VEDIT

Customizable

Full Screen

Editor

CompuView



VEDIT 1.39/1.17

Full Screen Editor

User's Manual

Written By

Theodore Green

CompuView Products, Inc.

1955 Pauline Blvd.
Ann Arbor, MI 48103

Copyright (C) 1980, 1984 by Compuview Products, Inc. All rights
reserved worldwide. No part of this publication may be reproduced, in
any form or by any means, for any purpose without the express written
permission of Compuview.

DISCLAIMER

CompuView Products, Inc. and the author make no claims or warranties
with respect to the contents or accuracy of this publication, or the
product it describes, including any warranties of fitness or
merchantability for a particular purpose. Any stated or expressed
warranties are in lieu of all obligations or liability for any
damages, whether special, indirect, or consequential, arising out of
or in connection with the use of this publication or the product it
describes. Furthermore, the right is reserved to make any changes to
this publication without obligation to notify any person of such
changes.

Last Manual Revision: November 13, 1984






II.

IIT.

Table of Contents

Introduction

Getting Started
Installation
Using this Manual
Sample Edit Session
Overall Description
Basic Editing Concepts
Visu:.1l Mode
Command Mode
Which Mode to use for What
Word Processing with VEDIT

Tutorial

Invoking VEDIT

Keyboard Characters & Edit Functions
Cursor Movement

Page Movement

Entering New Text

Visual Functions

Deleting Text

Correcting Mistakes Made to a Line
Repeating Operations

Indenting Text

Word Wrap and Formatting Paragraphs
Moving and Copying Blocks of Text
Emptying a Text Register

Sending Text to the Printer

Entering Control Characters in the Text
Searching

Replacing

Switching Between Visual and Command Mode

Saving Already Edited Text

Begin Editing New File

Making More Memory Space

Disk Directory Display

Inserting a Line Range of another File
Concatenating Two Files

Splitting a File into Two or More Files
Recovery from Full Disk Errors

Ending the Edit Session

Memory and File Management

Text Registers

Automatic Disk Buffering
Forward Disk Buffering
Backward Disk Buffering

Automatic Startup

Global File Operations

Multi-tasking Operating Systems

53

54
55
56
57
58
59
59



Iv.

Visual Mode

Screen Display

Status Line

Keyboard Characters

Entering New Text

Performing Edit Functions

The Repeat Function

Horizontal Scrolling

Cursor Movement

Setting and Jumping to Text Markers

The Tab Character

Search and Replace

Cancel Function

The Text Registers

Indent and Undent Functions

Printing Text

Word Processing Functions
Word Wrap and Margins
Formatting Paragraphs

Lower and Upper Case Conversion

End of Lines

Inserting Control Characters

High Bit Character Support

Disk Buffering in Visual Mode

Edit Functions

Command Mode

Command Mode Notation
Command Lines
Command Line Editing
Help Command
Controliing Console Display
File Operations
Exiting Without Saving
Quitting Without Saving
Save File and Continue Editing
Editing a Second File
Directory Display
Extracting Portions of Other Files
Disk Buffering in Command Mode
Disk Write Error Recovery
Command Mode Features
Search Options
Pattern Matching
Iteration Macros -
Printing Text
WordStar (TM) Files
Text Registers
Command Macros
Additional Command Macro Features
Re=routing Console Output
Numerical Capability '
Print Formatter Command Macro
Brief Command Summary
Detailed Command Descriptions

83

84
84
85
85
86
87
87
87
87
88

89
89
0
93

95

97
100
100
101
103
105
106
106
107
108
114



VI.

APPENDICES
A - Customizing VEDIT

What is Customization

When is Customization Necessary
CRT Terminal and Memory Mapped
How to Perform Customization
Quick Customization
Customization Notes

VEDIT Checksum

Keyboard Layout

A Word About Keyboards

Screen Size Parameters

Memory Size Parameters

B = Quick Command Reference
C - Error Messages
D - General Versions

Description of files on disk
Personal Keyboard Layout
Default CRT Customization
Default Keyboard Layout
HEATH H-19

IBM 3101

TVI 920C

TVI 950

E - 8086 Versions - Specific Screens

PCDOS and TANDY 2000 Files

CP/M-86 Files

IBM PC Keyboard Layout (PCDOS=CP/M=86)
IBM PC Keyboard Layout Concurrent CP/M
TANDY 2000

ZENITH Z-100

IBM Displaywriter

NEC APC

VICTOR 9000

TI Professional

F - 8080/7Z80 Memory Mapped Screens

TRS=-80 Mod I
TRS=80 Mod II
IMSAT VIOC

G - 8080/Z80 Versions = Specific Screens

Superbrain
Apple II
Xerox 820
Osborne 1

151
153

154
154
155
156
172
172
172
172
174
174
175

177
181
185

186
187
188
189
190
192
193
194

195

196
197
198
199
201
203
205
208
209
212

213

214
217
221

223

224
227
230
231






VEDIT PAGE 5

INTRODUCTION TO VEDIT



"VEDIT PAGE 6
Introduction

Introduction to VEDIT

VEDIT is an editor designed to take full advantage of a CRT
display to make your word processing and program development editing
as fast and easy as possible, VEDIT's Visual Mode offers +true "What
you see is what you get" type editing, which continuously displays a
region of your file on the screen and allows any changes made to ‘the
screen display to become the changes in the file. You change the
screen display by moving the displayed cursor to any place in the file
and then typing in new text or typing an edit <function key. These
insertions, deletions and corrections are immediately seen on the
screen and become the changes to the file.

You can also perform the common word processing operations of
wrapping words at the end of lines and formatting paragraphs between
right and left margins. It is easy to print any portion of the text
being worked on. Horizontal scrolling allows editing of very long
lines. Ten scratchpad buffers may be wused for extensive "cut and
paste" operations. Powerful search and selective replace operations
simplify editing. Other features, such as automatic indenting for
structured programming languages, simplify and enhance progranm
development editing.

VEDIT also provides a very flexible and powerful Command Mode,
which serves the dual purpose of separating the less commonly used
functions from the Visual Mode and of making VEDIT a text oriented
programming language. Repetitive editing operations can be performed,
blocks of text may be copied or moved within the current file and
other files in an almost unlimited manner. The extensive file
handling allows multiple files to be edited, split and merged, other
files to be viewed and specified portions of other files to be
extracted. The command macro capability allows complex editing tasks
to be performed automatically. Example of such tasks include numerous
search/replace operations on multiple files and source code
translations. The command macros can be saved on disk for future
use., On line help is available.

You can edit files of virtually any size with little concern over
the actual size of the files. You can also recover from common disk
write errors, such as running out of disk space, by deleting files or
inserting another disk.

Since so many different hardware configurations, keyboards,
editing applications and personal preferences exist, VEDIT is supplied
with a customization (installation) program in order to let users
create versions of VEDIT which are most suitable to their hardware,
keyboard, applications and preferences.

CP/M and MP/M are registered trademark of Digital Research, Inc.
MSDOS is a trademark of Microsoft, Inc.



VEDIT PAGE 7
Introduction

Getting Started

Installation

We supply ready to run versions of VEDIT for some computers such
as the IBM Personal Computer, IBM Displaywriter, Apple II, Zenith Z100
and all TRS-80 Models. Otherwise, before you can begin wusing the
editor, you will have to go through the customization process
described in Appendix A. Most users with ready to run versions will
also want to perform the customization after becoming familiar with
VEDIT. While many parameters can be customized, the menu driven
operation allows you to 1limit your attention to a subset of these
parameters. In fact, if you are using a CRT terminal and are content
to initially use the default keyboard layout (see Appendix F), you
only need to select your CRT terminal in order to create a ready +to
use version of VEDIT. (See "Quick Customization" in Appendix A.)
Since the customization process does not destroy or alter the
"prototype" editor files on disk, but rather creates a new file with
your customized editor in it, you may go through the process as often
as you like, As you gain experience with VEDIT you will probably
perform the customization several times until you get everything just
right.

Using this Manual

This manual 1is organized into six main sections. The first
section describes some basic editing concepts and then introduces the
main features of VEDIT and the modes of operation. The second section
is a tutorial on the use of VEDIT. The third section covers several
moderately technical topics, particularly the text registers and
automatic disk buffering. The fourth section describes the Visual
Mode in detail, while the fifth section is a detailed description of
the Command Mode. The last section contains appendices of the
customization process, a reference guide of the commands, a
description of the error messages and the index. Your manual may also
contain customization notes and keyboard layouts for the many
computers VEDIT supports. If so, we recommend that you place those
pages which apply to you in a clear plastic protector and file the
remaining pages away.

. This introductory section also includes a "Sample First Edit
Session" to familiarize you with the most basic aspects of using
VEDIT. After performing this sample edit session you are best off +to
at least skim the "Overall Description" in order to get an overview of
the capabilities of VEDIT.

Trying out the editor while reading the tutorial section is the
best way to gain a working familiarity with most features. The
tutorial includes how to invoke and exit VEDIT, and perform the most
common editing operations. It also covers some of the file handling,



VEDIT PAGE 8
Introduction

including splitting and merging files and what to do if you
accidentally run out of disk space. The +tutorial section 1is task
oriented. Given an editing operation you wish +to perform, this
section describes which function keys or commands to use to perform
the operation. The tutorial should give you enough expertise to use
VEDIT very productively.

VEDIT's primary editing mode "Visual Mode" should always be
learned first. The Visual (full screen) Mode is easy enough to use
that it can be learned by experimenting with the various edit
functions, as 1long as no important files are accidentally altered.
The new VEDIT user will have no need for the more complicated "Command
Mode", except to exit the editor.

Once you have had some practice with the Visual Mode of VEDIT,
you will then want to try out the Command Mode. The Command Mode is
definitely not as easy to use as the Visual Mode and more references
to this manual will be necessary. However, most basic editing can be
done entirely in the Visual Mode, and the Command Mode can be learned
gradually as the need arises. Also, the tutorial introduces the most
used commands of this mode.

While you will typically spend 99% of your time in the Visual
Mode and only 1% in the Command Mode, this manual deals extensively
with the Command Mode. This is appropriate, because the Visual Mode
is exceptionally easy to learn and use. A little experimentation is
the Dbest teacher. The Command Mode, because of its  powerful
capabilities, is more complex, and more difficult to learn. This
manual, therefore, describes this mode in detail with many examples.
The large Command Mode section of the manual is intended for the
serious command mode user.

The most complex aspect of the Command Mode are the "macros"
which can perform repetitive and automated editing operations. Macros
are in effect text oriented "programs", which can be developed and
saved on disk for later re-use. One type of useful macro is the
auto=startup file which can be used to setup programmable function
keys on a CRT terminal.

MUCH OF THE COMMAND MODE IS INTENDED AS A "TEXT ORIENTED
PROGRAMMING LANGUAGE". YOU SHOULD NOT FEEL COMPELLED TO UNDERSTAND

ANY PART OF THIS MODE, NOT DESCRIBED IN THE TUTORIALS, UNTIL YOU ARE
QUITE FAMILIAR WITH VEDIT.

We hope that you will enjoy using VEDIT and its many features.



VEDIT PAGE 9
Introduction

Sample "First" Edit Session

This sample edit session assumes that you have customized VEDIT
for your computer system or received a ready to run version. It also
assumes that VEDIT is in the file VEDIT.COM (or VEDIT.CMD for CP/M-86)
on Drive A: of your computer.

In this edit session you will create a short file with the name
of "SAMPLE.TXT", which you can subsequently type out from the
operating system.

To create this sample file invoke VEDIT with the command:
A>VEDIT SAMPLE.TXT

After a short pause in which VEDIT is loaded from disk, it will
briefly display the message:

NEW FILE

This indicates that a new file is being created and not an existing
one being edited. VEDIT will then clear the screen and position the
"cursor" in the upper left hand corner of the screen. A row of
dashes, called the "Status Line" will appear at the bottom of the
screen, The status line will display the line and column number for
the cursor and the file name, in this case "LINE: 1 - COL: 1" and
"SAMPLE.TXT". Having the status 1line on the bottom screen line
indicates that you are in the "Visual Mode" of VEDIT, in which you can
perform full screen editing.

You can now begin to +type some text which will appear on the
screen and will eventually be made into a file. Type in the following
text by typing the RETURN key at the end of each line.

Bach simply awed the professional musicians

who met or just observed him. Their descriptions
indicate that Bach, at the head of an orchestra,
was a conductor very much like the great
conductors of today.

Altering your text

While typing in the text you can make corrections by using the
BACKSPACE key which will move the cursor left and delete the character
there. The most important aspect of VEDIT is, of course, that you can
easily edit text after it has been typed in. The first step in
editing is to position the cursor at the text which needs changing.
Although VEDIT has many cursor movement keys, you can get by for now
using just the four basic movements UP, DOWN, RIGHT and LEFT. Check
your keyboard layout sheet to see what control codes or keys are wused



VEDIT Page 10
Introduction

for these four cursor movements. They may already be assigned to the
cursor keys on your keyboard, or may be CIRL-E, CTRL-C, CTRL-F and
CTRL=-S respectively. As you use these keys you will notice that you
can only position the cursor at real characters in the text and at the
ends of lines. You cannot position it on the screen where there is no
text.

With the cursor positioned correctly, you are ready to make your
changes. The three basic types of changes are over-writing existing
text, deleting text and inserting text. To over=-write any text,
simply position the cursor at the first character to be over-written
and type in the new text. This is +the easiest way to correct
mis-typed letters. """ indicates the cursor in the following example:

Bach simply wade the professional musicians

" After typing the word "awed" the new line will appear as:

Bach simply awed the professional musicians

Often you need to insert new text into the middle of a line. For
this you use the "Insert Mode" of VEDIT. Look over your keyboard
layout and find the key which performs the function [SWITCH INSERT
MODE] or [SET INSERT MODE]. Press the key (or control sequence) and
the message "INSERT" should appear on the status line. In Insert
Mode, text typed in the middle of a line will not over=-type any
existing text but will shift the text right in order to make room for
the new text. Consider the following line:

Bach simply awed the professional musicians

After typing the word " all" in Insert Mode, the line will appear as:

Bach simply awed all the professional musicians

Deletions are also an important part of editing. VEDIT's two
most used deletion functions are [BACKSPACE] and [DELETE]. (Check how
your keyboard layout has assigned these functions, [BACKSPACE] is not
the BACKSPACE key on Televideo terminals.) [BACKSPACE] deletes the
character to the left of the cursor, i.e. the character you may have
just typed in. [DELETE] deletes the character at the cursor
position. The line always closes up after any type of deletion.
Consider the following line:

Bach simply aweded the professional musicians

After typing the [DELETE] function twice, the line will be:



VEDIT Page 11
Introduction

Bach simply awed the professional musicians

Although VEDIT can automatically reformat paragraphs, it is good
practice to try it manually. Position the cursor in the first line as
follows:

Bach simply awed the professional musicians

Type the RETURN key and the line will be split into two lines:
Bach simply awed the

professional musicians

Now position the cursor at the end of the first line and type the
[DELETE] function. This will append the second line to the end of the
first, giving you your original line back.

Continue making edit changes until the text is modified to your
satisfaction.

Saving your text

At this point you are ready to save your text on disk and return
to the operating system. For this you must exit Visual Mode and enter
the "Command Mode". This is done by the [VISUAL ESCAPE] function
which usually corresponds to typing the ESC key twice. Try it. The
screen should scroll up (or it may clear) and the cursor will be on
the bottom line following the Command Mode "COMMAND:" prompt. At the
end of each command line you should type the RETURN key.

One common command is to go back into Visual Mode. The command
is: (Remember the RETURN key)

\

This will put you back into Visual Mode with the status line on the
bottom 1line, The cursor will be positioned at the same place in the
text, although not necessarily on the screen, as it was when you
exited Visual Mode before. Go back to Command Mode. If necessary,
repeat switching between Command and Visual Mode until you can clearly
identify which mode you are in.

If you have a printer connected to your computer you may want to
print the text you have just created. This can be done from either
the Visual Mode or the Command Mode. To print the entire text from
Command Mode give the command:

B #EO



VEDIT Page 12
Introduction

Before giving +the command, make sure that your printer is properly
connected and "ON LINE",

Finally, while in Command Mode you can give the command to save
your text on disk and leave VEDIT. The command is: '

EX

You should now be back in the operating system with its "A>" prompt.
You can check that your file is on disk with the directory command
"DIR", and can type it out with the "TYPE" command, i.e.:

TYPE SAMPLE.TXT

You should see whatever you last saw on the screen in the Visual Mode
of VEDIT.

This has introduced you to only a small part of VEDIT's
capabilities. However you have experimented with the basics which
make up 90% of any editing task, and have tried one of the ways of
invoking VEDIT and saving the text on disk. The next section gives an
overview of more of VEDIT's capabilities, and the following tutorial
gives a hands~on introduction to almost all of +the Visual Mode and
more of the Command Mode. Good luck.

Notes: A garbled screen display or status line indicates that the CRT
terminal is not being supported correctly. Check that you have
selected the correct entry in the customization CRT menu.  Also
be sure that you have selected the correct number of screen
lines (use 24 lines for all Televideo terminals) .

If after invoking VEDIT you end up in the Command Mode (a
"COMMAND:" prompt and no status line), this indicates that you
either did not specify a file name after "ADVEDIT", or
customized VEDIT to begin in Command Mode (See customization
Task 4.3). All of our ready to run versions will start in
Visual Mode when a file name is specified.



VEDIT Page 13
Introduction

Overall Description

Introduction

VEDIT is a full screen, or "visual" editor which currently runs
under the CP/M, CP/M-86 and MSDOS operating systems and their
derivatives, including MP/M, MP/M-86, Concurrent, CDOS and CROMIX. It
allows any text file to be created or edited in a visual manner on
systems with most types of CRT displays. It has two operating modes:
Visual Mode and Command Mode. The typical user will spend 99% of the
time in the Visual Mode, the primary editing mode. Here, the screen
continuously displays the region of the file being edited, a status
line and cursor. Changes are made by first moving the cursor to the
text to be changed. You can then overtype, insert any amount of new
text and use function keys to perform all changes, which are
immediately shown on the screen and become the changes to the file.
Several word processing functions such as word wrap and formatting of
paragraphs are provided. Ten text registers (scratchpad buffers)
allow sections of text to be copied and moved for extensive "cut and
paste" type operations. Any portion of the text may be sent to the
line printer.

The main purpose of the Command Mode is for performing repetitive
editing tasks, explicit file handling and accessing the additional
text register operations. The Command Mode allows the execution of
common line and character oriented editing commands, including
searching, altering, inserting and much more. Single commands and
groups of commands may be repeated any desired number of times. A
powerful aspect of the Command Mode are command macros, in which
simple or very complex command strings are saved in text registers and
then selectively executed. Since command macros may be saved and
loaded from disk, they can be created and +then reused at a later
time. The file handling commands allow explicit disk read/write
operations, and files to be opened and closed. Another file may be
viewed with line numbers and a specified line range of that file can
be inserted at any place in the text being edited. Finally, the "EX"
command is given to exit VEDIT, saving the edited file on disk.

Basic Editing Concepts

The purpose of editing is to create or modify a file on disk so
that it may be saved for future use and processed by another progranm,
such as a print formatter, a compiler, or simply be printed out. When
a file is first created, the initial text of the file is entered with
the editor, corrections are made, and the text is then saved on disk.
When a file is edited, the existing copy of the file is read from the
disk into the computer's "main memory", the changes are made with the
use of the editor, and the modified text is then saved as a new file
on disk. For word processing applications, the text can be printed
out before it is saved on disk.



VEDIT Page 14
Introduction

Each file on disk has a name, and when a file is created with the
editor, the user assigns the file its name. It is helpful to choose
names which are meaningful and easy to remember. The name LETTER1 is
thus better than JV%8=-G5F. The CP/M and MSDOS operating systems have
file names which consist of two parts, the "filename" and the
"filetype" or "extension". A ".," separates the two parts and the
filename may be up to 8 characters long and the extension up to 3
characters long. When a  file is to be edited, its name must be
specified in order for it to be read from disk. The modified file may
be written to disk with a new file name or with the original name.
The normal way of invoking and exiting VEDIT will cause it to write it
with its original name. One question in this case is: "What happens
to the original text file?" VEDIT leaves the original file on disk
too, but since you cannot have two files on disk with the same name,
the name of the original file is changed to have an extension of
" BAK", This is referred to as the "backup" of the file. Any
previous backup of the file on disk will be deleted by this process.

When a file is read from disk, its contents are stored in the
"main memory" of the computer. The portion of main memory used for
saving the file is referred to as the "text buffer". All changes made
to the file are made in the text Dbuffer. When the editing is
complete, the file is saved again on disk. This process of reading a
file from disk (or creating a new file), making changes to the file
and saving it on disk, is referred to as an "edit session'.
Therefore, two files are being processed while editing. The file
being read is called the "input" file and the file being written is
called the "output" file. Specifying to the editor which file is to
be used for input or output is referred to as "opening" the file. The
way VEDIT is normally invoked, i.e. "VEDIT FILE.TXT", the specified
file is opened for input, and another file is opened for output which
will have the same name as the original input file when the edit
session is over. At that time the original input file will still
exist, but will have been renamed to a backup file, i.e. "FILE.BAK".

In some cases the file to be edited is too large for all of it to
be stored in the text buffer at one time. VEDIT handles such a file
by reading the first part of the file into the text buffer, in which
you can make any desired changes. After this first part is edited,
VEDIT will write the first lines of the text buffer to the output file
and read in more unedited lines from the input file. This is repeated
until the entire file is edited. If desired, VEDIT can also read
edited text back from the output file for further editing. VEDIT can
perform this read/ write process automatically and almost invisibly to
the user. In particular, when the user reaches the end of the text
buffer in Visual Mode, the beginning of the text buffer is written out
to disk (to the output file) and more of the file being edited (the
input file) is read or "appended" to the end of the text buffer. This
process, when done automatically, is referred to as "auto~buffering".



VEDIT Page 15
Introduction

Visual Mode

In Visual Mode, the screen continuously displays the current
contents of the file in the region you are editing and a cursor. The
bottom line of the screen is used for status information, including
the name of the file being edited and the cursor's line number and
column position. The changes made to the screen display by typing in
new text or using edit functions become the changes to the file. The
characters typed while in Visual Mode fall into two categories:
Displayable characters and Control sequences. The displayable
characters are displayed on the screen at the cursor position and
cause the cursor to move to the right. The user customized keyboard
layout determines which edit function each control sequence perfornms.
Control sequences are control characters, function keys or escape
sequences.

The edit functions fall into two subcategories = cursor movement
and visual functions. The cursor movement operations cause no change
to the file, but rather move the cursor forward and backward by a
character, a word, a 1line, a paragraph or a screen at a time.
Additional cursor movements allow movement to the next tab position,
the beginning or end of the text buffer, and to previously set "text
markers". Up to ten positions in the text may be marked, so that the
cursor can be directly moved to any of these ten positions.

VEDIT has two modes for inserting new text: "Insert" mode and
"Normal"” mode. In normal mode, the new text will overwrite the
existing text. In insert mode, the existing text is not overwritten,
but rather is squeezed to the right as the new text is typed. New
lines are started by simply typing the RETURN key. Typing the RETURN
key in the middle of a line splits it into two lines. '

Text can be deleted on a character, word, line or block basis.
The character to the left or at the cursor position can be deleted,
and the word to the left or right of the cursor can be deleted. An
entire 1line, or only the portion to the right of the cursor can be
deleted.

A useful feature is the ability to move or copy a section of text
to any other position in the file. ("Copy" implies that the original
text is not deleted, while "Move" implies that the original text is
deleted.) This is done by first copying, moving or appending the text
to one of the ten text registers (scratch pad buffers), and then
inserting the text register at any place or places in the file, (1t
may also be inserted in another file). Blocks of text are deleted by
moving the block to a text register and emptying the text register, or
Just "forgetting" about it. Any portion of the text can easily be
printed on the line printer and special prlnter control characters can
be imbedded in the text.

For word processing uses, the Visual Mode can perform word wrap
and formatting of paragraphs between adjustable right and 1left



VEDIT Page 16
Introduction

margins. When word wrap is on, VEDIT will move an entire word which
didn't fit within the right margin to a new 1line, while you are
typing. Formatting a paragraph also wraps words, but operates on
existing paragraphs and the currently set left and right margins. You
can therefore change the margins and re-fit the paragraphs within the
new margins,

Search and Replace operations can be performed in Visual Mode.
The next or "nth" occurrence of a "string" can be searched. Extensive
pattern matching is provided. The Replace operation prompts the user
whether each occurrence of the original text is to be replaced with
the new text. Replacement can also be made without prompting.

Several options are available for dealing with the Tab
character. Normally when the "Tab" key on the keyboard is typed, a
tab character is placed into the text. A tab character is displayed
as spaces to the next tab position. They may be set as desired; and
are normally at every 8th position. Optionally, typing the "Tab" key
can have VEDIT insert spaces to the next tab position into the text.

VEDIT has several unique built in aids for program development.
One is automatic indentation for use with structured languages such as
Pascal, PL/TI and C. When "Indenting" is set, the editor will
automatically insert tabs and spaces to the current indent position
following each RETURN. The indent position can be moved right and
left by an adjustable indent increment. Many assembly language
programmers prefer their program code to be in upper case letters with
comments in upper and lower case. VEDIT can accept all text in lower
case and automatically convert the labels, opcodes and operands to
upper case while leaving the comments in lower case. It does this by
searching on the line being entered or edited for a special character
such as ";". To the left of the ";" lower case letters are converted,
to the right of the ";" they are not converted. This is referred to
as "Conditional Lower to Upper Case Conversion".

The Visual Mode can handle lines which are up to 260 characters
(256 plus CR LF and two spare) long. The screen can be scrolled
horizontally (or sideways) for editing files with long lines, such as
spreadsheets. The screen can be scrolled sideways up to a maximum
margin of 255. This "horizontal scroll margin" is changeable.

Text lines longer than the horizontal scroll margin are "wrapped"
to the next screen line and are called "continuation lines". VEDIT
indicates continuation lines by placing the "=" character, often in
reverse video, in the reserved first column of the screen. The screen
will automatically scroll sideways or create continuation lines as you
enter text.

Note: If you are just beginning to use VEDIT, you may wish to skip to
the "Visual Mode Task Tutorial" at this point.



VEDIT Page 17
Introduction

Command Mode

Command Syntax:

In Command Mode, the user enters command lines which consist of
single commands, concatenated commands or iteration macros. Each
command 1line, whether it consists of one command or multiple commands
ends with a RETURN or <ESC> <ESC>. Commands which specify a "text
string" may require an <ESC> following the text string.

Each command consists of a single letter or two letters if the
first letter is "E", "R", "X", "Y" (Extended, Register, Numeric and
Misc commands). Some commands may be preceded by a number, called the
"iteration count", to signify that the command is to be repeated. If
no number is given, a "1" is used as the default. Wherever a number
is allowed, you can also use the "#" character to represent the
maximum positive number 32767. Other commands take the preceding
number as a numeric argument, Several commands are followed by
additional arguments such as text strings, files names or text
register numbers.

Multiple commands may be typed one after another on a command
line. They are always executed left to right. Their effect is the
same as if each command had been typed on its own command line.

It is also possible to repeatedly execute a group of commands.
This is done by enclosing the desired group of commands within
brackets "[" and "]". Such a group of commands is called an
"Iteration macro". The initial "[" is preceded by a number, called
the "iteration number", which specifies how often the group of
commands will be repeated.

(Note: The characters for enclosing iteration macros are printed
as "[" and "]" in this manual. Some users may be more familiar with
angle brackets "<" and ">" and can choose either set during
customization.)

It is often desirable to use a sequence of commands, particularly
iteration macros, over and over again. This can be done by storing
the sequence of command in one of the ten text registers and then
executing the commands in the text register. Any sequence of commands
executed in a text register is called a "Command macro". Command
macros may be stored on disk and loaded back into a text register for
later re=use. Command macros may be thought of as "programs". This
command macro capability in fact makes VEDIT a very powerful text
oriented programming language.



VEDIT Page 18
Introduction

Command Operation:

Many of +the commands make a change to the text buffer at the
position determined by the "edit pointer". The edit pointer is very
much like the cursor in Visual Mode, it is just not as readily seen.
Commands exist to move the edit pointer a character at a time, a line
at a time or to the beginning or the end of the text buffer. The
number of lines or characters the edit pointer moves is determined by
the iteration number for the command. Negative iteration numbers mean
backward movement, towards the beginning of the text buffer. One
command types out a given number of lines before or after the edit
pointer to display the contents of the file and "show" the user where
the edit pointer is.

The commands which alter the text all operate from the position
of the edit pointer. One deletes characters, one deletes lines, one
inserts new text and another searches for a string of characters and
changes them to another. Other commands only perform searching
without alteration. Ten commands are available for dealing with the
text registers. Three commands are used to change the various
switches, parameters and tab positions which VEDIT uses in both
Command and Visual Modes. One command puts the editor into Visual
Mode. The last two groups of commands deal with the reading and
writing of files and with the opening and closing of input and output
files. :

The commands fall into ten overlapping categories:

Edit pointer movement - B, L, C, 12

Display and Print text - T, EO

Alter text - b, I, K, S, EI, YI

Search / Replace - F, N, S

Text Register - G, M, P, RD, RI, RL, RP, RS, RT, RU, R¥
Disk Buffering - A, N, W, EA, EQ, EX, EY, EZ

File Handling - EB, EC, ED, EF, EG, EK, EL, ER, EW

Switch and Tab Set - EP, ES, ET ,

Numeric Registers - XA, XS, XT

Misc - YI, YL, YR, ¥YS, YT, YW, U, V

The "V" command enters the Visual Mode, and the "U" command
prints three memory usage numbers.



VEDIT Page 19
Introduction

Which Mode to Use for What

The Visual Mode is designed to satisfy the majority of all
editing needs. The bulk of editing consists of inserting new text,
correcting typos, and making revisions, which includes moving blocks
of text around. These are all readily handled in Visual Mode and are
best done in that mode. There is probably a three to one time savings
in inserting new text and correcting the typos in Visual Mode over
Command Mode. There is probably a ten to one time savings  in making
the revisions in Visual Mode, compared to Command Mode, even assuming
you are very practiced with the commands!

Common search and replace operations are also best done in Visual
Mode. Searching is used to directly access a particular word or
string in the file. Replace operations are more flexible in Visual
Mode since the replacement may be selectively done, where the user is
prompted whether each occurrence of the "0ld" string should be replace
with the "new string."

Any edit operation which can be performed in Visual Mode can also
be performed in Command Mode. However, straight forward
modifications, insertions and deletions are much easier done in the
Visual Mode. Unless they are part of iteration macros or command
macros, the equivalent of the "L", "C", "T", "D", ™"I", W"R" gpgd ngw
commands are best done in Visual Mode.

Command Mode is most wuseful for performing repetitive edit
changes using macros and for extensive file handling. Command Mode is
also used to change the various VEDIT switches, parameters and tab
positions. Text register operations such as loading and saving them
on disk can only be performed in the Command Mode. The edit pointer
in Command Mode and the cursor in Visual Mode both serve a similar
purpose. When entering Visual Mode, the cursor takes on the position
in the text buffer of the edit pointer in Command Mode. When exiting
Visual Mode to Command Mode, the edit pointer takes on +the 1last
position of the cursor. ' : '

Command Mode is also used when the editing process involves more
than just making changes to a single file. The file handling commands
allow several files to be merged into one file or a file to be split
into several smaller ones, Portions of one file can be copied to a
text register and the text register subsequently can be inserted into
another file, Another file may also be viewed with assigned line
numbers. A specified line range of that file may then be directly
inserted into any place in the file being edited. Many other
possibilities exist and some examples are given in +the "Detailed
Command Description” of this manual.



VEDIT Page 20
Introduction

Word Processing with VEDIT

VEDIT can be used for two types of word processing. One is stand
alone word processing in which the text is composed entirely with
VEDIT and then printed out exactly as it appears on the screen.
Alternately, the supplied print formatter macro PRINT.EXC can be used
to automatically handle page headings, page splits and page numbers.
Other than these page breaks, the text has to be formatted exactly the
way it is to be printed out. This includes the centering of lines,
and other details which VEDIT does not perform automatically.  VEDIT
can, however, format paragraphs between left and right margins.
Therefore, if a paragraph is currently ragged, with very different
line lengths, VEDIT can format +the paragraph between any left and
right margins. If after formatting, you decide, for example, that you
now want the paragraph indented on both sides, VEDIT can also do this
for you automatically. The optional mail merge macro VMAIL can be
used for creating and printing form letters.

The second type of word processing uses a "Print Formatter" such
as CompuView's V=PRINT, which takes care of the details of page
layout, such as page headings, centering of lines, justification and
more. In this case VEDIT is used to create a file which contains the
text and short command lines to the Print Formatter, which does the
final printing. VEDIT's facility for word wrap still makes it easier
to enter the text, but the formatting of paragraphs becomes mostly
cosmetic since the Print Formatter generally formats its own
paragraphs. VPRINT takes commands which begin with a period "." in
the first column of a line. When formatting paragraphs, VEDIT
recognizes such commands lines and leaves them alone,

VPRINT not only handles the details of page layout, but also has
facilities for automatic index and table of contents generation,
underlining, multiple font support for popular printers and much
more. Combining VEDIT with VPRINT will give you more word processing
capabilities than found on nearly any stand alone word processors. As
text documents become longer, most stand alone word processors become
increasingly inefficient, because they can only edit a very small
portion of the text at one time. Some even have an upper limit to the
size of text they can handle. With longer documents, such as
manuscripts, using VEDIT with VPRINT will get the job done faster and
with less effort. CompuView's V=-SPELL spelling checker/corrector lets
you quickly correct the spelling in any document. It displays the
error words in context and gives suggested spellings. Since it also
corrects the document, there is no need to go back to VEDIT following
the use of V=SPELL.



VEDIT ‘ : PAGE 21

VISUAL AND COMMAND MODE TASK TUTORIAL



VEDIT Page 22
Tutorial

Vedit Tutorial

This section is a tutorial on the basic editing capabilities of
VEDIT. It is task oriented and gives the commands necessary to
perform simple editing operations such as inserting text, and more
complex tasks such as moving text and concatenating files. As a
"Hands=-On" tutorial, it is meant to be followed while actually running
VEDIT. Later, as a reference, it explains how to combine commands in
order to perform a desired task.

Not every possibly conceivable text editing situation or sequence
of commands is included here. However, we have tried to include a
comprehensive 1list of editing tasks --- some elementary, others with
many steps. Tasks are presented so that you should rarely have to
look forward in this section. to learn something necessary for the
completion of the current task. For example, moving the cursor is the
first task discussed; it is used in almost every following task.

The 1labeled boxes in this section represent visual edit
functions, such as [CURSOR UP] and [INDENT]. The actual keys you type
to perform +the functions are chosen in the VEDIT customization
procedure. If you are using one of our example keyboard layouts,
refer to the layout sheet. Most layouts use both control characters
and escape sequences. Control characters such as <CTRL-Q> are typed
by holding down. the CONTROL key while +typing the "Q". Escape
sequences such as ESC-R are typed by first pressing the "ESC" key and
then the "R",

The "ESC" key is also used in some command mode commands to mark
the end of text "strings". It is represented in all examples in this
manual as an "$", which is also what VEDIT displays on the screen when
an ESC is typed in command mode.



VEDIT , Page 23
Tutorial

Invoking VEDIT

To use VEDIT it has to be invoked from CP/M or MSDOS with the
proper command. The next page describes all the ways of invoking
VEDIT, but the most common is just to type "VEDIT" followed by the
name of the file to be edited or created. For example: (The "A>" is
the prompt given by PCDOS or CP/M).

A>DVEDIT LETTER.TXT

VEDIT will then read in the file "LETTER.TXT", or if you are
creating the file, briefly display the message "NEW FILE". It will
then normally go into the "Visual Mode" which displays the beginning
of the file on the screen. The bottom line will contain the "Status
Line" which consists mostly of dashes "=", and optionally the line and
column numbers., Unless you have a short 40 column screen, the file
name "LETTER.TXT" will also appear on the status line. Also visible
will be the "Cursor" which indicates at what position on the screen
you are editing. It will initially be in the upper left hand corner.
At this point you are ready to begin editing.

For the purposes of this tutorial it will be best if you begin by
editing a file which already exists, instead of creating a new one.
If you don't have any such files available, you can copy one of the
files with a file name -extension of ".DOC" from your VEDIT
distribution disk to your work disk. Don't be concerned about making
accidental changes to the file, because you can easily quit the edit
session in such a way that no files are actually changed. (We assume,
" of course, that you have made a copy of your distribution disk.)



VEDIT Page 24
Tutorial

INVOKING VEDIT

VEDIT FILENAME.EXT You will land in Visual Mode
(status line will appear at
the top or bottom of screen)

OR

Command Mode ("COMMAND" prompt),
depending on the parameter set
by command ES. See "Command Mode
Detailed Command Description".

VEDIT , Begin in Command Mode. Choose
a file to edit with an
"EB filename" or perform any
other Command Mode command.

VEDIT INFILE.EXT OUTFILE.EXT "INFILE.EXT" will be read in and
not altered, while "OUTFILE.EXT"
will be created. If "QUTIFILE.EXT"
already exists, it will be
renamed to "OUTFILE.BAK".

- This form is equivalent to invoking
VEDIT without any filenames (second
form) and then issuing the command:

ER infile.ext$ EW outfile.ext

Use this form if the edited file is
more than half a disk long. In this
case, INFILE.EXT is the file to be
edited and OUTFILE.EXT is specified
to be on another disk drive with

a nearly blank disk.



VEDIT - Page 25
Tutorial

Keyboard Characters

In Visual Mode, you edit the file by performing two basic types
of operations: entering new text, or performing edit functions by
typing control sequences., All the letters, numbers and other normal
characters on your keyboard can be directly entered as new text. Go
ahead and try typing a few words in right now. Notice that as each
character is +typed, it appears at the cursor position and the cursor
then moves to the right. If there already were characters on the
line, you have just overwritten them. We will soon see that it is
just as easy to insert characters without overwriting. The control
sequences are used to perform the various editing functions. The
keyboard layout that you have customized determines which editing
function each control sequence performs., Control sequences can be
control characters, such as <CTRL-S>, escape sequences such as ESC-P,
or a function key on your keyboard. Function keys generally send a
control character or an escape sequence when you type them.

Editing Functions

The editing functions in the visual mode break down into two
categories. One type are the "Cursor movement" functions which only
move the cursor around on the screen and scroll the screen to display
different parts of the file, but do not change the file in any way.
Look at the keyboard layout you are using and try typing the control
codes for some of the cursor movement functions such as [UP] [DOWN]
[RIGHT] and [LEFT]. The following pages describe all of the cursor
movements, and you are advised to briefly try them all out. Don't be
concerned about remembering them all now. Some are more important
than others, and you will get along quite well knowing only [UP],
[powN], [RIGHT], [LEFT], [ZIP], [PAGE UP] and [PAGE DOWN].



VEDIT
Tutorial

Operation

Move cursor right

Move cursor left

Move cursor up

Move cursor down

First character of
current line

Move cursor to next
tab position

Last character of
current line

First and last character
of current line

First character of
next line

CURSOR MOVEMENT

Command Sequence

CURSOR
RIGHT

CURSOR
LEFT

CURSOR
UP

CURSOR
DOWN

BACK
TAB

TAB
CURSOR

1P

LINE
TOGGLE .

NEXT
LINE

Page 26



VEDIT
Tutorial

Operation

First character of
the previous word

First character of
the next word

Beginning of current
paragraph

Beginning of next
paragraph

Top and bottom
screen lines

Move cursor up
by scrolling

Move cursor down
by scrolling

Move cursor right
by scrolling
horizontally

Move cursor left
by scrolling
horizontally

Command Sequence

PREV
WORD

NEXT
WORD

PREV
PARA

NEXT
PARA

SCREEN
TOGGLE

SCROLL
up

SCROLL
DOWN

SCROLL
RIGHT

SCROLL
LEFT

Page 27



VEDIT Page 28
Tutorial

PAGE MOVEMENT

Purpose: To rapidly access other regions of the file not currently
displayed on the screen.

Operation Command Sequence
Previous Page of PAGE
text UP
Next Page of text PAGE

DOWN
FPirst Page of text HOME

(First character)

Last Page of text - ZEND
(Last character)

Set invisible text 1.) SET
marker at cursor TEXT
position MARKER

2.) Type digit "0 = 9" to specify which
marker to set. Or set marker "O" by
typing [SET TEXT MARKER] or RETURN.

Move cursor to 1.) GOTO
- previously set TEXT
text marker MARKER

2.) Type digit "0 = 9" to specify which
marker to goto. Or goto marker "O" by
typing [SET TEXT MARKER] or RETURN.



VEDIT Page 29
Tutorial

Entering New Text

The three edit functions relating to the "Insert Mode" give you
two choices for switching between the "Insert" and "Normal modes".
You started in Normal mode, and the displayable characters you typed
over-wrote any existing characters. When you switch to Insert mode
you will see the word "INSERT" on the status line and any character at
the cursor position will be squeezed to the right when you type in new
characters, Try it to see the difference between the two modes.

You may Dbe wondering about how to insert entire lines into the
text. To start a new line you simply type the RETURN key. If the
cursor is at the end of a line, this opens up a blank line on the
screen on which you can enter text. If you enter a lot of new lines,
one after another, the screen will automatically scroll to keep up
with you. If the cursor is in the middle of a line when you type
RETURN, the 1line is split into two lines, with the character at the
cursor position and all following characters moving to the new line.-
With the [DELETE] function, explained in a few pages, you can also
concatenate lines together.



VEDIT Page 30
Tutorial

ENTERING NEW TEXT

Qperation Command Segquence
Entering text into the NONE - Move cursor wherever
text buffer =-- beginning you like and begin typing.
an empty file or continue- What you see is what you get.

ing at the end of a file.

Overtyping (typing over 1.) Position cursor over first
existing text) character to be overtyped.

2.) Retype.

Inserting new characters 1.) INSERT Watch for "Insert"
in between existing prompt on status
characters ' — line

2.) Type new text

3.) | INSERT "Insert" prompt
disappears
(or leave INSERT on.)




VEDIT Page 31
Tutorial

Visual Functions

The second category of editing functions are called +the "Visual
Functions" which perform such operations as deleting characters or
lines, indenting on the left side and moving sections of text to other
parts of the file. The following pages describe each of these
functions.

Deleting Text

VEDIT has functions to delete +the character at the cursor
position, the previous character, the previous word and the next
word., Two functions will delete partial or entire lines. These are
described on the next page. Go ahead and try out the [DELETE],
[ BACKSPACE], [EREOL], and [ERLINE] functions. Notice that the [UNDO]
function will bring back the original text on the 1line unless you
erased the entire line with the [ERLINE].

You can delete an entire line with the [ERLINE] function. You
can also concatenate two lines by moving the cursor to the end of the
first line and +typing [DELETE]. Go ahead and +try all of this,
especially splitting lines with a RETURN and concatenating lines with
a [DELETE]. : ,

Paragraphs or blocks of text are deleted by moving them to a text
register and then emptying the text register.



VEDIT Page 32
Tutorial

DELETING TEXT

Operation Command Sequence
Delete character at left BACK
of cursor; shift SPACE

following characters left

Delete character at DELETE
cursor; shift following
characters left

Erase from cursor to EREOL
end of line

Erase entire line cursor ERLINE
is on and close up text

Delete word to left DEL

of cursor PREVIOUS
WORD
Delete word to right DEL
of cursor NEXT
WORD
Delete paragraphs and 1. ) Position cursor over first .
blocks of text . character in the paragraph to be
deleted.

2.) | MOVE TO
TEXT
REGISTER




VEDIT Page 33
Tutorial

3.) Position cursor past last
character in paragraph to be deleted.

4.,) | MOVE TO
TEXT
REGISTER

5.) Type digit "0 - 9" to specify which
text register to use. Or use reg.
"O" by typing [MOVE ...] or RETURN.

6.) | MOVE TO
TEXT
REGISTER

7.) | MOVE TO
TEXT
REGISTER

8.) Type same digit "0 = 9", or [MOVE ...]
or RETURN- to empty the text register.

CORRECTING MISTAKES MADE TO A LINE

This command returns the
line the cursor is on to UNDO
its appearance before the
cursor was most recently
moved to that line.

This does not mean that,
by putting the cursor on a
previous line you changed,
[UNDO] will give you the
original line,



VEDIT

Page 34

Tutorial
REPEATING OPERATIONS

Purpose: It is often .necessary to repeat an edit operation such as
inserting the same character, deleting many lines, or moving
the cursor many "pages" forwards or backwards. By using the
[REPEAT] function key, you can perform these repeated
operations without having to type the same key over and over
again. Pressing the [REPEAT] key once gives a repeat value
of "4" (see status line). Pressing it again multiplies the

- value to ™6", then to "64" and finally "256". Any other

value may be selected by typing a number between 00 and
256. Once the repeat value is correct, simply type the
desired key or control sequence which is to be repeated.

Operation Command Sequence

Delete four lines REPEAT ERASE

of text LINE

Page forward by REPEAT REPEAT PAGE

16 pages DOWN

Delete 30 REPEAT 3 DELETE

characters

Insert 20 REPEAT 2 RETURN

blank lines

Insert 40 "*" REPEAT 4 *

characters

Re=format the REPEAT 1 FORMAT

next 10 paragraphs PARAGRAPH

Note: If you want to cancel the [REPEAT] operation type in 000 and
character, or press [CANCEL].

any



VEDIT : Page 35
Tutorial :

Indenting Text

If you don't want your text to begin in the first column, you c¢an
let VEDIT automatically indent your text with the [INDENT| and
[UNDENT] functions. The section "Visual Mode = Indent and Undent"
explains these functions, but it is easier to understand them through
experimentatioh. Type a RETURN to start a new blank line, then type
the control sequence for [INDENT]. Notice that the cursor has moved
right by 4 spaces to columm 5 (unless. you have changed this
parameter). Type a few words and another RETURN. This time the
cursor will begin immediately in column 5. You have set the "Indent
Position" to column 5, and it will stay there until you increase it
with another [INDENT] or move it back with [UNDENT]. To achieve the
indentation, VEDIT inserts the most Tabs and fewest spaces to the
indent position. You can confirm this by moving the cursor over these
leading Tabs and spaces, and if you like, you can also delete them or
insert characters before this "Left margin'". VEDIT only creates this
indentation when you type RETURN, when "Word Wrap" is being used and
when paragraphs are formatted.



VEDIT
Tutorial

INDENTING TEXT BLOCKS

Ogeration

Increase the amount of
Indentation. (Move left
margin to the right)

Decrease the amount of
Indentation. (Move left
margin to the left)

To change Indent/Undent
increment:

1.) Enter command mode

2.) 1Issue command, where
n= # of columns indented
each time, EX: EP 3 4
will indent to 5th column,
. 9th column, etc.

3.) Enter visual mode again

Command Sequence

INDENT

UNDENT

VISUAL
EXIT

EP 3 n$$

Page 36



VEDIT
Tutorial

Page 37

WORD WRAP AND FORMATTING PARAGRAPHS

Note: Before the Word Wrap or +the Format Paragraph function will
work, the right margin must be set in command mode (unless it

The left margin is set with the
A right margin of 00 turns Word

was set during customization).
INDENT and UNDENT functions.

Wrap off and disables the Format Paragraph function.

1.) Set right margin and
invoke word wrap at
column n. This allows
n columns to be used.
Word wrap begins at
column n + 1.

2.) Move left margin to
the right.

3.) Move left margin to
the left.

4.) Set addition indent
for the begin of a
paragraph with spaces.

Use a tab., See ET
comnand to change tab
positions.

EP 7 n

INDENT

UNDENT

SPACE
BAR

== OR ==

TAB
CHAR

If "n" = 00 word
wrap is disabled.

5.) Type in the paragraph. Words will be wrapped as needed.

6.) Reformat a paragraph
to current left and
right margins.

FORMAT
PARAGRAPH




VEDIT Page 38
Tutorial

Moving and Copying Blocks of Text

A useful facility in VEDIT is the ability to move blocks of text
to other regions in the file, to duplicate blocks of text and to
delete blocks of text. These are done through the use of the "Text
Registers" and the functions [COPY TO TEXT REGISTER], [MOVE TO TEXT
REGISTER] and [INSERT TEXT REGISTER]. The text registers are simply
regions in memory in which VEDIT can store text which is independent
of the main text you are editing. A block of text is any amount of
text from one character to an entire file. You can COPY a block of
text to a text register, in which case your main text is unaltered, or
you can MOVE a block of text to a text register, in which case it is
also deleted from your main text. Alternately, these copy and move
operations can append the block of text to any existing text in the
register. At any time you can insert a text register into your main
text, which does not alter the text register.

The following page describes the steps to copy a block of text
from one area of the file to another. Note that at step (3.), the
cursor must be positioned just AFTER the block of text. If you wish
to include the end of a line, this would be the first column of the
following line. You could of course position the cursor at the end of
the 1line, but in this case the carriage return which ends the line
would not be included in the text move.

If you wanted to move the text, you would use the same procedure,
except use the [MOVE TO TEXT REGISTER] function instead of [COPY TO
TEXT REGISTER]. In this case the text will also be deleted from your
main text and from the screen.

If you type [COPY TO TEXT REGISTER] or [MOVE TO TEXT REGISTER]
twice at the same location, +the specified text register will be
emptied. If all registers are empty, the "TEXT" message will
disappear from the status line. You can therefore delete a block of
text by moving it to a text register and then emptying the text
register.

Since there are ten text registers, the status line will prompt
you for a digit "0 = 9" to specify which text register to use. If you
only need to use one register, you can simply answer the prompt by
typing the function key again or a RETURN to specify register "O".

In practice it doesn't matter whether you type [COPY TO TEXT
REGISTER], [MOVE TO TEXT REGISTER] or even [PRINT] at step 2. Only
after you have marked one end, and the message "1 END" is on the
status line, must you be sure to type the correct key. If you do type
the incorrect key and get the status 1line prompt, you have two
options. You can type the DEL key on your keyboard (if you have one =
not necessarily the same as the [DELETE] function), the prompt will
clear and you get another chance to type the correct key. Otherwise
type [CANCEL] to cancel the entire function.



VEDIT Page 39
Tutorial

MOVING TEXT WITHIN THE FILE

1.) Position cursor over first
character in block to be
moved.,

2.) | MOVE TO Message "1 END" on status line
TEXT
REGISTER

3.) Position cursor past last
character in block to be

moved.

4.) |MOVE TO Message "REGISTER [+] 0-9" on

TEXT status line
REGISTER

5.) Type a digit "0 - 9" to Type optional "+" before digit
specify which register if new text is to be appended
to put text into, or to any existing text in regis-—
[MOVE ...] or RETURN to ter, instead of overwriting it.

use register "O".

6.) Position cursor at position
to insert the text.

7.) | INSERT Message "REGISTER [+] 0-9"
TEXT appears '
REGISTER

8.) Type the digit of the
register you wish to
insert in the text.

See NOTES on next page.



VEDIT Page 40
Tutorial

NOTES:

1.)

2.)

3.)

4.)

5.)

If you get a "FULL" message at step 4, there is insufficient
memory for the Text Register to contain the entire text block.
Nothing was inserted into the Text Register. See task "Making
More Memory Space'.

Following the text insert in step 6, the cursor is positioned at
either the beginning or end of the inserted text depending upon ES
command switch 4.

In step 3, in order to include the CR-LF of the line, position the
cursor at the beginning of the next line.

Alternately you may reverse steps 1) and 3), i.e. either end of
the block may be set first.

[CANCEL] will cancel the operation any time "1 END" appears or you
have a status line prompt.

EMPTYING A TEXT REGISTER

Purpose: It is best to empty a text register when its contents are no
longer needed. This frees up more memory space too.

1.)

2.)

3.)

MOVE TO

TEXT

REGISTER
MOVE TO Type command key twice with
TEXT cursor at same position to
REGISTER enpty the register.

Type a digit "0 = 9" to
specify which register

to empty out. Or type

[MOVE ...] or RETURN to
empty register "O".



VEDIT

Tutorial

1.) Be certain your printer is on, and
the "on line" or "select" function
on the printer is enabled.

(See your printer manual).

2.) Position cursor at beginning
of text block.

3.)

4.) Position cursor at end of

5.)

PRINT
TEXT

text block.

PRINT
TEXT

6.) <CTRL=C>

1.)

2.) Type a control character
which will be entered into
the text at the cursor
position.

Page 41

SENDING TEXT TO THE PRINTER

Will get "1 End" message on.
status line. :

Printer should start now.

To stop the printing.

ENTERING CONTROL CHARACTERS INTO THE TEXT

NEXT
CHAR
LITERAL

This will enteir the next
character into the text, even
a control character. You
probably want to be in INSERT
mode before this command.



VEDIT
Tutorial

1.)

2.)

3.)

4.)

the search options.

Page 42

SEARCHING

The search or replace operation always moves fcrward from the
current cursor position.

FIND

Type up to 30 characters that -
you are searching for. Pattern
matching codes are allowed.
End with a RETURN. Use
{CTRL=N> to search for RETURN.

FIND

CANCEL

Status line will clear and
give FIND? prompt.

Screen will rewrite with cursor
past the found text. Will give
error if text not found - You
must then type any key to
continue.

Type [FIND] to search for the
next occurrence. To find "nth"
occurrence use [REPEAT] n [FIND]

Allows another string to be
searched. Automatically
cancels -if string not found.

If you enter an immediate RETURN in Step 2, you can select from

OPTIONS (Begin / Global / Reuse)?

The prompt changes to:

Select one or more options by typing the corresponding letters "B",

"G", and "R", followed by a RETURN.

Begin Allows the search to

buffer. If the
Global Allows the search to operate
Reuse

start at the beginning of the text
"Begin" is preceded by the "Global" option,

the search starts at the beginning of the file.

to the

end of +the file, if

necessary, instead of just the end of the text buffer,

Allows the previous searched characters to be reused.
following a "CANNOT FIND" message to restart the

Useful
search from

the beginning of the file with the "Begin" option.

Following the

options and a RETURN, the prompt will change back

to "FIND?", unless the "Reuse" options was selected, in which case the
previously entered characters will be searched for again.



VEDIT
Tutorial

1.)

2.)

3.)

4.)

5.)

6.)

Page 43

REPLACING

REPLACE

Type up to 30 characters that
you are searching for. Pattern
matching codes are allowed.
End with a RETURN. Use
<CTRL~N> to search for RETURN.

Type up to 30 characters
which is the replacement
string. End with a RETURN.

Type "Y" to make the replace-
ment, "N" not to make it, "R"
to replace this and all
following occurrences, "C" to
cancel the operation.

REPLACE

CANCEL

Status line will clear and
give FIND? prompt.

Screen will rewrite with cursor
past the found text. Will give
error if text not found = You
must then type any key to
continue.

Status line will now prompt
"REPLACE WITH? "

Screen will rewrite as in step 2.)

Screen now prompts:
REPLACE (Y./ N / REST / CANCEL)

Type [REPLACE] to search for
and prompt for the next
replacement. To prompt for
"nnn" replacements use:
[REPEAT] nnn [REPLACE]

in step 1. .

Allows another string to be
replaced. Automatically
cancels if string not found.



VEDIT Page 44
Tutorial

ENTERING COMMAND MODE

Besides the "Visual Mode" in which all editing is done on the
screen at the cursor position, VEDIT has a command mode, where all
editing is done by typing in command lines which end in RETURN or
KESC> <ESC>. The command mode is definitely not as easy to use as the
visual mode, but fortunately you don't need to know very much of it in
order to use VEDIT very successfully. One thing you do have to know
is how to enter command mode in order to end the edit session. This
is done by typing the control code for [VISUAL EXIT] or [VISUAL
ESCAPE]. Go ahead and try it. The screen will scroll up one line and
the command mode prompt "COMMAND:" will appear below the status line.
The command to go back to visual mode is "V" (remember the RETURN).
Notice that the cursor is at the same position in the text (but not
necessarily on the screen) as it was when you exited visual mode.

SWITCHING FROM VISUAL MODE TO COMMAND MODE

Exit visual mode into VISUAL
command mode, "Edit EXIT -
Pointer" takes on last
position of cursor.

Same as above, but also VISUAL
aborts any command, ESCAPE
such as an iteration or

a macro.

SWITCHING FROM COMMAND MODE TO VISUAL MODE

Command to enter visual 1)
mode. Text registers are
preserved. Cursor takes on

lagt position of command

mode "Edit pointer".



VEDIT
Tutorial

Purpose:

Page 45

SAVE ALREADY EDITED TEXT AND CONTINUE

You should make it a habit to regularly save your text on
disk during a long edit session. This way you will lose less
work in case of a power or hardware failure, or if someone
accidentally +turns off the computer. Saving the text every
hour and whenever you leave the computer is suggested.

1.) | VISUAL If in visual mode,
EXIT enter command mode.
2.) EA Write file to disk; same file

Purpose:

will be used to continue edit
session.

BEGIN EDITING NEW FILE

It is not necessary to exit VEDIT and invoke VEDIT again
from the operating system in order to edit another file.
Since the contents of the text registers are not 1lost when
you begin editing another file from within VEDIT, it is very
easy to copy or move portions of one file to another.

1.) | VISUAL If in visual mode,
EXIT enter command mode.,
2.) EY Save current file on disk and

empty the text buffer.

3.) EB newfile.ext Begin editing the file

4.) V

'"nmewfile.ext", which may be an
existing file, or a file to be
created. Note: a space before
the filename is allowed.,

Enter visual mode for full
screen editing of the file.



VEDIT Page 46
Tutorial

MAKING MORE MEMORY SPACE

Purpose: When using the text registers extensively, you may run out
of memory space for performing the desired operations. This
is usually indicated by a *BREAK¥ in command mode, or a
"FULL" in visual mode. First +try and empty any text
registers which are no longer needed. If this does not give
you enough memory space, you can write out the first part of
the text if it is already edited.

1.) Position cursor past end
of text which does not
need changing (it's been
corrected already).

2). | VISUAL Enter command mode.
EXIT

3). OW Write this text out to disk.
More room is now available.

4.) V Enter visual mode for full
screen editing of the file.

DISK DIRECTORY DISPLAY

Purpose: The disk directory on any drive can be displayed. This is
useful when editing, merging or splitting multiple files.
In the event that you run out of disk space, you - can then
also see if any files can be deleted.

Operation Command Segquence
Display directory on ED

default drive.

Display directory on ED B:

drive B:

Display directory of all ED A:¥%,ASM

files wiih extension
", ASM" on drive A:.



VEDIT Page 47
Tutorial

INSERT A LINE RANGE OF FILE 1 INTO FILE 2

Purpose: It is often desirable to insert a portion of another file,
such as a paragraph or a subroutine, into the text being
edited. VEDIT 1lets you extract a specified line range of
another file and insert it into your text. The "EL" command
to used to look at another file with line numbers, and the
"EG" command is then used to insert the desired line range.

Note: "filel" can include a drive specifier and CP/M user number.

1.) EL file1[m,n] The line range 'm' through 'n' of
'filel' is typed on the screen. If
'"[m,n]' is not specified, the entire
file is typed out. Specifying a
line range lets you zero in on the
correct lines without displaying
the entire file. Use <CTRL-S>
to stop/start the screen display.
Note the desired line range.

2.,) EG file1[m,n] Lines 'm' through 'n' of 'file1!
will be inserted into the text
at the edit (cursor) position.
To copy an entire file, leave off
the '[m,n]'. Note: the comma in
'[m,n]' can be replaced by a space,
i.e. '[m n]'.

If you get a *BREAK* message there was insufficient memory space
to insert the entire text, and as much as possible was inserted. To
make more space for other files, text, etc., try emptying some of the
text registers or writing the first part of the text out to disk, as
described earlier.



VEDIT Page 48
Tutorial ‘

CONCATENATING TWO FILES

Purpose: It is sometimes desirable to append one file to the end of
another. This is readily done with VEDIT. In this example
the text in file "file2" is appended to the end of the text
in "file1" and the combined +text is written to the file
"fjile3". The three files can be on different disks.

Note: This assumes that the entire file 'file1' fits into memory.

1.) VEDIT Invoke VEDIT without a filename.
VEDIT will come up in command mode.

2.) ER file1$0A Setup the first input file for
reading, and read it in. This
assumes that the entire 'filet!
fits into memory.

3.) (optional) Only needs to be done if the disk
with 'file2' is not in one of the
EC drives. After the EC, make sure

that the disk with 'file2' and the
disk to hold 'file3' are in the
drives.

4.) EW file3 Setup the output file which will
hold the combined text.

5.) ER file2$0A Read the second input file. All of
it does not need to fit into
memory .

6.) EX This writes out the complete file

'file3' and exits VEDIT.

Note: In the example above, "$" is the <ESC> key, and "OA" is the
digit zero followed by "A".



VEDIT
Tutorial

Page 49

SPLITTING A FILE INTO TWO OR MORE FILES

Purpose: VEDIT allows you to split a large file into several smaller

ones. This example assumes that the splits are simple =— the
front, middle and end sections of a large file are copied to
their own files. More complex splitting can be done with the
text registers. In +this example 'file1' is split into
'file2', 'file3' and file4'.

1.) VEDIT

2.) ER file1$0A

3.) EW file2

4.) V

5.) OW EF
0A
EW file3

6.) V

7.) (optional)
OW EF

0A
EW file4

8.) EX

Invoke VEDIT without a filename.,
VEDIT will come up in command mode.

Setup the large input file for
reading, and read it in. The entire
'file1' need not fit into memory.

Setup first output file.

In visual mode, position the cursor
on the first character of the
second part of the large file.
Return to command mode.

Write the first part of 'filel' to
'file2' and close it. OA will read
read in more of 'file1! if neces=-
sary. Setup the second output file.

See step 4. Not needed if only
splitting into two parts.

Not needed if splitting into two
parts. Write the 2nd part of
'file1!' to 'file3' and close it.
OA will read in more of 'file1' if
necessary. Setup the third output
file. (Repeat as necessary.)

Write the rest of 'filel' to the
last output file and exitVVEDIT.

Note: In the example above, "$" is the <ESC> key, "OW" and "OA" are
the digit zero followed by "W" or "A".



VEDIT Page 50
Tutorial
RECOVERY FROM FULL DISK ERRORS
Purpose: If you attempt to write more text to disk than the disk can
hold, you will get a "NO DISK SPACE" error and a return +to
command mode. OQccasionally you may get a "NO DIR SPACE"
error which means the disk has insufficient directory space
to hold the rest of the file. You can recover from both of
these errors by deleting old files on the disk, or by
writing the rest of the file to another disk.
1.) EX You attempt to finish the edit
session, but you get the disk full
NO DISK SPACE error.
*BREAK*
2.) ED Issue the directory command to
see what files can be deleted.
3.) EK oldfile Delete one or more old files on the
disk. DON'T DELETE ANY ".$$$"
OR ".$R$ FILES.
4.) EX Continue finishing the edit session.
~= OR ==
2.) EF Save whatever was already written
to disk. We will call this Part 1.
3.) EW a:part2 Setup to write the rest of the text
to the file 'part2' on another disk
drive, in this case drive "A:".
4.) EX Write the rest of the text out to

'aspart2', and exit VEDIT.

You will now have to concatenate the two parts on the two disks back
into one file. See "Concatenating Two Files" discussed previously.

Note: See the section "Disk Write Error Recovery" if you do not have
enough space on any drive to save all of +the file. The
procedure becomes more complicated, but you can still save all
of your changes and additions to the file.



VEDIT Page 51
Tutorial

Ending the Edit Session

To end the edit session and exit VEDIT, you must be in the
command mode and issue one of the commands "EX" or "EQ". There 1is a
world of difference between these two commands. "EX" is the normal
command to end an edit session, and the text you were editing will be
saved on disk. The "EQ" command, on the other hand, quits the edit
session and DOES NOT save the text on disk.

The "EQ" command has several uses. One is to actually abort the
edit session, because you didn't really want to modify the file at all
or you made a big mistake in editing. Another use is for just viewing
files - instead of using the CP/M (MSDOS) TYPE command, you can VEDIT
the file. When you are finished examining the file, give the "EQ"
command. Finally, if you save your file with the "EY" command or
close your file with the "EF" command, you must use "EQ" +to exit
VEDIT,

Since this is just a practice session with VEDIT, the text you
are currently editing is probably all butchered up and you don't want
it saved on disk. Therefore the "EQ" command is the appropriate way
to exit VEDIT now. Of course, if you would like to save your current
text, you  should exit with the normal "EX" command. If you give the
"EQ" command, VEDIT will ask for verification before it actually
aborts the edit session.

EXIT VEDIT TO CP/M:

1.) Exit Visual mode to VISUAL
Command mode. EXIT
2.) Exit Command mode to EX Text is written out to
Operating System. disk and saved.
== OR ==
EQ Abort = This does not save
the text on disk.
EZ Abort - like EQ, but stay
in VEDIT.
—= OR ==

EY Like EX, but stay in VEDIT.



VEDIT Page 52
This page reserved for your notes.



VEDIT PAGE 53

MEMORY AND FILE M ANAGEMENT



VEDIT Page 54
Memory and File Management

Memory and File Management

This section covers the somewhat more technical topics of memory
and file management by VEDIT. This includes a more detailed
description of the text registers and an explanation of the automatic
disk buffering used to handle large files. One additional file
management feature that VEDIT provides is automatic disk searching for
special files, the Auto-Startup file and the Help file. For most
applications, it is not essential that you have a detailed knowledge
of how VEDIT manages memory and large files. You may read this
section simply to learn more about VEDIT, or in case you do require
specific information.

The Text Registers

The ten text registers have two primary purposes. One is to hold
sections of text which are to be moved or copied to other positions in
the file being edited. The second is to hold command sequences which
may be executed in Command Mode as macros. In either case, the
registers are holding text; only the manner in which the text is used
is different.

Generally, the text registers are all empty when VEDIT is first
invoked. The registers are loaded by copying, moving or appending a
portion of the main text to the register. This may be done in either
Command or Visual Mode. Alternately, a register may be loaded
directly from a disk file. The contents of a register may be viewed
by +typing it to the console; and it may be saved in a disk file. The
text registers are not changed by any disk read/write operations.
They can therefore be used to extract sections of text from one file
and insert them anywhere in another file. Since inserting a text
register does not destroy or change the register, it may be inserted
repeatedly at different locations in the file.

When holding regular text, the registers act as scratch pad
buffers in that they hold a temporary copy of text which is
independent of the main text buffer. They serve the purpose of
copying or moving sections or "blocks" of text from one area of the
file to another, commonly referred to as "cut and paste" operations.
Three operations are possible. One is to simply copy a section of the
main text buffer to the register. The second is to move a section of
text to the register, in which the section of text is also deleted
from the main text buffer. For both the move and copy operations, the
section of text can optionally be appended to any text which is
already in the register. Third, the register contents can be inserted
anywhere within the main text. The register may be inserted at the
cursor position in Visual Mode or at the edit pointer in Command
Mode.

Placing commands into the registers and executing these commands
as "macros" is a very powerful facility. It is a useful method of
saving long command sequences which must be executed repeatedly during



VEDIT Page 55
Memory and File Management

an edit session. If they are to be reused in the days ahead, they can
even be saved on disk., Very sophisticated editing operations are also
made possible. For example, say that you have a manuscript on disk as
20 different files and you find that you have consistently misspelled
40 words. This could be a very time consuming editing operation, but
it can be greatly simplified with two command macros. One macro will
contain the global search and replace for each of the 40 words. The
second macro will contain the commands to edit each of the 20 files,
and for each file execute the search/replace macro. Once the two
macros are created, you execute the second macro and can take a coffee
break while the 800 (20 ‘times 40) operations are automatically
performed. (ALWAYS make a backup copy of the files before performing
complex macros. It is very easy for a small syntax error, or a power
or hardware failure to destroy the files being automatically edited).

Since a text register can hold an entire file, it is possible to
simultaneously edit the main file and up to three or four small
files. Each small files is held in a text register, and a
corresponding register is used to hold the command to "flip" between
the main text and the small file. While the main file may be up to
one disk in length, the small files must all fit into memory
simultaneously.

Automatic Disk Buffering

Auto Disk Buffering refers to any disk file reading or writing
which VEDIT performs automatically, without the user having given
explicit read or write commands. (See also "Basic Editing Concepts".)
The simplest auto disk buffering (called "Auto-Read") involves reading
the input file into the text buffer when the editor is invoked in the
normal way, and writing the output file when the editor is exited.
VEDIT can also perform more sophisticated disk buffering when editing
very large files, This can be done in either the forward direction,
"Forward Disk Buffering", or in the backward direction, "Backward Disk
Buffering", The following headings describe these two types of
automatic disk buffering.

If the text buffer fills up in Visual Mode while +the user is
typing in more text, VEDIT will attempt to write out 1K byte sections
from the beginning of the text buffer to the output file. This 1is
referred to as "Auto-Write". If the 1K section of text cannot be
written out, either because auto buffering is disabled, or because the
cursor is positioned within it, VEDIT will display the message "FULL"
on the status line. Text cannot be inserted until manual or automatic
disk buffering is performed.

While it is most convenient to normally have auto=buffering
enabled, there are times when an experienced user will want to disable
it. This can be done from Command Mode with the "ES" command. If
manual buffering is being done, automatic buffering could be an
interference.



VEDIT Page 56
Memory and File Management

Forward Disk Buffering

When VEDIT edits a file it reads text from the Input file into
the Text Buffer, where it is edited, and writes the edited text to the
Output file. For a small text file, the operation is quite simple,
The entire Input file is initially read into the text buffer for
editing. When editing is complete, the text buffer is written to the
Qutput file. In order to edit files which are too large to fit into
memory all at one time (i.e. files which are larger than 40 Kbytes in
a 64K system), the procedure becomes more complicated. Only a portion
of the Input file is initially read into the text buffer for editing.
In order to edit the rest of the file, some of the text buffer must be
written to the Output file, and then more of the Input file read in
for editing. This must be repeated until the entire file has been
edited.

Conceptually, it might help to consider the displayed screen a
"window" into the text buffer. This "window" may be readily moved
anywhere within the text buffer with the [PAGE UP], [PAGE DOWN] and
other cursor movement functions. Furthermore, the text buffer may be
considered a "window" into the file, Moving this text buffer window
toward the end of the file is referred to as "forward disk buffering",
and moving it back toward the beginning of the file as "backward disk
buffering".

Automatic forward disk buffering simplifies editing of large
files. Forward disk buffering is performed in Visual Mode whenever
the user reaches the end of the text buffer (by [PAGE DOWN], [ZEND],
etc.), but the input file has not been completely read. It is almost
invisible to the user, except for disk access time., VEDIT will +then
attempt +to read more of the Input file and if necessary write text to
the Output file., The minimum amount to be read from the Input file,
"Minimum Transfer Kbytes", 1is determined during customization. If
this much free memory is available, the Input file is read until the
memory is "nearly" full. "Nearly" is defined as leaving the number of
bytes free that you specified during customization. If this much free
memory is not available, "Minimum Transfer Kbytes" will be written
from the beginning of the text buffer to the Output file, before more
of the Input file is read. See also Appendix A, "Memory Size
Dependent Parameters",

Forward disk buffering is only done automatically in Visual Mode
if it was enabled during customization or with the "ES" command (the
command is "ES 2 1"). It should normally be enabled. The disk
buffering may also be controlled manually in the Command Mode with the
"A" and "W" commands. Knowledge of these commands is not necessary
for most applications, since the automatic disk buffering accommodates
most needs,

Auto-buffering is only performed in Command Mode for the global
operations: _S, _F, _B, _Z, _L, and N, since it might otherwise
interfere with special editing applications.



VEDIT Page 57
Memory and File Management

Backward Disk Buffering

VEDIT's backward disk buffering augments the forward disk
buffering to further simplify the editing of large files. It can also
be performed automatically in Visual Mode in such a way as to be
almost invisible to the user (except for disk access time). However,
for best results, it must be used with some care, because you are more
likely to run out of disk space . Although VEDIT always lets you
recover from running out of disk space, it is more complicated if you
are using backward disk buffering.

Occasionally, you may want to edit some text which has already
passed through the text buffer and has been written to the Output
file. Without backward disk buffering, you would have to restart the
edit session from the beginning (with the "EA" command). The backward
disk buffering, however, lets VEDIT read text from the Output file
back into the beginning of the text buffer for further editing.
However, before reading text back from the Output file, VEDIT needs to
make space free in the text buffer. VEDIT does this by writing text
from the end of the text buffer out to a temporary disk file. (The
file has a name extension of ".$R$".)

Backward disk buffering uses additional disk space to hold the
temporary file. As the Output file is written, disk space is also
used up. Reading from the Input file does not make free up any disk
space, nor does reading back from the Output file. Without backward
disk buffering, the maximum file size which may be edited is therefore
1/2 a disk, unless the Input and Output files are on different drives,
in which case the maximum file size is a full disk. With backward
disk buffering, the maximum file size is reduced to 1/3 a disk if
everything is on the same drive, or else 1/2 a disk if the Output file
is on another drive. The temporary file is always on the default
drive. (With a 3 drive system you could safely edit a file one disk
in length, by making the default, the Input and Output drives all
different.)  These file size limitations arise because in the worst
case, VEDIT will need to create a temporary file which is nearly as
large as the Output file, which is generally as large as the Input
file. :

If you use backward disk buffering and run out of disk space, you
"can still recover without loosing any edited text. The procedure is
described in +the Command Mode section under "Disk Write Error
Recovery'". To be on the safe side, unless you have a hard disk, we
recommend that you customize VEDIT with backward disk buffering turned
OFF and forward disk buffering turned ON. If while editing you decide
you would like backward disk buffering, and are confident you have the
disk space, you can turn it on the command:

ES 2 2
To calculate if you have enough disk space for backward disk

buffering, use the MSDOS "DIR" command or the CP/M "STAT" command on
the disk. If the amount of free space is twice the size of the file



VEDIT Page 58
Memory and File Management

you wish to edit, you are usually safe (unless the Output file will be
significantly larger than the Input file). You can include any " .BAK"
version of the file to be edited in the amount of free space
available, If +the amount of free space is not at least equal to the
size of the file being edited, you will encounter a disk full error
even without backward disk buffering. It is always best be to sure
that there is enough free disk space before editing a file.

If you are at least two-thirds through a large file and wish to
begin editing from the beginning again, it will generally be faster to
restart the edit session (with the "EY" and "EB"commands), rather than
using backward disk buffering.

Before you decide that backward disk buffering is never
worthwhile, let us say that it is very useful with large capacity disk
systems such as 8" double density or Hard disks where there is usually
plenty of free disk space. If you are using a hard disk (such as on
an IBM XT) it is suggested that you customize VEDIT with Backward disk
buffering turned ON.

Automatic Startup

VEDIT will automatically execute a startup file on disk as a
command macro. This can be used to setup various VEDIT parameters and
to program the function keys on a CRT terminal. When invoked, VEDIT
will attempt to read the file "VEDIT.INI" into text register 0, and
then execute this register.

The file VEDIT.INI may contain EP, ES and ET commands to setup
the various parameters, switches and tab positions. It may also
contain an EB command which allows a particular file to be edited
without it being specified when VEDIT is invoked. This may be handy
if the same file is edited many times. The startup file may also
contain the commands +to load other text registers with text or
commands from other disk files.

Some CRT terminals have programmable function keys which are
initialized by sending (usually obscure) character strings to the
terminal. The VEDIT startup file can perform this automatically. It
is Dbest done by loading +the character strings into a second text
register, typing out the register, and finally emptying the register.
The CRT version of VEDIT comes with several example files for doing
this.

To accommodate personal preferences and hardware configurations,
it is possible to select on which drives VEDIT searches for the
VEDIT.INI and the VHELP.TXT help files. The selections are made
during customization. VEDIT can search on the default drive and on
any specified drive for these files. On CP/M systems, VEDIT will
search the default drive on the current user number and will search
any specified drive on user 0. The auto-startup feature can also be
turned off. See Appendix A for details.



VEDIT Page 59
Memory and File Management

Global File Operations

When editing very large files, the entire file will not all fit
into the text buffer at one time. Since most commands and edit
functions only operate on the text which is actually in the text
buffer, editing a very large file becomes a little different from
editing a smaller file. If VEDIT automatically allowed all commands
to operate on the entire file, the entire editing process would slow
down objectionably. Therefore, VEDIT allows you to specify an option
on those commands which you may want to apply to the entire file.
This option is referred to as the "global" option. When you specify
the global option, VEDIT will automatically perform the disk buffering
to treat a large file just in the same way as a small file (except for
a little extra time). This option is available in Visual Mode for the
[FIND] and [REPLACE] edit functions. The global option is selected in
Command Mode by preceding the command with an "_" (underscore) . The
" F" and " _S" allow Command Mode search and replace operation to be
performed on a entire, arbitrarily large, file. The command "_B"
allows direct access of the beginning of a file, and "_Z" direct
access of the end of the file. The command " _L" allows you step
through a file in Command Mode, with VEDIT performing the disk
buffering when necessary.

Multi=-Tasking Operating Systems

Some operation systems, such as Digital Research's MP/M and
Concurrent, and Microsoft's XENIX, allow several programs to be run
simultaneously on one computer system by one or more users. These
operating systems must deal with the situation where one program
attempts to access a file, which is already in use by another
program, In effect, the second program is denied access to the file,
or "locked out". This process is called "file locking". For example,
two users cannot simultaneously run VEDIT on the same file.

VEDIT detects when it is running wunder these multi-tasking
operating systems and then works in conjunction with their file
locking. Typically if you try to access a file with VEDIT which is
already in use by another program, the operating system will first
issue you an error message. Then VEDIT will issue an additional error
message (see Appendix C) and note that the file was not successfully
accessed. You also cannot perform an "EC" (change disk) command on a
disk which is in use by other programs. VEDIT will ensure that files
which it is working on, or will soon need to access, are locked from
use by other programs., VEDIT will also release files as soon as it is
done with them so that they may then be used by other progranms. (1t
closes all input files as soon as the end of the file is reached.)



VEDIT Page 60
This page reserved for your notes.



VEDIT PAGE 61

VISUAL MODE



VEDIT Page 62
Visual Mode

Visual Mode

Screen Display

In Visual Mode the screen continuously displays a region of the
file being edited and a cursor. The cursor indicates +the exact
location at which any edit changes, such as typing in new text, will
be made. The bottom screen line, called the "Status 1line" displays
information to help you in your editing. The rest of the screen
displays text lines of the file being edited.

Text lines longer than the screen are handled in two ways. If
horizontal scrolling is selected, 1long lines extend past the right
edge of the screen and may be accessed by scrolling sideways. If
horizontal scrolling is turned off, or if the line extends past the
scrolling limit, it will be displayed on additional screen 1lines.
These additional screen lines are called "continuation lines" and are
indicated by placing a special ‘“"continuation character", in the
leftmost column of the screen. The continuation character is selected
during customization. A "=" is the default. The leftmost column of
the screen is reserved for continuation characters. Due to technical
reasons, the rightmost column of many screens is not used at all.

On CRT terminals the cursor is produced by the terminal and VEDIT
can not change its appearance. However, on some systems (memory
mapped), such as the IBM PC, VEDIT produces its own cursor and its
appearance is user determined. You can choose an underline character,
a solid block or a blinking block. Even the blink rate is
determined. This is strictly a matter of personal preference. The
options are more fully described under Customization in Appendix A.

VEDIT's interruptable screen updating allows the screen to be
updated in the fastest way possible when you are performing rapid
screen changes., You do not have to wait for the screen to finish
updating before you continue editing. Operations such as [PAGE DOWN]
require the entire screen to be updated. If you press another [PAGE
DOWN] while the screen is being updated, VEDIT will interrupt the
unwanted update and restart +to display +the most current screen.
VEDIT, therefore, does not necessarily update the screen in the order
in which you perform edit changes. It will skip the intermediate
screen displays and go directly to the current screen display.

Status Line

The Visual Mode status line indicates what 1line number in the
file +the cursor is on, the cursor's column position, and what file is
currently being edited. It also can contain words indicating
conditions you should be aware of. The status line is also used to
prompt you for a parameter, such as a search string or a text register
number. (Some CRT displays allow the words and prompts to appear in
reverse video.)



VEDIT Page 63
Visual Mode

LINE AND COLUMN NUMBERS: The cursor's column position is the
horizontal position on the current text line. The line number in the
file is a count of the current number of preceding lines in the file,
including any which have already been written out to disk. The line
number for a particular line will therefore decrease if some of the
preceding lines are deleted, and will increase if lines are inserted
into the preceding text. These numbers are not updated immediately
following every cursor movement, but only after you pause typing for
about 1/2 of a second.

If desired, the display of either or both of these numbers may be
turned off. This may be specified during customization or from
Command Mode with the "EP" command.

FILE NAME : The name of the output file you are currently editing will
be displayed in the middle of the status line. This is the name that
the file will have when you save it on disk.

INSERT MESSAGE : When you are in INSERT mode a message appears on the
status line to remind you of this condition,

1 END MESSAGE : Certain VEDIT functions require that you mark off the
start and finish of a text block. When the first end is marked the
message "1 END" will appear. Actually, it does not matter which
function is used to set the first end, the function used to mark the
second end will determine what is done with the block.

TEXT MESSAGE : When any text register contains text the message "TEXT"
will appear (it will be overwritten by the "1 END" message).

FULL MESSAGE : If VEDIT runs out of memory space in Visual Mode, the
message "FULL" will appear on the status line.

DISK MESSAGE : When VEDIT performs any automatic disk buffering in
Visual Mode, it put the message "PLEASE WAIT FOR DISK" on the status
line. This is also a reminder that your computer may not accept
keyboard input during disk operations.

HORIZONTAL SCROLL OFFSET : When horizontal scrolling is being used and
the left side of the screen does not display column 1 of +the lines,
the column number corresponding to the left side of the screen is
display on the status line.

REPEAT COUNT : The currently selected repeat count when using the
[REPEAT] function is displayed on the status line,

FUNCTION PROMPTS: Some VEDIT edit functions prompt you for a
parameter, such a register or text marker number, or the search or
replace string to be used. When prompted for a text register number,
you may simply type the last function key again or [RETURN] to specify
register "0". This is convenient if you only need one register for
your text movement operations - you won't have to remember which
register you saved the text in.



VEDIT Page 64
Visual Mode

Keyboard Characters

Characters typed while in Visual Mode take effect immediately
when typed. You can perform two basic kinds of operations: entering
new text, or performing edit functions by typing control sequences.
Newly entered text simply appears on the screen at the cursor position
and is either inserted before, or overwrites the existing text.

Control sequences consist of either ASCIT control characters,
characters with the high order bit (Bit 8) set, or escape sequences.
The customization process determines which edit function the control
sequences perform. Unused control sequences can either be ignored in
Visual Mode or inserted into the text. It is also possible to insert
any control character into the text. The edit functions either move
the cursor or perform a visual function.

Entering New Text

When a normal text character is typed, it appears on the screen
at the current cursor position and the cursor then moves right. VEDIT
has two modes for inserting new text, NORMAL and INSERT mode. When a
text character is +typed in NORMAL mode it appears at the cursor
position and any character which was there is simply overwritten. In
INSERT mode, no character is ever overwritten, but rather is squeezed
to the right when a new character is typed at its position. In either
mode, a new screen line, called a continuation line, is begun if the
the text 1line becomes longer than the screen line. Visual functions
exist to enter Insert Mode, revert to Normal Mode, or +to switch
between the modes. The mode which the editor starts in is set during
customization and is a matter of personal preference.

Two convenient exceptions to the operation of Normal and Insert
Mode pertain to the ends of lines and the RETURN key. Text typed at
the end of a line is always inserted before the (invisible) <CR> <LF>
pair, which ends each text line. Also, typing the RETURN key does not
overwrite any character, but rather moves the rest of the line
beginning with the character at the cursor position to a new text
line.

The keyboard characters RETURN and TAB are normal text
characters, but have special properties. The RETURN key causes a
carriage return <CR> and line feed <LF> pair to be inserted into the
text and a new line to be displayed on the screen. If it is ‘typed
while the cursor is pointing within a +text 1line, that line is
effectively split into two lines.

The [TAB CHARACTER] key causes insertion 'of a tab character, or
optionally, spaces to the next tab position. The tab character itself
is displayed with spaces on the screen to the next tab position, even
though the spaces do not exist in the text buffer.

Any control characters in the text, other than <CR>, <LF> and



VEDIT Page 65
Visual Mode

<TAB> are displayed in the common CP/M and MSDOS format by preceding
the letter with a "Caret" ("), The edit function "[NEXT CHAR
LITERAL]" allows any control character except <CTRL-Z> (which is not
allowed by CP/M or MSDOS) to be inserted into the text. Alternately,
the Command Mode "EI" command can be used to insert control and
special characters which cannot be produced by the keyboard.

Performing Edit Functions

The edit functions fall into two categories: Cursor Movements and
Visual Functions. The cursor movement keys only move the cursor to
some other position in the text and do not actually change the text.
The cursor may be moved forward and backward by a character, a word, a
line, a paragraph or a screen at a time. The screen may be scrolled
up, down, right and 1left. Up to ten positions in the text may be
"remembered" with invisible markers which allow the cursor to be
directly moved back to these positions. These and other movements are
individually described later in this section.

Some of the visual functions perform delete operations, while
others change the Insert mode, change the left margin, manipulate the
text registers, and print text. Provided that the cursor has not been
moved from the current line, the line can usually be restored to its
original form (before any deletions or insertions were made) by using
the [UNDO] function.

The particular control or function keys which perform the edit
operations are assigned during customization. All versions of VEDIT
have a default keyboard layout as described in the appendices. You
can also create your own keyboard layout. When you are instructed,
for example, to "press the [PAGE UP] .key", you will need to refer to
the appropriate keyboard layout sheet to see which control or function
key on your computer is assigned to [PAGE UP].

The Repeat Function

Often it is desirable to repeat a typed character such as "*¥" or
"~" "when preparing tables, or +to repeat an edit function such as
[PAGE DOWN] in order to move quickly through the file., These can be
performed with the [REPEAT] function.

When the [REPEAT] key is pressed, a "4" will appear in the left
side of the status line. This is the repeat value. Pressing [REPEAT]
again will increase the value to 16, and pressing it again a value of
64, and pressing it once more will give the maximum value of 256. If
you want any other repeat value, you can simply type it in, i.e.
"70". Allowable values are between 00 and 256. Once the repeat value
is correct, simply type the displayable character or the edit function
which 1is to be repeated. For example, to create the top of a box
consisting of 50 "*¥", type [REPEAT], "50" and "¥", Or to delete 16
lines type [REPEAT], [REPEAT], [ERASE LINE].



VEDIT Page 66
Visual Mode

With VEDIT's interruptable screen updating, only the final screen
will be shown when using the [REPEAT] key. Since some operations such
as deleting a line may take a second to perform on a very large file,
you may notice some delay when using the "Repeat" function. (I£ you
are deleting many lines, it may be quicker to use the "K" command in
Command Mode.) While the repeated function is being executed, the
cursor will remain on the status line. If for some reason you want to
abort the repeated function, press [CANCEL].

Horizontal Scrolling

VEDIT has the ability to scroll the screen sideways for editing
documents with long lines, such as spreadsheets. Two edit <functions
are provided for scrolling the screen right and left: [ SCROLL RIGHT]
and [SCROLL LEFT]. The screen may be scrolled right up to a right
margin called the "horizontal scroll margin" (which is independent of
the word wrap margin). This scroll margin is user determined with a
maximum value of 255. Lines 1longer than the scroll margin are
continued on the following screen line.

The screen will also scroll automatically as you enter text or
move the cursor, To reduce the amount of unwanted side to side
scrolling, several functions such as [ZIP] and do not force the screen
to scroll.

By setting a scroll margin of 78 when the screen width is 80 (the
right and left most columns are reserved) the horizontal scrolling is
effectively turned off and you can view an entire long line, since it
will be displayed on multiple screen lines.

The default scroll margin is set during customization and may be
changed in command mode with the command "EP 10 nnn".

Cursor Movement

A wide range of cursor movement functions is provided, including
the four basic ones of [CURSOR UP], [CURSOR DOWN], [CURSOR LEFT] and
[CURSOR RIGHT]. In general the cursor will only move to where there
is text. That is, if the cursor is moved right past the end of a line
it will move to the first position of the next line, This is always
the case with left/right cursor movement, however, for convenience,
VEDIT offers three different modes of up and down cursor movement,

MODE O: the cursor can never be moved to a position that is past the
end of a line, If you move the cursor down from the end of a long
line to a shorter line, the cursor will also move left to the end of
the shorter line.

MODE 1: the cursor can be positioned past the end of a line as the
cursor is moved up and down. This mode enables you to move the cursor
from a long line past short lines to another long line, staying in the



VEDIT Page 67
Visual Mode

same column, If you attempt any edit change, i.e. typing in new text
or deleting text, with the cursor past the end of a line, +the cursor
is first moved left to its "correct" position at the end of the line,
Since this mode is especially important for horizontal scrolling, to
prevent +the screen from scrolling back as the cursor is moved past
short lines, VEDIT automatically goes into MODE 1 when the screen is
scrolled to the right.

MODE 2: +the cursor moves identically +to Mode 1. However, if the
cursor is past the end of a 1line and you +type text, spaces are
automatically inserted from the end of the line up to the next text.
This mode is handy for filling out tables and other formatted text.
Note, however, that the many spaces will consume additional memory and
disk space.

A 1little experimentation is best for understanding these modes
and deciding which you like best. Mode 1 is the recommended setting.
Other word processors generally operate in one of these three modes
and you may want to pick that you are already familiar with.

The default mode is set during customization and may be changed
with the EP command (example: "EP 9 Q" sets cursor mode to MODE 0).

Setting and Jumping to Text Markers

You can place invisible markers in the text and later jump back
to them. The positions are marked by typing +the [SET TEXT MARKER]
key. The status 1line will then prompt for a digit "0 - 9", Type a
digit, or type RETURN or [SET TEXT MARKER] again to use marker "O".
To move the cursor to a marked position type the [GOTO TEXT MARKER]
key and the appropriate digit following the status line prompt. The
cursor will then move to the marked position. You can abort either
function by typing the DEL key or [CANCEL] function in response to the
prompt for a digit.

The marked positions are relative to the text. This means that
the markers will adjust themselves as text is inserted and deleted.
All markers are initially set to the Home position. If text
containing a marker is written to disk, that marker will be reset to
the Home position. However, the RESTART function or an "EA" command
will maintain the markers,

The Tab Character

One displayable character which acts a little different is the
[TAB CHARACTER], which is normally assigned to the Tab Key or
<CTRL=-I>. When the Tab key is typed, it inserts the tab character
into the text, which is displayed with spaces to the next tab
position. The tab positions are variable, but are normally set to
every 8 positions., You can tell the difference between the tab
character and spaces by the way the cursor moves over them. The



VEDIT Page 68
Visual Mode

cursor moves over each space individually, but moves over the Tab as a
unit, i.e. a single [ CURSOR RIGHT] might move you from column 1 <o
column 9. This reflects the fact that the Tab is a single character
and should be treated as such. When the cursor is at the Tab
character, it is displayed at the left side of the displayed spaces.
If you wish to insert other characters before the Tab and leave the
Tab in the file, you must be in INSERT mode. Otherwise the first
character you type will overwrite the Tab and shift the rest of line
left. The Tab character is commonly used when writing programs and
aligning tabular data. Text paragraphs are best indented by not using
a Tab, but rather by typing four or five spaces.

The [TAB CHARACTER] and the [TAB CURSOR] functions must not be
confused. The latter is strictly a cursor movement function and has
nothing to do with Tab characters. It only moves the cursor right to
the character at the next tab position. It is very similar to typing
[CURSOR RIGHT] repeatedly, except that it does not move the cursor
past the end of the line. If you notice that you have customized the
Tab key to be [TAB CURSOR] you are advised to change the Tab key to be
[TAB CHARACTER] as it should be.

Optionally, the [TAB CHARACTER] function can insert spaces to the
next tab position. This is equivalent to you typing in the spaces.
While this uses up more disk space and is not normally recommended, it
is wuseful in some applications. This option may be changed with the
"ES" command (the command is "ES 1 1")., Although the screen display
for these two options is identical, they are actually very different,
especially to programs other than VEDIT.

If you set the tab positions in VEDIT to anything other than the
default, you may find that other programs will not display your text
as you wanted. This is due to your VEDIT +tab positions being
incompatible with the tab positions of the other programs, which
usually have fixed tabs at every 8 positions. If you send text files
with tab characters to a large mainframe computer, you may find that
the tabs are lost in the transfer. (Many mainframes do not have tab
characters internally.) These two cases are good candidates for
allowing the Tab key to insert spaces to the next tab position.

Search and Replace

It is very easy to search for character strings and/or replace
them with new strings in Visual Mode. A selective replace with
prompting is also provided. Several search options may be selected.

FIND: To search for a string press the [FIND] function. The status
line will prompt for the string. Enter the string you wish to find
and type [RETURN]. VEDIT will move the cursor Jjust past the first
occurrence of that string. Each time you press [FIND] afterwards,
VEDIT will move to the next occurrence of the same string. To search
for a different string first press [CANCEL], which cancels the current
search string, Pressing [FIND] after all the occurrences have been



VEDIT Page 69
Visual Mode

found will result in a "CANNOT FIND string" message = type any
character to continue. This also cancels the string, i.e. you don't
have to press [CANCEL] to search for another string. If you need to
search for a [RETURN] type <CTRL-N> in its place. The maximum string
length is 31 characters. The [FIND] function is similar to the "F"
command in Command Mode.

REPLACE: To replace one string with another press [REPLACE]. The
prompt "FIND?" will appear in place of the status line. Enter the
string to be replaced and press [RETURN]. The prompt then changes to
"REPLACE WITH?". Enter the new string in the same fashion as the
first. VEDIT will 1locate the first occurrence of the string to be
replaced and prompt with:

REPLACE (Y / N / REST / CANCEL)?

Type "I" to replace the string with the new string, or "N" or <SPACE
BAR> to 1leave it unchanged. Type "R" to make the replacement and
replace all subsequent occurrences without prompting for each one. As
with [FIND], each time you press [REPLACE] VEDIT will locate the next
occurrence of the string and prompt you with the replace options. To
abort this process choose "C" from the options. Alternately, +to
search for and replace a different string, you can press [CANCEL] at
any time,

Often you will want to search for all occurrences of a string and
Selectively replace some of them, This is done in conjunction with
the [REPEAT] function. Press [REPEAT] four times for a maximum count
of 256. Then press [REPLACE] and answer all prompts as above. Now
the "REPLACE (Y / N / Rest / Cancel) ?" prompt will repeat up to 256
times allowing you to make the selective replace. As before, "R" will
replace the remaining occurrences without prompting. Typing "C" will
cancel the replace operation. To replace a new string with another,
press [CANCEL] to cancel the previous replace operation.

To select any of the search options respond to the [FIND] or
[REPLACE] "FIND?" prompt with an immediate RETURN. The status line
prompt will change to:

OPTIONS (Begin / Global / Reuse)?

Select one or more options by typing the corresponding letters "B",
el and "R", followed by a RETURN. For example, entering
"BR <RETURN>" will select the "Begin" and "Reuse" options.

Begin This option will start the search or replace from the
beginning of the text buffer. This is similar to first
performing a [HOME]. If the "Begin" is preceded with the
"Global" option, the search or replace will start at the very
beginning of the file.

Global This option will cause the search or replace to operate to the



VEDIT Page 70
Visual Mode

end of the file, if necessary, not just the end of +the text
buffer., If the entire file is in the text buffer, this option
has no effect.

Reuse This option causes the previous search string or replace
strings to be reused. This is convenient after you receive a
"CANNOT FIND" message and want to reuse the strings on a new
file or from the the beginning of the file (with the "Begin"
option).

Following the options 'and the RETURN, you will get the "FIND?"
prompt again, unless you selected the "Reuse" option. With the
"Reuse" option the [FIND] or [REPLACE] will immediately be performed
with the previously used strings.

Cancel Function

The [CANCEL] function cancels the current [FIND] and [REPLACE]
settings and any function which is being performed because of a
[REPEAT]. It also cancels functions which prompt you on the status
line: [REPEAT], [COPY TO TEXT REGISTER], [MOVE TO TEXT REGISTER],
[INSERT TEXT REGISTER], [SET TEXT MARKER] and [GOTO TEXT MARKER]).

The Text Registers

The most straight forward use of the text text registers is for
cut and paste operations, They can hold up to ten sections, which
have been "cut" and need to be "pasted" elsewhere.

The visual functions [COPY TO TEXT REGISTER] and [MOVE TO TEXT
REGISTER] are used to copy or move text from the main text buffer to
one of the text registers. The function [INSERT TEXT REGISTER] is
then used to insert the contents of a text register at the cursor
position. These functions are usually used to move or copy text from
one area in +the file to another. Text can also be moved to a text
register, whose contents are then written to a disk file in Command
Mode. The text registers used are the same as used in Command Mode,
thus the text registers may be set in Command Mode and inserted in
Visual Mode or vice versa.

To specify which text to move or copy, first position the cursor
to the beginning of the text and mark it by pressing +the appropriate
function key. The message "1 END" will appear on the status line.
Then move the cursor just past the last character of the text and
press the function key again. The status line will then prompt for a
digit "0 = 9" to specify which register +to wuse. The digit may
optionally be preceded with a "+" to indicate that the text is to be
appended to any text which may already be in the register. You may
type [RETURN] or the function key again in response to the prompt to
use register "O". After typing the digit, the status 1line message
will change to "TEXT". In the case of [COPY TO TEXT REGISTER], the



VEDIT Page 71
Visual Mode

main text buffer will be unchanged, while in the case of [MOVE TO TEXT
REGISTER], the text will be deleted from the main text buffer. Press
[INSERT TEXT REGISTER] and a digit "0 - 9" to insert the specified
register at the cursor position. Depending wupon the "Point Past
Register Insert" switch (see ES command), the cursor will be
positioned either at the beginning or the end of the inserted text.

Whether the beginning or the end of the text is first marked is
actually wunimportant, It is also immaterial whether you press [COPY
TO TEXT REGISTER], [MOVE TO TEXT REGISTER] or even [PRINT TEXT] when
you mark the first end. Only when you mark the second end must the
correct function be pressed. You can abort the operation by pressing
the DEL key or [CANCEL] function in response to the status line prompt
for a digit. If there is insufficient memory space for the text
register, or to insert the register, the message "FULL" will appear on
the status line and the no text will have been moved or copied.

The first marked end is invisible and you may forget where it
is, To see where it is press [GOTO TEXT MARKER] followed by a special
"+" and any digit. This operation will swap the positions of the
marker and the cursor, placing the cursor where +the marker was.
Repeat the operation +to restore the marker and the cursor to their
original positions.

Indent and Undent Functions

As an aid in word processing and writing programs in structured
languages such as Pascal, PL/I and C, the Visual Mode has the [INDENT]
and [UNDENT] functions. These functions allow the editor to
automatically pad up to the "Indent position" with tabs and spaces,
when a new line is started with the RETURN key. The [INDENT] key
moves the Indent position to the right by the "Indent increment", and
the [UNDENT] key moves the Indent position back to the left. If the
cursor is on a new line, or before any text on the 1line, when the
[INDENT] or [UNDENT] is pressed, the cursor and any following text
will also move to the new Indent position.

Normally the "Indent position" is zero and when a RETURN is
typed, a <CR> <LF> pair is' inserted into the text, and the cursor
moves to column 1 of the next line. After the [INDENT] key is pressed
once and a RETURN typed, the cursor will be positioned not in column
1, but rather at the first indent position, i.e., column 5 if the
"Indent increment" is set to four. Pressing the [INDENT] key again
will position the cursor still farther to the right after each RETURN,
i.e., to column 9. Each time the the [UNDENT] key is pressed, the
indent position moves back toward the left until it is back at zero.

The exact number of tabs and spaces inserted into +the text
buffer, to pad up to the "Indent position", is related to the
currently set tab positions and the "Indent Increment". The padding
Wwill consist of the most tabs and fewest spaces in order to save
memory and disk & space. For example, assume that the "Indent



VEDIT Page 72
Visual Mode

increment" is set to the common value of four (4) and the tab
positions at every eight (8). When the "Indent position" is eight,
the padding will consist of one tab; when the "Indent position"” is
twenty, the padding will consist of two tabs and four spaces. On the
other hand, if the tab positions were set to every four, only tabs
would be used in the padding. Note that if +the "Expand Tab with
spaces" switch is set, only spaces will be used for padding. This
will use up lots memory and disk space.

Printing Text

VEDIT can print out any portion of the text which is currently in
the text buffer. This can be done from both the Visual and the
Command Modes of the editor. It is easiest to do in Visual Mode and
is similar to the method of moving text to a text register. First
position the cursor at one end of the text to be printed and press the
[PRINT TEXT] key. (This is ESC = P in the example keyboard layout).
Next, position the cursor at the other end of the text to be printed
and press [PRINT TEXT] again, which causes the text to be printed.

To print the entire text move the cursor to the beginning and end
of the text with the [HOME] and [ZEND] functions, and press
[PRINT TEXT] at each end. The printing can be aborted by typing
<CTRL=C>. Many printers use control characters or escape sequence to
control such things as character size, font style and overstrike.
These special control sequences can be imbedded directly into the text
using the [NEXT CHAR LITERAL] function or the "EI" command. The
Command Mode can also print out the contents of a text register.

Word Processing Functions

VEDIT has functions for moving the cursor to the beginning of the
next word or the preceding word, and functions to delete the next or
the previous word. The [NEXT WORD] function moves the cursor to the
first letter of the next word. The [PREVIOUS WORD] function moves the
cursor to the first letter of the current word, or if already there,
to the beginning of the previous word. The [DEL NEXT WORD] function
deletes the word, or portion of the word to the right of the -cursor.
[DEL PREVIOUS WORD] deletes the previous word and any following spaces
if +the cursor is at the beginning of a word. If the cursor is in the
middle of a word, it deletes only that portion of the word to the left
of the cursor. The delete=word functions never delete -carriage
returns, but rather just move over them when they are encountered.

Words are allowed to have imbedded periods in them, such as in
"j,e.", A comma "," always ends a word, even if the comma is not
followed by a space. As a special case, numbers with imbedded commas,
such as "™0,000" are treated as one word. The special characters ")",
"j* and "}" also separate words from each other, as do spaces, tabs
and carriage returns. All other characters are allowed in words.



VEDIT Page 73
Visual Mode

The cursor can also be moved to the beginning of the previous or
the next paragraph with the [PREVIOUS PARAGRAPH] and [NEXT PARAGRAPH]
functions. VEDIT considers a paragraph to end when an empty line, a
blank line or a print formatter command line is encountered. Print
formatter command lines are considered to be any 1lines which begin
with a ".", "I" or a "@" in the first column.

Word Wrap and Margins

To simplify word processing, the WORD WRAP facility may be used.
This facility allows the user to specify a right margin Dbeyond which
no text should appear. If you attempt to enter new text beyond this
margin, VEDIT will move the word which didn't fit within the margin to
the next line, leave the cursor in the same position in the word, and
add a carriage return to end the previous line. Word wrap will only
occur when the cursor is past the right margin.

If you do not wish the text to begin in the left most column, you
may set a left margin with the [INDENT| and [UNDENT] functions. A
left hand margin may be set independent of whether word wrap is
enabled. The right margin can be greater than the screen line length,
in which case VEDIT will either scroll the screen horizontally or
display a continuation 1line before the word wrap takes place. The
word wrap facility is enabled by setting the right margin parameter,
A value of zero turns word wrap off. This parameter is initially set
during customization and can be changed with the "EP 7 nn" command.
For example, to set the right margin at column 70, or to turn word
wrap off, the following commands are given in Command Mode:

EP 7 70 Set word wrap at column 70

EP 70 Turn word wrap off

Formatting Paragraphs

In word processing it 1is frequently desirable to format a
paragraph so that all of the text appears between selected left and
right margins. The [FORMAT PARAGRAPH] function performs this. The
left margin is set by the [INDENT] and [UNDENT] functions, while the
right margin is the same as used for word wrap.

To format a paragraph, the cursor may be placed anywhere in the
paragraph. After formatting, the cursor will be positioned at the
beginning of the next paragraph. A series of paragraphs may therefore
be formatted by just repeatedly pressing the [FORMAT PARAGRAPH] Kkey.
A paragraph will only be formatted if the right margin is greater than
the 1left indent margin. Setting word wrap off also disables the
formatting function.

When a paragraph is formatted, the additional indentation which
the first line typically has will be preserved. If the second line of



VEDIT Page 74
Visual Mode

the original paragraph is indented with respect to the first line,
VEDIT will consider it to be an Offset paragraph and will also
preserve this offset. Numbered paragraphs are often offset paragraphs
as in the following example:

1.) This is an example of an offset paragraph. Notice how the first
line begins in column 1, while all following lines begin in
column 5, This paragraph can be entered by typing [INDENT]
anywhere along the first line. Word wrap must of course be on.

However, any indentation which all lines of a paragraph have is
ignored during by [FORMAT PARAGRAPH]. The left most line(s) will be
positioned at the current left margin.

If you are using print formatter command lines, you should note

that these lines separate paragraphs from each other and will not be
formatted or changed in any way by the [FORMAT PARAGRAPH] function.

Lower and Upper Case Conversion

This is a relatively technical topic and is mostly applicable to
users with non-standard keyboards and assembly language programmers.

Several modes are available for converting between lower and
upper case letlers as they are being typed on the keyboard. There are
four options for converting from lower to upper case:

.) No conversion is made.

.) All lower case letters are converted to upper case.,
.)

)

N =0

Conditional conversion of lower case to upper case for assembly
language programming and other special applications.

3. Similar to 2.) = upper and lower case letters are reversed

Mode "i" is similar to the "Caps Lock" on a keyboard, the 26
lower case letters are converted to upper case. Modes "2" and "3" are
specifically designed for assembly language programming. In mode "2"
lower case letters are converted to upper case if they occur to the
left of a special character, called the "Conditional Convert
Character", typically ";"“. To the right of the ";" they are not
converted. In this manner an assembly language program can be entered
or edited with all lower case letters and VEDIT will automatically
convert the labels, opcodes and operands to upper case, while leaving
the comment fields alone. This can also be used for FORTRAN programs
and other special applications. Mode "3" is almost identical to mode
"2"; instead of converting lower case to upper case, it reverses the
case of letters appearing before the ";". This mode makes it easier
to enter lower case literals into a program. These options and the
special character are set with the "EP" command.

Upper and lower case letters can also be unconditionally
reversed, i.e., lower case converted to upper case and upper case
converted +to lower case., This is specifically designed for the Radio



VEDIT Page 75
Visual Mode

Shack TRS-80 Model I, whose keyboard normally produces upper case
letters and lower case with +the Shift key. This reversal is done
immediately when a keyboard character is received and before any
résulting lower case letter is converted to upper case as described
above. The letters are also reversed for the Command Mode. This mode
may also be handy in the case where most text is to De entered in
upper case, but where an occasional lower case character is also
needed. This mode is selected with the "ES" command.

End of Lines

Each text line is assumed to end in a <CR> <LF> pair as is
required for other CP/M and MSDOS programs, and the <LF> is the true
terminator of text lines. Typing the RETURN (or <CR>) key inserts a
{CR> <LF> pair at the cursor position. Deleting the end of a line,
will delete both the <CR> and the <LF>. Although VEDIT, in Visual
Mode, will never create a line ending in just a <CR> or <LF>, such
lines are handled in Visual Mode, although displayed differently.
(Such lines can be created in Command Mode). If a line ends in only a
{LF>, the next line will be displayed with a starting position
directly below the end of the previous line. If a line contains a
<CR> not followed by a <LF>, the <CR> will be displayed in the normal
control character convention as "*“M". Such lines may be corrected by
deleting the offending lone <CR> or <LF> with the <DEL> key and then
inserting the <CR> <LF> pair with the RETURN key.

Inserting Control Characters

Virtually any control character and non-ASCII character can be
inserted into the text. These may be special printer control
characters, the <ESC> character, or control characters for other
purposes. Only <CTRL-Z> cannot be inserted because it is used by CP/M
and MSDOS to mark the end of a file. The [NEXT CHAR LITERAL] function
places the next character typed on the keyboard into the text. Any
control character which can be generated from the keyboard can thereby
be placed into the text. In case a character must be inserted which
cannot be generated from the keyboard, the Command Mode "EI" command
can be used. This command can insert any character with a decimal
value between 00 and 255 (except 26 which is a <CTRL-Z>) into the
text.

Special Character (High Bit) Support

This is a very technical topic and can be ignored my most wusers
with CRT terminals.

Some systems such as the IBM PC and NEC APC allow accessing of
special character fonts by using text characters which have their
"High" or 8th bit set. These characters have a numeric value between
128 and 255, and VEDIT can be configured to properly display them.



VEDIT Page 76
Visual Mode

Since many machines, particularly CRT terminals, do not support
special character sets, VEDIT can alternately be configured to display
High bit characters by stripping their High bit and displaying the
resulting character in reverse video.

Most keyboards send only ASCII characters without using the High
bit. Others, such as the IBM PC and NEC APC have function keys which
send special characters consisting of all 8 bits. VEDIT is normally
configured to decode all 8 bits, allowing the use of function keys for
its editing operations. However, with some CRT terminals, the High
bit is used as a "parity" bit which should be ignored. In this case,
VEDIT can alternately be configured to ignore the High bit on keyboard
input.

VEDIT's edit functions are accessed by typing control characters
or function keys. The later either send a special High bit character
or an Escape sequence. Those control codes which are not assigned to
.an edit function are normally ignored by VEDIT. However, for
applications where special characters are to be entered directly into
the text, VEDIT can be configured to enter unused control sequences
into the text. Escape sequences are inserted as the corresponding
character with its High bit set. Only those control sequences which
are not used in the keyboard layout can be entered. Other characters
can be entered with the "EI" command,

All of these options pertaining to special characters are
controlled by +the "EP 8 n" command. The default value is set during
customization, The "EP 8 n" parameter is actually three parameters.
The first bit enables High bit keyboard characters, the second bit
enables display of special characters, and the third bit enables
insertion of unused control codes. There are eight possible values,
0 - 7, each representing a combination of three bit values. The eight
values and their meaning are:

SPECIAL INSERT
ALLOW HIGH BIT CHARACTERS OR UNUSED
ON KEYBOARD REVERSE CONTROL
VALUE INPUT VIDEO SEQUENCES
0 NO REVERSE NO
1 YES REVERSE NO
2 NO SPECIAL NO
3 YES SPECIAL NO
4 NO REVERSE YES
5 YES REVERSE YES
6 NO SPECIAL YES
7 YES SPECIAL YES

The normal value for CRT terminals is "1" = allow 8 bits on
keyboard input, display High bit characters in reverse video (if
possible) and ignore unused control sequences. The normal value for
the IBM PC, NEC APC and other systems with special character fonts is



VEDIT Page 77
Visual Mode

a "3".

Whether High bit characters are allowed on keyboard input has NO
BEARING on High bit characters already in the text file., Such
characters are left unmodified when they are read from disk or written
to disk. If you wish to strip High bit characters in the text file
(for example WordStar files), you can do so with the "YS" command.

Disk Buffering in Visual Mode

In Visual Mode, the disk buffering can perform automatic Read and
Write to handle files which are larger than the size of available main
menory. Specifically, if the current screen display reaches the end
of the text buffer, and the entire input file has not yet been read,
Forward Disk Buffering is performed.

Auto-buffering in the backward direction is performed when the
cursor is at the beginning of the text and you press [HOME].
Therefore, pressing [HOME] [HOME] from anywhere in the text will
perform backward disk buffering, reading back text which has already
been written to the Qutput file. Nothing will happen if there is no
text to read back in, or if backward disk buffering was not enabled
during customization or with the "ES" command. The amount of text
that VEDIT will buffer each time is set by Task 6.2 during the
customization. This is generally between 4 and 14 Kbytes. To move
back further in the file, just repeat the [HOME] function.

VEDIT will also begin to write out the text buffer (auto-write)
if the memory becomes full while you are typing in more text. At this
point the first 1K text bytes will attempt to be written to the output
file. If no output file is open, or if the cursor is within the first
1K of the text buffer no writing occurs and the "FULL" message appears
instead on the status line.

Both the auto~buffering and the auto-write may be disabled by the
"Auto Buffering in Visual Mode" switch. Switch (2) of the "ES"
commands controls whether auto buffering is enabled in visual mode. A
value of "O" turns all auto buffering off. A value of "I" enables
only auto buffering in the forward direction, and a value of "2"
enables auto buffering both forwards and backwards.



VEDIT
Visual Mode

Page 78

Visual Mode Edit Functions

[HOME ]

[ZEND]

[CURSOR UP]

[ CURSOR DOWN]

[CURSOR RIGHT]

[CURSOR LEFT]

[BACK TAB]

[TAB CURSOR]

" [zIP]

[LINE TOGGLE]

[NEXTLINE]

[scroLL uP]

Move the cursor to the very first character in the
text buffer.

Move +the cursor to the very last character in the
text buffer.

Move the cursor up one line, to the same horizontal
position if possible. If the position is beyond the
end of the line, move to the end of the line, if the
position is in the middle of a tab, move to the end
of the tab. If there is no line, it won't move.

Move +the cursor down one line, to the same
horizontal position if possible., The same rules as
for [CURSOR UP] apply.

Move the cursor to the next character in the fext.
If currently at end of line, move to beginning of
next line. If there is no line, don't move.

Move the cursor to the previous character in the
text. If currently at beginning of line, move to
end of previous line., If there is no 1line, don't
move.

Move the cursor to the first position in the current
screen line, If cursor is already at the first
position, move +to beginning of previous screen
line.

Move the cursor to the character at the next tab
position. If cursor is at the end of a line, don't
move., Note that this only moves the cursor, use the
[TAB] key to insert a Tab character.

Move +the cursor to the end of the text line the
cursor is on. If it already is at the end of a
line, it moves to the end of the next text line,

Is a combination of [ZIP] and [BACK TAB]. First
moves the cursor to the end of the text line. If it
already is at the end of a line, it moves to the
beginning of the screen line.

Move the cursor‘to the beginning of next text line.

Similar to [CURSOR UP], except that the cursor
remains on the same screen line and the screen moves
down instead.



VEDIT
Visual Mode

[ SCROLL DOWN]

[SCROLL RIGHT]
[SCROLL LEFT]

[PREVIOUS WORD]

[NEXT WORD]

[PREVIOUS PARA]

[NEXT PARA]
[PAGE uP]
[PAGE DOWN]

[SCREEN TOGGLE]

[SET TEXT MARKER]

[GOTO TEXT MARKER]

Page 79

Similar to [CURSOR DOWN], except that the cursor
remains on the same screen line and the screen
moves up instead.

Move the screen window right in order to view long
lines going off the right side of the screen.

Move the screen window left in order to view the
beginning part of long lines

Move the cursor to the first character of the
current word, or if already there, to the
beginning of the previous word.

Move the cursor to the first character of next
word.

Move the cursor to be beginning of the current
paragraph, or if already there, to the beginning
of the previous paragraph.

Move the cursor to the beginning of next
paragraph.

This scrolls the screen to give a similar effect
to typing [CURSOR UP] for 3/4 screen lines.

This scrolls the screen to give a similar effect
to typing [CURSOR DOWN] for 3/4 screen lines.

Move the cursor first to the last allowed screen
line, or if already there, to the first allowed
screen line.

Followed by a digit "0 - 9". Sets an invisible
text marker which will automatically adjust as
text is inserted and deleted.

Followed by a digit "O - 9". Moves the cursor to
the beginning of the line containing the specified
text marker. If the marker has not been set or
has been reset, moves the cursor home.



VEDIT
Visual Mode

[SET INSERT MODE]
[RESET INS MODE]

[SWITCH INS MODE]

[DELETE]

[ BACKSPACE]

[DEL PREVIOUS WORD]

[DEL NEXT WORD]

[EREOL]

[ERLINE]

[UNDO]

[NEXT CHAR LITERAL]

Page 80

Change the mode to INSERT if not already there.

Change the mode to NORMAL if not already there.

Switch the mode +to +the opposite. Note that
normally either [SET INS MODE] and [RESET INS
MODE] or [SWITCH INS MODE] would be implemented
during the VEDIT Customization process.

Delete the character at the cursor position. The
cursor doesn't move, A 1lone <CR> or <LF> will
also be deleted, but a <CR> <LF> pair will both be
deleted as one.

Move the cursor left and delete the character at
that position.

Delete +the previous word and any following spaces
if the cursor is at the beginning of a word.
Otherwise delete only that portion to the left of
the cursor.

Delete the entire word and any following spaces if
the cursor is at the beginning of a word.
Otherwise delete that portion of the word at and
to the right of the cursor.

This deletes all characters from the cursor
position to the end of the text line but not the
final <CR><LF> pair unless the +text 1line only
consists of the <CR><LF>, in which case the
<CR><LF> is deleted. For example, the following
sequence will delete an entire line:

[BACK TAB] [EREOL] [EREOL].

This deletes +the entire text 1line. Use of
[BACK TAB] [EREOL] is actually preferable, since
the 1latter does not close up the screen line and
frequently allows the [UNDO] to restore the
original line.

This rewrites the screen and ignores the changes
made to the text line the cursor is on.

The next  character, whether a  displayable
character, a control character, or a character
with its high order bit set, will be placed into
the text buffer,



VEDIT
Visual Mode

[ REPEAT]

[INDENT]

[UNDENT]

[COPY TO TEXT REG]

[MOVE TO TEXT REG]

[INSERT TEXT REG]

Page 81

The next text character or edit function is
repeated, This is either a multiple of 4 or a
number typed in. Type "000" and any character to
abort.

This increases the "Indent Position" by the amount
of the "Indent Increment". The editor will then
automatically pad with +tabs and spaces to the
Indent position following each  RETURN. The
padding will also take place on the current line
if the cursor is before any text on the line,

This decreases the "Indent Position" by the amount
of the "Indent Increment", until it is zero. One
[UNDENT] therefore effectively cancels one
[ INDENT].

The first time this key is hit, the position of
the cursor is (invisibly) marked, and the message
"1 END" is displayed on the status line. When the
key is hit while the "™ END" is set, the status
line prompts for a digit "0 - 9" indicating the
text register to be used. The text block between
the marked position and the current cursor
position is then copied +to +the text register.
Optionally the digit may be preceded with a "+" to
indicate that the text is to be appended to any
text already in the register. Assuming there is
enough memory space for this "copy", the message
"TEXT" is then displayed on the status 1line in
place of the "1 END". If insufficient memory
space exists, no copy is made, the "1 END" is
erased and +the "FULL" message appears on the
status line. Hitting this key twice at the same
cursor position will empty the specified text
register. Note that either the beginning or the
end of the text block may be set first.

This is similar to [COPY TO TEXT REG], except that
the text block is deleted from the text buffer
after it is moved to the text register.

Followed by a digit "O = 9" indicating which text
register's contents are to be inserted at the
current cursor position. The register itself is
not changed., If there is insufficient memory
space for the entire "copy", nothing is inserted
and the "FULL" message will appear on the status
line. Moving the cursor to another 1line will
clear the "FULL" message.



VEDIT
Visual Mode

[PRINT TEXT]

[FIND]

[REPLACE]

[ CANCEL]

[ FORMAT PARAGRAPH]

[VISUAL EXIT]

[VISUAL ESCAPE]

[RESTART]

Page 82

This is activated similar to the [COPY TO TEXT
REG], only no digit needs to be typed. The block
of text is then printed on the CP/M listing
device, A <CTRL=C> will abort the print out.

Performs a search operation. Prompts for the
search string on status line. String may be up to
30 characters 1long and ends in RETURN. Use
{CTRL=N> to search for RETURN. Press [FIND] again
to search for the next occurrence.

Performs a selective replace. Prompts for string
to be replaced, then prompts for replacement
string. Next, each time [REPLACE] is used, the
next occurrence of the string is found and the
user has the option of replacing it or not, and of
replacing all further occurrences of the string or
canceling the assignment.

[FIND] and [REPLACE] reuse the previous strings
until they are canceled with [CANCEL] or the
search string is not found. [CANCEL] will also
abort any function taking place because of a
[REPEAT] and will cancel any function prompting on
the status line for a text register/marker
number.

This will format the paragraph that the cursor is
in so that all of the text appears between a 1left
and right margin. The left margin is the current
Indent Position, and the right margin is the
current Word Wrap column. Following the format,
the cursor will be positioned at the beginning of
the next  paragraph. Text output processors
commands will not be formatted.

Visual Mode is exited to Command Mode. The
current cursor position in the text buffer will
become the Command Mode edit pointer position.
Any text register is preserved. Depending upon
the value of the "Clear screen on visual exit"
switch, the command prompt will appear either on a
clear screen or just below the status line.

This is identical to the [VISUAL EXIT], except
that any current iteration macro is aborted.

The text buffer and any unappended portion of the
input file is written <to the output file. The
output file is closed and then reopened as the
Input and Output file. The file is then read into
the text buffer again.



VEDIT ' PAGE 83

COMMAND MODE



VEDIT Page 84
Command Mode

Command Mode

Command Mode Notation

$ denotes the <ESC> control character. Wherever "$" appears
in a command mode example, type the <ESC> key.

<TAB> represents the TAB character while <CR> represents RETURN.
<CR> Press the <TAB> key or the RETURN key.
<ESC> represents the ESC key or alternate command mode escape

{CTRL= > character selected during customization. Other control
characters produced by holding the CTRL key and typing a
letter are represented by "<CTRL-letter>".

[ ] The bracket characters used for iteration macros are printed
as "[" and "]" in this manual. Some users may be more
familiar with the angle brackets "<" and ">". You can
choose which characters to use during customization.

Command Lines

In command mode the user enters command lines, which consist of
single commands, concatenated commands or iteration macros. Each
command line is ended by typing RETURN or the ESC key twice, at which
point the command line is executed, The <ESC> is also used to delimit
search strings and file names. In the event that your keyboard does
not have an ESC key, you may customize the command mode escape
character to be any other control character.

The ESC key is echoed with a "$", which is also used in the
examples in this manual to represent the ESC key. The RETURN or <CR>
key is echoed with a <CR> <LF> pair, and the pair is also entered into
the command line.

The wuser is prompted for a new command line by the "COMMAND:"
prompt. Before the command line is ended, the line may be edited with
most common line editing characters. They are described in detail
below. Once execution begins, it may often be aborted by typing
<CTRL=-C>. This causes a *¥BREAK* and a new command prompt to be
displayed. VEDIT checks for the <CTRL=-C> before any new command is
executed, during the execution of the "A", "F", "N" and "T" commands,
and in a few other situations.

Commands such as "I", "F" and "S", which take "text string"
arguments must end in the "string delimiter", typically <ESC>. If you
type RETURN before the final delimiter, the command prompt changes to
"-" as a reminder.

Prompt: "=" This means VEDIT is waiting for the string delimiter



VEDIT Page 85
Command Mode

If you have made a mistake, receive the "-" prompt and don't know
what the delimiter is, type <CTRL-C> to abort the command.

If, while +typing, the command line should exhaust the amount of
memory space available to it, (the text buffer, text registers and
command line all share the same memory space) VEDIT will send the
"Bell" character to the console and neither accept nor echo any more
characters. The user will have to edit the current command line in
order to end it and should then rectify the full memory situation.
Even when the memory is full, (see "U" command) up to ten characters
may be typed on the command line.

Command Line Editing

Several common control characters are recognized in command mode
as line editing characters. They are:

{CTRL=-H> or <BACKSPACE> Delete the 1last character typed and echo a
{CTRL=-H> to the console.

<RUBOUT> or <DELETE> Delete the last character typed and echo the
deleted character to the console.

<CTRL=R> Doesn't change the command line, but echoes
the entire command line back to the console.

<CIRL=-U> Delete the entire command line and send a "#"
to the console.

<CTRL=X> Identical to <CIRL~U>.

If you wish to search for one of these characters in the text, or
use one within any other string, you must precede it with a <CTRL=-Q>.
<CTRL=-Q> causes the following character to be taken literally, and not
be interpreted as a line editing character, a RETURN or any other
special character.

Help Command

VEDIT offers an on-line help facility. A command summary, a
keyboard layout, and some additional information are stored in the
disk file "VHELP.TXT". When the "H" command is given, VEDIT will
display this file, one screen at a time. The "VHELP.IXT" file should
not be erased or renamed. However, it may be edited for your own
needs.

The first time the "H" command is given, there will be a slight
delay as VEDIT searches for "VHELP.TXT" on disk, and moves it to
memory. The next time you type the "H" command, the help text will



VEDIT : Page 86
Command Mode

appear immediately, since it remains in memory. Sometimes this is
bothersome, since it uses valuable memory space. It can be removed
from memory with the "-H" command.

Command: H <RETURN>

Begins displaying "VHELP.TXT" on console.

Type: RETURN To see the next screen

Type: <CTRL=-S> - Stops displaying "VHELP.TXT"; press RETURN key
to continue.

Type: <CTRL~C> Return to command mode.

Command: -H <RETURN>

Remove "VHELP.TXT" from memory.

"VHELP .,TXT" is designed for screens 24 1lines deep by 80
characters wide. Each screen is separated by a <CTRL-S> '"stop
character" which will cause the "H" command to pause before going on
to the next screen. If your screen is smaller, you may need to
rearrange some of the <CTRL-S> characters in the text. You can edit
"VHELP .TXT" as you would any other file. The <CTRL-S> will display in
Visual Mode as ""S".

We recommend that you change VHELP.TXT as soon as you are
comfortable with VEDIT. You should change the keyboard layout to
reflect any changes you made and you may want to add the file KEYS.ART
to the help text.

On the technical side, the help text is loaded into a special
hidden text register. The help text is then displayed using the "RT"
command which pauses when a <CTRL=S> is encountered. Be careful when
printing files which contain <CTRL-S>, since it may have an unexpected
effect on the printer.

Controlling Console Display

Any screen output in Command Mode from commands such as "T", "RT"
and "ED" can be stopped by typing <CTRL=-S>. Typing any other key, but
typically another <CTRL=-S>, will then resume the screen output.

The "YRT" command will also respond to <CTRL=-S> characters that
are in the text. The help file, "VHELP.TXT", is structured by
incorporating <CTRL=S> characters within it.



VEDIT . Page 87
Command Mode

FILE OPERATIONS

Exiting With Saving

Usually when you are done editing a file you will want to save
the new file on disk and leave VEDIT. This is done with the "EX"
command from Command Mode. It does not matter where you are in the
file, or how large the file is, "EX" will save the file on disk and
leave VEDIT.

Command : EX Save file on disk and leave VEDIT

It is also possible to save the file on disk and remain in
VEDIT with the "EY" command. The "EY" command is useful when you are
finished editing one file and want to edit another file. An added
benefit is that the "EY" command does not alter the text registers.

Command: EY Save file on disk and remain in VEDIT

Quitting Without Saving

VEDIT allows you to quit editing a file without saving the
changes, The "EQ" command will quit and return you to the operating
system, while the "EZ" command will leave you in VEDIT command mode
with no open files, Both commands require confirmation of the
decision to quit (this is to ensure that you do not forget to save
important changes). You can skip the confirmation prompt by including
a "Y" in the quit command: "EQY" or "EZY". The text registers will
retain their contents when using the "EZ" or "EZY" command.

Save File and Continue Editing

If you are making a lot of time consuming changes to a file, it
is a good idea to routinely save the file on disk and then continue
editing it. Otherwise all of your edit changes could be lost should a
power or hardware failure occur. This also protects you from your own
mistakes. The command to save a file on disk and then continue
editing it is:

Command s EA Save file on disk and continue editing it

Following the "EA" command the edit pointer, or cursor in visual
mode, will be at their previous positions. The text marker positions
 will also be maintained. It is frequently easier to use the [RESTART]
function in visual mode rather than the "EA" command.



VEDIT Page 88
Command Mode

Editing a Second File

When you are done editing one file and need to edit another, it
is not necessary to exit VEDIT and then re-invoke VEDIT for the second
file. The "EY" command makes it easy to save the file being edited on
disk, in preparation for editing another file. It performs the
equivalent of the "EX" command without leaving VEDIT. The command to
finish editing a file and begin editing another file (NEWFILE.TXT) is:

EY EB newfile.txt

Notice that spaces may be added between commands and in front of a
file name to improve readability.

Directory Display

The very convenient "ED" command gives a display of the disk
directory. Drive specifiers and the wildcard characters "?" and "*"
can also be used. Some examples are:

ED gives the directory of the default drive.
ED A: gives the directory of drive "A".
ED *,ASM gives the directory of all ",ASM" files.

The "ED" command serves as a reminder of what files on a disk have
been or still need to be edited, merged split, etc. In case the disk
becomes full and VEDIT gives you a "NO DISK SPACE" or "NO DIR SPACE"
error, the "ED" command helps you delete any unneeded files on the
disk. Files can be deleted with the "EK" command.

Note that with CP/M, an optional user number may be specified
following any file name specified in VEDIT. Therefore, the command to
display the CP/M directory of drive "B", user number "N is:

ED B:=4 gives the directory of drive "B", user
number "4".

NOTE: WHEN DELETING FILES, DO NOT DELETE ANY ".$$$" or ".$R$" FILES
FROM WITHIN VEDIT! THESE ARE THE TEMPORARY EDIT FILES VEDIT IS
USING. DELETING THESE FILES WILL RESULT IN LOST TEXT. THE
VEDIT.COM OR VEDIT.CMD FILE CAN BE DELETED IF NECESSARY.



VEDIT Page 89
Command Mode

Extracting Portions of Other Files

It is possible to append another file to the end of file being
edited with the "ER" command, in effect merging the two files. In
many instances, however, you will want to extract only a portion of
another file and insert it into the middle of the file being edited.
This portion might be a paragraph, Jjust a single sentence or a
programmer's subroutine. This is done with the "EG" command, The
"EG" command takes as arguments the file name and the line range to be
inserted. Therefore, you will need to know the line numbers of the
text to be extracted. This can be determined with the "EL" command:

Example: EL MYFILE.TXT View MYFILE.TXT with line numbers
Simply note the beginning and ending 1line numbers of the text to
extract. Lets say the line numbers are 235 and 272 respectively.
Then the command to extract the text would be:

Example: EG MYFILE.TXT[235,272]
The text will be inserted at the edit position.

If you don't want to view all the lines of a file you can issue
the "EL" command with a beginning and ending line number as in the
"EG" command. For example: "EL MYFILE.TXT[200,400]".

The “EG" and "EL" commands allow a drive designator to be

included. With CP/M systems, a User number may also be specified.

Disk Buffering in Command Mode

While the disk buffering can be fully automatic in Visual mode,
it is not done automatically in command mode because it would
interfere with the explicit file handling often done in command mode.
- VEDIT has a full set of commands for reading and writing files.
Commands must be issued in order to read a file, write a file and
perform forward disk buffering. In some cases it will be easier to
switch into visual mode and allow it to perform the disk buffering
automatically.

The "ER" command opens a file for reading, but does not actually
read anything in. The file can be read with the "nA" command.
Similarly, the "EW" command opens a file for writing, but does not
write anything out. Text can be written out with the "nW" command.
Forward disk buffering in command mode, therefore, requires successive
"W" and "A" commands.

Some commands perform automatic reading/writing when invoked.
The "EB" command performs an auto-read which reads in the entire file
from disk or until the text buffer is nearly full. The "EY" command
performs all the reading and writing to finish editing and saving a
file without leaving the editor. '



VEDIT Page 90
Command Mode

The commands which take the "global" modifier will also perform
automatic disk buffering. The command " _B" moves back to the
beginning of the file, performing backward disk buffering as needed.
The command "_Z" moves the end of the file, and the command "_L" moves
forward in the file, each performing forward disk buffering as
needed. The "N" command (same as "_F") can perform forward disk
buffering to find occurrences of a string anywhere in the file. These
commands operate regardless of the setting of the "Auto Buffering in
Visual Mode" switch.

As described earlier, backward disk buffering is accomplished by
writing text from the end of the text buffer to the temporary ".$R$"
file, and reading back text already written to the Output file. VEDIT
can perform +this disk buffering automatically in Visual Mode. The
"=W" and "-A" commands allow you to do this manually in Command Mode.
Because of the complexity of these commands, we suggest you not use
them until you are thoroughly familiar with all other aspects of
VEDIT's file handling. Generally, the easy to use "_B", "_Z", " L"and
" F"' commands can perform any additional disk buffering you will need
in Command Mode.

The "-nA" and "=-0A" commands allow text which has already been
written to the Output file to be read back into the text buffer.
"enA" will read "n" lines back from the output file, or until the text
buffer is full, or the output file is empty. "~0A" will read lines
back until the text buffer is "nearly" full or the output file is
empty.

The "=nW" command will write text from the end of the text buffer
out to the temporary .$R$ file. 1Its only purpose is to make more
memory space available for performing the "-nA" command, or any other
time you need more memory space.

Whenever an "A" command is issued or VEDIT performs auto disk
buffering, VEDIT will always read the contents of the ".$R$" file back
into the text buffer, before reading any more from the Input file.
You, therefore, do not need to explicitly remember whether or not
there is any text in the VEDIT.REV file.

Disk Write Error Recovery

Since many systems run with floppy disks which have limited
storage capacity, the typical user will occasionally encounter a "Full
Disk" error condition. This is caused by either running out of disk
space, leading to the error message "NO DISK SPACE", or running out of
directory space, leading to the error message "NO DIR SPACE".
Fortunately, VEDIT allows you to recover from these errors using one
of two recovery procedures. One 1is to delete files from the disk
using the "EK" command until enough space exists to write the rest of
file out. The second is to use the "EC" command to allow removing the
full disk and inserting another disk on which to complete the



VEDIT ' Page 91
Command Mode

operation. The following paragraphs describe these procedures in some
detail, and an example is given in the Tutorial.

The best policy is to avoid "Full Disk" errors by making sure
that there is enough space before you begin editing. If you are
editing files more than 1/3 disk in length, it is best to read the
Input file from one drive and write the Output file on another drive.
For example, if the Input file and VEDIT are on drive A and the disk
in drive B is blank, give the command:

VEDIT infile.ext b:outfile.ext

The simplest and most common recovery is to delete files from the
disk which is full. You can use the "ED" command to display a
directory of the disk. If you find files which you can delete, you
are all set. You can then re-issue the command which led to the full
disk error. Any ".BAK" files can usually be deleted. You can also
consider deleting any files which you know are backed-up on other
disks. Never delete the ".$$$" and ".$R$" files from within VEDIT.
(You can delete them from the operating system, in the unlikely event
they appear on the directory there.)

If you are still reading this in order to learn more about VEDIT,
STOP. You are very unlikely to ever require the following
procedures. They are described here for completeness only.

There may be times when you cannot delete enough files to finish
the edit session. You then have several alternatives. One 1is to
close the current output file (with the "EF" command) and create a
second output file on another drive. An example is:

EF Close the current output file,
EWA:PART2 Create an output file on another drive.
EX Exit the edit session.

You can then use VEDIT (or CP/M PIP or MSDOS COPY) to merge the two
partial output files back into one file, (See the Tutorial for
merging files.)

If all the disks in the drives are full, you will have to either
change disks using the "EC" command or delete the Input file. In
either case you want to read as much of the Input file and hope that
there is enough room to read all of it. Begin by issuing the command:

#A

Then look at the end of the text buffer to see if all of the file was
read in. If not, the recovery will be more complicated. If all of
the Input file has been read, it is often simplest to delete this
Input file from disk with the "EK" command. This will make enough
space available for the rest of the Output file. If you delete the
Input file, there will be no ".BAK" backup file when you exit VEDIT.
For example, if the file you are editing is "LETTER.TXT", you could



VEDIT Page 92
Command Mode

give the following commands:

EKletter.txt Delete the Input file.
EX End the edit session.

Alternately, if you need to keep the original Input file, you can
use the "EC" command to change disks and write the second part of the
Qutput file to an empty disk. First issue the "EF" command to close
the current OQutput file. The "EC" command will allow you to insert
another (empty) disk into any drive. Example commands are:

EF Close the current output file.
EC and type RETURN

EWPART2 Create a second output file,
EX End the edit session.

You will ‘then have to use VEDIT (or CP/M PIP or MSDOS COPY) to merge
your two Output files back into one file. This procedure has several
potential shortcomings. If you were using backward disk buffering,
you may get the error message "REV FILE OPEN", in which case you
cannot change any disks. You will then have to make more space on the
existing disks by deleting files, possibly the Input file.

If you were unable to read the entire Input file into the text
buffer, the procedure becomes still more complicated. (Try again to
make more space free on the existing disks!) If you have a copy of
your Input file on a backup disk, delete the Input file, which should
free enough disk ' space to end the edit session. All text which you
just edited or entered will be in the Output file, but the Output file
will be missing the last portion of the Input file which was never
read in. You must examine the Output file +to see how much is
missing. Then copy your backup of the original Input file to a blank
disk. Edit this file by deleting the entire front portion up to the
text which is missing from the partial Qutput file. Exit VEDIT. Then
use VEDIT or PIP to merge the Output file and the unread portion of
the original Input file back together. This is a complicated
procedure, but at least none of your edited text is lost.

If in the previous paragraph you know that you don't have a
backup copy of the Input file, you will have to use the "EC" command
procedure to write a second Qutput file to a blank diskette. However,
by using the "EC" command, VEDIT will not be able to continue reading
any unread portion of the Input file. You will therefore have to
merge the Output file from the original disk with the second Output
file, with the unread portion of the Input file,

If you cannot change disks because you were using backward disk
buffering, you will have to make more space free on the existing disks
by deleting files. If you want to avoid the complexities of deleting
the Input file, you can delete any ".COM" or ".CMD" files, including
VEDIT, which you can probably restore from a backup disk.



VEDIT Page 93
Command Mode

COMMAND MODE FEATURES

Search Options

There are three search options which can be selected by preceding
the search command with a special character., The first specifies that
the search or replace operation is to be performed in the rest of the
file (global search or replace) instead of just to the end of the text
buffer. The  other two search options are useful for some
applications, particularly when using command macros. One allows text
strings to be delimited without using the <ESC> character. The second
allows search error messages to be suppressed.

Search Option Meaning Affected Commands
_ (underscore) Perform global search or replace F, S

@ Use explicit text delimiter F, N, S, I, RI, YT
: Suppress search error messages F, N, S

The "_" (underscore) which acts as the global search option, may
also be specified with several other commands to make them "global" to
the file, if necessary performing automatic disk buffering. You may
want to think of the " _" character as a command option which makes the
gize of files less noticeable. A special character which may appear
in some commands is <CTRL-Q>, which allows the following control
character to be used literally. A second special character which may
appear in a search commands is the pattern match code "{". This is
described fully in the next section.

Special Character Meaning ) Affected Commands
_ (underscrore) Perform global operation F, S, B, L, 2
<CRTL=Q> Use next character literally F, N, S, I, RI, YT
i Pattern match code F, N, S

The commands "F", "N", "S", "I", "RI" and "YT" are followed by a
string of characters called a "text string". Since the text string
can be of any length and contain any character, including RETURN,
there has to be some way of indicating the end of the text string.
This is done with a special character called the "text delimiter",
which is normally the <ESC> character. An option allows an "explicit
delimiter" to begin and end the text string. With this option, the
character immediately following the "“F", "N", "S", "I", RI" or "YT"
command is the delimiter. Any character can be the delimiter, but n/fu
is a good choice. Note that the text string itself cannot contain the
explicit delimiter. This option can be invoked by preceding the
command with a "@"., In the following examples, the commands on the
left side are equivalent to those on the right.

Fspeled$V @F/speled/V

Sspeled$spelled$V @S/speled/spelled/V



VEDIT Page 94
Command Mode

4Fpoint$V 4@F:point:
TIa new line$$ @I/a new line/

The explicit delimiter option can be made the default with the
command "ES 9 1" or during customization. With the option ON, the "@"
character is no longer needed. Although using this option requires
more characters to be typed, many users find that it makes the
commands more understandable. It eliminates the need for <ESC> to
terminate any text strings and nearly eliminates the need for <ESC>
entirely. It also allows the <ESC> character to be searched. For
example, the following command searches for the string "h<{ESC><ESC>":

@F/h<ESC><ESC>/V

Note that the <ESC> <ESC> therefore does not end a command if it
appears before the explicit delimiter. If you type <ESC> <ESC> or
RETURN before the explicit delimiter, the command prompt changes to
"." 4o remind you that VEDIT is still waiting for the delimiter. For
example, to find "LABEL" at the beginning of a 1line, the search
command would be:

F<RETURN>
LABEL<KESC><ESC> Note: Prompt changes to "=" here

The "=" prompt is normal for strings which contain RETURN.
However, if you get a "=" by mistake, type <CIRL=-C> to abort the
command.

The command "F$$" will always search for the last used string,
even if the explicit delimiter was used for the original string or is
currently in effect.

F$$ Search for last used string. (Must end in two <ESC>)

Search error messages can be suppressed by preceding the "F", "N"
or "S" command with a ":". Alternately the suppression may be turned
ON with the "ES" command or during customization. This is primarily
used with command macros which contain many "S" commands, and where
the macro should not terminate if some of the strings are not found.

The literal character <CTRL-Q> operates similar to the [NEXT CHAR
LITERAL] in visual mode - the next character is treated literally and
not interpreted. This is the only way to search for characters such
as <CTRL-R>, <CTRL=-U> and <CTRL-H> which are also used for line
editing. It is also an alternate way to search for the <ESC>
character. In the following examples, one command inserts a CTRL-H>
into the text and the second command searches for a <CIRL=H> :

Iword<CTRL=Q><CTRL-H>$$ Insert a <CTRL-H>

Fword<{CTRL-Q><CTRL-H>$$ Search for a <CTRL-H>



VEDIT Page 95
Command Mode

These two commands both search for the string "h<ESC>":
@F/h<ESC>/ Fh<CTRL=-Q><ESC>$$

CP/M, MSDOS and VEDIT all require that lines end in a <CR> <LF>
pair. However, when files are transferred from mainframe computers,
the lines often end in a <CR> without the <LF>. These lone <CR> must
be changed to <CR> <LF> pairs. One cannot simply search for a <CR> by
typing the RETURN key because it is expanded into <CR> <LF>, unless
the RETURN is preceded with a "<CTRL-Q>". Therefore, the command to
change all lone <CR> to <CR> <LF> pairs is:

b#S<CTRL-Q><CR>$<CR>$$ Change <CR> to <CR><LF>

Pattern Matching

This is a fairly advanced topic which you should be aware of,
because of its potential usefulness and power. However, you should
wait until you are familiar with VEDIT's basic search and replace
operations before attempting to understand the details.

Often when performing a search operation, you want to search for
a type of character, instead of a particular character. For example,
you may want to search for the next number or for the next word
beginning in a capital letter. VEDIT allows for a wide variety of
such characters to be searched. Such searches may be made from the
Command Mode or the Visual Mode. These categories of characters are
called "patterns". Patterns can be searched with "Pattern Matching
Codes". Each pattern matching code consists of a special "lead=-in"
character followed by a mnemonic letter. Normally +the lead-in
character is "|"., If your keyboard does not have this, it can be
changed during customization. The mnemonic letter may be entered in
upper or lower case. For purposes of clarity, all examples will show
these letters in upper case.

The most commonly used "pattern" in a search is the "separator".
A separator is any character which is not a 1letter or a numeric
digit. For example, a simple search for the word "and" would result
in matches by "sand", "Andres" and others. A search for " and " would
be better, but would fail if the "and" appeared at the beginning or
end of a line. The pattern match code for a separator is "|S". The
{S" will match a space, a tab, a RETURN or any other character which
is not a letter or a digit. Therefore, the best search string for the
word "and" is:

String: |Sand|s Best search string for the word "and"

Another pattern is "|X" which will match any character. There
are many other patterns possible in VEDIT. For routine word
processing, you will probably never need them. The pattern matching
codes are:



VEDIT ) Page 96
Command Mode

1X Matches any character (equivalent to use of | alone in previous

versions of VEDIT)

IA Matches any alphabetic letter, upper or lower case

|B Matches a blank - a space or a tab

|C Matches any control character = a character with a value of 0 - 31
(decimal)

ID Matches any numeric digit - "O" through "9"

|LL Matches any line terminator - Line Feed, Form Feed or End Of File

IM Matches multiple characters = zero, one or more characters so that
the string following the "|M" is satisfied

IN Matches any character which is NOT the following single character
or pattern matching code

IR Matches any alphanumeric character - a letter or a digit

IS Matches any separator - a character which is not a letter or digit

|U Matches any upper case letter

IV Matches any lower case letter

{W Matches "white space" = one or multiple spaces and/or tabs

|l Matches a "|" = this is the literal "|". Actually, any undefined
pattern matching code, will match a literal "|" A

The |M and !N require a little explaining. The |N is a negation,
similar to our usage of "Not". The string "|{Na" (think of it as not
nat) therefore matches any character except "a". The command:

Command: Fexam]Ns$$ ("$" designates the <ESC> key)
would find occurrences of "exam", "examiner", but not "exams".

The code "|M" is useful for finding patterns where the beginning
and end are defined, but the middle doesn't matter. The string
"!Sa|Mtion]S" matches words beginning in "a" and ending in “tion".
Besides being useful in searches, the "IM" code can be used to delete
large blocks of text. For example, the following command would delete
this paragraph:

@S/ The code|Mparagraph:// End with a RETURN

This "S" command is using "explicit delimiters", i.e. the "/®
characters., This allows the command to end in a RETURN instead of two
<ESC>. The double "//" at the command end means that the text which
is found will be replaced by nothing, i.e. deleted.

In assembly language programming, any text following a My
character is considered a comment. Instructions are often followed by
a few tabs (to align the comments), the ";" and the comment. The
following command will delete the tabs (and/or spaces) and the comment
which follows any instruction. Lines which are entirely comments are
left unchanged.

#@s/|W; | MCRETURN>
/<RETURN>
/ This command strips comments



VEDIT Page 97
Command Mode

Iteration Macros

An iteration macro is a group of commands which will be repeated
with or without user intervention as many times as desired. They are
most useful in search and replace tasks (changing all instances of a
misspelled word, for example).

An iteration macro's general construction is: a group of commands
enclosed by brackets "[" and "]" and preceded by an iteration count
which tells VEDIT how many times to repeat the commands between the
brackets., The following example changes the first three occurrences
(if found) of " teith" to " teeth".

Example: 3[S teith$ teeth$]

The iteration macro operates by executing the first command of
the group through the last command, and then starting over again with
the first command. The entire group will be executed the number of
times specified by the iteration count.

It is very important to observe the placement of any necessary
<ESC> to terminate strings and file names in iteration macros. File
names must always be followed by an <ESC> and all text strings must be
ended with an <ESC> unless you are using explicit delimiters. The
following example shows a common error in which the string "enter me
three times]" is entered into the text, which is not the intention.

Wrong: 3[I enter me three times]

Right: 3[I enter me three times$]

If desired, each command may be ended with one <ESC>, in which
case you won't have to remember whether the command must be ended in
an <ESC> or not.

The "[" and "]" may also occur within each other ("be nested")
for more complicated commands. For example, the command "5[4T]"
displays the same four lines five times for a total of 20 displayed
lines. The command "3[ 5[4T] 4L]" will display the same four lines
five times, then move to the next four lines and display them five
times and last, move to the next four lines and display them five
times.

Iteration Counts:

If no explicit iteration count is given, it defaults +to "#"
(32767) which signifies "forever" or "all". This is used when the
iteration is to continue as long as possible. "#n represents the
maximum positive number 32767. For clarity sake, the "#" may also be
explicitly specified. The following example changes all occurrences
of " teith" to " teeth".



VEDIT Page 98
Command Mode

Example: #[S teith$ teeth$]$$
It is normal to get the error message "CANNOT FIND ..." when
performing a search or replace command for all occurrences of a

string, because the command is 1literally searching for 32767
occurrences. However, the error will not occur for the "#S" command.

Using Visual Mode in Iteration Macros:

Search and replace operations are often used in conjunction with
the visual mode in order to edit the region, or to confirm that the
replacement was done correctly. For example, the following command
will search for all occurrences of the word "temporary" and let those
regions of the text be edited in visual mode.

[Ftemporary$V]

The following command could be used in a form 1letter to change
the string "-name-" +to the desired name, check that it was done
correctly in visual mode, and if necessary make any edit changes.

[S=name=$Mr. Jones$V]

The Visual Mode has two ways of exiting back to Command Mode in
order to help in using iteration macros. The [VISUAL EXIT] simply
exits and lets any command iteration continue. The second, [VISUAL
ESCAPE] exits to Command Mode, but also aborts any iteration macro.
The latter is used when the user realizes that the iteration macro is
not doing what was intended and does not want the macro to further
foul things up. For example, in order to change all occurrences of
the word "and" to "or", the following command may have been given:

Wrong: [sand$or$v]
The user might then see in Visual Mode that the word "sand" was
changed to "sor", which was not the intention. The [VISUAL ESCAPE]
would stop the command and the following correct command could then be

given:

Right: [s and$ or$v]



VEDIT Page 99
Command Mode

If it is unnecessary or undesirable to view each substitution in
Visual Mode, the previous replace operation could take the simpler
form:

#S and$ or$$

Note +that this is not an iteration macro, but rather just a form
of the "S" command. Because it executes much quicker, it is
preferable to the equivalent command:

Slow: [S and$ or$]

The commands "I" for Insert and "T" for Type are useful in
iteration macros. The "T" can be used to type out the lines that are
changed in an iteration macro without going into Visual Mode. The "I"
command is wuseful when the same text is to be inserted into the text
buffer many times. For example, to begin creating a table of 60
lines, where each line begins with a <TAB> and ".....", the following
command can be used before the rest of the table is filled in Visual
Mode:

60[I<TAB>.....<RETURN>$]
The <RETURN> will be expanded into a <CR> <LF> pair.

Iteration macros begin operation from the current edit pointer
positioii. Therefore, be sure to place the edit pointer correctly
before executing an iteration macro.

An iteration will continue until its iteration count is exhausted
or until an error occurs. A common error is an unsuccessful search
operation and many iterations will normally stop with an unsuccessful
search error message. A special case is using search commands ("F"
and "S") in iteration macros with search errors suppressed. In this
case, when a search 1is unsuccessful, no error is given, but the
iteration is stopped, and execution continues with the command
following the iteration. This may be an outer level iteration.
Recall that the commands "#S" and "#F" are only unsuccessful if no
occurrences are found.

Another special case occurs when using the "L" command in
iteration macros, If the "L" command encounters either end of the
text buffer, it too will stop the iteration with execution continuing
with the command following the iteration. This is convenient for any
iteration which needs to stop when the end of the text is reached.
The supplied print macro "PRINT.EXC" is such an example.



VEDIT Page 100
Command Mode

Printing Text

Text can be printed from command mode with +the "EO" command.
This command takes a numeric argument similar to the "T" command to
specify how many lines before or after the edit pointer are to be
printed. For example, "40EO0" will print the following 40 lines, while
".5E0" will print the preceding 5 lines. Additionally, the command
"OEO" will print all lines from the beginning of the text buffer to
the current edit pointer. (The edit pointer is the same as the cursor
position when you change from visual to command mode). Therefore, the
command to print the entire text is:

B#EO Print entire text on line printer.

WordStar (TM) Files

WordStar (tm) files and files from other word processors often
contain characters which have their High or 8th bit set. These are
often difficult +to edit with VEDIT and will often be displayed with
reverse video characters. Such files can be converted to normal text
files by using the "YS" command which "strips" the 8th bit. Its
syntax is "mYS", where 'm' specifies the line range, as in the "T",
"K" and "L" commands. "10YS" strips the High bit in all characters in
the next 10 lines.

Command: B#YS Strips 8th bit of all characters in the text
buffer.



VEDIT Page 101
Command Mode

Text Registers

Nine commands are available for using the ten text registers in
command mode, Lines of text may be copied to a register with the "P"
command : ’

35P5 Copy the next 35 lines to register 5.
-5P+4 Append previous 6 lines to register 4.
opP2 Empty out register 2.

The "G" command inserts the contents of the specified register at the
edit pointer:

G2 Insert register 2 at edit pointer,

The "RS" command will save the contents of the specified register in a
disk file, Various portions of a file or files may therefore be
appended to a text register, which is then saved as a new disk file,

RS4 b:filesave.reg Save contents of register 4 in
"filesave,reg" on drive "B". :

Similarly the "RL"™ command will load a register from a disk file.
This can be useful for merging several files together in complex
ways.

RL4 b:filesave.reg Load register 4 from "filesave.reg" on
drive "B".

The contents of a text register can be display on the console with the
"RT" command:

RT9 Type out contents of register 9.

The "RT" command expands control characti:rs, displays <ESC> with
a "$" and pauses when a <CTRL=-C> is encoun.:red. Since this is not
suitable for initializing a terminal (programmable function keys,
etc.), the "RD" command is provided, which does not expand control
characters:

RD9 Dump out contents of register 9.

The "RP" command prints the contents of a text register. This is
useful for examining the contents of a text register. It also allows
a disk file to be printed after first loading it into a text
register.

The "RU" command displays the number of characters contained in
each of the text registers. The sum of these ten values plus the
number of bytes in the special "help" text register (used for the H
command) is the last number displayed by the "U" command. If this sum



VEDIT ' Page 102
Command Mode

is not zero, the status line message "TEXT" appears in Visual Mode.

The "M" command executes the contents of the specified register
as a command macro, as described in the following section.



VEDIT Page 103
Command Mode

Command Macros

The following pages describe the process of grouping commands
together into text oriented "programs" called "Command Macros". It
assumes that the reader is familiar with the individual commands of
VEDIT. You should not feel compelled to understand this section until
you are familiar with all other aspects of VEDIT.

The following pages also describe several additional commands in
VEDIT. While these commands could be used by themselves, they are
primarily intended for wuse in command macros and are therefore
described in this context.

Command Macros

The text registers may hold commands which can be executed just
as if they had been +typed in by hand. Frequently used commands,
particularly 1long iteration macros, can be saved in the  text
registers, These commands are referred to as "command macros" or just
"macros" for short. The macros are usually created and edited in
visual mode and are then moved to the appropriate register. The
macros can also be saved on disk and be retrieved from disk (see RL
and RS commands). Macros offer so many capabilities that it is
impossible to cover all of the possibilities.

A macro is invoked with the "M" command:
M6 Executes macro in register 6.

A macro may contain an "M" command to invoke a macro in another
register., This can be done to a depth of five.

A common use of macros 1is for 1large search and replace
operations, Consider the example of a long manuscript split into 20
files in which 40 words were consistently misspelled. The task of
correcting +the words in all 20 files can be done with 2 macros, One
will contain the search and replace for the 40 words. The second will
edit each file, and for each file execute the search/replace macro.
The first macro would appear as:

ES 8 1
ES 91
b#s/word1/fix1/
b#s/word2/fix2/
b#s/word3/fix3/

®e0 00000

b#s/word40/£ix40/

The first two commands specify that explicit delimiters are to be used
and that search errors are +to be suppressed. Since explicit
delimiters are used, the <ESC> character is not needed anywhere.



VEDIT Page 104
Command Mode

Macros do not need to end in <ESC> <ESC>. Search errors must be
suppressed, because otherwise, if any word is not found +the entire
macro will abort.

The second macro reads in each of the 20 files, executes the
first macro, writes the file back to disk, and continues with the next
file. It is assumed that the first macro is in register 1.

EB file1.txt

M1

EY

EB file2.txt

M1

EY

EB file20.txt
M

EY

Assuming that this macro is in register 0, the following command would
invoke the macro to perform the search and replace on all files:

MO

It is often desirable to save such complex macros on disk for
future use. The commands to save these two macros are:

RS1 macroil.exc
RSO macro2.exc

Similarly, the commands to retrieve them from disk are:

RL1 macrol.exc
RLO macro2.exc

The commands to display them on the console are:

RT1 RTO

Macros are most easily created in Visual Mode and then moved to
the appropriate text register. They can be edited by appending the
text register to the end of the current text buffer in visual mode,
making the changes and moving them back to the register.

When command macros execute, the contents of a text register are
being used. If the macro attempts to change the contents of its own
text register or of a register which invoked the macro, unpredictable
results could occur. VEDIT checks for this possibility and if it
occurs give the error message: "MACRO ERROR". It indicates that you
probably made a mistake in using command macros.



VEDIT Page 105
Command Mode

Additional Command Macro Features

The "RI" command allows text to be inserted directly into a
register. The syntax is "RIrtext", where "r" is the register number,
and is otherwise identical to the "I" command. The form "RI+rtext"
will append "text" onto any text which is already in register "r'".

The "RI" command could be used to manually insert +text into a
text register, although it is generally easier to move the text in
from Visual Mode. The main purpose for the "RI" command is for a
command macro to insert text, usually another macro, into a text
register. For example, instead of setting up eight registers from
eight disk files, it may be easier to just load one disk file and then
setup the eight registers with eight "RI" commands.

The "R*" command allows comment lines to be placed in command
macros. All text following "R*¥" through the RETURN is ignored.

Command: R¥ This demonstrates a comment inside a command macro.

The "YT" command types a text string on the console. Its syntax
is "YTtext" = the same as the "I" command.

Command: YT Print this on the screen from within the command macro.

It is most useful in conjunction with the "YL" command (described
below) to send page headers, carriage returns and form feeds +to the
printer, It can also be used to display progress messages during
iteration macros.

Example: @YT/Part 1 is done/ Display a message on console

The input and output file names can be displayed on the console.
"YR" +types the input (read) file name and "YW" types the output
(write) file name on the console. The carriage return following the
file name may be suppressed by preceding the command with a ":". The
file names will commonly be re-routed to the printer or text buffer in
conjunction with the "YL" and "YI" commands.

Example: YW Display output file name and a carriage return

Example: :YW Display output file name without carriage return



VEDIT Page 106
Command Mode

Re-routing Console Qutput

Any Command Mode console output, which normally goes to the
screen, can be re-routed to either the listing device (printer) or the
main text buffer. Such re-routing is in effect until the next Command
Mode prompt or until it is canceled.

The command "YL" will re-route console output to the printer. It
is used in print formatting macros such as our supplied PRINT.EXC.
The form "OYL" will stop the re-routing and allow normal console
output. Note that the print command "EO" should not be used in
conjunction with "YL" (use "I" instead"), because all output following
the EO will go back to the console (i.e., "EO" stops the re-routing).

Example: YL ED B: Print the directory of drive B

"YI" pe-routes console output to the text buffer. Each character
will be inserted at the edit pointer, and the edit pointer
incremented. The form "QYI" stops the re-routing. A simple example
to try is:

Command: YI EV

This inserts the VEDIT version number into the text buffer. A more
elaborate example is given below under numerical capabilities.
Inserting text at the end of the buffer with the "YI" command will
proceed very quickly. However, inserting text at the beginning of a
large file may take on the order of 1/2 second per character.

The command "YI ED¥*,ASM" will insert all file names in the disk
directory, with a file extension of "ASM" into the text buffer. It is
therefore possible for a command macro to determine what files are on
the disk and automatically edit those files.

Numerical capability

VEDIT has some limited numerical capability through the use of
ten "numeric registers". They are accessed with the "XS", "XA" and
"XT" commands. The main purpose for these registers is counting.

nXSr sets numeric register "r" to the value "n"
nXAr adds the positive or negative value "n" to register "r"
XTr types the value of register "r" in decimal, carriage

returns are automatically supplied at the end of each
line. (the form :XTr suppresses carriage returns.

A numeric register is used in the print formatter macro
"PRINT.EXC" to count page numbers. A register could also be used to
count line numbers. For example, the following command inserts 200
lines of the form "This is line number nnnn", where nnnn increments
for each line:

Example: YI 1XS1 200[@I/This is line number / XT1 1XA1 ]



VEDIT Page 107
Command Mode

Print Formatter Command Macro

Your distribution disk contains a command macro PRINT.EXC, which
performs simple print formatting., This macro can be used as an
alternative to the "EQ" print command, which performs no formatting.
PRINT.EXC will skip over page perforations and print the file name and
page number at the top of each page. A form feed is issued after the
text is printed. Much more sophisticated formatters can be written
with VEDIT nacros; PRINT.EXC is intended as a macro example which is
relatively easy to understand and expand. Possible enhancements
include line numbering, header and footer messages and more.

To get ready to use PRINT.EXC issue the command:
Command: RL9 PRINT.EXC This loads the print formatter into VEDIT

This loads the command macro into text register 9 where it will remain
unless you insert other text into the register.

To print your text, simply issue the command:
Command: MO This prints the entire text buffer

The entire text buffer should begin printing. You can stop the
printing by typing <CTRL=-C>.

Feel free +to modify the print macro to suit your needs.
Modifying this macro is also an informative way to learn more about
VEDIT macros. If you find that you use PRINT.EXC a lot, you can
automatically load it into VEDIT by placing the command "RLO
PRINT.EXC" into the VEDIT.INI file, which is executed each time VEDIT
is invoked.

We hope that the simple PRINT.EXC macro inspires you to write
your own more sophisticated macros. The Command Mode is a capable
text oriented programming language and the examples in this manual
barely scratch the surface of the applications which are possible.
The other macro on your disk, ZIL-INT.EXC, is an example of a large
brute force search and replace macro, which can perform a translation,
in this case from ZILOG Z80 to INTEL style Z80 instructions.

As examples of more complex command macros, we have the optional
VHELP and VMAIL disks. VHELP is a menu driven VEDIT tutorial
program. The text can be easily modified to act as a tutorial for any
other product or procedure you commonly use or need to teach to
others. VMAIL is a menu driven mail merge program (command macro)
which can print form letters, envelopes, edit the form letter, create
and edit the address data base and more. These are available as
inexpensive options.



VEDIT
Command Mode

Page 108

'n' represents a positive number. (# represents 32767)

'm! represents a number which may be negative to indicate backwards
in the text buffer.

'p! represents a digit "0 - 9" specifying a text register.

'string', 's1', 's2' and

include the RETURN key in them.

'text' represent text strings which may

May use explicit delimiters,

or else must end in <ESC>.

'file' is a disk file name in normal CP/M (MSDOS) format with optional

disk drive, extension and CP/M User Number.
are ignored.

mC
mD
E

nFstring<ESC>

Gr

Itext<ESC>

mK

mL

Mr

nNstring<ESC>

buffer.

Any leading spaces
Must be ended with a RETURN or an <ESC>.

Append 'n' lines from the input file +to the text
"OA" reads as much as possible,

Read back 'm' lines from the Qutput file. "=DA"

reads back until the text buffer is nearly full.

Move the edit pointer to the beginning of +the text
buffer. "_B" moves to the beginning of the file.

Move the edit pointer by 'm' positions.

Delete 'm' characters from the text.

First letter of extended two letter commands.

Search for the 'n'th occurrence of 'string' in the
current text buffer and position the edit pointer
after it. 'string' may be up to 32 characters long.

Insert the text register 'r' at the edit pointer.

Display the VHELP.TXT file and load it into memory if

necessary. =H deletes it from memory.
Insert the 'text' into the text buffer at the edit
pointer. The edit pointer is moved past 'text'.

Kill 'm' lines.

Move the edit pointer by 'm' lines and leave at the
beginning of that line.

Execute text register 'r' as a command macro.

Search for the 'n'th occurrence of 'string' and

perform auto-disk buffering to read more of the file
from disk if necessary. The edit pointer is
positioned after last 'string' if found.



VEDIT
Command Mode

mPr

Ss1<ESC>s2<ESC>

mT

nW

-0W

Page 109

Put 'm' lines of text into text register 'r'. 'r!
may be preceded by "+" to append to the register.
"OPr" empties text register 'r'.

Search for the next occurrence of 's1', and if found,
change to 's2'.

Type the next 'm' lines on the console.

Print # of free bytes remaining / # bytes in text
buffer / # bytes in combined text registers.

Go into wvisual mode. Set cursor position from
current edit pointer.

Write 'n' lines to the disk from the beginning of the
text buffer and delete from the text buffer. "OW"
writes out the text buffer up to the current line.

Write all lines from the edit pointer to end of text
buffer to the "VEDIT.REV" file, This makes more
memory space free.

Move the edit pointer past the last character in the
text buffer. " _Z" moves to the end of the file.

SPECIAL CHARACTERS

<CTRL-Q>

Literal character. Next character, usually a control
character, is taken literally and not interpreted.
Allows searching and inserting of control characters
including line editing characters, <CR> and <ESC>.

Immediately precedes "F" or "S" +to cause a global
search/replace to the end of the file, instead of
Just the end of the text buffer. " _F" is equivalent
to "N". Precedes "B", "L" or "Z" to cause a global
operation.

Immediately precedes "F", "N", "S®", "I", "RI" or "YT"
to indicate that explicit terminating characters are
being used.

Immediately precedes "F", "N" or "S" to indicate that
search error messages are to be suppressed.
Immediately precedes "XT" and "YR" and "YW" <to
suppress <CR><LF> being sent to the console.

Represents the maximum positive number 32767. It is
used to signify "forever" or "all occurrences of".



VEDIT

Command Mode

EXTENDED COMMANDS

EA

EBfile

EC

ED

EF

EGfile[line range]

nkEl

EKfile

ELfile[line range]

mEQ

AV WN -

®

10
1M

Page 110

Saves the file being edited on disk and allows
further editing to continue.

Open the file 'file' for both Read and Write and
read the input file. If the file does not exist,
"NEW FILE" is printed.

Allow user to change disks. Used for write error
recovery, or just to edit files on other disks.

Displays disk directory. Drive specification, "?"
and "¥" wildcard characters may be used.

Close the current output file.

Insert the line range of the file 'file' into the
text buffer at the edit pointer. If no line range
is specified, the entire file is inserted.

Insert the character with decimal value 'n' into
the text buffer at the edit pointer. The value
"26"  is not allowed. Values of 128 to 254 are
allowed.

Erase (kill) the file 'file' from the disk. This
makes more space free on the disk.

Display with line number the line range of the file
'file'. Same syntax as EG command.

Print (on line printer) the next 'm' lines, "OEO"
prints from the beginning of the text buffer to the
current line.

Change the value of parameter 'n' to 'k'.
Currently there are the following parameters:

Cursor type (Mem Mapped Only) (0, 1 or 2)
Cursor blink rate (Mem Mapped Only) (5 = 100)
Indent increment (1 - 20)
Lower case convert (0, 1, 2 or 3)
Conditional convert character (32 - 126)
Display line and column position (0 - 3)
(0=none, 1=line, 2=column, 3=both)

Word Wrap column (0 = Off) (0 - 255)
Bit 8 Allowed (0=-17)
(1=Input, 2=Output, 3=Input & Output)

Cursor positioning mode (0 - 2)

Virtual line length with scrolling (40 = 255)
Horizontal scrolling increment (1 - 78)



VEDIT
Command Mode

EQ

ERfile

ES n k

WO~NOUHE W =

ET n1,n2,n3 ...

EV

EWfile

EX

EY

EZ

Page 111

Quit the edit session and leave disk files exactly as
before the session started. Return to OP system.
Open the file 'file' for input. Gives error if file
does not exist.

Change the value of switch 'n' to 'k'. Currently
there are the following switches:

Expand Tab with spaces (0=NO 1=YES)

Auto buffering in visual mode (0=NO 1=YES 2=BACK)
Start in visual mode (0=NO 1=YES)

Point past text reg. insert (0=NO 1=YES)

Ignore UC/LC search distinction (0=NO 1=YES)

Clear screen on Visual Exit (0=NO 1=YES)
Reverse Upper and Lower case (0=NO 1=YES)
Suppress search errors (0=NO 1=YES)
Explicit string delimiters (0=NO 1=YES)

Set new tab positions. The ET is followed by up to
30 decimal numbers specifying +the tab positions.
Alternately, if ET is followed by just one 'n', tabs
are set to every 'n' positions.

Display the VEDIT version number.

Open the file 'file' for output. Any existing file
by that name will be renamed to "file.BAK" following
an EF or EX. Gives error if an output file is
already open.

Exit back to CP/M after writing the text and any
unappended part of the input file to +the output
file. Gives error if no output file is open.

Finishes editing a file by writing the entire text
buffer and any remaining portion of the Input file to
the Output file and closing it. Usually followed by
an "EB" command.

exit the edit session and leave disk files exactly as
before the session started., Stay in VEDIT.



VEDIT
Command Mode

Page 112

TEXT REGISTER COMMANDS

RDr

RIr text<ESC>

RLrfile
RPr
RSrfile

RTr

RU

R

NUMERIC REGISTER

Dump contents of register 'r' on console. Control
characters are not expanded.

Insert the text 'text' into text register 'r', Use
"RI+r" to append to any existing contents.

Load register ‘'r' from file 'file'.

Send contents of register 'r' to line printer.

Save contents of register 'r' in file 'file'.

Type contents of register 'r' on console. Control
characters are expanded, <ESC> 1is represented as
ngn_ An encountered <CTRL=-3> "stop character" causes

a pause - type any character to continue.

Display number of characters (size) in each text
register.

Treat all following characters up to RETURN as a
comment.

COMMANDS

nXAr

«-nXAr

nXSr

XTr

Add 'n' to numeric register 'r'.
Subtract 'n' from numeric register 'r'.
Set numeric register 'r' to 'n',

Type numeric register 'r' in decimal. Use ":XTr" to
suppress <CR<LF>.



VEDIT Page 113
Command Mode

MISCELLANEOUS COMMANDS

YI Re-route console output until next command prompt to
text buffer at edit pointer and update edit pointer.
(May work very slowly) Use "=YI" to disable "YI".

YL Re=route console output until next command prompt to
list device (printer). Use "-YL" to disable "YL".
Note: YL is disabled by "EO" command.

YR Type the input (read) file name on the console. Use
":YR" +to suppress the <CR>LF> following the file
name,

mYS3 Strip the 8th bit from all characters in the
specified line range.

YTtext<ESC> Type the 'text' on the console,

YW Type the output (write) file name on the console.
Use ":YW" to suppress the <CR>XLF> following the file
name,

PATTERN MATCHING CODES

X Matches any character (equivalent to use of "|" alone in previous
versions of VEDIT)

A Matches any alphabetic letter, upper or lower case

B Matches a blank - a space or a tab

C Matches any control character = a character with a value of 0 - 31
(decimal)

ID Matches any numeric digit - "O" through "9"

1L Matches any line terminator - Line Feed, Form Feed or the End Of
File

{M Matches multiple characters - zero, one or more characters so that
the string following the "|M" is satisfied

IN Matches any character which is NOT the following single character

or pattern matching code

Matches any alphanumeric character = a letter or a digit

Matches any separator - a character which is NOT a letter or digit

Matches any upper case letter

Matches any lower case letter

Matches "white space" - one or multiple spaces and/or tabs

Matches a "|" = this is the literal "|",

—E<Ccho



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Examples:

Page 114

nA Append

100A 0A -0A

This command will append 'n' lines from the input file
to the end of the text buffer. Fewer lines will be
appended if there is insufficient memory space for 'n'
lines, or there are not 'n' lines remaining in the
input file. If 'n' is 0, an auto-read is performed,
which reads all of the input file or until the main
memory is almost full. The command can be issued (with
'n' not zero) after an auto-read to read in more of the
file. The command is ignored if there is no input file
open. The input file can be opened with the "EB" and
"ER" commands, or when VEDIT is invoked.

The special forms "-nA" and "=0A" will read back '=n'
lines from the Output file into the beginning of the
text Dbuffer. "=QA" reads all of the OQutput file back
or until the text buffer is almost full. Nothing is
read back if there is no Output file or it is empty.

No indication 1is given if fewer than 'n' lines were
appended. Use the "U" command to see if anything was
appended. If +the text buffer is completely full, the
text registers cannot be used and Visual Mode will not
work well.

Commands: U, W, EB, EG, ER
Automatic Disk Buffering

ERTEXT.DOC
OA The file 'TEXT.DOC' is opened and all
" of the file is read in, or until the
memory is almost full.
=-0A Read as much of the OQutput file as will

fit back into the beginning of the text
buffer.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Exanmples:

Example:

Description:

Notes:
See Also:

Examples:

Page 115

B Beginning

B _B

This command moves the edit pointer to the beginning of
the text buffer. The beginning of the text buffer will
not be the beginning of the text file if a "W" command
or an auto=-write was done. In +this case, use the
command " _B" to move back to the beginning of the text
file,

Commands: EA, Z
Backward Disk Buffering

B12T Moves the edit pointer to the beginning
of the text buffer and types the first
12 lines.,
mC Change
12C =4C

This command moves the edit pointer by 'm' character
positions, forwards if 'm' is positive and backwards if
'm' is negative. The edit pointer cannot be moved
beyond the beginning or the end of the text buffer, and
an attempt to do so will leave the edit pointer at the
beginning or the end respectively. Remember that every
line normally ends in a <CR> <LF> (carriage return,
line feed), which represents two character positions.

Commands: D, L
Fhello$=-5C$$ Searches for the word "hello", and if
it is found, positions the edit pointer
at the beginning of the word.



VEDIT
Command Mode

Example:

Description:

Notes:
See Also:

Examples:

Example:

Description:

Notes:
See Also:

Examples:

Page 116

mD Delete
12D ~4D
This command deletes 'm' characters from +the text
buffer, starting at the current edit pointer. If 'm'

is positive, the 'm' characters immediately at and
following the edit pointer are deleted. If 'm' is
negative, the 'm' characters preceding the edit pointer
are deleted. Fewer than 'm' characters will be deleted
if the ends of the text buffer are reached.

Commands: C, K

100 [ FBIKES$-D$ ] ‘The 'S' will be deleted from up to
100 occurrences of the word
' BIKES' .
E Extended Commands
EX EV
This is not a command by itself but Jjust the first

letter of all the extended commands.
No error is given if just E$$ is given.

Extended commands.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Examples:

Page 117

nF string<ESC> Find

Fmispell$s$ 10Fwords$$ F$$ @F/|Sword|s/

This command searches the text buffer, beginning from
the edit pointer, for the 'n'th occurrence of
'string'. The edit pointer will be positioned after
'n'th occurrence of 'string' if it is found. If the
'n'th occurrence of 'string' is not found, an error
will be given (unless suppressed) and the edit pointer
will be positioned after the last occurrence of
'string' found, or be left at its original position if
no occurrences were found. If no string is specified,
the search will reuse the previously specified string.
The switch "Ignore Upper/Lower case distinction" will
determine if the search will ignore +the distinction
between upper and lower case letters. The form
"n Fstring<ESC>" will perform a global search to the
end of the file for "string" instead of just to the end
of the text buffer,

The search is always forward, never backwards.
Remember that Pattern Matching Codes can be used. The
"@" option allows an explicit delimiting character.
For the command form "#Fstring<ESC>", an error is only
given if no occurrences of 'string' are found.

Command: N

BFhello$$ Searches for the word "hello" from the
beginning of the text buffer,

#[3Ffirst$-5DIthird$] Changes every third occurrence
of the word "first" to "third".

Z~100LFend$$ Find the word "end" if it occurs in the
last 100 lines of the text buffer.

#[@F/fix up/V] Finds the next occurrence of the string
"fix up" and enters Visual Mode. Any
changes can be made in Visual mode.,
When Visual Mode is exited, the next
occurrence of "fix up" is found and so
on,

F$V The next occurrence of the previous
specified string is found, and Visual
Mode is then entered.



VEDIT

Command Mode

Example:

Description:

Notes:

See Also:

Examples:

Example:

Description:

See Also:

Page 118

Gr Get

G4

This command inserts a copy of text register 'r' at the
current edit pointer. If there is insufficient memory
space for +the entire copy, nothing is inserted and an
error message is given. If the text register is empty,
nothing is inserted. The contents of the text register
are not affected by this command.

The "P", "RL", "RI" commands or Visual Mode are used to
place text in a text register.

Commands: P
Visual Mode Text Registers

BGYS Inserts the contents of text register 9
at the beginning of the text buffer.

12[G2] Inserts the contents of text register 2
twelve +times at the current edit
pointer,

132P3$132K

B
10LG3 Moves 132 1lines of text, by saving it

in text register 3, killing the
original 1lines and inserting the text
after the tenth line of the file, in
the situation where the beginning of
the file 1is no 1longer in the text
buffer.

H__ Help
H -H

This command loads a special help file called VHELP.TXT
into memory and displays the contents one screen at a
time (you press any key to see +the next screen, or
{CONTROL=C> to return to command mode). Since the help
file does take up memory space, it can be eliminated
after use by typing -H. Alternatively, you can leave
it in memory for a quicker access next time you type
the H command.

Command Mode
Memory and File Management



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Examples:

Page 119

T text{ESC> Insert

Ia word$$ I<CR>new line$$

This command inserts the text 'text' into +the text
buffer, starting at the current edit pointer. The
insertion is complete when the <ESC> (or explicit
delimiter) character is encountered. The inserted text
does not overwrite any existing text. The 'text' may
contain the RETURN key, which is expanded +to carriage
return = 1line feed. If insufficient memory space
exists for the 'text', an error will be given and only
part of +the 'text' will have been inserted. The edit
pointer is moved just past the inserted text. This
command is probably best wused in iteration macros,
since normal text insertion is much easier to do in
Visual Mode.

Control characters including <ESC> can be inserted by
preceding them with the 1literal character <CTRL-Q>.
The "@" character allows an explicit delimiting
character to be used. The tab character is not
expanded with spaces as is optional in Visual Mode,

Commands: ETI

200 [ IKCR><TAB>$] Inserts 200 new lines, each
beginning with a tab character.

Iunder<{CTRL-Q><CTRL-H> $$ Inserts the text "under", a
BACKSPACE and the underline character.
This will wunderline +the "r" on some
printers.

@I/a word/ Inserts the text "a word" into the text
buffer.

@I/EP 7 7O<KESC><CR>/ Inserts the command line
"EP 7 70 <ESC>" into the text,
including a RETURN.



VEDIT
Command Mode

Example:

Description:

Notes:
See Also:

Examples:

Page 120

mK Kill
4K -3K 0K #K

This command kills (deletes) the specified number of
lines. If 'm' is positive, all text from the current
edit pointer up to and including the 'm'th <LF> is
deleted. If 'm' is negative, all text preceding the
edit pointer on the current line and the 'm' preceding
lines are deleted. If 'm* is 0O, all characters
preceding the edit pointer on the current 1line are
deleted. Fewer than 'm' lines will be killed if either
end of the text buffer is reached.

. Command: D, T

#[Ftemp line$OLK] Kills all 1lines which contain the
string "temp line".

-#K Kills all text before the edit
pointer.
#P6#K Saves the rest of the text from the

edit pointer in text register 6 and
then deletes it from the text buffer.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Examples:

Example:

Description:

Notes:

See Also:

Examples:

Page 121

mL Lines

120L -14L OL 1000_L

This command moves the edit pointer by 'm' lines. If
'm' is positive, the edit pointer is moved to the
beginning of the 'm'th following 1line. If 'm' is
negative, the edit pointer is moved to the beginning of
the 'm'th preceding line, If 'm* 4is 0, the edit
pointer it moved to the beginning of the current line.
Attempting to move past either end of the text buffer
will leave the edit pointer at the respective end. The
global edit command "m L" will move past the end of the
text buffer, with automatic disk buffering if
necessary.

If an "L" command in an iteration macro attempts to go
past the end of the text buffer it will end the current
iteration level.,

Commands: C, T

#[Stypo$type$OLT] Changes all occurrences of "typo" to

"type" and types out every line that
was changed.

Mr _Macro

M

This command executes the contents of register 'r' as a
command macro, Any legitimate command or sequence of
commands may be executed as a macro. Macros are most
easily created and edited ‘in Visual Mode. They may
also be saved and loaded from disk or inserted with the
"RI" command. A macro may invoke another  text
register, which in turn may invoke another, up to a
nesting depth of 5. Macros are very convenient for
holding long command sequences which are repeatedly
used, saving the effort of retyping them each time.

RETURNs may be used to separate commands in order to
improve readability. The error "MACRO ERROR" results
if a macro attempts to change a text register which
contains the executing command macro. An "M" without a
following digit is interpreted as "MO".

Commands: G, P, RI, BL, RS, R* o
Visual Mode Text Registers, Command Macros.

See heading "Text Register Macros" for an example.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Examples:

Page 122

nNs1<ESC> Next

Nbad line$$ 3@N/third/ N$$

This command is very similar to the "F" command, except
that if +the 'n'th occurrence of 's1' is not found in
the text buffer, forward disk buffering is performed to
read in more of the input file wuntil the 'n'th
occurrence is found or the end of the input file is
reached, If the 'n'th occurrence still is not found,
an error is given. The edit pointer is positioned very
similarly to the "F" command. However, with the "N"
command it is possible that the 'n'th occurrence is not

found, and that the previous occurrence is no longer in

the text buffer due to auto-buffering. In this case
the edit pointer is positioned at the beginning of the
text buffer.

All Notes for the "F" command also apply. "F" is
identical to "N" and "_F" should be used, since "N" may
be discontinued in a future release. The error "NO
OUTPUT FILE" occurs if no output file is open for
performing forward disk buffering.

Command: F, F Auto Buffering

#[Ntypo$=-4DItype$] Changes all occurrences of the
string "typo" to "type" in the rest of
the file,

#[@N/typo/-4D@I/type/] Alternate form of the same
command using explicit delimiters.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Examples:

Page 123

mPr Put
40P1 -20P+2 0P3

This command saves a copy of the specified text lines
in text register 'r'. The previous contents of the
text register are destroyed, unless the 'r' is preceded
with a "+" indicating that the text is to be appended.
The range of lines saved is the same as for the "K" or
""" commands., If 'm' is zero, the text register is
simply emptied, and nothing is saved in it. Since the
text buffer and the text registers share the same
memory space, saving text in the text registers
decreases the amount of memory available to -the text
buffer. Thus the "OPr" command should be given when
the text in a register is no longer needed. This
command does not change the text buffer. If there is
insufficient memory space for the text copy, the text
register is only emptied, nothing is saved in it and an
error is given. The saved text is inserted in the text
buffer with the "G" command or in Visual Mode.

The error "MACRO ERROR" results if a macro attempts to
change a text register which contains the executing
command macro.

Commands: G, K, T
Visual Mode text move

120P1$120K The text 1lines are saved in text
register 1 and are then deleted from
the text buffer.

-23T

-23P6 The text lines are typed for
verification before they are saved in
the text register.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Examples:

Page 124

nSs1<ESC>s2<ESC> Substitute

Stypo$type$s$ #Sname$Mr. Smith$$ _SoldPnew$$

This command performs 'n' search and substitute
(replace) operations. Each operation consists of
searching for the next occurrence of 's1' in the text
buffer and changing it to 's2'. An error is given if
's1' is not found. If there is insufficient memory
space for inserting 's2', 's1' will have been changed
to as much of 's2' as possible and an error is given.
The edit pointer is positioned after 's2', if 's1' |is
found, or else is left at its original position if 's1'
is not found. For the command form "#Ss1<ESC>s2<ESC>,
an error is only given if no occurrences of 's1' are
found. The form "n_Ss1<ESC>s2<ESC" will perform a
global search and replace, searching to the end of the
file if necessary.

All Notes for +the "F" command apply here too. A
command like #Sfishes$fish$$ will execute much faster
than the equivalent command #[Sfishes$fish$].

Commands: F, N, I

#Stypo$type$$ Changes all occurrences of "typo" to
" -type 1" .

#[Stypo$type$OLT] Changes all occurrences of "typo"
to "type" and types out every line that
was changed.

ES 91

#[S/typo/type/OLT] Alternate form of above command.

' Explicit delimiters can now be used
without "@" prefix.

#[Sname$smith$V] Change the next occurrence of
"name" to "smith" and enter into Visual
Mode. Any changes can be made in
Visual Mode and when Visual Mode is
exited, the next occurrence of "name"
will be searched and so on.

# Sgarbage$$ Deletes all occurrences of the string
"garbage" from the rest of the 1fileO.



VEDIT
Command Mode

Example:

Description:

Notes:
See Also:

Examples:

Example:

Description:

Notes:

See Also:

Examples:

Page 125

mT Type

14T -6T oT

This command types out (displays) the specified 1lines.
If 'm' is positive, all characters from the edit
pointer up to and including the 'm'th <LF> are typed.
If 'm' is negative, the previous 'm' lines and all
characters up to just preceding the edit pointer are
typed out. If 'm' is 0, only the characters on the
present line preceding the edit pointer are typed out.
Fewer than 'm' lines will be typed out if either end of
the text buffer is reached. Note +that "OTT" will
display the current line regardless of the position of
the edit pointer on it. This command does not move the
edit pointer, This command is most useful in iteration
macros for displaying selected lines. Visual Mode
should be used for looking at sections of a file.

#[ Fmoney$0TT ] Types out every line in the text buffer
with the string "money" in it.
U Unused (Free Memory)
U

This command displays the number of memory bytes free
for use by the text buffer or text register, followed
by the number of memory bytes used by the text buffer
(length of the text buffer), followed by the combined
number of memory bytes used by the text registers
(length of the text registers).

These three numbers will not always add up to the same
total, since several other small buffers all use the
Same memory space., If the number of free bytes goes
below 260, the "FULL" flag will be set when in Visual
Mode.



VEDIT
Command Mode

Example:

Description:

Notes:
See Also:

Examples:

Page 126

v Visual

v

This command enters Visual Mode. The visual cursor
position will be set from the current edit pointer
position. Visual mode is exited with either the
[VISUAL EXIT] or the [VISUAL ESCAPE] key. At that time
the edit pointer will be set from the cursor position.
The text registers are preserved.

Visual Mode

Fhere$V$s - Finds "here!" and enters Visual Mode.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Examples:

Page 127

nW Write

20W #W ow -100W

This command writes 'n' lines from the beginning of the
text buffer to the output file and then deletes these
lines from the text buffer. If there are less than 'n'
lines in the text buffer, the entire text buffer is
written out. If 'n' is zero, the entire text buffer up
to the line the edit pointer is on, is written out. If
no output file is open, an error is given and no text
is written. The output file can be opened with an "EW"
or "EB" command or when VEDIT is invoked.

The special forms "-nW" and "=0W" write the end of the
text buffer +to the temporary ".$R$" <file. These
commands are primarily used to make more memory space
available for further edit operations. " nW" writes
the last 'n' lines in the text buffer out to disk.
" OW" writes out the end of the text buffer beginning
with the line the cursor is on.

No indication is given if less than 'n' lines were
written.

Commands: A, EB, EW, EX

EW parti.txt

24W

EF

EW part2.txt

BEX The first 24 lines of the text buffer
are written out to file "PART1.TXT" and
the rest of the text buffer is written
out to file "PART".TXT" and the edit
session is completed.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Example:

Page 128

Z Zip
Z Z

This command moves the edit pointer to the last
character in the text buffer. The command "_Z" moves
the edit pointer to the last character in the file, if
necessary performing forward disk buffering.

Commands: B, N
Disk Buffering

Z=100L Positions the edit pointer to the 100th
line before the end of +the text
buffer.

Z=12T Types out the last twelve lines in the

text buffer.

_Z=12T Types out the last twelve lines in the
file,



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Page 129

EA Edit Again

EA

This command writes the entire text buffer and any
remaining part of the input file out to the output file.
and closes the output file., All file backup and
renaming is performed as with the "EY" or "EX"
command., The output file is then reopened as both the
input and output file and the input file is read back
in. Finally, it restores your original position in the
file and any text markers. This command thus starts a
new edit session and is functionally similar to an "EX"
command followed by invoking VEDIT again with the name
of the current output file. The main purpose of this
command is to save the currently edited file on disk as
a safeguard against losing the file due to a user
error, or hardware, software or power failure. The
contents of the text registers are not affected by the
"EA" command.

Commands: B, G, EX, EY
Visual Restart

EAZV Saves the current file on disk, moves
the edit pointer to the end of the text
buffer and re-enters Visual Mode.
Useful for periodic saving of ongoing
worke.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Example:

Page 130

EBfile<ESC> Edit Backup

EBfile.txt

This command opens the file 'file' for both input and
output and then reads in all of the file, or until the
memory is nearly full, If an output file is still
open, an error is given and the command has no other
effect. "EB file" is similar to invoking VEDIT with
the command:

VEDIT file
It is also similar to the sequence of commands:
ERfi1e<ESC>EWfile<ESC>0A

except that if the file does not yet exist on disk, the
message "NEW FILE" is displayed.

The term "backup" is used here to describe this command
since the term is used by some other editors to perform
a similar operation. Remember +that VEDIT always
creates a '"backup" of a file on disk, if its name is
used as the name of the output file.

Commands: W, ER, EW

EY

EB newfile.txt The entire text buffer is written out
to the current output file, that file
is closed, and the file "NEWFILE.TXT"
is opened for input and output and read
in.

ER partl.txt$oA

EB part2.txt The file "PART1.TXT" is read into the
text buffer, the file "PART2.TXT" is
then made the current input and output
file and is appended to the end of the
previous file "PART1.TXT".



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Example:

Page 131

EC Edit Change (Disk)

EC

This command must be given before you attempt to change
any logged-in disks in order to recovery from a disk
write error, or to read files from another disk. An
error is given if the current disk still has an output
file open. This command is used in the event of a disk
write error where you do not wish to delete any files
with the "ED" command. In this case the "“EF" command
should be given to close that part of the output file
which has been written +to +the original disk. Then
issue the "EC" command. It will prompt with a message
when the original disk can be removed and a new disk
inserted. Type a [RETURN] after the new disk is
inserted and then issue an "EW" command to open a file
for output. You can then issue any "W" command or the
"EX" command. When the edit session is over the output
file is in two parts on two disks. They can easily be
merged with a CP/M PIP (MSDOS COPY) command or with
VEDIT., See the "ER" command for this. This command
can also be wused to switch to another disk before an
"ER" or "EG" command.

Be sure that the entire input file has been read into
memory before issuing the "EC" command.

Commands: ED, EF
Disk Write Error Recovery,

EC Will give prompt: INSERT NEW DISK AND.
TYPE RETURN when the user should remove
the o0ld disk and insert a new disk.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Page 132

ED Disk Directory

ED EDA: ED B:*,TXT

This command displays the disk directory of any drive.
It serves as a reminder of the names of files you wish
to edit, merge or have already written out. No files
or text is changed. Drive specifiers, the "?" and "*"
wildcard characters and CP/M User Numbers are allowed.

Disk Write Error Recovery

Gives the directory of all files with
extension ".TXT" on drive B.

ED B:*.TXT

ED B:=3 Gives the directory of all files CP/M
drive B, with CP/M User Number 3.
EF Edit Finish (Close)
EF
This command closes the output file, making the text

which has ALREADY been written to disk permanent. Any
existing file on disk with the same name as the output
file is backed=-up by renaming it with a file extension
of ".BAK".

This command DOES NOT actually write any text to disk.
Use the "EY" command to write the text to disk and save
it. Since the output file is actually opened with the
file extension ".$$$", the ".$$$" file is first closed,
then any existing file on disk with the same name as
the output file is renamed to ".BAK", and last, the
" $$$" file 1is renamed to the true output file name.
(See EW command notes.)

Commands: EW, EX, EY

EW save.txt
100W EF The first 100 lines of the text buffer

are written out as the file "SAVE.TXT".



VEDIT
Command Mode

Example:

Descriptions

Notes:

See Also:

Example:

Example:

Description:

Notes:
See Also:

Example:

Page 133

EGfile[line range] Edit Get (File)

EGfile.txt[1,100] EG file.txt

This command will insert a specified line number range
of the file "file" into the text buffer at the edit
pointer. If insufficient memory exists to insert the
entire file segment, as much as possible will be
inserted and a *BREAK¥ message will be given. If no
line range is specified, the entire file is inserted.

The 1line numbers of a file can be displayed using the
"EL" command., A space may be used instead of a comma
in the "line range".
Commands: A, EL, ER
EG library.asm[34 65] Lines 34 through 65 of the file

"LLIBRARY .ASM" are inserted into the
text buffer at the edit pointer.

nEI Edit Insert

12EI

This command will insert the character whose decimal
value 1is "n" into the text buffer at the edit pointer.
This is useful for entering special control characters
into the text buffer, especially characters which
cannot be generated from the keyboard. Characters with
a decimal value between 128 and 255 can also be entered
with the EI command. Only the "End of File" marker
with a value of 26 cannot be entered. Control
characters are displayed in both command and Visual
Mode by preceding the letter with a "caret" (*).

Commands: I, [NEXT CHAR LITERAL]

8EI A Dbackspace character is inserted into
the text buffer at the edit pointer.

92EL A "\" is inserted into the text with
the EI command, because it could not be
generated from the keyboard.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Page 134

EKfile<ESC> Edit Kill

EKfile.txt EK*,bak

This command will erase (kill) the file 'file' from the
disk. This is the easiest method of recovering from a
disk write error in order to make more disk space or a
free entry in the directory. The command first
displays a directory of the files to be erased and asks
for confirmation before erasing then.

Never erase any ".$$$" or ".$R$" files from within
VEDIT! These are the temporary files VEDIT is using.
Don't delete +the input file until all of it has been
read into memory.

Commands: EC, ED
Disk Write Error Recovery

EK oldfile.txt The file "OLDFILE.TXT" is erased from
the disk.

EK *.bak Deletes all files with a file extension

of ".BAK" from the default drive.

ELfile[line range] Edit Look (File)

EL file.txt EL b:file.txt[200,400]

This command allows you to view another file with line
numbers, in the specified line number range. If no
line range is specified, the entire file is displayed.
The displayed line numbers may subsequently be used
with +the "EG" command to extract a portion of the
file.

Commands: EG

EL library.asm The file "LIBRARY.ASM" is
with line numbers.

displayed



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

= SAPO OOV VN -

- O

Page 135
mEQ Qutput to Printer
40E0 -20E0 0EO
This command sends the specified lines to the 1listing

device (printer). If 'm' is positive, all text from
the edit pointer up to and including the 'm'th line is
printed. If 'm' 4is negative, the previous 'm' lines
and all characters up to the edit pointer are printed.
If 'm' is 0, the entire text from the beginning of the
text buffer up to the current edit pointer is printed.
Fewer than 'm' lines will be printed if either end of
the text buffer is reached., This command does not move
the edit pointer.

The print out can be stopped by typing <CTRL=C>.

Commands: L, T, RP, YL
Printing Text from Visual Mode

ZOEO Prints the entire text buffer and
positions the edit pointer at text
end.

EP n k<ESC> Edit Parameters

EP 14 EP 3 30

This command changes the value of parameter 'n' +to
k', The numbers are specified in decimal and
separated by spaces or commas, The default values of
these parameters are determined during the
customization process., An error is given if 'n' is
specified out of range. The parameters are:

Cursor type (0, 1 or 2)
Cursor blink rate (5 = 100)
Indent Increment (1 - 20)
Lower case convert (0, 1, 2 or 3)
Conditional convert character (32 = 126)
Display line and column number (0, 1, 2 or 3)
Word Wrap column (0 - 255)

Bit 8 Allowed (0 =-17)
Cursor positioning mode (0 - 2)
Horizontal scrolling margin (40 = 255)
Horizontal scrolling increment (1 - 78)



VEDIT Page 136
Command Mode

Parameter (1) determines the type of cursor displayed in
Visual Mode for memory mapped versions. The CRT terminal
versions use the terminal's cursor instead. The cursor types
are: O=Underline, 1=Blinking Reverse Video Block, 2=Solid Reverse
Video Block, 3=Attribute (SSM VB3 and IBM PC only)

Parameter (2) determines the cursor's blink rate for cursor
types 0 and 1 above.

Parameter (3) determines how much further the editor will
indent each time the [INDENT] key is typed. The indent position
after typing the [INDENT] key four times is therefore the "Indent
Increment" multiplied by four.

Parameter (4) determines whether lower case characters are
converted to upper case. For value (0) no conversion takes
place, for (1) all lower case are converted to upper case. For
(2) lower case are converted to upper case, unless the cursor is
past a '"special" character on the text line. This "special
character is set by parameter (5). Mode (3) is similar to (2)
except that characters are reversed instead forced to upper
case. All of this is primarily applicable to assembly language
programming, where it is desirable to have the Label, Opcode and
Operand in upper case and the comment in upper and lower case.

Parameter (5) sets the conditional upper/lower case convert
character used for parameter (4) above.

Parameter (6) determines whether the cursor's line position
in the file and horizontal position on the line are displayed on
the status 1line. The values are: 0 = Both off, 1 = Line number
displayed, 2 = column displayed and 3 = both displayed.

Parameter (7) is the Word Wrap column., It is also the right
margin used when formatting paragraphs. A value of 0 disables
both Word Wrap and formatting. It should be turned off when
editing programs! ’

Parameter (8) determines where 8 bit characters are allowed
and is a 3 bit parameter., Setting Bit 1 allows 8 bit input
characters. Bit 2 allows 8 bit characters on output
(alternately, the 8th bit will be stripped and the character
displayed in reverse video if possible). Bit 3 allows wunused
control sequences to be inserted into the text buffer. Normal
value is "" -« allow 8 bits on input, display 8 bit characters in
reverse video. Users with the IBM PC and NEC APC, which have
alternate character sets will want to use a value of "3",

Parameter (9) determines the cursor positioning mode. The
modes are O = cursor only at real text, 1 = cursor allowed past
end of lines, 2 = pad with spaces when past end of line.



VEDIT

Command Mode

Page 137

Parameter (10) is the horizontal scrolling margin which sets
the maximum right margin with scrolling. Text lines longer than
this "scroll margin" are wrapped to the next screen line.

Parameter (11) is the horizontal scrolling increment. It
determines how much the screen scrolls right or left when [SCROLL

RIGHT]

and [SCROLL LEFT] are ©pressed or VEDIT scrolls

automatically.

Notes:

See Also:

Examples:

Example:

Description:

Notes:

See Also:

Example:-

The parameter values are specified in decimal.

Commands: ES, H (to help you remember them all)
Customization, Visual Mode, Indent and Undent Functions

EP 16 This sets the "Indent Increment" to
six.

EP 7 70 This sets the Word Wrap column to 70.

EQ Edit Quit

EQ

This command quits the edit session without saving the
current file and leaves VEDIT. Its main purpose is to
"quit" after one has finished just looking at a file or
one doesn't want to save any of the edit changes made.
DO NOT confuse +this command with the "EA" command;
their results are quite opposite. Remember that the
"EA" command saves the file and starts a new edit
session,

Any output file with the file extension ".$$$" will
also be deleted, Any original file on disk with the
same name as the output file, but with an extension of
",BAK" will have been deleted if any characters were
written to the (now deleted) output file. With the
exception of this possible backup file, all other files
will exist on disk Jjust as they did before the quit
edit session.

Commands: EA, EZ

#K Shoot!! Meant -#K

EQ Since a bad mistake was made in the
above command, it is best to quit this
edit session, go back to the operating
system and start over. All edit
changes are lost, but not your file!!



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Example:

Page 138

ERfile<ESC> Edit Read

ER newfile.txt

This command opens the file 'file' for input
(reading). Nothing is read into the text buffer with
this command. The "A" command or an auto-read is used
to actually read the input file. If the same file was
already open for input, the file is "rewound", so that
the file can again be read from +the beginning,. An
error is given 1if 'file' does not exist. Files can
also be read from disks which are not currently running
by using the "EC" command. Issue the "EC" command,
insert the new disk into a drive which is not being
used for any output file and open a file for reading
with the "ER" command. This may be necessary in case a
file has been split into two parts during a disk write
error recovery.

File names may be preceded with spaces  for
readability.

Commands: A, EC, EB, EW

ER parts.inv

20A The file "PARTS.INV" is opened for
input and twenty 1lines from it are
appended to the end of the text
buffer.



VEDIT

Page 139

Command Mode

Example:

ES n k<ESC> Edit Set

ES10 ES 31

Description: This command changes the value of switch 'n' to 'k'.

The numbers are specified in decimal and separated by
spaces or commas. The default values of these switches
are determined during the customization process. An
error 1is given if 'n' is specified out of range. The
switches are:

1 Expand Tab with spaces : (0=NO 1=YES)
2 Auto buffering in Visual Mode (0=NO 1=YES 2=BACK)
3 Start in Visual Mode (0=NO 1=YES)
4 Point past text reg. insert (0=NO 1=YES)
5 Ignore UC/LC distinction in search (0=NO 1=YES)
6 Clear screen on visual exit (0=NO 1=YES)
7 Reverse Upper and Lower case (0=NO 1=YES)
8 Suppress search errors (0=NO 1=YES)
9 Use explicit string delimiters (0=NO 1=YES)

Switch (1) determines whether or not the tab key in
Visual Mode is expanded with spaces to +the next tab
position. If not, a tab character is inserted into the text
buffer. Except for special applications, the tab key should
not normally be expanded with spaces.

Switch (2) determines whether auto=buffering is enabled
in Visual Mode., "O" disables auto=buffering, "1" enables
only forward disk buffering, and "2" enables both forward
and backward disk buffering. Unless you have a hard disk we
recommend a value of "", Before using "2", make sure you
have sufficient free disk space. Use "O" when you are
giving explicit Read/Write commands. This will prevent
unexpected disk read and write from occurring while you are
editing in Visual Mode.

Switch (3) determines whether or not the edit session
will begin in Visual Mode.

Switch (4) determines the edit pointer's position (or
cursor's in Visual Mode) following insertion of the text
register. If the switch is off, the edit pointer is not
moved, and is thus left at the beginning of +the newly
inserted text. If the switch is on, the edit pointer is
moved just past the newly inserted text.



VEDIT

Page 140

Command Mode

Notes:
See Also:

Example:

Switch (5) determines whether VEDIT will make a
distinction between upper and lower case letters in searches
and substitutes using the "F", "N" and "S" commands and
during Visual Mode search and replace operations, Most
users will probably wish to ignore the distinction, so that
the string "why" will match "Why", "WHY" and "why". Setting
the switch to "1" will make VEDIT ignore the distinction
between upper and lower case characters during searches.

Switch (6) determines whether the screen will be
cleared when Visual Mode is exited and Command Mode
entered. If the screen is not cleared, the Command Mode
prompt "COMMAND:" will appear below the status line.
Setting the switch to "1" will clear the screen when Visual
Mode is exited.

Switch (7) determines whether all letters typed on the

keyboard will be reversed with respect to upper and lower
case. It should normally be OFF, but does allow a user with

an upper case only keyboard to enter lower case letters.
Setting the switch to ™"i" will make VEDIT reverse all
keyboard letters in both Command and Visual Mode.

Switch (8) determines whether search errors will be
suppressed, If not suppressed, not finding a string will
cause an error message and the command to be aborted.
Search errors are usually only suppressed for command
macros.

Switch (9) determines whether explicit string
delimiters can be used without having to specify the "@"
command modifier, This is a matter of personal preference,
but is useful with command macros.

Customization, Visual Mode

ES11 This enables tabs typed in Visual Mode
to be expanded with spaces.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:
See Also:

Example:

Page 141

ET Edit Tab

ET 20 40 60 80 100 120 ET 8

This command changes the tab positions wused by VEDIT
for displaying tab characters, and in Visual Mode, when
the "Expand Tab" switch 1is set, for expanding tab
characters. Up to 30 tab positions are allowed and
they must be in the range 1 - 254. The default
positions are set during customization. If only one
number 'n' is given, the tab positions will be set to
every 'n' positions. For word processing the tabs can
be set to the same positions as are specified for the
print formatting program in order to see how they will
look in the final product. An error is displayed if a
bad position is given. No tab is needed at position 1,
and counting starts at 1 (not at zero). Thus the
normal tab positions are: :

9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 ...
For use in Visual Mode, there must be at least one tab
position per screen line, i.e. at least one tab every

64 or 80 positions.

Customization, Visual Mode, Indent and Undent Functions

EV Edit Version

EV

This command displays the VEDIT version number. This
number should be used in any correspondence you have
with wus concerning the operation of VEDIT. This
command can also be used inside iteration macros +to
give some indication of the progress being made in long
executing macros.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Exanmple:

Page 142

EWfile<ESC> Edit Write

EW newdat.inv

This command opens the file 'file' for output and
subsequent writing. No text is actually written by
this command. An output file must be opened in order
to save any text on disk. A file can also be opened by
the "EB", "EA" commands and when VEDIT is first
invoked., If a file is already open for output, an
error is given and no other action takes place.

The file opened is actually a temporary file with the
same name, but with an extension of ".$$$". The file
is not made permanent and given its true name until it
is ciosed with the "EA", "EF", "EX" or "EY" commands.
At that time, any existing file on disk with the same
name as the output file is backed up by renaming it
with an extension of ".BAK". Any existing file on disk
with +that name and the .BAK extension will be deleted
when any text is written to the output file.

Commands: W, EA, EF, EX, EY

EW partl.txt

24W

EF

EW part2.txt

EX The first 24 lines of the text buffer
are written out to file "PART1.TXT" and
the rest of the text buffer is written
out to file "PART".TXT" and edit
session is completed.

ER a:bigfile.asm

EW b:bigfile.asm

OAV Typical procedure for editing a file
which is too big for both it and its
Backup to fit on the same disk. In
this case, it is read from disk A: and
written +to disk B:. Just be sure that
disk B: is nearly empty.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:
See Also:

Example:

Page 143

EX Edit Exit

EX

This is the normal way to save the file being edited on
disk and exit VEDIT. It writes the entire text buffer
to the output file, followed by any unread portion of
the input file, closes the output file and exits
VEDIT. A1l file backup and renaming is done as with
the "EF" command. The error "NO OUTPUT FILE" is given
if no output file is open. The error "NO DISK SPACE"
results if there is insufficient disk space to save the
entire file.

In case of a "NO DISK SPACE" or "NO DIR SPACE" error,
see the heading "Disk Write Error Recovery" for the
procedure to save your file.

Commands: EA, EB, EF, EQ, EW, EY

VEDIT FILE.TXT The editor is invoked in the normal way

v to edit a file in Visual Mode. The new
BEX file is then saved on disk.,

EY Finish Edit Session
EY

This command writes out the file being edited to disk
and closes it, 1in preparation for editing another
file. First the text buffer is written to the Output
file. Any unread portions of the input file at then
transferred to the Output file and the Output file
closed. All file backup and renaming of files is done
as with the "EF" command, This command is equivalent
to "EX", but without leaving the editor. The error "NO
OUTPUT FILE" is displayed if no output file is open.

See notes for EF and EX commands.
Commands: EX, EF

EF

EB newfile.txt The current file is saved on disk, and
the file "NEWFILE.TXT" opened for
editing.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Page 144

RDr Register Dump

RD3

This command types (dumps) out the contents of text
register 'r' on the console. Control and Tab
characters are not expanded. The command is most
useful for sending initialization sequences to a CRT
terminal, such as sequences to setup programmable
function keys. The "RT" command should be used to view
the registers, since control characters are then
expanded,

Type CTRL=-C to stop the RD command.

Commands: RT

Auto-Startup
RD5 The contents of text register 5 are
dumped (sent) to the console.
RIr text<ESC> Register Insert
@RI3/B#E0/

This command places the following 'text' into text
register 'r'. If 'r' is preceded by a ‘'+' the 'text'
is appended to any existing contents in the register.
The 'text' may contain the RETURN key, which is
expanded to carriage return - line feed. If
insufficient memory space exists, an error will be
given and only part of the 'text' will be inserted.
This command is useful for setting up a text register
within a command macro.

If a register needs to be setup from the keyboard, it
is often easier to enter the text in Visual Mode and
then move it to the text register.

Function: [MOVE TO TEXT REGISTER]

@RI3/B#E0/ The command "B#EO" is placed into text
register 3.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:
See Also:

Example:

Page 145

RLr file<ESC> Register Load

RL4 macrol.exc

This command 1loads text from +the file 'file'. The
entire file is loaded and the file itself is not
affected. If there is insufficient memory space to
load the entire file, as much as possible will be
loaded and a *BREAK* message will be given. Used to
load text files which are then inserted in the text
buffer, and to load command macros.

The text register number should always be specified,
but if left out, register 0 will be used.

Commands: RS, EG
Text registers in Visual and Command Modes.

RL4 macro.exc Loads the file "MACRO.EXC" into text
register 4.

RPr Register Print

RP3

This command prints the contents of text register 'r!
on the line printer. Allows a hardcopy of the text or
command macro in the text register to be made. Also
allows a small disk file to be printed after first
loading it into a text register. Control characters
are expanded and <ESC> is represented as a "$".

Type CTRL=C to stop.
Commands: RD, RT

RP5 The contents of text register 5 are
printed on the line printer.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Exanmple:

Example:

Description:

Notes:

See Also:

Example:

Page 146

RSr file<ESC> Register Save

RS4 macrol.exc

This command saves the contents of text register 'r' in
the created file 'file'. The register contents are not
affected., If there is insufficient disk space for the
entire file, as much as possible is saved and the error
"NO DISK SPACE" is given. The error "NO DIR SPACE"
results if there is insufficient directory space on the
disk. Commonly used to save a section of text in its
own disk file, or %o save a command macro for later
use.

See note for "RL" command. If an existing 'file'
already exists, you will be prompted for confirmation
to overwrite it. If there is insufficient disk space
to save the register, try deleting some files or insert
another disk and give the command again.

Commands: RL

Saves the contents of text register 4
in the file "MACRO.EXC".

RS4 macro.exc

RTr Register Type

RT3

This command types out the contents of text register
'r' on the console. This is commonly used to remind
oneself what is in a particular register. <CIRL=S> can
be used to pause the display and <CTRL=C> to quit the
command, Control characters are expanded and <ESC> is
represented as a "$". Any imbedded <CTRL-S> will also
pause the display. The "RD" command will dump out a
text register without expanding control characters.

It is frequently easier to insert the text register at
the end of the text buffer and view it in Visual Mode.

Commands: RD

RT5 The contents of text register 5 are
displayed on the console.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Page 147

RU Register Used

RU 50P4$RU

This command displays the number of characters (size)
of each text register. Commonly used +to see which
register hold any text and how much they hold.

The sum of the displayed values plus the size of the
"hidden" help text buffer is the third number displayed
by the "U" command. If any of the registers hold text,
the status line message "TEXT" is displayed in Visual
Mode.

Commands: U

RU Display the sizes of the text
registers.
40P3$RU Save 40 lines of text in register 3 and

then check how many bytes are now in
the text registers.

R¥* Register Comment

R¥ This is a comment in a command macro

This command allows a comment to be placed within
command macros. All text through the next <CR>XLF> is
ignored.

The "R*¥" and following comment can appear anywhere in a
command macro except in the middle of a text string or
file name.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Page 148

mXAr Value Register Add

XA2 12XA3

This command adds the positive or negative value 'm' to
value register 'r'. (If 'm' Vbegins with a '=' the
following number is subtracted from the value register)
The arithmetic is performed as 16 bit wunsigned
numbers.

The 10 value registers are not pre-initialized when
VEDIT is invoked.

Commands: X3, XT

XA3 This increments (adds ™") value

register 3.

60XA4 This adds 60 to value register 4.
-2XA4 "pn  is subtracted from value register
4.
nXSr Value Register Set
0xs2 1200X53

This command sets value register 'r' to 'n', 'n' is

treated as a 16 bit unsigned integer.

The 10 value registers are not pre~initialized when

VEDIT is invoked.

Commands: XA, XT

0XS9 This clears (sets to 00) value register
9.
12XS0 Value register 0 is set to 12.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

See Also:

Example:

Page 149

XTr Value Register Type
XT4 :XT4
This command types value register 'r' in decimal

followed by a <CR>XLF>. The command may be preceded by
a ":", in which case no <CR>XLF> will be typed.
Currently, this is the only way the value register
numbers can be accessed.

The 10 value registers are not pre-=initialized when
VEDIT is invoked.

Commands: XA, XS

10X32

12XA2

XT2 Value register 2 is +typed out, who's
contents is 22.

YL XT9 The number in value register 9 is
printed out.

YI Route to Text Buffer
YI

This command inserts output to the display screen into
the text buffer at the edit pointer. This could be
used in conjunction with the "XT" command, for example,
to insert numeric information into the text. "oYI"®
resumes normal display screen output.

Commands: YL

YI XT3 Insert whatever number is in numeric

register 3 into the text buffer.



VEDIT
Command Mode

Example:

Description:

Notes:

See Also:

Examples:

Example:

Description:

Example:

Page 150

YL Route to List Device

YL

This command routes what is sent to the display screen
to a printer, or "list device', The command OYL
resumes normal display screen output. This command can
be used in conjunction with a number of commands, RT,
T, EL ED, EV, XT etc., to send information to the
printer.

Do not use the print command "EO" in conjunction with
the "YL" command. After an "EO" normal display screen
output will resume., Therefore "EO" turns off any "YL"
re-routing.

Commands: YI, T, RT, XT

YL ED Print the directory on the printer.
YL RT6 Print the contents of register 6 on the
printer.
YR/YW Display File Name
YR W

These commands type the names of the input file and
output filename. YR types the input file, YW types the
output filename., The input file is never listed on the
status line in visual mode,

YR Lists the input file on the screen.

YW Lists the output file on the screen.



VEDIT PAGE 151

APPENDICES



VEDIT Page 153

APPENDIX A
CUSTOMIZING VEDIT



VEDIT Page 154
Appendix A Customizing VEDIT

CUSTOMIZING VEDIT

WHAT IS CUSTOMIZATION?

Customization is the process of installing VEDIT on your computer
in order to adapt it to your particular CRT terminal or video board
and your preference in keyboard layout. It also allows you to set
various VEDIT parameters according to your applications. The
customization is menu driven. You can easily perform some aspects of
the customization and leave all other aspects at their previously set
or default values. You therefore don't need to understand the entire
customization process in order to install VEDIT.

Setting up a new keyboard 1layout is one aspect of the
customization. It allows almost any control character, escape
sequence or special function key to be used for the visual mode cursor
movements and editing functions. The changeable parameters include
the Tab positions, the right margin at which word wrap takes place,
and many others. Another aspect is related to your screen size,
including the number of lines and columns.

The first part of +this appendix gives the step by step

instructions for the customization. The later part "Customization
Notes" covers some of the customization issues in greater depth.

WHEN IS CUSTOMIZATION NECESSARY?

VEDIT has to be customized before the first time it is used, and
can then be customized again, when you have a a new CRT terminal, wish
to change some default parameters or just wish to try a new keyboard
layout. It is not customized every time you use it. The greatest
benefit you receive from the customization process is probably the
ability to determine your own keyboard layout, which can utilize any
special function keys and accommodate personal preferences.,

For some computers, such as the IBM Personal Computer and the IBM
Displaywriter, we supply an "up and running" version. The keyboard
layout for these preconfigured versions will be listed among the
appendices of this manual. Even with a preconfigured version, you
will probably want to customize your own later. (We recommend that
you use our preconfigured version to gain some experience with VEDIT
before customizing your own). If you don't have a preconfigured
version of VEDIT, you can create one easily. See "Quick
Customization" described under the section "How to Perform
Customization". With a CRT version of VEDIT, you generally only need
to select the CRT terminal from the menu in order to complete the
customization. The keyboard layout will be the "Default Keyboard
Layout" which does not assume any function keys. If you have a
terminal such as a Televideo 920C or a Zenith Z19, you will probably
want to reconfigure the keyboard 1layout according to the example



VEDIT Page 155
Appendix A Customizing VEDIT

layouts for these terminals in Appendix F.

VEDIT is supplied as a disk file with an extension of ".SET",
i.e., VEDITZM.SET and VEDITZC.SET, which contain the "prototype"
editor to be customized. The customization process does not alter the
«SET file, but rather creates a new file with the file extension of
".COM" (or ".CMD" for CP/M=86), which is the runable VEDIT. Depending
on your version, you may have several L.SET files. Refer to the
appendices for the pertinent "Description of Files".

The customization is done with the supplied programs VEDSET.COM
for the memory mapped versions, and VDSETCRT.COM for the CRT terminal
versions. Since the customization program is fairly easy to run, you
will probably run it several times in the first week until you have
everything "just right". You can of course also create several
configurations of VEDIT, each for a special application. To help
remind you of which configuration you are wusing, you can create a
custom signon message for each, which will be displayed when VEDIT is
invoked.

CRT and Memory Mapped

There are two primary versions of VEDIT - CRT Terminal versions
and Memory Mapped versions. The CRT version supports practically
every terminal on the market. The particular terminal being used is
selected from a large menu of terminals during customization.

The memory mapped version supports most S=100 and Multibus
display boards. Special memory mapped versions are also available for
the TRS-8Q Models I, II and 16. The memory mapped customization is a
little more complex with questions pertaining to the screen's address,
cursor types and a few more, The general purpose memory mapped
version contains a file on disk which describes the patches necessary
to implement bank select.

In addition to the primary versions, there are several
specialized versions. One is for the IBM Personal Computer. This
version is memory mapped, but skips some parameters, such as the
screen address which are fixed by the hardware. It also asks
additional questions concerning specific features of the IBM PC, such
as display attributes. The appendices describe this in more detail.
There is also a version for the PIICEON V-100 and the TDL VDB, both of
which are I/0 mapped display boards.,



VEDIT Page 156
Appendix A Customizing VEDIT

HOW TO PERFORM CUSTOMIZATION

STEP 1 = ENTER COMMAND SEQUENCE FROM OPERATING SYSTEM

In order to customize the CRT version of VEDIT you will need
the files "VDSETCRT.COM" and "“CRT.TBL" on your work disk in
addition to the appropriate ".SET" file. For the memory mapped
version, you will need the file "VEDSET.COM" and the appropriate
" SET" file. If your disk has more than one ".SET" file, refer
to the appropriate "Description of Files" in the appendices for
your version of VEDIT.

To begin customization, first type VEDSET or VDSETCRT,
followed by the appropriate .SET file name, followed by the file
name you wish the editor to be called. (VEDIT is a good choice.)
There is no need to give the file extensions to these names.
Remember to end the command line with the RETURN key.

Assuming you wish to customize the Z80 CRT version, with a
file name of VEDITZC.SET, the customized editor is to be called
VEDIT and the files VEDITZC.SET and VDSETCRT.COM are on the
currently logged in disk, the command to run VDSETCRT is:

VDSETCRT VEDITZC VEDIT
A similar command for the 8080 Memory Mapped version would be:

VEDSET VEDIT8M VEDIT
The command for the TRS=-80 Model II Pickles & Trout version is:

VEDSET VEDIT2P VEDIT

A running VEDIT (a VEDIT.COM or VEDIT.CMD file) may be

customized as well, This allows some aspects of the
customization to be changed without having to repeat +the entire
process. A typical command to do this is as follows:

VEDSET OLDVEDIT.COM NEWVEDIT
where “VEDSET" may also be VDSETCRT, "OLDVEDIT" is the VEDIT you
want to change (you need to type the ".COM" or ".CMD" here), and
"NEWVEDIT" is the name of the new VEDIT.

If you receive a "Checksum Error", please see the second
part of this section for an explanation.



VEDIT Page 157
Appendix A . Customizing VEDIT

STEP 1.5 = (CRT ONLY). CHOOSE YOUR CRT TERMINAL

VDSETCRT will display a menu of terminals from which you
select the number corresponding to your terminal. The list is
two screens long; type any key after looking over the first
screen. Following the prompt enter the number corresponding to
the terminal you are using.

In the rare case that your terminal does not appear on the
menu, you have two choices, If you are technically inclined you
can change +the file "CRT.ASM" which contains the tables
corresponding to each of the terminals. This procedure is
documented in the file "NEWCRT.DOC". Alternately, contact us for
support.

Technically inclined users may wish to read the file
"READCRT.DOC" for related information. Hazeltine and Intertube
users should also read this file,

STEP 2 - LOOK OVER MAIN MENU TASKS

TASKS:

1) Perform all new keyboard layout

2) Add alternate keys to existing layout

3) Set special characters

4) Set ES and EP parameters

5) Set screen parameters

6) Set other parameters

7) Set signon message

8) Display or print keyboard layout

9) Customization complete; return to operating system

Tasks (1) and (2) are used to determine the keyboard layout,
task (8) can print the current keyboard layout, task (7) sets the
signon message and (9) writes the customized VEDIT out to disk.
The remaining tasks change the various parameters. The prompts
for many of these are followed by a number in parentheses, which
is a suggested value. To use the suggested value you must type
it in, there in NO DEFAULT value, Questions with a numeric
answer also require a RETURN after the answer. To ignore input
for a particular question, type either the RUBOUT (DELETE) key or
a CTRL-U. After each task is performed, the program returns to
the main menu. At this point another part of the customization
can be performed or a previous step repeated if a mistake was
made. Typing a CTRL=-C from +the main menu aborts the
customization.



VEDIT Page 158
Appendix A Customizing VEDIT

Quick Customization

If you have the CRT version of VEDIT, the normal screen size of
24 by 80 and wish to bring VEDIT up quickly with the "Default Keyboard
Layout", you need only to select your terminal from the CRT terminal
menu and then immediately select task (9) in the menu to complete the
initial customization. (The default memory size parameters will work
well in any size system.) If you like, you can go ahead and do that
now, and read the rest of this section later.

If you have a memory mapped system or a CRT terminal with a size
other than 24 by 80, you will need to also perform task (5) in the
customization. When you are ready to try out something other than the
"Default Keyboard Layout" you can perform task (1).

If task (1) is not performed, the resulting editor will respond
to the control codes in the "Default Keyboard Layout". Similarly, if
tasks (3) through (6) are not performed, the editor will be setup with
the parameters in the "Default CRT Customization".

Note: If you have a Televideo, a Z19, an IBM 3101 or other CRT
terminal for which we supply a special keyboard layout, you
must perform task (1) to give you the keyboard layout. Just
selecting the terminal will NOT give you the special layout.

STEP 3 - TASK 1: PERFORM ALL NEW KEYBOARD LAYOUT

ENTER ESCAPE MODE CHARACTER #1

If you choose to use escape sequences, or your keyboard produces
escape sequences with special function keys, type the escape
character, or the function key lead-in character, most commonly
ESC. Else type RETURN, which will then also slip the remaining
questions about escape characters.

ENTER ESCAPE MODE CHARACTER #2

A second escape mode character may also be specified, +typically
for other function keys. If not needed, type RETURN. (Type
"CTRL=-A" for Televideo terminal).

ENTER COMMON 2ND CHARACTER #1 IN ESCAPE SEQUENCE

Simply answer with a RETURN if you are typing escape sequences in
by hand. (A RETURN will skip the next question.) However, some
terminal's special function keys send 3 character escape
sequences where the second character is always the same and
should be ignored. In this case type in the second character.
(A "?" for the Zenith Z19) (A capital 1letter "O" for the DEC



VEDIT Page 159
Appendix A Customizing VEDIT

VT=100)
ENTER COMMON 2ND CHARACTER #2 IN ESCAPE SEQUENCE

Some terminals, particularly ANSI standard ones, have a second
character which should be ignored in the second character
position, Type the character, or if there is no such second
character, type RETURN., (A "[" for the DEC VI-100) (RETURN for
Z19, Televideo, etc)

UPPER/LOWER CASE ESCAPE SEQUENCES EQUIVALENT (Y/N) ?

If you answer NO, the editor will make a distinction between, for
example, ESC H and ESC h. This is annoying if you hand type
escape sequences and you should answer with a "Y". However, the
function keys on terminals such as a Televideo send escape
sequences which distinguish between upper and lower case. Here
you would have to answer "N".

TYPE CONTROL CHARACTERS FOR «ss.

When prompted for each visual operation, you may press a special
function key, a control character or enter an escape sequence.
The control codes or escape sequences are displayed as you type
them in. Use Task (8) to print out the final keyboard layout for.
your reference. Disallowed characters are the normal displayable
characters. Typing one of +these will give an error and a
reprompt. If you inadvertently attempt to use the same key code
for a second operation, an error and a reprompt for the operation
will be given. If you do not want to use a particular function,
just type RETURN to ignore the function. Specifically, you will
probably want to use either [SET INSERT MODE] and [RESET INSERT
MODE] or [SWITCH INSERT MODE], but not all three functions. You
probably won't use [RESTART], since the function is also
available in command mode. Otherwise choose something for
[RESTART] which you are very unlikely to hit by mistake. Don't
confuse [TAB CURSOR] with the tab character, since it is a cursor
movement operation. If you make a mistake, just type RETURN for
the rest of the functions and perform this task again.

NOTES: DO NOT AITEMPT TO USE <CTIRL-M> FOR ANY FUNCTIONS, SINCE
<CTRL=-M> IS THE SAME AS THE RETURN KEY.

The "Left Arrow" on some terminals, especially Televideos,
produces the same code as the BACKSPACE key. Therefore, the
[ BACKSPACE] function needs to be assigned to another key.

It is often convenient to use escape sequences consisting of
ESC and a digit for some functions. A strip of cardboard can
then be placed above the digits on the keyboard to indicate
their functions.



VEDIT Page 160
Appendix A Customizing VEDIT

STEP 4 - TASK 2: ADD ALTERNATE KEYS TO EXISTING LAYOUT

Task (2) allows you to use alternate control codes for any of the
editing functions. For example, your keyboard may have cursor
keys which you have customized as the four basic cursor movements
in VEDIT, However, out of habit you are still using CTRL=S,
CTRL=-D, CTRL~E and CTRL-C to move the cursor. You can select
task (2) to enter any such alternate control codes to use for any
editing function. Type the RETURN key for those functions you
don't wish to invoke by an alternate control sequence.

When running task (2) you should answer the escape character
questions the same way as you did for task 1).

Task (2) can also be used to specify the initial control code to
use for an editing function if none was specified in task (1),
i.es, you ignored the function by typing a RETURN for it. The
functional difference between tasks (1) and (2), is that task (1)
first clears out any existing keyboard layout, while task (2)
builds on the existing layout.

STEPS 5 => 10 = SET NON-KEYBOARD PARAMETERS:

Answer questions in decimal or hexadecimal as prompted, then hit
RETURN. Type a<CTRL=U> or the DELETE (RUBOUT) key to repeat the
question. '

THERE ARE NO DEFAULT SETTINGS, SO ALWAYS ENTER A VALUE.

STEP 5 - TASK 3: SET SPECIAL CHARACTERS

3.1) HEX CODE FOR SCREEN CONTINUATION CHARACTER (2D)

This is the line continuation indicator used in Visual Mode
in reserved column O. Most common is a hyphen (code 2D
hex) or reverse video hyphen (code AD hex).

3,2) HEX CODE FOR COMMAND ESCAPE CHARACTER (1B)

This is the command mode Escape character which should be
the "ESC" or "ESCAPE" key (code 1B hex), if your keyboard
has it. If your keyboard doesn't have an ESC key, choose
another control character, perhaps CTRL-Z, (code 1A hex).



VEDIT Page 161
Appendix A Customizing VEDIT

3.3) HEX CODE FOR COMMAND ITERATION LEFT BRACKET (5B)

3.4) HEX CODE FOR COMMAND ITERATION RIGHT BRACKET (5D)
The Command Iteration Brackets are +those which delimit
iteration macros === groups of Command Mode commands. This
manual represents these as "[" and "]" with hex codes of 5B
and 5D. You may prefer to use "<" and ">" with hex codes

of 3C and 3E. Use either set, but it is convenient if your
keyboard produces one set without needing the SHIFT key.

3.5) HEX CODE FOR SEARCH PATTERN MATCH CHARACTER (7C)

The 1initial character of all pattern matching codes is

shown in this manual as a "|", (code 7C hex). If your
keyboard does not have a "|", you will need to change it to
some other 1little wused character, perhaps " " (code 7E
hex).

3.6) (Memory Mapped Only)
HEX CODE FOR CURSOR CHARACTER (5F)

This is the character used as the blinking “underline"
Ccursor. While normally the underline character (code 5F
hex), some users, particularly those with a Sorcerer, may
wish to try a hex code of "7F" which is commonly a solid
block.

3.7) (Memory Mapped Only)
HEX CODE FOR SCREEN CLEAR CHARACTER (20)
HEX CODE FOR STATUS LINE CHARACTER (2D)
HEX CODE FOR TAB EXPAND CHARACTER (20)

VEDIT normally clears the screen with spaces (code 20 hex),
uses a '=' (code 2D hex) on the status line and displays
tab characters with spaces. These may be changed for
special applications, or if your display requires other
characters, For example, the Polymorphic VII requires that
Bit 8 be set for normal characters. Therefore, the
character codes would be "AO", "AD" and "AQ" respectively.

STEP 6 = TASK 4f SET ES SWITCHES AND EP PARAMETERS

This task selects the default values for these parameters. They
can be changed while running VEDIT by wusing the ES and EP
commands. All numeric values are in decimal.



VEDIT Page 162
Appendix A Customizing VEDIT

4.1) EXPAND TAB WITH SPACES (0 = NO, 1= YES) (0)

Instead of inserting the +tab character into the file,
spaces to the next tab position are inserted when the [TAB
CHARACTER] function is typed. This is useful if another
program interacting with your file doesn't interpret tab
characters at the same tab positions. Since many spaces
use up extra disk space, don't enable this switch unless
you need to.

4.2) AUTO-BUFFERING IN VISUAL MODE
(0=NO, 1=YES, 2=AND BACKWARD) (1)

Auto=-buffering is described in section 1. of this manual.
You may select no auto-buffering "O", auto=buffering only
in the forward direction "1", or auto-buffering in both the
forward and backward direction nmn, Consider the
advantages and disadvantages of backward disk buffering
before selecting option "2". We recommend option "" with
floppy disk systems.

4.3) BEGIN IN VISUAL MODE (0=NO, 1=YES) (1)

This determines whether VEDIT starts in Visual or Command
Mode. We suggest you set this switch to "Yes".

4.4) POINT PAST TEXT REGISTER INSERT (0=NO, 1=YES) (1)

This determines whether the cursor (or Edit Pointer in
Command Mode) will be positioned at the beginning or the
end of text inserted from a text register. We suggest that
you initially set +this switch to "Yes", After some
practice with +the text registers you will know which way
you prefer it.

4.5) IGNORE UPPER/LOWER CASE DISTINCTION IN SEARCH
(0=NO, 1=YES) (1)

This determines whether the difference between upper and
lower case letters is ignored. We suggest you set this to
"Yes", A search for "the" will then also find "The",
"THE", etc. ‘

4.6) CLEAR SCREEN ON VISUAL EXIT (0=NO, 1=YES) (0)

This determines whether the screen is cleared when Visual
Mode is exited to Command Mode. For most applications you
will want to answer "No".



VEDIT

Appendix A

Page 163
Customizing VEDIT

4.7) REVERSE UPPER & LOWER CASE (0=NO, 1=YES) (0)

This determines whether all letters typed on the keyboard
will be reversed with regard to upper and lower case, i.e.,
upper case letters are converted to lower case and vice
versa, Only in very unusual situations would you want to
set this switch on, so set it off. For the TRS-80 Model I,
you should set this switch on, since the keyboard reverses
upper and lower case.

4.8) IGNORE SEARCH ERRORS (0=NO, 1= YES) (0)

This switch should normally be off. Otherwise there will
be no message if a Find or Substitute is unsuccessful.
This switch can be set with the ES command prior to
executing some types of command macros.

4.9) USE EXPLICIT TEXT DELIMITERS (0=NO, 1=YES) (0)

4.10)

4.11)

4.12)

This switch, if set ON, allows you to delimit each string
in commands such as Substitute or Find with any character.
The most commonly used ones are "/", ";", or ";", but any
character may be used.

We suggest turning this switch OFF initially because almost
none of our examples use this feature. It may be set with
the ES command before you begin issuing other commands.

(Memory Mapped Only)
CURSOR TYPE (0, 1, 2) (1)

This parameter determines the cursor type in memory mapped
versions., The cursor +types are O=Blinking Underline,
1=Blinking Reverse Video Block, 2=Solid Reverse Video
Block. Most wusers seem to prefer type "1", but you must
use "O" if your display does not produce reverse video.
Special applications including the IBM PC and the SSM VB-3
allow a cursor type of 3=Attribute.

(Memory Mapped Only)
CURSOR BLINK RATE (10 - 100) (See Prompt)

This determines the memory mapped cursor's blink rate.

Start with the value suggested by the VEDSET prompt. A
smaller number causes the cursor to blink faster.

INDENT INCREMENT (1 =-=20, SUGGEST 4)



VEDIT
Appendix A

4.13)

4.14)

4.15)

4.16)

4.17)

Page 164
Customizing VEDIT

This determines the "Indent Increment". A value of 4 is
common when structured programming languages are being
used.

LOWER CASE CONVERT
(0=NO, 1=YES, 2=CONDITIONAL, 3=REVERSE) (O)

This parameter is useful for assembly language programs.
If you choose "0", no conversion will occur. If you choose
"q"  all lower case keyboard character will be converted to
upper case. If "2" is chosen, all characters entered to
the left of the "Conditional Conversion Character" will be
converted to upper case. For example, assembly language
uses ";" as a comment delimiter. To the left of the wett
lower case letters are converted to upper case. To the
right of the "; " in the comment field, no conversion is
done. Option "3" is similar to "2", except that the case
of letters is reversed to the left of the "Conditional
Conversion Character".

DECIMAL CODE FOR CONDITIONAL CONVERSION CHARACTER (59)

This is the "Conditional Conversion" character used when
the previous parameter is set to "2" or "3". A value of
n"59" decimal, makes ";" the Conditional Character.

LINE AND COLUMN DISPLAY
(0=NONE, 1=LINE, 2=COLUMN, 3=BOTH) (3)

This determines whether the Visual Mode status line will
display the line number and column position the cursor is
on., It is usually useful to know both.

RIGHT MARGIN FOR WORD WRAP IN DECIMAL (O=OFF)

The Word Wrap column defines the right margin column. A
value of 00 turns Word Wrap off. Words typed beyond the
right margin will be wrapped to the next line. The right
margin is also used for the [FORMAT PARAGRAPH] function.
The right margin can be greater than the screen line
length. If VEDIT is being used primarily for  word
processing, you may wish to enter a value like "70".

HIGH BIT ALLOWED ON INPUT/OUTPUT (1 - 7, SUGGEST 1)
This is a technical topic and is described under "High Bit

Characters Support" A value of "" allows high bit (Bit 8)
characters on input, but displays them in reverse video



VEDIT
Appendix A

4.18)

4.19)

4.20)

Page 165
Customizing VEDIT

(when possible) after stripping their high bit. This is
suggested for most CRT terminals. A value of "3" allows
high bit characters on input and causes VEDIT to display
them unmodified. This allows accessing alternate character
sets and graphics on the IBM PC, NEC APC and some other
machines. The value of "7" additionally allows high bit
characters, which are not used in the keyboard layout, to
be inserted into the text.

CURSOR POSITIONING OPTION (0 - 2, SUGGEST 1)

This determines how the cursor will position itself past
the end of lines. A value of "Q" causes the cursor to only
position itself at "real" characters, i.e. never past the
end of a line. A value of "1" allows the cursor past the
end of a line during vertical cursor movement. A value of
"2" causes VEDIT to pad with spaces when the user attempts
editing with the cursor past the end of a line.

VIRTUAL LINE LENGTH WITH SCROLLING (40 = 254) (200)

This determines the maximum right margin with horizontal
scrolling. Lines longer than this value on wrapped on the
screen as '"continuation lines". Setting this value to or
less than the screen 1line length disables horizontal
scrolling.

HORIZONTAL SCROLL INCREMENT (1 - 100) (20)

This determines how much the screen scrolls sideways when
[SCROLL RIGHT] and [SCROLL LEFT] are typed or when VEDIT
scrolls the screen automatically.

STEP 7 - TASK 5: SET SCREEN PARAMETERS

5.1) ENTER NUMBER OF SCREEN LINES IN DECIMAL (24 or 25)

Enter the number of lines on your CRT display. While most
terminals have 24 lines, some have a 25th "Status Line".
On some of these, it is possible for VEDIT to place its
status line on the 25th line. These terminals are marked
with a "*" following the terminal's name in the menu. To
use the 25th line, answer this question with a "25". Note
that +the Intertec Intertube II must be specified as having
25 lines. The IBM Personal Computer also has 25 lines,
Answer with "24" for the Televideo 950C, since VEDIT cannot



VEDIT Page 166
Appendix A Customizing VEDIT

use its status line.

5.2) ENTER LINE MOVEMENT FOR PAGING IN DECIMAL (20)

Enter the number of screen lines you wish [PAGE UP] and
[PAGE DOWN] to move through the text by. About 4/5 of the
total number of screen lines is suggested, i.e., "12" for a
16 line display and "20" for a 24 line display.

5.3) ENTER TOP LINE FOR CURSOR IN DECIMAL (3)

This sets the top screen line the cursor can normally be
on, before the screen will begin to scroll down. This is
therefore, the minimum number of lines you will always see
before the line you are editing.

5.4) ENTER BOTTOM LINE FOR CURSOR IN DECIMAL (20)

This is similar to the previous step, except that it sets
the Dbottom line range for the cursor. This number must be
greater than or equal to the "Top Line for Cursor" setting,
and at most be one less than the "Number of Screen Lines",
since the very bottom line is only used for status. "4"
less than the number of screen lines is a good starting
point.

5.5) (Memory Mapped Only)
ENTER SCREEN LINE LENGTH IN DECIMAL (80 or 64)

Enter the number of bytes per screen line your display
has. This number must be in the range 20 - 255. It will
be 64 or 80 for most Memory Mapped Displays and therefore
the same as the next question. However it will be greater
for displays which have invisible attribute bytes at the
end of each line. The MATROX display board is an example,
and requires a value of 128.

5.6) ENTER LENGTH OF DISPLAYED LINE IN DECIMAL (80 or 64)

This is the number of characters per line VEDIT will

" display. Normally you want this value equal to the screen
line length, usually 80 or 64. The TRS-80 Model II and 16,
the IBM Personal Computer and the MATROX display board
require a value of 80.

5.7) (Memory Mapped Only)
ENTER ADDRESS OF SCREEN IN HEXADECIMAL



VEDIT
Appendix A

Page 167
Customizing VEDIT

For 8080/7Z80 versions enter the memory address of the
beginning of the video in hexadecimal. Many 16 x 64 boards
have an address of CCO0 hex. The TRS=80 Model II has an
address of F800 hex.

For 8086 versions enter the segment address for the base of
the screen.,

5.8) (8080/Z80 Memory Mapped Only)

ENTER NUMBER OF VIDEO BOARD INITIALIZATION BYTES

Enter "O" if your board requires no initialization.
Otherwise enter a number between "1" and "5" for the number
of "data  byte"-"port address" pairs needed for
initialization. Most memory mapped system need no
initialization (including TRS=-80 Models I, II and 16).
(One exception is the Processor Technology VDM, which
requires a "OO" output to port "C8" hex, and the SOL=-20 a
"00" output to port "FE" hex).

ENTER [RUBOUT] OR [CTRL-U] TO START PAIR OVER
ENTER DATA BYTE ~
ENTER PORT ADDRESS

The specified number of "data byte"="port address" pairs is
entered in hexadecimal with each number followed Dby
RETURN. Typing CTRL=-U or RUBOUT will reprompt with the
"ENTER DATA BYTE" question for that pair.



VEDIT
Appendix A

Page 168
Customizing VEDIT

STEP 8 = TASK 6: SET OTHER PARAMETERS

6.1) SIZE

See

IN DECIMAL OF SPARE MEMORY FOR AUTO-READ IN BYTES

the table below for a recommended value depending wupon

your memory size. The number must be in the range 1024 -
32768. Use RUBOUT or <CTRL-U> if you mistype the number.

MEMORY SIZE SPARE MEMORY FOR VALUE FOR TRANSFER
20K 2048 3
24K 2048 4
28K 3072 5
32K 4096 6
36K 5120 7
40K 5120 8
A4K 6144 9
48K 6144 10
52K 7168 1
56K 7168 12
60K 8192 13
64K 8192 14

6.2) SIZE

Minimum system size = 20K.

1 K byte is a unit of 1024 bytes (1024 = 2 ** 10).

For CP/M systems, the memory size is the CP/M size,
which should be on your CP/M disk label or displayed
when you first boot.

Do not make the Spare Memory for Auto Read more than
two times larger than the value given in the table or
it may produce a non~operational editor. This value
represents the number of bytes free in the text buffer
AFTER a file larger +than available memory space is
read. For example, in a 64K system the available
memory is about 46K. If the table value of 8192 was
chosen and a very large file edited, VEDIT would
initially read in the first 38K of the file, leaving
8192 bytes free. This extra space is available for
insertion of new material. Use the "U" command to
verify actual free space. See "Customization Notes"
for more details,

IN DECIMAL OF FILE MOVE TRANSFERS IN K BYTES

Choose the value from column 3 of the above table which
corresponds to your memory size. This parameter specifies

the

amount of the file read into the text buffer when

auto-buffering is done. The number entered must be in the
range 1 - 32,



VEDIT Page 169
Appendix A Customizing VEDIT

6.3) DO YOU WISH TO USE DEFAULT TAB POSITIONS? (Y/N)

The default tab positions are set at every 8th position,
for example, 9 17 25 41 49 57 65 73 81 89 etc. This is the
most common tab setting; if you change the tabs, the change
will apply to VEDIT only. Tab positions may be reset
ingide VEDIT by using the ET command.

If you enter "N", this prompt is given:
ENTER UP TO 30 TAB POSITIONS IN DECIMAL

Enter the desired tab positions, separating the numbers
with spaces or commas and following the last number with a
RETURN. Don't be concerned if your input line goes off the
right side of your terminal or screen. Note that you need
no tab at position 1 and that the positions are counted
starting from 1, not 0. You must also specify at least one
tab position per screen line and the highest allowed
position 1is 254. Entering a number outside of the range 1
- 254 will give an error and a reprompt of the question.
If you make a mistake, type RUBOUT or <CTRL=-U> to start the
question over.

6.4) (CRT Only)
ENTER DECIMAL VALUE (4mhz = 76, 2mhz = 38)

Enter "76" if your processor speed is 4mhz, "38" if the
speed is 2mhz. Interpolate for other processor speeds.
This value is wused for CRT's which require time delays
after control sequences are sent to them and is not
critical. It is also used in computing the delay for
updating the status line. The maximum value is 255,

6.5) BEGIN IN INSERT MODE (0=NO 1=YES) (0)

During full screen editing, you are either in "Normal" or
"Insert" mode. This question lets you select which mode
the editor begins in. Answering this question is a matter
of personal preference., The status line always indicates
which mode you are in.

6.6) USE DEFAULT DRIVE FOR HELP AND VEDIT.INI FILES
(0 = NO, 1 = YES) (0)

If you want VEDIT to search on the default drive for the
VHELP.TXT and optional VEDIT.INI files, answer with a ™".



VEDIT Page 170
Appendix A Customizing VEDIT

Normally you should place these files on the same drive as
the VEDIT.COM or VEDIT.CMD file.

6.7) ENTER (O = NO) OR DRIVE # FOR HELP AND VEDIT.INI FILES
(0, 1 =-16) (1)

In addition to the default drive, VEDIT can search on any
other designated drive for the VHELP.TXT and VEDIT.INI
files. Drive A is ™", drive B is "2", etc. Users who
keep their system disk with VEDIT, VHELP and the optional
VEDIT.INI on drive A should, therefore, answer with ™",
If this and the previous question are answered with "O0",
the help system cannot be accessed.

6.8) SHOULD VEDIT.INI FILE BE EXECUTED (0 = NO, 1 = YES)

If you always or occasionally use the auto-startup
facility, answer with "". If you never use it answer with
"Q", With a value of "O", VEDIT will not even search for
the VEDIT.INI file, which speeds up the invoking process by
a little.

6.9) REVERSE VIDEO ON STATUS LINE (0 = NO, 1 = YES) (1)
If your CRT or video display board produces reverse video,

answer "{"., If you have a CRT terminal which does not
produce reverse video, answer "QO".

STEP 9 - TASK 7: SET SIGNON MESSAGE

This message will appear briefly whenever you invoke VEDIT. It
can be used to help you identify how the particular VEDIT was
customized. The message may be up to 64 characters long. An
example message might be:

Bob's Televideo 920C, Word Wrap = 70.



VEDIT , Page 171
Appendix A Customizing VEDIT

STEP 10 = TASK 8: DISPLAY OR PRINT KEYBOARD LAYOUT

Selecting this task results in the following question:

DISPLAY ON PRINTER (0) OR CONSOLE (1) ?

Type a "0" (and RETURN) if you wish to have the keyboard layout
printed, or "1" to see it displayed on the console screen. The
display will be similar to our example keyboard layout sheets,
and will also show any alternate keyboard sequences that may be
used for each function. This is a handy way to make a record of
the keyboard layout. If you forget the keyboard layout, you can
run the customization program on the runable VEDIT file and
select Task 8 to print out the keyboard layout. For example, if
your VEDIT is in the file VEDIT.COM and your customization
program is VDSETCRT.COM you can give the command:

VDSETCRT VEDIT.COM JUNK

Select Task 8 to print the keyboard layout, and then type CTRL=C
to abort the customization process.

STEP 11 - TASK 9: CUSTOMIZATION COMPLETE; RETURN TO OPERATING SYSTEM

This writes the customized VEDIT out to disk.



VEDIT Page 172
Appendix A ’ Customizing VEDIT

Customization Notes

This section describes some aspects of the customization in more
detail. You do not need read this section in order to get VEDIT wup
and running. However, once you are more familiar with VEDIT, you will
probably want to gain a better understanding of the customization in
order to create a more "personalized" version of VEDIT.

VEDIT Checksum

To help insure that your distribution diskette is intact, the
customization performs a checksum on the VEDIT file being customized.
If there is a fault, a warning error message is given. If you
encounter this error make sure that you have copied the files from the
distribution diskette properly. If all else fails, try running the
customization on the distribution diskette. If this still results in
the error, please contact us for an exchange diskette. If you have
patched the VEDIT file, this error will result. In this case it can
be ignored, and the new VEDIT file will contain a new checksum so that
the error will not occur again unless the file becomes modified
again,

Keyboard Layout

Determining the desired keyboard layout for the cursor -movement
and function keys is the first task of the customization. Since it
could be a difficult task, several example keyboard Ilayouts are
enclosed to help the new user. The best layout will depend to some
extent upon your keyboard, especially if you have one with extra keys
which produce control codes. If extra keys are available, you may
want to allocate them to the most used visual operations such as the
cursor movements., The more extra keys you have, the easier it becomes
to remember the layout.

If and when you decide to try out your own layout, you will want
to avoid placing the keys you least want to hit by accident, such as
[Erase Line] or [Home], right next to the cursor movement keys. In
the event that you have no or few special keys, most visual operations
will involve holding the CONTROL key while you type a letter, or using
escape sequences. In this case, the layout may be tight and difficult
to organize. One strategy is to use mnemonic letters, such as CIRL-D
for [DELETE] and CTRL-U for [UNDO], etc. Another is to arrange the
keys in some geometric manner, such as having the cursor movement keys
on one side of the keyboard and the visual function keys on the other
side. You can also simplify the layout by using escape sequences,
especially for functions you do not use often, or don't want to hit by
accident. Trying out some combinations on paper is probably the
easiest way to accomplish the layout task.



VEDIT , Page 173
Appendix A Customizing VEDIT

Besides responding to the customary control characters, VEDIT
also handles multi character escape sequences., These may be user
typed, or may result from pressing a special function key. For
example, instead of typing the single character CONTROL-Q, the user
may type two characters, i.e. ESC and Q, to perform a visual
operation. All escape sequences begin with one of two user defined
escape characters (sometimes called Lead-in characters). While the
ESC is a common key to use as an escape character, any other ASCII
character may be used as the escape character, even displayable ones

-like "@"., The special function keys on some keyboards, like the Heath
H19, Televideo 920C and IBM 3101 also send multi character escape
sequences. Some terminals, like the IBM 3101, also send a Carriage
Return at the end of escape sequences. The keyboard customization
detects this automatically and the user need not be concerned with
it.

When performing the keyboard customization, it asks the question:
"Ignore upper/lower case difference in escape sequences?" If you
answer NO to +this question, the editor will made a distinction
between, for example, "ESC-H" and "ESC-h". Therefore, if you entered
the escape sequence with a lower case "h" during customization, the
editor would not respond to the escape sequence with an upper case
“"H", This is annoying if you hand type most of the escape sequences,
since at times you may have the SHIFT or a CAPS-=LOCK depressed. You
would therefore want to answer the question with a YES. However, the
function keys on some terminals, such as a Televideo, send escape
sequences which distinguish between upper and lower case letters. In
this case you will want to answer the question with NO. If you find
that you have made a mnmistake with +this question, you can skip
performing the entire keyboard customization again, by performing task
(2) in the customization, answering this and the other three questions
pertaining to escape sequences correctly and simply +typing a RETURN
for all of the function prompts.

When laying out the keyboard, you may therefore use any
combination of control characters, special function keys and escape
sequences for the visual operations. Some users will prefer to use
function keys and control characters for the most wused visual
operations, and escape sequences for the less used operations. If
escape sequences are used, a key like ESC or FORM FEED 1is suggested
for the escape mode character. Any other character may then follow,
including numbers, control characters or even another escape
character. Many keyboards have a numeric pad and these numbers can be
used in escape sequences. For example, use ESC - 8 for [CURSOR UP],
ESC = 2 for [CURSOR DOWN], ESC - 4 for [CURSOR LEFT] and so on. 1In
this case you may wish +to attach descriptive labels on top of the
numeric keys., An Escape and Control character combination is a good
choice for operations you don't want to hit by mistake, like [HOME],
[ZEND] or [RESTART EDITOR]. You may use an escape sequence consisting
of two escape characters in a row. In fact, if ESC is +the escape



VEDIT Page 174
Appendix A Customizing VEDIT

character, then "ESC - ESC" is the suggested sequence for the function
[VISUAL ESCAPE]. In the wunusual case that a displayable character
like "@" is used as the escape character, a "@ = @" cannot be used for
a visual operation, since in this case, "@ - @' will be treated by
VEDIT as the normal "@" character.

While all of this is complicated enough already, there are a few
pitfalls to avoid too. (You are well advised to use one of the
example keyboard layouts at first.) The only key which is predefined
is the RETURN or CR key which is also CTRL-M and cannot be used for
any visual operation., The special function keys on some keyboards
send a code identical to a control character. You may therefore
unintentionally attempt to use the same control code for two visual
operations. In this case, VEDSET or VDSETCRT will give an error
message and request a new key for that function. Some keyboards have
special function keys which send a character with data bit 8 set
(sometimes called the "High" or "Parity" bit). These work properly
since the VEDIT programs decode all 8 bits.

A Word About Keyboards

With the simplest keyboards, each visual operation will have to
be activated by holding the CONTROL key and +typing some letter or
using an escape sequence, Moving up, keyboards will have keys for
Backspace, Tab and Line Feed, which can be wused to perform the
described function. Some keyboards with a numeric pad can send
control codes by holding the SHIFT or CONTROL key and typing one of
the pad keys. Numeric pad keys can always be used as part of escape
sequences, The pad can then be wused for most of the visual
operations, In some cases, the keyboard will have many special keys,
which send a control code just by typing one of them. In the ideal
case, these control codes will be sent with the highest data bit set.
(This is Bit 8 and is often called the parity bit. The ASCII standard
code does not use Bit 8 and even a "Full ASCII" keyboard will send
nothing on Bit 8 or else parity information). Some very special
keyboards, usually ones with 70-100 keys on them, use Bit 8 to decode
all those keys. Since VEDIT and VEDSET decode all 8 data lines from
the keyboard, these fancy keyboards can be used to their full
advantage.

Screen Size Parameters

VEDIT can be customized for any screen size up to 70 lines by 250
columns. To set these parameters you need to know the number of lines
and the number of characters per line that your CRT terminal or video
display board produces. 16 x 64 and 24 x 80 are the most common
values. You also have the choice of how many columns on a line are
actually used. You want to use all of them, unless you have a special



VEDIT Page 175
Appendix A Customizing VEDIT

application or unusual hardware.

For the memory mapped versions, you also need to know the
beginning address of the display board in memory in hexadecimal and
whether it requires any data bytes output to a port to initialize it.
For example, many 16 x 64 boards have an address of CCO0 hex. Most of
these 16 x 64 boards do not need any initialization, one exception
being the Processor Technology VDM board, which should have a 00
outgut to Port C8 hex. (The SOL=-20 requires a 00 output to Port FE
hex).

Memory Size Dependent Parameters

The first parameter "Spare Memory for Auto-Read" determines how
many bytes of memory are free after VEDIT does an auto-read (such as
following an EB command). This size must be specified between 1024
and 32768, A reasonable size is about 1/4 of the size of the text
buffer for small systems and a little less for large systens.
Choosing a 1K (1024 byte) multiple makes the disk read/write work a
little bit faster.

In particular, do not make this value more than 2 +times larger
than the value in the table, or you may produce a non-operational
editor. This value is NOT the amount of memory VEDIT will use for the
text buffers, since VEDIT always sizes memory and uses all that is
available. Rather, this value is the number of bytes that is free in
the text buffer after a file is read which is larger than the
available memory space. For example, in a 64K system the available
memory is about 46K. If the table value of "8192" was used, and a
very large file edited, VEDIT would initially read in only the first
38K of the file, leaving "8192" bytes free. This can be verified with
the "U" command.

The second parameter "Size of File Transfers" specifies the size
of file transfers during auto-buffering and for the 'N' command. For
normal use, a value about 1/3 the size of the text buffer is good.
(Specifying a value larger than one half the maximum text buffer size
may create a non-working version of VEDIT.) When auto-buffering is
initiated, an attempt is made to append this number of K bytes to the
end of the text. If there is insufficient memory space for appending
this many bytes, this many bytes are written from the beginning of the
text Dbuffer to the output file. An auto-read is then performed which
reads in the rest of the input file, or until the memory is filled +to
within the number of spare bytes specified by "Spare Memory for
Auto-Read".



VEDIT Page 177

APPENDIX B
QUICK COMMAND REFERENCE



VEDIT Page 178
Appendix B Command reference
'n! denotes a positive number. (# represents 32767)

'm' denotes a number which may be negative to denote backwards

in the file,

'p! denotes a digit "O = 9" specifying a text or numeric register
'text','string', and 's1' denote text strings

'file' is a file name in the normal CP/M (MSDOS) format with optional
drive and extension. Must end in RETURN or <ESC>.

nA

=nA

B

mC

mD
nFstring<ESC>
Gr

H

Itext<ESC>

mK

mL

Mr
nNstring<ESC>
mPr
nSs1<ESC>text<{ESC>
mT

U

1)

nW

-nW

Z

SPECIAL CHARACTERS

<CTRL=-Q>

Append 'n' lines from the input file. (0A)

Read 'n' lines back from output file. (=04)

Move the edit pointer to text beginning.

Move the edit pointer 'm' characters.

Delete 'm' characters from the text.

Search for 'n'th occurrence of 'string' in buffer
Insert the contents of text register 'r'.
Display Help file VHELP.TXT.

Insert the 'text' into the text buffer.

Kill 'm' lines.,

Move the edit pointer by 'm' lines.

Execute text register 'r' as a command macro.
Search for 'n'th occurrence of 'string' in file.
Put 'm' lines of text into text register 'r'.
Search for and change 's1' to 'text', 'n' times
Type 'm' lines on console.,

Print # of unused, used and text register bytes.
Go into visual mode.

Write 'n' lines to the output disk file. (OW)
Write last 'n' lines to "$R$" file.(=OW)

Move edit pointer to end of text buffer

Literal Character. Next char. is taken
literally.

Precedes F, I, N, S commands to indicate explicit
delimiter instead of <ESC>.

Precedes F, N, S commands to suppress search error
message. Precedes XT, YR and YW commands to
suppress CRLF.

Precedes F, S commands to perform search to end of
file. Note: " F" is equivalent to "N". Precedes
B, L, Z commands to global operation on entire
file.

Represents maximum positive number  32767.
Signifies "forever" or "all occurrences of".



VEDIT
Appendix B

EXTENDED COMMANDS

EA

EBfile

EC

ED

EF

EGfile[line range]

nEL
EKfile
ELfile[line range]

mEQ

EP nm
1
2
3
4
5
6
7
8
9
10
11

EQ

ERfile

ESnnm
1
2
3
4
5
6
7
8
9

ET

EV

EWfile

EX

EY

EZ

Page 179
Command reference

Save file and reload. (EX and EB).

Open 'file' for Read & Write, perform an auto-read.
Change disks for reading or write error recovery.
Display disk directory. Opt. drive spec. and "7".
Close the current output file.

Insert the specified line number range of the file
'file' into the text buffer at the edit position.
If no line range, insert entire file.

Insert the character whose decimal value is 'n',
Erase (kill) the file 'file' from the disk.

Display with line numbers the specified line number
range of the file 'file'.

Print 'm' lines on the line printer. (OEO)

Change the value of parameter 'n' to 'm',

Cursor type (0, 1 or 2)
Cursor blink rate (10 - 100)
Indent Increment (1 - 20)
Lower case convert (0, 1 or 2)
Conditional convert character (32 - 126)
Display line and column number (0, 1, 2 or 3)
Word Wrap column (0 = Off) (0 = 255)
Bit 7 Suppressed (0/input 1/Output) (0 - 7)
Cursor positioning option (0 - 2)
Virtual line length with scrolling (40 = 255)
Horizontal scroll increment (1 - 100)

Quit the current edit session, without saving file
Open the file 'file' for input.
Change the value of switch 'n' to 'm'.

Expand Tab with spaces (0=NO 1=YES)
Auto buffering in visual mode (0=NO 1=YES 2=BACK)
Start in visual mode (0=NO 1=YES)
Point past text reg. insert (0=NO 1=YES)
Ignore UC/LC search distinction (0=NO 1=YES)
Clear screen on visual exit (0=NO 1=YES)
Reverse Upper and Lower case (0=NO 1=YES)
Suppress search errors (0=NO 1=YES)
Explicit string terminators (0=NO 1=YES)

Set new tab positions.

Print the VEDIT version number.

Open the file 'file' for output. Create Backup.
Normal exit back to Operating System after writing
output file.

Finish writing and close output file.

Quit the current edit session, remain in VEDIT.



VEDIT Page 180
Appendix B Command reference

TEXT REGISTER COMMANDS

R* Treat following line as a comment

RDr Dump contents of register 'r' on console.
RIrtext<ESC> Insert text into register 'r'.

RLrfile Load register 'r' from file 'file'.

RPr Send contents of register 'r' to line printer
RSrfile Save contents of register 'r' in file 'file’.
RTr Type contents of register 'r' on console.

RU Display size of each text register.

NUMERIC REGISTER COMMANDS

nXAr Add 'n' to value in register 'r',
nXSr Set value of register 'r' to 'n'.
XTr Type (decimal) value of 'r'.

MISCELLANEOUS COMMANDS

Y1 Route following console output to text buffer.
YL Route following console output to printer.

YR Type the "read" input file name on console,
mYS Strip 'm' lines of Bit 7.

YTtext<ESC> Type 'text' on console on console.

YW Type the "write" output file name.

SEARCH PATTERN MATCHING CODES

Match any Alphabetic letter, upper or lower case
Match a Blank = single space or tab

Match any Control character

Match any numeric digit - "O" - "9"

Match Line terminator - Line Feed, Form Feed or EOF
Multi - match any sequence of zero or more characters
Match any except following character or "l code"
Match any Alphanumeric - a letter or a digit

Match any Separator - not a letter or digit

Match any Upper case letter

Match any Lower case letter

Match White space - single or multiple spaces or tabs
Match any character. (Equivalent to old nin wildcard)
Use "}||" when you need to search for a "|"

—NEI<chzruaw»




VEDIT Page 181

APPENDIX C
ERROR MESSAGES



VEDIT
Appendix C

Page 182
Error Messages

VEDIT +types a message on the console when you should be notified

of an unusual or special condition.
you should not normally have to refer to this appendix
understand the message
categories: fatal errors, non-fatal errors and other messages.

All messages are descriptive, and
in order +to
The messages fall into three
Fatal

or error.

errors result in an abort of the disk operation being performed and a

return to Command Mode.
described below.
typo was made or that some small detail was

These are caused by certain disk errors
The non=fatal errors usually just signify that a
overlooked. These only

result in a message and you can try again.

FATAL ERRORS

CLOSE ERROR

NO DIR SPACE

NO DISK SPACE

READ ERROR

REV FILE OPEN

NON=-FATAL ERRORS

BAD FILE NAME

BAD PARAMETER

CANNOT FIND...

CANNOT OPEN TWO

DISK IN USE

DISK IS R/0O

The output file could not be closed., This is a
very unusual condition, but may occur if the disk
becomes write protected.

There was no directory space left for the output
file. Refer to the section on disk write error
recovery.

The disk became full before the entire output file
was written. As much of the output file as
possible was written. Refer to the section on disk
write error recovery.

An error occurred reading a file. This error
should never occur, since The operating system
itself normally gives an error if there was a
problem reading the disk.

You cannot change disks because the ".$R$" file is
open while performing backward disk buffering.

The file name you gave does not follow the MSDOS or
CP/M conventions.

Something was specified wrong with your "EI", "EP",
"ES" or "ET" command.

The specified search string could not be found.
This is the normal return for iteration macros
which search for all occurrences of a string.

You cannot have two output files open and there is
already one open. Also given if an output file is
open at the time of an "EC" command. Perhaps you
want to close it with the "EY" command.

You cannot perform an "EC" command because the disk
is being used by another program or user. See
section on Multi-Tasking Operating Systems.

The file you are trying to edit or write to already
exists and and has a "Read Only" attribute. TYour
command is canceled. You will have to return to
the operating system and change its attribute
before vou can edit it.



VEDIT
Appendix C
FILE NOT FOUND

FILE NOT OPENED

INVALID COMMAND

MACRO ERROR

NESTING ERROR

NO INPUT FILE

NO OUTPUT FILE

Page 183
Error Messages

The file you wanted to open for input does not
exist. Maybe you specified the wrong drive.

This message follows another message and reminds
you that your attempted disk operation was
canceled. It follows the "DISK IS R/O" message.
Also follows an operating system error message if
you attempted to open a file which is in use by
another program or user., See section on
Multi-Tasking Operating Systens.

The specified letter is not a command.

Your macro attempted to change the contents of a
text register which is currently executing as a
command macro. '

You cannot nest macros deeper than 8 levels.

There 1is no input file open for doing a read or
append operation.

There is no output file open for doing a write, a
close or an exit with the "EX" command. If you
have already written out the text buffer and closed
the output file, exit with the "EQ" command. You
must have an output file open when performing
global file operations.



VEDIT
Appendix C

OTHER MESSAGES

*BREAK*

Page 184
Error Messages

The command execution was stopped  because
insufficient memory space remained to complete
the command (I, S, G, P and EG). For the "“I",
"sS" and "EG" commands, as much text as possible
was inserted. For the "G" and "P" commands, no
text at all was copied or inserted. The message
is also printed when command execution is stopped
because you typed <CTRL-C> on the keyboard in
Command Mode or while printing.

INSERT NEW DISK AND TYPE [RETURN]

NEW FILE

QUIT (Y/N)?

PLEASE WAIT
FOR DISK

PRINTING <CTRL=-C>
TO ABORT

WAITING FOR PRINTER
<CTRL=C> TO ABORT

This is +the normal prompt for inserting a new
disk with the "EC" command.

The file specified with the EB command or with
the invocation of VEDIT did not exist on disk and
a new file has been created. If you typed the
wrong file name, you may want to start over by
issuing the "EZ" command.

This 1is the normal prompt following the "EQ" or
"EZ" command. Type "Y" or "y" if you really want
to quit, without saving the file, otherwise type
anything else. To avoid +this prompt when
quitting, enter "EQY" or "EZY" instead of "EQ" or
1" EZ " .

Temporary message on status line to indicate that
a disk operation is being performed during Visual
Mode. Some systems will loose key-strokes if you
type during disk operations.

Normal message anytime text is being printed.
Reminds you that you can press <CTRL=C> to stop
the printing.

VEDIT is waiting for another program or user to
release the printer Dbefore it can begin
printing. Message changes to normal printing
message once printing begins. See section on
Multi-Tasking Operating Systems.



VEDIT Page 185

APPENDIX D
EXAMPLE KEYBOARD LAYOUTS
GENERAL VERISIONS



VEDIT
Appendix D

Page 186
General Versions

DESCRIPTION OF FILES ON DISK
General 8080 / 280 / 8086 Versions

The files actually supplied on your diskette depend wupon which
version and package you purchased. You will have to perform the
customization process, described in the manual, to produce a runnable
version of VEDIT.

VDSETCRT .COM

VEDSET.COM

VEDITZC.SET
VEDIT8C.SET
VEDITZM.SET
VEDIT8M.SET

VEDIT86C.SET

The program used to perform the customization for the
CRT versions. The manual describes the use of this
program and the "SET" files below.

The program used to perform the customization for the
memory mapped versions.

File for producing the Z80 CRT version.

File for producing the 8080 CRT version.

File for producing the Z80 Memory mapped version.

File for producing the 8080 Memory mapped version.

File for producing the 8086 CRT version



VEDIT Page 187
Appendix D General Versions

PERSONAL KEYBOARD LAYOUT

"ESCAPE MODE CHARACTER #1"
"ESCAPE MODE CHARACTER #2"
"COMMON 2ND CHARACTER #1..."
"COMMON 2ND CHARACTER #2..."
"UPPER/LOWER CASE ESCAPE..."

[HOME] -
[ ZEND] -
[CURSOR UP] -
[ CURSOR DOWN] -
[ CURSOR RIGHT] -
[ CURSOR LEFT] -
[BACK TAB] -
[ TAB CURSOR] -
[ ZIP] -
[NEXT LINE] -
[LINE TOGGLE] -
[ SCROLL UP] -
[ SCROLL DOWN] -
[ SCROLL RIGHT] -
| SCROLL LEFT] -
[PREVIOUS WORD] -
[NEXT WORD] -
[PREVIOUS PARAGRAPH] -
[NEXT PARAGRAPH] -
[PAGE uUP] -
[PAGE DOWN] -
[ SCREEN TOGGLE] -
[ BACKSPACE] -
[ DELETE] -
[ERASE TO END OF LINE] -
[ERASE LINE] -
[DEL PREVIOUS WORD] -
[DEL NEXT WORD] -
[unpo] -
[ TAB CHARACTER] -
[NEXT CHAR LITERAL] -
[SET INSERT MODE] -
[RESET INSERT MODE] -
[SWITCH INSERT MODE] -
[ REPEAT] -
[ INDENT] -
[ UNDENT] -
[FIND] -
[REPLACE] . -
[ CANCEL] -
[COPY TO TEXT REGISTER] -
[MOVE TO TEXT REGISTER] -
[INSERT TEXT REGISTER] -
LPRINT TEXT] -
[SET TEXT MARKER] -
[GOTO TEXT MARKER] -
[ FORMAT PARAGRAPH] -
[VISUAL ESCAPE] -
[VISUAL EXIT] -
[RESTART EDITOR] -




VEDIT Page 188
Appendix D General Versions

DEFAULT CRT CUSTOMIZATION

The customization session below indicates the default values
supplied in the generic versions of VEDIT. The two values depending
upon memory size are based on a 40K system, however, they may be used
for larger size systems too. For clarity sake, each reply below is
preceded by "~-", which does not appear is the actual customization.

3.) HEX CODE FOR SCREEN CONTINUATION CHARACTER (2D) == 2D
HEX CODE FOR COMMAND ESCAPE CHARACTER {1B) == 1B
HEX CODE FOR COMMAND ITERATION LEFT BRACKET (5B) -- 5B
HEX CODE FOR COMMAND ITERATION RIGHT BRACKET (5D) == 5D
HEX CODE FOR SEARCH PATTERN MATCH CHARACTER (7C) == 7C

4.) EXPAND TAB WITH SPACES (0=NO, 1=YES) == 0
AUTO BUFFERING IN VISUAL MODE (0=NO, 1=FORWARD, 2=BACKWARD) == 1
BEGIN IN VISUAL MODE (0=NO, 1=YES) == 1

POINT PAST TEXT REG. INSERT (0=NO, 1=YES) ~= 1
IGNORE UPPER/LOWER CASE DISTINCTION IN SEARCH (0=NO, 1=YES) == 1

CLEAR SCREEN ON VISUAL EXIT (0=NO, 1=YES) == 0O

REVERSE UPPER AND LOWER CASE (0=NO, 1=YES) == 0

IGNORE SEARCH ERRORS (0=NO, 1=YES) == 0

EXPLICIT STRING TERMINATORS (0=NO, 1=YES) == O

INDENT INCREMENT (1 - 20, SUGGEST 4) -4

LOWER CASE CONVERT (0=NO, 1=YES, 2=CONDITIONAL) -0

DECIMAL CODE FOR CONDITIONAL CONVERSION CHAR., (59) == 59

LINE AND COLUMN DISPLAY (0=NONE, 1=LINE, 2=COLUMN, 3=BOTH) == 3

RIGHT MARGIN FOR WORD WRAP IN DECIMAL (0=0FF) -—0

HIGH BIT ALLOWED ON INPUT/OUTPUT (1 = 7, SUGGEST 1) == 1

CURSOR POSITIONING OPTION (0 - 2, SUGGEST 1) - 1

VIRTUAL LINE LENGTH WITH SCROLLING (40 = 254) - 200

HORIZONTAL SCROLL INCREMENT (1 - 100) -— 20
5.) ENTER NUMBER OF SCREEN LINES IN DECIMAL - 24

ENTER LINE MOVEMENT FOR PAGING IN DECIMAL - 20

ENTER TOP LINE FOR CURSOR IN DECIMAL -3

ENTER BOTTOM LINE FOR CURSOR IN DECIMAL -— 20

ENTER LENGTH OF DISPLAYED LINE IN DECIMAL -- 80

6.) SIZE IN DECIMAL OF SPARE MEMORY FOR AUTO READ -— 6144
SIZE IN DECIMAL OF FILE MOVE TRANSFERS IN K BYTES -- 8

DO YOU WISH TO USE THE DEFAULT TAB POSITIONS? (Y OR N) == Y

ENTER DECIMAL VALUE (4MHZ = 76, 2MHZ = 38) == 76

BEGIN IN INSERT MODE (0=NO, 1=YES) == 0

USE DEFAULT DRIVE FOR HELP AND VEDIT.INI FILES (0=NO, 1=YES) == 1
ENTER (0=NO) OR DRIVE # FOR HELP AND VEDIT.INI FILES -— 1
SHOULD VEDIT.INI FILE BE EXECUTED (0=NO, 1=YES) -1

REVERSE VIDEO ON STATUS LINE (0=NO, 1=YES) == 1
Note: Most terminals, except Televideos, can use a value of "AD"

instead of "2D" in task 3.1. This will cause the continuation
line character to be displayed in reverse video.



VEDIT ' Page 189
Appendix D General Versions

DEFAULT KEYBOARD LAYOUT

"ESCAPE MODE CHARACTER #1"  [ESC]

"ESCAPE MODE CHARACTER #2"  NOT USED Type [RETURN]

"COMMON 2ND CHARACTER #1..." NOT USED Type [RETURN]
"UPPER/LOWER CASE ESCAPE..." 1 (1 = YES, 0 = NO)
[HOME] ESC - H

[ ZEND] ESC = Z

[CURSOR UP] A [CTRL=E]

[ CURSOR DOWN] [CTRL=C]

[CURSOR RIGHT] [ CTRL-D]

[CURSOR LEFT] [CTRL=-S]

[BACK TAB] [CTRL-A]

[ TAB CURSOR] [CTRL=F] Useful for fast cursor movement.,
[ZIP] [ CTRL=G]

[NEXT LINE] ‘ [CTRL=J ] Not needed in tight layouts
[LINE TOGGLE] NOT USED Or use instead of [ZIP]
[SCROLL UP] [CcTRL=-Q]

[ SCROLL DOWN] [CTRL=Z]

[SCROLL RIGHT] [CTRL=-Y]

[ SCROLL LEFT] [CTRL~-T]

[PREVIOUS WORD] [CTRL=V ]

[NEXT WORD] [ CTRL~-B]

[PREVIOUS PARAGRAPH] ESC - W

[NEXT PARAGRAPH] ESC - X

[PAGE uP] [ CTRL=W]

[PAGE DOWN] [CTRL-X]

[ SCREEN TOGGLE] [CTRL-N]

[ BACKSPACE] [ CTRL=-H] Or use BACK SPACE key.
[DELETE] [DEL] Or called RUBOUT.
[ERASE TO END OF LINE] [CTRL=-L] Also called [EREOL] in manual.
[ ERASE LINE] ESC - L

[DEL PREVIOUS WORD] ESC - V

[DEL NEXT WORD] ESC - B

{uNDO] [ CTRL-U]

[TAB CHARACTER] [CTRL=-I] Or use TAB key.

[NEXT CHAR LITERAL] ESC - Q

[SET INSERT MODE] NOT USED Type [RETURN]

[RESET INSERT MODE] NOT USED Type [RETURN]

[SWITCH INSERT MODE] [CTRL=K ]

[REPEAT] [ CTRL-R]

[INDENT] [CTRL=-P]

[ UNDENT] [CTRL=0]

[FIND] ESC - F

[REPLACE] ESC - R

[ CANCEL] ESC - 0

[cOPY TO TEXT REGISTER] ESC - C

[MOVE TO TEXT REGISTER] ESC - M

[INSERT TEXT REGISTER] ESC - I

[PRINT TEXT] ESC - P

[SET TEXT MARKER] ESC - S

[GOTO TEXT MARKER] ESC = G

[ FORMAT PARAGRAPH] ESC - B

[VISUAL ESCAPE] ESC - ESC

[VISUAL EXIT] ESC - E Used to exit to command mode.

[ RESTART EDITOR] NOT USED Use "EA" Command.



VEDIT Page 190
Appendix D v General Versions

VEDIT NOTES FOR HEATH / ZENITH 219 / 219 TERMINALS

The example keyboard layout assumes that the terminal is in the
"Heath" mode and not in the ANSI mode. While VEDIT automatically puts
the keypad into "Alternate Keypad Mode", VDSETCRT does not, and for
the customization you must enter the Alternate Keypad Mode by going
into Local Mode and typing ESC and '='.

You may experience extra characters appearing when using the
cursor UP and DOWN keys, especially in conjunction with +the REPEAT
key. This is caused by the function keys sending their multi
character codes at 9600 Baud, which is too fast for non-interrupt
driven software. This is best solved by making your system interrupt
driven., If this is not possible, implement the cursor movements with
control characters and use the keypad for other functions. It may
help to reduce the entered value in Task 6.4 (relating to processor
speed) during customization, or to use the "Shifted Keypad Mode".

If you are using your terminal at the undocumented 19,200 baud,
you will need to modify the CRT.TBL file (see NEWCRT.DOC") and
increase the delays for EOS, EOL, INSERT LINE and DELETE LINE. The
cursor addressing will also require a delay of about 4 milliseconds.



VEDIT Page 191
Appendix D General Versions

EXAMPLE KEYBOARD LAYOUT FOR THE H19

"ESCAPE MODE CHARACTER #1" [EsC]
"ESCAPE MODE CHARACTER #2"  NOT USED
"COMMON 2ND CHARACTER #1..." ?
"COMMON 2ND CHARACTER #2..." NOT USED
"UPPER/LOWER CASE ESCAPE..." O

Type [RETURN]

Type [RETURN]
(1 = YES, 0 = NO)

[HOME] ESC - CTRL-H
[ZEND] ESC = CTRL~Z
L CURSOR UP] [Up Arrow]

[ CURSOR DOWN]
[ CURSOR RIGHT]
[CURSOR LEFT]

[Down Arrow]
[Right Arrow]
[Left Arrow]

[BACK TAB] [BLUE]

[TAB CURSOR] [RED] Useful for fast cursor movement.
- [z1P] [wHITE]

[NEXT LINE] [LINE FEED]

[LINE TOGGLE] [CTRL-A]

[SCROLL UP]

[ SCROLL DOWN]
[ SCROLL RIGHT]
[ SCROLL LEFT]

SHIFT [Up Arrow]
SHIFT [Down Arrow]
SHIFT [Right Arrow]
SHIFT [Left Arrow]

[PREVIOUS WORD] [ CTRL-D]

[NEXT WORD] [ CTRL-F]

[PREVIOUS PARAGRAPH] SHIFT [IC]

[NEXT PARAGRAPH] SHIFT [IL]

[PAGE UP] [1c]

[PAGE DOWN] [1L]

[ SCREEN TOGGLE] [ CTRL=W]

[ BACKSPACE] [ BACK SPACE]

[ DELETE] [pc]

[ERASE TO END OF LINE] [DL] Also called [EREOL] in manual.,
[ ERASE LINE] SHIFT [DL]

[DEL PREVIOUS WORD] [cTRL-S]

[DEL NEXT WORD] [CTRL=G]

[unDO] [CTRL-U]

[ TAB CHARACTER] [TAB]

[NEXT CHAR LITERAL] ESC - Z

[SET INSERT MODE] NOT USED Type [RETURN]
[RESET INSERT MODE] NOT USED Type [RETURN]
[SWITCH INSERT MODE] [ENTER] "ENTER" on Keypad
[ REPEAT] [ CTRL=R]

[ INDENT] [CTRL-P]

[ UNDENT ] [CTRL=-0]

[FIND] (]

[ REPLACE] [F2]

[ CANCEL] [F3]

[COPY TO TEXT REGISTER] [F5]

[MOVE TO TEXT REGISTER] [ ERASE]

[INSERT TEXT REGISTER] [F4]

[PRINT TEXT] ESC - 0

LSET TEXT MARKER] ESC = J

[GOTO TEXT MARKER] ESC = G

L FORMAT PARAGRAPH] ESC - F

[VISUAL ESCAPE] ESC - ESC

[VISUAL EXIT] [CTRL-E] Used to exit to command mode.
[RESTART EDITOR] NOT USED Use "EA" Command.



VEDIT Page 192
Appendix D General Versions
EXAMPLE KEYBOARD LAYOUT FOR THE IBM 3101
"ESCAPE MODE CHARACTER #1"  [EBSC]
"ESCAPE MODE CHARACTER #2"  NOT USED Type [RETURN]
"COMMON 2ND CHARACTER #1..." NOT USED Type [RETURN
"UPPER/LOWER CASE ESCAPE..." O (1 = YES, 0 = NO)
[HOME] ESC - ALT-H
[ZEND] ESC = ALT-Z
[ CURSOR UP] [Up Arrow]
[ CURSOR DOWN] [Down Arrow]
[ CURSOR RIGHT] [Right Arrow]
[ CURSOR LEFT] [Left Arrow]
[BACK TAB] [ALT-A]
[ TAB CURSOR] [ALT-F]
[ ZIP] [ALT=G]
[ NEXT LINE] [ ALT-N]
[LINE TOGGLE] NOT USED Type RETURN
[SCROLL UP] [ALT=-Q]
[ SCROLL DOWN] [ALT-Z]
[ SCROLL RIGHT] [ALT-Y]
[ SCROLL LEFT] [ALT-T]
[PREVIOUS WORD] [ALT-K]
[NEXT WORD] [ALT-L]
[PREVIOUS PARAGRAPH] ESC = W
[NEXT PARAGRAPH] ESC - X
[PAGE UP] [ALT=W]
[PAGE DOWN] [ALT=X]
[ SCREEN TOGGLE] [ALT=J]
[ BACKSPACE] [K===]
[ DELETE] [DEL]
[ERASE TO END OF LINE] [EOL] Also called [EREOL] in manual.
[ERASE LINE] [ros]
[DEL PREVIOUS WORD] ESC - K
[DEL NEXT WORD] ESC - L
[unDO] [ALT-U]
[TAB CHARACTER] [ TAB]
[NEXT CHAR LITERAL] ESC - Q
[SET INSERT MODE] NOT USED Type RETURN
[RESET INSERT MODE] NOT USED Type RETURN
[SWITCH INSERT MODE] [ALT-V]
[ REPEAT ] [ALT-R]
[ INDENT] [ALT-P]
| UNDENT ] [ALT=0]
[FIND] [PF 7]
[REPLACE] [PF 8]
[ CANCEL] [ALT-C]
[COPY TO TEXT REGISTER] [pF 1]
[MOVE TO TEXT REGISTER] [pF 2]
[ INSERT TEXT REGISTER] [PF 3]
[PRINT TEXT] [PF 4]
[SET TEXT MARKER] [pF 5]
[GOTO TEXT MARKER] LPF 6]
[FORMAT PARAGRAPH] ESC - 0
[VISUAL ESCAPE] ESC - ESC
[VISUAL EXIT] [ALT-E] Used to exit to command mode.
[ RESTART EDITOR] NOT USED Use "EA" Command.,



VEDIT
Appendix D

Page 193

General Versions

EXAMPLE KEYBOARD LAYOUT FOR THE TELEVIDEO 920C

"ESCAPE MODE CHARACTER #1" [ESC] _

"ESCAPE MODE CHARACTER #2"  CTRL=-A Used by function keys.
"COMMON 2ND CHARACTER #1..." NOT USED Type [RETURN]
"UPPER/LOWER CASE ESCAPE..." 1 (1 = YES, O = NO)

[ HOME ] ESC - CTRL-H

[ ZEND] ESC = CTRL=Z

[ CURSOR UP] [Up Arrow]

[ CURSOR DOWN]

[ CURSOR RIGHT]

[ CURSOR LEFT]

[ BACK TAB]

[ TAB CURSOR]

[ ZIP]

[ NEXT LINE]

[LINE TOGGLE]

[ SCROLL UP]

[ SCROLL DOWN]

[ SCROLL RIGHT]

[ SCROLL LEFT]
[PREVIOUS WORD]
[NEXT WORD]
[PREVIOUS PARAGRAPH]
[NEXT PARAGRAPH]
[PAGE UP]

[PAGE DOWN]

[SCREEN TOGGLE]

[ BACKSPACE]

[ DELETE]

[ERASE TO END OF LINE]
[ERASE LINE]

[DEL PREVIOUS WORD]
[ DEL NEXT WORD]
[UNDO]

[ TAB CHARACTER]

[ NEXT CHAR LITERAL]
[SET INSERT MODE]
[RESET INSERT MODE]
[ SWITCH INSERT MODE]
| REPEAT]

[ INDENT ]

| UNDENT ]

[ FIND]

[ REPLACE]

[ CANCEL]

[COPY TO TEXT REGISTER]
[MOVE TO TEXT REGISTER]
[INSERT TEXT REGISTER]
[PRINT TEXT]

[SET TEXT MARKER]
[GOTO TEXT MARKER]

[ FORMAT PARAGRAPH]
[VISUAL ESCAPE]
[VISUAL EXIT]
[RESTART EDITOR]

[Down Arrow]
[Right Arrow]
[Left Arrow]

[ CTRL=S]

[CTRL-T] Useful for fast cursor movement.
[ CTRL=G]

[ CTRL=N]

NONE Type RETURN

FUNCT - Up Arrow

FUNCT - Down Arrow

FUNCT - Right Arrow

FUNCT - Left Arrow

[ CTRL=D]

[CTRL=F]

ESC - Q

ESC = Z

[ CTRL-Q)

[CTRL=Z]

[CTRL-Y]

[ CTRL=B]

[DEL]

ESC - X Also called [EREOL] in manual.
[ CTRL=X]

[CTRL=~C]

[ CTRL=V]

[ CTRL=U]

TAB

ESC = L

NOT USED Type [RETURN]
NOT USED Type [RETURN]
[F10]

[CTRL~R]

[ CTRL=P]

[CTRL=0]

[F1])

[F2]

[F3]

[F4]

[F5]

[F6]

[F7]

[F8]

[F9]

[CTRL=-W]

ESC - ESC

[(FM1] Used to exit to command mode.
NOT USED Use "EA" Command.



VEDIT
Appendix D

Page 194

General Versions

EXAMPLE KEYBOARD LAYOUT FOR THE TELEVIDEO 950

"ESCAPE MODE CHARACTER #1" [ESc]

"ESCAPE MODE CHARACTER #2"  CTRL-A Used by function keys.
2ND CHA2ND CHARACTER #1..." NOT USED Type [RETURN]
"UPPER/LOWER CASE ESCAPE..." 1 (1 = YES, O = NO)
[HOME] ESC = CTRL-H

[ZEND] ESC - CTRL-Z

[ CURSOR UP] [Up Arrow]

[CURSOR DOWN]

[ CURSOR RIGHT]

[ CURSOR LEFT]

[BACK TAB]

[TAB CURSOR]

[zIP]

[NEXT LINE]

[LINE TOGGLE]
[sCrOLL UP]

[SCROLL DOWN]
[SCROLL RIGHT]
[SCROLL LEFT]
[PREVIOUS WORD]
[NEXT WORD]
[PREVIOUS PARAGRAPH]
[NEXT PARAGRAPH]

| PAGE UP]

[PAGE DOWN]

| SCREEN TOGGLE]

[ BACKSPACE]

| DELETE]

[ ERASE TO END OF LINE]
| ERASE LINE]

[ DEL PREVIOUS WORD]
[DEL NEXT WORD]
[uNDO]

[ TAB CHARACTER]
[NEXT CHAR LITERAL]
[SET INSERT MODE]
[RESET INSERT MODE]
[SWITCH INSERT MODE]
[ REPEAT]

[ INDENT]

[ UNDENT ]

[FIND]

[ REPLACE]

[ CANCEL]

[COPY TO TEXT REGISTER]
[MOVE TO TEXT REGISTER]
[INSERT TEXT REGISTER]
[PRINT TEXT]

[SET TEXT MARKER]
[GOTO TEXT MARKER]

[ FORMAT PARAGRAPH]
[VISUAL ESCAPE]
[VISUAL EXIT]
[RESTART EDITOR]

[Down Arrow]

[Right Arrow]

[Left Arrow]

[BACK TAB]

[CTRL-T] Useful for fast cursor movement.
[CLEAR SPACE]

[LINE FEED]

[ CTRL-Y]

[CTRL-E]

[ CTRL=~C]

[ CTRL~N]

[ CTRL=-B]

[CTRL~D]

[CTRL-F]

ESC - E

ESC - C

[ CTRL=W]

[CTRL=X ]

[HOME]

[DEL]

[ CHAR DELETE]

[LINE ERASE] Also called [EREOL] in manual.
[LINE DELETE]

[ CTRL-S]

[CTRL=-G]

[CTRL~U]

TAB

ESC - L

NOT USED Type [RETURN]

NOT USED Type [RETURN]

[CHAR INSERT]

[ CTRL=R]

[CTRL~P]

[CTRL~0]

[F1]

[F2]
[F3]
[F4]
[F5]
[FS]
[SEND]
[F7]
[F8]
[PAGE ERASE]

ESC - ESC

[F11] Used to exit to command mode.
NOT USED Use "EA" Command.




VEDIT Page 195

APPENDIX E

EXAMPLE KEYBOARD LAYOUTS
8086 VERSIONS

SPECIFIC SCREENS



VEDIT Page 196
Appendix E 8086 Versions

DESCRIPTION OF FILES ON DISK (MSDOS and PCDOS)

The VEDIT files for the IBM Personal Computer and for +the Tandy
2000 are distributed on the same diskettes. The following is a
description of these files, YOU DO NOT have to perform  the
customization process, described in the manual, to produce a runnable
version of VEDIT. You may use the pre-configured VEDIT supplied,
which follows the "Example Keyboard Layout for the IBM Personal
Computer" or the "Example Keyboard Layout for the Tandy 2000.

To configure a NEW version of VEDIT, follow the instructions in
the VEDIT manual under Appendix A, (Customizing VEDIT). It is usually
a good idea to use the pre-configured version and get the "feel" of
VEDIT, before configuring your own version. Note that these versions
of VEDIT are Memory Mapped versions which accesses the screen
directly.

VEDSET .COM The program used to perform customization. The manual
descrihes the use of this program and the ".SET" files
below.

VEDITPC.SET File for producing the VEDIT version for the IBM PC.

VEDIT.COM 'Runnable' version of VEDIT for the IBM PC.

TANDY .SET File for producing the VEDIT version for the Tandy 2000
TANDY .COM 'Runnable' version of VEDIT for the Tandy 2000.
VHELP.TXT Help file for VEDIT. It should be copied to your

System disk. You may edit this file for your needs.

PRINT.EXC The Page Formatting macro. It should be copied to
your System disk if you intend to use it.



VEDIT Page 197
Appendix E 8086 Versions

DESCRIPTION OF FILES (CP/M-86)

The following is a brief description of the files currently
supplied on diskette for the IBM Personal Computer. You will not have
to perform the customization process, described in the manual, to
produce a runnable version of VEDIT. You may use the pre-configured
VEDIT.CMD file, which follows the "Example Keyboard Layout for the IBM
Personal Computer", To customize a NEW version of VEDIT, follow the
instructions in the VEDIT manual in Appendix A, (Customizing VEDIT) .

Note that the diskette contains one version of VEDIT for IBM's or
Digital Research's implementation of CP/M=-86 and a second version of
VEDIT for CompuView's implementation of CP/M=-86. The latter have a
MCPI" in the file name. Users of CompuView's CP/M-86 will need to use
their "IBM=-IN-B" program to read this VEDIT distribution disk.

VEDSET .CMD The program used to perform customization. The manual
describes the use of this program and the ".SET" file
below.

VEDITPC.SET File for producing the VEDIT version for the IBM PC.

VEDIT.CMD 'Runnable' version of VEDIT.

VEDSTCPI.CMD The program used to perform customization for the
"CompuView" CP/M-86 version of VEDIT.

VEDITCPI.SET File for producing the "CompuView" CP/M=-86 version of
VEDIT for the IBM PC,.

VEDITCPI.CMD 'Runnable' version of VEDIT as above.

VHELP ,TXT Help file for VEDIT. It should be copied to your
System disk. You may edit this file for your needs.

PRINT.EXC The Page Formatting macro., It should be copied to
your System disk if you intend to use it. ‘



VEDIT Page 198
Appendix E 8086 Versions

EXAMPLE KEYBOARD LAYOUT FOR THE IBM PERSONAL COMPUTER (%)

"ESCAPE MODE CHARACTER #1"  NOT USED Type [RETURN]
[ HOME] [ CTRL=HOME]

[ZEND] [ CTRL~END]

[ CURSOR UP] [Up Arrow]

[ CURSOR DOWN] [Down Arrow]

[ CURSOR RIGHT] [Right Arrow]

[ CURSOR LEFT] [Left Arrow]

[BACK TAB] [F3]

[TAB CURSOR] [F4] Useful for fast cursor movement.
[zIP] [F6]

[NEXT LINE] [F5]

[LINE TOGGLE] [ CTRL~J]

[ SCROLL UP] [HOME]

[ SCROLL DOWN] LEND]

[ SCROLL RIGHT] [F2]

[SCROLL LEFT] [F]

[PREVIOUS WORD] [CTRL=V]

[NEXT WORD] [ cTRL~-B]

[PREVIOUS PARAGRAPH] [CcTRL-Pg Up]

[NEXT PARAGRAPH] [ CTRL-Pg Dn]

[PAGE UP] [Pg Up]

[PAGE DOWN] [Pg Dn]

[ SCREEN TOGGLE] [ CTRL=K]

[ BACKSPACE] Lo

[ DELETE] [Del]

[ERASE TO END OF LINE] [ CTRL=-Z] Also called [EREOL] in manual.,
[ERASE LINE] [ CTRL=X]

[ DEL PREVIOUS WORD] [ CTRL-C]

[DEL NEXT WORD] [ CTRL=-N]

[uNDO] [ CTRL-U]

[ TAB CHARACTER] [TAB]

[NEXT CHAR LITERAL] [ CTRL-L]

[SET INSERT MODE] NOT USED Type [RETURN]
LRESET INSERT MODE] NOT USED Type [RETURN]
[SWITCH INSERT MODE] [Ins]

[ REPEAT] [ CTRL-R]

[ INDENT] [F8]

[ UNDENT ] [F7]

[FIND] [ALT-F1]

[ REPLACE] [ALT=-F2]

[ CANCEL] [ALT-F3]

[coPY TO TEXT REGISTER] [F9]

[MOVE TO TEXT REGISTER] [ALT-F9]

[ INSERT TEXT REGISTER] [F10]

[PRINT TEXT] [ CTRL=-P]

[SET TEXT MARKER] [CTRL=-S]

[GOTO TEXT MARKER] [CTRL~-G]

[ FORMAT PARAGRAPH] [ CTRL=-F]

(VISUAL ESCAPE] [Esc]

LVISUAL EXIT] [CTRL=E] Used to exit to command mode.
[RESTART EDITOR] NOT USED Use "EA" Command.

(%) Except Concurrent CP/M-86 - see following page



VEDIT

Appendix B 8086 Versions

Page 199

EXAMPLE KEYBOARD LAYOUT FOR THE IBM PC WITH CONCURRENT CP/M-86

"ESCAPE MODE CHARACTER #1"  [ESC]
"ESCAPE MODE CHARACTER #2"  NOT USED
"COMMON 2ND CHARACTER #1..." ?
"COMMON 2ND CHARACTER #2..." NOT USED
"UPPER/LOWER CASE ESCAPE..." 1

[HOME] ESC - H
[ZEND] ESC = Z
[CURSOR UP] [Up Arrow]

[Down Arrow]
[Right Arrow]
[Left Arrow]

[ CURSOR DOWN]
[CURSOR RIGHT]
[CURSOR LEFT]

[BACK TAB] [F3]

[ TAB CURSOR] [F4]
[z1P] [F6]
[NEXT LINE] [F5]
[LINE TOGGLE] [ CTRL=T]
[SCROLL UP] [ CTRL-Q]
[ SCROLL DOWN] [ CTRL-A]
[ SCROLL RIGHT] (F2]
[SCROLL LEFT] [(F1]
[PREVIOUS WORD] [ CTRL=V]
[NEXT WORD] [ CTRL-B]
[PREVIOUS PARAGRAPH] [ESC = W]
[NEXT PARAGRAPH] [ESC - X]
[PAGE UP] [Pg Up]
[PAGE DOWN] [Pg Dn]

[ SCREEN TOGGLE] [CTRL~Y]
[ BACKSPACE] [<===]
[DELETE] [Del]
[ERASE TO END OF LINE] [CTRL~Z]
[ERASE LINE] [ CTRL=X]
[DEL PREVIOUS WORD] [CTRL=C]
[DEL NEXT WORD] [ CTRL=N]
[UNDO] [CTRL=U]
[ TAB CHARACTER] [TAB]
[NEXT CHAR LITERAL] [ESC - Q]
[SET INSERT MODE] NOT USED
[RESET INSERT MODE] NOT USED
[SWITCH INSERT MODE] [Ins]

[ REPEAT] [ CTRL=~R]
[ INDENT] [ CTRL=-P]
[UNDENT ] [ CTRL=0]
[FIND] [CTRL=J]
[REPLACE] [CTRL=K ]
[ CANCEL] [ CTRL=-L]
[COPY TO TEXT REGISTER] [F9]
[MOVE TO TEXT REGISTER] [F10]

[ INSERT TEXT REGISTER] [F8]
{PRINT TEXT] [F7]

[SET TEXT MARKER] [ESC - S]
[GOTO TEXT MARKER] [ESC - G]
[ FORMAT PARAGRAPH] [ CTRL=F]
[VISUAL ESCAPE] ESC - ESC
[VISUAL EXIT] [CTRL=-E]
[RESTART EDITOR] NOT USED

Type [RETURN]

Type [RETURN]
(1 = YES, 0 = NO)

Useful for fast cursor movement.

Also called [EREOL] in manual.

Type [RETURN]
Type [RETURN]

Used to exit to command mode.
Use "EA" Command.



VEDIT Page 200
Appendix E 8086 Versions

EXAMPLE CUSTOMIZATION FOR IBM PC VERSION 1.16

The customization session used to create the pre-configured VEDIT

is listed below.

3.)

4.)

5.)

6.)

HEX CODE FOR SCREEN CONTINUATION CHARACTER (AD) -- AD
HEX CODE FOR COMMAND ESCAPE CHARACTER (1B) == 1B
HEX CODE FOR COMMAND ITERATION LEFT BRACKET (5B) == 5B
HEX CODE FOR COMMAND ITERATION RIGHT BRACKET (5D) == 5D
HEX CODE FOR SEARCH PATTERN MATCH CHARACTER (7C) == 7C

HEX CODE FOR CURSOR CHARACTER (5F) == 5F

HEX CODE FOR CLEAR SCREEN CHARACTER (20) == 20

HEX CODE FOR STATUS LINE CHARACTER (2D) == 2D

HEX CODE FOR TAB EXPAND CHARACTER (20) == 20

EXPAND TAB WITH SPACES (0=NO, 1=YES) == 0

AUTO BUFFERING IN VISUAL MODE (0=NO, 1=FORWARD, 2=BACKWARD) == 1
BEGIN IN VISUAL MODE (0=NO, 1=YES) == 1

POINT PAST TEXT REG. INSERT (0=NO, 1=YES) == 1
IGNORE UPPER/LOWER CASE DISTINCTION IN SEARCH (0=NO, 1=YES) == 1
CLEAR SCREEN ON VISUAL EXIT (0=NO, 1=YES) == O
REVERSE UPPER AND LOWER CASE (0=NO, 1=YES) == 0
IGNORE SEARCH ERRORS (0=NO, 1=YES) == 0
EXPLICIT STRING TERMINATORS (0=NO, 1=YES) == O

CURSOR TYPE (O=UNDERLINE, 1=BLINK BLOCK, 2=BLOCK, 3=ATTRIBUTE) == 3
CURSOR BLINK RATE, SMALL # IS FAST (2MHZ = 20, 4MHZ - 40) == 40
INDENT INCREMENT (1 - 20, SUGGEST 4) -4

LOWER CASE CONVERT (0=NO, 1=YES, 2=CONDITIONAL) -0

DECIMAL CODE FOR CONDITIONAL CONVERT CHARACTER (59) == 59

LINE AND COLUMN DISPLAY (O=NONE, 1=LINE, 2=COLUMN, 3=BOTH) == 3

RIGHT MARGIN FOR WORD WRAP (0=0FF) —0

HIGH BIT ALLOWED ON INPUT/OUTPUT (1 - 7, SUGGEST 3) == 3

CURSOR POSITIONING OPTION (0 - 2, SUGGEST 1) -1

VIRTUAL LINE LENGTH WITH SCROLLING (40 - 254) -- 200
HORIZONTAL SCROLL INCREMENT (1 - 100) -— 20

ENTER NUMBER OF SCREEN LINES IN DECIMAL == 24 (Use 25 for PCDOS)
ENTER LINE MOVEMENT FOR PAGING IN DECIMAL — 20

ENTER TOP LINE FOR CURSOR IN DECIMAL -3

ENTER BOTTOM LINE FOR CURSOR IN DECIMAL = 20

ENTER SCREEN ATTRIBUTE CODE FOR NON=-REVERSE VIDEO IN HEX (07) == 07
ENTER SCREEN ATTRIBUTE CODE FOR REVERSE VIDEO IN HEX (70) == 70
ENTER SCREEN ATTRIBUTE CODE FOR CURSOR IN HEX (FO) == FO
SIZE IN DECIMAL OF SPARE MEMORY FOR AUTO READ — 6144

SIZE IN DECIMAL OF FILE MOVE TRANSFERS IN K BYTES == 12
DO YOU WISH TO USE THE DEFAULT TAB POSITIONS? (Y OR N) == Y

BEGIN IN INSERT MODE (0=NO, 1=YES) == 0

USE DEFAULT DRIVE FOR HELP AND VEDIT.INI FILES (0=NO, 1=YES) == O
ENTER (0O=NO) OR DRIVE # FOR HELP AND VEDIT.INI FILES -1
SHOULD VEDIT.INI FILE BE EXECUTED (0=NO, 1=YES) -1

REVERSE VIDEO ON STATUS LINE (0=NO, 1=YES) == 1



VEDIT Page 201
Appendix E 8086 Versions
EXAMPLE KEYBOARD LAYOUT FOR THE TANDY 2000
"ESCAPE MODE CHARACTER #1"  NOT USED Type [RETURN]
[HOME] [CTRL- HOME]
[ZEND] [ CTRL- END]
[ CURSOR UP] [Up Arrow]
[ CURSOR DOWN] [Down Arrow]
[CURSOR RIGHT] [Right Arrow]
[CURSOR LEFT] [Left Arrow]
[BACK TAB] [F9]
[TAB CURSOR] [F0] Useful for fast cursor movement.
[z1P] (o] On Keypad
[NEXT LINE] [END]
[LINE TOGGLE] [ CTRL=0] "0" on keypad
[ SCROLL UP] [CTRL- Up Arrow]
[ SCROLL DOWN ] [CTRL~ Down Arrow]
[ SCROLL RIGHT] [CTRL- Right Arrow]
[SCROLL LEFT] [ CTRL- Left Arrow]
[PREVIOUS WORD] [ CTRL=V]
[NEXT WORD] [ CTRL~B]
[PREVIOUS PARAGRAPH] [CTRL=~Pg Up]
[NEXT PARAGRAPH] [ CTRL~-Pg Dn]
[PAGE UP] [ Pg Up]
[PAGE DOWN] [Pg Dn]
[SCREEN TOGGLE] [HOME]
[ BACKSPACE] [€===]
[ DELETE] [ DELETE]
[ERASE TO END OF LINE] [CTRL~Z ] Also called [EREOL] in manual.
[ERASE LINE] [ CTRL=X]
[DEL PREVIOUS WORD] [CTRL~C]
[DEL NEXT WORD] [ CTRL=-N]
[unDO] [ CTRL~U]
[ TAB CHARACTER] [TAB]
[NEXT CHAR LITERAL] [ CTRL=L]
[ SET INSERT MODE] NOT USED Type [RETURN]
[ RESET INSERT MODE] NOT USED Type [RETURN]
[ SWITCH INSERT MODE] [Ins]
| REPEAT ] [CTRL=R]
[ INDENT] [F12]
[ UNDENT ] [F11]
[FIND] [F]
[REPLACE] [F2]
[ CANCEL ] [F3]
[COPY TO TEXT REGISTER] [F4]
[MOVE TO TEXT REGISTER] [F5]
[INSERT TEXT REGISTER] [F6]
[PRINT TEXT] [PRINT] Same as CTRL-P
[SET TEXT MARKER] LF7]
[GOTO TEXT MARKER] [Fs]
[ FORMAT PARAGRAPH] [CTRL-F] 5
[VISUAL ESCAPE] [ BREAK]
[VISUAL EXIT] [Esc] Used to exit to command mode.
[RESTART EDITOR] NOT USED Use "EA" Command.



VEDIT

Appendix E

8086 Versions

Page 202

EXAMPLE CUSTOMIZATION FOR TANDY 2000 VERSION 1.16

The customization session used to create the pre-configured VEDIT
BE SURE TO ENTER "5.)" VALUES EXACTLY AS SHOWN

is listed below.

3.) HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX

4.) EXPAND TAB WITH SPACES

CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE

FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR

SCREEN CONTINUATION CHARACTER
COMMAND ESCAPE CHARACTER

(AD)
(1B)

COMMAND ITERATION LEFT BRACKET (5B)
COMMAND ITERATION RIGHT BRACKET (5D)
SEARCH PATTERN MATCH CHARACTER (7C)

CURSOR CHARACTER

CLEAR SCREEN CHARACTER
STATUS LINE CHARACTER
TAB EXPAND CHARACTER

(5F)
(20)
(2D)
(20)

(0=NO, 1=YES) == 0

- AD
-~ 1B
-= 5B
-= 5D
-- 7C
-= 5F
-— 20
-— 2D
- 20

AUTO BUFFERING IN VISUAL MODE (0=NO, 1=FORWARD, 2=BACKWARD) -- 1

BEGIN IN VISUAL MODE
POINT PAST TEXT REG. INSERT

(0=NO, 1=YES) == 1
(0=NO, 1=YES) == 1

IGNORE UPPER/LOWER CASE DISTINCTION IN SEARCH (0=NO, 1=YES) == 1

CLEAR SCREEN ON VISUAL EXIT
REVERSE UPPER AND LOWER CASE (0=NO, 1=YES) ==
IGNORE SEARCH ERRORS

EXPLICIT STRING TERMINATORS

(0=NO, 1=YES) ==

(0=NO, 1=YES) ==
(0=NO, 1=YES) ~-

[eNoR oo

CURSOR TYPE (0=UNDERLINE, 1=BLINK BLOCK, 2=BLOCK, 3=ATTRIBUTE) -- 1
CURSOR BLINK RATE, SMALL # IS FAST (2MHZ - 20, 4MHZ - 40) -- 80
INDENT INCREMENT (1 - 20, SUGGEST 4)
LOWER CASE CONVERT (0=NO, 1=YES, 2=CONDITIONAL)
DECIMAL CODE FOR CONDITIONAL CONVERT CHARACTER (59) == 59

LINE AND COLUMN DISPLAY (O=NONE, 1=LINE, 2=COLUMN, 3=BOTH) == 3
RIGHT MARGIN FOR WORD WRAP (0=OFF)
HIGH BIT ALLOWED ON INPUT/OUTPUT (1 = 7, SUGGEST 3) == 3

CURSOR POSITIONING OPTION (0 - 2, SUGGEST 1)
VIRTUAL LINE LENGTH WITH SCROLLING (40 = 254)

HORIZONTAL SCROLL INCREMENT (1 - 100)

5.) ENTER NUMBER OF SCREEN LINES IN DECIMAL
ENTER LINE MOVEMENT FOR PAGING IN DECIMAL -- 20
ENTER TOP LINE FOR CURSOR IN DECIMAL
ENTER BOTTOM LINE FOR CURSOR IN DECIMAL
ENTER SCREEN ATTRIBUTE CODE FOR NON-REVERSE VIDEO IN HEX (07) -- 08
ENTER SCREEN ATTRIBUTE CODE FOR REVERSE VIDEO IN HEX (70) -- 88

ENTER SCREEN ATTRIBUTE CODE FOR CURSOR IN HEX

6.) SIZE IN DECIMAL OF SPARE MEMORY FOR AUTO READ

- 25

-3
-= 20

-4
—0
-0
-1

-- 200
- 20

(FO) -- 28

— 6144

SIZE IN DECIMAL OF FILE MOVE TRANSFERS IN K BYTES == 12

DO YOU WISH TO USE THE DEFAULT TAB POSITIONS? (Y OR N) = Y

BEGIN IN INSERT MODE (0=NO, 1=YES) == O

USE DEFAULT DRIVE FOR HELP AND VEDIT.INI FILES (0=NO, 1=YES) == 1
ENTER (0=NO) OR DRIVE # FOR HELP AND VEDIT.INI FILES -1
SHOULD VEDIT.INI FILE BE EXECUTED (0=NO, 1=YES)

REVERSE VIDEO ON STATUS LINE (0=NO, 1=YES) == 1

-1



VEDIT Page 203
Appendix E 8086 Versions

EXAMPLE KEYBOARD LAYOUT FOR THE Z100

"ESCAPE MODE CHARACTER #1" [ESC]
"ESCAPE MODE CHARACTER #2"  NOT USED
"COMMON 2ND CHARACTER #1..." [?]
"COMMON 2ND CHARACTER #2..." [0]
"UPPER/LOWER CASE ESCAPE..." O

Type [RETURN]

(1 = YES, 0 = NO)

[HOME] ESC - h
[ZEND] ESC - 2z

[ CURSOR UP] [Up Arrow]

[ CURSOR DOWN] [Down Arrow]
[ CURSOR RIGHT] [Right Arrow]
[CURSOR LEFT] [Left Arrow]

[ BACK TAB] [7] on keypad
[TAB CURSOR] (8] Useful for fast cursor movement.
[z1P] [9] on keypad
[NEXT LINE] [LINE FEED]

[LINE TOGGLE] [=] on keypad

[ SCROLL UP] (6] on keypad

[ SCROLL DOWN] [3] on keypad

[ SCROLL RIGHT] [.] on keypad

[ SCROLL LEFT] (0] on keypad

[ PREVIOUS WORD] [CTRL=V]

[NEXT WORD] [ CTRL-B]

[PREVIOUS PARAGRAPH] [5] on keypad
[NEXT PARAGRAPH] [2] on keypad
[PAGE UP] [4] on keypad
[PAGE DOWN] [1] on keypad

[ SCREEN TOGGLE] [CTRL=S]

[ BACKSPACE] [BACK SPACE]

[ DELETE] [DELETE]

[ERASE TO END OF LINE] [CTRL~Z] Also called [EREOL] in manual.
[ERASE LINE] [ CTRL=X]

[DEL PREVIOUS WORD] [CTRL=C]

[DEL NEXT WORD] [CTRL~N]

[uNDO] [FM2]

[TAB CHARACTER] [TAB]

[NEXT CHAR LITERAL] [CTRL=-L]

[SET INSERT MODE] NOT USED Type [RETURN]
[RESET INSERT MODE] NOT USED Type [RETURN]
[SWITCH INSERT MODE] [ENTER] on keypad

[ REPEAT] [Fo]

[ INDENT] [F11]

[ UNDENT] [F0]

[FIND] [F1]

[ REPLACE] [F2]

[ CANCEL] [F3]

[COPY TO TEXT REGISTER] [F4]

[MOVE TO TEXT REGISTER] [F5]

[INSERT TEXT REGISTER] [F6]

[PRINT TEXT] [F7]

[SET TEXT MARKER] [F8]

[GOTO TEXT MARKER] [F9]

[ FORMAT PARAGRAPH ] [INS LINE]

[VISUAL ESCAPE] [Esc-ESC] ]
[VISUAL EXIT] [HELP] Used to exit to command mode.
[RESTART EDITOR] NOT USED Use "EA" Command.,



VEDIT Page 204
Appendix E 8086 Versions

EXAMPLE CRT CUSTOMIZATION FOR THE Z100

The customization session used to create the pre-configured VEDIT
is listed below. For clarity sake, each reply below is preceded by
"we", which does not appear is the actual customization.

3.) HEX CODE FOR SCREEN CONTINUATION CHARACTER (2D) == AD
HEX CODE FOR COMMAND ESCAPE CHARACTER (1B) == 1B
HEX CODE FOR COMMAND ITERATION LEFT BRACKET (5B) -- 5B
HEX CODE FOR COMMAND ITERATION RIGHT BRACKET (5D) == 5D
HEX CODE FOR SEARCH PATTERN MATCH CHARACTER (7€) == 7C

4.) EXPAND TAB WITH SPACES (0=NO, 1=YES) == 0
AUTO BUFFERING IN VISUAL MODE (0=NO, 1=FORWARD, 2=BACKWARD) == 2
BEGIN IN VISUAL MODE (0=NO, 1=YES) -~ 1

POINT PAST TEXT REG. INSERT (0=NO, 1=YES) == 1
IGNORE UPPER/LOWER CASE DISTINCTION IN SEARCH (0=NO, 1=YES) == 1
CLEAR SCREEN ON VISUAL EXIT (0=NO, 1=YES) == O
REVERSE UPPER AND LOWER CASE (0=NO, 1=YES) == O
IGNORE SEARCH ERRORS (0=NO, 1=YES) == 1
EXPLICIT STRING TERMINATORS (0=NO, 1=YES) == 0

INDENT INCREMENT (1 - 20, SUGGEST 4) -4

LOWER CASE CONVERT (0=NO, 1=YES, 2=CONDITIONAL) -0
DECIMAL CODE FOR CONDITIONAL CONVERSION CHAR. (59) -- 59

LINE AND COLUMN DISPLAY (0=NONE, 1=LINE, 2=COLUMN, 3=BOTH) == 3
RIGHT MARGIN FOR WORD WRAP (0=OFF) - 0

HIGH BIT ALLOWED ON INPUT/OUTPUT (1 = 7, SUGGEST 1) == 1

CURSOR POSITIONING OPTION (0 - 2, SUGGEST 1) - 1
VIRTUAL LINE LENGTH WITH SCROLLING (40 = 254) -= 200
HORIZONTAL SCROLL INCREMENT (1 - 100) - 20

5.) ENTER NUMBER OF SCREEN LINES IN DECIMAL == 25
ENTER LINE MOVEMENT FOR PAGING IN DECIMAL -- 20
ENTER TOP LINE FOR CURSOR IN DECIMAL -3
ENTER BOTTOM LINE FOR CURSOR IN DECIMAL -- 21
ENTER LENGTH OF DISPLAYED LINE IN DECIMAL -- 80

6.) SIZE IN DECIMAL OF SPARE MEMORY FOR AUTO READ -— 6144
SIZE IN DECIMAL OF FILE MOVE TRANSFERS IN K BYTES == 12

DO YOU WISH TO USE THE DEFAULT TAB POSITIONS? (Y OR N) == Y

ENTER DECIMAL VALUE (4MHZ = 76, 2MHZ = 38) == 76
BEGIN IN INSERT MODE (0=NO, 1=YES) = O

USE DEFAULT DRIVE FOR HELP AND VEDIT.INI FILES (0=NO, 1=YES) == 0
ENTER (0=NO) OR DRIVE # FOR HELP AND VEDIT.INI FILES -_— 1
SHOULD VEDIT.INI FILE BE EXECUTED (0=NO, 1=YES) -1

REVERSE VIDEO ON STATUS LINE (0=NO, 1=YES) == 1



VEDIT Page 205
Appendix E 8086 Versions

VEDIT Notes for IBM Displaywriter

In order for you to bring up VEDIT as easily as possible on your
- IBM Displaywriter, we have included a pre-configured "ready to run"
version for this machine in the disk file "VEDIT.CMD". You therefore
DO NOT need to perform the customization in order to first begin using
VEDIT. You will probably wish to perform the customization later, in
order to change the keyboard layout or change some of the default
parameters. Attached to these notes should be "Example Keyboard
Layout for IBM Displaywriter" and "Example Customization for IBM
Displaywriter".

The keyboard layout describes the keyboard strokes needed to
perform the VEDIT editing functions. Note two differences between the
Displaywriter keyboard and most other keyboards as described in the
VEDIT manual. One is that the Displaywriter uses the "CODE" key
instead of the more common "CTRL" key. Second, the Displaywriter does
not have an "ESC" key and therefore we have adopted the "INDEX" key to
perform the same function with VEDIT. (Only the customization needs
the true ESC character, which is produced by typing the upper-most
right hand key in the left keypad, or alternately by typing the " /4n
key while holding the CODE and SHIFT keys down) .

You don't need to refer to the "Example Customization for IBM
Displaywriter" until you customize a new version of VEDIT. When
customizing the VEDIT parameters you should generally only change
those parameters described in tasks 4.) and 6.) of appendix A of the
manual. Answer the other questions with the values in the "Example
Customization for IBM Displaywriter". You may change the keyboard
layout any way you wish. When selecting the CRT terminal type at the
beginning of the customization, note that there is an entry for the
Displaywriter; DON'T select the IBM 3101. Please give us a call if
you need any assistance.

Before you begin using VEDIT, you should copy our distribution
disk onto your own disk. This is easy if your disk in drive "A" has
at least 230K of space free. Simply insert our disk in drive "B",
type "CODE = C" and then use the "PIP" program to copy all files +to
the "A" drive. Remove our disk and place an empty formatted disk into
drive "B". Type "CODE - C" twice and use PIP again to copy our files
to your own disk. You can then erase all but "VEDIT.CMD" from your
disk in drive "A". The disk you have just made in drive "B" should be
used when you customize a new VEDIT. The file "VEDIT.CMD" is all you
need to run VEDIT,.

The other files on our distribution disk are "VDSETCRT.CMD",
"YWEDIT86.SET" and "CRT.TBL" which are needed for the customization.
"CHECKSUM.DOC" explains how to remove a checksum error, and

"AUTOLOAD .DOC" contains a discussion and example of the autoload
feature of VEDIT.



VEDIT Page 206
Appendix E 8086 Versions

EXAMPLE KEYBOARD LAYOUT FOR IBM DISPLAYWRITER

Functions using the INDEX key require first typing the INDEX key and
then the second key. The [ESC] key is the upper right hand key in the
left keypad. ;

"ESCAPE MODE CHARACTER #1"  [INDEX]
"ESCAPE MODE CHARACTER #2"  [ESC]
"COMMON 2ND CHARACTER #1..." NOT USED
"UPPER/LOWER CASE ESCAPE..." 1

Top right key in left keypad
Type [RETURN]

[HOME] INDEX - Y
[ZEND] INDEX ~ Z
[ CURSOR UP] [Up Arrow]

[ CURSOR DOWN]
| CURSOR RIGHT]
CURSOR LEFT]

[Down Arrow]
[Right Arrow]
[Left Arrow]

[BACK TAB] [FIND]
[TAB CURSOR] [ CODE-G] Useful for fast cursor movement.
[21P] [coTo]

[ NEXT LINE] [ CODE=N]
[LINE TOGGLE] [ copE-L]
[SCROLL UP] [ CODE-W]
[ SCROLL DOWN] | CODE-S ]
[ SCROLL RIGHT] [ CODE=-Y]
[ SCROLL LEFT] [ CODE-T]
[PREVIOUS WORD] [ CODE-D]
[NEXT WORD] [ CODE-F]
[PREVIOUS PARAGRAPH] [ CODE=-Q]
[NEXT PARAGRAPH] [ CODE~A]

[PAGE UP] Unmarked key right of [FIND]
[PAGE DOWN] Unmarked key right of [GOTO]

L SCREEN TOGGLE] [CODE=K ]

[ BACKSPACE] [BKsP]

[DELETE] [DEL]

[ERASE TO END OF LINE] [CODE-Z] Also called [EREOL] in manual.
[ERASE LINE] [CODE=X]

[DEL PREVIOUS WORD] [ CODE-C]

[DEL NEXT WORD] [ CODE-V]

{uNDO] [ CODE~U]

[TAB CHARACTER] [TAB]

[NEXT CHAR LITERAL] INDEX - L

[SET INSERT MODE] NOT USED Type [RETURN]
[RESET INSERT MODE] NOT USED Type [RETURN]
[ SWITCH INSERT MODE] [ coDE-B]

[ REPEAT] [ CODE=R]

[ INDENT] [ CODE-P]

[ UNDENT] [ CODE=0]

[FIND] INDEX - 1

[ REPLACE] INDEX = 2

[CANCEL] INDEX - 3

[COPY TO TEXT REGISTER] INDEX - 4

[MOVE TO TEXT REGISTER] INDEX - 5

[ INSERT TEXT REGISTER] INDEX = 6

[PRINT TEXT] INDEX - 7

[SET TEXT MARKER] INDEX - S

[GOTO TEXT MARKER] INDEX - G

[ FORMAT PARAGRAPH] INDEX - F

[VISUAL ESCAPE]
[VISUAL EXIT]
{ RESTART EDTTOR]

INDEX - INDEX

[CODE=E]
NOT TISFD

Used to exit to command mode.
Tae "RA" Cammand.



VEDIT Page 207
Appendix E 8086 Versions

EXAMPLE CUSTOMIZATION FOR IBM DISPLAYWRITER VERSION 1.38

The customization session used to create the pre-configured VEDIT
is listed below. Task 1 of the customization is the CRT selection
from the menu, for which the Displaywriter entry should be selected.
The pre-configured keyboard layout is described by the enclosed layout
sheet, For clarity sake, each reply below is preceded by "==", whloh
does not appear is the actual customization.

3.,) HEX CODE FOR SCREEN CONTINUATION CHARACTER (2D) == AD
HEX CODE FOR COMMAND ESCAPE CHARACTER (1B) == 0A
HEX CODE FOR COMMAND ITERATION LEFT BRACKET (5B) == 5B
HEX CODE FOR COMMAND ITERATION RIGHT BRACKET (5D) == 5D
HEX CODE FOR SEARCH PATTERN MATCH CHARACTER (7C) == 7C

4.) EXPAND TAB WITH SPACES (0=NO, 1=YES) == 0
AUTO BUFFERING IN VISUAL MODE (0=NO, 1=FORWARD, 2=BACKWARD) == 1
BEGIN IN VISUAL MODE (0=NO, 1=YES) == 1

POINT PAST TEXT REG. INSERT (0=NO, 1=YES) == 1
IGNORE UPPER/LOWER CASE DISTINCTION IN SEARCH (0=NO, 1=YES) == 1

CLEAR SCREEN ON VISUAL EXIT (0=NO, 1=YES) == 0
REVERSE UPPER AND LOWER CASE (0=NO, 1=YES) == 0
IGNORE SEARCH ERRORS (0=NO, 1=YES) == 0
EXPLICIT STRING TERMINATORS  (0=NO, 1=YES) == O
INDENT INCREMENT (1 = 20, SUGGEST 4) -4
LOWER CASE CONVERT (0=NO, 1=YES, 2=CONDITIONAL) — 0

DECIMAL CODE FOR CONDITIONAL CONVERT CHARACTER (59) =-- 59
LINE AND COLUMN DISPLAY (0=NONE, 1=LINE, 2=COLUMN, 3=BOTH) == 3

RIGHT MARGIN FOR WORD WRAP (0=OFF) -0

HIGH BIT ALLOWED ON INPUT/OUTPUT (1 = 7, SUGGEST 1) ~- 1

CURSOR POSITIONING OPTION (0 - 2, SUGGEST 1) - 1

VIRTUAL LINE LENGTH WITH SCROLLING (40 - 254) - 200

HORIZONTAL SCROLL INCREMENT (1 - 100) -= 20
5.) ENTER NUMBER OF SCREEN LINES IN DECIMAL == 24

ENTER LINE MOVEMENT FOR PAGING IN DECIMAL == 20

ENTER TOP LINE FOR CURSOR IN DECIMAL -3

ENTER BOTTOM LINE FOR CURSOR IN DECIMAL == 20
ENTER LENGTH OF DISPLAYED LINE IN DECIMAL -- 80

6.) SIZE IN DECIMAL OF SPARE MEMORY FOR AUTO READ -- 8192
SIZE IN DECIMAL OF FILE MOVE TRANSFERS IN K BYTES == 12

DO YOU WISH TO USE THE DEFAULT TAB POSITIONS? (Y OR N) — Y

ENTER DECIMAL VALUE (4MHZ = 76, 2MHZ = 38) == 76

BEGIN IN INSERT MODE (0=NO, 1=YES) == 0
USE DEFAULT DRIVE FOR HELP AND VEDIT.INI FILES (0=NO, 1=YES) == 0
ENTER (O=NO) OR DRIVE # FOR HELP AND VEDIT.INI FILES S
SHOULD VEDIT.INI FILE BE EXECUTED (0=NO, 1=YES) -1

REVERSE VIDEO ON STATUS LINE (0=NO, 1=YES) == 1



VEDIT Page 208
Appendix E 8086 Versions

EXAMPLE KEYBOARD LAYOUT FOR THE NEC APC

"ESCAPE MODE CHARACTER #1" [ESC]
"ESCAPE MODE CHARACTER #2" NOT USED
"COMMON 2ND CHARACTER #1..." O
"COMMON 2ND CHARACTER #2..." NOT USED

Type [RETURN]
The capital letter "O"

"UPPER/LOWER CASE ESCAPE..." 1

[HOME ]

[ZEND]

[ CURSOR UP]

[ CURSOR DOWN]

[ CURSOR RIGHT]

[ CURSOR, LEFT]

[ BACK TAB]

[TAB CURSOR]

[z1P]

[NEXT LINE]

(LINE TOGGLE]

[ SCROLL UP]

[ SCROLL DOWN]
{SCROLL RIGHT]
SCROLL LEFT]
[PREVIOUS WORD]
[NEXT WORD]
[PREVIOUS PARAGRAPH]
[NEXT PARAGRAPH]
[PAGE UP]

[PAGE DOWN]

[ SCREEN TOGGLE]

[ BACKSPACE]

[ DELETE]

| ERASE TO END OF LINE]
[ ERASE LINE]

[DEL PREVIOUS WORD]
[DEL NEXT WORD]

[ UNDO]

[TAB CHARACTER]

| NEXT CHAR LITERAL]
[SET INSERT MODE]
[RESET INSERT MODE]
[SWITCH INSERT MODE]
[ REPEAT]

[ INDENT]

[ UNDENT ]

[FIND]

[REPLACE]

[ CANCEL]

[COPY TO TEXT REGISTER]
[MOVE TO TEXT REGISTER]
[INSERT TEXT REGISTER]
[PRINT TEXT]

[SET TEXT MARKER]
[GOTO TEXT MARKER]

{ FORMAT PARAGRAPH ]

[ VISUAL ESCAPE]
[VISUAL EXIT]
[RESTART EDITOR]

Type [RETURN]
(1 = YES, 0 = NO)

ESC - H
ESC - Z
(Up Arrow]

[Down Arrow]
[Right Arrow]
[Left Arrow]
[PF 9]

[PF 10]

[PF 11]
[CTRL=R] -
[CTRL=-G]

[ CTRL=E]

[CTRL-D]

[PF 8]

LPF 7]

[CTRL-V]

[ CTRL~B]

[CTRL-Q]

[CTRL-4]

[PF 5]

[PF 6]

[CLEAR HOME]

[ BACK SPACE]
[DEL]

[PF 14]

[PF 15]
[CTRL=C]

{ CTRL-N]

[PF 16]
[TAB]

ESC - L

NOT USED
NOT USED
[INS]

[PF 1] First Black key
[PF 13]
[PF 12]
[pF 2]
[PF 3]
[PF 4]
[PF 18]
[PF 19]
[PF 20]
[PRINT]
[PF 21]
[PF 22]
[CTRL~F]
ESC - ESC
[ BREAK ]
NOT USED

Also called [EREOL] in manual.

Last Black key

Type [RETURN]
Type [RETURN]

Second Grey Key
Note: The first grey key "PF17"
cannot be used with VEDIT

Used to exit to command mode.
Use "EA" Command,

Note: VEDIT must be customized for 25 screen lines.



VEDIT Page 209
Appendix E 8086 Versions

VEDIT Notes for VICTOR 9000

In order for you to start using VEDIT as quickly as possible on
your Victor 9000, we have included a pre-configured "ready to run"
version for this machine in the disk file "VEDIT.CMD". You therefore
DO NOT need to perform the customization in order to begin using
VEDIT. You will probably wish to perform the customization later, in
order to change the keyboard 1layout or change some of the default
parameters. The following page "Example Keyboard Layout for Vigtor
9000" gives the keyboard layout used in the pre-configured version.

The only unusual aspect of the Victor 9000 keyboard is that the
ESC key requires use of the ALT key. This is of no significance in
the visual mode, but is somewhat inconvenient in the command mode,
since some commands require an ESC to terminate text strings. each
command line- ends in two ESC. You may, therefore, find it more
convenient to use "Explicit String Delimiters", in which case the ESC
key will be rarely used.

When customizing VEDIT, you must select the VICTOR 95000 from the
menu of supported terminals. The attached sheet "Example
Customization for Victor 9000" shows the customization values used for
the pre-configured version.

Before you begin using VEDIT, you should copy our distribution
disk onto your own disk., This is best done with the copy program
"DCOPY .CMD". To use VEDIT, you only need the file "VEDIT.CMD" (either
the one we supplied, or one you customized), which you can simply copy
to your system disk on drive "A". You probably will also want the
help file "VHELP.TXT" on drive "A".

The other files on our distribution disk are "VDSETCRT.CMD",
"VEDITS6.SET" and "CRT.TBL" which are needed for the customization.
"CHECKSUM.DOC" explains how to vremove a checksum  error, and
"AUTOLOAD.DOC" contains a discussion and example of the autoload
feature of VEDIT,



VEDIT
Appendix E

8086 Versions

Page 210

EXAMPLE KEYBOARD LAYOUT FOR VICTOR 9000

Note that typing the [ESC] key requires holding down the ALT key.

"ESCAPE MODE CHARACTER #1"
"ESCAPE MODE CHARACTER #2"
"COMMON 2ND CHARACTER #1."
"UPPER/LOWER CASE ESCAPE,.."

[HOME]

[ ZEND]

[CURSOR UP]

[ CURSOR DOWN]

[ CURSOR RIGHT]
[CURSOR LEFT]
[BACK TAB]

[TAB CURSOR]
[zIP]

[NEXT LINE]
[LINE TOGGLE]
[SCROLL UP]

[ SCROLL DOWN]

[ SCROLL RIGHT]
[SCROLL LEFT]
[PREVIOUS WORD]
[ NEXT WORD]

| PREVIOUS PARAGRAPH]
[NEXT PARAGRAPH]
[PAGE UP]

[ PAGE DOWN]

| SCREEN TOGGLE]
[ BACKSPACE]
[DELETE]
[ERASE TO END OF LINE]
[ ERASE LINE]

[DEL PREVIOUS WORD]
[DEL NEXT WORD]
EUNDO]

TAB CHARACTER]
[NEXT CHAR LITERAL]
[SET INSERT MODE]
[RESET INSERT MODE]
[SWITCH INSERT MODE]
[ REPEAT]

[ INDENT]

[UNDENT]

[FIND]

[REPLACE]

[ CANCEL]

[COPY TO TEXT REGISTER]
[MOVE TO TEXT REGISTER]
[INSERT TEXT REGISTER]
[PRINT TEXT]

[SET TEXT MARKER]

[GOTO TEXT MARKER]
EFORMAT PARAGRAPH]

VISUAL ESCAPE]
[VISUAL EXIT]
[RESTART EDITOR]

[Esc]
NOT USED
NOT USED
0

ESC = h
ESC - z

[Up Arrow]
[Down Arrow]
[Right Arrow]
[Left Arrow]
[ ALT-TAB]
[ALT-F]

[REQ CAN]
[OFF UNDL]
[ALT-A]

[ ALT-SCRL]
[SCRL]
[ALT-Y]
[ALT=T]
[WORD <==]
[WORD ==>]
[ALT-Q]
[ALT=Z]

[ ALT=W]
[ALT-X]

[SHIFT - CLR HOME]

[ BACKSPACE]
[DEL]
[ERASE EOL]

[ALT- ERASE EOL]

[ALT=C]
[ALT-V]
[ALT-U]

[TAB]
[ALT-L]

NOT USED

NOT USED
[INS]
[ALT-R]
[ALT-P]
[ALT=0]
FUNCTION KEY
FUNCTION KEY
[PAUSE CONT]
FUNCTION KEY
FUNCTION KEY
FUNCTION KEY
FUNCTION KEY
FUNCTION KEY
FUNCTION KEY
FUNCTION KEY
[ ALT-E]
FUNCTION KEY
NOT USED

N -

e e e

~N OO
et e S e

[9]
[10]

Type [RETURN]
Type [RETURN]

Useful for fast cursor movement.

Type [RETURN]
Type [RETURN]

Same as [CTRL=-S]

Use "EA" Command.



- VEDIT Page 211
Appendix E 8086 Versions

EXAMPLE CUSTOMIZATION FOR VICTOR 9000

The customization session used to create the pre-configured VEDIT
is listed below, Task O is the CRT selection from the menu, for which
the Heath H19 entry should be selected. For clarity sake, each reply
below is preceded by "--=", which does not appear is the actual
customization.

0.) SELECT CRT TERMINAL -- 46 (Victor 9000)

3.) HEX CODE FOR SCREEN CONTINUATION CHARACTER (2D) == AD
HEX CODE FOR COMMAND ESCAPE CHARACTER (1B) == 1B
HEX CODE FOR COMMAND ITERATION LEFT BRACKET (5B) == 5B
HEX CODE FOR COMMAND ITERATION RIGHT BRACKET (5D) == 5D
HEX CODE FOR SEARCH PATTERN MATCH CHARACTER (7C) == 7C

4.) EXPAND TAB WITH SPACES (0=NO, 1=YES) ~= 0
AUTO BUFFERING IN VISUAL MODE (0=NO, 1=FORWARD, 2=BACKWARD) == 1
BEGIN IN VISUAL MODE (0=NO, 1=YES) == 1

POINT PAST TEXT REG. INSERT (0=NO, 1=YES) == 1
IGNORE UPPER/LOWER CASE DISTINCTION IN SEARCH (0=NO, 1=YES) == 1

CLEAR SCREEN ON VISUAL EXIT (0=NO, 1=YES) == 0
REVERSE UPPER AND LOWER CASE (0=NO, 1=YES) == O
IGNORE SEARCH ERRORS (0=NO, 1=YES) == 0
EXPLICIT STRING TERMINATORS (0=NO, 1=YES) == 0O
INDENT INCREMENT (1 - 20, SUGGEST 4) -4
LOWER CASE CONVERT (0=NO, 1=YES, 2=CONDITIONAL) -0

DECIMAL CODE FOR CONDITIONAL CONVERT CHARACTER (59) == 59
LINE AND COLUMN DISPLAY (0=NONE, 1=LINE, 2=COLUMN, 3=BOTH) == 3
RIGHT MARGIN FOR WORD WRAP (0=0FF) -0

HIGH BIT ALLOWED ON INPUT/QUTPUT (1 = 7, SUGGEST 1) == 3
CURSOR POSITIONING OPTION (0 - 2, SUGGEST 1) -1
VIRTUAL LINE LENGTH WITH SCROLLING (40 - 254) -- 200
HORIZONTAL SCROLL INCREMENT (1 - 100) - 20
5.) ENTER NUMBER OF SCREEN LINES IN DECIMAL =-- 24
ENTER LINE MOVEMENT FOR PAGING IN DECIMAL -~ 20
ENTER TOP LINE FOR CURSOR IN DECIMAL -3
ENTER BOTTOM LINE FOR CURSOR IN DECIMAL =-- 20
ENTER LENGTH OF DISPLAYED LINE IN DECIMAL -- 80
6.) SIZE IN DECIMAL OF SPARE MEMORY FOR AUTO READ -~ 4096

SIZE IN DECIMAL OF FILE MOVE TRANSFERS IN K BYTES =- 12
DO YOU WISH TO USE THE DEFAULT TAB POSITIONS? (Y OR N) == Y

ENTER DECIMAL VALUE (4MHZ = 76, 2MHZ = 38) == 76
BEGIN IN INSERT MODE (0=NO, 1=YES) == 0

USE DEFAULT DRIVE FOR HELP AND VEDIT.INI FILES (0=NO, 1=YES) == O
ENTER (0=NO) OR DRIVE # FOR HELP AND VEDIT.INI FILES - 1
SHOULD VEDIT.INI FILE BE EXECUTED (0=NO, 1=YES) -1

REVERSE VIDEO ON STATUS LINE (0=NO, 1=YES) -- 1



VEDIT
Appendix E

Page 212

8086 Versions

EXAMPLE KEYBOARD LAYOUT FOR THE TI PROFESSIONAL COMPUTER

"ESCAPE MODE CHARACTER #1"

[ HOME]

| ZEND |

[ CURSOR UP]

[ CURSOR DOWN]

[ CURSOR RIGHT]
[CURSOR LEFT]

[ BACK TAB]

| TAB CURSOR]

[z1P]

[NEXT LINE]

[LINE TOGGLE]
[SCROLL UP]

[ SCROLL DOWN]

[ SCROLL RIGHT]
[SCROLL LEFT]
[PREVIOUS WORD]
[NEXT WORD]
[PREVIOUS PARAGRAPH]
[NEXT PARAGRAPH]
LPAGE UP]

[PAGE DOWN]

[ SCREEN TOGGLE]

[ BACKSPACE]

[ DELETE]

[ERASE TO END OF LINE]
[ERASE LINE]

[DEL PREVIOUS WORD]
[DEL NEXT WORD]
[uNDO]

[TAB CHARACTER]
[NEXT CHAR LITERAL]
[SET INSERT MODE]
[RESET INSERT MODE]
[ SWITCH INSERT MODE]
[ REPEAT]

[ INDENT]

[UNDENT ]

[FIND]

[REPLACE]

[ CANCEL]

[COPY TO TEXT REGISTER]
[MOVE TO TEXT REGISTER]
[ INSERT TEXT REGISTER]
[PRINT TEXT]

[SET TEXT MARKER]
[GOTO TEXT MARKER]

[ FORMAT PARAGRAPH ]
[VISUAL ESCAPE]
[VISUAL EXIT]
[RESTART EDITOR]

NOT USED Type [RETURN]

ECTRL— 1]

CTRL=~ F12]

[Up Arrow]

[Down Arrow]

[Right Arrow]

[Left Arrow]

[ SHIFT-TAB]

[CTRL=T] Useful for fast cursor movement.
[HOME]

[LINE FEED]

[ CTRL=-L]

[CTRL- Up Arrow]

[CTRL~ Down Arrow]

[CTRL~- Right Arrow]

[CTRL- Left Arrow]

[CTRL=V]

[ CTRL=B]

[CTRL= F5]

[CTRL- F6]

[F5]

[F6]

[ CTRL~K]

[<==-]

[Del]

[CTRL=Z] Also called [EREOL] in manual.
[ CTRL=X]

[CTRL=C]

[CTRL-N]

[ CTRL=-U]

[TAB]

[CTRL-Q]

NOT USED Type [RETURN]
NOT USED Type [RETURN]
[Ins]

[F4]

[F8]

[F7]

[(F1)]

[F2]

[F3]

[Fo]

[CTRL~ F9]

[F10]

[PRNT]

[(F11]

[F2]

[ CTRL~F]

ESC

[CTRL-E] Used to exit to command mode.
NOT USED Use "EA" Command.

Note: For MSDOS choose "DEC VT=-100" in CRT menu and "# screen lines" = 25
For CP/M-86 choose "H19" in CRT menu and "# screen lines" = 24



VEDIT Page 213

APPENDIX F
EXAMPLE KEYBOARD LAYOUTS
8080/Z80 VERSIONS

MEMORY MAPPED SCREENS



VEDIT Page 214
Appendix F 8080-Z80 Versions

VEDIT Notes for TRS-80 Model I

The diskette supplied with the TRS-80 Model I version of VEDIT
contains two configurations of the software, one for the standard
Model I with a CP/M base (or ORG) at 4200 Hex and the second for the
modified Model I with a CP/M base at 0000 Hex. Modifications such as
the Omicron Mapper use a CP/M base at 0000.

In order to let you to use VEDIT as quickly as possible, we have
including a "ready to run" VEDIT on the disk, which does not need to
customized, This VEDIT follows the "Example Keyboard Layout for the
TRS-80 Model I" and the "Example Customization for TRS-80 Model I".
The two files are:

VEDIT@00.COM Ready to run VEDIT for ORG 0000 Systems

VEDIT@42.COM Ready to Run VEDIT for ORG 4200 Systems

When you customize your own VEDIT, the files VEDST@0.COM and
VTZM@OO.SET are for use with a CP/M base of 0000, while the files
VEDST@42.COM and VTZM@42.,SET are for use with a CP/M base of 4200
Hex. Therefore, the CP/M command to invoke the customization program
for the CP/M at 0000 is:

VEDST@O0 VTZM@Q0 VEDIT

The command to invoke the customization program for the CP/M at
4200 is:

VEDST@42 VTZM@42 VEDIT

We recommend using the Default Keyboard Layout. However, since
the TRS-80 Model I does not have an ESCAPE key ([ESC] in the manual),
another key must be used for the ESCAPE key in both command and visual
modes. We recommend the use of the Up Arrow ([CTRL=Z]) on the Model
I.

Also, producing control characters from the keyboard requires
holding both the SHIFT and Down Arrow, and then typing the letter.

Please note that VEDIT has a software switch which will perform
any necessary reversal of upper and lower case letters typed on the
keyboard. The Model I keyboard normally produces upper case letters,
and with the shift key depressed, it produces lower case letters.
Some of the CP/M implementations for the Model I will reverse these
keyboard characters, while others will not. If your CP/M does not
reverse the letters, you will probably want VEDIT to do so. This
reversal may be specified during Task 4. of the customization, or
with switch 7 of the "ES" command while running VEDIT.



VEDIT Page 215
Appendix F 8080-7Z80 Versions

Customization Notes for TRS=80 Model 1

The TRS-80 wuser running the customization program should
reference these notes to help answer some of the questions. The
numbers below refer to the customization Tasks described in Appendix A
of the manual., An example customization follows. Since the enclosed
keyboard layout covers Task 1, these notes cover only Tasks 3 through
6. Users having at least a little experience with VEDIT can try other
values, unless we indicate that a specific value must be used.

3.2.) Use "OA" for the Command mode escape character in order to make
the Down Arrow the Escape key.

3.5) Use "TF" for the cursor character.

4.5) Use ™" to reverse upper and lower case letters.

5.1) Must use value of "16".

5.2) A value of around "10-14" is suggested. Maximum is "15",

5.3) Personal preference. A value of "3" is reasonable.

5.4) Personal preference. A value of "2" is reasonable.

5.5) Must use value of "64".

5.6) Normally use value of "64".,

5.7) Must use value of "3C00", (or FCOO with Shuffleboard).

5.8) Must use value of "Q",



VEDIT Page 216
Appendix F 8080-Z80 Versions

EXAMPLE CUSTOMIZATION FOR TRS-80 MODEL I

For clarity sake, each reply below is preceded by "-=" which does
not appear in the actual customization. Please note that the Screen
address is "3C00" for an unmodified machine, and "FCOO" with the

Shuffleboard modification.

3.) HEX CODE FOR SCREEN CONTINUATION CHARACTER (2D) 2D
HEX CODE FOR COMMAND ESCAPE CHARACTER (1B) == 0A
HEX CODE FOR COMMAND ITERATION LEFT BRACKET (5B) 5B
HEX CODE FOR COMMAND ITERATION RIGHT BRACKET (5D) 5D
HEX CODE FOR SEARCH PATTERN MATCH CHARACTER (7C) 7C
HEX CODE FOR CURSOR CHARACTER (5F) - TF
HEX CODE FOR SCREEN CLEAR CHARACTER (20) -- 20
HEX CODE FOR STATUS LINE CHARACTER (2D) == 2D
HEX CODE FOR TAB EXPAND CHARACTER (20) == 20

4.) EXPAND TAB WITH SPACES (0=NO, 1=YES) == 0
AUTO BUFFERING IN VISUAL MODE (0=NO, 1=FORWARD, 2=BACKWARD) -- 1
BEGIN IN VISUAL MODE (0=NO, 1=YES) == 1
POINT PAST TEXT REG. INSERT (0=NO, 1=YES) == 1
IGNORE UPPER/LOWER CASE DISTINCTION IN SEARCH (0=NO, 1=YES) == 1
CLEAR SCREEN ON VISUAL EXIT (0=NO, 1=YES) == O
REVERSE UPPER AND LOWER CASE (0=NO, 1=YES) -- 1
IGNORE SEARCH ERRORS (0=NO, 1=YES) == 0O
EXPLICIT STRING TERMINATORS (0=NO, 1=YES) == O

CURSOR -TYPE (0, 1, 2) == O

CURSOR BLINK RATE, SMALL # IS FAST (2MHZ - 20, 4MHZ - 40) -- 18
INDENT INCREMENT (1 - 20, SUGGEST 4) -4

LOWER CASE CONVERT (0=NO, 1=YES, 2=CONDITIONAL) — 0
DECIMAL CODE FOR CONDITIONAL CONVERSION CHAR. (59 ) == 59

LINE AND COLUMN DISPLAY (0=NONE, 1=LINE, 2=COLUMN, 3=BOTH) == 3

RIGHT MARGIN FOR WORD WRAP IN DECIMAL (0=OFF) - 0

HIGH BIT ALLOWED ON INPUT/OUTPUT (1 = 7, SUGGEST 1) =- 1

CURSOR POSITIONING OPTION (0 - 2, SUGGEST 1) -1

VIRTUAL LINE LENGTH WITH SCROLLING (40 - 254) -= 200

HORIZONTAL SCROLL INCREMENT (1 - 100) -= 20
5.) ENTER NUMBER OF SCREEN LINES IN DECIMAL - 16

ENTER LINE MOVEMENT FOR PAGING IN DECIMAL == 12

ENTER TOP LINE FOR CURSOR IN DECIMAL -3

ENTER BOTTOM LINE FOR CURSOR IN DECIMAL == 12

ENTER SCREEN LINE LENGTH IN DECIMAL = 64

ENTER LENGTH OF DISPLAYED LINE IN DECIMAL -- 64
ENTER ADDRESS OF SCREEN IN HEXADECIMAL - 3C00
ENTER NUMBER OF VIDEO BOARD INITIALIZATION BYTES == O

6.) SIZE IN DECIMAL OF SPARE MEMORY FOR AUTO READ -=- 4096
SIZE IN DECIMAL OF FILE MOVE TRANSFERS IN K BYTES —- 8

DO YOU WISH TO USE THE DEFAULT TAB POSITIONS? (Y OR N) == Y

BEGIN IN INSERT MODE (0=NO, 1=YES) == O

USE DEFAULT DRIVE FOR HELP AND VEDIT.INI FILES (0=NO, 1=YES) -- O
ENTER (0=NO) OR DRIVE # FOR HELP AND VEDIT.INI FILES -1
SHOULD VEDIT.INI FILE BE EXECUTED (0=NO, 1=YES) -0
REVERSE VIDEO ON STATUS LINE (0=NO, 1=YES) -~ O



VEDIT Page 217
Appendix F 8080-Z80 Versions

VEDIT
DESCRIPTION OF FILES FOR THE TRS-80 MODEL II

The following is a brief description of the files currently
supplied on diskette for the TRS-80 Model II versions. In order to
let you use VEDIT as quickly as possible, two "ready to run" VEDIT
files are supplied, which do not need to be customized., These files
follow the "Example Keyboard Layout for TRS=80 Model II" and the
"Customization Notes for TRS-80 Model II".

VEDSET.COM The program used to perform the customization. The
manual describes the use of this program and the ".SET"
files below.

VEDIT2P.COM The ready to run version of VEDIT for the Pickles &
Trout CP/M.

VEDIT2G.COM The ready to run version of VEDIT for all other CP/M
TRS=80 Model II systems.

VEDIT2P .SET File for producing the VEDIT version for the Pickles &
Trout CP/M.

VEDIT2G .SET File for producing the VEDIT version for all other
CP/M, TRS=80 Model II systems.



VEDIT Page 218
Appendix F 8080-Z80 Versions

Custonization Notes for TRS=80 Model IT

Users running the customization program may wish to use these
notes to help answer some of the questions, In fact, some necessary
information is only contained here, and not in any of the Radio Shack
supplied documentation. An example customization follows. Since the
enclosed keyboard layouts give examples for Task 1, +these notes
describe only Tasks 3 through 6. Users having a little experience
with VEDIT can try other values, unless we indicate that a specific
value must be used.

3.) All suggested values are used, but you may use "AD" instead of
"2D" for the continuation character, since reverse video is
available,

4.10) Use cursor types 0, 1 or 2, depending upon personal preference.
Types 1 and 2 seem most appropriate.

5.1) Must use value of "24".

5.2) A value around 19 - 21 is suggested. Maximum is "23",
5.3) Personal preference. A value of "4" is reasonablé.
5.4) Personal preference. A value of "20" is reasonable.
5.5) Must use value of "80".

5.6 Normally use value of "80".

5.7 Must use value of "F800".

5.8 Must use value of "O",



VEDIT Page 219
Appendix F 8080-Z80 Versions

does

3.)

4.)

5.)

6.)

EXAMPLE CUSTOMIZATION FOR TRS-80 MODEL II

For clarity sake, each reply below is preceded by "==", which
not appear is the actual customization.

HEX CODE FOR SCREEN CONTINUATION CHARACTER (2D) = AD
HEX CODE FOR COMMAND ESCAPE CHARACTER (1B) == 1B
HEX CODE FOR COMMAND ITERATION LEFT BRACKET (5B) == 5B
HEX CODE FOR COMMAND ITERATION RIGHT BRACKET (5D) == 5D
HEX CODE FOR SEARCH PATTERN MATCH CHARACTER (7C) == 7C
HEX CODE FOR CURSOR CHARACTER (5F) == S5F
HEX CODE FOR SCREEN CLEAR CHARACTER (20) == 20
HEX CODE FOR STATUS LINE CHARACTER (2D) == 2D
HEX CODE FOR TAB EXPAND CHARACTER (20) =- 20

EXPAND TAB WITH SPACES (0=NO, 1=YES) == 0
AUTO BUFFERING IN VISUAL MODE (0=NO, 1=FORWARD, 2=BACKWARD) == 1
BEGIN IN VISUAL MODE (0=NO, 1=YES) == 1

POINT PAST TEXT REG. INSERT (0=NO, 1=YES) == 1
IGNORE UPPER/LOWER CASE DISTINCTION IN SEARCH (0=NO, 1=YES) == 1
CLEAR SCREEN ON VISUAL EXIT (0=NO, 1=YES) == 0
REVERSE UPPER AND LOWER CASE (0=NO, 1=YES) == 0
IGNORE SEARCH ERRORS (0=NO, 1=YES) == 0
EXPLICIT STRING TERMINATORS (0=NO, 1=YES) == 0

CURSOR TYPE (0, 1, 2) == 1

CURSOR BLINK RATE, SMALL # IS FAST (2MHZ - 20, 4MHZ - 40) -- 40
INDENT INCREMENT (1 - 20, SUGGEST 4) -4

LOWER CASE CONVERT (0=NO, 1=YES, 2=CONDITIONAL) -0
DECIMAL CODE FOR CONDITIONAL CONVERSION CHAR. (59 ) == 59

LINE AND COLUMN DISPLAY (O=NONE, 1=LINE, 2=COLUMN, 3=BOTH) == 3

RIGHT MARGIN FOR WORD WRAP IN DECIMAL (0=OFF) -0
HIGH BIT ALLOWED ON INPUT/OUTPUT (1 = 7, SUGGEST 1) == 1
CURSOR POSITIONING OPTION (0 - 2, SUGGEST 1) -1
VIRTUAL LINE LENGTH WITH SCROLLING (40 - 254) -= 200
HORIZONTAL SCROLL INCREMENT (1 - 100) -= 20

ENTER NUMBER OF SCREEN LINES IN DECIMAL == 24
ENTER LINE MOVEMENT FOR PAGING IN DECIMAL -- 20

ENTER TOP LINE FOR CURSOR IN DECIMAL -4
ENTER BOTTOM LINE FOR CURSOR IN DECIMAL =-- 20
ENTER SCREEN LINE LENGTH IN DECIMAL -~ 80
ENTER LENGTH OF DISPLAYED LINE IN DECIMAL -- 80
ENTER ADDRESS OF SCREEN IN HEXADECIMAL -- F800

ENTER NUMBER OF VIDEO BOARD INITIALIZATION BYTES —— O

SIZE IN DECIMAL OF SPARE MEMORY FOR AUTO READ -- 6144
SIZE IN DECIMAL OF FILE MOVE TRANSFERS IN K BYTES —-- 12

DO YOU WISH TO USE THE DEFAULT TAB POSITIONS? (Y OR N) == Y
BEGIN IN INSERT MODE (0=NO, 1=YES) == O

USE DEFAULT DRIVE FOR HELP AND VEDIT.INI FILES (0=NO, 1=YES) == O
ENTER (0=NO) OR DRIVE # FOR HELP AND VEDIT.INI FILES - 1
SHOULD VEDIT.INI FILE BE EXECUTED (0=NO, 1=YES) ~ —

REVERSE VIDEO ON STATUS LINE (0=NO, 1=YES) == 1



VEDIT
Appendix F

Page 220

8080-Z80 Versions

EXAMPLE KEYBOARD LAYOUT FOR TRS-80 MODEL II

"ESCAPE MODE CHARACTER #1"
"ESCAPE MODE CHARACTER #2"
"COMMON 2ND CHARACTER #1..."
"UPPER/LOWER CASE ESCAPE..."

[HOME]

[ZEND]

[ CURSOR UP]

[ CURSOR DOWN]

[ CURSOR RIGHT]
[CURSOR LEFT]

[BACK TAB]

[TAB CURSOR]

[ ZIP]

[NEXT LINE]

[LINE TOGGLE]
[sCroLL UP]

[ SCROLL DOWN]

[ SCROLL RIGHT]

| SCROLL LEFT]
[PREVIOUS WORD]
[NEXT WORD]
(PREVIOUS PARAGRAPH]
[NEXT PARAGRAPH]
[PAGE UP]

[PAGE DOWN]

[ SCREEN TOGGLE]

[ BACKSPACE]

[ DELETE]

[ERASE TO END OF LINE]
[ERASE LINE]

[DEL PREVIOUS WORD]
[DEL NEXT WORD]
(uNDO]

[TAB CHARACTER]
[NEXT CHAR LITERAL]
[SET INSERT MODE]
[RESET INSERT MODE]
[ SWITCH INSERT MODE]
[ REPEAT]

[ INDENT]

[ UNDENT]

[FIND]

[ REPLACE]

[ CANCEL]

[COPY TO TEXT REGISTER]
[MOVE TO TEXT REGISTER]

[INSERT TEXT REGISTER]
[PRINT TEXT]

[SET TEXT MARKER]
[GOTO TEXT MARKER]

[ FORMAT PARAGRAPH]
[VISUAL ESCAPE]
[VISUAL EXIT]

[ RESTART EDITOR]

[Esc]

NOT USED Type [RETURN]
NOT USED Type [RETURN]
1

ESC - H
ESC - Z
[Up Arrow]
[Down Arrow]
[Right Arrow]
[Left Arrow]
[ BREAK]
[CTRL=-F] Useful for fast cursor movement.
[HOLD]
[ CTRL~-N]
[ CTRL-G]
[ CTRL=-Q]
[CTRL~-Z]
{CTRL—Y]
CTRL=T
[ CTRL=J ]
[ CTRL=K ]
ESC - F1
ESC - F2
[(F1]
[F2]
[ CTRL=W]
[ BACK SPACE]
[CTRL=D]
[ CTRL-L] Also called [EREOL] in manual.
[ CTRL=X]
ESC = J
ESC = K
[CTRL=-U]
[ TAB]
ESC - Q
NOT USED Type [RETURN]
NOT USED Type [RETURN]
[ CTRL-V]
[ CTRL=R]
[CTRL-P]
[ CTRL=0]
ESC -
ESC =
ESC -
ESC =
ESC -
ESC =
ESC =
ESC -
ESC -
ESC -
ESC - ESC
[CTRL=E] Normally used exit to command mode
NOT USED Use "EA" Command.

QWO HEOQ O



VEDIT Page 221
Appendix F 8080-Z30 Versions

SUGGESTED CUSTOMIZATION FOR IMSAI VIOC

A suggested IMSAI VIOC customization session is listed below.
The values depending upon memory size are based on a 40K system.

3.) HEX CODE FOR SCREEN CONTINUATION CHARACTER (2D) == AD
HEX CODE FOR COMMAND ESCAPE CHARACTER (1B) == 1B
HEX CODE FOR COMMAND ITERATION LEFT BRACKET (5B) == 5B
HEX CODE FOR COMMAND ITERATION RIGHT BRACKET (5D) == 5D
HEX CODE FOR SEARCH PATTERN MATCH CHARACTER (7C) == 7C
HEX CODE FOR CURSOR CHARACTER (5F) -= 5F
HEX CODE FOR SCREEN CLEAR CHARACTER (20) == 20
HEX CODE FOR STATUS LINE CHARACTER (2D) -= 2D
HEX CODE FOR TAB EXPAND CHARACTER (20) == 20

4.) EXPAND TAB WITH SPACES (0=NO, 1=YES) == 0
AUTO-BUFFERING IN VISUAL MODE (0=NO, 1=FORWARD, 2=BACKWARD) == 1
BEGIN IN VISUAL MODE (0=NO, 1=YES) == 1
POINT PAST TEXT REG. INSERT (0=NO, 1=YES) == 1
IGNORE UPPER/LOWER CASE DISTINCTION IN SEARCH (0=NO, 1=YES) == 1
CLEAR SCREEN ON VISUAL EXIT (0=NO, 1=YES) == 0
REVERSE UPPER AND LOWER CASE (0=NO, 1=YES) == 0
IGNORE SEARCH ERRORS (0=NO, 1=YES) == 0
EXPLICIT STRING TERMINATORS  (0=NO, 1=YES) == 0

CURSOR TYPE (0, 1, 2, 3) == 1
CURSOR BLINK RATE, SMALL # IS FAST (2MHZ - 20, 4MHZ = 40) == 20

INDENT INCREMENT (1 - 20, SUGGEST 4) -4

LOWER CASE CONVERT (0=NO, 1=YES, 2=CONDITIONAL) — 0

DECIMAL CODE FOR CONDITIONAL CONVERSION CHAR. (59) == 59

LINE AND COLUMN DISPLAY (O=NONE, 1=LINE, 2=COLUMN, 3=BOTH) == 3

RIGHT MARGIN FOR WORD WRAP IN DECIMAL (0=OFF) -0

HIGH BIT ALLOWED ON INPUT/OUTPUT (1 = 7, SUGGEST 1) == 1

CURSOR POSITIONING OPTION (0 - 2, SUGGEST 1) -1

VIRTUAL LINE LENGTH WITH SCROLLING (40 - 254) - 200

HORIZONTAL SCROLL INCREMENT (1 - 100) -= 20
5.) ENTER NUMBER OF SCREEN LINES IN DECIMAL = 24

ENTER LINE MOVEMENT FOR PAGING IN DECIMAL -- 20

ENTER TOP LINE FOR CURSOR IN DECIMAL -— 4

ENTER BOTTOM LINE FOR CURSOR IN DECIMAL == 20

ENTER SCREEN LINE LENGTH IN DECIMAL -~ 80

ENTER LENGTH OF DISPLAYED LINE IN DECIMAL -- 80

ENTER ADDRESS OF SCREEN IN HEXADECIMAL -- F800

ENTER NUMBER OF VIDEO BOARD INITIALIZATION BYTES == O

6.) SIZE IN DECIMAL OF SPARE MEMORY FOR AUTO READ -~ 4096
SIZE IN DECIMAL OF FILE MOVE TRANSFERS IN K BYTES -- 8

DO YOU WISH TO USE THE DEFAULT TAB POSITIONS? (Y OR N) == Y

BEGIN IN INSERT MODE (0=NO, 1=YES) == 0

USE DEFAULT DRIVE FOR HELP AND VEDIT.INI FILES (0=NO, 1=YES) == O
ENTER (0=NO) OR DRIVE # FOR HELP AND VEDIT.INI FILES -1
SHOULD VEDIT.INI FILE BE EXECUTED (0=NO, 1=YES) -1

REVERSE VIDEO ON STATUS LINE (0=NO, 1=YES) == 1



VEDIT Page 223

APPENDIX G
EXAMPLE KEYBOARD LAYOUTS
8080/280 VERSIONS
SPECIFIC SCREENS



VEDIT Page 224
Appendix G 8080-~Z80 Versions

Notes for SuperBrain Version of VEDIT

The diskette is supplied as either single density "SD/128" or
double density "DD/512". (Unless specified otherwise, we supply
double density.) Users running double density, and receiving a single
density diskette, can use the SuperBrain supplied CP/M system to
operate drive A at double density and drive B at single density. In
this way the files may be copied to a double density diskette.

The following notes are applicable to the customization process:

With some versions of the SuperBrain D0S, <CTRL=W> cannot be
used, because it is intercepted and will lock up the machine. In this
case you can change [CURSOR RIGHT] to be <{CTRL=F>, not implement [TAB
CURSOR], and use <CTRL-D> for [PAGE UP]. Otherwise, the DEFAULT
KEYBOARD LAYOUT is usable.,

The cursor control keys are also intercepted very early by the
Superbrain's BIOS (DOS 3.0) and can only be used if you have a
modified BIOS which does not intercept the cursor keys, nor strips the
high order bit produced by the cursor and keypad keys.

If you would like to use the cursor control keys and the numeric
keypad, you can install the patch on the following pages to your CP/M
operating systen.



VEDIT Page 225
Appendix G 8080-7Z80 Versions

SuperBrain Patch for use with VEDIT

For SuperBrain DOS version 3.0

This patch allows the cursor keys and the numeric keypad to be
used for editing functions with VEDIT. The patch is made to the BIOS
section of the CP/M operating system and only applies to DOS version
3.0. Later versions of the DOS allow the cursor and keypad keys to be
configured for use with VEDIT and many other programs. We recommend
upgrading to the latest version of the DOS, since it contains several
other enhancements over 3.0. In the mean time, you may wish to
install this patch to your DOS version 3.0, for which you may need to
reference the manual concerning the use of DDT and the procedure for
performing a "SYSGEN".

The keyboard produces unique codes for the cursor and keypad keys
which have the high order bit set. This is excellent for the use with
VEDIT. Unfortunately, the BIOS intercepts the cursor keys (and does
nothing useful with them) and strips the high order bit from the
keypad keys, making them useless to VEDIT. The BIOS also intercepts
CTRL=-W, which modifies the screen display when it is typed.
Fortunately, a very simple patch cures these problenms. The keypad
will still produce numerics when not used with VEDIT, since CP/M and
most other programs will strip the top bit themselves. This patch
should therefore not affect the operation with any other programs.

The section of +the BIOS being patched is not supplied in the
partial BIOS listing from Intertec. In a 64K machine the code starts
at E50B. (Try the command "LE50B" with DDT). The code is:

E50B 1IN 50

E50D 1IN 50 sDon't ask us why this is repeated 3 times.
ESOF 1IN 50 sGet keyboard character in A.

E511 MOV B,A ;Save in B.

E512 NOP sA very convenient patch space.
E513 NOP

E514 NOP

E515 NOP

E516 NOP

E517 CPI 17 ;Is char a CTRL=W ?

E519 JZ E78E ;Yes, go modify the screen display.

We want to change it to:

E50B 1IN 50
E50D IN 50

E50F 1IN 50 ;Get "keyboard character in A.

E511 MOV B,A ;Save in B,

E512 CPIL 80H sDoes character have top bit set?

E514 RNC ;Yes, return with the character now!

E515 NOP

E516 NOP

E517 CPI FF sLook for a character which does not exist.

E519 JZ E78E ;It will never branch away now.



VEDIT Page 226
Appendix G 8080-Z30 Versions

Tou could apply this patch each time you use VEDIT, by creating a
SUBMIT file which invoked DDT and made the patch. We leave that up to
the reader. A Dbetter way 1is to make a permanent patch to the
operating system., This is done by patching the 64CPM5/5.COM or
32CPM5/5.COM files. These files actually are SYSGEN image files.
Therefore the code at E50B hex will be at 268B hex in each of these
files. The complete patch is as follows:

DDT22 64CPM5/5.COM or DDT22 32CPM5/5.COM
DDT VERS 2.2

NEXT PC

3100 0100

-32692 Note: The underlined text is
2692 00 FE typed by the user.
2693 00 80

2694 00 DO

2695 00 00

2696 00 00

2697 FE FE

2698 17 FF

2699 CA  CTRL=-C

B>SAVE 48 64CPM5/5.COM or SAVE 48 32CPM5/5.COM

Now follow the instructions in your manual for performing a
SYSGEN or installing the new 64CPM5/5.COM or 32CPM5/5.COM file. 1In
brief, give the CP/M command:

64CPM5/5 <returnd> or 32CPM5/5 for a 32K machine
To the question "SOURCE DRIVE ..." type a <return>

To the question "DESTINATION DRIVE ..." type a "A" or "B" to save the
new patched CP/M.

Now put the disk with the new CP/M into drive "A" and perform a
Cold Boot. You can now customize VEDIT to use your the cursor and
keypad keys. Obviously the cursor keys should be used for the cursor
functions. The numeric keys can be used for any other cursor movement
and editing functions.



VEDIT Page 227
Appendix G 8080-780 Versions

VEDIT NOTES FOR APPLE II

The version of VEDIT supplied for the APPLE is the regular CRT
version of VEDIT. It will work with the standard APPLE display as
well as with most of the 24 X 80 video cards available for the APPLE.
It will also work with most CRT terminals which might be connected via
a serial port with the APPLE.

Installation of VEDIT is done in two steps. The first is to use
the Microsoft supplied "CONFIGIO.BAS" program to configure the
"Software" terminal table to either the SOROC IQ120 or the HAZELTINE
1500, If you have never changed your CP/M with "CONFIGIO.BAS", you
should be able to use VEDIT by selecting the SOROC 120/140 in VEDIT's
CRT menu. (There is then no need to use CONFIGIO.BAS.) The second
step is to perform the VEDIT customization process, described in the
manual, to configure VEDIT to the selected "Software" terminal and
keyboard layout. Note that these two steps need only to be performed

once. However, the customization can be performed as often as desired
to produce new configurations of VEDIT.

To enable you to wuse VEDIT as quickly as possible, we have
included a preconfigured, ready to run VEDIT in the file "VEDIT.COM".
It supports the standard 40 column Apple II screen and follows the
customization described in the attached sheets "Example Keyboard
Layout for Apple II" and "Example Customization for Apple II". If you
have an 80 column board, you can quickly customize VEDIT by performing
only Task 5. of the customization.

When customizing your own keyboard layout, please note that some
control characters are redefined as displayable characters. (See
Redefinition of Keyboard Characters in the Microsoft manuals). By
default, CTRL=-K, CTRL=-@ and CTRL-B are redefined as w[n, RUBOUT and
BACKSLASH. CTRL-K and CTRL-B may therefore not be used for Visual
Functions, although CTRL~@ may be used.

Also note that the "<==" key generates a <CTRL-H>, "==>"

generates a <CTRL=-I> and typing <CRIL-U> actually generates a
<CTRL=I>.

If an external terminal is to be used, the "CONFIGIO.BAS" program
must be run and both hardware and software configuration tables
configured  identically, i.e. the Microsoft BIOS must do no
translations. Configuring both to the default DATAMEDIA is
sufficient, regardless of what terminal is connected.

IMPORTANT NOTE:

The command mode iteration brackets, normally "[" and "]", have
been customized to be "<" and ">" for the Apple II. Therefore,
for all command mode examples in the manual using "[" and "]",
you should type "<" and ">". If you prefer the square brackets
you can select them in Task 3. of the customization.



VEDIT Page 228
Appendix G 8080-2Z80 Versions

EXAMPLE CUSTOMIZATION FOR APPLE II, CRT VERSION

A typical Apple II customization session is 1listed below. For
clarity sake, each reply below is preceded by "==", which does not
appear is the actual customization.

CRT MENU - Normally choose SOROC 120/140, unless you have used the
MicroSoft supplied CONFIGIO program to select a different
"Software" terminal.

3.) HEX CODE FOR SCREEN CONTINUATION CHARACTER (2D) == 2D
HEX CODE FOR COMMAND ESCAPE CHARACTER (1B) == 1B
HEX CODE FOR COMMAND ITERATION LEFT BRACKET (5B) == 3C
HEX CODE FOR COMMAND ITERATION RIGHT BRACKET (5D) == 3E
HEX CODE FOR SEARCH PATTERN MATCH CHARACTER (7C) == 7C

4.) EXPAND TAB WITH SPACES (0=NO, 1=YES) =-—- O
AUTO BUFFERING IN VISUAL MODE (0=NO, 1=FORWARD, 2=BACKWARD) -- 1
BEGIN IN VISUAL MODE (0=NO, 1=YES) == 1

POINT PAST TEXT REG. INSERT (0=NO, 1=YES) == 1 4
IGNORE UPPER/LOWER CASE DISTINCTION IN SEARCH (0=NO, 1=YES) == 1
CLEAR SCREEN ON VISUAL EXIT (0=NO, 1=YES) == O

REVERSE UPPER AND LOWER CASE (0=NO, 1=YES) == O

IGNORE SEARCH ERRORS (0=NO, 1=YES) == 0

EXPLICIT STRING TERMINATORS  (0=NO, 1=YES) == 0

INDENT INCREMENT (1 = 20, SUGGEST 4) -4

LOWER CASE CONVERT (0=NO, 1=YES, 2=CONDITIONAL) -— 0

DECIMAL CODE FOR CONDITIONAL CONVERSION CHAR. (59) - 59

LINE AND COLUMN DISPLAY (O=NONE, 1=LINE, 2=COLUMN, 3=BOTH) == 3

RIGHT MARGIN FOR WORD WRAP IN DECIMAL (0=OFF) - 0

HIGH BIT ALLOWED ON INPUT/OUTPUT (1 - 7, SUGGEST 1) == 1

CURSOR POSITIONING OPTION (0 - 2, SUGGEST 1) -1

VIRTUAL LINE LENGTH WITH SCROLLING (40 - 254) -= 200

HORIZONTAL SCROLL INCREMENT (1 - 100) -= 20
5.) ENTER NUMBER OF SCREEN LINES IN DECIMAL =- 24

ENTER LINE MOVEMENT FOR PAGING IN DECIMAL == 20

ENTER TOP LINE FOR CURSOR IN DECIMAL -3

ENTER BOTTOM LINE FOR CURSOR IN DECIMAL == 20

ENTER LENGTH OF DISPLAYED LINE IN DECIMAL - 40

6.) SIZE IN DECIMAL OF SPARE MEMORY FOR AUTO READ -= 4096
SIZE IN DECIMAL OF FILE MOVE TRANSFERS IN K BYTES == 8

DO YOU WISH TO USE THE DEFAULT TAB POSITIONS? (Y OR N) — Y
ENTER DECIMAL VALUE (4MHZ = 76, 2MHZ = 38) -- 38

BEGIN IN INSERT MODE (0=NO, 1=YES) == 0
USE DEFAULT DRIVE FOR HELP AND VEDIT.INI FILES (0=NO, 1=YES) == O

ENTER (0=NO) OR DRIVE # FOR HELP AND VEDIT.INI FILES -1
SHOULD VEDIT.INI FILE BE EXECUTED (0=NO, 1=YES) -1

REVERSE VIDEQ ON STATUS LINE (0=NO, 1=YES) == 0



VEDIT Page 229

Appendix G 8080-280 Versions
EXAMPLE KEYBOARD LAYOUT FOR APPLE II
"ESCAPE MODE CHARACTER #1" [Esc]
"ESCAPE MODE CHARACTER #2" NOT USED Type ERETURN]
"COMMON 2ND CHARACTER #1.eo" NOT USED Type [RETURN
"UPPER/LOWER CASE ESCAPE..." 1 (1 = YES, O = NO)
[ HOME] ESC - H
[ ZEND] ESC - Z
[ CURSOR UP] [ CTRL-E]
{ CURSOR DOWN] [CTRL=C]
[ CURSOR RIGHT] [ CTRL=D]
[CURSOR LEFT] [CTRL=-S]
[BACK TAB] [ CTRL-A]
[TAB CURSOR] [ CTRL~F] Useful for fast cursor movement.,
[z1P] [ CTRL=G]
[NEXT LINE] NOT USED Not needed in tight layouts
[LINE TOGGLE] NOT USED Or use in place of [ZIP]
[ SCROLL UP] [CTRL=-Q]
[ SCROLL DOWN] [CTRL=Z]
[ SCROLL RIGHT] [CTRL=Y]
[SCROLL LEFT] [CTRL~-T]
[PREVIOUS WORD] ESC = 5
[NEXT WORD] ESC - 6
[PREVIOUS PARAGRAPH] ESC - W
[NEXT PARAGRAPH] ESC - X
[PAGE UP] [ CTRL=-W]
[PAGE DOWN] [CTRL=X ]
[ SCREEN TOGGLE] ESC = T
[ BACKSPACE] [ CTRL=H] Or use "<{===" key.
[ DELETE] [ CTRL=N]
[ERASE TO END OF LINE] [ CTRL-L] Also called [EREOL] in manual.
[ERASE LINE] ESC - L
[DEL PREVIOUS WORD] ESC = 7
[DEL NEXT WORD] ESC - 8
(uNDO] ; [CTRL=J]
ETAB CHARACTER] [CTRL=-I] Or use "—==>" key.
NEXT CHAR LITERAL] ESC = Q
[SET INSERT MODE] NOT USED Type [RETURN]
[RESET INSERT MODE] NOT USED Type [RETURN]
[SWITCH INSERT MODE] [CTRL~V]
[ REPEAT] [CTRL=R]
[ INDENT] [CTRL=-P]
[ UNDENT] [CTRL=0]
[FIND] ESC - 1
[ REPLACE] ESC = 2
[ CANCEL] ESC = 3
[COPY TO TEXT REGISTER] ESC - C
[MOVE TO TEXT REGISTER] ESC = M
[INSERT TEXT REGISTER] ESC - I
[PRINT TEXT] ESC - P
[SET TEXT MARKER] ESC = S
[GOTO TEXT MARKER] ESC - G
[ FORMAT PARAGRAPH] ESC = F
[VISUAL ESCAPE] [ CTRL-SHIFT-P]
[VISUAL EXIT] ESC - ESC Used to exit to command mode.
[RESTART EDITOR] NOT USED Use "EA" Command.



VEDIT
Appendix G

8080-Z80 Versions

Page 230

EXAMPLE KEYBOARD LAYOUT FOR THE XEROX 820

"ESCAPE MODE CHARACTER #1"
"ESCAPE MODE CHARACTER #2"
"COMMON 2ND CHARACTER #1..."
"UPPER/LOWER CASE ESCAPE..."

[HOME]

[ZEND]

[ CURSOR UP]

[ CURSOR DOWN]

[ CURSOR RIGHT]

[ CURSOR LEFT]

[ BACK TAB]

[ TAB CURSOR]

[zIP]

[NEXT LINE]

[LINE TOGGLE]

[ SCROLL UP]

[ SCROLL DOWN]

[ SCROLL RIGHT]

[ SCROLL LEFT]
[PREVIOUS WORD]
[NEXT WORD]
[PREVIOUS PARAGRAPH]
[NEXT PARAGRAPH]
[PAGE UP]

[PAGE DOWN]

[ SCREEN TOGGLE]

[ BACKSPACE]

[ DELETE]

[ERASE TO END OF LINE]
[ERASE LINE]

[ DEL PREVIOUS WORD]
[DEL NEXT WORD]
[unDO]

[ TAB CHARACTER]
[NEXT CHAR LITERAL]
[ SET INSERT MODE]
[RESET INSERT MODE]
[SWITCH INSERT MODE]
[ REPEAT]

[ INDENT]

| UNDENT ]

[ FIND]

[ REPLACE]

[ CANCEL]

[COPY TO TEXT REGISTER]
[MOVE TO TEXT REGISTER]
| INSERT TEXT REGISTER]
[PRINT TEXT]

[ SET TEXT MARKER]
(GOTO TEXT MARKER]

[ FORMAT PARAGRAPH]

| VISUAL ESCAPE]

[ VISUAL EXIT]
[RESTART EDITOR]

[ESC]

NOT USED
NOT USED

1

ESC - CTRL-H
ESC - CTRL=-Z
[Up Arrow]

[Down Arrow]
[Right Arrow]
[Left Arrow]

[ CTRL=S]
[CTRL~F]
[ CTRL=G]
LINE-FEED
NOT USED
ESC = U
ESC - D
[CTRL~Y]
[ CTRL=T]
[ CTRL-K]
[ CTRL=L]
ESC - Q
ESC = Z
[ CTRL=-Q]
[ CTRL=Z]
[ CTRL-W]

BACK=-SPACE

DEL

[CTRL-N]
[CTRL-X ]
ESC - K

ESC - L

[ CTRL=U]
TAB

ESC - N

NOT USED
NOT USED
[ CTRL=V]
[ CTRL~R]
[ CTRL-P]
[CTRL=0]
ESC - F

ESC -
ESC -
ESC -
ESC -
ESC -
ESC -
ESC -
ESC -
ESC -
ESC - ESC
[CTRL-E]

wahotH=RQow

NOT USED -

Type [RETURN]
Type [RETURN]
(1 = YES, O = NO)

Useful for fast cursor movement.

Or use in place of [ZIP]

Also called [EREOL] in manual,

Type [RETURN]
Type [RETURN]

Used to exit to command mode,
Use "EA" Command,



VEDIT
Appendix G

8080-7Z80 Versions

Page 231

EXAMPLE KEYBOARD LAYOUT FOR THE OSBORNE I COMPUTER

"ESCAPE MODE CHARACTER #1"
"ESCAPE MODE CHARACTER #2"
"COMMON 2ND CHARACTER #1..."
"UPPER/LOWER CASE ESCAPE..."

[HOME]

[ ZEND]

[ CURSOR UP]

[ CURSOR DOWN]
[CURSOR RIGHT]

[ CURSOR LEFT]

[ BACK TAB]

[ TAB CURSOR]

[zIP]

[NEXT LINE]

[LINE TOGGLE]

[ SCROLL UP]

[ SCROLL DOWN]

[ SCROLL RIGHT]

[ SCROLL LEFT]
[PREVIOUS WORD]
[NEXT WORD]
[PREVIOUS PARAGRAPH]
[NEXT PARAGRAPH]
[PAGE UP]

[PAGE DOWN]

[ SCREEN TOGGLE]

[ BACKSPACE]

[ DELETE]

[ERASE TO END OF LINE]
[ ERASE LINE]

[DEL PREVIOUS WORD]
[DEL NEXT WORD]
[unDO]

[ TAB CHARACTER]
[NEXT CHAR LITERAL]
[SET INSERT MODE]

L RESET -INSERT MODE]
[SWITCH INSERT MODE]
[ REPEAT]

[ INDENT]

[ UNDENT]

[FIND]

[ REPLACE]

[ CANCEL]

[coPY TO TEXT REGISTER]
[MOVE TO TEXT REGISTER]
[INSERT TEXT REGISTER]
[PRINT TEXT]

[SET TEXT MARKER]
[GOTO TEXT MARKER]

[ FORMAT PARAGRAPH]
[VISUAL ESCAPE]
[VISUAL EXIT]
[RESTART EDITOR]

[EsC]

NOT USED
NOT USED

1

ESC - H
ESC - Z

[Up Arrow]

[Down Arrow]
[Right Arrow]
[Left Arrow]

[CTRL=A]
[CTRL~F]
[ CTRL~G]
[CTRL=-Z]
NOT USED
ESC = U
ESC = D
[ CTRL-Y]
[ CTRL~T]
[CTRL=-S]
[ CTRL=D]
ESC - W
ESC - X
[ CTRL~W]
[ CTRL=X ]
[CTRL-Q]
[ CTRL-B]
DEL

ESC = N

[ CTRL-N]
ESC - S

ESC - D

[ CTRL-U]
[CTRL-I]
ESC - Q

NOT USED
NOT USED
[ CTRL-V]
[CTRL-R]
[CTRL=P]
[CTRL-0]
ESC =
ESC =
ESC =
ESC =
ESC -
ESC =
ESC -
ESC -
ESC =
ESC -
ESC -
ESC -
NOT USED

HEooQQUHEBOQON

SC

Type ERETURN]
Type [RETURN
(1 = YES, 0 = NO)

Useful for fast cursor movement.

Or use in place of [ZIP]

Also called [EREOL] in manual.

Or use TAB key.

Type [RETURN]
Type [RETURN]

Used to exit to command mode.
Use "EA" Command.

Note: Select ADM~-3A from the menu during customization.



VEDIT Page 232
This page reserved for your notes.



VEDIT Page 233
Index

A

A, 49, 56, 84, 90, 114, 138

Abort function, 66, 67, 71, 72

Adding new text, (See Entering new text)
Alternate command mode escape, 84

Alternate control codes, 160

ANSI standard terminal, 159

Append to text buffer, (See Concatenating Files)
Append to text register, 38, 48, 54, 70, 101, 104
Assembly language, 74

Auto-buffering, 14, 55, 56, 57, 599 77’ 89, 90’ 1399 162’ 168’ 175
Auto-read, 14, 55, 89, 114, 138, 175, 175
Auto-gtartup, 58

Auto-write, 55, 77

B

B, 11, 115

[ BACK TAB], 26, 78, 80

[ BACKSPACE], 10, 32, 80

BACKSPACE key, 9, 10

Backup of file, 14, 130

Backward disk buffering, 55, 57, 57, 77, 90, 90, 139, 162
".BAK" file, 14, 58, 91, 132, 137, 142
Bank select, 155

Basic editing concepts, 13

Bit 8 characters, 64, 75, 174

*BREAK*, 46, 84, 133, 145, 184

c

C, 115

(CANCEL], 42, 43, 66, 70, 82

Cancel search operation, 42, 43, 69

"CANNOT FIND" 42, 98

"CHECKSUM ERROR", 156,172

Clear screen, 162

Close files, 129, 132, 143

Column display (status), 62, 63, 136, 164
Command categories, 18

Command escape character, 160, (See ESC key)
Command line, 17, 84

Command line editing, 84, 85, 94

Command macro, 17, 55, 58, 93, 102, 103, 121, 145, 146
Command mode, 11, 13, 13, 17, 19, 44, 84
Command mode prompt, 11, 44, 84, 94

Command syntax, 17

Comments in macros, 105, 147

Common 2nd character, 158

Concatenating files, 48



VEDIT Page 234
Index

Concatenating lines, 31

Conditional convert character, 74, 136, 164

Continuation character, 62, 160

Continuation line, 16, 62, 64, 73

Control characters - in text, 41, 64, 72, 101, 119, 133, 144
Control characters - typing, 15, 22, 64, 84, 85, 159, 172, 173
CONTROL key, 22, 174

Control sequences, 15, 25, 64, 159, 172

Convert LC to UC, (See Lower to upper case conversion)

[coPY TO TEXT REGISTER], 70, 81

Copying text, 15, 45, 54, 70

Correcting mistakes, 33, (See [UNDO])

CP/M user number, 58, 88

Creating new file, 23, (See Invoking VEDIT)

CRT.ASM, 157

CRT.TBL, 156

CRT and memory mapped, 155

CRT terminal versions, 155, 155, 156, 157, 158

Cursor, 15, 18, 19, 23, 62, 67, 136, 136, 161, 162, 166
Cursor blink rate, 163

Cursor character, 161

Cursor movement, 15, 25, 26, 35, 63, 65, 67, 68, 71

Cursor position, 11, 25, 40, 44, 64, 65, 71, 72, 73, 126
Cursor type, 163

Customization, 56, 64, 64, 73, 77, 84, 94, 95, 139, 141, 154, 156
Customization notes, 172

Cut and paste, 54, 70, (See Text registers)

D

D, 116

DEC VT100 terminal, 159

Default drive, 57

[DEL NEXT WORD], 32, 72, 80

[DEL PREVIOUS WORD], 32, 72, 80

DELETE key, 67, 71

[DELETE], 10, 32, 80

Deleting files, 88, 90

Deleting lines, 31, 66 /

Deleting text, 10, 15, 31, 32, 66, 72, 75, 116, 120
Deleting text blocks, 15, 31, 32, 38

Delimiters (text), 93, 94, 124, 139, 163

Disk buffering, (See Auto-buffering)

Disk directory, 46, 88, 132

Disk full error (recovery), 50, 57, 58, 88, 131, 134
Disk space, 57, 68, 90, 134, 146, 162

Disk write error recovery, 90

Displayable characters, 15, 64, 65, 67

Displaying files, 47, 89, 134



VEDIT Page 235
Index

E

E, 116

EA, 45, 57, 67, 87, 129

EB, 24, 45, 58, 58, 88, 89, 104, 114, 127, 130, 175, 184
EC, 48, 59, 90, 91, 131, 138, 184

ED, 46, 50, 88, 91, 132

EF, 49, 50, 91, 131, 132, 142, 143

EG, 47, 133

EI, 65, 72, 75, 119, 133

EK, 50, 88, 90, 91, 134

EL, 47, 134

EO, 100, 106, 107

EP, 36, 37, 58, 63, 73, 74, 135, 161

EQ, 51, 137

ER, 24, 48, 49, 89, 114, 130, 138

ES, 40, 55, 56, 57, 58, 68, 77, 94, 94, 139, 161
ET, 58, 141, 169

EV, 141

EW, 24, 48, 49, 50, 89, 127, 127, 130, 131, 142
EX, 12, 51, 87, 88, 129, 129, 142

EY, 45, 58, 87, 88, 89, 104, 129

EZ, 51

Edit function, 15, 25, 64, 65

Edit pointer, 18, 19, 44, 99, 115, 115, 119, 122, 124, 128, 139, 162
Edit session, 14, 23, 44, 45, 91, 129, 139

Editing second file, 45, 88, 143

Emptying a text register, 31, 38, 40, 123

End of a line, 64, 75

Ending edit session, 51 :

Entering new text, 10, 25, 29, 30, 64, (See Inserting text)
Entering visual mode, 11, 19, 44

[EREOL], 32, 80

[ERLINE], 32, 80

Error Messages, 182-184

<ESC> key, 11, 17, 22, 44, 84, 93, 94, 97, 103

Escape sequences, 15, 22, 64, 72, 76, 158, 159, 172, 173
Exiting VEDIT, (See Ending edit session)

Exiting visual mode, 11, 19, 44

Expand tab with spaces, 72, 139, 161

Extended commands, 116

F

F, 84, 93, 94, 115, 116, 117, 120, 122, 124, 140

File editing, 88

File extension, 14

File locking, 59

File name, 13, 105

File type, 14

Files = large (long), 14, 24, 49, 56-59, 122, 168, 175



VEDIT
Index

[FIND], 42, 68, 82, (See Searching)

"Forever" (or "all"), 97

[ FORMAT PARAGRAPH], 37, 73, 82, 164

Formatting paragraphs, 16, 20, 35, 37, 73, 136

Forward disk buffering, 55, 56, 57, 77, 89, 90, 128, 139
Free memory, 56, 57, 58, 125, (See U command, Memory space)
"FULL" message, 40, 46, 55, 71, 77, 125, (See Memory space)
Full screen editing, 13 }

Function keys, 15, 25, 154, 158, 159, 172, 173

G

G, 101, 118, 123
Global operations, 56, 58
[GOTO TEXT MARKER], 28, 79

H

H, 85, 118

Heath H19 terminal, 173

High bit characters, (See Bit 8 characters)
[HOME], 28, 77, 78

Horizontal scroll increment, 137,165
Horizontal scroll margin, 16, 66, 137, 165
Horizontal scrolling, 16, 62, 66

I

I, 93, 99, 119

I/0 mapped video board, 155

IBM 3101 terminal, 173

IBM Personal Computer, 75, 165, 166
Ignore search errors, 93, 139 163

Ignored characters, 64 .
LINDENT], 36, 37, 71, 73, 73, 81

Indent increment, 16, 71, 136, 163

Indent position, 16, 35, 71, 71, 136
Indenting text, 16, 35, 36

Initializing terminals, 101, 144, 175
Input file, 14, 56, 57, 91, 92, 129, 131, 143, 143, 175
[INSERT], 30

Insert mode, 15, 29, 41, 64, 169
Inserting control characters, 41, 75, 133
Inserting files, 47, 89, 133

Inserting lines, 29

Inserting spaces, 68, 71, 72

Inserting text, 10, 94, 105, 119

[INSERT TEXT REGISTER], 70, 81

Inserting text register, 38, 39, 70, 118, 139
Installing VEDIT, 154, (See Customization)

Page 236 .



VEDIT Page 237
Index

Intertec Intertube II, 165

Invoking VEDIT, 9, 23, 24, 45, 58

Iteration bracket, 84, 161

Iteration count, 17, 97, 99

Iteration macro, 17, 84, 97, 98, 103, 119, 125, 141

K

K, 66, 123

Keyboard Characters, 25, 65, 74, 75, 133
Keyboard layout, 15, 22, 25, 154, 154, 158, 172
Kill files, 50, 134

L

L, 59, 9 _

Large files, (See Files - large)

Left margin, 73

Line and column display, 62, 164

Line continuation, (See Continuation lines)

Line number (status line), 63, 136, 164

[LINE TOGGLE], 26, 78

Literal character, 93, 94

Loading files, (See Reading files)

Loading text registers, 105, 145

Logged=-in disks, 131, (See Default drive, Multiple Drives)
Long lines, 16, 62, 64, 66

Lower and upper case letters, 74

Lower to upper case conversion, 16, 74, 136, 164

M

M, 102, 103, 104

"MACRO ERROR", 94, 104, 121, 123

Macros, (See Command macros)

Mainframe computers, 68, 95

Margins, 16, 35, 37, 73, 164

MATROX video board, 166

Maximum file size, 57, (See Files - large)

Memory mapped versions, 156, 158, 175

Memory size, 168

Memory space - full, 71, 77, 85, 89, 90, 114, 118, 123, 133, 145
Memory space (saving), 40, 46, 71, 85, 90, 92, 114, 118, 127
Merging files, 47, 48, 101

Minimum transfer bytes, 56, 77, 168

[MOVE TO TEXT REGISTER], 32, 39, 40, 70, 81

Moving text, 15, 38, 39, 54, 67, 70

Multi-tasking operating systems, 59

Multiple commands, 17

Multiple drives, 24, 48, 57, 91



VEDIT Page 238
Index

Multiple files, 55, 91
Multiple screen lines, 62, 66, (See Continuation lines)

N

N, 84, 90, 93, 128, 140, 175

NEC APC, 75

"Nearly" full, 56, 90

"NEW FILE", 9, 23, 130, 184
NEWCRT .DOC, 157

[NEXT CHAR LITERAL], 41, 65, 72, 75, 80, 94
[NEXT LINE], 26, 78

[NEXT PARAGRAPH], 27, 72, 79
[NEXT WORD], 27, 72, 79

“NO DIR SPACE", 50, 88, 90

"NO DISK SPACE", 50, 88, 90, 143
"NO OUTPUT FILE", 143

Normal mode, 15, 29, 64, 169
Notation, 84

Numeric pad, 173, 174

0

Offset paragraph, 73

Opening a file, 14, 130, 138, 142

Output file, 14, 55, 56, 57, 57, 77, 90, 91, 92, 114, 127, 129, 130,
131, 142, 143, 143, 175

Output to printer, (See Printing text)

Over-writing text, 10, 15, 25, 29, 30, 64, (See Normal mode)

P

P, 101, 118, 120

[PAGE DOWN], 28, 65, 79, 166

LPAGE UP], 28, 79, 166

Page movement, 28, 34, 166

Paragraphs, 68, (See Format Paragraph)
Parameters - setting, 58, 135, 139, 160, 168
Pattern Matching, 93, 95

[PREVIOUS PARAGRAPH], 27, 72, 79

[PREVIOUS WORD], 27, 72, 79

Print formatter, 20, 73, 74, 107, 141

Print keyboard layout, 170

PRINT.EXC, 107

[PRINT TEXT], 41, 72, 82

Printing text, 11, 41, 72, 100, 101, 106, 135
Printing text registers, 101

Processor speed, 169

Programmable function keys, 58, 101, 144



VEDIT Page 239
Index

Q

Quick customization, 158
Quit edit session, 51, 137

R

R*, 105, 147

RD, 101, 144

RI, 93, 105, 144

RL, 101, 104, 145

RP, 101, 145

RS, 101, 104, 146

RT, 101, 104, 144, 146

RU, 101, 147

Re-routing console output, 106
READCRT.DOC file, 157

Reading files, 14, 55, 89, 131, 138
Reformat paragraph, (See Format paragraph)
Register, (See Text register)

[REPEAT], 34, 42, 43, 65, 69, 81, 82
Repeat function, 34, 65

Repeat value, 34, 65

Repeated commands, 97, (See Iteration macro)
[REPLACE], 43, 69, 82

Replace text, (See Search and Replace)
[RESET INSERT MODE], 80, 159

[RESTART], 82, 87

Restart edit session, 45, 58, 129

RETURN key, 15, 17, 29, 35, 64, 71, 75, 84
"REV FILE OPEN", 92

Reverse upper & lower case, 140, 162
Reverse video, 62, 170

Right margin, 73, 164

RUBOUT (DELETE) key, 85, 157, 160

S

S, 93, 98, 99, 124, 140

Sample edit session, 9

Save text on disk, 11, 14, 45, 101, 129, 143, 146
Save text register, 101,103,146

Scratch pad buffers, (See Text registers)
Screen address, 155, 166

Screen line length, 73, 166

Screen parameters, 165

Screen size parameters, 174

[ SCREEN TOGGLE], 27, 79

Screen updating, 62, 65

[ScroLL DOWN], 27, 78



VEDIT Page 240
Index

[SCROLL LEFT], 27, 79

[ SCROLL RIGHT], 27, 79

[scroLL UP], 27, 78

Scrolling of screen, 16, 29

Search (ing), 16, 19, 42, 68, 85, 140

Search and Keplace, 16, 19, 43, 68, 98, 99, 103
Search errors, 93, 94, 140

Search for <ESC>, 94

Search options, 42, 69, 93

Selective replace, 43, 69

Separator (pattern), 95

", SET" file, 155, 156

[SET INSERT MODE], 10, 80, 159

[SET TEXT MARKER], 28, 79

Signon message, 170

Spare memory for auto-read, 168, 175
Splitting files, 49

Splitting lines, 11, 15, 29, 31, 64

Status line, 9, 23, 38, 62, 70, 136, 161, 164, 165, 170
Strings (of text), (See Text strings)

Strip comments, 96

Structured languages, 71

Substitute, (See Search and replace)
Suppressing <CR>, 105, 149

Suppress search errors, 93, 139, 163

[SWITCH INSERT MODE], 10, 80, 159

Switches - setting, (See Parameters - setting)

T

T, 84, 99, 100

[TAB CHARACTER], (See Tab character)

Tab character (key), 16, 35, 64, 67, 84, 119, 139

[TAB CURSOR], 26, 68, 78, 159

Tab expansion, 68, 71, 139, 162

Tab positions, 16, 19, 58, 64, 67, 68, 71, 141, 162, 169

Televideo terminals, 158, 159, 165

Temporary disk file, 57, (See ".$R$" file)

"TEXT" message, 63, 70

Text buffer, 14, 55, 56, 56, 57, 70, 77, 114, 125, 143

Text markers, 15, 28, 65, 67

Text registers, 15, 19, 38, 45, 46, 54, 70, 72, 101, 118, 121, 123
125

Text registers (emptying), (See Emptying text register)

Text registers (insertion), (See Inserting text register)

Text registers (loading), (See Loading text registers)

Text registers (saving), (See Saving text registers)

Text register macros, (See Command macros)

Text strings, 84, 93

TRS-80 Model I, 74

TRS=-80 Model II, 166

Typing out text, 125, 146, (See Displaying files)



VEDIT Page 241
Index

U

U, 85, 101, 114, 125, 147, 175

[UNDENT], 36, 37, 71, 73, 73, 81

Upper and lower case, 16, 117, 139, 140, 159, 173
Upper/lower case search, 117, 136, 162

User numbers (CP/M), (See CP/M user numbers)

A

v, 11, 44, 126

V=PRINT Print Formatter, 20

V-~SPELL Spelling Corrector, 20

VDSETCRT.COM file, 156, 171

VEDSET.COM file, 156

VEDIT.INI file, 58, (See Auto-startup)
Version number, 141

VHELP.TXT file, 85

Video board initialization, 167

[VISUAL ESCAPE], 11, 44, 44, 51, 82, 98, 126
[VISUAL EXIT], 44, 44, 82, 98, 126

Visual functions, 15, 31, 64, 65

Visual mode, 9, 15, 19, 23, 62, 77, 98, 126, 139, 140, 162

W

W, 46, 49, 56

Wildcard characters, 88, 95, 132, (See Pattern matching)
Window into text, 56

Word processing, 20, 71, 72, 73, 141

Word wrap, 15, 35, 37, 73

Word wrap column, 136, 164

Write errors, (See Disk full errors)

Writing files, 70, 143, (See Saving text on disk)

XA, 106
Xs, 106
XT, 106



VEDIT Page 242
Index

Y

YL, 105, 106
YR, 105

1T, 93, 105
YW, 105

Z

Z, 59, 128

[zEND], 28, 78

Zenith 7219, 72100 terminals, 173
[zIP], 26, 78

" $$$" file, 132, 137
" . $R$" file, 57, 88, 90, 90, 91, 182
"1 END" message, 70

< and >, 17, 84, 161

[ and ], 17, 84, 97, 161
e, 93, 117, 119, 124, 140
#, 17, 97, 117, 124

$, 84

/s 93

iy 95

<CR> and <LF>, 64, 84, 95, 115, (See <CIRL-N>)
<CTRL-C>, 135, 157
{CTRL-H>, 85, 94

<CTRL-I>, 67

<CTRL~-N>, 69

<CTRL-Q>, 85, 94, 119
<CTRL-R>, 85, 94

<CTRL=-S>, 47, 86

<CTRL=-U>, 85, 94, 157, 160
<CTRL-X>, 85

<CTRL~-Z>, 65, 75



CompuView

CompuView Products, inc.
1955 Pauline

Ann Arbor, Michigan 48103
(800) 327-5895 (313) 996-1299
Telex: 701821



	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243

