CompuView

VEDIT

CPM

Customizable

Full Screen

Editor

VEDIT
A Visual Editor

User's Manual

Written By

Theodore Green

CompuView Products, Inc.
618 Louise
Amn Arbor, Michigan 48103

Copyright (C) 1980, 1981 by Theodore Green.
All rights reserved. No part of this
publication may be reproduced, in any form or
by any means, for any commercial purposes.
It may be reproduced for educational, non-
commercial, purposes on the condition that
this copyright notice is included.

DISCLAIMER

CompuView Products, Inc. and the author make
no claims or warranties with respect to the
contents or accuracy of this publication, or
the product it describes, including any
warranties of fitness or merchantability for
a particular purpose. Any stated or
expressed warranties are in 1lieu of all
obligations or 1liability for any damages,
whether special, indirect or consequential,
arising out of or in connection with the use
of this publication or the product it
describes. Furthermore, the right is
reserved to make any changes to this
publication without obligation to notify any
person of such changes.

Table of Contents

Section

I.) Introduction to VEDIT
II.) Getting Started

1.) Overall Description

Introduction

Basic Editing Concepts

Visual Mode

Command Mode

The Text Registers

Auto-Startup

Auto Read/Write and Auto-Buffering
Disk Write Error Recovery

Which Mode to use for What

Word Processing with VEDIT

2.) Visual and Command Modes Task Tutorial

Invoking VEDIT

Keyboard Characters

Editing Functions

Cursor Movement

Page Movement

Adding New Text

Visual Functions

Deleting Text

Correcting Mistakes made to a Line
Indenting Text

Word Wrap and Formatting Paragraphs
Moving and Copying Blocks of Text
Moving Text Within the File
Emptying a Text Register

Sending Text to the Printer
Switching Between Visual and Command Mode

Searching and Substituting

Saving Already Edited Text

Making More Memory Space

Ingerting a Line Range of another F11e
Concatenating Two Files

Splitting a File into Two or More Files
Recovery from Full Disk Errors

Ending the Edit Session

Page

16

17
19
19
20
21
22
24
24
26
27
29
30
31
32
33
34

35
36
36
37
38
39
40
41

3.) Visual Mode

Properties

Displayable Characters

Control Functions

The Tab Character

Displaying Line and Column Numbers
Setting and Jumping to Text Markers
The Text Registers

Printing Text

Inserting Control Characters

Indent and Undent Functions

Lower to Upper Case Conversion
Word Processing Functions

Word Wrap and Indentation
Formatting Paragraphs

Control Functions (Cursor Movement)

Control Functions (Visual Functions)

4.) Command Mode

Properties
Command Mode Notation

Search Options and Special Characters

Iteration Macros

Text Registers

Text Register Command Macros
Printing Text

Command Line Editing

Brief Command Description
Detailed Command Description

5.) Appendices

A -

ooOow

Customizing VEDIT

What is Customization

When is Customization Necessary

CRT Terminal and Memory Mapped
How to Perform Customization
Quick Customization

Customization Notes

VEDIT Checksum
Keyboard Layout
A Word About Keyboards
Screen Size Parameters
Memory Size Parameters

Command Reference
Error Messages
VEDIT notes

42

42
43

45
46
46
46
47
48
48
49
50
50
51
52
53

56

56
57
57
59
62
63
64
65
66
70

102

102
102
103
104
106

117

117
117
119
119
120

121
123
125

Page 2

VEDIT - Visual Editor ‘ Page 3
Introduction

Introduction to VEDIT

VEDIT is an editor designed to take full advantage of a CRT
display to make editing of a file as fast and easy as possible. The
main feature of VEDIT is its visual mode editing which continuously
displays a region of the user’s file on the screen and allows any
changes made to the screen display to become the changes in the file.
The screen display is changed by moving the displayed cursor to any
place in the file and making necessary changes by typing in new text
or hitting a function key. These changes are immediately reflected on
the screen and become the changes to the file. The visual mode allows
blocks of text to be moved or copied within the file, and can perform
automatic indenting for structured programming languages.

The visual mode can also perform the common word processing
operations of wrapping words at the end of 1lines and reformatting
paragraphs between right and left margins. It is very easy to send
any portion of the text to the line printer. There are also special
facilities which simplify program development editing.

VEDIT also provides a very flexible and powerful command mode for
performing search and substitute operations and repetitive editing
operations using several types of macros., Commands are provided for
moving and rearranging blocks of text, and for the extensive file
handling, which includes the ability to insert a specified line range
of another file at the edit position.

The sophisticated disk buffering in VEDIT is designed to
automatically perform the read/write operations necessary for editing
files larger than can fit in the main memory at one time. This applies
mostly to the visual mode and allows the editing in visual mode to be
done with little concern over the size of the file being edited. The
user can also recover from common disk write errors, such as running
out of disk space, by deleting files or inserting another disk.

Since so many hardware configurations, different keyboards,
editing applications and personal preferences exist in the world,
VEDIT is supplied with a customization program in order to let users
create versions of VEDIT which are best suitable to their hardware,
keyboard, applications and preferences.

CP/M and MP/M are registered trademark of Digital Research, Inc.

VEDIT - Visual Editor

. Page 4
Getting Started &

Getting Started

This manual is organized into five main sections. The first
section describes some basic editing concepts and then introduces the
main features of VEDIT and the modes of operation., The second section
is a tutorial on the use of VEDIT, including how to invoke and exit
it, and perform the most common editing operations. It also covers
some of the file handling, including splitting and merging files and
what to do if you accidentally run out of disk space. The tutorial
section is task oriented. Given an editing operation you wish to
perform, this section describes which function keys or commands to use
to perform the operation. The third section describes the visual mode
in detail, while the fourth section is devoted to a detailed
description of the command mode. The last section contains appendices
of the customization process, a reference guide of the commands and a
description of the error messages.

Before you can begin using the editor, you will have to go through
the customization process described in Appendix A. While many
parameters can be customized, the menu driven operation allows you to
limit your attention to a subset of these parameters. In fact, if you
are using a CRT terminal and are content to initially use the default
keyboard layout (see enclosed sheet), you only need to select your CRT
terminal in order to create a ready to use version of VEDIT. Since
the customization process does not destroy or alter the "prototype"
editor files on disk, but rather creates a new file with your
customized editor in it, you may go through the process as often as
you like. As you gain experience with VEDIT you will probably perform
the customization several times until you get everything just right,
You may also create several versions of VEDIT, although that might
confuse you more than help.

The new user of VEDIT is best off to at least skim the first
section in order to get an overview of the capabilities of VEDIT.
Trying out the editor while reading the tutorial section is the best
way to gain a working familiarity with most features. The visual
(full screen) mode is easy enough to use that it can be learned by
experimenting with the various function keys, as long as no important
files are accidentally altered.

Once you have had some practice with the visual mode of VEDIT,
you will then want to try out the command mode. The command mode is
definitely not as easy to use as the visual mode and more references
to this manual will be necessary. However, most basic editing can be
done entirely in the visual mode, and the command mode can be learned

gradually as the need arises. Also, the tutorial introduces the most
used commands of this mode,

VEDIT - Visual Editor Page 5
Getting Started

While you will typically spend 99% of your time in the visual
mode and only 1% in the command mode, this manual deals extemnsively
with the command mode. This is appropriate, because the visual mode
is exceptionally easy to learn and use. A 1little experimentation is
the best teacher, The command mode, because of its powerful
capabilities, is more complex, and more difficult to learn. This
manual, therefore, describes this mode in detail with many examples.

The most complex aspect of the command mode are the "macros"
which can perform repetitive editing operations, can be saved and
loaded from disk and can invoke other macros. One type of useful
macro is the auto—-startup file which be wused to setup programmable
function keys on a CRT terminal,

VEDIT - Visual Editor

Page 6
Overall Description ®

Section I - Overall Description

Introduction

VEDIT is a full screen, or "visual" editor which currently rums
under the CP/M, CP/M-86 and MSDOS operating systems and their
derivatives, including MP/M, MP/M-86, CDOS and CROMIX. It allows any
text file to be created or edited in a visual manner on systems with
most types of CRT displays. It has two operating modes: visual mode
and command mode. The typical user will spend 99% of the time in the
visual mode, the primary editing mode. Here, the screen continuously
displays the region of the file being edited, a status line and
cursor. Changes are made by first moving the cursor to the text to be
changed. You can then overtype, insert any amount of new text and use
function keys to perform all changes, which are immediately shown on
the screen and become the changes to the file. The word processing
functions of word wrap and reformatting of paragraphs are provided.
Ten text registers (scratchpad buffers) allow sections of text to be
copied and moved for extensive "cut and paste" type operations. Any
portion of the text may be sent to the line printer.

The command mode allows the execution of 1line and character
oriented editor commands, such as for searching, altering and
displaying lines. It has added capabilities for dealing with the text
registers, which may be saved and loaded directly from disk files.
Command mode also allows for explicit Disk Read and Write commands,
and for new Input or Output files to be opened and closed. A real
time and effort saver is the ability to insert a specified line range
of another file at any place in the text being edited. The repetitive
execution of single commands or sets of commands called Iteration
Macros is provided. The text registers can also hold commands which
are executed ae macros., Three commands are used for changing the
various switches, parameters and tab positions which VEDIT uses in
both command and visual modes. Onme command puts the editor into
visual mode. Finally one command must be given to exit VEDIT, saving
the edited file on disk.

Basic Editing Concepts

The purpose of editing is to create or change a file on disk so
that it may be saved for future use and processed by another program,
such as a word processing program (text formatter), a compiler, or
simply be printed out. When the file is first created, the initial
text of the file is entered with the editor, corrections are made, and
then saved on disk. When a file is to be changed or "edited", the
existing copy of the file is read from the disk into the computer”s
"main memory", the changes are made by the user with the use of the
editor, and an entirely new copy of the file is saved on disk.

VEDIT ~ Visual Editor Page 7
Overall Description

Each file on disk has a name, and when a file is created with the
editor, the user assigns the file its name. It is helpful to choose
names which mean something and are easy to remember. The name LETTERL
is thus better than JVZ8-G5F. The CP/M operating system has file
names which consist of two parts, the "filename" and the "filetype" or
"extension". A "." separates the two parts and the filename may be up
to 8 characters long and the extension up to 3 characters long. When
a file is to be edited, its name must be specified in order for it to
be read from the disk. The new copy of the file may be written to disk
with a new name or with the same name as before. The normal way of
invoking and exiting VEDIT will cause it to automatically write it
with its original name. One question in this case is, "what happens to
the original copy of the file?" VEDIT leaves the original copy on
disk too, but since you cannot have two files on disk with the same
name, the name of the original file is changed to have an extension of
".BAK"., This is referred to as the "backup" of the file. Any previous
backup of the file on the disk will be deleted by this process.

When a file is read from disk, its contents are stored in the
"main memory" of the computer. The portion of the main memory used for
saving the file is referred to as the "text buffer". All changes made
to the file are made in the main memory or text buffer. When the
changes are complete, the file is saved again on disk. This process of
reading a file from disk (or creating a mew file), making changes to
the file and saving it on disk, is referred to as an "edit session".
Therefore, two files are being processed while editing. The file being
read is called the "input" file and the file being written is called
the "output" file. Specifying to the editor which file is to be used
for input or output is referred to as "opening” the file. The way
VEDIT is normally invoked, i.e. "VEDIT FILE.TXT", the named file is
opened for input, and another file is opened for output which will
have the same name as the original input file when the edit session is
over. At that time the original input file will still exist, but will
have been renamed to a backup file, i.e. "FILE.BAK",

In some cases the file to be edited is larger than the maximum
size of the text buffer and only a portion of it can be in the text
buffer at once and edited., This situation is handled by first reading
in the first portion of the file, making the edit changes to it,
writing part of the text buffer out to disk to make space in the main
memory, reading in more of the file being edited, and so on. (There
are a lot more details involved in this process.) In order to edit a
portion of the file which has already gone through the text buffer and
been written on disk, a new edit session has to be started, VEDIT,
especially in visual mode, has the capability to perform this read/
write process automatically. When the user reaches the end of the text
buffer in visual mode, the beginning of the text buffer is written out
to disk (to the output file) and more of the file being edited (the
input file) is read or "appended" to the end of the text buffer. This
process, when done automatically, is referred to as "auto-buffering".
Another automatic process done in both visual and command mode is
called "auto-read" which consists of reading the input file umtil it
is all read in, or until the main memory space is almost full.

VEDIT - Visual Editor Page 8
Overall Description

Visual Mode

D

In visual mode, the screen continuously displays the current
contents of the file in the region you are editing and a cursor. The
bottom line of the screemn is used for status information and is
normally filled with the "-" character. The changes made to the screen
display by typing in new text or using control functions become the
changes to the file. The characters typed while in visual mode fall
into two categories: Displayable characters and Control characters.
The displayable characters are displayed on the screen at the cursor
position and cause the cursor to move to the right. The user
customized keyboard layout determines which control function each
control character or escape sequence performs. The control functions
fall into two subcategories — cursor movement and visual functions.
The cursor movement operations cause no change to the file, but rather
move the cursor forward and backward by a character, a word, a line, a
paragraph or a screen at a time, Additional cursor movements allow
movement to the next tab position and the beginning or end of the text
buffer. The cursor can only point to characters in the file, it never

points to "space", i.e. a position on a screen line past the end of
the text line.

A useful feature is the ability to move or copy a section of text
to any other position in the file. This is done by first copying,
moving or appending the text to one of the ten text registers (scratch
pad buffers), and then inserting the text register at any place or
places in the file. (It may also be imserted in another file). Any
portion of the text can easily be printed on the line printer and
special printer control characters can be imbedded in the text. VEDIT
can optionally display the cursor’s line number and column position on
the status line. Up to ten positions in the text may be marked, so
that the cursor can be directly moved to any of these ten positions.

For word processing uses, the visual mode can perform word wrap
and reformatting of paragraphs between adjustable right and left
margins., When word wrap in omn, VEDIT will move an entire word which
didn’t fit within the right margin to a new line, while you are
typing. Reformatting a paragraph also wraps words, but operates om an
existing paragraph and the currently set left and right margins. You
can therefore decide later to change the margins and re-fit the
paragraphs within the new margins.

VEDIT has several unique built in aids for program development.
One is automatic indentation for use with structured languages such as
Pascal, PL/I and C. When "Indenting" is set, the editor will
automatically insert tabs and spaces following each [Carriage Return]
to the current indent position. The indent position can be moved
right and left by an adjustable indent increment. Many assembly
language programmers prefer their program code to be in upper case
letters with comments in upper and lower case., VEDIT can accept all
lower case keyboard input and automatically convert the labels,

VEDIT - Visual Editor

Page 9
Overall Description

opcodes and operands to upper case while leaving the comments in lower
case. It does this by searching on the line being entered or edited
for a special character such as ";", To the left of the ";" lower case
letters are converted, to the right of the ";" they are not converted.
This is referred to as "Conditional Lower to Upper Case Conversion".

The visual mode can handle text lines which are up to 260
characters (256 plus CR LF and two spare) long. Text lines longer
than a screen 1line (usually about 80 columns) are handled by
displaying them on multiple screen lines and indicating in the first
reserved column those screen lines that are "continuation lines".
This indication is usually in the form of the "-" character which can
be displayed in reverse video. These continuation lines are created as
necessary while you type.

VEDIT - Visual Editor Page 10
Overall Description

Command Mode

In command mode, the user enters command lines which consist of
single commands, strings of commands or iteration macros. Each command
line, whether it consists of one command or multiple commands is ended
with an <ESC> <ESC>; there is no RETURN.

Each command consists of a single letter or two letters if the
first letter is "E" or "R" (Extended .and Register commands). Some
commands may be preceded by a number to signify that the command is to
be repeated, or "iterated". If no number is givemn, a "1" is used as
the default. Wherever a number is allowed, you can also use the "#"
character to represent the maximum positive number 32767. Multiple
commands may be typed one after another on a command line. They are
always executed left to right. Their effect is the same as if each
command had been typed on its own command line.

A group of commands, called an iteration macro, may also be
executed multiple times as a group by enclosing the group within "["
and "1", and prefixing the "[" with the iteration number for the
entire group. (Note: The characters for enclosing iteration macros are
printed as "[" and "]" in this manual. Some users may be more
familiar with angle brackets and can choose either set during
customization.) The effect is to execute the first command of the
group through the last command of the group and then start over again
with the first command. The group is executed the number of times
specified by the iteration macro. The number "#" is useful in
iteration macros to signify "forever" or "all". For example, the
command "4T" prints out four lines. The command "5[4T]" prints out the
same four lines five times for a total of 20 printed lines, The "["
and "]" may also occur within each other ("be nested") for more
complicated macro commands. For example, the command "3[5[4T]4L]"
would print out the same four lines five times, then move to the next
four lines and print them out five times and last, move to the next
four lines and print them out five times. The leftmost "3" determines
that everything inside the outside "[" and "]" will be executed three
times. This may seem a little complicated at first, but it becomes
useful with practice.

Many of the commands make a change to the text buffer at the
position determined by the "edit pointer". The edit pointer is very
much like the cursor in visual mode, it is just not as readily seen.
Commands exist to move the edit pointer a character at a time, a line
at a time or to the beginning or the end of the text buffer. The
number of lines or characters the edit pointer moves is determined by
the iteration number for the command. Negative iteration numbers mean
backward movement, towards the beginning of the text buffer. One
command prints a given number of lines before or after the edit
pointer to display the contents of the file and "show" the user where
the edit pointer is.

VEDIT - Visual Editor Page 11
Overall Description

The commands which alter the text all operate from the position of
the edit pointer. One deletes characters, one deletes lines, one
inserts new text and another searches for a string of characters and
changes them to another. Other commands only perform searching without
alteration. Two commands are used to manipulate the text register,
with one making a copy of the specified lines and the other then
inserting this copy at the edit pointer. Anmother two commands are used
to change the switch settings and tab positioms. The last two groups
of commands deal with the reading and writing of files and with the
opening and closing of input and output files.

The commands fall into nine overlapping categories:

Edit pointer movement - B, L, C, Z

Display text - T

Print text - EO

Alter text - p, I, K, S8, EI

Search - F, N, S

Text Register - G, M, P, RD, RL, RS, RT, RU
Disk Buffering - A, N, W, EA, EX, EQ

File Handling - EB, EC, ED, EF, EG, ER, EW
Switch and Tab Set - EP, ES, ET

Additionally the "V" command enters the visual mode, and the "U"
command prints three memory usage numbers.

The Text Registers

The ten text registers have two primary purposes. One is to hold
sections of text which are to be moved or copied to other positioms in
the file currently being edited. The second is to hold strings of
commands which may be executed in command mode as macros. In either
case, the registers are holding text; only the manner in which the
text is used is different.

Generally, the text registers are all empty when VEDIT is first
invoked. The registers are loaded by copying, moving or appending a
portion of the main text to the register. This may be done in either
command or visual mode, although it is usually easier in visual mode.
Alternately, a register may be loaded directly from a disk file. A
register may be typed to the console in order to view its contents,
and it may be saved on a disk file. The contents of a register may
then be inserted at the cursor position in visual mode or at the edit
pointer in command mode. The text registers are not changed by any
disk read/write operations. They can therefore be used to extract
sections of text from one file and insert them anywhere in another
file. Inserting a text register does mnot destroy or change the
register. It may therefore be inserted repeatedly at different
locations in the file.

VEDIT - Visual Editor

Page 12
Overall Description

When holding regular text, the registers act as scratch pad
buffers in that they hold a temporary copy of text which is
independent of the main text buffer. This is for the purpose of
copying or moving sections or "blocks" of text from one area of the
file to another, commonly referred to as "cut and paste" operationms.
Three operations are possible. One is to simply copy a section of the
main text buffer to the register., The second is to move a section of
text to the register, in which the section of text is also deleted
from the main text buffer. For both the move and copy operations, the
section of text can optionally be appended to any text which already
exists in the register. Third, the register contents can be inserted
anywhere within the main text buffer.

Placing command strings into the registers and executing these
commands as macros is a very powerful facility, although it requires
some practice to learn. It is a useful manner of saving long command
strings which must be executed repeatedly during an edit session. If
they are to be reused in the days ahead, they can even be saved on
disk. Very sophisticated editing operations are also made possible.
For example, say that you have a manuscript on disk as 20 different
files and you find that you have consistently mispelled 40 words.
This could be a very time consuming editing operatiom, but it can be
greatly simplified with two command macros, One macro will contain
the global search and replace for each of the 40 words. The second
macro will contain the commands to edit each of the 20 files, and for
each file execute the search/replace macro. Once the two macros are
created, you execute the second macro and can take a coffee break
while the 800 (20 times 40) operations are automatically performed.
(ALWAYS make a backup copy of the files before performing complex
macros. It is very easy for a small syntax error, or a software or
hardware failure to destroy the files being automatically edited).

Auto-Startup

VEDIT will automatically execute a startup file om disk as a
command macro. This can be used to setup various VEDIT parameters and
to program the function keys on a CRT terminal. When invoked, VEDIT
will attempt to read the file "VEDIT.INI" into text register 0, and
then execute this register. No error is given if this file is not
found. It is strictly optional,

The file VEDIT.INI may contain EP, ES and ET commands to setup
the various parameters, switches and tab positions. It may also
contain an EB command which allows a particular file to be edited
without it being specified when VEDIT is invoked. This may be handy
if the same file is edited many times. The startup file may also
contain the commands to load other text register with text or commands
from other disk files.

VEDIT - Visual Editor Page 13
Overall Description

Some CRT terminals have programmable function keys which are
setup by sending certain (usually obscure) character strings to the
terminal. The VEDIT startup file can perform this too. This is best
done by loading the character strings into a second text register,
typing out the register, and finally emptying the register., The CRT
version of VEDIT comes with several example disk files for doing this.

Auto Read / Write and Auto-Buffering

Auto Read/Write refers to any disk file reading or writing which
is done by VEDIT without the user having given the "A" or "W" commands
in command mode. (See also "Basic Editing Concepts" above). The
simplest auto read/write involves reading the input file into the text
buffer when the editor is invoked in the normal way, and writing the
output file when the editor is exited. More sophisticated auto
read/write called “Auto-Buffering" can take place, especially in
visual mode. Auto-buffering refers to the read/write operations which
VEDIT performs, especially in visual mode, when the user has reached
the end of the text buffer and not all of the input file has been read
yet. It is only performed in command mode for the "N" command, since
it would otherwise interfere with special editing applications. If
the text buffer fills up in visual mode while the user is typing in
more text, VEDIT will also try to write out 1K byte sections from the
beginning of the text buffer to the output file. This is referred to

as "Auto-Write". For wmore details see Appendix A, "Memory
Parameters ...".

Disk Write Error Recovery

Since most CP/M systems run with floppy disks which have limited
storage capacity, the typical user will occasionally run into a disk
write error. This is caused by either running out of disk space,
leading to the error message "NO DISK SPACE", or running out of
directory space, leading to the error message "NO DIR SPACE",
Fortunately, VEDIT allows the user to recover from these errors using
one of two recovery procedures. One is to delete files from the disk
using the "ED" command until enough space exists to write the rest of
file out. The second is to use the "EC" command to allow removing the
full disk and inserting another disk on which to complete the write
operation. This, however, results in the output file being split into
two files on two disks. The two parts may then be merged back into one
file with either VEDIT or PIP.

It is best to avoid disk write errors in VEDIT by making sure
that enough disk space exists before editing a file. You can use the
CP/M STAT command for this purpose.

VEDIT - Visual Editor P 14
Overall Description o

Which Mode to Use for What

The visual mode is designed to satisfy the majority of all
editing needs. The bulk of editing consists of inserting new text,
correcting typos, and making revisions, which includes moving blocks
of text around. These are all readily handled in visual mode and are
best done in that mode. There is probably a three to one time savings
in inserting new text and correcting the typos in visual mode over
command mode. There is probably a tem to one time savings in making
the revisions in visual mode, compared to command mode, even assuming
you are very practiced with the commands!

Command mode is most useful in searching for text in the file,
performing repetitive edit changes using macros and for extensive file
handling. Searching is used to directly access a particular word or
string in the file. Command mode is also used to change the various
VEDIT switches, parameters and tab positions. Text register
operations such as loading and saving them on disk can only be
performed in the command mode. The edit pointer in command mode and
the cursor in visual mode both serve a similar purpose. When entering
visual mode, the cursor takes on the position in the text buffer of
the edit pointer in command mode. When exiting visual mode to command
mode, the edit pointer takes on the last position of the cursor.

Searching is often used in conjunction with the visual mode
command in iteration macros for finding all occurrences of a string in
the file and then editing that region of the file in visual mode. The
examples in the tutorial section and the command mode section should
be followed,

Command mode is also used when the edit session involves more
than just making changes to a single file. The file handling commands
allow several files to be merged into one file or a file to be split
into several smaller ones. Combined with the text register commands in
either visual or command mode, portions of one file can be found and
copied into the middle of another file. Other possibilities exist and

some examples are given in the "Detailed Command Description" of this
manual.

VEDIT - Visual Editor Page 15
Overall Description

Word Processing with VEDIT

VEDIT can be used for two types of word processing. One is stand
alone word processing in which the text is composed entirely with
VEDIT and then printed out with either VEDIT or a simple print
program. In this case the text will have to be formatted with VEDIT
exactly the way it is to be printed out. This would include any page
headings, page splits, centering of lines, and other details which
VEDIT does mnot perform automatically. VEDIT can, however, format
paragraphs between left and right margins. Therefore, if a paragraph
is currently ragged, with very different 1line 1lengths, VEDIT can
format the paragraph between any left and right margins. If after
formatting, you decide, for example, that you now want the paragraph
indented on both sides, VEDIT can also do this for you automatically.

The second type of word processing uses a "Text Output Processor"
which takes care of page headings, centering of lines, justification
and many other details. In this case VEDIT is used to create a file
which contains short command lines to the text output processor, which
does the final printing. VEDIT s facility for word wrap still makes
it easier to enter the text, but the formatting of paragraphs becomes
more cosmetic since the text output processor generally formats its
own paragraphs. Most text output processors take commands which begin
with a period "." in the first column of a line. When formatting
paragraphs, VEDIT recognizes such commands 1lines and leaves them
alone. All files created by VEDIT are standard text files and are
therefore compatible with most text output processors.,

Text formatters come with a wide range of capabilities and
prices. Many cost under $100, but can still handle almost all word
processing functions. Fancier ones cost around $200 and can handle
mailing lists, create tables of contents, perform proportional spacing
and automatic footnoting. Combining VEDIT with one of the better text
output processors will give you more word processing capabilities than
found on most of the stand alone word processors. For short documents
such as letters, memos and short reports, a stand alone word processor
is probably easier to use than the combination of VEDIT and a text
output processor, However, as text documents become longer, most
stand alone word processors become increasingly inefficient, because
they can only edit a very small portion of the text at one time. Some
even have an upper limit to the size of text they can handle. With
longer documents, such as manuscripts, using VEDIT with a text output
processor will get the job done faster and with less effort.

VEDIT - Visual Editor Page 16
Visual Mode Task Tutorial

Section 2 - Visual and Command Modes Task Tutorial

This section is a tutorial on the basic editing capabilities of
VEDIT. It is task oriented and gives the commands necessary to
perform simple editing operatioms such as inserting text, and more
complex tasks such as moving text and concatenating files, As a
"Hands-On" tutorial, it is meant to be followed while actually running
VEDIT. Later, as a reference, it should serve to explain how to
combine commands to perform a desired task.

Not every possibly conceivable text editing situatiom or sequence
of commands is included here. However, we have tried to include a
comprehensive list of editing tasks —- some elementary, others with
many steps. Tasks are presented so that you should rarely have to
look forward in this section to learn something mnecessary for the
completion of the current task. For example, moving the cursor is the
first task discussed; it is used in almost every following task.

The labeled boxes in this section represent visual control
functions, such as "CURSOR UP" and "INDENT". The actual keys you type
to perform the functions are chosen in the VEDIT customization
procedure. If you are using one of our example keyboard layouts,
refer to the layout sheet. Most layouts use both control characters
and escape sequences. Control characters such as <CTRL-Q> are typed
by holding down the CONTROL key while typing the "Q". Escape
sequences such as ESC-R are typed by first pressing the "ESC" key and
then the "R".

The "ESC" key is also used in all command mode commands (two are
needed at the end of each command). It is represented in all examples
in this manual as an "$", which is also what VEDIT displays on the
screen when an ESC is typed.

VEDIT - Visual Editor Page 17
Visual Mode Task Tutorial

Invoking VEDIT

To use VEDIT it has to be invoked from CP/M with the proper
command. The next page describes all the ways of invoking VEDIT, but
the most common is just to type "VEDIT" followed by the name of the
file to be edited or created. For example: (The "B>" is the prompt
given by CP/M)

B>VEDIT LETTER.TXT

VEDIT will then read in the file "LETTER.TXT", or if you are
creating the file, briefly display the message "NEW FILE". It will
then normally go into the "Visual Mode" which displays the beginning
of the file on the screen. The bottom line will contain the "Status
Line" which consists mostly of dashes "-", and optionally the line and
column numbers. Also visible will be the "Cursor" which indicates at
what position on the screem you are editing. It will initially be in
the upper left hand corner. At this point you are ready to begin
editing.

For the purposes of this tutorial it will be best if you begin by
editing a file which already exists, instead of creating a new one.
If you don”t have any such files available, you can copy one of the
files with a filename extension of ".DOC" from your VEDIT distribution
disk to your work disk. Don“t be concerned about making accidental
changes to the file, because you can easily quit the edit session in
such a way that no files are actually changed. (We assume, of course,
that you have made a copy of your distribution disk.)

VEDIT ~ Visual Editor Page 18
Visual Mode Task Tutorial

INVOKING VEDIT

VEDIT FILENAME,EXT You will land in Visual Mode
(status line will appear at
the top or bottom of screen)

OR

Command Mode ("*" prompt),
depending on the parameter set
by command ES. See "Command Mode
Detailed Command Description".

VEDIT Begin in Command Mode. Choose
a file to edit with an
EBfilename$$ or perform any
other Command Mode command.

VEDIT INFILE.EXT OUTFILE.EXT ."INFILE.EXT" will be read in and
not altered, while "OUTFILE,EXT"
will be created. If "OUTFILE.EXT"
already exists, it will be
renamed to "OUTFILE.BAK".

This form is equivalent to invoking
VEDIT without any filenames (second
form) and then issuing the command:
ERinfile.ext$EWoutfile.ext$$.

Use this form if the edited file is
more than half a disk long. In this
case, INFILE.EXT is the file to be

edited and OUTFILE.EXT is specified
to be on another disk drive with

a nearly blank disk.

VEDIT - Visual Editor Page 19
Visual Mode Task Tutorial

Keyboard Characters

When in the visual mode, you edit the file by typing two basic
types of characters - displayable characters and control codes. The
displayable characters are all of the 1letters, numbers and other
normal characters on your keyboard. Go ahead and try typing a few
words in right now. Notice that as each character is typed, it appears
at the cursor position and the cursor then moves to the right. If
there already were characters on the line, you have just overwritten
them. You will soon see that it is just as easy to insert characters
without overwriting. The control codes are used to perform the
various editing functions. The keyboard 1layout that you have
customized determines which editing function each control code
performs. Control codes can be control characters, such as <CTIRL-S>,
escape sequences such as ESC-P, or a function key on your keyboard.
Function keys generally send a control character or an escape sequence
when you type them.

Editing Functions

The editing functions in the visual mode break down into two
categories. One type are the "Cursor movement" functions which only
move the cursor around on the screem and scroll the screen to display
different parts of the file, but do not change the file in any way.
Look at the keyboard layout you are using and try typing the control
codes for some of the cursor movement functions such as [UP] [DOWN]
[RIGHT] and [LEFT]. The following pages describe all of the cursor
movements, and you are advised to briefly try them all out. Don”t be
concerned about remembering them all now. Some are more important
than others, and you will get along quite well knowing only [UP],
[powN], [RIGHT], [LEFT], [ZIP], [PAGE UP] and [PAGE DOWN].

VEDIT - Visual Editor
Visual Mode Task Tutorial

Operation

e et et G s . e e

Move cursor right

Move cursor left

Move cursor up

Move cursor down

Last character of
current line

Beginning of current
paragraph

Beginning of next
paragraph

First character of
the previous word

First character of
the next word

CURSOR MOVEMENT:

Command Sequence

CURSOR
RIGHT

CURSOR
LEFT

CURSOR
UP

CURSOR
DOWN

ZIP

PREV
PARA

NEXT
PARA

PREV
WORD

NEXT
WORD

Page 20

VEDIT - Visual Editor
Visual Mode Task Tutorial

First character of
next line

First character of
current line

Purpose: The move to other

displayed on the screen.

Operation

Previous Page of text

Next Page of text

First Page of text
(First character)

Last Page of text
(Last character)

LINE

BACK
TAB

PAGE MOVEMENT:

regions

Command Sequence

PAGE
UP

PAGE
DOWN

HOME

ZEND

file

not

Page 21

currently

VEDIT - Visual Editor Page 22
Visual Mode Task Tutorial

Adding New Text

The three functions relating to the "Insert Mode" give you two
choices for switching between the "Insert" and "Normal" modes. You
started in Normal mode, and the displayable characters you typed
overwrote any existing characters. When you switch to Insert mode you
will see the word "INSERT" on the status line and any character at the
cursor position will be squeezed to the right when you type in new
characters. Try it to see the difference between the two modes.

You may be wondering about how to insert entire lines into the
text., To start a new line you simply type the RETURN key. If the
cursor is at the end of a line, this opens up a blank line on the
screen on which you can enter text. If you enter a lot of new lines,
one after another, the screen will automatically scroll to keep up
with you. If the cursor is in the middle of a 1line when you type
RETURN, the line is split into two 1lines, with the character at the
cursor position and all following characters moving to the new line.
With the [DELETE] function, explained next, you can also concatenate
lines together.

VEDIT - Visual Editor
Visual Mode Task Tutorial

Operation

Entering text into the
text buffer ——— beginning
an empty file or contin-
uing at the end of a file.

Overtyping (typing over
existing text

Inserting new characters
in between existing
characters

ADDING NEW TEXT:

Command Sequence

Page 23

NONE - Move cursor wherever
you like and begin typing.
What you see is what you get.

1.) Position cursor over first

2.) Retype.

1-)

2.) Type new text

3.)

INSERT

INSERT

character to be overtyped.

Watch for "Insert"
prompt on status
line

"Insert" prompt
disappears
(or leave INSERT on.)

VEDIT - Visual Editor Page 24
Visual Mode Task Tutorial

Visual Functions

The second category of editing functions are called the "Visual"
functions which perform such operations as deleting characters or
lines, indenting on the left side and moving sections of text to other

parts of the file, The following pages describe each of these
functions. '

Deleting Text

There are functions to delete the previous and the next character
and word. Two functions will delete partial or entire lines. These
are described on the next page. Go ahead and try out the [DELETE],
[BACKSPACE], [EREOL], and [ERLINE] functions. Notice that the [UNDO]
function will bring back the original text on the line wunless you
erased the entire line with the [ERLINE].

To can delete a line with the [ERLINE] function, or if the line
is blank, with the [DELETE] function. You can also concatenate two
lines by moving the cursor to the end of the first line and typing
[DELETE]. Go ahead and try all of this, especially splitting lines
with a RETURN and concatenating lines with a [DELETE].

VEDIT - Visual Editor
Visual Mode Task Tutorial

Operation

Deleting characters

backwards

Deleting characters
forwards

Erase from cursor to
end of line

Erase entire line cursor
is on

Delete word to left
of cursor

Delete word to right
of cursor

Delete paragraphs and
blocks of text

DELETING TEXT:

Command Sequence

BACK
SPACE

DELETE

EREOL

ERLINE

DEL
PREVIOUS
WORD

1.)

2.)

30)

DEL
NEXT
WORD

Position cursor over first

Page 25

character in the paragraph to be

deleted.

MOVE TO
TEXT
REGISTER

Position cursor past last

character in paragraph to be deleted.

VEDIT - Visual Editor Page 26
Visual Mode Task Tutorial

3.) Position cursor past last
character in paragraph to be deleted.

4,) |MOVE TO
TEXT
REGISTER

5.) Type digit "0 - 9" to specify which
text register to use.

6.) |MOVE TO
TEXT
REGISTER

7.) |MOVE TO
TEXT
REGISTER

8.) Type same digit "0 — 9" to empty
the text register.

CORRECTING MISTAKES MADE TO A LINE:

This command returns the
line the cursor is on to its UNDO
appearance before the cursor
was most recently put on that
line.

This does not mean that, by
putting the cursor on a
previous line you changed,
undo will give you the
original line,

VEDIT - Visual Editor Page 27
Visual Mode Task Tutorial

Indenting Text

If you don“t want your text to begin in the first column, you can
let VEDIT automatically indent your text with the [INDENT] and
[UNDENT] functions. The section "Visual Mode - Indent and Undent"
explains these functions, but it is easier to understand them through
experimentation. Type a RETURN to start a new blank line, then type
the control code for [INDENT]. Notice that the cursor has moved right
by 4 spaces to column 5 (unless you have changed this parameter).
Type and few words and another RETURN., This time the cursor will
begin immediately in column 5. You have set the '"Indentation
Position" to column 5, and it will stay there until you increase it
with another [INDENT] or move it back with [UNDENT]. To achieve the
indentation, VEDIT inserts the most Tabs and fewest spaces to the
indent position. You can confirm this by moving the cursor over these
leading Tabs and spaces, and if you 1like, you can also delete them ox
insert characters before this "Left margin". VEDIT only creates this
indentation when you type RETURN, when "Word Wrap" is being used and
when paragraphs are formatted.

VEDIT - Visual Editor Page 28
Visual Mode Task Tutorial

INDENTING TEXT BLOCKS:

Operation Command Sequence

Increase the amount of INDENT
Indentation. (Move left
margin to the right)

Decrease the amount of UNDENT
Indentation. (Move left
margin to the left)

To change Indent/Undent
increment:

1.) Enter command mode - VISUAL
ESCAPE
2.) 1Issue command, where EP 3 n$$

n= # of columns indented
each time, EX: EP 3 4$$
will indent to 5th column,
9th column, etc.

3.) Enter visual mode again \£1]

VEDIT - Visual Editor Page 29
Visual Mode Task Tutorial

WORD WRAP AND FORMATTING PARAGRAPHS

Note: Before the word wrap or the format paragraph function will
work, the right margin must be set in command mode (unless it
was set during customization). The left margin is set with the
INDENT and UNDENT functions.

1.) Set right margin and EP 7 n$$
invoke word wrap at
column n., This allows
n columns to be used.
Word wrap begins at
column n + 1,

2.) Move left margin to INDENT
the right.

3.) Move left margin to UNDENT
the left,

4.) Set addition indent SPACE
for the begin of a BAR
paragraph with spaces.

== QR ==
Use a tab, See ET TAB
command to change tab CHAR
positionms.

5.) Type in the paragraph.

Words will be wrapped
as needed.

6.) Reformat a paragraph FORMAT
to current left and PARAGRAPH
right margins.

VEDIT - Visual Editor Page 30
Visual Mode Task Tutorial

Moving and Copying Blocks of Text

A useful facility in VEDIT is the ability to move blocks of text
to other regions in the file, to duplicate blocks of text and to
delete blocks of text. These are done through the use of the "Text
Registers" and the functions [COPY TO TEXT REGISTER], [MOVE TO TEXT
REGISTER] and [INSERT TEXT REGISTER]. The text registers are simply
regions in memory in which VEDIT can store text which is independent
of the text you are editing. A block of text is any amount of text
from one character to an entire file. You can copy a block of your
text to a text register, in which case your text is unaltered, or you
can move a block of your text to a text register, in which case it is
deleted from your text. Alternately, these copy and move operations
can append the block of text to any existing text in the register. At
any time you can insert a text register into your main text, which
does not alter the text register.

The following page describes the steps to copy a block of text
from one area of the file to another. Note that at step 3.), the
cursor must be positiomed just AFTER the block of text. If you wish
to include the end of a line, this would be the first column of the
following line. You could of course position the cursor at the end of
the line, but in this case the carriage return which ends the line
would not be included in the text move.

If you wanted to move the paragraph, you would use the same
procedure, except use the [MOVE TO TEXT REGISTER] function instead of
[COPY TO TEXT REGISTER]. In this case the text will also be deleted
from your main text and from the screen.

If you type [COPY TO TEXT REGISTER] or [MOVE TO TEXT REGISTER]
twice at the same location, the text register will be emptied. If all
registers are empty, the "TEXT" message will disappear from the status
line. You can therefore delete a block of text by moving it to a text
register and then emptying the text register.

VEDIT - Visual Editor
Visual Mode Task Tutorial

1.)

2.)

3.)

4.)

5.)

6.)

7.)

8.)

Page 31

MOVING TEXT WITHIN THE FILE:

Position cursor over first
character in block to be
moved.

MOVE TO
TEXT
REGISTER

Position cursor past last
character in block to be
moved.

MOVE TO
TEXT
REGISTER

Type a digit "0 - 9" to
specify which register
to put text into.

Position cursor at position
to insert the text.

INSERT
TEXT
REGISTER

Type same digit as above
(or the digit of another
register).

Message "1 END" on status line

Message "REGISTER [+] 0-9" on
status line

Type optional "+" before digit
if new text is to be appended

to any existing text in regis-
ter, instead of overwriting it.

Message "REGISTER [+] 0-9"
appears

VEDIT - Visual Editor Page 32
Visual Mode Task Tutorial

NOTES :

1.)

2.)

3.

4.)

If you get a "FULL" message at step 4, there is insufficient
memory for the Text Register to contain the entire text block.
Nothing was inserted into the Text Register.

Following the text insert in step 6, the cursor is positioned at
either the beginning or end of the inserted test depending upon ES
command”s switch 4.

In step 3, in order to include the CR-LF of the line, position the
cursor at the beginning of the next line.

Alternately you may reverse steps 1) and 3), i.e. either end of
the block may be set first.

EMPTYING A TEXT REGISTER

Purpose: It is best to empty a text register when its contents are no

1.)

2.)

3.)

longer needed. This frees up more memory space too.

MOVE TO
TEXT
REGISTER
MOVE TO Type command key twice with
TEXT cursor at same position to
REGISTER empty the register.

Type a digit "0 - 9" to
specify which register
to empty out.

VEDIT - Visual Editor Page 33
Visual Mode Task Tutorial

SENDING TEXT TO THE PRINTER

1.) Be certain you printer is on,
and the "on line" or "select"
function on the printer is
enabled. (See your printer
manual).

2.) Position cursor at beginning
of text block.

3.) | PRINT Will get "1 End" message on
TEXT status line.

4) ©Position cursor at end of
text block.

5.) | PRINT Printer should start now.
TEXT

6.) <CTRL-C> If you wish to stop the printing.

VEDIT - Visual Editor Page 34
Visual Mode Task Tutorial

ENTERING COMMAND MODE

Besides the "Visual Mode" in which all editing is done on the
screen at the cursor position, VEDIT has a command mode, where all
editing is done by typing in commands which are always ended by typing
the <ESC> key twice. The command mode is definitely not as easy to use
as the visual mode, but fortunately you don”t need to know very much
of it in order to use VEDIT very successfully. One thing you do have
to know is how to enter command mode in order to end the edit sessionm.
This is done by typing the control code for [VISUAL ESCAPE]. Go ahead
and try it. The screen will scroll up one line and the command mode
prompt "¥" will appear below the status line, The command to enter
visual mode is "V' and since all commands end in <ESC><ESC>, you
should type the "V" and the <ESC> or Escape key twice to get back into
visual mode. Notice that the cursor is at the same position in the
text (but not necessarily on the screen) as it was when you exited
visual mode.

SWITCHING FROM VISUAL MODE TO COMMAND MODE

Function to exit VISUAL
visual mode into ESCAPE
command mode. "Edit
Pointer" takes on last
position of cursor.

Same as above, but does VISUAL
not abort any command, EXIT
such as a global search.

SWITCHING FROM COMMAND MODE TO VISUAL MODE

Command to enter visual \£1H]
mode. Text registers are

preserved., Cursor takes on

last position of command

mode "Edit pointer".

VEDIT - Visual Editor
Command Mode Task Tutorial

Page 35

SEARCHING AND SUBSTITUTING

Enter the following commands while
echoed with a "$", type <ESC> in

appears.

Take cursor to beginning of
Text Buffer (not necessarily
the beginning of the file) and
find 1st occurrence of "word".

Do same as BFword$$ except
enter Visual Mode after word
is found.

Find next occurance of "word"
and enter Visual Mode. Make
changes in Visual Mode and
return to Command Mode using
[VISUAL ESCAPE]. The command
will repeat until the end of
text buffer.

Search through the entire
text for lst occurance of
Yword" and substitute
"newword".

Replace "word" with "newword"
throughout file.

in Command Mode. Since <ESC> is
the command sequence wherever "$"

BFword$$

BFwordvs$

#[Fword$v]$s

Sword $newword$$

#Sword$newword$$

VEDIT - Visual Editor Page 36
Command Mode Task Tutorial

SAVE ALREADY EDITED TEXT AND CONTINUE

Purpose: You should make it a habit to regularly save your text on

disk during a long edit session. This way you will lose less

work in case of a power, hardware or software failure, or if

someone accidentally turns off the computer. Saving the text
every hour and whenever you leave the computer is suggested.

1.) | VISUAL If in visual mode,
ESCAPE enter command mode.
2.) EAS$S Write file to disk; same file

Purpose:

will be used to continue edit
session.

MAKING MORE MEMORY SPACE

When using the text registers extemsively, you may run out
of memory space for performing the desired operations. This
is usually indicated by a ¥*BREAK* in command mode, or a
"FULL" in visual mode. You should first try and empty out
any text registers which are no longer needed. If this does
not give you enough room, you can write out the first part
of the text if it is already edited.

1.) Position cursor past end
of text which does not

need

changing (it”s been

corrected already).

2). | VISUAL Enter command mode.
ESCAPE
3). O0wWSS$ Write this text out to disk.

More room is now available.

VEDIT ~ Visual Editor
Command Mode Task Tutorial

Page 37

INSERT A LINE RANGE OF FILE 1 INTO FILE 2

Note: Both files must be on same disk.

1.) VEDIT filel

2.) EQ$$

3.) VEDIT file2

4.) Position cursor where the
lines should be inserted.

5.) | VISUAL
ESCAPE

6.) EGfilella,n]

If you get a *BREAK* message there was insufficient memory to
insert the entire text, as much as possible was inserted. To make
more space for other files, text, etc.,
registers or writing the first part of the text out to disk, as

described earlier.

Line number appears on status
line; note upper and lower
range of lines you want cop-
ied by positioning cursor

on those lines. See ES command
if line number does not appear
on status line.

Exit VEDIT without writing
the file to disk.

Edit the file in which you
want the lines inserted.

Enter Command Mode.

Lines a => n will be copied
from filel to file2 beginning
at edit pointer (cursor)
position. To copy an entire
file, leave off the "[a,n]".

try emptying some of the text

VEDIT - Visual Editor
Command Mode Task Tutorial

Page 38

CONCATENATING TIWO FILES

Purpose: It is sometimes

desirable to append omne file to
another. This is readily done with VEDIT.
the text in file "file2"

in "filel"™ and the combined text

the end of
In this example
is appended to the end of the text
is written to the file

"file3". The three files can be on different disks.

Note: This assumes that the entire file “filel” fits into memory.

1.) VEDIT

2.) ERfilel$0AS$S

3.) (optional)

EC$$

4.) EWfile3$$

5.) ERfile2$0a$$

6.) EXS$$

Invoke VEDIT without a filename.
VEDIT will come up in command mode.

Setup the first input file for
reading, and read it in. This
assumes that the entire “filel”
fits into memory.

Only needs to be done if the disk
with “file2”- is not in one of the
drives. After the EC$$, make sure
that the disk with “file2” and the
disk to hold “file3” are in the
drives.

Setup the output file which will
hold the combined text.

Read the second input file. All of
it does not need to fit into
memory.

This writes out the complete file
“file3” and exits VEDIT.

VEDIT - Visual Editor
Command Mode Task Tutorial

Purpose:

1.)

2.)

3.)

4.)

5.)

6.)

7.)

8.)

smaller ones,
simple — the

Page 39

SPLITTING A FILE INTO TWO OR MORE FILES

It is sometimes desirable to split a large file into several
example assumes that the splits are
front, middle and end sections of a large file

are copied to their own files. More complex splitting can be

done with the

text registers. In this example “filel” is

split into “file2”, “file3” and file4’.

VEDIT

ERfilel$0AS$S

EWfile2$$

v$$

OWEF$$
0A$S
EWfile3$$

v$$

(optional)

OWEFS$$
0AS$S
EWfile3$$

EX$$

Invoke VEDIT without a filename.
VEDIT will come up in command mode.

Setup the large input file for
reading, and read it in. The entire
“filel” need not fit into memory.

Setup first output file.

In visual mode position the cursor
at the first character of the
second part of the large file.
Return to command mode.

Write the first part of the large
file to “file2” and close it. O0A
will read in more of “file if
necessary. Setup the second output
file.

See step 4. Not needed if only
splitting into two parts.

Not needed if splitting into two
parts. Write the 2nd part of large
file to “file3” and close it. OA
will read in more of “filel” if
necessary. Setup the third output
file.

Write the rest of the large file to
the last output file and exit VEDIT.

VEDIT - Visual Editor
Command Mode Task Tutorial

RECOVERY FROM

Page 40

FULL DISK ERRORS

Purpose: If you attempt to write more text to disk than the disk camn
hold, you will get a "NO DISK SPACE" error and a return to
command mode. Occasionally you may get a "NO DIR SPACE"
error which means the disk has insufficient directory space

to hold the rest of the

file. You can recover from both of

these errors by deleting old files on the disk, or by

writing the rest of the

1.) EX$$
NO DISK SPACE
BREAK

2.) EDoldfile$$

3.) EX$$

—— OR =~

2.) EF$$

3.) EC$$

4.) EWpart2$$

5.) EX$$

file to another disk.

You attempt to finish the edit
session, but you get the disk full
error.

Delete one or more old files on the
disk.

Continue finishing the edit session.

Save whatever fit onto disk. We
will call this Part 1.

Command to insert another disk
(with empty space) into one of the
drives. Type RETURN after changing
disks.

Setup to write the rest of the text
to the file “part2” on the new
disk.

Write the rest of the text out to
“part2”, and exit VEDIT.

You will now have to concatenate the two parts on the two disks
back into one file. See "Concatenating Two Files".

VEDIT - Visual Editor Page 41
Command Mode Task Tutorial

Ending the Edit Session

To end the edit session and exit VEDIT, you must be in the
command mode and issue one of the commands "EX" or "EQ". There is an
world of difference between these two commands. "EX" is the normal
command to end an edit session, and the text you were editing will be
written out to disk. The "EQ" command on the other hand aborts the
edit session and DOES NOT write the text out to disk. You won”t use
"EQ" very often. Since this is just a practice session with VEDIT,
the text you are currently editing is probably all butchered up and
you don”t want it written out to disk. Therefore the "EQ" command is
the appropriate way to exit VEDIT now. Of course, if you would like
to preserve your current text, you should exit with the normal "EX"
command. If you give the "EQ" command, VEDIT will ask for
verification before it actually aborts the edit session.

EXIT VEDIT TO CP/M:

1.) Exit Visual mode to VISUAL
Command mode. ESCAPE
2.) Exit Command mode to EX$$ File closed and written
CcP/M (MSDOS). out to disk.
—e OR =--
EQ$$ Abort — This does not write

out file to disk.

VEDIT - Visual Editor Page 42
Visual Mode - Properties

Section 3 - Visual Mode

Properties

In visual mode the screen continuously displays the region of the
file being edited and a cursor. The left most column does not contain
text, but rather is reserved for the line continuation indicator.
(The character used for the line continuation indicator can be set by
the user during customization. A "-" is the default.) The bottom
screen line is used for status information consisting of messages.
(Some CRT displays allow the messages to appear in reverse video.)
This status line can also optionally indicate what line number in the
file and what column the cursor is on. Characters typed while in
visual mode take effect immediately when typed. There are two basic
kinds of keyboard characters - Displayable characters and Control
characters. Displayable characters simply appear on the screen and
are either inserted or overtype the existing text. Control characters
consist of either ASCII control characters, characters with the high
order bit (Bit 8) set, or escape sequences. The customization process
determines which control function the control characters perform.
Unused control characters are ignored in visual mode. It is possible
to also insert any control character into the text. The control
functions either move the cursor or perform a visual operation.

In visual mode, the disk buffering can perform automatic Read and
Write to handle files which are larger than the size of available main
memory. Specifically, if the current screen display reaches the end
of the text buffer, and the entire input file has not yet been read,
the auto-~buffering is performed. VEDIT will also begin to write out
the text buffer (auto-write) if the memory becomes full while the user
is typing in more text. At this point the first 1K text bytes will
attempt to be written to the output file. If no output file is open,
or if the cursor is within the first 1K of the text buffer, no writing
occurs and the "FULL" message appears instead on the status line.
Both the auto-buffering and the auto-write may be disabled by the
"Auto Buffering in Visual Mode" switch.

The purpose of auto-buffering is to make the size of the file as
invisible to the wuser as possible., It 1is not always completely
invisible, however, since editing the portion of the file which has
already passed through the text buffer requires starting a new edit
session.

Each text line is assumed to end in a <CR> <LF> pair as is
required for other CP/M programs, and the <LF> is the true delimiter
of the text lines. Typing the RETURN (or <CR>) key inserts a <CR> <LF>
pair at the cursor position. Deleting the end of a line, will delete
both the <CR> and the <LF>. While VEDIT, in visual mode, will never
create a line ending in just a <CR> or <LF>, such lines are handled in
visual mode, although displayed differently. (Such 1lines can be

VEDIT - Visual Editor Page 43
Visual Mode - Properties

created in command mode). If a line ends in only a <LF>, the next line
will be displayed with a starting position directly below the end of
the previous line. If a line contains a <CR> not followed by a <LF>,
the character following the <CR> will be displayed in the reserved
column of the same screen line and the rest of the characters will
overwrite previous characters. (This is not very eloquent, but is just
what most terminals would do). Such lines may be fixed by deleting the
offending lone <CR> or <LF> with the [DEL] key and then inserting the
<CR> <LF> pair with the RETURN key.

Displayable Characters

When a displayable character is typed, it appears on the screen
at the current cursor position and the cursor then moves to its right.
VEDIT has two modes for inserting new characters, NORMAL and INSERT
mode. When a displayable character is typed in NORMAL mode it appears
at the cursor position and any character which was there is simply
overvwritten. The only exception to this is the <CR> <LF> pair, which
is not overwritten, but is squeezed to the right. Also, typing the
RETURN does not overwrite any character, but rather moves any
character at the cursor position to the next line. In INSERT mode, no
character is ever overwritten, but rather is squeezed to the right
when a new character is typed at its position. In either mode, a new
screen line, called a continuation line, is begun if the the text line
becomes longer than the screen line. Visual functions exist to enter
Insert Mode, revert to Normal mode, or to switch between the modes.
The editor always starts in Normal mode.

The keyboard characters RETURN and TAB are displayable
characters, but have special properties. The RETURN (or <CR>) key
causes a <CR> and line feed <LF> pair to be inserted into the text and
a new line to be begun on the screen., If it is typed while the cursor
is pointing within a text line, that line is effectively split into
two lines.

The [TAB CHARACTER] key causes insertion of a tab character, or
optionally, spaces to the next tab position. The tab character itself
is displayed with spaces on the screen to the next tab position, even
though the spaces do not exist in the text buffer.

Any control characters, other than <CR>, <LF> and <TAB> which are
in the text, are displayed in the common CP/M format by preceding the
letter with an "Up Arrow". The control function "[NEXT CHAR LITERAL]"
allows any control character except <CTRL~Z> (which is not allowed by
CP/M) to be inserted into the text. Alternately, the command mode
"EI" command can be wused to insert control and special characters
which cannot be produced by the keyboard.

VEDIT - Visual Editor Page 44
Visual Mode - Properties

Control Functions

The control functions fall into two categories: Cursor Movement
and Visual Function. The cursor movement keys only move the cursor to
some other position in the text and do not actually change the text.
The cursor may be moved forward and backward by a character, a word, a
line, a paragraph or a screen at a time. Up to ten positions in the
text may be "remembered" with invisible markers which allow the cursor
to be directly moved to these positions. These and other movements are
individually described later in this section.

Some of the visual functions perform editing functions such as
deleting, while others change the Insert mode, change the indentation,
manipulate the text registers,and print text. The visual functions for
deleting text are [DEL] which deletes a character, [EREOL] for
deleting (erasing) all remaining characters on the line beginning at
the cursor position, [ERLINE] for deleting the entire text line, and
[BACKSPACE] which moves the cursor to the left and deletes the
character there. The previous or mnext words in the text can also be
deleted with the [DEL PREVIOUS WORD] and [DEL NEXT WORD] functioms.

The visual functions [SET INSERT MODE], [RESET INSERT MODE] and
[SWITCH INSERT MODE] are used for switching between NORMAL and INSERT
mode. The visual function [RESTART] starts the edit session over,

saving the current file on disk, just as the EA command does. These
and other visual functions are fully described in this section.

VEDIT - Visual Editor Page 45
Visual Mode - Properties

The Tab Character

One displayable character which acts a little different is the
[TAB CHARACTER], which is normally assigned to the Tab Key or
<CTRL-I>. When the Tab key is typed, it inserts the tab character
into the text and this is displayed with spaces to the next tab
position. The tab positions are variable, but are normally set to
every 8 positions. You can tell the difference between the tab
character and spaces by the way the cursor moves over them. The
cursor moves over each space individually, but moves over the Tab as a
unit, i.e. a single [CURSOR RIGHT] might move you from column 1 to
column 9. This reflects the fact that the Tab is a single character
and should be treated as such. When the cursor is at the Tab
character, it is displayed at the left side of the displayed spaces.
If you wish to insert other characters before the Tab and leave the
Tab in the file, you must be in the Insert mode. Otherwise the first
character you type will overwrite the Tab. The Tab character is
commonly used when writing programs and aligning tabular data. Text
paragraphs are normally indented using just spaces.

The [TAB CHARACTER] and the [TAB CURSOR] function must not be
confused, The latter is strictly a cursor movement function and has
nothing to do with Tab characters. It only moves the cursor right to
the character at the next tab position. It is very similar to typing
[CURSOR RIGHT] repeatedly, except that it does not move the cursor
past the end of the line. If you find that you have customized the
Tab key to be [TAB CURSOR] you are advised to change the Tab key to be
[TAB CHARACTER] as it should be.

Optionally, the [TAB CHARACTER] function can insert spaces to the
next tab positiom. This would be equivalent to you typing in the
spaces. While this uses up more disk space and is not recommended for
normal applications, it is useful for applicatioms which require an
exact layout which is not compatible with the tab positions of other
programs. This option may be changed with the "ES" command.

VEDIT - Visual Editor Page 46
Visual Mode - Properties

Displaying Line and Column Numbers

If desired, VEDIT can display the line number in the file that
the cursor is on and/or the cursor’s column position on the status
line at the bottom of the screen. The display of these two numbers is
controlled by a parameter which is initially set during the
customization, but may be changed from command mode with the "EP"
command, (The example customization sets the parameter to display
both numbers). The cursor”s column position is simply the horizomtal
position on the current line. The line number in the file is a count
of the current number of preceding 1lines in the file, including any
which have already been written out to disk. The 1line number is the
same as would be printed by the CP/M PIP program with the "N" switch.
The line number for a particular 1line will therefore decrease if some
of the preceding 1lines are deleted, and will increase if some lines
are inserted into the preceding text. These numbers are not updated
immediately following every cursor movement, but only after the user
pauses typing for about 1/2 of a second.

Setting and Jumping to Text Markers

Up to ten positions within the text can be invisible marked,
allowing the cursor to be directly moved to these positions. The
positions are marked by typing the [SET TEXT MARKER] key. The status
line will then prompt for a digit "0 - 9". Type a digit. To move the
cursor to a marked position type the [GOTO TEXT MARKER] key and the
appropriate digit following the status line prompt. The cursor will
then move to the beginning of the line with the marked position.

The marked positions are relative to the text and not absolute
positions. This means that the markers will adjust themselves as text
is inserted and deleted. All markers are initially set to the Home
position. If text containing a marker is written to disk, that marker
will be reset to the Home condition. Unfortunately, performing a
RESTART function or an "EA" command will therefore reset all markers.
Some forms of the "S" command (search and replace) will allow the
markers to drift by a few positions. This is wusually not noticable
because accessing a marker moves the cursor to the beginning of the
line containing the marker.

The Text Registers

The visual functions [COPY TO TEXT REGISTER] and [MOVE TO TEXT
REGISTER] are used to copy or move text from the main text buffer to
one of the text registers. The function [INSERT TEXT REGISTER] is
then used to insert the contents of a text register at the cursor
position. These functions are usually used to move or copy text from
one area in the file to another. A section of text can also be moved

VEDIT - Visual Editor

: Page 47
Visual Mode - Properties &

to a text register, whose contents are then written in command mode to
a disk file. Command macros are also created and edited in visual
mode. When complete they are moved to a register which is then
executed in command mode. The text registers used are the same as used
in command mode, thus the text registers may be set in command mode
and inserted in visual mode or vice versa.

The text to be copied or moved is specified by first moving the
cursor to the beginning of the text and marking it by typing the
appropriate function key. The message "1 END" will appear on the
status line., The cursor is then moved just past the last character of
the text and the function key typed again. The status line will then
prompt for a digit "0 - 9" to specify which register. The digit may
optionally be preceded by the a "+" to indicate that the text is to be
appended to any text which may already be in the register. After
typing the digit, the status line message will change to "TEXT". 1In
case of [COPY TO TEXT REGISTER], the main text buffer will be
unchanged. However, in case of [MOVE TO TEXT REGISTER] the text will
be deleted from the main text buffer. Typing [INSERT TEXT REGISTER]
and a digit "0 - 9" will insert the specified register at the cursor
position. Depending upon the "Point past register insert" switch (see
ES command), the cursor will be positioned either at the begimmning or
the end of the inserted text.

Whether the beginning or the end of the text is first marked is
actually unimportant. It is also immaterial whether you type [COPY TO
TEXT REGISTER], [MOVE TO TEXT REGISTER] or even [PRINT TEXT] when you
mark the first end of the text. Only when you mark the second end
must the correct key be typed. If there is unsufficient memory space
for the text register, or to insert the register, the message "FULL"
will appear on the status line and the operation will be aborted.

Printing Text

VEDIT can print out any portion of the text which is currently in
the main text buffer. This can be done from both the visual and the
command modes of the editor. It is easiest to do in visual mode and
igs similar to the method of moving text to the text register. First
the cursor is positioned at one end of the text to be printed and the
[PRINT TEXT] function key pressed. (This is ESC - P in the example
keyboard layout). Then the cursor is positioned at the other end of
the text to be printed and the [PRINT TEXT] pressed again, which
causes the text to be printed. To print the entire text move the
cursor to the beginning and end of the text with the [HOME] and [ZEND]
functions, and type [PRINT TEXT] at each end. The printing can be
aborted by typing a CTRL-C. Many printers use control characters or
escape sequence to control such things as character size, font style
and overstrike. These special control sequences can be imbedded
directly into the text.

VEDIT - Visual Editor Page 48
Visual Mode - Properties

Inserting Control Characters

VEDIT can insert control characters into the text. These may be
special printer control characters, the [ESC] character, or control
characters for other purposes., Only CTRL-Z cannot be inserted because
it is defined by CP/M to signify the end of the file. The [NEXT CHAR
LITERAL] function places the next character typed on the keyboard into
the text. In this manner any control character which can be generated
from the keyboard can be placed into the text. In case a character
must be inserted which cannot be generated from the keyboard, the
command mode "EI" command can be used. This command can insert any
character with a decimal value between 00 and 255 (except CTRL-Z) into
the text.

Indent and Undent Functions

As an aid in word processing and writing programs in structured
languages such as Pascal, PL/I and C, the visual mode has the [INDENT]
and [UNDENT] functions. These functions allow the editor to
automatically pad up to the "Indent position" with tabs and spaces,
when a new line is created with the RETURN key. The [INDENT] key moves
the Indent position to the right by the "Indent increment", and the
[UNDENT] key moves the Indent position back to the left. If the
cursor is on a new line, or before any text on the 1line, when the
[INDENT] or [UNDENT] is pressed, the cursor and any following text
will also move to the new Indent position.

Normally the "Indent position" is zero and when a RETURN is
typed, a <CR> <LF> pair 1is inserted into the text, and the cursor
moves to column 1 of the next line. After the [INDENT] key is pressed
once and a RETURN typed, the cursor will be positioned not in colummn
1, but rather at the first indent position, i.e., colummn 5 if the
"Indent increment" is set to four. Pressing the [INDENT] key again
will position the cursor still farther to the right after each RETURN,
i.e., to column 9. Each time the the [UNDENT] key is pressed, the
indent position moves back toward the left until it is back at zero.

The exact number of tabs and spaces inserted into the text
buffer, to pad up to the "Indent position", is related to the
currently set tab positions and the "Indent Increment". The padding
will consist of the most tabs and fewest spaces in order to save
memory and disk space. For example, assume that the "Indent increment"
is set to the common value of four (4) and the tab positions at every
eight (8). When the "Indent position" is eight, the padding will
consist of one tab; when the "Indent position" is twenty, the padding
will consist of two tabs and four spaces. On the other hand, if the
tab positions were set to every four, only tabs would be used in the
padding. Note that if the "Expand Tab with spaces" switch is set, only
spaces will be used for padding. This would use up 1lots memory and
disk space.

VEDIT - Visual Editor Page 49
Visual Mode - Properties

disk space.

Lower to Upper Case Conversion

Several modes are available for converting between lower and
upper case letters as they are being typed on the keyboard. There are
three options for converting from lower to upper case:

1.) No conversion is made.

2.) All lower case letters are converted to upper case.

3.) Conditional conversion of lower case to upper case for assembly
language programming and other special applications.

The second option is similar to the "Caps Lock" on a keyboard, the 26
lower case letters are converted to upper case, The third option is
specifically designed for assembly language programming. In this mode
lower case letters are converted to upper case if they occur to the
left of a special character, typically ";". To the right of the ";"
they are not converted. In this manner an assembly language program
can be edited in all lower case letters and VEDIT will automatically
convert the labels, opcodes and operands to upper case, while leaving
the comment fields alone. This can also be used for Fortran programs
and other special applications. These options and the special
character are set with the "EP" command.

Upper and lower case letters can also be reversed, i.e., lower
case converted to upper case and upper case converted to lower case,
This is specifically designed for the Radio Shack TRS-80 Model I,
whose keyboard normally produces wupper case letters and lower case
with the Shift key. This reversal is done immediately when a keyboard
character is received and before any resulting lower case letter is
converted to upper case as described above. The 1letters are also
reversed for the command mode. This mode may also be handy in the
case where most text is to be entered in upper case, but where an

occasional lower case character is also needed. This mode is selected
with the "ES" command.

VEDIT - Visual Editor
Visual Mode - Properties Page 50

Word Processing Oriented Functions

VEDIT has functions for moving the cursor to the beginning of the
next word or the preceding word, and functions to delete the next or
the previous word. The [NEXT WORD] function moves the cursor to the
first letter of the next word. The [PREVIOUS WORD] function moves the
cursor to the first letter of the current word, or if already there,
to the beginning of the previous word. The [DEL NEXT WORD] function
deletes the entire word and any following spaces if the cursor is at
the beginning of the word. If the cursor is in the middle of a word,
it deletes only that portion of the word at and to the right of the
cursor. [DEL PREVIOUS WORD] deletes the previous word and any
following spaces if the cursor is at the beginning of a word. If the
cursor is in the middle of a word, it deletes only that portion of the
word to the left of the cursor. The delete-word functions never

delete carriage returns, but rather just moves over them when they are
encountered.

Words are allowed to have imbedded periods in them, such as in
"i.e.". A comma "," always ends a word, even if the comma is not
followed by a space. The special characters ")", "]" and “}" also
separate words from each other, as do spaces, tabs and carriage
returns. All other characters are allowed in words.

The cursor can also be moved to the beginning of the previous or
the next paragraph with the [PREVIOUS PARAGRAPH] and [NEXT PARAGRAPH]
functions. VEDIT considers a paragraph to end when an empty line, a
blank line, a text output processor command line, or a line which is
indented by at least two spaces or a tab is encountered. Text output
processor command lines are considered to be any line which begins
with a ".", "I" or a "@" in the first column.

Word Wrap and Indentation

To simplify the entering of word processing type text, the WORD
WRAP facility may be used. This facility allows the user to specify a
right margin beyond which no text should appear. If you attempt to
enter a new line beyond this margin, VEDIT will move the word which
didn”t fit within the margin to the next line, leave the cursor in the
same position in the word, and add a carriage return to end the
previous line. Word wrap will only occur when the cursor is at the
end of a 1line being entered, or when in INSERT mode. If you do not
wish the text to begin in the left most column, you may set a left
margin with the [INDENT] and [UNDENT] functions. A 1left hand margin
-may be set independent of whether word wrap is enabled. The right
hand margin can be greater than the screen line length, in which case
VEDIT will display a continuation line before the word wrap takes
Place. The word wrap facility is enabled by setting the right margin
parameter., A value of zero turns word wrap off. This parameter is
initially set during the customization and can be changed with the

VEDIT - Visual Editor Page 51
Visual Mode - Properties

"EP" command. For example, to set the right margin at column 70, the
following command is given in command mode:

EP 7 70[EscllEsc]

Formatting Paragraphs

In word processing it is frequently desirable to format a
paragraph so that "all of the text appears between certain left and
right margins. The [FORMAT PARAGRAPH] function performs this. The
left margin is set by the [INDENT] and [UNDENT] functioms, while the
right margin is the same as used for word wrap. When a paragraph is
formatted or reformatted, any spaces and tabs which make up an
indentation on the left side are ignored and effectively deleted
before any new indentation is created, but with one exception. The
exception is the first line of a paragraph. Any additional
indentation that the first line has over any second line in the
paragraph is preserved.

To format a paragraph, the cursor may be placed anywhere in the
paragraph or in the text output processor command lines which precede
the paragraph. The text output processor command lines will not be
formatted or changed in any way. After formatting, the cursor will be
positioned at the beginning of the next paragraph. A series of
paragraphs may therefore be formatted by just repeatedly typing the
[FORMAT PARAGRAPH] function. A paragraph will only be reformatted if
the right margin is greater than the left indent margin. Setting word
wrap off, therefore also disables the formatting functionm.

VEDIT -~ Visual Editor
Visual Mode - Control Functions

[HOME]
[ZEND]

[CURSOR UP]

[CURSOR DOWN]

[CURSOR RIGHT]
[CURSOR LEFT]

[BACK TAB]

[TAB CURSOR]

[zTP]

[NEXTLINE]

[PREVIOUS WORD]

[NEXT WORD]

[PREVIOUS PARA]

[NEXT PARA]

Page 52
(Cursor Movement)

Move the cursor to the very first character in the

text buffer.
Move the cursor to the
text buffer.

very last character in the

Move the cursor up one line, to the same horizontal
position if possible., If the position is beyond the
end of the line, move to the end of the line, if the
position is in the middle of a tab, move to the end
of the tab. If there is no line, it won”t move.

Move the cursor down omne line, to the
horizontal position if possible. The
for [CURSOR UP] apply.

same
same rules as

Move the cursor to the next character in the text.
If currently at end of line, move to beginning of
next line. If there is no line, don”t move.

Move the cursor to the previous character in the
text., If currently at beginning of line, move to end
of previous line. If there is no line, don”t move.

Move the cursor to the first position in the current
screen line, If cursor is already at the first
position, move to beginning of previous screen line.
Move the cursor to the character at the next tab
position. If cursor is at the end of a line, don“t
move. Note that this only moves the cursor, use the
[TAB] key to insert a Tab character.

Move the cursor to the end of the text line the
cursor is on. If it already is at the end of a
line, it moves to the end of the next text line.

Move the cursor to the beginning of next text lime.

Move the cursor to the first character of the
current word, or if already there, to the beginning

of the previous word.

Move the cursor to the first character of next word.
Move the cursor to be beginning of the current
pragraph, or if already there, to the beginning of
the previous paragraph.

Move the cursor to the beginning of next paragraph.

VEDIT - Visual Editor Page 53
Visual Mode - Control Functions (Cursor Movement)

[PAGE UP]

[PAGE DOWN]

[SET TEXT MARKER]

[GOTO TEXT MARKER]

[SET INSERT MODE]
[RESET INS MODE]

[SWITCH INS MODE]

[DELETE]

[BACKSPACE]

[DEL PREVIOUS WORD]

[DEL NEXT WORD]

[EREOL]

This scrolls the screen to give a similar effect
to typing [CURSOR UP] for 3/4 screen lines.

This scrolls the screen to give a similar effect
to typing [CURSOR DOWN] for 3/4 screen lines.

Followed by a digit "0 — 9". Sets an invisible
text marker which will automatically adjust as
text is inserted and deleted.

Followed by a digit "0 - 9". Moves the cursor to
the beginning of the line containing the specified
text marker. If the marker has not been set or
has been reset, moves the cursor home,

Change the mode to INSERT if not already there.
Change the mode to NORMAL if not already there.

Switch the mode to the opposite. Note that
normally either [SET INS MODE] and [RESET INS
MODE] or [SWITCH INS MODE] would be implemented
during the VEDIT Customization process.

Delete the character at the cursor position. The
cursor doesn’t move. A lone <CR> or <LF> will
also be deleted, but a <CR> <LF> pair will both be
deleted as one.

Move the cursor left and delete the character at
that position. Does not delete a <CR> <LF>.

Delete the previous word and any following spaces
if the cursor is at the beginning of a word.
Otherwise delete only that portion to the left of
the cursor.

Delete the entire word and any following spaces if
the cursor is at the |Dbeginning of a word.
Otherwise delete that portion of the word at and
to the right of the cursor.

This deletes all characters from the cursor
position to the end of the text line but not the
final <CR><LF> pair unless the text line only
consists of the <CR><LF>, in which case the
<CR>XLF> is deleted. For example, the following
sequence will delete an entire line:

[BACK TAB] [EREOL] [EREOL].

VEDIT - Visual Editor Page 54
Visual Mode - Control Functions (Visual Function)

[ERLINE]

[uNDO]

[NEXT CHAR LITERAL]

[INDENT]

[UNDENT]

[COPY TO TEXT REG]

[MOVE TO TEXT REG]

This deletes the entire text line. Use of
[BACK TAB] [EREOL] is actually preferable, since
the latter does not close up the screen line and
frequently allows the [UNDO] to restore the
original line.

This rewrites the screen and ignores the changes
made to the text line the cursor is on.

The next character, whether a displayable
character, a control character, or a character
with its high order bit set, will be placed into
the text buffer.

This increases the "Indent Position" by the amount
of the "Indent Increment". The editor will then
automatically pad with tabs and spaces to the
Indent position following each RETURN. The
padding will also take place on the current line
if the cursor is before any text on the line,

This decreases the "Indent Position" by the amount
of the "Indent Increment”, until it is zero. One
[UNDENT] therefore effectively cancels one
[INDENT].

The first time this key is hit, the position of
the cursor is remembered, and the message "1 END"
is displayed on the status line. When the key is
hit while the "1 END" is set, the status line
prompts for a digit "0 -~ 9" indicating the text
register to be used. The text block between the
first cursor position and the current cursor
position is then copied to the text register.
Optionally the digit may be prefixed with a "+" to
indicate that the text is to be appended to any
text already in the register. Assuming there is
enough memory space for this "copy", the message
"TEXT" is then displayed on the status line in
place of the "1 END"., If insufficient memory space
exists, no copy is made, the "1 END" is erased and
the "FULL" message appears on the status line.
Hitting this key twice at the same cursor position
will empty the specified text register. Note that
either the beginning or the end of the text block
may be set first.

This is similar to [COPY TO TEXT REG], except that
the text block is deleted from the text buffer
after it is moved to the text register.

VEDIT - Visual Editor Page 55
Visual Mode - Control Functions (Visual Function)

[INSERT TEXT REG]

[PRINT TEXT]

[FORMAT PARAGRAPH]

[VISUAL EXIT]

[VISUAL ESCAPE]

[RESTART]

Followed by a digit "0 — 9" indicating which text
register”s contents are to be inserted at the
current cursor position. The register itself is
not changed. If there is insufficient memory
space for the entire "copy", nothing is inserted
and the "FULL" message will appear on the status
line. Moving the cursor to another 1line will
clear the "FULL" message.

This is activated similar to the [COPY TO TEXT
REG], only no digit needs to be typed. The block
of text is then printed on the CP/M listing
device. A CTRL-C will abort the print out.

This will format the paragraph that the cursor is
in so that all of the text appears between a left
and right margin. The left margin is the current
Indent Position, and the right margin is the
current Word Wrap column., Following the format,
the cursor will be positioned at the beginning of
the next paragraph. Text output processors
commands will not be formatted.

Visual Mode is exited to Command Mode. The
current cursor position in the text buffer will
become the command mode edit pointer position.
Any text register is preserved. Depending upon
the value of the "Clear screen on visual exit"
switch, the command prompt will appear either on a
clear screen or just below the status line.

This is identical to the [VISUAL EXIT], except
that any current iteration macro is aborted.

The text buffer and any unappended portion of the
input file is written to the output file. The
output file is closed and then reopened as the
Input and Output file. The file is then read into
the text buffer again.

VEDIT - Visual Editor Page 56
Command Mode - Properties

Section 4 - Command Mode

Properties

e 01 s S Y. e i 2

In command mode all character output goes to the current CP/M
console output device. The user enters command lines, which comsist
of single commands, strings of commands or iteration macros. Each
command line is ended with an <ESC> <ESC>, at which point the command
line is executed. The <ESC> is also used to delimit search strings.
In the event that your keyboard does not have an <ESC> key, you may
customize the command mode escape character to be any other control
character.

Each character typed is echoed by VEDIT and none are processed by
CP/M. Thus a <CTRL-C> has a different meaning in VEDIT and does not
cause a return to CP/M. The <ESC> is echoed with a "$", which is also
used in the examples in this manual to signify the <ESC> key. The
<RETURN> or <CR> key is echoed with a <CR> <LF> pair, and the pair is
also entered into the command line. Although this causes a new line
to be printed, it is still part of the command 1line and DOES NOT end
the command line.

The user is prompted for a new command line by the "*" character.
If, while typing, the command line should exhaust the amount of memory
space available to it, (the text buffer, text register and command
line all share the same memory space) VEDIT will send the "Bell"
character to the console and neither accept nor echo any more
characters. The user will then have to edit the current command line
in order to end it and then rectify the full memory situation. Even
when the memory is full, (see "U" command) up to tem characters may be
typed on the command line.

Before the command line is ended and begins executing, the line
may be edited with most common line editing characters. They are
described in detail below under "Line Editing". Once execution begins,
it may often be aborted by typing the <CTRL-C> character. This causes
a *BREAK* and a new command mode prefix to be printed. VEDIT checks
for the [CTRL-C] before any new command is executed, during the
execution of the "A", "F", "N", and "T" commands, and in a few other
situations.

VEDIT - Visual Editor Page 57
Command Mode — Properties

Command Mode Notation

$ denotes the <ESC> control character. Wherever "$" appears
PP
in a command mode example, type the <ESC> key.

<TAB> represents the TAB character while "<CR>" represents RETURN.
<CR> Type the respective keys, not the literal representation.
<ESC> represents the ESC key or alternate command mode escape

<CTRL- > character selected during customization. Other control
characters produced by holding the CIRL key and typing a
letter are represented by "<CTRL-letter>".

[The bracket characters used for iteration macros are printed

1 as "[" and "]" in this manual. Some users may be more
familiar with the angle brackets "<" and ">". You can
choose which characters to use during the customization
process.

Search Options and Special Characters

There are two search options which are useful for some
applications, particularly when using text register macros. One
allows strings to be delimited without using the <ESC> character. The
second allows search error messages to be suppressed. Two special
characters have significance in strings being searched. The first is
the wildcard character "|", which will match any character in the text
being searched. The second is [CTRL-Q], which allows the following
control character to appear literally in the string.

The commands "F", "N", "S" and "I" are followed by a text string,
which is normally delimited with an <ESC>. An option allows an
explicit delimiting character to begin and end the text string. With
this option, the character immediately following the "pv, YN", "S" or
"I" command is the delimiter. Any character can be the delimiter, but
"/v ig a common choice. Note that the text string itself cannot
contain the delimiting character. This option can be invoked by
preceding the command with a "@". For examples, the commands on the
left side are equivalent to those on the right.

FspeledV @F/speled/V$$
Sspeled$Spelled$v$$ @s/speled/spelled/V$$
4Fpoint$V$$ 4@F :point:$$

Ia new line$$ @I/a new line/S$$

VEDIT -~ Visual Editor Page 58
Command Mode - Properties

This explicit delimiter option can also be made the default by
setting it with the "ES" command, or during customization. With the
option ON, the "@" character is no longer needed. Although using this
option requires more characters to be typed, many users find that it
makes the commands more understandable. It also allows the <ESC>
character to be searched, which is useful when editing macros. For
example, the following command searches for the string "h<ESC> <ESC>":

@F/h<ESC><ESC>/V$$

Note that the <ESC> <ESC> therefore does not end a command if it
appears between explicit delimiters. Since it is easy to forget the
second delimiter and type <ESC> <ESC>, the command mode prompt changes
from its normal "¥" to "-" indicating that the command has not yet
ended.

The command "F$$" will always search for the last used string,
even if the explicit delimiter was used for the original string or is
currently in effect,

F$$ Search for last used string.

Search error messages can be suppressed by preceding the "F", "N"
or "S" command with a ":", Alternately the suppression may be turned
ON with the "ES" command or during customization. This is primarily
useful with text register macros which contain many "S" commands, and
where the macro should not terminate if some of the strings are not
found.

A useful feature for some search operations is the special "|"
character. Each "|" in the string being searched will match any
character in the text. The search string "C|N" will -match "CAN",
"CIN", "C N" and others. Similarly, "C||E" will match "CONE", "C NE"
and others.

The literal character <CTRL-Q> operates similar to the [NEXT CHAR
LITERAL] in visual mode, in that the next character is treated
literally and not interpreted. This is the only way to search for
characters such as <CTRL-R>, <CTRL-U> and <CTRL-H> which are also used
for line editing. Tt is also an alternate way to search for the <ESC>
character. For example, the following examples insert text containing
a <CTRL-H> and search for the same text:

Iword <CTRL-Q><CTRL-H>$$
Fword<CTRL-Q><CTRL-H>$$
These two commands both search for the string "h<ESC>":

@F/h<ESC>/$$ Fh<CTRL-Q><ESC>$$

VEDIT - Visual Editor Page 59
Command Mode - Properties

CP/M and VEDIT both require that lines end in a <CR> <LF> pair.
However, when files are transferred from mainframe computers, the
lines often end in a <CR> without the <LF>. These lone <CR> must be
changed to <CR> <LF> pairs. One cannot simply search for a <CR> by
typing the RETURN key because it is expanded into <CR> <LF>, unless
the RETURN is preceded with a "<CTRL-Q>. Therefore, the command to
change all lome <CR> to <CR> <LF> pairs is:

b#S<CTRL-Q><CR>$<CR>$$

Iteration Macros

An iteration macro is a group of Command Mode commands which
repeats with or without user intervention as many times as desired.
They are most useful in searching and substitution tasks (changing all
instances of a misspelled word, for example).

An iteration macro’s general comstruction is: a string of
commands enclosed with brackets "[" and "]", prefixed by a number
which tells VEDIT how many times to iterate, and ended with
<ESC> <ESC>. The following example changes the first three
occurrences (if found) of " teith" to " teeth".

Example: 3[s teith$ teeth$]$$

It is very important to observe the placement of any necessary
<ESC> to terminate strings and filenames when using iteration macros.
For example, "BF word$$" needs no "$" between the "B" command and the
"FY command, but in "S name$ smith$V$$", the "$"s are necessary after
" pame" and after " smith". The following example changes the first
occurrence of " teith" to " teeth]", which is not the intentionmn.

Wrong: 3[s teith$ teeth]$$
1f desired, each command may be ended with one <ESC>, in which

case you won’t have to remember whether the command must be ended in
an <ESC> or not.

VEDIT - Visual Editor Page 60
Command Mode - Properties

Iteration Prefixes:

Besides any integer, the iteration macro may be prefixed with a
"#". This is used when the iteration is to continue as long as
possible. "#" represents the maximum positive number 32767. If no
prefix is givem, "1" is assumed. The following example changes all
occurrences of " teith" to " teeth".

Example: #[8 teith$ teeth$]$$

It is normal to get the error message "CANNOT FIND ..." when
performing a search or substitute command for all occurrences of a
string, because the command is literally searching for 32767
occurrences. However, the error will not occur for the "#S" command.

Using Visual Mode in Iteration Macros:

Search and substitute operations are often used in conjunction
with. the visual mode in order to edit the region, or to confirm that
the substitute was done correctly. For example, the following command
will search for all occurrences of the word "temporary" and let those
regions of the text be edited in visual mode.

#[Ftemporary$vl$$

The following command could be used in a form letter to change
the string "-name-" to the desired name, check that it was done
correctly in visual mode, and if necessary make any edit changes.

#[S~name-$Mr. Jones$V]$$

The Visual Mode has two ways of exiting back to Command Mode in
order to help in using iteration macros. The [VISUAL EXIT] simply
exits and lets any command iteration continue. The second, [VISUAL
ESCAPE] exits to Command Mode, but also aborts any iteration macro.
The latter is used when the user realizes that the iteration macro is
not doing what was intended and does not want the macro to further
foul things up. For example, in order to change all occurrences of
the word "and" to "or", the following command may have been given:

#[SandSor$v]$s$

The user might them see in Visual Mode that the word "sand" was
changed to "sor", which was not the intention. The [VISUAL ESCAPE]
would stop the command and the following correct command could then be
given:

VEDIT - Visual Editor Page 61
Command Mode - Properties

#{s and$ orvls

If it is unnecessary or undesirable to view each substitution in
Visual Mode, the previous substitute operation could take the simpler
form:

#s and$ or$s

Note that this is not an iteration macro, but rather just a form
of the "S" command. Because it executes much quicker, it is
preferable to the equivalent command:

Slow: #[s and$ or$ls$$

The commands "I" for Insert and "T" for Type are useful in
iteration macros. The "I" can be used to type out the lines that are
changed in an iteration macro without going into Visual Mode. The "I"
command is useful when the same text is to be inserted into the text
buffer many times. For example, to begin creating a table of 60 lines,
where each line begins with a <TAB> and ".....", the following command
could be used before the rest of the table was filled in Visual Mode:

60[I<TAB>.....<CR>$1$$
The <CR> will be expanded into a <CR> <LF> pair.

Iteration macros only work from the edit pointer position
forward, unless a particular command has a negative prefix. Therefore
be sure to place the edit pointer at the beginning of the text buffer,
file, or other area you’re working in so that all occurrences are
found.

An iteration will continue until its iteration count is exhausted
or until an error occurs., Common errors are unsuccessful search
operations. A special situation is encountered when using search
commands ("F" and "S") in iteration macros with search error
suppression enabled. When a search is unsuccessful, no error is
given, but the iteration is stopped, and execution continues with the
command following the iteration. This may be an outer level
iteration. Recall that the commands "#S" and "#F" are only
unsuccessful if no occurrences are found.

VEDIT - Visual Editor Page 62
Command Mode - Properties

Text Registers

Eight commands are available for using the ten text registers in
command mode. Lines of text may be copied to a register with the "P"
command :

35P5$$ Copy the next 35 lines to register 5.
-6P+4$$ Append previous 6 lines to register 4.
0P2$$ Empty out register 2.

The "G" command inserts the contents of the specified register at the
edit pointer:

G2$$ Insert register 2 at edit pointer.

The "RS" command will save the contents of the specified register in a
disk file. Various portions of a file or files may therefore be
appended to a text register, which is then saved as a new disk file.

RS4b:filesave.reg$$ Save contents of register &4 in
"filesave.reg" on drive "B".

Similarly the "RL" command will load a register from a disk file.
This can be useful for merging several files together in complex ways.

RL4b:filesave.reg$$ Load fegister 4 from "filesave.reg" on
drive "B",

The contents of a text register can be display on the console with the
"RT" command:

RT9$$ Type out contents of register 9.

The "RT" command expands control characters and displays <ESC>
with a "$", Since this is not suitable for initializing a terminal
(programmable function keys, etc.), the "RD" command is provided,
which does not expand control characters:

RD9$S Dump out contents of register 9.

The "RU" command displays the number of characters contained in
each of the text registers. The sum of these ten values is the last
number displayed by the "U" command. If this sum is not zero, the
status line message "TEXT" appears in visual mode.

The "M" command executes the contents of the specified register
as a command macro, as described in the following section.

VEDIT - Visual Editor Page 63
Command Mode - Properties

Text Register Macros

The text registers may hold commands which can be executed just
as if they had been typed in by hand. Frequently used commands,
particularly long iteration macros, can be saved in the text
registers. These commands are referred to as "command macros" or just
"macros" for short. The macros are usually created and edited in
visual mode and are then moved to the appropriate register. The
macros can also be saved on disk and be retrieved from disk (see RL
and RS commands). Macros offer so many capabilities that it is
impossible to cover all of the possibilities.

A macro is invoked with the "M" command:
M6$$ Executes macro in register 6.

A macro may contain an "M" command to invoke the macro in another
register. This can be done up to a level of 5.

A common use of macros is for large search and replace
operations. Take the example of a long manuscript split into 20 files
in which 40 words were consistently mispelled. The task of correcting
the words in all 20 files can be done with 2 macros. One will contain
the search and replace for the 40 words. The second will edit each
file, and for each file execute the search/replace macro. The first
macro would appear as:

ES 81
ES 91
b#s/wordl/fix1/
b#s/word2/fix2/
b#s/word3/fix3/

bi#s/word40/ £ix40/

The first two commands specify that explicit terminators are to be
used and that search errors are,h to be suppressed. Since explicit
terminators are used, the <ESC> character is not needed anywhere.
Macros do not need to end in <ESC> <ESC>. Search errors must be
suppressed, because otherwise, if any word is not found the entire
macro will abort.

The second macro reads in each of the 20 files, executes the
first macro, writes the file back to disk, and continues with the next
file. It is assumed that the first macro is in register 1.

VEDIT - Visual Editor Page 64
Command Mode - Properties :

EBfilel .txt<ESC>
Ml

{#WEF
EBfile2,txt<ESC>
M1

#WEF
EBfile20.txt<ESC>
Ml

#WEF

Note that each filename must be ended with an <ESC>., Assuming that
this macro is in register 0, the following command would invoke the
macro to perform the search and replace on all files:

MO$S

It is often desirable to save such complex macros on disk for
future use. The commands to save these two macros might be:

RSlmacrol.exc$$
RSOmacro2.exc$$

Similarly the commands to retrieve them from disk are:

RLlmacrol.exc$$
RLOmacro2.exc$$

The commands to display them on the console are:
RTlmacrol.exc$$

RTOmacro2.exc$$

Macros are most easily created in visual mode and then moved to
the appropriate text register. They can be edited by appending the
text register to the end of the current text buffer in visual mode,
making the changes and moving them back to the register.

Printing Text

Text can be printed from command mode with the "EO" command.
This command takes a numeric argument similar to the "T" command to
specify how many 1lines before or after the edit pointer are to be
printed. For example, "40EO0" will print the following 40 lines, while
"-5E0" will print the preceding 5 lines. Additionally, the command
"0EO" will print all 1lines from the beginning of the text buffer to
the current edit pointer. (The edit pointer is the same as the cursor
position when you change from visual to command mode). Therefore, the
command to print the entire text is:

Z0EO Print entire text on line printer.

VEDIT - Visual Editor

Page 65

Command Mode - Command Line Editing

Command Line Editing

Several common control characters are recognized in command mode
as line editing characters. They are:

<CTRL-H> or <BACKSPACE> Delete the 1last character typed and echo a

<RUBOUT> or <DELETE>

<CTRL-R>

<CTRL-U>

<CTRL-X>

<CTRL~H> to the comnsole.

Delete the last character typed and echo the
deleted character to the comsole.

Doesn”t change the command 1line, but echoes
the entire command line back to the comsole.

Delete the entire command line and send a "#"
to the console.

Identical to <CTIRL-U>.

VEDIT - Visual Editor Page 66
Brief Command Description

“n” denotes a positive number. (# represents 32767)

‘m” denotes a number which may be negative to denote backwards
in the text buffer.

“r” denotes a digit "0 - 9" specifying a text register.

“string”, “sl”, “s2” and “text” denote strings which may
include the RETURN key in them. May wuse explicit
terminators, or else must end in <ESC>.

file” is a disk file name in normal CP/M (MSDOS) format with
optional disk drive and extension. Any leading spaces are
ignored. Must be ended with an <ESC>.

nA Append “n” lines from the input file to the end of
the text buffer. "O0A" performs an auto-read.

B Move the edit pointer to the beginning of the text
buffer.

mC Move the edit pointer by “m” positioms.

mD Delete “m” characters from the text.

E First letter of extended two letter commands.

nFstring<ESC> Search for the “n"th occurrence of “string” in the
current text buffer and position the edit pointer
after it. Only first 32 characters of “string” are
searched.

Gr Insert the contents of text register “r” at the edit
pointer.

Itext<ESC> Insert the “text” into the text buffer at the edit
pointer.

mK Kill “m” 1lines.

mL Move the edit pointer by “m” lines and leave at the
beginning of that line.

Mr Execute text register “r” as a command macro.

nNstring<ESC> Search for the “n"th occurrence of “string” and read

more of the file from disk if necessary. The edit
pointer is positioned after last “string” if found,
else not moved or left at the beginning of the text
buffer. :

VEDIT -~ Visual Editor Page 67
Brief Command Description

mPr

Ss1<ESC>s2<ESC>

mT

U

nW

Put “m” lines of text into text register “r’. “r” may
be preceded by "+" to append to the register. "OPr"
empties text register “r”.

Search for the next occurrence of “sl1” within the
current text buffer, and if found, change to “s2”.
Print (type) “m” lines.

Print # of free bytes remaining / # bytes in text
buffer/ # bytes in combined text registers.

Go into visual mode. Set cursor position from
current edit pointer.

Write “n” lines to the disk from the beginning of the
text buffer and delete from the text buffer. OW
vrites out the text buffer up to the current line.

Move the edit pointer to the last character in the
text buffer.

SPECIAL CHARACTERS

<CTRL-Q>

The search wildcard character. Each "|" will match
any character in the text being searched. For "F",
"N" and "S" commands.

Literal character. Next character, usually a control
character, is takem 1literally and not interpreted.
Allows searching and inserting of control characters
including <ESC>.

Imnediately precedes "F", "I", "N" or "S" to indicate
that explicit terminating characters are being used.

Imnediately precedes "F", N" or "S" to indicate that
search error messages are to be suppressed.

VEDIT - Visual Editor Page 68
Brief Command Description

EXTENDED COMMANDS

EA

EBfile

EC

EDfile

EF

EGfile[line range]

nEI

mEQO

EP n k

NP W N

~

Restart the editor by completely writing the output
file, closing it, and then opening the output file
again with an EB., The text register is not
disturbed.

Open the file "file" for both Read and Write and
then perform an auto-read if the input file exists.
If the file does nmot exist, "NEW FILE" is printed.
Gives error if an output file is still open.

Allow user to change disks, primarily for write
error recovery.

Delete (erase) the file "file" from the disk. This
is primarily intended for write error recovery.

Close the current output file.

Insert the specified line number range of the file
"file" into the text buffer at the edit pointer.
If no line range is specified, the entire file is
inserted.

Insert the character whose decimal value is "n"
into the text buffer at the edit pointer. Only the
value "26" is not allowed since this is the CP/M
"End of File" marker. Values of 128 to 254 are
allowed.

Send “m” lines to the 1line printer. "OEO" prints
from the beginning of the text buffer to the
current line.

Change the value of parameter "n" to "k".
Currently there are the following parameters:

Cursor type (Mem Mapped Only) (0, 1 or 2)
Cursor blink rate (Mem Mapped Only) (5 -~ 100)
Indent Increment (1 - 20)
Lower case convert (0, 1 or 2)
Conditional convert character (32 - 126)
Display line and colummn position (0 - 3)

(0 = none, 1 = line, 2 = column, 3 = both)
Word Wrap column (0 = Off) (0 - 255)

VEDIT - Visual Editor Page 69
Brief Command Description

EQ

ERfile

ES n k

ET

EV

EWfile

OVoO~NOTBPWN -

Quit the edit session and leave disk files exactly
as before the session started.

Open the file "file" for input. Gives error if file
does not exist.

Change the value of switch "n" to "k". Currently
there are the following switches:

Expand Tab with spaces (0=NO 1=YES)
Auto buffering in visual mode (0=NO 1=YES)
Start in visual mode (0=NO 1=YES)
Point past text reg. insert (0=NO 1=YES)
Ignore UC/LC distinction in search (0=NO 1=YES)
Clear screen on Visual Exit (0=NO 1=YES)
Reverse Upper and Lower case (0=NO 1=YES)
Suppress search errors (0=NO 1=YES)
Explicit string terminators (0=NO 1=YES)

Set new tab positions. The ET is followed by up to
30 decimal numbers specifying the tab positions.
Since the positions start at 1, the normal
positions would be: 9 17 25 33 etc.

Print the VEDIT version number.

Open the file "file" for output. Any existing file
by that name will be renamed to "file.BAK"
following an EF or EX. Gives error if an output
file is already open.

Exit back to CP/M after writing the text and any
unappended part of the input file to the output
file. Gives error if no output file is open.

TEXT REGISTER COMMANDS

RDr

RLrfile
RSrfile

RTr

RU

Dump contents of register “r” on comsole. Control
characters are not expanded.

Load register “r” from file "file”.
Save contents of register “r” in file “file”.

Type contents of register “r” on comsole. Control
characters are expanded, <ESC> is represented as "$".

Display number of characters (size) in each text
register. :

VEDIT - Visual Editor Page 70
Command Mode — Detailed Command Description

Example:

Description:

Notes:

See Also:

Examples:

nA Append

100AS$ 0A$$

This command will append “n” lines from the input file
to the end of the text buffer. Fewer lines will be
appended if there is insufficient memory space for “n”
lines, or there are not “n” lines remaining in the
input file. If “n” 1is 0, an auto-read is performed,
which reads all of the input file or until the main
memory is almost full. The command can be issued (with
‘n” not zero) after an auto-read to read in more of the
file. An error is given if there is no input file open
when this command is issued. The input file can be
opened with the EB and ER commands, or when VEDIT is
invoked from CP/M.

No indication 1is given if fewer than “n” 1lines were
appended. Use the "U" command to see if anything was
appended. If the text buffer is completely full, the
text registers cannot be used and visual mode will not
work well.

Commands: U, W, EB, EG, ER
Auto-Read

ERTEXT.DOC$$

0ASS The file "“TEXT.DOC” is opened and all
of the file 1is read in, or until the
memory is almost full.

VEDIT - Visual Editor Page 71
Command Mode - Detailed Command Description

Example:

Description:

Notes:
See Also:

Examples:

Example:

Description:

Notes:
See Also:

Examples:

B Beginning

B$S

This command moves the edit pointer to the beginning of
the text buffer. The beginning of the text buffer will
not be the beginning of the text file if a "W" command
or an auto-write was done. In this case, use the "EA"
command to move back to the beginning of the text file.

Commands: EA, Z

B12T$$ Moves the edit pointer to the beginning
of the text buffer and prints the first
12 lines.
mC Change
12¢$$ -4C$$

This command moves the edit pointer by “m” character
positions, forwards if “m” is positive and backwards if
‘m” is negative. The edit pointer cannot be moved
beyond the beginning or the end of the text buffer, and
an attempt to do so will 1leave the edit pointer at the
beginning or the end respectively. Remember that every
line normally ends in a <CR> <LF> (carriage return,
line feed), which represents two character positions.,

Commands: D, L

Fhello$-5C$$ Searches for the word "hello", and if
it is found, positions the edit pointer
at the beginning of the word.

VEDIT - Visual Editor Page 72
Command Mode - Detailed Command Description

Example:

Description:

Notes:
See Also:

Examples:

Example:

Description:

Notes:
See Also:

Examples:

mD Delete

e o s -

12p$$ -4D$$

This command deletes ‘m” characters from the text
buffer, starting at the current edit pointer. If “m”
is positive, the ‘m” characters immediately at and
following the edit pointer are deleted. If “m” is
negative, the “m” characters preceding the edit pointer
are deleted. Fewer than “m” characters will be deleted
if the ends of the text buffer are reached.

Commands: C, K

100<FBIKES$-D$>$$ The “S” will be deleted from up to
100 occurrences of the word “BIKES”.

E Extended Commands

EX$$ EVSS

This is not a command by itself but just the first
letter of all the extended commands.

No error is given if just E$$ is given.

Extended commands.

VEDIT - Visual Editor Page 73
Command Mode — Detailed Command Description

Example:

Description:

Notes:

See Also:

Examples:

nFsl<ESC> Find

Fmispell$$ 10Fwords$$ FS$$

This command searches the text buffer, beginning from
the current edit pointer, for the “n“th occurrence of
the string “sl”“. The edit pointer will be positioned
after the last character of the “n”th occurrence of
“sl” if it is found. If the “n”th occurrence of “sl’
is not found, an error will be given (unless
suppressed) and the edit pointer will be positioned
after the last occurrence of “sl” found, or be left at
its original positiom if no occurrences of “s8l” were
found. If no string is specified, the search will
reuse the previously specified string. The switch
“"Ignore Upper/Lower case distinction" will determine if
the search will ignore the distinction between upper
and lower case letters. If the search is to include
parts of the file not yet in the text buffer, use the
“N" command.

The search is always forward, never backwards. While
ignoring the upper/lower case distinction is usually
more convenient, the search will take longer. Remember
that the "wild card" character can be used. The "@"
character allows an explicit delimiting character. For
the command form "#Fsl<ESC>", an error is omnly given if
no occurrences of “sl” are found.

Command: N

BFhello$$ Searches for the word "hello" from the
beginning of the text buffer.

#[3Ffirst$-5DIthird$]1$$ Changes every third occurrence
of the word "first" to "third".

Z-100LFend$$ Find the word "end" if it occurs in the
last 100 lines of the text buffer.

#[eF/fix up/V1$$ Finds the mnext occurrence of the
string "fix up" and enters Visual mode.
Any changes can be made in Visual mode.
When Visual mode is exited, the next
occurrence of "fix up" is found and so
on.

FSVS$$ The next occurrence of the previous
specified string is found, and visual
mode is then entered.

VEDIT - Visual Editor Page 74
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Examples:

Gr Get

G4$$

This command inserts a copy of text register “r” at the
current edit pointer. If there is insufficient memory
space for the entire copy, nothing is inserted and an
error message is given. If the text register is empty,
nothing is inserted. The contents of the text register
are not affected by this command. The "P" command or
visual mode is used to place text in a text register.

Commands: P
Visual Mode Text Registers

BG9S$$ Inserts the contents of text register 9
at the very beginning of the text
buffer.

12[G218$ Inserts the contents of text register 2
twelve times at the current edit
pointer.

132P38132K$$

EAS$S

101LGS$$ Moves 132 lines of text, by saving it

in text register 3, killing the
original lines and inserting the text
after the tenth line of the file, in
the situation where the beginning of
the file is no longer in the text
buffer.

VEDIT - Visual Editor Page 75
Command Mode — Detailed Command Description

Example:

Description:

Notes:

See Also:

Examples:

Itext<ESC> Insert

Ia word$$ I<CR>new line$$

This command inserts the text “text” into the text
buffer, starting at the current edit pointer. The
insertion is complete when the <ESC> (or explicit
delimiter) character is encountered. The inserted text
does not overwrite any existing text. The “text” may
contain the <CR> key, which is expanded to carriage
return - line feed. If insufficient memory space exits
for the “text”, an error will be printed and only part
of the “text” will have been inserted. The edit
pointer is moved just past the inserted text. This
command is probably best used in iteration macros,
since normal text insertion is much easier to do in
visual mode.

Control characters including <ESC> can be inserted by
preceding them with the literal character <CTRL-Q>.
The "@" charactera allows an explicit delimiting
character to be used. The tab character is not
expanded with spaces as is optiomal in visual mode.

Commands: EI

200[I<CR><TAB>$1$$ Inmserts 200 new lines, each
beginning with a tab character.

Tunder<CTRL-Q><CTRL-B> $$ Inserts the text "under", a
BACKSPACE and the underline character.
This will underline the "r" on some
printers.

@r/a word/$$ Inserts the text “a word" into the text
buffer.

@I/EP 7 70<ESC><CR>/$$ Imserts the command line
"EP 7 70 <ESC>" into the text,
including a RETURN.

VEDIT - Visual Editor Page 76
Command Mode — Detailed Command Description

Example:

Description:

Notes:
See Also:

Examples:

wK Kill

4K$$ -3K$$ O0K$$

This command performs a line oriented deletion (or
killing) of text. If ‘m” is positive, all characters
from the current edit pointer and up to and including
the “m“th [LF] are deleted from the text buffer. If
‘m” is negative, all characters preceding the edit
pointer on the current line and the “m” preceding lines
are deleted. If “m” is 0, all characters preceding the
edit pointer on the current 1line are deleted. Fewer
than “m” lines will be killed if either end of the text
buffer is reached.

Command: D, T

#[Ftemp 1line$O0LK]$$ Kills all lines which contain the
string "temp line".

-10000K$$ Kills all text before the edit pointer.
#PIK$S Saves the rest of the text from the

edit pointer in the text register and
then deletes it from the text buffer.

VEDIT - Visual Editor Page 77
Command Mode - Detailed Command Description

Example:

Description:

Notes:
See Also:

Examples:

nL Lines

12018$ -14L$$ 0LS$S

This command performs a line oriented movement of the
edit pointer, and the edit pointer is always left at
the beginning of a line. If “m” is positive, the edit
pointer is left following the “m“th <LF>. If “n” is
negative, the edit pointer is left at the beginning of
the “m“th preceding line. If “m” is 0, the edit
pointer it moved to the beginning of the current line.
Attempting to move past the ends of the text buffer
will leave the edit pointer at the respective end.

This command makes no changes to the text buffer.

Commands: C, T

#[Stypo$type$SOLT]$$ Changes all occurrences of "typo"
to "type" and prints out every line
that was changed.

VEDIT - Visual Editor Page 78
Command Mode — Detailed Command Description

Example:

Description:

Notes:

See Also:

Examples:

Mr Macro

MO$S

This command executes the contents of register “r” as a
command macro. Any legitimate command or sequence of
commands may be executed as a macro. Macro are most
easily created and edited in visual mode. They may
also be saved and loaded from disk. A macro may invoke
another text register, which in turn may invoke
another, up to a nesting depth of 5. Macros are most
convenient for holding long command sequences which are
repeatedly used, saving the effort of retyping them
each time.

Macros do not need to end in an <ESC> <ESC>. RETURNs
may be used to separate commands in order to improve
readability.

Commands: G, P, RL, RS
Visual Mode Text Registers, Text Register Macros.

See section "Text Register Macros" for an example.

VEDIT - Visual Editor Page 79
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Examples:

nNsl<ESC> Next

Nbad line$$ 3@N/third/$$ NS

This command is very similar to the "F" command, except
that if the “n“th occurrence of “sl” is not found in
the text buffer, auto-read/writes are performed to read
in more of the input file until the “n”th occurrence is
found or the end of the input file is reached. If the
“n“th occurrence still is not found, an error is
printed. The edit pointer 1is also positioned very
similar to the "F" command, except in the event the
“n“th occurrence is not found and neither the “n-17th
occurrence nor the original edit pointer position is
any longer in the text buffer. In this case the edit
pointer is positioned at the beginning of the text
buffer. Using this command with an “sl”, which you
know does not exist, can be used to access the last
part of a large file.

All Notes for the "F" command also apply.

Command: F
Auto Buffering

#[Ntypo$-4DItype$]S$ Changes all occurrences of the
string "typo" to "type" in the rest of
the file.

#[@N/typo/-4D@1/type/1$$ Alternate form of the same
command using explicit delimiters.

Nxcxc$$ Accesses the last part of the file,
assuming the string "xcxc" never occurs
in it.

VEDIT - Visual Editor Page 80
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Examples:

mPr Put

40P1$$ -20P+25$$ 0P3$$

This command saves a copy of the specified text lines
in text register “r”, The previous contents of the
text register are destroyed, unless the “r” is preceded
with a "+" indicating that the text is to be appended.
The range of lines saved is the same as for the "K" or
"I" commands. If “m” is zero, the text register is
simply emptied, and nothing is saved in it. Since the
text buffer and the text registers share the same
memory space, saving text in the text registers
decreases the amount of memory available to the text
buffer. Thus the "OPr" command should be given when
the text in a register is no longer needed. This
command does not change the text buffer. If there is
insufficient memory space for the text copy, the text
register is only emptied, nothing is saved in it and an
error is printed. The saved text is inserted in the
text buffer with the "G" command or in Visual mode.

Using the "P" command to change the contents of a
register which is currently executing as a macro is not
recommended.

Commands: G, K, T
Visual Mode text move

120P1$120K$$ The text 1lines are saved in text
register 1 and are then deleted from
the text buffer.

-23T$$

~23P6$$ The text lines are printed for
verification before they are saved in
the text register.

VEDIT - Visual Editor Page 81
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Examples:

nSsl1<ESC>s2<ESC> Substitute

——" g T s s B . e

Stypo$type$$ #Sname$Mr. Smith$$

This command performs “n” search and substitute
operations. Each operation consists of searching for
the next occurrence of “sl” in the text buffer and
changing it to “s2”. An error is printed if “sl” is
not found. If there is insufficient memory space for
inserting “s2”, “sl” will have been changed to as much
of “s2” as possible and an error is printed. The edit
pointer is positioned after “s2”, if “s1” is found, or
else is left at its original position if “sl” is not
found. For the command form "#Ssl<ESC>s2<ESC>, an error
is only given if no occurrences of “sl” are found. See
the "N" command example on how to perform a
"substitute" if all of the file is not in the text
buffer.

All Notes for the "F" command apply here too. A
command like #Sfishes$fish$$ will execute much faster
than the equivalent command #[Sfishes$fish$]1$$.

Commands: F, N, I

#StypoStype$$ Changes all occurrences of "typo" to
"type" .

#[StypoStype$SOLT]$$ Changes all occurrences of "typo"
to "type" and prints out every linme
that was changed.

ES 9 1§$

#[s/typo/type/OLT]$S Alternate form of above
command. Explicit terminators can now
be used without "@" prefix.

#[Sname$smith$V]$$ Change the mnext occurrence of
"name" to "smith" and enter into Visual
mode. Any changes can be made in
Visual mode and when Visual mode is
exited, the mnext occurrence of "name"
will be searched and so on.

#Sgarbage$$ Deletes all occurrences of the string
"garbage" from the rest of the text
buffer.

VEDIT - Visual Editor Page 82
Command Mode - Detailed Command Description

Example:

Description:

Notes:
See Also:

Examples:

Example:

Description:

Notes:

See Also:

Examples:

mT Type

14T$$ -6T$$ 0T$$

This command prints (types) the specified lines. If
‘m” is positive, all characters from the edit pointer
up to and including the “m“th <LF> are typed. If “m”
is negative, the previous “m” 1lines and all characters
up to just preceding the edit pointer are printed. If
‘m” is 0, only the characters on the present line
preceding the edit pointer are printed. Fewer than “m”
lines will be printed if either end of the text buffer
is reached. Note that "“O0TT" will print the current
line regardless of the position of the edit pointer on
it. This command does not move the edit pointer. This
command is most useful in iteration macros for printing
selected lines. Visual mode should be used for looking
at sections of a file.

#[Fmoney$0TT] $$ Prints out every line in the text
buffer with the string "money" in it.

Lij Unused (Free Memory)

Us$$S

This command prints the number of memory bytes free for
use by the text buffer or text register, followed by
the number of memory bytes used by the text buffer
(length of the text buffer), followed by the combined
number of memory bytes used by the text registers
(length of the text registers).

These three numbers will not always add up to the same
total, since several other small buffers all use the
same memory space. If the number of free bytes goes
below 260, the "FULL" flag will be set when in visual
mode.

VEDIT - Visual Editor Page 83
Command Mode — Detailed Command Description

Example:

Description:

Notes:
See Also:

Examples:

Example:

Description:

Notes:

See Also:

Examples:

\' Visual

- o g tae s

v$$

This command enters Visual Mode. The visual cursor
position will be set from the current edit pointer
position. Visual mode is exited with either the
"Visual Exit"™ or the "Visual Escape" character. At
that time the edit pointer will be set from the cursor
position.

The text registers are preserved.

Visual Mode

Fhere$V$$ Find the word "here" and enter visual
mode.

nW Write
20W$$ #Ws$ 0Ws$$

This command writes “n” lines from the beginning of the
text buffer to the output file and then deletes these
lines from the text buffer. If there are less than “n”
lines in the text buffer, the entire text buffer is
written out and deleted. If “n” is zero, the entire
text buffer up to the line the edit pointer is
currently on, is written out. The edit pointer is
moved to the new beginning of the text buffer. If no
output file is open, an error is printed and no text is
output nor deleted. The output file can be opened with
an "EW" or “EB" command or when VEDIT is invoked.

No indication is given if 1less than “n” lines were
written.

Commands: A, EB, EW, EX

EWpartl.txt$$

24W$$

EF$$

EWpart2.txt$$

EXS$$ The first 24 1lines of the text buffer
are written out to file "PART1.TXT" and
the rest of the text buffer is written
out to file "PART".TXT" and the edit
session is completed.

VEDIT - Visual Editor Page 84
Command Mode — Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

Z$$

This command moves the edit pointer to the last
character in the text buffer.

This command does not move the edit pointer to the last
character in the file if the last part of the file is
not yet in the text buffer. See the "N" command on how
to bring the 1last part of the file into the text
buffer.

S
Commands: B, N

Z-100L$$ Positions the edit pointer to the 100th
line before the end of the text buffer.

Z-12T$$ Prints the last twelve lines in the
text buffer.

Nxcxc$Z-12T$S$ Prints the 1last twelve 1lines in the
file, assuming the string "xcxc" never
occurs in it.

VEDIT - Visual Editor Page 85
Command Mode — Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

EA Edit Again

FAS$S

This command writes the entire text buffer out to the
output file, followed by the remainder of the input
file if any and closes the output file. All file
backup and renaming is performed as with the "EF" or
"EX" command. The output file is then reopened as both
the input and output file and an auto-read on the input
file is performed. This command thus starts a new edit
session and is functionally similar to an "EX" command
followed by invoking VEDIT again with the name of the
current output file. This command has two main
purposes. First, it acts a method of saving the
currently edited file on disk as a safeguard against
losing the file due to a wuser error, or hardware,
software or power failure. Second, it acts as a method
of accessing the beginning of a large file after it has
been written out to disk. This is especially true in
the case a block of text is to be moved from the rear
of a large file to the front, since the contents of the
text register are not affected by the "EA" command. If
the "Start in Visual Mode" switch is set, the editor
will go into visual mode following the "EA" command.

Any commands following the "EA" on the command line
will be ignored, since the command line is cleared.

Commands: B, G, EX
Visual Restart

132P132K$$

EAS$S

101G$$ Moves 132 lines of text, by saving it
in the text register, killing the
original lines and inserting the text
after the tenth line of the file, in
the situation where the beginning of
the file is no 1longer in the text
buffer.

VEDIT - Visual Editor Page 86
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

EBfile<ESC> Edit Backup

O e et s G G S G e e e S G S s St e St e ot

EBfile.txt$$

This command opens the file “file” for both input and
output and then performs an auto-read on the file. It
is similar to the sequence of commands:

ERfile<ESC>EWFil e<ESC>0A$S

except that if the file does not yet exist on disk, the
message "NEW FILE" is printed. If an output file is
still open, an error is printed and the command has no
other effect.

The term "backup" is used here to describe this command
since the term is used by some other editors to perform
a similar operation. Remember that VEDIT always
creates a "backup" of a file on disk, if its name is
used as the name of the output file.

Commands: W, ER, EW

#WSEFS$$

EBnewfile.txt$$ The entire text buffer is written out
to the current output file, that file
is closed, and the file "NEWFILE,TXT"
is opened for input and output and read
in,

ERpartl.txt$0AS$S

EBpart2.txt$$ The file "PART1.TXT" is read into the
text buffer, the file "PART2.TXT" is
then made the current input and output
file and is appended to the end of the
previous file "PART1.TXT".

VEDIT - Visual Editor Page 87
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

EC Edit Change (Disk)

EC$$

This command must be given before the user attempts to
change any logged-in disks in order to recovery from a
disk write error, or to read files from another disk.
An error is printed if the current disk has an output
file which has not been closed. In this case it should
be closed with the "EF" command. This command is used
in the event of a disk write error where the user does
not wish to delete any files with the "ED" command. In
this case the "EF" command should be given to close
that part of the output file which has been written to
the original disk. Then issue the "EC" command. It
will prompt with a message when the original disk can

_be removed and a new disk inserted. Type a [RETURN]

after the new disk is inserted and then issue an "EW"
command to open a file for output, The user can then
issue any "W" command or the "EX" command. When the
edit session is over the output file is in two parts on
two disks. They can easily be merged with a PIP
command or with VEDIT. See the "ER" command for this.
This command can also be used to switch to another disk
before an "ER" or "EG" command.

' Be sure that the entire input file has been read into

memory before issuing the "EC" command.

Commands: ED, EF
Disk Write Error Recovery.

EC$$ Will give prompt: INSERT NEW DISK AND
TYPE RETURN when the user should remove
the old disk and insert a new disk.

VEDIT - Visual Editor Page 88
Command Mode -~ Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

EDfile<ESC> Edit Delete

R e s e e s @ e St G

EDfile.txt$$

This command will erase the file “file” from the disk.
This is the easiest method of recovering from a disk
write error in order to make more disk space or a free
entry in the directory. The "EC" command can also be
used for disk write error recovery.

Be sure that you do not delete the file which is
currently open for output. Don”t delete the input file
until all of it has been read into memory.

Commands: EC
Disk Write Error Recovery

EDoldfile.txt$$ The file "OLDFILE.TXT" is deleted from

the disk making more disk space and a
free directory entry.

EF Edit Finish (Close)

EF$$

This command closes the output file and the file is
saved on disk. No file is saved on disk before either
this command or an "EX" command is executed. A backup
of any existing file on disk with the same name as the
output file is created by renaming it with a file
extension of ",BAK",

Since the output file is actually opened with the CP/M
file extension ".$$$", the .$$$ file is first closed,
then any existing file on disk with the same name as
the output file is renamed to .BAK, and last, the .$$$
file is renamed to the true output file name.

Commands: EW, EX

EWsave.txt$$

#WSEFSS The contents of the text buffer is
written out as the file "SAVE.TXT" and
that file is then closed.

VEDIT - Visual Editor Page 89
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:
See Also:

Example:

EGfilelline rangel Edit Get (File)

EGfile.txt[1,100]18$ EGfile.txt$$

This command will insert a specified line number range
of the file “file" into the text buffer at the edit
pointer. If insufficient memory exists to insert the
entire file segment, as much as possible will be
inserted and a *BREAK* message will be printed. If no
line range is specified, the entire file is inserted.

The line numbers of a file can be printed by PIP using
the [N] optionm.

Commands: A, ER

EGlibrary.asm[34,65]$$ Lines 34 through 65 of the file
"LIBRARY.ASM" are inserted into the
text buffer at the edit pointer.

nEI Edit Insert

——— B e

12EI$$

This command will insert the character whose decimal
value is "n" into the text buffer at the edit pointer.
This is useful for entering special control characters
into the text buffer, especially characters which
cannot be generated from the keyboard. Characters with
a decimal value between 128 and 255 can also be entered
with the EI command. Only the "End of File" marker
with a value of 26 cannot be entered. Control
characters are displayed in both command and visual
mode by preceding the letter with an "Up Arrow'".

Commands: I

8EISS A backspace character is inserted into
the text buffer at the edit pointer.

92EIS$S A "\" is inserted into the text with
the EI command, because it cannot be
generated from the keyboard.

VEDIT - Visual Editor Page 90
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

mEO Output to Printer

40E0SS -20E0$$ OEOS$$

This command sends the specified lines to the line
printer device. If “m” is positive, all characters
from the edit pointer up to and including the “m“th
<LF> are printed. If “m” is negative, the previous “m”
lines and all characters up to just preceding the edit
pointer are printed. If “m” is 0, the entire text from
the beginning of the text buffer up to the current edit
pointer are printed. Fewer than “m” 1lines will be
printed if either end of the text buffer is reached.

This command does not move the edit pointer.

The print out can be stopped by typing CTRL-C.

Commands: T
Printing Text from visual mode

ZOEOSS$ Prints out the entire text buffer and

positions the edit pointer at the end
of the text.

EP n k<ESC> Edit Parameters

EP 1 4358 EP 3 30$$

This command changes the value of parameter “n” to “k”.
Currently there are 7 parameters. The numbers are
specified in decimal and separated by spaces or commas.
The default values of these parameters are determined
during the customization process. An error is given if

Ly 4

n” is specified out of range. The parameters are:

1 Cursor type (0, 1 or 2)

2 Cursor blink rate (5 - 100)

3 Indent Increment (1 - 20)

4 Lower case convert (0, 1 or 2)

5 Conditional convert character (32 - 126)

6 Display line and column number (0, 1, 2 or 3)
7 Word Wrap columm (0 - 255)

VEDIT - Visual Editor Page 91
Command Mode — Detailed Command Description :

Notes:

See Also:

Examples:

Parameter (1) determines the type of cursor
displayed in visual mode for memory mapped versioms The
CRT terminal versions use the terminal”s cursor
instead. The cursor types are: 0=Underline, 1=Blinking
Reverse Video Block, 2=Solid Reverse Video Block.

Parameter (2) determines the cursor”s blink rate
for cursor types 0 and 1 above.

Parameter (3) determines how much further the
editor will indent each time the [INDENT] key is typed.
The indent position after typing the [INDENT] key four
times is therefore the "Indent Increment" multiplied by
four,

Parameter (4) . determines whether lower case
characters are converted to upper case. For value (0)
no conversion takes place, for (1) all lower case are
converted to upper case, and for (2) lower case are
converted to upper case, unless the cursor is past a
"special® character on the text line. This "special”
character is set by parameter (5). All of this is
primarily applicable to assembly language programming,
where it is desirable to have the Label, Opcode and
Operand in upper case and the comment in upper and
lower case.

Parameter (5) sets the conditional upper/lower
case convert character used for parameter (4) above.

Parameter (6) determines if the the line number in
the file that the cursor is on, and / or the cursor’s
horizontal position are displayed on the status line.
The values are: 0 = Both off, 1 = Line number
displayed, 2 = column displayed and 3 = both displayed.

Parameter (7) is the Word Wrap colummn. It is also
the right margin used when formatting paragraphs. A

value of O disables both Word Wrap and formatting. It
should be turned off when editing programs!

The parameter values are specified in decimal.

Commands: ES
Customization, Visual Mode, Indent and Undent Functions

EP 1 65$ This sets the "Indent Increment" to
six.

FP 7 708$$ This sets the Word Wrap colummn to 70.

VEDIT - Visual Editor Page 92
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

EQ Edit Quit

EQS$

This command quits the edit session without writing out
the text buffer or closing any output file., Its main
purpose to "quit" after one has made a mistake editing
and it seems best to leave everything on disk just the
way it was before this edit session began. DO NOT
confuse this command with the "EA" command; their
results are quite opposite. Remember that the "EA"
command starts a new edit session.

Any output file with the file extension ".$$$" will
also be deleted. Any original file on disk with the
same name as the output file, but with an extension of
".BAK" will have been deleted if more than 128
characters were written to the (now deleted) output
file. With the exception of this possible backup file,
all other files will exist on disk just as they did
before the aborted edit session.

Commands: EA

#K$S Shoot!! Meant —-#K$$

EQ$$ Since a bad mistake was made in the
above command, it is best to abort this
edit session, go back to the operating
system and start over. All edit
changes are lost.

VEDIT - Visual Editor Page 93
Command Mode — Detailed Command Description

Example:

Description:

Notes:
See Also:

Example:

ERfile<ESC> Edit Read

FRnewfile.txt$$

This command opens the file “file” for input (reading).
Nothing is read into the text buffer with this command.
The "A" command or an auto-read is used to actually
read the input file. If the same file was already open
for input, the file is "rewound", so that the file can
again be read from the beginning. An error is printed
if the file “file” does not exist. Files can also be
read from disks which are not currently running by
using the "EC" command. Issue the "EC" command, insert
the new disk into a drive which is not being used for
any output file and open a file for reading with the
"ER" command. This may be necessary in case a file has
been split into two parts during a disk write error
recovery.

Commands: A, EC, EB, EW

ERparts.inv$$

20A8$ The file "PARTS.INV" is opened for
input and twenty lines from it are
appended to the end of the text buffer.

VEDIT ~ Visual Editor Page 94
Command Mode - Detailed Command Description

Example:

Description:

ES n k<ESC> Edit Set

ES 1 0$$ ES 3 18$

This command changes the value of switch “n” to “k”.
Currently there are 7 switches. The numbers are
specified in decimal and separated by spaces or commas.
The default values of these switches are determined
during the customization process. An error is given if

Lo 4

n” is specified out of range. The switches are:

1 Expand Tab with spaces (0=NO 1=YES)
2 Auto buffering in visual mode (0=NO 1=YES)
3 Start in visual mode (0=NO 1=YES)
4 Point past text reg. insert (0=NO 1=YES)
5 Ignore UC/LC distinction in search (0=NO 1=YES)
6 Clear screen on visual exit (0=NO 1=YES)
7 Reverse Upper and Lower case (0=NO 1=YES)
8 Suppress search errors (0=NO 1=YES)
9 Use explicit string terminators (0=NO 1=YES)

Switch (1) determines whether or not the tab key
in visual mode is expanded with spaces to the next tab
position., If not, a tab character is inserted into the
text buffer. Except for special applications, the tab
key would not normally be expanded with spaces.

Switch (2) determines whether or not
auto-buffering is enabled in visual mode. The editing
of a large file is usually simpler with this switch on,
since the wuser does mnot need to give explicit
Read/Write commands. If some more complicated file
handling, with explicit Read/Write commands (ER, EW, A,
W) is being done, the switch should then temporarily be
set off.

Switch (3) determines whether or mnot the edit
session will begin in visual mode. Changing this
switch while running VEDIT will only apply to the "EA"
command.

Switch (4) determines the edit pointer”s position
(or cursor’s in visual mode) following insertion of
the text register. If the switch is off, the edit
pointer is not moved, and is thus left at the beginning
of the newly inserted text. If the switch is on, the
edit pointer is moved just past the newly inserted
text.

VEDIT - Visual Editor Page 95
Command Mode - Detailed Command Description

Notes:
See Also:

Example:

Switch (5) determines whether VEDIT will make a
distinction between upper and lower case letters in
searches and substitutes using the "F", "N" and "S"
commands. Most users will probably wish to ignore the
distinction, so that the string "why" will match "Why",
"WHY" and "why". Setting the switch to "1" will make
VEDIT ignore the distinction between upper and lower
case characters during searches.

Switch (6) determines whether the screen will be
cleared when visual mode is exited and command mode
entered. If the screem is mnot cleared, the command
mode prompt "™*" will appear below the status line.
Setting the switch to "1" will clear the screen when
visual mode is exited.

Switch (7) determines whether all letters typed on
the keyboard will be reversed with respect to upper and
lower case., It should normally be OFF, but does allow
a user with an upper case only keyboard to enter lower
case letters. Setting the switch to "1" will make
VEDIT reverse all keyboard letters in both commmand and
visual mode.

Switch (8) determines whether search errors will
be suppressed. If not suppressed, not finding a string
will cause an error message and the command to be
aborted. Search errors are usually only suppressed for
command macros.

Switch (9) determines whether explicit string
terminators can be wused without having to specify the
"@" command modifier. This is a matter of personal
preference, but is useful with command macros.

Customization, Visual Mode

ES 1 1$$ This enables tabs typed in visual mode
to be expanded with spaces.

VEDIT - Visual Editor : Page 96
Command Mode — Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:
See Also:

Example:

ET Edit Tab

ET 20 40 60 80 100 120$$

This command changes the tab table used by VEDIT for
displaying tab characters, and in Visual mode, when the
"Expand Tab" switch is set, for expanding tab
characters. Up to 30 tab positions are allowed and
they must be in the range 1 - 254. The default
positions are set during customization. For word
processing the tabs can be set to the same positions as
are specified for the text formatting program in order
to see how they will look in the final product. An
error is printed if a bad position is given. No tab is
needed at position 1, and counting starts at 1 (not at
zero). Thus the normal tab positions would be:

9 17 25 33 41 49 57 65 73 81 89 97
105 113 121 129

For use in Visual mode, there must be at least one tab
position per screen line, i.e. at least omne tab every
64 or 80 positions.

Customization, Visual Mode, Indent and Undent Functions

EV Edit Version

e S et B e e S s W S S

EV$$

This command prints the VEDIT version number. This
number should be wused in any correspondence you have
with us concerning the operation of VEDIT. This
command can also be used inside iteration macros to
give some indication of the progress being made in long
executing macros.

VEDIT - Visual Editor Page 97
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

EWfile<ESC> Edit Write

EWnewdat.inv$$

This command opens the file “file” for output and
subsequent writing. No text is actually written by
this command. Some file must be opened for output in
order to save any text on disk. A file can also be
opened by the "EB", "EA" commands and when VEDIT is
invoked from CP/M. If a file is already open for
output, an error is printed and no other action takes
place.

The file opened is actually a temporary file with the
same name, but with an extension of ".$$$". The file
is not made permanent and given its true name until it
is closed with the "EF", "“EA", or "EX" commands. At
that time, any existing file on disk with the same name
as the output file is backed up by renaming it with an
extension of ".BAK". Any existing file on disk with
that name and the .BAK extension will be deleted when
more than 128 bytes (the first sector) are written to
the output file.

Commands: W, EA, EF, EX

EWpartl.txt$$

24W$$

EF$$

EWpart2.txt$$

EX$$ The first 24 1lines of the text buffer
are written out to file "PART1.TXT" and
the rest of the text buffer is written
out to file "PART",TXT" and edit
session is completed.

ERa:bigfile.asm$$

EWb:bigfile.asm$$

0ASvSS Typical procedure for editing a file

which is too big for both it and its
Backup to fit on the same disk. In
this case, it is read from disk A: and
written to disk B:. Just be sure that
disk B: is nearly empty.

VEDIT - Visual Editor Page 98
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

EX Edit Exit

EX$$

This is the normal exit from VEDIT when the file
currently being edited is to written out to disk. This
command writes the entire text buffer out to the output
file, followed by the remainder of the input file if
any, closes the output file and exits back to CP/M. All
file backup and renaming is done as with the "EF"
command. The error "“NO OUTPUT FILE" is printed if no
output file is open, and no other action is taken. The
error "NO DISK SPACE" results if there is insufficient
disk space to save the entire file.

In case of a "NO DISK SPACE" error, the rest of the
file can be saved by either deleting some files on disk
(ED command), or writing the rest out to another disk
(EC command).

Commands: EB, EF, EW, EA, EQ

VEDIT FILE.TXT

v$$

EX$$ The editor is invoked in the normal way
to edit a file. The file is edited in
visual mode, and when done, the normal
exit back to CP/M is made.

EX$$

NO DISK SPACE Disk full error.

EDoldfile$$

EX$$ Because the disk is full, an old file
is deleted and the "EX" command given
again to finish saving the file on
disk.

EX$$

NO DISK SPACE Disk full error.

EF$$S Close the partial file.

ECS$$

EWpart2$$

EX$$ Because of disk is full, we save what

will fit as part 1 of the file, and
save the rest in the file "PART2" on
another disk. We can subsequently use
the "ER" command to merge the two parts
back into one file.

VEDIT - Visual Editor Page 99
Command Mode - Detailed Command Description

Example:

Description:

Notes:
See Also:

Example:

RDr Register Dump

RD3$$

This command types (dumps) out the contents of text
register “r" om the console. Control and Tab
characters are not expanded or converted. The command
is most useful for sending initialization sequences to
a CRT terminal, such as sequences to setup programmable
function keys., <CTRL-C> can be used to stop the
command. The "RT" command should be used to view the
registers, since control characters are then expanded.

Commands: RT
Auto-Startup

RD5$$ The contents of text register 5 are
dumped (sent) to the console.

VEDIT - Visual Editor Page 100
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

RLrfile<ESC> Register Load

RL4macrol.exc$$

This command loads text register “r” from the file
“file“. The entire file is loaded and the file itself
is not affected. If there is insufficient memory space
to load the entire file, as much as possible will be
loaded and a *BREAK* message will be printed. Used to
load text files which are then inserted in the text
buffer, and to load command macros.

The text register number should always be specified,
but if left out, register 0 will be used.

Commands: RS, EG
Text registers in visual and command modes.

RL4macro.exc$$ Loads the file "MACRO.EXCY into text
register 4.

RSrfile<ESC> Register Save

RS4macrol .exc$$

This command save the contents of text register “r” in
the created file “file”. The register contents are not
affected. If there is insufficient disk space for the
entire file, as much as possible is saved and the error
“NO DISK SPACE" is given. The error '"NO DIR SPACE"
results if there is insufficient directory space on the
disk. Commonly used to save a section of text in its
own disk file, or to save a command macro for later
use.

See note for "RL" command. Any existing file on the
disk with the name “file” will be deleted. If there is
insufficient disk space to save the register, try
deleting some files or insert another disk and give the
command again after using the EC command.

Commands: RL

RS4macro.exc$$ Saves the contents of text register 4
in the file "MACRO.EXC".

VEDIT - Visual Editor Page 101
Command Mode - Detailed Command Description

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

RTr Register Type

RT3$$

This command types out the contents of text register
“r” on the console. This is commonly used to remind
oneself what is in a particular register. <CIRL-C> can
be used to stop the command. Control characters are
expanded and <ESC> is represented as a "$". The "RD"
command will dump out a text register without expanding
control characters.

It is frequently easier to insert the text register at
the end of the text buffer and view it in visual mode.

Commands: RD

RT5$$ The contents of text register 5 are
displayed on the comsole.

RU Register Used

RUSS S50P4SRUSS

This command displays the number of character (size) of
each text register. Commonly wused to see which
register hold any text and how much they hold.

The sum of the displayed values is the third number
displayed by the "U" command. If any of the registers
hold text, the status line message "TEXT" is displayed
in visual mode.

Commands: U

RUS$S Display the sizes of the text
registers.,
40P3$RUSS Save 40 lines of text in register 3 and

then check how many bytes are mnow in
the text registers.

VEDIT - Visual Editor Page 102
Appendix A - Customizing VEDIT

CUSTOMIZING VEDIT

WHAT IS CUSTOMIZATION?

Customization is the process of installing VEDIT on your computer
in order to adapt it to your particular CRT terminal or video board
and your preference in keyboard layout. It also allows you to set
various VEDIT parameters according to your applications. The
customization is menu driven. You can select to perform some aspects
of the customization and leave all other aspects at their previously
set or default values. You therefore don“t need to wunderstand the
entire customization process in order to install VEDIT.

Setting up a new keyboard layout is one aspect of the
customization. It allows almost any control character, escape
sequence or special function key to be used for the visual mode cursor
movements and editing functions. The changeable parameters include
the Tab positions, the right margin at which word wrap takes place,
and many others. Another aspect is related to your screen size,
including the number of lines and columns.

The first part of this appendix gives the step by step

instructions for the customization. The later part "Customization
Notes" covers some of the customization issues in greater depth.

WHEN IS CUSTOMIZATION NECESSARY?

VEDIT has to be customized before the first time it is used, and
can then be customized again, when you have a a new CRT terminal,
wishes to change some default parameters or just wish to try a new
keyboard layout. It is not customized every time you wuse it. The
greatest benefit you receive from the customization process is
probably the ability to determine your own keyboard layout, which can
utilize any special function keys and accommodate personal
preferences.

For some computers, such as the IBM Personal Computer and the IBM
Displaywriter, we supply an "up and running" version. The keyboard
layout for these preconfigured versions will be 1listed among the
sheets separate from the manual. Even with a preconfigured version,
you will probably want to customize your own later., If you don”t have
a preconfigured version of VEDIT, you can create one easily. See
"Quick Customization" described under the section "How to Perform
Customization". With a CRT version of VEDIT, you generally only need
to select the CRT terminal from the menu in order to complete the
customization. The keyboard layout will be the "Example Keyboard

VEDIT - Visual Editor Page 103
Appendix A — Customizing VEDIT

Layout" which does not assume any function keys. If you have a
terminal such as a Televideo 920C or a Zenith Z19, you will probably
want to reconfigure the keyboard 1layout according to the example
layouts sheets we supply for these terminals.

VEDIT is supplied as a disk file with an extension of ".SET",
i.e., VEDITZM.SET and VEDITZC.SET, which contain the "prototype"
editor to be customized. The customization process does not alter the
.SET file, but rather creates a new file with the file extension of
".coM" (or ".CMD" for CP/M-86), which is the executable version VEDIT.
Depending on your version, you may have several .SET files. See the
sheet "Description of Files".

The customization is done with the supplied programs VEDSET,COM
for the memory mapped versions, and VDSETCRT.COM for the CRT terminal
versions. Since the customization program is fairly easy to run, you
will probably run it several times in the first week until you have
everything "just right". You can of course also create several
configurations of VEDIT, each for a special application. To help
remind you of which configuration you are using, you can create a
custom signon message for each, which will be displayed when VEDIT is
invoked.

TWO TYPES OF VERSIONS --- CRT AND MEMORY MAPPED

There are two primary versions of VEDIT - CRT versions and Memory
Mapped versions. The CRT version supports practically every terminal
on the market. The particular terminal VEDIT is to work with is
selected from a large menu of terminals which appears when VEDIT is
customized. The IBM Displaywriter is supported by the CRT version.

The memory mapped version supports most S-100 and Multibus
display boards. Special memory mapped versions are also available for
the TRS-80 Models I, II and 16. The memory mapped customization is a
little more complex and requires the screen size in addition to the
screen”s address. The general purpose memory mapped version contains
a file on disk which describes the patches necessary to implement bank
select.

In addition to the primary versions, there are several
specialized versions., One is for the IBM Personal Computer. This
version is memory mapped, but skips some parameters, such as screen
address which are fixed by the hardware. It also asks additiomal
questions concerning specific features of the IBM PC, such as display
attributes. Separate sheets describe this in more detail. There is
also a version for the PIICEON V-100 and the TDL VDB, both of which
are I/0 mapped display boards.

VEDIT - Visual Editor Page 104
Appendix A - Customizing VEDIT

HOW TO PERFORM CUSTOMIZATION

STEP 1 - ENTER COMMAND SEQUENCE FROM OPERATING SYSTEM

In order to customize the CRT version of VEDIT you will need
the files "VDSETCRT.COM" and "“CRT.TBL" on your work disk in
addition to the appropriate ".SET" file. For the memory mapped
version, you will need the file "VEDSET.COM" and the appropriate
".SET" file. The enclosed sheet "Description of Files" gives a
further description of the files on the distribution disk.

To begin customization, first specify the VEDSET or VDSETCRT
file (.COM or .CMD) then the .SET file, then the name of a file
you wish the editor to be called. (VEDIT is a good choice.) 1If
your disk has more than one ".SET" file, select the appropriate
one from the separate sheet '"Description of Files". There is no
need to give the file extensions to these names. Remember to end
the command line with a RETURN,

Assuming you wish to customize the Z80 CRT version, with a
file name of VEDITZC.SET, the customized editor is to be called
VEDIT and the files VEDITZC.SET and VDSETCRT.COM are on the
currently logged in disk, the command to run VDSETCRT would be:
VDSETCRT VEDITZC VEDIT
A similar command for the 8080 Memory Mapped version would be:
VEDSET VEDIT8M VEDIT
The command for the TRS-80 Model II Pickles & Trout version is:

VEDSET VEDIT2P VEDIT

A running VEDIT (a VEDIT.COM file) may be customized as
well. This allows some aspects of the customization to be
changed without having to repeat the entire process. A typical
command to do this would look as follows:

VEDSET OLDVEDIT.COM NEWVEDIT.COM

where "VEDSET" may also be VDSETCRT, "OLDVEDIT" is the VEDIT you
want to change, and "NEWVEDIT" is the name of the new VEDIT.

If you receive a "Checksum Error", please see the second
part of this section for an explanation.

VEDIT - Visual Editor Page 105
Appendix A - Customizing VEDIT

STEP 1.5 - (CRT ONLY). CHOOSE YOUR CRT TERMINAL

STEP

VDSETCRT will display a menu of terminals from which you
select the number corresponding to your terminal, The 1list is
two screens long; type any key after looking over the first
screen. Following the prompt enter the number corresponding to
the terminal you are using.

In the rare case that your terminal does not appear on the
menu, you have two choices. If you are technically inclined you
can change the file "CRT.ASM" which —contains the tables
corresponding to each of the terminals. Two entries "Customer 1"
and "Customer 2" are intended to be changed by the wuser.
Alternately, contact us for support.

Technically inclined users may wish to read the file
"VEDITCRT.DOC" for related information. Hazeltine and Intertube
users should also read this file.

2 - LOOK OVER MAIN MENU TASKS

TASKS:

1). Perform all new keyboard layout

2). Add alternate keys to existing layout

3). Set special characters

4). Set ES and EP parameters

5). Set screen parameters

6). Set other parameters

7). Set signon message

8). Customization complete; return to operating system

Tasks (1) and (2) are used to determine the keyboard layout,
task (7) sets the signon message and (8) writes the customized
VEDIT out to disk. The remaining tasks change the various
parameters. The prompts for many of these are followed by a
number in parentheses, which is a suggested value. If you use
this value you must type it in, there in NO DEFAULT value.
Questions with a numeric answer also require a RETURN after the
answer., To ignore input for a particular question, type either
the RUBOUT (DELETE) key or a CTRL-U., After each task is
performed, the program returns to the main menu. At this point
another part of the customization can be performed or a previous
step repeated if a mistake was made.

VEDIT - Visual Editor Page 106
Appendix A —~ Customizing VEDIT

QUICK CUSTOMIZATION:

If you have the CRT version of VEDIT, the normal screen size of
24 by 80 and wish to bring VEDIT up quickly with the "Example Keyboard
Layout", you need only to select your terminal from the CRT terminal
menu and then immediately select task (8) in the menu to complete the
initial customization. (The default memory size parameters will work
well in any size system.) If you like, you can go ahead and do that
now, and read the rest of this section later.

If you have a memory mapped system or a CRT terminal with a size
other than 24 by 80, you will need to perform task (5) in the
customization in order to bring VEDIT up. When you are ready to try
out something other than the "Example Keyboard Layout"” you can perform
task (1).

If task (1) is not performed, the resulting editor will respond
to the control codes in the "Example Keyboard Layout". Similarly, if
tasks (3) through (6) are not performed, the editor will be setup with
the parameters in the "Example Customization".

Note: If you have a Televideo, a 219 or other terminal for which we
supply a special keyboard layout sheet, you must perform task
(1) to give you the keyboard layout. Just selecting the
terminal will NOT give you the special layout.

STEP 3 - TASK 1: PERFORM ALL NEW KEYBOARD LAYOUT

ENTER ESCAPE MODE CHARACTER #1

If you choose to use escape sequences, or your keyboard produces
escape sequences with special function keys, type the escape
character, or the function key lead-in character, most commonly
ESC. Else type RETURN, which will then also slip the remaining
questions about escape characters.

ENTER ESCAPE MODE CHARACTER #2

A second escape mode character may also be specified, typically
for other function keys. If not needed, type RETURN. (A
"CTRL-A" for the Televideo 920C).

ENTER COMMON 2ND CHARACTER #1 IN ESCAPE SEQUENCE

Simply answer with a RETURN if you are not using escape sequences
or are typing them in by hand. (A RETURN will skip the next

VEDIT - Visual Editor Page 107
Appendix A - Customizing VEDIT

STEP

question.) However, some terminal”s special function keys send 3
character escape sequences where the second character is always
the same and should be ignored. In this case type in the second
character. (A "?" for the Heath H19) (A capital letter "O" for
the DEC VT-100)

ENTER COMMON 2ND CHARACTER #2 IN ESCAPE SEQUENCE

Some terminals, particularly ANSI standard ones, have a second
character which should be ignored in the second character
position. Type the character, or if there is mno such second
character, type RETURN. (A "[" for the DEC VT-100) (RETURN for
H19, Televideo, etc)

UPPER/LOWER CASE ESCAPE SEQUENCES EQUIVALENT (Y/N) ?

If you answer NO, the editor will make a distinction between, for
example, ESC H and ESC h. This is annoying if you hand type
escape sequences and you should answer with a "Y". However, the
function keys on terminals such as the Televideos send escape
sequences which distinguish between upper and lower case. Here
you would have to answer “N".

TYPE CONTROL CHARACTERS FOR

When prompted for each visual operation, you may press a special
function key, a control character or enter an escape sequence.
Disallowed characters are the normal displayable characters.
Typing one of these will give an error and a reprompt. If you
inadvertently attempt to use the same key code for a second
operation, an error and a reprompt for the operation will be
given. If you do not want to use a particular function, just type
RETURN to ignore the function. Specifically, you will probably
want to use either [SET INSERT MODE] and [RESET INSERT MODE] or
[SWITCH INSERT MODE], but not all three functions. You probably
won”t use [RESTART], since the function is also available in
command mode. Otherwise choose something for [RESTART] which you
are very unlikely to hit by mistake. Don”t confuse [TAB CURSOR]
with the tab character, since it 1is a cursor movement operation.
If you make a mistake, just type RETURN for the rest of the
functions and perform this task again.

4 - TASK 2: ADD ALTERNATE KEYS TO EXISTING LAYOUT

Task (2) allows you to use alternate control codes for any
of the editing functions. For example, your keyboard may have
cursor keys which you have customized as the four basic cursor
movements in VEDIT. However, out of habit you are still using

VEDIT - Visual Editor Page 108
Appendix A - Customizing VEDIT

CTRL-S, CTRL-F, CTRL-E and CTRL-C to move the cursor. You can
select task two to enter any such alternate control codes to use
for any editing function. You must type the RETURN key for those
functions you don“t wish to invoke by an alternate control key.

Task (2) can also be used to specify the initial control
code to use for an editing function if none was specified in task
(1), i.e., you ignored the function by typing a RETURN for it.
The functional difference between tasks (1) and (2), is that task
(1) first clears out any existing keyboard layout, while task (2)
builds on the existing layout,

STEPS 5 -> 10 - SET NON-KEYBOARD PARAMETERS:

Answer questions in decimal or hexadecimal as prompted, then
hit RETURN. There are no default settings, so always enter a
value. Type a CTRL-U or hit the DELETE (RUBOUT) key to repeat
the question.

STEP 5 - TASK 3: SET SPECIAL CHARACTERS

3.1) HEX CODE FOR SCREEN CONTINUATION CHARACTER (2D)

This is the line continuation indicator used in Visual Mode
in reserved column 0. Most common is a hyphen (Hex 2D) or
reverse video hyphen (Hex AD).

3.2) HEX CODE FOR COMMAND ESCAPE CHARACTER (1B)

This is the command mode Escape character which should be
the "ESC" or "ESCAPE" key, hex code of "IB", if your
keyboard has it. If your keyboard doesn“t have an ESC key,
choose another control character, perhaps CTRL-Z, Hex code
of 1A.

3.3) HEX CODE FOR COMMAND ITERATION LEFT BRACKET (5B)
3.4) HEX CODE FOR COMMAND ITERATION RIGHT BRACKET (5D)

The Command Iteration Brackets are those which delimit
iteration macros —— groups of Command Mode commands. This
manual represents these as "[" and "]", hex codes of 5B and
5D. If you may prefer to use "<" and ">", hex codes of 3C
and 3E. Use either set, but it may help if your keyboard

VEDIT -~ Visual Editor Page 109
Appendix A - Customizing VEDIT

3.5)

3.6)

STEP 6 -

produces one set without needing the SHIFT key.

(Memory Mapped Only)
HEX CODE FOR CURSOR CHARACTER (5F)

This is the character used as the blinking "underline"
cursor. While normally the underline character (code 5F
hex), some users, particularly those with a Sorcerer, may
wish to try a hex code of "7F" which is commonly a solid
block.

(Memory Mapped Only)

HEX CODE FOR SCREEN CLEAR CHARACTER (20)
HEX CODE FOR STATUS LINE CHARACTER (2D)
HEX CODE FOR TAB EXPAND CHARACTER (20)

VEDIT normally clears the screen with spaces (code 20 hex),
uses a “=” (code 2D hex) on the status line and displays tab
characters with spaces. These may be changed for special
applications, or if your display requires other characters.
For example, the Polytechnic VTI requires that Bit 7 be set
for normal characters. Therefore, the character codes would
be "AO", "AD" and "AO" respectively.

TASK 4: SET ES SWITCHES AND EP PARAMETERS

This task selects the default values for these parameters.

They can be changed while running VEDIT by using the ES and ET
commands. All numeric values are in decimal.

4.1)

4.2)

EXPAND TAB WITH SPACES (0 = NO, 1= YES) (0)

Instead of inserting the tab character into the file, spaces
to the next tab position are inserted when the [TAB
CHARACTER] function is typed. This is useful if another
program interacting with your file doesn’t interpret tab
characters; this function also takes extra disk space. Do
not turn this switch on unless you need to.

AUTO-BUFFERING IN VISUAL MODE (0=NO, 1=YES) (1)

We suggest you enable auto-buffering, which allows VEDIT, in
Visual Mode, to automatically read and write a file as
needed.

VEDIT - Visual Editor Page 110
Appendix A - Customizing VEDIT

4.3)

4.4)

4.5)

4.6)

4.7)

4.8)

4.9)

BEGIN IN VISUAL MODE (0=NO, 1=YES) (1

This determines whether VEDIT starts in Visual or Command
Mode. We suggest you set this switch to "Yes".

POINT PAST TEXT REGISTER INSERT (0=NO, 1=YES) (1)

This determines whether the cursor (or Edit Pointer in
Command Mode) will be positioned at the beginning or the end
of text inserted from a text register. We suggest that you
initially set this switch to "Yes". After some practice
with the text registers you will know which way you prefer
it.

IGNORE UPPER/LOWER CASE DISTINCTION IN SEARCH
(0=NO, 1=YES) (1)

This determines whether the difference between upper and
lower case letters is ignored. We suggest you set this to
"Yes n .

CLEAR SCREEN ON VISUAL EXIT (0=NO, 1=YES) (0)

This determines whether the screem is cleared when Visual
Mode is exited to Command Mode. For most applications you
will want to answer "No".

REVERSE UPPER & LOWER CASE (0=NO, 1=YES) (0)

This determines whether all letters typed on the keyboard
will be reversed with regard to upper and lower case, i.e.,
upper case letters are converted to 1lower case and vice
versa. Only in very unusual situations would you want to
set this switch on, so set it off. For the TRS-80 Model I,
you should set this switch on, since the keyboard reverses
upper and lower case.

IGNORE SEARCH ERRORS (0=NO, 1= YES) (0)

This switch should normally be off. Otherwise there will be
no message if a Find or Substitute is unsuccessful. This
switch can be set with the ES command prior to executing
some types of command macros.

USE EXPLICIT TEXT DELIMITERS (0=NO, 1=YES) (0)

VEDIT - Visual Editor Page 111
Appendix A - Customizing VEDIT

This switch, if set ON, allows you to delimit each string in
commands such as Substitute or Find with any character. The
most commonly used omes are "/", "™;", or ";", but any
character may be used without specifying it beforehand.

We suggest turning this parameter off in the beginning
because almost none of our examples use this feature. It may
be set with the ES command before you begin issuing other
commands ,

4.10) (Memory Mapped Only)
CURSOR TYPE (0, 1, 2) (1)

This parameter determines the cursor type in memory mapped
versions. The cursor types are O0=Blinking Underline,
1=Blinking Reverse Video Block, 2=Solid Reverse Video Block.
Most users seem to prefer type "1", but you must use "0" if
your display does mnot produce reverse video.

4.11) (Memory Mapped Only)
CURSOR BLINK RATE (10 - 100) (See Prompt)

This determines the memory mapped cursor’s blink rate.
Start with the value suggested by the VEDSET prompt. A
smaller number causes the cursor to blink faster.

4.12) INDENT INCREMENT (1 —20, SUGGEST 4)

This determines the "Indent Increment". A value of 4 is
common when structured programming languages are being used.

4.13) LOWER CASE CONVERT (0=NO, 1=YES, 2=CONDITIONAL) (0)

This parameter is useful for assembly language programs. If
you choose "0", no conversion will occur. If you choose "1V,
all lower case keyboard character will be converted to upper
case. If "2" is chosen, the answer to the next question will
determine before which character lower to upper case
conversion will occur. For example, Z80 assembler uses ";"
as a comment delimiter. To the left of the ";" lower case
letters are converted to upper case. To the right of the ";
" in the comment field, no conversion is done.

4.14) DECIMAL CODE FOR CONDITIONAL CONVERSION CHARACTER (59)

VEDIT - Visual Editor Page 112
Appendix A - Customizing VEDIT

This is the "Conditional Conversion" character used when the
previous parameter is set to "2". A value of "59" decimal,
makes the ";" the special conditional character.

4.15) LINE AND COLUMN DISPLAY (0=NONE, 1=LINE, 2=COLUMN,

3=BOTH) (3)

This determines whether the Visual Mode status line will
display the line number and column position the cursor is
on. It is usually useful to know both.

4.16) RIGHT MARGIN FOR WORD WRAP IN DECIMAL (0=OFF)

The Word Wrap column defines the right margin column. A
value of 00 turns Word Wrap off. Words typed beyond the
right margin will be wrapped to the next line. The right
margin is also used for the [FORMAT PARAGRAPH] function.
The right margin can be greater that the screen line length.

STEP 7 - TASK 5: SET SCREEN PARAMETERS

5.1)

5.2)

5.3)

ENTER NUMBER OF SCREEN LINES IN DECIMAL (24 or 25)

Enter the number of 1lines on your CRT display. While most
terminals have 24 lines, some have a 25th “Status Line". On
some of these, it is possible for VEDIT to place its status
line on the 25th line. These terminals are marked with a
"%" following the terminal”s name in the menu. To use the
25th line, amnswer this question with a "25". Note that the
Intertec Intertube II must be specified as having 25 lines.
The IBM Personal Computer also has 25 lines.

ENTER LINE MOVEMENT FOR PAGING IN DECIMAL (20)

Enter the number of screen 1lines you wish [PAGE UP] and
[PAGE DOWN] to move through the text by. About 4/5 of the
total number of screen lines is suggested, i.e., "12" for a
16 line display and "20" for a 24 line display.

ENTER TOP LINE FOR CURSOR IN DECIMAL (3)

This sets the top screen line the cursor can normally be on,
before the screem will begin to scroll down. This,
therefore, is the minimum number of lines you will always

VEDIT - Visual Editor Page 113
Appendix A - Customizing VEDIT

5.4)

5.5)

5.6)

5.7)

5.8)

see before the line you are editing.

ENTER BOTTOM LINE FOR CURSOR IN DECIMAL (20)

This is similar to the previous step, except that it sets
the bottom line range for the cursor. This number must be
greater than or equal to the "Top Line for Cursor" setting,
and at most be one less than the "Number of Screen Lines”,
since the very bottom line is only used for status. "4" less
than the number of screen lines is a good starting point.

(Memory Mapped Omnly)
ENTER SCREEN LINE LENGTH IN DECIMAL (80 or 64)

Enter the number of bytes per screen line your display has.
This number must be in the range 20 -255. It will be 64 or
80 for most Memory Mapped Displays and therefore the same as
the next question. However it will be greater for displays
which have invisible attribute bytes at the end of each
line. The MATROX display board is 1like this and requires a
value of 128,

ENTER LENGTH OF DISPLAYED LINE IN DECIMAL (80 or 64)

This is the number of characters per line VEDIT will
display. Normally you would want this value equal to the
screen line length, usually 80 or 64. The TRS-80 Model II
and 16, the IBM Personal Computer and the MATROX display
board require a value of 80.

(Memory Mapped Only)
ENTER ADDRESS OF SCREEN IN HEXADECIMAL

Enter the memory address of the beginning of the video in
hexadecimal and a RETURN, Many 16 x 64 boards have an
address of CCO0 hex. The TRS-80 Model II has an address of
F800 hex.

(Memory Mapped Only)
ENTER NUMBER OF VIDEO BOARD INITIALIZATION BYTES

Enter "0" if your board requires no initialization.
Otherwise enter a number between "1" and "5" for the number
of "data byte"-"port address" pairs needed for
initialization. Most memory mapped system need no
initialization (including TRS-80 Models I, II and 16). (Omne
exception is the Processor Technology VDM, which requires a

VEDIT - Visual Editor Page 114
Appendix A - Customizing VEDIT

"00" output to port "C8" hex, and the SOL-20 a "00" output
to port "FE" hex).

ENTER [RUBOUT] OR [CTRL-U] TO START PAIR OVER
ENTER DATA BYTE
ENTER PORT ADDRESS

The specified number of "data byte"-"port address" pairs is
entered in hexadecimal with each number followed by RETURN.
Typing CTRL-U or RUBOUT will reprompt with the "ENTER DATA
BYTE"™ question for that pair.

STEP 8 — TASK 6: SET OTHER PARAMETERS

6.1) SIZE IN DECIMAL OF SPARE MEMORY FOR AUTO-RFAD IN BYTES

See the table below for a recommended value depending upon
your memory size. The number must be in the range 1024 -
32768. Use RUBOUT or <CTRL-U> if you mistype the number.

MEMORY SIZE SPARE MEMORY FOR VALUE FOR TRANSFER
(For 6.1) (For 6.2)
20K 2304 3
24K 3072 4
28K 4096 5
32k ' 4096 6
36K 5120 7
40K 6144 8
44K 6144 9
48K 7168 10
52K 7168 11
56K 8192 12
60K 8192 13
64K 8192 14

Minimum system size = 20K.

1 K byte is a unit of 1024 bytes (1024 = 2 ** 10),

For CP/M systems, the memory size is the CP/M size,
which should be on your CP/M disk label or displayed
when you first boot.

——— Do not make the Spare Memory for Auto Read more than two
times larger than the value given in the table or it may
produce a non-operational editor. This value represents
the number of bytes free in the text buffer AFTER a file

VEDIT - Visual Editor ' Page 115
Appendix A - Customizing VEDIT

6.2)

6.3)

6.4)

larger than available memory space is read. For example,
in a 56K system the available memory is about 41K. If
the table value of 8192 was chosen and a very large file
edited, VEDIT would initially read in the first 33K of
the file, leaving 8192 bytes free. This extra space is
necessary for insertion of new material. Use the

"U" command to verify actual free space.

See "Customization Notes" for more details.

SIZE IN DECIMAL OF FILE MOVE TRANSFERS IN K BYTES

Choose the value from column 3 of the above table which
corresponds to your memory size. This parameter specifies
the amount of the file read into the text buffer when
auto~buffering is done. The number entered must be in the
range 1 - 32.

DO YOU WISH TO USE DEFAULT TAB POSITIONS? (Y/N)

The default tab positions are set at every 8th position, for
example, 9 17 25 41 49 57 65 73 81 89 etc. This is the most
common tab setting; if you change the tabs, the change will
apply to VEDIT only. Tab positions may be reset inside VEDIT
using the ET command.

If you enter "N", this prompt is given:
ENTER UP TO 30 TAB POSITIONS IN DECIMAL

Enter the desired tab positions, separating the numbers with
spaces or commas and following the last number with a
RETURN, Don“t be concerned if your input 1line goes off the
right side of your terminal or screen. Note that you need
no tab at position 1 and that the positions are counted
starting from 1, not 0. You must alsoc specify at least one
tab position per screen line and the highest allowed
position is 254, Entering a number outside of the range 1 -
254 will give an error and a reprompt of the question., If
you make a mistake, type RUBOUT or <CTRL-U> to start the
question over,

ENTER DECIMAL VALUE (4mhz = 76, 2mhz = 38)

Enter "76" if your processor speed is 4mhz, "38" if the
speed is 2mhz. Interpolate for other processor speeds. This
value is only used for CRT”s which require time delays for
some functions and 1is mnot critical. The maximum value is
255, :

VEDIT - Visual Editor Page 116
Appendix A - Customizing VEDIT
6.5) REVERSE VIDEO ON STATUS LINE (0 = NO, 1 = YES) (1)

If your CRT or wvideo display board produces reverse video,
answer "1". If you have a Sorcerer, TRS-80 Model I, or a CRT
terminal which does not produce reverse video, answer "0".

STEP 9 - TASK 7: SET SIGNON MESSAGE

This message will appear briefly whenever you invoke VEDIT. It
can be used to help you identify how the particular VEDIT was
customized. The message may be wup to 64 characters long. An
example message might be:

Bob“s Televideo 920C, Word Wrap = 70.

STEP 10 - TASK 8: CUSTOMIZATION COMPLETE; RETURN TO OPERATING SYSTEM

This writes the customized VEDIT out to disk.

VEDIT - Visual Editor Page 117
Appendix A - Customization Notes

Customization Notes

This section describes some aspects of the customization in more
detail. You do not need read this section in order to get VEDIT up and
running. However, once you are more familiar with VEDIT, you will
probably want to gain a better understanding of the customization in
order to create a more "personalized" version of VEDIT.

VEDIT Checksum

To help insure that your distribution diskette is intact, the
customization performs a checksum on the VEDIT file being customized.
If there is a fault, a warning error message is given. If you
encounter this error make sure that you have copied the files from the
distribution diskette properly. If all else fails, try running the
customization from the distribution diskette. If this still results
in the error, please contact us for an exchange diskette. If you
patch the VEDIT file, this error will result. In this case it can be
ignored, and the new VEDIT file will contain a new checksum so that
the error will not occur again unless the file becomes modified again.

Keyboard Layout

Determining the desired keyboard layout for the cursor movement
and function keys is the first task of the customization. Since it
could be a difficult task, several example keyboard 1layouts are
enclosed to help out the new user. The best layout will depend to
some extent upon your keyboard, especially if you have one with extra
keys which produce control codes. If extra keys are available, you
may want to allocate them to the most used visual operations such as
the cursor movements. The more extra keys you have, the easier it
becomes to remember the layout.

If and when you decide to try out your own layout, you will want
to avoid placing the keys you least want to hit by accident, such as
[Erase End Of Line] or [Homel, right next to the cursor movement keys.
In the event that you have no or few special keys, most visual
operations will involve holding the CONTROL key while you type a
letter, or using escape sequences. In this case, the layout may be
tight and difficult to organize., One strategy is to use mnemonic
letters, such as CIRL-D for [DELETE] and CTRL-U for [CURSOR UP], etc.
Another is to arrange the keys in some geometric manner, such as the
cursor movement keys on one side of the keyboard and the visual
function keys on the other side. You can also simplify the layout by
using at least a few escape sequences, especially for functions you do
not use often, or don“t want to hit by accident. Trying out some
combinations on paper is probably the easiest way to accomplish the

VEDIT - Visual Editor Page 118
Appendix A - Customization Notes

layout task.

Besides responding to the customary control characters, VEDIT
also handles multi character escape sequences. These may be user
typed, or may result from pressing a special function key. For
example, instead of typing the single character CONTROL-Q, the user
may type two characters, i.e. ESC and Q, to perform a visual
operation. All escape sequences begin with one of two user defined
escape characters (sometimes called Lead-in characters). While the
ESC is a common key to wuse as an escape character, any other ASCII
character may be used as the escape character, even displayable ones
like "@". The special function keys on some keyboards, like the Heath
H19, Televideo 920C and IBM 3101 also send multi character escape
sequences. Some terminals, like the IBM 3101, also send a Carriage
Return at the end of escape sequences. The keyboard customization
detects this automatically and the user need not be concerned with it.

When performing the keyboard customization, it asks the question:
"Ignore upper/lower case difference in escape sequences?" If you
answer NO to this question, the editor will made a distinction
between, for example, "ESC-H" and "ESC-h". Therefore, if you entered
the escape sequence with a lower case "h" during customization, the
editor would not respond to the escape sequence with an upper case
"H", This is annoying if you hand type most of the escape sequences,
since at times you may have the SHIFT or a CAPS-LOCK depressed. You
would therefore want to answer the question with a YES. However, the
function keys on some terminals, such as the Televideos, send escape
sequences which distinguish between upper and lower case letters. 1In
this case you will want to answer the question with NO. If you find
that you have made a mistake with this question, you can skip
performing the entire keyboard customization again, by performing task
(2) in the customization, answering this and the other three questions
pertaining to escape sequences correctly and simply typing a RETURN
for all of the function prompts.

When laying out the keyboard, you may therefore use any
combination of control characters, special function keys and escape
sequences for the visual operations. Some users will prefer to use
function keys and control characters for the most used visual
operations, and escape sequences for the less used operations. If
escape sequences are used, a key like ESC or FORM FEED is suggested
for the escape mode character. Any other character may then follow,
including numbers, control characters or even another escape
character. Many keyboards have a numeric pad and these numbers can be
used in escape sequences. For example, use ESC - 8 for [CURSOR UP],
ESC — 2 for [CURSOR DOWN], ESC -~ &4 for [CURSOR LEFT] and so on. In
this case you may wish to attach descriptive labels on top of the
numeric keys. An Escape and Control character combination would be a
good choice for operations you don”t want to hit by mistake, like
[HOME], [ZEND] or [RESTART EDITOR]. You may use an escape sequence
consisting of two escape characters in a row. In fact, if ESC is the
escape character, then "ESC - ESC" is the suggested sequence for the

VEDIT - Visual Editor Page 119
Appendix A - Customization Notes

function [VISUAL ESCAPE]. In the unusual case that a displayable
character like "@" is used as the escape character, a "@ - @" cannot
be used for a visual operation, since in this case, "@ - @" will be
treated by VEDIT as the normal "@" character.

While all of this is complicated enough already, there are a few
pitfalls to avoid too. (You are well advised to wuse one of the
example keyboard layouts at first.) The only key which is predefined
is the RETURN or CR key which is also CTRL-M and cannot be used for
any visual operation. The special function keys on some keyboards
send a code identical to a control character. You may therefore
unintentionally attempt to use the same control code for two visual
operations. In this case, VEDSET or VDSETCRT will give an error
message and request a new key for that function. Some keyboards have
special function keys which send a character with data bit 7 set
(sometimes called the parity bit). These work properly since the
VEDIT programs decode all 8 bits. (Technical note: An escape sequence
treats the second character as having Bit 7 set. The escape mode
characters themselves must not have Bit 7 set.)

A VWord About Keyboards

With the simplest keyboards, each visual operation will have to
be activated by holding the CONTROL key and typing some letter or
using an escape sequence. Moving up, keyboards will have keys for
Backspace, Tab and Line Feed, which can be used to perform the
described function. Some keyboards with a numeric pad can send control
codes by holding the SHIFT or CONTROL key and typing one of the pad
keys. Numeric pad keys can always be used as part of escape
sequences. The pad can then be used for most of the visual
operations. In some cases, the keyboard will have many special keys,
which send a control code just by typing omne of them. In the ideal
case, these control codes will be sent with the highest data bit set.
(This is Bit 8 and is often called the parity bit. The ASCII standard
code does not use Bit 8 and even a "Full ASCIIY keyboard will send
nothing on Bit 8 or else parity information). Some very special
keyboards, usually ones with 70-100 keys on them, use Bit 8 to decode
all those keys. Since VEDIT and VEDSET decode all 8 data lines from
the keyboard, these fancy keyboards can be used to their full
advantage,

Screen Size Parameters

VEDIT can be customized for any screen size up to 70 lines by 200
columns. To set these parameters you need to know the number of lines
and the number of characters per line that your CRT terminal or video
display board produces. 16 x 64 and 24 x 80 are the most common
values. You also have the choice of how many columns on a line are

VEDIT - Visual Editor - Page 120
Appendix A - Customization Notes

actually used. You want to use all of them, unless you have a special
application or unusual hardware.

For the memory mapped versions, you also need to know the
beginning address of the display board in memory in hexadecimal and
whether it requires any data bytes output to a port to initialize it.
For example, many 16 x 64 boards have an address of CC00 hex. Most of
these 16 x 64 boards do not need any initialization, one exception
being the Processor Technology VDM board, which should have a 00
output to Port C8 hex. (The SOL-20 requires a 00 output to Port FE
hex).

Memory Size Dependent Parameters

The first parameter "Spare Memory for Auto-Read" determines how
many bytes of memory are free after VEDIT does an auto-read (such as
following an EB command). This size must be specified between 1024
and 32768. A reasonable size is about 1/4 of the size of the text
buffer for small systems and a little less for large systems. Choosing
a 1K (1024 byte) multiple makes the disk read/write work a little bit
faster.

In particular, do not make this value more than 2 times larger
than the value in the table, or you may produce a non—operational
editor. This value is NOT the amount of memory VEDIT will use for the
text buffers, since VEDIT always sizes memory and uses all that is
available, Rather, this value is the number of bytes that is free in
the text buffer after a file is read which is larger than the
available memory space. For example, in a 56K system the available
memory is about 39K. If the table value of "8192" was used, and a
very large file edited, VEDIT would initially read in only the first
33K of the file, leaving "8192" bytes free. This can be verified with
the "U" command.

The second parameter "Size of File Transfers" specifies the size
of file transfers during auto-buffering and for the “N” command. For
normal use, a value about 1/3 the size of the text buffer is good.
(Specifying a value larger than one half the maximum text buffer size
may create a non-working version of VEDIT.,) When auto-buffering is
initiated, an attempt is made to append this number of K bytes to the
end of the text. If there is insufficient memory space for appending
this many bytes, this many bytes are written from the beginning of
the text buffer to the output file. An auto-read is then performed
which reads in the rest of the input file, or until the memory is
filled to within the number of spare bytes specified by "Spare Memory
for Auto-Read".

VEDIT - Visual Editor Page 121
Appendix B - Command reference

“n” denotes
“m” denotes

a positive number. (# represents 32767)
a number which may be negative to denote backwards

in the file.
“r’ denotes a digit "0 - 9" specifying a text register.

“string”,”sl” and “s2” denote text strings.

“file” is a

file name in the normal CP/M (MSDOS) format with

optional drive and extension specified.

pA

B

mC

mD

E
nFstring<ESC>
Gr

Itext<ESC>

mK

mL

Mr
nNstring<ESC>
mPr
Ssl1<ESC>s2<ESC>
nT

U

v

oW

Z

SPECIAL CHARACTERS

<CTRL-Q>

@

Append “n” lines from the input file. (0A)

Move the edit pointer to text beginning.

Move the edit pointer by “m” positioms.

Delete “m” characters from the text.

First letter of extended two letter commands.
Search for “n“th occurrence of “string”.

Insert the contents of text register “r”.

Insert the “text” into the text buffer.

Kill “m” lines.

Move the edit pointer by “m” lines.

Execute text register “r” as a command macro.
Search for “n“th occurrence of “string” in file.
Put “m” lines of text into text register “r”.
Search for and change “sl1” to “s2°.

Type “m” lines.

Print # of unused, used and text register bytes.
Go into visual mode.

Write “n” lines to the output file. (OW)

Move edit pointer to end of text.

Search wildcard character. Each "|" will match any
character in the text being searched.

Literal Character. Next char. is taken literally.

Precedes F, I, N, S command to indicate explicit
terminator.

Precedes F, N, S command to suppress search error
message.

VEDIT - Visual Editor

Page 123

Appendix C — Error Messages

VEDIT prints a message (on the CP/M console device) when the user

should be notified of an unusual or special
are descriptive, and the user

this appendix

in order to wunderstand the message or
messages fall into
and other messages.

condition. All messages
should not normally have to refer to
error. The
fatal errors, non-fatal errors
in an abort of the disk

three categories:
Fatal errors result

operation being performed and a return to command mode if possible,

else a return to

CP/M. These are caused by certain disk errors

described below. The non-fatal errors usually just signify that a typo

was made or that

some small detail was

overlooked. These only result

in a message and the user can try again.

FATAL ERRORS

NO DISK SPACE

CLOSE ERROR

READ ERROR

NO DIR SPACE

NON-FATAL ERRORS

INVALID COMMAND

CANNOT FIND...

NESTING ERROR

BAD PARAMETER

NO INPUT FILE

The disk became full before the entire output file
was written. As much of the output file as
possible was written. Refer to the section on disk
write error recovery.

This 1is a
if the disk

The output file could not be closed.
very unusual condition, but may occur
becomes write protected.

An error occurred reading a file. This error
should never occur, since CP/M itself normally
gives an error if there was a problem reading the
disk.

There was no directory
file. Refer to the
recovery.

space left for the output
section on disk write error

The specified letter is not a command.

The specified string could not be found. This is
the normal return for iteration macros which search
for all occurrences of a string.

You cannot nest macros deeper than 8 levels,

Something was specified wrong with your "EI", "EP",
"ES" or "EI" command.

There is a read or
append.

no input file open for doing

Appendix B - Command reference
Appendix C - Error Messages

NO OUTPUT FILE

CANNOT OPEN TWO

BAD FILE NAME

FILE NOT FOUND

OTHER MESSAGES

NEW FILE

BREAK

QUIT (Y/N)?

Page 124

There is no output file open for doing a write, a
close or an exit with the "EX" command. If you
have already written out the text buffer and closed
the output file, exit with the "EQ" command.

You cannot have two output files open and there is
already one open. Also given if an output file is
open at the time of an "EC" command. Perhaps you
want to close it with the "EF" command.

The file name you gave does nmot follow the CP/M
conventions,

The file you wanted to open for input does not
exist, Maybe you specified the wrong drive.

The file specified with the EB command or with the
invocation of VEDIT did not exist on disk and a new
file has been created. If you typed the wrong file

name, you may want to start over by issuing the
"EQ" command.

The command execution was stopped because
insufficient memory space remained to complete the
command (I, S, G, P and EG). For the "I", "S" and
"EG" commands, as much text as possible was
inserted. For the "G" and "P" commands, no text at
all was copied or inserted. The message is also
printed when command execution is stopped because
you typed [CTRL-C] on the keyboard in command mode.

This is the mnormal prompt following the "EQ"
command., Type "Y" or "y" if you really want to

quit and exit to CP/M, otherwise type anything
else,

INSERT NEW DISK AND TYPE [RETURN]

This is the normal prompt for inserting a new disk
with the "EC" command.

VEDIT -~ Visual Editor Page 125
Appendix D - VEDIT Notes

We are interested in hearing from wusers about any changes or
additions they would 1like to see in VEDIT, or even just information
about their application. We are talso interested in suggestions
regarding this manual. Each suggestion will receive personal
attention and helpful suggestions have a good chance of being
incorporated in future releases, since we are continuously expanding
the features of VEDIT.

Currently we know of the following limitations to VEDIT.

1.) Lines longer than 258 characters, mnot including the CR,LF are
not handled well in visual mode. When the cursor is on such a
line only the first 258 characters will be displayed. The line
may be broken into smaller lines by deleting two characters with
the [Back Spacel, typing [RETURN] to split the line in two and
typing in the two deleted characters again. Alternately, enter
command mode and give the command "I<KCR>$$".

2.) The text being edited can contain characters which have their
high order bit (Bit 7) set. These are displayed unmodified in
the memory mapped version, which is often suitable for foreign
language and other special characters. The CRT versions will,
however, attempt to display them in reverse video, which may or
may not produce the desired result., The character with a value
of FF hex (255 decimal) should not be used, because VEDIT will
compress it out when performing the "S" command.

VEDIT - Visual Editor \ Page 122
Appendix B - Command reference

EXTENDED COMMANDS

EA

EBfile

EC
EDfile<ESC>
EF
EGfile[line

nEI
mEQ
EPnm

NV WN -

EQ
ERfile
ESnm

WoONOTULPWN =

ET
EV
EWfile

range]

Restart the editor. (EX and EB).

Open "file" for Read & Write, perform an auto-read.
Change disks for reading or write error recovery.
Delete (erase) the file "file" from the disk.

Close the current output file.

Insert the specified line number range of the file
"file"™ into the text buffer at the edit position.
Insert the character whose decimal value is "n".
Send “m” lines to the line printer. (0EO)

Change the value of parameter "n" to "m".

Cursor type (0, 1 or 2)
Cursor blink rate (10 - 100)
Indent Increment (1 - 20)
Lower case convert (0, 1 or 2)
Conditional convert character (32 - 126)
Display line and column number (0, 1, 2 or 3)
Word Wrap column (0 = Off) (0 - 255)

Quit the current edit session.
Open the file "file" for input.
Change the value of switch "n" to "m".

Expand Tab with spaces (0=NO 1=YES)
Auto buffering in visual mode (0=NO 1=YES)
Start in visual mode (0=NO 1=YES)
Point past text reg. insert (0=NO 1=YES)
Ignore UC/LC distinction in search (0=NO 1=YES)
Clear screen on visual exit (0=NO 1=YES)
Reverse Upper and Lower case (0=NO 1=YES)
Suppress search errors (0=NO 1=YES)
Explicit string terminators (0=NO 1=YES)

Set new tab positions.

Print the VEDIT version number.

Open the file "file" for output. Create Backup.
Normal exit back to CP/M after writing output file.

TEXT REGISTER COMMANDS

RDr

RLrfile
RSrfile
RTr

RU

Dump contents of register “r” on console.

Load register “r” from file “file”.

Save contents of register “r” in file “file”.
Type contents of register “r” on console.
Display size of each text register. br

CompuView Products Inc.

VEDIT

DESCRIPTION OF FILES ON DISK

The following is a brief description of the files currently
supplied on diskette. The files actually supplied on your diskette
depend upon which version and package you purchased. You will have to
perform the customization process, described in the manual, to produce
a runnable version of VEDIT.

VDSETCRT.COM

VEDSET.COM

VEDITZC,SET
VEDIT8C,SET
VEDITZM, SET
VEDIT8M, SET

Note:

The program used to perform the customization for the
CRT versions. The manual describes the use of this
program and the "VEDITZC.SET" or "VEDIT8C.SET" files
below.

The program used to perform the customization for the
memory mapped versions. Use with the "VEDITZC.SET" or
"VEDIT8C.SET" files below.

File for producing the Z80 CRT version.

File for producing the 8080 CRT version.

File for producing the Z80 Memory mapped version.

File for producing the 8080 Memory mapped version.

The ".SET" files with a "L" as the 1last character of

the file name allow up to 70 screen lines, instead of
33 lines for the normal versions.

1955 Pauline Blvd., Suite 200 Ann Arbor, Michigan 48103 Telephone (313) 996-1299

EXAMPLE KEYBOARD LAYOUT FOR THE TELEVIDEO 920C

This is an example keyboard layout

the Televideo 920C terminal.

"ESCAPE MODE CHARACTER #1"
"ESCAPE MODE CHARACTER #2"
"“COMMON 2ND CHARACTER #1..."
“UPPER/LOWER CASE ESCAPE..."

[HOME]

[ZEND]

[CURSOR UP]

[CURSOR DOWN]

[CURSOR RIGHT]

[CURSOR LEFT]

[BACK TAB]

[TAB CURSOR]

[z1P]

[NEXT LINE]

[PREVIOUS WORD]

[NEXT WORD]

[PREVIOUS PARAGRAPH]
[NEXT PARAGRAPH]

[PAGE UP]

[PAGE DOWN]

[BACKSPACE]

[DELETE]

[ERASE TO END OF LINE]
[ERASE LINE]

[DEL PREVIOUS WORD]
[DEL NEXT WORD]

[uNDO]

[TAB CHARACTER]

[NEXT CHAR LITERAL]
[SET INSERT MODE]
[RESET INSERT MODE]
[SWITCH INSERT MODE]

[INDENT]

[UNDENT]

[COPY TO TEXT REGISTER]
[MOVE TO TEXT REGISTER]
[INSERT TEXT REGISTER]
[PRINT TEXT]

[SET TEXT MARKER]
[GOTO TEXT MARKER]
[FORMAT PARAGRAPH]
[VISUAL ESCAPE]
[VISUAL EXIT]

[RESTART EDITOR]

Notes:

1.) The [RETURN]

which uses the special keys on

[Esc]

CTRL-4 /3 Used by special function keys.
NOT USED Type [RETURN]

0 (1 = YES, 0 = NO)

ESC - H

ESC - Z

[Up Arrowl

[Down Arrow]
[Right Arrow]
[Left Arrow]
[F5] (cree T !

[F6] F(=F35 Useful for fast cursor movement.

[F7] FSs Fo&

[F4] Fooe

[CTRL-H]

[CTRL-F] M

ESC - R B

ESC - ¥ A

[CTRL-R]

[CTRL-V] F 2

[F8] &S

[DEL]

[F10] £4-f/5 Also called [EREOL] in manual.
[CTRL-X]
[CTRL-S]
[CTRL-G]
[F11]1 7 2
TAB

ESC - Q[
NOT USED

NOT USED
[F3] =1

[F2] c7ed D
[F1] CT/ O
ESC
ESC
ESC
ESC - P
ESC - ¥
ESC - %
ESC - ¥
ESC
[CTRL-E]
NOT USED

Type [RETURN]
Type [RETURN]

Used to exit to command mode,
Use "EA" Command.

key is not changeable, and since it is the same as

[CTRL-M], the [CTRL-M] cannot be used for any other operation.

2.)

The cursor keys produce the codes CTRL-H, CTRL-J, CTRL-K and

CTRL~L, these codes may therefore not be used for a second function.

EXAMPLE KEYBOARD LAYOUT

This is an example keyboard layout which assumes that there are no
special keys available. Refer to Appendix A of the manual for a method
of using any numeric keypad.

"ESCAPE MODE CHARACTER #1" [ESC]

"ESCAPE MODE CHARACTER #2" NOT USED Type [RETURN]
"COMMON 2ND CHARACTER #l1..." NOT USED Type [RETURN]
"UPPER/LOWER CASE ESCAPE..." 1 (1 = YES, 0 = NO)

[HOME] ESC - H

[ZEND] ESC - Z

[CURSOR UP] [CTRL-E]

[CURSOR DOWN] [cTRL-C]

[CURSOR RIGHT] [CTRL-F]

[CURSOR LEFT] - [CTRL-S]

[BACK TAB] € . [CTRL-A]

[TAB CURSOR] [CTRL-R] TUseful for fast cursor movement.,
[z1P] [CTRL-G]

[NEXT LINE] ¢ [CTRL-Z]

[PREVIOUS WORD] [CTRL-K]

[NEXT WORD] [CTRL-L]

[PREVIOUS PARAGRAPH] ESC - W

[NEXT PARAGRAPH] ESC - X

[PAGE UP] [CTRL-W]

[PAGE DOWN] [CTRL-X]

[BACKSPACE] [CTRL-H] Or use BACK SPACE key.
[DELETE] [CTRL-B] Or use DEL or RUBOUT.
[ERASE TO END OF LINE] [CTRL-N] Also called [EREOL] in manual.
[ERASE LINE] ESC - N

[DEL PREVIOUS WORD] ESC - K

[DEL NEXT WORD] ESC - L

[uNDO] S [CTRL-J]

[TAB CHARACTER] [CTRL-I] Or use TAB key.

[NEXT CHAR LITERAL] ESC - Q

[SET INSERT MODE] NOT USED Type [RETURN]

[RESET INSERT MODE] NOT USED Type [RETURN]

[SWITCH INSERT MODE] [CTRL-V]

[INDENT] [CcTRL-P]

[UNDENT] [CTRL-Q]

[COPY TO TEXT REGISTER] ESC - C

[MOVE TO TEXT REGISTER] ESC - M

[INSERT TEXT REGISTER] ESC - I

[PRINT TEXT] ESC - P

[SET TEXT MARKER] ESC - S

[GOTO TEXT MARKER] ESC - G

[FORMAT PARAGRAPH] ESC -~ F

[VISUAL ESCAPE] ESC - ESC

[VISUAL EXIT] ESC — E Used to exit to command mode.
[RESTART EDITOR] NOT USED Use "EA" Command.

Note:

1.) The [RETURN] key is not changeable, and since it is the same as
[CTRL-M], the [CTRL-M] cannot be used for any other function.

EXAMPLE CRT CUSTOMIZATION

A typical CRT customization session 1is listed below. Since the
enclosed keyboard layouts give examples for Task 1, this session
performs only Tasks 3 through 6. The two values depending upon memory
size are based on a 40K system, however, they may be used for larger
size systems too. For clarity sake, each reply below is preceded by
"——", which does not appear is the actual customization. Each
numerical reply must be followed by the [RETURN] key.

3.) HEX CODE FOR SCREEN CONTINUATION CHARACTER (2D) — 2D
HEX CODE FOR COMMAND ESCAPE CHARACTER (1B) — 1B
HEX CODE FOR COMMAND ITERATION LEFT BRACKET (5B) —— 5B

HEX CODE FOR COMMAND ITERATION RIGHT BRACKET (5D) -- 5D
4.) EXPAND TAB WITH SPACES (0=NO, 1=YES) — 0

AUTO-BUFFERING IN VISUAL MODE (0=NO, 1=YES) — 1

BEGIN IN VISUAL MODE (0=NO, 1=YES) — 1

POINT PAST TEXT REG. INSERT (0=NO, 1=YES) —- 1
IGNORE UPPER/LOWER CASE DISTINCTION IN SEARCH (0=NO, 1=YES) —— 1
CLEAR SCREEN ON VISUAL EXIT (0=NO, 1=YES) — 0
REVERSE UPPER AND LOWER CASE (0=NO, 1=YES) — 0
IGNORE SEARCH ERRORS (0=NO, 1=YES) -- 0
EXPLICIT STRING TERMINATORS (0=NO, 1=YES) -—- 0

INDENT INCREMENT (1 - 20, SUGGEST 4) — 4

LOWER CASE CONVERT (0=NO, 1=YES, 2=CONDITIONAL) — 0

DECIMAL CODE FOR CONDITIONAL CONVERSION CHAR. (59) —— 59

LINE AND COLUMN DISPLAY (0=NONE, 1=LINE, 2=COLUMN, 3=BOTH) —-— 3
RIGHT MARGIN FOR WORD WRAP IN DECIMAL (0=0FF) — O

5.) ENTER NUMBER OF SCREEN LINES IN DECIMAL —- 24
ENTER LINE MOVEMENT FOR PAGING IN DECIMAL — 20
ENTER TOP LINE FOR CURSOR IN DECIMAL —- 3
ENTER BOTTOM LINE FOR CURSOR IN DECIMAL — 20
ENTER LENGTH OF DISPLAYED LINE IN DECIMAL — 80

6.) SIZE IN DECIMAL OF SPARE MEMORY FOR AUTO READ — 6144
SIZE IN DECIMAL OF FILE MOVE TRANSFERS IN K BYTES —-- 8

DO YOU WISH TO USE THE DEFAULT TAB POSITIONS? (Y OR N) — Y
ENTER DECIMAL VALUE (4MHZ = 76, 2MHZ = 38) — 76

REVERSE VIDEO ON STATUS LINE (0=NO, 1=YES) — 1

EXAMPLE KEYBOARD LAYOUT FOR THE H19

While VEDIT automatically puts the keypad into Shifted Mode,
VDSETCRT does not, and for the customization you should enter the
Shifted Mode by going into Local Mode and typing ESC and “t”.

"ESCAPE MODE CHARACTER #1" [ESC]
"ESCAPE MODE CHARACTER #2" NOT USED
“COMMON 2ND CHARACTER #1..." 2

Type [RETURN]

“COMMON 2ND CHARACTER #2..." NOT USED Type [RETURN]
"UPPER/LOWER CASE ESCAPE..." 0 (1 = YES, 0 = NO)
[HOME] [CTRL-Q]

[ZEND] [CTRL-Z]

[CURSOR UP] [Up Arrow]

[CURSOR DOWN]
[CURSOR RIGHT]
[CURSOR LEFT]

[Down Arrow]
[Right Arrow]
[Left Arrow]

[BACK TAB] [BLUE]

[TAB CURSOR] [RED] Useful for fast cursor movement.
[zIP] [WHITE]

[NEXT LINE] [F5]

[PREVIOUS WORD] [CTRL-D]

[NEXT WORD] [CTRL-F]

[PREVIOUS PARAGRAPH] [CTRL-T]

[NEXT PARAGRAPH] [CTRL-B]

[PAGE UP] [1C]

[PAGE DOWN] [1L]

[BACKSPACE] [BACK SPACE]

[DELETE] [pc]

[ERASE TO END OF LINE] [pL] Also called [EREOL] in manual.
[ERASE LINE] [CTRL-X]

[DEL PREVIOUS WORD] [CTRL-S]

[DEL NEXT WORD] [CTRL-G]

[uNDO] [F4]

[TAB CHARACTER] [TAB]

[NEXT CHAR LITERAL] ESC - Q

[SET INSERT MODE] NOT USED Type [RETURN]
[RESET INSERT MODE] NOT USED Type [RETURN]

[SWITCH INSERT MODE] [F3]

[INDENT] [F2]

[UNDENT] [F1]

[COPY TO TEXT REGISTER] [CTRL-J]

[MOVE TO TEXT REGISTER] [CTRL—K]

[INSERT TEXT REGISTER] [CTRL-L]

[PRINT TEXT] [CTRL-P]

[SET TEXT MARKER] ESC - S

[GOTO TEXT MARKER] ESC - G

[FORMAT PARAGRAPH] ESC — F

[VISUAL ESCAPE] ESC - ESC

[VISUAL EXIT] [CTRL-E] Used to exit to command mode.
[RESTART EDITOR] NOT USED Use "EA" Command.,

Note: You may experience extra characters appearing when using the cursor

UP and DOWN keys,

especially in conjunction with the REPEAT key.

This is caused by the function keys sending their multi character
codes at 9600 Baud, which is too fast for any non-interrupt driven

software. This is best
driven. If this is

solved by making your system interrupt

not possible, implement the cursor movements

with control characters and use the keypad for other functionms.

CompuView Products inc.

SOFTWARE UPDATE OPTION
FOR VEDIT VERSIONS 1.14, 1.36, 1.66

CompuView Products, Inc. offers you a software update option for
the VEDIT software package you have just purchased. We recognize that
not many companies in the micro computer field offer a software update
service, but we ask that you consider ours. While this update service
is not free, it will give most users benefits which will more than
offset its cost. Please note that you need not purchase this option to
receive support to correct any problems in our software, in the form
of technical assistance and any necessary "patches". All licensed
users receive such support.

Why should you purchase the software support?

The software support option keeps you up to date with the new
releases of VEDIT, and also gives you a significant discount on one of
our other products. Specifically, the software update service gives
you the following benefits:

1.) You will receive two new releases of VEDIT (for the same
configurations as you purchased) on disk. The new releases will
include new features, enhancements and support for more hardware
configurations. The new releases will also include update pages
to the manual (often completely new manuals). Over the past 2
1/2 years we have had a major new release about every six months
and you should expect to receive the releases at this interval.
Therefore, the first new release will be sent to you between 2
and 6 months and the second release between 6 and 10 months
following your original purchase of VEDIT. (Please see the
restrictions below.)

2.) You will receive a $25 discount on one other product (list priced
$75 or more) you buy from us within 2 years of the original
purchase.

Restrictions:

A) You must be a licensed user of VEDIT.

B) You should purchase the software update option within 60 days of
the original purchase of VEDIT. After 60 days you can still
purchase the software update option, but will not be entitled to

the $25 discount on one other product. After 90 days, there may
be additional charges.

1955 Pauline Blvd., Suite 200 Ann Arbor, Michigan 48103 Telephone (313) 996-1299

Page 2

C) The new releases only apply to VEDIT - Full Screen Editor, and
not to any other software products which we may market under the
name VEDIT. The new releases will be for the same configurations
as you originally purchased, i.e. Z80 Memory Mapped version, or
8080 CRT version, etc.

Note: All licensed users may purchase additional versions of VEDIT for
different hardware configurations at a price of generally between $20
and $50 plus media. (8080 and 280 versions for $30 extra, Memory
Mapped and CRT versions for $30 extra, 8086 for $100 extra.)

We encourage all purchasers of this wupdate option to send us a
list of enhancements they would 1like to see incorporated. Here are
some of the new features we are currently planning on adding to VEDIT
(Note, we cannot guarantee when these features will be available) :

1.) A split screen display with a visual display of the file in the
upper part, and allowing you to enter command mode commands in
the lower part.

2.) Easy to use visual mode search and replace functions. This would
include conditional replace. You would decide from visual mode
whether or not the replace should take place.

3.) More extensive TECO 1like pattern matching capabilities,
conditional branching, expression evaluation, etc.

4.) Repeat key in visual mode, allowing visual functions or
displayable characters to be repeated.

5.) Reverse disk 1/0 to automatically move backwards in files too
large to fit in memory.

6.) Interruptable screen updating. This will allow functions which
rewrite a significant part to the screen to interrupt, saving
screen writing time.

7.) 8088 / 8086 versions - allow up to 1 MByte of memory to be used
for the text, text registers, etc.

Ordering the Software Update Option: The cost of this option is $45
plus a shipping charge of $5 in the US, $8 in Canada and $12
everywhere else. Please send your remittance (check, money order or
charge card number and expiration date) within 60 days of your
purchase of VEDIT. We will immediately send you a receipt
acknowledging your purchase of the option, and then the new releases
according to the schedule described above.

CompuView Products, Inc,
Suite 200
1955 Pauline Blvd.
Ann Arbor, MI 48103

1.)

2.)

3.)

4.)

5.)

6.)

CompuView Products Inc.

PLEASE READ THIS FIRST

Before you get started, we ask that you read these notes.

Please read the enclosed Software License Agreement before you
break the seal on the diskette.

Please be sure that this package contains the manual and separate
sheets entitled "Notes on the Software License Agreement",
"Software License Agreement", "Example Keyboard Layout", "Example
Customization" and "Software Update Option". The CRT version
should also have example keyboard layouts for the Televideo 920C
and the Heath H19. The TRS-80 Model I and II versions should
each contain three additional sheets, and the SuperBrain and the
Apple versions one additional sheet.

Please read the enclosed Software Support Option to see if this
is of interest to you. All licensed users receive assistance and
support should they have any problems with our software.
Additionally, users purchasing the Software Support Option
receive enhanced versions of the software for a period of a year.

Please make a copy of the supplied diskette before running the
programs on it. You can use your "PIP" program for this purpose
and copy each file to another diskette.

Before you can begin using VEDIT, you will have to first perform
the customization in order to configure the editor to your
system. To do this, you should refer to the example Keyboard
Layouts, the "Example Customization", and the step by step
instructions in Appendix A of the manual. The IBM Personal
Computer and IBM Displaywriter versions come with a "ready to
run" VEDIT, for which the initial customization is not necessary.

Should you have any problems installing or wusing the software,
please contact us. You will help both yourself and other users
by informing us of even small difficulties you may have with the
software or documentation,

1955 Pauline Blvd., Suite 200 Ann Arbor, Michigan 48103 Telephone (313) 996-1299

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	123
	124
	125
	_01
	_02
	_03
	_04
	_05
	_06
	_07
	_08
	_09

