| 016-XREF, SSUP, AND MAC
Honeywe | SOURCE LANGUAGE PROCESSORS

SERIES 16

SOFTWARE

016-XREF, SSUP, AND MAC
Honeywell SOURCE L ANGUAGE PROCESSORS

SERIES 16

SUBJECT:

Description, System Generation, Operation, Memory Requirements, and Programming
Examples of Three Source Language Processors.

DATE:
July 1971

ORDER NUMBER:
AC94, Rev. 0 (Formerly M-459)

DOCUMENT NUMBER:
70130072582A

PREFACE

This manual provides the programmers and operators of Series 16 computer systems
with the information necessary to use the following Honeywell-supplied source language

processors:

O16-XREF Cross-Reference Listing
SSUP Symbolic Source Update
MAC Macro Instruction Processor

Elements of the languages, examples of their use, exception conditions, and related
supporting programs are described. Instructions for generating stand-alone systems and

instructions for executing the programs are also included.

The reader is assumed to have a basic familiarity with Series 16 assembly language

programming and to have read the 316/516 Programmers' Reference Manual, Order Number

BX47 (formerly M-490).

The illustration on page v provides an overview of the relationship among the three pro-

cessors and other elements of the assembly language system.

©1971, Honeywell Information Systems Inc. File No.: 1A23

AC94

TABLE OF CONTENTS

Page
Section I MAC Macro Processor for DAP-16 ¢ cvivvenvienneinnne. 1-1
General Description et e reeersee et ereeeno 1-1
Macro Definitionoovee.... Ceie e S I |
Header Statementcivtvereeiennereenaas 1-1
Macro Definition Body ... viviniiiiieieiereenes 122
End Statement ..ot iineie i iiiiiniiineieaneee. 1-2
Macro Statement e Creeeiaenanse vee. 123
Data Format............. T)
Errors, et B
System Generationcivevvnnnenn... e ee.. 1-4
. Operation (Keyword) et e 1-5
Messagesv0evunnenn. e PN . 1-6
Paper Tape Paritycciuutiinernnnnnnnnnnnnn.. 1-6
Termination i iivtiinnnnnnnnnnn . 1-6
Internal MAC Expansion Processing cevee e 127
Memory Requirements eesesenenns ceeeee. 127
Macro Exampleseueeineernnrnnnnnennnens e 1-7
Generation of Calling Sequence Using Subroutines 1-8
Use of #0 in Macro Expansion 1-8
Generation of Complete In-Line Codlng 1-9
Using Macros to Implement Interpretive Scheme 1-11
Macros Used With Conditional Assembly 1-15
Trace Example Using Macros and Conditional
Assembly e 1-16
Section II Ol16-XREF Concordance et et a s e 2-1
General Description e e et e e 2-1
System Generationvuuu.. cevee ceeeeeea. 2-4
Operation (Keyword) et ettt 2-4
Memory Requirements and Overflow ceeeecan oo 2-5
Termination ceeeen Ce et e, Ge e 2-6
Miscellaneous Considerations «............ e e e, 2-6
Section III SSUP Symbolic Source Update +vouerun.... e, 3-1
Description ...uuutiiiiniininnenenn, B I |
Command Language ..u.eetrrnnennnneenrnenenn. . 3-1
Summary Example. ... eeeneininnr e 3.3
Listing e ie e e e et et ettt e ceee. 325
Messages et e e et e e 3.5
Resequence Option (Keyword)....... et s ceee. 3-6
Sense Switch Optionsc.vuiiinnrinnnnnnnnn. 3-6
Source Format........... e e 3-6
Operation e et e 3-7
System Generationcc0vuuuninn. e 3-7
Example of Paper Tape Updateovvveeuuuunn.. 3-8
Example of Magnetic Tape Update ceveeeeas 3210

i1 #ACO4

Figure 1-1.
Figure 1-2.
Figure 1-3,
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.
Figure 1-10.
Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Table 1-1.

Table 2-1.

Table 3-1.

Table 3-2.

LIST OF ILLUSTRATIONS

In-Line Coding Example — Source Input e
MAC Expansion of In-Line Coding R ERRE e e .
Macro Definitions for Interpretive Scheme .- ... R
Macro Statements for Interpretive Scheme «----c..-. .
Assembler Listing for Interpretive Scheme -«::ccveve .
Macro Definition Using Conditional Pseudo-Operations ...
Macro Definition for Conditional Trace Example «-«ce.0....
Trace Example Program:««:«ccove.-- ceeee e ce s eeaes e o

Typical MAC Output Code — Conditional Trace Example ...
Typical Assembly Listing — Conditional Trace Example

XREF Example «coccceceen ceae
Setting of A Register for Keyword
SSUP Program Flow............
SSUP Command Format

SSUP Summary Example

¢ e s 0 e 0. € o e 0 s s e s s 0 0 0 0 e

SSUP Example of Source for Magnetic Tape Update

SSUP Example of Full Listing During Update

SSUP Example of New Master .

LIST OF TABLES
MAC Error Messages ,.........

XREF Memory vs Program Size ...

SSUP CommandS ceeeeovocoscens
SSUP Functions of Sense Switches

iv

.............

@ s 0 0 0 0 0 e 8 e s 0 6 8 s s 0 s 0 s e e

.......................

Page

1-10
1-10
1-12
1-13
1-14
1-15
1-16
1-17
1-18

[
]

—

O

1 t

W W W W W wN
1
— e = DN DU DY

w N =

s AC94

PROGRAMMER

‘ PROGRAMMER ’
SOURCE

CARD
IMAGES
MACRO
M'Agi(;v PREPROCESSING
e PROGRAM
UPDATE
CARD
IMAGES
SOURCE
CARD
IMAGES
UPDATE
PROGRAM
CONCORDANCE
GENCATOR OPERATOR yecmaLER
PROGRAM
UPDATED
SOURCE
CARD
IMAGES
— OBJECT
REFERENCE oLy TEXT
LISTING
LOADER
PROGRAM
MEMORY
MAP

WRITE AND
LOAD
PROGRAM

RELOADABLE
(SELF-
LOADING)
CORE
DUMP

GENERAL PROGRAM FLOW

#AC94

SECTION |
MAC MACRO PROCESSOR FOR DAP-16

The Macro Processor (MAC) is a single-pass processor used to expand DAP-16
Assembly Language sources containing prototype macro definitions and statements. Macro
definitions can be entered from a separate library or they can be embedded in a single
source. The definitions are retained in main memory for the duration of the job. As the
macro prototypes are expanded according to a macro statement, the actual arguments of
the macro statement replace the dummy arguments of the macro definition. The MAC out-

put is zssembly source code which is suitable for input to the DAP-16 Mod 2 Assembler.

GENERAL DESCRIPTION

The macro language provides a convenient way to generate a desired sequence of
assembly language statements many times in one or more programs. The macro definition
which defines the desired sequence of statements is written once near the top of the pro-
gram. Then, a single statement, the macro statement, is written each time the desired
code is to be generated. This simplifies program coding, reduces the chance of program-
ming error, and ensures that standard sequences of statements are used to accomplish de-

sired finctions.

Conditional assembly can also be used with the MAC processor. In this way, state-
ments can be coded which may or may not be assembled, depending upon conditions evalu-
ated at assembly time. These conditions are usually tests of values, which can be defined,

set, or changed during a macro expansion.

Macro Definition

Every macro definition is divided into three major components: the header (or first)
statement, the body of the macro which specifies the prototype, and the end (or last)

statement.

HEADER STATEMENT
The first record of every macro definition must conform to the following:

Macro Name MA C(%*) (list of arguments used) (comments)

Field 1 Field 2 Field 3 - Optional
(*) - Optional

1-1 #AC94

Field Columuns Contents
1 1 through 4 Macro name, maximum of four char-
acters (cannot have * or $ as first
character).
2 6 through 8 The letters MAC.
9 An asterisk if the macro expansion

is to be preceded by two comment
records. A space if the comment
records are to be omitted.

3 12 through 72 An optional argument list, comments,
and/or identification statements which
are ignored by the processor.

MACRO DEFINITION BODY

The body of the macro definition (DAP-16 format assumed) consists of prototype
code containing dummy variables. The dummy variables are replaced by the arguments
passed in the macro statement when the statement is expanded. The expanded source code
is output in the same relative position from which the macro instruction statement was
read. Comment lines within the definition will be output unchanged when the macro proto-
type is expanded. Any occurrence of the character pair #0 will be replaced by a single
digit between one and nine which represents the number of actual arguments in the macro
statement (call). This digit can be less than, equal to, or greater than the number of

dummy arguments, but in no case can it exceed nine.

Any occurrence of the character pairs #1 through #9 will be replaced by a copy of
the corresponding actual argument when the macro is expanded. This point is illustrated

in the examples which follow.

Macro statements referencing previously defined macros are allowed in the body of
a macro definition. Macro names included in the argument list require additional passes
to complete expansion (i.e., the MAC processor is not re-entrant). Likewise, recursive

use requires an additional number of passes equal to the degree of recursiveness.

END STATEMENT
The last record of every macro definition must contain the following:

{) ENDM {)

T

Field 1 Field 2 Field 3

1-2 #AC94

Field Columns Contents

1 1 through 5 Ignored.
2 6 through 9 The letters ENDM.
3 10 through 120 Ignored.

Macro Statement

A rMmacro statement can call a macro any number of times after the macro has been

defined by the macro definition. FEach macro statement must contain the following:

(label) Macro Name (arg 1, arg 2....arg 9) (comments)
Field 1 Field 2 Field 3
Field Columns Contents
1 1 through 4 Label or blank.
5 Ignored.
2 6 through 9 Name of macro being called.
10 and 11 Ignored.
3 12 through 72 The argument list terminated by one

or more blanks. Each argument
may consist of any number of char-
acters. Any character may be used
except a comma or a blank. A pound
sign (#, '243) is converted into a
blank during the expansion. Argu-
ments are separated by commas.
Null arguments are acceptable.

73 through 120 Ignored.

Data Format

Source data for MAC is prepared in a manner similar to the source data for DAP-16.
If the standard input routines are used, tabs will be set at columns 6, 12, 30, and 73. The
backslash character can be used to compress the source tape. If MAC output is punched
on paper tape using the standard output routines, backslash characters are used to tab to

columns 6, 12, 30, and 73.

End-of-text records (ETX, '003 or '203 on the ASR or high-speed reader, or11-8-6

for cards) are ignored on input and are not generated on output.

Input will be halted during a job upon detection of a MOR pseudo-operation. This
feature allows the concatenation of macro libraries and other sources. It also allows the

changing of input device selection.

1-3 #AC94

One file per job is processed by the MAC processor. If the source 1s entered from
paper tape or cards, the file must be terminated by a record containing a dollar sign (%,
1044 or '244) in column 1. The letters END may follow in columns 2 through 4. On mag-

netic tape, files may also be terminated by a tape mark.

Magnetic tape input allows records of up to 120 characters. This facilitates the
processing of source material with the Honeywell Series 16 FORTRAN system, which

writes 120-character formatted records.

Magnetic tape output is written in 120-character records. Thus, subsequent language

processors must accept this record length.

Errors
MAC recognizes five error conditions. For each of these, a message is printed on
the teletypewriter in the following form:

% (error flag) record being processed

The error flags are listed in Table 1-1.

Table 1-1. MAC Error Messages

Error Flag Description
A More than nine arguments in the actual argument list.
The request for the number of arguments (#0) is not
counted.
¥ Field overflow in macro expansion. An attempt has been

made to store a character other than a space in or beyond
columns 5, 11, 29, or 72. MAC ignores this error.

M MAC pseudo-operation in macro definition. This record
is ignored.

©] Memory overflow. There is insufficient space in the free
core area to store all macro definitions. This error ends
the job.

P Formal argument not #0 through #9. A # which is not fol-

lowed by a single decimal digit has been detected within a
macro body. This error is not detected until the macro
is expanded. MAC goes to the next field of the current
record of the macro body.

SYSTEM GENERATION

The generation of a MAC system is done in a straightforward fashion. The relocatable
object of MAC is loaded, usually at the default starting address of '1000. It will call the

relocatable input/output supervisor, MAC-IOS, which in turn will call the off-line I/O

1-4 #AC94

driver programs. The drivers for the desired devices, including the magnetic tape sup-
port package, may be loaded in any order. Finally the calls for unwanted devices must be

satisfied with G$DR, which will also pass to MAC-IOS the hounds of available memory.

If G$DR is loaded in the extended desectorizing mode (EXD), MAC will be entered
in the extended mode (EXA) and memory through 32K will be used. 1f G$DR is loaded in
the normal desectorizing mode (LXD), MAC will be entered in the normal mode (DXA) and

memory through 16K will be used regardless of the presence of additional memory.
The keyword is loaded at G$JDR, which may be located by obtaining a core map. As
loaded, the keyword contains '000022, which selects paper tape input (with parity) and

output. The keyword default value may be changed at this time.

OPERATION (Keyword)

Prior to starting MAC, the source to be expanded, which must have all macro proto-
types physically before they are required, must be ready, as must the output device. Set
the keyword in the A register if other than the default value is used and start at the first

address of MAC, normally '1000.

The source will be read urntil either a MOR pseudo-operation is encountered or a
MAC end-of-file is detected. The latter must be either a dollar sign in column ! or a tape
mark. Any ETX records on paper tape or cards are ignored. The MOR pseudo-operation
will cause the message MORE to be typed and the processor will stop for operator action.

The keyword, which may be changed before restart, will be displayed in the A register..

Output may be generated immediately depending upon the input data. If paper tape

is being used, MAC will punch leader and trailer.

The A register must be set with the keyword at the start of the program. If the word
is zero, the default word ('000022 unless changed at system generation) will be used. If
any bit is set, the A register must contain the entire desired keyword. The A register

setting for the keyword is shown on the following page.

1-5 #AC94

I T T T TTTTT [ufrefisfrafrs[rs)
Process Control—j Source Device——————' Outp!lt Device

0 - Normal output 1 - ASR 0
1 - Errors only output 2 - Paper tape reader 1
(even parity) 2 - Paper tape punch
3 - Card reader 3 - Card punch
4 - Paper tape reader 4 - Line printer
5
6
7

- No output
- ASR

(no parity) - Magnetic tape logical 0
Magnetic tape logical O - Magnetic tape logical 1
Magnetic tape logical 1 - Magnetic tape logical 2
7 - Magnetic tape logical 2

o w
o

MESSAGES
The only non-error run message is MORE, which indicates that a MOR pseudo-

operation was encountered.

A MAC error message may be typed as indicated in "Errors' above. Other error
messages are:
DEVICE NOT AVAILABLE
RECORD UNREADABLE (magnetic tape only)
END OF TAPE (input or output, magnetic tape only)

The end of job is indicated by:
MACRO ERRORS

or NO MACRO ERRORS

PAPER TAPE PARITY

MAC includes support of paper tape punched with even parity. Honeywell does not
supply Teletypes equipped to punch parity in the United States, but the option is common
elsewhere. An error is processed within the driver program and the appropriate docu-
mentation must be consulted for advice. All output on the paper tape punch is made with

level 8 marking (i.e., punched).

TERMINATION

At the end of the job, magnetic tape input is positioned after the tape mark or the
dollar sign record. An output tape will have a tape mark but not an $END record. The

output tape is left just beyond the tape mark.

1-6 #AC94

Other output devices will be terminated with a record containing $END columns 1

through 4.

The A register will contain the keyword. A new job may be started from the halting

location.

INTERNAL MAC EXPANSION PROCESSING

The input stream is scanned for macro instruction statements one record at a time.
Upon detecting a macro instruction statement, two comment records are output, if the
prototype indicates the selection (an asterisk in column 9 of the first prototype statement),
The first optional comment record contains an asterisk in column 1, followed by blanks.
The sccond contains an asterisk in column 1, blanks in columns 2 through 4, and a copy of

the macro statement in column 5 through 120.

Following the comment records, the prototype is expanded. Each record of the
macro prototype is examined and comment records within the macro definition are output
unchanged. Other records are expanded field by field (i.e., columns 1 through 5, 6 through
11, 12 through 29, and 30 through 72). Any occurrence of the character pair #0 is replaced
by a single digit between 1 and 9 that represents the number of actual arguments found in
the input record. The character pairs #1 through #9 are replaced by their respective ac-
tual arguments listed in the macro statement (i.e., #1 is replaced by the first actual argu-
ment, #2 is replaced by the second actual argument, etc.). If the actual argument does
not exist, the whole record is ignored and MAC goes to the next record of the macro pro-
totype. All pound signs in the arguments are converted to spaces in the output record,

except in the two optional comment records preceding a macro expansion.
Any noncomment records which have an operation field (columns 6 through 9) pre-
viously defined by a stored macro definition are expanded. All other records are copied

unchanged.

MEMORY REQUIREMENTS

The macro prototypes are packed into core. The MAC and ENDM records require
a total of seven half-words. For other records in the macro prototypes, one half-word is
required for each nonspace character, one-half word is required for each sequence of

spaccs not at the end of a record, and one-half word additional is required for each record.

MACRO EXAMPLES

Five examples of macro applications are presented in this section. If the MAC output

1-7 #AC94

is punched on paper tape, it contains backslash characters to represent tab to columns 6,
12, 30, and 73. The MAC output listings in this manual have been expanded to the correct

tab position for each of reading.

Generation of Calling Sequences Using Subroutines

If a subroutine is called many times during a long program, a macro definition of

the calling sequence can be written. A typical macro definition for a call to subroutine

YORN is:

YORN MACx* #1],#2 TEST FOR YES OR NO
JST YORN YES OR NO ROUTINE
JMP #1 NO
JMP #2 YES

* INVALID CHARACTER
ENDM END OF MAC YORN
MOR

After the macro has been defined, a macro statement which references the macro

definition can be inserted at any point in the coding:

YORN U,V5 TEST ANSWER 5

MAC expands the prototype which generates the coding shown below. The first two
lines are the optional comment lines, which have been generated because the first state-

ment of the macro definition contains an asterisk in column 9.

*

* YORN U,V5 TEST ANSWER 5
JST YORN YES OR NO ROUTINE
JMP U NO
JMP Vs YES

* INVALID CHARACTER

Use of #0 in Macro Expansion

Any occurrence of the character pair #0 will be replaced by a single digit between 0
and 9 when the macro is expanded. The number which replaces the character pair #0 rep-

resents the number of actual arguments passed from the macro statement. It can be less

1-8 #AC94

than, equal to, or greater than the number of formal arguments but in no case can it

exceed 9.

In the following example, the prototype code for the previous example is modified by

adding the character pair #0 in three places:

YORN MAC* #1,#2,40 TEST FOR YES OR NO
JST YORN YES OR NO ROUTINE
JMP #1 NO,#0
JMP #2 YES

* INVALID CHARACTER ,#0
ENDM END OF MAC YORN
MOR

The same macro statement is used to cause the expansion shown below:

*

x YORN U,V5 TEST ANSWER 5
JST YORN YES OR NO ROUTINE
JYP U NO,2
JWP U5 YES

* INVALID CHARACTER, O

Note that the first occurrence of the character pair #0 was in the dummy argument
list and does not appear in the expansion. The second occurrence of #0 is in a coding line
and is replaced by 2, which is the number of actual arguments. The last occurrence of #0
is in a comment line. In this case, the pound sign is taken as a space and the character 0

is printed unchanged.

Generation of Complete In-Line Coding

This type of coding may be inefficient in terms of memory used, but it is simpler
than calling a subroutine and runs faster. An example containing two macro definitions
is presented in Figure l-1. The macro definitions are placed at the beginning of the pro-
gram. The macro statements which reference the macro definitions are placed within the

body of the program as frequently as desired.

MAC generates the coding presented in Figure 1-2 each time the prototypes are

expanded.

1-9 #AC94

FILL MACx
LDX
LDA
STA
IRS
JMP
ENDM

COPY MACx
LDX
LDA
STA
IRS
JinP
ENDM

#1E2 43
==#3

#2
#1+#3,1
0

*-2

#1 #2043
—=-#3
Bl1+#3,1
#2+#3,1
0

*=3

IN,OUT,36
IN,=A##,60

i Macro In-Line Coding

FROM WITH ,LOUNT

#3 WORDS

FILL WITH #2

STARTING WITH #1

TALLY INDEX

RFPEAT TO END OF BUFFER
oMND CF mpC FILL
FROMTG,COUNT

#3 WOPDS

COPY FPOM #1

T0 #2

TALLY TNDEX

REPEAT TO END OF BUFFERS
END OF MAC COPY

Macro Definitions

COPY TO OUTPUT RUFFER
CLEAR INPUT BUF 'ER

Figure 1-1. In-Line Coding Example — Source Input
*
* COPY IN,OUT,36 COPY TO OUTPUT RUFFER

LDX ==-36 36 WORDS

LDA IN+36,1 COPY FROM IN

STA OUT+36,1 TO OUT

IRS O TALLY INDEX

JMP *=3 REPEAT TC END OF RUFFERS
*
* FILL IN,=A##,60 CLEAR INPUT BUFFER

LDX =-60 ° 60 WORDS

LDA =A FILL WITH =A

STA IN+60,1 STARTING WITH IN

IRS 0 TALLY INDEX

JMP *=2 REPEAT TO END OF BUFFER

Figure 1-2,

MAC Expansion of In-Line Coding

1-10

#AC94

Using Macros to Implement Interpretive Scheme

In this example, a scheme is presented which will allow the coding of a process of
several steps involving complex variables. The macro definitions used in this example

are presented in Figure 1-3.
With these macro definitions, it is possible to code the complex equation
Y =A*SIN(A*T1l +B % T2)* COS (B * Tl-A *2)

as the series of macro statements shown in Figure 1-4.

The assembled output of MAC will be similar to the listing presented in Figure 1-5.

1-11 #AC94

X*

NEG

SIN

cos

EXP

LN

SQRT

ABS

MAC
CALL
DAC
ENDM
MAC
CALL
DAC
ENDM
MAC
CALL
DAC
ENDM
MAC
CALL
DAC
ENDM
MAC
CALL
DAC
ENDM
MAC
CALL
DAC
ENDM
MAC
CALL
DAC
ENDM
MAC

CALL
DAC
ENDM
MAC

CALL
DAC
ENDM
MAC

CALL
DAC
ENDM
MAC

CALL
DAC
ENDM
MAC

CALL
DAC
ENDM
MAC

CALL
DAC
ENDM
MOR

Figure 1-3.

1
L$55
2

1
A%55
#!
S$55
¢l
#1
M855
#1
#1

D$55
#1

N$55
#1

l
H$55
#1

CSIN
W
cCos
w
CEXP
L

L}
CLOG
L

W
CSQRT
L]

v
CABS
L

LOAD COMPLEX VARIABLE
END OF MAC BLANK
COMPLEX ADD

END OF MAC +

COMPLEX SUBTRACT

END OF MAC -

COMPLEX MULTIPLY

END OF MAC X

COMPLEX DIVIDE

END OF MAC /

COMPLEX NEGATE

END OF MAC "EG

STORE COMPLEX VARIABLE
END OF MAC =

COMPLEX SINE
END OF MAC SIN

COMPLEX COSINE
END OF MAC COS

COMPLEX EXPONENTIAL
END OF MAC EXP

COMPLEX LOG
END OF MAC LN

COMPLEX SQUARE ROOT
END OF MAC SQRT

COMPLEX ABSOLUTE
END OF MAC ABS

N n
Macro Definitions for Interpretive Scheme

#AC94

A
X% Tl
= W4
B
X% T2
+ W+4
SIN
X* A
H W+4
A
I X% T2
= W+g
B
X% Tl
- Wg
Ccos
X% W4
= Y
W BSZ 8
Y BSz 4
END
$

LOAD A

AxT1

STORE AxTI
LOAD B

BxT2

AT 14B*T2
SINE OF (A)
SINE OF (A)*A
STORE SINE OF (A)*A
LOAD A

AxT2

STORE AxT2
LOAD B

BxTl
BxTl=AxT2
COSINE OF (A)
AxSIN*COS
STORE Y

Figure 1-4. Macro Statements for Interpretive Scheme

1-13

#AC94

0001
0002
0003
0004
0005
000ps
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043

00000
00001
00002
00003
00004
00005

00006
00007

00010
00011
00012
00013
00014
0001s
00016
00017
00020
00021
00022
00023
00024
00025
00026
00027
00030
00031
00632
07033
00034
00035
00036
00037
00040
00041
00042
00043
00044
00045
00046
00047
00050
00060

10 00000
0000s7
10 00000
000064
10 00000
000054
10 00000
000065

10 00000
0000s6

10 00000
000054
10 00000
000050
10 00000
000050
10 00000
000067
10 00000
000054
10 00000
000067
10 00000
000066
10 00000
000060
10 00000
000065
10 00000
000064
10 00000
000060
10 00000
000050
10 00000
000050
10 00000
000054
10 00000
000060
000000
000000

0000000000000 OO OO OO0 OO0 OO0 OO0 OO0

Figure 1-5.

CALI
DAC
CALL
DAC
CALL
DAC
CALL
DAC
CALI
DAC
CALL
DAC
CALL
DAC
CALL
DAC
CALL
DAC
CALL
DAC
CALL
DAC
CALL
DAC
CALL
DAC
calklL
DAC
CALL
DAC
CALL
DAC
CALL
DAC
CALL
DAC
CALL
DAC
CALL
DAC

W BS2
Y BS2

END

L$55
M$SS

H$55
W4
LE55

M$55
T2
ASS55
W4
H$55

CSIN
ME55

HS55
W d
L$55

M$55
T2
HE55
We8
Lgss

Mg55
r
$%55
W+8
H$55

CCOoS

M$55
W+d
H$55
Y

8

4

LOAD COMPIFX VARIABIE
COMPLEX MULTIPLY

STORE COMPLFX VARTARLE
LOAD COMPLEX VARIABIE
COMPLEX MULTIPLY
COMPLEX ADD

STORE CNMPLFX VARIARLF
COMrFLEX SINE

COMPLEX MULTIPLY

STORE COMPLFX VARTABLF
LoAD COMPLEX VARIABLE
COMPLEX MuLTIPLY

S ORE COMPLEX VARIARLF
LLAD COMPLEX VARIABLE
coMpLFEx MyLripPLy
COMPLEX SUBTRACT

STORE COMPLFX VARTABLF
COMPLFX COSINF

COMPLEX MULTIPLY

STORE CNOMPLEX VARIABLF

Assembler Listing for Interpretive Scheme

1-14

#AC94

Macros Used With Conditional Assembly

Macro prototypes can be coded to include conditional assembly statements and the
asscmbly process thereby directed by the value (or presence)of certain arguments. Coding
using conditional pseudo-operations to call cither the ASR or line printer off-line driver

program is shown in Figure 1-6.

' PRNT MAC* #1,#2 TEST FOR OUTPUT DEVICE
IFZ #l=-4 ZERO IF LINE PRINTER
CALL. OS$LA CALL L.P,
DAC #2 BUFFER ADDRESS
ENDC END OF L.P. CONDITIONAL
1FZ #1-1 ZERO IF ASR
CALL OSLL CALL ASR
DAC #2 BUFFER ADDRESS
ENDC END OF ASR CONDITIONAL
| IFN #1-1 ASR TEST
IFN #l1-4 L.P. TEST
FAIL ERROR CONDITION
ENDC END OF L.P. TEST
ENDC END OF ASR TEST
ENDM END OF MAC PRNT
i__ MOR

_—
Figure 1-6. Macro Definition Using Conditional Pseudo-Operations

Following the macro definition, the line printer can be called using the following
macro statement:

.

PRNT 4,DATA 1 =ASR,4zLINE PRINTER

When the MAC output is assembled, the program listing will contain the line printer

call:

u PRNT 4.DATA 1=ASR, 4=z INF PRINTFR
CALL D%LA Capr 1 .o,
nac DATA RIIFFFR ANNRFSS

Conversely, to call the ASR:

PRNT 1,DATA 1ASR,4:=LINE PRINTER

1-15 #AC94

results 1in:

PRNT 1,DATA 1=ASR,4=LINF PRINTER
CApLL 0vLL CAapLl ASR
DAC DATA RIIFFFR ADNRFSST

If neither 1 nor 4 is passed as an argument, the FAIL pseudo-operation will be

assembled and an error flagged:

1=ASR, 4= _INF PRINTER
EPRNR CoNDITINN

#
* PRNT
FATL

3.NODT

Trace Example Using Macros and Conditional Assembly

In this example, a macro definition to call FORTRAN IV Trace Program F$TR from
an assembly language program is shown. Conditional assembly pseudo-operations are
used to distinguish between a statement number (label) trace and other traces, and the call

is adjusted accordingly. The macro definition used in this examp e is shown as Figure l-7.

IR MAC TYPE,NAME
IFZ #1 O=TRACE STATEMENT NO.
CALL F$TR
VFD 3,#1,5,'37,8,°240 "37:=HALF<,'240 PREVENTS AT SIGN
BCI 2442
ELSE
IMA #2
CALL F$TR
VFD 3,41
BCI 2,#2
IMA #2
ENDC
ENDM
MOR

W

Figure 1-7. Macro Definition for Conditional Trace Example

In the example, it was decided to trace the logical variable FLAG, the interger
variable A, and the label TWO. F$TR requires the argument #1 to be 3, 1, and 0, respec-
tively, to identify these types of variables. The macro statement TR and the variable type
and name arguments were then inserted into the existing code at the points where tracing

was desired. The results are shown in Figure 1-8.

#AC94

d

* TRACE EXAMPLE USING MACROS
CF5
REL
CRA

LOOP STA FLAG
TR 3,FLAG
SLZ
JMP TwO
STA A
LDA ==4
STA CNT

FST IRS A
TR 1,A
IRS CNT
JMP FST
LDA FLAG
ERA =
JMP LOOP

TWO CRA
TR 0,TwWo
STA A
LDA z=2
STA CNT

SEC IRS A
TR 1,A
IRS CNT
Jmp SEC
HLT

FLAG BSZ 1

CNT BSZ l

A BSZ 1
END

$

- S
Figure 1-8. Trace Example Program

Each macro statement within the coding is expanded and the actual arguments are

substituted in the MAC output coding. A portion of this coding is presented in Figure 1-9,

When the MAC output is assembled, the conditional pseudo-operations cause the

inappropriate lines to be ignored. The assembly listing is presented in Figure 1-10.

Following the assembly, the program was loaded and executed. The trace shown
below was printed on the Teletype. The @ signs result from some assumptions within

F$TR relative to the (normally) compiler-generated call.

2FLAG= F
A=

8as=

o=

0A=
ovLAG= T
CTWO)
4=

8A=

DWn o~

0N =

1-17 #AC94

TRACE EXAMPLE USING MACROS

CF5
REL
CRA
LOOP STA FLAG
1Fz 3
CALL F3$TR
VFD 3,3,5,'37,8,7240
BCI 2,FLAG
ELSE
IMA FLAG
CALL FS$TR
VFD 3,3
BCI 2,FLAG
IMA FLAG
ENDC
SLZ
JMP TWO
STA A
LDA =4
STA CNT
FST 1IRS A
1FZ 1
CALL F$TR
VFD 3,1,5,°37,8,'240
BCI 2,A
ELSE
1MA A
CALL F$TR
VFD 3,1
BCI 2,A
IMA A
ENDC
IRS CNT
JMP FST
LDA FLAG
ERA =1
Jmp LOOP
TWO CRA
1FZ 0
CALL FS$TR
VFD 3,0,5,'37,8,"'240
BC1 2,TW0
ELSE
IMA TwO
cALL F$TR
VFD 3,0
BCI 2,TW0
IMA WO
ENDC
STA A
LDA ==2
STA CNT
SEC IRS A
1FZ |
CALL FS$TR
VFD 3,1,5,°37,8 *'7°*7
net oA
L:LM—
Figure 1-9.

O0=TRACE STATEMENT NO.

*37-HALF<,'240 PREVENTS AT SIGN

0=TRACE STATEMENT NO.

*37:=HALF<,"240 FRELVENTS AT SIGN

O=TRACE STATEMENT RO,

'37:zHALF<, 240

Por VERTS AT SIGN

0=TRACE STATFMm—=~™ 7

Typical MAC Output Code — Conditional Trace Example

1-18

wﬂm‘j

-

no01

TRACE EXAMPI E USING MACROS

0002 CFs

0003 RFL

0004 000NQ 140040 CRA

0005 00001 0 04 00053 LOOP STA FLAG

0011 00002 0 13 00053 IMA FLAG

0012 00003 0 10 00000 CALL FSsTR

0013 00004 060000 VFD 3.3

0014 00005 143314 BC1 2.FLAG
00006 140707

0015 00007 6 13 00053 IMA FLAG

0017 00010 100100 sLz

0018 00011 0 01 00031 JMP TWO

0019 00012 0 04 00G55 STA A

0020 00013 0 02 00060 LDA z-4

0021 00014 0 04 00054 STA CNT

0022 00015 0 12 00055 FST IRS A

0028 00016 0 13 00055 IMA A

0029 000617 0 16 00000 CALL FsTR

0030 00070 020000 VFD 3.1

0031 00021 140640 BC1 2,A
00022 120240

0032 00023 0 13 00055 IMA A

0034 00024 0 12 00054 Irs CNT

0035 00025 0 01 00015 dMp FsT

0036 00026 0 02 00053 LDA FLAG

2037 00027 0 05 00057 ERA =1

nN038 00030 0 01 00001 JMP LOOP

1039 00031 140040 TWO CRA

0041 00032 0 10 00000 CALL FSTR

0042 00033 na=-o VFD T o~

D043 anr-

Figure 1-10. Typical Assembly Listing — Conditional Trace Example

#AC94

SECTION I1
O16-XREF CONCORDANCE

GENERAL DESCRIPTION

The O16-XREF Concordance program prepares a cross-reference listing (concor-
dance) of all symbols within a Honeywell DAP-16 Assembly lLanguage source program.
The symbols are listed in alphanumeric order with the defining line nurnbers shown to the
left (along with any exception flags) and the line numbers of all references to the symbol
on the right. The line (record) numbers on the left are the same as the numbers shown
on the left of a source listing or an assembly listing. Figure 2-1 shows an assembly
listing of a source and the corresponding cross-reference. The source was written to

show the features of O16-XREF.

Symbol recognition is less restrictive than the similar process in the assemblers
for the same language. Symbols which are almost acceptable are detected and the pro-

grammer is made aware of them.

The four exception flags are:
M — Illegal multiple definition of symbol

N — Symbol defined but never referenced

95}

— Legal multiple definition of symbol

U — Undefined symbol

Flags M and U indicate lines of a finished program which are usually clearly in
error. The N flag indicates a symbol which is not required by the assembler and may
point out a programmer oversight. An acceptable multiple definition is indicated by an

S flag.

Each reference to a symbol can have a C or J suffix to the line number to indicate
a change or jump, respectively. The C indicates that the referenced instruction is a STA,
DST, STX, IMA, or IRS. A J results from a JMP or JST instruction. It should be noted
that the C and J suffixes are useful only when the nature of the code is known, since the
actual instruction and referenced address are subject to indexing, indirect addressing,

program self-modification, etc.

2-1 #AC94

0001 » XREF EXAMPLF

0002 »
0003 ABC REL ARCD NO SYMBOLS NORMALLY HFRF
0004 EXT BCD EXTERNAL DEFINITION
0005 00000 0 02 00000 LDA BCD NO SUFFTX
0006 00001 0 04 00000 STA 8CD C SUFFIX
0007 006002 0 01 00000 JMp BCD J SUFFtX
0008 ®
0009 00003 0 02 00016 LDA =16 THREE LITFRALS WHICH HAVE
0010 00004 0 02 00016 LDA =120 THE SAMF LITERAL VALUF, BUT
0011 00005 0 02 00016 LDA =$10 A DIFFERENT SYMBOL IC VALUF
0012 00006 0 13 00017 IMA TAXY C SUFFIX FOR A LITERAI
0013 L
M 0014 00007 0 000016 JKL DAC =16 ONE M FLAG FROM JKL
M 0015 00010 0 04 00007 STA JKL TWO NORMAL REFERENCFS
M 0016 00011 0 02 00007 LDA JKL
M 0017 00012 000000 JKL BSz 3 BOTH M AND N FLAGS FROM JKL
0018 .
U 0019 00015 0 04 00024 STA MNO v FLAG ON MNO
0020 00016 000020 FIN MNO NO SYMBOLS NORMALLY HFRF
00017 154331
0021 .
0022 006020 0 02 00023 LDA =16 NO POOL ING SHOWN
0023 00021 0 10 00023 PQR JST =16 PQR GFTS N FLAG
0024 *
0025 000022 RETA SFET . S FI AG NN RFTA
L 0026 00022 6 000000 183 XAC OSLA It LFGAL SYMBOI
MV 0027 000007 RETA SET JKL*+ABC S FLAG
0028 »]
M 0029 00023 000020 END JKL THIS IS A COMMENT
RETA 00024
MNO 00025
BCD 000000F JKL 000007 MND 000025 POR 000021

RETA 000024
0009 WARNING OR ERROR FLAGS
DAP-16 MOD 2 REV. B 10-20-70

——‘

P6OVH

Figure 2-1. XREF Example (Sheet 1 of 2)

Y6OV#H#

* XREF
N 26
3
U
M 14
NM 17
U
N 23
NS 25
NS 27
15
20
29
2
2
5

016=XREF 05 OCT 70

ExAMP| F

183
ARC
ARCD
BcD
JK L
J L
MNO
DsLA
PnR
RETA
RFTA
=<10
=120
=16
SAXY

SYMROL S
RFFERS

RECORDS
U FLAGS
M FLAGS
N FLAGS

27

15C

19C
26

—

N O O -

20

14

6C
27

22

Figure 2-1 (cont). XREF Example (Sheet 2 of 2)

7J
29

Literals are treated as self-defining symbols rather than being evaluated. There-
fore, the terms ='20 and =16, which the assembler may evaluate, are listed separately.

The FIN pseudo-operation used to pool the literals is ignored.

SYSTEM GENERATION

The generation of an XREF system is performed in a straightforward fashion. The
ORGed object of Ol6-XREF is loaded and this calls for the off-line 1/O driver programs
directly, with the exception of the Disk/Drum Operating Program (DOP) and its driver.
Drivers for the desired devices, including the magnetic tape support programs, can be

loaded in any order. Calls for unwanted device drivers can be satisfied with DUMY-X16.

If the Honeywell-supplied magnetic tape support package is used, the channel type
and number (if DMC or DMA is to be used) must be entered. The O16-XREF program
uses logical unit 1 for input (same as the as sembler) and this may also require an entry.
Complete information is contained in the appropriate option Programmers' Reference

Manual.

When DOP is used, the linkages can be placed in sector zero either by directly

entering them or by starting DOP.

The load map should be examined for a high greater than '5000. If this is the case,
the contents of location GRMA ('464 in Rev. B) must be changed to the next higher address
ending in octal zero. This address indicates the lowest memory usable for storing cross-
reference data. Conversely, if the high address is much below '5000, the contents of

GRMA can be changed to a lower address.
Locations '1000 and '1001 contain NOPs. The second lacation can be used for a
LDA SYSP with the installation preferred keyword placed in SYSP ('506 in Rev. B) if

desired.

OPERATION (Keyword)

The source to be cross-referenced must be made ready on the input device prior to
starting O16-XREF. If magnetic tape is the input device (logical unit 1), it must be at the
first record of the desired file. The input process is normally terminated upon detection
of either an END pseudo-operation record or an end-of-file mark. If the input was from

magnetic tape, the tape will be rewound at this time.

2-4 #AC94

The installation-preferred keyword must be set into the A register prior to the start.
Figure 2-2 is presented as a guide to keyword selection. If any field is left blank, the

indicated default value for that field is assumed.

Gl la] T T Tsloo] T T Tl
Top of Available:] tListing Device

Memory]

"

ASR (Default
01 = 4K
3 = Line Printer

02 = 8K (Default) 5 - DOP
5 =

Source Deviced
07 - 28K

1 = ASR
10 = 32K 2 = Paper Tape Reader (Default)
3 = Card Reader
4 = Magnetic Tape
5 = DOP

Figure 2-2. Setting of A Register for Keyword

Start the program at (P) = '1000. If the keyword is not acceptable, the message
PARM ERROR is printed on the ASR and the processor halts with the keyword in the A
register. The keyword must be changed and the processor restarted from either the halt

address or location '1000.
At the end of the process, the processor halts and displays the keyword in the A
register. Another concordance can be generated using the same or a different keyword.

The concordance is listed as soon as a single input pass is complete.

MEMORY REQUIREMENTS AND OVERFLOW

On the average, a symbol is defined every five lines of code and each symbol is used
five times. Each symbol requires eight words and a reference requires two words. Based
on a GRMA of '5000, the source programs of various size listed in Table 2-1 can usually

be cross-referenced in one operation.

If the available memory is filled before the input is complete, the cross-reference
to that point is listed with flags suppressed. After the operation is complete, the message

SEGMENT BOUNDARY and the cumulative counts are printed. Then, in effect, a program

2-5 #AC94

restart is made which picks up the source input at the point where it left off. The final

section is terminated with the message FLLAGS OMITTED.

Table 2-1. XREF Memory vs Program Size

Memory Records

4K 420
8K 1560
12K 2700
16K 3800
20K 5000
24K 6100
28K 7200
32K 8400

TERMINATION

The concordance is terminated with the record, symbol, and reference counts along
with the count of M, N, and U flags. If a segmented concordance vas generated, the
cumulative counts of records, symbols, and references are listed ilong with the message

FLAG OMITTED.

MISCELLANEQUS CONSIDERATIONS

The first record encountered is taken as the title line for all pages. It is also
processed as a normal record. The presence of either unexpanded macro instructions or
conditional assembly statements can produce warning flags which must be interpreted by

the programmer.

External names are not indicated as such, but in general they may be noted by a
blank-defining record field. The use of code such as
A$BC XAC A$BC
will obscure the external indication. References to multiply defined symbols are taken as
referring to the first definition encountered. Subsequent definitions are listed, but they

receive an N flag as well as an M flag.

2-6 #AC94

SECTION III
SSUP SYMBOLIC SOURCE UPDATE

DESCRIPTION
SSUP and its associated Input/Output Supervisor, SSUP-I0S, form a file maintenance

system for Honeywell DAP-16 Assembly Language and FORTRAN source files. Figure
3-1 presents an overview of program flow. The old master or starting source is pro-
cessed against the update stream, which contains both commands and new records to be
inserted. The result of the processing is either a new master, sometimes called an

updated source, or both the new master and a listing.

COMMAND LANGUAGE

The update process is controlled by commands which appear in the update stream.

The format of the commands is presented in Figure 3-2.

The elementary items within the square brackets may be optional. Spaces can be
used freely to separate the elements, except that a blank must follow the single letter

commands N and O,

The SSUP commands consist of one or four letters. The commands and their

functions are presented in Table 3-1.

An F in the file/record indicator indicates that the command is to be applied to
files rather than records. This mode is usually applicable to magnetic tape. When the

file/record indicator is blank, the command is applied to a record.

The limit arguments, which specify record or file numbers, are decimal integers
not greater than 32,767. The meaning of these arguments is described in the examples
which follow. Either or both of these arguments can be absent from all commands except

NSRT, OMIT, BEGN, and COPY. These four commands require at least one argument.

3-1 #AC94

oLD
MASTER
(SOURCE)

NEW
MASTER
(UPDATED
SOURCE)

SSUP—-10S
UPDATE N
STREAM ‘ e
| Ssup
Figure 3-1. SSUP Program Flow
$ [Command] [F] [Limit 1) [, Limit 2] [*Comment]

File/Record Indicator

F = File

l-Command/New Data Indicator 1

$ = Command

Other = New Data

Blank = Record

l$O is treated as a data card since it has a meaning to the FORTRAN compiler.

Figure 3-2.

An asterisk anywhere in the command causes the remainder of the line to be treated

as a comment. Hence, the remainder of the line is ignored for processing, but it is listed

if commands are being listed.

SSUP Command Format

A command which contains only a comment is acceptable.

Table 3-1. SSUP Commands

Command Function
NSRT or N Insert new records.
OMIT or O Omit old records or omit old records and insert

new records.

LIST List all records that come from old master plus
all corrections that come from update source.

NLST No records are listed. SSUP is initially in NLST
mode.

BEGN Position new master (used with magnetic tape only).

COPY Copy old master on new master.

NCPY Not generally useful: turns copy indicator off and
nothing is written on new master.

HALT Stop all I/O operations. Wait for operator action.

RSET Reset input counters to record zero, file one
(useful for concatenating old sources onto one new
source).

WEOF Place end-of-file mark in new master.

DONE Place end-of-file mark in new master and terminate

SSUP process.

DOLR Change command indicator (originally $) to next
nonblank character. Useful for updating master
files.

c— e . MRS

SUMMARY EXAMPLE

The example in Figure 3-3 is a typical update stream which uses the more common
commands and functions. It is correct as shown for the old and new masters on magnetic
tape and the update stream on cards. The flow is generally correct regardless of the

media.

In general, there are several combinations of commands and limits which will
accomplish any task. The example presented in Figure 3-3, with reasonable extensions
by the reader, is a straightforward approach which can accomplish all ordinary update

tasks.

3-3 #AC94

Operation Command Functions Comments
Position Output | $BEGNF m Advance output (new master)|Tape is now in position to
Tape tape past m-1 file marks. write n-th record on m-th
$BEGN n Advance output tape past file of output tape.
n-1 records,
Position Input $OF, p Skip files from current New tape contains some
Tape position to beyond file p. number (between none and
$COPYF, q | Copy from current posi- all) :f files from old
tion through and including master.
file q.
Perform $Nr Copy old master from
Update current position up to and
including (r-1)th record.
Insert following records
until the next command is
found.
(new record)
(new record)
$0t Copy old master from
current position up to and
including (t-1)th record.
Insert following records,
if any.
[(new record)
(new record)]
$Ou, v Copy old master from
current position up to and
including (u-1)th record.
Skip records u through v.
Insert following records,
if any.
[(new record)
{new record)]
Copy $COPYF, w | Copy old master from
Remainder of currert posit o7 ‘record
Input Tape v+l) througas
Terminate the $ WEOF Write end-of-file mark.
Process!
$ DONE Write end-of-file mark and

indicate job is complete.

lTwo successive end-of-file marks (i.e., a blank file) customarily indicate the end of
data on a magnetic tape.

Figure 3-3.

3-4

SSUP Summary Example

AACHS

LISTING

Two types of listings, plus a no-listing option, can be obtained from SSUP. One
listing is a transaction listing which is the default condition. All commands and comments
are listed, along with the results of omit and insert actions. The records inserted are
shown with a plus sign and the record number they acquired in the new master. The
records omitted are shown with a minus sign and the record number they had in the old
master. The transaction listing may be suppressed either by setting sense switch 4 or

by including the LIST command.

The LIST command overrides the transaction listing and causes the second type of
listing to be generated. In this type, a line is output for every record read from the old
master or the update stream. If there is no update, the resultant list is a source listing
with the decimal record numbers printed on the left side. If no limits are stated, all
records will be listed. If only [, limit Z] is stated, all records from the current position

through record "limit 2" will be listed.
NSLT turns the LIST 6ption off and restarts the transaction listing.

Listings produced on the teletype are truncated after card image column 72. The
tab format source is expanded to the conventional columns before being listed (i.e.,

tabbed).

MESSAGES

There are two SSUP error messages, NONVALID COMMAND and LIMIT ERROR.
An error message is followed by the current input (usually a command), the current file,
and record counts. A reminder is also printed that informs the operator he may override
the error or terminate the process. The override is accomplished by pushing START
with sense switch 3 reset. The update stream will be ignored until the next command
record is detected. If sense switch 3 is set, the effect is the same as a DONE command.

These error messages are shown in the examples.

There is one I/O error message possible if the old master is being read from
magnetic tape. A nonrecoverable read error will cause the message PARITY ERROR and
the file and record counts to be printed. Following the printout, the computer halts. If
the A register is cleared, another read will be attempted when START is pushed. If the
A register is not cleared, the record will be accepted as read. Sense switch 2 will sup-

press the error message when it is set, but not the halt (with all bits set in the A register).

3-5 #AC94

Unexpected end-of-file marks or end-of-tape being sensed will cause a halt without

an error message.

Other messages are BREAK POINT HALT and END OF JOB. The BREAK POINT
HALT is output when a HALT command was encountered, presumably for the operator to

change the input stream.

RESEQUENCE CPTION (Keyword)

If the output is magnetic tape, SSUP can resequence card image columns 77 through
80 by either 1's or 10's depending upon the keyword in the A register at the start. If
resequencing is selected, the ID field (columns 73 through 76) is taken from the first
record to be written on the new master. The A register keywords for the various options
are:
'000600 - Resequence by 1's
'100000 - Resequence by 10's

'040000 - Copy input verbatim

SENSE SWITCH OPTIONS

The functions of the sense switches are presented in Table 3-2.

Table 3-2. SSUP Functions of Sense Switches

Switch Condition Function
1 Reset DAP-16 format
Set FORTRAN format
2 Reset Normal
Set Suppress parity error
message
3 Reset Continue process on error
restart
Set Terminate process on error
restart
4 Reset Normal
Set Suppress transaction listing

SOURCE FORMAT

If paper tape or the Teletype is used, the format must be either the correct tab
form for the specific language or in acceptable columns. FORTRAN tab settings are at
columns 6, 7, and 73. DAP-16 tabs are at columns 6, 12, and 30. Lines are opened

with a line feed and closed with a carriage return.

3-6 #AC94

Magnetic tape must have 80-character records.

OPERATION

The operator must load an SSUP system configured for the desired devices, since

SSUP cannot be configured at run time.

If magnetic tape is to be used, the old master

must be mounted on logical unit 1 and the new master on logical unit 2. This is consistent

with the assembler and compiler assignments.

The A register must be set with the keyword, and the computer started at location

'1000. Successive jobs must have the keyword restored and started at location '1000.

If the output is being punched on paper tape, the operator must manually punch

leading and trailing blanks and turn off the punch at the end of the job.

SYSTEM GENERATION

An SSUP system must be generated for each combination of 1/O devices desired.

The allowed combinations and required device drivers are:

Old Master - Magnetic Tape (logical unit 1)
- Paper Tape Reader

New Master - Magnetic Tape (logical unit 2)
- Paper Tape Punch

Update - Card Reader
- Teletype

- Paper Tape Reader

Listing - Teletype
- Line Printer

Messages - Teletype

I$MA
I$PA

O$MA
O$PA

I$CA
I$AA
I$PA
Oo$LL
o$LA

O$LL

The use of the Teletype as both the update master and the listing device is accept-

able. The order of loading must not conflict with the above if the desired device streain

attachments are to be made.

If other combinations of 1/O devices are desired it is possible to attach them by

writing a driver which appears to SSUP-IOS as an allowable device.

by Honeywell.

This is not supported

SSUP will operate in a 4K memory computer, but at least 8K is required to generate

a system.,

#AC94

Load the ORGed SSUP and SSUP-105. Then select and load (consistently with the
previously noted order) the desired device driver and support programs for the four
streams. If the Teletype I/O library which includes O$LL was not loaded, do so at this
point for the message output. Progress should be checked at this point by generating a
memory map and observing that the correct calls are satisfied. Satisfy the remaining

calls by loading SSUP-RDS, the associated dummy routine set.

If magnetic tape is to be used, the type of /O channel (DMA or DMC) and the
channel number along with the logical-dialed number relationship must be entered. Refer

to the Programmers' Reference Manual of the appropriate option for further instructions.

EXAMPLE OF PAPER TAPE UPDATE

The following file was punched with a Teletype to demonstrate the use of SSUP. It
anticipates DAP format (i.e., tab placement). All records start with a line feed and closc
with a carriage return. The use of an X-OFF and rubout is not required, since it will
only be read by a paper tape reader. A nonprinting record following the printing text
consists of a line feed, ETX, and carriage return. The ETX, which is punched by

simultaneous CTRL and C keys, is recognized as an end-of-file.

ORG\REC\ ONE
ORG\REC\TWO
ORG\REC\THREE
ORG\REC\FOUR
ORG\REC\FIVE

The first step in most source updates is tc obtain a list of the file with record
numbers. In this case a copy of the file after corrections that were made during the

original punching is also obtained. Note that the Teletype shows an echo of the commands.

®IST
$LIST
$COPYF 1
$CUrYF 1
00001 ORG REC ONE
00002 ORG REC TWO
00003 ORG REC THREE
00004 ORG REC FOUR
00005 ORG REC FIVE
$DONE

$DONE

END OF JOB

3-8 #AC94

The programmer decides that records 2 and 3 are to be replaced and a new record
is to be inserted between records 4 and 5. He elects to list the transactions by leaving

sense switch 4 reset.
$¢ 0 0002,3 % FREE FORM - "0" AND “OMIT" ARE SYNONYMS
$ 0 0002,3 =*= FREE FORM - "0" AND "OMIT" ARE SYNONYMS

-00002 ORG REC Two

-00003 ORG REC THREE

NEW RECORD AAA

+00002 NEW RECORD AAA

$COLR . * CHANGE COMMAND INDICATOR

$DOLR . x CHANGE COMMAND INDICATOR

N 5
$NEW RECORD BBB HAS A "$" AS THE FIRST CHARACTER
+00004 $NEW RECORD BBB HAS A "$" AS THE FIRST CHARACTER
«COPYF 1
+COPYF1
JDONE

.DONE

END OF JOB

Since the new record starts with a control character, the command indicator in use

was changed from a dollar sign to a period.
As a final step the programmer listed the results. He chose not to copy the tape

and because of this the listing shows each record as being deleted. In typing the com-

mands, two errors were made to show the error messages.

3-9 #AC94

SLIST
SLIST
$OMIRF |
NON=VALID COMMAND
$OMIRF |
FILE 00001 ,RECORD 00001
§SW3 SET TO TERMINATE, RESET TO PROCESS NEXT COMMAND DEPRESS START.
SOMITF 2,1
$OMITF2,1

LIMIT ERROR.
$OMITF 2,1
FILE 0000! ,RECORD 00001l
SSw3 SET TO TERMINATE, RESET TO PROCESS NEXT COMMANL DEPRESS START,
$OMITF I
SOMITF |

-00001 ORG REC ONE

-00002 NEW RECORD AAA

-00003 GRG REC FOUR

-00004 SNEW RECORD BBB HAS A "$" AS THE FIRST CHARACTER
-0n005 CRG REC FIVE

NCPY
INCPY
$CONE
TOONE
END OF JOB

EXAMPLE OF MAGNETIC TAPE UPDATE

The first step to this example was to create three files by inserting records before

the first record of a non-existent file. The cards used are shown as Figure 3-4.

The programmer decided to update his source files by eliminating the first, chang-

ing the second, and keeping the third intact. The original (or old master) remains

intact. The new master contains entirely new data.

Figures 3-5 and 3-6 are the transaction listing and a listing of the new master.

3-10 #AC94

I1-¢

Y6D VH#

$ N L

kCRERTE FILE oNE

FiLE onE REC gNE Fi1 Ll
FILE gNE REC Two

$ WEOF X END pF FILE gNE

$ N A ¥ CREATE FILE Tweo

FILE Twp PRIG REC gnE FirL2
FILE Two gRiG Rec Twg

FILE Tuwd¢ @RIG REC THREE

FILE Twg @RiIG REC FguR

FILE Twg PRig REC FIVE

$ WEOF XEOD pF FILE Twy

¥ N 1 X CREATE FILE THREE

FILE THREE REC dNE FtL3

FILE THREE Rec Two

4 WECo -
$ WEOF
$ JIONE

Figure 3-4.

% END oF FiLe THReg
» END OF VOLOME

L
SSUP Example of Source for Magnetic Tape Update

Z1-¢

Y6OVH

-00001
-00002
-00003

00001
-00002
«00003
+00002

00003
+00004

00005
00006
00001
00002
00003

$ LIST
$ OMITF 1
FILE ONE REC ONE
FILE ONE REC TWO
END
$ 0 2+3
FILE TWO OR1G REC ONE
FILE TwWO ORIG REC TwO
FILE TWO ORIG REC THRE
NEW RECORD AAA
$ DOLR
. N 5
FILE TwWO ORIG REC FOUR
$NEW RECORD BBB STARTS W
o COPYF +3
FILE TWO OR1G REC FIVE
END
FILE THREE REC ONE
FILE THREE REC TWO

END

WEOF

DONE

Figure 3-5,

® SKIP A FILE

E

ITH A DOLLAR SIGN

REST OF TWO AND THREE

END OF VOLUME

SSUP Example of Full Listing During Update

FIL10001
FIL10001,
FIL10001

FIL20001
FIL20002
FIL20002
FIL20002

FIL20003
FIL20004

F1L20005
FIL20006
FIL30001
FIL30002
FIL30003

Y6DOVH

FlLe

FILE

TWO ORIG

TWO URIG

NEW RECORD AAA

FILE
TNEW
FllLe

FILE

FILE
FlLe

TWO URIG
RFCORU RgB
TWU ORIG
ENU

ReC ONF

REC ONE

REC FQUR
STARTS WITH A DOLLAR SIuN
REC Flve

THREE REC ONME

THREE REU UNME
THREc REL TWO

ENU

Figure 3-6. SSUP Example of New Master

FlL2ooul

FlLeQuO1
FlLeOuog
FlLz0Uu0s
FlLzouuse
FlLeouub
FlLeouueo

FiLsnuo1l

FILSOOUL
FlLsounZ
FIlLsou0s

CCPFUTER GENERATEC INDFX

ASSEMBLER
ASSEMELFR LISTING FCP INTLRFRETIVF SCHEMF. 1=16
MACROS USFU WITH CONDITICNAL ASSEMBLY, 1-15
TYPICAL ASSEMBLY LISTING - CONCITIONAL TRACE EXAMELE.
1-19
CALLING SEUUENCF LSING SUBFQUTINES
GENEKATION CF CALLING SEGUERCE LSING SUERCUTINES. 1-8

ule
GENERATION CF COMPLFTF JN-LINE CODING, 1-S
IN-LINt CCOING EXAMPLF=SCLRCE IAPUT, 1-1C
MAC EXFANSTCHN CH O IN-LINE (CLING, 1=10
TYPICAL MAC QUTRPUT CCCE - CCNDITIONAL TRACE FXAMPLE o
1-18
CUMMAND

CCMMAND LANCUAGE, 3.1
SSUP COMMANE FURMAT, 3-2
CUNCORCANCE
Clé~XREF (Ot CONDANCF, 2-1
CUNDITION ASSFMELY
TRACE EXAMPLE USING MACRCS ANC CONDITION ASSENMRLY. 1=-16
CUNDITIONAL
MACKU DFFINITIOM FOR CONCITICAAL TRACE EXAMFLE, 1«16
MACRC UFFIMITION USIFC CUNUITICNAL FSEULC-0FERATICNS,
1-1%
MACROS LSFU WITH CONTITIGNAL ASSEMBLY, (=15
TYPICAL BSSFMBLY LISTING ~ CONCITIONAL TRACE EXAMELE.
1-19
TYPICAL MAC QUTRUT CCCE - CCNCITTONAL TRACE EXAMPLE,
1-18
CUNSIBFRATICNS
MISCELLANFGLS COMSICFRATILNS, 2o
DATA "
CATA FOWRMAT,]-3
OeFINITION
MACRO DFRINITION FOR CONLITICAAL TRACE EXAMFLE. 1-1¢
MACRO DFFILITIOM USIMNG CCNUITICRAL PSEUCC-OFERATICAS,
1-15
MACRO UDFFINITION, 1-1
DESCHIPTION
CESCRIPTICN. 3=-1
CENERAL UFSCRIPTICN, 1-1 2-1
ENC STATEMENT
END STATEMENT, 1=2
EXPORS
ERKRORS. (-4
EXAMPLE
MACKO DFFINITION FOR CONLITICNAL TRACE EXAMELL, 1-1l¢
SSUP FXAMPLE OF FULL LISTING CULRING LPCATE, 3-}2
SSUP FXAMPLE OF MFW MASIER. 3-13
SS5UP FXAMPLE OF SOURCF FCR NMACNETIC TAPE LPCATE, 3-11
SSUP SUMMARY EXAMPLE, 3-4
SUMMARY FXAMPLE, 3-3
TKACE EXANMPLE PROGRAM, 117
TRACE EXAMPLE USING MACRCS ANL CONDITION BSSEMBLY, 1-l6
TYPICAL ASSFMELY LISTING - CCACITIONAL TKACE EXAMPLE,
1-19
TYPICAL MaC OUIPUT CCCE - CCNCITIONAL TRACF FXAMPLE,
1-18
XREF FXAMPLF, 2-2
EXAMPLE OF MAGNFTIC TARE
EXAMPLE OF MAGNETIC TAPF LPLATE, 3-10
EAAMPLE OF PAPER TaPg
LXAMPLE CF FAPtR TAPE UPUATE. 3-R
EXAMPLE-SOURCE
IN=LINE CCUING EXAMPLF=SCLRCE TRPUT, 1-1C
EXAMPLES
MACRG EXANPLES, =7
EAPANSICN
MAC EXPANSTON OF INLINE CCCINC, 1-]0
EXPANSTICN PRUCFSSING
INTERNWAL MAC EXFANSION PRCCESSING, 1-7
FLOW
SSUP FRCOKAM FLOW, 3=2
FURMAT
CATA FORMAT, 1=-3
SCURCF FORMAT, 3-6
SSUP COFMANP FOKMAT, 3.2
GENERATICN
GENFRATION CF CALLING SEGLENCE LSING SUERCUTINES, lew
GENERATION CF CUMPLETF Ih=LINE CODING, 1=-9
SYSTEM CFNERATION, }=4 2-4 3-7
HEAUER STATFMENT
FEADER STATEMENT, -1
IMPLEMENT [NTERPRETIVE
USING MACROS TU IMPLFMEMT INTERFRETIVE SCHEME. le1]
IN=L INE
CENERATION CF COMPLETF IN-LINE CODING. -9
IN-LINE CCUING FXAMPLE=SCLKCE [APUT, 1-1C
MAC EXPANSICN OF INZLINE CCLING, 1-10
InNPUT
IN=LINE CCUING EXAMPLF=SCLKCE [NPUT,]-1C

INTERNAL
INTFFNAL MAC EXPANSION PRCCESSINC, 1-7
KFYwORD
OPERATION (KEYWORG)W 1=% 2-4
RESFCUENCE OPYION (KEYWCGRE), 3-#
SETTING CF A REGISTEP FCR KEYWCRL, 2-%
LANCUAGF
CCMMEND LANGLAGF, 3-1
LISTING
ASSFMBLFF LISTING FGR THLTERPRETIVE SCHE4E. =164
LISTING, 3-%
SSUF EXAMMLE OF FULL LISTING CLRING ULFBATE, 3-12
TYPTCAL ASSEMBRLY LISTING « CONCTTIGLAL TRACE FXAMELE,

1-19
Mac
INTFRNAL MAC [EXPANSION PRCCESSING, |=-7
MAC EXPANSTUN OF IN-UINE CCRINC. |=]0
MAC MACRC PROCFSSING FNR [AP=-1€. 1-]
TYPICAL MAC QUTPUT CODF - CCNCITICNAL TKRACE EXAMPLE,
1-18
MAC ERROR
MAC ERROR MLSSAGES, =4
MACRQ

MACRG DFFINITION FOk CONCITIONAL TRACE EXAMELE. 1=-1¢
MACFC DFFINITION USING CCNBITICMAL PSLUDG=CPERATICNS.
1-15
MACRC DFFINITION, -1
MACRC EXAMPLES, Q=7
MACRC STATEMENT, -3
MACRQ DEFINITICA
MACRC DFFINITION FOK INTERPRETIVE SCHEME, 1-12
MACRO DEFINITICMN wOCY
MACRL DFFINITICN BOLY. |=2
MACRG EXPANSIOM
USE CF = It MACRQ FXPANSICN, 1~€
MACRC PROCESSIMNG FUK CAP-)4
MAC MACRC PRCCESSING FOR CAF~lée 1-]
MACRQ STATEMENTE
MACRG STATEMERTS FOK INTERPNETIVE SCHEME, 1-]2
MACRCS
MACPCS USEL wlTH CONPITICNAL ASSENMBLY, 1-]%
USINC MACKOS TO IMPLEMFHT INTERFRETIVFE SCHENME ., =11
MACNETIC TAPE
SSUP EXANMFLE GF SOUKCE FCR MAGMETIC TAPL LRLATE. 3-11
MENMCRY
MEMCORY PEGUIREM! NTS AND CVERFLCw. 2-5
MEMPRY RELUIREM (1S5, }-7
MLESACES
MAC LRROR MESSAGES, =4
MFSSAGES. 1-6 3-5
NEW MASTFR
SSUF EXAMKLE OF NEw MASTER, 3=13
Cl6~XREF
O16-XREF CONCORDANCE. 2-1
CPERATICN
OPERATION (KEYWORD) e 1=5 J=d
OPERATIONs 3-7
cPYICN
RESFLUENCE OPTION (KFYWCRL), 3-¢
SENSE SwITCH OPTIONS, 3-¢
CLTFUT
TYPICAL MAC QUTPUT COCF - CONCTTICNAL TRACE EXAMNFLE,
=18
PAFER TaPf
PAPFR TAFE PARITY, l=p
PARTTY
PAPER TAFE PARITY,]-¢
PRCCRAM
SSUP PRACKAM FLCy, 3-2
TRACE FXANMPLE FROGKAM, =17
PRCCRAM STZ2E
XREF MFMCKY VS PROCKAM SIZF, 2-+
PSELDC-CPERATICNS
MACRC DFFINITION USING CCNBITICASL PSEULC-CFERATICNS,
1-15
RECISTER
SETTING CH A PFGISTER FOR KEYWCRL, 2-%
RECLIREMFMNTS
MEMORY PELUIREMFNTS, 1-7
RECLIREMENTS AANL OVERFLOw
MEMORY RELUIREMFENTS AND CVFRFLCw, 249
RESEQUENCF
RESFLUENCE OPTION (REYWORC),. 3-¢
SCHEME
USING MACHCS TC IMPLFMFAT IRTERFRETIVE SChEME, 1-11
SENSE
SENSE SWITCH OFTICONS. 3-¢
SCNSE SwITCHES
SSUP FUNCTIONS OF SENSF SwlTCHES, 3-6
SETTING
SETTING Ct A REGISTER FOR KEYWCRL. 2-%

a(s56

CCMPUTER GENERATED INDEX

SOURCE
SOURCF FORMAT, 3-6
SSUP FXAMPLE OF SOURCF FCR MACNETIC TAPE LPCATE. 3-11
S5UP SYMBEOLIC SCURCE UPDATE. 31
SOUP
SSUP COMMANC FORMAY, 13-2
SSUP KXAMPLE OF FULL LISTING CLRING UPDATE,. 3-12
SSUP FXAMPLE Of NEW MASTER. 3=13
§SUP FXAMPLF OF SOURCE FOR MAGNETIC TAPE LPLATE. 3=~11
SSUP PROGRAM FLOW, 3=2
SSUP SUMMARY EXAMPLE. 3=4
SSUP SYMHBOLIC SOURCE UPDATE. 3-1
SSUP COMMANDS
SSUP COMMANCS, 3-3
S5UP FUNCTIONS
SSUP FUNCTICNS OF SENSE SwITCHES. 3e6
STATEMENT
MACRO STATEMENT, 1-3
SUMMARY
§SUP SUMMARY EXAMPLE, 3=4
SUMMARY FXAMPLE, 3-3

SWITCH

SENSE SWwITCH OPTIONS. 3«6
SYMBOLIC

SSUP SYMBOLIC SOURCE UPDATE. 3-]
SYSTEM

SYSTEM GFNERATION, 1-4 2-4 3-7
TERMINATION, 2-6

TERMINATON
TERMINATCN, 1=6

TRACE
MACR(DEFINITION FOR CONCITICNAL TRACE EXAMPLE, 1=18
TRACE EXAMPLE PROGRAM, }=17
TRACE EXAMPLE USING MACRCS AND CCACITICN ASSEMBLY. l=16
TYPICAL ASSEMBLY LISTING < CCNCITICNAL TRACE EXAMPLE.

1=-19
TYPICAL MAL OUTPUT CODE - CCNCITICNAL TRACE EXAMPLE.
1-18
TYFICAL
TYPICAL ASSEMBLY LISTING - CCNCITICNAL TRACE EXAMPLE,

i=19
TYPICAL MAC QUTPUT CODE - CCNDITICNAL TRACE EXAMPLE.
1-186
UPCATE
EXAMFLE CF MAGNETIC TAPE LPCATE, 2-10
EXAMPLE CF PAPER TAPE UPCATE, 3-8
§SUP EXAMFLE OF FULL LISTING CLRING UPDATE, 3«12
SSUP EXANFLE OF SOURCE FCR MAGAEYIC TAPE UPLATE, 3-11
SSUP SYMBCLIC SOURCE UPDATE. 3-1
USING MACROS
TRACE EXAMPLE USING MACKCS ANC CCACITION ASSEMBLY, 1=16
XREF
XREF EXAMFLE. 22
XREF MEMORY
XREF MEMCKY V5 PROGRAM SIZE. 2-6

AC3e

ONG LINE - -

o]

- FROM: NAME _ DATE:

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form*

“

TITLE: SERIES 16 O16-XREF, SSUP, AND MAC ORDERNo.:|AC94, REV. 0
:
SOURCE LANGUAGE PROCESSORS DATED: |JULY 1971

ERRORS IN PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:

{P(e;ase Print)

COMPANY
TITLE

h

*
Your comments will be promptty investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. If you do not require a written reply, please check here.D

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

FIRST CLASS
PERMIT NO. 39531
WELLESLEY HILLS,
MASS. 02181

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS
60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: PUBLICATIONS, MS 050

Honeywell

e eeenneeeessssiceseceo ot CUTALOD B Tt

"The Other Computer Company:
Honeywell

HONEYWELL INFORMATION SYSTEMS

10519
1474 Inthe U.S.A.: 200 Smith Street, MS 061, Waitham, Massachusetts 02154
Printed in U.S.A. in Canada: 2025 Sheppard Avenue East, Willowdale, Ontario AC94, Rev. 0

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	Index-01
	Index-02
	replyA
	replyB
	xBack

