Doc. No. 130071585¢C
M-991

HONEY WELL

316/516
PROGRAMMERS REFERENCE MANUAL

May 1969

Honeywell

COMPUTER CONTROL

DIVISION

Original printing Jan. 1968
Revised Aug. 1968 and May 1969

COPYRIGHT 1969, by Honeywell Inc., Computer Control
Division, Framingham, Massachusetts. Contents of this publication
may not be reproduced in any form in whole or in part, without per-
mission of the copyright owner. All rights reserved.

Printed in U.S.A.

Published by the Publications Department,
Honeywell Inc., Computer Control Division

CONTENTS

INTRODUCTION
SYSTEM DESCRIPTION
SPECIFICATIONS
SECTIONAL DESCRIPTION
PREREQUISITE READING
SPECIAL INSTRUCTIONS
SECTION I

COMPUTER ORGANIZATION

WORD FORMATS (HARDWARE)
Word Structure
Instruction Words
Single Precision
Double Precision
Logical Data

WORD FORMATS (SOFTWARE)
Word Format Identifiers
Integer Format
Real Format
Double Precision Format
Complex Format

MEMORY ADDRESSING
Direct Addressing
Indirect Addressing
Multi-Level Indirect Addressing

INDEXING
Indirect, Pre-Index
Indirect, Post-Index

ADDRESSING SUMMARY
Dedicated Locations 1-17

Dedicated Location 0 (Index Register)

Instruction Sequences
Breaks

Interrupts

Memory Access Priority Structure

Page

xiii
XV

xvii
xvii

xvii

1-9
1-9
1-9
1-11
1-11
1-11
1-11
1-12

CONTENTS (Cont)

SECTION II
INSTRUCTION REPERTOIRE
STANDARD INSTRUCTIONS
STANDARD INTERRUPT
Location and Mask Bits and Device Address
OPTIONAL INSTRUCTIONS
Extended Addressing (DDP-516)
Operation
Instruction Complement
MEMORY PARITY (DDP-516)
Instruction Complement
MEMORY LOCKOUT OPTION (DDP-516-08)
Base Sector Relocation
Restricted Mode
Normal Mode
Protected Sector Selection
HIGH-SPEED ARITHMETIC UNIT OPTION (HONEYWELL 316/516-11)
Instruction Complement
REAL-TIME CLOCK OPTION (HONEYWELL 316/516-12)
Instruction Complement
DIRECT MULTIPLEX CONTROL (DDP-516)
DMC Subchannel
DMC Auto-Switch Option
DIRECT MULTIPLEX CONTROL (H316)
Standard DMC
High-Speed DMC
DMC Subchannel
DMC Auto-Switch Option
DIRECT MEMORY ACCESS OPTION (DDP-516)
Instruction Complement
DMA Auto Switch
PRIORITY INTERRUPT OPTION (HONEYWELL 316/516)
Priority Interrupt Control
MEMORYINCREMENT(HONEYWELL31@G1&2&

iv

Page

2-1

2-1

2-16
2-16
2-16
2-20
2-20
2-20
2-21
2-21
2-21
2-22
2-27
2-27
2-28
2-28
2-28
2-28
2-30
2-32
2-32
2-33
2-33
2-33
2-34
2-34
2-36
2-36
2-38
2-38
2-39
2-40

CONTENTS (Cont)

SECTION III
INPUT/OUTPUT CHANNELS AND DEVICES
ASR-33/35 TELETYPE UNITS (HONEYWELL 316/516-53/55, 316/516-56)
Keyboard and Carriage Features
ASR-33/35 On-Line Operating Modes
Character Modes
ASR-33 Operation
ASR-35 Operation
Programming
Sample Program
HIGH SPEED PAPER TAPE READER OPTION (HONEYWELL 316/516-50)
Loading Procedure
Programming
Sample Program
HIGH-SPEED PAPER TAPE PUNCH OPTION (HONEYWELL 316/516-52)
Looading Procedure
Programming
Sample Program
CARD READER OPTION (HONEYWELL 316/516-61)
Programming
Operator Controls and Indicators
Placement of Cards in Hopper

Sample Program

SECTION IV
DAP-16 LANGUAGE

MODES OF OPERATION
ASSEMBLY PROCESS

Two-Pass Assembly

One-Pass Assembly
SOURCE LANGUAGE FORMAT

Location Field

Operation Field

Variable Field

Comments Field
SYMBOLOGY

Symbols

Expressions

Literals

Asterisk Conventions

ASSEMBLY LISTING

Page

3-1

3-1

3-8

3-8

3-9

3-9

3-11
3-13
3-13
3-13
3-13
3-14
3-15
3-15
3-15
3-16
3-18
3-18
3-21
3-21
3-21

CONTENTS (Cont)

SECTION V
DAP-16 PSEUDO-OPERATIONS

ASSEMBLY CONTROLLING PSEUDO-OPERATIONS

ABS Pseudo-Operation
CFx Pseudo-Operation
END Pseudo-Operation
FIN Pseudo-Operation
LOAD Pseudo-Operation
MOR Pseudo-Operation
ORG Pseudo-Operation
REL Pseudo-Operation
DATA DEFINING PSEUDO-OPERATIONS
BCI Pseudo-Operation
DAC Pseudo-Operation
DEC Pseudo-Operation
DBP Pseudo-Operation
OCT Pseudo-Operation
LOADER~-CONTROLLING PSEUDO-OPERATIONS
EXD Pseudo-Operation
LXD Pseudo-Operation
SETB Pseudo-Operation
LIST-CONTROLLING PSEUDO-OPERATIONS
EJCT Pseudo-Operation
LIST Pseudo-Operation
NLST Pseudo-Operation
PROGRAM LINKING PSEUDO-OPERATIONS
CALL Pseudo-Operation
XAC Pseudo-Operation
SUBR Pseudo-Operation
STORAGE ALLOCATION PSEUDO-OPERATIONS
BES Pseudo-Operation
BSS Pseudo-Operation
BSZ Pseudo-Operation
COMN Pseudo-Operation
SYMBOL DEFINING PSEUDO-OPERATION
EQU Pseudo-Operation
SPECIAL MNEMONIC CODES
OBJECT PROGRAM PREPARATION
ERROR DIAGNOSIS
OBJECT PROGRAM FORMAT
PROGRAMMING EXAMPLES

vi

Page

5-3

5-4

5-4

5-5

5-5

5-6

5-6

5-8

5-9

5-10
5-10
5-11
5-11
5-11
5-12
5-12
5-12
5-13
5-13
5-13
5-14
5-16
5-16
5-17
5-18
5-18
5-18
5-19
5-19
5-19
5-20
5-21
5-28

CONTENTS (Cont)

SECTION VI
STANDARD INPUT/OUTPUT LIBRARY
ASR-33/35 TAPE READER, ASCII (IAA, IAIL, I$GA)
Calling Sequence
Method
ASR-33/35 TAPE READER, BINARY (IAB, IABI, I$AI)
Calling Sequence
Errors
Method
ASR-33/35 TELETYPE - LISTING AND HEADING ROUTINE (OLL, OHH)
Storage Requirements
Calling Sequence
ASR-33/35 TAPE PUNCH, ASCII (OAA, OAI, O$AS)
Calling Sequence
Method
ASR-35 TAPE PUNCH, ASCII (OAA, OAI, O$AS)
ASR-33 TAPE PUNCH, BINARY (OAB, OAS)
Calling Sequence
Method
ASR-35 TAPE PUNCH, BINARY (OAB, OAS)
PAPER TAPE READER, ASCII (IPA, IPI)
Calling Sequence
Errors
Method
PAPER TAPE READER, BINARY (IPB, IPBI)
Calling Sequence
Errors
Method
OUTPUT TO ASR PRINTER IN ASCII (O$AL)
Calling Sequence
Errors
Method

OUTPUT ASCII INFORMATION TO UNBUFFERED SHUTTLE LINE PRINTER

(OLA, OLHS, OLE, OLES, O$LI,O3$LC, O$PN)
Calling Sequence
Method
Other Routines Called
I/0 BUS TO SHUTTLE PRINTER CONFIGURATION ROUTINE (O$LB)
Calling Sequence
Method

vii

Page

6-1
6-1
6-2
6-2
6-2
6-2
6-2
6-2
6-3
6-3
6-3
6-3
6-3
6-3
6-4
6-4
6-4
6-4
6-4
6-4
6-4
6-5

CONTENTS (Cont)

PAPER TAPE PUNCH, ASCII (O$PA, 0$GA, OPI, OPS, O$PLDR)
~ Calling Sequence
PAPER TAPE PUNCH, BINARY (OPB, OPS,)$PLDR)
Calling Sequence
PAPER TAPE PUNCH - LISTING AND HEADING ROUTINES (O$PL, ‘O$PH)
Calling Sequence
CARD READER, ASCII (ICA, IGA)
Calling Sequence
Errors
Method
CARD READER, BINARY (I$CB, I1$GB)
Calling Sequence
Errors
Method
MAGNETIC TAPE READ PACKAGE (I$MA-U, I$MB, I$MC)
Calling Sequence
Method
Other Routines Called
MAGNETIC TAPE CONTROL PACKAGE (CMR, CFR, CBR, CFF, C$BF)
Calling Sequence
Method
Other Routines Called
MAGNETIC TAPE WRITE PACKAGE (O$MA-U, O$MB, 0MC, OME)
Calling Sequence
Method
Other Routines Called
MAGNETIC TAPE UNIT CONVERSION ROUTINE (M$UNIT-U)
Calling Sequence
Method
CONVERT IBM TAPE CODE TO ASCII (C$6T08)
Calling Sequence
Method
CONVERT ASCII TO IBM TAPE CODE (C$8T06)
Calling Sequence
Method
MOVING HEAD DISC FILE DRIVER (M$IO)
Calling Sequence
Method
FIXED HEAD DISC FILE I/O DRIVER (D$IO)
Calling Sequence
Method

viii

Page

6-6
6-7
6-7
6-7
6-7
6-7
6-8
6-8
6-8
6-8
6-8
6-8
6-8
6-8
6-9
6-9
6-9
6-9
6-9
6-9
6-10
6-10
6-10
6-10
6-10
6-10
6-11
6-11
6-11
6-11
6-11
6-11
6-11
6-12
6-12
6-12
6-12
6-12
6-13
6-14
6-15

CONTENTS (Cont)

SECTION VII
MATHEMATICAL LIBRARY

CALLS AND ARGUMENTS

APPENDIX A
NUMBERING SYSTEM AND TWO'S COMPLEMENT ARITHMETIC

APPENDIX B
HONEYWELL 316/516 PERIPHERAL DEVICE CODES

APPENDIX C
SUMMARY OF STANDARD INSTRUCTIONS

APPENDIX D
MAIN FRAME OPTION COMMANDS

APPENDIX E
PERIPHERAL DEVICE COMMANDS

APPENDIX F
DEDICATED LOCATIONS

APPENDIX G
KEY-IN LOADER

APPENDIX H
SUMMARY OF DAP-16 PSEUDO-OPERATIONS

APPENDIX I
SOFTWARE PACKAGE

ILLUSTRATIONS
1 Honeywell 316/516 Simplified Block Diagram
1-1 Data Word Format, Single Precision
1-2 Data Word Format, Double Precision
1-3 Memory Reference Instruction Format
1-4 Generic Instruction Format
1-5 Input/OQutput Instruction Format
1-6 Shift Instruction Format
1-7 Data Word Format, Single Precision
1-8 Data Word Format, Double Precision
1-9 Integer Format
1-10 Real Format
1-11 Double Precision Format
1-12 Complex Format

1-13 Memory Sectors in 4096-Word Honeywell 316/516
1-14 Indirect Address Format
1-15 Fetch, Indexing, and Indirect Addressing, Logic Flow Diagram

Page

I-1

Page
xiv
1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-5
1-5
1-6
1-6
1-7
1-8
1-10

1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-17
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20

ILLUSTRATIONS (Cont)

Operation of a System with Extended Addressing,
Flow Diagram (Sheet 1 of 3)

Operation of a System with Extended Addressing,
Flow Diagram (Sheet 2 of 3)

Operation of a System with Extended Addressing,
Flow Diagram (Sheet 3 of 3)

Operation of a System with Memory Lockout and
up to 32K of Memory (Sheet 1 of 3)

Operation of a System with Memory Lockout and
up to 32K of Memory (Sheet 2 of 3)

Operation of a System with Memory Lockout and
up to 32K of Memory (Sheet 3 of 3)

ASR-33/35 Paper Tape Format
Desectorized Program Loading (Sheet 1 of 3)
Desectorized Program Loading (Sheet 2 of 3)
Desectorized Program Loading (Sheet 3 of 3)
Processing of One Line

Assembly Listing

Floating-Point Formats

TABLES

Honeywell 316/516 Computer Access-to-Memory Priority Structure
Glossary of Symbols

Load and Store Instruction Repertoire

Arithmetic Instruction Repertoire

Logical Instruction Repertoire

Shift Instruction Repertoire

Half-Word Instruction Repertoire

Control Instruction Repertoire

Input/Output Instruction Repertoire

Standard Interrupt Mask Assignments

Extended Addressing Instructions

Memory Parity Instructions

Memory Lockout Instructions

Protected Memory Ranges

High-Speed Arithmetic Unit Instructions

Real-Time Clock Option Instruction Complement

DMC Start and Terminal Memory Address Locations (DDP-516)
DMC Start and Terminal Memory Address Locations (H316)
Direct Memory Access Instructions

Dedicated Locations for the 12 Groups of Priority Interrupt Lines

Priority Interrupt Mask Assignments
X

Page

1-10
2-2

2-3

2-4

2-4

2-5

2-10
2-11
2-14
2-16
2-20
2-21
2-26
2-27
2-29
2-30
2-31
2-35
2-37
2-38
2-39

TABLES (Cont)

ASR~33/35 Character and Symbol Codes

Card Codes

Floating-Point Number Translations

A-Register Bit Settings for I/O Device Selection
Mathematical Routines

Utility Routines

Input/Output Routines

Mathematical Routines

Test and Verification Routines

Xi

Page

3-3
3-19
5-9
5-20
7-3
I-1
I-3
I-5
I-10

INTRODUCTION

The Honeywell 316/516 computers are designed for both open-shop scientific appli-
cations and real-time on-line data processing and control. Modular design, a flexible I/O
structure, and command repertoire enable these machines to be tailored to a broad variety
of applications both on- and off-line. These include data reduction, process control, instru-
mentation, simulations, and open-shop scientific and engineering computation.

General characteristics include fully parallel organization, indexing, multi-level
indirect addressing, powerful I/O system, a comprehensive 72-command instruction
repertoire, and straightforward logic for easy system interface and field expansion,
Selected optional capabilities are designed with plug-in modularity to permit custom tailor-
ing at minimum expense,

The DAP-16 assembler is effective and efficient because it allows the programmer to
specify a one- or two-pass assembly for the same source program: one-pass for the basic
system and two-pass for systems with high-speed input devices where more detailed listings
are required, The programmer can directly address all of memory with his source program
through the use of desectorizing software.

DAP-16 provides numerous pseudo-operations to supplement the standard instructions.
These pseudo-operations also allow the programmer to express concepts which do not have
any counterparts in machine language. Among the important capabilities of these instruc-
tions are programmer defined assembly and loader controls, data definitions, and program

linkages,

SYSTEM DESCRIPTION

Figure 1, a block diagram of the Honeywell 316/516, shows the data storage registers,
the control unit of the central processor, and the input/output controls. The random access
memory, shown as a single block, is a magnetic core unit containing one or more memory
modules of 4096 or 8192 (DDP-516 only) 16-bit words. Data from the memory is trans-
ferred to and from the Honeywell 316/516 registers through the M-register. The functional

units of the central processor and the input/output controls are:

A-Register (A): A 16-bit register used as the primary arithmetic and logic register

of the computer,

B-Register (B): A 16-bit secondary arithmetic register used primarily to hold arith-

metic operands which exceed one word in length,

Program Counter (P): A 16-bit register that contains the location of the next instruc-

tion to be executed,

xiii

wexderq yoorg poyydwIg 916/91¢

T1emAsuoy

*1 2an3tg

PLSEV

319071 TOHLNOJ NOILNgId1S!IQ

(sN8 ss3y¥aav)
aqv

!

434Qav

a

NI
(SN8 LNdNI)

(sn8 LNd1NO)
810

!

AYMONW3INW

xiv

Adder: Performs the basic arithmetic processes of addition and subtraction.

M-Register (M): A 16-bit register used to transfer information to and from the

magnetic core memory,

Y-Register (Y): A 16-bit register used to store the address for the memory.

C-Bit (C): A l-bit indicator associated with the A- and B-registers that stores over-
flow status resulting from the execution of arithmetic instructions and stores the last

bit shifted out of the A- or B-register during the execution of shift instructions,

Index Register (X): A 16-bit register used for address modification. Any memory

write cycle addressing memory location zero also loads the X-register,

Output Bus (OTB): Sixteen lines that transmit data from the computer A-register to

an I/0 device.

Input Bus (INB): Sixteen lines that transmit data from an I/O device to the computer

A-register,

Address Bus (ADB): Ten lines used in conjunction with I/O devices, Bits on lines 7

through 10 define the function to be performed by the I/O device. Bits on lines 11
through 16 designate the I/O device to be used.

SPECIFICATIONS

Iype

Parallel binary

Addressing

Single address with indexing and indirect addressing
Word Length

16 bits

Machine Code

Two's complement

Memory Type

Magnetic core
Memory Size

4096, 8182, 12,288, 16,384, 24,576 or 32,768 (DDP-516)
4096, 8192, 12,288, 16,384 (H316)

Memory Cycle Time

0.96 s (DDP-516)
1.6 us (H316)

Speed

Add: 1.92 us (DDP-516) 3.2 us (H316)
Subtract: 1.92 us(DDP-516) 3.2 us (H316)
Multiply
{hardware option): 5,28 us (max)(DDP-516) 8.8 us {(max) (H316)
Divide

(hardware option): 10,56 us (max)(DDP-516)17.6 us (max) (H316)

Standard Peripheral Equipment

ASR-33 or -35 Teletype Unit provides the following capabilities:

a. Reads paper tape at 10 characters per second

b. Punches paper tape at 10 characters per second

Type at 10 characters per second

A o

Keyboard input

Off-line paper-tape preparation, reproduction, and listing

Optional Peripheral Equipment

300 characters per second photoelectric paper-tape reader

110 characters per second paper-tape punch

300 line-per-minute (120 character-per-line) high-speed printer
200 card-per-minute card reader

Moving Head Disc File, Model 316/516-4600

Fixed Head Disc File, Model DDP-516-4400

Magnetic tape units:

Unit Tape Speed (ips) Density (bpi)
Low Speed 36 200, 556, 800
High Speed 80 200, 556, 800

Standard Input/Output Lines

16-bit input bus
16-bit output bus
10-bit device address bus

External control and sense lines

Input/Output Modes

Three modes are available for data transfer between peripheral devices and the
Honeywell 316/516:

a, Single word transfer with or without interrupt
b. Direct multiplex control (DMC) (optional)
c. Direct memory access (DMA) optional (DDP-516 only)

xvi

Interrupt
Single interrupt line standard; up to 48 optional priority interrupts are available.

Power Failure Protection

Power failure interrupt standard, Core memory is protected against loss of informa-

tion on ac power failure,

SECTIONAL DESCRIPTION

The Honeywell 316/516 Programmers Reference Manual is divided into 7 sections and 9
appendices. Programmers should be familiar with all sections including the Introduction
which describes information of general interest.

Section I introduces the computer organization while Section II describes the instruc-
tion repertoire., The majority of the Honeywell 316/516 I/O channels and devices comprise
Section III. The DAP-16 language is discussed in Section IV and the DAP-16 pseudo-operations
are detailed in Section V, Section VI contains information on the standard I/O Library and
Section VII includes the Honeywell 316/516 mathematical libraries. Appendix A comprises the
numbering system and two's complement arithmetic, while Appendix B lists the peripheral
device codes. The remaining appendices provide information on standard instructions,
main frame option commands, peripheral device commands, dedicated locations, key-in
loader, memory map, summary of DAP-16 pseudo-operations, modification of I/O device

assignments, and the software package.

PREREQUISITE READING

To complement the understanding of the Honeywell 316/516 Programmers Reference
Manual the reader should be familiar with the Honeywell 316/516 Users Guide (Doc. No.
130071627) and FORTRAN IV (Doc. No. 130071364).

SPECIAL INSTRUCTIONS

The Honeywell 316/516 Programmers Reference Manual supersedes the December 1966
edition of the DAP-16 Manual (Doc. No. 130071629) and the DDP-516 Programmers Reference
Manual (Doc. No. 130071585).

xvii

SECTION I
COMPUTER ORGANIZATION

This section comprises the organizational and functional capabilitites of the Honey-
well 316/516 general purpose 1/C digital computers. Bothhardware and software word formats,
memory addressing, indexing, and addressing are described. Instruction sequences,

breaks, interrupts, and memory access priority structure are also discussed,

WORD FORMATS (HARDWARE)

Word Structure

Data Words, -- Data words are stored in binary form using two's complement notation.
The Honeywell 316/516 accepts and processes data words in both single and double precision. Single

precision data words (Figure 1-1) include 15 magnitude bits plus a sign bit and represents a
data range of :!:2.15 or 32,768,

NN
SIGN_J\Z s

Y
MAGNI!TUDE BITS

Figure 1-1., Data Word Format, Single Precision

Double precision data words (Figure 1-2) include two data words, each one having 15
magnitude bits, The first data word includes the 15 most significant bits (MSB) of the
number plus a sign bit, It is identical to a data word using single precision. The second
data word includes the 15 least significant bits (LSB) of the double precision word, The

. irs . 30
sign position is always zero,

or 1,073,741, 824.

Double precision data words represent a data range of +2

The High Speed Arithmetic Option (Honeywell 316/516-11) is required
for hardware double precision operations.

15 MSB OF NUMBER
2nd WORD

NN
ALWAYs___f N — s,

ZERO 15 LSB OF NUMBER.

Figure 1-2, Data Word Format, Double Precision

Instruction Words

Instruction words are divided into four types: memory reference, input/output, shift,
and generic. The basic instruction word format in the computer is that for a memory
reference instruction as shown in Figure 1-3. Bit 1, the flag bit, denotes indirect address-
ing; bit 2, the tag bit, denotes indexing.* Bits 3 through 6 contain the operation code that
defines the function to be performed. For example, if bits 3 through 6 contain 0110 (06)8,
the instruction is identified as an ADD instruction; if they contain 1001 (1 1)8, the instruction
is a COMPARE. For ease of communication, operation codes are generally expressed either
in octal or as a mnemonic. "Subtract,' for example, which has an op code bit configura-
tion of 0111, is referenced in machine language as (07)8 and has a mnemonic of SUB. The
latter is the way the programmer writes an op code when programming in DAP-16, the

computer's assembly language.

FlT s
I [| | lll | ¢
123 8 7.8 y 6,
INDIRECT ADDRESS(FLAG— I
INDEX (TAG) I
OP CODE
SECTOR
ADDRESS

Figure 1-3. Memory Reference Instruction Format

*Bit 2 of an indirect address word in a DDP-516 having more than 16K of core memory is an
address bit in the EXTEND mode.

Generic instructions are identified by a word format as shown in Figure 1-4. Bits 1

through 16 denote the op code.

1 OPCODE 16

Figure 1-4., Generic Instruction Format

The I/O instruction word format is shown in Figure 1-5. Bits 1 through 6 specify
the particular I/O instruction and bits 11 through 16 specify which device is being addressed.
Bits 7 through 10 define the function to be performed by the instruction.

N T | S W | 11

) 6, 7 101t 16,
— v ~
OP CODE FUNCTION DEVICE
CODE ADDRESS

Figure 1-5. Input/Output Instruction Format

The shift instruction word format is shown in Figure 1-6. Bits 1 through 10 specify
the type of shift and bits 11 through 16 are used to define the number of shifts to be per-

formed. The number of shifts must be represented in two's complement form.

lllllll Lol by

10 11 16
J\

(. J

v

OP CODE NO. OF PLACES
IN 2's COMPLEMENT

Figure 1-6. Shift Instruction Format

1-3

Single Precision

The format for data words stored in the computer is shown in Figure 1-7,

| 2 16
— ~ J

SIGN BIT MAGNITUDE BITS

A3BTT

Figure 1-7. Data Word Format, Single Precision

Sixteen-bit data words are stored in two's complement form, The first bit of a data word

may be considered the arithmetic sign and is zero for positive data.

Double Precision

When greater precision is required than that obtainable when using the single precision
format, the double precision format is used (Figure 1-8). The sign position of the second
(least significant) word is always zero. Thirty bits of magnitude are obtainable, This is
the format for the product of the multiplication of two single precision words, It is also the

data format for double precision operations.

FIRST WORD SECOND WORD
12 16 I \2 16,
Y Y
SIGN MAGNITUDE BITS PLUS BIT MAGNITUDE BITS,
MOST SIGNIFICANT (ALWAYS LEAST SIGNIFICANT
HALF OF NUMBER ZERO) HALF OF NUMBER
A3379

Figure 1-8, Data Word Format, Double Precision

Logical Data

Logical data, such as the condition of 16 binary indicators, can be stored in a single
data word. In this case, bit 1 of a word does not represent the sign. This type of data is
generally not treated arithmetically by the program but logically by means of Boolean
operators such as AND and EXCLUSIVE OR.

WORD FORMATS (SOFTWARE)

Word Format Identifiers

Word formats defined in the next few paragraphs have the following field definitions:

S = Sign of number (0 if positive, 1 if negative)
I = 15-bit integer (2's complement if negative)
E = Characteristic of floating-point number (excess 128)
F (1) = Most significant bits of fractional part of a normalized floating-point
number
F (2)
and = 16-bit continuation of floating-point fraction
F (3)
Note: If the sign bit is negative, the floating-point number is in full 2-word

(3-word for double precision) two's complement form.

Integer Format

Following is the format for a right-justified single 15-bit (plus sign) integer. Examples
of such integers are:
24 = 000030
-24 = 177750

| 16
|s,r,1,1,1,1,1,1,1,T,I,T,I,I,I,I|

Figure 1-9. Integer Format

Real Format

Following is the format for a 2-word normalized floating-point number of sign and

23~ bit accuracy, and an 8-bit characteristic. Examples of real numbers are:

0.1 = 037346, 063146
503.25 = 042375, 150000
-0.1 = 140431, 014632
-503.25 = 135402, 030000

i 2 9 10 I8
tst woro [E E EEEEEEFFFFFFF|

| 16
2nd WORD F F F F ,F ,F ,F,F,F,F,F F,FFFF|

Figure 1-10. Real Format

1-5

Double Precision Format

Following is the format for a 3-word normalized floating-point number of sign and

39-bit accuracy, and an 8-bit characteristic. Examples of double precision numbers are:

0.1 = 037346, 063146, 063146
-0.1 = 140431, 114631, 114632

12 9 10 16
I st WORD

(acH) [lelElEIElElElElEIFlFIFJFlFlFlFJ

I 16
2 nd WORD
n(Ac2) FLFIFIFIFIF1F|F|F|F|F|F1F1F|F|FI

| 16
re aeof® |F F F,F F F ,F,F F,F F F F F FF

Figure 1-11. Double Precision Format

Complex Format

Following is the format for a complex number consisting of two real format arguments,

each being a two-word normalized floating-point number of sign and 23-bit accuracy. The
first real argument represents the real part of the complex argument, while the second

real argument represents the imaginary part of the complex argument. An example of a

complex number is:

503.25, -0.1 = 042375, 150000, 140431, 014632

|1 2 9 i0 16

'st woro | S \E E EE,E EEEF,FFFFFF]

ARG. | | 6
2nd woro | F F F F F,F FF FFFFFFFF]

I 2 9 |10 16

st woro |S | E\E \EEEEEEFFF FFFF]

ARG. 2 1 6

2nd wor0 |F,F ,F ,F F,F F,F,F ,F,F F FF F F]

Figure 1-12. Complex Format

MEMORY ADDRESSING

A memory reference instruction can use several techniques for addressing memory:
direct addressing, indexing, and indirect addressing, {See Figure 1-13). Indexing and
indirect addressing may be specified in the same instruction, and indexing may be pre- or

post-indirect addressing. Multi-level indirect addressing is provided.

1-6

Direct Addressing

The memory of the Honeywell 316/516 is considered to be divided into sectors of 512
words each (i.e., a 4096-word computer will have eight sectors). Any word in a sector can
be addressed with nine bits (29 = 512). The address portion of a memory reference instruc-
tion (bits 8 to 16) can define a unique word in a sector. Addresses within sectors run from
(OOO)8 to (777)8. The sector bit, bit 7 of the instruction, identifies the sector of the word

addressed in accordance with the following rules:

Sector Bit = 0 The address is in sector 0 (octal address 0000 - 00777).

Sector Bit = 1 The address is in the same sector as the instruction being executed.
For example, assume an ADD instruction having an address of 4448 is in location (02100)8,
or sector 2 word 100. If the sector bit in the instruction is 0, the instruction references
word 4448 in sector 0, or (00444)8. If the sector bit is 1, then the instruction references
word 4448 in sector 2, or (02444)8, because the instruction itself is in sector 2.

A single instruction can thus directly address 1024 words, half of which are in
sector 0 and half of which are determined by the location of the instruction. Figure 1-13
represents the memory that can be directly addressed by an instruction in sector 2 and an

instruction in sector 6.

m Octal Address
0 SRR 00000-00777
1 01000-01777

Typical operand addressing:

3 Instructions in sector 2 can
4 directly access any location

in sector 2 or sector O; V//A
5

Instructions in sector 6 can

7 in sector 6 or sector 0. N\
07000-07777

Figure 1-13. Memory Sectors in 4096-Word Honeywell 316/516

1-7

Indirect Addressing

If bit 1 of a memory reference instruction is set, indirect addressing takes place.
When indirect addressing is specified, the effective address of the operand is assumed to
be the content of the location specified by the direct address. The format of the indirect

address location is shown in Figure 1-14.

12 3 y 16
INDIRECT ADDRESS (FLAG) —T ADDRESS

INDEX (TAG)

A3%82

Figure 1-14. Indirect Address Format

To illustrate indirect addressing, consider that an ADD command in sector 2 is
flagged for indirect addressing (this is specified in DAP by placing an asterisk after the
op code).

ADD= 4448
Location 4448 contains

(06231)8

The effective address would then be (06231)8, which is in sector 6, The content of
location 062318 would be added to the A-register.

Since the address field in the indirect address location is 14 bits, up to 16K of memory
can be addressed in this mode. Indirect addressing adds a cycle to the execution time of an

instruction,

Multi- Level Indirect Addressing

Bit 1 of the indirect address word also contains a flag bit, If this is set, another
level of indirect addressing occurs. This chaining of indirect addressing continues until an
indirect address word is reached whose flag bit is zero. Each level of indirect addressing

adds a cycle to instruction execution time,

NOTE

With the memory lockout option, instructions
executed in the restricted mode cause an inter-
rupt if more than eight levels of indirect
addressing are attempted,

1-8

INDEXING

The index register is a 16-bit hardware register whose contents can be added to the
direct address of an instruction to produce a new effective operand address. This action
causes no increase in instruction execution time. Indexing is specified by putting a ONE
in bit 2 of a memory reference instruction,

If indexing is specified, the value in the index register is added algebraically to the
direct address. The index register can contain either a positive or negative (two's com-
plement) value, although negative values are generally used.

For example, if the index register contained -2 (177176)8, and the ADD 4448 instruc-
tion at (02100)8 mentioned in the previous section were executed with both the index and
sector bits set, the effective address would be (02444-)8 + (177776)8 or (02442)8. Sector
boundaries can be crossed with no increase in instruction execution time,

The index register can be loaded or stored directly by means of the load index (LLDX)
and store (STX) instructions. In addition, any instruction that addresses memory location 0
addresses the index register. The usual way of incrementing the index register is by an

IRS 0 instruction,

Indirect, Pre-Index

Pre-indexing occurs if both the indirect and index bits of an instruction are set, In
this case, indexing is applied to the direct address to determine the location of the indirect

address,

Indirect, Post-Index

If the indirect bit in an instruction is set, and if the index bit is set in the indirect
location as opposed to the instruction itself, indexing is applied to the indirect address to

determine the location of the operand. This action is called post-indexing,

ADDRESSING SUMMARY

Figure 1-15 is a flow chart that shows the various phases in developing the effective
address of a memory reference instruction. It is for the normal mode only and does not

cover the development of addresses in the following cases:

a. Memory lockout is included in the system and the base (J) register is not zero,
(See Section II,)
b. The system contains more than 16K of memory and the extend mode is being

utilized, (See Section IL)

Dedicated Locations 1-17

Memory locations (00001)8 through (00017)8 are protected in the standard machine
against being written into under program control. Information may be read from these

locations in the normal manner, However, all instructions which attempt to write in them

MEMORY LOADS
M WITH
NEW INSTRUCTION

YES

IS OP CODE
LDX/STX

NO

‘ INDEXING CALLED FOR? >

NO

YES

SECTOR BIT?) (SECTOR BIT?)

ZERO ONE

:

:

ZERO ONE

!

|

Mig_1g-+Yg_ig [“”3—7 (M)a—|6]+
(Pl37. (Mg g*(Y Mg.g ¥ (X316 LY '
0= (V)7 37, (Mg-ig= (V36| |(MIg.16™ (X316 = (Y)z46 (Xhg 16+ (Y316
0—’(Y)|_2 O"(Y)I—Z 0'.(Y)I—Z
INDIRECT NO %*
ADDRESSING EAISIN Y3 g
CALLED FOR ?)
YES
CONTENTS OF CORE LOCATION SPECIFIED BY (Y) —=(M)
* EA DENOTES
"EFFECTIVE
’) OPERAND
C INDEXING CALLED FOR ADDRESS"
NO YES
My 6=V g (M3 16+ X)) _(g=(Yhyg
O-’(Y)|_2 O——(Yh_a
A388S
Figure 1-15. Fetch, Indexing, and Indirect Addressing, Logic Flow Diagram

will be aborted. The only way in which these locations may be loaded is through the use of
the memory access feature of the console. (See the Honeywell 316/516 Operators Guide.)
The locations provide protected storage for the Key-In Loader used with the software

system. (See Appendix G.)

Dedicated Location 0 (Index Register)

The hardware index register tracks the dedicated memory location (00000)8 (index
register); that is, any modification of location (OOOOO)8 causes the hardware index register

to be changed to agree with (00000)8. (For systems with memory lockout, see Section IL)

Instruction Sequences

Programs are executed sequentially with the contents of the program counter
(P-register) being incremented by one upon the execution of each instruction, Certain
instructions (SKIPS, COMPARE, I/O) conditionally increment the program counter by an
additional one or two, thereby causing a skip, Others (JUMP, JUMP-STORE) uncondi-
tionally load the program counter with the effective address, thereby causing a branch in

the program.

Breaks

Certain operations may occur between instructions or between cycles of instructions
without effecting the contents of the program counter, When the operations are complete,
the program resumes. These actions are called '"breaks, ' and include such operations as
DMA or DMC I/O cycles, incrementation of the real-time clock, and memory increment

breaks.

Interrupts

An interrupt is different from a break in that an action occurring independently of a
program can cause the contents of the program counter to be automatically changed, thereby
changing the sequence of instruction execution, Interrupts have unique memory locations
dedicated to them whose contents are interpreted as an indirect address. The action of an
interrupt causes the program to branch to the location whose address is stored in the
dedicated location,

Interrupts are caused by:

a. I/O interrupts
Power Failure Interrupt
Memory Lockout Interrupts

Additional Interrupts
Start Button

® oo T

Memory Access Priority Structure

The various functions that the computer performs are executed in a priority sequence
if two or more functions are trying to simultaneously access memory. The following table
shows the relative priorities between the program and breaks and interrupts. Details on

the latter are explained in the following chapters.

Honeywell 316/516 Computegibclcee;s:o-Memory Priority Structure
Relative
Priority Level Option/Function

1 Direct Memory Access Break (DMA) DDP-516-21

2 Direct Multiplex Control Break (DMC)H316-20, 21, DDP-516-20
3 Power Failure Interrupt (PFI), Standard

4 Real-Time Clock Break Honeywell 316/516-12

5 Memory Lockout Violation Interrupt, DDP-516-08

6 Standard Interrupt Standard

7 Memory Increment Break Honeywell 316/516-26

8 Priority Interrupt Honeywell 316/516-25

9 Central Processing Unit (CPU)

SECTION II
INSTRUCTION REPERTOIRE

The instructions which comprise the standard Honeywell 316/516 instruction repertoire
are described in this section. Mnemonics and symbols used in the instruction descriptions
are listed in Table 2-1. A thorough knowledge of the data presented in Table 2-1 is necessary
to understand the instruction descriptions.

Tables 2-2 through 2-9 list all standard instructions. Each instruction is identified
by its assigned three-letter mnemonic, type symbol, and octal op code. Definitions,
descriptions, and timing data for each instruction are also included in these tables. (See

Section I for instruction word formats.)

STANDARD INSTRUC TIONS

The standard instructions in Tables 2-2 through 2-9 are grouped into the following

operational categories:

a. Load and Store
b. Arithmetic

c. Logical

d. Shift

e. Input/Output
f. Control
g. Half-Word

Arithmetic instructions which provide overflow detection are indicated by the designa-
tion Overflow Status — (C). If overflow occurs on a particular instruction, the C-bit is set
to a one, If overflow does not occur, the C-bit is reset to a zero., Thus, after each arith-
metic instruction, the contents of the C-bit indicate whether or not overflow occurred on

that instruction.

STANDARD INTERRUPT

The Honeywell 316/516 has an interrupt system to which all devices are connected by
means of the priority interrupt line (PIL) of the I/O bus. For a device to cause an interrupt,

the following conditions must be met:

a. The device must be ready.
b. The interrupt mask flip-flop must be set, (See SMK instruction,)

c. System interrupt must be enabled by an ENB instruction.

All interrupts are stored until they are serviced, An interrupt request is removed by the

action of an INA or OTA command, resetting the ready status.

2-1

Table 2-1.
Glossary of Symbols

Symbol Definition

EA Effective operand address; the address from which the
operand is obtained, This is determined only after
all selection of sectors, indexing, and indirect address-
ing have been performed.

n Specified number of shifts to be performed.

N Two's complement of the number of shifts to be performed.

ADB Address Bus

INB Input Bus

OTB Outnut Bus

EXTMD Extended Mode Indicator - associated with Extended Addressing -
Honeywell 516-05, 06

DP Mode Double Precision Mode associated with Honeywell 316/516-11

A A-Register (16 bits)

P Program Counter (16 bits) -

B B-Register (16 bits)

E E-Register (16 bits)

X Index Register (16 bits)

M M-Register (16 bits)

C C-bit (1 bit)

Replaces

Is exchanged with
Is discarded
Logical AND
Logical OR
Exclusive OR
Algebraic Addition

Contents of a hardware register (e. g., (A) = contents of
A -Register)

Contents of core location specified by (e. g. [EA] = con-
tents of core location specified by EA)

Tag Bit (bit 2 of instruction word)
Memory Reference Instruction
Generic Instruction

Shift Instruction

Input-Output Instruction

Table 2-2,
Load and Store Instruction Repertoire

No. of Time (us)
Mnemonic | Type| Op Code]| Definition Description Cycles |1 DDP-516] H316
CRA G 140040 Clear A 0 - (A) 1 0.96 1.
IAB G 000201 | Interchange A |(A) Z (B) 1 0.96 1.
and B
IMA MR 13 Interchange (A) 5 [EA] 3 2.88 4.8
Memory and A
INK G 000043 Input Keys (C) -~ (A)1 1 0.96 1.6
(DP Mode) — (A)2
(PMI) - (A)3.
0~ (A)4-11
Shift Count - (A) 12-16
LDA MR 02 Load A [EA] -~ (A) 2 1.92 .
LDX MR 15 Load X [EA] = (X) 2.88 | 4.
T=1 [EA] ~ [00000]
NOTE
This instruction cannot be indexed.
However, if indirect addressing is:
called for, the indirect address can
be indexed in the usual manner.
OTK G 171020 | Output Keys (A)1 -+ (C) 2 1.92 1.6
(A)2 - (DP Mode)
(A); >~ (EXTMD)
(A)lZ—lé — Shift Count
STA MR 04 Store A (A) ~ [EA] 1.92
STX MR 15 Store X (X) = [EA] 1.92 .
T =20
NOTE
This instruction cannot be indexed.
However, if indirect addressing is
called for, the indirect address can
be indexed in the usual manner.

Table 2-3,
Arithmetic Instruction Repertoire

No, of Time (us)
Mnemonic Type | Op Code Definition Description Cycles DDP-516 H316 |
ACA G 141216 | Add C to A (A) + (C) —~(A) 1 0.96 1.6
Overflow status — (C)
ADD MR 06 Add (A) + [EA] - (A) 2 1.92 3.2
Overflow status —(C)
AOA G 141206 Add One to A (A)+ 1 - (A) 1 0.96 1.6
Overflow status — (C)
SUB MR 07 Subtract (A) - [EA] —(A) 2 1.92 3.2
Overflow status - C
TCA C 141407 | Two's Comple-| (A) + 1~ (A) 1.5 1. 44 2.4
ment A
Table 2-4,
Logical Instruction Repertoire
No. of Time (us)
Mnemonic Type|l Op Code Definition Description Cycles DDP-516
ANA MR 03 AND to A (A) A [EA] —(A) 2 1.92 3.2
EXAMPLE: (a) jojrjo}!
[ea] |ololi
RESULT IN A olojo]!
CSA G 140320 | Copy Sign and |(A); ~(C) 1 0.96 1.6
Set Sign Plus 0 (A)l
CHS G 140024 | Complement A (A), ~(A), 1 0.96 1.6
Sign
CMA G 140401 Complement A |(A) - (AYONEs complement) 1 0.96 1.6
ERA MR 05 Exclusive OR |(A) * [EA] - (A) 2 1.92 3.2
to A EXAMPLE:) fofo}i |
[EA] of1]oft
RESULT IN A oft]i]o
SSM G 140500 Set Sign Minus |1 - (A)l 1 0.96 1.6
SSP G 140100 | Set Sign Plus 0 —~ (A)1 1 0.96 1.6

Table 2-

5,

Shift Instruction Repertoire

No. of Time
Mnemonic Type | Op Code Definition Description Cycles (ks)
ALR SH 0416 Logical Left c A A 1+ n/2 {0.96
Rotate ! '6 + 0.48n
The A register is shifted (DDP-516)
left, end-around (n) po-
sitions. Aj is shifted out 1.6
to A16 and the C bit. The + 0.8n
C bit takes the state of (H316)
the last bit shifted into
At
ALS SH 0415 Arithmetic A A A o 14+ n/2 [0.96
Left Shift I 2 16 + 0.48n
Overflow status — (C) (DDP-516)
The A register is shifted 1.6
left (n) positions. If + 0.8n
'shifting.causes a changej (H316)
in the sign of A at any time
during the instruction, the
C bit is set, If the sign is
not changed, the C bit is
reset. After 16 or more
shifts, the A register con-
tains zero,
ARR SH 0406 Logical Right c l1+n/2 |[0.96 +
Rotate R e 0.48n
The A register is shifted (DDP-516)
right, end around (n) po- 1.6
sitions. Bits shifted out + 0.8n
of A1¢ enter A, and the
C bit. The C bit takes (H316)
the state of the last bit
shifted
ifted out of Alé'
ARS SH 0405 Arithmetic ”I iA l A A c l+n/2]0.96 +
Right Shift I 2 16 | . 1 0.48n
- -] (DDP-516)
The A register is shifted
right (n) position. The 1.6
sign bit (A]) does not + 0.8n
change; it is shifted into
(H316)

vacated positions of the
register. Bits shifted

out of Ay enter the C

bit. The C bit takes the
state of the last bit
shifted out of Ajg. If15

or more shifts are
specified, all bits of the

A register are the same as
the sign bit,

Table 2-5, (Cont)
Shift Instruction Repertoire

shifted into vacated
positions of B. Bits
are shifted from Bj to
Aj¢. Each bit shifted
out of A) enters the C
bit. Bits shifted out of
the C bit are discarded.
If 32 or more shifts are
specified, the A and B
registers contain zero,
The C bit takes the state
of the last bit shifted
out of Al'

No, of Time
Mnemonic Type |Op Code Definition Description Cycles (ks)
LGL SH 0414 Logical Left l1+n/2 | 0.96+
Shift m ° 0.48n
The A register is shifted (DDP-516)
left {n) positions, Zeros 1.6
are filled in vacated bit +0.8n
positions, A1 is shifted to
the C bit, (H316)
Bits shifted out of C are
discarded. After 16 or
more shifts, the Aregis-
ter contains zero., The
C bit takes the state of
the last bit shifted outof
Ay,
LGR SH 0404 Logical Right 0 m 1+n/2 | 0.96+
Shift 0.48n
The A register is shifted (DDP-516)
right (n) positions.
Zeros fill in vacated bit 1.6
positions. A}g is shifted + 0.8n
to the C bit. Bits shifted
out of C are discarded. (H316)
After 16 or more shifts,
the A register contains
zero, The C bit takes the
state of the last bit shifted
out of A, ,.
16
LLL SH 0410 Long Left AI A'GHB' 316}._0 1+n/2 [0.96+
Logical Shift 0.48n
The A and B registers (DDP-516)
are treated as a single
32-bit register (A being
the most significant) 1.6
and shifted left nposi- + 0.8n
tions, Zeros are (H316)

2-6

Table 2-5, (Cont)
Shift Instruction Repertoire

No. of Time
Mnemonic Type | Op Code Definition Description Cycles (ms)
LLR SH 1412 Long Left
1+n/2 }0.96+
A S Y T e Rl L A
The A and B registers (DDP-516)
are treated as a single
32-bit register and 1.6
shifted left, end-around,)
L ! + 0.8n
(n) positions. Bits
shifted out of B enter {H316)
A gs bits shifted out of
A enter Bjg and the C
bit. Bits shifted out of
C bit are discarded.
The C bittakes the state
of the last bit shifted into B16.
LLS SH 0411 Long Arithme-
tic Left Shift a2, g 8, Bgeo|1+n/2 06.9;)8:1
Overflow Status (C) (DDP-516)
The A and B registers are
treated as a single 31-bit 1.6
register (B} is not + 0.8n
changed) and shifted left (H316)

n positions. Zeros are
shifted into vacated posi-
tions through Bj¢. Bits
shifted out of B2 enter
Ajg. If at any time during
the instruction the sign
of the A register (A)) is
changed, the C bit is set.
If at the end of the
instruction the sign has
not been changed, the C
bit is reset. If 31 or
more shifts are speci-
fied, the A and B regis-
ters contain zero (except
for B1 , which is un-
changed).

2-7

Table 2-5, (Cont)
Shift Instruction Repertoire

Mnemonic

Type

Op Code

Definition

Description

No, of
Cycles

Time
(ks)

LRL

LRR

SH

SH

0400

0402

Long Right
Logical Shift

Long Right
Rotate

o——.|Al AIGl_.IfI

The A and B registers are
treated as a single 32-bit
register (A being the most
significant) and shifted
right n positions. Bits
shifted out of Aj¢ enter
B,. Bits shifted out of
Bj¢ enter the C bit. Bits
shifted out of C bit are
discarded. Zeros are
shifted into vacated posi-
tions through A|. The C
bit takes the state of the
last bit shifted out of Byg-
If 32 or more shifts are
specified, the A and B
registers contain zero,

EI Ae™8 B

The A and B registers are
treated as a single 32-bit
register (A being the most
significant) and shifted
right, end-around (n) po-
sitions. Bits shifted out
of A enter B;. Bits
shifted out of B ¢ enter
A1 and the C bitl. Bits
shifted out of C are dis-
carded. The C bit takes
the state of the last bit
shifted into Al’

l+n/2

1+ n/2

0.96 +
0.48n

(DDP-516)

1.6
+ 0.8n

(H316)

0.96
+ 0.48n

({DDP-516)

1.6
+ 0.8n

(H316)

Table 2-5., (Cont)
Shift Instruction Repertoire

Mnemonic | Type | Op Code Definition Description No. of | Time
Cycles (us)
LRS SH 0401 m A ! I
i 2 M B, B |C]
Long Arithme-| The A and B registers are |l + n/2]0.96
tic Right Shift] treated as a single 31-bit + 0.48n
register (B; is not (DDP-516)
changed) and shifted right
(n) positions. The sign
bit, Aj, is not 1.6
changed; it is propagated +0.8n
into vacated positions of (H316)

the register. Bits shifted
out of A} ¢ enter B;. Bits
shifted out of B enter
the C bit. (Bits shifted
out of the C bit are dis-
carded.) After 30 or
more shifts, both regis-
ters are filled with the
sign of the A register,
except for B, which is un-
changed. The C bit takes the
state of the last bit shifted
out of Byg.

Note: The C bit is always cleared before a shift instruction is executed.

2-9

Table 2-6,
Half-Word Instruction Repertoire

3 . e No. of Time (us)
Mnemonic | Type | Op Code Definition Description Cycles [BoP516 T 11378
CAL G 141050 Clear A, Left 0 -*(Al_8) 1 0.96 1.6
Half (A9~l6) are unchanged
CAR G 141044 | Clear A, 0 > (Ag_y¢) 1 0.96 1.6
Right Half (A} _g) are unchanged
ICA G 141340 | Interchange (A1_8)3(A9_16) 1 0.96 1.6
Characters c ; .
in A A, is interchanged with A9,
A2 with AIO’ etc.
ICL G 141140 | Interchange (A)~ (A) 1 0.96 1.6
1-8 9-16
and Clear 0~(A)
Left Half of A 1-8
Bits 9-16 of A are re-
placed with bits 1-8; bits
1-8 are cleared.
ICR G 141240 | Interchange (A)~ (A,) 1 0.96 1.6
9-16 1-8
and Clear 0> (A)
Right Half 9-16
of A Bits 1-8 of A are re-
placed with bits 9-16;
bits 9-16 are cleared.

Table 2-7,

Control Instruction Repertoire

Mnemonic

Type

Op Code

Definition

Description

INo, of
Cycles

Time

(ks)

DDP-516

H316

CAS

ENB

HLT

INH

MR

11

000401

000000

001001

Compare

Enable Pro-
gram Inter-
rupt

Halt

Inhibit Pro-
gram Inter-
rupt

Algebraically compare
(A) and [EA]

If (A) > [EA], execute next
instruction.
skip next
instruction,
skip two in-
structions.

If (A) = [EA],

If (A) < [EA],

Set machine status to per-
mit interrupt. The per-
mit interrupt status does
not take effect until the
instruction immediately
following ENB is com-
pleted. (PI indicator
lights.)

Sets machine to halt mode.
No further instructions or
interrupts are serviced
until the console START
button is pressed, at
which time normal execu-
tion resumes.

Resets ''permit interrupt

status'' to prohibit standard

or priority interrupts.
(PI indicator is extin-
guished.)

2.88

0.96

0.96

1.6

1.6

“H316

Table 2-7.

(Cont)

Control Instruction Repertoire

No. of Time (us)
Mnemonic | Type| Op Code Definition Description Cycles | ppps16 | H316
IRS MR 12 Increment, re- [[EA] + 1 - [EA] 3 2.88 4.8
place and SKip |1 (gaA] 4 | = 0, skipnext
instruction
IMP MR 01 Unconditional |EA — (P) 1 0.96 1.6
Jump Next instruction to be exe-
cuted is at location EA.
IST MR 10 Jump and (P53 1)~ [EA;_ (] 3 2.88 | 4.8
Store Location [EAl 2] not changed
’
EA3-16 + 1 >(P3_j¢)
NOP G 101000| No Operation Performs no operation. 1 0.96 1.6
Computer proceeds to
next instruction.
RCB G 140200 | Reset C Bit 0 - (C) 1 0.96 1.6
SCB 140600 | Set C Bit 1 - (C) 1 0.96 1.6
SKP G 100000 } Unconditional |[Skip next instruction 1 0.96 1.6
Skip
SLN G 101100 | Skip if (A () If (A}g) = 1: skip next 1 0.96 1.6
One instruction
SLZ G 100100 | Skip if (A,) If (Ag) = O: skip next 1 0.96. 1.6
Zero instruction
SMI G 101400} Skip if A If (A) = 1: skip next 1 0.96 1.6
Minus instruction
SNZ G 101040 | Skip if A Not [If (A) # O: skip next 1 0.96 | 1.6
Zero instruction
SPL G 100400 | Skip if A Plus |If (A;) = 0: skip next 1 0.96 1.6
instruction
SR1 G 100020 } Skip if Sense If Sense Switch 1 is OFF: 1 0.96 1.6
Switch 1 is skip next instruction
Reset
SR2 G 100010 | Skip if Sense If Sense Switch 2 is OFF: 1 0.96 1.6
Switch 2 is skip next instruction
Reset
SR3 G 100004 | Skip if Sense If Sense Switch 3 is OFF: 1 0.96 1.6
Switch 3 is skip next instruction
Reset

Table 2-7, (Cont)
Control Instruction Repertoire

No. of Time (ps)
Mnemonic | Type | Op Code Definition Description Cycles | DDP-516 | H316
SR4 G 100002 | Skip if Sense If Sense Switch 4 is OFF: 1 0.96 1.6
Switch 4 is skip next instruction
Reset
SRC G 100001 Skip if C If (C) = 0: skip next in- 1 0.96 1.6
Reset struction
SS1 G 101020 | Skip if Sense If Sense Switch 1 is ON: 1 0.96 | 1.6
Switch 1 is skip next instruction
Set
Ss2 G 101010 | Skip if Sense If Sense Switch 2 is ON: 1 0.96 1.6
Switch 2 is skip next instruction
Set
SS3 G 101004 | Skip if Sense If Sense Switch 3 is ON: 1 0.96 1.6
Switch 3 is skip next instruction
Set
SS4 G 101002 | Skip if Sense If Sense Switch 4 is ON: 1 0.96 1.6
Switch 4 is skip next instruction
Set
SSC G 101001 Skip if C Set If (C) = 1: skip next in- 1 0.96 1.6
struction
SSR, G 100036 | Skip if No If no Sense Switches are 1 0.96 1.6
Sense Switch ON: skip next instruction
Set
SSS G 101036 | Skip if Any If any Sense Switch is’ ON: 1 0.96 1.6
Sense Switch skip next instruction
Set
SZE G 100040 Skip if A Zero| If (A) = 0: skip next in- 1 0.96 1.6
struction

Table 2-8,
Input/Output Instruction Repertoire

- No. of Time (us)
Mnemonic Type | Op Code Definition Description Cycles 150p516 H316
Input-Output For I/O Discussion see Section III IEA
INA 10 54 Input to A (M)_’ e —(aDB), 6 2 1.92 3.2
For INA
codes,
see
Appen- DEVICE
dices READY?
E and F.
EXECUTE
NEXT
INSTRUCTION
NO YES
0 —== (A)
(A) v (INB) (A]
) M aner—e @)
SKIP NEXT INSTRUCTION
ocP 10 14 Output (M) — = (ADB) 2 1.92 | 3.2
Control T-1e 7-le
For OCP Pul
codes, ulse
see
Appen- GENERATE OCP
dices CONTROL PULSE
E and F,
OTA 10 74 Output oTA 2 1.92 | 3.2
For OTA [from A l
codes,
see (M)7_'6 ———»(ADB).,_Is
Appen-
dices
E and F,
NO YES
DEVICE READY?
EXECUTE)
NEXT (A) —e(0TB)
INSTRUCTION
SKIP NEXT INSTRUCTION

Table 2-8. (Cont)
Input/Output Instruction Repertoire

No. of Time (us)
Mnemonic | Type| Op Code Definition Description Cycles |DDP-516 | H316
SMK 10 74 Set Mask (Spe (A) - (OTB) 2 1.92 3.2
i A
For SMK | cial OTA) Generate SMK pulse to
codes,
transfer output bus to
see 2
Appen- external device mask
PP flip-flops. This in-
dices struction does not skip
E and F, :
SKS 10 34 Skip if Read 2 1.92
LirF:e Set 4 M, g™ OB, g ? 32
For SKS
codes,
see NO SKIP YES
Appen- CONDITION
dices MET?
E and F,

Rl SKIP NEXT
NEXT
INSTRUCTION INSTRUCTION

I/O interrupts are serviced at the end of an instruction unless they are delayed by
higher priority systems such as DMC, (See Section I.) The action of the standard inter-
rupt is to cause a forced indirect jump-store through location 638 (JST* 63). This takes
three cycles and also forces an inhibit interrupt instruction (INH),

The interrupt subroutine (whose starting address is stored in 638) can then reset the
mask flip-flop for lower priority devices, leaving those of higher priority still set and re-
enable interrupt. Upon exiting the interrupt subroutine, it can then reset the lower priority
mask,

This allows the Honeywell 316/516 to have a very flexible priority interrupt system with
high priority interrupts interrupting lower priority interrupts. Sixteen levels of interrupt can

be controlled in one instruction by means of the SMK command.

Location and Mask Bits and Device Address

Table 2-9,
Standard Interrupt Mask Assignments
OTB Bit No, Device OTB Bit No, Device
1 Mag Tape Control Unit No, 1 9 Paper Tape Reader
2 Mag Tape Control Unit No. 2 10 Paper Tape Punch
3 (Unassigned) 11 ASR-33/35
4 Moving Head Disc File 12 Card Reader
5 1/0O Channel No, 1 13 (Unassigned)
6 1/O Channel No, 2 14 Line Printer
7 I/O Channel No. 3 15 Memory Parity (DDP-516)
15 (Unassigned) (H316)
8 Small Mass Store 16 Real Time Clock

OPTIONAL INSTRUCTIONS

Extended Addressing (DDP-516)

Memory expansion above 16K in the DDP-516 is handled by the introduction of the
"extend'' mode. The program counter bit (P02) provides the fifteenth bit of the 32K
address field and conditions bit 2 of the Y-register (Y02) when the sector being addressed
is not zero,

The extend mode changes the interpretation of the index bit of the indirect address
word, which becomes part of a 15-bit indirect address. Only one level of indexing is
possible in the extend mode. It is specified by bit 2 of the instruction word and is always
the final operation in generating the effective operand address. (See Figure 2-1 for flow-

grams illustrating the operation of a system with extended addressing.)

(P 16

(P)|-1g +I—(D))_ g

(.6

MEMORY LOADS

NEXT INSTRUCTION

WITH

(2)]

16

YES/” EXTEND MODE? NO
k (EXTEND=1)

(D)I), (D)

L —= SEE SHEET 2 ——@

INDIRECT YES

ADDRESS? SEE SHEET 3 ——"’®

(MOI1=1)

NO

YES SECTOR ZERO NO
{(MO7=0)

INDE XING
(M02:=1)

INDEXING?
(MO2=1)

0—=(D)1-7
(M)g-16>D)g-16

(M) 8-16+
(X)1-16-»(D)

— ("))-7, Mg-ie
W2 M50 (X)1-16 —=(D)

1

| y

Figure 2-1.

EXECUTE

Operation of a System with Extended Addressing,
Flow Diagram (Sheet 1 of 3)

INDEXING
(MO2=1)

SECTOR ZERO
(M07:=0)

INDEXING
(mo2:1)

— 0-»(D)). 7 (-7,{M)g-16 (D]
Ma-16 ¥~ @ (M)g- 16— (D)g_1g 0),_ gm0 | | V-7 Mg gm0
(D), (Y), (O)y_, = (¥),_ ¢

NDIR

| ECT NO
ADDRESS?
(MOI=1)

EXECUTE

YES

FETCH NEW ADDRESS
INTO M

(M), (P), (M), _

1)

—=(D)

I6+(X)l—l6

L

1, 2,

(WWHW&Eﬂﬂ

)

I

©), (1,000, g6

l

Figure 2-1.

Flow Diagram (Sheet 2 of 3)

Operation of a System with Extended Addressing,

YES (“sector zero 7 \ N0
(MO7 = 0)

00— (D) -7

) .7.,Mg_g "(Di

(D) ={Y)
FETCH NEW ADDRESS
INTO M
YES INDIRECT ADDRESS ? NO
(mo1=1)
YES
ORIGINAL
(M)2 =1?
(M)“IG -»(D) (M)l-ls +(X).-|G -»{D) (M)|-|5 (D)
(D)—=(Y) (D)y=(Y)
EXECUTE

A3594

Figure 2-1. Operation of a System with Extended Addressing,
Flow Diagram (Sheet 3 of 3)

Operation

The extended mode indicator (EXTMD) is set or reset by the generic instructions

EXA or DXA, respectively, and by an OTK, set if (A)3 is a one, reset if a zero., It is also

set by the occurrence of a program interrupt. An indication that the computer is in an

extend mode may be displayed at the control panel. (See the Honeywell 316/516 Operators

Guide.) A previous mode indicator (PMI) is added to the mainframe to save the mode in

which the program was operating when a program interrupt occurred.

The PMI is set if the CPU is in the extend mode when a priority interrupt occurs., It

is reset if the CPU is not in the extend mode when a priority interrupt occurs and when the
control panel MASTER CLEAR pushbutton is depressed.

Instruction Complement

Table 2-10 contains a list of instructions required for extended addressing.

Table 2-10,
Extended Addressing Instructions

No, of Time

Mnemonic Type Op Code Definition Description Cycles (Ks)
EXA* G 000013 Enable Places computer in extend 1 0. 96
Extended mode by setting EXTMD
Addressing, (Extend Mode Indicator).
DXA* G 000011 Disable Restores computer to nor- 1 0.96
Extended mal mode, Mode change
Addressing, not effective until after a

JMP (01) has been exe-
cuted to enable proper
return from an interrupt
subroutine. Any number
of non-JMP instructions
may be included between
the DXA and the first
JMP instruction,

%*See INK, OTK instructions Table 2-2,
EXTMD will reset on JMP (0l1) after disabling OTK, Same as DXA,

NOTE

The extend mode alters the JST instruction to allow
it to store a 15-bit program counter, Bit 1 of the
memory location specified by the effective operand
address is left unchanged,

MEMORY PARITY (DDP-516)

The memory parity option enables generation of parity on all memory write cycles

and checking of parity on all memory read cycles, An exception exists in that parity is not

checked during a console memory read operation, The memory parity error flip-flop in

2-20

the computer is set when a memory parity error occurs and can be tested and reset under
program control. It can also be displayed on the computer control panel. The MASTER

CLEAR pushbutton switch on the control panel resets the parity error flip-flop. When the
parity error flip-flop is set, an interrupt is generated on the standard interrupt line. This

interrupt can be masked on or off by the parity error mask bit (bit 15).

Instruction Complement

The instructions added when this option is included in a system are listed in Table 2-11.

Table 2-11,
Memory Parity Instructions
Instruction No, of Time
Mnemonic Type Word Definition Description Cycles (us)
RMP G 000021 Reset Memory Resets memory parity 1 0.96
Parity Error, error flip-flop.
SPS G 101200 Skip on Memory Skips next instruction 1 0.96
Parity Error, if parity error flip-
flop is set,
SPN =G 100200 Skip on No Skips next instruction 1 0.96
Memory if parity error flip-
Parity Error. flop is reset,
SMK 1/0 170020 Set Mask, (A)15 - Parity Inter- 2 1.92
'0020 rupt Mask
1. (A, .)=1, enable
15 .
interrupt
2. (A, _.)= 0, inhibit
15 .
interrupt

MEMORY LOCKOUT OPTION (DDP-516-08)

The memory lockout option facilitates the time-shared execution of various programs.
The option provides base sector relocation to facilitate desectorization of more than one
program. It also equips the CPU with a mode of operation called the ''restricted mode"

which enables unverified programs to be time-shared with other programs.

Base Sector Relocation

The memory lockout option provides for the relocation of the base sector insofar as
the latter term applies to address information. The option includes a 6-bit base sector
relocation register (J, non-readable) used to identify the physical sector currently assigned
as the base sector. When the sector bit, bit 7 of the instruction word, is a one, the address
(bits 8-16) is in the same sector as the instruction being performed. This represents no
change from the basic machine, When the sector bit is a zero, the memory lockout option
forces the address to be in the sector specified by the base sector relocation register.

Figure 2-2 contains a flow chart that shows when base sector relocation takes place relative

to indexing extended addressing and indirect addressing. If physical sector zero is called
for as a result of indexing, it is not relocated,

Base sector relocation does not affect memory references caused by breaks or pro-
gram interrupts. The base sector relocation register can be changed by an SMK '1320
instruction. (See Table 2-12.) Any program interrupt, as well as MASTER CLEAR, clears
this register,

Memory location (00000)8 and the hardware index register do not agree after the reloca-
tion of the base sector. Before any indexing is attempted, the relocated (00000)8 should be
modified (STA or LDX) to get the hardware register in step with the relocated (00000)8,
This operation must be repeated when the base sector is returned to sector zero,

Restricted Mode

There are two modes of operation associated with the memory lockout option:

restricted and normal modes. The restricted mode has the following properties:

a. Instructions which normally write into memory locations can be ""locked out' of
protected memory sectors, These instructions are STA, LDX, STX, IMA, IRS, and JST.

b. Certain instructions are considered illegal and cannot be performed, They are
OCP, SKS, OTA, INA, SMK, HLT, and INH,

c. Indirect addressing is limited to eight levels,

If executed in the restricted mode, SMK, OTA, INA, OCP, and SKS instruction cause
a memory lockout violation and request an interrupt (location 00062)8, which occurs at the
end of the violating instruction, OCP and SMK are treated as NOPs, SKS is unchanged, and
an OTA or INA is treated as an SKS, If the device was ready (skip condition), the INA sets
the A register to all ones. For the SMK, OCP and the non-skip (device not ready) case of
OTA, INA, SKS, the interrupt JST stores the address of the violating instruction +1. For
the skip cases of OTA, INA, and SKS, the interrupt JST stores the address of the violating
instruction +2,

If attempting to alter a location in a protected sector, while in the restricted mode,
STA, STX, LDX, IMA, IRS, or JST causes a memory lockout violation, The violating
STA, STX or LDX is treated as an NOP, IMA as an LDA, IRS as an IRS except that the
protected memory location is not modified and the JST as an unconditional TMP to EA + 1,
The memory lockout violation interrupt is strobed into the interrupt priority network during
the next clock cycle after the completion of the violating instruction. There are three cases

for this interrupt:

a. If the next clock cycle is a DMA, DMC, RTC, or MI cycle, the memory lockout
violation interrupt occurs after such a cycle and the interrupt JST stores the address of
the violating instruction +1,

b. If the next clock cycle is the next instruction in the program it is processed nor-
mally (subject to restricted mode operation) and the memory lockout violation interrupt
occurs at the completion of this instruction, The interrupt JST stores the address of the

violating instruction + 2.

P)_ie —=(Y)
(P),_jgt! —™ @

t—i6
-

16

MEMORY
M Wi

LOADS

TH
NEXT INSTRUCTION

YESf EXTEND MODE ?

\ (EXTEND=1)

(D), (Y), (D)5 _1 —(P)_ g

INDIRECT
ADDRESS?
(MO1:=1)

NO

INDEXING ?
(M0o2=1)

NO

SECTOR ZERO
(MO7=0)

INDEXING ?
(M02=1)

L= SEE SHEET 2 ——@

YES
SEE SHEET 3 —"@

(M),'(J)z_-,'(u)a_ 6+
(X)I-16 —=(D)

M), (5)5.7 (Mg- 5>

)4, Mg & (y)

(X)1-16 —=(D)

(M)

-7,

—»(D)

8-16

¢

]

!

Figure 2-2.

‘ (D)+(Y) l

EXECUTE

3k THIS PATH FOR SYSTEMS OF 16K OR LESS-

Operation of a System with Memory Lockout
and up to 32K of Memory (Sheet 1 of 3)

2-23

2-24

INDEXING N

(M02=))

SECTOR ZERO?
(MO7=0)

0

INDEXING
(MO2:1)

M), W);_7 (Mg 6+
(X)i-16 —=(D)

M) (W57 (M)g_=(D)

(Y)|-7, Mig_ gt
(X) I-16 ~=(D)

—=(D)

),)

8-16

!

:

!

:

(D), (¥), (), —=(v) _,

6

INDEXING?

INDIRECT NO
ADDRESS?
(MOi=1)

YES

FETCH NEW ADDRESS
INTO M

YES

NO
(Mo2:1)

1S SECTOR NO
ZERO BEING
ADDRESSED

BM)3-7=O]
YE

S

EXECUTE

INDEXING?
(Mo2:1)

NO

M) (D)7 Mgt
(X)|~16 == (D)

(M%;J)2-7JM)3-|€"°1

(M), (P, (M) _

16’
|

(Mh(P&(M)S_lg’(?j

:

}

:

(D)' (

Y00,

|

Figure 2~

2. Operation of a System with Memory Lockout
and up to 32K of Memory (Sheet 2 of 3)

SECTOR ZERO?
(MO7=0)

(M)l'(J)2_7'(M)B_ el (Y),_ (Mg ig™ (D)

| J

(D)=(Y)

FETCH NEW ADDRESS
INTO M

YES INDIRECT ADDRESS? } NO
(MOI=1)

IS SECTOR
ZERO BEING

ADDRESSED
[im2-7=0]

M), (1), _,(M)g_ =—=(D) (M),_, gD
L I
[[o=m] YES /" omGINAL NO
] (M)2=17
YES/ IS SECTOR "\ NO YES /~ 1S SECTOR
ZERO BEING ZERO BEING
ADDRE S SED, ADDRESSED
(m)2-7=0
M)y () 2-7,M)g_16* (M), _ H(x), _~==(D) M), (4)2.7 (M)g-16™(0) (M), _,g—=(D)
(X)i-16 _—=(D)
|(D)—>(Y)|
EXECUTE
Figure 2-2.

Operation of a System with Memory Lockout
and up to 32K of Memory (Sheet 3 of 3)

2-25

c. If a standard or priority interrupt was pending during the violating instruction, it
is processed at the end of the violating instruction and no memory lockout violation interrupt

is processed,

An HLT instruction generates a memory lockout violation and is treated as an NOP,
The memory lockout violation interrupt is processed in the same manner as STA, STX, etc.

An INH instruction causes a memory lockout violation but does inhibit any standard or
priority interrupt pending during its execution. The processing of the memory lockout

violation interrupt is the same as STA, STX, etc., except case 'c' does not apply.

Table 2-12.
Memory Lockout Instructions

Instruction No, of Time

Mnemonic _Type Word Definition Description Cycles (us)

ERM G 001401 Enter Re- Enables program inter- 1 0.96
stricted Mode, rupt and puts computer

in restricted mode op-
eration, Restricted
operation continues un-
til any program inter-
rupt occurs, Does not
take effect until after
the next instruction is

completed,
SMK 1/0 171320 Set Relocation (A)2-7 —>(J)2_7 2 1.92
'1320 Register. Defines physical location

of all address refer-

ences to base sector

until another SMK

1320 is executed or

MASTER CLEAR is

activated, or any

interrupt occurs,
SMK 1/0 171420 Set Lockout (A)1-16—>(LMR)1_16 2 1.92
1420 Mask 1.
SMK 1/0 171520 Set Lockout (A)l--l()—»(LMR)1 7.32 2 1.92
'1520 Mask 2.
SMK 1/0 171620 Set Lockout (A)l-1 ()—»(LMR)3’3_48 2 1.92
1620 Mask 3,
SMK 1/0 171720 Set Lockout (A)l-lé—»(LMR)49_64 2 1.92
1720 Mask 4,

The program interrupt to location (00062)8, generated by an aborted instruction,
cannot be masked off,

The restricted mode is entered by executing an ERM instruction. Visual indication of
restricted mode operation is given through the use of the ML (memory lockout) indication
on the console, Operation in the restricted mode is continuous until any program interrupt

occurs, The MASTER CLEAR pushbutton places the machine in the normal mode.

2-26 .

The DMA, DMC, Real-Time Clock, and Memory Increment options are unaffected by

the restricted mode since they are treated as agents of normal mode programs,

This

means that they can write in any memory location, even when they are sharing time with a

program executed in the restricted mode,

Normal Mode

Normal mode operation is free of any restrictions and a program can execute any

instruction in its repertoire,

Protected Sector Selection

Selection of those memory sectors which are to be protected is controlled by a lock-

out mask register (LMR),

is associated with one 512-word memory sector,

is protected,

Table 2-13.
Protected Memory Ranges
A-Register
Bit SMK '1420 SMK '1520 SMK '1620 SMK '1720
1 00000-00777 20000-20777 40000-40777 60000-60777
2 01000-01777 21000-21777 41000-41777 61000-61777
3 02000-02777 22000-22777 42000-42777 62000-62777
4 03000-03777 23000-23777 43000-43777 63000-63777
5 04000-04777 24000-24777 44000-44777 64000-64777
6 05000-05777 25000-25777 45000-45777 65000-65777
7 06000-06777 26000-26777 46000-46777 66000-66777
8 07000-07777 27000-27777 47000-47777 67000-67777
9 10000-10777 30000-30777 50000-50777 70000-70777
10 11000-11777 31000-31777 51000-51777 71000-71777
11 12000-12777 32000-32777 52000-52777 72000-72777
12 13000-13777 33000-33777 53000-53777 73000-73777
13 14000-14777 34000-34777 54000-54777 74000-74777
14 15000-15777 35000-35777 55000-55777 75000-75777
15 16000-16777 36000-36777 56000~56777 76000-76777
16 17000-17777 37000-37777 57000-57777 77000-77777

NOTE

It is a 16-bit register (expandable to 64 bits) in which each bit

A bit is zero if the corresponding sector
The register is changed by an SMK instruction and cleared with the MASTER
CLEAR pushbutton switch,
SMK '1420, SMK '1520, SMK '1620, and SMK '1720,

Table 2-13 shows the specific memory ranges protected by

Locations 00001-00017 are always protected against all
programs, restricted or normal, However, no MLO
violation interrupt occurs if an attempt is made to write
in these locations unless sector zero is protected and the
machine is in the restricted mode,

2-27

HIGH-SPEED ARITHMETIC UNIT OPTION (HONEYWELL 316/516-11)

This option enhances the arithmetic capability of the computer by providing hardware
implementation of multiply, divide, and normalize functions, The option also provides
double-word load, store, add, and subtract functions (double precision mode), All multiply,
divide, and normalize functions are performed automatically in a double precision mode;

a special double precision instruction must precede the performance of standard arithmetic _
operations if they are to be carried out in a double precision mode. (See Section I, Figure
1-8.)

Six optional instructions are added to the machine complement whenever the high-
speed arithmetic option is included in a system, and four instructions (LDA, STA, ADD,
and SUB) have their execution modified. The optional instructions are listed and described
in Table 2-14.

Instructions which reference double precision operands must produce even effective
addresses (after all indirection and indexing)., An odd effective address causes the instruc-
tion to be executed as if it had the next lower even effective address in the case of double
load, add, or subtract, An odd effective address in a double precision store causes the
B-register content to be stored in the specified location without affecting any other location.

This requirement is automatically taken care of when programs are written in DAP language.

Instruction Complement

Table 2-14 describes the high-speed arithmetic unit instructions.

REAL-TIME CLOCK OPTION (HONEYWELL 316/516-12)

The real-time clock option (RTC) permits the programmer to keep track of real time by
automatically incrementing memory location (00061)8. For the DDP-516, the frequency and
stability of the incrementation are the same as the primary mainframe power source (50 or
60 +2 Hz). With a 60-Hz power source the RTC increments location (00061)8 every 16.67 ms;
with a 50-Hz source, every 20 ms. Incrementing can be enabled or disabled with an OCP '0020
or OCP '0220 instruction, respectively. For the H316, the incrementing rate is adjustable
from 5 to 20 ms, independent of power source.

When memory location (00061)8 overflows from (1 77777)8 to (000000)8, the RTC
causes a program interrupt by means of the standard interrupt line. The program interrupt
can be inhibited or enabled with an SMK '0020 instruction. (See Standard Interrupt descrip-
tion,) OTB 16 (A-register bit 16) controls the RTC interrupt. The interrupt can be tested
by an SKS '0020 instruction and reset by an OCF" '0220 or OCP '0020 instruction, If the
RTC tries to interrupt when interrupt is masked off it waits until interrupt is enabled (by a
proper SMK '0020 instruction) and then causes an interrupt. Overflow from (177777)8 to
(000000)8 does not inhibit incrementing.

Instruction Complement

The addition of the RTC option to a system adds three instructions to the basic system

complement, The added instructions are described in Table 2-15,

2-28

Table 2-14,
High-Speed Arithmetic Unit Instructions

No. of Time (us)
Mnemonic | Type | Op Code Definition Description Cycles DDP-516 H316
MPY MR 16 Multiply (A) x [EA] — (A, B) 5.5 5.28 8.8
DIV MR 17 Divide (A, B) = [EA] - (A) 10. 0 9. 60 16.0
Remainder —-(B) or or or
Overflow 10.5 10.08 16.8
Status —-(C) or or or
11.0 10.56 17.6
If initial magnitude of
dividend is > magnitude
of divisor overflow
occurs
NRM G 000101 Normalize 1+n/2 0.96+ | 1.6+
.II A, Ag B, Big 0 0.48n | 0.8n
Shift until (A), # (A)5
number of shifts re-
quired stored as Shift
Count
SCA G 000041 Shift Countto A| Shift Count - (A)l 1-16 1 0. 96 1.6
0 ~(A) 0
The shift count is valid if
no IAB, MPY, DIV, OTK,
shift, or double preci-
sion instruction has been
executed since the last
NRM instruction was
executed.
DBL* G 000007 Enter Double Execute LDA, STA, ADD, 1 0. 96 1.6
Precision and SUB as DLD, DST,
Mode DAD and DSB, respec-
tively, until SGL is ex-~
ecuted or MASTER
CLEAR is depressed
SGL* G 000005 Enter Single- Execute LDA, STA, ADD, 1 0.96 1.6
Precision and SUB in normalsingle
Mode precision
DLD MR 02 Double Pre- [EA] - (A)[EA+1] —~(B) 3 2.88 4.8
cision Load
DST MR 04 Double Pre- (A) ~[EA] (B) ~[EA +1] 3 2.88 4.8
cision Store
DAD MR 06 Double Pre- (A, BYJ+[EA, EA+1] ~(A,B) 3 2. 88 4.8
cision Add Overflow Status —(C)
If[EA+1] L :;é(B)l, an
invalid sum results
DSB MR 07 Double Pre- (A,B)-[EA,EA +1] ~(A, B) 3 2.88 | 4.8
cision Overflow Status —(C)
Subtract IF [EA +1] # (B),, an 3 2.88 | 4.8
invalid difference results

#* See OTK, INK instructions Table 2-2.

2-29

Table 2-15,
Real-Time Clock Option Instruction Complement

. nstruction s - No. of Time (us)
Mnemonic | Type Word Definition Description Cycles [oormre 1 rate
OCP '0220 10 030220 Reset Program| This instruction inhibits 2 1.92 3.2

Interrupt Re- |the RTC and resets the
quest and Stop | program interrupt request.
Clock One more real time clock
break may occur immedi-
ately following this in-
struction if the increment |
request occurred during the
execution of this instruction,’
OCP '0020| IO 030020 Reset Program| This instruction enables 2 1.92 3.2
Interrupt Re- |the RTC and resets the
quest and Run | program interrupt request.
Clock The first increment re-
quest occurs within 0 to
16. 7 ms following this
instruction,
SKS '0020 IO 070020 Skip if RTC If the RTC is not request- 2 1.92 3.2
Not Interrupt- |ing a program interrupt,
ing the computer skips the
next instruction,

DIRECT MULTIPLEX CONTROL (DDP-516)

The direct multiplex control (DMC) option permits data transfer between peripheral

devices and the computer memory concurrently with computation,

When a device has data to input, or is ready to accept data, it uses the DMC control

lines to request service.

line 1 has highest priority, line 16 has lowest,

The priority network allows the highest

priority line which has its DIL set to be serviced by the next DMC cycle,

Devices request service from the DMC on lines called DIL, DIL

When a DMC cycle is required, the DMC sends a break request to the CPU. When the

CPU has completed the current instruction, a DMC cycle is executed, During this cycle

the appropriate transfer between the device and the memory takes place using the standard

I1/0 bus.

This process is repeated each time the I/O device indicates that it is ready until the

required number of words has been transferred.

been transferred, the DMC sends an end-of-range (ERL) signal to the device,

When the required number of words has

may use this signal to generate a program interrupt.

The device

Up to 16 channels may be controlled by the DMC, Each channel requires a starting

and ending address for the block transfer,

in dedicated memory locations which are listed in Table 2-16.

These addresses (a pair per channel) are stored

Table 2-16,
DMC Start and Terminal Memory Address Locations (DDP-516)

Channel Number Starting Address Ending Address
1 00020 00021
2 00022 00023
3 00024 00025
4 00026 00027
5 00030 00031
6 00032 00033
7 00034 00035
8 00036 00037
9 00040 00041

10 00042 00043
11 00044 00045
12 00046 00047
13 00050 00051
14 00052 00053
15 00054 00055
16 00056 00057

Bit 1 of the starting address is used to specify the input or output mode, A one in bit 1
sets the DMC in the input mode. A zero in bit 1 sets the DMC in the output mode. The
remaining 15 bits specify the starting address of the data block. In the input mode, data
from the device are stored beginning at this address. In the output mode, data beginning at
this address are sent to the device. The high order bit of the final address is not interpreted.
The remaining 15 bits specify the address into or out of which the final transfer takes place.

The DMC can effect a transfer following any instruction, provided a DMC request
from a device is transmitted to the DMC 0, 6 s before the end of that instruction, If a
request occurs less than 0, 6 ps before the end of an instruction, the DMC cycle may not
occur until after the next instruction,

The data transfer is completed 1, 74 ps into the DMC cycle for an input, 3, 0 us for an
output. Thus, the longest waiting time, from the time a request occurs to the time the data

transfer is completed, is:

Toe = Tli +3.84M + 1.2N + 2,34 (input)
3.60 (output)
where
Twc = worst case waiting time (us) from request to completion

of data transfer.

2-31

Tli = execution time of longest* instruction (us)

*The longest useful instruction in the CPU repertoire
is executed in 16.32 us, (Shifts of more than 32 places
and memory reference instructions with more than six
levels of indirect addressing are not considered "useful"
in this context,) Lower values of Tj; may be used to
facilitate input/output buffer design, provided appropriate
programming constraints are adopted,

M = number of higher priority DMC requests which may occur
during TWC.

N = number of DMA requests which may occur during Twc'

Each DMC cycle requires four memory cycles, or 3,84 s, during which computation
is suspended. At 0.6 us before the end of a DMC cycle, the device request lines are
inspected. If a device is requesting at this time, another DMC cycle immediately follows
the first. DMC cycles continue as long as requests are waiting, During this time the CPU
cannot resume control,

The maximum transfer rate of a single DMC channel is one word every four cycles or
260 kHz. This rate can be attained if this channel is the only channel being used. If the
DMC is operating at 260 kHz, no computation can take place, In order to operate between

200 and 260 kHz, T,; must be 0. 96 us, for example an unconditional JMP,

DMC Subchannel

A device is connected to the DMC control unit through a DMC subchannel, The DMC
subchannel, available as an option on a number of standard I/O devices, contains the neces-

sary logic to permit the device to operate in the DMC mode.

DMC Auto-Switch Option

The DMC Auto-Switch option provides automatic switching between two DMGC subchan-
nels to permit the continuous transfer of data at high speed. To use the Auto-Switch option
one DMC subchannel is set up as described above and the data transfer is started. While
data are being transferred by the first DMC subchannel, the second DMC subchannel is set
up. When the data transfer specified for the first subchannel is complete, the Auto-Switch
option automatically switches to the second DMC subchannel and data transfer continues
without interruption, An end-of-transmission interrupt occurs on the standard interrupt
line to indicate that the switch has been made, The first DMC subchannel must again be
set up. When the data transfer specified for the second subchannel is complete, the Auto-
Switch option automatically switches back to the first subchannel and interrupts. Switching
is accomplished within one DMC cycle. This process is repeated continuously until the
device is stopped or taken out of the DMC mode, Indicators associated with the device
transferring data may be interrogated by the SKS instruction to determine which channel is

active at any time and to determine which channel caused an interrupt.

2-32

DIRECT MULTIPLEX CONTROL (H316)

The direct multiplex control (DMC) option permits high speed I/O transfers as requested
by peripheral devices. Transfer of data takes place using the standard 1/O bus.

The DMC can effect a transfer following any instruction, provided a DMC request
transmitted to the DMC on a DIL line has occurred 1.0 pus before the end of that instruction.
1f a request occurs less than 1.0 us before the end of an instruction, the DMC cycle may not
occur until after the next instruction.

During the execution of a multiple cycle instruction, a request is honored within 6.4 us

provided indirect addressing is limited to one level. Each additional level adds 1.6 us.

Standard DMC

Two DMC models are available. The standard DMC (H316-20) requires a 4-cycle
break for each word transferred.

The data transfer is completed 4.0 us into the DMC cycle for an input, or 5. 05 us
for an output. Thus the longest waiting time from the time a DIL occurs to the time the data

transfer is completed is:

Twc = T1i + 6.4M + 4.0 (Input)
5. 05 (Output)
where
TWC = worst-case waiting time (us) from DIL to completion of data
transfer.
'I‘li = execution time of longest* instruction sequence (us).

*The longest instruction sequence is 6.4 pus provided indirect
addressing is limited to one level. Each additional level
adds 1.6 ps to the longest instruction sequence.

M = number of higher priority DMC requests which may occur
during Twc’

Each standard DMC cycle is four memory cycles, or 6.4 ps during which computation
is suspended.

At 1 ps before the end of a standard DMC cycle, the DIL lines are inspected; therefore,
if a DIL line is at +6V signifying a DMC request, another DMC cycle immediately follows
the first. DMC cycles continue as long as requests are waiting. During this time the CPU
cannot resume control.

The maximum transfer rate of a single DMC channel is one word every 4 cycles,

provided that only one channel is being used. No computation can take place at this rate.

High-Speed DMC

In the high-speed DMC (H316-21), the first DMC cycle on a channel requires 6.4 ps,

while succeeding cycles require 3,2 ps. Computation is suspended during all DMC cycles.

The data transfer for the first DMC cycle on a channel is completed 4. 0 us into

the DMC cycle for an input, or 5.05 us for an output. Data transfers for succeeding cycles

are completed 2.0 ps into the DMC cycle for input and 2. 65 us into the DMC cycle for output.

Thus, the longest waiting time, from the time a DIL occurs to the time the data transfer
is completed, is:

6.4M 4.0 first cycle, 2.0 succeeding cycles (input)

Twc - Tli T 3.2N * 5.05 first cycle, 2.65 succeeding cycles (output)
where
TWC = worst case waiting time (us) from DIL to completion of data
transfer.
Tli = execution time of longest* instruction sequence (us).

*The longest instruction sequence is 6.4 ps provided indirect
addressing is limited to one level. Each additional level adds

1.6 us to the longest instruction sequence.

M = number of higher priority DMC requests requiring first cycle
service which may occur during Twc'

N = number of higher priority DMC requests not requiring first
cycle service which may occur during Twc'

At 1.0 ps before the end of a DMC cycle, the DIL lines are inspected; therefore, if

a DIL line is at +6V signifying a DMC request, another DMC cycle immediately follows the

first. DMC cycles continue as long as requests are waiting. Consecutive cycles require

two cycles, or 3.2 pus. During this time the CPU cannot resume control.
The maximum transfer rate of a single DMC channel is one word every two cycles
or 312 kHz after the first cycle has been completed. This rate can be attained if this channel

is the only channel being used. If the DMC is operating at 312 kHz no computation can take

place. DMC has priority over the real-time clock, standard interrupt, memory increment,

and priority interrupts.
DIL line 1 has highest priority, line 16 the lowest.
highest priority line, which has its DIL at +6V to be serviced by the next DMC cycle.

The priority network allows the

DMC Subchannel

The DMC control unit is connected to a device through a DMC subchannel. The DMC

subchannel, available as an option on many standard I/O devices, contains the necessary

logic to permit the device to operate in the DMC mode. It enables the device to control

DMC requests and to generate a standard program interrupt when transmission is terminated.

DMC Auto-Switch Option

This option enables a device using DMC to transfer large gapless blocks of data
at high speed. Whenever the device is ready for a data transfer, it causes a DIL (N).
When End-of-Range is reached, and the device is ready again, a Standard Interrupt occurs

and DIL (N+!) also occurs. DIL (N+1) occurs until the next ERL. When ready again, a

Standard Interrupt and DIL {(N) occur. This cycle repeats continuously until the device is

stopped or taken out of DMC mode.

Table 2-17.
DMC Start and Terminal Memory Address Locations (H316)

Channel Number

Starting Address

0o N o~ Uk W N -

el

10
11
12
13
14
15
16

00020
00022
00024
00026
00030
00032
00034
00036
00040
00042
00044
00046
00050
00052
00054
00056

Ending Address

00021
00023
00025
00027
00031
00033
00035
00037
00041
00043
00045
00047
00051
00053
00055
00057

To operate a device, store the starting address (the first bit is 1 for the input mode,

and 0 for the output mode) in the assigned location for the starting address.

terminal address in its assigned location.

Using appropriate OCPs, set up the device in the input or output mode, and set up

the DMC mode; OCP order is defined in each device specification.

Store the

If an interrupt is used to detect the end-of-data transmission, the PI mask flip-flop

for the device must be set up to a 1, interrupts must be enabled, and the desired interrupt

routine must be part of the program.

DIRECT MEMORY ACCESS OPTION (DDP-516)

The direct memory access (DMA) option provides the central processor (CPU) with
high speed input/output data transfer paths for addressing up to 32K of memory. The
transfer rate is a maximum of one word every 0, 96 ps,

The DMA has the highest priority of all system options relative to memory access,
The DMA is capable of interrupting between machine cycles such that any DMA interrupt
request occurring during any cycle has access to memory at the end of that cycle, The
DMA is given access to memory without regard to whether or not the cycle just ended repre-
sents the completion of an instruction. These interrupts or breaks are for a minimum of
1200 ns for a single word transfer and 240 ns + N (960 ns) for continuous multi-word word
transfers where N is the number of words transferred,

The DMA can effect a transfer following a memory cycle providing the request occurs
0.57 us before the end of cycle. However, requests arriving any later are serviced after
the next memory cycle. The longest time between a request and the completion of the cor-
responding data transfer is 1,89 ps for input transfers and 2. 64 us for output transfers,

With few exceptions, all computation is momentarily suspended while a DMA cycle is
in progress. The exceptions refer to the iterative instruction (e.g., LGL, LLL, LRR,
etc.). These instructions comprise the shift/rotate group and the multiply/divide option.
The execution of these instructions continues simultaneously with the DMA transfer cycle,

A DMA can have from one to four channels. The channels are arranged in a priority
network with channel 1 having the highest priority and channel 4 having the lowest priority,

Each channel has a 16-bit address counter which stores the starting address and a
16-bit range counter which stores the two's complement of the block size. The most signi-
ficant bit (bit 1) of the starting address is used to specify input or output mode, A one in
bit 1 sets the DMA in the input mode, The remaining 15 bits specify the memory address
from which the first transfer will occur, The range and address counters are incremented
each time a data transfer occurs, Range counter overflow signifies the completion of a
block transfer. This is accomplished by the generation of an end-of-range signal which is
sent to each device and can be used to cause a program interrupt. The contents of the
range counters can be read into the computer to determine whether an external stop signal

has terminated the DMA operation before the specified number of words are transferred,

Instruction Complement

A listing of the instructions required for use with the DMA option is presented in
Table 2-18.

The programming sequence for operating a device is:

a. Load Address Counter for Specific Channel (this will also clear the range register),
b. Load Range Register with two's complement of number of words to be transferred,

c. Activate Device.

Table 2-18.
Direct Memory Access Instructions

. Instruction s s No. of | Time
Mnemonic | Type Code Definition Description Cycles (15)
SMK '0124 | I/O 170124 Load Address (A) - (AC1l) 2 1.92

C 1-16 1-16
ounter
Channel 1 0 —»(RCl)l_16
SMK 1'0224 | I/O 170224 Load Address (A)l_lé—»(ACZ)l“‘16 2 1.92
Counter
Channel 2 0 a(RCZ)l_lé
SMK '0324 | I/O 170324 Load Address | (A) - (AC?3) 2 1.92
1-16 1-16
Counter .
Channel 3 0 —»(RC3)1_16
SMK '0424 | I/O 170424 Load Address | (A) - (AC4) 2 1.92
1-16 1-16
Counter
Channel 4 0 —’(RC4)1-16
SMK '1124 | I/O 171124 Load Range (A) V (RCl) 2 1.92
C 2-16 2-16
ounter
Channel 1 —-(RCI)Z_H)
SMK '1224 | I/O 171224 Load Range (A) V (RC2) 2 1.92
C 2-16 2-16
ounter
Channel 2 —-»(RCZ)Z_“)
SMK '1324]|1/0 171324 Load Range | (A) V (RC3) 2 1.92
2-16 2-16
Counter
Channel 3 - (RC3)2_16
SMK '1424]1/0 171424 Load Range (A) V (RC4) 2 1.92
C S 2-16 2-16
ounter
Channel 4 - (RC4)2_16
INA '1124 | 1/O 13 1124 Read Range If end-of-range, 2 1.92
Counter INA = NOP; otherwise,
Channel 1 1 — (A)l
(RCL), 16 “ B 16
and skip next instruction
INA '1224 1/0 13 1224 Read Range If end-of-range, 2 1.92
Counter INA = NOP; otherwise,
Channel 2 1 - (A)l
(RC2)5_16 "Wal16 |
and skip next instruction‘
INA '1324 | 1/0O 13 1324 Read Range If end-of-range, 2 1.92
Counter INA = NOP; otherwise,
Channel 3 1 — (A)1
(RC3), 16 ~(A)z 16
and skip next instruction
INA '1424 |1/0O 13 1424 | Read Range | If end-of-range, 2 1.92
Counter INA = NOP; otherwise,
Channel 4 1 - (A)l
(RC4), 1o ~(A)y_1g |
and skip next instruction

DMA Auto-Switch

The DMA Auto-Switch option functions in a manner analogous to that previously

described for the DMC Auto-Switch option.

PRIORITY INTERRUPT OPTION (HONEYWELL 316/516)

A multi-level priority interrupt system eliminates the need for an interrupt service
routine to determine which one of the available interrupt lines caused an interrupt, A unique
memory location is dedicated to each interrupt line., These locations are used in the same
manner as the standard interrupt location in the standard interrupt system, When an inter-
rupt occurs, the computer generates an indirect jump and store location instruction (JST)
referencing the memory location dedicated to the source of the interrupt., Execution time
of the computer-generated JST instruction is three cycles unless bit 1 of the dedicated
location is a one, A one in this bit location indicates further indirect addressing; an addi-
tional cycle is required for each additional level of indirect addressing, Included in the
option is a mask register which permits individual interrupt lines to be enabled and disabled
under program control. This permits the relative priority of the interrupt lines to be
established by the programmer.

The interrupt option is provided in groups of four interrupt lines, Up to 12 groups or
a total of 48 interrupt lines can be handled by the system. The interrupt lines are consecu-
tively numbered and have decreasing priority with increasing number, The standard inter-
rupt line is designated line 0 and retains its standard location (63)8. The dedicated locations
for the optional interrupt lines are shown in Table 2-19. On systems with more than 16K of
memory the occurrence of a program interrupt causes the CPU to go into the extend mode,

(See extended addressing for details of operation in this mode.)

Table 2-19.
Dedicated Locations for the 12 Groups
of Priority Interrupt Lines

Priority Interrupt Dedicated Locations
Group (Octal Codes)
1 00064 - 00067
2 00070 - 00073
3 00074 - 00077
4 00100 - 00103
5 00104 - 00107
6 00110 - 00113
7 00114 - 00117
8 00120 - 00123
9 00124 - 00127
10 00130 - 00133
11 00134 - 00137
12 00140 - 00143

Priority Interrupt Control

Program interrupts requested by Priority Interrupt lines are individually controlled
by mask bits associated with each group of interrupt lines. In addition, all Priority Inter-
rupt lines are controlled by the INH and ENB instructions, Priority interrupt is inhibited
until an ENB instruction has been executed., Following the execution of an ENB instruction,
an interrupt is accepted on any interrupt line having its associated mask bit set (one). Inter-
rupt remains enabled until an INH instruction is executed or an interrupt occurs on any
enabled line (forced INH). Following an interrupt or the execution of an INH instruction,
interrupts are inhibited until an ENB instruction is executed.

The mask bits associated with each group of interrupt lines are controlled by
SMK '0X20 instructions, These instructions set the appropriate bit in the mask register if
the corresponding bit in the A-register is a one and reset the mask register bit if the cor-
responding A-register bit is a zero, Table 2-20 shows the mask assignments for the

optional interrupt lines and the SMK instructions that service them,

NOTE

If an interrupt request occurs during the execution
of an SMK instruction disabling that interrupt, the
interrupt may or may not be accepted (depending on
the exact timing of the interrupt signal with respect
to the execution of the SMK instruction); therefore,
the interrupt mask register should be changed only
when interrupt is inhibited.

Table 2-20.
Priority Interrupt Mask Assignments
A-Register Bit No. SMK '0120 SMK '0220 SMK '0320
~

1 1 17 33

2 2 18 34

3 3 19 35

4 4 20 36

5 5 21 37

6 6 22 38

7 7 23 39 Interrupt
8 8 24 40 > e
9 9 25 41
10 10 26 42
11 11 27 43
12 12 28 44
13 13 29 45
14 14 30 46
15 15 31 47
16 16 32 48

J

MEMORY INCREMENT (HONEYWELL 316/516-26)

Groups of four priority interrupt lines may be optionally changed to memory incre-
ment break lines. Any number of priority interrupt groups may be so modified, However,
the modified groups must be consecutive starting with the first group of four lines.

The function performed by a memory increment break is:

[dedicated location] + 1 —>[dedicated location]

There is no overflow indication and no interrupt generated on overflow. Execution of

the break requires threc cycles,

NOTE

Memory increment requests are not subject to
control by the INH or ENB instructions; however,
mask register bits are associated with memory
increment lines for individual line control as
described under Priority Interrupt Control, pre-
ceding, This interrupt does not cause the CPU
to go into the extend mode,

2=-40

SECTION III
INPUT/OUTPUT CHANNELS AND DEVICES

The Honeywell 316/516 system includes a variety of I/O devices. The optional
devices, as well as the standard, can be used in a number of ways. They can be programmed
by using FORTRAN IV, standard I/O library subroutines, or special purpose user-prepared
DAP programs. The FORTRAN IV manual (Doc. No. 130071364) contains FORTRAN I/O
statements and format specifications. Users who would like to operate I/O devices using
standard I/O library subroutines can find complete documentation in the Honeywell 316/516
Operators Guide (Doc. No, 70130072165). Those who wish to prepare their own special pur-
pose I/O programs can find information in the following pages. Included in this section are

discussions of:

ASR-33/35, Model 316/516-53/55, 316/516-56
High-Speed Paper Tape Reader, Model 316/516-50
High-Speed Paper Tape Punch, Model 316/516-52
Card Reader, Model 316/516-61

Discussions of additional devices may be obtained from marketing representatives

as required by user options. They include:

Parallel I/O Channels, Model 316/516-32/33/34
SKS/OCP, Model 316/516-29

Line Printer, Model 316/516-7050

Magnetic Tape System, Model 316/516-4100

Fixed Head Disc File, Model DDP-516-4400

Moving Head Disc File, Model 316/516-4600

Process Interface Controller (PIC), Model DDP-516-8100

ASR-33/35 TELETYPE UNITS (HONEYWELL 316/516-53/55, 316/516-56)

The ASR-33/35 Teletype Unit is the basic I/O device for the Honeywell 316/516
computer. The ASR-33/35 is a versatile device that prints out data from the computer or
transmits data to the computer from the keyboard at the rate of 10 characters per second.
It can also read and punch paper tape at the same rate. In the local mode the unit may be

used for off-line paper tape preparation, reproduction, or listing.

Keyboard and Carriage Features

The ASR-33/35 keyboard is similar to that of a standard typewriter. The keyboard
contains four rows of keys that generate an eight-level internal code. (See Figure 3-1 and

Table 3-1). Letters and numerals are transmitted without a shift, similar to lower case

transmissions on a typewriter., Special characters (?, =, %, etc.) are typed by using the
shift key, similar to upper case positions on certain typewriters. Control functions,
generated by using the control (CTRL) key, are X-OFF (S key), X-ON (Q key), EOM (C key),
and BELL (G key). The LINE FEED and RETURN codes are transmitted without the CTRL
key being depressed.

FEED HOLE
PAPER TAPE —{—/
LEVEL 8 7 4 2
o O o O
(312)g = ASCII"s" — O O O o o
1121314151617]18]19(10,1112]13}14]15]16
A REGISTER

A3583

Figure 3-1. ASR-33/35 Paper Tape Format

The ASR-33/35 can print up to 72/75 characters per line. A carriage return and line
feed must be executed after the last character to be printed in each line.

The ASR-33/35 keyboard is interlocked for all keys except the SHIFT, CTRL, and REPT
keys, preventing more than one key being depressed at one time. The keyboard does not lock
in the upper case position so the operator must hold the SHIFT key depressed to produce

special (upper case) characters.

Table 3-1.
ASR-33/35 Character and Symbol Codes

Page Page Page Page

Code Printer Code Printer Code Printer Code Printer
000 Null * 040 Space 100 @ 140 @
001 Null 041 ! 101 A 141 A
002 Null 042 " 102 B 142 B
003 Null 043 # 103 C 143 C
004 Null 044 $ 104 D 144 D
005 WRU 045 % 105 E 145 E
006 Null 046 & 106 F 146 F
007 Bell 047 ! 107 G 147 G
010 Null 050 (110 H 150 H
011 Null 051) 111 I - 151 I
012 LF 052 ! 112 J 152 J
013 Null 053 + 113 K 153 K
014 Null 054 , 114 L 154 L
015 Null 055 - 115 M 155 M
016 Null 056 . 116 N 156 N
017 Null 057 / 117 (@) 157 O
020 Null 060 0 120 P 160 P
021 Null 061 1 121 Q 161 Q
022 Null 062 2 122 R 162 R
023 Null 063 3 123 S 163 S
024 Null 064 4 124 T 164 T
025 Null 065 5 125 8) 165 U
026 Null 066 6 126 \'2 166 v
027 Null 067 7 127 w 167 W
030 Null 070 8 130 X 170 X
031 Null 071 9 131 Y 171 Y
032 Null 072 132 z 172 4
033 Null 073 5 133 [173 [
034 Null 074 < 134 \ 174 Null
035 Null 075 = 135 1 175 Null
036 Null 076 > 136 t 176 Null
037 Null 077 ? 137 - 177 Null

* Whenever the HERE-IS key is depressed (available on ASR-33 only), the answer back drum
is activated, producing a burst of 20 characters of all zeros.

Table 3-1.

(Cont)

ASR-33/35 Character and Symbol Codes

Key Depressed

Simult.
Page Lower Simult. Shift and
Code Printer Case Control Control
200 Null P
201 Null A
202 Null B
203 Null C
204 Null D
205 WRU E
206 Null F
207 Bell G
210 Null H
211 Null I
212 LFEF LF J
213 Null K
214 Null L
215 CR CR M
216 Null N
217 Null o
220 Null P
221 X-ON Q
222 TAPE R
223 X-OFF 3
224 Null T
225 Null U
226 Null A%
227 Null W
230 Null X
231 Null Y
232 Null V4
233 Null K
234 Null L
235 Null M
236 Null N
237 Null o)

Table 3-1.

(Cont)

ASR-33/35 Character and Symbol Codes

Code

Page
Printer

Key Depressed

Lower
Case

Simult.
Shift

Simult.
Control

Simult.
Shift and
Control

240

241
242
243
244
245
246
247
250
251
252
253
254
255
256
2‘57
260"
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277

Space

O 00N 0N WY - O

Vv

Space
Bar

-(minus)

N0 N 0N W N~ O

O 0 N0 UL R W e

Space Bar

-(minus)

O 0 N0 W Y= O N

Alt Mode

Rub Out

O 00 N O~ W N

3-5

3-6

Table 3-1.

(Cont)

:ASR-33/35 Character and Symbol Codes

Code

Key Depressed

Page
Printer

Lower
Case

Simult.
Shift

300
301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337

}> =T TN X E<OHOURPDYWOZZEREYSIQAIBUQW > ®

NKXE£<dHWUIDYWOZZERS "I OHBY QW >

P

ozZgr R

NOTES:

Table 3-1. (Cont)
ASR-33/35 Character and Symbol Codes

Page Page Lower
Code Printer Code Printer Case
340 @ 360 P
341 A 361
342 B 362 R
343 C 363 S
344 D 364 T
345 E 365 U
346 F 366 v
347 G 367 w
350 H 370 X
351 I 371 Y
352 J 372 Z
353 K 373 [
354 L 374 Null
355 M 375 Null
356 N 376 Null
357 O 377 Null Rub Out

Whenever the BREAK key is depressed, a 000 code is generated as long as the
key is held depressed. However, when the key is released, an indeterminate
character is produced.

The symbols appearing in the Page Printer column indicate the reaction of the
printer to codes received on the line in output mode and to codes generated by the
reader or keyboard in the input mode. Null indicates no printing and no spacing.

No entry in the Key Depressed column indicates inability of the keyboard to pro-
duce that code.

The punch perforates all codes transmitted in input or output mode. On the
ASR-35 only, the first Tape On character and its associated rub-out character,
if character buffering is used for automatic punch control, are not punched.

3-7 -

ASR-33/35 On-Line Operating Modes

There are two basic modes of operation for the ASR-33/35 when on-line: input mode
and output mode. These are set up by the appropriate OCP instruction. Once set up, the

ASR-33/35 remains in a given mode until it is changed by another OCP or master clear.

Input Mode. -- The input mode is used to transmit information from the ASR-33/35 key-
board to the computer or from the reader to the computer. In either case, printed copy is
produced if the 8-bit character is printable, and a control function is performed if the 8-bit
character is a control character. (See Appendix B.) If characters are being read from the
reader, any of the 256 possible 8-bit characters appearing on the tape will be transmitted
to the computer. When an X-OFF is read, the reader stops after reading the character
(two characters for ASR-35 except as described later) following the X-OFF, unless that
following character is an X~ON. MASTER CLEAR places the ASR-33/35 in the input mode,

Output Mode. -- The output mode is used to transmit information from the computer to
the ASR-33/35 printer or the printer and the punch. In either case, printed copy is produced if
the 8-bit character is printable, and a control function is performed if the 8-bit character is
a control character. When punching, any 8-bit code transmitted from the computer is
punched whether it is printable or not. However, certain 8-bit codes -- (221)8, (021)8,
(005)8, and (205)8 -- when transmitted from the computer also cause a control action by the
ASR-33/35 and prevent proper transmission of further characters. X-ON, (221)8 or (021)8,

starts the paper tape reader and WRU, (205)8 or (005)8, triggers the answer-back drum.

Character Modes

In either the input or output mode, either of two character modes, ASCII or binary,
may be used. Code type is selected by individual INA or OTA instructions and may be inter-

mixed in any manner (though this is not normally done).

:;j’?“ ASCII Mode., -- In the ASCII mode, a full 8-bit character is transmitted between the least
significant 8 bits of the A-register and the ASR-33/35. This permits transmission of any
standard character or control character from the reader or keyboard of the ASR-33/35 to

the computer or from the computer to the printer or punch.

Binary Mode. -- In the binary mode, a 6-bit character is transmitted to or from the least
significant 6 bits of the A-register and the ASR-33/35, In the case of output in the binary
mode, an additional 2 bits are automatically added in the high-order position to the 6-bit
character to form a printable 8-bit character rather than a control character. On input,
the two high-order bits of the 8-bit character transmitted by the ASR-33/35 are stripped

and ignored.

ASR-33 Operation

Reader Control. -- The reader can be started under program control as follows:

Enable output mode with OCP '0104.

Output an X-ON character (2218) using OTA '0004.
c. Delay until not busy (test with SKS '0104).
d. Enable in input mode with OCP '0004.

Manual starting is controlled with the START/STOP switch. The first character to be read
when the reader has been started is the one initially positioned over the read pins.

When operating under manual or program control, the reader stops upon recognition
of an X-OFF character. The X-OFF and one following character are transmitted to the
device buffer before the reader stops. Manual stopping is controlled by the START/STOP
switch., The reader stops automatically if it runs out of paper tape. An X-OFF character
stops the reader when reading tape off-line. To continue reading, the operator can restart

the reader by depressing the START switch.

Punch Control. -- The punch is controlled by manual operation of the punch ON/OFF switch.
When the punch is on, any input from or output to the ASR-33 causes the tape to be punched.

Tape leader can be generated in bursts of 20 sprockets with each depression of the HERE-IS
key.

Off-Line Operation. -- Off-line operation of the ASR-~33 includes the following.

a. Keyboard to printer
b. Keyboard to printer and punch
c. Reader to printer

d. Reader to printer and punch

ASR-35 Operation

The ASR-35 operates in either on~ or off-line modes as described in the following

paragraphs.
Off-Line. -~
K Mode Keyboard to printer
KT Mode Keyboard to printer and punch
Reader to printer and punch
T Mode Keyboard to punch

Reader to printer

3-9

On-Line, --

K Mode Input transfer from keyboard monitored by printer (ASCII)
Output transfer to printer (ASCII)

KT Mode Input transfer from keyboard monitored by printer and punch
if enabled (ASCII)
Input transfer from reader monitored by printer and punch if
enabled (ASCII or binary)
Output transfer to printer and punch if enabled (ASCII or
binary)

T Mode Input transfer from reader monitored by printer (ASCII or
binary)
Output transfer to printer (ASCII)
Simultaneous off-line operation of keyboard to punch (ASCII)

TTS Mode Input transfer from reader (any eight-level code). Manual
control of reader only. Automatic start and stop code
inoperative.

Simultaneous off-line operation of keyboard to punch (ASCII).
TTR Mode Output transfer to punch (any eight-level code).

Reader Control (KT and T Modes Only). -- To start the reader under program control,

the program must output an X-ON character (0218 or 2218). After waiting until the ASR is
not busy, an OCP '0004 should be issued to enable the ASR in the input mode before proceed-
ing with input transfer instructions. The reader can also be started by depressing the
START switch and rotating the reader manual control switch to the ON position. When started,
the first character to be read is the one positioned over the read pins.

To manually start the reader and read under program control (procedure for loading

self-loading programs), position the ASR mode switch to the K position, depress the
CTRL key, and while CTRL is depressed, depress the Q key. This gives an X-ON to the
reader. Position the Mode Control Switch to KT or T mode (T mode suppresses punching).

Start the program and move the reader control switch to the RUN position,
When operating under program control, the reader stops two characters after the

recognition of an X-OFF character (0238 or 2238). The X-OFF character is read into the
character buffer, and the next two characters are also read into the character buffer before
the tape stops (unless the character following the X-OFF is RUBOUT, in which case only the
RUBOUT is read). When operating under program control, the reader cannot be stopped
manually or by an X-OFF when operating off-line.

Punch Control (KT Mode, On-Line Only). -- To enable the punch when operating under
g OT 2228). If reader
reads TAPE (0228 or 2228), the punch is enabled without program output. A RUBOUT

program control, the program must output a TAPE character (022

character or a time delay equal to one character time must follow the TAPE character.
(The RUBOUT character is not punched on paper tape.) Additional output transfers are then
punched on paper tape as required.
To stop the punch when operating under program control, the program must output an
X-OFF character followed by a RUBOUT character. Both characters are punched on tape.
Tape leader can be generated off-line on the ASR-35 by depressing the BREAK button
until the required amount of leader is punched. The operator may then depress the BACK-
SPACE and RUBOUT keys to produce a frame of all ones in place of the indeterminate frame
produced when the BREAK button is released.

Programming

The control codes assigned to the ASR-33/35 are described in the following paragraphs.

In summary they are:

OCP '0004 Enable ASR-33/35 in input mode

OCP '0104 Enable ASR-33/35 in output mode

SKS 0004 Skip if ASR-33/35 is ready

SKS '0104 Skip if ASR-33/35 is not busy

SKS 10404 Skip if ASR-33/35 is not interrupting

SKS '0504 Skipif stop code was not read on ASR-33/35
INA '0004 Input in ASCII mode if ready

INA '0204 Input in binary mode if ready

INA '1004 Clear A and input in ASCII mode if ready
INA 71024 Clear A and input in binary mode if ready
OTA '0004 Output in ASCII mode if ready

OTA '0204 Output in binary mode if ready

SMK '0020 Set interrupt mask

Enable ASR-33/35 in Input Mode (OCP '0004). -- This instruction sets up the device

interface to accept characters from the ASR-33/35. It should be given any time it is desired
to switch the ASR-33/35 from the output to the input mode. This instruction must not be
given while the ASR-33/35 is busy. An SKS '0104 test should precede this instruction.

Enable ASR-33/35 in Output Mode (OCP '0104). -- This instruction sets up the device

interface to transmit characters to the ASR-33/35. The instruction must be given any time

it is desired to switch from the input to the output mode. The instruction must not be given

while the ASR-33/35 is busy. An SKS '0104 test should precede this instruction.

Skip if ASR-33/35 Is Ready (SKS '0004). -- This instruction tests whether the ASR-33/35

device interface is ready to accept another character from the computer or to present an-

other character to the computer.

Skip if ASR-33/35 Is Not Busy (SKS '0104). -- The ASR-33/35 busy signal is defined

as follows:

a. In the output mode the ASR-33/35 is busy from the time a character is trans-
mitted from the computer to the ASR-33/35 device interface until it has been serially shifted
out to the ASR-33/35. This time is approximately 105 ms.

b. In the input mode the ASR-33/35 is busy from the time the ASR-33/35 starts to
serially transfer a character to the device interface until the transfer is complete and the

ASR-33/35 ready condition is present. This time is approximately 100 ms.

Skip if ASR-33/35 Is Not Interrupting (SKS '0404). -- This instruction tests whether the
ASR-33/35 has caused an interrupt on the standard interrupt line.

Skip if Stop Code Was Not Read on ASR-33/35 (SKS '0504), -- This instruction tests
whether a stop code (2238 or 0238) has been read by the ASR-33/35. The stop code indica-

tion can be tested as soon as the stop code has been read from the ASR-33/35 into the device

buffer and is ready for input to the computer. When a stop code is read by an ASR-33/35,
the stop code and one/two following characters are transferred to the device buffer before
the reader stops. The stop code indication remains present until the character following the

stop code is ready for input to the computer (approximately 100 ms).

Input in ASCII Mode If Ready (INA '0004). -- This instruction transmits the full 8-bit
character from the ASR-33/35 to the eight least significant bits of the A-register. The

A-register is not cleared. Ready must be honored within 1 ms to ensure transmission. If
Ready is true, the instruction is executed and the next instruction skipped. If Ready is not

true, this instruction is treated as an NOP.

Input in Binary Mode If Ready (INA '0204), ~- This instruction transmits the six least
significant bits of the 8-bit ASR-33/35 character to the six least significant bits of the A-

register. The A-register is not cleared. Ready must be honored within 1 ms to ensure
transmission. If Ready is true, this instruction is executed and the next instruction skipped.

If Ready is not true, this instruction is treated as an NOP,

Clear A and Input in Binary Mode If Ready (INA '1004). -- Same as INA '0004 except

A is cleared before character is transmitted,

Clear A and Input in Binary Mode If Ready (INA '1204). -- Same as INA '0204 except

A is cleared before character is transmitted.

Output in ASCII Mode If Ready (OTA '0004). -- This instruction transmits the eight
least significant bits of the A-register to the ASR-33/35. If the ASR-33/35 is punching, it

punches all eight bits of the code that is transmitted. However, in printing, it determines
the character to be printed or the control function to be performed from the seven least

significant bits.

Output in Binary Mode If Ready (OTA '0204). -- This instruction transmits the eight
least significant bits of the A-register to the ASR-33/35 and then modifies channel 7 (nor-
mally Al0) to be the inverse of All, Thus, if the eight least significant bits in the A-register
were (XXlXXXXX)Z, they would be transmitted to the ASR-33/35 as (XOlXXXXX)Z. If they
were (XXOXXXXX)Z, they would be transmitted as (XIOXXXXX)Z.

Set Interrupt Mask (SMK '0020). -- The A-register bit assignment for the ASR-33/35 is
bit 11. This instruction sets the standard interrupt mask flip-flop if the A-register bit is

one and resets the mask flip-flop if the bit is a zero.

Sample Program

The following subroutine is intended as an example only. When it is called, the sub-
routine outputs one character to the ASR-33. The character is printed if it is printable. If
the punch is on, the character is punched whether it is printable or not. The subroutine is

entered with the character to be outputted in the A-register.

SUBR ASRTYP, STRT Subroutine name
REL
STRT DAC ol Subroutine entry point
SKS '104 Test ASR busy
JMP -1 Delay until not busy
OCP '104 Enable output mode
OTA 4 Output character in ASCII mode
JIMP -1 Delay if ASR not ready
JIMP STRT Return to calling program
END

HIGH-SPEED PAPER TAPE READER OPTION (HONEYWELL 316/516-50)

A high-speed, unidirectional perforated tape reader consists of a paper tape reader
and the control logic that is required for operational compatibility. The reader employs a
pinch roller capstan and brake solenoid system to control tape movement. The control logic
includes an eight-bit buffer register that enables transfers via the 1/0O bus of one frame per
computer word. The reader reads eight data channels per frame at the rate of 30 inches

per second. With a density of 10 frames per inch, the rate is 300 frames per second.

Loading Procedure

The reader uses standard paper or mylar tapes (black paper recommended) 0. 004 to
0.005 in, thick. The tape can be loaded without removing power by rotating a front-mounted
READY-LOAD switch clockwise to the LOAD position. The tape must be placed with the
three-channel side flush with the inboard guide. After the tape has been loaded, the READY -
LOAD switch must be rotated counterclockwise to the READY position.

Programming

The reader operates continuously when reading is initiated with an OCP '0001. Data
is transferred to the buffer until the complete tape has been read or until an OCP '0101 is
executed.

The control codes assigned to the high-speed paper tape reader are described in the

following paragraphs. In summary they are as follows.

OCP '0001 Start reader
OCP '0101 Stop reader
SKS '0001 Skip if tape reader ready

SKS '0401 Skip if tape reader not interrupting

INA '0001 Input from paper tape if ready
INA '1001 Clear A and input from paper tape if ready
SMK '0020 Set interrupt mask
Start Reader (OCP '0001). -- This instruction starts tape motion. The first character

to pass the read station is transferred to the device buffer for transmission to the central
processor. An interval of 5 ms is required to reach full operating speed after execution of

OCP '0001.

Stop Reader (OCP '0101). -- This instruction stops tape motion. This instruction must

be executed within 1 ms after a character-ready signal to avoid losing the character after a

restart.

Skip if Tape Reader Ready (SKS '0001). -- This instruction skips if the tape reader is

in a ready status, The tape reader is ready when a character is available in the device

buffer.

Skip if Tape Reader Not Interrupting (SKS '0401). -- The tape reader is interrupting

when a character is available and the interrupt mask flip-flop is set,

Input From Paper Tape Reader if Ready (INA '0001). -- Execution of this instruction

causes a frame to be ORed into the eight least significant bit positions of the A-register
with channel 1 of the frame corresponding to bit position 16. The next program instruction
is skipped upon execution of this instruction. If the Ready is not true, this instruction is

treated as an NOP,

Clear A and Input From Paper Tape Reader if Ready (INA '1001). -- This instruction

is identical to INA '000! except that the A-register is cleared before the character is trans-

ferred in,

Set Interrupt Mask (SMK '0020). -- The A-register bit assignment for the paper tape

reader is bit 9. This instruction sets the standard interrupt mask flip-flop if the A-register

bit is a one and resets the mask flip-flop if the bit is a zero.

Sample Program

The following subroutine is intended as an example only. When called, it reads two
frames from the high-speed paper tape reader and packs the data read into one word. The

packed word is left in the A-register upon return to the calling program.

SUBR PTR Subroutine name

REL

PTR DAC ok Subroutine entry point
OCP 1 Start tape reader
INA '1001 Clear A and input first frame
JMP *-1 Delay until ready
LGL 8 Shift to pack
INA 1 Input second frame
JMP *-1 Delay until ready
OCP '101 Stop reader
JMP* PTR Return
END

NOTE

In the above example, the tape reader was stopped in suffic-
ient time to prevent loss of the following character.

HIGH -SPEED PAPER TAPE PUNCH OPTION (HONEYWELL 316/516-52)

The high-speed paper tape punch consists of a punch unit and the control logic re-
quired for interface with the computer. The punch is a synchronous device; pulses gener-
ated by a magnetic pickup coil synchronize the interface control circuits. The control logic
includes an eight-bit buffer register that receives data transferred from the central pro-
cessor. The device punches l-inch, eight-channel paper tape at the rate of 110 frames per

second. (Oil impregnated tape is recommended.)

Loading Procedure

a. Thread tape off bottom rear of roll, through wire and roller guides, then to
tape guide and punch block.

b. Lead tape between hold-down bar and feed wheel, then out under tape cutter.

c. Apply punch power.

d. Depress feedout lever (located at top center of punch cover), pull the tape to the

left until it begins to feed, and then release the feedout lever.

Programming

Punch power can be turned on by means of a switch on the device cabinet or under
program control. A 2.,5-second interval is required for the device to reach full operating
speed after power has been applied. It is suggested that power only be applied under program

control except during maintenance or replacement of tape supply.

The control codes assigned to the paper tape reader are described in the following

paragraphs. In summary they are:

OCP '0002 Enable paper tape punch
OCP '0102 Turn punch power off
SKS '0002 Skip if punch is ready
SKS '0102 Skip if punch power is on
SKS '0402 Skip if punch is not interrupting
OTA '0002 Output to punch if ready
SMK '0020 Set interrupt mask
Enable Paper Tape Punch (OCP '0002). -- This instruction applies power to the paper

tape punch. There is a 5-second delay until the punch is ready to receive data.

Turn Punch Power Off (OCP '0102). -- This instruction removes power from the paper

tape punch. Ready status should be tested to be sure that it is ready before execution of this

instruction to avoid turning the punch off while data is being punched.

Skip if Punch Is Ready (SKS '0002). -- This instruction skips if ready status is true.

Ready status is true when the device buffer is ready to accept new data from the central

processor.

Skip if Punch Power Is On (SKS '0102). -~ This instruction must precede an OCP '0002.

A character might be lost if an OCP '0002 is executed when power is already on.

Skip if Punch Is Not Interrupting (SKS '0402). -- The punch is interrupting when the

interrupt mask flip-flop is set and the buffer is ready to receive a character.

Output to Punch if Ready (OTA '0002). -- Execution of this instruction results in an

output transfer. If ready status is true, the eight least significant bits of the A-register
are transferred to the device buffer and the next instruction is skipped. Ready status then
becomes false for approximately 9 ms during which time the contents of the device buffer is
punched as a frame, with channel 1 of the frame corresponding to bit position 16 of the

A-register,

Set Interrupt Mask (SMK '0020). -- The A-register bit assignment for the paper tape

punch is bit 10. This instruction sets the standard interrupt mask flip~flop if the A-register

bit is one and resets the mask flip-flop if the bit is zero.

Sample Program

The following subroutine is intended as an example only. When the subroutine is called,
it performs one of three functions depending on the entry used. The PON entry is used to

apply power to the paper tape punch. It is a separate entry so that the calling program can

perform other operations during the 2. 5-second interval required for the punch to reach

full operating speed. The PNCH entry is used to punch an 80-character card image from

a block of 40 words packed two characters per word. The POFF entry is used after the

last data block has been punched.

SUBR PON
SUBR PNCH

SUBR POFF
REL
PON DAC o
SKS '102
OCP 2
JMP* PON
PNCH DAC *&
LDA =-40
STA CTR
LDA BUFA
STA LINK
LOOP LDAX* LINK
ICA
OTA 2
JMP *-1
ICA
OTA 2
JIMP *e
IRS LINK
IRS CTR
JMP LOOP
JIMP* PNCH
POFF DAC A%
SKS 2
IMP *-1
OCP '102
JIMP* POFF
BUFA DAC COM
LINK BSS 1
CTR BSS 1
COM BSS 40
END

Subroutine name for power-on
Subroutine name for punch-data

Subroutine name for power-off

Power-on entry

Test power already on

If not, turn on

Return

Punch-data entry

Set CTR for 80 characters XFER
Store CTR

Get first location of block storage
Store in link

Get packed data word

Set up left character

Output character

Delay if not ready

Set up right character

OQutput character

Delay if not ready

Increment storage address
Increment CTR

Loop to punch next two characters
Return

Power -off entry

Test ready status

Delay if not ready

Turn power off

Return

Address of packed word storage
Storage location counter

Word counter

Packed word storage

CARD READER OPTION (HONEYWELL 316/516-61)

The Card Reader includes a 200-cpm card reader and a card reader control unit
(CRCU) that contain appropriate interface logic to ensure 16-bit operational compatibility.
The card reader is a photoelectric device that reads Hollerith or binary coded punched
cards, one at a time, column-by-column, and transmits the data read to the 16-bit interface.

In the Hollerith mode the card reader reads each column as a Hollerith character and
converts it to a six-bit code. (See Table 3-2.) The converted characters are then trans-
mitted to the 16~bit interface as bits 11 through 16 of the data word.

In the binary mode the card reader reads each column as a 12-bit byte. Data is trans-
ferred to thel6-bit interfacein bit positions 5 through 16 of the data word, with bit position
5 represented by row 12 and bit position 16 represented by row 9. This action continues for

each column up to and including column 80.
Programming

The control codes assigned to the card reader are:

OCP '0005 Read one Hollerith card.

OCP '0105 Read one binary card.

SKS '0005 Skip if card reader ready.

SKS '0105 Skip if card reader not busy.

SKS '0205 Skip if not end of file.

SKS '0305 Skip if card reader operational.

SKS '0405 Skip if card reader not interrupting.

INA '0005 Input from card reader if ready.

INA '1005 Clear A-register and input from card reader
if ready.

SMK '0020 Set interrupt mask.

Read One Hollerith Card (OCP '0005). -- This OCP causes the card reader to feed one
card and enables 6-bit Hollerith encoded characters to be read into the A-register with an
INA 'X005 instruction.

Read One Binary Card (OCP '0105). -- This OCP causes the card reader to feed one
card and allows 12-bit binary data to be read into the A-register with an INA 'X005 instruc-

tion.
NOTE
Proper operation of the system is not guaranteed if these

OCP's are issued when the card reader is busy.

Skip if Card Reader Ready (SKS '0005). -- This SKS skips if the control unit is ready

to send a character to the input bus. The first Ready occurs approximately 110 ms after

an OCP read instruction is received. Subsequent Readys occur every 2.4 ms,

Skip if Card Reader Not Busy (SKS '0105). -- This SKS skips if the card reader is not
busy. The card reader is busy from the time OCP '0005 or OCP '0105 is received until

1 ms after the 80th column of the card has been read (a total duration of approximately 300 ms).

Table 3-2.
Card Codes
Octal A (H(Sl?glith) Character Octal (Hci?errdith) Character
00 All Other 40 11 -
Codes

01 1 1 41 11-1 J
02 2 2 42 1-2 K
03 3 3 43 11-3 L
04 4 4 44 11-4 M
05 5 5 45 11-5 N
06 6 6 46 11-6 (@)
07 7 7 47 11-7 P
10 8 8 50 11-8 Q
11 9 9 51 11-9 R
12 8-2 Null 52 11-0 H
00 0 0
13 8-3 = 53 11-8-3 $
14 8-4 1 54 11-8-4
15 8-5 : 55 11-8-5 [
16 8-6 ! 56 11-8-6 | End-of-File
17 8-7 > 57 11-8-7 <
20 Blank Space 60 12 +
21 0-1 / 61 12-1 A
22 0-2 S 62 12-2 B
23 " 0-3 T 63 12-3 C
24 0-4 U 64 12-4 D
25 0-5 v 65 12-5 E
26 0-6 w 66 12-6 F
27 0-7 X 67 12-7 G
30 0-8 Y 70 12-8 H
31 0-9 V4 71 12-9 I

72 12-0 t
32 0-8-2 Null
33 0-8-3 , 73 12-8-3 .
34 0-8-4 (74 12-8-4)
35 0-8-5 Null 75 12-8-5 %
36 0-8-6] 76 12-8-6 \
37 0-8-7 " 77 12-8-7 -

A Octal column is 6-bit code generated by card reader.

Skip if Not End-of-File (SKS '0205). -- This SKS skips if the end~of-file flip-flop is
not set. The EOF f{lip-flop is set by an 11-8-6 punch read in Hollerith mode or by pushing

the END OF FILE button on the reader console when the input hopper is empty. It isreset
every time a read card OCP is issued or on MASTER CLEAR.

Skip if Card Reader Operational (SKS '0305). -- This SKS skips if the card reader is

in an operational state (that is, power on, feed hopper not empty, no card jam, stacker not
full, no read-feed or validity errors, and start button depressed). The level indicating that

the card reader is not operational cannot be reset by MASTER CLEAR. If it was set by
READ CHECK, FEED CHECK or VALIDITY CHECK, which is indicated by the fact that the
particular light on the reader console will be on, both the RESET and START buttons have to
be pushed in order to reset the level. If it was set by any other condition (input hopper empty
or output stacker full), correcting the condition and depressing the START button resets the
level. In all the above cases, if the condition which caused the fault in the first place is

still present, the level cannot be reset. If a read OCP is issued when the card reader is not
operational, the CRCU becomes busy but no card is clutched. If the non-operational status
was caused by an empty input hopper, some programs may be resumed by placing cards in
the hopper and depressing the START button.

Skip if Card Reader Not Interrupting (SKS '0405), -- This SKS skips if the card reader

has not caused an interrupt. This SKS is used when operating with standard interrupt to

determine which device is ready to send or receive new data.

Input from Card Reader if Ready (INA '0005). -- If the control unit is not ready to

transfer data, the INA is treated as an NOP and the program continues in sequence. When
the control unit ready flip-flop has been set, data is transferred to the A-register in the

following manner and the next instruction is skipped.

Hollerith Mode. -- The card reader 6-bit output is ORed into the A-register bit

positions 11 through 16. Bits 1 through 10 are unchanged. Card reader codes are listed
in Table 3-2.

Binary Mode. -- The 12 bits from one card column, rows 12 through 9, are ORed into
A-register bit positions 5 through 16. Bits 1 through 4 are unchanged. The device must
be serviced within 2.4 ms after a ready signal is received to ensure that each column of

data is successfully transferred.

Clear A-Register and Input from Card Reader if Ready (INA '1005). -- This instruction

is identical to INA '0005 but the A-register is cleared before data is transferred.

Set Interrupt Mask (SMK '0020). -- The A-register bit assignment for the card reader

is bit 12. This instruction sets the standard interrupt mask flip-flop if the A-register bit

is a one and resets the mask flip-flop if the bit is a zero.

3-20

Operator Controls and Indicators

Pushbutton combination switches and lamps to indicate the status of the card reader

are located on the card reader control panel. Front panel controls and indicators are:

Controls Function

POWER ON Applies ac power to reader controls and logic.

POWER OFF Turns off ac power to reader.

START Sends a ready level to card reader interface, signaling that a read
cycle may commence,

STOP Stops card reader operation.

RESET Resets all error condition signals except the NOT READY indicator
(this signal can only be reset when the start pushbutton is
depressed).

END OF FILE Selects end-of-file status and signals card reader interface logic.

VALIDITY ON Selects validity checking logic (Hollerith mode only).

NOT READY Indicates that card reader is not ready to begin reading
when indicator is lighted.

READ CHECK Indicates that one of the photocell exciter lamps is not on or blocked.

NOTE

READ CHECK does not mean that a card was read incorrectly.
This light cannot be energized while a card is actually passing
through the read station. It can be set while no cards are in
motion, before a card has entered the read station, or after it
has left the read station.

FEED CHECK Indicates a card jam or that a card has failed to feed (did not reach
the read station).

VALIDITY Indicates that a code other than a legitimate Hollerith code was

CHECK read while in the Hollerith mode and with the VALIDITY ON

switch energized. All illegal codes will be input to the computer
as octal 00.

Placement of Cards in Hopper

The card reader accepts standard 7-3/8 x 3-1/4 in. punch cards 0.0070 in. thick.
Cards should be placed in the hopper face down with the row-9 edge toward the back of the

card reader.

Sample Program

The following subroutine is intended as an example only. When it is called, it will
read Hollerith data from a card and pack it two characters per word for a maximum of
40 words. To keep the example simple, no provision has been made to convert from the

6-bit Hollerith code to the 8-bit ASCII code, nor was any error checking done.

CARD

STRT

BUF

CARD

SUBR
REL
DAC
LLDX
SKS
IMP
SKS
JMP
OCP
INA
JMP
ICR
INA
JMP
STAx*
IRS
JMP
JMP:
BSS
END
SUBR

CARD

A,
o

=-40
'305
|
'105
%1
'5
'1005

%]

'5

%a1
BUF+40, 1
0

STRT
CARD

40

CARD
CARD

Subroutine name

Subroutine entry name

Set index for 80 character XFER
Test card reader operational
Delay until operational

Test card reader busy

Delay until not busy

Read one Hollerith card

Clear A and Input character
Delay if not ready

Shift to pack

Input character

Delay if not ready

Store word V

Increment index

Loop to read next two characters
Return

Packed word storage

End of subroutine

SECTION IV
DAP-16 LANGUAGE

DAP-16 is a symbolic assembly program which translates a symbolic (source) pro-
gram into machine language (object) code. DAP-16 provides symbolic programming while
maintaining the characteristics, flexibility, speed and conciseness of machine language

programming, and permits the assignment of symbolic addresses to storage locations.

MODES OF OPERATION

DAP-16 operates in two basic modes: load and desectorizing. When operating in the
load mode DAP-16 closely approximates the addressing structure of the Honeywell 316/516
computer. Operand addresses must be within the same sector as the instruction, or in
sector zero, otherwise an error flag is generated. This means that the programmer must
be aware of an operand's location with respect to sector boundaries. Programs assembled
in the LOAD mode are always absolute. It is the programmer's responsibility to provide
all indirect linkage required for intersector addressing and subroutine calls.

In the desectorizing mode (Figure 4-1), DAP treats the Honeywell 316/516 class
computer as if all of memory (up to 32K with Extended Addressing option for the DDP-516)
is directly addressable. The desectorizing mode does not require the programmer to be
concerned with the location of the operands with respect to sector boundaries. It also makes
possible the writing of very efficient, completely relocatable programs. In the desectorizing
mode, an extendedobject codeis generated which provides the DAP/FORTRAN relocating
loader with sufficient information to determine whether indirect address linkage must be
supplied for any memory referencing instruction or whether the address may be inserted
directly into the memory address instruction. Programs assembled in the desectorizing
mode generally require less memory space and operate faster because the tedious chore
of defining and minimizing indirect address links is done by DAP-16 and the loader rather
than by the programmer. In the desectorizing mode, subroutines can be called using the
CALL pseudo-operator, and all subroutine linkage is automatically completed by the
DAP/FORTRAN relocating loader. Programs may be assembled in the desectorizing mode
by placing an ABS pseudo-op (in the case of absolute programs) or a REL pseudo-op (in
the case of relocatable programs) at the beginning of the program to be assembled. Pro-
grams written to be assembled in the desectorizing mode should not, in general, modify or
move memory referencing instructions within the program during the course of program
execution. The common practice of address modification may be easily and safely accom-
plished by making the address to be modified an indirect address link (using the DAC pseudo-

operation). This indirect address link may then be modified in the desired manner.

PROCESS MEMORY REFERENCE INSTRUCTION

!

ADDRESS RELOCATABLE

NO

YES

\

ADD (SUBTRACT)

RELOCATION FACTOR

NO

ADDRESS IN SAME SECTOR
AS INSTRUCTION?

YES

IS ADDRESS IN THE SAME
SECTOR AS THE CURRENT

BASE SECTOR?

YES

i

|

LOAD FLAG, TAG AND OP CODE
OF OBJECT WORD INTO BITS 1-6

LOAD FLAG, TAG AND OP CODE
OF OBJECT WORD INTO BITS 1-6

!

'

LOAD 9-BIT ADDRESS INTO BITS
8-16 OF OBJECT WORD

TRUNCATE ADDRESS TO 9 BITS
AND LOAD INTO BITS 8-16 OF
OBJECT WORD

'

l

RESET THE SECTOR BIT (BIT 7)
OF THE OBJECT WORD

4-2

v

INSTRUCTION COMPLETE

Figure 4-1,

SET THE SECTOR BIT (BIT 7) OF
THE OBJECT WORD

v

INSTRUCTION COMPLETE

Desectorized Program Loading (Sheet 1 of 3)

\f

YES f
o

1S ADDRESS IN
SECTOR ZERO

LOAD FLAG, TAG AND
OPCODE OF OBJECT
WORD INTO BITS 1-6

TRUNCATE ADDRESS
TO 10 BITS OF
OBJECT WORD

'

INSTRUCTION COMPLETE

NO

NO, AN INDIRECT ADDRESS WORD MUST

BE FORMED.

NO EXTENDED-ADDRESSING YES

MODE

?

TRUNCATE ADDRESS
TO 14 BITS

INSTRUCTION

\YES

TRUNCATE ADDRESS
TO 15 BITS

STX OR LDX?

_J

COMBINE ADDRESS (BITS 3-16) WITH

THE FLAG (BIT 1) AND THE TAG (BIT2)

OF THE OBJECT WORD TO CREATE
AN INDIRECT ADDRESS WORD

PLACE INDIRECT ADDRESS WORD IN
THE BASE SECTOR INDIRECT ADDRESS
WORD TABLE. (USE THE EXISTING
WORD IF THERE 1S ALREADY ONE IN
THE TABLE.)

LOAD THE OP CODE (BITS 3-6) INTO
THE INSTRUCTION WORD

SET THE FLAG (BIT 1) AND RESET
THE TAG (BIT 2)

Figure 4-1,

COMBINE ADDRESS (BITS 2-16) WITH
THE FLAG (BIT 1) OF THE OBJECT
WORD TO CREATE AN INDIRECT

ADDRESS WORD

\

PLACE INDIRECT ADDRESS WORD IN

THE BASE SECTOR INDIRECT ADDRESS

WORD TABLE, (USE THE EXISTING

WORD IF THERE 1S ALREADY ONE IN
THE TABLE,)

LOAD THE OP CODE (BITS 3-6) AND
THE TAG (BIT 2) INTO THE
INSTRUCTION WORD

SET THE FLAG (BIT 1)

Desectorized Program Loading (Sheet 2 of 3)

4-3

LOAD INTO THE INSTRUCTION WORD
THE 9-BIT BASE SECTOR ADDRESS OF
THE INDIRECT ADDRESS WORD
(BITS 8-16)

1

YES IS THE BASE SECTOR THE NO
\\ CURRENT SECTOR?

Y \

SET THE SECTOR RESET THE SECTOR
BIT BIT 7) BIT (BIT 7)
INSTRUCTION INSTRUCTION
COMPLETE COMPLETE

Figure 4-1, Desectorized Program Loading (Sheet 3 of 3)

ASSEMBLY PROCESS

Initially the DAP-16 assembler is loaded into computer memory. The sequence of
symbolic instructions in the source program to be assembled are examined once or twice
by DAP-16 at the programmers option., The contents of the A-register controls the number
of passes and also the input/output device selection, If bit 1 (the sign bit) of the A-register
is set to a 1, the two-pass mode is selected; if bit 1 is set to a 0, the one-pass mode is

selected, The significance of the remaining 15 bits is discussed in Section V.,

Two-Pass Assembly

The sequence of symbolic instructions in the source program to be assembled are
examined twice by DAP-16: once to develop a dictionary of symbols, and a second time to
assemble the object program by referencing the dictionary. The DAP-16 dictionary has
storage space for defining operation mnemonics and symbols. Three cells are used for
each operation or symbol; the encoded symbol or operation mnemonic is stored in the first
two cells and defined in the third. For machine instructions, the definition cell contains the
corresponding operation code, For location names, the definition cell contains the address
at which the symbol is defined., For pseudo-operations, the definition cell contains a DAC
to the location of the pseudo-operation analyzer in DAP-16. DAP-16 obtains locations for
symbols by stepping a location counter for each line of the source program. The size of the

symbol table may be calculated by the following formula:

Top of memory - Highest location used - 100
3

All calculations are in octal.

Program assembly takes place during pass two. Printing of each line is completed
before the next line is started, reducing requirements for storage space. The line is read
from the tape or card, stored in a special buffer (part of memory), the instruction or data
word assembly is performed and, if requested, the assembled line is printed, Punching of
the object program and punching or printing of the assembly listing are under control of the
contents of the A-register.

Figure 4-2 illustrates how each line is processed. DAP-16 calls the subroutines
necessary for reading and storing one line of type. The line is separated into its constituent
fields, and the operation mnemonic is examined. The nature of the indicated operation
(normal or pseudo) determines the subroutines to be called to process the operation field.
For normal operations DAP-~16 determines the specified machine operation by table look-up
and then places the operation code in the appropriate portion of the instruction word being
assembled. For pseudo-operations, analytical subroutines are called and serve to modify
the assembly process, allocate storage, define data words, or provide for program linkages

at load time,

READ ONE
INPUT LINE

'

ISOLATE THE
VARIOUS FIELDS

'

PROCESS OP CODE
AND DETERMINE

TYPE
. I -
| | |
PSEUDO OP NORMAL
ANALYZERS oF

I |
y

PROCESS
VARIABLE
FIELD

v

OUTPUT
ASSEMBLED WORD

Figure 4-2. Processing of One Line

The variable field is then processed., Alphanumeric, octal, and decimal information

is converted to binary; the DAP-16 dictionary is then searched to evaluate symbols and

calculations are performed to evaluate expressions, If the operation field specified a normal

machine operation, the resultant value forms the address field of the instruction being

assembled,

One-Pass Assembly

The dictionary development and the object program assembly is accomplished in the
same pass in a one-pass assembly, Forward referenced symbols (those that are used
before being defined) have an unknown value at the assembly time. DAP-16 flags such
symbols with a double asterisk (**) and assigns each symbol an internal symbol number
which is outputted with the instruction in which the symbol occurs. The loader program
maintains a table of symbol numbers and their use, When the value of the symbol becomes
known, DAP-16 outputs the value along with the object program so that the loader can fill
in references to the symbol. The object program resulting from a one-pass assembly is
longer than that for a two-pass assembly because of the additional information that must be

supplied to the loader. Programs assembled in the one-pass mode must be loaded by the

extended version of the DAP/FORTRAN loader (LDR) rather than the standard loader (SLDR),

SOURCE LANGUAGE FORMAT

Programs written in the DAP-16 source language consist of a sequence of symbolic
instructions or statements known as source lines. The example below shows a typical
symbolic instruction written on a DAP-16 coding form, This instruction represents one

source line,

PROGRAMMER IDATE PAGE ‘
PROGRAM CHARGE l
LocaTION [®O] oreraTiON [®] ADDRESS. X ®©f commenTs (&)
1 a| e ro| j12 30 72
T
STRT| |[LDA CHNS LFAD CENSTANTY
— T
S ey pa—

As indicated in the coding sheet, symbolic instructions consist of four fields as follows:

a. The LOCATION field occupying character positions 1 through 4 of the source line,

b. The OPERATION field occupying character positions 6 through 10 of the source
line,

c. The VARIABLE field beginning at character position 12 and continuing until a
blank character or column 72 is present., This field is subdivided into the address and

index subfields, The address and index subfields are separated by a comma.

4-6

d. The COMMENTS field begins at the character following the first blank character
which terminates the VARIABLE field.

The above example shows an instruction which is located at the symbolic location
STRT. The effect of the instruction is to load a constant, located at the symbolic location
CONS, into the A-register, The comments field has no effect on the program. The signi-

ficance of the several fields are discussed in more detail in the paragraphs that follow.

Location Field

The location field may be used to assign a symbolic address or 'label' to an instruc-
tion so that the instruction can be referred to elsewhere in the program. The symbolic
address in the location field consists of one to four characters, at least one of which is non-
numeric., DAP-16 assigns memory addresses to the symbolic locations when assembling

the object program,

Operation Field

The operation field is analogous to the operation-code portion of a machine language
instruction, The contents of the operation field may be either a machine language instruction
mnemonic or one of the pseudo-operation mnemonics in the DAP-16 repertoire. Operation
mnemonics are either three or four characters in length., In addition to specifying an oper-
ation, the operation field may also specify that indirect addressing is desired by writing an

asterisk (*) immediately following the operation-code mnemonic.

Variable Field

The variable field is normally used to specify an address and index register for
DDP-16 class instructions. When used with a DAP-16 pseudo-operation, the significance
of the variable field depends upon the nature of the pseudo-operation, (Pseudo-operations

are discussed in Section V.)

Comments Field

The comments field may be used for any comments the programmer cares to write,
This field has no effect on the assembler but it is printed out on the symbolic assembly
listing. The format of the assembly listing is shown in Figure 4-3.

The portion of the assembly listing appearing on the right is a copy of the original

source program input.

SYMBOLOGY

In addition to operation and pseudo-operation mnemonics, the DAP-16 language con-
tains symbols, expressions, and literals. A number of rules, discussed below, govern the

formation and usage of these language elements.

Error Line Program Extended Machine Card Sequence

Field Count Location Code (15-Bit Address) Location Op code Variable No,
0001 *SAMPLE ASSEMBLY LISTING 0010

0002 ORG 512 0020
0003 01000 0 02 01001 STRT LDA w+1 0030
0004 01001 0 04 01000 STA *-1 0040

A 0005 01002 -0 02 00000 LDA* 0050
0006 01003 0 06 01010 ADD =15 0060
0007 01004 0 06 01011 ADD =15 0070
0008 01005 0 04 00700 STA STRT-64 0080
0009 01006 0 02 0l0l12 LDA =1-5 0090
0010 01007 0414 76 LGL 2 0100
01010 000017 0110

01011 000015 0120

01012 177773 : 0130

0011 END Aok 0140

Figure 4-3. Assembly Listing

Symbols

Symbols generally represent memory addresses and may appear in both the location
and the variable fields of the symbolic instructions, The programmer defines a symbol by
placing it in the location field of an instruction, thus giving the instruction a symbolic
address. The assembly program keeps track of the location of instructions in the source
program by stepping a location counter by one for each instruction, When a symbol appears
in the location field it is normally assigned the current value of the location counter. The
first such occurrence constitutes the definition of the symbol, and any subsequent occur-
rence in the location field causes an error printout. Undefined symbols, that is, symbols,
appearing in the variable field of an instruction and not in any location field, cause an error
printout, The value of an undefined symbol is some location at the end of the program,

Symbols consist of 1 to 4 characters from among the 37-character set of the letters
of the alphabet, the 10 digits and the dollar sign character ($). At least one of the charac-
ters in any symbol must be alphabetic. The $ character should be used with care since it is
used in column 1 by the update program to flag a command card,

The following symbols are legitimate,

LOOP
STP2

Expressions

Expressions appear only in the variable field and may be either simple (composed of
a single element) or compound (composed of two or more elements separated by operators).

An element may be either a symbol, a decimal integer less than or equal to 65535, an octal

integer preceded by an apostrophe less than or equal to '177777, a single asterisk, or a
double asterisk,

When a single asterisk appears in the variable field as an element, it designates an
address equal to the current value of the location counter. Thus, * + 1 means 'this location
plus one.'" A double asterisk has a value of zero and is commonly placed in the variable
field when the address is to be modified later by the program.

Operators are used to separate elements in compound expressions, An operator may
be either a plus (addition) or a minus (subtraction). Only one operator is permissible
between each pair of elements,

Expressions may have either relocatable or absolute modes. A relocatable expression
is one that is relative to the first instruction of the program; an absolute expression is one
which has a constant value regardless of its relative position in the program (e.g., an
integer). The overall mode of the expression depends on the mode of each of the individual
elements used to make up the expression,

Any permissible expression may be written to répresent the address portion of a
standard instruction, Additionally, the standard index (location zero) may be specified by
following the address expression with a comma and the integer one,

The following are examples of valid expressions:

Assume (P) is '203 then Q+5 = "2
Q =15 ZZ +2 = '15
Z7Z = "'13 * = 1203
R =120 *¥- Q = '176
¥4+ 3+ Q-4 117303 - R = '17476

Literals

Reference to a memory location containing a constant may be accomplished by use of
one of the data defining pseudo-operations provided in the DAP-16 language. However, it
is sometimes more convenient to represent a constant literally rather than symbolically.

Consider the following example.

PROGRAMMER IDATE PAGE

PROGRAM CHARGE
LocATiON O} operaTiON [©f ADDRESS. X ®©f commenTs)
1 4] |s 10| [12 30 72|7,

T

LDA A
A | BEC 50

a_a T

) — T T e e

T

4-9

The first instruction refers to the symbolic constant A, The second instruction
defines the constant as having the decimal value 50, An equivalent reference to the constant

would have been as follows,

PROGRAMMER IDATE PAGE
PROGRAM CHARGE
LocaTion [®] operaTion [®Of aDoRESS. X ®©f commenTs
! 4| |6 0] |12 30 72|7
T
LD A =50
' J

In this example, DAP-16 interprets the =50 as a decimal literal and automatically
generates and assigns a location for the value 50, The resultant location of the value 50 is
inserted into the address portion of the LDA instruction in the object program.,

Three types of literals, decimal, octal, and ASCII are interpreted by DAP-16, A
decimal literal consists of the equals character (=), followed by the sign (if no sign, the
number is positive), followed by a fixed-point decimal integer. The rules for forming an
octal literal are identical except that an apostrophe (') must follow the equals character.
ASCII literals consist of the equals character followed by an A (=A), followed by two ASCII
characters. If only one ASCII character is specified the second character is assumed to
be a blank. The ASCII literals are an exception to the rule governing blanks in the variable
field. The two characters following the "A" form the literal and the third character must

be either a blank (end of the variable field) or a comma (beginning of the index subfield),

Asterisk Conventions

The conventions for use of the asterisk are summarized below,

a. An asterisk (*) in column 1 or first character in the location field: treat the
entire card or line as remarks,

b. An asterisk (*) appended to instruction mnemonic: set the indirect address flag.

c. An asterisk (*) as an element: current value of the location counter.

d. A double asterisk (*%*) as a symbolic address: put zeros in address field (address
is modified by another instruction).

e. A triple asterisk (*%%) as an operation code: op-code will be modified by another
instruction. The instruction is assembled as a memory reference instruction with an

operation code of 008'

4-10

ASSEMBLY LISTING

The printed output of DAP-16 is called the assembly listing. It is a printing of the
symbolic input instructions in the order in which they appeared, together with the octal
representation of the binary words produced by the assembler. A sample listing is shown
in Figure 4-3, The first column contains the line ID number, which identifies the line and
is used by the source-program update routine, The next column shows the memory location
assigned to each instruction, The third column shows, in octal, the binary word assigned
to the location.

The following observations taken from Figure 4-3 are intended to aid the reader in

analyzing the characteristics of DAP-16,

a, Line 1l contains an asterisk in the location field, causing DAP-1 6 to treat the
entire line as remarks,

b, Line 2 contains a pseudo-operation (ORG) which sets the DAP-16 location counter
to octal 1000, the starting address of sector one. ’

c. The expression in the variable field in line 3 means the current value of the loca-
tion counter, plus one, Consequently, DAP-16 has written octal 1001 into the address
field of the instruction word assigned to this location,

d. The symbol in the left margin of line 5 is a diagnostic. Diagnostics are explained
in Section V.

e, In line 10, the programmer has entered the number of shifts desired in an LGL
instruction. DAP-16 has generated the necessary two's complement form in the object
program,

f. Following line 10 is a literal pool of the three literals called for by the program,

4-11

SECTION V
DAP-16 PSEUDO-OPERATIONS

This section contains descriptions of all pseudo-operations provided in the DAP-16
language. Ancillary discussions of program relocation, data formatting, and program
linkages are included to clarify pseudo-operation functions. (For a summary listing of

DAP-16 pseudo-operations, see Appendix H.)

ASSEMBLY CONTROLLING PSEUDO-OPERATIONS

Assembly controlling pseudo-operations (ABS, CFx, END, FIN, LOAD, MOR, ORG,
and REL) are used to start and stop program assembly and to select the assembly mode,
Programs may be assembled in either the absolute or relocatable mode. Relocatable pro-
grams can be placed anywhere within memory at the time of loading, whereas absolute
programs must be placed in their assembled locations.

During program assembly, DAP-16 maintains a location counter to assign memory
locations for each data and instruction word that is assembled. The output of the location
counter is shown on the assembly listing (Figure 4-3), If the program is assembled in the
absolute mode, the DAP-16 loader loads the object program into the locations shown on the
assembly listing., If the program is assembled in the relocatable mode (specified by an
REL pseudo-operation), the loader loads the object program into the memory area specified
by the programmer at program loading time, It is recommended that the main program be
loaded at a starting address equal to or greater than 10008, so that sector zero can be used
exclusively for address linkage and transfer vectors.

DAP-16, in the absence of a LOAD or REL pseudo-operation, assembles programs in
the absolute mode. Relocatable programs are tentatively assembled for loading at a starting
location of zero, However, at load time, a relocation constant is added to or subtracted
from the address field of memory reference instructions and data words which reference
symbolic locations. The relocation constant is equal to the difference between zero and the
program starting location selected at load time,

When assembling relocatable programs, DAP-16 inserts control bits into the object
program (not shown in the assembly listing) that enable the loader to identify instruction
and data words referencing symbolic memory locations, The loader then adds the relocation

constant to the address fields of these words,

ABS Pseudo-Operation

The ABS (absolute) pseudo-operation is used to direct DAP-16 to assemble subsequent
instructions in the absolute mode, The contents of the symbolic instructions containing the

ABS pseudo-operation are:

LOCATION Ignored

OPERATION ABS
VARIABLE Ignored
COMMENTS Normal

The effect of the ABS pseudo-operation is to assign absolute locations to the instruc-
tions assembled. The assembler continues to run in the absolute mode until a REL, LOAD,

or END pseudo-operation is encountered. The ABS mode is the normal assembly mode,

CFx Pseudo-Operation

The CFx (configuration) pseudo-operation is used to inform DAP-16 as to which
DDP-16 class computer the object program is to be executed on. The suffix "x" has the
following connotation: 1 for the H116, 3 for the H316, 4 for the H416, and 5 for the DDP-516.
If the configuration is not specified it is assumed that the object program is to be executed
on the same Series H-16 class computer as that on which the assembly is being performed,

The contents of symbolic instructions containing the CFx pseudo-operation are:

LOCATION Ignored
OPERATION CFl, CF3, CF4, or CF5
VARIABLE Ignored
COMMENTS Normal

The CFx pseudo-operation causes the DAP-16 to flag any instructions that are illegal

for the object computer without interrupting the assembly,

END Pseudo-Operation

The END pseudo-operation is used to direct DAP-16 to terminate the current assembly
pass and prepare for the second pass if the two-pass mode has been selected. The contents

of symbolic instructions containing the END pseudo-operation are:

LOCATION Ignored
OPERATION END
VARIABLE (1} An expression that defines the address of the

instruction to which control should be transferred
at the conclusion of the loading process at object
time. If the variable field is left blank, the trans-
fer address is set to the location of the first instruc-
tion in the main program,
(2) Subroutine; ignored.

COMMENTS Normal

The END pseudo-operation causes DAP-16 to perform the following functions:

a. The current block of assembly output information is terminated.

b. All literals are punched out and undefined symbols are assigned locations,

c. An end jump block is punched following the assembly output, The jump address is
the value of the expression in the variable field, If the variable field is left blank, the
transfer address is set to the first instruction in the main program,

d, The assembly process is terminated if the current pass is the final one.

The END pseudo-operation must be the last statement in the source program,
When operating in the two-pass mode, the START pushbutton must be depressed to
start processing pass two, While the computer is halted, the operator must reposition the

source tape to the beginning, or reload the card deck,

FIN Pseudo-Operation

The FIN (finish) pseudo-operation is used to direct DAP-16 to punch out all literals
accumulated up to the point at which the FIN pseudo-operation is initiated. The contents

of symbolic instructions containing the FIN pseudo-operation are:

LOCATION Ignored
OPERATION FIN

VARIABLE Ignored
COMMENTS Normal

The effect of the FIN pseudo-operation is to cause DAP-16 to punch out all the accu-
mulated literals, The purpose of this pseudo-operation is to permit literals to be inter-
spersed throughout the program thus minimizing the necessity for indirect address links

when referencing literals.

LOAD Pseudo-Operation

The LOAD pseudo-operation is used to direct DAP-16 to flag any instruction address
that required desectorizing. The contents of symbolic instructions containing the LOAD

pseudo-operation are:

LOCATION Ignored
OPERATION LLOAD

VARIABLE Ignored
COMMENTS Normal

The effect of the LOAD pseudo-operation is to cause DAP-16 to flag any instruction
whose address refers to a location outside the current sector or zero, The assembler
continues to operate in the LOAD mode until an END, REL, or ABS pseudo-operation is

encountered.

MOR Pseudo-Operation

The MOR (more) pseudo-operation causes the computer to halt and await operator
action (except when magnetic tape input has been selected in which case MOR is ignored).

The contents of symbolic instructions containing the MOR pseudo-operation are:

5-3

LOCATION Ignored

OPERATION MOR
VARIABLE Ignored
COMMENTS Normal

ORG Pseudo-Operation

The ORG (origin) pseudo-operation sets the location counter to a specified value,

The contents of symbolic instructions containing the ORG pseudo-operation are:

LOCATION Normal
OPERATION ORG
VARIABLE Normal. Any symbol used in this field must have

been previously defined,
COMMENTS Normal

The ORG pseudo-operation performs the following functions:

a. The expression in the variable field is evaluated,

b. The location counter is set to the value thus determined,

A symbol in the location field of an ORG pseudo-operation is assigned the value of the

location counter prior to processing the ORG pseudo-operation, Consider the following

example,

PROGRAMMER IDATE PAGE

PROGRAM CHARGE
LocaTION |®] oreraTion [®] apDRESS. X ®[commEnTs =)
1 4 6 10 12 30 72

\ T
- -~
RS /00

WA P

FINE [JRSG, | ['1 000

L.DOA X

L —— /\——%

The LDA instruction is assigned to an absolute location (10008). The symbol FUNA
is assigned the absolute value 1018.

REL Pseudo-Operation

The REL (relocatable) pseudo-operation is used to direct DAP-16 to assemble the
subsequent instructions in the relocatable mode. The contents of symbolic instructions

containing the REL pseudo-operation are:

LOCATION Ignored

OPERATION REL
VARIABLE Ignored
COMMENTS Normal

The effect of the REL pseudo-operation is to cause DAP-16 to assign relative locations
to the instructions assembled. The assembler continues to run in the relocatable mode until
the END pseudo-operation is encountered or until an ABS or a LOAD pseudo-operation is

encountered.

DATA DEFINING PSEUDO-OPERATIONS

The data defining pseudo-operations (BCI, DAC, DBP, DEC, and OCT) are used for
defining constants and generating data for inclusion in the object program, The operations
in this category cause DAP-16 to interpret alphanumeric data, decimal numbers, and octal
numbers, respectively, The somewhat complex rules and restrictions for forming expres-
sions in the variable field in the DEC pseudo-operation are discussed in the paragraphs
immediately following the summary coverage of format and content,

Decimal and octal constants also can be generated by the use of literals as discussed

in Section IV,

BCI Pseudo-Operation

The BCI (binary coded information) pseudo-operation is used to direct DAP-16 to
generate binary words in ASCII form from alphanumeric data. The contents of symbolic

instructions containing the BCI pseudo-operation are:

LOCATION Normal
OPERATION BCI
VARIABLE N, followed by 2N alphanumeric characters. The

N specifies the number of words to be converted
and may not exceed 29,
COMMENTS Normal

The effect of the BCI pseudo-operation is to convert each group of two characters
into a left-justified binary word in ASCII code, These words are stored in successively
higher storage locations as the variable field is processed from left to right. If there is a
symbol in the location field it is assigned the same location as the first word of binary data
generated by the pseudo-operation, The alphanumeric characters in the message to be
encoded must be counted and entered as the first subfield, A typical example is shown
below (six words of storage required). The BCI pseudo-operation is an exception to the
rule in that the first blank terminates the variable field, The comments field begins imme-

diately following the last character included in the character count.

5-5

PROGRAMMER IDATE

PAGE
PROGRAM CHARGE
LOCATION |®] operaTiON |®] ADDRESS. x ®] coMMENTS ()
1 al le 10| |12 30 72)
Fi N\ [BC) 6 . REMOUNT —TAPE |
~ ’

DAC Pseudo-Operadtion

The DAC (define address constant) pseudo-operation directs DAP-16 to generate a
1 6-bit binary word which can be used by flagged memory reference instructions to access an
operand in any memory sector. The contents of symbolic instructions containing the DAC

pseudo-operation are:

LOCATION Normal
OPERATION DAC or DAC*
VARIABLE Normal
COMMENTS Normal

The DAC pseudo-operation causes DAP—lé to evaluate the expression in the variable
field and assemble a 16-bit address word. " When the flag or tag (bit 1 or 2) is specified as
part of the address wgrd, the value of constant generated is increased by 1*000008 or
400008, respectively. ‘It is the programmer's responsibility to ensure that addresses

over 37777 are not mistaken for flags and tags and vice-versa.

DEC Pseudo-Operation

The DEC (decimal) pseudo-operation is used to direct DAP-16 to generate binary
words from decimal data. The contents of symbolic instructions containing the DEC pseudo-

operation are:

LOCATION Normal

OPERATION DEC

VARIABLE One or more subfields, each containing a decimal
data item. The subfields are separated by commas,
The number of subfields is limited only by the
restriction that the total number of characters in
the instruction line must not exceed 72, Rules for
forming the decimal subfields are discussed below.

COMMENTS Normal

5-6

The effect of the DEC pseudo-operation is to cause DAP-16 to convert each subfield
to one, two, or three binary words, depending on whether the decimal data is single preci-
sion fixed-point, double precision fixed-point, single precision floating-point, or double
precision floating-point, These words are stored in successively higher storage locations
as the variable field is processed from left to right. If there is a symbol in the location
field it is assigned the same location as the first word of binary data generated by the

pseudo-operation,

Fixed~Point Decimal Data. -- Fixed-point decimal data may be either single precision

or double precision, A significance of four decimal digits can be maintained in single pre-
cision, fixed-point arithmetic on the DDP-516. In many arithmetic operations, this degree
of significance is adequate and is desirable because of the enhanced speed of computation,
A single precision fixed-point decimal number requires one computer word (sign and 15
bits of significance) and is written in two parts: the significant part and the scaling part.
Double precision fixed-point data consists of two words (sign and 30 significant bits).

The significant part of the fixed-point number is a signed or unsigned decimal number
with or without a decimal point, If the decimal point is not specified, it is assumed to be
immediately to the right of the last digit (a decimal integer),

The scaling part of the fixed-point number is the letter B (for single precision) or the
letters BB (for double precision), followed by a signed or unsigned decimal integer speci-
fying the position of the understood binary point, If the scaling part is not present, the
number is interpreted as a truncated decimal integer whose understood binary point is
immediately to the right of the LSB in the computer word (position 16),

The general form of the scaling part is B NN or BB £+ NN, where NN gives the posi-
tion of the understood binary point relative to the machine binary point. The minus sign
defines the understood binary point to be to the left of the machine binary point, and the
plus (or no sign) defines the understood binary point to be to the right of the machine binary
point, The machine binary point is defined to be between the sign bit and the most signi-
ficant bit of the computer word; i. e., between bit positions 1 and 2.

In addition to a scaling part, fixed-point numbers may also have an exponent part
specified by the use of an E field in addition to a B field, E fields are discussed more fully
in paragraphs on floating-point data.

The examples below show how DAP-16 produces fixed-point numbers, The left
column shows the decimal number to be translated., This is written in the variable field.
The right column shows the resultant octal word that would be generated by DAP-16,

Single precision fixed-point numbers are limited to magnitudes less than 215.

15 000017
15B+15 000017
15, 001B5 036001
15, 001BB5 036001

003044
-.002B-2 177372

Floating-Point Decimal Data. -- Floating-point data may be either single or double

precision. A single precision, floating-point number requires two computer words (sign,
8-bit characteristic, and 23-bit fraction). A double precision, floating-point number
requires three computer words (sign, 8-bit characteristic, and 39-bit fraction),

A decimal floating-point number is written as two parts: the significant part and the
exponent part. The significant part of a floating-point number is a signed or unsigned
decimal number written with a decimal point,

The exponent part of the decimal floating-point number is the letter E or the letters
EE followed by a signed or unsigned decimal integer. The exponent part serves the following

purposes,

a. It indicates whether the floating-point number is to be single (E) or double precision
(EE).
b. It specifies a constant in the form of 10 raised to the indicated power by which the

significant part of the number is to be multiplied,

The resulting 8-bit binary exponent is expressed in 128 excess arithmetic and allows
for numbers in the range of 10+~ ,

All negative floating-point numbers are expressed in two's complement form, which
means that the exponent in this case is in one's complement form.

Figure 5-1 shows the formats of floating-point numbers and Table 5-1 shows various
examples of floating-point numbers generated by the DEC pseudo-operation. The left
column shows the decimal number to be translated and the right column shows the octal
words that would be generated by the DEC pseudo-operation. The fractional portion of the

floating-point number is always normalized by DAP-16,

DBP Pseudo-Operation

The DBP (double precision) pseudo-operation directs DAP-16, when assembling on
an H316/516 with the double precision option, to generate binary words from decimal data,

The contents of symbolic instruction containing the DBP pseudo~-operation are:

LOCATION Normal
OPERATION DBP
| 2 9 10 16
S EXPONENT MOST SIGNIFICANT MANTISSA | WORD |
LEAST SIGNIFICANT MANTISSA (I6 BITS) WORD 2

| 16
23-BIT FRACTION

A, Single-Precision Format

| 2 S 10 16

s | EXPONENT | MOST SIGNIFICANT MANTISSA | woRD |
NEXT MOST SIGNIFICANT MANTISSA (16 BITS) WORD 2
LEAST SIGNIFICANT MANTISSA (16 BITS) WORD 3

39-BIT FRACTION

B, Double-Precision Format

Figure 5-1, Floating-Point Formats

Table 5-1.
Floating~Point Number Translations
Decimal Number Octal Translation J Remarks
P Ve

T = T U

.15E2 041170 ‘ .15time5102:15
000000

+.15E + 2 041170 Same as first example
000000

-.15E2 136610 Negative of first example
000000

1234E-5 036545 Expression = , 01234
013333

.123 037375 Single-precision
171666

.1E0 037346 Single-precision; binary
063146 exponent is negative

.1EEO 037346 Double-precision result
063146
063146

VARIABLE One or more subfields, each containing a decimal

data item, The subfields are separated by commas.
The number of subfields is limited only by the
restriction that the total number of characters in

the instruction line must not exceed 72,

The effect of the DBP pseudo-operation is the same as that of the DEC pseudo-
operation with the exception that the DBP always loads an even location and always generates

a double precision constant,

OCT Pseudo-Operation

The OCT (octal) pseudo-operation directs DAP-16 to generate binary words from
octal data. The contents of symbolic instructions containing the OCT pseudo-operation

are:

5-9

LOC ATION Normal

OPERATION OCT

VARIABLE One or more subfields, each containing an octal data
item, The subfields are separated by commas. The
number of subfields is limited only by the restriction
that the total number of characters on the instruction
line must be limited to 72,

COMMENTS Normal

The effect of the OCT pseudo-operation is to cause DAP-16 to convert eAach subfield
to a binary word. The octal data entries are right-justified, and assigned to successively
higher storage locations as the variable field is processed from left to right, If there is a
symbol in the location field, it is assigned to the same location as the first word of binary
data generated by the pseudo-operation.

The only allowable characters in an octal field are: plus, minus, apostrophe, 0, 1,
2,3, 4,5, 6, 7, and commas separating the subfields, Octal numbers may be signed
(limited to magnitudes less than 215) or unsigned (limited to magnitudes less than 21 6), If
an octal number is unsigned, it is assumed to be positive, The appearance of an apostrophe

preceding the octal number is acceptable but is redundant.

LOADER-CONTROLLING PSEUDO-OPERATIONS

The loader-controlling pseudo-operations (EXD, LXD and SETB) are used to enter
or leave the extended addressing mode for desectorizing and to designate a memory sector
other than sector zero as the base sector for cross sector linkage. Pseudo-operations
EXD and LXD are valid only for those DDP-516 computers equipped with the Extended Memory
option. Pseudo-operation SETB is valid primarily for those DDP-516 computers equipped with
the Memory Lockout option. Programs containing the EXD, LXD or SETB pseudo-
operations must be loaded using the extended DAP/FORTRAN loader (LDR) rather than the
standard loader (SLDR).

EXD Pseudo-Operation

The EXD (enter extend-mode desectorizing) pseudo-operation directs the loader to
desectorize the subsequent instructions for execution in the extended addressing mode,

The contents of symbolic instructions containing the EXD pseudo-operation are:

LOCATION Ignored
OPERATION EXD

VARIABLE Ignored
COMMENTS Normal

The effect of the EXD pseudo-operation is to increase the size of loader-created
indirect address words to 15 bits to increase addressing capability to 32K, This limits

the extend mode to one level of indexing since the tag of the instruction word is not moved

5-10

LOCATION Normal

OPERATION OoCT

VARIABLE One or more subfields, each containing an octal data
item, The subfields are separated by commas. The
number of subfields is limited only by the restriction
that the total number of characters on the instruction
line must be limited to 72,

COMMENTS Normal

The effect of the OCT pseudo-operation is to cause DAP-16 to convert evach subfield
to a binary word. The octal data entries are right-justified, and assigned to successively
higher storage locations as the variable field is processed from left to right, If there is a
symbol in the location field, it is assigned to the same location as the first word of binary
data generated by the pseudo-operation.

The only allowable characters in an octal field are: plus, minus, apostrophe, 0, 1,
2,3, 4,5, 6, 7, and commas separating the subfields, Octal numbers may be signed
(limited to magnitudes less than 215) or unsigned (limited to magnitudes less than 2! 6). If
an octal number is unsigned, it is assumed to be positive, The appearance of an apostrophe

preceding the octal number is acceptable but is redundant,

LOADER-CONTROLLING PSEUDO-OPERATIONS

The loader-controlling pseudo-operations (EXD, LXD and SETB) are used to enter
or leave the extended addressing mode for desectorizing and to designate a memory sector
other than sector zero as the base sector for cross sector linkage, Pseudo-operations
EXD and LXD are valid only for those DDP-516 computers equipped with the Extended Memory
option. Pseudo-operation SETB is valid primarily for those DDP-516 computers equipped with
the Memory Lockout option. Programs containing the EXD, LXD or SETB pseudo-
operations must be loaded using the extended DAP/FORTRAN loader (LDR) rather than the
standard loader (SLDR).

EXD Pseudo-Operation

The EXD (enter extend-mode desectorizing) pseudo-operation directs the loader to
desectorize the subsequent instructions for execution in the extended addressing mode,

The contents of symbolic instructions containing the EXD pseudo-operation are:

LOCATION Ignored
OPERATION EXD

VARIABLE Ignored
COMMENTS Normal

The effect of the EXD pseudo-operation is to increase the size of loader-created
indirect address words to 15 bits to increase addressing capability to 32K, This limits

the extend mode to one level of indexing since the tag of the instruction word is not moved

5-10

into the indirect address word., Therefore, bit 2 of the indirect address word is no longer

interpreted as a tag but as part of the address,

LXD Pseudo-Operation

The LXD (leave extend-mode desectorizing) pseudo-operation directs the loader to
desectorize subsequent instructions for execution in the normal addressing mode. The

contents of symbolic instructions containing the LXD pseudo-operation are:

LOCATION Ignored
OPERATION LXD

VARIABLE Ignored
COMMENTS Normal

The effect of the LXD pseudo-operation is to restore loading to the normal addressing

mode,

SETB Pseudo-Operation

The SETB (set base sector) pseudo-operation notifies the loader that a base sector
other than sector zero will be used to execute subsequent instructions. The contents of

symbolic instructions containing the SETB pseudo-operation are:

LOCA TION Normal
OPERATION SETB
VARIABLE Normal., Any symbol used in this field must have

previously been defined.
COMMENTS Normal

The pseudo-operation SETB designates the sector in which the indirect address words
for cross sector linkage are to be stored. The value of the variable field designates the
first location into which indirect address words are to be stored, Successive words are
stored in successive locations. If a symbol appears in the location field, it is assigned
the current value of the location counter,

The SETB pseudo-operation does not reserve a block of storage for the indirect
address word table, It is the programmer's responsibility to reserve a block for the table

in the proper place via a BSS pseudo-operation,

LIST-CONTROLLING PSEUDO-OPERATIONS

The list-controlling pseudo-operations (EJCT, LIST, and NLST) are used to control
the printout of the source and object program assembly listing, These operations have no
effect on the object program.,

EJCT Pseudo-Operation

The EJCT (eject) pseudo-operation directs DAP-16 to begin or resume listing on a

new page. The contents of symbolic instructions continuing the EJCT pseudo-operation are:

LOCATION Ignored
OPERATION EJCT

VARIABLE Ignored
COMMENTS Normal

The effect of the EJCT pseudo-operation is to cause the I/O selector program (IOS)
to generate the necessary commands to advance the listing one page and continue listing on
a new page. This pseudo-operation is valid only with systems having a line printer and is

ignored if the pseudo~operation NLST is currently in effect.

LIST Pseudo-Operation

The LIST (listing) pseudo-operation directs DAP-16 to print a side-by-side listing of
the program being assembled. The contents of symbolic instructions containing the LIST

pseudo-operation are:

LOCATION Ignored
OPERATION LIST

VARIABLE Ignored
COMMENTS Normal

The effect of the LIST pseudo-operation is to cause the source program and its octal
representation to be listed on the on-line typewriter or printer. The assembler then con-
tinues to operate in the listing mode until an NLST pseudo-operation is encountered. The

assembler is normally in the LIST mode,

NLST Pseudo-Operation

The NLST (no listing) pseudo-operation directs DAP-16 to refrain from producing a
side-by-side listing of the program being assembled. The contents of symbolic instructions

containing the NLST pseudo-operation are:

LOCATION Ignored
OPERATION NLST

VARIABLE Ignored
COMMENTS Normal

The effect of the NLST pseudo-operation is to inhibit DAP~16 from listing the source
program and its octal representation on the on-line typewriter or printer. The assembler
then continues to operate in the no-listing mode until a LIST pseudo-operation is encoun-

tered. Initialization of the assembler automatically sets the listing mode,

PROGRAM LINKING PSEUDO-OPERATIONS

The DAP-16 pseudo-operations CALL and SUBR are used to generate communication
links between programs, The CALL pseudo-operation initiates transfer of control to an
external subroutine. The SUBR pseudo-operation defines points of entry into the subroutine
from an external program,

The variable field of the CALL pseudo-operation contains the name of the external
subroutine being called, Each time a particular subroutine is called, DAP-16 punches the
subroutine name as a special block and assembles a JST (jump and store) operation to loca-
tion zero. Then, as the object program is loaded into memory, the loader completes the
program linkage by requesting and loading the external subroutine being called and filling in

the address of the JST instruction, desectorizing it if necessary.

CALL Pseudo-Operation

The CALL (call) pseudo-operation directs DAP-16 to generate instructions that transfer
control to a specified subroutine, The contents of symbolic instructions containing the CALL

pseudo-operation are:

LOCATION Normal

OPERATION CALL

VARIABLE A subroutine name (one to six characters)
COMMENTS Normal

The effects of the CALL pseudo-operation are:

a, The subroutine name from the variable field is punched as a special block type.

b. A JST with an address of zero is entered into the sequence of assembled instruc-
tions,

c. If there is a symbol in the location field it is assigned to the location of the JST

instruction inserted in step b.

XAC Pseudo-Operation

The XAC (external address constant) pseudo-~operation directs the loader to generate
a 16-bit binary word which is used by flagged memory reference instructions to access an
operand outside the program, The contents of symbolic instructions containing the XAC

pseudo-operation are:

LOCATION Normal
OPERATION XAC or XAC*
VARIABLE External subroutine name (one to six characters)

optionally tagged
COMMENTS Normal

The XAC pseudo-operation causes the loader to evaluate the term in the variable

field and assemble information which specifies that a reference is made outside the program.

The external location must be defined either in the current or a separate program assembly
by SUBR pseudo-operation, At load time, after the external reference is defined, the true

address, the flag, and the tag are generated and stored at the location of the XAC word.

SUBR Pseudo-Operation

The SUBR (subroutine) pseudo-operation is used to define a DAP-16 subroutine, and
to symbolically assign a name to the subroutine for external reference,

The contents of symbolic instructions containing the SUBR pseudo-operation are:

LOCATION Ignored
OPERATION SUBR
VARIABLE A one to six character name identifying an entry

point to a subroutine optionally followed by a comma
and a one to four character name defining the entry
point, The name defining the entry point need be
included ounly if it differs from the first four char-
acters of the identifying name,

COMMENTS Normal

The effect of the SUBR pseudo-operation is to cause the identifying name in the varia-
ble field to be generated in the object program output as identification for the loader. There
must be as many SUBR pseudo-operations in a subroutine as there are entry points; however,
the entry points may be multiply defined, The SUBR pseudo-operation must be the first
operation of the subroutine, preceded only by another SUBR, if present.

The following is an example of a subroutine for which entry and return provisions have

been made.

PROGRAMMER IDATE PAGE

PROGRAM CHARGE
LocaTion (O] oreraTION |®] ADDRESS. X ®f comMmEenTs 6
' al | 10] |12 30 72

T

e SUBR. | | SINE

T

| KEL

rxd lbAac * % ITHET 0F SINE ROVTINE
o v: o O e S — T
I [— P
- N— S — N N
N e *| | s we If/t’//' F Lo SINE LOUITNE

Access to this subroutine from an external program is possible by use of the following

instruction,

PROGRAMMER [oaTE PAGE

PROGRAM CHARGE

LocATION (O] operaTiON |®f aDDRESS. x ®f commenTs [2IX
CALL SINE T‘

The following subroutine has two entry points and each entry point is defined twice,
PROGRAMMER [DATE PAGE d
PROGRAM CHARGE

LocaTioN [®Of oreraTion [®] ADDRESS. x ®f comMEeNTs (2]
UBR | | SINE :/VAME FOR _SINE ROUTINE
'S YUBR | | CASINE '/I/J/WE FOR CUSINE BROUITNE
. S UBR. | |ARCTIN, ATAN NINE FOR ZRCTINROUTINE
S YBR | | SINE _SINE ALTERNATE MIME FOR SINE ROUTINE
CEL T
SINE D Ac * ¥ STRET OF SINE ROUTINE
PN . ? . .
| VPR | | SINE EXIT FROM SINE_ROUTINE
SI DAL | |%¥ ¥ STURT OF COsINE ROUTINE
| T
| VHP*| | cass EXIT FROY CAINE LOUTINE
ATAHN 1DAC X ¥ STHET OF AECTAN ROU7TINEG
{ T
; ,
SMPX | | ATAN EXIT FROM 4CCTIN ROTTNE

Entry to the sine portion of the subroutine is made by
CALL SINE
or CALL SINF
Entry to the cosine portion of the subroutine is made by
CALL COSINE
Entry to the arc tangent portion of the subroutine is made by
CALL ARCTAN

Programs coded as subroutines (i. e., programs preceded by the SUBR pseudo-
operation) cannot be loaded independently by means of the DAP-16 loader but must be called

by a main program,

STORAGE ALLOCATION PSEUDO-OPERATIONS

The DAP-16 pseudo-operations (BES, BSS, BSZ, and COMN) enable the programmer
to allocate memory cells for data storage or working space, For example, if a group of
350 integers are to be ordered and assembled in a table, the symbolic instruction shown
below allocates 350 consecutive cells for storage of the integers in symbolic locations TABL

through TABL + 349,

PROGRAMMER ' [oaTe PAGE
PROGRAM CHARGE
LocATION [®f operaTiON [®] ADDRESS. x ©f commenTs (DIN
) al e o] |12 30 72|7
T
TABL| BSS 380
T
e p— e — —

BES Pseudo-Operation

The BES (block ending with symbol) pseudo-operation is used for reserving storage

locations, The contents of symbolic instructions containing the BES pseudo-operation are:

LOCATION Normal
OPERATION BES
VARIABLE Any absolute expression. Any symbol used in this

field must have been previously defined,
COMMENTS Normal
The effect of the BES pseudo-operation is to increase the value of the location counter
by the value of the expression in the variable field. If there is a symbol in the location field
it is assigned the value of the location counter after the increase, Consider the following

example,

PROGRAMMER TDATE PAGE

PROGRAM CHARGE
LocaTion |®O] oreraTioN |®Of ADDRESS. x ©f commenTs [(2)
! al |s 1ol |12 30 72|7

T
A |@eT |1S

T
BLK | |BES B

T
& ~ ﬁC‘T. : >

T
e ¥ oty D P

If Ahas been assigned location 50, BLK is assigned location 56, leaving five vacant

cells; B is also assigned to location 56.

BSS Pseudo-Operation

The BSS (block starting with symbol) pseudo-operation is used for reserving storage

locations, The contents of symbolic instructions containing the BSS pseudo-operation are:

LOCATION Normal
OPERATION BSS
VARIABLE Any absolute expression. Any symbol used in this

field must have been previously defined.
COMMENTS Normal
The effect of the BSS pseudo-operation is to increase the value of the location counter

by the value of the expression in the variable field. If there is a symbol in the location field,

it is assigned the value of the location counter before the increase. Consider the following

example,

PROGRAMMER IDATE PAGE

CHARGE

PROGRAM

LocaTioN | ®] operaTion |®] ADDRESS. X ®f coMmENTS (2]

1 4 6 10 12

30 72|17

A | @eT

T

BLX | |BSS, |

T

o U |

B cY

Al Y T

A - /\,A —

In this case, if A has been assigned location 50, BLK is assigned location 51 and B is

assigned location 56, leaving five vacant cells.

The BES and BSS pseudo-operations effect the punched output during assembly, When
DAP-16 encounters one of these pseudo-operations, the block of machine instructions being
accumulated in a special punch buffer (internal to DAP-16) is punched out, regardless of the
number of words that have been accumulated, For BES and BSS, a new block is started with
an origin address equal to the DAP-16 location counter after processing the BES or BSS

pseudo-operation,

BSZ Pseudo-Operation

The BSZ (block storage of zeros) pseudo-operation is used for reserving storage loca-
tions that are initially (at load time) set to zeros. The contents of symbolic instructions

containing the BSZ pseudo-operation are:

LOCATION Normal
OPERATION BSZ .
VARIABLE Any absolute expression, Any symbol used in this

field must have been previously defined,
COMMENTS Normal

The effect of the BSZ pseudo-operation is to increase the value of the location counter
by the value of the expression in the variable field, If there is a symbol in the location

field it is assigned the value of the location counter before the increase,

COMN Pseudo-Operation

The COMN (common) pseudo-operation is used for assigning absolute storage loca-
tions in upper memory. The contents of symbolic instructions containing the COMN

pseudo-operation are:

LOCATION Normal
OPERATION COMN
VARIABLE Any absolute expression. Any symbol used in this

field must have been previously defined,
COMMENTS Normal

The effect of the COMN pseudo-operation is to cause DAP-16 to subtract the value of
the expression in the variable field from the COMMON base and assign this value to the
symbol in the location field. COMMON base is a user option, The COMN pseudo-operation

establishes a common data pool that can be referenced by several programs,

SYMBOL DEFINING PSEUDO-OPERATION

A symbol defining pseudo-operation (EQU) is provided for assigning an absolute or

relocatable value to a symbol.

5-18

EQU Pseudo-Operation

The EQU (equals) pseudo-operation is used for defining a value for a symbol for
reference by other DAP-16 operations. The contents of symbolic instructions containing

EQU pseudo-operation are:

LOCATION Normal; must contain a symbol
OPERATION EQU
VARIABLE Any absolute or relocatable expression. Any symbol

used in this field must have been previously defined.
COMMENTS Normal

The EQU pseudo-operation causes DAP-16 to evaluate the variable field expression
for value and to assign the value to the symbol in this location field. The mode of the symbol

in the location field is the same as the mode of the expression in the variable field,

SPECIAL MNEMONIC CODES

Two special mnemonic codes are provided for the convenience of the programmer
when writing special instruction groups for calling sequences. The mnemonic codes are
assembled like any machine language instruction in that they may have address, index, and
indirect fields. These codes are desectorized by the loader as 9-bit address memory

reference instructions,

Mnemonic Assembles As
PZE Zeros in op-code
A Zeros in op-code

OBJECT PROGRAM PREPARATION

Object program preparation consists of reading DAP-16 into computer memory then
reading the source tape or card deck with the contents of the A-register set to provide the
desired punching and printing options, Table 5-2 shows the significance of the various bit
positions on both standard systems and those systems equipped with standard options,

Principal options provided by DAP-16 are:

Punching the object program.
Punching or printing the assembly listing.

Punching the object program and printing the assembly listing simultaneously.

pooop

Assembling multi-section programs,

For very brief programs, option ¢ provides an assembly listing for reference and, simul-
taneously, an object program for execution, When an assembly listing is desired for pro-
grams of normal length and a high-speed paper tape punch is available, the option of
punching the assembly listing is most useful, The printed assembly listing can then be
prepared off-line, Option d is useful for assembling programs prepared in several sections

by use of the MOR pseudo-operation,

Table 5-2,
A-Register Bit Settings for I/O Device Selection

Bit Meaning Selection
1 1 for 2 pass, 0 for 1 pass
2 Teletype
3 Paper Tape Reader
4 Card Reader Source Device
5 Magnetic Tape No. 1
6 Teletype with program halts

provided for manual inputs

* No bits set. Source input from Disc.

7 Teletype

8 Paper Tape Punch

9 Card Punch Object Device
10 Magnetic Tape No. 2
11 No Object Output

* No bits set. Object output to Disc.

12 Teletype

13 Paper Tape Punch

14 Magnetic Tape No. 3 List Device
15 Line Printer

16 No Listing

* No bits set, Listing output to Disc.
* Only when used with DOP or DOP-S,

ERROR DIAGNOSIS

DAP-16 is able to detect many types of clerical errors commonly made in coding
programs. These errors are indicated by an appropriate error code printed in the left
margin of the assembly listing. (See Figure 4-3,) Examples of errors that are detected

and their associated flags are as follows,

Error Flag
Multiply defined symbol M
Erroneous conversion of a constant or a variable field C
in improper format
Address field missing where normally required, or A
error in address format
Operation code missing or in error O
Location symbol missing where required, or error in L

location symbol

Error Flag

4]

Address of variable field expression not in sector being
processed or sector zero (applicable only in load mode).

Relocation assignment error
Symbol table or literal table exceeded,

Major formatting error

< X ®

Unclassified error in variable field of multiple field
pseudo-operation (i.e., DEC, OCT, etc.)

Improper use of or error in index field T

Undefined Symbol U

Errors in a field generally result in that field being assembled as a 0. In the case
of multiply defined symbols, the first symbol definition is used. If the operation code is
illegal for computer configuration, the assembly is performed and the illegal codes are

flagged with an O, "

OBJECT PROGRAM FORMAT

The object is used by DAP-16 when assembling programs in the desectorizing mode.
This mode allows for relocatable main programs and subroutines in addition to absolute
programs. Data are outputted in blocks composed of a parameter byte, followed by a data-
word byte, then a logical difference checksum. There are eight block types (0-7) which
are identified by bits 1 through 4 of the first word in the block, Block type zero is further
subdivided into subblocks which are identified by bits 5 through 10 of the first word in the
block, The following paragraphs contain a description of the various block types and their

format.

Block Type 0-0 Subprogram Name

T = 0, the block type
5 T as S o] VP
s N s S = 0, the subblock type
| A 8 *
T N is number of 16-bit words in the block
= F . including the checksum and control words
9 |
L A-F is six-character name of the first entry
! 8 R point into the subprogram
T I Q L-Q is six-character name of the last entry
29 6 point into the subprogram in this block.
Z is checksum for all words in block except

BITS: | 16
) for the checksum word

Block Types 0-1, 0-2, and 0-3 Special Action

T =20
T 415 S |0W/// S = 1, turn off non-load flag
h— S = 2, turn on chain flag
z S = 3, end-of-job
BITS: | 16 z

is checksum

Block Type 0-4 Data

T 4]5 S IOV/////A T =0
,/Als N_ e S =4
L

16 N is number of 16-bit words in the block

A [B8 L is 15-bit address of location into which the
! 8|9 16 first data is to be loaded. Successive words
are loaded into location L + 1, L + 2, etc.

{
V)
{(
)I

A, B... are data words in 24-bit format

Z is checksum

BITS: | 16

The data-word bytes have several formats, depending upon the last three bits of the

byte. These formats are as follows.

J///A Y] Unmodified data generic or shift
BITS: | 16 22— 24
LF[T[oP I ADDRESS [Rjﬂ Address is known and to be desectorized
BITS: 1 23—e67 22-23 24 R = 0, absolute

R = 1, positively relocatable

R = 3, negatively relocatable

[FIT[oP mSYMBOL NUMBER] 2—] Symbolic address, to be desectorized when the
BITS: 1 23—678 2135 —724 address is known

Bit 8 = 0, this is the last symbol number
associated with the address

Bit 8 = 1. the following symbol number is

also associated with the address. The following symbol number appears in bits 8-21 of the
next data word providing the current word is not the last word in the current data block,

If the current word is the last word in the current block, the symbol number appears in the
next data block,

[FITH Rl ADDRESS] 4J Address is known, do not desectorize
BITS: 1 234-56 2122-24 R = 0, absolute

R = 1, positively relocatable

R = 3, negatively relocatable

(FIT///] symsoL NumseR | 6 |

BITS: 123

associated with the address.

78 2122-24

Symbolic address, not to be desectorized when
the address is known.

Bit 8 = 0, this is the last symbol number asso-
ciated with the address.

Bit 8 = 1, the following symbol number is also

The symbol number may appear in the next block if the cur-

rent word is the last word in the current data block.

Block Type 0-10 Symbol Number Definition Block

T

ds s oW

7%

Z

Ejgﬂsla

s
K

16

\

=

(4

£(
)

Z

BITS: |

Block Type 0-14 End

ds s V27

s

N_ e
L 16

Z

16

BITS: |

Block Types 0-24, 30, 54, 60 Modes

BITS: |

symbol is referred to only once
, symbol is referred to more than once

absolute

1
—_ 0O ~ O ~ O

, positively relocatable

3, negatively relocatable
is 13-bit symbol number

is 16-bit symbol value (positive or negative)

N <RI OO®LA
"

is checksum

T =0
S = 14

N is number of 16-bit words in the block
(always 4)

L is the jump address if this is the end of
a main program. L is zero if this is the
end of a subprogram

Z is checksum

T =20

S = 24, relocatable mode

S = 30, absolute mode

S = 54, enter extended-memory desectorizing
mode

S = 60, leave extended-memory desectorizing
mode

N is number of 16-bit words in the block
(always 3)

Z is checksum

Block Type 0-44 Subprogram Call

T s s 7 T =0
0 N S = 44
| A

8 L N is number of 16-bit words in the block
T (always 7)
- F—F 1% . .
Q A-F is sia-character name of the entry point
4 Q = 1, reference is not to be desectorized
BITS: | 16

Q = 0, reference is to be desectorized
Z is checksum

The last data word loaded is a reference to
this subroutine name.

Block Type 0-50 Subprogram Entry Point Definition

T s S o T=0

s N s S =50

' A 8 NS N is number of 16-bit words in the block
= A-F is the first six-character name of this

9 F 16 entry point into the subprogram
1 L 8 sk L-Q is the last six-character name of this
NN entry point into the subprogram
) [s Q 16 Z is checksum
BITS: | 16

Block Type 0-64 Set Base Sector

T =0
S = 64
T 415 s IOV//////A N is number of 16-bit words in the block (always 4)
Z s N SIVQ/////////, R = 0, absolute location
R]z L 6 R = 1, relocatable location
Z L is 15-bit address of location at which the cross-
BITS: 1| 16 sector indirect word table begins

Z is checksum

5-24

Block Types 0-20, 0-34, and 0-40 are illegal.

DAP-16.

Block Types 1 and 2 Program Words

|T4|5

N |o]n A 6

; A

(8
N

[(¢
s

BITS: |

T = 1, absolute program words

T = 2, relative program words

N is number of 16-bit words in the block
I-X is 24-bit data words

Z is checksum

The data-word bytes in this block have several formats depending upon the last

four bits of the byte.

GV//A o |

BITS: | 21—24
[F]7] op | ADDRESS [1]
BITS: 1|1 23—67 20 21—24
[F|] op | ADDRESS | 2 |
BITS: 1 23—67 20 21—24
[F]T] op | ADDRESS | 3 |

BITS: 123—67

For types one through three, the address modified is interpreted as a 9-bit quantity.

20 21—24

These formats are shown as follows.

Load first 16 bits into memory unchanged

Address is not altered

Address is positively relocated (add 4)

Address is negatively relocated (add 4,
complement)

In case of an intersector reference, an indirect reference to sector zero is created.

They are reserved for internal functions of

Iitr[op | ADDRESS [5j Address is not altered

BITS: 123—e67 20 21—24

IFITI oP I ADDRESS l 6 l Address is positively relocated
BITS: 123—s67 20 21—24

IﬂTl OoP I ADDRESS I 7_] Address is negatively relocated
BITS: 123—s67 20 21—24

For types 5 through 7, the resultant address is merely combined with the F and T

fields before loading.

U] v I 4j U is all ONEs

BITS: | 67 202—24 V is relative address of an instruction in a string
of instructions each of which uses the same
symbol. The relative address (V) is supplied
to each instruction requiring the address. The
string may contain DAC pseudo-operations

which accept a full 14-bit address and are distinguished from those instructions requiring a

9-bit address by their zero operation code. No instruction in a string may be desectorized

into a base sector other than the currently active base sector.

Block Types 3 and 4 End Jumps

LT 4KW1'| A e T = 3, jump address is absolute
| A 8}{/////// 1] T = 4, jump address is relative
4

A is jump address

BITS: | 16 Z is checksum

Block Types 5 and 7 Subroutine or Reference Call

T = 5, Subroutine call

T = 7, reference to an item in common
T 4]FITI7 op 'OI” A . A is address of instruction. If T = 5 the address
] A 8 8 is relative to the common base sector

£
R

B B-G is six-character name of subroutine or

) G BZV////////; common item

Z is checksum

BITS: | 16 If C =5, the operation code is JST*

Block Type 6 Subroutine or Common Block Definition

‘T:V///////II A T =6

8 B A is entry print relative to the beginning of the
= subroutine if S = 0 or 2

) G 8|93I0W//// = size of the common block if S = 1 or 3
16

B-G is six-character name of subroutine or
BITS: | 18 common block

{(
)

S = 0, subroutine definition

S = 1, common block definition
S = 2, subroutine definition
S = 3, data storage in common follows this

block

Z is checksum

5-27

PROGRAMMING EXAMPLES

This example is not intended to be executable but is given to illustrate various

DAP-16 pseudo-operation features.

0001 * C500-001-6504 (DAP=-TEST) CONTROL NUMBER 7011657 REVe A 0010
0002 * START OBJECT PROGRAM AT OCTAL 10 0020
000 . 0030
0004 * PROGRAM SHOULD IYPE ®0.K.® AND HALT 0040
uoos . 0050
goue . 0060
Qou7 ORG 2210 o070
v008 0210 0 02 v0274 LUA 00 COMPUTE CHECKSUM oosgo
2009 willl 0 04 00O0UYL STA 0 * 0090
0010 0212 14004y CRA * 0100
0011 vi213 1 05 vG2706 ERA TT+1.1 * o110
0012 vU214 0 12 00000 IRS u - 0120
€01y wuels 0 01 0021 JMP L' - 0130
0014 U216 0 11 00277 CAS CKSM * 0140
COLs wuely 000Qve HLT - 0150
v0le vu2zu 0 01 g022¢ JMP v+ * 0160
V017 wu221 ovouce HLT WRONG SuUM 0170
uol8 u22e 0 02 »» T LUA ==3 RIGHT SuM 0180
COly Lu2és U 04 voouv STA [TYPE “0.K,* 0190
Y20 U224 1 02 v0245 TITT LA MSG+3,1 * 0200
U0dl vue2s 07 010a SKS 2104 * 0210
J022 wul2e U 01 vo2es JMP =] * 0220
G023 gu2er U3 UiGa ocp *104 - 0230
J024 yo230 0406 /0 ARR 8 * 0240
2025 wu231 17 QLG4 QTA 4 * 0250
VvOZe U232 0 01 B0231 Jp =] L 0260
3027 Gudsd Q416 70 ALR 8 . 0270
v0ZB LUu234 17 GUO4 01A 4 ” 0280
02y pu2ss J 01 vo234 JMP *=1 L] 0290
0230 L0236 0 1¢ 0Vooo IRS 3} » 0300
J031 ¢0z37 0 Cl vo224 JMP ITIT * 0310
032 wu24l 090000 HLT TEST COMPLETE 0320
V038 uu24l 177775 FIN 0330
3034 J0242 106612 MSG OCTY 106612 CARRIAGE RETURN + LINE FEED 0340
v03s yJ243 147656 8C1 2s04K. 0350
Luzaa 145656
KIVIRL.Y - 0360
U3z * THE FOLLOWING CHECKS DAP OPERATION 0370
U038 Luc4s 0 02 UVLBOU XX LUA +1-142-2+3-3 0380
v0J9Y 177534 Yy EQU -XX+1 0390
GJ4u 0uG11 124 EQU 3+3+3 0400
wyal 000145 M EQU XX=2100 0410
w42 yu24e 0 177356 uAc YY=ZZ-M 0420
w043 w0247 -1 00 00250 PLE* XX+3,1 0430
w044 L0250 120240 BCI 2, 0440
Luzgsl 12024y
v045 puzse 000001 ocT 1,3,144,-4,77777 0450

VU253 0000G3
0uU254 Qo0vlaa
v0255 177774
Lo2se 077777

V046 GUZn7 071143 DEC «99E+30 0460
vJ260 173346

G047 ouLZ61 067320 DEC «99E-30 0470
vJ26e 050576

uD4y Y0263 17737¢ DEC ~«002B-2,15,001B+5,15,0015B+5 0480

ou264 0360Uu1
Wv26s 0360C1
uv266 001422
Q049 o267 036545 DEC 1234 . E~5+,15FE=2 0490
vuerzu 0133489
U271t 035742
vJa72 046722
vo273 170651

0050 QU274 -1 177724 [o]v] DAC* -~TT+7-1,1 0500
9051 Ld275 -1 00 Q0250 17T PZE+ XX+3,1 0510
V052 wu276 0 000vVVU DAC LA 0520
V0538 wvu2rzz 105314 CKSM oCT 105314 0530
U054 pus12 BES 10 0540
2055 yusie BSS 10 0550
3056 000324 LIM EQuU * 0560
00S7 END 0570

SECTION VI
STANDARD INPUT/OUTPUT LIBRARY

Discussions in this section for various routines are valid for the Input/Output

Library as used on Honeywell Series 16 computers (Honeywell 316/416/516).

ASR-33/35 TAPE READER, ASCII (IAA, IAI, I$GA)

I$AA reads ASCII paper tape using the ASR-33/35 paper tape reader or keyboard.
If I$AA is not initialized by I$AI, it assumes that the input buffer is 40 words long and
that there are three tab settings corresponding to character positions 6, 12, and 30
(DAP-16 source format).

Calling Sequence

CALL I$AI
Initialization - DEC (number of words in input buffer)
DEC (number of tabs in following table, if any)
DEC TAB (1)
DEC TAB (2)

.
.

DEC TAB (n)
(Normal return)
Read data - CALL I$AA
DAC {Data buffer address)
(End of message return)

(Normal return)

Method

Refer to the program listing, Honeywell/CCD Doc. No, 189001000, for details on
the method used,

ASR-33/35 TAPE READER, BINARY (IAB, IABI, I$AI)

I$AB reads binary paper tape by using the ASR-33/35 paper tape reader. This
routine is initialized by using the I$ABI entry., The address of the 60-word buffer into
which the binary data is read appears in the variable field following the CALL pseudo-
operation. .

Calling Sequence

Initialization - CALL I$AI or I$ABI
DAC (Data)

(End of message return)
(Normal return)
Read data - CALL I$AB
DAC (Data)
(End of message return)

(Normal return)

Errors

Oversize input record., Computer halts, Check input tape for correct control char-

acters between records, Press START pushbutton to take normal return,

Method

Refer to the program listing, Honeywell/CCD Doc No. 189002000, for details on the

method used,

ASR-33/35 TELETYPE - LISTING AND HEADING ROUTINES (OLL, OHH)

These routines type out listings on the ASR-33/35 teletype. O$LL is called to
type a line of data and O$HH is called to type out a heading. This routine backscans each
buffer to edit trailing blanks, Refer to Honeywell/CCD Doc. No. 180774000 for details on

methods used.

Storage Requirements

O$LL and O$HH require 14710(2238) locations.

Calling Sequence

Listing CALL O$LL
DAC (Data line address)
(Normal return)

Heading CALL O$HH
DAC (Heading address)

(Normal return)

ASR-33/35 TAPE PUNCH, ASCII (OAA, OAI, O$AS)

O$AA punches ASCII paper tape using the ASR-33/35 paper tape punch, This routine
assumes, if not initialized by O$AL, that the data buffer is 40 words long and that there
are three tab positions corresponding to character positions 6, 12, and 30 (DAP-16 source

format). The O$AS entry is used to punch end of message.

used.

Calling Sequence

Initialization - CALL OS$AI
DEC (Number of words in data buffer)
DEC (Number of tabs in following table, if any)

DEC TAB (1)
DEC TAB (2)

DEC TAB (n)

(Normal return)

Data - CALL 0$%AA
DAC (Data buffer address)
(Normal return)

End of - CALL 0O$AS

message

Method

Refer to program listing, Honeywell/CCD Doc, No. 189003000, for details on method

ASR-35 TAPE PUNCH, ASCII (OAA, OAI, O$AS)

Same as O$AA for ASR-33 except Honeywell/CCD Doc, No, is 180431000,

ASR-33 TAPE PUNCH, BINARY (OAB, OAS)

O$AB punches binary paper tape using the ASR-33 paper tape punch, The O$AS entry

is used to punch end of message.

Calling Sequence

Punch data - CALL O$AB
DAC (Data)
(Normal return)
End of - CALL 0$AS
message

(Normal return)

Method

Refer to program listing, Honeywell/CCD Doc, No, 189004000, for details on

method used.

6-3

ASR-35 TAPE PUNCH, BINARY (OAB, OAS)

Same as O$AB for ASR-33 except Honeywell/CCD Doc. No, is 180432000,

PAPER TAPE READER, ASCII (IPA, IPI)

I$PA reads paper tape in ASCII format by using the high-speed paper tape reader,
The I$PI entry is used for initialization. If not initialized, the read routine assumes that
the input buffer is 40 words long and that there are three tab settings corresponding to

character positions 6, 12, and 30 (DAP-16 source format),

Calling Sequence

Initialization - CALL I$PI
DEC (Number of words in input buffer)
DEC (Number of tabs in following table, if any)
DEC TAB (1)
DEC TAB (2)

DEC TAB (n)
(Normal return)
Read data - CALL I$PA or I$GA
DAC (Data buffer address)
(End of message return)

(Normal return)

Errors

When input records exceed the buffer size the excess characters are lost,

Method

Refer to program listing, Honeywell/CCD Doc. No, 189006000, for details on

method used.

PAPER TAPE READER, BINARY (IPB, IPBI)

I$PB reads paper tape in binary format by using the high-speed paper tape reader,
The address of the 60-word buffer into which the binary information is read appears in the

variable field following the CALL pseudo-operation,

Calling Sequence

CALL I$PB (or I$PBI)
DAC (Data) (Binary data address)
(End of message return)

(Normal return)

Errors

Oversize input record, Computer halts. Check input tape for correct control char-

acters (X-OFF, RUBOUT, START OF MESSAGE) between records, Press START push-

button to take normal return,

Method
Refer to the program listing, Honeywell/CCD Doc. No. 189007000, for details on the

method used,

OUTPUT TO ASR PRINTER IN ASCII (O$AL)

To type out listings on the ASR,

Calling Sequence

CALL O$AH ASR heading routine
DAC HEAD Heading address
(Return)
In order to type a heading along with the page number at the top of each new page,
a DAC must appear in the operation field followed by the address of a 23-word block in the

variable field. This 23-word block serves as the heading.
The normal return is taken after the heading block has been filled, the page number

set to one, and the line count set to zero.

CALL O$AL ASR listing routine

DAC DATA Line address

(Return)

In order to type a line of output a DAC must appear in the operation field followed by

the address of a 60-word block in the variable field,

The normal return is taken when the line has been typed out,

Errors

No error checking is performed in this routine.

Method

This routine backscans each buffer, starting with the last word of the buffer, to edit
trailing blanks. Refer to Honeywell/CCD Doc. No. 189005000 for details of method used.

6-5

OUTPUT ASCII INFORMATION TO UNBUFFERED SHUTTLE LINE PRINTER (O$LA,
OLHS, OLE, OLES, OLI, OLC, OPN)

To print ASCII information on the Unbuffered Shuttle Line Printer,

Calling Sequence

CALL O$LH Initialization/heading routine
DAC HEAD Heading address

CALL O$LE Eject page

(Return)

CALL O$LA Line printer routine
DAC DATA Line address

(Return)

XAC O$LI Size of header

XAC O$LC Maximum lines per page
XAC O$PN Next page number
Method

Refer to Honeywell/CCD Doc, No. 180768000 for details on method used.

Other Routines Called

O$LB

I/O BUS TO SHUTTLE PRINTER CONFIGURATION ROUTINE (O$LB)

To configure O$LA for I/O Bus Operation,

Calling Sequence

LDA ADDR Starting address of 60 word buiffer
CALL O$LB

Method

Refer to Honeywell/CCD Doc, No., 180769000 for details on method used.

PAPER TAPE PUNCH, ASCII (OPA, OGA, OPI, OPS, O$PLDR)

O$PA punches paper tape in ASCII format by using the high-speed paper tape punch.
The package also has provisions for initialization (O$PI), punching end of record (O$PS),
and punching leader (O$PLDR), depending on which entry is used. If not initialized, the
punch routine assumes that the data buffer is 40 words long and that there are three tab

settings corresponding to character positions 6, 12, and 30 (DAP-16 source format).

6-6

Calling Sequence

Data - CALL O$PA or O$GA
DAC (Data buffer address)
(normal return)
Initialization - CALL O%$PI
DEC (Number of words in data buffer)
DEC (Number of tabs in following table, if any)
DEC TAB (1)
DEC TAB (2)
DEC TAB (n)

(Normal return)
End of record - CALL O$PL

(Normal return)
Leader - CALL O$PLDR

(Normal return)
Method

Refer to the program listing, Honeywell/CCD Doc. No. 189008000, for complete
details on use.

PAPER TAPE PUNCH, BINARY (OPB, OPS, O$PLDR)

O$PB punches paper tape in binary format using the high-speed paper tape punch.
This package has provisions for punching end of message by using the O$PS entry, and
punches leader by the O$PLDR entry.

Calling Sequence

Data - CALL O$PB
DAC Data (Binary data address)
(Normal return)
End of message - CALL O$PS
(Normal return)
Punch Leader - CALL O$PLDR
(Normal return)
Method

Refer to the program listing, Honeywell/CCD Doc. No. 189009000, for complete
details on method used.,

PAPER TAPE PUNCH - LISTING AND HEADING ROUTINES (OPL, OPH)
O$PL punches listings on the paper tape punch. O$PL is called to punch a line of

output and O$PH is called to punch a heading. This routine backscans each buffer to edit
trailing blanks. Refer to Honeywell/CCD Doc. No. 181479000 for details of use.

Calling Sequence

Listing - CALL OS$PL

DAC Data (Line address)
(Normal return)

Heading - CALL O$PH
DAC Head (Heading address)

(Normal return)

CARD READER, ASCII (ICA, IGA)

I$CA reads ASCII (Hollerith) cards using the Honeywell 316/516 card reader. One card is
read on each I$CA entry., The data is stored two characters per word in a 40-word data
buffer after being converted from the 6-bit code generated by the card reader to the 8-bit
ASCII code,

Calling Sequence

CALL I$CA or I$GA
DAC (Data buffer address)
(End-of-file return) '

(Normal return)

Errors

Card reader hopper empty, stacker full, jammed, validity, read check, or in
manual. Upon detection of an error, the routine will automatically set up to re-read the

card creating the error.

Method

Refer to the program listing, Honeywell/CCD Doc., No, 189011000, for details on

method used,

CARD READER, BINARY (ICB, IGB)

I$CB (I$GB) reads column binary cards using the Honeywell 316/516 card reader.

Calling Sequence

CALL I$CB or I$GB
DAC (Data address - first word of 6-word block)
(End-of-file return)

(Normal return)

Errors

Card reader hopper empty, stacker full, jammed, read check, or in manual.
Upon detection of an error, the routine will automatically set up to re-read the card
creating the error.

Method

Refer to the program listing, Honeywell/CCD Doc., No. 180609000, for details on
method used.

6-8

MAGNETIC TAPE READ PACKAGE (I$MA-U, I$MB, I$MC)

To read a magnetic tape in one of three modes depending on which entry is used. The

entry mnemonics and corresponding read modes are:

I$MA Read in BCD mode, 2 characters per word

I$MB Read in binary mode, 2 characters per word

I$MC Read in binary mode, 3 characters per word

Calling Sequence

CALL I$Mx (where x is A, B, or C)

DAC
DEC
DEC

BUFA (Buffer address)
wC (Word count, expressed as a decimal number)

N (Logical type unit, expressed as a decimal number)

(Record unreadable return)

(End-of-tape return)

(End-of-file return)

(Normal return)

Method

Refer to the program listing, Honeywell/CCD Doc. No. 182604000, for details on

the method used.

Other Routines Called

M$UNIT

MAGNETIC TAPE CONTROL PACKAGE (CMR, CFR, CBR, CFF, C$BF)

This routine performs one of five magnetic tape control functions depending on which

entry is used, The entry mnemonics and corresponding control functions are:

C$MR - Rewind tape

C$FR - Forward space one record
C$BR - Backspace one record
C$FF - Forward space one file
C$BF - Backspace one file

Calling Sequence

For

CMR, CFF, or C$BF -

CALL C$xx (where xx is MR, FF, or BF)
DEC N (Logical tape unit)

(Normal return)

6-9

For C$FR, or C$BR -

CALL C $xx (where xx is FR or BR)
DEC N (Logical tape unit)
(End-of-file return)

(Normal return)

Method

Refer to the program listing, Honeywell/CCD Doc, No. 182606000, for details on the

method used,

Other Routines Called

M$UNIT

MAGNETIC TAPE WRITE PACKAGE (O$MA-U, O$MB, OMC, OME)

These routines are used to write a binary tape in one of three modes or to write an
end-of-file depending on which entry is used. The entry mnemonics and corresponding

write modes are:

O$MA - Write in BCD mode, 2 characters per word
O$MB - Write in binary mode, 2 characters per word
Oo$MC - Write in binary mode, 3 characters per word
O$ME - Write end-of-file

Calling Sequence

For writing a magnetic tape in a BCD or binary mode:

CALL O$Mx (Where x is A, B, or C)

DAC BUFA (Buffer address)

DEC wcC (Word count, expressed in decimal)
(End-of-tape return)

(Normal return)
For writing an end-of-file on magnetic tape:

CALL O$ME Call subroutine
DEC N Logical tape unit, expressed in decimal

Method

Refer to the program listing, Honeywell/CCD Doc, No, 182605000, for details on
the method used,

Other Routines Called

M$UNIT

MAGNETIC TAPE UNIT CONVERSION ROUTINE (M$UNIT -U)

M$UNIT -U provides a physical tape number associated with a logical tape when called
by the magnetic tape read, write, and control routines. This routine requires manual configu-
ration after loading. Refer to Operator's Guide for detail instructions for configuring logical

to physical and I/O channel assignment.

Calling Sequence

To assign a physical tape number:

CALL M$UNIT Call the subroutine
Return with physical number in A-register 14-16

To assign a channel number:

CALL M$CHAN Call the subroutine
Return with channel number in A-register 14-16

To determine the channel type:

LDA M$TY Load A from external name
Where: A=0 1/O Bus
A=1 DMC
A=2 DMA
Method

Refer to the program listing, Honeywell/CCD Doc. No. 180228000, for details on the

method used.

CONVERT IBM TAPE CODE TO ASCII (C$6T08)

C$6T08 converts standard magnetic tape code to ASCII. The data buffer is assumed
to initially contain data in IBM tape code, stored two characters per word in bit positions
1-6 and 7~12 (data in bits 13-16 is ignored). After conversion, the contents of the buffer
is replaced on a character-by-character basis. The character originally occupying bit
positions 1-6 of a word occupies bit positions 1-8 of the same word. The character origi-

nally occupying bit positions 7-12 occupies bit positions 9-16.

Calling Sequence

CALL Cc$6TO08
DAC (Buffer address)
DEC (Number of words in buffer)
(Return)
Method

Conversion is made by table look-up. Refer to the program listing, Honeywell/CCD
Doc. No. 180091000, for details on the method used.

CONVERT ASCII TO IBM TAPE CODE (C$8T06)

C$8T06 converts ASCII to standard magnetic tape code. The data buffer is assumed
to initially contain ASCII data stored in bits 1-8 and 9-16. After conversion, the contents
of the buffer is replaced on a character-by-character basis. The character originally occu-

pying bit positions 1-8 of a word, after conversion, occupies bit positions 1-6 of the same

6-11

word, The character originally occupying bit positions 9-16 occupies bit positions 7-12,

Bit positions 13-16 of each word are set to zero.

Calling Sequence

CALL C$8T06

DAC (Buffer address)

DEC (Number of words in buffer)
(Return)

Method

Conversion is made by table look-up. Refer to program listing, Honeywell/CCD

Doc. No. 180082000, for details on program listing.

MOVING HEAD DISC FILE DRIVER (M$IO)
To support basic read/write capabilities for the Moving Head Disc File(available

for the DDP-516 only).

USE
Loading

The moving head disc driver is a relocatable object program loadable by the standard
DDP-416/516 linking loaders. It contains references to two external names: PARI and
PAR2. The purpose of these two parameters is to configure the driver for DMC or DMA
and the appropriate subchannel. The initialization entry of the driver takes the two param-
eters and makes the a}-’xpropriate modifications. If the initialization entry is not called, the
disc driver assumes a default condition of DMA subchannel 1.

It is the user's responsibility to configure his own disc. He may easily do this by
creating a subroutine satisfying the two external references. This subroutine would then
be loaded after the disc driver. The following is a sample:

SUBR PARI
SUBR PAR2
REL
PARI1 OCT ARGl If ARG1=0, DMA, otherwise DMC

PAR2 OCT ARG2 Subchannel, DMA = 1-4, DMC = 1-16
END

Calling Sequences

Call M$IN Initialization call to configure disc

Call M$10 Read/write call
OCT ARGI

OCT ARG2

DAC ARGS3

OCT ARG4

ERROR RETURN

NORMAL RETURN

Arguments

ARGI1 Broken down as follows:

Bit 1 0 for read, 1 for write

Bits 2-3 Disc unit number (0-3) octal
Bits 4-7 Disc head number (0-11) octal
Bit 8 Disc control unit (0-310) octal
Bits 9-16 Cylinder (0-310) octal

ARG2 - 16 bit record address within the track
ARG3 - 15 bit buffer address for data (words one and two are utilized by the driver)

ARG4 - Data record size (if zero, 256 (decimal) is assumed)

Storage Capacity

The storage capacity of each option is as follows:

Unit 9433) 9433A
Words Per Track 1,800 1,800
Words Per Surface 360,000 180,000
Words Per Device 3,600,00 1,800,00
Words Per Option 14,400,000 7,200,000

Method

Refer to program listing, Honeywell/CCD Doc. No. 180616000, for details on method

used.

FIXED HEAD DISC FILE I/O DRIVER (D$IO)

To provide the user with an input/output driver for the Fixed Head Disc File that will
configure the disc, format, and write the disc, and read and write records of varying

length to and from the disc.

USE
Lioading

The fixed head disc driver is a relocatable object program loadable by the standard
DDP-416/516 linking loaders. It contains reference to two external names: PARI] and
PAR2. The purpose of these two parameters is to configure the driver for a DMA or DMC
and the appropriate subchannel. The initialization entry uses the two parameters to con-
figure the disc.

It is the user's responsibility to configure his own disc. He may easily do this by
creating a subroutine which satisfies the two external names. This subroutine would be
loaded after the disc driver. The following is a sample:

SUBR PAR1
SUBR PAR2

REL
PARI1 OCT ARGI1 If ARG1=0, DMA, otherwise DMC
PAR2 OCT ARG?2 Subchannel, DMA1-4, DMCIl-16
END

6-13

NOTE

The user must allocate a buffer two words larger than the
number of words which are to be transferred. The first
two words of the buffer are used for the DMA setup words.
The third through the nth words are transferred to the disc.
The additional two words are required whether the channel
used is a DMA or DMC,

Calling Sequences

CALL C$FD
OCT ARGI

OoCT ARG2
DAC ARG3
OCT ARG4
ERROR RETURN

NORMAL RETURN
CALL C$DI

CALIL DS3IO
OCT ARG1

OCT ARG2

DAC ARG3
OCT ARG4
ERROR RETURN

NORMAL RETURN

Control Instructions

OCP 1322
OoCP ‘722
OoCP 1422
SKS '122
SKS 1222
SKS 1322
SKS 1422
INA ‘022
INA '1022
OTA 10022

Format and write

Bit 1: 0 - Read
1 - Write
Bit 2: 0 - No checksum

1 - Checksum
Bits 3-5: Not used
Bits 6-16: Absolute track address

Number of tracks to be formatted
Buffer address
Record length

Configure the fixed head disc file
Read/write the fixed head disc file

Bit 1: 0 - Read
1 - Write
Bit 2: 0 - No checksum

1 - Checksum
Bits 3-5: Not used
Bits 6-16: Absolute track address
Bits 1-8: Not used
Bits 9-16: Record number
Buffer address
Record length

Select DMA or DMC operation

Select I/0O bus operation

Stop data transfer/acknowledge interrupt

Skip if fixed head disc file is ready

Skip if fixed head disc file has not detected data
transfer error

Skip if fixed head disc file has not detected an access
error

Skip if fixed head disc file is not interrupting

Input from fixed head disc file if ready

Clear A-register and input from fixed disc file

Output data to the fixed head disc file

Set-Up Control Words

First Word
Bit 1: 0 for read, 1 for write
Bit 2: Not used
Bit 3: Device address

0 - Selects Disc one

1 - Selects Disc two
Bits 4-6: Device address
Bitg 7-12: Track address (64/surface)
Bits 13-16: Must be zero
Second Word
Bits 1-4: Not used

Error Conditions

The D$IO routine executes an error return with the error condition noted in the A~

register if its contents are the following:

used.

A-register Error condition

000001 Character error

000002 Checksum error

000004 Access error

000010 Data error, parity or timing
000020 Record number error
000040 Record length error

Record Format

Word 1 Record number

Word 2 Bit 1: Beginning of file mark
Bits 9-16: Record number

Word 3 Checksum (zero if none)

Word 4 Bits 1-8: End of record gap
Bits 9-16: Ones

Words 5-8 64 bits

Words 9-N Data

Words N-1 End of record gap

Method

Refer to program listing, Honeywell/CCD Doc. No. 180617000, for details on method

SECTION VII
MATHEMATICAL LIBRARY

All mathematical routines in the Honeywell 316/516 library are listed in Table 7-1.
Each routine is listed alphabetically according to the function that it performs. Information
given for each routine includes a mnemonic name, calling sequence, mode, errors, accur-

acy and timing (where available), storage locations required, and other routines used.

CALLS AND ARGUMENTS

The actual mnemonic name for a routine is given in the calling sequence in column 3,
The routine identification in column 2 is not necessarily the entry for the routine indicated
in column 1, but rather the identification of the routine that contains it.

After each call, in column 3, is the statement DAC Arg (1, 2, or n). DAC Argl
indicates that the program requires only one argument and the address of that argument
appears to the right of the DAC. DAC Arg 2 indicates that the program requires two argu-
ments. In this case, the first argument is in the appropriate accumulator and the address
of the second argument appears to the right of the DAC, DAC Arg n indicates that the pro-
gram requires more than two arguments. The first argument is in the appropriate accu-
mulator, the address of the second is to the right of the first DAC, and the following lines
contain additional DAC statements with the addresses of the additional arguments. There
are four accumulators which are described below,

The single precision or real accumulator includes registers A and B, with the sign in
A1 , the exponent in A2_9, and the fraction in A10-16 and B1—16' All accumulators are

now relocatable,
The complex accumulator may be four relocatable memory locations ACI1 to AC4.

The sign of the real part is in bit position 1 of ACI, the exponent is in bit positions 2-9 of
ACI, and the fraction is in bit positions 10-16 of AC1, and bit positions 1-16 of AC2. The

imaginary part of the complex number occupies words AC3 and AC4 in the same manner.

NOTE

The integer accumulator is register A.

When FORTRAN IV is not being used, and an integer or single precision subroutine that
requires more than one argument is required, place the first argument in register A, or

registers A and B by means of LDA, or subroutine L$22,

For integer:
LDA (address of integer variable)
For single precision:

CALL L$22
DAC ARGl

With double precision and complex subroutines, load the accumulators by means of
the L$66 and L$55 subroutines,

For double precision:

CALL L$66

DAC (address of first word of double precision argument)
For complex:

CALL L$55

DAC (address of first word of complex argument)

Column 4, Mode, gives a symbolic representation of the mathematical function

accomplished by each routine, Abbreviations that are used are defined as:

C Complex number
R Single precision number
I Integer

D Double precision number

The symbolic expressions given are interpreted in the conventional mathematical
manner. The portion of the expression to the left of the equal sign is the result of the
function and the portion on the right is the actual function performed, For example, in the
first expression in the table, R = CABS(C) would be read R is a function of C, where R is
the resulting single precision number, CABS (or complex absolute value) is the function
performed, and (C) is the input argument (a complex number).

The last column in Table 7-1 gives other routines used by the routine listed in
column 1, For routines coded in DAP format '"Other Routines Used' includes only those
called by the CALL pseudo-operation. For routines that are coded in FORTRAN, routines
that are called by the FORTRAN compiler to fulfill the FORTRAN coding are given, in
addition to those called by the FORTRAN source coding,

An explanation of conventions used throughout the library for transferring arguments
to and from routines is presented in FORTRAN IV Library Introduction (Doc, No.
180092000)., The FORTRAN IV Manual (Doc. No. 130071364) describes the distinction
between functions and subroutines and provides instructions for writing programs that call

both,

7-2

66¢$T ‘22¢H
‘ZTHN ‘22$T1'SS$H

GG$T '22$H ‘22N
‘22T GS$H LVEA
66T ‘2S¢

22S ‘22$H ‘28N
‘2Z$TGeH IV
GG$T ‘INV IV
DOTV ‘22$V ‘2Z$H
‘2SN Z22$T LVSA

$D 9V

GG$T ‘NIS ‘22N
SOD‘22$H ‘dXH ‘LV$L

66$T ‘2Z$H ‘2e$a
‘22$T'SS$H ‘1VEA

G66¢T ‘22$S ‘22$a
‘22$V ‘22$H ‘22N
‘22TGeH ILVEA

gGq$v ‘NISD
‘G6$H ‘G6$T ‘IVSI

22$T ‘6e$T

GG$T ‘2SN
‘22$H ‘72$T1 ' LV$d

§G$T ‘22$H
‘22$T ‘9q$H LV

GG$T ‘22$H ‘22$V
‘22$T1'69$H ‘1vVSa

LIDS ‘22$V ‘22$H
‘2T ‘22$T IV

pas[) saulmnoy I3Yij0o

SuUON

QuoN

QuoN

SuON

SUON

SUON

SuUON

SUON

SuoN

SUON

auoN

SUuON

auoN

QUON

sIoXIy

(D)D0OTD=D
D=0

(0)axdD=>

¥/D=D

D/D=D

(D)SODD=D

(DOYHWIV=Y

{(D)IDLNOD=D

q+D=D

ot+D=D

(D)sav D=4

SPON

*ATuo uvornydo jrun owewyltry poadg YISty yitm sojexadOx

1 8av DVa‘es$N 118D

2 81y OVA‘ZS$N 118D
Z 81y DVa'SS$IN 118D
1 81y OVA ‘DOTD 118D
181y DVA‘Ge$T 118D
1 81y ovVa ‘dXdAD 118D

Z 8ay pva‘ze$d 11ed

z 81y Dv@‘ss$a 1ed
1 81y DVA ‘SODD 118D
181y DVA‘OVINIV 118D
1 82y Dova ‘CNOD 118D
Z 81y DVA‘2S$V 118D
z 8ay OV ‘ez$v 118D

1 82y ova'sdvD 11BD

sousnboag Buriren

souijnoy [ed1jRWaYIeA

‘1-L °219BL

GG$N

rAT 34
GG$W
DOTID
GG$T

dXdD

26$d

gs$a
SODD
DYNIV
DINOD
4114
S9$vV

sdvD

surnoyg

EYCEEIN

juswng e uorsroaad
a18urs £q A1dnmN

ArdurnN

2 aseq ‘wyjtaedory

peoTT

5 aseq ‘rerusuodxy

juswmsae uotsroaad
a18urs £q ap1a1@
9pTAIQd

auUIS0 N

Teax o3 jred
AxeurSewrt 3I24U0D
ajednfuon

juowngae
uotisioaad 913uts PPV

PPV

anreA 9InJosqy

ixordwion

uotyoun,{

7-3

dnsda ‘HAIda
‘HXJINA ‘dao¥ ‘aavd

dnsda ‘Alaa
‘XdNd ‘aaoy¥ ‘aavda

SOM I

AIQ ‘SOMI ‘AdN
ZXNISa
IXNISa

aaoyd‘aavd
‘HAJWNA ‘HAIAQQ ‘SOM L

agoy¥ ‘aava
‘AdINA‘AIAQ ‘SOM T

QuoN

§6$T‘2Z$H
‘22$S22%$1 'SSSH LVS A

S6$T ‘22¢H
‘22$S ‘22$T‘sssHIvVEA

$DUV

GG$T ‘22$A ‘NDIS ‘22$T
‘LA0S ‘2N ‘22$v
‘SdV D ‘2Z$H ‘SsaV ‘IV$a

SOD*‘22$s'sS$T ‘TSN
‘NIS ‘22$V ‘22%Q ‘22$T
‘22$H 'dXA 1LV

G6$a ‘GG ‘9S$T
‘SAVT‘GSSH ILVEA

pes) saurinoy IayiQ

SUON

SuoN

puspratp

S zos1AI(g

puspIAIp

S aos1Al(Q
2UON

QUON
SuoN
SuoN
Z snid

1182 03 uinjax
{MOTIIRAQD

SuoN
SuoN
QuoN

SuoN

QuoN

SuUoON

sIoxxr

(a@)Zxaxdaa=a

(@) 1aaxaa=a

a/a=a

a/a=a

(a)exsona=a

(@) 1xsooa=a

(d)zxNIva=a

(a)ixNIvd=a

a+a=a

q-D=D
0=D0=D
0=D

(D)1¥DsSD=D

(DINISD=D

T4 D=0

9PON

‘A1uo wonydo 31un d13owWYITAY poedg ySiH yYIm sareradps

1 31y OVA ‘ZXEXEJ 118D
131y DVa‘1gaXdd 11en
Z 31y OV ‘HAIQQ 118D

Z 31V OV ‘AIQA 11BD
1 81y DV ‘Z2XS0Da 11BD
1 31y DVQ‘1XSODA 118D

131y OVa‘ZXNIVA 11'D

181y DVQ*IXNLIVA 118D

Z 31y Dva‘aavda 1ed

2 81y DV ‘ZS$S 118D

2 31y DVa‘ssss 11en
181y DVA‘SS$H 118D

133y DVQ‘1¥0SD 118D

1 82V DV ‘NISD T1BD

181y DVQa‘1s$d 118D

aousnbag Jurrren

SQUIINO Y [edIjeWoyIeN
(uoD) "1-L s19el

ZXUIXHAa
IXIXHA
HAdNWA

AdINT
2Xs0Da
1XSO0Dd

ZXNIVA

IXNILVA

aava

26%$S

g6$s
SG$H

LY0sSD

NISD

15%31

aurnoy

o 9seq ‘rerjusuodxy
2 aseq ‘rerjusuodxy
SPIAI

SPIALd
aUISO0 Dy

auIson
juaSueIDIV

jusBueioay

UOTIIPPY

(jutod -paxr g

IUOISIORIg alqno(g

juowngdae uorsioaad
o18urs joeIIqNG

j1oeIIqNng
(p10Y) 21038

3001 axenbg

ourg

xamod
1939jur 03 9sTRY

uotj)oUN I

7-4

QUON

QUON

aao¥ ‘HAIQd
‘aavda ‘HAdWWA ‘SOM L

aaoy ‘Alad
‘aava‘AdnNg ‘som.L

aavda ‘HAdNWa
aava ‘Adnda

SUON

SOMI ‘AdIN

AIQ ‘SOMI ‘AdIN

HAdJNA ‘HAIGA
‘dnsa ‘aqaoy ‘aava

AdNA ‘AIAA
‘dnsa ‘agoy ‘aava

aavda
‘dNSd ‘HAJINA ‘Z2xXZOT1a

aavda
‘dNsda ‘AdNda ‘ 1XzHT1da

dNsda ‘HAIQA
‘aavda ‘HAdNd ‘aaod

dnsda ‘AIaa
‘aava ‘Adndga ‘daod

pasn saurnoy JI9y3iQ

SuoN

Z snid
12 03 uingaax
IMOTJISAQ

QUON

SUON
IS

SUON

QuoN

(e1qrssod
JoUu MOTJ
~IDA0) SUON

(st1qrssod
jJoU MOTF
-I9A0) QUON

Z/1<
juowm3 iy

2/ 1>
juswngay

2< juaw
-n3ie <9/ 1

9% Jueowt
-n3ie <9/ 1

0= Bay

0< 3ay

sI0IIm

(aQsomi=a

a-a=a

(@)zxaosa=a

() 1x¥9osa=a
(a)zxNIsa=a
(@) 1IXNISa=a

(a)aaoy=a

da=a

a=d=d

ZX20Ta=a

1X2DTa=a

ZXHEDTA=A

IXADTA=a

(@)zxzxdaA=a

() 1Xexdaa=a

9PON

‘Atuo womydo jTun STIPWYITAY poadg YSTH yiim sajerad(s

1 81V OVA ‘somI 118D

Z 81y OVQ ‘dnNsa 11ed
1 81y DVQ ‘2X¥0sda 118D

1 81y DVQ‘1X490sd 1MeD
1 81v DV ‘ZXNISA 118D
1 81y OVvQ@*1XNISA 118D

1 82y DVda‘aaoy 1ed

2 31y DVd ‘HAdNA 118D

2 31y DVA ‘AdNG 118D
181y DVQ‘ZXZOTA 1120
1 81y DOVQA‘1XZDTIA 118D
1 3av OV ‘zXaonIda 1en
181y OVQ‘1XADTIA 118D
1 81y DVQ‘exZXdAd 11eD

1 81V DVA‘1XZXAd 118D

aouanbag Surrren

SQUIINO Y [BOTIBWDYIRIA
(3woD) "1-L °19BL

SOML

ansa

2X90sa

1X90sa
ZXNISd
IXNISd

aaoyd

HAdNA

AdNA

2X701a

IX2OTa

ZXHDTAa

IXADTAd

ZXeXdd

1XZXdada

aurInoyg

jusowraTduwIod s,0M7,

uo13de IIqNG
joox axenbgy

100y a1enbg
SUISx
duig

Iaqunu
Lxeurq dn punoy

A1dTnN

A1dummn

Z @seq ‘wyjrredorTy

7 9seq ‘wyjrredorT

o aseq ‘wjraeSoTy
o oseq ‘wyjrredoT

Z 9seq ‘rerjusuodxiy

Z 9seq ‘rerjusuodxy

uorjoUun I

7-5

18$V ‘99%a
‘99$S ‘99¢T ‘99$V ‘99$N
‘19$D ‘99$H ‘99$IN ‘ IV$ I

$OUV ‘99$N
‘99¢T ‘99$H ‘UHAS$T ‘99¢N

99$d ‘99%$1
‘HTdd 99$H LV $A

99$T1
‘99$H ‘UA$ ‘99$N ‘$DOUV

NIsa
‘99$H ‘99$V ‘99$T ‘1v$d

SUON

QuoN
auoON

SuoN

99$V ‘99$S ‘NVIVA
‘9E$T ‘99$H ‘99$T ‘1VEA

NDISA ‘99$IN
‘99$A ‘99¢V ‘99¢T ‘ 18$D
‘99$d ‘sAVA ‘1v$d

gA$a

99¢V ‘TTdd ‘99$H ‘1V$H

99%$7T ‘99$H
‘dFI$T ‘99$N ‘$D UV

99¢$N ‘99$T ‘LV$ I

PosSN sauInoy I9Y30

auoN

0107z

Aq uotrsiaip
moiyIspun
MOTIIBAQD

SuoN
MOTIIBAQD
SUON
SuoN
SuUoN
SUON

9UON

SUON
MOTIIDAQD
SUON

MOTJIAQD

SuoN

sIoxany

(a)axaa=a

==
¥/a=a
a/a=a
(a)sodoa=a
a=da

a=1
(a)1g$0=1
(alossz=a

(a‘al
INVIVA=a

(QINV IV a=a
(1)18$v=a
¥+a=a

a+a=a
(alsava=a

°pPOoN

*Atuo uondo jtup oBewpILy paadg yStH yim sereredps

1 81y OV ‘dXTA 118D

Z 81y DOVA ‘X99$V 118D
2 31y DvVa‘z9$a 11ed
2 31V DVA ‘99%$a 118D
1 31y DV ‘SO 11eD
133y DVa‘z29$D 11ED
131y DOVQ“19$D 118D
132y OVQ‘18$D 118D
182y OV ‘08$Z 118D

2 31y OV ‘ZNVIVA 118D

131y DVA‘NVIVA 118D
2 82y ova'is$v 118D
2 81y DVA‘Z9$V 118D

Z 31y DVA ‘99$V 118D
1 81y ova‘sdavda 1ed

aouenbeg Suriren

S9UTINOY [BITJRUWOYIRIA
(3uoD) "1-L 91qelL

dXHda

X99$V
29%a
99%v

soDda
29$D
19$D
18$D
08%$Z

INVIVA

NVivVa
18¢V
29$V

99¢v
sava

QUIINo Y

o2 9seq ‘rterjusuodxy

‘Atp 4+ ‘Adw
‘1orIIqNS ‘ppeR
TP WIYITIY

juswn3Ie UOISIO
-9xd o18urs £q aprari(q

9pIAIQ

aUIS0 D)

(zojernwnooe opnasd
woday) uoistoaad
918uls 03 3I94UO0D

x983jur 03 319AUOD

1989jur 03
juauodxa j3I8AUO0D

(yuouodxa
‘ox9z) IBOID

£/x *‘juslueioay

antea redrd
-utad ‘jualuejoay

juouodxs
03 x12893jur PPy

juawingxe
uoistoaxd a13urs ppy

PPV
anjeA 9jInosqy

‘jutod -3urjeor g

uotjdun g

7-6

-A1uo worydo jrun omrewyitay poodg YSIH yYrm sojeIadOx

99$S ‘Ao
..00?.8@2650.5@0
99$H ‘99$W ‘99¢$T ‘' LVS$A suoN (a)NIsa=a 1 31y OVA ‘NISd 118D NISd aurg
99$N
‘99%$S ‘99$N ‘ LNIA
*99$H ‘99$Ad ‘9941 ‘LV$A suoN (a‘a)aowa=d 2 31v¥ DVd ‘dONd T1BD aona Iopurewd g
xamod uo1s1d
99$H ‘29N 'LV S suoN e @ =C Z 81v OVA‘Z9%$d 11eD 29$d -9ad o18urs oj astey
99$N ‘GO
‘99$d ‘99$T ‘91$D zomod
‘Sdvd ‘99$H ‘LV$A suoN Txd=d Z 8ay ova‘19$d 11ed 19%¢3 za8o3ut 03 @sTey
dXdd ‘99$N zomod uo1SID
‘DOTA‘99$H LV uoN A=A Z 81y OV ‘99$d 118D 99¢m -oad alqnop o3 astey
QUON SuoN (g-)a=a 131y DVA‘99$N 118D 99$N oreSeN
99$ N juewng e uorsroaad
‘AT ‘99$H ‘ILVSI suoN dxd=d Z 81y OVd‘Z9$N 118D 29$N s18uts Aq Lrduarny
‘99¢T ‘99$H ‘99$N ‘$D UV MOTFIDAQ a=a=a Z 8y DVA ‘99$W 118D 99V A1diyTnN
. . (ug‘za‘1a)
99$S ‘99$H ‘99$T SuoN ININa=a u 81y OVd ‘ ININA 118D INING anfes WNWIUTW
. (u@g ‘zqa‘1a)
99$S ‘99$H ‘99%T SuoN IXVINA=a u 31y OVd‘ IXVING 118D IXVINA onfea WNWIXRA
juswt
-ngie oioz
99¢N *2D0TA ‘ LV$A 1o aa13edaN (@)o1OOoTa=a 131y DVA‘01D07TId 11D 015071d 01 9seq ‘wyjrresor
99$V ‘99$a ‘08$Z jusw
‘99$S ‘99$H ‘9 1$D ‘ 18$D -n3ie o019z
‘NI ‘99%T ‘99N LV I 10 aapeBoN (ayevo1a=a 1 8av Dva‘eoo1da 11ed DorI1a Z 9seq ‘wyjraedo]
99¢v
‘99$a ‘08$7Z ‘99%S ‘99$H jusw
::wo.ﬂwwo.mm%m.oowd -ngie oxaz
‘99$IN ‘2DOTA ‘LV$A 10 aatyedeN (a)po1a=a 1 82y ova ‘®o1d 11ed DOIA o aseq ‘wyjraedor]
$Duv auoN a=a 1 82y OVa‘994%T 11eD 99%$7T peoT
pes[sournoy IaYiQ SIOIIH 9poON aouanbag Surjren auijnoy uo1joun,g

S9UTIINOY [eOIJRWSYIBIN
(3uoD) "1-L @191

$OuV

IVOTA

ILVOT4A

qdHE$d ‘$DYUV

2Z$N ‘22$V

21$D

92$D‘21$D
SUON

99%$S ‘99$V ‘99$N ‘99$1

99$N ‘99$T ‘ILV$A

99%$N ‘99%s
‘ATIA99$H 1V

99471 ‘99$H ‘99$N ‘$D UV
$09v

18$V ‘99¢V ‘99¢a
‘99¢H ‘92$D ‘ 1L 9DS
‘ZIEH'29$D 99% T ‘1va

pes(seulnoy I9y3iQ

moryIapun
MOTJIDAQD

QuoN

SUON

1-/89L2¢-
01092

£q votstalg

QuoN

QuoN

SuUON

QuoN

SuoN

QUON

SuoN
MOTFIDAQD

QUON

QUON

sIoxamg

IxI=I
AAMH- . e
‘21i11)
0XVIN=I

(ag*"”
‘2111)
OXVINV=Y

I/1=1

=9

=4

I=a
{(1)sgavi=1

(a)aNIa=a

(a‘a)NoDIsa=a

qa-a=a
a-a=a
a=a

(@)ryaosa=a

SPON

*Atuo uonido jrun oMPwyItay pasdg yStH yYrm sajersdos

Z 31y DVA‘TI$SIN 118D

u 31y OVA‘OXVIN 118D

u 31y DVAOXVINV 118D

2 31y ova‘iisa 1men

181y OV ‘ei$D 11BD

1837 DVA‘IVOTd 112D

1817 DVA‘91$D 118D
1 81y Dva‘savI 1men

1 31v DVQ‘INIC 118D

Z 81y DV ‘NDISA T1eD

Z 81y ova‘z9$s 11en
Z 31y DVA‘99$s 118D
183y OVA‘99$H 112D

181V DVQa‘L¥0sSA 11eD

aouanbag Buriren

S2UIINOY [edIIBWIYIRIA
(woD) "1-L o198 L

TT$N
0XVIN
0XVIN

11$a

Z1$D

LVOTA

91$D
savl

LNIQ

NDISa

29%s
99$V
99$H

L490sda

sulno g

Ardnimmy

9NeA WINWIXEN

anfea uoisriooxd
s18urs wnwxenw

|SpIAIQ

uotstosad
918urs 031 319AU0 D

uotisioaxd o13urs
03 (pojexsuad
NV Y190d4d) 319au0)

uotrstooad
91qnop 03 3I2AU0D

anyea ajnfosqy
EEY-E0N

s31q

TBUOI}DOBIJ 93BOUNI],

38117 03
juown3ie puosss
jo uldts xaysuea],

juawn3Ie uoIsIO
-oxd o13urs j0eIIqNG

jorIIgqNG
(p1oY) 21038

j001 aaenbg

uotjoun g

7-8

SUON
AW ‘AT
aNoO¥ ‘ZxeoT

aNOY¥ ‘AdW ‘ IXZDT

aNo ¥

AId ‘ANOY ‘AdN
aNoy
aNo¥ ‘AId ‘AdW

ZXNIS
IXNIS
aNnod
aNoO¥ ‘AdNW

QuON

TSN ‘11$a
aAa$d TI$W ‘$D 8V

SUON

pes saurmnoy I9Y10

1<

juswn3Ie <g
<

juswndae «g
o<

-ndie <9/ 1
9% jusw
-ndie <9/ 1

juswingd e
oIx3z
Io 24a131S0g

juowindaie
0192z
I0 aATIIsod

auoN

2uoN

I0SIATPS

puapiarqg
SUON
SUON
QUON

SUON

QUON
SUON

Sunysty
jnsuo)

SuoN

sioxay

(9)zxzoT1=4
(9)1X2o1=49
(9)zxaon1=4

(9) 1XaDT=¥

(d)zxezxa=9

(9)1XZxXd=9
(9)ZXHAXHA=4
(9)10AXT=4

¥/9=4
(d)zxs0D=4
(9)xsoD=49
(g)zxNLvV=¥d
(I)XNLV =Y

(I ‘TINDISI=I
(1 ‘1)aon-=I1

TaeI =1

(2111
NIW - TI=T

SPON

-ATuo uorydo jTun SIPWYPITIY poodg YITH Yim sojexadOx

1 81y DOVQ ‘ZXZOT 112D
1 81y OVA‘1XZOT 118D
1 8ay OV ‘ZxXE@OT 118D

1 8ay OVQ‘IXADT 118D

181y OV('ZXZXd T1eD

1 81y OV ‘IXZXd 118D
181y OVA‘ZXTAXA 118D
1 8av OVA'1DAXA 118D

Z 81y DVA ‘AId 118D
1 81y DVQ ‘ZXSOD T1eD
1 3ay DVA ‘1XSOD T1BD
1 8ay DVA‘2ZXNLV 118D
181v OVQ‘IXNLV 118D

2 81y OV ‘NDISI 118D
Z 83y DOVA ‘ON 11eD

Z 81y DVA‘11$4 118D

2 31y OVA ‘NIAI 118D

oousnbog Surjren

soUIINO Y TBOIJBRWIdYIRN
(3woD) *1-L °19B.L

ZXTO0T
X201
ZXADT

IXHDT

2XZXH

IXZXH
ZXdAXH
IXEXH

AId
ZXS0D
IXSOD

ZXNLV
IXNIV

NDIST
donw

11

WIAI

aurno g

Z 9seq ‘wyjraefory
7 oseq ‘wyjraesorT
2 oseq ‘wuyjrae3or Ty

s aseq ‘wyjraedorT

7 9seq ‘rerjueuodXs

z 9seq ‘rerjusuodxy
5 aseq ‘rerjusuodxx

o aseq ‘rerjusuodxy

apIatd
SUTSO D
ourson
Ju28URIDIY

jusduelday

1jutod ~poXI g

‘uo1s1o9Id o13uIg

isaty o}
juswngIe puodss
Jo ugis Iojsueaj,

Ispurews Yy
Tomod

x98ejur 03 @s1Ry

20URIIIIIP dA13IS0d

uotjoun g

7-9

HA$T 228V ‘22$N

QuoN

XTdWD

suoN

12$D22%1

92$D'22$S ‘22$V ‘2N
‘2Z$N ‘z22¢a ‘$Dav

22$S ‘22$V ‘22N
‘2$N ‘zzsa‘soav

22$S ‘223 ‘2N
‘22N ‘z2$a ‘$pav

IS ‘22N ‘$O UV
ZT$N ‘22$T

SUON

AIQ ‘AdN

SuoN

AW

SuopN

SAdWW

pesn seulrnoy I°2Y3iQ

§ 1< ze803ur
QUON
SUON

suoN

SuoN

SUON
SUON

SuoN
MOTJIDAQ

auoN

SUON
SUON
SuUON

suoN

SuopN

(e1918so0d
10U MOTJ
-I9A0) QUON

sioxaxry

(a@)iNIar
=] IO MHH
(F)XTAT=T

g=a

(g'¥9)
INVIV=Y
(FINVIV=Y"
g+yd=y
(g)sgv=y4

(¥)ZxuDs=4
(9) 1IX90s=4
(g)ZxXNIS=¥
(g) 1XNIS=¥

(9)aNoy¥=y3g

Had=4

9PON

*A1uo uotnydo jrun ST3PWYILIY poadg ySty yitm sejreradQy

131y DVA‘12$D 118D
131V DVa‘9z$D 1ed
131y DVa‘sez$D 1en

2 81V OVA'XTIdND 118D

1 31y DVQ‘INIAl
I0 INI ‘XIdI 118D

1 312y DVa‘dT19dq 11eD
2 81y DVA‘ZNVIV 11eD

131y OVA‘NVLV 118D
2 81y OV ‘Z$v 11eD
181V OVa‘sdv 11D

1 31y DVQ ‘ZX¥0S 118D
1 32y DVQ ‘ 1X¥DS 118D
1 82V DVQ ‘ZXNIS 118D
1 81y DVQ ‘IXNIS 118D

1 31y DVQ ‘QNO¥ 11'D

2 81y OVA ‘AW 118D

aouenbag Burrren

S9UTINOY [BOTJRWIRYIe
(uoD) *1-L °19B 1L

12$D
92$D
§2$D

XTdWD

XTI

qJ71dda
NV1V

NV IV
228V
sav

2X908s
1X490s
ZXNIS
IXNIS

aNnoya

AW

aurnoy

12893ur 03 3I94AUO0 D

uotrstooad
91qnop 03 }I9AUO0D

rewrxoy xo1d
-0 03 }ISAU0D

xo1dwoo
03 ared jx3AuU0D

aa3ajur

03 }I9AUOD pue S3Iq
TBUOT}OBI] 9)ROUNI)
I0 12893ur 0} 3I9AUOD

uotrsidoaad afqnop
03 (pojexauaild
"NV YLY0d) 3119AU0D

x/L ‘jusSuejoay

anrea Tedd
~utad ‘qualueiday

PPV
anfea ajnjosqy

‘jurtod ~3uryeor.

j001 axenbgy
j00x a2xenbg
QUIG

durg

Isqunu
Axeurq dn punoy

Ardunp

uorldouNn g

7-10

22$A ‘2SN ‘$D UV

dXAd ‘99$IN
‘DOTA‘99$H ‘92$D LV

22$S ‘22$T

AIQ ‘9d$d
‘AAWNY ‘$DYV ‘22N

XIdI ‘22$S ‘22$H ‘221

XIJAT‘22$S ‘22$H ‘22$T

XIJAI'22$S ‘22$H ‘22¢T

XId1°22$S ‘22$H ‘22$T

IA$T ‘22$S ‘22N
CLTINN 228V ‘21$D ‘6D uV

dA$A ‘22$S ‘22N
‘LTANW 223V ‘21$D ‘$Dav

$oav

22%a
‘22$H '22$V ‘dXd ‘22$T

qA$A 22$d ‘22$V ‘22%$S
‘22$N ‘Z2$N ‘$O UV

AIQ “¥E$S
‘AdNY ‘$DYUV ‘2Z$N

pas() saulmoy IsY3lQ

SuoN

SuoN

SUON

MOTJIDAQD

QuoN

SUON

SUON

QuoON
0>
uswngay

0>
juswngay

SuUoN

SUON

moTjIapun
/MOTFIBA0
jusuodxe
‘Jjuswn3ae
pazijewIouup

IOSTAIP
0I9Z MOTJISAQD

sIoxxy

T ="

e =
(g “9)nIa=y9

9=y

Agm- LR
‘2a1y)
ININV =¥

(ug® -
‘zg‘1y)
ININ=I

A.C.m. o o 0
‘2a‘1y)
IXVINV=9

(uyg’ -
‘29'14)
IXVIN=T

(9o 1D0TV=¥

(9)DoTvV=4
g=y

(9)HNV L=¥9

(9)axa=y

/9=y

9PON

*A1uo uomydo jrupn opeunptay posdg ySiH yiim serersdoy

2 31y Oova‘1e$d 11en

2 31y DVQ'92$d 11BD
Z 31y DVA‘INIA 118D

Z 31y OVQ ‘T¢I 11BD

u 31y OvVQa ‘ ININY 118D

u 81y DV ININ 118D

u 84y OVQA‘ IXVINY 112D

u 31y OVQa ‘IXVIN 118D
1 31y DVA ‘0 1DOTV 118D

181V OVA “DOTV 118D
132y DVQ‘'zz$T 11eD

131y DVA ‘HNV L 112D

181y OvVQ‘dXd 112D

2 81y ova‘ez$a ten

eouanbag Burrren

S9UIINOY [BOTIBRWSYIBIA
(3uoD) *1-L 91qe]

12$3

92¢d
WIida

CAAIA

INITW

ININ

IXVIN

IXVIN
DOTV

DOTV
22$T

HNV.L

dXd

2Z$a

surnoyg

Tomod
1989jur 03 esTRY

Iamod uoistosad
91qnop 03 9sIey
9D2ULISJJIP 9ATIISOd

Arduny

aNTBA WINWIUTA

anrea
I9393uT WNWIUTN

2nfeA WnNWIXe N

anyea
I1989jur wnwiIxepw

01 @seq ‘wyjraelorT

° 9seq ‘wyjtreSorT

peoT

juadue) o110qredAg

9 9seq ‘rerjusuodxy

SpPIAIQ

uorjoun g4

7-11

dA$T ‘$DO UV ‘2Z$N
SUON

22$S ‘22$V ‘226N ‘22¢T

ZZ$N ‘22$T
MA$T ‘2Z$N ‘$DO UV
$O¥V

gya$d
‘22$V ‘22$a ‘$AIA ‘$H TV

¢ ¢ ‘ .NNWAW
22$S ‘2Z$N ‘26N ‘$D UV

22$V ‘2Z$N
‘TSN INIV *22$a ‘22$T

dXH ‘ZZ$NW ‘DOTV ‘$D UV

pPa@sn saumnoy JIoy30

I0STAIP
pezijew
-Iouun 0JIoz
Aq uotrstarp
MOTIIDAQD

SUON

QUON

QUON
MOTJIDAQ
SuoN

juowndae
aaryedaN
QuoN

QuON

SUON

SI0IIH

U ¥d=Y9
(9)22$N=¥

(d)INIV=Y
(g “9INDIS=Y
g-¥=y

g=y
(9)1a90s=9
(d)sodD=y
(g)NIS=Y4

(¥ “9)aonv=4a

e ="

SPON

*A1uo uonado jtupn dLWYIIIY poadg ySTH yItm soreradQy

Z 8IV DVQ ‘X22$N 11BD
132y OVQ‘2Z$N 112D

1 31y OVA ‘INIV 118D
Z 81y DV ‘NDIS 118D

131V DVA‘2Z2$V 118D
1 81y DVA‘22$H 118D

181y DVQa‘190s 118D
131y Dva

(SOD 10) NIS 118D

Z 81y DV ‘TQONV 11eD

Z 81y DVA‘z2$d 118D

aosuanbag 3uriren

SaUIINOY [BOTIBWaYIBA
(guoD) "1-L @19e]

X2$W
ZZ$N

LNIV
NDIS

2%V
22%$H

LY0s
SOD ‘NIS
doOnv

22%$d

autjno y

UOISTAIP [BSJI pue
uotyedtidiyinw fee y

juswajdurod s,0Mm7,

si1q
TeUOI}ORBIJ 9jBOUNIT,

isaty o3
juswngdIe puodas
jJo udis Ioysueaf,

joeIIqNg
(p1oY) s103g

j001 axenbg
suison ‘aurg
Ispurews g

Iomod uorsioaad
918urs o3 astey

uotjoun g

7-12

APPENDIX A
NUMBERING SYSTEM AND TWO'S COMPLEMENT ARITHMETIC

Binary Numbering System

Sixteen-bit data words are stored in two's complement notation. The MSB of a
data word may be considered to be the arithmetic sign of the number represented. The
MSB is zero for positive (+) numbers and a one for negative (-) numbers. Bits 2 through
16 of the data word represent the value in binary form. Positive values thus range from

zero (which always has a positive sign) to 32,767 as follows:

000 000 000 000 000 Zero
000 000 000 000 001 +1
000 000 000 000 010 +2
1 1
1 1
] 1
' |
0 111 111 111 111 111 +32,767

Negative numbers are represented in two's complement form and always have a one in the

sign bit position.

Two's Complement Arithmetic

The two's complement of a binary number is obtained by complementing (reversing)
each bit and adding one. For example, the two's complement of +1, which represents -1,

is obtained as follows:

+1 0 000 000 000 000 001
Complement 1 111 111 111 111 110
Add 1 0 000 000 000 000 001

Two's Complement
(-1) 1 111 111 111 111 111

The number range for negative values is from -1 to -32,768 as follows:

1 111 111 111 111 111 (-1)
1 111 111 111 111 110 (-2)
1 111 111 111 111 101 (-3)
1 000 000 000 000 000 (-32,768)

If +1 is added to -1, the result is zero. Thus:

1 111 111 111 111 111 -1
0 000 000 000 000 001 +1
0 000 000 000 000 000 Zero

Note that a carry bit from the most significant position has been ignored. In two's comple-
ment arithmetic, if numbers of unlike signs are added together, carries from the MSB

are disregarded.

Overflow

Overflow is the condition that occurs when two numbers of like signs are added to-
gether to produce a sum of a different sign. For example, adding +1 to £32,767 produces

a result larger than the capacity of a single data word.

0 111 111 111 111 111 (+32,767)
0 000 000 000 000 001 (+1)
1 000 000 000 000 000

The different sign of the result defines an overflow condition.

Addition on the computer is performed by adding a quantity in the memory to a
quantity in the A-register. True signed arithmetic takes place. Overflow conditions auto-
matically result in the setting of the C-bit indicator, even though no carry is propagated

from the sign position. In the preceding example, the C-bit indicator is set.

APPENDIX B
HONEYWELL 316/516 PERIPHERAL DEVICE CODES

Card Code Card Code

Char. é(s)gen Hollerith Octal Macggc‘lzpe Char. égdcild Hollerith Octal Méegc:l;lzpe
0 260 0 121 121 w 327 0-6 26 26
1 261 1 01 0l X 330 0-7 27 27
2 262 2 02 02 Y 331 0-8 30 30
3 263 3 03 03 z 332 0-9 31 31
4 264 4 04 04 Space 240 Blank 20 20
5 265 5 05 05 ! 2412 8-6 16 16
6 266 6 06 06 " 2422} 0-8-7 37 37
7 267 7 07 07 # 2432 0-8-2 32

8 270 8 10 10 $ 2442] 11-8-3 53 53
9 271 9 il 11 %, 2452 12-8-5 75 75
A 301 12-1 61 61 & 2462| 0-8-5 35
B 302 12-2 62 62 ' 2472 -4 14 14
C 303 12-3 63 63 (2502 0-8-4 34 34
D 304 12-4 64 64) 2512| 12-8-4 74 74
E 305 12-5 65 65 2522 11-8-4 54 54
F 306 12-6 66 66 + 2532 12 60 60
G 307 12-7 67 67) 254 0-8-3 33 33
H 310 12-8 70 70 255 11 40 40
1 311 12-9 71 71 N 256 | 12-8-3 73 73
J 312 11-1 41 41 / 257 0l 21 21
K 313 11-2 42 42 : 272 8-5 15 15
L 314 11-3 43 43 ; 273, 11-0 52 52
M 315 11-4 44 44 < 274%| 11-8-7 57 57
N 316 11-5 45 45 = 275%] 8-3 13 13
o 317 11-6 46 46 > 276%| 8-7 17 17
P 320 11-7 47 47 ? 277%| 11-8-6%x 56
0 321 11-8 50 50 @ 3002 Error 00
R 322 11-9 51 51 L 333°| 11-8-5 55 55
S 323 0-2 22 22 \ 3344 12-8-6 76 76
T 324 0-3 23 23] 335 0-8-6 36 36
U 325 0-4 24 24 1 33660 12-0 72 72
% 326 0-5 25 25 - 337 | 12-8-7 77 77

#*Used by ASR and Line Printer
#%¥End of File for Burroughs Card Reader

NOTES:

1. When writing magnetic tapes in even parity (BCD) mode,

00

. Upper
Upper
Upper
Upper
Upper

O\U'l:#wt\)
. .

is written as 12.;
parity, 124 1is read as 00,.

case characters on ASR-33/35
case VT on ASR-33/35
case FORM on ASR-33/35
case M on ASR-33/35
case N on ASR-33/35

conversely, when reading in even

Octal
Mnemonic Code
ACA 141216
ADD 06
ALR 0416
ALS 0415
ANA 03
AOA 141206
ARR 0406
ARS 0405
CAL 141050
CAR 141044
CAS 11
CHS 140024
CMA 140401
CRA 140040
CSA 140320
ENB 000401
ERA 05
HLT 000000
IAB 000201
ICA 141340
ICL 141140
ICR 141240
IMA 13
INA 54
INH 001001
INK 000043
IRS 12
JIMP 0l
JST 10
LDA 02
LDX 15
LGL 0414

APPENDIX C
SUMMARY OF STANDARD INSTRUCTIONS
(Listed in Alphabetical Order)

Instruction

Add Cto A

Add

Logical Left Rotate
Arithmetic Left Shift
AND to A

Add One to A
Logical Right Rotate
Arithmetic Right Shift
Clear A, Left Half
Clear A, Right Half
Compare
Complement A Sign
Complement A

Clear A

Copy Sign and Set Sign Plus
Enable Program Interrupt

Exclusive OR to A
Halt
Interchange A and B

Interchange Characters in A

Interchange and Clear Left Half

of A

Interchange and Clear Right

Half of A

Interchange Memory and A

Input to A

Inhibit Program Interrupt

Input Keys

Increment, Replace and Skip

Unconditional Jump

Jump and Store Location

Load A
Load X
Logical Left Shift

Type
G
MR
SH
SH
MR
G
SH
SH

Execution
Time (ps)

DDP-516

0.96
1.92
0.96 + 0.48n
0.96 + 0.48n
1,92
0.96
0.96 + 0.48n
0.96 + 0.48n
0.96
0.96
2.88
0.96
0.96
0.96
0.96
0.96
1.92

0.96 1.
0.96 1.
0.96 1.

0.96 1.

2.88
1.92
0.96
0.96

0.96
2.88
1.92
2.88
0.96 + 0.48n

[R e R T T ¥ I L e R
N O OO O O~ O O O 0N O DV OO DV O

4
3
1
1
2,88 4.
1
4
3
4
1.

H316

o

+ 0.8n
+ 0.8n

+ 0.8n
+ 0.8n

+ 0.8

Page
2-4
2-4
2-5
2-5
2-4
2-4
2-5
2-5
2-10
2-10
2-11
2-4
2-4
2-3
2-4
2-11
2-4
2-11
2-3
2-10
2-10

2-3
2-14
2-11
2-3
2-12
2-12
2-12
2-3
2-3
2-6

Mnemonic

LGR
LLL
LLR
LLS
LRL
LRR
LRS
NOP
OoCP
OTA
OTK
RCB
SCB
SKP
SKS
SLN
SLZ
SMI
SMK
SNZ
SPL
SRC
SR1
SR2
SR3
SR4
SSC
SSM
SSP
SSR
SSS
SS1
SS2
SS3
5S4
STA
STX

C-2

Octal

Code

0404
0410
0412
0411
0400
0402
0401
101000
14

74
171020
140200
140600
100000
34

101100

100100
101400
74

101040
100400
100001
100020
100010
100004
100002
101001
140500
140100
100036
101036
101020
101010
101004
101002
04

15

APPENDIX C (Cont)

SUMMARY OF STANDARD INSTRUCTIONS
(Listed in Alphabetical Order)

Instruction
Logical Right Shift
Long Left Logical Shift
Long Left Rotate
Long Arithmetic Left Shift
Long Right Logical Shift
Long Right Rotate
Long Arithmetic Right Shift
No Operation
Output Control Pulse
Output From A
Output Keys
Reset C Bit
Set C Bit
Unconditional Skip
Skip if Ready Line Set
Skip if (A16) is one
Skip if (Al()) is zero
Skip if A Minus
Set Mask
Skip if A Not zero
Skip if A Plus
Skip if C Reset
Skip if Sense Switch 1 is Reset
Skip if Sense Switch 2 is Reset
Skip if Sense Switch 3 is Reset
Skip if Sense Switch 4 is Reset
Skip if C Set
Set Sign Minus
Set Sign Plus
Skip if no Sense Switch Set
Skip if any Sense Switch is Set
Skip if Sense Switch 1 is Set
Skip if Sense Switch 2 is Set
Skip if Sense Switch 3 is Set
Skip if Sense Switch 4 is Set
Store A
Store X

Type
SH
SH
SH
SH
SH
SH
SH
G
10
10

=
O

EEOOOOQQOOOOOOOOOOBOQOBOOO

Execution
Time (us)

DDP-516

H316

0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
1.92
1.92
1.92
0.96
0.96
0.96
1.92
0.96
0.96
0.96
1.92
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
1.92
1,92

+ 0.48n
+ 0.48n
+ 0.48n
+ 0.48n
+ 0.48n
+ 0.48n
+ 0.48n

[EEr——

oo W e e W e ke 0 W = e e e e e
L A

(AR —

L ondi B T R S R S P
L

NNO\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\NO\O\O\NO\O\O\O\NN

w W

.6+ 0.
.6+ 0,
.6 +0,
.6+ 0.
.6+ 0.
.6+ 0,
.6+ 0.

Octal
Mnemonic Code
SUB 07
SZE 100040
TCA 140407

APPENDIX C (Cont)

SUMMARY OF STANDARD INSTRUCTIONS

(Listed in Alphabetical Order)

Instruction

Subtract
Skip if a zero

Two's Complement A

Execution
Time (us)

Type DDP-516 H316 Page
MR 1.92 3.2 2-4
G 0.96 1.6 2-13
G 1.44 2.4 2-4

APPENDIX D
MAIN FRAME OPTION COMMANDS

Octal Execution
Mnemonic Code Instruction Type Time Page
Extended Addressing for 24K and 32K Memories - Model 516-05, 06
DXA 000011 Disable Extended Mode G 0.96 2-20
EXA 000013 Enable Extended Mode G 0.96 2-20
Memory Parity - Model 516-07
RMP 000021 Reset Memory Parity Error G 0.96 2-21
SMK '0020 170020 Set Interrupt Mask (AIS) 10 1,92 2-21
SPN 100200 Skip if No Memory Parity Error G 0.96 2-21
SPS 101200 Skip if Memory Parity Error G 0.96 2-21
Memory Lockout - Model 516-08
ERM 001401 Enter Restricted Mode G 0.96 2-26
SMK '1320 171320 Set Relocation Register IO 1.92 2-26
SMK '1420 171420 Set Lockout Mask 1 (0] 1.92 2-26
SMK '1520 171520 Set Lockout Mask 2 10 1.92 2-26
SMK '1620 171620 Set Lockout Mask 3 10 1.92 2-26
SMK '1720 171720 Set Lockout Mask 4 IO 1,92 2-26
Direct Memory Access {(DMA) - Model 516-21
INA '1124 171124 Read Range Counter Channel 1 IO 1,92 2-34
INA '1224 171224 Read Range Counter Channel 2 10 1,92 2-34
INA '1324 171324 Read Range Counter Channel 3 10 1.92 2-34
INA '1424 171424 Read Range Counter Channel 4 IO 1,92 2-34
SMK 10124 170124 Load Address Counter Channel 1 10 1.92 2-34
SMK '0224 170224 Load Address Counter Channel 2 IO 1.92 2-34
SMK '0324 170324 Load Address Counter Channel 3 IO 1.92 2-34
SMK '0424 170424 Load Address Counter Channel 4 IO 1.92 2-34
SMK '1124 171124 Load Range Counter Channel 1 10 1.92 2-34
SMK '1224 171224 Load Range Counter Channel 2 IO 1.92 2-34
SMK '1324 171324 Load Range Counter Channel 3 10 1.92 2-34
SMK '1424 171424 Load Range Counter Channel 4 10 1.92 2-34

Octal
Mnemonic Code Instruction

Priority Interrupt - Model 316/516-25

SMK '0020 170020 Set Standard Interrupt Mask
SMK '0120 170120 Set Interrupt Mask Lines 1-16
SMK '0220 170220 Set Interrupt Mask Lines 17-32
SMK '0320 170320 Set Interrupt Mask Lines 33-48

High-Speed Arithmetic Unit - Model 316/516-11

DAD 06 Double Precision Add

DBL 000007 Enter Double Precision Mode
DIV 17 Divide

DLD 02 Double Precision Load

DSB 07 Double Precision Subtract
DST 04 Double Precision Store

MPY 16 Multiply

NRM 000101 Normalize

SCA 000041 Shift Count to A

SGL 00005 Enter Single Precision Mode

Real-Time Clock - Model 316/516-12

OCP '0220 030220 Reset Interrupt Request
and Stop Clock

OCP '0020 030020 Reset Interrupt Request
and Run Clock

SKS '0020 070020 Skip if RTC not interrupting

SMK '0020 070020 Set Interrupt Mask (Alb)

D-2

Type Execution Time ps Page
DDP-516 H316
10 1.92 3.2 2-36
10 1.92 3.2 2-36
10 1.92 3.2 2-36
10 1.92 3.2 2-36
MR 2.88 4.8 2-29
G 0.96 1.6 2-29
MR 10.56 l6orl6.80r 2-29
(max) 17.6 (max)
MR 2.88 4.8 2-29
MR 2.88 4.8 2-29
MR 2.88 4.8 2-29
MR 5.28 8.8 2-29
G 0.96+0.48n 1.6+0.8n 2-29
G 0.96 1.6 2-29
G 0.96 1.6 2-29
10 1.92 3.2 2-30
10 1.92 3.2 2-30
10 1.92 .2 2-30
10 1.92 2-36

APPENDIX E
PERIPHERAL DEVICE COMMANDS

ASR33/35 Model 316/516-53/55

OCP
OCP
SKS
SKS
SKS
SKS
INA
INA
INA
INA
OTA
OTA
SMK

0004
0104
0004
0104
0404
0504
0004
0204
1004
1204
0004
0204
0020

Enable ASR-33/35 In Input Mode

Enable ASR-33/35 In Output Mode

Skip if ASR-33/35 is Ready

Skip if ASR-33/35 is Not Busy

Skip if ASR-33/35 is Not Interrupting

Skip if Stop Code Was Not Read on ASR-33/35

Input in ASCII from ASR-33/35

Input in Binary from ASR-33/35

Clear Register A and Input in ASCIL from ASR-33/35
Clear Register A and Input in Binary from ASR-33/35
Output in ASCII to ASR-33/35

Output in Binary to ASR-33/35

Set Interrupt Mask (All)

High Speed Paper Tape Reader - Model 316/516-50

OCP
OCP
SKS
SKS
INA
INA
SMK

0001
0101
0001
0401
0001
1001
0020

Start Paper Tape Reader

Stop Paper Tape Reader

Skip if Paper Tape Reader is Ready

Skip if Paper Tape Reader is Not Interrupting

Input from Paper Tape Reader

Clear Register A and Input From Paper Tape Reader

Set Interrupt Mask (A9)

High Speed Paper Tape Punch - Model 316/516-52

OCP
OCP
SKS
SKS
SKS
OTA
SMK

0002
0102
0002
0102
0402
0002
0020

Enable Paper Tape Punch

Turn Paper Tape Punch Power Off

Skip if Paper Tape Punch is Ready

Skip if Paper Tape Punch is Enabled

Skip if Paper Tape Punch is Not Interrupting
Output To Paper Tape Punch

Set Interrupt Mask (AIO)

Parallel Channels - Model 316/516-32, 33-34

INA
INA
OTA
OCP
OCP

'0030%
'1030
'0030
'0030
'0030

Input to A-register

Clear A-register and input to A-register
Output from A-register

Enable input mode (516-32, 34)

Enable output mode (516-33)

OCP 10130 Enable output mode (516-34)

ocCPp '0130 Device OCP 1 (516-32-33)

OCP '0230 Device OCP 2 (516-32, 33, 34)

OCP '0330 Device OCP 3 (516-32, 33, 34)

OCP '0430 Device OCP 4 (516-33, 34)

OCP '0530 Device OCP 5 (516-34)

OCP 10630 Device OCP 6 (516-34 No DMC/DMA)

OCP '0630 Enable DMC/DMA mode (516-32, 33, 34)

OCP '0730 Reset DMC/DMA mode (516-32, 33, 34)

OoCP '1630 Enable DMC/DMA Auto-Switch Mode (516-32, 33, 34)
SKS '0030 Skip if channel ready

SKS '0130 Device SKS 1

SKS 10230 Skip if first channel not reached end-of-range
SKS '0330 Skip if not in auto-switch mode

SKS '0430 Skip if no interrupt request

SKS ‘0530 Device SKS 2

SKS 10630 Device SKS 3

SMK 10020

%30 is the address of the first channel. Table below shows addresses for two other channels.

Address Mask Bit
First Chai.ael 308 5
Second Channel 318
Third Channel 328 7
OCP/SKS - Model 316/516-29
OCP '0034 Device OCP 00
OCP '0134 Device OCP 01
OCP '0234 Device OCP 02
OCP '0334 Device OCP 03
OoCP '0434 Device OCP 04
OCP 10534 Device OCP 05
OCP '0634 Device OCP 06
OCP '0734 Device OCP 07
OCP '1034 Device OCP 10
OCP '1134 Device OCP 11
OCP '1234 Device OCP 12
OCP '1334 Device OCP 13
OoCP '1434 Device OCP 14
OCP '1534 Device OCP 15

OCP 11634 Device OCP 16

OCP 11734 Device OCP 17
SKS '0034 Device SKS 00
SKS 0134 Device SKS 01
SKS 10234 Device SKS 02
SKS '0334 Device SKS 03
SKS 0434 Device SKS 04
SKS 10534 Device SKS 05
SKS '0634 Device SKS 06
SKS 0734 Device SKS 07
SKS '1034 Device SKS 10
SKS 11134 Device SKS 11
SKS 11234 Device SKS 12
SKS '1334 Device SKS 13
SKS 11434 Device SKS 14
SKS 11534 Device SKS 15
SKS '1634 Device SKS 16
SKS '1734 Device SKS 17

Card Reader - Model 316/516-61

OCP '0005 Read One Hollerith Card

OCP '0105 Read One Binary Card

SKS '0005 Skip if'Card Reader Ready

SKS '0105 Skip if Card Reader Not Busy

SKS 10205 Skip if Not End of File

SKS '0305 Skip if Card Reader Operational

SKS '0405 Skip if Card Reader Not Interrupting

INA '0005 Input From Card Reader if Ready

INA '1005 Clear A-Register and Input From Card Reader if Ready
SMK 0020 Set Interrupt Mask (AIZ)

Line Printer - Model 316/516-7050

OCP '0003 No paper advance

OCP 10203 Advance paper to channel 2

OCP 10303 Allow memory scan via DMA/DMGC
OCP 10403 Advance paper to channel 1

OCP 10703 Allow memory scan via the I/O Bus
SKS 10003 Skip if ready

SKS '0203 Skip if no alarm

SKS 10303 Skip if odd column next

SKS '0403 Skip if not interrupting

SKS '1103 Skip if line is printed

SKS
SKS
SKS
SKS
SKS
SKS
OTA
SMK

Magnetic Tape Systems

'1203
'1303
'1403
'1503
'1603
'1703
'0003
'0020

Skip if not shuttling

Skip if line is printed and not shuttling

Skip if not advancing paper

Skip if line is printed and not advancing paper
Skip if not shuttling and not advancing paper
Skip if not busy

Output to line printer if ready

Set Interrupt Mask (A14)
- Model 316/516-4100

OCP
OCP
OCP
OCP
OCP
OCP
OCP
OCP
OCP
OCP
OCP
OCP
OCP
OCP
OCP
OCP
SKS
SKS
SKS
SKS
SKS
SKS
SKS
SKS
SKS
SKS

SKS
SKS
INA
INA
OTA
SMK

E-4

1001X
011X
'021X
'031X
'041X
'051X
061X
071X
'101X
‘111X
'121X
'131X
141X
'151X
161X
171X
001X
011X
021X
031X
'041X
051X
061X
'071X
'111X
'121X

'131X
'141X
'001X
'101X
'001X
'0020

Read BCD, 2 char/word

Read binary, 2 char/word

Read binary, 3 char/word

Set up Normal DMC/DMA mode

Write BCD, 2 char/word

Write binary, 3 char/word

Write end of file

Reset DMC/DMA mode

Write binary, 3 char/word

Space forward one space

Space forward one file

Set up DMC/DMA in Auto Switch mode

Rewind

Backspace one record

Backspace one file

Stop write

Skip if ready

Skip if not busy

Skip if an error has not been detected

Skip if not at beginning of tape (loadpoint)
Skip if not interrupting

Skip if end of tape has not been detected

Skip if end of file has not been detected

Skip if writing is permitted

Skip if MTT operational

Skip if DMA/DMC subchannel is not currently processing
Channel 2

Skip if DMC/DMA subchannel is not in Auto Switch mode
Skip if not rewinding

Input from TCU if ready

Clear A-register and input from TCU if ready
Output data to the TCU

Set TCU Interrupt Mode, (AI) for TCU 1, (AZ) for TCU 2

Fixed Head Disc File - Model 316/516-4400

INA
INA
OTA
OCP
OCP
OCP
SKS
SKS
SKS

SKS

SKS
SMK

'0022
r1022
'0022
'0322
10422
10722
'0022
'0122
'0222

10322

10422
10020

Input to A-register

Clear A-register and Input to A-register
Output from A-register

Select DMA or DMC operation

Stop data transfer/acknowledge interrupt
Select I/O bus operation

Skip if Fixed Head Disc File ready

Skip if Fixed Head Disc File is not busy

Skip if Fixed Head Disc File has not detected a
data transfer error

Skip if Fixed Head Disc File has not detected an
access error

Skip if Fixed Head Disc File is not interrupting
Set Interrupt Mask (AS)

Moving Head Disc File - Model 316/516-4600

INA
INA
OTA
OCP
OCP
OCP
OoCP
OoCP
OCP
OCP
OoCP
OCP
SKS
SKS
SKS
SKS
SKS
SKS
SKS
SKS
SKS
SMK

'1025
0025
'0025
10025
'0125
'0225
10325
10525
10625
'0725
11025
'1425
'0025
'0125
‘0225
'0325
'0425
11425
'1525
11625
'1725
10020

Clear A-register and input to A-register
Input to A-register

Output from A-register

Return to zero seek

Direct seek

Read current address

Enable DMC/DMA mode of data transfer
Write track format

Read/write record

Enable I/O bus mode of data transfer
Stop transfer

Acknowledge interrupt

Skip if ready

Skip if not busy

Skip if data error not detected

Skip if setup error not detected

Skip if not interrupting

Skip if unit 1 not seeking

Skip if unit 2 not seeking

Skip if unit 3 not seeking

Skip if unit 4 not seeking

Set interrupt mask (A4)

Process Interface Controller - Model 516-8100 Series

OCP
SKS
SKS
SKS
INA
INA
OTA
OTA
OTA
OTA

'XX33
'0023
'0033
'XX33
'0023
'1023
'0123
'0323
'0723
'1033

Acknowledge designated subsystem interrupt

Skip if PIC is ready

Skip if PIC is not interrupting

Skip if designated subsystem is not interrupting

Input from PIC Adapter if ready

Clear Register A and input from PIC Adapter if ready
Output select to PIC if ready

Output data to PIC if ready

Output and cycle PIC if ready

Set PIC interrupt mask

Single Line Controller (Honeywell 316/516)

OCP
OCP
OoCP
OCP
OoCP
OCP
OCP
OCP
OoCP
OCP
OCP
OCP
OCP

OCP
OCP

SKS
SKS
SKS
SKS
SKS
SKS
SKS
SKS
SKS
SKS
SKS
OTA
OTA

'0060%
'0160
'0260
'0360
10460
'0560
0660
'0760
'1060
'1160
'1260
'1360
'1560
'1660
'1760
'0060
'0160
'0260
0360
'0460
0560
10660
'1060
11260
'1360
'1460
'0160
10260

Enable receiver

Receive sync (synchronous controller only)
Enable transmitter

Set data terminal ready

Originate call

Enable DMC receive mode

Enable DMC transmit mode

Enable low speed receiver

Disable receiver

Transmit break (asynchronous controller only)
Disable transmitter

Reset data terminal ready

Disable DMC receive mode

Disable DMC transmit mode
Enable low speed transmitter

Skip if receiver ready

Skip if receiver fault is set

Skip if transmitter ready

Skip if no ring signal

Skip if controller not interrupting

Skip if no receiver ERL signal

Skip if no transmitter ERL signal

Skip if receiver ready

Skip if transmitter not busy (synchronous controller only)
Skip if no disconnect signal

Skip if no abandon call and retry signal
Skip if receiver fault is set and reset it

Transmit character

*'60 is address of first channel.

INA 0060 Input character
INA '1060 Clear A-register and input character

SMK 10420

Table below shows addresses of the first four channels and mask bit assignments.

Address Mask Bit
Single line eontroller 1 60(8) 1
Single line controller 2 61(8) 2
Single line controller 3 62(8) 3
Single line controller 4 63(8) 4

Octal
Address
00000

00001
thru
00017

00020
00021

00022 (
thru ‘
00057
00060
00061
00062
00063
00064

thru

00065 l
00143 5

APPENDIX F
DEDICATED LOCATIONS

As signment

Index Register

Protected
Fill Program

Starting Addresses
Final { DMC Channel 1

DMC Channels 2 thru 16

Power Failure Interrupt Link
Real-Time Clock

Memory Lockout Violation Int. Link
Standard Interrupt Link

Optional PI No. 1 Link

Optional PI No. 2 thru 48 Links

APPENDIX G
KEY-IN LOADER

Key-In Loader for ASR-33/35/High-Speed Paper Tape Reader

. TO LOAD PAL-MQDE PROGRAMS, THE FOLLOWING PRQCEDURE
. MUST BE FOLLOUWED,

. 1. IF THE KEY-IN LOAUER IS NUT PRESENT IN LOCATIONS
. 1-17 UUTAL, MANUALLY KEY IN THE FOLLOWINGS

. ASR DIGITRONICS
. 1 S1A '57 010057 010057

. 2 ucep 10001/4 030004 030001

» J INA '10001/4 131004 1310014

. 4 Jnmp %1 002003 002003

s S SNZ 101040 101040

. 6 Jnmp %23 002003 002003

. 7 SiIA 0 010000 010000

. 10 INA '1001/4 131004 131001

. 11 JMP L | 002010 002010

. 12 L6L 8 041470 041470

. 13 INA '0001/4 130004 130001

. 14 JMP %-] 002013 002013

. 15 STAe O 110000 110000

. 16 1IRS O 024000 024000

. 17 szE 100040 100040

L J

. 2, MASTER CLEAR

» 3. SET P REGISTER 7O 1

. 4. MOUUNT PAL-MGDE TAPE IN INPUT DEVICE AND PRESS START

Expansion to Key-In Loader to Clear Memory

0 OCT 22 000022
20 EXA 000013
21 JMP 15 002015

Master Clear and Start at location 20.

APPENDIX H
SUMMARY OF DAP-16 PSEUDO-OPERATIONS

Contents of Fields

Oper.
Mnemonic | Meaning Class Location Operation Variable Effect
kK ZERO Special Normal oAk Normal Zeros put into op code
op-code mnemonic
code
ABS Absolute Assembly | Not Applicable ABS Ignored Subsequent instructions
mode control assembled in absolute
mode
BCI Binary Data de- Normal BCI N, followed by 2N | 2N alphanumeric char-
coded in- fining alphanumeric acters (N<30) converted
formation characters into binary
BES Block end- | Storage Normal; assigned| BES Previously defined| Increases value of loca-
ing with allocation| location counter absolute expres- tion counter by value of
symbol value after sion expression in the vari-
increase able field
BSS Block start-| Storage Normal; assigned | BSS Previously defined| Same as BES
ing with allocation| location counter absolute expres-
symbol value before in- sion
crease
BSZ Block stor- | Storage Normal BSZ Previously defined| Same as BES (used for
age of allocation absolute expres- defining storage blocks
zZeros sion that are initially cleared)
CALL Call sub- Program | Normal CALL Name of a subrou-| Generates a JST* to call
routine linking tine referenced subroutine
through transfer vector
CFx Configura- | Assembly | Not Applicable CFl1 Ignored Specifies which DAP-16
tion control or class computer will ex-
CF3 ecute the object program.
or
CF4 CF1 for DDP-116
or CF3 for H316
CF5 CF4 for DDP-416
CF5 for DDP-516
COMN Put in com- | Storage Normal COMN Previously defined| Value of expression in
mon stor- allocation absolute expres- variable field are used to
age sion assign location in a com~
mon data pool for symbol
in location field; facili-
tates reference by other
programs
DAC Define ad- | Data de- Normal DAC Previously defined| Causes DAP-16 to assem-
dress con-| fining absolute or relo- ble a 16-bit address word
stant catable expression
DBP Double pre- | Data de- Normal DBP Decimal subfields Decimal characters con-
cision fining verted into binary with
double precision option
DEC Decimal- Data de- Normal DEC Decimal subfields | Decimal characters con-
to-binary fining verted into binary
END End of as- | Assembly | Not Applicable END Address for trans-| Terminates assembly pass
sembly control fer of control,
pass following loading
process

APPENDIX H (Cont)

SUMMARY OF DAP-16 PSEUDO-OPERATIONS

Contents of Fields

Oper.
Mnemonic| Meaning Class Location Operation Variable Effect
EQU Equals Symbol Normal (See EQU Previously defined |Causes DAPto assign the
defining ""Effect"” column) absolute or relo- value and mode of the ex-
catable expression | pression in the variable
field to the symbol in the
location field
EXD Enter ex- Louder Not Applicable EXD Ignored Subsequent instructions as-
tend mode control sembled in extended ad-
dressing mode
FIN Finish Assembly | Not Applicable FIN Ignored Punch out literals
control
LOAD Load mode | Assembly { Not Applicable LOAD Ignored Subsequent instructions
control assembled in load mode
LIST Generate List Not Applicable LIST Ignored Causes printout of source
listing control and object programs,
side-by-side
LXD Leave ex- Loader Not Applicable LXD Ignored Subsequent instructions
tend mode control assembled in normal ad-
dressing mode
MOR More Assembly | Not Applicable MOR Address fortrans- [Interrogate sense switches
control fer of control to determine type of as-
sembly control
NLST No listing List Not Applicable NLST Ignored Inhibits program printout
control
OoCT Octal-to- Data de- Normal OCT Octal subfields Octal characters con-
binary fining verted into binary
ORG Origin Assembly | Normal ORG Previously defined |Value and mode of expres-
control absolute or relo- sion in variable field is
catable expression | equivalent and location
counter is set accordingly
PZE Plus zero Special Normal PZE Normal Zeros put into op code
mne - ’
monics
code
REL Relocatable | Assembly | Not Applicable REL Ignored Subsequent instructions
mode control assembled in relocatable
mode
SETB Set base Loader Normal SETB Previously defined [Specify a sector other
mode control absolute or relo- than zero as the base
catable expression | sector
SUBR Entry point | Program | Ignored SUBR Name of subrou- Punches subroutine name
. linking tine, entry ad- for identification in sub-
dress routine library
XAC External Program | Normal XAC Name of subroutine [Causes DAP-16 to assemble
address linking 16-bit address word defining
constant location outside the program|

APPENDIX 1
SOFTWARE PACKAGE

Tables that list all routines in the Honeywell 316/516 software package, their document

number, the format, and equipment required for each routine are listed in this appendix.

Utility routines are given in Table I-1, Input/Output routines are given in Table I-2, mathe-

matical routines are given in Table I-3, and Test and Verification routines are given in

Table 1-4.

Type and Function

Assemble DAP-coded
source program

Chain or segment
program

Check:

Error entry of halt

Overflow (and set
error flag)

Pseudo sense lights
on/off

Pseudo sense lights

Sense switches

Compile FORTRAN -
coded source program

Convert indirect
address to direct
address

Debug (search, modify,
clear memory, enter
breakpoints)

Convert decimal
no. S to octal
equivalent

FORTRAN Debugging
Aid (Trace)

DAP/FORTRAN loaders

Expanded loader:
ASR Input (paper tape)
or

Paper Tape Reader
Input or

Magnetic Tape
or Disc

Mnemonic

DAP-16

CHAIN

FER, FHT

OVERFL
SLITE

SLITET
SSWTCH

FRTN

ARG$

DEBUG

DEC-OCT

F$TR

LDR-APM

LDR-APM

LDR-APM

Table I-1.
Utility Routines

Doc. No.

180275000

180070000

182602000
182600000

182599000
180463000

180072000

180430000

180575000

180073000

180005000

Equipmentsk

Format* Required
8K memory
minimum
DAP self-
loading and
object

Paper Tape Reader

Magnetic Tape
or Disc

I-1

Type and Function

Card Reader Input

Standard Loaders:
ASR Input (Paper Tape)

Paper Tape Reader

ASR or Paper Tape
Reader or Card
Reader Input

Card Reader Input

Dump:
ASR Typewriter
High Speed Punch
Line Printer

Logic:
Logical Complement
Logical or
Object Program Punch
and Load

Transfer arguments from
calling to called
routine

Update:
Symbolic source
update

Symbolic source
update, I/0
supervisor

Symbolic source
update, revised
dummy selection

Table I-1. {Cont)

Mnemonic

LDR-C
SLDR-A

SLDR-P

MINILOAD

SLDR-C

DUMP
X-16 DUPE
L P-DMP-5

N$33
1$33
PAL-AP

F$AT

SSUP

SSUP -1IOS

SSUP RDS

Utility Routines

Doc. No.
180582000

180341000

180342000

180580000

180583000

188806000
180087000
180614000

180090000
180065000
180311000

180071000

180767000

180000000

180304000

Formats

Self-loading
and DAP
object

Self-loading
and DAP
object

Self-loading

Equipmenti¥
Required

Card Reader

Paper Tape Reader

Card Reader

High Speed Punch
Line Printer

and DAP object

* All routines are in DAP format unless otherwise specified.

*% "Equipment Required" is basic (ASR-33 or ASR-35 I/O) unless otherwise specified.

I-2

Paper Tape
reader
and punch, or
two magnetic
tape
transports

Input/Output Routines*

Type and Function

FORTRAN 1V Drivers:
ASR Typewriter -
Input
Output

Paper Tape Reader
Paper Tape Punch
Card Reader

Line Printer
Advance + Print Control
Magnetic Tape Transport
Input
Output
Write File Mark
Rewind
Back Space

Device n
Input
Output

FORTRAN 1IV:
Format Control
Argument Transfer
Buffer Closeout

DAP I/0 Supervisors (Expanded)

Selectable I/0O
Selectable I/O and Disc

Mnemonic

F$R1
F$W1

F$R2
F$wz
F$R3

F$W4
O$LP

F$R5-9
F$W5-9
F$D5-9
F$B5-9
F$F5-9

F$RN
F$WN

F$IO
F$AR
F$CB

105-516X
10S-516D

DAP I/O Supervisors {Preselected I/O Devices)

ASR only
High Speed Reader,
High Speed Punch, ASR

High Speed Reader and ASR

Card Reader and ASR
Card Reader, High Speed
Punch, ASR

Standard Library:

ASR Typewriter -
Type a line
Carriage return
Advance to next line
Initialize heading
Initialize listing

ASR Paper Tape Reader -

or Keyboard

ASCII
Binary

ASR Paper Tape Punch
ASCII
Binary
Leader

* All routines are in DAP object format.

*% For use on the DDP-516 only.

IOS-5AAA

IOS-5RPA
IOS-5RAA
IOS-5CAA

I0S-5CPA

O3%AP
O$AC
O$AF
O$HH
O$LL

I$AA
I$AB

O$AA
O$AB
O$AL

)
)

Doc. No.

182610000
182611000

182612000
182613000
182614000
182616000
180770000 **

180306000
180307000
180308000
180309000
180310000

180088000
180089000

182618000

180324000
180278000
180323000
180573000
180592000
180618000

180594000

180255000

180774000

189001000
189002000

189003000
189004000
189005000

I-4

Table I-2. (Cont)
Input/Output Routines*

Type and Function

High Speed Paper Tape Reader -
ASCII
Binary

High Speed Paper Tape Punch -
ASCII
Binary
Listing
Heading
Leader
Punch one line
Punch carriage return
Advance to next line

Card Reader
ASCII
Binary

Line Printer

Magnetic Tape
Input -
BCD (2 characters/wd)
Binary (2 characters/wd)
Binary (3 characters/wd)

Output -
BCD (2 characters/wd)
Binary (2 characters/wd)
Binary (3 characters/wd)
File Mark

Backspace
One file -
One record
Rewind

Forward space -
One file
One record

Conversion -
ASCII code to IBM tape code
IBM tape code to ASCII code

Translate transport numbers

Disc
Format
Fixed Head
Moving Head

Mnemonic Doc. No.
$PA 189006000
I$PB 189007000
O$PA 189008000
O$PB 189009000
O$PL

O$PH 181479000
O$PLDR 189008000
O$PP

O$PC 180257000
O$PF

I$CA 180110000
I$CB 180609000
OS$SLA 180768000%*
O%LB 180768000
I$MA-U

I$MB 180599000
I$MC

O$MA-U

O$MB 180598000
Oo$MC

O$ME

C$BF

C$BR

C$MR 182606000
C$FF

C$FR

C$8TO06 180082000
C$6TO08 180091000
M$UNIT-U 180602000
M$FT 180666000
D$IO 180617000
M$IO 180616000

* All routines are in DAP object format.
#% For use on the Honeywell 416/516 only.

Table I-3,
Mathematical Routines

Type and Function Mnemonic Doc. No. Format
Complex:
Absolute value CABS 182596000 FTRN object
Add A$55 182544000 FTRN object
Add single precision argument A$52 180041000 FTRN object
Conjugate CONJG 182598000 FTRN object
Convert imaginary part to real AIMAC 182578000 DAP object
Cosine CCOS 180066000 FTRN object
Divide D$55 180034000 FTRN object
Divide by single precision D$52 180044000 FTRN object
argument
Exponential, base e CEXP 182593000 FTRN object
Load L$55 182542000 DAP object
Logarithm, base e CLOG 182591000 FTRN object
Multiply M$55 182545000 FTRN object
Multiply by single precision M$52 180045000 FTRN object
argument
Negate a complex quantity N$55 180069000 FTRN object
Raise to integer power E$51 182594000 FTRN object
Sine CSIN 182595000 FTRN object
Square root CSQRT 182592000 FTRN object
Store (hold) H$55 182543000 DAP object
Subtract S5$55 180093000 FTRN object
Subtract single precision S$52 180042000 FTRN object
argument
Double Precision:
Fixed-Point:
Add DADD 188812000 DAP object
Arctangent DATNX1 188793000 DAP object
Arctangent¥* DATNX2 188794000 DAP object
Cosine DCOSX1 188792000 DAP object
Cosine* DCOSX2 180762000 DAP object
Divide DDIV 188808000 DAP object
Divide* DDIVH 188809000 DAP object
Exponential, base e DEXEX]1 188799000 DAP object
Exponential, base e* DEXEX2 188800000 DAP object
Exponential, base 2 DEX2Xl1 188797000 DAP object
Exponential, base 2% DEX2X2 188798000 DAP object

*Operates with High Speed Arithmetic Unit (Honeywell 316/516-11) option only.

I-5

I-6

Table I-3. (Cont)
Mathematical Routines

Type and Function

Logarithm, base e
Liogarithm, base e*
Logarithm, base 2
Logarithm, base 2%
Multiply

Multiply*

Round up binary number
Sine

Sine*

Square Root

Square Root*
Subtract

Two's complement

Floating-Point:

Absolute value

Add

Add*

Add single precision argument
Add integer to exponent
Arctangent, principal value
Arctangent, x/y

Clear (zero) exponent
Convert exponent to integer
Convert to integer

Convert to single-precision
(from pseudo accumulator)

Cosine

Divide

Divide by single precision
argument

Exponential, base e

Load

Logarithm, base e

Logarithm, base 2

Logarithm, base 10

Maximum value

Minimum value

Multiply

Mnemonic Doc. No.

DLGEX]1 188801000
DLGEX?2 188802000
DLG2X1 188795000
DLG2X2 188796000
DMPY 188808000
DMPYH 188809000
RODD 188804000
DSINX1 188790000
DSINX?2 188791000
DSQRX1 188788000
DSQRX2 188789000
DSUB 188813000
TWOS 188803000
DABS 182587000
A$66 182540000
A$66X 180680000
A$62 180037000
A$81 180064000
DATAN 182584000
DATAN?Z2 180056000
Z.$80 180060000
Cc$s81 180046000
C$61 182554000
Cc$62 182576000
DCOS 189955999
D$66 182541000
D$62 180040000
DEXP 182581000
L$66 182538000
DLOG 182579000
DLOG2 182579000
DLOG 10 180051000
DMAX1 182585000
DMIN1 182586000
M$66 182541000

*Operates with High Speed Arithmetic Unit option only.

Format

DAP object
DAP object

‘-DAP object

DAP object
DAP object
DAP object
DAP object
DAP object
DAP object
DAP object
DAP object
DAP object
DAP object

FTRN object
DAP object
DAP object
FTRN object
DAP object
FTRN object
FTRN object
DAP object
DAP object
DAP object

DAP object
FTRN object
DAP object

FTRN object
FTRN object
DAP object
FTRN object
FTRN object
FTRN object
DAP object
DAP object
DAP object

Type and Function

Multiply by single precision

argument
Negate

Raise to double precision
power

Raise to integer power

Raise to single precision
power

Remainder
Sine

Square root
Store (hold)
Subtract

Subtract single precision
argument

Transfer sign of second
argument to first

Truncate fractional bits

Integer:

Absolute value

Convert to double precision

Convert (FORTRAN -Generated)

to single precision
Convert to single precision
Divide

Divide

Maximum single precisionvalue

Maximum value
Multiply

Multiply*

Positive difference
Raise to integer power
Raise to integer power*
Remainder

Transfer sign of second
argument to first

Single Precision:

Fixed-point:
Arctangent

Arctangent*

Table I-3. (Cont)
Mathematical Routines

Mnemonic Doc. No.

M$62 180039000
N$66 180061000
E$66 180054000
E$61 180052000
E$62 180053000
DMOD 182588000
DSIN 182583000
DSQRT 182580000
H$66 182539000
S$66 182540000
S$62 180038000
DSIGN 182589000
DINT 180049000
LABS 182552000
C$16 180059000
FLOAT 180062000
C$12 182575000
D311 182546000
D$11X 180686000
AMAXO 182548000
MAXO 182548000
M$11 180035000
M$11X 180685000
IDIM 182556000
E$11 182547000
E$11X 180684000
MOD 182555000
ISIGN 182557000
ARNX1 188779000
ATNX2 188780000

* Operates with High Speed Arithmetic Unit option only.

Format

FTRN object
DAP object

FTRN object
FTRN object

FTRN object
FTRN object
FTRN object
FTRN object
DAP object
DAP object

FTRN object

FTRN object
DAP object

DAP object
FTRN object

DAP object
DAP object
DAP object
DAP object
DAP object
DAP object
DAP object
DAP object
DAP object
DAP object
DAP object
DAP object

DAP object

DAP object
DAP object

1-7

Type and Function

Cosine

Cosine®
Divide
Exponential, base e
Exponential, base e¥*
Exponential, base 2
Exponential, base 2%
Logarithm, base e
Logarithm, base e¥*
Logarithm, base 2
Logarithm, base 2%
Multiply
Round up binary number
Sine
Sine*
Square root

Square root¥

Floating-Point:

Absolute Value
Add

Arctangent, principal value

Arctangent, y/x

Convert (FORTRAN -generated)

to double precision

Convert to integer or truncate
fractional bits and convert to

integer

Convert pair to complex

Convert to complex format

Convert to double precision

Convert to integer

Divide

Exponential, base e
Hyperbolic tangent

Load

Logarithm, base e

Logarithm, base e*

Table I-3. (Cont)
Mathematical Routines

Mnemonic Doc. No.

COSX1 188781000
COSX2 180761000
DIV 188810000
EXEX] 188786000
EXEX2 188787000
EX2X1 188782000
EX2X2 188783000
LGEX1 188814000
LGEX2 188815000
LG2X1 188784000
LG2X2 188785000
MPY 188811000
ROND 188805000
SINX1 188777000
SINX2 188778000
SQRX1 188775000
SQRX?2 188776000
ABS 182570000
A$22 182536000
ATAN 182564000
ANTAN2 182564000
DBLE 180058000
IFIX 182553000
CMPLX 182597000
C$25 180068000
C$26 182590000
C$21 182558000
D$22 182537000
EXP 192561000
TANH 182565000
L$22 182534000
ALOG 182559000
ALOGX 180682000

*Operates with High Speed Arithmetic Unit option only,

Format

DAP
DAP
DAP
DAP
DAP
DAP
DAP
DAP
DAP
DAP
DAP
DAP
DAP
DAP
DAP
DAP
DAP

DAP
DAP
DAP
DAP

DAP

DAP

object
object
object
object
object
object
object
object
object
object
object
object
object
object
object
object
object

object
object
object
object

object

object

FTRN object
FTRN object

DAP
DAP
DAP
DAP
DAP
DAP
DAP
DAP

object
object
object
object
object
object
object
object

Table I-3. (Cont)
Mathematical Routines

Type and Function Mnemonic Doc. No. Format
Logarithm, base 10 ALOG10 182559000 DAP object
Maximum integer value MAX1 182549000 DAP object
Maximum value AMAX] 182549000 DAP object
Minimum integer value MIN1 182551000 DAP object
Minimum value AMIN1 182551000 DAP object

Multiply M$22 182537000 DAP object

Multiply* M$22X 180683000 DAP object

Positive difference DIM 182573000 DAP object

Raise to double precision power E$26 182582000 FTRN object

Raise to integer power E$21 182562000 DAP object

Raise to single precision power E$22 180045000 DAP object

Remainder AMOD 182572000 DAP object

Sine SIN 182563000 DAP object

Square root SQRT 182560000 DAP object

Square root* SQRTX 180681000 DAP object

Store (hold) H$22 182535000 DAP object

Subtract S$22 182536000 DAP object

Transfer sign of second SIGN 182536000 DAP object

argument to first

Truncate fractional bits AINT 182571000 DAP object

Two's complement N$22 180097000 DAP object

*Operates with High Speed Arithmetic Unit option only.

I-10

Table 1-4.

Test and Verification Routines

Type and Function

Central Processor
Test No. 3

High Speed Arithmetic
Test

Core Memory Test
(DDP-516)

Core Memory Test
(H316)

Memory Bank Switching
Test

Memory Lockout Test
No. 1

Power Failure Test No., 2
Teleprinter Test Program
Card Reader Test

Line Printer Test

Magnetic Tape Test

Fixed Head Disc Test
Moving Head Disc Test
Real-Time Clock Test
Fixed Head Disc Test (SMS)
33-35 Teletypewriter Test

High Speed Paper Tape
Reader/Punch Test

Name

X16-CCT3
X16-11T1
X16-CMTI
316-CMTI
516-05T1
X16-08T1

X16-PFT2
X16-TLTI1
X16-CRT1
X16-PRTI
X16-MTT2
X16-44T1
X16-46T1
X16-RTCl
X16-43T1
X16-TWT!
X16-RPT2

Option
Doc. No. Format Required

70180658000 PAL 316/516
70180294000 PAL 316/516-11
70180265000 PAL STD-516
70180773000 PAL STD-316
70180316000 PAL Over 24K

Memory
70180318000 PAL 516-08
70180608000 PAL 316/516
70180269000 PAL ASR-33/35
70180267000 PAL 516-61
70180264000 PAL 516-7050
70180452000 PAL 516-4100
70180454000 PAL 516-4400
70180713000 PAL 516-4600
70180263000 PAL 316/516-12
70180834000 PAL 316/516-4300
70180654000 PAL 316/516
70180967000 PAL 316/516-50/52

