R g s R

- e et 5 1 i . . e AP e A -

ComputerAutomation
NAKED MINI.Divisicn

18651 Von Karman, Irvine, California 82715
Telephone: (714) 833-8830 TWX: 910-545-1767

FORTRAN IV OPERATIONS MANUAL

96510-01BU APRIL 1976

PRINTIO N THE U.S.A

TR R SN

T

TABLE OF CONTENTS

Paragraph Page
Section 1. INTRODUCTION

SCOPE . © ¢« v & v 4 4 4« o o o o o v o o 4o o o o o o o o o o o o v o e v+ 1-1

OPERATING ENVIRONMENT . &« & ¢ =« & & « o o o o o o o o o o o o o o o o o . lfl
Configuration for Compilation ¢ 1-1
Configurations for Linking and Execution 1-1

Section 2. FORTRAN IV COMPILER
PURPOSE © + « v & ¢ ¢ o o o o o o o s o o o o o o o o ¢ o o o o o o e v 221

- COMPILER ORGANIZATION . v « ¢ & o o o o o o o o o o o « ¢ ¢ o v o o o v o 2=1
‘ Comj:r1ler Modules e e e e e e e e e e e e e e e . 270
Control Program & & 4 ¢ v 4 4 e o o v o o o e e e e e . 2=2

Overlay 1 = Scan Phase o o o o oo .. 2=2

Overlay 2 - Allocate Phase+ v v ¢ v o o o s o o o o o o 2=3

Overlay 3 - Object Generation Phase . . . « v v v v o o o o o . 2=2

Batch Mode . . . o ¢ ¢ v vt b it e e h e e et e e e e e e e e e 2
Working Storage . .+ o« ¢ v v vttt 4 e e e e e e e e e e e e e ey 2=2

I/0 CONGIDERATIONS & v v v v v v 4 2 o o 4 o e e o e e e e e e s s e sy 2=3
' System File (SF) . ¢ ¢ v v 4 v v v it v e e e v e e e e e e e e e e 2- s

Source Input (SI) . + v v 4 4 4 e e e e e e e e e e e e e e e e a2
Source Save (SS) . ¢ v ¢ it btk e e e e e e e e e e e e e e e e 2=
Binary Output (BO) . . « v & ¢ v 4t ¢ 4 vt e e e e e e e e e e e e 2
List Output (LO) « v ¢ v v v v v e e et e e e e e e e e e 2

COMPILER LISTINGS . © & & v 4t o 4 v v v o v o o o o o o e e e e e e 2-4

i Source Listing (Page 0001) . . T e
’ Variable Storage Allocation (Page 0002) c e e e . e e 4 e e e e . . 2=10

I Ckiect Listing (Pages 0003=0005) . « v «v v v v o v 4 4 o o e o v v o 2271

@ Surmary (Page 0005) + + « 4 v 4 e 4 e e e e e e e e e e e e e . 2-1a
! UIFFERENCES FROM ASSEMBLY LANGUAGE . « « « = v v v v so e e e e e i v v 2-5
| COMPILER OPTIONS . « v v o o o o 4 o e e e e e e e s s 9y

EList (Error-only 1isting) v v v v v 4 ¢ 4 v v e e e . 2217
LObj (Object code listing) v v v v v v o v v v e .. 2-1m
NBinary (Suppress binary output) . © e e e e e e s e e i e e e ... 2-17.
RScratchpad (Reduced scratchpad usage) T B Y/
NScratchpad (No scratchpad usage) v v v o o o o o o o o . . 2-17
XOn (Compile "X" statements) v v 4 4 4 e o s e w v . . o218
ADp (Automatic Double Precision option) o v o . o o . . . 2-.3
ANsi (ANSI - compatible allocation) 2=19
TRace (Compile for execution with Trace function) 2-.3

iii |

T T T

ompuorhutomation \\, ——

TABLE OI' CONTENTS (Cﬂn't)

Paragraph

RTx (Compile for execution under the Real-Time Executive

RTX Mainline Sequence . . . e e
Mainline Entry Point (F: MAIN) ...
Input/Output Block (IoB)
Unit Assignment Table (UAT)
Parameter Blocks
RTX Task v . . o o « . .

Sample FORTRAN/RTX Listing
Mainline Example Description . . .
Task Example Description . . .

T3 (Compile for Execution on an LSI—3/05

COMPILER DIAGNOSTICS . . & v o & & « o o . .

Section 3.

GENERAL o 0 0 L0 0. e .. © e e e

e o e e e e e e
e * e e e e o

« e o e e

« e e e e o o
. e e e o
e o & e e o o o
e ¢ & e e e e
e o e e o o o

* e o e e o e o

Processor . . .

- e .« _ e . e o o

LIBRARY STRUCTURE AND LINK.ING

LINKING (0S:LNK) St e e e e e s 4 o s e a4 e e e e e e e
I/0 Device Assignments « e e et
OS5 :LNK Parameters « o« o e o o s
For Execution Under OS e e e o
For Execution Under RTX
Memory Usage c e e e e e .
OS:LNK Memory May « o v v o v o o o o o . . e e e o s a
OS:LNK Error Reporting e e e e e W
Section 4. RUN-TIME
JNTRODUCTION v v v v s w v e v o e e e e e e e W
I/0 DEVICE ASSIGNMENT C e e e e e e e e e e e e e
Device Assignment for Execution Under OS . . . o« e e e .

Device Assignment for Execution Under RTX

FORMS CONTROL FOR LIST DEVICES

POSITIONING CONTROL FOR MAGNETIC DEVICES . .

PROGRAM LOADING PRIOR TO EXECUTION . o o 4.
Loading for OS Execution
Loading -for RTX Exccution
Errors During the Load Procedure

PROGRAM EXECUTION & o o o o & o . . .
PAUSE Messages o«
Run-Time Frror Handling
Console Interrupt

e e o e . -
o o . - o . -
. . . . e .« e
* s & e o o e o
«. e - e o o -
o e - « e . -
e o o « e & + e
- o . . o .
o e - . . e . -
. .- . LY .
- - « o . e s e

RTX/I0X)

. . e .
. e o -
- . . .
- . e .
- . .
- - . .
- - - .
- . . .
e o . .
. - - .
. e o -
. . - -
. e e .
o o . .
- - . .
. . . .
. .« e .
- e e -
e e - .
. . .
- . . .
- - - .
. - .
. . .
- - .
. . .
- . - -
- - . -
. « o
- - o .
o o - .
. - - -
. - - .

Page

2-28
2-28
2-29
2-29
2-29
2-30
2-31
2-31
2-31
2-42
2-42a

w
|
-

]

w«,;:rfjgrciuwww
O b wwwN N

o

o—"

NS S

e it =

b e A

@ - PR v s | e e v, _.' mmm‘\m iﬁ.ﬁ) ?% npr——
TABLE OF CONTENTS (Con't)
Paragraph rage
Section 5. SYSTEM GENERATION
INTRODUCTION . & ¢ ¢ v 4 o v 4 o v o o v o . e o e ¢ v s e e o o e o o . 5-1
GENERATING THE FORTRAN COMPILER o v o o o o o . 5-1
GENERATING THE FORTRAN LIBRARY FILE c e e e e e e e e e e e e 5-3
0S Run-time Library Generation (F: OSLB) . . e e+ = e 4« 4 4 4 e e« o 5-3
LSI-2 RTX Run-time Library Generation (F-RXLB) e e e e e e e e . 5-4
LSI-3/05 RTX Run-time Library Generation (F3BRXIB) « 65-5
ADDING OR REPLACING LIBRARY PROGRAMS * o o s e+ e o s o s o o o 5=pg
ADDING FORTRAN LOGICAL UNIT NUMBERS TO OS . © e e o ¢ 4 e e e 4 4 e e . . 5-6
Altering the LUT in OS ROOT . . . v v v v & w v o v w o .. e« «. . 5-6
; OS i'ile Control Block (FCB) TableS . . . v &« v v o v o o v v o o . v 527
I F:RUNN Program o . v v v v v v v v v v v v e i i 5-8
. F:RUIN and R:RUOT Programs « « « v« o o & o o = v . . . 5-8
FCB Format o v v o v e e c e « e s« + « « 5-8B
Adding FCBs to the Tables v « v o o v o v w0 . « e o« « .« 5-9
ADDING A DISK DIB TO THE RTX LIBRARY FILE . . e« o o .%. e e e 4 4 e e e . 5-14
USER-CHFEATED SUBPROGRAMS e o o o + e+ e s e e « &« o 5=-.5
~ Accessing ArgumentsS 4 4w w4 e e e e e . . 5-le6
|
" Appendix A. DEBUGGING AIDS
. DEBUGGING AIDS . ¢ v & v ¢ v v o o o o o . e e e e e . e e .« e « « « A-1
! FORTRAN Trace Option A-1
. OS:DBG,RTX ZBG .« v v v v v o« o o o . e o o o & + e e e s ¢ e e o & + A=-1
l Appendix B. SAMPLE JOB SEQUENCES
@‘ INTRODUCTION . . v v v v v b ittt t it e e e e e e e e e e e e s s B
] TO COMPILE, LINK AND EXECUTE UNDER OS . e e s e e e e o o . .‘. e e « o« « B~
; TO COMPILE, LINK AND EXECUTE UNDER 0S, USING OS:DBG © « ¢« e e 2 e e« o o o B-1
TO ASSEMBLE MAINLINE, COMPILE TASKS, LINK AND EXECUTE UNDER RTX B-2
Appendix C. FORTRAN SUBPROGRAM LIST
FORTRAN BASIC EXTERNAL FUNCTIONS . . L o |
~ FORTRAN MATH AND I/O. ROUTINES o o o o ou oo c-2
s / v
-

- ComputerAutomation (sdyN& — ‘E%

TABLE OF CONTEN{S (Con't)
ﬁ Paraqgraph : Page -
g LSI-3/05 FORTRAN INSTRUCTION EMULATOR (F3EMUL) ¢« ¢ ¢« ¢ = = « . . C-7
"ORTRAN RUN-TIME I/0 INTERFACE ROUTINES (F:0SIO, F:RXIO & F3RXIO)4 e . . o C=7
Appendix D. ERROR MESSAGES/HALTS
COMPILER DIAGNOSTICS DURING SCAN PHASE . . . ¢ +v ¢ ¢ 2 « « ¢« o « « « « « D-1
COMPILER DIAGNOSTICS DURING ALLOCATE PHASE . . .« . ¢ ¢ o o « o &«) D-6
TOMPILER DIAGNOSTICS DURING GEN PHASE . « ¢« &+ ¢ ¢ ¢ o o « o o « o« o« « « o D=7
| OMPILER ERRORS (ABORT CONDITION) . . + . « « « + & « « o « « « « « « . . D-8
L ,
:. OS:LNK ERRORS . « 2 2 2 & o « = « o o o o v e o v e 4t e e v e v v v .. D8
' DIAgnosStiCS & & + 4 o ¢« o ¢ + 4 o s o o o 4 e« s s s 4 & o s e . « . D-8
; Termination EXXOrs . « o o« « v = o« « o« « « = = « « o « « « =« « « « . D=9
I/O EXYOYS =« « o + o o o o o o o o o o o o o o o o o = o « o+ o« « « D-10
FORTRAN RUN-TIME ERROR MESSAGES . . &« &« ¢ « ¢ s o « o o o = a e« « « « « +» D-11
US RUN-TIME ERROR MESSAGES . . « « o o o 2« o 2 s s s« o o o « o o« « « « « D=14
fIRROR HALTS . . ¢ o & o o o o o o o o s o s o o o s a o s o« s o o« o« - « « D=15
FORTRAN Halts . . ¢ ¢ ¢ o o 4 « o o o o o o « o o o a o« o« o« « « « « D=-15
OS System Halts . ¢ o ¢ ¢ v ¢ & ¢ « o o e'a o o s « o = o« « o« « o« o D-16
RTX System Halts . ¢ . . ¢« v ¢ & ¢ & ¢ 4« ¢ o ¢« o o « « o« o« « « +» « « D-16
- LIST OF FIGURES
‘ Figure Page
a 1-1 FORTRAN Operation Sequence ¢ v ¢ ¢« « « o « o o « o« 1=2
2-1 FORTRAN Compile-Time Memory Layout . . . o « o « o o o o « o . 2-1
=2 Sample FORTRAN Output Listing + v ¢ v 4 & &« v « o« « o« 2-5
o 2-3 Compilation without ADP Option Example ,. 2-20
2-4 Compilation with ADP Option Example .« . « & « ¢« « ¢ o o o« « o o 2=22
2=5 Listing without ANSI Option Example « « « « « « « . 2-24
C 26 Listing with ANSI Option Example « 2=25
2-7 FORTRAN/RTX EXAMPle « « « =« o 2 o o o o o o o o o o o o o« v o« o 2=32
-8 FORTRAN/RTX Example for LSI-3/05 . . & v v v ¢ 4 ¢ o o o« « « . 2=43
C 29 Compiler Diagnostics Example « 2-45
_ 3*1 OS:LNK Memory Allocation for OS Execution 3-5
3-2 0S:LNK Memory Allocation Map for RTX Execution 3-6 -
; 3-3 Link Map Example & 4 & . 4 4 4 4 e e 4 a o e .. 3=7

‘ TABLE OF CONTENTS (Con't) ;
? ;
i !
r Paragraph . Page :
&)
1 5~1 Compiler configuration when more than 16K memory 5-2 i
5-2 Compiler configuration with 16K memory « « « « . . B5=-2
5-3 Sample FCB Tables & ¢ ¢ ¢« 4 e« 2« o« « o« = o « « « « 5-10 :
5-4 Sample FORTRAN DiSk DIB . . « ¢« ¢ v o « o« o« ¢ o o« o o o o« « « « 5=15
- 9
A-1 Integer and Floating Point Sample Listing A=2 ‘
' ;
{
|
¥
i
y !
| 3
|
i
O ~
\
vii

bt

e

Section 1

INTRODUCTION

SCOPE

This manual is intended to aid the Computer Automation FORTRAN IV programmer in
compiling and executing his programs on the ALPHA-LSI series computer. It assumes

that the reader knows how to write a FORTRAN program and is familiar with the FORTRAN

IV Reference Manual, as well as the Computer Automation Operating System (0OS) User's
Manual, since compilation and linking must be, and executicn may be, performed under
control of the Operating System. Also, since FORTRAN programs may be executed under
the Real Time Executive (RTX), the reader should be familiar with the RTX User's
Manual as well if he intends to use the RTX or LSI-3/05 options.

The discussions are organized in a generally chronological order, according to the
normil sequence of operations; that is, the FORTRAN operating environment and the
Compiler are described first, followed by library structure and linking, and then
run-time (execution). Thus the manual is structured similarly to the normal FORTRAN
operation sequence (see figure 1-1). k

System generation procedures are described at the end of tﬁe manual, as they are
issued less frequently.

OPERATING ENVIRONMENT

Configuration for Compilation

\
The FORTRAN IV compiler requires an ALPHA LSI-2 processor with at least 16K words of
memory. A Computer Automation Operating System (DOS, MTOS or COS) must be present

i
as well as an OS-labeled bulk device for intermediate storage of the source information.

The typical system, assumed for the examples in this manual, is a Disk Operating
System (DOS) operating in an LSI processor with card reader, ASR-33 teletype, high
speed paper tape reader and punch, and line printer.

Configurations for Linking and Execution

Once compiled, the output (object) program is then linked to the library routines it
needs by means of the OS:LNK utility before it is executed. (The library routines
are rot included in the object output during compilation, so as to conserve space at
execution time.) If the user intends to execute his program under OS (and not RTX)
OS:INK will assume that execution will take plarce under the same version of 0OS as
the one which controls OS:LNK itself. This means that the linked program may not
then be executed under an OS which has a different Root configuration or a different
working core address. However, linking a program for execution under RTX causes the

entire RTX/TOX monitor to be included within the linked program. Thus such a program

may be loaded into any ALPHA-LSI processor and executed, provided that the processor
contains sufficient memory to hold the linked object program.

s b R

| COMPUTER AUTOMATION, INC. Eg —_—

FORTRAN program is coded, then stored onto suitable
‘input medium (cards, paper tape or magnetic file)

!
&

 —ct R

Source is input to compiler, which manipulates and
coniverts it to object format, using an intermediate
bulk storage file.

Once converted, the compiler outputs source and

| ob: ot listings, allocation and subroutine usage maps

. to the list device. [t outputs the compiled binary
' co.oin the requested form (magnetic file or paper
tape) .

The compiler-generated program is input to the
link editor (OS:LNK), which links it to the required
library routines.

©

Tt linked binary code is then output in standard
loadable format.

Thema v oowesgesie o e gt TWSIIUDoY stoorane

INTER-
MEDIATE

CODING
FORMS

STANDARD
SOURCE INPUT

COMPILER

LIBRARY
ROUTINES

LISTINGS

™ OS:LNK

)

" BINARY —
OUTPU

LINKED
BINARY

i

Comperomabon \J\, ——

Compilation and linking of a program to be executed on an LSI-3/05 processor must be
done with the type 3/05 option specified. Execution can only be done under RTX,
since OS itself is not supported on the LSI-3/05.

) COMPUTER AUTOMATION. INC.

Section 2

FORTRAN IV COMPILER

PURPOSE

The purpose of the FORTRAN compiler is to input each source record (FORTRAN statement)
through the source input (SI) device, convert the program statements into their component
machine-language instructions utilizing the assigned Source Save (SS) device to assist
with intermeiiiate storage requirements, and then to output the linkable (but not loadable)
binary code io the assigned binary output (BO) device, and the source listing and alloca-
tion map to the assigned list output (LO) device. (Note from figure 1-1 that the compiler
does not produce a program which is directly executable; the program is linked to

the needed library routines and converted into standard loadable format, and then loaded |
by one of the standard loaders.) |

o COMPILER ORGANIZATION

Compiler Modules

source programs one at a time, in a batch mode. It is configured as a control program
and three overlays resident on the system file (SF) device (see figure 2-1). Note that
an alternative configuration is used when only 16K of memory is present. This involves ‘
the Scan and Gen overlays being further segmented into 3 overlays each. A complete i
description of this organization may be found in the System Generation scction - Generating ',
the FORTRAN Compiler. '

The FORTRAN compiler is a three-phase, two-pass compiler which processes FORTRAN i
i
|

: 0000 Scratch Pad

£ 0100
0sS

| FORTRAN Control Program |
(FORT: 4) |

I/0 Buffers

i

'Overlay Overlay Overlay |

1 \ 2 3 g

(Scan Module) (Allocate Module) (Gen Module) '

FORTRAN Working Storage Tables

:nFFF

Figure 2-1. FORTRAN Compile-Time Memory Layout

e

/ 2-1

é Coﬁtrol Program

. The control program, utilizing the FORTRAN/OS i/0 Interface routine, causes each .
; overlay to be loaded, then passes control to it. . When each overlay has completed]
- | its processing it returns to the control program, which then calls the next overlay.

The control program also handles all input/output and other communication to the
| opecrating system.

Overiay 1 - Scan Phase

The Scan phase inputs each record of the FORTRAN source program, builds symbol

tables in its working storage area and outputs the source program listing and syntax-
type «rror messages to the LO device, and the intermediate program code to the SS
bulk device. The Scan phase is completed when a FORTRAN END statement is encountered.

Over.ay 2 - BAllocate Phase

0(iillocate phase uses the symbol tables created during the Scan phase to allocate
| -orage for program variables. It then outputs, to the 10 device, the allocation
l map ..»d error messages for any COMMON, EQUIVALENCE or undefined label errors.

Overlay 3 - Object Generation Phase v . ;

«

The Unject Generation (or "Gen") phase operates on the intermediate program code
storec onto SS during the Scan phase, together with the étoraqe allocation information gl
prod.ced during the Allocation phase, and from these it outputs object code to the

BO device, and symbolic object text to the LO device (if requested). It then outputs

the subroutine usage map, statement label location list and program size information
to the LO device.

| Batc' Mode

 The "“atch" mode organization of the compiler means that completion of the Gen phase

I tove .ay 3) causes control to return to the control program; this in turn calls
srtay 1 again, etc., until an end-of-file condition is sensed from the Source

inpu: device. Each compilation is a complete sequence of procedures. (Various

compiler options exist to permit the operator to tailor the compiler output to his
specific needs - see Compiler Options.)

o Working Storage

To make maximum use of available memory, the compiler dynamically allocates its
| working storage tables, thus each table is variable in length so that no table can
; be completely filled if any unused memory is available.

sy

Srie e Sk ST

Ry

1/0 CONSIDERATIONS

The compiler Control program, which coordinates overlay calls, also handles I/O
requests to the Operating System. Since the standard OS I/O drivers are used, all
I/0 is interrupt driven, rather than sense-driven. These requests are made to and
from the following logical units, which must be assigned to physical devices prior
to beginning the compilation: .

System File (SF)

This is the file containing the compiler itself (control program and overlays). . It.
should reside on a file-type device (see System Generationj.

Source Input (SI)

This 1s the file containing the source records (FORTRAN statements) to be compiled.
It may be assigned to any OS-supported input device (card reader, teletype keyboard,
paper tape reader, or magnetic device file). The standard length for 0S source
input records is 80 characters. However, less than this number may be input if a
recurd is terminated by a carriage return character. In addition, even though OS
will input 80 characters, the compiler processes only the first 72 as a valid state-
ment. Characters in excess of 72 are treated as comment characters and ignored in
the compilation. : ‘

3
A complete source input file is comprised of one or more FORTRAN programs, each of
which must contain an END statement as its last record. The file itself must be
terminated with an end-of-file mark. T1f the file contains two or more programs,
each program is compiled before the next is input, in a "batch" mode. Processing of
a batch file will result in binary output of a single file, however, and is to be
used vnly for a main program followed by subprograms (subroutines or tasks). It is
illegal to input two or more main programs (which do not reference each other) in
the hatch made.

Source Save (55)

This is the file created by the Scan phase of the compiler, and must be on a file-
type device. The data written to this file is the source information, in abbreviated
formm. The data is later read back into memory during the Gen phase of compilation.
It is normally not necessary for the user to assign this file before compilation,
since its normal default assignment is to the system file device under the file name
"S:::5". However, it may be assigned to any file-type device, if desired, and a
different file name may or may not be included in the assignment. In any case, the
SS file will be set up by the compiler under the "close/delete" format, which means
that the file will automatically be deleted upon completion of the Gen phase.

2-3

Computoriutomation (A} ——1

Binary Output (BO)

This is the file to which the compiled binary code will be output during the compiler's

Gen phase, and which must be subsequently linked to the FORTRAN library file by the -
OS:LNK utility. It is normally assigned to a magnetic file or to the paper tape
punich.))

' Format of the binary output is in standard Computer Automaticn object code format,
including several type codes designed specifically for the FORTRAN compiler. This
output must be subsequently linked with the applicable library routines using OS:LNK
rather than LAMBDA or OS:LDR. OS:LNK recognizes all of the specialized type codes
used by FORTRAN, while LAMBDA and OS:LDR do not.

List Output (LO)

This file should be assigned to the list device for output of the compiler-generated
listings which include source listing, diagnostics, allocation map, object listing
(if specifically requested), subroutine usage map, statement label locations, and
proyram size information. '

o,r\:»,.:ignmr'nt of the SI, SS and BO devices should be made with a thought to optimizing
1/0 throughput. For example, since the four compiler modules must be input from the
SF device at different times during a compilation, compiling under MTOS with the SI,
SS or BO file also assigned to the System file device will cause markedly slower
op-ration due to excessive tape repositioning. While this is nbt a problem under
DOS because of the disk's random access capability, assigning several logical units
to the SF device will require partitioning of the disk into 4 or 8 partitions.

COMF1ILER LISTINGS

Ficure 2-2 is a sample FORTRAN output listing:

2-4

PA(}

Uiyl

Bl FILE:

0441 L

Paire
R
2ioa
Pd&o
Ao
Ryn7
primy
LI
24t d
6711
pJtL2
g1
@414
["ERE)
IS)
9117
dA1
Pult s
#4219
BdJd2i
PO
Pd2s
M4
512
PJ2u

#Hdy

]

24

51
b

69/24/774

FOuT

19:13:46 FORT:4 (A1)

OPTIONS: Lo

VEMONSIRAIL OHJECTYT LLISIING

INIEGER NNC25), LLOIW)
DyJdBLE PRECISIUN DX, DY
COMMUN MM(20WY, M /PLK/Z Y
EQUIVALENCE (LoLL)

IS (KD}

z KDe8

K = (1 +300)%4 = 74

MM{I) ® K

x = ABS(Y#4)

Ox = DABS(DY/4.3)

CALL SUR(L+3uN,7HABLUE ,Y+4)
ARITECG,30) Y

b FORMATC SX » Ib o ' vALUES,')

IF (K .Eg, M) GO TO 14

AUSEMBLER
LaP 12A
ADD K ‘ (LOCAL VARIABLE IN RANGE)
3TA *HP (MY SNAMD (SPECIAL SYSTEM NAME)
JiP w69 . (FORWARD REFFERENCE IN RANGE)
RES J2.' {10 FORCE LIVERAL POOL)
FURTRAN i

D) 6n I = 3,10 '

MM(I) & =i

ASSIGN 4y TO K

MN(3) =» p

3

B1) UNDIMENSIUNED E#EAE#ERE*EAEAEXF#EWECE#ERERENEWEWE e EREREAENE#E @ E#E#EwE wt

pyr7’?
nu24

7

STuk
END

Figure 2-2. Sample FORTRAN Output Listing
2_5 . i

PAGL. D222 09/24/74 15113346 FORT:d (A1)
30 FILL: FAuT UPTIONS] L0

CUMMNN LLUCK/C3B8CHY, ALLOCATION 10365 WORDS

L LOCH Nave TyRF WORDS LOCN NAME TYPE WURDS
t420d M INTEGER 190 1uB64 M INTEGER 1

T JMMON BLJCKZBLK /7 ALLOCATION 18482 WORDS

LUCN NaMi Tybf WORDS LOCN NAME TYPE WORDS

LT nEAL 2

ARAY ALLJCATION

CrdCd Nate o (YPE WORDS LOCN NAME TYPE WURDS

aaae NN INTEGER 25 '

T WJIVALLNGE ALLUCATYION

CLOCN NAME TYPE WORDS LUCN NAME TYPE WORDS
622 L INTEGER 1 o022 LL INTEGER 10

SLALAKR AL{.OCATIUN

LUCN - NAME TYPE WORDS LOCN NAME TYPE WORDS
(4820 K - INTEGER | 312920 1 INTEGER {
1 AALE X KEAL 2 10338 DX DOUBLE 4
9134 Dy DOUKLF 4

.

Figure 2-2. Sample FORTRAN Output Listing (Cont'd)

2-6

PAGE 9803 09/24/74 16313346 FORTid (A1)
BO FILE: FOJT OPTIONS: LD

gyt ¢ DEMONSTRATE OBJECT L1STING
Pdne INTEGER NN(25), LLC(1B)
2383 DOUBLE PRECISION DX, DY
P904 COMMUN MM(100), M /BLK/ Y
pges EQUIVALENCE (L.LL)
Pude ISF(KN) = KD»8
. 1036 3F270 F JMP #M7
310039 30800 wME ENT
30u3A :F902 B J8T *BP(F3RDMY)
10438 :17Mg0o1 DATA 1
1A03C 1000Qu KD DATA @
$0U3D :B701 LDA *KD
1A03E 1052 ALA 3
INJ3F 3F7P6 JMP "yMy
ganz 19 K = (L+300)*M - 74
; 10440 wM2 EQU 100492
ﬂ :0049 1B202 F wili LDA #IC1H talac
! 1P04] 3BELF ADD L .
| (W t0ud2 39A0D F STA #T0 .
10543 :F9090 8 JST *BP(FSRMPY?
1044 37064 C DATA M
10043 :004A SAL 74 |
10046 $9E1A STA K :
ryg MM(I) = K
» 10047 tE61A Lox 1
- 1Ma4n 19008 o SIA #*eBP(MM -1)
vda X 8 ABSfYed)
$A049 sF9P2 b JsT *BP (FSRREL)
tPI4dA 2AADD F LDR #RC1Y : 1418080020
1301h 18904 B ADD "BP(Y) ,
3A2AC 19AMY F STA LAD!
'0e4L 300805 ABS
© 31004E 39E20 STA X :
euto DX = DABS(DY/4.3) o .
tPu4F :1B618 LDD DY
tAUS0 31A200 F DVM ¥RC2 $4189389999
‘}‘ :Pu51 310005 ABS
10u52 1922 STA DX
go11 - IF (DX LY. 2) GO TO 7@
tAyYS3 319000 X1T
. 10054, 32080 F JAM #M9
fyiz CALL SuB(L+300,7HABCDE ,v+4)
, : 10355 1F900 B JST *3P(SUB)
20056 18003 DPATA 3
10957 10800 F DATA %70 '
10258 20300 F DATA #HCQ
10059 10000 F DATA #T7%
P43 22 WRITE6,38) Y ~
' 1PI5aA 1F9?3 B w22 J87 *BP (FIRnF)
1P56 17004 F DATA wICS $20@6
~ 1g8e 100 DATA #3090

[N o Ao g S S o e i

st far

s

. PAGE ald4 89/24774 15113346 FORT:4 (A1)
d0 FILE: FOuTY UPTIGNS: LN

tAuSD sF924 B JST #BP(FIRROLY
: 19U5¢ 108003 ¢ DATA Y
: 1NQSF 3F9%0 B JIST *BP(F3RSIQ)
P44 3o FCRMAY(5X » I5 , * VALUES,') ' o
. 1P@NY, tABB5S w3 TEXT Y(5X,I5,' VALUES,.')!
pa's IF (< .EG. M) GD TO 1@ :
tBpbp 1B634 LDA K
10061 19108 B sSuR *BP (M)
1M362 12100 F JAZ #ni0
1A04Q #M1@ EQU 10040 .
B416 ASSEMBLER
8oLz LAP 12A
163 :1C62A LAP 1UB2A
Ppis ADD K (LOCAL VARIABLE IN RANGE)
iM464 tBE38 ADD K
- p@1y STA *3P (MY INAM) (SPECIAL SYSTEM NAME)
| 10065 19902 B STA #BP{MYtNAM)
| "?u JMP w50 (FORWARD REFERENCE IN RANGE)
! 13366 1F204 F JHP #5090
 pu2i WAy RES 32,1 _ (TO FORCE LITERAL POOL)
1RI67 3ADAD %A RES 32,0
Pyr2 - FURTRAN ‘ L
2023 %3 DO 60 I 3 1,19 , ¢

104R7 €40} w50 LXP 1
1MJIB8 1Lid Wit 37X !

2224 60 MM(1) & =i
1AL89 10701 %60 LAM 1
1A08A 39000 B STA *eBP (MM i)
B4d2% ASSIGN 4y TO K ‘
1?My8y 1C2014 AXI |
10380 194039 TXA
1280 1ADPA SAl 19
rAYBL 3121C6 JAL #Mil
{@N8F 1B22J F LDA w40
12994 1F208 F wl JMP wHi2 LITERAL POOL
tAJ01 FCQA F JMP #MO
. PLY :9[66 wMi2 STA' K
2670 HN(3J s ¥ '
91) uNDl“FNSIONED EAE R A ENEAENENEAE A EWE R ENERF AEREAENERESERERERERERE4EEREwEwE
1093 1FS02 B J8T *BP (F3RERR) !
1MeQs 1TRLA JATA 28
;ﬁguﬁ 17cdd F TATA $5C4 16306447
cén\« # o ::Y"i'.'
; PR 7 Ts. 1wl
TR 1T 23 R WS 137 RIZFIIITTY
T X A |

i ki

PAGL 9085 09/24/74 15313148 FORT:4 (A1)
80 FILE3 FOUT OPTIONS: L0

X ' 17599 244189 wRC2 DATA 16777

tPYI9C 39999 NDATA =26215
tNL50 19999 DATA =26215
tAJ9E 3$999A DATA =26214
1OA9F 30002 #T0 DATA @
1RPJAY 3Bp0P w1l DATA O
tAgAR 3067 DATA #40
iANA3 10007 DATA 7
tA3A4 3C1C2 wHCY DATA 'AB
1nJA5 3C3C4 DATA 'cD?
t00A6 31CHAD DATA 'E
1PUA7 sADAD DATA ¢

tPRAE 10976 wIC5 DATA 6
tAYAY 363C6 wRC4 DATA 25542

tOUAA 24167 DATA 16743

! SUPPROGRAMS ©aLLED '

; C NAME. TYPE AKGS NAME TYPE ARGS NAME TYPE ARGS.

| ABS REAL 1§ DABS = DOUBLE 1. suB REAL 3
FtRAF RUNTIME FERROL RUNTIME FIRSIO RUNTIME
MY:NAM RUNTIME F3RERR RUNTIME FIRSTO RUNTIME
Fiiuge RUNTINME F:RREL RUNTIME FIRDBL RUNTIME

_ i:RFZ RUNTIML FERFF RUNTIME FIRDMY RUNTIME

FeRMPY RUNTIME

STATEMENT LARELS

LOCN LABEL USE LOCN L.ABtL USE LOCN LABEL USE
tWNa4d wio ‘ 10096 %70 t0O5A #2D UNUSED
PdAUR %Jp FORMAT 12087 #%0 13067 #4p
10069 wha o0 EnD 14040 w7 100390 #MB
19396 #MQ 14040 w#M1D 19088 #M11

‘» SYA92 wML2
ENTRY®SO038

PROGRAM SIZEw3;@YAB ACRDS
BAsL PAGE USEC=30u0D WORDS
CUMFILATION COMPLETE | ERRORS

Figure 2-2. Sample FORTRAN Ouitput Listing (Cont'd)

L et

g Lt

i

COMPUTER AUTOMATION. INC. @

‘The full listing of a4 compiled program consists of four parts:

Source listing

Variable storage allocation
Object listing

Summary

B N

When no special options are requested, the object listing is not produced, but the other
three are. The LO (List Object) option causes the object listing to be produced. If the
EL (¥rror List only) option is specified, the source listing is suppressed, except for
the first line and any lines that have errors. This can be used to save time and paper,
while still being informed of any errors. Figure 2-2 shows a complete program listing.
Following is a description of the four parts.

Source Listing (Page 0001)

“he source listing shows each source line, preceded by a decimal line number beginning
with §001. One space separates the line number and the first column of the source line.
Every line i3 numbered, including continuation lines and comments. If EL (Error List
only) is requested, the first source line is automatically output, and the correct line
number will be shown for any error source lines. Error messages may be interspersed,
as shown after line 0026 of the sample program in figure 2-2. Note that each such message
is followed by a string of E's (or W's) and asterisks, so that it will stand out. See
"Compiler Diagnostics" for more information.

Variable Storage Allocation (Page 0002)

Sevceral kinds of tables can appear here, depending on the variables used in the program,
and their aliocation. If any variables have been allocatéd in COMMON, a storage map

will appear for each COMMON block, including blank COMMON which is known as F: BCMN.
Tach map gives the name of the block and its size in hexadecimal. Then each variable

. @s listed, showing its location (in hexadecimal), name, type, and size (in decimal).

The size is the total number of words occupied. Remember that floating point quantities
occupy more than one word per element. (Others may too in ANSI mode.)

If there are local (non-COMMON) arrays that have not appeared in EQUIVALENCE, these
are shown next, with the same information as for the variables in COMMON. Next comes
the map for any local variables (arrays or scalars) that have appeared in EQUIVALENCE.
And finally, a table of all the local scalar variables (not in COMMON, not EQUIVALENCEd).

b A table hpadmg appeurs only if there are any items to appear in it. The variables in

Latee? moiboes oy grdaer 3vooent Lo e v

"—'_“’(:5); :‘:’.:m ‘ «.\,;-wj* Ww;f'w'

S e g teenr NGE SE tresee TUhigg ma ol st S0 IS W LTV S

SRS N N AN I A vl D e

e R

R s T Rt

in forward order, beginning at the entry point and ending at the last temp or constant.

COMPUTER AUTOMATION, INC.

Object Listing (Pages 0003-0005)

Figure 2-2 shows a sample object listing. Some descriptions below refer to it, either
by source line number or by hexadecimal location.

An object listing always includes all source lines, even if suppressed in the source listing
by the EL (Error List only) option. The source lines are interspersed so that in most
cases they are followed by the instructions that were generated for them. When examining
the object code produced for one individual statement note the following:

1. The compiler does not generate object code one statement at a time. It remembers
computations and the contents of the registers from previous statements within a
block. (A block is ended by a label that is jumped to or in other ways.) Therefore,
the code for one statement may look incomplete, since it is making use of results
from previous statements. See, for example, source line 0012, which uses two values
computed earlier and stored in temps, line 0011, which uses the contents of the floating
point accumulator, and line 0024, which uses the contents of the index register.

2. Literal pools may be generated at almost any point in the program, making the code
- for that statement look longer. :

3. The code to terminate a DO loop is not listed after the terminal statement, but after
the following statement. This is illustrated by source line 06025, which also contains
a literal pool, thus making its two instructions look like eight.

The layout of an object progfam is shown in figure 2-3.

: 0000 FORMATSs

Local Arrays

EQUIVALENCEd variables

Local Scalars

Entry | Object code
°

Temps and Constants

\
Figure 2-3. Layout of Object Program / : “
The allocation of variables was shown in the allocation maps, so is not reproduced in the.
object listing. The FORMATSs, although generated apart at the head of the program, are i
listed where they appear in the source program. Here the program is not listed in strict
forward order (i.e. the memory locations are not listed sequentially). Another place
is the temps at the end of the program. For the most part, however, the program is listed !

9-11

A SRR

e seon

seea

COMPUTER AUTOMATION, INC. Eg B

‘Each line of object rode listed consists of seven parts (four of which are optional) and
from left to right these are:

1.

c

The hexadecimal location counter. See below for a complete list of the situations

“in which the location counter does not increase by one at each line.

The hexadecimal representation of the generated word, which may be an instruction

or a data value. In many cases, this is only a skeleton word, since the actual address
is not known at the time it is listed. This includes references to COMMON, externals,
hase page, and most forward locations. Also, an instruction may turn out to be indirect
through a literal pool pointer, even though it is not listed that way. '

An optional alphabetic tag letter, which indicates for some operands the kind of ad-
dressing that the generated word is actually using. These are:

v

B Base page

C COMMON (blank or labeled)
F Forward reference

S Scratchpad Relocatable data

I'hese next four items in the line are parts of a simulated assembly language listing
of the instruction. It is not always possible to list the instruction exactly as it would
appear in assembly language, but in most cases the representation is very close

and makes it clear what the compiler is doing. See below for a list of differences.
The first field is the label field, beginning in column 1 of the simulated assembly
listing. For normal instructions (i.e. not temps, constants, or literal pools), there
are three kinds of labels that can appear:

#n Statement number from the source program. (For example, see location
: 005A) .
#Mn "Made" labe’, an internal transfer point generated by the compiler.

(k.g. location : 0040, which is the target of the jump around the statement
function above.) Note that in this case there are two labels attached
to the same location.
name This occurs only on the dummies of statement functions (e.g. location
:003C). The dummies of FUNCTIONs and SUBROUTINESs are not labeled,
nor is the entry point.
Several other kinds of labels can appear in special places:

#I'n Temp. Appear at the end of the program (e.g. location : 009F) .

#ICn Integer constant. Usually appear at the end (e.g. location : 00A8),
but can also appear in literal pools.

#RCn Real (or double precision or complex) constant. Appear only at the
end of the program (e.g. location : 0099).

2-12

#HCn Hollerith constant. Appear only at the end {e.g. location :00A2),
and are always preceded by the character count.

#L Literal pool. This label serves only to signal the beginnii.g of a
literal pool (location :008F). It is never referenced, and can
appear more than once without constituting a duplicate definition.
It always appears on the jump around the literal pool, and therefore
does not appear on pools generated by the LPOOL directive. !

5. Op-code field. BAll of the possible op-codes are shown in the section on in-
line assembly language in the FORTRAN Reference Manual. They are all either
standard assembler mnemonics or floating point interpretive op-codes. '

6. Operand field. Where appropriate, it may begin with * (indirect) and/or @
(indexed). A large variety of operands can appear, some only as the result of
having been used on an in-line assembly instruction.

a. Blank. For op-codes like TXA or ABS that have no operand (e.g. location
:0039).

\ b. Decimal value, optionally preceded by minus sign (location :0045).
| c. Hexadecimal value, always preceded by a colon (location :0063).
d. Alphanumeric string, enclosed in quotes (locatioqv:OOAZ).

e. #n (statement label) (location :005C). Can be followed by decimal addend
only from in-line assembly.

S

f. #Tn (Temp, e.g. location :0042), #Mn ("made" label, location :0038), #ICn
(Integer Constant, location :0040), #RCn (Real Constant, location :004A), “
or #HCn (Hollerith Constant, location :0058). ;

g. $ (current location), optionally followed by a decimal addend. This can
occur only from in-line assembly. Otherwise the compiler always generates
a "made" label.

h. FORTRAN name (variable or subprogram), optionally followed by decimal
addend (location :003D or :0047).

‘:@ i. Special system (or run time) name, which always contains a colon (location

' :005F or :0065). As shown, these are usually in combination with a BP

(Base Page) reference, since most instructions cannot address external

references directly. '

J. BP(x), base page reference, where x is a FORTRAN name or System name,
possibly with an addend (location :0048). BP of other operands can result
only from in-line assembly language. ' ‘

e

R

COMPUTER AUTOMATION, INC.

e 7 o

NOTE

-

In certain cases (notably ¢, f, and h above), operands
’ may be listed as direct when, in fact, they turn out

t to be indirect through a literal pool pointer word,

. because they are out of range. The only way to deter-
' - mine this is to look at the actual word in memory

i after the program is loaded.

e g o

oo rces

7. Comment field. When numeric constants are referenced, their hexadecimal value
is shown in tiie comment field (location : 004A). This value may differ by one
bit from the actual value printed at the end of the program, because the rounding
is not applied until then. Note that on location : 0050, only the first three words
uf a four wor:i constant are shown, because the printer line width was not large
cnough to fit them all in.

Summiary (Page 0005)

t'he summary is printed immediately following the object listing, if there is one, otherwise
following the allocation tables. First the subprograms called by the program are listed .
This includes functions and subroutines referenced explicitly by the program, as well

as run-time routines refercnced by the generated object code (e.g. for floating point,
input/output, etc.). Names referenced by the program are FORTRAN names, i.e. begin-
ning with a fetter and containing only letters and digits: Run-time routines are non-
FORTRAN names, because they always contain a colon (e.g. F: RWF, F: RREL). This -
may includce special system names referenced by in-line assembly language (e.g. MY: NAM
in the sample program).

The table shows first the name of the subprogram. Next is the type (e.g. REAL, INTEGER)
if it is a FORTRAN referenced name, or the word RUNTIME otherwise. Then, again for
FORTRAN referenced subprograms only, appears the number of arguments it has been
called with. 1f the number of arguments is variable (e.g. to AMAX1) or unknown (name
' declared external but not directly called), the number of arguments is shown as zero.
‘ o%‘xth the exception of intrinsic functions, this list of subprograms called represents the
! names that must be found during loading, either from the library or from other programs
compiled or assembled by you. Intrinsic functions (e.g. ABS) are listed here but are
not actually referenced externally. They are generated in-line.

Second in the summary is a map of the statement labels. This includes the statement
numbers used in the source program and also the "made" labels generated by the compiler
(#Mn). They appear in the order defined or referenced in the object program, which
¢ is not necessarily storage order. Each entry contains the hexadecimal location, the label,
- and in certain cases an indication of the use. There are three such indications:

FORMAT This is the label of a FORMAT statement.
l DO END This has been used only as the terminus of a DO.
‘ UNUSED This label was defined on a statement, but never referenced.

gl . : 2-14

s s e

e g

& COMPUTER AUTOMATION. INC.

Finally, four pieces of information are given about the program:

JLocation (in hexadecimal) of the entry point.

Total size (in hexadecimal) of the program, including local variables but not COMMON.
Number of base page words used (in hexadecimal). ‘
Message COMPILATION COMPLETE followed by the number of errors (even if zero).

=W o e

DIFFERENCES FROM ASSEMBLY LANGUAGE

As noted above, the simulated assembly language listing of the object program is an appro- §
ximation of how the program would appear in assembly language. In most cases it is
exactly the same, but there are some differences you should be aware of, both to aid your
understanding of the generated code, and also in case you should try to extract code

from a compiled program and use it in an assembled program. These differences are
listed below.

‘1. Operands that are out of range are not always shown as referenced indirectly through
@ a literal pool pointer, even though that happens. This can happen on statement num- ;

bers, "made" labels, temps, and floating and Hollerith constants. For example,
location : 0054 shows a direct reference to #M9, but actually ends up being indirect j
through the literal pool address in location : 0091.

2. Similarly, references to array offsets that have to be stored in temps (in No Scratchpad
mode) may show just the name of the array, when they actually address a constant
containing the array base minus an offset. !

3. Also in the same vein, the ASSIGN statement lists a load of a statement label instead
of a constant containing the address of the label (e.g. location : 008F).

4. Instead of increasing by one each time, the location counter may jump suddenly without !
indication in the assembly language. This can happen in the following places:

a. FORMATSs are generated starting in location : 0000 (program relative), regardless

! of where they appear in the source program (see source line 0014). 5

w b. Not all of the generated hexadecimal words are shown for the TEXT command g
in a FORMAT statement. Only the first word is shown (in order to save paper ;
in the object listing), unless the string is more than 32 characters long, in which !
case every sixteenth word will have a new TEXT command and one word of hexade-,
cimal. For example, see source line 0014.

A

c¢. The temps listed at the end of the program may not be in order; the location ?
counter may jump around. Also, although all temps are listed as DATA 0, some
of them actually occupy two or four words, so the location counter will increment |
by that amount.

2-15

2 o T S

e e L

10.

COMPUTER AUTOMATION, INC. "' |

Whenever a nume (FORTRAN or runtime) is listed as an operand, the full six spaces
are always reserved for it. Thus if there is something to follow the name (e.g. an
addend), and the name is shorter than six characters, there will be blanks in between,
which would not be allowed in asseinbly language. (For example, location : 0048

or : 005A).

The decimal value -32768 is listed as -0. -

If a quote mark appears within an alphanumeric string that is enclosed in quotes,

it is represented only as a single quote mark, rather than as two quotes (which would
be required normally in such a string) .

#L appears in the label field of all compiler generated literal pools (i.e. those not
called forth by the LPOOL directive) . It is only a signal and never gets defined,

but in assembly language it would constitute a double definition.

The double-word op-codes MPY, DVD, and NRM, instead of being listed as, for
e¢xample,

MPY a,b

are listed as:

-

MPY
DATA a,b

but they generate the correct object code, which is:

MPY by
DATA a

* number of things are implied in the object listing, without being specifically shown.
'I'his includes:

a. The scalars and arrays are not allocated (i.e. by RES directives). The compiler
knows where they are and tabulates this information in the allocation maps preced-

ing the object listing.

b. External definitions and references and allocation of variables into COMMON are
not shown.

¢. The dummies of FUNCTIONs and SUBROUTINESs are not labeled with their names.

d. The entry point of the program is not labeled (i.e. with the subprogram name
or F:MAIN). However, it is identified as such in the summary.

¢. No END line is listed, and therefore no transfer address (to F: MAIN) in a main
program. ‘

s it

S——

s

B il e e d

COMPILER OPTIONS

Compilation may be performed under nine different options. Each is described below,
and may be requested by the user by including the option names as parameters in the
OS/EXECUTE or /BEGIN command when starting the compilation. The compiler looks at

only the first two characters of the option name; thus either the first two characters
or the entire option name may be specified. The options requested are output on the
listjngs (in 2-character format) as the second header line on each page, along with

the BO file name, if any.

EList (Error-only listing)

Requesting this option will cause the compiler source output listing to be suppressed,
except for those statements with Error or Warning diagnostics.

(The first source line of the program is always printed.)

LObj (Object code listing)

This option lists, following the source listing and allocation map, the actual
machine language code generated by each FORTRAN statement, and its symbolic rep-
resentation in FORTRAN assembly format (see Figure 2-2, pages 0003-0005). The code
for each FORTRAN statement is preceded by the source statement. This listing can be
useful to the programmer who wishes to see how the source statement is expanded into
binary code, and thus offers a convenient method for use in debugging, or for compar-
ing memory usage and execution time for the various statements. This listing can be
rather long, however, since several lines are generated for every source statement.

NBinary (Suppress binary output)

This option suppresses output to the BO device. This option is requested when it is
likely that the source statements contain errors (e.g. in ‘a preliminary compilation),
and thus the resultant binary output wiil not be useable. Output of the normal
printer listings is unaffected by this option.

RScratchpad (Reduced scratchpad usage)

This option redyces the amount of scratchpad area used during the execution of the
compiled FORTRAN program. An example is where the user compiles a large FORTRAN
program, then links it using OS:LNK, only to find a scratchpad overflow condition.
At this time, he should re-compile the program using the "RS" option.

Note that this option does not totally preclude scratchpad usage, but rather causes
the compiler to minimize its use, by creating address pointers to external sub-
programs in main memory rather than in scratchpad. Note, however, that references
to arrays and COMMON variables remain in scratchpad.

NScratchpad (no scratchpad usage)

4

This option causes the compiler to avoid the use of scratchpad for address pointers to %
external subprograms, arrays, and variables in COMMON.

2-17

Note: There are 20 words of relocatable scratchpad (SREL) program which are always
required in scratchpad, even when the NS opticn is requested. These are used by
FORTRAN at run-time for its floating point accumulator and other special temp cells.

This option should be used when the FORTRAN programmer requires a large amount of
scratchpad for his own purposes. This option causes less efficient run-time code to
be generated in order to compensate for the avoidance of scratchpad.

v

XOn (Compile "X" statements)

This option compiles any FORTRAN statement containing an "X" in column 1. If the
option 1is not requested, such statements will be treated as comments. This is a
useful option for debugging purposes during program checkout. Once the program has
been shown to be correct, it may be compiled without the XOn option, and the "X"
statements then serve as historical references. Refer to the XON example in the
FORTRAN Reference Manual.

ADp (Automatic Double Precision option)

is nption changes all real variables, arrays, constants and non-library subprograms
.n t7s FORTKAN source program to double precision. 1In effect, the compiler proceeds
as if all real variables and arrays had been typed as double precision, and all
floating point constants are assumed to be double precision. In addition, references
to a.l library functions (intrinsic and basic external) of the real type are changed
to reference the double precision equivalents of those functions. These changes do
not appear on the source output listing, which is simply a printout of the source
record images. The changes do appear on the object listing (if requested).

This option is normally requested when the single precision accuracy of an existing
FORTKAN program is found to be insufficient. However, because of some inconsistencies
whicii may arise in the usage of this option (see below), it generally is better to
write a double precision program than to convert a floating point program using ADP.
The i1ollowing considerations should be taken into account when using this option:

1. ~omplex numbers are not converted to double precision.

2. Any programs which interface to the converted program should also be double

w precision so that arguments will be of the same type, and COMMON will be correctly

aligned.

3. If a standard library routine is declared EXTERNAL, the compiler will not
cecognize it as one of the standard routines, and thus will not automatically
substitute the equivalent double precision routine.

4. Operands used under the FORTRAN in-line assembly feature may be converted to
double precision, but op-codes will not be changed.

Figures 2-3 and 2-4 demonstrate the function of the ADP option. Figure 2-3 was
compiled without the ADP option, Figure 2-4 with the option. The differences are
circled on the listings. Note that the variables X, Y and NUM, which would normally
be single precision real types, are converted to double precision. Also, the con-
stants 2.3 (real) and 17 (integer) are also converted to double precision. The
external function F is assumed to be double precision, and references to the FORTRAN
functions SIN and ABS are actually made to DSIN and DABS, as shown in the subprogram

al

e e

e

usage map. (In the case of DABS, the actual object generation--during the compiler
Gen phase--does not require a call to this function, and so none appears in the

object listing. The reference to DABS still appears in the subprogram map, because it
was made during the Scan phase prior to object generation.)

ANsi1 (ANSI - compatible allocation)

This option allocates two words of memory instead of one to all integer and logical
quantities. This is used where a program requires storage allocation to be ANSI
compatible, since the ANSI standard specifies that integer, logical and real quantities
must be the same size. In most instances this option will have no adverse effect on
the program's operation, however, note the following exceptions:

1. Any operation which steps through each word of memory should not be used on an

integer or logical buffer or array (e.g. ENCODE or DECODE statements) where the
ANSI option is used.

2. Any programs interfacing to an ANSI program should also be ANSI to avoid any
conflicting COMMON variables which are integers or logicals.

Figures 2-5 and 2-6 are examples of ANSI option usage. Figure 2-5 was created without
the ANST option, Figure 2-6 with the option. The differences are circled, and
demonstrate the doubling in size of the integer and logical variables:

*
q

2-19

‘AGE ¥A¥1 U5/@4/74 17116345 FURTRAN (X3) COMPILATION
P OPTIONSE LO

G011 C DEMONSTRATE ADP OPTION
“¥02 REAL NUM
403 NUM = 2.3 -
=y X ® FO4UM) ¢ 17
L u@s Y = ARSCSINCX))
géngo "END
‘

AGE BOU2 ©9/04/74 17118345 FURTRAN (X3) COMPILATION
QPTIOsty LO

CLALAK ALLOCATION

LOCN NAME TYPE WORDS LOCN NAME TYPE WORDS
L4008 NyM REAL 2 10002 X REAL 2
t 0004 Y REAL 2

o

‘ Figure 2-3. Compilation without ADP Option Example

2-20

e e R T

|

. PAGE 8003 ©9/@4/74 173118345 FORTRAN (X3) COMPILATION

GPTIUNS: O

0Be1 ¢ DEMUNSTRATE ADP OPTION
pue2 REAL NUM
pual NUM = 2,3

13006 31F9QQ JsSTY *BP(FSRINT)

il +

17007 31AAC0 LDR #RCO 21411343333
1AY08 19E08 STA NUM
PUa4 X g FONUM) ¢+ 17
' t1PQYR9 310000 X171
1B00A 3F900 B JST *BP(F)
gt 30001 DATA
1000C 310000 DATA NuM
17pAD 3F908 B JST #*BP (F sRREL)
$AQNE 38BA0D F ADD #RC1 1428830000
tA0BF 319E0D STA X
2005 Y = ABS(SIN(X)) ,
tP210 10002 ‘ X1T
10Q1] 1F9Q0 B J8T *BP (SIN)
13312 10001 DATA 1t
10013 :0002 DATA X ‘
10014 1FY00 B J8T *BP (FIRREL)
. 10@15 10005 ABS
13016 t9E12 ' STA Y
PUB6 ~ END '
10017 30002 XIT :
19218 1F908 B JST #BP(F:RSTO)
10019 30000 DATA @ '
1901A 314113 #RCO DATA 16659
10018 213333 DATA 13107
1PQ1C 34288 wRC1 DATA 17032
17010 10000 DATA @

SUBPRUGRAMS' CALLED

NAME TYPE ARGS NAME TYPE ARGS NAME TYPE ARGS

F REAL 1 ABS REAL 1 SIN REAL |
FsRSTO RUNTIME FSRREL RUNTIME F3RINT RUNTIME
CNTRY®=:0D26

PROGRAM SIZEmi1U@d1t WORDS
BASE PAGE USEL=10085 WORDS
CUMPILATIUN COMPLEYE @ ERRORS

Figure 2-3. Compilation without ADP Option Example (Cont'd)

2-21

‘AGL B0YY @9/04/74 17128382 FURTRAN (X3) COMPILATION
| 0PTIONST LOL AD)

ﬁ

¥

%‘3umx L © NEMUNSTRATE ADP OPTION

2002 REAL NuM

; we3 NiM = 2,3 -

EILL X ® FONUM) ¢ 17

% 19Qs Y a2 ARS(SIN(X))

© "u06 END

- PAGL ¢VWY2 k9/¥4/74 17128812 FURTRAN (X3) COMPILATION

NOPTIUNST LO., AD

SCALAR ALLOCATION
©. nNave Tyer WORDS LOCN NAME [YPE WURDS
'YeBe NuM DOURLE 4\ 10004 X (:POUBLE 4 .
4048 v DOURLE 4

Figure 2-4. Compilation with ADP Option Example

: 2-22

.ﬁass 0223 ©89/04/74 17128312 FURTRAN (X3) COMPILATION

A OPTIUNST LO. AD
ool L DEMONSTRATE ADP OPYION
e802 REAL NuM
o803 CNUM = 2.3 ‘ |
1800C :F9Q0 B 8 #BP (FIRINT) -
100D 18200 F #RCD @;
1PI0E 19EQE 8TA NUM —
poa4 X.® FONUMY ¢ 17
tnQQF 10000 X17
18012 3F9BD B JST #8P(F)
1Al 19004 DATA 1
1012 3170802 DATA NuM :
1Ma13 1F902 B JST *BP(F(EEEEE)
10014 :8AQ00 F ADD #RC1 (14288100001
10015 39E11 ' STA X .
BUas y 3 ABg(SIN(X))
10016 310009 XIT
10017 tFo00 B J8T *BP)
101 10001 DATA I
17019 310084 ‘ DATA X
1001A 1F900 B 8T wap(r
1701 30005 ABS
1PIC 19E14 STA Y
ouas END
t?uiDp :0000 XIT
1AUIE sFOOQ B J8T *BP(FIRSTQ)
1701F 20000 DATA @

17029 14143 #RCO DATA 16659
190021 83333 7
12022 1313333
10223 13333
10p24 314288 #RC!
1P225 18000
10¥26 310000
10227 10000

SUBPROGRAMS CALLED

NAME TYPE ARGS NAME TYPE ARGS NAME TYPE ARGg

F (DouBlE) 1 (DABS DOUBLE) 1 65IN __DOUBLE) 1
FiRSTU “RUNTEE TRDBL E TRINT RUNTTHE

ENTRY®=:20aC

PROGRAM SIZEx3@p28 WORDS

BASE PAGE USED=800¢5 WORDS
COMPILATION CUMPLETE @ ERRORS

Figure 2-4. Compilation with ADP Option Example (Cont'd)

2-23 -

e s g A

PAGL RW2 29/25774 J9:125126

B0 FIliks FOUT UPTIONS
LJCN NamE TYPE ’ WORDS

S UgA BLNA REAL 6

TOMADY BLUCK/CASLD o ALLOCATION

LUCN NAME TYPE WORDS
‘90us LABL INTEGER 1
ARN %y ALLOCATION

LULN NAME TYPE WORDS
C TN INTEGER 1

TaVIVALENCE ALLOCATION

i
i;ucu NatE TYPE WORDS

.98 JEQIIV INTEGER 1

SUAL AR ALLOCATION

LJe N NAME TYPL WORDS
tudJC R rREAL 2
twddd L LOGICAL 1
AR D S I LOHPLEX 4
i0ilA K INTEGER {
810 DRGOT Z0uUsLE 4

‘;, Figure 2-5.

LUMMDN BLUCK/FeuCiNys ALLOCATION

v QCN

FORT:

4 (Al)

NAME

18406 WORDS

TYPE

10002 RROOT REAL

LOCN
tUon!l

L OCN

LOCN
7))

LOCN

1711}
10011
10019
18418
12020

NAME
LAB2

NAME

NAME
J

NAME

8

D

1

Q
CROOT

12402 wORDS

TYPE
INTEGER

TYPE

TYPE
INTEGER

TYPE

REAL
DOUBLE
INTEGER
INTEGER
COMPLEX

/

WORDS

WORDS

WORDS

“ORDS

b

1

WORDS

S W WSy

Listing without ANSI Option Example

2-24

»

PAGE 00 ©9/23774 9327334 FORT:4 (A1)
30 FILEs FOUT UPTIONSt AN

COMMIN SLOCK/F3BCM{, ALLOCATION 18086 WORDS
LOCN NAME TyPE WURDS 1 OCN NAME TYPE WORDS

13000 BLNK REAL 6 13002 RROOT REAL 2
COMMON BILOCK7LABLD s ALLOCATION 38984 WORDS

LOCN NAME TYPE WORDS - LOCN NAME TYPE WORDS:
19902 LAB1 INTEGER 2) (10022 LAB2 _INTEGER %)

ARRAY ALLUCATION
LOCN NAME TYPE WORDS LOCN NAME TYPE WORDS

(raé297 N INTEGER _8)
FaugvaLEnCE ALLOCATYION

| LOLN NAYE TYPE WORDS LOCN NAME - TYPE WORDS

|
| (twesF JEQUIV INTEGER 2) (to0er INTEGER 2]
— SCALAR ALLOCATION
LOCN NAME TYPE WORDS LOCN ~AME TYPE WORDS
18213 8 REAL 2

aa

; [COMPL 4
2g21 K TTHTEGER 2)
14023 DRroOT OOUBLE

Figure 2-6. Listing with ANSI Option Example

2-25

P A
3 COMPUTER AUTOMATION, INC. -' —

TRace (Compile for cxecution with Trace function) ’

When the 'I'Race option is specified, the compiler generates extra run time calls in the
i compiled program that cause it to print out trace information (on unit 6) in three places:

. © 1. Whenever a labeled statement is reached, the message:
xxxxxx LINE ddddd
is printed before the statement is executed, where
xxxxxX is the name of the program (F:MAIN if main program). If the name is

the same as that on the previous trace line, it is not printed. In other
words, the name will be printed once when the program is entered,
and not again until a new program is entered (or returned to).

ddddd is the source line number of the statement about to be executed.

: 0 When a SUBROUTINE or FUNCTION is entered, the message:

xxxxxx ENTRY

1s printed immediately after entry. Again xxxxxx is the subprogram name, which
N will always be printed. Note that the tracing is done upon entry, not upon call.
’ Therefore only subprograms that are compiled in TRACE mode will be traced.

3. when a RETURN statement is reached (whether or not labeled), the message:
xxxxxx PETURN LINE ddddd
i» printed before executing the RETURN.

This information is sufficient to follow the flow of the program, since it will trace all

jumps (the transfor point will be labeled) and all calls, except to library routines (which
i arc assumed to operate correctly) and to subprograms not compiled in TRACE mode (which
i ae lso ussimed to operate correctly) . It is not necessary that all of the programs loaded
' be compiled in TRACE mode. As soon as certain parts are checked out, they can be com-
| piled normuilly, so only the remaining parts are traced. Note that assembly language
! subprograms are not traced, nor are sections of in-line assembly language.

The tollowing exaniple demonstrates the use of the TRace option:

i

; _ 2-26

®

COMPUTER AUTOMATION, INC. @

PAGE 2991 ©7/17/74 14310342 FURIRAN (X1) COMPILATION

ool I =5

puaz 10 caLl MYSUG

U3 20 URITE (6,39)

pand 30 FURMAT (' WRITE MESSAGE')
PYRL 40 1 31 =}

gan6 1f (1 EQ. ¥) GO TO 5v
ooz 0 TO 14

gyon 59 STop

RYIY ~ EHD

PALE vl 07717774 14110142 FURTRAN (X1) COMPILATION

RN SUBROUTINE MYSUp
‘) , 0011 RLTURN
g012 END

Note that the main program contains four labeled statements (line 2, 3, 5 and 8). Line 4,
the format statement, is not traced since it is not executed. Also, line 2 contains a CALL
to the subroutine, MYSUB.

The {ollowing lines were executed by this program when compiled without the TRace
option:

WRITE MESSAGF
WRITE MESGAGE
WRITE MESSAGE
WRITE MESSAGF
WRITE MLSSAGE

! The following lines were output during execution of the same program, after being compiled
0 i with the TRace option: -
| FEMAIN LINE 2
MYSUB EnTRY
RETURN LINE i1

FeMAIN LINC 3
WRITE MESSAGE
LINE 5
LINE 2
MYSUB ENTRY
RETURN LINE 11
FenAIN LINE 3
WRITE MESSAGE
LINE 5
_ LINE 2

MYSUB EWTRY
RETURN LINE 11

(Continued on next
page) 9-27

COMPUTER AUTOMATION, INC.
L
: FeMAIN LINE 3
' é WRITE MESSAGE
£ LINE 5 | _
. LINE 2 |
¥ MYSUB ENTRY
i RETURN LINE 11
. FeMAIN LINE. 3
WRITE MESSAGE
LINE 5
LINE 2

MYSUB ENTRY
RETJURN LINE i1

FsMAIN LINE 3
WRITE MLSSAGE
LINE 5
LINE 8

. @VL: (Compile for execution under the Real-Time Executive RTX/IOX)

This option must be specified when a FORTRAN program is to be compiled for execution
as a task under RTX. The option causes references to common FORTRAN library subpro-
grams to be made via the RTX SUBR: function; also, no execution address is output

at the end of the enmpilation, since it is assumed that the task (s) will ultimately be
linked to an assembled Mainline sequence (called F: MAIN).

A program run under RTX normally consists of a Mainline sequence and one or more

tasks to be run simultaneously. Refer to the RTX User's Manual for a complete description
of an RTX program. The following discussion encompasses only the differences between
the standard RTX program and a FORTRAN program run under RTX.

A FORTRAN progrum is considered a "task" to RTX. Several FORTRAN (or non-FORTRAN,
or intermixed) tasks may be linked together with a Mainline sequence, to be run simulta-

‘ oxeously.

RTX Mainline Sequecnce

The Mainline sequence is simply a calling routine to initialize and begin each task using
the RTX BEGIN: subroutine. Normally the Mainline is assembled using OS: ASM, while
i a FORTRAN task is compiled by the FORTRAN compiler using the RTX option, and having
| a TASK statement as its first source statement. The organization of the Mainline sequence
- is described in the RTX User's Manual. Additional considerations for a Mainline sequence
I which is to initiate FORTRAN tasks are described below. (See figure 2-7 for an example
‘ of a Mainline and two tasks.)

58

B e e

rspere o

Mainline Entry Point (F:MAIN)

For proper linking under OS:LNK, the mainline sequence must contain as its entry
point the label "F:MAIN". This label must also appear in a NAM directive at the
start of the mainline sequence.

Input/Output.Block (IOB)

A non-FORTRAN RTX program requires that each task contain an IOB (Input/Output

Block} which contains pertinent information for I/0 operations. Under FORTRAN,
however, I/0 information is expressed in FORTRAN I/O statements. This information

is then converted by the FORTRAN/RTX I/0O Interface module into the IOB format required
by RTX. Thus the FORTRAN. user does not supply the IOB.

Unit Assignment Table (UAT)

Executing a program (Fortran or otherwise) under OS control differs greatly from
execution under RTX control. One important difference is the manner in which logical
units are assigned to physical I/O devices. Under 0OS, this is accomplished by the
/ASSIGN command. Under RTX, however, a Unit Assignment Table (UAT) must exist,

which is a table of two-word entries, each providing a connection between a logical
unit number and a physical I/O device. Thus RTX requires that device assignment be
made at assembly time, rather than allowing dynamic assignment at execution time, as
does 0S. ' o 13

In FORTRAN, the most convenient location for the UAT is within the assembled mainline
program, and it is suggested that the user follow this practice to provide the
greatest ease in changing the UAT when necessary. (It is because of the great
variability in UAT construction, and the dependence of its organization on the
FORTRAN unit numbers used as well as the physical devices configured on the user's
system, that no standard UAT is included in the FORTRAN library modules.)

The UAT is simply a table of two-word entries for each logical unit which can be
referenced within the IOX section of RTX, plus a terminating word containing the UAT
word length. (Refer to the RTX User's Manual for a complete description, and see
the RTX mainline example below, which contains a UAT.) The first word of each entry
is the FORTRAN unit number. The second word of each entry is the address of the
corresponding DIB (Device Information Block) table within RTX. A NAM directive to
the label I:UAT must be included at the start of the Mainline program, as this is
the name used by RTX/IOX when referencing the UAT. (I:UAT is defined as the last,
rather than the first, word of the UAT.)

As mentioned in the RTX User's Manual, certain DIB's exist within RTX/IOX (for disk,
line printer and teletype) which reference special FORTRAN drivers within RTX/IOX.
This is because FORTRAN requires more capability within the driver than IOX normally
supplies. The special teletype and printer drivers are needed to recognize carriage
control chardcters. The special disk drivers handle record numbers internally, and
can recognize and create end-of-file marks. Since an RTX mainline sequence may
reference both FORTRAN and non-FORTRAN tasks, both types of DIB may be required.
Fortran unit numbers in UAT entries should reference FORTRAN type DIB's, if they
exist.

2-29

¥

e

pm e -

iR

COMPUTER AUTOMATION. INC. @

Note ulso that the standard disk DIB's in RTX/IOX cach refer to a single file, or "extent”
on the disk. Since there is no way for RTX to know before-hand how much of the disk
or how many separate disk files the user may require, the disk DIB's have been established
' for the general case; each DIB refers to an entire disk platter and considers it a single
5 file. Since in many cases an entire platter is an excessive amount of disk space to reserve
- for a single file, the user may wish to specify his own DIB, describing a different "extent"
| on the disk. The procedure for doing this is in the System Generation section of this
manual. :

% Parameter Blocks

| When the Mainline is to be used to call FORTRAN (as opposed to non-FORTRAN) tasks,

a parameter block area and I/0 buffer must be included in the mainline for each FORTRAN
{ 1/0 eall to be run simultaneously. (Since RTX does not know in advance how many tasks
are to be run simultaneously, it is up to the user to reserve these areas.)

This implies that the user must determine the size required of the I/O buffer; in general,
‘~°£'m- {:inary (unformatted) I/0, 255 words should be reserved. For ASCII I/O, the size
to be reserved is dependent on the type of device and the data to be output.

The user must reserve at least one parameter block. It may be useful to reserve more

i than one block in some cases; for example, when both ASCII and binary 1/0 are called

~ for in a task, two blocks should be reserved, one containing a 66-word (for example)
buiter for ASCII and the other containing a 255-word buffer, for binary I/0. In addition,
certain error messages which are output by FORTRAN may require a parameter block

“while executing a task whose ASCII buffer is already in use. In any case, if a parameter
block is needed, and none are currently available, the particular task will "hang-up"
(within the interface) until one becomes available.

| In general, the user should reserve an 1/0 length which is large enough to accommodate
an 1/0 opcration to a particular device, up to 255 words.

A purameter block is reserved as follows:

o ~ CHAN F: PRAM Chain to other parameter blocks
i , v
L DATA XX + XX : Length of I/0 buffer (in bytes, where xx
. i is the word length)
. RES 85 Space for FORTRAN temp cells, parameters
and IOB '
|
RES XX 1/0 buffer. xx (word length) is determined
; by the user depending on the capabilities
f s of the particular I/0 device, as well as the
!

needs of his FORTRAN tasks.

CHAN F: PRAM Next parameter block

Note that the chain reference must be to
"F :PRAM"

i - for each chain node. Note also that no parameter block is dedicated to any particular
- task; rather, the chain is used when a block is needed, to find an unused block for
L whatever task is about to perform I/0. This procedure occurs. as follows:

When a FORTRAN task performs an I/O operation, the I/O interface is alerted. The
interface then uses its own chain node to F:PRAM to find an unused parameter block,

: whose I/0 buffer is of sufficient length, according to the length specified in the

% DIB of the applicable unit. Thus, once the buffer requirements are known to the,

. interface (by means of the maximum record size within the unit's DIB) the lengths of
the available I/O buffers are scanned in order to locate the smallest buffer which
will be capable of holding the I/O data.

RTX task

,i A task is merely a FORTRAN program which has been compiled under the RTX option, and
B which contains a TASK statement as its first statement. The TASK statement defines

| 0 the task name, which is referenced in the Mainline sequence during the call to the
| RTX BEGIN: routine.
|
|

Sample FORTRAN/RTX Listing ' : i

¥

Figure 2-7 is an example of a FORTRAN Mainline and two tasks. The first task (TASK1)
calculates and prints the square root of each integer from 1 to 50. The second dces
the same thing for numbers from 51 to 100. This causes both tasks to make calls to

the SQRT external function routine, and to share the line printer for their output. |

Mainline Example Description

¢
Note that it is generally more convenient to assemble the Mainline sequence using !
0S:ASM, rather than to compile it in FORTRAN.- !

NAM directives must be included for the mainline sequence itself (F:MAIN) and for
the Unit Assignment Table (I:UAT). i

External references are required for the RTX routines used by F:MAIN:

RTX: .
BEGIN: - ' ’ t
o END: . .

i

and for the DIB's referenced in the Unit Assignment Table:

D:TYOO (system teletype DIB)
I7: LPFO (FORTRAN line printer DIB) . . i

PAGF 0P8y 10/13/75 16146319 FORTRAN /7 RTX MAINLINE ASSEMBLY

MALRU2 (A2) Sls BOs=
. wou2 #THIS I3 THE MAINLINC SEUUENCE FOR THE —
- 29y #TWO=TASK LXAMPLE, ‘
b 2064 # _
. 4085 2009 o NAM = FIMAIN,I3UAY
ners ‘ ' . ..
4BU6 EXTR RTX1,BEGINI,ENDS,D2TYOB,DILPF2
apu7 EXTR TASK1,TASK2
3008 6914 NN EQY 24 NUMBER OF RTX WORKING TABLES
a0ug 0009 . REL] .
w010 evee ~ FIMAIN EQU $ EXECUTIQN ENTRY POINY
@911 Q00D F9VOQ 0WDD J87 RTXS INITIALIZE VTHE TASKS \
4912 apoi eula4 DATA NN NUMBER OF WORKING TABLES
Y013 1002 Bues DATA WKAREA ADDRESS OF WKG TABLES
¥8la 9003 0800 HLY SI0P ON UNSUCCESSFuUL
©wa1s] INITIATION
3016 ABO4 F265 GB6A JMP STARI 60 EXECUTE THE TASK3
3017 0005 ZRG REF TO PULL IN ZEBUG
A" 0006 0VAR WKAREA RES NN+NNENN#NNONN,@ RTX WORKING TBLS
i ADAA FQUOD 00N START JST BEGINS BEGIN TASK 1
s820 0O6P 000Q DATA TASK1
4621 0A06C @V64 PATA 100 AT PRIORITY 100
8022 wpPaDp FoO@ 0ALA JSY BEGINS © BEGIN TASK 2
9023 QQ6E @uAY DATA TASBK2
4024 OD6F 0064 DATA 1060 n
392% @070 F980 0AP° JsT ENDS’ END INITIALIZATION SEQUENCE
3026] ‘ —_—
A027 * UNIT ASSIGNMENT TABLE ,
4028) ® . , .
@029 AD71 C3CF UATTOP DATA 1CO',D37Y02 CO DEVICE FOR ERROR M3G3
AR72 @vA0 , ,
agip 0073 0806 DATA 6,D3LPF2 FORTRAN UN17 G6%PRINTER
AR74 WA) '
@031 @Y% FFFA ItUAT DATA UATTOP=$»2 UAT LENGTH
4232 *
@033 # PARAMETER BLOCKk8, I/0 BUFFERS
L 4f34 ')
| 35 0A076 CHAN F3PRAM CHAIN NODE
~ Jvi36 @077 pvba - DATA 132 BUFFER BYTE LENGTH
. 4337 a@r8 - RES 85 FORTRAN TEMP CELLS
. 903 ® AND 108
- 8P3c aden RES 66 - 1/0 BUFFER (132 BYT!s)
- @040 . %
4041 Q106F - CHAN F31PRAM CHAIN NODE
9842 Aal1g R84 DATA 132 1/0 BUFFER BYTE LENGTH
8843 a1t RES 85 FORTRAN TEMP CELLS
agd4 : * AND 10B
2P45 N166 ' RES 66 1/0 BUFFER (132 BYTES)
ag46 ‘ * , .
A047 01a8 CHAN F3iPRAM CHAIN NODE
3048 A1A9 0U84 DATA 132 1,0 BUFFER BYTE LENG!H

3049 OA1AA . RES 856 FORTRAN TEMP CELLS

Figure 2-7. FORTRAN/RTX Example
2-32 '

R s

PAGE wBB2 48/12/74 18339335 FORTRAN /7 RTX MAINLINE ASSEMBLY
LINE LGC INST ADDR LABEL MnEM OPERAND COMMENT

T T e R

Pk] * AND TUB

4051 vwiFfFF RES 66 I/0 BUFFER (132 BYTES)
ann2 4

4153 goea END - FIMAIN

4493 ERRORS

Figure 2-7. FORTRAN/RTX Example (Cont'd)
2-33

| AGL aVd) ©5/12774 89112355 FORTRAN (X3) COMPILATION
% OPTLUNST 10, RT

LN Ta9n TASK)
102 L THIS 1ASK CALCULATES AND PRINTS NUMBERS
T R FAOM 1 T0 5@, AND THELR SQUARE ROOTS,
UAe ' —
Fou0ah L LJOP FRUM 1 TU 50
320 Ny 17 INUM B 1,00
L 437 L ‘
C¥9e L CUNVERT NUMHBER TO FLOATING POINT FOR SQRT
A3y PNUHeINUM
SES) 3" '
SR CALCIILATE SQUAPRE kNOT
o912 SWRUOI 3 SORT (RNUM)
13 L
S 14 L PRINT TASK NAME, NUMBER, SQUARE ROOT
S} §%) WRITF (6,20) JNuM, SQROOT o
S Rl FURWAT (' TASKL Ns',I3,', SQRT=',F7,3)
a7t
Coots L ny NEXT MUMBER
Coal) g CONTTA e
v
| 0 AT ENU, DISPLAY TASK NO. AND TERMINATE
A 4 5TIP 4
a3 [

g

TAGE JBY2 dB/12/74 19:12:355 FURITRAN (X3) COMPILATION
DPTIUNS: L0, RT

JLALAK ALLOCATTUN
UG NAME TyPE WORUS LLUCN NAMc TYPE WORDS

tUn1E N4 INTEGER

1aM}12 PHUM REAL 2
‘ita 54RU0T REAL '

O s

Figure 2-7. FORTRAN/RTX Example (Cont'd)

l

2-34

@ »:cr oo 98s12/74 09112155 FORIRAN (X3) COMPILATION
JPTIONST LO, KT

guni TASK TASKY

4 PuYaz TAIS 148K CALCULATFYS AND PRINTS NUMB;RS
L Pudy FROM 1 T0 B0, AND Yhi iR SGUARE ROUTS,.
é gum4
it YIS LJOF P RUM 1 Ty 50
n puio U 108 INUM = 1,50 _
i) 10916 :C401 LAP 1
; 12017 EET6 wM2 SV JNUM
RUNZ ,
euds C CONVERT NUMBER 10 FLUATIMG FOINT FOR 8SORT
guaY 2UUMRIN M
tAgty ¢BoA7 LuUA JNUM
t0U19 1F9%W © Js7T #BP (FI:RINT)
1701A 30072 REL .
tPull $9EMY : S1A RNUM
puty
puty (CaLCULATE SQUARE ROUT
Pyt SURUNT 3 SORT (RMNUM)
W , 1091C :PB0D XL
\ tAY10 1F922 b IS8T *BP (SUBR?)
| C 1Al 22000 DATA SGRT
| 1MILF 0001 NaTA 1
! 1AY2Y 17212 JATA RNUM
10U2) :F90Y o J8T «BP(FIRREL)
: 17322 19EAL STA SQRONT
But3 L
agtae C P2TNT TASK NAnk, WwUMRLR, SQUARE ROO)
pu1s WRITE (0,20) JNUM, SOROJT
— 17023 :100% X17
10g24 Fydn 9 IsT *BP (F3RwF)
2025 :00Q0 F NaTA #IC2 ‘ Y L))
12026 10YMA DATA %20
17227 1F9%u B JST *BP(FIRIOL)
1?7028 10011 DATA JINUA
1PP29 :F9AY o JST *BP (F;RROL)
tPY2A 38014 DATA SQRUOT
tAp20 Fyd © JST *8P (FIRSTV)
ou16 2¢ EJIRMAT (v TASK1 Mz',13,"', SQRII';F?.B)
, 17306 3A3A7 w20 TLX1T Y (' TASK1 Na',13,', gORTs!,F7,
‘} 1Nyty :B3A9 TEXE ¥3)¢
pu17 L ‘ :
BuJts3 N WFXT NUMBER
guty 1© CONTINYL
i U249
" 1792C tEold wig LeX JNUM
1Ap2p 1C204 axI 1
LAJPE AUl TXA
10Q2F 7032 SAl 54
i0@39 12109 JAL wM2
gd21 AT ENDe DISPLAY TASK NO. 4MND TERMINATE
- py2e STOP

|

Figure 2-7. FORTRAN/RTX Example (Cont'd)

2-35

Eoabe 694 9R/12/74 189:12:58 FURIRA (X3) COMPILATION
OPTIUNS: LO, RT

$8u3. Fea @ J8T 2P (FIRSTU)
, 17432 1794} : IATA 1§
5 1dP0 EnbD
1AY3S 1 NgA0 wlC2 "hWTA 6 —

Ol RUG A4S LaALLED

CiaMe TYPL ARGS AWK TYPE ARLS NAME TYPE ARGS

CanT o ReAL FONdF RUNTIME FIRIOL RUNTIME

PoaReOIL RUNTTHE FIRSIO RUNTIME F:RSTO RUNTIME
T RuMIsE SR AN W4 RUNT [MF, . FIRFF¥F RUNT IMF
RENE UMY IEE Sy RINTIME

Cul o Lanel JSE LIEN Laltl oSt LOCN LABEL USE

L La00 §10 L0 Fub 10040 420 FORMAT 16817 #M2

Wt §I7E=i0A34 A0RDS
LS PAGT sz 0o WORLS
UMPYICAGTIN rUMPLETE A L KRQRS

|
|
1
‘ vEIp o
|
\
\
|

%

Figure 2-7. FORTRAN/RTX Example (Cont'd)

I

2-36

R

i Lt e

W

@ rrce w01 ves12774 09:12:65 FORTRAN (X3) LOMPLLATION
‘ OPTIUNSE LO, RT

B2 TASK 1A3K2

guly T413 TASK CALCULATES AND PRINIS NUMBERS
Y26 (FROM 51 TU 1924, AND THEIR SWUARE ROUTS,
— Pu27 C :

Bu2y LuOP FRUM 51 T 124

U2y nd L@ INUM = S1,1u?

guldy . o

P931 C CONVFRT NUMBER TO FI.OATING POLNT FOR SQRY
- w32 RNUM= INUM

Pu33

ALY CALCULATE SWUARE ROOT

PL3a SHARUDT = SART (RNUM)

Peiry (v

U7 PRINT TASK NAME, nNUNBER, SQUARE RUOT

PYIY ARITE (6,20) uNUM, 3QROOT ,

U3y 2 TURMAY (' TASK?2 Na?,13,', SQRT=s!',F7.3)

¢4 C

Fdd4i (, DJ NEXT NUMBER

gdae v CUNFINNE

guds ,

‘) puaqd (AT END, DISPLAY TASK NO. AND TERMINATE
g4y Stnp 2 '
wuao Fan

;

A

PAGL 0VU2 ©B/12774 @9312t585 FORTRAN (X3) COMPILATION
OPTIJNSY LO, RT o

SLALAR ALLOCATION

‘, LUCY NAME TYPF WORDS LOCN NAME IYPE WURDS
1UA11 JNUM INTEGER 1 15812 RNUM. REAL 2
10414 SuRUOT REAL o2 |

Y . - . - - l - ——
Figure 2-7. FORTRAN/RTX Example (Cont'd)
\/_b\'

2-37

CAGEL QUE™ ©8/12/74 49112:55 FURIRAN (X3) COMPILATION
OPTIuUNS: LD, Wi

424 TA3K JA5K2
420 L TAIS 145K CALLULATES AND PRINTS NUMBERS
© 926 L FROM 51 Tu 183, AND (HELR SJUARE ROOTS,
| 427 L —
T 4?8 L LUNK FRUM 51 T9 1uN

T gy Dy L0 INUM 3 51,140
: tyte 1C433 LXr 51
10417 1EEXS wM2 SiX JNUM

S3d L
CoY3l o LUNYVERT MUMHBER TO FLOATING POINT FOR SQRT
S P QN Am I
10018 18Bod/ LLuA JNUM
tMptly Fw'ly o IsT *BP(FIRINT)
tP4ta 2QUN2 REL
1At 190y STA RNUM
33 L)
934 CaLCHLATE SQUARE ROOT
TR I 3d7uN1 3 SAKT (RMUM)
tAYtL 3194 X7
« :PUiD tFyid o J5T *BP (SUBR?t)
‘) 1As1L 30074 DATA SQPT
A N R D " DATA 1
1Pu2 1N212 YATA RNUM }
:AY? 1 P934 © 15T *8P (F:RREL)
1PN22 19€E ' STA SQROO i
430 (.
437 L PRINT TASK NAMF, NIMBLR, SQUARE ROO1
‘B3 YRITF f0,20) NUM, SQROOT
1AL 1790y X(T —
Ng24 1F9ta JST *BP (Ft1RWF)
102 13904 F DATA #]C3 1uly6
1020 10000 DATA w20
thge/ sFyMp Q8 ST *BP(FSRIOL) \
102, 1%g DATA JINUM
10?1 tFyls g ST #8P (F :RROL)
] tPU2A 317?014 DATA S8SQROOV
3 1028 :F90) B IS8T *BP(FIRSID)
U3y 2u FURMAY (' TASK2 N=',13,', 8QRT=3',F7,3) ,
i 10y tAGAT w29 CTEXT (' TASK? NV, T3,', SORTs!',F7,1
| 1? 121 P3AY TEXT '3)
‘1‘ B B L
| 4L L i wExXT NUMBlK
IERTIIN D CONTTIE
W4 L : . ,
CE tay2C E61B wld LOX JNUM
1232y 1€2001 . AXI 1
1AU2E 19430 TXA
1P02F 1ADHA . Sal tya
1033y 12109 ~ JAL #M2
Wy Al ENDs» DISPLAY TASK NO. AND TERMLINATE

N'LLES sroe

Figure 2-7. FORTRAN/RTX Example (Cont'd)

2-48/

e

. PAGL 0¥wd ©3/12/74 09112:55 FURIRAN (X3) COMPILATION
- UPTYOUNST 1O, RT

17331 1F90u o Is7 *BP(F:RST0)
] 10432 10002 DATA 2 |
i Qud6 END
3 12333 30936 wIC3 DATA 6
i |
g SURPROGRAMS CALLED
: NAMe TYPE ARGS NAME IYPE ARGS NAME TYPE ARGg
; SaRT RCAL i FIRWF RUNTIME FIRTOL RUNIIME
‘ FIRROL RUNTIAE FIRSIN RUNTIME FIRSTO RUNTIME
F:RHEL RUNTTAE F:itFZ RUNTIMC FIRFF RUNTIME
FiRINT RUNTIME SUBR: RUNTIME

STATEMENT LARELS

LUCN S LAREL JSE LUCN LaBEL JSE LUCN LABEL USE
tUM2C win 00 END 121490 420 FORMATY 14017 #M2
ENTRY®R:0ULS

‘) PROGRAM S8IZiw:u34 WORDS
Bast PAGE {JSFD=1mpAs A0RDS
CUMPTILAITUN CUMPLETE @ ERRORS

{

Figure 2-7. FORTRAN/RTX Example (Cont'd)

2-39

b i Saresat B e

TASHK c.o SuHTE 1,400
TASK2 N=s 51, SuRT= 7,14)
TASKI N® 2, S5GRT= 1,414
TASK? N= 52, SQRT= 7,211
TASK1I Ns 3, SgRT= 1,732
TASK2 N= 53, SGRT= 7,280
TASK! N3 4, SQRT= 2,000
TASK2 N= 54, SGRT= 7,348
TASKI N® 5, SURT= 2,236
TASK2 N= 55, SORT= 7,416
TASK! = 6., SORT= 2,449
TASK2 N= 36, 'SuRT= 7,483
TASKY = 7, SQRT= 2,646
TASK? N= 37, SQRT= 7,550
TASK)] N= &, SQRT= 2,828
TASK? Nz %8, SQRT= 7,616
TASK1 = 9, SGRT= 3,070
TASK? Ns 59, SURT= 7.681
TASKL N= 14, SQRT= 3,162
TASY2 N= 60, SQRT= 7.746
TASKi N= 31, SGRT= 3,317
TASK? = 01, OSQERT= 7.810
TASK1 N= 12, SQRT= 3,464
TASK2 N= 02, SQRT= 7.874
Us o8 N= 13, SGRT= 3,600
“SK2 Nz 63, SURT= 7,937
TASK N= 14, SGRT= 3.742
TASK? N= 64, SyRT= 6,090
TASK! = 16, SwRT= 3,873
TAG? Ns 65, <SoRT= B_062
TASKS M= 18, SQRT= 4,500
TASKD N= b6, SERT= 8,124
TASKI M= 17, SuRT= 4,123
TASKZ N= 67, SURT=s 8,185
TASK] N= 18, SGRT= 4,243
TASKZ = 48, SuRT= 4,240
TASK] NT 19, SGRT= 4,359
TASK? N= 69, SURT= 8,307
TASK1 Nz 24, SGRT= 4,472
TASK? N= 79, SGRT= 8,367
TASK | M= 21, SGRT= 4,583
TASK? Ns= 71, SuRT= 8,420
TS Me 22, SQRT= 4,690
O > =72, sarT= 0,485
TASKL N= 23, SuRT= 4,79¢C
TAGK? N= 73, SuRT= 8,544
TASK ! N= 2d, SURT= 4,899
TASK? Ns 74, SGRT= 8,602
TASK1 = 26, SQRT= 5,090
TASK2 M= 7o, SURT= 8,660
TASK N= 26+, SORT= 5,009
TASK2 N= 76, SuURT= 8,718
TASK S = 27, SURT= 5,196
TASK?2 M= 77, ByuRT= 8,775
TASKI Nz 28, SURT= 5,202
THSK? = 78, SuRT= 8,832

Figure 2-7.

FORTRAN/RTX Example (Cont'd)

2-40

" ’ i
| ‘ febnt ke 49, SQRTE D 084
: TASK2 N= 79, SORT= 8,888
: TASKY N3 34, SQRT= 5,477
4 . TASK2 ~“N= 8J, SuRTs 8.944
‘ TASKS Nz '3l, SGRTZ 5,568
TASK2 N3 81, SURT® 9,000

- TASK1 Nz 32, SARTs 65,657
TASK? N3 82, S8QRT= 9,055
TASKY1 N= 33, SQRT= 5,745
TASK2 Nz 83, SGQRT= 9,110
TASK]1 Ma 34, SGRT= 5,831
TASK2 Nz 84, SQRT= 9,165
TASKY N= 35, SGRT= 5,916
TASK2 N= 85, SaRT= 9,220
TASK1 Mz 36, SQRT= 6,009
TASK2 N= 86, SaRT= 9,274
TASK! = 37, SQRT= 6,083
TASK2 N= 37, SQRT= 9,327
TASKI Ns 38, SQRT= 6,164
TASK2 N= 88, SaRT= 9,381
TASKY N= 39, SQRT= 6,245

! TASK2 N= 89, SuJRT= 9,434

] TASKY N= 44, SQRT= 6,325

e R R

TASK2 M=z 94, SQRT= 9,487
Q TASKI N= 41, SORT= 6,403
TASK2 N= 91, SURT= 9,539
TASK1 N= 42, SQRT= 6,481
TASK2 N= 92, SQRT= 9,592
TASK! N® 43, SuRT= 6,557 ;
TASK2 N® 93, SQRT=s 9,644
TASK1 = 44, SURT= 6,633
~ TASK? M= 9d, SURT= 9,695
TASKY Nz 45, SJIRT= 6,778
TAHSK2 N= 35, SQRT® 9.747
TASK] N= 46, SGRTs 6,782
TASK2 - Nz 96, SaRT= 9,798
TASK1 = 47, SURT= 6,856
TASK2 N= 97, SQRT= 9,849
TASK1 N= 48, SQRT= 6,928
TASK2 N% 98, SQRT= 9,899
TASK1 N® 49, S@RT= 7,030
| TASK2 N= 99, SuRTs 9,950
O TASKL ~ Ns 64, SQRT= 7,07¢
| TASK2 ~ N=188, SQRT= 12,002

Figure 2-7. FORTRAN/RTX Example (Cont'd)

i
|
|
{
i

B o -

COMPUTER AUTOMATION, INC. E g { — @

pmphes s

and for the tasks to be run simultancously:

e

TASKI1
TASK2

(

SR = 5 L ottt

The equated value "NN" specifies the number of RTX work area blocks needed Yor the
two tasks (refer to-the RTX User's Manual for a discussion of how to determine the number
of blocks required).

F: MAIN is the Mainline entry point where the tables and tasks are initialized by the "RTX:"
routine.)

"WKAREA" is the actual work area reserved for RTX usage; its size is the number of
blocks (NN) times 5.

"START" is the point at which the tasks are initiated, by calls to the RTX BEGIN: routine.
Note that in this example both tasks are begun at the same priority (100). Thus the tasks
- will vie with cach other for the use of the printer and the library functions they both
' o'uq uire. (Refer to the RTX User's Manual for a discussion of task priorities.)

After the tasks have been initiated, a call is made to the RTX END: routine to terminate
the mainline sequence. '

The Unit Assignment Table (UAT) begins at "UATTOP" and ends at I: UAT. Note that
the MAM directive must point to the end of the UAT, not the start, and it must be called
"I: UAT:"; this is the name RTX references externally to access the table. Each table -
entry is two words in length, the first being the FORTRAN unit number referenced in

the tasks' I/0 statements, and the second being the DIB label corresponding to the physical
device. Refer to the RTX User's Manual for a complete list of DIB labels. In addition

to ti;e unit numbers. an entry must exist for a 'CO' device, for use by the FORTRAN PAUSE
and STOP calls.

The last word in the table represents the negative length of the table (including the length
- worsd itself) plus one, thatis, - (L + 1).

01 S e Pharae s cnnmeter Dlgeks in the ciamu 2 Tovo of them are ise< ‘or ‘he grinter

-~ ~ g e g
.. E -~ = e SIS —

J &3 : ' LT - ST . STl TR TR T LSS podSupl ke~

R ——

7“'
b
X
;
|
|
B

T3 (Compile for Execution on an LSI-3/05 Processor

This option must be specified when a FORTRAN program is to be compiled for execution
in an LSI-3/05 processor. Since OS is not supported on the 3/05, FORTRAN will
assume that the RTX option is required, even if you do not specify RT as a parameter.
Therefore, everthing described in the RTX option (above) automatically applies to
the T3 option as well.

The sample listings shown above in the RTX option discussion are reproduced below in
L8I-3/05' object code (see Figure 2-8). The only real differences in the two sets of
examples are the actual machine language code, of course, and the fact that the 3/05
Mainline sequence assumes the use of an I/O Distributor system for input and output.-
(The RTX User's Manual contains the DIB names for these devices.) Also, certain in-
line assembly language instructions do not exist on the LSI-3/05, and are performed
by an emulator routine which is part of the FORTRAN library for the 3/05 (F3RXLB).
These instructions are marked with an asterisk in Section 8 of the FORTRAN Reference
Manual. Note also that three of these instructions (SCM, SCMB and IPX) are not
allowed under the T3 option.

2-42a

(s - © o (=]

.. . - . L4 o i
PAGF 009 04/P7776 1A3ST7:3% FORTRAN s RTx MAINLINE ASSEMBLY
MACROY (&) ST1= ROz OMaIN T N
nne> xTHTS IS THE MATINLINE SFQUENCF FOR THF
0n03 3 Te0=TASK EYaMPIE, o !
0004 x . R ‘ R
00858 0000 & ’ NAM FeMATN,TsUAT SRty
- nnis ‘ I . . o .
-y 0nnA LaAn INNTT:
& 0onn7 FxTr RIX:,REFIN:,FNDe,NDeTYO0,D2LPFD
o 0NQR FXTR TASK1,TASK2
» . 00602 0014 NN . FAU . 20 .- NUMBER OF RTX WORKING TARLES
o i Q010 0000 -) REL 0 v '
_0f : ooy F:MAIN FgiH! t 2 . _EXECUTTION ENTRY POINTY
] f‘—ﬁ‘fﬁ 90N BRDAO NNON JST RYX: INTTTALIZ7E THE TASKS
5 0Nt 0A0Y A0t NATA . NN NIJMRER OF WORKTING TABLES
E NAjN _ ghnD Nyde NaTa WK ARF A ADNRFSS OF wKG TARLES
< 0015 N0Q03 NEOD HLT 8STNP ON HINSUCCESSFUL
Y B 0n1h ook INTTIATION ' :
s % __0n"17 00nAa QFEFS Q06A _ JMo START - GO EXECUTE THE TASKS ‘ i
& natra Hnge IRG REF TO PHULL TN ZF3UG A :
B 0013 N0k NonNQ - WKAPEA RFS NNFNN+NN+NAENM, O PTX WDRXING TBLS
§, _0n2n 90eA RHNO 00O START JST "REGINS REGIN TASK 1 :
® : M@ VOgR Qan()";‘ - DATR TASKL - - % e 4 :
Yy " on®S oner 60kg - nATA 160 T ATERRIORTTY 100 g
N QN2 00D KRDNO 0000 a7 BEGIN: BEGIN TASK 2 L :
E~y Nna24 ONARE NAQOD) NaTA TASK?
o 0028 O0A5F NOAU NaTa 100 1
© Q02K ON7N]HNDH ANQOO J87 END e FND TNTTTALTZATION SFAHENCE :
S . 0027 ©) * s ‘ ' ' g :
. 0028. x UNTIT ASSTGNMENT TARLF .
0nzIN 007Y CSCF UATTOP NATA 'CG',NDTYNO CN NEVICE FOR ERRAR MSGS §
0NT72 0a00 , &
004t 9nTR 0ank NATA 6,NILPFN FORTRAN LINTT &=PRIMTEPR _ :
0r7u AONH . _ ‘ @
0N3> 0OTS FFFA ' I:UAT DNaTA UATTAP=$=2 UAT LFNGTH e
00373 . . *) - —
0ng * PACAMFTER RLNCKS, T/0 BLFFFRS l

C

e e e s e e v m— ————

R

PARF ONn) 0u/27/76 1R:859s41 FNRT:4 (RN)
e B0 Flhze _TASKS _ QPTTONSe T3 LO S
nOn g T Qg TA3K1
ngna ¢ L_THTy TASK CALCHLATFS AND PRINTS NUMHFRS
0003 C FROM 1 TN SO, AND THEIRP SWQUARE ROOTS., 4
0004 C ’
___nons C LOAP FROM_ 1 T0 50 o
nNNYK Ny 10 JINHM = 1,80
NON/ L
NONK o CONVERT NUMABFR IO SLOATING POINMT FNR SART
€00y RNHM= JNUM
0010 € :
—hotr € GALCULATFE SQUARE RNOT L —
notp QIPONT = SAQT (RNLI1) ‘
N1y :
_.nhn1a ¢ PTNT TASK NAME, NUMRER, SQUARF RQONT
1S WRTTF (4,20) JNUM, SAR0OOT A
N0le =0 FAORMAT (' TASK! M=',T3,', SQRT=',F7.3)
b1 € _— e e e e e - .
T N0IR N NFXT NUMBFR /
apte 10 Cort TN F

_0000

N 0g°1 C A1 END, NISPLAY TASK NO. AND TERMINATF
EE CTOP
WS Fah _ —_— _ - —

Figure 2-8. FORTRAN/RTX Example for LSI-3/05 (Con't)
2-44

Feppgepigmen e o

g s S s

e L R

[y

""HY?, g) . ;— p Y] = - g -
" PAGE UON0> 0172777k 1R3ST7:35 FORTRAN / RTX MAINLINE ASSEMALY
_MACRAX (A2) 8T= BO= QMAIN . L
T n3s o *
_003” 0074 _ CHAN F:PRAM CHAIN NODE
0037 0077 NOR4A . NATA 132 BUFEER BYTF LENGTH.”
038 0NFR RES 8s FORTRAN TEMP CELLS
! 0N39 ‘ * _ AND TOR o
naan ancn RES 66 1/0 RUFFER (132 RYTES)
onat k :
nz? ni0F CHAN F:PRAM CTHAIN NODE
3% 0110 00R4 .. PaTA, 132 55:0 ‘BUFFEP RYTE LENQTH,
uhuﬁ**ntlvl’ . RES 8BS FRRTRAN TEUP CFLLS
Ongs * AND t0R o o
NNk 0'nA RPES hA T/70 RUFFER (132 BYTES)
nny7 > ,
0Nnue n1AR CHAN Fe:PRAM CHAIN NODE
009 " QLAD 0084) TODATA 132 “TI40 FFER BYTE LENGTH
WLET- AT 3V " S RES 8s FORTREN TEMP CELLS o
0o L ' * ~ _AND T10R ‘ !
0753 O1FF QES hh 1/0 RUFFFK (132 BYTES)
TRER *
LY nnoo SND Fe:mAIN

i e - — = - —y

nnon ERRORS
0000 _WARNIMG

Figure 2-8. FORTRAN/RTX Example for ' LSI-3/05 (Con't)
' 2-45

PASE 0002 04/2//76 1R:SQ9s4] ¢FNRETsld (RN)
RO FILE: TASKS OPTTONSe I o]

SCYI_AR S LNCATTOm

TYPF ~ WOPRPDS

T L0Tw NAME TVRE wORUS LOCN NaME TYPF | WORDS LOCN | NAME

9v-C

EOMIN_JNte TNTEEFR 1 z0012 O REAL 2 :0014 SGRONT REAL 2

Figure 2-8. FORTRAN/RTX Example for LSI-3/05 (Con't)

Lv-z

*g-z @anbtg

(3,U0D) G0/€-IST 703 oTdwexm XIM/NVMINOL

——— e o e e et et e+ .

r
| PARE 000 /27776 (R:SG+41 FORTz4 (BN)
Lo ___w FILE: TALXS PTTIONS: T3 L0

0Nt TaQk TA3K] .
20092 € TATs TASK CALCMLATE:- AND PPINTS NUMoFPRS
nnns ¢ Fin4 1 TO 50, AND TSSIR SQUARE 200TS,
000 C
000S € LUNP _FPOM 1 TN 50 /
00 N0 dalM o= 1,50 o) -
Nyt 249N L xp 1
. tNyYl17 218579 LR ST X JINIMm .
non? C _ B
00nR C CONVFRT MUMAFR TN FLOATING POINT FNKR SQRT
_ nnNna Riiiim= JNUM .
1N01d $ROTH L.na TN IM
N1y $8DNy 3 IsT *+RP(F:PINT)
- 10014 200N ____PEI
' t001R 2RAT6 STA PNiIM
0nt'a C
0011 ¢C Al CULATF SQlaRe ROQT .
0ot TSwmnNT = SAST (RND4)- ' T N
’ 201C 00NN Y1 T
e S 200vh B0 B IS8T +BP(SURE:r)
:001E 20000 NATA SQRT ST T T o
sNO1F 20001 NATA 1
- e __ 20020 0012) DATA 2NUM
s00D1 R)N0 JST *EO(FePRFL) - T
NP2 2RAKTH QT SQRONT
0p1s C ’ - —
0014 C PETHT TASK NAMF, NUMRER, SAUARE ROOT T
0015 WOITE (6,20) JNUM, SOROQT
e :0023% 0000 o1V o _ .-
t002d 1R300 M IS8T +RP (F:RvF)
eN(\DY sNON F NAT. HICP HEUUTVEL
. __ N9k 200r0 o _DaTAx %20
~ c0027 :RDHON B Jer *BP(FeRIOLY
thO28 0011 NATA JINiim
:N029 :RHNQ B JST *BP(F:RFOL) -

cNL24 sNntuw "NATA 8QRONT

k4 = = e rrageng
PARE OQ{3LE OG/Z/ /7~ 18:83-41 T4 (RI)
. _ir‘ r:—lk,.. ‘;r_)m‘y:; vl;’"\i~. T2 e B i . "
LR NN I CER Y o Iy 15T « LD (FeQSTON
o Nty 20 CoF AT voT Q< Lz, T, SART=',e7 W
T TETAne s sas37 =2 T () TeS<1 Nz, TR0, 5A-Tst LR
s0010 $R3AQ TEXT '"2)!
A L1 SV S o . _ B P
AN . o : CC AT v iTa
Nt 2!\ [i T il;'__
o neze C) L L _' - _) N
:00PC :42Au 210 LDX JNtIm
0020 2501 AXT 1
_ tNLPE °“09um” I, _ o L
: c002F ACE Qa7 <N
| sn3INn ~1/A-. Tal. aMm2
I Ny Q;_‘ Al FND, nrellav TA 0, AMN rFRVIMATs _ L o .
nn2p STOP
ATy N0 R JST *RO(FRSTM)
) - _ :00322 o000y 0 DaTA 1 _ e —_ B
A 00>« Fun ,
® 003 2 NN0R s¥iD NAT A A
QLAPROGREMS FalLFO T - -0 T/ 7 o T T
L NAME TYOE ARGS NAMF 1VPF AR3S NAME TYPE ARGS ~ NAMFE - TYPF
S or AL 1 Fepmf AT S FeRPINL RiINT TMF FekOnN RQUNTIME
Fefe10 RiMTTNF) F+RSIN ”~lNTIMF _FRULK RUNTTIMF FIRREL RUNTIMF
F:PF?7 BIIMT TmF FeRFF SANTIME “F. Q!a3 QUNT I MF FIRINT QUMTIME
SURFE - PUNTT™F
T T ST AYEMENT Tavil s T T T T T T T T
S W <L W Vet S BN LY Lofo UAREL L GSF L1 0fN PeRED USE_ 0 LACN LesfL
tphpfr #y10 2 FND LI PAL FORA4aT Q017 sMP?
T EnTevzearaie T T/ 7 - - 0 7 7 S
Figure 2-8. FORTRAN/RTX Example for LSI-3/05 (Con't)
< {

‘
¢
t
L i
7l
I 0 "l;;’ T ‘ B
j ~ PARE 0005 00/27/74 1R3SQe41 FORT:4 (RO)
| , BN FILE: TASKS QPTTQNS:s 12 \n_
PROLEAM QT7F=1002d wOpPNS
RASE PAGF UISFD=3:0¢0s WNRNS.
— COMPTLATION COMPLETE 0 FRRQORS i
, . / !
—_—— I
| !
:
; !
| ‘
- © |
i
| |
| ;
el i
!
Figure 2-8. FORTRAN/RTX Example for LSI-3/05 (Con't)
2-49

_0u2s ¢

PACE

nn>4y

0nnt

0u/27/74
. BO_FILE: TASKS

THTS TASK CALCINLAIFS

1R:R941
OPTTONS:

FORT:4 (RO)
gy o
TLEK TASKP

AND PRINTS NUMBERS

Figure 2-8.

00726 C FRNM 51 TQ 100, AND THEIR SOIARE ROCOTS.
0no27
0028 C LOCP FROM 51 TN 100 o . —
NN gy N3N JINHM = 1,100
nprQo
002y ¢ FOMVFRT MUMBFR 10 FLﬂATIMU‘PWINT_ﬁ93_§Q&1__
003¢ RN IM= JNUM
0033 C
00ty C CALCULATF SQUARE RNONT -
nnzs SRFUNT = SORT (KMUNM,
Nnlsn
g7 C ‘_PWINT TASK NAMF, MIMRER, SQUARE RONT
YT WRTITF (6,20) JUNUM, SCRNQT
0039 20 FOPMAT (' TAaSK? Nz',T3,', SQRT=',F7.3)
noan_ € - S R
nouy NeE NEXT NUMRFR
noge 10 rOorTINIE
nong ¢ . S
7 TAnas ¢ A1 END, DISPLAY TASK NO. AND TERMINATF
nous STNP ¢
None ____FEND e

FORTRAN/RTX Example for LSI-3/05 (Con't)

2-50

i
e,

L AT AT L

3 ~v3y 1004868 w1002 ¢ LEL WLINY m_oc." ¥ g3931IN1 RONT :cc“,nl

 5QyOM_ adAl 3WVN NJOT _ SudOM 3dAL dnVN NJO1 SQu0M 3dAl 3JAYN NJOT
NULI93UTH i By VIS

T e U TSRNOTTa0, SWSVI s3I T3 08
(u¥) nsiadd ins6Sigl 9l/Llc/ul 2000 wcnu

FORTRAN/RTX Example for LSI-3/05 (Con't)

Figure 2-8.

2-51

-

I
{
bid
b
¥

Figure 2-8.

2-52

]
g : _ , i _ -
H PARE 0DO0Y Q4/27/7A 1°:859:481 FHRT:4 (H0)
. _ BN FILF: TASKS OPTTONS: _ 13 LO R, ——
ngRy TaSk TASKP
0025 ¢ THIS TASK CALCHLAIFS AND PRINTS NUMHBFRS _
no-6 C FEAM 51 T0 100, ANP THEIR SGITARE RADTS. o
on>7 ¢
NO2R C 1 00Y FROM 51 TN 100
T agca U0 TENM = 41,100 - B -
001kh 12931 | »P 51
01T sART7S D SIX - JNUIM
NOxRO T B i - T - T
0oy ¢ COMVFRT NUMBFR TP FLNATING PNINT FNR SART
ooz _ PAlm=JMUM e
TNOIA :RDTA oA T N T T
NQ19 RPN R JsT *HP(F:PINT)
o o __1N01A 20007 RFL
tNOIR :R6T76H TSTAT T RNUM
N0 C .
_0nta € CALUIILATF SQUARE RNQT :
neTS QU2ONT = SNRT (RNUH) T -
t0N1C 0000 [T
_w) N1y 2RDOO R _ 18T *RP(SURR:)
:001E 0000 DATA SQRT
:O001F 2000} PATA 1
10020 _:001° _DATA RNUM _ .
tNpP1 RDHOG 3 JST *HD(F RRFI)
sNPI sRATH STA QRANMT
B L) - R S e o -
0017 C PRTINT TASK NAMF, NUNRER, SOUARE RONT
| nnte . WHTTF (6,20) JNUM, SRROOT
L e e e e 30023 20000 o XAY
L tN02d 1APOG B JST ARP(FsRWF)
‘, YL YV FO NATA #]r3
o 3 hpPK 200N0 PATA #20
10027 $BRDNO h JST *RP(F¢ RIDL)
:N02R 0011 DATA .INUM
N _ 20029 :RENO_RB_ _J8T __*BP(F:RFOL)
:0N2A 20014 NPATA SQROOT

FORTRAN/RTX Example for LSI-3/05 (Con't)

I

LA o T e T i SR e R .

PARE 0onQL O8/27/76 1R:59:41 FORT 34 (RO)
RC FYItEs TA3KS QPIJONS: — T* 19 . e el e
10023 RDN) B J§7 *HP(F:RSTO)
\ nNo<G 20 Fi)RmAT (' TAS«2 Nzf,T2,', SA4T=',F7.3) o) e
: 20000 :A8A7 #20 TEXT (' TASK? N=',T3,¢*, SORT=7 ,F7,.¢
et $0010 :R3A9 TEXT '3y
b 0080 C e _ o
f‘ 0ost ¢ iy NFXT NiJMRFR
o© nos> 0 CUNT TNUE
0 0043 ¢ . _. e I
® $N02C :A2K4d #10 LDX JNIIM
:N02D 127801 AXY T 1
a3 $002F 20020 _ TXA e -
A eNOPF 1NAGQC ST 100
g :NOR0 11286 JAL EMD
z nous C AT FMD, NISPLAY TASK A0, ANP TFRMINATFE - e
= 001S _INp 2
oox :NQT) sRENO B JsT +RO(F:RST)
w8 20032 0002 hAYA 2 _
g g nous Fun
T, $AN2T +NQ0e #IC? NatTa A
1
Pl SUBPRNGRAME FAlLLED S i T ‘ T i
R
5 NAME TYPE ARRS NAME . TYPF ARGS _ NAME TYPE BRRS NAMFE TYPE ARGS
< -
» é SGRT PEAL 1 FeRWF RUNT [ME F:RINL PRPUNTIME FeRROL RUNTIME
S FeRSTHN OUNTTAF FIRSTN RINTIME _F:RPu0e RUNTTIMFE _F:RREL RUNTIME
- F:RFZ PRUNTTHF F:RFF RUNTIME FeRLS3 RUNTIME F:RINT RUNTIME
g SRR RUNMT T=F
=1
4 ETATFAENT 1AFFTS - T — - — -
'Dhi | asC] ViR ‘ LOTN_ L 2REL - USE 10N 'L_A_PEL. _UISFE __LNEN LaBEL USE
cONPC #10 DA END L00G0 =ED FORMAT $Nn17 #MD
TENTRYZ:0N1A T o ' 0 -0 T

-y

e

PAGE 0005 04/P7/7/ 1R:S9:41 FORT:l (50)
BN FILE:_ TASKS OPTIOMS: 1% L0 ¢

PHOSRAM S17E=:N0%d ANRNS
RACE PAGF HSFP=:NONR WORNS

e et i — e e —— . - — QR — - P

COMPTILATTON FUMPLFTE 0 ERRORS

Figure 2-8. FORTRAN/RTX Example for LSI-3/05 (Con't)

2-54

ComputerAutomation ((,éﬁ& —

i

COMPILER DIAGNOSTICS

The compiler can produce several different kinds of diagnostics (see figure 2-9 for
examples) . Most are detected during the Scan phase and are printed on the source
listing immediately following the statement in error. A dollar sign is printed
underneath the position at which the error was detected, followed by a brief message.
For example:

DIMENSION BETA (O, 10)

$
01) DIMENSION OUT OF BOUNDS E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E¥*

I'he E's serve as a marker to make the message stand out and also signify "Error".

This indicates that the statement could not be processed. Instead, a call to a run-
time error routine is generated. Thus if any statement with an "E" type. error is I
executed, a run-time diagnostic will occur. :

Other errors are not so severe and can be recovered from. These are called Warnings,
and they have the same format, except that the E's are replaced by W's For example: i

FORMAT (3X,F10.3, ,16) i
O s s o
01) LABEL MISSING WXWXWAWAWAWXWXWAWAWAW AW AW *W AWAWAW AW AW *W AW *WHW* |
02) EXTRA COMMA WAWAWAW*WAWXWHWAWAWHWHWAWHWAWAWAWAWAWAW AW AW W* f

As shown above, it is possible to get more than one warning (and/or more than one
error) on the same statement. In this case the numbers at the left of each diagnostic
message indicate which dollar sign is referred to, counting from left to right. i

Most ot the messages are self-explanatory; however, Appendix D lists them with
explanations of their cause.

The second group of diagnostics is produced during the Allocate phase. These are
listed in tle appendix, and include undefined labels, storage allocation conflicts
(caused by COMMON or EQUIVALENCE), and storage overflow. These are all listed as
"E" type errors, since there is no reasonable recovery, but most do not generate any
run-time error call since they are not attached to any specific statement. Some cf
them are followed by a list of labels or variable names that are in error. For
example: -

0 i UNDEFINED LABELS E*E*E*E*E*E*E*E*E*EXE*E*E*E*E*E*E*E*EX*E*E*E*E*

7 FIRST REF AT LINE 26 §
296 FIRST REF AT LINE 132 ' : ;

ol

The third group consists of the diagnostics produced during the Gen phase. There
are only two such errors, and they both pertain to in-line assembly language. They
are printed in the object listing, out to the right of a simulated assembly language
instruction that has been generated. 1If no object listing is being printed, the
line with the error will be printed anyway, .to make sure of ‘signalling the error.
These diagnostics are listed in Appendix D.

2-55

- COMPUTER AUTOMATION. INC.

The fourth group includes diagnostics that are not caused by source program error,
but by compiler inability to continue. These errors always cause the compilation to be
aborted. They have the following format:

|
: FORT ER ptt

where p identifies the phase of the compiler that was operating:

p=1 Secan
2 Allocation
3 Gen

and tt identifies the type of error:

= 11 Pointer overflow
18 /0 error during overlay loading
l 21 Working storage overflow
1 28 Memory overflow during overlay loading
]‘ o 31 Compiler error
} 38 Illegal type code during overlay loading
| 41 <Compiler error
51 Compiler error during collapse
Except for 21 and 28, all of these result from hardware or software errors. If they occur
in a reproducible way, they are probably software errors, which should be reported.
28 indicates that the compiler will not fit in memory. 21 indicates that the program cannot —
be compiled in the given amount of memory.

i s
v
(9]
o

e

|

FALL wou) ©9/24774 1511538 FORT:i4 (Al)

8C FILLe FOuT GPTIUNS:

@A21 JEAONSTRATL COMPLLER DIAGNUSIICS
c402 GIALASINON MMClu,10)
PGS COUMUN X, 1, X

%

Pi) DLCLAKATION COMFLICT L#ENEAENESL¥EnE#ENE#ENERESENEAERERESEAE #E AERERE 4E

Liding EJUIVALENCE (X.Y)

Cdrs LOSYCAL LGLe M

NUry INTEGER A, r C
R

C1) EXTIA COMAA WaaWrWaWaWaWaWaH ol a WaWaWaNaWaWaWaNaWAWKHANeWN WA NS Wt WaW oW

gun7 SH(P,R) = pPea/s2
RNy X 8 {E54 + LGL
$ %

Z1) CONSTANT SIZF EaEnﬁﬁé»EwE*EiEtEwEtE*FtE-E*EtEtEaEaE*EaEaEtEaEaEteaeﬁe-Ee
Be) TYPE (ONVLICT E*EtE*EaEQEtE*EtEwE*EtE*EtEtE*E*ttE*E{E*E*EtEtEtEtE*EtE*Er

&

P IF (a) 2,3,2
Lol 2 X ® 50RT(A) + SFCY)
% i)

1) ARGUENT LONVFRIED AXARANRNE RN NI NANRN RN RN RN AT AR N R AN RN RN R RN AN IO

02) ARGUHENT LOJUN| oL wENRCAENE A A e E AL AEAESEREREAENEAESEAENENE#EoEwERECE S

k21 B(1Yd) = ¥
3 , ;
#i) JADIMENSIUNED EAENEAEAE WL AFAENE s EwEwEAEAF #EnE#EaFEaEwEREaEAEAEREAEWERESE
PP X 3 (RX+AHS(3X))/(VAL+3))
R ;
L1) SYNTAX En % ®pap ab¥ENE A aEaEop #f s AEREREREREEREWENERERE*ESENENEWE#E#E o}

gdt s J ® MM
<

COFL) MIT INTEGEPR E*[hE*EtE*E*EtE*E*E*E*E*E*EtEtE*EtE*E*E*E*EOEtE*EtE*EtE'EOEﬁ

(4 NuMpEw OF SGQSCRIPTS‘L*EQE‘C*L*E*L*E*E'E*E*E*E*E*E*E*E*E*E*E‘EjE*E*E*E*E

puty END

Figure 2-9. Compiler Diagnostics Example

2-57

CVAGE gUQ? g9/24774 15115328 FORT:4 (A1)
80 FIlL: FOuUT JPTIUNSS

—

i JAPETINED LABELS fGL*L*L*E*EQE*E*&'LthﬂﬂiﬁiﬁtEtEQEtEtEtE.t*EtEtgaﬁggggoﬁtsﬁe.

4 3 FLRST ReF AT LIWE 9

O AON LI UCK/ZF st ALLOCATIOMN $@uié WORDS

CULN NWE TYRE WORDS tuCw MAME TYPE WURDS
faoned X Rbal 2 16en2 v REAL 2

fjxprY AL uCATION

UbN Nawuk TYDE WokRrDS LOCN NAME YKL WURDS
L4 s M I[MTEGT . 10y '
|
i Vo_'ﬁm MOLOUATT N (
: Cur gy ATE Ty r WORDS l.uCN NAME TYPE WURDS
§1u101 A IHMTEGER 1 Luv65 INTEGER 4
P IOYCRG IR LourTCal. 1 ’

L UGATLION ERRNRS l*E*E*E*E*E*E*E*E*E*E*E*EtE*E*E*E*E*E*E*EtEiEtEaEtE*E*EOE'L,_,,.

Figure 2-9. Compiler Diagnostics Example (Cont'd)

t

A
i
£
§i
Al

4 PAGE 9B 09721774 15315208 1 ORT.4 (A1)
v JO FILL: FOurv JPTIUNS

SUB U RYGRANS CaliFu

NA"L TYPE AxG3 NAME I YPL ARGS NAME TYPL ARGYS
FiRERR RUNT [WF SURT REAL 1 F:RSTO RUNTIME
FeRaCL RUNTIME F:RDMY RUNTIME

STATEMENT LLaRBLLS
Loy LAREL 19 LOCN LAaBel USE LuCN LABEL USE

10779 w2 SFFEF #) - 3UA76 #M2
t0udh ¥

i ENIRY=1ude7
| BROLIAM SIZL2: 1094 «ORDS
| © BAD. PAGE USEu=z:ay04 wORDS
- @ CUYPLLAITUN CUMPLETE 12 ERRNRS

J Figure 2-9. Compiler Diagnostics Examplg (Cont'd)

5

2-59

B R

s

—— -

Section 3

LIBRARY STRUCTURE AND LINKING

GENERAL

A compiled FORTRAN program contains references to external subprograms. These
references may be generated by:

1. EXTERNAL and CALL statements to a specific SUBROUTINE subprogram.
2. An external function, either library or user-defined.
3. A compiler generated reference to the mathematical or I/O routines.

References to these routines will appear within the object code listing and the
subprogram usage map. In turn, these routines (the I/O routines in particular) may
reference the OS or RTX I/O Interface routines which make the actual I/O calls to
the OS or RTX drivers.

Each of these subroutines must therefore be available for linking, either by being
compiled behind the main FORTRAN program in batch mode (if a FORTRAN subprogram), or
by being resident on the FORTRAN library file, which is normally found on the System
File (SF) device. (See System Generation, section 5 for a discussion of generation
and ordering of the FORTRAN library file). ‘ '

-

The tollowing types of routines are resident on the library file:

1. The Basic External Functions, which are referenced by name within the FORTRAN
statement. The function names are generally indicative of the functions, e.g.
"SIN", "SQRT", etc. (A complete list of the functions and their descriptions
is in the appendix). ’

2. The Mathematical and I/O Routines are references created by the compiler during
the generation of the object code. A naming convention has been established
for these routines whereby the routine name is of the form F:Exxx, F:Ixxx or
F:Rxxx. A complete list of these routines and their descriptions is in the
appendix.

3. The System I/0 Interface routines are not referenced directly by the compiler:
rather they are called by the I/O routines mentioned in item 2 above. The
names of each of these routines are of the form "F:Xxxx"; a complete list is
shown and described in the appendix.

4. The RTX/IOX routines are the standard RTX and IOX FUNCTIONS which may be ref-
erenced by in-line assembly language within a FORTRAN program executed under
RTX control. The name of each routine is descriptive of its function (e.gq.
BEGIN:, END:, DELAY:), and contains a colon as its terminating character.
These routines are described in detail iq the RTX User's Manual.

5. The LSI-2 Instruction Emulator contains sequences used by FORTRAN when executing
on an LSI-3/05 processor. These sequences emulate various LSI-2 instructions
which do not exist in the LSI-3/05 computer. The emulator also includes
within it a version of the LSI-3/05 software console routine.

’

: The System Generation section of this manual describes the generation of the library.
.+ Specifically, three separate library files must be created, one to be linked for
execution of the FCORTRAN program under OS control (F:0SLB), and the other two for
execation under RTX (F:RXLB for LSI-2 execution, and F3RXLB for LSI-3/05 execution). ~
This allows the correct I/0 Interface routines (OS or RTX) to be linked.

s el

LINKING (OS:LNK)

Once a program has been compiled, it must be linked to various referenced library
subprograms before it can be loaded and executed. OS:LNK, the standard OS link
editor, performs this function. Its output is a self-contained module in absolute

or relocatable binary format, including the FORTRAN program and all referenced
library subroutines, which is suitable for loading by OS:LDR or the /EXECUTE or

/LOAD commands (if it is to be run under OS control) or LAMBDA, BLD, or AUTOLOAD (if
it i3 to be run under RTX). Note that O0S:LDR and LAMBDA, which are "linking" loaders,
cannnt be used to link a FORTRAN program, because they do not recognize many of the
special loader type codes generated by the compiler.

The reader should refer to the OS:LNK description in the OS User's Manual for detailed
information regarding link editing. The following discussion encompasses those
I ipe~ts of OS:LNK most pertinent to the linking of FORTRAN programs. Note: OS:LNK
4 version B 2 or higher should be used to link FORTRAN programs.
‘,
\

\

1/0 Device Assignments . b

The following logical devices must be assigned to specific physical devices prior to
execution of OS:LNK:

1. System File Device (SF). Assigned to the device containing OS:LNK itself.

2. Binary Input Device (BI). Assigned to the file containing the binary output
from the FORTHAN compiler (normally a magnetic file or the paper tape reader).

3. Library Input Device (LI). Assigned to the file containing the FORTRAN library
module to be linked to the compiled binary code. - As described in the System
Generation section, three separate library files are normally constructed
during generation; one for the OS Run-time library (F:0SLB), and two for the
HPTX Run-time library (F:RXLB for LSI-2 execution, or F3RXIB for LSI-3/05

0 execution).
4

. Binary Output Device (BO). Assigned to the file which is to contain the linked
binary output from OS:LNK. (Normally assigned to a magnetic file or the paper
tape punch). This file is loaded and executed at FORTRAN run-time. Note that
if the FORTRAN program is to be run under control of RTX, then the BO device
must be assigned to the paper tape punch, since paper tape is the medium required
by LAMBDA, BLD or AUTOLOAD, at execution time.

5. List Output iFile (LO). Assigned to the list output device (line printer) for
output of the link map. .

\

OS:LNK parameters '

s e e PR e L

0S:LNK permits several options to be input as parameters. These are described in i
the OS:LNK User's Manual and familiarity with them is assumed here. The standard
sequences of options normally used for linking FORTRAN programs are discussed here. i

R

For Execution Under 0OS ‘

.When linking for OS execution, the link process must take place within the same OS %
System as that to be used for executioh, since various OS routines, (e.g., the I/O
driver entry points) have fixed addresses which must be referenced in the linked. |
output. Thus the NH, SP, AB, RL and SR options need not be requested, because the §
default addresses for these options are available to 0OS:LNK from within OS itself. 2
; Also tlie XA, XR and XS options are not required, since the FORTRAN object module §
| will contain the execution address (this is the memory address of the first executable ;
FORTRAN statement in the main program; i.e., the location defined as F:MAIN). A [
typical calling sequence might be:

fi /AS BI=DO.FPROG (name of compiled FORTRAN program)
/AS LI=DO.F:0SLB

0 ‘ /AS BO=D1.EXPROG (executable output)

/EX OS:LNK,LL,TE t

In addition, the user may wish to utilize one or more of the following options:
i
NB (Suppress binary output) :
NL Suppress listing)
1.1 (Re~enable listing)
MA (Output link map at end)

(Refer to the 0S:LNK description in the 0S User's Manual for a discussion of the
usage of these options.)

For Execution under RTX

When linking for RTX execution, the NH (or T3 if LSI-3/05), AB (or RL) and SR options
are normally required, since the default addresses associated with these parameters

; are in relation to 0S, and do not apply to the RTX system. Also, linking for the
i @ LSI-3/05 requires the SX option.

NH or T3 ~ This option specifies that the linked program is not intended to .
run under the host 0S system. T3 should be used for LSI-3/05
execution.

AB (or RL) This option specifies the'starting absolute or relative memory

address for loading the executable program. This may be any
address or bias; “however, it is a good idea to avoid loading in
the base page area, which is needed for scratchpad literals and
address pointers. Normally an input of AB (or RL) = 100 is
optimal for FORTRAN loading under RTX. '

i

N
¥
i
W

SRR o

SR

The SF option i
for some specif

The XA, XR, and
the entry point

section of this

An RTX program,

9 *LN¥ user to
o sataining the

since the resul

{for LSI-2

NOTE

Using an absolute load location (AB=) insures that the
linked output is loadable by BLD, AUTOLOAD, or LAMBDA.
If relative linking (RL=) is us=d, only LAMBDA should
be used for loading, since BLD aund AUTOLOAD do not
recognize all the possible type codes which may be
generated by OS:LNK in Rel mode.

This option specifies the starting address for any SREL (Relocatable
Scratchpad) data encountered. RTX itself does not contain any SREL
data; however, the FORTRAN compiler @oes output some in various object
programs, and it always needs 20 SREL cells for its own subroutines,

and they must be contiguous; these are used as temp cells, floating
point accumulators, etc. When linking for LSI-2 execution, a usually
safe location for SR is :60, since it is higher in memory than any of
the standard interrupt locations. For LSI-3/05 execution, SR = 20 is
recommended, because the addresses of some of the 20 SREL cells needed
by the compiler are used as indexing offsets; if these cells are defined

above location :3F, indirect index pointers will be created as needed,
at the SX locations.

This option is meaningful only for T3 linking, and specifies the starting
address for indirect indexing pointers. On the LsI-2, indirect indexing
pointers are lumped together with the SP pointers; “however, on the LSI-
3/05, all indirect index pointers must reside below location :40, and

so the SX option is required. These pointers are allocated beginning

at the SX address, and continue upward, toward high memory. LSI-3/05

RTX needs location zero, so the SX address should be at least :0001.

s not required unless the user wishes to avoid using the default area
i¢ reason.

XS options are not generally required if the RTX main program contains
"F:MAIN", as described in the RTX example in the compiler options
manual.

since it contains tasks as well as library routines, requires the
assign the BI device to the Mainline file and the LI device to the file
tasks, and then to re-assign LI to the library routines file. Also,
tant executable program must be loadable by LAMBDA, BLD, or AUTOLOAD,

BO must be assigned, to paper tape. Thus, a typical calling sequence might be:

execution)

/AS BI=DO0.F:MAIN
/AS LI=DO.TASKS

/AS BO=PP
/EX 0S:LNK

+NH,AB=100,SR=60,LL

. /AS LI=DO.F:RXLB
LL, TE

2|

(for LSI-3/05 execution)

J/AS BI=DC F:MAIN

/AS LI=DO.TASKS

/AS BO=PP

/EX OS:iNK,T3,AB=100,SR=20,SX=1,LL
/AS LI=DO.F3RXLB

LL,TE ‘

i dhuilint-3

g o=

e e £ e o < a3

e . .

In addition, the user may wish to utilize one or more of the following options:

NB (suppress binary output)
NL (suppress listing)
LI (re—~enable listing)
MA (output link map at end)

s 1 e ———

(Refer to the OS:LNK description in the OS User's Manual for a discussion of these 5
options.) '

0 Memory Usage

During the link process, memory is allocated as shown by the arrows in figures 3-1 and
3-2. Note that this allocation information is being transferred to the BO device
during OS:LNK; the actual data is not stored in memory until load taime.

£
&

3-4a

‘
3
#
-
z
i

<o ot

S L ke

Memory location OS Working Storage i

\

: 0000 Scratched relocatable data WKBP
|
Scratchpad Literal Storage HIBP |
:0100 :
0s
WKCOR
FORTRAN Object Program
y §
§
—_ ' FORTRAN/OS Library Routines
. (F:0SLB)
Y
HICOR
]
" :nFFF

Figure 3-1. OS:LNK Memory Allocation for OS Execution

4
f Memory location 0S:LNK option parameters
T :0000 Indirect Indexing Pointers — SX= (LSI-3/05 only) _
]
: Scratchpad Relocatable Data SR=
Y
Scratchpad Literal Storage-—I—- SP=
N AB= (or RL=)
|
0 FORTRAN Main Program
1 {F:MAIN)
‘ i
1 .
N \
| o
FORTRAN Tasks
"
LL
FORTRAN/RTX
Library Routines
(F : RXLB) \
:nFFF ,

[¢

i Figure 3-2. OS:LNK Memory Allocation Map for RTX Execution

OS:LNK_Memory Map

As each input file is processed by OS:LNK, a list of undefined references (if any)
is output to the list device. This listing may be suppressed by the NL option.
Upon input to OS:LNK of a Terminate (TE) parameter, a memory map is output, which
lists each external definition and COMMON allocation, with its associated memory

' location (which may be absolute or relocatable, depending on the "AB" or "RL" option
input to OS:LNK). Figure 3-3 is the memory map generated by linking the LSI-3/05
RTX sample program from Figure 2-8.

w "b e - ComputerAutom.ation Qsjﬁs —
g PAGF 2 WIZN17776 1016859 OSILNK (H1) MEHORY HAP
f CREATED FTILF FXAMPL
A MISSTHNG)
4 k0 R2 RE? kg3 R34 RS R36 w27
11 Red R10 R2A k2R Ryl Rab REF R$G
. ReH Rt RgJ Rtk Rt RaM RIN RO
g R3p - R0 RZR R1S R31 RsU RSV REwW
ReX RevY R227
PROCRAM ' . S . : :
F3RURF 0n2n F3RBPG QU227 F3RRPP BU27 FIRACS 0423
b IRALE n029 FSRAC] AN2A FINAC2 Qu2B F3iehC3 0a2c
FiRAT 4 anoD F JROPS AA2F F3ROPF QW2F FIROPL 0430
F3ROP2 andy F;ROP3I 0432 F3ROP4 2¥33 FSiRARG 0A34
b 1RYXKG anYs FiFLOC AA36 FpraiLl 0437 FIFNL2 Nu3B
A FeRPAB nn3aA F3IMATN N1AY IguAr G175 TASKL 1W3b7
g TASK? n38R D3LPFD H3AQ C:l PFD P3B5 D$ YVl A3DR
| C3TYa alFs 13RITF a4ncC 13READ Q45F TeRLIE ©4F)
i RJTEZ 04Fw 1$FUN n522 SCH) OOYF LUKTHS N56F
| 1:DIR. 0570 SCHE O57C RTX3 OA5FC RTUSE WSFC
N ¢ BFGINT @623 FNDT | 963C PAUSF3: Q641 NEWPI3 P644
r DNIT: Rnb64% CFIFR: w647 PUIFRE P6H2 SVSTis 0659
! R:F 06713 RFEADY: 0673 FIFUGE: 0674 _DLYCH: 2675
i COMNE . 4676 IQCH:, 9677 GETCH: 0678 PUICHS 0679
1 GFTRE: VHRK PUTRF: A6RC PUIPRE 0691 SCHED: V6A3
LEFBURTY OLAD 7B6 6.1 ZERNG @6C1 SART PLAC
bsISUR ack/ F:TRAD OCFF F3TR3H (D4 FtIRMIL ¢DOA
— F3IRDV pD1w F3TRID 94L20 F3iRSY BD2C FEIRMV “DIA
FeIFRt ab61 F3TFR2 4D66 FilRUN OD7D FeIFCL 0DBs
| FyRRFL ubA6 F3RRAHR GBDAF F3RAD GDB3 FIRRAU QDBZ
¥ F s RRDM uE aB F3RRDV QE 14 F:RRDU bt.1c FSRIVR WEAF
FeRIUID wE6S F2RRML AE71 FanRMU vE74 F3$kRUN MEAA4
b JRENG aERC F3RRII QFCF FIRRSG OLFU FSRRST PEFH
b s RRSH pF 17 F3RRSI @k 1R FIRINT PF21 FIRIIP 0F29
FyRSIN 1073r FIRINP 1047 FgrOUT 114D FIREMNN 1856
F2RKDFN 145D F3RWFR 1463 FIRWFN 14169 FIKWFHR 1470
FaHAE 10478 F3RRFR 1A7F FIRRFYN Ju8S FERRFB 138
byRRF 1494 F3RIUS 1125 F3RRUS 1128 FerDUS 1130
FpRLUS 1138 F3RCIS 113R FERHUS 1143 Farlol §157
©C PyRROD 1ASS FIRDOL 1161 FIRLOL 1166 FIkCUL 116H
FiRFAA 11F7 FIRFAF 1179 FSRFDE JIFF FerFDF 1IFT
FsRFFS 11Fu FsRFPFE 11FN - F3RFRA 1202 FErbESF 1203
FiRFWl 1207 F3REWE 1208 FinFWS 1209 FIRFEWE 120A
| FgRS10 1200 F3RESI 1229 F3rFRW 13F% FIRFKRN 13EA
- ' FyRFED 1473 F3RFSW (44D FirFSU 1458 Fiukun 1469
FaRFi 1501 FIREI = 1559 FIrRFZ 15A8 F2RHFNO 163D
FaRFG 1652 FIRFIR 17au FiRFF 171) FenFF 1732
FeRED 17138 F3RFTS 1461 F3RFAD tA6L FirRFDA 1A8A 5
FIRFFR 1AAW F3REWB 1AAQ F3RIUGN 1ABRS FIRUIR 1AC4 ‘
FpRUIS 1AfC F3RUST 1ADR F3RURT 1AF?7 FailJAV 18141
FyRIIAA 1B1A FREATL 1BAC F3FBAZ 10851 FIEDVD 1856
Fet TNA 1185R F2ENGA 1(HKF FstOVR 1B63 FEFESGI 1863
N ;
. H
2 Figure 3-3. Link Map Example %
% ' 3-7 :
: i

ot TS

PAGF 3 W3/17776 18:P6159

» FIRLIL funn FIRDTT 1H6A
7 baRDAT thAH F3RCST 1168
: ‘ FykDAR 1168 F3RLSB 136
iy FeRDID 1668 FSRCID 1B6H
3 FsHIID (KOS FIRRID 1HESK
b b3WRIC 1868 F3RDIC 1168

bKDSL JH6R FIRDNG 1ubs

b2t RRS 1HRF F3FRRC 1HC3

b3RUOT 1148 F3RUTIN 1048

FaRUnn glan F3RUA3 148

b TP 105D F34AWTS 1(C64
| b2xBspP (L7a FIXEOF 18
; byxbil 1h12 FIXLRR VDIC
N FeRLARY 1F3F MD1As 1F3F
0 AxMg 1Far NRAS 1F51
1~ TxAs (E5F DAXS 1£ 619
a ANXE 1HQA CARS 1F 9F
j: LAXS 11 AA CXAS 1FAF
i NEM; 1FCR MPY3 1tFR

IRR: | 1F 30 LR § 1538

MOEOV: 1R HAOS 1E 51

Xt 1FH1 SAOS 1H5H1

Al X3 1F60 ALAT 1F76
% FMUL: 1FA8 CNSOIL 2 1HASR
| XFMy 1Fre UINT 2n12
= Ap: 24084 AR} - 2UHA
| INRSI1: 267D 10e 2108
i FOR3T: 2197 FOFQ: 21CF
B INTPe 24FF WATCH: 2249
B LhBUME 20706 FFICH: 2284
B tnFCkg 22RF GFTPRg 2206
i DFLPRY 22FF DELAY; 22€7
| UNPRs 2316F ABORT: 2377
\ (@ SRELKS 2397 SUHX: 23D3
E INTQs, 23FD SCAN2, 2440
| S(nDI 3 0452 RTOS?: 2457

USILNK (H1) MEMORY MAP

FIRDHL
FIrRDAD
Finrhov
FrnbDIR
FIRC1l0
F:RrRDAB
FirCG
Fintish
F3RIIN
FiRrlina
Faxour
FixXCLS
FsxpSt
ZAX}
NRX
DXAS
CXk¢
ANASL.
Dvn:
LLR;
HxX0$
SXxng
ARA:
cov:
LncC:
STAT:,
FNoIBS
EOF:
UNRES:
BUFFQ?
SETPR?
LOCK?
IERM:
SBXNK S
DEVET?

1868
1868
1368
168
I1B6A
1BH8
18684
148
1c48
1c48
1C6¢
1L86
1D51

JE48
1E55
1£64
1FA3
1ER3

1Fas
S LLLS

1F a4y
1151
1F5 9
1781
IFF 1
2YKB8
24RC
2182
2105
2251
2203
2200
235F
2378
2308
2448

Figure 3-3. Link Map Example (Con't)

3-8

(R fuey

'

F2iCML
FsrCAD
FsiCbv
FenrCiRr
Fanrig
FikDDM
SRESFR
FIXRLS
Frieint
Feurtiuh
FSXRND
F:XRLS
FsxSip
AXP?

iAXe
MDRFUL S
FAX?E

MDMDN
MDL SHs

LAOS
MDASH?
ARPX?
Xt qOVe
INGT:
[0urre
FNRS
sSjos
SINTS
WAT T
IHCPRS
UNI.K 2
SYBR?
UMDOs
INSRI ¢

1R68
1468
tB6A
‘1868
1B6A
1B68
1868
1048
1C48
1048
1c73
1CBF
1D64
14
1E5H
1E7F
tEA7
1FEC2
1F22
iF 46
1F51
1F62
1FB4
{FF6
2uh9
28CD
2196
2108
225A
22A56
229
236F
2392
23DF
2441

- PAGF 4 @Y/17776 10106359 OSTLNK (B1) MEMORY MAP
/" -
c MCMURY USEGF .
P SCRATCH=PAD 1 TTERAI A008-0a37¢ !
W SCHATCHaPAD PROGRAM A8A2-013A E
5 MAIN MEMORY PROGRAM 2882-24%8 i
' ExEC Annarus . a6C1
- SLRATCHPAD UISAGE TABIEs . ,
5 ADLR 3 1 9 3 456289 ARCDEF LEGFNDS
~ @24 . P PP PPPX . oo s A=ABSOLUTE LITERAL
w = A1 o 4 o 2 o p v v o o o 2 g o o a BsBYIE RELOCATABLE LITFRAL
© wa2a . ., ,.,958955535885S P=aBSOLUTF PROGRAM
2 A3 S S S S S S SSSSS ., ReWORD RELOCATABLE LITFRAL
g e I N Y T S ‘58SRFL PROGRAM oL
% el S N T S S XsABSULUTE INDEX POINTFR
A360 s e 6 o 8 a5 s o NENORD RELUCATABLE [NnFy POINTER
a @70 . A A AAAAAAAAAAAA, YzBYTE RELOCATABLE INnFy POINTER
S . . e - -
o PROCFSSFD 1ST 3 ORJECT

N FRRORS

—_— A ccammmendwon .

The created file name is listed first, followed by a list of missing names (undefined
j | references), if any. This is followed by a listing of defined references and their
.+ addresses. This listing is in order of occurrence, reading from left to right

' . across each line. . : ~

i | Following the list of definitions, the COMMON areas are described with their lengths
' and starting addresses. Blank COMMON is not allocated to a particular memory loca-
tion by OS:LNK until input of the "TE" parameter, and so it generally has the highest
address of all the linked modules. Labeled COMMON, however, is allocated upon its
first occurrence when passing through OS:LNK. The 0S:LNK memory map concludes with

i a list of address ranges required for scratchpad (literals and input data) and main
memory usage, a map of scratchpad usage, and the execution address (normally the
location of F:MAIN or DEBUG) .

0S:LNK Error Reporting

Duriny the link process, various error conditions may occur. These errors may be
grouped into three types of messages:

: Diagnostics. Output to the LO device as they are encountered. They indicate

:‘ﬂb r.omory usage conflict of various forms, and are usually caused by scratchpad or
main memory overflow, or an attempt to store data into a scratchpad location
zlready occupied. These errors do not terminate OS:LNK, but may produce
erroneous results during program execution. ’ '

2. Termination errors. Output to the CO and LO devices, indicating an error which
prevents 0S:LNK from completing the link operation. A memory map is printed at
this time, and O0S:LNK terminates. —

3. 1/0 errors. Output to the CO device, and reflect an error status returned from
08 following an I/0 operation.

A complete list of 0S:LNK error messages may be found in Appendix D.

#
#]
4

|
i
|
|
i
i
7
&

e

g

H
g‘
i
%,‘ i
¥

Section 4

RUN-TIME

INTRODUCTICN

Once the FORTRAN program has been successfully compiled and link edited, it is ready
to be loaded and executed. Prior to this time, however, consideration should be
given to the I/0 operations which will be performed during execution.

I1/0 DEVICE ASSIGNMENT

All input/output operations specified in the FORTRAN source program (READ, WRITE,
INPUT, OUTPUT, BACKSPACE, REWIND, and END FILE) make use of FORTRAN unit numbers (1
through 99) to specify the particular device on which the I/O operation is to be
performed. INPUT and OUTPUT statements do not include specific unit numbers, but
imply input from logical unit 5 and output to logical unit 6. The other I/O state-
ments must include a logical unit number, expressed either as an integer constant or
a simple integer variable. Prior to execution of the program, any FORTRAN unit
numbers used in the program must be assigned to specific I/0 devices. In addition,
the Command Output (CO) unit must be assigned to a device (normally the teletype)
for output of PAUSE, STOP and run-time error messages; also, for. OS execution, a CI

assignment is required to enable the operator to resume a program following PAUSE
suspension. E

Device Assignment for Execution under 0S

For execution under 0S, device assignment is accomplished by the /ASSIGN command.
Usage of the /ASSIGN command, however, implies in turn that entries exist within the
0S Logical Unit Table (LUT) for the FORTRAN unit numbers used in the FORTRAN source
program. Thus, although the FORTRAN compiler will accept any logical unit number
from 1 to 99, the FORTRAN programmer is limited to the unit numbers in the LUT. The
standard 0S systems distributed by Computer Automation, Inc., contain LUT entries
for FORTRAN units 1 through 6 only, with the following default assignments:

Unit 1 Unassigned
Unit 2 Unassigned
Unit 3 Unassigned
Unit 4 Unassigned
Unit 5 Card Reader
Unit 6 Centronics Line Printer

To add additional FORTRAN units to the table, or add default assignments to unassigned
units, re-assemble the O0S ROOT program with the desired changes and re-generate your
0OS system; it is also necessary to as add a File Control Block (FCB) entry to the

FCB tables within the FORTRAN/OS library package, for each additional unit number.
These procedures are fully described in Section 5, System Generation.

S

e
it S

$

ki ook 6 Secki R

—3

The actual unit assignment is in the standard format, where the logical unit number
is specified as a one or two digit number, e.g.:

/Assign 2=FR (assign FORTRAN unit 2 to the paper tape
reader)
or
/ASSIGN 03=D0.FILNAM * (assign FORTRAN unit 3 to a file on disk
: unit 0)

Note that usage of a bulk storage device requires that the device be previously
labeled for 0OS (by using the OS:LBL utility). '

Device Assignment for Execution Under RTX

When preparing a FORTRAN program for execution under the Real Time Executive, device
zssignment is made by creation of a Unit Assignment Table, which should be assembled
o;.a; the RTX mainline program. Refer to the RTX option description in the Compiler

Upticas section for a discussion of the Unit Assignment Table.

FORMS CONTROL FOR LIST DEVICES

3
hy

Forms control for printed output to the line printer or teletype is accomplished by
use i a carriage control character. This character must occupy the first position
of any print line, and is never printed. (Exception: when using the free-form
OUTPUT statement, output always begins in column 2 of the printer; thus allowance
for a carriage control character is not necessary.)

The carriage control characters and their functions are as follows:

{naracter Function
1 Causes page eject (top of form) before printing
0 Causes double up space before printing
0 Any other Causes single up space before printing

{Note that Overprint capability is not supported.)

The carriage contrcl capability is useful for printing data in a user-defined format,
such as report generation. Judicious use of these control characters will enable

" various formatting arrangements of the printer output. (There are 54 lines to a

" printer page.) Note that thé user who does not wish to use carriage control and

. merely wants single spaced output must insure that the print line does not contain a
o "1" or "O" in column 1. This is most easily done by using the OUTPUT statement, or
! by beginning the FORMAT statement with a 1Hb format.

o
al

POSITIONING CONTROL FOR MAGNETIC DEVICES

The REWIND, BACKSPACE, and END FILE statcments are for magnetic devices only and are
described in the FORTRAN Reference Manual in relation to magnetic tape or cassette
usage. For operation to a disk file, the internal operation is slightly different
(for example, an end-of-file mark is a normal record with a special character in the
first word rather than a hardware function as on magnetic tape), however, the user
may use these functions just as he would for magnetic tape or cassette. A BACKSPACE
statement will cause the disk to reposition itself to the previous record to be re-
read or re-written, a REWIND statement will reposition the disk to the start of the
file, etc. (This is not done by actual physical repositioning, but rather by re-
setting the current relative record number internally by the OS File Manager or RTX
disk handler.)

PROGRAM LOADING PRIOR TO EXECUTION

The procedure used for loading a linked FORTRAN program basically depends on whether
the program is to execute under 0OS or RTX control.

Loading for OS Execution

’

0S is executed under the same OS system used to link the program, The following
sequence may be used: :

a. Issue a /JOB command to initialize the unit assignments.

b. Assign all pertinent FORTRAN unit numbers to the required physical devices.

c. Assign the SF (System File) unit to the device containing the linked
FORTRAN program. ‘

d. Issue an /EXECUTE command to load and execute the program.

N

e g 1 o A i

e L T

SRt L T

ComputerAutomation ﬁi;%ﬂs]

Loading for RTX Execution

For execution under RTX, the linked FORTRAN program, may be loéded by one of the
following loader programs:

1. LAMBDA linking loader
2. 0S:ILD :

3. BLD binary loader

4. AUTOLOAD

5. DLD (LSI-3/05 only)

Note that if relative linking was used during the OS:LNK procedure (RL=), certain
type ~odes may have been output which are not recognized by BLD or AUTOLOAD. IF
linked in absolute mode (AB=), any binary loader may be used.

Refer to the documentation of the desired loader for specific operating instructions.

Errors During the Load Procedure

TIf a lead error occurs during the loading procedure, consult the documentation for

+ applicable loader. A memory overflow error indicates that the linked FORTRAN
rogram 1s too large, and may require re-compilation using some form of coding
optimization. Output of an object code listing durlng compilation can-.aid the
proqummcr in this respect.

¢
&

PROGRAM EXECUTION

Once the liﬁked FCRTRAN program has been loaded and execution has begun, various
conditions can occur to which the user (or the operator) must respond.

PAUSE Messages

The PAUSE statement causes the message

"PAUSE xxxxx"

+to be output to the Console Output (CO) device (which must have been previously

signed) . "xxxxx" represents a decimal number from O to 32767, and may assume any
meaning the programmer wishes it to have, to the operator (e.g., a certain number
may indicate that the operator is to load data records into an input device).

When & PAUSE message occurs during execution under 0OS, it is automatically followed
by a "suspended" condition, during which the operator may perform some required
function. The program may then be resumed by inputting a "/RESUME" command. (The
/RESUME command must be input through the default assigned CI device, normally the
teletype keyboard, no matter which device is currently assigned as CI).

4-4

Bl oo o S St

Run—-Time Error Handling

Diagnostics at run-time can originadte in either the FORTRAN library or the 0S system.
{Under RTX there are no system error messages.) The FORTRAN diagnostics are output
to the list device and the console, and have the form:

'routine name', 'message’' ERROR AT :XXXX

where :xxxx is the location of the call in the user program. In addition, under RTX
this information will be followed by:

PRI: ddddd

where ddddd is the decimal value of the priority assigned to the task that was
active. This helps in identifying the task.

The FORTRAN run-time diagnostics are listed in the appendix, with the messages in
alphabetic order (since the same message can often be produced by several routines).
Note that occasionally there is no routine name given, e.g. NUMBER OF ARGUMENTS,
since the name is not known at run time. The "comments" column explains the error
and indicates whether it causes an abort or whether some recovery is made.

When running under OS, some error conditions will be detected by the system rather
than the FORTRAN library. You should be familiar with the OS User's Manual; however,
the appendix shows the OS diagnostics that are relevant to FORTRAN jobs. In many
cases, errors in the use of input/output files are detected at the time the file is
opened. In FORTRAN this happens automatically the first time the file is used.
Therefore some OS messages will appear only if the error is made on the first use of
a unit number. For example, if you write on the line printer, then try to read from
it, you will get a FORTRAN message, whereas if you tried to read from it first you
would get an OS message.

Note that OS messages are written on the console device, not on the listing device.
In addition, some of them cause the program to be suspended, in which case reccvery
must be made at the console before resuming (for example, by reassigning a unit
number or readying a device.) If OS returns, instead of suspending, there will
typically be a FORTRAN error message that follows. The OS message, then, will
identify the device or unit number, while the FORTRAN message will identify the
operation that was being performed (e.g. FORMATTED, BACKSPACE) and the location of
the call. In addition, some of these will cause the ERR= exit to be taken, if this
option was specified in the READ or WRITE statement. In the appendix, the second
column of these messages shows whether OS returns or suspends. The last column
explains the error.

Console Interrupt

Console interrupt is not enabled when executing FORTRAN under RTX. Under OS, however
console interrupt is enabled at all times, and may be used to pass control back to th
0S Executive. The FORTRAN program is normally resumable once it has been interrupted

Section 5

SYSTEM GENERATION

INTRODUCTION

The ALPHA LSI FORTRAN IV System is delivered as several separate files, from which the
user may configure his system to meet his individual requirements. These files are
available on various types of media (paper tape, disk cartridges, etc.). The examples
in this section assume floppy disk. If the user's files are on another medium, he
should alter the generation procedure in accordance with his requirements.

GENERATING THE FORTRAN COMPILER

When delivered, the FORTRAN compiler resides on the following files:

Compilexr Root F:CROT (96510-30)
Compiler Interface F:CFAC (96510-31)
Compiler Scan (Complete) F:CSCN (96511-30)
Compiler Scan Overlay 1 F:CSCO (96511-31)
Compiler Scan Overlay 2 F:C0S1 (96511-32)
Compiler Scan Overlay 3 F:C0S2 (96511-33)
Compiler Allocate Module F:CALL ~ (96512-30)
Compiler Gen (Complete) F:CGEN (96513-30) .
compiler Gen Overlay 1 F:CGEO (96513-31) For LSI-2 Run-time
Compiler Gen Overlay 2 F:COG1 (96513-32)
Compiler Gen Overlay 3 F:CO0G2 (96511-33)
Compiler Gen (Complete) F:CGE3 (96513-34)
Compiler Gen Overlay 1 F:CGE4 (96513-35) For LSI-3/05 Run-time
Compiler Gen Overlay 2 F:COG5 (96513-36)
Compiler Gen Overlay 3 F:COG6 (96513-37)
Compiler Root LSI-3/05
Overlay F:CRT3 (96510-33)

The above listed files comprise the several parts of the compiler:

1. The Compiler "Control" program consists of the Compiler Root (F:CROT), and the
Compiler I/O Interface (F:CFAC), which must be linked together by the user into a
single file, called "FORT:4". This is the file that is actually called by the
operator to begin a compilation.

2. The Scan phase is provided in two forms, one or the other of which is called by
FORT:4 depending on the amount of available memory the user's system contains.
If more than 16K words of memory, FORT:4 will automatically call in the "complete"
Scan module (F:CSCN) at Scan time. If the system has only 16K, FORT:4 will
automatically call in the three Scan overlays (F:CSCO, F:COS1 and F:COS2) as
needed.

3. The Allocate phase is provided in non-overlayed ("complete") format only (F:CALL),
as it is small enough to fit, with FORT:4, into 16K of memory.

5-1

ComputerAutomation (s=47Qs —

¢

2

4. The Gen phase for LSI-2 programs is, like Scan, provided in two forms; F:CGe:i)
(the complete Gen module) is called if more than 16K of memory exists; otherwise,
the three Gen overlays (F:CGEO, F:COGl and F:C0G2) are called in as needed.

B

; 5. The Gen phase for LSI-3/05 programs has an exact correspondence to the LSI-2 :
! Gen, except that LSI-3/05 versions are used when the T3 option is specified. '
F:CGE3 is called when more than 16K of memory is present; otherwise the overlays |

F:CGE4, F:COG5 and F:COG6 are used. . {

;

6. Besides determining which Gen to use, the T3 option also causes that part of the ;

Root which contains the LSI-2 instruction skeletons to be overlayed by F:CRT3,
which is the equivalent list of LSI-3/05 instruction skeletons. i

| | 5-la
& .

Eiqﬁre 5-1 shows the compiler configuration in memory when more than 16K is present.
The Scan, Allocate, and Gen phases share memory by overlaying each other, as shown.
| Figure 5-2 shows the compiler configuration when onlyblGK memory is present. Note A ~
- that F:CSCO, F:CALL, and F:CGEO all share memory by overlaying each other. In ad-
* dition, F:CSCO contains within it an area which is shared by F:CO0S1 and F:COS2 in
Q overlay fashion. Likewise, F:CGEO contains F:COGl and F:COG2 within it, which overlay
I =2ach other. “
: 0000
0s
! FORT: 4
|
: F:CSCN : F:CALL F:CGEN or F:CGE3
i w161 (overlay) (overlay) (overlay)
|
‘% Working Storage
- ©
j Figure 5-1. Compiler configuration when more than 16K memory
} . .
i
| : 0000
| | | 0s
—
% FORT: 4 !
|
|
| F:CSCO _ F:CGEO or F:CGE4
O
F:COS1 F:C082 F:CALL ’ F:COGl F:C0G2
or or
F:COG5 F:C0G6
F:CSCO F:CGEO
or
F:CGE4
Working Storage
16K 9 g —
- Figure 5-2. Compiler Configuration with 16K memory
: 5-2

‘l"‘ , ComputerAutomaiion ((Jﬂwb —_—

The generation procedure consists of two main steps:

STEP 1: Copy the F:CROT and F:CFAC modules to the system file device using the
0S:CPY utility, then link them together into FORT:4 using the OS:LNK utility:

1. /JoB '
‘ 2. /EX 0S:CPY

- 3. CB,FO.F:CROT,DO.F:CROT

‘ ‘ 4. CB,F0.F:CFAC,DO.F:CFAC,TE

5. /JOB

6. /AS BI=DO0.F:CROT,LI=DO.F:CFAC,BO=DO.FORT:4

7. /EX OS:LNK,LL,TE '

STEP 2: Copy each of the remaining compiler modules to the system device, using the
0S:CPY utility:

i 1. /JOB
; 2. /EX 0S:CPY
i 3. CB,FO.F:CRT3,DO0,F:CRT3
4. CB,F0.F:CSCN,DO,F:CSCN
0 ~ 5. CB,F0.F:CSCO,DO.F:CSCO
‘ 6 CB,F0.F:C0S1,D0.F:COS1
7. CB,F0.F:C0S2,D0.F:COS2
8. CB,F0.F:CALL,DO.F:CALL
9. CB,F0.F:CGEN,DO.F:CGEN
i 10. CB,F0.F:CGEO,DO.F:CGEQ
11. CB,F0.F:COG1,DO0.F:COG1
12. CB,F0,F:C0G2,D0.F:COG2
~ 13. CB,F0.F:CGE3,D0.F:CGE3 i
14. CB,F0.F:CGE4,D0.F:CGE4 !
15. CB,F0.F:C0G5,D0.F:C0OG5 ‘ '
16. CB,FO0.F:COG6,D0.F:C0G6 | E

GENERATING THE FORTRAN LIBRARY FILE _ i

The delivered files include several routines which must be merged by the user (using
*he OS:CPY utility) onto the system file device as one of two library files. Since a :
FORTRAN program may be compiled to run under either OS or RTX, and since these opera- i
.ing systems require different library routines, a single library file may not be !

‘E@ created which will serve the purposes of both the OS and the RTX system. This means)
: that three distinct library files must be generated, one for OS execution and two for |
RTX execution (LSI-2 and LSI-3/05 versions). The following file names have been f
established to differentiate the libraries:

. F:0SLB (for execution under O0S) 5
F:RXLB (for LSI-2 execution undeir RTX) l
F3RXLB (for LSI-3/05 execution under RTX)

The following sections describe the generation procedures for these files:

0S Run-time Library Generation (F:0SLB)

1. FORTRAN LSI-2 Basic External Functions Library Module (F:EXTR) (96514-30)
~ |2. FORTRAN LSI-2 Math and I/O Routines Library Module (F:MATH) (96514-31)
3. FORTRAN/OS 1/0 Interface Module (F:0810) (96515-30)

5-3

:
o
i
Wi
|
|
i
i
o
i
|
|
il
|
|
|
|
i
|
|

The modu1es must be merged into one system device file, named F:0SLB. The order shown
above reflects the order in which the modules must reside in the library file, to
enable the OS:LNK utility to link edit a FORTRAN prodram in a single pass.

The following procedure will merge these modules as required for correct linking:

1. (Operator mounts the FORTRAN library modules diskette on unit FO0)

2. /JOB Lo

3. /EX 0S:CPY

4. MB, FO.F:EXTR,DO.F:0SLB

5. (0S:CPY merges the Basic External module and outputs the "READY NEXT FILE"
MESSAGE) .

6. FO.F:MATH

7. (05:CPY merges the Math and I/O Routines module and outputs the "READY NEXT FILE"
message)

8. FN.F:0810

9. (0S:CPY merges the FORTRAN/OS I/O Interface module, then outputs the "READY NEXT
FILE" message)

10. MT,TE

0{‘ #T¥X Run-time Library Generation (F:RXLB)
The fo!llowing five modules comprise the LSI-2 RTX Run-time Library:

. FORTRAN LSI-2 Basic External Functions Library Module (F:EXTR) (96514-30)

i

2. LSI-2 RTX/IOX Segment 1 module* (93300-30) ;

3. FORTRAN LSI-2 Math and I/O Routines Library module (F:MATH) (96514-31)
4, FORTRAN/RTX LST-2 1/0 Interface module (F:RX10) (96516-30)

5. LSI-2 RTX/I0X Segment 2 module* (93300-31)

*included in the RTX Software Package
These modules must be merged into one system device file, named F:RXLB. The order
shown above reflects the order in which the modules must reside in the library file,

to ericble the OS:INK utility to link edit a FORTRAN prodram in a single pass.

The tcllowing procedure will merge these modules as required for correct linking:

1. iuperator mounts the FORTRAN Library Modules diskette on unit FO)
'E’ /OB
Se /oX 0S:CPY

4. 4B,F0.F:EXTR,DO.F:RXLB

5. (0S:CPY merges the Basic External Functions routine, then outputs the "READY NEXT
FiLE" message)

6. (Operator mounts the LSI-2 RTX/IOX Segment 1 module tape into the paper tape
: reader)
7. PR :
8. (0S:CPY merges the RTX/IOX Segment 1 module, then outputs the "READY NEXT FILE"
message)
9. FOﬂF:MATH
10.. {O5:CPY merges the FORTRAN Math and I/O routines module, then outputs the "READY

NEXT FILE" message)

11. FD.F:RXIO

12. (0S:CPY merges the FORTRAN/RTX I/0 Interface module, then outputs the "READY NEXT
FILE" message) ,

13. fQpera*or mounts the T87-2 RTX/INX Saament 2 meduls “ape intc *he tager tace

i, e S
P)

P |

’ 14. PR

g 15. (0S:CPY merges the RTX/IOX Segment 2 module, then outputs the "READY NEXT FILE"
e message)

|

? 16. MT,TE

4 LSI-3/05 RTX Run-time Library Generation (F3RXLB) ' '

The following six modules comprise the LSI-3/05 RTX Run-time 1ibrary:

1. FORTRAN LSI-3/05 Basic External Functions library module (F3EXTR) (96514-32)

2. LSI-3/05 RTX/IOX Segment 1 module* (93301-30)

3. FORTRAN LSI-3/05 Math and I/O Routines library module (F3MATH) (96514-33)

B 4, FORTRAN/RTX LSI-3/05 I/0 Interface module (F3RXIO) (96516-31)

B 5. FORTRAN LSI-2 to LSI-3/05 Instruction Emulator and Software Console module
(F3EMUL) (96516-32)

6. LSI-3/05 RTX/IOX Segment 2 module* (93301-31)

\

|

|
o *included in the RTX Software Package

\

i .

i o These modules must be merged into one system device file, named F3RXLB. The order
) shown above reflects the order in which the modules must reside in the library file,
\
|

to erable OS:LNK to link edit a FORTRAN program in a single pass.

l The fcllowing procedure will merge these modules as requirgd for correct linking:

1. (Operator mounts the FORTRAN library modules diskette on unit FO)
_ 2. /JOB
| 3. /EX 0S:CPY
| 4. MB,FO.F3EXTR,DO.F3RXLB \
| 5. (0S:CPY merges the Basic External Functions, then outputs "READY NEXT FILE"
; message) _ ‘
T L (Operator mounts the LSI-3/05 RTX/IOX Segment 1 module tape into the paper tape
; reader)
‘ 7. PR \
\ 8. (0OS:CPY merges RTX Segment 1, then outputs "READY NEXT FILE" message)
1 9. FO.F3MATH
i 10. (OS:CPY merges the FORTRAN Math and I/0 Routines, then outputs "READY NEXT FILE"
1 ‘ message)
@ 1. ro.F3mx1O ‘
| 12. (0S:CPY merges the FORTRAN/RTX I/0 Interface module, then outputs "READY NEXT
| FILE" message)
13. FO.F3EMUL
14. (0S:CPY merges the FORTRAN Emulator and Software Console Routine module, then
outputs “READY NEXT FILE" message)
15. (Operator mounts the LSI-3/05 RTX/IOX Segment 2 module tape into the paper tape
reader)
16. PR
17. (OS:CPY merges RTX Segment 2, then outputs "READY NEXT FILE" message)
18. MT,TE
ADDING OR REPLACING LIBRARY PROGRAMS

The ordering of the routines on the FORTRAN llbrary files F: OSLB, F:RXLB and F3RXLB is
an important consideration, for two reasons:

5-5

chsspiese

1. The standard ordering described in the Library Generation section is such that
OS:LNK can link edit the FORTRAN program w~ith the library in a single pass.

e e

G bl

2. In the RTX libraries the modules which are ilodded between RTX/IOX Segments 1 and
2 are those which are otherwise vulnerable to re-entrance. RTX contains logic
which ascists in preventing re-entrance to the routines w1th1n its boundaries by
a subsequent call before the first call has completed.

B

Thus alteration of a library file to add or replace a program must take these ordering
i “actors into account. Basically, the user must be sure that the first reference to a

i routine occurs prior to that routine's being passed through the link editor, so as to

' insure its being loaded.

| iith these considerations in mind, the user has various methods at his disposal in
,altering the library, as described below.

“ro replace a library module with another (as in an update) the user should follow the
: ?gibrary Generation description, substituting the new module for the old one.

s e@dd 3 new routine to the library, or to replace a single routine on the library
¥ v was originally catalogued from a paper tape module containing other routines
cwhaich he user wishes to retain), the user may regenerate the library file by fol-

S lowing the description in the Library Generation section, and merging in the new

routine at the appropriate place, bearing in mind the ordering restrictions mentioned

. sbove. If replacing a routine of the same name which already exists on a paper tape

“aodule, it is not necessary for the user to delete the old routlne, but simply to

| ‘merge in the new routine immediately preceding the tape module containing the old

‘routine. Altsinatively, if a new routine is referenced by the compiled FORTRAN program

. :rather than from within some routine in the library file, the routine need not be
~included during library generation at all, but simply referenced as the LI file durlng

ﬂ;OS LNK time. Once the new program has been linked, the LI file may be re-assigned to

 rhe FOKTRAN library before continuing with 0S:LNK.

'ADDING FORTRAN LOGICAL UNIT NUMBERS TO OS

:The standard 0S system contains within its Logical Unit Table (LUT) references to
i FORTRAY units 1 through 6. The user may add additional entries for any unit number
“cen 7 and 99, and set default assignments for any unit number to a specific
1102l device (as is currently done for units 5 and 6, which are default-assigned to
}*she card reader and line printer, respectively). Adding FORTRAN unit numbers requires
~jalteration of two arcas: the LUT table within OS Root, and the OS File Control Block
i(FCB) tables within the 0S I/0 Interface (F:0SI0) in the 0S Library File (F:0SLB).

‘Altering the LUT in OS ROOT

fEach’delivered 08 system includes an 0S Root listing (96530-10), and its corresponding
!source program paper tape. Changes to OS Root are most easily accomplished by addition,
‘deletion, or replacement of source lines using the OS:SFE utility.

)

;The logical unit table begins at the label "LUT:" in OS ROOT. Each entry in the table
‘118 six words long, as follows:)

|
1 I
i g
. l

ComputerAutomation (S;Z?Qs._._;.,

2 Word 1 Logical Unit name, in ASCII, 2 characters (word 1 may be given any

ﬂ label, as it is not referenced and is only for the convenience of the
{ reader) .

@3 Word 2 Address of current physical unit (if using default assignment).

| Word 3 Address of initial (default) physical unit (if using default assign-
% ment) . ‘ v '
ﬁ Word 4-6 ‘ Used to hold a file name - should be set to zero at assembly time.

4

In the standard setup, FORTRAN units 1 through 6 comprise the last six entries in the
LUT. It is after these that additional units should be added.)

o Example: to add a unit (unassigned) to the LUT, the entry should be coded:

DATA '07',0,0 ' .
RES 3,0
The first data word, if the unit number is between 1 andb9, must be of the form '07°',
not '7' or B7: the leading zero must be supplied.

Example: to add unit 13 to the LUT, default-assigned to the high speed paper tape

1 I w reader:

DATA '13,PR,PR
RES 3,0

Note that the second and third words must both contain addfesses. The addresses used
must be one of the labels which appear in the pnysical unit table. This table is
found directly behind the logical unit table in OS Root, and begins at the label

p —— " PUT i'

Once the OS koot source file has been edited with the desired changes, it may be
assembled with 0S:ASM, and the object output used to re-generate the OS system,

following the description in the 0S User's Manual.

0S8 File Control Block (FCB) Tables

The standard OS File Control Block (FCB) Tables, which are part of the OS /0 Interface
Module (F:0SI0), contains six File Control Blocks (for FORTRAN units 1 through 6)
which are required by the 0S I/0 drivers during execution of a FORTRAN program under

| w 0S control. (Execution under RTX control does not require FCB tables and so F:RXiB

‘ and F3RXLB need not be altered when adding unit numbers.)

The 'listing of the standard FCB tables is reproduced below (see Figure 5-3). Each FCB
is referenced by the label F:RUnn, where nn is the FORTRAN unit number.

NOTE

The FCB tables for FORTRAN units 1-5 are separate programs,
each terminated with an END statement, and reside prior to
the Interface itself in the FORTRAN/OS I/O Interface Module
(F:0SI0). FORTRAN unit 6 is used to outpit run-time error
messages, since it is the default OUTPUT device. Therefore,
it is assembled within the interface itself, to insure its
N— being linked unconditionally.

,‘ Qach FCB is a block of 21 words in length:

i

COMPUTER AUTOMATION, INC. E@

When the compiler encounters a reference to a unit number (e.g., an I/0O statement such

as "WRITE (3,25)"), it generates an external reference to F: RU03 and causes the corre-
sponding FCB to be linked. :

‘In addition to the FCB's themselves » the FCB tables include three short programs, called

F: RUNN, F:RUIN, and F: RUOT. Each is described below:

F: RUNN Program
If, during a FORTRAN compilation, the compiler encounters a statement of the form
WRITE (JUNIT,25)

where JUNIT is an integer variable, the specific unit number is indeterminate, and the

compiler does not *now which FCB to reference. It therefore creates an external reference

to ¥ RUNN, which is merely a list of references to all FCB's. Thus linking of the F: RUNN
stine causes loading of all FCB's,

F: RUIN and F: RUOT Programs H

A FGRTRAN INPUT statement does not reference any unit. Thus the compiler will reference
F: RUIN, which in turn references F: RU05, the FCB for FORTRAN unit 5. Similarly, a
FORTRAN QUTPUT statement causes the compiler to generate an external reference to

F: RUOT, which in turn references F: RU06, the FCB for FORTRAN unit 6. (In addition,

the FORTRAN Run-time Error output routine outputs to unit 6. For this reason, unit 6
should always be assigned to the list device.)

FCB Format

Word 1 - A "CHAN" directive, which allows the I/0 Interface to search through

. each linked FCB and compare Word 3 against the requested unit number.
Word 1 must be labeled F: RUxx, where xx is the unit number. (Units
1 through 9 must be labelled F: RU01 - F: RU09.) The chain operand must

be F: RFCB. :
Word 2 - must contain zero.
Word 3 - must contain the logical unit number, in ASCII, which matches the last

two characters of Word 1's label.

Words 4-21 -must contain zero.

5-8

i o oh: .2od ke d o i o i L e i o

. » COMPUTER AUTOMATION, INC.

Adding FCBs to the Tables °

Adding one or more FCB's to the OS Library requires the following:

1. The F:RUNN table, which is referenced when a variable is used for a FORTRAN unit
number, must be reassembled to include a reference to each new unit. Refer to the
sample listing below, of the F: RUNN table, each entry of which is a LOAD instruction
for the individual FCB table to be loaded.

2. A 21-word FCB table must be assembled fbr each new unit number to be added, as de-
scribed above.

Once the new F: RUNN module and new FCB(s) have been assembled re-generate the OS
Library (F:OSLB) as described prevmusly , merging the flles as follows:

FORTRAN Basic External Functions (F: EXTR)
FORTRAN Math and I/0 Routines (F: MATH)
New F: RUNN Module

@ New FCB tables
FORTRAN/OS I/0 Interface (F: 0SIO)

A,

ez

SR

BLL w2V T

LUC IHST ADDE

LR

ROk

LERLL B9S2 7 ST

4

LG THST ALDE

Sl STSTY]

1v:48:45 CALLER TO FORTRAN/OS \FCB’S 1-5

LHEEL MNEM OFERAND - COMMENT

CFRUNH
HLOPYRIGHT 1974 COMPUTER RUTOMATION INC
*

*THL, SEGMENT I35 REFERENCED B‘r‘ THE FORTRAN

COMFILER WHEM IT ENCOUNTERS R A VARIABLE UNIT NUMBER
H; G., "WRITE My

HAM F :RUNKH
LOAD F:RUGL CALL UNIT 1 FCB
LOAD F:RUS CALL UNIT 2 FCEB
LOAD F:RrUGE CALL UNIT = FCB
LOAL F:RGg CALL UNIT 4 FCB
LOAD F:RUGS CALLL UNIT S FCEB
LORD F:RrUsE LALL UNIT & FCE
o+
F o REUNN END

189:4:45 CALLER TO FORTRAN/O5 INPUT FCB

LABEL MNEM OPERRAND COMMENT
o+ o ""'UIN 2
HLUPYRIGHT 1574 COMPUTER AUTOMATION ING
$
#THIS SEGHMENT IS REFERENCED BY THE FORTRAN
+*COMPILER WHEM IT ENCOUNTERS AN "INPUT"
#50URCE STATEMENT. CSTAMNDARD INPUT UMIT IS 5>,
+
MHHIM FRUIMN CALL IMFUT UNIT FCB
LOAD F:RUGS CHLL UHIT 5 FCE
F:RUIN END

Figure 5-3. Sample FCB Tables

B e

HHGE buBl wa3c2FSFd 16048 98 CALLER TO FURTRAN ~0S OUTFUT FCB

R e e

LOUC IMST ADDR LABEL MMEM OPERAND COMMENT

* CF:RUOT
+COFYR IGHT 1374 COMPUTER AUTOMATION INGC
-

R e

ij *#THIZ SEGMEMT IS REFERENCED BY THE FORTRAN

o +*COMFILER WHEH IT ENCOUNTERS. AN "QUTPUT"

| #SO0URCE STATEMENT. <STANDARD OUTPUT UNIT IS &),
?1 B MAM F o RUDT CALL OUTPUT UNIT FCEB

LUAD F:RUss CALL UNIT s FCB
F RUOT END '

HEEE ERRORS

FHUE BEB1 BRS2FAF4 184596 FORTRANSOS FCE TRABLES

LIME LOC IMST ADDR LABEL MNEM OFERAND COMMENT

A # CFLRIEL ~ F o RUAS S
IS E N #COFYRIGHT 1374 COMPUTER AUTUOMATION INC
LA *

— P s THIS FROGRAM CONTRINS SEVERAL 21-WORD
ik g #TRELES TO BE USED EY THE FORTRANAOS RUNTIME
(TS 3 #INTERFACE FOR FILE COMTROL BLOCKS.
Dbl B HAM F:RUBL . UNIT 1
55 B S TR TS Ts REL &

iz *
Fagde] * UNIT 1 FCB
S +
HESL BEGY F:RUJB1 CHAM F.RFCB CHARIN NODE
L T T DA b SIS Ta 15 DATAH & ECB
3 DEE EEEE BEEL DATA a1 LUN
\ D LEEE G088 FES 14,8
B : END
sl BRROES
Figure 5-3. Sample FCB Tables (Cont'd)
-

5-11

I el

%'“E L iJ
- SE B
5 EAET
,:' . [Pt

: wdeakdsd
LOESE LB
A LA
Bk 2

]y

e kaendl

- THE

=t

Lo
IS %]
AR

LI
kriakd o
LA 2
[T 1 S

IH=T AL

G %15
]
K

bR

B2 ST

INST HDDR

L N)

Let ds

LAGEL.

Rz

1845

LHBEL

+.
R
ES
F:RrRUAS

Figure 5-3.

e

FIHEM
A
FEL

UMIT

ZHHM
CFTH
CHTH
RS
EHML

-

G 1Y

MMERM
MM
FEL

UNIT
CHAM

DHTH

OFERAND
FoRUE:
£

2 FLE

F REFCE

%
Y

gl
U R

UFERAMD
(S O
5]

3 FCB

F RFCE

A

L, @

5-12

COMMENT
UWNIT 2

CHAIN NODE
ECE
LLIN

COMPENT
UMIT 3

CHAIN MODE
ECE
LUK

Sample FCB Tables (Cont'd)

CHGE BROL ARS27S74 16048 95

LOC IHZT1 ADDR LABEL MNEM OFERAND COMMENT
ST [STR! HAM F . RUG4Y UNIT 4
g FEL 8

R e bt
l

g

UHIT ¢4 FCB

B

(FUBY CHAN F o RFCB CHARIN NODE
K,

: DATA & ECE
ELT DHTA G4 LUM
h AL BEEE B RES 18, 9

X IS END

Fidb ERROE"

PHGE 8081 03-27.7T4 10:48 .46 .

{]
I

1 o LIME Lue THET ACDE LABEL MNEM OPERAND COMMENT
— IR BN HEM F o RUIBS UNIT &
S g REL &

I29
FIS)=10
RT3 h=0 G SIS TR TE ‘RUBS CHAM F.RFCB CHARIN MNODE
10 =D A 15 S T S TR TS e , DARTA & ECE

R Rl Bk CARATA @5~ LUN

s I DE0G FE= 43,6 '

LT ENL

UNIT 5 FCB

T ¥ ¥ %

0 g ERROR

Figure 5-3. Sample FCB Tables (Cont'd)

5-13

i

fé ADDING A DISK DIB TO THE RTX LIBRARY FILE

The foilowing discussion appl.es to the user who wishes to create his own RTX disk (or
floppy disk) DIB (s) (Device Information Blocks) and to specify his own disk file

" boundaries.

> The standard - (Non-FQRTRAN) disk DIB described in the RTX User's Manual differs somewhat

-

from a disk DIB which is-to be used in FORTRAN. Specifically, there exist within RTX

, two disk I/0 handler routines, one for FORTRAN usage, and one for non-FORTRAN usage.
. The non-FORTRAN handler has no provision for writing or reading an end-of-file mark,

7 . and it aleo requires the user to maintain the current record number within the user's

| . IOB. Since the FORTRAN user has no access to the IOB (all RTX IOB's are built and
, iwnaintained within the I/0 Interface module), a special disk handler for FORTRAN exists
" within RTX which allows for these differences.

. Becaus¢ the FORTRAN disk handler differs from the standard RTX disk handler, two
; additional considerations must be made by the FORTRAN user when creating a disk DIB:

1. The RTX Manual describes the disk DIB as a 15-word table. The FORTRAN disk

" o handler in RTX requires an additional word (16 words in all) which is used to

1.o1d the current record number in the disk file. This word should contain a
binury zero as its initial value.

e
.

The FORTRAN Disk DIB name, which is referenced in the Unit Assignment Table must
Lz of the form "D:DKFx" (or "D:FDFx" if floppy disk), where x may be any alpha-
numeric character. This format notifies the RTX disk handler that the DIB refers
t© a FORTRAN disk file.

Pigure 5-4 illustrates the proper format for a disk DIB for FORTRAN. The user should

assemb.e one of these DIB's for each file he wishes to create on the disk. If more

" than one, each DIB should terminate with an assembler END directive, so that it may be
linked to the FORTRAN program in library mode. Once the DIB has been created, the RTX
{ "ORTRAN Library file may be re-generated, following the procedure described in this

. sectic., with the new DIB (s) inserted in front .of the RTX/IOX Segment 1 module, which
" is the segment containing the standard DIBs.

§Altvtn:tively, the RTX Library does not need to be permanently changed. The user may
};nstend create the desired DIB (s), and include the module into the 0S:LNK procedure

a 1y edit time, by linking the RTX mainline and tasks, then the new DIB module,
Yan the Library file. :

i figure 5-4 is a listing of one of the standard FORTRAN disk DIB's which currently
~exist in RTX/IOX:

5-14

ST

bl caR RS S Shi i

et v (S pok

Y

Lol e

COMPUTER AUTOMATION, irC.

PAGE 3ital A9/24774 wBi3031Y 94HdK=, M I 0X TABLES
JIIUKE! « FURIKAN NISK L IB
LINE Lne 1aS7T AppR O LABEL MMEM UPERAND FMOMMENT
wlou9 » 43 SFwuTeS DISK, REMUVABLF PLATTER
4309 * CYLIMUEKS B-197
Y367 pyai MAM DIDKF§
y368 . EXTR L:DKF
wlouy R VIDKF1 Eniy
i3 gAul CHAN X283
U372V UMl data DLTA CeOKE 20,00 215DV, 'DR?
J2 A3 ’
JA93 4.
G 1H9y
W% C4Cy
wilz? a6 Loy OATA YFL',0,0,7%,9,08,2082,:1800,4889,0
JLU7 M)
dIIB LsddA
JINA% 1w
NI 1 SV P
G1a8 2329 .
AL Fol TR
JNGN 1340
JNJE 12C)
JAar u ANy
J373 EnD

Jdd ERRNRS
Figure 5-4. Sample FORTRAN Disk DIB

USEK-CREATED SUBPROGRAMS

The user who wishes to write his own subprograms in FORTRAN Assembly language
and CALL them from his main program should follow the calling and receiving sequences
shown below, as this is the object code generated by a CALL statement.
For execution under OS (RTX option not used),

CALL MYSUB (ARG1,ARG2...)

will generate the following object code:

JST *BP (MYSUB)

DATA n (where n is the number of arguments)
DATA ARGl
DATA ARG2

ete.

For c¢xecution under RTX (RTX option used),
CALL MYSUB (ARG1,ARG2...) will generatke the following object code:

5-15

bl i

T

COMPUTER AUTOMATION. INC. ég —

2 JST *BP (SUBR:)
L DATA MYSUB

- DATA n (where n is the number of arguments) —
| DATA ARG1
P DATA ARG2
&w ; DATA. ..
The SUBR: routine prevents re-entrance for RTX usage; the user's subprogram, to
terminate the re-entrance-protecting effect of SUBR: , must include a call to SUBX: , as
follows: -
i JST SUBX:
‘ MYSUB EI:TT
]
L]
JMP MYSUB-1 (on return from the routine)
| ;
i iristead of RTN MYSUB.
€
|
|
‘ NOTE
The same assembly language subprogram may be used under
! both OS5 and RTX monitors, if it is set up using the SUBX: call
o shown above. The OS library contains a "dummy" SUBX: routine
P (within F: OSIO) to handle this situation. =
- Accessing Arguments
» If the called subprogram is required to handle arguments passed to it by the calling pro
| graui, then the user may access them using the F: RDMY library subprogram, which will
§ move the arguments from the caller to the user's subprogram automatically:
‘ 0 ~ CALL example CALL FRED (UP, DOWN, MES1, N)
| Subprogram example FRED ENT
| JST *BP (F:RDMY)
| DATA 4 (no. of arguments)
o UupP RES 1
oo DOWN RES 1
? MES1 RES 1
(o N RES 1
! - RTN FRED

i : _ 5-16 k . Revised March 1975

e i i

' COMPUTER AUTOMATION, IC. E g |

Explanations:

e

1. The call to F: RDMY must immediately follow the subprogram's entry point;

The word following this call must contain the correct number of arguments, since
this is checked by F: RDMY against the number supplied;

o

3. The following words, which may be labelled to correspond with the argument names,

will be set by F: RDMY to the actual (base) address of each argument, the order corre-
sponding to the order of arguments as shown;

4. The address contained in the entry location labelled FRED will be updated appropri-
ately to point to the first instruction beyond the code generated for the CALL statement.

’ { 5. Even if no arguments are required, it is still necessary to put DATA 0 after the call
(to F: RDMY, which, having checked that no arguments were supplied and updated
’ the return address, would return control to the subprogram at the instruction after
i the DATA 0 statement.

From the above, it can be seen that F: RDMY provides a safe and straightforward method
for acquiring arguments and setting the correct return address. It can of course be pro-
grammed differently with the subprogram itself accessing the argument list via the address
placed in the entry point. However the method shown is the recommended one.

i : : 5-16a Revised March 1975

rov

T ——s.

COMPUTER AUTOMATION, INC.

APPENDIX A

DEBUGGING AIDS

DEBUGGING AIDS

During checkout of a FORTRAN program, the following aids are available to the user.

-
Fortran Trace Option

The Trace option, when requested prior to a compilation, will cause the compiler to gener-
ate, in addition to the normal object code, additional run-time calls which will cause

the program to print a trace map onto unit 6 during execution. (Refer to compiler options
section - Trace option).

O0S:DBG, RTX ZBG

The OS: DBG and RTX ZBG utility programs may be used in conjunction with the executing
program, for breakpointing and other debugging capabilities (refer to the OS: DBG descrip-
tion in the OS User's Manual or the ZBG description in the RTX User's Manual, for a
complete description of these utilities). It will be necessary to include an object listing

in the compilation, which may be used in conjunction with the OS: LNK memory map to
follow the program flow during execution. '

Normally, the link map is used to set DEBUG relocation registers, and then breakpointing
may be done using the FORTRAN object listing (s). Observe the following precautions:

1. FORTRAN object code is generally organized with various data areas beginning at
relative location zero, followed by the executable code; thus F: MAIN, the starting
locatiori, will not normally be at relative location zero. The relocation register should
be set to correspond with relative location zero, rather than F: MAIN.

2. If the FORTRAN program to'be debugged uses floating point values (Real, Double
Precision or Complex), it will not be possible to breakpoint into a sequence of code
which calls the Floating Point Interpreter. For example, the sample listing in Figure
'A-1 contains object code for both integer and floating point processing:

| MGE @BVul B3S16/74 123243 FORTRAN <(X3> COMPILATION
: OPTIONS: LO :

- INTEGER FROCESSING
J==13. v : ~
E=IABS J+3)

|::

C FLOATING POINT PROCESSING

‘. h

=-13. 0
B=ABS(A*9. B
OUTFUT J, k., A, B
EMND

‘b giioZ B9s18.74 13:32:43 FORTRAN <(x3> COMFILATION
OFTIONS: LO

\;HLHR ALLOCATION ' ‘

%HCN NAME TYPE WORDS LOCN NAME TYPE WORDS

5166@ J INTEGER 1 (8ua1 K IMTEGER 1 ~
i bz A REAL 2 @884 B REAL 2

|

|

L ‘

! Figure A-1. Integer and Floating Point Sample Listing

i

©

-
3 QHUE UBEes 83s10s74 13 . 32:43 FORTRAN <X3> COMPILATION
] OPTIONS: LO

C
G INTEGER FPROCESSING
BEET
T amnd J==17% :
CBEES CTeb LAM 13
. BEAY 9EST STA J

! (5151519 E=1IABS C.J*53)

L BO6S F999 B JST *BPCF:RMPY)
.0BE3 . PEEB F DATA #ICL : 9003
BEBA 3950 F JAP #MB

i BEPE 9318 HAR

i BOOC SEBE #MO STA K
“ s C ‘
BEAT o FLOATIMNG POINT PROCESSING ZNTE R PRETED -—
s ¢ N MACRDO - INSTRUCT 19N S
(S 1SS H=—1 5
Al B J5T *BPCF:RIMT
: TBORE AnBE F CDR #RCO. 0256 6060
Voo (BBBF SEBD STH A
: BEL E=ABS A3, B)
: ‘W ' Laa18 s2ea F MPM #RC1 4z19:8090 |
fl TBALL BRaS AES _
| , OELZ SEBE STA B
| Bkt L OUTFUT T K. A B .
- G913 Pea WIT)
! "BAld Fove B JST *BPCF :ROUT Y - —
| 8815 F998 B J5T «BPCF:RIDL> »
CEELE BP0 DATA T
| BEL7 (FI98 B J5T *BPIF:RIOL>
] S BE1s 9eel DATA K
| :B@1% (FI98 B J5T *BP{F:RROL>
| ‘ CO81A Beaz DATA A ‘
| 991E (Fo8a B JST #BF(F:RROL>
| TS L A 15 1% DATA B
; aeil Fobe B JST *BP(F:RSIO
| L EHL
AElE FOPD B JST #BPCF:RSTO>
BOLF B89 CATA O
| @028 258 #RCe DATA —15792
| ¢w e RS T T DATA @
| BEzz 4218 #RCL DATA 16912
| BBZE HEEY CATA @
| (BBZ4 (peds #ICl DATA 9
- SUBPROGRAMS CALLED
NHME TYPE ARGS MNAME TYPE ARGS NAME TYPE ARGS
THES INTEGER 1 RES REAL. 1 F:ROUT RUNTIME
FiRIOL RUNTIME F:RROL RUNTIME F:RSIO RUNTIME
F:RSTO RUNTIME F:RUNN RUNTIME F:RREL RUNTIME
— Figure A-1. Integer and Floating Point Sample Listing
A-3
i

b HGE GERd 99o18.74 13052 4%
‘ COPTIONS LG

®F<
RINT

RUNTIME
RUNT IME

F :RFF

FORTRAN <X3)

RUNTIME

COMFILATION

F:RMPY RUNTIHME

CATEMENT LABELS =
| CH LHBEL USE LOCN LABEL WUSE LOCN LRBEL US
; .
L BBc 4o
1
L TRY= . BE0E
| OOGRAM S1ZE= GBS WORDS
CSE PAGE LISED=: 8887 MORDS
PILATION COMPLETE @ ERRORS
!
a Figure A-1. Integer and Floating Point Sample Listing
w
|
- ©
|
1
|
i
©

~

AR e ST A

.

COMPUTER AUTOMATION. INC.

The object code generated for the integer processing section (locations : 0006-: 000C)
may be debugged using the breakpoint feature in the normal manner (note, however,
that the data statement at location : 0009 is a parameter to the F: RMPY routine and is not
executed.

The object code generated for the floating point processing section (locations : 000D-
:0013), however, are not normal machine language instructions, but rather macro-instruc-
tions which are decoded by the floating point interpreter module (F:RINT), and a break
point inserted in this sequence will cause incorrect operation of the FORTRAN program.

It is the XIT macro instruction which causes the program to return from the "interpretive
mode" of operatlon back to normal machine language instruction processing.

Thus it is permissible, in this example, to breakpoint from location : 000D to location
:0014, but not to breakpoint into this area.

The following FORTRAN routines cause "interpretive mode" processing:

F:RINT (Floating Point Interpreter)

F:RCPX (Complex Arithmetic Processor)

F: RDBL (Double Precision Arithmetic Processor)
F: RREL (Real Arithmetic Processor)

- and should be recognized as such by the user. .

The following macro-instructions signal termination of "interpretive mode" processiny:
14

INT (Convert to Integer and Exit from Interpretive Mode)

XIT (Exit from Interpretive Mode) _

XNL (Exit from Interpretive Mode but do not unlock. Required by RTX, this
function protects the contents of the floating point accumulator.)

They also indicate that the following instruction (not the exit instruction) may be used
as a breakpoint.

i i . - i, .

ComputerAutoruation (O ——

APPENDIX B

SAMPLE JOB SEQUENCES

y INTRODUCTION

The following sequences are to serve as sample control commands for various procedures
in compiling, linking and executing FORTRAN programs. (Examples of System Generation
procedures and alteration of the libraries are shown in section 5 under their related
headings.) 111 examples assume card input. The compiled binary output is called
PROG1, and the linked (executable) binary output is called PROG2. []— indicates
optional parameters.

To transfer control from the teletype kéyboard to the card reader, enter

/JOB
/BA CR

4 throuy:i the keyboard.

TO COMPILE, LINK AND EXECUTE UNDER OS 5

/AS BO- Lu.PROG1

— /X FORY:4 ,option,option...l

N (FORTRAN source deck(s), each terminated with the END statement)

ik N

/AS Bl-=i.(.PROG1,LI=D0.F:0SLB,BO=D0.PROG2

/tX 0OS:LNK,LL,TE

/AS SF=DC [, also assign any required FORTRAN unit numbers at this timé]ﬁ
/EX PROG2 , ‘

Data Deck (if any), terminated with "/*"

/JOB (return CI control to teletype)

»

0 TO COMPILE, LINK AND EXECUTE UNDER OS, USING OS:DBG

/BS BO=D0.PROG1

/EX FORT:4,LOBJ ,option,option...]

(FORTRAN source deck(s), each terminated with an END statement)
/*

/AS BI+DO.PROG1,LI=DO0.F:0SLB,BO=D0.PROG2

“EX OS:LN¥,LL,TE)

/10 PROG)

/AS CI=TK [, assign FORTRAN unit numbers at this time]

Data Deck (if any)

/*

e

Tt E DI

e U i

v
;a
S |
&
3
%59 Input via the keyboard:
L
g ! /EX 0S:DBG _
. ' At this time, 0S:DBG is entered; OS:DBG's relocation register RO is set to the start
L Y
. ! of the main program, which may not be the first executable instruction. (The execution
%%; address is noted on the OS:LNK memory map.) The FORTRAN object listing and 0S:LNK
| memory map will serve as reference listings during the debugging process.
&: : TO ASSEMBLE MAINLINE, COMPILE TASKS, LINK AND EXECUTE UNDER RTX
i
o (LSI-2 example)
i /JOB
. /AS BO=DO,F:MAIN
i JEX 0S:ASM
l; (Mainline source deck)
1 /AS BO=DO.TASKS
| /EX FORT:4,RT ,option,option..J
oo (FORTRAN task(s), each terminated with an END statement)
N 0 “AS BI=DO.F:MAIN,LI=D0O.TASKS,BO=D0.PROG
o /EX 0S:LNK,NH,AB=100,SR=60,LL
- /AS LI=DO.F:RXLB
| ¢ LL, TE
| /EX 0S:ILD,DO.PROG 1
(LSI-3/05 example)
l /JOB ‘,/
/AS BO=DO.F:MAIN
; /EX MACRO3
| {Mainline source deck) >
| /AS BO=D0.TASKS
o /EX FORT:4,T3 ,option,option...]
' (FORTRAN task({s), each terminated with an END statement)
; L :
i . :
: /AS BI=DO.F:MAIN,LI=D0.TASKS,BO=F0.PROG
‘EX 0S:LNK,T3,AB=100,SR=20,SX=1,LL
/AS LI=DO.F3RXLB
‘ L, TE
@
| * At this time, the linked PROG or floppy FO may be loaded into an LSI-3/05 processor
| using the directoried Load/Dump program (DLD).
i
;
g
i
~—
: -2 :

Appendix C
FORTRAN RUN-TIME SUBPROGRAM LIST
FORTRAN BASIC EXTERNAL FUNCTIONS
Most of thesé functions reside in the F:EXTR (or F3EXTR) library module. Those preceded
i with an asterisk reside in the F:MATH (or F3MATH) module.
; ABS Real absolute value of a real argument
: AIMAG Convert imaginary part of a complex value to real
AINT Truncate real argument to integer and back to real
5 *ALOG Real natural logarithm of a real argument
P *ALOG10 Real common logarithm of a real argument
E AMAXO0 Real maximum value of integer arguments
; AMAX1 Real maximum value of real arguments
i AMINO Real minimum value of integer arguments
% AMIN1 Real minimum value of real arguments
: AMOD Real remainder of real modulus real
o ATAN Real arctangent of real argument
i ATANZ Real arctangent of two real coordinates
*CABS Real absolute value of a complex argument
CCOs Complex cosine of a complex argument
CEXP Complex exponential of a complex argument
CLOG Complex natural logarithm of a complex argument °
| CMPLX Convert two real values to complex
‘ CONJG Conjugate a complex argument
. T | *COs Real cosine of a real argument
| *COSH Hyperbolic cosine of a real argument
fi CSIN Complex sine of a complex argument
f CSQRT Complex square root of a complex argument
i DATAN Double prec. arc. tangent of a double prec. argument
1 DATANZ2 Double prec. arctangent of two double prec. coordinates
j DBLE Convert a double prec. value to integer
DCOS Double prec. cosine of a double prec. argument
*DEXP Double prec. exponential of a double prec. argument
DFLOAT Ccnvert integer to double precision
| DINT Truncate double prec. value to integer and back to double prec.
} @ *DLOG Double prec. natural logarithm of a double prec. argument
; *DLOG10 Double prec. common logarithm of a double prec. argument
} DMAXO Double prec. maximum value of integer arguments
i DMAY.1 Double prec. maximum value of double prec. arguments
3 DMINO Double prec. minimum value of integer arguments
- DMIN1 Double prec. minimum value of double prec. arguments
DMOD ~ Double prec. remainder of double prec. modulus double prec.
DSIN Double prec. sine of double prec. argument
DSQRT Double prec. square root of double prec. argument
3 N
il
i

it ok o

S e i T e
s nmr 2 i

DTAN
DTANYH
*EXP
FLOAT
IDINT
IFIX
INT
i ¢ MAXO
i MAX1
MINO
.1 MIN1
. MOD
REAL
*SIN
~ *SINH
|| SNGL

. *SQRT
TAN
TANH

Double prec. tangent of double prec. argument
Double prec. hyperbolic tangent of double prec. argument
Real exponential of real argument

Convert integer value to real

Convert double prec. value to integer

Convert real value to integer

Convert real value to integer

Integer maximum value of integer arguments
Integer maximum value of real arguments
Integer minimum value of integer arguments
Integer minimum value of real arguments
Integer remainder of integer modulus integer
Real part of a complex argument

Real sine of a real argument

Hyperbolic sine of a real argument

Convert double prec. value to real

Real square root of a real argument

Real tangent of real argument _

Real hyperbolic tangent of real argument

o..;{’I‘RAN MATH AND I/0 ROUTINES

2:EATL
F:EBAZ
| F:EDVC
| F:EINA
. T:ELOC
i F:ENG2A
. F:EOVR
. F:EQL]

F:EQLZ
" F:ERRC

=:ERRS

P ESGL

nmm’
R ALG

ORF IR
 F:ICAB

P FdICCs
. &3sICSH
* F:IDAD
F:IDDV
*F:IDIN
F:IDLD

.~ Most of these routines reside in the F:MATH (or F3MATH) library module. Those pre-
| ceded with an asterisk reside in the F:EXTR (or F3EXTR) module.

- parentheses following description is the first entry point in the ‘routine.)

Argument too large
Both arguments zero (F:EATL)

Division by

zero (F:EATL)

Incorrect number of arguments (F:EATL)
Error Location (F:RBPG)
Negative argument (F:EATL)

Overflow (F:

Error Quote
Error Quoute
Error print
Error print
Singularity

EATL)

1 (F:RRPG)

2 (F:RBPG)

and continue (F:ERRC)
and TERM: (F:ERRC)
(F:EATL)

Internal aint (AINT)

Internal alog (ALOG)

Internal atan2 (ATAN)

Internal cabs (CABS)

Internal cous (SIN)

Internal cosh :
Double add for functions (F:IDAD)
Double divide for functions (F:IDAD)
Internal dint (DINT)

Double load for functions (F:IDAD)

{Program name in

Sy

Compesomatin ©f\ —

:RAC3 Extended Accumulator Word 3 (F: RBPG) i
:RAC4 Extended Accumulator Word 4 (F: RBPG) :
: RARG A register (interpreter) (F: RBPG) ‘
:RBPG Base Page Definitions
:RBSP Backspace a record

:RCAD Complex add (F: RCPX)

:RCBE Cube A register

:RCDV Complex divide (F: RCPX)

:RCGO Computed Goto

:RCIP Complex to integer power

:RCLD Complex load (F: RCPX)

: RCML Complex multiply (F: RCPX) .

: RCNG Complex negate (F: RCPX)

:RCOL Complex input/output element Formatted (F: RINP)

: RCOM Complex input/output element unformatted (F: RRU)

:RCPX Complex arithmetic package entry

: RCRP Complex repack (F: RCPX)

:RCSB Complex subtract (F: RCPX)

% F: IDLG Internal dlog (DLOG)
§ F: IDMV Double move for functions (F:IDAD)
P F: IDML Double multiply for functions (F: IDAD)
F: IDNM Double normalize for functions (F:IDAD)
\ F:IDSL Double shift left one (F:IDAD)
: F:IDST Double store for functions (F:IDAD)
i F:IDSB ' Double subtract for functions (F:IDAD)
F:IDUN Double unpack for functions (F:IDAD)
il F: IDXP Internal dexp (DEXP)
F: IEXP Internal exp (EXP)
F:1FC1 Complex fetch and unpack one (F:IRAD)
F:IFD1 Fetch and unpack one (F:IDAD)
F:1IFD2 Fetch and unpack two (F:IDAD)
F:IFI1 Integer fetch and unpack one (F: IIUN)
F:IFI2 Integer fetch and unpack two (F:IIUN)
F: IIUN Integer fetch and unpack (F:IIUN)
; F: IRAD Real add for functions (F:IRAD)
i F:IRDV Real divide for functions (F:IRAD)
N o F: IRLD Real load for functions (F:IRAD)
‘f F: IRMV Real move for functions (F:IRAD)
F: IRML Real multiply for functions (F:IRAD)
F: IRSB Real store for functions (F:IRAD) -
F:IRST Real subtract for functions (F:IRAD)
F:1ILUN Real unpack for functions (F:[RAD)
F: ISIN Internal sin (SIN)
~ F: ISNH Internal sinh
F: ISQR Internal sqrt (SQRT)
F: RACE Extended Accumulator Exponent (F: RBPG) i
F: RACS Extended Accumulator Sign (F: RBPG)
F: RAC1 Extended Accumulator Word 1 (F: RBPG)
F: RAC2 Extended Accumulator Word 2 (F: RBPQG)
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
¥
¥
F

C-3 Revised March 1975

Computerautomation (Of\ —— &

i F:RCST Complex store (F:RCPX)
! F:RCTD Complex to double (F:RCPX)
i F:RCTI Complex to integer (F:RCPX) —_
' F:RCTR Complex to real (F:RCPX)
' F:RCUS Complex input/output array element unformatted (F:RINP)
: F:RCUT Complex input/output array element unformatted (F:RRU)
! F:RDAB Double ABS (F: RDBL) ’
; F:RDAD Doubie add (F: RDBL)
F: RDBL Double precision arithmetic package entry
; ‘ F: RDDM Double DIM (F:RDBL)
‘ F: RDDV Double divide (F:RDBL)
f F: RDEN Decode with optional N (F: RINP) '
- F:RDIP Double precision to integer power
V F: RDIV Signed DIV
. F:RDLD Double load (F:RDBL)
) F: RDML Double multiply (F:RDBL)
« F: RDMY Setup argument addresses
f’i F: RDOL Double precision input/output element formatter (F:RINP)
- . “ROIOM Double precision input/output element unformatted (F:RRU)
i ¢ RUORP Double precision to integer power (F:RIDP)
.~ F:RDSB Double subtract (F:RDBL)
i F: RDST Double store (F:RDBL) ,
‘ F: RIITC Doubie to complex (F:RCPX) 1
F:RDTI Double to integer (F:RDBL)
| F:RuTR Double to real (F:RDBL)
| F: RDUS Double precision input/output array element formatted (F:RINP) -
i F: RDUT Double precision input/output array element unformatted (F: RRU)
| F:REND End-of-file
. F:RENN Decode with Optional N (F: RINP)
1 F: RERR Diagnostic error during compile formatted (F:RINP)
! F: RVAA Format argument address (F: RINP)
F: RFAD Format skip asterisks and dollar (F:RFAD)
F: RFAF Format asterisk flag (F:RINP)
F: RFD Format conversion D (F: RFIR)
| @ R¥DA Format back fill dollar and asterisks (F: RFAD)
: < RIFDE Format decimals count (F: RINP)
| F: RI'DF Format dollar flag (F:RINP)
| F: RFLES Format element size (F:RINP)
F: RFF . Format conversion F (F: RFIR)
i F: RFFD Format feteh from door (F: RINP)
F: R¥FQ Format fill with question marks (F: RFAD)
F: RFG Format conversion G (F:RFIR)
F: RF1 ‘Format conversion I (F:RFZ)
F:RFIR Format conversion I Real (F:RFIR)
F: RFL Format conversion L (F:RFZ)
F: RFPE Format p scale factor exponent (F: RINP)
F: RFRA Format return address (F:RINP)
F: RFRN Format reset window no comma (F: RINP) ~
; F: RFRW Format reset window (F:RINP)
! C-4 __Revised March 1975 |

s S

AR e R Ty L ieasi

eIl o M Mo Bile > Mo > Bie > Bike > B e Mile > Bl s Blle > BLe > BiLe > Biles Bile s Bile > Bike o BLeo B> k> ke B> Mo Mo Bike > Bile s Mo > Blle > e Blle > e > Moo e e e Bl Bl BiLe > e > Mo > Mo > Ml o |

= e

:RFSF
: RFSI
:RFSO
:RFSW
:RFTS
:RFWB
:RFWD
:RFWE
: RFWF
:RFWI
: RFWS
:RFZ

: RHFO
:RHUS
:RHUT
:RIAU
: RIDP
:RIDU
: RIIP

: RIMU
: RING
: RINP
:RINT
: RIOL
: RIOM
: RIRP
: RISG
: RISU
:RITC
:RITD
:RITP
:RITR
: RIUN
: RIUS
:RIUT
:RLOL
:RLOM
:RLUS
:RLUT
: RMPY
:ROPE
:ROPS
:ROP1
: ROP2
: ROP3
: ROP4
: ROUT
:RPAB
: RPAU

@

Format stop flag (F: RINP)

Format stop line 10 (F: RINP)

Format store output char (F:RINP)
Format store in window (F: RINP)
Format test sign (F: RFAD)

Format store in window back (F: RFAD)

- Format set window door (F:RINP)

Format window end (F:RINP)

Format write flag (F: RINP)

Format width (F:RINP)

Format window start (I': RINP)

Format conversion Z

Format Hollerith free (F:RFIR) _
Hollerith input/output array element formatted (F:RINP)
Hollerith input/output array element unformatted (F: RRU)
Double add unpacked (F: RDBL) '
Integer to double precision power

Double divide unpacked (F:RDBL)

Integer to integer power

Double multiply unpacked (F: RDBL)

Double negate (F: RDBL)

Input statement

Integer arithmetic entry (F:RITP)

Integer input/output element formatted (F: RINP)
Integer input/output element unformatted (F:RRU)
Real to integer power

Double SGN (F:RDBL)

Double subtract unpacked (F: RDBL)

Integer to complex (F:RCPX)

Integer to double (F:RDBL)

Runtime interpreter

Integer to real (F:RREL)

Double unpack (F:RDBL)

Integer input/output array element formatted (F:RINP)
Integer input/output array element unformatted (F: RRU)
Logical input/output element formatted (F: RINP)
Logical input/output element unformatted (F: RRU)
Logical input/output array element formatted (F:RINP)
Logical input/output array element unformatted (F: RRU)
Signed MPY

Operand Exponent (F: RBPG)

Operand Sign (F: RBPG)

Operand Word 1 (F: RBPG)

Operand Word 2 (F: RBPG)

Opcerand Word 3 ((F: RBPG)

Opcrand Word 4 (F: RBPG)

Output statement (I': RINP)

Parameter Block Adr (1/0) (F: RBPG)

Pause

C-5 Revised March 1975

Computarutomation ()

: RRAB Real ABBS (F:RREL)

:RRAD Real add (F:RREL)

:RRAU Real add unpacked (F:RREL)

: RRDM Real DIM (R: RREL) ' o I
:RRDP Real to double precision power (F:RIDP)

:RRDU Real divide unpacked (F:RREL)

: RRDV Real divide (F:RREL)

:RREL Real Arithmetic package entry

:RREW Rewind

:RRF Read formatted (F: RINP)

:RRFB Read formatted with both options (F:RINP)

:RRFN Read formatted with END option (F:RINP) ‘

:RRFR Read formatted with ERR option (F:RINP)

: RRIP Real to integer power

:RRLD Real load (F: RREL)

:RRML Real multiply (F: RREL)

: RRMU Real multiply unpacked (F: RREL)

:RRNG Real negate (F: RREL)

:RROL Real input/output element formatted (F: RINP)

:RAOM Real input/output element unformatted (F: RRU)

:RRPP Parameter Pointer (Interpreter) (F: RBPG)

:RRRP Real to real power (F:RIRP) .

:RRSB Real subtract (F: RREL)

:RiSG Real SGN (F: RREL)

:RRST Real store (F: RREL)

:RRSU Real subtract unpacked (F: RREL) -
:RRTC Real to complex (F:RCPX)

:RRTD Real to double (F:RDBL)

:RRTI -~ Real to integer (F:RREL)

:RRTN Trace return (F: RTRF)

:RRU Read unformatted (F:RINP) :

:RRUB Read unformatted with both options (F:RRU)

: RRUF Read unformatted with END option (F: RRU)

:REUN Real unpack (F: RREL)

:RRUR Read unformatted with ERR option (F: RRU)

REUS Real input/output array element formatted (F:RINP)
:RRUT Real input/output array element unformatted (F:RRU)
:RSIO Input/output end of list formatted (F: RINP)

: RSIP Input/output end of list unformatted (F:RRU)

: RSHMP Script multiply

:RSQR Square A register

:RSTN Trace subprogram entry (F:RTRF)

:RSTO Stop

:RTRF Trace tlow

:RUAA Get arg address (F: RUGN)

: RUAV Get arg value (F: RUGN)

:RUGN Get unit number adr (F: RUGN)

:RUIR 10 return code process (F: RUGN) S
: RURE Unlock and return (F: RBPG) ‘

F
F
F
F
F
F
F:
F
F
F
F
F
F
F
F
F
F
F
)
F
F
F
F
F
| F
F
F
F
F
F
F
F
F
o
Q
F
F
F
F
F
F
F
F
F
F
F
F

! ‘ | C-6 Revised March 1975

I

e

SRR IR S e SR
!
i

F :RURT
F:RUST
F : RWF

F:RWFB
F : RWFN
F:RWFR
F:RWU

F : RWUB
F : RWUN
F:RWUR
F :RXRG

ComputerAutomation (Of\ ——

Restore temps (RTX) (F:RUGN)

Save temps (RTX) (F:RUGN)

Write formatted (F:RINP)

Write formatted with both options (F:RINP)
Write formatted with END option (F:RINP)
Write formatted with ERR option (F:RINP)
Write unformatted (F:RRU)

Write unformatted with both options (F:RRU)
Read unformatted with END option (F:RRU)
Read unformatted with ERR option (F:RRU)

X register (interpreter) (F:RBPG) .~

LSI-3/05 FORTRAN .INSTRUCTION EMULATOR (F3EMUL)

CNSOL:
EMUL:

F:RLS3
MD]1A:

MDASH :
MDBOV :
MDLSH:
MDMDN :
MDKRG :

Software Console Routine

Emulator Mainline

Emulator Load Caller :

Register Change Instructions Module 1
Arithmetic Shift Instructions Module

Bit to Overflow Instructions Module

Long Shift Instructions Module
Multiply/Divide/Normalize Instructions Module
Register Change Instructions Module 2

3
kS

FORTRAN RUN-TIME I/O INTERFACE ROUTINES (F:0SIO, F:RXIO and F3RXIO)

F:RUO1
F:RU02
F:RUQO3
F:RUQ4
F:RUOS
F:RUO6
F:RUIN

F:RUNN

F: RUOT
F:XBSP
F:XCLS
F:XDLL
F:XEOF
F:XERR
F:XINP
F:XO0OUT
F:XPSE
F:XRCS
F:XRDS
F:XRWD
F:XSTP
F:XWTS

Unit
Unit
Unit
Unit

. Unit
© Unit

U bDWN =

FCB
FCB
FCB
FCB
FCB
FCB

Table
Table
Table
Table
Table
Table

Standard’ Input Unit FCB Table reference
Reference tc all FCB Tables

Standard Output Unit FCB Table reference
Backspace one record

Close all files

De-allocate an I/O block

Write an end-of-file mark

Output an error message

INPUT a record

‘OUTPUT a record

Output a PAUSE message

Find maximum record size and allocate an I/O block
Read a record

Rewind a unit .

Output a STOP message

Write a record

o

COMPUTER AUTOMATION. iNC.

a2 oot el

Appendix D

£
a‘
3?*?

. ERROR MESSAGES/HALTS

COMPILER DIAGNOSTICS DURING SCAN PHASE

|
w‘ Error/
| Message Warning ' Comments

|

{ ALLOCATION E A name appearing in a declaration statement
| is invalid because of previous usage. For
(example:

l

|

l

|

|

COMMON name already in COMMON or not
scalar or array. ;
Adjustable dimension not scalar dummy.]
: ‘ , Name dimensioned or typed twice.

1 Dummy in COMMON, EQUIVALENCE, or
J - EXTERNAL. |
EQUIVALENCE or DATA array subscript
out of range.

| ARGUMENT CONVERTED w Subprogram argument is wrong type and

o~ is converted to right type. This can happen

; on a library function (proper type is known

“to the compiler), a statement function (type
was determined at the definition), or an
ordinary external function (if a previous
call is made with different type arguments).

‘ ' Logical cannot be converted to numeric or

‘ vice versa; this gets a TYPE CONFLICT error.

(. ARGUMENT COUNT E " Wrong number of arguments to subprogram.
| Q , This can happen in the same cases as ARGU-
1 ' MENT CONVERTED.

}‘ ARRAY SIZE ' E Array dimensioned greater than 32K.

BLOCK DATA ONLY E This statement may not appear in a BLOCK
DATA subprogram.

BLOCK OVERFLOW E Working storage has overflowed at a critical
: point in the processing of an optimization
block, where recovery is impossible. All
of the source lines in the block will be printed.
followed by a FORT ER 321 and abort. Get
around this problem by juggling the program
around, e.g. by inserting a jumped-to label

f ‘ D-1

COMPUTER AUTOMATION, INC. " I

Error/
Message Warning Comments

to shorten the block. Note that this is a

g rare occurrence. Normally long blocks

: will be shortened automatically with no error
iy e message.

‘ i CONSTANT SIZE E Floating constant >1.7E38 or <1.5E-39;
i or

il Hexadecimal or Hollerith constant too long
for context or more than 255 or less than
1; or

DATA repeat count not integer >0.

. DIMENSION OUT OF BOUNDS E Negative or zero dimension or upper bound
less than lower.

] .

| ‘r')U PLICATE DUMMY E Same name used twice as dummy in definition
- of FUNCTION, SUBROUTINE, or statement
function. .

DATA COUNT E Number of constants not same as number
of variables. (Long Hollerith strings may
act as several constants.) This will usually
be followed by a SYNTAX error.

i DATA TYPE E Constant not same type as variable. This
does not apply to hexadecimal or alphanumeric ;
constants.

EXTRA COMMA i W Two consecutive commas in a list of items.

FORMAT LABEL E Label previously referenced as a FORMAT
| (e.g. in a READ/WRITE statement).
€
K ID CONFLICT E Name can not be used in this context, due
i to previous usage. See also MISUSED
' IDENTIFIER.

ILLEGAL ARGUMENT STATEMENT E Logical IF may not control a DO or another
e logical IF.

ILLEGAL DO CLOSE w A DO loop may not terminate on a GO TO,

e ' DO, arithmetic IF, RETURN, or STOP.

i If DOs are also improperly nested, this mes-

S sage may not appear. Instead, the label
will appear under OPEN DO LOOPS. ~—

“
|
?
il
|
L.

e

L~

Error/

Message Warning Comments

ILLEGAL LABEL E " Label not 1-99999; or
DO terminal label has alrcady appcared; or
Label on SET op-code not #Xn.

ILLEGAL NUMBER E Integer 32767; or format count value of
zero; or integer in complex constant; or
negated alphanumeric string. See also
CONSTANT SIZE and RANGE.

ILLEGAL OP-CODE E In-line assembly op-code not recognized.
May be caused by "FORTRAN" op-code with
an operand or by #Xn label with op-code
other than SET.

ILLEGAL SIGN E Must be unsigned integer value (e.g. as
unit numbér or ENCODE/DECODE character
count) .

INDEX NOT ALLOWED E In-line assembly op-code cannot be indexed.
This appears only on MPY, DIV, NRM:
others will get SYNTAX error.

JUMPED TO LABEL E This label has f)l‘eviously appeared on a
statement that was not a FORMAT.

LABEL MISSING w Unlabeled FORMAT statement, or unlabeled
statement follows a jump and cannot be
reached. Although this is a warning, an
unlabeled FORMAT statement will not be
generated.

MISSING COMMA w Comma needed between two items.

MISSING LABEL A SET op-code has no #Xn label.

MISUSED IDENTIFIER E Similar to ID CONFLICT. This name cannot
be used this way because of previous usage.
For example:

DO index is array; or

name left of equal sign not scalar or array;

or

Intrinsic function name used as in-line assem-
bly operand.

MISUSED NAME E A system name (containing a colon) was
referenced improperly (e.g., as an in-line
assembly language operand without a base
page (BP) reference preceding it).

MULTI DEFINED E Statement label previously defined.

D-3 Revised March 1975

el g

Message

Error/
Warning

COMPUTER AUTOMATION, INC.

Commerits

NOT ARRAY

Bl o i Gk

e e R e

NOT INTEGER

s

NOT SUBROUTINE

| NUMBER OF SUBSCRIPTS

S TR T e e T e T

" 0)0:;:;&&13 ERROR
' RANGE

% | STATEMENT ORDER
|
|
|
|

SYNTAX

©

. “{'YPE CONFLICT
| .

i
i

UNDEFINED CONDITIONAL

UNDIMENSIONED

E

E

FORMAT reference name not array.

This expression must be integer (e.g. a
subscript), but contains at least one non-
integer element. The $ marks the end of
the expression, but the erroneous element
may not be the last one in the expression.

Name following CALL is not a subroutine
name. '

Too many or too few subscripts. On the
left of an equal sign, an array with no sub-
scripts will have the message UNSUBSCRIPTED,

Format stored in integer or logical array
probably won't work in ANSI mode. See
reference manual.

In-line assembly operand out of range;
or unit number not 1-99. See also CONSTANT |
SIZE and ILLEGAL NUMBER.

Certain statements must appear before other
statements. In general, declaration statements
must come at the beginning. See appendix A
of the reference manual.

This is by far the most common error message.
It indicates improper sequencing of operands,

operators, or punctuation. In a FORMAT,

it may be caused by incorrect Hollerith fields.

Complex expression appears in arithmetic
IF or improper assignment, relational, or
exponentiation; or ‘ '
Logical operand or argument appears where
numeric should or vice versa.

#Xn label has not been defined by a previous
SET.

Name followed by left parenthesis on left of
equal sign has not been dimensioned.

‘ ' COMPUTER AUTOMATION. INC. @ —_—

“Error/
Message Warning Comments B
= UNRECOGNIZABLE E - More serious than SYNTAX. The compiier
' cannot determine what kind of statement

! this is supposed to be. Questionable appear-
ances of this message should be reported
: to us.
UNSUBSCRIPTED E Array appears at beginning of statement

(i.e. to left of equal sign) without subscripts

. Py

S A S T

COMPUTER AUTOMATION, INC. | [£

COMPILER DIAGNOSTICS DURING ALLOCATE PHASE

Message Comments

14 ALLOCATION ERRORS Followed by a list of variable names. These names

K ' are involved in illegal EQUIVALENCEs: cither a

b i ' conflict in storage assignment or an cxtension of

¥ COMMON. This message appears at the end of the
storage allocation map.

4 FUNCTION NAME NOT The name of a FUNCTION, which is supposed to return
i 4 REFERENCED the result, has never been referenced. This message
i appears at the beginning of the allocation map.

OPEN DO LOOPS " Followed by lines of the form:
H 44 OPENED AT LINE 140
£ 3 This indicates a "DO 44" on line 140, but the terminal
: statement with label 44 was not found. Sometimes

° the label may have actually appeared, but was not
found due to incorrect nesting of DO loops. This
message appears at the beginning of the allocation
map . :

STORAGE OVERFLOW One of the storage areas (local, blank COMMON,
labeled COMMON) has overflowed 32K. This message
appears following the map of the corresponding storage
area.

UNDEFINED LABELS Followed by lines of the form:
17 FIRST REF AT LINE 9
The statement number 17 was never defined, and
there is at least one reference to it, on line 9. There
: may be overlap between this message and OPEN DO
i @ (_ LOOPS. This message appears at the beginning of
-) the allocation map.

R R T T

T

) {éw

f COMPILER DIAGNOSTICS DURING GEN PHASE

$

P Error/

; Message Warning Comments

LITERAL POOL E A literal pool has been created in the object

(or blank) code. If the message is not followed by
"E*¥E*E", the pool has becn necessitated
by FORTRAN statecments, and is guaranteed
not to adversely affect any adjacent machine-
language instructions. '

If "E*E*E" appears in the message, the literal
pool has been caused by the user's in-line
"ASSEMBLER language statements referencing
; out of range operands. The pool is preceded
#1 by a jump around, which may or may not
work correctly, depending on where the

@ . pool appears. Examine the object listing

to determine whether the pool is acceptable.
If it is not acceptable, use an LPOOL directive
to elicit the literal pool somewhere earlier

in the in-line assembly language sequence.
Note that if you supply your own LPOOL
directives in your assembly language
sequences, they will not generate a jump
around them, nor will a "LITERAL POOI."
diagnostic be output.

RANGE ERROR E An in-line assembly operand is out of range
for the op-code it has been used with. Most
of these will be caught by the RANGE error
in Pass 1. This message appears when the
range is not known until pass 2 (e.g. forward

, references). The error may refer to the

Q operand of the line it appears on, or it may

refer to the label, in which case there was

a previous line that referenced this label

and it is the previous line whose operand

= is out of range.

D-17 Revised March 1975

COMPUTER AUTOMATION, INC. Eg —_—

COMPILER ERRORS (ABORT CONDITION)

All abort-condition compiler Lrrors are of the form

FORT ER ptt

where p identifies the phase of the compiler that was operating:

4 p = 1 Scan
i 2 Allocation
| 3 Gen

and tt identifies the type of error:

tt = 11 Pointer overflow

¥ 18 1/0 error during overlay loading

| 21 Working storage overflow

2k 28 Memory overflow during overlay loading
. o 31 Compiler error

E 38 Illegal type code during overlay loading
| 41 Compiler error

i 51 Compiler error during collapse.
|

\
L
1

Except for 21 and 28, all of these result from hardware or software errors. If they occur
in a reproducible way, they are probably software errors, which should be reported.

28 indicates that the compiler will not fit in memory. 21 indicates that the program cannot -
be compiled in the given amount of memory.

0S: i.NK ERRORS

During the link process, various error conditions may occur. These errors may be grouped
into three types:

| '\nagpostlcs
|

Diagnostics are messages output to the LO device as they are encountered. They indicate
memory usage conflict of various forms, and are usually caused by scratchpad or main

. memory overflow, or an attempt to store data into a scratchpad location which is already

! occupied. These errors do not cause termination of OS: LNK, but may produce erroneous
results during program execution. The specific error messages are described below.

"COMMON SIZE CONFLICT, IGNORED" (followed by program name, COMMON name, first
dcfined size, subscquently defined size). A labeled COMMON definition has been encoun-
tered, whose size differs from that of a previous labeled COMMON definition of the same
name. Since OS: LNK allocates memory according to the size in the first definition, no
problem should occur as long as the first defined length is greater than the subsequent
definition. However, if the subsequent definition is of greater size, a reference to the ~
excess portion of the COMMON area may produce invalid results during execution. If
this is the case, re-compilation is advisable using identical sizes for both definitions.

D-8

AN < A 1 7 AR £ i

COMPUTER AUTOMATION. INC.

"MEMORY OVERFLOW, IGNORED" (followed by program name). Memory location : 7FFF
has been passed, and more memory is required. Allocation will continue at location zero.

The program must either be shortened and then recompiled, or relocated to a lower memory
location and then re-linked.

"SCRATCHPAD LITERAL OVERFLOW, IGNORED" (followed by program name). The literal
pool address pointer has decremented to zero. Additional literals will not be assigned;
references to any further unassigned literals will reference location zero. This error

can often be corrected by re-linking with a different SR and/or SP option, or by re-compila-
tion using the "NS" (no scratchpad) option.

"SCRATCHPAD PROGRAM/LITERAL OVERLAP, IGNORED" (followed by program name
and scratchpad overlap address). The two pointers for scratchpad literals and scratchpad

‘relocatable data have passed each other at the location shown. This is not necessarily

a problem; however, the situation may sometimes by avoided by re-linking with a diffcrent
SR and/or SP option, or by re-compilation using the "NS" (no scratchpad) option.

"SCRATCHPAD PROGRAM OVERFLOW, IGNORED" (followed by program name). Scratchpad
relocatable data has passed the high scratchpad limit. OS:LNK will continue to store

data into higher locations. This problem may be corrected by re-linking with a different
SR and/or SP option, or by re-compiling using the "NS" (no scratchpad) option.

"SCRATCHPAD USAGE CONFLICT, IGNORED" (followed by program name and scratchpad
location). Input data has been encountered that would be placed in a scratchpad location
already occupied by a literal or other input data. If a literal occupies the cell, the input
data will be lost. If the cell is occupied by input data, it will be overlayed by the new
data. This problem may be corrected by re-linking with a different SR and/or SP option,
or by re-compiling using the "NS" (no scratchpad) option.

Termination Errors

These are messages output to the CO and LO devices, indicating an error which prevents
OS: LNK from completing the link operation. A memory map is printed at this time, and
OS: LNK terminates. These messages are:

"BAD TYPE CODE". An invalid type code was recognized in the input data. The user
should restart OS: LNK one time. If it fails again, re-compilation is probably required.

"LINK ERROR n" (where n may range from 1 to 5). This error indicates various types

of logic failure within either the compiler (error No. 1-4) or OS:LNK itself (error No. 5).
Computer Automation should be notified of such an occurence with as much information

as possible regarding the program and procedure which elicited the error.

NOTE
Currently, LINK ERROR 2 indicates that a variable in blank

COMMON was given a value in a DATA statement. This is actually
a source program error, but is not diagnosed by the compiler.

e e it

D-9

| COMPUTER AUTOMATION, INC. Eg

"TABLE FULL". An overflow condition has occurred in the link edit table. OS:LNK re-
quires more memory for its working storage.

iiE , I/O Errors

! x I/0 error messages are output to the CO device, and reflect an error status received from

OS following an I/0 operation.

"[/O ERR". An irrecoverable error status has been returned. OS:LNK will terminate;
however, the user may re-execute OS: LNK to retry the I/0 operation.

"INPUT CK". The BI or LI device is not ready for input. The user should ready the
device, then continue with a /RESUME command .

¢

H

TR A TR ek e

Message

COMPUTER AUTOMATION, INC.

FORTRAN RUN TIME ERROR MESSAGES

(Routine Name) , (message) ERROR at : xxxx

Routine Name

Comments

ARGUMENT TOO
LARGE

ARGUMENT TOO
LARGE

BOTH ARGUMENTS
ZERO

BOTH ARGUMENTS
ZERO

LINE dddd,
COMPILATION

DIVISION BY ZERO

END OF FILE

FORMAT INTEGER

ILLEGAL FORMAT
CHAR

COS, DCOS, DSIN,
DTAN, SIN, TAN

DEXP, EXP, IDINT,
IFIX, INT, I**R, R**R,
D**R, [*¥*D, R**D,
D**D

ATAN2, DATAN2
CLOG

Program name

Many

ENDFILE, FORMATTED,
UNFORMATTED

FORMATTED

FORMATTED

D-11

All significance to result lost. Zero
returned.

" Result would overflow. Maximdm

value returned.

Zero returned.

Real and imaginary parts both zero.
Minus maximum value returned.

A statement has been reached that

had a compilation source error. dddd
is the source line number which will
always have been marked with an
error message except in the case of
an undefined label reference.

This condition is automatically tested
for in a large number of routines,
but is not expected to occur. If it
does, let CAI know.

On a READ this means that an er.
of-file mark has been encountered.

On a WRITE or ENDFILE it means that
end-of-tape or end-of-media has been
reached (but the requested WRITE

has been done). If an END= was speci-
fied, this message will not appear.
Otherwise it will abort.

Number in FORMAT statement is greate
than 32K. This should only happen

on FORMATSs stored in arrays, because
normal FORMATSs will be caught at
compile time. Abort.

Syntax error in FORMAT statement. On:
on FORMATSs stored in arrays. Abort.

Message

COMPUTER AUTOMATION. INC. '|

Comments

ILLEGAL INPUT CHAR

ILLEGAL OPERATION

ILLEGAL REPEAT
COUNT

ILLEGAL UNIT

INCORRECT NUMBER
OF ARGUMENTS

INTEGER INPUT
OVERFLOW

6/ o)
NEGATIVE ARGUMENT

NUMBER OF
ARGUMENTS

NUMERIC MISMATCH

Routine Name

FORMATTED

BACKSPACE, ENDFILE,

FORMATTED, REWIND,
UNFORMATTED

FORMATTED

BACKSPACE, ENDFILE,
FORMATTED, REWIND,
UNFORMATTED

Many

FORMATTED

BACKSPACE, ENDFILE,
FORMATTED, REWIND,
UNFORMATTED

ALOG, ALOG10, DLOG,
DLOG10, DSQRT, SQRT

FORMATTED

D-12

Illegal character in numeric input
field. Abort.

This operation cannot be performed

on the requested device. Abort.

Please refer to the following OS diagnos-
tics for the various reasons this can
occur: WRITE PROTECT, MULT WRITE
ERROR, I/O BLOCKING OVERFLOW,

and ILLEGAL OPEN.

FORMAT repeat count of zero. Only
on FORMATSs in arrays. Abort.

The unit number is not in the logical
unit table. Abort. Under OS, this

will be preceded by the message "yy
NOT FOUND". Note that if yy is in

the table, but is not assigned to a
device, this will cause the UNASSIGNED
error (under OS):,‘

A library routine has been called with
the wrong number of arguments.
Abort. FORTRAN compiled routines
get the message NUMBER OF ARGU-
MENTS.

Input value exceeds 32K. Maximum
value returned.

Hardware error. Under OS, this will
usually be preceded by DATA ERROR
or HDWR ERROR, identifying the physi-
cal device. Abort, unless ERR= exit
specified.

Absolute value used instead.
A FORTRAN compiled subprogram
hss been called with the wrong number

of arguments. Abort.

A numeric value is associated with -
a logical format, or vice-versa. Abort.

SR

e vl

Message

Routine Name

{OMPUTER AUTOMATION, INC.

OUT OF RANGE

OVERFLOW

OVERFLOW

PAREN NESTING

REAL INPUT
OVERFLOW

SINGULARITY

UNDEFINED
SECONDARY
REFERENCE

COMPUTED GO TO

CABS, CCOS, CEXP,
CSIN, CSQRT, DMOD,
DTAN, DTANH, EXP,
TAN, TANH

I**I’ R**I’ D**I, C**I,

[**R, R**R, D**R,
[¥*D, R**D, D**D

FORMATTED

FORMATTED

DTAN, TAN

- D-13

Comments

The variable (v) is less than 1 or
greater than n (the number of labels).
Abort.

Maximum value returned.

-

Exponentiation overflow or underflow.
Maximum value or zero returned,
respectively. ’

More than eight levels of nesting.
Only possible on FORMATSs stored
in arrays. Abort.

Floating point input value too large.
Maximum value returned.

Tangent of (n+1)w cannot be expressed
Maximum value returned. Arguments
near the singularity point may get

the message OVERFLOW.

The library is out of order or the e

-is an error in the library or the geners

ted code. Report this to CAI.

BSERcE

R i

Bt o sy s

g o8

e

COMPUTER AUTOMATION. INC.

' OS RUN TIME ERROR MESSAGES

" Return/

Message Suspend

Comments

xx DATA ERROR - Ret

! 222222z DUPLICATE FILE Sus
! .
i
{
i

O

xx HDWR ERROR Ret

xx ILLEGAL OPEN Sus

q,‘./ O BLOCKING OVERFLOW Ret

/

| xx MULT WRITE ERROR Ret

i
|

Checksum or parity error in I/O transmission.
xx is a physical device. This will be followed
by an "I/O" error from FORTRAN, and the
ERR= exit, if any.

File name to be opened for WRITE already
exists, possibly from your job, but more
likely from a previous job. Choose a different
name or delete the old file. zzzzzz is the

file name.

Hardware error. xx is the physical device.
The record may or may not have been transmit-
ted (e.g. a card moved from the hopper

to the stacker); it may be possible to deter-
mine this by the status indicated on the device.
Like DATA ERROR (above), this will be
followed by a FORTRAN I/0 error and possibly
ERR= exit.

A device to be opened for input or binary

is an output-only or ASCII-only device, re-
spectively, or vice versa. xx is the physical
device. This error will only occur on the
first use of a unit number (when it is opened).
Subsequent uses would get the FORTRAN
ILLEGAL OPERATION error.

Not enough unused memory for blocking
buffers. Program is too large. This will
be followed by a FORTRAN ILLEGAL OPERA-
TION error.

Two unit numbers are assigned to files on
the same tape unit, namely xx. (Disks can
support multiple files open for writing, but
tapes cannot.) If you need to do this, you
must call a machine language subroutine

to close the old file when you are through
with it. This message will be followed by
a FORTRAN ILLEGAL OPERATION error.

D-14

B e

H

&

% Return/

? Message Suspend ‘ Comments

ii ~ yy NOT FOUND Ret The unit number yy is not in the logical
‘ unit table. (Only units 1-6 are included
i in the standard delivered system.) This
i ' will be followed by a FORTRAN ILLEGAL

i) UNIT error.

& zzzzzz NOT FOUND ‘ Sus A file name to be opened for reading does
y§ not exist. zzzzzz is the file name.

g ‘ A

xx NOT READY Sus The physical device xx is not ready.

i .

&i yy UNASSIGNED , Sus The unit number yy is in the logical unit
g\ table, but is not assigned to a physical
! device.

2 xx WRITE PROTECT Ret The device xx is either a write-protected

|
|
‘ tape or disk or else a disk that is full.
]‘ 0 : This error can come out on any WRITE, not
”\ ‘ just when opened. It will be followed by
; a FORTRAN ILLEGAL OPERATION error. Note
| that files used during FORTRAN execution
} are not automatically deleted, and could
| ‘accumulate until a disk was full. It is
% ' good practice, therefore, to delete files
‘ when you are through with them.

i ERROR HALTS

Error halts are used to indicate a serious hardware or system software malfuncticn.
When one of these occurs, Computer Automation should be notified. Each halt is coded

} with an identifying value in the low-order 8 bits of the instruction, and may be
observed, via the Console, in the I-register.

FORTRAN Halts

encountered an unrecognized instruction
during run-time. Report the condition to
Computer Automation with all related
program information (Contents of A, X, I,
P registers, program listing, and, if
possible, source input on cards or paper
tape) .

3 l I=:08DC ‘ The floating point interpreter has

Console Data Register = :3CCO An LSI-3/05 Uninstalled Memory Trap has

occurred. This halt code was output by
the Software Console routine. Locations
:88 and :89 should be examined for the
address and instruction, respectlvely,
which caused the -trap.

D-15

Console Data Register = :3CC2 An 1LSI-3/05 Unimplemented Instruction
, Trap has occurred. Using the Console
panel, inspect locations :84 and :85 for

the address and instruction, respectively,
which caused the trap. .
OS System Halts

o ‘
: , I=:0801 The CI device does not respond. Correct
i the problem and reload OS.
i :
% { I=:0802 The CO device does not respond. Correct
c the problem and reload OS.
% %I=:0803 The Real-time Clock does not respond.
i Correct the problem and reload OS.
i1 '
j %I=:0804 ' Unrecoverable disk error. Notify Computer
W Automation.
{00805 . Unrecoverable disk error. Notify Computer
”l; Automation.

- RTX System Halts

B
- None. ' %

f ‘\J'!
ot
w}
i

D~-16

