The following two statements are equivalent

| : H
| ' JMP s - : |
| WAIT

WAIT has no operands, so it must be in Class 5. JMP $ is a Class 1 instruction, with
one operand, and generates a fixed word of code, :F600. The New Op Code is thus

(\ defined by:

$5 WAIT :F600

The following two statements are equivalent:

|

; JMP *NAME
i i RTN NAME

Botb RTN and JMP require exactly one Word Reference operand; both are in Class 1.
Thefskeleton for JMP, flagged Indirect, is :F100. The definition of RTN, therefore,
is:

0 $1 RTN :F100

|
|
|
|

S S

Finally, consider the following sequence, which might be used to transfer control in
a uniform way to external subroutines:

JST *$+1
DATA SUBR

Suppose a New Op Code were desired, S0 the two lines could always be replaced by:
DO SUBR ' :

DO has exactly one operand. The generated object code must be two words long, and

must contain the address of the operand in the second word. Syntax Class 9 fits the

intended source statement format. i
. ‘] Al

The existing machine instructions in Class 9 are used for Double Register Arithmetic
functions, but the machine level functions of a New /Op need not be related to the
functions of any other instruction in the same class.

The Skeleton for JST *$+1 is the fixed word :FBQO. The New Op Code definition is:
|

|

$9 DO :FBOO :

Subroutine Structure Mnemonics (CALL/ENT/RTN)

. (N [Labe 1] CALL Name

b Name ENT Comments

[Labei] RTN Name
These Mnemonics provide a uniform way to communicate with a closed subroutine. They
are not directives, and may be replaced by other definitions.

CALL is used as an executable operation, equivalent to the machine instruction JST.
It performs two functions: |
i
1. Store the Return Link -- the address of the next instruction after the CALL!'-- at
the effective memory location of the operand.
) i

‘ 2. Transfer control to the first word afteﬂ the stored Return Link.

The operand of a CALL may be any operand valid for a Word Reference instruction.

i Ordinarily, the name of an ENT is used. Iffthe name has been declared External, an

i 'E? implicit indirect reference thru a Literal Pool or thru Scratchpad might be used. An
| explicit indirect reference thru a REF is another possibility.

ENT is used as the destination of a CALL and of a RTIN. The generated machine code is
not intended for inline execution; it is simply a word of storage reserved for the
Return Link by assembling a HLT instruction. The first executable instruction in
Gﬂl\ ‘the subroutine is coded immediately following the ENT. The ENT name may be local to
the program, or declared a Primary or Secondary Entry as needed.

; RTN is used to return to the calling program. It is equivalent to JMP *Name, and

will perform an unconditional transfer of control indirectly thru the Return Link.
The operand of a RIN is therefore identical to the name of the corresponding ENT.

i
| |
|

-

R 1

computorAutomaﬁonm S—

Section 5

SYMBOL AND DATA DEFINITION

The directives in this section are used to generate non-executable object code, and
to define symbols as the names of locations or palues within the Source Program.

The directives DATA, TEXT, and BAC correspobd tF the three data types which are
meaningful at machine level: ? l !

Word Value, or Word Address
Byte Value, or Character String
Byte Address

The directives EQU and SET use terms or expressions to assign values to symbols. EQU
fixes a symbolic value for the entire Source Program; SET allows the symbolic value
to vary.

Data Definition (DATA)

[Label] DATA [{]Operand[,[*]Operand]...

The DATA directive allocates storage for a number of words, and specifies the contents
of each word.

The optional label is the location of the first allocated word.

The DATA statement requires at least one operand. Each operand may be any absolute
or relocatable expression. The contents of a generated word may be flagged as an
Indirect Address, by prefixing the corresponding operand expression with an asterisk.

‘ An External symbol may be used as an operand. No Indirect Address prefix is accepted
1
! for an External reference. ; ’

i
i 1

‘ i
; The operands may be supplied in an arbitrary mixture of absolute, relocatable,
,(direct, and indirect values. Reference to the Locatlon Counter =-- the symbol $§ --
J within an operand expression is taken to be the'locatlon of the specific word

w generated by that operand.

DATA 0,-132,'LP',*:FF,32767,$-A

i

|

| A

| *

‘ R DATA $,R,*R+3,*§
| *

X DATA SUB1,SUB2

Statement A generates 6 words, each containing an absolute value. The nominal
location and the 16-bit contents of each word appear on a separate line of the
assembly listing.

same value -- the relocatable address of R -- and the last 2 words both contain the

|
|
j Statement R generates 4 words of relocatable data. The first 2 words contain the
\ ,
i indirect address of R+3.

|

if theinames SUBl1 and SUB2 are declared to be External in the Source Program, then
the 2 words generated by statement X will not show any values on the listing. Later
processing of the Object Program by the loader will insert correct values in the low-
% order 15 bits of each word.

S

(O3]
I
\S]

ComputerAutomation m —

]

Equate Symbol Value (EQU)

Name EQU Operand

This directive is used to define a symbol and its value without allocating any
storage to the symbol. EQU statements may be used anywhere in the Source Program,
but they are particularly useful in defining symbols which will be used extensively
as terms in expressions.

The name of the symbol to be defined is specified in the required Label Field, and
must be unique among all the symbols in the Sourice Program.

The EQU statement requires exactly one operand. | The operand may be any absolute or

‘ relocatable expression, except that reference td an External is not allowed. Forward
§ references are acceptable, but a directive whichl requires predefined operands (such

‘ as an ORG or an IF) cannot use a symbolic term defined by an EQU with forward

i references.
‘ 0 This example uses EQU to establish the destination of a jump without attaching a
| }

label to a line of executable code. This technique facilitates modification of the
Source Program. :

|
|
‘ '

| JMP DEST
! * *
* ' *

ﬁ DEST EQU $

The size of a table may be assigned a symbol this way:

TAB DATA 0,2,4,6,8
TABSZE EQU $-TAB

? .
An arbitrary ASCII character, especially a non-printable one, may be given a symbolic
name as a coding convenience:

!

CR | EQU :8D
* ! *
* *

c CAI CR

e

I

-

SELBSER e

B

BT

|

Set Variable Value (SET)
Name SET Operand

This directive is used to define or to redefine the value of a symbol. SET state-
ments may be used anywhere in the Source Program, but they are particularly useful in
the control of conditional assembly .-—-

The name of the symbol, or SET Variable, to be affected is specified in the required
Label Field. A SET Variable name is unusual in this respect: it may be used in the
Label Field of more than one source statement without being rejected as a multiple
definition. On the contrary, a SET Variable has ex%ctly one definition at any given
point in the Source Program, but that definition is[replaced completely by another
SET for the same variable, even if the new SET ﬁas 4n invalid operand.

The name of a SET Variable must not appear in the Libel Field of any type of state-
ment except a SET statement; such an appearance{wouﬂd constitute multiple definition.
The SET statement requires exactly one operand. | The operand may be any absolute or
relocatable expression, except that reference to an External is not allowed. Forward
references are acceptable, but a directive which requires predefined operands (such
as an ORG or an IF) cannot use a symbolic term defined by a SET with forward
references. '

As an example of using a SET Variable to control conditional assembly, suppose that
special debugging code -- perhaps a coded halt -- is scattered throughout the Source
Program, and is always surrounded by an (FT/ENDC pair:

IFT TEST
STOP :77
ENDC TEST

To detqrmine whether or not a specific part of the program would be assembled with an
embedded STOP, either of these statements could be inserted into the Source Program
in as many different places as needed:

TEST SET 0 NO DEBUGGING STOPS

TEST SET 1 INCLUDE DEBUGGING STOPS

SET Variables are sometimes useful when a particular coding techniqur -- for example,
heavy use of backward jumps to nearby labels -- adds too many entrie: to the Symbol

Table, leaving insufficient room for accumulated Literals. In the following code,
each Jump instruction has the same operand, but the value of the operand, and there-
fore the assembled machine code, corresponds to the closest preceding SET for the
symbol BACK. Observe that forward Jumps cannot be coded with SET Variables.

BACK SET S
* *
* *
JAG BACK
* *
BACK SET $
* *
* *
JIXZ BACK

e

ey

Reserve Storage (RES)

[Labei] RES Count [,Valué]

The RES directive allocates storage for a number of words. It may also be used to
fill all of the allocated words with a uniform value.

The optional label is the location of the first allocated word. The required Count
specifies the number of words to be allocated. The Count must be an absolute
expression with predefined terms. The value of the expression may be zero only if
no Value is supplied. The following two statements are equivalent:

TAG RES 0 !

TAG EQU $ f ‘
The optional Value operand specifies the uniform contents of every allocated word.
The Value must be an absolute expression. Any combination of terms may be used,
except that reference to an External is not allowed. The following RES statement is
equivalent to the entire series of DATA statements shown.

i

TAG RES 3,:FF

* *

TAG DATA :FF
DATA :FF
DATA :FF

Note that a repeated DATA statement may have a relocatable expression as its operand,
but that a RES is more convenient to code if the desired storage contents represent
an absolute value.

If a Value field is not supplied, neither the assembler nor the loader will alter
the 'reserved locations. This facilitates either a source overlay, in which the RES
locations are part of a backward ORG, or an object overlay, in which the loader does
not |disturb existing values in memory while loading object code allocated by a RES

|
with no Value specification.
]

Text Definition (TEXT)

[Labe%] TEXT 'String’

The TEXT directive allocates storage for a number of words, and specifies the contents
of these words as a single ASCII character string.

The optional label is the location of the first word of allocated storage, which
always starts at the first available word location, even though the storage is

filled with byte values.

The required operand is an arbitrary string of ASCII%characters, including any
desired blanks and non-printable characters. The string must be delimited with a
preceding and a following Single Quote or Apostrophe character.

If a character in the generated string must itself bé a Single Quote, it is represented
by two successive Single Quotes in two columns of the source statement. This should
not be confused with a single character called Dduble Quote, which has no special
significance in a TEXT string, and is therefore useful in punctuating assembled

c messages.

The characters in the TEXT string each represent one 8-bit byte, and are packed into
successive words until the string is exhausted. The assembler will fill the low-
order bits of the last word, if necessary, with :A0, an ASCII blank.

TAG TEXT 'THIS IS A SIMPLE MESSAGE'
WHAT TEXT torrrrt COMMENT

The contents of the two words starting at WHAT will be blank/quote/quote/blank:

:AOA7
:A7A0

Each wor@ generated by a TEXT statement appears on a new line of the assembly listing.
i

S A

(pq\ " Byte Address Constant (BAC)
[Labe%] BAC Operand [,Operand] e

The BAC directive allocates storage for a number of words, and specifies that the
contents of each word is the address of a byte location.

The optional label is the location of the first allocated word.

The BAC statement requires at least one operand. Each operand may be any absolute
or relocatable expression, except that referebce to an External is not allowed.

Each self-defining term in a BAC operand is uged without change during evaluation of
the operand expression. For example, i | !
|

|
| !
|
I

y BAC :05 i

references the fifth byte of memory, and the word generated for the BAC contains
:0005. ! ~

\ w Each symbolic term, even if it was defined by a SET or EQU to a self-defining term,
is always considered a word value, and is' multiplied by 2 before evaluation of the
operand expression.

0 " EQU 7
FLD TEXT "WXYZ'

f‘l\ BAC Q
BAC FLD

Each of these BAC operands is a symbolic term. The first references the seventh
: word of memory, which is the fourteenth byte; the generated word contains :000E.
i Similarly, the value of FLD, whether absolute or relocatable, must be doubled to

1 produce a byte value.
| i

L]

| i

1 4n odd-numbered byte -- that is, the low-order byte within a given word-- may be
| referenced by using an odd self-defining term in the operand expression:

|

i BAC FLD+1,FLD+3

c - This statement will generate two words, containing the byte addresses of the char-
acters "X" and "Z" in the assembled text.

|
|
\
i
™

et

Section 6

LOCATION CONTROL

The directives in this section specify a new value for the Location Counter -- the
nominal location of the object code -- and for the Load Attribute —- Absolute or
Relocatable. : .

The segment of code following each directive is |called the range of the directiye.

A range terminates with the next Location Contrgl directive, or with an END statement.
i |

Within a given range, the symbol $ (which répreéents the current value of the Location

Counter), or a symbol defined as the Label of a storage allocation or a machine

instruction, acquires the Load Attribute of 'that range. Similarly, a Label defined

by a simple reference to $ has the same Load Attribute as $, and the same as the

current range:

TAG EQU $
TAG SET $

A label defined with an EQU or a SET to a multi-term expression, however, acquires
the Load Attribute of the evaluated expression, regardless of the current range.

[

Absolute Object Code (ABS)

" ABS Operand

This directive sets the Load Attribute to Absolute, and the Location Counter to the
value of the operand. The result is a segment of object code which is loaded to
begin at a fixed location in memory.

The required operand is an absolute expression with predefined terms. The expression
must have a positive (or zero) value. 5
The source statements shown here are the first few hines of the assembler itself.
They begin at location :0000 Absolute, so the generpted object code will always
occupy the first 6 words of memory. ;

i

ABS 0 j ;

STOP 199 POWER UP INTERRUPT

JMP *NXTP TO EDITOR |
CORLM RES 1 CALCULATED HIGH MEMORY LIMIT
MCHDEF DATA 2 DEFAULT VALUE OF MACH
LINES DATA -53 LINES PER PAGE - 13 (NEGATIVE)
CHARS DATA -72 CHARACTERS PER LINE (NEGATIVE)

o

TR e

PR T

(F‘n Relocatable Object Code (REL)

TITL PROGRAM XXX -- VERSION VV
NAM XXX AND OTHERS AS NEEDED
REL 0
* *
f\ * ' * REST OF PROGRAM
: : * *
END (TRANSFER ADDRESS IF NEEDED)

REL Operand

This directive sets the Load Attribute to Relocatable, and the Location Counter to
the value of the operand. The result is a segment of code which is loaded to begin
at a location calculated as the sum of:

1. The REL operand value, plus

2. The Relocation Bias parameter supplied to the loader, plus

3. The next available location in memory, as REL code accumulates in the successive
Object Programs being loaded together. |

The Location column on the assembly listind cthains the nominal location for each
word in a Relocatable range -- that is, refatiWe to the REL operand.
! |

H !)
The required operand is an expression with predefined terms. The Load Attribute
of the evaluated expression may be either Absolute or Relocatable.

For almost all applications, the fo]lowinq;technique is appropriate for the main
program, and for each separately assembled ‘subprogram.

This technique defers until load time the question of where in memory the program
will be executed. If fixed absolute memory locations are desired later, the Object
Program can be loaded, then punched out with the Binary Dump utility.

|

R A e T e T e

i
|
1
i
|
i
|
|

ComputerAutomation <§:27§5 ---—W

Origin of Object Code (ORG)

ORG Operand

This directive sets the Location Counter to the value of the operand. It does not
alter the current Load Attribute. The result is a segment of code which is loaded
to begin at a location discontinuous from the previous segment, but with the same
bias applied. '

The Location column on the assembly listing‘reflects|the discontinuity in nominal
location caused by an ORG. '

i

The required operand is an expression with predefineF terms. In particular, no term

may be a forward reference -- this error often QCcur§ when pieces of a Source Program
are rearranged. The Load Attribute of the expression must be consistent with the

ABS or REL range into which the ORG itself falls.

A forward ORG is equivalent to a RES with no secbnd operand -- no specification of a

value to be filled in. This sequence reserves two card input buffers:

'

CARDSZ EQU 80
BUFF1 EQU $

_ORG BUFF1+CARDSZ
BUFF2 EQU $

ORG BUFF2+CARDSZ
REST EQU $

A backward ORG is used to overlay, at load time, an area previously defined. The
same location may be ORG'd back to as many times as needed. The last value assembled
will be the last one inserted by the loader.

The following sequence generates 256 consecutive words filled with binary 1's; then
ORGs back to the 64th word and clears it; then ORGs forward past the end of the
table, 50 unrelated data can follow.

RES 256, :FFFF

1
i
|
!
H

TABLE
* |

ORG TABLE+63
TABZRO DATA 0

ORG TABLE+256
*
MORE DATA 2,4,8,16

A common coding error, and a difficult error to detect, is a backward ORG without a
later forward ORG, or without enough code-generating statements to bring the Location
Counter forward as far as intended. If the last ORG were omitted in the preceding
example, all of TABLE beyond TABZRO would be destroyed at load time by the data
starting at MORE.

; ComputerAutomation m —_—

i

5 Section 7

OBJECT PROGRAM LINKAGE

The directives in this section are used to establish communication between separate
Object Programs. They generate records on the Punch Output which contain distinctive

Loader Type Codes, meaningful to LAMBDA2 and LAijA3.
e

An Object Program which contains a Loader Typ ode corresponding to any directive

in this section cannot be loaded with BLD2, BLD3, or Autoload. However, the Object
Program can be processed thru LAMBDA and BDPi(oq thru OS:LNK) to produce a new tape
acceptable to BLD or Autoload. i
|
|

: '
H i

i

e

b

|
i

Entry Declaration (NAM/SNAM)

'NAM Name [,Name] ...
SNAM Name EName]...

These directives are used to declare that certain names are to be made available to
the loader for possible matching against unresolved Externals in other programs.
Each name must be defined somewhere within the assembly, either as a relocatable or
as an absolute symbol. The name may be defined with an EQU statement, but it must
not be a SET Variable. : 1

|
|
|
i

NAM declares each name to be a Primary Entry. A Primary Entry which matches an i
unresolved Primary External will force selection of|the program which contains the
Primary Entry. A Primary Entry may also be resolved against a matching. Secondary
External, once both programs have already been $eleﬁted.

SNAM declares each name to be a Secondary Entryi A Secondary Entry will never force
selection, but it will be available for matching against an unresolved Primary or
Secondary External, once both programs have already been selected.

All the Primary Entries in an Object Program must be presented to the loader before
the Object Program is processed. Therefore, the assembler imposes a restriction upon
the placement of NAM statements (but not SNAM statements) in a Source Program -- they
must appear before any machine instructions, and before any directive which generates
object output, including EXTR, LOAD, REL, and ABS. The recommended placement for NAM
statements is at the very beginning of the Source Program, preceded only by TITL and
Comment Line statements.

External Declaration (EXTR)

EXTR Name [, Name] .

This directive is used to declare that certain names may eventually appear as Entries
in other programs selected during load processing. Each name must be acceptable as
a label, but must not be defined anywhere in the assembly..

EXTR declares each name to be a Primary External. An unresolved Primary External
which matches a Primary Entry will force selectﬁon of the program which contains the

Primary Entry. An unresolved Primary External hay also be resolved against a matching

Secondary Entry, once the program containing th Secondary Entry has already been

selected. |

L
The mere appearance of a name in an EXTR statemént is not sufficient to create an
unresolved External. The name must actually be referenced somewhere in the assembly

before it is considered unresolved. P
1

Because the value of an External Name is not available .to the assembler, a symbol
declared in an EXTR statement can be used only in certain restricted contexts:

Word Reference machine instruction (Class 1)

Double Register Arithmetic machine instruction (Class 9)
Stack Reference machine instruction (Class 10)

DATA statement

SPAD statement

An External Name cannot be used as a term in a complex expression, but it can be used
in isolation in a context where an expression would be acceptable. Neither a Unary
Plus nor a Unary Minus can be prefixed, nor is an asterisk (indicating an Indirect
Address) valid as a prefix.

|
Here are examples of all the contexts in which an External Name can appear.

!

! 'EXTR SUBR DECLARATION
* i *
LDA SUBR CLASS 1, DIRECT
LDA =SUBR CLASS 1, LITERAL
LDA @SUBR CLASS 1, DIRECT INDEXED
MPY SUBR CLASS 9
_ XORS SUBR CLASS 10
DATA SUBR DATA OPERAND
SPAD SUBR SPAD NAME
7-3

R

oot

i

Demand Load (LOAD)

LOAD

Name[}Namé]...

This directive is used to create unresolved Primary Externals. Typically, each name
is resolved against a matching Primary- or Secondary Entry by the loader.

A name declared
unless the name
is needed for a

A name declared

in an EXTR is a Primary External, but is not considered unresolved
is actually referenced somewhere in the assembly. No such reference
LOAD name. ’

in a REF is an unresolved Primary External, but each REF allocates a

word of storage, and a name cannot appear in more than'one REF in an assembly. No
storage is consumed by a LOAD, and a name can aépea in any number of LOAD statements.

Suppose these two subprograms are placed on an iject Program Library:

*

XA
XC

XB

SUB
NAM
REL
SNAM
EQU
EQU

END

AC
XA
0
XC
$
$

XB

R%3

1
!
|

S

.

e o

ComputerAutomation CN —

This main program is assembled, and submitted to the loader first:

* MAIN
' REL 0
LOAD XL
* * R
* *
XA SREF
XB SREF
XC SREF
END

One, and only one, of these two segments is su

before AC and B:

* XL VERSION A
NAM XL

XL RES 0
LOAD XA
END

i

itted to the loader after MAIN, and

-M_M"%%__Aw-

XL VERSION B

i NAM XL

. XL RES 0
LOAD XB
END

If XL Version A is used, MAIN is loaded with Subprograﬁ AC. References to both XA
and XC are resolved. References to XB are left unresolved.

If XL Version B is used, MAIN is loaded with Subprogram B. References to XB are
resolved. References to both XA and XC are left unresolved.

Two points are of particular interest here:

1. MAIN has no use for XL itself.

Except for the LOAD, no statement in MAIN even

references XL. What MAIN wants is some combination of XA, XB, and XC.

2. XL occupies no storage at all.
! to control the loading process.

It is not really a subprogram, but a technique

The use of a name in a LOAD statement does not constitute a definition of a symbol

within the current Source Program.

The same name could be defined as a Label (or as

a SET Variable) within the current assembly, and would have no connection with the

information in the LOAD statement.

If such a Label were also declared in a NAM or

SNAM statement, however, it would be available to the loader for possible matching
against the name in the LOAD statement, just as if it appeared in some other Object

Program.

g

X ‘ ComputerAutomation (Of\ ——

Reserve Chain Link (CHAN)

s e AR e s n e

ikl L

2

[Labe%] CHAN [E]Identifier

This directive facilitates the creation of a type of data structure known as a
"chain" or "linked list" or "threaded list." An example of chain structure and
usage follows this description.

For each use of the CHAN directive, the assembler reserves one word of storage. The
optional label is the location of this word, and may be used in any context as if it
were the label of a RES directive.

The required operand, called the Identifier, consists‘of l to 6 alphanumeric char-
acters, the first of which must be alphabetic. Embedded colons are permitted by the
assembler, but should be reserved for CA-supplied software.

! i

All CHAN directives having precisely the same Idedtifier contribute storage to one
specific chain structure at load time, regardlessfof whether the directives appeared
in one assembly or in several programs loaded tog@ther.

| e

- 0The use of a particular alphanumeric string as an Identifier does not constitute a
definition of a symbol. The Identifier, as such, cannot appear in any statement
other than a CHAN. 1In theory, the same string could be used as the label of a
statement, and references to that label would be valid. 1In practice, using the same
! string both as a chain Identifier and as an ordinary label is confusing and in-

| advisable. :

An optional asterisk may be prefixed to the Identifier. At load time, a high-order
| "1" bit will be set in the word reserved by the CHAN directive. The meaning attached
to this bit is defined by the user's own chain-processing routine.

The words which belong to a specific chain -- its links -~ are filled in at load time.

'

It must bi understood that the mere appearance of a chain Identifier is not sufficient
reason for a given program to be selected by the loader; which programs are selected,

and whichj|are not, is governed solely by resolution of External references, to which
the CHAN directive contributes nothing.

i
when a word reserved by the CHAN directive is encountered, its high-order bit is set
aaccording to the user's specification, and the remaining 15 bits are made a direct
W storage address. For a particular chain, the very first link processed is set to
:0000 or :8000. This zeroed link is called the tail of the chain.

The second link in each chain contains the storage address of the tail; the third
- link contains the address of the second link; and so on, until no links remain in
the program. It is the responsibility of the program to know where the last link,
or head of the chain, is located. This implies careful control over the order in
which Object Programs, and the CHAN directives within them, are presented to the
loader.

g i 2t

SRR e e

comesorain QR —

%3 (5 Example of Chain Structure and Usage

This chain is created by the CHAN and DATA directives shown:

HEADW ‘ _D
-)

1
T 0
: 1 !
j cl B11 i §01‘ Al
! o]
i c2 I BO2 ‘ A2
3 .
i
© |
|
| * PROGRAM A * PROGRAM B * PROGRAM C
j CHAN W CHAN W CHAN W
Al DATA 0 BO1 DATA 0 cl DATA 0
A2 DATA 0 BO2 DATA 0 c2 DATA 0
Qﬂ'\ ok STORAGE
* UNRELATED
* TO CHAIN W
| . CHAN *W
| B11 DATA 0

|
!
|

iThe chain is processed by this program, which must be loaded last:

AHDW DATA HEADW
w HEADW CHAN W HEAD OF CHAIN W
* ‘
LDX AHDW INITIALIZE POINTER
! LOOPW LDX @0 X NOW CONTAINS A LINK
1 LLX 1 ELIMINATE POSSIBLE
ﬂ LRX 1 FLAG FROM LINK WORD
JXZ ENDW IF LINK = 0, NO MORE PROCESSING
| *
i * PROCESS DATA AT @1 AND @2 HERE
; * FLAG MAY BE CHECKED BY REFERENCE TO @0
; *
| JMP LOOPW
ENDW EQU $

S b e

fiiiec s SR

External Reference Constant (REF/SREF)

Name REF Comments
Name SREF Comments

These directives are used to declare-that certain names are to be considered both
internal and external references, so that explicit linkage to another program may be
used.

Within the assembly, the name is recognized as the label of a single word of storage,
which is reserved just as if the statement had used RES 1 rather than REF or SREF.
The name, therefore, must not appear in the label fjeld of any other statement in the

assembly. f ' .
i | |
! l

At load time, the name is presented to the loader ag an unresolved External. If a

matching Entry becomes available in another Object Program, the word reserved by the

REF or SREF is filled in with the direct address of the Entry.

i

The statement sequence shown here involves an implicit indirect link thru a word in a

Literal Pool or -- if no such word is available within addressing range -- a word in
Scratchpad: :

EXTR SUBR

JST SUBR

The following sequence allows the programmer to control explicitly the storage
allocation for the link, or even to build a table of External pointers:

SUBR REF
JST *SUBR

A REF §tatement creates an unresolved Primary External. An SREF statement creates an
unreso@ved Secondary External.

|
;

7-8

B ekt

T R

R B e

Section 8

——— LITERALS

A Literal is a word of storage, allocated for the operand of a Word Reference or

Byte Reference machine instruction. Unlike a word allocated by a DATA statement,

the exact location of a Literal is chosen not by| the programmer, but by the assembler
itself. 1In certain cases, the fact that a Literal was required is unknown to the
programmer until the assembly listing is availablle for inspection. '

A collection of Literals, grouped together in one area of memory, is called a
Literal Pool. The programmer can exercise some control over the location and size
of a Literal Pool, but again the assembler makes some of the decisions by itself.

Two coding techniques always generate Literals. One is an Explicit Literal operand --
that is, the source statement operand expression is prefixed by an = sign. Rather
than writing: ‘

ADD K1000
and remembering several pages later to include:
K1000 DATA 1000
the programmer writes:

ADD =1000

and lets the assembler allocate the storage, fill in the value, and adjust the

machine instruction address.

{
i
{

Theiother technique which predictably needs a Literal is a reference to a name
already declared External, and thus beyond any possible Direct Relative Addressing
Randge. Typically, a subroutine call is involved:

EXTR SUBR
* * ’
JST SUBR

The assembler makes the machine instruction indirect, and allocates a word in a
Literal Pool for the subroutine address. The result is the same as if the programmer
had written something like:

JST *XSUBR
* *

EXTR SUBR
XSUBR DATA SUBR

A related coding technique may or may not generate a Literal. 1In this case, backward
reference is made to a location which has already been defined. If the assembler
calculates that the location falls too far back for Direct Relative Addressing, the
machine instruction is made indirect, and an intermediate link is created in a
Literal Pool.

ComputerAutomation m _—

PARTA EQU $

* *

* Tk

PARTB EQU $

* *

* *

CYCLE JMP PARTA o

If the code in PARTA and PARTB is still under development, the distance between
CYCLE and PARTA may fluctuate in and out of JMP range with each re-assembly. This
fact is ordinarily of no concern to the programmer, because the assembler will
decide for itself which Addressing Mode is needed. |

!

The need for each Literal arises within a segment o executable instructions. This,
is exactly where the assembler can EgE_allocate?stoxage for the Literal, which is a
word of data. Instead, Literals accumulate until tﬂe programmer designates an
appropriate location for them with an LPOOL directive.

This process leads to the fourth, and final, coding sequence which can generate a
Literal. Again, the assembler's helpfulness in.the calculation of Relative Addressing
Ranges is involved. ; ‘

LOOP LDA FLDB
LDX =1000
* *
JMP LOOP
* *
LPOOL
FLDA DATA 0,2,4,6,8,10
FLDB DATA 0
* *

* *
%

When the assembler first processes the source statement labelled LOOP, the reference
to FLDQ is still undefined. It is not an External, but it is a forward reference,
and mayéor may not prove to be out of range. The assembler provisionally decides
that a Titeral would guarantee access to FLDB, makes the LDA indirect, and adds the
Literal to the current accumulation. The Explicit Literal in the IDX also joins the
accumulation.

The programmer finishes writing executable code, and begins some DATA statements.
But first, to provide for the Explicit Literals in the last piece of code, and
perhaps some other accumulated Literals, LPOOL is inserted. Among the words immedi-
ately allocated under the LPOOL, the assembler includes one for the reference to
FLDB, another for =1000.

Now the assembler finds out where FLDB is, in relation to LOOP. If FLDB is out of
range, the Literal Pool entry really was needed, and the indirection already set in
the LDA is the only way to access FLDB.

Suppose, however, that FLDB turns out to be within range of the ILDA. The instruction
is made direct to save execution time. The Literal Pool word, which would have been
a pointer to FLDB, is left unfilled.

The allocated storage remains in the program. Removing the allocation would involve
reassembly of the entire Source Program. ‘

8-2

i (’"\ Literals take up storage. Teéhniques which generate Literals may use the storage
& s) efficiently, and they may not. Only the programmer, not the assembler, can make
& that decision.

To summarize, these techniques may. generate Literals for Word Reference or Byte
Reference instructions:

1. pPrefixing an operand with .an = sign.

2. Reference to a location known to be External.

3. Backward reference to a location beyond:Dirﬁct Relative Backward Addressing
Range. ,

4. Forward reference to a location not defined

| |
| !
1]
! 1

before the next LPOOL statement3

|

-

&
&
i
&
&

kit A e

Allocate Literal Pool (LPOOL)

[Label] LPOOL [Operand » [Comments]]

This directive informs the assembler that it may allocate storage for whatever
Literals have been accumulated. The optional label is the location of the first
allocated word.

No words are allocated if no Literals have been accumulated. Even the use of an
Explicit Literal between one LPOOL and the next does not always require a new Literal
Pool entry.

i
A LDA =1000 o
* * R .
B LDA =500*2 ; !
* * ‘
Ll LPOOL L
* *
* * i
LDA =4*250
* *
L2 LPOOL

The Literal for =1000 in Literal Pool L1, originally created for instruction A, is
shared with instruction B -- the assembler can see that the same value is involved,
even if the source expression looks different. Furthermore, when C is processed,
the assembler checks for a matching value in all the Pools within backward range
before it assumes that a new value will be needed in a forward Pool. This can
result in very efficient sharing of Literal Pool allocations, if the programmer
places LPOOL statements judiciously.

For C to share the Literal created for A, the starting location of the Pool at L1
must be within the Relative Backward Addressing Range of C. It is not sufficient
that thezword allocated for the =1000 be within range; the entire Pool must be close
enough. |

If 11 isinot within range of C, a new Literal also containing =4%*250 (that is,
=1000) bécomes part of the forward Pool at L2. The new value is available for
sharing with instructions beyond L2 but within range of it.

The optional operand of an LPOOL statement is an absolute expression with predefined
terms and a value greater than zero. It specifies the maximum numbery of words
allowed in this Literal Pool, regardless of how many Literals have been accumulated.
If more words are nceded, the leftover Literals will be held for the next available
Literal Pool. '

The programmer should observe that no Comments may be used in an LPOOL statement
which has no operand. '

If an assembly contains at least one LPOOL statement, than all the Literals still
accumulated when the END statement is reached are allocated just as if the END were
immediately preceded by an LPOOL. A dummy statement of LPOOL 1 at the start of the
assembly is sufficient to activate this provision for leftover Literals.

If an assembly contains no LPOOL statements at all, then no Literal Pools are ever
generated. Instead, every instruction which would have used Relative Addressing
into a nearby Literal Pool is set for Indirect Scratchpad Addressing. All of the
Literals are converted into Scratchpad Literals, which are described in the next
section of this manual.

g e

R e e e

Section 9

..SCRATCHPAD LITERALS

A Scratchpad Literal is a word of storage allocated by the loader, and available to
a Word Reference or Byte Reference instruction thru Scratchpad Addressing Mode. The
need for a Scratchpad Literal is determined duang the assembly process, and communi-

cated from the assembler to the loader thru a distinctive Loader Type Code in the
generated Object Program. |
|

Two coding techniques result in Scratchpad therals. The more common situation is
that a Literal Pool Reference, either expllclt or implicit, was used, but that no
Literal Pool space was available within range of the instruction which involved the
reference. This includes the extreme case of a Source Program which never uses an
LPOOL at all, such as a program originally coded for CA-supplied assemblers lacking

such a directive.

If at least one LPOOL statement is found in a Source Program, it is assumed that the
programmer wanted to minimize or eliminate any requirement for Scratchpad Literals.
Therefore, the assembler will attach a Warning Flag to every Class 1 or Class 8
instruction which needed a Scratchpad Literal only because no LPOOL was within
Relative Addressing Range.

Certain ways of using instructions always need Scratchpad Literals, and will not be
flagged. Specifically, a Word Reference or Byte Reference operand with the prefix

@ -- which indicates Indexed Addressing —-- will always be generated with a Scratchpad
Literal for indirect linkage if the operand value is either:

i

1l.| Relocatable, or

2., Absolute, but higher than the machine limit for Direct Indexed Addressing (:3F
' for the 3/05, :FF for the other machines).

Even a combination of Literal Pool entries and Scratchpad Literals cannot guarantee
that a Byte Reference instruction has access to every location in memory. The assem-
bler rejects a Byte Reference instruction with Explicit Indirect Addressing if its
operand (presumably the location of a Byte Address Constant) is not within Direct
Addressing Range. Neither a Scratchpad link nor a Literal Pool word can be used to
access the BAC, and thru it the actual data, because only one level of Indirect
Addressing is available when the machine is in Byte Mode.

e

ey R P 2 S

EER S L

Scratchpad Literal Only (SPAD)

SPAD Name [, Name] e

This directive declares that certain names are to be excluded from ordinary Literal
Pool allocation. If at least one term of the operand expression of a Word Reference
or Byte Reference instruction is an SPAD name, and the assembler finds that a Literal
is needed, then the Literal will go into the Scratchpad Literal Pool.

Each name may be local to the assembly, or it may be declared External, or it may
never appear at all. An SPAD name may appear in a humber of different SPAD statements.
An SPAD statement only affects other statements after it, not before.

An SPAD name is usually declared because the programmer is using LPOOL directives, '
but anticipates that frequent references to a cérta#n name would generate a consider-
able number of unshared words in many different Literal Pools. 1In this situation, a
Scratchpad Literal is more conservative of storége, because the loader eliminates
duplicate values before allocating the Scratchpad Literal Pool.

i

s et

e e e

Section 10

o

INTERPRETATION OF THE ASSEMBLY LISTING

This section describes the information on the a§sembly listing. A sample listing

follows the description. |

Page headings have already been discussed underlTITL. Two kinds of lines appear in
the body of the listing, Error Lines and Statem#nt Lines.

|

Error Lines

An Error Line starts with two asterisks and'a blank. Various flags follow, each of

a which represents an error in the source stat::ement on the immediately preceding line.
- The specific meaning of each flag is listed: for ready reference at the end of this
section. : i

At the very end of the listing, this message appears:

YYYY ERRORS eeee

{’h\ The number yyyy is the total number of lines with Error Flags. The number eeee is a
chainback pointer. The last source statement which caused an Error Flag was statement
| eeee on the listing. The Error Line under that statement contains a chainback to the
next-to-last statement which caused an Error Flag, and so on back to the first Error

‘ Flag, which is easily recognized by its lack of a chainback pointer.

! :

|

Stétement Lines

A Jtatement Line is divided into 7 uniform columns, separated by one or two blanks:

i

1. Line Number 4. Label Field
@' 2. Location 5. Operation Field
3. Value 6. Operand Field
7. Comments Field

B S

S o

10-1

B
&
g
=

T

ol
i
e
z

Line Number

This column identifies each source statement.

Location

The current value of the Location Counter appears in this column.

i

The result of assembling each statement is shown here. If a machine instruction or
a directive generates object code, each word appear$ onl a new line, so the Location
column can be updated. If a statement simply e?aluites an expression, the final
value appears as a 16-bit word. i ;

Value

The Value column also supplies information abouﬁ Literals. For an LPOOL statement,
the number of words allocated in the Literal Pool is given. For a reference to an
entry in a Literal Pool, the location of the word is shown below the object code.
For a Scratchpad Literal, the value passed to the loader -- that is, the operand
expression value -- is shown. : |

Source Statement Fields

The remaining columns on the assembly listing contain the four fields of the original
source statement, spread into uniform columns.

Symbol Table

The main assembly listing is followed, on a new page, by the names and values of all
the Symbols and SET Variables in the Source Program. The names are alphabetized, and
displayed 4 across. Each name is followed by its 16-bit value. To the left of a
name, qhese flags may appear:

|

M Multiple Definitions
U Undefined Symbol
X External or Entry

If LPOOL directives were used, the alphabetized entries will be preceded by messages
of this form:

LPOOL@ hhhh

That is, "Literal Pool at location hhhh." Every Literal Pool, including the implicit
one before the END statement, will be identified in order of appearance.

10-2

ARy e

A

conpamtaonsion O\ ——

Error Flags

A Absolute expression was required, but operand here is Relocatable.
Value of operand expression is not an acceptable value for this Mnemonic
Destination of a Conditional Jump is out of range.

C ENDC not paired with an IFT Or IFF.
IFT or IFF range still open when END was reached -- ENDC missing.
D Operand reference to a symbol with multiple definitions.

Al

E Expression could not be evaluated -- value %orced to :0000 Absolute.
L Label Field unacceptable. !

|

!

M Multiple definition of a symbol.

0 Operation Field unacceptable -- process%d as if HLT.

P Pass 2 out of synch —-- probable error iﬁ hardware or software. .
R Relocation Factor unacceptable -- valuevforced to :0000 Absolute.

S Syntax error in operand expression.

T Self-defining term too large -- value forced to :0000 Absolute.

8) Undefined symbol was referenced.
W Warning -- this Word Reference or Byte Reference instruction needs a Scratchpad {
Literal. (This flag appears if a Source Program contains at least one IPOOL ;
1

statement. The same warning appears if no LPOOL statements were used, but the
| hardware SENSE switch is ON during Pass 2 processing.)

OV | Overflow of an intermediate value beyond 16-bit maximum.
Statement processing was unsuccessful because of Symbol Table overflow.

10-3 Revised 7/76

S

R T

. (\PAGE 0001 SAMPLE ASSEMBLY LISTING FOR OMEGA

T

000e Ar A KKK RKRKRKARAAK AR I AR A ARNAA KA A RA R R AR RAARA KRR RAAAR AR A AR
H 0003 x SECTTON 11
0004 *
0005 * e, SAMPLLE ASSFMRBLY LISTING
0006 *
0007 N S R R R 2RSSR 222 222222 X222 28R R R 2 881
N00& * _
0009 NAM MAIN ;
00106 0000 REL 0 |
0011 ‘ * J
0012 0000 MAIN EQU $ |
00173 * j
0014 0002 ABS EQU +7 ; AB%OLUTE
00195 * ‘
0016 0000 8802 ADD ARS
0017 0001 BAAS ADD zABS
0027 f
‘3W 001te 0002 OBOC AAT ARS ;
0019 0003% 1200 JAG ARS
Ak A
1 0620 0004 4513 AlR ABS,3
E 0021 0005 8804 ADDB ABS
? 0022 ' *

0023 0006 0002 DATA ABS,ABS+3,*ABS
{ \ 0007 0005
0008 8002

0024 0009 0004 BAC ARS, ABS+3
000A 0007
0029 0002 SFTVAR SET ARS
0026 000R A29YH LnX =SETVAR
| 0027
0027 [000C BEIR SUB ZABS+7-ABS
| 00r8 ‘
0028 | x
0029 | 1254 ARSBIG FQU 1234 ABSULUTE BEYOND SCRATCHPAD
0030 *
'3‘ 0031 000D BRYR ADD ABSR1G
0029
0032 00UE 8A9YA ADD =ARSRIG
0029
0032 000F OROO AAT ABSRIG
- xx A un19
00384 0010 1200 JAG ARSRIG
k% A 0054 :
0035 0011 4500 ALR ABSRIG, 3
k* A 0044 .
0046 0012 B8RY7 ADDR ARSRIG
002A
0037) *
0036 001% 1234 NATA ARSRIG,ABSRTG+35, xABSBIG

0014 1237
0015 9P 34 :
0059 0016 2468 BAC ABSHTG,ABSBIG+3

11-1

T

T

i e

gz

BB e SR e

I——

PAGF

OOat
0041

Nno42

00d 4
dodd
VEVE)
N0 dk
xx t
004/

nouan
xk A
V0ga
xk A
0050
x*x A
005l

uiose
0053

0054

0055
0096

VoOn7

0058
V099
0060

0061
00hAe
nnes
0064
0069

0066
xx A
V67
0068
*x % A
0069

3007
0017
goie

V019

00 1A
0U1B
001C
0010
001k
0C1F
0020
0021
00eP2
00238
NorPd

0025

0026

0ner7
nels
0029
002A
0oehk
00°C

00en
002E

~002F

D040
0031

nN632

2U46hB
1244
APy
Ny
B8F 8F
g0e8

FHFE

B8RO0
00595
BABF
00eB
OROO0
0046
1200
DOUH
4500
0n4a9
81aC
voe2c

FFFE
0001
FFFF
FFFC
FFFF
FFFF
AeBS
0028
8t 81
V028

0006
0002
0007
17 34
2ubH
FFFF
FFFD

00092

8A54
3A98
una7
0R00
0050
1°11
4500
0066
B8AE

3FTVar

NAHS

SETVAR

LPI

REL

SeET
LNX

SUR

EQU
ADD
AND
AAT
JAG
ALR

ApnB

NATA

BAC

ST
Lnx

SilR

LPOOL

[N

AnDh
ANDD

AAT

JAG
AIR

AnD\

ARSRIG
=SFTVAR

Tz ABSHTIG+7-ARSRIC

-7 NEGATIVE ABSOLUTE
NABS

|

|
=MARS | ! '
NABS i
MABS |
NABS

NABS
NABS, NAKRS+3, ANAFS

NABS,MARS+ 3

NABS
ZSETVAR

ZNABS+7=NARBS

MAIN+? RELUCATABLE

RFL
=REL

REL

RFL
REL, 3

RFL

11-2

PAGE

Vo070
0071

voi7e

0073
nora

0075
00176
00717
0078
0079

0080

0081
*x F
008¢
x F
0083
*x A
0084
*x [
008S
0046

*x F

*%x [
0087
*x F

x*x E
008K
xx |
0089
xx U
0030
x k% F
0091
009¢
0093

0094
00995
0096
0097

xk A

0003

0033
0034
0035
00 3h
0037
0038

0039

V0 3A
0038
003C
003D
00 5F
003F
040
0041
0047
vo4s

0044

D045

0046

0047
0048
0049

004A

0Qone
0009
800¢
0004
0007
0002
A28F
0047

8C07

8BAD

o048

8AR(
0048
0R00
0068
1200
0081

4500

0uRe
8800
0083

0084
8000
0086
0000
0086

0000

00R7
0000
0087
AOGGO
0088

BCOO

0039

Vo003
00y
0000

4567
89006

4567
0090

SAMPLE

*

SETVAR

SETVAR

RELF AR
x

ASSEMBLY

DATA RFL,RFL+3, *REL
BaC REL, REL+$
SET REL
LDX ZSFTVAR
i
SUB REL#T-RFL |
EXTR SUBR EXTERNAL
ADD SUBR
ADD =SURR
AAT SUBR
JAG SUBR
ATR SUBR, 3
ADDB SURR
NDATA SUBR,SURK+3,*xSURR
RAC SHBR, SURK+3
SET SIRBK
LUX ZSETVAR
SUR SIRK+T7=SURR
LPOOL
£l MATN+:aS67 RELUCATABLE GUT OF RANGE
ADD RELF AR

11-3

e

E R R L3

PAGE
0098
4

*xk A
N09Y9
x*x A

0100
x%x A

0101
xk A

0102

xx A
0103
0104

J)1095

2106
0107

xx A
0106

0109
0110
0111

0004

004R

004C

004D

004dF

004F

0050
0051
0052
D057
0054

0055

0056

8800
4567
0097
0BNO
0098
1200
0099
4500
0100
8900
8ACE
0101

4567
456 A
C567
BACF
8AD1
48567
AVOO
4567
0102
BES1
0028

SAMPLE ASSEMHBLY LTISTING

SETVAR

*
*
* NEXT

ADD =RFLF
AAL RELF A
JAG RELF A
ALR RELF A

ADDKY RELFA

AR

R
R
Rs3

R

FOR UMEGA

'

|
|
|
|
|

DATA RELFAR,PEIFFR+‘,*RELFAR

BAC RELFAR,RELFAKR+S
SET RELFAR ?

LDX =SETVAR

SUR =ZABS+7-ABS

STATEMENT IS

A NFW PAGF DIRECTIVE

11-4

(.)

> o e R o R R R e T R

&

0113 * CONDITIONAL ASSEMBLY DEMONSTRATION
0114 *
0115 0001 TRUE SET 1
0116 0000 FALSE SET %0
0117 *
0118 « TAKE 7 SOURCE STATEMENTS LIKE THIS --
0119 * ' I+7 TV
0120 * sTO0P 1 77
0121 * ENDC |
0122 * NOP |
0123 " IFF | TV
0124 x stop | :8e
0125 * ENDC |
N126 * 1 :
0127 0001 TV SET TRUE
0128 * FIRST, WITH TV = TRUE

0 0129 x
0130 0001 IFT TV
0131 0057 3C77 STOP 277
0132 ENDC
0132 00958 0000 NOP
0137 * «
0138 0000 TV SET FALSE

f-\0159 « NOW, THE SAME 7 STATEMENTS WITH TV = FALSF

' 0140 *

0144 0059 0000 NOP
0145 0000 IFF TV
0146 00SA 3C88 STOP :84
0147 ENDC
0148 *
0149 | x NOTE THF JuMP IN THE LINE NUMBER
0150 x WHEN SOMETHING IS SKIPPFU

l1-5

B

I R T

ERNN S

AT -

PAGE 0006

THE NEXT STATEMENT WILL LEAVE NO LTTERAL POOL

N15¢ *
0153 x WITHIN FORWARD RANGE OF THF STATEMENTS
D154 x FUK 'RELFAR' == BUT SUME UF THOSE STATEMENTS
0159 x WILL RE ABLE TO USF FX1STING VALUES IN POQL LP?2
0196 * T
0157 015R ORG $+:100
0158
01599 * l
01A0 O01SR 8KUO ADD 0 |
0161 015C BAAC ADD =0 i
0169 1 I
016”2 015D 0BOO AAT 0 ; | 5
0163 015K 1200 JAG 0 o | '
xx A 0107 i
0164 015F 4503 ALB 0,3 T
0165 0160 8800 ADDR 0 :
0166 * ;
0167 0161 0000 NATA 0,043, %0
0162 0003 ‘
0163 8000
D166 0164 0000 BAC 0,043
0165 0003
0169 ' 0000 SEIVAK SET 0
0170 0166 A28 LDX =SETVAR
0169
v171 0167 BEBC SUB Z0+7=0
01hA
nir72 *
0173 *
0174 0168 016D DATA ENDTAG WORD AFTER END OF THIS PROGRAM
0179 | * :
0176 g x HERE COMES AN IMPLICIT LPOOL BEFORE END
g 0004
L D169 0000
L 0168 0007
0168
016C
01177 0000 EMDTAG END MAIN

0029 FRRORS 0163

1l1-¢

PAGE 0007 SAMPLE ASSEMBLY LISTING FOR OMEGA

e T e

AR LPOGLe 0027 LPOOLa 0047 LPOOLAY 0169 ABSRIG 1234
AbS 0onoe EMDTAG 016D FALSE 0000 LP1 0027
LHe Quay X MATN 0000 NARBS FFFE RELFAR 457
REL 00yl SETVAR 0000 X SURR 0000 TRUE 0001
Tv [VEVRVRY ——

11-7

ot

PR —

et

g

: ComputerAutomation <§:;Qs —

i

Section 12

EDITING AND ASSEMBLING A SOURCE PROGRAM

This section describes the commands used to edit and assemble a Source Program. The
commands are conversational -- OMEGA requests a|command and some parameters with a

question mark, and immediately either accepts OT rejects the response.

Each command line on the Teletype is terminatediwith a Period. If OMEGA rejectk the
command, it will type out a Back-Arrow. Similarly, typing in a Back-Arrow indicates
that the current command line should be abandoned without processing.

In the command descriptions, lowercase letters imply some number, and an underline
indicates a type-out from OMEGA. ,
Two kinds of source statement lines are manipulated by commands: Input Lines, and
Buffer Lines. ' :

An Input Line Number is a decimal number between 1 and 32767. Leading zeroes are
optional.

The Buffer is the memory above OMEGA used to build an edited Source Program. A
command which refers to the Buffer can use a Buffer Line Number as low as 0 -- that
is, just before the first line in the Buffer -- and as high as the current number of
the final line. Because the Final Line Number is not always known exactly, the
letter F can be used instead.

12-1

BRI - e et it R

CONNECT DEVICE (C)

The C command connects an OMEGA logiggf device to a physical device, or to the Buffer.
You can make all the connections just once, after loading OMEGA, or you can change a

C1d.
cod.
CLd.

connection whenever OMEGA asks for a new command.

Source Input Devices:

I1
I2
I3
14
I5
16
17

I0

Teletype Paper Tape Reader

HS Paper Tape Reader

Card Reader

Buffer (as Input for X command)

Card Reader with Distributed I/0O

HS Paper Tape Reader with Distributed I/0
[

Teletype Keyboard : f .
o
|

Punch EOF Now

i

Punch Output Devices:

ol
02
03
04

00

Teletype Punch

HS Paper Tape Punch
HS Paper Tape Punch with Distributed I/0

(No Punch Output)

List Output Devices:

1]
L2
L3
L4
L5

LO

You can enter several connections with one C command, by using one blank after each

device:

When OMEGA is first loaded, automatic connections are made to the Teletype, equivalent

Teletype Printer

Data Products Printer

Centronics Printer

Data Products Printer with Distributed I/0
Centronics Printer with Distributed I/O

(No List Output)

CI4 03 L2.

CIl O0.

to this command:

C12 01 L1l.

Revised 7/76

|

SR e s

INITIALIZE (I)

I.

The I command initializes OMEGA for input and editing. The Buffer is cleared, and the
last Input Line Number is set to--@. This command has no effect upon the Device Con-
nections or the High Memory Limit.

An I command is automatically simulated when OMEGA is first loaded, and when an E

command is entered. i
|

{ i

i
‘ |
RESTART , : |
) i
' i
You can restart OMEGA at any time, and make it abandon any reading, printing, punching,
or assembly in progress. No initialization is done for a restart; the Buffer, the
Input Line Count, the Device Connections, and the High Memory Limit are intact.
|
There are three ways to cause a restart:
On an LSI-2, hit INT.
On an ALPHA-16, hit AUTO.
On all machines, hit STOP, set P to :0100, clear STOP, and hit RUN.

OMEGA will respond immediately with "?" and wait for the next command.

SET END OF MEMORY (E)

Ehhhh.

The E command resets OMEGA's High Memory Limit. When OMEGA is first loaded, it deter-

‘mines the size of memory, subtracts 16 words to allow for your bootstrap loader, and

calﬂs the result the end of available memory. If you want to protect more high memory
than 16 words, enter a new hexadecimal address.

|
The 'E command triggers an automatic I command, clearing the Buffer and setting the

last Input Line Number to O.

If you need an E command every time you load OMEGA, you should probably create a new
version of OMEGA with a fixed High Memory Limit. Refer to section on OMEGA Program
Variables.

For LSI-3/05 with Software Console loaded, setting the end of memory below the Soft-
ware Console will preserve the accessability of machine console.

12-3 Revised 7/76

b

S S

o

READ INPUT (R)

"Rm.

The R command reads thru Input Line m, and adds the lines to the Buffer. If Input
Line m has already been passed, the command is rejected.

The last Input Line added is typed out for verification. If the end of the Source
Input is found before Line m is reached, this message is also typed:

!

END OF TAPE: LINE NO mmmm

You can read in all of the Source Input by entering| R9999. Alternatively, you can
read the Source Input one piece at a time, with S or A’ commands between the R i
commands, as illustrated on the opposite page. f { ‘
. i |

: |

SKIP INPUT (S) i

i

Sm n. ’
Sm.

The S command skips over Input Lines m thru n (inclusive), or -- for Sm. -- skips
only Line m. If Input Lire m has already been passed, the command is rejected.

If Line m is not the very next Input Line, all of the Source Input up to -- but not
including -- Line m is read and added to the Buffer, as if an R command had been
entered first.

The first and last Input Lines skipped are typed out for verification.

After an S command, you can replace the skipped lines immediately with an A command,
or continue with more R and S commands, as illustrated on the opposite page.

|
!
|

12-4

L

INPUT
INPUT
INPUT
INPUT
INPUT

INPUT
INPUT
INPUT

INPUT
INPUT
INPUT
INPUT
INPUT

INPUT
INPUT

(LINE
(LINE
(LINE
(LINE
(LINE

(LINE
(LINE
(LINE

(LINE
(LINE
(LINE
(LINE
(LINE

(LINE
(LINE

(INPUT)

001)
002)
003)
004)
005)

006)
007)
008)

009)
010)
011)
012)
013)

014)
015)

(TELETYPE)

2R5.
INPUT (LINE 005)
T
|
259 13. |
l
o
INPUT (LINE 009)
INPUT (LINE 013)
2R15.

INPUT (LINE 015)

)

12-5

0001
0002
0003
0004
0005

0006
0007

. 0008

INPUT

INPUT

INPUT
INPUT
INPUT

INPUT
INPUT
INPUT

(BUFFER)

(LINE
(LINE
(LINE
(LINE
(LINE

(LINE
(LINE
(LINE

001)
002)
003)
004)
005)

006)
007)
008)

0009 INPUT (LINE 014)
0010 INPUT (LINE 015)

B

ADD AFTER BUFFER LINE (A)

Am.

The A command opens the keyboard so you can insert Buffer Lines immediately after
Buffer Line m. Type in successive lines of the Source Program, and end each line
with a Carriage Return. To terminate the additions, enter a Carriage Return alone.

Backspace over typing errors with one or more Back-Arrows. Cancel a whole line by

ending it with a Back-Arrow and a Carriage Return. |

To insert lines before the first line currently in the Buffer, use AO. To add lines

after the final line in the Buffer, use AF. :
i , ;
1 |

Remember that additions force re-numbering of all the Buffer Lines after the added

lines, as illustrated on the opposite page. Add groups of lines from the bottom up.

DELETE BUFFER LINES (D)

Dm n.
Dm.

The D command deletes Buffer Lines m thru n (inclusive), or -- for Dm. -- deletes
only Line m.

To delete the final line in the Buffer, use DF. To clear the entire Buffer, enter
D1 F. The entire Buffer is also cleared when you enter the commands I, E, or B.

To replace a group of lines, first delete, then add:

2D41 42.

2A40.

REPLACEMENT FOR OLD 41 cr
REPLACEMENT FOR OLD 42 cr

cr
?

Remember that deletions force re-numbering of all the Buffer Lines after the deleted
lines, as illustrated on the opposite page. Delete groups of lines from the bottom

up.

12-6

.

[S

0001
0002
0003
0004
0005
0006
0007
— 0008
— 0009
0010

0001
0002
0003
0004
0005
_, 0006
0007
0008

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010

(BUFFER)

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

(LINE
(LINE
(LINE
(LINE
(LINE
(LINE
(LINE
(LINE
(LINE
(LINE

(LINE
(LINE
(LINE
(LINE
(LINE
(LINE
(LINE
(LINE

(LINE
(LINE
(LINE
(LINE
(LINE
(LINE

INSERTION 1
INSERTION 2

INPUT
INPUT

(LINE
(LINE

001)
002)
003)
004)
005)
006)
007)
008)
014)
015)

001)
002)
003)
004)
005)
006)
007)
015)

001)
002)
003)
004)
005)
006)

007)
015)

2D8 9.

2R6.

(TELETYPE)

INSERTION 1 cr
INSERTION 2 cr

cr
?

12-7

g

s

S R e AT T e SR T o

tape to OMEGA.

BUFFER CLEAR (B)

B.

The B command deletes all the lines in the Buffer. The commands I and E also clear
the Buffer completely.

LIST BUFFER LINES (L)

Lm n. i

Lm. _ ;

x
The L command lists Buffer Lines m thru n (inclusive), or -- for Lm. -- lists only
Line m. To list the final line in the Buffer, use . To list the entire Buffer,

enter L1 F. : i

Each L command produces a new formatted listingﬁ Each Buffer Line is preceded by its
current Line Number. Each page has 54 printed lines and 11 blank lines. If Device L
is connected to a Teletype, the final (or only) page is not formatted. This saves
paper if the listing is less than one page long.

PUNCH BUFFER LINES (P)

P mn.
P m.

The P command punches Buffer Lines m thru n (inclusive), or -- for P m. -- punches
Line m only. Note the blank required before the specification for m.

Each line punched is terminated with the sequence:
Carkiage Return
Lin% Feed
Null

This sehuence makes manual splicing easier, and is also suitable for re-entering the

To punch the final line in the Buffer, use P F.

Some blank leader will be included if you follow the letter P with an L.

An Up-Arrow and some blank trailer will be included if you follow the P (or the L)
with a T. The Up-Arrow represents End-of-Tape to OMEGA. If the tape is later re-
entered with an R command, reading will stop at the Up-Arrow. If the tape is fed
directly into an X command, the Up-Arrow will allow another piece of input to be
used, unless an END statement was on the current piece.

To punch a complete program from the Buffer for future use, enter:

?PLT 1 F.

ey

A

e e i o4

P o r—

ComputerAutomation (O ——

RESET LAST INPUT LINE NUMBER (T)

Tm.

The T command is used to re-synchronize the Input Line Numbers with an assembly
listing, or with your latest listing of the Buffer Lines. This is quite useful when
you're building a new program from several pieces of tape, or when a series of R and
S commands has allowed the Source Input to get out of synch with the Buffer.

OMEGA uses the Line Number in the command as the number of the last Input Line already
passed. The next line about to be accessed by an R or S command is therefore m + 1.

|
The value of m can be 0, making the next Input L;ne‘into Line Number 1. This setting

is made automatically for any of these condition

|

i
OMEGA just loaded. !
I command entered.

E command entered.

12-9

ewn

RS b e T

MEMORY AVAILABLE DISPLAY (M)

M.

The M command simply asks OMEGA to type out the amount of memory still available
between the fixed part of the assembler and the High Memory Limit. The number dis-
played is the decimal count of the words (not bytes) left for building Buffer Lines,
Symbol Table entries, and Literal Pools.

If a source statement is added to the Buffer with an R or an S command, every two
characters consume one word of memory. A Carriage Return is appended to each llne,
but extra blanks between the fields are compressed ?ut
|

A statement added to the Buffer with an A command 1% not compressed, and should be
typed in with only one blank separating ad]acent flglds. Similarly, a source state-
ment fed directly to an X command thru the Teletypelkeyboard is not compressed as it
is when read from other devices. :

!
After an X command is entered, and assembly begins, each new Label, SET Variable, New
Op Code Definition, or Literal needs 4 words of memory.

If the memory available is exhausted during Buffer editing, this message appears on
the Teletype: -

BUFFER FULL: LAST SOURCE LINE IS mmmm

An M command would show a very low number of words left. Either delete a substantial
number of characters from the Buffer (perhaps a page of Comment Lines, or a piece of
the Source Program not currently needed); or punch out a partial Source Program,
clear the Buffer, build the rest of the program, punch it out, initialize OMEGA, and
assemble from the complete tape:

? ?PL 1 F.
v ?B.
| 2 (T, R, S, A, and D commands)
2?PT 1 F.
2I.
?CL3 I3.
?X.

12-10

R

EXECUTE ASSEMBLER (X)

X.
XE.

XL. ,
X2. -

The X command ends the interactive editing of a Source Program, and begins an actual
assembly. No more commands are accepted until an END statement has been processed.

{
If the Buffer is not empty, you can connect it t? Device I and assemble your edited
program directly: ‘ |

Il

|
2CI5 L3 O3. : | l
X. ' ’
To protect you against destroying an edited Euffer, OMEGA will not accept an X
command if Device I is connected to anything except the Buffer, as long as the
Buffer has some lines in it. For an assembly from cards or paper tape after an
editing session, initialize OMEGA, connect the reader, and start the assembly:
21,
2CI3 L3 03.
X.

|

A normal assembly, requested with a simple X command, does three things:

1. Performs two passes over the Source Input.
2. Generates a complete listing.
3. Punches one Object Program followed by an EOF.

You can suppress all printed output by connecting Device L to 0, or all punched

output by connecting Device O to 0:
|

[2CLO.
2c00.

You can restrict the listing to only Error Lines by inserting the letter E before
the period in the command:

2XE.
If each new Object Program you're punching is part of an Object Program Library
tape, you don't want an EOF following each program. Specify Library Format for the
Object Program by inserting the letter L before the period:

?XL.

OMEGA will immediately punch one EOF on its output tape whenever you enter this
special command:

2CIO.

This lets you use a consistent XL command for a series of assemblies, and explicitly
supply the punched EOF later.

12-11

@
)

BRI

i

Once an assembly has terminated, you can produce another copy of the printed and
punched output by requesting OMEGA to repeat Pass 2 only:

?X2.

Connections may be changed before each X2 command. For example, you may want another
listing, but not another punched Object” Program:

2CI5 L3 03.
2XL.
2C00. .
?X2. !
Ex 3 !
The modifiers E, L, and 2 can be combined in any order after the X and before the
period: ‘
|

XEL. T
"X2E.
XLE2. ?

12-12

(\ OMEGA PROGRAM VARIABLES

Certain fixed locations in low memory contain values which control the operation of
OMEGA. Each value may be changed immediately after loading OMEGA, and a new paper
tape which preserves the modifications may be punched with BDP, the Binary Dump
Program. —

High Memory Limit

When OMEGA is first loaded and executed, the high end of memory is determined, :0010
is subtracted, and the result is stored at location :0002 Absolute. Unless an E
command is used to change the value later, OMEGAfwill use the stored address as the
upper limit of its available memory. - ; { '

. |
To prevent OMEGA from making the initial calculation, replace the JST at location
:0100 Absolute with a NOP. Set locat}on :0002 Absolute to the new fixed High Memory
Limit. P A

MACH Value
If no MACH statement is supplied to OMEGA2, it uses the initial contents of location

:0003 Absolute as the MACH value. The distributed version of OMEGA2 has :0002 --
binary 010 -- at this location, indicating the LSI-1 instruction set.

Lines per Page

The maximum number of lines in the body of a page is carried as a negative number
in location :0004 Absolute. The distributed version of OMEGA uses :FFCB, or -53.
This value allows 13 lines for the top and bottom margins, and for the page heading
andititle.

|
{
|
i

]
Characters per Line

The maximum number of characters on each line of the assembly listing is carried as
c a negative number in location :0005 Absolute. The distributed version of OMEGA uses
:FFB8, or -72.

12-13

L

HEgR e

I.

Ehhhh.

cd.

OMEGA COMMAND SUMMARY

CONTROL

Initialize OMEGA -- clear Buffer and reset last Input Line read to O.

Buffer clear.
End of memory set to hexadecimal address.
Memory available displayed in decimal words.
Execute assembler.
Error list only.
Library Format for Object Program =-- ho EOF.
Pass 2 again.

|
|
L
BUFFER EDITING {
Add after Line m. i
Delete Line m.
Delete Lines m thru n.
List Line m.
List Lines m thru n.
Punch Line m.
Punch Lines m thru n.
With leader.
With trailer.
With leader and trailer.

INPUT EDITING

Read thru Line m, and add to end of Buffer.

Skip Line m, after reading thru Line m-1.

Skip Lines m thru n, after reading thru Line m-1.
Reset last Input Line read to m.

LOGICAL DEVICES

Connect devices:

Source Input Punch Output

I1 Teletype Keyboard 01 Teletype

I2 Teletype Paper Tape 02 N/A

I3 HS Paper Tape O3 HS Paper Tape

I4 Card Reader 04 HS Paper Tape (DIO)
I5 Buffer Lines to X. 00 No Punching

I6 Card Reader (DIQ)
I7 HS Paper Tape (DIO)
I0 EOF Now

12-14

List Ou.put

Ll
L2
L3
L4
L5
LO

Teletype

Data Products
Centronics

Data Products (DIO)
Centronics (DIO)

No Listing

Revised 7/76

-

P

Section 13

MESSAGES ON THE TELETYPE

OMEGAn (rr)

CAUSE: OMEGA has begun execution. Revision level of the program is rr.
ACTION: None. j
v L

FEED ME: RUN : ;

CAUSE: The assembler could not save the source statements read during Pass 1,
because the Symbol Table needed the memory. . _

ACTION: Reposition the Source Program tape ito the start of the last program read,
and hit RUN.

PAUSE

CAUSE: Input ended with an up-arrow, indicating that more is to follow.
ACTION: Ready the next piece of input, and hit RUN.

PUNCH ON, RUN. AT HALT OFF, RUN.

CAUSE: The Teletype punch is about to be used.
ACTION: Turn on the punch and hit RUN. At the next machine halt, turn off the punch

and}hit RUN again.
|

RECORD GT 80 CHARACTERS

CAUSE: An assembler language source statement was expected, but the tape record was
too long. The unacceptable tape is probably either an improperly delimited header,

or an Object Program.

ACTION: Correct the problem, and enter appropriate commands to continue editing or

assembly.

NO 'END' DIRECTIVE

CAUSE: Input to an X command has reached EOF before an END statement was processed.
ACTION: Edit the input into acceptable format, and repeat the assembly.

13-1

4

[

P i e

Graphic

Hex
Value

Appendix A

ASCII Character Sct

Card Code

Blank

- e o0 A I

~ - 4+ ¥~ o~

Nelie oREE N e PR B 2 S e e

/\ .o .o

R VAT

A0

Al
A2
tA3
:Ad
:AS
A6
A7
A8
A9
:AA
:AB
:AC
:AD
:AE
:AF

:BO
:B1
:B2
:B3
: B4
:B5
:B6
:B7
:B8
: B9

:BA
: BB
:BC
:BD
: BE
: BF

:CO

Blank

11-

1

- e [
O N DN = DD

=

1-
0-
2

[|
[JoR e B S AN BN B
!

2-
T-
3-
3-
4-

© 0 0 0 ®

— w
|
o

O W0 0 U bWl —=Oo

‘ Hex

'LGraphic Value Card Code

; =

| A :C1 12-1

| B :C2 12-2

! C :C3 12-3

D :C4 12-4
E :C5h 12-5
F 2 C6 12-6
G :C7 12-7
H :C8 12-8
1 :C9Y 12-9
J :CA 11-1
K :CB 11-2
L :CC 11-3
M : €D 11-4
N :CE 11-5
0] :CF 11-6
p :DO 11-7
Q D1 11-8
R :D2 11-9
S :D3 0-2
T :D4 0-3
U : Db 0-4
v :DO6 0-5
W :D7 0-6
X :D8 0-7
Y :D9 0-8
Z :DA 0-9
[:DB 0-2-8
N\ :DC 11-7-8
] : DD 0-5-8
t : DE 12-2-8
— :DF 12-7-8

|

SRR P B e

Assembler
Mnemonic

AAI
ADD
ADDB
ADDS
AIB
AIN
ALA
ALX
ANA
AND
ANDB
ANDS

ANX
AOB
AOT
ARA
ARM
ARP
ARX
AXI

AXM
AXP

BAO
BCA
BCX
BIN

BOT
BSA
BSX
BXO

CAI
CAR
CAX
CID

Syntax
Class

=

-
© O = U B A O 0N

QO NN AT YOO

[~ S0 e P RN P RSy B 5 Y -8

(S0 52 NS, By]

Appendix B

MACHINE INSTRUCTION SETS

Alpha
16

»o

el e RaR o RN I P PE e K K

>

SRRl

LSI-1 LSI-2
| /10, /20
|
X X
X X
X X
X
X X
X X
X X
X X
X X
X X
X X
X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X
X
X X
X X
X
X
X X
X X
X x
X X
X X

LSI-3/05

PR I

[S

BB o e e ek

Assembler
Mnemonic

CIE
CMS
CMSB
CMSS
cov
CXA
CXI
CXR

DAR
DAX
DIN

DVD
DVS
DXA
DXR

EAX
EIN
EIX
EMA
EMAB
EMAS

i
i

HLT |
HTR |

IAR
[IAX
IBA
IBAM
IBX
IBXM
ICA
ICX

IMS
IMSS
INA
INAM
INX
INXM
10R

Syntax
Class

O 0 = v G O] © G ov NN OO O =D

[S2 0]

22NN <) B er B o2 B« R PRGNS

Alpha
16

DM B M XM XK X
}

Pk

>4

Pl e B

>

sARKR KR

LSI-1 LSI-2 LSI-3/05
/10, /20 '
X X X
X X X
X X X
X
X X
x; X
X X X
X! X ‘
X X
X! X
X X X
X X
X N
X ! X
X X
X X X
X
X X X
X X X
X
X X X
X
X X
X X
X X
X X
X X
X X
X X X
X X X
X X X
X
X X X
X X
X X X
X X
X X X

€ Assembler Syntax Alpha LSI-1 - LSI-2 - LSI 3/05
: ‘ Mnemonic Class 16 /10, /20

| IORB
I0RS 1
, o IPX

ISA

ISX

IXA

IXR

=
A
el

KX AR XK KA
X X

g o oo
KRR
Pl e e

JAG
JAL
JAM
JAN
JAP
¢} JAZ
JMP

JMPS 1
Joc
JOR
JOS
(-\ JSR
, JSS
JST
JSTS 1
JXN
IXZ
‘
LAM
1LAO
AP
LDA
c\ LDAB

' LDAS 1
LDX
LDXB
LDXS 1
LLA
LLL
I.LLR
LLX
LRA
LRI.
LRR
LRX
LNM
LXO
LXD

PR T il e
PG KX K X
ARk o X X

PR SR e
K AR KK

T e e e i i i T o T o TS T e
PR e e e

W WO WWWWWWwo Wwwwwwww

P,
<
<X

>

KR KR
AR K A A
>R R

XA

NNk O 0= O 0NN
o

AR HK PR KA AKX KK KN

-~ =N b

~
-—

R AR A AKX XK KK

PR

tS Ol

SR A A KA A A KK KN

B T T S P S

Assembler
Mnemonic

MPS
MPY

NAR
NAX
NOP
NOR
NRM
NRA
NRX
NXA
NXR

OCA
0OCX
OTA
oTX
o1z

PFD
PFE

RBA
RBAM
RBX |
RBXM
RDA |
RDAM
RDX |
RDXM
RLA
RLX
ROV
RRA
RRX
RTCD
RTCE

SAl
SAO
SBM
SCM
SCMB
SCN
SEA

Syntax
Class

© 3

[SANS, IS,) e A A

SOy

[S2 3]

[. L S A ~ e P = > B i = DR o> i o PR« PRl @)

PR e SR 2 I S I 8]

o~
2

Alpha
16

Mo X Mook X XK KK

el

PR Tl e i el i e A T

1.81-3/05

LSI-1 LSI-2
/10, /20

X X

X X X

X X

X X X

X! X

X| X

X| X

X X X

X X X

X X X

X X X

X X X

X X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X X

X X X

X X X

X X X

X X X
X
X

X X X

X X

X X

X X

X X

X X X

Assembler

Mnemonic

SEL
SEN
SEX
SIA
SIN
SIX

SLAS
SOA
SOov
SOX
SSN
STA
STAB
STAS
STOP
STX
STXB
STXS
SUB
SUBB
SUBS
SWM
SX1
SX0

TAX
TPX
TRP

TXA

WAIT
WRA
WRX
WRY7

XOR
XORB
XORS
XRM
NRP

LAR
7.AX
7 NR

Syntax
Class

[S2 N>R o]

TN OO X = O 0 -IVo Mol gl O [S2 0

(=2 =PI o p R)] or v v an

ot
ST O © 0

S

[

Alpha
16

KRR AN

PR e e

Mo R

X

KoK X

(]

IJSI’ 1

P XK R o)

HKoRK KR A

PR KX xR > KRR oK)oA Pl ol

>R

LSI-2
/10. /20

P A S

e T T B e e e i R A I T e

Pt >

SRR KA AR KK

v oA

LSL 3/05

S

I

<f umsyn

Appcendix C

LSI-2 INSTRUCTIONS

This appendix contains the machine code layouts for all the instructions available on the

LSI-1. LSI-2/10, and LSI-2/20.

The instructions are grouped by standard assefmb

are alphabetized within each class. For the programmer's convenience, the syntax charts
| |

from Section 3 are reproduced.

Class Machine Function |

Word Reference

Byte Immediate

Conditional Jump

Single Register Bit Change

Register and Control

Input/Output

Double Register Bit Change

Byte Reference

Double Register Arithmetic
0 Stack Reference

O 00 =1) U W N

For'é a detailed description of each instruction function, the programmer should refer to

the%CA publication entitled Computer Handbook .
; ,
|
|

~

I

1}1’ Syntax Class, and the Mnemonies

ot e e A L

CLASS 1: WORD REFERENCE

15 11 09 08 07 00
op M 1 D
op Operation Code
M Addressing Mode:
00 Scratchpad: D ‘
01 Relative Forward: P+D ! |
10 Indexed: X+D o
{ |
11 Relative Backward: P-1-D | g
: i
P
I Indirect Address Flag
D Displacement :
E3
MNEMONIC ?@ OPERAND
Skeleton Mnemonic Function
8800 ADD Add to A
8000 AND AND to A
D000 CMS Comparc A with Memory, Skip (Low, High. Equal)
B800 EMA Exchange Memory with A
DRT)O IMS Increment Memory, Skip on Zcro
A000 IOR Inclusive OR to A
FOC0 JMP Jump Unconditional
F300 JST Jump and Store P
B000 LDA Load A
E000 LDX Load X
CDoo SCM Scan. Moemory
9800 STA Store A i
E800 STX Store X
9000 SUB Subtract from A
A800 XOR Exclusive OR to A

(@]
'
[&V]

BRI et e

CLASS 2: BYTE IMMEDIATE
15 08 07 00
op - 13
op Operation Code
B Byte Immediate Value
MNEMONIC | : OPERAND
o
Hex Mnemonic Function "
0B0O AAI Add to A Immediate
C200 AXI Add to X Immediate ‘
C000 CAI Compare to A Immediate, Skip on Not Equal
C100 CXI Compare to X Immediate, Skip on Not Equal
Cc700 LAM Load A Minus Immediate
Cc600 LAP Load A Positive Immediate
C500 LXM Load X Minus Immediate
C400 LXP Load X Positive Immediate
0D00 SAI Subtract from A Immediate
C300 SX1 Subtract from X Immediate
0800 STOP Stop

e el

e e

I il i

CLASS 3:

CONDITIONAL JUMP

15

13 12 11

07 06

05 00

oP G

or

FB

Operation Codc
Group Test:

0 OR
1 AND

Condition Bit

11 Magnitude of X
10 SENSE

09 OV

08 Magnitude of A
07 Sign of A

Jump Direction:

0 Forward
1 Backward

Jump Distance:

Forward P+D
Backward P-1-D

MNEMONIC

SPECIAL CASE

GC is an absolute cxpression which specifies all the bits of the G and C fields.

JOC

G=20

X=0

Reset

Set (Resets OV)
A=0

A Negative

OPERAND

GC,OPERAND

C-4

G=1

X#£0

Set

Reset
A#£0

A Positive

Skeleton Mnemonic
3180 JAG
2180 JAL
2080 JAM
3100 JAN
3080 JAP
2100 JAZ
3200 JOR
2200 JOS
2400 JSR
3400 JSR
3800 JXN
2800 JX7Z
2000 JOC

ComputerAutomation @\ —

Function: Jump When

A Greater than Zeoro

A Less than, or Equal to, Zero
A Minus

A-Not Zcro

A Positive

A Zero

OV Reset

OV Set (and Force OV Reset)
SENSE Reset

SENSE Set !

X Not Zero |

X Zero

Conditions

CLASS 4: SINGLE REGISTER BIT CHANGE
15 03 02 00
QP
oPp Operation Code :
i
C For most instructions, C = Operand-1 ;
For SIN N, C = N+1 i
For BAO N and for BXO N: ! ‘
If Nis 0thru 7, C=N ;
If N is 8 thru 15, C = 15-N
MNEMONIC ~ OPERAND
Skeleton Mnemonic Function
1050 ALA Arithmetic Left A
1028 ALX Arithmetic Left X
10D0 ARA Arithmetic Right A
10A8 ARX Arithmetic Right X
1340 BAO Bit of A to OV (15 thru 8)
13C0 BAO Bit of A to OV (0 thru 7)
1320 BXO Bit of X to OV (15 thru 8)
13A0 BXO Bit of X to OV (0 thru 7)
i
1350 LLA Logical Left A
1328 LLX Logical Left X
13D0 LRA Logical Right A
13A8 LRX Logical Right X
1150 RLA Rotate Left A
1128 RLX Rotate Left X
11D0 RRA Rotate Right A
11A8 RRX Rotate Right X
6800 SIN Status Inhibit

R L R i ot

BN S

(.\ CLASS 5: REGISTER AND CONTROL
15 00
op
op Operation Code
MNEMONIC [comments)
Skeleton Mnemonic Function]
0070 . ANA AND of Aand X to A
0068 ANX AND of A and X to X
¢ 0010 ARM Sct A to -1
- 0350 ARP " Set A to +1 |
0018 AXM. Set A and X to -1
0358 AXP Set A and X to +1
06CA BCA ' Bit Clear A
06C8 BCX Bit Clear X
('\ 068A BSA Bit Set A
0688 BSX Bit Set X
9210 CAR Complement A
0208 CAX Complement A and put in X
1600 cov Complement OV
9410 CXA Complement X and put in A
0408 CXR Complement X
00D0 DAR Decrement A
00C8 DAX Decrement A and put in X
00BO DXA Decrement X and put in A
00A8 DXR Decrement X
@» 0428 EAX Ixchange A with X
0218 EIX Iixecute Instruction pointed to be X
0510 IAR Increment A
0148 TIAX Increment A and put in X
5804 ICA Input Console Data Register to A
5A04 ICX Input Console Data Register to X
0090 1PX Increment P and put in X
5801 ISA \ Input Console Sensc Register to A
5A01 ISX Input Console Scnse Register to X
0130 IXA Increment X and put in A
0128 IXR Increment X ‘
13C0 LAO Least significant bit of A to OV
13A0 LXO Least significant bit of X to OV
0310 NAR Negate A
0308 NAX ‘ Negate A and put in X
-7

.,1

Skeleton Mnemonic
0610 NRA
0608 NRX
1510 NXA
0508 NXR
4404 OCA
4406 0OCX
1200 ROV
1340 SAO
1400 SOV
1320 SXO
0048 TAX
0030 TXA
0008 XRM
0528 XRP
0110 ZAR
0118 ZAX
0108 ZXR
4006 CID
4005 CIE
0C00 DIN
0A00 EIN
0800 HLT
0000 NOP
4003 PFD
4002 PFE
0E00 SBM
5800 SIA
5A00 SIX
6C00 SOA
600 SOX
0F00 SWM
4007 TRP
F600 WAIT

Function

NOR of A and X to A

NOR of A and X to X

Negate X and put in A

Negate X

Output A to Console Data Register
Output X to Console Data Register
Reset OV

Sign of A to OV

Set OV ;

Sign of X to OV = |

Transter A to X ! ' |
Transfer X to A |

SetXto-1 | |

Set X to +1

Zero A

Zero A and X

Zero X

Console Interrupt Disable
Console Interrupt Enable
Disable Interrupts

Enable Interrupts

Halt

No Operation

Power Fail Interrupt Disable
Power Fail Interrupt Enable
Set Byte Mode

Status Input to A

Status Input to X

Status Output from A

Status Output from X

Set Word Mode

Trap

Wait for Interrupts

FARSEE O e kS e

"_ ' | CLASS 6 INPUT/OUTPUT

15 08 07 03 02 00 -
- \
. oP DA : I
or Operation Code ;
DA Device Address
; !
F Function Code " !

(This is the nominal division of bits 07 -- 00. The exact interpretation
of the bits is left to the device logic.)

MNEMONIC OPERAND[.OPERAND]

Skeleton Mnemonic Function

ﬁ 5400 AIB Automatic Input to Memory -- Byte
5000 AIN Automatic Input to Memory -- Word
6400 AOB Automatic Output from Memory -- Byte
6000 AOT Automatic Output from Memory -- Word
7100 BIN Block Input to Memory
17500 BOT Block Output from Memory
17800 IBA Input Byte to A
17C0() IBAM Input Byte to A Masked
| 7A00 IBX Input Byte to X
71200 IBXM Input Byte to X Masked

@ 5800 INA Input Word to A
5C00 INAM Input Word to A Masked
5A00 INX Input Word to X
5E00 INXM Input Word to X Masked
6C00 OTA Output A
6E00 OTX Output X
6800 OTZ Output Zeros
7900 RBA Read Bytc to A
D00 RBAM Read Byte to A Masked
7B00 . RBX Read Byte to X
7100 RBXM Read Byte to X Masked
5900 RDA Read Word to A
5D00 RDAM Read Word to A Masked
5800 RDX Read Word to X
5100 RDXM Read Word to X Masked

b

Skeleton Mncmonic
4400 SEA
4000 SEL
4900 SEN
4600 SEX
4800 SSN
6000 WRA
6100 WRX
6900 WRZ

]

|

|

I

ComputerAutomation m —

Function .

Scleet and Present A

Select

Sense and Skip on Response
Select and Present X

Senge_and Skip on No Responsce
Write from A

Write from X

Write “Zeros

3

CLASS 7: DOUBLE REGISTER BIT CHANGE
15 04 03 00
op C
oP Operation Code
C Operand-1
!
.-
MNEMONIC Ol’liR/}\ND
! |
Skeleton Mnemonic Function
1B00 LLL Long Logical Left
1B80 LLR Long Logical Right
1900 LRL Long Rotate Left
1980 LRR Long Rotate Right
|
i
C-11

. -

CLASS 8: BYTE REFERENCE
15 10 08 07 00
op M/T D
op Operation Code
M/1 Addressing Mode and Indirect Address Flag:
000 Scratchpad Byte: D. i
010 Relative Forward, Byte (of Word: P+D
100 Indexed Byte: X+D ' | :
110 Relative Forward, Byte 1 of Word: P+D
001 Indirect Scratchpad: *D
011 Indirect Relative Forward: *(P+D)
101 Indirect Scratchpad Post-Indexed: *D+X
111 Indirect Relative Backward: *(P-1-D)
D Displacement
*
MNEMONIC @ |OPERAND
*@
Skeleton Mnemonic Function
8800 ADDB Add to A /
8000 ANDB AND to A
D()pO CMSB Compare A with Memory, Skip (Low, High., Equal)
B800 EMAB Exchange Memory with A
A000 IORB Inclusive OR to A
R0O00 LDAB Load A
E000 LDXB Load X
CDO00 SCMB Scan Memory
9800 STAB Store A
E800 STXB Store X
9000 SUBB Subtract from A
A800 XORB Exclusive OR to A

C-12

prHeEEE

s S

e e Ea

SRR i s s

CLASS 9: DOUBLE REGISTER ARITHMETIC

15 14 00
(0)%
I A
oP Operation Code >
|
I Indirect Address Flag !
, i
A Address of Operand | ’
MNEMONIC - [*]operanp
Skeleton Mnemonic Function
1970 DVD Divide
1960 MPY Multiply and Add
1940 NRM Normalize
C-13

CLASS 10: STACK REFERENCE
15 02 01 00
. op SAM
A
op Operation Code
|
A Address of Operand ‘ :
SAM Stack Address Mode: i }
Value Symbol Mode 1
00 blank Direct (Valuc of Pointer)
01 ,@ Indexed (Pointer + X)
10 , + Pop (Increment Pointer After Access)
11 ,— Push (Decrement Pointer Before Access)
,@
MNEMONIC OPERAND|{ ,+
Skeleton Mnemonic Function ("SE" means "Stack Element")
14318 ADDS Add SE to A
]41{8 ANDS AND SE to A
1658 CMSS Compare A with SE, Skip (Low, High, Equal)
1418 EMAS Exchange A with SE
1678 IMSS Increment SE, Skip on Zero
1498 IORS Inclusive OR SE to A
16N8 JMPS Jump Unconditional to SE
16F8 JSTS Jump and Store P to SE
14D8 LDAS Load A from SE
16B8 LDXS Load X from SE
1618 SLAS SE Location to A
1478 STAS Storc A into SE
16B8 STXS Store X into SE
1458 SUBS Subtract SE from A
1488 XORS Ixelusive OR SE to A

C-14

Appendix D

~1S51-3/05 INSTRUCTIONS

This appendix contains the machine code ldyoutg for all the instructions available on the
LSI-3/05. |

i
‘ i |
The instructions are grouped by standard assemlbler‘ Syntax Class, and the Mnemonics
are alphabetized within each class. ' ‘ '

Class Machine Function

Word Reference

Byte Immediate

Conditional Jump

Single Register Bit Change
Register and Control
Input/Output

Byte Reference

O OO W DN

For a detailed description of each instruction function, the programmer should refer to
the CA publication entitled Computer Handbook.

e

. B

00

M/D

'CLASS 1: WORD REFERENCE
15 10 09
oP .
op Operation Code -
M/D Addressing Mode and Displacement :
: |
I
09 06 1 00
0 0 0 D
09 07 00
1 0 D
09 05 00
0 0 1 0 D
L
i 09 06 00
%
10 1 0 D
|
09 07 00
1 1 D
09 05 00
0 1 1 0 D
D

Scratchpad: D

Relative: P+D-128

Indexed: X+D

Indirect Scratchpad:

*D

Indirect Lhelative: *(P+D-128)

Indirect Scratchpad

Post-Indexed:

*D+X

B

AR e - e B s

*
@
MNEMONIC *@ Operand
Prefixes:
* Indirect Address
@ Indexed
*@ Indirect Post-Indexed i
= Literal Pool Reference l
Skeleton Mnemonic Function | ;
8800 ADD Add to A
9400 AND AND to A
B800 CMS Compare A with Memory, Skip (Low. High, Equal)
9000 EMA Exchange Memory with A
DCO00 IMS Increment Memory, Skip on Zero
B400 IOR Inclusive OR to A
9C00 JMP Jump Unconditional
BC00 JST Jump and Store P
8000 LDA Load A
A000 LDX Load X
8400 STA Store A
A400 STX Store X
| 8C00 SUB Subtract from A
i 9800 XOR Exclusive OR to A
|
i
|
o
D-

—e———
i

|

CLASS 2:. BYTE IMMEDIATE
15 09 08 07 00
op . F B
i op Operation Code
F Flag for Operand Value ,‘
F =1 for: : i
| AATL/AXI o
“ LAP/LXP i
“ F = 0 for: | 1
| CAI/CXI -
! F = 1 when Operand = 0, but F = 0 otherwise, for:
! LAM/LXM :
| ﬂ SAL/SXI
| :
| B Byte Immediate Value
\‘ If F=1, B = Operand
| If F=0, B = 256-Operand
MNEMONIC OPERAND
| Skeleton Mnemonic Function
| 0800 AAI Add to A Immediate
! 2BQ0 AXI Add to X Immediate
0C00 CAI Compare to A Immediate, Skip on Not Liqual
2C00 CXI Compare to X Immediate, Skip on Not Equal
0800 LAM Load A Minus Immediate
‘ @ (3900 LAP Load A Positive Immediate
‘ 2800 LXM Load X Minus Immediate
i 2900 LXP Load X Positive Immediate
[0A00 SAI Subtract from A Immediate
- 2A00 SXI Subtract from X Immediate
|
1 3C00 STOP Stop

Smtage s

T T S

T

A S e

IR S

(L) CLASS 3: CONDITIONAL JUMP
15 o 07 06 00
oP
(0)3 Operation Code
D Destination: P-64+D j
MNEMONIC ‘ OPERAND
o
Skeleton Mnemonic Function: : Jump When
1200 JAG A Greater than Zero
1280 JAL A Less than, or Equal to, Zero
1380 JAM A Minus
1180 JAN A Not Zero
1300 JAP A Positive
1100 JAZ A Zero
3680 JOR OV Reset
3600 JOS OV Set (and Force OV Reset)
1680 JSR SENSE Reset
1600 JSS SENSE Set
3180 IXN X Not Zero
. 3100 JXZ X Zero
|
i
D-5

e

CLASS 4: SINGLE REGISTER BIT CHANGE

15 08 07 04 03 00
OP1 - C orz
OP1 Operation Code, Part 1
C Operand-1 : !
oP2 Operation Code, Part 2 |
i |
.
MNEMONIC ' OPERAND
Skeleton Mnemonic Function
0E01 LLA Logical Left A
2E01 LLX Logical Left X
0E09 LRA Logical Right A
2E09 LRX Logical Right X
0E03 RLA Rotate Left A
2E03 RLX Rotate Left X
0EOB RRA Rotate Right A
2E0B RRX Rotate Right X
0LQF SIN | Status Inhibit
|
|
{
I
!
D-6

T R

B

CLASS 5: REGISTER AND CONTROL

15 00
or
op Operation Code
|
MNEMONIC | [commenTs]
o
Skeleton Mnemonic Function ; i
0104 ICA Input Consol;z Data Register to A
2104 ICX Input Console Data Register to X
0101 ISA Input Console Sense Register to A
2101 ISX Input Console Sense Register to X
0001 NAR Negate A
2001 NAX Negate A and Put in X
0021 NXA Negate X and Put in A
2021 NXR Negate X
0404 OCA Output A to Console Data Register
2404 OCX Output X to Console Data Register
0E17 ROV Reset OV
0E15 SOV Set OV
2000 TAX Transfer A to X
12010 TPX Transfer P to X
ioozo TXA Transfer X to A
|
’0E47 CID Console Interrupt Disable
0E45 CIE Console Interrupt Enable
0L87 DIN Disable Interrupts
0E85 EIN Enable Interrupts
0EOD HLT Halt
0080 HTR Halt and Reset
0000 NOP No Operation
0ES57 RTCD Real Time Clock Disable
0E55 RTCE Real Time Clock Enable
0E25 SBM Set Byte Mode
0030 SIA Status Input to A
2030 SIX Status Input to X
3000 SOA Status Output from A
3020 SOX Status Output from X
01527 SWM Set Word Modc -

CLASS 6: INPUT/OUTPUT

15 08 07 03 02 00
T
op DA l I
——]
op Operation Code

DA Device Address
|
FC Function Code i

|
|

(This is the nominal division of bits 07 -- 00. The exact interprectation
of the bits is left to the device logic.)

1

MNEMONIC OPERAND [,OPERAND |
Skeleton Mnemonic Function
4500 AIB Automatic Input to Memory -- Byte
0500 - AIN Automatic Input to Memory -- Word
6500 AOB Automatic Output from Memory -- Byte
2500 AOT Automatic Output from Memory -- Word
0100 INA Input Word to A
2100 INX Input Word to X
0200 OTA Output A
2200 0TX Output X
040!0 SEA Select and Present A
0600 SEN Sense and Skip on Response
2400 SEX Select and Present X

S

Bt o itk

B 13 Ve

CLASS 8: BYTE REFERENCE
15 10 09 00
oP M/D

oP Operation Code

M/D Addressing Mode and Displacement
09 06 00
0 0 0 D ' Scratchpad Byte: D
09 07 00
1 0 D Relative Byte: (2P)+D-128
09 05 00
0 0 1 0 D Indexed Byte: X+D
09 06 00
0 1 0 D Indirect Scratchpad: *D

i
09 07 00
1 1 D Indirect Relative: *(P+D-128)
09 05 " 00
Indirect Scratchpad

0 1 ! 0 D Post-Indexed: *D+X

DY

gt

|

MNEMONIC @ | OPERAND
*@
Prefixes: ———
* Indirect Address
@ Indexed

*@ Indirect Post-Indexed

|

Skeleton Mnemonic Function ;

8800 ADDB Add to A {

9400 ANDB AND to A

B800 CMSB Compare A with Memory Skip (Low, ngh Equal)
9000 EMAB Exchange Memory with A

B400 IORB Inclusive OR to A

8000 LDAB Load A '

A000 LDXB Load X

8400 STAB Store A ‘
A400 STXB Store X

8C00 SUBB Subtract from A

9800 XORB Exclusive OR to A

D-10

HufME

mmwterl\utomaﬁon—-—_—

CUSTOMER INFORMATION BULLETIN

CIB No. 1228 - Known problems with RTX4 package Revision C]

1. RTX4

a. It is not possible for the current activity to drop its own seniority
to allow another activity of equal priority to resume. If R:PAUS
is attempted the next (not the current) activity loses its seniority
and is scheduled behind all ready-to-go tasks of the same priority
as the current one.

b. MDB:A macro generates an initial value of zero for the mailbox
usage semaphore (instead of 1), : |

c. FPMAX: no longer exists but is still described in the Manual
(Page 5.3).

2. 1054

a. When reading from a VDU 10S4 will not check for backspacing
beyond the beginning of a line.

b. The SC (Skip lines) does not function for line printers.

c. Top of Form is produced one line early for Centronics~type
printers (i.e. with the auto-linefeed capability.

d. If SB: is set when déuble—line spacing or top-of-form is carried
out before a record:is output the EOL or TOF sequence is out-
put without the leading character.

i
e. Unformatted Reads through PR and TY/TR turn parity off on
incoming dcm.:

f. Formatted ASCII input does not detect embedded ‘Rubout'
characters (except at the beginning of a record).

3. SFM m

a. CREA:A macro defaults parameter 7 to zero instead of :7FFF,

CAl Limited
Technical Support Group

e L et e

@’%chgmAmmmam

NOTES ON ITEMS ISSUED WITH RTX4 (C1)

RTX User's Manual (CO0)

Appendix H describes the macro files (supplied with OS4 and RTX4 and their
contents. The contents described for GEN .MAC should include all RTX4/
[OS4/SFM service call macros.

|0S4 User's Manual (CO) .

2.1 Similar comment as given in 1, except that it is Appendix G. Als#
page 8.1 refers to Appendix | instead of G and the Contents List has
omitted the Appendix altogether. :

2.2 Appendix B
The Introduction B.1 should include reference to the Volume Control
Block and FUST described later in the Appendix.

10S4 (C1)

3.1 The [OS.HLP
This file includes description of the IOSDEMO program files. This
demo is now called SFMDEMO .

3.2 The Line Prinfe} Dlé (Standard)

I
This is configured for 80 characters per line and 57 lines per page.
The DIB:LP moé‘ro also defaults to these values and not 133 and 39 as
described. ‘

3.3 I0SD.MAC

Note that this file equates the'™CRT DIO channel address to 2 instead
of 4 as one might expect. v »

o

NOTES ON ITEMS ISSUED WITH RTX4 (C1) (Cont.)

3.4

3.5

4. RTX(C1)

4.1

Write Direct Stream /O

There is a fault connected with this. If a program attemps to do
Write Direct Stream to a file in order to overwrite the exact number
of bytes remaining in the file, SFM ignores the request and indicates
an end of a block error (:4E). This fault may be overcome by
patching as follows:

‘ , i
Location Old Contents New Contents

F:CEOF+A .9E82 10000 |

The address of F:CEOF may be determined by examining the link-map
produced by linking the user program with RTX/IOS/SFM.

TV/TK /TY End-of-Input Action

Currently, when carriage-return is required to terminate an input 1/0O
request, |OS4 responds by repeating just that character, which means
that it is possible for subsequent output fo overprint the previously
typed line. (In the case of OS4 message output, no overprinting
occurs because a line-feed is output first, before the message.)

To ensure that no overprinting occurs, users may modify the location
identified on link maps by the symbol TYELI:. Normally this
location containhs 1, but 2 should be put in its place to ensure that
carriage —refurn! is followed by a line-feed after every input line is
terminated..

The fault described in connection with the previous version of RTX4
namely R:IWAL still exists and.the same patch applies. For the
benefit of those users new to RTX4, a copy of the EN issued just
before this C1 release is attached to these notes.

P e

NOTES ON ITEMS ISSUED WITH RTX4 (C1) (Cont.)

4.2 R:PAUS
This service should allow an activity to de-schedule itself so that
it is placed at the end of the queued activities of the same prioity
as itself. However, R:PAUS de-schedules the next activity in the
queue. The following patch cures the fault: :
Location Old Contents New Contents
R:PAUS+:8 :A022 12922 !
4.3 MAILBOX '
MDB:A macro is wrong. It allocates word containing O for Mailbox
Usage Semaphore and it should contain 1.
Change source line 319 from "Word 0 - Mailbox Usage Semcphore
to "Word 1 = Mailbox Usage Semaphore" .
4.4 RTX MACROS
TICK:A, WALL:A, MAIL:A,SDB:A,MDB:A Macros contain invalid
constructions for testing number of parameters supplied with the call,
e.g. 0H2< 3.
There are no simp|e§chcnges that can be made and users are advised
to ensure that they provide the correct number of parameters since
the macro definitions do not check correctly.
|
J
CAl Limited ,
European Technical Support Group March, 1979

@%Ccmputeri&utomation——————q

v 'k Computcrfalomations ENGINEERING e
{w 18651 Yon Karman, Irvine, Calif. NOTlCE L l 71 ' | o 18 | S l

DOCUMENT NO. REV. TITLE INCORP. TYPE
IS |[WAS DATE || AEN
2 3410-XX B2|B8 1| RTX4-RIIWAL | STOP ORDER
DEVIATION
RELEASE
STANDARD
CLASS
A-MAND/FUNC
_ B-NON-MAND/FUNC
. C-RECORD CHG
AFFECTED ITEMS
HARDWARE CHG. O
SOFTWARE CHG.
PUBL. CHG.
O o CAPABLE CHG.

DOC. CHG. |
CONFIGURATIONS
PFROCEDURES |
REASON FOR CHANGE: REANO. 54447 TOOLING
TEST EQUIP. £

' ‘ CO-ORC WiITH: ' EFFECTIVITY
CERTAIN COMBINATIONS OF ACTIVITY g
R: TODL AND USER-SPECIFIED NOTIFY VEND e
INTERVAL VALUES PRODUCE IN STOCK e
INCORRECT SHORT TIME | RITTING 7
INTERVALS BECAUSE THE CODE ASSUMES e
THAT THE ADD INSTRUCTION AFFECTS T 7 o
THE CARRY STATUS BIT,WHICH IT DOESN'T! FIiLGOOTS

PUST RET.

TToT 1
NO. ‘p‘;‘y’

RDDDCl

004

wn
n
(¢}

0000000

Oo00C00Mo

N

9
%
R

J—

l

Ll

EVYK (E3T REG'D
‘ i CONHNUW{ m
— = — CABLE SC AN o
UcSCRIPTION OF CHANGE: . | CAPABLE O
v | MEMCRY o
A. PATCH AS FOLLOWS: L . o CARD =
LOCATION OLDCONTENTS| NEWCONTENTS || (Orestreqn =
R:IWAL+:22 ICy44 : ":0507 RBIT 0,8 APPROVALS f
+:73 :C4B33 12471 ENGR. A
‘ ! ADDC , Q. ETWARE s |
+124 i8843 ipoo4 PO TLY),Q L SOTTWARE L)
+:75 56C| 10483 COPY @,CC:TL (X CAPTEST _ ,'Y‘GT"\/ ;
N . . : MA HE Q ¥ 2
+26 08Ol HOTM2), oy s TMATERIALS e
+i27 8482 :0003) 7 | TESTENGR SR
+:28 19E80 IB482 COPY ACC: TU(X)2 2ET TR -
MFG. ENGR .. /"f____
(NOTE: TMP PCST AT R:IWAL +:28 IS REDUNDANT |[_PUBLICATIONS -L—/-*—’J‘-.— -
BECAUSE POST IS THE NEXT LOCATION.) DR.BY: A. DU7ICH i7 -

CHKD. BY:D.EVKEETH &+ .c
oot oave £Lote R

