

WRITING MIGHTYFRAME DEVICE DRIVERS

Specifications Subject to Change.

Convergent Technologies is a registered trademark of
Convergent Technologies, Inc.

Convergent, CTIX, and MightyFrame are trademarks of
Convergent Technologies, Inc.

UNIX is a trademark of AT&T.

MS-DOS is a trademark of Microsoft Corporation.

CP /M is a trademark of Digital Research, Inc.

First Edition (March HJ86) 09-00819-01

Copyright © 1986 by Convergent Technologies, Inc.
San Jose, CA. Printed in USA

All rights reserved. Title to and ownership of the documentation
contained herein shall at all times remain in Convergent
Technologies, Inc., and/or its suppliers. The full copyright
notice may not be modified except with the express written
consent of Convergent Technologies, Inc.

This manual is provided for the support of licensed users of the
CTIX operating system in order to develop device drivers for
MightyFrame systems. The information provided in this manual
must be protected persuant to the terms of the object code
license for CTIX software.

CONTENTS

1 How to Use This Manual ... 1-1
What You Need to Know ... 1-1
Manual Conventions ... 1-2
Manual Organization .. 1-3
Related Documentation ... 1-11

Convergent Technologies Publications 1-11
Other Reference Manuals .. 1-12
Tutorial Books and Articles .. 1-13

2 Architectural Information .. 2-1
MightyFrame Hardware .. 2-1

MC68020 Microprocessor .. 2-3
Hardware Interrupts .. 2-4

CTIX Software ... 2-6
Interrupt Processing .. 2-6

Facilities to Handle Interrupts 2-6
Facilities to Manage the Interrupt Mask 2-8

MightyFrame Address Map ... 2-9
Address Translation .. 2-11

Virtual Memory Address Translation 2-11
MightyFrame jVMEbus Address Translation 2-14

MightyFrame System to VMEbus Addressing 2-14
VMEbus to MightyFrame System Addressing 2-17

DMA Considerations ... 2-22
VMEbus Support .. 2-22

VMEbus Interface Board ... 2-23
VMEbus Map (Page) Register 2-24
VMEbus Protection Register 2-25
VMEbus Interrupt Mask Register 2-27
VMEbus EEPROM ... 2-28

3 Differences from System V .. 3-1

Contents iii

Proprietary Information - Do Not Copy

Loadable Drivers ... 3-1
Driver Release Routine ... 3-2

User-Kernel Virtual Address Remapping 3-3
SPL(2K) Macros ... 3-3
Kernel Debugging ... 3-4

4 CTIX Kernel Tutorial .. .4-1
The User Process .. 4-1

The Process Table .. 4-3
The User Area .. 4-5
Kernel Memory Map ... 4-9

System Call Processing .. .4-9
System Call Examples .. .4-12

Synchronous System Call Processing - setuid(2)4-13
Asynchronous System Call Processing - read(2)4-15

The CTIX I/O System4-21
The Block I/O System4-23
The Character I/O System4-24

Character Queue Processing4-25
Terminal Devices .. 4-27
Buffered Character I/O .. .4-27
Physical (Raw) I/O .. .4-27

5 Character I/O Tutorial. ... 5-1
Overview .. 5-1
Character-at-a-time I/O ... 5-2

The Network Interface Driver ... 5-3
niinit() .. 5-6
nirelease() .. 5-8
niopen() ... 5-10
niclose() ... 5-10
niread() ... 5-12
niwrite() .. 5-14
niRXstart .. 5-16
niRXintr() ... 5-18
niTXintr() ... 5-18
niRXputc() .. 5-20
niTXputc() .. 5-20

iv Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

Physical (Raw) I/O ... 5-22
The Speech Interface Driver .. 5-22

siinit() ... , ... 5-24
sirelease() .. 5-26
siopen() ... 5-28
siclose() ... 5-28
sireadO - siwriteO .. 5-30
siio() .. 5-32
siintr() ... 5-34
siioctl() .. 5-36

6 Character Device Example .. 6-1
DR11 Include Files ... 6-2
dr11open() .. 6-8
dr11close() .. 6-8
dr11readO - dr11writeO ... 6-10
dr11io() ... 6-12
dr11intr() .. 6-14
dr11status() ... 6-16
dr11timer() .. 6-18
dr11init() .. 6-20
dr11release() .. 6-22

7 Block I/O Tutorial .. 7-1
Overview .. 7-1
System Buffer Cache .. 7-3

Basic Structure ... 7-3
Available (Free) List ... 7-5
Hash Lists ... 7-6
I/O Queues ... 7-10
General Disk 110 Queue Structure 7-12
Summary .. 7-15

General Disk Driver .. 7-15
An SMD Device Driver ... 7-18

Device Architecture ... 7-18
The Pseudocode Driver ... 7-18

smdopen() ... 7-20
smdstart() .. 7-22

Contents v

Proprietary Intorm.ation - Do Not Copy

smdxfer() ... 7-24
smdintr() .. 7-28
smdtimer() .. 7-36

8 Block Device Example ... 8-1
gdvs32.h ... 8-4
gdvs32.c - preamble .. 8-12
gdvs32open() ... 8-16
gdvs32start() ... 8-28
gdvs32doxfr() .. 8-32
gdvs32seek() .. 8-46
gdvs32intr() .. 8-48
gdvs32errors() ... 8-58
gdvs32statuschangeO .. 8-64
gdvs32timer() .. 8-66

9 Integrating the Driver .. 9-1
If You Have a Source Code License 9-1

Getting Started ... 9-1
Integrating the Driver ... 9-2

Compiling the Driver .. 9-2
Linking the Driver .. 9-3

If You Have a Binary License ... 9-5
Getting Started ... 9-5
Integrating the Driver ... 9-5

Compiling the Driver .. 9-6
Linking the Driver .. 9-6

Making the Special File(s) .. 9-8
Some Example Master(4} File Entries 9-9

V /SMD 3200 SMD Controller ... 9-9
DRII Parallel Interface ... 9-10
SMD - Storage Module Drive Device 9-11
NI - Network Interface Device .. 9-12
SI - Speech Interface Device .. 9-13

10 Debugging the CTIX Kernel : 10-1
The Kernel Debugger .. , IO-I
Qprintf(2K) Macros ... 10-14

vi Writing MightyFrame Device Drivers

Proprietary Informa.tion - Do Not Copy

Interactive Boot Loader .. 10-15
Other Kernel Debugging Tools .. 10-16

APPENDIX A: CTIX Interface Manual Pages A-l
Introduction ... A-l

Kernel Interface to Device Drivers A-2
General Disk-Type Devices .. A-7
Buffer Header Structure ... A-I0
User Structure .. A-14

bcopy(2K) .. A-17
ccopyin(2K) .. A-18
chkbusflt(2K) ... A-20
copyin(2K) " ... A-21
copyout(2K) ... A-22·
delay(2K) ... A-23
devclose(2K) ... A-25
devinit(2K) ... A-21
devintr(2K) .. A-29
devintrgd(2K) ... A-31
devio(2K) ... A-34
devioctl{2K) ... A-37
devopen(2K) ... A-39
devprint(2K) .. A-41
devread(2K) .. A-42
devrelease(2K) .. A-44
devstart(2K) ... A-46
devstrategy(2K) ... A-49
devtimer(2K) .. A-52
devwrite(2K) .. A-53
ftcancel(2K) ... A-55
ftimeout(2K) .. A-56
fubyte(2K) ... A-58
fuword(2K) ... A-59
gdclose(2K) .. A-60
gdintr{2K) .. A-61
gdopen{2K) .. A-62
gdpanic(2K) ... A-63

Contents vii

Proprietary Information - Do Not Copy

gdprint(2K) .. A-64
gdread(2K) ... A-65
gdstrategy(2K) ... A-66
gdtimer(2K) ... A-68
gdwrite(2K) .. A-70
get_vec(2K) .. A-71
getc(2K) ... A-73
getcb(2K) ... A-74
iodone(2K) ... A-75
iomove(2K) .. A-76
iowait(2K) .. A-78
is_eepromvalid(2K) .. A-79
macros(2K) ... A-80
panic(2K) ... A-84
physio(2K) ... A-85
plug_svec(2K) .. A-88
printf(2K) ... A-90
probevme(2K) .. A-91
psignal(2K) ... A-92
putc(2K) .. A-93
putcf(2K) ... A-94
qprintf(2K) ... A-95
reset_vec(2K) ... A-98
scopyin(2K) .. A-99
scopyout(2K) .. A-l00
set_vec(2K) .. A-I0l
setmap(2K) ... A-I03
sleep(2K) .. A-I05
spl(2K) ... A-I08
sptalloc(2K) .. A-lll
sptballoc(2K) .. A-113
sptbfree(2K) ... A-114
sptfree(2K) ... A-115
sputc(2K) ... A-116
subyte(2K) ... A-117
suser(2K) .. A-118
suword(2K) ... A-119
timeout(2K) .. A-120

viii Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

unplug_svec(2K) ... A-122
untimeout(2K) .. A-123
useracc(2K) .. A-124
wakeup(2K) .. A-125

GLOSSARY ... Glossary-1

INDEX ... Index-1

LIST OF FIGURES

Virtual to Physical Address Translation 2-13
MightyFrame to VMEbus Address Translation

for A32 Devices ... 2-15
MightyFrame to VMEbus Address Translation

for A24 Devices ... 2-16
MightyFrame to VMEbus Address Translation

for A16 Devices ... 2-17
VMEbus ~1aster (DMA) Address Translation

for A32 Devices ... 2-18
VMEbus Master (DMA) Address Translation

for A24 Devices ... 2-20
VMEbus Master (DMA) Address Translation

for A16 Devices ... 2-21
VMEbus Map (Page) Register ... 2-24
VMEbus Protection Register ... 2-25
VMEbus Interrupt Mask Register ... 2-27
User Space .. 4-2
Kernel Space .. 4-9
Setuid(2): Trap to Kernel - Process System Call 4-14
Read(2): Trap to Kernel - Process A Sleeps4-16
Read(2): Context Switch - Restart Process B4-18
Read(2): I/0 Completion Interrupt - Wakeup Process A4-19
Read(2): System Clock Interrupt - Restart Process A4-20
Character Queue Processing .. .4-26

Contents ix

Proprietary Information - Do Not Copy

System Buffer Cache .. 7-4
System Available (Free) List .. 7-6
System Hash Lists .. 7-9
I/O Queue - One per Block Device ... 7-11
Major + Minor Device Number Fields

General Disk-Type Devices ... 7-12
General Disk I/O Queue Structure

One per Disk Controller .. 7-14
General Disk Driver Linkage .. 7-17
Kernel/Device Driver Linkage

Character Devices .. A-5
Kernel/Device Driver Linkage

Block Devices ... A-6
Kernel/Device Driver Linkage

General Disk-Type Devices .. A-8

x Writing MightyFrame Device Drivers

1 HOW TO USE THIS MANUAL

You can use this manual in two different ways:

• AB a quick reference guide, if you are a CTIX or UNIX
systems programmer. First, read all of Chapter 1, How to
Use This Manual, and Chapter 2, Arch£tectural
Information, followed by all of Chapter 3, Differences from
System V, Chapter 9, Integrating the Driver, and Chapter
10, Debugging the CTIX Kernel. Finally, use Appendix A,
CTIX Interface Manual Pages, the Table of Contents, and
the Index to find answers to your specific questions.

• AB a tutorial introduction to CTIX and its I/O system,
if you are not familiar with UNIX-like operating systems.
First, read all of Chapter 1, How to Use This Manual,
through Chapter 8, Block Device Example, and Appendix
A, CTIX Interface Manual Pages, for an understanding of
the MightyFrame and its software. Then read Chapter 9,
Integrating the Driver, and Chapter 10, Debugg£ng the
CTIX Kernel, for specific help in implementing your driver.
Finally, use Appendix A, CTIX Interface Manual Pages,
and the Glossary to answer any questions you may have.

WHAT you NEED TO KNOW

This manual imposes several requirements upon you. First and
most important, you must be an expert C programmer who has
written one or more device drivers for a multitasking operating
system. That is, you must be familiar with all of the following
concepts:

• Cooperating sequential processes.

• Mutual exclusion.

How to Use This Manual 1-1

Proprietary Information - Do Not Copy

Interrupt processing, including programmable interrupt
priority levels.

• Direct memory access techniques.

Buses and bus timing diagrams.

Programmable hardware (I/O) devices, including their
operational and timing characteristics.

If you do not understand these concepts, you will have difficulty
writing a CTIX device driver. The section entitled Related
Documentation in this chapter describes several excellent texts on
operating system principles. You should read at least one of
these books before attempting to work through the
material in this manual.

In addition, you should be familiar with either UNIX or CTIX
internals. If you are not, your task will be very difficult, even
though this manual contains a substantial amount of tutorial
information.

NOTE

If you are not a UNIX systems programmer, you should
take the System V internals and device drivers courses,
which are offered periodically by AT&T.

MANUAl, CONVENTIONS

This manual consistently follows a few conventions throughout.

New terms are underlined when they are defined in the
text . You will find all of these underlined terms in the
Glossary at the back of the book.

1-2 Writing MightyFrame Deviee Drivers

Proprietary Information - Do Not Copy

• Bits within bytes, words, and longwords are numbered
starting with 00 on the low-order end: bytes contain bits
07 to 00, words contain bits 15 to 00, and longwords con
tain bits 31 to 00. Bits 31 to 24 represent the high-order
byte within a longword.

• All references of the form name(N) can be found in the
CTIX Operating System Manual: when N is 1, the docu
mentation is in Volume 1; when N is greater than 1, the
documentation is in Volume 2, except when N is 2K. All
of the 2K (kernel) calls are documented in Appendix A,
CTIX Interface Manual Pages, in this manual.

MANUAL ORGANIZATION

Ohapter 1, How to Use This Manual, contains introductory infor
mation about the background you must have, the conventions
this manual follows, and the manual's contents.

• What You Need to Know describes the background,
knowledge, and experience that you must bring to your
reading of this manual.

• ·Manual Conventions describes the standards and conven
tions to which this manual adheres.

• Manual Organization is the section you are reading now. It
gives a section-by-section overview of the contents of this
manual.

• Related Documentation contains the titles and, where appli
cable, the authors and publishers of other documents you
may find useful in writing your device driver.

Convergent Technologies Publications describes the
relevant manuals that are published by and available
from Oonvergent Technologies, Inc.

Other Reference Manuals describes other reference
works that are not published by Convergent Techno
logies.

How to Use This Manual 1-3

Proprietary Information - Do Not Copy

Tutorial Books and Articles describes background
material that you may find useful in understanding
operating system principles in general and the inter
nal design of the UNIX operating system in particu
lar.

Chapter 2, Architectural Information, provides detailed informa
tion about the MightyFrame hardware and software environ
ments.

• M£ghtyFrame Hardware describes the MightyFrame
hardware configuration.

MC68020 Microprocessor describes the Motorola
68020, the central processing unit of the Mighty
Frame.

Hardware Interrupts describes the various interrupts
that can occur in the system and how they are han
dled by the hardware.

• GTIX Software briefly describes the MightyFrame operat
ing system.

Interrupt Processing describes how interrupts are han
dled by the operating system.

*

*

Facilities to Handle Interrupts describes the
mechanisms that CTIX provides to receive and
process interrupts.

Facilities to Manage the Interrupt Mask
describes the mechanism that CTIX provides to
alter the MC68020 interrupt mask register.

M£ghtyFrame Address Map consists of a table contain
ing all of the addresses referenced within this chapter.

Address Translation describes the algorithms used to
translate

* Virtual to physical memory addresses,

1-4 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

*

*

*

MightyFrame memory addresses to VMEbus
addresses, and

~bus addresses to MightyFrame memory
addresses.

DMA Considerations describes some limitations
and special problems imposed during HMA
operations between the VMEbus and the
MightyFrame system.

VMEbus Support describes the industry-standard
VMEbus and how it interfaces with the rest of the
system.

*

*

*

*

*

VMEbus Interface Board describes the interface
point between the main system bus and the
VMEbus.

VMEbus Map (Page) Register describes the
VMEbus Map register on the VMEbus Interface
board.

VMEbus Protection Register describes the
~bus Protection register on the VMEbus
Interface board.

VMEbus Interrupt Ma8k Register describes the
~bus Interrupt Mask register on the
VMEbus Interface board.

VMEbus EEPROM describes the electrically
eraseable PROM on the VMEbus Interface
board.

Chapter 3, Differences from System V, explains concisely how
CTIX differs from AT&T's UNIX System V at the device driver
.level. If you have written one or more drivers under System V,
this chapter provides the key to your rapid and painless transi
tion to CTIX.

• Loadable Drivers describes the loadable device driver facil
ity under CTIX and what you must do to make your driver

How to Use This Manual 1-5

Proprietary Information - Do Not Copy

loadable.

• User-Kernel Virtual Address Remapping documents the
CTIX facilities that support physical I/O between user vir
tual memory and VMEbus DMA devices.

• SPL{2K) Macros describes the enhancements that CTIX
has made to allow you efficient control over the interrupt
mask in the MC68020 processor status word.

• Kernel Debugging briefly describes OTIX's unique facilities
for debugging the kernel.

Chapter 4, GTIX Kernel Tutorial, contains tutorial information
about the CTIX kernel and how it operates.

• The User Process describes the execution environment of a
user's program.

The Process Table describes the per-process informa
tion that is kept in the System Process Table.

The User Area describes the information that is kept
in the User Area of each process.

Kernel Memory Map shows a detailed map of the
user's virtual memory during execution.

• System Gall Processing describes the system call and return
mechanism.

System Gall Examples presents two detailed system
call examples.

*

*

Synchronous System Gall Processing - setuz"d(2)
describes the flow of control through CTlX dur
ing synchronous system calls.

Asynchronous System Gall Processing - read(2)
describes the flow of control through CTlX dur
ing asynchronous system calls.

• The GTIX I/O System describes the OTIX I/O system In

general.

1-6 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

The Block I/O System briefly describes the Block I/O
system and provides guidelines to help you determine
whether yours is a block device.

The Character I/O System briefly describes the Char
acter I/O system and provides guidelines to help you
determine whether yours is a character device.

*

*

*

*

Character Queue Processing briefly discusses
the basic queue data structures available to
character devices.

Terminal Devices briefly describes the special
case handling for terminal devices.

Buffered Character I/O briefly describes tech
niques available to buffer high-speed character
devices.

Phys,·cal (Raw) I/O briefly describes CTIX sup
port for direct memory access between user
processes and very high-speed character devices.

Chapter 5, Character I/O Tutorial, describes character I/O in
detail.

• Overview explains the flow of control through the character
I/O system and helps you to understand what CTIX is
doing before, while, and after your driver runs.

• Character-at-a- Time I/O describes the most commonly
used interface for low-speed character devices, such as ter
minals and printers.

The Network Interface Driver contains pseudocode for
a hypothetical low-speed character device.

• Physical (Raw) I/O describes the most common interface
for high-speed character devices, such as raw disk and tape
drives.

The Speech Interface Driver contains pseudocode for
a hypothetical high-speed character device driver.

How to Use This Manual 1-7

Proprietary Information - Do Not Copy

Chapter 6, Character Device Example, contains the complete
source code for a functional MightyFrame character device
driver. The driver is heavily commented and each page of code
includes a page of detailed narration.

Chapter 7, Block I/O Tutorial, describes block I/O in detail.

• Overview explains the flow of control through the block
I/0 system.

• System Buffer Cache contains a detailed description of the
associative cache maintained by the Block I/O system.

Ba8ic Structure provides an overview of the buffer
cache.

Available (Free) List contains a detailed description of
the list of available system buffers.

Hash Lists contains a detailed description of the hash
lists, which reduce the time required to search the
buffer cache.

I/O Queues contains a detailed description of the I/O
queues, which contain all of the buffers scheduled for
I/O operations.

General Disk I/O Queue Structures describes the spe
cial, two-level I/O queues used for general disk-type
devices.

Summary reiterates the information presented in the
preceding subsections.

• General Disk Driver describes the device-independent por
tion of the system disk drivers.

• An SMD Device Driver contains a pseudocoded driver for a
hypothetical disk controller.

Dem:ce Architecture explains the operation of the
hypothetical controller.

1-8 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

The P8eudocode Driver contains the annotated pseu
docode for the driver.

Chapter 8, Block Device Example, contains the complete source
code for a functional MightyFrame block device driver. The
driver is heavily commented and each page of code includes a
page of detailed narration.

Chapter 9, Integrat-ing the Driver, describes the steps you must
take to write your driver, integrate it into the kernel, and test it.

• If You Have a Source Code Licen8e describes the steps you
must perform to build and link your driver if you have a
CTIX source code license.

Getting Started describes the various header files,
makefiles, and shell scripts you will use to write your
driver.

Integrating the Driver describes how to integrate your
driver into the kernel.

*

*

Compiling the Driver explains how to build your
driver from source code.

L-inking the Driver explains how to rebuild the
kernel so that it contains your driver.

• If You Have a Binary Licen8e describes the steps you must
perform to build and link your driver if you have a CTJX
binary license.

Getting Started describes the various header files,
makefiles, and shell scripts you will use to write your
driver.

Integrating the Driver describes how to integrate your
driver into the kernel.

*

*

Compiling the Driver explains how to build your
driver from source code.

Linking the Driver explains how to rebuild the
kernel so that it contains your driver.

How to Use This Manual l-g

Proprietary Information - Do Not Copy

• Makt'ng the Special File(s) explains how to create the spe
cial files that CTIX needs to grant users access to your dev
Ice.

• Some Example Ma8ter(4) File Entrie8 contains annotated
master(4) file entries for each of the example drivers in
this manual.

Chapter 10, Debugging the GTIX Kernel, describes several utili
ties that make it easier for you to get your device driver running.

•

•

•

The Kernel Debugger describes the debugging monitor that
is built into the CTIX kernel.

The Qprt'ntf(2K) Macr08 describes the queued printfO
function, which you may find useful in debugging your
driver.

Interactt've Boot Loader describes CTIX's interactive boot
loader and how you can use it to speed up the debugging
process.

• Other Kernel Debuggt'ng Tool8 briefly describes the adb(l),
sdb(I), and crash(IM) utilities and how you can use
them to debug a running system or a system crash dump.

Appendix A, GTIX Interface Manual Page8, contains detailed
descriptions of the CTIX operating system calls you must use to
implement your driver. It is written in the same format and
style as Sections 2 and 3 of the GTIX Operating System Manual.
The number and type of parameters, the operation, and exit con
ditions are given for each function. All references of the form
function(2K) are found in Appendix A.

• Introduction contains background information that under-
lies the information in the manual pages.

Kernel Interface to Device Driver8 documents the
linkage mechanism between the CTIX kernel and the
various character and block device drivers.

General Dt'8k- Type Device8 describes the special facili
ties that CTIX provides to support disk-like devices.

1-10 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

Buffer Header Structure documents the buffer header
data structure and the fields and flags it contains.

User Structure documents the user data structure and
the fields and flags it contains.

• The manual pages themselves follow the Introduction.

The Glossary contains concise definitions of the important terms
and concepts introduced in the manual.

The Index includes chapter and page number references for each
important term in the manual.

RELATED DOCUMENTATION

The following books, manuals, and papers contain information
useful or necessary for your understanding of this manual.

CONVERGENT TECHNOLOGIES PUBLICATIONS

• CTIX Operatt"ng System Manual, Volumes 1 and 2

• Mt"ghtyFrame Hardware Manual

• Mt"ghtyFrame Administrator's Reference Manual

• CTIX Programmer's Guide

The CTIX Operating System Manual, Volume 1, describes the
commands available to the user and/or administrator of a CTIX
system. Volume 2 describes the system calls, library functions,
file formats, miscellaneous facilities, games, and special files
available to a CTIX user.

The Mt"ghtyFrame Hardware Manual contains the hardware
description of the MightyFrame computer system. It augments
the material in Chapter 2, Architectural Informatt"on.

The M£ghtyFrame Administrator's Reference Manual contains
detailed information useful to the system administrator. In par
ticular, it explains how to add a device driver to CTIX.

How to Use This Manual 1-11

Proprietary Information - Do Not Copy

The CTIX Programmer's Guide describes the CTIX program
ming environment. It also documents the CTIX C compiler and
the MC68020 assembler.

OTHER REFERENCE MANUALS

• Ikon 10084. DR11- W Emulator Hardware Manual

• Interphase VI SMD 9200 User's Guide

• MC68020 92-Bit Microprocessor User's Manual

• VMEbus Specification Manual

• UNIX System V Support Tools Guide

The Ikon 10084. DR11- W Emulator Hardware Manual is the
programmer's manual for the device whose driver is documented
in Chapter 6, Character Device Example.

The Interphase VI SMD 9200 User's Guide is the programmer's
manual for the device whose driver is documented in Chapter 8,
Block Device Example.

The MC68020 92-Bit Ma'croprocessor User's Manual is the
programmer's manual for the MightyFrame central processing
unit. It describes the Motorola 68020 in detail. The information
it contains on exception processing and interrupt priority levels is
invaluable to you as a device driver writer.

The VMEbus Specification Manual contains hardware, software,
and timing information related to the VMEbus, and the rules
that its devices must follow. The manual was written from the
hardware perspective, and in some cases does not clarify software
issues. Nevertheless, you must master this material before you
can implement a driver for a VMEbus device.

The UNIX System V Support Tools Guide contains a section that
documents the link editor and the format of the system iflle.

1-12 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

TUTORIAL BOOKS AND ARTICLES

• Dijkstra, Edsger W. "The Structure of the 'THE' Multipro
gramming Executive" in Writings of the Revolution, Your
don, Inc., 1982.

• Deitel, Harvey M. An Introduction to Operating Systems.
Addison-Wesley Publishing Company, 1984.

• Kernighan, Brian W., and J. Mashey. "The UNIX Pro
gramming Environment" in Software - Practice and
Experience, Vol. 9. Wiley and Sons, January, 1979.

• Kernighan, Brian W. and Dennis M. Ritchie, The C Pro
gramming Language. Prentice-Hall, Inc., 1978.

• Ritchie, Dennis M. "A Retrospective" in Bell System
Technical Journal, Vol. 57, No.6, Part 2, July-August
1978.

• Ritchie, Dennis M. "The Evolution of the UNIX Time
Sharing System" in Bell System Technical Journal, Vol. 63,
No.8, Part 2, October 1984.

• Thompson, Ken. "UNIX Implementation" in Bell System
Technical Journal, Vol. 57, No.6, Part 2, July-August
1978.

Dijkstra's article, "The Structure of the 'THE' Multiprogram
ming Executive," introduced the formalism of semaphores to
solve the mutual exclusion problem in operating systems. The
idea was so revolutionary that the referees of the paper asked
Dijkstra to write an Appendix justifying his exorbitant claims.

Deitel's book, An Introduction to Operating Systems, is exactly
what its title implies. It covers all of the basic concepts required
for operating system programming. It also has useful case stu
dies in UNIX, VAX VMS, CP jM, OS/MVS, and OS/YM.

Kernighan and Mashey's article "The UNIX Programming
Environment" provides a useful introduction to the UNIX
operating system from the programmer's viewpoint.

How to Use This Manual 1-13

Proprietary Information - Do Not Copy

Kernighan and Ritchie's book, The G Programming Language, is
the definitive reference for the language, from the people who
designed and implemented it.

Ritchie's articles, "A Retrospective" and "The Evolution of the
UNIX Time-Sharing System," contain the musings of one of the
original implementors of UNIX. The articles describe some of
the advantages and disadvantages of the original design and how
the system evolved into its present form.

Ken Thompson conceived, designed, and implemented the first
UNIX system at Bell Labs in the early 1970's. His article,
"UNIX Implementation," describes the internal architecture of
UNIX. It is lucid in its explanation and, even now, is remark
ably useful.

1-14 Writing MightyFrame Device Drivers

2 ARCHI'lECTURAL INFORMATION

This chapter contains specific information about the
MightyFrame hardware and software environments. It
describes the MC68020 CPU, the VMEbus, and the interface
between them. It also discusses the CTIX operating system and
the facilities it provides for interrupt handling and address • translatio n.

Nom
The hardware information presented in this chapter is
specific to the MightyFrame I. Always refer to the
Mighty/rame Hardware M anua/ for the most current
MightyFrame hardware information.

MIGHTYFRAME HARDWARE

The MightyFrame system is a multiuser, virtual memory com
putet based on the 32-bit MC68020 microprocessor. The heart
of the system is the Main Processor board containing

• The CPU running at 12.5 MHz with one wait state.

• An optional 68881 floating point coprocessor.

• Memory mapping and protection circuitry.

• 1M byte of RAM.

• 32K bytes of ROM.

• One direct memory access hard disk controller supporting
up to three ST506 Winchester disk drives.

Architectural Information 2-1

Proprietary Information - Do Not Copy

• One DMA 1/4 inch tape controller.

• Two interrupt-driven RS-232-C serial channels.

• One Centronics-compatible parallel line printer port.

• One battery powered, real-time clock/calendar chip.

• One uninterruptible power supply connector.

Associated with the main processor board is a 10 slot memory
and I/O expansiOlr bus that can support

• 16M bytes of physical memory in 2 or 4M byte increments.

• Either 10, 20, 30, or 40 asynchronous RS-232-C serial ports
running at up to 38,400 baud.

• One of the following:

An I/O Processor board (lOP) consisting of a 12 :MHz
68000, an 8253 counter timer circuit, a parallel line
printer port, and 64K bytes of memory.

An RS-422 board consisting of four RS-422 ports run
ning at either 307K bits or 2M bits per second, and
one parallel printer port.

• One VMEbus interface board that provides the electrical
interface to a four-slot VMEbus expansion card cage. An
additional 100siot VMEbus expansion card cage can be
added to the first.

See the MightyFrame Hardware Manual for a more detailed dis
cussion of this material.

2-2 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

MC68020 MICROPROCESSOR

The MC68020 is a 32-bit microprocessor that supports demand
paged virtual memory. It is the first of the 68000 family to
implement nonmultiplexed, 32-bit address and data buses both
internally and externally. It is upwardly compatible (at the
object code level) with the earlier members of the Motorola
68000 family, that is, with the 68000, 68008, 68010 (used in Con
vergent Technologies MegaFrame and MiniFrame Systems), and
68012 microprocessors.

The MC68020 has the following features:

• A three-stage instruction prefetch and decode queue.

• An on-chip cache memory containing 64 longwords.

• Separate user and supervisor states, each supported by its
own 32-bit stack pointer.

• Separate master and interrupt states with a third 32-bit
stack pointer reserved for the interrupt state.

• A 4 gigabyte direct addressing range.

• Instruction suspension and continuation to support
demand-paged virtual memory.

• Dynamic bus sizing on a cycle-by-cycle basis to support 8,
16, and 32-bit wide memory and peripheral devices.

• Powerful exception processing controlled through a relocat
able, 256 entry vector table. The first 64 exceptions are
defined by and reserved for the CPU. The remaining 192
vectors are available to the system architect.

• Seven levels of interrupt prioritization, with full masking
on the lowest six levels. The highest level is defined as the
Non-Maskable Interrupt (NMI) and is used to report
impending power failure, memory not present, bus errors,
and parity errors to the operating system.

See the MC68020 S2-Bit Microprocessor User's Manual for
further information about these and other features of the CPU.

Architectural Information 2-3

Proprietary Information - Do Not Copy

HARDWARE IN1ERRUPTS

The MC68020 supports seven levels of prioritized interrupts.
The Interrupt Priority Levels (1EL.,s) are numbered from 1 to 7,
with 1 having the lowest priority and 7 the highest. IPL 0 indi
cates that the CPU is not processing (has not acknowledged)
any interrupts currently. Using a 3-bit field in the status word,
the. programmer can mask out (disable) interrupts at any level
except 7. IPL 7 is referred to as the NMI and is always ack
nowledged. Multiple devices may be daisy-chained together at
the same IPL, effectively supporting an unlimited number of
interrupt requesters.

The running priority level is determined by the contents of the
interrupt mask in the processor status word. For interrupts at
levels 1 through 6 to be acknowledged, the IPL must be greater
than the current interrupt mask in the status word. If the IPL
is less than or equal to this mask, the interrupt is denied.
Interrupts at IPL 7 are recognized at all times (except for level
7 interrupts from the VMEbus).

MightyFrame Interrupt Priority Levels are assigned according to
the following table:

IPL 7

IPL 6

IPL 5

Main System NMI.

Bus Errors.

Parity Errors.

Memory Not Present.

Clock Tick (60 Hz).

VME Subsystem Level 6.

On-board or Expansion RS-232.

Either off-board RS-232 or an I/O Processor board.

VME Subsystem Level 5.

2-4 Writing MightyFrame Device Drivers

IPL 4

IPL 3

IPL 2

IPL 1

Proprietary Information - Do Not Copy

VME Subsystem Level 4.

On-board 8259 Interrupt controller (manages disk
and tape drives).

VME Subsystem Level 3.

VME Subsystem Level 2.

On-board Printer Interface.

Either RS-422 or an I/O Processor Board.

VME Subsystem LevelL

The interrupt control circuitry receives interrupt requests from
local (non-VMEbus) devices at IPLs 1, 3, 5, 6, and 7; it
receives VMEbus requests at priority levels 1 through 6.
VMEbus interrupts at level 7 are ignored. When a local and a
VMEbus device at the same IPL request interrupts simultane
ously, the local device is serviced before the VMEbus device.

NOTE

VMEbus interrupt requests can be disabled separately
from other interrupt sources. See VMEbus Support in
this chapter for details.

See the MightyFrame Hardware Manual and the MC68020 32-
Bit Microprocessor User's Manual for more information on
hardware interrupts.

Architectural Information 2-5

Proprietary Informauon- Do Not Copy

crux SOF]WA,RE

The CTIX operating system is derived from AT&T's UNIX
System V, Release 2. That is, it is a virtual memory implemen
tation of the System V user and programmer interfaces. In
addition, certain features of 4.2 Berkeley Software Distribution
(BSD) have been incorporated. In particular, the interprocess
communication facility known as sockets has been partially
implemented under CTIX.

The following sections discuss the features of CTIX software
you must understand when writing your device driver.

INTERRUPT PROCESSING

Your driver must handle interrupts from the device and
manage the processor interrupt mask. CTIX provides simple
facilities to do this.

Facilities to Handle Interrupts

All interrupts from peripheral devices are vectored directly to a
CTIX assembly language routine named perint(). Perint()
saves the context and acquires the interrupt vector number
from the stack. Using this number as an index into a kernel
table named Int_handle, perint() retrieves the address of the
appropriate interrupt handler and calls it with the interrupt vec
tor number as a parameter. The interrupt handler runs to com
pletion and then returns to perint() , which cleans up the inter
rupt stack and returns from the exception.

In order for perint() to pass control to your driver, you must
place the address of your interrupt handler in the appropriate
slot in the Int_handle table. The CTIX OS provides two rou
tines to accomplish this: get_vec(2K) and set_vec(2K).

• If your VMEbus device has software-programmable inter
rupt vector generation, you should call get_vec(2K) in

2-6 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

your driver initiali.zation code (see devinit(2K»).
Get_vec(2K) takes as parameters your driver ID and the
address of your interrupt handler. It returns the interrupt
vector number corresponding to the first available slot in
the Int_handle table. You must program your device to
generate this vector number when its interrupt request is
acknowledged.

• If your VMEbus device supports only hardware-strappable
interrupt vector generation, you must use set_ vec(2K).
Set_vec(2K) takes as parameters your driver ID, the
address of your interrupt handler, and the interrupt vector
number for which your device is strapped. The
set_ vec(2K) manual page contains a list of the (currently)
available interrupt vectors.

If the slot corresponding to the requested vector number in
the Int_handle table is in use, set_vec(2K) returns a
failure indication. This means that another device in the
system is supplying the same interrupt vector number as
your VMEbus device. When your device generates an
interrupt, the interrupt handler for the other device will be
called. Therefore, if set_ vec(2K) fails, you should print a
message on the system log to that effect (at the very least).
In this case, you must take the machine down and restrap
your device to generate an unused vector number.

For a more complete discussion of this topic, see the documenta
tion for devinit(2K), get_vec(2K) and set_vec(2K) in Appen
dix A, CTIX Interface Manual Pages. Also see Chapter 9,
Integrating the Driver.

Architectural Information 2-7

Proprietary Information - Do Not Copy

Facilities to Manage the Interrupt Mask

In order to guarantee that each critjcaJ ~ of your code runs
without interruption, you must raise and lower the processor
priority level from within your driver. CTIX software provides
various SPL(2K) (set priority level) requests to do this.

SPLO(2K) through SPL7(2K) set the interrupt mask explicitly.
For instance, after a call to SPL50, all interrupts at IPL 5 and
below are disabled. After calling a function of the form SPLnO,
you may call SPLXO to restore the interrupt mask to the value
that it had before. you changed it. Whenever you use the SPLn
/ SPLX pair, you must include a declaration of the form
SDEC; within the local variables of your function. This macro
declares local storage for a temporary copy of the status register.

NOTE

All of the uppercase SPL calls are in fact macros that gen
erate in-line assembly language. The traditional UNIX as
functions named splOO through spl70 also are supported.
The macros are preferred for performance reasons.

VSPLO(2K) through VSPL7(2K) also set the interrupt mask
explicitly, but they do not store the previous value of the proces
sor status word. If you use a call of the form VSPLnO, you
cannot later call SPLXO. Consequently, you should not include
the SDEC; declaration.

In addition, CTIX provides the following mnemonic calls, making
it unnecessary to hard-code explicit interrupt levels in your dev
ice driver. These macros are defined in <sys/spl.h>.

SPLDSK sets the interrupt mask to the appropriate level
for all system disk drivers (currently, SPL3).

2-8 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

SPL422

SPLTAPE

sets the interrupt mask to the appropriate level
for RS-422 devices (currently, SPL3).

sets the interrupt mask to the appropriate level
for the tape subsystem (currently, SPL3).

SPLSERIAL sets the interrupt mask to the appropriate level

SPLBLK

for all serial devices in the system (currently,
SPL5).

sets the interrupt mask to a level guaranteed to
be greater than or equal to the highest interrupt
level of any block device III the system
(currently, SPL3).

In general, you must raise the interrupt level whenever you are
manipulating data structures that can also be changed by the
interrupt handler: queue, c-list, and buffer manipulation are the
most common examples of this. You must be careful not to raise
the level too high, however, since this prevents CTIX from ser
vicing devices that do not conflict with your driver. Such denial
of service unnecessarily increases the interrupt response time for
the affected device(s). This causes a needless degradation in sys
tem performance.

See the SPL(2K) manual page in Appendix A, CTIX Interface
Manual Pages, for more information on managing interrupt prior
ity levels.

MIGHTYFRAME ADDRESS MAP

The address space of the MightyFrame system IS organized as
shown in the following map.

Architectural Information 2-9

Proprietary Information - Do Not Copy

Address Range

$00000000 - $017FFFFF
$01800000 - $7F7FFFFF
$7F800000 - $7FFFFFFF
$80000000 - $8FFFFFFF
$90000000 - $9FFFFFFF
$98000000
$9AOooOOO
$90000000
$9EOooOOO
$AOOooOOO - $OIFFFFFF
$AOOOOOOO - $BFFFFFFF
$AOOooOOO - $AFFFFFFF
$BOOooOOO - $B3FFFFFF
$B40oo000 - $B7FFFFFF
$B80oo000 - $BBFFFFFF
$BOOOOOOO - $BFFFFFFF
$00000000 - $OOFFFFFF
$00000000 - $OOBFFFFF
$00000000 - $OODFFFFF
$OOEOOOOO - $OOFFFFFF
$01000000 - $OIOOFFFF
$01000000 - $01007FFF
$01008000 - $OI00BFFF
$01000000 - $OI00FFFF
$01010000 - $OIFFFFFF
$02000000 - $DFFFFFFF
$EOOooOOO - $FFFFFFFF

Contents

User virtual memory
Illegal
Kernel virtual memory
Slow local I/O registers
Fast local I/O registers
VMEbus Map (Page) register
VMEbus Protection register
VMEbus Interrupt Mask register
VMEbus EEPROM (8K bytes)
VMEbus addresses
A32 devices
A32 - supervisor mode
A32 - user mode
A32 - user mode
A32 - user mode
A32 - user mode
A24 devices
A24 - supervisor mode
A24 - user mode
A24 - user mode
A16 devices
A16 - supervisor mode
A16 - user mode
A16 - user mode
Unused
Reserved
Unused

MightyFrame System Address Map

Each of these addresses and address ranges will be explained in
the following sections.

2-10 Writing Mighty Frame Deviee Drivers

Proprietary Information - Do Not Copy

ADDRESS TRANSLATION

The table in the preceding section shows that the MightyFrame
System supports a total of 32M bytes of virtual memory: 24M
bytes of user space and 8M bytes of kernel space. (Addresses
above $80000000 are in I/O space and are not considered a part
of virtual memory.) DMA addresses, however, are contiguous
from $00000000 to $OIFFFFFF: DMA hardware ignores the
upper 7 bits of virtual addresses, effectively remapping the kernel
space (addresses between $7F800000 and $7FFFFFFF) onto
addresses between $01800000 and $OIFFFFFF.

Virtual Memory Address Translation

Virtual memory is divided into 8,192 logical pages of 4,096 bytes
per page (8,192 pages X 4,096 bytes per page = 32M bytes).
Physical memory is divided into a maximum of 4,096 pages of
4,096 bytes per page (4,096 pages X 4,096 bytes per page = 16M
bytes). Virtual to physical address translation takes place accord
ing to the following steps:

1. The high-order 7 bits (bits 31 to 25) of the 32-bit virtual
address are the K/U bits. They determine whether the
access is to kernel or user memory space.

2. The low-order 25 bits (bits 24 to (0) of the 32-bit virtual
address are used to perform the translation.

• The low-order 12 bits of this portion (bits 11 to 00)
form the byte offset into the 4K byte physical page.

• The high-order 13 bits (bits 24 to 12) contain the vir
tual page #. This is used as an index into an array
of 8,192 mapping registers.

3. Two access bits are retrieved from the selected mapping
register, and the access permissions are validated. These
bits are used to differentiate among the following possible
conditions and permissions:

Architeeturallnformation 2-11

Proprietary Information - Do Not Copy

• The page is absent (it may be on disk).

• The page is present. The supervisor can read and
write the page; the user can neither read nor write it.

• The page is present. The supervisor can read and
write the page; the user can read the page but can
not write it.

• The page is present. The supervisor can read and
write the page; the user can read and write it.

If the page is absent or the process does not have the
proper access permission, a page fault is generated, and
appropriate processing is begun. If the page was absent, a
read request is issued to the swapper process. If the user
did not have proper access permission, the process is ter
minated.

4. If the page is present, a 12-bit physical page # is
retrieved from the mapping register.

5. The 12-bit physical page # and the 12-bit byte offset
(bits 11 to 00 of the virtual address) are presented to the
memory address decoding circuitry.

6. The address decoding circuitry accesses one byte, word, or
longword of Physical Memory.

2-12 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

The following diagram illustrates the translation process.

Virtual Address

31 25124 12111 00

I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I II
K/U Bits I Virtual Page # I Byte Offset I

Mapping Registers

31 15 11 00

~
Access Bits Physical Page #

V///////h

Physical Memory

Virtual to Physical Address Translation

Architectural Information 2-13

Proprietary Information - Do Not Copy

MightyFrame/VMEbus Address Translation

Address translation for VMEbus devices takes place in two dif
ferent ways, depending upon whether the MightyFrame system
is accessing the device, or the device is accessing the Mighty
Frame while performing DMA. The following sections con
sider address translation from the MightyFrame system to the
VMEbus and from the VMEbus to the MightyFrame.

MightyFrame System to VMEbus Addressing

When you access a VMEbus device from the MightyFrame sys
tem, the device appears between virtual addresses $AOOOOOOO
and $OlFFFFFF. The MightyFrame System Address Map
presented previously shows the VMEbus space. This address
range provides the MightyFrame with a 544M byte
($22000000) "window" into the 4 gigabyte VMEbus address
space. The window is further subdivided to provide support for
the A16, A24, and A32 VMEbus device domains. The address
map below describes the domains:

MightyFrame Addresses

$AOOOOOOO - $BFFFFFFF
$00000000 - $OOFFFFFF
$01000000 - $0100FFFF
$01010000 - $OlFFFFFF

VMEbus Domain Map

VMEbus Domain

A32 devices
A24 devices
A16 devices
Unused

Within the A32 domain, the hardware concatenates bits P2 to

PO from the VMEbus Map register (located at virtual address
$98000000) onto the low-order 29 bits of the I/O address to
provide a full, 32-bit VMEbus address. For example, if bits P2
to PO of the VMEbus Map register are 001, and the I/O address
is $AOOOOOOO, the VMEbus address is $20000000 within the
A32 device domain. The complete contents of the VMEbus

2-14 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

Map register are defined in VMEbus Map register, later in this
chapter.

The following diagram illustrates MightyFrame to VMEbus
address translation for A32 devices.

MightyFrame System Virtual Address
31 2928 00

111 0111blbI blblblbl3

VMEbus Map
(Page) Register
P2 PO

VMEbus Address

MightyFrame to VMEbus Address Translation
for A32 Devices

For A24 devices, MightyFrame system addresses $COOOOOOO to
COFFFFFF are used. This block of virtual memory
corresponds to VMEbus addresses $000000 to $FFFFFF.

Architectural Information 2-15

Proprietary Information - Do Not Cbpy

The following diagram illustrates MightyFrame to VMEbus
address translation for A24 devices.

VM Ebus Address

MightyFrame to VMEbus Address Translation
for .A24 Devices

For A16 devices, MightyFrame addresses $01000000 to
$0100FFFF are used. This block of virtual memory
corresponds to VMEbus addresses $0000 to $FFFF.

2-16 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

The following diagram illustrates MightyFrame to VMEbus
address translation for A16 devices.

MightyFrame System Virtual Address
31 1615 00

11111 0lolololo111ololololololololalalalalalalalalalalalalalalal3

•
VMEbus Address

MightyFrame to VMEbus Address Translation
for A16 Devices

See the M ightyFrame Hardware Manual, VMEbu8 Support in this
chapter, and the include files <sys/hardware.h> and
<sys/vme.h> for more information about MightyFrame sys
tem to VMEbus address translation.

VMEbus to MightyFrame System Addressing

When the VMEbus device is acting as the master (that is, when
it is performing DMA), DMA addresses are interpreted accord
ing to the address type of the VMEbus device. The following
diagrams and tables show the address translations for A32,
A24, and A16 VMEbus devices. The symbols M and V in the
tables stand for MightyFrame system and VMEbus address
spaces, respectively. The sections of the address space that are
filled in halftone are unreachable from the device in question.

Architectural Information 2-17

Proprietary Information - Do Not Copy

The following diagram and table illustrate that A32 devices can
perform DMA transfers in MightyFrame user and kernel
memory spaces, and also in most of the VMEbus address space.

MightyFrame
Slave Addresses

VMEbus Master
(OMA) Addresses

VMEbus Slave
Addresses

OxFFFFFFFF OxFFFFFFFF

Ox20000000
Ox01FFFFFF

Ox01800000
Ox017FFFFF

OxOOOOOOOO OxOOOOOOOO

VMEbus Master (DMA) Address Translation
for A32 Devices

Device Address

$00000000 - $017FFFFF
$01800000 - $01FFFFFF
$02000000 - $FFFFFFFF

Translated Address

$00000000 - $017FFFFF M
$7F800000 - $7FFFFFFF M
$02000000 - $FFFFFFFF V

2-18 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

Nom

You are not allowed to perform DMA operations with
user virtual memory addresses, even though the
hardware supports it for A32 devices. When your driver
performs DMA directly into or out of a user's buffer,
you are responsible for remapping the buffer from user
virtual space to kernel virtual space. For a complete dis
cussion of the proper technique, see Physical {Raw} I/O
in Chapter 5, Character I/O Tutorial. Also see
sptalloc(2K), physio(2K), and setmap(2K) in Appendix
A, CTIX Interface Manual Pages. Also, the driver docu
mented in Chapter 6, Character Device Example, illus
trates the use of physical I/O.

Architectural Information 2-19

Proprietary Information - Do Not Copy

The following diagram and table illustrate that A24 devices can
perform DMA transfers in MightyFrame kernel memory space,
and also in some parts of the VMEbus address space. The
hardware does not allow A24 devices to perform DMA
transfers in MightyFrame user space, but, in practice, it is ille
gal to do so anyway. See the note above, under the discussion
of A32 devices, for more information.

MightyFrame
Slave Addresses

VMEbus Master
(DMA) Addresses

Ox80000D
Ox7FFFFF

OxOOOOOD

VMEbus Slave
Addresses

VMEbus Master (DMA) Address Translation
for A24 Devices

Device Address

$000000 - $7FFFFF
$800000 - $FFFFFF

Translated Address

$7F800000 - $7FFFFFFF M
$800000 - $FFFFFF V

2-20 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

The following diagram and table illustrate that A16 devices can
perform DMA transfers in VMEbus address space only. A16
devices cannot access MightyFrame user or kernel memory
spaces; therefore, their usefulness is extremely limited in the
MightyFrame system.

MightyFrame
Slave Addresses

VM Ebus Master
(OMA) Addresses

VMEbus
Slave Addresses

VMEbus Master (DMA) Address Translation
for A16 Devices

Device Address Translated Address

$0000 - $FFFF $0000 - $FFFF v

Whenever the VMEbus device is transferring data to Mighty
Frame system memory, the memory management circuitry on
the Main Processor board is used. See VMEbus Support in this
chapter for more information.

Architectural Information 2-21

Proprietary Information - Do Not Copy

DMA Considerations

If a page fault occurs on a DMA transfer, an NW is generated.
This results in a panic(2K) call displaying the following mes
sage:

Page fault during DMA

Thus, page faults on DMA transfers always cause a system crash.

When performing physical I/O, your driver is responsible for
bringing all of the user's buffer pages into physical memory and
assigning kernel virtual addresses to them. The kernel routines
sptalloc(2K), physio(2K), and setmap(2K) perform these ser
vices. See Appendix A, GTIX Interface Manual Page8, for a
complete description of these functions.

CAUTION

The memory protection mechanism is disabled on DMA
accesses; VMEbus DMA devices are allowed to read or
write any page of MightyFrame system memory that they
can address. You must thoroughly debug your DMA
based device drivers, since they can overwrite kernel data
structures and cause catastrophic system failures.

VMEBUSSUPPORT

The VMEbus is an industry-standard, 32-bit bus that is available
as an option on the MightyFrame system. The bus is connected
to the processor through an interface board residing in the
memory and I/0 expansion chassis. This board provides all of
the system control signals for the VMEbus and operates at a
bandwidth of approximately 6M bytes per second with the 12.5

2-22 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

bandwidth of approximately 6M bytes per second with the 12.5
MHz CPU.

Local DMA devices in the MightyFrame system can read and
write local MightyFrame system memory, but they cannot
access VMEbus memory. On the other hand, A32 and A24
VMEbus DMA devices can read and write MightyFrame virtual
memory. So DMA works in one direction only: from the
VMEbus to the MightyFrame. You cannot use DMA to
transfer data from the MightyFrame to the VMEbus.

NO'IE

Virtual memory translation is performed for VMEbus
DMA devices, but the normal memory protection
scheme is disabled. See Addres~ Translation in this
chapter for more information.

VMEbus Interface Board

You can access three registers and an EEPR OM (electrically
eraseable PROM) on the VMEbus interface board. They are
defined in the following table:

Virtual Address

$98000000
$9AOOOOOO
$90000000
$9EOOOOOO

Contents

VMEbus Map (Page) register
VMEbus Prote ction register
VMEbus Interrupt Mask register
VMEbus EEPROM (8K bytes)

VMEbus Interface Board Registers

Architectural Information 2-23

Proprietary Information - Do Not Copy

You can read the contents of any of these registers by opening
one of the /dev /vme/* special files and issuing an ioctl(2) call.
Only the super user can change the contents of the registers.
The contents of the VMEbus Protection register (only) are saved
and loaded at context switch time so that user access to VMEbus
space is maintained on a per-process basis. See VME(7) in the
CTIX Operating System Manual, Volume 2, for more informa
tion.

VMEbus Ma.p (Page) Register

The VMEbus Map (Page) register is shown and described below:

~

07-05

07 06 05 04 03 02 01 00

I P21 P1 I PO IACFI CT I CT I CT I CT I

VMEbus Map (Page) Register

FunctioD

P2-PO are concatenated onto the low-order 29 bits of
the I/O address to form a 32-bit VMEbus address for
A32 devices. You can think of this field as the
~bus page number.

04-04 If the ACF bit is set (= 1), the AC (Power) Fail sig
nal is enabled to the VMEbus. If the ACF bit is
clear (= 0), the AC Fail signal is not delivered to the
VMEbus.

03-00 Bits marked CT are reserved for Convergent Techno
logies.

2-24 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

VMEbus Protection Register

For some of the peripherals available on the V1v1Ebus, it is
advantageous to allow user processes more direct control than a
device driver provides. The CTIX operating system has made
provision for this by allowing up to one half of the VMEbus
space to be accessible in user mode. This facility is implemented
through the VMEbus Protection register.

The VMEbus Protection register is shown and described below:

~

07-06

05-04

07 06 05 04 03 02 01 00

IC1 1 CO 1 B11 BO 1 A31 A21 A1 I AD I
VMEbus Protection Register

Function

CI-CO are used with A16 V1\1Ebus devices only.
They define the areas of the V1vfEbus space that are
accessible in user mode. The bits and the regions
they control are defined below:

CO = 1 $C1oo8000 to $C100BFFF is accessible in
user mode.

Cl = 1 $C1OOCOOO to $C100FFFF is accessible in
user mode.

BI-BO are used with A24 VMEbus devices only.
They define the areas of the V1vfEbus space that are
accessible in user mode. The bits and the regions
they control are defined below:

BO = 1 $COCooooo to $CODFFFFF is accessible in
user mode.

Bl = 1 $COEOOOOO to $COFFFFFF is accessible in
user mode.

ArchitecturallnforIDation 2-25

03-00

Proprietary Inform.ation - Do Not Copy

A3-AO are used with A32 VNIEbus devices only.
They define the areas of the VMEbus space that are
accessible in user mode. The bits and the regions
they control are defined below:

AO = I $BOOOOOOO to $B3FFFFFF is accessible in
user mode.

Al = I $B4oo0000 to $B7FFFFFF is accessible in
user mode.

A2 = I $B8000000 to $BBFFFFFF is accessible in
user mode.

A3 = I $BOOooOOO to $BFFFFFFF is accessible in
user mode.

The following memory map summarizes the information above.

Address Range

$AOOOOOOO - $AFFFFFFF
$BOOOOOOO - $B3FFFFFF
$B4000000 - $B7FFFFFF
$B8000000-$BBFFFFFF
$BO~-$BFFFFFFF
$00000000 - $OOBFFFFF
$00000000 - $OODFFFFF
$OOEOOooO - $OOFFFFFF
$01000000 - $01OO7FFF
$01008000 - $0100BFFF
$01000000 - $0100FFFF
$01010000 - $01FFFFFF

Oontents

A32 - supervisor
A32 - user
A32 - user
A32 - user
A32 - user
A24 - supervisor
A24 - user
A24 - user
A16 - supervisor
A16 - user
A16 - user
Unused

VMEbus Access Permissions Map

2-26 Writing MightyFram.e Device Drivers

Proprietary Information - Do Not Copy

NOTE

The hardware supports direct user access to VMEbus dev
ices, but this facility imposes one severe restriction. Your
process can read and write ~bus device registers, but it
cannot cause a VMEbus device to perform DMA transfers
in your process memory space. DMA transfers into and
out of user space must be performed by the kernel, usually
by the physio(2K) routine. See Physical {Raw} 110 in
Chapter 5, Character 110 Tutorial, for more information.

VMEbus Interrupt Mask Register

The VMEbus Interrupt Mask Register is described below:

~

07-07

06-01

00-00

07 06 05 04 03 02 01 00

I 00 I Msi Msi M41 M31 M21 M1 I CT I
VMEbus Interrupt Mask Register

Functjon

VMEbus interrupts at level 7 are always disabled.

Setting any of the Mn bits (= 1) masks out VMEbus
interrupts at the corresponding level. Unlike the
interrupt mask in the CPU, each VMEbus interrupt
level is independent of the others.

This bit is currently unused.

CTIX software initializes the ~bus Interrupt Mask register
such that VMEbus interrupt level 7 is masked off, and levels 1

Arehitectural Information 2-27

Proprietary Information - Do Not Copy

through 6 are on.

VMEbus EEPROM

The VMEbus Interface board contains an EEPROM that is
located at $9EOOOOOO and is 8K bytes long. The following res
trictions apply to this device:

• The MC68020 cache memory must be disabled in order to
execute from the EEPROM.

• If you write to the EEPROM, you must allow a minimum
of 10 milliseconds to elapse before the next read or write
access to the device. Generally, you should use the
Ideeprom(lM) command to alter the EEPROM.

For more information about the VMEbus interface, see Address
Translat£on in this chapter, Appendix A, GTIX Interface Manual
Pages, the MightyFrame Hardware Manual, the include files
<sys/hardware.h> and <sys/vme.h> , and the VMEbus
Spec£f£cat£on Manual.

2-28 Writing MightyFrame Device Drivers

3 DIFFERENCES FROM SYSTEM V

From the point of view of the device driver writer, there is very
little difference between AT&T's UNIX System V Release 2
and the CTIX operating system on the MightyFrame. OTIX is
derived from and is a superset of the System V software, so
wherever differences do exist, they are enhancements available
only under OTIX. This chapter documents the OTIX
enhancements that affect device drivers and explains what you
must do to take advantage of them.

IJOADABLE DRIVERS

The most fundamental change from UNIX System V is OTIX's
prOVISIOn for loadable device drivers. Under System V
software, you must compile and link your driver with the
kernel in order for it to execute. Under CTIX, you can still
link your driver with the kernel; however, you can also install it
into a running system using the lddrv(1M) utility.

U sing options available with the sys local (2) call, lddrv(1M)
allocates kernel memory space to hold the driver, loads the
code into the kernel, patches the kernel bdevsw or cdevsw
tables with the driver's entry points, and then executes the
driver's devinit(2K) routine. From this point until the driver
is unbound, it runs exactly as though it had been linked with

Differences from System V 3-1

Proprietary Information - Do Not Copy

the kernel.

NOTE

Because syslocal(2) currently does not patch the gdsw
table, drivers for general disk-type devices are not load
able.

Whether they are to be loaded with Iddrv(1M) or linked into
the kernel, all device drivers under CTIX must have a driver
ID assigned. To accomplish this, include the following lines of
code in your driver:

extern int DFLT_ID;
static int Drv_id = (int)&DFLT_ID;

The loader assigns a driver ID of 0 for all device drivers that
are linked with the kernel. If you use Iddrv(1M) to load your
driver, syslocal(2) assigns a unique driver ID when it performs
the BIND operation.

DRIVER RELEASE ROUTINE

In order to be unbound by Iddrv(2) , a loadable driver must
contain a devrelease(2K) routine. The primary responsibilities
of this routine are

• To ensure that the device is not in use.

• To disable interrupts from the device.

• To cancel any timeout(2K) requests from the driver that
are still active.

3-2 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

• To return to the system any resources that the driver
acquired when it was bound.

If your driver does not have a devrelease(2K) routine, the sys
local(2) call to unbind the driver will fail with EBUSY. In this
case, you must reboot CTIX to deallocate your driver.

USER-KERNEL VIRTUAL ADDRESS REMAPPING

Most transfers are done into or out of kernel memory; for
instance, block reads from a file system are done into buffers in
the system buffer pool. In some cases (for example, to achieve
better performance) it is desirable to support transfers directly
between the device and user memory. Under the CTIX operating
system, such transfers are known as physical (or raw) I/O.
These transfers are performed with DMA hardware.

If your driver supports physical I/O, you must make provision
for the fact that DMA devices are not allowed to reference user
virtual addresses, since they depend upon page table entries that
change whenever a context switch occurs. Instead, your driver
must acquire kernel virtual memory and "remap" it to point to
the same physical memory referenced by the user's page table
entries. In effect, this gives one buffer in physical memory two
virtual addresses, a user virtual address (which is valid only when
the original user process is running) and a kernel virtual address
(which is always valid).

Both the UNIX System V and CTIX operating systems provide
the sptalloc(2K) function to allocate kernel virtual memory
(that is, page table entries). The CTIX operating system also
provides the setmap(2K) function to copy the page frame
numbers from the user's page table entries to the kernel's. This
in effect makes two sets of page table entries point to the same
buffer in physical memory. Both Chapter 6, Character Dev£ce
Example, and Chapter 8, Block Device Example, contain exam
ples of the use of setmapO.

Differences from System V 3-3

Proprietary Inform.ation - Do Not Copy

SPL(2K) MACROS

UNIX System V provides several functions to control the current
running priority level of the CPU. In order to eliminate the
overhead of the subroutine call/return mechanism, CTIX
software augments these functions with macros that generate in
line assembly language. See SPL(2K) in Appendix A, CTIX
Interface Manual Pages, for more information.

KERNEL DEBUGGING

The CTIX as provides a built-in debugger that runs as a device
driver under the kernel. This utility makes it possible to set
breakpoints in and single-step through the kernel. It provides
sophisticated control over debugging output produced by the ker
nel printf(2K) function. Using the qprintf(2K) macros, you
can implement multiple levels of output, and then enable and
disable each level selectively through the debugger. See the
qprintf(2K) documentation in Appendix A, CTIX Interface
Manual Pages, and Chapter 10, Debugging the CTIX Kernel, for
more information.

Unlike UNIX System V, CTIX includes an interactive bootstrap
loader that allows you to boot from any file on any device in the
system. This interactive boot loader can greatly reduce the time
it takes to test and debug your device driver. See Interactive
Boot Loader in Chapter 10, Debugging the CTIX Kernel, for a
complete description.

3-4 Writing MightyFrame Device Drivers

4 CTIX KERNEL TUTORIAL

This chapter contains tutorial information about the CTIX
kernel. It is not meant to be an exhaustive treatment of the
operating system architecture. Rather, it presents only the
material you must have in order to understand what happens
when a user process makes an I/O request. In particular, this
chapter does not discuss process creation and deletion,
scheduling, memory management, interprocess communication,
or the CTIX file system. If you do not understand these topics,
you should take a class in CTIX (or UNIX System V) internals.

WE USER PROCESS

The user process is the fundamental unit of work in the
operating system. It represents the unique execution of a
program. If two users are running the same program (or if one
user is running the same program twice), CTIX creates and
manages two separate processes.

C'l1X Kernel Tutorial 4-1

Proprietary Information - Do Not Copy

The following diagram illustrates the memory map of a process
from the user's perspective.

HIUVADDR-1

LOUVADDR

User Space

Stack Space

AvailableVirtual
Memory

Data Space

Text (Code) Space

The text (code) space starts at user virtual address
LOUV ADDR, which is defined in the master file. The process
data space resides in memory immediately above the text space
and grows upward; the stack space starts at the top of user vir
tual memory (HIUVADDR-l) and grows downward. Each pro
cess has its own, unique data and stack spaces, but the text space
is almost always shared among all processes running the same
program. Thus, only one copy of the code resides in physical
memory; it is mapped into LOUV ADDR of each associated
user process.

The CTIX operating system uses a number of internal queues in
order to manage the processes. The most ,important of these
queues are

• The I.llD. ~, which is the list of all processes that are
ready to execute.

• The ~ ~, which is the list of all processes that are
waiting for some event to occur. The sleep(2K) function
puts a process on the sleep queue; the wakeup(2K) func
tion takes it off the sleep queue and puts it back on the run

4-2 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

queue.

CTIX software also keeps data about each process in various
tables. The most important of these tables are described in the
subsections that follow.

THE PROCESS TABLE

The Process Table contains much of the information that CTIX
needs to manage the scheduling of the CPU. Each process has a
single entry that is created when the process is created (with the
fork(2) system call). This entry is used continuously whether
the process is running or not, whether it is swapped in or out,
until the process ceases to exist. The various queues are imple
mented as singly linked lists using a field in the process table
entry. Since there is only one link field, each process can be on
only one queue at a time.

The Process Table entry is defined in the header file
<sys/proc.h>, portions of which are included here. The verti
cal dots indicate that lines from the header file have been omit
ted here. The following code fragment may differ from the
include files on your system. In all cases, the files in the latest
CTIX operating system release supercede this document.

CTIX Kernel Tutorial 4-3

Proprietary Information - Do Not Copy

<sys/proc.h>

#include <sys/types.h>

1*
* There is one process structure allocated per process. It contains
* all of the information about the process that could be needed by
* CTrx while the process is swapped out.

*
* Other per process data (user.h) is swapped out with the process.

*/

struct proc {
struct proc *p_link; 1* Linked list of process's queue * /
int p_flag; /* Process state * /
char p_stat; 1* Current state of the process * /
char p_pri; 1* Priority, negative is high * /
char p_time; 1* Resident time for scheduling * /
char p_cpu; 1* CPU usage for scheduling * /
char p_nice; 1* Nice for CPU usage * /
char p_szup; 1* Nbr of pages in user page (u.) * /
ushort p_uid; 1* Real user id * /
ushort p_suid; /* Save (effective) user id * /
ushort p_sgid; /* Save (effective) group id * /
short p-pgrp; /* Process ID of proc grp leader */
short p-pid; 1* Unique process ID * /
short p-ppid; 1* Process ID of parent * /
ushort p_dieevkey; 1* For notify on process death * /
struct user *p_upage; 1* Ptr to user page (u.) * /
struct pregion *p_region; /* Pointer to process regions * /
short p_size; /* Process size in pages * /
ushort p_mpgneed; /* Number of memory pages needed * /
long p_sig; 1* Signals pending to this process * /
union {

caddr_t p_cad; 1* Event process is awaiting * /
int p_int;

} p_unw;
#define p_wchan p_unw.p_cad
#define p_arg p_unw.p_int

struct text *p_textp; 1* Pointer to text structure * /
int P3lktim; /* Time to alarm clock signal * /
char pjrate; /* Page fault rate * /
char p-pad[l]; 1* Align to a 4 byte boundary * /
char p-pad2[6]; /* Align to a 64 byte boundary * /

};

4-4 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

1* p_stat codes * /
#define SSLEEP 1
#define SWAIT 2
#define SRUN 3
#define SIDL 4
#define SZOMB 5
#define SSTOP 6
#define SXBRK 7

/* Awaiting an event * /
J* (No longer used) * /
/* Running * /
/* Intermediate state - proc creation * /
/* Intermediate state - proc termination * /
/* Process being traced * /
/* Process being xswapped * /

1* p_flag codes * /
#define SLOAD
#define SSYS
#define SLOCK
#define SSW AP
#define STRC
#define SWTED

OxOOOOOl /* In core * /
OxOOOOO2 /* Swapper or pager process * /
OxOOOOO4 /* Process being swapped out * /
OxOOOOO8 /* Save area flag * /
OxOOOOlO 1* Process is being traced * /
OxOO0020 J* Another tracing flag * /

THE USER AREA

The user area is a single page (4K bytes) of memory containing
information about a process that CTIX needs while the process is
swapped in. The user area is also called the ~ ~ or~.
It contains both the user structure and the supervisor stack.
The address of the user structure is equal to the base address of
the u-page; the supervisor stack starts at the highest address in
the page and grows downward. The supervisor stack is referred
to as the system .call ~ or ~~, because CTIX uses it

CTIX Kernel Tutorial 4-5

Proprietary Information - Do Not Copy

while processing system calls.

CAUTION

There is nothing to prevent the supervisor stack from
overrunning the user structure. If this happens, CTIX
will die in strange and unpredictable ways. Be very jud
icious in your use of supervisor stack space: in par
ticular, note that all of the automatic variables In your
device driver consume space on this stack.

When a process is created, CTIX allocates one extra page for the
user area. (Currently, only a single page is needed; this could
change in the future.) At every context switch, CTIX software
writes the page frame number of the process's u-page into the
page table entry that describes kernel address Ox7EOOO (the
current address on the MightyFrame). Thus, the base address of
the user structure for the current process is always Ox7EOOO (on
the MightyFrame), and the beginning of the supervisor stack is
always Ox7FFFC. This allows CTIX to access the most fre
quently needed information at the same address no matter which
process is running. This location is named u; it is declared (in
<sys/user.h» as follows:

extern struct user u;

Its address is set in the ifile for the operating system. (See the
link editor documentation in AT&T's UNIX System V Support
Tools Gu£de for more information about the iflle.)

The u-page always contains the information for the
currently executing process. Be especially mindful of this
fact when you design your driver's interrupt handler. Any runn
able process could be active when an interrupt occurs: the odds
are overwhelming that the u-page visible to the interrupt handler

4-6 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

does not describe the process for which the current I/O operation
is being carried out. Therefore, interrupt handlers must not
reference or change the information in the u-page. (Interrupts
are processed on the interrupt stack, not the supervisor stack, so
there is no conflict there.) Your driver must keep all of the
information it needs to service the interrupt in the buffer header
data structure associated with the I/O in progress. If there is no
associated buffer header structure, the driver must keep the
information it needs in its own data space.

The user structure is defined in the header file <sys/user.h> ,
portions of which are included here. The vertical dots indicate
that lines from the header file have been omitted here. The fol
lowing code fragment may differ from the include files on your
system. In all cases, the files in the latest CTlX release super
cede this document.

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/inode.h>
#include <sys/file.h>
#include <sys/signal.h>
#include <sys/dir.h>

j*
* The user structure.

*

<sys/user.h>

* There is one allocated per process and it is swapped out
* with the process. It contains all per-process data that
* isn't referenced while the process is swapped. It holds
* the per-user system stack, used during system calls. It
* is cross-referenced with the proc structure for the same
* process.

*/

struct user
{

struct proc *u_procp; /* Pointer to proc structure * /

CTIX Kernel Tutorial 4-7

};

Proprietary Information - Do Not Copy

1* Syscall error code * /

union { 1* Syscall return values * /
struct {

int r_val1;
int r_vaI2;

} r_reg;

} UJ;
caddr_t u_base;
unsigned u_count;
union {

ofCt ow_offset;

short u_fmode;
ushort u-pbsize;
ushort u-pboff;
dev_t u-pbdev;

1* Base address for I/O * /
1* Bytes remaining for I/O * /

1* Offset in file for I/O * /

1* File mode for I/O * /
1* Bytes in block for I/O * /
1* Offset in block for I/O * /
1* Real device for I/O * /

1* System call arguments * /

4-8 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

KERNEL MEMORY MAP

The following diagram illustrates the kernel virtual address
space.

KVADDR

KSTACK

'~~

:
X X X

)(X : >:: x X
:" X .x, ,x,

1/,////////
t

1.· .. ·•••····•· •• ··••.· ».>.·· •.• ···\·····.···.····

Interrupt Stack

Kernel Text and Data

User
Supervisor Stk}

Page
User Structure

Kernel Space

As documented in Chapter 2, Architectural Information, the
kernel's virtual memory lies between Ox7F800000 and
Ox7FFFFFFF. In a running system, however, the kernel can
read and write every virtual memory page: only the kernel's text
and data regions lie in the stated address range. The u-page for
the current process is always mapped into the page beginning at
il, as explained above.

SYSTEM CALL PROCESSING

You can think of an operating system as a collection of subrou
tines that provide various services to user programs. According
to this view, a system call is nothing more than a transfer of con
trol to a routine that is memory-resident and available to any
process. In a single-tasking operating system such as MS-DOS,
this is a fairly accurate picture. In a multitasking system like

CTIX Kernel Tutorial 4-g

Proprietary Information - Do Not Copy

CTIX, however, this is very much an oversimplification.

When an operating system supports multiprogramming, it must
somehow maintain the illusion that each process has exclusive
use of the entire machine. Moreover, when two or more unre
lated processes compete for the same resource (such as memory
space, or a peripheral device), the system must grant each pro
cess some access to the resource, while ensuring that no process
monopolizes it to the exclusion of the others. Further, a complex
system like CTIX occasionally competes directly with the user
processes for resources.

Some protection mechanism is needed to ensure that user
processes do not interfere with each other or with the operating
system. In the MightyFrame, this separation is provided by
memory management hardware that can distinguish between
valid and invalid memory references. Each process has associ
ated with it a group of page table entries that describe its access
permission for every page of virtual memory. Each page of
memory can be marked Read/Write to the kernel only,
Read/Write to the kernel and Read-only to the user, or
Read/Write to both the kernel and the user. The distinction
between kernel and user accesses corresponds to whether the
MC68020 is executing in supervisor or user mode. (See the
MC68020 B2-Bit M-icroprocessor User's Manual for more informa-
tion about the CPU operating modes.) ,

CTIX software sets up the page table entries as follows: the ker
nel can read and write any page of memory in the system; the
user can read his text (code) space, but he cannot write it (except
in unusual cases, for example, when running under a debugger
that allows patching). Finally, the user can read and write the
data and stack spaces associated with his process. Given this
arrangement, the user cannot issue a direct call to a subroutine
in the kernel, since he does not have read (and therefore, exe
cute) access permission on kernel memory. The MC68020
TRAP instruction provides controlled access to the operating
system. TRAP changes the execution level from user mode to
supervisor mode and performs a subroutine call to a fixed address

4-10 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

in the kernel.

When you compile a program that makes any of the system calls
documented in Section 2 of the CTIX Operating System Manual,
the linker loads a small library routine of the form:

syscall:
movw &type, %dO
trap &0
rts

Here syscall is the name of the system call, such as setuid(2) or
read(2), and type is a number uniquely associated with syscall.
When your program actually issues the call, CTIX uses this
number as an index into the system entry point table. This table
contains the expected number of arguments and the address of
the kernel's handler function for every possible system call. The
following example illustrates the system call mechanism.

When you compile a program that makes a call to setuid(2), the
linker includes the following code in your program's text space:

setuid:
mov.w &17,%dO ;The system call type
trap &0 ;Go to kernel in supervisor mode
bcc noerror ;Carry Clear means no error
jmp _cerror ;Couldn't set the uid

noerror:
elr.!
rts

_cerror:

%dO ;No error - return 0 to user
;Return from setuidO call

mov.! %dO,errno ;errno = rtn value from kernel
moveq &-I,%dO ;Return -1 to user
rts ;Return from setuidO call

When you finally execute your program, your call to setuid(2)
transfers control to the small library function above. The
TRAP &0 instruction puts the CPU into supervisor mode and
transfers control to an assembly language routine in the kernel
named intsysO. This routine saves the CPU registers and the
user stack pointer on the supervisor stack and then calls sys
trapO. Using the &17 (from your program's saved DO register)

CTIX Kernel Tutorial 4-11

Proprietary Infor:mation - Do Not Copy

as an index into the system entry point table, systrapO deter
mines the number of parameters and the transfer address for the
setuid(2) function.

Next, systrapO copies the parameter (in this case, the new user
ID) from the program's stack into the user area and then calls
the handler for the setuid(2) request. The handler is a kernel
routine also named setuidO. (The kernel's setuidO function is
not the same as the one loaded with your program. The kernel's
function actually processes the system call: the function in your
program is a small assembly language routine that issues a
TRAP &0 instruction and then sets errno if an error occurred.)

The kernel's setuidO function attempts to set the user ID and
then returns to systrapO. SystrapO cleans up after the
request and returns to intsysO, which executes an RTE (Return
from Exception) instruction. This puts the CPU back into user
mode and returns to the instruction after the original TRAP &0
in your program.

Upon return from CTIX, the processor carry bit indicates the
success or failure of the system call. If the carry bit is clear, the
request was honored without error: registers DO and D1 contain
the return values from CTIX. If the carry bit is set, the contents
of register DO are placed in errno, and then DO is set to -1.
Note that, as documented in the Introduction to Section 2 of the
CTIX Operating System Manual, errno is not cleared when a
system call succeeds.

SYSTEM CALL EXAMPLES

Broadly speaking, system calls can be divided into two overlap
ping groups: those that can be serviced by CTIX without delay,
and those that cannot be serviced until some event occurs. Very
often, this event is in the form of an interrupt generated by the
completion of an I/0 operation. For the purpose of illustration
in this document, system calls that can be serviced immediately
are referred to as synchronous; those that await the occurrence of
some event are called asynchronous. This grouping is tutorial in

4-12 Writing MightyFra:me Device Drivers

Proprietary Information - Do Not Copy

nature: CTrx makes no such distinction when processing system
calls.

This section contains a detailed analysis of two system calls,
setuid(2), which is a synchronous request, and read(2), which
usually is an asynchronous request. Occasionally, however, the
data that the reading program requests is already in a kernel
buffer. In this case, the read(2) system call can be processed
synchronously. This section describes asynchronous read(2)
requests only.

Synchronous System Call Processing - setuid(2)

A synchronous system call is a request for service that CTrx
software can satisfy without any delay. Functions such as
getuid(2), setuid(2), and time(2) are examples of synchronous
requests. In general, synchronous requests either report or
change the state of kernel variables.

CTIX Kernel Tutorial 4-13

Proprietary Infor:mation - Do Not Copy

The following diagram illustrates the flow of control through the
setuid(2) system call.

A=Active Process B=Runnable Process

if (setuid(O) < 0)
exit(1);

setuid:
mov.w &23,%dO

....... trap &0
rts

Current User Area

... CTIX Kernel
Device Drivers

..
Interrupt Handlers

Setuid(2): Trap to Kernel- Process Syste:m Call

The diagram shows two user processes, A and B. Process A has
issued a setuid(2) request. Process B is an unrelated process
that is ready to run: its presence serves to demonstrate that Pro
cess A does not lose the CPU as a result of the system call.
(However, under the CTIX operating system, a process can lose
the CPU at almost any time, unrelated to its system call
activity. Synchronous, in the sense that it is used here, simply
means that CTIX does not need to wait for an event to occur
before it can satisfy the request.)

The flow of control for a synchronous call is simple. Process A
calls setuid(2), which is a small assembly language routine
loaded from the library. This code places the constant 23 into
register DO and then issues a TRAP &0 instruction, which
places the CPU into supervisor mode and essentially "calls"

4-14 Writing MightyFra:me Device Drivers

Proprietary Information - Do Not Copy

intsysO, the system call trap handler. IntsysO saves the user's
register set and calls systrapO. SystrapO gets the parameter
(in this case, the new user ID) from the stack and then, using the
&17 from the user's DO register as an index into the system
entry point table, indirectly calls the setuidO kernel function to
process the request.

When the setuidO handler returns, systrapO places the return
value into the user's DO register and returns to intsysO.
IntsysO restores the user's register set and executes an R TE
instruction, which places the CPU back into user mode and
returns to the instruction after the original TRAP &0.

Asynchronous System Call Processing - read(2)

An asynchronous system call is a request for service that cannot
be satisfied until some event occurs. While the process is wait
ing, CTrx: puts it on the sleep queue and gives the processor to
some other process. I/O requests such as read(2) and write(2)
are the most common asynchronous system calls. For these
requests, the awaited event is an I/O completion interrupt from
the device being accessed.

CTIX Kernel Tutorial 4-15

Proprietary Information - Do Not Copy

The following series of diagrams illustrates the flow of control
through the read(2) system call.

A=Active Process B=Runnable Process

n=read(f, but, 128);

read:
mov.w &3,%dO

......... trap &0 --- bee noerror

Current User Area

.... ~. L;F~' ~~~:~!~~ ~:!~. ~~~~':'!
Device Drivers

•••••••• 1 ••••••••••• 11 •••••••••••••••••••• 11 •••••••••••••••••••••

Interrupt Handlers

Read(2): Trap to Kernel- Process A Sleeps

The preceding diagram shows two user processes, A and B. In
this case, Process A has issued a read(2) request to a file. As
before, Process B is an unrelated process that is ready to run.
For asynchronous calls, however, Process B actually will run
when Process A calls sleep(2K) in the device driver.

As you can see from the diagram, the read(2) request begins
exactly as the setuid(2) did: by loading a constant (&3) into
register DO and then issuing a TRAP &0 instruction. Again,
this places the CPU into supervisor mode and effectively calls
intsysO, IntsysO calls systrapO, which gets the read(2)
parameters (in this case, the file descriptor, the buffer address,
and the transfer length) from the stack and then calls the
kernel's readO handler to process the request.

4-16 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

Through a series of subroutines (which is described in detail in
Chapter 7, Block I/O Tutoria0, CTIX arrives at the breadO
(block read - pronounced "be read") routine. BreadO deter
mines that the requested data block is not in memory and calls
the gdstrategy(2K) routine to read the block in from the disk.
(If the desired block had been in memory, breadO would have
returned immediately. In this case, the read(2) system call
would have been processed synchronously.) GdstrategY(2K)
sorts the request into the queue of outstanding work and calls the
device driver's devstart(2K) routine to start I/O on the con
troller. Finally, devstart(2K) returns to gdstrategY(2K),
which returns to breadO.

Regardless of whether the controller has other work to perform,
the requested disk block will not be available for many
microseconds. Since Process A has no further use of the CPU at
this time, breadO calls iowait(2K), which in turn calls
sleep(2K), allowing the process to wait for the I/O to finish.
This is the state that is shown in the previous diagram.

The next diagram illustrates the context switch to Process B that
occurs as a result of the sleep(2K) call in Process A. Process A
is moved from the run queue to the sleep queue, and Process B
(the highest priority process on the run queue) is placed into exe
cution. The diagram underscores the fact that the kernel is
using a new u-page by showing Process B's user area in a new
location. Even though the kernel always refers to the user
structure at virtual address u, the data in the structure is associ
ated only with the currently executing process. Each process in
the system has a separate page of physical memory dedicated to
its u-page: CTIX must remap address u every time it performs a
context switch.

CTIX Kernel Tutorial 4-17

Proprietary Information - Do Not Copy

A=Sleeping Process B=Active Process

for (i=O; k10000; i++)
d[i] = sqrt((doub/e)i);

~ +1 ·1 •
Current User Area

swtch() ~ CTIX Kernel
, •• "1, •••

Device Drivers
I" •••

Interrupt Handlers

Read(2): Context Switch - Restart Process B

Process B is CPU-bound; it makes no system requests during its
lifetime. As long as CTIX does not intervene, Process B will cal
culate the square root of the first ten thousand integers and then
exit. However, while Process B is running, the disk controller
finally accesses the block that Process A requested. The con
troller issues an interrupt to the CPU to signal the completion of
the I/O request. The processing of this interrupt is illustrated in
the next diagram.

4-18 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

A=Runnable Process B=Active Process

for (i=O; k10000; i++)
d[i] = sqrt((doubJe)i);

I Current User Area

l
~· ~~~~~(~·':!"1·" ~:.~~. ~.~~~?~

DeVice Drivers
........................ f~ .-.:: i~t~;;~~t 'H~~di~~~""

Read(2): I/O Completion Interrupt - Wakeup Process A

The I/O completion interrupt is fielded by CTrx: software, and
control is passed first to gdintr(2K) and then on to the
devintrgd(2K) routine in the device driver. (For a discussion
of low-level interrupt processing, see Interrupt Process£ng in
Chapter 2, Arch£tectural Informatz"on.) Devintrgd(2K) deter
mines that the interrupt indicates the successful completion of
the outstanding I/O request. It clears the hardware, cleans up
after the current request, and returns an I/O done indication to
gdintr(2K).

Because devintrgd(2K) indicated that the I/O operation was
complete, gdintr(2K) calls iodone(2K) to complete processing
on the buffer. lodone(2K) sets the B_DONE bit on the buffer
header and calls wakeup(2K). Wakeup(2K) takes Process A
off the sleep queue and places it back on the run queue. This
action, by itself, does not cause a context switch. However, if
the process being placed on the run queue (in this case, Process
A) is still present in memory (it could have been swapped out)
and if its priority is higher than the priority of the currently

CTIX Kernel Tutorial 4-19

Proprietary Information - Do Not Copy

running process, CTIX performs a context switch before return
ing from the interrupt. In the example, the processes have equal
priority, so the kernel gives the CPU back to Process B. The
I/O completion interrupt simply caused CTIX to place Process A
back on the run queue.

Process B continues to run, calculating square roots, until it
finally uses up its allotted portion of CPU time (currently,
16/60ths of a second). The final diagram in this example illus
trates the system clock interrupt that causes a context switch
back to Process A.

A=Active Process B=Runnable Process

n=read(f, but, 128); for (i=O; i< 10000; i++)

read:
d[i] = sqrt((doub/e)i);

mov.w &3, %dO
trap & I· t-.... bee no error ..

Current User Area

I ..

n~:: !~: :::1:::(:: ~: t~~ :::::::: ;~t~E: I:;irL::::
Read(2): System Clock Interrupt - Restart Process A

The clock interrupt handler detects that 16/60ths of a second
have passed, and lowers the priority of the current process (Pro
cess B). Because the priority has been changed, the clock inter
rupt handler exits through the scheduler (swtchO). SwtchO
scans the run queue looking for the process with the highest
priority. It selects Process A and performs a context switch,

4-20 Writing Mighty Frame Device Drivers

Proprietary Information - Do Not Copy

mapping in its user page, restoring its context, and giving it the
CPU.

Process A simply returns from its sleep(2K) call to iowait(2K},
as though it had never lost the processor. Iowait(2K) returns to
breadO, which has accomplished its task: the requested block
has been read in from the device. BreadO returns through a
series of subroutines until control arrives back at the systrapO
routine. SystrapO places the return value into the user's DO
register and returns to intsysO. IntsysO restores the user's
register set and executes an R TE instruction, which places the
CPU back into user mode and returns to the instruction after the
original TRAP &0.

The original read(2K) request has been serviced. In a way com
pletely transparent to itself, Process A was put to sleep, waited
for many microseconds, and then was given the CPU again. The
read(2) system call was handled asynchronously because the
device driver put Process A to sleep, waiting for the I/O comple
tion interrupt to occur.

THE CTIX I/Q SYSTEM
;

The CTIX I/O system presents a consistent, device-independent
interface to the programmer. Instead of supporting a unique set
of system calls specific to each device, CTIX makes all devices
appear as files. To access a device, you must first issue an
open(2) system call on the file associated with the device. This
file, unlike a real data file, is created by the system administra
tor with the mknod(1M) program. These ~ fiks. usually
are located in the / dey directory: they have the same access per
mission bits as regular files.

Once you have opened the special file, you can issue read(2) and
write(2) requests to transfer data between your program and the
associated device, exactly as you would to a file. Finally, you
must issue a close(2) call to inform CTIX that your program no
longer requires communication with the device. Unless your

CTIX Kernel Tutorial 4-21

Proprietary Information - Do Not Copy

program issues a device-specific ioctl(2) call, the interaction is
exactly the same as though you were accessing a normal data
file.

Beneath this file-like layer presented to the programmer, CTlX
divides the I/O system into two pieces: the Blili:..k. I,LQ
~ and the Qb a.ra.cter I,LQ~. The original designer of
UNlX has written that the names should have been "structured
I/0" and "unstructured I/O," respectively. (See "UNlX Imple
mentation" by Ken Thompson, in the Bell System Techn£cal
Journal: July-August, 1978.) There is some basis for the name
"block" device, but "character" has nothing whatever to do with
the devices included in that class.

The information-node (~) for each special file contains a
m..ajQ,r ~ Dumber, a m.inm: ~ DllIober, and a class, indi
catingwhether the associated device should be accessed through
the block or the Character I/0 system. For each class, CTlX
keeps an array of entry points into the device drivers for the
members of the class. These arrays are described in detail in the
Introduction to Appendix A, CTIX Interface Manual Pages. The
major device number from the special file is used as an index
into the array associated with the device class. The minor device
number has no significance to CTlX: it is used to pass device
specific information to the driver.

The following set of steps documents the linkage process between
an application program and a character device named chardev:

1. The program issues an open(2) call on special file
/ dev / chardev.

2. CTlX reads the i-node associated with /dev/chardev and
verifies that the user has the 'proper access permission on
the file.

3. CTlX determines from the i-node that it is dealing with a
character special file and calls the device driver's
devopen(2K) routine to initialize the device.

4-22 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

4. The program issues a read(2) request on the file descriptor
returned by the open(2) call.

5. CTIX determines that the read is on a character special file
and calls devread(2K), the device driver read routine, to
perform the data transfer.

6. The program issues a close(2) request on the file.

7. CTIX determines that it is dealing with a character special
file and calls the device driver's devclose(2K) routine to
release the device.

THE BLOCK I/O SYSTEM

The Block I/0 system is designed to support random access dev
ices that store data in fixed-length 1/ chunks" (1,024 bytes under
CTIX on the MightyFrame). A disk drive is the model block
device. Tape drives also fit the model, even though they may
not be capable of random access. The entire device is treated as
an array of uniform 1K blocks, numbered from 0 to N-1 where N
is the number of 1K blocks on the device. The driver for a block
device receives requests to transfer data to and from these 1/ array
elements": its job is to hide the underlying physical structure of
the device from the rest of CTIX.

Rather than perform physical reads and writes whenever they are
requested, CTIX maintains an in-memory cache of data blocks in
least recently used (LRV) order. Each block in the cache con
tains its own address, that is, its device number and block
number. \Vhenever CTIX receives a request to read a block, the
Block I/O system searches the cache first. If the block is found
in memory, a copy of it is returned to the user. If the desired
block is not found, the oldest block is written out (if it has been
modified), and then a request is issued to the appropriate device
driver to refill the buffer with the newly requested block. When
the device driver completes the read, CTIX returns a copy of the
desired data to the user.

CTIX Kernel Tutorial 4-23

Proprietary Information - Do Not Copy

When the user issues a write(2) request on a block device, the
data is not written immediately. Instead, the block is marked
modified and placed at the end of the LRU list. The new data is
not written out to the device until the buffer is needed to hold a
different block. As long as the buffer is still in the cache, any
process that needs the data from that block will get it without
performing any physical I/O.

The design of the Block I/O system has several effects: first,
there is a substantial performance improvement, since many user
I/0 requests can be satisfied with no access to the device. This
is not without cost, however. When the system crashes, a con
siderable amount of data (every altered, unwritten block in the
cache) will be lost. Since some of these blocks contain modified
free list and i-node structures, the integrity of the file system
itself may be corrupted. Most system administrators run the
update(lM) program to synchronize the disks periodically,
thereby minimizing the effects of a system crash. In the event of
a system failure, you can use the fsck(lM) program to repair
damaged file systems. Nevertheless, any modified user data that
is in the cache when the system crashes is lost.

THE CHARACTER I/O SYSTEM

The Character I/O system supports all devices that do not fit
within the block system. Typically, this refers to devices such as
terminals, printers, and communications lines, which produce or
consume nonrepeatable sequences of data. The Character system
also supports block devices when they are accessed in an unstruc
tured manner: track-at-a-time reads and writes to disk devices
are a good example of this use of Character I/O. From this, you
can see that devices do not belong absolutely to the block or
Character I/O system: on the contrary, some devices naturally
fit into both systems.

4-24 Writing Mighty Frame Device Drivers

Proprietary Information - Do Not Copy

Character Queue Processing

The Character I/O system frequently uses small buffers called
character .b.lu.c.ks for intermediate storage of incoming and outgo
ing data. These c-bJocks are linked together to form character
queues called character lis.t.s, or~. There are kernel routines
for placing a character on a queue, and for getting a character off
a queue. (See getc(2K), getcb(2K), putc(2K), and
putcf(2K)) in Appendix A, CTIX Interface Manual Pages.) The
following steps document the flow of control through the charac
ter I/O system when accessing an output-only device such as a
printer. Refer to the Character Queue Processing diagram for
more information.

1. The user process initiates a write(2) request to print a line
on the device.

2. The driver begins placing characters on the c-list.

3. When the first character is placed on the c-list, the driver
sets up the device to begin outputting characters.

4. The driver continues adding characters to the queue.

5. The interrupt handler continues removing characters from
the queue and outputting them, sustained by I/O comple
tion interrupts.

6. The driver continues adding characters to the queue until it
reaches the ~ ~ mark. At this point, the driver
issues a sleep(2K) request, waiting for the interrupt
handler to work down the queue.

7. As the I/O completion interrupts are serviced, the driver's
interrupt handler checks the number of characters left in
the queue. When the count falls below the lillY. ~
m..ar.k, the interrupt handler issues a wakeup(2K) call to
restart the upper level of the driver.

8. The driver once again begins adding characters to the
queue. As before, when it reaches the high-water mark, the
driver sleeps.

CTIX Kernel Tutorial 4-25

Proprietary Information - Do Not Copy

9. The entire cycle is repeated until all the characters have \
been placed onto the queue. At this point, the driver
returns, exiting from the kernel and completing the user's
write(2) request.

10. The interrupt handler continues outputting characters
asynchronously until it has emptied the queue.

Limit = 256

... High water
mark = 180

Low water
mark = 60

Character Queue Processing

The processing for input devices is similar, except that the pro
ducer and consumer roles are reversed. The device interrupt
handler is running asynchronously, placing unasked-for charac
ters on the queue. When the user issues a read(2) request, if the
queue contains characters, the driver returns them immediately.
Otherwise, the driver calls sleep(2K), waiting for the interrupt
handler to place an incoming character onto the queue.

4-26 Writing Mighty Frame Device Drivers

Proprietary Information - Do Not Copy

Terminal Devices

Terminals are a special class of character device. They have
one output queue but two input queues: a I:al£. ~ and a
canonical~. The device driver places incoming characters
onto the raw queue as it receives them from the serial device.
When it receives a new line character, it copies the entire line
onto the canonical queue: in the process, the character erase
and line kill functions are performed. The reading process can
specify either the raw or canonical ("cooked") queue as the
source of its input.

Buffered Character I/O

C-list processing is meant for low-speed devices such as termi
nals and printers. It is not suitable for applications such as
communications networks and machine-to-machine links.
D rivers for these devices often use the block device buffer
management techniques for their intermediate storage require
ments. They either "borrow" the needed buffers from the
system .b.ufi.e..J.:~, or they allocate private buffers for their
own use.

Physical (Raw) I/O

For most write(2) requests, CTIX first copies the data from the
user's address space into kernel space. The driver then
transfers the data from kernel space out to the device, often
using DMA hardware. The reverse happens for read(2)
requests. This double copy operation is wasteful: it is always
more efficient to transfer I/O data directly between the user's
memory space and the device. Direct transfers such as this are
known as "physical" or "raw" I/O. The device driver for the
DRII, which is documented in Chapter 6, Character Dem'ce
Example, uses physical I/O to perform its data transfers.

C'IlX Kernel Thtorial 4-27

5 CHARAGIER I/O TUTORIAL

This chapter describes the Character I/O system in detail. It
also contains two example character device drivers: one
example performs character-at-a-time I/O using c-lists; the
other performs Physical I/O directly between the user's virtual
memory and the device. The examples are written in a C-like
pseudocode and include program narratives describing the
drivers in detail.

OVERVIEW

The Character I/O system includes all devices that cannot be
handled through the Block I/O system: that is, devices that do
not support randomly accessible, fixed-length "chunks" of
storage. While the Character I/0 system can be used to access
raw disk or tape drives, it most frequently is used with devices
that produce and consume nonrepeatable sequences of
characters. Devices such as terminals and printers are handled
naturally by the Character I/O system.

The Character I/O system can be subdivided further into low
speed and high-speed devices. Typically, low-speed devices
deal with characters one at a time and generate an interrupt for
each character in the sequence. HIgh-speed devices usually use
DMA hardware to transfer large "chunks" of data in and out:
they generate an interrupt at the completion of each DMA
operation. Superficially, high-speed devices resemble block
devices because they generally deal with data in "chunks," but
these "chunks" usually are sequential in nature. On the other
hand, it is common to find character drivers for raw disk and
tape devices, which are randomly addressable.

The following sections present examples of the two classes of
character devices. Character-at-a- Time I/O describes a Network
Interface board, which is a typical low-speed device. Physical

Character I/O Tutorial 5-1

Proprietary Information - Do Not Copy

(Raw) I/O describes an Analog-to-Digital board, which is a typi
cal high-speed device. Both sections contain a broad overview
of the hypothetical device and the environment in which it is
used. Following this introductory material is a tutorial driver
for the device.

The example drivers are written in a C-like pseudocode. At
times the pseudocode is abstract and general; at other times, it
reads almost like an actual C program. These examples are not
meant to be exhaustive: in particular, they do not do adequate
error detection and recovery. Use these examples as models:
simple, straightforward, and to some extent, ideal. Refer to
them as you address the problems presented by your device.
Your own driver may have more or less functionality than
these examples, depending on the complexity of your device
and the level of support you decide to provide.

CHARACIER-AT-A-TIME 1/0
;

The principal task of a low-speed character driver is to transmit
and/or receive data by performing byte-by-byte transfers, sus
tained by I/O completion interrupts. To shield the user process
from speed variations at the device level, low-speed character
drivers store the data temporarily in small buffers within the
kernel. Block I/O system buffers are not appropriate for this
task, since they form an associative ~, addressed by the
block number and device number of the data they contain. It
makes no sense to speak of "block number 43" from "terminal
number 9," since this character device produces and consumes
streams of nonrepeatable data.

The ideal buffer structures for character-atrartime devices are
small queues that allow characters to be added and removed
one by one. The CTIX operating system defines structures
called character blocks, or c-blocks, that can hold up to 64 char
acters (the number of characters is implementation-dependent).
These c-blocks are linked together into character lists (c-lists),
each containing one or more c- blocks. Your driver can add a

5-2 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

character to a c-list by calling puk(2K) or spuk(2K) and can
remove a character by calling gek(2K) .

NOTE

The kernel functions gek(2K) and puke 2K) are not the
same as the library macros gek(3S) and puk(3S). The
library macros read characters from and write characters
to user I/0 streams. The kernel functions place charac
ters on and remove characters from kernel c-lists.
Before proceeding, you should read and understand the
appropriate manual pages in Section 3 of the CTIX
Operating System Manual and Appendix A, CTIX Interface
Manual Pages, in this document.

THE NETWORK IN'IERFACE DRIVER

The following pages contain pseudocode for a character-at-a
time device driver. The device under consideration is a low
speed, serial Network Interface (NI). The device is full
duplex: it contains two channels: one dedicated to upstream
traffic, and the other dedicated to downstream traffic. The
channels are completely independent: the NI device can
transmit and receive characters simultaneously. Each channel
is interrupt-driven, so the driver must acquire two interrupt
vectors at initialization time. As long as the driver is open, it
must be ready to receive unsolicited input from the network.

The number of c-blocks in the kernel is limited, so it is possi
ble for the driver to run out of queue space. If this happens
when outputting a character, the niwriteO routine sleeps, wait
ing for a c-block to become free. This is not possible when the
driver receives a character from the network, since an interrupt
handler (niRXintr()) cannot issue a sleep(2K) call. If the

Character I/O Tutorial 5-3

Proprietary Information - Do Not Copy

driver ever receives characters for which there is no space on
the queue, it discards the data and remembers this condition.
As soon as a c-block becomes available, the driver enqueues a
CAN (CANcel) character in place of the lost data. The CAN
character can represent one or many lost characters. It is the
responsibility of the network server to detect and process lost
data errors.

Immediately after its invocation, the network server daemon
creates a socket for communication and then forks two child
processes: a reader and a writer. The writer process loops, issu
ing recv(2N) calls on the socket and writing the resulting mes
sages to the NI device. The reader process loops, issuing
read(2) calls on the NI device and sending the resulting mes
sages through the socket.

The narration for the NI driver begins on the following page.
Throughout the pseudocode, RX indicates the Receiver Chan
nel, while TX indicates the Transmitter Channel. Also, rou
tines that begin with the characters hw_ refer to hardware
specific code.

5-4 Writing MightyFrame Deviee Drivers

Proprietary Information - Do Not Copy

This page intentionally left blank.

Character I/O Tutorial 5-5

Proprietary Information - Do Not Copy

niinit{)

CTrx software calls niinit{) to initialize the driver before it
allows any process to open the device. If the driver was linked
with the kernel, CTIX calls niinit{) at system initialization
time. If the driver is loadable, CTIX calls niinit{) as a result of
a call to syslocal(2) with a function code of SYSL_BINDDRV
and an option code of DRVBIND. The lddrv(1M) program
makes this system call.

The driver must make certain that niinit() is called only once
between calls to nireleaseO. Testing and setting an initializa
tion flag in niinit() and clearing the flag in nireleaseO is suffi
cient to accomplish this.

Next, niinit{) makes certain that the VMEbus Interface board
is installed in the Migh tyFrame, and that the EEPROM on the
board has a valid checksum. Finally, the driver searches
through the array of device information in the EEPROM, look
ing for the entry corresponding to the NI device.

Then, niinit() acquires interrupt vectors for both of its chan
nels. (See Interrupt Processing, in Chapter 2, Architectural Infor
mat~'on, for a discussion of acquiring interrupt vectors. Also see
the detailed descriptions of the get_vec(2K) and set_vec(2K)
kernel routines in Appendix A, CTIX Interface Manual Pages.)

The devinit{2K) routine also must perform the required
hardware initialization, which is unique for each hardware dev
ice. Generally, you should clear any interrupts and device
status information, write the interrupt vector number into a
device register, and make the device ready to perform I/O.

In the example, niinit() does not set up the device to perform
any transfers until it receives an open(2) request from the dae
mon. If your driver must handle unsolicited input, make cer
tain that you limit the amount of system memory it can con
sume.

5-6 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

#include "nidefs.h"
#include <sys/types.h>
#include <sys/spl.h>
#include <sys/tty.h>
#include <sys/user.h>
#include <sys/errno.h>

/*
* Initialize the driver and the device - see devinit(2K).

*/
niinit(vecnbr)
int vecnbr;
{

}

struct vmeeprom *eeprom, *is_eepromvalid();
int i;

if (DriverInitialized) {

}

printf("niinit: double initialization");
u.u,;...error = EBUSY;
return;

D evAddress = 0; /* Initialize */
/* Make sure VMEbus is present and EEPROM is valid. */
if (haveVME && ((eeprom = is_eepromvalid()) != 0)) {

}

/* Search the EEPROM for our device */
for (i=O; i<VME_SLOTS; i+ +) {

}

if (eeprom- >slots[i].type == VMET_NI) {
DevAddress = eeprom->slots[i].address;
break;

}

/* No VMEbus, invalid EEPROM, or no device. */
if (DevAddress == 0) {

if (eeprom == 0)
printf("siinit: invalid VMEbus eeprom");

u.u_error = ENXIO;
return;

}
if (get_vectors()) < 0) {

u.u_error = EBUSY;
return;

}
hw_init(); /* Initialize the hardware. */
DriverInitialized = 1;

Character I/0 Tutorial 5-7

Proprietary Information - Do Not Copy

nirelease()

The devrelease(2K) routine reverses the actions taken by
devinit{2K). CTIX software calls nirelease() as a result of a
call to syslocal(2) with a function code of SYSL_BINDDRV
and an option code of DRVUNBIND. The lddrv(1M) program
makes this system call.

If the device is open, it cannot be released: the driver should
print a message, set u.u_error, and return.

N ext, the release routine should do whatever is necessary to
the hardware to ensure that it does not cause any unwanted
activity after the driver is unloaded. Specifically,
devrelease(2K) should abort any outstanding I/O and disable
any interrupts that the device has been programmed to gen
erate. If the device initiates any activity after the driver has
been unbound, it may cause a system crash.

After the driver has shut down the hardware, it should return
any interrupt vectors that it acquired in devinit{2K). Also, if
the driver has any outstanding timeout{2K} calls, it should call
untimeout{2K) to clear them.

Before it exits, devrelease(2K) should clear the initialization
flag, allowing the next call to devinit{ 2K) to succeed.

5-8 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Release the driver and the device - see devrelease(2K).

*/
nirelease()
{

}

SDEC;

/* Cannot release device if it is open. */
if (D eVOpen) {

printf("nirelease: attempt to release open device");
u.u_error = EBUSY;
return;

}
hw_shutdown(); /* Shut down the hardware */
SPL_NI;
/* Reset the acquired interrupt vector(s). */
reset_interrupt_vectors() ;
SPLX;
/* Re-allow niinit() calls. */
DriverInitialized = 0;

Character I/O Tutorial 5-9

Proprietary Information - Do Not Copy

niopenO

The Network Interface board is an exclusive use device: only
one open(2) call at a time should succeed. There must be an
intervening c1ose(2) call before another open(2) call. This is
simple to achieve by testing and setting a flag in the
devopen(2K) routine, and clearing the flag in devclose(2K).

NiopenO resets the hardware to ensure that the driver starts
out in a known state. This is an important step in any
devopen(2K) routine.

Next, niopenO enables I/O on the RX channel. This involves
little more than enabling the Receiver Interrupt on the RX
channel of the device.

Finally, niopenO sets the device open flag to ensure exclusive
access.

niclose()

NicloseO reverses the actions taken by niopenO. First, it stops
I/O on the transmitter and receiver channels, and resets the
hardware. Then, nicloseO flushes any leftover characters from
both the transmitter and receiver queues. It does this by
repeatedly calling getcb(2K) to remove a c-block from the
queue, and then calling putcf(2K) to place the c-block onto the
freelist. Finally, nicloseO clears the exclusive use flag, allow
ing another open(2) call to succeed.

5-10 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Open the device - see devopen(2K).

*/
niope n(dev)
dev_t dey;
{

}

/*

/* Exclusive use device - only one open(2) at a time. */
if (D eVOpen) {

u.u_error = EBUSY;
return;

}
hw_reset(); /* Reset the hardware. */
/* Start I/O on the RX channel. */
niRXstart() ;
/* Lock out niopen() calls until niclose(). */
DevOpen = 1;

* Close the device - see devclose(2K).

*/
niclose(dey, flag)
dev_t dey;
int flag;
{

}

struct cblock *cp;

/* Stop I/O on the TX and RX channels. */
niTXstop() ;
niRXstop() ;

hw_reset(); /* Reset the hardware. */
/* Flush the TX and RX queues. */
while ((cp = getcb(&TX_q.clist)) != 0) /* Remove c-block from Q */

putcf(cp); /* Place it on freelist */
TX_q.flags = 0;
while ((cp = getcb(&RX_q.clist)) != 0)

putcf(cp);
RX_q.flags = 0;

/* Clear the exclusive use flag. */
DevOpen = 0;

Character I/0 Tutorial 5-11

Proprietary Information - Do Not Copy

niread()

The Network Interface device IS interrupt-driven: while
niread() is taking characters off one end of the c-list, niRX
intr() could be adding new data on the other end. Whenever a
conflict such as this can occur, the base level portion of the
driver (above the interrupt level) must mask off interrupts to
prevent the corruption of your driver's data structures. Queues
of I/O requests and data are the most common structures at
risk.

Niread() fills the user's buffer from the queue of incoming
characters. It sleeps whenever there are no characters available.
The RX interrupt handler issues a wakeup{2K} call whenever it
fills the queue above the low-water mark and detects that the
reader is sleeping.

Upon entry, niread() masks off RX interrupts from the device.
It then enters a loop conditioned on u.u_count and u.u_error.
The loop continues until the user's transfer count is exhausted
or until an error occurs. If at any time there are no more char
acters in the queue, niread() sets the SLEEPING flag and
sleeps.

When the reader process goes to sleep in this manner, CTIX
gives the CPU to another process (Process X) to run. At some
point, CTIX software, or another device driver enables inter
rupts from the NI device. This allows the receiver interrupt
handler to continue placing characters on the RX queue until it
surpasses the low-water mark. When this occurs, niRXintrO
checks the SLEEPING flag. If the bit is set, the interrupt
handler issues a wakeup{2K) call to restart the reader process.
For a complete discussion of context switching and interrupt
processing, see Chapter 4, CTIX Kernel Tutorial.

As long as there are characters present, niread() attempts to
dequeue them and store them into the user's buffer. When the
user's buffer is full (or when an error occurs), niread()
restores the original IPL and returns to the caller.

5-12 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Fill the user's buffer from the queue - see devread(2K).

*/
niread(dev)
dev_t dey;
{

}

SDEC; /* Declaration for SPL */
int c;

/* Mask off Network Interface interrupts. */
SPL_NI;

/* Fill the user's buffer - stop on error. */
while ((u.u_count!=O) && (u.u_error==O)) {

c = getc(&RX_q.clist);

}

if (c < 0) { /* Queue empty*/
RX_q.flags F SLEEPING; /* Wait for data *1
(void)sleep((caddr_t)&RX_q, NCPRI);

} else if (subyte(c, u.u_base+ +)) { /* Store byte */
u.u_error = EFAULT; /* Bad buffer address */

} else {
/* One less to do */

}

/* Restore the original interrupt mask. */
SPLX;

Character I/O Tutorial 5-13

Proprietary Information - Do Not Copy

niwrite()

The niwriteO routine enqueues the contents of the user's
buffer onto the transmitter queue, one character at a time. It
then enables the transmitter to perform the output.

First, niwrit.eO raises the processor priority level to mask out
interrupts from the Network Interface device. The base-level
portions of the driver must do this whenever they manipulate
data structures that the interrupt handlers also change.

Next, niwrit.eO enters the loop that enqueues the buffer con
tents. As long as there is data remaining in the buffer and no
errors have occurred, the loop continues. Niwrit.eO fetches a
byte from the user's buffer and calls niTXputcO to enqueue it.
This routine sleeps if there is no space available for the charac
ter. The loop continues until the user's buffer is exhausted.

With the message safely on the queue, niwrite() enables the
transmitter and then restores the previous processor priority
level before returning to the user.

5-14 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Write a message to the network - see deYwrite(2K).

*/
niwrite(dey)
dey_t de v;
{

}

SDEC; /* Declaration for SPL */
int c;

/* Mask off Network Interface interrupts. */
SPL_NI;

/* Copy the user's buffer onto the TX queue, stop on error. */
while ((u.u_countr-!=O) && (u.u_error==O)) {

/* Get a character from user space */
c = fubyte(u.u_base+ +);
if (c < 0) /* Access error */

u.u_error = EFAULT;
else

niTXputc(c); /* Put char on TX queue */
}

/* Start the TX */
niTXstart() ;

/* Restore original interrupt mask */
SPLX;

Character I/O Tutori al 5-15

Proprietary Information - Do Not Copy

niRXstart

These routines start and stop I/O on the TX and RX channels.
The code for all four routines is similar. The start routines
enable the channel if it is disabled. The stop routines disable
the channel if it is enabled.

All four routines disable interrupts upon entry and restore the
processor priority level when they exit. This is to prevent con
tention with the interrupt handlers, which also alter the state of
the enabled flags.

5-16 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

niRXstart()
{

SDEC;

SPL_NI;
if (!(RX_q.flags & ACTIVE)) {

hw_RXenable(); /* Enable the RX channel */
RX_q.flags F ACTIVE;

}
SPLX;

}
niTXstart()
{

SDEC;

SPL_NI;
if (!(TX_q.flags & ACTIVE)) {

hw_TXenable(); /* Enable the TX channel */

}

TX_q.flags F ACTIVE;
}
SPLX;

niRXstop()
{

SDEC;

SPL_NI;
if ((RX_q.flags & ACTIVE)) {

hw_RXdisable(); /* Disable the RX channel */
RX_q.flags &= -ACTIVE;

}
SPLX;

}
niTXstop()
{

SDEC;

SPL_NI;
if ((TX_q.flags & ACTIVE)) {

hw_TXdisable(); /* Disable the TX channel */
TX_q.flags &= -A CTIVE;

}
SPLX;

}

Character I/O Thtorial 5-17

Proprietary Information - Do Not Copy

niRXintr()

NiRXintr() runs whenever the Network Interface board
receives a character from the network. Since this happens
asynchronously, the receiver interrupt is left enabled from the
time the driver is opened until it is closed. Since the amount
of kernel memory reserved for c-blocks is limited, the reader
process in the network daemon must constantly read the NI
device, or incoming characters may be lost.

Immediately upon entry, niRXintrO reads the available charac
ter from the device register and attempts to put it on the
queue. The interrupt handler does not need to know if there
was space for the character: lost data errors are handled by
niRXputc() .

After attempting to enqueue the data, niRXintr() checks to see
whether the reader process is asleep, waiting for input. If the
queue IS above the low-water mark and the reader is sleeping,
niRXintr() calls wakeup(2K). If the queue is below the low
water mark, there is too little data to awaken the reader.

ni TXlntr()

NiTXlntr() runs whenever the TX channel is ready to transmit
another character across the network. When the interrupt
occurs, there mayor may not be a character to transmit.

First, niTXlntr() attempts to dequeue a character. If there is
no character available, the interrupt handler calls niTXstop() to
disable the transmitter channel. If there is a character in the
queue, niTXintrO outputs it to the device.

Next, niTXlntr() checks to see whether the writer process is
asleep, waiting for queue space. If so, and if the queue is now
below the low-water mark, niTXintr() calls wakeup{2K). If
the queue is above the low-water mark, there is too little space
to awaken the writer.

5-18 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Process an RX interupt- see devintr(2K).

*/
niRXintrO
{

}

/*

int c;

/* Try to enqueue it. */
niRXputc(c);

/* Get char from device. */

/* If the Q is above LO_WATER and nireadO is sleeping, wake it up */
if ((RX_q.clist.c_cc>NCLO_WA TER) && (RX_q.flags&SLEEPING)) {

RX_q.flags &= -SLEEPING;
wakeup((caddr_t)&RX_q);

* Process a TX interupt - see devintr(2K).

*/
niTXintrO
{

}

int c;

if ((c = getc(&TX_q.clist)) < 0) /* Queue empty */
niTXstop(); /* Disable TX */

else /* Got char */
hw_output(c); /* Output to deviCe */

/* If count is below LO_WA TER and niwriteO is sleeping, wake it up. */
if ((TX_q.clist.c_cc<NCLO_WA TER) && (TX_q.flags&SLEEPING)) {

TX_q.flags &= -SLEEPING;
wakeup((caddr_t)&TX_q);

}

Character I/O Tutorial 5-19

Proprietary·lnformation - Do Not Copy

niRXpute()

The receiver interrupt handler calls niRXputc() to place a
newly received character on the RX queue. Since queue space
is limited, niRXput() must handle the possibility that it will not
be able to enqueue the data.

Upon entry, niRXputeO checks the QFULL flag to see if there
was room in the queue for the previous character. If it is set,
niRXputeO tries to enqueue a CAN character, to inform the
reader process that data was lost. If niRXputeO does enqueue
the CAN character, it clears the QFULL flag.

After reporting any lost data, niRXputeO attempts to enqueue
the current character. If the QFULL flag is set, there is no
room for the data, so niRXputc() does not call pute(2K). If
the flag is clear, niRXputeO attempts to enqueue the character.
If pute(2K) fails, the queue is full, and niRXputeO sets the
QFULL flag.

It is possible for the QFULL flag to be set upon entry, cleared
when pute(2K) succeeds in placing the CAN character on the
queue, and then set once more, because pute(2K) fails to place
the current character on the queue.

niTXputc()

NiwriteO calls niTXputeO to place each character on the out
put queue. Before enqueueing the character, niTXputeO
checks the high-water mark and, if the queue is too full, starts
the transmitter and sleeps. When the TX interrupt handler
reduces the queue below the low-water mark, it reawakens
niTXputc(). Whether or not it slept, niTXputc() then calls
spute(2K) to enqueue the character. Spute(2K) will sleep
again if it cannot get a c-block to expand the queue.

5-20 Writing MightyFr8.lIle Device Drivers

Proprietary Information - Do Not Copy

/*
* Try to put a character on the RX queue - called from niRXintr().

*/
niRXputc(c)
int c;
{

}

/*

/* If no space for previous character, try to put a CAN */
if (RX_q.flags & QFULL) {

}

/* If room for CAN char, clear the flag */
if (putc(CAN, &RX_q.clist) == 0)

RX_q.flags &= -QFULL;

/* If there is space now, try to enqueue the current char. */
if (!(RX_q.flags & QFULL)) {

}

/* If no space for current char, set flag for next time */
if (putc(c, &RX_q.clist) < 0)

RX_q.flags F= QFULL;

* Try to put a character on the TX queue - called from niwrite().

*/
niTXputc(c)
int c;
{

}

/* Sleep while the TX queue is above the high-water mark. */
while (TX_q.clist.c_cc > NCHCWA TER) {

niTXstart(); /* Be sure TX is running */
TX_q.flags F= SLEEPING; /* Wait for space on the Q */
(void)sleep((caddr_t)&TX_q, NCPRI);

}

/* Put the character on the queue - sleep (again) if needed. */
(void)sputc(c, &TX_q.clist, 1);

Character I/O Tutorial 5-21

Proprietary Information - Do Not Copy

PHYSICAL (RAW) I/O

The principal task of a high-speed character driver is to transmit
and/or receive data by performing large, block transfers, sus
tained by DMA completion interrupts. In order to achieve the
highest possible data rates, high-speed character drivers do not
buffer the data within the kernel. Instead, these drivers per
form DMA directly into or out of buffers located in the
memory space of the user process. This form of transfer is
known as physjcaJ I,LQ. or nrn: I,LQ. The CTIX operating system
has special facilities to support this high-speed interface.

Physical I/O is performed directly between user memory and
the device: there are no associated kernel buffer structures.
Since the transfers are performed in "chunks," the buffer
header structure from the Block I/O system is useful in describ
ing the DMA operation to the device. These headers are not
linked into the associative cache, however, since there are no
block numbers associated with their contents. Like their low
speed cousins, high-speed character devices often deal with
unstructured data: usually read-once or write-once sequences of
characters.

mE SPEECH INTERFACE DRIVER

The following pages contain pseudocode for a DMA-based dev
ice driver. The device under consideration is a high-speed,
digital-to-analog (D/A) and analog-to-digital (A/D) Speech
Interface board (SI). The SI device is used to digitize and
record human speech, and then to reconvert the speech to ana
log and play it back. It forms the heart of a speech synthesis
workstation. The device contains two channels: one (the A/D
side) dedicated to digitizing the speech input; the other (the
D /A side) dedicated to reconverting the digitized waveform to
analog and playing it back.

The controlling process interacts with the user in a manner
similar to a tape recorder: it is called the tape recorder
throughout this section. Symbolic "buttons" (menu selections,

5-22 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

perhaps) allow the user to RECORD , PLAY, REVERSE, and
FAST FORWARD the "tape," as well as to power off the
recorder (exit from the program).

Only one channel of the SI device can be active at a time: the
device can either record or play, but it cannot do both at the
same time. Each channel is DMA-driven, and produces an
interrupt at the completion of each DMA operation. Since
simultaneous play and record is not supported, the SI driver
need acquire only one interrupt vector at initialization time.

The driver does not support unsolicited input: instead, the Tape
Recorder initiates a RECORD operation with a read(2) system
call. Recording continues with each read(2) until the Tape
Recorder issues an ioctl(2) call. The SI device contains a
small, on-board FIFO to provide some buffering capability, but
the Tape Recorder must issue its read(2) requests quickly
enough to ensure that no data is lost.

The Tape Recorder initiates a PLAY operation with a write(2)
system call. As long as the SI device is not in the process of
recording, playback is started immediately. If the Tape
Recorder issues a write(2) request while the driver is record
ing, the request fails with an EBUSY error.

The narration for the SI driver begins on the following page.
Throughout the pseudocode, RC indicates the RECORD (or
A/D) channel, while PC indicates the PLAY (or D /A) chan
nel. In addition, routines that begin with the characters hw_
refer to hardware-specific code.

Character I/0 Tutorial 5-23

Proprietary Information - Do Not Copy

siinit()

CTIX software calls siinit() to initialize the driver before it
allows any process to open the device. If the driver was linked
with the kernel, CTIX calls siinit() at system initialization
time. If the driver is loadable, CTIX calls siinit() as a result of
a call to syslocal(2) with a function code of SYSL_BINDDRV
and an option code of DRVBIND. The Iddrv(lM) program
makes this system call.

The driver must make certain that siinit() is called only once
between calls to sireleaseO. Testing and setting an initializa
tion flag in siinit() and clearing the flag in sireleaseO is suffi
cient to accomplish this.

Next, siinit() makes certain that theVMEbus interface board
is installed in the MightyFrame, and that the EEPROM on the
board has a valid checksum. Finally, the driver searches
through the array of device information in the EEPROM, look
ing for the entry corresponding to the SI device.

Next, sii~it() attempts to allocate system page table entries, so
that it can remap the user's buffer into kernel virtual memory
before the I/O is started. If siinit() cannot acquire the neces
sary space, siinit() prints an error message, sets u.u_error, and
returns.

Then, siinit() acquires an interrupt vector. (See Interrupt Pro
cess£ng, in Chapter 2, Arch£tectural Informat£on, for a discussion
of acquiring interrupt vectors. Also see the detailed descrip
tions of the get_vec(2K) and set_vec(2K) kernel routines in
Appendix A, CTIX Interface Manual Pages.)

The devinit(2K) routine also must perform the required
hardware initialization, which is unique for each hardware dev
ice. Generally, you should clear any interrupts and device
status information, write the interrupt vector number into a
device register, and make the device ready to perform I/O.

5-24 Writing MightyFram~ Device Drivers

Proprietary Information - Do Not Copy

#include "sidefs.h"

/* Initialize the driver and the device - see devinit(2K). */
siinitO
{

}

struct vmeeprom *eeprom, *is_eepromvalidO;
int i;

if (D riverInitialized) {

}

printf("siinit: dou ble initialization");
U.U3rror = EBUSY;
return;

D evAddress = 0; /* Initialize */
/* Make sure VMEbus is present and EEPROM is valid. */
if (haveVME && ((eeprom = is_eepromvalid()) != 0)) {

}

/* Search the EEPROM for our device */
for (i=O; i<VME_SLOTS; i+ +) {

}

if (eeprom->slots[ij.type == VMET_SI) {
DevAddress = eeprom->slots[ij.address;
break;

}

/* No VMEbus, invalid EEPROM, or no device. */
if (D ev Address == 0) {

}

if (eeprom == 0)
printf("siinit: invalid VMEbus eeprom");

u.u_error = ENXIO;
return;

/* Allocate kernel virtual memory space */
SCVAddr = (char *)sptalloc(dtop(MAXBLK)+ 1, (PG_VPG_KW), -1);
if (SCVAddr == 0) {

}

printf("siinit: sptalloc() failed");
u.u_error = ENOMEM;
return;

if ((SIvecnbr = get_vec(Drv_id, drllintr)) < 0) {
u.u_error = EBUSY;
re turn;

}
hw_init(); /* Initialize the hardware. */
Driverlnitialized = 1;

Character I/O Tutorial 5-25

Proprietary Information - Do Not Copy

sireleaseO

The devrelease(2K) routine reverses the actions taken by
devinit(2K). CTIX calls sireleaseO as a result of a call to sys
local(2) with a function code. of SYSL_BINDDRV and an
option code of DRVUNBIND. The Iddrv(lM) program makes
this system call.

If the device is open, it cannot be released: the driver should
print a message, set u.u_error, and return.

N ext, the release routine should do whatever is necessary to the
hardware to ensure that it does not cause any unwanted activity
after the driver is unloaded. Specifically, devrelease(2K)
should abort any outstanding I/O and disable any interrupts that
the device has been programmed to generate. If the device ini
tiates any activity after the driver has been unbound, it may
cause a system crash.

After the driver has shut down the hardware, it should return
any interrupt vectors that it acquired in devinit(2K). Also, if
the driver has any outstanding timeout(2K) calls, it should call
untirneout(2K) to clear them.

Next, sireleaseO frees the system page table entries that siinitO
acquired.

Before it exits, devrelease(2K) should clear the initialization
flag, allowing the next call to devinit(2K) to succeed.

5-26 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Release the driver and the device - see devrelease(2K).

*/
sirelease()
{

}

SDEC;

/* Cannot release device if it is open. */
if (DevOpen) {

printf("sirelease: attempt to release open device");
u.u_error = EBUSY;
return;

}
hw_shutdown(); /* Shut down the hardware */
SPL_SI;
/* Reset the acquired interrupt vector(s). */
reseUnterrupt_vectors() ;
SPLX;
/* Return kernel virtual memory. */
sptfree(SCVAddr, dtop(MAXBLK)+ 1,0);
/* Re-allow siinit() calls. */
DriverInitialized = 0;

Character I/O Tutorial 5-27

Proprietary Information - Do Not Copy

siopenO

The Speech Interface board is an exclusive use device: only one
open(2) call at a time should succeed. There must be an inter
vening close(2) call before another open(2) call. This is simple
to achieve by testing and setting a flag in the devopen(2K) rou
tine, and clearing the flag in devclose(2K).

SiopenO resets the hardware to ensure that the driver starts out
in a known state. This is an important step in any devopen(2K)
routine.

Finally, siopenO sets the device open flag, to ensure exclusive
access.

siclose()

SicloseO reverses the actions taken by siopenO. First, it resets
the hardware. Then, siclose{) clears the exclusive use flag,
allowing another open(2) call to succeed.

5-28 Writing Mighty-Frame Device Drivers

Proprietary Information - Do Not Copy

/*
* Open the device - see devopen(2K).

*/
siopen(dev)
dev_t dey;
{

/* Exclusive use device - only one open(2) at a time. */
if (D evOpen) {

u.u_error = EBUSY;
return;

}
hw_reset(); /* Reset the hardware. */
/* Lock out siopenO calls until sicloseO. */
DevOpen = 1;

}

/*
* Close the device - see devclose(2K).

*/
siclose(dev, flag)
dev_t de v;
in t flag;
{

}

/* Reset the hardware. */
h w _reset();

/* Clear the exclusive use flag. */
DevOpen = 0;

Character I/O Tutorial 5-29

Proprietary Information - Do Not Copy

sh-ead() - siwriteO

The Speech Interface device performs DMA-driven, physical
I/O. All of the work for reads and writes is handled by
physio(2K) and the devio(2K) routine, that is, siio(). Both
siread() and siwriteO consist of calls to physio(2K) with the
address of the sHo() routine passed as a parameter.

5-30 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Fill the user's buffer directly from the device - see devread(2K).

*/
siread(dev)
dev_t de v;
{

physio(siio, &SCBuf, dey, B-fiEAD);
}

/*
* Write the user's buffer directly to the device - see devwrite(2K).

*/
siwrite(dev)
dev_t de v;
{

physio(siio, &SCBuf, dev, B_ WRITE);
}

Character I/O Tutorial 5-31

Proprietary Information - Do Not Copy

siio()

Physio(2K) calls siio() to set up and start the DMA transfer.
First, siio() calls settnap{2K} to remap the user's buffer into
kernel virtual address space. Essentially, this assigns a second
set of page table entries (in kernel space) to the user's physical
buffer space. Setmap{2K) copies the page frame numbers
from the user's page table entries into the kernel's page table
entries. The kernel's page table entries were allocated in
siinit(), by a call to sptalloc(2K).

Next, siio() sets up the DMA registers to describe the pending
transfer, sets the SI_Aetive flag, and starts the DMA transfer.

Siio() then returns to physio(2K), which sleeps if necessary
until siintrO calls iodone(2K) on the buffer header.

5-32 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

1*
* Set up and start the DMA operation - see devio(2K).

*1
VOID
siio(bp)
struct buf *bp;
{

}

1* Remap the user's buffer into kernel virtual memory. *1
KernVaddr = setmap(bp, SCVaddr, 0, bp->b_bcount);

1* Setup the DMA transfer. *1
rw = (bp->bjlags & B_READ) ? SCREAD : SCWRITE);
hw_setup(KernVaddr, bp->b_bcount, rw);

/* DMA is active *1
SCActive = 1;
1* Enable interrupts and start the DMA operation. *1
hw...,go();

Character I/O Thtorial 5-33

Proprietary Information - Do Not Copy

siintr()

CTIX calls siintr() whenever it receives an interrupt from the
Speech Interface board.

Upon entry, siintr() checks to see if DMA is active. If it is,
siintrO calls iodone(2K), which seU5 the B_DONE bit and
wakes up physio{2K) and any other process that is sleeping on
the address of the buffer header. Then, siintr() clears the
D MA active flag.

If DMA is not active, siintr() prinU5 an error message. Note
that the interrupt handler does not set u.u_error, since the
current u-page probably belongs to a process that is unrelated to
the SI device.

Finally, siintr() returns (exiU5 from the interrupt).

5-34 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Process aDMA completion interupt- see devintr(2K).

*/
siintr(vecnbr)
int vecnbr;
{

}

/* Check if valid interrupt. */
if (SCActive) {

if (hw_status == OK) {j* No errors on DMA operation */
SCBuf.b_resid = 0;
SCBuf.b_error = 0;

} else { /* Some kind of error */

}

SCBuf.bjlags F B_ERROR;
SCBuf.bJesid = SCBuf.b_bcount;
SIJ3uf.b_error = EIO;

iodone(&SCBuf);
hw_clrint(); /* Clear the interrupt */
SCActive = 0;

} else {
printf("siintr: spurious interrupt");

}

Character I/O Thtorial 5-35

Proprietary Information - Do Not Chpy

siioctl()

SiioetlO processes ioctl(2) calls from the user. It generally
handles user requests that are specific to the device. The rou
tine often is little more than a large switch statement, with one
case for each legal request.

5-36 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Process user ioctl(2) call - see deyioctl(2K).

*/
siioctl(dey, cmd, addr, flag)
dey_t dey;
int cmd;
caddr_t addr;
int flag;
{

}

switch(cmd) {
break;

case SISTOP:
/* Stop recording */
hw_stopO;
break;

default:
u.u_error = EINVAL;
break;

}

Character I/O Tutorial 5-37

6 CHARAGlER DEVICE EXAMPLE

This chapter contains the annotated source listing of the device
driver for the Ikon 10084 D R11-W Emulator. This is an actual
driver that runs under the CTIX operating system on the
MightyFrame.

The D R11 W is a high-speed, DMA-driven parallel interface
that can be used for intermachine linkage between a variety of
computer systems. There are DR11-like devices available for
the UNIBUS, QBUS, Multibus, VERSAbus, and VMEbus.

The device driver that follows is a simple one. Several features
could have been added that would have provided more
functionality at the cost of greater complexity. Still, the driver
serves as an interesting example because it is interrupt-driven,
it performs physical (raw) I/O between the device and the
user's memory space, and it detects and handles hung transfers.

See the Ikon 10084 DR11- W Emulator Hardware Manual for a
complete description of the hardware and its functionality.

Throughout this chapter, source code appears on the right hand
page, while the annotations to it are on the left.

Character Device Example 6-1

Proprietary Information - Do Not Copy

DRII INCLUDE FILES

This page contains the include files and all extern declarations.
The driver routines also are declared for the purpose of docu
mentation. All of the include files are found In

/usr/include/sys. Their general contents are as follows:

sys/param.h contains fundamental syste m constants that
change very rarely from machine to machine.

sys/systnLh contains extern declarations for the most impor
tant system variables, data structures, and func
tions in the CTIX operating system.

sys/buf.h contains the declaration for the buffer header
structure buf, and the flag definitions of the
form B_FLAG.

sys/user.h contains the declaration for the user structure.

sys/page.h

sys/errno.h

sys/spl.h

This holds the per-process information not
needed by CTIX while the process is swapped
out. It also contains the per-process supervisor
stack, used during system call processing.

contains fundamental memory management
constants and the declaration of the software
and hardware page table entry structures, pte
and hpte.

contains the system error constants as described
in the Introduction to Section 2 of the CTIX
Operat£ng SY8tem Manual.

contains the "set priority level" macros as
described in SPL(2K) in Appendix A, CTIX
Interface Manual Page8.

The DFLT_ID/Drv_id mechanism is handled completely by the
loader. Simply include these two lines in every driver, and the
driver ID will be assigned properly, whether it is loadable or is
configured in with the kernel.

6-2 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/ **
* drll.c

* * CTIX 5.0 driver for Ikon 10084 VMEbus DRll-W Emulator

** /
#include "sys/param.h"
#include "sys/systm.h"
#include "sys/buf.h"
#include "sys/iobuf.h"
#include "sys/dir.h"
#include "sys/user.h"
#include "sys/page.h"
#include "sys/errno.h"
#include "sys/spl.h"

#define VOID int /* To document routines returning no value */

VOID
VOID
VOID
VOID
VOID
VOID
VOID
VOID
VOID
VOID
VOID

drllopen();
drllclose();
drllreadO;
drllwrite();
drllioO;
drllioctlO;
drllintrO;
drllstatus() ;
drlltimer() ;
drllinit();
dr11release() ;

/* Open the device and initialize the hardware */
/* Close the device, no actions taken w /hardware */
/* Call physio(2K) to do a read */
/* Call physio(2K) to do a write */
/* Setup and start the DMA operation */
/* Reset the interface to clear hung driver */
/* Service an interrupt */
/* Print a status message on the console */
/* Called periodically to complete timed out I/Os */

/* Initialize the interface and setup driver */
/* Disengage the driver, terminate operations */

/* Externs used by the driver */
extern int chkbusflt();
extern VOID iodone();
extern VOID physioO;
extern int reset_vec();
extern int set_vec();
extern caddr_t setmap();
extern caddr_t sptalloc();
extern VOID sptfree();
extern int timeout();
extern VOID untimeout();

extern int haveVME; /* Non-zero if VMEbus present in system */
extern int D FLT_ID; /* Needed to make the driver loadable */
static int Drv_id = (int) &DFLT_ID;

Character Device Example 6-3

Proprietary Information - Do Not Copy

The ikon data structure defines the device interface registers.
A pointer to this structure (dr_aux- >dr_addr) is initialized to
the physical address of the hardware (RA_PHYS) in
drl1init(). Thereafter, reads and writes to the members of the
structure actually reference the hardware.

Briefly, the fields and their meanings are as follows:

status

data

modvec

pulse

lowadr

range

highadr

is the status register when read and the control
register when written. The relevant bit defini
tions for each case are given below.

is the 16-bit read/write data register.

contains two 8-bit values: the VMEbus address
modifier (AM) bits in the upper byte, and the
programmable interrupt vector number in the
lower byte.

is a write-only copy of the control bits in the
status register. Writing a 1 to any of these
bits activates this function only, freeing the
programmer from carrying around a copy of
the status bits. Writing a 0 to any of these bits
does nothing.

con tains the low-order 16 bits of the D MA
address (bits 15-00).

contains the DMA transfer count in 16-bit
words.

The low-order byte of the register contains the
high-order 8 bits of the DMA address (bits
23-16). The high-order byte of the register is
ignored.

Consult the Ikon 1 0084 Hardware/Software Manual for more
details.

6-4 Writing MightyFrame Device Drivel'S

Proprietary Information - Do Not Copy

/* Ikon 10084 device structure. It maps onto the hardware registers */
struct ikon {

ushort status,

};
/*

data,
modvec,
pulse,
word08,
wordOa,
wordOc,
wordOe,
wordlO,
lowadr,
range,
lcuradr,
word18,
highadr,
wordlc,
wordle,
hcuradr

/* Control and status register */
/* Input/output data register */
/* Addr Modifier/Int vector */
/* Pulse command register */
/* Unused */
/* Unused */
/* Unused */
/* Unused */
/* Unused */
/* Low D MA address register */
/* DMA range counter */
/* Lowadr when read */
/* Unused */
/* High D MA address register */
/* Unused */
/* Unused */
/* Highadr when read */

* Control register values.

*/
#define RA_ZERO OxOOOO /* Clear all status bits */
#define RA.-R,DMA Ox8000 /* Reset DMAF and BERR flags */
#define RA.-R,A TN Ox4000 /* Reset A TIN flag */
#define RA.-R,PER Ox2000 /* Reset PERR flag */
#define RA_CLEAR (RA.-R,DMA~A_RA TN~A.-R,PER) /* Clear flags */
#define RA_GO OxOOOl /* GO bit (start DMA transfer) */
#define RA_START (RA_CLEAR~A_GO) /* Clear errs & GO */
#define RA_INIT OxlOOO /* Master clear the board */
/*
* Status register values.

*/
#define RAJ)ONE Ox8000
#define RA.-ERROR Ox4000
#define RAYARITY Ox2000
#define RA.-R,EADY Ox0080
#define RA_IENB
#define FCNI
#define FCN2
#define FCN3

Ox0040
Ox0002
Ox0004
Ox0008

#define RA_WRITE OxOOOO
#define RA.-R,EAD FCN2

/* DMA done */
/* A TIN from model one (unused)*/
/* Reset parity errors (unused) */
/* Interface ready */
/* Interrupt enable */
/* Function bit 1 */
/* Function bit 2 */
/* Function bit 3 */
/* No function code when writing */
/* Set FCN2 when reading */

Character Device Example 6-5

Proprietary Information - Do Not Copy

The driver control structure dr_aux contains general informa
tion about the device, any active transfer, and the timeout
parameters. The variables have been gathered into a structure
to make it easy to extend the driver. If one or more additional
DR11 's are added to the system, the structure will become an
array indexed by the minor device number.

Drllbuf is a buffer header dedicated to this device.
Physio(2K) uses it to describe the I/O that it sets up. When
more D R!1 's are added to the system, drllbuf will become an
array.

Drllvad is a pointer that is set by drllinit() to reference a
region of kernel virtual memory allocated by sptalloc(2K).

RA_PHYS is the address of the device in I/O space. The
DR!1 must have an I/O address between OxCOOOOOOO ,and
OxCOFFFFFF, since it is an A24 device. Placing it at
OxCOCOOOOO means that it can be accessed directly by a user
process using the VMEbus Protection register. However, since
it is a DMA device, the user must not do this. See Chapter 2,
Arch£tecturallnformat£on, for more information.

The defines labelled Hardware Constants reflect the settings of
hardware straps on the DR!1 board itself.

SPLDRII serves to localize the hardware interrupt level to one
place in the driver. If it changes, only this one line must be
modified.

6-6 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Driver control structure.

*/
struct dr_aux {

struct ikon *dr_addr;
struct buf *dr_actf;
ushort dCflags;
int dr_timing,

dctimeout;
} dr_aux;

/*
* Values for dr_flags.

*/
#define DR_OPEN 1

/*
* D river data.

*/

/* Address of Ikon board */
/* Currently active buf */
/* Open, active, ... */
/* Countdown till timeout */
/* ID from last timeout(2K) call */

/* The driver is open */

struct buf drllbuf; /* Buffer header for transfers */
char *drll vad;
int vecnbr;

/* Virtual address to map transfers */
/* Interrupt vector number to use */

/*
* Hardware constants.

*/
#define RAYHYS ((struct ikon *) OxcOcOOOOO) /* VMEbus address */
#define RA_MODBITS Ox3dOO
#define RA_MODVEC (RA_MODBITS~ecnbr)

/* Address modifier bits */
/* AM bits & Int Vector */

#define SPLDRllSPL2 /* Our interrupt mask level */

Character Device Example 6-7

Proprietary Information - Do Not Copy

DRIIOPENO

DrllopenO sets the DR_OPEN flag, resets the hardware, and
then returns. RA_ZERO disables interrupts. RA_CLEAR
resets the DMAF, BERR, ATTN, and PERR status flags.

In order to implement an exclusive use device such as a line
printer, drllopenO would test dr_fla~ and, if the driver was
open, would set u.u_error to EBUSY and return.

DRIICLOSEO

DrllcloseO simply clears the DR_OPEN flag.

The devclose(2K) routine is called only when the last close(2)
is issued on the device. If three processes open a device, CTIX
does not call the devclose(2K) routine when either of the first
two processes closes it.

6-8 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* drllopen() - open the DRll.

* * Set DR_OPEN and reset the hardware.

*/
VOID
drllopen(dey, flag)
dey _t dey;
int flag;

{
dcaux.dr_flags F DR_OPEN;
RA_PHYS- >status = RA_ZERO;
RA_PHYS->pulse = RA_CLEAR;

}

/*
* drllcloseO - close the device.

*
* Clears the DR_OPEN flag.

*/
VOID
drllclose(dey, flag)
dey _t de v;
int flag;

{

}

Character Device Example 6-9

Proprietary Information - Do Not Copy

DR11READO - DRIIWR1TEO

Both drllreadO and drl1 writeO use physio(2K) to set up
the buffer for the data transfer. Normally, physioO is used by
block devices to perform raw I/O directly to the user process.

All of the information about the original read(2) or write(2)
system call is contained in the user structure of the requesting
process. OTIX software sets up two fields in particular:
u.u_base contains the virtual address of the data buffer in the
user's memory, and u.u_count contains the transfer length.

Upon entry, physio(2K) verifies the count parameter and checks
that the user has the required access permission on the buffer.
PhysioO then calls pglockO, which faults in all of the buffer
pages from the swap device, and locks them into memory. Since
the D1v1A operation will take place into or out of this memory, it
must be present physically. After locking the pages, pglockO
makes a copy of the user's page table entries that point to the
buffer.

Next, physioO checks the state of the B_BUSY flag in the
buffer header. If it is set, physioO sleeps until the buffer is
available (B_DONE is set). It then sets up the buffer header to
describe the transfer; that is, it sets b_addr, and b_bcount.

Finally, physioO calls the devio(2K) routine to perform the
I/O. When dr1lioO returns, physioO sleeps, waiting for the
driver's interrupt handler to call iodone(2K). This will cause
the user's process to be rescheduled.

After the I/O is complete, physioO unlocks the user's buffer
pages, allowing them to swap again. If the B_ WANTED bit is
set in the buffer header, it issues a wakeup(2K) call; then it
sets u.u_count to b_resid, thus returning the number of bytes
of data that were not transferred. Finally, it sets u. u_error to
EIO. if the B_ERROR bit is set in the buffer header.

6-10 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* drllreadO - read some data using physio(2K).

* * Call physio(2K) with the address of drllio()
* as the deystrategy(2K) routine and the B.-R,EAD
* flag.
*/
VOID

drllread(dey)
{

physio(drllio, &drllbuf, dey, B_READ);
}

/*
* drllwriteO - write some data using physio(2K).

* * Call physio(2K) with the address of drllio()
* as the deystrategy(2K) routine and the B_WRlTE
* flag.

*/
VOID

drllwrite(dey)
{

physio(drllio, &drllbuf, dey, B_WRITE);
}

Character Device Example 6-11

Proprietary Information - Do Not Copy

DRIIIOO

Drllio() is called by physio(2K) as a result of a read(2) or
write(2) system call. Its main purpose is to program the
hardware to perform the requested DMA operation.

The call to setmap(2K) is important. The original read(2) or
write(2) request referenced a buffer in the user's virtual
address space. But the transfer actually takes place when some
other process is running, because physio(2K) calls sleep(2K)
and gives up the CPU after its call to drllio(). Since each pro
cess has its own set of page table entries, virtual addresses in
user space are valid only when that process is running.

The driver cannot program the DMA hardware with the original
virtual address of the buffer. In fact, it cannot reference user
virtual memory at all, since that changes whenever there is a
context switch. The DMA hardware must use kernel virtual
memory, which always is valid. This kernel virtual memory is
reserved by a call to sptalloc(2K) in drllinit(). SptallocO
allocates a contiguous region of kernel virtual address space to
serve as a "window" on the user's I/O buffer in physical
memory. The pointer to this "window" is kept in drllvad.

In the discussion of drllread()/drllwriteO above, it was
pointed out that the pgIockO function made a copy of the page
table entries pointing to the user's I/O buffer. The address of
those saved pte's was stored in bp->b-pt. Now, the
setmap(2K) routine takes the page frame numbers from each
of these saved page table entries and writes them into the pte's
reserved by sptalloc(2K). In this way, the user's I/O buffer
acquires a kernel virtual address, in addition to its user virtual
address. This new kernel address is used to program the DMA
device on the DR11 board.

Drllio() also sets up the timeout value in dr_aux. dr_timing.
This ensures that hung DMA transfers will be aborted, and the
requesting process notified of the failure.

6-12 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* drllio - setup and start the DMA operation.
* Remap the user's buffer into kernel virtual memory,
* program the Ikon's DMA registers, set the timeout,
* and start the transfer.
* This routine is called by physio(2K) to start the I/O.

*/
VOID

drllio(bp)
struct buf *bp;

{

}

register unsigned count;
unsigned int addr;
register short flag;
register dey _t dey;
short cstatus;

flag = bp- > b_flags;
dr_aux.dr_actf = bp;
count = ((bp->b_bcount + 1) » 1) - 1;
dey = bp- > b_dev;

/*
* Remap the user's buffer into kernel virtual memory.

*/
addr = (unsigned int) setmap(bp, drllvad, 0, bp- > b_bcount);

/*
* Program the low and high address registers, and count.

*/
RA_PHYS->lowadr = (short) (addr » 1);
RA_PHYS->highadr = ((short) (addr » 17) & Ox3f);
RA_PHYS->range = (short) count;
/* Clear any lurking ATTN or DMA interrupt flags. */
RA_PHYS- >pulse = RA_CLEAR;
RA_PHYS->modvec = RA_MODVEC;
/* Setup the software timeout. */
dr_aux.dr_timing = 10;

/* Enable interrupts start the DMA operation. */
if ((flag & B_READ) == B_READ)

RA_PHYS- > pulse = (RA_READ ~A_START~A_IENB);
else

Character Device Example 6-13

Proprietary Information - Do Not Copy

DR1IINTRO

The interrupt handler is called from two places for two entirely
different events. First, it is called from perintO in CTrx: when
ever an interrupt is received from a device supplying the vector
number that was reserved for the DR11 by the get_vec(2K) call
in drllinitO. Also, it is called from drlltimerO when that
routine detects a hung DMA transfer.

In either case, the result is the same. First, drllintrO checks to
see that there is a buffer active. If not, it prints a diagnostic
message and returns. Next, it checks to see if the RA_READY
bit is set in the device status register. Whenever drl1intrO is
called as a result of a hardware interrupt, this bit will be set.
This test is present only to catch the unlikely event that the
transfer timed out but then completed normally before
drlltimerO called drllintrO.

If dr _aux.dr _timing is less than zero, it indicates that a
timeout has occurred. This causes a diagnostic to be printed on
the console and the B_ERROR bit ,iw "B_ERROR" to be set
in the buffer header. Next, drllintrO cancels the timer. (But
this is a soft cancel: drlltimerO continues to run periodically,
because of its call to timeout(2K).)

Finally, and most importantly, drllintrO calls iodone(2K) to
set the B_DONE bit in the buffer header and issue a
wakeup(2K) call. This restarts the original process in the
physio(2K) routine. (It also restarts any process that set the
B_ WANTED bit in the buffer header and issued a sleep(2K)
call.) When it gets rescheduled, physioO passes back the status
of the transfer in the user area and returns, either to drllreadO
or drllwriteO.

Notice that the devintr(2K) routine cannot reference the user
area. Since it runs asynchronously, the process that issued the
original I/O request is no longer active. The current user area
belongs to an entirely different process.

If your driver has a timeout feature, you should reinitialize the
hardware whenever a timeout occurs.

6-14 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* drllintrO - interrupt service routine.

*
* Service an interrupt. Note: the interrupt is a
* one-shot and must be re-enabled for each read or
* write.

*
* This routine also is called from drlltirnerO
* to complete an I/O that has timed out.

*/
VOID

drllintrO
{

}

register struct buf *bp;
register ushort cstatus;

cstatus = RA_PHYS->status;
/* Check if valid interrupt. */
if ((bp = dr_aux.dr_actf) == (struct buf *)0) {

drllstatus("Spurious drll Interrupt", cstatus);
return;

}
/* Check if interface is ready. */
if (cstatus & RA_READ Y)

dr_aux.dr_timing = 0;

/* Check if software interrupt. */
if (dr_aux.dr_timing < 0) {

drllstatus("timeout", cstatus);
bp- > b_error F B_ERROR;

}
/* Cancel the timeout. */
dr_aux.dr_timing = 0;
iodone(bp);
dr_aux.dr_actf = 0;

Character Device Example 6-15

Proprietary Information - Do Not C'<>py

DRllSTATUSO

DrllstatusO prints uniformly formatted status messages on
the system console.

DrllioctlO simply resets the hardware, in order to clear a hung
condition. This is unusually brief for a devioctl(2K) routine,
but this, more than any other part of the driver, is yours to use
as you see fit.

6-16 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* drllstatusO - print status message.

*
* Print a formatted status message on the console.

*/
VOID

drllstatus(s, cstat)
char *s;
ushort cstat;

{
printf("[drll: 0/(;6 %x:]", s, cstat);

}

/*
* drllioctlO - device-specific I/O control.

*
* Reinitialize the Ikon board to recover it from
* hung conditions. (This should not happen.)

*/
VOID

drllioctl(dev, cmd, addr, flag)
dey _t dey;
int cmd;
caddr _t addr;
int flag;

{

}

Character Device Example 6-17

Proprietary Information - Do Not Copy

DRllTIMER()

Dr11thner() runs periodically as a result of a timeout(2K) call.
The first call is performed in dr1linit() when the driver is
loaded. The sustaining call is done by dr11timerO itself. In
both cases, the ID returned by timeout() is saved so that the
timeout can be cancelled when the driver is released.

When there is no I/O outstanding, dr11timerO runs every 10
seconds (that is, 10 * HZ). When there is I/O active,
dr11rtimer() runs every second (that is, 1 * HZ).

The SPLDR11!SPLX macros are used to mask out interrupts
from the DRIl. This is because the dr_timing variable also is
manipulated by dr11intr(), and disaster would result if it inter
rupted dr11timer(). Also, the dr1linirO routine is called from
here. If this call were not protected by the SPLDR11,
dr1linirO could interrupt itself. A close look at the code will
tell you that it was not designed to support this. See
timeout(2K) for more information about IPL management in
functions that it calls.

Notice the SDEC; declaration. This must be included to pro
vide storage for the previous value of the processor status word
for SPLDR11 and SPLX See SPL(2K) for a complete discus
sion of these macros.

6-18 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* drlltimerO - timeout routine setup by drllinit().

*
* As long as the driver is installed, this routine
* is called periodically. When no D MA is in progress
* it is called every 10 seconds. When DMA is in
* progress it is called every second.

*
* If a transfer times out, call drllintrO to
* complete the operation.

*/
VOID

drlltimer(arg)
int arg;

{

}

int next = 10*HZ;
SDEC;

SPLDRll;
if (dr_aux.dr_timing > 0) {

next = HZ;
if(--dr_aux.dr_timing == 0) {

dr_aux.dr_timing = -1;
drllintrO;

}
}
dr_aux.dr_timeout = timeout(drlltimer, 0, next);
SPLX;

Character Device Example 6-19

Proprietary Information - Do Not Copy

DRllINlT()

The have VME flag is an external that indicates the presence of
the VMEbus expansion board. The call to chkbusflt(2K) veri
fies the presence of the D Rll board at the RA_PHYS address.
(Actually, it only indicates the presence of something at that
address.)

Drllinit() uses the value of the drllvad pointer to determine
if the driver has been bound already.

The call to sptaUoc(2K) allocates a contiguous region of kernel
virtual memory only; no physical memory is allocated. Later,
the driver sets these page table entries to point to the physical
memory that contains the user's I/O buffer. Note that the size
of this region is one more than the number of pages required to
hold the largest allowable transfer for block devices (MAXBLK
lK blocks). The extra page allows the buffer to start in the
middle of a page and still be MAXBLKs long. If the user
issues a read(2) or write(2) request for more than the max
imum allowable size, physio(2K) fails with EFAULT.

Since the DR11 board supports software-programmable inter
rupt vector generation, the driver issues a get_vec(2K) call to
allow CTIX software to assign an available vector. If the board
required strapping the vector number, drllinit() would have
called set_vec(2K) with a constant equal to the strapped vector
number.

The timeout(2K) call starts the deadman timer running with a
10 second timeout. Drlltimer() continues the timer with
another timeout() call.

Finally, drllinit() sets up the VMEbus address modifier bits
and Interrupt Vector register and initializes the hardware.

6-20 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

1* drllinitO - initialize a loadable driver.

*
* This routine is called by drvbindO in response to a
* syslocal(2) call with a parameter of SYSL_BINDDRV and
* an argument of DRVBIND.

*
* If the driver is loaded already, or any errors are
* encountered during initialiation, u.u_error is set,
* terminating the loading of the driver.

*
* This routine sets up the virtual address for mapping data
* for read and writes, and initializes the hardware.

*1
VOID

drllinit()
{

}

if (!haveVME Ichkbusflt(RA_PHYS, 0)) {

}

printf("drll: no VME or drll board installed");
u.u_error = ENXIO;
return;

if (drllvad != NULL) {

}

printf("drll: driver already installed");
u.u_error = EBUSY;
return;

if ((drllvad = (char *) sptalloc(dtop(MAXBLK)+ 1,

}

(PG_VPG_KW), -1)) == NULL) {
printf("drll: cannot allocate memory");
u.u_error = ENOMEM;
return;

if ((vecnbr = get_vec(Drv_id, drllintr)) < 0) {
printf("drll: cannot get interrupt vector");
u.u_error = EBUSY;
return;

}
dr_aux.dr_timeout = timeout(drlltimer, 0, 10*HZ);
dr_aux.dr_addr = RA_PHYS;

RA_PHYS->modvec = RA_MODVEC;
RA_PHYS- >status = RA_INIT;

Character Device Example 6-21

Proprietary Information - Do Not Copy

DRllRELEASE()

If the device is open, it can't be released. If it is not open,
drllreleaseO simply deallocates the kernel virtual memory
region that drllinit() acquired, cancels the outstanding
timeout(2K) request, and gives back the interrupt vector
number.

6-22 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* drllreleaseO - release a loadable driver.

*
* This routine deallocates the memory used by the
* driver, cancels any outstanding timeout(2K) call,
* and gives back the device's interrupt vector.

*/
VOID

drllrelease()
{

}

SDEC;

if (dr_aux.dr_flags & DR_OPEN) {
u.u3rror = EBUSY;
return;

}
sptfree(drllvad, dtop(MAXBLK)+ 1,0);
SPLDRll;

/*
* Cancel the timer.

*/
untimeout(dr_aux.dr_timeout);

/*
* Give back the interrupt vector.

*/
reset_vec(Drv_id, vecnbr);
SPLX;

Character Device Example 6-23

7 BLOCK I/O TUTORIAL

This chapter describes the Block I/O system in detail, including
the system buffer cache, and the general disk driver. The
chapter also contains an example device driver for a general
disk-type· block device. The example is written in a C-like
pseudocode and includes a program narrative describing the
driver in detail.

OVERVIEW

The Block I/O system supports random access devices that
transfer data in fixed length" chunks." It is sometimes called the
buffered l,LO. ~, since it makes use of the buffer cache to
reduce the amount of physical I/O in the system. Disk drives
are the most common block devices. Tape drives also can be
supported here, but they are frequently classified as raw
character devices. In actual practice, fewer and fewer nondisk
devices are handled by the Block I/O system.

The user rarely opens a block device directly: the most common
interface to the Block I/O system is through the file system.
When the user opens a data file, CTIX software reads the i-node
from the disk and determines that it is not a special (device) file.
From this point on, the kernel routes all read(2) and write(2)
requests through the file system, rather than directly to a device
driver.

When the user requests to read data from a file, CTIX first
searches the buffer cache. If the data is present, CTIX returns it
immediately, with no disk I/O activity. If the data is not
present, CTIX acquires the "oldest" buffer in the cache to hold
the new data. If this buffer contains data that has not yet been
written to disk, CTIX calls the device driver's devstrategy(2K)
routine to write the buffer. When the driver completes the
write, the system is free to reuse the buffer.

Block I/O Tutorial 7-1

Proprietary Information - Do Not Copy

Once it has acquired a free buffer, CTIX software calls the dev
ice driver's devstrategy(2K) ~outine to fill it with the data that
the user requested. When the read operation is complete,
CTIX copies the data from the system buffer to the user's
buffer and returns. When it has read in a block from disk, the
Block I/O system attempts to keep it in the buffer cache as long
as possible.

When the user requests to write data to the file, the operating
system first checks to see if the file offset lies exactly on a
block boundary and if the transfer length is an even multiple of
blocks long. If either of these criteria is not met, CTIX must
first preread a block and merge the new data into it. As with a
normal read, if the data is present in the cache, CTIX does not
need to call the driver to perform physical I/O.

Whether or not CTIX performed a preread, the write request is
satisfied asynchronously. The new or modified buffer is
inserted into the cache: it is not written to disk immediately.
The Block I/O system leaves the unwritten data in the cache as
long as possible. CTIX writes the data to disk only when it
needs to reuse the buffer for another request. The asynchro
nous nature of the Block I/O system makes it impossible to
report physical write errors to the correct process.

Because data written to block devices is retained in memory as
long as possible, CTIX is prone to file system corruption when
the system crashes. In order to minimize the effects of
crashes, CTIX provides the sync(2) request, which writes all of
the modified cache blocks to the disk. System administrators
usually run the update(1M) program to synchronize all disks
periodically.

7-2 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

SYSTEM BUFFER CACHE

The system buffer cache is composed of buf structures known
as .lw.fIti headers, and blocks of kernel memory that are used
as buffers. Each buffer header describes the contents (includ
ing the block and device number) of the associated buffer. The
header also contains two pairs of pointers: bJorw fb_back, and
av_forw/av_back. Each of these pointer pairs can be used to
place the buffer on a doubly linked list or queue.

BASIC STRUCTURE

CTIX software allocates space for the buffer cache at system
initialization time. The cache consumes at least 15 percent of
all available memory. If available memory is limited, CTIX
ensures that the cache contains at least 16 buffers. The cache
is made up of an array of buf structures and a separate array of
buffers. Each buffer is the length of one file system block,
which is 1,024 bytes on the MightyFrame. This mayor may
not be the same length as one physical sector on a disk drive.
The header file <sys/buf.h> contains the definition of the buf
structure.

Block I/O Tutorial 7-3

Proprietary Information - Do Not Copy

The following diagram illustrates the basic structure of the sys
tem buffer cache. Note that each member of the cache is com
posed of both a buf structure (or buffer header) and a buffer.

Buffer
Headers

System
Buffers

System Buffer Cache

Nom

Many drivers, especially character drivers that perform
physical I/O, allocate one or more buf structures for
their own internal use. These buffer headers are not part
of the system buffer cache.

7-4 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

AVAILABLE (FREE) LIST

After allocating memory for the buffer cache and linking each
buffer header to a buffer, CTIX places all of the buffers onto
the available (or free) list. Each buffer on the available list is
available for use by the Block I/O system.

Initially, of course, all of the buffers on the free list are empty:
OTIX can use any of them for data. After the system has been
running for some time, however, most of the buffers on the
free list contain data that various users have read or written.
These "full" buffers are also available in kaa.t recently
~ (L.R.ll.) order. When the Block I/0 system needs a buffer,
it selects the oldest one on the available list: the buffer that has
been on the list for the longest time. If the buffer contains
data that has not been written to disk, CTIX calls the appropri
atedevstrategy(2K) routine to write the contents before reus
ing the buffer.

The available list is a doubly linked list of buffer headers, with
a separate but structure named bfreelist serving as the list head.
Bfreelist does not have an associated buffer, and it is not part
of the system buffer cache: it is simply used to point to the
head and tail of the free list. The b_bcount field of bfreelist
contains the number of buffers on the list. (In a normal buffer
header, this field contains the number of characters in the asso
ciated buffer.)

Block I/0 Tutorial 7-5

Proprietary Information - Do Not Copy

The following diagram illustrates the system available (free)
list: bfreelist is on the left, the buffer headers are on the right.
Only three headers are pictured. Also, to clarify the drawing,
the buffers themselves are not shown. Note that each linked
list is circular: the forward pointer of the final member in the
list points to bfreelist, and the backward pointer of bfreelist
points to the final list member.

bfreelist System Buffer Cache

System Available (Free) List

The only time a buffer is not on the free list is when a
devstrategy(2K) routine has placed it on an I,L.Q~, waiting
for a driver to transfer data into or out of it. The I/O queues
are documented below.

HASH LISTS

Whenever a user issues a request that results in a read or write
to a block device, CTIX software must search the buffer cache
to see if the requested block is already in memory. This would
be a very slow process if the buffers were simply linked
together in a list. In order to reduce the search time, CTIX
hashes the device and block number associated with every
buffer in the cache. The device and block numbers together

7-6 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

serve as the hash key.

The process of hash searching is simple:

1. Apply some function to the key value to transform it into
a small, positive integer.

2. Use the integer directly as an index into a table of the
objects you wish to search.

If the data base has a large number of key values, however, it
may not be possible to find a function that produces a unique
index for every key. In this case, the hashed value can be used
as an index into a table of pointers. Each of these pointers
serves as the head of a linked list of objects with key values
that hash to the same index value. The new hash search algo
rithm is only slightly more complex:

1. Apply some function to the key value to transform it into
a small, positive integer.

2. Use the integer directly as an index into a table of
linked-list heads.

3. Examine the selected linked-list sequentially, comparing
the key value of each member with the desired key.

This is exactly the scheme that the operating system employs to
search the buffer cache.

At system initialization time, CTIX allocates space for an array
of hbuf (hash buffer) structures of the following form:

struct hbuf
{

int bjJags;
struct buf *bjorw; /* Forward pointer */
struct buf *b_back; /* Backward pointer */

};

struct hbuf hbuf[NHBUFS];

Block I/O Tutorial 7-7

Proprietary Information - Do Not Copy

Each hbuf array member is called a h..a.ili. ~ in this document.
Initially, each hash slot is empty: no buffer headers are linked
to it. For each read(2) or write(2) request to a block device,
CTIX software

1. Applies the hash function to the block and device number
referenced in the request;

2. Uses the resulting number as an index into the hbuf
array;

3. Uses the selected hash slot as a list head; then

4. Searches the selected linked list, comparing the block and
device numbers in each buffer header with those of the
requested block.

If CTIX does not find the requested block in the list, it is not
in the buffer cache. In this case

• If the user is reading data, the operating system must allo
cate an available buffer and call the appropriate
devstrategy(2K) routine to initiate a physical read opera
tion.

• If the user is writing data, CTIX must allocate an available
buffer to hold the new information. The new data will
not be written out until this buffer again becomes the old
est on the list and needs to be reused for another request.

7-8 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

The following diagram illustrates the system hash lists.

~
poooo-

Hash Slots

b_flags

*b_forw

*b_back

hbuf[O]

hbuf[1]

b_flags

*b_forw

*b_back

h buf[2]

~

oOIIIIIIl
~

System Buffer Cache

b_flags

........ *b_forw
*b_back

I":::::::::::
:;::::

b_flags

.... *b_forw I---...

*b_back ..
!:::,:,:,:,:,:,:::::: ::::::::::
I:::::::::

System H ash Lists

The data structures down the left side of the drawing are hbuf
structures (hash slots): in their totality, they represent the hbuf

Block I/O Tutorial 7-g

Proprietary Information - Do Not Copy

array. The data structures on the right side of the drawing are
buf structures: in their totality, they represent the system buffer
cache. The buffers themselves are not shown.

Note that each linked list is circular: the forward pointer of the
final member in the list points to the appropriate hash slot, and
the backward pointer of each hbuf member points to the final
list member. Note also that the hash list uses the bJorw/
b_back pointer pair, not the av_forw/av_back pair that the free
list uses. A buffer can be (and usually is) on both the free list
and a hash list at the same time.

I/O QUEUES

There is one I/O queue for each block device or DMA channel
in the system. A disk controller that supports two drives con
currently has two associated I/O queues, not one. The I/0
queue contains a linked list of all outstanding work for the
driver to perform. The devstrategy(2K) routine places new
work onto this queue, typically sorting it according to some
algorithm that ensures the most efficient device access. The
driver's devintr{2K) routine removes entries from the I/O
queue when the requested transfer is complete. For general
disk-type devices, gdstrategy{2K) and gdintr(2K) add :lnrl

remove entries.

7-10 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

The following diagram illustrates the I/O queue for a block
device.

iobuf buf buf buf

I/O Queue - One per Block Device

The structure on the left of the drawing is an iobuf, which is
defined in <sys/iobuf.h>. This structure is the list head of
the I/O queue. The list members are themselves buffer
headers, which are part of the buffer cache. The buffers them
selves are not shown.

Note that the list is singly linked (the av_back pointer is
unused) and that it is not circular (the av_forw pointer on the
last buffer header is NULL). The pointers in the I/O queue
head point to the first and last entries, unlike other buffer
cache list heads.

Since av_forw is used for the I/O queue, a buffer cannot be on
both the available list and an I/O queue at the same time. This
is consistent with the information presented previously: a buffer
remains on the available list until it is placed on an I/O queue
by the devstrategy(2K) routine.

While the buffer is on the I/O queue, the B_BUSY bit is set in
the header, indicating that the buffer is unavailable. When the
device driver calls iodone(2K) to report that the I/O transfer is

Block I/O Thtorial 7-11

Proprietary Information - Do Not Copy

complete, CTIX clears B_BUSY and places the buffer back on
the end of the available list. This is now the "youngest" avail
able buffer in the cache. It must "age" through the entire list
before it is chosen for reuse. (This is true in general, but there
are exceptions that are beyond the scope of this document.)

GENERAL DISK I/O QUEUE STRUCTURE

General disk-type devices use a slightly more complex structure
for their I/O queues. Each disk drive has an I/O queue called a
dl:i.E ~, with exactly the same structure as any block device
I/O queue. There is one I/O queue per physical drive, not per
slice (partition) within a drive. The heads of all of the drive
queues are iobuf structures as they are for any other I/O queue:
they are contained in an array named gdutab, which is declared
in <sys/space.h>. The name gdutab means General Disk
Unit Table.

The gdposO macro, which is defined in <sys/gdisk.h>, takes
a major + minor device number as a parameter and returns an
index into gdutab. The following diagram illustrates the fields
within a major + minor device number for a general disk-type
device.

I pas I
II I I I I I I I I I I I I I II

I CTL I DRV I SLC I
Major + Minor Device Number Fields

General Disk-Type Devices

Many disk controllers support two or more physical drives.
These controllers frequently can perform simultaneous I/O opera
tions on their drives. The operating system provides a second,

7-12 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

higher level structure above the normal I/O queues to provide
support for controllers of this type.

Each disk controller in the system has a coutro])er ~, which
is a linked list of all active I/O queues for the drives that are
connected to the controller. The head of the controller queue is
an iobuf structure: these list heads are kept in an array named
gdtab, which is declared in <sys/space.h>. The forward and
backward pointers in an iobuf structure actually refer to buffer
headers: these must be cast to pointers to iobufs for the con
troller queue. The gdctlO macro, which is defined in
<sys/gdisk.h> , takes a major + minor device number as a
parameter and returns an index into gdtab.

The following diagram illustrates the multiply linked controller
and I/O queue structures for one disk controller. The controller
queue is represented by the three iobuf structures across the top
of the figure. Note that the controller queue is circular, but the
queue head points only to the first member. To simplify the
drawing, the complete paths of the forward and back links
between the first and last members are not shown.

The drive queues are drawn vertically: they are headed by iobuf
structures at the top of the diagram, and contain several buffers
in a singly linked list. Only the buffer headers are shown: the
actual buffers have been omitted for clarity.

Block I/O Tutorial 7-13

Proprietary Information - Do Not Copy

Controller
Queue

Drive (10) Queues

gdutab[drvO] gdtab[ctl]

b_flags
r---..-

gdutab[d rv1]

b_flags

iobut
structures

but (header)
structures

b_flags

General Disk I/O Queue Structure
One per Disk Controller

7-14 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

SUMMARY

A portion of kernel memory is set aside for block device buffers.
Each buffer can hold one file system block, which is not neces
sarily the same as one physical disk sector. Each buffer has a
buffer header associated with it that describes the contents of the
buffer and/or the I/O transfer parameters.

There are three queues associated with the system buffer cache:

• The available or free list.

• The hash lists.

• The I/O queues.

Buffers spend most of their time on two out of the three lists:

• Buffers that contain valid data are on both the hash list
and the available list.

• Buffers that are waiting for a device driver to perform or
complete an I/O transfer are on both the hash list and an
I/O queue.

A buffer cannot be on both the available list and an I/O queue
at the same time, because each list is implemented with the
BV _forw / ay _back pointer pair. (Technically, the I/O queue is
singly linked and uses only ay _forw. In practice, however, vari
ous block device drivers "steal" ay _back for data storage: for
example, the general disk driver uses it to hold the track and sec
tor address of the requested block.)

GENERAL DISK DRIVER

The general disk drive provides a device-independent interface to
disk-like devices. It is exactly like a normal block device driver
in its interface to the CTIX kernel: its entry points are inserted
into each bdevsw array entry that corresponds to a disk-like
device. Using the major device number as an index, CTIX calls
the general disk open, close, print, and strategy routines when
ever it needs to access a disk-like device.

Block I/O Tutorial 1-15

Proprietary Information - Do Not Copy

The general disk driver differs from the normal block device
driver in that it is not able to control any specific piece of
hardware. Its sole purpose is to perform the device-independent
tasks that are common to all disk-like drivers. When the general
disk driver has done all of the work that it can, it calls the
appropriate low-level (physical) device driver to carry out the
actual I/O operation. The general disk driver uses the gdposO
macro with the major + minor device number to obtain an index
into the gdsw array: gdsw contains the addresses of the entry
points of the low-level device drivers.

Routines that start with the characters gd are part of the general
disk driver: they are documented in Appendix A, GTIX Interface
Manual Pages.

The following diagram (reproduced from the Introduction to
Appendix A, GTIX Interface Manual Pages), illustrates the link
ages between a user process and the general disk driver, and
between the general disk driver and the low-level drivers for
disk-like devices.

7 -16 Writing Mighty Frame Device Drivers

Proprietary Information - Do Not Copy

System Call Processing

r--------- High-Level Interface--------.
User-Level

System Calls

open(2)

c/ose(2)

read(2)

write(2)

ioct/(2)

General Disk
Entry Points

gdopen (2K)

gdclose(2K)

gdstrategy(2K)

.... ...

..... ...

.... ...

... ...

.... ...

Block
Device Switch

(*d_open)()

(*d_c1ose)()

(*d_strategy)()

(*d_strategy)()

(*d_strategy)()

....

... ...

.... ...

.... ...

.... ...

General Disk
Entry Points

gdopen(2K)

gdc/ose(2K)

gdstrategy(2K)

gdstrategy(2K)

gdstrategy(2K)

,...--- Low-Level Interface ----,

General Disk
Device Switch

~ 1 (*open)()

.... (*start)() ...
(*timer)()

(*intr)()

I

Interrupt Processing

Device Driver
Entry Points

.1 devopen(2K)

.... de vstart(2K) ...

..... devtimer(2K) ...

.... devintrgd(2K) ...

I

.... 1 p_e_rJ_·n_t() ___ ~-"'.~1 gdintr(2K) ., devintrgd(2K)

General Disk Driver Linkage

Block I/O Thtorial 7-17

Proprietary Information - Do Not Copy

AN SMD DEVICE DRIVER

This section contains an example of a device driver for a
hypothetical Storage Module Drive (SMD) controller: it is a typi
cal general disk-type device. The section begins by describing
the device and its environment. The tutorial driver follows this
introductory material.

DEVICE ARCHITECTURE

This example driver is meant as a simple, tutorial introduction to
the real disk driver presented in Chapter 8, Block Dev£ce Exam
ple. The SMD controller in this example supports only one
drive. It can perform SEEK, READ, WRITE, and FORMAT
operations only. Unlike' the V /S:MD 3200 Controller described in
Chapter 8, Block Dev£ce Example, SMD does not support
implied SEEKs: each SEEK command must be issued explicitly.

The READ and WRITE commands transfer one physical sector
of information only. The FORMAT command formats the entire
device into 1,024 byte physical sectors. Thus, each physical sec
tor is equivalent to one file system block.

The SMD controller generates interrupts for only one condition:
operation complete. A status register on the controller indicates
whether or not the requested operation completed successfully.
The controller performs its own timeout function. It generates
an operation complete interrupt when it detects a hung condi
tion. The status bits in a controller register indicate an opera
tion timeout error.

THE PSEUDOCODE DRIVER

The example driver is written in C-like pseudocode. At times
the pseudocode is abstract and general; at other times, it reads
almost like an actual C program. This example is not meant to
be exhaustive: in particular, it does not do adequate error detec
tion and recovery. Unlike the example in Chapter 8, this driver

7-18 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

does not perform dynamic bad block forwarding. Routines that
begin with the characters hw_ refer to hardware-specific code.

Use this example as a model to understand the V ISMD driver in
Chapter 8. Study it before you attempt to read the more com
plex example. Your own driver almost certainly will have more
functionality than this example.

Block I/O Tutorial 7-19

Proprietary Information - Do Not Copy

smdopenO

Since general disk-type device drivers are not loadable, the work
normally performed by the devinit(2K) routine must be per
formed by devopen(2K). This work should be done only the
very first time the device is opened, though, so it is made condi
tional on the variable firsttime. This one-time initialization is
common for all VMEbus devices:

1. Check the have VME flag to determine if the VMEbus
Interface board is present in the MightyFrame.

2. Check that the EEPROM on the VMEbus Interface board
has a valid checksum.

3. Search the information array III the EEPROM for the
address of the desired device.

4. Check that the board is present at the VMEbus address by
calling probevme(2K). (Note that this really only deter
mines that something is present at the address.)

5. Acquire any required interrupt vectors.

6. Perform any necessary hardware initialization.

7-20 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Open and initialize the SMD device - see devopen(2K).

*/
smdopen()
{

}

struct vmeeprom *eeprom, *is_eepromvalid();
static int firsttime = 1;
int i;

if (firsttime) {

}

SMDAddress = 0; /* Initialize */
1* Make sure VMEbus is present and EEPROM is valid. */
if (haveVME && ((eeprom = is_eeprornvalid()) != 0)) {

}

/* Search the EEPROM for our device */
for (i=O; i<VME_SLOTS; i+ +) {

}

if (eeprom- >slots[ij.type == VMET_SMD) {
SMDAddress = eeprom- >slots[ij.address;
break;

}

1* No VMEbus, invalid EEPROM, or no device. */
if (SMDAddress == 0) {

}

if (eeprom == 0)
gdprint(dev, "Invalid VMEbus eeprom");

u.u3rror = ENXIO;
return(0);

1* Check for presence of board. */
if (probevrne(SMDAddress) {

}

gdprint(dev, ''SMD Controller not present");
u.u_error = ENXIO;
return(0);

if ((vector = get_vec(Drv_id, gdintr)) < 0) {
u.u_error = EBUSY;
return(0);

}
hw_init(vector);
firsttime = 0;

return(I); /* Success */

Block I/O Tutorial 7-21

Proprietary Information - Do Not Copy

smdstart()

The purpose of smdstart() is to start the next I/O request if
the controller is not already busy. Gdstrategy(2K) calls
smdstart() whenever it enqueues new work for the low-level
driver to perform. Gdintr(2K) calls smdstart{) whenever the
devintrgd(2K) routine (smdintr()) reports that the current I/O
request is complete. See the manual page for devintrgd(2K) for
a discussion of the difference between I/O requests and I/O
operations.

Smdstart() first checks for a null I/O queue (dp). It returns if
there is no I/O queue.

The driver then checks the state of the controller and returns if
it is already active servicing another request.

As a precaution, smdstart() checks for an empty I/O queue. If
the I/O queue is empty, it should not have been enqueued onto
gdtab. The gdpanic(2K) call reports a fatal problem in the
high- and low-level disk driver interface.

Next, smdstart() sets up the parameters for the current
transfer in the XferInfo structure. Note that the general disk
driver supports only these three commands: CMD_FORMAT,
CMD_READ, and CMD_ WRl'lE. In keeping with the CTIX
design philosophy, the general disk driver deals with a simple
model of disk activity: it is up to the low-level device driver to
map the model to the real world.

Finally, smdstart{) calls smdxfer() to perform the I/O.

7-22 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Start the next I/O operation - see devstart{ 2K).

*/
smdstart{ dev)
dev_t dey;
{

}

struct gdsw *gds = &gdsw[gdpos(dev)];
struct iobuf *gdt = &gdtab[gdctl(dev)];
struct iobuf *dp = (struct iobuf *)gdt->b_actf;
struct bur *bp;

/* No work queued. */
if (dp == NULL) {

blkacty &= -(l«gdctl(dev));
return;

}
if (dp->b_flags & DP-ACTIVE)

return; /* The controller is already active. */
if ((bp = dp->b_actf) == NULL)

gdpanic("smdstart: I/O queue empty");
/* Setup information for the transfer. */
dp->b_flags F DP_ACTIVE;
XferInfo.rpts = 0; /* No retries yet */
XferInfo.xfrcnt = 0; /* Nothing transferred */
XferInfo.cyl = bp->cylin;
XferInfo.dma_addr = bp->b_un.b_addr;
XferInfo.trk = (ushort) bp- >trksec / gds- >sectrk;
Xferlnfo.sec = (ushort)bp- >trksec % gds- >sectrk;
XferInfo.tcnt = (bp->b_bcount + gds->dsk.sectorsz - 1) /

gds- > dsk.sectorsz;
if (b p- > b _flags & B_FORMA T) {

Xferlnfo.mode = CMD _FORMA T;
XferInfo.retries = 1;

} else if (bp-> bjlags & B_READ) {
XferInfo.mode = CMD _READ;
Xferlnfo.retries = GDRETRIES;

} else {

}

XferInfo.mode = CMD_WRlTE;
Xferlnfo.retries = GDRETRIES;

/* Setup/Start the transfer (if the controller is free) */
smdxfer(Xferlnfo.cyl, Xferlnfo.trk, Xferlnfo.sec,

XferInfo.tcnt, Xferlnfo.mode, dey);

Block I/O Tutorial 7-23

Proprietary Information - Do Not Copy

smdxfer{)

Smdxfer{) breaks up the I/O request into I/O operations and
attempts to start the next operation. A typical disk request
must be carried out in several steps (called I.,LQ. operatjons in
this document):

1. A SEEK operation to position the heads over the desired
cylinder. This step is not required if the heads are already
in place from a previous operation.

2. A READ or WRITE operation to transfer the requested
data. This step will be broken up into several operations
if the requested data should span a track boundary.

First, smdxfer{) checks that the drive is still online. If not, it
sets the appropriate error indications in the buffer header. It
sets the B_ERROR bit to indicate a failure, it sets b_resid to
the number of bytes originally requested minus the number of
bytes already transferred, and it sets b_error to the generic I/O
error code. Finally, smdxfer{) calls gdiodoneO to complete the
request. Note that this is the only time the low-level disk
driver calls gdiodoneO. In the normal case, gdintr{ 2K) makes
the call at the completion of the request.

If the drive is still online, smdxfer{) checks the transfer against
the track limit and adjusts the transfer sector count tent if
necessary. As a precaution, it checks the new transfer count
against zero and calls gdpanic{2K) in case of problems.

7-24 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Perform an I/O request, perhaps involving several I/O operations.

*/
smdxfer(cyl, trk, sec, tcnt, mode, dev);
ushort cyl;
ushort trk;
ushort sec;
uint tcnt;
ushort mode;
dey _t de v;
{

struct gdsw *gds = &gdsw[gdpos(dev)j;
struct iobuf *gdt = &gdtab[gdctl(dey) j;
struct iobuf *dp = &gdutab[gdpos(dev)j;
struct buf *bp = dp- > b_actf;
int ind;
in t ctl = gdctl(dev);

/* In case the drive went off line */
if (!(gds->vjlags & GD_OPENED)) {

dp- > bjlags &= l)P .-ACTIVE; /* release the controller */
/* Mark the I/O as an error */

}

bp- > b_flags F B_ERROR;
bp- > b_resid = bp- > b_bcoun t - XferInfo.xfrcnt;
bp- > b_error = EIO;
bp- > b_flags &= 'B_START;
/* Mark the I/O as done, take it off the queue */
gdiodone(bp, dp, gdt);
return;

/* Does I/O cross a track boundry? */
if ((sec+ tcnt) > gds->sectrk)

tcnt = gds->sectrk - sec;
if (tent == 0)

gdpanic("smdxfer: zero transfer");

Block I/0 Tutorial 7-25

Proprietary Information - Do Not Copy

smdxferO continued

Smdxfer() continues setting up for the current I/O operation.
After setting up, if the driver detects that the controller is in
use, it sets the DP _WAITING flag and returns. The low-level
interrupt handler will detect the waiting request and issue it.

Next, for READ and WRITE commands, the driver issues a
SEEK if required and returns. If no SEEK is required, the
driver checks for physical I/O (I/O directly into or out of user
space) and calls setmap(2K) to remap the user's buffer if
required.

Finally, smdxfer() issues the READ, WRITE, or FORMAT
command and returns.

7-26 Writing MightyFrame Device Drivers

}

Proprietary Information - Do Not Copy

/* smdxferO continued */

/* Setup the current transfer */
Xfer Info.rpteyl =. cyl;
XferInfo.rpttrk = trk;
XferInfo.rptsec = sec;
XferInfo.rpttcnt = tent;
XferInfo.rptmode = mode;
if (gdt- > b_flags & OT_INUSE) { /* Controller is in use */

dp->bjlags != OP_WAITING;
return;

}
gdt->bjlags 1= OT_INUSE;
gdt- > b_dev = dey;
gdt- > b_actf = (struct buf *) dp;
if (mode != CMOYORMAT) {

if (Xferlnfo.curcyl != cyl) {
dp- > b_flags != OP _SEEKING;
hw_seek(cyl, trk); /* Seek to the desired cyl */
return;

}
if (bp- > bjlags & B_PHYS) /* Called from physio(2K)? */

XferInfo.dsk_dma_addr = setmap(bp, dp->vaddr,
(XferInfo.xfrcnt * gds- >dsk.sectorsz),
(tent * gds- > dsk.sectorsz));

else
XferInfo.dsk_dma_addr = XferInfo.dma_addr;

}
dp->b_flags != OP_ACTIVE;
gdtab[gdctl(dp-> b_dev) j.bjlags != o T_OMAON;
switch (mode) {
case CMO _REAO :

h w_read(cyl, tr k, sec);
break;

case CMO _WRITE:
hw_write(cyl, trk, sec);
break;

case CMO _FORMA T:
hw_format(cyl, trk);
break;

default:
gdpanic("smdxfer: invalid mode");

}

Block I/O Tutorial 7-27

Proprietary Information - Do Not Copy

smdintrO

CTIX calls the gdintr(2K) routine whenever it receives an inter
rupt from the SMD controller. Gdintr(2K) verifies that the
interrupt is expected (because the controller is active) and then
calls smdintrO to handle the interrupt.

It is the responsibility of smdintrO to

1. Determine the reason for the interrupt. The SMD con
troller generates interrupts for two reasons:

• SEEK, READ, WRITE, or FORMAT operation com
plete (with or without error).

• The drive has gone offline.

2. Perform the required action based upon the interrupt rea
son and drive status. Possible actions are

• Retry a failed SEEK, READ, or WRITE operation.

• Issue a READ or WRITE operation after a SEEK
completes.

• Issue another in a series of READ or WRITE opera
tions for an I/O request that crossed a track boun
dary.

3. Return a request complete or incomplete indication to
gdintr(2K).

If smdintrO indicates that the current I/O request is complete,
gdintr(2K) calls gdiodoneO on the buffer and then calls
smdstartO to begin processing the next I/O request.

The processing of the current interrupt is governed completely
by the switch statement: it handles the interrupt reasons
described above. In the case of a drive offline interrupt,
smdintrO calls binvalO to invalidate all of the system cache
blocks related to the current drive. Then it marks the error con
dition in the current buffer header and returns 0 to gdintr(2K).
This tells the general disk driver to call gdiodoneO on the
buffer.

7 -28 Writing Mighty Frame Device Drivers

Proprietary Information - Do Not Copy

/*
* Process completion interrupts from the SMD controller.
* Returns:
* 0 - current operation is complete: call gdiodone();
* 1 - current operation is continued or retried.

*/
smdintr(bp, dev, vec)
struct buf *bp;
dey _t dey;
int vec;
{

register struct iobuf *gdt = &gdtab[gdctl(dev)];
register struct gdsw *gds = &gdsw[gdpos{ dev)];
ushort status;
int continuef;

status = hw_status();
hw_clrint(); /* Clear the interrupt. */

gdt->b_flags &= -(DT_INUSE IDT_DMAON); /* The controller is free *1

/* Process completion status. *1
switch (status) {
case DRVOFFL: 1* The drive went offline *1

gds->v_fIags &= -GD_READY;
binval{dp->b_dev); /* Invalidate all cache blocks */

/* Free the drive */
dp->bjlags &= -(DP_SEEKINGpP_ACTIVE);

/* Mark an error in the buffer */
bp- > b_flags F B_ERROR;
bp->b_resid = bp->b_bcount- gdr->xfrcnt;
bp- > b_error = EIO;
bp- > b_fIags &= -S_START;
return(O);
/* NOTREACHED */

Block I/O Tutorial 7-29

Proprietary Information - Do Not Copy

smdintr{) continued

The next case handles fatal errors on I/O operations. First, the
driver formats an appropriate error message. Then it decre
ments the retry count. If the count is zero, the I/O request has
failed: smdintr{) sets the error indication in the buffer header
and returns o. This tells gdintr{2K) to call gdiodoneO on the
buffer. If the retry count is not 0, smdintrO calls smdxfer() to
repeat the I/O operation.

7-30 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* smdintr() continued */

case FTLERR: /* A fatal error occurred */
fmtberr(); /* Print an error message */
gdr- >retries--;
gdr- >rpts+ +
if (gdr- >retries == 0) {

dp->b_flags &= -oP_ACTIVE;
/* Mark the error in the bp */
bp- > b_flags f= B_ERROR;
bp->b_resid = bp->b_bcount- gdr->xfrcnt;
bp- > b3rror = EIO;
bp-> b_flags &= "B_START;
return(O); /* I/O is done */

} else {

}

smdxfer(Xferlnfo.cyl, Xferlnfo.trk, XferInfo.sec,
Xferlnfo.tcnt, Xferlnfo.mode, dey);

return(l); /* Retrying the I/O */

/* NOTREACHED */
break;

Block I/O Tutorial 7-31

Proprietary Information - Do Not Copy

smdin1r() continued

These two cases handle successful I/O operations. If there was
a recoverable error (an error that the controller itself could rec
tify) , the driver formats an error message, and then falls into
the NOERR case.

If the last operation was a SEEK, the driver resets its internal
state flags, updates the current cylinder information, and breaks
from the switch statement.

If the current I/0 operation was not a SEEK, the driver updates
the transfer information to skip past the length of the transac
tion. If there is any more data to transfer, smdin1r() calls
smdxfer() to carry on with the next I/O operation.

7-32 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* smdintrO contin ued */

case RCOVBERR: /* Recoverable error occurred */
fmtberr(); /* Print an error message */
/*Fall through */

case NOERR: /* No error occurred */
if (dp->b_flags & DP_SEEKING) {

dp->bjlags &= l)P_SEEKING;
dp->bjlags F= DP_WAITING;
XferInfo.curcyl = Xferlnfo.rptcyl;
break;

}

/* Setup for continuation of transfer */
Xferlnfo.xfrcnt + = XferInfo.rpttcnt;
XferInfo.sec + = Xferlnfo.rpttcnt;
Xferlnfo.tcnt -= Xferlnfo.rpttcnt;
if (Xferlnfo.sec >= (gds->sectrk) {

XferInfo.sec -= gds- >sectrk;
XferInfo.trk+ + ;

}

if (XferInfo.trk >= gds- >dsk.heads) {
Xferlnfo.trk -= gds- >dsk.heads;
Xferlnfo.cyl+ + ;

}

/* Increment by bytes, each block is 1,024 bytes (2**10)
Xferlnfo.dma_addr + = (Xferlnfo.rpttcnt < < 10);
if (!Xferlnfo.tcnt) {/* This operation is done */

dp->b_flags &= -(DP_WAITINGpP_ACTIVE);
/* Clear error flag */
bp- > bJesid = 0;
continuef = 0;

} else {

}

/* Continue with the I/O */
smdxfer(XferInfo.cyl, Xferlnfo.trk, XferInfo.sec,

XferInfo.tcnt, Xferlnfo.mode, dev);
continuef = 1;

break;

case default:

}

gdpanic("smdintr: unknown status");
break;

Block I/O Tutorial 7-33

Proprietary Information - Do Not Copy

smdin1r{) continued

If control comes this far, the interrupt handler attempts to start
another I/O operation. If the controller is free, and if the
DP _WAITING flag is set, smdintr() calls smdxferO to per
form the next I/O operation.

Finally, the low-level interrupt handler returns the continuef
flag, indicating whether the current I/O request (not operation)
is complete.

7-34 Writing MightyFrame Device Drivers

}

Proprietary Information.,. Do Not Copy

/* smdintrO continued */

gds->v_flags F GD-.READY;

/* Try to perform another I/O *1
if (!(gdt->b_flags & DT_INUSE)) {

dp = (struct iobuf *)gdt->b_actf;

}

if (dp->bjlags & DP_WAITING) {
dp-> bjlags &= -oP _WAITING;
if (Xferlnfo.curcyl != XferInfo.cyl)

gdpanic("curcyl! =cyl");

}

smdxfe r(Xferlnfo.rptcyl, Xferlnfo.rpttrk,
Xferlnfo.rptsec, Xferlnfo.rpttcnt,
XferInfo.rptmode, dp- > b_dev);

break;

/* Tell gdintrO whether the curre nt transfer is still in progress */
return(continuef);

Block I/O Thtorial 7-35

Proprietary Information - Do Not Copy

smdtimer{)

Smdtimer{) reports the controller status to the general disk
driver. The gdtimer(2K) routine calls smdtimer() periodically
to determine whether or not the indicated drive is online.

7-36 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Report controller status back to gdtimer() - see deytimer(2K).
* Returns:
* 0 - the drive is NOT ready.
* 1 - the drive is ready.
* -1 - the controller is busy.

*/
smdtimer(dey)
dey _t de v;
{

struct gdsw *gds = &gdsw[gdpos(dev)];
struct iobuf *gdt = &gdtab[gdctl(dev)];
int status;

if (!(gds->vjlags & GD_OPENED))
gdprint(dey, "smdtimer: called on unopened drive");

if (gdtr>b_flags & DT_INUSE)
return(-1); /* Controller is busy */

return((hw_status() ==DRVOFFL)? 0: 1);
}

Block I/O Thtorial 7-37

8 BLOCK DEVICE EXAMPLE

This chapter contains the annotated source listing of the device
driver for the Interphase V jSMD 3200 Disk Controller. This is
an actual driver that runs under the CTIX operating system on
the MightyFrame.

The V jSMD 3200 is a very high-speed, DMA-driven disk
controller that can support either one or two disk drives. It has
an on-board 68000 that provides an intelligent interface to the
device driver. In particular, it supports

• On-board sector caching with dynamic sector allocation
and deallocation.

• Zero latency reads and writes.

• Overlapped and implied seeks.

• Multiple, programmable vector numbers to speed
in terrupt processing.

• Software selectable disk sector sizes.

See the Interphase VjSMD 3200 User's Guide for a complete
description of the hardware and its functionality.

Throughout this chapter, source code appears on the right hand

Block Device Example 8-1

Proprietary Information - Do Not Copy

page, while the annotations to it are on the left.

NOTE

Do not be confused by the fact that the routines in this
chapter all begin with the letters gd. Throughout this
document, the generic names for functions that are part of
the general disk driver also begin with gd: for example,
gdopen(2K), gdstrategy(2K), and so on. These generic
functions make up the high-level, device-independent layer
of every disk driver. All of the routines in this chapter,
however, are part of the low-level portion of a driver for
one specific general disk-type device. The prefix gdvs32
identifies the functions as part of a driver for a general
disk-type device named the V /SMD 3200.

8-2 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

This page intentionally left blank.

Block ·Device Example 8-3

Proprietary Information - Do Not Copy

GDVS32.H

The first group of defines are hardware-dependent parameters
for the Interphase controller. VS32_MAXDMA supports nine
pages times 4,096 bytes per page or 36K bytes maximum
transfer. The extra page is to allow the transfer to start in the
middle of a page.

The DP _:xxxx flags indicate the state of each I/O queue.
Gdutab is an array of iobufs, each serving as the head of the
queue of active I/O requests for one drive.

Gdvs32uib is the V /SMD 3200's Unit Information block. The
controller supports software configurable drive parameters: they
are communicated to it through the UIB. Before the controller
can process any other command, it must receive an INITIAL
IZE command for each drive on it, with the UIB as a parame
ter.

The attribute flags are the values for gdvs32uib.attrib.

tells the controller to return to track zero and
then reseek the target track before reporting a
read or write failure.

tells the controller to generate an interrupt
whenever the drive status changes: for exam
pIe, when a SEEK operation is complete.

tells the controller to format each track to con
tain a spare sector. This way, whenever a bad
sector is encountered on a track, there is a
good chance that the data can be redirected to
the spare sector on the same track, thus incur
ring no extra seek latency for bad block for
warding.

8-4 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32.h - Hardware definitions for the Interphase V /SMD 3200 */
#define VS32_GAPSZ 16 /* Default size of gapl and gap2 */
#define VS32_MAXCYL 2048/* Support a max of 2048 cylinders */
#define VS32_MAXHEAD 16 /* Support a maximum of 16 heads */
#define VS32_MAXTRACK (VS32_MAXCYL*VS32_MAXHEAD)
#define VS32_MAXDMA (9) /* Number of pgs for DMA (per drive) */
#define VS32_INTL VL 3 /* SPLD ISK is 3 */

/*
* Values in b_flags in gdutabl]. The high 8 bits are reserved
* for use by gdisk.h.

*/
#define DPACTIVE OxOOOI /* D river operation in progress */

/* Seek operation in progress */
/* Waiting for controller */

#define DP _SEEKING Ox0002
#define DP_WAITING Ox0008
#define DPJ)ELAYRDOx0010 /* Reading a delayed bad block */

struct gdvs32uib {
unchar vOsh;
unchar vOnh;
unchar vlsh;
unchar vlnh;
unchar psectrk;
unchar skew;
ushort sectorsz;
unchar gapl;
unchar gap2;
unchar interleave;
unchar retry;
ushort cyls;
unchar attrib;
unchar unused;
unchar scil;
unchar sciv;

};

/* Attributes */
#define A T_RSK OxOI
#define AT_MBD Ox02
#define A T_INH Ox04
#define A T_D LP Ox08
#define A T_STC Oxl0
#define AT_CE Ox20
#define AT_SSE Ox40

/* Volume zero start head number */
/* Volume zero n urn ber of heads */
/* Volume one start head n urn ber */
/* Volume one number of heads */
/* Number of sectors per track */
/* Spiral skewing factor */
/* Bytes per sector */
/* Number of words in gap! */
/* Number of words in gap2 */
/* Interleave factor */
/* Num ber of retries on data error */
/* Number of cylinders */
/* Attribute flags */
/* Reserved */
/* Status change interrupt level */
/* Status change interrupt vector */

/* Enable restore and reseek on error */
/* Enable the transfer of possibly bad data */
/* Increment by Hea.d */
/* Dual Port */
/* Status Change */
/* Enable Sector Caching */
/* Allow a spare sector on each track */

Block Device Example 8-5

Proprietary Information - Do Not Copy

The gdvs32iopb structure describes the I/O parameter block
used by the V /SMD 3200 Controller. Every I/O request pro
cessed by the controller uses one or more of these fields. The
fields generally are self-explanatory. The following list explains
a few of the more complex fields.

bufferp contains the address of the buffer where the
transfer will take place.

buf_rnerntype contains a descriptor indicating whether the
controller should perform 8-bit, 16-bit, or 32-
bit data transfers.

buf_addmod con tains the VMEbus address modifier bits
that the controller should assert during its
DMA transfers.

iopbp When the OF_LINK_ENABLE bit is set in
gdvs32iopb.flags, the V /SMD 3200 processes
multiple, linked I/O requests. In this case,
iopbp points to the next 10PB in the chain.
The last 10PB in the chain must have the
OF_LINK_ENABLE bit cleared.

iopb_rnerntype contains a descriptor indicating whether the
controller should perform 8-bit, 16-bit, or 32-
bit data transfers when reading the linked
IOPB.

iopb_addmod con tains the VMEbus address modifier bits
that the controller should assert when reading
the linked 10PB.

See the Interphase V/SMD 3200 User's Guide for a complete
specification of the 10PB.

8-6 Writing MightyFrarne Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32.h continued */

struct hilo {
ushort hi;
ushort 10;

};
typedef struct hilo hilo;

struct gdvs32iopb {

};

unchar command; 1* Drive command code */
unchar flags; 1* Command flags */
unchar
unchar
ushort
unchar
unchar
ushort
hilo
unchar
unchar
unchar
unchar
unchar
unchar
hilo
unchar
unchar
unchar
unchar

status; 1* Status code *1
error; 1* Error code *1
cyl; 1* Cylinder number *1
head; 1* Head number *1
sec; 1* Sector number *1
sectors; 1* Sector count *1
bufferp; 1* Address of the 1/0 buffer *1
buCmemtype; 1* Memory type for the 1/0 buffer *1
buCaddmod; 1* Address modifier for the 1/0 buffer *1
int_Ievel; 1* Interrupt level *1
int_complete; 1* Normal completion interrupt vector *1
dmaburst; 1* DMA burst count *1
int_error; 1* Error interrupt vector *1
iopbp; 1* Address of the next 10PB *1
iopb_memtype; 1* Memory type for the next IOPB *1
iopb_addmod; 1* Address modifier for the next IOPB *1
sp_skew; 1* Spiral skew *1
unused; 1* Reserved *1

Block Device Example 8-7

Proprietary Information - Do Not Copy

The MEM_XXX defines are used in the two
gdvs32iopb.xxx_memtype fields. The AM_NN_K defines are
used in the two gdvs32iopb.xxx_acldmod fields.

The Interphase controller contains 12K bytes of on-board RAM
for sector buffering. It also has a 512-byte area for comm uni
cation with the driver. Gdvs32ctJ defines this communications
area. The fields are defined as follows:

command

iopb

Xiopb

Xuib

contains the status bits for each drive on the
controller. Note that they are stored in reverse
order: that is, unit_status [0] contains the
status of Drive 1, and vice-versa. This
accounts for the code unit_status [drv"l].

holds the controller command and status regis
ter. This register contains the GO bit, which is
used to start an operation, and the BUSY bit,
which indicates the end of an operation.

holds the IOPB as defined by the gdvs32iopb
data structure. This is the only IOPB required
by the controller; the Xiopbs are used for the
convenience of the driver only.

is an array of lOPEs, seven for each drive on
the controller. The driver sets up one DC_
FETCH_AND_EXECU'lE_IOPB command in
gdvs32ctJ.iopb, it sets the OF _LINK_
ENABLE bit in gdvs32iopb.flags, and then it
builds specific I/O requests for each drive in
the Xiopb array.

holds the Unit Information blocks for each
drive on the controller.

The US_XXXX constants define the bits in gdvs32ctl.unit_-.
status. The CS_XXXX constants define the bits in gdvs32ctJ.
command when the register is read. The CMD_XXXX con
stants define the bits in gdvs32ctJ.conunand when the register
is written.

8-8 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

1* gdvs32.h continued *1

1* VME address modifiers and memory types *1
#define MEM_32 3 1* Perform 32-bit DMA operations *1
#define MEM_16 2 1* Perform 16-bit DMA operations *1
#define MEM_INTERNAL 1 1* Data is in internal controller memory *1
#define AM_16_K Ox2D 1* 16 bit address space *1
#define AM_24_K Ox3D 1* 24 bit address space *1
#define AM_32J< OxOD 1* 32 bit address space *1
#define NXIOPB 7 1* Support 7 Auxiliary IOPBs *1
1* The VSMD3200 short address space layout *1
struct gdvs32ctl {

unchar u nit_status [2]; 1* Unit 1/0 status register *1
ushort command; 1* Command/status register *1
struct gdvs32iopb iopb; 1* IOPB buffer area *1
struct gdvs32iopb Xiopb[2] [NXIOPB]; 1* Unit Oil aux IOPB areas *1
struct gdvs32uib Xuib[2]; 1* Unit Oil aux UIB areas *1
char unused[52];

};
1* Unit Status Bits *1
#define US_DREADY Ox01 1* Drive is ready *1
#define US_WRPROT Ox02 1* Drive is write protected *1
#define US~USY Ox04 1* Drive is busy *1
#define US_FA UL T Ox08 1* D rive fault *1
#define US_ONCYL Ox10 1* Drive is on cylinder *1
#define US_BAD SEEK Ox20 1* Seek error *1
#define US_PRESENTOx40 1* Unit is present *1
#define US_UREADY Ox80 1* Unit is ready *1
1* Controller Status Bits (read command register) *1
#define CS_ELC Ox10 1* Error Last Command *1
#define CS_OD Ox40 1* Operation was concluded *1
#define CS_BUSY Ox80 1* Begin Operation *1
#define CS_BERR Ox0100 1* Bus Error Has Occured *1
#define CS_BOK Ox4000 1* Board passed self test *1
#define CS_SLED Ox8000 1* Status LED *1
1* Status Change Bits *1
#define CS_SCS Ox0200 1* Status Change Source *1
#define CS_SC Ox0400 1* Status was changed *1
1* Com mand Bits (write command register) *1
#define CMD_GO Ox0080 1* Start Operation *1
#define CMD _BD CLROx1000 1* Reset the board *1
#define CMD_SFEN Ox2000 1* Enable the assertion of SYSFAIL *1
#define CMD _SLED Ox8000 1* Set/Clear Status LED *1

Block Device Example 8-~

Proprietary Information - Do Not Copy

The DC_XXXX constants define the controller commands.
They are written to the gdvs32iopb.command field.

The CF _XXXX constants define the flag values that can be
written to the gdvs32iopb.flsW; field.

The SR_XXXX constants define the bit values that are reported
in the gdvs32iopb.status field.

Gdvs32driver is a pointer to a region of memory that is allo
cated in gdvs320penO. It contains information describing all
in-progress I/O on a drive-by-drive basis.

8-10 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32.h continued */

/* Drive Commands (in the IOPB) */
#define DC_CLEARFAULT Ox97
#define DCJ)IAGNOSTIC Ox70
#define DCYORMAT_TRACK Ox84
#define DCJ-IANDSHAKE Ox86
#define DC_INITIALIZE Ox87
#define DC_MAP_SECTOR Ox90
#define DC_MAP _TRACK Ox85
#define DC....READJIEADER Ox74
#define DC_READ _LONG Ox71
#define D C....READ _SECTORS Ox81
#define DC_RESET Ox8F
#define DC_RESTORE Ox89
#define D C....REYORMAT Ox8B
#define DC_SEEK Ox8A
#define D C_TRACK_ID Ox9A
#define DC_VERIFY_TRACK Ox99
#define DC_WRlTEJ-ONG Ox72
#define DC_READ_NON_CACHED Ox94
#define D C....READ _SEC TOR....BUFFER Ox79
#define D C....REPORT_CONFIGURATION Ox77
#define DC_VERIFY_SECTORS Ox83
#define DC_WRITE_SECTORS Ox82
#define DC_WRlTE_SECTOR.J3UFFER Ox78
#de fine D C_FETCHJ.ND ...,EXECUTE_IOPB Ox9B
#define DCYORMAT_TRACK_WI'TIIJ)ATA Ox8C
/* Command Flags (in the IOPB) */
#define CF _ECC..,.ENABLE OxOl
#define CF _INT_ENABLE Ox02
#define CF ...,ERROR_D ETECTION_D ISABLE Ox04
#define CF _RESERVE~NABLE Ox08
#define CF J-OGICAL_TRANSLATION Oxl0
#define CF J-INK_ENABLE Ox20
#define CF _VOLUME_NUMBER Ox40
#define CF _UNIT_NUMBER Ox80
/* Status field (in the IOPB) */
#define SR_OK Ox80
#define SR_CIP Ox81
#define SR...,ERR Ox82
#define SR_EXC Ox83
/* Information about the transfer in progress. */
extern struct gddriver *gdvs32driver;

Block Device Example 8-11

Proprietary Information - Do Not Copy

GDVS32.C - PREAMBLE

sys/sysrnacros.h See the macros(2K) in Appendix A, CTIX
Interface Manual Pages.

sys/page.h contains fundamental memory management
constants.

sys/buf.h

sys/elog.h

sys/iobuf.h

sys/user.h

sys/errno.h

sys/systm.h

sys / gdisk.h

sys/gdvs32.h

sys/iohw.h

sys /hardware.h

sys /VlIle.h

contains the declaration for the buffer
header structure buf.

contains declarations to support error log
gmg.

contains the declaration of the iobuf data
structure.

contains the declaration for the user struc
ture. This holds all of the per-process infor
mation that is not needed by CTrx: while the
process is swapped out.

contains the system error constants defined
in the Introduction to Section 2 of the CTIX
Operat£ng System Manual.

contains extern declarations for the most
important variables, structures, and func
tions in the CTrx: operating system.

contains declarations and definitions used
throughout the general disk (gd) system.

contains' hardware and programming defini
tions for the Interphase V /SMD 3200 Con
troller.

contains defines for I/O system hardware.

contains defines for various hardware regis
ters.

contains VMEbus EEPROM structure
declaration.

8-12 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/ **
* gdvs32.c

*
* CTIX 5.0 driver for Interphase V /SMD 3200.

** /
static char gdvs32_c[I = " (#)gdvs32.c 5.33";

#include "sys/param.h"
#include "sys/types.h"
#include "sys/sysmacros.h"
#include "sys/page.h"
#include "sys/buf.h"
#include "sys/elog.h"
#include "sys/iobuf.h"
#include "sys/user.h"
#include "sys/errno.h"
#include "sys/systm.h"
#include "sys/gdisk.h"
#include "sys/gdvs32.h"
#include "sys/iohw.h"
#include "sys/hardware.h"
#include "sys/vme.h"
#include "sys/i8259.h"
#include "sys/spl.h"
#include "sys/de bug.h"

Block Device Example 8-13

Proprietary Information - Do Not Copy

The DFLT_ID/Drv_id mechanism is handled completely by the
linker. Simply include these two lines in every driver, and the
driver ID will be assigned properly, whether it is loadable or is
configured in with the kernel. For more information, see
Chapter 9, Integrat';ng the Driver.

Vdladdr contains the VMEbus address of the controller.

VSindex takes a minor device number and returns an index
into the array of gddriver structures reserved by the driver.
This array is named gdvs32driver. There is one gddriver struc
ture for each physical device that this driver controls. Each
structure describes the current DMA operation in progress on
one device.

All extern declarations appear next. The driver routines also
are declared for the purpose of documentation.

CTIX software sets the haveVME flag to nonzero if the
VMEbus expansion board is installed in the system.

8-14 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

1* gdvs32.c *1

extern int DFLT_ID;
static int DrvJd = (int) &DFLT_ID;
stru ct gd vs32ctl *V ctladdr;
1* The index into the driver table (2 drives per controller) *1
#define VSindex{X) (((gd_config[gdctI(X) I.cs) < < 1) + gddrive(X))
1* Virtual to compressed virtual addresses for 24 bit VME address space *1
#define vtocv24(X) ((caddr_t)((int)X & OxOO7FFFFF))

1* Flags for the IOPB *1
#define iopbflags(drv) (CF -.ECC_ENABLE I CF _INT-.ENABLE I

(drv 7 CF _UNIT_NUMBER: 0))
#define iopblink(drv) (CF J-INK....ENABLE I CF _INT_ENABLE I

(drv 1 CF _UNIT_NUMBER: 0))

#define VOID int 1* To document functions returning no value *1
VOID gdvs32doxfr(); 1* Initiate the transfer *1
int gdvs32errors(); 1* Diagnose error conditions *1
int gdvs32intrO; 1* Device interrupt handler *1
int gdvs32open(); 1* Open the device *1
VOID gdvs32seek(); 1* Perform a SEEK or RESTORE *1
VOID gdvs32start(); 1* Start 1/0 on the controller *1
VOID gdvs32statuschange(); 1* Process Status Change interrupt *1
int gdvs32timerO; 1* Return status to gdtimerO *1

extern VOID binval();
extern VOID delay();
extern VOID fmtberrO;
extern int gdaddbadblk();
extern int gdaltblk();
extern int gdintr();
extern VOID gdiodone();
extern VOID gdpanicO;
extern VOID gdprint();
extern struct vmeeprom *is_eepromvalidO;
extern VOID logstray() ;
extern VOID printf();
extern int probevme();
extern int set_vecO;
extern caddr_t setmap();
extern caddr_t s ptallocO;
extern caddr_t sptballoc() ;
extern int strcmp();
extern int haveVME;

Block Device Example 8-15

Proprietary Information - Do Not Copy

GDYS320PEN()

Gdvs32openO is called as a result of a mount(2) or an open(2)
system call. In either case, the code to handle the request
includes a line of the form:

("'bdevsw(bmajor(dev)] .d_open) (minor{ dev), flag);

which calls gdopen(2K) with a flag parameter indicating
whether the device is to be mounted or opened with WRITE
permISSIon. GdopenO verifies its parameters and then calls
gdvs32openO with a statement of the form:

if « ... gdsw[pos].open)(minor_dev) = 0)
return; / ... open failed - it set u.u_error ... /

Firsttime tells gdvs32openO to perform one-time initialization
for the V jSMD 3200 Controller.

Dp is initialized to point to the gdutab structure for the
requested device. Gdutab is an iobuf structure that contains
the head of the list of all active buf structures for this device.

Smdp is initialized to the base address of the I/O registers and
10PB of the controller. The structure of this region is defined
by gdvs32ctJ.

See qprintf(2K) for a complete description of the debugging
macros. The header file <sys/debug.h> documents the
default uses for the various debugging levels.

Gdvs32openO first verifies that the VMEbus Expansion board
is installed. Next, it checks vp to make certain that the call to
is_eepromvalid(2K) did not indicate that the VMEbus
EEPROM had an error. Then, it verifies the drive number.

8-16 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* gdvs32open() - open V /SMD 3200-type device.

*
* Returns:
* 0 - Open failed.
* 1 - Open succeeded.

*/
int

gdvs32open(dev)
register dey _t dey;
{

register short ctl = gdctl(dev);
register struct gdsw *gds = &gdsw[gdpos(dev) I;
static int firsttime = 1;
short drive no;
int vector;
struct vmeeprom *vp = is_eepromvalidO;

register struct iobuf *dp = &gdutab[gdpos(dey) I;
register struct gdvs32ctl *smdp = (struct gdvs32ctl *)dp->io_addr;
register struct gdvs32iopb *iopbp;
register struct gddriver *gdr;

qprintf("gdvs32open(dev: Oxo/oX) dp is Oxo/oX", dey, dp);
if (!haveVME) {

}

gdprint(dev, "VME interface board not present");
u.u_error = ENXIO;
return(O);

if (!vp) {

}

gdprint(dey, "EEPROM is not valid");
u.u_error = ENXIO;
return(0);

if (gddrive(dev) > 1) {

}

/* Only drives 0, 1 allowed */
u.u_error = ENXIO;
return(0);

Block Device Example 8-17

Proprietary Information· - Do Not O>py

The code that is conditioned by the if (tirsttime) test is per
formed only once. The low-level drivers for general disk-type
devices do not have a devinit(2K) function, because they can
not be loaded by Iddrv{lM). Thus, they must use something
like the firstUme flag to control one-time initialization.

First, gdvs32openO searches through the gd_contig array for
the last occurrence of this controller type. The cs field of the
last entry contains the number of instances of this controller in
the system.

The driver calls sptballoc(2K) to allocate enough memory to
hold the gddriver data structures: one for each drive on every
V /SMD 3200 Controller. If it can't get the memory the
gdvs32open() fails.

If the sptballoc(2K) call succeeds, gdvs32openO clears the
tirsttime flag and proceeds.

8-18 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32open() continued */

if (firsttime) {
short i;

}

/* Allocate space for the driver tables - get enough
* space for all instances of this controller.

*
* Search the gd_config structure for the LAST occurrence
* of this driver type - it's "cs" field will be the
* number of occurrences of this controller.

*/
for (i=gd_cn1r1; i>= 0; i--)

if (strcmp(gd30nfig[ctl].dev, gd_config[i].dev) == 0)
break;

if (i < 0)
gdpanic("No gd_config entry for gdvs32 controller");

qprintf("found o/od occurrences", gd_config[i].cs+ 1);
/* Need two driver structures per controller */
gdvs32driver = (struct gddriver *)sptballoc(

(int)(sizeof(struct gddriver) * 2 *
(gd30nfig[i].cs+ 1)));

if (gdvs32driver == NULL) {

}

gdprint(dev, "Could not get space for gdvs32driver");
u.u_error = ENXIO;
return(0);

firsttime = 0;

Block Device Example 8-19

Proprietary Information - Do Not Copy

The next section of code is performed only if the driver has not
yet determined the address of the controller board (dp
>io_addr).

The get_vee(2K) call allocates and assigns an interrupt vector to
this device driver. Note that the address of the gdintr(2K}
routine is passed as the interrupt handler, not gdvs32intr().
Gdintr() calls this driver's interrupt handler only after it has
validated the interrupt v~ctor number and has checked that
there is activity expected on the interrupting device. The call
in gdintrO is with a statement of the form:

if ((*gdsw[pos] .intr)(bp, bp-> b_dev, vee))
return; /* I/O retried or continued */

The next lines in gdvs320penO search the gdint array and
insert the new vector number. Gdintr(2K) uses this table to
verify the interrupts as they come in.

Next, gdvs32openO searches through the VMEbus EEPROM
for an entry describing this controller. This entry contains the
VMEbus address for the controller. If the entry is not found,
gdvs32openO returns with an error.

After getting the address from the EEPROM, gdvs320penO
probes the bus to make certain that the controller is present. If
the board is in the system, gdvs32openO clears the controller
memory.

8-20 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32open() continued */

if (!dp->io_addr) {
register short i, ctlr, *Wp;

qprintf("initiaJizing controller o/oX", ctl);
/* plug the interrupt vectors */
vector = get_vec(Drv_id, gdintr);
for (i=O; gdint[i].vec != 0; i+ +)

gdint[i].vec = vector; gdint[i+ +].ctl = ct1;

/* Search the EEprom for the correct occurance of this controller */
for (ctlr=O, i=O; i <VME_SLOTS; i+ +) {

}

if (vp->slots[i].type == VMET_V3200) {

}

if (gd_config[ctl].cs == ctlr) {

}

smdp = (struct gdvs32ctl *)vp->slots[i].address;
qprintf("controller is slot %d at address o/oX", i, smdp);
break;

ctlr+ + ;

if (!smdp) {
gdprin t(dev,

"address for VSMD3200 controller not found in EEprom");
u.u_error = ENXIO;
return(O);

}

/* Check for the presence of the controller board */
if (probevme(smdp)) {

}

gdprint(dev, "VSMD3200 controller board not present");
u.u_error = ENXIO;
return(O);

/* Clear memory in the controller */
for (wp=(short *)&smdp->iopb; wp«short *)&smdp->unused[O];

wp+ +)
*wp = 0;

Block Device Example 8-21

Proprietary Information - Do Not Copy

The code at the top of the page resets the controller. First it
writes the CMD_BDCLR command, then delays 117 mil
liseconds (7/60 seconds), and finally clears the command regis
ter. Then the driver waits for up to 2 seconds (in 117 IDS inter
vals) for the BUSY bit to be cleared on the Controller Status
register. After this sequence, if the Board OK status bit
(CS_BOK) is not set, the controller has failed to initialize
correctly. Return an error in this case.

Next, the green LED on the controller is lit. It stays on as long
as the Board OK status bit is set.

Finally, default values are written to the I/O parameter block on
the controller, and the base IOPB is set up with a DC_
FETCH_AND_EXECUTE_IOPB command. Note that the
interrupt level is set to VS32_INTL VL, which is 3 in CTIX.

8-22 Writing Mighty Frame Device Drivers

Proprietary Information - Do Not Copy

/*gdvs320pen() continued */

/* reset the board */
smdp- >command = 0;
smdp->command = CMD..BDCLR;
delay(7);
smdp- >command = 0;
/* Wait up to 2 seconds */
for (i=O; i<20; i+ +) {

/* Wait 112 ms */
delay(7);
if (!(smdp->command & CS..BUSY))

break;
}

if (!(smdp->command & CS..BOK)) {

}

gdprint(dev, "Controller board not ready");
u.u_error = EIO;
return(0);

/* Turn on the green light */
smdp- >command F CMD _SLED;
smdp->iopb.iopb_memtype = MEMJNTERNAL;
smdp->iopb.iopb_addmod = AM_16J(;
smdp- >iopb.int_level = VS32JNTL VL;
smdp->iopb.int_complete = vector;
smdp->iopb.int_error = vector;
smdp- >iopb.command = D CYETCH...ANDEXECUTE_IOPB;

Block Device Example 8-23

Proprietary Information - Do Not Copy

The Unit Information blocks for the two drives on the con
troller are initialized. All of the Auxiliary I/O Parameter blocks
are initialized and chained together. As described above,
gdvs32ctl.iopb always contains a DC_FETCH_AND_
EXECUTE_IOPB command. Its iopbp field is initialized to
point to the first Xiopb structure for the relevant drive when
ever a command is issued.

The gdvs32driver.curcyl field is initialized to -1; this forces the
driver to issue a DC_RESTORE command before the first I/O
request is carried out.

8-24 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* gdvs320pen() continued */

/* For now, only drive 0,1 on the first controller are initialized */
for (driveno = 0; driveno <= 1; driveno+ +) {

}

int j;

gdr = &(gdvs32driver[VSindex(gdmkdev(gdctl(dey),
driveno, 0))]);

smdp->Xuib[driveno].vOsh = 0;
smdp- >Xuib[driveno].v1sh = 0;
smdp- >Xuib[driveno].v1nh = 0;
smdp->Xuib[drivenoj.skew = 0;
smdp->Xuib[drivenoj.gap1 = gds->dsk2.gap1;
smdp- >Xuib[drivenoj.gap2 = gds- > dsk2.gap2;
smdp- >Xuib[driveno].interleave = 1;
smdp- >Xuib[drivenoj.retry = 0;
smdp->Xuib[drivenoj.attrib = AT_STC [AT_CE [AT_INH;
smdp->Xuib[drivenoj.scil = VS32_INTLVL;
smdp- >Xuib[drivenoj.sciv = vector;

/* Chain the iopbs in the short address space */
for (j=0; j< 6; j+ +) {

}

iopbp = &smdp->Xiopb[drivenoj Uj;

iopbp->iopbp.lo = (ushort)(iopbp+ 1);
iopbp->iopbp.hi = 0;
iopbp->iopb_memtype = MEM_INTERNAL;
iopbp->iopb_addmod = AM_16J(;

iopbp->buCmemtype = MEM_32;
iopbp->buCaddmod = AM_32J(;

iopbp->int_level = VS32_INTLVL;
iopbp->int_complete = vector;
iopbp->int_error = vector;

iopbp->sp_skew = 0;
iopbp->dmaburst = 8;

gdr->curcyl = (ushort)-l;
gdutab[gdmkpos(ctl,driveno)j.vaddr = NULL;
gdutab[gdmkpos(ctl,driveno) j.io_addr = (physadr)smdp;
gdutab[gdmkpos(ctl,driveno) j.io_nreg = 16;

} /* if (!dp->io_addr) */

Block Device Example 8-25

Proprietary Information - Do Not Copy

This driver can be called from physio(2K) to do raw I/O
directly into or out of user memory. In this case, the address
of the buffer is a user virtual address, which is only valid when
the requesting process is running. Since physio(2K) sleeps
after calling the device strategy routine, the original user pro
cess is never running at the time the DMA transfer occurs.

Clearly, then, the driver cannot program the DMA hardware
with the original virtual address of the buffer. In fact, the
driver cannot reference user virtual memory at all, since it
changes whenever there is a context switch. The DMA
hardware must use kernel virtual memory, which always is
valid. This kernel virtual memory is reserved here by a call to
sptalloc(2K). SptaI1ocO allocates a contiguous region of ker
nel virtual address space to serve as a "window" on the user's
I/O buffer in physical memory. The pointer to this "window" is
kept in dp->vaddr (that is, in gdutab.io_s2: vaddr is a #deflne
in the file <sys/gdisk.h».

N ext, the driver allocates space for the bad block table and the
bad block queue for this drive, if they have not been allocated
already.

Finally, the driver sets the DP _READVHB flag, which forces
gdvs32doxfr{) to issue a DC_INITIALIZE command to the
controller before performing any other I/O. This command is
used to set the software-programmable parameters on the drive:
it must be issued before any READ, WRITE, or FORMAT
commands are accepted.

8-26 Writing MightyFr8.lIle Device Drivers

}

Proprietary Information - Do Not Copy

/* gdvs32openO continued */

if (dp->vaddr == NULL) {

}

/* Allocate the DMA area for the drive */
dp->vaddr = (int)sptalloc(VS32_MAXDMA, PG_VPG_KW, -1);
if (dp- >vaddr == NULL) {

}

gdprint(dev, "Unable to allocate virtual addresses for raw dma");
u.u_error = EIO;
return(O);

/* Allocate space for the bad block tables */
if (gds->bb == NULL && gds->szbb != 0)

if ((gds-> bb = (struct bbmcell *)sptballoc(GDMAXBBT))

}

== NULL) {
gdprint(dev, "Unable to allocate space for the bad block table");
u.u_error = EIO;
return(0);

if (gds->bbq == NULL && gds->szbbq!= 0)
if ((gds->bbq = (short *)sptballoc((int)(sizeof(short) *

}

VS32_MAXCYL))) == NULL) {
gdprint(dev,
"Unable to allocate space for the bad block table index");
u.u_error = EIO;
return(O);

/* Mark the vhb as read - this will force re-initialization of the drive */
dp->b_flags F= DP_READVHB;

/* All OK */
return(l);

Block Device Example 8-27

Proprietary Information - Do Not Copy

GDVS32START()

Gdvs32start() is called from three places to start I/O on the
device: gdstrategy(2K) calls it to service bread{) and bwriteO
requests from the kernel; it calls itself recursively to start as
many of the outstanding requests on the drive I/O queue as
possible; gdvs32doxfrO calls it (indirectly) recursively to flush
the drive queue when the drive has gone offline.

There is one gdtab entry for each disk controller in the system.
Each entry points to a queue of queues of active I/O requests
on that controller; that is, each first-level queue entry points to
another queue containing all of the active I/O for one of the
drives on the controller. Active in this sense means that the
I/O has not yet been completed. Some of the requests may be
in process, while others are not. The second-level queue of
requests is called the drive I/O queue in this document. See
Chapter 7, Block I/O Tutorial, for more information.

Dp is initialized to point to the head of the queue of queues.
This is the per-drive queue; each member is an iobuf structure
that serves as the head of the drive I/O queue. If the top-level
queue is empty, there is no work on any of the drives. The
driver resets the block activity flag for this controller and
returns.

Next, gdvs32start() scans the (top-level) drive queue, looking
for drives that are active but do not have I/O started on them.
(Gdstrategy(2K) sets b_active when it enqueues an I/O request
buffer. Gdstart() sets DP _ACTIVE when it sets up the
transfer.) The drive queue actually is a circular linked list: the
do while loop is finished when the forward pointer on the
current member equals the forward pointer on the list head. If
there are no drives with outstanding I/O, the driver returns.

Next, the iobuf pointer bp is set to point to the first member of
the drive I/O queue. The gdpanic(2K) call protects against an
empty I/O queue that has the b_active flag set.

8-28 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Gdvs32start() - start I/O on a device.
*/
VOID

gdvs32start(dev)
dev_t dey;
{

register struct io buf *gdt = &gdtab I gdctl(dey) 1 ;

register struct iobuf *dp = (struct iobuf *)gdt->b_actf;
register struct gddriYer *gdr;
register struct gdsw *gds;
register struct buf *bp;

aaprintf("gdvs32start(dev: Oxo/oX)", dey);
if (dp == NULL) {

}

do {

/* No work queued.
* Major block numbers for gd controllers are from 0 .. 15
* I.e. equal to the controller number.

*/
blkacty &= -(1 < <gdctl(dev));
return;

if (dp->b_active && !(dp->bjlags & DP~CTIVE))
/* I/O is queued, but not started */
break;

dp = (struct iobuf *)dp->b_forw;
} while (dp != (struct iobuf *)gdt->b_actf);

if (!dp->b_actiye I(dp->bjlags & DP ~CTIVE))
/* Must have gone full circle on the circular list */
return;

if ((bp = dp->b_actf) == NULL)
gdpanic('Null I/O queued");

Block Device Example 8-29

Proprietary Information - Do Not Copy

Next the driver saves the parameters of the selected I/O
request in the gddriver structure reserved for this drive. If the
GD_PHYSADDR flag is set, the driver uses physical track and
sector information. Otherwise, it uses the logical values.

Tent contains the total number of sectors involved in the
transfer. The byte count is rounded up and then converted to a
sector count.

Notice that only three commands are possible from the general
disk driver: CMD_FORMAT, CMD_READ, and
CMD_ WRITE. This illustrates how the general disk driver
code simplifies the interface for the rest of the kernel. The
dozen or more commands that'the Interphase controller accepts
are hidden from CTIX software.

Next, gdvs32start() calls gdvs32doxfr{) to begin the transfer
(if the controller is not busy servicing the other drive). Note
that gdvs32doxfr{) in turn calls gdvs32start() recursively if it
detects that the drive has gone offline. This has the effect of
flushing the current drive queue, since gdvs32doxfr() calls
gdiodone(2K) on the buffer and clears the DP _ACllVE flag
before the recursive call.

Finally, this routine calls itself recursively. Since the
DP _ACI1VE flag is set in this drive queue, gdvs32start()
selects the next active drive queue to process on each of the
succeeding recursive calls. This has the effect of starting I/O
on every drive on this controller, if there is anything queued.
The recursion ends when gdvs32start() can't start any more
I/O.

8-30 Writing MightyFrame Device Drivers

}

Proprietary Information - Do Not Copy

/* gdvs32startO continued */

gdr = &gdvs32driver[VSindex(bp- > b_dev) I;
gds = &gdsw[gdpos(bp->b_dev)];

/* Setup information for the first transfer */
dp->b_flags F DP_ACTIVE;
gdr- > rpts = 0;
gdr- >xfrcnt = 0;
gdr->cyl = bp->cylin;
gdr- >dma_addr = bp-> b_un.b_addr;

if (gds- >v _flags & GDYHYSADDR) {
gdr->trk = (ushort)bp->trksec / gds->dsk.psectrk;
gdr- >sec = (ushort) bp- >trksec % gds- >dsk.psectrk;

} else {
gdr->trk = (ushort)bp->trksec / gds->sectrk;
gdr- >sec = (ushort) bp- >trksec % gds- >sectrk;

}
gdr->tcnt = (bp->b_bcount+ gds->dsk.sectorsz - l)/gds->dsk.sectorsz;

if (bp->b_flags & BYORMAT)
gdr->mode = CMDYORMAT;

else if (bp->b_flags & B-.READ)
gdr- > mode = CMD _READ;

else
gdr->mode = CMD_WRITE;

if (bp- > bjlags & B_FORMA T) {
gdr->retries = 1;

} else {
gdr->retries = GDRETRIES;

}

/* Setup/Start the transfer (if the controller is free) */
gdvs32doxfr(gdr->cyl, gdr->trk, gdr->sec, gdr->tcnt, gdr->mode, dey);

/* See if we can start another one */
gdvs32start(dev);

•
Block Device Example 8-31

Proprietary Information - Do Not Copy

GDVS32DOXFR()

Gdvs32doxfr{) is called from various places in the driver to ini
tiate an I/O operation on a drive. The operation can be a new
operation on behalf of a user request, a continuation operation
made necessary because a requested transfer crossed a track
boundary, a retry caused by a failure of another transfer, or a
WRITE to an alternate block, made necessary when a transfer
failed because of a bad block on the disk.

First, turn off the DP _DELA YRD flag. This flag controls the
delayed assignment of an alternate block when a bad block is
encountered on a READ request. This is discussed in detail
below.

If the GD_OPENED flag is no longer set, the drive has gone
offline: fail the transfer request immediately. GD_OPENED is
cleared by gdtimer{2K) as a result of a failure status returned
from gdvs32timer{). Note that the driver calls gdiodone(2K)
directly. Normally, this call is made by gdintr(2K) when the
completion interrupt is received. In this case, since the driver
does not even attempt the I/O, there won't be a completion
interrupt.

The b_resid field is set to the number of bytes remaining in the
original transfer request (b_count, which is the original transfer
length, minus xfrcnt, which is the total number of bytes
already transferred). Gdvs32doxfrO may have been called to
perform continuation I/O on a request that was broken up into
pieces. Thus, the residue (bytes remaining to transfer) may
not be equal to the original transfer length.

Finally, gdvs32cloxfrO calls gdvs32start() to (attempt to) start
I/O on all of the remaining drives. This results in (indirect)
recursion, since gdvs32start() calls gdvs32cloxfrO to initiate
the transfer.

•
8-32 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Gdvs32doxfr() - initiate transfer on the requested drive.

*/
VOID

gdvs32doxfr(cyl, trk, sec, tent, mode, dev)
register ushort cyl, trk, sec, mode;
register uint tcnt;
register dev_t dey;
{

register struct gdsw *gds = &gdsw[gdpos(dev)];
register struct iobuf *dp = &gdutab[gdpos(dev)];
register struct gddriver *gdr = &gdvs32driver[VSindex(dev)];
register struct iobuf *gdt = &gdtab[gdctl(dev)];
register struct buf *bp = dp- > b_actf;
int ind;

in t ctl = gdctl(dev);
register short drive = gddrive(dey);
register struct gdvs32ctl *smdp = V ctladdr;
register structgdvs32iopb *iopbp = &smdp->Xiopb[drive] [0];

aaprintf("gdvs32doxfr(cyl: Oxo/oX trk: Oxo/oX sec: Oxo/oX ", cyl, trk, sec);

aaprintf("tent: Oxo/oX mode: Oxo/oX dey: Oxo/oX)", tent, mode, dey);

dp- > bjlags &= 1) P _D ELA YRD;
/* In case the drive went offline */
if (!(gds->v_flags & GD_OPENED)) {

/* Release the controller */
dp->bjJags &= 1) P--ACTIVE;

}

/* Mark the I/O as an error */
bp- > b_flags F B_ERROR;
bp->b_resid = bp->b_bcount- gdr->xfrcnt;
bp- > b_error = EIO;
bp- > b_flags &= "B_START;

/* Mark the I/O as done, take it off the queue */
gdiodone(bp, dp, gdt);

/* Get the next I/O */
gdvs32start(dev);
return;

Block Device Example 8-33

Proprietary Information - Do Not Copy

If the I/O crosses a track boundary, the driver breaks it into
multiple operations, one operation per track. The original
READ or WRITE request is not complete until all of these
subrequests finish. Tent is the total sector count for the
current DMA operation (not the current I/O request, only the
piece of it that is being done now.) Gdvs32intrO is responsible
for continuing I/O on subsequent pieces of the original request

• if it is broken up in this manner.

The outer if statement allows redirected bad block accesses to
proceed. The disks are formatted with a spare sector at the end
of each track. If a bad sector is encountered on a track,
gdaltblkO is called to assign the nearest spare sector to be used
in its place. This alternate block always has a sector number
equal to sectrk, making special case code necessary here.

If the GO _PHYSADDR bit is set, the physical disk parameters
are used; otherwise, the logical parameters are used.

8-34 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32doxfrO continued */

/* Does I/O cross a track boundry? */
if (tcnt == 1 && sec == gds- >sectrk) {

/* The I/O is to an alternate block - allow it */
} else {

}

if (gds->v_flags & GD_PHYSADDR) {
if ((sec+ tent) > gds->dsk.psectrk)

tent = gds- > dsk.psectrk - sec;
} else {

}

if ((sec+ tent) > gds->sectrk)
tent = gds->sectrk - sec;

Block Device Example 8-35

Proprietary Information - Do Not Copy

Here, the driver deals with I/O on cylinders known to contain
bad sectors. The if statement means: "if the disk is in Conver
gent Technologies format, and if it contains a known bad
block." The bad block queue (bbq) is a per-drive array of short
integers, indexed by cylinder number. If nonzero, the value is
the index in this drive's bad block table of the en try
corresponding to the first bad block on this cylinder. If zero,
there are no (known) bad blocks on this cylinder.

The for loop scans the linked list of bad block table entries for
the current cylinder. The first if statement is TRUE if the bad
block referenced by the current table entry falls within the
range of requested sectors. The next if statement is TRUE if
the bad block from the table is equal to the first requested sec
tor; in this case, the I/O must be redirected. Otherwise, the
sector count is reduced to break the I/O into three operations:
one for the sectors before the bad block, one for the bad block,
and one for any remaining block(s) on the cylinder.

If an alternate block has not yet been assigned (altblk is equal
to zero), the driver is dealing with a delayed block assignment.
When a READ fails because of a bad block, the driver marks it
in the bad block queue and returns a hard error to the user. It
does not assign an alternate block, since a controller can fail to
read a block once, but succeed the next time. As long as the
driver does not assign an alternate block, the user can continue
trying to read the data. When it is clear that the data is lost,
the user can write a filler block into the file at the position of
the bad sector. When the driver receives a WRITE request on
a bad block that has no alternate block assigned, it calls
gdaltblkO to allocate a spare sector.

If the request is a READ, the driver sets the DP _DELA YRD
flag and continues. In this case, the user is attempting to read
a block that has had a READ failure already. When
gdvs32intrO processes the READ completion interrupt, if the
READ was successful but DP _DELA YRD is set, the driver
allocates an alternate block and writes the data to the spare sec
tor.

8-36 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32doxfrO contin ued */

/* Does I/O cross a bad block? */
if ((gds->vjlags & GD_CT_FMT) && (ind=gds->bbq[cyl])) {

register struct bbmcell *gdb = gds->bb;

}

register int ssec = trk * gds- >dsk.psectrk + sec;
register int esec = ssec + tcnt;
register int bb;

for (; ind != 0; ind = gdb[ind].nxtind) {

}

if (((bb=gdb[ind].badblk) >= ssec) && (bb < esec)) {
if (bb == ssec) {

}

if (gdb[ind].altblk == 0) {
/* It was a delayed assignment */
if (mode == CMD _READ) {

/* If the read succeeds, assign it (later) */
dp->h_flags ~ DP_DELAYRD;
continue;

} else {
if (gdb [ind].altblk=gdaltblk(cyl, dp- > b_dev))

gdprint(bp- > b_dev,
"delayed bad block assignment made");

else
gdprint(bp- > b_dev,

"unable to get alternate block for delayed assignment");
gds-> bbchanged+ +;

}
}
tent = 1;
/* Sector is the last-sector on the track */
sec = gds->dsk.psectrk-1;
bb = gdb[ind].altblk;
trk = bb % gds- >dsk.heads;
cyl = bb / gds- >dsk.heads;
break;

} else {

}

tent = imin((int)(bb-ssec), (int)tent);
break;

Block Device Example 8-37

Proprietary Information - Do Not Copy

If control gets this far and the sector transfer count (tent) is
zero, there is a bug in the driver logic: the gdpanic(2K) call
reports this fact.

Through the pointer gdr, the gddriver structure is updated to
describe the current transfer.

If the controller is currently in use, set the DP _WAITING flag
and return. The interrupt handler will start this I/O when the
controller becomes free. If the controller is free, grab it by set
ting the DT_INUSE flag.

If the DP _READVHB flag is set, the drive parameters need to
be reinitialized: clear the flag, set up the fields in the UIB, set
up a DC_INITIALIZE command in the current Xiopb, and
increment the iopbp pointer. This is how the driver chains
together I/O requests. The iopbp pointer always points to the
current auxiliary IOPB (Xiopb). When it comes time to issue
the command (set the GO bit), the driver clears the
OF_LINK_ENABLE bit on the last IOPB. This terminates the
linked list of IOPBs.

8-38 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32doxfrO continued */

if (tcnt == 0)
gdpanic("zero transfer");

/* Setup the current transfer */
gdr- >rptcyl = cyl;
gdr- >rpttrk = trk;
gdr- >rptsec = sec;
gdr- >rpttcnt = tcnt;
gdr->rptmode = mode;

if (gdt- > b_flags & DT_INUSE) {

}

/* Controller is in use */
dp->b_flags F DP_WAITING;
return;

/* Grab the controller */
gdt->b_flags F DT_INUSE;
gdt->b_dev = dev;
gdt->b_actf = (struct buf *)dp;

if ((dp->b_flags & DPJlEADVHB)) {
dp->bjlags &= -oP_READVHB;

}

/* Initialize the urn for the drive */
smdp- >Xuib[drivej.vOnh = gds- >dsk.heads;
smdp- >Xuib[drive j.psectrk = gds- > dsk.psectrk;
smdp- >Xuib [drive j.sectorsz = gds- >dsk.se ctorsz;
smdp->Xuib[drivej.cyls = gds->dsk.cyls;
smdp- >Xuib[drivej.gapl = gds- >dsk2.gapl;
smdp->Xuib[drivej.gap2 = gds->dsk2.gap2;

/* Link this IOPB onto the chain */
iopbp- > bufferp.lo = (ushort) &smdp- > Xuib[drive j;
iopbp- > bufferp.hi = 0;
iopbp->buCmemtype = MEM_INTERNAL;
iopbp- > buCaddmod = AM_l6_K;
iopbp->error = iopbp->status = 0;
iopbp- > flags = iopblink(drive);
iopbp- > status = 0;
iopbp->command = DC_INITIALIZE;
iopbp+ +;

Block Device Example 8-39

Proprietary Information - Do Not Copy

If there is only one drive active, don't bother to do an explicit
SEEK. The controller is able to do an implied SEEK with a
READ or WRITE request. Setting gdr- > curcyl equal to cyl
(the target cylinder for this request) prevents the following
code from issuing a SEEK.

If gdr->curcyl has been set to -1 (by gdvs32openO or
gdvs32errorsO), do a RESTORE instead of a SEEK operation.
In either case, call gdvs32seekO, set the DP _SEEIaNG flag,
and return. The interrupt handler will continue the I/O when
the SEEK completion interrupt is received.

If the command is a FORMAT, the driver sets up the current
IOPB with a DC_INITIALIZE command.

8-40 Writing MightyFr8lIle Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32doxfr() continued */

if (gdt- >qcnt == dp- >qcnt) {

/*
* We are the only drive with any work to do;
* do an implied seek with the read

*/
gdr- > curcyl = cyl;

}
/* Seek? */
if ((mode! = CMD _FORMA T) && (gdr- > curcyl ! = cyl» {

if (gdr->curcyl == -1)

}

else

/* Restore the drive */
gdvs32seek(iopbp, cyl, trk, dey, 1);

/* Seek to the desired cyl */
gdvs32seek(iopbp, cyl, trk, dey, 0);

return;

if (mode == CMDFORMA T) {
register ushort *bufr=(ushort *)((int)gdr->dma_addr);

/* Buffer contains psectrk, gapl, gap2 */
smdp- >Xuib[drivej.psectrk = (ushort)*bufr+ + ;
smdp->Xuib[drive].gapl = (ushort)*bufr+ +;
smdp->Xuib[d;ive].gap2 = (ushort)*bufr;

/* Link this IOPB onto the chain */
iopbp-> bufferp.lo = (ushort)&smdp->Xuib[drive];
iopbp-> bufferp.hi = 0;
iopbp->buCmemtype = MEM_INTERNAL;
iopbp- > buCaddmod = AM_16J(;
iopbp->error = iopbp->status = 0;
iopbp- > flags = iopblink(drive);
iopbp->status = 0;
iopbp->command = DC_INITIALIZE;
iopbp+ +;

iopbp->error = iopbp->status = 0;
iopbp->cyl = cyl;
iopbp->head = trk;
iopbp- > bufferp.lo = NULL;

Block Device Example 8-41

Proprietary Information - Do Not Copy

If the command was not FORMAT, check to see if the routine
was called from physio(2K). If so, call setmap(2K) to remap
the user's I/O buffer into kernel virtual memory. As discussed
under gdvs32openO, DMA devices cannot reference user vir
tual memory addresses, because they change at context switch
time. Since physio() sleeps after calling gdstrategy(2K), the
original user process cannot be running at this time. So, the
driver must allocate some page table entries in kernel memory,
and then copy the page frame numbers from the user's page
table entries that point to the I/O buffer. This virtual address
range was allocated in gdvs32openO through a call to
sptalloc(2K); its address was saved in dp- >vaddr.

Now, setmap() copies the page frame numbers so that the ker
nel virtual memory points to the physical memory containing
the user's I/O buffer. In this way, the buffer acquires a kernel
virtual address, in addition to its user virtual address. The
DMA hardware uses this kernel address to perform the
transfer.

N ext, the driver sets up the current 10PB to describe the
transfer. If gdr->dma_addr is not on a longword boundary,
the controller must use 16-bit transfers. Otherwise, it can use
32-bit transfers.

IopbflagsO clears the OF_LINK_ENABLE bit, thus terminat
ing the linked list of 10PBs.

Gdt_wtime is set to the DMA timeout value. Gdtimer{2K)
decrements this counter and calls gdpanic(2K) if it ever
reaches zero.

The DP _ACTIVE flag is set to indicate that this drive has I/O
activity on it. The DT_DMAON flag indicates that a DMA
operation is in progress.

8-42 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32doxfrO continued */

} else { /* mode != CMD_FORMAT */

}

/* If physio, we must re-map the D MA */
if (bp- > bjlags & B_PHYS) {

mprintf("calling setmap(Oxo/oX, Oxo/oX, Oxo/oX, Oxo/oX)",
bp, dp->vaddr, gdr->xfrcnt*gds->dsk.sectorsz,
tent*gds- > dsk.sectorsz);

gdr- >dsk_dma_addr =

setmap(bp, dp- >vaddr, gdr- >xfrcnt*gds- >dsk.sectorsz,
tent*gds- > dsk.sectorsz);

mprintf("vaddr: Oxo/oX", gdr->dsk_dma_addr);
} else

gdr- >dsk_dma_addr = gdr- >dma_addr;

iopbp- > bufferp.lo = (ushort)vtocv(gdr- >dsk_dma_addr);
iopbp->bufferp.hi = (ushort)(vtocv(gdr->dsk_dma_addr) » 16);
iopbp->buCaddmod = AM_32_K;
if ((uint)gdr->dma_addr % 4)

iopbp-> buCmemtype = MEM_16;
else

iopbp-> buCmemtype = MEM_32;

iopbp- >cyl = cyl;
iopbp- >sectors = tent;
iopbp->sec = sec;
iopbp->head = trk;

iopbp- > flags = iopbflags(drive);
iopbp->status = 0;

gdt:r>wtime = gds->DMAto;
dp->b_flags F DP_ACTIVE;
gdtab[gdctl(dp-> b_dev) j.bjlags F DT_DMAON;

Block Device Example 8-43

Proprietary Information - Do Not Copy

The driver sets the appropriate command in the command field
of the current IOPB. Finally, it sets up the linked IOPB infor
mation in the base IOPB and sets the GO bit, initiating the
transfer.

8-44 Writing MightyFrame Device Drivers

}

Proprietary Information - Do Not Copy

/* gdvs32doxfrO continued */

switch (mode) {
case CMD _READ:

iopbp->command = DC-.READ_SECTORS;
break;

case CMD _WRITE:
iopbp->command = DC_WRITE_SECTORS;
break;

case CMD _FORMA T:
/* Initialize with new values */
iopbp->command = DC_FORMAT_TRACK;
break;

default:
gdpanic("Gdvs32doxfrO - invalid mode");

}

smdp- >iopb.iopbp.lo = (ushort)&smdp- >Xiopb[drive] [0] ;
smdp- >iopb.iopbp.hi = 0;
smdp- >iopb.flags = iopblink(drive);
smdp- >iopb.status = 0;
oprintf(">o/od", drive);

/* Start the command */
smdp->command 1= CMD_GO;

Block Device Example 8-45

Proprietary Information - Do Not Copy

GDVS32SEEK{)

Gdvs32seekO performs SEEK and RESTORE operations,
according to the sense of the restoref parameter. Iopbp is a
pointer to the current IOPB, which is always one of the auxili
ary IOPBs in gdvs32ctJ. The routine sets up the current IOPB,
sets the desired command in the command field, sets the link
bit and IOPB pointer address in the base IOPB, and then sets
the GO bit, initiating the trans.fer.

8-46 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Gdvs32seek() - perform a SEEK operation.

*/
VOID

gdvs32seek(iopbp, cyl, trk, dey, restoref)
register ushort cyl, trk;
register dey _t dey;
short restoref;
register struct gdvs32iopb *iopbp;
{

}

struct iobuf *dp = &gdutab[gdpos(dev)];
register struct gdvs32ctl *Smdp = (struct gdvs32ctl *)dp->io_addr;
register short drive = gddrive(dev);

aaprintf(
"gdvs32seek(iopbp: Oxo/ox: cyl: Oxo/ox: trk: Oxo/ox: dey: Oxo/ox: restoref: Ox%x)",

iopbp, cyl, trk, dey, restorer);
iopbp->cyl = cyl;
iopbp->head = trk;
iopbp->flags = iopbflags(drive);
iopbp->status = 0;
if (restoref)

iopbp->command = DC_RESTORE;
else

iopbp->command = DC_SEEK;

smdp- >iopb.iopbp.lo = (ushort)&smdp- >Xiopb[drive] [0];
smdp- >iopb.iopbp.hi = 0;
smdp- >iopb.flags = iopblink(drive);
smdp- >iopb.status = 0;
oprintf("#o/~", drive);

/* Start the command */
smdp->command 1= CMD_GO;

Block Device Example 8-47

Proprietary Information - Do Not COpy

GDVS32INlR()

Gdvs32intr{) is called from gdintr{2K) whenever an interrupt
is received from the V /SMD 3200. Its function is to process
I/O completions, I/O continuations (when the original request
was broken up into several I/O operations), retries, and status
change interrupts (primarily SEEK completions).

Theoretically, it is impossible for both the Status Change
(OS_SO) bit and the Operation Done (OS_OD) bit to be set,
since the controller freezes the status register and generates an
interrupt request whenever it sets either one of them. The
gdpanic(2K) call reports that the impossible has occurred.

If it is a Status Change interrupt, the driver sets iodonef to indi
cate that I/O is being continued, and goes to the cont_io label.
Status Change interrupts are received for the following condi
tions:

• Drive Ready/Not Ready.

• D rive Fault.

• On Cylinder (SEEK complete with no error).

• SEEK Error.

The iodonef flag could have been named iocontinued, since it
is TRUE when the current I/O request is not complete, and
FALSE when it is complete. Gdvs32intr{) returns this flag to
gdin1:rO to indicate whether or not the active I/O is complete.
Gdintr() calls iodone(2K) on the active buffer whenever the
device driver's interrupt handler returns O.

8-48 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Gdvs32intrO - process V /SMD 3200 interrupts.

*
* Returns:
* 0- Operation complete.
* 1 - Operation continued or retried.

*/
int

gdvs32intr(bp, dev, vec)
register struct buf *bp;
register dey _t dey;
register int vec;
{

register struct iobuf *dp = &gdutab[gdpos(dev)];
register struct gdvs32ctl *Smdp = (struct gdvs32ctl *)dp->io_addr;
register struct iobuf *dp = &gdutab[gdpos(dev)];
register struct io buf *gdt = &gdtab [gdctJ(de v)] ;
register struct gddriver *gdr = &gdvs32driver[VSindex(dev)];
register struct gdsw *gds = &gdsw [gdpos(dev)] ;
register short drive = gddrive(dey);
register structgdvs32iopb *iopbp = &smdp->Xiopb[drive] [0];
ushort stat_reg, unit_reg, errJeg, secJeg, ctl_reg;
int iodonef;

if ((smdp->status & CS_SC) && (smdp->eommand & CS_OD))
gdpanic("double interrupt!");

aaprintf("gdvs32intr(bp: Oxo/oX dey: Oxo/oX vec: Oxo/oX)", bp, dey, vee);
if (smdp->status & CS_SC) {

}

/* Must have been a status change */
gdvs32statuschange(dev);

iodonef = 1;
goto eont_io;

Block Device Example 8-49

Proprietary Information - Do Not Copy

If the current buffer IS waiting for the controller
(DP _ WAITING IS set) or, if it IS not even active
(DP _ACTIVE is clear), this also indicates a stray interrupt.
Clear the bits in the command register and continue the I/O.

If the driver gets past the stray interrupt tests, then the inter
rupt indicates the completion of some operation. Clear the con
troller in use and DMA active flags, and save the current con
tents of the controller command and status registers. The
unit_status array is arranged such that element 0 contains the
status bits for drive 1, and vice versa. The construct [drive" 1]
handles this turnabout.

Finally, the interrupt handler clears the Done and Error bits in
the Controller Command register.

8-50 Writh~g Mighty Frame Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32intr() continued */

if ((dp->b_flags & DP_WAITING) P(dp->bjlags & DP .-ACTIVE)) {
ushort command = smdp->command;
ushort status = smdp- >status;

/* Clear the interrupt */
if (command & (CS_OD I CS_ELC)

smdp->command &= -(CS_OD PSY;LC);
else
if (status & (CS_SC I CS_SCS)

smdp- > status &= -(CS_SCPS_SCS);

}

gdprint(dev, "stray logged");
logstray((physadr)(vec));
iodonef = 1;
goto cont_io;

/* Operation concluded interrupt.
* Controller is no longer in use.

*/
gdt->bjlags &= -(DT_INUSE IDT_DMAON);
oprintf("<o/od", drive);

ctljeg = smdp->command;
unit_reg = smdp- > unit_status [drive A 11;
errjeg = iopbp- >error;
stat_reg = smdp- >iopb.status;
seCjeg = smdp- >iopb.sec;

/*
* Clear the interrupt. There could be a status-change interrupt
* buried behind this one. If so, it will be handled later.

*/
smdp->command &= -(CS_ODPS_ELC);

Block Device Example 8-51

Proprietary Information - Do Not Copy

If there were any error bits set in the controller registers, the
interrupt handler calls gdvs32errorsO to process them. This
routine returns a flag indicating whether the error was fatal,
causing the I/O to be completed with error, or whether it can
be retried, causing the I/O to be continued.

If there were no errors, set the GD_READY flag for the drive,
since it just completed an I/O request.

If the DP _SEEKING flag is set, the last command was a
SEEK. Set iodonef to indicate that the current request is not
complete.

Gdvs32doxfr() will have set the DP _DELAYRD flag if it
detected that the user was attempting to READ a block that
could not be read one or more times previously. Here,
gdvs32intrO detects that the flag is set. Since it "knows" at this
point that the active I/O request completed successfully, the
interrupt handler concludes that the driver has just read a block
that it failed to read before. Now that the data from the bad
block is known, the driver (finally) can allocate an alternate
block and write the good data to it. In this way, the driver
removes the marginal block from the disk, but recovers the
data it contained.

8-52 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32intrO continued */

/* Process errors */
if ((ctl_reg & CS_ELC) I

(ctl_reg & CS_BERR) I
(unitjeg & (US_FAULTVS_BADSEEK)) I
!(unit_reg & USJ)READY) I (stat_reg == SR_ERR)) {
iodonef = gdvs32errors(stat_reg, err_reg, unit_reg, ctl_reg,

sec_reg, dp);
gota cont_io;

} else
gds->vjlags ~ GD_READY;

switch (stat_reg) {
case SR_OK:

/* Normal completion */
break;

case SR_EXC:
/* Completion with exception - format a recovered error rcd */
fmtberr(dp, (int)gds- >partab[gdslice(bp- > b_dev) j.strk,
(int)gds- > dsk.heads, (int) gds- >dsk.psectrk, (int) gds- >ctlr);
break;

case SR_CIP:
gdprint(dev, "command in progress");
break;

default:
prin tf("status o/oX", stat_reg);
gdpanic(''illegal status return ed fro m disk can trolle r");

}
if (dp- > b_flags & D P _SEEKING) {

}

/* The controller must have issued a SEEK */
iodonef = 1;

if (dp->bjlags & DP_DELAYRD) {

/*
* We have successfully read a delayed bad block:
* reassign and rewrite the block. Redo the I/O
* (as a WRITE); gdvs32doxfrO re-assigns the bad block.

*/
gdvs32doxfr(gdr->cyl, gdr->trk, gdr->sec, gdr->tcnt,

CMD_WRlTE, dey);
iodonef = 1;
gota cont_io;

}

Block Device Example 8-53

Proprietary Information - Do Not Copy

This code alters all of the I/O pointers and counters to skip
over the data that was just transferred. Thus, the data struc
tures are set to describe the next part of the transfer request.

If there is no more data to transfer (tent is equal to 0), the I/O
request is complete; clear the waiting and active flags and set
iodonef to 0, which will cause gdintr(2K) to call iodone(2K) on
the buffer header. This will reawaken the user's process and
allow his original read(2) or write(2) system call to complete.

Otherwise, there is more data to transfer, so the driver calls
gdvs32doxfr() to initiate the I/O, and sets iodonef to 1, indicat
ing to gdintr() that the I/O is being continued.

8-54 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32intrO contin ued */

/* Setup for continuation of transfer if necessary */
gdr- >xfrcnt + = gdr- >rpttcnt;
gdr->sec + = gdr->rpttcnt;
gdr- >tcnt -= gdr- >rpttcnt;
if (gdr->sec >= ((gds->v_nags&GDYHYSADDR) ?

gds->dsk.psectrk : gds->sectrk)) {

}

gdr->sec -= ((gds->v_nags&GD_PHYSADDR) ?
gds->dsk.psectrk : gds->sectrk);

gdr- >trk+ + ;
if (gdr- >trk >= gds- >dsk.heads) {

gdr- >trk -= gds- >dsk.heads;
gdr->cyl+ +;

}

/* Increment by bytes, each block is 512 bytes (2**9) */
gdr->dma_addr += (gdr->rpttcnt« 9);
if (!gdr->tcnt) {

dp- > b_flags &= -(DP _WAITINGPP ...ACTIVE);
iodonef = 0;
/* Clear error flag */
bp- > b_resid = 0;

} else {

}

/* Continue with the I/O */
gdvs32doxfr(gdr- > cyl, gdr- >trk, gdr- >sec, gdr- >tcnt,

gdr->mode, dey);
iodonef = 1;

Block Device EX8.IIlple 8-55

Proprietary Information - Do Not Copy

First, gdvs32intr() calls gdvs32statuschangeO to update cur
cyl.

Next, the interrupt handler attempts to start a SEEK operation
on the controller. If the controller is not in use (DT_INUSE is
not set), gdvs32intr() chains down the I/O queue looking for a
request that is waiting for the controller (DP _WAITING is set)
and that requires disk head movement (curcyl is not equal to
cyl). If gdvs32intr() finds a waiting request, it starts the I/O
by calling gdvs32doxfr().

Then, if the controller still is not in use, the interrupt handler
tries to start the first I/O it can find. (The fact that the con
troller still is not busy indicates that gdvs32intr() didn't start a
SEEK operation in the previous while loop.)

Finally, the interrupt handler returns the iodonef flag, indicatr
ing whether or not gdintr(2K) should call iodone(2K) on the
buffer.

8-56 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32intr() continued */

cont_io:

}

/* Update curcyl on all drives */
gd vs32statuschange(dev);
/* Find a drive to seek on */
if (!(gdt->b_flags & DT_INUSE)) {

dp=:(struct iobuf *)gdt->b_actf;
do {

gdr = &gdvs32driver[VSindex(dp-> b_dev) 1;
if ((dp-> bjlags&DP _WAITING)&&(gdr->curcyl!=gdr->cyl)) {

dp->b_f1ags &= 'TIP_WAITING;

}

gdvs32doxfr(gdr- > rptcyl, gdr- > rpttrk, gdr- > rptsec,
gdr->rpttcnt, gdr->rptmode, dp->b_dev);

break;

dp = (struct io buf *) dp- > b_forw;
} while (dp ! = (struct iobuf *)gdtr- > b_actf);

} else
o printf("$");

/* Find a drive to perform I/O on */
if (!(gdt->b_flags & DT_INUSE)) {

dp=(struct iobuf *)gdt- > b_actf;
do {

if (dp->b_f1ags & DP_WAITING) {
dp- > bjlags &= 'TIP_WAITING;

}

gdr = &gdvs32driver[VSindex(dp- > b_dev) 1;
if (gdr- > curcyl ! = gdr- > cyl)

gdpanic("curcyl! =cyl");
gdvs32doxfr(gdr- >rptcyl, gdr- >rpttrk, gdr- >rptsec,

gdr- >rpttcnt, gdr- >rptmode, dp- > b_dev);
break;

dp = (struct io buf *) dp- > b_forw;
} while (dp!= (struct iobuf *)gdtr->b_actf);

} else
oprintf(''$");

/* Tell gdintr() whether current xfer still in progress. */
return(iodonef);

Block Device Example 8-57

Proprietary Information - Do Not Copy

GDYS32ERRORSO

Gdvs32errorsO is called by gdvs32intrO to process the fol
lowing error conditions on the drive:

• Bus error.

• Drive fault.

• SEEK error.

• Drive not ready.

• General error on last command status.

If the GD_QUIET flag is not set, call fmtberrO to build an
eblock data structure describing the error. This structure is
defined in <sys/erec.h>.

If the Write Protect bit is turned on in the Controller Unit
Status register, the driver prints a message to that effect.

Process the Drive Fault and Drive Not Ready errors here. If the
GD_QUIET flag is not set, the driver prints the appropriate
error message, and then clears the GD_READY flag. When
gdintr(2K) detects that the flag is not set, it closes the drive,
effectively performing a dismount on it. This causes all future
I/O requests to the drive to fail in gdstrategy(2K).

The driver calls binvalO to invalidate (set the B_STALE and
B_AGE bits on) all system buffers belonging to this drive.

It clears the DP _SEEKING and DP _ACTIVE flags on the
current drive.

The driver returns an I/0 error indication in the buffer header.

It returns 0 to indicate that the I/0 operation is complete. This
ultimately informs gdintrO to call iodone(2K), waking up the
original calling process.

8-58 Writing MightyFrame Device Drivers

Proprietary I¢,ormation - Do Not Chpy

/*
* Gdvs32errorsO - process errors.
* Returns:
* 0 - Operation complete (possibly with error).
* 1 - Operation continued or retried.

*/
int

gdvs32errors(statJeg, err_reg, unit_reg, ctl_reg, sec_reg, dp)
ushort stat_reg, err_reg, unit_reg, ctl_reg, sec_reg;
register struct iobuf *dp;
{

register struct iobuf *gdt = &gdtab[gdctl(dp- > b_dev)];
register struct gddriver *gdr = &gdvs32driver[VSindex(dp- > b_dev)];
register struct gdsw *gds = &gdsw[gdpos(dp- > b_dev)l;
register struct bur *bp = dp->b_actf;
register struct gdvs32ctl *Smdp = (struct gdvs32ctl *) dp- > io_addr;
register struct gdvs32iopb *iopbp=

&smdp->Xiopb[gddrive(dp->b_dev)] [0];

oprintf("gdvs32errors(stat_reg: Oxo/oX err_reg: Oxo/oX unit_reg: Oxo/oX",
stat_reg, errJeg, unit_reg);

oprintf(" ctl_reg: Oxo/oX sec_reg: Oxo/oX dp: Oxo/oX)",
ctlJeg, secJeg, dp);

if (!(gds->vjlags & GD_QUIET))
fmtberr(dp, (int)gds- > partab[gdslice(bp- > b_dev)].strk,

(int)gds- >dsk.heads, (int)gds- >dsk.psectrk, (int)gds- >ctlr);
if (unit_reg & US_WRPROT)

gdprint(bp- > b_dev, 'D rive is write protected");
if ((unit_reg & US_FAULT) p(unitJeg & US_DREADY)) {

if (!(gds->v_flags & GD_QUIET)) {

}

}

if (!(unit_reg & US_DREADY))
gdprint(bp-> b_dev, 'Drive went off line");

if (unit_reg & US_FAULT)
gdprint(bp->b_dev, 'Drive Faulted, taken off line");

/* Mark the drive as not ready - gdintr() will close it */
gds->vjlags &= -GD.-R,EADY;
binval(dp- > b_dev); /* Invalidate all blocks */
dp->b_flags &= -(DP_SEEKINGpP_ACTIVE); /* Free the drive */
bp->bjlags F B_ERROR;
bp- > b_resid = bp- > b_bcount - gdr- >xfrcnt;
bp- > b_error = EIO;
bp->b_flags &= "B_START;
return(O);

Block Device Example 8-59

Proprietary Information,,- Do Not Copy

The driver decrements the remaining retry count and increments
the repeat count.

The switch statement differentiates among three values for
remaining retries:

• None left, in which case the I/O has failed and must be
terminated with error.

• One-half the number of retries left (the maximum retry
count, GDRETRIES, currently is set to ten, GDRE
TREST currently is five), in which case the driver issues a
RESTORE command (to recalibrate the drive and clear
any fault conditions).

• Any other number of retries, in which case the driver sim-
ply reissues the original command.

When the remaining retry count goes to zero, the I/O request
has failed. If the disk is in Convergent Technologies format, the
driver initiates bad block processing on the offending sector. If
the failed transfer was not a READ request, it calls
gdaddbadblkO to add an entry to the bad block table and allo
cate a spare sector to be used as an alternate.

Then, the driver reissues the WRITE command to the alternate
sector and returns. On the other hand, if the failed request was
a READ, the driver adds a bad block entry to the table but does
not allocate an alternate block. This allows the user to continue
trying to read the bad sector as long as necessary. Eventually,
the READ may complete without error, since bad sectors often
are marginal, failing some times and succeeding others.

8-60 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/* gdvs32errors() continued */

gdr- >retries--;
gdr->rpts+ +;

/* Retry count exceeded? */
switch (gdr- >retries) {
case 0:

if (gds->v_flags & GD_CT_FMT) {

}

if (gdr->mode != CMD_READ) {
/* Mark the block as bad & re-assign */
if (!gdaddbadblk(gdr->rptcyl, gdr->rpttrk, sec_reg,

1, dp-> b_dev))
gdprint(bp->b_dev, "Unable to reassign bad block");

/* Re-do the I/O */
gdvs32doxfr(gdr- > rptcyl, gdr- > rpttrk, gdr- >rptsec,

gdr->rpttcnt, gdr->rptmode, dp->b_dev);
return(1); /* Retrying the current I/O */

} else {

}

/* Mark the block as bad, but delay re-assignment */
if (!gdaddbadblk(gdr- >rptcyl, gdr- >rpttrk, sec_reg,

0, dp- > b_dev))
gdprint(bp-> b_dev, "Unable to reassign bad block");

/* Free the drive */
dp->b_flags &= 1) P_ACTIVE;

/* Mark the error in the bp */
bp- > b_flags F B_ERROR;
bp- > b_resid = bp- > b_bcount - gdr- >xfrcnt;
bp- > b_error = EIO;
bp- > b_flags &= "B_START;

if (!(gds->vjlags & GD_QUIET)) {

}

printf('Logical Block o/od (Cyl %l, Head o/c;d, Sector o/c;d)",
FsPTOL(bp- > b_dev, (bp- > b_blkno+ gdr- >rptsec-sec_reg)),
gdr- >rptcyl, gdr- >rpttrk, sec_reg);

gdprint(bp- > b_dev, ":Transfer Failed.");

return(0); /* The current I/O is finished */

Block Device Example 8-61

Proprietary Information - Do Not Copy

If one-half (GDRETREST) of the retry count has been
exhausted, issue a RESTORE command to the controller: calling
gdvs32seekO with a final parameter of 1 performs a RESTORE
operation. Turn on the DP _SEEKING flag because the
RESTORE actually causes a seek to cylinder zero, along with a
drive recalibration and a clearing of any outstanding F AUL T
condition on the drive.

The default case handles all of the remaining retries. The
driver calls gdvs32doxfrO to reissue the original I/O request.

8-62 Writing Mighty Frame Device Drivers

}

Proprietary Information - Do Not Copy

/* gdvs32errors() continued */

case GD RETREST:
/* Do a restore */
dp- > b_flags F D P _SEEKING;
gdr->curcyl = (ushort)-I;
gdt->b_flags F DT_INUSE;
gdt- > b_dev = dp- > b_dev;
gdt->b_actf = (struct buf *)dp;
gdvs32seek(iopbp, gdr->rptcyl, gdr->rpttrk, dp->b_dev, 1);
return(I); /* Retrying the current I/O */

default:

}

/* Retry the operation */
gdvs32doxfr(gdr- > rptcyl, gdr- > rpttrk, gdr- > rptsec, gdr- >rpttcn t,

gdr- >rptmode, dp- > b_dev);
return(I); /* Retrying the current I/O */

/*NOTREACHED */

Block Device Example 8-63

Proprietary Information - Do Not Copy

GDYS32STATUSCHANGEO

Gdvs32statuschangeO is called from gdvs32intrO to process
Status Change interrupts from the controller. The main for loop
processes both drives on the controller. First, the routine reads
the controller status byte for the current drive. (The fragment
unit_status[drive A 1] selects byte 1 for drive number 0, and
byte ° for drive number 1, corresponding to the physical layout
of the register.)

N ext, the routine tests for FAULT conditions. Code will be
added here in the future to further process fault conditions.

Next, gdvs32statuschangeO checks for seek complete inter
rupts. If the current drive did not have an outstanding SEEK
request, the rest of the loop is skipped. If the controller has not
set the US_ONCYL (on cylinder) bit in the status register, the
seek is not complete. Finally, if the drive being processed is not
the active drive in gdtab, skip the rest of the loop.

If the driver passes all of the tests, it processes the SEEK com·
plete interrupt. In any case, it then clears the interrupt an(
returns.

8-64 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Gdvs32statuschange() - process Status Change interrupt.

*/
VOID

gdvs32statuschange(dev)
register dey _t dey;
{

}

register struct iobuf *dp = &gdutab[gdpos(dev)];
register struct gdvs32ctl *Smdp = (struct gdvs32ctl *)dp->io_addr;
register struct gddriver *gdr;
short ctl = gdctl(dev);
ushort drive, unit_reg;

/* Status change interrupt. Update status for both drives */
for (drive=O; drive<=l; drive+ +) {

}

/* Get the status for the drive */
unit_reg = smdp- > unit_status [drive A 1];

dp = &gdutab[gdmkpos(ctl, drive)];
gdr = &gdvs32driver[VSindex(dp- > b_dev)];

if (unit_reg & US_FA UL T)
gdprint(dp->b_dev, "drive faulted");

if (!(dp->bjlags & DP _SEEKING))
continue; /* Drive not seeking */

if (!(unit_reg & ON_CYL))
continue; /* Not ready yet */

if ((gdtab[ctl].b_flags & DT_INUSE) &&
(gddrive(gdtab[ctl].b_dev) == gddrive(dp- > b_dev)))
/* No operation complete interrupt yet */
continue;

oprintf(" o/od-o/oX", drive, unit_reg);
/* Drive is now on cylinder */
dp-> b_flags &= 'TIP_SEEKING;
dp->b_flags F DP_WAITING;
gdr- > curcyl = gdr- > rptcyl;

/* Clear the interrupt */
if (smdp->status & CS_SC)

smdp->status &= -(CS_SCPS_SCS);

Block Device Example 8-65

Proprietary Information - Do Not Copy

GDVS32DMER()

Gdvs32timer() is called periodically by gdtimer(2K) as a result
of a timeout(2K) call. This call does not mean that a timeout
has occurred: it simply means that time is passing. It gives the
driver the opportunity to report the drive status back to the
general disk driver. There are three recognized return codes
from the devtimer(2K) routine: 0 indicates that the drive in
question is NOT ready; 1 means that the drive is ready; and -1
means that the controller is busy.

You should be aware that there is a deadman timer available
for low-level drivers in the general disk system. When your
driver sets the gdtab.wtime field for your device to some
nonzero value, gdtimer() decrements it every time it is
entered. When it co un ts down to zero, gdtimer() calls
gdpanic(2K) to report a DMA operation timeout. In this
driver, gdvs32doxfr() sets wtime to the DMAto value from the
gdsw entry for the controller.

8-66 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

/*
* Gdvs32timerO - return drive status to gdtimer().

*
* Returns:
* 0 - D rive not ready.
* 1 - D rive ready.

*/
int

gdvs32timer(dev)
register dey _t dey;
{

}

register struct gdsw *gds = &gdsw[gdpos(dev)];
register struct iobuf *gdt = &gdtab[gdctl(dev)];
register structiobuf *dp = &gdutab[gdpos(dev)];
register struct gdvs32ctJ *Smdp = (struct gdvs32ctJ *)dp->io_addr;
register ushort unit_reg;
register short drive = gddrive(dev);

if (!(gds->vjlags & GD_OPENED))
gdprint(dev, "gdvs32timer called on unopened drive");

if (!(gdt:r>b_flags & DT_INUSE)) {

}

unit_reg = smdp- > un it_status [drive A 1];
if (!(unit_reg & US_PRESENT)) {

/* Take drive off line */
return(0);

}
if (!(unit_reg & US_DREADY)) {

/* Take drive off line */
return(O);

}

/* drive is ok */
return(I);

/* Controller is busy, we don't know how the drive is */
return(-1);

Block Device Example 8-67

9 INTEGRATING THE DRIVER

This chapter describes the steps you must follow to develop your
driver and integrate it into the CTIX operating system. The
material is organized into two sections: one for developers who
have purchased a CTIX source code license, and another for
those who have only a binary license. Each section is complete
in itself: you only need to read the section that applies to you.

The chapter also contains information that is useful whether you
have a source or a binary license. One section explains how to
create the required special files; another contains example
master(4) file entries.

IF you HAVE A SOURCE CODE IJICENSE

Use this section if you have purchased a CTIX source code
license. It contains all of the information you must have to build
and integrate your driver III the CTIX source release
environ men t.

GETTING STARTED

The source files for the CTIX operating system are located in
/usr /src/uts/ common and the subdirectories below it. All
references of the form < directory /filename > in this section
imply that the full pathname is

/usr /src/uts/ common/ directory/filename.

As you build and integrate your driver, you will be concerned
with the following subdirectories of /usr /src/uts/ common:

cf The configuration files directory. This directory holds the
files that customize the generic CTIX operating system for
each particular hardware environment. In particular, this
directory holds one or more dfiles, each of which describes

Integrating the Driver 9-1

Proprietary Information - Do Not Copy

one particular machine configuration.

io The device driver source directory. The source files for all
CTIX device drivers are located here. You can develop
your driver anywhere, but, when it is time to compile it
and link it with the kernel, you must copy the source files
into this directory.

sys The kernel header files directory. All of the files referenced
by lines of the form #include <sys/headerfile.h> are
located in this directory. If you have created one or more
include files to support your driver, place them in this
directory.

INTEGRATING THE DRIVER

In order to get your device driver running, you must compile it,
link it with the kernel (unless it is loadable), and create one or
more special files to provide access to the device. This subsec
tion describes each of these steps.

Compiling the Driver

Follow these instructions to compile your driver:

1. Develop (or install) the source code for your device driver
in /usr /src/uts/ common/io.

2. Change the definitions of SRC and OBJ m
<io/Makefile> to include your driver. For example, if
your driver is in <io/xyz.c>, you must insert xyz.c and
xyz.o into the definitions for SRC and OBJ respectively.
To be safe, make a copy of the original Makefile before you
alter it. Then edit the file, insert the name of your driver,
and rewrite the changes.

3. Recreate the Makefile dependency tree by typing make
includes. This reconstructs <io/Makeincludes> to
include the dependency tree for your driver.

9-2 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

4. Compile your driver by typing make. This will leave the
object file for it in the <io> directory (assuming there
were no compile-time errors).

5. Rebuild the library (lib2) so that it includes your driver by
typing make arc.

Linking the Driver

If your driver is loadable, you don't need to link your driver with
the CTIX kernel. Skip this subsection and read the section enti
tled Makz'ng the Spec£al F£le(s).

If your driver is not loadable, you must link it with the rest of
the modules in the CTIX kernel. Follow these instructions to
link your driver with the kernel:

1. Add a definition line to <er/master> for your device.
See rnaster(4) for a description of the master file. Also
see Some Example Master(~) File Entries, later in this
chapter for specific examples.

2. Add a definition line to < ef/ dfile> for your device. See
eonfig(lM) for a complete description of the dfile and its
contents.

By convention, dfile describes the default II vanilla
flavored" CTIX system: you should not change its contents.
Instead, create your own dfile with a unique name. To
continue with the example above, create < ef/ dfile.xyz >.
The name of the file doesn't matter, but the name of the
device does. If you call your new dfile.xyz entry xyz,
then eonfig(lM) assumes that the driver entry points are
named xyzopenO, xyzcloseO, and so on. You must be
consistent with your naming, or you will get "undefined
symbol" errors when you attempt to relink the kernel.

3. Change directory to jusr/sys/ef.

4. Type eonfig dfile.xyz. This runs the configuration pro
gram, which creates the files <ef/eonf.e> and

Integrating the Driver 9-3

Proprietary Information - Do Not Copy

f3 < cf/low.s >.

5. Type m.ake VER=xyz. You can set VER to anything
you like. If you don't specify any value for VER (that is,
if you just type make), it defaults to the value defined in
the cf/Makeflags file. The resulting object file from the
above make command is named CTIXxyz.

6. When the make completes (assuming there were no errors),
copy the resulting file into the root directory.

7. Bring the system to single-user mode.

8. Remove the existing /unix file (if it is a link to some other
file. If it is not a link, rename the /unix to /unix.old or
some other nonconflicting name).

9. Link /unix to CTIXxyz (whatever kernel file resulted
from the "make" step above). The new /unix is a boot
able kernel.

10. Modify the /etc/system file to include a line specifying
the slot number(s) of your new device, the board type,
starting address, and address length, as documented in the
M£ghtyFrame Administrator's Reference Manual. Make
certain that the board type does not conflict with any of
the other types defined in <sys/vme.h>. It is best
(although not required) to place the new board type defini
tion in the header file to help avoid conflicts when other
devices are added later.

11. Run Ideeprom(lM) to update the V11Ebus EEPROM so
that your driver can determine its VMEbus address.

9-4 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

IF YOU HAVE A BINARY LICENSE

Use this section if you have not purchased a CTlX source code
license. It contains all of the information you must have to build
and integrate your driver in the CTlX binary release environ
ment.

GETTING STARTED

The CTlX binary-only release contains two directories of source
files that you must have in order to compile and integrate your
device driver. These directories are:

/ usr / sys / cf The configuration directory. This directory
holds the files that customize the generic
CTlX operating system for each particular
hardware environment. In particular, this
directory holds one or more dfiles, each of
which describes one particular machine con
figuration.

/usr/include/sys The kernel header files directory. All of the
files referenced by lines of the form
#include <sys/headerfile.h> are located
in this directory. If you have created one or
more include files to support your driver,
place them in this directory.

In addition, you should create the directory /usr /sys/io to hold
the source code for your driver.

INTEGRATING THE DRIVER

In order to get your device driver running, you must compile it,
link it with the kernel (unless it is loadable), and create one or
more special files to provide access to the device. This subsec
tion describes each of these steps.

Integrating the Driver 9-5

Proprietary Information - Do Not Copy

Compiling the Driver

Follow these instructions to compile your driver:

1. Develop (or install) the source code for your device driver
in /usr /sys/io.

2. Create /usr /sys/io/Makefile with the following contents:

include .. /cf/Makenags

LIBNAME = .. /liblocal

SRC = xyz.c

OBJ = xyz.o

all: $(LIBNAME)

$(LIBNAME): $(OBJ)
rm -f $(LIBNAME)
ar qc $(LIBNAME) $(OBJ)
-chmod 664 $(LIBNAME)

3. Type make to compile your driver and place it III the
library named /usr /sys/liblocal.

Linking the Driver

If your driver is loadable, you don't need to link it with the
CTIXkernel. Skip this subsection and read Making the Special
File(s)'

If your driver is not loadable, you must link it with the rest of
the modules in the CTIX kernel. Follow these instructions to
link your driver with the kernel:

1. Add a definition line to <cf/master> for your device.
See master(4) for a description of the master file. Also
see Some Example Master(4) File Entries, later in this
chapter for specific examples.

Q-6 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

2. Add a definition line to <ef/dfile> for your device. See
eonfig(lM) for a complete description of the dfile and its
contents.

By convention, dfile describes the default "vanilla
flavored" CTrx: system: you should not change its contents.
Instead, create your own dfile with a unique name. To
continue with the example above, create <ef/dfile.xyz>.
The name of the file doesn't matter, but the name of the
device does. If you call your new dfile.xyz entry xyz,
then config(lM) assumes that the driver entry points are
named xyzopenO, xyzcloseO, and so on. You must be
consistent with your naming, or you will get "undefined
symbol" errors when you attempt to relink the kernel.

3. Change directory to /usr /sys/ ef.

4. Type eonfig dfile.xyz. This runs the configuration pro
gram, which creates the file <ef/conf.e>.

5. Type make VER=xyz. You can set VER to anything
you like. If you don't specify any value for VER (that is,
if you just type make), it defaults to the value defined in
the <ef/Makeflags> file. The resulting object file from
the above make command is named CTIXxyz.

6. When the make completes (assuming there were no errors),
copy the resulting file into the root directory.

7. Bring the system to single-user mode.

8. Remove the existing /unix file, if it is a link to some other
file. If it is not a link, rename the /unix to /unix.old or
some other nonconflicting name.

9. Link /unix to CTIXxyz (whatever kernel file resulted
from the "make" step above). The new /unix is a boot
able kernel.

10. Modify the jete/system file to include a line specifying
the slot number{s) of your new device, the board type,
starting address, and address length, as documented in the

Integrating the Driver 9-7

Proprietary Information - Do Not Copy

MightyFrame Administrator's Reference Manual. Make
certain that the board type does not conflict with any of
the other types defined in <sys/vme.h>. It is best
(although not required) to place the new board type defini
tion in the header file to help avoid conflicts when other
devices are added later.

11. Run Ideepro:m(lM} to update the VlvlEbus EEPROM so
that your driver can determine its VMEbus address.

MAKING THE SPECIAL FII/E(S)

Whether your driver is configured with the kernel or is loadable,
you must create one or more special files to provide access to the
device. It makes no difference what you call the file, where you
locate it, or what access permissions you give it. All that CTlX
needs are the major and minor device numbers from the special
file's inode. By convention, though, the file is located in / dev
and is named xy z, to match your driver.

To create a special file, follow these instructions:

1. Type config -t dfile.xyz to determine the major device
number assigned to your device.

2. Use the major device number obtained in the previous step
as the parameter to mknod(lM} when you create the spe
cial files. Assign minor numbers according to the scheme
your driver expects.

3. Set the ownership and access permissions on the new spe
cial file to provide the appropriate accessibility to your
device.

Mter you run mknod(lM}, you are ready to test your driver.
Either reboot the system or bind your driver by running
Iddrv(lM}. See Chapter 10, Debugging the GTIX Kernel, for
more information on how to proceed from this point.

9-8 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

SOME EXAMPI,E MASTER(4) FII,E ENTRIES

This section contains the master(4) file entry for each of the
five example drivers in the manual. Each entry is explained in
detail.

V /SMD 3200 SMD CONTROLLER

The master(4) file entry for the V jSMD device from Chapter 8,
Block Device Example, is as follows:

name: Vsmd3200
mask: 0077
type: 1016
prefix: gd
block: 0
char: 32
mult: 1
aslze: 2
vtype: 2
level: 3

The bits in the mask field have the following meanings:

0040 The driver has a power-failure handler.

0020 The driver has a devopen(2K) routine (gdopen(2K»).

0010 The driver has a devclose(2K) routine (gdclose(2K»).

0004 The driver has a devread(2K) routine (gdread(2K»).

0002 The driver has a devwrite(2K) routine (gdwrite(2K»).

0001 The driver has a devioctl(2K) routine (gdioctl(2K»).

Integrating the Driver 9-9

Proprietary Information - Do Not Copy

The bits in the type field have the following meanings:

1000 The V ISMD 3200 is a cluster device.

0010 The V ISMD 3200 is a block device.

0004 The V ISMD 3200 is a character device.

0002 The V ISMD 3200 uses a floating interrupt vector.

DR11 PARALLEL INTERFACE

The master(4) file entry for the DR11 Parallel Interface is as
follows:

name: dr11
mask: 1136
type: 0406
prefix: dr11
block: 0
char: 32
mult: 1

The bits in the mask field have the following meanings:

1000 The driver is loadable and has a devrelease(2K) routine
(dr 11releaseO).

0100 The driver is loadable and has a devinit(2K) routine
(dr11initO)·

0020 The driver has a devopen(2K) routine (dr11openO).

0010 The driver has a develose(2K) routine (dr11eloseO).

0004 The driver has a devread(2K) routine (dr11readO).

0002 The driver has a devwrite(2K) routine (dr11writeO).

9-10 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

The bits in the type field have the following meanings:

0400 The DR11 is a VMEbus device.

0004 The DR11 is a character device.

0002 The DR11 uses a floating interrupt vector.

SMD - STORAGE MODULE DRIVE DEVICE

The master(4) file entry for the S:MD device from Chapter 7,
Block 110 Tutor£al, is as follows:

name: smd
mask: 0037
type: 1416
prefix: gd
block: 0
char: 32
mult: 1
aSlze: 2
vtype: 2
level: 3

The bits in the mask field have the following meanings:

0020 The driver has a devopen(2K) routine (gdopen(2K)).

0010 The driver has a devclose(2K) routine (gdclose(2K)).

0004 The driver has a devread(2K) routine (gdread(2K)).

0002 The driver has a devwrite(2K) routine (gdwrite(2K)).

0001 The driver has a devioctl(2K) routine (gdioctl(2K)).

Integrating the Driver 9-11

Proprietary Information - Do Not Copy

The bits in the type field have the following meanings:

1000 The S:MD is a cluster device.

0400 The SMD is a VMEbus device.

0010 The SMD is a block device.

0004 The SMD is a character device.

0002 The SMD uses a floating interrupt vector.

NI - NETWORK INTERFACE DEVICE

The master(4) file entry for the NI Parallel Interface is as fol
lows:

name: netwrk
mask: 1136
type: 0406
prefix: nl
block: 0
char: 32
mult: 1

The bits in the mask field have the following meanings:

1000 The driver is loadable and has a devrelease(2K) routine
(nireleaseO) .

0100 The driver is loadable and has a devinit(2K) routine
(niinitO)·

0020 The driver has a devopen(2K) routine (niopenO).

0010 The driver has a devclose(2K) routine (nicloseO).

0004 The driver has a devread(2K) routine (nireadO).

0002 The driver has a devwrite(2K) routine (niwriteO).

9-12 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

The bits in the type field have the following meanings:

0400 The NI is a Vl\1Ebus device.

0004 The NI is a character device.

0002 The NI uses a floating interrupt vector.

SI - SPEECH INTERFACE DEVICE

The master(4) file entry for the Speech Interface Device is as
follows:

name: speech
mask: 1136
type: 0406
prefix: S1

block: 0
char: 32
mult: 1

The bits in the mask field have the following meanings:

1000 The driver is loadable and has a devrelease(2K) routine
(sireleaseO) .

0100 The driver is loadable and has a devinit(2K) routine
(siinitO)·

0020 The driver has a devopen(2K) routine (siopenO).

0010 The driver has a devclose(2K) routine (sicloseO).

0004 The driver has a devread(2K) routine (sireadO).

0002 The driver has a devwrite(2K) routine (siwriteO).

Integrating the Driver 9-13

Proprietary Information - Do Not Copy

The bits in the type field have the following meanings:

0400 The 81 is a VMEbus device.

0004 The 81 is a character device.

0002 The 81 uses a floating interrupt vector.

9-14 Writing MightyFrame Device Drivers

10 DEBUGGING 'llIE CTIX KERNEL

This chapter describes the various facilities available for
de bugging the kernel. The kernel debugger is documented in
detail. The qprintf(2K) macros are described in general; they
are described more fully in Appendix A, CTIX Interface Manual
Pages. The interactive boot loader is fully documented.
Finally, the CTIX debuggers adb(1) and sdb(l) , and the
crash(1M) utility are also described briefly. They are
documented in the CTIX Operating System Manual, Volume 1.

THE KERNEL DEBUGGER

The UNIX kernel has been enhanced by the addition of a full
breakpoint and trace debugger under CTIX. This utility
provides the capability to

• Single-step the kernel,

• Set and clear breakpoints,

• Examine and modify memory locations,

• Examine and modify registers, and

• Control debugging message output.

You can configure the de bugger as part of the kernel load file
(/unix), or you can use the lddrv(1M) utility to load it while
the system is running. If the debugger is part of the load file,
CTIX transfers control to it before executing the system
initialization code. After displaying its banner, the de bugger
waits about 2 seconds for input from Channel O. If you type a
character in that interval, you will remain in the debugger. If
you do not type anything within 2 seconds, the de bugger exits,

Debugging the CTlX Kernel 10-1

Proprietary Informauon - Do Not Copy

and CTIX continues with its normal initialization sequence.

Nom

When you want to run with debugging enabled

1. Reboot the system.

2. Hold down any key until the debugger prints its
banner.

3. Enter the kd command to enable the "B trap to the
debugger.

4. Enter the go command to continue with the initiali
zation sequence.

If you issue the sh command before exiting the de bugger at
this time, CTIX runs a single-user shell instead of running
init(1M), ignoring the default run level specified in
/etc/inittab. See the CTIX Operating System Manual, Volume 1,
for a complete description of init(lM). Also see Appendix B
of the Mightyframe Administrator's Reference Manual.

Whether the de bugger is configured as part of the load file or is
loaded by Iddrv(1M), you can transfer control to it at any time
by typing "B (on a terminal connected to Channel 0 only).
This trap is active whether or not any program is reading the
keyboard at the time . You can disable the "B trap with the
debugger's kd command. By default, the "B trap is disabled if
the de bugger was linked with the kernel, and enabled if the
debugger was loaded with Iddrv(1M).

The debugger provides a great deal of control over debugging
message output. The following list summarizes the output
options.

10-2 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

• You can use the del:.>ugger kp command to control where
the output from kernel printf'(2K) calls appears. You can
route the output to

The screen,

The printer,

The console buffer,

The error log file, or

Various combinations of these options.

• You can use the debugger kq command to control the
displaying of selective levels of kernel printf{2K) output.
To take advantage of this feature, you must use the
qprintf{2K) macros in your driver to differentiate among
various types of debug output.

• You can specify that printf(2K) output be paginated, as
though it were first piped through the more(1) command.
This pagination remains in effect for printf(2K) output
even when you are not in the debugger, so voluminous
debugging output won't scroll off the screen.

When output is stopped in page mode (indicated by the ellipsis
" ... " in the output stream), you can type one of several charac
ters to restart it. The following list describes the options.

• If you press RETURN only, output continues with the
next page.

• If you type minus (-) followed by RETURN, output con
tinues with the previous page.

• If you type G or g followed by RETURN (for GO non
stop), Page Mode is disabled and output is continuous
thereafter. In this case, voluminous debugging output
does scroll off the screen.

• If you type S, s, or $ followed by RETURN, output to the
screen is toggled; that is, it is turned OFF if it was ON,
and ON if it was OFF.

Debugging the CTIX Kernel 10-3

Proprietary Information - Do Not Copy

• If you type L or I followed by RETURN, output to the line
printer is toggled; again, it is turned OFF if it was ON, and
ON if it was OFF.

The debugger makes a distinction between "regular," "tem
porary," and "automatic" breakpoints. The following list defines
the differences:

• You place a regular breakpoint when you use the br com
mand.

• You place a temporary breakpoint when you use the bx
command.

• The debugger places a temporary automatic breakpoint
when you use the to ~ommand.

The following table describes all of the debugger commands and
their parameters. Numeric parameters are always ASCII hexade
cimal values. The bracket characters [] indicate optional param
eters. An ellipsis (•••) indicates that the parameter can be
repeated one or more times.

11 Display the Help menu.

bc [address] Clear the breakpoint at address. If address is
omitted, use the current PC.

bf [address] Set breakpoint at function entry point. If
address is omitted, use the current PC.

The bf command adds 4 bytes to the address in
order to skip past the LINK instruction located
at the entry point of every C-generated func
tion.

bp Display all current breakpoints in the following
format:

10-4 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

ADDRESS INST TYPE

AAAAAAAA TIll TTTT

AAAAAAAA is the hex address of the break
point, 1111 is the instruction object code at
AAAAAAAA in hex, and TTTT is either
REGULAR, or TEMP. In addition, the key
word AUTO is displayed after TEMP when
the debugger has placed an automatic break
point as a result of the to command.

br [address] Set a regular breakpoint at address. If
address is omitted, use the current PC.

Every time the breakpoint is encountered, exe
cution is interrupted, and control is returned to
the debugger. When the breakpoint is taken
and the debugger entered, the instruction at the
breakpoint address has not been executed. Reg
ular breakpoints must be cleared explicitly using
the be command.

bt [rnxfrarnes] Display a stack backtrace consisting of
mxframes frames. If mxframes is not speci
fied, display 16 stack frames. The debugger
displays the word MORE if there are more
(undisplayed) stack frames.

bx [address] Set a temporary breakpoint at address. If
address is not specified, use the current PC
contents.

The first time the breakpoint is encountered,
execution is interrupted, and control is returned
to the debugger. Before giving control to the
user, the debugger clears the temporary

Debugging the CTIX Kernel 10-5

Proprietary Information - Do Not Copy

db address

df

di [address]

dm address

breakpoint. When the breakpoint is taken and
the debugger entered, the instruction at the
breakpoint address has not been executed. A
temporary breakpoint is taken only once: it is
cleared automatically by the debugger.

Display memory bytes (8 bits) starting at
address. You must specify address; there is
no default.

The debugger displays 16 bytes in hexadecimal
with their ASCII equivalents and waits for input
from the keyboard. Enter a RETURN to
display the next 16 bytes. Enter a minus sign
(-) to display the previous 16 bytes. If you
enter anything else, the debugger terminates the
db command and prompts you to enter the next
command.

Display the full register set in hexadecimal.

Display disassembled instructions at address.
If address is omitted, use the current PC con
tents.

The debugger displays one disassembled instruc
tion and waits for input from the keyboard.
Enter a RETURN to display the next instruc
tion. Enter a minus sign (-) to display the pre
vious instruction. If you enter anything else,
the debugger terminates the di command and
prompts you to enter the next command.

Display memory longwords (32 bits) starting at
address. You must specify address; there is
no default.

10-6 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

dr

dw address

The debugger displays one longword in hexade
cimal and then waits for input from the key
board. Enter a RETURN to display the next
longword. Enter a minus sign (-) to display the
previous longword. If you enter anything else,
the de bugger terminates the dm command and
prompts you to enter the next command.

Display the registers one at a time in the follow
ing order: DO-D7, AD-A7, Status Register, Pro
gram Counter, Interrupt Stack Pointer, Master
Stack Pointer, Cache Control Register, Cache
Address Register, Vector Base Register, Source
Function Code, and Destination Function Code.

The debugger displays one register in hexade
cimal and then waits for input from the key
board. Enter a RETURN to display the next
register. If you enter anything else, the
debugger terminates the dr command and
prompts you to enter the next command.

Display memory words (16 bits) starting at
address. You must specify address; there is
no default.

The debugger displays one word in hexadecimal
and then waits for input from the keyboard.
Enter a RETURN to display the next word.
Enter a minus sign (-) to display the previous
word. If you enter anything else, the debugger
terminates the dw command and prompts you
to enter the next command.

go [address] Resume execution. If address is specified,
place its value into the program counter before

Debugging the CTIX Kernel 10-7

he

kc

kd

kl [I]

kp

Proprietary Information - Do Not Copy

resuming execution. This command takes you
out of the debugger.

Display the Help menu.

Enable/disable the 68020 cache. This command
toggles the current state of the microprocessor's
instruction cache.

Enable/disable kernel "B entry to the debugger.
This command toggles the state of the "B
debugger trap. When the trap is enabled, typ
ing "B on the terminal connected to Channel 0
transfers execution to the debugger. When the
trap is disabled, "B is ignored.

List the kernel trace buffer. If I (lowercase L) is
specified, list the contents of the kernel buffer
on the printer. Otherwise, list the buffer con
tents on the screen in page mode.

Enable/disable kernel qprintf(2K) calls. This
command advances the state of the kpflg vari
able in the kernel. The states are

Disabled.

Enabled - route data to screen.

Enabled - route data to printer.

Enabled - route data to screen and printer.

Enabled - route data to memory log.

Enabled - route data to logfile.

10-8 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

kq [Ivl ... J

Enabled - route data to both logfile and screen.

The kp command wraps around to the Disabled
state after the last Enabled state. See
qprintf(2K) for a discussion of the usage of the
kernel kpflg.

Enable/disable selective kernel debug levels.

The kq command toggles the bits in the kqflg
variable, thus enabling or disabling one or more
selective debug levels in the kernel. Acceptable
values for IvI are lowercase a though z and the
characters {, I, }, and -. These values toggle
the state of the bits examined by aprintf()
through eeprintfO. By specifying multiple
parameters on the command line, you can
enable and disable multiple levels at once.

See qprintf(2K) for a complete description of
the selective debug facility, including the
correspondence between kq command parame
ters and debug levels.

mb address Modify memory bytes (8-bits) starting at
address. You must specify address; there is
no default.

The debugger displays 1 byte in hexadecimal
and then waits for input from the keyboard.
Enter a RETURN to display the next byte.
Enter a minus sign (-) to display the previous
byte. Otherwise, if you enter anything other
than a valid hexadecimal number, the debugger
terminates the mb command and prompts you
to enter the next command.

Debugging the CTIX Kernel 10-9

Proprietary Information - Do Not Copy

If you enter a hex number, the debugger writes
the low-order 8 bits of the value to address
and then begins again from t.he top; redisplay
ing the new value and waiting for input.

mm address Modify memory longwords (32 bits) starting at
address. You must specify address; there is
no default.

mr

The debugger displays one longword in hexade
cimal and then waits for input from the key
board. Enter a RETURN only to display the
next longword. Enter a minus sign (-) to
display the previous longword. Otherwise, if
you enter anything other than a valid hexade
cimal number, the debugger terminates the mm
command and prompts you to enter the next
command.

If you enter a hex number, the debugger writes
the full 32-bit value to address and then begins
again from the top, redisplaying the new value
and waiting for input.

Modify the registers one at a time in the follow
ing order: DO-D7, AO-A7, Status Register, Pro
gram Counter, Interrupt Stack Pointer, Master
Stack Pointer, Cache Control Register, Cache
Address Register, Vector Base Register, Source
Function Code, and Destination Function Code.

The debugger displays one register in hexade
cimal and then waits for input from the key
board. Enter a RETURN only to display the
next register. Otherwise, if you enter anything
other than a valid hexadecimal number, the
debugger terminates the mr command and

10-10 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

prompts you to enter the next command.

If you enter a hex number, the debugger writes
the full 32-bit value to the current register and
then begins again from the top, redisplaying the
new value of the current register and waiting
for input.

mw address Modify memory words (16 bits) starting at

pm

address. You must specify address; there is
no default. If address is odd, it is rounded
down to the nearest 16-bit boundary.

The debugger displays one word in hexadecimal
and then waits for input from the keyboard.
Enter a RETURN to display the next word.
Enter a minus sign (-) to display the previous
word. Otherwise, if you enter anything other
than a valid hexadecimal number, the debugger
terminates the mw command and prompts you
to enter the next command.

If you enter a hex number, the debugger writes
the low-order 16 bits of the value to address
and then begins again from the top, redisplay
ing the new value and waiting for input.

Enable/disable page mode output. This com
mand toggles the current state of the page mode
output flag. If the flag is enabled, the kernel
lists one screenful of information, displays the
ellipsis characters (...), and then halts, waiting
for input from the keyboard. This is true for
any kernel output, whether or not the debugger
is currently active. When page mode is dis
abled, the kernel lists continuous data. Page
mode is similar to piping debugging output

Debugging the CTIX Kernel 10-11

re [-]

sh

to

tr

Proprietary Information - Do Not Copy

through the more(1) command.

Reboot CTIX. This command is equivalent to
pressing the RESET button. The disks are not
synced, processes are not halted, and the nor
mal shutdown process is bypassed completely.
If the hyphen is present, CTIX will not perform
a dump before shutdown. Otherwise, a normal
system dump is taken.

Invoke single user shell. If the debugger is con
figured into the kernel (not loaded as a result of
executing Iddrv(1M)), it runs before CTIX ini
tialization is performed. If you issue a sh com
mand before you' exit the debugger the first
time, CTIX brings up a single user shell
instead of running init(1M). At any time
other than immediately after reboot, the sh
command does nothing.

Trace over a JSR instruction. If the program
counter points to a JSR instruction, the
debugger places a temporary automatic break
point at the instruction after it and resumes
execution. If the current instruction is not a
JSR, the debugger enters normal trace mode (as
though you had entered a tr command).

Trace instruction execution; that is, single-step
the CPU.

The debugger accomplishes this by setting the
T1 bit in the Program Status register. See the
MG68020 B2-bit Microprocessor User's Manual
for more information.

10-12 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

tt

wb address

Trace change of instruction flow; that is, allow
execution until a BRA, JSR, etc., instruction is
executed.

The debugger accomplishes this by setting the
TO bit in the Program Status register. See the
MC68020 32-b£t M£croprocessor User's Manual
for more information.

Write (without prereading) memory bytes (8
bits) starting at address. You must specify
address; there is no default.

The debugger displays the address in hexade
cimal and then waits for input from the key
board. Enter a RETURN to display the next
address. Enter a minus sign (-) to display the
previous address. Otherwise, if you enter any
thing other than a valid hexadecimal number,
the debugger terminates the wb command and
prompts you to enter the next command.

If you enter a hex number, the debugger writes
the low-order 8 bits of the value to address
and then begins again from the top, redisplay
ing the address and waiting for input.

wm address Write (without prereading) memory longwords
(32 bits) starting at address. You must specify
address; there is no default.

The debugger displays the address in hexade
cimal and then waits for input from the key
board. Enter a RETURN to display the next
address. Enter a minus sign (-) to display the
previous address. Otherwise, if you enter any
thing other than a valid hexadecimal number,

Debugging the CTIX Kernel 10-13

Proprietary Information - Do Not Copy

ww address

the debugger terminates the wm command and
prompts you to enter the next command.

If you enter a hex number, the debugger writes
the full 32-bit value to address and then begins
again from the top, redisplaying the address and
waiting for input.

Write (without prereading) memory words (16
bits) starting at address. You must specify
address; there is no default.

The debugger displays the address in hexade
cimal and then waits for input from the key
board. Enter a RETURN to display the next
address. Enter a minus sign (-) to display the
previous address. Otherwise, if you enter any
thing other than a valid hexadecimal number,
the debugger terminates the ww command and
prompts you to enter the next command.

If you enter a hex number, the debugger writes
the low-order 16 bits of the value to address
and then begins again from the top, redisplay
ing the address and waiting for input.

QPRINTF(2K) MACROS

The header file <sys/kprintf.h> contains a number of macro
definitions that are useful in debugging a device driver. Each of
these macros is of the form:

#define Qprintf (kpflg&&kqflg&(N < <O))&&printf

where Q is one or two letters between a and iT, and N is a
number between 0 and 30.

10-14 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

The macro definition reads like this: "If kpflg (the kernel print
flag) is nonzero, and if the Nth bit is set in kqflg, then call the
printf(2K) function with the arguments specified with the
macro."

The qprintf(2K) macros allow both gross and fine control of
debugging output. You can disable output altogether by clearing
kpflg, or you can selectively enable and disable output by set
ting kpflg and one or more of the bits in kqflg. The kernel
debugger commands kp and kq are provided to manage these
variables.

These macros are documented under qprintf(2K) in Appendix
A, CTIX Interface Manual Pages.

INTERACTIVE BOOT LOADER

The boot loader is the program that is written into the loader
area of the disk by iv(IM). It is not the Id(l) program, which
links object modules together into a runnable process. The boot
loader has the responsibility of loading the CTIX operating sys
tem at bootstrap time.

CTIX software provides the capability to substitute an interac
tive boot loader in place of the loader normally supplied with the
operating system. This interactive loader allows you to boot
from an alternate load file, instead of /unix, which is the normal
default. This capability is very useful when you are debugging a
new device driver.

To install the interactive loader, you must alter the description
file and run the iv(IM) program. The pathname of the interac
tive loader is (currently) /usr/lib/iv/loaderllcust. You must
substitute this pathname on the loader line of the description
file. After you alter the description file, run the iv(IM) program
to write the interactive loader onto the loader area of the boot
disk. Until you change the description file and run iv(IM)
again, the interactive loader will always run instead of the nonin
teractive loader.

Debugging the CTIX Kernel 10-15

Proprietary Information - Do Not Copy

When you reboot the the system, the interactive loader carnes
on the following dialog.

• The loader displays its banner line }viightyframe Loader
Version 11.

• The loader then prompts Do you to boot anything
other than the default?

• If you respond by typing n, the loader searches for and
boots from /unix.

• If you respond by typing y, the loader displays Select dev
ice to load from (0-2=Onboard Disks, T=Tape, 4-
7=VME disks).

• You must select one of the displayed load devices. After
you have entered a valid choice, the loader prompts Enter
filename from which to load.

• If you enter a directory name, the loader lists the files
within the named directory and then starts over, from its
banner line.

• If you enter the name of a nonexistent file, the loader
displays Error: no such file, try again, and then starts
over from its banner line.

• If you enter the name of a file within slice one of the
named load device, the loader boots that file.

OTHER KERNEL DEBUGGING TOOLS

You can use the adb(l) and sdb(l) debuggers on the CTIX ker
nel, but they are much less useful than the kernel debugger. You
cannot set breakpoints or trace instruction execution with these
programs, since they execute as user processes. They do work
well for looking quickly at the state of the kernel or your driver
when you do not wish to load the kernel debugger. They also
are useful when the system has crashed, and you need to examine
a dump.

10-16 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

The crash(lM) utility is an invaluable tool for exammmg a
CTrx system image. You can use crash(lM) to display every
major kernel table, including the linked lists of buffer headers.
Like the debuggers, crash(lM) works either on a running sys
tem, or on a core dump.

See the CTIX Operat£ng System Manual, Volume 1, for complete
documentation of these utilities.

Debugging the CTIX Kernel 10-17

APPENDIX A: C'I1XIN'IERFACE MANUAL PAGES

INTR ODIJC1]ON

This appendix describes all of the kernel calls available to
support a device driver. The functions are suffixed with the
characters 2K to indicate that they are system calls of a sort but
that they are callable only from within the kernel. There is no
direct, user-level access to any of the routines documented in
this appendix.

There are three types of routines documented in this appendix:

• Routines that you write as part of your device driver: they
begin with the letters dev.

• Kernel routines that form part of the general disk driver:
they begin with the letters gd

• Other kernel routines that perform specific functions for
your device driver. This category includes all of the
routines that do not begin with dev or gd

Routines that begin with the letters dey such as devread(2K)
and devclose{ 2K) are part of the device driver. When you
write your driver, you must substitute the name of your device
for the dev prefix. For example, the devread() routine will be
called drllread() if your device is a DR11 parallel interface
board: the devclose() routine will be gdvs32close() if your
device is an Interphase V /SMD 3200 Disk Controller, and so
on.

CllX Interface Manual Pages A-I

Proprietary Information - Do Not Copy

KERNEL IN'lERFACE TO DEVICE DRIVERS

To simplify the task of supporting new types of hardware, the
designers of UNIX eliminated all kernei calls directly to the
device drivers. In place of direct calls, UNIX and CTIX pro
vide three arrays that describe the device driver entry points.
These arrays are

cdevsw

bdevsw

gdsw

The character device switch, which contains the
addresses of the entry points for character devices.

The block device switch, which contains the
addresses of the entry points for block devices.

The general disk device switch, which contains the
addresses of the en try points for disk-like devices.

The declarations for these data structures, which are contained
in the header files <sys/eonf.h> and < sys/gdisk.h > , are
included below. The vertical dots indicate that lines from the
header file have been omitted here. The following code frag
ment may differ from the include files on your system. In all
cases, the files in the latest CTIX release supercede this docu
ment.

struct cdevsw {

};

int (*d_open)();
in t (*d_close)();
int (*d_read)();
int (*d_write)();
int (*d_ioctJ) ();
struct tty *d_ttys;

/* devopen(2K) routine */
/* devc1ose(2K) routine */
/* devread(2K) routine */
/* devwrite(2K) routine */
/* devioctJ(2K) routine */

Character Device Switch

A-2 'Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

struct bdevsw {
int (*d_open)O; /* devopen(2K)/gdopen(2K) routine * /
int (*d_close)O; /* devclose(2K)/gdclose(2K) routine * /
int (*d_strategy)O;/* devstrategy(2K)/gdstrategy(2K) routine * /
int (*d_print)O; /* devprint(2K)/gdprint(2K) routine * /

};

Block Device Switch

struct gdsw {
1* The fields through "dsk2N are initialized in gdtab.h * /
int (*intr)O; 1* devintr(2K) routine * /
int (*start)Oi /* devstart(2K) routine */
int (*open)O; /* devopen(2K) routine * /
int (*timer)O; /* devtimer(2K) routine * /
short *bbq; 1* bad block cylinder index * /
struct b bmcell *bb; /* bad block table * /
ushort szbbq; /* size of bad block cylinder index * /
ushort szbb; 1* size of bad block table */
ushort DMAto; /* max duration of a disk op * /
short ctlr; 1* Controller type (see gdioctl.h) * /
struct gdswprt dsk; /* disk specific information * /
struct gdswprt2 dsk2; /* More disk specific info * /

/* The following fields are NOT initialized in gdtab.h * /

};

General Disk Switch

The cdevsw and bdevsw structures are defined and initialized
in the file <cf/conf.h>. The gdsw structure is itself a
member of the gddefault structure, which is defined in
<sys/gdisk.h>. This structure (including gdsw) is defined
and initialized in <sys/gdtab.h>.

CTIX Interface Manual Pages A-3

Proprietary Information - Do Not Copy

In order to add a new character device driver to the kernel, you
must

• Insert the addresses oi the driver's devopen(2K),
devclose(2K), devread(2K), devwrite(2K), and
devioctl(2K) functions into the cdevsw array.

• Run the mknod(l) program to create a character special
file with the correct major and minor device number.

For character devices, the major device number serves as the
index into the cdevsw array; the minor device number is used
by the driver for whatever it needs. Frequently, the minor dev
ice number serves to differentiate among various common dev
ices, but it can also indicate such things as tape density,
rewind/no rewind, disk partition (slice), and so on.

A-4 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

The following diagram illustrates the linkage mechanism
between the kernel and the character device drivers.

User-Level
System Calls

open(2)

close(2)

read(2)

write(2)

ioct/(2)

System Call Processing

Character
Device Switch

--... (*d_open)()
... (*d_close)()
..... (*d_read)()
... (*d_write)O
... (*d_ioctl)()

Interrupt Processing

I perint() .-1 devintr(2K)

KerneljDevice Driver Linkage
Character Devices

Device Driver
Entry Points

de vopen(2K)

devclose(2K)

devread(2K)

devwrite(2K)

devioctl(2K)

In order to add a new block device driver to the kernel, you
must follow almost exactly the same steps outlined above, that
is,

• Insert the addresses of the driver's devopen(2K),
devclose(2K), devstrategy(2K), and devprint(2K) func
tions into the bdevswarray.

• Run the mknod(l) program to create a block special file
with the correct major and minor device number.

For block devices, the major device number serves as the index
into the bdevswarray; the minor device number is used by the

CI'IX Interface Manual Pages A-5

Proprietary Information - Do Not Copy

driver for whatever it needs. The minor device number can be
used to differentiate among such things as the channels on a
controller, the tape density, whether or not a tape should be
rewound, and the disk slice number.

The following diagram illustrates the linkage mechanism
between the kernel and the block device drivers.

User-Level
System Calls

open(2)

clos e (2)

read(2)

write(2)

System Call Processing

Block
Device Switch

.... (*d_ open)()

.... (*d_close)()

.... (*d_strategy)()

.... (*d_strategy)()

Interrupt Processing

Device Driver
Entry Points

devopen(2K)

de vc/ose(2K)

de vstrategy(2K)

devstrategy(2K)

1 perint() .-1 devintr(2K)

Kernel/Device Driver Linkage
Block Devices

If your device is (or acts like) a disk drive, it should be treated
as part of the general disk driver. (See the next section for
details.)

A-6 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

GENERAL DISK-TYPE DEVICES

D rivers for disk-like devices are divided into two separate sec
tions within the CTIX kernel: a high-level, device-independent
portion, and a low-level, device-specific portion.

The high-level interface exists because much of the code
needed to support disk-like devices can be shared among their
drivers. This device-independent portion of the driver is called
the general disk driver: it includes all of the kernel routines
with names that begin with the letters gd For example,
gdstrategy(2K) and gdcla;e(2K) are part of the general disk
driver.

The low-level interface is the actual device driver. It is respon
sible for issuing the I/O commands to the device and for deter
mining the resulting status. This is the portion of the device
driver that you must write yourself.

The linkage mechanism between the kernel and the general
disk driver is similar to, but more complex than, the interface
for block devices. For general disk-type devices, the bdevsw
table does not contain the address of the low-level driver's
devstrategy(2K) routine. Instead, bdevsw is set up to point to
the addresses of the routines in the general disk driver. After
gdstrategy(2K) performs all of the device independent work, it
calls your device driver's devio(2K) routine to perform the
actual transfer. The general disk driver uses the gdsw array to
make the linkage with your driver's entry points.

cnx Interface Manual Pages A-7

Proprietary Information - Do Not Copy

The following diagram illustrates the linkage mechanism
between the kernel, the general disk driver, and the low-level
disk drivers.

System Call Processing

r--------- High-Level Interface -------
User-Level

System Calls

open(2)

c/ose(2)

read(2)

write(2)

ioct/(2)

..... ...

..... ...

.....

..... ...

.... ...

Block
Device Switch

(*d_open)()

(*d_close)()

(*d_strategy)()

(*d_strategy)()

(*d_strategy)()

.... ..
_ -
....

_ -
.... ..

General Disk
Entry Points

gdopen(2K)

gdclose(2K)

gdstrategy(2 K)

gdstrategy(2K)

gdstrategy(2K)

.---- Low-Level Interface --_

General Disk
Entry Points

gdopen (2K)

gdclose(2K)

gdstrategy(2K)

General Disk
Device Switch

~ 1 (*open)()

..... (*start)() -
(*timer)()

(*intr)()

1

Interrupt Processing

Device Driver
Entry Points

.1 devopen(2K)

.... de vstart(2K) ...

.... devtimer(2K) ..

.... devintrgd (2K) ..

..... 1 p_e_"_in_t() ___ ~-".~I gdintr(2K) .1 devintrgd(2K)

KerneljDevice Driver Linkage
General Disk-Type Devices

A-8 Writing MightyFrame Device Drivers

1

Proprietary Information - Do Not Copy

The diagram shows both the high- and low-level interfaces for
general disk-type devices. The general disk entry points are
shown in two places for continuity. When a user makes a
request for service from a general disk-type device, the kernel
uses the bdevsw as usual to get to the device-independent gen
eral disk driver.

The high-level general disk driver performs as much of the
work as possible and then calls the low-level disk driver
through the gdsw table. The device-independent code uses the
gdposO macro (defined in <sys/gdisk.h» with the major +
minor device number to generate an index into the table. The
indirect call results in a transfer to the low-level driver's dey
routines. You must write these device-dependent routines to
perform the physical transfers to and from your device.

Along with certain other driver parameters, the gdsw table con
tains entries for the addresses of your driver's devintrgd(2K),
devstart(2K), devopen(2K), and devtimer(2K) routines.
These are the system interface points for disk-like device
drivers. Gdsw is contained within another structure named
gddefault, which is declared in <sys/gclisk.h>. Gddefault is
defined and initialized in <sys/gdtab.h>.

NOTE

At the present time, lddrv(l) does not support drivers
for disk-like devices. You must modify the gdsw struc
ture yourself and link your disk driver directly with the
kernel. (Gdsw is contained within the gddefault data
structure, which is declared in <sys/gclisk.h> and
defined in <sys/gdtab.h>.)

anx Interface Manual Pages A-9

Proprietary Information - Do Not Copy

BUFFER HEADER STRUCTURE

A portion of the header file <sysjbuf.h> IS included below.
The most importa..~t fields are documented. The vertical dots
indicate that lines from the header file have been omitted here.
The following code fragment may differ from the include files
on your system. In all cases, the files in the latest CTIX
release supercede this document.

#include <sys/types.h>

/*
* The buffer header structure.

*
* Each buffer in the pool is usually doubly linked into 2 lists:
* - the device it is currently associated with (always)
* - the list of blocks available for allocation (usually)

*
* A buffer is on the available list and is liable to be reassigned
* to another disk block if and only if the B_BUSY flag is not set.
* When a buffer is busy, the available-list pointers can be used for
* other purposes.

*
* Most drivers use the forward ptr as a link in their I/O queue.

*
* A buffer header contains all the information needed to perform I/O.

*/

struct buf {
int
struct
struct
struct
struct
dev_t

b_flags;
buf *bjorw;
buf *b_back;
buf *av jorw;
buf *av _back;
b_dev;

unsigned b_bcount;
union {

caddr_t b_addr;

/* see defines below */
/* position on drive queue */
/* position on drive queue */
/* position on free list, */
/* if riot B_BUSY */
/* major+ minor device name */

/* transfer count */

/* buffer address */

A-IO Writing MightyFrame Device Drivers

Proprietary Intormation - Do Not Copy,

daddr_t b_blkno; j* block # on device *1
1* returned after I/O *1 char b_error;

unsigned int b_resid; 1* bytes not transferred after error *1

#define b_errcnt b_resid
};

1* while i/o in progress: # retries *1

1*
* These flags are kept in bJlags.

*1
#define
#define
#define
#define
#define

B_WRITE
B_READ
B_DONE
B_ERROR
B_BUSY

OxOOOO
OxOOOl
OxOOO2
OxOOO4
OxOOO8

1* non-read pseudo-nag *1
1* read when 1/0 occurs *1
1* transaction finished * /
j* transaction aborted * /
1* not on av _forw Iback list *1

#define B_WANTED OxOO40 1* issue wakeup when B_BUSY goes off * I

#define B_FORMA T OxSOOOOO 1* perform a format operation *1

The following is a brief discussion of the meaning and usage of
the most important fields in the structure.

b_flags indicates the state of the buffer. One or more of the
following bits can be set.

B_ WRITE is not really a flag at all. It indicates the
absence of the B_READ flag. You
should test for a WRITE request by say
ing it (!bp-> b_flags & B_READ).

CTIX Intertace Manual Pages A-II

Proprietary Information - Do Not Copy

B_READ indicates that the buffer header describes
a READ request.

B_DONE indicates that the I/O request specified by
the buffer header is finished. There may
or may not have been an error in the
transfer. You should call iodone(2K) to
set this flag and wake up the process(es)
sleeping on the buffer.

B_ERROR indicates that an error occurred on the
transfer. The b_error field contains more
information when this flag is set.

B_BUSY indicates that the buffer is not on the
queue of available buffers; that is, the
buffer is in use, describing an I/O request.

B_ WANTED indicates that some other process
wants to use the buffer when its current
I/0 request is complete. IodoneO sets
the B_DONE bit and then, if
B_ WANTED IS set, it calls
wakeup(2K) to awaken the process(es)
waiting for the buffer.

B_FORMAT indicates that the buffer describes a
FORMAT command to a disk-like device.

b_forw Most of the time, each buffer header is on two
separate queues: the queue of all buffers available for
(re-)use, and the queue of all buffers containing data
associated with the same device (the drive queue).
The b_forw /b_baek pair contains the pointers used
to maintain the doubly linked list of buffers associ
ated with the same device. When CTIX receives a
READ request, it hashes the block and device
numbers and uses the resulting value as an index into
the system hash list. The selected hash slot points to
a (possibly empty) linked list of buffer headers whose
block and device numbers hashed to the same value.

A-12 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

CTIX searches this list to see if the requested block is
present in memory already. If so, there is no need to
access the device.

av _forw The av _forw / av _back pair contains the pointers
used to maintain the doubly linked list of available
buffers. The only time a buffer is not on the avail
able list is when the B_BUSY bit is set, that is,
between the time that CTIX sets up the buffer to
describe an I/O request and the time that devintrO
(or gdintrO) calls iodoneO. This means that buffers
are available even when they contain valid data.
CTIX maintains the available list in LRU order so
that the valid data will be available as long as possi
ble before the buffer is reused. In fact, for most
writes, the data is not actually written to the device
until the buffer is reused for some other (unrelated)
I/0.

b_dev Contains the major+minor device number of the dev
ice containing the data to be read or written. The
major number is used as an index into the bdevsw or
cdevsw tables. The minor number is used by the
driver for its own purposes. Typically, it contains the
unit number, which may indicate the controller or the
slice (partition) that is being referenced.

b_bcount Contains the number of bytes in the buffer, or the
transfer length in bytes.

b_un Is a union describing the pointer to the data area of
the buffer. Most commonly, b_addr contains the
virtual address where the data resides (or will reside).

b_blkno Contains the block number of the data that the
buffer contains (or will contain when the I/O request
is done).

b_error Contains the error number to be placed into
u.u_error if the B_ERROR bit is set in b_flags.
The macro geterrorO III <sys/buf.h> sets

CTIX Interface Manual Pages A-13

Proprietary Information - Do Not Copy

u.u_error for you. Iowait(2K) calls this macro
after I/O is complete. If your driver sets the
B_ERROR bit but does not set the b_error field,
geterrorO sets u.u_error to EIO.

b_resid Contains the transfer residue after an error occurs,
that is, the number of bytes from the original I/O
request that were not transferred. Normally, it is
zero, indicating that no errors occurred. However,
you should not use it to determine whether the I/O
failed.

USER STRUCTURE

A portion of the header file <sys/user.h> is included below.
The most important fields are documented. The vertical dots
indicate that lines from the header file have been omitted here.
The following code fragment may differ from the include files on
your system. In all cases, the files in the latest CTIX release
supercede this document.

A-14 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/inode.h>
#include <sys/file.h>
#include <sys/signal.h>
#include <sys/dir.h>

1*
* The user structure.

*
* There is one user structure allocated per process. It is
* swapped out with the process. It contains all per process
* data that isn't referenced while the process is swapped. It
* contains the per-user system stack, used during system
* calls. It is cross referenced with the proc structure for
* the same process.
*j

struct user
{

struct proc *u_procp; 1* pointer to proc structure */

1* syscall error code * /

union { 1* syscall return values * /
struct {

int r_val1;
int r_vaI2;

} r_reg;

} u_r;
caddr_t u_base;
unsigned u_count;
union {

ofCt ow_offset;

1* base address for I/O * /
1* bytes remaining for I/O * /

/* offset in file for I/O * /

CTIX Interface Manual Pages A-15

};

short
ushort
ushort
dev_t

Proprietary Information - Do Not Copy

u_fmode;
uJbsize;
uJboff;
uJbdev;

j* file mode for I/O * /
/* bytes in block for I/O * /
j* offset in block for I/O * /
j* real device for I/O * /

j* syscall arguments * /

A-16 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
BCOPY(2K)

bcopy - copy data as efficiently as possible

SYNOPSIS
bcopy(from, to, nbytes)
char *from, *to;
unsigned int nbytes;

DESCRIPTION
BcopyO copies nbytes of data from the from address
to the to address. The routine is optimized for the par
ticular CPU to do its work as efficiently as possible.

Either or both of the source or destination buffers can be
in user space; however, bcopyO does not verify their
accessibility before attempting the transfer. For instance,
copyin(2K) and copyout(2K) call bcopyO to perform
their data transfers, after they have called useracc(2K)
to check the accessibility of the destination buffer.

RETURN VALUE
BcopyO does not return a value.

SEE ALSO
copyin(2K), copyout(2K), useracc(2K).

CTIX Interface Manual Pages A-1T

NAME

Proprietary Information - Do Not Copy
CCOPYIN(2K)

ccopyin - copy data from user space to VMEbus
EEPROM

SYNOPSIS
ccopyin(from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION
CcopyinO copies nbytes of data from the from
address (which may be in user space) to the to address
in the VMEbus EEPROM, and waits for the EEPROM
to accept the data.

It first calls useracc(2K) to verify that the user has
read permISSIOn on the data. Then it calls
probevme(2K) to verify that the Th1Ebus address is
valid. Next, ccopyinO performs the physical copy,
sleeping for at least 16 milliseconds between each byte.
The EEPROM requires at least 10 milliseconds after
each write to capture the data. Finally, ccopyinO veri
fies that the data was accepted by the EEPROM by
attempting to read it back. If it was not captured,
ccopyinO attempts the write once more. If the data
still has not been captured, an error is returned.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned, and u.u_error is
set as follows:

[EFAULT]

[EIO]

Either the user does not have read per
mission on the entire buffer, or a read
access at the VMEbus address causes a
bus fault.

The data was not captured by the
EEPROM.

A-1S Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
CCOPYIN(2K)

SEE ALSO

NOTE

copyin(2K), copyout(2K), scopyin(2K), scopyout(2K).
Chapter 2, Architectural Information.

Since ccopyinO calls sleep(2K), it should not be called
from the interrupt level.

CTIX Interface Manua] Pages A-19

NAME

Proprietary Information - Do Not Copy
CHKBUSFLT(2K)

chkbusflt - check validity of address

SYNOPSIS
int chkbusflt(address, flag)
int *address;
int flag;

DESCRIPTION
ChkbusfltO checks to see whether a read or write
access to address causes a bus fault. If the value of
flag is zero, chkbusfltO attempts to read a byte of data
at address. Otherwise, chkbusfltO attempts to read
and then rewrite a byte of data at address.

If the access causes a bus fault, it is caught by this rou
tine, and the normal bus fault handler is not invoked.

RETURN VALUE
Upon successful completion, a value of 0 IS returned.
Otherwise, a value of 1 is returned.

SEE ALSO
probevme(2K).

A-20 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
COPYIN(2K)

copyin - copy data from user space to kernel space

SYNOPSIS
copyin(from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION
CopyinO copies data from user space to kernel space.
It first calls useracc(2K) to verify that the user has
read permission at the from address for nbytes. Then
it calls bcopy(2K) to perform the physical copy.

RETURN VALUE
Upon successful completion, a value of 0 IS returned.
Otherwise, a value of -1 is returned.

SEE ALSO
bcopy(2K), copyout(2K), useracc{2K).

CTIX Interface Manual Pages A-21

NAME

Proprietary Information - Do Not Copy
COPYOUT(2K)

copyout - copy data from kernel space to user space

SYNOPSIS
copyout(from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION
CopyoutO copies data from kernel space to user space.
It first calls useracc(2K) to verify that the user has
write permission at the to address for nbytes. Then it
calls bcopy(2K) to perform the physical copy.

RETURN VALUE
Upon successful completion, a value of 0 IS returned.
Otherwise, a value of -1 is returned.

SEE ALSO
bcopy(2K), copyin(2K), useracc(2K).

A-22 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
DELAY(2K)

delay - give up the processor for a time

SYNOPSIS
delay(count)
int count;

ldelay(count)
int count;

pdelay(count)
int count;

DESCRIPTION
DelayO gives up the CPU for a mInImUm of count
ticks of the system clock. The frequency of the system
clock can be determined from the HZ constant, defined
in <sys/param.h>. A value of 60 for HZ indicates a
system clock frequency of 60 ticks per second: this yields
a tick duration of approximately 16.67 ms.

DelayO first calls timeout(2K) with the count param
eter, and then calls sleep(2K) to relinquish the CPU.

If count is less than or equal to zero, delayO returns
immediately.

LdelayO delays for approximately count milliseconds
before returning. It is implemented in assembly
language as a series of calls to pdelayO. It does not call
ei ther timeoutO or sleepO

PdelayO delays for a minimum of 2 microseconds (with
a count of zero) before returning. Thereafter, each
count adds about 250 nanoseconds. Thus, a count of 4
delays for about 3 microseconds; a count of 8 delays
about 4 microseconds, and so on. PdelayO is imple
mented in assembly language as a do-nothing loop. It
does not call either timeoutO or sleepO

CTIX Interface Manual Pages A-23

Proprietary Information - Do Not Copy
DELAY(2K)

RETURN VALUE
None of delayO, IdelayO, or pdelayO returns a value.

SEE ALSO

NOTE

sleep(2K), timeout{2K).

Since delayO calls sleepO, it should not be called from
the interrupt level.

Since delayO sleeps at a priority of PZERO - 1, the
process cannot be interrupted by a signal.

LdelayO, pdelayO and sdelayO stop all other proces
sor activity while they run. Therefore, you should use
them with care.

A-24 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
DEVCLOSE(2K)

devclose - character and block device close routine

SYNOPSIS
#inelude <sya/types.h>

develose(dev, flag)
dev_t dey;

,int flag;

DESCRIPTION
DevcloseO is the generic name for a character or block
device driver's close routine. If the device is an XYZ, for
instance, the actual name would be xyzeloseO.

DevcloseO is called by CTIX when the last process that
had the device open issues a elose(2).

Dev is the minor device number of the device.

Flag is the value of the f_flag field in the file table
structure (see <sys/file.h> for a complete definition of
its contents).

It is the responsibility of the develoseO routine to clean
up after the device, perhaps disabling interrupt(s), and
cancelling any outstanding timeout(2K) calls.

RETURN VALUE
DevcloseO does not return a value directly. Rather, it
sets u.u_error to indicate a failure.

SEE ALSO
gdclose(2K).

NOTE
CTIX calls develose() only when the device is closed for
the last time. This is in contrast to devopenO, which
is called for every open on the device.

CTIX Interface Manual Pages A-25

Proprietary Information...; Do Not Copy
DEVCLOSE(2K)

Gdclose(2K) does not call· devcloseO for block devices
that are part of the general disk driver.

A-26 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
DEVINIT(2K)

devinit - device driver initialization routine

SYNOPSIS
devinit()

DESCRIPTION
DevinitO is the generic name of the initialization rou
tine for both loadable and configured-in device drivers.
If the device is an XYZ, for instance, the actual name
would be xyzinitO.

For configured-in drivers, devinitO is called through the
dey _init table in <sys/conr.h> , if the device was
described in the master file. For loadable drivers, it is
called as a result of a call to syslocal(2) with a function
code of SYSL_BINDDRV and an option code of
DRVBIND. This syslocal(2) call is made by the
lddrv(1M) program.

For VMEbus devices, it is the responsibility of the
devinit() routine to verify the existence of both the
VNlEbus interface board and the device that the driver
controls. The CTIX kernel sets the external integer vari
able have VME to nonzero to indicate that the VNlEbus
interface card is present. Then you can call
probevme(2K) with the controller address to determine
whether your device (actually, any responding device) is
present.

A more robust test is to call is_eepromvalid(2K),
which verifies that the interface board is present and
that the checksum in its EEPROM is valid. Normally,
the EEPROM will contain information about the device,
including the VMEbus address of the controller. You
should then call. probevme(2K) with the controller
address to verify that the device is present. The device
driver in Chapter 8, Block Device Example, contains code
that performs these tests.

CTIX Interrace Manual Pages A-27

Proprietary Information - Do Not Copy
DEVINIT(2K)

DevinitO also must make certain that the driver has not
been initialized previously. Finally, it should allocate
any kernel virtual address space required by the driver
through a call to sptalloe(2K), set up the interrupt
handler address through a call to get_ vec(2K) or
set_ vee(2K), and initialize the hardware.

RETURN VALUE
DevinitO does not return a value directly. Rather, it
sets u.u_error to indicate a failure.

SEE ALSO
Iddrv(lM), get_vec(2K), is_eepromvalid(2K),
probevme(2K), set_vec(2K), syslocal(2), drivers(7).

A-28 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
DEVINTR(2K)

devintr - character and block device interrupt handler

SYNOPSIS
devintr(veenbr)
short veenbr;

DESCRIPTION
DevintrO is the generic name for a character or block
device driver's interrupt handler. If the device is an
XYZ, for instance, the actual name would be xyzintrO.
If the device is part of the general disk system, the inter
rupt handler is described under devintrgd(2K).

CTIX calls DevintrO when it receives an interrupt with
a vector number associated with this device.

Vecnbr is the interrupt vector number supplied by the
device when its interrupt was acknowledged.

Typically, devintrO removes the source of the interrupt,
checking for any error conditions on the device.

For normal character and block devices using buffered
I/O, if the original transfer request is complete, the
interrupt handler calls iodone(2K) to complete the
buffer and wake up any process sleeping on it.

If there is more I/O to perform on the current device,
devintrO starts the next transfer.

RETURN VALUE
DevintrO does not return a value directly. Rather (for
buffered I/O), all information about the status of the
I/O is returned in the buffer header. If there was no
error on the transfer, it sets bp- > b_bcount, bp
> b_resid, and bp-> b_error to zero. If there was an
error, it sets the B_ERROR bit in bp-> b_flags, and
bp-> b_error to indicate the cause of the error. Nor
mally, this should be set to EIO, since CTIX doesn't

CTIX Interface Manual Pages A-2g

Proprietary Information - Do Not Copy
DEVINTR(2K)

(yet) provide for more specific I/0 errors. It also sets
bp-> b_resid (buffer residue) to the number of bytes of
the original request that were not transferred, due to the
error.

Whether or not there was an error, it decrements bp
> b_bcount and increments bp-> b_un.b_addr by the
number of bytes actually transferred.

SEE ALSO

NOTE

devintrgd{2K), gdintr{2K), iodone{2K), disk(7).

DevintrgdO is the interrupt handler for general disk
type devices.

A-3D Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
DEVINTRGD(2K)

devintrgd - general disk-type device interrupt handler

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>

devintrgd(bp, minor _dev, vecnbr)
struct but *bp;
dey _t minor_dey;
int vecnbr;

DESCRIPTION
DeyintrgdO is the generic name for a general disk-type
device's low-level interrupt handler. If the device is an
XYZ, for instance, the actual name would be xyzintrO.

When an interrupt is received from a general disk device,
CTIX first calls gdintr(2K) to perform device indepen
dent processing. Gdintr(2K) then calls devintrgdO to
perform device dependent processing.

Bp is a pointer to the buffer header structure associated
with the 10 in progress on the device. The gdintr(2K)
routine calculates the buffer pointer in the following
manner: first, using the vector number, it determines the
controller number of the interrupt device. Next, it uses
the controller number to determine the head of the asso
ciated drive queue. Finally, it takes the buffer pointer
from the head of the drive queue.

Minor _dey is the minor device number of the interrupt
ing device.

Vecnbr is the interrupt vector number supplied by the
device when its interrupt was acknowledged.

General disk-type device interrupt handlers must dif
ferentiate between I/O requests (which usually occur as
the result of a user program request to read or write

CTIX Interface Manual Pages A-31

Proprietary Information - Do Not Copy
DEVINTRGD(2K)

data) and I/O operations (which are low-level com
mands issued directly to the controller). It is common
for disk I/O requests to require several operations: for
instance, a SEEK command to position the read/write
head over the correct cylinder, followed by a
READ/WRITE command (or several commands, if the
requested transfer crosses a track or cylinder boundary).
Also, if any given operation fails, a robust driver will
retry the operation a number of times before declaring a
hard failure on the device.

Interrupts are received at the completion of each I/O
operation. Typically, the devintrgdO routine removes
the source of the interrupt (handling any error conditions
on the controller), and then starts the next I/O operation
if it is a continuation of the current request.
DevintrgdO must determine whether the completion of
the current operation also marks the completion of the
current request: it reports this distinction back to
gdintr(2K).

Unlike interrupt handlers for regular character and block
devices, devintrgdO never calls iodone(2K) to com
plete the buffer and wake up the original requesting pro
cess. For general disk-type devices, this call is made by
the gdintr(2K) routine. Clearly, though, if the current
interrupt is only the end of an I/O operation and not the
end of an I/0 request, gdintr(2K) must not make the
call. So gdintr(2K) uses the return value from
devintrgdO to determine whether or not to call
iodone(2K) on the buffer.

RETURN VALUE

DevintrgdO returns 0 when the current I/0 request is
complete, and nonzero when it is not complete (that is,
when there are more I/O operations to perform). When
devintrgdO returns 0, gdintrO calls iodoneO
(indirectly, through gdiodoneO) to complete the buffer.

A-32 Writing MightyFralDe Device Drivers

Proprietary Information - Do Not Copy
DEVINTRGD(2K)

All information about the status of the 10 is returned in
the buffer header. If there was no error on the transfer,
devintrgdO sets bp-> b_beount, bp- > b_resid, and
bp- > b_error to zero. If there was an error, it sets the
B_ERROR bit in bp- > b_nags, and bp- > b_error to
indicate the cause of the error. Normally, this should be
set to EIO, since CTIX doesn't (yet) provide for more
specific I/O errors. It also sets bp- > b_resid (buffer
residue) to the number of bytes of the original request
that were not transferred, due to the error.

Whether or not there was an error, it decrements bp
> b_bcount and increments bp- > b_un.b_addr by the
number of bytes actually transferred.

SEE ALSO

NOTE

devintr(2K), gdintr(2K), iodone(2K), disk(7).

DevintrgdO never starts the next I/O request, only the
next I/O operation. When the completion of the current
operation also completes the current request, (that is,
when devintrgdO returns a nonzero value) gdintr(2K)
calls devstart(2K) to initiate processing on the next
request.

CTIX Interface Manual Pages A-33

NAME

Proprietary Information - Do Not Copy
DEVIO(2K)

devio - character device I/O routine (for physio(2K))

SYNOPSIS
#include <sys/buf.h>

devio(bp)
struct buf *bp;

DESCRIPTION
DevioO is the generic name for a character device
driver's I/O routine. If the device is an XYZ, for
instance, the actual name would be xyzioO.

DevioO is called by physio(2K) to initiate I/O on a
character device. Generally, physio(2K) is called either
by devread(2K) or devwrite(2K) to perform physical
(raw) I/0.

Bp is a pointer to the buffer structure that describes the
I/O to be done. (See <sys/buf.h> for a complete
description.) The buffer either belongs to the device
driver itself, or is a member of the pool of buffers
reserved by CTIX for physical I/O. When devioO is
called, the fields have been set up by physio(2K) as fol
lows:

b_un.b_addr is the source or destination buffer
address.

h_t1ags contains flags describing the transfer.
In particular, B_BUSY is always set,
since the buffer is not on the available
queue; also, B_READ is set if the
transfer is a read. Otherwise,
B_READ is not set (there isn't a real
B_ WRITE flag). Finally, B_PHYS is
set to indicate that a physical (raw)
transfer is in progress.

A-34 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
DEVIO(2K)

b_dev

is set to the transfer length in bytes.

is set to the minor device number of the
device on which the transfer is to take
place.

is set to the block number on the device
to transfer. On character devices, this
number usually is meaningless.

Typically, devioO initiates I/O on the device and
returns. Physio(2K) then sleeps, waiting for the
B_DONE bit to be set in bp->b_flags.

When the completion interrupt is received from the dev
ice, devintr(2K) calls iodone(2K), which sets the
B_DONE bit and issues a wakeup(2K), restarting the
requesting process in physio(2K).

RETURN VALUE
DevioO does not return a value directly. Rather, all
information about the status of the I/O is returned in
the buffer header. If there was no error on the transfer,
it sets bp- > b_beo unt, bp- > b_resid, and bp
> b_error to zero. If there was an error, it sets the
B_ERROR bit in bp->b_flags, and bp->b_error to
indicate the cause of the error. Normally, this should be
set to EIO, since CTIX doesn't (yet) provide for more
specific I/O errors. It also sets bp- > b_resid (buffer
residue) to the number of bytes of the original request
that were not transferred, due to the error.

Whether or not there was an error, it decrements bp
> b_beount and increments bp- > b_un.b_addr by the
number of bytes actually transferred.

CTIX Interrace Manual Pages A-3S

Proprietary Information - Do Not Copy
DEVIO(2K)

SEE ALSO
devintr(2K), iodone(2K), wakeup(2K).

A-a6 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
DEVIOCTL(2K)

devioctl - character device .:octl(2) processor

SYNOPSIS
#include <sys/types.h>
#include < sys/XYZioctl.h >

devioctl(dev, cmd, addr, flag)
dev_t dey;
int cmd;
caddr _t addr;
int flag;

DESCRIPTION
DevioctlO is the generic name for a character device
driver's I/O control routine. If the device is an XYZ, for
instance, the actual name would be xyzioctlO. In the
list of header files, the XYZ characters in
<sys/XYZioctl.h> should be replaced by the name of
the device. For example, <sys/gdioctl.h> contains
the I/O control definitions for the general disk driver.

DevioctlO is called by CTIX in response to an ioctl(2)
call on the device. Dev is the minor device number.
Cmd is the command as defined by the driver itself.
Addr is the address of a parameter block, and flag is a
driver-defined value.

DevioctlO is the place to put support for device depen
dent features. This is the area of the CTIX I/O system
that allows you the most flexibility. See Section 7 of the
CTIX Operating SYlJtem Manual for examples of ioctl(2)
calls that various devices support.

Generally, the devioctlO routine is little more than a
switch statement of the form:

CTIX Interface Manual Pages A-37

Proprietary Information - Do Not Copy
DEVIOCTL(2K)

switch(cmd) {
case XYZIOCTYPE:

u.u_rvall ~ XYZIOC;
break;

case XYZGET A:
/* Return device information to user buffer * /
if (copyout(caddr_t)&devinfo, addr, sizeof devinfo))

u.u_error = EFAULT;
break

case XYZSET A:
/* Set device information from user buffer * /
if (copyin(addr, (caddr_t)&devinfo, sizeof devinfo))

u.u_error = EFAULT;
break;

default:

}

u.u_error = EINV AL;
break;

RETURN VALUE
DevioctlO does not return a value directly. Rather, it
sets u.u_error to indicate a failure.

SEE ALSO
ioctl(2), disk(7), termio(7).

A-3S Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
DEVIOCTL(2K)

devioctl - character device ioct/{E} processor

SYNOPSIS
#inelude <sys/types.h>
#inelude <sys/XYZioctl.h>

devioctl(dev, cmd, addr, flag)
dev_t dey;
int cmd;
caddr _t addr;
int flag;

DESCRIPTION
Devioctl(} is the generic name for a character device
driver's I/O control routine. If the device is an XYZ, for
instance, the actual name would be xyzioctlO. In the
list of header files, the XYZ characters in
<sys/XYZioctl.h> should be replaced by the name of
the device. For example, <sys/gdioctl.h> contains
the I/O control definitions for the general disk driver.

Devioctl(} is called by CTIX in response to an ioctl(2)
call on the device. Dev is the minor device number.
Cmd is the command as defined by the driver itself.
Addr is the address of a parameter block, and flag is a
driver-defined value.

Devioctl(} is the place to put support for device depen
dent features. This is the area of the CTIX I/O system
that allows you the most flexibility. See Section 7 of the
CTIX Operating Sydem Manual for examples of ioctl(2)
calls that various devices support.

Generally, the devioctlO routine is little more than a
switch statement of the form:

CTIX Interface Manual Pages A-37

Proprietary Information - Do Not Copy
DEVIOCTL(2K)

switch(cmd) {
case XYZIOCTYPE:

u.u_rvall = XYZIOC;
break;

case XYZGET A:
/* Return device information to user buffer * /
if (copyout((caddr_t)&devinfo, addr, sizeof devinfo»

u.u_error = EFAULT;
break

case XYZSET A:
/* Set device information from user buffer * /
if (copyin(addr, (caddr_t)&devinfo, sizeof devinfo»

u.u_error = EFAULT;
break;

default:
u.u_error = EINVAL;
break;

RETURN VALUE
DevioctlO does not return a value directly. Rather, it
sets u.u_error to indicate a failure.

SEE ALSO
ioctl(2), disk(7), termio(7).

A-as Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
DEVOPEN(2K)

devopen - character and block device open routine

SYNOPSIS
#include <sys/types.h>
#include <sys/file.h>

devopen(dev, nag)
dev_t dey;
int flag;

devopen(dev)
dev_t dey;

DESCRIPTION
DevopenO is the generic name for a character or block
device driver's open routine. If the device is an XYZ, for
instance, the actual name would be xyzopenO.

DevopenO is called by CTIX whenever an open(2) is
issued on the device. In the case of block devices that
are part of the general disk system, devopenO is called
by gdopen(2K) as a result of either a mount(2) or an
open(2) system call on the device. In this case, the
second form of the call is used.

Dev is the minor device number of the device.

Flag defines whether the device is to be opened with
write permission. It contains the bits F _READ or
F _WRITE, as defined in <sys/file.h>. This field is
present only for devices that are not part of the general
disk system.

It is the responsibility of the devopenO routine to ini
tialize the device.

CTIX Interface Manual Pages A-39

Proprietary Information - Do Not Copy
DEVOPEN(2K)

RETURN VALUE
For normal character and block devices, devopenO does
not return a value directly. Rather, it sets u.u_error to
indicate a failure.

For block devices that are part of the general disk sys
tem, devopenO returns 0 if it fails for any reason. In
this case, u.u_error contains information about the
failure. Otherwise, devopenO returns nonzero upon
success.

SEE ALSO

NOTE

gdopen(2K), mount(2), open(2), disk(7).

DevopenO is called whenever the device is opened.
This is different from develoseO, which is called only
when the last elose(2) is issued on the device.

A-40 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
DEVPRINT(2K)

devprint - block device message print routine

SYNOPSIS
#include <sys/types>

devprint(str, dev)
char *str;
dev_t dey;

DESCRIPTION
Devprint() is the generic name for a block device
driver's message print routine. If the device is an XYZ,
for instance, the actual name, would be xyzprintO.

Devprint() is called by CTIX to format and print a
warning message concerning activity on a block device.

Str is a pointer to the message text.

Dev is the minor device number of the device in ques
tion.

RETURN VALUE
Devprint() does not return a value.

SEE ALSO
gdprint(2K).

CTIX Interface Manual Pages A-41

NAME

Proprietary Information - Do Not Copy
DEVREAD{2K)

devread - character device read routine

SYNOPSIS
#include <sys/types.h>

devread{ dev)
dev_t dey;

DESCRIPTION
DevreadO is the generic name for a character device
driver's read routine. If the device is an XYZ, for
instance, the actual name would be xyzreadO.

DevreadO is called by CTIX as a result of a read(2)
system call.

Dev is the minor device number of the device being
read.

The I/O request to be processed is described fully in the
user area. (See <sys/user.h> for a complete descrip
tion.) The fields will have been set up by CTlX as fol
lows:

equals the destination buffer address.

equals the number of bytes to read.

o indicates that the destination buffer is
in kernel space; 1 means that it is in
user space.

At the conclusion of the transfer, the u.u_base parame
ter must have been incremented by the number of bytes
actually transferred, and u.u_count must have been
decremented by the same amount.

If the I/0 transfer was successful, then u.u_count must
equal zero. If the transfer was unsuccessful, then
u.u_count must be greater than zero. If the transfer
used an I/O buffer,. then u.u_count must be equal to

A-42 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
DEVREAD(2K)

b_resid, the total number of bytes remammg to be
transferred when the error occurred.

In either case, u.u_base must equal its original value
plus the number of bytes transferred.

If you call iomove(2K) to transfer to data back to the
user's buffer, it will update the user area for you. If you
do not call iomoveO, you must update these fields your
self. In this case you should call copyout(2K),
subyte{2K), or suword{2K) to write the data into user
space.

RETURN VALUE
DevreadO does not return a value directly. Rather, it
sets u.u_error to indicate a failure.

SEE ALSO
read(2), copyin(2K), fubyte(2K), fuword{2K),
iomove{2K), gdread{2K).

CTIX Interface Manual Pages A-43

NAME

Proprietary Information - Do Not Copy
DEVRELEASE(2K)

devrelease - release routine for loadable device drivers

SYNOPSIS
devreleaseO

DESCRIPTION
Devrelease{) is the generic name for the release routine
for a loadable character or block device driver. If the
device is an XYZ, for instance, the actual name would be
xyzreleaseO·

DevreleaseO is called by CTIX as a result of a call to
syslocal(2) with a function code of SYSL_BINDDRV
and an option code of DRVUNBIND. The Iddrv(l)
program makes this system call.

If the device is busy (that is, open), devreleaseO must
return a failure indication of EBUSY.

If the device is not busy, it is the responsibility of the
devreleaseO routine to deallocate any memory that the
driver acquired, cancel any outstanding timeout(2K)
requests, and clear any pending interrupts from the dev
ice. Finally, devreleaseO should give back the driver's
interrupt vector by calling reset_vec(2K).

RETURN VALUE
DevreleaseO does not return a value directly. Rather,
it sets u.u_error to indicate a failure.

SEE ALSO
lddrv(l), reset_vec(2K), syslocal(2), untimeout(2K),
drivers(7).

A-44 Writing MightyFrame Device Drivers

NOTE

Proprietary Information - Do Not Copy
DEVRELEASE(2K)

Without a devreleaae() routine, a device driver cannot
be removed (unloaded) from the system. In this case,
the syslocal(2) call fails with EBUSY.

CTIX Interface Manual Pages A-45

NAME

Proprietary Inlormation - Do Not Copy
DEVSTART(2K)

devstart - block device start routine

SYNOPSIS
#include <sys/types.h>

devstart(minor _dev)
dev_t minor_dey;

DESCRIPTION
DevstartO is the generic name for a block device
driver's start routine. If the device is an XYZ, for
instance, the actual name would be xyzstartO.

For normal block devices, devstartO is called by
devstrategy(2K) to start the I/O transfer. For block
devices that are part of the general disk system, it is
called by gdstrategy(2K).

It is also possible for the devstartO routine to be called
from the device interrupt handler, in order to carry out
the next I/O on the queue. If your driver does this,
remember that the devintrO routine (and anything it
calls) cannot touch the user area, since it belongs to a
process other than the one for which the I/O is taking
place.

Minor _dey is the minor device number of the device
containing I/O requests to be started.

DevstartO scans the I/O queue associated with this
device, looking for work to do. If it determines that I/O
already is in progress on the device, it returns without
doing anything. Otherwise, it sets up the controller to
perform the I/O described by the first inactive buffer on
the queue and then starts the physical transfer.

Some controllers are able to perform multiple operations
in parallel. For instance, some disk controllers can seek
on two or more drives simultaneously. If this is true for

A-46 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
DEVSTART(2K)

your device, you should write the devstartO routine to
call itself recursively. Each successive call finds one non
busy drive with work enqueued, and starts the next
operation on that drive. The recursion ends when
devstartO cannot start any more I/O.

The I/O request to be processed is described fully in the
buffer header on the drive queue (see <sys/buf.h> for
a complete description). The fields have been set up by
CTIX as follows:

b_un.b_addr is the source or destination buffer
address.

RETURN VALUE

contains flags describing the transfer.
In particular, B_BUSY is always set,
since the buffer is not on the available
queue; also, B_READ is set if the
transfer is a read. Otherwise,
B_READ is not set. (There is no real
B_ WRITE flag.)

is set to the transfer length in bytes.
Usually, this is the block size of the
device, but it need not be so.

is set to the major + minor device
number of the device on which the
transfer is to take place.

is set to the requested block number.
On disk drives, blocks are numbered
from the start of the partition.

DevstartO does not return a value directly. Rather, it
sets u.u_error to indicate a failure.

CTIX Interface Manual Pages A-47

Proprietary Information - Do Not Copy
DEVSTART(2K)

SEE ALSO
devstrategy(2K), gdstrategy(2K).

A-48 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
DEVSTRATEGY(2K)

devstrategy - block device strategy routine

SYNOPSIS
#inelude <sY8/but.h>

devstrategy(bp)
struct but *bp;

DESCRIPTION
DevstrategyO is the generic name for a block device
driver's strategy routine. If the device is an XYZ, for
instance, the actual name would be xyzstrategyO.

CTIX calls devstrategyO whenever it needs to perform
I/O on a block device. In particular, breadO (block
read) and bwriteO (block write) are the most frequent
callers. For direct I/O on files, devstrategyO is called
byphysio(2K).

Block devices that are part of the general disk system
use gdstrategy(2K); they do not have a separate
devstrategyO routine.

Bp is a pointer to a buffer structure that describes the
I/O to be done. (See <sys/buf.h> for a complete
description.) When devstrategyO is called, the fields
have been set up by CTIX as follows:

b_un.b_addr is the source or destination buffer
address.

b_flags contains flags describing the transfer.
In particular, B_BUSY is always set,
since the buffer is not on the available
queue; also, B_READ is set if the
transfer is a read. Otherwise,
B_READ is not set. (There is no real
B_WRITE flag.)

CTIX Interface Manual Pages A-4Q

Proprietary Information - Do Not Copy
DEVSTRATEGY(2K)

b_bcount

b_dev

is set to the transfer length in bytes.
Usually, this is the block size of the
device, but it need not be so.

is set to the major + minor device
number of the device on which the
transfer is to take place.

is set to the block number on the device
to transfer. On disk drives, blocks are
numbered from the start of the parti
tion.

There are no devread(2K) or devwrite(2K) routines
for block devices. Instead, the CTIX kernel performs the
same function using devstrategyO. The underlying
assumption is that block devices are able to optimize
accesses according to some algorithm other than just
first come, first served. For instance, for the general
disk driver, gdstrategyO implements a modified eleva
tor algorithm to minimize head motion on the drives.

Thus, devstrategyO merges new reads and writes into
the queue of pending requests and then calls
devstart(2K) to initiate I/O on the device. When
devstartO returns, devstrategyO also returns. It does
not wait for the I/O completion itself; rather, breadO
and bwriteO issue an iowait(2K) call, and physio(2K)
issues a sleep(2K) call.

When the completion interrupt is received, devintr(2K)
calls iodone(2K) to complete the buffer and then
immediately starts the next I/O from the pending queue.
Iodone(2K) sets the B_DONE bit in bp- > b_flags
and issues a call to wakeup(2K), which restarts the
requesting process in breadO, bwriteO, or physio(2K).

In the case of general disk-type devices, the interrupt is
fielded by gdintr(2K), which calls the device driver's
devintrgdO routine to process the interrupt. This rou
tine returns a flag to gdintrO indicating whether or not

A-50 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
DEVSTRATEGY(2K)

the I/O is complete. If it is complete, gdintrO calls
gdiodoneO, which wakes up the original process as
above.

RETURN VALUE
DevstrategyO does not return a value. All information
about the status of the I/0 is returned to breadO,
bwriteO, or physio(2K) in the buffer header. In par
ticular, the B_ERROR bit is set in bp- > b_flags, and
bp->b_error is set (usually to EIO) if an error
occurred on the transfer. Also, bp- > b_resid is set to
the number of bytes not transferred as a result of the
error.

In any case, bp- > b_bcount is decremented, and bp
> b_un.b_addr is incremented by the number of bytes
actually transferred.

SEE ALSO
devintr(2K), devintrgd(2K),
gdintr(2K), gdstrategy(2K),
sleep(2K), wakeup(2K).

devio(2K), devstart(2K),
iodone(2K), iowait(2K),

CTIX Interface Manual Pages A-51

NAME

Proprietary Intormation - Do Not Copy
DEVTIMER(2K)

devtimer - general disk-type device timer routine

SYNOPSIS
#include <sys/types.h>

devtimer(minor _dev)
dev _t minor _dey;

DESCRIPTION
DevtimerO is the generic name for a disk-type device
driver's timer routine. If the device is an XYZ, for
instance, the actual name would be xyztimerO.

DevtimerO is called periodically by gdtimer(2K) to
report the status of the drive. It should not call
timeout(2K) itself; rather,' it simply reports the drive
status when polled by gdtimerO.

DevtimerO does not handle DMA timeouts; these too
are processed by gdtimerO.

RETURN VALUE
DevtimerO returns one of three values as follows:

o The drive is not ready. This causes gdtimerO to
remove the device. If the user was not in the pro
cess of dismounting the device, the warning mes
sage "Disk removed: May be inconsistent" is
printed on the console.

1 The drive is ready.

-1 The controller was busy.

SEE ALSO
gdtimer{2K), timeout{2K), disk(7).

A-52 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
DEVWRITE(2K)

devwrite - character device write routine

SYNOPSIS
#include <sys/typesoh>

devwrite(dev)
dev_t dey;

DESCRIPTION
DevwriteO is the generic name for a character device
driver's write routine. If the device is an XYZ, for
instance, the actual name would be xyzwriteO.

DevwriteO is called by CTIX as a result of a write(2)
system call.

Dev is the minor device number of the device being
written.

DevwriteO gets the transfer information from the user
area. (See <sys/useroh> for a complete description.)
CTIX does all of the setup necessary based upon the
parameters supplied in the original write(2) request. In
particular, the following fields are set:

is the source buffer address III user
space.

is the number of bytes to write.

o indicates that the source buffer is III

kernel space; 1 means that it is in user
space.

At the conclusion of the transfer, the uou_base parame
ter must have been incremented by the number of bytes
actually transferred, and u.u_count must have been
decremented by the same amount.

If the I/O transfer was successful, then uou_count must
equal zero. If the transfer was unsuccessful, then

CTIX Interface Manual Pages A-53

Proprietary Information - Do Not Copy
DEVWRITE(2K)

u.u_count must be greater than zero. If the transfer
used an I/O buffer, then u.u_count must be equal to
b_resid, the total number of bytes remaining to be
transferred when the error occurred.

In either case, u.u_base must equal its original value
plus the number of bytes transferred.

If you call iomove(2K) to transfer to data out of the
user's buffer, it will update the user area for you. If you
do not call iomoveO, you must update these fields your
self. In this case you should call copyin(2K),
fubyte(2K), or fuword(2K) to read the data from user
space.

RETURN VALUE
DevwriteO does not return a value directly. Rather, it
sets u.u_error to indicate a failure.

SEE ALSO
write(2), copyout(2K), iomove(2K), gdread{2K),
iomove(2K), gdwrite(2K), subyte{2K), suword(2K).

A-54 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
FTCANCEL(2K)

ftcancel - cancel request for fast (100 microsecond) timer

SYNOPSIS
#include <sys/types.h>

int fteaneel(funetion, arg)
int (*funetion)O;
eaddr _t arg;

DESCRIPTION
FteaneelO cancels a previous ftimeout(2K) request.

FunetionO and arK are the parameters to the original
ftimeout(2K) call.

RETURN VALUE
FtcaneelO returns the number of 100 microsecond ticks
left before funetionO would have been called.

SEE ALSO
ftimeout(2K), timeout(2K), untimeout(2K).

CTIX Interface Manual Pages A-55

NAME

Proprietary Information - Do Not Copy
FTIMEOUT(2K)

ftimeout - arrange to call function later (based on fast
timer)

SYNOPSIS
#include <sys/types.h>

int ftimeout(function, arg, nticks)
int (*function)O;
caddr _t arg;
int nticks;

DESCRIPTION
FtimeoutO arranges for CTIX to call function with
argument arg in nticks of the 100 microsecond clock
(the fast timer). Function is called once, asynchro
nously, from the fast timer interrupt handler. The
ftimeoutO call itself returns immediately.

FtimeoutO simply validates the request and inserts it in
order into the kernel fcallout table according to nticks.
In other words, all of the entries before this one have less
time to wait, and all of the entries after it have more
time. FtimeoutO also adjusts the wait time of this
request such that the sum of the wait. times of all
requests in the table up to and including this one is equal
to nticks.

The fast timer is programmed to issue an interrupt when
the first entry in the table needs to be processed. When
the clock "goes off," the interrupt handler removes the
first entry from the fcallout table and calls its func
tionO parameter with argument arg at SPL5. The
function is free to raise the IPL, but it must not lower
it below IPL5.

When the function returns, the fast timer interrupt
handler repeats this process for each table entry with a
wait time of zero. Since it must process these entries in

A-56 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
FTIMEOUT(2K)

sequence, some of them will wait longer than others,
perhaps considerably longer. Thus, nticks is the
minimum wait time before functionO is called.

After processing all of the requests that have timed out,
the interrupt handler reprograms the clock to interrupt
in the number of ticks specified by the first of the
remaining entries.

RETURN VALUE
FtimeoutO does not return a value.

SEE ALSO

NOTE

ftcancel(2K), timeout(2K), untimeout{2K).

FtimeoutO calls panic(2K) if there is no space left in
the fcallout table for the new request.

CTIX Interface Manual Pages A-57

NAME

Proprietary Information - Do Not Copy
FUBYTE(2K)

fubyte - read (fetch) byte from user space

SYNOPSIS
int fubyte(address)
char * address;

DESCRIPTION
FubyteO reads one byte of data at address (which
should be in user space).

RETURN VALUE
Upon successful completion, the value of the 8 bits at
address is returned. Note that the byte value is
returned as an integer without sign extension; that is, the
return value is guaranteed to lie within the range of 0 to
255. If the user does not have READ access permission
at address, a value of -1 is returned.

A-58 Writing MightyFrame Device Drivers

NAME

Proprietary Inlormation - Do Not Copy
FUWORD(2K)

fuword - read (fetch) longword from user space

SYNOPSIS
int luword(address)
int *address;

DESCRIPTION
FuwordO reads one longword of data at address
(which should be in user space).

RETURN VALUE
Upon successful completion, the value of the 32 bits at
address is returned. If the user does not have read per
mission at address, a value of -1 is returned.

CTIX Interlace Manual Pages A-59

NAME

Proprietary Information - Do Not Copy
GDCLOSE(2K)

gdclose - general disk driver close routine

SYNOPSIS
#include <sys/types.h>

gdclose(dev, flag)
dev_t dey;
int nag;

DESCRIPTION
GdcloseO is part of the general disk driver (see
disk(7»). It is called as a result of a umount(2) system
call on a block device with a mounted file system. It
also is called as the result of a close(2) system call on a
block device that is part of the general disk system.

Dev is the minor device number of the device. Flag is
o.
The gdcloseO routine currently does nothing. This
means that the devclose(2K) routine for block devices
that are part of the general disk system is never called.

RETURN VALUE
GdcloseO does not return a value.

SEE ALSO

NOTE

devclose{2K), -close(2), umount(2), disk(7).

In the case of block devices that have been the target of
open(2) system calls, gdcloseO is called only when the
device is closed for the last time. This is in contrast to
gdopenO, which is called for every open on the device.

A-60 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
GDINTR(2K)

gdintr - general disk driver interrupt handler

SYNOPSIS
gdintr(veenbr)
int veenbr;

DESCRIPTION
GdintrO is called whenever an interrupt is received
from a block device that is a part of the general disk sys
tem (see disk(7).

V eenbr is the vector number supplied by the interrupt
ing device.

GdintrO checks that the device in question is active,
and then calls the devintrgd(2K) routine in the device
driver to process the interrupt. It then calls gdiodoneO
to complete the buffer, and finally calls devstart(2K)
to start the next I/O operation on the device.

RETURN VALUE
GdintrO does not return a value directly. Rather, it
sets the B_ERROR flag in the b_flags and b_error
fields of the buffer header to indicate a failure. In this
case, it also sets b_resid (buffer residue) to the number
of bytes from the original request that were not
transferred.

SEE ALSO
devintr{2K), devstart{2K), get_vec{2K), set_vec{2K),
disk(7).

CTIX Interfaee Manual Pages A-61

NAME

Proprietary Information - Do Not Copy
GDOPEN(2K)

gdopen - general disk driver open routine

SYNOPSIS
#include <sys/types.h>

gdopen(dev, nag)
dev_t dey;
int nag;

DESCRIPTION
GdopenO is called as a result of a mount(2) system
call on a block device. It also is called as a result of an
open(2) system call on a block device that is part of the
general disk system (see disk(7»).

Dev is the minor device number of the device. Flag has
the low-order bit set to 0 if the special file is to be
opened (mounted) read only. If the low-order bit is set
to 1, the file may be written. If gdopenO was called as
a result of a mountO system call, the value FMOUNT
is also present in the flag field.

The gdopenO routine validates its parameters and then
calls devopen(2K) to initialize the device itself. Gdo
penO then attempts to read in the Volume Home Block
(VHB) for the file system.

RETURN VALUE
GdopenO does not return a value directly. Rather, it
sets u.u_error to indicate a failure.

SEE ALSO
devopen(2K), mount(2), open(2), disk(7).

A-62 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
GDP ANIC(2K)

gdpanic - report unrecoverable error and reboot

SYNOPSIS
gdpanic(message)
char *message;

DESCRIPTION
GdpanicO is a part of the general disk driver (see
disk(7»). It sets the nosync kernel flag to suppress a
call to updateO to sync the disks, and then calls
panic(2K).

Whenever an unrecoverable error is detected in disk
code, there is no way of telling what state the disk
queues are in. In this case, it is dangerous to call
updateO, so all drivers for general disk-type devices
should call gdpanicO instead of panic(2K).

RETURN VALUE
GdpanicO never returns to the caller. It always causes
a system crash by calling panic(2K).

SEE ALSO
panic{2K), disk(7).

CTIX Interface Manual Pages A-63

NAME

Proprietary Information - Do Not Copy
GDPRINT(2K)

gdprint - general disk driver print routine

SYNOPSIS
#inelude <sys/types.h>

gdprint(dev , message)
dev_t dev;
char *message;

DESCRIPTION
GdprintO is a part of the general disk driver (see
disk(7»). It prints disk-related messages on the console
in the following format:

'message' on N controller C drive D, slice S

where message is the message text passed to gdprintO,
N is the first six characters of the device name (such as
Vsmd3200), C is the controller number from the
major+minor device number, D is the drive number, and
S is the slice (partition) number.

Dev is the minor device number of the device.

Message is the message text to be printed.

RETURN VALUE
GdprintO does not return a value.

SEE ALSO
devprint(2K).

A-64 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
GDREAD(2K)

gdread - general disk driver read routine

SYNOPSIS
gdread(dev)
dev_t dey;

DESCRIPTION
GdreadO is called as a result of a read(2) system call
on the raw partition associated with a block device that
is a part of the general disk system (see disk(7).)

Dev is the minor device number of the device.

GdreadO validates its parameters and then calls
physio(2K) with the B_READ flag and the address of
the gdstrategy(2K) routine.

RETURN VALUE
GdreadO does not return a value directly. Rather, it
sets u.u_error (indirectly) as follows:

[EFAULT]

SEE ALSO

Either the user does not have read per
mission on the entire buffer, or the
requested transfer length IS zero or
greater than MAXBLK.

devstrategy(2K), gdstrategy(2K), physio(2K), disk(7).

CTIX Interface Manual Pages A-65

NAME

Proprietary Information - Do Not Copy
GDSTRA TEGY(2K)

gdstrategy - general disk driver strategy routine

SYNOPSIS
#include <sys/buf.h>

gdstrategy(bp)
struct buf "'bp;

DESCRIPTION
GdstrategyO is called any time CTIX needs to read or
write a block of data to or from a block device that is
part of the general disk driver (see disk(7»). It also is
called by gdread(2K) and gdwrite(2K) as a result of a
read(2) or write(2) system call on a raw device associ
ated with a general disk-type device.

Bp is a pointer to a buffer structure that describes the
device and the block of data to read or write. The field
bp- > b_blkno contains the block number relative to the
start of the slice (partition).

GdstrategyO validates its parameters, inserts the new
buffer onto the queue of previous requests, and then calls
the driver's devstart(2K) routine with the minor device
number.

RETURN VALUE
GdstrategyO does not return a value directly. Rather,
it sets u.u_error as follows:

[ENXIO] Either the file system was not mounted,
the device is not open, or the requested
block number was invalid.

A-66 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
GDSTRA TEGY(2K)

SEE ALSO

NOTE

devstart{2K), disk{7}.

It is the responsibility of the gdstrategyO routine to
optimize disk accesses. Therefore, it sorts the new
request into the drive queue according its target cylinder
number, with the intent of reducing head motion on the
target drive.

CTIX Interface Manual Pages A-67

NAME

Proprietary Information - Do Not Copy
GDTIMER(2K)

gdtimer - general disk driver timer routine

SYNOPSIS
#include <sys/buf.h>

g-dtimer(controller)
short controller;

DESCRIPTION
GdtimerO is part of the general disk driver (see
disk(7»). It is called once every GDTIMEOUT ticks
of the system clock, for every disk controller in the sys
tem. Currently, GDTIMEOUT is set to 2 * HZ, or
every two seconds.

Gdopen(2K) makes the initial call to timeout(2K)
when the first mount(2) or open(2) system call is
issued for a partition on a drive located on controller.
Thereafter, gdtimerO calls timeoutO itself.

GdtimerO executes the following code for each drive on
the relevant controller. If no partition on the drive is
open, it is skipped. IT the value of gdutab.wtime is
zero, nothing is done with it. If it is 1, a DMA transfer
on that drive has timed out; call gdpanic(2K). Other
wise, decrement the timer and proceed. Gdutab.wtime
normally is set by the devstart(2K) routine when it
starts an operation on a drive.

Next, gdtimerO calls the device timer routine to check
the drive status, using a statement of the form:

C*gds->timer)(minor_dev);

The recognized return values from the device's timer
routine are

o The drive is not ready. If the
GD_MAYREMOVE flag is set in gdsw.v_flags,

A-68 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
GDTIMER(2K)

invalidate all blocks associated with the device and
remove it from the system.

1 The drive is ready. Set the GD_READY flag.

-1 The controller was busy; do nothing.

RETURN VALUE
GdtimerO does not return a value.

SEE ALSO

NOTE

devtimer(2K), gdopen(2K), gdpanic(2K), timeout(2K),
disk(7).

GdtimerO calls gdpanic(2K) to report timed out disk
transfer operations.

CTIX Interrace Manual Pages A-69

NAME

Proprietary Information - Do Not Copy
GDWRITE(2K)

gdwrite - general disk driver write routine

SYNOPSIS
#include <sys/types.h>

gdwrite(dev)
dev_t dev;

DESCRIPTION
GdwriteO is a part of the general disk driver (see
disk(7)). It is called as a result of a write(2) system
call on a raw device that is associated with a block spe
cial file.

Dev is the minor device number of the device to be writ
ten.

GdwriteO validates its parameters and then calls
physio(2K) with the address of the gdstrategy(2K)
routine.

RETURN VALUE
GdwriteO does not return a value directly. Rather, it
sets u.u_error (indirectly) as follows:

[EFAULT1

SEE ALSO

Either the user does not have write per
mission on the entire buffer, or the
requested transfer length IS zero or
greater than MAXBLK.

devstrategy(2K), gdstrategy(2K), physio(2K), disk(7).

A-70 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
GET_ VEC(2K)

get_vec - acquire an interrupt vector

SYNOPSIS
#include <sys/types.h>

int get_ vec(drvid, ihandler)
ushort drvid;
int (*ihandler)0;

DESCRIPTION
Get_vecO acquires a free interrupt vector number and
arranges for CTlX to call the device driver interrupt
handler ihandlerO whenever an interrupt is received at
that vector.

Drvid is assigned as a result of a syslocal(2) call with
the parameter SYSL_ALLOCDRV. This call typically
is made by the Iddrv(lM) program.

Whether they are to be loaded with Iddrv(lM) or
linked into the kernel, all device drivers under CTrx:
must have a driver ID assigned. To accomplish this,
include the following lines of code in your driver:

extern int DFLT_ID;
static int Drv_id = (int)&DFLT_ID;

The loader assigns a driver ID of 0 for all device drivers
that are linked with the kernel. If you use Iddrv(lM)
to load your driver, syslocal(2) assigns a unique driver
ID when it performs the BIND operation.

You should use the get_ vecO call if your device has
software programmable interrupt vector generation. If
your device supports only hardware strappable interrupt
vector generation, you must use set_vec(2K).

CTIX Interface Manual Pages A-71

Proprietary Information - Do Not Copy
GET_VEC(2K)

RETURN VALUE
Upon successful completion, the interrupt vector number
is returned. Otherwise, a value of -1 is returned.

SEE ALSO
set_vec{2K), reset_vec{2K).

A-72 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
GETC(2K)

getc - remove character from c-list

SYNOPSIS
#include < sys/tty.h >

int getc(p)
struct clist .p;

DESCRIPTION
GetcO removes and returns the first available character
from the c-list addressed by the pointer p.

If there are no characters on the c-list, getcO fails.

When getcO removes the last available character from a
c-block, it returns the c-block to the freelist. If getcO
determines that one or more processes are asleep, waiting
for a c-block, it calls wakeup(2K) on the address of the
freelist.

RETURN VALUE
GetcO returns the first available character if the c-list
was not empty. Otherwise, getcO returns -1.

SEE ALSO
putc(2K), sputc(2K).

NOTE
GetcO runs at IPL6.

CTIXInterface Manual Pages A-73

NAME

Proprietary Information - Do Not Copy
GETCB(2K)

getcb - remove c-block on the freelist

SYNOPSIS
#include <tty.h>

struct cblock *
getcb(p)
struct elist *p;

DESCRIPTION
GetcbO removes the first c-block linked onto the c-list
pointed to by p, decrementing p->c_cc by the number
of characters contained in the c-block.

RETURN VALUE
GetcbO returns a pointer to the c-block that it
removed, or NULL if the c-list was empty.

SEE ALSO
putcf{2K).

NOTE
GetcbO runs at IPL6.

A-74 Writing MightyFrame Device Drivers

NAME

Proprietary Inlormation - Do Not Copy
IODONE(2K)

iodone - complete I/O on buffer

SYNOPSIS
#include <sys/bul.h>

iodone(bp)
struct bul *bp;

DESCRIPTION
IodoneO sets the B_DONE flag on bp, indicating that
I/O is complete; then it calls wakeup(2K) to restart
any process(es) that are sleeping on the buffer.

Typically, iodoneO is called by the device driver's inter
rupt handler, devintr(2K). In the case of block devices
that are part of the general disk system, gdintr(2K)
fields the interrupt and then calls the devintrO routine
to process it. If the device driver returns a zero value
indicating that I/O is complete, gdintrO calls
gdiodoneO, which calls iodoneO to complete the
buffer.

RETURN VALUE
IodoneO does not return a value.

SEE ALSO
devintr(2K),gdintr(2K), iowait(2K), wakeup(2K).

CTIX Interlace Manual Pages A-75

NAME

Proprietary Information - Do Not Copy
IOMOVE(2K)

iomove - move I/O-related data and update pointers

SYNOPSIS
#include <sys/types.h>

iomove(bufaddr, nbytes, flag)
caddr _t bufaddr;
unsigned int nbytes;
int flag;

DESCRIPTION
IomoveO moves I/O-related data between the address
specified in u.u_base and the bufaddr parameter. The
flag parameter is either B_READ to copy data from
bufaddr to u.u_base, or B_ WRITE to copy data from
u.u_base to bufaddr. Mter the copy, iomoveO adds
nbytes to u.u_base and u.u_offset, and subtracts
nbytes from u.u_count. Note that iomoveO does not
use either u.u_offset or u.u_count; it simply changes
them as documented above.

If you transfer I/O-related data by some means other
than calling iomoveO, you must update the fields in the
user area according to the same formula.

RETURN VALUE
IomoveO does not return a value directly. Rather, it
sets u.u_error as follows:

[EFAULT]

SEE ALSO

The current user does not have the
appropriate access permission at
bufaddr for nbytes.

copyin(2K), copyout(2K).

A-76 Writing MightyFrame Device Drivers

NOTE

Proprietary Inlormation - Do Not Copy
IOMOVE(2K)

If u.u_segftg is set to 1, iomoveO assumes that both
source and destination buffers are located in kernel
memory. In this case it calls beopy(2K) to perform the
move without checking access permISSIOns. If
u.u_segng is not 1, iomoveO assumes that the
source/ destination buffer is in user memory. In this
case, it calls either eopyin(2K) or eopyout(2K) to
check access permissions and perform the move.

CTIX Interlace Manual Pages A-77

NAME

Proprietary Information - Do Not Copy
IOWAIT(2K)

iowait - wait for I/O completion on a buffer

SYNOPSIS
#inelude <sys/buf.h>

iowait(bp)
struct buf *bp;

DESCRIPTION
lowaitO sleeps, waiting for the completion of I/O on a
buffer. Usually, the completion is signalled by
iodone(2K), which is called either by the device driver's
interrupt handler, devintr(2K), or by the general disk
driver's interrupt handler, gdintr(2K).

RETURN VALUE
lowaitO does not return a value. However, it sets
u.u_error as follows:

[EIO] The B_ERROR flag was set in the
buffer header, and b_error was not set
to indicate a specific error condition.

SEE ALSO

NOTE

devintr(2K), gdintr(2K), iodone(2K).

lowaitO calls sleep(2K), so it should not be called from
the interrupt level.

A-78 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
IS_EEPROMV ALID(2K)

is_eepromvalid - verify presence of V1v1Ebus interface
and checksum of EEPROM

SYNOPSIS
#include <sys/vme.h>

struct vmeeprom *is_eepromvalidO

DESCRIPTION
Is_eepromvalidO checks to see whether the VMEbus
interface board is present in the system and, if it is, it
recomputes the checksum of the EEPROM on the board
to check its validity.

RETURN VALUE
Upon successful completion, the address of the VMEbus
EEPROM is returned. Otherwise, a value of 0 is
returned.

SEE ALSO
probevme{2K).

CTIX Interface Manual Pages A-79

NAME

Proprietary Information - Do Not Copy
MACROS(2K)

macros - various useful system macros

SYNOPSIS
#include <sys/sysmacros.h>

KIMAX(vall, val2)
KIMIN(vall, val2)

btoc(nbytes)
btop(nbytes)
btotp(nbytes)

ctob(nelicks)
ptob(npages)

btodb(nbytes)
dbtob(nblocks)
dtop(nbloeks)
ptod(npages)

poff(vaddr)

major(dev)
makedev(major, minor)
minor(dev)

#include <sys/page.h>

cvtov(cvaddr)
hclr(hpte)
hispgv(hpte)
hsetpg(hpte, pf, mode)
hsetpte(hpte, pte)
ispgv(hpte)
setpgprot(pte, prot)
setpgv(pte)
vtocv(vaddr)

A-SO Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
MACROS(2K)

vtohpte(vaddr)
vtopfn(vaddr)

DESCRIPTION
KIMAX(vall, val2)
integers.

KIMIN(vall, val2)
integers.

returns the maximum

returns the mInImUm

of two

of two

Btoe(nbytes) converts nbytes to clicks (4K bytes),
rounding up to the nearest click.

Btodb(nbytes) converts nbytes to disk blocks (IK
bytes), rounding up to the nearest block.

Btop(nbytes) converts nbytes to pages (4K bytes),
rounding up to the nearest page.

Btotp(nbytes) converts nbytes to pages (4K bytes),
truncating down to the nearest page.

Ctob(nelieks) converts nelieks to bytes.

Dbtob(nbloeks) converts nblocks (IK blocks) to bytes.

Dtop(nbloeks) converts nbloeks (IK blocks) to pages
(4K bytes).

Major(dev) returns the major device number.

Makedev(major, lIlinor) constructs a device number
from its major and minor parts.

Minor(dev) returns the minor device number.

Porr{vaddr) returns the byte offset within the page
containing the virtual address vaddr.

Ptob(npages) converts npages to bytes.

Ptod(npages) converts npages to disk blocks.

Cvtov(evaddr) converts the compressed virtual address
evaddr, which IS in the range OxOOOOOOOO to

CTIX Interface Manual Pages A-81

Proprietary Information - Do Not Copy
MACROS(2K)

OxOlFFFFFF, to a virtual address, which is in the range
OxOOOOOOOO to Ox017FFFFF and Ox7F800000 to
Ox7FFFFFFF. Compressed virtual addresses are used by
A32 VMEbus DMA devices to access MightyFrame user
and kernel address spaces.

Hclr(hpte) clears the hardware page table entry pointed
to by hpte.

Hispgv(hpte) returns 1 if the page pointed to by the
hardware page table entry hpte has the valid bit set.

Hsetpg(hpte, pf, mode) sets the hardware page table
entry pointed to by hpte to reference the page frame
numbered pf, with access mode mode.

Hsetpte(hpte, pte) sets the page table entry pointed to
by pte to correspond to the hardware page table entry
pointed to by bpte.

Ispgv(bpte) returns 1 if the page pointed to by the
hardware page table entry bpte has the valid bit set.

Setpgprot(pte, prot) sets the page protection bits on
the page table entry pointed to by pte to prot.

Setpgv(pte) sets the page valid bit on the page table
entry pointed to by pte.

Vtocv(vaddr) converts the virtual address vaddr,
which is in the range OxOOOOOOOO to Ox017FFFFF and
Ox7F800000 to Ox7FFFFFFF, to a compressed virtual
address, which is in the range OxOOOOOOOO to
OxOlFFFFFF. Compressed virtual addresses are used by
A32 VMEbus DMA devices to access MightyFrame user
and kernel address spaces.

V tohpte(vaddr) returns a pointer to the hardware page
table entry, which references the page containing the vir
tual address vaddr.

Vtopfn(vaddr) returns the page frame number associ
ated with the virtual address vaddr.

A-82 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
MACROS(2K)

SEE ALSO
spl(2K).

CTIX Interface Manual Pages A-S3

NAME

Proprietary Information - Do Not Copy
PANIC(2K)

panic - report unrecoverable error, sync disks, and
reboot

SYNOPSIS
panic(message)
char * message;

DESCRIPTION
PanicO prints a message of the form:

panic: 'message'

on the console log file and then reboots the system. It is
used to report unrecoverable errors to the system
administrator.

RETURN VALUE
PanicO never returns to the caller: it always exits,
either to the debugger if it is enabled, or through
rebootO, which is documented in syslocal(2). The
rebootO routine calls updateO if the nosync kernel
flag is zero.

SEE ALSO
gdpanic(2K), syslocal(2).

A-84 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
PHYSIO(2K)

physio - manage DMA transfers between user space and
a device

SYNOPSIS
#include <sys/buf.h>
#include <sys/types.h>

physio(strat, bp, deY, rw)
int (*strat)O;
struct buf *bp;
dev_t dey;
int rw;

DESCRIPTION
PhysioO manages DMA transfers directly between a
device and user virtual memory.

Strate) is the address of the device driver's strategy rou
tine. This can be devstrategy(2K), gdstrategy(2K),
or devio(2K).

Bp is either a pointer to a buffer structure reserved for
this device or NULL. If NULL, physioO uses a buffer
from a pool reserved for its use.

Dev is the major and minor device number.

Rw is the read/write flag, indicating the transfer direc
tion. Rw must be either B_READ, which indicates a
transfer into user memory, or B_ WRITE, which indi
cates a transfer out of user memory. These manifest
constants are defined in <sys/buf.h>.

Upon entry, physioO validates the transfer count, buffer
address, and user access permissions. It sets u.u_error
and returns if it detects any errors (which are defined
beloW). Next it accesses all of the pages that are pointed
to by the buffer address (generating page faults as
needed to bring them in from swap space) and locks

CTIX Interface Manual Pages A-85

Proprietary Information - Do Not Copy
PHYSIO(2K)

them into memory to prevent them from being swapped
out again. Then it allocates a contiguous set of page
table entries to reference them.

PhysioO then gets a buffer from the pfreelist if bp is
NULL. Next it sets up the buffer header fields and calls
the device strategy routine, devstrategy(2K) for block
devices, or devio(2K) for character devices, to perform
the physical I/O. PhysioO then sleeps until the inter
rupt handler (either devintr(2K) or gdintr(2K)) calls
iodone(2K) on the buffer.

PhysioO wakes up the scheduler if the runin kernel
flag has been set, unlocks the buffer pages, setting the
modified bit on each page if the I/O was a READ, and
places the buffer back on the pfreelist if it came from
there.

Finally, physioO sets the user area to return any error
indication to the calling process.

RETURN VALUE
PhysioO does not return a value directly. Rather, it
sets u.u_error as follows:

[EFAULT]

[EIO]

An invalid transfer count was requested
(either 0 bytes or more than
MAXBLK 1K blocks), the transfer
address was not word aligned, or the
user does not have read/write access
permission to the memory. MAXBLK
is defined in <sys/page.h>.
Currently, it is 128.

An I/O error occurred on the transfer.

A-86 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
PHYSIO(2K)

SEE ALSO

NOTE

devio{2K), devstrategy{2K), gdstrategy{2K).

physioO calls sleep(2K), so it should not be called from
the interrupt level.

CTIX Interface Manual Pages A-87

NAME

Proprietary Information - Do Not Copy
PLUG_SVEC(2K)

plug_svec - plug in serial device interrupt vectors

SYNOPSIS
#include <sys/types.h>

pluLsvec(drvid, deY, rx, tx, sr, ex)
ushort drvid;
dev_t dey;
int ("'rx)O;
int ("'tx)O;
int ("'sr)O;
int ("'ex)O;

DESCRIPTION
Plug_svecO arranges for CTIX to call the serial device
driver interrupt handlers rxO, txO, srO, and exO.

Drvid is assigned as a result of a syslocal(2) call with
the parameter SYSL_ALLOCDRV. This call is made
by the lddrv(l) program.

Dev is the minor device number of the device.

RxO is the address of the receiver interrupt handler.

TxO is the address of the transmitter interrupt handler.

SrO is the address of the special condition receive inter
rupt handler.

ExO is the address of the external status change inter
rupt handler.

RETURN VALUE
Plug_svecO returns one of three values as follows:

-1 Failed.

o Succeeded.

A-88 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
PLUG_SVEC(2K)

1 The caller was the owner. The vectors are not
altered.

SEE ALSO
unplug_svec{2K).

CTIX Interface Manual Pages A-89

NAME

Proprietary Information - Do Not Copy
PRINTF(2K)

printf - kernel formatted print routine

SYNOPSIS
printf(format [, arg] ...)
char *format;

DESCRIPTION
Printf() is a scaled down version of the library
printf(3S) function that prints messages directly on the
system console log file. Only the "%s", "%u", "%d",
"%0", and "%x" conversion specifications from the
library routine are recognized. In addition, "%nP"
prints n bytes of the contents of memory addressed by
pointer P. The bytes are printed using the "%x,,
conversion specification.

RETURN VALUE
Printf() does not return a value.

SEE ALSO
printf(3S).

A-gO Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
PROBEVME(2K)

probevme - check accessibility of V1v1Ebus address

SYNOPSIS
#inelude <sys/types.h>

int probevme(address)
caddr _t ·address;

DESCRIPTION
ProbevmeO checks to see whether a read access at
address causes a bus fault. It is assumed that address
refers to a VMEbus address. Actually, probevmeO is
simply a call to chkbusflt(2K) with a flag parameter of
O.

RETURN VALUE
Upon successful completion, a value of 0 IS returned.
Otherwise, a value of 1 is returned.

SEE ALSO
chkbusflt(2K), is_eepromvalid(2K).

CTIX Interface Manual Pages A-91

NAME

Proprietary Information - Do Not Copy
PSIGNAL(2K)

psignal - post signal to user process

SYNOPSIS
#include <sys/proc.h>
#include <sys/signal.h>

psignal(procptr, sig)
struct proc ·procptr;
int sig;

DESCRIPTION
PsignalO posts the signal sig to the process indicated
by the process table entry pointed to by procptr.

If the process is sleeping at a priority greater than
P ZERO, it is removed from the sleep queue and placed
on the run queue.

RETURN VALUE
PsignalO does not return a value.

SEE ALSO
signal(2), sleep{2K).

A-92 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
PUTC(2K)

putc - add character to c-list

SYNOPSIS
#inelude <sys/tty.h>

putc(c, p)
int c;
struct clist *p;

DESCRIPTION
PutcO adds the character c to the c-list addressed by
the pointer p.

If the c-list has no c-blocks associated with it, or, if all of
the associated c-blocks are full, putcO attempts to allo
cate a new c-block from the freelist. If there are no free
c-blocks, putcO fails.

RETURN VALUE
PutcO returns 0 if it was successful in adding the char
acter to the c-list. If it could not add the character,
putcO returns -1.

SEE ALSO
getc(2K), sputc(2K).

NOTE
PutcO runs at IPL8.

CTIX Interface Manual Pages A-93

NAME

Proprietary Information - Do Not Copy
PUTCF(2K)

putcf - put c-block on the free list

SYNOPSIS
#include <tty.h>

putcf(cp)
struct cblock ·cp;

DESCRIPTION
Put~r() adds the c-block pointed to by cp to the free
list cfreelist.

Putcf() calls wakeup(2K) on the address of the free
list if cfreelist.c_nag is nonzero.

RETURN VALUE
Putcf() does not return a value.

SEE ALSO
getcb{2K).

NOTE
Putcf() runs at IPL6.

A-94 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
QPRINTF(2K)

qprintf - various kernel debugging print macros

SYNOPSIS
#include <sys/kprintf.h>

aprintf(format [, arg •••])

•
•
•

jprintf(format [, arg •••])
lprintf(format [, arg ••.])

•
•
•

rprintf(format [, arg •••])
tprintf(format [, arg .••])

•
•
•

ffprintf(format [, arg •••])

DESCRIPTION
Each of these macros is of the form:

#define Qprintf {kpflg&&kqflg&{l < <N))&&printf

where Q is one or two letters between a and ff, and N is
a number between 0 and 30. Essentially, the macro
definition says "If kpflg (the kernel print flag) is non
zero, and if the Nth bit is set in kqflg, then call the
printf(2K) function with the arguments specified with
the macro." This allows both gross and fine control of
debugging output. That is, output may be disabled alto
gether by clearing kpflg, or output may be enabled and
disabled selectively by setting kpflag and one or more of
the bits in kqflg.

CTIX Interface Manual Pages A-95

Proprietary Information - Do Not Copy
QPRINTF(2K)

The kernel debugger has commands for manipulating the
kpflg and kqflg variables. The kp command sets the
state of the kernel print flag (kpflg). It controls print
ing, allowing you to route debugging output to the
screen, the printer, the console buffer, the error log file,
or various combinations of these options. The kq com
mand toggles the bits in the kqflg variable. See Chapter
10, Debugging the GTIX Kernel, for a complete descrip
tion of the kernel debugger and its command language.

The following list associates the prefix letter with its
corresponding bit number in kqflg. It also gives the ker
nel debugger kq command parameter and the default use
of each debug level, if one exists.

aprintf 0 /* 'a' - Regions * /
bprintf 1 /* 'b' - SptallocO, etc * /
cprintf 2 /* 'c' - Syscall trace * /
dprintf 3 /* 'd' - Context swtch * /
eprintf 4 /* 'e' - Pte/fault * /
fprintf 5 /* 'f' - Trap info * /
gprintf 6 /* 'g' - Swap * /
hprintf 7 /* 'h' - File system (Direct I/O) * /
iprintf 8 /* 'i' - Page hash * /
jprintf 9 /* 'j' - Page out * /
/* Skip kprintf 10 * /
lprintf 11 /* '1' - Initialization * /
mprintf 12 /* 'm' - gdonbd * /
nprintf 13 /* 'n' - gd & gdvhb * /
oprintf 14 /* '0' - gd VME * /
pprintf 15 /* 'p' - Other VME * /
qprintf 16 /* 'q' - VME disk devices * /
rprintf 17 1* 'r' - Ram disk/prrfix * /
/* Skip sprintf 18 * /
tprintf 19 /* 't' - Qici * /
uprintf 20 /* 'u' - 232/IOP * /
vprintf 21 /* 'v' - 232/IOP * /
wprintf 22 /* 'w' - 422 * /

A-96 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
QPRINTF(2K)

xprintf 23 /* 'x' - Network * /
yprintf 24 /* 'y' - 422 * /
/* zprintf never prints * /
aaprintf 25 /* 'z' - Unused * /
bbprintf 26 /* '{' - Unused * /
ccprintf 27 /* 'I' - Unused * /
ddprintf 28 /* '}' - Unused * /
eeprintf 29 /* ,-, - Unused * /
ffprintf 30 /* 'NONE' - Unused * /

SEE ALSO
printf{2K).

CTIX Interface Manual Pages A-97

NAME

Proprietary Information - Do Not Copy
RESET_ VEC(2K)

reset_ vec - relinquish an interrupt vector

SYNOPSIS
#include <sys/types.h>

reset_ vec(drvid, vecnbr)
ushort drvid;
ushort vecnbr;

DESCRIPTION
Reset_vecO relinquishes the interrupt vector number,
vecnbr, that was acquired by a previous call to
get_vec(2K) or set_vec(2K).

Drvid is assigned as a result of a syslocal(2) call with
the parameter SYSL_ALLOCDRV. This call is made
by the Iddrv(lM) program.

RETURN VALUE
Upon successful completion, a value of 0 is returned. A
value of -1 is returned if the vector number is invalid
(that is, > 255) or if drvid does not match the ID of the
device driver that owns the interrupt vector.

SEE ALSO
get_vec(2K), set_vec(2K).

A-9S Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
SCOPYIN(2K)

scopyin - copy data from user to V11Ebus space

SYNOPSIS
scopyin(from, to, nbytes)
short *from, *to;
int nbytes;

DESCRIPTION
ScopyinO copies data from user space to V11Ebus space
16 bits at a time. It first calls useracc(2K) to verify
that the user has read permission at the from. address
for nbytes. Then it calls probevme(2K) to verify the
Vl\1Ebus address. Finally, scopyinO performs the phy
sical copy using 16-bit reads and writes.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned. In addition,
scopyinO sets u.u_error as follows:

[EFAULT] Either the user does not have read per
mission on the entire buffer, or a read
access at the VMEbus address causes a
bus fault.

SEE ALSO

NOTE

copyin(2K), ccopyin(2K), copyout(2K), scopyout(2K)

From and to are pointers to shorts and nbytes is a
byte count. ScopyinO does perform odd-byte copies, so
nbytes can be odd.

CTIX Interface Manual Pages A-99

NAME

Proprietary Information - Do Not Copy
SCOPYOUT(2K)

scopyout - copy data from VMEbus space to user space

SYNOPSIS
scopyout(from, to, nbytes)
short *from, *to;
int nbytes;

DESCRIPTION
ScopyoutO copies data from VMEbus space to user
space 16 bits at a time. It first calls useracc(2K) to
verify that the user has write permission at the from
address for nbytes. Then it calls probevme(2K) to
verify the VMEbus address. Finally, scopyoutO per
forms the physical copy using 16-bit reads and writes.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned. In addition, scopy
outO sets u.u_error as follows:

[EFAULT] Either the user does not have write per
mission on the entire buffer, or a read
access at the VMEbus address causes a
bus fault.

SEE ALSO

NOTE

ccopyin(2K), copyout(2K), scopyin(2K)

From and to are pointers to shorts and nbytes is a
byte count. ScopyoutO does perform odd-byte copies,
so nbytes can be odd.

A-lOO Writing MightyFrame D~ce Drivers

NAME

Proprietary Information - Do Not Copy
SET_ VEC(2K)

set_vee - set interrupt vector number and handler
address

SYNOPSIS
#include <sys/types>

set_ vee(drvid, veenbr, ihandler)
ushort drvid;
dev_t dey;
int (*ihandler)0;

DESCRIPTION
Set_veeO arranges for CTIX to call the device driver
interrupt handler ihandlerO whenever an interrupt is
received with vector number veenbr.

Drvid is the device driver ID.

Whether they are to be loaded with Iddrv(IM) or
linked into the kernel, all device drivers under CTIX
must have a driver ID assigned. To accomplish this,
include the following lines of code in your driver:

extern int DFLT_ID;
static int Drv_id = (int}&DFLT_ID;

The linker assigns a driver ID of 0 for all device drivers
that are linked with the kernel. If you use Iddrv(IM)
to load your driver, sysloeal(2) assigns a unique driver
ID when it performs the BIND operation.

You must use the set_veeO call if your device supports
only hardware-strappable interrupt vector generation. If
your device has software-programmable interrupt vector
generation, use get_vee(2K).

CTIX Interraee Manual Pages A-IOI

Proprietary Information - Do Not Copy
SET_ VEC(2K)

RETURN VALUE
Upon successful completion, a value of 0 IS returned.
Otherwise, a value of -1 is returned.

SEE ALSO

NOTE

get_vec(2K), reset_vec(2K).

For general disk-type devices, the interrupt handler is
gdintr(2K), not your driver's interrupt handler. You
must insert the address of your devintr(2K) routine in
the gddefault data structure located III

<sys/gdtab.h>. GdintrO calls your interrupt
handler when it receives an interrupt from your device.

The following matrix indicates the availability of the
interrupt vectors. Those that are in use are marked with
a '1': unused vectors are marked with a '0'.

1111 111111111111 00 - OF 000 - 015
1111 1111 1111 1111 10 - IF 016 - 031
1111 1111 1111 1111 20 - 2F 032 - 047
1111 1111 1111 1111 30 - 3F 048 - 063
1111 1111 0000 0000 40 - 4F 064 - 079
1010 1010 1010 1010 50 - 5F 080 - 095
1111 1111 1111 1111 60 - 6F 096 - 111
1111 1111 1111 1111 70 - 7F 112 - 127

1111 1111 1111 1111 88 - 8F 128 - 143
1111 1111 1111 1111 90 - 9F 144 - 159
1111 1111 1111 1111 AO- AF 160 - 175
1111 1111 1111 1111 BO-BF 176 - 191
1111 1111 1111 1111 CO - CF 192 - 207
1111 1111 1111 1111 DO-DF 208 - 223
1111 1111 1111 1111 EO-EF 224 - 239
1111 1111 1111 1111 FO- FF 240 - 255

A-I02 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
SETMAP(2K)

setmap - map an I/O transfer onto kernel virtual
memory

SYNOPSIS
#include <sys/buf.h>
#include <sys/types.h>

caddr_t setmap(bp, vaddr, offset, count)
struct buf *bp;
caddr _t vaddr;
int offset;
int count;

DESCRIPTION
SetmapO sets up a portion of the kernel virtual address
space to point to an I/0 buffer in physical memory to be
used for a raw I/O operation. Before the call to set
mapO, the buffer has only a user virtual address, which
is unusable for raw I/O. After the call to setmapO, the
buffer has both a user virtual address and a kernel vir
tual address. The kernel virtual address is passed to the
DMA device, which performs the raw I/O operation.

Bp is a pointer to a buffer structure that has had its
bJ>t field set by a call to physio(2K). Vaddr is the
kernel virtual address on which to map the transfer.

SetmapO does not allocate kernel virtual memory . You
should call sptalloc(2K) to do this before calling
physio(2K).

SetmapO uses the offset and count parameters to sup
port multiple partial mappings, for instance, when the
total amount of data to transfer is larger than the DMA
device can process in a single operation. SetmapO
starts the mapping at bp- > b_un.b_addr+ offset and
maps in count bytes. It is your responsibility to ensure
that the virtual space pointed to by vaddr is large

CTIX Interface Manual Pages A-I03

Proprietary Information - Do Not Copy
SETMAP(2K)

enough to contain count bytes. In order to have set
map() map the entire transfer in a single call, use the
following call:

setmap(bp, vaddr, 0, bp->b_count);

RETURN VALUE
SetmapO returns the virtual address of the start of the
buffer.

SEE ALSO

NOTE

physio(2K), sptalloc(2K).

You must not change bp->b_addr from within your
device driver.

SetmapO does not alter any of the fields in the buffer
header, or the data in the buffer itself.

A-I04 Writing MightyFrame Device Drivers

NAME

Proprietary Intormation - Do Not Copy
SLEEP(2K)

sleep - give up the processor until an event occurs

SYNOPSIS
#inelude <sys/types.h>

sleep(channel, pri)
caddr _t channel;
int pri;

DESCRIPTION
Sleep gives up the CPU until a wakeup(2K) occurs on
channel. By convention, channel is the address of a
data structure (such as a buffer header or a process table
entry) associated with an event that the sleeper is await
ing.

When the event occurs, the sleeping process is placed on
the run queue at priority pri. If pri is less than
PZERO, the sleep will not be interrupted by any signal.
On the other hand, if pri is greater than or equal to
P ZERO, the sleeping process will be awakened and the
signal delivered. In this case, one of two actions will be
taken. If the PCATCH flag was ORed into the pri
value, the sleepO call will return with a value of 1. If
PCA TCH was not specified, the sleepO call never
returns. Instead, a nonlocal GOTO is executed (by way
of a kernel longjmpO call), and control resumes in the
system call handler. In this case, if u.u_error has not
been set, it is set to EINTR, to indicate that the system
call was interrupted by a signal. Finally, control is
returned to the user as though the original system call
had completed with error. It is the user's responsibility
to check u.u_error and reissue the call if it was inter
rupted by the receipt of a signal.

System priorities and the PCATCH flag are defined in
<sys/param.h>.

CTIX Interface Manual Pages A-I05

Proprietary Information - Do Not Copy
SLEEP(2K)

Calls to wakeup(2K) cause all processes sleeping on
channel to be rescheduled when, in fact, only one of
them may be ready to run. For this reason, you must
check that the expected event has occurred before con
tinuing.

For example, consider the case when two device drivers
need a buffer structure to perform physical I/O. If there
are no buffers available, both processes will set the
B_ WANTED bit in the buffer header and sleep on the
address of pfreelist.

At some later time, when an I/O completion interrupt
occurs on an unrelated transaction, the device driver's
interrupt handler will issue a call to iodone(2K) on its
buffer. Iodone(2K) detects that the buffer is wanted
and calls wakeup(2K) with channel equal to the
address of pfreelist.

Both processes that were waiting for the buffer are then
placed back on the run queue, but their order on the
queue is indeterminate. The first process to get the
CPU, finding the buffer free, sets the B_BUSY bit in
the buffer header and proceeds with its I/0. When the
second process finally runs, the buffer probably will not
be free. In this case, it must issue another sleepO call
and wait again for a free buffer.

This sequence of events describes what happens inside
the routine physio(2K).

RETURN VALUE
SleepO returns a value of 0 if the process actually slept.
If the value of pri was greater than PZERO, the
PCATCH bit was set, and a signal was delivered (thus
interrupting the sleep), it returns a value of 1.

A-I06 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
SLEEP(2K)

SEE ALSO

NOTE

signal(2), physio(2K), wakeup(2K).

You must not call sleepO from the interrupt level. Also,
device drivers should never sleep at a priority greater
than PZERO.

CTIX Interface Manual Pages A-I07

NAME

Proprietary Information - Do Not Copy
SPL(2K)

spl - set processor priority level

SYNOPSIS
#inelude <sys/spl.h>

SDEC;

SPLO, ... SPL7
SPL422
SPLBLK
SPLDSK
SPLSERIAL
SPLTAPE
SPLX

VSPLO, .•. VSPL7
VSPL422
VSPLBLK
VSPLDSK
VSPLSERIAL
VSPLTAPE

short spIOO, .•• spI70
short spI4220
short spIdskO
short spIhiO
short spIseriaIO
short spItapeO

spIx(s);
short s;

DESCRIPTION
The SPLO calls are used to set the interrupt priority
mask in the processor status word. All of the UPPER
CASE calls are macros that generate in-line assembly
language. They are preferred (for performance reasons)

A-lOS Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy
SPL(2K)

over the traditional lowercase calls that generate (slower)
subroutine calls to assembly language routines. In addi
tion, the lowercase calls return the previous contents of
the status word.

SPLO, ••• SPL7 set the interrupt mask explicitly. They
also save the previous contents in a local variable that
you must declare using the SDEC macro. SPLX places
the contents of the local variable declared by SDEC
back into the status word, thereby restoring the previous
interrupt level.

VSPLO, ••• VSPL7 also set the interrupt level expli
citly, but they do not save the old contents of the status
word. Consequently, you need not use SDEC to declare
a local variable, and you cannot call SPLX.

SplOO, ••• spl70 are function calls that set the interrupt
mask explicitly. They return the previous value of the
status word. You must save this value with an assign
ment statement of the form:

s = sp140;

You can restore the original value by calling splx(s).

SPLDSK, SPL422, SPLTAPE, and SPLSERIAL
set the appropriate priority level for the device they
reference. You may restore the original priority by cal
ling SPLX.

SPLBLK sets the priority level at or above the level of
every block device in the system.

VSPLDSK, VSPL422, VSPLTAPE, and
VSPLSERIAL also set the appropriate level as above,
but they do not save the previous contents of the status
word.

spldskO, sp14220, spltapeO, and splserialO are func
tion calls that set the appropriate level as above.

CTIX Interface Manual Pages A-lOg

Proprietary Inrormation - Do Not Copy
SPL(2K)

SplblkO is a function call equivalent to SPLBLK.

RETURN VALUE
Macros (UPPERCASE) do not return a value. SplOO,
... spl70 return the previous contents of the processor
status word.

A-II0 Writing MightyFrame Device Drivers

NAME

Proprietary Inrormation - Do Not Copy
SPTALLOC(2K)

sptalloc - allocate system page table space

SYNOPSIS
#include <sys/types.h>

caddr_t sptalloc(size, mode, base)
int size;
int mode;
int base;

DESCRIPTION
SptallocO allocates kernel virtual memory and, depend
ing on the value of base, physical memory as well.

Size is the length of the desired memory segment in
pages.

Mode is the access mode bits to be written into the page
table entry. For example, PG_ V sets the page valid bit
and PG_UW provides the user with read/write access
permission. In the current implementation, the :mode
parameter is ignored: sptaUocO always sets the access
bits to PTE_KW, to provide kernel read/write access.

Base determines which type of memory allocation to
perform. If base is less than 0, sptaUocO allocates vir
tual memory only. If base is equal to 0, sptallocO allo
cates both virtual and physical memory and sets up the
page table entries to point to the newly allocated
memory. If base is greater than 0, sptallocO allocates
virtual memory and then, using base as a beginning
page frame number, sets up the page table entries to
point to the specified memory.

CTIX Interrace Manual Pages A-Ill

Proprietary Information - Do Not Copy
SPTALLOC(2K)

RETURN VALUE
SptallocO returns the virtual address of the allocated
page table entries.

SEE ALSO
sptballoc(2K).

NOTE
SptallocO calls panic(2K) if it cannot allocate virtual
memory.

It calls sleep{2K) (indirectly) when physical memory is
unavailable. Thus, you must not call it from the inter
rupt level.

A-112 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
SPTBALLOC(2K)

sptballoc - allocate system page table entries In small
blocks

SYNOPSIS
#include <sys/types.h>

caddr _t sptballoc(size)
int size;

DESCRIPTION
SptballocO allocates virtual and physical memory III

increments of 64 bytes.

Size is the length of the desired memory segment III

bytes.

RETURN VALUE
If size is less than or equal to zero, sptbaIlocO returns
NULL. Otherwise, it returns the virtual address of the
newly allocated memory.

SEE ALSO
sptalloc(2K).

NOTE
SptballocO calls panic(2K) (indirectly) if it cannot
allocate virtual memory.

It calls sleep(2K) (indirectly) when physical memory is
unavailable. Thus, you must not call it from the inter
rupt level.

CTIX Interface Manual Pages A-113

NAME

Proprietary Information - Do Not Copy
SPTBFREE(2K)

sptbfree - free system page table entries and memory

SYNOPSIS
#include <sys/types.h>

spthfree(vaddr, size)
caddr _t vaddr;
int size;

DESCRIPTION
SptbfreeO frees kernel virtual and physical memory
that was allocated previously by sptballoc(2K).

Vaddr is the virtual address of the memory segment to
free.

Size is the length of the segment in bytes.

RETURN VALUE
SptbfreeO does not return a value.

SEE ALSO

NOTE

sptalloc(2K), sptballoc(2K), sptfree(2K).

SptbfreeO calls panic(2K) (indirectly) when either the
vs.ddr or size parameter points to memory that was not
allocated through 8ptballoc(2K).

A-114 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
SPTFREE(2K)

sptfree - free system page table entry

SYNOPSIS
#inelude <sys/types.h>

sptfree(vaddr, size, flag)
caddr_t vaddr;
int size;
int flag;

DESCRIPTION
SptfreeO frees kernel virtual and physical memory that
was allocated previously by sptalIoc(2K).

Vaddr is the virtual address of the memory segment to
free.

Size is the length of the segment in pages.

A zero value for flag indicates that there is no physical
memory associated with the virtual segment. A nonzero
value indicates that physical memory also must be freed.

RETURN VALUE
SptfreeO does not return a value.

SEE ALSO

NOTE

sptalloc(2K), sptballoc(2K).

SptfreeO calls panic(2K) (indirectly) when either the
vaddr or size parameter points to memory that was not
allocated through sptalloc(2K).

CTIX Interface Manual Pages A-115

NAME

Proprietary InforDla:tion - Do Not Copy
SPUTC(2K)

sputc - add character to c-list, sleep if necessary

SYNOPSIS
#include <sys/tty.h>

sputc(c, p, cansleep)
int c;
struct clist *p;
int cansleep;

DESCRIPTION
SputcO adds the character c to the c-list addressed by
the pointer p.

If the c-list has no c-blocks associated with it, or, if all of
the associated c-blocks are full, sputcO attempts to allo
cate a new c-block from the free list. If there are no free
c-blocks, sputcO checks the value of the cansleep flag.
If it is zero, sputcO fails. Otherwise, sputcO sleeps on
the address of the free list, waiting for a c-block to
become available.

RETURN VALUE
SputcO returns 0 if it was successful in adding the char
acter to the c-list. If it could not add the character
(because cansleep was zero), sputcO returns -1.

SEE ALSO

NOTE

getc(2K), putc(2K).

SputcO calls sleep(2K), so you should not call it from
the interrupt level. It sleeps at priority TTOPRI
(defined in <sys/param.h», so it is interruptible by
signals.

SputcO runs at IPL8.

A-ll6 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
SUBYTE(2K)

subyte - write (set) byte in user space

SYNOPSIS
int subyte(address, value)
char * address;
char value;

DESCRIPTION
SubyteO writes the byte value at address (which
should be in user space).

RETURN VALUE
Upon successful completion, value 0 is returned. If the
user does not have write permission at address, a value
of -1 is returned.

CTIX Interface Manual Pages A-117

NAME

Proprietary Information - Do Not Copy
SUSER(2K)

suser - determine if current user is the super user

SYNOPSIS
suserO

DESCRIPTION
SuserO tests to see whether the current user is the super
user.

RETURN VALUE
SuserO returns a value of 1 if the current user is the
super user. It returns 0 otherwise. In addition, it sets
u.u_error as follows:

[EPERM] The current user is not the super user.

A-lIS Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
SUWORD{2K)

suword - store longword to user space

SYNOPSIS
int suword{ address, value)
int *address; ,
int value;

DESCRIPTION
SuwordO writes the longword value at address (which
should be in user space).

RETURN VALUE
Upon successful completion, value 0 is returned. If the
user does not have write permission at address, a value
of -1 is returned.

CTIX Interface Manual Pages A-119

NAME

Proprietary Information - Do Not Copy
TIMEOUT(2K)

timeout - arrange to call function later

SYNOPSIS
#inelude <sys/types.h>

int timeout(function, arg, time)
int (*function)0;
caddr_t arg;
int time;

DESCRIPTION
TimeoutO arranges for CTIX to call function with
argument arg in time divided by HZ seconds. HZ is
defined in <sys/param.h>.

Function is called once, asynchronously, from the clock
interrupt handler. The timeoutO call itself returns
immediately.

TimeoutO simply validates the request and inserts it in
order into the kernel callout table according to time.
In other words, all of the entries before this one have less
time to wait, and all of the entries after it have more
time. TimeoutO also adjusts the wait time of this
request such that the sum of the wait times of all
requests in the table up to and including this one is equal
to time.

When the system clock interrupt handler runs, if it
determines that no other interrupts are currently active
(that is, that the previous IPL of the processor was 0), it
decrements the time parameter on the first entry in the
callout table. If the wait time in the request is now less
than or equal to zero, CTIX calls functionO with argu
ment arg at IPLI. (Since the interrupt handler made
certain that no other interrupts were active, it can mani
pulate the IPL with no problem. If any other interrupts
were active when the clock interrupt occurred, no

A-120 Writing MightyFt-ame Device Drivers

Proprietary Information - Do Not Copy
TIMEOUT(2K)

callout table processing would have been done.) The
function is free to raise the IPL, but it must not lower it
below IPLI.

When the function returns, the clock interrupt handler
repeats this process for each table entry with a wait time
of zero. Since it must process these entries in sequence,
some of them will wait longer than others, perhaps con
siderably longer. Thus, time is the minimum wait time
before functionO is called.

After processing all of the requests that have timed out,
the clock interrupt handler removes all of the just
processed entries from the callout table.

RETURN VALUE
Timeout() returns a unique, 32-bit identifier that can
be used as the parameter with a call to untimeout(2K).

SEE ALSO

NOTE

ftcancel(2K), ftimeout(2K), panic(2K), untimeout(2K).

Timeout() calls panic(2K) if there is no space left in
the callout table for the new request.

CTIX Interface Manual Pages A-121

NA~lE

Proprietary Information - Do Not Copy
UNPLUG_SVEC(2K)

unplug_svec - relinquish serial device interrupt vectors

SYNOPSIS
#include <sys/types.h>

unplug_svec(drvid, dev)
ushort drvid;
dev_t dey;

DESCRIPTION
U npluLsvecO relinquishes the interrupt vectors that
were acquired by a call to plug_svecO.

Drvid is assigned as a result of a syslocal(2) call with
the parameter SYSL_ALLOCDRV. This call is made
by the Iddrv(lM) program.

Dev is the minor device number of the device.

RETURN VALUE
UnpluLsvecO does not return a value.

SEE ALSO
plug_svec(2K}.

A-122 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
UNTIMEOUT(2K)

untimeout - cancel previous t£meout(2Kj call

SYNOPSIS
int untimeout(id)
int id;

DESCRIPTION
Untimeout cancels a previous call to timeout(2K) .

Id is the 32-bit identifier returned by the previous
timeout(2K) call.

RETURN VALUE
UntimeoutO does not return a value.

SEE ALSO

NOTE

devrelease(2K), ftcancel(2K), ftimeout(2K), timeout(2K).

It is not an error to call untimeoutO on a request that
already has been performed: in this case, the call does
nothing.

CTIX Interface Manual Pages A-123

NAME

Proprietary Information - Do Not Copy
USERACC(2K)

useracc - verify user access permission to memory region

SYNOPSIS
#inelude <sys/types.h>

useracc(base, count, rw)
caddr _t base;
int count;
int rw;

DESCRIPTION
U seraccO verifies that the current user has read or
write access to a memory region.

BaseO is the address of the memory region.

Count is the length of the region in bytes.

Rw is the read/write flag that indicates the transfer
direction. Rw must be either B_READ, which indi
cates a transfer into user memory, or B_ WRITE, which
indicates a transfer out of user memory. These constants
are defined in <sys/buf.h>.

RETURN VALUE
UseraccO returns a value of 0 if the user does not have
the required access permission. Otherwise, it returns a
value of 1.

A-124 Writing MightyFrame Device Drivers

NAME

Proprietary Information - Do Not Copy
WAKEUP(2K)

wakeup - reactivate all processes sleeping on channel

SYNOPSIS
#include <sys/types.h>

wakeup(channel)
caddr _t channel;

DESCRIPTION
WakeupO causes all processes that have issued a
sleep(2K) call on channel to be placed on the run
queue at the priority specified III their original
sleep(2K) call.

By convention, channel is the address of a data struc
ture (such as a buffer header or a process table entry)
associated with an event that the sleeper is awaiting.

Wakeup(2K) causes all processes sleeping on channel
to ble rescheduled when, in fact, only one of them may
be ready to run. For this reason, the caller must check
that the expected event has occurred before continuing.

For example, consider the case when two device drivers
need a buffer structure to perform physical 1/0. If there
are no buffers available, both processes will set the
B_ WANTED bit in the buffer header and sleep on the
address of pfreelist.

At some later time, when an I/O completion interrupt
occurs on an unrelated transaction, the device driver's
interrupt handler will issue a call to iodone(2K) on its
buffer. Iodone(2K) detects that the buffer is wanted
and calls wakeup(2K) with channel equal to the
address of pfreelist.

Both processes that were waiting for the buffer are then
placed back on the run queue, but their order on the
queue is indeterminate. The first process to get the

CTIX Interface Manual Pages A-125

Proprietary Inform.ation - Do Not Copy
WAKEUP (2K)

MPU, finding the buffer free, sets the B_BUSY bit in
the buffer header and proceeds with its I/O. When the
second process finally runs, the buffer probably will not
be free. In this case, it must issue another sleepO call
and wait again for a free buffer.

This sequence of events describes what happens inside
the routine physio(2K).

RETURN VALUE
WakeupO does not return a value.

SEE ALSO

NOTE

panic(2K), sleep(2K).

WakeupO calls panic(2K) if it detects a process on the
sleep queue in a state other than SSLEEP or SSTOP.

A-126 Writing MightyFrame Device Drivers

GLOSSARY.

Associative Cache. A short-term storage location whose cells
are accessed not by their storage address, but by the data they
contain.

Block I/O System. The portion of the CTIX I/O system that
interfaces with devices that contain a fixed number of randomly
addressable" chunks" of data. Disk and tape drives are the most
common block devices.

Buffer Header. A buf structure, defined in <sys/buf.h>. It
points to a buffer, either within the system buffer cache or
elsewhere. Its fields describe the contents of the buffer or the
I/0 operation that must be performed on the buffer.

Buffered I/O System. Another name for the Block I/O
system.

C-block. A cblock structure, defined in <sys/tty.h>. C
blocks provide short-term storage for low speed character
devices. The structure contains a small queue of characters
(currently 64 on the Might yframe) , and pointers to the addresses
within the queue where a character can be added or removed.

C-list. A clist structure, defined in < sys / tty .h >. C-lists link
c-blocks together into larger queues of characters. The structure
contains a count of characters held in the queue and pointers to
the first and last c-blocks in the queue.

Canonical Queue. A c-list associated with terminal input. It
contains all of the input characters after "erase" and "kill"
processing has been performed. The process that is reading the
terminal input can select whether it wants to receive input from
the raw queue or the canonical queue.

Glossary-l

Proprietary Information - Do Not Copy

Character Block. See C-block.

Character I/O System. The portion of the CTIX I/O system
that interfaces with devices that do not fit within the Block I/O
system. Frequently, character devices process data in asynchro
nous, nonrepeatable sequences. Devices such as terminals and
printers are typical character devices.

Character List. See C-list.

Controller Queue. A linked list of drive queues, one member
for each active drive associated with a particular disk controller.
A drive is considered active when it has one or more I/O requests
to service. The head of the controller queue is an iohuf struc
ture, defined in <sys/iohuf.h>.

Critical Region. A section of code that must run without being
interrupted. (Technically, on a processor that supports multiple
priority levels, a critical region must not be pre-empted by an
interrupt at or above a given level.)

Drive Queue. A linked list of hur structures, which are defined
in <sys/huf.h>. A drive queue contains a list member for
each I/O request outstanding on the drive. Another name for an
I/O queue. A drive queue is headed by an iohu! structure,
which is defined in < sys/iohuf.h > .

EEPROM. Electrically eraseable programmable read-only
memory. A ROM device that can be erased and rewritten a lim
ited number of times. Normally used to store information that
changes very infrequently, and yet must be changed quickly and
easily.

Hash Slot. An entry in the hhur array. Each slot serves as the
head of a linked list of buffer headers containing data for a block
number and device that hashed to the same value.

High-Water Mark. An arbitrary limit within a c-list. When a
process that is adding characters to a c-list causes the list to sur
pass the high-water mark, it is put to sleep until the driver works
down the list past

Glossary-2

Proprietary Inlormation - Do Not Copy

I-Node. An information (or index) node within the file system.
Each i-node describes one file or device (special file) within the
system. The in-memory inode structure is defined in
< sys/inode > . Most of the information in the in-memory copy
is read in from the disk copy of the i-node.

I/O Operation. One part of an I/O request. Typically, a disk
driver must break apart a request into several smaller actions, for
instance, a SEEK command, followed by a READ command.
Each of these simpler actions is an I/O operation.

I/O Queue. A linked list of all I/O requests associated with
one device. The I/O queue is headed by an iobul structure,
which is defined in < sys/iobul.h > . The queue members are
buffer headers that describe I/O requests to be performed.

IPL. Interrupt Priority Level. In the MC68020 CPU, the IPL is
determined by the state of three input lines, which encode the
priority of a device requesting service. An Interrupt Priority
Level of 0 indicates that no device is requesting service.

Least Recently Used. An algorithm that sorts resources into
order depending upon their usage. Whenever a resource is used,
it is moved to the end of the list. Thus, the resources near the
head of the list are the "oldest," while resources near the end of
the list are the "youngest." When a new resource is requested,
the "oldest" resource in the list is chosen to satisfy the request.

Low-Water Mark. An arbitrary limit within a c-list. When a
driver that is removing characters from a c-list causes the list to
fall below the low-water mark, it wakes up any processes that
caused the queue to surpass the high-water mark.

LRU. See least recently used.

Major Device Number. A small, positive integer, kept in the
Special File for each device. CTIX uses the major device number
as an index into either the cdevsw or bdevsw arrays. These
arrays contain the entry point addresses for every device driver
in the system.

Glossary-3

Proprietary Information - Do Not Copy

Minor Device Number. A small, positive integer, kept in the
Special File for each device. CTIX passes the minor device
number to the device driver as a parameter. Typically, the
driver uses the minor device number to differentiate among vari
ous devices on one controller, various partitions on a disk,
recording density on a tape, and so on.

NMI. Non-Maskable Interrupt. An interrupt that cannot be
ignored under software control. Typically, the non-mask able
interrupt is used to report impending power failures to the CPU.

Physical I/0. An I/O transfer directly between a DMA-driven
device and the user's buffer. No intervening kernel buffering is
used. Also called direct I/O or raw I/O.

Raw I/O. Another name for physical I/O.

Raw Queue. A c-list associated with terminal input. It con
tains all of the input characters exactly as they were typed. The
process that is reading the terminal input can select whether it
wants to receive input from the raw queue or the Canonical
Queue.

Run Queue. The queue of all processes that are ready to run
and waiting for the CPU. The list is headed by runq, a pointer
to a proc structure, which is defined in <sys/proc.h>. See
sleep queue.

Sleep Queue. The queue of all processes that are sleeping,
waiting for the occurrence of some asynchronous event. The list
is hashed: the heads of the hash chains are kept in sqhash,
which is an array of pointers to proc structures, defined in
<sys/proc.h>. See Run Queue.

Special Files. I-nodes that are used to provide file-like access to
hardware devices. A special file contains two pieces of informa
tion that CTIX uses to make the linkage to the appropriate dev
ice driver:

1. A bit indicating whether the device is part of the Character
I/O system or the Block I/O system.

Glossary-4

Proprietary Information - Do Not Copy

2. A small, positive integer called the Major Device Number.

CTIX obtains a third piece of information, called the Minor Dev
ice Number, from the i-node and passes it to the driver as a
parameter.

System Buffer Cache. An associative cache, kept in LRU
order, that contains recently accessed blocks from the devices in
the Block I/0 system. Each cache block is addressed by its dev
ice and block numbers.

System Call Stack. The stack used to process system calls
within the kernel. It corresponds to the supervisor stack. It is
located at the highest address within the user page and grows
downward.

System Stack. See System Call Stack.

U-Page. See User Page.

User Page. An area of memory, unique to each process, that
contains all of the data about the process that CTIX needs when
the process is swapped in. The user page contains both the sys
tem call stack and the user structure. The base address of the
user structure is equal to the base address of the user page. The
system call stack is located at the highest address within the user
page and grows downward.

Glossary-5

INDEX

/ dey directory, 4-21, 9-8
/ dey /vme/* special files, 2-24
/ etc/inittab file, 10-2
/ etc/system file, 9-4, 9-7
/unix file, 9-4, 9-7
/usr /include/sys directory, 9-5
/usr /lib/iv /loaderllcust file, 10-16
/usr /src/uts/ common directory, 9-1
/usr/sys/cf directory, 9-3, 9-5, 9-7
/usr /sys/io directory, 9-5, 9-6
/usr /sys/io/Makefile file, 9-6
/usr /sys/liblocallibrary, 9-6

<cf/conf.c> file, 9-4,9-7
<cf/dfile> file, 9-3, 9-7
<cf/low.s> file, 9-4
<cf/Makeflags> file, 9-7
<cf/master> file, 9-3, 9-6
<io/Makefile> file, 9-2
<io/Makeincludes> file, 9-2
<sys/buf.h> header file, 7-3, A-10, A-34, A-47, A-49, A-85,

A-124
<sys/ conf.h> header file, A-2, A-3, A-27
<sys/debug.h> header file, 8-16
<sys/erec.h> header file, 8-58
<sys/file.h> header file, A-25, A-39
<sys/gdioctl.h> header file, A-37
<sys/gdisk.h> header file, 7-12, 7-13, A-2, A-3, A-9
<sys/gdtab.h> header file, A-3, A-9, A-102
<sys/hardware.h> header file, 2-17, 2-28
<sys/iobuf.h> header file, 7-11
<sys/kprintf.h> header file, 10-15

Index-l

Proprietary Information - Do Not Copy

<sys/page.h> header file, A-86
<sys/param.h> header file, A-23, A-105, A-116, A-120
<sys/proc.h> header file, 4-3
<sys/space.h> header file, 7-12, 7-13
<sys/user.h> header file, 4-6, 4-7, A-14, A-42
<sys/vme.h> header file, 2-17, 2-28, 9-4, 9-8

A3-AO bits in VMEbus Protection register, 2-26
access bits

in virtual memory mapping registers, 2-11
access permissions

virtual memory, 2-11
ACF bit in VMEbus Map (Page) register, 2-24
adb(l), 10-17
address map

MightyFrame, 2-9
address translation

virtual to physical, 2-11, 2-13
aging

in system buffer cache, 7-12
automatic variables

in device drivers, 4-6
available list, 7-5, 7-6, 7-12, 7-15

and I/O queue, 7-11

BI-BO bits in VMEbus Protection register, 2-26
bad block

delayed assignment, 8-36
forwarding, 7-19, 8-36
table, 8-60

base level
device driver, 5-12, 5-14

bbmcell data structure
altblk, 8-36

bbq data structure, 8-36
bcopY(2K), A-17, A-21, A-22, A-77

Index-2 Writing Mighty Frame Device Drivers

Proprietary Information - Do Not Copy

bdevsw data structure, 3-1, 7-15, 8-16, A-2, A-3, A-5, A-7
bfreelist data structure, 7-5, 7-6

b_bcount, 7-5
binvalO function, 7-28, 8-58
bits, numbering of, 1-3
block device, 9-9, 9-11
block devices

linkage, A-6
model, 4-23
treated as character devices, 4-24

block I/O system, 4-22, 4-23, 4-24, 5-1, 5-22, 7-1, 7-2, 7-5
performance, 4-24

breadO function, 4-17, 4-21, 8-28, A-49, A-50
breakpoints, 3-4, 10-1

automatic, 10-4
regular, 10-4
temporary, 10-4

btocO macro, A-81
btodbO macro, A-81
btopO macro, A-81
btotpO macro, A-81
buf data structure, 7-3, 7-4, 7-5, 7-10

av _back, 7-3, 7-15
av _back - 'stolen' in I/O queue, 7-15
av _back - in hash list, 7-10
av _back - unused in I/O queue, 7-11
av _forw, 7-3, 7-11, 7-15
av _forw - in hash list, 7-10
av _forw defined, A-13
b_active, 8-28
b_addr, 6-10, A-49
b_back, 7-3
b_back - in hash list, 7-10
b_bcount, 6-10, 8-32, A-29, A-30, A-33, A-35, A-47 , A-50,

A-51
b_bcount defined, A-13
b_blkno, A-35, A-47, A-50, A-66
b_blkno defined, A-13

Index-3

Proprietary Information - Do Not Copy

b_dev, A-35, A-47, A-50
b_dev defined, A-13
b_error, 7-24, A-29, A-33, A-35, A-51, A-61, A-78
b_error defined, A-14
b_fIags, A-II, A-29, A-33, A-34, A-35, A-47, A-49, A-50,

A-51, A-61
b_forw, 7-3
b_forw - in hash list, 7-10
b_forw defined, A-12
b-pt, A-103
b_resid, 6-10, 7-24, 8-32, A-29, A-30, A-33, A-35, A-43,

A-51, A-54, A-61
b_resid defined, A-14
b_un defined, A-13
b_un.b_addr, A-30, A-33, A-34, A-35, A-47, A-51, A-103

buffer header, 4-7, 5-32, 6-10, 6-14, 7-3, 7-5, 7-6, 7-8, 7-11, 7-13,
7-15, 7-24, 8-54, A-29, A-33, A-47, A-78

buffer management
character devices, 4-27

buffered I/O system, 7-1
bus errors, 2-3, 2-4
bus fault, A-20
bwriteO function, 8-28, A-49, A-50
byte offset

virtual memory translation, 2-11, 2-12
within page, A-81

B_AGE constant, 8-58
B_BUSY constant, 6-10, 7-11, 7-12, A-34, A-47, A-49, A-106,

A-126
defined, A-12

B_DONE constant, 4-19, 5-34, 6-10, 6-14, A-35, A-50, A-75
defined, A-12

B_ERROR constant, 6-10, 7..;24, A-29, A-33, A-35, A-51, A-61,
A-78
defined, A-12

B_FORMAT constant
defined, A-12

B_PHYS constant, A-34

Index-4 Writing MightyFrame Device Drivers

Proprietary Information - Do Not OOPY

B_READ constant, A-34, A-47, A-49, A-65, A-76, A-85, A-124
defined, A-12

B_STALE constant, 8-58
B_ WANTED constant, 6-10, 6-14, A-106, A-125

defined, A-12
B_ WRITE constant, A-34, A-47, A-49, A-76, A-85, A-124

defined, A-II

C Progamming Language, The, 1-13
c-block, 4-25, 5-2, 5-3, 5-4, 5-20, A-73, A-74, A-93, A-94, A-116
c-list, 4-25,4-27,5-2,5-12, A-73, A-74, A-93, A-116
01-00 bits in V1vfEbus Protection register, 2-26
cache

associative, 5-2, 5-22
MC68020, 2-3, 2-28
system buffer, 4-23, 4-27, 7-1, 7-2, 7-3, 7-4, 7-5, 7-6, 7-7,

7-10, 7-11, 7-12
system buffer search algorithm, 7-8

callout data structure, A-120
case studies, 1-14
ccopyin(2K), A-18
cdevsw data structure, 3-1, A-2, A-3, A-4
cf directory, 9-1
cfreelist data structure

c_flag, A-94
character device, 9-9, 9-10, 9-11, 9-12, 9-13
character devices

buffer management, 4-27
high-speed, 5-1, 5-22
linkage, A-5
low-speed, 5-1, 5-2

character I/0 system, 4-22, 4-24, 5-1
flow of control, 4-25

chkbusflt(2K), 6-20, A-20, A-91
click, A-81
clock tick, 2-4
close(2), A-25, A-60

Index-5

Proprietary Information - Do Not Copy

cluster device, 9-9, 9-11
config(lM), 9-3, 9-7
context switch, 4-19, 4-20, 4-21, 6-12

caused by sleep{2K), 4-17
conversion

bytes to clicks, A-81
bytes to disk blocks, A-81
bytes to pages, A-81
bytes to pages - truncating, A-81
clicks to bytes, A-81
compressed virtual addresses to virtual addresses, A-81
disk blocks to bytes, A-81
disk blocks to pages, A-81
pages to bytes, A-81
pages to disk blocks, A-81

copyin(2K), A-17, A-21, A-54, A-77
copyout(2K), A-17, A-22, A-43, A-77
CP 1M case study, 1-14
crash(lM), 10-17
critical region, 2-8
CTIX

enhancements to UNIX System V, 3-1
CTIX Operatz"ng System Manual, 1-10, 1-11, 2-24, 4-11, 4-12, 5-3,

9-3, 10-2, 10-17, A-37
CTIX Programmer's Gu£de, 1-12
ctobO macro, A-81
cvtovO macro, A-81
c_block data structure

c_cc, A-74

daisy chaining, 2-4
data space

process, 4-2
dbtobO macro, A-81
deadman timer, 8-66
Deitel, Harvey M., 1-13
delay(2K), A-23

Index-6 Writing Mighty Frame Device Drivers

Proprietary Information - Do Not Copy

devclose(2K), 4-23, 5-10, 5-28, 6-8, 9-9, 9-10, 9-11, 9-12, A-4,
A-5, A-25, A-60

device driver
adding a block, A-5
adding a character, A-4
adding to CTIX, 1-12
base level, 5-12, 5-14
entry points, 3-1, 7-16
interrupt level, 5-12
linkage, 4-22
load able , 3-1

device number
constructing, A-81
major, 4-22, 7-15, 9-8, A-4, A-5, A-81
major + minor, A-9, A-47, A-50
major + minor - general disk device, 7-12
major - usage, 4-22
minor, 4-22, 9-8, A-4, A-5, A-25, A-31, A-35, A-37, A-39,

A-41, A-66, A-70, A-81
minor - usage, 4-22

devinit(2K), 2-7, 3-1, 5-8, 5-24, 5-26, 7-20, 8-18, 9-10, 9-11,
9-12, A-27, A-28

devintr(2K), 6-14, 7-10, A-29, A-35, A-46, A-50, A-75, A-78,
A-86, A-I02

devintrgd(2K), 4-19, A-9, A-29, A-30, A-31, A-50, A-61
devio(2K), 5-30, 6-10, A-7, A-34, A-86
devioctl(2K), 6-16, 9-9, 9-11, A-4, A-37
devopen(2K), 4-22, 5-10, 5-28, 7-20, 9-9, 9-10, 9-11, 9-12, A-4,

A-5, A-9, A-25, A-39, A-62
devprint(2K), A-5, A-41
devread(2K), 4-23, 9-9, 9-10, 9-11, 9-12, A-4, A-34, A-42, A-50
devrelease(2K), 3-2, 5-8, 5-26, 9-10, 9-11, 9-12, A-44
devstart(2K), 4-17, A-9, A-33, A-46, A-50, A-61, A-66
devstrategy(2K), 7-1, 7-2, 7-5, 7-6, 7-8, 7-10, 7-11, A-5, A-7,

A-46, A-49, A-85
devtimer(2K), 8-66, A-9, A-52
devwrite(2K), 9-9, 9-10, 9-11, 9-12, A-4, A-34, A-50, A-53
devxxxxO routines, A-I, A-9

Index-7

Proprietary Information - Do Not Copy

dey _init data structure, A-27
dfile file, 9-1, 9-3, 9-7
Dijkstra, Edsger W., 1-13
disk

driver - low-level, 7-22, 7-24, 8-18, A-7, A-9
drives - as character devices, 5-1

disk blocks, A-81
disk(7), A-62, A-63, A-64, A-65, A-66, A-68, A-70
DMA

accesses in user space, 3-3
addresses in virtual memory, 2-11
from MightyFrame to VMEbus, 2-23
local MightyFrame devices, 2-23
transfers - in kernel space, 2-18
transfers - in user space, 2-18, 2-19, 2-20, 2-27
transfers - memory protection, 2-22

DP _ACTIVE constant, 8-28, 8-30, 8-42, 8-50, 8-58
DP _DELA YRD constant, 8-32, 8-36, 8-52
DP _READVHB constant, 8-38
DP _SEEKING constant, 8-52, 8-58, 8-62
DP _WAITING constant, 7-26,7-34,8-38,8-50,8-56
DR11 device, 4-27,6-1, 9-10
driver ID, 2-7, 3-2, 8-14, A-71, A-88, A-98, A-101, A-122
DRVBIND constant, 5-6, 5-24, A-27
DRVUNBIND constant, 5-8, 5-26, A-44
dtopO macro, A-81
DT_DMAON constant, 8-42
DT _INUSE constant, 8-38, 8-56

eblock constant, 8-58
EBUSY error, 3-2, 6-8, A-44, A-45
EF AULT error, 6-20, A-18, A-65, A-70, A-76, A-86, A-99, A-IOO
EINTR error, A-105
EIO error, 6-10, A-18, A-29, A-33, A-35, A-51, A-78, A-86
ENXIO error, A-66
EPERM error, A-118
erase character processing - terminal devices, 4-27

Index-8 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

errno variable, 4-12
Evolution of the UNIX Time-Sharing System, The, 1-13
exceptions

processing, 1-12, 2-3
vector table, 2-3

fcallout table, A-55
file data structure

f_flag, A-25
file system, 7-1, 7-18, A-50, A-56

corruption, 7-2
integrity, 4-24

floating point coprocessor, 2-1
fmtberrO constant, 8-58
fork(2), 4-3
free list, 7-5, 7-6, 7-10, 7-15
fsck(lM), 4-24
ftcancel(2K), A-55
ftimeout(2K), A-55, A-56
fubyte(2K), A-54, A-58
fuword(2K), A-54, A-59
F _READ constant, A-39
F _WRITE constant, A-39

gdaddbadblkO function, 8-60
gdaltblkO function, 8-35
gdclose(2K), 9-9, 9-11, A-26, A-50
gdctlO macro, 7-13
gddefault data structure, A-3, A-9, A-102
gddriver data structure, 8-14, 8-18, 8-30, 8-38
gdint data structure, 8-20
gdintr(2K), 4-19, 7-10, 7-24, 7-28, 7-30, 8-20, 8-32, 8-48, 8-54,

8-56, 8-58, A-31, A-50, A-61, A-75, A-78, A-86
gdioctlO function, 9-9, 9-11
gdiodoneO function, 7-24, 7-28, 7-30, 8-30, 8-32, A-51, A-61,

A-75

Index-9

Proprietary Information - Do Not Copy

called from low-level disk driver, 7-24
gdopen(2K), 8-16, 9-9, 9-11, A-39, A-60, A-62
gdpanic(2K), 7-24, 8-28, 8-38, 8-42, 8-48, 8-66, A-63, A-68, A-69
gdposO macro, 7-12, 7-16, A-9
gdprint(2K), A-64
gdread(2K), 9-9, 9-11, A-65, A-66
GDRETREST constant, 8-60, 8-62
GDRETRIES constant, 8-60
gdstart(2K), 8-28, A-68
gdstrategy(2K), 4-17, 7-10, 7-22, 8-28, 8-42, 8-58, A-7, A-46,

A-50, A-65, A-66, A-70, A-85
gdsw data structure, 3-2, 7-16, 8-20, 8-66, A-2, A-3, A-7, A-9

DMAto, 8-66
v_flags, A-68

gdtab data structure, 7-13, 8-28, 8-64
wtime, 8-66

GDTIMEOUT constant, A-68
gdtimer(2K), 7-36, 8-32, 8-66, A-52, A-68
gdutab data structure, 7-12, 8-4, 8-16

wtime, A-68
gdvs32ctl data structure, 8-8
gdvs32iopb data structure, 8-6
gdvs32uib data structure, 8-4
gdwrite(2K), 9-9, 9-11, A-66, A-70
gdxxxxO routines, 7-16, 8-2, A-I, A-7
gd_config data structure, 8-18
GD _MA YREMOVE constant, A-68
GD_OPENED constant, 8-32
GD_PHYSADDR constant, 8-30, 8-34
GD_QUIET constant, 8-58
GD_READY constant, 8-52,8-58, A-69
general disk device, 7-12, 7-18, 7-20, 8-18, A-31, A-50" A-66,

A-I02
not loadable, 3-2

general disk driver, 7-15, 7-16, 7-22, 7-28, 8-2, 8-30, A-7, A-9,
A-26, A-50, A-BO, A-63, A-64, A-66, A-68, A-70, A-78
linkage, 7-16, A-7

getc(2K), 4-25, 5-3, A-73

Index-IO Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

getcb(2K), 4-25, 5-10, A-74
get_vec(2K), 2-6, 2-7, 5-6, 5-24, 6-14, 6-20, 8-20, A-28, A-71,

A-98, A-101

hash algorithm, 7-7
hash list, 7-6, 7-10, 7-15
hash slot, 7-8, 7-9
haveVME variable, 6-20, 7-20, 8-14, A-27
hbuf data structure, 7-7, 7-9, 7-10
hclrO macro, A-82
high-water mark, 4-25, 5-20
hispgvO macro, A-82
HIUV ADDR constant, 4-2
hsetpgO macro, A-82
hsetpteO macro, A-82
hw_xxxxO routines in pseudocode, 5-4, 7-19
HZ constant, A-23, A-68, A-120

i-node, 4-22, 7-1
I/O

physical, 2-19, 2-22, 3-3, 4-27, 5-22, 5-30, 6-1, 7-4, 7-26,
A-34, A-103

raw, 2-19, 3-3,4-27,5-22,6-1,6-10,8-26, A-34
I/O operation, 7-24, 7-26, 8-34, 8-36, A-32, A-33
I/O Processor board, 2-5

interrupts from, 2-4
I/O request, 7-24, 8-34, A-31, A-33
I/O space, 2-11
ifile file, 1-13, 4-6
Ikon 10084 DR11- W Emulator Hardware Manual, 1-12, 6-1, 6-4
init(lM), 10-2
interactive boot loader, 10-15
Interphase V/ SMD 3200 User's Guz"de, 1-12, 8-1
Interphase V /SMD 3200 User's Guide, 8-6
interprocess communication, 2-6
interrupt level

Index-II

Proprietary Information - Do Not Copy

device driver, 5-12
interrupt mask, 2-4
interrupts

acknowledgement, 2-4, 2-7
acquiring vectors, 5-6, 5-24
address of handler, 2-6, 2-7
bus errors, 2-3, 2-4
clock tick, 2-4
disabling, 2-4
disabling from Th1Ebus, 2-5
HMA completion, 5-22
from 8259 Interrupt controller, 2-5
from local devices, 2-5
from peripheral devices, 2-6
from VMEbus devices, 2-5
handler, 2-9
handler and u-page, 4-6
I/O completion, 4-18, 4-20, 4-25, 5-2, 8-48, A-32
I/O continuation, 8-48, A-32
I/O Processor board, 2-4
mask level - raising, 2-9
masking, 2-3, 5-12, 6-18
memory not present, 2-3, 2-4
NMI,2-4
non-maskable, 2-3
parity errors, 2-3, 2-4
power failure, 2-3
priority levels, 1-12, 2-3, 2-4
priority levels on MightyFrame, 2-4
processing, 2-6
programmable vector generation, 2-6
response time, 2-9
RS-232, 2-4
simultaneous local and Th1Ebus, 2-5
strappable vector generation, 2-7, A-71
stray, 8-50
system clock, 4-20
vector number, 2-6, 2-7

Index-12 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

vector number - conflicts, 2-7
vectors - currently available, 2-7
V1v1Ebus, 2-4, 2-5, 2-28

Introduction to Operating Systems, An, 1-13
intsysO function, 4-11, 4-15, 4-16, 4-21
Int_handle data structure, 2-6, 2-7
io directory, 9-2
iobuf data structure, 7-11, 7-12, 7-13, 8-4, 8-16, 8-28
ioctl(2), 4-22, 5-36, A-37
iodone(2K), 4-19, 5-32, 5-34, 6-10, 6-14, 7-11, 8-48, 8-54, 8-56,

8-58, A-29, A-32, A-35, A-50, A-75, A-78, A-86, A-106,
A-125

iomove(2K), A-43, A-54, A-76
iowait(2K), 4-17, 4-21, A-50, A-78
ispgvO macro, A-82
is_eepromvalid(2K), 8-16, A-27, A-79
iv(lM), 10-16

Kernighan, Brian W., 1-13
kill character processing - terminal devices, 4-27
KIMAXO macro, A-81
KIMINO macro, A-81
kpflg variable, 10-15, A-95
kqflg variable, 10-15, A-95

Iddrv(lM), 3-1, 3-2, 5-6, 5-8, 5-26, 8-18, 9-8, 10-1, 10-2, A-27,
A-44, A-71, A-98, A-122
disk drivers unsupported, A-9

Ideeprom(lM), 2-28, 9-4, 9-8
Idelay(2K), A-23
link editor, 4-6
linkage

to device driver, 4-22
local devices

Index-13

Proprietary Information - Do Not Copy

interrupts from, 2-5
longjmpO function, A-105
LOUV ADDR constant, 4-2
low-water mark, 4-25, 5-12, 5-18, 5-20

M6-Ml bits in VMEbus Interrupt Mask register, 2-27
majorO macro, A-81
makedevO macro, A-81
manual conventions, 1-2
manual requirements, 1-1
mapping registers

virtual memory, 2-11, 2-12
Mashey, J., 1-13
master file, 9-3, 9-6, 9-9, A-27
MAXBLK constant, 6-20, A-65, A-86
MC68020, 1-12, 2-1, 2-3, 2-4, 4-10

assembler, 1-12
MC68020 92-Bit Microprocessor User's Manual, 1-12, 2-3, 2-5,

4-10
MC68881, 2-1
MegaFrame, 2-3
memory

management, 4-10
map of user process, 4-2
protection, 4-10

memory not present, 2-3, 2-4
MightyFrame

address map, 2-9
interrupt priority levels, 2-4
model I, 2-1

MightyFrame Administrator's Reference Manual, 1-12, 9-4, 9-8,
10-2

MightyFrame Hardware Manual, 1-12, 2-1, 2-2, 2-5, 2-17, 2-28
MiniFrame, 2-3
minorO macro, A-81
mknod(lM), 4-21, 9-8, A-4, A-5
mount(2), 8-16, A-39, A-62, A-68

Index-14 Writing MightyFrame Device Drivers

Proprie:tary Information - Do Not Copy

MS-DOS, 4-9
multiprogramming, 4-10
mutual exclusion, 1-13

Network Interface device, 5-3, 9-11
NMI, 2-3, 2-22
non-maskable interrupt, 2-3
nosync variable, A-63, A-84

open(2), A-62, A-68
OS/MVS case study, 1-14
OS/VM case study, 1-14

P2-PO bits in VMEbus Map (Page) register, 2-24
page fault, 2-12

on DMA transfers, 2-22
page frame, A-82
page mode, 10-3
page protection bits, A-82
page size

physical memory, 2-11
virtual memory, 2-11

page table entry, A-82
valid bit, A-82

panic(2K), 2-22, A-57, A-63, A-84, A-112, A-113, A-114, A-l15,
A-121, A-126

parity errors, 2-3, 2-4
PCATCH constant, A-l05
pdelay(2K), A-23
perintO function, 2-6, 6-14
pfreelist data structure, A-86, A-125
pglockO function, 6-10, 6-12
PG_KW constant, A-Ill
PG_UW constant, A-Ill
PG_ V constant, A-Ill

Index-15

Proprietary Information - Do Not Copy

physical memory, 2-12
page size, 2-11

physical page number, 2-12
physio(2K), 2-19, 2-22, 2-27, 5-30, 5-32, 5-34, 6-6, 6-10, 6-12,

6-14, 6-20, 8-26, 8-42, A-34, A-49, A-50, A-65, A-70, A-85,
A-103, A-I06, A-126

plug_svec(2K), A-88, A-122
poffO macro, A-81
power failure, 2-3
printf(2K), 3-4, 10-3, A-90, A-95
priority level

processor, 2-4, 2-8
probevme(2K), 7-20, A-18, A-27, A-91, A-99, A-100
process table, 4-3

entry, 4-3
processor

priority level, 2-4, 2-8
status word, 2-4

pseudocode, 5-2, 7-19
psignal(2K), A-92
ptobO macro, A-81
ptodO macro, A-81
putc(2K), 4-25, 5-2, 5-20, A-93
putcf(2K), 4-25, 5-10, A-94
PZERO constant, A-24, A-92, A-105

qprintf(2K), 3-4, 8-16, 10-3, 10-15" A-95
queue

canonical - with terminal devices, 4-27
controller, '7.-13
drive, 7-12, 8-28
I/O, 7-6, 7-10, 7-11, 7-12, 7-13, 7-15, 8-4, 8-56, A-46
I/O - and available list, 7-11
I/O - for general disk device, 7-12
raw - with terminal devices, 4-27
run, 4-2, 4-17, 4-19, 4-20
sleep, 4-2, 4-17, 4-19

Index-16 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

read(2), 4-13, 4-21, A-65, A-66
analysis, 4-16
on character device, 4-22
processed synchronously, 4-13, 4-17

rebootO function, A-84
recv(2N), 5-4
reset_vec(2K), A-44, A-98
Retrospect£ve, A, 1-13
Ritchie, Dennis M., 1-13
RS-422 board, 2-2, 2-5
runin variable, A-86

scheduler, 4-20
scopyin(2K), A-99
scopyout(2K), A-100
sdb(l), 10-17
SDEC macro, 2-8,6-18, A-109
semaphores, 1-13
setmap(2K), 2-19
setmap(2K), 2-22, 3-3, 5-32, 6-12, 7-26, 8-42, A-103
setpgprotO macro, A-82
setpgvO macro, A-82
setuid(2), 4-11, 4-12, 4-13

analysis, 4-14
set_vec(2K), 2-6, 2-7, 5-6, 5-24, 6-20, A-28, A-98, A-101
single-user mode, 9-4, 9-7, 10-2
sleep(2K), 4-2, 4-17, 4-21, 4-25, 4-26, 6-12, 6-14, A-19, A-23,

A-24, A-50, A-78, A-87, A-105, A-106, A-112, A-113, A-116,
A-125, A-126
called from interrupt handlers, 5-3

socket, 2-6, 5-4
special file, 4-21, 4-22, 7-1, 9-8, A-4, A-5
Speech Interface device, 9-12
SPL(2K), 2-8, 3-3, 6-18
SPLO - SPL7 macros, 2-8
spIOO - spl70 functions, 2-8
SPL422 macro, 2-9

Index-17

Proprietary Information - Do Not Copy

SPLBLK macro, 2-9
SPLDSK macro, 2-9
SPLSERIAL macro, 2-9
SPLTAPE macro, 2-9
SPLX macro, 2-8, A-109
sptalloc(2K), 2-19, 2-22, 3-3, 5-32, 6-6, 6-12, 6-20, 8-26, 8-42,

A-28, A-103, A-Ill, A-115
sptballoc(2K), 8-18, A-113, A-114
sptbfree(2K), A-114
sptfree(2K), A-115
sputc(2K), 5-2, 5-20, A-116
SSLEEP constant, A-126
SSTOP constant, A-126
stack

interrupt, 2-3, 4-7
supervisor, 2-3, 4-5, 4-7
supervisor - overrunning user area, 4-6
system, 4-5
system call, 4-5
user, 2-3

stack space
process, 4-2

status word
processor, 2-4

storage module drive controller, 7-18, 9-9, 9-10
Structure of the 'THE' Multiprogramming Execut£ve, The, 1-13
structured I/O, 4-22
subyte(2K), A-43, A-117
suser(2K), A-118
suword(2K), A-43, A-119
swapper process, 2-12
swtchO function, 4-20
sync(2), 7-2
sys directory, 9-2
syscalIO function, 4-11
syslocal(2), 3-1, 3-2, 5-6, 5-8, 5-24, 5-26, A-27, A-44, A-71, A-84,

A-122
SYSL_ALLOCDRV constant, A-71, A-122

Index-IS Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

SYSL_BINDDRV constant, 5-6, 5-8, 5-24, 5-26, A-27, A-44
system calls

asynchronous, 4-13, 4-15
synchronous, 4-13

system entry point table, 4-11, 4-12, 4-15
systrapO function, 4-12, 4-15, 4-16, 4-21

tape drives
as character devices, 5-1

terminal devices
canonical queue, 4-27
erase character processing, 4-27
kill character processing, 4-27
raw queue, 4-27

text space
process, 4-2

Thompson, Ken, 1-13, 4-22
timeout(2K), 3-2, 5-8, 5-26, 6-14, 6-18, 6-20, 6-22, 8-66, A-23,

A-25, A-44, A-52, A-68, A-120, A-123
TTOPRI constant, A-116

u -data structure, 4-6
u-page, 4-5, 5-34
umount(2), A-60
UNIX

4.2 BSD, 2-6
case study, 1-14
internal architecture, 1-14
System V, 2-6, 3-1, 3-3

UNIX Implementai£on, 1-13, 4-22
UNIX Programm£ng Env£ronment, The, 1-13
UNIX System V Support Tools Guide, 1-13, 4-6
unplug_svec(2K), A-122
unstructured I/O, 4-22
untimeout(2K), 5-8, 5-26, A-121, A-123
updateO function, A-63, A-84

Index-19

Proprietary Information - Do Not Copy

update(lM), 4-24, 7-2
user area, 4-5
user data structure, 4-5, 6-10

u_base, 6-10, A-42, A-53, A-76
u_count, 5-12, 6-10, A-42, A-53, A-76
u_error, 5-8, 5-12, 5-24, 5-26, 5-34, 6-8, 6-10, A-25, A-28,

A-38, A-40, A-43, A-44, A-47, A-54, A-62, A-65, A-66,
A-70, A-76, A-78, A-85, A-86, A-99, A-IOO, A-I05,
A-118

u_offset, A-76
u_segflg, A-42, A-53, A-77

user page, 4-5
remapping at context switch, 4-6, 4-9, 4-17, 4-21

~3er space
remapping for DMA, 3-3, 5-24, 5-32

user structure, 4-5
useracc(2K), A-17, A-18, A-21, A-22, A-99, A-100, A-124

VAX VMS case study, 1-14
VHB, A-62
virtual address

compressed, A-81
virtual memory, 2-6

access permissions, 2-11, 4-10
access permissions - default, 4-10
address translation, 2-11, 2-13
byte offset during translation, 2-11, 2-12
demand paged, 2-3
kernel, 2-11, 4-9, A-Ill
kernel - remapped for DMA, 2-11
mapping registers, 2-11, 2-12
page absent, 2-12
page fault, 2-12
page number, 2-11
page present, 2-12
page size, 2-11
physical page number, 2-12

Index-20 Writing MightyFrame Device Drivers

Proprietary Information - Do Not Copy

translation for V11Ebus DMA devices, 2-23
user, 2-11

VME(7), 2-24
VMEbus, 1-12, 2-5, 2-22

A16 devices not useful, 2-21
address space, 2-14
address space - accessible to users, 2-25
address translation, 2-14
address translation - A16 devices, 2-16
address translation - A24 devices, 2-15
address translation - A32 devices, 2-14
device, 9-9, 9-10, 9-11, 9-12, 9-13
DMA address translation, 2-17
DMA address translation - A16 devices, 2-21
DMA address translation - A24 devices, 2-20
DMA address translation - A32 devices, 2-18
DMA devices, 2-23
EEPROM, 2-28, 5-6, 5-24, 7-20, 8-16, A-18
EEPROM - writes to, 2-28
expansion card cage, 2-2
Interface board, 2-2
interrupts, 2-4, 2-5, 2-28
level 7 interrupts, 2-4

VMEbus Interrupt Mask register, 2-27
M6-Ml bits, 2-27

VMEbus Map (Page) register, 2-24
ACF bit, 2-24
P2-PO bits, 2-24

VMEbus Protection register, 2-25, 6-6
A3-AO bits, 2-26
BI-BO bits, 2-26
CI-CO bits, 2-26
context switch, 2-24

VMEbu8 Spec~Jz'catz'on Manual, 1-12, 2-28
Volume Home Block, A-62
VSPLO - VSPL7 macros, 2-8
VSPLO - VSPL7, macros, A-109
vtocvO macro, A-82

Index-21

Proprietary Information - Do Not Copy

vtohpteO macro, A-82
vtopfnO macro, A-82

wakeup(2K), 4-2, 4-19, 4-25, 5-12, 6-10, 6-14,' A-35, A-50, A-73,
A-75, A-94, A-105, A-125

write errors
impossible to report, 7-2

write(2), 4-21, A-66, A-70

Index-22 Writing MightyFrame Device Drivers

USER'S COMMENT SHEET

Writing MightyFrame Device Drivers, First Edition
09-00619-01 DAC-120

We welcome your comments and suggestions. They help us
improve our manuals. Please give specific page and paragraph
references whenever possible.

Does this manual provide the information you need? Is it
at the right level? What other types of manuals are needed?

Is this manual written clearly? What is unclear?

Is the format of this manual convenient in arrangement, in size?

Is this manual accurate? What is inaccurate?

Name ____________________________ ___ Da te __________ _

Ti tl e ______________________________ _ Phone ______ _

Company Name/Department ______________ __

Address __ __

City _________ _ State __ _ Zip Code ___ _

Thank you. All comments become the property of
Convergent Technologies, Inc.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT #1309 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Convergent Technologies
Attn: Technical Publications
2700 North First Street
PO Box 6685
San Jose, CA 95159-6685

aJaH PIO::l

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

