
SYSTEM
REFERENCE
MANUAL

CONOGRAPHIC ~
CORPORATION JOHN R. COFFMAN

MANAGER
FIELD SALES

6 GILL STREET. WOBURN, MASSACHUSETTS. (617) 935 -7300

CONOGRAPHIC
CORPORATION

SYSTEM
REFERENCE
MANUAL

How to use the
Conograph

Display
Systems

10

14

. 21

23

DIRECT COMMENTS CONCERNING THIS MANUAL TO

CONOGRAPHIC CORPORATION, 380 GREEN STREET, CAMBRIDGE, MASSACHUSETTS 02139 TEL. (617) 491-5820

The Right to Change Specifications is Reserved

Written for Conographic Corporation by William English. Printed in the United States
SRM 1

May 1971

Copyright © 1971
by Conographic Corporation

1.

1.1

1.2

INTRODUCTION

LogicalOrganization ..

Models and Options ..

1.3 Conographic Parameters

2. PROGRAMMING

2.1 Raster

2.2 Mode Commands ..

2.3 Long Graphic Mode

2.4 Short Graphic Mode

2.5 Symbol Modes
Italics 2-9
Symbol Scale 2-10

Contents

.1-1

.. .1-3

.1-5

.1-6

.2-1

.2-1

.2-3

.2-4

.2-7

.2-8

2.6 Function Commands. 2-11

2.7

2.8

3.
3.1

3.2

Receiver 2-12
CRT control 2-12
Position and computation commands 2-13
Scale factors 2-17
Cursors 2-20
Dash control 2-21
Intensity variation 2-22
Offset 2-22
Light pen 2-24
Keyboard bell 2-25

Symbol Subroutine ..

Buffer ...

OPERATION.

Keyboard and Console

Software

APPENDICES

A

B

C

Installation

Command Codes
ASCII character commands B-2

Determination of Conographic Parameters
Curves, type I C-l
Rotation C-3
Figures C-3

iii

. .. 2-25

.. 2-27

.3-1

.3-1

.3-2

A-I

.B-1

.C-I

1

Introduction

The Conographic systems utilize the new technique of Conography to display general curves, figures,
alphanumerics and other symbols by combining conic sections with the traditional straight lines. Four
units are currently available, with model numbers that indicate the size of the screen diagonal in
inches - 10, 14,21 and 23. The Model 10 uses a storage tube and has relatively limited refresh
capability; the others are nonstore displays and their much greater speed allows full refreshing. With
the Model 10 is an acoustic pointer that can be used, either on the screen or with a separate tablet, for
direct manual control of the CRT beam in generating arbitrary curves and figures. The larger models
have a standard light pen, but a pointer with or without tablet may be used with them. Also available
with the Model lOis a hardcopy unit, which makes a permanent record on paper of the information
displayed on the screen.

Physically every display consists of three parts connected by cables: CRT monitor, control unit and
keyboard. These may simply be placed on a
table as shown in the frontispiece, or
mounted in a standard 19-inch rack with the
keyboard protruding. Or the CRT monitor
and keyboard may be placed in any
arrangement on a table with the control unit
mounted in a nearby rack. The CRT monitor
contains the CRT and its associated deflection
amplifiers, high voltage power supplies, and
z-axis electronics; the control unit contains
the display processor, interface, Conographic
generator, and whatever read-only or core
memory is included in the system.

The data format used provides a 13-bit
addressable raster that is 32 inches square in
raster units of Y256 inch. The actual visible
window within the raster depends on the size
of the display as illustrated here. The largest
displays have three-dimensional capability, in
which the addressable raster is a 32-inch cube;
the visible depth is approximately equivalent
to the other dimensions.

-15

---10
------14
··· .. ······21
-·-·-23

-10

y

15

10

~LLLWWW~~~~~~~~~LL~~X L ______ :

. ! i I : .
i . -5 i I
Li·:~·:~·:· :: .. ::.:::;.::) j

-10

-15

DISPLAY RASTER

All data used in the system is in the form either of 8-bit bytes or 16-bit words. Basically the system
has two plotting modes plus a control mode in which it executes only commands that change the

1·1

1-2

mode (mode commands are always one word). The two plotting modes are graphic and symbol, but
there are a number of variations of each. In the graphic modes the display processor operates on
words. It can execute plotting and function commands, and can escape to control mode. Plotting
commands are groups of words that actually cause the processor to plot vectors, curves, and figures. In
long graphic mode, the format requires two words for a vector (relative or absolute), four for a curve,
six for a figure (three-dimensional plotting requires half again the number of words for each case). In
short graphic format, the parameters are packed two to a word and the processor is restricted to
relative vectors and curves; the former requires one word, the latter two.

In the various symbol modes the processor handles a string of 8-bit bytes, each of which causes the
symbol generator to perform some operation. This may be the displaying of a character or any other
symbol, but it may also be the execution of some function like a tab or carriage return, entering or
leaving italic mode, erasing the screen, or escaping to control mode. There is no fixed correspondence
between the bytes (say as ASCII codes) :md the operations of the symbol generator. Instead each byte
simply addresses a location in a read-only memory in the generator, which location in turn refers to a
subroutine consisting of short graphic plotting commands and function commands. Hence the actual
result of giving a particular symbol byte depends only upon the subroutine associated with the ROM
location corresponding to that byte. Moreover the operator can select among a number of different
symbol sets or fonts simply by changing the set of locations to which the symbol codes refer. Any
number of fixed fonts can be accommodated simply by increasing the size of the ROM, but through
the addition of a subroutine controller and core memory, the user can generate any desired fonts and
can change them at any time under program control.

The function commands perform all of the operations necessary (other than mode changes) for
overall control of the system, from selecting the CRT mode, setting and reading various operating
parameters, or enabling the light pen, to repositioning the beam for a space or carriage return, or
performing the computations necessary for horizontal and vertical tabbing. These commands can be
executed in graphic mode as well as being executed from the subroutine memory in symbol mode.
However not all function commands can be executed in all circumstances, as a given function may
simply be meaningless in some particular situation.

Of the five symbol modes, four are alphanumeric. All symbols are plotted relative to a base beam
position, but in alphanumeric mode the characters are plotted at eight times normal resolution: in
other words the graphic subroutine commands position the beam in terms of raster units that are only
Y2048 inch, allowing generation of much smoother figures in small areas. When displayed, the characters
are expanded by a factor of four for better visibility (ten characters per inch). Besides the basic
alphanumeric mode, there is also a protected alphanumeric mode in which the data strings supplied
say by a computer in a time sharing facility cannot be modified from the keyboard. An option
provides two modes that are equivalent to the basic and protected modes except that all displayed
characters are rotated 90° counterclockwise.

The other symbol mode is template mode, which is identical to basic alphanumeric except that the
graphic subroutine commands use normal raster units and are not subsequently expanded. This allows
a string of data bytes to display items from a font or template of larger symbols, such as those used in
drafting or design work (eg circuit and statistical symbols).

§1.1 1-3

1.1 LOGICAL ORGANIZATION

The basic organization of a Conographic display is as illustrated here. The processor handles all
necessary computations and governs the movement of internal information, in particular the supplying
of plotting data to the Conographic generator,
in response to incoming data. An interface
connects the system to some external
program source such as a computer or data
communication line; the design of the inter­
face depends of course on the type of
external information setup. Through the
interface, an external source can exercise
immediate control over the display by means
of direct communication with the processor,
or can load data into a core memory for
subsequent internal operation (the core
memory is optional on the 10, standard on
other models). Feedback from the processor
through the interface is in the form of
information supplied in response to interface
signals or an interrupt produced by say the

KEYBOARD

~ I\..

INTERFACE
DISPLAY

~ .--.. PROCESSOR

CORE
MEMORY

SIMPLIFIED DISPLAY ORGANIZATION

detection of a spot by the light pen. The operator at the keyboard can control the display directly and
can transmit information through the interface or into core. With keyboard, pointer and light pen, the
operator can generate graphic material, and through use of display software in a computer, be
updating a computer-stored display file, which is in turn refreshing and modifying the material
displayed on the screen. Or the computer can load a file into the internal core memory; then in a local
keyboard editing mode, the operator can modify the core file, which both controls and responds to
the processor; and finally, from the keyboard, the computer can be instructed to retrieve the edited
file.

The illustration on the next page shows the detailed organization Of the display. For operation from
a data communication line the interface would include facilities to convert serial input into bytes
(least significant bit first), and pairs of bytes into words (first byte on the left). Conversely, the
transmitter would have to convert from parallel to serial. The interface may also contain a word
counter for controlling the length of input and output, although it could be designed to terminate on
some special character. For connection to a computer, the interface would probably handle full words
through a 16-bit buffer, would have word and address counters for operation through a data channel
directly to computer memory, and would contain such control circuits as busy and done flags, perhaps
a light pen flag, and interrupt facilities.

If core memory and the buffer controller are included, the system can operate from a program in its
own core of up to 65K words. The controller includes an address counter to govern the program
sequence, a return address register for use in subroutine jumps, and facility for keeping a cursor to
orient the operator. Eg in symbol mode, the cursor would ordinarily be an underscore that would
mark the character position on the screen (and hence the buffer location) that would be affected by
any action taken at the keyboard.

The symbol generator includes read-only memory, an address counter, and a base address register

1-4 §1.1

PERSPECTIVE
Z-AXIS CUEING
3-D ROTATION -

VIEW PORTING

900

~ SYMBOL ~ X,Y,Z ; X
ROTATION POSITION a

~ ------PARAMETERS
SEGMENT TYPE CONOGRAPHIC Y --f

G~NERATOR L
CRT , r-............

DASH a ITALIC Z
CONTROL

INTENSITY
VARIATION

STORE
__ Conograph 10 only

NONSTORE
WRITE THRU

INTERFACE KEYBOARD SEQUENCER SCALE OFFSET AC
FACTORS REGISTERS

, 16-BIT BUS

BUFFER SYMBOL
CONTROLLER GENERATOR

BUFFER CORE SYMBOL
~ ADDRESS ADDRESS

COUNTER MEMORY COUNTER

RETURN FONT

~
BASE ADDRESS ADDRESS

SUBROUTINE

CONTROLLER ~
READ ONLY

MEMORY

DISPLAY ORGANIZATION

§ 1.2 1-5

that selects a font. For each symbol the address counter receives an 8-bit byte that selects one location
out of the first 256 in the font; and unless the symbol generation requires only a single command, the
counter is then reloaded by a jump to control the subroutine sequence. The same 8-bit codes are used
for any font, as the counter contents are added to the base address; thus all addressing is to a
preselected font and the fonts are variable in length. The counter is twelve bits, the base register is
sixteen. Hence any font is limited to 4K locations, and the total symbol memory is limited to 65K. If
core memory is included, a subroutine controller can reference core instead of ROM for arbitrarily
defined symbol fonts that can be changed at will. The buffer and subroutine controllers share a
common core memory, so the programmer must keep track of the parts of core used for each. The
total combined memory capacity can be greater than 65K, but subroutine capacity is limited to
65K - in other words any part of core can be used by the buffer, but the part of core that overlaps
the ROM (ie that has the same addresses) can be used only by the buffer.

The display is organized around a 16-bit data bus in which the least significant bus line corresponds
to the raster unit. The sequencer interprets input from whatever source, and controls the movement of
information and selection of modes. At the end of each operation (an entire subroutine in the symbol
generator is regarded as a single operation), the sequencer determines what input source to respond to
next. The keyboard has priority over the interface (this cannot affect the interface adversely as the
keyboard is usually much slower), and either can interrupt the buffer. Information is supplied to the
Conographic generator through buffers for beam position, curve parameters, and segment type. The
scale factors, offset registers, and dash control implement features described in the next section. The
accumulator AC is used by the sequencer for computations that are invisible to the programmer, but it
can also be used by function commands to control such operations as horizontal and vertical tabbing.
Specification of the CRT mode - store, nonstore, write thru - is required on the Conograph 10 only.

1.2 MODELS AND OPTIONS

All displays include generators for points, vectors, curves, figures and symbols, and have italics for
symbols and input scaling for short graphic commands. These short form commands have only six
magnitude bits of plotting information for each parameter, and the scale factor determines the order
of magnitude - the least significant bit can vary by powers of two from Y2S6 inch to ~ inch, the most
significant bit from Vs inch to 8 inches.

The core memory with buffer and subroutine controllers has already been described. The display
processor extension includes vertical and horizontal tabbing, 90° counterclockwise rotation of
symbols, object scaling, and dot and dash control. With object scaling, all relative plotting commands
are multiplied by a scale factor of Vs to 8 in steps of Vs; hence the size of any object on the screen can
be varied up or down without changing its position (separate factors for each dimension allow change
in shape as well). The dot and dash control allows the program to plot dashed curves, wherein the
lengths of both the dashes and the spaces between them are program selectable.

Other options are the following.
Intensity variation. Allows the program to select a different intensity, from among sixteen, for each

curve.
Offset. The selection of a fixed position offset (which can be different for different dimensions) to

move the entire display to a different part of the screen. In particular this allows the programmer to

1-6 § 1.3

move the visible window around in the addressable raster by adding the offsets to the program
parameters - in other words by moving any hidden part of the addressable raster into the window.

Picture scaling. Multiplication of all plotting commands by a scale factor of Ys to 8 in steps of Ys,
allowing variation in the size of the entire programmed picture, ie both object size and position.
Different scale factors can be selected for different dimensions.

Three-dimensional rotation. The ability to rotate objects on the screen through any dimension.
Perspective. The ability to show three-dimensional objects on the two-dimensional screen· in true

perspective. (Error less than 2%.)
Z-axis cueing. The use of additional plotting information to produce realistic three-dimensional

figures by using a variable intensity to represent depth (ie beam motion perpendicular to the screen).
View porting. The ability to reduce and clip a number of full screen pictures and show them

simultaneously in different parts of the screen, or even to reduce and clip a single picture and show it
simultaneously in a number of views. Eg a three-dimensional object may be reduced to one-fourth size
and, in the four screen quadrants, shown front view, top view, side view, and some angular view in
perspective. (Error less than 2%.)

The only features standard to the Conograph 10 are those that are basic to all machines. As options
the Model 10 can have additional read-only memory for extra symbol fonts, 4K core memory with
buffer controller and/or subroutine controller, and the display processor extension. The Model 14 has
a 4K core memory with buffer controller as standard equipment, and can have the subroutine
controller, picture scaling, and the processor extension, which in this case includes offset and intensity
variation. The 21 has as standard everything available to the 14, and as options can have perspective,
three-dimensional rotation, z-axis cueing, and multiple view porting. On the 23 all the listed features
are standard, except additional memory and peripherals, which are available optionally on all
machines.

1.3 CONOGRAPHIC PARAMETERS

Drawing a vector requires the same information as with any ordinary display: upon receiving the
coordinates of the endpoint or the components of the vector, the Conographic generator simply plots
points from the present be~m position along a straight line to the given end point or along the path
defined by the components for the distance specified by them. The number of components or
coordinates that must be given depends of course on whether the display is in two
or three dimensions.

To draw Conographic curves and figures requires specification of certain C
parameters and the segment type. Consider the curved segment AB illustrated
here. If the segment is such that it lies entirely on one side of the chord joining its
end points, it has no interior points of inflection, the tangents to the segment at
its end points intersect at C on the same side of the chord as the curve lies, and it
does not extend further from the chord than the midpoint E of the chord bisector
CD, then it is a segment of Type I. Either or both end points may be inflection
points with respect to the extension of the curve, eg by plotting additional Type I A
segments. If the tangents at the end points coincide, ie the slopes are both equal to the slope of the
chord, the curve is a degenerate case of a Type I segment and is plotted by the generator as a straight
line (in other words it is equivalent to a vector).

§ 1.3 1-7

If the slopes at the end points are equal but do not equal the slope of the chord (ie the tangents are
parallel but not coincident), the curve is a Type II segment. Such a segment must still lie entirely on
one side of the chord connecting the end points and have no interior point of inflection, but it must
have equal slopes at the end points. A Type II segment may be plotted as two consecutive Type I
segments, but the consecutive plotting of two arbitrary Type I segments does not necessarily produce
a Type II segment.

A Type IV segment is an ellipse, or in the special case, a circle. Although a Type IV segment can be
constructed of four Type I segments, it is not simply such a construction as any numbers of Type I
segments can be used to produce arbitrary closed curves. A Type III segment is the extension of a
Type II segment by a Type I segment along the path of the ellipse defined by the Type II segment,
which is half an ellipse.

For the Conographic generator the path of a segment of any type is defined by Conographic
parameters, two for each dimension. Segments of all types are div.ided into two categories depending
upon the plotting data given for them. A segment whose trajectory begins at the present beam position
is referred to as a "curve" regardless of its type, ie even if it is of Type IV (a closed figure). On the
other hand a trajectory generated by a plotting command that specifies a center point and then draws
the trajectory about that point is referred to as a "figure" even if it is only a Type I segment. A curve
is regarded as relative and requires specification only of parameters and segment type; in addition to
that information, a figure requires specification of a center point, and is regarded as absolute or
relative depending upon whether the center point is specified by absolute coordinates or by vector
components from the present beam position (of course neither the center point nor a vector defining
it is actually displayed). The center point of a figure is the actual center of the Type IV segment (ie

the ellipse) defined by the given parameters; and a Type I, II or III segment with the same parameters
lies on that ellipse. Generally Type I segments are drawn as curves and ellipses are drawn as figures, but
this is not necessary. Thus a single curve plotting command can display the Type I segment defined by
the parameters, or can extend it into a segment of any other type including a complete ellipse.
Similarly a plotting command for a figure can be limited to displaying half of the ellipse or a Type I or
Type III segment of it (in all cases starting from the same point).

Any two-dimensional Conographic segment is uniquely determined by specifying a segment type
and four parameters, J, K, Land M, plus positioning information - the current beam position for a
curve, the center point for a figure. For three dimensions an additional pair of parameters, Nand P,
are required. Although the parameters can be calculated for any arbitrary curve, the usual procedure is
to calculate them from fixed sets of formulas for the different types of curve characteristics that
usually are relevant to graphics being generated on a display screen; eg an arbitrary curve being
produced by a sequence of Type I incremental segments. A typical situation is the plotting of a Type I .
segment to fit between two given end points with specified slopes at those
end points as shown at the right. For convenience, define a and b as the
components of the chord connecting the end points, ie

\

where Xn and Yn are the coordinates of the point Pn. Using these quantities and the slopes 8 1 and 8 2

1-8 § 1.3

at P 1 and P 2 respectively, the parameters can be computed from these formulas:

J = S1a - b
S2 -S1

K = a+J

L = S2 J

M = b+L

Another typical requirement is a circle of radius R about some given center point_ This would
require the plotting command for a figure wherein the programmer specifies a Type IV segment, gives
the center point, and specifies parameters defined as follows:

J = R

K=O

L = 0

M=R

For curve plotting accuracy equivalent to that used in initial beam positioning, the parameters must
be given with the same resolution (ie number of bits) used to represent coordinates and components.

2

Programming

This chapter describes all of the mode, plotting and function commands for the Conographic displays.
The format of each. command word is shown in a box in which numbers represent fixed bits, and
letters represent quantities that must be supplied by the programmer. Where detail is required,
individual bits are shown; otherwise octal digits represent the contents. A word made up of a pair of
8-bit bytes is shown as two 3-digit octal codes, each representing eight bits; but the 6-digit octal code
for the entire 16-bit word (where the left digit of 0 or 1 represents only the left bit) is shown at the
right of the box. Stacked boxes represent commands requiring more than one word.

Every byte contains eight bits, but ASCII characters are uniquely determined by only seven - the
eighth (left) bit is ordinarily used for parity in data communications. In the description of any
command that has a fixed right byte, the 7-bit ASCII character for the seven low order bits of the byte
follows the name of the command. When giving the command, the program must supply the correct
8-bit byte. At the keyboard the operator can do this simply by selecting the appropriate parity when
typing the character.

Throughout this manual all numbers representing command words, register contents, codes and
addresses are always octal. On the other hand the ordinary use of numbers in the text to specify raster
units, word and byte lengths, bit values, etc. employs standard decimal notation.

The system assumes the use of the twos complement convention for binary numbers used to specify
plotting parameters, word counts and the like. With this convention positive numbers are represented
as ordinary binary numbers with a 0 in the sign bit (if any). The negative of a number is represented
by its twos complement, ie by taking the logical complement of the number including the sign, and
adding I to the result. Note however that the twos complement applies only to that part of a word
that represents the number for a parameter or component. Eg a 16-bit word may contain a 13-bit
component and several control bits; for motion in the opposite direction, only the thirteen component
bits are negated - the control bits must remain the same.

2.1 RASTER

For every display the addressable raster is 32 inches square with 8192 beam positions along each edge.
In each dimension there are thus 8191 raster units of ~56 inch each. The twos complement
representation for negatives allows one more negative number than there are positive numbers, so the

raster is actually 31 25%56 inches on an edge. The illustration on the next page shows the visible
windows, divided into quality a:rea'sand fringe areas where applicable, in relation to the addressable
raster for each of the displays.

2-1

2-2 §2.1

y y

-16,15"%,. 1-15 1525'256. lS'srZ56 ;-15
-4096,4095 4095,4095

r--l0 -10
-%,8% 7%,8%

O.61}'64 8, 61t'64

0,1584 2048,1684

1-5

-128,2176, -------'1920,2176
I

0,7 I I 7,7
0,1792 I I 1792,1792

1 -5 I
1 I

-15 -10 -, i 'f 'i
0,0 8,0

2048,0

x

1 I
1 17,0

-,5 -;0 -i 1 0,0 i I 1792,0 I,
-% - B1I l _______ 1

-128, -384 7%,-1%

x

1920,-384

r---5 --5

r---1O --10

-16,-16 1525%56,-16
-4096, -4096 1---15 4095,-4096 r---15

CONOGRAPH10 CONOGRAPH 14

y y

1-15 1-15

1-10 r- 1O

-6%,7 6%,7
-1664,1792 1664,1792 ,----------,

-6 6 -5 6,6 1 i -1536, 1536 1536,1536 I
I I
I I

-15 -10 I? i I 'I I,
I I I I I
I I
i -6,-6

I
_ 6,-61

L: !!~.a~-2;3~ _ _ --2 ~6:.:: '':'36J

-6%,-7 6%,-7
-1664, -1792 1664. -1792

x

-7%,7'1.. 7%,7'1..
-1920,1920 1920,1920

,...------ ---6%,6%'1 1-6%,6%
1-1664,1664 r-5 1664,16641

I I
I I
I I

-]" -r 1 -t 1,1 'f 't
I 1
I I
1 I
I I
I

--5 6%,-6%1 1-6%,-6%

L.:.'~~~6~ _ __ 1~.:.:~6~
-7%,-7% 7%. -7%

-1920, -1920 1920, -1920

x

--10 --10

--15 --10

CONOGRAPH 21 CONOG RAPH 23

Coordinates given in inches and raster units. Solid line indicates quality area, dashed line shows fringe area.

RASTER CHARACTERISTICS

§2.3 2-3

Although the program specifies the beam position with thirteen bits resolution, all computations in
the display processor are kept in sixteen bits. Of the three extras, one is of higher order than the
plotting data, the other two are of lower order. When objects are displayed using a scale factor less
than unity, all detail below the raster unit is lost, but carrying the two extra low order bits in
computations prevents the dropped bits of the commands from accumulating into a significant error.
Thus in a string of relative commands, the actual beam position keeps catching up to the program
position every time the extra low order bits accumulate into a raster unit.

The extra high order bit means that the actual beam positioning raster is 64 X 64. Hence if the
program carries the beam off one edge of the addressable raster, the beam continues in the same
direction even though the program may wrap around. The beam will wrap around only upon crossing
the edge of the positioning raster, so the program must cross the addressable raster twice to wrap the
beam around once.

Although addressing and beam position are limited only by the extent of the corresponding rasters,
there are limitations on visible beam motion inherent in the analog circuitry. The beam can be moved
any distance if only the end point is displayed or the entire motion is blank (no intensification). But
for a continuous or dashed curve, the maximum component or parameter is 2047 raster units. In a
single visible command, every component is actually interpreted modulo 2048 as far as beam
intensification is concerned. Eg an attempt to draw a 9-inch horizontal vector would produce a visible
line only one inch long despite the fact that the beam would move an additional eight inches (2048
raster units). This limitation does not depend on the shape of the screen; eg it is the same in both
dimensions on the Model 10 even though that model has only 1584 raster units vertically. Note that
this does not mean that figures can be no more than eight inches in diameter - the limitation is on
components of motion. The maximum radius or semiaxis of a visible circle or ellipse is actually 8.y2.

2.2 MODE COMMANDS

Following an escape from one mode, the processor can place the system in any other. In graphic mode
an escape occurs whenever the code 300 is encountered in the left half of a word. Such an escape can
interrupt the command stream even in the middle of a multiword command, which is then ignored.
Upon encountering an escape the processor places the system into the mode specified by the code in
the right half of the same word that produced the escape. In other words a switch is made to a
different mode by a single word containing 300 in the left byte, and this single word is both the escape
and the mode command.

In symbol mode there is no fiXed code for escape; the code that produces the escape is simply
whichever one is set up to call the escape function command in the subroutine memory. When an
escape occurs, the processor interprets the next byte in the symbol string as a right byte and enters the
mode specified by it. However, any 300s inserted between the escape code and a legitimate mode code
are ignored. Thus if the symbol bytes are being taken from words supplied through the interface,
proper orientation can easily be achieved even when the escape code comes in a right byte; the escape
is just followed by a graphic mode command, ie one with 300 in the left half.

Besides the modes described in Chapter 1, there are two other graphic modes and a no-op mode.
There are extra codes for special forms of the long and short graphic modes; at present these have no
function but can be implemented for any special circumstance that may be required (such as operation

2-4 §2.3

from 7-bit byt~s). The no-op mode command causes the processor to ignore all incoming words until
another mode command appears. Thus an extensive display me can include display routines, which are
in their proper places in the me, but which can be performed or not entirely at the discretion of the
programmer each time the me is run. Any such routine is effectively shut out by precedin~ it with a
no-op command, but it can be displayed at any time simply by substituting an appropriate mode
command for the no-op.

The 300 code is the ASCII character @ with even parity.

Enter Long Graphic FS 300 234 140234
1 1 I 1 1 I

Enter Special Long Graphic GS 300 235 140235
1 1 I 1 1 I

Enter Short Graphic RS 300 236 140236
1 1 I I I I

Enter Special Short Graphic US 300 237 140237
I 1 I 1 1 I

Enter Alphanumeric DC2 300 222 140222
1 I I I 1 I

Enter Alphanumeric Rotated FF 300 214 140214
1 1 I 1 1 I

Enter Protected Alphanumeric DC3 300 223 140223
I I I -I 1 1 I

Enter Protected Alphanumeric Rotated CR 300 215 140215
I 1 I 1 I I

Enter Template VT 300 213 140213
I I I 1 I I

Enter No-op SUB 300 232 140232
I I I I I I

2.3 LONG GRAPHIC MODE

In this mode, besides being able to escape and to execute all of the function commands described in
later sections, the processor can execute plotting commands for all types of curves in all visual forms,

§2.3 2-5

with parameters that are the full thirteen bits resolution. All plotting commands use a multiword
format wherein the first bits (left) of the first word specify the command type.

The left three bits of the second word are of the form PDf where a 1 in bit f selects the intensity
level specified by the intensity register. If the intensity variation option is not included or bit f is 0,
the beam is intensified at the normal level. The other two bits select the type of visual plotting as
follows:

PDf

00-
01-
10--
111

Visual Characteristics

Continuous intensification
Dashed line, as determined by dash control [§ 2.6]
Point - only end point visible
Blank - nothing visible

In the final case bit f must be 1 so that Os in the remaining bits cannot possibly cause the left byte to
be interpreted as an escape. This does not really select an intensity level, since in the blank case there
is no intensification anyway.

In the commands for curves and figures, the left two bits, a and b, of the final word (for two
dimensions) specify the type of Conographic segment as follows:

abx

00-­
Ol­
IO-
111

Segment Type

I
II
III
IV

where again in the final case the third bit must be 1 to guard against an inadvertent escape.

Plot a Vector
(long format)

0

P

0
I

D

+ I 8 I 4

~
I I

f
I I

Bit value in inches

1
2 J 1 I 2 4" I 8 16 32 I 64

Xor~X
I I I I

Yor~Y
I I 1

ill 256

From the present beam position, plot a vector to the point P where X and Yare the absolute
coordinates of P if ~ is 0, or ~X and ~Y are the components of P relative to the present position if ~
is 1. Regulate the visual characteristics of the vector as specified by PDf.

2-6

Plot a Curve
(long format)

1

P

°
D I

° °

§2.3

Bit value in inches

1 1 1
± 8 64 128 256

K

L

From the present beam position plot the curve defined by parameters J, K, Land M, to the extent
indicated by ab and with the visual characteristics specified by PDf.

Plot a Figure
(long format)

° I 1 l.::l

P D I
I

° ° ° I

° .° 1°
° ° ° • I

a I b IX

+ 8 1- 4 2

1 •

I

I

I ..l

• I • I

I I I _1

Bit value in inches

1 I- 2 4 I 8 16 32 1 64 128 ill

~or.::l~
I I 1
Yo or .::lYo

1 I I
J

I I I
K

1 ..l 1 1
L

I .L 1 1

J ..lM J
..l ..l 1 •

Centered on the point Po, plot the figure defined by J, K, Land M, to the extent indicated by ab and
with the visual characteristics specified by PDf. If A is 0, Xo and Yo are the absolute coordinates of
Po ; if A is I, AX 0 and AY 0 are the components of Po relative to the present beam position.

Remember that the largest component for any visible beam movement (continuous or dashed) is
2047 raster units (8 - Y2S6 inches), Thus in the specification of a component for a relative vector or the
Conographic parameters for any curve or figure, the 8s bit must be null (ie equal to the sign). In the
case of an absolute vector, a coordinate may have any value provided it does not result in moving the
beam more than 2047 raster units from the present position. Of course, none of these restrictions
applies to point or blank commands.

For a three-dimensional display, each long graphic command must contain additional information
for the z dimension (the extra word or words follow the words for two dimensions as shown above

§2.4 2-7

and each contains thirteen bits of plotting infonnation - there are no control bits). A vector
command requires a third coordinate or component, a curve requires Nand P parameters, and a figure
requires three extra words for the third coordinate or component oUhe center point and the Nand P
parameters.

2.4 SHORT GRAPHIC MODE

This mode, like long graphic, allows escaping and the execution of all function commands, but
plotting is limited to relative vectors and curves with only six magnitude bits for the specification of
any component or parameter. The actual values of the magnitude bits in a short graphic command
depend upon the graphic scale factor. Two of the function commands are used to specify and read this
factor.

Set Graphic Scale Factor 6

I

301

I ~ I

266

I

140666

: : :o~o: : : :s: I :0: OOOOSO

Set the scale factor for short graphic commands to S so that the six magnitude bits of such commands
have thy following values.

Bit Values in Inches
S MSB

0
1 1 1 1
8 16 32 64
1 1 1 1 - -
4 8 16 32

2
1 1 1

2 4 8 16

3 1
1 1 1 - -
2 4 8

4 2 1
1 1
2 4

5 4 2 1
1
2

6 8 4 2 1

Stop, Read Graphic Scale Factor &

LSB

1 1
128 256

1 1
64 128
1 1

32 64
1

16 32
1 1
8 16

4 8
1
2 4

301
I I I

Maximum

1 1 ----
4 256
1 1 ---
2 128

1 1- -
64
1 2- -

32
1

4- -
16
1 8--
8
1 16- -
4

246
I I I

140646

2-8 §2.5

Stop buffer and send the graphic scale factor to the interface. The scale fa~tor S appears in a word as
OOOOSO, in a byte as OSO.

Plot a Vector
(short format)

Unsealed bit value in inches
1 1

128 256

B

From the present beam position, plot a vector with components 2s X 6X and 2s X 6 Y, where S is the
graphic scale factor. If B is 0 display the vector, otherwise do not (ie a 1 in B produces a blank line).

Plot a Curve
(short format)

1

a

±

Unsealed bit value in inches
1 1 1

64 128 256 ±
1 1 1

64 128 256

From the present beam position, plot and display the curve defined by parameters 2S J, 2s K, 2s Land
2s M, where S is the graphic scale factor, to the extent indicated by ab as follows:

ab

00
01
10
11

Segment Type

I
II
III
IV

Neither J nor L should be -64 (-778) as the word containing it would be interpreted as an escape (the
twos complement form of -77 is 100).

As with long graphic format, short graphic components and parameters are limited to eight inches.
This restriction affects the commands only at the largest scale factor: with 6 the MSB (the 8s bit) must
be null.

2.5 SYMBOL MODES

In this mode each command is a single byte that refers to a subroutine in the symbol generator
read-only memory or in the subroutine core memory. The processor stays in a given symbol mode

§2.5 2-9

until it encounters a command byte that refers to an escape subroutine, at which time it enters the
mode specified by the next non-300 byte. Entry may be made to any mode including another symbol
mode, but a graphic mode must be called if any function commands are to be executed.

The correspondence of command bytes to subroutines is entirely arbitrary; the subroutine for any
given command may display an ASCII character or other figure, or it may do a special function like
tab or carriage return, turn on the light pen, or ring the bell in the keyboard. However, fixed fonts
prepared in ROM by Conographic Corporation use the following code assignments as standard, and it
is recommended that they generally be used in order to avoid confusion. Fonts are usually set up to
accept ASCII codes of either parity for a single set of 128 characters, but unique 8-bit codes can be
assigned to allow a full complement of 256 including control characters.

ASCII
Byte Character

003,203 ETX
007,207 BEL
010,210 BS
011,211 HT

012,212 LF
0l3,213 VT

014,214 FF
015,215 CR
016,216 SO
017,217 SI
030,230 CAN
033,233 ESC

Operation

Disable receiver
Ring the bell in the keyboard
Backspace - move beam one position left
Horizontal tab - move beam right to next tab position (standard
tabs are one-fifth screen width)
Line feed - move beam down one line
Vertical tab - move beam down to next tab position (standard
tabs are one-fifth screen height)
Form feed (home) - move beam to upper left corner
Carriage return - move beam to left margin
Enter italic mode
Leave italic mode
Cancel- erase screen and enter store mode
Escape

The same set of symbol commands can refer to a font anywhere in memory because the symbol
address is added to the font base address. To set up the system for symbol operation, the program
must use this command to select the base address of the font before entering a symbol mode.

Set Font Base Address > 140676

Load the next word into the font base address register and clear the symbol address counter.

Italics. While the processor is in a symbol mode it can also be in italic mode, ie any symbol
produced by a symbol mode command can be drawn in italic form; this applies to all symbols, even

2-10 §2.5

those in template mode, not just to alphanumeric characters. The following function commands
control italic mode entry and exit.

Enter Italic Mode so 301 216 140616
, I I ! I I ! ! I ! , I ! !

Draw all symbols in italics until commanded to leave italic mode or there is an escape from symbol
mode.

Leave Italic Mode SI 301 217 140617
I I I I I I

Draw subsequent symbols in standard form.

If an entire symbol string is to be drawn in italics, the program can enter italic mode along with
setting the font base address prior to entering the symbol mode. Within a string, symbol commands
can enter and leave italic mode by calling subroutines that are specifically for this purpose (the shift
out and shift in characters respectively are normally used for this). Subroutines in symbol core
memory can enter and leave italic mode, even for single symbols, by using the above function
commands. In any event the processor automatically exits italic mode whenever there is an escape
from symbol mode.

Symbol Scale. The plotting commands in symbol memory are in short graphic format. The graphic
scale factor scales these commands only when the processor does not have the optional object scale
factor. When object scaling is present, the graphic scale factor applies only to commands given in short
graphic mode and the object scale factor applies to all relative commands including those in symbol
memory.

In template mode, plotting commands operate in a normal manner and beam position is entirely
arbitrary; at the end of a subroutine the position depends only on where the subroutine moved it. In
all alphanumeric modes, the base beam position for each symbol is effectively fixed; the subroutine
plotting commands move the beam relative to the base position by means of high resolution circuitry,
and the exit from a subroutine automatically zeros the high resolution increment so that its effect (as
determined by the short graphic commands) is entirely discounted when base position changes are
being made, such as in spacing or tabbing.

With the use of high resolution, the short graphic subroutine commands move the beam in terms of
raster units that are Yl048 inch, ie eight times as fine as the normal resolution of YlS6 inch. The limits for
this resolution are approximately a half inch in each direction from the base position, so that
alphanumeric mode can draw symbols that are a maximum of a square inch in siz.e (beam movement
across an edge simply wraps around). Although subroutines in core can use any grid pattern, even a
variable one, the standard alphanumeric fonts in ROM use a grid in which the sectiQ11s are ten standard
raster units high and six wide, with the base beam position in the lower left corner. At a given symbol
position, a symbol command calls a subroutine, which draws the character within the rectangle and

§2.6 2·11

terminates with a function command that exits from the routine and spaces the beam to the next
position, ie to the lower left corner of the next rectangle.

A 10 X 6 rectangle in normal raster units is equivalent to an 80 X 48 rectangle in the high resolution
units. Within this the subroutine plotting commands are generally set up to produce alphanumeric
characters that are 44 X 32. Without object scaling, the graphic scale factor can multiply the size and
spacing of symbols by a power of 2 up to 26. With object scaling, the graphic scale factor does not
affect symbol subroutine commands, and there is an automatic scaling upward by a factor of four,
which for alphanumerics produces a display approximately like an ordinary typewriter - ten
characters per inch and·· six lines per inch. By superimposing object scaling on the subroutine
commands, character size and spacing can be varied from one-eighth the given size to eight times that
size. At object scaling below one-fourth, the finest bit of resolution is lost. (Picture scaling can also be
used; refer to the discussion of scaling in § 2.7.)

The following table lists the characters per line, lines per page and character size in mils for various
object scale factors based on subroutine commands using character spacing of 80 X 48 and character
size of 44 X 32 (high resolution units) with the normal upward scaling by four. The left column gives
the graphic scale factor that could be used to produce the same size characters if there were no object
scaling.

Graphic
Scale

o
1

2

3

4

Object
Scale

~

1'2
%

1
l~

11'2
1%
2
2~

21'2
2%
3
3~

31'2
3%
4

Characters Lines Character
per Line per Page Size in Mils

341 158 21.5 X 15.6
170 79 43.0 X 31.3
113 52 64.5 X 46.9
85 39 85.9 X 62.5
68 31 107.4 X 78.1
56 26 128.9 X 93.8
48 22 150.4 X 109.4
42 19 171.9 X 125.0
37 17 193.4 X 140.6
34 15 214.8 X 156.3
31 14 236.3 X 171.9
28 13 257.8 X 187.5
26 12 279.3 X 203.1
24 11 300.8 X 218.8
22 10 322.3 X 234.4
21 9 343.8 X 250.0

2.6 FUNCTION COMMANDS

A few function commands that are particularly relevant to short graphic and symbol modes have been
described in previous sections, and a number that are principally for symbol subroutines and buffer
operation are treated in sections that follow, but the bulk of the function commands are included

2-12 §2.6

here. All function commands use a full word and may require a second to supply an address, scale
factor or other quantity. In the first word the left byte is a number from 301 to 377, and the right
byte always contains a I in the left bit to distinguish the function commands from curve commands in
short graphic format.

All function commands that read information (such as an offset, scale factor, position data) and
send it out through the interface also stop the buffer (if it is running) so that the register read cannot
change until some external action is taken.

Receiver

When information is sent over a data communication line, the text is preceded by information for
synchronization and identification, and the beginning of the text is indicated by the character STX. If
the display is connected to a communication line and the receiver in the interface is off, all incoming
information is ignored until receipt of an STX (002 or 202), which turns on the receiver. All
subsequent bytes are accepted including additional 002 and 202 bytes, which have no further affect
on the receiver once it is on (the equivalent byte can easily appear in a plotting command). The STX
cannot therefore be regarded as a command in the usual sense: only the first STX in a message can
have any effect and the byte that precedes it is irrelevant; with the receiver on, the character is simply
an ordinary byte and is not presently used in any function command.

The end of text character ETX may also appear arbitrarily without effect, but this character is used
as the right byte in a 301 function command that turns off the receiver.

Disable Receiver ETX 301 203 140603
, I I I I I I I I , I I I I

Turn off the receiver so that no further information is accepted until an STX turns the receiver back
on.

At power turnon, the display comes on in alphanumeric mode. Thus when first beginning
transmission to a display over a communication line, it is recommended that following synchronizing
and identification information, the sequence STX, 033, 300, 300 be sent. This turns on the receiver if
it is off, supplies an escape for alphanumeric mode, and also provides an escape for graphic mode (one
of the 300s in the pair is bound to be the left byte of a command word). The programmer can then
place the display processor in whatever mode is desired.

If the user so desires, an interface to a computer can also be set up to tum on and off with STX and
ETX.

CRT Control

Refresh tubes are used exclusively in Model 14 and larger displays, so there are no commands for
controlling the way the tube operates. The Conograph 10 however has a storage tube so there are
several commands for selecting the tube operating mode and erasing the screen.

§2.6 2-13

Enter Store Mode ETB 301 227 140627
I I I I I I I I I I ! I

Place the CRT in store mode so that all information displayed remains on the screen.

Enter Nonstore Mode DC4 301 224 140624
I I I I I I I I I I I I I I

Place the CRT in nonstore mode so that all information displayed on the screen is visible only
transiently.

Enter Write Thru Mode DCl 301 221 140621
I I I I I I I I I I I I , I

Place the CRT in write thru mode so that all information subsequently displayed will be visible only
transiently, but information already stored will not be affected.

Erase Screen and Enter Store Mode CAN 301 230 140630
I I I I I , , I I I I I , I

Erase all currently displayed information from the screen and then place the CRT in store mode.

Always erase the screen before entering nonstore mode if there is any information stored on the
screen - otherwise garbage will result. In either nonstore or write thru mode the information
displayed on the screen must be refreshed in order to remain visible (the recommended rate is fifty
times per second). In write thru mode, information can be displayed, refreshed and altered without
affecting data that has already been displayed in store mode. Hence the program can store some
information, then write thru with data that may be modified from the keyboard. When the operator is
satisfied with the correctness of the transient data, he can signal the program to store it and then go
back to write thru mode for mode data to be presented for his consideration.

Timing. After entering write thru mode from store mode or after entering store mode from any
other, the program must wait 20 ms before attempting to display further information. After giving the
cancel command to erase the screen, the program must wait 500 ms before continuing. If storage is
desired following erasure, it is not necessary to give a separate command to enter store mode - the
cancel command leaves the display in that mode.

Position and Computation Commands

A number of commands are available for positioning the beam by loading or incrementing the position
registers directly. The program can also read the position registers and can test their contents in order
to make decisions dependent upon beam position. This last feature is useful for tabbing as the

2-14 §2.6

stopping position for a tab depends upon the present position as well as on where the tabs are located.
Of course the beam position could be sent through the interface to a computer, and the computer
program could carry out the necessary computations and subsequently position the beam by means of
plotting commands, but the function commands described here allow such computations to be carried
out by subroutines in the symbol memory.

Stop, Read X Position SP 301 240
• I , I I I I I I ! I

Stop the buffer and send the contents of the X position register to the interface.

Stop, Read V Position 301 241
I I , I I I I I I I I

Stop the buffer and send the contents of the Y position register to the interface.

I I ! I I I ! ! I I I
242 Stop, Read Z Position 301 "

Stop the buffer and send the contents of the Z position register to the interface.

Increment AC 310 N
I I I I I I I

Add N raster units to the present contents of the accumulator AC.

Increment X 311 N
, I , I I ! ! I I I I I !

140640

140641

140642

1442(+)
1443(-)

1446(+)
1447(-)

Add N raster units to the present contents of the X position register. Positive N moves the beam right,
negative N moves it left.

Increment V 312
I I t

N
I I

1452(+)
1453(-)

§2.6 2-15

Add N raster units to the present contents of the Y position register. Positive N moves the beam up,
negative N moves it down.

Increment Z 313
I I \1\ I I I I I , I

N
I I , I

1456(+)
1457(-)

Add N raster units to the present contents of the Z position register. Positive N brightens the beam,
negative N dims it.

Increment AC and Exit 314
I I I I I I I

N
I I I I , I

1462(+)
1463(-)

Add N raster units to the present contents of the accumulator AC and terminate the symbol
subroutine.

I ncrement X and Exit 315
I I , I I I I

N
I I I I I !

1466(+)
1467(-)

Add N raster units to the present contents of the X position register and terminate the symbol
subroutine. Positive N moves the beam right, negative N moves it left.

Increment Y and Exit 316
I I I I I I I

N
I I r I t !

1472(+)
1473(-)

Add N raster units to the present contents of the Y position register and terminate the symbol
subroutine. Positive N moves the beam up, negative N moves it down.

Increment Z and Exit 317
I I I I I I I

N
I I I I I I

1476(+)
1477(-)

Add N raster units to the present contents of the Z position register and terminate the symbol
subroutine. Positive N brightens the beam, negative N dims it.

2-16 §2.6

Load 320 15020R
I I

I
Coord1\nate

I . I

Replace the contents of the register specified by R with the next word.

R Register

0 AC
I X
2 Y
3 Z

Skip 324
I I I I I I I

2 1522CR

Compare the contents of AC with the contents of the position register specified by R and skip the
next word if the condition specified by C is satisfied.

R Register C Condition

0 AC 0 Never skip
I X I Skip if register R < AC
2 Y 2 Skip if register R = AC
3 Z 3 Skip if register R ~ AC

4 Always skip
5 Skip if register R ~ AC
6 Skip if register R *' AC
7 Skip if register R > AC

Transfer to AC 324 30
I I I I I I I

Replace the contents of AC with the contents of the register specified by R.

R

o

2
3

Register

AC
X
Y
Z

15230R

§2.6

Transfer from AC 324
I I , I I I I

Replace the contents of the register specified by R with the contents of AC.

R

o
1
2
3

Register

AC
X
Y
Z

2-17

31 15231R

Ordinarily the graphic and object scale factors apply only to relative commands. But to avoid
confusion in arranging text and the display of other symbol material, all positioning commands
executed in symbol memory are scaled. This means that the scale factor applies not only to all relative
commands, including increment, but also to load, which is absolute (of course there is no scaling in the
mere transfer of data back and forth between A C and the position registers). In alphanumeric mode
with object scaling, the automatic multiplication by four also applies to load as well as to the relative
commands. Thus with an object scale factor of unity, alphanumeric load and increment commands
(which have no connection with the high resolution positioning) move the beam in terms of %rinch
raster units, ie four times the normal unit size. For standard alphanumerics at ten characters per inch,
the standard character spacing is therefore produced by incrementing X by six.

The entire subroutine for a space or backspace can simply be a single Increment X and Exit in the
location referenced by the symbol. This command can also be used to terminate any character
subroutine at the same time that it moves the beam to the next character position. A carriage return is
effected by Load X followed by the coordinate of the left margin. A line feed requires only one word,
Increment Y and Exit. A symbol defined as "new line" can call a subroutine that is simply Load X,
followed by the coordinate of the left margin, followed by Increment Y and Exit. The skip and
transfer commands are especially useful for such operations as tabbing: the routine would first load
AC and then alternately increment it and compare it against X or Y (for horizontal or vertical tabbing
respectively) to determine when to stop the beam. The position registers can be read through the
interface so a computer or other remote facility can determine the present beam position.

Scale Factors

The processor has three types of scaling: graphic, object and picture. The graphic scale factor [§ 2.4]
applies only to relative plotting commands in short graphic mode except in symbol subroutines, where
it applies to all positioning commands including load, provided there is no object scaling. If object
scaling is present, graphic scaling does not apply to any commands executed from symbol memory;
but object scaling applies to all of them as well as to all relative commands regardless of mode or
origin. Picture scaling on the other hand applies to all beam positioning relative and absolute, in all
modes and circumstances.

There is only one graphic scale factor for all dimensions, but the processor can have a single object
or picture factor for all dimensions or· separate factors for each. The following commands are used to

2-18 §2.6

set and read the object and picture scale factors. In each set command, the factor given can vary from
I to 64, corresponding to scaling from Ys to 8 in steps of Ys.

Set X Object Scale Factor

Set the X object scale factor to N so that in subsequent relative commands and symbol subroutine
commands the x component is multiplied by N. If there is only one object scale factor for all three
dimensions, this command supplies it.

Set V Object Scale Factor

Set the Y object scale factor to N so that in subsequent relative commands and symbol subroutine
commands the y component is multiplied by N.

Set Z Object Scale Factor

Set the Z object scale factor to N so that in subsequent long graphic relative commands the z
component is multiplied by N.

Set X Picture Scale Factor

Set the X picture scale factor to N so that in all subsequent positioning commands the x component is
multiplied by N. If there is only one picture scale factor for all three dimensions, this command
supplies it.

Set V Picture Scale Factor

§2.6

Set the Y picture scale factor to N so that in all subsequent positioning commands the y component is
multiplied by N.

Set Z Picture Scale Factor =

Set the Z picture scale factor to N so that in all subsequent long graphic commands the z component is
multiplied by N.

Stop, Read X Object Scale Factor 301 250 140650
I I I I I I , I

Stop the buffer and send the X object scale factor to the interface.

Stop, Read V Object Scale Factor 301 251 140651
I I I , I I I I

Stop the buffer and send the Y object scale factor to the interface.

Stop, Read Z Object Scale Factor * 301 252 140652
I I I I I ! I I

Stop the buffer and send the Z object scale factor to the interface.

Stop, Read X Picture Scale Factor + 301 253 140653
I I I I I I I I

Stop the buffer and send the X picture scale factor to the interface.

Stop, Read V Picture Scale Factor 301 254 140654
I I I I I I ! I

Stop the buffer and send the Y picture scale factor to the interface.

2-20 §2.6

Stop, Read Z Picture Scale Factor 301 255 140655
I I I ! I I I I

Stop the buffer and send the Z picture scale factor to the interface.

Graphic scaling is primarily to allow use of the short format, ie to be able with fewer bits to draw
small figures with as fine a precision as the long format commands but still be able to produee large
beam movements. Object scaling is for changing the relative sizes of objects in a picture without
changing the size of the picture itself; in other words different parts of a picture can be varied in size
while still remaining in the same position relative to one another. Picture scaling allows changes in the
size of the entire display. Eg if a display file plots a picture that fills the addressable raster, it can be
reduced so that the entire picture can be displayed in the visible area or expanded so that smaller
sections can be seen in greater detail.

The order in which the scale factors are applied to any given instruction is graphic, object, picture.
Of course all three can be applied only to plotting commands in short graphic mode. Object and
picture scaling together can be applied to symbol subroutines and relative commands in long graphic
mode (a figure command is regarded as relative or absolute as the positioning of the center point is
relative or absolute).

Cursors

A cursor is a visual signal that tells the operator what place on the screen will be affected by the next
action he takes at the keyboard. In graphic mode the form of the cursor is defined by the hardware
and it consists of five dots: a center dot with another dot a quarter inch away in each direction. In
store mode the center dot actually represents stationary beam position, but when the display is being
refreshed, the beam moves too rapidly for its position to be indicated. In either case however the
center dot of the cursor indicates the point at which the next plotting command will begin.

In symbol mode the form of the cursor is not defined, but if it is to be displayed, the processor
assumes that a subroutine for it begins at location 400 in the presently selected font. Typically this
subroutine marks the present symbol position with an underscore.

No cursor is displayed at all unless the display file issues a command to turn it on. Given that it is
on, its method of presentation depends upon the source of display operation and the CRT mode.
(Note: Method and form are independent. Regardless of method, to display the cursor the processor
plots the five-point form for graphic mode and executes the subroutine at font location 400 for
symbol mode.) When the display is operating from the buffer, it is assumed that the data is being
refreshed, and the cursor position is indicated by a flag on some buffer location; every time the buffer
address counter reaches the flagged location, the cursor appears. For operation through the interface,
the cursor should be left on only in store mode; then the processor simply displays it automatically (in
write thru mode) fifty times per second. During refresh operation through the interface, the beam
position with time depends entirely on the action of the program, so it is up to the program to trigger
the cursor each time it is desired. This is implemented by turning the cursor on and off with a pair of
consecutive commands. Function commands that control the cursor are as follows.

§2.6 2-21

Turn On Cursor 301 333 I 140733
I I I I I I

Turn Off Cursor \ 301 334 140734
I I I I I I

Dash Control

The generation of dashed lines is governed by a clock and a shift register. The clock shifts the register
to the right, with bits coming out of the right end going into the left (in other words, a rotation), and
the beam is intensified only while there is a I in the right bit. Hence the basic dash frequency is
determined by the clock, and the relative lengths of the on and off parts of the line are determined by
the bit configuration in the register. Suppose the dash frequency is set for a half inch; this means that
the time between shifts is such that the beam moves a half inch. Tlren a pair of cOnsecutive I s in the
shift register will intensify the beam for an inch, and three Os will make it invisible for an inch and a
half of the beam trajectory.

The shift register is twelve bits but can be expanded to twenty-four with the optional addition of
another twelve on the low order end. Once the program selects the dash frequency and sets up the
shift register by means of the commands which follow, then each long graphic command can choose
whether the line it generates is to be dashed or not.

Set Dash Frequency

Set the dash shift frequency to F to select the period between shifts in terms of beam motion in inches
as follows:

F Shift Separation F Shift Separation

0 1/32 10 9/32
I 1/16 11 5/16
2 3/32 12 11/32
3 1/8 13 3/8
4 5/32 14 13/32
5 3/16 15 7/16
6 7/32 16 15/32
7 1/4 17 1/2

2-22 §2.6

Set Dash Register v 140731

Load the low order twelve bits of the next word into the dash shift register.

Set Dash Register Extension z 140732

Load the low order twelve bits of the next word into the low order half of the expanded dash shift
register.

Intensity Variation

With this option the program can select one from among sixteen levels of beam intensification, and
each long graphic plotting command can choose whether the plot shall be at normal intensity or at the
optional program-selected intensity. The program uses this command to select the level.

Set Variable Intensity

Set the optional intensity level for long graphic commands to I, where variation from 0 to 17
corresponds to beam variation from dim to bright.

Offset

Optional offset registers allow.the programmer to change the position of a picture in the addressable
raster without affecting its size or shape and without tampering with the plotting commands in the
display file. Every time an absolute positioning command is given, the contents of the offset registers
are added to the corresponding coordinates prior to picture scaling; the offset is therefore applied to
the coordinates of an absolute vector, the coordinates of the center point of an absolutely positioned
figure, and the coordinate supplied to a position register by the load command. By adjusting the
offsets, the program can move data from an invisible section of the raster onto the screen, producing
the effect of moving the visible window..around in the addressable raster. Suppose it is desired to view
the rectangular section of the raster running from -13 to -S inches in x and from -4 to + 2 inches in y.

Offsets of 3328 in x and 1024 in y would move this rectangle onto the Model 10 screen. A negative
offset moves the picture down or to the left. A three-dimensional display can also be offset in depth,
ie the brightness of the entire picture can be changed by a constant factor.

§2.6

CAUTION

Remember [§ 2.1] that the beam positioning raster is actually 64 X 64 even
though the addressable raster is only 32 X 32. Hence to offset negatively
(down or left) requires a negative number of fourteen bits. This can be
regarded as a large positive number that offsets negatively by wrapping the
beam around the position raster in the positive direction.

In supplying an offset of fourteen bits in a l6-bit word, it is not necessary
to mask out the left two bits; the programmer can simply negate the
appropriate positive number of thirteen bits magnitude, so that the extra
two bits on the left duplicate the sign of the l4-bit offset.

Do not give a negative offset that would wrap the beam around exactly
once, ie that would really leave the display in its original position. Such an
offset would be interpreted as an escape.

The program uses these instructions to load and read the offset registers.

Load X Offset

Replace the contents of the X offset register with the low order fourteen bits of the next word.

Load V Offset

Replace the contents of the Y offset register with the low order fourteen bits of the next word.

Load Z Offset

Replace the contents of the Z offset register with the low order fourteen bits of the next word.

Stop, Read X Offset # 301 243
I I I I I I

2-23

140643

2-24 §2.6

Stop the buffer and send the contents of the X offset register to the interface.

Stop, Read V Offset % 301 244 140644
, I , I I , I I I ! I I

Stop the buffer and sene the contents of the Y offset register to the interface.

Stop, Read Z Offset & 301 245 140645
I I I I I I I I I ! I I

Stop the buffer and send the contents of the Z offset register to the interface.

Light Pen

In communicating with a display file, the operator often wishes to specify some particular beam
position, or perhaps a sequence of beam positions that make up some arbitrary curve. This can be
done easily by use of a light pen, a device that signals the display processor whenever it detects a spot
being displayed. The light pen is available only on the Model 14 and larger displays.

The light pen can be turned on and off by the operator and can also be enabled or disabled by the
program. The display processor has a light pen flag which is set by detection of a spot if the pen is
enabled; when the pen is disabled, spot detection is simply ignored. The light pen flag can be used for
internal display operations and can also be used as a signal through the interface, eg to interrupt a
computer. Commands that allow a display file in the buffer to respond to the light pen are described
with the other buffer commands [§2.8]. The following two commands enable and disable the pen.

Enable Light Pen P 301 320 140720
I I I I I I I , I I

Enable the light pen so that detection of a spot sets the light pen flag.

Disable Light Pen Q 301 321 140721
I I I I I I I I I I I I

Disable the light pen so that the display processor ignores any detection signals from it.

§2.7 2-25

Keyboard Bell

The display file can attract the attention of the operator by ringing a bell located in the keyboard.
This command can be given through the interface, from the buffer, or from a symbol subroutine.

Ring Keyboard Bell BEL 301 207 140607
I I I I I I

2.7 SYMBOL SUBROUTINES

Many fixed fonts are available from Conographic Corporation in read-only memory, and fonts
designed by the user can also be supplied in ROM. But if the display includes a subroutine controller
and core memory, the user can design his own fonts and can change them at will under program
control.

To design a font, the programmer simply writes a subroutine for each symbol command using short
graphic plotting commands and the various function commands described in the preceding section.
The font can begin at any location in memory; to select a particular font, the display file need only
give the command Set Font Base Address to load the address of that location into the base address
register. The first 256 locations beginning at the base address are referenced by the symbol commands.
For most control symbols and all displayed symbols, the referenced location contains a jump to a
subroutine elsewhere in the font. In template mode a subroutine can generate a figure of any size, even
one that fills the entire screen. In alphanumeric mode the picture that can be drawn about a given base
beam position is limited to one square inch (a half inch in every direction) by the high resolution
circuitry, but the base position can be changed within the subroutine.

Every subroutine must end with a function command that terminates it, ie that exits from it
returning control to the buffer or the interface. The only commands that terminate a subroutine are
the escape command and the increment commands that also exit. The two sets of increment
commands, with and without termination, provide considerably greater flexibility in subroutining. An
increment without exit changes the alphanumeric base position without terminating the subroutine;
this means that larger symbols can be drawn by combining plots about several base positions.
Incrementing with exit saves memory sp act;; , as the subroutine can terminate with the same command
that spaces to the next character position. In many cases this eliminates the subroutine altogether, for
a control function such as space, backspace or line feed can be done by a single terminating command
in the location referenced by the symbol command.

The jump command automatically saves the contents of the symbol address counter. This counter is
twelve bits, so the address saved is twelve bits and points to the location following the jump in the
presently selected font, ie in relation to the base address. This feature is not used in the initial
subroutine call, but the subroutines themselves can use it to call other subroutines for elements
common to a number of symbols. Eg in template mode, large circuit network symbols may be drawn
partly by using short graphic commands and partly by calling for common elements such as resistors
and capacitors. The return from any subroutine is made by a command that jumps to the location
whose address was saved when the original subroutine jump was made. Note that only one level of

2-26 §2.7

subroutining is allowed - there is no nesting. Each jump saves a new address at the expense of losing
the address previously saved.

Besides the function commands already described, the following three are needed to implement the
subroutine procedures discussed above.

Jump to Symbol Subroutine Address
, I , I

Address
I ! I ,

Jump within the currently selected font to the location whose address is specified by this command,
and save the address of the next consecutive location following this command. The 12-bit jump
address is made up of the right five bits in the left byte of the command and the right seven bits of the
right byte.

Return from Symbol Subroutine ? 301 277 140677
I I I I I I I I I I , I

Jump to the location whose address was saved by the last Jump to Symbol Subroutine.

Escape @ 300 300 140300
I I I I I I , I I I I I

Tenninate the subroutine and interpret the next non-300 byte as a mode command.

If the cursor is used, the processor displays it by executing the subroutine beginning at location 400
of the currently selected font. The following subroutine uses three short graphic vector commands, the
first and third of which are blank, to display an underscore.

00000000 11010000
00100000 00000000
01100000 10011000
11001101 10000000

Position: ~X = 0 ~y = -24
Vector: U = 32 ~y = 0
Position: ~X = -32 ~y = 24
Increment zero and exit

A procedure that can be used to save space in symbol memory is to overlap subroutines for symbols
that are very similar. Eg the letter 'F' is included within the letter 'E'. Thus if the subroutine for 'E'
began by drawing the bottom line, the same subroutine could be used for 'F' simply by entering it at a
later point. In the same way, the subroutine for 'F' could simply be part of that for 'R', the routine
for '0' part of that for 'Q'.

Subroutines are loaded into the core memory by the same commands that are used to load it for
buffer operation [§ 2.8]. If a Model 10 has a subroutine controller but no buffer controller, then a
font can be loaded by setting the starting address into the font base address and giving the same load
command (with word count) that would be used for the buffer.

§2.8 2-27

2.8 BUFFER

The buffer is useful primarily for allowing operator interaction with a display file that is run entirely
inside the display instead of requiring continuous access to a computer. The buffer must be initialized
from some external source, but once running, it can continually refresh the screen and can respond to
action by the operator at the keyboard or using the light pen. The Model 14 and larger displays have a
buffer as standard equipment. It is optional with the Model 10 and can be used effectively provided
the operator works with a small part of the display at a time. Eg for editing text, the operator must
work with a few lines being refreshed in write thru mode, inserting and deleting material or modifying
it as he chooses. When the text is corrected to his satisfaction, he can call upon the computer to store
it on the screen and load the next few lines into the buffer to contine the text.

To place a file in the buffer, the computer must specify the address for the beginning of the file,
and then start the loading procedure with a command that supplies a word count. In a typical
situation the interface operates through a data channel directly to computer memory to bring the
specified number of words into buffer memory. Another command supplies a starting address and
places the buffer in operation. The file in the buffer should start with a regeneration command that
provides proper timing for refreshing the display; this command prevents the file from starting more
often than every 20 ms, to give a refresh rate of fifty times per second. The material being refreshed is
followed by a jump back to the starting point. Other commands available for use in the file allow
subroutining and a means of responding to the light pen. The file can also terminate buffer operation
and request an interrupt through the interface.

A cursor can be used to indicate the buffer location, and therefore raster position, that will be
affected by action by the operator. When the computer turns on the cursor, the location presently
addressed by the buffer address counter is flagged. Then as the operator inserts data into the file or
deletes data from it, the flag moves from one location to the next, up or down, always indicating the
location that will be affected next. The operator can also move the cursor from the keyboard to select
the position (location) he wishes to modify. Every time the buffer controller runs through the file, it
displays the cursor when it reaches the flagged location.

Stop, Set Buffer Address @

Stop the buffer and load the next word into the buffer address counter.

Load Core Memory A

Load the low order twelve bits of the next word into the word counter and then load subsequent
words that come in through the interface into core memory at the locations specified by the buffer

2-28 §2.8

address counter. As each word is loaded, both counters are incremented by one; the process stops
when the word counter overflows.

Start Buffer B

Load the next word into the buffer address counter and start buffer operation at the location specified
by it.

Stop, Read Buffer Address 301 256 140656
I I I I I I I "I I I I I , I

Stop the buffer and send the current contents of the buffer address counter to the interface.

Stop, Read Cursor Address I 301 257 140657
I I I I I , I , I I I I , ,

Stop the buffer and send the address of the location that is flagged for the cursor to the interface.

Read Core Memory C

Load the low order twelve bits of the next word into the word counter and then send words from the
locations specified by the buffer address counter to the interface. As each word is sent, both counters
are incremented by one; the process stops when the word counter overflows.

Start Regeneration Timer o 301 317 140717
! I , I I ! , I I I , I ! !

Enter long graphic mode and restart the buffer when 20 ms have elapsed since the last time it started.

Jump D

§2.8 2-29

Load the next word into the buffer address counter and take the next command from the location
then addressed by it.

Jump to Buffer Subroutine

Save the current contents of the buffer address counter (which points to the second location following
this command). Load the next word into the counter and take the next command from the location
then addressed by it.

Return from Buffer Subroutine J 301 312 140712
I I I I I I I I I I I I , ,

Load the address saved by the last Jump to Buffer Subroutine into the buffer address counter and take
the next command from the location then addressed by it.

Jump if Spot Detected G I 301 ! 307 I
: : : : : : A~dre~s: : : :': : 140707

If the light pen has detected a spot, load the next word into the buffer address counter and take the
next command from the location then addressed by it.

Jump if Spot Not Detected

If the light pen has not detected a spot, load the next word into the buffer address counter and take
the next command from the location then addressed by it.

End Buffer Sequence N 301 316 140716
I I I I I ! I

Stop the buffer and request an interrupt through the interface.

3

Operation

To enable a user to communicate with the display, the system includes a keyboard, various controls
and indicators, a sonic pointer, and on the larger models, a light pen. The pointer emits a sonic signal
and can be used either on the screen or on a separate tablet connected to the display; in either case its
position within a rectangular area is determined by the relative strength of the signal along two strings
of microphones located on a pair of adjacent sides.

All of these devices may be used for various methods of interaction between the operator and
display software either in a local computer, at a remote station connected by communication lines, or
in the display buffer.

3.1 KEYBOARD AND CONSOLE

The system ordinarily has a full ASCII keyboard with control and shift keys, although a Model 33
type keyboard may be used. In the upper half of the control unit front panel are a row of switches, a
row of lights, and a key-operated power switch. The last has three positions: off, on, and a third lock
position in which the key can be removed though power remains on.

At the right is an illuminated switch, ASCII/TTY, for specifying whether the keyboard is full ASCII
or a Model 33; turning the switch to TTY allows the operator to generate capital letter codes without
using the shift key, regardless of the type of keyboard. Also on the right, the WAIT light indicates that
in a half duplex connection the interface is presently receiving information so the operator should not
touch the keys. At the left end are a reset button that enables the receiver and places the system in
alphanumeric mode, and a clear buffer button that allows the operator to place pairs of null codes in
all of the buffer locations in core memory.

The remaining controls are· for keyboard operation of the system. EVEN/ODD allows the operator
to select the type of parity generated by the keyboard so he can produce any 8-bit code configuration.
With the LINE/LOCAL switch in LINE, the keyboard communicates through the interface; with the
switch set to LOCAL the keyboard operates directly on a display file that is running in the buffer. The
last light at the left indicates when the buffer area is full, ie the operator can insert no more data.
Pressing SEND transmits the contents of the buffer through the interface.

Local interaction between keyboard and buffer is ordinarily in symbol mode, as graphic commands
are inconvenient to generate at the keyboard. If a text string is being displayed and refreshed on the
screen, a cursor in the form of an underscore usually indicates the symbol position that will be
affected by any action the operator takes. The cursor actually indicates a specific byte location in the
buffer, but in symbol mode each byte is a command, so the symbol position on the screen is

3-1

3-2 §3.2

equivalent to the byte location. To delete a symbol from the screen, the operator simply presses the
delete key; this removes the symbol by removing the symbol command from the buffer. When a
character is deleted, all the symbol commands beyond it in the buffer are dropped down one position
to fill the gap, so no blank space is left on the screen. The operator inserts a character in the text string
simply by striking a key; the symbol previously in that location and all symbols beyond it are moved

• up one. To change a character, the operator must first delete it and then insert a new one. When a
character is deleted the cursor remains in the same position, but insertion of a character moves the
cursor to the next position.

The operator can also move the cursor independently of any text changes by means of buttons
labeled with left and right arrows at the right end of the keyboard. Pressing the left arrow backspaces
the cursor, ie moves it down one location in the buffer. This is not the usual backspace in the
typewriter sense, as the button can backspace completely through the text string including carriage
returns and line feeds; in other words backspacing out the left end of one line takes the cursor into the
right end of the previous line (up). Similarly the right arrow spaces the cursor forward. The HOME
button moves the cursor back to the initial buffer location, equivalent to the upper left corner of the
screen.

There are actually four arrow buttons: left, right, up, down. All four can be used in graphic mode
with a picture stored on the screen. Pressing a button moves the cursor in the indicated direction an
amount equal to the minimum position change as specified by the graphic scale factor.

3.2 SOFTWARE

Conographic Corporation provides a variety of software to allow exceptionally effective use of the
display by the user. This software is available on cassette tapes, and the package supplied to a user
includes program listings, flow..diagrams and program descriptions. All programs are written in Fortran
so they can easily be adapted and modified by the user for his own purposes, regardless of the
configuration or application of his particular system. Many programs and symbol fonts are available
through various time sharing vendors for those using the display as a terminal connected to a time'
sharing facility.

The basic program package, Conopac-l , computes plotting commands with Conographic parameters
from information supplied at the keyboard. Conopac-l provides great flexibility in the form in which
the user can supply the needed information.

Type of Command

Curve
Curve
Curve,
Circle
Ellipse
Rotation

Data Supplied from Keyboard

Two points and two slopes
Three poin ts and the slope at any of the three
Three points, where the middle point is the relative maximum
Radius and position
Major and minor axes and angle of axes to coordinate system
Reference point and angle of rotation about the point

The display file can be viewed at any time by keyboard command.

§3.2 3-3

General purpose programs include an interactive symbol design package that allows the operator to
design characters, symbols fonts and templates using the sonic pointer and tablet; and a curve fitting
package through which the user can parameterize and transform curves defined by arrays of points,
increments or vectors, or specified as mathematical functions. A text composition program, operating
out of the display buffer, makes it possible for the user to design and display textual information with
mixed fonts, vertical and horizontal lines, italics, scaling, tabulation and justification.

Among the time sharing programs are two that implement numerical control and circuit design. The
former program, based on the APT /REMAPT language, makes it possible for the user to check the
accuracy of a numerical control tape by actually drawing a picture of the part that would result from
the specified tool motions. The other program provides automatic analysis o(electronic circuit design;
it displays block schematics and results, and offers easy substitution of values and tolerances.

i
\

APPENDIX A

INSTALLATION

All Conographic Corporation display systems mount in a standard 19-inch rack. The CRT monitor and
control unit are each complete with power supplies and a cooling fan, and each requires only four
bolts for rack mounting. At least two inches should be left open at the back of the rack for cabling
and air venting; the air intakes are at the sides. The console protrudes one inch at the front of the rack.
An expansion chassis for additional memory and other options can be mounted below the control
unit. The illustration on the next page shows the external layout and dimensions of the Conograph 10
and 14.

Conograph 10/14
Monitor
Control unit

Keyboard
Expansion chassis

Height
(inches)

24%
153,4

8%
3%
8%

Width (inches)
Table

17~

17~

17~

Rack

19

19

Depth
(inches)

24

7%
24

Weight
(pounds)

120

It is recommended that the ambient temperature at the installation be maintained between 20° and
30°C, but the temperature can vary from 0° to 55° without adverse effect (the equipment can be
stored in temperatures as high as 70°). The relative humidity can be as high as 90% noncondensating.
(Although all exposed surfaces are treated to prevent corrosion, exposure to extreme humidity for
long periods of time should be avoided.)

The display uses 47 to 63 Hz single phase line power, generally either 115 or 230 vac with a
tolerance of ±10% (other frequencies and voltages are available on special order). At 115 vac the
display requires less than 10 amperes and dissipates under 1200 watts. The power source should be
capable of supplying 15 amperes; the power cable has a standard 3-wire plug and should be plugged
into a receptacle rated at 15 amperes.

The display can be placed on a table, but if the monitor and control unit are in a rack, the keyboard
must still be placed on a nearby table or on a shelf mounted on the front of the rack. At the back of
the control unit are the main power cable for connection to the line source, and signal and power
cables for connection to the monitor. If the hardcopy unit is used, the monitor cables from the
control unit are connected to the hardcopy unit, which may be placed on top of the monitor, and
additional cables connect it to the monitor. Other connectors and switches at the back of the control
unit generally depend upon the type of interface used. In any event there must be a connection to a
communication line or a cable to connect the interface to a computer or other external data source.

The cable from the keyboard connects directly into the front of the control unit below the
switches. Excess cable can be rolled up and tucked inside the keyboard enclosure.

A-I

A-2

...... ,....."

23"R ef.

J h
t-"

171.14 " Ref.---.j

TOP VI EW

0 0

0 0

:I ~I
0

r::::::::::J c::::J

IIIIIlJD CIJID

0

1----1911 Ref.----i

FRONT VIEW

t
f 1"

T
15%" Ref.

1
T
8:%" Ref.

~

-o 0

100001

0 0 0

o~ ~o

I:~~§ t
~ ~o

0 @o 0

REAR VIEW

SIDE VIEW

INSTALLATION: CONOGRAPH 10/14 - RACK MOUNTING

'"
~ !.-- Connector

Plate

111111111\11111•

AIR EXHAUST

111111111111111'

AIR EXHAUST

APPENDIXB

COMMAND CODES

The table beginning on the next page lists in hexadecimal and octal form the 8-bit codes that can be
used as the right byte in a function command and lists the mode and function commands for those
codes that are used. Since the left bit must be I, there are only 128 possible 8-bit codes. A dagger (t)
by a character means it must be transmitted using odd parity (to place a I in the left bit); the other
characters provide the correct configuration using even parity.

B-1

B-2

ASCII CHARACTER COMMANDS

Hex Octal Character Command

80 200 tNUL
81 201 SOH
02,82 002,202 STX Enable receiver - only first STX (8 bits: 022,202) in incoming

byte stream provided receiver is off; not useable in commands -
prior bytes not received

83 203 tETX Disable receiver - no further reception
84 204 EaT
85 205 tENQ
86 206 tACK
87 207 BEL Ring bell in keyboard
88 210 BS
89 211 tHT
8A 212 tLF
8B 213 VT Enter template mode
8C 214 tFF Enter alphanumeric mode with rotation
8D 215 CR Enter protected alphanumeric mode with rotation
8E 216 SO Enter italics
8F 217 tSI Leave italics
90 220 DLE
91 221 tDC1 Enter write thru mode (wait 20 ms) (
92 222 tDC2 Enter alphanumeric mode
93 223 DC3 Enter protected alphanumeric mode
94 224 tDC4 Enter nonstore mode
95 225 NAK
96 226 SYB
97 227 tETB Enter store mode (wait 20 ms)
98 230 tCAN Erase screen and enter store mode (wait 500 ms)
99 231 EM
9A 232 SUB Do nothing until 300 command
9B 233 tESC
9C 234 FS Enter long graphic mode
9D 235 tGS Enter special long graphic mode
9E 236 tRS Enter short graphic mode
9F 237 US Enter special short graphic mode
AO 240 SP Stop, read X position
Al 241 t! Stop, read Y position
A2 242 til Stop, read Z position
A3 243 # Stop, read X offset
A4 244 t$ Stop, read Y offset
AS 245 % Stop, read Z offset
A6 246 & Stop, read graphic scale factor

B-3

Hex Octal Character Command

A7 247 t'
A8 250 t(Stop, read X object scale factor:j:
A9 251) Stop, read Y object scale factor
AA 252 * Stop, read Z object scale factor
AB 253 t+ Stop, read X picture scale factor:j:
AC 254 Stop, read Y picture scale factor
AD 255 t- Stop, read Z picture scale factor
AE 256 t. Stop, read buffer address
AF 257 I Stop, read cursor address
BO 260 to Set variable intensity [0-170 by lOs]
Bl 261 1
B2 262 2
B3 263 t3 Set X offset [~X]
B4 264 4 Set Y offset [~Y]
B5 265 t5 Set Z offset [~Z]
B6 266 t6 Set graphic scale factor [0-60 by lOs]
B7 267 7
B8 270 8 Set X object scale factor [1-100] = Ys - 8:j:
B9 271 t9 Set Y object scale factor [1-100] = Ys - 8
BA 272 t: Set Z object scale factor [1-100] = Ys - 8
BB 273 Set X picture scale factor [1-100] = Ys - 8:j:
BC 274 t< Set Y picture scale factor [1-100] = Ys - 8
BD 275 = Set Z picture scale factor [1-100] = Ys - 8
BE 276 > Set font base address [address]
BF 277 t? Return from symbol subroutine
CO 300 @ Stop, set core address [address]
Cl 301 tA Load core memory I[-WC] I ~ 4096 (12 bits)
C2 302 tB Start buffer [start address]
C3 303 C Read core memory I [-WC] I ~ 4096 (12 bits)
C4 304 tD Jump [address]
C5 305 E Jump to subroutine [address]
C6 306 F Jump if light pen not detected [address]
C7 307 tG Jump if light pen detected [address]
C8 310 tH
C9 311 I
CA 312 J Return from buffer subroutine
CB 313 tK
CC 314 L
CD 315 tM
CE 316 tN End buffer sequence and request interrupt
CF 317 0 Start regeneration timer - enter graphic mode and restart buffer

when 20 ms elapsed since last start
:j:If there is only one scale factor for all dimensions, use this code.

B-4

Hex Octal Character Command

DO 320 tP Enable light pen
DI 321 Q Disable light pen
D2 322 R
D3 323 ts
D4 324 T
DS 325 tv
D6 326 tv
D7 327 W
D8 330 X Set dash frequency [0-170 by lOs]
D9 331 tY Set dash register [12 shift bits]
DA 332 tZ Set dash register extension [12 shift bits, low order]
DB 333 [Turn on cursor
DC 334 t\ Turn off cursor
DD 335]

DE 336 til
DF 337 t+-_
EO 340 t'
EI 341 a
E2 342 b
E3 343 tc
E4 344 d
E5 345 te (

E6 346 tf "-
E7 347 g
E8 350 h
E9 351 ti
EA 352 tj
EB 353 k
EC 354 tl
ED 355 m
EE 356 n
EF 357 to
FO ·360 P
Fl 361 tq
F2 362 tr
F3 363 s
F4 364 tt
F5 365 u
F6 366 v
F7 367 tw
F8 370 tx
F9 371 y
FA 372 z

B-5

Hex Octal Character Command

FB 373 t{
FC 374 I
FD 375 t}
FE 376 -
FF 377 DEL

"" ./

APPENDIXC

DETERMINATION OF CONOGRAPHIC PARAMETERS

This appendix lists the formulas for calculating the Conographic parameters for various curves and
figures. Included are a number of typical Type I segments defined by points and slopes, transformation
of parameters for a curve under rotation, and circles and ellipses with beam motion in either direction.

A point labeled Pn in a diagram shall be assumed throughout to have coordinates Xn , Yn and the
slope at that point shall be Sn. In plotting commands, parameters are always given in the order J, K,
L, M, but here they are listed in each case in the order that is most convenient for computation.

Curves, Type I

All formulas are given for curves that are assumed to be segments of Type I, starting at PI and ending
at P 2' In any example, the curve shown can be extended into a segment of higher type simply by
specifying the desired type in the plotting command. The coordinates of the end point in a curve
segment of any type are as follows.

End Point Coordinates
Segment Type X Y

I Xl -J+ K YI - L + M
II Xl -2/ YI -2L
III Xl -J-K YI -L-M
IV Xl YI

Two pOints with slopes.
P2

S2
'-.......

a = X 2 - Xl b = Y 2 - Y I

Sa-b
J = I K a+J

S2 -Sl

L = S2J M = b+L

If the slopes are equal, the segment is really Type II. However there is a special case in which the
tangents are not only parallel but coincident, and the segment is degenerate, ie it is really a straight
line. As such it can be specified by a vector command requiring only half as many words in the display
file, but sometimes the programmer may prefer to treat it as a general curve. The parameters are

J=L=O K=a M = b

C-l

C-2

Three points and starting slope. 1

a = X 2 -Xl b = Y2 - YI

C = X 2 -X3 d = Y2 - Y3

S c-d
/ = Vf-e2 e

_ 1

Sla -b

(Y -Y)-b/
L

_ 3 1
M = L +b

e + /-1

M
J K-a K=- =

Sl

Three pOints and ending slope.

a = X 2 -Xl b = Y2 - YI

C = X3 -Xl d Y3 - YI

S c-d
/ = yr=e2 e

_ 2
S2a -b

K = (X3 -X2) +a/ J = K-a
e + /-1

L = S2 J M = L +b

Three pOints and intermediate slope.

a = X 2 -Xl b = Y2 - YI

C = X3 -Xl d Y3 - YI

c' = X3 -X2 d'= Y3 - Y 2 P2

q =
S3 c - d

S3 c'-d'

e =
1 - q(1 ± vf2cj)

/ = yr=e2
q2 + 1

J =
c-a/

K = J +a
e+/-l

L =
d-b/

M = L +b
e + /-1

In the formula for e, the sign must be chosen so that e ;;;:. O.

C-3

Three points with relative maximum. The intermediate point being given as the relative maximum
'" of the segment is a special case of the preceding example. It is equivalent to the slope at P3 equalling

\

.v the slope of the chord P1P2 • The formulas for the parameters remain the same, but in the equation

\

for q, substitute b / a for S3.

Rotation

A segment with starting point P and parameters J, K, L, M is rotated through an angle e about a
point Po.

Starting point.

a = X-Xo b = Y - Yo

X' = X 0 + a cos e - b sin e
Y' = Yo + b cos e + a sin e

A starting point need be rotated only if it is positioned abso­
lutely. In other words, in a sequence of relative commands the
parameters for all must be rotated but the transformations need
be applied to the starting point of only the first segment. In each
subsequent segment the starting point is the end point of the
preceding (rotated) segment.

Parameters. Transformation formulas for the parameters of the
rotated curve as functions of e and the original parameters are
as follows.

f=

L tan e
e =

J

tane +M/K tan e + L/J
l-e

g =
l-e

h = (M - L) sin e - (K - J) cos e
i = (K - J) sin e + (M - L) cos e

fh + i
J' =~--f-g K' = J'-h

L' = gJ' M' = fK'

Figures

Complete circles and ellipses are Type IV Conographic segments. Although they can be plotted as
curves, the parameters are given here for drawing them as figures positioned about a specified center
point Po. The coordinates of the end point in a figure segment of any type are as follows.

C-4

End Point Coordinates
Segment Type X Y

I
II
III
IV

Xo +K
Xo -J
Xo -K
Xo +J

Yo +M
Yo -L
Yo -M
Yo +L

The endpoint of the Type IV segment is of course the starting point of the figure as well.
Circles. Parameters for drawing a circle clockwise or counterclockwise

beginning at P are as follows.

a = X-Xo b = Y-Yo

Clockwise Counterclockwise

J = a J = a
K = b K = -b

L = b L = b
M = -a M = a

If a circle of radius R is to be drawn starting at the right of the center on the line Y = Yo, the
equations reduce to

Clockwise

J = R
K=L=O
M =-R

Ellipses. Consider an ellipse in any orienta­
tion, where PI is an end point of one axis
and P2 is an end point of the other. Then the
parameters

J = Xl -Xo
K X 2 -Xo
L = YI - Yo
M = Y 2 - Yo

Counterclockwise

J = M = R
K = L = 0

f2

define an ellipse whose trajectory begins at PI and moves toward P 2. Hence simply by judicious
choice of points, the programmer can draw an ellipse starting at either end of either axis and going in
either direction. Ellipses can be drawn starting at any point, but the equations are somewhat more
complicated (refer to the appropriate Conographic Application Notes).

-,

