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SECTION I
INTRODUCTION

A high speed electronic computer is an extremely powerful tool for the engineer. It can
perform large amounts of calculation rapidly and accurately that might otherwise be com-
pletely impractical. However, the computer must be furnished with a complete program
made up of instructions recognizable by the machine so that each and every step to be per-
formed is defined. As computers have been developed during the past decade more operations
have been included in the language of the computer; both primary and secondary storage have
been increased, input and output equipment has been improved and made more flexible. While
all of these developments are definite advantages to the user of the computer the process of
writing the program has become more complex. The actual elapsed time for writing the in-
structions and checking out the program can be formidable. Consequently, as computers have
been developed, techniques of programming have had to progress.

Much work has been done in the development of compilers which will translate a series
of problem oriented statements called a source program into a machine language called an
object program. The compiler will allocate proper storage locations for variables and con-
stants, help search for programming or keypunching errors and produce a consistently
efficient translation of the source program statements. In fact, the compiler can do all this
faster and with fewer errors than the coder can write the machine language code.

FORTRAN, a contraction of Formula Translation, was originally written by IBM for the
IBM 704, but since has been offered by several computer manufacturers including Computer
Control Company. FORTRAN is relatively easy to learn; very little training is required. Of
great importance is the fact that a FORTRAN source program can be compiled on many
different computers, thereby avoiding difficulties which stem from changes in computers.
The DDP-24 FORTRAN II language is intended to be capable of expressing any problem of
numerical computation. In particular, it deals easily with problems containing large sets of
formulae and many variables and permits any variable to have up to three independent
subscripts. For those problems in which machine words have a logical rather than a numeri-
cal meaning, provisions have also been made in the DDP-24 FORTRAN language for logical
and/or boolean computation. In those instances where FORTRAN may not be particularly
suited to the specific problem solution, provision has been made for the incorporation of
machine language subroutines and in-line machine language statements with FORTRAN state-
ments. Certain statements in the FORTRAN language cause the object program to be equipped
with its necessary input and output program. Those which deal with decimal information in-
clude conversion to and from binary and permit considerable freedom of format in the external
medium. Arithmetic in the object program will generally be performed with extended pre-
cision floating-point numbers. These numbers provide 38 binary digits (about 11 decimal
digits) of precision and may have magnitude between 10-75 and 10475, and 0. Full word fixed-
point arithmetic is also provided.
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The program produced by the FORTRAN compiler may be executed following the com-
pilation. If the results are incorrect, the list of statements should be examined and the
required corrections made. The program may then be recompiled and executed,

Provisions can be made by FORTRAN for data input and desired output either on equip-
ment directly attached to the computer or on peripheral equipment. This peripheral equipment
can consist of magnetic or paper tape units attached to a printer, card equipment or paper
tape equipment which is independent of the computer. The use of these units afford a saving
of time during input and output.

FORTRAN coding and operating procedures are given in this manual. In learning the
FORTRAN system, the novice will profit by reading the primer carefully, then continuing on
through the FORTRAN fundamentals in the following section.

WRITING PROGRAMS

Preparation and organization is the vital part of a program written in any system of
coding, including FORTRAN, The engineering aspect of a problem is of primary consider-
ation in the determination of the physical problem and its mathematical representation. The
numerical methods require careful selection; they form the basis of calculation for operations
such as integration, solution of differential equations, determination of special and tran-
scendental functions. The success or failure of the program depends in large part upon the
numerical methods used; critical values and range of variables are items to be included in
this consideration. The numerical methods incorporated in the program should be scrutinized
carefully for possible improvement or even complete change regardless of the fact that they
may have been used for a long period of time. A flow diagram is extremely helpful in
analyzing the problem. During the course of developing the flow diagram it will probably be
revised and rewritten several times. In its early stages it will consist of a general diagram
composed of blocks each one of which represents a logical part of the problem; later each
block can be analyzed in detail. In usage, many of these blocks can be considered as building
blocks, subprograms or subroutines.

The technique of building blocks is a fundamental concept in programming. To explain
the concept, consider the oversimplified example of a common erector set. Standard parts
can be assembled into many different types of structures. The kinds of structures that are
built depend on the creative ability and ingenuity of the builder. The standard parts are of
course building blocks. If it were known in advance that only certain types of structures were
to be built, then it would be possible to prefabricate partial assemblies that would greatly
simplify and speed up the overall construction. These partial assemblies are also building
blocks but on a higher level (namely, level 2).

We can think of the available FORTRAN statements as standard parts. These state-
ments may be combined in many ways to form different kinds of programs; the program is the
result of the ingenuity of the programmer. FORTRAN statements can also be combined to
form partial programs; the mechanism for doing this is subsequently described. The obvious
advantage of these subprograms is that they speed up the coding of a problem. A less obvious
but more important advantage is that a FORTRAN subprogram is really an enrichment of the
basic FORTRAN language; it is a step in building a higher level language. With a suitable
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library of building blocks (subprograms), the engineer has the ability to formulate his problem
in a much more powerful, exact and concise language. There is no reason for limiting the
language to two levels. Subprograms can be coded to use other subprograms to form a level

3 language, and so forth.

What should the building blocks be? The novice thinks immediately of certain mathe-
matical subroutines that are frequently used, yet this is only a starting point. To exploit the
building block technique a much more sophisticated approach is necessary; the class of
problems to be solved must be looked at in its entirety. Building blocks should be able to use
each other and must fit together easily in many different programs - there is no simple
answer to the entire question. However, tremendous success has been achieved in the past
by formulating the building blocks to correspond to actual parts of the general physical system.
After the program has been planned with deliberation and care, the program can be written
completely in FORTRAN statements on FORTRAN code sheets. This source program in-
cludes the statements to read the data and type results in precisely the form selected by the
programmer., Statements that will use the building blocks at the appropriate time are also
included. These written statements are now key-punched into paper tape or cards which
make up the source program,

These statements are now ready to be translated by the FORTRAN compiler into com-
puter language. The use of this compiler obviates the necessity of the programmer k.owing
the language or internal code of the particular computer. In addition, it performs the
clerical work of assigning storage locations. The program resulting from compilation is the
object program. It may be punched into cards or paper tape or written on magnetic tape; the
procedures for preparing a program to be compiled and executed are described in the
following.

We are indebted to the Numerical Sciences Group, Los Angeles Division of North
American Aviation, Inc., for the use of their Engineer's Computing Manual during prepa-
ration of the present document.
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SECTION I1
PRIMER

Every type of electronic computer is designed to respond to a special code, called a
"machine language, " which differs for different types of computers. A program (set of in-
structions) telling a computer what steps to perform to solve a problem must ultimately be
given to the computer in its own language. However, FORTRAN makes it unnecessary for the
programmer to learn the appropriate machine language for the computer that will be used. The
name FORTRAN comes from "FORmula TRANslation, ' and was chosen because many of the
statements look like algebraic formulas.

FORTRAN has been developed to enable the programmer to state in a relatively simple
language, resembling familiar usage, the steps to be carried out by the computer. The pro-
gram written in the FORTRAN language is entered into the computer and is automatically
translated by the FORTRAN compiler into a program called the ""object' program, expressed
in a language the machine can understand. Second, the computer solves the problem by exe-
cuting the object program.

The FORTRAN language consists of various statements, which may be grouped into six
classifications: arithmetic and logical statements, control statements, input-output state-
ments, specification statements, subprogram facility statements, and in-line machine lan-
guage statements. The programmer uses this language to state the steps to be carried out.

The FORTRAN compiler is a large set of machine language instructions which cause the
computer to translate a FORTRAN program into an efficient machine language program.

Virtually any numerical or logical procedure may be expressed in the FORTRAN lan-
guage. The FORTRAN system is intended to substantially reduce the time required to produce
an efficient machine language program for the solution of a problem, and to relieve the pro-
grammer of a considerable amount of manual clerical work, minimizing the possibility of
human error by relegating the mechanics of coding and optimization of the computer.

CAPABILITIES OF COMPUTERS

In order to clarify what a computer can do and what it cannot do consider the problem of
finding the roots of a quadratic equation. The computer cannot be given an equation of the form

3x‘2 + 1.7x - 31.92 = 0

and be directed to find its roots. The computer can, however, be directed to computer the
value of

1.7 +\/(1.7)‘2 - 4(3) (-31.92)
2(3)




which gives one of the roots of the preceding equation. That is, the computer must be told how
to find the answer. It will do the work.

Most calculations performed by the computer are carried out in REAL (floating-point)
form. Numbers are represented in the machine in this form, and the results produced by the
arithmetic operations are usually in this form. For example, calculation of the product

5.0 x 0.0037
would be carried out by the computer in a form analogous to

2 1

(. 5000 0000 x 101) x (.3700 0000 x 10°7) = (.1850 0000 x 10 7).

This would be the case even though the numbers were entered as 5.0 and 0.0037 and the
result were printed as 0.0185. All real numbers in the computer are carried to about 11 sig-
nificant decimal digits. Numbers outside the range 10-75 and 10*75 (other than zero) cannot
normally be accommodated.

PROCESSING THE FORTRAN JOB

This primer describes the writing of FORTRAN programs for a general-purpose, high-
speed, internally stored program digital computer such as the DDP-24.

CONTENTS OF THE FORTRAN PRIMER

As an aid to efficient study, the FORTRAN language is approached cumulatively through
three stages. The division into three parts is convenient for the description of successively
more complex problem-solving procedures.

First, it is possible to direct the computer to read individual numbers from tape or
cards, combine them according to formulas involving arithmetic operations and standard func-
tions (such as sine, square root, log, etc.), make tests and follow different directions depend-
ing upon the outcome of each test, and finally type or print the results.

Secondly, additional types of statements are presented which provide for the definition
and use of functions peculiar to the problem to be solved; the iterative manipulation of sub-
scripted variables (the elements of vectors or lists of numbers); the use of paper tape for input
of information; and greater flexibility in the format of input and output information. When mag-
netic tape is used for input and output information, the computer can read or write at a much
greater rate than is possible when the computer reads cards or paper tape and prints or types
results directly. Since all information to be used or processed by the computer (other than
magnetic tape output from a previous computer operation) must initially be recorded on punched
cards or paper tape, and since it is often desirable to maintain permanent records in punched
or in printed form, separate peripheral equipment may be used to transfer information from
cards to tapes, from tapes to cards, and from tapes to printed form.

Finally, to these facilities is added the ability to handle matrices and three-dimensional
arrays of numbers, to perform more complex iterative procedures, and to direct the flow of
control within a program more flexibly. Since FORTRAN language statements have to be
translated by a computer before a problem is ready to be run, FORTRAN statements must be
written in exactly the proper form. The machine has no ability to understand what was meant;
it can only translate what was written. Therefore, the omission of a single decimal point or
operation symbol will make a FORTRAN statement incapable of being translated correctly. For
this reason, the rules for writing FORTRAN statements must be carefully followed. In devising



the FORTRAN System, considerable effort was devoted to making these rules consistent and
having them conform to familiar usage wherever possible. A number of examples have been
provided to illustrate these rules without having to include specific statements of them in the
text; a list of items to check is also given, which should answer many questions. Some of the
rules in the check lists are not explicitly stated elsewhere.

PAPER TAPE INPUT, ARITHMETIC OPERATIONS, STANDARD FUNCTIONS, TYPED
OUTPUT

The DDP-24 FORTRAN compiler provides for several source input media (e. g., card
reader, magnetic tape, etc.); however, we are primarily concerned with the standard Input/
Output devices offered with the DDP-24; paper tape reader, paper tape punch, and typewriter.
The section concerned with operating procedures discusses the non-standard I/O devices and
their compatibility with the devices described herein.

INTRODUCTION
Consider the quadratic equation example previously presented
2
3x° 4+ 1.7x - 31.92 = 0

The algebraic representation for one of the two roots of the equation could be written

-B +v B - 4AC
2A

root

where A = 43
B= +1.7
C= -31.92

The complete FORTRAN program which describes this calculation and provides for typing the
result may be written in six separate statements as follows, plus three statements which pro-

vide for the end of the job.

Example 1:
A = 3.
B = 1.7
C = -31.92

4 ROOT = (-B + SQRTF(B*%2 - 4. * A * C))/(2. * A)
TYPE 7, ROOT
7 FORMAT(1HA6ELT. 8)
CALL EXIT
STOP
END

NOTE: . indicates a blank or space is required



The first statement means: '"Assign the value 3. to the variable A.'" The next two state-
ments have a similar meaning. The fourth statement means: ''Evaluate the expression on the
right side and assign the result to the variable ROOT.'" The fifth statement types the computed
value of ROOT in a form indicated by the sixth statement. The last three statements indicate
that this job is complete.

Notice the sequential nature of the program. The computer executes instructions in the
same order as the order of the statements. For example, if the fourth statement were to be
moved up and made the first statement, then the computer would evaluate ROOT before obtain-
ing the desired values of A, B and C. ROOT would therefore be evaluated using some arbi-
trary unknown values for these variables.

The above example was written to illustrate the use of variables. However, the same
result could be obtained by writing statement number 4 as follows:

4 ROOT = (-1.7 + SQRTF(L. 7#%2 - 4. % 3. % (-31.92)))/(2. * 3.)
TYPE 7, ROOT

in which the actual numerical values appear in the statement describing the evaluation of
ROOT.

The program in Example 1 illustrates the use of four types of FORTRAN statements
which will be introduced in this subsection.

1) Arithmetic statements (e. g., first four statements in the program).
2) Input-output statements. The fifth and sixth statements are output statements.
3) Control statements, including
IF
Unconditional GO TO
STOP
END
4) Subprogram facility statement:

CALL EXIT
ARITHMETIC STATEMENTS

The first four statements in Example 1 are called arithmetic statements. An arithmetic
statement looks like a simple statement of equality. The discussion of arithmetic statements
will here be restricted to those in which the left side of the equality is a simple variable. (In
a later paragraph, additional facilities will be presented for handling arithmetic statements in
which the left side is a function of one or more variables.) The right side of all arithmetic
statements is an expression which may involve parentheses, operation symbols, constants,
variables, and functions, combined in accordance with a set of rules much like that of ordi-
nary algebra.

The fourth statement in Example 1 illustrates the use of six of the ten basic operations in
the FORTRAN language.



Operator Definition Example

+ Add a+b
- Subtract a-b
* Multiply a*b
/ Divide a/b
ok To the exponent a¥*¥b
= Replaced by (1) a=b

If only the types of statements presented in this section are used, all calculations will be
carried out by the computer in REAL (floating-point) arithmetic, and the programmer must so
instruct the computer by writing all constants with a decimal point. All numbers (and only
numbers) are considered constants, with the exception of statement numbers.

ORDER OF OPERATIONS

The FORTRAN arithmetic expression
AxxB*C + D**E/F - G
will be interpreted to mean
E

ABc + D g

F
That is, if parentheses are not used to specify the order of operations, the order is assumed
to be:
1) exponentiation
2) multiplication and division
3) addition and subtraction

Parentheses are used in the usual way to specify order, for example

(a(B + cpP
is written in FORTRAN as
(A%(B + C))**D
(1) Note that the meaning of the = operator is not precisely the same as its meaning in stand-
ard arithmetic notation.

(2) Exception: Do not use a decimal point with an integer used as an exponent.



There are only three exceptions to the ordinary rules of mathematical notation. These
are:

1) In ordinary notation AB means A - B or A times B. However, AB never means A%B
in FORTRAN. The rmultiplication symbol cannot be omitted.

2) In ordinary usage, expressions like A/B - C and A/B/C are considered ambiguous.
However, such expressions are allowed in FORTRAN and are interpreted as follows:

A/B*C means (A/B)*C
A*B/C means (A%*B)/C
A/B/C means (A/B)/C

Thus, for example, A/B/C*D*E/F means {(({A/B)/C)*D)*E)/F. That is, the order of opera-
tions is simply taken from left to right, in the same way that

A+B-C+D-E
means

({A+B) -C)+ D) - E

C
3) The expression AB is often considered meaningful. However, the corresponding
expression using FORTRAN notation, A**B#*%C, is not allowed in the FORTRAN language. It

B.C (8%)
should be written as (A%%B)**C if (A7)~ is meant, or as A¥*¥(B**C) if A is intended.
FUNCTIONS

Besides the ability to indicate constants (such as 3. 57 and 2.0), simple variables (like
A and ROOT), and operations {such as - and *), it is also possible to use functions. In Exam-
ple 1, SQRTF ( ) indicates the square root of the expression in parentheses.

Since the number of possible functions is very large, each installation will have its own
list of available functions, with information about their use. Functions given in this list must

be referred to exactly as indicated.

Some functions which might appear in a typical list are:

FORTRAN Symbol Function
ABSF(X) |X| (absolute value of X)
SQRTF(X) VX
SINF(X) sin X
COSF(X) cos X
EXPF(X) R
ARCTANF(X) arctan X
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FORTRAN Symbol Function

LOGEF(X) 1oge X

LOG10F(X) loglo X

INTFEF(X) integral part of X
MAXIF(X,Y, Z) maximum of X, Y, and Z

Notice, as in the last example, that a function may have more than one argument; as in
general mathematical usage, multiple arguments are separated by commas. Facilities for
defining functions peculiar to the problem at hand and not currently available from the subrou-
tine library list will be presented later.

INPUT-OUTPUT STATEMENTS

These paragraphs present FORTRAN statements which can direct the compiler to take
numbers from a paper tape reader and, after carrying out the desired calculations, type the
results. Consider again the example of finding a root of a quadratic equation.

In many cases it will be desired to find ROOT for a number of sets of values of A, B,
and C. To do this, the computer would have to be directed to read a paper tape in which
values for A, B, and C have been punched, compute the value of ROOT, type ROOT (along with
A, B, and C), read more paper tape with different values for A, B, and C, compute and type
the corresponding value of ROOT and so on. In this case, the FORTRAN program could be
written:

Example 2:

10 READ PAPER TAPE 5, A, B, C
5 FOTMAT(6E12. 8)
ROOT = (-B + SQRTF(B**2 - 4. * A * C))/(2. * A)
TYPE 7, A, B, C, ROOT
7 FORMAT(1H 6E17.8)
GO TO 10
END

The first statement (which has been given the number 10 for reference purposes) causes
the computer to read the first information which was punched on the paper tape. Three num-
bers should be on this tape, represented by three sets of punches. The value of the first num-
ber is named A; the value of the second number, B; and the value of the third number, C. The
computer then proceeds to compute ROOT as before, after which it types (on one line across
the page) the values names A, B, C and ROOT in that order. Upon reaching the last statement
the computer is directed: "Go to the statement numbered 10 and do what it says.' Thus the
computer reads the next set of values for A, B, and C, then computes ROOT, provides for
typing the current values of A, B, and C and the computed value of ROOT, and again returns
to statement 10. This process continues as long as there are data to be read. When the data
are exhausted (a stop code is punched at the conclusion of the data), the computer will type
"END OF JOB'" and halt.

>

Note that when the program concludes in this manner, with a transfer to a statement
which directs the computer to read more data, the CALL EXIT and STOP statements are not
needed. However, an END statement must always be placed at the end of the program to be
compiled.



FORTRAN provides facilities for specifying the format of input data and of typed output
in a great variety of ways. FORMAT statements are used to specify the desired arrangement
for input paper tape and for typing.

A few simple FORMAT statements are given here and further details about FORMAT
statements are given later. Each input or output statement refers to a FORMAT statement

which specifies the form of the information punched on the paper tape or to be typed. Two
types of input and output are discussed here, namely, REAL and INTEGER {fixed-point).

REAL. Data is read into the computer by means of an input statement such as
READ PAPER TAPE 15, A, B, C

where 15 represents the statement number of the FORMAT statement to be used, and A, B, C
are the items to be read. If the FORMAT statement is

15 FORMAT (3El12. 8)
the data will be assumed to be written in REAL notation. A REAL number is represented by a
fraction multiplied by a power of 10. For example, the number 496. 82 can be written in REAL
form as 0.4982 x 103, The numbers to be read with the noted FORMAT statement may be
written as in Example 3.

Example 3:

a3 AA’...“G+01 First case
alT aanaaat0l First case
-3192 saaat02

~. 15794, ,.+01

-17.34a.4400 Second case
w23 a.44a-03

~ represents a space

Note that if no decimal point is written, as in the first case, the number is considered
to have 8 decimal places as indicated by the "8'" in the FORMAT (3E12. 8) statement. This
would place the decimal point immediately to the left of the numbers in the first case.

Data for succeeding cases can be written in a similar way, each case separately. The
sign is written in the first position of each field although a positive sign may be omitted. A
sign, either positive or negative, must precede each decimal scale.

The information can be typed by means of an output statement

TYPE 20, A, B, C, ROOT
and its associated FORMAT statement
20 FORMAT (1H.4E17. 8)
The typing would appear as

0.30000000E 01 0.17000000E Ol -0.31920000E 02 0.29908501E Ol
0.15794000E 01 -0.17300000E 02 0.23000000E-03 0.10953513E 02

Notice that the FORMAT statement used for output begins with the characters '""1H" followed by

a blank space. This provides for moving the typewriter carriage and results in single-spaced
Iines of typing. There are several different ways to provide for spacing the typed lines.
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FIXED POINT. Data read into the computer by means of the input statement
READ PAPER TAPE 20, A, B, C

and the associated FORMAT statement
20 FORMAT (3F12.8)

is assumed to be written in fixed-point notation. A fixed-point number read into the computer
in this manner is converted to a REAL number for internal use. Data for Example 3 might be
written as in the following example.

Example 4:

23.0annnnnan
al. T anmaanana First case
-31.92 yaanan

0015794 annn
-0173anaanan Second case
200000023 4 aa

Two different ways of indicating the decimal point are shown: by writing it, as in the first
case, and by using the number of decimal places shown in the FORMAT statement, as in the
second case. Since the statement FORMAT (3F12. 8) calls for 8 decimal places, the decimal
point is considered to be between the third and fourth digits on each line of the second case.

The sign is written in the first position; it may be omitted for a positive number. If the
decimal point is written, the number may be placed anywhere in the field.

Information may be typed in fixed-point notation using the following statements:
TYPE 22, A, B, C, ROOT
22 FORMAT (1H 4F16. 5)
The output is typed in this manner:

3.00000 1.70000 -31.92000 2.99085
1.57940 -17.30000 0.00023 10. 95351

This format should not be used for numbers having more than eight digits to the left of the
decimal point. Also, note that five decimal places are specified.

CALL EXIT, STOP, AND END STATEMENTS

CALL EXIT is a subprogram facility statement which tells the computer that the end of
the job has been reached. The END statement is for the information of the compiler, and is
not used during execution of a program.

The CALL EXIT statement may be omitted in certain cases, such as that encountered in
Example 2 where the absence of data indicates the end of the calculation. In this case, the
STOP statement should also be omitted. However, an END statement must always be the phy-
sically last statement of the program. This tells the compiler that there are no more state-
ments to be translated into machine language in this program.
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CONTROL STATEMENTS - IF AND UNCONDITIONAL GO TO

The unconditional GO TO statement is used to specify at some point in a program that
the next statement to be executed is not the one following, as it normally would be, but, in-
stead, the statement numbered n. The statement GO TO n transfers control to statement n,
and execution proceeds from there.

As an introduction to another type of control statement, consider the following problem:

Given values a, b, ¢, and d punched on paper tape, and a set of
values for the variable x punched one per line, evaluate the function
defined by

ax® + bx + ¢ ifx<d
f(x) =40 ifx=4d
-a.x2+bx - ¢ ifx>d
for each value of x, and type x and {(x).
The FORTRAN program for this problem could be written as follows:

Example 5:

10 READ PAPER TAPE 5, A, B, C, D
11 READ PAPER TAPE 5, X
5 FORMAT(6E12. 8)
12 IF(X - D) 13, 15, 17
13 FOFX = A#Xx¥%2 + B*¥X + C
14 GO TO 18
15 FOFX = 0
16 GO TO 18
17 FOFX = A% X¥¥%2 + B*X -C
18 TYPE 6, X, FOFX
6 FORMAT(1H 2E17.8)
19 GO TO 11
END

The values for A, B, C, and D are read (statement 10), and the first value of X is then
read (statement 11). Statement 12 is then executed. Statement 12 means: "If the quantity
(X-D) is negative, go to statement 13; if it is zero, go to statement 15; and if it is positive,
go to statement 17." Hense, if X < D, the value of FOFX is calculated by means of the proper
formula, and the execution of statement 14 transfers control to statement 18, which is executed
next. Similarly, if X = D, control goes from the IF statement to the proper formula (statement
15), and then from statement 16 to statement 18. If X > D, the IF statement selects statement
17, after which statement 18 is automatically taken next. Thus, in all three cases, control
eventually reaches statement 18, the output statement, which provides for typing the values of
X and FOFX. Statement 19 then returns control ot the READ statement, which reads in the
next value of X. The whole pattern repeats until all of the X-data have been processed. The
computer will consider this program completed when there are no more data to read.

As has been illustrated, the IF statement is a kind of conditional, three-way GO TO
statement. It often happens, as in the above problem, that the computer must choose one of
alternative paths depending on whether the current value of an expression is negative, positive,
or zero. This is done, as in the above program, by writing

IF (E) n), n,, n,



where (E) is an expression, and the number of the statement to which control is to be trans-
ferred is o if (E) is negative; n,, if (E) is zero; and Ny, if (E) is positive.

W ARNING

Provision for each branch must always be included.

It is not necessary to number every FORTRAN statement in a program. The only state-
ments which must be numbered are those to which reference is made (as in GO TO or IF state-
ments). Any numbers between 1 and 32767 may be used, provided two different statements are
never given the same number.

SAMPLE PROBLEMS

Problem 1: Find the approximate numerical solution of the ordinary differential equation
dy/dx = xy + 1
in the interval 0 < x <1, given that
y = Owhenx = 0
A method which can be used to approximate the solution of this equation is as follows:

Assume that a point (xo, YO) of the solution function is known. Thus the point Xy = 0,

Yo = 0 is known. It is then known from the differential equation that dy/dx, the rate of change
of y with respect to x, at this point is x9Y0 + 1. Hence, an increment in x of Ax would pro-

duce an approximate change in y of

Ay = Ax(x + 1)

0Yo
Let Ax be the interval between successive xj terms (i = 0, 1, 2, . . .). Then y(at Xl)
= y(at Xyt Ax) = Yo t Ay = ygt Ax(xoyo + 1).

After the point (xj, y;) has been obtained, it can be used to find (x5, y2) in a similar way:
yz(at xz) = yz(at x) + Ax) = vyt Ax(xly1 + 1)

The procedure is continued until the point x = 1 is reached, the upper bound of the inter-
val for which the solution is being found. In general, the equation for stepping forward is

Yi+1 y; t Ax(xiyi + 1).

Since it depends on the mesh size, Ax, the error of approximation is left as a parameter
in the program. The solution for various values of Ax can be compared to give an empirical
idea of the error. To type the value of every point obtained would be unnecessary and costly,
since Ax must be quite small, so the program has been arranged to type only at intervals of
0.01. The program for this example, with an explanation of some of the statements, follows.



Example 6:

READ PAPER TAPE 10, DELTAX
10 FORMAT(1E21. 8)

TYPE 12, DELTAX
12 FORMAT(1H 2El17. 8)

XPRINT = 0.01

X = 0.0
Y = 0.0 )

3Y = Y+ DELTAX ¥ (X %Y + 1.0)
X = X+ DELTAX

IF(X - XPRINT) 3, 4, 4
4 TYPE 12, X, Y
XPRINT = XPRINT + 0,01
IF(X -1.0) 3, 5, 5
5 CALL EXIT
STOP
END

The only input to the program is the value of DELTAX. The first statement causes the
computer to read DELTAX into core storage. The third statement causes the computer to
provide for DELTAX to be typed. The fifth statement initialized XPRINT to 0. 01; the first
value of X which equals or exceeds XPRINT will be the next value typed. The next two state-
ments assign the proper initial values to X and Y. Statement 3 is the basic equation for finding
the next value of Y. The next statement calculates the new value of X. This value of X is then
compared with the value of XPRINT; if it is less than this value, control goes back to calculate
the next point. As soon as X equals or exceeds XPRINT, the calculation is interrupted to allow
the current values of X and Y to be typed according to statement 4 (in REAL form).

The value of XPRINT is increased by 0.0l for the next value to be typed. Then a test is
made to determine whether the value of X has reached 1.0. If X equals or exceeds 1.0, the
problem is finished and the computer types "END OF JOB'" and halts (statement 5); if not, con-
trol returns to statement 3 to calculate the next point.

Problem 2: Determine the current in an alternating current circuit consisting of resist-
ance, inductance, and capacitance in series, given a number of sets of values of resistance,
inductance, and frequency. The current is to be determined for a number of equally spaced
values of the capacitance (which lie between specified limits) for voltages of 1.0, 1.5, 2.0,
2.5, and 3.0 volts. )

The equation for determining the current flowing through such a circuit is

E

2 1 2
1=V R® + (2rfL - ——
\/ (2m 27iC

current, amperes

where I=
E = voltage, volts
R = resistance, ohms
L = inductance, henrys
C - capacitance, farads
f = frequency, cycles per second
T= 3.1416



The FORTRAN program could be written as follows:

Example 7:

10 READ PAPER TAPE 5, OHM, FREQ, HENRY
11 READ PAPER TAPE 5, FRDI1, FRDFIN
5 FORMAT(3E12. 8)
12 TYPE 7, OHM, FREQ, HENRY
7 FORMAT(1H 3E17. 8)
13 VOLT =1.0
14 TYPE 7, VOLT
15 FARAD = FRDI
16 AMP = VOLT / SQRTF(OHM**2 + (6. 2832 * FREQ * HENRY)
X -1/ (6.2832 * FREQ * FARAD))*%2)
17 TYPE 7, FARAD, AMP
18 IF (FARAD - FRDFIN) 19, 21, 21
19 FARAD = FARAD + 0.000 000 01
20 GO TO 16
21 IF (VOLT - 3.0) 22, 10, 10
22 VOLT = VOLT + 0.5
23 GO TO 14
END

Statement 10 causes the values of the resistance, the frequency, and the inductance to be
read in that order. Statement 11 causes the initial and final values of the capacitance to be
read. The values of the resistance, frequency and inductance are typed (statement 12). The
initial value of the voltage is introduced and typed (statements 13 and 14). Statement 15 initial-
izes the current value of the capacitance (denoted by FARAD) to the first value to be used in
calculation (denoted by FRD1). The actual calculation is specified by statement 16. The result
of that calculation, together with the current value of the capacitance, is typed (statement 17).
The current value of the capacitance is compared with the final value to determine whether or
not all values have been investigated (statement 18). If not, the expression (FARAD - FRDI)
is negative and the program proceeds to statement 19, which causes the current value of the
capacitance to be increased by the given increment. This is followed by a transfer (statement
20) to statement 16 which causes the calculation to be repeated for the new value of the capa-
citance. If the expression in statement 18 is zero or positive, all values of the capacitance
have been investigated and the program transfers to statement 21.

At this point the value of the voltage is compared with the upper bound to determine
whether or not all specified values of the voltage have been used. If not, the expression in
statement 21 (VOLT - 3.0) is negative and the program proceeds to statement 22, which causes
the value of the voltage to be increased. Following this, a transfer (statement 23) is made to
statement 14, which causes the new value of the voltage to be typed. The program proceeds to
statement 15, and the entire process of investigating all values of the capacitance is begun
aga1n.

If all values of the voltage have been used (the expression in statement 21 is zero or
positive), the calculations for the current set of values of resistance, frequency, and induct-
ance are finished. The program is returned to statement 10 so that the two sets of data defin-
ing the next case may be read and the program repeated. This process is repeated until all of
the cases have been considered; i.e., all of the data have been read.

CHECK LIST

In the preceding descriptions of statements no attempt was made to cover in detail all of
the information necessary or helpful in writing a program using these statements. The follow-
ing list of items, together with what has already been presented, supplies this information.



1) The basic characters which may be used in writing a FORTRAN statement are:
a) A, B, C, .. ., Z (26 alphabetic characters, capital letters only)
by 0, 1, 2, . . ., 9(10 numerical characters)
c) Special characters:

+ (plus); - (minus); *Asterisk); / (slash); ( (Left parenthesis); ) (right paren-
thesis); , (comma); = (equal sign); . (decimal point); and ' (apostrophe)

2) The digits 5, 2, 1, and 0 must be carefully distinguished from the alphabetic charac-
ters S, Z, I, and O.

3) If calculations involving a constant (i. e., any number except a statement number) are
to be carried out in REAL arithmetic, as is always the case if only the types of statements
presented in this section are used, the constant must be written with a decimal point. Excep-
tion: Do not use a decimal point with an integer used as an exponent.

4) A variable symbol can consist of eight or fewer characters. It must satisfy the fol-
lowing conditions:

a) The first character must be alphabetic.

b) The first character cannot be I, J, K, L, M, or N, unless the variable name
has been declared in a REAL specification statement.

c) Any character following the first may be alphabetic or numerical, but not one of
the special characters.

d) The names of all functions either with or without the terminal F, must not be
used as variable symbols. For example, if SINF is used as the name of a function, neither
SINF nor SIN can be used as a variable symbol.

5) If a function is used, the name of the function as written by the programmer must
agree exactly with the name as it appears on the list.

6) The argument of a function is enclosed in parentheses; e. g., SINF (X).

7) If a function has more than one argument, the arguments are separated by commas;
e.g., MAXIF (X, Y, Z).

8) The left side of a statement must never be a constant.  In the type of arithmetic
statement covered in this section, the left side is always a simple variable; e.g., A. Ina
following paragraph, arithmetic statements will be extended to include function statements, in
which the left side is a function of one or more variables.

9) Never omit the intended operation symbol between two quantities; e. g., do not write
AB for A%B.

10) Never write two operation symbols in a row; e. g., do not write A * -B for A * (-B).

There are no exceptions. The exponentiation symbol ** may seem to be an exception, but it
is regarded as a single symbol.

11) Blank spaces can be used or not used, as desired, since blanks are ignored in the
translation. (Exception: In output FORMAT statements described in this section, the 1H used
for carriage control must be followed by a blank.) For example,



could be written

and
GO TO 25
could be written as
GOTO25

12) The prescribed form for the various non-arithmetic statements must be followed
exactly, except for the arbitrary use of blank spaces. For example, the statements

READ PAPER TAPE 5 A, B
IF A-B, 5, 6, 7
are incorrectly written, they should be written
READ PAPER TAPE 5, A, B
IF (A-B) 5, 6, 7
with the punctuation marks appearing exactly as shown.

13) The magnitude of every non-zero REAL quantity must lie between 10-75 and 107

By '"quantity' is meant any constant or any value assumed by a variable or function in the
course of the calculation.

5

14) When a number is read by means of a READ PAPER TAPE 5, statement, where
statement 5 is FORMAT (6E12. 8), only eight digits of the number are used. The exponent
must have two digits and a sign, and the number is preceded by a sign, making a maxmimum
of twelve characters to a field.

15) A number to be typed by means of a TYPE 7, statement, where statement 7 is
FORMAT (6E17.8), will be typed as a REAL number whose fractional part has 8 digits and
whose exponent part has 2 digits and sign.

16) The program statement which is written last should be a statement which causes a
transfer to some other statement in the program (a GO TO or an IF statement). If this is not
practical, a CALL EXIT statement followed by a STOP statement can be used.

17) An END statement must be the physically last statement of every FORTRAN source
program.



DEFINITION OF FUNCTIONS, MANIPULATION OF SINGLE-SUBSCRIPTED VARIABLES,
MAGNETIC TAPE INPUT AND OUTPUT

INTRODUCTION

The part of the FORTRAN language presented in the preceding subsection can be used to
direct the operation of the computer in the solution of certain problems. However, it is diffi-
cult or impossible to program the solution of some problems using only the types of statements
described in the previous subsection. Those statements, grouped by type, were as follows:

Arithmetic statements

(READ PAPER TAPE
Input-output statements (TYPE
(FORMAT

(IF

{(Unconditional GO TO
(STOP

(END

Control statements

Subprogram facility statement CALL EXIT

In this subsection, arithmetic statements will be extended to include function statements,
and additional types of statements will be introduced which make is possible to direct the com-
puter in the solution of problems more complex than those dealt with previously.

SUBSCRIPT NOTATION

If programming were done using only the types of statements previously presented, la-
borious programming would be necessary to carry out relatively simple iterative calculations
or logical steps such as are encountered in the addition of two vectors or the selection of a
certain number from a list of numbers. However, it is possible, using the additional types to
be presented here to employ the subscript notation of mathematics to make the programming of
such problems easier.

A mathematician would denote that < is the sum of the vectors (al, a,, a3) and (bl, b

b,) by writing 2

c. = a, +b, i=1,2,3
i i i

Notice that the first part of the statement

c. = a,+ b.
i i i

is a general statement which, in effect, becomes three specific statements

c; = 3 + b1
c, = 2, + b2
c3 = a3 + b3

by assigning the values 1, 2, and 3 to i.



By using the FORTRAN language, it is possible to make general statements like c. =
aj + bj, and to make other statements which assign the desired values to i. When a general
statement is executed, it is always executed in one of its specific senses. For example, if the
variable I has the value 3 when the FORTRAN equivalent of ¢, =a; + bi

C(I) = A(D + B(I)

is executed, the values denoted by A(3) and B(3) are added and the sum is assigned as the value
of C(3). Thus, to compute the sum vector

(C(1), C(2), C(3))

it is necessary to execute the general statement 3 times, each time with I having one of the
values 1, 2, 3. Therefore, in addition to providing for arithmetic statements with subscripted
variables, it is necessary to provide for a method of stating that a given set of such statements
should be executed repetitively for certain values of the subscript. The FORTRAN statement
which provides this ability is called a DO statement. An example of a DO statement, followed
by an explanation, is

DO 20 I=1, 250
This statement instructs the computer: ''Execute all statements which immediately follow, up
to and including the statement numbered 20, 250 times (the first time for I = 1, the secondtime
for I = 2, and so on, and the last time for I = 250), and then go on to the statement following
statement 20.'" Thus, to return to the example of vector addition, the FORTRAN statements
necessary to add A(I) and B(I) are

DO 1 1I=1,3
1 C(I) = A(I) + B(I)
2

When the statement numbered 2 is encountered, the values of C(1l), C(2), and C(3) will have
been computed and stored.

Problem: It is required to compute the following quantities

Vein? (A.B4+C.) + cos® (A.B.-C.)
1 1 1 1 1 1

P. =
i
Q. = sin® (A4C,) + cos® (A, -C,)
; = sin G cos :-Cy
fori=1, . . ., 100. A possible FORTRAN program for this calculation follows.

Example 8:

1 DIMENSION A(100), B(100), C(100), P(100), Q(100)
2 TRIGF(X,Y) = SINF(X + Y)*#2 + COSF(X - Y)#x
3 READ PAPER TAPE 4, A, B, C
4 FORMAT(3F12. 8)
5DO71I=1, 100
6 P(I) = SQRTF(TRIGF(A(I) * B(I), C(I)))

7 Q(I) = TRIGF(A(I), C(I))
8 TYPE 9, (A(I), B(I), C(I), P(I), Q(I), I=1, 100)
9 FORMAT(1H 5F17. 4)
10 CALL EXIT
STOP
END



Statement 2 defines the function TRIGF (X, Y) as equal to the expression (sin2 (X+Y) +
cos? (X-Y)). The DIMENSION statement indicates that the arrays A, B, C, P, and Q each
have 100 elements. A, B, and C in the input statement will cause all elements of A, then all
elements of B, and then all elements of C to be read into the computer. Notice that the input
statement refers to a new type of FORMAT statement. The FORMAT statement specifies the
external arrangement for input and output data. In this FORMAT statement, 3F12. 8 means:
"There are 3 fixed-point decimal fields per case, each field being 12 columns wide with 8 deci-

mal places to the right of the decimal point.' Statement 5 says: "DO the following statements
through statement 7 forI =1, I=2, . . ., I=100." Statements 6 and 7 compute Pi and Qi'
The output statement says ""Type the arrays A, B, C, P, and QforI=1, . . ., 100 as

specified by FORMAT statement 9.'" Statement 10 indicates the end of the program.

Each number will be typed in a field of 17 columns; there will be 4 digits to the right of
the decimal point and the number will be placed to the extreme right of the field. There will
be as many as 5 numbers to the line; the first line will contain Al’ B, Cl’ Pl and Ql'

The method of subscript notation and the use of the DO, FORMAT, DIMENSION, and
function statements which have been introduced here will be further illustrated in the following
pages of this section.

INTEGER CONSTANTS AND VARIABLES

In the previous subsection, only REAL constants (which must have a decimal point) and
REAL variables (which did not begin with I, J, K, L, M, or N) were considered. However,
it should be clear that REAL numbers are not always desirable nor necessary for use as sub-
scripts; i.e., X] 3 is not generally a useful notation, and X3 ( is redundant and wastes space.
INTEGER constants and INTEGER variables are more useful for this purpose. The rules
which follow describe the method of writing such numbers:

1) INTEGER constants are numbers written without a decimal point.

2) INTEGER variables must begin with I, J, K, L, M, or N unless the over-ride capa-
bilities provided by the REAL specification statement is utilized. For the purposes of this
primer, the TYPE specification statements will not be discussed; therefore, INTEGER vari-
ables will always begin with I, J, K, L, M, or N.

When used in FORTRAN statements, a subscripted variable is written as the name of
the variable followed by the subscript (an expression composed of constants or variables) in
parentheses. For example, A(3) is the FORTRAN representation of A, and X(I) is the FOR-

. 3
TRAN representation of Xi'

Subscripts are not restricted to single or INTEGER quantities. Any meaningful numeri-
cal expression may be used. The DDP-24 version of FORTRAN will perform the indicated
computation and use the positive, truncated result as the subscript. For example,

Y(3.5%3) means Y10

X(5-SQRTF(9.)) means X,

Thus it is clear that mixed expressions are allowed as subscripts.

As noted above, REAL notation for subscripts is not generally used; however, there may
be cases where the more sophisticated programmer can take advantage of this feature. Thus,
it has been decided to allow the capability in DDP-24 FORTRAN. Since this area is considered
to be 2 more advanced application of subscripting, it will not be covered in the primer. Rather
all examples used will be the simpler INTEGER subscripts.



If a REAL variable, for example, A, is used as a subscripted variable, it represents
the collection of variables A{l), A(2), A(3), . . . etc. and may not be used without a subscript
except in an input-output statement when it is desired to transfer the entire array, or in an
arithmetic statement where A will be interpreted as A(l). Thus it is not possible to use B(J)
and B in different statements and expect to have both a vector, B(J), and a non-subscripted
variable, B.

Reference to a subscripted variable whose subscript is an INTEGER variable, for exam-
ple, X(N), is always interpreted in a specific sense determined by the value of N. Therefore,
some statement which assigns a value to N, such as

N =I+7J
or
DO 10 N=1, 20
or
READ PAPER TAPE 5, N

should always be encountered before reaching a statement which refers to X(N).
MIXED EXPRESSIONS

INTEGER quantities may be used in REAL expressions. Such expressions would be con-
sidered mixed, since both REAL and INTEGER notation are represented. An example of a
mixed expression is

A = I*B+2.5-(C/3)

Mixed expressions are always computed using REAL arithmetic. Thus, in the example above,
the INTEGER variable I and the INTEGER constant 3 would first be converted to REAL num-
bers and then the indicated computation would be performed. In every element of an expres-
sion on the right side of an arithmetic statement were INTEGERS, the expression would not be
considered mixed and computation would be performed in INTEGER arithmetic. The overall
mode (i.e., REAL or INTEGER) of a result is determined by the mode of the left side of an
arithmetic statement. For example, the formula

I = A+B*%J

instructs the computer to compute the value of A+BJ using REAL arithmetic, truncate the re-
sult (i. e., drop any fractional part), and assign the INTEGER so obtained as the value of I.
This meaning results from the fact that the expression on the right is a REAL expression,
whereas the variable on the left is an INTEGER variable. Conversely, the formula

A = JOB + N/3

instructs the computer to compute the value of JOB+N/3 using INTEGER arithmetic, put the
resulting INTEGER in REAL form, and assign this as the value of A. Note that INTEGER
arithmetic gives an INTEGER RESULT even for N/3. Thus, the value of 8/3 would be 2, the
largest INTEGER not exceeding 8/3, whereas the value of 8. /3. in a REAL expression is
2.66666. ..



DIMENSION STATEMENTS

Whenever a subscripted variable appears in a FORTRAN program, it is necessary to in-
clude a statement which indicates the size of the array referred to by this variable. This type
of statement is a DIMENSION statement. A DIMENSION statement causes the compiler to as-
sign the proper number of storage locations to each subscripted variable.

A DIMENSION statement consists of the name of each subscripted variable followed by
an INTEGER in parentheses which represents the greatest number of elements which will ever
be included in the array. The variables are separated by commas, and the whole group of
names is preceded by the word DIMENSION. The INTEGER that specifies the greatest number
of elements must be a number, not a symbol.

If the subscripted variables ALPHA(i), GAMMA(J), and VECTOR(N) appear in a FOR-
TRAN program, then a DIMENSION statement mentioning these variables must also be in-
cluded. Assume that the number of elements in ALPHA(I) will never exceed 100, the number
in GAMMA(J) will never exceed 25, and the number in VECTOR(N) will never exceed 12. The
DIMENSION statement must then be written

DIMENSION  ALPHA(100), GAMMA(25), VECTOR(12)

DIMENSION statements are not actually executed. No instructions corresponding to this
statement will appear in the translated machine language program. In the FORTRAN source
program, however, a DIMENSION statement giving the size of each array must precede the
first executable statement in the program. A single DIMENSION statement, including all sub-
scripted variables mentioned in the program, may be used, or separate statements may be
used defining the size of each array.

DO STATEMENTS

An example of the use of a DO statement of the unconditional type appeared in Example 8.
The usefulness of such a statement for carrying out repetitive calculations was mentioned then.
The standard form for an unconditional DO statement is

DO N I=m m

1’ 2

where N is a statement number
I is a variable
m, and m, are expressions

The meaning of the DO statement is: ''Execute the statements immediately following this DO
statement, up to and including the statement numbered N, first with I equal to mj, then with I
equal to mj + 1, etc., and finally with I = m, and then go to the statement following statement
N. n

The set of statements immediately following the DO statement and extending through
statement N is called the range of the DO statement. In a later subsection the use of "'nests"
of DO statements, with one or more DO statements in the range of another, will be discussed.
In the use of DO statements discussed in the present subsection, no DO statement will contain
another DO statement within its range. However, the range of a DO statement may contain GO
GO or IF statements, and these may transfer control out of this range.

As a further illustration of the usefulness of the DO statement, consider a number B and
a set of fifty numbers, A(J). The problem is to select the smallest of the values of J for which
B = A(J). A program to accomplish this could be written as follows:



Example 9:

10 DO 12J3=1, 50

11 IF (B - A(J)) 12, 20, 12

12 CONTINUE

13 . If control reaches statement 13,
the search has not been
successful.

20 . If control reaches statement 20,
the desired value of J is avail-
able for use.

Control passes to statement 20, out of the range of the DO statement, as soon as J, the
index of the DO statement, reaches a value for which B - A(J) equals zero. Any reference
which is now made to J will be interpreted for J equal to that specific value. Whenever B - A(J)
is not zero, it is desired to increase J and begin the range again. To accomplish this, control
must reach the last statement in the range (which cannot be the IF statement) even though no
more work remains to be done with the current value of J. In this example, therefore, the last
statement in the range of the DO statement must be CONTINUE, which means '"do nothing. "

FUNCTION STATEMENTS

Within the limits of the part of FORTRAN introduced in the previous subsection, certain
functions (specified by the installation) were permitted in writing arithmetic expressions, such
as square root, sine, log, etc. The functions were restricted to those appearing in the list
furnished by the computing center.

It is also possible, however, to write expressions involving functions peculiar to the

problem at hand. Each desired function is defined by means of a function statement. For
example, suppose it is desired to use the function

F(X)=1.3 E \J4.1X + x?

several times in a program. An "arithmetic statement function' defining G(X) might be writ-
ten as follows:

GXXF(X) = 1.3 + SQRTF(4. 1*¥X + X¥%2)
A later arithmetic formula in the program, employing GXXF, might be
Y = 10. 3%*GXXF(ALPHA*BETA) + 14.7

In this use of GXXF, before the value of the function is computed, the quantity ALPHA*
BETA will be substituted for X in the expression defining GXXF.

In general, arithmetic statement functions must obey the following rules:

1) All arithmetic statement functions must be the first executable statements in
that program.

2) The function name must have four to nine alphabetic or numerical characters;
the first must be alphabetic, and the last must be F.



3) The name of the function is followed by parentheses enclosing the argument or
arguments. Multiple arguments are separated by commas. Each argument must be a single
nonsubscripted variable.

4) Any argument which is a REAL variable in the definition of a function should be
a REAL quantity in any subsequent use of the function. A similar rule applies to INTEGER
arguments.

5) The value of a function is a REAL quantity unless the name of the function begins
with X; in that case the value is an INTEGER quantity.

The following example illustrates some properties of arithmetic statement functions:
Example 10:

1 FIRSTF(X) = X#*%2 + A%
2 SECONDF(R, S) = SQRTF(FIRSTF(R/(R + S)))

15 Q(I) = FIRSTFEF(Y*B(I))

27 P = SECONDF(l. 7*DELTA, ALPHA)*PI

Notice that it is permissiable to use a previously defined function in the definition of sub-
sequent functions. Notice also that the variable A is involved in the definition of FIRSTF but is
not an argument. The variable A may be used in the same way ds any other variable in the
problem, and its current value is used each time FIRSTF is evaluated.

THE MEANING OF A LIST

Examples of lists have already appeared in input and output statements in this section,
although they were not identified as such. A list is a set of items separated by commas; when
a list appears in an input or output statement, the order of reading or writing is the order of
the items in the list.

For example, the statement

TYPE 20, A, B, C
has a list A, B, C; the quantities A, B, and C will be typed in that order. If any of the items
A, B, or C have been specified in a DIMENSION statement as arrays, then the values of each
element of the array will be typed. For example, if A and C are simple variables and B has

been specified in a DIMENSION statement as a subscripted variable having 3 elements, then
the quantities which would be typed by means of the output statement above are

A, B(1), B(2), B(3), C
If A and B were large arrays and one wished to specify the reading or writing of the quantities

A(l), B(1), A(2), B(2), . . .A(100), B(100)



in that order, the list would consist of the single item
(A(D), B(I), I1=1, 100)

1f one wished to specify the first seven elements of the array A, followed by the first five
elements of the array B, the list would consist of the two items

(A(D), I=1, 7), (B(I), I=1, 5)

However, if A and B had dimensions seven and five respectively, the simpler list

A,B
would give the elements of the array A in order A, Ay . . . A7, and then the elements of the
array B in order, B}, By, . . . Bg.

When, as above, an item in a list specifies part of an array or a mixture of arrays, the
item must be enclosed in parentheses and the variables inside must be separated by commas
as shown. The indexing information (e.g., I =1, 100) is written exactly as in a DO statement.

FORMAT STATEMENTS

An input or output statement specifies the variables which are to receive values or are to
be typed. It also refers to the number of a FORMAT statement which specifies the arrange-
ment of a line of input and/or output data. The FORMAT statement contains the specifications
for each field in the line. There are three general forms for a field specification

Iw, Ew.d, Fw.d

where Iw indicates an INTEGER decimal number having a field width of w columns; Ew. d indi-
cates a floating decimal point number (E), having a field width of w columns, and d places to
the right of the decimal point; Fw.d indicates a Fixed decimal point number, having a field
width of w columns, and d places to the right of the decimal point. (The number d is treated
modulo 12.) For example, the statements -

25 FORMAT (E10.4, F8.3, F7.5, E9.2, 13, F4.1)
READ PAPER TAPE 25, A, B, C, D, I, E

might be used to instruct the computer to read the following input data:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
+.8765 E+06 +345. 648 +.56872 -2.34 E+01 +81 -1.5
-.1223 E-02 +124.785 -. 78963 -6.78 E+09 +15 +9.8
+.1034 E+05 -728.654 +.12345 +4. 35 E-07 -28 -2.3

Note that the field width includes a position each for the sign, decimal point, and, in the
case of floating decimal point numbers, the four characters of the exponent: the letter E, the
sign of the exponent, and the two digits of the exponent. Floating decimal or fixed decimal
point numbers may have any number of digits in the input field, depending on specifications in
the FORMAT statement; however, only eleven significant digits will be retained in the calcula-
tions. If the decimal point punched does not agree with the specification in the FORMAT state-
ment, the decimal point overrides the specification; i. e., calculations will be performed with



the decimal point as placed. If no decimal point is given, the number is treated as if the deci-
mal point were located according to the specification. No provision is made for handling deci-
mal integers larger than 8,338,607. A line of input data may have a maximum of 72 characters.
It is recommended that columns 73-80 be used only for cards identification and sequence num-
bers.

Prior to punching the input data sheets, the positions for each of the fields must be speci-
fied. Positions 1-72 are available for use. For this example, the positions for field 1 should
be specified as positions 1-10 (since 10 positions are specified by the FORMAT statement for
the first field); field 2, positions 11-18; field 3, positions 19-25; field 4, positions 26-34; field
5, positions 35-37; and field 6, positions 38-41.

Specifying a field width larger than the number of characters in the field is particularly
valuable for use with output statements.

TYPE 10, A, B, C, D, I, E
10 FORMAT (lH El4.4, F11.3, F10.5, E13.3, 16, F7.1)

would cause the data to be typed as follows:
~ax 0.8765E 06 o . .345.648. . ..56872,,.-0.234E 02...8l..,-1.5
aaa=0.1223E-02 & . .124.7854 a a-.T78963.4.-0.678E 10aaal5.4.9.8
aaa 0.1034E 05 . . .-728.6544a aan.12345..4 0.435E-06,an-28...-2.3

Note the three-position separation between fields (represented by ) provided for by the
FORMAT statement (10). In the case of floating decimal numbers, the field width includes the
zero proceding the decimal point. Floating decimal numbers are typed with the first signifi-
cant digit immediately to the right of the decimal point; therefore, these numbers have as many
significant digits as there are decimal places specified. However, no more than eleven signi-
ficant digits are possible. A maximum of 85 characters may be typed per line.

The FORMAT statement is not executed and may be placed anywhere in the program. The
field specifications are enclosed in parentheses with commas between the specifications for
successive fields. Successive fields having the same format may be specified by inserting a
coefficient (indicating the number of identical fields) before the code letter E, F, or I. Thus

FORMAT (I3, 2El12.3, F8.4)
is equivalent to

FORMAT (I3, E12.3, El12.3, F8.4)
SAMPLE PROBLEMS

Several examples which illustrate the use of many of the statements introduced in this
section appear below.

Problem 1: It is required to calculate the amount of heat necessary to raise the tempera-
ture of a mixture of ten gases from a given base temperature, T}, to a series of higher tem-
peratures. These temperatures are 25 degrees apart and range from T up to a2 maximum of
T,.

2

The heat required may be calculated by multiplying the heat capacity of the gas mixture
by the temperature difference. However, the heat capacity is dependent upon the temperature.
The mean heat capacity over a given range may. be estimated by using the equation



c, - 2t 2T+ To)+ 5%+ TT, + T,%)
where

Cp = the mean heat capacity

T = the upper temperature, degrees Kelvin

TO = the lower temperature, degrees Kelvin

a, b, ¢ = empirical constants, different for each gas
(degrees Kelvin = degrees Centigrade + 273.1)

Input data to the program must therefore include the amount of each gas present (x), the
three empirical constants (a, b, c) for each gas, the base temperature (Tl’ in °C), and the
maximum temperature (TZ’ in °C).

A possible FORTRAN program to carry out this calculation appears below. It has been
written to provide the individual heat capacities in each range as well as the total heat require-
ment. The program incidentally illustrates the fact that statements need not be numbered
sequentially. '

Example 11:

9 DIMENSION X(10), A(10), B(10), C(10), CP(10)
10 FORMAT(6F12. 8)
11 FORMAT(6El2. 8)
12 READ PAPER TAPE 10, X, A, Tl, T2
13 READ PAPER TAPE 11, B, C
14 TIK = T1 + 273.1
15 TK = T1K
16 TK = TK + 25.0
17 SUM = 0.0
18 IF((TK - 273.1) - T2) 19, 19, 27
19 D021 1=1, 10
20 CP(I) = A(I) + B(I) * (TK + T1K) / 2.0 + C(I) * (TK*%2 + TK
X *T1K + T1K#%2) / 3.0
21 SUM = X(I) * CP(I) + SUM
22 HEAT = SUM * (TK - TI1K)
23 T = TK - 273.1
24 TYPE 31, T1, T, HEAT
25 TYPE 32, X
36 TYPE 34, CP
26 GO TO 16
27 IF(T2 - 2500.) 12, 33, 33
31 FORMAT(1H 2F10.1, E15.5)
32 FORMAT(1H 10F8. 3)
34 FORMAT(1H 5E14. 5)
33 CALL EXIT
STOP
END

The DIMENSION statement sets aside storage locations for the constants and results. The
FORMAT statements 10 and 11 describe the way the input data should be converted when it is
read into the program.

FORMAT statements 31, 32, and 34 describe the way in which the output data should be
typed.



Statements 12 and 13 cause the data for a case to be transferred into the computer from
the paper tape reader. The calculation of the absolute temperature in degrees Kelvin from the
base temperature is carried out by statement 14. Statement 15 sets the initial value of the
temperature range to T °K. Statement 16 causes the range to be increased by the specified
increment. Statement 17 sets the location designated as SUM to zero. The upper limit of the
range is compared to the maximum temperature specified for this case. If the maximum has
not been reached, control reaches the DO statement (statement 19). The statements in the
range of the DO (statements 20 and 21) cause the specific heat of each component to be calcu-
lated and weighted according to the fraction of that component in the mixture. The actual cal-
culation of the heat requirement is described by statement 22. Statement 23 causes the upper
limit of the range to be expressed in degrees Centigrade. Typing of the results, along with the
fractions of each component, on the typewriter is accomplished by statements 24, 25, and 36.
A transfer to begin the calculation for the next range is effected by statement 26.

If the comparison at statement 18 indicates that the maximum temperature for the given
case has been exceeded, control reaches statement 27. At this point, the maximum tempera-
ture is examined to determine whether it exceeds 2500°C (which is the indication that the pro-
blem has been completed). If the problem has been completed, control reaches statement 33;
the computer types "END OF JOB' and halts. If the problem has not been completed, control
is transferred to statement 12, which causes data for a new case to be read from the input tape.

Problem 2: Given Xi’ Yi’ Zj fori=1, ..., 10andj=1, . . ., 20, compute:
0 20
PROD =(|Z A, X Z.
i=1 t j=1 J
where
A, = X.2+Y‘ if |X| > |Y|
i i i i i
. = X, +Y.2 if IXI < |Y|
i i i i i
i = 0 if IXil = lYil

A possible FORTRAN program follows for this problem:
Example 12:

3 DIMENSION X(10), Y(10), Z(20)

4 FORMAT(6F12. 8)

5 READ PAPER TAPE 4, X, Y, 2

6 SUMA = 0.0

7DO121I=1, 10

8 IF(ABSF(X(I)) - ABSF(Y(I))) 9, 12, 11
9 SUMA = SUMA + X(I) + Y(I)%%2

10 GO TO 12

11 SUMA = SUMA + X(I)*%2 + Y(I)

12 CONTINUE

13 SUMZ =0.0

14 DO153=1, 20

15 SUMZ = SUMZ + Z(J).
16 PROD = SUMA * SUMZ

17 TYPE 18, SUMA, SUMA, PROD
18 FORMAT(1H 3EL7. 8)
19 GO TO 5

END



The DIMENSION statement sets aside storage locations for the input data. Statement 4
specifies the input data as fixed point numbers having 8 decimal places. The READ PAPER
TAPE statement reads the input data into the computer. Statement 6 sets the quantity SUMA
to zero. Statements 8-12, under control of the DO statement 7,

o

20

compute z Ai' Statement 15 computes Zj under the
i=1 =1

=
e

control of DO statement 14. Statements 15 and 16 compute PROD. Statement 12, CONTINUE,
serves as a common reference point; and since it is the last statement in the range of the DO,
Iis increased after its completion and the next repetition is begun.

CHECK LIST

1) All subscripted variables must appear in a DIMENSION statement. This statement
must appear in the program before the first executable statement.

2) Negative subscripts are not permitted.
3) Subscripting of subscripts is not permitted.

4) INTEGER constants are written without a decimal point; INTEGER variables must
begin with I, J, K, L, M, or N unless the variable has been declared in an INTEGER specifi-
cation statement (see Section

5) The names of all functions defined in the program or available on the FORTRAN
library tape, as well as those names without the terminal F, must not be used as variable
symbols. (Although the terminal F is, by definition, part of the name, the FORTRAN system
does not use it throughout the compilation and execution of the job.) If SINF is a function,
neither SINF nor SIN may be variable symbols.

6) If a subscripted variable has 4 or more characters in its name, the last of these must
not be an F. For example, PREF(I) cannot be used as a subscripted variable, regardless of
whether or not PREF is used as the name of a function.

7) The last statement in the range of a DO must not be a transfer.

8) Decimal integers larger than 8,388, 607 are not permitted, and generally will be
handled incorrectly by FORTRAN statements.

9) No constants may be given in a list for an input/output statement, only variables.
10) Every output statement should refer to a FORMAT statement given in the program.

For single-spaced typing, each output format specification should begin with the characters
"1H'" followed by a blank space.

MANIPULATION OF TWO- AND THREE-DIMENSIONAL ARRAYS

INTRODUCTION

The following is a list of the 12 types of statements, grouped into classifications, which
have been presented thus far.



Arithmetic Statements

(READ PAPER TAPE
Input-output statements (TYPE
(FORMAT

(IF

(Unconditional GO TO
(STOP

(END

(DO

(CONTINUE

Control statements

Specification statement DIMENSION

Subprogram facility statement CALL EXIT

Several of the statements introduced in the last subsection offered a convenient method
for handling one-dimensional arrays in an iterative manner. In the present subsection, sub-
scripting to handle two- and three-dimensional arrays will be described. This provision greatly
facilitates the solving of many engineering and scientific problems which require matrix mani-
pulations for their solution. In addition, several new statements will be introduced.

The following example of matrix multiplication will serve to illustrate DO nests and

multiple subscripts. (A DO nest is a set of two or more DO statements, the range of one of
which includes the ranges of the others.)

Given the matrix A with dimensions 10 x 15 and the matrix B with dimensions 15 x 12,
compute the elements Ci£°f the matrix C = AB. To compute any element C;., select the i row

of A and the j column of B, and sum the products of their corresponding elerhents. The general
formula for this computation is

—

5

™

Cij AikBkj

o

=1
The following is a possible FORTRAN program for this matrix multiplication.
Example 13:

DIMENSION A(10,15), B(15,12), C(10.12)

2 FORMAT(5E14. 5)

3 READ PAPER TAPE 2, A, B

4DO30I=1, 10 Range of 1st DO
5DO30 =1, 12 Range of 2nd DO
6 C(I,J) =0.0

10 DO 20K = 1, 15 . Range of 3rd DO
20 C(L,J) = C(I,J) + A(I,K) * B(K, J) J
30 TYPE 50, I, J, C(L,J)

50 FORMAT(lH 215, E16.7)
60 GO TO 3
END



The DIMENSION statement says: '"Matrix A is of size 10 x 15, matrix B is of size 15 x
12, and matrix C is of size 10 x 12.'" The READ PAPER TAPE statement reads all elements
of the matrix A, and then all elements of the matrix B into the computer; the format is speci-
fied by statement 2. Since the two dimensional arrays are stored row-wise, the matrices A
and B must be punched row-wise; i.e., all the Aj of row 1, followed by all the A; of row 2, etc.
(Al, 1 Al, 2 Al, 30 s AIO, 15), and similarly for matrix B.

Notice that statements 6 through 30 constitute a program similar to programs considered
previously. Whatever values I and J have at the moment, this program computes and types
C(I, J) along with I and J.

Statement 5 says that this program is to be repeated 12 times, first for J =1, then for
J=2, ..., J=12. Notice that for each repetition of statements 6 through 30, statement 20
is executed 15 times, first for K = 1, then for K = 2, and so on. Thus, when the process
called for by statement 5 is complete, the I row of the product matrix has been computed and
typed. Control then returns to statement 4 to obtain a new value of I, and statements 5 through
30 are repeated for this value. The process continues until all of the rows of the product ma-
trix are produced.

This example illustrates the fact that one or more DO statements may appear in the
range of a DO statement. This nesting of DO statements can result in a single statement being
the last statement in the range of several DO statements. For example, statement 30 is the
last one in the range of DO statements 4 and 5. Consequently, a more general rule is needed
to describe the flow of control and the incrementing of indices following the last statement in
the range of a DO; the following rule holds for DO ranges which have the same last statement:

Upon the completion of the last statement in the range of a DO,
control passes to the first statement in the range of the nearest
preceding DO which is not yet completed and which has the same
last statement, and the index of that DO is incremented. The last
statement in the range of a DO may not be a control statement
(e.g., IF, GO TO, DO, etc.). If all DO ranges containing this
last statement as the end of their range are completed, control
passes to the next statement.

SUBSCRIPTS FOR TWO- AND THREE-DIMENSIONAL ARRAYS

In the preceding example of matrix multiplication, A, B, and C were two-dimensional
arrays. As was noted, each variable had two subscripts which were separated by commas,
and the set of two subscripts was enclosed in parentheses. For example:

A(I, K)
B(K, J)
C(L, 1)
Three-dimensional arrays are denoted by the use of three subscripts. For example:

X(M, N+ 10, 5%L)

The same rules already presented regarding the information of subscripts apply to the
two- and three-dimensional cases.



The DIMENSION statement is similarly extended to two- or three-dimensional arrays.
For example, the statement

DIMENSION W(l10, 10, 15), ALPHA (15, 5), V(20, 10)
causes 3000 locations in storage to be set aside for the three-dimensional array W, 150 loca-

tions for the two-dimensional array ALPHA, and 400 locations for the two-dimensional array
V (each floating-point number in DDP-24 FORTRAN requires two storage location).

DO NESTS

There are certain rules which must be observed when using DO statement within the
range of another DO statement:

1) If the range of a DO statement includes another DO statement, all statements in the
range of this second statement must also be in the range of the first DO statement. The follow-
ing diagram illustrates this rule.

Permitted Violation of Rule 1

|

C

2) No transfer of control by IF or GO TO statements is permitted into the range of any
DO statement from outside its range, since such transfers would not permit the DO loop to be
properly indexed. The following diagram illustrates this rule.

Permitted Violation of Rule 2

§ I

) f’

All the DO statements presented so far were written in the form

DONI=m,, m

1 2

In these cases, the index, I, started at the specified value, my, and was increased by
one each time the statements in the range of the DO were executed, until the value of I equaled
m2. It is possible, however, to achieve greater flexibility in the DO statements by adding a
third expression so that the general form is

DONI-= m, m,, rn3

In this case, the value of the index, I, starts at mj (as before), but it is increased by
m3 (which may be different from one) each time, until the value of I equals or exceeds mp, at
which point the DO is satisfied. It is not necessary to include the increment, ms3, in the DO
statement unless the increment is different from one; i.e., the statements



DO 201I=1, 10
and

DO 20I=1, 10, 1
are equivalent.

Every type of calculation is permitted in the range of a DO with one exception. No cal-
culation which changes the value of the index, I, or any of the indexing parameters (mj], mj,
m3) is permitted within the range of that DO statement. The indexing parameters (m], m;,
m3) may be either INTEGER or REAL expressions (REAL numbers will be truncated to
INTEGERS).

LISTS FOR TWO- AND THREE-DIMENSIONAL ARRAYS

The extension of the input-output statements to govern the transfer of two- and three-
dimensional arrays to or from magnetic core storage requires only that the subscripting infor-
mation given earlier be used when writing the list. If the list

JOBNO, CASE, RUN, K, (X(I), Y(I,K), I =1, 4),
((z(1,J), I=1, 3), W(J, 3), J=1, 3)

were used with an input statement, the successive elements, as they were read into the com-
puter, would be interpreted as the following sequence of variables and placed in the storage
locations (previously assigned by FORTRAN) in that same order:

JOBNO, CASE, RUN, K, X(1), Y(1,K), X(2), Y(2,K),
X(3), Y(3,K), X(4), Y{4,K), Z(1,1), Z(2,1), Z(3,1),
W(l,3), z(1,2), Z(2,2), Z(3,2), W(2,3), Z(1,3),
Z(2,3), Z(3,3), W(3,3)

Note that a variable subscript (K) was used at one point. This is permissible only if that
variable has been assigned a value previously (in this case, a value would have been read in
earlier).

To transfer a complete array, subscripting and index information is not necessary. Such
information is provided, in this case, by the DIMENSION statement. Using the example above,
the statements

DIMENSION ALPHA (5, 15)
READ PAPER TAPE 6, ALPHA

would cause the entire 75 element array
ALPHA(1, 1), ALPHA(L, 2), ALPHA(1, 3), ALPHA(1,4), . . .,
ALPHA(1,15), ALPHA(2,1), ALPHA(2,2), ALPHA(2, 3),
ALPHA(2,4),. . ., ALPHA(5,15).

to be transferred into magnetic core storage.

ASSIGNED GO TO STATEMENTS

One modification of the GO TO statement which allows greater freedom in directing the
logical flow of a program is the assigned GO TO statement. The assigned GO TO statement
requires a companion statement, an ASSIGN statement, which must be previously executed.



As an example of the use of the assigned GO TO statement, suppose it is desired to cal-
culate several average values such as average temperature, pressure, and density. The fol-
lowing program might be used:

Example 14:

DIMENSION X(25)
5 ASSIGN 30 TO N

10 READ PAPER TAPE 60, X
SUM=0.0

15DO201=1, 25

20 SUM = SUM + X(I)

25 AVG = SUM / 25.0

26 GO TO N, (30, 40, 50)

30 AVGTEM = AVG

31 ASSIGN 40 TO N
GO TO 10

40 AVGPRE = AVG

41 ASSIGN 50 TO'N
GO TO 10

50 AVGDEN = AVG
TYPE 61, AVGTEM, AVGPRE, AVGDEN
CALL EXIT
STOP

60 FORMAT(6E]2. 8)

61 FORMAT(IH 6E17. 8)
END

In this example, statement 26 transfers control to one of the three statements referred
to in the list, i.e., 30, 40, or 50, depending upon the value of N at the time of execution,which
is determined by the last preceding ASSIGN statement. The first execution of statement 26
causes control to be transferred to statement 30, since statement 5, the last preceding ASSIGN
statement, assigned the value of 30 to N. Statement 31 assigns the value of 40 to N; hence the
second execution of statement 26 transfers control to statement 40. The third execution of
statement 26 transfers control to statement 50, the value of 50 having been assigned to N by
statement 41.

In general terms, the assigned GO TO statement is written

GO TO N, (nl, n,, ..., nm)

where N is a variable appearing in a previously executed ASSIGN statement, and ny, np, . . .,
nm stand for statement numbers. These statement numbers are, in effect, a list of values
which may be assigned to N. Note the comma which is inserted between the variable and the
left parenthesis; it must always be included.

The statement
ASSIGN 30 TO N
is not equivalent to the arithmetic formula
N = 30
A variable N which currently has a value is either an assigned variable or an ordinary
variable, never both simultaneously. It is an assigned variable if its current value has been
established by an ASSIGN statement (e. g., ASSIGN 30 TO N); it is an ordinary variable if its

current value has been established by an arithmetic formula (e. g., N = 30). The current value
is the one given by the last previous ASSIGN statement Qr arithmetic formula, whichever was
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most recently executed. A variable N which is currently an assigned variable is effective only
in assigned GO TO N statements. An ordinary variable N is effective in all statements involv-
ing N except GO TO N statements.

No transfer of control by an assigned GO TO statement is permitted into the range of any
DO statement from outside its range, since such transfers would not permit the DO loop to be
properly indexed. (See diagram on page .} This means that the statements to which the
assigned GO TO statement may transfer may be (1) statements within the same DO range as
the assigned GO TO, or (2) statements outside the range of any DO. Types (1) and (2) cannot
be mixed in the same assigned GO TO; they must be all of type (1) or all of type (2).

If this condition cannot be met, it may be possible by suitable programming changes to
use a computed GO TO to accomplish the desired branching, since there is no such restriction
on this type of statement.

COMPUTED GO TO STATEMENTS

Computed GO TO statements are similar to assigned GO TO statements in that both types
establish a many-way fork. They differ in that an assigned GO TO statement requires a com-
panion statement (ASSIGN) to pre-set or assign a current value to the variable in the GO TO
statement in order to select the proper branch. The value of the variable in a compu*ed GO
TO statement may be arrived at by computation; no companion statement (comparable to AS-
SIGN) is necessary.

Problem:
Given: A, B.,, N,, X., Y. fori=1, . . ., 10, where,
i i i 1 i

for each i, Ni =1 or 2, compute

A possible FORTRAN program follows:
Example 15:

DIMENSION A(10), B(10), N(10), X(10), Y(10), Z(10)
READ PAPER TAPE 3, (A(I), B(I), N(I), X(I), Y(I), I=1, 10)
FORMAT(2EL3.5, 13, 2E13.5)
DO211I=1, 10
7 GO TO (10, 20), J(I)
10 Z(i) = SQRTF(A(I) * X(I)*%2 + B(I) * Y(I))
11 GO TO 21
20 Z(I) = SQRTF(A(I) * X(I)**2 - B(I) * Y(I))
21 TYPE 23, A(I), B(I), N(I), X(I), Y(I), Z(I)
23 FORMAT(1H 2E13.5, 13, 3E13.5)
GO TO 2
END

[S2RVE RN V)

In this program, statement 7 transfers control to statement 10 if J = 1 or to statement
20 if J = 2. The ten values of Nj read into the program are each either 1 or 2. Since J is set
equal to N. by statement 6, the correct formula for Zi is selected, depending on whether the
current value of Ni is 1 or 2.



As illustrated in the program of Example 15, computed GO TO statements have the form

n ), I

GOTO(nl, no, .« .., B

where the n), 0y, .., D stand for statement numbers, and I is a variable. Control is
transferredto tﬁe first statément in the list (statement n]), if, at the time of execution, the
value of I is one; it is transferred to the second statement in the list (statement nj) if the value
of I is two, etc. Any number of statement numbers may appear in the list. The current value
of I may be arrived at in any manner desired (e. g., in the program above, by an arithmetic
formula modified by DO indexing), and its value at the time of execution of the computed GO
TO statement determines which branch will be taken by the program.

Note the comma which is inserted between the right parenthesis and the variable.
FORMAT STATEMENTS

In an earlier subsection the basic field specifications Iw, Ew.d, and Fw.d were intro-
duced. In the present subsection, scale factors, Hollerith fields and multiple-line formats
will be discussed.

SCALE FACTORS. The use of scale factors allows greater flexibility in an output format. The
specification

(2E14. 4)

might type the following output line ( - stands for blank space):
-0.4321E.04 1...0.5674E-06

If the specification were written as
(2P2El4. 4)

the same output data would be typed with six significant digits, with the decimal point four
places from the right. For example, the output data shown above might type as

-43.2147E 024aa-56.7439E-08

The scale factor 2P causes the floating-point number to be multiplied by 102, and the
exponent to be reduced by 2 prior to typing (i. e., the value has not been changed).

Only a positive scale factor may be used with an E-type specification. However, positive
or negative scale factors may be used with an F-type specification. For example, the
specification

(-1PF10.3, 7TPF12.3)
would type the following data

-4321. 47 . 0000005674
as

-432.148 5.674

Note that for F conversions, the value is changed.



If it is desired to specify a scale factor of zero subsequent,to another scale factor within
the same FORMAT statement, 0P must be written. For example, the specification

(IPF10.1, F12.9)
would type the preceding data as
-43214.7 .000005674
The same data would be typed by the specification
(lPF10.1, OFPI12.9)
as
-43214.7 .000000567

The scale factor has no effect on I-conversion.

HOLLERITH FIELDS: English test may be typed by specifying a Hollerith field. Such fields
are designated by the letter H preceded by a number designating the number of characters in
the text; the field designation is followed by the desired English characters (including blanks).
The characters desired are written in a FORMAT statement in the program. For example, to
type the factors X and Y along with their product, the FORMAT statement

10 FORMAT (3H.X= F8.3, 4Ha..Y= F8.3, 5H. XY= F8.3)

could be used to type the output line
X=4aal0,7234aY= a-12.561 4.XY=-134. 692
The symbol may be used to indicate blanks on the FORTRAN code sheet, or the colums
may simply be left blank.
Note that there is no comma after a Hollerith field specification (e. g., 4H..) in the FOR-
MAT statement.
It is also possible to read in or type out alphanumerical characters as data, using the
A-conversion.
MULTIPLE-LINE FORMATS: In our discussion up to this point, two FORMAT statements
would have been necessary to type the following lines of output data:
2-67.8912E-03 ..106.23 ..-73
aaaanal32 aanana82.97646.25
Two suitable FORMAT statements to type these two lines are:

10 FORMAT (lH 2PE13. 4, 0PFS8. 2, I5)
11 FORMAT (1H 19, Fl2.3, F5.2)
It is possible to use one FORMAT statement to type multiple lines, each with a different

format, by using a slash (/) to separate the formats for the different lines. One FORMAT
statement that would type both the preceding example lines is

12 FORMAT (2PEl13.4, OPF8.2, 15/19, Fl12.3, F5.2)
If a series of lines were typed using this FORMAT statement, lines 1, 3, 5,. . . would
have the format (2PE13. 4, OPF8.2, I5), and lines 2, 4, 6, . . . would have the format (I9,

Fl2.3, F5.2).

SAMPLE PROBLEM AND PROGRAM

The following example illustrates the use of many of the types of instructions presented
in the three sections of this primer.
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Use the least-squares method to find the m degree polynomial

y a +ax+ax2+...+a x
0 1 2 m

which approximates a curve through n given points (x_, y.).
i i

In order to obtain the coefficients ay al, e e e e e , & , it is necessary to solve the
. m
normal equations

(1) Soao-!-Slal-i-. . . +Smam=VO
(2) Slao+SZa1 +. .. +Sm+1am =V1
(m + 1) SmaO + Sm_Ha1 O Szmam = Vm
where
n
- = s‘
SO- n VO z oy
i=1
n n
=X =
S1 X, V1 > v, X
i=1 i=1
too2 n 2
S. = > X, V.= > V.X,
2 i 2 ii
i=1 i=1
n
2m n m
<
Som = 5 Vm e, Vi
i=1 i=1

After the S's and V's have been computed, the normal equations are solved by the method
of elimination, which is illustrated by the following solution of the normal equations for a
second degree polynomial (m  2).

(1) SOaO+Sla1 +Sza2 =VO
(2) Sla0 + Szal + 53a2 = V1
(3) SZaO+S3a1 +S4a2 = \/'2

The forward solution is as follows:

1) Divide equation (1) by So.



2) Multiply the equation resulting from step 1 by S, and subtract from equation 2,

1

3) Multiply the equation resulting from step 1 by S_ and subtract from equation 3.

2

The resulting equations are

(4) 29 T Pyp3) P32, = by
(5) ba2®1 +Pp32, 2 by
(6) by2) ¥ P332, = by
where
b 51 b S, b Vo
12555 13% 5> 14=5-
0 0 0
Paz= Sy - P55y Ba3 = S3 - P35 Pag = V1 - P14
Biz= 537155, byy= S, - 5135y by = Vo~ P45,

Steps 1 and 2 are repeated, using equations (5) and (6), with b22 and b__ instead of S

and Sl. The resulting equations are 32 0

(7) a1 +c23a2 = Coy
(8) €33%2 = %34
where
c b23 c b24
= Fl 5 —
23 b22 24 b22
©33= P33 7 S3P3;
34= P34 " CpuPs;
The backward solution is:
€34 .
(9) a_= from equation (8)
2 c
33
(10) a . =c¢6,, -c_.a from equation (7)

- -b _
(11) %= b14 12%1 b13 %2 from equation (4)
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The following is a possible FORTRAN program for carrying out the calculations for the

case: n = 100, m < 10. S
SUM(2M + 1), respectively.

O’SI’ SZ’ ., S
A%

VO’ A%

2m

1° 2

V(M + 1), respectively.

Example 16:

are stored in SUM(1), SUM(2), SUM(3), .
\4
m

are stored in V(1}, V(2), V(3), . . .,

DIMENSION X(100), Y(100), SUM(21), V(11), A(1l), B(l1,12)

READ PAPER TAPE 3, M, N
3 FORMAT (12, I3)

READ PAPER TAPE 4, (X(I), Y(I), I 1, N)

4 FORMAT (4E14.7)
LS = 2%M + 1

LB=M+2
LV=M+1
DO5J =2, LS
5 SUM(J) = 0.0
SUM(1) = N
DO6J=1, LV
6 V(J) = 0.0
DO161=1, N
P=1.0

V(1) = V(1) + Y(I)
DO13J=2, LV
P = X(I)*P
SUM(J) = SUM(J) + P
13 V(J) = V(J) + Y(I)*P
DO 16 J = LB, LS
P = X(I)*P
16 SUM(J) = SUM(J) + P
17DO201I=1, LV
DO20K=1, LV
J=K+1
20 B(K,I) = SUM(J -1)
DO22K=1, LV
22 B(K, LB) = V(K)
23 DO3l L=1, LV
DIVB = B(L, L)
DO 26 J=1, LB
26 B(L,J) = B(L, J)/DIVB
Il=L+41
IF (Il - LB) 28, 33, 33
28 DO 311=11, LV
FMULTB = B(I, L)
DO31J=1L, LB
31 B(1,J) = B(I,J) - B(L, J)*FMULTB
33 A(LV) = B(LV, LB)
I1=LV
35 SIGMA = 0.0
DO37J =1, LV
37 SIGMA = SIGMA + B(I -1, J)*A(J)
I=1-1
A(I) = B(I, LB) - SIGMA
40 IF (I -1) 41, 41, 35
41 TYPE 42, (A(I), I1=1, LV)
42 FORMAT (1H 5E15. 6)
CALL EXIT

END

.



The elements of the SUM and V arrays, except SUM(1), are set equal to zero. SUM(1)
is set equal to N. For each value of I, X1 and Y are selected. The powers of X1 are computed
and accumulated in the correct SUM counters. The powers of X1 are multiplied by Y and the
products are accumulated in the correct V counters. In order to save machine time when the
object program is being run, the previously computed power of X1 is used when computing the
next power of X7. Note the use of variables as index parameters. By the time control has
passed to statement 17, the counters have been set as follows:

N
SUM(l) = N V(l) = = Y
_ I
I=1
N N
SUM(2) = = Xl V(2) = Z YIXI
I=1 I=1
N > N >
SUM(3) = = X V(3 = = Y X
I 1
I=1 I=1
N N
suM(zM +1) = = x.°2M VIM+1) = = v.x M
I _ I''I
I=1 I=1
By the time control has passed to statement 23, the values of S., S,, . . . S m have
been placed in the storage locations corresponding to columns 1 through M + 1, rows 1 through
M + 1, of the B array, and the values of Vo, Vi, . . ., Vi, have been stored in the locations

corresponding to column M + 2, rows ! through M + 1, of the B array. For example, for the
sample problem (M = 2), columns | through 4, rows 1 through 3, of the B array would be set
to the following computed values:

This matrix represents equations (1), (2), and (3), the normal equations for M = 2. The for-
ward solution, which results in equations (4), (7), and (8) in the sample problem, is carried
out by statements 23 through 31. By the time control has passed to statement 33, the coeffi-
cients of the A; terms in the M + 1 equations which would be obtained in hand calculations have
replaced the contents of the locations corresponding to columns 1 through M + 1, rows 1 through
M + 1, of the B array, and the constants on the right-hand side of the equations have replaced
the contents of the locations corresponding to column M + 2, rows 1 through M + 1, of the B
array. For the problem, columns 1 through 4, rows 1 through 3, of the B array would be set
to the following computed values:

1 b, D3 Py
0 1 c23 c24
0 0 c33 c34

This matrix represents equations (4), (7), and (8) on page 2-37.



The backward solution, which results in equations (9), (10), and (11) in the problem, is
carried out by statements 33 through 40. By the time control has passed to statement 41,
which prints the values of the A terms, the values of the M + 1 Ay terms have been stored in
the M + 1 locations for the A array. For the problem, the A array would contain the following
computed values for a,, a and a,, respectively:

0
L.ocation Contents
C
4
A(3) Eé_
33
A(2) €24 " 237
A1) by - b3 - P32,

The resulting values of the Ay terms are then typed according to the FORMAT specifi-
cation in statement 42.

DEBUGGING

In order to debug a FORTRAN program, it is recommended that extra output statements
under the control of a piece of data be used. For example, the value of DT can indicate whether
or not extra typing is desired during the execution of the program. If DT # 0, extra typing will
occur which is helpful during the checkout period. If DT = 0, no extra typing will occur.

The following problem illustrates the use of data as an aid in debugging a program.

Problem:
Given: ai, b‘1 and ci fori=1, .. ., 10, compute and type
10 10 10 2
RESULT = Z (a.c.) 2 (b.-c.) > (a.b, - c.7)
. ii . i 7i . i1 i
1:1 1=1 1=1

Assume that the following FORTRAN program has been written and compiled (i. e., trans-
lated into machine language by the computer by means of the FORTRAN system) and is to be
tested:

Example 17:
DIMENSION A(10), B(10), C(10)
SUMI =0.0
SUM2 = 0.0
SUM3 =0.0

3 READ PAPER TAPE 20, DT, (A(I), B(I), C(I), I=1, 10)
DO10I=1, 10
SUMI = SUMI + (A(I)*C(I))**2
SUM2 = SUM2 + B(I) - C(I)
SUMS3 = SUM3 + A(I)*B(I) - C(I)
IF (DT) 5, 10, 5
5 TYPE 25, SUMI, SUM2, SUM3
10 CONTINUE
RESULT = SUMI1%SUM2/SUM3
TYPE 25, RESULT

"non



20 FORMAT (6F12.8)

25 FORMAT (1H 6E17.8)
GO TO 3
END

A test case is run using the compiled program. Assume the test case has the following
input data

a; = -. 23456 bl = 12.3411 ¢, = 27. 86523

Then the first line of output is
42.72019 -15.52412 -30.75996

Hand calculations for i = 1, using the original formula for RESULT, show that

SUMI1 = 42.72019
SUMZ = -15.52412
SUM3 = -779.36577

The hand-computed results for SUM1 and SUM2 agree with the output results; however,
SUMS3 results do not agree. By examining the FORTRAN statement which computes SUMS3; the
error is located. The statement is changed from

SUM3

SUMS3 + A(I)*B(I) - C(I)

to
SUM3

SUM3 + A(I)*B(I) - C(I)%**
After the indicated change is made, the FORTRAN program is again compiled and the test re-

run. This time the machine results agree with the hand-computed results for all three sums.
In the future runs, the additional typing will not be required, so DT will be set = 0.

MASTER CHECK LIST

1) The basic characters which may be used in writing a FORTRAN statement are
a) A,B,C, . . ., Z (26 alphabetic characters, capital letters only)
b) 0, 1, 2, . . ., 9 (10 numerical characters)

c) + (plus); - (minus); * (asterisk); / (slash); ( (left parenthesis); ) (right paren-
thesis; , (comma); = (equal sign); . (decimal point); and ' (apostrophe).

2) A variable symbol can consist of eight or less characters. It must satisfy the follow-
ing conditions:

a) The first character must be alphabetic.
b) The first character is usually not I, J, K, L, M, or N, unless the symbol is an
INTEGER variable, representing a fixed point INTEGER. Symbols for INTEGER variables

normally begin with I, J, K, L, M, or N (see specification statements).

c) Any character following the first may be alphabetic or numeric, but not one of
the special characters.



d) The names of all functions defined in the program or available on the FORTRAN
library tape, as well as these names without the terminal F, must not be used as variable sym-
bols. For example, since SINF is the name of a function, neither SINF nor SIN can be used as
a variable symbol. (Although the terminal F is, by definition, part of the name, the FORTRAN
system does not use it throughout the compilation and execution of the job.

e) If a subscripted variable has four or more characters in its name, the last of
these must not be an F. For example, PREF(I) cannot be used as a subscripted variable.

3) The name used for a function in programming must agree exactly with the name ap-
pearing in the list of functions.

4) The argument of a function is enclosed in parentheses; e. g., SINF(X).

5) If a function has more than one argument, the arguments are separated by commas;
e.g., TRAGF (X, Y, Z).

6) The left side of an arithmetic formula must always be a variable or a function of one
or more variables.

7) Never omit the operation symbol between two quantities; e. g., do not write AB for

8) Never have two operations symbols in a row; e. g., do not write A*-B for A%(-B). The

exponentiation symbol *% may appear to be an exception, but it is regarded as a single symbol.

9) Blank spaces can be used or not used as desired, since blanks are ignored except as
specified in Hollerith fields within FORMAT statements.

10) The prescribed form for the various non-arithmetic statements must be followed
exactly except for the arbitrary use of blank spaces.

11) The magnitude of every non-zero REAL quantity must lie between 10—75 and 1075. By

"quantity" is meant any constant or any value assumed by a variable or function in the course
of the calculation.

12) The program should provide for a proper termination; this can be a return to read
more data.

13) All subscripted variables must appear in a DIMENSION statement, which must appear
in the program before the first executable statement.

14) Subscripts for two- and three-dimensioned arrays should be separated by commas.
15) INTEGER constants are written without a decimal point.

16) Decimal INTEGERS larger than 8,388, 607 are not permitted; in general, they will be
handled incorrectly by FORTRAN statements.

17) If the range of a DO includes another DO, then all statements in the range of this
second DO must also lie within the range of the first DO.

18) Transfers into the range of any DO from outside its range are not permitted.

19) The first statement in the range of a DO must be an executable statement. The last
statement in the range must not be a transfer.

20) No calculation which changes the index or indexing parameters of a DO is permitted
within the range of that DO.
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21) Assigned GO TO statements have a comma between the variable and the left paren-
thesis.

22) Computed GO TO statements have a comma between the right parenthesis and the
variable.

23) An ASSIGN statement must be encountered by the program prior to encountering an
assigned GO TO statement.

24) The ASSIGN statement is not equivalent to an arithmetic formula.

25) When an assigned GO TO lies in the range of a DO, all statement numbers to which
control may be transferred must lie in a single part of the DO nest which includes the range,
or be completely outside the nest.

26) No constants may be given in a list in an input-output statement, only variables.

27) FORMAT statements for output must be so written that the first character of the
first field provides for spacing of the typed lines. In this primer, single-spaced typing was
provided by beginning the format specification with the characters 1H. See Section III for other
spacing.

28) The physically last statement of every FORTRAN source program must be an END
statement.

SUMMARY OF FORTRAN STATEMENTS

The complete FORTRAN language provides for six classes of statements, which may be
grouped as follows:

1) Arithmetic and Logical statements

2) Control statements (17 types)

3) Input-output statements

4) Specification statements (7 types)

5) Subprogram facility statements (4 types)

6) In-line machine language statements
This primer has covered the following statements:

1) Arithmetic statements

2) The following 9 types of control statements:

a) Unconditional GO TO
b) Assigned GO TO

c) Computed GO TO

d) ASSIGN

e) IF



fy DO
g) CONTINUE
h) STOP
i) END
3) The following 3 types of input-output statements:
a) FORMAT
b) READ PAPER TAPE
c) TYPE
4) The following type of specification statement:
a) DIMENSION
5) One subprogram facility statement:
a) CALL EXIT
The types of FORTRAN statements which have not been covered in this section are:
1} Logical statements
2) The following 7 types of control statements:
a) SENSE LIGHT
b) IF (SENSE LIGHT)
c) IF ACCUMULATOR OVERFLOW
d) IF QUOTIENT OVERFLOW
e) IF DIVIDE CHECK
f) PAUSE
g) STOP (except as associated with CALL EXIT)
3) The following 14 types of input-output statements:
a) ACCEPT
b) PUNCH TAPE
c) READ INPUT TAPE
d) WRITE OUTPUT TAPE
e) READ TAPE
f) WRITE TAPE

g) REWIND



h) BACKSPACE
i} END FILE
i} READ
k) PUNCH
1) PRINT
m) READ DRUM
n) WRITE DRUM
4) The following 6 types of specification statements:
a) EQUIVALENCE
b) FREQUENCY
c¢) COMMON
d) REAL
e) INTEGER
f) LOGICAL
5) Subprogram facility statements:
a) FUNCTION
b) SUBROUTINE
c) RETURN
d) CALL (other than CALL EXIT)

6) In-line machine language statements

Having approached the FORTRAN language cumulatively through the three stages pre-
sented in the sections of this primer, the reader should have little difficulty in extending his
knowledge of FORTRAN to include the entire FORTRAN language as presented in FORTRAN

Fundamentals.






SECTION I1I
FUNDAMENTALS

GENERAL PROPERTIES OF A FORTRAN SOURCE PROGRAM

A FORTRAN source program consists of a sequence of source statements. There are
six different classes of statements, which are described in detail below, The FORTRAN
source program is translated by the FORTRAN compiler into_machine language for the com-
puter to be used. The program obtained is called the object program.

In the FORTRAN primer, all of the examples were coded and described as though only
the standard I/O devices were available on the DDP-24 (paper tape reader, paper tape punch
and typewriter). In this section, a larger system will be assumed. The assumed I/O con-
figuration will be:

1) Magnetic tape for input

2) Magnetic tape for output

3) Cards as the initial source input media

4) Cards as the final object output media

5) A line printer

EXAMPLE OF A FORTRAN PROGRAM

The following brief program will serve to illustrate the general appearance and some of
the properties of a FORTRAN program.

Example 18:
C PROGRAM FOR FINDING THE LARGEST Vv
ALUE ATTAINED BY A SET OF NUMBERS
DIMENSION A(999)
FREQUENCY 30 (2, 1, 10), 5(100)
READ INPUT TAPE 5, 1, N, (A(I), I1=1, N)
1 FORMAT (I3/12F6 - 2))



BIGA = A (1)
5 DO20I=2, N
10 BIGA = A(])
20 CONTINUE
WRITE OUTPUT TAPE 6, 2, N, BIGA
2 FORMAT (22H! THE LARGEST OF THESE I3, 12H NUMBERS

IS F7 - 2)
CALL EXIT
STOP

END

The purpose of the program is to determine the largest value attained by a set of n num-
bers, a;j (i=1, . . . , n), and to write the number on magnetic tape for off-line listing. The
numbers exist on punched cards,l2 to a card, each number occupying a field of six columns.
There are no more than 999 numbers; the actual rumber is punched on the leading card and it
is the only number on that card. These numbers, or data, are transferred to the input tape
by means of an off line process, and read into the computer undér control of the program.

The program sets BIGA equal to aj. Next, the DO statement causes the succeeding
statements to and including statement 20 to be carried out repeatedly, first with i = 2, then
with i = 3, etc., and finally with i = n. During each repetition of this loop, the IF statement
compares BIGA with aj; if BIGA is less than aj, statement 10, which replaces BIGA by aj, is
executed before continuing, An appropriate sentence indicating the largest value of the set of
numbers is then written on the output tape, which is then transferred to peripheral equipment
for printing.

KEY-PUNCHING THE SOURCE PROGRAM

Key-punching the FORTRAN source program is only slightly different for cards or
paper tape. In the description that follows, a line is used as the unit of information that is
processed by the compiler. When working with cards, a line is defined to be the information
contained in the first 72 columns {columns 1-72) of the card. When working with paper tape,
a line is defined to be the information contained in all of the frames up to a carriage return;
under no circumstance, however, may a line exceed 72 characters (not including the carriage
return). The first five positions of a line can be ignored if the tab is used. A tab code causes
the compiler to start processing the line with position 6.

Each statement of a FORTRAN source program is punched as a separate line. The
order of the source statements is governed solely by the order of the statement lines.
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However, if a statement is too long to fit on a single line, it may occupy up to a total of
ten lines, the initial line and up to nine continuation lines. Position 6 is reserved for this
purpose. For each such statement, the initial line must contain a blank in position 6; on the
continuation lines, position 6 should be used to number the lines consecutively from 1 to 9.
(Actually, the compiler recognizes any character other than blank in position 6 as an indi-
cation of a continuation line; it does not check numerical order.)

Lines which contain a ""C'" in position 1 are not processed by FORTRAN, Such lines may,
therefore, be used to carry comments which will appear when the source program is listed.
Continuation lines for comments need not be punched in position 6; only the "C' in position 1
is necessary.

Numbers less than 32, 768 may be punched in positions 1-5 of the initial line of a state-
ment. When such a number appears in these positions, it becomes the statement number of
the statement. These statement numbers permit cross references within the source program,
and also help the programmer correlate the object program with his source program.

The statements themselves are punched in positions 7-72, both on initial and continu-
ation lines. Thus a statement may consist of not more than 10 x 66 = 660 characters (i.e.,
10 lines).

Blank characters may be used freely to improve the readability of the source program
listing. FORTRAN will ignore all blanks except in certain FORMAT statements.

Position 73-80 are not processed by FORTRAN. They should be used to number cards
consecutively so that the deck can be sorted in proper order when necessary. If the last digit

is initially always a zero (i.e., the cards are numbered by 10's), insertions can be made in
the deck without disturbing the sequence of the original cards.

PREVIEW OF THE FORTRAN STATEMENTS

The six types of statements which can be used in a FORTRAN program are as follows:

1) The Arithmetic or Logical Formula, which specifies a numerical or logical
computation.

2) The Control Statements, which govern the flow of control in the object program.

3) The Input-Output Statements, which provide the object program with its input
and output routines.

4) The Specification Statements, which provide information required, or desirable,
to make the object program efficient.

5) The Subprogram Statements, which enable the programmer to define and use
subprograms.

6) The in-line machine language statements.



CONSTANTS, VARIABLES, AND SUBSCRIPTS

Any programming language must provide for expressing numerical constants and
variable quantities. FORTRAN also provides a subscript notation for expressing 1, 2, or 3-
dimensional arrays of variables.

CONSTANTS

Three types of constants are permissible: INTEGER or fixed-point (restricted to
integers), REAL or floating-point (characterized by being written with a decimal point) and
LOGICAL (preceded by an apostrophe signifying octal numbers).

INTEGER Constants

GENERAL FORM EXAMPLES
1 to 7 decimal digits. A preceding + or - 3
sign is optional. The magnitude of the +1
constant must be less than 8, 388, 608. -28987

Any unsigned INTEGER constant less than 32768 may be used as a statement
number.

REAL Constants

GENERAL FORM EXAMPLES
Any number of decimal digits, with a 17.
decimal point at the beginning, at the end, 5.0
or between two digits. ~-.0003
A preceding + or - sign is optional. 5.0E3 (=5.0x .103)
A decimal exponent preceded by an E 5.0E+3 (=5.0 x 103)
may follow. 5.0E-7 (=5.0x 10'7)

The magnitude of the number thus expressed lies between the approximate limits
0f 10-75 to 1075, or cah be zero.
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LOGICAL Constants

GENERAL FORM EXAMPLES
1 to 8 octal digits. A preceding + or - 177456071
sign is optional. Logical constants '-0 (=40000000)
must always be preceded by an '+0 (=00000001)
apostrophe (') '-1 (=40000001)

'14 (=00000014)

VARIABLES

Four types of variables are also permissible: INTEGER, REAL, LOGICAL and Boolean.
Variables are referenced in the FORTRAN source language by symbolic names consisting of
alphabetic characters and, if desired, numerical digits, However, INTEGER variables are
distinguished by the fact that the first character of their symbolic name is I, J, K, L, M, or N
unless the INTEGER specification statement is used (see Specification Statements).

INTEGER Variables.

GENERAL FORM EXAMPLES
1 to 8 alphabetic or numeric characters 1
(not special characters) of which the first M2
isI,J,K,L,M, or N JOBNO

An INTEGER variable can assume any integral value whose magnitude is less than
8, 388, 608, Further information on INTEGER arithmetic is contained below.

REAL Variables

GENERAL FORM EXAMPLES
1 to 8 alphabetic or numeric characters A
(not special characters) of which the B7
first is alphabetic but not I, J, K, L, M, DELTA

or N.
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A REAL variable can assume any value expressible as a normalized floating-point num-
ber; i.e. zero, or with magnitude between approximately 10-75 and 1075,

LOGICAL Variables

GENERAL FORM EXAMPLES
1 to 8 alphabetic or numeric characters. LOGICALV
VARIABLE
INTEGER
BETA

Since LOGICAL variables must be defined in a LOGICAL specification statement, there
is no reason to be concerned with the beginning character of the LOGICAL variable name.

BOOLEAN Variables

A Boolean variable is defined to be any variable that has been defined in a LOGICAL

specification statement, but used in an arithmetic expression. Thus, if A has been defined as
a LOGICAL variable, then

would store five (in floating-point) or zero in B dependent on A being a value (true) or being
zero (false), respectively.

The fact that A has been defined as LOGICAL instructs the compiler to convert A to one
or zero, if it appears in an arithmetic operation. The actual value assigned to A in storage is
not modified; the conversion of A for Boolean significance is part of the arithmetic operation
only. This conversion holds true for REAL or INTEGER expressions, but not for LOGICAL
expressions, If IBOOL has been defined as LOGICAL and IJOB is INTEGER,

1JOB

IJOB*IBOOL

would be interpreted as: if IBOOL # 0, set IJOB to IJOB (unchanged)
if IBOOL = 0, set IJOB to zero

however

1JOB = 1IJOB. AND.IBOOL

would be interpreted as: form the logical 24-bit product of IJOB and IBOOL
and store the result back in IJOB.
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A logical variable is treated as one or zero (if true or false, respectively) in any arith-
metic operation. Thus, if IBOOL is LOGICAL the value of the expression

5%IBOOL

is five, if IBOOL is true and zero, if IBOOL is false.

The value of the expression
54IBOOL
is six, if IBOOL is true and five, if IBOOL is false.
The value of the expression
5-IBOOL
is four, if IBOOL is true and five, if IBOOL is false.
To avoid the possibility that a variable may be considered by FORTRAN to be a function
(fully discussed later), the following warnings should be observed with respect to the naming

of variables:

1) A variable cannot be given a name which coincides with a name of a function minus
its terminal F. Thus, if a function is named TIMEF, no variable should be TIME,

2) Unless their names are three characters or less in length, subscripted variables
must not be given names ending with F, as FORTRAN will consider variables so named to be
functions.

SUBSCRIPTS AND SUBSCRIPTED VARIABLES

A variable can be made to represent any element of a 1, 2, or 3-dimensional array of
quantities by appending to it 1, 2, or 3 subscripts; the variable is then a subscripted variable.
The subscripts are quantities whose values determine the member of the array to which
reference is made. A subscript may be any legal arithmetic expression; however, the re-
sulting value will be a truncated integer.
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Subscripted Variables

GENERAL FORM EXAMPLES
A REAL, INTEGER or LOGICAL A(T)
variable followed by parentheses enclosing K(3)
1,2, or 3 subscript expressions separated BETA(5%J-2, K42, L)
by commas. GAMMA (SQRTF(Y),
5/2, 3*A)

For each variable that appears in subscripted form, the size of the array (i.e. the
maximum values which its subscripts can attain) must be stated in a DIMENSION statement
preceding the first executable statement in the source program.

The value of a subscript, exclusive of its addend, if any, must be greater than zero and
not greater than the corresponding array dimension.

ARRANGEMENT OF ARRAYS IN STORAGE. A two-dimensional array A will, in the object
program, be stored sequentially in the order A}, 1, A]1,2, « « +» Al,m>A2,1s A2,25 « + «»
A2, ms « « +s An,m- Thus it is stored with the first of its subscripts varying least rapidly,
and the last varying most rapidly. The same is true of three-dimensional arrays.

ARRAY ARRANGEMENT IN STORAGE
AL AL A s ALl (1)
A1 82,2 #2,3 A2 (2)
A3 1852 833 AlLs (3)
A1 (4)
A2 (3)
A3 (6)
A1 (7
A3 2 (8)
A3’ 3 (9)

All arrays are stored forwards in storage; i.e., the above sequence is in the order of
‘increasing absolute locations.
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ARITHMETIC STATEMENTS, EXPRESSIONS, AND FUNCTION DEFINITIONS

ARITHMETIC STATEMENTS

GENERAL FORM EXAMPLES
"a = b" where a is a variable Ql = K
(subscripted or not subscripted) A(I) = B(I) +
and b is an expression. SINF(C(I))

An arithmetic statement (or arithmetic formula) defines a numerical calculation. A
FORTRAN arithmetic formula resembles very closely a conventional arithmetic formula; it
consists of a variable to be computed, followed by an = sign, followed by an arithmetic
expression.

However, in a FORTRAN arithmetic formula, the = sign means "is to be replaced by, "
not "is equivalent to.' Thus, the arithmetic formula

Y = A-B*C

means "replace the value of Y by the value of A - B¥C", An arithmetic formula therefore
instructs the computer to compute the value of the right-hand side and to store that value in
the memory location specified by the left-hand side.

The result will be stored in INTEGER, REAL or LOGICAL form if the variable to the
left of the = sign is an INTEGER, REAL or LOGICAL variable, respectively.

If the variable on the left is INTEGER and the expression on the right is REAL, the
result will first be computed in floating-point and then truncated and converted to an INTEGER.
Thus, if the result is +3.872, the INTEGER number stored will be +3, not +4. If the variable
on the left is REAL, and the expression on the right INTEGER, the latter will be computed in
INTEGER, and then converted to REAL,

Some examples of arithmetic formulas are given below.

FORMULA

A=B Store the value of B in A.

I1=8B Truncate B to an INTEGER and store in I,

A=1 Convert I to floating point, and store in A.

I =I+1 Add 1 to I and store in I, This example illustrates

the point that an arithmetic formula is not an
equation but a command to replace a value.
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FORMULA

A =3,0%B Replace A by 3B.

A = 3%B Convert 3 to floating-point, multiply by B an
store the floating-point result in A.

A = [*B Convert I to floating-point, multiply by B and
store the floating-point result in A.

EXPRESSIONS

As noted at the beginning of this subsection, the right-hand side of a formula consists

of an expression. An expression is any sequence of constants, variables (subscripted or not
subscripted), and functions, separated by operation symbols, commas, and parentheses so
as to form a meaningful expression.

SEQUENCE OF OPERATIONS. When the order of operations in an expression is not explicitly

specified by the use of parentheses, it is understood to be in the following order {from inner-
most operations to outermost):

Exponentiation
Multiplication and Division
Addition and Subtraction

Logical
For example, the expression
A+ B/C + D¥*E*F - G. AND. H
will be taken to mean

(A+(B/C)+ (DE*F) -G). AND. H

ORDERING WITHIN A SEQUENCE. Parentheses which have been omitted from a sequence of
consecutive multiplications and division, consecutive additions and subtractions, or consecu-
tive logical operations will be understood to be grouped from the left. Thus, if . represents
* or /, + or -, or ,AND. or ,OR. or .NOT. or .SHFT., then

A-B-C+-D-E

will be taken to mean

((((A- B)- C)+ D). E)



ARITHMETIC EXPRESSIONS

Considerable attention is given by FORTRAN to the matter of efficiency of the object
program arising from an arithmetic expression, regardless of how the expression has been
written. FORTRAN assumes that mathematically equivalent expressions are computationally
equivalent. Hence, a sequence of consecutive multiplications (and/or subtractions) not
grouped by parentheses may give rise in the object program to a series of computations
differing in sequence, although not in result, from conventional methods of considering
unparenthesized expressions. This change in computation sequence makes the object program
as efficient as possible in terms of storage locations used and execution time required.

WARNING

Although the above stated assumption concerning mathe-
matical and computational equivalence holds true for REAL
expressions, special care must be taken to indicate the
order of INTEGER multiplication and division. FORTRAN
INTEGER arithmetic is ""greatest integer' arithmetic (i.e.,
truncated or remainderless). Therefore, the expression

5x4/2

which is conventionally taken to mean ((5 x 4)/2, is com-
puted in a FORTRAN object program as

((5/2) x 4)

i.e., from left to right after permutation of the operands,

to minimize storage accesses. The result of a FORTRAN
computation in this case would be 8, instead of the 10 that
would normally be expected. Therefore, to insure accuracy
of INTEGER multiplication and division, it is suggested that
parentheses be inserted into the expression involved.

VERIFICATION OF THE CORRECT USE OF PARENTHESES. The following procedure can be
used for checking that the parentheses in a complicated expression correctly express the
desired operations:

Label the first open parenthesis ''1'"; thereafter, working from left to right, increase
the label by 1 for each open parenthesis and decrease it by 1 for each closed parenthesis.
Then the label of the last parenthesis should be 0; the mate of an open parenthesis labeled n
will be the next parenthesis labeled n - 1.



LLOGICAL Expressions

A logical expression is defined to be any expression in which one or more of the follow-
ing operators are used:

. AND, (logical product)
.OR. (logical sum)
.NOT. (logical difference)
.SHFT. (logical shift)

If A and B are described as logical variables, the expression
A.AND.B

results in the logical product of corresponding bits in the two variables. Logical products
are defined as:

-1, AND. 1=1, 1. AND. 0=0, 0. AND. 1=0, 0. AND, 0=0.
The expression
A,OR.B

results in the logical sum of the corresponding bits in the two variables. Logical sums are
defined as:

1.0R.1=1, 1.0OR. 0=1, 0.0R.1=1, 0.0OR. 0=0.
The expression
A,NOT.B

results in the logical difference of the corresponding bits in the two variables. Logical
differences are defined as

1. NOT. 1=0, 1. NOT. 0=1, 0.NOT.1=1, 0.NOT.0=0.

The logical operator . SHFT, is used for shifting the bit pattern of any variable right or
left. The direction of shift is specified by the sign of the expression of the second operand, a
positive value shifts right, a negative value shifts left.

The operands for logical operators may be any expression composed of variables or
constants in any mode (REAL, INTEGER or LOGICAL). However, the operation will be per-
formed on only single word, 24-bit quantities; therefore, if A and B are REAL numbers, the
expression

A, AND. B

would form the logical product of the most significant words of the double length (floating-
point) operands.

3-12



expression on the right side of the expression. Thus, if A is a REAL variable and B and C

are INTEGER variables, the expression

A =B.OR.C

would form the logical sum of B and C, convert the result to floating-point and store the

answer in A,

Hierarchy

The four logical operators are equivalent in hierarchy to each other, but lower than all

other operators. Thus, the order of hierarchy is

+ -
. AND.,.OR.,.NOT.,.SHFT,

exponentiation
multiplication, division
addition, subtraction

logical operators

It is clear then that parentheses are used in logical expressions in much the same way
they are used in normal arithmetic expressions: to denote the sequence of operations to be

performed within an expression.
The expression
A.OR.B. AND, C
is equivalent to
(A.OR.B). AND, C
but not equivalent to

A, OR.(B. AND. C)

It should be emphasized that the operands for logical operators are full word (24-bit)

quantities.
Example 1

Consider the following simple problem:

It is necessary to take the right half of ALPHA (12 bits) and insert this information into
the right half of BETA. The program to accomplish this could be:



St. No. FORTRAN Statement

10 LOGICAL ALPHA, BETA
20 BETA = (ALPHA. AND. '7777). OR.{BETA. AND. '77770000)
30 CALL EXIT
40 STOP
END

The first statement (10) declares that ALPHA and BETA are logical variables. The
second statement (20) masks the low order 12 bits of ALPHA and clears the high order 12
bits; masks the high order 12 bits of BETA and clears the low order 12 bits; merges these
two words into one containing the high order 12 bits of BETA and the low order 12 bits of
ALPHA and then stores the result in BETA. The remainder of the program is the normal
exit procedure.

Example 2

It is necessary to take the low order 12 bits of ALPHA, place this information in the
high order 12 bits of GAMMA and store the results of this operation in the third element of
the ten element BETA array. The program to accomplish this could be:

St. No. FORTRAN Statement
10 DIMENSION BETA(10)
20 LOGICAL ALPHA, BETA, GAMMA
30 BETA(3) - (ALPHA, SHFT. -12). OR.(GAMMA
X . AND, '00007777)
40 CALL EXIT
50 STOP
END

FUNCTIONS

In order to better clarify the meaning and uses of functions, they will first be discussed
in their relation to subprograms as a whole. A subprogram is any sequence of instructions
which performs some desired operation. It is frequently necessary in the writing of a large
program to use a basic group of instructions on several different occasions to perform a
specific job. It is obviously wasteful to write the same group of statements at many different
places in the same program. What is needed is some way to write the steps only once, then
arrange to refer to that series of statements each time the operation is required.



One way to do this is to prepare the subprograms which perform commonly recurring
operations once for all; they can then be kept in a library tape and used by the program at
execution time. Another way is to include in the FORTRAN compiler itself certain basic
subprograms which will be compiled as part of the object program (whenever this is indicated
in the source program). In addition, the programmer may find that certain sub-units of his
program are frequently repeated, and he may wish to write each of these only once and call
far them many times. In this case, he has a choice of several types of subprograms.

(Another advantage in constructing programs from subprograms is that it may be possible to
use the same ''building blocks' in other problems or in modifications to the original program.)

In FORTRAN, there are five types of subprograms. Of these, four result in a single
value and are called "functions''; the fifth (which may result in more than one value) is called
a '"subroutine' These types are as follows:

Library Functions

Built-In Functions

Arithmetic Statement Functions

FORTRAN Functions (FUNCTION-Type Subprograms)
Subroutines (SUBROUTINE-TYPE Subprograms)

For each type of subprogram, there are standard practices which must be followed in
referring to (or calling) the subprogram, in naming it, and in defining (or generating) it.

INCORPORATING FUNCTIONS INTO THE PROGRAM, All functions are incorporated into
the object program through making a source program reference of the name of the function in
the expression part (right-hand side) of an arithmetic formula. Following are examples of
arithmetic expressions including function names.

Y= A - SINF (B - C)
C= MINOF(M, L)+ ABC(B*FORTF(Z), E)

The names of Library, Built-In, Arithmetic Statement, and FORTRAN functions are all
used in this way. The appearance in the arithmetic expression serves to ''call" the function;
the value of the function is then computed, using the arguments which are supplied in the
parentheses following the function name. Only one value, or single numerical quantity, is
produced by these four functions.

NAMING OF FUNCTIONS. The following paragraphs describe the rules for naming Library,
Built-In, and Arithmetic Statement functions.



GENERAL FORM EXAMPLES

The name of the function consists of SINF (A + B)

4 to 9 alphabetic or numeric characters

(not special characters), of which the SOMEF (X, Y)

last must be F and the first must be

alphabetic. Also, the first must be X SQRTF (SINF(A))

if and only if the value of the function

is to be fixed point, The name of the XTANF(3. *X)

function is followed by parentheses

enclosing the arguments (which may be

expressions), separated by commas.

Mode of a Function and its Arguments. Consider a function of a single argument. It

may be desired to state the argument either in fixed or floating-point; similarly the function

itself may be in either of these modes., Thus a function of a single argument has 4 possible
mode configurations; in general a function of n arguments will have 28+] mode configurations.

A separate name must be given, and a separate routine must be available, for each of
the mode configurations which is used. Thus a complete set of names for a function might be

SOMEF INTEGER argument, REAL function
SOMEQF REAL argument, REAL function
XSOMEF INTEGER argument, INTEGER function
XSOMEQF REAL argument, INTEGER function

The X's and F's are compulsory, but the rest of the naming is arbitrary.

FORTRAN functions are named in a manner different from the previous three types.
These functions are named in exactly the same way as ordinary variables of the program,
except that no name of a FORTRAN function which is 4 to 8 characters long may end in F.
This means that the name of an INTEGER FORTRAN function must have I, J, K, L, M, or N
for its first character or have been defined as an INTEGER,

DEFINITION OF FUNCTIONS. Each of the four types of functions is defined (or generated) in
a different way.

Built-In Functions are contained in the FORTRAN system; they are listed in the
Appendix. Each of these subroutines will be compiled into the object program whenever an
arithmetic statement is encountered in the source program which calls for one of them.




Library Functions are prewritten functions of a special type. Historically, they were
designed for use on the library tape - hence the name. These functions are ''closed' sub-
routines; i, e,, instead of appearing in the object program each time that a reference is made
to them in the source program, they appear only once regardless of the number of references.

Arithmetic Statement Functions are defined by a single FORTRAN arithmetic
statement(1), and apply only to the particular program or subprogram in which their
definition appears.

GENERAL FORM EXAMPLES
"af = b'" where a is a function name ending FIRSTF(X) = A*B + B
in F and followed by parentheses enclosing SECONDF(X,B) = A*X + B
its arguments (which must be distinct non- THIRD(D) = FIRSTF(E)/D
subscripted variables) separated by commas, FOURTHF(F,G) =
and b is an expression which does not involve SECONDF(F, THIRDF(G))
subscripted variables. Any functions appear- FIFTH(I, Z) = 3. O%A%*]
ing in b must be built-in, or available on SIXTHF(J)=J + K
the library tape, or already defined by XSIXTHF(J)=J + K

preceding function statements.

If the name begins with an X, the answer will be expressed in INTEGER; if it begins
with any other letter, a REAL answer will be given.

The right-hand side of a function statement may be any expression not involving sub-
scripted variables, that meets the requirements specified for expressions., It may involve
functions freely, including Built-In Functions, Library Functions, previously defined
Arithmetic Statement Functions, and FORTRAN Function Subprograms,

Of course, no function can be used as an argument of itself,

As many as desired of the variables appearing in the expression on the right-hand side
may be stated on the left-hand side to be the arguments of the function. Since the arguments
are really only dummy variables, their names are unimportant (except as indicating INTEGER
or REAL mode) and may even be the same as names appearing elsewhere in the program.

Those variables on the right-hand side which are not stated as arguments are treated as
parameters. The naming of parameters, therefore, must follow the normal rules of
uniqueness.

A function defined by a function statement may be used just as any other function. In
particular, its arguments may be expressions and may involve subscripted variables; thus a
reference to FIRSTF(Z + Y(1)), with the same definition of FIRSTF as in the preceding para-
graph, will yield a(z + yi) + b on the basis of a, b, yij, and z.

(1) An arithmetic statement which defines a function may also be called a "function statement"
or a '"function definition formula''.



Functions defined by function statements are always compiled as closed subroutines.

NOTE

All the arithmetic statements defining functions to be used
in a program must precede the first executable statement
of the program. (An executable statement is, in general,
one which processes or moves data, or which alters the
flow of control in the program.)

FORTRAN Functions are those subprograms which, on the one hand, cannot be defined
by only one arithmetic statement, and on the other are not utilized frequently enough to
warrant a place on the library tape.

They are called FORTRAN Functions because they may conveniently be defined by a
conventional FORTRAN program. In this instance, compiling a FORTRAN program produces
a Function subprogram in exactly the form required for object program execution.

In an earlier discussion, the concept of employing building blocks as standard parts for
a complete structure was presented. In computing terminology, the complete structure is the
whole program, the building blocks are called subprograms. A subprogram normally carries
out a well defined mathematical or logical operation. Since each engineering group has
certain calculations that are used frequently in many programs, it is convenient to have each
of these computations written as a subprogram, which can be written and checked out
(separately in advance) so that it is ready for use at any time. Each group may set up a
"library' of such subprograms for its own use. In addition, general subprograms, such as

the calculation of a trigonometric function, are available for all programmers on the library
tape.

FORTRAN SUBPROGRAMS

It is possible to program, in the FORTRAN language, subroutines which are referred to
by other programs. These subroutines may, in turn, refer to still other lower level sub-
routines which may also be coded in FORTRAN language. It is therefore possible, by means
of FORTRAN, to code problems using several levels of subroutines. This configuration may
be thought of as a total problem consisting of one main program and any number of
subprograms.

Because of the interrelationship among several different programs, it is possible to in-
clude a block of hand-coded instructions in a sequence including instructions compiled from
FORTRAN source programs. It is only necessary that hand-coded instructions conform to
rules for subprogram formation, since they will comprise a distinct subprogram.

We will now discuss two types of FORTRAN coded subprogramsbz the FUNCTION sub-

program and the SUBROUTINE subprogram. Four statements, described subsequently, are
necessary for their definition and use: SUBROUTINE, FUNCTION, CALL, and RETURN.
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Although FUNCTION subprograms and SUBROUTINE subprograms are treated together

and may be viewed as similar, it must be remembered that they differ in two fundamental

respects.

1) The FUNCTION subprogram, which results in a FORTRAN function is always single-
valued, whereas the SUBROUTINE subprogram may be multi-valued.

2) The FUNCTION subprogram is called or referred to by the arithmetic expression
containing its name; the SUBROUTINE subprogram can only be referred to by a CALL
statement.

Each of these two types of subprogram, when coded in FORTRAN language must be re-

garded as independent FORTRAN programs.

FORTRAN programming.

In all respects, they conform to rules for

Schematically, the relationship among nested main and subprograms can be shown as

follows.

program.
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This diagram, further, indicates the main division of the internal structure of each



CLASSIFICATION OF SUBPROGRAMS

Subprograms are either '""closed" or ''open'. An open subprogram is inserted directly
in the sequence of machine operations in the object deck; it is inserted each time it is used in
the program. A closed subprogram is normally not stored within the range of the main pro-
gram; control is transferred from the main program to the subprogram when it is required.
After the calculation in the subprogram has been performed, control reverts to the main pro-
gram. Although a subprogram may be used several times in the total structure, a closed
subprogram appears in storage only once.

Subprograms may also be classified in another way: those that must be compiled in-
dependently, or those that are not compiled independently. A discussion has already been
given for functions on the library tape, built-in functions and function definitions. None of
these are compiled independently.

For our purposes we may also distinguish subprograms in still another way - according
to the output of the subprogram. When the subprogram has only a single result, it will be
called a function. A subprogram capable of having one or more results will be called a
subroutine. "

A summary of the characteristics of the different kinds of subprograms appears on the
following page.

FUNCTION SUBPROGRAMS

There are situations in which it is desired to use a particular function in an arithmetic
statement, but this function cannot be defined by a single arithmetic statement. However, if
this mathematical relationship has a single result, the function subprogram may be used.

This function subprogram must be compiled independently; it may have several pieces
of input, but a single output. The name of the function can be used in any arithmetic state-
.ment in the program.

WRITING A FUNCTION SUBPROGRAM

The general form in which a function subprogram is written is:

FUNCTION NAME (Argumentl, Argumentz, e e e n)
e+ « « .« ) Arithmetic statements to evaluate

e « + « .+ o) the function

NAME = Final Calculation

RETURN
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SUBPROGRAM SUMMARY

alphabetic. Last is
not F if there are 4,
or more characters.
Name must not appear
in DIMENSION state -
ment of any program
having a CALL for the
subroutine.

subprogram,

NUMBER OF NUMBER OF HOW KIND OF DIMENSION METHOD OF
TYPE ARGUMENTS RESULTS COMPILED SUBPROGRAM NAME AND MODE (3) STATEMENTS USING
Built-in N (1) 1 Part of Open Reserved in FORTRAN; | Main program By name in
Function FORTRAN first character X for only, statement in
INTEGER. program.
Library N (2) 1 On FORTRAN Closed 4 to 9 alphanumeric Main program By name in
Function (4) Library Tape characters, firstis only. statement in
alphabetic, last is program.
F. First is X for
INTEGER.
Arithmetic N (1) 1 Compiled Closed Same as Library Main program By name in
| Statement with function. only. statement in
Functions program program.
FORTRAN N (1) 1 Compiled Closed 1 to 8 alphanumeric Same in main By name in
Function independently characters. Firstis program and statement in
Subprograms alphabetic. Lastis Subprogram. main program.
not F if there are 4,
5, or 6 characters.
For INTEGER first
is I, J, K, I, M, or
N (or defined as
INTEGER)
Subroutine N M Compiled Closed 1 to 8 alphanumeric Same in main By CALL
Subprogram independently characters. Firstis program and statement in

main program.,

(1) Depends upon relationship, but there must be at least 1,
(2) May be 1 or more.
(3) Mode is floating point unless specified.
(4) Subroutine subprograms can be put on the FORTRAN library tape; then the information concerning its name and use follows the description

given for subroutine subprograms, not Library Functions.




The FUNCTION statement must be the first statement of the subprogram and defines it
as such. The function subprogram may consist of many statements of any type except the
statements FUNCTION or SUBROUTINE.

The name of the function subprogram consists of 1 to 8 alphabetic or numeric charac-
ters, the first of which must be alphabetic; the first character must be I, J, K, L, M or N if
and only if the value of the function is to be INTEGER (for exceptions, see specification state-
ments). The last character must not be F if the total number of characters is 4 or more.
The function name must not occur in a DIMENSION statement in the function subprogram, nor
in a DIMENSION statement in any program which uses the function. The function name must
not be the same as that of any variable appearing elsewhere in the program.

There must be at least one argument, although there may be as many as required in the
subprogram. The arguments must be non-subscripted variable names. If any of the argu-
ments are arrays, a DIMENSION statement involving these arguments is necessary. The
arguments may be any variable names occurring in executable statements in the subprogram.
Actually, these are dummy variables and the calculation is set up in terms of these dummy
variables. A dummy variable in a function subprogram should not normally appear on the
left side of an arithmetic statement except as a subscript. The reason is that it is generally
undesirable to change the value of the arguments supplied to the subprogram by the main pro-
gram. Similarly, a dummy variable should not appear in an ASSIGN statement unless it is
re-established as an ordinary variable subsequently in the subprogram. In the example below,
the dummy variables are A and B; both are arrays, so that a DIMENSION statement is
required.

The arithmetic statements to evaluate the function are written in the normal fashion in
terms of arguments and constants. The subprograms must evaluate a single-valued function
(one which has one and only one value for a given set of arguments). The name of the function
must be used as a variable and evaluated by an arithmetic statement; or stated another way,
the name of the function must appear on the left-hand side of an arithmetic statement. It is
the value of the function name, used as a variable, that is returned as the function value.

A RETURN statement indicates the conclusion of the subprogram. The form of this
statement is simply

RETURN

This statement terminates a subprogram and returns control to the main program. A
RETURN statement must be the last statement to which control passes in a function subpro-
gram; that is, it must be the last statement logically, but not necessarily physically.

Example:

FUNCTION SUM (A, B)
DIMENSION A(500), B(500)
SUM = A(1) + B(1)

DO 5 J = 2,500

5 SUM = SUM + A(J) + B(J)
RETURN
END



USE OF FUNCTION SUBPROGRAMS IN MAIN PROGRAM

Statement. A subprogram introduced by a FUNCTION statement is called for in the
main program by an arithmetic formula involving the function name. For example, the sub-
program introduced by FUNCTION ARCSIN (RADIAN) could be called for in the main program
by the arithmetic formula:

A = B - ARCSIN (X)

Arguments., The list of arguments in the main program may contain any legitimate
FORTRAN constant, variable (subscripted or non-subscripted), function expression, or name
of any array, provided the corresponding dummy variable in the subprogram has the same
mode. A Hollerith argument may not be used. There must be agreement in number, order
and mode between the argument list following the function name in the main program and the
argument list (dummy variables) in the FUNCTION statement. Identical DIMENSION state-
ments are necessary in this subprogram and main program.

Example:

(Subprogram) 1 FUNCTION AVRG (ALIST, N)
DIMENSION ALIST (500)
SUM = ALIST (1)
DO10I=2, N

10 SUM = SUM + ALIST (I)

AVRG = SUM/FLOATF(N)
RETURN
END

(Main Program) DIMENSION SET (500)
READ INPUT TAPE 5, 5,(SET(I), I=1,200)
5 FORMAT (6F12.8)
TEXT = AVRG (SET, 200)
WRITE OUTPUT TAPE 6, 10, TEXT

10 FORMAT (19H1 AVERAGE OF SET IS
X E14.5)

CALL EXIT
STOP
END
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Note that the DIMENSION statement in the main program specifies the same length (500)
for the array named SET as the DIMENSION statement in the subprogram specifies for the
dummy variable ALIST, This is required even though the actual length of SET is only 200.
The argument 200 is supplied to the subprogram from the main program and is used in the
subprogram as an index maximum.

SUBROUTINE SUBPROGRAMS

Some desirable building blocks have multiple outputs; these can be compiled as sub-
routine subprograms. Each may also have multiple inputs and the calculation may require
many statements.

The subroutine subprogram is compiled independently. In the main program it is called
for by separate statement,

WRITING A SUBROUTINE SUBPROGRAM

When it is desired to use a subroutine subprogram the main program contains a state-
ment of the form:

CALL NAME (Argument Argumentz, s e e e )e

1'

Control is transferred at this point to the specified subroutine; when the calculations in
the subroutine are finished, control is transferred to the statement following the CALL in the
main program.

The general form in which a subroutine subprogram is written is:

SUBROUTINE NAME (Argument_ , Argument

1! 21 L 0)
...... } Arithmetic statements to evaluate
« + « .+ . «) required results

e )
RETURN

The SUBROUTINE statement must be the first statement of the subprogram; it defines
it as a subroutine.

The name of a subroutine consists of 1 to 8 alphanumeric characters, the first of which
is alphabetic; the final character must not be ¥ if the total number of characters is 4 or more.
Also, the subroutine name must not occur in a DIMENSION statement in the subroutine, nor
in a DIMENSION statement in any program having a CALL for this subroutine. In fact, the
subroutine name must not be the same as any variable appearing elsewhere in the program,
subscripted or not.
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The arguments stated in the subroutine are dummy variables representing input and
output variables; they are non-subscripted variables and they may be any variable names
occurring in the executable statements in the subroutine. If an argument is the name of an
array, it must appear in a DIMENSION statement following the SUBROUTINE statement. The
arguments in the SUBROUTINE list will usually contain one or more dummy variables repre-
senting the result or results to be returned to the main program.

The intermediate part of the subroutine may contain any of the usual FORTRAN state-
ments, arithmetic, control, input-output, or specification, except the two statements
FUNCTION and SUBROUTINE. Usually it is undesirable for an input dummy variable to
appear on the left side of an arithmetic statement except as a subscript. Also, a dummy
variable should not appear in an ASSIGN statement unless it is re-established as an ordinary
variable subsequently in the subroutine. The dummy variables representing the results of the
subroutine may be used freely on the left side of arithmetic statements; each dummy variable
standing for a result should appear at least once on the left side of a statement so that the
value will be stored for future use.

A subroutine is terminated by a RETURN statement, which is the last statement to which
control passes in a subroutine; that is, it must be the last statement logically but not
necessarily physically. The last physical card in each subprogram must be an END card.

For an example it is desired to multiply matrix A, N rows and M columns, by matrix
B, M rows and L columns; the product matrix C has N rows of L columns. The following
subroutine accomplishes this operation.
(Subroutine) I SUBROUTINE MATMPY (A, N, M, B, L, C)
DIMENSION A (10, 15), B(15,12), C(10,12)
DO5I1=1, N
DO5J=1, L
3 C(LJ)=0.0
DO5K =1, M
5 C(I,J) = C(I, J) + A(I, K) * B(K, J)
RETURN
END

The DIMENSION statement following the SUBROUTINE statement specifies the maximum
size of the matrices that may be used.

USING A SUBROUTINE SUBPROGRAM

When it is desired to use a subroutine subprogram in a program, a CALL statement is
used to transfer control to the subroutine. The CALL statement is of the form

CALL NAME (Argumentl, Argumentz, S
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where NAME represents the symbolic name of a subroutine. This subroutine must be avail-
able to the main program at the time of execution of the program.

The arguments may have any of the eight forms herein described:

1)
2)
3)
4)
5)
6)
7)

8)

INTEGER constant.

REAL constant.

INTEGER variable, with or without subscripts.

REAL variable, with or without subscripts.

LOGICAL constant.

LOGICAL variable, with or without subscripts.

The name of an array, without subscripts.

A FORTRAN arithmetic expression.

The list of arguments in the CALL statement must agree in number, order, and mode
with the list given in the SUBROUTINE statement. If any of the arguments are arrays,
equivalent DIMENSION statements must appear in the subroutine and main program.

Suppose it is desired to find and print two product matrices. The previous subroutine
is used in the following main program.

(Main Program) 1

10
13

14
15

DIMENSION X(10, 15), Y(15,12), Z(10,12),

D(10,15), E(15,12), F(10,12)

READ INPUT TAPE 5, 4, ({(X(I,J), J =1,10),
1=1,5)

((Y(I,J)’ J - 1’ 7)s I=1, 10)

FORMAT (6E12.8)

CALL MATMPY (X, 5, 10, Y, 7, Z)

READ INPUT TAPE 5,4, ((D(I,J), J =1,8),
1=1,6),

I ((E(L, ), J=1,5), I1=1,8)

CALL MATMPY (D, 6, 8, E, 5, F)
DO13J =1, 7

WRITE OUTPUT TAPE 6, 15, (Z(L,J), I1=1,5)
DO14J=1, 5
WRITE OUTPUT TAPE 6, 15, (F(L,J), I=1,6)

FORMAT (1HO6E17. 6)
CALL EXIT

STOP

END

There must be agreement in number, order, and mode between the argument list
following the subroutine name in the CALL statement and the argument list in the SUB-
ROUTINE statement.



CONTROL STATEMENTS

The second class of FORTRAN statements is the set of control statements, which enable
the programmer to state the 'flow' of his program.

Unconditional GO TO
GO TO n where n is a statement number.

As the name indicates, this statement will always cause a transfer in the op-
eration flow. The next statement to be executed will be n. For example,

GO TO 10
will cause statement 10 to be the next statement executed,
Computed GO TO

GO TO (n1, np, . . ., nj), where nj, ny, . . ., nj are statement numbers and i is an
expression,

This form of control statement includes a list of statements, any one of which can re-
ceive control. The statement to be executed is determined by computing the value of the ex-
pression (i). The result will be an INTEGER, irrespective of the original mode of the expres-
sion,

For example, if the calculated value of the expression is 1, 345, statement n] will be the
next one executed (truncated). Similarly for integers up to i. If the truncated value is greater
than the number of statements listed, that is, greater than i, unpredictable results may occur,

Assigned GO TO

GO TO m, (ny, ny, . . ., n;), where ), Dp, . . ., n; are statement numbers and m is
a variable name.

This statement, like the computed GO TO is used to transfer control to one of a number
of statements, However, the statement selected is not computed but assigned exactly by the
value of the variable m, The value of m is set'by the use of an ASSIGN statement defined below.
It must be equal to a statement number rather than a position in the statement list,

ASSIGN
ASSIGNiTOm where m is a variable and i is a statement number.
This statement is used to set m with a statement number i for use in an assigned GO TO

statement. The following examples show how the same transfer in control is accomplished but
by different methods.

Example 1: Example 2:
Computed GO TO Assigned GO TO
I1=3 ASSIGN 110 TO J
GO TO (100, 120, 110), I GO TO J, (110, 120, 100)
Statement 110 is the next Statement 110 receives
to be executed. control.

In example 2, it is not permissible to replace the ASSIGN statement with:

3-27



J =110
GO TO J, (110, 120, 100)

IF Statement
IF (a) nj, ny, n3 where ny, n,, nj are statement numbers and a is any expression,
Control is transferred to the statement whose number is ny, ny, or n3 depending on
whether the value of the expression (a) is less than zero, zero, or greater than zero, respec-
tively.

Example:

IF (COUNT - 1) 2, 3, 4
will cause transfer to statement 2 when COUNT < 1

will cause transfer to statement 3 when COUNT

i
ot

will cause transfer to statement 4 when COUNT > 1
SENSE LIGHT
SENSE LIGHT i where i is an expression such that 1 <i < 24

Sense lights are not physically present in the DDP-24 computer. To simulate these, the
FORTRAN compiler reserves a memory word and considers each of the 24 bits of the word as
a sense light. They are initially set to zero or OFF.

The SENSE LIGHT statement causes a bit or '"sense light' to be set to 1 (turned ON). The ex-
pression is evaluated and if necessary, converted to an INTEGER. The resulting number must
be from 1 to 24 and will turn ON the corresponding sense light. If the sense light was turned
on by a prior sense light instruction, it will stay on.

Examples: Result
SENSE LIGHT 3 Turns on sense light 3.
SENSE LIGHT K + 1 Turns on the sense light which

is equal to the sum of K and 1.

IF (SENSE LIGHT)

IF(SENSE LIGHT i) np, n, where nj and ny are statement numbers and i is an expres-
sion such that 0 <i< 24.

The expression i is evaluated as in the SENSE LIGHT statement. Control is transferred
to the statement specified by nj if the sense light defined by the expression i is ON, (equal to
1). Otherwise control is transferred to statement n,. If the sense light is ON, it is turned
OFF. Consequently, the tested sense light is always OFF after execution of this statement. If
i is zero, all the sense lights will be turned OFF,

IF (SENSE SWITCH)

IF (SENSE SWITCH i) ny, np, where ny, n; are statement numbers and i is an expres-
sion such that 1 <i <6,

This statement is similar to the preceding IF (SENSE LIGHT) statement. The sense
switch on the console corresponding to the value i is interrogated and if it is ON, (up) control
is transferred to statement n; if it is OFF (down) control is transferred to statement n,.



IF ACCUMULATOR OVERFLOW
IF ACCUMULATOR OVERFLOW n;, n, where n}, n; are statement numbers.

Control is transferred to statement nj if accumulator overflow has occurred (overflow
indicator is ON); otherwise control is transferred to statement n. The overflow indicator is
turned off by this statement regardless of its prior condition.

IF QUOTIENT OVERFLOW

IF QUOTIENT OVERFLOW n,, n,

This statement has no affect on the DDP-24 FORTRAN system. However, it is included
to allow programs written for other versions of FORTRAN to be compiled without requiring
modification.

IF DIVIDE CHECK

IF DIVIDE CHECK n;, n, where ny, np are statement numbers.

This statement transfers control to n; if an illegal division has been attempted (improp-
er divide indicator is ON). Otherwise control is transferred to statement n,. The improper

divide indicator is turned off by this statement regardless of its prior condition.

THE DO STATEMENT

GENERAL FORM EXAMPLES
”DOni:ml, mz" or'"DOni= DO 30I=1, 10
mj, mp, m3'" where nis a DO30I=1, M, 3
statement number, i is a var- DO 301=5, 2N, J/2

iable, and m), mjp, mj are
each an expression. If mj is

not stated it is taken to be 1.

The DO statement is a command to ''DO the statements which follow, to and including
the statement with statement number n, repeatedly, the first time with i = m; and with i in-
creased by mj for each succeeding time; when i is equal to the highest of this sequence of
values which does not exceed m), let control reach the statement following the statement with
statement number n'',

The range of a DO is the set of statements which will be executed repeatedly; it is the
sequence of consecutive statements immediately following the DO, and including the statement
numbered n.

The index of a DO is the variable i, which is controlled by the DO in such a way that its
value begins at m) and is increased each time by m3 until it is about to exceed my. Through-
out the range it is available for computation, either as an ordinary variable or as the variable
of a subcript. During the last execution of the range, the DO is said to be satisfied.

Suppose, for example, that control has reached statement 10 of the program

10 DO 11I=1, 10



11 A(I) = I*N(I)
12

The range of the DO is statement 11, and the index is I. The DO sets I to 1 and control
passes into the range. The value of 1*N(1) is computed, convertedto REAL, and storedin A (1).
Now, since statement 11 is the last statement in the range of the DO and the DO is unsatisfied,
I is increased to 2 and control returns to the beginning of the range, also statement 11; 2N(2)
is now computed and stored in A(2). This continues until statement 11 has been executed with
I = 10. Since the DO is satisfied, control now passes to statement 12,

DO's WITHIN DO's. Among the statements in the range of a DO may be other DO state-
ments. When this is so, the following rule must be observed.

Rule 1. If the range of a DO includes another DO, then all of the statements in the range
of the latter must also be in the range of the former.

A set of DO's satisfying this rule is called a nest of DO's. No more than 25 DO's are
permitted in one nest; there is no restriction on the number of levels in which they may be
arranged.

TRANSFER OF CONTROL AND DO's. Transfers of control from and into the range of a DO
are subject to the following rule:

Rule 2. No transfer is permitted into the range of any DO from outside its range. Thus,
in the configuration below, 1, 2, and 3 are permitted transfers, but 4, 5, and 6
are not,

DO

DO ) 1 4

> 2

3 6

Exception, There is one situation in which control can be transferred into the range of a DO
from outside its range. Suppose control is in the range of the innermost DO of a nest of DO's
which are completely nested (i.e., every pair of DO's in the nest is such that one contains the
other). Suppose also that control is transferred to a section of the program, completely out-
side the nest to which these DO's belong, which makes no change in any of the indexes (i's) or
indexing parameters (m's) in the nest, This provision makes it possible to exit temporarily
from the range of some DO's to execute a subroutine.

RESTRICTION ON ASSIGNED GO TO's IN THE RANGE OF A DO, When an assigned GO TO is
in the range of a DO, it may not transfer into the range of any other DO, The statements to
whichthe assigned GO TO statement may transfer may be (1) statements within the same DO
range as the assigned GO TO statement, or (2) statements outside the range of any DO, Types
(1) and (2) cannot be mixed in the same assigned GO TO statement; they must all be of type (1)
or all of type (2).



RESTRICTION ON CALCULATIONS IN THE RANGE OF A DO, Almost every type of calcula-
tion is permitted in the range of a DO, Only one type of statement is not permitted, namely
any which redefines the value of the index or of any of the indexing parameters (m's). In other
words the indexing of a DO loop must be completely set before the range is entered.

The first statement in the range of a DO must be executable; i,e., it must not be a
FORMAT, DIMENSION, EQUIVALENCE, FREQUENCY, or COMMON statement.

The following paragraph discusses restrictions on the last statement in the range of a
DO.

EXIT FROM RANGE OF DO, When control leaves the range of a DO in the ordinary way (i.e,,
by the DO becoming satisfied and control passing on to the next statement after the range) the
exit is said to be a normal exit, After a normal exit from a DO occurs, the value of the index
controlled by that DO is not defined, and the index can not be used again until it is redefined.

However, if exit occurs by a transfer out of the range, the current value of the index
remains available for any subsequent use. If exit occurs by a transfer which is in the ranges
of several DO's, the current values of all the indexes controlled by those DO's are preserved
for any subsequent use.

Transfer exits from the range of a DO in the form of a CALL statement to a handcoded
subprogram can bring about changes in the preserved indexing values; a knowledge of the way
in which the indexes are handled in the subprogram is required for safety.

The range of a DO cannot end with a transfer, i.e., GO TO, IF, etc., since this would
leave the DO unsatisfied, i.e., have incorrect values for the indexes involved. For example,

10 DO 111I=1, 100
11 IF (ARG - VALUE (1)) 12, 20, 12
12

would not work. Instead, the statement CONTINUE (which means ''do nothing'') should be used
as the last statement of such a range. {In the example it should be statement 12.)

SPECIAL DETAILS ABOUT DO STATEMENTS
TRIANGULAR INDEXING. Indexing such as

DO30I=1, 10

DO 30J=1, 10
or

DO401I=1, 10

DO40J=1,1

is permitted and simplifies work with triangular arrays. These are simply special cases of
the fact that an index under control of a DO is available for general use as a variable,

The diagonal elements of an array may be picked out by the following type of indexing:



Dos501=1, 10

50 A(I,I,I) = some expression

STATUS OF THE CELL CONTAINING I. A DO loop with index I does not affect the contents of
the object program storage location for I except under certain circumstances:

1) If an IF-type or GO TO-type transfer exit occurs from the range of the DO,
2) If I is used as a variable in the range of the DO,
3) If I is used as a subscript in combination with a relative constant whose value

changes within the range of the DO, (A relative constant is a subscript the variable of which
is not currently under control of a DO.)

Therefore, if a normal exit occurs from a DO to which cases 2 and 3 do not apply, the
I cell contains what it did before the DO was encountered. After normal exit where 2 or 3 do
apply, the cell I contains the first value of the I-sequence which exceeds m,. After a transfer
exit the I cell contains the current value of I.

What has just been said applies only when I is referred to as a variable, When it is re-
ferred to as a subscript, I is undefined after any normal exit and is the current value after
any transfer exit,

PAUSE
PAUSE or PAUSE i where i is an expression

A halt will be generated in the object program by this statement, The expression i, if
present, will be evaluated and displayed in the address portion of the Z-register on the con-
sole at the time of the halt. The value of i will be displayed in binary. Since the address por-
tion of the Z-register is only 15 bits, the low order 15 bits of i will be displayed; therefore,
the decimal value (INTEGER) of i should not exceed 32767. Computation will continue with the
next statement when the start button is pressed.

STOP
STOP or STOP i where i is an expression

A halt will be generated in the object program by this statement. The expression i, if
present, will be evaluated and displayed in the address portion of the Z-register on the con-
sole at the time of the halt. The value of i will be displayed in binary. Since the address por-
tion of the Z-register is only 15 bits, the low order 15 bits of i will be displayed; therefore,
the decimal value (INTEGER) of i should not exceed 32767. Computation cannot be continued
by depressing the start button (if the start button is depressed, control will be transferred
back to the STOP statement).

DATA TRANSMISSION

FORTRAN input-output statements are provided for the standard external devices avail-
able on the DDP-24., These include the typewriter, paper tape reader, and paper tape punch,
In addition, provision is made for the inclusion of statements to control reading and writing on
magnetic tape and punched cards.

SPECIFYING LISTS OF QUANTITIES
Several of the input-output statements include a list of the quantities to be transmitted.

This list is ordered, and its order must be the same as the order in which the words of infor-
mation exist (for input), or will exist (for output), in the external medium.



The formation and meaning of a list is best described by an example,
A, B(3), (C(D), D(I,K), I =1,10), ((E(1,J), I=1,10,1), F(J,3), J = 1,K)

Suppose that this list is used with an output statement. Then the information will be
written in the external medium in the order

A, B(3), C(1), D{(1,K), C(2), D(2,K), ..... , C(10), D(10,K),
E(L, 1), E(2,1), ..... , E(10, 1), F(1, 3),
E(l, 2), E(2,2), ..... , E(10, 2), F(2,3), ..... , F(K, 3).

Similarly, if this list were used with an input statement, the successive words, as
they were read from the external medium, would be placed into the sequence of storage loca-
tions just given.

Thus the list reads from left to right and with repetition of variables enclosed within
parentheses. Only variables, and not constants, may be listed, The repetition is exactly that
of a DO loop, as if each open parenthesis (except subscripting parentheses) were a DO, with
indexing given immediately before the matching closing parentheses, and with range extend-
ing up to that indexing information, The order of the above list is the same as of the ""pro-
gram'',

1) A
2) B(3)

3) DO 5I =1, 10

4) c(1)

5) D(I, K)

6) DO9J =1, K

7) DO8 I=1, 10, 1
8) E(1, )

9) F(J,3)

Notice that indexing information, as in DO's, consists of 3 constants or variables, and
that the last of these may be omitted, in which case it is taken to be 1.

For a list of the form K, (A(K)) or K, (A(I), I =1, K), where an index or indexing pa-
rameter itself appears earlier in the list of an input statement, the indexing will be carried
out with the newly read-in value,

INPUT-OUTPUT IN MATRIX FORM

FORTRAN in effect treats variables according to conventional matrix practice. A list
for either input or output in the form,

(A(L,J), T=1,3),1=1,2)
specifies that I x J items of information be transmitted in the order

A A A

1,17 772, 1” "1, 2° AZ,Z’A

1,3’ AZ, 3



This is the order in which the items are output; for input this is the order in which the
data should be written on the data sheet. If it is desired to write the data by columns or to
print the items by columns, the list is

((A(1,7), I1=1,2), J=1,3)
INPUT-OUTPUT OF ENTIRE MATRICES

When input-output of an entire matrix is desired, then an abbreviated notation may be
used for the list of the input-output statements; only the name of the array need be given and
the indexing information may be omitted. Thus the list

A

is sufficient to read in all of the items for matrix A in their natural order. This natural order
is considered to be

(AL, T), T=1,3),1=1,2)

In such a case, FORTRAN will examine to see whether a DIMENSION statement has re-
ferred to the name of the variable. If such a reference is not made, only a single element
will be transmitted.

INPUT-OUTPUT STATEMENTS

TYPE n, list where n is the statement number of the FOR-
MAT statement.

The variables specified in the list are converted in accordance with the FORMAT state-
ment and typed on the typewriter.

ACCEPT n, list where n is the statement number of the FOR-
MAT statement.

This statement allows information to be input to computer storage by means of the con-
sole typewriter. The information is converted as defined by the FORMAT statement n and
stored as specified by the variable list.

READ PAPER TAPE n, where n is the statement number of the FOR-
list MAT statement.

Information punched on paper tape is input to computer storage and converted as stated
in the FORMAT statement. It is stored as ordered by the variable list.

PUNCH TAPE n, list where n is the statement number of the FOR-
MAT statement,

The variables in the list are formatted and positioned as specified by the FORMAT state-
ment and punched on paper tape.

The following input-output statements are applicable to expanded systems with additional
input-output capabilities.

READ INPUT TAPE i, where n is the statement number of the FOR-
n, list MAT statement for the specified variable list
and i is an expression.

The expression i is evaluated and converted to an integer. The resulting number becomes the
number of the magnetic tape unit to be selected. A BCD tape is used and information is input



as defined by the FORMAT statement. The tape may have been written by a WRITE OUTPUT
TAPE statement which is defined later in the chapter, or may have been generated off-line.

WRITE OUTPUT TAPE where i is an expression and n is the state-
i, n, list ment number of the FORMAT statement for
the variable list.

The variables in the list are converted to BCD and written on magnetic tape under con-
trol of the FORMAT statement. The integer value of the expression i defines the magnetic
tape unit which is selected for the operation, The BCD tape produced may subsequently be
read by the READ INPUT TAPE statement or listed by an off-line process,

READ TAPE i, list where i is an expression

Binary information is read into the computer from the magnetic tape unit specified by
the expression i. A FORMAT statement is not referenced as the information read must al-
ways be binary as prepared by the WRITE statement which is described later. The informa-
tion is stored according to the variable list.

WRITE TAPE i, list where i is an expression.

Information as specified by the list of variables is written in binary form on magnetic
tape. The integer value of expression i is used to select the magnetic tape unit which receives
the information. A FORMAT statement is not required as the data is written in binary and no
conversion is made.

Tapes generated by this instruction may be read by the READ TAPE statement.
REWIND i where i is an expression

The magnetic tape on the tape unit specified by the integer value of expression i is posi-
tioned to the beginning of the tape by this statement.

BACKSPACE i where i is an expression

This statement is used to move a magnetic tape back one record. Magnetic tapes are
written in a forward direction from the beginning to the end. BACKSPACE moves the tape in
the opposite direction toward the beginning. No information is transmitted to or from com-
puter storage by this statement. The tape unit selected for the operation is specified by the
integer value of expression i. Note: An end-of-file mark is one record.

END FILE i where i is one expression

This statement causes an end-of-file mark (as a single record) to be written on magnetic
tape. The integer value of the expression i is the number of the magnetic tape unit selected.

READ n, list where n is the statement number of the FOR -
MAT statement for the specified variable list.

Information from punched cards is input to computer storage. The amount of information
accepted and its conversion is determined by the FORMAT statement n. The information may
subsequently be referred to in the program by the variable names in the list. Cards are read
continuously until the list is satisfied.

PUNCH n, list where n is the statement number of the FOR-
MAT statement for the variable list.

This statement is used to punch cards which contain the values of the variables in the
list. Each variable is converted to punches on the card as specified by the FORMAT state-
ment. Cards are punched continuously until the list is satisfied.



PRINT n, list where n is the statement number of the FOR-
MAT statement for the variable list.

The variables in the statement list are converted and printed on the on-line printer as
defined by the FORMAT statement.

READ DRUM i list where i, and i, are expressions

1 ter 1 2

The integer value of expression i] is the number of the drum unit which is to be se-
lected for reading binary information. Expression iz specifies the first word address on the
drum of the information to be read and stored according to the variable list. Since the infor-
mation transfer is binary word to binary word, a FORMAT statement is not allowed.

WRITE DRUM iy, i,, list where i] and i; are expressions

The variables in the list are written in binary on the drum unit which is specified by the
integer value of expression i;. The integer value of expression i, is the address on the drum
of the first variable in the list, Following variables are stored sequentially until the list is
satisfied, No conversion is possible in this statement; therefore, a FORMAT statement is not
allowed.

FORMAT

Some I-O statements and lists are associated with a corresponding FORMAT statement.
This statement describes what conversion is necessary for the data in the list. Only one FOR -
MAT statement is allowed for each I-O statement, It must be assigned a statement number;

and that number precedes the data list in the I-O statement,

FORMAT statements are required for input-output statements which concern:

1) Paper tape

2) Console typewriter

3) Magnetic tape written in BCD
4) Punched cards

Input-output statements which transfer binary information cannot be controlled by FOR-
MAT statements,

RECORDS

The information being transmitted between computer storage and external media by one
input-output statement is separated into physical grdups called records. The definition of a
record varies with the I-O device. The following chart defines a record for each I-O unit. It
is the programmer's responsibility to avoid exceeding the maximum record size for a given
device.

Unit Record Definition
Typewriter One line of type as terminated by a carriage return
character
Paper tape Punched information terminated by a carriage re-

turn character

Magnetic tape Binary or BCD logical tape record. The FORTRAN
programmer need not be concerned with the physi-
cal length



Unit Record Definition
Card Reader One card, 80 columns
Card Punch One card, 80 columns

External records may contain the values of several variables; each variable is consid-
ered a field of information. In order to specify the manner of conversion on input or output,
it is necessary to state the size or width of the data field and if the variable is floating point,
the position of the decimal point, The width of the field is the total number of characters nec-
essary to describe the information on a coding form. However, fields may be larger if lead-
ing blanks are included, or smaller if truncation is desired. The 3C FORTRAN compiler re-
lieves the programmer of determining the actual binary size of the field as it is stored in
memory and automatically allocates the necessary storage registers.

FORMAT
The form of the FORMAT statement is

FORMAT (Sy, SZ’ ---, Sp) where Sj are descriptions of the external form of the varia-
bles comprising a record. The S; provide the compiler with the information necessary for
conversion from and to external form.

CONVERSION

On reading or writing of data, 3C FORTRAN automatically converts numbers from ex-
ternal to internal or internal to external form. The FORMAT statements are used to describe
the external forms in which data may appear. 3C FORTRAN accepts data in five different
forms: ’

1) Floating-point decimal. These numbers are characterized as containing a dec-
imal scale factor. The scale factor may be indicated within the number by the
presence of the letter E, an algebraic sign, or both. For example, .314E1,
.314+1, .314E+1, .314EO01 all are permissible.

2) Fixed-point decimal. These numbers may contain either an actual or implied
decimal point but may not contain a decimal scale factor.

3) Integers,
4) Octal numbers,
5) Alphanumeric. Alphanumeric information in external BCD form may be read

into or out of a memory location identified by a variable name. Up to four char-
acters may be stored in a cell.

BASIC FIELD SPECIFICATIONS
A FORMAT specification describes the line to be converted by giving, for each field in
the line (from left to right, beginning with the first character) a basic field specification writ-
ten in the form:
nKw, d
where
n Is a positive integer indicating the number of successive fields within

one unit record which are to be converted according to the same spec-
ification. If n = 1, it may be omitted,



K Is a control character specifying the type of conversion to be used,
This character may be I, E, F, O, A, X, or H.

W Is the width of the field.
d Is the number of positions in the field which appear to the right of the
decimal point; used only with E- and F-type conversions, (Note: d is
treated modulo 12.)
Within the unit record, field specifications are separated by commas:
Iw, Ew.d, nX, Fw.d, nAw
(Exception: A comma need not follow a field specified by an H or X control character)
SUMMARY OF CONTROL CHARACTERS, There are seven different types of control charac-

ters, five of which provide for the conversion of data between the internal machine language
and the external notation.

INTERNAL TYPE EXTERNAL
INTEGER variable I Decimal integer
REAL variable E Floating-point, decimal
REAL variable F Fixed-point, decimal
INTEGER, REAL or LOGICAL ©) Octal integer
variable
BCD variable A Alphanumeric characters

A sixth control character, X, provides for the skipping of characters in input or the
specification of blank characters in output.

The last character, H, designates Hollerith fields; it may be used to output alphanumer-
ical characters originating in the source program and for carriage control in printing or typ-
ing.

SUCCESSIVE FIELDS (n). An example of how ''n'" may be used before the control character
to type n successive fields within one record is shown by the statement FORMAT (1X, 12,
3E12.4), which might give:
27 -0.9321E 02 -0.7580E-02 0.5536E 00

FIELD WIDTH (w). The field widths may be made greater than necessary to provide spacing
blanks between the items on a line. Thus, a field specification of nK12, where only 4 digits
are to be printed, would result in 8 blanks preceding the digits. Within each field the printed
output will always appear in the rightmost positions,

For printed or typed output, the FORMAT statement should always provide for a car-
riage control character as the first character of the line. In many instances, this will be a
blank,
I-TYPE CONVERSION

Field specification: Iw or nlw

The number of characters specified by w will be converted as a decimal integer. On



input, numbers for I-conversion will be treated modulo 8, 388, 608. No plus signs or decimal
points will be printed or typed.

E-TYPE CONVERSION
Field specification: Ew.d or nEw. d

The number of characters specified by w will be converted as a floating-point number,
with the number of digits specified by d to the right of the decimal point. For example, the
statement

FORMAT (X, 12, El2.4, El15.4)
might give the line
27 -0.9321E 02 -0.7580E-02

In this case, there is one blank following the 27, one blank after the first E (automatic-
ally supplied except in cases of a negative exponent, when a minus sign will appear), and four
blanks after the 02. (The X control character may also be used, of course, to provide blank
fields.)

F-TYPE CONVERSION
Basic field specification: Fw.d or nFw.d

The number of characters specified by w will be converted as a fixed-point number, with
the number of digits specified by d to the right of the decimal point.

SCALE FACTOR. To permit more general use of F-conversion, a scale factor followed by the
letter P may precede the specification. The scale factor is so defined that

Converted number = internal number x loscale factor

Thus, the statement FORMAT (X, I2, 1P3F11l.3), used with the data in the previous
example would give

27 -932.096 -0.076 5.536
while FORMAT (X, 12, -1P3FI11l. 3) would give
27 -9.321 -0.001 0.055

A positive scale factor may also be used with E-conversion to increase the number and
decrease the exponent. Thus FORMAT (X, 12, 1P3El2. 4) would give, with the same data

27 -9.3210E 01 -7.5804E-03 5.5361E-01

Note: The scale factor is assumed to be zero if no other value has been given. How-
ever, once a value has been given, it will hold for all E- and F-conversions fol-
lowing the scale factor within the same FORMAT statement. This applies to both
single-record and multi-record formats. Once a scale factor has been given, a
subsequent scale factor of zero in the same FORMAT statement must be speci-
fied by OP. Scale factors have no effect on I-conversion.

RESTRICTIONS ON F-TYPE CONVERSION. There are some restrictions in the use of F-type
conversion for output. This F-type conversion should not be used with numbers having an ab-
solute value greater than 23 Numbers exceeding 238 in absolute value will be incorrect by a
factor of a power of 2. Also, numbers whose absolute values are less than 0.5 may have



truncation errors that will affect the last significant digit when F-type conversion is used for
output. The scale factor, P, used with an F-type conversion can circumvent these restric-
tions.

O-TYPE CONVERSION
Basic field specification: Ow or nOw

On input, the number of digits specified by w will be stored. If w exceeds 8, only the 8
rightmost characters will be significant. If w is less than 8, the number will be right-adjusted
and filled out with zeros. Leading and trailing blanks will be treated as zeros,

On output, the number of characters specified by w will be the result of conversion to
octal. If w exceeds 8, the excess will be blanks. If w is less than 8, only the w rightmost dig-
its will be significant. Leading zeros will be converted to blanks, and the number will be
signed, if negative, However, 8 or more significant digits will be unsigned.

A-TYPE CONVERSION
Basic field specification: Aw or nAw
The use of the control character A results, at input time, in the storage in BCD form of
the number of alphanumeric characters specified by w. If w is greater than 4, only the 4 right-
most characters will be stored. If w is less than 4, the w leftmost characters will be trans-

mitted and the word will be filled with blanks. (In BCD, a blank is considered a significant
character.)

At output time, the number of characters specified by w will be transmitted without con-
version. If w is greater than 4, only the 4 rightmost characters will be transmitted, preceded
by w - 4 blanks. If w is less than 4, the w leftmost characters of the word will be transmitted.
CONTROL CHARACTER X

Basic field specification: nX

On input, the number of characters specified by n will be skipped. On output, n charac-
ters of output will be blanks,

CONTROL CHARACTER H

Basic field specification: nH (No comma is used to separate this type of field
specification from a following field specification.)

The control character H may be used to designate a Hollerith (alphanumeric) field, in
which case English text will be printed in it. The field width, followed by the desired charac-
ters, should appear in the appropriate place in the specification. For example,

FORMAT (5H XY = F8.3, 4H Z = F6.2, 9H W/AF = F7.3)
would give

XY =-93.210 Z = -0.01 W/AF = 0.554

Notice that any Hollerith characters, including blarks, may be printed or typed. This is
the sole exception to the statement that FORTRAN ignores blanks,

It is possible to print or type Hollerith information only, by giving no list with the input-

output statement and setting up no field specifications containing other types of control charac-
ters (except X) in the FORMAT statement.
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USING THE H CONTROL CHARACTER FOR CARRIAGE CONTROL. WRITE OUTPUT TAPE
prepared a tape which may be later used to obtain off-line printed output. The off-line printer
is manually set to operate in one of three modes: single space, double space, and program
control. Under program control, which gives the greatest flexibility, the first character of
each BCD unit record controls the carriage, and that character is not printed. The control
characters and their effects are

Blank Single space before printing
0 Double space before printing

Thus, a FORMAT specificationfor WRITE OUTPUT TAPE for printing with program
control will usually begin with 1H followed by the appropriate BCD character. This is true for
the typewriter and on-line printer also.

REPETITION OF GROUPS. A limited parenthetical expression is permitted in order to enable
repetition of data fields according to certain FORMAT specifications within a longer FORMAT
statement specification. Thus FORMAT (2(F10. 6, E10.2), 14) is equivalent to FORMAT
(F10.6, E10.2, F10.6, E10.2, I4). More than one level of parentheses within the outer paren-
theses is not permitted.

Note, however, that in some cases the result may not be precisely what you might ex-
pect. In the following example:

40 FORMAT (1HO, 16, 2F12.0, 3(I3, 2X, 2A4), I5, El12.7)

if the FORMAT specification has been completed and data items remain to be transmitted, the
format will repeat from the last opening parenthesis; i.e., the next specifications will be I3,
2X, 2A4, I3, 2X, 2A4, 13, 2X, 2A4, I5, El2.7, I3, 2X, . . . (Note, however, that the last
closing parenthesis is treated as the end of a record each time it is encountered. The first
character of the next piece of data to be printed or typed (with format I3 in the example) will
be examined and treated as a carriage control character rather than as a character to be
printed or typed).

MULTI-RECORD FORMATS. To deal with a block of output, a FORMAT specification may
have several different line formats, separated by a slash /. Thus

10 FORMAT (1H 3F9.2, 2F10. 4/8E14. 5)
would specify a block in which lines 1, 3, 5,. . . have format 3F9.2, 2F10.4, and lines 2, 4,
6, . . . have format 8E14. 5.
CAUTION

If the list of a READ PAPER TAPE statement is such that the
last item read is directly followed by a /, the following line
will be read and then the list will be examined. Since there
are no more items on the list, the contents of that line will be
lost. For example:

READ PAPER TAPE 100, A, B, C, D, E, F
100 FORMAT (6E12.8/2F12. 8)

READ PAPER TAPE 100, G, H, O, P, Q, R, S, T
The contents of the line following F will be lost.

If data items remain to be transmitted after the format specification has been completely
"used, " the format repeats from the last opening parenthesis or (if no second pair of paren-
thesis is present) from the beginning of the entire format specification.



Both the slash and the last closing parenthesis of a FORMAT statement signal the end of
a record. If no format specifications are written between two such end-of-record indications,
the carriage moves one line down on the page and, in effect, writes a completely blank record,
or line. N + 1 consecutive end-of-record indications produce N blank lines. The following ex-
ample shows the effect of the use of multiple slashes (and should discourage the programmer
from using this device indiscriminately).

TYPE 20, XMN

20 FORMAT (1HO 12A4) Closing parenthesis indicates end of
record. Typing takes place. The car-
TYPE 30, A, B, C riage does not move.

30 FORMAT (//1HO 6E12.8//1H0 2F12.4, 3E14.5)

First slash indicates end of another
record, Since nothing has been set up
for typing since the last end-of-record
indication, the carriage moves one
line and a "blank' record is written.
The second slash similarly moves the
carriage one more line.

Resultant Line Setup The "0" carriage control character
moves the carriage two lines,

PRINTED LINE The third slash indicates the end of a

Blank line record. Typing takes place but the

Blank line carriage does not move,

Blank line

PRINTED LINE The fourth slash signals the end of

Blank line another record; the carriage moves

PRINTED LINE one line and a "blank' record is writ-
ten,

The (space) carriage control charac-
ter moves the carriage one line. Typ-
ing will take place on this line.

RELATIONSHIP OF FORMAT STATEMENT TO LIST. The FORMAT statement indicates,
among other things, the size of each record to be transmitted. In this connection, it must be
remembered that the FORMAT statement is used in conjunction with the list of some partic-
ular input-output statement, except when a FORMAT statement consists entirely of Hollerith
fields. In other words, all specifications in the FORMAT statement except those with the con-
trol characters X or H are used to control the transmission of data to or from records,

During input-output of data, the object program in effect scans the FORMAT statement
to which the relevant input-output statement refers. When a specification for a field is found,
and list items remain to be transmitted, input-output according to the specification takes
place, and scanning of the FORMAT statement resumes. If no items remain in the list, trans-
mission ceases and execution of that particular input-output statement has then been com-
pleted. Thus if you come to the end of a list, and simultaneously the next field specification in
the FORMAT statement contai~s some control character other than X or H (or the end of the
FORMAT statement has been reached), input-output will be brought to an end.
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DATA INPUT TO THE OBJECT PROGRAM

Decimal input data to be read by means of a READ PAPER TAPE statement when the ob-
ject program is executed must be in essentially the format specified by the associated FOR-
MAT statement. Thus a line to be read with FORMAT (I2, El12.4, F10.4) might be punched

27 -0.9321E 02 -0.0076

Within each field all information must be pushed to the extreme right, except when the
decimal point is written. (See paragraph 2) below). Positive signs may be indicated by a blank
or a + punch; negative signs should be punched with an - punch. Blanks in numeric fields are
regarded as zeros. Numbers for E- and F-conversion may contain any number of digits, but
only 11 digits of accuracy will be retained.

To permit economy in punching, certain relaxations in input data format are permitted.

1) Numbers for E-conversion need not have 4 columns devoted to the exponent
field. The start of the exponent field must be marked by an E, or, if that is omitted, by a +
or - (not a blank). Thus E2, E02, +2, +02, E 02, and E402 are all permissible exponent fields.
However, the exponent field must be right-adjusted; i. e., written at the extreme right of the
field.

2) A number for E- or F-conversion need not have its decimal point punched. If it
is not punched, the FORMAT specification will effectively supply it; for example, -09321+2
with E12. 4 will be treated as if the decimal point had been punched 4 places before the start of

the exponent field, that is, between the 0 and the 9. If the decimal point is punched, its posi-
tion overrides the value of d given in the FORMAT specification.

3) If the data are always positive in the particular field, a column need not be
allocated for the sign (regardless of the format).

SPECIFICATION STATEMENTS

Specification statements are used to allocate storage and define data formats. Their use
in a FORTRAN program is optional (except to define dimensional arrays). They allow the pro-
grammer to gain program efficiency based on a knowledge of the individual data items to be
operated upon.

Specification statements do not generate executable machine language instructions; how -
ever, since they dictate the form and order of the instructions that are generated, they must
appear before the first executable FORTRAN statement.

TYPE SPECIFICATIONS
Three type specifications are available in 3C FORTRAN.
1) REAL
REAL a, b, c.

The REAL statement defines all variables appearing on the right as floating-
point numbers.

2) INTEGER
INTEGER a, b, c.

The INTEGER statement defines all variables appearing on the right as 23-bit
signed fixed-point integers.



3) LOGICAL
LOGICAL a, b, c. . .

The LOGICAL statement defines all variables appearing on the right as 24-bit
logical quantities. Also, any variable defined as LOGICAL and used in an arithmeiic opera-
tion is treated as Boolean (one or zero).

Data items not defined by a type statement are assigned types on the basis of the first
letter of their names,

STORAGE SPECIFICATIONS
Four storage specification statements are available in FORTRAN,
1) DIMENSION

DIMENSION a (N;, N,, Nj), b (N}, N,, N3), . . .

1,

The DIMENSION statement defines data arrays. The numbers in parentheses,
following the variable names, are called subscripts; each variable may have from one to three
non-zero subscripts., The subscript integers define the maximum size of the array. For ex-
ample, the statement:

19

DIMENSION NAME!1 (5, 10, 4), NAME2 (2, 4)

defines NAMEI] as being a cubic array containing a maximum of 4 levels of information. The
items appear in 5 rows of 10 items in each level, NAME2 is a matrix containing 2 rows of 4
items each. A storage area equal to the product of the subscripts is allocated for each data
item defined by a DIMENSION statement. (Real numbers, being double length, would be
assigned twice the product of the subscripts). NAME1 would be assigned 200 words of storage
(400 if the items are real); NAME2 would be assigned 8 (or 16) words of storage.

Arrays are stored in rows, forward in memory. For example, the matrix A:

123
456

defined by the statement:

DIMENSION A (2, 3)
would be stored in sequential higher numbered memory positions as:

1, 2, 3, 4, 5, 6

2) EQUIVALENCE

EQUIVALENCE (a, b, . . .}, {c, d. . .}, o ..

The EQUIVALENCE statement allows the programmer to utilize the available
storage more efficiently by assigning separate data items or arrays to the same memory lo-
cations. A data item appearing in an equivalence statement may be subscripted, for example,

EQUIVALENCE (NAME1l, NAME?2 (5))
equates the memory location of NAME1, and the fifth item in the array, NAME2. Care must
be observed when assigning equivalent memory locations between INTEGER and REAL varia-

bles since each REAL number uses two storage locations, but an INTEGER requires only one
location,



3) COMMON

The COMMON statement allows the programmer to assign data items and arrays
to fixed memory positions. This allows the main program and subroutines to use the same
data area without the need for parameter substitution. The form of the COMMON statement is

COMMON a, b, - - -
Array names are not subscripted,

The COMMON storage area is fixed in the upper part of the machine memory; that is, in
the area of higher numbered memory addresses. Names assigned to COMMON, reserve mem-
ory locations in the opposite order of their appearance; however, arrays are stored forward
(see DIMENSION). Array names appearing in COMMON statements must also appear in DI-
MENSION statements.

4) FREQUENCY

The FREQUENCY statement has no affect on the compilation in DDP-24 FOR-
TRAN. It is included to allow programs written for other versions of FORTRAN to be com-
piled without requiring modification.

IN-LINE MACHINE LANGUAGE CODING

In-line machine language coding with FORTRAN statements is allowed in DDP-24 FOR-
TRAN, This capability should not be confused with DAP coding, since the two are entirely
different., The only DAP pseudo-operations that are allowed by the FORTRAN compiler are
PZE and MZE. All other pseudo-operations will not be translated. In addition, literals are
not allowed in the machine language coding.

Machine language is far removed from the algebraic language of FORTRAN, If the pro-
grammer wishes to use machine language in his FORTRAN program, it is assumed that he is
entirely aware of this difference and that he is familiar with the intricate workings of the com-
piler and the computer, Therefore, the following is devoted merely to the rules that must be
followed when using machine language coding and not to the explanation of machine language
programming.

The punching of an S in the first position of the coding line indicates that the line of cod-
ing is machine language. This S must be repeated on each line that machine language is used.
Further, a machine language statement can only be used after an entire FORTRAN statement
has been completed (i.e., a machine language statement could not be used between continua-
tion lines of a FORTRAN statement).

After the initial punching of S in position one of the coding line, a machine language
statement must begin in position six (the position usually reserved for continuation codes in
FORTRAN statements).

In addition to PZE (plus zero) and MZE (minus zero), any three-letter mnemonic listed
in the DDP-24 REFERENCE MANUAL may be used as an instruction. At the conclusion of the
three letters, an asterisk (*) should be used if indirect addressing is desired (position nine).

The address portion begins in position 12. If a symbol is used in the address portion,
it must refer to a variable data location. If the variable has been used in the FORTRAN state-
ments, the address of that variable will be inserted in the machine language instruction. If
the variable has not been used in the FORTRAN statements, a location will be assigned by
FORTRAN (two if the variable is REAL) and the address will be inserted in the instruction.
Thus, it is not possible to define data locations arbitrarily, the compiler must make the
assignments. A decimal or octal {preceded by an apostrophe) integer may be used in the ad-
dress portion if absolute reference is desired to a memory location. If it is desired to refer-
ence another instruction in a sequence of machine language statements, relative addressing
must be used (e.g., *+3, *-14, etc.).



If indexing is desired, the address portion should be followed by a comma and numeric
index register designation.

If comments are desired, they may be placed on the same line starting in position 30,
Example:

It is desired to read a fixed-point (6-digit) decimal number from the typewriter and
place this value in every element of the A array (REAL) using a combination of FORTRAN
and machine language coding. A program to accomplish this could be:

C PROGRAM FOR ILLUSTRATING USE OF MACHINE LANGUAGE CODING
DIMENSION A(50)
40 TYPE 50
50 FORMAT(//// 35H YOU MAY TYPE IN THE 6-DIGIT NUMBER////)
ACCEPT 60, B
60 FORMAT(F7.0)

TYPE 70, B
70 FORMAT(//// 15H THE NUMBER IS F7.0,32H IF THIS IS CORRECT, PRESS START/
X 48H IF NOT, PLACE SENSE SWITCH 1 UP AND PRESS START////)
75 PAUSE

IF(SENSE SWITCH 1) 40, 80
80 CONTINUE

S LDA B GET HIGH ORDER PART OF B

S LDB B+1 GET LOW ORDER PART OF B

S LDX -100,1 INITIALIZE INDEX REGISTER

S STA A+100,1 STORE HIGH ORDER PART OF B

S JXI *+1,1 INCREMENT INDEX REGISTER

S STB A+100,1 STORE LOW ORDER PART OF B

S JXI *-3,1 INCREMENT INDEXREGISTER ANDJUMP BACKIFNOT ZERO
STOP
END
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STATEMENT SUMMARY

Statement Page
ARITHMETIC
= =T Y 3-9
A, AND. B . e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 3-12
P TR 0 S o 3-12
A NOT . D o e i e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 3-12
A . SHIF T . b ot vt e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 3-12
CONTROL
GO TO Dl v o i e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 3-27
GO TO (nl, n,, . nl), L e e e e e e e e e e e e e e e e e e e e e e e 3-27
GO TO m, (nl, n,, .- ni) ................................. 3-27
ASSIGN 1 TO M & v v e et e e e e e e e e e e e e e e e e e e e e e e e e e e e e 3-27
IF (a) Dps Doy Tlg v e i ettt 3-28
SENSE LIGHT 1 . . i v i i i i it i e e e e e e e e e o o e e s o e o et e e et e e e e 3-28
IF (SENSE LIGHT i) nl, n2 .................................. 3-28
IF (SENSE SWITCH i) n,, nz ................................. 3-28
IF ACCUMULATOR OVERFLOW My, Dy e e 3-29
IF QUOTIENT OVERFLOW Dys My ee e ot 3-29
IF DIVIDE CHECK Dy, Ty et e e 3-29
DO DM = i), dyy G eve vt 3-29
CONTINUE . . .t i e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 3-31
PAUSE 1 . i i i i i e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 3-32
STOP 1 v v v e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 3-32
% 1 2-7
INPUT/OUTPUT
TYPE n, List. . . . . 0 o i i e i e e e e e e e e e e e e e e e e e e e e e e 3-34
ACCEPT n, List. v v v vt e it e i e e e e e e e e e e e e e e e e e e e e e e e e e e e e 3-34
READ PAPER TAPE n, list . . . . . i i i i i i e e e et e e e e i e e e e e e 3-34
PUNCH TAPE N, LISt . v v i i i e i i i i e e et e e e e et e e e e e e e e e e e e e 3-34
READ INPUT TAPE i, n, list . . . @ . i i i i i i e e e e et e e e e e e e e e e e 3-34
WRITE OUTPUT TAPE i, n, list . . . . . 0 0 i i i i i e e e e e e e i i e e e e e 3-35
READ TAPE i, list . . . @ i i i i e e e e e e e e i e e e e e e e e e et e e e e e e 3-35



Statement Page

WRITE TAPE 1, 1St . . ot vttt e e e e e e e e 3-35
REWIND § .« oottt e e e e e e e e e e e e e 3-35
BACKSPACE 1« v ot v o e ettt et e e e e 3-35
END FILE © &« v ovotooe e e e e e e e e e e e e e e 3-35
READ 1, LSt + vt ot i e e e e e e e e e e e e e e e 3-35
PUNCH n, list .. ......0.uoo.... e 3-35
PRINT 1, 1St & v v vt et et e e e e e e e e e e e e e e 3-36
READ DRUM i1, i,, LSt .ottt oot e s 3-36
WRITE DRUM i), iy, 1iSt oottt et 3-36
FORMAT (S1, Sy, + « +y S.) +vvei et 3-36

SUBPROGRAM
FUNCTION & (Py, Pyy + + 0] o vvveoev e e eeeeeneee 3-14
SUBROUTINE @ (P[, Pys + + =)+ v vnenenneenennnenennn 3-24
CALL @ (Ps Pys + =) v v oot e e 3-25
RETURN &ttt vttt et e e e e e e e e e e e e e 3-22

SPECIFICATION
REAL @, B, C, « « o oot e e e e e e e e e 3-43
INTEGER &, D, €, « « « e ot e et e et e et e e e e e e 3-43
LOGICAL 2, B, €+ « o ettt e et e e e e e e e e e e 3-44
DIMENSION a (N}, N,, Np), BN}, Ny Ng) wvononon 3-44
EQUIVALENCE (2, b, - - .), (€, dy « v o) eeeeeee et e e e 3-44
COMMON @, b, « « v et e e e e e e e e e e e e e e 3-45
FREQUENGCY .+« « v e e e e e e e e e e e e e e e e e e e e 3-45
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BUILT-IN FUNCTIONS

ARGUMENT FUNCTION NUMBER OF
NAME MODE MODE ARGUMENTS PURPOSE AND DEFINITION

ABSF Floating Floating 1 Computes absolute value of Argument,

XABSF Fixed Fixed | Argument|

DIMF Floating Floating 2 Computes positive difference ARG] minus the

XDIMF Fixed Fixed smaller of the two arguments ARG] - min (ARG,
ARG;)

FLOATF Fixed Floating 1 Changes a fixed point to a floating point number.

XFIXF Floating Fixed 1 Changes a floating point to a fixed point number.
Same as XINTF.

INTF Floating Floating 1 Truncates the argument to the largest possible

XINTF Floating Fixed integer value which is < argument. Sign if un-
changed

MAXOF Fixed Floating >2 Determines argumetn with largest value

MAXIF Floating Floating MAX(ARGI, ARG,; . . . ARG )

XMAXOF Fixed Fixed n

XMAXIF Floating Fixed

MINCF Fixed Floating >2 Determines the smallest argument

MINIF Floating Floating MIN (ARGl, - s ARG))

XMINOF Fixed Fixed

XMAXIF Floating Fixed

MODF Floating Floating 2 Calculates remainder of ARG, — ARG.Z

¥MODF Fixed Fixed FOR MODF the remainder is defined as ARG, -

ARG /ARG, ARG, where ARG]/ARG, is

the integer quotient. For XMODF the true
remainder is obtained.

SIGNF Floating Floating 2 Transfers sign of ARG, to the absolute value of

XSIGNF Fixed Fixed ARG,
ARG] times IARGZI







APPENDIX C

TYPEWRITER CODES

PAPER TAPE
OCTAL| TYPEWRITER
cobE | L/c  usc |[8]7]elpa]d 3[2

-

00 b e

01

02

[e][e]

VI[|®|~
[elle} e} I}

[e][e)

Ol 1Ol 10l 1010l ol 1ol Tol 1o

Qlolo

-
w

~[N] <] 5¢]| €| | | 1| || #|H| 0] 0| | ] el ] w3 No] |
.

I
[0][e] 00080000

[o] Il [e] [« M [e]

[e][e] [e][o]

QIO

b

Q
ol 1ol 1ol 1ol oI 1Ol 100

~
-3
<A 5| o D] | O Z| | | 3w =
- > #~]

54 backspace .-

[e][e][e)[e}[e][¢]

Qlo
[e)

56 space

60 & &

[e)

[e][e)[e][e][e]

[o] Il [}

[e][e][e][e]

AINOL
.80

(o] (e} [e) [e][e] (] (o) [e] o] (o] o) [e] [e) [o] [e)[e) o) (o] e] [o] (o] [o] (o)
Q

[-.]
(7]
- | ] m| o] B>

e
9,

73 . V

74 lower shift

A
9,

75 upper shift

[e)
[e][e)[o][e] o] [e] o]

[ [e}

76 car. return

o
@,
A
9,

Q
[o] I [o] I [e] [ o)

77 line feed

[e)[e][e)[e)[e][*)[*)[*]
[e][e][e]Ke][e]

(o)
Q

stop backspace O
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