
I 

.. , 

t t' "We #Nt;!' .. t .... w' !' t' . 6-t I Nut ttrM'rtt'ttSS'"""'t mMt S'-''¥' ',r ",tWtty'" "'tU'j'tz' 'Meirt"WrtfEP-"tti tWister_ 

ComputrAutom tion 
NAKED MINlqpDivision 

18651 Von Karman, Irvine, California 92715 
T~lephone: (714) 83J-8830 TWX: 910-595-1767 

FORTRAN IV OPERATIONS MANUAL 

96510-01BU APRIL 1976 

PAINTi:~ THE U.S.,A, --- ._---, 



ft...... ... I" ! ~ 
., . 
, 
~ . . 

i 

" 

' r 

tt ',.*4WW f' ) M#t t em' "Stttttr"! 1: 1::'1'1'1 t"· ""r 'f t ", CPt' .. ', l' t m#1 tit t "0 t x t 

TABLE OF CONTENTS 

Paragraph Page 

Section 1. INTRODUCTION 

SCOPE . 

OPERATING ENVIRONMENT • . ." . 
Configuration for Compilation • • • • 
Configurations for Linking and Execution • • 

Section 2. FORTRAN IV COMPILER 

PURPOSE . • • • • • • 

COMPILER ORGANIZATION 
Comp1ler Modules •. 

Control Program • • 
Overlay 1 - Scan Phase 
Overlay 2 - Allocate Phase 
Overlay 3 - Object Generation phase 

Batch Mode • • ••. 
Working Storage • • • • 

I/O CON."IDERATIONS 
System File (SF) 
Source Input (SI) 
Source Save (SS) • 
BJ.nary Output (BO) 
Lid. Output (LO) • • • • 

COMPILER LISTINGS • • • 

. . . . . . . . 

Source Lis,ting (Page 0001) • • •• •••• 
Variable Storage Allocation (Page 0002) •••• 
Objl"ct Listing (Pages 0003-0005) •• •• 
Sunullary (Page 0005) ••••..••• 

DIFFERENCES FROM ASSEMBLY LANGUAGE 

COMPILER OPTIONS 
EList (Error-only listing) • 
LObj (Object code listing) 
NBinary (Suppress binary output) 
RScratchpad (Reduced scratchpad usage) 
NScratchpad (No scratchpad usage) 
XOn (Compile "X" statements) • • • • • 
ADp (Automatic Double Precision option) ••••• 
ANsi (ANSI - compatible allocation) 
TRaCe (Compile for execution with Trace function> 

iii 

1-1 

1-1 
1-1 
1-1 

2-1 

2-1 
2-1 
2-2 
2-2 
2-2; 
2-2 
2- .. 
2-2 

2-3 
2- ; 
2-3 
2-::; 

2-4 
2-4 

2-4 
2-1 ) 
2-10 
2 '" 
2-14 

2-,. ; 
2-17 
2-'-' 
2-17. 
2-17 
2-17 
2-18 
2-· ~t3 
2-19 
2,· .i.) 



"" 

Tn!!'. t 'It ned" fFM ,', MWrt&t .. , em tt 1 Pi,. n W" tft' to t t t -2" 

i r-----~--·'----T-AB-L-E-O-;.-=~~ (con.~ ~ , , 

"~ 

I 
I 
I 
I 
e 

Paragraph 

RTx (Compile for execution under the 
RTX Mainline Sequence • . • • 
Mainline Entry ~oint (F:MAIN) 
Input/Output Block (lOB) 

Real-Time Executive RTX/IOX) 

Unit Assignment Table (OAT) • 
Parameter Blocks 
RTX Task . • • . • • . . . . . . . . 

Sample FORTRAN/RTX Listing . • • • 
Mainline Example Description 
Task Example Description . • • • 

T3 (Compile for Execution on an LSI-3/0S 

COMPILER DIAGNOSTICS 

. . . . . . . . . 

Processor • 

. . . . . . . . . . . . . . . . . . . . . . 

Section 3. LIBRARY STRUCTURE AND LIm~ING 

r;ENERAL . . 
LINKING (OS:LNK) 

I/O Dev~ce Assignments • • 
OS:LNK Parameters 

. . . ~. ~ . . . . . . . . . . . . . 
For Execution Under OS • 
For Execution Under RTX 
Memory Usage • . • . • 
OS:LNK Memory Mar 
OS:LNK Error Reporting. . . . . 

Section 4. RUN-TIME 

INTRODUCTION 

I/O DEVICE ASSIGNMENT 
Device Assignment for Execution Under OS • 
Device Assignment for Execution Under RTX 

FORMS CONTROL FOR LIST DEVICES . . . . . . . 
POSITIONING CONTROL FOR MAGNETIC DEVICES 

PROGRAM LOADING PRIOR TO EXECUTION 
Loading for OS Execution ., •. 
Loading.for RTX Execution 
Errors During the Load Procedure • • 

PROGRAM EXECUTION • 

. . . . . . 

. .' PAUSE Messages • • • • • 
Run-Time Error Handling • • • • 
Console Interrupt • • • • 

. . . . . . . . 
. . . . . . . . . . . 

. .' . 

Page 

2-28 
2-28 
2-29 
2-29 
2-29 
2-30 
2-31 
2-31 
2-31 
2-42 
2-42a 

2-55 

3-1 

3-2 
3-2 
3-3 
3-3 
3-3 
3,-4a 
3-6 
3-10 

4-1 

4-1 
4-1 
4-2 

4-2 

4-3 

4-3 
4-3 
4-4 
4-4 

4-4 
4-4 
4-5 
4-5 

7' "1t 



'" 

Prf'W,eewttrt t' tIltl'" , ' "9" '$ j 1''' 't 1 
'tt· ("Sf t , CS' ; it 6tti "'" 2 t :1, ' 't'fH& 

ComputerAutoldation 'bf/\\ 

TABLE OF CONTENTS (Con't) 

Paragraph 

Section 5. SYSTEM GENERATION 

INTRODUCTION . . . . . . . . . . 
GENERATING THE FORTRAN COMPILER 

GENERATING THE FORTRAN LIBRARY FILE • 
OS Run-time Library Generation (F:OSLB) 
LSI-2 RTX Run-time Library Generation (F:RXLB) 
LSI-3/05 RTX Run-time Library Generation (F3RXLB) 

ADDING OR REPLACING LIBRARY PROGRAMS 

. '. . 

ADDING FORTRAN LOGICAL UNIT NUMBERS TO OS • 
Altering the LUT in OS ROOT .••• 
OS rile Control Block (FCB) Tables . . . . .. . . . 

F : RUNN Program • • • • • • .' 
F:RUIN and R:RUOT Program~ 

F'CB Forma t • • •••• 
Addlng FCBs to the Tables 

k ADDING A DISK DIB TO THE RTX LIBRARY FILE • 
" . 

USER-CREA'l'ED SUBPROGRAMS 
Accessing Arguments 

. . . . . . . . . . 

Appendix A. DEBUGGING AIDS 

DEBUGGING AIDS 
FO!{'rRAN Trace Option 
OS:DBG,RTX ZBG •••• 

. . . . . . . . . . . . . . . . 

Appendix B. SAMPLE JOB SEQUENCES 

INTRODUCTION 

TO COMPILE, LINK AND EXECUTE UNDER OS • 

'1'0 COMPILE, LINK ~ND EXECUTE UNDER OS, USING OS:DBG 

. . . . . . . . . 

TO ASSEMBLE MAINLINE, COMPILE TASKS, L::J:NK AND EXECUTE UNDER RTX • 

Appendix C. FORTRAN SUBPROGRAM LIST 

FORTRAN BASIC EXTERNAL FUNCTIONS 

FORTRAN MATH AND I/O, ROUTINES • • • 

v 

leage 

5-1 

5-1 

5-3 
5-3 
5-4 
5-5 

5-5 

5-6 
5-6 
5-7 
5-"8 
5-8 
5-8 
5-9 

5-14 

5- ... 5 
5-16 

A-I 
A-I 
A-I 

B-1 

B-1 

B-2 

C-l 

C-2 



,. 

j 
i 
~: 
~: 

~I 

fl,- i ':, t' ;.' '" 1 t l'" '5 ' :'"h ", (" "tt t : 

I 
I , 
.' -I 
I 
I 

I e 
I 
I 

----------_ ..•.. _--

TABLE OF CONTEN'!'S (Con It) 

LSI-3/05 FORTRAN INSTRUCTION EMULATOR (F3EMUL) 

'ORTRAN RUN-TIME I/O INTERFACE ROUTINES (F:OSIO, F:RXIO & F3RXIO) 

Appendix D. ERROR MESSAGES/HALTS 

COMPILER DIAGNOSTICS DURING SCAN PHASE 

COMPILER DIAGNOSTICS DURING ALLOCATE PHASE 

;-:~or"PILER DIAGNOSTICS DURING GEN PHASE • 

'.·'OMPILER ERRORS (ABORT CONDITION) • 

nS:LNK ERRORS. 
Diagnostics 
Termination Errors • 
I/O Errors • • • . • 

FORTRAN RUN-TIME ERROR MESSAGES • 

OS RUN-TIME ERROR MESSAGES . .". 
r:RROR HALTS 

FORTRAN Halts 
OS System Halts 
RTX System Halts • 

LIST OF FIGURES 

riqure 

1-1 

2-1 
~-2 

2-3 
;'1-4 

2-5 
2-6 
2-7 
7.-B 
2-9 

l-l 

FORTRAN Operation Sequence 

FORTRAN Compile-Time Memory Layout • • • • 
Sample FORTRAN Output Listing • • • . 
Compilation without ADP Option Example ,. • 
Compilation with ADP Option Example • 
Listing without ANSI Option Example • 
Listing with ANSI Option Example 
FOH'I'HAN/RTX Example • • . • • • • 
FORTRAN/RTX Example for LSI-3/05 
Compiler Diagnostics Example . • • • 

OS:LNK Memory Allocation for OS Execution. 
OS:LNK Memory Allocation Map for RTX Execution 
Link Map Example • • • •• •• • . • • • • 

vi 

· 
· 

· . · . ',' . 

. . . .. 

· · · 
· · · 

· · · 
· · · 

M wre wet 

Page 

C-7 

C-7 

D-1 

0-6 

0-7 

0-8 

D-8 
D-8 
0-9 
0-10 

0-11 

0-14 

, D-15 
0-15 
D-16 
0-16 

Page 

1-2 

2-1 
2-5 
2-20 
2-22 
2-24 
2-25 
2-32 
2-43 
2-45 

3-5 
3-6 
3-7 



j 
f 
" f 
" 

1" 
~, 

hIM_em" 'wt"", e .. #'" *t*@ttWfnMt' "'1 'f ' "t'J( ? Htt'H ,'t· 'f' g ePtd " h'I'! ? " .. , I'M 1'$ 

o 

I 

I 
I 
I 
1 
; 

I 
I 

i 
I 

Paragraph 

5-1 
5-2 
5-3 
5-4 

A-I 

TABLE OF CONTENTS (Con't) 

Compiler configuration when 
Compiler configuration with 
Sample FCB Tables • 
Sample FORTRAN Disk DIB • • 

more than 16K memory 
16K memory 

Integer and Floating Point Sample Listing 

vii 

"it' 11 hi 

Page 

5-2 
5-2 
5-10 
5-15 

A-2 



'4 

o 

o 

~I 

t*M.MttewtntsttttraaD tfttWt!'"er1 I ¢ 1 11 ti lerm tWri' etl t 't' t fuM t r %,t" te"e' ht ·m $ , .. re t II'rt"rt'ht' M Nie . 

I 

Section 1 

INTRODUCTION 

SCOPE 

This manual is intended to aid the Computer Automation FORTRAN IV programmer in . 
compiling and executing his programs on the ALPHA-LSI series computer. It assumes 
that the reader knows how to write a FORTRAN program and is familiar with the FORTRAN 
IV Reference Manual, as well as the Computer Automation Operating System (OS) User's 
Manual, since compilation and linking must be, and executicn may be, performed under 
control of the Operating System. Also, since FORTRAN programs may be execut~ under 
the' Real Time Executive (RTX), the reader should be familiar with the RTX User's 
Manual as well if he intends to use the RTX or LSI-3/05 options. 

The discussions are organized in a generally chronolbgical order, according to the 
norm!".l sequence of operations; that is, the FORTRAN operating environment and the 
Compiler are described first, followed by library structure and linking, and then 
run-time (execution). Thus the manual is structured similarly to the normal FORTRAN 
operation sequence (see figure 1-1). ~, 

System generation procedures are described at the end of the manual, as they are 
issued less frequently. 

OPERATING ENVIRONMENT 

Configuration for Compilation 

The FORTRAN IV compiler requires an ALPHA LSI-2 processor with at least 16K words of 
memory_ A Computer Automation Operating System (DOS, MTOS or COS) must be present i 
as well as an OS-labeled bulk device for intermediate storage of the source information.' 

1be typical system, assumed for the examples in this manual, is a Disk Operating 
System (DOS) operating in an LSI processor with card reader, ASR-33 teletype, high 
speed paper tape reader and punch, and line printer. 

Configurations for Linking and Execution 

Once compiled, the output (object) program is then linked to the library routines it 
needs by means of the OS:LNK utility before it is executed. (The library routines 
are not included in the object output during compilation, so as to conserve space at 
execution t.ime.) If the user intends to execute his program under OS (and not RTX) 
OS:LNK will assume that execution will take pla~e under the same version of OS as 
the one which controls .OS:LNK itself. This means that the linked program may not 
then be executed under an OS which has a different Root configuration or a different 
working core address_ However, linking a program for execution under RTX causes the 
entire RTX/TOX monitor to be included within the linked program. Thus such a program 
may be loaded into any ALPHA-LSI processor and executed, provided that the processor 
contains sufficient memory to hold the linked object program. 

1-1 



'1' .,. "t g' 'M ' - .. ?tr*Y'rtbtthf'trfj rn'rtttd '.UN""W •• 'ffl'Nr:111 

(OMPUTER AUTOMATION. INC. ~ ,'-
.~ .. 

I 
e 

FOHTRAN program is coded. then stored onto suitable 
input medium (cards, paper tape or m~gnetic file) 

SOUI'ec is input to compiler. which manipulates and 
con \~rts it to object format, using an intermediate 
bulk storag'e file. 

Once converted, the compiler outputs source and 
oll.· d listings, allocation and subroutine usage maps 
to the list device. It outputs the compiled binary 
co; !, ~ in the req ue::.ted form (magnetic file or paper 
tape) . 

Tt10 compiler-generated program is input to the 
li editor (as: LNK), which links it to the required 
library ro",tines. 

~ Ti:' linked binary code is then output in standard 
. loudable format. 

CODING--J 

FORMS 

STANDARD l 
SOURCE INPUT 

COMPILER 

LISTINGS 

BINARY 
OUTP,:;;:,U_"---l 

os: LNK 

LINKED 
BINARY 



o 

o 

I 
L 

d- H' iN f' '''¥r ." ) , "" N 'I' t" f dihs" M" h h"" I 1'!' k' ft1:t.ttfe !' tH t UhWt#Wf 

Compilation and linking of a program to be executed on an L.SI--3/05 processor must 
done with the type 3/05 option specified. Execution can only be done under RTX, 
since as itself is not supported on the LSI-3/05. 

be 



", .. tirIffeWUfMiCi'W¥ie1:@X""'MMew,*'i&l tlId' If'dki'lW:"\jkhMn\lgWt,,m'ffltl! '!"CM"" at l:t 'M'II' hi %' ' ok ftrrritWb'H%#'" 'S':f«( C" '\rIM e e »t "$t Wt S"'H' (f'd!hl 

i • r"------'""-'------------ COMPUTER AUTOMATION. INC. f51"!) 
'f ;1 

o 

o 

Section 2 

FORTRAN IV COMPILER 

PURPOSE 

The purpose of the FORTRAN compiler is to input each source record (FORTRAN statement) 
through the source input (SO device. convert the program statements into their component 
machine-language instructions utilizing the assigned Source Save (SS) device to assist 
with intermediate storage requirements, and then to output the linkable (but not loadable) 
binary codeLo the assigned binary output (BO) dev,ice. and the source listing and alloca
tian map to the assigned list output (LO) device, (Note from figure 1-1 that the compiler 
does not produce a program which is directly executable; the program is linked to 
the nt~eded library routines and converted into standard loadable format. and then loaded 
by one of the standard loaders.) 

COMPILER ORGANIZATION 

Compiler Modules 

The FORTRAN compiler is a three-phase. two-pass compiler which processes FORTRAK 
source programs one at a time. in: a batch mode. It is configured as a control program 
and tLree overlays resident on the system file (SF) device (see figure 2-1), Note that 
an alternative configuration is used when only 16K of memory is present. This involves 
the S(~an and lien overlays being further segmented into 3 overlays each. A complete 
description of this org'anization may be found in the System Generation section -. Generating 
the l'ORTRAN Compiler, 

; 0000 

; 0100 

:nFFF 

,------------------_._-----_._._--_._--
Scratch Pad 

----------------------~---------------- ---

OS 

;------------------.-------------_------------1 
FORTRAN Control Program 

(FORT: 4) 

I/O Buffers 

r----------------T-----------------~--------------------
, Overlay Overlay 

2 
Overlay 

3 
(Scan Module) (Allocate Module) (Gen Module) r 1 

___ " __ .. ' FORTRAN wor~in~ Storage ~a~les _".__ . __ 

Figure 2-1. FORTRAN Compile-Time Memory Layout 

2-1 



, 
~! 
ii 
71 

Ji 
f:! 
:.1 

, t1ft '4' tit 'Jb X' t ht"7 ri '*",,'# $' $ , * ' 't 1$' rt rM' t' 1 '* t' trW ttl tt j 't 't t t 

-----------'"- ComputerAulDmation ~ 

Control Program 

The control program, utilizing the FORTRAN/OS I/O Interfaceroatine, causes each 
overlay to be loaded, then passes control to it. , When each overlay has completed 
its processing it returns to the control program, which then calls the next overlay. 
The control program also handles all input/output and other conununication to the 
operati.ng r:ystem. 

Overlay 1 - Scan Phase 

The Scan phase inputs each record of the FORTRAN source program, builds symbol 
tables in its workinq storage area and outputs the source progz'am listing and syntax
type:rror messages to the LO device, arid the intermediate program code to the SS 
bulk device,. The Scan phase is completed when a FORTRAN END statement is encountered. 

OVer..ldY 2 - Allocate Phase 

! A'P ilUocate phase uses the symbol tables created during the Scan phase to allocate 
._oraqe for program variables. It then outputs, to the LO device, the allocation 

map .,)ld error messages for any COMMON, EQUIVALENCE or undefined label errors. 

Overlay 3 - Object Generation Phase 
, 
• 

The 0uject Generation (or "Gen") phase operates on the intermediate program c9de 
stOri'r. onto SS during the Scan phase, together with the storage allocation information 
prod~ced during th~ Allocation phase, and from these it outputs object code to the 
BO dvvice, and symbolic object text to the LO device (if requested). It then outputs 

i the ';ubroutine usage map, statement label location list and program si:z;e information 
to the LO device. 

Bate'j Mode 

The tllntch" mode organization of the compiler means that completion of the Gen phase 
(ove. iay 3) causes control to return to the control program; this in turn celiis 

Oer18'/ 1 again, etc., until an end-of-file condition is sensed from the Source 
: J..npu', <JevJce. Each compilation is a complete sequence of procedures. (Various 

complIer options exist to permit the operator to tailor the compiler output to his 
specific needs - see Compiler Options.) 

I 
I 

~ing Storage 

To make maximum use of available memory, the compiler dynamically allocates its 
working storage tables, thus each table is variable in length so that no table can 
be completely filled if any unused memory is available. 

2-2 

--' 

-



o 

o 

4'1 

--. 

" fT' , W j' (" t' ttl rht.$ mt W"ff .. 

I/O CONSIDEHATIONS 

The compiler Control program, which coordinates overlay calls, also handles I/O 
requests to the Operating System. Since the standard OS I/O drivers are. used, all 
I/O is interrupt driven, rather than sense-driven. These requests are made to and 
from the following logical units, which must be assigned to physical devices prior 
to beginning the compilation: 

This is the file containing the compiler itself (control program and·overlays) •. It. 
should reside on a file-type device (see System Generationj. 

Source Input (SI) 

This is the file containing the source records (FORTRAN statements) to be compiled. 
It may be assigned to any OS-supported input device (card reader, teletype keyboard, 
paper tape rl~ader, or magnetic device file). The standard length for OS source 
input records is 80 characters. However, less than this number may be input if a 
recurd is terminated by a carriage return character. In addition, even though OS 
will input 80 characters, the compiler rrocesses only the first 72 as a valid state
ment. Characters in excess of 72 are treated as comment charact~rs and ignored in 
the compilation. 

1. 
A complete 30urce input file is comprised of one or more FORTRAN programs, each of 
which. must contain an END statement as its last record. The file itself must be 
terminated with an end-of-file mark. If the file contains blo or more programs, 
each program is compiled before the next is input, in a "batch" mode. Processing of 
a batch file will result in binary output of a single file, however, and is to be 
used emly foy a main program followed by subprograms (subroutines or tasks). It is 
illegal to input two or more main programs (which do not reference each other) in 
the batch mode. 

SourCe Save (S5) 

This is the file created by the Scan phase of the compiler, and must be on a file
type device. The data written to this file is the source information, in abbreviated 
fonn. The data is later read back into memory during the Gen phase of compilation. 
It is normally not necessary for the user to assign this file before compilation, 
sinee its normal default assignment is to the system file device under the file name 
"5:::S". However, it may be assigned to any file-type device, if desired, and a 
different file name mayor may not be included in the assignment. In any case, the 
5S file will be set up by the compiler under the "close/delete" format, which means 
that the file will automatically be deleted upon completion of the Gen phase. 

2-3 



'W"It!!t!!!IWI!WI"'W'Wf 'tll irt' !Vne W"b' Wi 'fr'tffrtN HI", Wbti1i!r'll 9 i '11... 'WI ,'" lv' rl 't d + t' " y' j n ¥'tlb t"ttrW'M'¢ "j "t 'i#'Mft¥'H'f8'¥ ri' "fI_ ""1 h't" 

&jnary Output (BO) 

This j~; the file to which the compiled binary code will be output during the compiler's 
r;en phase, and which must be subsequently linked to the F'ORTRAN library file by the 
OS:LNK utility. It is normally assigned to a magnetic file or to the paper tape 
IJUJ;c;h. 

Format of the binary output is in standard Computer Automation object code format, 
including several type codes designed specifically for the FORTRAN compiler. 'fhis 
output must be su.bsequent.ly linked with the applicable library routines using OS: LNK 
rather than LAMBDA or OS:LDR. OS:LNK recognizes all of the specialized type codes 
used by FORTRAN, while LAMBDA and OS:LDR do not. 

This file should be assigned to the list device for output of the compiler-generated 
l.istinqs which include source listing, diagnostics, allocation map, object listing 
(i r -:;pecifically requested), subroutine usage map, statement label locations, and 
proyram size information. 

o A~,: 19nnl(·nt. of the SI, SS and ?O devices should be made with a thought to optimizing 
1/0 throughput. For example, since the four compiler modules must be input from the 
SFievice at different times during a compilation, compiling under MTOS with the SI, 
SS or 80 file also assigned to the System file device will cause markedly slower 

o 

01' -ration due to excessive tape repositioning. While this is n'Ot a problem under 
DOS because of the disk's random access capability, assigning- c:;everal logical units 
to the SF device will require partitioning of the disk into 4 or 8 partitions. 

CO>lFILER LISTINGS 

Fi';,lre 2--2 is a sample FORTRAN output listing: 

2-4 



~I 

!: UW,'¥' tf r', r 'W& ¥ t ... ' to II m 0 M 't t' t' t ' W t ttt.C crt t ' tr tt. 91'zitl:Wt::i!l!:iQ" Ktb t'" 

o 

o 

'"-''' 

PA(~ ~~~~ ~9/24;7d 15:tj:4~ fOR1~4 (Al) 
tl~ FILl~ F0UT OPTIONS: LU 

0(JII.: 
~,;J~ , 

0- J;' .. 
0;dr;:, 
0",r'lo 

0kJ~1 

eel'': :J 

01dt<.:\ 
illrH j 

0J\2 
o J t j 

0>1 t1 
011 J 

0.1 t J 
0'" 1 
0 1-:) 1 :j 
0i..i 1 j 

o ~-i~ J 
0J:?i ,,4&J 

(, ,,=,..j 
53]~ ) 
0J?u 

uEMOI.SH?/I Il O:~.lECl L'lS lING 
l~lEGrH NN(25). LLl'~l 
DUJBL[ PHECISI~~ OX, UW 
CO~MUN ~M~!0~), M /RLK/ Y 
E~J.IV'lf~;CE (t,LL) 
lSrCKOj = KI)*e 

J i" K = (I +J~0)*~ - 14 
M"'1(1) • K 

X :: J"~S(Y+4) 
D~ c OA8S(UY/4.J) 
IF tux :LT. 0' GO TJ 7d 
C.~LL ~LJR cl~+3CJn,lH"Br:lJE , '1+4) 

2~ wRITrr6,J~) y 
'1 J F 0 ~l MAT ( 5 X , I ~ , , 'I A L UE:: S.' ) 

IF' (1\ .f~~ M) GO TO h~ 
A~Sl~bLER 
LAP .2A 
AI)O K 
3TI .~P(MYI~hM' 
Ji'IP ",50 
RES J2.' 
FuRTR"N 

~~ D~ 6~ I = 1,10 
~J MMCI; ... i 

AssiGN 410 TOK 
MN(J) • " , 

(LOCAL VARIABLE IN RANGE) 
(SPECIAL SYSTEM ~AME) 
(fORWARD REPF.HENCE IN RAN;E) 
,(TO FORCE LITERAL POOL) 

01) IJ~Dl~ENSluN~n E*E.E.E.E*E*~*E*r*E.E*E.E*E*E*E*E*E.E.E*E*E*E.E*E.E.E*E.t 

o I.I? 7 1 ~) STu F 
0J2J ENL> 

Figure 2-2. Sample FORTRAN Output Li~ting 
2-5 { 



" 

" i 
! 
i 
~ 

e , 
\" 
I 
'C' 

t 
\;' 

I 

~I 

-t,rs reD b'tiel') " TO"" t're Ii ¥ ' o' ft t "MerrHM"gt '( H 1M ! M ¥ 1 tIft t 'Ute.vit','ewmE" ,. 

"0",2 ~9/a4i74 1511J:46 fORT;. (AI) !JAGL 
~o rIle: ',)UT OPTIONS; Ln 

( UMl1nN bL vCK Ir s t3n,~ '1/ ALl-OCAT IO~~ 10065 1'40fCO~ 

I,.UCI~ ~.A "" i_ 'r Yilf WORuS LOCf~ ~AME TYPE WuRDS 

r. ~~~Jd ~11 IN'rrGE~ If'1-i : Itlra64 M INTEGER t 

I J"1'10N l3LJCt</SLK I ALLOCATIO~ .011302 WORDS. 

.uc~ I~ ~ "11, TvPf "JaROS LOCN ~AMf TYPE WORDS 

;i./'?ildYt Y nEAL 2 

\~~" V ~LI.JCATrON 

1. <Je," ~J A " t: rVPE WOROS LOCN "'AME. TYPE WORDS 

;\ ." 011 v1 IJ N'I l~rfGER 2S 
0 

,. 4J 1 V Ai.. t..j\:l. c: ALlUCATION 

" 0(. f~ N ~'~ E' TYfiE WORDS LUCN "lAMt: 'rYP.E WORDS 
~, 

11rJ0~2 !.. INTfGEH 1 I~Ql22 LL INTEGER 10 

5l.Ai..AR Al LOCA nJN 

I.,.UCN· NA""E TyPE WORDS L.OeN NAME TYPE WORDS 

.;d\'l~C. K ll~ rr. ~f. ~ 1 100120 I INTEGER 1 
~IdQf;i( X KEAL 2 til030 OX DOUBLE 4 

.• \,FU~1 Oy Oou~I.,r 01 

o 

Figure 2-2. Sample FORTRAN Output Listing (Cont'd) 

2-6 

tot!'>'!" 't t tl' 

e 

-" 

--,' 



I 
I 

i 

! o 

o 

-

N'ettWWHt'·t·'j v.' .t"HHC 't"HTt'Y' f} '''j' itt. t'¥ttdtJ#rt1* #1: Wt' . ""tt % et 

PAGl 00li:SJ 
UO fILl.: 

0111'11 c: 
0dA~ 

031113 
0004 
000ti 
0~0b 

I . .. • 

09/24/7. 1511J.46 PORriA (AI) 
FOuT OPTIONS: LO 

DEMo~srRATE 08JECT L1SrING 
INrEbE~ NN(2~), LL(10) 
DOUBLE PkECISION OX, DY 
COH~UN MM~1(0), M I~LKI y 
tQUIVALENC[ (L,LL) 
ISF(Kn) :; 1<0.8 

H",iJb .F200 f 
10il3g .0800 .M8 
HliJJA sF900 a 
10iJ3d :CII001 
'''oJC .11I001tJ 
:0030 :B701 
1~0JE .1052 
I~-,jf' ;F706 

KO 

JMP 
ENT 
JST 
DATA 
DATA 
LOA 
~LA 
JMP 

-ep(f,RDMY) 
I 
o 
*K,O 
J 
·.~8 

20 ~ • (L+J0~J*M -

0ltJt2 

016\3 

10u4111 
:~04iO 
."t'41 
:~iJ42 
:OIiJ43 

'''iLl44 
'''045 
:0046 

MM U) • K 

IB20a 
18ElF 
.9A01ll F 
:F912J1ll 6 
''''064 t 
100'. 
c9EIA 

IPl047 :E611\ 
1004& .9000 d 

x • AI:JS' Y+4,) 
UH14g IF9111~ b 
I t'lklt1A I AA00 F 
10~"6 .890k1 a 
: lihHC 194"'~ f 
:0lttlO .00111::> 
atllOltE 19E216 

DX :; OASaCDY/4.]) 
.0u4r IB61ts 
IOIu50 IA2~0 f 
:I'IU5! .00"'5 
11i!I1J52 19E221 

Lf (OX :~T. 0) GO TO 70 
IOIu5J .0090 
I ~hH;4 1208" f 

C~LL SU8(~.300,'H~BCOE 
: 0"55 I F900 is, 
: GhH56 I ~00J 
:A057 .0001it f 
11i!I058 :0W)00 f 
:0k)S9 100"0 f 

2~ W~lTl'6.J0) V 
t~J5~ zF9~a a j2a 
iPlJ58 ''''16014 f 
'~'J"~ : ~000. 

EQU 
LOA 
lD" 
STA 
JST 
DATA 
SAl 
ST. 

JST 
LDR 
~DD 
STA 
ASS 
STA 

LDO 
DVM 
ASS 
STA 

)(IT 
JAM 

IY.') 
JST 
~ATA 
DATA 
DATA 
DATA 

1/6040 
*ICI 
L 
NT0 
*BP(fIRMPY) 
M 
14 
f( 

'8P(FIRREl) 
.RCt 
tap(y 
NTI 

x 
DY 
NHC2 

Ox 

*BPCSU8 
3 
NT0 
'He0 
NT! 

) 

) 

toSP (F UhtF ) 
'IC5 
-30 

• t, • #MbtsiWW 'M . ,·tt" t 

Ira12C 



9'! r g '","fawn It '."'UOttt ,t " I rent' , 'tt 'I'" htW#**, 'g . t·')"i "UH f ·t· tNt' em' tmtttW. ·,Hr.'tenrn_ 

~AGl ~001 09/24i74 15113.45 fORT •• (AI) 
dO flL£i FOuT UPTIGNSr LO 

00!5 

:~~50 If90~ B JaT 
10U5[ 2000a C DATA 
:~05F IF90~ ~ JST 

J~ FC~~A'{ 5X , 15 , • VALUES.' ) 

*bP(FaRROL) 
Y 
*BP(FIRSIO) 

:~~A~ IASB5 NJ~ TEXT '(5x,15,' VALUES~')~ 
IF ~K .EQ~ M) GO to 1~ 

H,,,,,60 IB634 
: ClilU61 ~9H'''~ U 
&01il62 :2100 f 
1011140 

A~S[""aLrR 
LAP 22A 

ZOlkj6J : C 62A 
A09 t< 
:~u64 c8El8 

STA *dPCMYiN~M) 
:0065 ,9900 B 

JMP ~50 
10066 .F20J f 

ReS 32.' I 

l~a67 sA0A0 
Fll~T~AN 

~J DU ~~ I • 1,1~ 
:(II~$47 :C401 
I~JH6 1((~t3 

6li Mh!(!) I: "1 
&0iJ8!il IC701 
,"'''SA 1900'" I:S 

ASSICJN 4~ TO K 
:(lI~8tj :C201 
SIi'J8C :0Idl.d 
I (;IIlIOfl II'I00A 
l~hJ~L 121C6 
Hl,)folf 1820121 F 
,0I09tj zf200 f" .L 
:~J91 IF203 F 
:11I,utl2 :9(66 

MNeJ) • if.) 

:s 

LOA 
SUR 
JAI 
EQU 

LAP 

STA 

.JHP 

RES 

LXP 
STX 

LAM 
STA 

AXI 
TXA 
SAl 
JAL 
LOA 
JHP 
JMP 
STA' 

I( 

tBP(M 
~H10 
111"'40 

.IIJ02A 

) 

(LOCAL VARIABLE IN RANGE) 
K 

(SPECIAL SYSTEM NA~E) 
tSP(HYtNAM) 

(FOHWARO RE'ERENCE IN RAN,E) 
11150 

(TO FORC~ LITERAL P~OL) 
321.' • 

I 
t 

1 

l~ 
111M 11 
-40 
.,112 
1¥t-'19 
I( 

LITtRAL POOL 

tt ·t 

UND1/f[~sIONCD r.E*E*E*E~E*E*E*(*E*E*E*E*E*E*E*E*E*E*E.E*E*E*E*E.E*E*E*f*E 
,P09l .F900 ~ JST *8P(FaRERR) 

01 ) 

1'~Q4 l~alA )'TA 26 
r:'w~; ~:"'.;a4 F 

~." ~"\i~~ 

~,~~: .': 
~ ~.;~ 'l \1: ~a>a ~ .""'i 
",~.~::'.:" .- 'I'<i.~ 

~;~ li"·.: 
1~! ·3~:;l~~T~' 
.. ~ .. \. 1 



~, 

• 'Ir'rw tl! . rhr' t' t' d' t ntiter "W r ttt' t tt'l . . "Wi .Z . "1 N'Wi'#J#t d . , 

0 

--

i 0 

PAbt. 0~"5 09/24/74 15113.45 fORT;4 (AO 
ao FILE; Four OPTIONS. LO 

H"~9d 4189 t;RC2 "ATA 16717 
:AIJ9C 9999 OATA -26215 
, VY •. /iLi 91.199 DATA -2621f) 
:~iJ9~ 999" DATA -26214 
,(IIw.,9F 0000 trlT0 DATA 0 
(,lIJ'~ 0ltJQJ0 .Tl [\ATA " AkJA2 0"61 DATA .40 
(II;)l3 (11007 DATA 7 
9IJA4 C1C2 wHC~ DArA 'A8' 
CIIJ_5 C3C4 I'ATA 'eDI 
~lJl6 .r.o.a DATA 'E , 
~u.7 ,A0'0 !)ATA • • 
"'''AM 10"~6 NIC5 DATA 6 
"'!JAg .63C6 ';PC.4 DATA 25542 
(i!~A4 .4161 I)ATA 16743 

SuP,PfJOGH;'MS C",LL£D 

NAM[ TYPE AiiGS NAME TYPE ARGS NAME 
. 

AtiS RE.AL , DABS 
r al'hlF RUNTJME Fu~ROL 
MY: !II A i-t ~UNTI"'e: F,REHR 
F':'<U06 RIJ~TIME F:RREL 
f : r<;f 1 RLJNTIMl F.RFf" 
r : r?~'P y RUN1IN[ 

STA1£MENT LAFtELS 

LOrN LA8ll U9E LOeN 

hJI'140 .10 Ita0ge 
;1d~00 *J0 FORMAT hH'J81 
H1Ob9 *6e1 vO END 1~040 
f IrH3g6 NM9 IlaB40 
.~"Y2 .~1 t 2 

C\lTwV-CIi)0J8 
PriPGRAM SIZEaJ0aAB ~ORD~ 
BADL pAbE UsEvaJ0~0D ~ORDS 
CUMPILAriu~ rOMPLrTE 1 ERRORS , 

IJOUBL.E 1· SUB 
RUNTIMt: F.RSIO 
~UNTIME FaRSTo 
RU~TIME F.RDBL 
RUNTll,iE F.RDMY 

L\BlL USE LIlCN 

.7~ '''''5A ,1#00 10067 

.",,7 .S03S» 
N~110 .BAS8 

TYPE 

REAL 
RUNTIME 
RUNTIME 
RUNTIME 
RUN1IME 

LABEL 

1120 
1140 
trlMB 
IIMll 

Figure 2-2 . Sample FORTRAN Output Listing (Cont'd) . 

m H t • 

ARGs. 

3 

USE 

UNUSED 



.. - 1!t1t'liltlbi #; #'f'H!I.!@ '·'6'11,"-£ "w' '¥ 'ilii I ''i'r'm I1'M .. 't "I"ffiiwdrre'# .. -@i',#,WW 1 'm" ¥4· .... ·iw".-""'¥H!we'''·'' .... tt W",-$a 'U''Wft·'dW"I'''''' eFl't" $ "1&1r'ft'W'm¥It"'f',ti fi·Ot ,'Iff!iW'He'ci'wM 

COMPUTER AUTOMATION. INC. f39 
The full listing of it eompiled progrum consists of fOlll' parts: 

1. Source listing' 
z, VlJriable storage allocation 
:$, Object listing 
'*. Summary 

Wherl no special options are requested, the object listing is not produced, but the other 
thrc0 are. The LO (List Object) option causes the object listing to be produced. If the 
EL (I·;1'1'or List only) option is specified, the source listing is suppressed, except for 
the first line and any lines that have errors, This can be used to save time and paper, 
while still being informed of anyerrors. Figure 2-2 shows a complete program listing, 
Following is a description of the four. parts, 

Sourcn Listinp" (Page 0001) 
---~-~-,~- ---,~~-' ..... , " .,."'~-- ---

O"hc source 1 isting shows each source line. preceded by a decimal line number beginning 
. with 0001. One space separates the line number and the first column of the source line. 

Every line is numbered, including continuation lines and comments, If E1. (Error List 
only) is requested, the first source line is automatically output, and the correct line 
number will be shown for any error source lines. Error messages may be interspersed. 
as shown after line 0026 of the sample program in figure 2-2. Note that each such message 
is followed by a string of E's (or W's) and asterisks. so that it will stand out. See 
",Compiler Diagnostics" for more inform:ition. 

Vat:5?ule Storage Allocation (Page 0002) 

Several kinds of tables can appear here. depending on the variables used in the program, 
and thrdr allocation. If any variables have been allocated in COMMON. a storage map 
will ,'Plwar for each COMMON block, including blank COMMON which is known as F: BCMN . 

10. Each m:lpgl ves the name o. f the block a. nd its size in hexadecimal. Then each variable 
... 8 llbtt!d. showing its location (in hexadecimal), name. type, and size (in decimal) . 
The sizt! is the total number of words occupied. Remember that !"loating point quantities 
occupyrnore than one word per element. (Others may too in ANSI mode,) 

If there are local (non-COMMON) arrays that have not appeared in EQUIVALENCE. these 
are shown next, with the same information as for the variables in COMMON. Next comes 
the map for any local variables (arrays or scalars) that have appeared in EQUIVALENCE. 
And flTwlly. a table of all the local scalar variables (not in COMMON. not EQUIVALENCEd). 

A table heading appears only if there are any items to appear in it. The variables in 



It 

o 

o 

It'· t"'ie'·' oW ii""" (rIA !!',o'i'lw'w"uou tk's' 'tt t "MdtMl't9f HW t t t em r M 

COMPUTER AUTOMATION. INC. (53" 
Object Listing (Pages 0003-0005) 

Figure 2...:2 shows a sample object listing. Some descriptions below refer to it. either 
by source line number or by hexadecimal location. 

An object listing always includes all source lines. even if suppressed in the source listing 
by the EL (Error List only) option. The source lines are interspersed so that in most 
cases they are followed by the instructions that were generated for them. When examining 
the object code produced for one individual statement note the following: 

1. The compiler does not generate object code one statement at a time. It remembers 
computations and the contents of the registers from previous statements within a 
block. (A block is ended by a label that is jumped to or in other ways.) Therefore. 
the code for one statement may look incomplete. sinc,e it is making use of results 
from previous statements. See ,for example, source line 0012. which uses two values 
computed earlier and stored in temps. line 0011. which uses the contents of the floating 
point accumUlator, and line 0024, which uses the contents of the index register. 

2. Literal pools may be generated at almost any point in the program, making the code 
for that statement look longer. 

3. The code to terminate a DO loop is not listed after the terminal statement, but after 
the following statement. This is illustrated by source line 0025, which also contains 
a literal pool, thus making its two instructions look like eight. 

The layout of an object program is showIl; in figure 2-3. 

: 0000 

Entry 

FORMATs 

Local Arrays 

EQUIVALENCEd variables 

Local Scalars 

Object code 
• 
• 
• ,. 
• 

Te~ps and Constants 

\ 

Figure 2-3. Layout of Object Program 
I 

The allocation of variables was shown in the allocation maps. so is not reproduced in the, 
object listing. The FORMATs, although generated apart at the head of tl;1e program, are 
listed where they appear in the source program. Here the program is not listed in strict 

_. forward order (i. e. the memory locations are not listed sequentially). Another place 
is the temps at the end of the program . For the most part, however, .the program is listed 
in forward order, beginning at the entry point and ending at the last temp or constant. 

2-11 



'4#' m' WfttH#tHtt' * #¥, I! a'!iel! i-m-ll'-- . W·' :tWiNY WI' t tHr*H!Hdt't Hi tiitH 'jt'''in"izfHb¥"eHw'tf:lttr'ttri''W ,'' ''\'%'"' MSY'tP#dkt'f%*f("'''b b"ltj''bh''Ir#@ieHqeti "N t 

--- -<--,---------------- COMPUTER AUTOMATION. INC. t3.9 
Each linp of object f!odc listed consists of seven parts (foUl~ of \Vhieh are optional) and 
from ]eftto right these are: 

1. The hcxadeeirnal location counter. See below for a complete list of the situations 
ill which the location counter does not increase by one at each line. 

2. The hexadecimal representation of the generated word. which may be an instruction 

:3 . 

o 

o 

or H data value. In many cases, this is only a skeleton word, since the actual address 
is not known at the time it is listed. This includes references to COMMON, externals, 
base page, and most forward locations. Also, an instruction may turn out to be indirect 
through a literal pool pointer, even though it is not listed that way. 

An optional alphabetic tag letter, which indicates for some operands the kind of ad
dressing that the generated word is actually using. These are: 

R Base page 
C COMMON (blank or labeled) 
F Forward reference 
S Scratchpad Helocatable data 

r I\(!se next four items in the line are parts of a simulated assembly language listing 
of the instruction. It is not always possible to list the instruction exactly as it would 
ilppear in assembly language, but in most cases therepresentation is very close 
Hnd maKf's it elenr what the compiler is doing. See below for a list of differences. 
The first held is the labp,l field, beginning in column 1 of the simulated assembly 
listing For normal instructions (i. e. not temps, constants, or literal pools), there 
fire three kinds of labels that can appear: 

#n Statmncnt number from the source program. (For example, see location 
: 005A) . 

#Mn II Made" lahf" . an internal transfer point generated by the compiler. 

nHme 

(E. (.;. location: 0040, which is the target of the jump around the statement 
function above.) Note that in this case there are two labels attached 
to t he same location. 

This occurs only on the dummies of statement functions (e. g. location 
: 003C). Tht dummies of FUNCTIONs and SUBROUTINEs are not labeled, 
nor is the entry point. 

Several other kinds of labels can appear in special places: 

#''1'n 

itICn 

#RCn 

Temp. Appear at the end of the program (e. g. location: 009F) . 

Integer constant. Usually appear at the end (e.g. location: 00A8) • 
but can also appear in literal pools. 

Heal (or double precision or complex) constant. Appear only at the 
end of the program (e. g. location : 0099) . 

2-12 



, . 

o 

\ 

t eWeft .. MeM.'dtfltfflt_,. 'f'rtarrtt#'t'iM"KH'tt-ttNMdtzht'f'tt"j' '''bMW'I'ljib dt,%M'U'ritt't H' 'f' 1 ""jli. t'fH 'j)"'SI' ""'j· .. ·e·) ¥"" t rt 

#HCn 

#L 

Hollerith constant. Ap~ear only at the end {e.g. location :00A2), 
and are always preceded by the character count. 

Literal pool. This label serves only to signal the beginniLg of a 
literal pool (location :008F). It is never referenced, and can 
appear more than once without constituting a duplicate definition. 
It always appears on the jump around the literal pool, and therefore 
does not appear on pools generated by the LPOOL directive. 

5. Op-code field. All of the possible op-codes are shown in the section on in
line assembly language in the FORTRAN Reference Manual. They are all either 
standard assembler mnemonics or floating point interpretive op-codes. 

6. Operand field. Where appropriate, it may begin with * (indirect) and/or @ 
(indexed). A large variety of ope:r:'ands can appear, some only as the result of 
having been used on an in-line assembly instruction. 

a. Blank. For op-codes like TXA or ABS that have no operand (e.g. location 
:0039). 

b. Decimal value, optionally preceded by minus sign (location :0045). 

c. Hexadecimal value, always preceded by a colon (location :0063). 

d. Alphanumeric s~ring, enclosed in quotes (locatio~ :00A2). 
! 

e. #n (statement label) (location :005C). Can be followed by decimal addend 
only from in-line assembly. 

f. #Tn (Temp, e.g. location :0042), #Mn ("made" label, location :0038), #ICn 
(Integer Constant, location :0040), #RCn (Real Constant, location :004A), 
or #HCn (Hollerith Constant, location :0058). 

g. $ (current location), optionally followed by a decimal addend. This can 
occur only from in-line assembly. Otherwise the compiler always generates 
a "made" label. 

h. FOR'rRAN name (variable or subprogram), optionally followed by decimal 
addend (location :0030 or :0047). 

i. Special system (or' runtime) n~e, 'which always contains a colon (location 
:005F or :0065). As shown, these are usually in combination with a'BP 
(Base Page) reference, since most instructions cannot address external 
references dire~tly. 

j. BP(x), base page reference, where x 'is a FORTRAN name or system name, 
possibly with an addend (location :0048). BP of other operands can result 
only from in-line assembly language. 

:-13 

I 

I 

I 
I 
I 
i 
! 
t 
I 



7. 

COMPUTER AUTOMATION,INC. ~ 

NOTE 

In certain cases (notably e. f, and h above). operands 
may be listed as direct when, 'in fact. they turn out 
to be indirect through a literal pool pointer word. 
because they are out of range. The only way to deter
mine this is to look at the actual word in memory 
after the program is loaded. 

Comment field. When numeric constants are referenced, their hexadecimal value 
1H show n in the comment field (location: 004A). This value may differ by one 
bit from the actual value printed at the end of the program. because the rounding 
is nnt applied until then. Note that on location : 0050. only the first three words 
uf a four word constant are shown ,because the printer line width was not large 
enough to fit them all in. 

! ~l!lllnla~age 0005) 

, ~'he summary is printed imme~iat~IY following the object listing, if there is one. otherwise 
following the allocation tables. First the subprograms called by the program are listed. 
TllifJ ll1cludes functions and subroutines referenced explicitly by the program, as well 
as run-·time routines referenced by the generated object code (e. g. for floating point. 
input/output, etc.). Names referenced by the program are FORTRAN names. i.e. begin
ning with Ii letter and containing only letters and digits. Run-time routines are non-. . 

FOln RAN names, because they always contain a colon (e. g. F: RWF. F: RREL). This 
may include special system names referenced by in-line assembly language (e.g. MY: NAM 
ill the sample program) . 

Thl..!tabJe shows first the name of the subprogram. Next is the type (e. g. REAL. INTEGER) 
if it is a FOHTRAN referenced name. or the word RUNTIME otherwise. Then. again for 
FORTRAN referencud subprograms only, appears the number of arguments it has been 
called with. If the llumberof arguments is variable (e. g. to AMAXl) or unknown (name 
declared external but not directly called). the number of arguments is shown as zero . 

. 01tll the exc(~ption of intrinsic functions. this list of subprograms' called represents the 
names that must be found during loading. either from the library or from other programs 
compiled or assembled by you. Intrinsic functions (e.g. ABS) are listed here but are . 
not actually referenced externally. They are generated in-line. 

Second in the summary is a map of the statement labels. This includes the statement 
numbers used in the source program and also the "made" labels generated by the compiler 
(#Mn). They appear in the order defined or referenced in the object program. which 
is not necessarily storage order. Each entry contains the hexadecimal location, the label. 
and in certain cases an indication of the use. There are three such indication,s: 

FORMAT 
DO END 
UNUSED 

This is the label of a FORMAT statement. 
This has been used only as the terminus of a DO. 
This label was defined on a statement. but never referenced. 

2-14 



o 

o 

Mr.e Ct._"C' -m'H't1fflgl'!ittlI'!M"hi'ttU'f2'Y'W"W*!rreb'ii ", 1 0 ,-(Hwt''ii,'wMF I *""f'nm'%'6>'z',lrt,>* Nt 

COMPUTER AUTOMATION. INC. 1'3, t:, 
Finally, four pieces of information are given about the program: 

1 . Location (in hexadecimal) of the entry point. 
2. Total size (in hexadecimal) of the prvgram, including local variables but not COMMON. 
3. Number of base page words used (in hexadecimal). 
4. Message COMPILATION COMPLETE followed by the number of errors (even if zero). 

DIFFER~NCES FROM ASSEMBLY LANGUAGE 

As noted above, the simulated assembly language listing of the object program is an appro
ximation of how the program would appear in assembly language. In most cases it is 
exactly the same, but there are some differences you should be aware of, both to aid your 
understanding of the generated code, and also in case you should try to extract code 
from a compiled program and use it in an assembled program. These differences are 
listed below. 

1. Operands that are out of range are not always shown as referenced indirectly through 
a literal pool pointer, even though that happens. This can happen on statement num
bel's, "made" labels, temps, and floating and Hollerith constants. For example, 
iocation : 0054 shows a direct reference to #M9, but actually enqs up being indirect 
through the literal pool address in location: 0091. 

2. Similarly, references to array offsets that have to be stored in temps (in No Scratchpad 
Plode) may show just the name of the array, when they actually address a constant 
containing the array base minus an offset. 

3. Also in the same vein, the ASSIGN statement lists a load of a statement label instead 
of a constant containing the address of the label (e. g. location: 008F) . 

4. Instead of increasing by one each time, the location counter may jump suddenly without' 
indication in the assembly language. This can happen in the following places: 

a. FORMATs are generated starting in location: 0000 (prugram relative), regardless 
of where they appear in the source program (see source line 0014) . 

b. Not all of the generated hexadecimal words are shown for the TEXT command 
in a FORMAT statement. Only the first word is shown (in order to save paper 
in the object listing), unless the string is more than 32 characters long, in which , 
case every sixteenth word will have anew TEXT command and one word of hexade-, 
cima!. For example, see source line 001~. ' I 

c. The temps listed at the end of the program may not be in order; the location 
counter may jump around. Also. although all temps are listed as DATA O. some 
of them actually occupy two or four words, so the location counter will increment 
by that amount. 

\ 



f I 

, s . H . u 'ten t, 1 •• {V'Iit" - '* H'hi " 'jUt ,t Au "'tt; i'1'ti'ti'i'!i:'"f - 't" .", «-i&'t 

COMPUTER AUTOMATION. INC. f3]l I • 
5. Whenever a IW.me (FORTRAN or runtime) is listed as an operand. the full six spaces 

are always reserved for it. Thus if there is something to follow the name (e. g. an 
;Iddend). and the name is shorter than six characters, there will be blanks in between, 
whieh would not be allowed in ass~mbly language. (For example, location: 0048 
ur : OOSA) . 

6. The decimal va.lue -32768 is listed as -0 .. 

7. if a quote mark appears within an alphanumeric string that is enclosed in quotes, 
it is represented only as a single quote mark, rather than as two quotes (which would 
he required normally in such a string) ." 

8. #L appears in the label field of all compiler generated literal pools (i. e. those not 
:alled forth by the LPOOL directive). It is only a signal and never gets defined, 
but in assembly language it would constitute a double definition. 

9. The double-word op-codes MPY, nVD, and NRM. instead of being listed as, for 
l!xample, 

o MPY a,b 

<.!re listed as: 

MPY 
DATA a,b 

but they generHte the correct object code. which is: 

MPY b 
DATA a 

10. number of thing's are implied in the object listing, without being specifically shown. 

o 

'l'hisi ndudes: 

H. Thc! sealar.·; and arrays are not allocated (Le. by RES directives). The compiler 
know s where they are and tabulates this information in the allocation maps preced
ing the object listing. 

b. Extornal definitions and references and allocation of variables into COMMON are 
not shown., 

t.' . The dummies of FUNCTIONs and SUBROUTINEs are not labeled with their names. 

d. The entry point of the program is not labeled (i. e. with the subprogram name 
or F: MAIN). However, it is identified as such in the summary. 

(> No END line is listed, and therefore no transfer address (to F: MAIN) in a main 
progrnm. 

---------_. _._. ----



o 

t 'MMWtHBt#*¥ I ''ttl!' W r" '" r t' 1 tnt rt ** ,if t t !. 
, \ 'li'W; . 'NsW't ''¥t21¥ j jt 'fi' i -f',ntt:'tt M Uft'ft, 't'iW'rSHt j Wii4¥'ii&QWk' 

COMPILER OPTIONS 

Compilation may be performed under nine different options. Each is'described below, 
and may be requested by the user by including the option names as parameters in the 
OS/EXECUTE or /BEGIN command when starting the compilation. The compiler looks at 
only the first two characters of the option name; thus either the first two characters 
or the entire option name may be specified. The options requested are output on the 
list~gs (in 2-character format) as the second header line on each page, along with 
the 80 file name, if any. 

EList (Error-only listing) 

Requesting this option will cause the compiler source output listing to be suppressed, 
except for those statements with Error or Warning diagnostics. 

(The first source line of the program is always printed.) 

~Obj_(Object code listing) 

This option lists, following the source listing and allocation map, the actual 
machine language code generated by each FORTRAN statement, and its symbolic rep
resentation in: FORTRAN assembly format (see Figure 2-2, pages 0003-0005). The code 
for each FOR'rRAN statement is preceded by the source state~ent. This listing can be 
useful to the programmer who wishes to see how the source statement is expanded into 
bina1.Y code, and thus offers a convenient method for use in debugging, or for compar
ing memory usage and execution time for the various statements. This listing can be 
rather long, however, since several lines are generated for every source statement. 

NBindry (Suppress binary output) 

This vption suppresses output to the BO device. This option is requested when it is 
likely that the source statements contain errors (e.g. in 'a preliminary compilation), 
and tllUS the resultant binary output will not be useable. Output of the normal 
printer ,listings is unaffected by this option. 

RScratchpad (Reduced scratchpad usage) 

111is option red~ces the amount of' ~cratchpad area used ~uring the execution of the 
compiled FORTRAN program. An example is where the user compiles a large FORTRAN 
program, then links it using OS:LNK, only to find a scratchpad overflow condition. 
At this timE.~, he should re-compile the program using the "RS" option. 

, 
Note t.hat this option does not totally preclude scratchpad usage, but rather causes 
the compiler to minimize its use, by creating address pointers to external sub
programs in main memory rather than in scratchpad. Note, however, that references 
to arrays and COMMON variables remain in scratchpad. 

NScratchpad (no scratshpad usage) 

This option causes the compiler to avoid the use of scratchpad for address· pointers to 
external subprograms, arrays, and variables in COMMON. 



at u t t 1 'ntttt"'. \$" t 'eil'b" 1 ',#e·"I:-" 'O:,!,':':""ttH ' t t-= 

Note: There are 20 words of relocatable scratchpad (SREL) program which 
required in scratchpad, even when the NS option is requested. These are 
FORTRAN at r~-time for its floating point accumulator and other special 

are always 
used by 
temp cells. 

This option should be used when the FORTRAN programmer requires a large amount of 
scratchpad for his own purposes. This option causes less efficient run-time code to 
be generated in order to compensate for the avoidance of scratchpad. 

XOn (Compile "x" statements) 

This option compiles any FORTRAN statement containing an "x" in column 1. If the 
option is not requested, such statements will .be treated as comments. This is a 
useful option for debuggi.ng purposes during program checkout. Once the program has 
been !;hown to be correct, i.t may be compiled without the XOn option, and the "X" 
statpmunts then serve as historical references. Refer to the XON example in the 
FORTHAN Reference Manual. 

, ADp (Automatic Double Precision option) 

~ib OVtion changes all real variables, arrays, constants and non-library subprograms 
."n t.:'e FORTHAN source program' to double prec~s~on. In effect, the compiler proceeds 
as if all real variables an~ arrays had been typed as double precision~' and all 
float i.ng point consta,nts are assumed to be double precision. In ~addition, references 
to ail library functions (intrinsic and basic external) of the real type are changed 
to reference the double precision equivalents of those functions. These changes do 

~ not appear on the source output listing, which is simply a printout of the source 
record images. The changes do appear on the object listing (if requested). 

This option is normally requested when the single precision accuracy of an existing 
FORTRAN program is found to be insufficient. However, because of'some inconsistencies 
which may arise in the usage of this option (see below), it generally is better to 
write a double precision program than to convert a floating point program using ADP. 
The lollowing considerations should be taken into account when using this option: 

1. Complex numbers are not converted to double precision. 

i ~ 2. f..:ny programs which interface to the converted program should also be double 
precision so that arguments will be of the same type, and COMMON will be correctly 
:11 igned. 

, 

3. 

4. 

If a standard library routine is declared EXTERNAL, the compiler will not 
recognize it as one of the standard routines, and thus ·...,ill not automatically 
substitute the equivalent double precision routine. 

Operands used under the FORTRAN in-line assembly feature may be converted to 
double precision, but op-codes will not be changed. 

Figures 2-3 and 2-4 demonstrate the function of the ADP option. Figure 2-3 was 
compiled without the ADP option, Figure 2-4 with the option. 'The differences are 
circlf!d on the listings. Note that the variables X, Y and NUM, which would normally 
be single precision real types, are converted to double precision. Also, the con
stants 2.3 (real) and 17 (integer) are also converted to double precision. The' 
external function F is assumed to be double precision, and references to the FORTRAN 
functions SIN and ASS are actually made to DSIN and DABS, as shown in the subprogram 

---~- ~.,---,---------------------------



" 'i 'tttn t1" '; i tr1M t'H 'it '1 't * t 
.1'\ l'{titWMP"mrw'i W WW"ltt'M '''MrHbtt''· .. ,tw"r!!biitttirW·', i t""IWWIn"' 'to),!,'! y'IAAWq'l'·bt",*fe.IMti!m .. I"bt'MY:!t'"i"qb~ 

e------------- ComputerAutomation ~ 

o 

o 

I 
I 

usage map. (In 
Gen phase--does 
object listing. 
was made during 

the case of DABS, the actual object generation--during the compilel 
not require a call to this function, and so none appears in the 

The reference to DABS still appears in the subprogram map, because 
the Scan phase prior to object generation.) 

ANsi (ANSI - c~mpatible allocation) 

it 

This option allocates two words of memory instead of one to all integer and logical 
quantities. This is used where a program requires storage allocation to be ANSI 
compatible, since the ANSI standard specifies that integer, logical and real quantities 
must be the Si.une size. In most instances this option will have no adverse effect' on 
the program's operation, however, note the following exceptions: 

1. Any operation which steps through each word of memory should not be used on an 
integer or logical buffer or array (e.g. ENCODE or DECODE statements) where the 
ANSI option is used. 

2. Any programs interfacing to an ANSI program.should also be ANSI to avoid any 
conflicting COMMON variables which are integers or logicals. 

Figures 2-5 and 2-6 are examples of ANSI option usage. Figure 2-5 was created without 
the ANST. opt.ion, FigUre 2-6 with the option. The differenr.es are circled, and 
demonstrate the doubling in size of the integer. and logical variables: 

2-19 



, 

I 
i'/ 
• ;, 

Ii 
:;. 

i" 

I 
I 

tit 

'ACt. I,HHen 

,rtJ01 L 
,"'02 
:J0J 

,;1004 
;~0~ 

'!ldf(JtI 

o 

Itttnlt#' t r tt rtt It'., w' 'tt! ",,'trig "1M 5 t1k tIltS" 'ttt"UttS'¥ 7" .. "3 IHf"OC*»" 'd 't'tf'wtfsrf ee.\ 

kt9/04/7~ 
OPTIONS. 

17zU.s14!5 
LO 

F~RTRAN (Xl) COMPILATION 

O[MONSTHAT£ ADP OPTION 
REAL NUM • NUH • 2..J 
X • F( ," U M ) + 1 7 
Y • A R S ( :H r~ ( X ) ) 
END 

rd9/~4/7~ 
OPTIONS: 

FORTRAN (X3) COMPILATION 

:·LAL.AR AlLOCAT ION 

' .. OtN NAME TYPE WORDS LoeN NAME TYPE WORDS 

a 14000 ~UM REAL 2 '0002 )( HEAL 2 
liIJ004 '( REAl 2 

0 

Compilation without ADP Option Example 

2-20 



me «8 =_"Vj'fthlCftt.'W 'lnb"tlrfWU"ttr"t# tn .. ? tlttt N'W'etlnw·· t 't ,,''Mdmt sf . 5 ,'J'", " t'1# ?teer tt 

t e "9/04i7~ 17.18.45 
J 

PACE 0903 FORTRAN (Xl) t;OMPILATION 
OPTIONS. La 

I 0"01 t DEMONSTIUTE AOP OPTION 
I- ""02 HEAL NUM 
1 

""0l 
, 

t NUM • 2.3 I: • (lII006 IF9P)a H Jsr *8P(F.RINT) J IPl007 .AAla 
." 

LOR NRC0 Z4113,33JJ I: 
~,y" IPlld08 .?E08 STA NUM 

0"84 X • F(NIJM) + 17 
1"009 10e10' )(IT 
1000A ,F900 ts JST *8P(F ) 
10Bets 100GU DATA 1 
10kl0C .901/)0 DATA NUM 
101000 If910 8 JST tlt8P(F,RREL) 
10Bel 18A00 f ADD NRCI 142'8,0000 
.A00F .9EID STA )( . 

0005 V • ARS(SINCX») 
.0010 IPleBe XIT 
I Pit] U .f900 a J8r *SP(SlN ) 
UIIdJ.2 .00131 DATA I 
U10' J :00132 DATA )( 

HIt] f 4 IfSil0 8 J8T tltSP(F,RREL) 
0 10015 .0005 ASS 

10016 .9E12 STA Y 
00·06 END 

10017 .0000 XIT 
''''018 .F910 ts JST tltSP(F:RSTO) 
1001,9 .0ee0 DATA " " '00,1A 14113 NRce DATA 16659 
IPl018 IJJlJ DATA 13107 
IPl01e .4288 NRCt DATA 17032 
'00tD 10010 DATA " 

SUBPROGHAMS' CALLEu 

NAM[ TVPE A~GS NAME TYPE ARGS NAME TYPE AR'S 

r REAL ABS REAL 1 SIN REAL 1 f.RSTO RUNTIME FaRREL RIJNTI ME FaRINT RUNTIME 

0 
ENTRYIJ:0006 
PROGRAM SIZE-lliHUt wORDS 
BASE PAGE USEO-IA08S wORDS 
COMPILATION COMPLETE o ERRORS 

. Figure 2-3. Compilation without ADP Option Example (Cont'd) 

I 2-21 

~: ....................................... . ,.1,1 



.. ttmtUH d "$'tsl ¢' tt dhHttH tt t t) It' ttt ttl' N btrstt$.'ffl 'fW&tNtttt t t j rt""S'tt* tM 11 H t np'rtM:!t t uww, 

09/~4114 . 171~2 
OPTIONS; LO~ 

FORTqAN (X]) COMPILATION 

f)E.MONSTRATE AOP 
REAL NIJM 

OPTION 

NUtol -2:3 
X • F(NUM) + 17 
Y 1II ARSCSINO(») 
END 

~AGl ~~~~ ~9/~4~7~ 
OPTIUNSI 

1712Bi12 
L O. AD 

. 3t4LAH ALLOCATION 

0 .. NAME TYP( WORDS 

~""0 "JUM 
16"~8 V 

FURTRAN (X3) COMPILATION 

lOCN ~AME rvPE WURDS 

10004 )( e E ~ 
~ 

Figure 2-4" Compilation with ADP Option Example 

o 

-" 

-

\ 



f'"i, " 

~ 
l 

e PAGE 0003 09/".i7~ 1712r./Ji12 
LO. AD ,It. OPTIONSI 

0tet81 l 
0002 
"0el 

O["40NSTRATE ADP 
REAL NUM . . 
NUM • 2.J 

IClI"ec aFg0., Ii 
."'IdAD 1820" F 
.ClIIf)0( .OE"E 

X. • ff'NWO ... 17 

UJ0~', • """" ,e010 IFIUJ0 a 
Ulidll 10001 
191012 .00"''' 

t ' t' d¥,'''d iW" 'it 'j d d"' ( rt 'h 

FORTRAN eX3) COMPILATION 

OPTION 

~ 
*BP(FIRINT) 
"Hera 
NU~ 

X1T 
J8T *SP(F ) 
DATA I 
DATA NUM e 

. I pldi J IF9".a 8 JST *SP(F RDBL) 
~10'01i11! 101",4 &8A0" F ADD "~Cl 

.Aldte,.19E11 STA X 
y • ARsCSINeX») 

'1'1016 IQJ000 XIT ;SpS I~OI7 aF9GUI S J8T ) 
JOIklt& 10liUJI DATA 

o 
.OI019 1~"}04 DATA :HP(F~B~ I"'''.A .F5H'J0 a JST 
1"'01s ,'005 A8S 
IP",ic a9E14 STA Y 

"""6 END 
91"'10 10000 
Aldll IF900 a 
"'01f 1"000 
P0211J 14113 tIIRC" 

"-; ",,,21 .3333 
C'lo22 .3333 
"'023 13333 
0024 .4288 .Ret 
01"25 10000 
AliJ26 I o ItH'J 0 
(:'11327 10000 

SUBPROGH4MS CALLED 

NAME TYPE ARGS NAME TYPE ARIIS NAME TYPE ARGs 

o r Cfs~ i 'IRsTo ~ I OttL ~g~ 1 ~ ..... O..;;.S.;.I...,.N rr:;--""fI0R;;T0uuBWE 1 
'iiR"INT ~E 

tNTRY·:iCJ00~ 
PROGRAM SIZE.Je~28 WORDS 
BASE ~AG~ USEO •• 0005 WORDS 
COMPI~ATION COMPLETE 0 ERRORS 

Figure 2-4. Compilation with ADP Option Example (Cont'd) 

2-23 " 



, 't'M#*j'"tfM'#'fMtN!tnt t' ft. '1'.',,' 'PIA .... ' ('H b t eM tidWr: t MW_ tet t . wt!.H'wMl't r#" . *1 . , .m- '$ "¢' 

~: e i 
~ 
t 
~ 

~ 

t ~)AGt. 0r'!02 09/2~i74 Jg'2bl~e FnRT;4 (AI) 
uo rlLt~1 FOdT UPTIONSI , 

I 
I'i 

f C O!04t1rlj~ aLuCK/FI~C'1"'1 ALLOCATION 10~06 WORDS 
t >,1 
", UJ(.I~ NA~t fYi'll WORDS ~.OCN ~AME TYPE WORDS 

," Id'll ~I ~ BLN~ ~f:Al 6 H,~e2 RROOT ,REAL 2 

r Ulo1,:·l0;~ tiLUCK/ ... AJLO I ALLOr;ATIO~ 101002 ~ORDS 

:,UCt'j NA~E. rYPE WORDS LOCt-4 'lAME TYPt:; WORDS 

'; ~H~hd LAB1 INTEGER 1 1~001 L.i\B2 INn:;ER I 
A~f. \'1 AL.LOCAT.10N 

LIJ('N NA"'E TyPE WORDS l.OCN NAME TYPE WORDa 

A' oJ' 
0 

'V INTE,GfR ~ 

:r:~\JIVALt:N(E ~ L L 0 CAT I O'~ 

\, UCN NA'f. TyPF WOROS LOCN 'JAME TYP,E WORDS 
t 

~ 5"H'Ia JE:(.lJ I 'I INTEC;[f.( I • kJ00B J INTEGER i 
;~i. .A.: •• \ R ALLOCATION 

. .J,,~ ~AM~' ryp( WORDS LOCN NAME TYPE WORDS 

(I\!l!JL R I~EAL 2 rillaE S REAL 2 
t Iu~H (; L L.OfatA ... 1 "HU1 D DOUBLE .. 
: Joi!15 L ,-OrtPU:x " HIQJl g t INTEbER t 
i k1,H A- I< INTr(;Erl 1 U101B Q l~TEC;ER 1 
I ~ 11 c: OIWOT iJ(1IJ~LE .. 1~02Q1 l;~QOT' COMPLEX ~ 

Figure 2-5. Listing without ANSI Option Example 



I 
t 
171 

" 

-'! 

'1'.n .. nt!' "t'ttW'twS#wrtWe M1WwtHu MMte,*,we:H't9Wr:l'!U1 Ii ttO'1'tWtt'i· ·U·W"¥MW#'W!tCWitt't*'*tifetr'ttW."MU. ail .,. 

PAGE 00~' 0P/2S}14 091271J4 rORTI. (AI) 
dO FILEI ,FOUT uPTIONS. AN 

Ca~MON ULOCK/f~OCM~1 ALLOC.'ION 100a6 WORDS 

LUCN NAME TyPf 

'~~U0 8LN~, "EAL 

W~ROS ~OCN ~AM( TYPE 

6 zael2 RROOT REAL 

CO~MON GlOCK~LABLU I ALLOCATIO~ 10~B4 WORDS 

LOtN NAME TyPE WORDS " LOCN 'iAto1E TYPE 

(ij~021 L.ASt :INTE.Eii 2) (!!e02L.AB2 INTEr;ER 

ARRAV ALLOCATION 

LOrN NAME TyPE WOROS LOCN NAME TYPE 

@~~1N INTEGER a) 

o f :.lUIVAtE.:/,CE ~LLOCATION 

LOCN N4:..jE TyPE WORDS LOeN NAME TYPE 

([~JFJE~UI~· £NTEGER 2) ~;~f· IN~GER 
SCALAR ALLOCATIUN 

LOCN NAME TyPE WORDS LOeN !~AME TYPE 

1 netn_, 't 

WORDS 

2' 

WORDS' 

I) 

HOROa 

WORDS 

2J 

WORDS: 

Figure 2-6. Listing with ANSI Option Example 

o 

2-25 



$'" -
COMPUTER AUTOMATION,INC . . ~ 

Wh,'11 01(' Tit/wI! option is specified, the eornpi\('r gcrwrlltt~S extra run time culls in the 
cOlllpi !"d pr'ogr'um that caw-;e it to prilll out tr'ueo informutioll (on unit 6) in tll,'cc pluecs: 

1. Whenever a labeled statement is reached, the message: 

xxxxxx LINE ddddd 

i s prinh~d before the statement is executed, where 

xxxxxx is the name of the program (F: MAIN if main program). If the name is 
the same as that on the previous trace line. it is not printed. In other 
words, the name will be printed once when the program is entered. 
and not again until a new program is entered (or returned to) . 

ddddd is the source line number of the statement about to be executed. 

o \tVhen a SlJBROUTINE or FUNCTION is entered, the message: 

xxxxxx ENTRY 

I S print(~d immediately after entry. Again xxxxxx is the subprogram name, which 
',v ill nl WHyS bf~ printed. Note that the tracing is done upon entry, not upon call. 
Ttwl'efore only subprograms that are compiled in TRACE mode will be traced. 

3 . When n RETURN statement is reached (whether or not labeled), the message: 

xxxxxx EETURN LINE ddddd 

ih l»'int('r\ befOl'l! executing the RETURN. 

Thl inflJt'lIll1tion is, sufficient to follow the flow of the program. since it will trace all 
jUlllpg (thl! transfl~I' point will be labeled) and all calls, except to library routines (which 

i lIT'(' 7,:mmwd to OIHl':lte correctly) and to subprograms not compiled in TRACE mode (which 
OI'!"isO uS;;illlcd t.o operate correctly). It is not necessary that all of the programs loaded 

b\~ I..'ompiled in TRACE mode. As soon as certain parts arc checked out, they can be com,
pili'd no l'rlIa!l y • so only the remaining parts are traced. Note that assembly language 
subpl'ogt'llrn~ EU'.c not traced, nor are sections of in-line assembly language. 

The lollowing (!xnmple d(~monstrates the use of the TRace option: 

2-26 ---_._---,,---------...;...,---------------------------' 



bit"'''. j" 't1 ti' 
Hi tl n, * j =*1 N't '$'e.1 j"' 'Itt? be St &' t"%1) tt'· '0 "tWI' w. O 'XV .,,, 7m ... 'kill 'f?'OCfT't u 'W t i 

e-' COMPUTER AUTOMATION. INC. I:3!:J 

o 

, 0 
I 

01/17174 14:10:42 

I • f) 

(ALL MYSUd 
~IiU "( E (b, J0) 

FuRIHAN (X1J COMPILATION 

0001 
""'912 10 
0U~3 20 
0004 J~ 
0160~ .40 
0006 

FURMAt it WHITE MfSSA~[I) 
1 :I t -1 

o 16 !'.I 7 
0~(H~ 51.!1 
0",r,~ 

If (1 .E:Q. IJ) GO TO 5rJ 
GO TO 1'" 
STOp 1 
ftH) 

PALl d~~1 07/17174 1411~a42 

S~BkOU1IN[ MYSUb 
Rk..TvRN 
(NO 

FURTRAN (X!J COHP1LATlON 

Notc that the main program contains four labeled statements (line 2. 3. 5 and 8). Line 4, 
thc format statement, is not traced since it is not executed. Also. line 2 contains a CALL 
to the subroutine. MYSUB. 

The following lines were executed by this program when compiled without the TRace 
option: 

WRITE MC.SSAGf 
WRITE MlSSAltr 
w~lTf M[SSAGE 
WRITE t-'llSS.\Gf 
WF<I TE. ~lSS"br: 

The following lines were output during execution of the same program. after being compiled 
with the TRace option: 

f:M.IN LINE 2 
MVSUb Ei'4T~Y 

RET~HN LINE 11 
r'MAIN LINr J 

wRITE Ml~S"GE 
LINf ~ 
LINt 2 

MYSUd ENTRY 
RlTUR~ LINE 11 

reMAIN LINE 3 
W~ITE M[SS~b[ 

LINE 5 
LINE 2 

MYSLJa ENT"Y 
R(TuRN LINE 11 

(Continued on next page) 
2-27 



.~ 
4i' I, 
~ 
j 

~ , 

~ 
f 

ri '#H'I'd' :i7'tiWWWWI:l: 'dfwi"'t ttHW%'! n W'-"ttt '0 fW)! "W'ri ' q • 'tit"*,**, ">H "1't'ieR t' ,',,- "cr- rl 'W'#' t t"W .... iit 

COMPUTER AUTOMATION. INC. ~ 

r : M & 1 ~J LINE J 
w,HTE ~L.SSA{j[ 

LINt: !) 

LINE ? 
MYSUti [NTRY 

RETURN LINE 11 
r:f'1AIN LINE' J 

WRITE ~lSS~('[ 

lINf 5 
LINE 2 

f'1YSUS (NTi1V 
RETuRN L.INE 11 

r:MAIN LINE J 
WRITE t-lLSSA(,[ 

LINr. 5 
LINE' 8 

, ()~!':':tCompil.~ for . .!?xecution under the Real-Time Executive RTX/IOX) 

This option must be specified when a FORTRAN program is to be compiled for execution 
as n tHsk under RTX. The option causes references to common FORTRAN library subpro
grams to be Illade via the RTX SUBR: function; also, no execution address is output 
at the (mel vf tl1(~ c'Hnpilation, since it is assumed that the task (s) will ultimately be 
linkt~d to an assembled Mainline sequence (called F: MAIN) . 

A program run under RTX normally consists of a Mainline sequence and one or more 
tasl'.~; to be run simultaneously. Refer to the RTX User's Manual for a complete descriptlon 
of an RTX program. The following discussion encompasses only the differences between 
the~tandurd RTX program and a FORTRAN program run under RTX. 

A FOHTRAN program is cOllsidered a "task" to RTX. Several FORTRAN (or non-FORTRAN, 
or intermixed) tasks may be linked together with a Mainline sequence, to be run simulta-

. Oleously . 

RTX Mainline Sequence 

The Mainline seqwmce is simply a calling routin~~ to initialize and begin each task using 
the HTX BEGIN: subroutine, Normally the Mainline is assembled using OS: ASM, while 
a FORTRAN tHsk is compiled by the FORTRAN compiler using the RTX option, and having 
a TASK stut<!rTlent as its first source statement. The organization of the Mainline sequence 
is described in the RTX User's Manual. Additional considerations for a Mainline sequence 
which is to initiate FORTRAN tasks are described below. (See figure 2-7 for an example 
of 11 Mainline and two tasks.) 

Uk't IJ 



( 'SZ; Ittz f 

o 

io 

f 'n" "1 '. I 'bbtrliW#Mi,f '# rl tl ttnN'tcjHi*ttt¢tdtWtttrM tttH#t )lttr 'W't'ttt'Wnf r tHe"!' ttt1'Hrt At' t t $" W$M'ffii ft' ttttZH"nl' 

Mainline Entry Point (F:MAIN) 

For proper linking under OS:~K, the ma~nline sequence must contain as its entry 
point the label "F : MAIN" .' This label must ,also appear in a NAM directive at the, 
start of the mainline sequence. 

Input/Output.Block (lOB) 

A non-FORTRAN RTX program requires that each task contain an lOB (Input/Output 
Block) which contains pertinent information for I/O operations. Under FORTRAN, 
however, I/O information is expressed in FORTRAN I/O statements. This information 
is then converted by the FORTRAN/RTX I/O Interface module into the lOB format required 
by RTX. Thus the FORTRAN, user does not supply the lOB. 

Unit Assignment Table (UAT) 

Executing a program (Fortran or otherwise) under OS control differs greatly from 
execution under RTX control. One important difference is the manner in which logical 
uni,ts are assigned to physical I/O devices. Under OS, this is accomplished by the 
/ASSIGN command. Under RTX, however, a Unit Assignment Table (UAT) must exist, 
which is a table of two-word entries, each providing a connection between a logical 
unit number and a physical I/O device. Thus RTX requires that d~vice assignment be 
made at assembly time, rather than allowing dynamic assignment at execution time, as 
does OS. t 

In FORTRAN, the most convenient location for the UAT is within the assembled mainline 
program, and it is suggested, that the user follow this practice to provide the 
greatest ease in changing the UAT when necessary. (It is because of the great 
variability in UAT construction, and the dependence of its organization on the 
FORTRAN unit numbers used as well as the physical devices configured on the user's 
system, that no standard UAT is included in the FORTRAN library modules.) 

The UAT is simply a table of two-word entries for each logical unit which can be 
referenced within the lOX section of RTX, plus a terminating word containing the UAT 
word l~ngth. (Refer to the RTX User's Manual for a complete description, and see 
the RTX mainline example below, which contains a UAT.) The first word of each entry 
is the FORTRAN unit number. The second word of each entry is the address of the 
corresponding DIB (Device Information Block) table within RTX. A NAM directive to 
the label I:UAT must be included at the start of the Mainline program, as this is 
the name used by RTX/IOX when referencing the UAT. (I:UAT is defined as the last, 
rather than the first, word of the UAT.) 

As mentioned in the RTX'User's Manual, cer~in DIB's exist within RTX/IOX (for disk, 
line printer and teletypef which reference sp,ecial FORTRAN drivers within RTX/IOX. 
This is because FORT,RAN requires more capability within the driver than lOX normally 
supplies. The special teletype and printer drivers are needed to recognize carriage 
control characters. The special disk drivers handle record numbers internally, and 
can recogriiz(! and create end-of-file marks. Since an RTX mainline sequence may 
refel'ence both FORTRAN and non-FORTRAN tasks, both types of DIB may be required. 
Fortran unit numbers in UAT entries should reference FORTRAN type DIB's, if they 
exist. 

2-29 

I 

! 



,', 
' .. 

COMPUTER AUTOMATION. INC. ~ 

No!c' :dso thut the standurd disk DIB's in RTX/IOX each refer to a single file, or "extent" 
on tilf! disk. Since there is no way for RTX to know beforc--hand how much of the disk 
or how many separate disk files the user may require. the disk DIB's have been established 
for the general case; each DIB refers to an entire disk platter and considers it a single 
file. Since in many cases an entire platter is an excessive amount of disk space to reserve 
for a single file. the user may :wish to specify his own DIB. describing a different "extent" 
on the disk. The procedure for doing this is in the System Generation section of this 
manual. 

Parameter Blocks 

When the Mainline is to be used to call FORTRAN (as opposed to non-FORTRAN) tasks. 
a parameter block area and I/O buffer must be included in the· mainline for each FORTRAN 
I/O call to be run simultaneously. (Since RTX does not know in advance how many tasks 
are to be run simultaneously, it is up to the user to reserve these areas. ) 

I This implies that the user must determine the size required of the I/O buffer; in general, 
:Ofor' Lillary (unformatted) I/O. 255 words should be reserved . For ASCII I/O, the size 
i to he r(!scrved is dependent on the type of device and the data to be output. 
I 
I 

Th,' user must reserve at least one parameter block. It may be useful to reserve more 
Own one block in some cases; for example. when both ASCII and binary I/O are called 
for in a tusk, two blocks should be reserved. one containing a 66-word (for example) 

.lnl!\'( r' for ASCII and the other containing a 255-word buffer, for binary I/O. In addition, 
. cCl'tain error meRRages which are output by FORTRAN may require a parameter block 

WillI" I!xecuting a task whose ASCII buffer is already in use. In any case, if a parameter 
. bloek it-; needed, and none are currently available. the particular task will "hang-up" 

(wilhil1 HIP interface) until one becomes available. 

In ~t!tlerul. the user should reserve an I/O length which is large enough to accommodate 
Iln I/O opel'Htion to A particular. device, up to 255 words. 

1\ pllrornetcr block is reserved as follows: 

CHAN F:PRAM 

DATA xx + xx 

RES 85 

RES xx 

CHAN F: PRA1\I 

Chain to other parameter blocks 

Length of I/O buffer (in bytes, where xx 
is the word length) 

Space for FORTRAN temp cells, parameters 
and lOB 

I/O buffer. xx (word length) is determined 
by the user depending on the capabilities 
of the particular I/O device. as well as the 
needs of his FORTRAN tasks. 

N ext parameter block 

\ 

f 
_________________ ~ _____________________________________________ ttM: 

.. - .-.,~-



o 

o 

I 
Note that the chain reference must be to I 

I 
I 

"F:PRAM" 

for each chain node. Note also that no parameter block is dedicated to any particular Ii 

task; rather, the chain is used when a block is needed, to find an unused block for 
whatever task is about to perform I/O. This procedure occurs as follows: 

I 
I 
I 

When a FORTR1m task performs an I/O operation, the I/O interface is alerted. The 
interface then uses its own chain node to F:PRAM to find an unused parameter'block, 
whose I/O buffer is of sufficient length, according to the length specified in the 
DIB of the applicable unit. Thus, once the buffer requirements are known to the. 
interface (by means of the maximum record size within the unit's DIB) the lengths of 
t.he available I/O buffers are scanned in order to locate the smallest buffer which 
will be capable of holding the I/O data. 

RTX task 

A task is merely a FORTRAN program which has been compiled under the RTX option, and 
which contal.ns a TASK statement as its firs·t statement. The TASK statement defines 
the task name, which is referenced in the Mainline sequence during the call tb the 
RTX BEGIN: routine. 

Samp~~ FORTRAN/RTX Listing 

Figure 2-7 is an example of a FORTRAN Mainline and two tasks. The first task (TASKI) 
calculates and prints the square root of each integer from I to 50. The second does 
the same thiTl') for numbers from 51 to 100. This causes both tasks to make calls to 
the SQRT external function routine, and to share the line printer for their output. 

Mainline Example Description 

Note that it is generally more convenient to assemble the Mainline sequence using 
OS :ASM, rather than to compile it in FORTRAN.· 

NAM directives must be included for the mainline sequence itself (F:MAIN) and for 
the Uni.t Assignment Table (I:UAT). 

External references are required for the RTX routines used by F:MAIN: 

R'rx: 
BEGIN: 
END: 

and for the DIB's referenced in the Unit Assignment Table: 

D :'l'YOO 

D:LPFO 
(system teletype DIB) 
(FORTRAN line printer DIB) 

I 
I 
I 



<he" t r '8 f¢f:tz"1tt· ,.. 'll9'"IB''' me": '!tnt'" 1'1 'j'.' 

, 

I~ PAb[ M~.I IIIIJ175 
• MALRU2 ('2) SI. 

" ~I 

Ii 

I 
1190~2 

liJe~l 

~QJILi~ 
11805 

"'0U~ 
1110147 
3"1.H~ 
00ltJq 
IIJlU 18 
IiHH 1 
"'01~ 
16t31J 
(6014 

i 1d01!5 
'Ii 301" , ~"1 ! 
i 01: 

lIJ020 
0021 
11022 
0023 
.. e2~ 
15025 
;l02f) 
;'H.'I~;' 
"02" 
ae20 

11030 

90JI 
"03~ 
0SJ] 
~"Jil 
aJ~ 
~j6 
(dQl37 
00 l e 
iii03Q 

*1 9040 
~041 

004:2 
"S43 

"'4~ lie' !I 
1iJ1I4 ti 
"CUr 
"e.a ",,'Q 

0.,14 
0000 

8010 
"B00 Foe0 """8 
0ellli 01d14 
,,002 01d06 
900] 880" 

,,004 F266 ""bA 
1'1005 
"0111§ 0"'(1)0 
90ftA FIHf0 0""" 
""6~ 0000 
"06C 11064 
~06p FSUJ" "9"" 
008~ 8 "Hh' 
006F 006. 
0070 FSl00 ""0" 

"",i CleF' 
0072 00o" 
007J 0.,06 
""74 ,000 ""'!Ii FfFA 

~076 

"071 0984 
41078 

A"CO 

010F 
"11 @ 0(68' 
41111 

A166 

"iAe 
01A? 0",8. 
01AA 

1614Si19 FORTRAN I MTX MAINLINE ASSEMBLY 
BO-

tTHJa l~ THE MAIN~IN[ sEuUENcE FOR THE 
.T~O-TASK lXAMPLE. 
• 

NN 

FiMAIN 

* 
lBG 
WKAREA 
START 

NAM, f~MAIN.IIUAT 

EXTR 
~X1R 
EQ~ 
REL 
EQU 
JST 
DATA 
DATA 
HlT 

JMP 
REF 
RES 
JST 
DAT" 
PATA 
JST 
DATA 
PATA 
JST 

RTX,.BEGINI,END',OITye&,DIL~,i 
TASKl,TASK2 
21 NUMBER OF RTX HORKiN~ 

" S 
ATX, 
NN 
WKAREA 

STARI 

T~BLES 

EXECUTION fNTRV PoiNj 
INITIALIZE IHE TAS~S~ 
NUMIER OF' WORKING "AeLE8 
ADDRESS Of WKG TABLES 
SlOP ON UNSUCCESSfUL 

iNllIATION 
GO EXfCUTE THE TASKS 
TO PULL IN Z[BUG 

NN+NN~NN~NN~NN,e RTX WORKiN~T'La 
BEGINI BEGIN TASK 1 
TASKl 
188 AT PRIORllf 100 
HEGIN. 8EGIN TASK 2 , I. 

TASK2 
18& 
ENOl' END INITIALIZATION SEQUENCE 

* UNIT ASSIGNMENt TABLE 

* UATTOP DATA ~CO •• D.tV80 CO DEVICE fOR E~R~R MSijS 

DAIA 6,D'lPf2 FORTRAN UNlr 6.PRINTER 

liuAT DATA UATTOP·S~2 UAT LENGiH 
t 
~ PARAMETEP BLOCKS, 1/0 BUfFERS 

* 

* 

t 

CH~N 
DATA 
RES 

RES 

"PRAM 
132 
85 

66 

CHAN, F I PRAM 
DATA 132 
RES 85 

RES 66 

CHAN 
DATA 

, RES 

,aPRAM 
132 
88 

CHAIN NODE 
BuFfER BYTE' (ENGTH 
FORTRAN TEMPC!lLS 

AND lOB 
110 BUFFER (132' BVTES) 

CHAIN NODE 
rIo BUFfER HYTE ~ENGiH 
FORTRAN TEMP CELLS 

AND lOB 
110 BUFfER (132' ByiE~) 

CHAIN NOPE 
(/0 BUFFER BYTE lENGjH 
'ORTRA~ TEMP' CELLS 

Figure 2-7. FORTRAN/RTX Example 
2-32 

'I 
;,1 
tl .' 
:~iI 

-' 

-" 



P'\('f 

I.~INE 

1d"'~0 
ft)0~1 

rd~'l2 
~1'lI5:J 

~C'I:~0 

o 

o 

tf t'., '·"L' '# 't 

1fJ0~2 ~e/t2/74 10,Jg135 FORTRAN I HTX MAINL.INE ASSEMBLY 

LuC 'NST ~[)OR LABF.L Mr~EM OPERA~l) COMMENT 
It "NO tUB 

~JFr ReS 06 110 BUFFER (132 BYTES) 
• 

t0e0 ENO ·f.MAIN 

ERRORS 

Figure 2-'1. FORTRAN/RTX Example (Cont'd) 

2-~3 



i'2Z*i'mHt"Wf'St' t* WMU" m $ t t' t ," "; 
I :"' at !lit ri' I!; W"'¥''fU It Ht" werenHt'tMt&n w.'fterttW'CtrJIHz 1 i AGl J"dJ 

~ .. , 1 

~~/12114 ~Qlt2:o5 
OP r lUNSI LO. IH 

rORfHAN (X3) COMPILATION 

,,,~,, lA:JKl 
! , :.J~l 

11A.i 
:J (!1" 
\~ PI ~J 
I.! Ci () 
;dlU 
~0d 
-;1 'j 'J 

:J t iJ 
.. \ 1 ! 
;1\2 
·11 J 
'114 
J\~ 
j 1 .) 
J1' 
,I' 0 
dt ) 

",,,, 
0. 

.<'13 

(. 

t 
(; 

l. 

L 
t. 

L 
l. 

(.; 

to 

.!~l 

L 
l 
11.\ 

t 
L 

THI ~ 1 ASK C ALCIJL~·I E::, ANOPR I NtS NUMBERS 
F~n~ I 10 50. ANn THflR ~QUARE ROOTS~ 

L'JOP f' RUM 1 rJ 5" 
""u 1"" ,TNUM • i,f)", 

lUN~fkt NU~~E~ TO FLOATING POINT FOA SQRT 
IJr4U,·,cJNUM 

r ALL'IU~ n: SQIJAPE ~nOT 
SI>iRLJO I ~ 5QkT (I~~UI"') 

PRINT T~~K NAMf. NUH~~R, SQUARE ROOf 
w~rrr r6,2~) JNu~, SGROOT 
fJRI·IAT (i TASl<l N.',IJ,', 5QRT.;,F7~J) 

!I:J /\4 f )( l' ~IlJ M d E H 
rIJI,jrJ:~'IL. 

AT [NU. OlSPLAY TA91'~O. AND IERMINAT~ 
1T,)P t 
~~!'In 

PAGl J~~? ~8/12/7~ ~9:t2:55 FORfRAN (X3) COMPILATION 
OPT IUNS r LO. RT 

j UC.~ "'IA"1t T'fPf WOROS l.OCN NA~t. TYPE WORDS 

1 urH t ,J ,-I t 1,'1 ltHfL;(t( 1 l~f1I12 °t'UM HEAL 2 

OA~ !}~RuOT i~I:.At 
., ,. 

Figure 2-7. FORTRAN/RTX Exrunple (Cont'd) 

2-34 

-' 

'-



an t 

i 0 

0 

"" 

':,' 

';1 ., 
r' 
*: (, 
i" 
r 

~ ~ 
f,i ,. 

t 

0IJ rll 
01J0'!! l 
01J0J L 
0k1f'14 l 
0UI1~ l. 
0kJ'io 

0~~1 L 
0UAk C 
0tHN 

0idlu l-
eu f 1 l. 
0U1..! 

0U l j l. 
P.I~14 t 
0k)t5 

01rJ\ 6 2~ 

0~t7 (. 

0J1'3 C 
0U1Y H' 
" iJ2l1 l. 

m 

08/1~/1~ ~9:12:ti5 
,)!,>fIONSr lO, IH 

FORlRAN (X3) LOHPILATION 

TI\SK TASKI 
TrlIS lA~K C'LCUL~rF~ ANU P~lNI8 NUMOERS 
F~OM f TO 50. ANn Thl.LR SQUARE ROOTS~ 

l JOf' t RUM 1 T0 ~PI 
~u lA JNUM c 1,5~ 

l('Iato. :C4r.11 
1~~17 zEE~b ~~2 

LXP 
5l)l' 

1 
JNUM 

CON~rRT NU"1BE~ 10 Fl.l'AT1~r(" FOINT FOR 'QRT 
'nUM-JN...:M 

:~kltb :86017 
:OIutg 1 FSHhJ I:i 
1~0'A 1"0"'2 
&l'IltltbI9E(h~ 

~'"Ll,;tJLA IF. SQ"A~£ H'JlJl 
~; lJ ~ I.l £'1 • SQ~T (IHhJ~1 ) 

201f1ltc 1~00fd 

l""itltD IF900 1.1 
I r.1 ~j It::, :0i6Q10 
:OIitltr :00"'1 
:OItd?id :9I-'t2 
Il1'itJ?l :FSHJk) l:j 

zOl1322 ,9E~t. 

LiJA 
J~T 
qEl 
9". A 

XIT 
J~H 
l'I\TA 
"'ATA 
;)ATA 
18T 
SlA 

JNUM 
*BP(F:RINT) 

RNUM 

*BP (SUBR r ) 
SQJ?T 
t 
RNUM 
*HP(FIRf<El.) 
SQROOr ' 

~ 

Il:~ tNT· TASt< HAI',F, ;JlJr-If\LR, SQU4RE ROOl 
W~ITf (u.2e) JNUM, SORoor 

1~02J :0~~d X1T 
:~~24 :F~~J ~ JsT .BP(FIR~F) 
:~025 :~0~~ F ~ATA $IC2 :~0~6 
IP026 10~~0 DATA .20 
Z~0?1 IFg~~ 8 JST *BP(FIR10L) 
a"'rJ2b :0tdU DATA JNtJrt 
1~~29 :F9~~ ~ J8T *SP(F;RROL) 
lC'litl2A '10~14 Did" A SQrfoor 
:A~2u :F~~~ ~ J&T *8P(F:RSIO) 

f J R 'U T (i T ASK 1 ~f:l ' , l.j, • , S Q R T. , , F 7 '. 3) 
1~0A~ aAd47 *20 TLXl ~(~ TASKI Na',IJ,', sQRT-',Fl. 
I~~t~ ,83A9 TEX, '3)' 

OJ ;~f x T NUMBE.I~ 

r.u"Jrt N"l 

IOI~:?C rEo!d 
J 0I~20 I C~0I1 
, fA IU :'. E ,(;lO:j J (J 

: ~02f : 0032 
:AIilJ.:J :2109 

a,f [NO. OISPI.AY 
~'rop 1 

.1" LOX 
~XI 
TXA 
SAL 
"AL. 

TASK NO. J-NO 

JNUM 
t 

5kl 
*H2 

TfHMINATE 

Figure 2-7. FORTRAN/RTX Example (Cont'd) 

2-35 



" ,PIT 

~Hr< 'L 
~ I~ ,r l. 
q i 'II 

"'1l/1~ii;t 
OPTIu~S; 

'~\tJJL 
.tlIitJJ2 

E,,,O 
IAId}j 

,. 
qt"L f 
:~,m r Hil 
~,j'! r PiC 
'I.J'J1 II"lE 

,\,If 4 LA 'kl. ,J~C 

uO f,,,,11 

~9:"2:~~ 
LO. IP 

: f SI ~ ,1 Li 
: ~~!" J 

100~"'b 

~l ~ 11'· 

r : t~ :If 
FlH5IO 
I !I~r L 
slIt'''a 

O 'f " ; I'.i . I : 1'1 

.. i,) f," ~ S { 7l ;: • eJ Jl ~ 4 ~ 0 R r,l S 
:,[1. rlfo. u r '::":)=:~iJ"'o ~Oh';_'> 

FOR \' R ,- ~'l (XJ) COMPILATION 

J3T ·uP(f;RSTO) 
'g rA ! 

-.IC2 t.'/1 TA ·6, 

rVp[ A~"S 

j( UI'~ T 11-1E 
~'LIj T I"1t. 
RlJNT{r-.4f. 
n"",TI'lt 

fORMA T 

NAME TYPE AH(;S 

FaRIOL RUNTIME 
F;R~TO RUNTIME 
F.a'RFr RUNTI,.,F 

LOCN LABEL ust. 

uUH 7 .M2 

Uo..,P! t.."', i 1 IN ruMP' ( T[ 01 £. ImOR:) 

Figure 2-7. FORTRAN/RTX Example (Cont'd) 

o 

., 

2-36 
:< 
~I 
~i _________________ ••••••••••••••••••••• I1'( 



, 
t 
t,'., f 

* st. . 

e PM.;l. 1I.l0Jl "'S/12i74 09112:55, fOR fRAN (Xl) e..;OMPU.ATION 
OVTIUNJ: LO, ~T 

0 

0 

0i':? t 

0H~t) (.; 

e~2b l. 
iHJ27 C 
0rd2U C 
0tJ2~ 
0UJtJ \.. 
00~1 C 
0~32 
0liJj (. 

0iU~4 L. 
0i:.l3:l 
"tJ ~;.l l. 
01d~1 C; 
0,!:)Jti 
~kjl~ 2V! 
f,J4~1 L 
rJ41 l. • ekJ<1£! H' 
0.14 J I.-
0~"4 l. 
r. !J" tJ 
0U4j 

PAr-I:. Id~J2 

TASK l~~KJ 
TrlI3 'ASK CALCUL~TE~ ANU ~R1NIS NUMBERS 
fROM tiJ TO 190, AND THEI~ S~UARE ~OOT~~ 

l00~ rRu~ 51 ro 10A 
nu tOl .JNWo1 a ~t, hJ~ 

CUN "f~r ~UMi)EH TO FI.OA T lNG PO.l.NT. FOR 8QRT 
R l~lJMa: J~U'" 

(;;\lC"L4lE Sl.IUAf~t:: ROllT 
SQRUOl : SQHT (RNUM) 

P~INT T4SK NAME, NIJrtdER, SQUA~£ RUOT 
~~IrF (6,2S) JNUM, dQHOOT 
FU~MAr (i TASK2 Na',I3 , ', SQHT.j,Fl.J) 

I) J ioJ f X T N U M Jj E ~ 
LJNONIJ[ 

Ar ~NU, DISPLAY TASK NO. AND TEHMINAT£ 
SHJP ; 
rl~!) 

~ 
I 

",e/12i7~ ltJ9a 12Hi5 fORr~AN eXl) COMPILATION 
OPTI~NSi LO, tH 

SLAL4H ALLO'ATIQN 

LOe'., NA~E rVPf WOROS LOCN '~A~E rYPE WURt)S 

HI'" 11 Jt-.!J'-\ INl'fGfH 1 IJ~H2 . RNUt1· HEAL 2 
11d014 SIIIROOT REAl 2 

Figure 2-7. FORTRAN/RTX Example (Cont'd) 

~I 
~1';·l". _______________________ _ 



. 'ue's te "*'1 tlt tn, .t 1 • '# t' '12 t t W' tt ft h ts Z'" t "Ut'Nt rt Wi Ita: : ' 

:3'&1 l 
'011 L. 

,.11<! 

"' ., 
11 
¢I ;1 

: 3J r.. 
':')34 l 
'kn~J 

0 

rJ30 (. 
",~7 (; 
~no 

~J.s; l. 
. J4~, 1'1' 
'u,4J \.' 

) ,: 

l k14., , t.. 
i ~41b" 

0B/12/7~ ~gz12:~5 

O"rI:JNS: LO, I~' 

TAS~ lASK2 
T~I9 14SK CALtULATE~ AN~ ~RINIS NUMtlERS 
r~o~ b' TU l~J. AND rHE!~ S~UARf HOOT~. 

lun~ rRU~ 51 T~ t~~ 

D~ 1~ JNUH • 5J,ldA 
:"'J:10 IC433 
:~~1' IEE~D .~2 

51 
JNUM 

l.t.JNvfIH ·IU~f;EH TO Fl .. f)/,llI.JC POINf FOR SQRT 
Q N t"1- J ~I iJ:1 

, '" L1 'ti 18tH) 1 l. u A J N UM 
s~~tw :F~'~ ~ JST -ap(FIR1NT) 
:~~tA ,0~~2 REL 
I~~tb 19l~9 STA RNUM 

r I\LCIJl. A 'I [ SQIlMH'. ROUT 
3..t'Nn, 11 Sr.lkf (K~IU~ ) 

tCi'litJtL I Chl,1.:1 )( J. r 
:OIkltD & F ~~ tJ Li JST *SP(SUBRr ) 
UI:llti.. ,0"''''" DATA SQP.T 
:OIltltF '~lIln! r,ATA t 
, CII ~J 2 ,:! :n~12 'ATA RNUM 
:rtll()~1 : f Yr]d U J.~T *dP(F.&RREL) 
: P~! 2 ~ ,9E H': STA SQROO. 

DqINT T ~'K ~4MF, NIJMI3LR, RQUARE ROOT 
loJ R I T r f 0 , 20 l .. : '" U ~ , s ~ ROO T 

1~~2J IA~~~ XIT 
:AJ~4 ,F~~~ ~ JST *BP(F'R~F) 
.~u2~ I~~AJ F )ATA .ICJ 1~0~6 
I~H?D l~eA0 DATA .20 
IA~21 :F~~~ U TST *6P(F&RIOL) 
I~O'b s~J\1 DATA JNUM 
II'I~)?I :r~~A jj .'ST *t3P,(F:RROL) 
:~J2A 1~~14 DATA SQROOr 
'OI,I~U :Fy~td tsJST frBP(FaRSIO) 

,uRM.' (i TAS~2 "I.',IJ,', SQHT.-,F7.l)· 
t~J~0 :AdA7 ~2~ TEXT 1(1 TASK2 N.~,IJ", sQHTa','7.' 
l~J'J :~3A~ TEXT '3)1 

r} 'J 1'4{ )( r NJP-'dLri 
, JNrT:~I't. 

''''~2C 1(6113 .1.; LOX JNUM 
/ 

I A Ill? r; ,C2tH AXI , 
.Pl1tl2L I 0 k:13., TXA 
: I'I .. ,~F 1~l)!i4 gAr t~~ 
ICII~JIcJ I 21· f)!J JAL NM2 

" r END, DISPLAY TASK NO. AND TERMiNATE 
S rOi i ) 

Figure 2-7. FORT~N/RTX Example (Cont'd) 

2-~8i 
f 



~···.·Ii , 
I 
"1 

t hh 

e 

o 

"--

o 

rt trw. tdttsr'H ( t b 'tttt $ rtf t rH ¥ t ht ' t"Cttt nN d t' art' t't' pH 1.1 hett ' j" Iff, ,.j 1'i' " 

PAGt. II:H:h,4 08/12/7" 139alJ:5!S , . 
UPTIUNSr LO, IH 

: Aid)'! IF9"'" li 
a"'~J2 100012 

01646 (NO 
IOI..JJJ 10",a6 

SUijPRO(;I{Af.fS CI\LL.fu 

NAMt. TYPE IRGS N41'1F 

R[~L 
- F:WWf SQRT , 

fIR~Ot. Ru"lT I .il FI~Slr) 
r~R~E:L. "lUNT t !'IE F: I~F l 
r ,R pn 'WNT r .'1E SUtsR: 

STATEMEN,i' LM3£LS 

t Uf: 'J LAHEl. JSt.: LJCN 

c~flI2C Nlr., 00 E'JD a ~(-i~r) 

[NTKV':~"l1b 
~RO~~AM SlZl.:~~34 WORDS 
BI\Si:. PAGE' IJSFD-.11I1d11l8 "OWO!i 

FORI RAN (Xl) COMPILATION 

.JbT AHP(FaR&To) 
OATA 2., 

t;ICJ 'ATA 6 

IVPF. AR(i;S NAME TYPE 

RUNTI~t,; FIJUOL RUN1IME 
RIJNT1..,l F&R~TO RUNTIMF 
HUNTllo1( FaRFF RUNTIME 
~'JNTIt.1t:; 

LABt:L. uSE LUCN LAflf.L 

~2~ FORMAT .aA1 7 --M2 

t. U~P I I.. A I j UN C (J~PU.:TE ~ tiWOf~S 

Figure 2-7'. FORTRAN/RTX Example (Cont'd) 

'if.,.."'":"' too. ti< " • H >"f" M ,",8 ,-

ARGa 

USE 



, I' I ..... II in HI II ~ I "IIUill~liI .. n"· j'" "i'"li"' ill e II· ... II I' hili 'ilil" . III •••• " "" 

TASK ,~;iJiR r = l~dO" e I 

t " 
I 

TASK2 Nil: 51, SIJRT= 7~1.ai I 

TI,Sr< 1 N- 2, s(.Irn= 1~414 
TASr<::? N:: 52, SORT- 7~211 
TASK! N; 3, S;JRT= (.732 
TASK2 N: 53, SQRT= 7~280 

" TASK1 N- 4, SQRT= 2~t)"0 

j 
, -

TASr<2 N= 54, SQRT= 7~J48 '-" 
TASr<l N;: 5, SURT= 2~236 

II TASr<2 t~= 55, SORT= i~416 
TASK1 N= 6. SaRT= 2~449 
11\SK2 N= 56, 'SUlRT= 7'.483 
lASt"- N:: 7, SaRT= 2~646 
TASK ;! N= 57, smn= 7~550 
TASK! N= 8, ~QRT= 2.828 
1 ASK~: N= :58, SQRT: 1~616 
TASK! N:i 9, ~GiRT= 3.k}"''' 
TASK2 N= 59, SGlRT= 7~681 
T!\SK 1 N= 10, SQRT: 3'.162 
TIl SK:? ~:: 60, SQRT= 7'.746 
TASK; N= 11, SQRT= 3'.311 
TASK? N= 61, SORT= 7~810 
TAS,d N= 12, 'SaRT= ~f.464 
TAS,,2 N= 02, S:JRT= 7'.874 

05r<1 N= 13, SuRT= 3~6r1G 
',.,5K2 N= 63, SQRT= 7.931 

TASK1 N= 14, SQRT= 3'.742 
TASK:? N.:: 64, SlJln= B'.0r1~ " 

TASK1 N= 15. sI.,IRT= 3'.873 ). 

TA'S~? ~! :: (IS, ~Qrn= U· .. 062 
1 ASIO tl= ~ t:.. ~ ~f~ T ~ 4:G(il(1 .l ..... 

lASK;:: \1= 1>6, ~GtRT= 8'.124 
TAS,O N=- 17, ~l>IRr= 4~123 
TASK2 N= 67, ~URT= 8'.185 
TASKl ~J= 18, S(JfH= 4~243 
TASt(,2 "1= 68, SljHl= (3'.246 
TM3Kl N:: 19, S(JRT= 4'.359 
TASK? I~ :: 69, ~QrH= 8'.3(17 
TASKl N= 20, SQ[n= 4 '. 472 
T IISK? N= 7 fJ, S(;JIH= t3.367 
TASK} N= 21, SuRT:: 4.583 
TA5,<,? N- 71, SLJrn= 0.426 
.,. \ C , 1 ~}= 22; SOHT= 4~tiQL1 
O')~' " ~)K2 N= i' 2, Slmr= 0:.1.B5 
1/,Sld ti ;:: 2:i, ~l;}RT= 4.79C 
TASK? N::: 7J, s(;rH = U.544 
TASKl N: 2~, SURT= 4 '.899 
TASK? ~,!=; 14, SQRT= (.i'. fi '" 2 
It,SK 1 N= 25. SeJrH = f).U~k1 

TASK? N;; 7~, ~H)rn::l U.66(1 
TASK1 N. 26, SORT: 5'.U99 
TASK:? N= 76, ~l.JRT;: B.718 
TASKl N= 27, SURT: ,.' 1 Q6 ~. -
TASK? N= 77, ~hm T= U'.770 
lASid N;; 21j, ~UiRT= :j'.2Q2 
H,St< ? N= 7fl, Sl.IRT= U '. 8:i2 

Figure 2-7. FORTRAN/RTX Example (Cont'd) .. , 

~I 
t! 
" 2-40 l·i 
~:j 

ii 
~i 



" e r j~;;i'd N~ t!.'), PJQRTII b •• HS";; 
"« 

a~8Ra TA5.<2 N:a 79, SQRT= 
TASK1 N= j,"" SQRY= 5~1t77 
TASK2 N= . (h1, S\JRTa 8:944 
TASK! "': 'J I , SQIH= 5.568 
TA.5a<2 f.la 61, SQRT;I 9'.(:)(lJ0 

IT' TASK! Nlit 32, St3Rt. 5.657 
j TASK? < Nil <82, SQRT= 9~"55 

'1 
TASK! N- JJ, SQRTI: 5~745 
lMJt<~ N& 83, SYRTa: 9'.110 
TASiH N;a JA, SQRT- S~831 
TASK2 N= 04, S<QRT::I 9~165 
TASK1 U& 35, SQRT= 5'.916 
TASt<2 ~J= 135, SwRT= 9.220 
TASK1 ~J=:: 36, SQRT= 6~"01/) 
TASK2 N= 86, SI1Rr= 9~274 
TASK! N= 37, SORT= 6'.083 
TASK2 N= 37, SQRT= 9~J27 
TASiO N= 38, SQRT= 6~164 
TASK2 N:a 88, SQRT=. 9~J81 
TASK! N= 39, SQRT=- 6~245 
TASK2 N~ 09. SialRT= 9.434 
TASK1 N= ~hh SQRT= 6'.325 

0 
TASK2 Na 9"', SQRT= 9'.487 
TASK1 N= 41, PJQRT= 6~403 
TASr\2 N= 91, SQRT= 9~539 
TA5~1 N= 42, SaRT: 6~481 
l'A5t\2 N: 92, SIJRT= 9~592 
TAS.<1 N: 43. SwRT= 6'.557 s: 

TASK2 N: ~3, SQRT= 9~644 
TASK1 N;:; 44, SQRT= 6~633 

'- TASi\~ N= 'JeI, S~RT= 9~695 
TASi'\l Ne 45, SJRT= < 6'.7'38 
TASK2 N= 95, ftQRT= 9',,747 
lAS"1 N~ 46, SORT= 6~782 
TASK2 N:: ~6, SQRT= 9~798 
TASK1 N= 47, SQRT= 6.656 
TASr<2 N= 97, SQRT= 9'.849 
TASI<1 tJ= 48, SQRT= 6~928 
TASK2 NS 9S, SQRT= 9~899 
TASK1 ~1;: 49, St'JRT= 7'.~aLl 
TI.SK2 N; 99, ~t~RT= 9'.95ftJ 

0 TASK1 - till .·5'~' SQRTr: 7~ 071-
TASK2 N~10e, SQRT= 10~~0~ 

~I 

F~gure 2-7, FORTRAN/RTX Example (Cont'd) 

\ 

.1 



f", "-'-"""" .. - ...... -.-,"'-,,.--.--------- COMPUTER AUTOMATION. INC. ~ 
t, 
t and for the tasks to be run simultaneously: 
$ 
;;; , 
'I TASKl 

TASK2 

The equated value "NN" specifies the number of RTX work area blocks needed 'or the 
two tHsks (refer to·the RTX User's Manual for a discussion of how to determine the number 
of blocks required) . 

F: MAIN is the Mainline entry point where the tables and tasks are initialized by the "RTX: " 
routine. 

"WKAREA" is the actual work area reserved for RTX usage; its size is the number of 
blocks (NN) times 5. 

"ST ART" is the point at which the tasks are initiated, by calls to the RTX BEGIN: routine. 
Note that in this example both tasks are begun at the same priority (100). Thus the tasks 
will vic with each other for the use of the printer and the library functions they both 

o,)quirc. (Refer to the RTX User's Manual for a discussion of task priorities. ) 

After the tasks have been initiated, a call is made to the RTX END: routine. to terminate 
the mainline sequence. 

The Unit Assignment Table (UAT) begins at "UATTOP" and ends at I: UAT. Note that 
the ~·!AM directive must point to the end of the VAT, not the start, and it must be called 
"I: HAT: "; this is the name RTX references externally to access the table. Each table 
entry is two words in length, the first being the FORTRAN unit number referenced in 
the taRks' I/O statements, and the second being the DIB label corresponding to the physical 
devll'e. Refer to the RTX User's Manual for a complete list of DIB labels. In addition 
to t i 1\: un it numbers. an entry must exist for a 'CO' device, for use by the FORTRAN PAUSE 
and STOP calls. 

The last wUl'd in th\ table represents the negative length of the table (including the length 
wor'd itself) plus one, that is, - (L + 1). 



., 

! 

f! 

, tnt HM' 't at trnm ,Ctt'tttttt 'dOttIert'" t mat' b S "$ "seit: "e 'm t ,j H t ' t rlt"'"g ff '3 t"· t 'F . m ftt 

e ,...;.-.------------

o 

o 

T3 (Compile for Execution on an LSI-3/0S Processor 

This option must be specified when a FORTRAN program is to be ,compiled for execution 
in an LSI-3/0S processor. Since OS is not supported on the 3/05, FORTRAN will 
assume that the RTX option is required, even if you do not specify RT as a parameter. 
Therefore, everthing described in the RTX option (above) automatically applies to 
the T3 option as well. 

The sample listings shown above in the RTX option discussion are reproduced below in 
Uh-3/0S'object code (see Figure 2-8). The only real differences in the two sets of 
examples are the actual machine language code, of course, and the fact that th~ 3/05 
Mainline sequence assumes the use of an I/O Distributor system for input and output.' 
(The RTX User's Manual contains the DIB names for these devices.) Also, certain in
line assembly language instructions do not exist on the LSI-3/0S, and are performed 
by an emulator routine which is part of the FORTRAN library for the 3/05 (F3RXLB). 
These instructions are marked with an asterisk in Section 8 of the FORTRAN Reference 
Manual. Note also that three of these instructions (SCM, SCMB and IPX) are not 
allowed under the T3 option. 

, . 

2-42 a 



~~-. ~ -,:",<"~,:-:",:;£!:.~.y~.;~ 

( 

"IJ .... 
.a 
s:: 
11 e 
N 
I 

Q) 

• .. 
~ 
~ 

N ! • A-
U. 

I ... • 
S' 
'1 

£ .... 
• w 

'" 0 

'" 

t 

o ( o 
----------_ •.. _---", .. _---, 

-:: 

;J~GF OOiJ' 0!1/'?717f> t_P;_57_!3~ FnRTKIN I RTx ""AINLltt~ 4S'EMf.-IL'f 
MAl'~O" 0."') ST= 8t"':r o~. TN - ',,,,, .....:;. .. ' 

or, (I :> *THTC; Ie: TI-~ "'AP..JLINE SFQIlfNCF FOP Tt-IF 
_ -.Jl.:~ ______ _ ~ T i-; 0 - T It ~ I< E v ...... ...:.iJ....:-'..;.:F=-· -=-___ _ 

0004 * o.o·OS 0 n 0 (\ 'i~. NA~ F :i-1a T"4, T :1I4T ~.;-~ .. 

O~7~ J 
._--"-""--- - _. ---------.-----

ono" 
()"n7 
O'}O~ onoo --, - n'O 14 

·00(0 000,0 
NN 

L')An In~TT: 

~XT~ qTX:i~E~I~:,~~D!,n:TYOO,D:lPFD 

~XTR TAS~l,TAS~? 

FrllJ 20 .' NUMBER OF RTX WOQK I NG 
RfL 0 

VI. I V''''V _. F :MA IN EQIJ .. . EXECUTTOr-J _ F.NT~Y POINT 
!)I)on JST RTX: tNTTTALJ7F THE TASKS 

TAIRES 

----_.-
(\(11';: 

/)0(\0 

nf. (tn 

"ATA NN NUMRE~ OF wnRkTN~ T~PLES 
__ 0 " 1 'I Q n : I ? r)ATA !..I(A~fa ADf)_~~S~~ ~KG TAkLE~ 

Oil 11:\ fl003 !-JLT STnp ON UN~UCCfSSFIJL 

0'\1 ~ * TN1TIATtON 
_ i" 17 00 fl a Of.F5 .OObA Jt.1 o STAPT GO EXfClJTf_l~_E T~S~S 

1)').1:l '-'''Or: ZAG ~E~ TO PfJLL TN Z~~IIG 

0" ] Q b no h ., () n 0 ri ~ APt: A q ~ C; I\! '''+ ''II 'H N N + '" " ... N!<! , I) C T X HOC I( TN G T B L 5 
Q"~n OO~A ~0no onon STA~T JST . RFGTN: ~EGJN TASK 1 
."'_~t l}/lb.p .-.qnQ1":-\~' DATa T"Sl(l~. -
·o~ Onbr nO~t& "'. - FlAT A 1 ~O' ~T,¥~;j O'R ~ TV 1 ern 

.AE.J~K 2 conn 0091"' IfUH'O ooon ___ . __ ·U..!_~GIN: 
on?'J 
OO?~ 

(I(\~r: nono 
Orp'll=' n'1~1.l 

I) A T A' T a S I( ? 
~AT4rOO 

On;>'" on7 r\ R~)('I() ooon .1~T Et.!,): Ft.m TNTTTAL t?ATION ~·~Q"fNCF.: 
01l27' , * ~". - --- ~ 

O"~8_ '" * I!f.'IT'4-SSTGNMEN'T.JtLF 
, -.0 I) , 9..",-~'~ * '. .... 

OI\~O 007' r.~rF lIATTQP nATA 'COi,~:TYno en f)fVIrE FOR ERRnR ~SGS 

0" ~ 1 

0l)7'? 0(100 
u~7~ ('\')"h nAT A ___ ~!H L ~f n FOP TeA t.J~ T T_b =P~ p_lT,-F,;;.._ P __ _ 

on -~::» 
Of!f7I1' flOM)' 
(,07C; ~t=r:A I:UAT 

__ -2111. : * 
f)ATA UATTt}ft-1i-? UA T LFNGTH' 

-lir_ 

or",,:! * P~OA~fTER ~LneI('S, 110 RlIFFFRC; . 

--1 

I 

r 
r 
I -
~ 
~ 

J 



o 

o 

·- ComputerAulomatlon ~ 

.. , 

-' . __ ._--
P >\f, f: \) () n I I) Ij I ~ I / 7 f.t 1 R : t; q : a 1 Fn':H:l1 (An) 

._ ..... _ ~J1P_Ei..Lc..; ---1.A..~ L _ . ..QP~J (l.~.~, •. ~l._J.,_O_ ... _, ___ ... _ .. _._ 

nl)01 T,~" T~-j1(1 

' _______ 1J.fL~_J . __ ._.T..:.:1J~r~.c~LL'll~ T f: s.~~_~~ 1 NT S "JJ!!~f:~ f-o'S 
''''ot)~ C f:1-(f'lM 1 Tn I:'.iO, !IN/) 1~tIP SQUARE RnOTS. 
00(04' C 

.. ____ I1.(l~_~ L ____ --L!.t!.::. FRQAA _ L T\L5_0 ____ ._ .. ____ . ____ , ___ .. _ 
!'lO')., f''I II) J!'.III''''::: 1,5/'1 
flO'll L 

---~ ~. 
«Ofl'! 
nOlO r 

._._ . ___ . ~C. .. __ C A I. C I J L ~ r F ,~Illi.~_p L . ..R!'I.IC!..H..:...-___ -.;.;-.:..\,._ 
()1)1) S,JPnnl ::: ~)(NT ('<~I"~) 

'1 \ I 1 3 r 
() f\ 1 It C. --.-- - .. ".-.4t i 

n/jlS 
___ n~.:T '~T _T A2K __ t'J h!'lF, NIJMQEP.,. SQUA ~F_~pn T 

WRTTF (6,?f) JNUM, SQROOr J; /'.1' 
1'101'" 2() 

____ . __ 0 JLLL C 
r iJ ~ MAT (' T A ~ K 1 ~l = ' , T .~, , • S ~ R T = ' • F 7 • 3 ), 

, ()Ol~ C 
• --- - ----- -.-- -- . .....!-.. .. - .. - --.. - -----(-_._-

() 0 , t/ t (\ ,.. I ," I HJ' I r 
_ .. .Q.lL).0 _t. . __ . __ ..... _ .. __ . __ . ____ ... _______ _ 

oq">l C to I PJD, nI~PLAV TASK Nf'l. Af'.IO Tf-RMTN'ATF .-- .. , 
OO?? CroP] 
n ()., i. ______ f: I'.!~ __ . ____ .. ___ . 

Figure 2-8. FORTRAN/RTX Example for LSI-3/05 (Con't) 

2-44 

t 'H 19'£ 'I t * 



t M trtt2***'ts.,'ttill fX1t'Wtlffl1!' ""I"W etr&H't' "U ,!'"t''''''' 'et_riie "wHit b'w, 'fn t r f *WP!f' If we," tedooH"# "j t' ti j 

-""",_·t".., ,"""d''"'":t ,..,.\M ..... "',..,..l'.------------------- 'F t, -.- ~- -
~ . ~:~I .. i + ~. ,..;t ~~. 

P~€' ",t):~'I()? O{I/?7/7'~ 1~:r:;7:3r:;' FORTRJN I RTX MAINLTNt ASSEJo1RLV 
~_~fJ~ (A?) .3T=--___ ~O= OMA U:L... ___ _ 

o 'l"S c:; 
_O_(l'~_Q0-,-"~I-, _______ ,_._. __ Cf-l~~ F:PRAM CHAIN NOOE 

on'o" 0<'77 oOJ\a , IHTA 132 RVF'fli~ eVTF \..fHGT~'-"'-
IH31\ O"l~ qf~ A'5 FORt~A,N TE~P CEl.LS 

....:.Qfl3Q * ____________ A 1'110 ~TO~~::--:=:--

<'filln lInen Pf~ 6f- lIn ~lJFFER 03;> IWTE~) 

o 
ona' It' 

n l? '1-~ () F" ______ ----_ 

,It':" . '*,;' O,~ t, 0, ~()Rtl I" 

o ~./"'!"llt t' , ' '." 

rtiflN F:PPAt>o1 rH A lfIJ NOnE 
DA tA, 112 ~;.f/Q'AlJFfEP-~YTE LEf.l\Tt( 
PE~ 8') '~9PTP.AN Tf'1P CFU_ S 

* '.- .. -lf~) fI';'::~L.5.:.-. ___ ~ _____ ..;.:.... AND tOA' .' ... ___ ,., _. __ 

10 

') (j IJ h 0 ' I') h 

0'147 

~.0 I .. " (,11 ~ A 
oo.,.iii,1'l Q V~~ (' O~A4 
o flr;.'~ 'i;GlAl~ 
I)' ,,[' l ""'~t,l, ,', ' , .. _> __ ~ .. ) , , f 1 

o "I')? 01FF 

I) I) 0 fl E P R n R ~ 
J2i~_~ A,-,-~ N:..::..L.P"";' r. ..... " ____ _ 

DFC) 

• 
rHAi<J 
I)ATA 
PE.<) 

* 
qE~ 

* 
=lIJr'I ,----... --- - ... 

oh TIO ~UFFfR ('~2 AYTES) 

F H)qA~ CHAIN NOnE-
~ 

"" I/o,'~FeR BY IE LF,:N~T.t-i 1'2 
8~ FO*'~ TF~P CE~l$ l~ 

" A NI)r OR __ ""'.\~ .. -.-.-. 
f)f., T/(,) RlJFFFf< (13? ~ Y TE S) 

F:MAIN 
~---, , 

._----

Figure 2-8. FORTRAN/RTX Example for:LSI-3/05 (Con't) 

2-45 



~~ '-=:~ _~~~~?~:,!o;~:.·, 

" 

I\J 
I 

oIiI
<" 

o 

061?117h lR:~q:q1 ~0~T:a (~n) PA~t:: QOO" 
__ 2n FlU:! T ~ SI(S __ ..:')~LH)"'S ~ ___ " l" _______ _ 

~ C ~ I _ ,', I-( :. I L" C ' T T ~ I ~ , 

lOf~f~ NA"1f TViJF. "'JQf)~ '-or~ NAME TYPF 

__ . : O~'_Jt\,;·'.:~ __ T"ITFI;~_~ _________ ~ Q~U'_~~ REAL 

o 

W(1Q [! S lO[I\J "H~t TYPF 

., :OOla ~Q~onT R~Al 

Figure 2-8. FORTRAN/RTX Example for LSI-3/05 (Con't) 
~' 

..•. 

pft IH~~~ l-':.-·~:-""l'!'oIfIiII~-~~~~·~··-

WOPOS 

? 

~ 
I 
-



( 

...., 

..... 
~ 
11 
ID 

t-J 
, I 

,00 . 
...., 

~ 
~ 
'" ~ 

t-J,tzJ 
I i ~ 

-.J 

... 
ID 

8' 
11 

~ 
H 
I 

W 

'" 0 
VI 

..... 
n g 
rt ..... 

,':~±O:";;----:"'-~~<O~~~3'~rr~· 

o ( o 
----,------r- --.-- ----.-.----. 

p A ,-~ t: I) n II ~ I j /.1 I ? 7 I 7 f, 1 A : :;;, q • I~ 1 F 11 R T : a (13 n ) 
___ rLl_::'l.l f :._ r~>~.; _I~ T TJ1 ~ ~ ___ _ _~ 3 __ tn 

(\ 0 I) 1 TA.jl(l 
. ____ !l_Q.D_~ _.L 

n()n; C 
nontJ C 

T~~~ 

T,.n . __ 
C •. ' i 1.-1 

I ~ 51( C I\L C I!.~~ 1_c'_~~1) j-lP 1 N T~~U1"'r'FP ~ 
1 T" t;o. 'INn T-iCp~ SQ,'''Gt: ~nOTS. 

_____ 000.:; C I I)np 'FP() .... ~.Q 50 
(\ ,) .) ,) n I I 1 n J -,j II r-A. = 1. S (1 

liD 

STx 

---------_._----

,TN""" 
: () Il 1 b :? 'I" 1 

__________ -'!.:..:..()~v 1 7 : A, '-> 79 tt""i -------------- - ----
noo? c 
OOM\ C 
O()/)o 

(Ill 1 \) C 

C0~VERT ~UM~FR Tn FL0ATING POINT FOR SQRT 
__ 3".1 i ''''= J~lUM 

:n01.-I :A.)7H 
:f'I()l'-f :qf)flf) -4 

: I'! () .1..t. :" a ,,~? __ _ 
':oon~ :P.f)16 

LI")A 
JST 
PEl 
STA 

T "I II '"' 
* R P ( F : P 1 .. ! T ) 

DNllfoI 

___ ~, C rAI CIJLATF Sq'JA~f-'RflU.L __ _ 
n (I 1 " c;,~n,\rT ~ SQ';"T (r(Nc' q-

:001C :no"r vIT 
_.~.~\~:~!)-~_f:i ____ .TST __ *8PlC:UP":'~ ) -------

:001£ :0000 nAT~ ~QQT 

:001F :1'001 nAT~ , 
___ -=- ______ : ('10:>0 : ~_o 12 ___ _ D A T) DNUM 

*~D(F:::;'R~L) 

~~~onT 

n (J '.'-. C 
()O,q C 
001" 

: () /I ::> 1 : ~ ,) () n ·i .J ') T 
:('n?? :fl1-,71 ~T" 

PETrlT TA~K NAt-1F, NU~RER, S'-'lIARE ROOT 
~,It.!-T TF (6,20) J"itjM, snROOT 

----------

,._ . ____ : OO.l.Ll.nQ.Q.Q. _. __ . _~. x IT _____ . __ _ 
~ I) ,I' i.I : 4,) 0 0 ti 
.I)(I?'-' : r'tl()O F 
.: ('\'./':1(:. : ('I(\~_. __ _ 

: 00;'7 : R f) ('I I) 8 
~(\O?? :1'1011 

.~ __ .; () 0 ? 9 _~ ~ 2J'~_ 
:01,;>(. :l) i I1L1 

T~T .~P(F:D~F) 

!HTt. 1qr? :lIno~ 

.1J2() nAT!, 
JC:T 

naTA 
.1ST 
nATA 

- --_. -- -- ----------
*HP(F:RJnL) 
..TN '-I f'l 
*~P(F:RP(lL) 
~QD(JnT 

------------

e 

~ 
~. 

I 



~~i-:':=-" 'r:::~~~~~'~ L 

to.) 

I 
rIiIo 
OJ 

PAnE C()OL~ 

X ~E_t=_· __ 

t)()~t ,)l) 

'- . _____ ~!!. i f _!; __ _ 
() ('\ ... 
() I· ., \ ') 

fa 
~~/;'/7~ 1~:~~'q1 

f .J. t" .. ; "'. t.~ : . ~, r r ... \' t: • 

~ (': :> ~ : ...;( : ) i'" Il .... 
!=': .r "T [ I T ~~ ...:: '<II; ~ 

:"r;n j :fI~::'7 

~ (\ 0 t I) :~~4Q 

:', c' I. T , 
,~~ ~ r- ""'" 

,', I T '.~ i I ~ 

o 
~'~IJT:lI (;;<.1) 
T1: ,_--; 

I::i T ~ ... U(F:~Sr.:J·1 
,= . T " I • 

~ ,) ~ T :: t , C" "7 • 1. '1 

::,;:>, T r_ '(1 , ( , T6S" 
TEXT ' 3) • 

_____ f) (~;" I r 
---- -- ---- -- ---- -- - --- --. 
:(\O?C :4?f.4 
:OO?D :?>1f'11 

_________ ._: "_f_' ?_E_: -'~J)_~.~ __ _ 
:()i);>F :f\~.rE 

:no-:.n :1,.;6!"> 

., , 0 LOX .JI\I'IM 

4X 1 1 
Tj(~ 

C:~T ~t) 

.T.\'- -it..,::> 

_____ () oj:'" I _ r.~_. ~ ____ ,,_, 1 __ f-~'2~ "T ~ ,11 tJ v T A c: ... 'Jf')~ __ A~II_~_!..I=".?_""}"'t.T~ 

no::>? CT0P 1 
: n \) 1: 1 : I .. ,) "t.' i1 

; ______ . ________ -=-..0 II ~ £_: () O!, ! . _._ 
on;> <. F f.l f' 

: n (I ~ ~ : ('I !)fl t'o r:Tr"" 

---------- -----
~UPPQOG,.;t,..~ rl!.llFD 

.,,, T 

l)o.T~ 

rq T A 

... Fe 0 ( .:: : ~ S T (I ) 

1 

I-

d~""·:-~'~li!3!'.!!Jt!1¥l; 1!"'''''!''''''L~If,'''_ at .. -!'~-t">. ~,~, 

'J=', T3a .. I SI'J .... T::·,~7.' 

---~~- T'tDF ,,~r,s ~J~r"F ._._lv.pl=" 4QG~ ~JAME TYPE ARr,S r-.A~f TVPF ADG~ 

I 
i 

c; (,J Co' 1 ~ L: 0\ L 
I=' : tJ ~. T 0 Q i I.: T !_~_. 1= __ _ 

F:PF? l-lll''Il™j; 
qUPc. PUNTT'-'I=" 

C; T ,. 1 ~ "'l ~ ,.; T 1 A t! F I. '"' 

t (, r ' __ I_-~-:,!=.~ ___ ;·":'X_ 

:(J(\2 r ttll' Ci; I="t.,j~ 

._------- .. 
~ r-.... ,.. " = ~ I ~ r 

..... 

F· k'~ F 
F~~STn 

F~~F'F 

I-,r·,. 

; I~, T f .... c: 
_. -:., N T ,1"'.": __ _ 
:·tI~TI~t: 

I I\~f-I ,j ~ t= 

: u () i) f' :J ? ~ , FP..?"AT 

'P"'" 

I=":PTnl 

I=" : PI.' (\ ~ 

Q""'lT"-1~ 
R! I~.IT T ~i F ------. 

F:qL~3 QUNTIMF 

.. II)("N 6~fl l'~E - -------

: lHI1 7 #101? 

Figure 2-8. FORTRP1!RTX Example for LSI-3/0S (("on' t) 

F:ffQ()1 

F:RRE'L -----
F:RT'H 

IJJCN 

~ (1\1 T I "'€ 
RlJ~JT T Io4f __ .__ _ . . M._· 

QIJ~TI ME 

lcPo:L JSE 

s 
I 
e 



1'1" rt "g"': t" 'rs $ Ht'S" t" « " t !" r r 'r" , t" :' • t t 

~ Pf·--------------------------------------------

o 

o 

------ ---_._-
PAf~E OO{)Ci 

Hn ~ Ilf.1 
on/?117~ 1R:~q!41 

T Po S I< ..L_ .Q.PJJ ~21 __ . 

P f., r I~. r:;. ~, M ~ r 7 F -: : () (I 'l. I.J ~j n p n ~ 

FOJ.lT:4 f.RO) 
l~ Ul ___ _ 

, __ --:..;.~A!=~ E p. G F .J!.S F 1):: : n \.! n to W'1R n ..... s _____ ._. _______ _ 
CO~PTLAllON CO~PL~TE n ~R~ORS 

----------_. --

Figure 2-8. FORTRAN/RTXExample for LSI-J/OS (Con't) 

2-49 

tn 

I 
I 
1 , 

;. 

I 
I 
I 
! 

I 



o 

o 

. "'Wt"'irlUt""K" ,It 1 b'j"n- t I' 

PA~E on01 oa/>7/7h lA:~9!Ql 

. __ LHLEl.J,.L;. __ t~_;)~::; ..... O_~_I UJMS: _ 
Ff'hH:ll (RO) 
. r~ _~ n ____ . ____ .. 

__ oIL' ~ L ____ . 
00?6 C 
00?7 r: 

lr,'K Tt\fll<? 

T~' r~) ..:!. t\ S_k~_L_ LI_I~_A 11=" S (I ~I!) ~o l~l~. __ "'U"'HF~~._ .. __ ._. 
,:- .... n"" ~1 TO 100, Hjr) THF.IP ~(ll'AQE ROOTS. 

_Q9?8_S _______ L U(:PYPOM c; l __ J·!1_~.0. __ _ 
no;:>y 
(\O~O ( 

_. __ .... __ n_~~_ r;... .. _ 
oo~C:' 

00'3 C 

"11 1 () ,TNIIM == '::11,1 on 

rlJ~lvFRT ~IU"'~FR 1('1 1='1. nATpl(; I-lr)It-IT FOR S~~T 
- _._-- -"-- --- -,-"-- ~ 

P,Nilt-'\:::.JNLJM 

_ _ ___ CL f)~C_., __ ~C:..:..A !-I. C III ~_I~_~Q 1/ ARE. ~ n n! ... _._--.- -+--- _._-. 
() (j'l. 0; q I J P II f) 1 = ~) n R T ( R "Ill'" j 

n ()"t. h r 
__ . ___ .QJL~l_f. ______ ...nw~T T A c, K '" A f'AF, ~'lIMRf:P!._ s_r.1I1 d ~F. ponT 

nO~8 WRTTF (6,2n) JNUM, grRnrT 
o (I ~ q 2 I) F ( I P "1 ~ T (' T ASK? ~! = ' , T 3, , , S QR T = ' , F 7 • .5 ) 

. ______ Jli}_'-'..'L..L ____ .. 
I) 0 iJ 1 r 
f'\OLi"J. 1(\ 

-------- --.- -- ----. -_.-... _-_._' ----
" n fl.. I=' )( T ~J U M ~ j:" ~ 

('[II T T NilE 

Figure 2-8. FORTRAN/RTX Example for LSI-3/0S (Con't) 

2-50 



\ 
I 

I 
I 

o I 

I 
I !u.. .-

IQ. ... 
I !>- IL.' 

I I 
\ 

I- cr' 

I ,..... 
! C I 

\ 

'":f' 

\ 

UJ l:' .... 1: ... Z 

::r~ "Z 0: 
i 
I 

[d It 
I'\: 

I 

.~ 13 -r 
::r ~ v.. 

Q 
Ct' 

\ 
0 

a: x 

o I -.c. ' 
I S~i 

\, 

2' u... 

I c. :l. 

~J 
~ > ........ 0.- I-

~< <l 
U 
c: 
-1 u..1 

I'\.. • - lI. 

~~ 
cI 04 

Z 
c· ()" 

u.. <" 

W ...J :z. . 
l!: <l '-' 
4..:1 U 0 
Go I .cr; ..J ·1 1 

I 

Figure 2-8. FORTRAN/RTXExample for'LSI-3/0S (Con't) 



1 
f 

! r '1et.ttrttrinttttut'g'tutttsm t t) t 1M Itt '''fer 'T' Ie j··"'Wn¥ta·p· .. ·., "'''$ fTt r" $ 'f i 

I.·.:·i• • , ----,-----_._,- ._-_._._- -----_. -'-_ .. _---_._._--
~ 

i j. 

.' 

no~~ TAQ~ TASK? 
no?,) c TtIJ~, p·SK rAL..CIIL61J: . ., ANI) l .. n'I!"IJC: NlI"1HFR~ 

-no-;;-;;--C--~"M ') t -rO-l 00-, - 4Nf' -t HF. fR~rJ' iARF. -RnOTS·-.-
00'7 C 

_ O_9::>.B __ C ____ . __ iJ!~·J_ f~O"1.2L T ~_ 1 c) I' 

no"l:o L 
00 II C 
oo"t~ 

o 

no~, C 
~)l~ ~ 

.rlfj1:t.; 

" 

'II' 11'\ TI.JIIM = Ld,' 0" 
;t1()16 :;>q,~ 

:"017 :A~7Q h W? - ..... -. ---. - .. - - -. 

I "r> 
QI'X 

C;l 
.jNIIM 

r.O~'VI='RT NU"4BFI< rr FlnATTNG pnTNT fOR 5r.1RT 
o.~~I}M= J_NUtw1 

:n01/-1, :~?7P, 

:()o14 :ql)n(l Ii 

!nO'h :1"00;:> 
---"-'~---.. ---

:"Ot8 :Pt67h 

.IS T 
PF I 

,TNIIM 

H~P(F:DTNTl 

.- .... __ ._. - - .. - .. -.---- ----
eq ~ QNUt-i 

r: ALL" L AJ£_l3 9 ~L~ R ERn 0 T 
~ Il q (1 n r = '5 () ~ T (H '" U'4 ) 

:nolC :()l/nC 
. : n i}!...:Ltq f.\~.Q_ ~:... __ ... 
:0011;: :/lono 
:001F :nonl 

_-1-: -,--0 Q l n _.: flltL? 
: I) (l ;:> I : A!) 0 fI ~--I 

:('tI,~.J :A,,71 

__ -.:~f~T *HP(~.!l~~:_L _ 
DATA ~QIH 

nl\TA 1 
__ o Ali_g_t-!!!M ___ . ___ . __ ._ 

.T'5T *HP(F:Rh'l='ll 

~~).:J ,,_.1: _______ _ 
o () "l 7 C p IH NT T A') t< N AM F, N I : ,.d~ E P , S n U A Q F.: ROO T 

~HTrF (6.20) JNU~, 5QRnOT 
_____ ;_IJ~? 1_: 0'l1lL.~__ _ _ __ ll..L~ _ ... _. __ . _____ ._ 

:nO?L1 :qoo(, b .J$T *P.P{F:R .. ·F 1 

: n (I? '" ::') un (. F I"l A T.~ 1:1 J .... _~ o 
___ ... _ ... ______ : OI)?1) :()JL~L ___ .. _r~!A..2.?.0 ____ .. ____ ... 

:0027 :RDOO H JST *8P(F:RlnLl 
:002P, :('\011 nATA ,TNUM 

. ___ .. _ .. _._ .. ___ : ('l.O?9 jR()O_O~~_ ... _. __ .~nn ___ ~I1~CF:Rr'I1L) 
:on'A :()O'I~ DATA ~f"JROOT 

Figure 2-8. FORT~RrX Example for LSI-3/05 (Con't) 

2-52 

'P'P 



~=::::.-_~=t"~~':~~:_::! ~ 
- -------- ·'5==.':-=:::!::: Jtf"t 4"~ --~ __ ! > !,~~~!)Iit~; L"I LX .-I!lI!I~'="~' 

( 0 0 • 
-~-~--~-----~-".-. 

~ .... 
~ 

~ 
CD 

I\,) 
I 

Q) 
• 
..., 
g 
.~ 

~ 
........ 

~ 
I\,) t1:J 
I ~ 

U1 

~ !AI 

.... 
CD 

HI 
0 
11 

S; 
t-I 
I 

!AI 
........ 
0 
In 

..... 
n 
0 ::s 
rt 

PA~~ onon O«/?7/7~ tq:~9:U1 FnHT:a (Rn) 
BC F I IE: Pdt< S --D.e_~~ _~_. _.l '2!_-L'L ______ . 

:~O?R :ROOO B Jsr *~P(F:PSTQ) 

"Q"2: <.:; ~ Ii F n Q M 6 T (I T A ~..;, ;> N = '.Lr..l..L-. _. _ ~2.:' T = I , F 7 • 3 ) - ------_. .- ------ ----_. 
:0000 :48A7 #?0 TEXf '(' TA~!(;> N=',T3,', S~PT=t,F7.f 

:~010 :R3A9 TEXT '3,1 
0040 C ____________ ... _____ _ 

I'll N~XT "'U""R~R 
r (I ". T T t-,J (I E 

OOll t c 
nOll;> 1" 
nOl!3 C ._---- -----. - - ----- ---_ ... ----

:no?c :A2~LI #10 LDX JNUM 
:nn~o :?801 AYT 1 

____ : nQ~E : nQ?O TX A . ____ . __ -- -- ------ ------ ---
~"o'r: :nA9C ~AT 100 
: n 0 "2: () : 1 i? A 6 .Itt ~M? 

Q(J/J/~ C ~ T ~~JD, _1"''lC\?l AY T A ~ ~ _ ~ O. AN r. _~ R!" ~~ ~F_ ---- -- -. ----- - -- --- ----
0005 C;Tnp 2 

:nO~J :RDno ti 
________________ ~:~n~o~~ :0002 

.J ~ T .. ~ 0 ( F : Q S T I' ) 
nATA , 

nOl1b F"" 
:"0'1. :OOOb #TC7. nATA h 

~uQPRnG~A~F rAlL~D 

NA .... E TYPE AR~S ~lME'. TVPF ARG~ __ ·"'~~L_._ TVPl ~Rr.S NAfo'F. 

5QRT 
F: R S T,1 
F:RFl 
~IjRR~ 

PE~L 

°J",jIY'-1F 
RuNTPIF 
Rur.1 T T , .. ~ 

F:~\oIF 

F:R~H' 
F:RFF 

/.!I!NT IMf 
wllNTI hOt 
RUNTIME. 

~. ~T6T~'~fNT I 41"1-'1 S ------.- -----

'Dr ~. __ I A":·~ __ .~i~ l(l"~ __ 1 ~~I-' .. LJ~E 

:(ln~r ~ l{'l DO FN'"' :000(1 Urn FflRt-CAT 

F:RlnL RIjt-,JTt~f f:RROL 
F:PUOb ~UNTI~~ F:RREL 
F:QL~3 RUNTIME ~ ----- F:RINT 

I. un. LAPH 1.I~f Vlr:", 

:()n17 II,.,? 

TYPF: ARGS 

RIJ"'TIME 
RIJ"'TI""E 
RUNTIME- -

lA~~L U~t 

------------ ---------- ----.-- - - --- -- - - - - --
FNT .... y=:On1h 

i 

( 
-~ 

'~--.- ~ 



It 

, 
, .. 
: t 
, ~ 

j 

, I 
f 

, 

o 

o 

t· Ott t tt rt t 

'P A ~ t: 000 C; 0 U I? 7 I 71-. 1 R : c:; Q : 41 F (lR T : a (~n) 

____ Rn f:nE· __ T~M.L_ . ..Q~T.:LO~IS:._. _T~._J..fI_ ._~ .. __ 

p~n~QA~ qI7~::nul~ ~~RnS 

__ -~.A ~ ~. iJ A G F=' " ~ F I ~:: : n 0_ ~~ ,oj n R f) S__ . ____ ._ 
co~prLATTo~ ruMPlFTE 0 ERPOQS 

Figure 2-8. FORTRAN/RTX Example for LSI-3/0S (Con't) 

i ____________________________________________________ ~ __________________________ ~ 

11 

fl.,· _ .... ___________________ ~;: 



I 
( 
:1, 
if' 

o 

o 

<, tn '"' < r· I" .'." f' W 1', 'j 1"':1' " fa ,., . j' 1ft" .,,: 1 

CO~ILER DIAGNOSTICS 

The compiler can produce several diffen~nt kinds of diagnostics (see figure 2-9 for 
exampl~::;). Most are detected during the Scan phase and are printed on the source 
listIng immediately following the statement in error. A dollar sign is printed 
underneath the position at which the error was detected, followed by a brief messaq<'. 
For example: 

DIMENSION BETA (0,10) 
$ 

01) DIMENSION OUT OF BOUNDS E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*. 

l'heE's serve as a marker to make the message stand out and also signify "Error". 
This indicates that the statement could not be processed. Instead, a call to a run
time error routine is generated. Thus if any statement with an "E" type.error is 
execut:ecl, a run-time diagnostic will occu:r> 

Other errors are not so severe and can be recovered from. These are called Warnings, 
and they have the same format, except that the E's are replaced by W's For example: 

FORMAT(3X,FIO.3, ,16) 
$ $ 

01) LABEL MISSING W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W* 
02) EXTRA COMMA W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W* 

As shown above, it is possible to get more than one warning (and/or more than one 
error) on the same statement. In this case the numbers at the left of each diagnostic 
message indicate which dollar sign is referred to, counting from left to right. 

Most of the messages are self-explanatory; however, Appendix D lists them with 
explanations of their cause. 

The second group of diagnostics is produced during the Allocate phase. These are 
listed in tl'e appendix, and include undefined labels,r storage allocation conflicts 
(caused by COMMON or EQUIVALENCE), and storage overflow. These are all listed as 
"E" type errors, since there is no reasonable recovery, but most do not generate any 
run-time error call since they are not attached to any specific statement. Some cf 
them are followed by a list of labels or variable n,~es that are in error. For 
example: 

UNDEFINED LABELS E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E* 

7 FIRST REF AT LINE 26 
296 FIRST REF AT LINE 132 

The third group consists of the diagnostics produced during the Gen phase. There 
are only two such errors, and they both pertain to in-line assembly language. They 
are printed in the object listing, out to the right of a simulated assembly language 
instruction that has been generated. If no object listing is being printed, the 
line with the error will be printed anyway,.to make sure of 'signalling the error. 
These diagnostics are listed in Appendix D. 

... 2-55 



't"ttir\zwnrn . hi' "] '#'''1 t' h""" ) & 1. U' '&. ., xrew",'it. t t t:'1' j. t r l' Wd'1 , $ " '1 • r,. " 'N' Z '1" ' 

I·

l ... !. "' . i 

. J , 
I 

I 

COMPUTER AUTOMATIQN.INC. t::::3.Y 
The fourth group includes diagnostics that are not caused by source program error • 
but hy compiler inability to continue. These errors always cause the compilation to be 
aborted. They have the following format: 

FORT ER ptt 
.~ 

t where p identifies the phase of the compiler that was operating: 
~:! 
'I~ 

p = 1 
2 
3 

Scan 
Allocation 
Gen 

and tt identifies the type of error: 

o 

tt = 11 
18 
21 
28 
3] 
38 
41 
51 

Pointer overflow 
I/O error during overlay loading 
Working storage overflow 
Memory overflow during overlay loading 
Compiler error 
Illegal type code during overlay loading 
Compiler error 
Compiler error during collapse 

Except for 21 and 28. all of these result from hardware or software errors. If they occur 
in a reproducible way, they are probably software errors, which should be reported. 

-

28 indicates that the compiler will not fit in memory. 21 indicates that the program cannot -
be compiled in the given amount of memory. 

o 



" r It Vb Ott t',! 't) 'f ' :1" t X'HW ta .om",,"$" j" r' 'S I"Mtt? "j ·"f""tlUU ) S orr 'J m; "P'#, . t. ":rg.,.,W 5 t t)· 't '$ '> ( '1$** g 'tXt" 'ttfl1' 1 ''M B 1'tn't 

10 
I 
I 

o 

' .. --- " 

PAf.[ "'Vlitil 
tiC F1LL; 

~9/24~74 ,5a151~8 
fOur LiPTluNS: 

FORT;4 (Al) 

0J'0l l. 
CJIi"2 
ekH.r.J 

JfMONSTRATl LOMPlLiR JlA~NoSrtcs 
D I : 1 [: ~ S [ 01'4 1'1 M ( tit:), 10) 
C OnMu N X,f, ( , 

~l) O~CL~wAl~~M rON~LICf l*[.E.E*E*L*t*E*E.E*E.E*E*E.E.E*E*E.E.E.E*E*E.~*'*' 

'W0~ ~~UIVAL[NCE (X,Y) 
rJ~~ La~I~AL LGL, N 
~~v0 INrfGr~ ~, , C 

Ji 
~ 1) L,<T"l COM,iA W.I".W.W-W"'I4l*W*W*W*I·~,*W*W.W*W*WiW*W.W*W.W*W*W*W*W*W*W*W.W*W*W 

r~~7 S~'PI~) = P+Q/2 
0~n~ X • tr5~ ~ LGl 

$ ~ 

ell CJNSTANT sIir E*E*E*E~E*E*E*E*E*E*E*f*E*E*E*E*E*E*E*E*E*E*E*E*E.E.E*E*E, 

0~) T'(Pl a:ONfL Ie T F: *E *E*(*E .r.*f*[ *£ ",r..E *E*E*E*E*E*l*~*E*.E*E*E*E *[*E *E *E*!*!, 

~~09 IF ~A) 2,3.2 
~u1~ 2 x • ~~RT(A) + ~F(Y) 

\ '$ 

til AH~W~fNT t:ONVf~.EJ ~*~*~*W.W*~*~.~*W*W*W*W*W*~.~*~*W*W.W*W*~*~*~*W*W*W. 

~~11 d{l~~ = ~ 
$ 

Pt) U~Dl~ENSIUN~O [.E*[*E*E*[.f.E*E~E.E*E*E*f*E*EtE*E*E*E*E*E*E*E*E*E*E*E*f. 

bdt~ X • (RX~A~~(3X))/(VAL+J)) 
,J! 

rl) srNTA~ l·~*~.[.l.l*E*E*E*E.f.L*l*l*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E.E*E*~.t 

~ Id' j J I: I j 111 01) 
t: 

flJ ~~T INTEG~~ f*l*E*E*E*E*E*E*E*E*E.E*E*E*E*E*E*[*E*E*f*E*E*E*E*E*E*E*E*!-

Figure 2-9. Compiler Diagnostics Example 



i i ,- '. f' I ;,,'rt"tWr $' ".,;,' , _bitt edt.· ••• ? t" rrittt'htHn's 'x" = " _trrm.o •• t.t)! r1P"', t t tUrnmo,zttihtrt+s."e w ."itt' .. 

'.') ACt: 0Y1id:? 
dC, F 1 L l: ~9/24i74 ltjzlh:ij:'8 fORT:A '.All 

FOur JPTluN~H 

i.:, J.1~LrlNLr lA'i(L~ f*L*t*L*L*E*E*E*l*ltl.l*E*E*C*E*E*E*E*l*l*E*E*E*E*[*E*E*E.~. 
J "5 r!'~~H I?Lf 'AT L.ItH: 9 

, u[ N N",;:t rvpE' 

;d~~i3 )( I~ l f\ l 

li\,~A Y ALI.tJCATIOI~ 

.. ;;1 .~ '" ,~~ t: rv! If' 

: " . , ~ r1 It'l"!'fGr,. -
'O·~r\ \1.LiJI..:\lr J'" 

I !(j"v1 II 

; JS",1j " 

.lHTf'GtK 
l.O('TCAl. 

WORDS 

2 

vIQR(lS 

1~~ 

1 
1 

I uCj~ ~"AME 

:~JQf02 v 

LoCI" 'I~Mf 

rVp[ WUROS 

HEA.L 2 

rYH, WIJRIJS 

TYPE l4'ORDS 

INTf17('R 

Figure 2-9. Compiler Diagnostics Example (Cont'd) 

o 



·' 
~I 

i 
fi 
" 

o 

1° 

. .....". 

. nt',m, 'tt'l':!W\lFl"¢'H . 'It it'" f ". Y "tttt&t1tt+**±r.' "ft n ... 

P M.t. l1k1wJ i 
uO rIll: 

~9/2l~/4 15:1~:08 t nIH • ~ (A1) 
FOU T LlPT I uNti: 

T'fPt:: ARGS 

f ~ 1~t.~H HU1H !i-tr: S~Kr REAL 1 
f : ~HCL RUNT Plr.: f' PI')MV RI'NT I ~1( 

l.Or.N L1\Bt.L USE 

: ,,"'; 7 'l Iitl::! :FFfF --;, 
: ,,0.jF,) N,"'ll 

f. ~ , t< Y == :It;) I~ t>:1 
~Rt')~'~A'" SIZl::'1M~4 ,",OtW:) 
BAS~ PAGE USEJ=:~~~4 HOHD~ 
(U~PIL.."jruiJ f.Ut-fI'I, tTL II ERHr)Rr. 

F:RSTO Ru~nlME 

LuCN LABEL USE 

Figure 2-9. Compiler Diagnostics Example (Cont'd) 

2-59 

rt I 



o 

o 

#'fl'" d 't' 1t 'W'it'irt'MM1 

ComputerAutomation U\\ 

Section 3 

LIBRARY STRUCTURE AND LINKING 

GENERlli. 

A compiled FORTRAN program contains references to external subprograms. These 
references may be generated by: 

1. EXTERNAL and CALL statements to a specific SUBROUTINE subprogram. 
2. An external function, either library or user-defined. 
3. A compiler generated reference to the mathematical or I/O routines. 

References to these routines will appear within the object code listing and the 
subprogram usage map. In turn, these routines (the I/O routines in particular) may 
reference the OS or RTX I/O Interface routines which make the actua! I/O calls to 
the OS or RTX drivers. 

Each vf these subroutines must therefore be available for linking, either by beir.g 
compiled behind the main FORTRAN program in batch mode (if a FORTRAN subprogram), or 
by being resident on the FORTRAN library file, which is normally fotmd on the System 
File (SF) device. (See System Generation, section S for a discussion of generation 
and ordering of the FORTRAN library file). 

The following types of routines are resident on tl;le library file: 

1. The Basic External Function~, which are referenced by name within the FORTRAN 
statement. The function names are generally indicative of the functions, e.g. 
"SIN", "SQRT", etc. (A complete list of the functions and their descriptions 
is in the appendix). 

2. The Mathematical and I/O Routines are references created by the compiler during 
the generation of the object code. A naming convention has been established 
for these routines whereby the routine name is of the form F:Exxx, F:lxxx or 
F:Rxxx. A complete list of these routines and their descriptions is in the 
appendix. 

3. The System I/O Interface routines are not referenced directly by the compiler: 
rather they are called by the I/O routines mentioned in item 2 above. The 
naIhes of each of these routines are of the form IF:Xxxx"; a complete list is 
Shown and described in the appendix~ 

4. The R'rX/IOX routines are the standard RTX and lOX FUNCTIONS which may be ref
erenced by in-line assembly language within a FORTRAN program executed under 
RTX control. The name of each routine is descriptive of its function (e.g. 
BEGIN:, END:, DELAY:), and contains a colon as its terminating character. 
These routines are d~scribed in detail i~ the RTX User's Manual. 

5. The LSI-2 Instruction Emulator contains sequences used by FORTRAN when executing 
on an LSI-3/0S processor. These sequences emulate various LSI-2 instructions 
which do not exist in the LSI-3/0S computer. The emulator also includes 
within it a version of the LSI-3/0S software console routine. 



t ..... ·• ; f 
~. 
& • 

~. 
~ I 

Com~~I· 
The System Generation section of this manual describes the generation of the library. 
Specifically, three separate library files must be created, one to be linked for 
execution of the FORTRAN program under OS control (F:OSLB), and the other two for 
execJt.ion under RTX (F:RXLB for LSI-2 execution, .and F3RXLB for LSI-3/05 execution). ......". 
This allows the correct I/O Interface routines (OS or RTX) to be linked. 

Once a progr-im has been compiled, it must be linked to various referenced library 
subprograms before it can be loaded and executed. OS:LNK, the standard OS link 
editor, performs t.his function. Its output is a self-contained module in absolute 
or relocatable bindry format, including ·the FORTRAN program and all referenced 
library subroutines, which is suitable for loading by OS:LDR or the /EXECUTE or 
/LOAD commands (if it is to be run under OS control) or LAMBDA, BLD, or AUTOLOAD (if 
it i:3 to be run under RTX). Note that OS:LDR and LAMBDA, which are "linking" loaders, 
cannot be used to link a FORTRAN program, because they do not recognize many of the 
special. loader type codes generated by the compiler. 

The reader should' refer to the OS:LNK description in the OS User's Manual for detailed 
information regarding link editing. The following discussion encompasses those o ;p€':~:t.s of os: LNK most pertinent to the linking of FORTRAN programs. Note: OS: LNK 
version B 2 or higher should be used to link FORTRAN programs. 

I/O D~vice Assignments 

The following logical devices must be assigned to specific physical devices prior to 
execution of OS:LNK: 

1. System File Device (SF). Assigned to the device containing OS:LNK itself. 

2. 

3. 

o 
4. 

Binary Input Device (BI). Assigned to the file containing the binary output 
from t.he FOR'I'PAN compiler (normally a magnetic file or the paper tape reader) . 

I--library Input Device (LI). Assigned to the file containing the FORTRAN library 
module to be linked to the compiled binary code •. As described in the System 
G(~neration section, three separate library files are normally constructed 
during generation; one for the OS Run-time library (F:OSLB), and two for the 
HTX Run-time library (F:RXLB for LSI-2 execution, or F3RXLB for LSI-3/05 
execu tion) . 

Binary (mtput Device (BO). Assigned to the file which is to contain the linked 
binary output from OS:LNK. (Normally assigned to a magnetic file or the paper 
tape punch). This file is loaded and executed at FORTRAN run-time. Note that 
if the FORTRAN program is to be run under control of RTX, then the BO device 
must be assigned to the paper tape punch, sihce paper tape is the medium required 
by LAMBDA, BLD or AUTOLOAD, at execution time. 

5. List Output File (LO). Assigned to the listo~tput device (line printer) for 
output of the link map. 



'I 

o I 
I 
I 
I 
I 

OS:LNK permits several options to be input as parameters. These are described in 
the OS:LNK USer's Manual and familiarity with them is assumed here. The standard 
sequences of options normally used for linking FORTRAN programs are discussed here. 

}<'or Ex(:!cuticm Under OS 

.When linking for OS execution, the link process must take place within the same OS 
System as that to be used for executioh, since various OS routines, (e.g., the I/O 
driver entry points) have fixed addresses which must be referenced in the linked 
output. Tll\~S the NH, SP, AB, RL and SR options need not be requested, because the 
default addresses for these options are available to OS:LNK from within OS itself. 
Also tLe XA, XR and XS options are not required, since the FORTRAN object module 
will contain the execution address (this is the memory address of the first executable 
FORTRAN statement in the main program; i.e., the location defined as F:MAIN). A 
typical calling sequence might be: 

lAS BI=DO. FPROG (name of compiled FORTRAN program) 
lAS LI=DO.F:OSLB 
lAS BO=Dl.EXPROG (executable output) 
lEX OS:LNK,LL,TE 

In addition, the user may wish to utilize one Qr more of the following options: 

NB 
NL 

(Suppress binary output) 
U,uppress listing) 
(Re-enable listing) 
(Output link map at end) 

I (Refe:!' to the OS: LNK description in the OS User's Manual for a discussion of the 
• usage of these options.) 

For Execution under R'rx 

When linking for RTX execution, the NH (or T3 if LSI-3/05), AB (or RL) and SR options 
are normally required, since the default addresses associated with these parameters 
are in relation to OS, and do not apply to the RTX system. Also, linking for the o LSI-3/05 requires the SX option. 

Nfl or T3 

AS (or PL) 

'I'his option specifies that the linked program is not intended to 
run under the host OS system. T3 should be used for LSI-3/05 
execution. 

This option specifies the'starting absolute or relative memory 
address for 'loading the executable program. This may be any 
address or bias; 'however, it is a good idea to avoid loading in 
the base page area, which is needed for scratchpad literals and 
address pointers. Normally an input of AB (or RL) = 100 is 
optimal for FORTRAN loading under RTX. 



i.·.! ~ 
"I' 
~"! 

%,"lb"'@" (~" '"W' ""{ "tlW-'"W'""W "re""wftW"' t"tt 'W"""" 'tf""*! '"'t"¥ettst$'"""7:tr t UCO"'lW"'K#""tW'W*'*"ndfifO .""£' ·"-r@t '"'esmtw'b'1t1Wt' ~iot!"W t tr z, 'ty j5'@M'tZ'ttt'mnrrttm ...... tl .. ,. Me _rmnwrew _ r 

SR 

o 
sx 

NOTE 

Using an absolute load location (AB=) insures that the 
linked output is loadable by BLD, AUTOLOAD, or LAMBDA. 
If relative linking (RL=) is used, -only LAMBDA should 
be used for loading, since BLD and AUTOLOAD do not 
recognize all the possible type codes which may be 
generated by OS:LNK in ReI mode. 

This option specifies the starting address for any SREL (Relocatable 
Scratchpad) data encountered. RTX itself does not contain any SREL 
data; however, the FORTRAN compiler ~oes output some in various object 
programs, and it always needs 20 SREL cells for its own subroutines, 
and they must be contiguous; these are used as temp cells, floating 
point accumulators, etc. When linking for LSI-2 execution, a usually 
safe location for SR is :60, since it is higher in memory than any of 
the standard interrupt locations. For LSI-3/05 execution, SR = 20 is 
recommended, because the addresses of some of the 20 SREL cells needed 
by the compiler are used as indexing offsets; if these cells are defined 
above location :3F, indirect index pointers will be created as needed~ 
at the SX locations. 

This option is meaningful only forT3 linking, and specifies the startin 
address for indirect indexing pointers~ On the LSf-2, indirect indexing 
pointers are lumped together with the SP pointers;~however, on the LSI-
3/05, all indirect index pointers must reside below location :40, and 
so t.he SX option is 'required. These pointers are allocated beginning 
at the SX address, and continue upward, toward high memory. LSI-3/05 
RTX needs location zero, so the SX address should be at least :0001. 

The SF option is not required unless the user wishes to avoid using the default area 
for some specific reason. 

The XA, XR, and XS options are not generally required if the RTX main program contains 
the entry point "F:MAIN", as described in the RTX example in the compiler options 
section of this manual. 

An RTX program, since it contains tasks as well as library routines, requires the 

O~LNK user to assign the BI device to the Mainline file and theLI device to the file 
ntaining the tasks, and then to re-assign LI to the library routines file. Also, 

since the resultant executable program must be loadable by LAMBDA, BLD, or AUTOLOAD, 
BO must be assigned,to paper tape. Thus, a typicai calling sequence might be: 

(for LSI-2 execution) 

lAS BI=OO.F:MAIN 
lAS LI=OO.TASKS 
lAS BO=PP 
/EX OS:LNK,NH,AB=100,SR=60,LL 

, /AS LI=OO.F:RXLB 
LL,TE 

3-4 

-' 



~ I 

i 
f 
I .. ;, t, 
,', 

~ II I' 

'" 

',' 

I.: 
1'1 
rl 
" "I ~ 1 

)' 'P 'l '1:'$ 'r m r' s "j i'" t t" fa 1 

e-

o 

o 

(for LSI-3/0S execution) 

lAS B1=DO F:MAIN 
lAS L1=DO .. TASKS 
lAS BO=PP 
lEX OS:LNK,T3,AB=100,SR=20,SX=1,LL 
lAS LI=DO.F3RXLB 
LL,TE 

/ 

In addition, the user may wish to utilize one or more of the follow.ing options: 

NB (suppress binary output) 
NL (suppress listing) 
LI (re-enable listing) 
MA (output link map at end) 

(Refer to the OS:LNK description in the OS User's Manual for a discussion of these 
options. ) 

.Memory Usage 

During the link process, memory is allocated as shown by the arrows in figures 3-1 and 
3-2. Note that this allocation information is being transferred ,to the BO device 
during OS:LNK; the actual data is not stored in memory until load t~me. 

3-4a 

I 
i 
I 
\ 
! 
I 



',,'filM : 

o 

o 

" ±. "-1' t" .• ··WLttWK'iW's 'fi'c'gb'W"1rtnSWt tttii't#' ,-,., ri"''''''!:i*"" ';.' '"s"'trZttl:ttr:Mt!l::!i 

Memory location 
\ 

,0000 

~OlOO 

; : I1FFF 

Scratched relocatable data 

t 
t 

Scratchpad Literal Storage 

OS 

FORTRAN Object Program 

FORTRAN/OS Library Routines 
(F:OSLB) 

, 

os Working Storage 

WKBP 

HIBP 

WKCOR 

5 , 

HICOR 

Figure, 3-1. OS:LNK Memory Allocation for OS Execution 

3-5 



~~ ..• '. 1 

I 
'~ i 

o 

o 

Memory location 

:0000 

:nFFF 

if P ", h 'ti" ':'1 'W" .',1 

ComputarAutomation ~ 

OS:LNK option parameters ,-------------_ .. __ ._--, 
Indirect Indexing Pointers-...-+---- SX= (LSI-310S only) 

Scratchpad Relocatable Data ~~--- SR= 

Scratchpad Literal Storage _..I-t+-__ SP= 

---------.--+--- AB= (or RL=) 

FORTRAN Main Program 
(F:MAIN) 

--------++--- LL 

FORTRAN Tasks 

--------------+-~---LL 

FORTRAN/R'rx 
Library Routines 

(F:RXLB) 

F'igure 3-2. OS:LNK Memory Allocation Map for RTX Execution 

As each input file is processed by OS:LNK, a list of undefined references (if any) 
is output to the list device. This listing may be suppressed by the NL option. 
Upon input to OS:LNK of a Terminate (TE) parameter, a memory map is output, which 
lists each eJ:ternal definition and COMMON allocation, with its associated memory 
location (which may be absolute or relocatable, depending on the "AB" or "RL" option 
input to OS:I.NK). Figure 3-3 is the memory map generated by linking the LSI-3/0S 
RTX sample program from Figure 2-8. 

Z "tt t 



e i-"A';:-, '~:' 

t ., 

* I ~ I f~t AT [n 
i 

M J ~, I NI~ 

w·" I 
IltH , 
W!H 
kip 
ktX 

· . prwr.RAM 
• 

.-; H~JUr 

• ;WM.r.. 
r ;HM 4 
I ; IUH)' 
• !R)(~(, • 
r.!WPA~ 
TASK? , 
f:lTY~ 
WJTf? 
,.,OJn, 

0 Iif(.;!N: 
/)~)rT! 

W ,! f 
C(1MN J , 

(if HW: 
urBlJr.l 

~ 

• ! J SrJH 

-' f 

f;IRnv 
f !If \.( t 

• .JIHlrl 
J i I-lRnM 
, ! I-(HI 0 · • , ~HN(J 
• : RW·J1 
rl Hsro 
f dWfN 

• 
F If.!VH· 
f ; WRr 

0 
r,fHII~ 

• ! WRfll I , , 

r,RfAA 
• f;R~r'S 

r ,.Rrw 1 
.. ,WS If) 

r ,wn.-o 
f 1 tH I 
r!f(rl~ , r,wro " ' F', RfFf~ 
."W1S 
t ;HIIA 4 
f ! ( f tJ 4 

tit .. , IttHW'w:t 'I::' \rm' t'h tmtWw'vd'Tsm'irW we"a '{, .. """1#,,'" WiW" ¥"> $'''"¢''ytbl,XN';' '-''i'hr''''Mi''''W'' htl ' ''g rifmbtt 'efi'" "1' - Wk. "K" m 5 -r'eei'ilfi'fi',]-"¢"tfW,·tt 

ComputerAutolY.uon ~ 
-

~"'1'7/7" hU 06 t ~{I nSILNK (fi t) MLrIORY f14P 

r fI r 

J.l: I 
1< ! \J 

R: r 
Rio 
R!'V 

,""",'" 
fi!~~Q 

'" II! ~'i) 
rHl1t ",,,,..,5 
~wu 

Ii'IJAR 
II! lE'. 
Vl4 F~' 
II") 1 i. 

~h'l 
~641f) 

Ii'lfi11 
C167h 
Vltl~h 

"'tin!) 
O\UU 
HD1L-4 
VIP!,;, 
~, () A h 

t·n RH 
\Il[fl~1 

HUH' 
,~F 11 
, c-llr 
1 t1~n 
HI7H 
1~').t1 

tIl ~) 
1 I "lr 
, 1 r 7 
1 IF .... 

~~"i' 
,?'~ 
i 411 

I"'" t1l5' 
171f1 
!I\~~ 
tAr.r 
I H , A 
IH5R 

nt .... PI 

. 
III ~ IHl H,4 RI~ 

wjR Hi!> RIA w,r 
Ri tvl R].J HII< R II 

HIR HIS Ral ~llJ 

Hzl 

• . 
fjRRPP f ; H~P~ flIL-121 ~~?7 

f;RArl "''''24 F,wAC2 01.128 
"IRUP~ tH1?,f- F ,fWPF "tt12F 
r i R~·WJ "VI ,i? F,ROP4 0tljJ 
r i n.nc "~]h FJ HIt 1 0111:'7 
f1",AIN "tAir1 1111 A " 0175 
O;lJ':'rl) tBAQ tp PFO 0JR5 
r;RJTf ~4V1r. lpHAlJ ':'45F 
I ;qJN ~5?? set!, 0fl!lr !. r. ~f ~ ",,57f. RTX; ~~FI: 

F~IH ~6JC pf\llsr: 064. . 
Cf HR; t.i6~1 PIJ IflU Vl6~~ 

wf·O't1 06?:i FtFUG~ ~H)?4 

I (lCH I. ~677 GEl'f:H: 0678 
PI! UU : f46A[ PUIf'n: 0691 
7.tt G ~6(.1 1 ~HljG r.6Cl 
F1 TRAO c.,rn F~JRSH 00A4 
FITRI!? ~lJ:>V1 F;IHST (1)?'; 
f i rf R2 ~()6fi F I I J?lJN 007D 
F I ~fI' A~l AI}~r F ~ tWA£) 0DB3 
r,~Rn~ 0f. \ 4 F~flRDU bt.·lI: 
F!RRMt "'E'?'" r~~RMIJ H.?4 
F i RRr J IUU f p<IlSG 0Lf~ 
F ; 1?~S\1 f.1UtR fJRINr 0r21 
r;RINP 1'147 FnWUT 11,140 

FJRWFR Hlli3 f'~IofWFN hJ69 
fIR~F~ ,~ ~7F F ~WHPJ h.l85 
FJAlll$ • t 25 FJWRUS 1 j 2M 
rJR(;IJ~ .. I JR FrwHIJS U43 
F'J ROOt 11 t.tl FiwLUl HOb 

FiwHl[ F fRr AF ,~ IF. 9 JIFf 
F:t-lfHA rJ~FPf II rn 1202 

F I Rf Wf I?@R f"i~FWS j2p!9 
F'IR~SJ 12?9 FJ~FRW I JFft1 
F IRFSW 1440 FriolFSU J451i 
F I R~ I .. t55Q FjRFI 15~l\ 

F J Rf'~ 17o", F ~ Rf- f' t71 J 
r JRF T9 !A61 FIRFAD ~ A6l: 

F;HIIGN F IRf wI:) 1 AM,) JA~8 

FI~I)~.r 'ADR F ,~Uf( T JAf7 
f',fATt Hue F~rAA7 1[351 
f :£NGA lHr;r f H OVH .863 

Figure 3-3. Link Map Example 

3-7 

I? ~ 6 H:7 
Waf R,C; 
IBN IU () 
Rev Haw 

f U~"CS 0~2R 
F ~ Id,CJ "H~ ?f. 
frHUfJl 0d3'" 
FIHAIHI 0~J4 
f- : f IJt 2 "'IuJ8 
TASK! vlJt.7 
DafYIr1~ ~Jrm 

I:nliF rA ,t F 1 
llll~ , r ~ : V!56r 
~TIIS: If,!lf r: 
N£WPI( : ~ 611 I~ 

SVs't: "'b59 
.f>lY(;H.: 0b7~) 

PlJlCH: ~67Q 

SCHfUi "'bA:l 
~()In ~LAC 

F:rHMI. ~~ 00J\ 
F r rrHW IADJn 
FUFlI 0DBri 
FSHRAU ~lOB7 

FCIH IP Vi E 4F 
f ~ Id~IJ~ "'E.A4 
f- H~RS T YlEF !I 
F IIH I P ViF29 
f : Ilftlti JIa~6 
F II( riF ~ '1d7~ 
F H~rH- R 1i1HL 
F: I~DW) , 1 ]'" 
FIHfOL JJ~7 

FIHtUI. J1t1B 
F: IlfOf- I JO 
f ~ IH- SF '2~U 
FYI~"Wf' '20A 
f I ~f- .< N , lEA 
F'lufl'H, 1469 
F II~Hf n 1630 
F:Hff-' 17l? 
F r,wl- OA JABO 
F uWI R IAt4 
F :I~U4V t BIll 
f , [OV" IH5t) 
F IrS(;I, lH6:i 

t' "t""rlH'tlf 



'fK =rW'WZ1nm, ett we 

\" ComputerAutomation ~ r 
J' " ' r -r: 

P ",.r :1 In It 711f,' 11cUB6HiQ IJSILi.jK (H.) Hf MOkY ~. M) 
I . . . 

FiwOMl ~i i 
l;I.fl11 Hi"" • ;~D rr IHhR H368 fll~tML IRbEl -' r~wOAO t,' t;4Dr.T ,H flit f;RC~' 1 11""~ IUbO FtHtAO J~bR 
r ,fW~R ,lHdl r;utsA IlIftH f ~ iWDV 11368 F: I~t() v • tH,A 
t : H DI 0 111#lf\ f ;.lCI 0 .1 B6H F'tH)W tUbH F :1~r.IR "SbR 
f ;loIflO il1()R rJRRrr,> 'IHi" F I "C'l iJ t8b" f lin It IB6R • 

tt1hH r:~r'Ae .,"'Rrt f·R01~ IB,.H 1868 f' II~DOJ.4 11i6R - ' I ' 

• : wrmL !HhH r ~ RDN(, IUhti F I wC'J(~ lij68 !HH' HR .li6R 
i! t ; t Jm~ lHAf r; n~R[ I Bt:S FJh'IJlt:lf> 1(;48 r~XROS 1(.48 

• ;~tIIlT jl.4R r;wIJrN tu," F~H'I;JN J(;48 F :I"'.I(J t 1('4fi 
I ; HI)A~ 1[4U f;RUloiJ ICttR F ItHJL" 4 't;48 F :.H'",h '1,;48 
• ;nl-J~ !t~j) r;XWTS 1[64 FjXOlJf lC6l; F:;'OhW , L 7:i 
l : xHn,P ,l.7A r t Xf.(IF I r. A ·1 F:X:CLS J(;Qb F:XRC5 lLRr 
t;XDli.' I tJ 1 ? f i xum ,UIC Fi)lps[ 1051 F:XSIP 1064 
f ! HI,..r.' !FJr MDt~1 .I f' ~'F ZAX~ J[48 A.XP: 'f4U 

'0 A .. ~: tF.4r l~luJ U,-,I ~J R)C ~ Ir~5 l.l\)(t Il51i 
tVA; ,PH O~)(~ If h t o~,,~ lEb4 M()UP~ : 'E7f ,. . 

JF:A3 Ah!)(~ It QA C~RJ t .. qF C)C1ot ~ f.AX r IF.A7 
t"x1 ;', AA C~A1 If f\F ANA, . ICRJ "'D~tDt~ , IF-t? 
N(?M; irt.R MPYJ II rH D~O~ lfr(J5 ~ "101 ~nt r Ir22 
I RIH t F 1104 . lBI" U3R LLH; .IF 4111 l.tI. r tr46 
"'lll,~I\I : I f ~ I nAu, If !'; 1 UXO, 1F'51 LAlli IF51 
I .~II: 'if ~ t !lAIII ,~r~ , Sl(O, ,r51 "'()A~If: IfM-

'iF flO 
It . 

AI XI" AI A r t 1-1.6 ARA; Ir81 APXI I F ~4 '-' 
• !,W~ t ifAR C~~PI : If AM COVe IfFl X-f.l·iOV: IfF'6 
l(rHI iFrr IJ!NI ?I~ , :> UJC: 2~~8 (N3 fi 2"'119 
API ?~t~ A IC~, . ~hHH~ STATI, 2IJR.: (OIH I: 20(0 
IrH1S.: ,~r() rOt ?IAB F'NI) (IU 2182 rORI 2191\ 

• i~t( ~ ~ : ~I ~p F OF Q I. 21tF £0.' : i,)lD5 SIn: 2JOl\ 
1~ITPt ~tr:r Id'rCHI ?~49 U!IIH[S: 22~1 Sf N' I 225A 
L,,~HJM~ ~~7b Ff 'rCM: :?2R" BUFrbl~ 22C)J WAr" 22Afl 
• rrfl< ~ '~fU Gf TPR ; ??I} !'i SEl"RI 22DO ItlCpr~: 22[9 
\)rlP~1 ?;i)J'"f ora A '(, ~~t:'7 LOtti I 2l~F lHH.t\ 2 2J6f 

I. lJ~PH •. :?16f AfJllRr r ?377 '[~M I , 2378 S'.6R& 2J9? 
I 0 SF;HII<: ~V)1 S!)HX~ ~Jru StiXI~K : 2308 uNDOI "lor 
I 'bl HJ1 . ,]rn stA~I. ~4401 DEI E'f I ~448 lNSRI: 244l. 
i Sf NOt: !:'45, IHUS7 r ?457 
I 

~~gure 3-3. Link Map Example (Con't) 



~?~ _~_~~~.....:~-:~::fo'. t _ 

( o ( o 
..------------'----------- ._-"'._"'","----- ._-"," 

"l 
/ .... 

\Q 
~ 
11 
en. 
w 
I 

W . 
~ .... 
:;:l 
:0-

w ::s: 
I ~ 10 

ttl 
>< 

~ 
I-' 
(D 

...... 
() 
0 ::s -rt . ..... 

PA'''r 4 fAJ~t7116 HU061SQ USzLNK (At) Mf"HOHY MAP 

M(MOWY US6GF.: ~ . 
S(R~ r(H:PAI) I r rf.HAI 9008-"'01£ 
S[HA r(H-PAl) P~O!!R~M &:tAA2':'0~JA 
H. I N ~F ~WRY PROGRAM 00tl2':'2458 
.~!l( ~nnRFS~ - ~6CI 

StR~ T(HPAO IlraA(;f TABI E." 
ADu~ P J ~ 1 4 5 ~ Z 8 9 ~ ~ r p ~ f 
aA~~ r ,·r r r r r r ~ r , r r , , ~ 
~01~ , ~ , r , , •••••••••• 
~0'~ •••••• $ ~ ~ ~s ft ~ ~ ~ ~ 
U~Jw S S ~ ~ S S S S S ~ S , , , • • 

. , • ~ • r • t· ", , • 

~~.~ f , : , , , , , , r r , , , ~ , 
aA~A • I , , • • , • , , • , r • • • , r',r· 1It •• t 

a~6A , • ~ • ~ ~ ~ • • • • • • • • , 
a07A • A A A A A A A A A A A ~ A A • 

'. - " -pwocrssro 1ST ] nAJlCT 
. 

NO rWRnRs 

LEbfND. 
A.AflSOLlJTE II TiRA!. 
6cBYrE RELotATAHLE (IiF~AL 
P=AHS~Lurf P~OGRAM 

k. WORD RELaCA T ARLf. .:1 TFRAL 
S.SRfL PWOGRA,.. 
XaARSOLIITF.: INDEX pninTfR 
~.WOAD REioutATA8Lf INnrv POtNTl~ 
VaeyrE RELoCATARI.F. INnF'X porNTt~ 

-
~l 

I 
I 
! 

,-" 

-" 

!
e 
"" i 
4" ... 
~' 
.,;;: 

« 
~" 



I 

I 

ComputerAutomation ~ ----. 

The created file name is listed first, followed by a list of missing names (undefined 
references), if any. This is followed by a listing of defined references and their 
addresses. 'l'his listing is in order of occurrence, reading from left to right 
across each line. 

Following the list of definitions, the COMMON areas are described with their lengths 
and starting addresses. Blank COMMON is not allocated to a particular memory loca
tion by OS:LNK until input of the "TE" parameter, and so it generally has the highest 
address of all the linked modules. Labeled COMMON, however, is allocated upon its 
first occurr'\~llce when passing through OS:LNK. The OS: LNK memory map concludes with 
a list of address ymges required for scratchpad (literals and input data) and main 
memory usage, a map of scratchpad usage, and the execution address (normally the 
locat.wn of F:MAIN or DEBUG) 

DuriL':J the link process, various error conditions may occur. These errors may be 
grouped into three types of messages: 

o 

2. 

;)iagnostics. Output to the LO device as they are encountered. They indicate 
l.'_,wory usage conflict of various forms, and are usually caused by scratchpad or 
main memory overflow, or an attempt to store data into a scratchpad location 
dlready occupied. These errors do not terminate OS:LNK, but may produce 
erroneous results during program execution. 

Termination errors. Output to the CO and LO devices, indicating an error which 
preventsOS:LNK from completing the link operation. A memory map is printed at 
t:his time, and as: LNK terminates. 

3. 1/0 errors. Output to the CO device, and reflect an error status returned from 
OS following an I/O operation. 

A complete list of OS:LNK error messages may be found in Appendix D; 

o 

we 

-



il 
I,,) 
~! 

, iT¢' 

o 

C) 

"j "tt"' "# pt? t"t"ttti"# 6#"'1"1* 10 "0 bt" itt i ! t d 'j $* 

Section 4 

RUN-TIME 

INTRODUC'I'ION 

Once the FORTRAN program has been successfully compiled and link edited, it is ready 
to be loaded and executed. Prior to this time, however, consideration should be 
given to the I/O operations which will be performed during execution. 

I/O DEVICE ASSIGNMENT 

All input/output operations specified in the FORTRAN source program (READ, WRITE, 
INPUT, OUTPUT, BACKSPACE, REWIND, and END FILE) make use of FORTRAN unit numbers (l 
through 99) to specify the particular device on which the I/O operation is to be 
performed. INPUT and OUTPUT statements do not include specific unit numbers, but 
imply input from logical unit 5 and output to logical unit 6. The other I/O state
ments must include a logical unit number, expressed either as an integer constant or 
a simple integer variable. Prior to execution of the program, any FORTRAN unit 
numbers used in the program must be assigned to specific I/O devices. In addition, 
the Command Output (CO) unit must be assigned to a device (normally the teletype) 
for output of PAUSE, STOP and run-time error messages; also, for. OS execution, a CI 
assigmnent is required to enable the operator to resume a frogram following PAUSE 
suspension. 

Device Assigmnent for Execution under OS 

For execution under OS, device assignment is accomplished by the /ASSIGN command. 
Usage of th,} /ASSIGN command, however, implies in turn that entries exist within the 
as Logical Unit Table (LUT) for the FORTRAN unit numbers used in the FORTRAN source 
program. Thus, although the FORTRAN compiler will accept any logical unit number 
from 1 to 99, the FORTRAN programmer is limited to the unit numbers in the LUT. The 
stand<.u::d as systems distributed by Computer Automation, Inc., contain LUT entries 
for FORTRAN units 1 through 6 only, with the following default assignments: 

Unit 1. Unassigned 
Unit 2 Unassigned 
unit 3 Unassigned 
Unit 4 Unassigned 
Unit 5 Card Reader 
Unit 6 Centronics Line Printer 

To add additional FOR~RAN units to the table, or add default assignments to unassigned 
units, re-assemble the OS ROOT program with the desired changes and re-generate your 
as system; it is also necessary to as add a File Control Block (FCB) entry to the 
FCB tables within the FORTRAN/OS library package, for each additional unit number. 
These procedures are fully described in Section 5, System Generation. 

'L 
1; .,. 

4-1 



I ~ 

t .. it ±n 

The actual W1it assignment is in the standard format, where the logical unit number 
is sp'~cified as a one or two digit number, e.g.: 

/Assign 2=PR 

or 

/ASSIGN 03=DO.FILNAM 

(assign FORTRAN unit 2 to the paper tape 
reader) 

(assign FORTRAN W1it 3 to a file on disk 
unit 0) 

Note.:~hat usage of d bulk storage device requires that the device be previously 
labeled for OS (by using the OS:LBL utility). 

When preparing a FORTRAN program for execution under the Real 'Time Executive, device 
ss nment is made by creation of a unit Assignment Table, which should be assembled o the R'l')\ mainline program. Refer to the RTX option description in the Compiler 

'Jptic,')s sect,ion for a discussion of the unit Assignment Table. 

FORMS CONTROL FOR IJIST DEVICES 

Forms control for printed output to the line printer or teletype is ac~omplished by 
use 01 a carriage control character. This character must occupy the first posi,tion 
of any print line, and is never printed. (ExcE!ption: when using the free-form 
OUTPUT statement, output always begins in column 2 of the printer; thus allowance 
for a carriage control character is not necessary.) 

I'he ciH'riage control characters and their functions are as follows: 

o 

Character 

1 
o 

Any other 

[unction 

Causes page eject (top of form) before printing 
Causes nouble up space before printing 
Causes single up space before printing 

(Note that Overprint capability is not supported.) 

The carriage control capability is useful for printing data ina user-defined format, 
such as report generation. Judicious use of these control characters will enable 
various formatting arrangements of the printer output. (There are 54 lines to a 
print.er page.) Note that the user who does not wish to use carriage control and 
merely wants singlE: spaced output must insure that the print line does not contain a 
"1" or "0" in column 1. This is most easily done by using the OUTPUT statement, or 
by beginning the FORMAT statement with a lHb format. 

I 
I 
I" 

I l __________ ~ __ ~~ ____________ ~ ________ 4~-~2--------------------------------------~ 

"-

-' 



o 

,--,,' 

- ,x','g t we It tInt .. ¥ Itt t pj 1 • r t t'l e t. W'f"j '11_ • l' de n' 'I '$ " • ertthtlt -

POSITIONING CONTROL FOR MAGNETIC DEVICES 

The REWIND, BACKSPACE, and END FILE statoinents are for magnetic devices only and are 
described in the FORTRAN Reference Manual in relation to magnetic tape or cassett(! 
usage. For operation to a disk file, the internal operation is slightly different 
(for example, an end-of-file mark is a normal record with a special character in the 
first word rather than a hardware function as on magnetic tape), however, the user 
may use these functions just as he would for magnetic t.ape or cassette. A BACKSPACE 
statement will cause the disk to reposition itself to the previous record to be re
read or re-written, a REWIND statement will reposition the disk to the start of the 
file, etc. (This is not done by actual physical repositioning, but rather by re
setting the current relative record number internally by the OS File Manager or RTX 
disk handler.) 

PROGRAM LOADING PRIOR TO EXECUTION 

The proceduro used fOL loading a linked FORTRAN program basically depends on whether 
the program is to execute under OS or RTX control. 

Loadipg for OS Execution 

OS is executed under the same OS system used to link the program~ The following 
sequence may be used: 

a. 
b. 
c. 

d. 

Issue a /JOB command to initialize the unit assignments. 
Assign all pertinent FORTRAN unit numbers to the required physical devices. 
Assign the SF (System File) unit to the device containing the linked 
FORTRAN program. 
Issue an /EXECUTE command to load and execute the program. 

, 
r 

, 

-: ", 

, \ 

-



,1,; 

· (r'" , . e" r "# ' ... W trW rtttMs'me 

Loading for RTX Execution 

For execution under RTX, the linked FORTRAN program, may be loaded by one of the 
following loader programs: 

1. LAMBDA linking loader 
2. OS: ILD 
3. BLD bina~y loader 
4. AUTOLOAD 
5. DLD (LSI-3/05 only) 

{i Note tha.t if relative linking was used during the OS :LNK procedure (RL=), certain 
I' ; type Godes may have been output which are not recognized by BLD or AUTOLOAD. IF 

link~d in absolute mode (AB=), any binary loader may be used. 

Refer to the documentation of the desired loader for specific. operating instructions. 

Errors During the Load Procedure 

If a load error occurs during the loading procedure, consult the documentation for o :! applicable loader. A memory overflow error indicates that the linked FORTRAN 
;.roqJ::dm is too l.arge I and may require re-compilation using some form of coding 
optj.lI'jzation. Output of an object code listing during compilation.can·"aid the 
prog L c..mmer in this respect. 

PROGRAM EXECUTION 

Once the linked FORTRAN program has been loaded and execution has begun, various 
conditions can occur to which the user (or the operator) must respond. 

PAUSE Messages 

The PAUSE statement causes the message 

"PAUSE xxxxx" 

to be output to the Console Output (CO) device (which must have been previously 
O:si'3ned) . "xxxxx" represents a decimal number from 0 to 32767, and may assume any 
;(lIeaning the programmer wishes it to have, to the operator (e.g., a certain number 
may indicate that the operator is to load data r.ecords into an input device) •. 

When a PAUSE message occurs during execution under OS, it is automatically followed 
by a "suspended" condition, during which the operator may perform some required 
function. The program may then be resumed by inputting a "/RESUME" command. (The 
!RESUME command must be input through the default assigned CI device, normally the 
teletype keyboard, no matter which device is currently assigned as CI). 

4-4 

--

---



t'" 

.1 

I 
o 

o 

t 'd" t tt'ittt tHrht Itrw.mirittc _ 'f t ht t )', t EM1 t $ t 1 P" tt #'1 t t" e he,. '5 ' t r j j 1'"" t P r:1't "," • t·t ')t"' , 'X 

Run-Time Error Handling 

Diagnostics at run-time can originate in.either the FORTRAN library or the OS system. 
(Under RTX. there are no system error messages.) The FORTRAN diagnostics are output 
to the list device and the console, and have the form: 

'routine name', 'message' ERROR AT :xxxx 

where :xxxx is the location of the call in the user program. In addition, under RTX 
this information will be followed by: 

PRI: ddddd 

where ddddd is the decimal value of the priority assigned to the task that was 
active. This helps in identifying the task. 

The FORTRAN run-time diagnostics are listed in the appendix, with the messages in 
alphabetic order (since the same message can often be produced by several routines). 
Note that occasionally there is no routine name given, e.g. NUMBER OF ARGUMENTS., 
since the name is not known at run time. The "comments" column explains the error 
and indicates whether it causes an abort or whether some recovery is made. 

When running under OS, some error conditions will be detected by the system rather 
than the FORTRAN library. You should be familiar with the OS User's Manual; however, 
the appendix shows the OS diagnostics that are relevant to FORTRAN jobs. In many 
cases, errors in the use of input/output files are detected at the time the file is 
opened. In FORTRAN this happens automatically the first time the file is used. 
Therefore some OS messages will appear only if the error is made on the first use of 
a unit number. For example, if you write on the line printer, then try to read front 
it, you will get a FORTRAN message, whereas if you tried to read from it first you 
would get an OS message. 

Note that OS messages are written on the console device, not on the listing device. 
In addition, some of them cause the program to be suspended, in which case rec0very 
must be made at the console before resuming (for example, by reassigning a unit 
number or readying a device.) If OS returns, instead of suspending, there will 
typically be a FORTRAN error message that follows. The OS message, then, will 
identify the device or unit number, while the FORTRAN message will identify thp 
operation that was being performed (e.g. FORMATTED, BACKSPACE) and the location of 
the call. In addition, some of these will cause the ERR= exit to be taken, if this 
option was specified in the READ or WRITE statement. In the appendix, the second 
column of these messages shows whether OS returns or suspends. The last column 
explains the error. 

Console Interrupt 

Console interrupt is not enabled when executing FORTRAN under RTX. Under OS, however 
console interrupt is enabled at all times, and may be used to pass control back to th 
OS Executive. The FORTRAN program is normally resumable once it has been interrupted 



~ .•. \ .......•.. ,:.' 

i 
" 

1 
~ 
~-

1 n t' tti t' hr! ('t I"'M Ai"'" 'z" t 'f eM M" 1*$ $:'-& ..... trli'Ww'tttUW't±HI: ...... 'jw,.& br' f' '''''''1''111 'mn» fflW!' ... HM'\M'rSief ....... 'M t 

e r'----------------------'-----

o 

Section 5 

SYSTEM GENERATION 

INTRODUCTION 

'1'he ALPHA LSI FORTRAN IV System is delivered as several separate files, from which the 
• user may configure his system to meet .his individual requirements. These files are 

available on various types of media (paper tape, disk cartridges, etc.). The examples 
in this section assume floppy disk. If the user's files are on another medium, he 
should alter the generation procedure in accordance with his requirements. 

GENERATING THE FORTRAN COMPILER 

When delivered, the FORTRAN compiler resides on the following files: 

CompileI Root F:CROT (96510-30) 
Compiler Interface F:CFAC (96510-31) 
Compiler Scan (Complete) F:CSl.'N (96511-30) 
Compiler Scan Overlay 1 F:CSCO (96511-31) 
Compiler' Scan Overlay 2 F:COSI (96511-32) 
Compiler Scan Overlay 3 F:COS2 (96511-33) 
Compiler Allocate Module F:CALL , (96512-30) 
Compiler Gen (Complete) F:CGEN (96513-30) 
r:umpiler Gen Overlay 1 F:CGE:O (96513-31) For LSI-2 Run-time 
Compiler Gen OVerlay 2 F:COGI (96513-32) 
Compiler Gen Overlay 3 F:COG2 (96511-33) 
Compiler Gen (Complete) F:CGE3 (96513-34) 
Compiler Gen Overlay 1 F:CGE4 (96513-35) 
Compiler Gen OVerlay 2 F:COG5 (9,6513-36) 
Compile} Gen Overlay 3 F:COG6 (96513-37) I For LSI-3/05 Run-time 

Compiler Root LSI-3/05 
Overlay F:CRT3 (96510-33 ) 

o The above listed files comprise the several parts of the compiler: 

L '1'he Compiler "Control" program consists of the Compiler Root (F: CROT), and t~he 

Compiler I/O Interface (F:CFAC), which must be linked together by the user 1nto a 
single file, called "FORT: 4". 'rhis is the file that is actually called by the 
operator to begin a compilation. 

2. The Scan phase is provided in two forms, one or the other of which is called by 
FORT:4 depending on the amount of available memory the user's system contains. 

3. 

If more than 16K words of memory, FORT:4 will automatically call in the "complete" 
Scan module (F:CSCN) at Scan time. If the system has only 16K, FORT:4 will 
automatically call in the three, Scan overlays (F:CSCO, F:COSl and F:COS2) as 
needed. 

'1'he Allocate phase is provided in non-overlayed ("complete") format only (F:CALL), 
as it is small enough to fit, with FORT:4, into 16K of memory. 

5-1 



m " MY f ''$ t "&' $ rtf?" t' B Wi H '$1 #* r l' 1 t '1' ".""i .. 'Ii t t 1 1 ttt .. ' 

e·~--------------------

o 

o 

4. 

5. 

The Gen phase for LSI-2 programs is, like Scan, provided in two forms; F:CG.I'.:~ 
(the complete Gen module) is called if more than 16K of memory exists; otherwis~, 
the three Gen overlays (F:CGEO, F:COGI and F:COG2) are called in as needed. 

The Gen phase for LSI-3/05 programs has an exact correspondence to the LSI-2 
Gen, ex~ept that LSI-3/05 versions are used when the T3 option is specified. 
F:CGE3 is called when more than 16K of memory is present; otherwise the overlays 
F:CGE4, F:COG5 and F:COG6 are used. 

6. Besides determining which Gen to use, the T3 option also causes that part 0; the 
Root which contains the LSI-2 instruction skeletons to be overlayed by F:CRT3, 
which is the equivalent list of LSI-3/05 instruction skeletons. 

. , 
, 



rttj'ttt t tt *' th $ ¥t t'.t d,.. h i 'j 'Y' '''it HiMV"' f"¥P .' t ( M"' " "I •• J, '$' _ .witl cit ". 'I tiC'}!!!!" '·N " 'It!!t6Mi*:IM1'!",S"'.'''N' '%!'t:fi'W'tt'ut:!ttifl* 

I' ~~1 
I f Figure 5-1 shows the compiler configuration in memory when more than 16K is present. I 
i, The Scan, Alloea te, and Gen phases share memory by over laying each other, as shown. . 
,,,' 

tj Figure 5-2 shows the compiler configuration when only 16K memory is present. Note 
i that F:CSCO, F:CALL, and F:CGEO all share memory by overlaying each other. In ad-
~I dition, F:CSCO contains within it an area which is shared by F:COSI and F:COS2 in 

overla.y fashion. Likewise, F:CGEO contains F:COGI and F:COG2 within it, which overlay 
each other. 

:0000 

OS 

FORT: 4 

F:CSCN F:CALL F:CGEN or F:CGE3 
(overlay) (overlay) (overlay) 

Working Storage 

Figure 5-1. Compiler configuration when more than 16K memory 

:0000 
OS 

1-0--

FORT: 4 , 

--~ 

F:CSCO F:CGEO or F:CGE4 

o 

F:COSl F:COS2 F:CALL F:COGl F:COG2 
or or 

F:COG5 F:COG6 

-
F:CSCO F:CGEO 

or 
F:CGE4 

16K 
Working Storage 

Figure 5-2. Compiler Configuration with 16K memory 

5-2 



" ... , 
r 

WI.t t Mttt#2tf1 'tnttt" '"h',H"tt¥i "G {" "t" 'tt tt tm.!.,.". r t. ,. M' 'f,? ! '$ f M 

e r.-' -----------

o 

o 

'!'he generation procedure consists of two main steps: 

STEP 1: 

STEP 2: 

Copy the F:CROT and F:CFAC modules to the system file device using the 
Os:cpy utility, then link them together into FORT:4 using the OS:LNK utility: 

1. /JOB 
2. lEX OS :Cpy 
3 • CB , FO. F .: CROT, DO. F : CROT 
4. CB,FO.F:CFAC,DO.F:CFAC,TE 
5. /JOB 
6. /AS BI=DO.F:CROT,LI=DO.F:CFAC,BO=DO.FORT:4 
7. /EXOS:LNK,LL,TE . 

Copy each of the remaining compiler modules to the system device, using the 
Os:cpy utility: 

1. /JOB 
2. /EX Os:cpy 
3. CB,FO.F:CRT3,DO,F:CRT3 
4. CB,FO.F:CSCNjDO,F:CSCN 
5. CB,FO.F~CSCO,DO.F:CSCO 

6. CB,FO.F:COSl,DO.F:COSl 
7. CB,FO.F:COS2,DO.F:COS2 
8. CB,FO.F:CALL,DO.F:CALL 
9. CB,FO.F:CGEN,DO.F:CGEN 
10. CB,FO.F:CGEO,DO.F:CGEO 
11. CB,FO.F:COGl,DO.F:COGl 
12. CB,FO,F:COG2,DO.F:COG2 
13. CB,FO.F:CGE3,DO.F:CGE3 
14. CB,FO.F:CGE4,DO.F:CGE4 
15. CB,FO.F:COG5,DO.F:COG5 
16. CB,FO.F:COG6,DO.F:COG6 

GENERA'I'ING THE FORTRAN LIBRARY FILE 

The delivered files include several routines which must be merged by the user (usinq 
; the OS :CPY l.ltility) onto the system file device as onE' of two library files. Since a 

FORTRAN program may be compiled to run under either OS or RTX, and since these opera
dng systems require different library routines, a single library file may not be 
created which will serve the purposes of both the OS and the RTX system. This means 
that three distinct library files must be generated, one for OS execution and two for 
RTX execution (LSI-2 and LSI-3/0S versions). The following file names have been 
established to differentiate the libraries: 

F:QSLB 
F':RXLB 
F3RXLB 

(for execution under OS) 
(for LSI-2 execution undel' RTX) 
(for LSI-3/0S execution under RTX) 

The following sections describe the generation procedures for these files: 

OS Run-time Library Generation (F:OSLB) 

L 
-..:- 2. 

3. 

FORTRAN LSI-2 Basic External Functions Library Module (F:EXTR) (96514-30) 
FORTRAN LSI-2 Math and I/O Routines Library Module (F:MATH) (96514-31) 
FORTRAN/OS I/O Interface Module (F:OSIO) (96515-30) 



'.,,"Mdd -, tf:!tl'itbdw't ! 
" '( ""1 

The modules must be nlerged into one system device file, named F:OSLB. The order shown 
above reflects the order in which the modules must reside in the library file, to 
enahle the OS: LNK 1j til i ty to link edit a FORTRAN procjram in a single pass. 

The following procedure will merge these modules as required for correct linking: 

1. (Operator mounts the FORTRAN library modules diskette on unit FO) 
2. /JOB 
3. /EX OS:CPY 
4. MB, FO.F:EXTR,DO.F:OSLB 
5. (O$:CPY merges the Basic External module and outputs the "READY NEXT FILE" 

~1ESSAGE) • 

6. 
7. 

8. 
9. 

10. 

0' 

FO.F:MATH 
(Os:cPY merges the Math and I/O Routines module and outputs the "READY NEXT FILE" 
message) 
FO. P :OSIO 
(OS;CPY merges the FORTRAN/OS I/O Interface module, then outputs the "READY NEXT 
FILE" message) 

,TE 

'<rx Run·-time Library Generation (F: RXLB) 

The followi.ng five modules comprise the LS1-2 RTX Run-time Library: 

, 
.1.. 

2. 
3. 
4. 

IN)RTRAN LSI-2 Basic External Functions Library Module (F:EXTR) (96514-30) 
[31-2 R'I'X/IOX ~;egment 1 module* (93300-30) 
FORTRAN LSI-2 Math and I/O Routines Library module (F:MATH) (96514-31) 
FORTRAN/R'rx LS1-2 I/O Interface module (F:RXIO) (96516-30) 
LSI-2 RTX/IOX SE~gment 2 module* (93300-31) 

*included in t.he RTX Software Package 

These modules must be merged into one system device file, named F:RXLB. The order 
shown above reflects the order in which the modules must reside in the library file, 
to en;"ble the OS:I,NK utili.ty to link edit a FORTRAN program in a single pass. 

The tollowing procedure will merge these modules .as required for correct linking: 

1. o 
4. 
5. 

6. 

7. 
8. 

9. 
10. 

11. 
12. 

i, ')perator mounts the FORTRAN Library Modules diskette on unit FO) 
/JOB 

:;:X OS:CPY 
(,m , PO • F : EXTR, DO • F : RXLB 
(OS:Cpy merges the Basic External Functions routine, then outputs the "READY NEXT 
FILE" message) 
(Operator mounts the LSI-2 RTX/IOX Segment 1 module tape into the paper tape 
reader) 
PR 
(as:cPY merges the RTX/IOX Segment 1 module, then outputs the "READY NEXT FILE" 
message) 
FO.F:MATH 
{OS:CPY merges the FORTRAN Math and I/O routi!1es module, then outputs the "READY 

NEXT FILE" message) 
FO.F: RXIO 
(OS:Cpy merges the FORTRAN/RTX I/O Interface module, then outputs the uREADY NEXT 
FILE" message) 

1)", ('OFerZ\"'::-t 'l'lCl.lri':.,; the ":.:::: .. z ~'!X/IQX ::~{:men+: .: :ucd.l.~"'..~ ':at:e L."lt.c ':..'le ;:a:;:.::r tat:e 

"t its ?k 'MteU '_ 

---

.-

_ ................. _-_. -------------



" 'ff " 'M@ e wtt x' *t 1M 'ttl'**" 'I' ''6 

o 

o 

14. PR 
15. (OS:Cpy merges the RTX/IOX Segment 2 module, then outputs the "READY NEXT FILE" 

message) 

16. MT,TE 

LSI-3/0S RTX Run-time Library Generation (F3RXLB) 

The following six modules comprise the LSI-3/0S RTX Run-time library: 

1. FORTRAN LSI-3/0S Basic External r'unctions library module (F3EXTR) (96514-32,) 
2. LSI-3/05 RTX/IOX Segment 1 module* (93301-30) 
3. FORTRAN LSI-3/OS Math and I/O Routines library module (F3MATH) (96514-33) 
4. FORTRAN/RTX LSI-3/0S 1/0 Interface module (F3RXIO) (96516-31) 
5. FORTRAN LSI-2 to LSI-3/0S Instruction Emulator and Software Console module 

(F3EMUL) (96516-32) 
6. LSI-3/0S RTX/IOX Segment 2 module* (93301-31) 

*included in the RTX Software Package 

These modules must be merged into one system device file, named F3RXLB. The order 
shown above reflects the order in which the modules must reside in the library file, 
to enable OS :LNK to link edit a FORTRAN program in a single pass,. 

The following procedure will merge these modules as requir~d for correct linking: 

l. 
2. 
3. 

(Operator mounts the FORTRAN library modules diskette on unit FO) 
IJOB 
lEX OS;CPY 

4. MB,FO.F3EXTR,DO.F3RXLB 
5. (Op:CPY merges the Basic E\xternal Functions, then outputs "READY NEXT FILE" 

\ 

message) 
6. (Operator mounts the LSI-3/0S RTX/IOX Segment 1 module tape into the paper ti.>.pe 

reader) 
7. PR 
8. (OS:CP¥ merges RTX Segment 1, then outputs "READY NEXT FILE" message) 
9. F'O.F3MA'l'H 
10. (OS:CP¥ merges the FORTRAN Math and 1/0 Routines, then outputs "READY NEXT FILE" 

message) 
11. FO .F3RXIO 
12. (OS:CPY merges the FORTRAN/RTX 1/0 Interface module, then outputs "READY NEXT 

FILE" message) 
13 . FO. F3EMUL 
14. (OS:CPY nlerges the FORTRAN Emulator and Software Console Routine module, then 

outputs "READY NEXT FILE" message) 
15. (operator mounts the LSI-3/05 RTX/IOX Segment 2 module tape into the paper tape 

reader) 
16. PR 
17. (OS:CPY merges RTX Segment 2, then outputs "READY NEXT FILE" message) 
18. MT,TE 

ADDING OR REPLACING LIBRARY PROGRAMS 

The ordering of the routines on the FORTRAN library files F:OSLB" F:RXLB and F3RXLB is 
an important consideration, for two reasons: 

5-5 



! "7 if t 1N 1 jt biM "'t WH" "S " My , Hft# ,",! j' U "bst"" 1'10" t * * ""( e" ."1 Ki' qt" t 

t 
f: 1. The standard erdering described in the Library Generatien sectien is such that 

OS:LNK can link edit the FORTRAN pregram<lith the library in a single pass. , 
~'. 

I'· In the RTX libraries the medules which are leaded between RTX/IOX Segments I and 
2 are those which are otherwise vulnerable to. re-entrance. RTX centains legic' 
which as::asts in preventing re-entrance to. the reutines within its boundaries by 
a subsequent ca~l b.efere the first call has cempleted. 

{", 

{; 

;.:! 'rhus dltf;Y:"ation of "a library file to add or replace a program must take these ordering 
,"'acters into. acceunt. Basically, the user must be sure that the first reference to. a 
Ii reutine o.ccurs prier to. that reutine's being passed threugh the link editer, so. as to. 
" insure its being leaded. 

,ath t.hese censideratiens in mind, the user has varieus metheds at his disposal in 
; ':11tering the library, as described belew • 

. ' i'e replace a library medule wi~ anether (as in an update) the user sheuld fellew the 
!..ibrary Generation descri.ptien, substituting the new medule for the eld ene • 

." add il neW reutirle to. the libr'ary, er to. replace a single reutine en the library 

.O.~~h was o!"i.ginally catalegued frem a paper tape medule centaining ether reutines 
";vlu,ch : hE' user wishes to. retilin), the user may regenerate the library file by fe1-
i LOl4inq thf: de~~cripU,<m in the Library Generatien section, and merging in the new 
1 rout.inc at the appro.priate place, bearing in mind the erdering restrictions mentiened 
; ~beve. If replacing a reutine ef the same name which already exists en a paper tape 

~ 

, medule, it is not necessary fer the user t.e delete the eld reutine; but simply to. 
,merge in the ne"l reutine immediately preceding the tape medule centaining the eld 
: :ceutine. Altyxnatively, if a new reutine is referenced by the cempiledFORTRAN pregram 
{rather than from witLin seme reutine in the library file, the reutine need net be 

.included during library generatien at all, but simply referenced as the LI file. during 
OS:LNK time. Once the new proyram has been linked, the LI file may be re-assigned to. 

. t.he FORTRAN library before continuing with OS:LNK. 

fADDING FORTRAN LOGICAL UNIT NUMBERS TO OS 
I 
J 

! The standard OS sysb."m contains within its Logical Unit Table (LUT) references to. 
iFORTRAF unit.s 1 through 6. The user may add additienal entries fer any unit number 
.',·cen 7 and 99, and set default assignments fer any unit number to. a specific I' 

... WSh.,cll device (as is currently dene fer units 5 and 6, which are default-assigned to. ' 

I 

ehe card reader and line printer, respectively). Adding FORTRAN unit numbers requires 
alteratien ef two. aruas: the LUT table within as Reet, and the os File Centrel Bleck 
(FCB) tables within the as I/O Interface (F:OSIO) in the os Library File (F:OSLB). 

Altering the LUT in as ROOT 

'Each delivered OS system includes an os Reot listing (96530-10), and its correspending 
!seurce pro,<jram paper t.ape. Changes to. OS Roet are mest easilyaccemplished by additien, 
ldeletion, or rcplacemp.nt of seurce lines using the OS:SFE utility. 
! . . . 
!The logical unit table begins at the label "LUT:" in OS ROOT. Each entry in the table 
; is six words lo"ng, as follows: 

I 

I 

I 5-6 " i __ ... ______ ~ ___ ---------ii ,----. 

"t ""itt".". 

-' 



~i I 

I 

Word 1 

Word 2 
Word 3 

Word 4-6 

&',. , g- '-. " t 'WI"- tW" 'j' t 

Logical Unit name, in ASCII, 2 characters (word 1 may be given any 
label, as it is not referenced and is only for the convenience of the 
reader) • 
Address of current physical unit (if using default assignment). 
Address of initial (default) physical unit (if using default assign
ment). 
Used to hold a file name - should be set to zero at assembly time. 

In the standard set.up, FORTRAN units 1 through 6 comprise the last six entries ill the 
LUT. It is after these that additional units should be added. 

Example: to add a unit (unassigned) to the LUT, the entry should be coded: 

DATA '07',0,0 
RES 3,0 

The first data word, if the unit number is between I and 9, must be of the form '07', 
not '7' or ~7: the leading zero must be supplied. 

t' • 

I Example: to add unit 13 to the LUT, default-assigned to the high speed paper tal,e 
reader: 

i 

I 
I 

I 
I 

DATA '13',PR,PR 
RES 3,0 

No te that the second and third words must both contain addresses. The addresses used 
the labels which appear in the pnysical unit table. This table is 
behind the logical unit table in OS Root, and begins at the label 

must be one of 
found directly 
"PUT:". 

Once the OS Root source file has been edited with the desired changes, it may. be 
assembled with OS:ASM, and the object output used to re-generate the OS system, 
fbllowing the description in the OS User's Manual. 

as File Control Block (FCB) Tables 

The standard OS File Control Block (FeB) Tables, which are part of the OS I/O Interface 
Module (F:OSIO), contains six File Control Blocks (for FORTRAN units 1 through 6) 
which are required by the OS I/O drivers during execution of a FORTRAN program under 
OS control. (Execution under RTX control does not require FCB tables and so F:RXLB 
and F3RXLB need not be altered when adding unit numbers.) 

The'listing of the standard FCB tables is reproduced below (see Figure 5-3). Each FCB 
is referenced by the label F:RUnn, where nn is the FORTRAN unit number. 

NOTE 

The FCB tables for FORTRAN units 1-5 are separate programs, 
each terminated with an END statement, and reside prior to 
the Interface itself in the FORTRAN/OS I/O Interface Module 
(F:OSIO). FORTRAN unit ~ is used to outp.1trun-time error 
messages, since it is the default OUTPUT device. Therefore, 
it is assembled within the interface itself, to insure its 
being linked unconditionally. 

5-7 



t#t'lMfY-" '" ttl "In'!" tI' t! )'If ¥ '., 'f .. '11.. rt t ,tt'Mshftg n 
Itt t "& W . t· e H' m ! q 1 . W ,. tV ,,-n 1 '7 r t 'W' U . , t" t' 1i .i2 J '$ t 

COMPUTER AUTOMATION,' INC. f3]1 

When the compiler encounters a reference to a unit number (e. g •• an I/O statement such 
as "WRITE (3,25) ") , it generates an external reference to F: RU03 and causes the corre
sponding FCB to be linked. 

In addition to the FCB's themselves. the FCB tables include three short programs. called 
F: RUNN, F: RUIN, and F: RUOT. Each is described below: 

F: RUNN Program 

If, during a FORTRAN compilation, the compiler encounters a statement of the form 

WRITE (JUNIT, 25) 

where ,JUNIT is an integer variable, the specific unit number is indeterminate. and the 
compiler does not l{now which FCB to reference. It therefore creates an external reference 

. to F' RUNN. which is merely a list of references to all FCB's. Thus linking of the F: RUNN 
Olutine causes loading of all FeB's. . 

, 

F: RUIN and F: RUOT Programs 

A FORTRAN INPUT ~t.Rtement does not reference auy unit. Thus the compiler wili reference' 
F: RUIN, which in.turn references F: RU05, the FCB for FORTRAN unit 5. Similarly, a ' 
FORTRAN OUTPUT statement causes the compiler to generate an external reference to 
F: RUOT, which in turn refm'ences F: RU06. the FCB for FORTRAN unit 6. (In addition, 
the FORTRAN Run-time Error output routine outputs to unit 6. For this reason, unit 6 
should always be assigned to the list device.) 

FeB Format 

: : Qach FCB is a block of 21 words in length: 
i ; 

.. , 

1: ' 
t.·.l

i 
t 

I 

Word 1 -

Word 2 -

Word 3 -

A "CHAN" directive, which allows the I/O Interface to search through 
each linked FCB and compare Word 3 against the requested unit number. 
Word 1 must be labeled F: RUxx. where xx is the unit number. (Units 
1 through 9 must be labelled F: RU01 - F: RU09.) The chain operand must 
be F: RFCB. 

must contain zero. 

must contain the logical unit number, in ASCII, which matches the last 
two characters of Word l's label. 

Words 4-21 -must contain zero, 

5-8 

._. 



• r M'rt "titre 'nd'#" It .'W'f, 1".H"'i"et¢,W rele1' tct it:¢tkt i . t' i "4tH* tt" 't Itt "t 1 t ". 1 t ,. ttt j ,.. $ • t ,e
1 

i 
~ : 
SI 

I 
'I ~ ; 
J:I 

II 
i'l 
~, I 

~i 

o 

I 
I 

-I 

COMPUTER AUTOMATION. INC. f3]1 
Adding FCBs to the Tables ' 

Adding one or more FCB's to the OS Library. requires the following: 

1. The F: RUNN table, which is referenced when a variable is used for a FORTRAN unit 
number, must be reassembled to include a reference to each new unit. Refer to the 
sample listing below, of the F: RUNN table, each' entry of which is a LOAD instruction 
for the individual FCB table to be loaded. 

2 . A 21-word FCB table must be assembled for each new unit number to be added, ~s de
scribed above. 

Once the new F: RUNN module and new FCB(s) have been assembled, re-generate the OS 
Library (F: OSLB) as described previously, merging the files as follows: 

FORTRAN Basic External Functions 
FORTRAN Math and I/O Routines 
New F: RUNN Module 
New FCB tables 
FORTRAN lOS I/O Interface 

(F: EXTR) 
(F: MATH) 

(F: OSlO) 

5-9 

I 
" ~. 

j t 



~i 
II 

t¥ b be 1 ** hYOW ttrtteW1t1etHst't t r .s* at . 1% 'n'triteS t eN tt rtt ft .. at" t W'b 'e W M 't'j It mtts', .. 

~.:)~:)O:1 ~.J~I"··2(',/;''''4 1.0: 48: 46 CALLER TO FORTRAN ..... OS FCS"S :1-6 

LUC INS'- ADDR LHBEL MNEf'1 OPERAND . COr'1MENT 
:+: CF:RUNN) 
*COP'T'RIGHT :l9?4 COMPUTER AUTOMATION INC 
:+: 
:+:THIS SEGMENT IS REFERENCED BY THE FORTRAN 
:f:e ONP I LE R lo.lHEN IT ENCOUNTERS A VARIABLE UNIT *E. (1. I "lo.lRITE CN)" 

I::.lt;10kl NAN F:RUNN 
LOAD F:RU0:1 CALL UNIT :1 FCB 
LOflD F: F::U02 CALL UNIT 2 FeB 
LOAD F: f~Ua3 CALL UNIT 3 FCB 
LOAD F:F::U04 CALL UNIT 4 FCB 
LOAD F:RUa5 CALI_ UNIT 5 FCB 
LOAD F: F::Ua6 CALL UNIT 6 FCB 

:+: 

F: F::UNN EN!) 

!:AGl:. ~)~':I~'H 109 ..... 27 .... 74 :10: 48: 46 CALLER TO FORTRAN ..... OS INPUT FCB 

: .. 1 t·U:. LOC I NST ADD/,<: LABEL t'1NEt-1 OPEF::AND COMf'>1ENT 
~'l::.Ub :+: (F: F~UIN) 
'o~~ :+:COPYRIGHT.:1974 COMPUTER AUTOMATION INC 
i02:~:1 ·t: 

·:h.:J2'::; 
J02';'-

*THlS SEGNENT IS REFERENCED BY THE FORTRAN 
:+:CONPILER WHEN IT ENCOUNTERS AN "INPUT" 
*SOURCE STATEMENT. (STANDARD INPUT UNIT IS 5). 

NFil'l F: F.:U n~ 
LOAD F:RUa5 

F: ~dJIN END 

CALL INPUT UNIT FeB 
CALL UNIT 5 FCB 

Figure 5-3. Sample FeB Tables 

5-10 

NUMBER 

-' 

-. 



11 
.fi 
t:j 
#,1 

~I 

rtltttH''''S t'n W'S'tl"'j' Itf"'Jf"· Ii '(#i)" , . ¥M""\''N'bint'''i'''ft '¢" f ( h 

!--'HOt. ~j~'='l. t19,····27.·····?4 :1121: 4E:: 46 CALLEr;;: TO FORTRAN ..... OS OUTPUT FeB 

LINE LOC 11,61' ADDR LABEL '·tNEI'1 OPERAND COMt1ENT 
80~~ *' (F:RUOT) 
~J~.:l3:tj *'COPYfdGHT 1974 COl'1PUTER AUTOMATION INC 
0031 *' 
~:1~.:.1j:2 *,TH 15 SEGNENl I S REFERENCED BY THE FORTRAN 
~:1~.:.133 *CONFILER t·~HEN IT ENCOUNTERS· AN "OUTPUT" 
(103:4 *SOURCE STATEt1ENT. (STANDARD OUTPUT UNIT IS 6). 
O~.:.i3:~:1 

I::.'!';:C6 
~jtu.·? 

dI!.C:;:: 

Oe01d *' 

F:RUOT 

NAI"'I F:RUOT 
LOAD F:RU06 
END 

CALL OUTPUT UNIT FCB 
CALL UNIT 6 FCB 

i~'P'GE. eO~31 09",'27 .... '7'4 :10 : 48 : 46 FORTRAN.,··OS FCB TABLES 

LINE:. LOC I NST ADDR LABEL MNEt1 OPERAND COfo1MENT 
1:::I~~141::.i 

(H;;I41 
,j12l42 
01214::::: 
1-:.1044 
kK145 
':Hj4t:; 
!.:.1fJ4'(' 
~.i~N:::: 

IKI4::" 
'11:::5121 

1!.10{;,i€1 

kluH~3 

• .:.1651 ee~3J.J 

"Hj5;;;:' t;;:11::.1I!H (fOOa 
,·) .. :.:15::;; ~ja02 bOS1 
~:i054 t;l(t~.:.G 0C1f:1I3 
'1I::'1!55 

• 1. ~ 

* (F:RU0~ - F:RU06) 
*'COPYRIGHT 1974 COMPUTER AUTOMATION INC 

*' THIS PROGRAt1 CONTAINS SEVERAL 2:1-WORD 
*,TABLES TO BE USED BIr' THE FORTRAN .... ·OS RUNT I ME 
*' I NTERFACE FOR FILE CONTRIJL BLOCKS. 

NAM F:RU01. UNIT:1 
REL ~'3 

*' UNIT :1 FeB 

* F:Rue1 CHAN F:RFCB 
DATA 121 
DATA .' ~J1 .. ' 
RES 1:3.,121 
END 

CHAIN NODE 
ECB 
LUN 

Figure 5-3. Sample FCB Tables (Cont'd) 

5-11 

li,?, _______________ • __ _ 

'b'r .. " 



'w t .,,. rtt't '# 1'('$"'*1'U WI, 1" »t t t tt11t z !tIM f"H'H' ". * 'ttMMlM t'w!:!##ttt Martrt' 

Jii, 'I 
I 

I 
Ji "(1 • .21:. 

I .. ,: 'NE 

):156 
LOt INS r Ai)(:tF 

" 

~\,', '.) I 

Ofj()(1 

IdO~.::I~J 

r:~ I ::)~"':: 

n ,~59 
,',! 

·b~.::I 

;61 ,,:h~H.:.1'J 

16;';: uU(11 O~.:.1~.:J(J 

i6:~; ~:HD02 bOB2 
,:::;4 m~HJ3 OH0(i 

o 

lNE L'jC INST 
-:.1:,:- kJ~.::H.:.10 

!,jE.~? II,'UJO 
,"; 1=-:::: 
'169 
!?0 

,- .1~:'''1. ulJ00 
,"::1., 

," .:.. t"JUl u(,U~3 

I" .. ::. ~':I'Jk1;;;: 8~;"tB3: 

1~:''4 t, .. j~j3; ~3~j0e 

::'5 

0 EkFO:OR:::· 

AD(),,: 

Hl:48:46 

LABEL, t-lNEt1 OPERflND 
Nf1N F : F.:U02 
F.:E:.L_ 0 

* UNIl 2 FeB 
It: 

~'RUU2 CHAN F:RFCB 
(:OflTA ~j 

LABEL 

of 

:+< 

.+: 
F : F~Ul:3l 

DATA "lj2'" 

F.:E:3 :1:::: .• 0 
EN(:O 

1'1NEt-l OPERAND 
Nflf'l F f~:U(J:3 

REL 0 

UNIT 3: FCB 

CHAN F :RFCB 
DATA ~j 

DATA ~)3 .-

F::E5 1.:::, (;.1 

END 

CONI'1ENT 
UNIT:2 

CHAIN NO(:OE 
Eca 
LUN 

COMI"IENT 
UNIT :3 

CHAIN NODE 
ECB 
LUN 

Figure 5-3. Sample FCB Tables (Cont'd) 

5-12 

, ;'" '( , 



,j" 

-

0 

P"1 (f f \ t"t r t 1tt '1'" H 

;-'HGE e~jl;:H 09/2('/('4 :1.0:4:3:46 

L I Ni:. LOC HJ:::;l fI [;1 OR LABEL I'1NEN 
00"{'6 '2t~jOU NAN 
I;'IU;'-;:' O~j0~;' F.:EL 
t:Jf'".;'!:: *' 
(:lIj .... 9 *' UNIT 
(.:1i:;18('I *' 
~~'38:1. (tI::Hj'3 F: F.:U04 CHAN 
!;1I:1:3 .;~ (I~jl:::t:1. ~jU~j0 [;IATA 
I;''ifl::::::;j: UH~.:.i;;,:: r.::~:!B4 DATA 
I "j::":4 01210J 'j~:)O(1 RES 
~:1e8~:C, END 

PAGE 00121:1. 09/27/74 :1.121:48:46 

LINE louC IN:~;T A[)DR LABEL NNEN 
""1i~::ft:~ (100U NAt'1 
~.:.H:;J8? "'100''::' REL 
"~j ()::; :::! :+: 
0089 * UNIT 
IH:l90 * ne~:H m.:.100 F:RU0S CHAN 
tHJ9~:' f.H.:.'f~J:1. 000'.:.'1 DATA 
t.hJ9..;;. kltH;J2 B~jB~j [)ATfI 
"J;::t94 Uld1d3 O(lIdO F.:ES 
(H?t~5 END 

~;'U(l,,=) ERROF.:::, 

.' 

"t" '""' 

OPERANt) 
F.RUIZt4 
(I 

4 FCB 

F: r<:FCB 
('t 

"04'" 
:18 .. €I 

OPERAND 
~;. : RU05 
(1 

5 FeB 

F:RFCB 
~2I 

.o'~3~i··· 

:1.8. (I 

• ¢ .'" t &t 

COMt-1ENT 
UNIT 4 

CHAIN NODE 
Eca 
LUN 

, 
'. 

COMMENT 
UNJ:T 5 

CHAIN NODE 
EC8 
LUN 

Figure 5-3. Sample FeB Tables (Cont'd) 

5-13 

!" ft it it! it'lt" hj ;< eer I • r" It 

il .. ;:,. -----------------



leur> 'Y Itt' 1 . l' . n tt . t ttl ¢' t ,1 jo ,I • "11 b 't .. t 

ADDING A DISK DIB TO THE RTX LIBRARY FILE 

The fcllowing discussion app1. L.es to the user who wishes to create his own RTX disk (or 
floppy disk) DIB (s) (Device Information Blocks) and to specify his own disk file 
boundad.es. 

The standard· (Non-FOR.TRAN) disk DIB described in the RTX User's Manual differs somewhat 
Erom a di!:.k DIB which is' to be used in FORTRAN. Specifically ,there exist within RTX 
two disk .r/O handler routines, one for FORTRAN usage, and one for non-FORTRAN usage. ' 
The non-FORTRAN handler has no provision for writing or reading an end-of-file mark, 
and it al~'o n;quires the user to maintain the current record number within the user IS 

lOB. Since thE~ FORTRAN user has no access to the lOB (all RTX lOB I S are built and 
,maintained within the I/O Interface module), a special disk handler for FORTRAN exists 

within RTX which allows for these differ;ences. 

Becawc;c the FOR,!'RAN disk handler differs from the standard RTX disk handler, two 
:ldditionaJ considerations must be made by the FORTRAN user when creating a disk DIB: 

The E'rx Manual describes the disk DIB as a IS-word table. The FORTRAN disk 
".dndlel in RTX requires an additional word (16 words in all) which is used to 

ldthe current record number in the disk file. This word should contain a 
bindry zero as its initial value. 

~rhe FOR'rFAN Disk DIB name, which is referenced in the Unit Assignment Table must 
l)'~ of the form "D:DK.Fx" (or "D:FDFx" if floppy disk), where x may be any alpha
numeric "character. This format notifies the RTX disk handler that the DIB refers 
U; a .FORTRAN disk file. 

r'igure5-4 illustrates the proper format for a disk DIB for FORTRAN. The user should 
i assembl.€ one of these DIB's for each file he wishes to create on the disk. If more 

than one, each DIB should terminate with an assembler END directive, so that it may be 
linked to the FORTRAN program in library mode. Once the DIB has been created, the RTX 
vORTRAN Library file may be re-generated, following the procedure described in this 
sect..i.C),l, with the new DIB (s) inserted in front ,of the RTX/IOX Segment 1 module, which 
is the segment containing the standard DIBs. 

Altf't I ltively, the RTX Library does not need to be permanently changed. The user may 
nsto:ici crea.te the desired DIB (s), and include the module into the OS:LNK procedure 

'8:":1 th(~e~~~r:~~e~i~~.linking the RTX mainline and tasks, then the new DIB module, 

i 2igure 5-4 is a listing of one of the standard FORTRAN disk DIB' s which currently 
exist in RTX/IOX: 

5-14 



.;', 
'~-'! , 
,I' 

~.ii 

'-

'M tttMt 'C 'SHer tWHtts*':WCttt""'W/'l#W'Ul .". cUP'ttrn ')' Hri6'% ., ,.) _r' ·•· .. z·· '1"' . f tt" .. '±r \. ("itt , j 

~-----------------------------------.----- COMPUTER AUTOMATION.IHe. t3.S 
.I~ ... r vji'Vll ,19/?tl74 k:J8:30:1~ 94f)"~-.lOl I U X T ~ B L E S 

LJ Nt;: 
~lu,) 

!.:JJ~!l 
~3-6 ., 
~n(j8' 

k.ll!J!~ 

iJ -'7 ~ 
U17\ 

~11? 

U1C 

~HhJl~ 
~ , 

dihH 
~fhU 

.,JL~:<I 2 
J,h13 
,;.hHH 
.J~II.i') 

~'H'~ 
J~U7 
'<l'hJ~ 

JC'I~,q 

.J I~ ~I" 
J ,'t)~ 
",r1~C 

Jr~J;) 

.n.lr:: 
J0it:1r 

.J : .J K f f - f' I) Rl RAN r) 1 SKu IS 

114 S-j .\nDR 

l:i.1'''..1 

:J ,j (' .1 

~Jvhi 
~4 ~ ~_I 

1 ~J ');) 

C4C~ 
r 1)91 
(1 i1',JI ~, 

.1 th' A 
II! 1/hl 
Ii")! -J 
~ :).1~' 
'1l !.~ i:! 
1 'l \Il.1 
, 1C-] 
i'JJVI.d 

LAofL 
• • 

U IUKf 1 

~NEM OPlPAND rO~MENT 
~J Sf~rLS ~lSK, REMOVABLf PLArTlR 
,. fl.l~J&jEkS 0-1g9 
~:AM UzuKfl 
L<fR l.:uKf 
[IJIJ ~ 

rH~I~ X:: 
Dt..rA l.:OKt,Id,IO,:J50u,'D,,· 

IJ 173 Et.!} 

Figure 5-4. Sample FORTRAN Disk DIB 

USEk-CREATED SUBPROGRAMS 

The user who wishes to write his own subprograms in FORTRAN Assembly language 
and CALL them from his main program should folloW the calling and receiving sequences 
shown below. as this is the object code generated by' a CALL statement. 

e For execution under OS (RTX option not used) • 

CALL MYSUB (ARG1 ,ARG2 ... ) 

will generate the following object code: 

JST 
DATA 
DATA 
DATA 

*BP (MYSUB) 

etc. 

n (where n is the number of arguments) 
ARGl 
ARG2 

For execution under RTX (RTX option used), 

CALL MYSllB (ARGl,ARG2 ... ) will generate the following object code: 

5-15 

wht"ne 



: i 

1\ ... : i .. 
I : 
I . 
I I 

$dr" Hltt . 1¢1ttttrt tttt'±rtM"'# Ii WrtbtMth'jj"'¥ tv sJtt· 
t t * q' ' .. H HUH . 'r M' ' ~r t "I 

COMPUTER AUTOMATION. INC: f3!:l 
JST *BP (SUBR: ) 
DATA MYSUB 
DATAn 
DATA ARGI 
UATA ARG2 

(where n is the number of arguments) 

The SURR: routine prevents re-entrance for RTX usage; the user's subprogram. to 
terminate the re-entrance-protectingeffect of SUBR: • must include a call to SUBX: • as 
follows: .. 

JST SUBX: 
MYSUB ENT 

• 
• 
• 

JMP MYSUB-l 

e~nstf'ad of RTN MYSUB. 

(on return from the routine) 

NOTE 

The same assembly language subprogram may be used under 

.'. 

both as and RTX monitors, if it is set up using the SUBX:call 
show n above. The as library contains a "dummy" SUBX: routine 
(within F: OSlO) to handle this situation. 

Accessing Argumen!~ 

If the called subprogram is required to handle arguments passed to it by the calling pro
grail!. then the user may access them using the F: RDMY library subprogram. which will 
move the arguments from the caller to the user's subprogram automatically: 

o CALL example 
Subprogram example 

CALL FRED (UP. DOWN, MES l, N) 
FRED ENT 

I ., I 
i 

UP 
DOWN 
MESl 
N 

JST *BP (F: RDMY) 
DA TA 4 (no. of arguments) 
RES 1 
RES 1 
RES 1 
RES 1 

RTN FRED 

5-16 Revised March 1975 

_. 

"._' 



)'1 \ 

'-

ri .1 

t, t'art 'SmitS' ttt m t »."".'$ t'm t aM' 'un' dt"'tHn rtt) $ W t.' ; ,'ttt no '.)' =trtet, 'I ft "m tt (.oS $ t t 'rts , g , eM,. 'tit t r &t 

COMPUTER AUTOMATION. INC. t3.S 
Explanations: 

1. The call to F:RDMY must immediately follow the subprogram's entry point; 

2. The word following this call must contain the correct number of arguments. since 
this is checked by F: RDMY against the number supplied; 

3. The following words. which may be labelled to correspond with the argument names. 
will pe set by F: RDMY to the actual (base) address of each argument. the order corre
sponding to .the order of arguments as shown; 

\ 

4. The address contained in the entry location labelled FRED will be updated appropri-
ately to point to the first instruction beyond the code generated for the CALL statement. 

5. Even if no arguments are required. it is still necessary to put DATA 0 after the call 
to F: RDMY. which. having checked that no arguments were supplied and updated 
the return address. would return control to the subprogram at the instruction after 
the DATA 0 statement. 

From the above. it can be seen that F: RDMY provides a safe and straightforward method 
for acquiri.ng arguments and setting the correct return address. It can of course be pro
grammed differently with the subprogram itself 'accessing the argument list via the address 
placed in the entry point. However the method shown is the ~ecommended one. 

5-16a Revised March 1975 



ms. 1 t' , 1 $. drt 'j tt t :t t. zt . ?tlmm' . td •• t" tJ:""'x t1 nidi"tENPin'''''!) i'tern_Mm ... tm h'M.,., 

,.1_ 

ij· , .. 
~:. 

cowunR AUTOMATION. INC. t3.!:J 

APPENDIX A 

DEBUGGING AIDS 

DEBUGGING AIDS 

During checkout of a FORTRAN program, the following aids are available to the user . 

... 
Fortran Trace Option 

The Trace option, when requested prior to a compilati9n, will cause the compiler to gener
ate, in· addition to the normal object code, additional run'-time calls which will cause 
the program to print a trace map onto unit 6 during execution. (Refer to compiler options 
section - Trace option). 

OS: DBG, RTX ZBG 

The OS: DBG and RTX ZBa utility programs may be used in conjunction with the executing 
program, for breakpointing and other debugging capabilities (refer to the OS: DBa descrip
tion in the as User's Manual or the ZBa description in the RTX User's Manual, for a 
complete description of these utilities). It will be necessary to include an object listing 
in the compilation, which may be used in conjunction with the as: LNK memory map to 
follow the program flow during execution. 

Normally, the link map is used to set DEBUG relocation registers, and then breakpointing 
may be done using the FORTRAN object listing(s). Observe the following precautiong: 

1. FORTRAN object code is generally organized with various data areas beginning at 
relative location zero, followed by the executable code; thus F: MAIN, the starting 
location, will not normally be at relative location zero. The relocation register should 
be set to correspond with relative ~ocation zero, rather than F: MAIN. 

2. If the FORTRAN program to 'be debugged uses floating point values (Real, Double 
Precision or Complex), it will not be possible to breakpoint into a sequence of code 
which calls the Floating Point Interpreter. For example, the sample listing in Figure 
A-l contains object code for both integer and floating point processing: 

A-I 



'" 

t" : " 

'~G£ ee(:):1. 09 ..... :1.0/74 :13' ; 32 : 43 
OPTIONS: LO 

. 211. C . 
~02 C INTEGER PROCESSING 
)03 C 

,!1~35 

J=-1.3 , 
K=IABSCJ*9) 

1\106 C 

" ... 

FORTRAN (Xl) COMPILATION 

1')04 

~ 
o'l("? 
;138 

,'I 
<109 

C 
C 

FLOATING POINT PROCESSING 

A=-1.3. e 
H0 8=ABS(A*9. 0} 
,,11. OUTPUT J I 1<1 AI B 
tt2 END 

tit 0(},,2 09 ..... 1.0/74 13: 32: 43 
OPTIONS: LO 

,i-iLAR ALLOCATION 

FORTRAN (X3 ) COl'1P I LAT I ON 

,'leN NAME TYPE WORDS LOCN NAME TYPE WORDS 

,eee J 
;~02 A 

IN1EGER 
~:EAL 

1. 
2 

:100101 K 
:0131214 B 

INTt;:GER 
REAL 

1 
2 

p' ." . *fk"it'j ,", 'Ut "S " • r ! : ' 

<, 
< 

Figure A-l. Integer and Floating Point Sample Listing 

10 
I 

Iii ',.I " 

t' 1., ,e 

-



o 

o 

0001. r' 
~1t11!.12 C 
00121:( C 
~.:.H.:K14 

~.101j6 C 
0007 C 
0'.10:::; C 
0009 

09~10~74 13.32:43 
OPTIONS LO 

INTEGER PROCESSING 

.J=-:13: 
:10301216 :C7e[) 
: 000/ : 9EOt"" 

K=IA8S(.l*:9) 
:0008 .F900 8 
:012109 :001210 F 
:12I0121A :]:080 
: 001218 : ~J3:10 
000C :9EOB 

F 

d' . t "f 'w ' t """1 

FORTRHN (Xl) COMPILATION 

LAI"'l 
5TA 

']ST 
DATA 
.]F"tP 
NAR 

:13 
.] 

*BP(F:Rf'1PY) 
IIC:1 
It10 

STA K 

FLOAliNG POINT PROCESSING :z: N I € {(. p~" r G 7:) 

:13009 

MAcR..O- INsrR.ucT l:JfJ'S 

:0e0E :AHe"=.1 F 
:0e0F :9E0D 

8=A8S(A*9. 0) 
: 0~310 : 821210 F 
· 130:1:1 : ~30135 
:1210:12 :9E13E 

OUTPUT .J, 1< .• A, 8 
:01311 :001030 

EN!) 

:131211.4 :F900 B 
: 00:15 : F90€1 B 
: ~30:16 
.121121:1'7' 
: 13~J18 
:00:19 
:e01t'1 
:01318 
:001C 
:01211(:0 

· ~301E 
. 00:1F 
'12112120 
· (n32:1 
: ~J0;;'~2 
:0623: 
:0024 

:0000 
:F900 
:0013:1 
:F900 
:1211002 
: F90~3 
.10004 
:F"900 

'F900 
: ~J0013 
:C2!"::i13 
: 00e~J 
:421.13 
: 00~J0 
:1210139 

B 

8 

B 

8 

B 

IRCO 

#F.:C:l 

Ile1 

JST *8P(F :RIND 
LDR IRL:0· :C2513:e000 
STA A 

to1Pt'l IRC:1 : 42:10 : 013~313 
ASS 
STA 8 

>~I T 
JST *8P(F: ROUT). 
.JST *BP(F:RIOL) 
DATA .J 
..lST *BP(F:RIOL) 
DATA K 
JST *BP(F:RROL) 
DATA A 
..lST :+:8P(F:RROL) 
r)ATA B 
JST :+:BP(F:R5IO) 

.JST *BP(F:RSTO) 
DATA 13 
DATA -:15792 
["ATA 0 
DATA :169:12 
CoATA 0 
()F,tTA 9 

SUBPF.:OGF.:At-1S CALLED 

NAI"'IE T'T'PE: AF.:GS NAt1E TYPE ARGS NAfo1E T',.'PE ARGS 

IA8S Ir-nEGEF<: :1 ABS REAL 1 F:ROLIT FWtHINE 
F: IdOL F:: UN T 1I'lE F:RROL. RUNTINE F:RSIO RUNTlf'1E 
F: ~:STO RUNT I1'1E F:RUNN RUNT It'lE F:RREL RUNTII'1E 

Figure A-I. Integer and Floating Point Sample Listing 

A-3 

-, 



, *#1 3C 'f i t Ott t H •• ** t hi , tm'. ttH • t ',' nt'Hnm' ,% 'W "n -rtf '$ it 1tt Sttet.t.o'trtW '11 S " "' 1"$"" 

,'8GE ~j0(14 09 ..... :10,,74 :1.3: : 32 : 43 FORTRAN (Xl) COMPILATION 
, LlPT IONS, UJ 

RFZ RUNT It'lE F:RFF RUNTIME F:RMPY RUNTIME 
:RINl RUNT It'lE --lATEr'lENT LHt:ELS 

':,'C.N LABEL USE LOCN LABEL USE LOCN LABEL USE 

Figure A-l. Integer and Floating Point Sample Listing 

o 

o 

A-4 

ii, t,! 
t! 



;1 

tl 
{' 

1:i 
.il 

&1 

o 

o 

Mt' rtM tUtU tn 'ottt t 't ttl! ¥" 'r . Pot 1 $* nt mttttd'tnttrm¥" W W" 1 t t "¢'t. H,,.@t 'trtt err .., ";1 'w:; t, ':r,' '. 

COMPUTER AUTOMATION. INC. ~ 

The object code generated for the integer processing section (locations: 0006-: OOOC) 
may be debugged using the breakpoint feature in the normal manner (note, however, 
that the data statement at location : 0009 is a parameter to the F: RMPY routine and is not 
exeeuted. 

The object code generated for the floating point processing section (locations: OOOD-
: 0013), however, are not normal machine language instructions, but rather macro-instruc
tions which are decoded by the floating point interpreter module (F: RINT) , and a break 
point inserted in this sequence will cause incorrect operation of the FORT.RAN p_~ogrum. 
It is the XIT macro instruction which causes the program to return from the "interpretive 
mode" of operation back to normal machine language instruction processing. . 

Thus it is permissible, in this example, to breakpoint from location : OOOD to location 
: 0014, but not to breakpoint into this area. 

The following FORTRAN routines cause "interpretive mode" processing: 

F: RINT 
F:RCPX 
F: RDBL 
F:RREL 

(Floating Point Interpreter) 
(Complex Arithmetic Processor) 
(Double Precision Arithmetic Processor) 
(Real Arithmetic Processor) 

and should be recognized as such by the user. 

The following macro-instructions signal termination of "interpretive mode" processing: 

INT (Convert to Integer and Exit from Interpretive Mode) 
XIT (Exit from Interpretive Mode) 
XNL (Exit from Interpretive Mode but do not unlock. Required by RTX, this 

function protects the contents of the floating.point accumulator.) 

They also indicate that the following instruction (not the exit instruction) may be used 
as a breakpoint. 

A-5 

fj ilC! _____________________ .. __ 



I 
ii 

I 

,I 

II 

'tt· ! t t t f "J '1:' r_. 'hlP 1< It\' t "itn 'S"' " tee_et 11 

o 

APPENDIX B 

SAMPLE JOB SEQUENCES 

INTRODUCTION 

The following sequences are to serve as sample control commands for various proced'J..ces 
in compiling, linking and executing FORTRAN programs. (Examples of System Generation 
procedures and alteration of the libraries are shown in section 5 under their related 
headings.) \11 examples assume card input. The compiled binary output is called 
PROGl, and the linked (executable) binary output is called PROG2. [ ] indicates 
optional parameters. 

To transfer control from the teletype keyboard to the card reader, enter 

IJOB 
IBA CR 

thrOU9>l the keyboard. 

TO COMPILE, . LINK AND EXECUTE UNDER OS 

lAS BO' I JU • PRfl 
/1.:X FOR'!': 4 , option, option •.. 1 
(FORTRAN source deck(s), each "terminated with the END statement) 
/* 

/AS BI'-"i..-O.PROGl,LI=DO.F:OSLB,BO=DO.PROG2 
,I 1 X OS: LNK, LL, 'rE 

lAS SF""DC [, also assign any required FORTRAN 
lEX PROC2 
Data Deck. (if any), terminated with "1*" 
IJOB (return CI control to teletype) 

TO COMPILE, LINK AND EXECUTE UNDER OS, USING OS:DBG 

[,option,option ••• ] 

unit numbers at this time} 

lAS BO"'DO.PROGI 
lEX FORT:4,LOBJ 
(FORTRAN source deck(s), each terminated with an END statement) 
I· 
JAS BI'DO.PROGl,LI=DO.F:OSLB,BO=DO.PR0G2 
,'EX OS: 1 ... 1-11'., LL , TE 
ILO PROG2 [ 
lAS CI:TK , assign FORTRAN unit numbers at this time] 
Data Deck (if any) 
/* 

B-1 



I 
I 

t' Witt!'! ""$fttr" "@'" "'ojp'"'WH:H. Hffl:!lillkW''C"j' g n, "if1!",'Wf "R tt pnt'",;' '.,"j" t "'"j qt'1 'rt ! 

Input via the keyboard: 

/EX OS:DBG 

At this time, OS:DBG is entered; OS:DBG's relocation register.RO is set to the start 
of the main program, which may not be the first executable instruction. (The execution 
address i:J noted on t.he OS:LNK memory map.) The FORTRAN object listing and OS:LNK 
memory map will se~ve as reference listings during the debugging process. 

TO ASSEMBLE MAINLINE, COMPILE TASKS, LINK AND EXECUTE UNDER RTX 

o 

e 

(LSI-2 example) 
/JOB 
/AS 80'=DO,F :MAIN 
/r:X OS: ASM 
(Mainline source deck) 
/AS BO=DO.TASKS 
lEX FORT: 4, RT [, option, option ••. J 
(FORTRAN task(s), each terminated with an END statement) 
/It 
'I\S BI=DO.F:MAIN,LI=DO.TASKS,BO=DO.PROG 

/EX OS:LNK,NH,AB=lOO,SR=60,LL 
lAS LI=DO.F:RXLB 
LL,TE 
/EX OS:ILD,DO.PROG 

(LSI-3/05 example) 
/JOB 
/AS BO=DO.F:MAIN 
lEX MACR03 
(Mainline source deck) 
/AS BO"~DO. TASKS 
lEX FORT: 4, T3 C option, option ... J 
(FORTRAN task(s), each terminated with 
i" 
/AS BI=OO. F: MAIN, LI=DO. 'l'ASKS, BO=FO. PROG 
lEX OS:LNK,TJ,AB=lOO,SR=20,SX=l,LL 
/AS LI=00.F3RXLB 
LL,TE 

an END statement) 

At this time, the linked PROG or floppy FO may be loaded into an LSI-3/05 processor 
usinq t.he directoried Load/Dump program (DLD). 

B-2 



""t"WW· t w t 

o 

"" 

.-........ 

Appendix C 

FORTRAN RUN-TIME SUBPROGRAM LIST 

FORTRAN BASIC EXTERNAL FUNCTIONS 

Most of these functions reside in the F:EXTR (or F3EXTR) library module. 
with an asterisk reside in the F:MATH (or F3MATH) module. 

ABS 
AI MAG 
AINT 
*ALOG 
*ALOGlO 
AMAXO 
AMAXI 
AMINO 
AMINI 
AMOD 

A'l'AN 
ATAN;'; 
*CABS 

"

. CCOS 
CEXP 

I 
\. 

I 

CLQ(; 
CMPLX 
CONJG 
*COS 

*COSH 
CSIN 
CSQRT 
DATAN 
DA'l'AN2 

DBLE 
I DCOS 

*DEXP 
DFLOAT 
DINT 
*DLOG 

*DLOGIO 
DMAXO 
DMAXl 
DMINO 
DMINl 
DMOD 
DSIN 
DSQRT 

Real absolute value of a real argument 
Convert imaginary. part of a complex value to real 
Truncate real argument to integer and back to real 
Real natural logarithm of a real argument 
Real common logarithm of a real argument 
Real maximum value of integer arguments 
Real maximum value of real arguments 
Real minimum value of integer arguments 
Real minimum value of real arguments 
Real remainder of real modulus real 
Real arctangent of real argument 
Real arctangent of two re·al coordinates 
Real absolute value of a complex argument 
Complex cosine of a complex argument 
Complex exponential of a complex argUment 
Complex natural logarithm of a complex argument 
Convert two real values to complex 
Con·jugate a complex argument 
ReM1 cosine of a real argument 
Hyperbolic cosine of a real argument 
Complex sine of a complex argument 
Complex square root of a complex argument 
Double prec. arc. tangent of a double prec. argument 
Double prec. arctangent of two double prec. coordinates 
Convert a double prec. value to integer 
Double prec. cosine of a double prec. argument 
Double prec. exponential of a double prec. argument 
C' 'llVert integer to double precision 
Trwlcate double prec. value to integer and back to double prec. 
Double prec. natural logarithm of a double prec. argumerit 
Double prec. common logarithm of a double prec. argument 
Double prec. maximum value of integer arguments 
Double prec. maximum value of double prec. arguments 
Doubla prcc. minimum value of integer arguments 
Double prec. minimum value of double prec. arguments 
I~uble prec. remainder of double prec. modulus double prec. 
Double prec. sine of double prec. argument 
Double prec •. square root of double prec. argument 

C-l 

Those preceded 



" . 
. " 
:'1 

I I \ I t: • , 
fi I 
~I Ii \ 
" I 
" I '~\: ' 

~\: 1 

" 

1, 

I ~ 

DTAN 
DT.rum 
*EXP 
FLOAT 
IDINT 
IFIX 
INT 
MAXD 
MAXI 
MIND 
MINI 
MOD 
REAL 
*SIN 
*SINH 
SNGL 
*SQRT 
TAN 
TANH 

Double prec. tangent of double prec. argument 
Double prec. hyperbolic tangent of double prec. arqwnent 
Real exponential of real argument 
Convert integer value to real 
COnvert double pn.!c. value to integer 
Convert real value to integer 
Convert real value to integer 
Integer rtiaximwn value of integer arguments 
Integer maximwn value of real arguments 
Integer minimum value of integer arguments 
Integer minimwn value of real arguments 
Integer remainder of integer modulus integer 
Real part of a complex argument 
Real sine of a real argument 
Hyperbolic sine of a real argument 
Convert double prec. value tO,real 
Real square root of a real argument 
Real tangent of real argwnent 
Real hyperbolic tangent of real argument 

~rtTru~N MA~H AND I/O ROUTINES 

Most of these routines reside in the F:MATH (or F3MATH) library lOOdule. "Those pre-
ceded with an asterisk reside in the F:EXTR (or F3EXTR) module. (Program name in 
parentheses following description is the first entry point in theiroutine.) 

F:EATL 
F:EBAZ 
F:EDVO 
F:EINA 
?:ELOC 
F:ENG~. 

F:EOVR 
:e:EQL.1 
F:EQL2 
F:ERRC 
F:ERRS 
:": ES(~1 
GrAiN 
.,- ... AID 
*10': INC;'; 
F:ICAB 

I F: ICC:; 
F:ICSH 
F:IDAD 
F:IDDV 
*F:IDIN 
F:IDLD 

Argwnent too large 
Both argwnents zero (F:EATL) 
Division by zero (1" :EATL) 
Incorrect number of arguments (F:EATL) 
Error Location (F:RBPG) 
Negative argwnent (F:EATL) 
Overflow (F':EATL) 
Error Quot.,' 1 (F: RRPG) 
Error QU()tE~ 2 (F: RBPG) 
Error print and continue (F:ERRC) 
Error py.lnt and TERM: (F:ERRC) 
Singulari ty (F: EATI") 
Internal aint (AINT) 
Internal alog (ALOG) 

Internal atan2 (ATAN) 
Internal cabs (CABS) 
Internal cus (SIN) 
Internal cosh 
Double add for func~ions (F:IDAD) 
Double divide for functions (F:IDAD) 
Internal dint (DINT) 
Double load for functions (F:IDAD) 

C-2 



, , 

i 

I 

I 

I 

** ""oW' "'r 1 'ttt"'j :I'. MP",¢" h rio (t't "1M '&,. t'±ffl'Mt !"""Wjt".!" "nft' ,,,"tWi.UWWH k*W"f'''f jj 1tt,'H%HMWtM"·, . 

It 

o 

f 
I 
I , 

F: IDLG 
F: IDMV 
F:IDML 
F: IDNM 
F: IDSL 
F: IDST 
F: IDSB 
F: IDUN 
F: IDXP 
F: IEXP 
F: IFel 
F: IFnI 
F: IFD2 
F: IFll 
F: IFI2 
F: HUN 
F: IRAD 
F: IRDV 
F: IRLD 
F: IRMV 
F: IRML 
F: IRSB 
F: IRST 
F: Ir:.UN 
F: ISIN 
F: ISNH 
F: ISQR 
F: RACE 
F: RACS 
F: RACI 
F: RAC2 
F: RAC3 
F: RAC4 
F: RARG 
F: RBPG 
F: RBSP 
F: RCAD 
F: RCBE 
F:RCDV 
F: RCGO 
F: HCIP 
F:RCLD 
F: RCML 
F: ReNG 
F: ReOL 
F: RCOM 
F: HCPX 
F: l{CRP 
F: RCSB 

Internal dlog (DLOG) 
Double move for functions (F: IDAD) 
Double multiply for functions (F: IDAD) 
Double normalize for functions' (F: IDAD) 
Double shift left one (F: IDAD) 
Double store for functions (F: IDAD) 

'Double subtract for functions (F: IDAD) 
Double unpack for functions (F: IDAD) 
Internal dcxp (DEXP) 
Internal exp (EXP) 
Complex fetch and unpack one (F: IRAD) 
Fetch and unpack one (F: IDAD) 
Fetch and unpack two (F: IDAD) 
Integer fetch and unpack one (F: nUN) 
Integer fetch and unpack two (F: nUN) 
Integer fetch and unpack (F: nUN) 
Real add for functions (F: IRAD) 
Real divide for functions (F: IRAD) 
Real load for functions (F: IRAD) 
Real move for functions (F: IRAD) 
Real multiply for functions (F: IRAD) 
Real store for functions (F: IRAD) 
Real subtract for functions (F: IRAD) 
Real unpack for functions (F: IRAD) 
Internal sin (SIN) 
Internal sinh 
Internal sqrt (SQRT) 
Extcnded Accumulator Exponent (F: RBPG) 
Extcnded Accumulator Sign (F: RBPG) 
Extended Accumulator Word 1 (F: RBPG) 
Extended Accumulator Word 2 (F: RBPG) 
Extended Accumulator Word 3 (F: RBPG) 
Extended Accumulator Word 4 (F: RBPG) 
A register (interpreter) (F: RBPG) 
Base Page Definitions 
Backspace a record 
Complex add (F: RCPX) 
Ct~be A register 
Complex divide (F: RCPX) 
Computed Goto 
Complex to integer power 
Complex load (F: RCPX) 
Complcx multiply (F: RCPX) , 
Complex negate (F: RCPX) 
Complex input/output elcmcnt Formntted (F: RINP) 
Complcx input/output element unformatted (F: RRU) 
Complex arithmetic package entry 
Complex rcpack (F: RCPX) 
Complex subtrnct (F: RCPX) 

C-3 Revised March 1975 



G<.' 

f r----------~ ~ 

F: ReST 
F:RCTD 

I; 
F: RCTI 
F: RCTR 
F: RCUS 

I) 
F:RCUT ;1 

~, i F:RDAB ·~I i 

F: RDAD 
F:RDBL 
F:RDDM 
F:RDDV 
F:RDEN 
F: RDIP 
F: RDIV 
F:RDLD 
F: RDML 
F: RDMY 
F: RDOL 

e:RnOM 
i: RDRP 
F: R~)SB 
F:RDST 
F: RnTe 
F: RDTI 
F: RuTR 
F: RDUS 
F: RDUT 
F: REND 
F:RENN 
F: RERR 
F:RFAA 
F: RFAD 
F: RFAF 
F:RFD 
,~: HFDA 

-J:RFDE 
F:RFJJF 
F:RFES 
F:RFF 

., F:RFFD 
F:RFFQ 
F:RFG 
F:RFI 
F: RFIR 
F:.RFL 
F:RFPE 
P: RFRA 
F: RFRN 
F: RFRW 

-:·1 

'I f· 
~I 
~ i 

ii 
:' 

.. ~ 

Gomplex store (F: RCPX) 
Complex to double (F: RCPX) 
Complex to integer (F: RCPX) 
Complex to real (F: RCPX) 
Complex input/output array element unformatted, (F: RINP) 
Complex input/output array element unformatted (F: RRU) 
Double AD'S (F: RDHL) 
Double. add (F: RDBL) 
Double precision arithmetic package entry 
Double DIM (F: RDBL) 
Double divide (F: RDBL) 
Decode with optional N (F: RINP) 
Double precision to integer power 
Signed DIV 
Double load (F: RDBL) 
Double multiply (F: RDBL) 
Setup argumcnt addresses 
Double precision input/output element formatter (F: RINP) 
Double precision input/output element unformatted (F: RRU) 
Double precision to intege~ power (F: RIDP) 
Double subtract (F: RDBL) 
Double store (F: RDBL) 
Double to complex (F: RCPX) 
Double to integer (F: RDBL) 
Double to real (F: RDBL) 
Double precision input/output array element formatted (F: RINP) 
Double precision input/output array element unformatted (F: RRU) 
End-of-file 
Decode with Optional N (F: RINP) 
Diagnostic error during compile formatted (F: RINP) 
Format argument address (F: RINP) 
Format skip asterisks and dollar (F: RFAD) 
Format asterisk flag (F: RINP) 
Format conversion D (F: RFIR) 
Format back fill dollar and asterisks (F: RFAD) 
Format decimals count (F: RINP) 
Format dollar flag (F: RINP) 
Format element size (F: RINP) 

, Format conversion F (F: RFIR) 
Format fetch from door (F: RINP) 
Format fill with question marks (F: RFAD) 
Format conversion G (F: RFIR) 
Format conversion I (F: RFZ), 
Format conversion I Real (F: RFIR) 
Format conversion L (F: RFZ) 
Format p scale factor exponent (F: RINP) 
Format return address (F: RINP) 
Format reset window no comma (F: RINP) 
Format reset window (F: RINP) 

C-4 Revis 

-' 

I 
j 



'''k'::II:ittt .. *PttW'!tl:tt:Mi'1'''''11"1 ... ..,Wi 

','.' e 1 

I 
J 
f: 
$;. 
l' F: RFSF " 
~. F: RPSI ;\" 

F: RFSO 
:\; F: RFSW 
!! 

r· F:RFTS 
f'1 F: RFWB 

F: RFWD 
F: RFWE 
F: RFWF 
F: RFWI 
F: RFWS 
F: RFZ 
F: RHFO 
F: RHUS 
F: RHUT 
F: RIAU 
F: RIDP 
F: RIDU 

0 F: RIlP 
! 

F: RIMU 
F: RING 
F: RINP 
F: RINT 
F: HIOL 
F: RIOM 

'--. F: RIRP 
F: RISG 
F: RISU 
F: RITC 
F: RITD 
F: RITP 
F: RITR 
F: RIUN 
F: RIUS 
F: RIUT 

, -' ',: ~ F: RLOL 
F:RLOM 
F: RLUS 
F: RLUT 
F: RMPY 
F: ROPE 
F: RaPS 
F: ROPl 
F: HOP2 
F: ROP3 
F: HOP4 
F: H.OllT 
F: RPAB 
F:HPAU 

• 1 

• 
Format stop flag (F: RINP) 
Format stop line 10 (F: RINP) 
Format store output char (F: RINP) 
Format store in window (F: RINP) 
Format test sign (F: RFAD) 
Format store in window back (F: RFAD) 
For'mat set window door (F: RINP) 
Format window end (F: RINP) 
Format write flag (F: RINP) 
Format width (F: RINP) 
Format window start (F: RINP) 
Format conversion Z 
Format Hollerith free (F: RFIR) 
Hollerith input/output array element formatted (F: RINP) 
Hollerith input/output array element unformatted (F: RRU) 
Double add unpacked (F: RDBL) 
Integer to double precision power 
Double divide unpacked (F: RDBL) 
Integer to integer power 
Double multiply unpacked (F: RDBL) 
Double negate (F: RDBL) 
Input statement 
Integer arithmetic entry (F: RITP) 
Integer input/output element formatted (F: RINP) 
Integer input/output element unformatted (F: RRU) 
Real to integer power 
Double SGN (F: RDBL) 
Double subtract unpacked (F: RDBL) 
Integer to complex (F: RCPX) 
Integer to double (F: RDBL) 
Runtime interpreter 
Integer to real (F: RREL) 
Double unpack (F: RDBL) 
Intcger input/output array element formatted (F: RINP) 
Intcger input/output array element unformatted (F: RRU) 
Logical input/output element formatted (F: RINP) 
Logical input/output element unformatted (F: RRU) 
Logical input/output array element formatted (F: RINP) 
Logical input/output array element unformatted (F: RRU) 
Signed MPY 
Operand Exponent (F: RBPG) 
Operand Sign (F: RBPG) 
Operand Word 1 (F: RBPG) 
Operand Word 2 (F: HBPG) 
Operand Word 3«F: RBl'G) 
Operand Word 4 (1": RBPG) 
Output statement (F: HINP) 
Parameter Block Adr (I/O) (F: RUPG) 
Pausp 

C-5 Revised March 1975 



," ""TSttlt tt r 

~~ 

t~ 1 

""/ 

F:"RRAB 
i i F:RRAD 

': j 

I; 
F:RRAU 
F:RRDM 
F:RRDP 

"' F:RRDU ~"I : 

tl F: RRDV 
4.'.1 

F:RREL 
~ ! 

F:RREW 
F:RRF 
F:RRFB 
F:RRFN 
F: RRFR 
F: lUHP 
F:"RRLD 
F:RRML 
F:RRMU 
F:RRNG 

e':RROL 
i": RHOM 
F:RRPP 
F: RRRP 
F: RRSB 
F: RH.SG 
F: RRST 
F: RRSU 
F:RRTC 
F: RRTD 
F: RRT.! 
F:RRTN 
F:RRU 
F: HRUB 
F: RRUF 
F:RHUN 
f:RRUR 
~ Iu·urs 

I': RRUT 
F: RSIO 
F: RSIP 
F: RSMP 
F: RSQR 
F:RSTN 
F:RSTO 
F: RTRF 
F: RUAA 
F: RUAV 
F:RUGN 
F: RlTIR 
F: RURE 

l' 

Real ABS (F: RHEL) 
~eal add (F: RREL) 
Real add unpacked (F: RREL) 
Real DIM (R: RREL) 
Real to double precision power (F: RIDP) 
Real divide unpacked (F: RREL) 
Real <livide (F: RREL) 
Real Arithmetic package entry 
Rewind 
Read formatted(F: RINP) 
Read formatted with both options (F: RINP) 
Read formatted with END option (F: RINP) 
Read formatted with ERR option (F: RINP) 
Real to integer power 
Real load (F: RREL) 
Real multiply (F: RREL) 
Real multiply unpacked (F: RREL) 
Real negate (F: RREL) 
Real input/output element formatted (F: RINP) 
Real input/output element unformatted (F: RRU) 
Parameter Pointer (Interpreter) (F: RBPG) 
Real to real power (F: RIRP) 
Real subtract (F: RREL) 
Real SGN (F: RREL) 
Real store (F: RREL) 
Real subtract unpacked (F: RREL) 
Real to eomplex (F: RCPX) 
Real to double (F: RDBL) 
Real to intcger (F: RREL) 
Trace return (F: RTRF) 
Read unformatted (F: RINP) 
Read unformatted with both options (F:RRU) 
,Read unformatted with END option (Fi RRU) 
Real unpack (F: RREL) 
Read unformatted with ERR option (F: RRU) 
Real input/output array element formatted (F: RINP) 
Real input/output array element unformatted (F:RRU) 
Input/output end of list formatted (F: RINP) 
Input/output end of list unformatted (F: RRU) 
Script multiply 
Square A register 
Trace subprogram entry (F: RTRF) 
Stop 
Trace flow 
Get urg address (F: RUGN) 
Get arg value (F: RUGN) 
Get unit number adr (F: RUGN) 
10 return code process (F: RUGN) 
Unlock and return (F:RBPG) 

C-6 

; 
; 

Revised March 1975 

-

-



~.:'. 
~ 
fl 
'If; 

'1K'" tte,. !'dOEtl'NO 1" Wi; .VM «'mew .. , I t 

"'---', 

F:RURT 
F:RUST 
~":RWF 

F':RWFB 
F:RWFN 
F:RWFR 
F:RWU 
F:RWUB 
F:RWUN 
F:RWUR 
F:RXRG 

Restore temps (RTX) (F:RUGN) 
Save temps (RTX) (F:RUGN) 
Write formatted (F:RINP) 
Write formatted with both options (F:RINP) 
write formatted with END option (F:RINP) 
Write formatted with ERR option (F:RINP) 
Write, unformatted '(F :RRU) 
Write unformatted with both options (F:RRU) 
Read unformatted with END option (F:RRU) 
Read unformatted with ERR option (F:RRU) 
X register (interpreter) (F:RBPG) 

LSI-3/05 FORTRAN INSTRUCTION EMULATOR (F3EMUL) 

CNSOL: 
EMUL: 
F:RLS3 
MOlA: 
MOASH: 
MDBOV: 
MOLSH: 
MOMON: 
MDRRG: 

Software Console Routine 
Emulator Mainline 
Emulator Load Caller 
Register Change Instructions Module 1 
Arithmetic Shift Instructions Module 
Bit to OVerflow Instructions Module 
Long Shift Instructions Module 
Multiply/Divide/Normalize Instructions Module 
Register Change Instructions Module ,2 

FORTRAN RUN-TIME I/O INTERFACE ROUTINES (F:OSIO, F:RXIO and F3RXIO) 

F:RUOl 
F:RU02 
F:RU03 
F:RU04 
F:RU05 
F:RU06 
F.: RUIN 
F:RUNN 
F:RUOT 
F:XBSP 
F:XCLS 
F:XDLL 
F:XEOF 
F:XERR 
F:XINP 
F:XOUT 
F:XPSE 
F:XRCS 
F:XRDS 
F:XRWD 
F:XSTP 
F:XWTS 

Unit 1 FCB Table 
Unit 2 FCB Table 
unit 3 FCB Table 
unit 4 FCB Table 
unit 5 FCB Table 
Uni t 6 FCB Table 
Standard" Input Unit FCB Table reference 
Reference t,G all FCB Tables 
Standard Output Unit FCB Table reference 
Backspace one record 
Close all files 
De-allocate an I/O block 
Write an end-of-file mark 
Output an error message 
INPUT a record 
OUTPUT a record 
output a PAUSE message 
Find maximum 'record size and allocate an I/O block 
Read a record 
Rewind a unit 
Output a STOP message 
Write a record 

C-7 



lit h tt"tltttt' ' 'thst'tt#tWt Ait: '* 't' h'i' ',"',' t' 'I /". 'I 'iif'i'd"'$ffl:i#tt' rI ¥Ow "1&f1'! t'@"'W .,., em t 

COMPUTER AUTOMATlON.IN(. ~ 

Appendix D 

ERROR MESSAGES/HALTS 

COMPILER DIAGNOSTICS DURING SCAN PHASE 

Message 

ALLOCATION 

, .. 
;,1 ., 

ARGUMENT CONVERTED 

ARGUMENT COUNT 

ARRAY SIZE 

BLOCK DATA ONLY 

BLOCK OVERFLOW 

Error/ 
Warning 

E 

W 

E 

E 

E 

E 

Comments 

A name appearing in a declaration statement 
is invalid because of previous usage. For 
example: 
COMMON name already in COMMON or not 
scalar or array. 
Adjustable dimension not scalar dummy. 
Name dimensioned or typed twice. 
Dummy in COMMON, EQUIVALENCE, or 
EXTERNAL. 
EQUIVALENCE or DATA array subscript 
out of range. 

Subprogram argument is wrong type and 
is converted to right type. This can happen 
on a library function (proper type is known 

. to the compiler), a statement function (type 
was determined at the definition), or an 
ordinary external function (if a previou.,; 
call is made with different type arguments) . 
Logical cannot be converted to numeric or 
vice versa; this gets a TYPE CONFLICT error. 

Wrong number of arguments to subprogram. 
This can happen in the same cases as ARGU
MENT CONVERTED. 

Array dimensioned greater than 32K. 

This statement may not appear in a BLOCK 
DATA subprogram. 

Working storage has overflowed at a critical 
point in the processing of an optimization 
block, where recovery is impossible. All 
of the source lines in the block will be printed. 
followed by a FORT ER 321 and abort. Get 
around this problem by juggling the program 
around, e. g. by inserting a jumped -to label 

D-1 



/,-, 
" 

I!.··'·~·,. I 
" 
" 

Message 

i., 

CONST ANT SIZE 

DIMENSION OUT OF BOUNDS 

emPLICATE DUMMY 

Error/ 
Warning 

E 

E 

E 

, ' 

i 

DATA COUNT E 

DATA TYPE E 

EXTRA COMMA W 

FOHMAT LABEL E 

la, ". lD CONFLICT E 

ILLEGAL ARGUMENT STATEMENT E 

ILLEGAL DO CLOSE W 

COMPUTER AUTOMATION. INC. §]} 

Comments 

to shorten the block. Note that this is a 
rare occurrence. Normally long blocks 
will be shortened automatically with no error 
message. 

Floating constant >1. 7E38 or <1. 5E-39; 
or 
Hexadecimal or Hollerith constant too long 
for context or more than 255 or less than 
1; or 
DAT A repeat count not integer >0. 

Negative or zero dimension or upper bound 
less than lower. 

Same name used twice as dummy in definition 
of FUNCTION, SUBROUTINE, or statement 
function. 

Number of constants not same as number 
of variables. (Long Hollerith strings may 
act as several constants.) This will usually 
be followed by a SYNTAX error. 

I 
I 

C~nstant not same type as variable. This I 
does not apply to hexadecimal or alphanumeric; 
constants. 

Two consecutive commas in a list of'items. 

Label previously referenced as a FORMAT 
(e. g. in a READ/WRITE statement) . 

Name can not be used in this context, due 
to previous usage. See also MISUSED 
IDENTIFIER. 

Logical IF may not control a DO or another 
logical IF. 

A DO loop may not terminate on a GO TO, 
DO. arithmetic IF, RETURN, or STOP. 
If DOs are also improperly nested, this mes
sage may not appear. Instead, the label 
will appear under OPEN DO LOOPS. 

D-2 

",~ 



""1 

'I 
"I 

0 

',---, 

I 0 j 

Message. 

ILLEGAL LABEL 

ILLEGAL NUMBER 

ILLEGAL OP-CODE 

ILLEGAL SIGN 

INDEX NOT ALLOWED 

JUMPED TO LABEL 

LABEL MISSING 

MISSING COMMA 

MISSING LABEL 

MISUSED lDENTIFIEt{ 

MISUSED NAME 

MU LTI DEFINED 

Errorl 
Warnin.-R.. 

E 

E 

E 

E 

E 

E 

W 

W 

W 

E 

E 

E 

Comments 

Label not 1-99999; or 
DO terminal label has already appeared; or 
Label on SET op -code not #Xn. 

Integer 32767; or format count value of 
zero; or integer in complex constant; 01' 

negated alphanumeric string. See also 
CONSTANT .SIZE and RANGE. 

In-line assembly op-.code not recognized. 
May be caused by "FORTRAN" op-code with 
an operand 'Or by #Xn label with op-code 
other than SET. 

Must be unsigned integer value (e. g. as 
unit number or ENCODE/DECODE character 
count) . 

In-line assembly op-code cannot be indexed. 
This appears only on MPY , DIV , NRM: 
others will get SYNTAX error. , 
This label has previously appeared on 1::1 

statement that was not a FORMAT. 

Unlabeled FORMAT statement, or unlabeled 
statement follows a jump and cannot be 
reached. Although this is a warning, an 
unlabeled FORMAT statement will not be' 
generated. 

Comma needed between two items. 

A SET op-code has no #Xn label. 

Similar to ID CONFLICT. This name cannot 
be used this way because of previous usage. 
For example: 
DO index is array; or 
name left of equal sign not scalar or array; 
or 
Intrinsic function name used as in-line assem 
bly operand. 

A system name (containing a colon) was 
referenced improperly «('.g., as an in-line 
assembly language operand without a base 
page (BP) reference preceding it) . 

Statement label previously defined. 

D-3 Revised March 1975 



! ' to. 'it" 'iiFt .. jt"'w 'W ' "g" f g,w·.Mm"tW .... · 

Error! 
Message Warning 

NOT ARRAY E 

NOT INTEGER E 

NOT SUBROUTINE E 

NUMBER OF SUBSCRIPTS .E 

e'ObSlBLE ERROR W 

RANGE E 

: j 

ST ATEMENT ORDER E 

SYNTAX E 

lie: 
I "'~i'YPE CONFLICT E 

UNDEFINED CONDITIONAL E 

UNnIMENSIONED E 

COMPUTER AUTOMATION. INC. §]1 

Comments 

FORMAT reference name not array. 

This expression must be integer (e. g. a 
subscript), but contains at least one non
integer element. The $ marks the end of 
the expression, but the erroneous element 
may not be the last one in the expression. 

Name following CALL is not a subroutine 
name. 

Too many or too few subscripts. On the 
left of an equal sign, an array with no sub
scripts will have the message UNSUBSCRIPTED. 

Format stored in integer or logical array 
probably won't work in ANSI mode. See 
reference manual. 

In-line assembly operand out of range; 
or unit number not 1-99. See also CONSTANT 
SIZE and ILLEGAL NUMBER. 

I 
I 

Certain statements must appear before other I 
statements. In general, declaration statements I 
must come at the beginning. See appendix A I 
of the reference manual. 

This is by far the most common error message. 
It indicates improper sequencing of operands, I 
operators, or punctuation. In a FORMAT, 
it may be caused by incorrect Hollerith fields. 

Complex expression appears in arithmetic 
IF or improper assignment, relational, or 
exponentiation; or . 
Logical operand or argument appears where 
numeric should or vice versa. 

#Xn label has not been defined by a previous 
SET. 

Name followed by left parenthesis on left of 
equal sign has not been dimensioned. 

D-4 



''#Yi±'b'K'''±fHtft,%ttWW,t,'', 'tBt" t hfiW···tWtftftwm W1WweWW 

UNRECOGNIZABLE 

UNSUBSCRIPTED 

COMPUTER AUTOMATION. I,.C. ~ 

Error/ 
Warnin~ _____________________ C~o_m __ m_e_n_t_s __ _ 

I~ 

E 

More serious than SYNTAX. The compiwI' 
cannot determine what kind of statement 
this is supposed to be. Questionnblc appeur
ances of this message should be reported 
to us. 

Array appears at beginning of statement 
(i. e. to left of equal sign) without subscripts 

• 

D-5 



I, 

! 

'Nt '.tNWThi rt #¥t'" '.,.'1 r ' 't t:' ',we G job lfl!tl! , 9Ml'W.W**'*lH'ti'WMI ',," r 

COMPUTER AUTOMATION. INC. §]1 

COMPILER DIAGNOSTICS DURING AI.LOCATE PHASE 

Message Comments 
----------------~~~~--~--~-----------------------"-----

ALLOCATION ERRORS 

FUNCTION NAME NOT 
REFERENCED 

OPEN DO LOOPS 

STORAGE OVERFLOW 

UNDEFINED LABELS 

Followed by a list of variable names. These names 
are involved in illegal EQUIVALENCEs: eithcr a 
conflict in storage assignment or an extension of 
COMMON. This message appears at the end of thc 
storage allocation map. 

The name of a FUNCTION. which is supposed to return 
the result. has never been referenced. This message 
appears at the beginning of the allocation map. 

Followed by lines of the form: 
44 OPENED AT LINE 140 

This indicates a "DO 44" on line 140, but the terminal 
statement with label 44 was not found. Sometimes 
the label may have actually appeared, but was not 
found due to incorrect nesting of DO loops. This 
message appears at the beginning of the allocation 
map. 

One of the storage areas (local, blank COMMON. 
labeled COMMON)" has overflowed 32K. This message 
appears following the map of the corresponding storage 
area. 

Followed by lines of the form: 
17 FIRST REF AT LINE 9 

The statement number 17 was never defined. and 
there is at least one reference to it. on line 9. There 
may be overlap between this message and OPEN DO 
LOOPS. This message appears at the beginning of 
the allocation map. 

D-6 



a:a' t tUrf'it'1I i j'W"i'WtP''*# ," t Kf' MaIM" Hat ¥'jft' alum» w 

Message 

LITERAL POOL 

RANGE ERROR 

!~ 

>Ii": 

COMPILER DIAGNOSTICS DURING GEN PHASE 

Error! 
Warning Comments 

E A literal pool has been created in the object 
(or blank) code. If the message is not followed by 

"E*E*E", the pool has been necessitated 

E 

by FORTRAN statements. and is guaranteed 
not to adversely affect any adjacent muchin('
language instructions. 

If "E*E*E" appears in the message, the literal 
pool has been caused by the user's in-line 

. ASSEMBLER language statements referencing 
out of rang€ operands. The pool is preceded 
by a jump around, which mayor may not 
work correctly, depending on where the 
pool appears. Examine the object listing 
to determine whether the pool is acceptable. 
If it is not acceptable, use an LPOOL directive 
to .elicit the literal pool somewhere earlier 
in the in-line assembly language sequence. 
Note that if you supply your own LPOOL 
directives in your assembly language 
sequences, they will not generate a jump 
around them, nor will a "LITERAL POOL" 
diagnostic be output. 

An in-line assembly opera'1d is out of range 
for the op-code it has been used with. Viost 
of these will be caught by the RANGE error 
in Pass 1. This message appears when the 
range is not known until pass 2 (e. g. forward 
references). The error may refer to the 
operand of the line it appears on, or it may 
refer to the label, in which case there was 
a previous line that referenced this label 
and it is the previous line whose operand 
is out of range. 

D-7 Revised March 1975 



NO" ','t t" itt ria±« $,. >i&tit't:ir l' e'# !'q)',* t t: II '"q1$iU&/li ,sHe "! 

h 

1:\,',1 ,,"---"'-,----" _8_'_,. ___________ _ 

'; 
I 

t 
I: 

COMPUTER AUTOMATION. INC, ~ 

" 

1,',1 , 
COMPILER ERRORS (ABORT CONDITION) --.-.. - ~--.' ... -

All abort-condition compiler Errors are of the form 

FORT ER ptt 

I 
~! where p identifies the phase of the compiler that was operating: 

p = 1 
2 

Scan 
Allocation 

3 Gen 

and tt identifies the type of error: 

tt= 11 
18 
21 
28 
31 
38 
41 
51 

Pointer overflow 
I/O error during overlay loading 
Working storage overflow 
Memory overflow during overlay loading 
Compiler' error 
Illegal type code during overlay loading 
Compilcr error 
Compiler error during collapse, 

Except for 21 and 28, all of these result from hardware or software errors, If they occur 
in a reproducible way. they are probably software errors, which should be reported, 

I " 28 il'dicates that the compiler will not fit in memory, 21 indicates that the program cannot 
be compiled in the given amount of memory, 

OS: LNK ERRORS 

During the link process. various error conditions may occur, These errors may be grouped 
into three types: 

_,\~gnostics 

Diagnostics are messages output to the LO device as they are encountered, They indicate 
memory usage conflict of various forms. and are usually caused by scratchpad or main 
memory overflow. or an attempt to store data into a scratchpad location which is already 
occupied, These errors do not cause termination of OS: LNK. but may produce erroneous 
results during program execution ~ The specific error messages are described below, 

"COMMON SIZE CONFLICT. IGNORED" (followed by program name, COMMON name, first 
dcfined size, subsequently defined size), A labeled COMMON definition has been encoun
tered. whose size differs from that of a previous labeled COMMON definition of the same 
name, Since OS: LNK allocates memory according to the size in the first definition. no 
problem should oceur as long as the first defined length is greater than the subsequent 
definition, However, if the subsequent definition is of greater size, a reference to the '-' 
excess portion of the COMMON area may produce invalid results during execution, If 
this is the case, re-eompilation is advisable using identical sizes for both definitions. 

D-8 



II .. 
~i fI 
I 
I 

i 
I 

I 

I 

't rtrtrtE"! wt'r· t' ,.e· 'Y 

COMPUTER AUTOMATION. INC. ~ 

"MEMORY OVERFLOW, IGNORED" (followed by program name). Memory location: 7FFF 
has been passed, and more memory is required. Allocation will continue at location zero. 
The program must either be shortened andJhen recompiled, or relocated to a lower memory 
location and then re-linked. 

"SCRATCHPAD LITERAL OVERFLOW, IGNORED" (followed by program name). The literal 
pool address pointer has decremented to zero. Additional literals will not be assigned; 
references to any further unassigned literals will reference location zero. This error 
can often be corrected by re-linking with a different SR and/or SP option, or by re-compila
tion using the "NS" (no scratchpad) option. 

"SCRATCHPAD PROGRAM/LITERAL OVERLAP, IGNORED" (followed by program name 
and scratchpad overlap address). The two pointers for scratchpad literals and scratchpad 

, relocatable data have passed each other at the location shown. This is not necessarily 
a problem; however, the situation may sometimes by avoided by re-linking with a different 
SR and/or SP option, or by re-compilation using the "NS" (no scratchpad) option. 

"SCRATCHPAD PROGRAM OVERFLOW, IGNORED" (followed by program name). Scratchpad 
relocatable data has passed the high scratchpad limit. OS: LNK will continue to store 
data into higher locations. This problem may be corrected by re-linking with a different 
SR and/or SPoption, or by re-compiling using the "NS" (no scratchpad) option. 

"SCRATCHPAD USAGE CONFLICT, IGNORED" (followed by program name and scratchpad 
location). Input data has been encountered that would be placed in a scratchpad location 
already occupied by a literal or other input data. If a literal occupies the cell, the input 
data will be lost. If the cell is occupied by input data, it will be overlayed by the new 
data. This problem may be corrected by re-linking w~th a different SR and/or SP option. 
or by re-compiling using the "NS" (no scratchpad) option. 

Termination Errors 

These are messages output to the CO and LO devices. indicating an error which prevents 
OS: LNK from completing the link operation. A memory map is printed at this time, and 
OS: LNK terminates. These messages are: 

"BAD TYPE CODE". An invalid type code was recognized in the input data. The user 
should restart OS: LNK one time. If it fails again. re-compilation is probably required. 

"LINK ERROR nil (where n may range from 1 to 5). ' This error indicates various types 
of logic failure within either the compiler (error No. 1-:-4) or OS: LNK itself (error No.5). 
Computer Automation shoUld be notified of such an occurence with,as much information 
as possible regarding the program and procedure whiGh elicited the error. 

NOTE 

Currently. LINK ERROR 2 indicates that a variable in blank 
COMMON was given a value in a DATA statement. This is actually 
a source program error, but is not diagnosed by the compiler. 

D-9 



" "tf m r Nfl tetMH'WW' tt'b . '¢ '1" Wi ifr "i'r' i Wet <a'S en". 

r 

, 
, \ 

I! 
II 
F'i 
~·~i 
In ;i ' 
t,',1 1 tl ' 
Ii ; 
,~ I 

I; I 

d 

COMPUTER AUTOMATION. INC. ~ 

"TARLE FULL". An overflow condition has occurred in the link edit table. OS: LNK re-
quires more memory for its working storage. 

I/O Errors 

I/O error messages are' output to the CO device, and reflect an error status received from 
OS following an I/O operation. 

"I/O ERR". An irrecoverable error status has been returned. OS: LNK will terminate; 
however, the user may re-execute OS: LNK to retry the I/O operation. 

t'. "INPUT CK". The BI or LI device is not ready for input. The user should ready the 
II ' device, then continue with a /RESUME command. 
~l I 
I ' 
\' ! 

~,',"Il " I 
I"~ 

',! ~ CJ' , 

" ?lA! 

,D-10 

-' 



I 

il 
";1 

. !:If t' '"6"1"0'" %"1 &0*""'\'&"""'+ '··· ... H·'"±" ·tH·b··Hif·'Wt·. 'UWl1rtP'W%t&WW"t's'r'r 11ItlfW',,"dW U j'@¢"i HU"'» jj(ot\S'tW' H W tr * _w= * 

e· 
f 

I 

o 

Message 

ARGUMENT TOO 
LARGE 

ARGUMENT TOO 
LARGE 

BOTH ARGUMENTS 
ZERO 

BOTH ARGUMENTS 
ZERO 

LINE dddd. 
COMPILATION 

DIVISION BY ZERO 

END OF FILE 

FORMAT INTEGER 

ILLEGAL FORMAT 
CHAR 

Form: 

COMPUTER AUTOMATION.IMC. ~ 

FORTRAN RUN TIME ERROR MESSAGES 

(Routine Name), (message) ERROR at : xxxx 

Routine Name 

COS, DCOS, DSIN, 
DTAN, SIN, TAN 

Comments 

All significance to result lost. Zero 
returned. 

DEXP, EXP, IDINT, . Result would overflow. Maximum 
IFIX, INT, I**R, R**R, value returned. 
D**R, I**D, R**D, 
D**D 

ATAN2, DATAN2 

CLOG 

Program name 

Many 

Zero returned. 

Real and imaginary parts both zero. 
Minus maximum value returned. 

A statement has been reached that 
had a compilation source error. dddd 
is the source line number which will 
always have been marked with an 
error message except in the case of 
an undefined label reference. 

This condition is automatically tested 
for in a large number of routines, 
but is not expected to occur. If it 
does, let CAl know. 

ENDFILE, FORMATTED, On a READ this means that an eli" 

UNFORMATTED of-file mark has b(;en encountered. 

FORMATTED 

FORMATTED 

D-11 

On a WRITE or ENDFILE it means that 
end-of-tape or end-of-media has been 
reached (but the requested WRITE 
has been done). If an END= was speci
fied, this message will not appear. 
Otherwise it will abort. 

Number in FORMAT statement is greate 
than 32K. This should only happen 
on FORMATs stored in arrays, because 
normal FORMATs will be caught at 
compile time. Abort. 

Syntax error in FORMAT statement. Oni 
on FORMATs stored in arrays. Abort. 



ttz i r·,,··td±'i!tiulO'.,. .. '+ .. 'TI!&WW .. '!9ii" t" H'W bLij* '1" "g'cl"'b" "t 'Ne 

Message 

ILLEGAL INPUT CHAR 

ILLEGAL OPERATION 

ILLEGAL REPEAT 
COUNT 

ILLEGAL UNIT 

it» 
, 

INCORRECT NUMBER 
OF ARGUMENTS 

INTEGER INPUT 
OVEHFLOW 

I/O 

~ 

NEGATIVE ARGUMENT 

NUMBER OF 
ARGUMENTS 

NUMERIC MISMATCH 

Routine Name 

FORMATTED 

BACKSPACE, ENDFILE, 
FORMATTED, REWIND,· 
UNFORMATTED 

FORMATTED 

COMPUTER AUTOMATION. INC. ~ 

Comments 

Illegal character in numeric input 
field. Abort. 

This operation cannot be performed 
on the requested device. Abort. 
Please refer to the following OS diagnos
tics for the various reasons this can 
occur: WRITE PROTECT, MULT WRITE 
ERROR, I/O BLOCKING OVERFLOW, 
and ILLEGAL OPEN. 

FORMAT repeat count of zero. Only 
on FORMATs in arrays. Abort. 

BACKSPACE, ENDFILE, The unit number is not in the logical 
FORMATTED, REWIND, unit table. Abort. Under OS, this 
UNFORMATTED will be preceded by the message "yy 

NOT FOUND". Note that if yy is in 

Many 

FORMATTED 

BACKSPACE, ENDFILE, 
FORMATTED, REWIND, 
UNFORMATTED 

ALOG, ALOG10,DLOG. 
DLOG10, DSQRT, SQRT 

FORMATTED 

D-12 

the table, but is not assigned to a 
device, this will cause the UNASSIGNED 
error (under OS) ~ 

A library routine has been called with 
the wrong number of arguments. 
Abort. FORTRAN compiled routines 
get the message NUMBER OF ARGU
MENTs. 

Input value exceeds 32K. Maximum 
value returned. 

Hardware error. Under OS, this will 
usually be preceded by DATA ERROR 
or HDWR ERROR, identifying the physi
cal device. Abort, unless ERR= exit 
specified. 

Absolute value used instead. 

A FORTRAN compiled subprogram 
has been called with the wrong number 
of arguments. Abort . 

. A numeric value is associated with 
a logical format, or vice-versa. Abort. 



" ,,¥3'(@W·" ·!Itt ftt .... '. W w' t# 'ct ' . 1" 95HIdl Y'*" %" t eW'fn,wwew 

• 

I e 

OUT OF RANGE 

OVERFLOW 

OVERFLOW 

PAREN NESTING 

REAL INPUT 
OVERFLOW 

SINGULARITY 

UNDEFINED 
SECONDARY 
REFERENCE 

COMPUtER AUTOMATION. INC. ~ 

Routine Name Comments 
----------~~~~~-------------------------

COMPUTED GO TO 

CABS, CCOS, CEXP, 
CSIN, CSQR T , DMOD, 
DTAN, DTANH, EXP, 
TAN,TANH 

1**1, R**I, D**I, C**I, 
I**R, R**R, D**R, 
I**D, R**D, D**D 

FORMATTED 

FORMATTED 

DTAN, TAN 

D-13 

The variable (v) is less than 1 or 
greater than n (the number of labels) . 
Abort. 

Maximum value returned. 

Exponentiation overflow or underflow. 
Maximum value or zero returned, 
respectively. 

More than eight levels of nesting. 
Only possible on FORMATs stored 
in arrays. Abort. 

Floating point input value too large. 
Maximum value returned. 

Tangent of (n+t)1'1' cannot be expressed 
Maximum value returned. Arguments 
near the singularity point may get 
the message OVERFLOW. 

The library is out of order or th( 'e 
is an error in the library or the generL\ 
ted code. Report this to CAl. 



iihftMttffMIM w ¢', \ 'It ':r1JDbf'1 .11"1 'Wlft .. 'btlttM!: eM 

~,I 

, I 
t , 
"'1 I 
Ii I 
I i Message 
:, I 
1.1 ';: xx DATA ERROR 

,I 
! 

I I 
~: 'I! 
II . 

zzzzzz DUPLICATE FILE 

!Oxx HDWR ERROR 

xx ILLEGAL OPEN 

1~~/0 BLOCKING OVERFLOW 

"I xx MULT WRITE ERROR 

I 

COMPUTER AUTOMATION. INC. ~ 

OS RUN TIME ERROR MESSAGES 

Return/ 
Suspend 

Ret 

Sus 

Ret 

Sus 

Ret 

Ret 

Comments 

Checksum or parity error in I/O transmission. 
xx is a physical device. This will be followed 
by an "I/O" error from FORTRAN. and the 
ERR= exit, if any. 

File name to be opened for WRITE already 
exists, possibly from your job, but more 
likely from a previous job. Choose a different 
name or delete the old file. zzzzzz is the 
file name. 

Hardware error. xx is the physical device. 
The record mayor may not have been transmit-I 
ted (e. g. a card moved from the hopper I 
to the stacker); it may be possible to deter- . 
mine this by the status indicated on the device.' 
Like DATA ERROR (above), this will be 
followed by a FORTRAN I/O error and possibly 
ERR= exit. 

A device to be opened for input or binary 
is an output-only or ASCII-only device, re
spectively, or vice versa. xx is the physical 
device. This error will only occur on the I 
first use of a unit number (when it is opened) . 
Subsequent uses would get the FORTRAN . 
ILLEGAL OPERATION error. 

Not enough unused memory for blocking 
buffers. Program is too large. This will 
be followed by a FORTRAN ILLEGAL OPERA
TION error. 

Two unit numbers are assigned to files on 
the same tape unit, namely xx. (Disks can 
support multiple files open for writing. but 
tapes cannot.) If you need to do this, you 
must call a machine language subroutine 
to close the old file when you are through 
with it. This message will be followed by 
a FORTRAN ILLEGAL OPERATION error. 

,1' ____________ _______ _ 0-14 

8 



, ttti't .'. 
'-

o 

, j"' t '11" 'tt S wnwy rtr.' 

Message 

yy NOT FOUND 

zzzzzz NOT FOUND 

xx NOT READY 

yy UNASSIGNED 

xx WRITE PROTECT 

Return/ 
Suspend 

Ret 

Sus 

Sus 

Sus 

Ret 

Comments 

The unit number yy is not in the logical 
unit table. (Only units 1-6 are included 
in the standard delivered system.) This 
will be followed by a FORTRAN ILLEGAL 
UNIT error. 

A file name to be opened for reading does 
not exist. zzzzzz is the file name. 

The physical device xx is not ready. 

The unit number yy is in the logical unit 
table, but is not assigned to a physical 
device. 

The'device xx is either a write-protected 
tape or disk or else a disk that is full. 
This error can come out on any WRITE, not 
just when opened. It will be followed by 
a FORTRAN ILLEGAL OPERATION error. Note 
that files used during FORTRAN execution 
are riot automatically deleted, and could 
accumulate until a disk was full~ It is 
good practice, therefore, to delete files 
when you are through with them. 

ERROR HALTS 

Error halts are used to indicate a serious hardware or system software malfunctivn. 
When ohe of these occurs, Computer Automation should be notified. Each halt is coded 
with an identifying value in the low-order 8 bits of the instruction, and ma¥ be 
observed, via the Console, in the I-register. 

FORTRAN Halts 

I=:08DC 

Console Data Register = :3CCO 

The floating point interpreter has 
encountered an unrecognized instruction 
during run-time. Report the condition to 
Computer Automation with all related 
program information (Contents of A, X, I, 
P registers, program listing, and, if 
possible, source input on cards or paper 
tape). 

An LSI-3/05 Uninstalled Memory Trap has 
occurred. This halt code was output by 
the Software Console routine. Locations 
:88 and :89 should be examined for the 
address and instruction, 
which caused the ,trap. 

0-15, 



, ! ' : N sr' Wit. t rtU'.It!N"irr 

~: , 

I 
, Console 

l 
I , 

I 

Data Register = 

i as System Halts 
f I 
~?l I=:0801 t 

f i i I 1=:0802 
;,! • 

ij I . 
~I i 1=:0803 

r I 
¥ I 1=:0804 
M 
I. 

RTX System Halts 

I 
, None. 

I , ;q, 

; 

I 
I 
I 

I • , 

I 

:3CC2 An LSI-3/05 Unimplemented Instruction 
Trap has occurred. Using the Console 
panel, inspect locations :84 and :85 for 
the address and instruction, respectively, 
which caused the trap. 

The CI device does not respond. Correct 
the problem and reload as. 

The CO device does not respond. Correct 
the problem and reload as. 

The Real-time Clock does not respond. 
Correct the problem and reload as. 

. Unrecoverable disk error. Notify Computer 
Automation. 

Unrecoverable disk error. Notify Computer 
Automation. 

., . : 

l ________ ........ ___ ~~~...:.'"_ .... < ....... D_ ... _l_6 _________ _:_ ....... ----------

• 

'-


