Honeywell

COMPUTER CONTROL

DIVISION

DDP-416
USERS GUIDE

DDP-416
USERS GUIDE

June 1967

Honeywell

COMPUTER CONTROL

DIVISION

Doc.No. 130071630
M-1040

COPYRIGHT 1967 by Honeywell Inc., Computer Control
Division, Framingham, Massachusetts, Contents of this
publication may not be reproduced in any form in whole or in
part, without permission of the copyright owner. All rights
reserved,

Printed in U.S. A,

Published by the Publications Department,
Honeywell Inc., Computer Control Division

CONTENTS

SECTION I
INTRODUCTION

SECTION II
CONTROL CONSOLE
System Initialization
Register Display
Register Load
Memory Display
Memory Load
Single Instruction Operation
Run Operation
Key-In Loader
Checking the Key-In Loader

SECTION III
SOFTWARE PACKAGE

SECTION IV
OPERATING PROCEDURES
Load
Load Self-Loading Programs
Load Object Programs
Options Following a Loader Halt
Assemble DAP-16 Source Programs
Punch Self-Loading Object Tapes
Load the Self-Loading PAL-AP
Execute PAL-AP
SECTION V
UTILITY LIBRARY
DAP Assembler (DAP-16)
Input/Output Supervisor (I0S-16B)
Expanded Loaders (LDR-A, LDR-P)
Standard Loaders (SLDR-A, SLDR-P)
Punch and Loader Program (PAL3)
DDP-416 Debug Package

SECTION VI
MATHEMATICAL LIBRARY

iii

CONTENTS (Cont)

SECTION VII

INPUT/OUTPUT LIBRARY
1/O Interrupt Executive Routine (X$EXEC)
Dummy 1/O Executive Routine
Decode 1/0O Status Word (STAT)
Interrupt Linkage Setup (XILOC)
ASR Paper Tape Reader, ASCII (IAAS, IAIS)
ASR Paper Tape Reader, Binary (IABS, IABIS)
ASR Paper Tape Punch, ASCII (OAAS, OAIS, OASS, OALRS)
ASR Paper Tape Punch, Binary (OABS, OASS, O$ALRS)
ASR Teleprinter Output (OLLS, OLHS, O$LES)
High-Speed Paper Tape Reader, ASCII (IPAS, IPIS)
High-Speed Paper Tape Reader, Binary (IPBS, IPBIS)
High-Speed Paper Tape Punch, ASCII (OPAS, OPIS, OPSS, OPLRS)
High-Speed Paper Tape Punch, Binary (OPBS, OPSS, O$PLRS)
High-Speed Paper Tape Punch, Heading, Listing, Eject (OPHS, OPLS, O$PES)
Card Reader, Hollerith (ICAS, ICAIS)
Magnetic Tape Read Routines (I$MA1S, I$MBI1S, I$MC1S)
Magnetic Tape Write Routines (O$MA1S, O$MB1S, O$MCI1S)
Convert IBM Magnetic Tape Code to ASCII (C$6T08)
Convert ASCII to IBM Magnetic Tape Code (C$8TO06)
Magnetic Tape Control Package (C$MR1S, C$FR1S, C$BR1S, C$FFILS, C$BF1S)
Physical and Logical Magnetic Tape Unit Correlation (M$UNIT)

SECTION VIII
ERROR MESSAGES
Loading Messages
DAP-16 Assembly Program
SECTION IX

PAPER TAPE FORMATS
ASCII Format
Source Tape Preparation

4/6/6 Format

iv

7-4
7-4
7-5
7-6
7-7
7-7
7-8
7-9
7-10
7-11
7-11
7-12
7-13
7-14
7-14
7-14
7-15

ILLUSTRATIONS

DDP-416 Control Console, Control Panel
General Format of Paper Tape

ASCII Format

Source Code Punched in ASCII Format

4/6/6 Format

Object Code Punched in 4/6/6 (Invisible) Format

TABLES

Registers Displayed on DDP-416 Control Panel
Function of Control Panel Pushbuttons and Switches
Function of Control Panel Selector Switches

OP Display

DDP-416 Software Package

Loader Messages

Assembly and I/O Device Selection

Debug Operations

Mathematical Library

Error Messages Generated by the DAP-16 Assembly Program
4/6/6 Translations

DDP-416 General Purpose Computer

SECTION I
INTRODUCTION

This User's Guide is intended to familiarize you with the operation of your DDP-416
computer. From a user's point of view, the DDP-416 computer is a relatively simple device
to operate, Its movable control console is designed to allow complete operator freedom
which provides for easy, error-free operation. The comprehensive software package sup-
plied with the DDP-416 includes a DAP-16 assembler and a variety of utility, input/output,
and mathematical routines. Furthermore, with each DDP-416, Honeywell provides a com-
plete library of instruction manuals and program listings that tell the programmer/operator
all he needs to know about preparing and using DAP-16 programs.

The DAP-16 Manual (3C Doc. No, 130071629) presents complete instructions for
preparing programs in the DDP-416 source language. The Programmer's Reference Manual
(3C Doc, No. 130071628) lists and describes all the instructions in the DDP-416 repertoire.

In the User's Guide you will find detailed instructions for using your computer and
its software package. The guide is sectionalized for easy referencing such that information
you will refer to again and again can be found easily., At the same time, you can progres-
sively increase your knowledge of the DDP-416 by reading the sections in the order they
appear., Sections II and III will be of greatest interest to you initially. Section II explains
the function of each of the controls on the control console and presents a few simple proced-
ures for using them to perform basic operations. Section III lists, by type and function, all
of the programs in your software package with the mnemonic, document number and equip-
ment required, Section IV contains generalized operating procedures for system tapes and
for some of the more frequently used utility programs. The remainder of the User's Guide
contains reference material designed to help you make effective use of your DDP-416 and its

software package.

SECTION II
CONTROL CONSOLE

The basic DDP-416 computer system includes a main frame, a control console a

a typewriter, In addition to this standard equipment, your installation may include any or al.

of the following peripheral devices:

High speed paper tape reader
High speed paper tape punch
Card reader

Magnetic tape units

The DDP-416 Programmer's Reference Manual (3C Doc., No, 130071628) and the appropriate
peripheral device option manuals contain operating instructions for each device, standard
or optional. The software package contains the input/output subroutines required for con-
sole control of the devices included in your installation.

The control console (Figure 2-1) includes the controls and indicators for normal

system operation. These controls and indicators are listed and described in Tables 2-1
through 2-3,

3760

Figure 2-1. DDP-416 Control Console, Control Panel

Table 2-1,

Registers Displayed on DDP-416 Control Panel

Register Bits

Display

A 1-16
oP 1-16

P/Y 1-16

Register A (primary arithmetic and logic register),

State of key flip-flops in system. (Refer to
Table 2-4,)

Register Y (memory address register). When the
computer is operating in the memory access (MA)
mode, Registers P and Y contain the same address.
When in the single instruction (SI) or RUN mode
Register P contains an address which is one
greater than the address contained in Register Y,

Register M (memory buffer register). Contains the
contents of that memory location specified by
Register Y.

Function

Table 2-2.
of Control Panel Pushbuttons and Switches

Pushbutton

Function

16 Indicator

CLEAR
POWER-ON

POWER-OFF
A
OoP

P/Y

M
MSTR CLEAR

Enter or display data, A ONE is indicated when push-
button/indicator is illuminated. A ZERO is indicated
when pushbutton/indicator is extinguished,

Clears displayed registers (A, P/Y or M only).

Applies power to main frame. The indicator is
illuminated when power is applied.

Removes power from main frame.
Displays and permits alterations in contents of Register A,
Displays state of key system flip-flops.

Displays and permits alterations in contents of Registers
Pand Y. (Registers P and Y contain the same address
when the computer is in the memory access (MA) mode.
Register P contains an address which is one higher
than that contained in Register Y when the computer is
in the single instruction (SI) or RUN modes.)

Displays and permits alterations in contents of Register M,

Clears Registers A, P, Y, and M; sets all timing to that
state existing following a HLT (halt); initializes standard
peripheral devices and options.

START Starts machine in all modes. Indicator is illuminated
when machine is in RUN mode,
Table 2-3,
Function of Control Panel Selector Switches
Switch Position Function

PFI/PFH PF1 Allows the machine to cause a program
(Power Fail Interrupt/ interrupt when power fails,

Power Fail Halt) PFH Allows the machine to halt when power

fails,

Table 2-3. (Cont)
Function of Control Panel Selector Switches

Switch Position Function

STORE/FETCH STORE Enables data to be written into memory
when the computer is in the MA mode.

FETCH | Enables reading the contents of
Registers A, Y, and M,

P/P+l P Enables data to be read out of memory
when the computer is in the MA mode.

P+1 Enables accessing a specific memory
location when the computer is in the
MA mode.
MA/SI/RUN MA Enables accessing consecutive memory
(Memory Address/ locations when the computer is in the
Single Instruction/ MA mode,
Run) SI Enables data to be written into or read

from a location in memory and disables
the protection for locations 1-178.

RUN Enables normal operating mode.

Data within memory and several of the main frame registers can be monitored on
the control panel. Data can also be manually entered into memory and several registers
from the control panel. Procedures for initializing the system, reading out and entering

data into memory and the main frame registers are provided in the following paragraphs.

SYSTEM INITIALIZATION

The system can be initialized by depressing the CLEAR pushbutton, This operation
has no effect on the contents of memory, The MASTER CLEAR function is also performed
when power is applied to the system via the POWER-ON pushbutton,

REGISTER DISPLAY

The contents of Register A, OP, P/Y, or M can be displayed by depressing the
appropriate REGISTER pushbutton. The contents of the selected register is displayed on
the 16 pushbutton/indicators. Refer to Table 2-4 for the significance of the OP display.

Table 2-4.
OP Display
Bit Significance Bit Significance
1 T1, timing level l 9 PI, permit interrupt
2 T2, timing level 2 10 Unassigned
3 T3, timing level 3 11 ML, memory lockout (option)
4 T4, timing level 4 12 Unassigned
5 F, fetch cycle 13 Unassigned
6 I, indirect cycle 14 Unassigned
7 A, execute, cycle 15 MP, memory parity error
8 Unassigned 16 P, I/O parity error

2-3

REGISTER LOAD

Data is entered into Register A, P/Y or M as follows,

a,
b.

C.

Depress the appropriate REGISTER pushbutton,
Depress the CLEAR pushbutton,
Enter the desired data by depressing the appropriate pushbutton/indicators

(1 through 16), Refer to the paragraph on Memory Load in this section for the procedure to

enter data into memory.

MEMORY DISPLAY

The contents of any memory location is displayed as follows,

a
b.
(o}
d.
e

f.

Set MA/SI/RUN switch to MA,

Set FETCH/STORE switch to FETCH.

Set P/P+1 switch to P.

Depress REGISTER-P/Y pushbutton,

Depress CLEAR pushbutton.

Depress the appropriate pushbuttonfindicators (1 through 16) to designate the

octal address of the memory location containing the data to be displayed.

2.

h.

Depress REGISTER-M pushbutton.
Depress START pushbutton. The contents of the addressed memory location

will be displayed on the pushbutton/indicators (1 through 16),

The contents of successive memory locations can be displayed as follows.

i,

J

Set P/P+1 switch to P+1.
Depress the START pushbutton., Each time the START pushbutton is depressed

the contents of the next memory location is displayed.

MEMORY LOAD

Data is entered into any memory location as follows.

a
b.
c.
d.
e.
f.

Set MA/SI/RUN switch to MA,

Set FETCH/STORE switch to STORE,

Set P/P+1 switch to P,

Depress REGISTER-P/Y pushbutton,

Depress CLEAR pushbutton.

Depress the appropriate pushbutton/indicators (1 through 16) to designate the

octal address of the memory location to be loaded.

g.
h.

i,

Depress REGISTER-M pushbutton,
Depress CLEAR pushbutton,
Depress the appropriate pushbutton/indicators (1 through 16) to enter the

desired data into the addressed location.

J

Depress START pushbutton,

The desired data is now in the addressed location. Successive memory locations

can be loaded as follows,

k. Set the P/P+1 switch to P+1,

1. Repeat steps h through j for each successive memory location to be loaded.

SINGLE INSTRUCTION OPERA TION

A program is executed in the single~instruction mode as follows,

a. Set MA/SI/RUN switch to SI, (When the switch is not in the MA position, the
FETCH/STORE and P/P+] switches are disabled,)

b. Depress MASTER CLEAR pushbutton,

c. Enter initial parameters into Register A, or P/Y as required. (Refer to the
Register Load procedure described in this section,)

d. Depress START pushbutton,

The first instruction is fetched from memory and placed in Register M and may be examined
by depressing the REGISTER-M pushbutton, Thereafter, each.time the START pushbutton is
depressed, the previously fetched instruction is executed, the next instruction is fetched,
and the computer halts, If the P/Y pushbutton is depressed, the address from which the new
instruction was fetched is displayed on the pushbutton/indicators (1 through 16). During

execution (run operation) the SI position may be used at any time to aid in program debug-

ging.

RUN OPERATION

A program is executed in the run mode as follows,

a, Set MA/SI/RUN switch to RUN,

b. Depress MASTER CLEAR pushbutton.

c. Enter initial parameters into Register A, or P/Y as required, (Refer to the
procedure for Register Load described in this section,)

d. Depress START pushbutton,

The program will run until a HALT is executed or until the MA/SI/RUN switch is set to SI,

KEY-IN LOADER

The octal instructions listed below normally occupy memory locations 1, through

8
178 and enable the loading of 'self-loading'' paper tapes via the teletype or high-speed

paper tape reader,

2-5

Octal Octal Octal Octal

Address Instruction Meaning Address Instruction Meaning
1 010057 STA '57 11 002010 JMP #-1
2 03000X OCP '000X 12 041470 LGL 8
3 13100X INA '100X 13 13000X INA '000X
4 002003 JMP k-1 14 002013 JMP ka1l
5 101040 SNZ 15 110000 STA% 0
6 002003 JMP *-3 16 024000 IRS 0
7 010000 STA O 17 100040 SZE
10 13100X INA '100X

The value of "X'" in the above instructions is dependent upon the input device used to read

the paper tape.

teletype,

The hardware protects memory locations 18 through 17

8

A 1" specifies the high-speed paper tape reader and ''4" specifies the

from modification by a

stored program, Therefore, under normal conditions, the key-in loader should remain

intact in these locations, However, when operating in the MA mode, locations 18 through

178 are unprotected, therefore care must be taken to avoid inadvertently destroying the

key=-in loader while loading memory.

a.

c.
d.
e.

f.

g.

Depress MASTER CLEAR pushbutton,
Set MA/SI/RUN switch to MA,

Set STORE/FETCH switch to STORE,
Set P/P+1 switch to P+1,
Enter the first instruction (0100578) into Register M,

Depress START pushbutton,

mented by one and the first instruction will be entered into location 0000018.

The key-in loader is entered into memory as follows.

(This unlocks the protected area, addreeses

The program counter (Register P) will be incre-

Repeatstepsf, and g. for each of the remaining instructions to be loaded, Each

time the START pushbutton is depressed, Register P will be incremented by one and the

instruction in Register M will be loaded into memory.

CHECKING THE KEY-IN LOADER

The following instructions are performed to ensure that the key-in loader has been

loaded correctly into the designated memory locations,

a,
b.

0

2-6

Depress MASTER CLEAR pushbutton,
Set MA/SI/RUN switch to MA.,
Set STORE/FETCH switch to FETCH,
Set P/P+1 switch to P+1,

Depress Register-M pushbutton,

f. Depress START pushbutton., Register P will be incremented by one and the
contents of memory location 0000018 (010057) will be displayed on the pushbutton/indicators

(1 through 16),
g. Repeat step f. for each of the remaining memory locations to be monitored.

Each time the START pushbutton is depressed, Register P will be incremented by one and

the contents of the addressed memory will be displayed.

SECTION III

SOFTWARE PACKAGE

This section consists of a table that lists utility, mathematical, and input/output

routines in the DDP-416 software package,

The mnemonic, document number, and equip-

ment required are given for each routine listed. All routines are supplied in DAP-object

. .
format,

Table 3-1.

DDP-416 Software Package

Type and Function Mnemonic Doc. No, Equipment Required
UTILITY
Assembly System
Assembler DAP-16 180275000
I/O Selectors
ASR only I0S-16A 180560000
Expanded I/O I0S-16B 180324000 High-speed paper tape reader
Debug Package (one sector) DEBUG 180430000
Loaders
Expanded
ASR Input LDR-A 180335000
High-Speed Paper Tape LDR-P 180336000 High-speed paper tape reader
Input
Standard
ASR Input SLDR-A 180341000
High-Speed Paper Tape SLDR-P 180342000 High-speed paper tape reader
Input
Object Program Dump PAL-AP 180311000 High-speed paper tape reader
and Load and punch (optional)
MATHEMATICAL
Single Precision Arithmetic
Add ADD 180422000
Subtract SUB 180422000
Multiply MPY 180423000
Variable Length Multiply VMP 180423000
Divide DIV 180424000
Remainder Entry DIVR 180424000

*Equipment required is basic unless otherwise specified.

Table 3-1. (Cont)
DDP-416 Software Package

Type and Function Mnemonic Doc, No, Equipment Required®
MATHEMATICAL (Cont)
Single Precision Standard
Functions:
Square Root SQRX1 180425000
Sine SINX1 180426000
Cosine COSX1 180426000
Arctangent ATNXI1 180427000
Logarithm Base 2 LG2X1 180428000
Logarithm Base e LGEX1 180428000
Logarithm Base 10 LG10X1 180428000
Exponential Base e EXEX]1 180429000
Exponential Base 2 EX2X1 180429000
Exponential Base 10 EX10X1 180429000
Double Precision Arithmetic 180453000
Package:
Add DADD
Subtract DSUB
Multiply DMPY
Divide DDIV
Twos Complement DTCA
Load Simulated Double DLDA
Accumulator
Store Simulated Double DSTA
Accumulator
Skip on Overflow DSOV
Skip on No Overflow DSNO
INPUT/OUTPUT
Interrupt Executive Routine X$EXEC 180472000
Dummy Executive Routine 180472000
Decode I/O Status Word STAT 180529000
Interrupt Linkage Setup XILOC 180528000
ASR-33/35
Reader
ASCII I$AAS 180527000
Binary I$ABS 180526000

#*Equipment required is basic unless otherwise specified.

Table 3-1. (Cont)
DDP-416 Software Package

Type and Function Mnemonic Doc. No, Equipment Required
INPUT/OUTPUT (Cont)
Punch
ASCII O$AAS 180530000
Binary O$ABS 180531000
End of Message O$ASS 180530000
and
Leader O$ALRS 180531000
Tcleprinter
Listing O$LLS
Heading O3$LHS 180551000
Page Eject O$LES
High-Speed Paper Tape
Reader
ASCII I$PAS 180533000} High-Speed Paper Tape Reader
Binary I$PBS 180534000
Punch .
ASCII O$PAS 180539000
Binary O$PBS 180532000
End of Message O$PSS 180539000 s .
and High-Speed Paper Tape Punch
Leader O$PLRS 180532000
Listing O$PLS
Heading O$PHS 180547000
Page Eject O$PES J
Card Reader, Hollerith I$CAS 180537000 Card Reader
Magnetic Tape
Read
BCD (2 characters/word) I$MA1S)
Binary 180548000)
(2 characters/word) I$MBIS |
(3 characters/word) I$MC1S
Write . [| Magnetic Tape Transport and
BCD (2 characters/word) O$MAI1S Control Unit
Binary
(2 characters/word) O$MBI1S 180552000 |
(3 characters/word) 0O$MC1S (o
End of File O$MELS

*Equipment required is basic unless otherwise specified,

Table 3-1. (Cont)
DDP-416 Software Package

Type and Function

Mnemonic Doc. No.

Equipment Required®

INPUT/OUTPUT (Cont)

Conversion

ASCII to IBM Tape Code

IBM Tape Code to ASCII

Control
Rewind
Forwardspace
One Record
One File
Backspace
One Record
One File
Physical and Logical

Magnetic Tape Correlation

C$8TO06 180536000

C$6TO08 180535000

)

C$MR1S

C$FRI1S

C$FF1S 180549000

v

C$BRI1S
C$BF1S

M$UNIT 180538000

0 g

Magnetic Tape Transport and
Control Unit

*Equipment required is basic unless otherwise specified,

SECTION IV
OPERATING PROCEDURES

This section presents detailed procedures for loading and assembling programs and

for punching self-loading paper tapes.

LOAD

The following paragraphs contain procedures for loading both self-loading and object

programs on paper tape.

Load Self-Loading Programs

a. Depress the MASTER CLEAR pushbutton,

b. Load lg into Register P,

c. Insert the DAP self-loading tape into the appropriate input device,

d. Depress the START pushbutton. (When loading with an ASR-33 teletype unit,
the manual START switch on the device must be activated. When loading with an ASR-35
teletype unit, the MODE switch must be set to KT.,) The program will be loaded into the
locations it occupied when it was punched out. Loading any self-loading tape destroys the

contents of locations 000208 through 000578 inclusive,

Load Object Programs

a. Perform the procedure for self-loading programs, described above, using the
appropriate self-loading loader program.

b. Load XXOOOS, the starting location of the loader, into Register P (XX is the
highest sector of memory). (If the object program is relocatable (REL), perform steps c.
and d. If the object program is absolute (ABS), skip steps c. and d., and continue at
step e.)

c. Load Register A with the octal address of the location at which loading is to
begin, If Register A is clear, a starting location of 10008 will be assumed.) To force a
g’ load 1000008 into Register A,
d. Press START. The computer will halt.

starting location of 00000

e. Load Register A with the octal address of the location at which the cross-sector
indirect address word table is to begin, (If Register A is clear, a starting location of 1008

will be assumed,)

NOTE

The cross-sector indirect word table must be located in sector 0
for DDP-416 computers without the Memory Lockout Option if the
expanded loaded LDR is used, or when using the standard loader
SLDR. The table may be in any sector for computers with the
option. The sector may be changed at load time by the pseudo-
operation SETB.

f. Insert the object program into the appropriate input device.
g. Depress the START pushbutton, The object program will be loaded into memory

until a halt occurs and a loader message is produced on the teletype, Refer to Table 4-1 for

the significance of the loader messages.

Table 4-1.
Loader Messages
Message Meaning Action Required
LC Loading complete Depress the START pushbutton

to begin program execution,

MR More subroutines required | Insert the required subroutine
tapes into the appropriate
input device and depress the
START pushbutton to continue

loading.

CK Checksum error in the Depress the START pushbutton
last block read to ignore the block and continue

loading,

BL Block too large or Depress the START pushbutton
improperly formatted to ignore the block and continue

loading.

MO Memory overflow due to Depress the START pushbutton
program attempting to to obtain a memory map. No
overwrite the loader recovery is possible from this

error,

The loader cannot detect a program overlaying the indirect word tables or the tables over-
laying the program. You must obtain a memory map to determine whether overlap exists.

The loader will detect base sector overflow and produce a MO message,

Options Following a Loader Halt

When a loader halt occurs and a message is produced, *here are several options
you can perform other than those specified in Table 4-1, The options allow you to perform

the following functions.

a. Reload the object tape by repeating the procedure '"Loading Object Programs''

described above.

b. Recover from a missing end-of-tape block, The procedure is as follows,

(1) Momentarily setthe MS/SI/RUN switch to SI to stop the computer,
(2) Load XXOOl8

(3) Depress the START pushbutton,

into Register P.

c. Print a memory map. The procedure is as follows,

(1) Load XX002, into Register P,

8
(2) Depress the START pushbutton. A memory map will be produced on the

teletype.
d, Set a program break, The procedure is as follows.

(1) Load XX0038 into Register P,
(2) Load Register A with the address of the location at which loading is to
continue, If Register A is cleared, the origin for loading remains unchanged.

(3) Depress the START pushbutton and loading will continue.
e, Force load a subprogram, The procedure is as follows.

(1) Load XX0048 into Register P.
(2) Insert a tape into the appropriate input device if required.

(3) Depress the START pushbutton. The tape will be loaded into memory.
f. Begin executing the object program. The procedure is as follows,

(1) Load XX005,
(2) Depress the START pushbutton and the program will be executed.

into Register P,

ASSEMBLE DAP-16 SOURCE PROGRAMS

This procedure enables you to perform an assembly, using a self-loading

DAP-16 system tape, To perform the assembly, proceed as follows,

a. Depress the MASTER CLEAR pushbutton,

b. Load 18 into Register P.

Insert the DAP-16 system tape into the appropriate input device.

0

Depress the START pushbutton and the system tape will be loaded into memory.
e. Select a bit pattern from Table 4-2 to designate a one or two pass assembly
and to designate the I/O devices to be used during the assembly.
f. Load the selected bit pattern into Register A.

g. Load 4008 into Register P, There are five standard starting options available
for the DAP-16 assembler.

(1) 400, - Start assembly

(2) 401;3 - Continue assembly

(3) 4028 - Start subroutine tape assembly

(4) 4038 - Terminate assembly

(5) 4048 - Restart pass two to produce additional object tapes

h. Insert a DAP-16 sourcc tape into the appropriate input device and turn on your

input/output equipment.
NOTE

If you are using the high-speed paper tape equipment or an
ASR-35 to assemble, perform step i to complete the procedure.
If you are using the ASR-33 to assemble, skip step i and per-
form steps j through n,
i. Depress the START pushbutton and the assembly will be executed,
j. Depress the START pushbutton, A portion of the source tape will be read and
a halt will occur.
k. Depress the ON pushbutton on the ASR-33 paper tape punch.
1. Depress the START pushbutton. A length of object tape will be punched and a
halt will occur.
m. Depress the OFF pushbutton on the ASR-33 paper tape punch,
n, Repeat steps j through m until the complete source tape has been read and a

complete object tape has been punched.

After the assembly is completed, you will have an object tape and a listing of your
program (if both were requested). When operating in the two-pass assembly mode, the
output is generated during the second pass. The second pass is accomplished by repeating
steps h. and i, after the source tape has been read in the first time. If the assembly was
successfully completed, Register A will contain all ONE's when the computer halts., If a
MOR pseudo-operation was encountered, Register A will contain all ZEROs.

The DAP-16 assembler indicates coding errors by typing or printing error flags in

the left-hand margin of the listing. (See Table 8-1.) Such errors do not interfere with the

assembly process, Undefined symbols are automatically defined by the assembler and are
listed at the end of each pass.

Table 4-2.
Assembly and I/O Device Selection

Set Bit Assembly or I/O Device Selected

1 Two pass assembly, If bit 1 is not
set, a one pass assembly is executed,.

Input Device:
Teletype Unit
High-Speed Paper Tape Reader
Card Reader
Magnetic Tape Unit
Teletype Unit with halts for
manual inputs

o WV

Output Device:
Teletype Unit
High-Speed Paper-Tape Punch
Card Punch
Magnetic Tape Unit
No Object Output

——
— OO © =~

Table 4-2, (Cont)

Assembly and I/O Device Selection

Set Bit Assembly or I/O Device Selected
Listing Device:
12 Teletype Unit
13 High-Speed Paper-Tape Punch
14 Magnetic Tape Unit
15 Line Printer
16 No Listing
NOTE

P - B N IDY 5+0iimbs S+ e o P A gtands -
If any of the five-bit I/C groups are all ZEROs, a standard

A
AL
device, depending on the configuration, will be selected

PUNCH SELF-LOADING OBJECT TAPES

A program is provided in your software package which enables you to punch self-

loading object tapes of any segment of memory. This punch and load program (PAL-AP) is

supplied in self-loading form.

The following procedures describe the method for loading

the program and executing the program once it is loaded.

Load the Self-Loading PAL-AP

a. Depress the MASTER CLEAR pushbutton,
b, Load 000018 into Register P,
c. Depress the START pushbutton. The tape will be loaded into the highest 12008

locations of memory. (The program overlays the relocating loader if it is currently in the

high sectors of memory and locations 000208 through 000578 are destroyed.)

Execute PAL-AP

a. Depress the MASTER CLEAR pushbutton,
b. Load ZZ100 into Register P, (ZZ is the sector into which PAL-AP was loaded.)

c. Load into Register

A the starting address of the data to be punched out, (If the

teletype is being used, set the high-order bit of Register A and turn on the punch unit on the

teletype.)

d. Depress the START pushbutton, The program will halt at location Zle78.

e. Load into Register

A the ending address of the data to be punched out.

f. Depress the START pushbutton, A self-loading object tape will be punched out.

SECTION V
UTILITY LIBRARY

This section contains short descriptions of the routines in the DDP-416 Utility
Library. The purpose, storage requirements, and usage are given for each routine, In
some cases more detailed information contained either in the program listing or other 3C

documents is referenced,

DAP ASSEMBLER (DAP-16)

Purpose

The DAP Assembler is designed to convert DAP-coded source language programs
to object form for execution on the DDP-116, 416, or516. DAP-l6is aone- or two-pass assem-
bler; additional passes, however, may be made to produce extra copies of the program in
object form. The program is loaded with the standard bootstrap loader. There are five

starting options available,

400 Start assembly

401 Continue assembly (for restart after a reading check, etc,)

402 Start subroutine tape assembly (do not punch EOF at end of tape)
403 Terminate assembly (dump buffers, punch trailer, punch EOF)
404 Restart pass 2 (to produce additional tapes)

The contents of Register A control the number of passes and device selection, The sign bit
(bit 1) must be set to establish a two-pass mode. If the 4K I/O Selector (I05-164) is used,
the device selection is limited by the system configuration, If the 8K I/O Selector {I0S-16B)
is used, the remaining 15 bits of Register A are used to determine device selection as

follows,

a. Source File Selection

Bit 2 - ASR-33/35 input

Bit 3 - High-speed paper tape reader input
Bit 4 - Card reader input

Bit 5 - Magnetic tape input

Bit 6 - Halts for manual control of ASR-33/35

paper tape punch will occur
b. Object File Selection

Bit 7 - ASR-33/35 output
Bit 8 - High-speed paper tape punch output

Bit 9 - Card punch output
Bit 10 - Magnetic tape output
Bit 1l - No object output

c. List File Selection
Bit 12 - ASR-33/35 listing
Bit 13 - High-speed paper tape punch listing
Bit 14 - Magnetic tape listing
Bit 15 - Line printer listing
Bit 16 - No listing

If all bits of one of the 5-bit groups are ZERO, a standard device, depending on

system configuration, will be selected.

Storage Requirements

A minimum of 4K using IOS-16A (preselected 1/0) or 8K using IOS-16B (selectable

1/0).

Usage

Refer to the DAP-16 manual for complete operating procedures and details on
usage,

INPUT/OUTPUT SUPERVISOR (I0S-16B)

Purpose

10S-16B provides the necessary supervision and control of DAP-16 assembler
input/output device selection. Source, object, and listing devices are selected by presetting
Register A as indicated in the preceding DAP-16 description. I0S-16B has 15 entries that
are used by the DAP-16 Assembler, as required. Each entry returns control to the assem-
bler when its function has been accomplished. The 15 entries, and the purpose of each,

are as follows,

DS$IN To interrogate Register A and preset source, object, and listing
library subroutine, Calls for the requested device.

D$OL To output a line of data on a listing device.

D$BH To output a heading line on a listing device.

D$RD To read a record from input device to core buffer and compute
record sequence number,

D$ADV To advance the character pointer to the next output field.

DS$LG To place an error flag in the first four positions of the output buffer

for the given line of output.

D$OB To process binary output for object device and to output the buffer
if it is full or if the new block type is not the same as the previous
block type.

D$OPT To set octal machine op-code to ASCII code and store in buffer.

D$CHR To read a character from either the left or right half of a word.
D$SGN To insert a minus sign in column 17 of the output buffer.

D$STR To insert double asterisk in columns 23 and 24 of the output buffer.
DS$EJ To eject page for listing device.

D$CKSZ To fetch buffer counter.

PAUSE To halt if not magnetic tape input, Return on restart.

HALT When using magnetic tapes, wrap up on output pass. If input pass,

reset magnetic tape input, halt, Return on restart,.

Storage Requirements

IOS-16B requires 76610 (13768) locations (Rev. A).

EXPANDED LOADERS (LDR-A, LDR-P)

Purpose

To load either absolute or relocatable main programs and subprograms produced
by the DAP-16 assembler into the DDP-416 memory. LDR-A requires only the ASR-33/35
for input, and LDR-P requires the high-speed paper tape reader. The binary output of the
DAP-16 assembler includes a 15-bit or 16-bit address for each memory reference so that
progams may be written for computers with the extended memory option. Nine-bit address
instructions are desectored by the loader before execution whether in extended-memory
mode or not, It is the programmer's responsibility to ensure that code is loaded in the
mode in which it will be executed, This should be done prior to assembly by use of the

pseudo-ops EXD (enter extend-mode desectoring) and LXD (leave extend-mode desectoring).

Storage Requirements

LDR-A and LDR-P each require approximately 3-1/2 sectors of memory.

Usage

Refer to Section IV of this manual for instructions on using the loaders.

STANDARD LOADERS (SLDR-A, SLDR-P)

Purpose

SLDR-A and SLDR-P load either absolute or relocatable main programs and sub-
programs produced by the DAP-16 assembler into the DDP-416 memory. The standard
loaders are essentially only limited versions of the expanded loaders (LDR-A and LDR-P).
The standard loaders do not allow for extended memory addressing, relocatable sector
zero, or forward references, SLDR-A requires the ASR-33/35 for input, and SLDR-P

requires the high-speed paper tape reader.

Storage Requirements

SLDR-A and SLDR-P each require more than two sectors of memory.

Usage

Refer to SectionIV of this manual for instructions on using the loaders,

PUNCH AND LOADER PROGRAM (PAL3)

PurEose

PAL3 punches self-loading object tapes for execution on the DDP-416 computer,
This routine is made up of a punch section and a load section which is of the bootstrap
variety. PAL3 punches out its own loader in 8-8 format followed by 12 in. of leader. The
desired program is then punched in PAL format, which is recognized by the loader, The
self-loading ability of a PAL program is apparent: the loader on the front of the tape will
first load itself, and then the PAL-format program, Data is punched in blocks of 50 words
each with six frames of leader between blocks, Refer to SectionIX of this manual for

details on how data is punched on paper tape.

Storage Requirements
g 9

PAL3 requires less than one sector of core,.

Usage

Refer to Section IV of this manual for complete instructions on preparing PAL-

format tapes.

5-4

DDP-416 DEBUG PACKAGE

Purpose
Aids in debugging DDP-416 programs by allowing the following functions.

Entering values into memory locations

Providing breakpoints

Typing a given location each time a breakpoint is executed

. Typing memory between two limits each time a breakpoint is executed

Scanning memory between given limits to locate an octal value

Mmoo o T

Clearing one or more locations in memory by inserting zeros,

This program will operate on any standard DDP-416 computer, but it must not be loaded

into sector zero.

Storage Requirements

Debug requires 50610 (7728) locations (Rev, A)., Location 777 is reserved

exclusively for use by this package.

Usage

The program starts at load point +1. The operations defined in Table 5-1 may be
performed after the program has started and then pauses to allow input from the ASR-33/35
keyboard, All numeric inputs will be interpreted as octal, The first input character must
be a valid command code. Any non-octal input serves to separate octal fields, A carriage

return terminates input, During typed input, a slash (/) enables restart of input,
NOTE

LOC = memory location
ov = octal value

(CR) = carriage return

Table 5-1,
Debug Operations

Code Operation

A (CR) Type the value in (A)
A OV (CR) Set the value in (A) to OV
B (CR) Clear all breakpoints
B LOC3 (CR) Set a breakpoint at LOC3

B LOC3, LOC1 (CR) Set a breakpoint at LOC3 and type the contents of LOCI
each time LOC3 is executed

Table 5-1, (Cont)
Debug Operations

Code

Operation

B LOC3, LOCl, LOC2 (CR)

C (CR)

C OV (CR)

D LOC1 (CR)
(CR)

OV (CR)

D LOC1, LOC2 (CR)

S LOC1 (CR)
S (CR)

Z LOC1 (CR)
Z LOCl, LOCZ (CR})

Set a breakpoint at LOC3 and type the contents of each
location between LOC! and LOC2 inclusive each time
the breakpoint is executed.

NOTE

A maximum of four breakpoints may be specified.

Continue in test program from breakpoint,

Continue in test program from breakpoint OV times.
Dump value at LOCI.

LOCI = LOC1 +1. Dump value at LOCI,

OV replaces value at LOCl, LOCI1 = LOCI +1.

Dump
value at LOCI,

Dump values between LOCI1 and LOCZ inclusively.

NOTE

(CR) and OV (CR) are valid only when the previous
command begins with a '"D",

M LOC1, LOC2, OVl, OV2 (CR) Scan memory between LOC1 and LOC2 inclusively for

word OV1 using mask OVZ,

Type matching location
and its contents,
Start program at LOCL,

Start program at location specified in the last S LOCI1
(CR) operation,

Replace value at LOC! with zeros.
Replace values between LOC1 and LOCZ with zeros.

Program output on the ASR-33/35 typewriter resulting from valid operations includes the

following.

a. A dollar sign ($) that terminates valid operations and indicates that further

input may be entered.

b. A question mark (?) that follows invalid input and indicates that further input

may be entered.

Errors

Some of the more common errors that may occur while debugging are as follows.

a. Undefined operation

b. Use of commands in illogical sequence (e.g., an initial C command when no

breakpoint has been executed.

5-6

C.
d.

Memory locations out of range.
LOC1 greater than LOCZ,

SECTION VI
MATHEMATICAL LIBRARY

All mathematical routines in the DDP-416 Library are listed in Table 6-1., Each
routine is listed categorically according to the function that it performs. Information given
for each routine includes the main routine identification, calling sequence, errors, accu-
racy, timing, storage, and other routines used, The routine identification in column 2 is
not necessarily the entry for the function in column 1, but rather the identification of the
routine that contains it,

Single-precision routines require that the first argument (ARGl) be loaded into
Register A prior to entry,

Double precision routines require the loading of the simulated double precision
accumulator with the first argument (ARGl) prior to calling the routine, This is accom-
plished by calling the double precision load routine DLDA. After calling the desired double
precision arithmetic routine, the double precision results may subsequently be stored by
calling the double precision store routine DSTA,

All routines operate in a real, fixed-point mode.

2-9

Table 6-1,

Mathematical Library

Other
Routine Accuracy| Timing| Storage Routines
Function Identification Calling Sequence Errors (Bits) (nsec) |(Decimal) Used
SINGLE PRECISION
Arithmetic Routines
Add ADD CALL ADD, DAC ARG2 Overflow 16 25.92 40 None
Subtract ADD CALL SUB, DAC ARGZ Overflow 16 32. 64 40 None
Multiply MPY CALL MPY, DAC ARG2 None 15 292.22 82 None
Multiply, Variable MPY CALL VMPY, DEC L, None variable | Note 3 82 None
Length DAC ARG2
Divide DIV CALL DIV, DAC ARGZ2 ARGl > ARGZ; 15 336.96 75 None
ARG = -1 BO
Divide, Remainder DIV CALL DIVR None 15 3,84 75 None
Entry
Standard Functions
Arctangent ATNX1 CALL ATNXI1 None 15 1825,32 31 MPY
Cosine SINX1 CALL COSX1 None 15 1502, 38 55 MPY
Exponential (Base e) EXEXI1 CALL EXEXI1 None 15 1333, 24 92 MPY, DIV
Exponential (Base 2) EXEX]1 CALL EXZ2X1 None 15 1633, 20 92 MPY, DIV
Exponential (Base 10) EXEX1 CALL EX!10X1 None 15 1931,12 92 MPY, DIV
Logarithm (Base e) LGEX1 CALL LGEX1 ARGl <,5 BO, 15 1566, 32 61 MPY, DIV
ARGl > 1 BO
Logarithm (Base 2) LGEX1 CALL LG2X1 ARGI < .5 BO, 15 1263, 54 61 MPY, DIV
ARGl > 1 BO
Logarithm (Base 10) LGEX1 CALL LG10X1 ARGI < .5 BO, 15 1566.32 61 MPY, DIV
ARGl >21 BO
Sine SINX1 CALL SINX1 None 15 1495, 66 55 MPY
Square Root SQRX1 CALL SQRX1 None 15 1031, 42 64 MPY, DIV

€-9

Table 6-1. (Cont)
Mathematical Library

Other
Routine Accuracy| Timing| Storage Routines
Function Identification Calling Sequence Errors (Bits) (usec) | (Decimal) Used
DOUBLE PRECISION
Arithmetic Routines
Add DPAP CALL DADD, DAC ARG2 Overflow 30 69, 60
Subtract DPAP CALL DSUB, DAC ARG2 Overflow 30 74, 88
Multiply DPAP CALL MPY, DAC ARG2 Overflow 30 1180. 00 DTCA, DLDA
Divide DPAP CALL DDIV, DAC ARG?2 Divisor < 30 1445, 76 DTCA, DLDA
Dividend
Twos Complement DPAP CALL DTCA None 30 16,32
(min)
21,12 L 325
(max)
Load Simulated DPAP CALL DLDA, DAC ARG2 None 30 46, 08
Double Accumulator (min)
Store Simulated DPAP CALL DSTA, DAC ARG?2 None 30 46. 08
Double Accumulator {(min)
Skip on Overflow DPAP CALL DSOV Overflow 30 11.52
(min)
14, 40
(max)
Skip on No Overflow DPAP CALL DSNO Overflow 30 11.52
(min)
14,40
(max)

—
.

Notes:

Unless otherwise specified,

2. ARGl and ARG2 are real, fixed-point, fractional binary numbers.,
50.00+ 11,904 L + 6,72 M + 2,88 N

where:

Z2r

nonn

fixed width (including sign)
number of ones (not including sign)
number of zeros (not including sign)

timing given is average and accuracy is plus or minus a rounding factor,

SECTION VII
INPUT/OUTPUT LIBRARY

All routines in the DDP-416 Input/Output Library are described in this section,
The purpose, storage requirements, and calling sequence are given for each routine.
Errors are also given where applicable. Standard I/O routines are intended to operate under
control of an I/O Interrupt Executive Routine (X$EXEC) to which control is returned if an
I/O operation cannot be honored. FEach routine, however, can also be used in a non-
interrupt mode by using the Dummy I/O Executive Routine.

When using I/O routines, the programmer should first call the system initialization
entry to the executive routine, No task should be considered complete until all I/O opera-
tions requested have been execu‘ted.

Mnemonic conventions used for most I/O Library routines consist of five characters

as follows,

a. The first character is either an I (for input) or an O (for output).
The second character (dollar sign) identifies the routine as a library routine.

c. The third character designates the device as follows,

A ASR-33/35 P Paper Tape Reader or Punch
C Card Reader M Magnetic Tape Transport
d. The fourth character specifies the mode or function as follows,
A ASCII S End of Message
B Binary F File
E Eject I Initialize
(or End of File) L Listing
H Heading P Punch

e. The fifth character indicates that the routine operates under control of the I/O

Interrupt Executive Routine,

The magnetic tape control routines and several special-purpose I/O routines are an
exception to the general rule for I/O routine mnemonics.

Refer to the individual program listing for each of the I/O routines for more
detailed descriptions and method used, Document numbers for the program listing for each
of the I/O routines may be found in Section III of this manual, Storage requirements listed
in this section are subject to change, Refer to the applicable program listing for up-to-

date information,

1/O INTERRUPT EXECUTIVE ROUTINE (X$EXEC)

Purpose

X$EXEC monitors I/O interrupts, determines which I/O program is to receive

control when an interrupt occurs, and transfers control to the proper program. The

X$EXEC entry is used only when an interrupt occurs and is never used under program con-

trol. The purpose of other entries to the executive routine is as follows,

DUMMY

X$ENB enables interrupt (after an I/O routine is finished) and returns control to
the calling program.

X$EXCI initializes the executive routine. This entry must be used prior to use of
any I/O routines.

X$P1-17 sets up the program register table entry for the appropriate level. This
table is used by the executive routine to determine the location to which control
should be transferred,

X$ST1 allows external access to ST1 (active I/O routine status).

X$ST2 allows external access to ST2 (enabled I/O device status).

Storage Requirements

The executive routine requires 8810 (1308) locations,

Calling Sequence

X$ENB: CALL X$ENB

(Normal return)

X$EXCI: CALL X$EXCI

(Normal return)

X$P1-17: CALL X$PN (N= level of program setting the register table)

1/O EXECUTIVE ROUTINE

Purpose

This routine is a dummy executive used to allow operation of I/O library routines

in 2 non-interrupt mode. The initialization entry (XEXCI) clears the two status words

(ST1 and ST2). All other entries do nothing but immediately return control to the calling

program,

routine,

Storage Requirements

This routine requires 1010 (128) locations.

Calling Sequence

The dummy entries are called in the same manner as entries to the real executive

DECODE I/O STATUS WORD (STAT)

PurEose

STAT routine decodes the I/O status word generated by some I/O routines, Status
words can indicate busy, end-of-file, end-of-tape, record unreadable, and number of words,

The significance of the first four status-word bits is as follows.

Bit 1 Busy flag

Bit 2 End-of-file (EOF) flag, or end-of-message if paper tape
Bit 3: End-of-tape (magnetic tape only)

Bit 4 Reccord unreadable {magnetic tape only)

The magnetic tape read routines keep count of the number of characters read in the low-
order eight bits of the status word. This routine leaves the low-order eight bits of the

status word unchanged in the A-register. The high-order eight bits are set to ZERO,

Storage Requirements

STAT requires 22 268) locations,

10 ¢

Calling Sequence

LDA Status word

CALL STAT

IMP BUSY

IMP EOF

IMP EOT

JMP Record unreadable

Normal returns (no status bits on)

INTERRUPT LINKAGE SETUP (XILOC)

Purpose

XILOC provides a memory location for linkage with the I/O interrupt executive
routine, XILOC can also be used in defining other parameters that may vary with the system,
A constant within this routine can be referenced with an external address constant (XAC)
pseudo-operation. This provides the capability of changing externally referenced data with-

out reassembly of the using program,

Storage Requirements

XILOC requires one location,

7-3

ASR PAPER TAPE READER, ASCII (IAAS, IAIS)

Purpose

I$AAS reads ASCII coded paper tape using the ASR-33/35 Paper Tape Reader. The
I$AIS entry is used to initialize the read routine (I$AAS). The read routines will assume,
if not initialized by I$AIS, that the input buffer is 40 words long and that there are three tab
settings corresponding to character positions 6, 12, and 30 (DAP-16 source format), If
I$AIS has been used for non-standard initialization, and subsequently it is desired to use the

standard tab setup, the routine must be reinitialized accordingly.

Storage Requirements

I$AAS and I$AIS require 200 3108) locations,

10(

Calling Sequence

Initialization - CALL I$AIS
Busy return
DEC (number of words in input buffer)
DEC (number of tabs in following table)
DEC T1 (character position of first tab)
DEC T_(1 (character position of nth tab)

(Normal return)

Read Data - CALL I$AAS
Busy return
Status word
DAC (address of input buffer)

(Normal return)

Errors

The user may provide a routine having the entry C$ASRS to perform any action
he wishes, otherwise a default entry (NO OP) is used and no action is taken,

Reading of an end-of-message character causes the routine to terminate with an
end-of-file status (040000 octal).

ASR PAPER TAPE READER, BINARY (IABS, IABIS)

Purpose

1$A BS reads binary records from paper tape using the ASR-33/35 Paper
Tape Reader. The I$ABIS entry is used to initialize the tape-read routine (I$ABS) by
clearing the start-of-message flag before proceeding to the I$ABS code.

7-4

Storage Requirements

This routine requires 19110 (2778) locations.

Calling Sequence

Initialization - CALL I$ABIS
Busy return
Status word
DAC (address of input data buffer)
(Normal return)
Read Data - CALL I$ABS
Busy return
Status word
DAC (address of input data buffer)

(Normal return)

Errors

Reading an X-OFF character followed by an end-of-message character causes the
end-of-file status to be stored in the calling sequence status word (040000 octal). Reading
more than 60 data words causes a halt with the A-register set to all ONEs, Pressing the

start button causes program execution to proceed.

ASR PAPER TAPE PUNCH, ASCII (OAAS, OAIS, OASS, OALRS)

Purpose

O$AAS punches ASCII coded paper tape using the ASR-33/35 Paper Tape Punch.

The purpose of each entry is as follows,

O$AIS initializes the punch routines for other than normal operations,
O$AAS punches paper tape in the ASCII mode.

O$ASS punches an end-of-message code,

O$ALRS passes ten inches of leader,

The punch routine O$AAS will assume, if not initialized by O$AIS, that the data buffer is
40 words long and that there are three tab settings corresponding to character positions 6,
12, and 30, If O$AIS has been used for non-standard initialization, and subsequently it is

desired to use the standard tab setup, the routine must be reinitialized accordingly.

Storage Requirements

This routine requires 21810 (3328) locations,

Calling Sequence

Initialization - CALL O%$A1
Busy return
DEC (number of words in output buffer)
DEC (number of tabs in the following table)
DEC T1 (character position of first tab)
DEC Tn (character position of nth tab)
Punch Data - CALL O$AAS

Busy return
Status word
DAC (address of output data buffer)

(Normal return)

Punch EOM - CALL O$ASS
Busy return
Status word

(Normal return)

Punch Leader - CALL O$ALRS
Busy return
Status word

(Normal return)

ASR PAPER TAPE PUNCH, BINARY (OABS, OASS, O$ALRS)

Purpose

O$ABS punches binary-coded paper tape using the ASR-33/35 Paper Tape Punch.

The purpose of each entry is as follows,

O$ABS punches paper tape in the binary mode
O$ASS punches an end-of-message code
O$ALRS passes ten inches of leader

Storage Requirements

This routine requires 19910 (3078) locations,

Calling Sequence

Punch Data - CALL O$A BS
Busy return
Status word

DAC (Address of the output data buffer. First word in
buffer indicates number of words to be punched.)

(Normal return)

7-6

Punch End- - CALL O3$ASS
of-Message Busy return
Status word

(Normal return)

Punch Leader - CALL O$ALRS
Busy return
Status word

(Normal return)

ASR TELEPRINTER OUTPUT (OLLS, OLHS, O$LES)

Purpose

These routines print a heading line, a data line, or eject the page on the ASR

teleprinter unit depending on which entry is used as follows,

O$LLS prints a thirty-five word data line
O$LHS prints a thirty-word header and page number
O$LES ejects page

Storage Requirements

These routines require 28010 (4308) locations,

Calling Sequence

Punch Data - CALL O$LLS (or O$LHS)
Line or B t
Header usy return

Status word
DAC (starting address of buffer)

(Normal return)

Page Eject - CALL O$LES
Busy return
Status word

(Normal return)

HIGH-SPEED PAPER TAPE READER, ASCII (IPAS, IPIS)

Purpose

I$PAS reads ASCII coded paper tape using the high-speed paper tape reader., The
I$PIS entry is used to initialize the read routine (I$PAS). The read routine will assume, if
not initialized by I$PIS, that the input buffer is 40 words long and that there are three tab
settings corresponding to character positions 6, 12, and 30, If I$PIS has been used for non-
standard initialization, and subsequently it is desired to use the standard tab setup, the

routine must be reinitialized accordingly,

Storage Requirements

This routine requires 19110 (2778) locations,

Calling Sequence

Initialization - CALL I$PIS
Busy return
DEC (number of words in input buffer)
DEC (number of tabs in following table)
DEC T1 (character position of first tab)
DEC Tn (character position of nth tab)

(Normal return)

Read Data - CALL I$PAS
Busy return
Status word
DAC (address of input data buffer)

(Normal return)

Errors

Reading an end-of-message character causes the routine to return with the status

word containing an end-of-file status (040000 octal).

HIGH-SPEED PAPER TAPE READER, BINARY (IPBS, IPBIS)

Purpose

I$PBS reads binary records from paper tape using the high-speed paper
tape reader. The I$PBIS entry is used to initialize the read routine (I$PBS), and to read the

first record on the tape,

Storage Requirements

This routine requires 17210 (2548) locations,

Calling Sequence

Initialization - CALL I$PBIS
Busy return
Status word
DAC (address of input data buffer)

(Normal return)

Read Data - CALL I$PBS
Busy return
Status word
DAC (address of input data buffer)

(Normal return)

Errors

Reading an X-OFF character followed by an end-of-message character causes the
end-of-file status to be stored in the calling sequence status word (040000 octal). Reading
more than 60 data words causes a halt with the A-register set to all ONEs. Pressing the

start button causes program execution to proceed,

HIGH-SPEED PAPER TAPE PUNCH, ASCII (OPAS, OPIS, OPSS, OPLRS)

Purpose

These routines are designed to punch paper tape in ASCII format using the high-
speed paper tape punch.

O$PIS initializes the punch routines for other than normal operation

O$PAS punches paper tape in the ASCII mode

O$PSS punches end-of-message code

O$PLRS passes ten inches of leader

The punch routine will assume, if not initialized by O$PIS, that the output buffer is 40 words
long and has three tab settings corresponding to character positions 6, 12, and 30. If
OS$PIS has been used for non-standard initialization, and subsequently it is desired to use

the standard tab setup, the routine must be reinitialized accordingly,

Storage Requirements

This routine requires 21710 (3318) locations,

Calling Sequence

Initialization - CALL O$PIS
Busy return
DEC (number of words in output buffer)
DEC {(number of tabs in following table)
DEC T1 (character position of first tab)
DEC Tn (character position of nth tab)

7-9

Punch Data - CALL O$PAS
Busy return
Status word
DAC (address of output data buffer)
(Normal return)
Punch End- - CALL O$PSS
of-Message Busy return
Status word

(Normal return)

Punch Leader - CALL O$PLRS
Busy return
Status word

(Normal return)

HIGH-SPEED PAPER TAPE PUNCH, BINARY (OPBS, OPSS, O$PLRS)

Purpose

O$PBS punches binary-coded paper tape using the high-speed paper tape punch.

The purpose of each entry is as follows.

O$PBS punches paper tape in the binary mode
O$PSS punches an end-of-message code
O$PLRS passes ten inches of leader

Storage Requirements

This routine requires 19710 (3058) locations.

Calling Sequence

Punch Data - CALL O$PBS
Busy return

Status word

DAC (Address of output data buffer. First word in buffer
contains number of words to punch.)

(Normal return)

Punch End- - CALL 0$PSs
of-Message Busy return
Status word

(Normal return)

Punch Leader - CALL O$PLRS
Busy return
Status word

(Normal return)

HIGH-SPEED PAPER TAPE PUNCH, HEADING, LISTING, EJECT (OPHS, OPLS, O$PES)

Purpose

This routine punches a heading, listing, or page eject code on paper tape using the

high-speed paper tape punch. The purpose of each entry is as follows.

O$PHS punches a fifty-five word header
O$PLS punches a sixty-word data line
O$PES punches a page eject code

Storage Requirements

This routine requires 30710 (4638) locations,

Calling Sequence

Punch Header - CALL O$PHS (or O$PLS)
or Listing
Busy return
Status word
DAC (starting address of buffer)
(Normal return)
Punch Eject - CALL O$PES
Code
Busy return
Status word

(Normal return)

CARD READER, HOLLERITH (ICAS, ICAIS)

Purpose

I$CAS reads one card in the Hollerith mode, converts the 6-bit Hollerith code for
each character to 8-bit ASCII code, and packs the data two-characters per word. The
I$CAIS entry is used to initialize the card read routine (I$CAS) for other than an 80-column

read.

Storage Requirements

This routine requires 13610 (2088) locations,

Calling Sequence

Initialization - CALL I$CAIS
DEC (number of columns to be read)

(Normal return)

Read Data - CALL I$CAS
Busy return
Status word

DAC (address of the data buffer into which the
characters are to be read)

(Normal return)

MAGNETIC TAPE READ ROUTINES (I$MA1S, I$MB1S, I$MCI1S)

Purpose

These routines are designed to read magnetic tape in any of three available modes

as follows.

I$MA1S: BCD mode, two characters per word
I$MB1S: Binary mode, two characters per word
I$SMCL1S: Binary mode, three characters per word

In either two-character-per-word mode, 6-bit tape recording characters are read in pairs
and stored in bit positions 1 through 12, In the three-character-per-word mode, the first
two characters are stored in bit positions 1 through 12 and the least significant four bits

(channels 3-6) are stored in bit positions 13 through 16.

Storage Requirements

These routines require 15110 (2278) locations,

Calling Sequence

Read Data - CALL I$MALS, I$MBI1S, or I$MC1S
Busy return

Status word

DAC (address of input buffer)
DEC (number of words in input buffer)
DEC (logical tape unit)

(Normal return)

Errors

The record-unreadable status (010000 octal) is indicated if on 10 consecutive
attempts to read a parity error is indicated. The data read on the tenth attempt is stored
in the data buffer and the tape is positioned to read the next record. The end-of-tape status
(020000 octal) is indicated if the reflective marker near the end of the tape has been reached
while reading a record. Data is unaffected and is stored in the buffer,

The end-of-file status (040000 octal) is indicated if an end-of-file indicator is

detected instead of a data record,

MAGNETIC TAPE WRITE ROUTINES (O$MA1S, O$MBLS, O$MCI1S)

Purpose

These routines are designed to write magnetic tape in any of three available modes

or to write end-of-file depending on which entry is used as follows,

O$MAI1S: BCD mode, two characters per word
O$MBI1S: Binary mode, two characters per'word
O$MCI1S: Binary mode, three characters per word
O$MEL1S: End-of-file

- At

In either two-character-per-word mode, 6-bit tape recording characters are taken in pairs
from bit positions 1 through 12 of the computer word and written in two consecutive frames
on tape, In the three-character-per-word mode, characters are taken in groups of three
from bit positions 1 through 6, 7 through 12, and 13 through 16, The first two characters
are recorded in two consecutive frames and are followed by a frame containing the last 4

bits of the computer word recorded in channel positions 3 through 6,

Storage Requirements

This routine requires 17210 (2548) locations,

Calling Sequence

g
Dat
Busy return
Status word
DAC (address of output buffer)
DEC (number of words in output buffer)
DEC (logical tape unit)

(Normal return)

End-of-File - CALL O$MEL1S
Busy return
Status word
DEC {logical tape unit)

(Normal return)

Errors

The end-of-tape status (020000 octal) is indicated if the reflective marker near the
end of the tape has been reached while writing a record. Writing is unaffected by the

presence of the end-of-tape marker,

CONVERT IBM MAGNETIC TAPE CODE TO ASCII (C$6T08)

Purpose

C$6TO08 is designed to convert IBM 6-character magnetic tape code to equivalent
8-character ASCII code,

Storage Requirements

C$6TO08 requires 81, (1218) locations.

Calling Sequence

CALL C$6TO8

DAC (address of data buffer containing characters to be
converted)

DEC (number of words in data buffer)

(Normal return)

CONVERT ASCII TO IBM MAGNETIC TAPE CODE (C$8T06)

Purpose

C$8TO06 converts 8-character ASCII code to the equivalent IBM 6-character

magnetic tape code.

Storage Requirements

C$8TO06 requires 8010 (1208) locations,

Calling Sequence

CALL C$8TO06

DEC (address of data buffer containing characters to be
converted)

DEC (number of words in data buffer)

(Normal return)

MAGNETIC TAPE CONTROL PACKAGE (C$MR1S, C$FR1S, C$BR1S, C$FF1S, C$BF1S)

Purpose

This routine provides any of a number of magnetic tape control functions depending

on the entry used as follows.,

C$MRI1S: Rewind magnetic tape

C$FRI1S: Forwardspace magnetic tape one complete record
C$BRI1S: Backspace magnetic tape one complete record
C$FF1S: Forwardspace magnetic tape one complete file
C$BF1S: Backspace magnetic tape one complete file

Storage Requirements

This routine requires 18110 (2658) locations,

Calling Sequence

CALL C$XX1S (where XX = MR, FR, BR, FF, or BF)
Busy return

Status word

DEC Logical unit number

(Normal return)

Errors

If a file mark is encountered when spacing forward one record (C$FR1S), an end-

of-file will be indicated.

PHYSICAL AND LOGICAL MAGNETIC TAPE UNIT CORRELA TION (M$UNIT)

Purpose

MS$UNIT converts logical tape unit numbers to physical device numbers by direct

table lookup and stores the result in the A-register upon exit,

Storage Requirements

This routine requires 1510 (178) locations,

Calling Sequence

LDA (location of logical tape unit number)
CALL MS$UNIT

(Normal return)

LOADING MESSAGES

SECTION VIII
ERROR MESSAGES

A message is always typed when loading halts to indicate the reason for the halt,

See Table 8-1 for an explanation of these messages,

DAP-16 ASSEMBLY PROGRAM

DAP-16 is able to detect many types of clerical errors commonly made in coding

programs. These errors are indicated by an appropriate error code printed in the left

margin of the assembly listing,

Examples of errors that are detected are shown in Table

8-1. Errors in a field will generally result in that field being assembled as a zero. In the

case of multiply defined symbols, the first symbol definition is used.,

Table 8-1,
Error Messages Generated by the DAP-16
Assembly Program

Error
Message Condition

M Multiply defined symbol

C Erroneous conversion of a constant or a variable field in
improper format

A Address field missing where normally required, or
error in address format

o Operation code missing or in error

L Location symbol missing where required, or error in
location symbol

S Address of variable field expression not in sector being
processed or sector zero (applicable only in load mode)

R Relocation assignment error

X Symbol table or literal table exceeded

F Major formatting error

A% Unclassified error in variable field of multiple field
pseudo-operator (i.e,, DEC, OCT, etc.)

T Improper use of or error in index field

N Missing name (main program or subroutine)

SECTION IX
PAPER TAPE FORMATS

This section describes the format of paper tapes that are used as a principal input/
output medium for the DDP-416 computer. Data is recorded on paper tape by groups of
holes arranged in a definite format along the length of the tape., Paper tape is a continuous
recording medium, as opposed to cards which are fixed in length, and the length of data
records is limited only by the input/output requirements of the system. A vertical column
of holes extending across the tape is referred to as a frame. A horizontal row of holes
extending the length of the tape is referred to as a channel. For paper tapes punched and
read by the DDP-416 system, there are eight channel-hole positions per frame, and one

small sprocket hole. (See Figure 9-1.)

FRAME
- |

| o
2 o SPROCKET
3 ooogooooooo 0000 oo o ‘_JHOLES
o o [«] 00 00000 0o,
CHANNELS < 4 o
[o
6 o
7 o
8 [}
L

4164

Figure 9-1. General Format of Paper Tape

The format descriptions given in this section apply to tapes punched by the high-
speed paper tape punch as well as those punched by the ASR-33/35 Paper Tape Punch.
Paper tape formats used with DDP-416 systems fall into two main categories: an ASCII

format (used for punching source code), and a 4/6/6 format (used for punching object code).

ASCII FORMAT

ASCII format is an octal code that uses eight channels to define one character per
frame., Each frame is read from channel 8 to channel 1 in bit groups of 2-3-3 as illustrated
in Figure 9-2, Two ASR-33/35 typewriter control codes, '212 for line feed and '215 for

carriage return, are represented in Figure 9-2 to illustrate use of the ASCII format,

ASR-33 TYPEWRITER
CONTROL CODES

POSITION

l’— VALUES

] [] [o] [e]]
2 o [] BIT GROUP 3 02
3 [] [0 O 4
CHANNEL " 000:000:000000OOOOOOOOOSOIOOOOOOOOOOOO
NUMBERS S o o BIT GROUP 2< O 2
6 o) [o] Q4
z 2 2 BIT GROUP i 8 ;
L'2|z LINE FEED
4165 '215 CARRIAGE RETURN @ = PUNCHED HOLE
O = HOLE POSITION

Figure 9-2, ASCII Format

SOURCE TAPE PREPARATION

A DAP-16 source-program data line is recorded on paper tape in ASCII format as

follows.

.. LINE FEED..,. TEXT ... X-OFF ... CARRIAGE RETURN...

The text string between the LINE FEED at the beginning of the line and the X-OFF at the end
of the line is read into the input buffer. The LINE FEED, X-OFF, and CARRIAGE RETURN
are control characters and are not input as part of the text string, The X-OFF at the end of
the line (preceding the CARRIAGE RETURN) is necessary to be compatible with the
ASR-33/35 input routines. (The ASR-35 also requires a RUBOUT following the CARRIAGE
RETURN.) If the tapes to be read by the paper tape read subroutine are never to be read by
the ASR-33/35 tape read routine, the X-OFF (and RUBOUT) may be omitted.

When preparing a source tape using the ASR-33, depress the LINE FEED key, type
the desired ASCII record (maximum of 72 characters), and then depress the X-OFF and
CARRIAGE RETURN keys. Repeat this process for each record, If a character is punched
erroneously, depress the backspace and RUBOUT keys and proceed with the rest of the line.
If a line is punched erroneously, depress the Leit Arrow, X-OFF, and CARRIAGE RETURN
keys. Source tapes punched using the ASR-35 are prepared in a similar manner except that
the maximum number of characters per record is 75, and the RUBOUT key must be punched
after the RETURN key.

Tabs may be used to compress the data much as tabs are used on a typewriter,

The backslash character (\) '334 is used as a tab code. The backslash is punched on the
ASR-33/35 as an upper-case L (FORM). Tabs may be used whenever a string of spaces
precedes a ''tab stop.' The tab is punched in place of the spaces, Another way to describe
the backslash is that it is used as a field delimiter. For example, the backslash is ordinarily

used when the location, operation, or variable field is not present.

9-2

The ASCII paper tape read subroutines will assume, if not initialized, that there are
three tab positions corresponding to character positions 6, 12, and30 (DAP-16source code
format).

The END OF MESSAGE (EOM) record has the following format.

... X-OFF ,., EOM (EOM is '203 and is punched by using the

CONTROL KEY with the letter C).

The paper tape read subroutine will read one line of data per entry. If an END OF MESSAGE
code ('203) is encountered at any point in the line, the END OF MESSAGE return will be taken,
otherwise, the normal return is taken when a carriage return is encountered, The END OF
I used as a unit record [ollowing ihe last data line to be read,
If the data line exceeds the length of the data buffer, those characters in excess will
be ignored. No error indication will be given. Similarly, if a tab is encountered after the
last tab-stop has been passed, the tab will be treated as a space. No error indication will be
given. The data line may be shorter than the length of the data buffer in which case, the
buffer is filled out with spaces.

Figure 9-3 shows a portion of an actual assembly listing (DAP-Test Program) along

with one line of corresponding source code punched on paper tape.

‘223 X-OFF (END OF MSG.)
) '215 CARRIAGE RETURN
/ 212 LINE FEED / ‘212 LINE FEED

o0 o
L] ®
eecevsvecccsnsee
[X}

4167
ool * C540-001~6504 (DAP-TEST) 7011657 A
0002 « S1ART OBJECT PROGRAM AT OCTAL 10
0003 *
0004 * PROGRAM SHOULD TYPE “0.K.” AND HALT
0005 *
0006 URG 210
0007 00010 0 02 00074 LDA no COMPUTE CHECKSUM
0008 00011 0 04 DOCON STA 0 *
0009 00042 140040 CRA *
G010 00013 1 05 00076 ERA TT+1s1 *
0011 00014 0 12 00000 IRS 0 *
TR 0 01 00013 JMP *-2 -
CAS CKSM *
*

Figure 9-3. Source Code Punched in ASCII Format

4/6/6 FORMAT

The 4/6/6 format is a binary code that uses three frames to define one 16-bit word.
As illustrated in Figure 9-4, bits 1-4 of a 16-bit word are encoded to make up the first
frame, 5-10 the second frame, and 11-16 the third frame, Control codes that are punched
in ASCII format precede and follow each block of 16-bit words encoded in 4/6/6 format and
use only one frame each. FEach data block begins with an SOM ('201) and ends with a DC4
(or X-OFF '223),

‘223
[X-OFF
MTOTT T
L S N
LAST SIX BITS ENCODED — '201
NEXT SIX BITS ENCODED START CODE
FIRST FOUR BITS ENCODED ‘
A 11 ‘ ‘
1 (e NoNe) L/ o 000 []
2 000 o 0000 L4
® [000000 co)gg ooooooooooooooooogggoooooooo 000000
CHANNEL 4 00O o o000
NUMBERS | s o0oo oo oo °
6 00O
7 000
8 000 [] @ [X) @
~
] , ® = PUNCHED HOLE
,_L\ O = HOLE POSITION
,—E ~— A 1
i6 — BIT WORD *00 00 00 ‘12 6l 32
4168

Figure 9-4. 4/6/6 Format

When a frame is punched, channels 6 and 7 are ordinarily left blank. This is done
so that a frame will not print when read by the ASR, However, certain six-bit patterns
correspond to control functions, which if executed by the ASR, would interfere with further
reading of this tape., Therefore, these (eight) six-bit groups are translated according to
Table 9-1 before being punched. A tape punched using this translation will not type anything
when read in by the ASR., Hence, the 4/6/6 format is sometimes called the ''Invisible

Format., "

Table 9-1,
4/6/6 Translations

Intended Is Converted to Possible Ambiguity with
4 or 6 Bits Frame ASR-33/35 Control

05 or 45 174 or 374, respectively WRU

12 or 52 175 or 375 LF

21 or 62 176 or 376 X-ON

23 or 63 177 or 377 X-OFF

Object tapes that are produced by the DAP assembly process are punched in the

binary 4/6/6 format. Within each block of object code, there is a variable-length sequence
of data words. There are a number of different types of blocks, and they are defined in
Section IV of the DAP-16 Manual, 3C Doc, No. 130071629, Object tapes generated in the
4/6/6 format are accepted by and compatible with both the DDP-416 standard and expanded
loaders,

Figure 9-5 shows a portion of an actual assembly listing (DAP-TEST Program)
along with corresponding object code punched in paper tape. As explained in the DAP Manual,
the first 4/6/6 group after the start code defines the block type. This particular block type
is 0-4 (000400), or a data block. The next 4/6/6 group specifies the number of data words
in the data block, In this case there are 728 words in the data block, The words are inter-
preted as per the format for this block type given in the DAP Manual, Tn hlock type 0-4 the
remaining bits are grouped into groups of 24 bits each. These groups are formed by using
16 bits of one 4/6/6 group and the first 8 bits of a second 4/6/6 group. The remaining 8 bits
of the second 4/6/6 group and 16 bits of a third 4/6/6 group are used to form the second
24-bit group,

In the example given in Figure 9-5, the first 24-bit group is
000010000000000111011001

The DAP-16 Manual (3C Doc. No. 130071629) further explains the meaning of each 24-bit

group, based on the last three bits. This one converts to the LDA instruction at address
00010 as follows.

Flag Op-Code Relocation Bits
| ——— ——
000 010 O&O 000 000 111 011} 001
4
Tag Address t_Standard 0-4 Type

Data Word Format

(Memory Reference
0 02 00073 Indicator)

DATA WORDS

182 384 586 788 9810 a2 13814

—H ' - N——* N M —r—

[N J
.l......;..'.
[] [] [X I)
[]
[]
[] [X}
§ w § > / FIRST DATA WORD \ / SECOND DATA WORD \
| | | 8
g g ; : /tlaclm/ono/ooo/ooo/ooo/m/on/om ooo/1oo/ooo/ooo/ooo/ooo/ooo/oo|
é] o (é) FT;’P_» ~— — FT Y—— Y _—
P B I B OP-CODE ADDRESS OP - CODE ADDRESS
v)))
o o2 00073 o o4 000000
0001 « C500-001-6504 (DAP=-TEST) 7011657 A
0002 « START OBJECT PROGRAM AT OCTAL 10
0003 *
0004 « PROGRAM SHOULD TYPE 20.K.” AND HALT
0005 *
0006 "
0007 210
0008 00010 00 COMPUTE CHECKSUM
0009 00011 STA O *
0010 00012 140040 CRA *
0011 00013 1 05 00075 ERA TT+1,1 *
0012 00014 0 12 00000 IRS o] *
0013 00015 0 01 00013 Jue *=2 *
0014 00016 0 11 00076 CAS CKSM *
0015 00017 000000 HLT *
0016 0V020 0 01 00022 JMP *+2 -
0017 00021 000000 HLT WRONG SUM
0018 0022 0 02 00041 T LDA =-3 RIGHT SUM
0019 00023 0 04 00000 STA 0 TYPE *0.K.”
0020 00024 1 62 00045 TTTT LDA MSG+3, 1 *
Tent 0025 34 0104 SKS 2104 *
- LX) non’ﬂ ‘-l . -
4169

Figure 9-5. Object Code Punched in 4/6/6 (Invisible) Format

	000
	001
	002
	003
	004
	005
	006
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	8-01
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	xBack

