PL516, An Algol-like assembly language for the DDP-516

B A Wichmann,
National Physical Laboratory
Teddington, Middlesex

January 19, 1999

Abstract

Thisreport gives details of ahigh-level assembly language for a small 16-bit machine. The language
is based upon thework of N. Wirth on PL360.

The report is intended as a user’'s manual, a description of the Algol-like assembler for those not
familiar with the idea, and as a compiler-writer’'s guide to the system.

Contents

Introduction

What isan Algol-likeassembly language

The DDP-516

Thelanguage

41 Thesyntaxnotation

42 Thelanguagedements L
421 EXPressions
422 Arraysandsubscripting Lo
423 Conditions
424 ConstantS e
425 Assignmentstatemento
426 Staementsusingconditions Lo
427 Loopcontrol
428 Gotostatements
429 Procedurecals.
4210 Statements e
4211 Codestatement.
4212 Declaraions
4213 Programand procedures
4214 Identifiers

Further examplesand programming advice

5.1 Conditiontest: asimpleexample L

5.2 A simplesort program and some input/outputroutines L. L

53 Pogtioningcodeinthecore

54 Adesk calculator program

55 Asdtringeditor

56 Arrayhandling

5.7 Programsegmentation

58 Useof codestatements 42

59 Programchecking 42
5.10 Good programming practice 43
6 A program testing system 43
7 Structure of the compiler 44
7.1 Thebasiccompilerroutines 44
72 Thecompilertables L 44
7.3 Somesyntacticroutines 45
74 Somedatisticsonthecompiler.o 48
8 Commentson machinedesign 49
A Hardware representation 50
B Failure numbers 50
C Limitationsand restrictions 50

1 Introduction

The language described in thisreport isbased upon PL360 by N. Wirth [1]. Asfar asthe hardware alows,
thelanguagefollowsthe same conventionsas PL360. The short address|engthisexploited by using thefirst
sector of the machine in a similar way to the Program Reference Tabl e of the B5500 (as will be explained
in more detail later).

Thisreport is an attempt to combine (a) amanual for users (b) a description of an Algol-likeassembler
for other interested parties, and (c) a compiler-writer's description of the language and compiler to assist
in future enhancements to the system. Clearly three reports should have been written but the author hopes
that thiswill be adequate.

It must be emphasized that this language is no substitute for Fortran or Algol 60, but rather a more
convenient and flexible system for writing large machine-code programs. The main advantage over DAR,
the assembler for the DDP-516, is that program texts are largely self-documenting due to their Algol-like
structure.

The author would like to thank al those who have contributed to the design and implementation of the
system, namely Miss Elizabeth Gilesfor preparing the compiler text, to D.A. Bdll who wrote the compiler
initsown language and to G. Alway, F.G.Duncan, R. Scowen, P. Wilkinson and M. Woodger all of whom
made many suggestions and criticisms on the basis of the author’s rough notes.

The work described in this paper was carried out as part of the research work of the Nationa Physical
Laboratory.

2 What isan Algol-like assembly language

The basic idea of PL516 isto provide a facility for writing machine-code which makes the program text
look superficialy like Algol. This can be done by separating the features of Algol 60 into two classes.

Firstly those which require no subroutines to implement them in the running program. These can be
implemented in PL516. For instance, identifiersfor naming locationsin store. Six characters are significant
in thiscompiler and additional characters can be added athough they are ignored. This gives substantially
grester flexibility over DAP which only alows up to four characters in an identifier.

Secondly are those features which require subroutines in the program because the machine cannot
implement the feature in a straightforward manner. Dynamic storage alocation is such a facility. If the
machine had hardware for storage allocation like the B5500 then thiswould be a feature of the assembler.
Since there are no hardware facilitiesfor floating point on the PPD-516, thislanguage uses integers only.

Hence the following table can be constructed:

PL 516 contains. identifiers, type-checking, scope to identifiers, procedures, compound statements, con-
ditiona statements, simple for loops.

PL 516 does not contain: dynamic storage allocation, multi-dimensiona arrays, more than one parameter
to procedures, call by name, expressions involving temporary working store, real variables.

In addition to the Algol-like facilities of the assembler, one can write ordinary machine code (for
communicating with peripherals, for instance), refer to constants by identifiers to improve the legibility of
the program, and initialisethe values of an array (possible because fixed storage is used).

Numerous exampl es of procedures and programs are given throughout thisreport and aglance at these
will illustrate many of the points made above. Those who prefer to learn by examples may liketo start at
section 5.

3 TheDDP-516

Theassembler is, of course, amachine-dependent language. So to describehow thelanguageisimplemented
itisnecessary to understand the addressing mechanism and instruction code. Thisisgivenindetail in[2, 3]
but this section is added to make the report as complete as possible.

The DDP-516 isa 16-bit machine with two main registers. Thefirst register, caled the A register, isthe
main accumulator of the machine. The second isthe X register which istheindex register. The X register
isaso word 0 of the machine.

There are four classes of instructionsas follows:

Generic instructions. These addressless instructions usually operate on the contents of the accumulator.
An example is TCA (Twos Complement Accumulator) which negates A as a 16-bit signed integer.
In referring to machine instructionsin thisreport, the DAP conventions will be used (see [3]).

Shift instructions. Theseinstructionshave asix-bit field givingthe two’scomplement of the shift required.
Double length shifting can be done using the B register. The B register is not directly accessible
by instructions and so will not be mentioned very much in this brief account. Twelve shift orders
are availablein total from al possible combinations of |eft, right, logical and cyclic and arithmetic,
single and doublelength.

Input-output instructions. These instructions have a 10-bit address field divided between the device
function code and the device address.

Memory reference instructions. (for DXA mode machines having 16K only). These instructions are
very important since they determine the addressing structure of the machine. The operation code
is 4-bits giving a basic repertoire of instructions for adding, subtracting etc, the accumulator to the
word accessed. The remaining 12 bits of the instruction are divided into 3 one-bit flags and a 9-bit
address. One flag isthe ‘thissector bit’. If thisis set, then the full 14 bit address isformed by taking
the most significant five bits from the current instruction address. This means that the machine is
sectored into blocks of 512 words so that one can either address the sector on€'sinstructionsarein
or sector O, thefirst sector of the machine,

The other twoflag bitsarethe‘indirect’ bit and the*index’ bit which, together with the 14 bit address,
gives one machineword. If the ‘index’ bit is set then the current contents of the X register are added
to the 14 bit address constructed from the instruction. After this, theindirect bit isinspected. If itis
not set then the address of the operand has now been calculated. If theindirect bit is set, then the 14
bit address is used to load a 16 bit word which is interpreted as an address with indirect and index
bits. This process of indirection can be carried to arbitrary depth. To illustrate this, consider three
examples:

1. One of the memory reference instructionsis a jump order IMP. Ordinarily in the assembler
jumps are withinthe current sector and so adirect jump can be made. However, jumpsto labels
not in the current sector can be done by putting in sector 0 the 14 bit address of thelabel. Then
the jump is an indirect jJump i.e, with the indirect bit set in the instruction. The instruction
pointsto theword in sector 0. Thisword in sector O does not have the indirect bit set (nor index
bit) so the jump is effected to the 14 bit address given by thisword.

This can be represented diagrammatically thus:

JMP 'indirect’ ->
I T P word in sector O

........ | ocation of |abel anywhere in store

2. One of thememory reference instructionsloads the accumulator (LDA). How does one use the
addressing to load the ith element of an array b into the accumulator? For each array in the
assembler there is an ‘array word' which has the 14 bit address of the zero-th element of the
array together with the index bit set. To load b[i] we do:

LDX I which | oads the index register
LDA "indirect’ ->
| 1* ... "array word’ with index bit set in
current sector or sector O

........ b[0]

........ b[i] anywhere in store.

In the assembler the array word is aways directly addressable from the instruction and so is
either in the current sector or in sector O.

3. Thethird example illustrates how the addressing is used to implement switches. Switches are
simpler than in Algol 60 in that each switch element isalabel. The *switch word’ s has both
theindex and the indirect bit set, so diagrammaticaly thisis:

LDX I which loads X register as with arrays
JMP 'indirect’ ->
[sl I “array word in
current sector or sector O

........ s[0]

1 N PP s[i] address of ith |abel
-> | abel corresponding to ith
el enent of swtch

So one level of indirection plus one level with both indirection and indexing is used to do the
required jump.

Control instructions. Apart from the unconditiona jump other orders exist to transfer program control.

Generic control instructions. Instructionsin this category seeif aparticular conditionistrue. If it
is, the next instruction is skipped over. So it is usua to place unconditiona jumps after such
instructions, the jump being to code which deals with the case where the conditionisfalse. An
example of such an instruction is SPL which skips the next instruction if the accumulator is
positive. Hence theinstructions SPL followed by TCA takes the absol ute value of the contents
of the accumul ator.

Subroutine jump instruction. Thisinstruction, JST, is a memory reference instruction and so the
address is calculated in the way described above. In this address is placed one more than the
address of the JST ingtructionitself. Control then passes to the next word in the computer store.

In the assembled code of PL516 the addresses of procedures are kept in sector 0, and so one
has diagrammatically:

JST 'indirect’ ->
1 T PP address word of procedure in sector 0

[AP return address planted here

............. code of procedure
JWP "indirect’ to return address above

Asillustrated, thereturnisdone by doing an indirect jump to thereturn addresswhichis planted
by the JST instruction.

Note that code cannot be pure on this machine since the return addresses must be stored with
the code.

Increment in storeinstruction. Thisingtruction IRS, is aso a memory reference instruction. the

operand is incremented by one in the store without affecting the accumulator. If the result of
thisincrementing is to give zero, then the next instruction is skipped. Frequently one knows
from the logic of the program that the result can never be zero so no jump order or special
coding is placed after the IRS (beware!). Theinstructionisvery useful for loop control, but the
counting goes from —n, .. — 1. The jump after the IRS returns control to the beginning of the
loop.

Thecompareinstruction. The last instruction CAS is also a memory reference instruction which

does not dter the accumulator. It isa control instruction for comparing the accumulator with
the operand. If the accumulator > operand the next instruction is executed, with eguality
one instruction is skipped and with accumulator < operand two instructions are skipped. By
inserting appropriate jump instructions after the CAS all variousinequalities can be tested for.

4 Thelanguage

PL516 will bedescribed in amanner similar tothe Algol 60 report [4]. Each feature of thelanguageisgiven
by aformal syntactic description using a variant of the Backus-Naur notation. For those not familiar with
this, a verbal explanation is also given as well as many examples. The semantics are given by explaining
the code generated by the compiler. Thisisgivenin DAP, so thereader isreferred to [2, 3] or Section 3 of
thisreport for a shorter account.

4.1 Thesyntax notation

The notation used isthe Backus-Naur form with anumber of additionsto shorten the description introduced
by F.G. Duncan [5]. The cross-reference technique of Coulouris[6] is also used.
Thefirst addition isto abbreviate the fact that a symbol may or may not occur. For instance

means

<a>l=<c>

<a>i=<e>|<e>

Thatisan< a >isa< ¢ >,0ora< b > followedby a< ¢ >.
To assist in searching for the appropriate syntax rule, these rules are all numbered and each reference
toaruleis preceded by the number. Hence the rule above might be

<1l3a>={< 12>} < 4.8c>

Symbols of the language itself are written in bold or the symbol itself like the Algol 60 Report. A
complete list of the symbolsisgiven in Appendix A. Syntax rule n.r isto be found in section 4.2.n.

Another addition to the syntax notation isto deal with repetitions< a >} meansoneor more < a >'s.
Similarly < a >§ means zero or more < a >'s.

The last addition isto deal with listsin a compact manner.

<< a>list >means< a ><< b >< a >>f. Usudly < b > isaseparator such as a comma
or semicolon.

4.2 Thelanguage elements
421 Expressions

The purpose of expressionsis to do some calculation from values aready stored without using temporary
working store. All the calculationis donein the accumulator aone.
< 1.0expression >:i= < 13unary operator >{< L1lterm >
<< Ldbinary operator >< 1.2cell >
|< 1.5shift operator >< 4.0constant >>;

This means that an expression is any number of unary operators followed by a term followed by any
number of either a binary operator followed by a cell or a shift operator followed by a constant. The
evaluation of the expression is done by first evaluating the term, then applying the unary operatorsin the
reverse order to the appearance in the text, then applying the binary or shift operators in the order |eft to
right. Detailed examples are given later when the other terms have been defined.

< 1.2term >::= accumulator |
< 1.2cell >|
(< 1.0expression >) |
< 9.0procedure call >|
zero |
codeword < 11.5type identifier >|
if < 3.0condition > then < 1.0expression > else < 1.0expression >

The purpose of term is to do the initia loading operation on the accumulator before the operators are
applied to it. This load operation is omitted in the case where the accumulator symbol isread. By this
means the current contents of the accumulator can be used in an expression (but only by explicitly stating
this). When the symbol zero is written, then the instruction CRA (CleaR Accumulator) is generated. The
possibility of nesting expressions by means of brackets means that quite complex expressions can be done
although no temporary working storeis used.

< 12cell >::= < 14.Linteger identifier >|
ind < 14.linteger identifier >|
< 14.3array identifier >< 2.0subscript >|
< 4.0constant >

All variablesinthislanguage are 16-bit integers. A cell issuch aninteger addressed in one of four ways.
Firstly, the integer may be declared as a simple integer and given an identifier, say il or int2. Secondly
the simpleinteger ‘addi’ may contain the address of the integer required. In this case access must be made
with the indirect bit set in the instruction (see page 3). The case of arrays is dealt with when describing
subscripts. The last case is an explicit constant which is given alocation by the compiler as necessary and
accessed directly like an ordinary integer.

< 1.3unary operator >::= addc |inc | neg |
setsignplus | setsignminus | not |
changesign | copysignandsetplus | icleft |
cleft | swop | icright |
abs | abug

These operators act upon the current contents of the accumulator. Except for the last two, they are
single generic instructions. The corresponding DAP instructionsare;

addc ACA add the C register (a 1 bit overflow register and shift indicator) to the A register (ie, the
accumul ator)

inc AOA add oneto the A register

neg TCA negate the constants of the A register

setsignplus SSP clears the sign bit of the accumulator leaving the other bits unchanged
setsignminus SSM sets the sign bit of the accumul ator leaving the other bits unchanged

not CMA al thebitsin the A register are changed

changesign CHS change the sign hit of the A register leaving the other bits unchanged
copysignandsetplus CSA thesign bit of A isput into the C register, and the sign bit is cleared

icleft ICL Thisinstructionis for manipulating the A register regarded as two 8 bit characters. The most
significant character is moved to the bottom of the A register and the top of the register cleared.
Instruction stands for Interchange and Clear Left, ie(z,y) — (0, y)

cleft 1CA Interchangethetwo charactersin the A register ie (¢, y) — (y, ¢)
swop CAR Clear theleast significant character in the A register ie (¢, y) — (=, 0)

icright ICR Theleast significant character is moved up in the A register and the bottom of the A register
cleared, ie(z,y) — (v, 0)

The penultimate operator is dightly different in that two instructions are generated namely:

abs SPL TCA. This gives the absolute value of the A register (see page 4).

abug is a compiler controlled diagnostic facility. When the appropriate compiling options are set the
instruction JST *’ 776 is generated, otherwise no code is output. The compiling options are explained in
the programming notes for the version of the compiler in use.

<1l2term>:= +|—|and|
nev | x| /| mod

It has been pointed out in < 1.0expression > that ‘term’ caused the accumulator to be loaded, after
which the unary operators are applied. At this stage the binary operators can be invoked. The instructions
to do thisare asfollows:

+ ADD < operand >
- SUB < operand >
and ANA < operand >
nev ERA < operand >
The last three are somewhat different since more than oneinstruction is generated:
* MPY < operand > LLS 15 (long left shift 15 places)
/ LRS 15 (long right shift 15 places) DIV < operand >
mod LRS 15 (long right shift 15 places) DIV < operand > |AB (interchange A and B registers)

These instructions are the ones produced by the current version of the compiler. Since MPY and DIV
are not available on some machines, they must be replaced by a subroutine call or otherwise removed
altogether. The compiler itself does not use these instructions.

Some realistic examples of expressions can now be given.

1. absa+b
Thiswill generate the machine code:

LDA
SPL
TCA

A since ais the term
after the unary operators are
applied, two instructions for abs

. hot (a+b)andc
The term (a+b) must be evauated first, this gives:

LDA
ADD
CVA
ANA

A formthe terma

B fromthe binary operator + and cell b
fromthe unary operator not

C fromthe binary operator and cell ¢

. The same expression as above with the brackets missing: not a+ b and ¢

LDA
CVA
ADD
ANA

A

B
Cc

In other words, the brackets in expressions determine the positioning of the unary operators. Unlike
Algol 60 or Fortran all operators have the same priority.

. Forexample: a+b* ¢

generates the code:

LDA
ADD
MPY
LLS

=0 W>

a1

since the binary operators are applied in the order left to right. No priority can be given to operators
as can be seen from this example. This is because once ‘@ has been loaded into the accumulator
there is no way of multiplying b and c. Temporary storage would have to be used to preserve the
contents of the accumulator but thisis excluded.

. accumulator +b* c

Here the current constants of the accumul ator is being referred to so no load operation is done, so the
code generated is

ADD
SUB

B
C

. nhot setsignminus zero

Instead of aload operation zero clears the accumulator so we have

CRA

SSM from set si gnmi nus
CMA from not

Notethat the unary operators are applied in the order right to left. The effect of thisistoleavein the
accumulator the largest positiveinteger (zero sign bit, therest al 1's).

. neg (abs (not a+ indb)/c) mod d
Just to illustrate how complex expressions can be. The code generated is

LDA A since the innernost termis evaluated first

CVA from the not

ADD* B * neans set the indirect bit in instruction
SPL

TCA now abs (two instructions)

LRS 15

DV C the /c conpletes the outernost term

TCA so now apply neg

LRS 15

Dv D

| AB finally the nod d

Expressions involving constants, arrays, procedure calls, conditions and type identifiers will be illus-
trated when the appropriate syntax has been described.
< 1.5shift operator >:= singlerightlogical | singleleftlogical |
singlerightarithmetic | singleleftarithmetic |
singlerightcyclic | singleleftcyclic |
doublerightlogical | doubleeftlogical |
doublerightarithmetic | doubleleftarithmetic |
doublerightcyclic | doublelefteyclic |

The number following the shift operator istwo’s complemented and truncated to 6 bits and then placed
in the appropriate instruction. It is only possibleto shift by a constant amount, since the amount is placed
in theinstruction by the compiler.

The above operators generate the shift instruction (in the order above): LGR, LGL, ARS, ALS, ARR,
ALR,LRL, LLL,LRS,LLS, LLR and LLR. The doublelength shiftsregard the B register as an extension
to the bottom of the A register.

The hardware representation of the shifts (see Appendix A) uses five characters to increase program

legibility.
4.2.2 Arraysand subscripting

Onedimensiona arrays of integers are part of the assembly language. Because of the fixed storage lay-out,
the size of the array must be given to the compiler. Array elements are accessed in the manner described
on page 4.
The syntax of the subscripting mechanism is:
< 2.0subscript >::= [<< 14.linteger identifier >|
< 4.0constant >|
xsymbol >]
The purpose of the subscript is theload the X register, so that the appropriate element of the array can
be accessed. Inthefirst casetheinteger isloaded into theregister, in the second case the constant isloaded.
In the fina case no LDX ingtructionis generated. Thisis used if the X register already contains the
required value. It will be noted that complex subscript expressions are not allowed. Thisisa consequence
of the fact that no arithmetic operations can be performed in the X register itself. When more complex
expressions are required, the relevant calculation must be done in the accumulator and the result assigned
to word O of the machine (which isthe X register). Thiswill be explained in section 4.5.2.
Some examples of expressionsinvolving array accessing can now be given.

1. arlfi] + ar[j] - ar[K]
Each subscript gives a LDX operation so the code for thisis

LDX |
LDA* ARL
LDX J
ADD* AR
LDX K
SuB* AR

Note the indirect addressing viathe array word in all the instructions accessing the array el ements.

2. not(ar[i] and arl[xsymbol]

Thefirst subscript loadsthe X register with i so that the second array el ement accessed isarl[i]. The
code generated is:

LDX |
LDA* AR
ANA* ARL
CVA

3. negabs(ar[i] * arl[xsymbol])/ ar2[j]
This generates the code:

LDX |

LDA* AR which loads the first array el ement
MPY* ARL

LLS 15 mul tiplying by the second array el ement
SPL

TCA from abs

TCA from neg

LDX J

LRS 15 note the LDX operation is performed before any of
D v AR2 the divide operation

4.2.3 Conditions

There are no boolean variables in PL516. Apart from ordinary jump instructions control is effected by
means of conditions. This is done by making use of the test orders which skip one instruction if the
condition istrue. The instruction which may be skipped over is ajump to the code which deals with the
case when the condition is false. This jump order is generated automatically by the compiler and in the
examples which follow iswritten as IMP fal se.
< 3.0condition >::= < 1.0expression >< 3.3relational operator >< 1.2cell >|
< 1.0eapression >< 3.2accumulator condition >|
< 9.1conditional procedure call >|
< 3.1condition operator >
The first type of condition uses the CAS instruction (see page pagerefsec354) to compare the current
contents of the accumulator (set by expression) with the word in store determined by cell.
The second case iswhere the expression sets the accumul ator and is tested by a singleinstruction.
Thirdly, a procedure can be a conditional procedure. In this case the procedure may return control in
the ordinary positionif the conditionisfase, or oneinstructionfurther onif the conditionistrue. Thiswill
be explained in more detail when procedure calls are dealt with in section 4.2.9.
The last case isthe simplest, the syntax of whichis:
< 3.1conditional operator >::= sensel | sense? |
sense3 | sense |
anykey | nokey |
cset | notc
There are four sense keys on the machine, numbered 1 to 4. The instruction SS1 skipsthe next order if
sense key oneis set. So the condition operator sensel generates the code:

SS1
JMWP fal se

and similarly with sense?, sense3 and sense4. anykey gives SSS, nokey gives SSR, cset gives SSC
and notc gives SRC.

10

The address planted in the IMP false instruction will become clear when examples of conditionsin
pieces of program can be given.
< 3.2accumulator condition >::= zero | plus|
nonzero | odd |
even | minus
In this case, after generating code to eval uate the expression, the single instruction (SZE, SPL, SNZ,
SLN, SMI, respectively) followed by IMP false is generated.
Examples of such conditionsare:

1. a+bzeo
generates:
LDA A
ADD B from expressi on
SZE
JMWP fal se

2. Using the convention true = —1 and false= 0 then one would write the bool eans expression bool 1
and bool2 as;

bool1 and bool2 nonzero generating:

LDA BOOL1
ANA BOOL2
SNZ

JMP fal se

3. a+Db[i] minus

generates:

LDA A

LDX |

ADD* B from expressi on
SM

JMP fal se

4, zerozeroisavaidconditionsincethefirst zero isfromterm and the second an accumul ator condition.

The codeis:
CRA

SZE

JMP fal se

Clearly the skip is dways performed. Confusionis not likely to arise from the double use of A zero
since the context is clear in practical cases.

< 3.3relational operator >:i= =|#£|>|<|>|<
After the evaluation of the expression and generation of a possible LDX if the cell isan array element
the codeis:

CAS cell address

SKP ski ps one instruction
SKP
JWw false

11

CAS cell address

SKP ski ps one instruction
JWw false

>
CAS cell address
JW *+43 this neans junp forward three places
NOP dumy instruction
JW false

>
CAS cell address
NOP dumy instruction
SKP
JWw false

<

CAS cell address
JMP fal se
NOP

The details of these instructions need not, of course, be remembered. The effect of the code is clear,
control passes according to the usua interpretation of the operators leaving the value of the expressionin
the accumulator. 1t isworth remembering that using relational operators generates 3 or 4 instructions, but
hasthe advantage that the accumulator is compared with aword in store without disturbingthe accumul ator.

1. accumulator = agenerates

CAS A
SKP

SKP

JMP fal se

Note there is no code from the expression.

2. a+b# c[i] generates

LDA A

ADD B from expression
LDX |

CAS* C fromcl[i]

SKP

JMP fal se

3. al/ b[i] > c[xsymbol] generates

12

LDA A

LDX |

LRS 15
Dwv B
CAS* C
JWP *+43
NOP

JWP fal se

4. amod b < ¢ generates

LDA A
LRS 15
DV B

| AB

CAS C
NOP

JMWP fal se

Some examples can now be given of conditional expressions the syntax of which appeared in <
1.1term >.
The code generated is:

<condi ti on code>

JWw false ------------------- > a

<extra condition code>

JMP e > b

<code from second expression> a <----
b <----

So the effect is that if the expression is true the first expression is evaluated otherwise the second
expression is executed.
1. if xx>yy then xx elseyy
Code to give the maximum of xx and yy in the accumulator.
The code generated is:

LDA XX

CAS YY

JMP *43

NOP

JMP false ---->a
LDA XX

JMP ---->b
LDA YY <---- a

<--- b

2. if atb=cif d # ethen f[-6] else g[8] el se neg (y+2)
This generates:

LDA A

ADD B

CAS C

SKP

SKP

JWP false ----------- > a

13

LDA A

CAS E

SKP

Jw false ----- > b
LDX =-6

LDA* F

N > C
LDX = b<-----

LDA* G

JMP C<-------- >d
LDA Y a<------------
ADD Z

TCA

424 Congtants

Facilities for constantsin the assembler are somewhat different from Algol 60. Thereisno ‘literal’ facility
in the instruction set for loading constants into the accumulator. Hence at binary machine-code level there
is no distinction between constants and ordinary integers. In PL516 however, there are three types of
congtants. Firstly there are the explicit constants, a string of digitsasin Algol 60. Secondly thereisatype
of entity called constant. Thisis likean ordinary integer except that an initial value is given to it and the
assembler checks (as far as possible) that no assignment is made to it. Such constants are referred to by
their identifier. The third type of constant, called a compile constant, is also referred to by an identifier.
This, however, is not given any storage in the running program until it is referred to in a context which
requires that it should be given storage. The significance of thiswill become clear when examples of the
use of constants in complete programsis given.

The purpose of giving constants identifiersis to improve program legibility and yet preserve the static
nature of the constant in the program text. Explicit constants should be used very rarely since atering
one declaration of aconstant is substantially easier than altering several occurences of the explicit constant
appearing throughout the program text.

< 4.0constant >::= < 14.4constant identifier >|
< 14.5compile constant identifier >|
< 4.Inumber >|
charsymbol < string character >< string character >|
addressof {ind}{index} < 11.5type identifier >|
<K< 4.0constant >, < 4.0constant >>
< 4.Inumber >:= {—} < octalsymbol < octal sequence >|
< digit >7>

An octal sequence is of course, a sequence of one or more digits excluding 8 and 9. The minus sign
has the usual interpretation, but note that it is not an operator. The unary operator written as - in Algol 60
isneg in PL516 (see < 1.3unary operator >). The accumulator can be regarded as two 8 bit characters
so thereis afacility to set constants appropriately. A string character is a space or a Teletype 33 graphic
character and so excludes control characters.

Indirect and indexed addressing is ordinarily dealt with for the user through the use of arrays (and the
layout to be explained later). However 16 bit addresses with the index or indirect bits set can be formed by
using the addressof type of constant. The form of the addressis given in section 4.2.11.

The form of constant appearing in angle brackets (shown as <, >>) isto allow each half of the word
to be set separately by the appropriate constant. In the example given below, -8 is placed in the most
significant 8 bitsand octal 70 in the lower 8 bits.

1. Examples of constants

noinputs
692
-84

14

octalsymbol 123
charsymbol AB
<-8, octalsymbol 70 >

2. Examples of constants appearing in expressions
a+ octalsymbol 77
generates

LDA A
ADD =77 ' neans octal, the
= neans put address of '77 in
the instruction

interrupt singleleftlogical clockpulse

Noteinthiscase ‘clockpulse’ cannot be an integer, since the syntax for expression excludesthis. The
code generated is

LDA | NTERRUPT
LG CLOCKPULSE

The two's complement of the value of the constant ‘ clockpulse’ is truncated to 6 bitsand placed in
the instruction.

3. Constantsin conditions

ar[-6] > b[-2]
generates

LDX =6
LDA* AR
LDX =2
CAS* B

JMWP *43
NOP

JWP fal se

Note that negative constants can be out into subscripts because the minussign is part of the constant.
Assume that there is a compile constant ‘minusl’ declared to have the value -1 then
a+-1=minusl

would generate

LDA A
ADD =-
CAS =-1
SKP

SKP

JMP fal se

Both the CAS and the ADD instruction refer to a word containing -1. Such repeated references to
the same constant use the same word in store. If minusl was an ordinary constant, however, the CAS
operation would address the word set aside for ‘minusl’ on its declaration.

The distinction between compile constants and ordinary named constants can beignored initially since
it is of secondary importance. The point is covered in more detail in section 5.

15

425 Assignment statement

The purpose of assignment statementsisthat same asin Algol 60, namely to give new valuesto thevariables
listed on the left-hand side of the statement. The syntax is as follows:
< 5.0assignment statement >::= << 5.1hs > list <,>>«—< 1.0expression >
< 5.1hs >:= < 14.linteger identifier >|
{ind} < 14.linteger identifier >|
< 14.3array identifier >< 2.0subscript >|
accumulator
So an assignment statement is one or more ‘lhs's separated by commas followed by — and then the
expression. The code generated is to first evaluate the expression and then to store the contents of the
accumul ator to the variables listed in the left-hand side in the order |eft to right.
Various distinct types of element on the left hand side produce the following code:
< integer identifier > produces:

STA <integer>
ind < integer identifier > produces:
STA* <integer>
< array identifier >< subscript > produces:

code for subscript as described in 4.2.2
STA* <array>

accumulator producesno code and soisincluded if the expression isto be eval uated but no assignment
made.
Some examples:

1. Zeroise anumber of elements of an array

ari], &j], a[k] — zero
This generates the code

CRA from zero
LDX |
STA* A froma[i]
LDX J
STA* A froma[j]
LDX K

STA* A from a[K]

Note that the order of the assignment is the order the variables appear in the text. This can be
important if xsymbol appears as a subscript, for instance.

2. afi], b[xysymbol] < c[j] + b[xysymbol]

generates

LDX J

LDA* C

ADD* B from expression
LDX |

STA* A froma[i]

STA* B from b[xsynbol]

Hence the assignment above is equivaent to
arfi], b[i] — c[j] + b[j]
but requires two fewer LDX instructions.

Programmers familiar with Algol 60 will no doubt be annoyed with the use of *, in the assignment
statement. The purpose of thisisto make the compiler somewhat simpler.

16

3. To add one to the current contents of the accumulator one writes:
accumulator < accumulator + 1
which generates the singleinstruction

ADD =1

4. indaddv,i,j —i+]

generates

LDA |

ADD J from expression
STA* ADDV

STA |

STA J

5. How does one write the equivalent of the Algol 60
a:=b[i+]?
Clearly the X register must be loaded with i+j. The X register is word O of the machine, so the

assembler has a declaration set up for the integer X, which is given the address 0. So the above can
be written:

X —i+];
a < b[xsymboal]
This generates the code

LDA |
ADD J
STA 0
LDA* B
STA A

To summarise, the facility provided by assignment statementsin PL516 is very similar to that of Algol
60.

426 Statementsusing conditions

One of the distinguishing feastures of Algol 60 over Fortranisthat fewer labelsarerequired. Thisisbecause
flow of control can be expressed via conditiond statements and for loops. This feature of Algol 60 is
present in PL516. Three forms of conditiona control statements are available.
< 6.0if statement >::= if < 3.0condition > then < 10.0statement >
dse < 10.0statement >

The effect of this statement is similar to the construction in Algol. If the condition is true the the first
statement is executed otherwise the second statement is executed. Representing the flow of control with
jumps by arrows, the code generated is as follows:

<condi ti on code>

JW false = ------------- > a
<extra condition code>

<code from first statenent>

JMWP e > b

Examples can be given using assignment statements as statements.

17

1. if azero then
a—b+c
dse
b—c+d

This generates the code

LDA A

SZE

JW false @ -------o-o-o---- > a
LDA B

ADD C

STA A

IJMP e > b
LDA
ADD
STA

W aoon

2. Add 3tod[i] if gi] iseven, otherwise subtract 6 from di].
if gi] even then
a[xsymbol] — accumulator + 3
else gxsymbol] < accumulator - 6

Note the use of xsymbol and accumulator which reduces the size of code generated, whichis:

LDX |

LDA* A

SLZ

JW false @ -------o-o-o---- > a
ADD =+3

STA* A

IJMP e > b
SUB =+6 a<------
STA* A

3. Intheabove exampletwo STA* A instructionsare generated which would not be produced if it were
hand coded. However this can be avoided by writing:

if gi] even then

accumulator — accumulator + 3
ese accumulator +— accumulator - 6;
a[xsymbol] — accumulator

Which generates

LDX |

LDA* A

SLZ

JW false @ -----o-o-o-o-o---- > a
ADD =43

IJMP e > b
SUB =+6 a<------
STA* A b<------

18

It must be remembered that repeated use of xsymbol and accumulator especially over anumber of
statements, makes the program less clear, since the reader must scan the text backwards to work out
thevalue of the X or A register.

4. Infact the above example can be more elegantly coded using a conditional expression. For instance
a[xsymbol] < if gi] even then accumulator + 3 else accumulator - 6;

This produces the same machine code as the previous example.

5. There are no boolean variables, so integers must be used instead. The convention 0 =falseand -1 =
true means that and and nev have the usual meaning.

Hence the Algol 60 statement

if aand b then
c:=arfi]
dse
d:=arfjl;

would be written in assembly code as

if aand b nonzero then
c — afi]

dse
d —arfj];

This generates the code

LDA A

ANA B

SNz

JW false = @ -------o-o-o---- > a
LDX |

LDA* AR

STA C

IJMP e > b
LDX J a<- - - - -
LDA* AR

STA D

Notethat if statements aways have an else. The reason for thisisto avoid the ambiguity that existed
in the original Algol 60 report[4]. The revised report overcame this by making the syntax more
complex. Thiswas not thought appropriatein this case, since being able to add a new statement type
would not be so easy. If no else isrequired then awhen statement iswritten.

< 6.0if statement >::= when < 3.0condition > then < 10.0statement >
The machine code generated for thisis:

<condi ti on code>

JW false = c-e---------- > a
<extra condition code>

<code from st at enent >

19

1. when xx <y then
accumulator — vy;
maxxy < accumulator

Note that the A register is either set with xx by the condition or by y from the first assignment
statement.

This generates the code

LDA XX

CAS Y

JW false @ -------o-o-o---- > a
NOP

LDA Y

STA MAXXY a<------

2. Load into the accumulator the sense key reading as a binary number.

accumulator < zero;
when sensel then

accumulator «— accumulator + 1;
when sense? then

accumulator «— accumulator + 2;
when sense3 then

accumulator «— accumulator + 4;
when sensed then

accumulator «— accumulator + 8;

Not surprisingly the accumulator symbol is a single character on the Teletype representation (see
Appendix A). The code generated for al thisis

CRA

SS1

JWP false (=+1)
ADD =+1

SS2

JWP false (=+1)
ADD =+2

SS3

JWP false (=+1)
ADD =+4

S4

JW false (=+1)
ADD =+8

Such repeated use of the accumulator symbol makes this one of the few cases when the DAP is
shorter to write than PL516.

The last form of statement using conditionsis the while statement - a surprising omission from Algol
60. The syntax is:
< 6.0while statement >::= while < 3.0condition > do < 10.0statement >
The code generated is:

<condi ti on code> b<-----
JW false @ --------o-o---- > a
<extra condition code>

<code from st at enent >

JMP e > b

20

So the statement is repeatedly executed while the conditionistrue.

1. Find thefirst non-zero element of an array form g[i] onwards

while di] zero then
i—i+1

This generates the code

LDX | a<-----
LDA* A

SZE

JMP fal se
LDA |

ADD =+1

STA |

So g[i] now has anon-zero value.

2. Find thefirst differing elements of the two arrays aand b

while di] = b[xsymbol] then
i—i+1;

This generates the code

LDX | a<-----
LDA* A

CAS* B

SKP

SKP

JMP false --->b
LDA |

ADD =+1

STA |

4.2.7 Loop control

The machine instruction IRS (IncRement in Store, see page 5) is clearly intended for loop control. If one
wishes to go round a loop 3 times, then aword in store* COUNT’ is used for thiswhich is given the value
initialy of -3. The loop control isthen done by:

IRS COUNT
JMP <to beginning of |oop>

This mechanism is very crude in that one must awaysincrement by +1 up to -1 and one must always
go through theloop once. Nevertheless this mechanism is adequate for the vast majority of ordinary loops.
So it isadopted for PL516.

< 7.0for statement >::= for < {ind} < 14.1integer identifier >«—< 1.0expression >|
< T.lzxassignment statement >>
do < 10.0statement >

< T.1lzassignment statement >::= xsymbol —< 1.2cell >

21

A specia caseiswherethe count isword O of the machine. Thisisthe X register which alowsindexing
to be performed efficiently. Inthis case, loop control does not use the accumulator since theinitia loading
of the X register can be done by an LDX operation. Thisis reflected in the syntax by the option using the
‘xassignment statement’.

The code generated is as follows:

Without the xassignment statement. STA CONTRCL

A<---- e me oo
<code from statemnent >
IRS CONTRCL
JMP e >a
The STA and IRS instructions have the indirect bit set if theinteger control variable hasind in front
of it.
with the xassignment statement. LDX <address of cell>
A<--- - mm e oo -
<code from statemnent >
IRS O
JMP e - >a

One important consequence of thismethod of loop control isthat it is convenient if array e ements are
addressed for —n, to -2, -1. Rather than produce arraysin either order (asin DAP) for consistency all arrays
are addressed from-(size of array in words) to -1. Thismeans that control variables have the oppositesign
to what would be usual in Algol 60 and the scanning isin the opposite direction (although in the direction
of increasing address).

Examples:

1. Add two vectors el ement by element putting the result in athird vector. Assume that the number of
wordsin the vectorsis-size.

This simple loop can be coded using the X register as the control variable thus:

for xsymbol — sizedo
a[xsymbol] < b[xsymbol] + c[xsymboal]

This generates the machine code

LDX Sl ZE
A<---- - mm e me oo
LDA* B
ADD* C
STA* A
IRS 0
JMP e >a

Note that size is negative, and that -30 (for instance) could have been written instead of size. This
would be undesirable since changing the program for a different size of arrays would require going
through the entire program text altering all the constants.

2. Findthelargest element of an array.
This might be writtenin Algol 60 thus:

j:=c[1]; for i :=2 step 1 until sizedo
if cfi] >j thenj :=([i]

22

The straightforward way of coding thisin PL516 would be

j — c[1]; for i — incsizedo
when c[i] > j then j — accumulator

Notethat i isused asthe control variable since an expression isrequired initially (since xsymbol —
incsizeisnot valid). theif in Algol must be changed to when sincethereis no elsein the statement.

Th code generated is

LDX SIZE

LDA* C

STA J fromj <- c[size]

LDA SIZE

AQA

STA | fromi <- inc size
A<--- - mm e mm oo

LDX |

CAS* C

JMP *+3

NOP

JWwW false --->b

STA J since c[i] is in the A register

IRS | b<----

IJMP e >a

3. Itishowever possibleto codethisusing the X register asthe control variable. Inthiscase, the largest
element of the array so far iskept in the accumulator.

Thisiswritten as
accumulator — c[size]; for xsymbol < inc sizepl do
when accumulator < ¢[xsymbol] then
accumulator — c[xsymbol]

The code generated is

LDX Sl ZE

LDA* C

LDX Sl ZEP1

CAS* C a<--------------
JMP *43

NCP

JMP false --->b

LDA* C

IRS 0 b<----

IJMP e >a

Notethat thiscode isvery nearly optimal. Thisisachieved by use of xsymbol and accumulator but
as aconsequence the program is much lessintelligible. The new constant ‘sizepl’ hasthe value one
more than size.

More complex for loopsthat exist in Algol 60 must be coded differently in PL516. Thiscan usually be
done conveniently with awhile statement without using labels.

For instance the Algol 60 for i :=j step k until n do, where n could have a value of zero so that the
controlled statement is not executed. This can be code as:

23

i —j;
whilei < ndo
begin
<controlled statement>;
i—i+k
end

Note that the example 5 given in 4.2.5 could not have been written as

xsymbol — i +j;
a < b[xsymboal]

Since thefirst statement is not avalid assignment statement asi+j isnot acell. So x isused when one
isusing the X register as an ordinary integer but xsymbol is used when its specia properties as an index
register are being exploited.

42.8 Goto gtatements

Because of the generality of statements using conditionsvery few labels need be written in most programs.
Statements can be lebelled in a similar manner to Algol 60 as will be explained in section 4.2.10. Two
forms of goto are provided as follows:
< 8.0goto statement >::= goto << 14.6label identifier >|
< 14.7switch identifier >< 2.0subscript >>

The statement goto Il would generate the singleinstruction IMPLL.

Switches are set up in amanner similar to arrays as explained on page 4. Aswith arrays, theindex is
negative, so a 3 dement switch have index values -3, -2 and -1. Although thereis no logical necessity to
have them with negative values it is convenient for the mechanism to be the same as arrays.

The code generated from goto SS[i] is

LDX |
JMP* SS

The switch word SS has theindex and indirect bit set. Assuming i iswithinrange (thisis not checked!)
the next level of indirection (after indexing) will give the 14 bit address of thelabe in the switch. The way
the switch elements are set up is described in 4.2.12. Note that since the subscripting of switches is the
same as arrays, xsymbol can appear instead of an integer.

Examples

1. Find an element of an array ‘@ equd to i, and goto the corresponding element of a switch ‘branch’.
Otherwise goto the label ‘error’.

accumulator — i;
for xsymbol — sizedo
when accumulator = g xsymbol] then
goto branch[xsymbol];
goto error

Note that the accumul ator has been loaded with i outside the loop.
The code generated is

LDA |

LDX SIZE

LDX Sl ZEP1

CAS* A a<--------------
SKP

24

SKP

JMP false --->b

JVMP* BRANCH

IRS 0 b<----

JMP e >a
JMP ERRCR

2. Thereisno designational expressionsin PL516, so that the Algol 60
gotoif xx > 0then Il else errorl
must be written as
if xx>0then goto Il else goto errorl
This generates the code

LDA XX

CAS =

JWP *43

NOP

JMP fal se --->b
JMP LL

JMP --->a
JWP ERRCRL b<---

This is one of the few cases where PL516 generates code which is substantially worse than hand
coding. Note the non-executable jump round the ‘ el se statement’.

429 Procedure calls

There are four types of procedures in PL516. A procedure may expect a parameter and it may be a
‘conditional’ procedure. All four types exist but they may only be caled in the appropriate context. All
procedures may leave aresult in the accumulator. Procedure calls can occur in three different contexts. The
firstisin < 1.1ferm > and the second < 3.0condition > which have been given. The last context occurs
in the next section as a statement. The syntax is:
< 9.0procedure call >::= < 14.1procedure identifier > {(< 1.0expression >)}
< 9.1conditional procedure call >::= < 9.0procedure call >
the second rule is written down separately to imply a check in the compiler that only conditional
procedures can be called in the context of a condition, and that they may not be called in the other
two contexts. Apart from being conditiona a procedure may have one parameter. This parameter is
an expression which is evaluated before entering the procedure. Hence by anaogue with Algol 60, one
value parameter is alowed in which case the value of the expression isin the accumulator on entry to the
procedure.
So the code generated is

{<code from expression>}
JST* <procedure>

The procedure call is always indirect since the address of the procedure is kept in sector 0 as explained
on page 4.

It is aways assumed that procedures leave the A register set appropriately. So the same procedure can
be called in < term > (which is clearly expects this) or in < statement >. But if a procedure is an
accumulator procedure then on every cal it must have a parameter.

Examples are given of each of the four types of procedure.

25

1. ‘readn’ isan ordinary procedure which reads a number off agiven input device.
i,j,n—negreadn+1
This generates the code

JST* READN
TCA

ADD =+1
STA |

STA J

STA N

2. However readn could be called as a statement producing the single instruction JST* READN. This
would merely have the effect of skipping over one number on theinput device (assuming the contents
of the accumulator was not used).

3. ‘sguar€’ is procedure with one parameter which produces the square of the parameter as the result.
y*+ 2%+ 6

can be evaluated by the expression

square(square(y)+1)+5
This generates the code

LDA Y

JST* SQUARE
ADD =+1
JST* SQUARE
ADD =+5

4. In the version of the PL516 compiler in its own language there is an accumulator conditional
procedure ‘bsis. This determines whether or not the current basic symbol is one of a number of
types, that is, unary operator, binary operator etc. Thisis done by searching a table from a position
depending on the particular type.

For instance, the code to deal with the binary operator or shiftsin expression is as follows:

morebinorshift: if bsisthen
begin
nbs,;
cdl;
<code generation for binary operators>
goto morebinorshift;

end
dse
when bsis(shift) then
begin
nbs;
constant;

<code generation for shifts>
goto morebinorshifts
end;

The routine nbs reads the next basic symbol off the paper tape, and cell and constant deal with the
corresponding syntactic units. The details of code generation are omitted.

This generates the code

26

MOREBI NORSHI FT LDA Bl NARY
JST* BSIS
JMP false (to LDA SH FT)
JST* NBS
JST* CELL
<code generation for binary operator>
JMP MOREBI NORSH FT

JWP junp over el se: never executed
LDA SH FT

JST* BSIS

JMP false (to end)

JST* NBS

JST* CONSTANT
<code generation for shifts>
JVMP MOREBI NORSHI FTS

One can see from this how the compiler keeps scanning the text until a symbol which is not a binary
or shift isreached. The parameter to bsisis clearly necessary so that it is known which part of the
table to scan.

Thus conditional proceduresin PL516 are very similar to boolean procedures of Algol 60.

4210 Statements

Many of the types of statement have already been introduced. The completelistisasfollows:
< 10.0statement >::= < 5.0assignment statement >|
< 6.0if statement >|
< 6.1when statement >
< 6.2while statement >|
< 7.0for statement >|
< 7.dzassignment statement >|
< 8.0goto statement >|
< 9.0procedure call >|
< 14.6label identifier >:< 10.0statement >|
< 10.1null >
< 10.2compound statement >|
< 11.0code statement >

exittrue
exitfalse
sbug
< 10.1null >::=
< 10.2compound statement >::= begin << 10.0statement > list <;>> end

A compound statement isthesame asin Algol 60, namely begin followed by alist of statement separated
by semicolons followed by end. The code generated is, of course, just the concatenation of the code from
theindividual statements.

Most of the statements have aready been explained, note that conditiona procedures cannot be called
as statement.

Any statement can be labelled and within the scope of the label a goto statement can transfer control to
that point. Hence it is possibleto jump into the middle of afor loop (NB not validin Algol 60). The effect
of thiswould depend on the value of the control variabl e before executing the goto.

Code statement is dealt with in the next section; it merely provides a convenient method of writing
DAP-likeinstructionswithin the program.

Theingtructionsexittrue and exitfal se provide ameans of exit from a conditional procedure. Their use
other than inside a conditional procedure is regarded as an error by the compiler. The code generated for
exittrueis

27

I RS <return address>
JST* <return address>

and for exitfalseis
JST* <return address>

So exitfalseisthe ordinary return instruction, but exittr ue increments the return address by one before
returning. (Note: the result can never be zero.) This corresponds to the expected action of conditiona
procedure callsin conditions (see 4.2.3).

Thelast statement sbug isadiagnostic aid. It is either regarded as a dummy statement or asacall of a
procedure whose address word is placed in afixed positionocta 777 in sector 0. Hence the code generated
is:

JST* 777

The procedure called in thisway can be provided by the user, and can usefully print out the position of
its call, contents of the accumulator etc. Further details are given in the program notes for the version of
the compiler in use.

Examples

1. Thereisaconditional procedurein the PL516 compiler which isused totell if acharacter isaletter.
The main coding of this procedureis:

when accumulator < zsymbol then
when accumulator > zsymbol then
exittrue

This produces the DAP

CAS ZSYMBOL

JW false (to end)
NOP

CAS ASYMBOL

NOP

SKP

JW false (to end)
IRS <return address>
JMP* <return address>

If the exittrueis not executed, then the ordinary exit is made from the procedure (which is exitfalse).

2. A single procedure deals with constants as defined in 4.2.4. The coding of this procedure can now
befollowed:

if bs = charsymbol then
begin
value — swop inchar;
value — inchar+value;
nbs;
value — zero
end eseif numerical(bs) then
begin
number;
vadd — zero
end eseif bs = addsymbol then

28

begin
nbs;
if bs=indsymbol then
begin
value — octalsymbol 100000;
nbs;
end dse
value «— zero;
when bs = indexsymbol then
begin
value — octalsymbol 40000;
nbs;
end;
typeideviten add > octalsymbol 777 then
add — add - octalsymbol 1000 + sectno;
value — vaue + add;
vadd — zero;
end
elseif letter(bs) then
begin
identifier;
if type = const then
begin
value «— getcode(add);
vadd — add;
end eseif type- compconst then
begin
value — add;
vadd — zero;
end
ese
fail(notconst);
end
ese
fail (badstart)

The code closaly followsthe syntactic definition. ‘nbs' (next basic symbol) reads the next compound
symbol from the paper tape. ‘inchar’ reads a character. The coding sets the value of the constant
in ‘value, and its address (if it has one) in ‘vadd’, otherwise ‘vadd’ is set to zero. If the constant
is a declared constant then ‘getcode’ is used to get the value of the constant from the code already
generated.

The generated codeisnot given, sinceitisstraightforward. The example doesillustratethesimilarity
of the coding with Algol 60. Note that each compound statement can be studied in isolation, making
iteasier tofollowthe overal structure. The coding isby no means optimal, theaccumulator sysmbol
could be used in a number of places, but thiswould reduce the clarity of the procedure.

4211 Code statement

Code statements provide a means of writing DAP-like machine code within a PL516 program. Thisis
certainly necessary for input-output instructions since they are not otherwise available. For completeness,
the full range of DAP instructions are avail able (but not the pseudo-instructions). Using these instructions
when it is possible to achieve the same effect with ordinary statements loses the point of PL516. For this
reason writing code statements should be kept to a minimum except where necessary or (as sometimes
happens) a code statement is clearer than the equivalent PL516 coding.

29

In keeping with the rest of the language, code statement are in free-format, and have the following
syntax.
< 11.0code statement >::= codesymbol << 11.1memory reference >|
< 11.21/0 or shift >
< 11.3generic >>
< 11.Imemory reference >:= < memory reference mnemonic >
< ind|index | bfindindex |, >< 11.4address field >
< 11.21/0 or shift >::=< I/O or shift mnemonic >, < 4.0constant >
< 11.3generic > =< generic mnemonic >
< 11.4address field >::= < 11.5type identifier >|< 4. lnumber >|
* < 4.Inumber >
< 11.5type identifier >::= < 14.dinteger identifier >|
< 14.2procedure identifier >|
< 14.3array identifier >|
< 14.4constant identifier >|
< 14.6label identifier >|
< 14.7switch identifier >

Hence the syntax depends upon the type of mnemonic encountered. Naturally a generic mnemonic
compl etes the statement. For shift or input-output mnemonics a constant follows. Note that the constant
can be declared constant given an appropriate identifier. In the case of shift instructions, the constant is
negated and truncated to 6 bits before inserting in the instruction.

The memory reference instructions are more complex. The ind and index symbols cause the indirect
and index bitsto be set in theinstruction. The address field givesthe other 10 bitsof theinstruction. In the
case where thisisa number, the value of thisisput in theinstruction. Inthefina case of the star proceeding
a number, the current instruction address is added to the number and thisinserted in theinstruction. This
convention with numbersisidentical to DAP.

The most important address field is atype identifier. In this case the 10 bits inserted in the instruction
are the short address of the appropriate variable. For integers and constants thisis just the short address
of aword in store. For arrays and switches this is the address of the ‘array’ word. For procedures the
address is to the word in sector O giving the long address of the link (see page 4). For labels, the address
depends upon whether the label is globa or local (see 4.1.12) for details. In the case of aglobal label the
addressisto aword in sector 0 giving the full address of thelabel (as for procedures). But with locdl labels
the address gives the address of the labelled statement. No reference is possible to compile constants in
memory reference instruction. The reason for thisisthat the meaning would not be clear - is the value or
the address of the constant to be inserted in the instruction? For technical reasons the generic instruction
OTK must be written as codesymbol OTK,0.

Examples

1. Inthe compiler, the instruction mnemonics and binary instructionsare stored dternately inthe array
mcode. A linear search is made as follows

for xsymbol — -176 do
if mcode[xsymbol] = ident1 then

goto found;
else codesymbol IRS, 0;

The IRSinstruction achieves the same effect that step 2 woulddo in Algol 60. The generated codeis

LDX =76

LDA* MIODE a<-----
CAS | DENT1

SKP

SKP

30

JMP fal se

JMP FOUND

JMP over el se, never executed
I RS 0

I RS 0

N >a

Theuse of the IRSto increment aword in store (when no skip is expected) isby far the most frequent
machine code instruction in code statements.

2. Read acharacter from the paper tape reader.

codesymbol OCP, 1,

codesymbol INA, octalsymbol 1001,
codesymbol IMB, *-1;

codesymbol OCP, octalsymbol 101;

Needless to mention codesymbol is represented by a single character (%) on the teletype.
3. Output a character to the teletype.

codesymbol SK'S, octalsymbol 104;
codesymbol IMB, *-1;
codesymbol OCP, octalsymbol 104;
codesymbol IMB, *-1;

Typeidentifier has occurred twicein the syntax aready. Thefirst casewasin < 1.1term >. The effect
of codeword < typeidentifier > isto generate the instruction LDA, <type identifier>. By this means,
array words may be loaded into the accumulator without using code. The use of thisfacility isexplainedin
section 5.4.

The second case wasin < 4.0constant >. Address constants give a method of setting long addresses.
The bottom nine bits of the address is as for <type identifier> in code instructions. The sector number is
either O (global variables) of the current sector number (local variables). Thisdistinctionwill become clear
when declarations are considered in the next section.

4212 Declarations

The purpose of declarationsisthe same asin most programming languages, namely to inform the compiler
of anew variable. Variables can bedeclared at oneof two levels; either globally so that they can be accessed
at any point in the program or localy in which case they can only be accessed in the procedure in which
they are declared. All local variables are accessed with the ‘this sector bit’ set in the memory reference
instruction. Consequently no procedure can be more than 512 words nor can a procedure straddl e sector
boundaries. Similarly global variables or pointersto them are kept in sector 0, so not more than 512 global
variables may be declared. Neither of these restrictions have been found to be too severe. The compiler
itself uses 150 locationsin sector 0. The average length of procedures in the compiler is about 50 words,
so the loss due to desectoring is small. Techniques are described in section 5.3 to remove even thisloss.

Unlike Algol 60, the scope of avariableisfrom itsdeclaration until the end of the program or procedure
in which it is declared. Thisisto alow for one-pass trandation. Hence dl variables must be declared
before use (with the exception of local labels as explained below). Space is alocated to a variable on
its declaration - either in sector O for globas of the current sector for locals. arrays, string, switches and
procedures which are declared globally only have their address wordsin sector 0, the main body being in
the current sector.

The syntax of declarationsis

31

< 12.0declaration > = integer << 14.linteger identifier > list <, >>|
array <<< 14.3array identifier >
< later |< 12.1larray values >>> list <, >>|
constant << < 14.4constant identifier >=< 4.0constant >> list <,>>>|
compconstant <<< 14.5compile constant identifier >=< 4.0constant >> list <, >>>|
switch <<< 14.7switch identifier >=<< 14.6label identifier > list <, >>>|
labdl << 14.6label identifier > list <, >>|
string << < 14.3array identifier >=
< charl >< any string character excludingcharl >5< charl >> list <, >>
{ accumulator } { conditional } procedure < 14.2procedure identifier >;
< 13.1procedure body >
list < 4.0constant >|
origin < 4.0constant ><< + | — >< 4.0constant >>{|
global < 4.0constant >|
nextsector |
set << 14.3array identifier >< 12.1larray values >> list <, >>|
forward { accumulator } { conditional } procedure
<< 14.2procedure identifier > list <, >>|
< 10.1null >
< 121array values > = [< 4.0constant >]
{(<< 4.0constant >| " < stringcharacter >§" > list <,>>>)}
Thislong syntax is not complex sinceit divides naturaly into syntax for each type of declaration. Each
oneistaken separately.
Declaration of integers
The syntax merely says that integer is followed by alist of integer identifiers separated by commas.
Theintegersare allocated space in sector O or the current sector intheorder of declaration. Theinitial value
of theinteger is undefined (that is, not necessarily zero).
Constants and compile constants
the syntax isidentical. Constants are given storage in the same way as integers but are initialised with
the value given. no storage is given to compile constants, so this facility is really to provide a mnemonic
for explicit constants of a program.
constant i =10, j =i; isvalid giving i and j both the value 10.
All the bounds of array and other such constants should be declared constants or compile constants so
that changes can be made merely by atering the declaration.
Arrays
One dimensional arrays are declared by giving the number of words required in square brackets. The
optionfacility in array values allows oneto giveinitia valuesto the elements of the array. The actual array
can be positioned at any point in the core by means of the later facility. If thearray isto be used it must be
declared, but it may not be convenient for the array to be positioned a that point in the code. In thiscase
the array isdeclared later and the storage set aside when the set declaration is reached. The absolute value
of the constant in the square brackets is taken as the number of wordsin the array (which can be zero: a
reason for thisis given in section 5.5). This means the same constant can be used for for loop control ie,

constant size=-100;
array a[size],
for i — sizedo

begin
end

With global arrays only the array word goes into sector 0, the rest being with the code from procedures
€tc.

32

Initial values which are simple constants are assigned in the order of increasing core location. An error
is produced if more constants are given than words allocated to the array. The" < stringcharacter > "j
facility isto include arbitrary length stringswithin an array. The string characters are read and packed two
to aword. Thelast word isfilled out with a space if necessary.

Example

array a[-5] (10, octalsymbol 764, "ABC")

For words of thisarray are specified as follows: g-5] = 10, a[-4] = 500, g-3] ="AB" (A a the top),
a-2] ="C", s0 g-1] isundefined.

Strings

Except for the declaration, strings are logically the same as arrays. One must have some facility for
setting al phanumeric stringswithout having to work out the length of it in advance (unlike Fortran!). String
declarations provide thisfacility. The string elements are addressed from 0 upwards for obvious reasons.
The initial character <charl> acts as aterminator of the string, but is not stored with the string.

Example

string error =/ . ERROR_NUMBER//,
linen=/_LINEENUMBER./

The string ‘error’ isinitialised as follows: error[0]='_E', error[1]='RR’, efrror[2]="OR’, error[3]="_N’,
error[4]="UM’, error[5]="BE’, error[0]="R.. The string ‘linen’ also requires 7 words (plus one for the
array word) the extra half-word being filled with a space.

Labels

Unlike Algol, labels must in general, be declared. The only exception is a label locd to a procedure
which first occurs in a goto statement or as alabel. It must be declared if a global label with the same
identifier has been declared and the first occurrence isin a goto statement. In most cases local labels need
not be declared, but global |abels must always be declared.

Local labelsare not alocated any space, since thelabelled statement isawaysreferenced in the current
sector of code. By means of globa labels control can be transferred to any part of a procedure or main
program. When a global label is declared aword is set aside for its long address which is set on meeting
the labelled statement. Hence ajump to aglobal label isan indirect jump viathe address word in sector O.

Switches

A switch isan array of labels. These labels must have previously been declared. The mechanism for
setting up the switch word is described on page 4. If the [abel in the switch is global then an extralevel of
indirection occurs to access the address word of the global [abel.

Example

switch SS=LL,Gl, LL1

where LL and LL1 are local and GL is global, then goto SS[-3] goesto LL, etc. The storage and
pointersare as follows:

switch word
[
[* 1. - | 1 |-...-->CL
[

Note that local labelsin the switch have the current sector number incorporated with the address of the
label to givethe long address. Global labels have theindirect bit set but the sector number is zero.

Procedures

Unlike all the types mentioned so far, procedures can only be declared globally. So procedures may
not be nested (a rarely-used feature of Algol 60). The address word of the procedure is set up on the
declaration and the address of the link inserted when the procedure coding is reached. As explained in
the other sections, procedures can be of our different types. This is specified by the accumulator and
conditional symbolswhich precede procedure. Procedures may be declared forward, ie in advance of the
main coding. Thisisto alow for recursion (the compiler is a recursive program). It can aso be used for

33

the procedures to be placed in any order (alphabetical, for instance) rather than an order depending on the
calling structure. A method of using forward declarationsfor program segmentation isgiven in section 5.7.

List directive

The constant given controls the information listed during compilation on the tel etype. This can include
the machine-code generated (printed in DAP-like form) and the name list. Details can be obtained from
the programming notes for the version of the compiler in use, together with the default value for the list
constant.

Origin directive

This directive can only appear as a global declaration. It performs a similar function to the ORG
pseudo-operation code of DAP. The constant expression followingorigin istaken as thelong address of the
next position for the generating local code. If paper tape output of the generated code has been requested,
theloca code generated so far will be output. Because explicit constants are always accessed with the ‘this
sector’ bit set, the constant pool is aso output at this stage and references to it filled in.

The position of code generation initidly is given in the programming notes for the version of the
compiler in use- it isordinarily octal 1000.

Thedirective origin 0 has a special meaning. Here the constant pool is cleared and code generated, but
the position for the next generation of codeis not advanced (and so is hext to the end of the constant pool).
This can be used to generate code without gaps at sector boundaries as explained in section 5.

The origin directive also divides up the current address for code generation between the sector number
and 9 bit displacement withinthe sector. Thismust be done beforeinstructioncode generation. For instance

array g1000];
procedure pl;
<procedure body>

would not work since the 1000 words allocated for the array would spill over the sector boundary.
So an origin directive must be inserted between the array and procedure declaration. origin O would be
appropriate hereif it is known that p1 will not then straddle a sector boundary.

The additional generality of the origin directive is to allow greater flexibility in positioning code. For
instance, a program could be arranged as follows

compconstant baseadd = octalsymbol 1000;
origin baseadd + octalsymbol 2000;
etc

So that altering one compile constant can shift the code into any positionin core.

Next sector directive

A disadvantage of the origin directive is that usualy one must be placed for each sector of code. So
large programswill have several making it awkward to changeitspositionin core. The next sector directive
overcomes this by clearing the constant pool and then incrementing the address for loca code generation
to the beginning of the next free sector. Thisdirective can be used liberally during program testing to avoid
any difficulty with procedures straddling sector boundaries.

Global directive

The constant after global must be greater than 16 and less than 512. The constant specifies the address
in sector 0 at which succeeding words must be taken. So

global octalsymbaol 400;
forward procedure pl, p2, p3;

means that the procedurewordsfor pl, p2, p3 would occupy words’ 400, ' 401 and ' 402 respectively. no
check is made by the compiler that global has not been misused to assign aword twice to the same location
in sector 0. Thisdirective is not likely to be very mush used, but isis vauable for program segmentation
(see sector 5).

The declarations

global octalsymbol 776;
forward procedure pabug, psbug;
global octalsymbol 400;

at the beginning of the program text allows one to trap calls generated for abug and sbug and make
them enter a user defined procedure.

34

4.2.13 Program and procedures

Program and procedures have the same structure, but as explained in 4.2.12.7, procedures cannot be nested.
The syntax is
< 13.0program >::=<< 12.0declaration > list <;>>< 10.2compound statement >
< 13.1procedure body >::=<< 12.0declaration > list <;>>< 10.2compound statement >
Note that the body of the procedure/program codingisacompound statement (unlike Algol 60). Thisis
tosimplify thecompiler - thebegin isused to separate thedeclarationsfrom the statements. Since procedure
declarations cannot be nested, this syntax implies that declarations can only be inserted at program level
(ie, globally - the address information or value being inserted in sector 0) or at procedure level (localy so
that access iswith the ‘this sector bit’ set). Hence blocksin the Algol 60 sense do not exist.
Examples

1. Procedure‘outchar’ printsacharacter on the monitor typewriter |eaving the accumulator undisturbed.

procedure outchar;
begin
codesymbol SK'S, octalsymbol 104; codesymbol IMP, *-1;
codesymbol OCP, octalsymbol 104;
codesymbol OTA, 4; codesymbol JMP, *-1;
end

2. Usethe above procedure to print a new line on the monitor.

procedure newline;
constant crlf = octalsymbol 106612;
begin
outchar(swop crlf);
outchar(swop accumulator)
end

Note that the second call of ‘outchar’ assumes that the contents of the accumulator has not been
changed by outchar. It would be safer to write outchar(crlf) for the second call.

More examples of complete programs are given in section 5.

4214 |dentifiers

< 14.Linteger identi fier >::=< identifier >

< 14.2procedure identifier >::=< itdentifier >

< 14 3array identifier > =< identifier >

< 14 4constant identifier > =< identifier >

< 14.5compile constant tdentifier >..=< identifier >
< 14.6label identi fier >:=< identifier >

< 14.7switch identifier > =< identifier >

The purpose of adding thisto the syntax is to imply atype-check by the compiler. On the declaration
a check is made to ensure the identifier has not been used at that level. Note that the first occurrence of a
local label may be at agoto or the labd itself, in which case the declaration is set-up then. On the use of
an identifier, the type check is made as implied by the syntax.

Two version of the compiler exist and they differ dlightly in the definition of an identifier. The version
for the DDP-516 in order to economise in core uses 5 bits for each character (giving 3 per word). This
means that the identifier alphabet has to be restricted. The alphabet chosenisAtoZ, 1, 2, 3, 4and 5. this
conveniently includesthe characters used in DAP mnemonics.

A further economy in the compiler has been to use the same routine for reading an identifier, a basic
symbol and a DAP mnemonic. For thisreason, interna spaces my not appear in an identifier. Also basic
symbols are terminated by a non-identifier character (space, for instance). The hardware representation is
givenin Appendix A.

35

5 Further examplesand programming advice

In this section all examples are given in the representation of the basic symbols that has been chosen for
the teletype. this representation is given in full in Appendix A. The examples have been copied directly
from the paper tape. The comment convention isthe"&" and all the characters following on that line are
ignored.

5.1 Conditiontest: asmple example

This program was the first one to compile and execute correctly. It tests the relational operators, and in so
doing uses quite a number of the language features.

The program listing contains as comments the machine code generated by the compiler. Thisisin two
columns. The first gives the address where the compiled code was placed. The address is either in sector
0 for global simple variables and pointers or in the current sector for the main code. The second column
gives the contents of the address given either in instruction format or octal or UNDEFINED (meaning that
no assignment is made by the compiler to that |ocation).

Note that only the array word for A goes into sector 0 at 103. This word has the index bit set and
pointsto location 1003 - one word beyond the three elements of the array. A word contai ning address of
the procedure OUT1 goes into sector 0 next. The code of the procedure follows on from the end of the
array. Usualy code statements would be typed in a more compact manner but one instruction per lineis
used here to improve the layout. The return link is planted in 1003 by a call of OUT1 and return is done
by the indirect jump at 1011. The procedure OUT2 illustrates the procedure call mechanism. On entry to
OUT?2 the accumulator contains two characters which are to be typed on the control typewriter. OUT1,
being an accumulator procedure, has an expression as a parameter. The expression .SWOP @ interchanges
the characters in the accumulator to print each character.

The constants are given space in the same way as CASE, | and J but are given the appropriate value, as
can be seen from the last column.

The conditiona procedure RELATION isthe main part of the program. The label declarations merely
tell the compiler that LE etc are local labels, so that the switch declaration can be compiled. The switch
declaration is alocal one so all the words are in the current sector. The switch word itself has both the
indirect and index bits set. So each element of the switch is the address of the corresponding label. As
with arrays, the switch word pointsto one beyond the corresponding label. Aswith arrays, the switch word
pointsto one beyond the last switch element. The .BEGIN signals the start of the code of the procedure to
thelink word is set aside at 1027.

The coding of the procedure is straightforward. It tests each of the relational operators for all possible
cases of numerica inequality. Note that each subscript causes a corresponding LDX operation to be
generated. The compiler generates jump orders in conditions and to jump over the statement after the
.ELSE. In fact the jumps at 1042, 1055, 1067, 1102, 115 and 1127 cannot be executed since they are
preceded by .EXITTRUE. In entry the return address is set in 1027. Thisisincremented by .EXITTRUE
before the indirect jump. .EXITFALSE isthe ordinary return and so just generates an indirect jump. The
relational operators generate the code that was given in 4.2.3 but the details need not be remembered since
the effect follows the conventional usage. The code from the relation follows the LDX and the CAS
instruction.

The main program starts at 1132. It consists of three nested for loops. It prints out a matrix of T's
and F's for each relation so that each operator can be easily checked. The for loops start by assigning the
appropriate constant to the control variable. The CASE and | for loops have a compound statement as the
controlled statement. The .BEGIN and .END do not generate any code but merely bracket the interna
statementstogether. The innermost statement prints T on themonitor if therelationistrue and F otherwise.
Thisis done by an if statement. Note how the call of RELATION is done. If the condition is true then
control is passed to 1143 instead of 1142 because of the IRS instruction in the body of the procedure
RELATION. Hence OUT2(TRUE) is executed, after which a jump is performed to avoid executing the
statement after the .ELSE. On the other hand, if the condition isfalse, control will passto 1142 and hence
to 1146 to execute OUT2(FALSE). The semicolon after OUT2(FAL SE) marks the end of the Jloop, so the
control instructionsfor thisare generated. Thisisthe IRS Jand then the jump to be beginning of theloop.

36

At the end of the program after the HLT, the literal constants are generated. This consists of -6 and -3;
note that only one -3 is generated althoughit is referenced twice at 1135 and 1137.
The output of the program on entering it at 1132 appears at the end of the program text.

& CONDI TI ON TEST
& LI STING & COMMVENT &OCTAL & | NSTRUCTI ON
& ADD & OR BI NARY

. I NTEGER
CASE, & 100 & UNDEFI NED
, & 101 & UNDEFI NED
J; & 102 & UNDEFI NED

. ARRAY
Al-3] & ARRAY WRD & 103 & 41003

(-1, 0, 1); & 1000 & 177777
& 1001 & 0
& 1002 & 1

@.PROCEDURE OUT1; &PROCEDURE WD & 104 & 1003
. BEG N & LI NK WORD & 1003 & 0
% SKS, ' 104; & 1004 & SKS 104
% JVP, *-1; & 1005 & JVP 1004
% OCP, ' 104; & 1006 & OCP 104
% OTA, 4; & 1007 & OTA 4
% JVP, *-1; & 1010 & JMP 1007
. END; & 1011 & JMP*1003

@ . PROCEDURE OUT2; &PROCEDURE WD & 105 & 1012
. BEG N & LI NK WORD & 1013 & 0
QUT1(.SWP @); & 1013 & ICA

& 1014 & JST* 104
QUT1(.SWP @); & 1015 & I CA

& 1016 & JST* 104
. END; & 1017 & JVP*1012

. CONSTANT
CRLF = ' 106612; & 106 & 106612
TRUE = $ T, & 107 & 120324
FALSE = $ F; & 110 & 120306

. CONDI TI ONAL . PROCEDURE RELATION, & 111 & 1027

.LABEL LE, GE, LT, GI, EQ NE
.SWTCH OPCASE = & SWTCH W & 1020 & 141027
LE, & 1021 & 1032
GE, & 1022 & 1044
LT, & 1023 & 1057
GT, & 1024 & 1071
EQ & 1025 & 1104
NE; & 1026 & 1117
.BEG N & 1027 & 0
. GOTO OPCASE] CASE]; & 1030 & LDX 100
& 1031 & JMP*1020
LE: .IF All] .LE A[J] .THEN & 1032 & LDX 101
& 1033 & LDA* 103
& 1034 & LDX 102
& 1035 & CAS* 103
& 1036 & JMP 1043
& 1037 & NOP
. EXI TTRUE & 1040 & I RS 1027
& 1041 & JVP*1027
. ELSE & JMP NEVER EXEC & 1042 & JVP 1044
. EXI TFALSE; & 1043 & JVP*1027
GE: .IF AlI] .GE AlJ] .THEN & 1044 & LDX 101
& 1045 & LDA* 103

37

. EXI TTRUE

. ELSE

. EXI TFALSE;

LT:

. EXI TTRUE

. ELSE

JAF Al < AlJ]

. THEN

. EXI TFALSE;

Gr: .IF AI] >

. EXI TTRUE

. ELSE

AlJ] . THEN

& JVWP *+3

. EXI TFALSE;

EQ .IF All] =

. EXI TTRUE

. ELSE

A J] . THEN

. EXI TFALSE;

NE: .IF A[l]

. EXI TTRUE

. ELSE

.NE A[J]

. THEN

. EXI TFALSE;

. END;
.BEG N
& | NH;

& START OF PROGRAM

.FOR CASE = -6 .DO

.BEGA N

.FOR'I = -3

.DO

Ro Ro R0 R0 Ro Ro R0 R0 Ro R0 R0 Ro R0 R0 R0 R0 RO R0 R0 RO RO RO RO RO R0 R0 R0 R0 RO R0 RO R0 R0 RO RO RO R0 RO R0 RO RO RO R0 RO RO RO RO QRO RO RO RO RO RO RO R0 Ro

Ro

1046 & LDX 102
1047 & CAS* 103
1050 & NCP

1051 & SKP

1052 & JMP 1056
1053 & I RS 1027
1054 & JMP*1027
1055 & JMP 1057
1056 & JMP*1027
1057 & LDX 101
1060 & LDA* 103
1061 & LDX 102
1062 & CAS* 103
1063 & NCP
1064 & JMP 1070
1065 & I RS 1027
1066 & JMP*1027
1067 & JWP 1071
1070 & JMP*1027
1071 & LDX 101
1072 & LDA* 103
1073 & LDX 102
1074 & CAS* 103
1075 & JWP 1100
1076 & NCP

1077 & JMP 1103
1100 & I RS 1027
1101 & JMP*1027
1102 & JWP 1104
1103 & JMP*1027
1104 & LDX 101
1105 & LDA* 103
1106 & LDX 102
1107 & CAS* 103
1110 & SKP

1111 & SKP

1112 & JWP 1116
1113 & I RS 1027
1114 & JMP*1027
1115 & JWP 1117
1116 & JMP*1027
1117 & LDX 101
1120 & LDA* 103
1121 & LDX 102
1122 & CAS* 103
1123 & SKP
1124 & JWP 1130
1125 & I RS 1027
1126 & JMP*1027
1127 & JWP 1131
1130 & JMP*1027
1131 & JMP*1027
NO CODE

1132 & INH

1133 & LDA 1165
1134 & STA 100

1135 & LDA 1166

38

& 1136 & STA 101
.BEG N
FOR J = -3 .DO & 1137 & LDA 1166
& 1140 & STA 102
.| F RELATI ON . THEN & 1141 & JST* 111
& 1142 & JVP 1146
ouT2(TRUE) & 1143 & LDA 107
& 1144 & JST* 105
. ELSE & 1145 & JVP 1150
OUT2(FALSE) & 1146 & LDA 110
& 1147 & JST* 105
& END J LOOP & 1150 & IRS 102
& 1151 & JMWP 1141
QUT2(CRLF) & 1152 & LDA 106
& 1153 & JST* 105
. END; & 1154 & IRS 101
& 1155 & JMP 1137
QUT2(CRLF); & 1156 & LDA 106
& 1157 & JST* 105
QUT2(CRLF); & 1160 & LDA 106
& 1161 & JST* 105
. END; & END CASE LOOP & 1162 & IRS 100
& 1163 & JMWP 1135
. END; & END PROGRAM & 1164 & HLT
& CONSTANT -6 & 1165 & 177772
& CONSTANT -3 & 1165 & 177775

STARTED AT 1132

|
_|
— = -

—— -
_|
m

HALTED AT 1164

5.2 A smplesort program and some input/output routines
(omitted)

39

5.3 Positioning codein thecore

Since the code is generated in two parts, sector 0 and the current sector; different techniques are available
for each. Usually the current sector is more important and so thisis dealt with first. Control is maintained
by the origin and next sector directives. In both cases thelitera pool isemptied before the code generation
address is altered. Because literals are dways accessed with the ‘this sector bit’ in the memory reference
instruction, these directives must be done at least once for every sector of instructions. Remember that the
literal pool itself may require quite a bit of space in the sector.

Withlarge programsit isconvenient to reposition thewhol e codewithout atering all theorigin directives.
This can be done by always doing .ORIGIN BASEADDRESS + '4000; etc where BASEADDRESS is a
compile constant whose value (a multiple of * 1000) relocates the entire program code. This does require
recompilation of the program but the compiler is sufficiently fast for thisnot to be a serious drawback.

A conseguence of the use of compile constants which are declared globally isthat no spaceis required
in sector 0, but space isrequired in every sector in which they are used in a memory reference instruction.
For instance, the error numbers of the PL516 compiler are declared likethis. The advantage of thisisthat
the source text giving the decl arations automatically listsall the error numbers. Declaring them as constants
however would result in far too large a use of sector 0. The other advantage is of course, that the identifier
giving the failure number indicates the cause.

The code produced by thecompiler isinblocks. These blocksaredeimited by the originand next sector
directives. The final special block produced isin sector 0. Blocks which have al their values undefined
(likeagloba array with no values set) are not punched out in the non-load and go version of the compiler.
Otherwise the entire block is punched out. Asa consequence of thislarge arrays with no values set should
be in a block by themselves so that they are not punched out. No check is made by the compiler that the
blocks produced do not overwrite one another.

The directive .ORIGIN 0 has a special meaning. The litera pool isemptied as usua, but the position
of code generation isnot increased and so the next block starts after the end of the last one. By thismeans
code can be packed without gaps. Thisisof littleusein itself unless one can ensure the code of procedures
do not overlap sector boundaries. In any case, .ORIGIN should not be done more than necessary otherwise
multiple copies of common literalswill be made in one sector. One solution to thisproblem isto use global
arrays as inter-sector buffers. Thisisillustrated below

Text Code
<pr ocedur es> instructi ons
.ORIA N 0; literals
. ARRAY array space

------- sect or boundary
further array space
.ORIG@ N 0;
<pr ocedur es> instructi ons

The second .ORIGIN 0 us required to output the array block (if necessary) and to inform the compiler
that a new sector has been reached. One can see that the size of the instruction code can vary quite
substantially without forcing the procedure code near the sector boundary. This techniqueis only really
appropriate to programs which have been completely coded so that the rough size of the procedures and
arrays are known. Usually it will be necessary to declare the arrays later so that the buffer will be declared
by a set declaration.

Programswith multipleentry points(say ' 2000, 2001 etc) can easily bearranged by placing asuccession
of goto statements after the appropriate origin directive.

The directive to reposition code generation in sector 0 is .GLOBAL. Again, no check is made by the
compiler that the repositioning will not overwrite aword previously set in sector 0. One reason to require
.GLOBAL istousethe ABUG and .SBUG diagnostics. Address of the corresponding procedures must be
putat’776 and’777. Thiscan be done by

.GLOBAL ' 776
. FORWARD . PROCEDURE ABUG, SBUG

40

. GLCBAL ' 200;

The second .GLOBAL isrequired to avoid sector 0 overflow. When the procedure ABUG and SBUG
are met, the address of the relevant linkswill beinserted in’ 776 and ' 777. With theload and go version of
the compiler an error message is output if addresses from '540 to ’ 777 are used in sector 0, athough the
appropriate repositioning will take place. If ABUG and .SBUG are used without setting locations ' 776
and ' 777 then the load and go version of the compiler will use its own procedures to give diagnostics (see
section 6).

Sector Oisthelast block of codeto be output, if the codeisbeing punched. Not al the sector ispunched,
but merely from the lowest to the highest address used.

54 A desk calculator program
(omitted)

55 A string editor
(omitted)

5.6 Array handling

Programs written in DAP often use absolute addresses to reference wordsin core. Thisisrarely the case
in PL516 except, of course, for simple variables. The fact that array referencing is always indirect viathe
address word has many advantages. It has the slight disadvantage in some cases of requiring an extra core
cycle.

One advantage of thearray word technique has aready been givenin 5.5 with the procedure TY PEOUT.
The method of using .CODEWORD and storing the array word in the procedure implements a primitive
type of formal array mechanism.

Dynamic allocation of corefor arraysisquite possiblein PL516. Initialy the globa arrays are declared
with an arbitrary number of wordsin one area of core. Whenever one array becomes full, then a routine
can be entered to reallocate the avail able space between the arrays. This can be done by copying the parts
of the arrays into new positions and then altering the array words appropriately (using %STA, A). This
routine can be quite small but needs to be very carefully written. The rest of the program uses the arrays
in the conventional manner resulting in intelligible coding. If this method of dynamic addressing is used,
then no absol ute address to elements of the array should be made, not should any procedure keep a copy of
the array word.

To summarise, the array mechanism should be used to access words other than simple variables. The
extra core cycle is more than compensated by the increased flexibility and program intelligibility.

5.7 Program segmentation

In the last section the advantage of the array mechani sm was stressed which was due to the use of the array
word. Similar advantages accrue with procedures since access is always via the procedure word in sector
0. By means of the .GLOBAL directive and forward declarations the procedure words can be conveniently
placed anywhere in sector 0. If aprocedure is declared forward but not met an error message is output by
the compiler although the machine code produced invaid. Inthiscase the procedure word of the procedure
not reached is zero.

One use of these techniquesisin binary libraries. The library procedures are compiled with a dummy
program and punched out on paper tape. The program using the libraries is compiled with forward
procedures in the same position in sector 0. After the binary libraries are read into core the resulting
program can be successfully executed. Thisis because loading sector O of the library will set the address
words of the required procedures. Care must be taken with any other words used in sector O by the library
procedures. There is little point in using this technique to minimise compilation times since these are
typically very short. It can be used to implement two different libraries as a loading option. The two

41

libraries must use the same address words for the procedures in sector 0 as the main program. A further
use for the technique is for compiling very long programs on a small machine. The binary libraries can
overwrite the compiler after the main program has been compiled into core.

A second use of the procedure addressing mechanism could be in program segmentation. Say that two
sets of procedures A and B areto use the same instruction space. Both can be compiled independently with
the rest of the program and the instructions dumped onto backing store. Each set of procedures will have
different addresses for the procedure wordsin sector 0. At any moment only one set of procedures (say A)
will bein core. A call of aB procedure will activate a control routineto swop the two sets. The calling of
the control routineis done by writing to the address words of the procedures not in core, the address of the
control routine. In consequence, from the program text it appears that both sets of procedures are in core,
since the swopping is done automatically by the actual call.

5.8 Useof code statements

code statements are, of course, necessary to provide access to instructions not directly available in the
language. Use in other contexts is dangerous since the type-checking and flow of control checking cannot
then be done by the compiler. With memory reference instructions where < 11.4address field > isa
< 11.5type identifier > itis necessary to check that the address inserted in the instruction is the one
required. For integers and constants there is little chance for confusion, but for arrays and switches, the
address of the array or switch word is inserted. For procedures, the address is of the word in sector O
containing the address of the procedure. For labels, the address depends on whether the label is local to
the procedure or global. For aloca label, the address in the current sector and so thisis planted in the
instruction. For global labels, the address out in theinstructionisto awordin sector O containing the 14 bit
address of the labelled statement. Clearly, if thelevel of declaration of the label is adtered, code statements
using the label will have to be changed.

References to compile constants are not alowed in code statements. The reason for thisis that the
meaning of such areferenceisnot clear. Consider

. COVPCONSTANT COMVA = ' 254;

.BEG N
@= ' 256;
YSTA, COVVA
. END;

To create aconstant in the pool would allow assignment toit, asillustrated, which would be disastrous.
To interpret thisas STA ' 254 would be equally dangerous.
5.9 Program checking

Many checks are performed by the compiler but others cannot be checked. The most important ones are as
follows:

1. Use of @ and #. Check that the A and X registers do have the desired contents. Remember a
procedure may overwritethe X register.

2. Array bound checking. Do logical checks to ensure each index iswithin bounds.

3. Check use of code statements. See section 5.8 for details. With the IRS instruction, a skip must be
catered for, or be logically impossible.

4, Check the use of core. The blocks of code should not overwrite on another.

5. For segmented programs or use of binary libraries check that the use of sector O is correct.

42

5.10 Good programming practice

The main purpose of the language - to improve program legibility - can be destroyed by not exploiting the
language properly. A summary of the most important programming pointsis as follows:

1. Uselong, meaningful identifiers.
. Do not use @ and # to the extent that the program becomes obscure.

. Do not use code statements if they can be easily avoided.

2

3

4. Avoid undue complication.

5. Indent the program listing to show scope of the for loops, begin-end brackets, etc.
6

. Use conditionsrather than |abels.

6 A program testing system

Techniquesfor program testing are likely to be continually revised in thelight of experience. Consequently,
the only system described hereisthefirst oneto beimplemented. Considerableimprovements arelikely to
be made in the near future.

After aprogram has been compiled into core, the core store contains three main blocks. The permanent
coding of the compiler, the program just compiled. and the globa name list of the compiled program.
Clearly the name list gives a lot of details about the compiled program which can be used for diagnostic
purposes. |f the machine has adequate core store then program execution is possible without overwriting
thenamelist. Thisisassumed in the system described bel ow.

Itisclearly convenient if one can test individual procedures of alarge program without writing specia
test programs for the purpose. This can be done by typing statements ‘one-line'. After the main program
has been compiled a special entry can be made to the compiler. At thispoint input of afurther statement is
expected from the control typewriter. This statement can refer any of the global entities since information
about them has been retained in the name list. It can, of course, be a compound statement which can be
several linesof type. It isnot advisable to type very much since an error will result in animmediate failure
message with no action being taken by the compiler. On successful completion of the statement (followed
by the terminator ’;") the resulting code produced by the compiler will be immediately executed. If the
statement execution terminates ordinarily, a further statement can be typed from the control typewriter.
Using thisfacility, values can be given to global integers and array elements, individual procedures can be
executed, and values of integers etc, printed out.

Thislisting below illustratesthe technique in testing the string editor program described in 5.5. The ->
istheinvitationto type by the compiler after the string editor had been compiled. The call of the procedure
CONVERT is compiled, executed and another invitation to type isautomatically given. The for loop typed
next, prints out the contents of the array DEC to test that the conversion was performed successfully. the
cal of the procedure PRINTDECI prints the array DEC out with initia zero suppression (which in this
case is no different from the ordinary print). The next three statements check the procedure DECIMAL for
various arguments. The system prints CR, LF both before and after execution of the statement.

The call of the procedure READRULES causes the next four lines to be printed after which replies
were made to set up the string edits given in the example in 5.5. To check that READRULES functioned
correctly, the relevant parts of the arrays S1 and S2 are printed out. Note theinitia error in using | which
was not declared. Inthiscase, al thetyping sincethelast -> islost so one must start again. For thisreason
only short sequences of code should be typed this way.

(Example omitted)

43

7 Structure of the compiler

Although the language is inspired by PL360, the compiler does not use the precedence method used by
Wirth[1]. Thereason for thisisthat the author findsit difficult to seeif alanguageisa precedence language,
and if itisnot, what remedy can be taken. Hence a technique has been used which the author finds easier
to understand. The method used is one of top-down analysis by a series of recursive routines. This has
been used very successfully for compilation of an Algol-like language, Babel, in the Nationa Physical
Laboratory (see 8, 9]).

Each syntactic rule is trandated by a routine which contains calls of further routines according to
the syntax. For instance, the routine ‘program’ calls ‘declaration’ and ‘ compound statement’ as given in
< 13.0program >. ‘compound statement’ calls‘ statement’ which can call ‘assignment statement’ which
can cal ‘Ihs, etc. At each level it is possible for the compiler to decide which aternative in the syntax
appears in the program merely on the basis of the next basic symbol or identifier. Thisis not possible with
programming languages in general, but is quite an acceptable restriction on the design of a new language.
Alternatively, the syntax of the same language can be altered so asto put itin a‘onetrack’ form (see[10]).

The principleadvantage of thismethod isthat the compiler listingisvery easy tofollow, sinceit closely
followsthe syntax rules which defines the language.

7.1 Thebasc compiler routines

When the routine for a syntactic rule is entered, the first basic symbol or identifier has been read. The
routine ‘1hs' reads basic symbols and assigns the internal code of ‘bs'. For instance, when ‘ compound
statement’ is called the begin has been read and is set in the variable ‘bs’. When this routineis left, the
corresponding end has been read and the next basic symbol after thisis set in ‘bs'. The other important
convention concerns the trandation stack. The level of this stack is the same on exit as it was on the
corresponding entry to the routine. This means that the trandlation stack can be used to dump the return
links for the recursive routines. In fact, about 60 words proves adequate for the routines. These working
variables are stacked explicitly by an accumulator procedure ‘stack’, and unstacked by a parameterless
procedure ‘unstack’ which leaves the value of the top of the stack in the accumulator.

Reading of paper tape takes place at two levels. The highest level is the routine ‘nbs’, which assigns
the value of the next basic sysmbol to ‘bs’. This routine uses ‘inchar’ for reading individual characters
off the paper tape. ‘inchar’ deals with comment removal and aso updates an array containing the last few
characters read (for error diagnostics). ‘nbs’ uses the routine ‘setident’ for reading the characters of the
compound symbol (after the decimal point). ‘setident’ is aso used by the syntactic routine ‘identifier’ to
read the characters of the identifier.

7.2 Thecompiler tables

A number of tables are used in the compiler. Each one must be understood if the compiler listingisto be
followed.

‘trace’ isacyclic store containing the last 20 characters read off the paper tape. The contents of this
array are printed out on afailure.

‘mcode’ isafixed array containing the machine code mnemonics and corresponding binary instructions.
A fivebit codefor thecharactersof themnemonics(aswithidentifier characters). Henceonewordisrequired
for the mnemonic and one for the instruction.

‘complist’ is also a fixed array, which contains the characters of each compound sysmbol and the
corresponding internal code. Each entry in ‘complist’ is two or three words long. Only two words are
required when the compound has three or fewer characters. When three words are required the sign bit of
thefirst word is set.

‘namelist’, the array containing the name list of the program being compiled, has entries each of three
or four words. The identifier is stored in an identical manner to that in ‘complist’. The two words other
than the identifier characters contain the type and the ‘address’ (actually the value in the case of a compile
congtant). Thenamelist isin three parts separated by adummy entry. Thefirst part isfixed and containsthe
declaration of the X register as an integer. The second part is the global name list which is only extended

44

outside procedure bodiesand the main program. The last part isthelocal name list which isremoved at the
end of each procedure. This removal is done by the procedure ‘local collapse’ which aso checks that any
local label has been reached.

‘optable’ is an array used to find out if a basic symbol is a unary operator, binary operator, relationa
operator, condition operator or an accumulator condition. A variable number of words is aso stored
following each basic symbol, which usually consists of machine codeinstructionsto be generated for each
operator. Correspondingto each basic symbol typethereisaninitial index whichisthepositionin ‘ optable
at which the search is started. Each entry in ‘optable’ consists of one word giving the basic symbol in the
least significant 8 bits and the number of extrawordsin the entry in the most significant bits. Each part of
‘optable’ isterminated by azero word entry. The procedure ‘bsis which accesses thisarray isasfollows:

accumulator conditional procedure bsis;
begin
xsymbol — accumulator
more: when icleft optable[xsymbol] = bsthen
begin
codesymbol STX, addbs;
exittrue
end;
when accumulator nonzero then
begin
X — inc optable[xsymbol]+x;
goto more
end
end;

The procedure does exittrueif the basic sysmbol is of the required type, setting the variable ‘addbs' so
that the additional information in ‘optable’ can be easily accessed.

Thearray ‘code’ containsthe machine-code generated by the compiler. Word ‘1a of the current sector
of code being generated is in code[latistart] and word ‘ga of sector 0 isin word code[gatgstart]. With
the load and go version of the compiler the array word of ‘code’ is set up so that code[n] isword n of the
core-store. Without load and go, the current sector of code could be punched out on its completion so that
only asmall area of code would be required by ‘ code' .

‘cpool’ isused to administer the addressing of literalsand compile constants. Every new literal requires
twowordsin ‘cpool’ giving thevalue of theliteral and the address of the last memory reference instruction
accessing it. References to the same literal are chained so that all the addresses can be filled in correctly
when the constant pool isemptied (at origin or nextsector).

‘Ihsingt’ is used in the trandation of assignment statements. The instructions generated from the | eft
hand side of the assignment statement must be stored until the expression code has been generated. These
instructions are put in ‘lhsinst’. One complication of this process is that literals involved in the left hand
side cannot be put in ‘cpool’ since the address of the memory-reference instruction (LDX) using the literal
isnot known.

7.3 Some syntactic routines

In order to illustrate the compiling technique a number of short routines of the compiler are given.
The procedure which compiles < 6.1when statement > isasfollows:

procedure whenstatement;
begin
enter;
nbs;
condition
stack(fjadd);

45

failifnot(thensymbol);
Statement;

X « unstack + Istart;
code[xsymbol] < jmpso+la;
leave;

end;

The procedureis, of course, recursive (viastatement). Since thiswill not work in the usual manner, the
subroutine ‘enter’ stacks the return address on the trandation stack, while‘leave’ does the return jump to
that address. The procedure can only be called if the current basic sysmbol iswhen. Thisisremoved by
‘nbs’ so that ‘condition’ can be called. Apart from generating the code for the condition the routine also
sets the variable ‘fjadd’ with the address of the IMP false as given in 4.2.3. this value must be stacked
because of the possible recursion. The procedure ‘failifnot’ has as parameter the interna code that the
current symbol should have. In this case it checks that ‘bs has the interna code of then and then calls
‘nbs’. After this ‘statement’ can be called, which generates the code for the statement. The address to
which the IMP fase instruction should go is how known. So ‘fjadd’ is unstacked and the X register set
appropriately. Now the IMP false can be planted in the already generated code. ‘la isthe next instruction
with the ‘this sector’ bit set. The constant ‘thensymbol’ is a compile constant as are all similar constants
and the compiler error numbers. Thisis because they are global, consequently declaring them as constants
would require substantial amount of spacein sector 0.

The procedure which implements < 7.0for statement > isasfollows:

procedure forstatement;
begin
enter;
nbs;
if bs =xsymbol then
begin
assignmentstatement;
foraddress — zero;
end
ese
begin
if bs=indsymbol then
begin
nbs;
foraddress — octalsymbol 100000;
end
ese
foraddress — zero;
identifier;
when type # int then
fail(fornotint);
foraddress — add + foraddress;
failifnot(becomessymbol);
expression;
generate(stat+foraddress);
end;
failifnot(dosymbol);
stack(la);
stack(foraddress);
Statement;
generate(unstack+irs);
generate(unstack+ mpso);

46

leave;
end;

The use of long identifiers helps to make the listing self-explanatory, but the following points should
be noted. The procedure ‘identifier’ sets the variables ‘type’ and ‘add’. ‘type’ contains the internal code
of the type of the latest variable or zero it isit not declared. ‘add’ contains the address of the variable -
which for an integer is the 9-bit address (*this sector’ bit set for local integers). ‘la is the address of the
next free word in the current sector of code being generated, and ‘foraddress' is the address of the control
variable. Beforecaling ‘ statement’ to trandate the controlled statement, the variables ‘1a and ‘foraddress
are stacked. ‘foraddress' is unstacked to generate the IRS instruction and ‘1a is unstacked to generate the
JMP to the beginning of theloop.

The procedure for trandating < 3.0condition > isasfollows:

procedure condition;
label gt, ge, It, le, eq, ne;
switch rel = gt, ge, It, le, eg, ne;
integer relopcase;
begin
enter;
if bsis(cond) then
begin
nbs;
X «— inc addbs;
generate(optablelxsymbol];
setfjadd end
ese
if letter(bs) then
begin
identifier;
if (typeand octalsymbol 12) = octalsymbol 12 then
begin
proccal;
setfjadd
end
ese
begin
id— -1;
goto expr
end
end
ese
expr: begin
expression;
if bsis(accond) then
begin
nbs;
X < inc addbs;
generate(optablelxsymbol];
setfjadd
end
elseif bsig(relop) then
begin
X < inc addbs;
relopcase — optablelxsymbol];

47

nbs;
cdl;
genaddinst(cas);
goto rel[relopcase];

ot: generate(jmpso+lat3);
generate(nop);
setfjadd;
goto exit;

ge generate(nop);
generate(skp);
setfjadd;
goto exit;

It: generate(nop);
setfjadd;
goto exit;

le setfjadd,
generate(nop);
goto exit;

eq: generate(skp);
generate(skp);
setfjadd;
goto exit;

ne. generate(skp);
setfjadd;

exit: end

ese
fail(fcondition);

end;

leave;
end;

The procedure ‘setfjadd’ consists of two statements. fjadd < la; codesymbol IRS, la; this it sets
‘fjadd’ to the current instruction address and |eaves a space in the compiled code for the jJump instruction.
Note the way ‘bsis is used to determine the type of the current basic sysmbol. After caling ‘bsis, the
variable ‘addbs’ is used to fetch the machine-code instructions from ‘optable’. the variable ‘id’ is set to
-1 before calling expression when the identifier at the beginning of the expression has been read. The call
of ‘genvaddingt’ generates the CAS instruction taking into account that the CAS may refer to an explicit
constant whose address is not yet known (and so be noted in ‘cpool’). The use of a switch isillustrated
although a case statement would be more natura in thisinstance.

7.4 Some gtatisticson the compiler

The permanent coding of the compiler is about 4,300 words, including about 150 locations in sector O.
The current version of the compiler isload and go, and so requires space for the name list (3 or 4 words
per entry) and the complied code. The compiler listing is about 2,500 linesand is probably about half the
length of paper tape of the equivalent size DAP program (reasonably commented). There are about 350
global declarations.

The compiler compilesitself into core in about 70 seconds. At least 55 seconds of this is paper tape
reading time, so about 15 seconds of computing timeis required.

The compiler was originally written in a subset of Algol 60 for KDF9. The subset was, of course, the
parts of Algol 60 which could be easily converted to PL516. It took about two man-months to write and
debug thisversion of thecompiler. Then D.A. Bell recoded the compiler initsown language. Unfortunately
the changes required, athough not very substantial, were too much to do automatically. The only magjor
change was that identifiersin the array ‘namelist’ and ‘ complist’ took up only one word (48 bits) on KDF9

48

as opposed to one or two on the 516. This recoding took a further two man-months. The KDF9 compiler
took 5 minutes (processor time) to compile the version of the compiler in its own language.

Writing this manual and coding various enhancements (like statements on-line) means that the total
effort has been about six man-months spread over the period May 1969 to April 1970.

8 Comments on machine design

Wirth [1] makes some comments on inconsistenciesin the 360 series architecture which became apparent
in the design of PL360. In asimilar manner various features in the DDP-516 order code do not match the
rest of the structure.

For instance, it has not proved possible to use various instructionsin PL516. The memory reference
instruction STX (store the X register) could have been added by a specia statement. This would be no
clearer than codesymbol STX, variable. In any case, since no arithmetic can be done in the X register,
storing the contents of the X register is unlikely to prove very useful. Similarly theinstruction 1AB is not
used. Theinstruction IMA interchanges the contents of the A register and the memory reference location.
No high level language syntax naturally uses such an instruction; for instance, the CPL swop interchanges
thevalue of two variables (and does not i nvol ve an expression which could be eval uated in the accumul ator).

The IRS instruction is conveniently exploited in the for loop but has the annoying requirement of
using a negative count. In fact, only quite sophisticated computer (like KDF9) have single instructionsfor
loop control which match the requirements of conventiona high level languages. The CASingtructionis
awkward in that control can pass to one of the three following locations (a la Fortran). The difficulty that
thispresentsisreflected inthe codefor ‘ condition’ givenin 7.3. All the other test instructionsskip only one
instructionif theconditionistrue. Thisuniformity of structureisexploitedin conditiona procedureswhich
mirror the simple test instructions but alow the computation of more complex conditions. The negative
tests on the sense keys have not been used as < 3.1condition operators > since the double negative
involved in some cases would not be clear.

The JST instruction has thefacility that the index and indirect bits are preserved in the word containing
the link. This means that those word can be used to indirectly access parameters planted with the calling
sequence. Thisconstructionisdangeroussincethedivision between codeand dataisnot clear. Consequently
use has not been made of thisathough if a mechanism for calling Fortran routineswere added thiswould
be used.

The sectored addressing system has been exploited by the local and global declaration system. One
consequence of thisis that procedures can easily be rearranged in core to suit particular requirements. No
difficulties can arose since there is no mechanism for two procedures in the same sector to communicate
except viasector 0. However, the user has to note the sector boundaries and pack his procedures appropri-
ately. Thisdifficulty could be overcome if the JST instruction set the local address base which was used to
off-set the ‘ thissector’ memory reference instructions. The addressing limit would therefore be one of 512
words on any subroutine. In some applications, the fact that links must be planted within the code is very
inconvenient, since making re-entrant code is very difficult.

Thefact that arithmeticisnot possiblein theindex register has not proved aslarge adisadvantage as had
first been thought. The vast mgjority of array accesses in high-level languagesiswith asimple subscript, so
careful planning of the array scanning used together with IRS instructions usually gives acceptable results.

References

[1] Wirth, N. PL360, A Programming Language for the 360 Computers. Jour, Assoc. Comp. Mach. No
1. Vol 15. 1968. pp37-74.

[2] Programmers Reference Manua. Document No. 130071585A. Howeywell Computer Control Divi-
sion.

[3] DAP16 Manual. Document No 130071629. Howeywell Computer Control Division.

49

[4] Naur, P (Editor). Revised report on the algorithmic language Algol 60. The Computer journa, Jan
1963, Pages 349-367.

[5] Duncan, F.G. Notational abbreviationsapplied to the syntax of Algol. Algol bulletin (Math, Centrum,
Amersterdam) 1968 No 26, Page 28.

[6] Coulouris, G.F. A machine independent Assembly Language for Systems Programs. Annual Review
in Automatic Programming, Vol 16, 1969, Page 99.

[7] Naur, P (Editor). Report on the agorithmic language Algol 60. Comm. Assoc, Comp. Mach. Vol 3,
No 5, 1960, Page 299.

[8] Scowen, R.S. Babel, A new general programming language. National Physical Laboratory Report
CCU7. October 1969.

[9] Scowen, R.S. The Babel compiler. National Physica Laboratory Report CCU10. February 1970.
[10] Foster, JM. A syntax improving program. The Computer Journal. Vol 11, No 1, Page 31. 1968.

A Hardwarerepresentation

(Omitted, the general formis an abbreviation of the bold text preceded by afull stop.)

B Failurenumbers

(omitted)

C Limitations and restrictions

A number of fixed size arrays are used in the compiler which resultsin various restrictions. These are as
follows:

1. ‘stack’ overflow. Thisresultsin failure number 452. 60 wordsis alocated for the stack which can
beincreased by atering the compile constant ‘ stackheight’.

2. ‘Ihsinst’ overflow. The number of simple variables + 3 * (number of subscripted variables on the
|eft-hand side of an assignment statement) must be less than 30.

3. ‘cpool’ overflow. The number of memory reference instructionsin one block of code to distinct
literal constants (or compile constants) must be less than 30.

4. Thereisanoveral restrictiononthesize of program determined by theamount or core-storeavail able.
Three or four words are required for each variable in the name list, plus space for the compiled code
plus about 4,300 wordsfor the compiler itsalf.

50

