
PROGRAMMER'S GUIDE
CTIX™ SUPPLEMENT

Copyright ® 1987 by Convergent Technologies, Inc. ,
San Jose, C A . Printed in USA.

First Edition (June 1987) 09-01040-01

All rights reserved. N o part of this document may be reproduced, transmitted,
stored in a retrieval system, or translated into any language without the prior writ-
ten consent of Convergent Technologies, Inc.

Convergent Technologies makes no representations or warranties with respect to
the contents hereof and specifically disclaims any implied warranties of merchanta-
bility or fitness for any particular purpose. Fur ther , Convergent Technologies
reserves the right to revise this publication and to make changes f rom time to t ime
in its content without being obligated to notify any person of such revision or
changes.

Convergent Technologies and N G H N are registered t rademarks of
Convergent Technologies, Inc.

Ar t Designer, Chart Designer, ClusterCard, ClusterNet, ClusterShare,
Convergent, CT-DBMS, C T - M A I L , CT-Net , C T I X , CTOS, D I S T R I X ,

Document Designer, The Operator , AWS, CWS, IWS, S/50, S/120, S^160,
S/220, S/320, S/640, S/1280, Multibus, TeleCluster, Voice/Data Services,

Voice Processor, and X-Bus are t rademarks of Convergent Technologies, Inc.

This software and documentat ion are based in par t on the Fourth Berkeley
Software Distribution under license f rom the Regents of the University of Califor-
nia. Material on vi and -me are copyright 1979, 1980, 1982 Regents of the Univer-
sity of California. Repr in ted by permission.

This manual was p repared on a Convergent Technologies S/320 Computer System
and pr inted on an Imagen 8/300 Laser Printer.

Contents

Preface x ' x

1 The M4 Macro Processor 1-1
Introduction 1-2
Usage 1-2
Defining Macros 1-3
Quoting 1-4
Arguments 1-6
Arithmetic Built-ins 1-7
File Manipulation 1-8
System Command 1-9
Conditionals 1-9
String Manipulation 1-10
Printing 1-11
Summary of Built-ins 1-12
Acknowledgements 1-12
References 1-12

2 BC — An Arbitrary Precision Desk-Calculator
Language 2-1
Introduction 2-2
Simple Computations with Integers 2-2
Bases 2-3
Scaling 2-5
Functions 2-6
Subscripted Variables 2-7
Control Statements 2-8
Some Details 2-10
Three Important Things 2-11
Acknowledgement 2-12

Contents xiii

References 2-12
Appendix 2-13

3 DC — An Interactive Desk Calculator 3-1
Synoptic Description 3-2
Detailed Description 3-4

Internal Representation of Numbers 3-4
The Allocator 3-5
Internal Arithmetic 3-6
Addition and Subtraction 3-6
Multiplication 3-7
Division 3-7
Remainder 3-8
Square Root 3-8
Exponentiation 3-8
Input Conversion and Base 3-9
Output Commands 3-9
Output Format and Base 3-9
Internal Registers 3-10
Stack Commands 3-10
Subroutine Definitions and Calls . . . : 3-10
Internal Registers Programming DC 3-10
Push-down Registers and Arrays 3-11
Miscellaneous Commands 3-11

Design Choices 3-11
References 3-13

4 An Introduction to Display Editing with VI 4-1
1. Getting Started 4-2

1.1 Specifying Terminal Type 4-2
1.2 Editing a File 4-3
1.3 The Editor's Copy: The Buffer 4-4
1.4 Notational Conventions 4-4
1.5 Arrow Keys 4-4
1.6 Special Characters: ESC, CR and DEL 4-5
1.7 Getting Out of the Editor 4-6

2. Moving Around in the File 4-6
2.1 Scrolling and Paging 4-6
2.2 Searching, Goto, and Previous Context 4-7
2.3 Moving Around on the Screen 4-8
2.4 Moving within a Line 4-9
2.5 Summary 4-10

2—4 Programmer's Guide: CTIX Supplement

2.6 View 4-10
3. Making Simple Changes 4-11

3.1 Inserting 4-11
3.2 Making Small Corrections 4-12
3.3 More Corrections: Operators 4-13
3.4 Operating on Lines 4-13
3.5 Undoing 4-14
3.6 Summary 4-14

4. Moving About, Rearranging and Duplicating
Text 4-15

4.1 Low Level Character Motions 4-15
4.2 Higher Level Text Objects 4-16
4.3 Rearranging and Duplicating Text 4-17
4.4 Summary 4-18

5. High Level Commands 4-19
5.1 Writing, Quitting, Editing New Files 4-19
5.2 Escaping to a Shell 4-19
5.3 Marking and Returning 4-20
5.4 Adjusting the Screen 4-20

6. Special Topics 4-21
6.1 Editing on Slow Terminals 4-21
6.2 Options, Set, and Editor Startup Files 4-22
6.3 Recovering Lost Lines 4-24
6.4 Recovering Lost Files 4-25
6.5 Continuous Text Input 4-26
6.6 Features for Editing Programs 4-26
6.7 Filtering Portions of the Buffer 4-27
6.8 C o m m a n d s for Ed i t ing LISP 4-27
6.9 Macros 4-28

7. Word Abbreviations 4-29
7.1 Abbreviations 4-30

8. Nitty-gritty Details 4-30
8.1 Line Representation in the Display 4-30
8.2 Counts 4-31
8.3 More File Manipulation Commands 4-32
8.4 More About Searching for Strings 4-33
8.5 More About Input Mode 4-34
8.6 Upper Case Only Terminals 4-36
8.7 Vi and Ex 4-36
8.8 Open Mode: Vi on Hardcopy Terminals and "glass
tty's" 4-37

Acknowledgements 4-37
Appendix: Character Functions 4-38

Contents xiii

5 Vi Command & Function Reference 5-1
1. Author's Disclaimer 5-1
2. Notation 5-2
3. Basics 5-2

3.1 Bourne Shell 5-3
3.2 The C Shell 5-3

4. Normal Commands 5-4
4.1 Entry and Exit 5-4
4.2 Cursor and Page Motion 5-5
4.3 Searches 5-9
4.4 Text Insertion 5-10
4.5 Text Deletion 5-10
4.6 Text Replacement 5-11
4.7 Moving Text 5-11
4.8 Miscellaneous Commands 5-13
4.9 Special Insert Characters 5-15

5. : Commands 5-16
6. Special Arrangements for Startup 5-17
7. Set Commands 5-18

6 SED — A Non-interactive Text Editor 6-1
Introduction 6-1
1. Overall Operation 6-2

1.1 Command-line Flags 6-3
1.2 Order of Application of Editing Commands 6-3
1.3 Pattern-space 6-3
1.4 Examples 6-4

2. Addresses: Selecting Lines for Editing 6-4
2.1 Line-number Addresses 6-5
2.2 Context Addresses 6-5
2.3 Number of Addresses 6-6

3. Functions 6-7
3.1 Whole-line Oriented Functions 6-7
3.2 Substitute Function 6-10
3.3 Input-output Functions 6-12
3.4 Multiple Input-line Functions 6-14
3.5 Hold and Get Functions 6-14
3.6 Flow-of-control Functions 6-16
3.7 Miscellaneous Functions 6-17

Reference 6-17

2—6 Programmer's Guide: CTIX Supplement

7 NROFF/TROFF User's Manual 7-1
Introduction 7-1

Usage 7-2
References 7-4
Summary of Requests 7-5

Font and Character Size Control 7-5
Page Control 7-5
Text Filling, Adjusting and Centering 7-6
Vertical Spacing 7-6
Line Length and Indenting 7-7
Macros, Strings, Diversions and Position Traps 7-7
Number Registers 7-8
Tabs, Leaders and Fields 7-8
Input and Output Conventions and Character
Translations 7-9
Hyphenation 7-9
Three Part Titles 7-10
Output Line Numbering 7-10
Conditional Acceptance of Input 7-10
Environment Switching 7-11
Insertions from the Standard Input 7-11
Input/Output File Switching 7-11
Miscellaneous 7-11

Notes 7-12
Reference Manual 7-15
1. General Explanation 7-15

1.1 Form of Input 7-15
1.2 Formatter and Device Resolution 7-15
1.3 Numerical Parameter Input 7-16
1.4 Numerical Expressions 7-17
1.5 Notation 7-17

2. Font and Character Size Control 7-18
2.1 Character Set 7-18
2.2 Fonts 7-18
2.3 Character Size 7-19

3. Page Control 7-21
4. Text Filling, Adjusting and Centering 7-23

4.1 Filling and Adjusting 7-23
4.2 Interrupted Text 7-24

5. Vertical Spacing 7-25
5.1 Base-line Spacing 7-25
5.2 Extra Line-space 7-26
5.3 Blocks of Vertical Space 7-26

Contents xiii

6. Line Length and Indenting 7-27
7. Macros, Strings, Diversions and Position
Traps 7-28

7.1 Macros and Strings 7-28
7.2 Copy Mode Input Interpretation 7-29
7.3 Arguments 7-29
7.4 Diversions 7-30
7.5 Traps 7-31

8. Number Registers 7-33
9. Tabs, Leaders and Fields 7-35

9.1 Tabs and Leaders 7-35
9.2 Fields 7-36

10. Input and Output Conventions and Character
Translations 7-37

10.1 Input Character Translations 7-37
10.2 Ligatures 7-37
10.3 Backspacing, Underlining, Overstriking,
Etc 7-38
10.4 Control Characters 7-39
10.5 Output Translation 7-39
10.6 Transparent Throughput 7-40
10.7 Comments and Concealed Newlines 7-40

11. Local Horizontal and Vertical Motions and the Width
Function 7-40

11.1 Local Motions 7-40
11.2 Width Function 7-41
11.3 Mark Horizontal Place 7-42

12. Overstrike, Bracket, Line-Drawing and Zero-Width
Functions 7-42

12.1 Overstriking 7-42
12.2 Zero-width Characters 7-42
12.3 Large Brackets 7-42
12.4 Line Drawing 7-43

13. Hyphenation 7-44
14. Three Part Titles 7-45
15. Output Line Numbering 7-46
16. Conditional Acceptance of Input 7-47
17. Environment Switching 7-49
18. Insertions from the Standard Input 7-49
19. Input/Output File Switching 7-50
20. Miscellaneous 7-51
21. Output and Error Messages 7-52
Tutorial Examples 7-52

2—8 Programmer's Guide: CTIX Supplement

T l . Introduction 7-52
T2. Page Margins 7-53
T3. Paragraphs and Headings 7-55
T4. Multiple Column Output 7-57
T5. Footnote Processing 7-57
T6. The Last Page 7-60

A TROFF Tutorial 8-1
1. Introduction 8-2
2. Point Sizes; Line Spacing 8-4
3. Fonts and Special Characters 8-6
4. Indents and Line Lengths 8-9
5. Tabs 8-10
6. Local Motions: Drawing Lines and Characters 8-11
7. Strings 8-15
8. Introduction to Macros 8-16
9. Titles, Pages and Numbering 8-18
10. Number Registers and Arithmetic 8-21
11. Macros with Arguments 8-23
12. Conditionals 8-26
13. Environments 8-27
14. Diversions 8-28
Acknowledgements 8-29
References 8-30

Appendix A: Laser Printer Character Set 8-31

MM — Memorandum Macros 9-1
1. Introduction 9-1

1.1 Purpose 9-1
1.2 Conventions 9-2
1.3 Overall Structure of a Document 9-2
1.4 Definitions 9-3
1.5 Prerequisites and Further Reading 9-5

1.5.1 Prerequisites 9-5
1.5.2 Further Reading 9-5

2. Invoking the Macros 9-5
2.1 The mm Command 9-5
2.2 The cm or mm H a g 9-7
2.3 Typical Command Lines 9-7
2.4 Parameters that Can Be Set from the Command
Line 9-9
2.5 Omission of cm or mm 9-11

Contents xiii

3. Formatting Concepts 9-12
3.1 Basic Terms 9-12
3.2 Arguments and Double Quotes 9-13
3.3 Unpaddable Spaces 9-13
3.4 Hyphenation 9-14
3.5 Tabs 9-15
3.6 Special Use of the BEL Character 9-15
3.7 Bullets 9-16
3.8 Dashes, Minus Signs, and Hyphens 9-16
3.9 Trademark String 9-17
3.10 Use of Formatter Requests 9-17

4. Paragraphs and Headings 9-17
4.1 Paragraphs 9-18
4.2 Numbered Headings 9-19

4.2.1 Normal Appearance 9-20
4.2.2 Altering Appearance of Headings 9-21

4.2.2.1 Pre-Spacing and Page Ejection 9-21
4.2.2.2 Spacing After Headings 9-22
4.2.2.3 Centered Headings 9-22
4.2.2.4 Bold, Italic, and Underlined
Headings 9-23

4.2.2.4.1 Control by Level 9-23
4.2.2.4.2 Nroff Underlining Style 9-23
4.2.2.4.3 Heading Point Sizes 9-24

4.2.2.5 Marking Styles—Numerals and
Concatenation 9-24

4.3 Unnumbered Headings 9-25
4.4 Headings and the Table of Contents 9-26
4.5 First-Level Headings and Page Numbering
Style 9-26
4.6 User Exit Macros 9-27
4.7 Hints for Large Documents 9-29

5. Lists 9-30
5.1 Basic Approach 9-30
5.2 Sample Nested Lists 9-30
5.3 Basic List Macros 9-32

5.3.1 List Item 9-32
5.3.2 List End 9-33
5.3.3 List Initialization Macros 9-34

5.3.3.1 Automatically-Numbered or
Alphabetized Lists 9-34
5.3.3.2 Bullet List 9-35
5.3.3.3 Dash List 9-35

2—10 Programmer's Guide: CTIX Supplement

5.3.3.4 Marked List 9-35
5.3.3.5 Reference List 9-36
5.3.3.6 Variable-Item List 9-36

5.4 List-Begin Macro and Customized Lists 9-38
6. Memorandum and Released Paper Styles 9-40

6.1 Title 9-41
6.2 Author(s) 9-42
6.3 TM Number(s) 9-43
6.4 Abstract 9-43
6.5 Other Keywords 9-44
6.6 Memorandum Types 9-44
6.7 Date and Format Changes 9-46

6.7.1 Changing the Date 9-46
6.7.2 Alternate First-Page Format 9-46

6.8 Released-Paper Style 9-47
6.9 Order of Invocation of "Beginning"
Macros 9-48
6.10 Example 9-48
6.11 Macros for the End of a Memorandum 9-49

6.11.1 Signature Block 9-49
6.11.2 "Copy to" and Other Notations 9-50
6.11.3 Approval Signature Line 9-51

6.12 Forcing a One-Page Letter 9-52
7. Displays 9-52

7.1 Static Displays 9-53
7.2 Floating Displays 9-54
7.3 Tables 9-56
7.4 Equations 9-58
7.5 Figure, Table, Equation, and Exhibit
Captions 9-59
7.6 List of Figures, Tables, Equations, and
Exhibits 9-60

8. Footnotes 9-60
8.1 Automatic Numbering of Footnotes 9-60
8.2 Delimiting Footnote Text 9-61
8.3 Format of Footnote Text 9-62
8.4 Spacing between Footnote Entries 9-63

9. Page Headers and Footers 9-63
9.1 Default Headers and Footers 9-64
9.2 Page Header 9-64
9.3 Even-Page Header 9-65
9.4 Odd-Page Header 9-65
9.5 Page Footer 9-65

Contents xiii

9.6 Even-Page Footer 9-65
9.7 Odd-Page Footer 9-66
9.8 Footer on the First Page 9-66
9.9 Default Header and Footer with "Section-Page"
Numbering 9-66
9.10 Use of Strings and Registers in Header and Footer
Macros 9-66
9.11 Header and Footer Example 9-67
9.12 Generalized Top-of-Page Processing 9-67
9.13 Generalized Bottom-of-Page Processing 9-69
9.14 Top and Bottom Margins 9-69
9.15 Proprietary Markings 9-70
9.16 Private Documents 9-70

10. Table of Contents and Cover Sheet 9-71
10.1 Table of Contents 9-71
10.2 Cover Sheet 9-74

11. References 9-74
11.1 Automatic Numbering of References 9-74
11.2 Delimiting Reference Text 9-75
11.3 Subsequent References 9-75
11.4 Reference Page 9-75

12. Miscellaneous Features 9-76
12.1 Bold, Italic, and Roman Fonts 9-76
12.2 Justification of Right Margin 9-78
12.3 SCCS Release Identification 9-78
12.4 Two-Column Output 9-79
12.5 Column Headings for Two-Column
Output 9-80
12.6 Vertical Spacing 9-80
12.7 Skipping Pages 9-81
12.8 Forcing an Odd Page 9-81
12.9 Setting the Point Size and Vertical
Spacing 9-82
12.10 Producing Accents 9-83
12.11 Inserting Text Interactively 9-83

13. Errors and Debugging 9-84
13.1 Error Terminations 9-84
13.2 Disappearance of Output 9-85

14. Extending and Modifying the Macros 9-86
14.1 Naming Conventions 9-86

14.1.1 Names Used by Formatters 9-86
14.1.2 Names Used by MM 9-86

2—12 Programmer's Guide: CTIX Supplement

14.1.3 Names Used by CW, EQN/NEQN, and
TBL 9-87
14.1.4 User-Definable Names 9-87

14.2 Sample Extensions 9-87
14.2.1 Appendix Headings 9-87
14.2.2 Hanging Indent with Tabs 9-88

15. Conclusion 9-90
Acknowledgements 9-91
Appendix A: User-defined List Structures 9-92
Appendix B: Sample Footnotes 9-95
Appendix C: Sample Letter 9-97
Appendix D: Error Messages 9-100

I. MM Error Messages 9-100
II. Formatter Error Messages 9-103

Appendix E: Summary of Macros, Strings, and Number
Registers 9-105

I. Macros 9-105
II. Strings 9-110
III. Number Registers 9-111

10 Using the ms Macros with Troff and Nroff 10-1
Introduction 10-1
Text 10-2
Beginning 10-2
Cover Sheets and First Pages 10-3
Page Headings 10-3
Multi-column Formats 10-4
Headings 10-4
Indented Paragraphs 10-6
Emphasis 10-8
Footnotes 10-9
Displays and Tables 10-9
Boxing Words or Lines 10-10
Keeping Blocks Together 10-10
Nroff/Troff Commands 10-11
Date 10-11
Signature Line 10-11
Registers 10-12
Accents 10-12
Use 10-13
References and Further Study 10-13
Acknowledgment 10-14
References 10-14

Contents xiii

Appendix A: List of Commands 10-15
A Guide to Preparing Documents with ms 10-17

Commands for a TM 10-17
A Released Paper with Mathematics 10-19
An Internal Memorandum 10-21
Headings 10-22
A Simple List 10-22
Displays 10-23
Footnotes 10-23
Multiple Indents 10-24
Keeps 10-25
Double Column 10-25
Equations 10-26
Some Registers You Can Change 10-27
Tables 10-28
Usage 10-29

11 Writing Papers with NROFF Using me 11-1
1. Basics of Text Processing 11-2
2. Basic Requests 11-3

2.1 Paragraphs 11-3
2.2 Headers and Footers 11-4
2.3 Double Spacing 11-5
2.4 Page Layout U-5
2.5 Underlining 11-7

3. Displays H-7
3.1 Major Quotes 11-7
3.2 Lists H-8
3.3 Keeps 11-8
3.4 Fancier Displays 11-9

4. Annotations 11-11
4.1 Footnotes 11-11
4.2 Delayed Text 11-12
4.3 Indexes 11-13

5. Fancier Features 11-14
5.1 More Paragraphs 11-14
5.2 Section Headings 11-17
5.3 Parts of the Basic Paper 11-19

2—14 Programmer's Guide: CTIX Supplement

12 Typesetting Mathematics — User's Guide (Second
Edition) 12-1
1. Introduction 12-2
2. Displayed Equations 12-2
3. Input Spaces 12-3
4. Output Spaces 12-4
5. Symbols, Special Names, Greek 12-4
6. Spaces, Again 12-5
7. Subscripts and Superscripts 12-5
8. Braces for Grouping 12-6
9. Fractions 12-7
10. Square Roots 12-8
11. Summation, Integral, Etc 12-9
12. Size and Font Changes 12-9
13. Diacritical Marks 12-11
14. Quoted Text 12-11
15. Lining U p Equations 12-12
16. Big Brackets, Etc 12-13
17. Piles 12-14
18. Matrices 12-15
19. Shorthand for In-line Equations 12-16
20. Definitions 12-17
21. Local Motions 12-18
22. A Large Example 12-18
23. Keywords, Precedences, Etc 12-19
24. Troubleshooting 12-21
25. Use on U N I X 12-22
26. Acknowledgments 12-23
References 12-23

13 Tbl — A Program to Format Tables 13-1
Introduction 13-2
Input Commands 13-3
Usage 13-11
Examples 13-13
Acknowledgments 13-24
References 13-25

14 S/1280 Inter-CPU Communication 14-1
Points of View 14-2

The Client 14-2
The Server 14-4

Contents xiii

Exchanges 14-5
A Note on Source Code 14-5
The Basic Client 14-5

The Request Block 14-5
Example 14-7

Call the Service 14-8
Example 14-9

The Modified Request Block 14-9
The General Client 14-9

The Request Side 14-10
Example 14-12

The Response Side 14-12
Example 14-14

Mixing General and Basic Roles 14-15
The Server 14-15

Choosing the Request Code 14-15
Setting Up the Service 14-16
The Request Side 14-16

Example 14-17
The Response Side 14-18

Example 14-19
Mixing Roles 14-19

Example 14-20
Simplified Access to a Request Queue 14-20

Message Queue Access Summary 14-21
Releasing Unwanted Exchanges 14-22
Setting Final Action 14-23
Summary of System Calls 14-23
A Note on Communicating with CTOS 14-26
CTIX ICC for the CTOS Programmer 14-26

System Primitives 14-26
Exchanges and Messages 14-27

15 CTIX System Assembler User's Guide 15-1
Introduction 15-1
Organization 15-2
Use of the Assembler 15-2
General Syntax Rules 15-3

Assembler Code Elements 15-3
Identifiers 15-3
Registers 15-3
Constants 15-4
Comments 15-5

2—16 Programmer's Guide: CTIX Supplement

Format of Assembly Language Line 15-5
Program Organization 15-6

Sections 15-7
Location Counters and Labels 15-8

Types 15-8
Expressions 15-9
Pseudo-Operations 15-10

Data Initialization Operations 15-10
Symbol Definition Operations 15-12
Location Counter Control and Other Section
Operations 15-13
Symbolic Debugging Operations 15-15

file and In 15-15
Symbol Attribute Operations 15-16

Switch Table Operation 15-18
Span-Dependent Optimization 15-19
Address Mode Syntax 15-20
Machine Instructions 15-24
Assembler Differences 15-43

Comparison Instructions 15-43
Overloading of Opcodes 15-43

I Index 1-1

Contents x i i i

Preface

The Programmer's Guide: CTIX Supplement discusses in detail various
tools provided with the CTIX* operating system. This manual should
be used in conjunction with the CTIX Operating System Manual, which
is a more general and comprehensive reference on the CTIX operat-
ing system. The Programmer's Guide: UNIX System V should be
used as a reference on tools such as awk, make, the C programming
language, Common Object File Format, and so forth.

The tools described in this manual address four areas:

• Support Tools: the m4 macro processor; and the calculator
programs be and dc.

• Text Editing: display editing with v;'; and sed, a non-
interactive text editor.

• Text Formatting: an nroffltroff user's guide and tutorial;
preparing documents with the macro packages -me, -mm and
-me\ typesetting mathematics with eqn\ and tbl, a program to
format tables.

• CTIX Programming: Convergent Technologies S/1280 Inter-
CPU communication facility; and the CTIX system assembler
user's guide.

The first three parts of this manual (Chapters 1 to 13) consist of stan-
dard documentation released by AT&T that describes the UNIX
Operating System or documentation originating from the University

* A t rademark of Convergent Technologies, Inc. The CTLX operat ing system is
derived f rom UNIX System V by Convergent Technologies under license f rom
AT&T. UNIX is a t rademark of AT&T Bell Laboratories .

Preface xix

of California, Berkeley. Due to the "classical" nature of these docu-
ments, their contents have not been altered with the exception of
minor formatting changes needed to conform to CTIX manual style.
In order to keep as true to the original documents as possible, the
conventions vary from chapter to chapter; in addition, because this
manual is published in a reduced format, point sizes mentioned in
articles are not true to scale. Many of the articles refer to other
operating systems, such as GCOS, and other hardware, such as PDP-
11. In all cases, however, the documentation is compatible with the
CTIX operating system.

2—20 Programmer's Guide: CTIX Supplement

1
The M4 Macro Processor

Abstract

M4 is a macro processor available on U N I X and GCOS. Its primary
use has been as a front end for Ratfor for those cases where parame-
terless macros are not adequately powerful. It has also been used for
languages as disparate as C and Cobol. M4 is particularly suited for
functional languages like Fortran, PL/I and C since macros are speci-
fied in a functional notation.

M4 provides features seldom found even in much larger macro pro-
cessors, including

• arguments

• condition testing

• arithmetic capabilities

• string and substring functions

• file manipulation

This paper is a user's manual for M4.

Source: Brian W. Kernighan and Dennis M. Ritchie, The M4 Macro Processor
(Murray Hill, N .J . : Bell Laborator ies , 1977).

The M4 Macro Processor 1—1

Introduction

A macro processor is a useful way to enhance a programming
language, to make it more palatable or more readable, or to tailor it
to a particular application. The #define statement in C and the
analogous define in Ratfor are examples of the basic facility provided
by any macro processor—replacement of text by other text.

The M4 macro processor is an extension of a macro processor called
M3 which was written by D. M. Ritchie for the AP-3 minicomputer;
M3 was in turn based on a macro processor implemented for [1],
Readers unfamiliar with the basic ideas of macro processing may wish
to read some of the discussion there.

M4 is a suitable front end for Ratfor and C, and has also been used
successfully with Cobol. Besides the straightforward replacement of
one string of text by another, it provides macros with arguments, con-
ditional macro expansion, arithmetic, file manipulation, and some
specialized string processing functions.

The basic operation of M4 is to copy its input to its output. As the
input is read, however, each alphanumeric "token" (that is, string of
letters and digits) is checked. If it is the name of a macro, then the
name of the macro is replaced by its defining text, and the resulting
string is pushed back onto the input to be rescanned. Macros may be
called with arguments, in which case the arguments are collected and
substituted into the right places in the defining text before it is res-
canned.

M4 provides a collection of about twenty built-in macros which per-
form various useful operations; in addition, the user can define new
macros. Built-ins and user-defined macros work exactly the same
way, except that some of the built-in macros have side effects on the
state of the process.

Usage

On UNIX, use

m4 [files]

Each argument file is processed in order; if there are no arguments,
or if an argument is ' - ' , the standard input is read at that point. The
processed text is written on the standard output, which may be

2—2 Programmer's Guide: CTIX Supplement

captured for subsequent processing with

m4 [files] >outputfile

On GCOS, usage is identical, but the program is called ./m4 .

Defining Macros

The primary built-in function of M4 is define, which is used to define
new macros. The input

define(name, stuff)

causes the string name to be defined as stuff. All subsequent
occurrences of name will be replaced by stuff, name must be
alphanumeric and must begin with a letter (the underscore _ counts as
a letter), stuff is any text that contains balanced parentheses; it may
stretch over multiple lines.

Thus, as a typical example,

define(N, 100)

if (i > N)

defines N to be 100, and uses this "symbolic constant" in a later if
statement.

The left parenthesis must immediately follow the word define, to sig-
nal that define has arguments. If a macro or built-in name is not fol-
lowed immediately by '(' , it is assumed to have no arguments. This is
the situation for N above; it is actually a macro with no arguments,
and thus when it is used there need be no (...) following it.

You should also notice that a macro name is only recognized as such
if it appears surrounded by non-alphanumerics. For example, in

define(N, 100)

if (NNN > 100)
the variable NNN is absolutely unrelated to the defined macro N,
even though it contains a lot of N's.

Things may be defined in terms of other things. For example,

The M4 Macro Processor 1—3

define(N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or, to say it another way, is M
defined as N or as 100? In M4, the latter is true—M is 100, so even
if N subsequently changes, M does not.

This behavior arises because M4 expands macro names into their
defining text as soon as it possibly can. Here, that means that when
the string N is seen as the arguments of define are being collected, it
is immediately replaced by 100; it's just as if you had said

define(M, 100)

in the first place.

If this isn't what you really want, there are two ways out of it. The
first, which is specific to this situation, is to interchange the order of
the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so when you ask for M later,
you'll always get the value of N at that time (because the M will be
replaced by N which will be replaced by 100).

Quoting

The more general solution is to delay the expansion of the arguments
of define by quoting them. Any text surrounded by the single quotes

and ' is not expanded immediately, but has the quotes stripped off.
If you say

define(N, 100)
define(M, 'N')

the quotes around the N are stripped off as the argument is being col-
lected, but they have served their purpose, and M is defined as the
string N, not 100. The general rule is that M4 always strips off one
level of single quotes whenever it evaluates something. This is true
even outside of macros. If you want the word define to appear in the
output, you have to quote it in the input, as in

'define' = 1;

2—4 Programmer's Guide: CTIX Supplement

As another instance of the same thing, which is a bit more surprising,
consider redefining N:

define(N, 100)

define(N, 200)
Perhaps regrettably, the N in the second definition is evaluated as
soon as it's seen; that is, it is replaced by 100, so it's as if you had
written

define(100, 200)

This statement is ignored by M4, since you can only define things
that look like names, but it obviously doesn't have the effect you
wanted. To really redefine N, you must delay the evaluation by quot-
ing:

define(N, 100)

define('N', 200)

In M4, it is often wise to quote the first argument of a macro.

If " and * are not convenient for some reason, the quote characters
can be changed with the built-in changequote:

changequote([,])

makes the new quote characters the left and right brackets. You can
restore the original characters with just

changequote

There are two additional built-ins related to define, undefine
removes the definition of some macro or built-in:

undefine('N')

removes the definition of N. (Why are the quotes absolutely neces-
sary?) Built-ins can be removed with undefine, as in

undefine('define')

but once you remove one, you can never get it back.

The built-in ifdef provides a way to determine if a macro is currently
defined. In particular, M4 has pre-defined the names unix and gcos
on the corresponding systems, so you can tell which one you're using:

The M4 Macro Processor 1—5

ifdef('unix', 'define(wordsize,16)')
ifdef('gcos', 'define(wordsize,36)')

makes a definition appropriate for the particular machine. Don' t for-
get the quotes!

ifdef actually permits three arguments; if the name is undefined, the
value of ifdef is then the third argument, as in

i f d e f (' u n i x \ on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest form of macro processing—
replacing one string by another (fixed) string. User-defined macros
may also have arguments, so different invocations can have different
results. Within the replacement text for a macro (the second argu-
ment of its define) any occurrence of $n will be replaced by the nth
argument when the macro is actually used. Thus, the macro bump,
defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by 1:

bump(x)

is

X = X + 1

A macro can have as many arguments as you want, but only the first
nine are accessible, through $1 to $9. (The macro name itself is $0,
although that is less commonly used.) Arguments that are not sup-
plied are replaced by null strings, so we can define a macro cat which
simply concatenates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

xyz

2—6 Programmer's Guide: CTIX Supplement

$4 through $9 are null, since no corresponding arguments were pro-
vided.

Leading unquoted blanks, tabs, or newlines that occur during argu-
ment collection are discarded. All other white space is retained.
Thus

define(a, b c)

defines a to be b c.

Arguments are separated by commas, but parentheses are counted
properly, so a comma "protected" by parentheses does not terminate
an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is literally (b,c). And of
course a bare comma or parenthesis can be inserted by quoting it.

Arithmetic Built-ins

M4 provides two built-in functions for doing arithmetic on integers
(only). The simplest is incr, which increments its numeric argument
by 1. Thus to handle the common programming situation where you
want a variable to be defined as "one more than N" , write

define(N, 100)
define(Nl, 'incr(N)')

Then N1 is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in called eval,
which is capable of arbitrary arithmetic on integers. It provides the
operators (in decreasing order of precedence)

unary + and -
** or " (exponentiation)
* / %(modulus) + —

— ! = < < = > >=
! (not)
& or && (logical and)

or II (logical or)

Parentheses may be used to group operations where needed. All the

The M4 Macro Processor 1—7

operands of an expression given to eval must ultimately be numeric.
The numeric value of a true relation (like 1>0) is 1, and false is 0.
The precision in eval is 32 bits on UNIX and 36 bits on GCOS.

As a simple example, suppose we want M to be 2**N+1. Then

define(N, 3)
define(M, 'evaI(2**N+l)')

As a matter of principle, it is advisable to quote the defining text for
a macro unless it is very simple indeed (say just a number); it usually
gives the result you want, and is a good habit to get into.

File Manipulation

You can include a new file in the input at any time by the built-in
function include:

include(filename)

inserts the contents of filename in place of the include command.
The contents of the file is often a set of definitions. The value of
include (that is, its replacement text) is the contents of the file; this
can be captured in definitions, etc.

It is a fatal error if the file named in include cannot be accessed. To
get some control over this situation, the alternate form sinclude can
be used; sinclude ("silent include") says nothing and continues if it
can't access the file.

It is also possible to divert the output of M4 to temporary files during
processing, and output the collected material upon command. M4
maintains nine of these diversions, numbered 1 through 9. If you say

divert(n)

all subsequent output is put onto the end of a temporary file referred
to as n. Diverting to this file is stopped by another divert command;
in particular, divert or divert(O) resumes the normal output process.

Diverted text is normally output all at once at the end of processing,
with the diversions output in numeric order. It is possible, however,
to bring back diversions at any time, that is, to append them to the
current diversion.

undivert

brings back all diversions in numeric order, and undivert with

2—8 Programmer's Guide: CTIX Supplement

arguments brings back the selected diversions in the order given. The
act of undiverting discards the diverted stuff, as does diverting into a
diversion whose number is not between 0 and 9 inclusive.

The value of undivert is not the diverted stuff. Furthermore, the
diverted material is not rescanned for macros.

The built-in divnum returns the number of the currently active diver-
sion. This is zero during normal processing.

System Command

You can run any program in the local operating system with the
syscmd built-in. For example,

syscmd(date)

on UNIX runs the date command. Normally syscmd would be used
to create a file for a subsequent include.

To facilitate making unique file names, the built-in maketemp is pro-
vided, with specifications identical to the system function mktemp: a
string of XXXXX in the argument is replaced by the process id of the
current process.

Conditionals

There is a built-in called ifelse which enables you to perform arbitrary
conditional testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these are identical, ifelse returns
the string c; otherwise it returns d. Thus we might define a macro
called compare which compares two strings and returns "yes" or
"no" if they are the same or different.

define(compare, 'ifelse($l, $2, yes, no)')

Note the quotes, which prevent too-early evaluation of ifelse.

If the fourth argument is missing, it is treated as empty.

ifelse can actually have any number of arguments, and thus provides a
limited form of multi-way decision capability. In the input

The M4 Macro Processor 1—9

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is c. Otherwise, if d is
the same as e, the result is f. Otherwise the result is g. If the final
argument is omitted, the result is null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

String Manipulation

The built-in len returns the length of the string that makes up its
argument. Thus

len(abcdef)

is 6, and Ien((a,b)) is 5.

The built-in substr can be used to
substr(s, i, n) returns the substring of
(origin zero), and is n characters long,
string is returned, so

substr('now is the time', 1)

is

ow is the time

If i or n are out of range, various sensible things happen.

index(sl, s2) returns the index (position) in si where the string s2
occurs, or -1 if it doesn't occur. As with substr, the origin for
strings is 0.

The built-in translit performs character transliteration.

translit(s, f, t)

modifies s by replacing any character found in f by the corresponding
character of t. That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter than f,
characters which don't have an entry in t are deleted; as a limiting
case, if t is not present at all, characters from f are deleted from s.

produce substrings of strings,
s that starts at the ith position
If n is omitted, the rest of the

2 — 1 0 Programmer's Guide: CTIX Supplement

So

translit(s, aeiou)

deletes vowels from s.

There is also a built-in called dnl which deletes all characters that fol-
low it up to and including the next newline; it is useful mainly for
throwing away empty lines that otherwise tend to clutter up M4 out-
put. For example, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part of the definition, so it
is copied into the output, where it may not be wanted. If you add
dnl to each of these lines, the newlines will disappear.

Another way to achieve this, due to J. E. Weythman, is

divert(-l)
define(...)

divert

Printing

The built-in errprint writes its arguments out on the standard error
file. Thus you can say

errprint('fatal error')

dumpdef is a debugging aid which dumps the current definitions of
defined terms. If there are no arguments, you get everything; other-
wise you get the ones you name as arguments. Don't forget to quote
the names!

The M4 Macro Processor 1—11

Summary of Built-ins

Each entry is preceded by the page number where it is described.

5 changequote(L, R)
3 define(name, replacement)
8 divert(number)
9 divnum

11 dnl
11 dumpdef('name', 'name', ...)
11 errprint(s, s, ...)
7 eval(numeric expression)
5 ifdef('name', this if true, this if false)
9 ifelse(a, b, c, d)
8 include(file)
7 incr(number)

10 index(sl, s2)
10 len(string)
9 maketemp(.. .XXXXX.. .)
8 sinclude(file)

10 substr(string, position, number)
9 syscmd(s)

10 translit(str, from, to)
5 undefine('name')
8 undivert(number,number,...)

Acknowledgements

We are indebted to Rick Becker, John Chambers, Doug Mcllroy,
and especially Jim Weythman, whose pioneering use of M4 has led to
several valuable improvements. We are also deeply grateful to
Weythman for several substantial contributions to the code.

References

[1] B. W. Kernighan and P. J. Plauger, Software Tools, Addison-
Wesley, Inc., 1976.

2—12 Programmer's Guide: CTIX Supplement

2
BC — An Arbitrary Precision

Desk-Calculator Language

Abstract

BC is a language and a compiler for doing arbitrary precision arith-
metic on the PDP-11 under the UNIX time-sharing system. The output
of the compiler is interpreted and executed by a collection of routines
which can input, output, and do arithmetic on indefinitely large
integers and on scaled fixed-point numbers.

These routines are themselves based on a dynamic storage allocator.
Overflow does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-
mode operation. Functions can be defined and saved for later execu-
tion.

Two five hundred-digit numbers can be multiplied to give a thousand
digit result in about ten seconds.

A small collection of library functions is also available, including sin,
cos, arctan, log, exponential, and Bessel functions of integer order.

Some of the uses of this compiler are

• to do computation with large integers,

• to do computation accurate to many decimal places,

• conversion of numbers from one base to another base.

Source: Lorinda Cherry, Rober t Morris, BC — An Arbitrary Precision Desk-
Calculator Language (Murray Hill, N .J . : Bell Laboratories , 1978).

BC — An Arbitrary Precision Desk-Calculator Language 2—1

Introduction

BC is a language and a compiler for doing arbitrary precision arith-
metic on the UNIX time-sharing system [1], The compiler was written
to make conveniently available a collection of routines (called DC [5])
which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete pro-
gramming language. It is a minimal language facility.

There is a scaling provision that permits the use of decimal point
notation. Provision is made for input and output in bases other than
decimal. Numbers can be converted from decimal to octal by simply
setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends
on the amount of storage available on the machine. Manipulation of
numbers with many hundreds of digits is possible even on the smallest
versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially
with the C language [2], Those who are familiar with C will find few
surprises in this language.

Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line
by itself. For instance, if you type in the line:

142857 + 285714

the program responds immediately with the line

428571

The operators - , *, /, %, and ~ can also be used; they indicate sub-
traction, multiplication, division, remaindering, and exponentiation,
respectively. Division of integers produces an integer result truncated
toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indi-
cate that it is to be negated (the "unary" minus sign). The expres-
sion

7+-3

is interpreted to mean that - 3 is to be added to 7.

2—2 Programmer's Guide: CTIX Supplement

More complex expressions with several operators and with parentheses
are interpreted just as in Fortran, with ~ having the greatest binding
power, then * and % and /, and finally + and - . Contents of
parentheses are evaluated before material outside the parentheses.
Exponentiations are performed from right to left and the other opera-
tors from left to right. The two expressions

a~b~c and a~(b~c)

are equivalent, as are the two expressions

a*b*c and (a*b)*c

BC shares with Fortran and C the undesirable convention that

a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter
names. The value of an expression can be assigned to a register in
the usual way. The statement

x = x + 3

has the effect of increasing by three the value of the contents of the
register named x. When, as in this case, the outermost operator is an
= , the assignment is performed but the result is not printed. Only 26
of these named storage registers are available.

There is a built-in square root function whose result is truncated to an
integer (but see scaling below). The lines

x = sqrt(191)
x

produce the printed result

13

Bases

There are special internal quantities, called "ibase" and "obase".
The contents of "ibase", initially set to 10, determines the base used
for interpreting numbers read in. For example, the lines

ibase = 8
11

BC — An Arbitrary Precision Desk-Calculator Language 2—3

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware,
however of trying to change the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have
no effect. For those who deal in hexadecimal notation, the characters
A - F are permitted in numbers (no matter what base is in effect) and
are interpreted as digits having values 10-15 respectively. The state-
ment

ibase = A

will change you back to decimal input base no matter what the
current input base is. Negative and large positive input bases are per-
mitted but useless. No mechanism has been provided for the input of
arbitrary numbers in bases less than 1 and greater than 16.

The contents of "obase", initially set to 10, are used as the base for
output numbers. The lines

obase = 16
1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very
large output bases are permitted, and they are sometimes useful. For
example, large numbers can be output in groups of five digits by set-
ting "obase" to 100000. Strange (i.e. 1, 0, or negative) output bases
are handled appropriately.

Very large numbers are split across lines with 70 characters per line.
Lines which are continued end with \ . Decimal output conversion is
practically instantaneous, but output of very large numbers (i.e.,
more than 100 digits) with other bases is rather slow. Non-decimal
output conversion of a one hundred digit number takes about three
seconds.

It is best to remember that "ibase" and "obase" have no effect what-
ever on the course of internal computation or on the evaluation of
expressions, but only affect input and output conversion, respectively.

2—4 Programmer's Guide: CTIX Supplement

Scaling

A third special internal quantity called "scale" is used to determine
the scale of calculated quantities. Numbers may have up to 99
decimal digits after the decimal point. This fractional part is retained
in further computations. We refer to the number of digits after the
decimal point of a number as its scale.

When two scaled numbers are combined by means of one of the
arithmetic operations, the result has a scale determined by the follow-
ing rules. For addition and subtraction, the scale of the result is the
larger of the scales of the two operands. In this case, there is never
any truncation of the result. For multiplications, the scale of the
result is never less than the maximum of the two scales of the
operands, never more than the sum of the scales of the operands and,
subject to those two restrictions, the scale of the result is set equal to
the contents of the internal quantity "scale". The scale of a quotient
is the contents of the internal quantity "scale". The scale of a
remainder is the sum of the scales of the quotient and the divisor.
The result of an exponentiation is scaled as if the implied multiplica-
tions were performed. An exponent must be an integer. The scale of
a square root is set to the maximum of the scale of the argument and
the contents of "scale".

All of the internal operations are actually carried out in terms of
integers, with digits being discarded when necessary. In every case
where digits are discarded, truncation and not rounding is performed.

The contents of "scale" must be no greater than 99 and no less than
0. It is initially set to 0. In case you need more than 99 fraction
digits, you may arrange your own scaling.

The internal quantities "scale", "ibase", and "obase" can be used in
expressions just like other variables. The line

scale = scale + 1

increases the value of "scale" by one, and the line

scale

causes the current value of "scale" to be printed.

The value of "scale" retains its meaning as a number of decimal
digits to be retained in internal computation even when "ibase" or
"obase" are not equal to 10. The internal computations (which are

BC — An Arbitrary Precision Desk-Calculator Language 2—5

still conducted in decimal, regardless of the bases) are performed to
the specified number of decimal digits, never hexadecimal or octal or
any o'ther kind of digits.

Functions

The name of a function is a single lower-case letter. Function names
are permitted to collide with simple variable names. Twenty-six dif-
ferent defined functions are permitted in addition to the twenty-six
variable names. The line

define a(x)-C

begins the definition of a function with one argument. This line must
be followed by one or more statements, which make up the body of
the function, ending with a right brace >. Return of control f rom a
function occurs when a return statement is executed or when the end
of the function is reached. The return statement can take either of
the two forms

return
return(x)

In the first case, the value of the function is 0, and in the second, the
value of the expression in parentheses.

Variables used in the function can be declared as automatic by a
statement of the form

auto x,y,z

There can be only one "au to" statement in a function and it must be
the first statement in the definition. These automatic variables are
allocated space and initialized to zero on entry to the function and
thrown away on return. The values of any variables with the same
names outside the function are not disturbed. Functions may be
called recursively and the automatic variables at each level of call are
protected. The parameters named in a function definition are treated
in the same way as the automatic variables of that function with the
single exception that they are given a value on entry to the function.
An example of a function definition is

2—6 Programmer's Guide: CTIX Supplement

define a(x,y)-C
auto z
z - x*y
return(z)

>
The value of this function, when called, will be the product of its two
arguments.

A function is called by the appearance of its name followed by a
string of arguments enclosed in parentheses and separated by com-
mas. The result is unpredictable if the wrong number of arguments is
used.

Functions with no arguments are defined and called using parentheses
with nothing between them: b().

If the function a above has been defined, then the line

a(7,3.14)

would cause the result 21.98 to be printed and the line

x = a(a(3,4),5)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in
brackets is called a subscripted variable (an array element). The vari-
able name is called the array name and the expression in brackets is
called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple
variables and function names. Any fractional part of a subscript is
discarded before use. Subscripts must be greater than or equal to
zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function
calls, and in return statements.

An array name may be used as an argument to a function, or may be
declared as automatic in a function definition by the use of empty
brackets:

BC — An Arbitrary Precision Desk-Calculator Language 2—7

f(a[])
define f(a[])
auto a []

When an array name is so used, the whole contents of the array are
copied for the use of the function, and thrown away on exit from the
function. Array names which refer to whole arrays cannot be used in
any other contexts.

Control Statements

The " i f " , the "while", and the " fo r " statements may be used to alter
the flow within programs or to cause iteration. The range of each of
them is a statement or a compound statement consisting of a collec-
tion of statements enclosed in braces. They are written in the follow-
ing way

if(relation) statement
while(relation) statement
for(expressionl; relation; expression2) statement

or

if(relation) {statements}
while(relation) {statements}
for(expressionl; relation; expression2) {statements}

A relation in one of the control statements is an expression of the
form

x>y

where two expressions are related by one of the six relational opera-
tors <, >, <=, >=, ==, or !=. The relation == stands for "equal to"
and != stands for "not equal to" . The meaning of the remaining
relational operators is clear.

CAUTION

BEWARE of using = instead of == in a relational. Unfor-
tunately, both of them are legal, so you will not get a diagnos-
tic message, but = really will not do a comparison.

2—8 Programmer's Guide: CTIX Supplement

The " i f" statement causes execution of its range if and only if the
relation is true. Then control passes to the next statement in
sequence.

The "while" statement causes execution of its range repeatedly as
long as the relation is true. The relation is tested before each execu-
tion of its range and if the relation is false, control passes to the next
statement beyond the range of the while.

The " for" statement begins by executing "expressionl". Then the
relation is tested and, if true, the statements in the range of the " for"
are executed. Then "expression2" is executed. The relation is
tested, and so on. The typical use of the " for" statement is for a
controlled iteration, as in the statement

for(i=l; i<=10; i=i+l) i

which will print the integers from 1 to 10. Here are some examples
of the use of the control statements.

define f(n)-C
auto i, x
x—1
for(i=l; i<=n; i=i+l) x=x*i
return(x) >

The line

f(a)

will print a factorial if a is a positive integer. Here is the definition
of a function which will compute values of the binomial coefficient (m
and n are assumed to be positive integers).

define b(n,m)-C
auto x, j
x=l
for(j=l; j<=m; j=j+l) x=x*(n-j+l)/j
return(x)
>

The following function computes values of the exponential function
by summing the appropriate series without regard for possible trunca-
tion errors:

BC — An Arbitrary Precision Desk-Calculator Language 2—9

scale = 20
define e(x){

auto a, b, c, d, n
a = 1
b = 1
c = 1
d = 0
n = 1
while(l==l){

a = a*x
b = b*n
c = c + a/b
n = n + 1
if(c==d) return(c)
d = c

>
>

Some Details

There are some language features that every user should know about
even if he will not use them.

Normally statements are typed one to a line. It is also permissible to
type several statements on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it
can be used anywhere that an expression can. For example, the line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting
value.

Here is an example of a use of the value of an assignment statement
even when it is not parenthesized.

x = a[i=i+l]

causes a value to be assigned to x and also increments i before it is
used as a subscript.

The following constructs work in BC in exactly the same manner as
they do in the C language. Consult the appendix or the C manuals
[2] for their exact workings.

2—10 Programmer ' s Guide: CTIX Supplement

x =+ y
x = - y
x =* y
x =/ y
x - % y
x =" y

x=y=z is the same as x=(y=z)
x = x+y
x = x-y

x+ +
X
+ + X

—x

x = x*y
x = x/y
x = x%y
x = x~y
(x = x + l) - l
(x—X—1)+1
X = x+1
X = x-1

Even if you don' t intend to use the constructs, if you type one inad-
vertently, something correct but unexpected may happen.

CAUTION

WARNING! In some of these constructions, spaces are signifi-
cant. There is a real difference between x = - y and x= - y .
The first replaces x by x-y and the second by - y .

Three Important Things

1. To exit a BC program, type "qui t" .

2. There is a comment convention identical to that of C and of
PL/I. Comments begin with '/*' and end with '*/'.

3. There is a library of math functions which may be obtained by
typing at command level

This command will load a set of library functions which, at the
time of writing, consists of sine (named 's '), cosine ('c '),
arctangent ('a ') , natural logarithm (T) , exponential ('e ') and
Bessel functions of integer order (' j(n,x) ') . Doubtless more
functions will be added in time. The library sets the scale to
20. You can reset it to something else if you like. The design
of these mathematical library routines is discussed elsewhere

BC — An Arbitrary Precision Desk-Calculator Language 2—11

be -I

[3],

If you type

be file ...

BC will read and execute the named file or files before accepting
commands from the keyboard. In this way, you may load your favor-
ite programs and function definitions.

Acknowledgement

The compiler is written in YACC [4]; its original version was written
by S. C. Johnson.

References

[1] K. Thompson and D. M. Ritchie, UNIX Programmer's Manual,
Bell Laboratories, 1978.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming
Language, Prentice-Hall, 1978.

[3] R . Morr i s , A Library of Reference Standard Mathematical Sub-
routines, Bell Laboratories internal memorandum, 1975.

[4] S. C. Johnson, YACC — Yet Another Compiler-Compiler. Bell
Laboratories Computing Science Technical Report #32, 1978.

[5] R. Morris and L. L. Cherry, DC — An Interactive Desk Calcu-
lator.

2—12 Programmer's Guide: CTIX Supplement

Appendix

Notation

In the following pages syntactic categories are in italics; literals are in
bold; material in brackets [] is optional.

Tokens

Tokens consist of keywords, identifiers, constants, operators, and
separators. Token separators may be blanks, tabs or comments.
Newline characters or semicolons separate statements.

Comments

Comments are introduced by the characters /* and terminated by */.

Identifiers

There are three kinds of identifiers—ordinary identifiers, array iden-
tifiers and function identifiers. All three types consist of single
lower-case letters. Array identifiers are followed by square brackets,
possibly enclosing an expression describing a subscript. Arrays are
singly dimensioned and may contain up to 2048 elements. Indexing
begins at zero so an array may be indexed from 0 to 2047. Subscripts
are truncated to integers. Function identifiers are followed by
parentheses, possibly enclosing arguments. The three types of identif-
iers do not conflict; a program can have a variable named x, an array
named x and a function named x, all of which are separate and dis-
tinct.

BC — An Arbitrary Precision Desk-Calculator Language 2—13

Keywords

The following are reserved keywords:

ibase if
obase break
scale define
sqrt auto
length return
while quit
for

Constants

Constants consist of arbitrarily long numbers with an optional decimal
point. The hexadecimal digits A-F are also recognized as digits with
values 10--15, respectively.

Expressions

The value of an expression is printed unless the main operator is an
assignment. Precedence is the same as the order of presentation here,
with highest appearing first. Left or right associativity, where appli-
cable, is discussed with each operator.

Primitive Expressions

Named Expressions

Named expressions are places where values are stored. Simply stated,
named expressions are legal on the left side of an assignment. The
value of a named expression is the value stored in the place named.

identifiers

Simple identifiers are named expressions. They have an initial
value of zero.

2—14 Programmer's Guide: CTIX Supplement

array-name [expression]

Array elements are named expressions. They have an initial
value of zero.

scale, ibase and obase

The internal registers scale, ibase and obase are all named
expressions, scale is the number of digits after the decimal
point to be retained in arithmetic operations, scale has an ini-
tial value of zero, ibase and obase are the input and output
number radix respectively. Both ibase and obase have initial
values of 10.

Function Calls

function-name ([expression [, expression ...]])

A function call consists of a function name followed by
parentheses containing a comma-separated list of expressions,
which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty
square brackets. All function arguments are passed by value.
As a result, changes made to the formal parameters have no
effect on the actual arguments. If the function terminates by
executing a return statement, the value of the function is the
value of the expression in the parentheses of the return state-
ment or is zero if no expression is provided or if there is no
return statement.

sqrt (expression)

The result is the square root of the expression. The result is
truncated in the least significant decimal place. The scale of
the result is the scale of the expression or the value of scale,
whichever is larger.

length (expression)

The result is the total number of significant decimal digits in
the expression. The scale of the result is zero.

scale (expression)

The result is the scale of the expression. The scale of the
result is zero.

BC — An Arbitrary Precision Desk-Calculator Language 2—15

Constants

Constants are primitive expressions.

Parentheses

An expression surrounded by parentheses is a primitive expression.
The parentheses are used to alter the normal precedence.

Unary Operators

The unary operators bind right to left.

- expression

The result is the negative of the expression.

+ + named-expression

The named expression is incremented by one. The result is
the value of the named expression after incrementing.

— named-expression

The named expression is decremented by one. The result is
the value of the named expression after decrementing.

named-expression ++

The named expression is incremented by one. The result is
the value of the named expression before incrementing.

named-expression —

The named expression is decremented by one. The result is
the value of the named expression before decrementing.

2—16 Programmer's Guide: CTIX Supplement

Exponentiation Operator

The exponentiation operator binds right to left.

expression ~ expression

The result is the first expression raised to the power of the
second expression. The second expression must be an integer.
If a is the scale of the left expression and b is the absolute
value of the right expression, then the scale of the result is:

min (a x b , max (scale, a))

Multiplicative Operators

The operators *, /, % bind left to right.

expression * expression

The result is the product of the two expressions. If a and b
are the scales of the two expressions, then the scale of the
result is:

min (a+b, max (scale, a,b))

expression / expression

The result is the quotient of the two expressions. The scale of
the result is the value of scale.

expression % expression

The % operator produces the remainder of the division of the
two expressions. More precisely, a%b is a-alb*b. The scale
of the result is the sum of the scale of the divisor and the value
of scale.

Additive Operators

The additive operators bind left to right.

expression + expression

The result is the sum of the two expressions. The scale of the
result is the maximun of the scales of the expressions.

BC — An Arbitrary Precision Desk-Calculator Language 2—17

expression — expression

'["he result is the difference of the two expressions. The scale
of the result is the maximum of the scales of the expressions.

Assignment Operators

The assignment operators bind right to left.

named-expression = expression

This expression results in assigning the value of the expression
on the right to the named expression on the left.

named-expression =+ expression

named-expression —— expression

named-expression =* expression

named-expression =/ expression

named-expression =% expression

named-expression expression

The result of the above expressions is equivalent to "named expres-
sion = named expression OP expression", where OP is the operator
after the = sign.

Relations

Unlike all other operators, the relational operators are only valid as
the object of an if, while, or inside a for statement.

expression < expression

expression > expression

expression <~ expression

expression >= expression

expression —— expression

expression != expression

2—18 Programmer's Guide: CTIX Supplement

Storage Classes

There are only two storage classes in BC, global and automatic
(local). Only identifiers that are to be local to a function need be
declared with the auto command. The arguments to a function are
local to the function. All other identifiers are assumed to be global
and available to all functions. All identifiers, global and local, have
initial values of zero. Identifiers declared as auto are allocated on
entry to the function and released on returning from the function.
They therefore do not retain values between function calls, auto
arrays are specified by the array name followed by empty square
brackets.

Automatic variables in BC do not work in exactly the same way as in
either C or PL/I. On entry to a function, the old values of the names
that appear as parameters and as automatic variables are pushed onto
a stack. Until return is made from the function, reference to these
names refers only to the new values.

Statements

Statements must be separated by semicolon or newline. Except where
altered by control statements, execution is sequential.

Expression Statements

When a statement is an expression, unless the main operator is an
assignment, the value of the expression is printed, followed by a new-
line character.

Compound Statements

Statements may be grouped together and used when one statement is
expected by surrounding them with { >.

BC — An Arbitrary Precision Desk-Calculator Language 2—19

Quoted String Statements

"any string"

This statement prints the string inside the quotes.

If Statements

if (relation) statement

The substatement is executed if the relation is true.

While Statements
while (relation) statement

The statement is executed while the relation is true. The test occurs
before each execution of the statement.

For Statements

for (expression; relation; expression) statement

The for statement is the same as

first-expression
while (relation) -C

statement
last-expression

>

All three expressions must be present.

Break Statements

break

break causes termination of a for or while statement.

2—20 Programmer's Guide: CTIX Supplement

Auto Statements

auto identifier^,identifier]

The auto statement causes the values of the identifiers to be pushed
down. The identifiers can be ordinary identifiers or array identifiers.
Array identifiers are specified by following the array name by empty
square brackets. The auto statement must be the first statement in a
function definition.

Define Statements

define([parameter [, parameter ...]]) -C
statements >

The define statement defines a function. The parameters may be
ordinary identifiers or array names. Array names must be followed
by empty square brackets.

Return Statements

return

return(expression)

The return statement causes termination of a function, popping of its
auto variables, and specifies the result of the function. The first form
is equivalent to return(O). The result of the function is the result of
the expression in parentheses.

Quit

The quit statement stops execution of a BC program and returns con-
trol to UNIX when it is first encountered. Because it is not treated as
an executable statement, it cannot be used in a function definition or
in an if, for, or while statement.

BC — An Arbitrary Precision Desk-Calculator Language 2—21

3
DC — An Interactive Desk Calculator

Abstract

DC is an interactive desk calculator program implemented on the
UNIX time-sharing system to do arbitrary-precision integer arithmetic.
It has provision for manipulating scaled fixed-point numbers and for
input and output in bases other than decimal.

The size of numbers that can be manipulated is limited only by avail-
able core storage. On typical implementations of UNIX , the size of
numbers that can be handled varies from several hundred digits on
the smallest systems to several thousand on the largest.

Introduction

DC is an arbitrary precision arithmetic package implemented on the
UNIX time-sharing system in the form of an interactive desk calcula-
tor. It works like a stacking calculator using reverse Polish notation.
Ordinarily DC operates on decimal integers, but one may specify an
input base, output base, and a number of fractional digits to be main-
tained.

A language called BC [1] has been developed which accepts programs
written in the familiar style of higher-level programming languages
and compiles output which is interpreted by DC. Some of the com-
mands described below were designed for the compiler interface and
are not easy for a human user to manipulate.

Source: R o b e r t Morr is and Lorinda Cherry, DC — An Interactive Desk Calculator
(Murray Hill, N .J . : Bell Laboratories , 1978).

DC — An Interactive Desk Calculator 3—I

Numbers that are typed into DC are put on a push-down stack. DC
commands work by taking the top number or two off the stack, per-
forming the desired operation, and pushing the result on the stack. If
an argument is given, input is taken from that file until its end, then
from the standard input.

Synoptic Description

Here we describe the DC commands that are intended for use by peo-
ple. The additional commands that are intended to be invoked by
compiled output are described in the detailed description.

Any number of commands are permitted on a line. Blanks and new-
line characters are ignored except within numbers and in places where
a register name is expected.

The following constructions are recognized:

number The value of the number is pushed onto the main stack.
A number is an unbroken string of the digits 0-9 and the
capital letters A - F which are treated as digits with values
10-15 respectively. The number may be preceded by an
underscore to input a negative number. Numbers may
contain decimal points.

The top two values on the stack are added (+), sub-
tracted (-) , multiplied (*), divided (/), remaindered
(%), or exponentiated (") . The two entries are popped
off the stack; the result is pushed on the stack in their
place. The result of a division is an integer truncated
toward zero. See the detailed description below for the
treatment of numbers with decimal points. An exponent
must not have any digits after the decimal point.

The top of the main stack is popped and stored into a
register named x, where x may be any character. If the s
is capitalized, x is treated as a stack and the value is
pushed onto it. Any character, even blank or new-line,
is a valid register name.

The value in register x is pushed onto the stack. The
register x is not altered. If the I is capitalized, register
is treated as a stack and its top value is popped onto the
main stack.

+ - *

% '

Lx

3—2 Programmer's Guide: CTIX Supplement

All registers start with empty value which is treated as a
zero by the command 1 and is treated as an error by the
command L.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value
remains unchanged.

f All values on the stack and in registers are printed.

x treats the top element of the stack as a character string,
removes it from the stack, and executes it as a string of
DC commands.

[...] puts the bracketed character string onto the top of the
stack.

q exits the program. If executing a string, the recursion
level is popped by two. If q is capitalized, the top value
on the stack is popped and the string execution level is
popped by that value.

<x >x =x !<* !>* !=jc

The top two elements of the stack are popped and com-
pared. Register x is executed if they obey the stated
relation. Exclamation point is negation.

v replaces the top element on the stack by its square root.
The square root of an integer is truncated to an integer.
For the treatment of numbers with decimal points, see
the detailed description below.

! interprets the rest of the line as a UNIX command. Con-
trol returns to DC when the UNIX command terminates.

c All values on the stack are popped; the stack becomes
empty.

i The top value on the stack is popped and used as the
number radix for further input. If i is capitalized, the
value of the input base is pushed onto the stack. No
mechanism has been provided for the input of arbitrary
numbers in bases less than 1 or greater than 16.

o The top value on the stack is popped and used as the
number radix for further output. If o is capitalized, the
value of the output base is pushed onto the stack.

DC — An Interactive Desk Calculator 3—3

k The top of the stack is popped, and that value is used as
a scale factor that influences the number of decimal
places that are maintained during multiplication, divi-
sion, and exponentiation. The scale factor must be
greater than or equal to zero and less than 100. If k is
capitalized, the value of the scale factor is pushed onto
the stack.

z The value of the stack level is pushed onto the stack.

? A line of input is taken from the input source (usually
the console) and executed.

Detailed Description

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator.
Numbers are kept in the form of a string of digits to the base 100
stored one digit per byte (centennial digits). The string is stored with
the low-order digit at the beginning of the string. For example, the
representation of 157 is 57,1. After any arithmetic operation on a
number, care is taken that all digits are in the range 0-99 and that
the number has no leading zeros. The number zero is represented by
the empty string.

Negative numbers are represented in the 100's complement notation,
which is analogous to two's complement notation for binary numbers.
The high order digit of a negative number is always - 1 and all other
digits are in the range 0-99. The digit preceding the high order - 1
digit is never a 99. The representation o f - 1 5 7 is 43,98,-1. We shall
call this the canonical form of a number. The advantage of this kind
of representation of negative numbers is ease of addition. When
addition is performed digit by digit, the result is formally correct.
The result need only tie modified, if necessary, to put it into canoni-
cal form.

Because the largest valid digit is 99 and the byte can hold numbers
twice that large, addition can be carried out and the handling of car-
ries done later when that is convenient, as it sometimes is.

An additional byte is stored with each number beyond the high order
digit to indicate the number of assumed decimal digits after the
decimal point. The representation of .001 is \,3 where the scale has

3—4 Programmer's Guide: CTIX Supplement

been italicized to emphasize the fact that it is not the high order digit.
The value of this extra byte is called the scale factor of the number.

The Allocator

DC uses a dynamic string storage allocator for all of its internal
storage. All reading and writing of numbers internally is done
through the allocator. Associated with each string in the allocator is
a four-word header containing pointers to the beginning of the string,
the end of the string, the next place to write, and the next place to
read. Communication between the allocator and DC is done via
pointers to these headers.

The allocator initially has one large string on a list of free strings. All
headers except the one pointing to this string are on a list of free
headers. Requests for strings are made by size. The size of the
string actually supplied is the next higher power of 2. When a
request for a string is made, the allocator first checks the free list to
see if there is a string of the desired size. If none is found, the allo-
cator finds the next larger free string and splits it repeatedly until it
has a string of the right size. Left-over strings are put on the free
list. If there are no larger strings, the allocator tries to coalesce
smaller free strings into larger ones. Since all strings are the result of
splitting large strings, each string has a neighbor that is next to it in
core and, if free, can be combined with it to make a string twice as
long. This is an implementation of the "buddy system" of allocation
described in [2],

Failing to find a string of the proper length after coalescing, the allo-
cator asks the system for more space. The amount of space on the
system is the only limitation on the size and number of strings in DC.
If at any time in the process of trying to allocate a string, the alloca-
tor runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying,
rewinding, forward-spacing, and backspacing strings. All string
manipulation is done using these routines.

The reading and writing routines increment the read pointer or write
pointer so that the characters of a string are read or written in succes-
sion by a series of read or write calls. The write pointer is interpreted
as the end of the information-containing portion of a string and a call
to read beyond that point returns an end-of-string indication. An
attempt to write beyond the end of a string causes the allocator to

DC — An Interactive Desk Calculator 3—5

allocate a larger space and then copy the old string into the larger
block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or
operand) needed for the operation are popped from the main stack
and their scale factors stripped off. Zeros are added or digits
removed as necessary to get a properly scaled result f rom the internal
arithmetic routine. For example, if the scale of the operands is dif-
ferent and decimal alignment is required, as it is for addition, zeros
are appended to the operand with the smaller scale. Af ter perform-
ing the required arithmetic operation, the proper scale factor is
appended to the end of the number before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic
operations, scale is the bound on the number of decimal places
retained in arithmetic computations, scale may be set to the number
on the top of the stack truncated to an integer with the k command.
K may be used to push the value of scale on the stack, scale must be
greater than or equal to 0 and less than 100. The descriptions of the
individual arithmetic operations will include the exact effect of scale
on the computations.

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are
supplied to the number with the lower scale to give both numbers the
same scale. The number with the smaller scale is multiplied by 10 if
the difference of the scales is odd. The scale of the result is then set
to the larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and
proceeding as in addition.

Finally, the addition is performed digit by digit from the low order
end of the number. The carries are propagated in the usual way.
The resulting number is brought into canonical form, which may
require stripping of leading zeros, or for negative numbers replacing
the high-order configuration 99,-1 by the digit - 1 . In any case, digits
which are not in the range 0-99 must be brought into that range, pro-
pagating any carries or borrows that result.

3—6 Programmer's Guide: CTIX Supplement

Multiplication

The scales are removed from the two operands and saved. The
operands are both made positive. Then multiplication is performed
in a digit by digit manner that exactly mimics the hand method of
multiplying. The first number is multiplied by each digit of the
second number, beginning with its low order digit. The intermediate
products are accumulated into a partial sum which becomes the final
product. The product is put into the canonical form and its sign is
computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two
operands. If that scale is larger than the internal register scale and
also larger than both of the scales of the two operands, then the scale
of the result is set equal to the largest of these three last quantities.

Division

The scales are removed from the two operands. Zeros are appended
or digits removed from the dividend to make the scale of the result of
the integer division equal to the internal quantity scale. The signs are
removed and saved.

Division is performed much as it would be done by hand. The differ-
ence of the lengths of the two numbers is computed. If the divisor is
longer than the dividend, zero is returned. Otherwise the top digit of
the divisor is divided into the top two digits of the dividend. The
result is used as the first (high-order) digit of the quotient. It may
turn out be one unit too low, but if it is, the next trial quotient will
be larger than 99 and this will be adjusted at the end of the process.
The trial digit is multiplied by the divisor and the result subtracted
from the dividend and the process is repeated to get additional quo-
tient digits until the remaining dividend is smaller than the divisor.
At the end, the digits of the quotient are put into the canonical form,
with propagation of carry as needed. The sign is set from the sign of
the operands.

DC — An Interactive Desk Calculator 3—7

Remainder

The division routine is called and division is performed exactly as
described. The quantity returned is the remains of the dividend at
the end of the divide process. Since division truncates toward zero,
remainders have the same sign as the dividend. The scale of the
remainder is set to the maximum of the scale of the dividend and the
scale of the quotient plus the scale of the divisor.

Square Root

The scale is stripped from the operand. Zeros are added if necessary
to make the integer result have a scale that is the larger of the inter-
nal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton's method with succes-
sive approximations by the rule

Xn + l = %Kn +
xn

The initial guess is found by taking the integer square root of the top
two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is
zero, then the result is 1. If the exponent is negative, then it is made
positive and the base is divided into one. The scale of the base is
removed.

The integer exponent is viewed as a binary number. The base is
repeatedly squared and the result is obtained as a product of those
powers of the base that correspond to the positions of the one-bits in
the binary representation of the exponent. Enough digits of the result
are removed to make the scale of the result the same as if the indi-
cated multiplication had been performed.

3—8 Programmer's Guide: CTIX Supplement

Input Conversion and Base

Numbers are converted to the internal representation as they are read
in. The scale stored with a number is simply the number of fractional
digits input. Negative numbers are indicated by preceding the
number with a _ (an underscore). The hexadecimal digits A - F
correspond to the numbers 10-15 regardless of input base. The i
command can be used to change the base of the input numbers. This
command pops the stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input
base is initialized to 10 but may, for example be changed to 8 or 16 to
do octal or hexadecimal to decimal conversions. The command I will
push the value of the input base on the stack.

Output Commands

The command p causes the top of the stack to be printed. It does not
remove the top of the stack. All of the stack and internal registers
can be output by typing the command f. The o command can be
used to change the output base. This command uses the top of the
stack, truncated to an integer as the base for all further output. The
output base in initialized to 10. It will work correctly for any base.
The command O pushes the value of the output base on the stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers
on input and output; they have no effect on arithmetic computations.
Large numbers are output with 70 characters per line; a \ indicates a
continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is
100000, which has the effect of grouping digits in fives. Bases of 8
and 16 can be used for decimal-octal or decimal-hexadecimal conver-
sions.

DC — An Interactive Desk Calculator 3—II

Internal Registers

Numbers or strings may be stored in internal registers or loaded on
the stack f rom registers with the commands s and 1. The command sx
pops the top of the stack and stores the result in register x. x can be
any character. Lx puts the contents of register x on the top of the
stack. The 1 command has no effect on the contents of register x.
The s command, however, is destructive.

Stack Commands

The command c clears the stack. The command d pushes a duplicate
of the number on the top of the stack on the stack. The command z
pushes the stack size on the stack. The command X replaces the
number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

Subroutine Definitions and Calls

Enclosing a string in [] pushes the ascii string on the stack. The q
command quits or in executing a string, pops the recursion levels by
two.

Internal Registers - Programming DC

The load and store commands together with [] to store strings, x to
execute and the testing commands '< ' , '> ' , '= ' , ' !<' , ' !> ' , '!=' can be
used to program DC. The x command assumes the top of the stack is
an string of DC commands and executes it. The testing commands
compare the top two elements on the stack and if the relation holds,
execute the register that follows the relation. For example, to print
the numbers 0-9,

[lipl+ si lil0>a]sa
Osi lax

3—10 Programmer's Guide: CTIX Supplement

Push-down Registers and Arrays

These commands were designed for used by a compiler, not by peo-
ple. They involve push-down registers and arrays. In addition to the
stack that commands work on, DC can be thought of as having indivi-
dual stacks for each register. These registers are operated on by the
commands S and L. Sx pushes the top value of the main stack onto
the stack for the register x. Lx pops the stack for register x and puts
the result on the main stack. The commands s and 1 also work on
registers but not as push-down stacks. 1 doesn't effect the top of the
register stack, and s destroys what was there before.

The commands to work on arrays are : and ;. :x pops the stack and
uses this value as an index into the array x. The next element on the
stack is stored at this index in x. An index must be greater than or
equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x. The value on the top of the stack is the index
into the array x of the value to be loaded.

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX command
and passes it to UNIX to execute. One other compiler command is Q.
This command uses the top of the stack as the number of levels of
recursion to skip.

Design Choices

The real reason for the use of a dynamic storage allocator was that a
general purpose program could be (and in fact has been) used for a
variety of other tasks. The allocator has some value for input and for
compiling (i.e. the bracket [...] commands) where it cannot be
known in advance how long a string will be. The result was that at a
modest cost in execution time, all considerations of string allocation
and sizes of strings were removed from the remainder of the program
and debugging was made easier. The allocation method used wastes
approximately 25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no
compelling advantage. Yet the base cannot exceed 127 because of

DC — An Interactive Desk Calculator 3—II

hardware limitations and at the cost of 5% in space, debugging was
made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC
commands from addition to subroutine execution to be implemented
in essentially the same way. The result was a considerable degree of
logical separation of the final program into modules with very little
communication between modules.

The rationale for the lack of interaction between the scale and the
bases was to provide an understandable means of proceeding after a
change of base or scale when numbers had already been entered. An
earlier implementation which had global notions of scale and base did
not work out well. If the value of scale were to be interpreted in the
current input or output base, then a change of base or scale in the
midst of a computation would cause great confusion in the interpreta-
tion of the results. The current scheme has the advantage that the
value of the input and output bases are only used for input and out-
put, respectively, and they are ignored in all other operations. The
value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places
resulting from the arithmetic operations from growing beyond all
bounds.

The design rationale for the choices for the scales of the results of
arithmetic were that in no case should any significant digits be thrown
away if, on appearances, the user actually wanted them. Thus, if the
user wants to add the numbers 1.5 and 3.517, it seemed reasonable to
give him the result 5.017 without requiring him to unnecessarily
specify his rather obvious requirements for precision.

On the other hand, multiplication and exponentiation produce results
with many more digits than their operands and it seemed reasonable
to give as a minimum the number of decimal places in the operands
but not to give more than that number of digits unless the user asked
for them by specifying a value for scale. Square root can be handled
in just the same way as multiplication. The operation of division
gives arbitrarily many decimal places and there is simply no way to
guess how many places the user wants. In this case only, the user
must specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the
dividend from the quotient and remainder. This is easy to imple-
ment; no digits are thrown away.

3—12 Programmer's Guide: CTIX Supplement

References

[1] L. L. Cherry, R. Morris, BC - An Arbitrary Precision Desk-
Calculator Language.

[2] K. C. Knowlton, A Fast Storage Allocator, Comm. ACM 8, pp.
623-625 (Oct. 1965).

DC — An Interactive Desk Calculator 3—II

4
An Introduction to Display Editing with VI

Introduction

V; (visual) is a display oriented interactive text editor. When using vi
the screen of your terminal acts as a window into the file which you
are editing. Changes which you make to the file are reflected in what
you see.

Using vi you can insert new text any place in the file quite easily.
Most of the commands to vi move the cursor around in the file.
There are commands to move the cursor forward and backward in
units of characters, words, sentences and paragraphs. A small set of
operators, like d for delete and c for change, are combined with the
motion commands to form operations such as delete word or change
paragraph, in a simple and natural way. This regularity and the
mnemonic assignment of commands to keys makes the editor com-
mand set easy to remember and to use.

Vi will work on a large number of display terminals, and new termi-
nals are easily driven after editing a terminal description file. While
it is advantageous to have an intelligent terminal which can locally
insert and delete lines and characters from the display, the editor will
function quite well on dumb terminals over slow phone lines. The
editor makes allowance for the low bandwidth in these situations and
uses smaller window sizes and different display updating algorithms to
make best use of the limited speed available.

It is also possible to use the command set of vi on hardcopy terminals,
storage tubes and "glass tty's" using a one line editing window; thus
vi's command set is available on all terminals. The full command set

Source: William Joy and Mark Hor ton , An Introduction to Display Editing with VI
(Berkeley, C A : University of California).

An Introduction to Display Editing with VI 4—1

of the more traditional, line oriented editor ex is available within vi;
it is quite simple to switch between the two modes of editing.

1. Getting Started

This document provides a quick introduction to vi. (Pronounced
vee-eye.) You should be running vi on a file you are familiar with
while you are reading this. The first part of this document (sections 1
through 5) describes the basics of using vi. Some topics of special
interest are presented in section 6, and some nitty-gritty details of
how the editor functions are saved for section 7 to avoid cluttering
the presentation here.

There is also a short appendix here, which gives for each character
the special meanings which this character has in vi. Attached to this
document should be a quick reference card. This card summarizes
the commands of vi in a very compact format. You should have the
card handy while you are learning vi.

1.1 Specifying Terminal Type

Before you can start vi you must tell the system what kind of terminal
you are using. Here is a (necessarily incomplete) list of terminal type
codes. If your terminal does not appear here, you should consult
with one of the staff members on your system to find out the code for
your terminal. If your terminal does not have a code, one can be
assigned and a description for the terminal can be created.

Code Full Name Type

2621 Hewlett-Packard 2621A/P Intelligent
2645 Hewlett-Packard 264x Intelligent
act4 Microterm ACT-IV Dumb
act5 Microterm ACT-V Dumb
adm3a Lear Siegler ADM-3 a Dumb
adm31 Lear Siegler ADM-31 Intelligent
clOO Human Design Concept 100 Intelligent
dm 1520 Datamedia 1520 Dumb
dm2500 Datamedia 2500 Intelligent
dm3025 Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb

3—2 Programmer's Guide: CTIX Supplement

hl500 Hazeltine 1500
h l9 Heathkit h l9
ilOO Infoton 100

tl061 Teleray 1061
vt52 Dec VT-52

mime Imitating a smart act4

Intelligent
Intelligent
Intelligent
Intelligent
Intelligent
Dumb

Suppose for example that you have a Hewlett-Packard HP2621A ter-
minal. The code used by the system for this terminal is '2621'. In
this case you can use one of the following commands to tell the sys-
tem the type of your terminal:

% setenv TERM 2621

This command works with the csh shell. If you are using the stan-
dard Bourne shell sh then you should give the commands

$ TERM=2621
$ export TERM

If you want to arrange to have your terminal type set up automati-
cally when you log in, you can use the tset program. If you dial in on
a mime, but often use hardwired ports, a typical line for your .login
file (if you use csh) would be

setenv TERM ~ tset — d mime"

or for your .profile file (if you use sh)

TERM= " tset - - d mime"

Tset knows which terminals are hardwired to each port and needs
only to be told that when you dial in you are probably on a mime.
Tset is usually used to change the erase and kill characters, too.

1.2 Editing a File

After telling the system which kind of terminal you have, you should
make a copy of a file you are familiar with, and run vi on this file,
giving the command

% vi name

replacing name with the name of the copy file you just created. The
screen should clear and the text of your file should appear on the
screen. If something else happens refer to the footnote.1

An Introduction to Display Editing with VI 4—3

1.3 The Editor's Copy: The Buffer

The editor does not directly modify the file which you are editing.
Rather, the editor makes a copy of this file, in a place called the
buffer, and remembers the file's name. You do not affect the con-
tents of the file unless and until you write the changes you make back
into the original file.

1.4 Notational Conventions

In our examples, input which must be typed as is will be presented in
bold face. Text which should be replaced with appropriate input will
be given in italics. We will represent special characters in S M A L L
CAPITALS.

1.5 Arrow Keys

The editor command set is independent of the terminal you are using.
On most terminals with cursor positioning keys, these keys will also
work within the editor. If you don't have cursor positioning keys, or
even if you do, you can use the h j k and I keys as cursor positioning
keys (these are labelled with arrows on an adm3a).2

1. If you gave the system an incorrect terminal type code then the editor may
have just made a mess out of your screen. This happens when it sends control
codes for one kind of terminal to some other kind of terminal. In this case hit
the keys :q (colon and the q key) and then hit the RETURN key. This should
get you back to the command level interpreter . Figure out what you did wrong
(ask someone else if necessary) and try again.

Another thing which can go wrong is that you typed the wrong file name and
the editor just printed an error diagnostic. In this case you should follow the
above procedure for getting out of the editor, and try again this time spelling
the file name correctly.

If the editor doesn' t seem to respond to the commands which you type here, try
sending an interrupt to it by hitting the DEL or RUB key on your terminal, and
then hitting the :q command again followed by a carriage return.

2. As we will see later, h moves back to the left (like control-h which is a
backspace) , j moves down (in the same column), k moves up (in the same
column), and / moves to the right.

3—4 Programmer's Guide: CTIX Supplement

(Particular note for the HP2621: on this terminal the function keys
must be shifted (ick) to send to the machine, otherwise they only act
locally. Unshifted use will leave the cursor positioned incorrectly.)

1.6 Special Characters: ESC, CR and DEL

Several of these special characters are very important, so be sure to
find them right now. Look on your keyboard for a key labelled ESC
or ALT. It should be near the upper left corner of your terminal.
Try hitting this key a few times. The editor will ring the bell to indi-
cate that it is in a quiescent state.3 Partially formed commands are
cancelled by ESC, and when you insert text in the file you end the text
insertion with ESC. This key is a fairly harmless one to hit, so you
can just hit it if you don't know what is going on until the editor rings
the bell.

The C R or R E T U R N key is important because it is used to terminate
certain commands. It is usually at the right side of the keyboard, and
is the same command used at the end of each shell command.

Another very useful key is the DEL or RUB key, which generates an
interrupt, telling the editor to stop what it is doing. It is a forceful
way of making the editor listen to you, or to return it to the quiescent
state if you don't know or don't like what is going on. Try hitting
the '/' key on your terminal. This key is used when you want to
specify a string to be searched for. The cursor should now be posi-
tioned at the bottom line of the terminal after a '/' printed as a
prompt. You can get the cursor back to the current position by hit-
ting the DEL or RUB key; try this now.4 From now on we will simply
refer to hitting the DEL or RUB key as "sending an interrupt."5

The editor often echoes your commands on the last line of the termi-
nal. If the cursor is on the first position of this last line, then the edi-
tor is performing a computation, such as computing a new position in
the file after a search or running a command to reformat part of the

3. On smart terminals where it is possible, the editor will quietly flash the screen
rather than ringing the bell.

4. Backspacing over the ' / ' will also cancel the search.
5. On some systems, this interruptibility comes at a price: you cannot type ahead

when the editor is computing with the cursor on the bot tom line.

An Introduction to Display Editing with VI 4—5

buffer. When this is happening you can stop the editor by sending an
interrupt.

1.7 Getting Out of the Editor

After you have worked with this introduction for a while, and you
wish to do something else, you can give the command ZZ to the edi-
tor. This will write the contents of the editor's buffer back into the
file you are editing, if you made any changes, and then quit from the
editor. You can also end an editor session by giving the command
:q!CR;6 this is a dangerous but occasionally essential command which
ends the editor session and discards all your changes. You need to
know about this command in case you change the editor's copy of a
file you wish only to look at. Be very careful not to give this com-
mand when you really want to save the changes you have made.

2. Moving Around in the File

2.1 Scrolling and Paging

The editor has a number of commands for moving around in the file.
The most useful of these is generated by hitting the control and D
keys at the same time, a control-D or '~D ' . We will use this two
character notation for referring to these control keys from now on.
You may have a key labelled ' " ' o n your terminal. This key will be
represented as 'T' in this document; ' " ' is exclusively used as part of
the '~x ' notation for control characters.7

As you know now if you tried hitting ~D, this command scrolls down
in the file. The D thus stands for down. Many editor commands are
mnemonic and this makes them much easier to remember. For
instance the command to scroll up is ~U. Many dumb terminals can't

6. All commands which read f rom the last display line can also be terminated with
a ESC as well as an CR.

7. If you don ' t have a key on your terminal then there is probably a key
labelled ' t ' ; in any case these characters are one and the same.

3—6 Programmer's Guide: CTIX Supplement

scroll up at all, in which case hitting ~U clears the screen and
refreshes it with a line which is farther back in the file at the top.

If you want to see more of the file below where you are, you can hit
" E to expose one more line at the bottom of the screen, leaving the
cursor where it is. The command ~ Y (which is hopelessly non-
mnemonic, but next to "U on the keyboard) exposes one more line at
the top of the screen.

There are other ways to move around in the file; the keys ~F and ~B
move forward and backward a page, keeping a couple of lines of con-
tinuity between screens so that it is possible to read through a file
using these rather than ~D and "U if you wish.

Notice the difference between scrolling and paging. If you are trying
to read the text in a file, hitting " F to move forward a page will leave
you only a little context to look back at. Scrolling on the other hand
leaves more context, and happens more smoothly. You can continue
to read the text as scrolling is taking place.

2.2 Searching, Goto, and Previous Context

Another way to position yourself in the file is by giving the editor a
string to search for. Type the character / followed by a string of char-
acters terminated by CR. The editor will position the cursor at the
next occurrence of this string. Try hitting n to then go to the next
occurrence of this string. The character ? will search backwards from
where you are, and is otherwise like I.8

If the search string you give the editor is not present in the file the
editor will print a diagnostic on the last line of the screen, and the
cursor will be returned to its initial position.

If you wish the search to match only at the beginning of a line, begin
the search string with an t. To match only at the end of a line, end
the search string with a $. Thus /tsearchCR will search for the word

8. These searches will normally wrap around the end of the file, and thus find the
string even if it is not on a line in the direction you search provided it is
anywhere else in the file. You can disable this wraparound in scans by giving
the command :se nowrapscanCR, or more briefly :se nowsCR.

An Introduction to Display Editing with VI 4—7

"search" at the beginning of a line, and /last$CR searches for the
word "last" at the end of a line.9

The command G, when preceded by a number will position the cursor
at that line in the file. Thus 1G will move the cursor to the first line
of the file. If you give G no count, then it moves to the end of the
file.

If you are near the end of the file, and the last line is not at the bot-
tom of the screen, the editor will place only the character on each
remaining line. This indicates that the last line in the file is on the
screen; that is, the lines are past the end of the file.

You can find out the state of the file you are editing by typing a ~G.
The editor will show you the name of the file you are editing, the
number of the current line, the number of lines in the buffer, and the
percentage of the way through the buffer which you are. Try doing
this now, and remember the number of the line you are on. Give a
G command to get to the end and then another G command to get
back where you were.

You can also get back to a previous position by using the command
' " (two back quotes). This is often more convenient than G because
it requires no advance preparation. Try giving a G or a search with /
or ? and then a " ~ to get back to where you were. If you acciden-
tally hit n or any command which moves you far away from a context
of interest, you can quickly get back by hitting " ~ .

2.3 Moving Around on the Screen

Now try just moving the cursor around on the screen. If your termi-
nal has arrow keys (4 or 5 keys with arrows going in each direction)
try them and convince yourself that they work. If you don't have
working arrow keys, you can always use h, j , k, and 1 . Experienced
users of vi prefer these keys to arrow keys, because they are usually
right underneath their fingers.

9. Actually, the string you give to search for here can be a regular expression in
the sense of the editors ex (1) and ed (1). If you don ' t wish to learn about this
yet, you can disable this more general facility by doing :se nomagicCR; by-
putt ing this command in E X I N I T in your environment, you can have this
always be in effect (more about EXINIT later.)

3—8 Programmer's Guide: CTIX Supplement

Hit the + key. Each time you do, notice that the cursor advances to
the next line in the file, at the first non-white position on the line.
The - key is like + but goes the other way.

These are very common keys for moving up and down lines in the
file. Notice that if you go off the bottom or top with these keys then
the screen will scroll down (and up if possible) to bring a line at a
time into view. The R E T U R N key has the same effect as the + key.

Vi also has commands to take you to the top, middle and bottom of
the screen. H will take you to the top (home) line on the screen.
Try preceding it with a number as in 3H. This will take you to the
third line on the screen. Many vi commands take preceding numbers
and do interesting things with them. Try M, which takes you to the
middle line on the screen, and L, which takes you to the last line on
the screen. L also takes counts, thus 5L will take you to the fifth line
from the bottom.

2.4 Moving within a Line

Now try picking a word on some line on the screen, not the first word
on the line. Move the cursor using R E T U R N and - to be on the line
where the word is. Try hitting the w key. This will advance the cur-
sor to the next word on the line. Try hitting the b key to back up
words in the line. Also try the e key which advances you to the end
of the current word rather than to the beginning of the next word.
Also try S P A C E (the space bar) which moves right one character and
the BS (backspace or ~H) key which moves left one character. The
key h works as ~H does and is useful if you don't have a BS key.
(Also, as noted just above, 1 will move to the right.)

If the line had punctuation in it you may have noticed that that the w
and b keys stopped at each group of punctuation. You can also go
back and forwards words without stopping at punctuation by using W
and B rather than the lower case equivalents. Think of these as
bigger words. Try these on a few lines with punctuation to see how
they differ from the lower case w and b.

The word keys wrap around the end of line, rather than stopping at
the end. Try moving to a word on a line below where you are by
repeatedly hitting w.

An Introduction to Display Editing with VI 4—9

2.5 Summary

SPACE advance the cursor one position
~B backwards to previous page
~D scrolls down in the file
~E exposes another line at the bottom

forward to next page
~G tell what is going on
~H backspace the cursor
~N next line, same column
~P previous line, same column

scrolls up in the file
exposes another line at the top

+ next line, at the beginning
- previous line, at the beginning
/ scan for a following string forwards
9 scan backwards
B back a word, ignoring punctuation
G go to specified line, last default
H home screen line
M middle screen line
L last screen line
W forward a word, ignoring punctuation
b back a word
e end of current word
n scan for next instance of / or ? pattern
w word after this word

2.6 View

If you want to use the editor to look at a file, rather than to make
changes, invoke it as view instead of vi. This will set the readonly
option which will prevent you from accidently overwriting the file.

3—10 Programmer's Guide: CTIX Supplement

3. Making Simple Changes

3.1 Inserting

One of the most useful commands is the i (insert) command. After
you type i, everything you type until you hit ESC is inserted into the
file. Try this now; position yourself to some word in the file and try
inserting text before this word. If you are on an dumb terminal it
will seem, for a minute, that some of the characters in your line have
been overwritten, but they will reappear when you hit ESC.

Now try finding a word which can, but does not, end in a n ' s ' . Posi-
tion yourself at this word and type e (move to end of word), then a
for append and then 'sESC' to terminate the textual insert. This
sequence of commands can be used to easily pluralize a word.

Try inserting and appending a few times to make sure you understand
how this works; i placing text to the left of the cursor, a to the right.

It is often the case that you want to add new lines to the file you are
editing, before or after some specific line in the file. Find a line
where this makes sense and then give the command o to create a new
line after the line you are on, or the command O to create a new line
before the line you are on. After you create a new line in this way,
text you type up to an ESC is inserted on the new line.

Many related editor commands are invoked by the same letter key
and differ only in that one is given by a lower case key and the other
is given by an upper case key. In these cases, the upper case key
often differs from the lower case key in its sense of direction, with the
upper case key working backward and/or up, while the lower case key
moves forward and/or down.

Whenever you are typing in text, you can give many lines of input or
just a few characters. To type in more than one line of text, hit a
RETURN at the middle of your input. A new line will be created for
text, and you can continue to type. If you are on a slow and dumb
terminal the editor may choose to wait to redraw the tail of the
screen, and will let you type over the existing screen lines. This
avoids the lengthy delay which would occur if the editor attempted to
keep the tail of the screen always up to date. The tail of the screen
will be fixed up, and the missing lines will reappear, when you hit
ESC.

While you are inserting new text, you can use the characters you nor-
mally use at the system command level (usually ~H or #) to

An Introduction to Display Editing with VI 4—11

backspace over the last character which you typed, and the character
which you use to kill input lines (usually 0 , "X, or ~U) to erase the
input you have typed on the current line.10 The character ~W will
erase a whole word and leave you after the space after the previous
word; it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion the characters
you backspace over are not erased; the cursor moves backwards, and
the characters remain on the display. This is often useful if you are
planning to type in something similar. In any case the characters
disappear when when you hit ESC; if you want to get rid of them
immediately, hit an ESC and then a again.

Notice also that you can't erase characters which you didn't insert,
and that you can't backspace around the end of a line. If you need to
back up to the previous line to make a correction, just hit ESC and
move the cursor back to the previous line. After making the correc-
tion you can return to where you were and use the insert or append
command again.

3.2 Making Small Corrections

You can make small corrections in existing text quite easily. Find a
single character which is wrong or just pick any character. Use the
arrow keys to find the character, or get near the character with the
word motion keys and then either backspace (hit the BS key or " H or
even just h) or SPACE (using the space bar) until the cursor is on the
character which is wrong. If the character is not needed then hit the
x key; this deletes the character from the file. It is analogous to the
way you x out characters when you make mistakes on a typewriter
(except it's not as messy).

If the character is incorrect, you can replace it with the correct char-
acter by giving the command rc, where c is replaced by the correct
character. Finally if the character which is incorrect should be
replaced by more than one character, give the command s which sub-
stitutes a string of characters, ending with ESC, for it. If there are a
small number of characters which are wrong you can precede s with a

10. In fact , the character ~H (backspace) always works to erase the last input
character here, regardless of what your erase character is.

3—12 Programmer's Guide: CTIX Supplement

count of the number of characters to be replaced. Counts are also
useful with x to specify the number of characters to be deleted.

3.3 More Corrections: Operators

You already know almost enough to make changes at a higher level.
All you need to know now is that the d key acts as a delete operator.
Try the command dw to delete a word. Try hitting . a few times.
Notice that this repeats the effect of the dw. The command . repeats
the last command which made a change. You can remember it by
analogy with an ellipsis ' . . . ' .

Now try db. This deletes a word backwards, namely the preceding
word. Try dSPACE. This deletes a single character, and is equivalent
to the x command.

Another very useful operator is c or change. The command cw thus
changes the text of a single word. You follow it by the replacement
text ending with an ESC. Find a word which you can change to
another, and try this now. Notice that the end of the text to be
changed was marked with the character '$' so that you can see this as
you are typing in the new material.

3.4 Operating on Lines

It is often the case that you want to operate on lines. Find a line
which you want to delete, and type dd, the d operator twice. This
will delete the line. If you are on a dumb terminal, the editor may
just erase the line on the screen, replacing it with a line with only an
Q on it. This line does not correspond to any line in your file, but
only acts as a place holder. It helps to avoid a lengthy redraw of the
rest of the screen which would be necessary to close up the hole
created by the deletion on a terminal without a delete line capability.

Try repeating the c operator twice; this will change a whole line, eras-
ing its previous contents and replacing them with text you type up to
an ESC.11

11. The command S is a convenient synonym for for cc, by analogy with s. Think
of S as a substitute on lines, while s is a substitute on characters.

An Introduction to Display Editing with VI 4—13

You can delete or change more than one line by preceding the dd or
cc with a count, i.e. 5dd deletes 5 lines. You can also give a com-
mand like dL to delete all the lines up to and including the last line
on the screen, or d3L to delete through the third from the bottom
line. Try some commands like this now.1 2 Notice that the editor lets
you know when you change a large number of lines so that you can
see the extent of the change. The editor will also always tell you
when a change you make affects text which you cannot see.

3.5 Undoing

Now suppose that the last change which you made was incorrect; you
could use the insert, delete and append commands to put the correct
material back. However, since it is often the case that we regret a
change or make a change incorrectly, the editor provides a u (undo)
command to reverse the last change which you made. Try this a few
times, and give it twice in a row to notice that an u also undoes a u.

The undo command lets you reverse only a single change. After you
make a number of changes to a line, you may decide that you would
rather have the original state of the line back. The U command
restores the current line to the state before you started changing it.

You can recover text which you delete, even if undo will not bring it
back; see the section on recovering lost text below.

3.6 Summary

SPACE advance the cursor one position
backspace the cursor

~W erase a word during an insert
erase your erase (usually ~H or #) , erases a character during

an insert
kill your kill (usually 0 , " X , or ~U), kills the insert on this

12. One subtle point here involves using the / search af ter a d. This will normally
delete characters f rom the current position to the point of the match. If what
is desired is to delete whole lines including the two points, give the pattern as
/pat /+0, a line address.

3—14 Programmer's Guide: CTIX Supplement

a
c

O
U

o

d

u

line
repeats the changing command
opens and inputs new lines, above the current
undoes the changes you made to the current line
appends text after the cursor
changes the object you specify to the following text
deletes the object you specify
inserts text before the cursor
opens and inputs new lines, below the current
undoes the last change

4. Moving About, Rearranging and
Duplicating Text

4.1 Low Level Character Motions

Now move the cursor to a line where there is a punctuation or a
bracketing character such as a parenthesis or a comma or period. Try
the command fx where x is this character. This command finds the
next x character to the right of the cursor in the current line. Try
then hitting a ;, which finds the next instance of the same character.
By using the f command and then a sequence of ;'s you can often get
to a particular place in a line much faster than with a sequence of
word motions or SPACES. There is also a F command, which is like
f , but searches backward. The ; command repeats F also.

When you are operating on the text in a line it is often desirable to
deal with the characters up to, but not including, the first instance of
a character. Try d£x for some x now and notice that the x character
is deleted. Undo this with u and then try dbr; the t here stands for
to, i.e. delete up to the next JT, but not the JC. The command T is the
reverse of t.

When working with the text of a single line, an t moves the cursor to
the first non-white position on the line, and a $ moves it to the end of
the line. Thus $a will append new text at the end of the current line.

Your file may have tab (" I) characters in it. These characters are
represented as a number of spaces expanding to a tab stop, where tab
stops are every 8 positions. When the cursor is at a tab, it sits on

An Introduction to Display Editing with VI 4—15

the last of the several spaces which represent that tab. Try moving
the cursor back and forth over tabs so you understand how this
works.

On rare occasions, your file may have nonprinting characters in it.
These characters are displayed in the same way they are represented
in this document, that is with a two character code, the first character
of which is On the screen non-printing characters resemble a
character adjacent to another, but spacing or backspacing over the
character will reveal that the two characters are, like the spaces
representing a tab character, a single character.

The editor sometimes discards control characters, depending on the
character and the setting of the beautify option, if you attempt to
insert them in your file. You can get a control character in the file
by beginning an insert and then typing a "V before the control char-
acter. The ~V quotes the following character, causing it to be
inserted directly into the file.

4.2 Higher Level Text Objects

In working with a document it is often advantageous to work in terms
of sentences, paragraphs, and sections. The operations (and) move
to the beginning of the previous and next sentences respectively.
Thus the command d) will delete the rest of the current sentence;
likewise d(will delete the previous sentence if you are at the begin-
ning of the current sentence, or the current sentence up to where you
are if you are not at the beginning of the current sentence.

A sentence is defined to end at a ' . ' , '!' or "?' which is followed by
either the end of a line, or by two spaces. Any number of closing ') ' ,
'] ', ' " ' and ' " characters may appear after the ' . ' , '!' or '?' before the
spaces or end of line.

The operations -C and > move over paragraphs and the operations [[
and]] move over sections.14

13. This is settabie by a command of the form :se ts=;tCR, where x is 4 to set
tabstops every four columns. This has effect on the screen representation
within the editor.

14. The [[and]] operat ions require the operation character to be doubled because
they can move the cursor far f rom where it currently is. While it is easy to get
back with the command ~ ~, these commands would still be frustrating if they
were easy to hit accidentally.

3—16 Programmer's Guide: CTIX Supplement

A paragraph begins after each empty line, and also at each of a set of
paragraph macros, specified by the pairs of characters in the defini-
tion of the string valued option paragraphs. The default setting for
this option defines the paragraph macros of the -ms and -mm macro
packages, i.e. the ' . IP ' , ' .LP' , ' .PP' and ' .QP' , ' .P' and ' .LI ' mac-
ros.15 Each paragraph boundary is also a sentence boundary. The
sentence and paragraph commands can be given counts to operate
over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the sections option,
normally ' .NH' , ' .SH' , ' .H ' and ' .HU' , and each line with a
formfeed "L in the first column. Section boundaries are always line
and paragraph boundaries also.

Try experimenting with the sentence and paragraph commands until
you are sure how they work. If you have a large document, try look-
ing through it using the section commands. The section commands
interpret a preceding count as a different window size in which to
redraw the screen at the new location, and this window size is the
base size for newly drawn windows until another size is specified.
This is very useful if you are on a slow terminal and are looking for a
particular section. You can give the first section command a small
count to then see each successive section heading in a small window.

4.3 Rearranging and Duplicating Text

The editor has a single unnamed buffer where the last deleted or
changed away text is saved, and a set of named buffers a -z which you
can use to save copies of text and to move text around in your file
and between files.

The operator y yanks a copy of the object which follows into the
unnamed buffer. If preceded by a buffer name, "xy, where x here is
replaced by a letter a -z , it places the text in the named buffer. The
text can then be put back in the file with the commands p and P; p
puts the text after or below the cursor, while P puts the text before or
above the cursor.

15. You can easily change or extend this set of macros by assigning a different
string to the paragraphs option in your E X I N I T . See section 6.2 for details.
The ' . bp ' directive is also considered to start a paragraph.

An Introduction to Display Editing with VI 4—17

If the text which you yank forms a part of a line, or is an object such
as a sentence which partially spans more than one line, then when
you put the text back, it will be placed after the cursor (or before if
you use P). If the yanked text forms whole lines, they will be put
back as whole lines, without changing the current line. In this case,
the put acts much like a o or O command.

Try the command YP. This makes a copy of the current line and
leaves you on this copy, which is placed before the current line. The
command Y is a convenient abbreviation for yy. The command Yp
will also make a copy of the current line, and place it after the
current line. You can give Y a count of lines to yank, and thus
duplicate several lines; try 3YP.

To move text within the buffer, you need to delete it in one place,
and put it back in another. You can precede a delete operation by
the name of a buffer in which the text is to be stored as in "a5dd
deleting 5 lines into the named buffer a. You can then move the cur-
sor to the eventual resting place of the these lines and do a "ap or
"aP to put them back. In fact, you can switch and edit another file
before you put the lines back, by giving a command of the form :e
nameCR where name is the name of the other file you want to edit.
You will have to write back the contents of the current editor buffer
(or discard them) if you have made changes before the editor will let
you switch to the other file. An ordinary delete command saves the
text in the unnamed buffer, so that an ordinary put can move it else-
where. However, the unnamed buffer is lost when you change files,
so to move text from one file to another you should use an unnamed
buffer.

4.4 Summary

t first non-white on line
$ end of line
) forward sentence
> forward paragraph
]] forward section
(backward sentence
-c backward paragraph
[[backward section
fx find x forward in line
p put text back, after cursor or below current line
y yank operator, for copies and moves

3—18 Programmer's Guide: CTIX Supplement

tr
FJC
P
Tx

up to x forward, for operators
f backward in line
put text back, before cursor or above current line
t backward in line

5. High Level Commands

5.1 Writing, Quitting, Editing New Files

So far we have seen how to enter vi and to write out our file using
either ZZ or :wCR. The first exits from the editor, (writing if changes
were made), the second writes and stays in the editor.

If you have changed the editor's copy of the file but do not wish to
save your changes, either because you messed up the file or decided
that the changes are not an improvement to the file, then you can
give the command :q!CR to quit from the editor without writing the
changes. You can also reedit the same file (starting over) by giving
the command :e!CR. These commands should be used only rarely,
and with caution, as it is not possible to recover the changes you have
made after you discard them in this manner.

You can edit a different file without leaving the editor by giving the
command :e name CR. If you have not written out your file before
you try to do this, then the editor will tell you this, and delay editing
the other file. You can then give the command :wCR to save your
work and then the :e nameCR command again, or carefully give the
command :e! nameCR, which edits the other file discarding the
changes you have made to the current file. To have the editor
automatically save changes, include set autowrite in your EXINIT,
and use :n instead of :e.

5.2 Escaping to a Shell

You can get to a shell to execute a single command by giving a vi
command of the form :lcmdCR. The system will run the single com-
mand cmd and when the command finishes, the editor will ask you to
hit a RETURN to continue. When you have finished looking at the
output on the screen, you should hit RETURN and the editor will
clear the screen and redraw it. You can then continue editing. You

An Introduction to Display Editing with VI 4—19

can also give another : command when it asks you for a RETURN; in
this case the screen will not be redrawn.

If you wish to execute more than one command in the shell, then you
can give the command :shCR. This will give you a new shell, and
when you finish with the shell, ending it by typing a ~D, the editor
will clear the screen and continue.

On systems which support it, ~Z will suspend the editor and return to
the (top level) shell. When the editor is resumed, the screen will be
redrawn.

5.3 Marking and Returning

The command " " returns to the previous place after a motion of the
cursor by a command such as /, ? or G. You can also mark lines in
the file with single letter tags and return to these marks later by nam-
ing the tags. Try marking the current line with the command rrur,
where you should pick some letter for x, say 'a ' . Then move the cur-
sor to a different line (any way you like) and hit " a. The cursor will
return to the place which you marked. Marks last only until you edit
another file.

When using operators such as d and referring to marked lines, it is
often desirable to delete whole lines rather than deleting to the exact
position in the line marked by m. In this case you can use the form
'x rather than Used without an operator, 'x will move to the
first non-white character of the marked line; similarly ' ' moves to
the first non-white character of the line containing the previous con-
text mark " " .

5.4 Adjusting the Screen

If the screen image is messed up because of a transmission error to
your terminal, or because some program other than the editor wrote
output to your terminal, you can hit a ~L, the ASCII form-feed char-
acter, to cause the screen to be refreshed.

On a dumb terminal, if there are Q lines in the middle of the screen
as a result of line deletion, you may get rid of these lines by typing
" R to cause the editor to retype the screen, closing up these holes.

3—20 Programmer's Guide: CTIX Supplement

Finally, if you wish to place a certain line on the screen at the top
middle or bottom of the screen, you can position the cursor to that
line, and then give a z command. You should follow the z command
with a RETURN if you want the line to appear at the top of the win-
dow, a . if you want it at the center, or a - if you want it at the bot-
tom.

6. Special Topics

6.1 Editing on Slow Terminals

When you are on a slow terminal, it is important to limit the amount
of output which is generated to your screen so that you will not suffer
long delays, waiting for the screen to be refreshed. We have already
pointed out how the editor optimizes the updating of the screen dur-
ing insertions on dumb terminals to limit the delays, and how the edi-
tor erases lines to Q when they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the
slowopen option. You can force the editor to use this mode even on
faster terminals by giving the command :se slowCR. If your system is
sluggish this helps lessen the amount of output coming to your termi-
nal. You can disable this option by :se noslowCR.

The editor can simulate an intelligent terminal on a dumb one. Try
giving the command :se redrawCR. This simulation generates a great
deal of output and is generally tolerable only on lightly loaded systems
and fast terminals. You can disable this by giving the command :se
noredrawCR.

The editor also makes editing more pleasant at low speed by starting
editing in a small window, and letting the window expand as you edit.
This works particularly well on intelligent terminals. The editor can
expand the window easily when you insert in the middle of the screen
on these terminals. If possible, try the editor on an intelligent termi-
nal to see how this works.

You can control the size of the window which is redrawn each time
the screen is cleared by giving window sizes as argument to the com-
mands which cause large screen motions:

Thus if you are searching for a particular instance of a common string

An Introduction to Display Editing with VI 4—21

in a file you can precede the first search command by a small
number, say 3, and the editor will draw three line windows around
each instance of the string which it locates.

You can easily expand or contract the window, placing the current
line as you choose, by giving a number on a z command, after the z
and before the following RETURN, . or - . Thus the command z5.
redraws the screen with the current line in the center of a five line
window.16

If the editor is redrawing or otherwise updating large portions of the
display, you can interrupt this updating by hitting a DEL or RUB as
usual. If you do this you may partially confuse the editor about what
is displayed on the screen. You can still edit the text on the screen if
you wish; clear up the confusion by hitting a ~L; or move or search
again, ignoring the current state of the display.

See section 8.8 on open mode for another way to use the vi command
set on slow terminals.

6.2 Options, Set, and Editor Startup Files

The editor has a set of options, some of which have been mentioned
above. The most useful options are given in the following table.

16. Note that the command 5z. has an entirely different effect , placing line 5 in the
center of a new window.

3—22 Programmer's Guide: CTIX Supplement

Name Default Description

autoindent noai Supply indentation automatically
autowrite noaw Automatic write before :n, :ta, ~ t, !
ignorecase noic Ignore case in searching
lisp nolisp (-C) > commands deal with S-

expressions
list nolist Tabs print as "I; end of lines marked

with $
magic nomagic The characters . [and * are special in

scans
number nonu Lines are displayed prefixed with line

numbers
paragraphs para= Macro names which start paragraphs

IPLPPPQPbpP
T T

redraw
. l i

nore Simulate a smart terminal on a dumb
one

sections sect= Macro names which start new sections
NHSHH HU

shiftwidth sw=8 Shift distance for <, > and input ~D
and "T

showmatch nosm Show matching (or -C as) or > is
typed

slowopen slow Postpone display updates during
inserts

term dumb The kind of terminal you are using

The options are of three kinds: numeric options, string options, and
toggle options. You can set numeric and string options by a state-
ment of the form

set opt=val

and toggle options can be set or unset by statements of one of the
forms

set opt
set no opt

These statements can be placed in your EXINIT in your environ-
ment, or given while you are running vi by preceding them with a :
and following them with a CR.

You can get a list of all options which you have changed by the com-
mand :setCR, or the value of a single option by the command :set
optlCR. A list of all possible options and their values is generated by

An Introduction to Display Editing with VI 4—23

:set allCR. Set can be abbreviated se. Multiple options can be placed
on one line, e.g. :se ai aw nuCR.

Options set by the set command only last while you stay in the editor.
It is common to want to have certain options set whenever you use
the editor. This can be accomplished by creating a list of ex com-
mands17 which are to be run every time you start up ex, edit, or vi.
A typical list includes a set command, and possibly a few map com-
mands. Since it is advisable to get these commands on one line, they
can be separated with the I character, for example:

set ai aw terse I map Q dd I map # x

which sets the options autoindent, autowrite, terse, (the set command),
makes Q delete a line, (the first map), and makes # delete a charac-
ter, (the second map). (See section 6.9 for a description of the map
command) This string should be placed in the variable EXINIT in
your environment. If you use the shell csh, put this line in the file
.login in your home directory:

setenv EXINIT 'set ai aw terse I map Q dd I map # x '

If you use the standard shell sh, put these lines in the file .profile in
your home directory:

EXINIT= 'set ai aw terse I map Q dd I map # x '
export EXINIT

Of course, the particulars of the line would depend on which options
you wanted to set.

6.3 Recovering Lost Lines

You might have a serious problem if you delete a number of lines and
then regret that they were deleted. Despair not, the editor saves the
last 9 deleted blocks of text in a set of numbered registers 1-9. You
can get the n'th previous deleted text back in your file by the com-
mand "rcp. The " here says that a buffer name is to follow, n is the
number of the buffer you wish to try (use the number 1 for now),
and p is the put command, which puts text in the buffer after the cur-
sor. If this doesn't bring back the text you wanted, hit u to undo this

17. All commands which start with : are ex commands.

3—24 Programmer's Guide: CTIX Supplement

and then . (period) to repeat the put command. In general the .
command will repeat the last change you made. As a special case,
when the last command refers to a numbered text buffer, the . com-
mand increments the number of the buffer before repeating the com-
mand. Thus a sequence of the form

" lpu.u.u.

will, if repeated long enough, show you all the deleted text which has
been saved for you. You can omit the u commands here to gather up
all this text in the buffer, or stop after any . command to keep just
the then recovered text. The command P can also be used rather
than p to put the recovered text before rather than after the cursor.

6.4 Recovering Lost Files

If the system crashes, you can recover the work you were doing to
within a few changes. You will normally receive mail when you next
login giving you the name of the file which has been saved for you.
You should then change to the directory where you were when the
system crashed and give a command of the form:

% vi - r name

replacing name with the name of the file which you were editing.
This will recover your work to a point near where you left off.18

You can get a listing of the files which are saved for you by giving the
command:

% vi - r

If there is more than one instance of a particular file saved, the editor
gives you the newest instance each time you recover it. You can thus
get an older saved copy back by first recovering the newer copies.

For this feature to work, vi must be correctly installed by a super user
on your system, and the mail program must exist to receive mail.

18. In rare cases, some of the lines of the file may be lost. The editor will give you
the numbers of these lines and the text of the lines will be replaced by the
string " L O S T " . These lines will almost always be among the last few which
you changed. You can either choose to discard the changes which you made
(if they are easy to remake) or to replace the few lost lines by hand.

An Introduction to Display Editing with VI 4—25

The invocation "vi -r" will not always list all saved files, but they can
be recovered even if they are not listed.

6.5 Continuous Text Input

When you are typing in large amounts of text it is convenient to have
lines broken near the right margin automatically. You can cause this
to happen by giving the command :se wm=10CR. This causes all
lines to be broken at a space at least 10 columns from the right hand
edge of the screen.

If the editor breaks an input line and you wish to put it back together
you can tell it to join the lines with J. You can give J a count of the
number of lines to be joined as in 3J to join 3 lines. The editor sup-
plies white space, if appropriate, at the juncture of the joined lines,
and leaves the cursor at this white space. You can kill the white
space with x if you don't want it.

6.6 Features for Editing Programs

The editor has a number of commands for editing programs. The
thing that most distinguishes editing of programs from editing of text
is the desirability of maintaining an indented structure to the body of
the program. The editor has a autoindent facility for helping you gen-
erate correctly indented programs.

To enable this facility you can give the command :se aiCR. Now try
opening a new line with o and type some characters on the line after a
few tabs. If you now start another line, notice that the editor sup-
plies white space at the beginning of the line to line it up with the
previous line. You cannot backspace over this indentation, but you
can use ~D key to backtab over the supplied indentation.

Each time you type ~D you back up one position, normally to an 8
column boundary. This amount is settable; the editor has an option
called shiftwidth which you can set to change this value. Try giving
the command :se sw=4CR and then experimenting with autoindent
again.

For shifting lines in the program left and right, there are operators <
and >. These shift the lines you specify right or left by one
shiftwidth. Try << and >> which shift one line left or right, and <L

3—26 Programmer's Guide: CTIX Supplement

and >L shifting the rest of the display left and right.

If you have a complicated expression and wish to see how the
parentheses match, put the cursor at a left or right parenthesis and hit
%. This will show you the matching parenthesis. This works also for
braces { and >, and brackets [and].

If you are editing C programs, you can use the [[and]] keys to
advance or retreat to a line starting with a -C, i.e. a function declara-
tion at a time. When]] is used with an operator it stops after a line
which starts with >; this is sometimes useful with y]].

6.7 Filtering Portions of the Buffer

You can run system commands over portions of the buffer using the
operator !. You can use this to sort lines in the buffer, or to refor-
mat portions of the buffer with a pretty-printer. Try typing in a list
of random words, one per line and ending them with a blank line.
Back up to the beginning of the list, and then give the command
!>sortCR. This says to sort the next paragraph of material, and the
blank line ends a paragraph.

6.8 C o m m a n d s for Editing LISP

If you are editing a LISP program you should set the option lisp by
doing :se lispCR. This changes the (and) commands to move back-
ward and forward over s-expressions. The -C and > commands are
like (and) but don't stop at atoms. These can be used to skip to the
next list, or through a comment quickly.

The autoindent option works differently for LISP, supplying indent to
align at the first argument to the last open list. If there is no such
argument then the indent is two spaces more than the last level.

There is another option which is useful for typing in LISP, the
showmatch option. Try setting it with :se smCR and then try typing a
'(' some words and then a ') '. Notice that the cursor shows the posi-
tion of the '(' which matches the ') ' briefly. This happens only if the
matching '(' is on the screen, and the cursor stays there for at most
one second.

The editor also has an operator to realign existing lines as though
they had been typed in with lisp and autoindent set. This is the =

An Introduction to Display Editing with VI 4—27

operator. Try the command - % at the beginning of a function. This
will realign all the lines of the function declaration.

When you are editing LISP,, the [[and]] advance and retreat to lines
beginning with a (, and are useful for dealing with entire function
definitions.

6.9 Macros

Vi has a parameterless macro facility, which lets you set it up so that
when you hit a single keystroke, the editor will act as though you had
hit some longer sequence of keys. You can set this up if you find
yourself typing the same sequence of commands repeatedly.

Briefly, there are two flavors of macros:

a) Ones where you put the macro body in a buffer register, say x.
You can then type Qx to invoke the macro. The Q may be fol-
lowed by another Q to repeat the last macro.

b) You can use the map command from vi (typically in your
EXINIT) with a command of the form:

:map Ihs rhsCR

mapping Ihs into rhs. There are restrictions: Ihs should be one
keystroke (either 1 character or one function key) since it must
be entered within one second (unless notimeout is set, in which
case you can type it as slowly as you wish, and vi will wait for
you to finish it before it echoes anything). The Ihs can be no
longer than 10 characters, the rhs no longer than 100. To get a
space, tab or newline into Ihs or rhs you should escape them
with a ~V. (It may be necessary to double the "V if the map
command is given inside vi, rather than in ex.) Spaces and tabs
inside the rhs need not be escaped.

Thus to make the q key write and exit the editor, you can give the
command

:map q :wq~V~VCR CR

which means that whenever you type q, it will be as though you had
typed the four characters :wqCR. A ~V's is needed because without
it the CR would end the : command, rather than becoming part of the
map definition. There are two "V's because from within vi, two "V's
must be typed to get one. The first CR is part of the rhs, the second
terminates the : command.

3—28 Programmer's Guide: CTIX Supplement

Macros can be deleted with

unmap lhs

If the lhs of a macro is " # 0 " through "#9" , this maps the particular
function key instead of the 2 character " # " sequence. So that termi-
nals without function keys can access such definitions, the form "#x"
will mean function key x on all terminals (and need not be typed
within one second.) The character " # " can be changed by using a
macro in the usual way:

:map ~V~V~I #

to use tab, for example. (This won't affect the map command, which
still uses # , but just the invocation from visual mode.

The undo command reverses an entire macro call as a unit, if it made
any changes.

Placing a '!' after the word map causes the mapping to apply to input
mode, rather than command mode. Thus, to arrange for "T to be
the same as 4 spaces in input mode, you can type:

m a p ~T "Vbbfeto

where b is a blank. The "V is necessary to prevent the blanks from
being taken as white space between the lhs and rhs.

7. Word Abbreviations

A feature similar to macros in input mode is word abbreviation. This
allows you to type a short word and have it expanded into a longer
word or words. The commands are : abbreviate and :unabbreviate
(:ab and :una) and have the same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word "eecs" to always be changed into the phrase "Electri-
cal Engineering and Computer Sciences". Word abbreviation is dif-
ferent from macros in that only whole words are affected. If "eecs"
were typed as part of a larger word, it would be left alone. Also, the
partial word is echoed as it is typed. There is no need for an abbrevi-
ation to be a single keystroke, as it should be with a macro.

An Introduction to Display Editing with VI 4—29

7.1 Abbreviations

The editor has a number of short commands which abbreviate longer
commands which we have introduced here. You can find these com-
mands easily on the quick reference card. They often save a bit of
typing and you can learn them as convenient.

8. Nitty-gritty Details

8.1 Line Representation in the Display

The editor folds long logical lines onto many physical lines in the
display. Commands which advance lines advance logical lines and
will skip over all the segments of a line in one motion. The com-
mand I moves the cursor to a specific column, and may be useful for
getting near the middle of a long line to split it in half. Try 80 I on a
line which is more than 80 columns long.1

The editor only puts full lines on the display; if there is not enough
room on the display to fit a logical line, the editor leaves the physical
line empty, placing only an Q on the line as a place holder. When
you delete lines on a dumb terminal, the editor will often just clear
the lines to Q to save time (rather than rewriting the rest of the
screen.) You can always maximize the information on the screen by
giving the ~R command.

If you wish, you can have the editor place line numbers before each
line on the display. Give the command :se nuCR to enable this, and
the command :se nonuCR to turn it off. You can have tabs
represented as "I and the ends of lines indicated with '$' by giving
the command :se listCR; :se nolistCR turns this off.

Finally, lines consisting of only the character are displayed when
the last line in the file is in the middle of the screen. These represent
physical lines which are past the logical end of file.

19. You can make long lines very easily by using J to join together short lines.

3—30 Programmer's Guide: CTIX Supplement

8.2 Counts

Most v; commands will use a preceding count to affect their behavior
in some way. The following table gives the common ways in which
the counts are used:

new window size : / ? [[]] "
scroll amount ~D ~U
line/column number z G I
repeat effect most of the rest

The editor maintains a notion of the current default window size. On
terminals which run at speeds greater than 1200 baud the editor uses
the full terminal screen. On terminals which are slower than 1200
baud (most dialup lines are in this group) the editor uses 8 lines as
the default window size. At 1200 baud the default is 16 lines.

This size is the size used when the editor clears and refills the screen
after a search or other motion moves far from the edge of the current
window. The commands which take a new window size as count all
often cause the screen to be redrawn. If you anticipate this, but do
not need as large a window as you are currently using, you may wish
to change the screen size by specifying the new size before these com-
mands. In any case, the number of lines used on the screen will
expand if you move off the top with a - or similar command or off
the bottom with a command such as R E T U R N or ~ D . The window
will revert to the last specified size the next time it is cleared and
refilled.20

The scroll commands ~D and ~U likewise remember the amount of
scroll last specified, using half the basic window size initially. The
simple insert commands use a count to specify a repetition of the
inserted text. Thus 80a+—ESC will insert a grid-like string of text.
A few commands also use a preceding count as a line or column
number.

Except for a few commands which ignore any counts (such as ~R),
the rest of the editor commands use a count to indicate a simple
repetition of their effect. Thus 5w advances five words on the
current line, while 5RETURN advances five lines. A very useful
instance of a count as a repetition is a count given to the . command,

20. But not by a " L which just redraws the screen as it is.

An Introduction to Display Editing with VI 4—31

which repeats the "last changing command. If you do dw and then 3.,
you will delete first one and then three words. You can then delete
two more words with 2..

8.3 More File Manipulat ion Commands

The following table lis'< the tile manipulation commands which you
can use when vci- -re m w

: w
:wq
:x
:e nurnt
:e!

•• na
:e + >;
:e #
:w name
:vv! m:r\
: A . \ W

:r nara
:r \cmd
: 11
:n!
:n args
: t a l u g

All ot the*. .-re .oikw.-d by a CR or F.SC. The most basic
commands aie ^ •>•: 1 \ norm;;! editing session on a single file
will end wi-.i, n / . / ••>.. r >-ou ;.re editing for a long period of
time vuu j,.••„ C. - . • • . • S K ' - a. c.e lervaiie after major amounts of
editing, at,a ae.r, ', • 1; J.J Wt: \ou edit more than one
file, you cai: \ . > a , »»:'!: ;•. Ntart editing a new file by
giving a :e comm.aa;, >ct '••'<.'•• >a,: a'id use :n <file>.

If you make changes to the editor's copy of a file, but do not wish to
write them back, then vou must give an ! after the command you
would otherwise IN-, this forces the editor to discard any changes you
have made. I. se this carefully.

The :e command uai !>„ given a + argument to start at the end of the
file, or a +n argument :•> start at hne n. In actuality, n may be any
editor command no; .:or,mining a snare, usefully a scan like +lpat or

. a eav • a
* n:e • d -a .->,sar\; ,>nd aait (same as ZZ).

Cii'A;: ; : ;••>;:/ atta buffer
euit next 'lie argument iist
edit next tile, discarding changes to current
spaa? - argument list
id:t l ie wunt.t'ni.ii; :ae tag, at lag

4—32 Programmer s C-.'uie Cl'IX Supplement

+ 1pat. In forming new names to the e command, you can use the
character % which is replaced by the current file name, or the charac-
ter # which is replaced by the alternate file name. The alternate file
name is generally the last name you typed other than the current file.
Thus if you try to do a :e and get a diagnostic that you haven't writ-
ten the file, you can give a :w command and then a :e # command to
redo the previous :e.

You can write part of the buffer to a file by finding out the lines that
bound the range to be written using ~G, and giving these numbers
after the : and before the w, separated by ,'s. You can also mark
these lines with m and then use an address of the form ' x , ' y on the
w command here.

You can read another file into the buffer after the current line by
using the :r command. You can similarly read in the output from a
command, just use !cmd instead of a file name.

If you wish to edit a set of files in succession, you can give all the
names on the command line, and then edit each one in turn using the
command :n. It is also possible to respecify the list of files to be
edited by giving the :n command a list of file names, or a pattern to
be expanded as you would have given it on the initial v; command.

If you are editing large programs, you will find the :ta command very
useful. It utilizes a data base of function names and their locations,
which can be created by programs such as ctags, to quickly find a
function whose name you give. If the :ta command will require the
editor to switch files, then you must :w or abandon any changes
before switching. You can repeat the :ta command without any argu-
ments to look for the same tag again.

8.4 More About Searching for Strings

When you are searching for strings in the file with / and ?, the editor
normally places you at the next or previous occurrence of the string.
If you are using an operator such as d, c or y, then you may well
wish to affect lines up to the line before the line containing the pat-
tern. You can give a search of the form lpatl-n to refer to the «'th
line before the next line containing pat, or you can use + instead of -
to refer to the lines after the one containing pat. If you don't give a
line offset, then the editor will affect characters up to the match
place, rather than whole lines; thus use "+0" to affect to the line
which matches.

An Introduction to Display Editing with VI 4—33

You can have the editor ignore the case of words in the searches it
does by giving the command :se icCR. The command :se noicCR
turns this off.

Strings given to searches may actually be regular expressions. If you
do not want or need this facility, you should

set nomagic

in your E X I N I T . In this case, only the characters r and $ are special
in patterns. The character \ is also then special (as it is most every-
where in the system), and may be used to get at the an extended pat-
tern matching facility. It is also necessary to use a \ before a / in a
forward scan or a ? in a backward scan, in any case. The following
table gives the extended forms when magic is set.

t at beginning of pattern, matches beginning of line
$ at end of pattern, matches end of line

matches any character
\ < matches the beginning of a word
\ > matches the end of a word
[if/] matches any single character in str
[•.vrr] matches any single character not in str
[A—>•] matches any character between x and y
* matches any number of the preceding pattern

If you use nomagic mode, then the . [and * primitives are given with
a preceding \ .

8.5 More About Input Mode

There are a number of characters which you can use to make correc-
tions during input mode. These are summarized in the following
table.

" H deletes the last input character
~W deletes the last input word, defined as by b
erase your erase character, same as " H
kill your kill character, deletes the input on this line
\ escapes a following ~H and your erase and kill
ESC ends an insertion
DEL interrupts an insertion, terminating it abnormally
CR starts a new line
~D backtabs over autoindent

3—34 Programmer's Guide: CTIX Supplement

0~D kills all the autoindent
r~D same as 0~D, but restores indent next line
"V quotes the next non-printing character into the file

The most usual way of making corrections to input is by typing "H to
correct a single character, or by typing one or more "W's to back
over incorrect words. If you use # as your erase character in the nor-
mal system, it will work like ~H.

Your system kill character, normally 0 , "X or ~U, will erase all the
input you have given on the current line. In general, you can neither
erase input back around a line boundary nor can you erase characters
which you did not insert with this insertion command. To make
corrections on the previous line after a new line has been started you
can hit ESC to end the insertion, move over and make the correction,
and then return to where you were to continue. The command A
which appends at the end of the current line is often useful for con-
tinuing.

If you wish to type in your erase or kill character (say # or 0) then
you must precede it with a \ , just as you would do at the normal sys-
tem command level. A more general way of typing non-printing
characters into the file is to precede them with a ~V. The "V echoes
as a t character on which the cursor rests. This indicates that the edi-
tor expects you to type a control character. In fact you may type any
character and it will be inserted into the file at that point.21

If you are using autoindent you can backtab over the indent which it
supplies by typing a "D. This backs up to a shiftwidth boundary.
This only works immediately after the supplied autoindent.

When you are using autoindent you may wish to place a label at the
left margin of a line. The way to do this easily is to type t and then
~D. The editor will move the cursor to the left margin for one line,

21. This is not quite true. The implementation of the editor does not allow the
NULL (*0) character to appear in files. Also the LF (linefeed or " J) character
is used by the editor to separate lines in the file, so it cannot appear in the
middle of a line. You can insert any other character , however, if you wait for
the editor to echo the t before you type the character . In fact, the editor will
treat a following letter as a request for the corresponding control character .
This is the only way to type " S or " Q , since the system normally uses them to
suspend and resume output and never gives them to the editor to process.

An Introduction to Display Editing with VI 4—35

and restore the previous indent on the next. You can also type a 0
followed immediately by a ~D if you wish to kill all the indent and
not have it come back on the next line.

8.6 Upper Case Only Terminals

If your terminal has only upper case, you can still use vi by using the
normal system convention for typing on such a terminal. Characters
which you normally type are converted to lower case, and you can
type upper case letters by preceding them with a \ . The characters {
~ > I ~ are not available on such terminals, but you can escape them
as \ (\ r \) \ ! These characters are represented on the display
in the same way they are typed.22

8.7 Vi and Ex

Vi is actually one mode of editing within the editor ex. When you
are running vi you can escape to the line oriented editor of ex by giv-
ing the command Q. All of the : commands which were introduced
above are available in ex. Likewise, most ex commands can be
invoked from vi using :. Just give them without the : and follow
them with a CR.

In rare instances, an internal error may occur in vi. In this case you
will get a diagnostic and be left in the command mode of ex. You
can then save your work and quit if you wish by giving a command x
after the : which ex prompts you with, or you can reenter vi by giving
ex a vi command.

There are a number of things which you can do more easily in ex
than in vi. Systematic changes in line oriented material are particu-
larly easy. You can read the advanced editing documents for the edi-
tor ed to find out a lot more about this style of editing. Experienced
users often mix their use of ex command mode and vi command
mode to speed the work they are doing.

22. The \ character you give will not echo until you type another key.

3—36 Programmer's Guide: CTIX Supplement

8.8 Open Mode: Vi on Hardcopy Terminals and
"glass tty's"

If you are on a hardcopy terminal or a terminal which does not have
a cursor which can move off the bottom line, you can still use the
command set of vi, but in a different mode. When you give a vi
command, the editor will tell you that it is using open mode. This
name comes from the open command in ex, which is used to get into
the same mode.

The only difference between visual mode and open mode is the way in
which the text is displayed.

In open mode the editor uses a single line window into the file, and
moving backward and forward in the file causes new lines to be
displayed, always below the current line. Two commands of vi work
differently in open: z and ~R. The z command does not take
parameters, but rather draws a window of context around the current
line and then returns you to the current line.

If you are on a hardcopy terminal, the ~R command will retype the
current line. On such terminals, the editor normally uses two lines to
represent the current line. The first line is a copy of the line as you
started to edit it, and you work on the line below this line. When
you delete characters, the editor types a number of Vs to show you
the characters which are deleted. The editor also reprints the current
line soon after such changes so that you can see what the line looks
like again.

It is sometimes useful to use this mode on very slow terminals which
can support vi in the full screen mode. You can do this by entering
ex and using an open command.

Acknowledgements

Bruce Englar encouraged the early development of this display editor.
Peter Kessler helped bring sanity to version 2's command layout. Bill
Joy wrote versions 1 and 2.0 through 2.7, and created the framework
that users see in the present editor. Mark Horton added macros and
other features and made the editor work on a large number of termi-
nals and Unix systems.

An Introduction to Display Editing with VI 4—37

Appendix: Character Functions

This appendix gives the uses the editor makes of each character. The
characters are presented in their order in the A S C I I character set:
Control characters come first, then most special characters, then the
digits, upper and then lower case characters.

For each character we tell a meaning it has as a command and any
meaning it has during an insert. If it has only meaning as a com-
mand, then only this is discussed. Section numbers in parentheses
indicate where the character is discussed; a T after the section
number means that the character is mentioned in a footnote.

" 0 Not a command character. If typed as the first character
of an insertion it is replaced with the last text inserted,
and the insert terminates. Only 128 characters are saved
from the last insert; if more characters were inserted the
mechanism is not available. A " 0 cannot be part of the
file due to the editor implementation (8.5f).

"A Unused.

~B Backward window. A count specifies repetition. Two
lines of continuity are kept if possible (2.1, 7.1, 8.2).

" C Unused.

~D As a command, scrolls down a half-window of text. A
count gives the number of (logical) lines to scroll, and is
remembered for future ~D and ~U commands (2.1, 8.2).
During an insert, backtabs over autoindent white space at
the beginning of a line (6.6, 8.5); this white space cannot
be backspaced over.

~E Exposes one more line below the current screen in the
file, leaving the cursor where it is if possible. (Version 3
only.)

~F Forward window. A count specifies repetition. Two
lines of continuity are kept if possible (2.1, 7.1, 8.2).

~G Equivalent to :fCR, printing the current file, whether it
has been modified, the current line number and the
number of lines in the file, and the percentage of the way
through the file that you are.

~H (BS) Same as left arrow. (See h). During an insert, eliminates
the last input character, backing over it but not erasing it;

3—38 Programmer 's Guide: CTIX Supplement

it remains so you can see what you typed if you wish to
type something only slightly different (2.4, 8.5).

I(TAB) Not a command character. When inserted it prints as
some number of spaces. When the cursor is at a tab char-
acter it rests at the last of the spaces which represent the
tab. The spacing of tabstops is controlled by the tabstop
option (4.1, 6.2).

J(LF) Same as down arrow (see j) .

K Unused.

L The ASCII formfeed character, this causes the screen to be
cleared and redrawn. This is useful after a transmission
error, if characters typed by a program other than the edi-
tor scramble the screen, or after output is stopped by an
interrupt (5.4, 8.2f).

M(CR) A carriage return advances to the next line, at the first
non-white position in the line. Given a count, it advances
that many lines. During an insert, a CR causes the insert
to continue onto another line.

N Same as down arrow (see j).

O Unused.

P Same as up arrow (see k).

Q Not a command character. In input mode, ~Q quotes the
next character, the same as "V, except that some teletype
drivers will eat the ~Q so that the editor never sees it.

R Redraws the current screen, eliminating logical lines not
corresponding to physical lines (lines with only a single 0
character on them). On hardcopy terminals in open
mode, retypes the current line (5.4, 8.1, 8.8).

S Unused. Some teletype drivers use "S to suspend output
until ~Q is pressed.

T Not a command character. During an insert, with autoin-
dent set and at the beginning of the line, inserts shiftwidth
white space.

U Scrolls the screen up, inverting ~D which scrolls down.
Counts work as they do for ~D, and the previous scroll
amount is common to both. On a dumb terminal, ~U
will often necessitate clearing and redrawing the screen
further back in the file (2.1, 8.2).

An Introduction to Display Editing with VI 4—39

"V Not a command character. In input mode, quotes the
next character so that it is possible to insert non-printing
and special characters into the file (6.9, 8.5).

~W Not a command character. During an insert, backs up as
b would in command mode; the deleted characters remain
on the display (see ~H) (8.5).

"X Unused.

~Y Exposes one more line above the current screen, leaving
the cursor where it is if possible. (No mnemonic value for
this key; however, it is next to ~U which scrolls up a
bunch.) (Version 3 only.)

~Z If supported by the Unix system, stops the editor, exiting
to the top level shell. Same as :stopCR. Otherwise,
unused.

(ESC) Cancels a partially formed command, such as a z when no
following character has yet been given; terminates inputs
on the last line (read by commands such as : / and ?);
ends insertions of new text into the buffer. If an ESC is
given when quiescent in command state, the editor rings
the bell or flashes the screen. You can thus hit ESC if you
don't know what is happening till the editor rings the bell.
If you don't know if you are in insert mode you can type
ESCa, and then material to be input; the material will be
inserted correctly whether or not you were in insert mode
when you started (1.6, 3.1, 8.5).

~ I \ Unused.

Searches for the word which is after the cursor as a tag.
Equivalent to typing :ta, this word, and then a CR.
Mnemonically, this command is "go right to" (8.3).

~ t Equivalent to :e #CR, returning to the previous position
in the last edited file, or editing a file which you specified
if you got a "No write since last change diagnostic" and
do not want to have to type the file name again (8.3).
(You have to do a :w before ~ r will work in this case. If
you do not wish to write the file you should do :e! #CR
instead.)

Unused. Reserved as the command character for the
Tektronix 4025 and 4027 terminal.

3—40 Programmer's Guide: CTIX Supplement

SPACE Same as right arrow (see 1).

! An operator, which processes lines from the buffer with
reformatting commands. Follow ! with the object to be
processed, and then the command name terminated by
CR. Doubling ! and preceding it by a count causes count
lines to be filtered; otherwise the count is passed on to the
object after the !. Thus 2!> 1/mfCR reformats the next
two paragraphs by running them through the program fmt.
If you are working on LISP, the command \%grindCR,23

given at the beginning of a function, will run the text of
the function through the LISP grinder (6.7, 8.3). To read
a file or the output of a command into the buffer use :r
(8.3). To simply execute a command use :! (8.3).

" Precedes a named buffer specification. There are named
buffers 1-9 used for saving deleted text and named
buffers a-z into which you can place text (4.3, 6.3)

The macro character which, when followed by a number,
will substitute for a function key on terminals without
function keys (6.9). In input mode, if this is your erase
character, it will delete the last character you typed in
input mode, and must be preceded with a \ to insert it,
since it normally backs over the last input character you
gave.

$ Moves to the end of the current line. If you :se IistCR,
then the end of each line will be shown by printing a $
after the end of the displayed text in the line. Given a
count, advances to the count'th following end of line; thus
2$ advances to the end of the following line.

% Moves to the parenthesis or brace -C > which balances the
parenthesis or brace at the current cursor position.

& A synonym for :&CR, by analogy with the ex & com-
mand.

When followed by a ' returns to the previous context at
the beginning of a line. The previous context is set when-
ever the current line is moved in a non-relative way.

23. Both fmt and grind are Berkeley programs and may not be present at all
installations.

An Introduction to Display Editing with VI 4—41

When followed by a letter a-z, returns to the line which
was marked with this letter with a m command, at the
first non-white character in the line. (2.2, 5.3). When
used with an operator such as d, the operation takes place
over complete lines; if you use " , the operation takes
place from the exact marked place to the current cursor
position within the line.

(Retreats to the beginning of a sentence, or to the begin-
ning of a LISP s-expression if the lisp option is set. A sen-
tence ends at a . ! or ? which is followed by either the end
of a line or by two spaces. Any number of closing)] "
and ' characters may appear after the . ! or ?, and before
the spaces or end of line. Sentences also begin at para-
graph and section boundaries (see -C and [[below). A
count advances that many sentences (4.2, 6.8).

) Advances to the beginning of a sentence. A count repeats
the effect. See (above for the definition of a sentence
(4.2, 6.8).

* Unused.

+ Same as CR when used as a command.

, Reverse of the last f F t or T command, looking the other
way in the current line. Especially useful after hitting too
many ; characters. A count repeats the search.

- Retreats to the previous line at the first non-white charac-
ter. This is the inverse of + and R E T U R N . If the line
moved to is not on the screen, the screen is scrolled, or
cleared and redrawn if this is not possible. If a large
amount of scrolling would be required the screen is also
cleared and redrawn, with the current line at the center
(2.3).

Repeats the last command which changed the buffer.
Especially useful when deleting words or lines; you can
delete some words/lines and then hit . to delete more and
more words/lines. Given a count, it passes it on to the
command being repeated. Thus after a 2dvv, 3. deletes
three words (3.3, 6.3, 8.2, 8.4).

/ Reads a string from the last line on the screen, and scans
forward for the next occurrence of this string. The nor-
mal input editing sequences may be used during the input
on the bottom line; an returns to command state without

3—42 Programmer's Guide: CTIX Supplement

ever searching. The search begins when you hit CR to ter-
minate the pattern; the cursor moves to the beginning of
the last line to indicate that the search is in progress; the
search may then be terminated with a DEL or RUB, or by
backspacing when at the beginning of the bottom line,
returning the cursor to its initial position. Searches nor-
mally wrap end-around to find a string anywhere in the
buffer.

When used with an operator the enclosed region is nor-
mally affected. By mentioning an offset from the line
matched by the pattern you can force whole lines to be
affected. To do this give a pattern with a closing a clos-
ing / and then an offset +n or -n.

To include the character / in the search string, you must
escape it with a preceding \ . A t at the beginning of the
pattern forces the match to occur at the beginning of a
line only; this speeds the search. A $ at the end of the
pattern forces the match to occur at the end of a line
only. More extended pattern matching is available, see
section 7.4; unless you set nomagic in your .exrc file you
will have to preceed the characters . [* and ~ in the
search pattern with a \ to get them to work as you would
naively expect (1.6, 2.2, 6.1, 8.2, 8.4).

0 Moves to the first character on the current line. Also
used, in forming numbers, after an initial 1-9.

1-9 Used to form numeric arguments to commands (2.3, 8.2).

: A prefix to a set of commands for file and option manipu-
lation and escapes to the system. Input is given on the
bottom line and terminated with an CR, and the command
then executed. You can return to where you were by hit-
ting DEL or RUB if you hit : accidentally (see primarily
6.2 and 8.3).

; Repeats the last single character find which used f F t or
T. A count iterates the basic scan (4.1).

< An operator which shifts lines left one shiftwidth, nor-
mally 8 spaces. Like all operators, affects lines when
repeated, as in <<. Counts are passed through to the
basic object, thus 3<< shifts three lines (6.6, 8.2).

= Reindents line for LISP, as though they were typed in with
lisp and autoindent set (6.8).

An Introduction to Display Editing with VI 4—43

> An operator which shifts lines right one shiftwidth, nor-
mally 8 spaces. Affects lines when repeated as in >>.
Counts repeat the basic object (6.6, 8.2).

? Scans backwards, the opposite of /. See the / description
above for details on scanning (2.2, 6.1, 8.4).

Q A macro character (6.9). If this is your kill character,
you must escape it with a \ to type it in during input
mode, as it normally backs over the input you have given
on the current line (3.1, 3.4, 8.5).

A Appends at the end of line, a synonym for $a (8.2).

B Backs up a word, where words are composed of non-
blank sequences, placing the cursor at the beginning of
the word. A count repeats the effect (2.4).

C Changes the rest of the text on the current line; a
synonym for c$.

D Deletes the rest of the text on the current line; a synonym
for d$.

E Moves forward to the end of a word, defined as blanks
and non-blanks, like B and VV. A count repeats the
effect.

F Finds a single following character, backwards in the
current line. A count repeats this search that manv times
(4.1).

G Goes to the line number given as preceding argument, or
the end of the file if no preceding count is given. The
screen is redrawn with the new current line in the center
if necessary (2.2).

H Home arrow. Homes the cursor to the top line on the
screen. If a count is given, then the cursor is moved to
the count'th line on the screen. In any case the cursor is
moved to the first non-white character on the line. If
used as the target of an operator, full lines are affected
(2.3, 3.2).

I Inserts at the beginning of a line; a synonym for ti.

J Joins together lines, supplying appropriate white space:
one space between words, two spaces after a ., and no

3—44 Programmer's Guide: CTIX Supplement

spaces at all if the first character of the joined on line is).
A count causes that many lines to be joined rather than
the default two (6.5, 8.If) .

K Unused.

L Moves the cursor to the first non-white character of the
last line on the screen. With a count, to the first non-
white of the count'th line from the bottom. Operators
affect whole lines when used with L (2.3).

M Moves the cursor to the middle line on the screen, at the
first non-white position on the line (2.3).

N Scans for the next match of the last pattern given to / or
?, but in the reverse direction; this is the reverse of n.

O Opens a new line above the current line and inputs text
there up to an ESC. A count can be used on dumb termi-
nals to specify a number of lines to be opened; this is gen-
erally obsolete, as the slowopen option works better (3.1).

P Puts the last deleted text back before/above the cursor.
The text goes back as whole lines above the cursor if it
was deleted as whole lines. Otherwise the text is inserted
between the characters before and at the cursor. May be
preceded by a named buffer specification "x to retrieve
the contents of the buffer; buffers 1-9 contain deleted
material, buffers a -z are available for general use (4.3).

Q Quits from vi to ex command mode. In this mode, whole
lines form commands, ending with a R E T U R N . You can
give all the : commands; the editor supplies the : as a
prompt (8.7).

R Replaces characters on the screen with characters you type
(overlay fashion). Terminates with an ESC.

S Changes whole lines, a synonym for cc. A count substi-
tutes for that many lines. The lines are saved in the
numeric buffers, and erased on the screen before the sub-
stitution begins.

T Takes a single following character, locates the character
before the cursor in the current line, and places the cursor
just after that character. A count repeats the effect.
Most useful with operators such as d (4.1).

U Restores the current line to its state before you started
changing it (3.5).

An Introduction to Display Editing with VI 4—45

V Unused.

W Moves forward to the beginning of a word in the current
line, where words are defined as sequences of blank/non-
blank characters. A count repeats the effect (2.4).

X Deletes the character before the cursor. A count repeats
the effect, but only characters on the current line are
deleted.

Y Yanks a copy of the current line into the unnamed buffer,
to be put back by a later p or P; a very useful synonym
for yy. A count yanks that many lines. May be preceded
by a buffer name to put lines in that buffer (4.3).

ZZ Exits the editor. (Same as :xCR.) If any changes have
been made, the buffer is written out to the current file.
Then the editor quits.

[[Backs up to the previous section boundary. A section
begins at each macro in the sections option, normally a
' . N H ' or ' .SH' and also at lines which which start with a
formfeed ~L. Lines beginning with { also stop [[; this
makes it useful for looking backwards, a function at a
time, in C programs. If the option lisp is set, stops at
each (at the beginning of a line, and is thus useful for
moving backwards at the top level LISP objects. (4.2, 6.1,
6 . 6 , 8 . 2) .

\ Unused.

]] Forward to a section boundary, see [[for a definition
(4.2, 6.1, 6.6, 8.2).

r Moves to the first non-white position on the current line
(4.4).

_ Unused.

When followed by a * returns to the previous context.
The previous context is set whenever the current line is
moved in a non-relative way. When followed by a letter
a -z , returns to the position which was marked with this
letter with a m command. When used with an operator
such as d, the operation takes place from the exact
marked place to the current position within the line; if
you use the operation takes place over complete lines
(2.2, 5.3).

3—46 Programmer's Guide: CTIX Supplement

a Appends arbitrary text after the current cursor position;
the insert can continue onto multiple lines by using
RETURN within the insert. A count causes the inserted
text to be replicated, but only if the inserted text is all on
one line. The insertion terminates with an ESC (3.1, 8.2).

b Backs up to the beginning of a word in the current line.
A word is a sequence of alphanumerics, or a sequence of
special characters. A count repeats the effect (2.4).

c An operator which changes the following object, replacing
it with the following input text up to an ESC. If more
than part of a single line is affected, the text which is
changed away is saved in the numeric named buffers. If
only part of the current line is affected, then the last char-
acter to be changed away is marked with a $. A count
causes that many objects to be affected, thus both 3c) and
c3) change the following three sentences (8.4).

d A n operator which deletes the following object. If more
than part of a line is affected, the text is saved in the
numeric buffers. A count causes that many objects to be
affected; thus 3dw is the same as d3w (3.3, 3.4, 4.1, 8.4).

e Advances to the end of the next word, defined as for b
and w. A count repeats the effect (2.4, 3.1).

f Finds the first instance of the next character following the
cursor on the current line. A count repeats the find
(4.1).

g Unused.

h Left arrow. Moves the cursor one character to the left.
Like the other arrow keys, either h, the left arrow key,
or one of the synonyms (~H) has the same effect. On v2
editors, arrow keys on certain kinds of terminals (those
which send escape sequences, such as vt52, clOO, or hp)
cannot be used. A count repeats the effect (3.1, 8.5).

i Inserts text before the cursor, otherwise like a (8.2).

j Down arrow. Moves the cursor one line down in the
same column. If the position does not exist, vi comes as
close as possible to the same column. Synonyms include
"J (linefeed) and ~N.

k Up arrow. Moves the cursor one line up. *P is a
synonym.

An Introduction to Display Editing with VI 4—47

1 Right arrow. Moves the cursor one character to the
right. SPACE is a synonym.

m Marks the current position of the cursor in the mark
register which is specified by the next character a-z.
Return to this position or use with an operator using ~ or
' (5.3).

n Repeats the last / or ? scanning commands (2.2).

o Opens new lines below the current line; otherwise like O
(3.1).

p Puts text after/below the cursor; otherwise like P (6.3).

q Unused.

r Replaces the single character at the cursor with a single
character you type. The new character may be a
RETURN; this is the easiest way to split lines. A count
replaces each of the following count characters with the
single character given; see R above which is the more usu-
ally useful iteration of r (3.2).

s Changes the single character under the cursor to the text
which follows up to an ESC; given a count, that many-
characters from the current line are changed. The last
character to be changed is marked with $ as in c (3.2).

t Advances the cursor upto the character before the next
character typed. Most useful with operators such as d and
c to delete the characters up to a following character.
You can use . to delete more if this doesn't delete enough
the first time (4.1).

u Undoes the last change made to the current buffer. If
repeated, will alternate between these two states, thus is
its own inverse. When used after an insert which inserted
text on more than one line, the lines are saved in the
numeric named buffers (3.5).

v Unused.

w Advances to the beginning of the next word, as defined
by b (2.4).

x Deletes the single character under the cursor. With a
count deletes deletes that many characters forward from
the cursor position, but only on the current line (6.5).

3—48 Programmer's Guide: CTIX Supplement

An operator, yanks the following object into the unnamed
temporary buffer. If preceded by a named buffer specifi-
cation, "jc, the text is placed in that buffer also. Text can
be recovered by a later p or P (8.4).

Redraws the screen with the current line placed as speci-
fied by the following character: RETURN specifies the top
of the screen, . the center of the screen, and - at the bot-
tom of the screen. A count may be given after the z and
before the following character to specify the new screen
size for the redraw. A count before the z gives the
number of the line to place in the center of the screen
instead of the default current line. (5.4)

Retreats to the beginning of the beginning of the preced-
ing paragraph. A paragraph begins at each macro in the
paragraphs option, normally ' . IP' , ' .LP' , ' .PP' , ' .QP' and
' .bp'. A paragraph also begins after a completely empty
line, and at each section boundary (see [[above) (4.2,
6.8, 8.6).

Places the cursor on the character in the column specified
by the count (8.1, 8.2).

Advances to the beginning of the next paragraph. See -C
for the definition of paragraph (4.2, 6.8, 8.6).

Unused.

Interrupts the editor, returning it to command accepting
state (1.6, 8.5)

An Introduction to Display Editing with VI 4—49

5
Vi Command & Function Reference

1. Author's Disclaimer

This document does not claim to be 100% complete. There are a few
commands listed in the original document that I was unable to test
either because I do not speak lisp, because they required programs we
don't have, or because I wasn't able to make them work. In these
cases I left the command out. The commands listed in this document
have been tried and are known to work. It is expected that prospec-
tive users of this document will read it once to get the flavor of every-
thing that vi can do and then use it as a reference document. Experi-
mentation is recommended. If you don't understand a command, try
it and see what happens.

NOTE

In revising this document, I have attempted to make it com-
pletely reflect version 2.12 of vi. It does not attempt to docu-
ment the V A X version (version 3), but with one or two excep-
tions (wrapmargin, arrow keys) everything said about 2.12
should apply to 3.1. Mark Horton

Source: Alan P . W . Hewet t (Revised for version 2.12 by Mark Hor ton) , Vi Com-
mand & Function Reference (Berkeley, CA: University of California).

Vi Command c£ Function Reference 5—1

2. Notation

[option] is used to denote optional parts of a command. Many vi
commands have an optional count. [#] means that an optional
number may precede the command to multiply or iterate the com-
mand. -Cvariable item> is used to denote parts of the command
which must appear, but can take a number of different values.
<character [-character]> means that the character or one of the char-
acters in the range described between the two angle brackets is to be
typed. For example <esc> means the escape key is to be typed. <a-
z> means that a lower case letter is to be typed. ~<character>
means that the character is to be typed as a control character, that is,
with the <#!> key held down while simultaneously typing the speci-
fied character. In this document control characters will be denoted
using the upper case character, but ~<uppercase chr> and ~<lower-
case chr> are equivalent. That is, for example, <~D> is equal to
<~d>. The most common character abbreviations used in this list are
as follows:

<esc> escape, octal 033

<cr> carriage return, ~M, octal 015

<lf> linefeed ~J, octal 012

<nl> newline, ""J, octal 012 (same as linefeed)

<bs> backspace, ~H, octal 010

<tab> tab, ~I, octal 011

<bell> bell, ~G, octal 07

<ff> formfeed, ~L, octal 014

<sp> space, octal 040

 delete, octal 0177

3. Basics

To run vi the shell variable TERM must be defined and exported to
your environment. How you do this depends on which shell you are
using. You can tell which shell you have by the character it prompts
you for commands with. The Bourne shell prompts with '$', and the

3—2 Programmer's Guide: CTIX Supplement

C shell prompts with '%'. For these examples, we will suppose that
you are using an H P 2621 terminal, whose termcap name is "2621".

3.1 Bourne Shell

To manually set your terminal type to 2621 you would type:

TERM=2621
export TERM

There are various ways of having this automatically or semi-
automatically done when you log in. Suppose you usually dial in on a
2621. You want to tell this to the machine, but still have it work
when you use a hardwired terminal. The recommended way, if you
have the tset program, is to use the sequence

tset - s - d 2621 > tset$$
. tset$$
rm tset$$

in your .login (for csh) or the same thing using ' . ' instead of 'source'
in your .profile (for sh). The above line says that if you are dialing
in you are on a 2621, but if you are on a hardwired terminal it fig-
ures out your terminal type from an on-line list.

3.2 The C Shell

To manually set your terminal type to 2621 you would type:

setenv TERM 2621

There are various ways of having this automatically or semi-
automatically done when you log in. Suppose you usually dial in on a
2621. You want to tell this to the machine, but still have it work
when you use a hardwired terminal. The recommended way, if you
have the tset program, is to use the sequence

tset - s - d 2621 > tset$$
source tset$$
rm tset$$

in your .login.* The above line says that if you are dialing in you are

Vi Command c£ Function Reference 5—3

on a 2621, but if you are on a hardwired terminal it figures out your
terminal type from an on-line list.

4. Normal Commands

Vi is a visual editor with a window on the file. What you see on the
screen is vi's current notion of what your file will contain, (at this
point in the file), when it is written out. Most commands do not
cause any change in the screen until the complete command is typed.
Should you get confused while typing a command, you can abort the
command by typing an character. You will know you are back
to command level when you hear a <bell>. Usually typing an <esc>
will produce the same result. When vi gets an improperly formatted
command it rings the <bell>. Following are the vi commands broken
down by function.

4.1 Entry and Exit

To enter vi on a particular file, type

vi file

The file will be read in and the cursor will be placed at the beginning
of the first line. The first screenfull of the file will be displayed on
the terminal.

To get out of the editor, type

Z Z

If you are in some special mode, such as input mode or the middle of
a multi-keystroke command, it may be necessary to type <esc> first.

* On a version 6 system without environments, the invocation of tset is simpler,
just add the line "tset - d 2621" to your .login or .profile.

3—4 Programmer's Guide: CTIX Supplement

4.2 Cursor and Page Motion

NOTE

The arrow keys (see the next four commands) on certain kinds
of terminals will not work with the PDP-11 version of vi. The
control versions or the hjkl versions will work on any terminal.
Experienced users prefer the hjkl keys because they are always
right under their fingers. Beginners often prefer the arrow
keys, since they do not require memorization of which hjkl key
is which. The mnemonic value of hjkl is clear from looking at
the keyboard of an adm3a.

[#]<bs> or Move the cursor to the left one character. Cursor
[#]h or [#] - stops at the left margin of the page. If # is given,

these commands move that many spaces.

[#]~N or [#]j Move down one line. Moving off the screen scrolls
or [#] i or the window to force a new line onto the screen.
[#]<lf> Mnemonic: Next

[#]~P or [#]k Move up one line. Moving off the top of the screen
or [#] t forces new text onto the screen. Mnemonic: Previ-

[#]<sp> or Move to the right one character. Cursor will not go
[#]1 or [#]-• beyond the end of the line.

ous

Move the cursor up the screen to the beginning of
the next line. Scroll if necessary.

[#] + Move the cursor down the screen to the beginning
of the next line. Scroll up if necessary.

[#]$ Move the cursor to the end of the line. If there is a
count, move to the end of the line " # " lines for-
ward in the file.

Move the cursor to the beginning of the first word
on the line.

0 Move the cursor to the left margin of the current
line.

[#] l Move the cursor to the column specified by the
count. The default is column zero.

Vi Command c£ Function Reference 5—5

[#]w Move the cursor to the beginning of the next word.
If there is a count, then move forward that many
words and position the cursor at the beginning of
the word. Mnemonic: next-word

[#]W Move the cursor to the beginning of the next word
which follows a "white space" (<sp>, <tab>, or
<nl>). Ignore other punctuation.

[#]b Move the cursor to the preceding word. Mnemonic:
backup-word

[#]B Move the cursor to the preceding word that is
separated from the current word by a "white space"
(<sp>, <tab>, or <nl>).

[#]e Move the cursor to the end of the current word or
the end of the "#" th word hence. Mnemonic: end-
of-word

[#]E Move the cursor to the end of the current word
which is delimited by "white space" (<sp>, <tab>,
or <nl>).

[line Move the cursor to the line specified. Of particular
number]G use are the sequences "1G" and " G " , which move

the cursor to the beginning and the end of the file
respectively. Mnemonic: Go-to

NOTE

The next four commands (~D, ~U, ~F, ~B) are not true
motion commands, in that they cannot be used as the object of
commands such as delete or change.

[#]~D Move the cursor down in the file by " # " lines (or
the last " # " if a new count isn't given. The initial
default is half a page.) The screen is simultaneously
scrolled up. Mnemonic: Down

[#]~U Move the cursor up in the file by " # " lines. The
screen is simultaneously scrolled down. Mnemonic:
Up

[#]~F Move the cursor to the next page. A count moves
that many pages. Two lines of the previous page

3—6 Programmer's Guide: CTIX Supplement

are kept on the screen for continuity if possible.
Mnemonic: Forward-a-page

[#]~B Move the cursor to the previous page. Two lines of
the current page are kept if possible. Mnemonic:
Backup-a-page

[#](Move the cursor to the beginning of the next sen-
tence. A sentence is defined as ending with a " . " ,
" !" , or "?" followed by two spaces or a <nl>.

[#]) Move the cursor backwards to the beginning of a
sentence.

[#]> Move the cursor to the beginning of the next para-
graph. This command works best inside nroff docu-
ments. It understands two sets of nroff macros,
-ms and -mm, for which the commands " . IP" ,
" .LP" , " .PP" , " .QP" , " .P" , as well as the nroff
command " .bp" are considered to be paragraph del-
imiters. A blank line also delimits a paragraph.
The nroff macros that it accepts as paragraph delim-
iters is adjustable. See paragraphs under the Set
Commands section.

[#]{ Move the cursor backwards to the beginning of a
paragraph.

]] Move the cursor to the next "section", where a sec-
tion is defined by two sets of nroff macros, -ms and
-mm, in which " . N H " , " .SH" , and " . H " delimit a
section. A line beginning with a <ff><nl>
sequence, or a line beginning with a " < " are also
considered to be section delimiters. The last option
makes it useful for finding the beginnings of C func-
tions. The nroff macros that are used for section
delimiters can be adjusted. See sections under the
Set Commands section.

[[Move the cursor backwards to the beginning of a
section.

% Move the cursor to the matching parenthesis or
brace. This is very useful in C or lisp code. If the
cursor is sitting on a () { or } the cursor is moved
to the matching character at the other end of the
section. If the cursor is not sitting on a brace or a

Vi Command c£ Function Reference 5—7

parenthesis, vi searches forward until it finds one
and then jumps to the match mate.

[#]H If there is no count move the cursor to the top left
position on the screen. If there is a count, then
move the cursor to the beginning of the line " # "
lines from the top of the screen. Mnemonic: Home

[#]L If there is no count move the cursor to the begin-
ning of the last line on the screen. If there is a
count, then move the cursor to the beginning of the
line " # " lines from the bottom of the screen.
Mnemonic: Last

M Move the cursor to the beginning of the middle line
on the screen. Mnemonic: Middle

m<a-z> This command does not move the cursor, but it
marks the place in the file and the character "<a-
z>" becomes the label for referring to this location
in the file. See the next two commands.
Mnemonic: mark

NOTE

The mark command is not a motion, and
cannot be used as the target of commands
such as delete.

'<a-z> Move the cursor to the beginning of the line that is
marked with the label "<a-z>" .

" <a-z> Move the cursor to the exact position on the line
that was marked with with the label "<a-z>" .

Move the cursor back to the beginning of the line
where it was before the last "non-relative" move.
A "non-relative" move is something such as a
search or a jump to a specific line in the file, rather
than moving the cursor or scrolling the screen.

Move the cursor back to the exact spot on the line
where it was located before the last "non-relative"
move.

5—8 Programmer's Guide: CTIX Supplement

4.3 Searches

The following commands allow you to search for items in a file.

[#]f-Cchr> Search forward on the line for the next or " # " t h
occurrence of the character "chr". The cursor is placed
at the character of interest. Mnemonic: find character

[#]F-Cchr> Search backwards on the line for the next or " # " t h
occurrence of the character "chr". The cursor is placed
at the character of interest.

[#]t{chr> Search forward on the line for the next or " # " t h
occurrence of the character "chr". The cursor is placed
just preceding the character of interest. Mnemonic:
move cursor up to character

[#]T-Cchr> Search backwards on the line for the next or " # " t h
occurrence of the character "chr". The cursor is placed
just preceding the character of interest.

[#]; Repeat the last " f " , " F " , " t " or " T " command.

[#], Repeat the last " f" , " F " , " t " or " T " command, but in
the opposite search direction. This is useful if you
overshoot.

[#]/[string]/<nl>

Search forward for the next occurrence of "string".
Wrap around at the end of the file does occur. The
final </> is not required.

[#]?[string]?<nl>

Search backwards for the next occurrence of "string".
If a count is specified, the count becomes the new win-
dow size. Wrap around at the beginning of the file
does occur. The final <?> is not required.

n Repeat the last /[string]/ or ?[string]? search.
Mnemonic: next occurrence.

N Repeat the last /[string]/ or ?[string]? search, but in the
reverse direction.

:g/[string]/[editor command]<nl>

Using the : syntax it is possible to do global searches ala
the standard UNIX "ed" editor.

Vi Command c£ Function Reference 5—9

4.4 Text Insertion

The following commands allow for the insertion of text. All mul-
ticharacter text insertions are terminated with an <esc> character.
The last change can always be undone by typing a u. The text insert
in insertion mode can contain newlines.

a-Ctext><esc> Insert text immediately following the cursor posi-
tion. Mnemonic: append

A-(text><esc> Insert text at the end of the current line.
Mnemonic: Append

i-Ctext><esc> Insert text immediately preceding the cursor posi-
tion. Mnemonic: insert

I-Ctext><esc> Insert text at the beginning of the current line.

o-Ctext><esc> Insert a new line after the line on which the cursor
appears and insert text there. Mnemonic: open
new line

CKtext}<esc> Insert a new line preceding the line on which the
cursor appears and insert text there.

4.5 Text Deletion

The following commands allow the user to delete text in various
ways. All changes can always be undone by typing the u command.

[#]x Delete the character or characters starting at the
cursor position.

[#]X Delete the character or characters starting at the
character preceding the cursor position.

D Deletes the remainder of the line starting at the cur-
sor. Mnemonic: Delete the rest of line

[#]d<motion> Deletes one or more occurrences of the specified
motion. Any motion from sections 4.1 and 4.2 can
be used here. The d can be stuttered (e.g. [#]dd)
to delete # lines.

5—10 Programmer's Guide: CTIX Supplement

4.6 Text Replacement

The following commands allow the user to simultaneously delete and
insert new text. All such actions can be undone by typing u following
the command.

r<chr> Replaces the character at the current cursor posi-
tion with <chr>. This is a one character replace-
ment. No <esc> is required for termination.
Mnemonic: replace character

R-Ctext><esc> Starts overlaying the characters on the screen with
whatever you type. It does not stop until an <esc>
is typed.

[#]s-Ctext><esc> Substitute for " # " characters beginning at the
current cursor position. A "$" will appear at the
position in the text where the "# ' th character
appears so you will know how much you are eras-
ing. Mnemonic: substitute

[#]S-Ctext}<esc>

Substitute for the entire current line (or lines). If
no count is given, a "$" appears at the end of the
current line. If a count of more than 1 is given, all
the lines to be replaced are deleted before the
insertion begins.

[#]c{motion>-(text><esc>

Change the specified "motion" by replacing it with
the insertion text. A "$" will appear at the end of
the last item that is being deleted unless the dele-
tion involves whole lines. Motion's can be any
motion from sections 4.1 or 4.2. Stuttering the c
(e.g. [#]cc) changes # lines.

4.7 Moving Text

Vi provides a number of ways of moving chunks of text around.
There are nine buffers into which each piece of text which is deleted
or "yanked" is put in addition to the "undo" buffer. The most
recent deletion or yank is in the "undo" buffer and also usually in
buffer 1, the next most recent in buffer 2, and so forth. Each new

Vi Command c£ Function Reference 5—11

deletion pushes down all the older deletions. Deletions older than 9
disappear. There is also a set of named registers, a-z, into which text
can optionally be placed. If any delete or replacement type command
is preceded by "<a-z>, that named buffer will contain the text
deleted after the command is executed. For example, "a3dd will
delete three lines starting at the current line and put them in buffer
"a.* There are two more basic commands and some variations useful
in getting and putting text into a file.

[" <a-z>][#]y-Cmotion}

Yank the specified item or " # " items and put in
the "undo" buffer or the specified buffer. The
variety of "items" that can be yanked is the same
as those that can be deleted with the "d" command
or changed with the "c" command. In the same
way that "dd" means delete the current line and
"cc" means replace the current line, "yy" means
yank the current line.

["<a-z>][#]Y Yank the current line or the " # " lines starting
from the current line. If no buffer is specified,
they will go into the "undo" buffer, like any delete
would. It is equivalent to "yy". Mnemonic:
Yank

["<a-z>]p Put "undo" buffer or the specified buffer down
after the cursor. If whole lines were yanked or
deleted into the buffer, then they will be put down
on the line following the line the cursor is on. If
something else was deleted, like a word or sen-
tence, then it will be inserted immediately follow-
ing the cursor. Mnemonic: put buffer

It should be noted that text in the named buffers
remains there when you start editing a new file
with the :e File<esc> command. Since this is so, it
is possible to copy or delete text from one file and
carry it over to another file in the buffers. How-
ever, the undo buffer and the ability to undo are

* Refer r ing to an upper case letter as a buffer name (A-Z) is the same as
referr ing to the lower case letter, except that text placed in such a buf fer is
appended to it instead of replacing it.

5—12 Programmer's Guide: CTIX Supplement

lost when changing files.

["<a-z>]P Put "undo" buffer or the specified buffer down
before the cursor. If whole lines where yanked or
deleted into the buffer, then they will be put down
on the line preceding the line the cursor is on. If
something else was deleted, like a word or sen-
tence, then it will be inserted immediately preced-
ing the cursor.

[#]> {motion} The shift operator will right shift all the text from
the line on which the cursor is located to the line
where the motion is located. The text is shifted by
one shiftwidth. (See section 6.) >> means right
shift the current line or lines.

[#]<-Cmotion} The shift operator will left shift all the text from
the line on which the cursor is located to the line
where the item is located. The text is shifted by
one shiftwidth. (See section 6.) << means left
shift the current line or lines. Once the line has
reached the left margin it is not further affected.

[#]={motion} Prettyprints the indicated area according to lisp
conventions. The area should be a lisp s-
expression.

4.8 Miscellaneous Commands

Vi has a number of miscellaneous commands that are very useful.
They are:

Z Z This is the normal way to exit from vi. If any changes have
been made, the file is written out. Then you are returned
to the shell.

~ L Redraw the current screen. This is useful if someone
"write"s you while you are in "vi" or if for any reason gar-
bage gets onto the screen.

~R On dumb terminals, those not having the "delete line" func-
tion (the vtlOO is such a terminal), vi saves redrawing the
screen when you delete a line by just marking the line with
an "Q" at the beginning and blanking the line. If you want
to actually get rid of the lines marked with "Q" and see
what the page looks like, typing a " R will do this.

Vi Command c£ Function Reference 5—13

"Dot" is a particularly useful command. It repeats the last
text modifying command. Therefore you can type a com-
mand once and then to another place and repeat it by just
typing " . " .

u Perhaps the most important command in the editor, u
undoes the last command that changed the buffer.
Mnemonic: undo

U Undo all the text modifying commands performed on the
current line since the last time you moved onto it.

[#]J Join the current line and the following line. The <nl> is
deleted and the two lines joined, usually with a space
between the end of the first line and the beginning of what
was the second line. If the first line ended with a "period",
then two spaces are inserted. A count joins the next # lines.
Mnemonic: Join lines

Q Switch to ex editing mode. In this mode vi will behave very
much like ed. The editor in this mode will operate on single
lines normally and will not attempt to keep the "window"
up to date. Once in this mode it is also possible to switch to
the open mode of editing. By entering the command [line
number]open<nl> you enter this mode. It is similar to the
normal visual mode except the window is only one line long.
Mnemonic: Quit visual mode

An abbreviation for a tag command. The cursor should be
positioned at the beginning of a word. That word is taken
as a tag name, and the tag with that name is found as if it
had been typed in a :tag command.

[#]!-Cmotion>-CUNIX cmd><nl>

Any UNIX filter (e.g. command that reads the standard
input and outputs something to the standard output) can be
sent a section of the current file and have the output of the
command replace the original text. Useful examples are
programs like cb, sort, and nroff. For instance, using sort
it would be possible to sort a section of the current file into
a new list. Using !! means take a line or lines starting at the
line the cursor is currently on and pass them to the UNIX
command.

5—14 Programmer's Guide: CTIX Supplement

NOTE

To just escape to the shell for one command, use
:!-Ccmd}<nl>, see section 5.

z-C#}<nl>

This resets the current window size to " # " lines and redraws
the screen.

4.9 Special Insert Characters

There are some characters that have special meanings during insert
modes. They are:

"V During inserts, typing a "V allows you to quote control
characters into the file. Any character typed after the
"V will be inserted into the file.

[~]~Dor<~D> without any argument backs up one shiftwidth.
[0] ~ D This is necessary to remove indentation that was inserted

by the autoindent feature. ~<~D> temporarily removes
all the autoindentation, thus placing the cursor at the left
margin. On the next line, the previous indent level will
be restored. This is useful for putting "labels" at the left
margin. ()< ~ D> says remove all autoindents and stay that
way. Thus the cursor moves to the left margin and stays
there on successive lines until <tab>'s are typed. As with
the <tab>, the <~D> is only effective before any other
"non-autoindent" controlling characters are typed.
Mnemonic: Delete a shiftwidth

~ W If the cursor is sitting on a word, < ~ W> moves the cur-
sor back to the beginning of the word, thus erasing the
word from the insert. Mnemonic: erase Word

<bs> The backspace always serves as an erase during insert
modes in addition to your normal "erase" character. To
insert a <bs> into your file, use the <~V> to quote it.

Vi Command c£ Function Reference 5—15

5. : Commands

Typing a " : " during command mode causes vi to put the cursor at the
bottom on the screen in preparation for a command. In the " : "
mode, vi can be given most ed commands. It is also from this mode
that you exit from vi or switch to different files. All commands of
this variety are terminated by a <nl>, <cr>, or <esc>.

:w[!] [file] Causes vi to write out the current text to the disk. It is
written to the file you are editing unless "file" is sup-
plied. If "file" is supplied, the write is directed to that
file instead. If that file already exists, vi will not per-
form the write unless the " !" is supplied indicating you
really want to destroy the older copy of the file.

:q[!] Causes vi to exit. If you have modified the file you are
looking at currently and haven't written it out, vi will
refuse to exit unless the " !" is supplied.

:e[!] [+[cmd]] [file]

Start editing a new file called "file" or start editing the
current file over again. The command ":e!" says
"ignore the changes I've made to this file and start over
from the beginning". It is useful if you really mess up
the file. The optional " + " says instead of starting at
the beginning, start at the "end", or, if "cmd" is sup-
plied, execute "cmd" first. Useful cases of this are
where cmd is "n" (any integer) which starts at line
number n, and "/text", which searches for "text" and
starts at the line where it is found.

Switch back to the place you were before your last tag
command. If your last tag command stayed within the
file, ~ ~ returns to that tag. If you have no recent tag
command, it will return to the same place in the previ-
ous file that it was showing when you switched to the
current file.

:n[!] Start editing the next file in the argument list. Since vi
can be called with multiple file names, the " :n" com-
mand tells it to stop work on the current file and switch
to the next file. If the current file was modifies, it has
to be written out before the " :n" will work or else the
" !" must be supplied, which says discard the changes I
made to the current file.

5—16 Programmer's Guide: CTIX Supplement

:n[!] file [file file ...]

Replace the current argument list with a new list of files
and start editing the first file in this new list.

Read in a copy of "file" on the line after the cursor.

Execute the "cmd" and take its output and put it into
the file after the current line.

Execute any UNIX shell command.

Vi looks in the file named tags in the current directory.
Tags is a file of lines in the format:

tag filename vi-search-command

If vi finds the tag you specified in the :ta command, it
stops editing the current file if necessary and if the
current file is up to date on the disk and switches to the
file specified and uses the search pattern specified to
find the "tagged" item of interest. This is particularly
useful when editing multi-file C programs such as the
operating system. There is a program called ctags
which will generate an appropriate tags file for C and
f77 programs so that by saying :ta function <nl> you
will be switched to that function. It could also be use-
ful when editing multi-file documents, though the tags
file would have to be generated manually.

6. Special Arrangements for Startup

Vi takes the value of $TERM and looks up the characteristics of that
terminal in the file /etc/termcap. If you don't know vi's name for the
terminal you are working on, look in /etc/termcap.

When vi starts, it attempts to read the variable EXINIT from your
environment.* If that exists, it takes the values in it as the default
values for certain of its internal constants. See the section on "Set
Values" for further details. If EXINIT doesn't exist you will get all
the normal defaults.

* On version 6 systems: Instead of E X I N I T , put the startup commands in the
file .exrc in your home directory.

Vi Command c£ Function Reference 5—17

:r !cmd

:!cmd

:ta[!] tag

Should you inadvertently hang up the phone while inside vi, or should
the computer crash, all may not be lost. Upon returning to the sys-
tem, type:

vi - r file

This will normally recover the file. If there is more than one tem-
porary file for a specific file name, vi recovers the newest one. You
can get an older version by recovering the file more than once. The
command "vi -r" without a file name gives you the list of files that
were saved in the last system crash (but not the file just saved when
the phone was hung up).

7. Set Commands

Vi has a number of internal variables and switches which can be set to
achieve special affects. These options come in three forms, those that
are switches, which toggle from off to on and back, those that require
a numeric value, and those that require an alphanumeric string value.
The toggle options are set by a command of the form:

:set option<nl>

and turned off with the command:

:set nooption<nl>

Commands requiring a value are set with a command of the form:

:set option=value<nl>

To display the value of a specific option type:

:set option?<nl>

To display only those that you have changed type:

:set<nl>

and to display the long table of all the settable parameters and their
current values type:

:set all<nl>

Most of the options have a long form and an abbreviation. Both are
listed in the following table as well as the normal default value.

To arrange to have values other than the default used every time you
enter vi, place the appropriate set command in EXINIT in your

5—18 Programmer's Guide: CTIX Supplement

environment, e.g.

EXINIT='set ai aw terse sh=/bin/csh'
export EXINIT

or

setenv EXINIT 'set ai aw terse sh=/bin/csh'

for sh and csh, respectively. These are usually placed in your .profile
or .login. If you are running a system without environments (such as
version 6) you can place the set command in the file .exrc in your
home directory.

autoindent Default: noai Type: toggle
a l When in autoindent mode, vi helps you indent code by

starting each line in the same column as the preceding
line. Tabbing to the right with <tab> or <~T> will
move this boundary to the right, and it can be moved
to the left with <~D>.

autopnnt
ap

autownte
aw

beautify
bf

directory
dir

errorbells
eb

Default: ap Type: toggle

Causes the current line to be printed after each ex text
modifying command. This is not of much interest in
the normal vi visual mode.

Default: noaw Type: toggle

Autowrite causes an automatic write to be done if there
are unsaved changes before certain commands which
change files or otherwise interact with the outside
world. These commands are :!, :tag, :next, :rewind,
~ " , and "].

Default: nobf Type: toggle

Causes all control characters except <tab>, <nl>, and
<ff> to be discarded.

Default: dir=/tmp Type: string

This is the directory in which vi puts its temporary file.

Default: noeb Type: toggle

Error messages are preceded by a <bell>.

Vi Command c£ Function Reference 5—19

hardtabs
ht

Default: hardtabs=8 Type: numeric

This option contains the value of hardware tabs in your
terminal, or of software tabs expanded by the Unix sys-
tem.

ignorecase
ic

lisp

list

magic

number
nu

open

Default: noic Type: toggle

All upper case characters are mapped to lower case in
regular expression matching.

Default: nolisp Type: toggle

Autoindent for lisp code. The commands () [[and]]
are modified appropriately to affect s-expressions and
functions.

Default: nolist Type: toggle

All printed lines have the <tab> and <nl> characters
displayed visually.

Default: magic Type: toggle

Enable the metacharacters for matching. These include
. * < > [string] ["string] and [<chr>-<chr>].

Default: nonu Type: toggle

Each line is displayed with its line number.

Default: open Type: toggle

When set, prevents entering open or visual modes from
ex or edit. Not of interest from vi.

optimize
opt

paragraphs
para

Default: opt Type: toggle

Basically of use only when using the ex capabilities.
This option prevents automatic <cr>s from taking
place, and speeds up output of indented lines, at the
expense of losing typeahead on some versions of U N I X .

Default: para=IPLPPPQPP bp Type: string

Each pair of characters in the string indicate nroff mac-
ros which are to be treated as the beginning of a para-
graph for the -C and > commands. The default string is
for the -ms and -mm macros. To indicate one letter
nroff macros, such as .P or .H, quote a space in for the
second character position. For example:

5—20 Programmer's Guide: CTIX Supplement

:set paragraphs=P\ bp<nl>

prompt

redraw

report

scroll

sections

would cause vi to consider .P and .bp as paragraph del-
imiters.

Default: prompt Type: toggle

In ex command mode the prompt character : will be
printed when ex is waiting for a command. This is not
of interest from vi.

Default: noredraw Type: toggle

On dumb terminals, force the screen to always be up to
date, by sending great amounts of output. Useful only
at high speeds.

Default: report=5 Type: numeric

This sets the threshold for the number of lines modi-
fied. When more than this number of lines are modi-
fied, removed, or yanked, vi will report the number of
lines changed at the bottom of the screen.

Default: scroll={l/2 window} Type: numeric

This is the number of lines that the screen scrolls up or
down when using the <~U> and <~D> commands.

Default: sections=SHNHH H U Type: string

Each two character pair
macro names which are to
of a section by the]] and
string is for the -ms and •
letter nroff macros, use a
character. See paragraphs

of this string specify nroff
be treated as the beginning
[[commands. The default

•mm macros. To enter one
quoted space as the second
for a fuller explanation.

shell
sh

Default: sh=from environment SHELL or /bin/sh
Type: string

This is the name of the sh to be used for "escaped"
commands.

shiftwidth
sw

Default: sw=8 Type: numeric

This is the number of spaces that a <~T> or <~D> will
move over for indenting, and the amount < and > shift
by.

Vi Command c£ Function Reference 5—21

showmatch Default: nosm Type: toggle
s m When a) or > is typed, show the matching (or { by

moving the cursor to it for one second if it is on the
current screen.

slowopen
slow

tabstop
ts

Default: terminal dependent Type: toggle

On terminals that are slow and unintelligent, this option
prevents the updating of the screen some of the time to
improve speed.

Default: ts=8 Type: numeric

<tab>s are expanded to boundaries that are multiples of
this value.

taglength
tl

term

terse

warn

window

Default: tl=0 Type: numeric

If nonzero, tag names are only significant to this many
characters.

Default: (from environment TERM, else dumb) Type:
string

This is the terminal and controls the visual displays. It
cannot be changed when in "visual" mode, you have to
Q to command mode, type a set term command, and
do "vi ." to get back into visual. Or exit vi, fix $ T E R M ,
and reenter. The definitions that drive a particular ter-
minal type are found in the file /etc/termcap.

Default: terse Type: toggle

When set, the error diagnostics are short.

Default: warn Type: toggle

The user is warned if she/he tries to escape to the shell
without writing out the current changes.

Default: window=-C8 at 600 baud or less, at 1200 baud,
and screen size - 1 at 2400 baud or more> Type:
numeric

This is the number of lines in the window whenever vi
must redraw an entire screen. It is useful to make this
size smaller if you are on a slow line.

5—22 Programmer's Guide: CTIX Supplement

w300 These set window, but only within the corresponding
wl200 speed ranges. They are useful in an EXINIT to fine
w9600 tune window sizes. For example,

set w300=4 wl200=12

causes a 4 lines window at speed up to 600 baud, a 12
line window at 1200 baud, and a full screen (the
default) at over 1200 baud.

wrapscan
ws

wrapmargin
wm

wnteany
wa

Default: ws Type: toggle

Searches will wrap around the end of the file when is
option is set. When it is off, the search will terminate
when it reaches the end or the beginning of the file.

Default: wm=0 Type: numeric

Vi will automatically insert a <nl> when it finds a
natural break point (usually a <sp> between words)
that occurs within "wm" spaces of the right margin.
Therefore with "wm=0" the option is off. Setting it to
10 would mean that any time you are within 10 spaces
of the right margin vi would be looking for a <sp> or
<tab> which it could replace with a <nl>. This is con-
venient for people who forget to look at the screen
while they type. (In version 3, wrapmargin behaves
more like nroff, in that the boundary specified by the
distance from the right edge of the screen is taken as
the rightmost edge of the area where a break is
allowed, instead of the leftmost edge.)

Default: nowa Type: toggle

Vi normally makes a number of checks before it writes
out a file. This prevents the user from inadvertently
destroying a file. When the "writeany" option is
enabled, vi no longer makes these checks.

Vi Command c£ Function Reference 5—23

SED
6

— A Non-interactive Text Editor

Abstract

Sed is a non-interactive context editor that runs on the U N I X operating
system. Sed is designed to be especially useful in three cases:

1. To edit files too large for comfortable interactive editing;

2. To edit any size file when the sequence of editing commands is
too complicated to be comfortably typed in interactive mode.

3. To perform multiple 'global' editing functions efficiently in one
pass through the input.

This memorandum constitutes a manual for users of sed.

Introduction

Sed is a non-interactive context editor designed to be especially useful
in three cases:

1. To edit files too large for comfortable interactive editing;

2. To edit any size file when the sequence of editing commands is
too complicated to be comfortably typed in interactive mode;

3. To perform multiple "global" editing functions efficiently in
one pass through the input.

Since only a few lines of the input reside in core at one time, and no
temporary files are used, the effective size of file that can be edited is

Source: Lee E. McMahon , SED — A Non-interactive Text Editor (Murray Hill,
N .J . : Bell Laboratories , 1978).

SED — A Non-interactive Text Editor 6—1

limited only by the requirement that the input and output fit simul-
taneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed
as a command file. For complex edits, this saves considerable typing,
and its attendant errors. Sed running from a command file is much
more efficient than any interactive editor known to the author, even
if that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are
lack of relative addressing (because of the line-at-a-time operation),
and lack of immediate verification that a command has done what
was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the
differences between interactive and non-interactive operation, consid-
erable changes have been made between ed and sed\ even confirmed
users of ed will frequently be surprised (and probably chagrined), if
they rashly use sed without reading Sections 2 and 3 of this docu-
ment. The most striking family resemblance between the two editors
is in the class of patterns ("regular expressions") they recognize; the
code for matching patterns is copied almost verbatim from the code
for ed, and the description of regular expressions in Section 2 is
copied almost verbatim from the UNIX Programmer's Manual[l] .
(Both code and description were written by Dennis M. Ritchie.)

1. Overall Operation

Sed by default copies the standard input to the standard output,
perhaps performing one or more editing commands on each line
before writing it to the output. This behavior may be modified by
flags on the command line; see Section 1.1 below.

The general format of an editing command is:

[addressl ,address2] [function] [arguments]

One or both addresses may be omitted; the format of addresses is
given in Section 2. Any number of blanks or tabs may separate the
addresses from the function. The function must be present; the avail-
able commands are discussed in Section 3. The arguments may be
required or optional, according to which function is given; again, they
are discussed in Section 3 under each individual function.

5—2 Programmer's Guide: CTIX Supplement

Tab characters and spaces at the beginning of lines are ignored.

1.1 Command-line Flags

Three flags are recognized on the command line:

-n tells sed not to copy all lines, but only those specified by p
functions or p flags after 5 functions (see Section 3.3);

-e tells sed to take the next argument as an editing command;

-f tells sed to take the next argument as a file name; the file
should contain editing commands, one to a line.

1.2 Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even
opened), all the editing commands are compiled into a form which
will be moderately efficient during the execution phase (when the
commands are actually applied to lines of the input file). The com-
mands are compiled in the order in which they are encountered; this
is generally the order in which they will be attempted at execution
time. The commands are applied one at a time; the input to each
command is the output of all preceding commands.

The default linear order of application of editing commands can be
changed by the flow-of-control commands, t and b (see Section 3).
Even when the order of application is changed by these commands, it
is still true that the input line to any command is the output of any
previously applied command.

1.3 Pattern-space

The range of pattern matches is called the pattern space. Ordinarily,
the pattern space is one line of the input text, but more than one line
can be read into the pattern space by using the N command (Section
3.6.).

SED — A Non-interactive Text Editor 6—3

1.4 Examples

Examples are scattered throughout the text. Except where otherwise
noted, the examples all assume the following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an
improvement on Coleridge.)

Example:

The command

2q

will quit after copying the first two lines of the input. The output will
be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. Addresses: Selecting Lines for Editing

Lines in the input file(s) to which editing commands are to be applied
can be selected by addresses. Addresses may be either line numbers
or context addresses.

The application of a group of commands can be controlled by one
address (or address-pair) by grouping the commands with curly braces
('{ >')(Sec. 3.6.).

5—4 Programmer's Guide: CTIX Supplement

2.1 Line-number Addresses

A line number is a decimal integer. As each line is read from the
input, a line-number counter is incremented; a line-number address
matches (selects) the input line which causes the internal counter to
equal the address line-number. The counter runs cumulatively
through multiple input files; it is not reset when a new input file is
opened.

As a special case, the character $ matches the last line of the last
input file.

2.2 Context Addresses

A context address is a pattern ("regular expression") enclosed in
slashes ('/ '). The regular expressions recognized by sed are con-
structed as follows:

1. An ordinary character (not one of those discussed below) is a
regular expression, and matches that character.

2. A circumflex at the beginning of a regular expression
matches the null character at the beginning of a line.

3. A dollar-sign '$' at the end of a regular expression matches the
null character at the end of a line.

4. The characters ' \ n ' match an imbedded newline character, but
not the newline at the end of the pattern space.

5. A period matches any character except the terminal newline
of the pattern space.

6. A regular expression followed by an asterisk '*' matches any
number (including 0) of adjacent occurrences of the regular
expression it follows.

7. A string of characters in square brackets '[]' matches any char-
acter in the string, and no others. If, however, the first charac-
ter of the string is circumflex the regular expression
matches any character except the characters in the string and the
terminal newline of the pattern space.

8. A concatenation of regular expressions is a regular expression
which matches the concatenation of strings matched by the com-
ponents of the regular expression.

SED — A Non-interactive Text Editor 6—5

9. A regular expression between the sequences ' \ (' and ' \) ' is
identical in effect to the unadorned regular expression, but has
side-effects which are described under the s command below
and specification 10) immediately below.

10. The expression '\d' means the same string of characters
matched by an expression enclosed in ' \ (' and ' \) ' earlier in the
same pattern. Here d is a single digit; the string specified is
that beginning with the dth occurrence of ' \ (' counting from the
left. For example, the expression " ~ \ (. * \) \ 1 " matches a line
beginning with two repeated occurrences of the same string.

11. The null regular expression standing alone (e.g., '//') is
equivalent to the last regular expression compiled.

NOTE

To use one of the special characters $. * [] \ /) as a literal
(to match an occurrence of itself in the input), precede the
special character by a backslash

For a context address to "match" the input requires that the whole
pattern within the address match some portion of the pattern space.

2.3 Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses.
Under each command the maximum number of allowed addresses is
given. For a command to have more addresses than the maximum
allowed is considered an error.

If a command has no addresses, it is applied to every line in the
input.

If a command has one address, it is applied to all lines which match
that address.

If a command has two addresses, it is applied to the first line which
matches the first address, and to all subsequent lines until (and
including) the first subsequent line which matches the second address.
Then an attempt is made on subsequent lines to again match the first
address, and the process is repeated.

5—6 Programmer's Guide: CTIX Supplement

Two addresses are separated by a comma.

Examples:

/an/
/an.* an/
/"an/
/./
/V/
/r*an/
/ \ (a n \) . * \ l /

matches lines 1, 3, 4 in our sample text
matches line 1
matches no lines
matches all lines
matches line 5
matches lines 1,3, 4 (number = zero!)
matches line 1

3. Functions

All functions are named by a single character. In the following sum-
mary, the maximum number of allowable addresses is given enclosed
in parentheses, then the single character function name, possible argu-
ments enclosed in angles (< >), an expanded English translation of
the single-character name, and finally a description of what each
function does. The angles around the arguments are not part of the
argument, and should not be typed in actual editing commands.

3.1 Whole-line Oriented Functions

(2)d delete lines

The d function deletes from the file (does not write to the
output) all those lines matched by its address(es).

It also has the side effect that no further commands are
attempted on the corpse of a deleted line; as soon as the d
function is executed, a new line is read from the input,
and the list of editing commands is re-started from the
beginning on the new line.

The n function reads the next line from the input, replac-
ing the current line. The current line is written to the
output if it should be. The list of editing commands is
continued following the n command.

(2)n next line

SED — A Non-interactive Text Editor 6—7

(l) a \ append lines
<text>

The a function causes the argument <text> to be written
to the output after the line matched by its address. The a
command is inherently multi-line; a must appear at the
end of a line, and <text> may contain any number of
lines. To preserve the one-command-to-a-line fiction, the
interior newlines must be hidden by a backslash character
('V) immediately preceding the newline. The <text>
argument is terminated by the first unhidden newline (the
first one not immediately preceded by backslash).
Once an a function is successfully executed, <text> will be
written to the output regardless of what later commands
do to the line which triggered it. The triggering line may
be deleted entirely; <text> will still be written to the out-
put.

The <text> is not scanned for address matches, and no
editing commands are attempted on it. It does not cause
any change in the line-number counter.

(1)i \ insert lines
<text>

The i function behaves identically to the a function,
except that <text> is written to the output before the
matched line. All other comments about the a function
apply to the i function as well.

(2)c\ change lines
<text>

The c function deletes the lines selected by its address(es),
and replaces them with the lines in <text>. Like a and
c must be followed by a newline hidden by a backslash;
and interior new lines in <text> must be hidden by
backslashes.
The c command may have two addresses, and therefore
select a range of lines. If it does, all the lines in the range
are deleted, but only one copy of <text> is written to the
output, not one copy per line deleted. As with a and
<text> is not scanned for address matches, and no editing
commands are attempted on it. It does not change the
line-number counter.

After a line has been deleted by a c function, no further
commands are attempted on the corpse.

5—8 Programmer's Guide: CTIX Supplement

If text is appended after a line by a or r functions, and
the line is subsequently changed, the text inserted by the c
function will be placed before the text of the a or r func-
tions. (The r function is described in Section 3.4.)

NOTE

Within the text put in the output by these functions, leading
blanks and tabs will disappear, as always in sed commands.
To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash; the backslash will not
appear in the output.

Example:

The list of editing commands:

n
a \
x x x x
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX
Where Alph, the sacred river, ran
XXXX
Down to a sunless sea.

In this particular case, the same effect would be produced by either of
the two following command lists:

n n
i \ c \
XXXX XXXX
d

SED — A Non-interactive Text Editor 6—9

3.2 Substitute Function

One very important function changes parts of lines selected by a con-
text search within the line.

(2)s< pattern > < replacement < flags>

substitute

The s function replaces part of a line (selected by < pattern >)
with <replacement>. It can best be read:

Substitute for <pattern>, < replacement

The <pattern> argument contains a pattern, exactly like the
patterns in addresses (see 2.2 above). The only difference
between <pattern> and a context address is that the context
address must be delimited by slash ('/') characters; <pattern>
may be delimited by any character other than space or new-
line.

By default, only the first string matched by <pattern> is
replaced, but see the g flag below.

The <replacement> argument begins immediately after the
second delimiting character of <pattern>, and must be fol-
lowed immediately by another instance of the delimiting char-
acter. (Thus there are exactly three instances of the delimiting
character.)

The <replacement> is not a pattern, and the characters which
are special in patterns do not have special meaning in
<replacement>. Instead, other characters are special:

& is replaced by the string matched by <pattern>

\d (where d is a single digit) is replaced by the dth sub-
string matched by parts of <pattern> enclosed in ' \ ('
and ' \) \ If nested substrings occur in <pattern>, the
cfth is determined by counting opening delimiters (' \ (') .

As in patterns, special characters may be made literal
by preceding them with backslash (' \ ') .

The <flags> argument may contain the following flags:

g substitute <replacement> for all (non-overlapping)
instances of <pattern> in the line. After a successful
substitution, the scan for the next instance of <pattern>
begins just after the end of the inserted characters;

5—10 Programmer's Guide: CTIX Supplement

characters put into the line from <replacement> are not
rescanned.

p print the line if a successful replacement was done. The
p flag causes the line to be written to the output if and
only if a substitution was actually made by the 5 func-
tion. Notice that if several 5 functions, each followed
by a p flag, successfully substitute in the same input
line, output: one for each successful substitution.

w <filename>

write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substi-
tuted by the s function to be written to a file named by
<filename>. If <filename> exists before sed is run, it
is overwritten; if not, it is created.

A single space must separate w and <filename>.

The possibilities of multiple, somewhat different copies
of one input line being written are the same as for p.

A maximum of 10 different file names may be men-
tioned after w flags and vv functions (see below), com-
bined.

Examples:

The following command, applied to our standard input,

s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file "changes":

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:

s/[.,;?:]/*P&*/gp

SED — A Non-interactive Text Editor 6—11

produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:

/X/s/an/AN/p

produces (assuming nocopy mode):

In XANadu did Kubhla Khan

and the command:

/X/s/an/AN/gp

produces:

In XANadu did Kubhla KhAN

3.3 Input-output Functions

(2)p print

The print function writes the addressed lines to the
standard output file. They are written at the time
the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

write on <filename>

The write function writes the addressed lines to the
file named by <filename>. If the file previously
existed, it is overwritten; if not, it is created. The
lines are written exactly as they exist when the write
function is encountered for each line, regardless of
what subsequent editing commands may do to them.

Exactly one space must separate the w and
<filename>.

A maximum of ten different files may be mentioned
in write functions and w flags after 5 functions, com-
bined.

(2)w
<filename>

5—12 Programmer's Guide: CTIX Supplement

(l) r read the contents of a file

<filename> ^ ^ read function reads the contents of <filename>,
and appends them after the line matched by the
address. The file is read and appended regardless of
what subsequent editing commands do to the line
which matched its address. If r and a functions are
executed on the same line, the text from the a func-
tions and the r functions is written to the output in
the order that the functions are executed.

Exactly one space must separate the r and
<filename>. If a file mentioned by a r function
cannot be opened, it is considered a null file, not an
error, and no diagnostic is given.

NOTE

Since there is a limit to the number of files that can be opened
simultaneously, care should be taken that no more than ten
files be mentioned in w functions or flags; that number is
reduced by one if any r functions are present. (Only one read
file is open at one time.)

Examples:

Assume that the file "no te l " has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294)
was the grandson and most eminent successor of Genghiz
(Chingiz) Khan, and founder of the Mongol dynasty in China.

Then the following command:

/Kubla/r notel

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294)
was the grandson and most eminent successor of Genghiz
(Chingiz) Khan, and founder of the Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man

SED — A Non-interactive Text Editor 6—13

Down to a sunless sea.

3.4 Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with
pattern spaces containing imbedded newlines; they are intended prin-
cipally to provide pattern matches across lines in the input.

(2)N Next line

The next input line is appended to the current line in the
pattern space; the two input lines are separated by an imbed-
ded newline. Pattern matches may extend across the imbed-
ded newline(s).

(2)D Delete first part of the pattern space

Delete up to and including the first newline character in the
current pattern space. If the pattern space becomes empty
(the only newline was the terminal newline), read another
line from the input. In any case, begin the list of editing
commands again from its beginning.

(2)P Print first part of the pattern space

Print up to and including the first newline in the pattern
space.

The P and D functions are equivalent to their lower-case counterparts
if there are no imbedded newlines in the pattern space.

3.5 Hold and Get Functions

Four functions save and retrieve part of the input for possible later
use.

(2)h hold pattern space

The h functions copies the contents of the pattern space into
a hold area (destroying the previous contents of the hold
area).

(2)H Hold pattern space

5—14 Programmer's Guide: CTIX Supplement

The H function appends the contents of the pattern space to
the contents of the hold area; the former and new contents
are separated by a newline.

(2)g get contents of hold area

The g function copies the contents of the hold area into the
pattern space (destroying the previous contents of the pat-
tern space).

(2)G Get contents of hold area

The G function appends the contents of the hold area to the
contents of the pattern space; the former and new contents
are separated by a newline.

(2)x exchange

The exchange command interchanges the contents of the
pattern space and the hold area.

Example:

The commands

lh
Is/ did.*//
lx
G
s/ \n/ :/

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

SED — A Non-interactive Text Editor 6—15

3.6 Flow-of-control Functions

These functions do no editing on the input lines, but control the
application of functions to the lines selected by the address part.

(2)! Don't

The Don't command causes the next command (written
on the same line), to be applied to all and only those
input lines not selected by the adress part.

(2){ Grouping

The grouping command '{ ' causes the next set of com-
mands to be applied (or not applied) as a block to the
input lines selected by the addresses of the grouping com-
mand. The first of the commands under control of the
grouping may appear on the same line as the '-C' or on the
next line.

The group of commands is terminated by a matching '} '
standing on a line by itself.

Groups can be nested.

(0): place a label

The label function marks a place in the list of editing
commands which may be referred to by b and t functions.
The <label> may be any sequence of eight or fewer char-
acters; if two different colon functions have identical
labels, a compile time diagnostic will be generated, and no
execution attempted.

(2)b branch to label

The branch function causes the sequence of editing com-
mands being applied to the current input line to be res-
tarted immediately after the place where a colon function
with the same <label> was encountered. If no colon
function with the same label can be found after all the
editing commands have been compiled, a compile time
diagnostic is produced, and no execution is attempted.

A b function with no <label> is taken to be a branch to
the end of the list of editing commands; whatever should

5—16 Programmer's Guide: CTIX Supplement

be done with the current input line is done, and another
input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2)t test substitutions
^ label ^

The t function tests whether any successful substitutions
have been made on the current input line; if so, it
branches to <label>; if not, it does nothing. The flag
which indicates that a successful substitution has been exe-
cuted is reset by:

1. reading a new input line, or

2. executing a t function.

3.7 Miscellaneous Functions

(1)= equals

The = function writes to the standard output the line
number of the line matched by its address.

(l)q quit

The q function causes the current line to be written to the
output (if it should be), any appended or read text to be
written, and execution to be terminated.

Reference

[1] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer's
Manual. Bell Laboratories, 1978.

SED — A Non-interactive Text Editor 6—17

7
NROFF/TROFF User's Manual

Introduction

N R O F F and T R O F F are text processors under the U N I X Time-Sharing
System [1] that format text for typewriter-like terminals and for a
Graphic Systems phototypesetter, respectively. (Device-independent
T R O F F , part of the Documenter's Workbench, supports additional
output devices.) They accept lines of text interspersed with lines of
format control information and format the text into a printable,
pagina ted d o c u m e n t having a user-designed style. NROFF and TROFF
offer unusual freedom in document styling, including: arbitrary style
headers and footers; arbitrary style footnotes; multiple automatic
sequence numbering for paragraphs, sections, etc; multiple column
output; dynamic font and point-size control; arbitrary horizontal and
vertical local motions at any point; and a family of automatic over-
striking, bracket construction, and line drawing functions.

N R O F F and T R O F F are highly compatible with each other and it is
almost always possible to prepare input acceptable to both. Condi-
tional input is provided that enables the user to embed input expressly
destined for either program. NROFF can prepare output directly for a
variety of terminal types and is capable of utilizing the full resolution
of each terminal.

Source: Joseph F. Ossanna (updated for 4 .3BSD by Mark Seiden), NROFFITROFF

User's Manual (Murray Hill, N .J . : Bell Laboratories, 1976).

NROFF/TROFF User's Manual 7—1

Usage

The general form of invoking N R O F F (or T R O F F) at U N I X command
level is

nrof f options files (or t roff options files)

where options represents any of a number of option arguments and
files represents the list of files containing the document to be format-
ted. An argument consisting of a single minus (-) is taken to be a
file name corresponding to the standard input. If no file names are
given input is taken from the standard input. The options, which
may appear in any order so long as they appear before the files, are:

Option Effect

- i Read standard input after the input files are
exhausted.

-nr\name Prepends the macro file /usr/lib/tmac.name to the
input files.

-r\N Number first generated page N.

-olist Print only pages whose page numbers appear in list,
which consists of comma-separated numbers and
number ranges. A number range has the form
N-M and means pages N through M; a initial —N
means from the beginning to page N; and a final N—
means from N to the end.

- q Invoke the simultaneous input-output mode of the
rd request.

-raN Number register a (one-character) is set to N.

-sN Stop every N pages. N R O F F will halt prior to every
N pages (default JV=1) to allow paper loading or
changing, and will resume upon receipt of a new-
line. T R O F F will stop the phototypesetter every N
pages, produce a trailer to allow changing cassettes,
and will resume after the phototypesetter S T A R T
button is pressed.

- z Efficiently suppress formatted output. Only pro-
duce output to standard error (from tm requests or
diagnostics).

5—2 Programmer's Guide: CTIX Supplement

NROFF Only

- e Produce equally-spaced words in adjusted lines,
using full terminal resolution.

- h On output, use tabs during horizontal spacing to
increase speed. Device tabs setting are assumed to
be (and input tabs are initially set to) every 8 char-
acter widths.

-Tname Specifies the name of the output terminal type.
Currently defined names are 37 for the (default)
Model 37 Teletype®, tn300 for the G E Ter-
miNet 300 (or any terminal without half-line capa-
bilities), 300S for the DASI-300S, 300 for the DASI-
300, and 450 for the DASI-450 (Diablo Hyterm).

TROFF Only

- a Send a printable (ASCII) approximation of the results
to the standard output.

- b TROFF will report whether the phototypesetter is
busy or available. No text processing is done.

- f Refrain from feeding out paper and stopping photo-
typesetter at the end of the run.

- t Direct output to the standard output instead of the
phototypesetter.

- w Wait until phototypesetter is available, if currently
busy.

Each option is invoked as a separate argument; for example,

nroff -o4,8-J0 -T300S -m abc file I ftle2

requests formatting of pages 4, 8, 9, and 10 of a document contained
in the files named filel and file!, specifies the output terminal as a
DASI-300S, and invokes the macro package abc.

Various pre- and post-processors are available for use with N R O F F
and T R O F F . These include the equation preprocessors N E O N and
EQN [2] (fo r NROFF and TROFF respectively), and the table-
construction preprocessor TBL [3]. A reverse-line postprocessor COL
[4] is available for multiple-column NROFF output on terminals
without reverse-line ability; COL expects the Model 37 Teletype escape
sequences that N R O F F produces by default. T K [4] is a 37 Teletype
simulator postprocessor for printing NROFF output on a Tektronix

NROFF/TROFF User's Manual 7—3

4014. TC [4] is a phototypesetter-simulator postprocessor for TROFF
that produces an approximation of phototypesetter output on a Tek-
tronix 4014. For example, in

tbl files I eqn I troff - t options I tc

the first I indicates the piping of TBL's output to EQN's input; the
second the piping of EQN's output to TROFF's input; and the third
indicates the piping of TROFF's output to TC.

The remainder of this manual consists of: a Summary and Outline; a
Reference Manual keyed to the outline; and a set of Tutorial Exam-
ples. Another tutorial is [5].

References

[1] K.Thompson, D.M. Ritchie, UNIX Programmer's Manual, Sixth
Edition (May 1975).

[2] B. W. Kernighan, L. L. Cherry, Typesetting Mathematics—
User's Guide (Second Edition), Bell Laboratories.

[3] M. E. Lesk, Tbl—A Program to Format Tables, Bell Labora-
tories internal memorandum.

[4] Internal on-line documentation (man pages) on UNIX.

[5] B. W. Kernighan, A TROFF Tutorial, Bell Laboratories.

5—4 Programmer's Guide: CTIX Supplement

Summary of Requests

Font and Character Size Control

Request
Form

Initial
Value*

If No
Argument Explanation & Notes

.ps ±N

.fz F ±N

.fz S F ±N

• SS N

.cs FNM

.bd F N

.bd S F N

.ft F

.fp N F

10 point previous

off

off

12/36 em ignored

off

off

off

Roman

R , I , B , S

previous

ignored

Point size; also \ s ± N . t [See Note E]

Font F to point size ±N. [See Note E]

Special Font characters to point size ±N.
[See Note E]

Space-character size set to A ' /36em. t
[See Note E]

Constant character space (width) mode
(font F) . f [See Note P]

Embolden font F by N-1 units, t [See
Note P]

Embolden Special Font when current
font is F . f [See Note P]

Change to font F = x, xx, or 1-4. Also
\tx,\f(xx, \(N. [See Note E]

Font named F mounted on physical posi-
tion I S A ' S 4.

Page Control

Request
Form

Initial
Value*

If No
Argument Explanation & Notes

.pi ±N 11 in 11 in Page length. [See Note v]

.bp ±N N= 1 - Ejec t current page; next page number N.
[See Notes B+,v]

* Values separated by " ; " are for NROFF and TROFF respectively.
Notes are explained at the end of this Summary,
t N o effect in N R O F F .
$ The use of " ' " as control character (instead of " . ") suppresses the break

function.

NROFF/TROFF User's Manual 7—5

.pn ±N N=1 ignored Next page number N.

.po ±N 0;
26/27 in

previous Page offset. [See Note v]

.ne N - N=1V Need N vertical space (V = vertical spac-
ing). [See Notes D,v]

,mk R none internal Mark current vertical place in register R.
[See Note D]

.rt ±N none internal Return (upward only) to marked vertical
place. [See Notes D,v]

Text Filling, Adjusting and Centering

Request
Form

Initial
Value*

If No
Argument Explanation & Notes*

.br - - Break. [See Note B]

.n 11 - Fill output lines. [See Notes B.E]

.nf fill - No filling or adjusting of output lines.
[See Notes B,E]

.ad c adj ,both adjust Adjust output lines with mode c. [See
Note E]

.mi adjust - No output line adjusting. [See Note E]

.ce A' off N= 1 Center following A' input text lines. [See
Notes B,E]

Vertical Spacing

Request
Form

Initial
Value*

If No
Argument Explanation & Notes*

.vs N l /6in;12pts previous Vertical base line spacing (V). [See Notes
E,p]

* Values separated by are for NROFF andTROFF respectively.
Notes are explained at the end of this Summary.

5—6 Programmer's Guide: CTIX Supplement

.lsiV N= 1 previous Output N— 1 Vs af ter each text output
line. [See Note E]

.sp N - N= IV Space vertical distance N in either direc-
tion. [See Notes B,v]

.sv N - N=1V Save vertical distance N. [See Note v]

.os - - Output saved vertical distance.

.ns space - Turn no-space mode on. [See Note D]

.rs - - Restore spacing; turn no-space mode off.
[See Note D]

Line Length and Indenting

Request Initial If No
Form Value* Argument Explanation & Notes*

.11 ±N 6.5 in previous Line length. [See Notes E,m]

.in ±N N= 0 previous Indent . [See Notes B,E,m]

• ti ±N - ignored Temporary indent. [See Notes B,E,m]

Macros, Strings, Diversions and Position Traps

Request
Form

Initial
Value*

If No
Argument Explanation & Notes

•de xx yy

.am xx yy

• ds xx string

.as xx siring

.rm xx

.rn xx yy

.di xx

• da xx

,yy=.. Define or redefine macro xx; end at call
of yy.

•yy=.. Append to a macro,

ignored Def ine a string xx containing string.

ignored Append string to string xx.

ignored Remove request, macro, or string,

ignored R e n a m e request, macro, or string xx to
yy-

end Divert output to macro xx. [See Note D]

end Divert and append to xx. [See Note D]

Values separated by " ; " are for NROFF and TROFF respectively.
Notes are explained at the end of this Summary.

NROFF/TROFF User's Manual 7—7

.wh N xx - - Set location t rap; negative is w.r . t . page

bot tom. [See Note v]

.ch xx N - - Change trap location. [See Note v]

.dt N xx - off Set a diversion trap. [See Notes D,v]

.it N xx - off Set an input-line count trap. [See Note E]

.em xx none none End macro is xx.

Number Registers

Request Initial If No
Form Value* Argument Explanation & Notes

.nr R ±N M -

.af R c

.rr R

arabic

Define and set number register R\ auto-
increment by M. [See Note u]

Assign format to register R (c = l , i, I, a,
A).

Remove register R.

Tabs, Leaders and Fields

Request
Form

Initial
Value*

If No
Argument Explanation & Notes*

.ta Nt ... 0.8; 0.5in none Tab settings; left type, unless r=R(right),
C(centered) . [See Notes E,m]

.tc c none none T a b repetition character . [See Note E]

-lc c none Leader repetition character . [See Note E]

.fc a b off off Set field delimiter a and pad character b.

* Values separated by 11;" are for NROFF and TROFF respectively.
* Notes are explained at the end of this Summary.

5—8 Programmer's Guide: CTIX Supplement

Input and Output Conventions and Character Trans-
lations

Request Initial If No
£

Form Value* Argument Explanation & Notes

• ec c \ \ Set escape character .

• eo on - Turn off escape character mechanism.

•lgiV - ; on on Ligature mode on if ^ > 0 .

.ul JV off N= 1 Underl ine (italicize in TROFF) N input
lines. [See Note E]

.cu N off N= 1 Continuous underline in NROFF; like ul in
TROFF. [See Note E]

.uf F Italic Italic Underl ine font set to F (to be switched to
by ul).

•cc c Set control character to c. [See Note E]

.c2 c ' * Set nobreak control character to c. [See
Note E]

•tr abed.... none - Translate a to b, etc. on output . [See
Note O]

Hyphenation

Request
Form

Initial
Value*

If No
Argument Explanation & Notes*

.nh hyphenate - No hyphenation. [See Note E]

• hy N hyphenate hyphenate Hyphenate ; N = mode. [See Note E]

• he c \ % Hyphenat ion indicator character c. [See
Note E]

.hw wordl . ignored Exception words.

* Values separated by " ; " are for NROFF and TROFF respectively.
Notes are explained at the end of this Summary.

NROFF/TROFF User's Manual 7—9

Three Part Titles

Request Initial If No
Form Value* Argument Explanation & Notes*

.tl 'left 'center 'right ' - - Three par t title.

.pc c % off Page number character .

.It ±N 6.5 in previous Length of title. [See Notes E,m]

Output Line Numbering

Request Initial
Form Value*

If No
Argument Explanation & Notes*

.nm ±N M S I - off N u m b e r mode on or off, set parame-
ters. [See Note E]

.nn N N= 1 Do not number next N lines. [See
Note E]

Conditional Acceptance of Input

Request Form Explanation & Notes*

.if c anything If condition c true, accept anything as input, for
multi-line use \{.anything\y.

• if !c anything If condition c false, accept anything.

.if N anything If expression N > 0, accept anything. [See Note u]

• if IN anything If expression N < 0, accept anything. [See Note
u]

• if ' string1 ' string2 anything If stringl identical to string2, accept anything.

. i f ! 'stringl 'string2 ' anything If stringl not identical to string2, accept anything.

.ie c anything If portion of if-else; all above forms (like if). [See
Note u]

.el anything Else portion of if-else.

* Values separated by " ; " are for NROFF and TROFF respectively.
* Notes are explained at the end of this Summary.

5—10 Programmer's Guide: CTIX Supplement

Environment Switching

Request Initial If No
Form Value* Argument Explanation & Notes*

.ev N N=0 previous Environment switched (push down).

Insertions from the Standard Input

Request Initial If No

Form Value* Argument Explanation & Notes*

.rd prompt - prompt=HEL Read insertion.

.ex - - Exit f rom NROFF ArROFF.

Input/Output File Switching

Request Initial If No

Form Value* Argument Explanation & Notes*

.so filename - - Switch source file (push down).

.nx filename - end-of-file Next file.

.pi program - - Pipe output to program (NROFT only).

Miscellaneous

Request Initial
Form Value*

If No
Argument Explanation & Notes

.mc c N

• tm string

•>g yy

off

newline

•yy=-

Set margin character c and separation N.
[See Notes E,m]

Print string on terminal (UNIX standard
error output) .

Ignore till call of yy.

* V a l u e s s e p a r a t e d b y " ; " a r e f o r NROFT a n d T R O F F r e s p e c t i v e l y .
* Notes are explained at the end of this Summary.

NROFF/TROFF User's Manual 7—11

.pm i - all Print macro names and sizes; if t present,

print only total of sizes.

.ab string - - Print a message and abort .

.fl - - Flush output buffer . [See Note B]

Notes

B Request normally causes a break.

D Mode or relevant parameters associated with current
diversion level.

E Relevant parameters are a part of the current environ-
ment.

O Must stay in effect until logical output.

P Mode must be still or again in effect at the time of phy-
sical output.

v,p,m,u Default scale indicator; if not specified, scale indicators
are ignored.

Alphabet ica l Reques t a n d Section N u m b e r Cross Reference

ab 20 c2 10 di 7 cx 18 hw 13 lg 10 nc 3 OS 5 rd 18 ss 2 uf 1 0

ad 4 cc 10 ds 7 fc 9 hy 13 li 10 nf 4 pc 14 rm 7 sv 5 ul 10
af 8 cc 4 dt 7 fi 4 ie 16 11 6 nh 13 p i 19 m 7 ta 9 vs 5
am 7 ch 7 cc 10 f l 20 if 16 Is 5 nm 15 p i 3 r r 8 t c 9 wh 7
as 7 cs 2 cl 16 f p 2 ig 20 i t 14 nn 15 pm 20 n; 5 t i 6
lx! 2 cu 10 em 7 f t 2 in 6 mc 20 nr 8 pn 3 rt 3 t l 14
bp 3 da 7 CO 10 fz 2 it 7 mk 3 ns 5 po 3 so 19 tm 20
br 4 dc 7 cv 17 he 13 l c 9 na 4 nx 19 ps 2 sp 5 tr 10

5—12 Programmer's Guide: CTIX Supplement

Escape Sequences for Characters, Indicators, and Functions
Section Escape

Reference Sequence Meaning

10.1 w \ (to prevent or delay the interpretation of \)
10.1 \ e Printable version of the current escape character .

2.1 \ ' ' (acute accent) ; equivalent to \ (a a
2.1 V " (grave accent) ; equivalent to \ (g a
2.1 \ - - Minus sign in the current font
7 \. Period (dot) (see de)

11.1 \ (space) Unpaddab le space-size space character
11.1 \ 0 Digit width space
11.1 \ 1 1/6 em narrow space character (zero width in NROFF)
11.1 \ - 1/12 em half-narrow space character (zero width in

N R O F F)

4.1 \ & Non-print ing, zero width character
10.6 V Transparent line indicator
10.7 \ " Beginning of comment

7.3 Interpolate argument l £ i V s 9
13 Default optional hyphenation character

2.1 \(xx Character named xx
7.1 *x, *(xx Interpolate string x or xx
9.1 \ a Non-interpre ted leader character

12.3 \ b ' a b c . . . ' Bracket building function
4.2 \ c Interrupt text processing

11.1 \ d Forward (down) 1/2 em vertical motion (1/2 line in
N R O F F)

2.2 Change to font named x or xx, or position N
11.1 \h'N ' Local horizontal motion; move right N (negative left)
11.3 \kx Mark horizontal input place in register x
12.4 \ 1 ' Nc • Horizontal line drawing function (optionally with c)
12.4 \ L ' N c ' Vertical line drawing function (optionally with c)

8 \ i u , \ n (x * Interpolate number register x or xx
12.1 \ o ' a b c . . . ' Overstrike characters a, b, c, ...

4.1 \ P Break and spread output line
11.1 \ r Reverse 1 em vertical motion (reverse line in NROFF)

2.3 \ s N , \s±N Point-size change function
9.1 \ t Non-interpreted horizontal tab

11.1 \ u Reverse (up) 1/2 em vertical motion (1/2 line in NROFF)
11.1 \\'N ' Local vertical motion; move down N (negative up)
11.2 \ w 'string ' Interpolate width of string

5.2 \x'N ' Extra line-space function (negative before, positive after)
12.2 \zc Print c with zero width (without spacing)
16 \ { Begin conditional input
16 \> End conditional input
10.7 \ (newl ine) Concealed (ignored) newline

- X, any character not listed above

The escape sequences \ \ , \ " , \ $, \ * , \ a , \ n , \ t , and \(new-
line) are interpreted in copy mode (§7.2).

NROFF/TROFF User's Manual 7—13

Predefined General Number Registers
Section Register

R e f e r e n c e Name Description

3 % Current page number .
19 c. N u m b e r of lines read f rom current input file.
11.2 ct Character type (set by width function).
7 .4 dl Width (maximum) of last completed diversion.
7 .4 dn Height (vertical size) of last completed diversion.

- dw Current day of the week (1-7).
- dy Current day of the month (1-31).

11.3 hp Current horizontal place on input line (not in di troff)
15 In Output line number .

- mo Current month (1-12).
4.1 nl Vertical position of last printed text base-line.

11.2 sb Depth of string below base line (generated by width function).
11.2 St Height of string above base line (generated by width function)

- yr Last two digits of current year.

Predefined Read-Only Number Registers
Section Register

R e f e r e n c e Name Description

7.3 .$ N u m b e r of arguments available at the current macro level.
.A Set to 1 in TROFF, if - a option used; always 1 in NROFF.

11.1 .H Available horizontal resolution in basic units.
5.3 .L Set to current line-spacing (Is) parameter

.P Set to 1 if the current page is being pr inted; otherwise 0.

.T Set to 1 in N R O F F , i f - T option used; always 0 in T R O F F .

11.1 .V Available vertical resolution in basic units.
5.2 .a Post-line extra line-space most recently utilized using \ x ' N ' .

19 .c N u m b e r of lines read f rom current input file.
7 .4 .d Current vertical place in current diversion; equal to nl, if no

d i v e r s i o n .

2.2 .f Current font as physical quadrant (1-4).
4 .h Text base-line high-water mark on current page or diversion.
6 .i Current indent.
4.2 .j Current adjustment mode and type.
4.1 .k Length of text port ion on current partial output line.
6 .1 Current line length.
4 .n Length of text portion on previous output line.
3 .o Current page offset.
3 .p Current page length.
2.3 .s Current point size.
7.5 .t Distance to the next trap.
4.1 .u Equal to 1 in fill mode and 0 in nofill mode.
5.1 .v Current vertical line spacing.

11.2 .w Width of previous character .
.x Reserved version-dependent register,
.y Reserved version-dependent register.

7.4 .z Name of current diversion.

5—14 Programmer's Guide: CTIX Supplement

Reference Manual

1. General Explanation

1.1 Form of Input

Input consists of text lines, which are destined to be printed, inter-
spersed with control lines, which set parameters or otherwise control
subsequent processing. Control lines begin with a control character—
normally . (period) or ' (acute accent)—followed by a one or two
character name that specifies a basic request or the substitution of a
user-defined macro in place of the control line. The control character
' suppresses the break function—the forced output of a partially filled
line—caused by certain requests. The control character may be
separated from the request/macro name by white space (spaces and/or
tabs) for sthetic reasons. Names must be followed by either space or
newline. Control lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by
means of an escape character, normally V For example, the function
\ n R causes the interpolation (insertion in place) of the contents of the
number register R in place of the function; here R is either a single
character name as in \ n t , or left-parenthesis-introduced, two-
character name as in \n(xx.

1.2 Formatter and Device Resolution

T R O F F internally uses 432 units/inch, (for historical reasons,
corresponding to the Graphic Systems phototypesetter which had a
horizontal resolution of 1/432 inch and a vertical resolution of 1/144
inch.) N R O F F internally uses 240 units/inch, corresponding to the
least common multiple of the horizontal and vertical resolutions of
various typewriter-like output devices. TROFF rounds
horizontal/vertical numerical parameter input to its own internal
horizontal/vertical resolution. NROFF similarly rounds numerical
input to the actual resolution of the output device indicated by the
— T option (default Model 37 Teletype).

NROFF/TROFF User's Manual 7—15

1.3 Numerical Parameter Input

Both NROFF and TROFF accept numerical input with the scale indica-
tor suffixes shown in the following table, where S is the current type
size in points, V is the current vertical line spacing in basic units, and
C is a nominal character width in basic units.

Scale Number of basic units
Indicator Meaning TROFF NROFF

i Inch 432 240
c Centimeter 432x50/127 240x50/127
P Pica = 1 / 6 inch 72 240/6
m Em = S points 6xS C
n En = Em/2 3 xs C, same as Em
P Point = 1/72 inch 6 240/72
u Basic unit 1 1
v Vertical line space V V

none Default, see below

In NROFF, both the em and the en are taken to be equal to the C,
which is output-device dependent; common values are 1/10 and 1/12
inch. Actual character widths in NROFF need not be all the same and
constructed characters such as — > (-) are often extra wide. The
default scaling is ems for the horizontally-oriented requests and func-
tions 11, in, ti, ta, It, po, mc, \ h , and \1; Vs for the vertically-
oriented requests and functions pi, wh, ch, dt, sp, sv, ne, rt, \ v , \ x ,
and \ L ; p for the vs request; and u for the requests nr, if, and ie.
All other requests ignore any scale indicators. When a number regis-
ter containing an already appropriately scaled number is interpolated
to provide numerical input, the unit scale indicator u may need to be
appended to prevent an additional inappropriate default scaling. The
number, N, may be specified in decimal-fraction form but the param-
eter finally stored is rounded to an integer number of basic units.

The absolute position indicator I may be prefixed to a number N to
generate the distance to the vertical or horizontal place N. For
vertically-oriented requests and functions, I N becomes the distance in
basic units from the current vertical place on the page or in a diver-
sion (§7.4) to the vertical place N. For all other requests and func-
tions, I iV becomes the distance from the current horizontal place on
the input line to the horizontal place N. For example,

.sp I 3.2c

5—16 Programmer's Guide: CTIX Supplement

will space in the required direction to 3.2 centimeters from the top of
the page.

1.4 Numerical Expressions

Wherever numerical input is expected, an expression involving
parentheses, the arithmetic operators + , — , / , * , % (mod), and the
logical operators <, >, < = , > = , = (or = =) , . (and), : (or) may be
used. Except where controlled by parentheses, evaluation of expres-
sions is left-to-right; there is no operator precedence. In the case of
certain requests, an initial + or - is stripped and interpreted as an
increment or decrement indicator respectively. In the presence of
default scaling, the desired scale indicator must be attached to every
number in an expression for which the desired and default scaling
differ. For example, if the number register x contains 2 and the
current point size is 10, then

.11 (4 .25 i+ \nxP+3) /2u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30
points.

1.5 Notation

Numerical parameters are indicated in this manual in two ways. ± N
means that the argument may take the forms N, + N, or —N and that
the corresponding effect is to set the affected parameter to N, to
increment it by N, or to decrement it by N respectively. Plain N
means that an initial algebraic sign is not an increment indicator, but
merely the sign of N. Generally, unreasonable numerical input is
either ignored or truncated to a reasonable value. For example, most
requests expect to set parameters to non-negative values; exceptions
are sp, wh, ch, nr, and if. The requests ps, ft, po, vs, Is, 11, in, and
It restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters
and one/two character arguments are indicated by a pair of lower case
letters. Character string arguments are indicated by multi-character
mnemonics.

NROFF/TROFF User's Manual 7—17

2. Font and Character Size Control

2.1 Character Set

The T R O F F character set consists of a typesetter-dependent basic char-
acter set plus a Special Mathematical Font character set—each having
102 characters. An example of these character sets is shown in the
Appendix Table I. All printable ASCII characters are included, with
some on the Special Font. With three exceptions, these ASCII charac-
ters are input as themselves, and non-ASCII characters are input in
the form \(xx where xx is a two-character name given in the Appen-
dix Table II. The three ASCII exceptions are mapped as follows:

ASCII Input
Character Name

Pr in ted by TROFF
Character Name

acute accent
grave accent

— minus

close quote
open quote
hyphen

The characters ' , ~, and - may be input by \ ' , V , and \ - respec-
tively or by their names (Table II). The ASCII characters 0 , # , " , ' ,
\ <, >, \ , >, and _ exist only on the Special Font and are
printed as a 1-em space if that font is not mounted.

NROFF understands the entire TROFF character set, but can in general
print only ASCII characters, additional characters as may be available
on the output device, such characters as may be able to be con-
structed by overstriking or other combination, and those that can rea-
sonably be mapped into other printable characters. The exact
behavior is determined by a driving table prepared for each device.
The characters ' , " , and _ print as themselves.

2.2 Fonts

The default mounted fonts are Times Roman (R), Times Italic (I),
Times Bold (B), and the Special Mathematical Font (S) on physical
typesetter positions 1, 2, 3, and 4 respectively. These fonts are used
in this document. The current font, initially Roman, may be changed
(among the mounted fonts) by use of the ft request, or by imbedding
at any desired point either \£x, \ f (x t , or \tN where x and xx are the
name of a mounted font and N is a numerical font position. It is not

5—18 Programmer's Guide: CTIX Supplement

necessary to change to the Special Font; characters on that font are
automatically handled. A request for a named but not-mounted font
is ignored. T R O F F can be informed that any particular font is
mounted by use of the fp request. The list of known fonts is installa-
tion dependent. In the subsequent discussion of font-related requests,
F represents either a one/two-character font name or the numerical
font position, 1-4. The current font is available (as numerical posi-
tion) in the read-only number register .f.

N R O F F understands font control and normally underlines Italic char-
acters (see §10.5).

2.3 Character Size

Character point sizes available are typesetter dependent, but often
include 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36.
This is a range of 1/12 inch to 1/2 inch. The ps request is used to
change or restore the point size. Alternatively the point size may be
changed between any two characters by imbedding a \s,V at the
desired point to set the size to N, or a \ s±/V (1<N<9) to
increment/decrement the size by N\ \ s 0 restores the previous size.
Requested point size values that are between two valid sizes yield the
larger of the two. The current size is available in the .s register.
N R O F F ignores type size control.

Request Initial If No
Form Value Argument Explanation & Notes*

.ps ±N lOpoint previous Point size set to ±N. Alternatively
imbed NsA1 or \ s ± N . Any positive size
value may be requested; if invalid, the
next larger valid size will result, with a
maximum of 36. A paired sequence
+N, — N will work because the previous
requested value is also remembered .
Ignored in NROFF. [See Note E]

* Notes are explained at the end of the Summary above.

NROFF/TROFF User's Manual 7—19

.fz F ±N off

.fz S F ±N off

.ss N 12/36 em ignored

.cs FNM off

.b dFN off

. b d S F A f off

The characters in font F will be adjusted
to be in size ±N. Characters in the Spe-
cial Font encountered during the use of
font F will have the same size modifi-
cation. (Use the .fz S request if di f ferent
t reatment of Special Font characters is
required), .fz must follow any ,fp request
for the position. [See Note E]

The characters in the Special Font will
be in size ±N independent of previous .fz
requests. [See Note E]

Space-character size is set to N/36 ems.
This size is the minimum word spacing in
adjusted text. Ignored in NROFF. [See
Note E]

Constant character space (width) mode is
set on for font F (if mounted) ; the width
of every character will be taken to be
Nf36 ems. If M is absent, the em is that
of the character 's point size; if M is
given, the em is M-points. All affected
characters are centered in this space, in-
cluding those with an actual width larger
than this space. Special Font characters
occurring while the current font is F are
also so treated. If N is absent, the mode
is turned off. The mode must be still or
again in ef fec t when the characters are
physically printed. Ignored in NROFF.
[See Note P]

The characters in font F will be artifi-
cially emboldened by printing each one
twice, separated by N - l basic units. A
reasonable value for /V is 3 when the
character size is in the vicinity of 10
points. If N is missing the embolden
mode is turned off. The mode must be
still or again in effect when the charac-
ters are physically printed. Ignored in
NROFF. [See Note P]

The characters in the Special Font will
be emboldened whenever the current
font is F. The mode must be still or
again in effect when the characters are
physically printed. [See Note P]

5—20 Programmer's Guide: CTIX Supplement

.ft F R o m a n previous

•fp N F R , I , B , S ignored

Font changed to F. Alternatively, imbed
\ f F . The font name P is reserved to
mean the previous font. [See Note E]

Font position. This is a statement that a
font named F is mounted on position N
(1-4). It is a fatal error if F is not
known. The phototypesetter has four
fonts physically mounted. Each font con-
sists of a film strip which can be mounted
on a numbered quadrant of a wheel. The
default mounting sequence assumed by
TROFF is R, I, B, and S on positions 1, 2,
3 and 4.

3. Page Control

Top and bottom margins are not automatically provided; it is conven-
tional to define two macros and to set traps for them at vertical posi-
tions 0 (top) and —N (N from the bottom). See §7 and Tutorial
Examples §T2. A pseudo-page transition onto the first page occurs
either when the first break occurs or when the first non-diverted text
processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following,
references to the current diversion (§7.4) mean that the mechanism
being described works during both ordinary and diverted output (the
former considered as the top diversion level).

The usable page width on the Graphic Systems phototypesetter was
about 7.54 inches, beginning about 1/27 inch from the left edge of the
8 inch wide, continuous roll paper, but these characteristics are
typesetter-dependent. The physical limitations on NROFF output are
output-device dependent.

NROFF/TROFF User's Manual 7—21

Request Initial If No
Form Value Argument Explanation & Notes*

.pi ±N 11 in

.bp ±N N= 1

.pn ±N N= 1

11 in

ignored

.po ±N 0; previous
26/27 inf

• ne N N= IV

.ink R internal

Page length set to ±N. The internal limitation is
about 75 inches in TROFF and about 136 inches in
NROFF. The current page length is available in
the .p register. [See Note v]

Begin page. The current page is e jected and a
new page is begun. If ±N is given, the new page
number will be ±N. Also see request ns. [See
Notes B# ,v]

Page number . The next page (when it occurs)
will have the page number ±N. A pn must occur
before the initial pseudo-page transition to affect
the page number of the first page. The current
page number is in the % register.

Page offset. The current left margin is set to ±N.
The TROFF initial value provides about 1 inch of
paper margin including the physical typesetter
margin of 1/27 inch. In TROFF the maximum
(line-length)+(page-offset) is about 7.54 inches.
See §6. The current page offset is available in
the .o register. [See Note v]

Need N vertical space. If the distance, D, to the
next t rap position (see §7.5) is less than N, a for-
ward vertical space of size D occurs, which will
spring the trap. If there are no remaining traps
on the page, D is the distance to the bot tom of
the page. If D < V, another line could still be
output and spring the trap. In a diversion, D is
the distance to the diversion trap, if any, or is
very large. [See Notes D,v]

Mark the current vertical place in an internal
register (both associated with the current diver-
sion level), or in register R, if given. See rt
request. [See Note D]

* Notes are explained at the end of the Summary above.
The use of " * " as control character (instead of " . ") suppresses the break function,

t Values separated by " are for NROFF and TROFF respectively.

5—22 Programmer's Guide: CTIX Supplement

.rt ±N none internal Return upward only to a marked vertical place in
the current diversion. If ±N (w.r . t . current
place) is given, the place is ±N f rom the top of
the page or diversion or, if N is absent, to a place
marked by a previous mk. Note that the sp
request (§5.3) may be used in all cases instead of
rt by spacing to the absolute place stored in a
explicit register; e. g. using the sequence .mk R
... .sp \nRu. [See Notes D,v]

4. Text Filling, Adjusting and Centering

4.1 Filling and Adjusting

Normally, words are collected from input text lines and assembled
into a output text line until some word doesn't fit. An attempt is
then made to hyphenate the word to assemble a part of it into the
output line. The spaces between the words on the output line are
then increased to spread out the line to the current line length minus
any current indent. A word is any string of characters delimited by
the space character or the beginning/end of the input line. Any adja-
cent pair of words that must be kept together (neither split across out-
put lines nor spread apart in the adjustment process) can be tied
together by separating them with the unpaddable space character
" \ " (backslash-space). The adjusted word spacings are uniform in
T R O F F and the minimum interword spacing can be controlled with
the ss request (§2). In N R O F F , they are normally nonuniform
because of quantization to character-size spaces; however, the com-
mand line option - e causes uniform spacing with full output device
resolution. Filling, adjustment, and hyphenation (§13) can all be
prevented or controlled. The text length on the last line output is
available in the ,n register, and text base-line position on the page for
this line is in the nl register. The text base-line high-water mark
(lowest place) on the current page is in the .h register. The .k register
(read-only) contains the horizontal size of the text portion (without
indent) of the current partially-collected output line (if any) in the
current environment.

An input text line ending with . , ?, or ! is taken to be the end of a
sentence, and an additional space character is automatically provided
during filling. Multiple inter-word space characters found in the
input are retained, except for trailing spaces; initial spaces also cause
a break.

NROFF/TROFF User's Manual 7—23

When filling is in effect, a \ p may be imbedded or attached to a
word to cause a break at the end of the word and have the resulting
output line spread out to fill the current line length.

A text input line that happens to begin with a control character
(§10.4) can be made to not look like a control line by preceding it by
the non-printing, zero-width filler character \ & . Still another way is
to specify output translation of some convenient character into the
control character using tr (§10.5).

4.2 Interrupted Text

The copying of a input line in nofdl (non-fill) mode can be interrupted
by terminating the partial line with a \ c . The next encountered input
text line will be considered to be a continuation of the same line of
input text. Similarly, a word within fdled text may be interrupted by
terminating the word (and line) with \ c ; the next encountered text
will be taken as a continuation of the interrupted word. If the inter-
vening control lines cause a break, any partial line will be forced out
along with any partial word.

Request Initial If No
Form Value Argument Explanat ion & Notes*

.br - - Break. The filling of the line currently being
collected is s topped and the line is output
without adjustment. Text lines beginning
with space characters and empty text lines
(blank lines) also cause a break. [See Note B]

,fi fill on

.nf fill on

Fill subsequent output lines. The register .u
is 1 in fill mode and 0 in nofill mode. [See
Notes B,E]

Nofill. Subsequent output lines are neither
filled nor adjusted. Input text lines are
copied directly to output lines without regard
for the current line length. [See Notes B,E]

Notes are explained at the end of the Summary above.

5—24 Programmer's Guide: CTIX Supplement

.ad c ad j .bo th adjust Line adjustment is begun. If fill mode is not
on, adjustment will be deferred until fill
mode is back on. If the type indicator c is
present, the adjustment type is changed as
shown in the following table. The type indi-
cator can also be a value saved f rom the
read-only .j number register, which is set to
contain the current adjustment mode and
type. [See Note E]

Indicator Adjust Type
1
r
c

b or n
absent

adjust left margin only
adjust right margin only
center
adjust both margins
unchanged

•na adjust - Noadjust . Adjus tment is turned off ; the right
margin will be ragged. The adjustment type
for ad is not changed. Output line filling still
occurs if fill mode is on. [See Note E]

.ce N off N=1 Center the next N input text lines within the
current (line-length minus indent). If N= 0,
any residual count is cleared. A break occurs
af ter each of the N input lines. If the input
line is too long, it will be left adjusted. [See
Notes B,E]

5. Ver t ica l S p a c i n g

5.1 Base-line Spacing

The vertical spacing (V) between the base-lines of successive output
lines can be set using the vs request with a resolution of
1/144 inch = 1/2 point in T R O F F , and to the output device resolution
in N R O F F . V must be large enough to accommodate the character
sizes on the affected output lines. For the common type sizes (9-12
points), usual typesetting practice is to set V to 2 points greater than
the point size; T R O F F default is 10-point type on a 12-point spacing
(as in this document). The current V is available in the .v register.
Multiple-V line separation (e. g. double spacing) may be requested
with Is.

NROFF/TROFF User ' s Manual 7—25

5.2 Extra Line-space

If a word contains a vertically tall construct requiring the output line
containing it to have extra vertical space before and/or after it, the
extra-line-space function \x'N ' can be imbedded in or attached to
that word. In this and other functions having a pair of delimiters
around their parameter (here ') , the delimiter choice is arbitrary,
except that it can't look like the continuation of a number expression
for N. If N is negative, the output line containing the word will be
preceded by N extra vertical space; if N is positive, the output line
containing the word will be followed by N extra vertical space. If suc-
cessive requests for extra space apply to the same line, the maximum
values are used. The most recently utilized post-line extra line-space
is available in the .a register.

5.3 Blocks of Vertical Space

A block of vertical space is ordinarily requested using sp, which
honors the no-space mode and which does not space past a trap. A
contiguous block of vertical space may be reserved using sv.

Request
Form

Initial
Value

If No
Argument Explanat ion & Notes*

• vs N

AsN

l /6tn; previous Set vertical base-line spacing size V. Tran-
12ptsf sient extra vertical space available with

\x'N ' (see above). [See Notes E ,p]

N= 1 previous Line spacing set to ±N. N-l Vs (blank lines)
are appended to each output text line. The
(read-only) number register .L is set to con-
tain the current line-spacing value.
Appended blank lines are omitted, if the text
or previous appended blank line reached a
trap position. [See Note E]

* Notes are explained at the end of the Summary above,
t Values separated by " are for NROFF and TROFF respectively.

5—26 Programmer's Guide: CTIX Supplement

.sp N - N= IV Space vertically in either direction. If N is
negative, the motion is backward (upward)
and is limited to the distance to the top of the
page. Forward (downward) motion is trun-
cated to the distance to the nearest trap. If
the no-space mode is on, no spacing occurs
(see ns, and rs below). [See Notes B,v]

. s v N - N= IV Save a contiguous vertical block of size N. If
the distance to the next trap is greater than N,
N vertical space is output . No-space mode
has no effect . If this distance is less than N,
no vertical space is immediately output , but
N is r emembered for later output (see os).
Subsequent sv requests will overwrite any still
r emembered N. [See Note v]

.os - - Output saved vertical space. No-space mode
has no effect . Used to finally output a block
of vertical space requested by an earlier sv
request.

.ns space - No-space mode turned on. When on, the
no-space mode inhibits sp requests and bp
requests without a next page number . The
no-space mode is turned off when a line of
output occurs, or with rs. [See Note D]

.rs space - Restore spacing. The no-space mode is
turned off. [See Note D]

Blank Causes a break and outputs a blank line just
text like sp 1. [See Note B]
line.

6. Line Length and Indenting

The maximum line length for fill mode may be set with 11. The
indent may be set with in; an indent applicable to only the next output
line may be set with ti. The line length includes indent space but not
page offset space. The line-length minus the indent is the basis for
centering with ce. The effect of 11, in, or ti is delayed, if a partially
collected line exists, until after that line is output. In fill mode the
length of text on an output line is less than or equal to the line length
minus the indent. The current line length and indent are available in
registers .1 and .i respectively. The length of three-part titles pro-
duced by tl (see §14) is independently set by It.

NROFF/TROFF User's Manual 7—27

Request Initial If No
Form Value Argument Explanation & Notes*

.11 ±N 6.5 in previous Line length is set to ±N. In TROFF the
maximum (line-length)+(page-offset) is about
7.54 inches. [See Notes E,m]

.in ±N N= 0 previous Indent is set to ±N. The indent is
prepended to each output line. [See
Notes B ,E ,m]

.ti ±N ignored Temporary indent. The next output text
line will be indented a distance ±N with
respect to the current indent. The result-
ing total indent may not be negative.
The current indent is not changed. [See
Notes B ,E ,m]

7. Macros, Strings, Diversions and Position
Traps

7.1 Macros and Strings

A macro is a named set of arbitrary lines that may be invoked by
name or with a trap. A string is a named string of characters, not
including a newline character, that may be interpolated by name at
any point. Request, macro, and string names share the same name
list. Macro and string names may be one or two characters long and
may usurp previously defined request, macro, or string names. Any
of these entities may be renamed with rn or removed with rm. Mac-
ros are created by de and di, and appended to by am and da; di and
da cause normal output to be stored in a macro. Strings are created
by ds and appended to by as. A macro is invoked in the same way as
a request; a control line beginning .xx will interpolate the contents of
macro xx. The remainder of the line may contain up to nine argu-
ments. The strings x and xx are interpolated at any desired point with

and *(xx respectively. String references and macro invocations
may be nested.

Notes are explained at the end of the Summary above.

5—28 Programmer's Guide: CTIX Supplement

7.2 Copy Mode Input Interpretation

During the definition and extension of strings and macros (not by
diversion) the input is read in copy mode. The input is copied
without interpretation except that:

• The contents of number registers indicated by \ n are interpo-
lated.

• Strings indicated by \ * are interpolated.

• Arguments indicated by \ $ are interpolated.

• Concealed newlines indicated by \(newline) are eliminated.

• Comments indicated by \ " are eliminated.

• \ t and \ a are interpreted as ASCII horizontal tab and SOH
respectively (§9).

• \ \ is interpreted as V

• \ . is interpreted as " . " .

These interpretations can be suppressed by prepending a \ . For
example, since \ \ maps into a \ , \ \ n will copy as \ n which will be
interpreted as a number register indicator when the macro or string is
reread.

7.3 Arguments

When a macro is invoked by name, the remainder of the line is taken
to contain up to nine arguments. The argument separator is the
space character, and arguments may be surrounded by double-quotes
to permit imbedded space characters. Pairs of double-quotes may be
imbedded in double-quoted arguments to represent a single double-
quote. If the desired arguments won't fit on a line, a concealed new-
line may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any argu-
ments available at the previous level become unavailable until the
macro is completely read and the previous level is restored. A
macro's own arguments can be interpolated at any point within the
macro with \$N, which interpolates the A'th argument (1 < N < 9) . If
an invoked argument doesn't exist, a null string results. For example,
the macro xx may be defined by

NROFF/TROFF User's Manual 7—29

.de xx \ " begin definition
Today is \ \ $ 1 the \ \ $ 2 .

\ " end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the \ $ was concealed in the definition with a prepended \ .
The number of currently available arguments is in the .$ register.

No arguments are available at the top (non-macro) level in this imple-
mentation. Because string referencing is implemented as a input-level
push down, no arguments are available from within a string. No
arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are avail-
able for reference. The mechanism does not allow an argument to
contain a direct reference to a long string (interpolated at copy time)
and it is advisable to conceal string references (with an extra \) to
delay interpolation until argument reference time.

7.4 Diversions

Processed output may be diverted into a macro for purposes such as
footnote processing (see Tutorial §T5) or determining the horizontal
and vertical size of some text for conditional changing of pages or
columns. A single diversion trap may be set at a specified vertical
position. The number registers dn and dl respectively contain the
vertical and horizontal size of the most recently ended diversion.
Processed text that is diverted into a macro retains the vertical size of
each of its lines when reread in nofdl mode regardless of the current
V. Constant-spaced (cs) or emboldened (bd) text that is diverted can
be reread correctly only if these modes are again or still in effect at
reread time. One way to do this is to imbed in the diversion the
appropriate cs or bd requests with the transparent mechanism
described in §10.6.

Diversions may be nested and certain parameters and registers are
associated with the current diversion level (the top non-diversion level
may be thought of as the 0th diversion level). These are the diver-
sion trap and associated macro, no-space mode, the internally-saved

5—30 Programmer's Guide: CTIX Supplement

marked place (see mk and rt), the current vertical place (.d register),
the current high-water text base-line (.h register), and the current
diversion name (.z register).

7.5 Traps

Three types of trap mechanisms are available—page traps, a diversion
trap, and an input-line-count trap. Macro-invocation traps may be
planted using wh at any page position including the top. This trap
position may be changed using ch. Trap positions at or below the
bottom of the page have no effect unless or until moved to within the
page or rendered effective by an increase in page length. Two traps
may be planted at the same position only by first planting them at dif-
ferent positions and then moving one of the traps; the first planted
trap will conceal the second unless and until the first one is moved
(see Tutorial Examples §T5). If the first one is moved back, it again
conceals the second trap. The macro associated with a page trap is
automatically invoked when a line of text is output whose vertical size
reaches or sweeps past the trap position. Reaching the bottom of a
page springs the top-of-page trap, if any, provided there is a next
page. The distance to the next trap position is available in the .t
register; if there are no traps between the current position and the
bottom of the page, the distance returned is the distance to the page
bottom.

A macro-invocation trap effective in the current diversion may be
planted using dt. The .t register works in a diversion; if there is no
subsequent trap a large distance is returned. For a description of
input-line-count traps, see the it request below.

NROFF/TROFF User's Manual 7—31

Request Initial If No
Form Value Argument Explanation & Notes*

•de xx yy •yy=

.am xx yy

• ds xx string

.as xx string

. rn xx yy

•di xx

•yy=-
ignored

ignored

ignored

ignored

end

•da xx end

Define or redefine the macro xx. The con-
tents of the macro begin on the next input
line. Input lines are copied in copy mode
until the definition is terminated by a line
beginning with .yy, whereupon the macro yy
is called. In the absence of yy, the definition
is terminated by a line beginning with
A macro may contain de requests provided
the terminating macros differ or the con-
tained definition terminator is concealed.

can be concealed as \ \ . . which will
copy as V . and be reread as " . . " .

Append to macro (append version of de).

Define a string xx containing string. Any ini-
tial double-quote in string is s tr ipped off to
permit initial blanks.

Append string to string xx (append version of
ds).

Remove request, macro, or string. The name
xx is removed f rom the name list and any
related storage space is freed. Subsequent
references will have no effect .

Rename request, macro, or string xx to yy.
If yy exists, it is first removed.

Divert output to macro xx. Normal text pro-
cessing occurs during diversion except that
page offsetting is not done. The diversion
ends when the request di or da is encountered
without an argument; extraneous requests of
this type should not appear when nested
diversions are being used. [See Note D]

Divert, appending to xx (append version of
di). [See Note D]

Notes are explained at the end of the Summary above.

5—32 Programmer's Guide: CTIX Supplement

Install a trap to invoke xx at page position N;
a negative N will be interpreted with respect
to the page bottom. Any macro previously
planted at N is replaced by xx. A zero N
refers to the top of a page. In the absence of
xx, the first found t rap at N, if any, is
removed. [See Note v]

Change the trap position for macro xx to be
N. In the absence of N, the trap, if any, is
removed. [See Note v]

Install a diversion trap at position N in the
current diversion to invoke macro xx.
Another dt will redefine the diversion trap.
If no arguments are given, the diversion t rap
is removed. [See Notes D,v]

Set an input-line-count t rap to invoke the
macro xx after N lines of text input have been
read (control or request lines don ' t count) .
The text may be in-line text or text interpo-
lated by inline or trap-invoked macros. [See
Note E]

The macro xx will be invoked when all input
has ended. The effect is the same as if the
contents of xx had been at the end of the last
file processed.

8. Number Registers

A variety of parameters are available to the user as predefined,
named number registers (see Summary). In addition, the user may
define his own named registers. Register names are one or two char-
acters long and do not conflict with request, macro, or string names.
Except for certain predefined read-only registers, a number register
can be read, written, automatically incremented or decremented, and
interpolated into the input in a variety of formats. One common use
of user-defined registers is to automatically number sections, para-
graphs, lines, etc. A number register may be used any time numeri-
cal input is expected or desired and may be used in numerical expres-
sions (§1.4).

Number registers are created and modified using nr, which specifies
the name, numerical value, and the auto-increment size. Registers
are also modified, if accessed with an auto-incrementing sequence. If
the registers x and xx both contain N and have the auto-increment size

.wh N xx

.ch xx N

.dt N xx - off

• it N xx - off

.em none none

NROFF/TROFF User's Manual 7—33

M, the following access sequences have the effect shown:

Effect on Value
Sequence Register Interpolated

\rur none N
\n(xx none N
\n+jt x incremented by M N+M
\ n - . i x decremented by M N-M
\n+(xx xx incremented by M N+M
\ n - (x v xx decremented by M N M

When interpolated, a number register is converted to decimal
(default), decimal with leading zeros, lower-case Roman, upper-case
Roman, lower-case sequential alphabetic, or upper-case sequential
alphabetic according to the format specified by af.

Request Initial If No
Form Value Argument Explanation & Notes*

.nr R ±N M - - The number register R is assigned the
value ±N with respect to the previous
value, if any. The increment for auto-
incrementing is set to M. [See Note u]

.af R c arabic - Assign format c to register R. The avail-
able formats are:

Numbering
Format Sequence

1 0,1,2,3,4,5, . . .
001 000,001,002,003,004,005,.. .

i 0,i,ii,iii,iv,v,...
I 0,1 , I I , I I I , IV,V, . . .
a 0,a ,b ,c , . . . , z ,aa ,ab , . . . , zz ,aaa , . . .
A 0 , A , B , C , . . . , Z , A A , A B , . . . , Z Z , A A A , . . .

An arabic format having N digits speci-
fies a field width of N digits (example 2
above). The read-only registers and the
width function (§11.2) are always arabic.

* Notes are explained at the end of the Summary above.

5 — 3 4 Programmer's Guide: CTIX Supplement

. r r R - ignored Remove register R. If many registers are
being created dynamically, it may
become necessary to remove no longer
used registers to recapture internal
storage space for newer registers.

9. Tabs, Leaders and Fields

9.1 Tabs and Leaders

The A S C I I horizontal tab character and the A S C I I SOU (hereafter
known as the leader character) can both be used to generate either
horizontal motion or a string of repeated characters. The length of
the generated entity is governed by internal tab stops specifiable with
ta. The default difference is that tabs generate motion and leaders
generate a string of periods; tc and Ic offer the choice of repeated
character or motion. There are three types of internal tab stops—left
adjusting, right adjusting, and centering. In the following table: D is
the distance from the current position on the input line (where a tab
or leader was found) to the next tab stop; next-string consists of the
input characters following the tab (or leader) up to the next tab (or
leader) or end of line; and W is the width of next-string.

Tab Length of motion or Location of
type repeated characters next-string

Left D Following D
Right D-W Right adjusted within D

Centered D-W/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of
a repeated character string cannot be. Repeated character strings
contain an integer number of characters, and any residual distance is
prepended as motion. Tabs or leaders found after the last tab stop
are ignored, but may be used as next-string terminators.

Tabs and leaders are not interpreted in copy mode. \ t and \ a always
generate a non-interpreted tab and leader respectively, and are
equivalent to actual tabs and leaders in copy mode.

NROFF/TROFF User's Manual 7—35

9.2 Fields

A field is contained between a pair of field delimiter characters, and
consists of sub-strings separated by padding indicator characters. The
field length is the distance on the input line from the position where
the field begins to the next tab stop. The difference between the total
length of all the sub-strings and the field length is incorporated as
horizontal padding space that is divided among the indicated padding
places. The incorporated padding is allowed to be negative. For
example, if the field delimiter is # and the padding indicator is
#~xxx~right# specifies a right-adjusted string with the string xxx cen-
tered in the remaining space.

Request
Form

Initial
Value

If No
Argument Explanat ion & Notes*

.ta Nt 8n;
0.5in*

.tc c none none

.1c c . none

. f c a b off off

Set tab stops and types. r=R, right adjusting;
r=C, centering; i absent, left adjusting. TROFF tab
stops are preset every 0.5in. ; NROFF every 8 char-
acter widths. The stop values are separated by
spaces, and a value preceded by + is treated as an
increment to the previous stop value. [See Notes
E ,m]

The tab repetition character becomes c, or is
removed specifying motion. [See Note E]

The leader repetition character becomes c, or is
removed specifying motion. [See Note E]

The field delimiter is set to a; the padding indica-
tor is set to the space character or to b, if given.
In the absence of arguments the field mechanism
is turned off.

* Notes are explained at the end of the Summary above.
Values separated by " ;" are for NROFF and TROFF respectively.

5—36 Programmer's Guide: CTIX Supplement

10. Input and Output Conventions and Char-
acter Translations

10.1 Input Character Translations

Ways of inputting the graphic character set were discussed in §2.1.
The ASCII control characters horizontal tab (§9.1), SOH (§9.1), and
backspace (§10.3) are discussed elsewhere. The newline delimits
input lines. In addition, STX, ETX, ENQ, ACK, and BEL are
accepted, and may be used as delimiters or translated into a graphic
with tr (§10.5). All others are ignored.

The escape character \ introduces escape sequences—causes the fol-
lowing character to mean another character, or to indicate some func-
tion. A complete list of such sequences is given in the Summary. \
should not be confused with the ASCII control character ESC of the
same name. The escape character \ can be input with the sequence
\ \ . The escape character can be changed with ec, and all that has
been said about the default \ becomes true for the new escape char-
acter. \ e can be used to print whatever the current escape character
is. If necessary or convenient, the escape mechanism may be turned
off with eo, and restored with ec.

Request Initial If No
Form Value Argument Explanation & Notes*

• ec c \ \ Set escape character to \ , or to c, if given.

.eo on - Turn escape mechanism off.

10.2 Ligatures

Five ligatures are available in the current T R O F F character set — fi,
fl, ff, ffi, and ffl. They may be input (even in N R O F F) by \ (f i , \ (f l ,
\ (f f , \ (F i , and \(F1 respectively. The ligature mode is normally on
in T R O F F , and automatically invokes ligatures during input.

* Notes are explained at the end of the Summary above.

NROFF/TROFF User s Manual 7—37

Request Initial If No
Form Value Argument Explanat ion & Notes*

,]g N off; on on Ligature mode is turned on if N is absent
or non-zero, and turned off if N = 0. If
N= 2, only the two-character ligatures are
automatically invoked. Ligature mode is
inhibited for request, macro, string,
register, or file names, and in copy mode.
N o effect in NROFF.

10.3 Backspacing, Underlining, Overstriking, Etc.

Unless in copy mode, the ASCI I backspace character is replaced by a
backward horizontal motion having the width of the space character.
Underlining as a form of line-drawing is discussed in §12.4. A gen-
eralized overstriking function is described in §12.1.

N R O F F automatically underlines characters in the underline font,
specifiable with uf, normally Times Italic on font position 2 (see
§2.2). In addition to ft and \ f F , the underline font may be selected
by ul and cu. Underlining is restricted to an output-device-dependent
subset of reasonable characters.

Request Initial If No
Form Value Argument

.cu N off N= 1

.uf F Italic Italic

Explanat ion & Notes*

A variant of ul that causes every charac-
ter to be underlined in NROFF. Identical
to ul in TROFF. [See Note E]

Underl ine font set to F. In NROFF, F
may not be on position 1 (initially Times
Roman) .

* Notes are explained at the end of the Summary above.

5—38 Programmer's Guide: CTIX Supplement

.ul N off N= 1 Underline in NROFF (italicize in TROFF)
the next N input text lines. Actually,
switch to underline font, saving the
current font for later restoration; other
font changes within the span of a ul will
take effect, but the restoration will undo
the last change. Output generated by tl
(§14) is affected by the font change, but
does not decrement N. If N> 1, there is
the risk that a trap interpolated macro
may provide text lines within the span;
environment switching can prevent this.
[See Note E]

10.4 Control Characters

Both the control character . and the no-break control character ' may
be changed, if desired. Such a change must be compatible with the
design of any macros used in the span of the change, and particularly
of any trap-invoked macros.

Request Initial If No
Form Value Argument Explanation & Notes*

. c t c . . The basic control character is set to c, or
reset to " . " . [See Note E]

•c2 c ' ' The nobreak control character is set to c,
or reset to " ' ". [See Note E]

10.5 Output Translation

One character can be made a stand-in for another character using tr.
All text processing (e. g. character comparisons) takes place with the
input (stand-in) character which appears to have the width of the
final character. The graphic translation occurs at the moment of out-
put (including diversion).

* Notes are explained at the end of the Summary above.

NROFF/TROFF User s Manual 7—39

Request Initial If No
Form Value Argument Explanation & Notes*

•tr abed.... none - Translate a into b, c into d, etc. If an
odd number of characters is given, the
last one will be mapped into the space
character . T o be consistent, a particular
translation must stay in ef fec t f rom input
to output t ime. [See Note O]

10.6 Transparent Throughput

An input line beginning with a \ ! is read in copy mode and tran-
sparently output (without the initial \ !) ; the text processor is other-
wise unaware of the line's presence. This mechanism may be used to
pass control information to a post-processor or to imbed control lines
in a macro created by a diversion.

10.7 Comments and Concealed Newlines

An uncomfortably long input line that must stay one line (e. g. a
string definition, or nofilled text) can be split into many physical lines
by ending all but the last one with the escape \ . The sequence
\(newline) is always ignored—except in a comment. Comments may
be imbedded at the end of any line by prefacing them with \ ". The
newline at the end of a comment cannot be concealed. A line begin-
ning with \ " will appear as a blank line and behave like .sp 1; a com-
ment can be on a line by itself by beginning the line with " .

11. Local Horizontal and Vertical Motions and
the Width Function

11.1 Local Motions

The functions \ v ' N ' and \ h ' ;V ' can be used for local vertical and
horizontal motion respectively. The distance N may be negative; the
positive directions are rightward and downward. A local motion is
one contained within a line. To avoid unexpected vertical

* Notes are explained at the end of the Summary above.

7—40 Programmer's Guide: CTIX Supplement

dislocations, it is necessary that the net vertical local motion within a
word in filled text and otherwise within a line balance to zero. The
above and certain other escape sequences providing local motion are
summarized in the following tables.

Vertical Effect in
Local Motion TROFF NROFF

\v'N ' Move distance N
\ u % em up line up
\ d % em down % line down
\ r 1 em up 1 line up

Horizontal
Local Motion

Effect in
TROFF NROFF

\ h 'N '
\(space)
\ 0

Move distance N
Unpaddable space-size space
Digit-size space

\ 1 1/6 em space
1/12 em space

ignored
ignored

As an example, E2 could be generated by the sequence
E \ s - 2 \ v ' - 0 . 4 m ' 2 \ v ' 0 . 4 m ' \ s + 2 ; it should be noted in this exam-
ple that the 0.4 em vertical motions are at the smaller size.

11.2 Width Function

The width function \ w 'string' generates the numerical width of
string (in basic units). Size and font changes may be safely imbedded
in string, and will not affect the current environment. For example,
.ti - \ w '1. 'u could be used to temporarily indent leftward a distance
equal to the size of the string "1. ".

The width function also sets three number registers. The registers st
and sb are set respectively to the highest and lowest extent of string
relative to the baseline; then, for example, the total height of the
string is \n(stu-\n(sbu. In TROFF the number register ct is set to a
value between 0 and 3: 0 means that all of the characters in string
were short lower case characters without descenders (like e); 1 means
that at least one character has a descender (like y); 2 means that at
least one character is tall (like H); and 3 means that both tall charac-
ters and characters with descenders are present.

NROFF/TROFF User's Manual 7—41

11.3 Mark Horizontal Place

The escape sequence \k_v will cause the current horizontal position in
the input line to be stored in register x. As an example, the construc-
tion \kxword\h ' I \nxu+2u ' word will embolden word by backing
up to almost its beginning and overprinting it, resulting in word.

12. Overstrike, Bracket, Line-Drawing and
Zero-Width Functions

12.1 Overstriking

Automatically centered overstriking of up to nine characters is pro-
vided by the overstrike function \ o 'string '. The characters in string
are overprinted with centers aligned; the total width is that of the
widest character, string should not contain local vertical motion. As
examples, \ o ' e \ ' ' produces 6, and \ o ' \ (m o \ (s l ' produces

12.2 Zero-width Characters

The function \ z c will output c without spacing over it, and can be
used to produce left-aligned overstruck combinations. As examples,
\ z \ (c i \ (p l will produce ©, and \ (b r \ z \ (r n \ (u l \ (b r will produce the
smallest possible constructed box G •

12.3 Large Brackets

The Special Mathematical Font contains a number of bracket con-
struction pieces (f I) J -| M LJ I I) that can be combined into
various bracket styles. The function \ b 'string ' may be used to pile
up vertically the characters in string (the first character on top and the
last at the bottom); the characters are vertically separated by 1 em
and the total pile is centered 1/2 em above the current baseline (% line
in NROFF). For example,

\ b ' \ (l c \ (l f ' E \ I \ b ' \ (rc \ (r f ' \ x ' -0.5m ' \ x 0.5m '

produces | E J .

5—42 Programmer's Guide: CTIX Supplement

12.4 Line Drawing

The function \ 1 'Nc ' will draw a string of repeated c ' s towards the
right for a distance N. (\ I is \ (lower case L). If c looks like a con-
tinuation of an expression for N, it may insulated from N with a \ & .
If c is not specified, the _ (baseline rule) is used (underline character
in N R O F F) . If N is negative, a backward horizontal motion of size N
is made before drawing the string. Any space resulting from N/(size
of c) having a remainder is put at the beginning (left end) of the
string. In the case of characters that are designed^ to be connected
such as baseline-rule _ , underrule _ , and root-en , the remainder
space is covered by over-lapping. If N is less than the width of c, a
single c is centered on a distance N. As an example, a macro to
underscore a string can be written

.de ul
\ \ $ 1 \ 1 ' I 0 \ (u l '

or one to draw a box around a string

.de bx
\ (b r \ I \ \ $ 1 \ | \ (b r \ 1 ' I 0 \ (r n ' \ l ' I 0 \ (u l '

such that

.ul "underlined words"

and

.bx "words in a box"

yield underlined words and [words in a boxL

The function \ L ' Nc ' will draw a vertical line consisting of the
(optional) character c stacked vertically apart 1 em (1 line in N R O F F) ,
with the first two characters overlapped, if necessary, to form a con-
tinuous line. The default character is the box rule ill (\ (b r) ; the
other suitable character is the bold vertical | (\ (b v) . The line is
begun without any initial motion relative to the current base line. A
positive N specifies a line drawn downward and a negative N specifies
a line drawn upward. After the line is drawn no compensating
motions are made; the instantaneous baseline is at the end of the line.

NROFF/TROFF User's Manual 7—43

The horizontal and vertical line drawing functions may be used in
combination to produce large boxes. The zero-width box-rule and the
)4-em wide underrule were designed to form corners when using 1-em
vertical spacings. For example the macro
•de eb
.sp - 1 \"compensate for next automatic base-line spacing
• nf avoid possibly overflowing word buffer
\ 1 1 next line draws box
\ h ' - . 5 n - \ L - \ \ n a u - l " \ 1 ' \ \ n (. l u + l n \ (u l ' \ L ' - W n a u + l ' M ' 0 u - . 5 n \ (u r
•fl

will draw a box around some text whose beginning vertical place was
saved in number register a (e. g. using .mk a) as done for this para-

13. Hyphenation

The automatic hyphenation may be switched off and on. When
switched on with hy, several variants may be set. A hyphenation indi-
cator character may be imbedded in a word to specify desired hyphe-
nation points, or may be prepended to suppress hyphenation. In
addition, the user may specify a small exception word list.

Only words that consist of a central alphabetic string surrounded by
(usually null) non-alphabetic strings are considered candidates for
automatic hyphenation. Words that were input containing hyphens
(minus), em-dashes (\ (em), or hyphenation indicator characters—
such as mother-in-law—are always subject to splitting after those
characters, whether or not automatic hyphenation is on or off.

Request Initial If No
Form Value Argument Explanation & Notes*

.nh hyphen- - Automat ic hyphenation is turned off. [See
ate Note E]

* Notes are explained at the end of the Summary above.

5—44 Programmer's Guide: CTIX Supplement

.hyiV on, iV=l on ,N=l Automatic hyphenation is turned on for
N>1, o r o f f f o r N = 0 . If N = 2 , last lines
(ones that will cause a trap) are not
hyphenated. For N= 4 and 8, the last and
first two characters respectively of a word are
not split off. These values are additive; i. e.
N= 14 will invoke all three restrictions. [See
Note E]

.he c \ % \ % Hyphenation indicator character is set to c or
to the default The indicator does not
appear in the output. [See Note E]

.hw wordl ... - ignored Specify hyphenation points in words with
imbedded minus signs. Versions of a word
with terminal j are implied; i. e. dig-it
implies dig-its. This list is examined initially
and after each suffix stripping. The space
available is small—about 128 characters.

14. Three Part Titles

The titling function tl provides for automatic placement of three fields
at the left, center, and right of a line with a title-length specifiable
with It. tl may be used anywhere, and is independent of the normal
text collecting process. A common use is in header and footer mac-
ros^
Request Initial If No
Form Value Argument Explanation & Notes*

•pc c % off The page number character is set
to c, or removed. The page-
number register remains %.

•It ±N 6.5 in previous Length of title set to ±N. The
line-length and the title-length
are independent. Indents do not
apply to titles; page-offsets do.
[See Notes E,m]

* Notes are explained at the end of the Summary above.

NROFF/TROFF User s Manual 7—45

.tl 'left 'center 'right ' - The strings left, center, and right
are respectively left-adjusted,
centered, and right-adjusted in
the current title-length. Any of
the strings may be empty, and
overlapping is permit ted. If the
page-number character (initially
%) is found within any of the
fields it is replaced by the
current page number having the
format assigned to register % .
Any character may be used as
the string delimiter.

15. Output Line Numbering

Automatic sequence numbering of output lines may be requested
with nm. When in effect, a three-digit, arabic number plus a

3 digit-space is prepended to output text lines. The text lines are
thus offset by four digit-spaces, and otherwise retain their line
length; a reduction in line length may be desired to keep the

6 right margin aligned with an earlier margin. Blank lines, other
vertical spaces, and lines generated by tl are not numbered.
Numbering can be temporarily suspended with nn, or with an

9 .nm followed by a later .nm +0. In addition, a line number
indent I, and the number-text separation 5 may be specified in
digit-spaces. Further, it can be specified that only those line

12 numbers that are multiples of some number M are to be printed
(the others will appear as blank number fields).

Request Initial If No
Form Value Argument Explanation & Notes*

• nn N - N= 1 The next N text output lines are not
numbered . [See Note E]

* Notes are explained at the end of the Summary above.

5—46 Programmer's Guide: CTIX Supplement

.nm ±N M S I off Line number mode. If ±N is given,
line numbering is turned on, and the
next output line numbered is num-
bered ±N. Default values are M= 1 ,
S= 1, and /= 0. Parameters
corresponding to missing arguments
are unaffected; a non-numeric argu-
ment is considered missing. In the
absence of all arguments, numbering
is turned off; the next line number is
preserved for possible further use in
number register In. [See Note E]

As an example, the paragraph portions of this section are num-
15 bered with M-3: .nm 1 3 was placed at the beginning; .nm was

placed at the end of the first paragraph; and .nm +0 was placed
in front of this paragraph; and .nm finally placed at the end.

18 Line lengths were also changed (by \ w ' 0 0 0 0 ' u) to keep the
right side aligned. Another example is .nm + 5 5 x 3 which turns
on numbering with the line number of the next line to be 5

21 greater than the last numbered line, with M=5, with spacing S
untouched, and with the indent / set to 3.

16. Conditional Acceptance of Input

In the following, c is a one-character, built-in condition name, ! signi-
fies not, N is a numerical expression, string1 and string2 are strings
delimited by any non-blank, non-numeric character not in the strings,
and anything represents what is conditionally accepted.

Request Form Explanation & Notes*

• if c anything

.if !c anything

.if N anything

• if \N anything

If condition c true, accept anything as input; in
multi-line case use \{.anything\y.

If condition c false, accept anything.

If expression N > 0, accept anything. [See Note u]

If expression N < 0 , accept anything. [See Note
ul

* Notes are explained at the end of the Summary above.

NROFF/TROFF User s Manual 7—47

• if 'stringl ' string2 ' anything If stringl identical to string2, accept any thing.

.if ! 'stringl ' string2 ' anything If stringl not identical to string2, accept anything.

.ie c anything If portion of if-else; all above forms (like if). [See
Note u]

•el anything Else portion of if-else.

The built-in condition names are:

Condition
Name True If

0 Current page number is odd
e Current page number is even
t F o r m a t t e r is TROFF
n F o r m a t t e r is NROFF

If the condition c is true, or if the number N is greater than zero, or
if the strings compare identically (including motions and character
size and font), anything is accepted as input. If a ! precedes the con-
dition, number, or string comparison, the sense of the acceptance is
reversed.

Any spaces between the condition and the beginning of anything are
skipped over. The anything can be either a single input line (text,
macro, or whatever) or a number of input lines. In the multi-line
case, the first line must begin with a left delimiter \-C and the last
line must end with a right delimiter \ > .

The request ie (if-else) is identical to if except that the acceptance
state is remembered. A subsequent and matching el (else) request
then uses the reverse sense of that state, ie - el pairs may be nested.

Some examples are:

.if e .tl ' Even Page %

which outputs a title if the page number is even; and

.ie \ n % > l \ { \
'sp 0.5i
.tl ' Page %' "
'sp I 1.21 \ >
.el .sp I 2.5i

which treats page 1 differently from other pages.

5—48 Programmer's Guide: CTIX Supplement

17. Environment Switching

A number of the parameters that control the text processing are gath-
ered together into an environment, which can be switched by the user.
The environment parameters are those associated with requests noting
E in their Notes column; in addition, partially collected lines and
words are in the environment. Everything else is global; examples are
page-oriented parameters, diversion-oriented parameters, number
registers, and macro and string definitions. All environments are ini-
tialized with default parameter values.

Request Initial If No
Form Value Argument

.ev N N=0 previous

Explanation & Notes*

Environment switched to environment
0< iVs2 . Switching is done in push-down
fashion so that restoring a previous
environment must be done with .ev rather
than specific reference.

18. Insertions from the Standard Input

The input can be temporarily switched to the system standard input
with rd, which will switch back when two newlines in a row are found
(the extra blank line is not used). This mechanism is intended for
insertions in form-letter-like documentation. On U N I X , the standard
input can be the user's keyboard, a pipe, or a file.

Request Initial If No
Form Value Argument Explanation & Notes*

.ex - - Exit f rom N R O F F / T R O F F . Text pro-
cessing is terminated exactly as if all
input had ended.

* Notes are explained at the end of the Summary above.

NROFF/TROFF User s Manual 7—49

.rd prompt prompt=BEL Read insertion f rom the standard
input until two newlines in a row are
found. If the standard input is the
user 's keyboard, prompt (or a BEL) is
written onto the user's terminal, rd
behaves like a macro, and arguments
may be placed after prompt.

If insertions are to be taken from the terminal keyboard while output
is being printed on the terminal, the command line option - q will
turn off the echoing of keyboard input and prompt only with BEL.
The regular input and insertion input cannot simultaneously come
from the standard input.

As an example, multiple copies of a form letter may be prepared by
entering the insertions for all the copies in one file to be used as the
standard input, and causing the file containing the letter to reinvoke
itself using nx (§19); the process would ultimately be ended by an ex
in the insertion file.

The (read-only) number register .c contains the input line number in
the current input file. The number register c. is a general register
serving the same purpose.

19. Input/Output File Switching

Request
Form

Initial If No
Value Argument Explanation & Notes*

.so filename Switch source file. The top input (file
reading) level is switched to filename.
The effect of an so encountered in a
macro occurs immediately. When the
new file ends, input is again taken f rom
the original file, so 's may be nested.

.n x filename end-of-file Next file is filename. The current file is
considered ended, and the input is
immediately switched to filename.

Notes are explained at the end of the Summary above.

5—50 Programmer's Guide: CTIX Supplement

.pi program - - Pipe output to program (NROFF only).
This request must occur before any print-
ing occurs. No arguments are transmit-
ted to program.

20. Miscellaneous

Request Initial If No
Form Value Argument Explanation & Notes*

.mc c N - off

•tm string - newline

• ig yy - ,yy=..

• pm / - all

Specifies that a margin character c
appear a distance N to the right of the
right margin after each non-empty text
line (except those produced by tl). If the
output line is too-long (as can happen in
nofill mode) the character will be
appended to the line. If A' is not given,
the previous N is used; the initial N is
0 . 2 i n c h e s i n N R O F F a n d 1 e m i n T R O F F .

The margin character used with this
paragraph was a 12-point box-rule. [See
Notes E,m]

After skipping initial blanks, string (rest
of the line) is read in copy mode and writ-
ten on the user's terminal, (see §21).

Ignore input lines, ig behaves exactly
like de (§7) except that the input is dis-
carded. The input is read in copy mode,
and any auto-incremented registers will
be affected.

Print macros. The names and sizes of all
of the defined macros and strings are
printed on the user's terminal; if t is
given, only the total of the sizes is
printed. The sizes is given in blocks of
128 characters.

* Notes are explained at the end of the Summary above.

NROFF/TROFF User s Manual 7—51

.ab string - - Print siring on standard error and ter-
minate immediately. The default string is
"User A b o r t " . Does not cause a break.
Only output preceding the last break is
written.

.fl - - Flush output buffer. Used in interactive
debugging to force output.

21. Output and Error Messages

The output from tm, pm, ab and the prompt from rd, as well as vari-
ous error messages are written onto UNIX's standard error output.
The latter is different from the standard output, where N R O F F format-
ted output goes. By default, both are written onto the user's termi-
nal, but they can be independently redirected.

Various error conditions may occur during the operation of N R O F F
and T R O F F . Certain less serious errors having only local impact do
not cause processing to terminate. Two examples are word overflow,
caused by a word that is too large to fit into the word buffer (in fill
mode), and line overflow, caused by an output line that grew too large
to fit in the line buffer; in both cases, a message is printed, the
offending excess is discarded, and the affected word or line is marked
at the point of truncation with a * in N R O F F and a -w in T R O F F . The
philosophy is to continue processing, if possible, on the grounds that
output useful for debugging may be produced. If a serious error
occurs, processing terminates, and an appropriate message is printed.
Examples are the inability to create, read, or write files, and the
exceeding of certain internal limits that make future output unlikely
to be useful.

Tutorial Examples

T1. Introduction

Although N R O F F and T R O F F have by design a syntax reminiscent of
earlier text processors* with the intent of easing their use, it is almost

5 — 5 2 Programmer's Guide: CTIX Supplement

always necessary to prepare at least a small set of macro definitions to
describe most documents. Such common formatting needs as page
margins and footnotes are deliberately not built into N R O F F and
T R O F F . Instead, the macro and string definition, number register,
diversion, environment switching, page-position trap, and conditional
input mechanisms provide the basis for user-defined implementations.

The examples to be discussed are intended to be useful and somewhat
realistic, but won't necessarily cover all relevant contingencies. Expli-
cit numerical parameters are used in the examples to make them
easier to read and to illustrate typical values. In many cases, number
registers would really be used to reduce the number of places where
numerical information is kept, and to concentrate conditional param-
eter initialization like that which depends on whether T R O F F or
N R O F F is being used.

T2. Page Margins

As discussed in §3, header and footer macros are usually defined to
describe the top and bottom page margin areas respectively. A trap is
planted at page position 0 for the header, and at -N {N from the page
bottom) for the footer. The simplest such definitions might be

.de hd \ " define header
'sp li

\"end definition
.de fo \ " define footer
'bp

\"end definition
.wh 0 hd
,wh - l i fo

which provide blank 1 inch top and bottom margins. The header will
occur on the first page, only if the definition and trap exist prior to
the initial pseudo-page transition (§3). In fill mode, the output line
that springs the footer trap was typically forced out because some part
or whole word didn't fit on it. If anything in the footer and header

* For example: P. A . Crisman, Ed . , The Compatible Time-Sharing System, M I T
Press, 1965, Section A H 9 . 0 1 (Description of R U N O F F program on M I T ' s
CTSS system).

NROFF/TROFF User 's Manual 7—53

that follows causes a break, that word or part word will be forced out.
In this and other examples, requests like bp and sp that normally
cause breaks are invoked using the no-break control character ' to
avoid this. When the header/footer design contains material requir-
ing independent text processing, the environment may be switched,
avoiding most interaction with the running text.

A more realistic example would be

.de hd \"header

.if t .tl ' \ (r n ' ' \ (rn ' \ " troff cut mark

.if \ \ n % > l \ { \
'sp 0.5i- l V'tl base at 0.5i
.tl \ " centered page number
.ps \ " restore size
.ft \ " restore font
.vs \ > \ "restore vs
'sp l.Oi \"space to l.Oi
.ns \ " turn on no-space mode

.de fo \ " footer

.ps 10 \ " set footer/header size

.ft R \ " set font

.vs 12p V'set base-line spacing

.if \ \ n % = l \ { \
'sp \ \ n (. p u - 0 . 5 i - l V'tl base 0.5i up
.tl \ > \ " first page number
'bp

.wh 0 hd

.wh - l i fo

which sets the size, font, and base-line spacing for the header/footer
material, and ultimately restores them. The material in this case is a
page number at the bottom of the first page and at the top of the
remaining pages. If T R O F F is used, a cut mark is drawn in the form
of root-ens at each margin. The sp's refer to absolute positions to
avoid dependence on the base-line spacing. Another reason for this
in the footer is that the footer is invoked by printing a line whose
vertical spacing swept past the trap position by possibly as much as
the base-line spacing. The no-space mode is turned on at the end of
hd to render ineffective accidental occurrences of sp at the top of the
running text.

The above method of restoring size, font, etc. presupposes that such
requests (that set previous value) are not used in the running text. A

5—54 Programmer's Guide: CTIX Supplement

better scheme is save and restore both the current and previous values
as shown for size in the following:

.de fo
nr s i \ \ n (. s \"current size
ps
nr s2 \ \ n (. s \"previous size

\ " rest of footer

de hd
\ " header stuff

ps Wn(s2 \ " restore previous size
ps \ \ n (s l \ " restore current size

Page numbers may be printed in the bottom margin by a separate
macro triggered during the footer's page ejection:

.de bn \"bottom number

.tl ' ' - % - ' ' \ " centered page number

.wh -0 .5 i - lv bn \ " tl base 0.5i up

T3. Paragraphs and Headings

The housekeeping associated with starting a new paragraph should be
collected in a paragraph macro that, for example, does the desired
preparagraph spacing, forces the correct font, size, base-line spacing,
and indent, checks that enough space remains for more than one line,
and requests a temporary indent.

.de pg \ " paragraph

.br \ " break

.ft R \ " force font,

.ps 10 V'size,

.vs 12p Vspacing,

.in 0 \ " and indent

.sp 0.4 V'prespace

.ne l + \ \ n (. V u V'want more than 1 line

.ti 0.2i V'temp indent

The first break in pg will force out any previous partial lines, and
must occur before the vs. The forcing of font, etc. is partly a defense

NROFF/TROFF User's Manual 7—55

against prior error and partly to permit things like section heading
macros to set parameters only once. The prespacing parameter is
suitable for T R O F F ; a larger space, at least as big as the output device
vertical resolution, would be more suitable in N R O F F . The choice o f
remaining space to test for in the ne is the smallest amount greater
than one line (the .V is the available vertical resolution).

A macro to automatically number section headings might look like:

.de sc \ " section

. — \ " force font, etc.

.sp 0.4 V'prespace

.ne 2 .4+ \ \n (.Vu V'want 2.4+ lines

.fi
Wn+S.

.nr S O I V' in i tS

The usage is .sc, followed by the section heading text, followed by
.pg. The ne test value includes one line of heading, 0.4 line in the
following pg, and one line of the paragraph text. A word consisting
of the next section number and a period is produced to begin the
heading line. The format of the number may be set by af (§8).

Another common form is the labeled, indented paragraph, where the
label protrudes left into the indent space.

.de lp \ " labeled paragraph
•Pg
.in 0.5i \ " paragraph indent
.ta 0.2i 0.5i \ " label, paragraph
.ti 0
\ t \ \ $ l \ t \ c \"f low into paragraph

The intended usage is " .lp label"-, label will begin at 0.2 inch, and
cannot exceed a length of 0.3 inch without intruding into the para-
graph. The label could be right adjusted against 0.4 inch by setting
the tabs instead with .ta 0.4iR 0.5i. The last line of lp ends with \ c
so that it will become a part of the first line of the text that follows.

5—56 Programmer's Guide: CTIX Supplement

T4. Multiple Column Output

The production of multiple column pages requires the footer macro to
decide whether it was invoked by other than the last column, so that
it will begin a new column rather than produce the bottom margin.
The header can initialize a column register that the footer will incre-
ment and test. The following is arranged for two columns, but is
easily modified for more.

.de hd \ "header

.nr cl 0 1

.mk
\ " init column count
\ " mark top of text

.de fo

.ie \ \ n + (c l < 2 \-C\

.po +3.4i

.rt

.ns \ >

.el \-C\

.po WnMu

'bp \ >

\ " footer

V'next column; 3.1+0.3
\ " back to mark
\ " no-space mode

\ " restore left margin

.11 3. l i

.nr M \ \ n (. o
\"column width
V'save left margin

Typically a portion of the top of the first page contains full width
text; the request for the narrower line length, as well as another .mk
would be made where the two column output was to begin.

T5. Footnote Processing

The footnote mechanism to be described is used by imbedding the
footnotes in the input text at the point of reference, demarcated by an
initial .fn and a terminal .ef:

.fn
Footnote text and control lines...
.ef

In the following, footnotes are processed in a separate environment
and diverted for later printing in the space immediately prior to the
bottom margin. There is provision for the case where the last

NROFF/TROFF User's Manual 7—57

collected footnote doesn't completely fit in the available space,

.de hd \ " header

.nr x 0 1

.nr y 0 - \ \ n b

.ch fo - W n b u

.if \ \ n (d n .fz

\"init footnote count
\ " current footer place
\ " reset footer trap
\ " leftover footnote

.de fo

.nr dn 0

.if W n x \-C\

.ev 1

.nf

.FN

.rm FN

.if " \ \ n (. z " f y "

.nr x 0
•ev \ >

.di

\ "footer
\ " zero last diversion size

\ " expand footnotes in evl
\ " retain vertical size
\ " footnotes
\ " delete it
\ " end overflow diversion

\ " disable fx
\"pop environment

'bp

.de fx

.if W n x .di fy

.de fn

.da FN

.ev 1

.if \ \ n + x = l .fs

.fi

\ " process footnote overflow
\ " divert overflow

\ " start footnote
\ " divert (append) footnote
V'in environment 1
\ " if first, include separator

\ " fill mode

.de ef V e n d footnote

.br \ " finish output

.nr z \ \ n (. v \ " save spacing

.ev V'pop ev

.di \ " end diversion

.nr y - \ \ n (d n V n e w footer position,

.if \ \ n x = l .nr y - (V n (. v - W n z) \
\ " uncertainty correction

.ch fo Wnyu \ " y is negative

.if (\ \ n (n l + l v) > (\ \ n (. p + \ \ n y) \

.ch fo \ \ n (n l u + l v \" i t didn't fit

.de fs
\1- l i

\ " separator
\ " 1 inch rule

5—58 Programmer's Guide: CTIX Supplement

.br

.de fz \ " get leftover footnote

.fn

.nf
•fy
.ef

\ " retain vertical size
\"where fx put it

.wh - W n b u fx

.ch fo - W n b u

.nr b l.Oi

.wh 0 hd

.wh 12i fo

\ " bottom margin size
\ " header trap
\ " footer trap, temp position
V'fx at footer position
\ " conceal fx with fo

The header hd initializes a footnote count register x, and sets both
the current footer trap position register y and the footer trap itself to
a nominal position specified in register b. In addition, if the register
dn indicates a leftover footnote, fz is invoked to reprocess it. The
footnote start macro fn begins a diversion (append) in environment 1,
and increments the count x; if the count is one, the footnote separator
fs is interpolated. The separator is kept in a separate macro to permit
user redefinition. The footnote end macro ef restores the previous
environment and ends the diversion after saving the spacing size in
register z. y is then decremented by the size of the footnote, avail-
able in dn; then on the first footnote, y is further decremented by the
difference in vertical base-line spacings of the two environments, to
prevent the late triggering the footer trap from causing the last line of
the combined footnotes to overflow. The footer trap is then set to
the lower (on the page) of y or the current page position (nl) plus one
line, to allow for printing the reference line. If indicated by x, the
footer fo rereads the footnotes from FN in nofill mode n environment
1, and deletes FN. If the footnotes were too large to fit, the macro
fx will be trap-invoked to redivert the overflow into fy, and the regis-
ter dn will later indicate to the header whether fy is empty. Both fo
and fx are planted in the nominal footer trap position in an order that
causes fx to be concealed unless the fo trap is moved. The footer
then terminates the overflow diversion, if necessary, and zeros x to
disable fx, because the uncertainty correction together with a not-
too-late triggering of the footer can result in the footnote rereading
finishing before reaching the fx trap.

A good exercise for the student is to combine the multiple-column
and footnote mechanisms.

NROFF/TROFF User's Manual 7—59

T6. The Last Page

After the last input file has ended, N R O F F and T R O F F invoke the end
macro (§7), if any, and when it finishes, eject the remainder of the
page. During the eject, any traps encountered are processed nor-
mally. At the end of this last page, processing terminates unless a
partial line, word, or partial word remains. If it is desired that
another page be started, the end-macro

.de en \ " end-macro
\ c
'bp

.em en

will deposit a null partial word, and effect another last page.

5—60 Programmer's Guide: CTIX Supplement

Table I

Font Style Examples

The following fonts are printed in 12-point, with a vertical spacing of
14-point, and with non-alphanumeric characters separated by 'A em
space (all measurements on 8.5 x 11 inch paper prior to photoreduc-
tion). This font sample is printed on an Imagen Printer, using the
Image Network Computer Modern fonts. These fonts are similar to
the Times fonts which were used in the original implementations of
troff.

Computer Modern Roman

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & () ' ' * H . , / : ; = ? [] I
• • - - _ y 4 % % f i f l £ f f f i f f l ° t ' (« ® ®

Computer Modern Italic

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1284567890

! $ % & () ' ' * + - . , / : ; = ? [] I
• K K f i f l ffffi ffl ° t ' <t ® ®

C o m p u t e r M o d e r n Bo ld

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1234567890
! $ % & () ' ' * H . , / : ; = ? [] I
• • _ y 4 % % f i f l f f f f i f f l ° t ' (2 ®®

Special Mathematical Font

a (J 7 8 e ^ T | 0 i , K \ | x p ^ o T r p C T < ; T u c }) x 4 ' c o

r A 0 A 5 n s Y $ t n
V > < = ~ = ^ ^ ^ t l X + ± u n C D C D ® 3
§ v ^ joe 0 e tor-«@ i o f h J -j M LJ n i

NROFF/TROFF User's Manual 7—61

Table II

Input Naming Conventions for ' , " , and -
and for Non-ASCII Special Characters

Non-ASCII characters and minus on the standard fonts.

Input Character Input Character
Char Name Name Char Name Name

close quote fi \ (f i fi
open quote fl \ (f l fl

— \(em 3/4 Em dash ff \ (ff if
- hyphen or ffi \ (F i ffi
- \ (hy hyphen ffl \(F1 fll

- \ - current font minus O \ (de degree
• \ (bu bullet t \ (dg dagger
• \(sq square \ (fm foot mark
_ \ (ru rule <t \ (c t cent sign
% \ (14 1/4 ® \ (rg registered
% \ (12 1/2 © \ (co copyright
% \ (34 3/4

Non-ASCII characters and + , —, = , and * on t h e
special font .

The ASCII characters ' , \ < , > , \ , {, }, and _ exist
only on the special font and are printed as a 1-em space if that font is
not mounted. The following characters exist only on the special font
except for the upper case Greek letter names followed by t which are
mapped into upper case English letters in whatever font is mounted
on font position one (default Times Roman). The special math plus,
minus, and equals are provided to insulate the appearance of equa-
tions from the choice of standard fonts.

Input Character Input Character
Char Name Name Char Name Name

+ \ (P ' math plus a \ (*a alpha
- \ (mi math minus P \ (*b beta
= \ (eq math equals 7 \(*g gamma
* \ (* * math star 8 \(*d delta
§ \ (sc section e \ (*e epsilon

\ (aa acute accent £ \(*z zeta
\ (ga grave accent •n \(*y eta
\ (u l underrule e \ (*h theta

/ \(sl slash (matching backslash) L \(*i iota

7—62 Programmer's Guide: CTIX Supplement

Input Character Input Character
Char Name Name Char Name Name

K \ *k kappa = \ (= = identically equal
X \ *i lambda = \ (~ = approx =

\ *m mu \ (a p approximates
V \ *n nu i= \ (! = not equal

\ *c xi - \ (" > right arrow
0 \ *o omicron - \ (< " left arrow
TT \ *P Pi t \ (u a up arrow
P \ *r rho t \ (d a down arrow
a \ *s sigma X \ (m u multiply
s \ ts terminal sigma \ (d i divide
T \ *t tau -t- \ (+ - plus-minus
U \ *u upsilon u \ (c u cup (union)
<t> \ • £ phi n \ (c a cap (intersection)
X \ *x chi c \ (sb subset of

\ *q psi D \ (s p superset of
CO \ *w omega c \ (i b improper subset
A \ * A Alphat D \ (i p improper superset
B \ *B Betat oo \ (> f infinity
r \ *G Gamma d \ (p d partial derivative
A \ *D Delta V \ (g r gradient
E \ *E Epsilonf - \ (n o not
Z \ *Z Zetaf I \ (is integral sign
H \ * Y Eta t a \ (p t proportional to
0 \ *H Theta 0 \ (e s empty set
I \ *I Iotat € \ (m o member of
K \ *K Kappaf 1 \ (b r box vertical rule
A \ *L Lambda $ \ (d d double dagger
M \ *M M u t am- \ (r h right hand
N \ *N N u t \ (lh left hand
s \ *C Xi @ \ (b s Bell System logo (typesetter-
O \ * o Omicront dependent)
n \ *P Pi 1 \ (o r or
p \ *R Rhof o \ (c i circle
2 \ *S Sigma f \ (l t left top of big curly bracket
T \ *T Taut I \ (lb left bottom
Y \ *U Upsilon \ (r t right top
<t> \ *F Phi) \ (r b right bottom
X \ *X Chit \ \ (lk left center of big curly bracket

\ *Q Psi \ \ (r k right center of big curly bracket
a \ *W Omega 1 \ (b v bold vertical
y \ sr square root L \(lf left floor (left bottom of big

\ rn root en extender square bracket)
> \ > = > = J \ (r f right floor (right bottom)
< \ < = < = f \ (l c left ceiling (left top)

1 \ (r c right ceiling (right top)

NROFF/TROFF User's Manual 7—63

8
A TROFF Tutorial

Abstract

troff is a text-formatting program for typesetting on the U N I X operat-
ing system. This device is capable of producing high quality text; this
paper is an example of troff output.

The phototypesetter itself normally runs with four fonts, containing
roman, italic and bold letters a full greek alphabet, and a substantial
number of special characters and mathematical symbols. Characters
can be printed in a range of sizes, and placed anywhere on the page.

troff allows the user full control over fonts, sizes, and character posi-
tions, well as the usual features of a formatter—as right-margin justif-
ication, automatic hyphenation, page titling and numbering, and so
on. It also provides macros, arithmetic variables and operations, and
conditional testing, for complicated formatting tasks.

This document is an introduction to the most basic use of troff . It
presents just enough information to enable the user to do simple for-
matting tasks like making viewgraphs, and to make incremental
changes to existing packages of troff commands. In most respects, the
U N I X formatter nroff and a more recent version (device-independent
troff) are identical to the version described here, so this document also
serves as a tutorial for them as well.

Source: Brian W. Kernighan (updated for 4 .3BSD by Mark Seiden), A TROFF
Tutorial (Murray Hill, N .J. : Bell Laboratories, 1978).

.4 TROFF Tutorial 8—1

1. Introduction

troff [1] is a text-formatting program, written originally by J. F.
Ossanna, for producing high-quality printed output from the photo-
typesetter on the UNIX operating system. This document is an exam-
ple of troff output.

The single most important rule of using troff is not to use it directly,
but through some intermediary. In many ways, troff resembles an
assembly language—a remarkably powerful and flexible one—but
nonetheless such that many operations must be specified at a level of
detail and in a form that is too hard for most people to use effec-
tively.

For two special applications, there are programs that provide an inter-
face to troff for the majority of users, eqn [2] provides an easy to
learn language for typesetting mathematics; the eqn user need know
no troff whatsoever to typeset mathematics, tbl [3] provides the same
convenience for producing tables of arbitrary complexity.

For producing straight text (which may well contain mathematics or
tables), there are a number of "macro packages" that define format-
ting rules and operations for specific styles of documents, and reduce
the amount of direct contact with troff. In particular, the " - m s " [4],
PWB/MM [5], and " - m e " [6] packages for internal memoranda and
external papers provide most of the facilities needed for a wide range
of document preparation. There are also packages for viewgraphs,
for simulating the older roff formatters, and for other special applica-
tions. Typically you will find these packages easier to use than troff
once you get beyond the most trivial operations; you should always
consider them first.

In the few cases where existing packages don't do the whole job, the
solution is not to write an entirely new set of troff instructions from
scratch, but to make small changes to adapt packages that already
exist.

In accordance with this philosophy of letting someone else do the
work, the part of troff described here is only a small part of the
whole, although it tries to concentrate on the more useful parts. In
any case, there is no attempt to be complete. Rather, the emphasis is
on showing how to do simple things, and how to make incremental
changes to what already exists. The contents of the remaining sec-
tions are:

5—2 Programmer's Guide: CTIX Supplement

2. Point sizes and line spacing

3. Fonts and special characters

4. Indents and line length

5. Tabs

6. Local motions: Drawing lines and characters

7. Strings

8. Introduction to macros

9. Titles, pages and numbering

10. Number registers and arithmetic

11. Macros with arguments

12. Conditionals

13. Environments

14. Diversions

Appendix: Typesetter character set

The troff described here is the C-language version supplied with UNIX
Version 7 and 32V as documented in [1],

To use troff you have to prepare not only the actual text you want
printed, but some information that tells how you want it printed.
(Readers who use roff will find the approach familiar.) For troff the
text and the formatting information are often intertwined quite inti-
mately. Most commands to troff are placed on a line separate from
the text itself, beginning with a period (one command per line). For
example,

Some text,
.ps 16
Some more text.

will change the "point size", that is, the size of the letters being
printed, to "16 point" (one point is 1/72 inch) like this:

Some text. Some more text.

Occasionally, though, something special occurs in the middle of a
line—to produce

Area = n r 2

you have to type

.4 TROFF Tutorial 8—3

Area = \ (* p \ f I r \ f R \ \ s 8 \ u 2 \ d \ s 0

(which we will explain shortly). The backslash character
\ is used to introduce troff commands and special characters within a

line of text.

2. Point Sizes; Line Spacing

As mentioned above, the command .ps sets the point size. One point
is 1/72 inch, so 6-point characters are at most 1/12 inch high, and 36-
point characters are % inch. There are 15 point sizes, listed below.
6 point: Pack my box with five dozen liquor jugs.
V p o i n t : P a c k m y b o x w i t h f i v e d o z e n l i q u o r j u g s .

8 point: Pack my box with five dozen liquor jugs.
9 point: Pack my box with five dozen liquor jugs.
10 point : Pack my box with five dozen l iquor jugs.
11 point: Pack my box with five dozen liquor jugs.
12 point: Pack my box with five dozen liquor jugs.
14 point: Pack m y box with f ive dozen l iquor jugs.

16 point 18 po in t 2 0 point

22* 24 28 36
If the number after .ps is not one of these legal sizes, it is rounded up
to the next valid value, with a maximum of 36. If no number follows
.ps, troff reverts to the previous size, whatever it was. troff begins
with point size 10, which is usually fine. The original of this docu-
ment (on 8.5 by 11 inch paper) is in 12 point.

The point size can also be changed in the middle of a line or even a
word with the in-line command \ s . To produce

UNIX runs on a PDP-11/45

type

\ s 8 U N I X \ s l O runs on a \ s8PDP- \ s l011 /45

As above, \ s should be followed by a legal point size, except that \ s 0
causes the size to revert to its previous value. Notice that \ s l 0 1 1 can

* This font is not 22 points since the re is no 22-poin t font avai lable in the
so f tware used to p r o d u c e this d o c u m e n t .

5—4 Programmer's Guide: CTIX Supplement

be understood correctly as "size 10, followed by an 11," if the size is
legal, but not otherwise. Be cautious with similar constructions.

Relative size changes are also legal and useful:

\ s - 2 U N I X \ s + 2

temporarily decreases the size, whatever it is, by two points, then
restores it. Relative size changes have the advantage that the size
difference is independent of the starting size of the document. The
amount of the relative change is restricted to a single digit.

The other parameter that determines what the type looks like is the
spacing between lines, which is set independently of the point size.
Vertical spacing is measured from the bottom of one line to the bot-
tom of the next. The command to control vertical spacing is .vs. For
running text, it is usually best to set the vertical spacing about 20%
bigger than the character size. For example, so far in this document,
we have used "12 on 14," that is,

.ps 12

.vs 14p

If we changed to

.ps 12

.vs 12p

the running text would look like this. After a few lines, you will
agree it looks a little cramped. The right vertical spacing is partly a
matter of taste, depending on how much text you want to squeeze
into a given space, and partly a matter of traditional printing style.
By default, troff uses 10 on 12.

Point size and vertical spacing make a substantial difference
in the amount of text per square inch. This is 14 on 16.
Point size and vertical spacing m a k e a substantial d i f fe rence in the amoun t of text per square inch. For example , 10 on 12 uses about twice

as much space as 7 on 8. This is 6 on 7, which is even smaller It packs a lot more words per line, but you can go blind trying to read it

When used without arguments, .ps and .vs revert to the previous size
and vertical spacing respectively.

The command .sp is used to get extra vertical space. Unadorned, it
gives you one extra blank line (one .vs, whatever that has been set
to). Typically, that's more or less than you want, so .sp can be fol-
lowed by information about how much space you want—

.sp 2i

means "two inches of vertical space."

.4 TROFF Tutorial 8—5

.sp 2p

means "two points of vertical space;" and

.sp 2

means "two vertical spaces"—two of whatever .vs is set to (this can
also be made explicit with .sp 2v); troff also understands decimal frac-
tions in most places, so

.sp 1.51

is a space of 1.5 inches. These same scale factors can be used after
•vs to define line spacing, and in fact after most commands that deal
with physical dimensions.

It should be noted that all size numbers are converted internally to
"machine units," which are 1/432 inch (1/6 point). For most pur-
poses, this is enough resolution that you don't have to worry about
the accuracy of the representation. The situation is not quite so good
vertically, where resolution is 1/144 inch (1/2 point).

3. Fonts and Special Characters

troff and the typesetter allow four different fonts at any one time.
Normally three fonts (Times roman, italic and bold) and one collec-
tion of special characters are permanently mounted.

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany of the special font
are listed in Appendix A.

troff prints in roman unless told otherwise. To switch into bold, use
the .ft command

.ft B

and for italics,

5—6 Programmer's Guide: CTIX Supplement

•ft I

To return to roman, use .ft R; to return to the previous font, what-
ever it was, use either .ft P or just .ft. The "underline" command

.ul

causes the next input line to print in italics, .ul can be followed by a
count to indicate that more than one line is to be italicized.

Fonts can also be changed within a line or word with the in-line com-
mand \ f :

bold\face text

is produced by

\ f B b o l d \ f I f a c e \ f R text

If you want to do this so the previous font, whatever it was, is left
undisturbed, insert extra \ f P commands, like this:

\ f B b o l d \ f P \ f l f a c e \ f P \ f R t ex t \ fP

Because only the immediately previous font is remembered, you have
to restore the previous font after each change or you can lose it. The
same is true of .ps and .vs when used without an argument.

There are other fonts available besides the standard set, although you
can still use only four at any given time. The command .fp tells troff
what fonts are physically mounted on the typesetter:

.fp 3 H

says that the Helvetica font is mounted on position 3. (The complete
list of font sizes and styles depends on your typesetter or laser
printer.) Appropriate .fp commands should appear at the beginning
of your document if you do not use the standard fonts.

It is possible to make a document relatively independent of the actual
fonts used to print it by using font numbers instead of names; for
example, \ f 3 and .ft 3 mean "whatever font is mounted at position
3 ," and thus work for any setting. Normal settings are roman font
on 1, italic on 2, bold on 3, and special on 4.

There is also a way to get "synthetic" bold fonts by overstriking
letters with a slight offset. Look at the .bd command in [1],

Special characters have four-character names beginning with \ (, and
they may be inserted anywhere. For example,

V4+ hi = %

.4 TROFF Tutorial 8—7

is produced by

\ (1 4 + \ (1 2 - \ (3 4

In particular, greek letters are all of the form \ (* - , where - is an
upper or lower case roman letter reminiscent of the greek. Thus to
get

E (a x p) - co

in bare troff we have to type

\ (* S (\ (* a \ (m u \ (* b) \ (- > \ (i f

That line is unscrambled as follows:

\ (* s 2
((
\ (* a a
\ (m u X

\ (*b P
))
\ (- > -

\(if 00

A complete list of these special names occurs in Appendix A.

In eqn [2] the same effect can be achieved with the input

SIGMA (alpha times beta) - > inf

which is less concise, but clearer to the uninitiated.

Notice that each four-character name is a single character as far as
troff is concerned—the "translate" command

.tr \ (m i \ (e m

is perfectly clear, meaning

.tr - —

that is, to translate — into —.

Some characters are automatically translated into others: grave "
and acute ' accents (apostrophes) become open and close single
quotes ' ' ; the combination of " . . . " is generally preferable to the dou-
ble quotes " . . . " . Similarly a typed minus sign becomes a hyphen -.
To print an explicit - sign, use \ - . To get a backslash printed, use
\ e .

5—8 Programmer's Guide: CTIX Supplement

4. Indents and Line Lengths

troff starts with a line length of 6.5 inches, which some people think is
too wide for 8%x 11 paper. To reset the line length, use the .11 com-
mand, as in

.11 6i

As with .sp , the actual length can be specified in several ways; inches
are probably the most intuitive.

The maximum line length provided by the typesetter is 7.5 inches, by
the way. To use the full width, you will have to reset the default
physical left margin ("page offset"), which is normally slightly less
than one inch from the left edge of the paper. This is done by the
.po command.

.po 0

sets the offset as far to the left as it will go.

The indent command .in causes the left margin to be indented by
some specified amount from the page offset. If we use .in to move
the left margin in, and .11 to move the right margin to the left, we can
make offset blocks of text:

.in 0.3i

.11 - 0 . 3 i
text to be set into a block
.11 +0.3i
.in —0.3i

will create a block that looks like this:

Pater noster qui est in caelis sanctificetur nomen tuum;
adveniat regnum tuum; fiat voluntas tua, sicut in caelo, et in
terra. ... Amen.

Notice the use of '+ ' and ' — ' t o specify the amount of change. These
change the previous setting by the specified amount, rather than just
overriding it. The distinction is quite important: .11 +li makes lines
one inch longer; .11 li makes them one inch long.

With .in , .11 and .po , the previous value is used if no argument is
specified.

To indent a single line, use the "temporary indent" command .ti.
For example, this line was produced with the command

.ti 3

.4 TROFF Tutorial 8—9

Three of what? The default unit for .ti, as for most horizontally
oriented commands (.11, .in, .po), is ems; an em is roughly the width
of the letter " m " in the current point size. (Precisely, a em in size p
is p points.) Although inches are usually clearer than ems to people
who don't set type for a living, ems have a place: they are a measure
of size that is proportional to the current point size. If you want to
make text that keeps its proportions regardless of point size, you
should use ems for all dimensions. Ems can be specified as scale fac-
tors directly, as in .ti 2.5m.

Lines can also be indented negatively if the indent is already positive:

.ti - 0 . 3 i

causes the next line to be moved back three tenths of an inch. Thus
to make a decorative initial capital, we indent the whole paragraph,
then move the letter " P " back with a .ti command:

Pater noster qui est in caelis sanctifi-
cetur nomen tuum; adveniat regnum
tuum; fiat voluntas tua, sicut in

caelo, et in terra. . . . Amen .

Of course, there is also some trickery to make the "P" bigger (just a
" \ s36P\sO") , and to move it down from its normal position (see the
section on local motions). Also, the line 'in -.3i is inserted just
before "f iat" to move the indent so that "caelo" lines up under the
"P" .

5. Tabs

Tabs (the A S C I I "horizontal tab" character) can be used to produce
output in columns, or to set the horizontal position of output. Typi-
cally tabs are used only in unfilled text. Tab stops are set by default
every half inch from the current indent, but can be changed by the
.ta command. To set stops every inch, for example,

.ta li 2i 3i 4i 5i 6i

Unfortunately the stops are left-justified only (as on a typewriter), so
lining up columns of right-justified numbers can be painful. If you
have many numbers, or if you need more complicated table layout,
don't use troff directly; use the tbl program described in [3].

For a handful of numeric columns, you can do it this way: Precede
every number by enough blanks to make it line up when typed.

5—10 Programmer's Guide: CTIX Supplement

.nf

.ta li 2i 3i
1 tab 1 tab 3

40 tab 50 tab 60
700 tab 800 rai 900
.fi

Then change each leading blank into the string \ 0 . This is a charac-
ter that does not print, but that has the same width as a digit. When
printed, this will produce

1 2 3
40 50 60

700 800 900

It is also possible to fill up tabbed-over space with some character
other than blanks by setting the "tab replacement character" with the
.tc command:

.ta 1.5i 2.5i

.tc \ (r u (\ (r u is "_")
Name tab Age tab

produces

Name Age

To reset the tab replacement character to a blank, use .tc with no
argument. (Lines can also be drawn with the \1 command, described
in Section 6.)

troff also provides a very general mechanism called "fields" for setting
up complicated columns. (This is used by tbl). We will not go into it
in this paper.

6. Local Motions: Drawing Lines and
Characters

2
Remember "Area = TTT " and the big " P " in the Paternoster. How
are they done? troff provides a host of commands for placing charac-
ters of any size at any place. You can use them to draw special char-
acters or to tune your output for a particular appearance. Most of
these commands are straightforward, but messy to read and tough to
type correctly.

.4 TROFF Tutorial 8—11

If you won't use eqn, subscripts and superscripts are most easily done
with the half-line local motions \ u and \ d . To go back up the page
half a point-size, insert a \ u at the desired place; to go down, insert a
\ . (\ u and \ d should always be used in pairs, as explained below.)
Thus

Area = \ (* p r \ u 2 \ d

produces

Area - UT^

To make the " 2 " smaller, bracket it with \ s - 2 . . . \ s 0 . Since \ u and
\ d refer to the current point size, be sure to put them either both
inside or both outside the size changes, or you will get an unbalanced
vertical motion.

Sometimes the space given by \ u and \ d isn't the right amount. The
\ v command can be used to request an arbitrary amount of vertical
motion. The in-line command

\v ' (amount) '

causes motion up or down the page by the amount specified in
" (amount) . " For example, to move the " P " down, we used

.in +0.6i (move paragraph in)

.11 -2.25i (shorten lines)
,ti —0.3i (move P back)
\ 3 6 \ v ' 2 ' P \ v ' - 2 \ s 0 a t e r noster qui est in caelis ...

A minus sign causes upward motion, while no sign or a plus sign
means down the page. Thus \ v ' - 2 ' causes an upward vertical motion
of two line spaces.

There are many other ways to specify the amount of motion—

Xv'O.li'
\ v ' 3p '
\ v ' - 0 . 5 m '

and so on are all legal. Notice that the scale specifier i or p or m
goes inside the quotes. Any character can be used in place of the
quotes; this is also true of all other troff commands described in this
section.

Since troff does not take within-the-line vertical motions into account
when figuring out where it is on the page, output lines can have unex-
pected positions if the left and right ends aren't at the same vertical

5—12 Programmer's Guide: CTIX Supplement

position. Thus \ v , like \ u and \ d , should always balance upward
vertical motion in a line with the same amount in the downward
direction.

Arbitrary horizontal motions are also available—\h is quite analo-
gous to \ v , except that the default scale factor is ems instead of line
spaces. As an example,

\h ' -0 .1 i '

causes a backwards motion of a tenth of an inch. As a practical
matter, consider printing the mathematical symbol ">>" . The
default spacing is too wide, so eqn replaces this by

> \h ' -0 .3m '>

to produce » .

Frequently \ h is used with the "width function" \ w to generate
motions equal to the width of some character string. The construc-
tion

\w'thing'

is a number equal to the width of "thing" in machine units (1/432
inch). All troff computations are ultimately done in these units. To
move horizontally the width of an "x" , we can say

\ h ' \ w W

As we mentioned above, the default scale factor for all horizontal
dimensions is m, ems, so here we must have the u for machine units,
or the motion produced will be far too large, troff is quite happy with
the nested quotes, by the way, so long as you don't leave any out.

As a live example of this kind of construction, all of the command
names in the text, like .sp, were done by overstriking with a slight
offset. The commands for .sp are

. s p \ h ' - \ w ' . sp'u' \ h' 1 u'. sp

That is, put out " .sp" , move left by the width of " .sp", move right 1
unit, and print " .sp" again. (Of course there is a way to avoid typing
that much input for each command name, which we will discuss in
Section 11.)

There are also several special-purpose troff commands for local
motion. We have already seen \ 0 , which is an unpaddable white
space of the same width as a digit. "Unpaddable" means that it will
never be widened or split across a line by line justification and filling.
There is also \ (blank), which is an unpaddable character the width

.4 TROFF Tutorial 8—13

of a space, \ I , which is half that width, , which is one quarter of
the width of a space, and \ & , which has zero width. (This last one
is useful, for example, in entering a text line which would otherwise
begin with a " . " .)

The command \ o , used like

Xo'set of characters'

causes (up to 9) characters to be overstruck, centered on the widest.
This is nice for accents, as in

syst\ o" e \ (ga " me t \ o " e \ (aa " 1 \ o " e \ (aa " phonique

which makes

systfeme telfiphonique

The accents are \ (ga and \ (aa, or V and \ ' ; remember that each is
just one character to troff.

You can make your own overstrikes with another special convention,
\ z , the zero-motion command. \ z x suppresses the normal horizontal
motion after printing the single character x, so another character can
be laid on top of it. Although sizes can be changed within \ o , it
centers the characters on the widest, and there can be no horizontal
or vertical motions, so \ z may be the only way to get what you want:

B
is produced by

.sp 2

\ s 8 \ z \ (s q \ s l 4 \ z \ (s q \ s 2 2 \ z \ (s q \ s 3 6 \ (s q

The .sp is needed to leave room for the result.

As another example, an extra-heavy semicolon that looks like

; instead of ; or j

can be constructed with a big comma and a big period above it:

\ s + 6 \ z , \ v ' —0.25m'. \v '0.25m'\s0

"0.25m" is an experimentally-derived constant.
A more ornate overstrike is given by the bracketing function \ b ,
which piles up characters vertically, centered on the current baseline.
Thus we can get big brackets, constructing them with piled-up smaller
pieces:

5—14 Programmer's Guide: CTIX Supplement

by typing in only this:

.sp
\ b ' \ (l t \ (l k \ (l b ' \ b ' \ (l c \ (l f ' x \ b ' \ (r c \ (r f ' \ b ' \ (r t \ (r k \ (r b '

troff also provides a convenient facility for drawing horizontal and
vertical lines of arbitrary length with arbitrary characters. \1' 1 i'
draws a line one inch long, like this: The length can
be followed by the character to use if the _ isn't appropriate; \ l '0.5i . '
draws a half-inch line of dots: The construction \ L is
entirely analogous, except that it draws a vertical line instead of hor-
izontal.

7. Strings

Obviously if a paper contains a large number of occurrences of an
acute accent over a letter "e" , typing \ o " e \ ' " for each e would be a
great nuisance.

Fortunately, troff provides a way in which you can store an arbitrary
collection of text in a "string", and thereafter use the string name as
a shorthand for its contents. Strings are one of several troff mechan-
isms whose judicious use lets you type a document with less effort and
organize it so that extensive format changes can be made with few
editing changes.

A reference to a string is replaced by whatever text the string was
defined as. Strings are defined with the command .ds. The line

.ds e \ o " e \ ' "

defines the string e to have the value \ o " e \ ' "

String names may be either one or two characters long, and are
referred to by \ * x for one character names or *(xy for two charac-
ter names. Thus to get tlphone, given the definition of the string e as
above, we can say t *el *ephone.

If a string must begin with blanks, define it as

.ds xx " text

The double quote signals the beginning of the definition. There is no
trailing quote; the end of the line terminates the string.

.4 TROFF Tutorial 8—15

A string may actually be several lines long; if troff encounters a \ at
the end of any line, it is thrown away and the next line added to the
current one. So you can make a long string simply by ending each
line but the last with a backslash:

.ds xx this \
is a very \
long string

Strings may be def ined in terms of other strings, or even in terms of
themselves; we will discuss some of these possibilities later.

8. Introduction to Macros

Before we can go much fu r the r in troff, we need to learn a bit about
the macro facility. In its simplest fo rm, a macro is just a shor thand
notat ion qui te similar to a string. Suppose we want every paragraph
to start in exactly the same way—with a space and a temporary indent
of two ems:

.sp
,ti +2m

Then to save typing, we would like to collapse these into one short-
hand line, a troff " c o m m a n d " like

.PP

that would be treated by troff exactly as

.sp

.ti +2m

.PP is called a macro. T h e way we tell troff what .PP means is to
define it with the .de command :

.de PP

.sp

.ti +2m

T h e first line names the macro (we used " .PP" fo r " p a r a g r a p h " , and
upper case so it wouldn ' t conflict with any n a m e that troff might
already know about) . T h e last line .. marks the end of the defini-
tion. In between is the text, which is simply inserted whenever troff
sees the " c o m m a n d " or macro call

5—16 Programmer's Guide: CTIX Supplement

.pp

A macro can contain any mixture of text and formatting commands.

The definition of .PP has to precede its first use; undefined macros
are simply ignored. Names are restricted to one or two characters.

Using macros for commonly occurring sequences of commands is crit-
ically important. Not only does it save typing, but it makes later
changes much easier. Suppose we decide that the paragraph indent is
too small, the vertical space is much too big, and roman font should
be forced. Instead of changing the whole document, we need only
change the definition of .PP to something like

. de PP \ " paragraph macro

.sp 2p

.ti +3m

.ft R

and the change takes effect everywhere we used .PP.

\ " is a troff command that causes the rest of the line to be ignored.
We use it here to add comments to the macro definition (a wise idea
once definitions get complicated).

As another example of macros, consider these two which start and
end a block of offset, unfilled text, like most of the examples in this
paper:

.de BS \ " start indented block

.sp

.nf

.in +0.3i

.de BE \ " end indented block

.sp

.fi

.in —0.3i

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

.4 TROFF Tutorial 8—17

by the commands .BS and .BE, and it will come out as it did above.
Notice that we indented by .in +0.3i instead of .in 0.3i. This way we
can nest our uses of .BS and BE to get blocks within blocks.

If later on we decide that the indent should be 0.5i, then it is only
necessary to change the definitions of .BS and .BE, not the whole
paper.

9. Titles, Pages and Numbering

This is an area where things get tougher, because nothing is done for
you automatically. Of necessity, some of this section is a cookbook,
to be copied literally until you get some experience.

Suppose you want a title at the top of each page, saying just

left top center top right top

In roff, one can say
.he 'left top'center top'right top'
.fo 'left bottom'center bottom'right bottom'

to get headers and footers automatically on every page. Alas, this
doesn't work so easily in troff, a serious hardship for the novice.
Instead you have to do a lot of specification (or use a macro package,
which makes it effortless).

You have to say what the actual title is (easy); when to print it (easy
enough); and what to do at and around the title line (harder). Tak-
ing these in reverse order, first we define a macro .NP (for "new
page") to process titles and the like at the end of one page and the
beginning of the next:

.de NP
'bp
'sp 0.5i
.tl 'left top'center top'right top'
'sp 0.3i

To make sure we're at the top of a page, we issue a "begin page"
command 'bp, which causes a skip to top-of-page (we'll explain the '
shortly). Then we space down half an inch, print the title (the use of
.tl should be self explanatory; later we will discuss parameterizing the

5—18 Programmer's Guide: CTIX Supplement

titles), space another 0.3 inches, and we're done.

To ask for .NP at the bottom of each page, we have to say something
like "when the text is within an inch of the bottom of the page, start
the processing for a new page." This is done with a "when" com-
mand .wh:

.wh - l i NP

(No " . " is used before NP; this is simply the name of a macro, not a
macro call.) The minus sign means "measure up from the bottom of
the page," so " - l i " means "one inch from the bottom."

The .wh command appears in the input outside the definition of .NP;
typically the input would be

.de NP

.wh - l i NP

Now what happens? As text is actually being output, troff keeps track
of its vertical position on the page, and after a line is printed within
one inch from the bottom, the .NP macro is activated. (In the jar-
gon, the .wh command sets a trap at the specified place, which is
"sprung" when that point is passed.) .NP causes a skip to the top of
the next page (that's what the 'bp was for), then prints the title with
the appropriate margins.
Why 'bp and 'sp instead of .bp and .sp? The answer is that .sp and
.bp, like several other commands, cause a break to take place. That
is, all the input text collected but not yet printed is flushed out as
soon as possible, and the next input line is guaranteed to start a new
line of output. If we had used .sp or .bp in the .NP macro, this
would cause a break in the middle of the current output line when a
new page is started. The effect would be to print the left-over part of
that line at the top of the page, followed by the next input line on a
new output line. This is not what we want. Using ' instead of . for a
command tells troff that no break is to take place—the output line
currently being filled should not be forced out before the space or new
page.

The list of commands that cause a break is short and natural:

.bp .br .ce .fi .nf .sp .in .ti

All others cause no break, regardless of whether you use a . or a '.
If you really need a break, add a .br command at the appropriate
place.

.4 TROFF Tutorial 8—19

One other thing to beware of—if you're changing fonts or point sizes
a lot, you may find that if you cross a page boundary in an unex-
pected font or size, your titles come out in that size and font instead
of what you intended. Furthermore, the length of a title is indepen-
dent of the current line length, so titles will come out at the default
length of 6.5 inches unless you change it, which is done with the .It
command.

There are several ways to fix the problems of point sizes and fonts in
titles. For the simplest applications, we can change .NP to set the
proper size and font for the title, then restore the previous values,
like this:

.de NP
'bp
'sp 0.5i
.ft R \ " set title font to roman
.ps 10 \ " and size to 10 point
.It 6i \ " and length to 6 inches
.tl 'left'center'right'
.ps \ " revert to previous size
.ft P \ " and to previous font
'sp 0.3i

This version of .NP does not work if the fields in the .tl command
contain size or font changes. To cope with that requires troffs
"environment" mechanism, which we will discuss in Section 13.

To get a footer at the bottom of a page, you can modify .NP so it
does some processing before the 'bp command, or split the job into a
footer macro invoked at the bottom margin and a header macro
invoked at the top of the page. These variations are left as exercises.

Output page numbers are computed automatically as each page is pro-
duced (starting at 1), but no numbers are printed unless you ask for
them explicitly. To get page numbers printed, include the character
% in the .tl line at the position where you want the number to
appear. For example

.tl "- % -"

centers the page number inside hyphens. You can set the page
number at any time with either .bp n, which immediately starts a new
page numbered n, or with .pn n, which sets the page number for the
next page but doesn't cause a skip to the new page. Again, .bp +n
sets the page number to n more than its current value; .bp means
.bp +1.

5—20 Programmer's Guide: CTIX Supplement

10. Number Registers and Arithmetic

troff has a facility for doing arithmetic, and for defining and using
variables with numeric values, called number registers. Number regis-
ters, like strings and macros, can be useful in setting up a document
so it is easy to change later. And of course they serve for any sort of
arithmetic computation.

Like strings, number registers have one or two character names.
They are set by the .nr command, and are referenced anywhere by
\ n x (one character name) or \n(xy (two character name).

There are quite a few pre-defined number registers maintained by
troff, among them % for the current page number; nl for the current
vertical position on the page; dy, mo and yr for the current day,
month and year; and .s and .f for the current size and font. (The
font is a number from 1 to 4.) Any of these can be used in computa-
tions like any other register, but some, like .s and .f, cannot be
changed with .nr.

As an example of the use of number registers, in the -ms macro
package [4], most significant parameters are defined in terms of the
values of a handful of number registers. These include the point size
for text, the vertical spacing, and the line and title lengths. To set
the point size and vertical spacing for the following paragraphs, for
example, a user may say

.nr PS 9

.nr VS 11

The paragraph macro .PP is defined (roughly) as follows:

This sets the font to Roman and the point size and line spacing to
whatever values are stored in the number registers PS and VS.

Why are there two backslashes? This is the eternal problem of how
to quote a quote. When troff originally reads the macro definition, it
peels off one backslash to see what's coming next. To ensure that
another is left in the definition when the macro is used, we have to

.de PP

.ps \ \ n (P S

.vs \ \ n (V S p

.ft R

.sp 0.5v

.ti +3m

\ " reset size
\ " spacing
\ " font
\ " half a line

.4 TROFF Tutorial 8—21

put in two backslashes in the definition. If only one backslash is
used, point size and vertical spacing will be frozen at the time the
macro is defined, not when it is used.

Protecting by an extra layer of backslashes is only needed for \ n , \ * ,
\ $ (which we haven't come fo yet), and \ itself. Things like \ s , \ f ,
\ h , \ v , and so on do not need an extra backslash, since they are con-
verted by troff to an internal code immediately upon being seen.

Arithmetic expressions can appear anywhere that a number is
expected. As a trivial example,

.nr PS \ \ n (P S - 2

decrements PS by 2. Expressions can use the arithmetic operators +,
- , *, /, % (mod), the relational operators >, >=, <, <=, =, and !=
(not equal), and parentheses.

Although the arithmetic we have done so far has been straightfor-
ward, more complicated things are somewhat tricky. First, number
registers hold only integers, troff arithmetic uses truncating integer
division, just like Fortran. Second, in the absence of parentheses,
evaluation is done left-to-right without any operator precedence
(including relational operators). Thus

7*-4+3/13

becomes "—1". Number registers can occur anywhere in an expres-
sion, and so can scale indicators like p, i, m, and so on (but no
spaces). Although integer division causes truncation, each number
and its scale indicator is converted to machine units (1/432 inch)
before any arithmetic is done, so li/2u evaluates to 0.5i correctly.

The scale indicator u often has to appear when you wouldn't expect
it—in particular, when arithmetic is being done in a context that
implies horizontal or vertical dimensions. For example,

.11 7/2i

would seem obvious enough—3% inches. Sorry. Remember that the
default units for horizontal parameters like .11 are ems. That's really
"7 ems / 2 inches," and when translated into machine units, it
becomes zero. How about

.11 7i/2

Sorry, still no good—the "2" is "2 ems", so "7i/2" is small, although
not zero. You must use

.11 7i/2u

5—22 Programmer's Guide: CTIX Supplement

So again, a safe rule is to attach a scale indicator to every number,
even constants.

For arithmetic done within a .nr command, there is no implication of
horizontal or vertical dimension, so the default units are "units", and
7i/2 and 7i/2u mean the same thing. Thus

.nr 11 7i/2

.11 \ \ n (l l u

does just what you want, so long as you don't forget the u on the .11
command.

11. Macros with Arguments

The next step is to define macros that can change from one use to the
next according to parameters supplied as arguments. To make this
work, we need two things: first, when we define the macro, we have
to indicate that some parts of it will be provided as arguments when
the macro is called. Then when the macro is called we have to pro-
vide actual arguments to be plugged into the definition.

Let us illustrate by defining a macro .SM that will print its argument
two points smaller than the surrounding text. That is, the macro call

.SM T R O F F

will produce TROFF.

The definition of .SM is

.de SM
\ s - 2 \ \ $ l \ s + 2

Within a macro definition, the symbol \ \ $ n refers to the nth argu-
ment that the macro was called with. Thus \ \ $ 1 is the string to be
placed in a smaller point size when .SM is called.

As a slightly more complicated version, the following definition of
.SM permits optional second and third arguments that will be printed
in the normal size:

.de SM

\ \ $ 3 \ s - 2 \ \ $ l \ s + 2 \ \ $ 2

Arguments not provided when the macro is called are treated as
.4 TROFF Tutorial 8—23

empty, so

.SM T R O F F),

produces TROFF), while

.SM T R O F F). (

produces (TROFF). It is convenient to reverse the order of arguments
because trailing punctuation is much more common than leading.

By the way, the number of arguments that a macro was called with is
available in number register .$.

The following macro .BD is the one used to make the ' ' to ld roman"
we have been using for troff command names in text. It combines
horizontal motions, width computations, and argument rearrange-
ment.

.de BD
\ & \ \ $ 3 \ f l \ \ $ l \ h ' - \ w ' \ \ $ l ' u + l u ' \ \ $ l \ f P \ \ S 2

The \ h and \ w commands need no extra backslash, as we discussed
above. The \ & is there in case the argument begins with a period.

Two backslashes are needed with the \ \ $ n commands, though, to
protect one of them when the macro is being defined. Perhaps a
second example will make this clearer. Consider a macro called .SH
which produces section headings with the sections numbered automat-
ically, and the title in bold in a smaller size. The use is

.SII "Section title . . . "

(If the argument to a macro is to contain blanks, then it must be sur-
rounded by double quotes, unlike a string, where only one leading
quote is permitted.)

Here is the definition of the .SH macro:

5—24 Programmer's Guide: CTIX Supplement

.nr SH 0

.de SH

.sp 0.3i

.ft B

.nr SH \ \ n (S H + l

.ps \ \ n (P S - l
\ \ n (S H . \ \ $ 1
.ps \ \ n (P S
.sp 0.3i
.ft R

\ " initialize section number

\ " increment number
\ " decrease PS
\ " number, title
\ " restore PS

The section number is kept in number register SH, which is incre-
mented each time just before it is used. (A number register may
have the same name as a macro without conflict but a string may
not.)

We used \ \ n (S H instead of \n(SH and \ \ n (P S instead of \n(PS. If
we had used \n(SH, we would get the value of the register at the
time the macro was defined, not at the time it was used. If that's
what you want, fine, but not here. Similarly, by using \ \ n (P S , we
get the point size at the time the macro is called.

As an example that does not involve numbers, recall our .NP macro
which had a

.tl 'left'center'right'

We could make these into parameters by using instead

.tl ' \ \ * (L T ' \ \ * (C T \ \ * (RT'

so the title comes from three strings called LT, CT and RT. If these
are empty, then the title will be a blank line. Normally CT would be
set with something like

.ds CT - % -

to give just the page number between hyphens, but a user could sup-
ply private definitions for any of the strings.

.4 TROFF Tutorial 8—25

12. Conditionals

Suppose we want the .SH macro to leave two extra inches of space
just before section 1, but nowhere else. The cleanest way to do that
is to test inside the .SH macro whether the section number is 1, and
add some space if it is. The .if command provides the conditional
test that we can add just before the heading line is output:

.if \ \ n (S H = l .sp 2i \ " first section only

The condition after the .if can be any arithmetic or logical expression.
If the condition is logically true, or arithmetically greater than zero,
the rest of the line is treated as if it were text—here a command. If
the condition is false, or zero or negative, the rest of the line is
skipped.

It is possible to do more than one command if a condition is true.
Suppose several operations are to be done before section 1. One pos-
sibility is to define a macro .SI and invoke it if we are about to do
section 1 (as determined by an .if).

.de SI

— processing for section 1 ---

.de SH

.if \ \ n (S H = l .SI

An alternate way is to use the extended form of the .if, like this:

.if \ \ n (S H = l \ { — processing
for section 1 — \ >

The braces \-C and \ > must occur in the positions shown or you will
get unexpected extra lines in your output, troff also provides an '"if-
else" construction, which we will not go into here.

A condition can be negated by preceding it with ! ; we get the same
effect as above (but less clearly) by using

.if ! \ \ n (S H > l .SI

There are a handful of other conditions that can be tested with .if.
For example, is the current page even or odd'?

5—26 Programmer's Guide: CTIX Supplement

.if o .tl 'odd page title"- % -'

.if e .tl '- % -"even page title'

gives facing pages different titles and page numbers on the outside
edge when used inside an appropriate new page macro.

Two other conditions are t and n, which tell you whether the for-
matter is troff or nroff.

.if t troff stuff ...

.if n nroff stuff ...

Finally, string comparisons may be made in an .if:

.if 'stringl'string2' stuff

does "stuff" if string 1 is the same as string2. The character separat-
ing the strings can be anything reasonable that is not contained in
either string. The strings themselves can reference strings with \ * ,
arguments with \ $, and so on.

13. Environments

As we mentioned, there is a potential problem when going across a
page boundary: parameters like size and font for a page title may
well be different from those in effect in the text when the page boun-
dary occurs, troff provides a very general way to deal with this and
similar situations. There are three "environments", each of which
has independently settable versions of many of the parameters associ-
ated with processing, including size, font, line and title lengths,
fill/nofill mode, tab stops, and even partially collected lines. Thus the
titling problem may be readily solved by processing the main text in
one environment and titles in a separate one with its own suitable
parameters.

The command .ev n shifts to environment n; n must be 0, 1 or 2.
The command .ev with no argument returns to the previous environ-
ment. Environment names are maintained in a stack, so calls for dif-
ferent environments may be nested and unwound consistently.

Suppose we say that the main text is processed in environment 0,
which is where troff begins by default. Then we can modify the new
page macro .NP to process titles in environment 1 like this:

.4 TROFF Tutorial 8—27

.de NP

.ev 1

.It 6i
\ " shift to new environment
\ " set parameters here

.ft R

.ps 10

... any other processing ...

.ev \ " return to previous environment

It is also possible to initialize the parameters for an environment out-
side the .NP macro, but the version shown keeps all the processing in
one place and is thus easier to understand and change.

14. Diversions

There are numerous occasions in page layout when it is necessary to
store some text for a period of time without actually printing it.
Footnotes are the most obvious example: the text of the footnote
usually appears in the input well before the place on the page where it
is to be printed is reached. In fact, the place where it is output nor-
mally depends on how big it is, which implies that there must be a
way to process the footnote at least enough to decide its size-without
printing it.

troff provides a mechanism called a diversion for doing this process-
ing. Any part of the output may be diverted into a macro instead of
being printed, and then at some convenient time the macro may be
put back into the input.

The command .di xy begins a diversion—all subsequent output is col-
lected into the macro xy until the command .di with no arguments is
encountered. This terminates the diversion. The processed text is
available at any time thereafter, simply by giving the command

The vertical size of the last finished diversion is contained in the
built-in number register dn.

As a simple example, suppose we want to implement a "keep-release"
operation, so that text between the commands .KS and .KE will not
be split across a page boundary (as for a figure or table). Clearly,
when a .KS is encountered, we have to begin diverting the output so
we can find out how big it is. Then when a .KE is seen, we decide
whether the diverted text will fit on the current page, and print it

.xy

5—28 Programmer's Guide: CTIX Supplement

either there if it fits, or at the top of the next page if it doesn't. So:

.de KS start keep

.br start fresh line

.ev 1 collect in new environment

.fi make it filled text

.di XX collect in XX

.de K E end keep

.br get last partial line

.di end diversion

.if \ \ n (d n > : = \ \ n (. t .bp \ " bp if doesn't fit

.nf V bring it back in no-fill
XX text

.ev return to normal environment

Recall that number register nl is the current position on the output
page. Since output was being diverted, this remains at its value when
the diversion started, dn is the amount of text in the diversion; .t
(another built-in register) is the distance to the next trap, which we
assume is at the bottom margin of the page. If the diversion is large
enough to go past the trap, the .if is satisfied, and a .bp is issued. In
either case, the diverted output is then brought back with .XX. It is
essential to bring it back in no-fill mode so troff will do no further
processing on it.

This is not the most general keep-release, nor is it robust in the face
of all conceivable inputs, but it would require more space than we
have here to write it in full generality. This section is not intended to
teach everything about diversions, but to sketch out enough that you
can read existing macro packages with some comprehension.

Acknowledgements

I am deeply indebted to J. F. Ossanna, the author of troff, for his
repeated patient explanations of fine points, and for his continuing
willingness to adapt troff to make other uses easier. I am also grate-
ful to Jim Blinn, Ted Dolotta, Doug Mcllroy, Mike Lesk and Joel
Sturman for helpful comments on this paper.

.4 TROFF Tutorial 8—29

References

[1] J. F. Ossanna, NROFF/TROFF User's Manual, Bell Laboratories
Computing Science Technical Report 54, 1976.

[2] B. W. Kernighan, A System for Typesetting Mathematics—User's
Guide (Second Edition), Bell Laboratories Computing Science
Technical Report 17, 1977.

[3] M. E. Lesk, TBL—A Program to Format Tables, Bell Labora-
tories Computing Science Technical Report 49, 1976.

[4] M. E. Lesk, Typing Documents on UNIX, Bell Laboratories,
1978.

[5] J. R. Mashey and D. W. Smith, PWB/MM—Programmer's
Workbench Memorandum Macros, Bell Laboratories internal
memorandum.

[6] Eric P. Allman, Writing Papers with NROFF Using -me, Univer-
sity of California, Berkeley.

5—30 Programmer's Guide: CTIX Supplement

Appendix A: Laser Printer Character Set

These characters exist in roman, italic, and bold. To get the one on
the left, type the four-character name on the right.

ff \ (f f fi \ (f i fl \ (f l ffi \ (F i ffl \ (F 1
_ \ (r u — \ (e m Vi \ (1 4 hi \ (1 2 % \ (3 4
O \ (c o ° \ (d e t \ (d g ' \ (f m i \ (c t
® \ (r g • \ (b u • \(sq> - \ (h y

llowing are special-font characters:

+ \(pi - \(mi X \(mu \(di
= \(eq = \ (= = M>= \ (< =
* \ (! = ± \ (+ - - \(no \(sl

\(ap - \ (~ = A \(pt V \(gr
- \ (- > - \(<- T \(ua I

V
\(da

/ \(is d \(pd 00 \(if
I

V \(sr
c \(sb D \(sp u \(cu n \(ca
c \(ib • \(ip € \(mo 0 \(es
' \(aa • \(ga O \(ci @ \(bs
§ \(sc + \(dd \(lh mr \(rh
r \(lt 1 \ (n r \(lc 1 \(rc
i \ (lb) \(rb L \(lf J \(rf
i \ (lk ^ \(rk i \(bv s \(ts
I \(br 1 \(or \(ul \(rn
* \ ("

These four characters also have two-character names. The ' is the
apostrophe on terminals; the ~ is the other quote mark.

' V * V - \ - _ \ _

These characters exist only on the special font, but they do not have
four-character names:

" { } < > ~ ~ \ # Q

For greek, precede the roman letter by \ (* to get the corresponding
greek; for example, \ (* a is a . 2

a b g d e z y h i k l m n c o p r s t u f x q w
a f } - y S e £ T | 0 l ' K ^ P - v i ; o ' n ' P c r T l , (t > X l l J C d

A B G D E Z Y H I K L M N C O P R S T U F X Q W
A B T A E Z H 0 I K A M N H O I I P 2 T Yc&X^fl

1. In some character sets, the bold \ (s q produces a solid (filled) box.
2. If a greek character does not exist on the special font, the equivalent character

in the current font is printed.

.4 TROFF Tutorial 8—31

9
MM — Memorandum Macros

1. Introduction

1.1 Purpose

This memorandum is the user's guide and reference manual for the
Memorandum Macros (MM), a general-purpose package of text for-
matting macros for use with the UNIX text formatters nroff and troff.

The purpose of MM is to provide a unified, consistent, and flexible
tool for producing many common types of documents. Although the
UNIX time-sharing system provides other macro packages for various
specialized formats, MM has become the standard, general-purpose
macro package for most documents.

MM can be used to produce:

• Letters

• Reports

• Technical Memoranda

• Released Papers

• Manuals

• Books.

The uses of MM range from single-page letters to documents of
several hundred pages in length, such as user guides, design propo-
sals, etc.

Source: D . W . Smith, J . R . Mashey, E .C . Pariser (January 1980 Revision), and
N . W . Smith (June 1980 Revision), MM— Memorandum Macros Piscataway, N.J . :
Bell Laborator ies) .

MM — Memorandum Macros 9—1

1.2 Conventions

Each section of this memorandum explains a single facility of MM.
In general, the earlier a section occurs, the more necessary it is for
most users. Some of the later sections can be completely ignored if
MM defaults are acceptable. Likewise, each section progresses from
normal-case to special-case facilities. We recommend reading a sec-
tion in detail only until there is enough information to obtain the
desired format, then skimming the rest of it, because some details
may be of use to just a few people.

Numbers enclosed in curly brackets ({ >) refer to section numbers
within this document. For example, this is -C1.2>.

Sections that require knowledge of the formatters <1.4> have a bullet
(•) at the end of their headings.

In the synopses of macro calls, square brackets ([]) surrounding an
argument indicate that it is optional. Ellipses (. . .) show that the
preceding argument may appear more than once.

A reference of the form name(N) points to page name in section N of
the UNIX User's Manual

The examples of output in this manual are as produced by troff; nroff
output would, of course, look somewhat different (Appendix C shows
both nroff and troff outputs for a simple letter). In those cases in
which the behavior of the two formatters is truly different, the nroff
action is described first, with the troff action following in parentheses.
For example:

The title is underlined (italic).

means that the title is underlined in nroff and italic in troff.

1.3 Overall Structure of a Document

The input for a document that is to be formatted with MM possesses
four major segments, any of which may be omitted; if present, they
must occur in the following order:

Parameter-setting — This segment sets the general style and appear-
ance of a document. The user can control page width, margin
justification, numbering styles for headings and lists, page
headers and footers <9>, and many other properties of the
document. Also, the user can add macros or redefine existing

5—2 Programmer's Guide: CTIX Supplement

ones. This segment can be omitted entirely if one is satisfied
with default values; it produces no actual output, but only per-
forms the setup for the rest of the document.

Beginning — This segment includes those items that occur only once,
at the beginning of a document, e.g., title, author's name,
date.

Body — This segment is the actual text of the document. It may be
as small as a single paragraph, or as large as hundreds of
pages. It may have a hierarchy of headings up to seven levels
deep -C4}. Headings are automatically numbered (if desired)
and can be saved to generate the table of contents. Five addi-
tional levels of subordination are provided by a set of list mac-
ros for automatic numbering, alphabetic sequencing, and
"marking" of list items <5}. The body may also contain vari-
ous types of displays, tables, figures, references, and footnotes
<7, 8, 11}.

Ending — This segment contains those items that occur once only, at
the end of a document. Included here are signature(s) and
lists of notations (e.g., "copy to" lists) -C6.11}. Certain mac-
ros may be invoked here to print information that is wholly or
partially derived from the rest of the document, such as the
table of contents or the cover sheet for a document <10}.

The existence and size of these four segments varies widely among
different document types. Although a specific item (such as date,
title, author name(s), etc.) may be printed in several different ways
depending on the document type, there is a uniform way of typing it
in.

1.4 Definitions

The term formatter refers to either of the text-formatting programs
nroff and troff.

Requests are built-in commands recognized by the formatters.
Although one seldom needs to use these requests directly <3.10}, this
document contains references to some of them. Full details are given
in the NROFF/TROFF User's Manual For example, the request:

.sp

inserts a blank line in the output.

MM — Memorandum Macros 9—3

Macros are named collections of requests. Each macro is an abbrevi-
ation for a collection of requests that would otherwise require repeti-
tion. MM supplies many macros, and the user can define additional
ones. Macros and requests share the same set of names and are used
in the same way.

Strings provide character variables, each of which names a string of
characters. Strings are often used in page headers, page footers, and
lists. They share the pool of names used by requests and macros. A
string can be given a value via the .ds (define string) request, and its
value can be obtained by referencing its name, preceded by " \ * " (for
1-character names) or " \ * (" (for 2-character names). For instance,
the string DT in MM normally contains the current date, so that the
input line:

Today is \ * (DT.

may result in the following output:

Today is May 1, 1917

The current date can be replaced, e.g.:

.ds DT 01/01/79

or by invoking a macro designed for that purpose -(6.7.1 >.

Number registers fill the role of integer variables. They are used for
flags, for arithmetic, and for automatic numbering. A register can be
given a value using a .nr request, and be referenced by preceding its
name by " \ n " (for 1-character names) or " \ n (" (for 2-character
names). For example, the following sets the value of the register d to
1 more than that of the register dd:

.nr d l + \ n (dd

See -C14.1} regarding naming conventions for requests, macros,
strings, and number registers. Appendix E list all macros, strings,
and number registers defined in MM.

5—4 Programmer's Guide: CTIX Supplement

1.5 Prerequisites and Further Reading

1.5.1 Prerequisites

We assume familiarity with UNIX at the level given in UNIX for
Beginners^ and A Tutorial Introduction to the UNIX Text EditorW.
Some familiarity with the request summary in the NROFF/TROFF
User's Manual I2' is helpful.

1.5.2 Further Reading

NROFF/TROFF User's Manual^ provides detailed descriptions of for-
matter capabilities, while A TROFF Tutorialt5' provides a general
overview. See Typesetting Mathematics—User's Guide^ for instruc-
tions on formatting mathematical expressions. See tbl{ 1) and TBL—A
Program to Format Tables^ for instructions on formatting tabular
data.

Examples of formatted documents and of their respective input, as
well as a quick reference to the material in this manual are given in
Typing Documents with MM ^ .

2. Invoking the Macros

This section tells how to access MM, shows UNIX command lines
appropriate for various output devices, and describes command-line
flags for MM.

2.1 The mm Command

The mm (I) command can be used to print documents using nroff and
MM; this command invokes nroff with the - c m flag -(2.2}. It has
options to specify preprocessing by tbl and/or by neqn and for postpro-
cessing by various output filters. Any arguments or flags that are not
recognized by mm{ 1), e.g. - r C 3 , are passed to nroff or to MM, as
appropriate. The options, which can occur in any order but must
appear before the file names, are:

MM — Memorandum Macros 9—5

- e neqn is to be invoked; also causes neqn to read
lusr/publeqnchar (see eqnchar(J)).

- t ' b lO) is to be invoked.
- c col(1) is to be invoked.
- E the - e option of nroff is to be invoked.
- y - m m (uncompacted macros) is to be used instead of

-cm.
-12 12-pitch mode is to be used. Be sure the pitch switch

on the terminal is set to 12.
-T450 output is to a DASI 450. This is the default terminal

type (unless $TERM is set).
It is also equivalent to -T1620.

-T450-12 output is to a DASI 450 in 12-pitch mode.
-T300 output is to a DASI 300 terminal.
-T300-12 output is to a DASI 300 in 12-pitch mode.
-T300s output is to a DASI 300S.
-T300s-12 output is to a DASI 300S in 12-pitch mode.
-T4014 output is to a Tektronix 4014.
-T37 output is to a TELETYPE® Model 37.
-T382 output is to a DTC-382.
-T4000a output is to a Trendata 4000A.
- T X output is prepared for an EBCDIC line printer.
- T h p output is to a HP264x (implies -c) .
-T43 output is to a TELETYPE Model 43 (implies -c) .
-T40/4 output is to a TELETYPE Model 40/4 (implies -c) .
-T745 output is to a Texas Instrument 700 series terminal

(implies -c) .
-T2631 output is prepared for a HP2631 printer (where

-T2631-e and -T2631-C may be used for expanded
and compressed modes, respectively) (implies -c) .

-T ip output is to a device with no reverse or partial line
motions or other special features (implies -c) .

Any other - T option given does not produce an error; it is equivalent
to -Tip.

A similar command is available for use with troff (see mmr(l)).

5—6 Programmer's Guide: CTIX Supplement

2.2 The - c m or - m m Flag

The MM package can also be invoked by including the - cm or - m m
flag as an argument to the formatter. The - cm flag causes the pre-
compacted version of the macros to be loaded. The - m m flag causes
the file /usr/lib/tmac/tmac.m to be read and processed before any
other files. This action defines the MM macros, sets default values
for various parameters, and initializes the formatter to be ready to
process the files of input text.

2.3 Typical Command Lines

The prototype command lines are as follows (with the various options
explained in -C2.4} and in the NROFF/TROFF User's Manual

• Text without tables or equations:
mm [options] file-name . . .

or nroff [options] -cm file-name . . .
mint [options] file-name . . .

or troff [options] -cm file-name . . .

• Text with tables:
mm - t [options] file-name . . .

or tbl file-name . . . | nroff [options] - cm
mmt - t [options] file-name . . .

or tbl file-name . . . | troff [options] -cm

• Text with equations:
mm - e [options] file-name . . .

or neqn /usr/pub/eqnchar file-name . . . | nroff [options]
—cm
mmt - e [options] file-name . . .

or eqn /usr/pub/eqnchar file-name . . . | troff [options] -cm

• Text with both tables and equations:
mm - t —e [options] file-name . . .

or tbl file-name . . . | neqn /usr/pub/eqnchar - | nroff
[options] - cm
mmt - t - e [options] file-name . . .

or tbl file-name . . . | eqn /usr/pub/eqnchar - | troff
[options] - cm

When formatting a document with nroff, the output should normally
be processed for a specific type of terminal, because the output may

MM — Memorandum Macros 9—7

require some features that are specific to a given terminal, e.g.,
reverse paper motion or half-line paper motion in both directions.
Some commonly-used terminal types and the command lines
appropriate for them are given below. See -C2.4> as well as 300 (1),
450(1), 4014 (1), hp(1), col(I), and terminals (1) for further informa-
tion.

• DASI 450 in 10-pitch, 6 lines/inch mode, with 0.75 inch
offset, and a line length of 6 inches (60 characters) where this
is the default terminal type so no - T option is needed (unless
STERM is set to another value):

mm file-name . . .
or nroff -T450 - h -cm file-name . . .

• DASI 450 in 12-pitch, 6 lines/inch mode, with 0.75 inch
offset, and a line length of 6 inches (72 characters):

mm -12 file-name . . .
or nroff -T450-12 - h -cm file-name . . .

or, to increase the line length to 80 characters and decrease the
offset to 3 characters:

mm -12 -r\V80 - r 0 3 file-name . . .
or nroff -T45G-12 -rW80 - r 0 3 - h -cm file-name . . .

• Hewlett-Packard HP264x CRT family:
mm -Thp file-name . . .

or nroff —cm file-name . . . | col | hp

• Any terminal incapable of reverse paper motion and also lack-
ing hardware tab stops (Texas Instruments 700 series, etc.):

mm -T745 file-name . . .
or nroff -cm file-name . . . | col - x

• Versatec printer (see vp(l) for additional details):
vp [vp-options] " mm -rT2 - c file-name . . . "

or vp [vp-options] "nroff -rT2 -cm file-name . . . | col"

Of course, tbl (I) and eqn(\)lneqn, if needed, must be invoked as
shown in the command line prototypes at the beginning of this sec-
tion.

If two-column processing <12.4> is used with nroff, either the - c
option must be specified to mm(l),1 or the nroff output must be

1. Note that mm(1) uses col(1) automatically for many of the terminal types
{2.1}.

5—8 Programmer's Guide: CTIX Supplement

postprocessed by col (I). In the latter case, the -T37 terminal type
must be specified to nroff, the - h option must not be specified, and
the output of col(1) must be processed by the appropriate terminal
filter (e.g., 450(1)); mm(1) with the - c option handles all this
automatically.

2.4 Parameters that Can Be Set from the Command
Line

Number registers are commonly used within MM to hold parameter
values that control various aspects of output style. Many of these can
be changed within the text files via .nr requests. In addition, some of
these registers can be set from the command line itself, a useful
feature for those parameters that should not be permanently embed-
ded within the input text itself. If used, these registers (with the pos-
sible exception of the register P— see below) must be set on the com-
mand line (or before the MM macro definitions are processed) and
their meanings are:

- r A n for n - 1 has the effect of invoking the .AF macro without
an argument -C6.7.2}. If n = 2 allows for usage of the Bell
System logo, if available, on a printing device (currently
available for the Xerox 9700 only).

-rCn n sets the type of copy (e.g., DRAFT) to be printed at the
bottom of each page. See -C9.5}.
n = 1 for OFFICIAL FILE COPY,
n = 2 for DATE FILE COPY.
n = 3 for DRAFT with single-spacing and default paragraph
style.
n = 4 for DRAFT with double-spacing and 10 space para-
graph indent.

- r D l sets debug mode. This flag requests the formatter to attempt
to continue processing even if MM detects errors that would
otherwise cause termination. It also includes some debug-
ging information in the default page header -C9.2, 12.3>.

- rEn controls the font of the Subject/Date/From fields. If n is 1
then these fields are bold (default for troff) and if n is 0
then these fields are roman (regular text-default for nroff).

- r L k sets the length of the physical page to k lines.2 The default

MM — Memorandum Macros 9—9

value is 66 lines per page. This parameter is used, for
example, when directing output to a Versatec printer.

- rNn specifies the page numbering style. When n is 0 (default),
all pages get the (prevailing) header <9.2>. When n is 1,
the page header replaces the footer on page 1 only. When n
is 2, the page header is omitted from page 1. When n is 3,
"section-page" numbering -C4.5> occurs (see .FD -C8.3> and
.RP <11.4> for footnote and reference numbering in sec-
tions). When n is 4, the default page header is suppressed;
however a user-specified header is not affected. When n is
5, "section-page" and "section-figure" numbering occurs.

n Page I Pages I f f .
0 header header
1 header replaces footer header
2 no header header
3 "section-page" as footer same as page 1
4 no header no header unless

.PH defined
5 same as 3-with "section-figure" same as page 1

The contents of the prevailing header and footer do not
depend on the value of the number register N; N only con-
trols whether and where the header (and, for N= 3 or 5, the
footer) is printed, as well as the page numbering style. In
particular, if the header and footer are null <9.2, 9.5>, the
value of N is irrelevant.

- rOk offsets output k spaces to the right.2 It is helpful for adjust-
ing output positioning on some terminals. The default offset
if this register is not set on the command line is 0.75 inches.

NOTE

The register name is the capital letter " O " , not the
digit zero (0).

2. For nroff, k is an unsealed number representing lines or character positions; for
troff, k must be scaled.

5—10 Programmer's Guide: CTIX Supplement

- rPn specifies that the pages of the document are to be numbered
starting with n. This register may also be set via a .nr
request in the input text.

-rS« sets the point size and vertical spacing for the document.
The default n is 10, i.e., 10-point type on 12-point vertical
spacing, giving 6 lines per inch -C12.9}. This parameter
applies to troff only.

-rT/i provides register settings for certain devices. If n is 1, then
the line length and page offset are set to 80 and 3, respec-
tively. Setting n to 2 changes the page length to 84 lines per
page and inhibits underlining; it is meant for output sent to
the Versatec printer. The default value for n is 0. This
parameter applies to nroff only.

- r U l controls underlining of section headings. This flag causes
only letters and digits to be underlined. Otherwise, all char-
acters (including spaces) are underlined {4.2.2.4.2}. This
parameter applies to nroff only.

- rWk page width (i.e., line length and title length) is set to k.2

This can be used to change the page width from the default
value of 6 inches (60 characters in 10 pitch or 72 characters
in 12 pitch).

2.5 Omission of - c m or - m m

If a large number of arguments is required on the command line, it
may be convenient to set up the first (or only) input file of a docu-
ment as follows:

zero or more initializations of registers listed in -C2.4}
.so /usr/lib/tmac/tmac.m
remainder of text

In this case, one must not use the -cm or - m m flag (nor the mm (I)
or mmt{\) command); the .so request has the equivalent effect, but
the registers in -C2.4} must be initialized before the .so request,
because their values are meaningful only if set before the macro
definitions are processed. When using this method, it is best to
"lock" into the input file only those parameters that are seldom
changed. For example:

MM — Memorandum Macros 9—11

.nr W 80

.nr O 10

.nr N 3

.so /usr/lib/tmac/tmac.m

. H I " INTRODUCTION"

specifies, for nroff, a line length of 80, a page offset of 10, and
"section-page" numbering.

3. Formatting Concepts

3.1 Basic Terms

The normal action of the formatters is to fill output lines from one or
more input lines. The output lines may be justified so that both the
left and right margins are aligned. As the lines are being filled,
words may also be hyphenated -C3.4> as necessary. It is possible to
turn any of these modes on and off (see .SA {12.2}, Hy {3.4}, and
the formatter .nf and .fi requests^). Turning off fill mode also turns
off justification and hyphenation.

Certain formatting commands (requests and macros) cause the filling
of the current output line to cease, the line (of whatever length) to be
printed, and the subsequent text to begin a new output line. This
printing of a partially filled output line is known as a break. A few-
formatter requests and most of the MM macros cause a break.

While formatter requests can be used with MM, one must fully under-
stand the consequences and side-effects that each such request might
have. Actually, there is little need to use formatter requests; the
macros described here should be used in most cases because:

— it is much easier to control (and change at any later point in
time) the overall style of the document.

— complicated features (such as footnotes or tables of contents)
can be obtained with ease.

— the user is insulated from the peculiarities of the formatter
language.

A good rule is to use formatter requests only when absolutely neces-
sary {3.10}.

5—12 Programmer's Guide: CTIX Supplement

In order to make it easy to revise the input text at a later time, input
lines should be kept short and should be broken at the end of clauses;
each new full sentence must begin on a new line.

3.2 Arguments and Double Quotes

For any macro call, a null argument is an argument whose width is
zero. Such an argument often has a special meaning; the preferred
form for a null argument is " ". Note that omitting an argument is
not the same as supplying a null argument (for example, see the .MT
macro in -C6.6}). Furthermore, omitted arguments can occur only at
the end of an argument list, while null arguments can occur any-
where.

Any macro argument containing ordinary (paddable) spaces must be
enclosed in double quotes (")• Otherwise, it will be treated as
several separate arguments.

Double quotes (") are not permitted as part of the value of a macro
argument or of a string that is to be used as a macro argument. If
you must, use two grave accents (") and/or two acute accents (")
instead. This restriction is necessary because many macro arguments
are processed (interpreted) a variable number of times; for example,
headings are first printed in the text and may be (re)printed in the
table of contents.

3.3 Unpaddable Spaces

When output lines are justified to give an even right margin, existing
spaces in a line may have additional spaces appended to them. This
may harm the desired alignment of text. To avoid this problem, it is
necessary to be able to specify a space that cannot be expanded during
justification, i.e., an unpaddable space. There are several ways to
accomplish this.

3. A double quote (") is a single character that must not be confused with two
apostrophes or acute accents (") , or with two grave accents (") .

MM — Memorandum Macros 9—13

First, one may type a backslash followed by a space (" \ "). This
pair of characters directly generates an unpaddable space. Second,
one may sacrifice some seldom-used character to be translated into a
space upon output. Because this translation occurs after justification,
the chosen character may be used anywhere an unpaddable space is
desired. The tilde (~) is often used for this purpose. To use it in
this way, insert the following at the beginning of the document:

.tr ~

If a tilde must actually appear in the output, it can be temporarily
"recovered" by inserting:

.tr ~ ~

before the place where it is needed. Its previous usage is restored by
repeating the " . t r but only after a break or after the line contain-
ing the tilde has been forced out. Note that the use of the tilde in
this fashion is not recommended for documents in which the tilde is
used within equations.

3.4 Hyphenation

The formatters do not perform hyphenation unless the user requests
it. Hyphenation can be turned on in the body of the text by specify-
ing:

.nr Hy 1

once at the beginning of the document. For hyphenation within foot-
notes and across pages, see -C8.3}.

If hyphenation is requested, the formatters will automatically hyphen-
ate words, if need be. However, the user may specify the hyphena-
tion points for a specific occurrence of any word by the use of a spe-
cial character known as a hyphenation indicator, or may specify
hyphenation points for a small list of words (about 128 characters).

If the hyphenation indicator (initially, the two-character sequence
" \ % ") appears at the beginning of a word, the word is not
hyphenated. Alternatively, it can be used to indicate legal hyphena-
tion point(s) inside a word. In any case, all occurrences of the
hyphenation indicator disappear on output.

The user may specify a different hyphenation indicator:

.HC [hyphenation-indicator]

5—14 Programmer's Guide: CTIX Supplement

The circumflex is often used for this purpose; this is done by
inserting the following at the beginning of a document:

.HC -

Note that any word containing hyphens or dashes—also known as em
dashes—will be hyphenated immediately after a hyphen or dash if it
is necessary to hyphenate the word, even if the formatter hyphenation
function is turned o f f .

The user may supply, via the .hw request, a small list of words with
the proper hyphenation points indicated. For example, to indicate
the proper hyphenation of the word "printout," one may specify:

.hw print-out

3.5 Tabs

The macros .MT -C6.6}, .TC -C10.1}, and .CS -C10.2} use the for-
matter .ta request to set tab stops, and then restore the default values4

of tab settings. Thus, setting tabs to other than the default values is
the user's responsibility.

Note that a tab character is always interpreted with respect to its posi-
tion on the input line, rather than its position on the output line. In
general, tab characters should appear only on lines processed in "no-
fill" mode -C3.1}.

Also note that tbl(1) {7 .3} changes tab stops, but does not restore
the default tab settings.

3.6 Special Use of the BEL Character

The non-printing character BEL is used as a delimiter in many mac-
ros where it is necessary to compute the width of an argument or to
delimit arbitrary text, e.g., in headers and footers -C9}, headings
-C4}, and list marks -C5}. Users who include BEL characters in their

4. Every eight characters in nroff; every Vi inch in troff.

MM — Memorandum Macros 9—15

input text (especially in arguments to macros) will receive mangled
output.

3.7 Bullets

A bullet (•) is often obtained on a typewriter terminal by using an
"o" overstruck by a "+" . For compatibility with troff, a bullet string
is provided by MM. Rather than overstriking, use the sequence:

\ * (B U

wherever a bullet is desired. Note that the bullet list (.BL) macros
-(5.3.3.2} use this string to automatically generate the bullets for the
list items.

3.8 Dashes, Minus Signs, and Hyphens

Troff has distinct graphics for a dash, a minus sign, and a hyphen,
while nroff does not. Those who intend to use nroff only may use the
minus sign (" - ") for all three.

Those who wish mainly to use troff should follow the escape conven-
tions of the NROFF/TROFF User's Manual

Those who want to use both formatters must take care during text
preparation. Unfortunately, these characters cannot be represented in
a way that is both compatible and convenient. We suggest the follow-
ing approach:

Dash Type \ * (E M for each text dash for both nroff and troff.
This string generates an em dash (—) in troff and " -- "
in nroff. Note that the dash list (.DL) macros <5.3.3.3}
automatically generate the em dash for each list item.

Hyphen Type " - " and use as is for both formatters. Nroff will
print it as is, and troff will print " - " (a true hyphen).

Minus Type for a true minus sign, regardless of formatter.
Nroff will effectively ignore the " V , while troff will print
a true minus sign.

5—16 Programmer's Guide: CTIX Supplement

3.9 Trademark String

A trademark string \ * (T m is available with MM. This places the
letters " T M " one-half line above the text that it follows.

For example:

The U N I X \ * (T m User's Manual is available from the library,

yields:

The UNIX User's Manual is available from the library.

3.10 Use of Formatter Requests

Most formatter requests^ should not be used with MM because MM
provides the corresponding formatting functions in a much more
user-oriented and surprise-free fashion than do the basic formatter
requests -C3.1}. However, some formatter requests are useful with
MM, namely:

.af .br .ce .de .ds .fi .hw .Is .nf .nr .nx

.rm .rr .rs .so .sp .ta .ti .tl .tr .!

The .fp, .Ig, and .ss requests are also sometimes useful for troff. Use
of other requests without fully understanding their implications very
often leads to disaster.

4. Paragraphs and Headings

This section describes simple paragraphs and section headings. Addi-
tional paragraph and list styles are covered in {5>.

MM — Memorandum Macros 9—17

4.1 Paragraphs

•P [type]
one or more lines of text.

This macro is used to begin two kinds of paragraphs. In a left-
justified paragraph, the first line begins at the left margin, while in an
indented paragraph, it is indented five spaces (see below).

A document possesses a default paragraph style obtained by specifying
" .P" before each paragraph that does not follow a heading {4.2}.
The default style is controlled by the register Pt. The initial value of
Ft is 0, which always provides left-justified paragraphs. All para-
graphs can be forced to be indented by inserting the following at the
beginning of the document:

.nr Pt 1

All paragraphs will be indented except after headings, lists, and
displays if the following:

.nr Pt 2

is inserted at the beginning of the document.

The amount a paragraph is indented is contained in the register Pi,
whose default value is 5. To indent paragraphs by, say, 10 spaces,
insert:

.nr Pi 10

at the beginning of the document. Of course, both the Pi and Pt
register values must be greater than zero for any paragraphs to be
indented.

The number register Ps controls the amount of spacing between para-
graphs. By default, Ps is set to 1, yielding one blank space (Vi a verti-
cal space).

CAUTION

Values that specify indentation must be unsealed and are
treated as "character positions," i.e., as a number of ens. In
troff, an en is the number of points (1 point = 1/72 of an inch)
equal to half the current point size. In nroff, an en is equal to
the width of a character.

5—18 Programmer's Guide: CTIX Supplement

Regardless of the value of Pt, an individual paragraph can be forced
to be left-justified or indented. ".P 0" always forces left justification;
".P 1" always causes indentation by the amount specified by the
register Pi.

If .P occurs inside a list, the indent (if any) of the paragraph is added
to the current list indent -C5>.

Numbered paragraphs may be produced by setting the register Np to
1. This produces paragraphs numbered within first level headings,
e.g., 1.01, 1.02, 1.03, 2.01, etc.

A different style of numbered paragraphs is obtained by using the

.nP

macro rather than the .P macro for paragraphs. This produces para-
graphs that are numbered within second level headings and contain a
"double-line indent" in which the text of the second line is indented
to be aligned with the text of the first line so that the number stands
out.

.H 1 "FIRST H E A D I N G "

.H 2 "Second Heading"

.nP
one or more lines of text

4.2 Numbered Headings

.H level [heading-text] [heading-suffix]
zero or more lines of text

The .H macro provides seven levels of numbered headings, as illus-
trated by this document. Level 1 is the most major or highest; level 7
the lowest.

The heading-suffix is appended to the heading-text and may be used
for footnote marks which should not appear with the heading text in
the Table of Contents.

MM — Memorandum Macros 9—19

CAUTION

Strictly speaking, there is no need for a .P macro immediately
after a .H (or .HU -C4.3}), because the .11 macro also per-
forms the function of the .P macro, and an immediately fol-
lowing .P is ignored -C4.2.2.2}. It is, however, good practice
to start every paragraph with a .P macro, thereby ensuring that
all paragraphs uniformly begin with a .P throughout an entire
document.

4.2.1 Normal Appearance

The normal appearance of headings is as shown in this document.
The effect of .H varies according to the level argument. First-level
headings are preceded by two blank lines (one vertical space); all oth-
ers are preceded by one blank line (M? a vertical space).

.H 1 heading-text gives a bold heading followed by a single blank
line a vertical space). The following text
begins on a new line and is indented according
to the current paragraph type. Full capital
letters should normally be used to make the
heading stand out.

.H 2 heading-text yields a bold heading followed by a single
blank line ('/•> a vertical space). The following
text begins on a new line and is indented
according to the current paragraph type. Nor-
mally, initial capitals are used.

.H n heading-text for 3 < n < 7 , produces an underlined (italic)
heading followed by two spaces. The follow-
ing text appears on the same line, i.e., these
are run-in headings.

Appropriate numbering and spacing (horizontal and vertical) occur
even if the heading text is omitted from a .H macro call.

Here are the first few .H calls of <4>:

5—20 Programmer's Guide: CTIX Supplement

.H 1 " P A R A G R A P H S A N D HEADINGS"
, H 2 "Paragraphs"
.H 2 "Numbered Headings"
.H 3 "Normal Appearance."
.H 3 "Altering Appearance of Headings. "
.H 4 "Pre-Spacing and Page Ejection."
.H 4 "Spacing After Headings. "
.H 4 "Centered Headings."
.H 4 "Bold, Italic, and Underlined Headings"
.H 5 "Control by Level."

4.2.2 Altering Appearance of Headings

Users satisfied with the default appearance of headings may skip to
-C4.3>. One can modify the appearance of headings quite easily by
setting certain registers and strings at the beginning of the document.
This permits quick alteration of a document's style, because this
style-control information is concentrated in a few lines, rather than
being distributed throughout the document.

4.2.2.1 Pre-Spacing and Page Ejection

A first-level heading normally has two blank lines (one vertical space)
preceding it, and all others have one blank line a vertical space).
If a multi-line heading were to be split across pages, it is automati-
cally moved to the top of the next page. Every first-level heading
may be forced to the top of a new page by inserting:

.nr Ej 1

at the beginning of the document. Long documents may be made
more manageable if each section starts on a new page. Setting Ej to a
higher value causes the same effect for headings up to that level, i.e.,
a page eject occurs if the heading level is less than or equal to Ej.

MM — Memorandum Macros 9—21

4.2.2.2 Spacing After Headings

Three registers control the appearance of text immediately following a
.H call. They are Hb (heading break level), Hs (heading space level),
and Hi (post-heading indent).

If the heading level is less than or equal to Hb, a break <3.1 > occurs
after the heading. If the heading level is less than or equal to Hs, a
blank line a vertical space) is inserted after the heading. Defaults
for Hb and Hs are 2. If a heading level is greater than Hb and also
greater than Hs, then the heading (if any) is run into the following
text. These registers permit headings to be separated from the text in
a consistent way throughout a document, while allowing easy altera-
tion of white space and heading emphasis.

For any stand-alone heading, i.e., a heading not run into the follow-
ing text, the alignment of the next line of output is controlled by the
register Hi. If Hi is 0, text is left-justified. If Hi is 1 (the default
value), the text is indented according to the paragraph type as speci-
fied by the register Pt {4.1}. Finally, if Hi is 2, text is indented to
line up with the first word of the heading itself, so that the heading
number stands out more clearly.

For example, to cause a blank line (!£ a vertical space) to appear after
the first three heading levels, to have no run-in headings, and to force
the text following all headings to be left-justified (regardless of the
value of Pt), the following should appear at the top of the document:

.nr Hs 3

.nr Hb7

.nr Hi 0

4.2.2.3 Centered Headings

The register He can be used to obtain centered headings. A heading
is centered if its level is less than or equal to He, and if it is also
stand-alone {4.2.2.2}. He is 0 initially (no centered headings).

5—22 Programmer's Guide: CTIX Supplement

4.2.2.4 Bold, Italic, and Underlined Headings

4.2.2.4.1 Control by Level

Any heading that is underlined by nroff is made italic by troff. The
string HF (heading font) contains seven codes that specify the fonts
for heading levels 1-7. The legal codes, their interpretations, and the
defaults for HF are:

Formatter HF Code
1 2 3

Default
HF

nroff
troff

no underline underline bold
roman italic bold

3 3 2 2 2 2 2
3 3 2 2 2 2 2

Thus, levels 1 and 2 are bold; levels 3 through 7 are underlined in
nroff and italic in troff. The user may reset H F as desired. Any
value omitted from the right end of the list is taken to be 1. For
example, the following would result in five bold levels and two non-
underlined (roman) levels:

.ds H F 3 3 3 3 3

4.2.2.4.2 Nroff Underlining Style

Nroff can underline in two ways. The normal style (.ul request) is to
underline only letters and digits. The continuous style (.cu request)
underlines all characters, including spaces. By default, MM attempts
to use the continuous style on any heading that is to be underlined
and is short enough to fit on a single line. If a heading is to be
underlined, but is too long, it is underlined the normal way (i.e., only
letters and digits are underlined).

All underlining of headings can be forced to the normal way by using
the - r U l flag when invoking nroff -C2.4>.

MM — Memorandum Macros 9—23

4.2.2.4.3 Heading Point Sizes

The user may also specify the desired point size for each heading level
with the HP string (for use with troff only).

.ds H P [psl] [ps2] [ps3] [ps4] [ps5] [ps6] [ps7]

By default, the text of headings (.H and .HU) is printed in the same
point size as the body except that bold stand-alone headings are
printed in a size one point smaller than the body. The string HP,
similar to the string HF, can be specified to contain up to seven
values, corresponding to the seven levels of headings. For example:

.ds H P 12 12 10 10 10 10 10

specifies that the first and second level headings are to be printed in
12-point type, with the remainder printed in 10-point. Note that the
specified values may also be relative point-size changes, e.g.:

.ds HP +2 + 2 - 1 - 1

If absolute point sizes are specified, then those sizes will be used
regardless of the point size of the body of the document. If relative
point sizes are specified, then the point sizes for the headings will be
relative to the point size of the body, even if the latter is changed.

Null or zero values imply that the default size will be used for the
corresponding heading level.

CAUTION

Only the point size of the headings is affected. Specifying a
large point size without providing increased vertical spacing
(via .HX and/or .HZ) may cause overprinting.

4.2.2.5 Marking Styles—Numerals and Concatenation

.HM [argl] . . . [arg7]

The registers named HI through H7 are used as counters for the
seven levels of headings. Their values are normally printed using
Arabic numerals. The .HM macro (heading mark style) allows this

5—24 Programmer's Guide: CTIX Supplement

choice to be overridden, thus providing "outline" and other docu-
ment styles. This macro can have up to seven arguments; each argu-
ment is a string indicating the type of marking to be used. Legal
values and their meanings are shown below; omitted values are inter-
preted as 1, while illegal values have no effect.

Value Interpretation
1 Arabic (default for all levels)

0001 Arabic with enough leading zeroes to get
the specified number of digits

A Upper-case alphabetic
a Lower-case alphabetic
I Upper-case Roman
i Lower-case Roman

By default, the complete heading mark for a given level is built by
concatenating the mark for that level to the right of all marks for all
levels of higher value. To inhibit the concatenation of heading level
marks, i.e., to obtain just the current level mark followed by a
period, set the register Ht (heading-mark type) to 1.

For example, a commonly-used "outline" style is obtained by:

.HM I A 1 a i

.nr Ht 1

4.3 Unnumbered Headings

.HU heading-text

.HU is a special case of .H; it is handled in the same way as .H,
except that no heading mark is printed. In order to preserve the
hierarchical structure of headings when .H and .HU calls are inter-
mixed, each .HU heading is considered to exist at the level given by
register Hu, whose initial value is 2. Thus, in the normal case, the
only difference between:

.HU heading-text

and:

.H 2 heading-text

is the printing of the heading mark for the latter. Both have the

MM — Memorandum Macros 9—25

effect of incrementing the numbering counter for level 2, and reset-
ting to zero the counters for levels 3 through 7. Typically, the value
of Hu should be set to make unnumbered headings (if any) be the
lowest-level headings in a document.

.HU can be especially helpful in setting up appendices and other sec-
tions that may not fit well into the numbering scheme of the main
body of a document {14.2.1}.

4.4 Headings and the Table of Contents

The text of headings and their corresponding page numbers can be
automatically collected for a table of contents. This is accomplished
by doing the following two things:

• specifying in the register CI what level headings are to be saved

• invoking the .TC macro {10.1} at the end of the document

Any heading whose level is less than or equal to the value of the
register CI (contents level) is saved and later displayed in the table of
contents. The default value for CI is 2, i.e., the first two levels of
headings are saved.

Due to the way the headings are saved, it is possible to exceed the
formatter's storage capacity, particularly when saving many levels of
many headings, while also processing displays {7} and footnotes
{8}. If this happens, the "Out of temp file space" diagnostic
{Appendix D } will be issued; the only remedy is to save fewer levels
and/or to have fewer words in the heading text.

4.5 First-Level Headings and Page Numbering Style

By default, pages are numbered sequentially at the top of the page.
For large documents, it may be desirable to use page numbering of
the form "section-page," where section is the number of the current
first-level heading. This page numbering style can be achieved by
specifying the - r N 3 or - r N 5 flag on the command line {9.9}. As a
side effect, this also has the effect of setting Ej to 1, i.e., each section
begins on a new page. In this style, the page number is printed at the
bottom of the page, so that the correct section number is printed.

5—26 Programmer 's Guide: CTIX Supplement

4.6 User Exit Macros

NOTE

This section is intended only for users who are accustomed to
writing formatter macros.

.HX dlevel rlevel heading-text
,HY dlevel rlevel heading-text
.HZ dlevel rlevel heading-text

The .HX, .HY, and .HZ macros are the means by which the user
obtains a final level of control over the previously-described heading
mechanism. MM does not define .HX, .HY, and .HZ; they are
intended to be defined by the user. The .H macro invokes .HX
shortly before the actual heading text is printed; it calls .HZ as its last
action. After .HX is invoked, the size of the heading is calculated.
This processing causes certain features that may have been included in
.HX, such as .ti for temporary indent, to be lost. After the size cal-
culation, .HY is invoked so that the user may respecify these
features. All the default actions occur if these macros are not
defined. If the .HX, .HY, or .HZ are defined by the user, the
user-supplied definition is interpreted at the appropriate point. These
macros can therefore influence the handling of all headings, because
the .HU macro is actually a special case of the .H macro.

If the user originally invoked the .H macro, then the derived level
(dlevel) and the real level (rlevel) are both equal to the level given in
the .H invocation. If the user originally invoked the .HU macro
{4.3}, dlevel is equal to the contents of register Hu, and rlevel is 0.
In both cases, heading-text is the text of the original invocation.

By the time .H calls .HX, it has already incremented the heading
counter of the specified level {4.2.2.5}, produced blank line(s) (vert-
ical space) to precede the heading {4.2.2.1}, and accumulated the
"heading mark", i.e., the string of digits, letters, and periods needed
for a numbered heading. When .HX is called, all user-accessible
registers and strings can be referenced, as well as the following:

string }0 If rlevel is non-zero, this string contains the "heading
mark." Two unpaddable spaces (to separate the mark
from the heading) have been appended to this string.
If rlevel is 0, this string is null.

MM — Memorandum Macros 9—27

This register indicates the type of spacing that is to fol-
low the heading {4.2.2.2}. A value of 0 means that
the heading is run-in. A value of 1 means a break
(but no blank line) is to follow the heading. A value
of 2 means that a blank line (% a vertical space) is to
follow the heading.

If register ;0 is 0, this string contains two unpaddable
spaces that will be used to separate the (run-in) head-
ing from the following text. If register ;0 is non-zero,
this string is null.

This register contains an adjustment factor for a .ne
request issued before the heading is actually printed.
On entry to .HX, it has the value 3 if dlevel equals 1,
and 1 otherwise. The .ne request is for the following
number of lines: the contents of the register ;0 taken
as blank lines (halves of vertical space) plus the con-
tents of register ;3 as blank lines (halves of vertical
space) plus the number of lines of the heading.

The user may alter the values of }0, }2, and ;3 within .HX as
desired. The following are examples of actions that might be per-
formed by defining .HX to include the lines shown:

Change first-level heading mark from format n. to n.0:
.if \ \ $ 1 = 1 .ds }0 \ \ n (H 1 . 0 \ n \ o (• stands for a space)

Separate run-in heading from the text with a period and two
unpaddable spaces:

.if \ \ n (; 0 = 0 .ds }2 . \ c \ D

Assure that at least 15 lines are left on the page before printing a
first-level heading:

.if \ \ $ 1 = 1 .nr ;3 1 5 - \ \ n (; 0

Add 3 additional blank lines before each first-level heading:
.if \ \ $ 1 = 1 .sp 3

Indent level 3 run-in headings by 5 spaces:
.if \ \ $ 1 = 3 .ti 5n

If temporary strings or macros are used within .HX, chose their
names with care {14.1}.

,HY is called after the .ne is issued. Certain features requested in
.HX must be repeated. For example:

register ;0

string }2

register ;3

5—28 Programmer's Guide: CTIX Supplement

.de HY

.if \ \ $ 1 = 3 .ti 5n

. H Z is called at the end of .H to permit user-controlled actions after
the heading is produced. For example, in a large document, sections
may correspond to chapters of a book, and the user may want to
change a page header or footer, e.g.:

.de H Z

.if \ \ $ 1 = 1 .PF » "Section \ \ $ 3 " "

4.7 Hints for Large Documents

A large document is often organized for convenience into one file per
section. If the files are numbered, it is wise to use enough digits in
the names of these files for the maximum number of sections, i.e.,
use suffix numbers 01 through 20 rather than 1 through 9 and 10
through 20.

Users often want to format individual sections of long documents.
To do this with the correct section numbers, it is necessary to set
register HI to 1 less than the number of the section just before the
corresponding " . H 1" call. For example, at the beginning of section
5, insert:

.nr HI 4

CAUTION

This is a dangerous practice: it defeats the automatic
(re)numbering of sections when sections are added or deleted.
Remove such lines as soon as possible.

MM — Memorandum Macros 9—29

5. Lists

This section describes many different kinds of lists: automatically-
numbered and alphabetized lists, bullet lists, dash lists, lists with arbi-
trary marks, and lists starting with arbitrary strings, e.g., with terms
or phrases to be defined.

5.1 Basic Approach

In order to avoid repetitive typing of arguments to describe the
appearance of items in a list, MM provides a convenient way to
specify lists. All lists are composed of the following parts:

• A list-initialization macro that controls the appearance of the
list: line spacing, indentation, marking with special symbols,
and numbering or alphabetizing.

• One or more List hem (.LI) macros, each followed by the
actual text of the corresponding list item.

• The List End (.LE) macro that terminates the list and restores
the previous indentation.

Lists may be nested up to six levels. The list-initialization macro
saves the previous list status (indentation, marking style, etc.); the
.LE macro restores it.

With this approach, the format of a list is specified only once at the
beginning of that list. In addition, by building on the existing struc-
ture, users may create their own customized sets of list macros with
relatively little effort {5.4, Appendix A} .

5.2 Sample Nested Lists

The input for several lists and the corresponding output are shown
below. The .AL and .DL macro calls {5.3.3} contained therein are
examples of the list-initialization macros. This example will help us to
explain the material in the following sections. Input text:

5—30 Programmer's Guide: CTIX Supplement

.AL A

.LI
This is an alphabetized item.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back.
.AL
.LI
This is a numbered item.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back.
.DL
.LI
This is a dash item.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back.
.LI + 1
This is a dash item with a "plus" as prefix.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back.
.LE
.LI
This is numbered item 2.
.LE
.LI
This is another alphabetized item, B.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back.
.LE
.P
This paragraph appears at the left margin.

MM — Memorandum Macros 9—31

Output:

A. This is an alphabetized item. This text shows the alignment of
the second line of the item. The quick brown fox jumped over
the lazy dog's back.

1. This is a numbered item. This text shows the alignment
of the second line of the item. The quick brown fox
jumped over the lazy dog's back.

— This is a dash item. This text shows the alignment of
the second line of the item. The quick brown fox
jumped over the lazy dog's back.

+ — This is a dash item with a "plus" as prefix. This text
shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back.

2. This is numbered item 2.

B. This is another alphabetized item, B. This text shows the align-
ment of the second line of the item. The quick brown fox
jumped over the lazy dog's back.

This paragraph appears at the left margin.

5.3 Basic List Macros

Because all lists share the same overall structure except for the list-
initialization macro, we first discuss the macros common to all lists.
Each list-initialization macro is covered in -C5.3.3}.

5.3.1 List Item

.LI [mark] [1]
one or more lines of text that make up the list item.

The .LI macro is used with all lists. It normally causes the output of
a single blank line a vertical space) before its item, although this
may be suppressed. If no arguments are given, it labels its item with
the current mark, which is specified by the most recent list-
initialization macro. If a single argument is given to .LI, that argu-
ment is output instead of the current mark. If two arguments are
given, the first argument becomes a prefix to the current mark, thus

5—32 Programmer's Guide: CTIX Supplement

allowing the user to emphasize one or more items in a list. One
unpaddable space is inserted between the prefix and the mark. For
example:

.BL 6

.LI
This is a simple bullet item.
.LI +
This replaces the bullet with a "plus ."
.LI + 1
But this uses "plus" as prefix to the bullet.
.LE

yields:

• This is a simple bullet item.

+ This replaces the bullet with a "plus."

+ • But this uses "plus" as prefix to the bullet.

CAUTION

The mark must not contain ordinary (paddable) spaces,
because alignment of items will be lost if the right margin is
justified -C3.3}.

If the current mark (in the current list) is a null string, and the first
argument of .LI is omitted or null, the resulting effect is that of a
hanging indent, i.e., the first line of the following text is "out-
dented," starting at the same place where the mark would have
started {5.3.3.6}.

5.3.2 List End

.LE [1]

List End restores the state of the list back to that existing just before
the most recent list-initialization macro call. If the optional argument
is given, the .LE outputs a blank line (% a vertical space). This
option should generally be used only when the .LE is followed by
running text, but not when followed by a macro that produces blank
lines of its own, such as .P, .H, or .LI.

MM — Memorandum Macros 9—33

.H and .HU automatically clear all list information, so one may
legally omit the .LE(s) that would normally occur just before either
of these macros. Such a practice is not recommended, however,
because errors will occur if the list text is separated from the heading
at some later time (e.g., by insertion of text).

5.3.3 List Initialization Macros

The following are the various list-initialization macros. They are
actually implemented as calls to the more basic .LB macro {5.4}.

5.3.3.1 Automatically-Numbered or Alphabetized Lists

.AL [type] [text-indent] [1]

The .AL macro is used to begin sequentially-numbered or alphabet-
ized lists. If there are no arguments, the list is numbered, and text is
indented Li, initially 6 (5)5 spaces from the indent in force when the
.AL is called, thus leaving room for a space, two digits, a period, and
two spaces before the text.

Spacing at the beginning of the list and between the items can be
suppressed by setting the Ls (list space) register. Ls is set to the
innermost list level for which spacing is done. For example:

.nr Ls 0

specifies that no spacing will occur around any list items. The default
value for Ls is 6 (which is the maximum list nesting level).

The type argument may be given to obtain a different type of
sequencing, and its value should indicate the first element in the
sequence desired, i.e., it must be 1, A, a, I, or i {4.2.2.5}.6 If type
is omitted or null, then "1" is assumed. If text-indent is non-null, it

5. Values that specify indentation must be unsealed and are treated as "charac te r
posi t ions," i .e. , as the number of ens.

6. Note that the "0001" format is not permit ted.

5—34 Programmer's Guide: CTIX Supplement

is used as the number of spaces from the current indent to the text,
i.e., it is used instead of Li for this list only. If text-indent is null,
then the value of Li will be used.

If the third argument is given, a blank line a vertical space) will
not separate the items in the list. A blank line ('A a vertical space)
will occur before the first item, however.

5.3.3.2 Bullet List

.BL [text-indent] [1]

.BL begins a bullet list, in which each item is marked by a bullet (•)
followed by one space. If text-indent is non-null, it overrides the
default indentation—the amount of paragraph indentation as given in
the register Pi -C4.1}.7

If a second argument is specified, no blank lines will separate the
items in the list.

5.3.3.3 Dash List

.DL [text-indent] [1]

.DL is identical to .BL, except that a dash is used instead of a bullet.

5.3.3.4 Marked List

.ML mark [text-indent] [!]

.ML is much like .BL and .DL., but expects the user to specify an
arbitrary mark, which may consist of more than a single character.
Text is indented text-indent spaces if the second argument is not null;
otherwise, the text is indented one more space than the width of

7. So tha t , in the defaul t c a « . the text of bul le t and dash lists l ines u p wi th the
first line of i n d e n t e d p a r a g r a p h s .

MM — Memorandum Macros 9—35

mark. If the third argument is specified, no blank lines will separate
the items in the list.

CAUTION

The mark must not contain ordinary (paddable) spaces,
because alignment of items will be lost if the right margin is
justified {3.3}.

5.3.3.5 Reference List

.RL [text-indent] [1]

A .RL call begins an automatically-numbered list in which the
numbers are enclosed by square brackets ([]) . Text-indent may be
supplied, as for .AL. If omitted or null, it is assumed to be 6, a con-
venient value for lists numbered up to 99. If the second argument is
specified, no blank lines will separate the items in the list.

5.3.3.6 Variable-Item List

.VL text-indent [mark-indent] [1]

When a list begins with a .VL, there is effectively no current mark; it
is expected that each .LI will provide its own mark. This form is typ-
ically used to display definitions of terms or phrases. Mark-indent
gives the number of spaces from the current indent to the beginning
of the mark, and it defaults to 0 if omitted or null. Text-indent gives
the distance from the current indent to the beginning of the text. If
the third argument is specified, no blank lines will separate the items
in the list. Here is an example of .VL usage:

5—36 Programmer's Guide: CTIX Supplement

.tr ~

.VL 20 2

.LI mark~l
Here is a description of mark 1;
"mark 1" of the .LI line contains a tilde translated
to an unpaddable space in order
to avoid extra spaces between
" m a r k " and " 1 " {3.3}.
.LI second~mark
This is the second mark, also using a tilde translated
to an unpaddable space.
.LI third"* mark"longer"than"indent:
This item shows the effect of a long mark;
one space separates the mark
from the text.
.LI "
This item effectively has no mark because the
tilde following the .LI is translated into a space.
.LE

yields:

mark 1 Here is a description of mark 1; "mark 1" of
the .LI line contains a tilde translated to an
unpaddable space in order to avoid extra
spaces between "mark" and "1" {3.3}.

second mark This is the second mark, also using a tilde
translated to an unpaddable space.

third mark longer than indent: This item shows the effect of a long
mark; one space separates the mark from the
text.

This item effectively has no mark because the
tilde following the .LI is translated into a
space.

The tilde argument on the last .LI above is required; otherwise a
hanging indent would have been produced. A hanging indent is pro-
duced by using .VL and calling .LI with no arguments or with a null
first argument. For example:

MM — Memorandum Macros 9—37

.VL 10

.LI
Here is some text to show a hanging indent.
The first line of text is at the left margin.
The second is indented 10 spaces.
.LE

yields:

Here is some text to show a hanging indent. The first line of text is
at the left margin. The second is indented 10 spaces.

CAUTION

The mark mast not contain ordinary (paddable) spaces,
because alignment of items will be lost if the right margin is
justified {3.3}.

5.4 List-Begin Macro and Customized Lists

.LB text-indent mark-indent pad type [mark] [Li-space] [LB-space]

The list-initialization macros described above suffice for almost all
cases. However, if necessary, one may obtain more control over the
layout of lists by using the basic list-begin macro .LB, which is also
used by all the other list-initialization macros. Its arguments are as
follows:

Text-indent gives the number of spaces that the text is to be indented
from the current indent. Normally, this value is taken from the regis-
ter Li for automatic lists and from the register Pi for bullet and dash
lists.

The combination of mark-indent and pad determines the placement of
the mark. The mark is placed within an area (called mark area) that
starts mark-indent spaces to the right of the current indent, and ends
where the text begins (i.e., ends text-indent spaces to the right of the
current indent).8 Within the mark area, the mark is left-justified if

5—38 Programmer's Guide: CTIX Supplement

pad is 0. If pad is greater than 0, say n, then n blanks are appended
to the mark; the mark-indent value is ignored. The resulting string
immediately precedes the text. That is, the mark is effectively right-
justified pad spaces immediately to the left of the text.

Type and mark interact to control the type of marking used. If type is
0, simple marking is performed using the mark character(s) found in
the mark argument. If type is greater than 0, automatic numbering or
alphabetizing is done, and mark is then interpreted as the first item in
the sequence to be used for numbering or alphabetizing, i.e., it is
chosen from the set (1, A, a, I, i) as in {5.3.3.1}. That is:

Type Mark Result
0 omitted hanging indent
0 string string is the mark

>0 omitted arabic numbering
>0 one of: automatic numbering or

1, A, a, I, i alphabetic sequencing

Each non-zero value of type from 1 to 6 selects a different way of
displaying the marks. The following table shows the output appear-
ance for each value of type:

Type Appearance
1 X .

2 X)
3 (x)
4 M
5 <x>
6 { X }

where x is the generated number or letter.

8. The mark-indent argument is typically 0.

MM — Memorandum Macros 9—39

CAUTION

The mark must not contain ordinary (paddable) spaces,
because alignment of items will be lost if the right margin is
justified {3.3}.

Ll-space gives the number of blank lines (halves of a vertical space)
that should be output by each .LI macro in the list. If omitted, Ll-
space defaults to 1; the value 0 can be used to obtain compact lists. If
Ll-space is greater than 0, the .LI macro issues a .ne request for two
lines just before printing the mark.

LB-space, the number of blank lines (% a vertical space) to be output
by .LB itself, defaults to 0 if omitted.

There are three reasonable combinations of Ll-space and LB-space.
The normal case is to set Ll-space to 1 and LB-space to 0, yielding
one blank line before each item in the list; such a list is usually ter-
minated with a " . L E 1" to end the list with a blank line. In the
second case, for a more compact list, set Ll-space to 0 and LB-space
to 1, and, again, use " . L E 1" at the end of the list. The result is a
list with one blank line before and after it. If you set both Ll-space
and LB-space to 0, and use " . L E " to end the list, a list without any
blank lines will result.

Appendix A shows how one can build upon the supplied list macros
to obtain other kinds of lists.

6. Memorandum and Released Paper Styles

One use of MM is for the preparation of memoranda and released
papers, which have special requirements for the first page and for the
cover sheet. The information needed for the memorandum or
released paper (title, author, date, case numbers, etc.) is entered in
the same way for both styles; an argument to one macro indicates
which style is being used. The following sections describe the macros
used to provide this data. The required order is shown in {6.9}.

If neither the memorandum nor released-paper style is desired, the
macros described below should be omitted from the input text. If
these macros are omitted, the first page will simply have the page
header {9} followed by the body of the document.

5—40 Programmer's Guide: CTIX Supplement

6.1 Title

.TL [charging-case] [filing-case]
one or more lines of title text

The arguments to the .TL macro are the charging case number(s) and
filing case number(s).9 The title of the memorandum or paper fol-
lows the .TL macro and is processed in fill mode {3.1}. Multiple
charging case numbers are entered as "sub-arguments" by separating
each from the previous with a comma and a space, and enclosing the
entire argument within double quotes. Multiple filing case numbers
are entered similarly. For example:

.TL "12345, 67890" 987654321
On the Construction of a Table of All Even Prime Numbers

The .br request may be used to break the title on output into several
lines as follows:

.TL 12345
First Title Line
.br
V . b r
Second Title Line

On output, the title appears after the word "subject" in the
memorandum style. In the released-paper style, the title is centered
and bold.

If only a charging case number or only a filing case number is given,
then it will be separated from the title in the memorandum style by a
dash and will appear on the same line as the title. If both case
numbers are given and are the same, then "Charging and Filing
Case" followed by the number will appear on a line following the
title. If the two case numbers are different, then separate lines for
"Charging Case" and "File Case" will appear after the title.

9. The "charging case" is the case number to which time was charged for the
development of the project described in the memorandum. The "fi l ing case"
is a number under which the memorandum is to be filed.

MM — Memorandum Macros 9—41

6.2 Author(s)

. A U name [initials] [loc] [dept] [ext] [room] [arg] [arg] [arg]

.AT [title] . . .

The .AU macro receives as arguments information that describes an
author. If any argument contains blanks, it must be enclosed within
double quotes. The first six arguments must appear in the order
given (a separate .AU macro is required for each author).

The .AT macro is used to specify the author's title. Up to nine argu-
ments may be given. Each will appear in the Signature Block for
memorandum style -C6.11.1} on a separate line following the signer's
name. The .AT must immediately follow the .AU for the given
author. For example:

.AU " J. J. Jones" JJJ PY 9876 5432 1Z-234

.AT Director "Materials Research Laboratory"

In the " f rom" portion in the memorandum style, the author's name is
followed by location and department number on one line and by
room number and extension number on the next. The "x" for the
extension is added automatically. The printing of the location,
department number, extension number, and room number may be
suppressed on the first page of a memorandum by setting the register
Au to 0; the default value for Au is 1. Arguments 7 through 9 of the
.AU macro, if present, will follow this "normal" author information
in the " f rom" portion, each on a separate line. These last three argu-
ments may be used for organizational numbering schemes, etc. For
example:

.AU "S. P. Lename" SPL IH 9988 7766 5H-444 9876-543210.01MF

The name, initials, location, and department are also used in the Sig-
nature Block -(6.11.1)-. The author information in the " f rom" por-
tion, as well as the names and initials in the Signature Block will
appear in the same order as the .AU macros.

The names of the authors in the released-paper style are centered
below the title. After the name of the last author, "Bell Labora-
tories" and the location are centered. For the case of authors from
different locations, see {6.8}.

5—42 Programmer's Guide: CTIX Supplement

6.3 TM Number(s)

.TM [number] . . .

If the memorandum is a Technical Memorandum, the TM numbers
are supplied via the .TM macro. Up to nine numbers may be speci-
fied. Example:

.TM 7654321 77777777

This macro call is ignored in the released-paper and external-letter
styles -C6.6}.

6.4 Abstract

.AS [arg] [indent]
text of the abstract
.AE

The .AS (abstract start) and .AE (abstract end) macros bracket the
(optional) abstract. Abstracts are printed on page 1 of a document
and/or on its cover sheet.10

In a released paper (first argument of the .MT macro is 4; see -C6.6})
and in a Technical Memorandum, if the first argument of .AS is 0,
the abstract will be printed on page 1 and on the cover sheet (if any);
if the first argument of .AS is 1, the abstract will appear only on the
cover sheet (if any).

In Memoranda for File and in all other documents (other than exter-
nal letters), if the first argument of .AS is 0, the abstract will appear
on page 1 and there will be no cover sheet printed; if the first argu-
ment of .AS is 2, the abstract will appear only on the cover sheet,
which will be produced automatically in this case (i.e., without invok-
ing the .CS macro). It is not possible to get either an abstract or a

10. There are three styles of cover sheet: released paper , Technical Memorandum,
and Memorandum for File { 1 0 . 2 } ; the last one of these is also used for
Engineer 's Notes, Memoranda for Record , etc. Cover sheets for released
papers and Technical Memoranda are obtained bv invoking the .CS macro
{10.2}.

MM — Memorandum Macros 9—43

cover sheet with an external letter (first argument of the .MT macro
is 5).

Notations -C6.11.2} such as a "copy to" list are allowed on Memoran-
dum for File cover sheets; the .NS and .NE macros must appear after
the .AS 2 and .AE. Headings <4.2, 4.3} and displays <7} are not
permitted within an abstract.

The abstract is printed with ordinary text margins; an indentation to
be used for both margins can be specified as the second argument of
.AS.11

6.5 Other Keywords

.OK [keyword] . . .

Topical keywords should be specified on a Technical Memorandum
cover sheet. Up to nine such keywords or keyword phrases may be
specified as arguments to the .OK macro; if any keyword contains
spaces, it must be enclosed within double quotes.

6.6 Memorandum Types

.MT [type] [addressee]

The .MT macro controls the format of the top part of the first page
of a memorandum or of a released paper, as well as the format of the
cover sheets. Legal codes for type and the corresponding values are:

11. Values that specify indentation must be unsealed and are treated as "charac te r
posi t ions ," i .e. , as the number of ens.

5—44 Programmer's Guide: CTIX Supplement

Code Value
it ti no memorandum type printed
0 no memorandum type printed

none M E M O R A N D U M FOR FILE
1 M E M O R A N D U M FOR FILE
2 P R O G R A M M E R ' S NOTES
3 E N G I N E E R ' S NOTES
4 released-paper style
5 external-letter style

" string " string

If type indicates a memorandum style, then value will be printed after
the last line of author information. If type is longer than one charac-
ter, then the string, itself, will be printed. For example:

.MT "Technical Note #5"

A simple letter is produced by calling .MT with a null (but not omit-
ted!) or zero argument.

The second argument to .MT is the name of the addressee of a letter;
if present, that name and the page number replace the normal page
header on the second and following pages of a letter:

.MT 1 "John Jones"

produces

John Jones - 2

This second argument may not be used for this purpose if the first
argument is 4 (i.e., for the released-paper style) as explained in
{6.8}.

In the external-letter style (.MT 5), only the title (without the word
"subject:") and the date are printed in the upper left and right
corners, respectively, on the first page. It is expected that preprinted
stationery will be used, providing the author's company logo and
address.

MM — Memorandum Macros 9—45

6.7 Date and Format Changes

6.7.1 Changing the Date

By default, the current date appears in the "date" part of a
memorandum. This can be overridden by using:

.ND new-date

The .ND macro alters the value of the string DT, which is initially set
to the current date.

6.7.2 Alternate First-Page Format.

One can specify that the words "subject," "date," and " f rom" (in the
memorandum style) be omitted and that an alternate company name
be used:

. A F [company-name]

If an argument is given, it replaces "Bell Laboratories", without
affecting the other headings. If the argument is null, "Bell Labora-
tories" is suppressed; in this case, extra blank lines are inserted to
allow room for stamping the document with a Bell System logo or a
Bell Laboratories stamp. .AF with no argument suppresses "Bell
Laboratories" and the "Subject/Date/From" headings, thus allowing
output on preprinted stationery. The use of . A F with no arguments
is equivalent to the use of - r A l {2.4}, except that the latter must be
used if it is necessary to change the line length and/or page offset
(which default to 5.8i and li , respectively, for preprinted forms).
The command line options - rOk and - r W k {2.4} are not effective
with .AF. The only .AF use appropriate for troff is to specify a
replacement for "Bell Laboratories".

The command line option - rEn {2.4} controls the font of the
"Subject/Date/From" block.

5—46 Programmer's Guide: CTIX Supplement

6.8 Released-Paper Style

The released-paper style is obtained by specifying:

.MT 4 [1]

This results in a centered, bold title followed by centered names of
authors. The location of the last author is used as the location fol-
lowing "Bell Laboratories" (unless .AF -C6.7.2} specifies a different
company). If the optional second argument to .MT 4 is given, then
the name of each author is followed by the respective company name
and location.

Information necessary for the memorandum style but not for the
released-paper style is ignored.

If the released-paper style is utilized, most BTL location codes12 are
defined as strings that are the addresses of the corresponding BTL
locations. These codes are needed only until the .MT macro is
invoked. Thus, following the .MT macro, the user may re-use these
string names. In addition, the macros described in {6.11 > and their
associated lines of input are ignored when the released-paper style is
specified.

Authors from non-BTL locations may include their affiliations in the
released-paper style by specifying the appropriate . A F and defining a
string (with a 2 character name such as XX) for the address before
each .AU. For example:

.TL
A Learned Treatise
. A F "Getem Inc."
.ds XX "22 Maple Avenue, Sometown 09999"
.AU "F. Swatter XX
. A F "Bell Laboratories"
.AU "Sam P. Lename" " " CB
.MT 4 1

12. Currently, the complete list is: A K , A L , A L F , CB, C H , CP, D R , FJ, H L ,
H O , H O H , HP , IH , IN, I N H , IW, M H , MV, PY, R D , R R , WB, W H , and
W V .

MM — Memorandum Macros 9—47

6.9 Order of Invocation of "Beginning" Macros

The macros described in -C6.1-6.7}, if present, must be given in the
following order:

.ND new-date

.TL [charging-case] [filing-case]
one or more lines of text
. A F [company-name]
.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg] [arg]
.AT [title] . . .
,TM [number] . . .
.AS [arg] [indent]
one or more lines of text
. A E
•NS [arg]
one or more lines of text
.NE
.OK [keyword] . . .
.MT [type] [addressee]

The only required macros for a memorandum or a released paper are
.TL, .AU, and .MT; all the others (and their associated input lines)
may be omitted if the features they provide are not needed. Once
.MT has been invoked, none of the above macros (except .NS and
.NE) can be re-invoked because they are removed from the table of
defined macros to save space.

6.10 Example

The input text for this manual begins as follows:

.TL
MM*(EMMemorandum Macros
.AU "D. W. Smith" DWS PY
.AU "J. R. Mashey" JRM PY
. A U "E. C. Pariser (January 1980 Revision)" ECP PY
.AU "N. W. Smith (June 1980 Revision)" NWS PY
.MT 4

5—48 Programmer's Guide: CTIX Supplement

Appendix C shows the input and both nroff and troff outputs for a
simple letter.

6.11 Macros for the End of a Memorandum

At the end of a memorandum (but not of a released paper), the sig-
natures of the authors and a list of notations'3 can be requested. The
following macros and their input are ignored if the released-paper
style is selected.

6.11.1 Signature Block

.FC [closing]
•SG [arg] [1]

.FC prints "Yours very truly," as a formal closing. It must be given
before the .SG which prints the signer's name. A different closing
may be specified as an argument to .FC.

.SG prints the author name(s) after the formal closing, if any. Each
name begins at the center of the page. Three blank lines are left
above each name for the actual signature. If no arguments are given,
the line of reference data14 will not appear. A non-null first argu-
ment is treated as the typist's initials, and is appended to the refer-
ence data. Supply a null first argument to print the reference data
with neither the typist's initials nor the preceding hyphen.

If there are several authors and if the second argument is given, then
the reference data is placed on the same line as the name of the first,
rather than last, author.

The reference data contains only the location and department number
of the first author. Thus, if there are authors from different depart-
ments and/or from different locations, the reference data should be

13. See the BTL Office GuideI9', pp. 1.12-16.
14. The following information is known as reference data: location code,

depar tment number , author 's initials, and typist's initials, all separated bv
hyphens. See the BTL Office Guide^, page 1.11.

MM — Memorandum Macros 9—49

supplied manually after the invocation (without arguments) of the
.SG macro. For example:

.SG

.rs

.sp - l v
PY/MH-9876/5432-JJJ/SPL-cen

6.11.2 "Copy to" and Other Notations

•NS [arg]
zero or more lines of the notation
.NE

After the signature and reference data, many types of notations may
follow, such as a list of attachments or "copy to" lists. The various
notations are obtained through the .NS macro, which provides for the
proper spacing and for breaking the notations across pages, if neces-
sary.

The codes for arg and the corresponding notations are:

Code Notations
none Copy to
ii ti Copy to
0 Copy to
1 Copy (with att.) to
2 Copy (without att.) to
3 Att.
4 Atts.
5 Enc.
6 Encs.
7 Under Separate Cover
8 Letter to
9 Memorandum to

" string " Copy (string) to

If arg consists of more than one character, it is placed within
parentheses between the words "Copy" and " to ." For example:

5—50 Programmer's Guide: CTIX Supplement

.NS "with att. 1 only"

will generate "Copy (with att. 1 only) to" as the notation. More than
one notation may be specified before the .NE occurs, because a .NS
macro terminates the preceding notation, if any. For example:

.NS 4
Attachment 1-List of register names
Attachment 2-List of string and macro names
.NS 1
J. J. Jones
.NS 2
S. P. Lename
G. H. Hurtz
.NE

would be formatted as:

Atts.
Attachment 1-List of register names
Attachment 2-List of string and macro names

Copy (with att.) to
J. J. Jones

Copy (without att.) to
S. P. Lename
G. H. Hurtz

The .NS and .NE macros may also be used at the beginning following
.AS 2 and . A E to place the notation list on the Memorandum for
File cover sheet -C6.4>. If notations are given at the beginning
without .AS 2, they will be saved and output at the end of the docu-
ment.

6.11.3 Approval Signature Line

,AV approver's-name

The .AV macro may be used after the last notation block to automat-
ically generate a line with spaces for the approval signature and date.
For example,

.AV "Jane Doe"

produces:

MM — Memorandum Macros 9—51

APPROVED:

Jane Doe Date

6.12 Forcing a One-Page Letter

At times, one would like just a bit more space on the page, forcing
the signature or items within notations onto the bottom of the page,
so that the letter or memo is just one page in length. This can be
accomplished by increasing the page length through the - rLn option,
e.g. - rL90. This has the effect of making the formatter believe that
the page is 90 lines long and therefore giving it more room than usual
to place the signature or the notations. This will only work for a
single-page letter or memo.

7. D i s p l a y s

Displays are blocks of text that are to be kept together—not split
across pages. MM provides two styles of displays: a static (.DS)
style and a floating (.DF) style. In the static style, the display
appears in the same relative position in the output text as it does in
the input text; this may result in extra white space at the bottom of
the page if the display is too big to fit there. In the floating style, the
display "floats" through the input text to the top of the next page if
there is not enough room for it on the current page; thus the input
text that follows a floating display may precede it in the output text.
A queue of floating displays is maintained so that their relative order
is not disturbed.

By default, a display is processed in no-fill mode, with single-spacing,
and is not indented from the existing margins. The user can specify
indentation or centering, as well as fill-mode processing.

15. Displays are processed in an environment that is different f rom that of the body
of the text (see the .ev request'2!).

5—52 Programmer's Guide: CTIX Supplement

Displays and footnotes -C8> may never be nested, in any combination
whatsoever. Although lists <5> and paragraphs <4.1 > are permitted,
no headings (.H or .HU) <4.2, 4.3} can occur within displays or
footnotes.

7.1 Static Displays

.DS [format] [fill] [rindent]
one or more lines of text
.DE

A static display is started by the .DS macro and terminated by the
.DE macro. With no arguments, .DS will accept the lines of text
exactly as they are typed (no-fill mode) and will not indent them from
the prevailing left margin indentation or from the right margin. The
rindent argument is the number of characters'6 that the line length
should be decreased, i.e., an indentation from the right margin.

The format argument to .DS is an integer or letter used to control the
left margin indentation and centering with the following meanings:

Format Meanins
f« ti no indent
0 or L no indent
1 or 1 indent bv standard amount
2 or C center each line
3 or CB center as a block

The fill argument is also an integer or letter and can have the follow-
ing meanings:

! Fill Meaning
!"" no-fill mode

0 or N no-fill mode
j 1 or F fill mode

Omitted arguments are taken to be zero.

16. This number must be unsealed in / i n l a n d is treated as ens. It may be scaled
in troff or else defaults to ems.

MM — Memorandum Macros 9—53

The standard amount of indentation is taken from the register Si,
which is initially 5. Thus, by default, the text of an indented display
aligns with the first line of indented paragraphs, whose indent is con-
tained in the Pi register -C4.1}. Even though their initial values are
the same, these two registers are independent of one another.

The display format value 3 (CB) centers the entire display as a block
(as opposed to .DS 2 and .DF 2, which center each line individu-
ally). That is, all the collected lines are left-justified, and then the
display is centered, based on the width of the longest line. This for-
mat must be used in order for the eqn/neqn "mark" and "lineup"
feature to work with centered equations (see section 7.4 below).

By default, a blank line a vertical space) is placed before and after
static and floating displays. These blank lines before and after static
displays can be inhibited by setting the register Ds to 0.

The following example shows the usage of all three arguments for
displays. This block of text will be filled and indented 5 spaces from
both the left and the right margins (i.e., centered).

.DS I F 5
"We the people of the United States, in order to form
a more perfect union, establish justice, ensure domes-
tic tranquility, provide for the common defense, and
secure the blessings of liberty to ourselves and our pos-
terity, do ordain and establish this Constitution to the
United States of America."
.DE

7.2 Floating Displays

.DF [format] [fill] [rindent]
one or more lines of text
.DE

A floating display is started by the .DF macro and terminated by the
.DE macro. The arguments have the same meanings as for .DS
-C7.1}, except that, for floating displays, indent, no indent, and
centering are always calculated with respect to the initial left margin,
because the prevailing indent may change between the time when the
formatter first reads the floating display and the time that the display
is printed. One blank line ('A a vertical space) always occurs both
before and after a floating display.

5—54 Programmer's Guide: CTIX Supplement

The user may exercise great control over the output positioning of
floating displays through the use of two number registers, De and Df.
When a floating display is encountered by nroff or troff, it is pro-
cessed and placed onto a queue of displays waiting to be output.
Displays are always removed from the queue and printed in the order
that they were entered on the queue, which is the order that they
appeared in the input file. If a new floating display is encountered
and the queue of displays is empty, then the new display is a candi-
date for immediate output on the current page. Immediate output is
governed by the size of the display and the setting of the Df register
(see below). The De register (see below) controls whether or not text
will appear on the current page after a floating display has been pro-
duced.

As long as the queue contains one or more displays, new displays will
be automatically entered there, rather than being output. When a
new page is started (or the top of the second column when in two-
column mode) the next display from the queue becomes a candidate
for output if the Df register has specified "top-of-page" output.
When a display is output it is also removed from the queue.

When the end of a section (when using section-page numbering) or
the end of a document is reached, all displays are automatically
removed f rom the queue and output. This will occur before a .SG,
.CS, or .TC is processed.

A display is said to "fit on the current page" if there is enough room
to contain the entire display on the page, or if the display is longer
than one page in length and less than half of the current page has
been used. Also note that a wide (full page width) display will never
fit in the second column of a two-column document.

The registers, their settings, and their effects are as follows:

De Action
0 DEFAULT: No special action occurs.
1 A page eject will always follow the output of each floating

display, so only one floating display will appear on a page and
no text will follow it.

NOTE: For any other value, the action performed is the
same as for the value 1.

MM — Memorandum Macros 9—55

Df Action
0 Floating displays will not be output until end of section (when

section-page numbering) or end of document.
1 Output the new floating display on the current page if there is

room, otherwise hold it until the end of the section or docu-
ment.

2 Output exactly one floating display from the queue at the top
of a new page or column (when in two-column mode).

3 Output one floating display on current page if there is room.
Output exactly one floating display at the top of a new page or
column.

4 Output as many displays as will fit (at least one), starting at
the top of a new page or column. Note that if register De is
set to 1, each display will be followed by a page eject, causing
a new top of page to be reached where at least one more
display will be output. (This also applies to value 5, below.)

5 DEFAULT: Output a new floating display on the current page
if there is room. Output at least one, but as many displays as
will fit starting at the top of a new page or column.

NOTE: For any value greater than 5, the action per-
formed is the same as for the value 5.

The ,WC macro -C12.4} may also be used to control handling of
displays in double-column mode and to control the break in the text
before floating displays.

7.3 Tables

.TS [H]
global options;
column descriptors,
title lines
[.TH [N]]
data within the table.
.TE

The .TS (table start) and .TE (table end) macros make possible the
use of the tbl (1) processor^. They are used to delimit the text to be
examined by tbl (I) as well as to set proper spacing around the table.
The display function and the tbl(1) delimiting function are indepen-
dent of one another, however, so in order to permit one to keep

9—56 Programmer s Guide: CTIX Supplement

together blocks that contain any mixture of tables, equations, filled
and unfilled text, and caption lines the .TS/ .TE block should be
enclosed within a display (.DS/.DE). Floating tables may be
enclosed inside floating displays (.DF/ .DE) .

The macros .TS and .TE also permit the processing of tables that
extend over several pages. If a table heading is needed for each page
of a multi-page table, specify the argument " H " to the .TS macro as
above. Following the options and format information, the table
heading is typed on as many lines as required and followed by the
.TH macro. The .TH macro must occur when " .TS H " is used.
Note that this is not a feature of tbl{ 1), but of the macro definitions
provided by MM.

The table header macro .TH may take as an argument the letter N.
This argument causes the table header to be printed only if it is the
first table header on the page. This option is used when it is neces-
sary to build long tables from smaller .TS H / . T E segments. For
example:

.TS H
global options;
column descriptors.
Title lines
.TH
data
.TE
.TS H
global options;
column descriptors.
Title lines
.TH N
data
.TE

will cause the table heading to appear at the top of the first table seg-
ment, and no heading to appear at the top of the second segment
when both appear on the same page. However, the heading will still
appear at the top of each page that the table continues onto. This
feature is used when a single table must be broken into segments
because of table complexity (for example, too many blocks of filled
text). If each segment had its own .TS H / . T H sequence, each seg-
ment would have its own header. However, if each table segment

MM — Memorandum Macros 9—57

after the first uses .TS H / . T H N then the table header will only
appear at the beginning of the table and the top of each new page or
column that the table continues onto.

For nroff, the - e option (- E for mm(1) <2.1 >) may be used for ter-
minals, such as the 450, that are capable of finer printing resolution.
This will cause better alignment of features such as the lines forming
the corner of a box. Note that - e is not effective with col(1).

7.4 Equations

.DS

.EQ [label]
equation(s)
.EN
.DE

The equation setters eqn(1) and neqnf6' expect to use the .EQ (equa-
tion start) and .EN (equation end) macros as delimiters in the same
way that tbl(1) uses .TS and .TE; however, .EQ and .EN must occur
inside a .DS/ .DE pair.

NOTE

There is an exception to this rule: if .EQ and .EN are used
only to specify the delimiters for in-line equations or to specify
eqn/neqn "defines," .DS and .DE must not be used; otherwise
extra blank lines will appear in the output.

The .EQ macro takes an argument that will be used as a label for the
equation. By default, the label will appear at the right margin in the
"vertical center" of the general equation. The Eq register may be set
to 1 to change the labeling to the left margin.

The equation will be centered for centered displays; otherwise the
equation will be adjusted to the opposite margin from the label.

9—58 Programmer s Guide: CTIX Supplement

7.5 Figure, Table, Equation, and Exhibit Captions

.FG [title] [override] [flag]

.TB [title] [override] [flag]

.EC [title] [override] [flag]

.EX [title] [override] [flag]

The .FG (Figure Title), .TB (Table Title), .EC (Equation Caption)
and .EX (Exhibit Caption) macros are normally used inside .DS/ .DE
pairs to automatically number and title figures, tables, and equations.
They use registers Fg, Tb, Ec, and Ex, respectively (see -C2.4} on
- r N 5 to reset counters in sections). As an example, the call:

.FG "This is an illustration"

yields:

Figure 1. This is an illustration

.TB replaces "Figure" by "TABLE" ; .EC replaces "Figure" by
"Equation", and .EX replaces "Figure" by "Exhibit". Output is
centered if it can fit on a single line; otherwise, all lines but the first
are indented to line up with the first character of the title. The for-
mat of the numbers may be changed using the .af request of the for-
matter. The format of the caption may be changed from
"Figure 1. Title" to "Figure 1 - Title" by setting the Of register to 1.

The override string is used to modify the normal numbering. If flag
is omitted or 0, override is used as a prefix to the number; if flag is 1,
override is used as a suffix; and if flag is 2, override replaces the
number. If - r N 5 -C2.4} is given, "section-figure" numbering is set
automatically and user-specified override string is ignored.

«

As a matter of style, table headings are usually placed ahead of the
text of the tables, while figure, equation, and exhibit captions usually
occur after the corresponding figures and equations.

MM — Memorandum Macros 9—59

7.6 List of Figures, Tables, Equations, and Exhibits

A List of Figures, List of Tables, List of Exhibits, and List of Equa-
tions may be obtained. They will be printed after the Table of Con-
tents is printed if the number registers L f , Lt, Lx, and Le (respec-
tively) are set to 1. L f , Lt, and Lx are 1 by default; Le is 0 by
default.

The titles of these Lists may be changed by redefining the following
strings which are shown here with their default values:

.ds Lf LIST OF F IGURES

.ds Lt LIST OF TABLES

.ds Lx LIST OF EXHIBITS

.ds Le LIST OF EQUATIONS

8. Footnotes

There are two macros that delimit the text of footnotes , n a string
used to automatically number the footnotes, and a macro that speci-
fies the style of the footnote text.

8.1 Automatic Numbering of Footnotes

Footnotes may be automatically numbered by typing the three charac-
ters " \ * F " (i.e., invoking the string F) immediately after the text to
be footnoted, without any intervening spaces. This will place the next
sequential footnote number (in a smaller point size) a half-line above
the text to be footnoted.

17. Footnotes are processed in an environment that is different from that of the
body of the text (see the .ev request '2 ') .

9—60 Programmer s Guide: CTIX Supplement

8.2 Delimiting Footnote Text

There are two macros that delimit the text of each footnote:

.FS [label]
one or more lines of footnote text
.FE

The .FS (footnote start) marks the beginning of the text of the foot-
note, and the .FE marks its end. The label on the .FS, if present,
will be used to mark the footnote text. Otherwise, the number
retrieved from the string F will be used. Note that automatically-
numbered and user-labeled footnotes may be intermixed. If a foot-
note is labeled (.FS label), the text to be footnoted must be followed
by label, rather than by " \ * F " . The text between .FS and .FE is
processed in fill mode. Another .FS, a .DS, or a .DF are not permit-
ted between the .FS and .FE macros. Automatically numbered foot-
notes may not be used for information, such as the title and abstract,
to be placed on the cover sheet, but labeled footnotes are allowed.
Similarly, only labeled footnotes may be used with tables {7.3}.
Examples:

1. Automatically-numbered footnote:

This is the line containing the word *F
.FS
This is the text of the footnote.
.FE
to be footnoted.

2. Labelled footnote:

This is a labeled*
.FS *
The footnote is labeled with an asterisk.
.FE
footnote.

The text of the footnote (enclosed within the .FS/ .FE pair) should
immediately follow the word to be footnoted in the input text, so that
" \ * F " or label occurs at the end of a line of input and the next line
is the .FS macro call. It is also good practice to append a unpaddable
space {3 .3} to " \ * F " or label when they follow an end-of-sentence
punctuation mark (i.e., period, question mark, exclamation point).

MM — Memorandum Macros 9—61

Appendix B illustrates the various available footnote styles as well as
numbered and labeled footnotes.

8.3 Format of Footnote Text

.FD [arg] [1]

Within the footnote text, the user can control the formatting style by
specifying text hyphenation, right margin justification, and text inden-
tation, as well as left- or right-justification of the label when text
indenting is used. The .FD macro is invoked to select the appropri-
ate style. The first argument is a number from the left column of the
following table. The formatting style for each number is given by the
remaining four columns. For further explanation of the first two of
these columns, see the definitions of the .ad, .hy, .na, and .nh
requests'2^.

arg Hyphenation Adjust Text Indent Label Justification
0 .nh .ad text indent label left justified
1 .hy .ad N II

2 .nh .na II IT

3 .hy .na II TI

4 .nh .ad no text indent II

5 .hy .ad I I N

6 .nh .na IT I I

7 •hy .na H II

8 .nh .ad text indent label right justified
9 .hy .ad TI II

10 .nh .na IT II

11 .hy .na N N

If the first argument to .FD is out of range, the effect is as if .FD 0
were specified. If the first argument is omitted or null, the effect is
equivalent to .FD 10 in nroff and to .FD 0 in troff; these are also the
respective initial defaults.

If a second argument is specified, then whenever a first-level heading
is encountered, automatically-numbered footnotes begin again with 1.
This is most useful with the "section-page" page numbering scheme.
As an example, the input line:

.FD " " 1

9—62 Programmer s Guide: CTIX Supplement

maintains the default formatting style and causes footnotes to be
numbered afresh after each first-level heading.

For long footnotes that continue onto the following page, it is possible
that, if hyphenation is permitted, the last line of the footnote on the
current page will be hyphenated. Except for this case (over which the
user has control by specifying an even argument to .FD), hyphenation
across pages is inhibited by MM.

Footnotes are separated from the body of the text by a short rule.
Footnotes that continue to the next page are separated from the body
of the text by a full-width rule. In troff, footnotes are set in type that
is two points smaller than the point size used in the body of the text.

8.4 Spacing between Footnote Entries

Normally, one blank line (a three-point vertical space) separates the
footnotes when more than one occurs on a page. To change this
spacing, set the register Fs to the desired value. For example:

.nr Fs 2

will cause two blank lines (a six-point vertical space) to occur between
footnotes.

9. Page Headers and Footers

Text that occurs at the top of each page is known as the page header.
Text printed at the bottom of each page is called the page footer.
There can be up to three lines of text associated with the header:
every page, even page only, and odd page only. Thus the page
header may have up to two lines of text: the line that occurs at the
top of every page and the line for the even- or odd-numbered page.
The same is true for the page footer.

This section first describes the default appearance of page headers and
page footers, and then the ways of changing them. We use the term
header (not qualified by even or odd) to mean the line of the page
header that occurs on every page, and similarly for the term footer.

MM — Memorandum Macros 9—63

9.1 Default Headers and Footers

By default, each page has a centered page number as the header
{9.2}. There is no default footer and no even/odd default headers or
footers, except as specified in -C9.9}.

In a memorandum or a released paper, the page header on the first
page is automatically suppressed provided a break does not occur
before .MT is called. The macros and text of -C6.9} and of -C9} as
well as .nr and .ds requests do not cause a break and are permitted
before the .MT macro call.

9.2 Page Header

.PH [arg]

For this and for the .EH, .OH, .PF, .EF, .OF macros, the argument
is of the form:

" 'left-part 'center-part 'right-part ' "

If it is inconvenient to use the apostrophe (') as the delimiter (i.e.,
because it occurs within one of the parts), it may be replaced uni-
formly by any other character. On output, the parts are left-justified,
centered, and right-justified, respectively. See {9.11 > for examples.

The .PH macro specifies the header that is to appear at the top of
every page. The initial value (as stated in {9.1}) is the default cen-
tered page number enclosed by hyphens. The page number contained
in the P register is an Arabic number. The format of the number
may be changed by the .af request.

If debug mode is set using the flag - r D l on the command line {2.4},
additional information, printed at the top left of each page, is
included in the default header. This consists of the SCCSl10! Release
and Level of MM (thus identifying the current version {12.3}), fol-
lowed by the current line number within the current input file.

9—64 Programmer s Guide: CTIX Supplement

9.3 Even-Page Header

.EH [arg]

The . E H macro supplies a line to be printed at the top of each even-
numbered page, immediately following the header. The initial value
is a blank line.

9.4 Odd-Page Header

•OH [arg]

This macro is the same as .EH, except that it applies to odd-
numbered pages.

9.5 Page Footer

.PF [arg]

The .PF macro specifies the line that is to appear at the bottom of
each page. Its initial value is a blank line. If the -rCn flag is speci-
fied on the command line {2.4}, the type of copy follows the footer
on a separate line. In particular, if - rC3 or - rC4 (DRAFT) is speci-
fied, then, in addition, the footer is initialized to contain the date
{6.7.1}, instead of being a blank line.

9.6 Even-Page Footer

•EF [arg]

The .EF macro supplies a line to be printed at the bottom of each
even-numbered page, immediately preceding the footer. The initial
value is a blank line.

MM — Memorandum Macros 9—65

9.7 Odd-Page Footer

.OF [arg]

This macro is the same as .EF, except that it applies to odd-
numbered pages.

9.8 Footer on the First Page

By default, the footer is a blank line. If, in the input text, one speci-
fies .PF and/or .OF before the end of the first page of the document,
then these lines will appear at the bottom of the first page.

The header (whatever its contents) replaces the footer on the first
page only if the - r N l flag is specified on the command line {2.4}.

9.9 Default Header and Footer with "Section-Page"
Numbering

Pages can be numbered sequentially within sections {4.5}. To obtain
this numbering style, specify - r N 3 or - r N 5 on the command line. In
this case, the default footer is a centered "section-page" number,
e.g. 7-2, and the default page header is blank.

9.10 Use of Strings and Registers in Header and
Footer Macros

String and register names may be placed in the arguments to the
header and footer macros. If the value of the string or register is to
be computed when the respective header or footer is printed, the invo-
cation must be escaped by four (4) backslashes. This is because the
string or register invocation will be processed three times:

• as the argument to the header or footer macro;

• in a formatting request within the header or footer macro;

• in a .tl request during header or footer processing.

9—66 Programmer s Guide: CTIX Supplement

For example, the page number register P must be escaped with four
backslashes in order to specify a header in which the page number is
to be printed at the right margin, e.g.:

.PH " ' " P a g e W W n P ' "

creates a right-justified header containing the word "Page" followed
by the page number. Similarly, to specify a footer with the "section-
page" style, one specifies (see {4.2.2.5} for meaning of HI):

.PF " " ' - \ \ \ \ n (H l - \ \ \ \ n P - ' "

As another example, suppose that the user arranges for the string a]
to contain the current section heading which is to be printed at the
bottom of each page. The .PF macro call would then be:

.PF " " \ \ \ \ * (a] " "

If only one or two backslashes were used, the footer would print a
constant value for a], namely, its value when the .PF appeared in the
input text.

9.11 Header and Footer Example

The following sequence specifies blank lines for the header and footer
lines, page numbers on the outside edge of each page (i.e., top left
margin of even pages and top right margin of odd pages), and "Revi-
sion 3" on the top inside margin of each page:

.PH " "
p p It tl

.EH " ' W W n P " R e v i s i o n 3'

.OH "'Revision 3 " W W n P '

9.12 Generalized Top-of-Page Processing

NOTE

This section is intended only for users accustomed to writing
formatter macros.

MM — Memorandum Macros 9—67

During header processing, MM invokes two user-definable macros.
One, the .TP macro, is invoked in the environment (see .ev
request'2!) 0f the header; the other, .PX, is a user-exit macro that is
invoked (without arguments) when the normal environment has been
restored, and with "no-space" mode already in effect.

The effective initial definition of .TP (after the first page of a docu-
ment) is:

.de TP
'sp 3
.tl \ \ * (} t
.if e 'tl \ \ * (} e
.if o 'tl \ \ * (> o
'sp 2

The string >f contains the header, the string }<? contains the even-
page header, and the string >o contains the odd-page header, as
defined by the .PH, .EH, and .OH macros, respectively. To obtain
more specialized page titles, the user may redefine the .TP macro to
cause any desired header processing {12.5}. Note that formatting
done within the .TP macro is processed in an environment different
from that of the body.

For example, to obtain a page header that includes three centered
lines of data, say, a document's number, issue date, and revision
date, one could define .TP as follows:

.de TP

.sp

.ce 3
777-888-999
Iss. 2, A U G 1977
Rev. 7, SEP 1977
.sp

The .PX macro may be used to provide text that is to appear at the
top of each page after the normal header and that may have tab stops
to align it with columns of text in the body of the document.

9—68 Programmer s Guide: CTIX Supplement

9.13 Generalized Bottom-of-Page Processing

.BS
zero or more lines of text
.BE

Lines of text that are specified between the .BS (bottom-block start)
and .BE (bottom-block end) macros will be printed at the bottom of
each page,18 after the footnotes (if any), but before the page footer.
This block of text is removed by specifying an empty block, i.e.:

.BS

.BE

9.14 Top and Bottom Margins

.VM [top] [bottom]

.VM (Vertical Margin) allows the user to specify extra space at the
top and bottom of the page. This space precedes the page header and
follows the page footer. .VM takes two unsealed arguments that are
treated as v's. For example:

.VM 10 15

adds 10 blank lines to the default top of page margin, and 15 blank
lines to the default bottom of page margin. Both arguments must be
positive (default spacing at the top of the page may be decreased by
redefining .TP).

18. The bot tom block will appear on the table of contents pages and the cover
sheet for Memorandum for File, but not on the Technical Memorandum or
released-paper cover sheets.

MM — Memorandum Macros 9—69

9.15 Proprietary Markings

.PM [code]

.PM, for Proprietary Marking, appends to the page footer a
PRIVATE, NOTICE, BELL LABORATORIES PROPRIETARY, or
BELL LABORATORIES RESTRICTED disclaimer. The code may
be:

Code Meaning
none turn off previous disclaimer, if any
P PRIVATE
N NOTICE
BP BELL LABORATORIES PROPRIETARY
BR BELL LABORATORIES RESTRICTED

The disclaimers are in a form approved for use by the Bell System.

9.16 Private Documents

.nr Pv value

The word "PRIVATE"' may be printed centered and underlined on
the second line of a document (preceding the page header). This is
done by setting the Pv register:

Value Meaning
0 do not print PRIVATE (default)
1 PRIVATE on first page only
2 PRIVATE on all pages

If Pv is 2, the user definable .TP may not be used because .TP is
used by MM to print PRIVATE on all pages except the first page of a
memorandum on which .TP is not invoked.

9—70 Programmer s Guide: CTIX Supplement

10. Table of Contents and Cover Sheet

The table of contents and the cover sheet for a document are pro-
duced by invoking the .TC and .CS macros, respectively.

NOTE

This section will refer to cover sheets for Technical
Memoranda and released papers only. The mechanism for
producing a Memorandum for File cover sheet was discussed
earlier {6.4}.

These macros should normally appear only once at the end of the
document, after the Signature Block {6.11.1} and Notations
{6.11.2} macros. They may occur in either order.

The table of contents is produced at the end of the document because
the entire document must be processed before the table of contents
can be generated. Similarly, the cover sheet is often not needed, and
is therefore produced at the end.

10.1 Table of Contents

.TC [slevel] [spacing] [tlevel] [tab] [hdl] [hd2] [hd3] [hd4] [hd5]

The .TC macro generates a table of contents containing the headings
that were saved for the table of contents as determined by the value
of the CI register {4.4}. The arguments to .TC control the spacing
before each entry, the placement of the associated page number, and
additional text on the first page of the table of contents before the
word "CONTENTS."

Spacing before each entry is controlled by the first two arguments;
headings whose level is less than or equal to slevel will have spacing
blank lines (halves of a vertical space) before them. Both slevel and
spacing default to 1. This means that first-level headings are pre-
ceded by one blank line ('a a vertical space). Note that slevel does not
control what levels of heading have been saved; the saving of headings
is the function of the CI register {4.4}.

MM — Memorandum Macros 9—71

The third and fourth arguments control the placement of the page
number for each heading. The page numbers can be justified at the
right margin with either blanks or dots ("leaders") separating the
heading text from the page number, or the page numbers can follow
the heading text. For headings whose level is less than or equal to
tlevel (default 2), the page numbers are justified at the right margin.
In this case, the value of tab determines the character used to
separate the heading text from the page number. If tab is 0 (the
default value), dots (i.e., leaders) are used; if tab is greater than 0,
spaces are used. For headings whose level is greater than tlevel, the
page numbers are separated from the heading text by two spaces (i.e.,
they are "ragged right").

All additional arguments (e.g., headl, head2, etc.), if any, are hor-
izontally centered on the page, and precede the actual table of con-
tents itself.

If the .TC macro is invoked with at most four arguments, then the
user-exit macro .TX is invoked (without arguments) before the word
"CONTENTS" is printed; or the user-exit macro .TY is invoked and
the word "CONTENTS" is not printed. By defining .TX or .TY and
invoking .TC with at most four arguments, the user can specify what
needs to be done at the top of the (first) page of the table of contents.
For example, the following input:

.de TX

.ce 2
Special Application
Message Transmission
.sp 2
.in +10n
Approved: \ l ' 3 i '
.in
.sp

.TC

yields:

9—72 Programmer s Guide: CTIX Supplement

Special Application
Message Transmission

Approved:

CONTENTS

If this macro were defined as .TY rather than .TX, the word "CON-
TENTS" would not appear. Defining .TY as an empty macro will
suppress "CONTENTS" with no replacement:

.de TY

By default, the first level headings will appear in the table of contents
at the left margin. Subsequent levels will be aligned with the text of
headings at the preceding level. These indentations may be changed
by defining the Ci string which takes a maximum of seven arguments
corresponding to the heading levels. It must be given at least as
many arguments as are set by the CI register {4.4}. The arguments
must be scaled. For example, with C/=5,

.ds Ci .25i .5i .751 li li

or

.ds Ci 0 2n 4n 6n 8n

Two other registers are available to modify the format of the table of
contents, Oc and Cp. By default, table of contents pages will have
lower-case Roman numeral page numbering. If the Oc register is set
to 1, the .TC macro will not print any page number but will instead
reset the P register to 1. It is the user's responsibility to give an
appropriate page footer to place the page number. Ordinarily the
same .PF used in the body of the document will be adequate.

The List of Figures, Tables, etc. pages will be produced separately
unless Cp is set to 1 which causes these lists to appear on the same
page as the table of contents.

MM — Memorandum Macros 9—73

10.2 Cover Sheet

.CS [pages] [other] [total] [figs] [tbls] [refs]

The .CS macro generates a cover sheet in either the released paper or
Technical Memorandum style (see -C6.4} for details of the Memoran-
dum for File cover sheet). All the other information for the cover
sheet is obtained from the data given before the .MT macro call
•C6.9}. If the Technical Memorandum style is used, the .CS macro
generates the "Cover Sheet for Technical Memorandum." The data
that appear in the lower left corner of the Technical Memorandum
cover sheet'9! (the counts of: pages of text, other pages, total pages,
figures, tables, and references) are generated automatically (0 is used
for the count of "other pages"). These values may be changed by
supplying the corresponding arguments to the .CS macro. If the
released-paper style is used, all arguments to .CS are ignored.

11. References

There are two macros that delimit the text of references, a string used
to automatically number the references, and an optional macro to
produce reference pages within the document.

11.1 Automatic Numbering of References

Automatically numbered references may be obtained by typing * (Rf
(i.e., invoking the string R f) immediately after the text to be refer-
enced. This places the next sequential reference number (in a smaller
point size) enclosed in brackets a half-line above the text to be refer-
enced, as illustrated throughout this document. The reference count
is kept in the number register Rf.

9—74 Programmer s Guide: CTIX Supplement

11.2 Delimiting Reference Text

The .RS and .RF macros are used to delimit the text of each refer-
ence.

A line of text to be referenced*(Rf.
.RS [string-name]
reference text
.RF

11.3 Subsequent References

.RS takes one argument, a string-name. For example:

.RS aA
reference text
.RF

The string aA is assigned the current reference number. It may be
used later in the document, as the string call, *(aA, to reference text
which must be labeled with a prior reference number. The reference
is output enclosed in brackets a half-line above the text to be refer-
enced. No .RS/ .RF pair is needed for subsequent references.

11.4 Reference Page

A reference page, entitled by default "References", will be generated
automatically at the end of the document (before the Table of Con-
tents and the Cover Sheet) and will be listed in the Table of Contents.
This page contains the reference items (i.e., text enclosed within
.RS/.RF pairs). Reference items will be separated by a space (1/2
space) unless the Ls register is set to 0 to suppress this spacing. The
user may change the reference page title by defining the Rp string:

.ds Rp "New Title"

The .RP (Reference Page) macro may be used to produce reference
pages anywhere else within a document (i.e., after each major sec-
tion); .RP is not needed to produce a separate reference page with

MM — Memorandum Macros 9—75

default spacings at the end of the document.

.RP [argl] [arg2]

The two arguments allow the user to control resetting of reference
numbering and page skipping.

argl Meaning
0 reset reference counter (default)
1 do not reset reference counter

arg2 Meaning
0 put on separate page (default)
1 do not cause a following .SK
2 do not cause a preceding .SK
3 no .SK before or after

If no .SK is issued by .RP, then a single blank line will separate the
References from the following (preceding) text. The user may wish
to adjust the spacing. For example, to produce references at the end
of each major section:

.sp 3

.RP 1 2

.H 1 "Next Section"

12. Miscellaneous Features

12.1 Bold, Italic, and Roman Fonts

.B [bold-arg] [previous-font-arg] . . .

.1 [italic-arg] [previous-font-arg] . . .

.R

When called without arguments, .B changes the font to bold and .1
changes to underlining (italic). This condition continues until the
occurrence of a .R, when the (regular) roman font is restored. Thus:

9—76 Programmer s Guide: CTIX Supplement

.1
here is some text.
.R

yields:

here is some text.

If .B or .1 is called with one argument, that argument is printed in
the appropriate font (underlined in nroff for .1). Then the previous
font is restored (underlining is turned off in nroff). If two or more
arguments (maximum 6) are given to a .B or .1, the second argument
is then concatenated to the first with no intervening space (1/12 space
if the first font is italic), but is printed in the previous font; and the
remaining pairs of arguments are similarly alternated. For example:

.1 italic " text " right -justified

produces:

italic text r/g/ir-justified

These macros alternate with the prevailing font at the time they are
invoked. To alternate specific pairs of fonts, the following macros
are available:

.IB .BI .IR .RI .RB .BR

Each takes a maximum of 6 arguments and alternates the arguments
between the specified fonts.

Note that font changes in headings are handled separately
<4.2.2.4.1>.

Anyone using a terminal that cannot underline might wish to insert:

.rm ul

.rm cu

at the beginning of the document to eliminate all underlining.

MM — Memorandum Macros 9—77

12.2 Justification of Right Margin

• SA [arg]

The .SA macro is used to set right-margin justification for the main
body of text. Two justification flags are used: current and default. -
.SA 0 sets both flags to no justification, i.e., it acts like the .na
request. .SA 1 is the inverse: it sets both flags to cause justification,
just like the .ad request. However, calling .SA without an argument
causes the current flag to be copied from the default flag, thus per-
forming either a .na or .ad, depending on what the default is. Ini-
tially, both flags are set for no justification in nroff and for justifica-
tion in troff.

In general, the request .na can be used to ensure that justification is
turned off, but .SA should be used to restore justification, rather than
the .ad request. In this way, justification or lack thereof for the
remainder of the text is specified by inserting .SA 0 or .SA 1 once at
the beginning of the document.

12.3 SCCS Release Identification

The string RE contains the SCCS'10! Release and Level of the current
version of MM. For example, typing:

This is version \ \ * (R E of the macros.

produces:

This is version 15.130 of the macros.

This information is useful in analyzing suspected bugs in MM. The
easiest way to have this number appear in your output is to specify
- r D l -C2.4> on the command line, which causes the string RE to be
output as part of the page header -C9.2}.

9—78 Programmer s Guide: CTIX Supplement

12.4 Two-Column Output

MM can print two columns on a page:

,2C
text and formatting requests (except another .20)
.1C

The .2C macro begins two-column processing which continues until a
.1C macro is encountered. In two-column processing, each physical
page is thought of as containing two columnar "pages" of equal (but
smaller) "page" width. Page headers and footers are not affected by
two-column processing. The .2C macro does not "balance" two-
column output.

It is possible to have full-page width footnotes and displays when in
two column mode, although the default action is for footnotes and
displays to be narrow in two column mode and wide in one column
mode. Footnote and display width is controlled by a macro, .WC
(Width Control), which takes the following arguments:

arg Meaning
N Normal default mode (—WF, —FF, —WD, FB)

WF Wide Footnotes always (even in two column mode)
— W F DEFAULT: turn off WF (footnotes follow column mode,

wide in 1C mode, narrow in 2C mode, unless FF is set)
FF First Footnote; all footnotes have the same width as the

first footnote encountered for that page
— F F DEFAULT: turn off FF (footnote style follows the settings

of WF or —WF)
WD Wide Displays always (even in two column mode)

— W D DEFAULT: Displays follow whichever column mode is in
effect when the display is encountered

FB DEFAULT: Floating displays cause a break when output
on the current page

—FB Floating displays on current page do not cause a break

For example: " .WC WD F F " will cause all displays to be wide, and
all footnotes on a page to be the same width, while " .WC N" will
reinstate the default actions. If conflicting settings are given to .WC
the last one is used. That is, " .WC W F — W F " has the effect of
" . W C — W F " .

MM — Memorandum Macros 9—79

12.5 Column Headings for Two-Column Output

NOTE

This section is intended only for users accustomed to writing
formatter macros.

In two-column output, it is sometimes necessary to have headers over
each column, as well as headers over the entire page -C9>. This is
accomplished by redefining the .TP macro -C9.12> to provide header
lines both for the entire page and for each of the columns. For
example:

.de TP

.sp 2

.tl 'Page W \ \ n P ' O V E R A L L "

.tl " T I T L E "

.sp

.nf

.ta 16C 31R 34 50C 65R
le f t -cen te r - r igh t - le f t -cen te r - r igh t (- stands for tab character)
- f i rs t c o l u m n - - - s e c o n d column
.fi
.sp 2

The above example will produce two lines of page header text plus
two lines of headers over each column. The tab stops are for a 65-en
overall line length.

12.6 Vertical Spacing

.SP [lines]

There exist several ways of obtaining vertical spacing, all with dif-
ferent effects: the .sp request spaces the number of lines specified,
unless "no space" (.ns) mode is on, in which case the request is
ignored. This mode is set at the end of a page header to eliminate
spacing by a .sp or .bp request that happens to occur at the top of a
page. This mode can be turned off by the .rs ("restore spacing")
request.

9—80 Programmer s Guide: CTIX Supplement

The .SP macro is used to avoid the accumulation of vertical space by
successive macro calls. Several .SP calls in a row produce not the sum
of their arguments, but their maximum; i.e., the following produces
only 3 blank lines:

.SP 2

.SP 3

.SP

Many MM macros utilize .SP for spacing. For example, " . L E 1"
-C5.3.2> immediately followed by " .P" -C4.1> produces only a single
blank line ('A a vertical space) between the end of the list and the fol-
lowing paragraph. An omitted argument defaults to one blank line
(one vertical space). Negative arguments are not permitted. The
argument must be unsealed but fractional amounts are permitted.
Like .sp, .SP is also inhibited by the .ns request.

12.7 Skipping Pages

.SK [pages]

The .SK macro skips pages, but retains the usual header and footer
processing. If pages is omitted, null, or 0, .SK skips to the top of the
next page unless it is currently at the top of a page, in which case it
does nothing. .SK n skips n pages. That is, .SK always positions the
text that follows it at the top of a page, while .SK 1 always leaves
one page that is blank except for the header and footer.

12.8 Forcing an Odd Page

.OP

This macro is used to ensure that the text following it begins at the
top of an odd-numbered page. If currently at the top of an odd page,
no motion takes place. If currently on an even page, text resumes
printing at the top of the next page. If currently on an odd page (but
not at the top of the page) one blank page is produced, and printing
resumes on the page after that.

MM — Memorandum Macros 9—81

12.9 Setting the Point Size and Vertical Spacing

In troff, the default point size (obtained from the MM register S
-C2.4}) is 10 points, and the vertical spacing is 12 points (i.e., 6 lines
per inch). The prevailing point size and vertical spacing may be
changed by invoking the .S macro:

.S [point size] [vertical spacing]

The mnemonics D (default value), C (current value), and P (previous
value) may be used for both arguments. If an argument is negative,
the current value is decremented by the specified amount; if an argu-
ment is positive, the current value is incremented by the specified
amount; if an argument is unsigned, it is used as the new value; .S
without arguments defaults to P. If the first argument is specified but
the second is not, then D is used for the vertical spacing; the default
value for vertical spacing is always 2 points greater than the current
point size.19 A null (" ") value for either argument defaults to C.
Thus, if n is a numeric value:

If the first argument is greater than 99, the default point size (10
points) is restored. If the second argument is greater than 99, the
default vertical spacing (current point size plus 2 points) is used. For
example:

.S 100 = .S 10 12

.S 14 111 = .S 14 16

The .SM macro allows one to reduce by 1 point the size of a string:

19. Footnotes { 8 } are two points smaller than the body, with an additional three-
point space between footnotes.

.S n n

. S P P

.S C n

. S n C

.S n D

.S C D

. S C C

. S n t i

9—82 Programmer s Guide: CTIX Supplement

.SM stringl [string2] [string3]

If the third argument is omitted, the first argument is made smaller
and is concatenated with the second argument, if the latter is speci-
fied. If all three arguments are present (even if any are null), the
second argument is made smaller and all three arguments are con-
catenated. For example:

.SM X gives X

.SM X Y gives XY

.SM Y X Y gives YXY

.SM UNIX gives UNIX

.SM UNIX) gives UNIX)

.SM (UNIX) gives (UNIX)

.SM U NIX " " gives UNIX

12.10 Producing Accents

The following strings may be used to produce accents for letters:

Input Output

Grave accent e \ * - e

Acute accent e \ * ' e

Circumflex o *~ 0

Tilde n \ * ~ n

Cedilla c \ * , 9
Lower-case umlaut u \ * : ii

Upper-case umlaut U \ * ; U

12.11 Inserting Text Interactively

.RD [prompt] [diversion] [string]

.RD (ReaD insertion) allows a user to stop the standard output of a
document and to read text from the standard input until two consecu-
tive new-lines are found. When the new-lines are encountered, nor-
mal output is resumed.

MM — Memorandum Macros 9—83

.RD follows the formatting conventions in effect. Thus, the examples
below assume that the .RD is invoked in no fill mode (.nf).

The first argument is a prompt which will be printed at the terminal.
If no prompt is given, .RD signals the user with a BEL on terminal
output.

The second argument, the name of a diversion, allows the user to save
all the text typed in after the prompt in a macro whose name is that
of the diversion. The third argument, the name of a string, allows
the user to save for later reference the first line following the prompt
in the named string. For example:

.RD Name a A bB

produces:

Name: (user types) J. Jones
16 Elm Rd. ,
Piscataway

The diverted macro .aA will contain:

J. Jones
16 Elm Rd. ,
Piscataway

The string bB (*(bB) contains "J. Jones".

A new-line followed by a control-d (EOF) also allows the user to
resume normal output.

13. Er rors a n d D e b u g g i n g

13.1 Error Terminations

When a macro discovers an error, the following actions occur:

• A break occurs.

• To avoid confusion regarding the location of the error, the for-
matter output buffer (which may contain some text) is printed.

• A short message is printed giving the name of the macro that
found the error, the type of error, and the approximate line

9—84 Programmer s Guide: CTIX Supplement

number (in the current input file) of the last processed input
line. (All the error messages are explained in Appendix D.)

• Processing terminates, unless the register D -C2.4> has a posi-
tive value. In the latter case, processing continues even
though the output is guaranteed to be deranged from that
point on.

NOTE

The error message is printed by writing it directly to the user's
terminal. If an output filter, such as 300(1), 450(1), or hp(I)
is being used to post-process nroff output, the message may be
garbled by being intermixed with text held in that filter's out-
put buffer.

If any of cw(l), eqn(l)/neqn, and tbl(l) are being used, and if
the —olist option of the formatter causes the last page of the
document not to be printed, a harmless "broken pipe" message
may result.

13.2 Disappearance of Output

This usually occurs because of an unclosed diversion (e.g., missing
.DE or .FE). Fortunately, the macros that use diversions are careful
about it, and they check to make sure that illegal nestings do not
occur. If any message is issued about a missing .DE or .FE, the
appropriate action is to search backwards from the termination point
looking for the corresponding .DF, .DS, or .FS.

The following command:

grep - n " ~ \ . [EDFRT][EFNQS]" files . . .

prints all the .DF, .DS, .DE, .EQ, .EN, .FS, .FE, .RS, .RF, .TS,
and .TE macros found in files ..., each preceded by its file name and
the line number in that file. This listing can be used to check for ille-
gal nesting and/or omission of these macros.

MM — Memorandum Macros 9—85

14. Extending and Modifying the Macros

14.1 Naming Conventions

In this section, the following conventions are used to describe names:

n: digit
a: lower-case letter
A: upper-case letter
x: n, a, or A: i.e., any letter or digit (any alphanumeric character)
s: special character (any non-alphanumeric character)

All other characters are literals (i.e., stand for themselves).

Note that request, macro, and string names are kept by the formatters
in a single internal table, so that there must be no duplication among
such names. Number register names are kept in a separate table.

14.1.1 Names Used by Formatters

requests: aa (most common)
an (only one, currently: c2)

registers: aa (normal)
,x (normal)
.s (only one, currently: .$)
a. (only one, currently: c.)
% (page number)

14.1.2 Names Used by MM

macros A, A A , Aa (accessible to users; e.g., macros P and
and HU, strings F, BU, and Lt)
strings: nA (accessible to users; only two, currently: 1C and 2C)

aA (accessible to users; only one, currently: nP)
s (accessible to users; only the seven accents, currently
-C12.10})
)x, >x,]x, >x, ?x (internal)

9—86 Programmer s Guide: CTIX Supplement

registers: An, Aa (accessible to users; e.g., H I , Fg)
A (accessible to users; meant to be set on the command
line; e.g., C)
:x, ;x, #x, ?x, !x (internal)

14.1.3 Names Used by CW, EQN/NEQN, and TBL

Cw(1), the constant-width font preprocessor for troff, uses the follow-
ing five macro names: .CD, .CN, .CP, .CW, and .PC; it also uses
the number register names cE and cW. The equation preprocessors,
eqn(1) and neqn use registers and string names of the form nn. The
table preprocessor, tbl(1), uses T&, T# , and TW, and names of the
form:

a - a+ a | nn na #a #s

14.1.4 User-Definable Names.

Given the above, what is left for user extensions? To avoid "colli-
sions" with already used names, use names that consist either of a
single lower-case letter, or of a lower-case letter followed by a charac-
ter other than a lower-case letter (remembering, however, that the
names .c2 and .nP are already used). The following is a possible user
naming convention:

macros: aA (e.g., bG, kW)
strings: as (e.g., c), f], p>)
registers: a (e.g., f, t)

14.2 Sample Extensions

14.2.1 Appendix Headings

The following is a way of generating and numbering appendix head-
ings:

MM — Memorandum Macros 9—87

.nr Hu 1

.nr a 0

.de a l l

.nr a +1

.nr PO

.PH "" 'Append ix \ \ n a - \ \ \ \ n P '

.SK

.HU " \ \ $ 1 "

After the above initialization and definition, each call of the form
" . aH " t i t l e " " begins a new page (with the page header changed to
"Appendix a-n") and generates an unnumbered heading of title,
which, if desired, can be saved for the table of contents. Those who
wish apppendix titles to be centered must, in addition, set the register
He to 1 {4.2.2.3}.

14.2.2 Hanging Indent with Tabs

The following example illustrates the use of the hanging-indent
feature of variable-item lists {5.3.3.6}. First, a user-defined macro
is built to accept four arguments that make up the mark. In the out-
put, each argument is to be separated from the previous one by a tab;
tab settings are defined later. Since the first argument may begin
with a period or apostrophe, the " \ & " is used so that the formatter
will not interpret such a line as a formatter request or macro call.20

The " \ t " is translated by the formatter into a tab. The " \ c " is used
to concatenate the input text that follows the macro call to the line
built by the macro. The macro and an example of its use are:

20. The two-character sequence " \ & " is understood by the formatters to be a
"zero-wid th" space, i .e . , it causes no output characters to appear , but it
removes the special meaning of a leading period or apostrophe.

9—88 Programmer s Guide: CTIX Supplement

.de aX

.LI
\ & \ \ $ l \ t \ \ $ 2 \ t \ \ $ 3 \ t \ \ $ 4 \ t \ c

.ta 7n 15n 25n 30n

.VL 30

.aX .nh off \ - no
No hyphenation.
Automatic hyphenation is turned off.
Words containing hyphens
(e.g., mother-in-law) may still be split across lines.
.aX ,hy on \ - no
Hyphenate.
Automatic hyphenation is turned on.
.aX .hc\nc none none no (• stands for a space)
Hyphenation indicator character is set to "c" or removed.
During text processing the indicator is suppressed
and will not appear in the output.
Prepending the indicator to a word has the effect
of preventing hyphenation of that word.
.LE

The resulting output is:

.nh off — no No hyphenation. Automatic
hyphenation is turned off. Words
containing hyphens (e.g., mother-
in-law) may still be split across
lines.

.hy on no Hyphenate. Automatic hyphena-
tion is turned on.

.he c none none no Hyphenation indicator character is
set to "c" or removed. During
text processing the indicator is
suppressed and will not appear in
the output. Prepending the indi-
cator to a word has the effect of
preventing hyphenation of that
word.

MM — Memorandum Macros 9—89

15. Conclusion

The following are the qualities that we have tried to emphasize in
MM, in approximate order of importance:

• Robustness in the face of error—A user need not be an
nroff I troff expert to use these macros. When the input is
incorrect, either the macros attempt to make a reasonable
interpretation of the error, or a message describing the error is
produced. We have tried to minimize the possibility that a
user would get cryptic system messages or strange output as a
result of simple errors.

• Ease of use for simple documents—It is not necessary to write
complex sequences of commands to produce simple documents.
Reasonable default values are provided, where at all possible.

• Parameterization—There are many different preferences in the
area of document styling. Many parameters are provided so
that users can adapt the output to their respective needs over a
wide range of styles.

• Extension by moderately expert users—We have made a strong
effort to use mnemonic naming conventions and consistent
techniques in the construction of the macros. Naming conven-
tions are given so that a user can add new macros or redefine
existing ones, if necessary.

• Device independence—The most common use of MM is to print
documents on hard-copy typewriter terminals, using the nroff
formatter. The macros can lie used conveniently with both 10-
and 12-pitch terminals. In addition, output can be scanned
with an appropriate CRT terminal. The macros have been
constructed to allow compatibility with troff, so that output can
be produced both on typewriter-like terminals and on a photo-
typesetter.

• Minimization of input—The design of the macros attempts to
minimize repetitive typing. For example, if a user wants to
have a blank line after all first- or second-level headings, he or
she need only set a specific parameter once at the beginning of
a document, rather than add a blank line after each such head-
ing.

• Decoupling of input format from output style—There is but one
way to prepare the input text, although the user may obtain a
number of output styles by setting a few global flags. For

9—90 Programmer s Guide: CTIX Supplement

example, the . H macro is used for all numbered headings, yet
the actual output style of these headings may be made to vary
from document to document or, for that matter, within a sin-
gle document.

Acknowledgements

We are indebted to T. A. Dolotta for his continuing guidance during
the development of MM. We also thank our many users who have
provided much valuable feedback, both about the macros and about
this manual. Many of the features of MM are patterned after similar
features in a number of earlier macro packages, and, in particular,
after one implemented by M. E. Lesk. Finally, because MM often
approaches the limits of what is possible with the text formatters, dur-
ing the implementation of MM we have generated atypical require-
ments and encountered unusual problems; we thank the late J. F.
Ossanna for his willingness to add new features to the formatters and
to invent ways of having the formatters perform unusual but desired
actions.

R E F E R E N C E S

1. Dolotta, T. A . , Olsson, S. B., and Petruccelli, A. G. (eds.).
UNIX User's Manual-Release 3.0, Bell Laboratories (June 1980).

2. Ossanna , J . F . NROFF/TROFF User's Manual. Bell Labora to r i e s ,
October 1976.

3. Kernighan, B. W. UNIX for Beginners. Bell Laboratories,
October 1974.

4. Kernighan, B. W. A Tutorial Introduction to the UNIX Text Edi-
tor. Bell Laboratories, October 1974.

5. Kernighan, B. W. A TROFF Tutorial. Bell Laboratories, August
1976.

6. Kernighan, B. W. and Cherry, L. L. Typesetting Mathematics—
User's Guide (Second Edition). Bell Laboratories, August 1978.

7. Lesk, M. TBL—A Program to Format Tables. Bell Laboratories,
September 1977.

MM — Memorandum Macros 9—91

8. Smith, D. W. and Piskorik, E. M. Typing Documents with MM.
Bell Laboratories, April 1980.

9. Bell Laboratories Methods and Systems Department. Office
Guide. Unpublished Memorandum, Bell Laboratories, April
1972 (as revised).

10. Bonanni, L. E. and Salemi, C. A. The Source Code Control Sys-
tem User's Guide. Bell Laboratories, April 1979.

Appendix A: User-defined List Structures

NOTE

This appendix is intended only for users accustomed to writing
formatter macros.

If a large document requires complex list structures, it is useful to be
able to define the appearance for each list level only once, instead of
having to define it at the beginning of each list. This permits con-
sistency of style in a large document. For example, a generalized
list-initialization macro might be defined in such a way that what it
does depends on the list-nesting level in effect at the time the macro
is called. Suppose that levels 1 through 5 of lists are to have the fol-
lowing appearance:

A.

[1]

a)
+

The following code defines a macro (.aL) that always begins a new
list and determines the type of list according to the current list level.
To understand it, you should know that the number register :g is
used by the MM list macros to determine the current list level; it is 0
if there is no currently active list. Each call to a list-initialization
macro increments :g, and each .LE call decrements it.

9—92 Programmer s Guide: CTIX Supplement

.de aL
' V register g is used as a local temporary to save :g

before it is changed below
.nr g \ \ n (: g
.if \ \ n g = 0 .AL A \ " give me an A.
.if \ \ n g = l .LB \ \ n (L i 0 1 4 \ " give me a [1]
.if \ \ n g = 2 .BL \ " give me a bullet
.if \ \ n g = 3 .LB \ \ n (L i 0 2 2 a \ " give me an a)
.if \ \ n g = 4 .ML + \ " give me a +

This macro can be used (in conjunction with .LI and .LE) instead of
.AL, .RL, .BL, .LB, and .ML. For example, the following input:

.aL

.LI
first line.
.aL
.LI
second line.
.LE
.LI
third line.
.LE

will yield:

A. first line.

[1] second line.

B. third line.

There is another approach to lists that is similar to the .H mechan-
ism. The list-initialization, as well as the .LI and the .LE macros are
all included in a single macro. That macro (called .bL below)
requires an argument to tell it what level of item is required; it
adjusts the list level by either beginning a new list or setting the list
level back to a previous value, and then issues a .LI macro call to
produce the item:

MM — Memorandum Macros 9—93

.de bL

.ie \ \ n (. $.nr g \ \ $ 1 \ " if there is an argument, that is the level

.el .nr g \ \ n (: g \ " if no argument, use current level

.if \ \ n g - \ \ n (: g > l .)D " **ILLEGAL SKIPPING OF LEVEL"
\ " increasing level by more than 1
.if \ \ n g > \ \ n (: g \-C.aL W n g - l \ " if g > :g, begin new list
. nr g \ \ n (: g \ > \ " and reset g to current level (.aL changes g)
.if \ \ n (: g > \ \ n g .LC \ \ n g \ " if :g > g, prune back to correct level

if :g = g, stay within current list
.LI \ " in all cases, get out an item

For .bL to work, the previous definition of the .aL macro must be
changed to obtain the value of g from its argument, rather than from
:g. Invoking .bL without arguments causes it to stay at the current
list level. The MM .LC macro (List Clear) removes list descriptions
until the level is less than or equal to that of its argument. For exam-
ple, the ,H macro includes the call " .LC 0". If text is to be resumed
at the end of a list, insert the call " .LC 0" to clear out the lists com-
pletely. The example below illustrates the relatively small amount of
input needed by this approach. The input text:

The quick brown fox jumped over the lazy dog's back.
.bL 1
first line.
.bL 2
second line.
.bL 1
third line.
.bL
fourth line.
.LC 0
fifth line.

yields:

The quick brown fox jumped over the lazy dog's back.

A. first line.

[1] second line.

B. third line.

C. fourth line,
fifth line.

9—94 Programmer s Guide: CTIX Supplement

Appendix B: Sample Footnotes

The following example illustrates several footnote styles and both
labeled and automatically-numbered footnotes. The actual input for
the immediately following text and for the footnotes at the bottom of
this page is shown on the following page:

With the footnote style set to the nroff default, we process a footnote1

followed by another one.***** Using the .FD macro, we changed
the footnote style to hyphenate, right margin justification, indent, and
left justify the label. Here is a footnote,2 and another.! The foot-
note style is now set, again via the .FD macro, to no hyphenation, no
right margin justification, no indentation, and with the label left-
justified. Here comes the final one.3

1. This is the first footnote text example (. F D 10). This is the default style for
nroff. The right margin is not justified. Hyphenat ion is not permit ted. The
text is indented, and the automatically generated label is n'g/i;-justified in the
text-indent space.

***** This is the second footnote text example (. F D 10). This is also the default
nroff style but with a long footnote label provided by the user.

2. This is the third footnote example (. F D 1). The right margin is justified, the
footnote text is indented, the label is /f / i- justif ied in the text-indent space.
Although not necessarily illustrated by this example, hyphenation is permit ted.
The quick brown fox jumped over the lazy dog's back.

t This is the fourth footnote example (. F D 1). The style is the same as the third
footnote.

3. This is the fifth footnote example (. F D 6). The right margin is not justified,
hyphenation is not permit ted, the footnote text is not indented, and the label is
placed at the beginning of the first line. The quick brown fox jumped over the
lazy dog's back. Now is the time for all good men to come to the aid of their
country.

MM — Memorandum Macros 9—95

.FD 10
With the footnote style set to the
.1 nroff
default, wc proccss a foo tno te *F
.FS
This is the first footnote text example (.FD 10). This is the default style for
.1 nroff.
The right margin is
.1 not
justified. Hyphenation is
.1 not
permitted. The text is indented, and the automatically generated label is
.1 right -justified
in the text-indent spacc.
.FE
followed by another onc.*****\Q (n stands for a spacc)
,FS *****
This is the sccond footnote text example (.FD 10).
This is also the default
.1 nroff
style but with a long footnote label provided by the user.
.FE
.FD 1
Using the .FD macro, we changcd the footnote style to
hyphenate, right margin justification, indent, and left justify the label.
Here is a footnote , *F
.FS
This is the third footnote example (.FD 1).
The right margin is justified, the footnote text is indented, the label is
.1 left -justified
in the text-indent space.
Although not necessarily illustrated by this example, hyphenation is permitted.
The quick brown fox jumped over the lazy dog's back.
.FE
and ano the r . \ (dg \G
•FS \ (d g
This is the fourth footnote example (.FD 1).
The style is the same as the third footnote.
.FE
.FD 6
The footnote style is now set. again via the .FD macro, to no hyphenation, no right margin
justification, no indentation, and with the label left-justified.
Flcrc comes the final o n c . \ * F \ n
.FS
This is the fifth footnote example (.FD 6). The right margin is
.1 not
justified, hyphenation is
.1 not
permitted, the footnote text is
.1 not
indented, and the label is placed at the beginning of the first line.
The quick brown fox jumped over the lazy dog's back.
Now is the time for all good men to comc to the aid of their country.
• FE

9—96 Programmer s Guide: CTIX Supplement

Appendix C: Sample Letter

Input:

, N D " M a y 31, 1979"
. T L 334455
Out-of-Hours Course Description
. A U " D . W . Stevenson" D W S PY 9876 5432 1X-123
. M T 0
• DS
J. M. Jones:
. D E
.P
Please use the following description for the Out-of-Hours course
.1
Document Preparat ion on the U N I X *
• R
.FS *
U N I X is a t rademark of Bell Laboratories.
. F E
.1 "Time-Shar ing System:"
.P
The course is intended for clerks, typists, and others who intend to use the
U N I X system for prepar ing documentat ion.
The course will cover such topics as:
• V L 18
.LI Environment :
utilizing a time-sharing computer system;
accessing the system; using appropriate output terminals.
.LI Files:
how text is stored on the system; directories; manipulating files.
.LI 11 Text edit ing:"
how to enter text so that subsequent revisions are easier to make;
how to use the editing system to add, delete, and move lines
of text; how to make corrections.
.LI " Text processing:"
basic concepts; use of general-purpose formatting packages.
• LI "Othe r facilities:"
additional capabilit ies useful to the typist such as the
.1 "spell, d i f f , "
and
•I grep
commands , and a desk-calculator package.
• L E
.SG jrm
.NS
S. P. Lename
H . O. Del
M. Hill
. N E

MM — Memorandum Macros 9—97

Bell Laboratories

subject: Out-of-Hours Course date: May 31, 1979
Description
Case: 334455 from: D. W. Stevenson

PY 9876
IX-123 x5432

J. M. Jones:

Please use the following description for the Out-of-
Hours course %"Document Preparation on the UNIX* Time-
Sharing System":
The course is intended for clerks, typists, and others
who intend to use the UNIX system for preparing docu-
mentation . The course will cover such topics as:
Environment:

Files:

Text editing:

Text processing:

Other facilities:

utilizing a time-sharing computer
system; accessing the system; using
appropriate output terminals.
how text is stored on the system;
directories; manipulating files.

how to enter text so that subsequent
revisions are easier to make; how to
use the editing system to add,
delete, and move lines of text; how
to make corrections.
basic concepts; use of general-
purpose formatting packages.
additional capabilities useful to
the typist such as the spell, diff .
and grep commands, and a desk-
calculator package.

PY-9876-DWS-jrm

Copy to
S. P. Lename
H. 0. Del
M. Hill

D. W. Stevenson

+ UNIX is a trademark of Bell Laboratories.

9—98 Programmer s Guide: CTIX Supplement

Bell Laboratories

subject: Out -of -Hours Course Description - date: May 31, 1979
Case 334455

from: D. VV. Stevenson
PY 9876
1X-123 x5432

J. M. Jones:

Please use the following description for the Out-of-Hours course Document
Preparation on the UNIX* Time-Sharing System:

The course is intended for clerks, typists, and others who intend to use the
U N I X system for prepar ing documentat ion. The course will cover such
topics as:

Environment : utilizing a time-sharing computer system; accessing the
system; using appropriate output terminals.

on the system; directories; Files: how text is stored
manipulating files.

Text editing: how to enter text so that subsequent revisions are easier
to make; how to use the editing system to add, delete,
and move lines of text; how to make corrections.

Text processing: basic concepts; use of general-purpose formatt ing
packages.

Other facilities: additional capabilities useful to the typist such as the
spell, d i f f , and grep commands, and a desk-calculator
package.

PY-9876-DWS-jrm I). \V. Stevenson

Copy to
S. P. Lename
H. O. Del
M. Hill

* U N I X is a t rademark of Bell Laboratories.

MM — Memorandum Macros 9—99

Appendix D: Error Messages

I. MM Error Messages

An MM error message has a standard part followed by a variable part.
The standard part has the form:

ERROR:(/Ifenatt!e)input line n:

The variable part consists of a descriptive message, usually beginning
with a macro name. The variable parts are listed below in alphabeti-
cal order by macro name, each with a more complete explanation:21

Check TL, AU, AS, A E , MT sequence The correct order of mac-
ros at the start of a
memorandum is shown in
{6.9}. Something has
disturbed this order. If
.AS 2 was used, then the
error message will be
"Check TL, AU, AS,
AE, NS, NE, MT
sequence".

CSxover sheet too long The text of the cover sheet
is too long to fit on one
page. The abstract should
be reduced or the indent
of the abstract should be
decreased {6.4}.

DE:no DS or DF active .DE has been encountered
but there has not been a
previous .DS or .DF to
match it.

DF:illegal inside TL or AS Displays are not allowed
in the title or abstract.

21. This list is set up by " . L B 37 0 2 0 " { 5 . 4 } .

9—100 Programmer s Guide: CTIX Supplement

DF:missing DE

DF:missing F E

DF:too many displays

illegal inside TL or AS

DS:missing DE

DS:missing FE

FE:no FS active

FS:missing DE

FS:missing FE

H:bad arg'.value

.DF occurs within a
display, i.e., a .DE has
been omitted or mistyped.

A display starts inside a
footnote. The likely cause
is the omission (or
misspelling) of a .FE to
end a previous footnote.

More than 26 floating
displays are active at once,
i.e., have been accumu-
lated but not yet output.

Displays are not allowed
in the title or abstract.

.DS occurs within a
display, i.e., a .DE has
been omitted or mistyped.

A display starts inside a
footnote. The likely cause
is the omission (or
misspelling) of a .FE to
end a previous footnote.

.FE has been encountered
with no previous .FS to
match it.

A footnote starts inside a
display, i.e., a .DS or .DF
occurs without a matching
.DE.

A previous .FS was not
matched by a closing .FE,
i.e., an attempt is being
made to begin a footnote
inside another one.

The first argument to .H
must be a single digit from
1 to 7, but value has been
supplied instead.

MM — Memorandum Macros 9—101

H:missing arg

H.missing DE

H:missing FE

HU:missing arg

LB:missing arg(s)

LB:too many nested lists

LE:mismatched

LEno lists active

ML:missing arg

ND:missing arg

RF:no RS active

RP:missing RF

.H needs at least 1 argu-
ment.

A heading macro (.H or
.HU) occurs inside a
display.

A heading macro (.H or
.HU) occurs inside a foot-
note.

.HU needs 1 argument.

.LB requires at least 4
arguments.

Another list was started
when there were already 6
active lists.

.LE has occurred without
a previous .LB or other
list-initialization macro
{5.3.3}. Although this is
not a fatal error, the mes-
sage is issued because
there almost certainly
exists some problem in the
preceding text.

.LI occurs without a
preceding list-initialization
macro. The latter has
probably been omitted, or
has been separated from
the .LI by an intervening
.H or .HU.

.ML requires at least 1
argument.

.ND requires 1 argument.

. R F has been encountered
with no previous .RS to
match it.

A previous .RS was not
matched by a closing .RF.

9—102 Programmer s Guide: CTIX Supplement

RS:missing R F

S:bad arg:value

SA:bad arg:value

SG:missing DE

SG .missing FE

SG:no authors

VL:missing arg

WC:unknown option

A previous .RS was not
matched by a closing .RF.

The incorrect argument
value has been given for
.S, see < 12.9>.

The argument to .SA (if
any) must be either 0 or 1.
The incorrect argument is
shown as value.

.SG occurs inside a
display.

.SG occurs inside a foot-
note.

.SG occurs without any
previous .AU macro(s).

.VL requires at least 1
argument.

An incorrect argument has
been given to .WC, see
•C12.4}.

II. Formatter Error Messages

Most messages issued by the formatter are self-explanatory. Those
error messages over which the user has (some) control are listed
below. Any other error messages should be reported to the local
system-support group.

"Cannot do ev" is caused by (a) setting a page width that is negative
or extremely short; (b) setting a page length that is negative or
extremely short; (c) reprocessing a macro package (e.g., per-
forming a .so formatter request on a macro package that was
already requested on the command line); and (d) requesting the
troff—si option on a document that is longer than ten pages.

"Cannot execute fdename " is given by the .! request if it cannot find
the filename.

"Cannot open filename " is issued if one of the files in the list of files
to be processed cannot be opened.

MM — Memorandum Macros 9—103

'Exception word list full" indicates that too many words have been
specified in the hyphenation exception list (via .hw requests).

'Line overflow" means that the output line being generated was too
long for the formatter's line buffer. The excess was discarded.
See the "Word overflow" message below.

'Non-existent font type" means that a request has been made to
mount an unknown font.

'Non-existent macro file" means that the requested macro package
does not exist.

'Non-existent terminal type" means that the terminal options refers
to an unknown terminal type.

'Out of temp file space" means that additional temporary space for
macro definitions, diversions, etc. cannot be allocated. This
message often occurs because of unclosed diversions (missing
.FE or .DE), unclosed macro definitions (e.g., missing " . . ") ,
or a huge table of contents.

'Too many page numbers" is issued when the list of pages specified
to the formatter —o option is too long.

'Too many number registers" means that the pool of number register
names is full. Unneeded registers can be deleted by using the
.rr request.

'Too many string/macro names" is issued when the pool of string and
macro names is full. Unneeded strings and macros can be
deleted using the .rm request.

'Word overflow" means that a word being generated exceeded the
formatter's word buffer. The excess characters were discarded.
A likely cause for this and for the "Line overflow" message
above are very long lines or words generated through the misuse
of \ c or of the .cu request, or very long equations produced by
eqn (\)/neqn.

9—104 Programmer s Guide: CTIX Supplement

Appendix E: Summary of Macros, Strings, and
Number Registers

I. Macros

The following is an alphabetical list of macro names used by MM.
The first line of each item gives the name of the macro, a brief
description, and a reference to the section in which the macro is
described. The second line gives a prototype call of the macro.

Macros marked with an asterisk are not, in general, invoked directly
by the user. Rather, they are "user exits" defined by the user and
called by the MM macros from inside header, footer, or other macros.

1C One-column processing <12.4>
.1C

2C Two-column processing <12.4>
.2C

A E Abstract end <6.4>
. A E

A F Alternate format of "Subject/Date/From" block <6.7.2>
. A F [company-name]

A L Automatically-incremented list start <5.3.3.1 >
.AL [type] [text-indent] [1]

AS Abstract start <6.4>
• AS [arg] [indent]

A T Author's title <6.2>
.AT [title] . . .

A U Author information <6.2>
.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg] [arg]

AV Approval signature <6.11.3>
.AV [name]

B Bold <12.1>
.B [bold-arg] [previous-font-arg] [bold] [prev] [bold] [prev]

BE Bottom Block End <9.13>
.BE

BI Bold/Italic <12.1}
.BI [bold-arg] [italic-arg] [bold] [italic] [bold] [italic]

MM — Memorandum Macros 9—105

BL Bullet list start {5.3.3.2}
.BL [text-indent] [1]

BR Bold/Roman {12.1}
.BR [bold-arg] [Roman-arg] [bold] [Roman] [bold]
[Roman]

BS Bottom Block Start {9.13}
.BS

CS Cover sheet {10.2}
.CS [pages] [other] [total] [figs] [tbls] [refs]

DE Display end {7 .1}
.DE

D F Display floating start {7 .2}
.DF [format] [fill] [right-indent]

DL Dash list start {5.3.3.3}
.DL [text-indent] [1]

DS Display static start {7 .1}
.DS [format] [fill] [right-indent]

EC Equation caption {7.5}
.EC [title] [override] [flag]

E F Even-page footer {9 .6}
. E F [arg]

E H Even-page header {9 .3}
. E H [arg]

EN End equation display {7.4}
.EN

E Q Equation display start {7 .4}
.EQ [label]

EX Exhibit caption {7.5}
.EX [title] [override] [flag]

FC Formal closing {6.11}
.FC [closing]

FD Footnote default format {8 .3}
•FD [arg] [1]

FE Footnote end {8.2}
.FE

9—106 Programmer s Guide: CTIX Supplement

FG Figure title <7.5}
.FG [title] [override] [flag]

FS Footnote start <8.2}
.FS [label]

H Heading—numbered -C4.2>
.H level [heading-text] [heading-suffix]

HC Hyphenation character -C3.4>
.HC [hyphenation-indicator]

H M Heading mark style (Arabic or Roman numerals, or letters)
<4.2.2.5}
.HM [argl] . . . [arg7]

H U Heading—unnumbered <4.3>
.HU heading-text

HX * Heading user exit X (before printing heading) <4.6>
.HX dlevel rlevel heading-text

HY * Heading user exit Y (before printing heading) <4.6>
.HY dlevel rlevel heading-text

H Z * Heading user exit Z (after printing heading) <4.6>
. H Z dlevel rlevel heading-text

I Italic (underline in nroff) <12.1 >
.1 [italic-arg] [previous-font-arg] [italic] [prev] [italic] [prev]

IB Italic/Bold <12.1}
.IB [italic-arg] [bold-arg] [italic] [bold] [italic] [bold]

IR Italic/Roman <12.1}
.IR [italic-arg] [Roman-arg] [italic] [Roman] [italic]
[Roman]

LB List begin <5.4}
.LB text-indent mark-indent pad type [mark] [Li-space]
[LB-space]

LC List-status clear < Appendix A }
.LC [list-level]

L E List end <5.3.2}
.LE [1]

LI List item <5.3.1}
.LI [mark] [1]

MM — Memorandum Macros 9—107

ML Marked list start {5.3.3.4}
.ML mark [text-indent] [1]

MT Memorandum type {6.6}
.MT [type] [addressee] or .MT [4] [1]

ND New date {6.7.1}
.ND new-date

NE Notation end {6.11.2}
.NE

NS Notation start {6.11.2}
.NS [arg]

nP Double-line indented paragraphs {4.1}
.nP

OF Odd-page footer {9 .7}
• OF [arg]

O H Odd-page header {9 .4}
• O H [arg]

OK Other keywords for the Technical Memorandum cover sheet
{6 .5}
.OK [keyword] . . .

OP Odd page {12.8}
.OP

P Paragraph {4.1}
•P [type]

PF Page footer {9 .5}
•PF [arg]

PH Page header {9 .2}
.PH [arg]

PM Proprietary Marking {9.15}
.PM [code]

PX * Page-header user exit {9.12}
.PX

R Return to regular (roman) font (end underlining in nroff)
{12.1}
.R

RB Roman/Bold {12.1}
.RB [Roman-arg] [bold-arg] [Roman] [bold] [Roman]

9—108 Programmer s Guide: CTIX Supplement

[bold]

RD Read insertion from terminal -C12.il}
.RD [prompt] [diversion] [string]

R F Reference end-C I 1.2}
. R F

RI Roman/Italic -C12.1}
.RI [Roman-arg] [italic-arg] [Roman] [italic] [Roman]
[italic]

RL Reference list start <5.3.3.5}
.RL [text-indent] [1]

RP Produce Reference Page <11.4}
.RP [arg] [arg]

RS Reference start < 11.2 }
.RS [string-name]

S Set troff point size and vertical spacing <12.9}
.S [size] [spacing]

SA Set adjustment (right-margin justification) default <12.2}
•SA [arg]

SG Signature line <6.11.1}
•SG [arg] [1]

SK Skip pages <12.7}
.SK [pages]

SM Make a string smaller <12.9}
.SM stringl [string2] [string3]

SP Space vertically <12.6}
.SP [lines]

TB Table title <7.5}
.TB [title] [override] [flag]

TC Table of contents <10.1}
.TC [slevel] [spacing] [tlevel] [tab] [headl] [head2] [head3]
[head4] [head5]

TE Table end <7.3}
.TE

T H Table header <7.3}
.TH [N]

MM — Memorandum Macros 9—109

TL Title of memorandum -C6.1}
.TL [eharging-ease] [filing-case]

TM Technical Memorandum number(s) -(6.3}
.TM [number] . . .

T P * Top-of-page macro-C9.12}
.TP

TS Table start -C7.3}
.TS [H]

TX * Table-of-contents user exit {10.1}
.TX

TY * Table-of-contents user exit (suppresses "CONTENTS")
{10.1}
.TY

VL Variable-item list start {5.3.3.6}
.VL text-indent [mark-indent] [1]

VM Vertical margins {9.14}
,VM [top] [bottom]

WC Width Control {12.4}
.WC [format]

II. Strings

The following is an alphabetical list of string names used by MM, giv-
ing for each a brief description, section reference, and initial (default)
value(s). See {1.4} for notes on setting and referencing strings.

BU Bullet {3 .7}
nroff: ©
troff: •

Ci Table-of-contents indent list, up to seven args for heading
levels (must be scaled) {10.1}

DT Date (current date, unless overridden) {6.7.1}
Month day, year (e.g.,)

EM Em dash string, produces an em dash in troff and a double
hyphen in nroff {3.8}.

F Footnote numberer {8 .1}
nroff: \ u \ \ n + (: p \ d

9—110 Programmer s Guide: CTIX Supplement

troff: \ v ' - . 4 m ' \ s - 3 \ \ n + (: p \ s 0 \ v ' . 4 m '

H F Heading font list, up to seven codes for heading levels 1
through 7 <4.2.2.4.1}
3 3 2 2 2 2 2 (levels 1 and 2 bold, 3-7 underlined in nroff,
and italic in troff)

H P Heading point size list, up to seven codes for heading levels
1 through 7 <4.2.2.4.3}

Le Title for LIST OF EQUATIONS <7.6}

Lf Title for LIST OF FIGURES <7.6}

Lt Title for LIST OF TABLES <7.6}

Lx Title for LIST OF EXHIBITS <7.6}

R E SCCS Release and Level of MM <12.3}
Release.Level (e.g., 15.130)

Rf Reference numberer <11.1}

Rp Title for References <11.4}

Tm Trademark string; places the letters " T M " one half-line
above the text that it follows <3.9}.

Seven accent strings are also available <12.10}.

If the released-paper style is used, then, in addition to the above
strings, certain BTL location codes are defined as strings; these loca-
tion strings are needed only until the .MT macro is called <6.8}.
Currently, the following are recognized: AK, AL, ALF, CB, CH,
CP, DR, FJ, HL, HO, HOH, HP, IH, IN, INH, IW, MH, MV,
PY, RD, RR, WB, WH, and WV.

III. Number Registers

This section provides an alphabetical list of register names, giving for
each a brief description, section reference, initial (default) value, and
the legal range of values (where [m:n] means values from m to n
inclusive).

Any register having a single-character name can be set from the com-
mand line. An asterisk attached to a register name indicates that that
register can be set only from the command line or before the MM
macro definitions are read by the formatter <2.4, 2.5}. See <1.4}
for notes on setting and referencing registers.

MM — Memorandum Macros 9—111

A * Handles preprinted forms and the Bell System logo {2.4}
0, [0:2]

Au Inhibits printing of author's location, department, room,
and extension in the " f rom" portion of a memorandum
-C6.2}
1, [0:1]

C * Copy type (Original, DRAFT, etc.) -C2.4}
0 (Original), [0:4]

CI Contents level (i.e., level of headings saved for table of con-
tents) -C4.4}
2, [0:7]

Cp Placement of List of Figures, etc. -C10.1}
1 (on separate pages), [0:1]

D * Debug flag {2.4}
0, [0:1]

De Display eject register for floating dislays -C7.2}
0, [0:1]

Df Display format register for floating displays {7.2}
5, [0:5]

Ds Static display pre- and post-space {7 .1}
1, [0:1]

E * Controls font of the Subject/Date/From fields {2.4}
0 (nroff) 1 (troff), [0:1]

Ec Equation counter, used by .EC macro {7.5}
0, [0:?], incremented by 1 for each .EC call.

Ej Page-ejection flag for headings {4.2.2.1}
0 (no eject), [0:7]

Eq Equation label placement {7 .4}
0 (right-adjusted), [0:1]

Ex Exhibit counter, used by .EX macro {7.5}
0, [0:?], incremented by 1 for each .EX call.

Fg Figure counter, used by .FG macro {7 .5}
0, [0:?], incremented by 1 for each .FG call.

Fs Footnote space (i.e., spacing between footnotes) {8 .4}
1, [0:?]

9—112 Programmer s Guide: CTIX Supplement

H1-H7 Heading counters for levels 1-7 {4.2.2.5}
0, [0:?], incremented by .H of corresponding level or .HU if
at level given by register Hu. H2-H7 are reset to 0 by any
heading at a lower-numbered level.

Hb Heading break level (after .H and .HU) <4.2.2.2}
2, [0:7]

He Heading centering level for .H and .HU <4.2.2.3}
0 (no centered headings), [0:7]

Hi Heading temporary indent (after .H and .HU) <4.2.2.2}
1 (indent as paragraph), [0:2]

Hs Heading space level (after .H and .HU) <4.2.2.2}
2 (space only after .H 1 and .H 2), [0:7]

Ht Heading type (for .H: single or concatenated numbers)
<4.2.2.5}
0 (concatenated numbers: 1.1.1, etc.), [0:1]

Hu Heading level for unnumbered heading (.HU) <4.3}
2 (.HU at the same level as .H 2), [0:7]

Hy Hyphenation control for body of document <3.4}
0 (automatic hyphenation off), [0:1]

L * Length of page <2.4}
66, [20:?] (l l i , [2i:?] in troff)22

Le List of Equations <7.6}
0 (list not produced) [0:1]

Lf List of Figures <7.6}
1 (list produced) [0:1]

Li List indent <5.3.3.1}
6 {nroff) 5 (troff), [0:?]

Ls List spacing between items by level <5.3.3.1}
6 (spacing between all levels) [0:6]

Lt List of Tables <7.6}
1 (list produced) [0:1]

22. For nroff, these values are unsealed numbers representing lines or character
positions; for troff, these values must be scaled.

MM — Memorandum Macros 9—113

Lx List of Exhibits {7 .6}
1 (list produced) [0:1]

N * Numbering style <2.4>
0, [0:5]

Np Numbering style for paragraphs <4.1 >
0 (unnumbered) [0:1]

O * Offset of page -C2.4>
.75i, [0:?] (0.5i, [0i:?] in troff)22

Oc Table of Contents page numbering style {10.1}
0 (lower-case Roman), [0:1]

Of Figure caption style -(7.5}
0 (period separator), [0:1]

P Page number, managed by MM {2.4}
0, [0:?]

Pi Paragraph indent {4 .1}
5 (nroff) 3 (troff), [0:?]

Ps Paragraph spacing {4.1}
1 (one blank space between paragraphs), [0:?]

Pt Paragraph type {4.1}
0 (paragraphs always left-justified), [0:2]

Pv " P R I V A T E " header {9.16}
0 (not printed), [0:2]

Rf Reference counter, used by .RS macro {11.1}
0, [0:?], incremented by 1 for each .RS call.

S * Troff default point size {2.4}
10, [6:36]

Si Standard indent for displays {7.1}
5 (nroff) 3 (troff), [0:?]

T * Type of nroff output device {2.4}
0, [0:2]

Tb Table counter, used by .TB macro {7.5}
0, [0:?], incremented by 1 for each .TB call.

U * Underlining style (nroff) for .H and .HU {2.4}
0 (continuous underline when possible), [0:1]

W * Width of page (line and title length) {2 .4}
6i, [10:1365] (6i, [2i:7.54i] in troff)22

9—114 Programmer s Guide: CTIX Supplement

10
Using the - m s Macros with Troff and Nroff

Abstract

This document describes a set of easy-to-use macros for preparing
documents on the UNIX system. Documents may be produced on
either the phototypesetter or a on a computer terminal, without
changing the input.

The macros provide facilities for paragraphs, sections (optionally with
automatic numbering), page titles, footnotes, equations, tables, two-
column format, and cover pages for papers.

This memo includes, as an appendix, the text of the "Guide to
Preparing Documents with - m s " which contains additional examples
of features of -ms.

This manual is a revision of, and replaces, "Typing Documents on
U N I X , " dated November 22, 1974.

Introduction

This memorandum describes a package of commands to produce
papers using the troff and nroff formatting programs on the U N I X sys-
tem. As with other rojff-derived programs, text is prepared inter-
spersed with formatting commands. However, this package, which
itself is written in troff commands, provides higher-level commands
than those provided with the basic troff program. The commands
available in this package are listed in Appendix A.

Source: M. E . Lesk, Typing Documents on the UNIX System: Using the —ms Macros
with Troff and Nroff (Murray Hill, N.J . : Bell Laboratories, 1978).

Using the -ms Macros with Troff and Nroff 10—1

Text

Type normally, except that instead of indenting for paragraphs, place
a line reading " .PP" before each paragraph. This will produce
indenting and extra space.

Alternatively, the command .LP that was used here will produce a
left-aligned (block) paragraph. The paragraph spacing can be
changed: see below under "Registers."

Beginning

For a document with a paper-type cover sheet, the input should start
as follows:

[optional overall format .RP - see below]
.TL
Title of document (one or more lines)
.AU
Author(s) (may also be several lines)
.AI
Author's institution(s)
.AB
Abstract; to be placed on the cover sheet of a paper.
Line length is 5/6 of normal; use .11 here to change.
.AE (abstract end)
text ... (begins with .PP, which see)

To omit some of the standard headings (e.g. no abstract, or no
author's institution) just omit the corresponding fields and command
lines. The word ABSTRACT can be suppressed by writing " . A B no"
for " .AB" . Several interspersed .AU and .AI lines can be used for
multiple authors. The headings are not compulsory: beginning with a
.PP command is perfectly OK and will just start printing an ordinary
paragraph.

9—2 Programmer s Guide: CTIX Supplement

CAUTION

You can't just begin a document with a line of text. Some
- m s command must precede any text input. When in doubt,
use .LP to get proper initialization, although any of the com-
mands .PP, .LP, .TL, .SH, .NH is good enough. Figure 1
shows the legal arrangement of commands at the start of a
document.

Cover Sheets and First Pages

The first line of a document signals the general format of the first
page. In particular, if it is " . R P " a cover sheet with title and abstract
is prepared. The default format is useful for scanning drafts.

In general - m s is arranged so that only one form of a document need
be stored, containing all information; the first command gives the
format, and unnecessary items for that format are ignored.

CAUTION

Don't put extraneous material between the .TL and .AE com-
mands. Processing of the titling items is special, and other
data placed in them may not behave as you expect. Don't for-
get that some - m s command must precede any input text.

Page Headings

The - m s macros, by default, will print a page heading containing a
page number (if greater than 1). A default page footer is provided
only in nroff, where the date is used. The user can make minor
adjustments to the page headings/footings by redefining the strings
LH, CH, and R H which are the left, center and right portions of the
page headings, respectively; and the strings LF, CF, and RF, which
are the left, center and right portions of the page footer. For more
complex formats, the user can redefine the macros PT and BT, which

Using the -ms Macros with Troff and Nroff 10—3

are invoked respectively at the top and bottom of each page. The
margins (taken from registers HM and FM for the top and bottom
margin respectively) are normally 1 inch; the page header/footer are
in the middle of that space. The user who redefines these macros
should be careful not to change parameters such as point size or font
without resetting them to default values.

Multi-column Formats

If you place the command " ,2C" in your document, the document
will be printed in double column format beginning at that point. This
feature is not too useful in computer terminal output, but is often
desirable on the typesetter. The command " ,1C" will go back to
one-column format and also skip to a new page. The " ,2C" com-
mand is actually a special case of the command

.MC [column width [gutter width]]

which makes multiple columns with the specified column and gutter
width; as many columns as wdl fit across the page are used. Thus tri-
ple, quadruple, ... column pages can be printed. Whenever the
number of columns is changed (except going from full width to some
larger number of columns) a new page is started.

Headings

To produce a special heading, there are two commands. If you type

.NH
type section heading here
may be several lines

you will get automatically numbered section headings (1, 2, 3, . . .), in
boldface. For example,

.NH
Care and Feeding of Department Heads

produces

10- S Programmer 's Guide: CTIX Supplement

1. Care and Feeding of Department Heads

Alternatively,

.SH

Care and Feeding of Directors

will print the heading with no number added:

Care and Feeding of Directors
Every section heading, of either type, should be followed by a para-
graph beginning with .PP or .LP, indicating the end of the heading.
Headings may contain more than one line of text.

The .NH command also supports more complex numbering schemes.
If a numerical argument is given, it is taken to be a "level" number
and an appropriate sub-section number is generated. Larger level
numbers indicate deeper sub-sections, as in this example:

.NH
Erie-Lackawanna
.NH 2
Morris and Essex Division
.NH 3
Gladstone Branch
.NH 3
Montclair Branch
.NH 2
Boonton Line

generates:

2. Erie-Lackawanna

2.1 Morris and Essex Division

2.1.1 Gladstone Branch

2.1.2 Montclair Branch

2.2 Boonton Line

An explicit " . N H 0" will reset the numbering of level 1 to one, as
here:

.NH 0

Penn Central

1. Penn Central

Using the -ms Macros with Troff and Nroff 10—5

Indented Paragraphs

(Paragraphs with hanging numbers, e.g. references.) The sequence

-IP [1]
Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed.
.IP [2]

Text for second paragraph, ...

produces
[1J Text for first paragraph, typed normally for as long as you

would like on as many lines as needed.
[2] Text for second paragraph. ...

A series of indented paragraphs may be followed by an ordinary para-
graph. beginning with .PP or .I.P, depending on whether you wish
indenting or not. The command .LP was used here.

More sophisticate'.' uses of .IP are also possible. If the label is omit-
ted, for e x a m p l e . :•; •.•slair b l o c k indent is produced.

.IP
This material will
just be turned into a
block indent suitable for quotations or
such matter.
.LP

will product
This material will just be turned into a block indent suitable for
quotations or such matter.

If a non-standard amount of indenting is required, it may be specified
after the iabei .;t character positions) and will remain in effect until
the next .PP or .LP. Thus, the general form of the .IP command
contains two additional fields: the label and the indenting length. For
example.

10- S Programmer's Guide: CTIX Supplement

.IP first: 9
Notice the longer label, requiring larger
indenting for these paragraphs.
.IP second:
And so forth.
.LP

produces this:

first: Notice the longer label, requiring larger indenting for these
paragraphs.

second: And so forth.

It is also possible to produce multiple nested indents; the command
.RS indicates that the next .IP starts from the current indentation
level. Each .RE will eat up one level of indenting so you should bal-
ance .RS and .RE commands. The .RS command should be thought
of as "move right" and the .RE command as "move left". As an
example

.IP 1.
Bell Laboratories
.RS
.IP 1.1
Murray Hill
.IP 1.2
Holmdel
.IP 1.3
Whippany
.RS
.IP 1.3.1
Madison
.RE
.IP 1.4
Chester
.RE
.LP

will result in

1. Bell Laboratories

1.1 Murray Hill

1.2 Holmdel

1.3 Whippany

Using the -ms Macros with Troff and Nroff 10—7

1.3.1 Madison

1.4 Chester

All of these variations on .LP leave the right margin untouched.
Sometimes, for purposes such as setting off a quotation, a paragraph
indented on both right and left is required.

A single paragraph like this is obtained by preceding it
with .QP. More complicated material (several para-
graphs) should be bracketed with .QS and ,QE.

Emphasis

To get italics (on the typesetter) or underlining (on the terminal) say

.1
as much, text as you want
can lx1 tvped here
. R

as u j , Jon-.* for these three words. The .R command restores the nor-
ma! !tusually Roman) font. If only one word is to be italicized, it
mav lx; just given on the line with the .1 command,

. I word

and in this case no R is needed to restore the previous font. Bold-
fact. can ix- produced by

H
Text to lie set in boldface
goes here
" R

and also will be underlined on the terminal or line printer. As with
I. a single word can be placed in boldface by placing it on the same

line as the .B command.

A fev. size changes can be specified similarly with the commands .LG
(make larger), ,SM (make smaller), and .NL (return to normal size).
The size change is two points; the commands may be repeated for
increased ctfivt (here one .NL canceled two .SM commands).

If actual underlining as opposed to italicizing is required on the
typesetter, the command

Ul. word

10- S Programmer's Guide: CTIX Supplement

will underline a word. There is no way to underline multiple words
on the typesetter.

Footnotes

Material placed between lines with the commands .FS (footnote) and
.FE (footnote end) will be collected, remembered, and finally placed
at the bottom of the current page*. By default, footnotes are l l /12th
the length of normal text, but this can be changed using the FL regis-
ter (see below).

Displays and Tables

To prepare displays of lines, such as tables, in which the lines should
not be re-arranged, enclose them in the commands .DS and .DE

.DS
table lines, like the
examples here, are placed
between .DS and .DE
.DE

By default, lines between .DS and .DE are indented and left-
adjusted. You can also center lines, or retain the left margin. Lines
bracketed by .DS C and .DE commands are centered (and not re-
arranged); lines bracketed by .DS L and .DE are left-adjusted, not
indented, and not re-arranged. A plain .DS is equivalent to .DS I,
which indents and left-adjusts. Thus,

these lines were preceded
by .DS C and followed by

a .DE command;
whereas

* Like this.

Using the -ms Macros with Troff and Nroff 10—9

these lines were preceded
by .DS L and followed by
a .DE command.

Note that .DS C centers each line; there is a variant .DS B that
makes the display into a left-adjusted block of text, and then centers
that entire block. Normally a display is kept together, on one page.
If you wish to have a long display which may be split across page
boundaries, use .CD, .LD, or .ID in place of the commands .DS C,
.DS L, or .DS I respectively. An extra argument to the .DS I or .DS
command is taken as an amount to indent. Note: it is tempting to
assume that .DS R will right adjust lines, but it doesn't work.

Boxing Words or Lines

To draw rectangular boxes around words the command

.BX word

will print I word I as shown. The boxes will not be neat on a terminal,
and this should not be used as a substitute for italics.

Longer pieces of text may be boxed by enclosing them with .B1
and ,B2:
,B1
text...
,B2

as has been done here.

Keeping Blocks Together

If you wish to keep a table or other block of lines together on a page,
there are "keep - release" commands. If a block of lines preceded by
.KS and followed by .KE does not fit on the remainder of the current
page, it will begin on a new page. Lines bracketed by .DS and .DE
commands are automatically kept together this way. There is also a
"keep floating" command: if the block to be kept together is pre-
ceded by .KF instead of .KS and does not fit on the current page, it
will be moved down through the text until the top of the next page.
Thus, no large blank space will be introduced in the document.

10- S Programmer's Guide: CTIX Supplement

Nroff/Troff Commands

Among the useful commands from the basic formatting programs are
the following. They all work with both typesetter and computer ter-
minal output:

.bp begin new page.

.br "break", stop running text from line to line.

.sp n insert n blank lines.

.na don't adjust right margins.

Date

By default, documents produced on computer terminals have the date
at the bottom of each page; documents produced on the typesetter
don't. To force the date, say " . D A " . To force no date, say " . N D " .
To lie about the date, say " . D A July 4, 1776" which puts the speci-
fied date at the bottom of each page. The command

.ND May 8, 1945

in " . R P " format places the specified date on the cover sheet and
nowhere else. Place this line before the title.

Signature Line

You can obtain a signature line by placing the command .SG in the
document. The authors' names will be output in place of the .SG
line. An argument to .SG is used as a typing identification line, and
placed after the signatures. The .SG command is ignored in released
paper format.

Using the -ms Macros with Troff and Nroff 10—11

Registers

Certain of the registers used by - m s can be altered to change default
settings. They should be changed with .nr commands, as with

.nr PS 9

to make the default point size 9 point. If the effect is needed
immediately, the normal troff command should be used in addition to
changing the number register.

Register Defines Takes Effect Default

PS point size next para. 10
VS line spacing next para. 12 pts
LL line length next para. 6 "
LT title length next para. 6 "
PD para, spacing next para. 0.3 VS
PI para, indent next para. 5 ens
FL footnote length next FS 11/12 LL
CW column width next 2C 7/15 LL
GW intercolumn gap next 2C 1/15 LL
PO page offset next page 26/27"
HM top margin next page 1"
FM bottom margin next page 1"

You may also alter the strings LH, CH, and R H which are the left,
center, and right headings respectively; and similarly LF, CF, and RF
which are strings in the page footer. The page number on output is
taken from register PN, to permit changing its output style. For
more complicated headers and footers the macros PT and BT can be
redefined, as explained earlier.

Accents

To simplify typing certain foreign words, strings representing common
accent marks are defined. They precede the letter over which the
mark is to appear. Here are the strings:

10- S Programmer's Guide: CTIX Supplement

Input Output . Input Output

\ * ' e e \ * " a a
e \ * C e e

* :u ii w 5
\ * " e e

Use

After your document is prepared and stored on a file, you can print it
on a terminal with the command*

nroff - m s file

and you can print it on the typesetter with the command

troff - m s file

(many options are possible). In each case, if your document is stored
in several files, just list all the filenames where we have used "file".
If equations or tables are used, eqn and/or tbl must be invoked as
preprocessors.

References and Further Study

If you have to do Greek or mathematics, see eqn [1] for equation set-
ting. To aid eqn users, -ms provides definitions of .EQ and .EN
which normally center the equation and set it off slightly. An argu-
ment on .EQ is taken to be an equation number and placed in the
right margin near the equation. In addition, there are three special
arguments to EQ: the letters C, I, and L indicate centered (default),
indented, and left adjusted equations, respectively. If there is both a
format argument and an equation number, give the format argument
first, as in

.EQ L (1.3a)

* If .2C was used, pipe the nroff output through col\ make the first line of the
input " .p i /usr /bin/col ."

Using the -ms Macros with Troff and Nroff 10—13

for a left-adjusted equation numbered (1.3a).

Similarly, the macros .TS and .TE are defined to separate tables (see
[2]) from text with a little space. A very long table with a heading
may be broken across pages by beginning it with .TS H instead of
.TS, and placing the line .TH in the table data after the heading. If
the table has no heading repeated from page to page, just use the
ordinary .TS and .TE macros.

To learn more about troff see [3] for a general introduction, and [4]
for the full details (experts only). Information on related UNIX com-
mands is in [5]. For jobs that do not seem well-adapted to -ms , con-
sider other macro packages. It is often far easier to write a specific
macro packages for such tasks as imitating particular journals than to
try to adapt -ms .

Acknowledgment

Many thanks are due to Brian Kernighan for his help in the design
and implementation of this package, and for his assistance in prepar-
ing this manual.

References

[1] B. W. Kernighan and L. L. Cherry, Typesetting Mathematics —
User's Guide (2nd edition), Bell Laboratories Computing Science
Report no. 17.

[2] M. E. Lesk, Tbl — A Program to Format Tables, Bell Labora-
tories Computing Science Report no. 45.

[3] B. W. Kernighan, A Troff Tutorial, Bell Laboratories, 1976.

[4] J. F. Ossanna, Nroff/Troff Reference Manual, Bell Laboratories
Computing Science Report no. 51.

[5] K. Thompson and D. M. Ritchie, UNIX Programmer's Manual,
Bell Laboratories, 1978.

10- S Programmer's Guide: CTIX Supplement

Appendix A: List of Commands

1C Return to single column format .
2C Start double column format .
A B Begin abstract .
A E E n d abstract .
A I Specify author ' s institution.
A U Specify author.
B Begin boldface.
D A Provide the date on each page.
D E End display.

DS Start display (also C D , L D , ID) .
E N End equation.
E Q Begin equation.
F E End footnote.
FS Begin footnote.

I Begin italics.

IP Begin indented paragraph.
K E Release keep.
K F Begin floating keep.
KS Start keep.

Register Names

The following register names are used by - m s internally. Independent use of these
names in one 's own macros may produce incorrect output. Note that no lower
case letters are used in any - m s internal name.

N u m b e r registers used in --ms

D W G W H M IQ LL N A OJ PO T. T V
T E F H I H T IR L T N C P D PQ T B VS
I T F L H 3 IK K I M M N F P F PX T D Y E
A V F M H 4 I M LI M N NS PI R O T N Y Y
C W F P H5 IP L E M O OI PN ST T Q Z N

String registers used in - m s

A5 C B D W E Z I K F M R R I R T T L
- A B C C D Y F A 11 K Q N D R2 SO T M
- A E C D E l F E 12 KS N H R 3 SI T Q
- A I C F E2 FJ 13 L B N L R 4 S2 T S

A U C H E3 F K 14 L D N P R5 SG T T
B C M E4 F N 15 L G O D R C SH U L

1C BG CS E5 F O I D LP O K R E SM W B
2C B T C T E E F Q I E M E PP R F SN W H
A I C D E L FS I M M F P T R H SY W T
A2 C I D A E M F V IP M H PY R P T A X D
A3 C2 D E E N F Y I Z M N Q F R Q T E X F
A4 C A DS E Q H O K E M O R RS T H X K

Using the -ms Macros with Troff and Nroff 10—15

L G Increase type size.
LP Left aligned block paragraph.

N D Change or cancel date.
N H Specify numbered heading.
N L Return to normal type size.
PP Begin paragraph.

R Return to regular font (usually Roman) .
R E End one level of relative indenting.
R P Use released paper format .
RS Relative indent increased one level.
SG Insert signature line.
S H Specify section heading.
SM Change to smaller type size.
T L Specify title.

U L Underl ine one word.

" 1
RP

I

PP, LP

I
text ...

Figure 10-1. Order of Commands in Input

10- S Programmer's Guide: CTIX Supplement

A Guide to Preparing Documents with - m s

Commands for a TM

Input:

.TM 1978-5b3 99999 99999-11

.ND April 1, 1976

.TL
The Role of the Allen Wrench in Modern Electronics
.AU " M H 2G-111" 2345
J. Q. Pencilpusher
.AU " M H 1K-222" 5432
X. Y. Hardwired
.AI
.MH
.OK
Tools
Design
.AB
This abstract should be short enough to
fit on a single page cover sheet.
It must attract the reader into sending for
the complete memorandum.
.AE
.CS 10 2 12 5 6 7
.NH
Introduction.
.PP
Now the first paragraph of actual text ...

Last line of text.
.SG MH-1234-JQP/XYH-unix
.NH
References ...

Commands not needed in a particular format are ignored.

Using the -ms Macros 10—17

Output:

I Bdl Laboratories Cover Sheet for T M

This information is for employees of Bell Laboratories. (GF.l 13.9-3)

Title-The Role of the Allen Wrench Date- April 1, 1976
in Modern Electronics

TM- 1978-5b3
Other Keywords- Tools

Design

Author Location Ext. Charging Case- 99999
J. Q. Pencilpusher MH 2G-111 2345 Filing Case- 99999a
X. Y. Hardwired MH 1K-222 5432

ABSTRACT

This abstract should be short enough to fit on a single
page cover sheet. It must attract the reader into sending
for the complete memorandum.

Pages Text 10 Other 2 Total 12

No. Figures 5 No. Tables 6 No. Refs. 7 j

E-1932-U (6-73) SEE R E V E R S E SIDE F O R DISTRIBUTION LIST

10- S Programmer's Guide: CTIX Supplement

A Released Paper with Mathematics

Input:

.EQ
delim $$
.EN
.RP
... (as for a TM)
.CS 10 2 12 5 6 7
.NH
Introduction
.PP
The solution to the torque handle equation
• E Q (1)
sum from 0 to inf F (x sub i) = G (x)
.EN
is found with the transformation $ x = rho over theta $
where $ rho = G prime (x) $ and $theta$ is derived ...

Output:

The Role of the Allen Wrench
in Modern Electronics

J. Q. Pencilpusher

X. Y. Hardwired

Bell Laborator ies
Murray Hill, New Jersey 07974

ABSTRACT

This abstract should be short enough to fit on a
single page cover sheet. It must attract the reader
into sending for the complete memorandum.

Apri l 1, 1976

Using the -ms Macros 10—19

T h e R o l e o f t h e A l l e n W r e n c h
i n M o d e r n E l e c t r o n i c s

J. Q. Pencilpusher

X. Y. Hardwired

Bell Laborator ies
Murray Hill, New Jersey 07974

1. Introduction
The solution to the torque handle equation

0
(1)

is found with the transformation x = where p
e

= G ' (x)

and 8 is derived f rom well-known principles.

10- S Programmer's Guide: CTIX Supplement

An Internal Memorandum

Input:

.IM

.ND January 24, 1956

.TL
The 1956 Consent Decree
.AU
Able, Baker &
Charley, Attys.
.PP
Plaintiff, United States of America, having filed
its complaint herein on January 14, 1949; the
defendants having appeared and filed their...

Output:

@
Bell Laboratories

Subject: T h e 1956 Consent Decree date: January 24, 1956

from: Able , Baker &
Charley, Attys.

Plaintiff, Uni ted States of Amer ica , having filed its complaint herein on
January 14, 1949; the defendants having appeared and filed their answer to
such complaint denying the substantive allegations thereof; and the par t ies ,
by their attorneys, having severally consented to the entry of this Final
Judgment without trial or adjudication of any issues of fact or law herein
and without this Final Judgment constituting any evidence or admission by
any party in respect of any such issues;

Now, therefore before any testimony has been taken herein, and without
trial or adjudication of any issue of fact or law herein, and upon the con-
sent of all part ies hereto, it is hereby

Ordered , adjudged and decreed as follows:

I. [Sherman Act]
This Court has jurisdiction of the subject matter herein and of all the

parties hereto. The complaint states a claim upon which relief may be
granted

Other formats possible (specify before .TL) are: .MR ("memo for
record"), ,MF ("memo for file"), .EG ("engineer's notes") and ,TR
(Computing Science Tech. Report).

Using the -ms Macros 10—21

Headings

Input:

.NH
Introduction.
.PP
text text text

.PP
text text text

Appendix I
.SH

Output:

1. Introduction
text text text

Appendix I
text text text

A Simple List

Input:

.IP 1.
J. Pencilpusher and X. Hardwired,
.1
A New Kind of Set Screw,
.R
Proc. I E E E
,B 75
(1976), 23-255.
.IP 2.
H. Nails and R. Irons,
.1
Fasteners for Printed Circuit Boards,
R

Proc. ASME
.B 23
(1974), 23-24.
.LP (terminates list)

Output:

I. J. Pencilpusher and X. Hardwired, A New Kind of Set Screw,
Proc. I E E E 75 (1976), 23-255.

2. H. Nails and R. Irons, Fasteners for Printed Circuit Boards,
Proc. ASME 23 (1974), 23-24.

10- S Programmer's Guide: CTIX Supplement

Displays

Input:

text text text text text text
.DS
and now
for something
completely different
.DE

text text text text text text

Output:
hoboken harrison newark roseville avenue grove street east orange
brick church orange highland avenue mountain station

and now
for something
completely different

murray hill berkeley heights gillette Stirling millington lyons basking
ridge bernardsville far hills peapack gladstone

Options: .DS L: left-adjust; .DS C: line-by-line center; .DS B: make
block, then center.

Footnotes

Input:

Among the most important occupants
of the workbench are the long-nosed pliers.
Without these basic tools*
.FS
* As first shown by Tiger & Leopard (1975).
.FE
few assemblies could be completed. They may
lack the popular appeal of the sledgehammer

Output:

Among the most important occupants of the workbench are the long-
nosed pliers. Without these basic tools* few assemblies could be com-
pleted. They may lack the popular appeal of the sledgehammer

Using the -ms Macros 10—23

Multiple Indents

Input:

This is ordinary text to point out
the margins of the page.
.IP 1.
First level item
.RS
.IP a)
Second level.
.IP b)
Continued here with another second
level item, but somewhat longer.
.RE
.IP 2.
Return to previous value of the
indenting at this point.
.IP 3.
Another
line.

Output:

This is ordinary text to point out the margins of the page.

1. First level item

a) Second level.

b) Continued here with another second level item, but some-
what longer.

2. Return to previous value of the indenting at this point.

3. Another line.

As first shown by Tiger & Leopard (1975).

10- S Programmer's Guide: CTIX Supplement

Keeps

Lines bracketed by the following commands are kept together, and
will appear entirely on one page:

.KS not moved .KF may float

.KE through text .KE in text

Double Column

input:

.TL
The Declaration of Independence
,2C
.PP
When in the course of human events, it becomes necessary for one
people to dissolve the political bonds which have connected them with
another, and to assume among the powers of the earth the separate
and equal station to which the laws of Nature and of Nature's God
entitle them, a decent respect to the opinions of...

Output:
The Declaration of Independence

When in the course of human
events, it becomes necessary for one
people to dissolve the political bonds
which have connected them with
another, and to assume among the
powers of the earth the separate and
equal station to which the laws of
Nature and of Nature 's God entitle
them, a decent respect to the opin-
ions of mankind requires that they

should declare the causes which
impel them to the separation.

We hold these truths to be self-
evident, that all men are created
equal, that they are endowed by their
creator with certain unalienable
rights, that among these are life,
liberty, and the pursuit of happiness.
That to secure these rights, govern-
ments are instituted among men,

Using the -ms Macros 10—25

Equations

Input:

A displayed equation is marked
with an equation number at the right margin
by adding an argument to the E Q line:
.EQ (1.3)
x sup 2 over a sup 2 sqrt -Cp z sup 2 +qz+r>
.EN

Output:

A displayed equation is marked with an equation number at the right
margin by adding an argument to the EQ line:

4 = (1.3) a~

Input:

.EQ I (2.2a)
bold V bar sub nu~ = ~left [pile -Ca above b above
c > right] + left [matrix -C col { A (l l) above .
above . > col { . above . above . } col -C. above .
above A(33) >> right] cdot left [pile { alpha
above beta above gamma > right]
.EN

Output:

v„ =
a
b +
c

/I (11)

A (33)
(2.2a)

Input:

.EQ L
F hat (chi) ~ mark = ~ I del V I sup 2
.EN
.EQ L
lineup =~ -Cleft ({partial V> over {partial x> r ight) > sup 2
+ { left ({partial V> over {partial y> right) > sup 2
~~ lambda -> inf
.EN

10- S Programmer's Guide: CTIX Supplement

Output:

vv 12

2
sv sv +
Sx

Input:

S a dot $, $ b dotdot$,

Output:

a, V,

See also the equations ii

X-co

$ xi tilde times y vec$:

the table example.

Some Registers You Can Change

Line length
.nr LL 7i

Title length
.nr LT 7i

Point size
.nr PS 9

Vertical spacing
.nr VS 11

Column width
.nr CW 3i

Intercolumn spacing
.nr GW ,5i

Margins - head and foot
.nr H M ,75i
.nr FM ,75i

Paragraph indent
.nr PI 2n

Paragraph spacing
.nr PDO

Page offset
.nr PO 0.5i

Page heading
.ds CH Appendix

(center)
.ds R H 7-25-76

(right)
.ds L H Private

(left)

Page footer
.ds CF Draft
.ds LF .
.ds R F S l m , l a r

Page numbers
.nr % 3

Using the -ms Macros 10—27

Tables

Input:

.TS (© indicates a tab)
allbox;
e s s
c c c
n n n.
AT&T Common Stock
Year © Price © Dividend
1971 ©41-54 ©$2.60
2©41-54©2.70
3 ©46-55 ©2.87
4 ©40-53 ©3.24
5 ©45-52 ©3.40
6©51-59©.95*
.TE
* (first quarter only)

The meanings of the key-letters describing the alignment of each
entry are:

c center n numerical
r right-adjust a subcolumn
1 left-adjust s spanned

The global table options are center, expand, box, doublebox, allbox,
tab (x) and linesize (n).

Input:

.TS (with delim $$ on)
doublebox, center;
c c
11.
Name © Definition
.sp
Gamma © $ G A M M A (z) = int sub 0 sup inf \

t sup -Cz-1> e sup -t dt$
Sine©$sin (x) = 1 over 2i (e sup ix - e sup -ix)$
Error © $ roman erf (z) = 2 over sqrt pi \

int sub 0 sup z e sup -C-t sup 2} dt$
Bessel © $ J sub 0 (z) = 1 over pi \

int sub 0 sup pi cos (z sin theta) d theta $
Ze ta©$ zeta (s) = \

10- S Programmer's Guide: CTIX Supplement

Output:

AT&T Common Stock
Year Price Dividend
1971 41-54 $2.60

2 41-54 2.70
3 46-55 2.87
4 40-53 3.24
5 45-52 3.40
6 51-59 .95*

* (first quarter only)

sum from k= l to inf k sup -s Re~s > 1)$
.TE

Output:

Name Definition

Gamma r(z) = /V-,e 'dt

Sine 21
Error

Bessel 70(z) = — f^cosfz sin6)d 6 7T ^

Zeta
t»i

Usage

Documents with just text:
troff -ms files

With equations only:
eqn files I troff -ms

With tables only:
tbl files I troff -ms

With both tables and equations:
tbl files I eqn | troff -ms

Using the -ms Macros 10—29

11
Writing Papers with NROFF Using - m e

Introduction

This document describes the text processing facilities available on the
U N I X operating system via N R O F F and the - m e macro package. It is
assumed that the reader already is generally familiar with the UNIX
operating system and a text editor such as ex. This is intended to be
a casual introduction, and as such not all material is covered. In par-
ticular, many variations and additional features of the - m e macro
package are not explained. For a complete discussion of this and
other issues, see The -me Reference Manual and The NROFF/TROFF
Reference Manual.

N R O F F , a computer program that runs on the U N I X operating system,
reads an input file prepared by the user and outputs a formatted
paper suitable for publication or framing. The input consists of text,
or words to be printed, and requests, which give instructions to the
N R O F F program telling how to format the printed copy.

Section 1 describes the basics of text processing. Section 2 describes
the basic requests. Section 3 introduces displays. Annotations, such
as footnotes, are handled in section 4. The more complex requests
which are not discussed in section 2 are covered in section 5. Finally,
section 6 discusses things you will need to know if you want to typeset
documents. If you are a novice, you probably won't want to read
beyond section 4 until you have tried some of the basic features out.

When you have your raw text ready, call the N R O F F formatter by typ-
ing as a reques t to the UNIX shell:

nroff - m e -T t ype files

Source: Eric P. Ailman, Writing Papers with NROFF Using -me (Berkeley, CA:
University of California, 1980).

Writing Papers with NROFF Using -me 11--1

where type describes the type of terminal you are outputting to.
Common values are dtc for a DTC 300s (daisy-wheel type) printer
and lpr for the line printer. If the - T flag is omitted, a "lowest com-
mon denominator" terminal is assumed; this is good for previewing
output on most terminals. A complete description of options to the
N R O F F command can be found in The NROFF/TROFF Reference
Manual.

The word argument is used in this manual to mean a word or number
which appears on the same line as a request which modifies the mean-
ing of that request. For example, the request

.sp

spaces one line, but

.sp 4

spaces four lines. The number 4 is an argument to the .sp request
which says to space four lines instead of one. Arguments are
separated from the request and from each other by spaces.

1. Basics of Text Processing

The primary function of N R O F F is to collect words from input lines,
fill output lines with those words, justify the right hand margin by
inserting extra spaces in the line, and output the result. For example,
the input:

Now is the time
for all good men
to come to the aid
of their party.
Four score and seven
years ago,...

will be read, packed onto output lines, and justified to produce:

Now is the time for all good men to come to the aid of their
party. Four score and seven years ago,...

Sometimes you may want to start a new output line even though the
line you are on is not yet full; for example, at the end of a paragraph.

10- S Programmer's Guide: CTIX Supplement

To do this you can cause a break, which starts a new output line.
Some requests cause a break automatically, as do blank input lines
and input lines beginning with a space.

Not all input lines are text to be formatted. Some of the input lines
are requests which describe how to format the text. Requests always
have a period or an apostrophe (" ' ") as the first character of the
input line.

The text formatter also does more complex things, such as automati-
cally numbering pages, skipping over page folds, putting footnotes in
the correct place, and so forth.

I can offer you a few hints for preparing text for input to N R O F F .
First, keep the input lines short. Short input lines are easier to edit,
and N R O F F will pack words onto longer lines for you anyhow. In
keeping with this, it is helpful to begin a new line after every period,
comma, or phrase, since common corrections are to add or delete
sentences or phrases. Second, do not put spaces at the end of lines,
since this can sometimes confuse the N R O F F processor. Third, do not
hyphenate words at the end of lines (except words that should have
hyphens in them, such as "mother-in-law"); N R O F F is smart enough
to hyphenate words for you as needed, but is not smart enough to
take hyphens out and join a word back together. Also, words such as
"mother-in-law" should not be broken over a line, since then you will
get a space where not wanted, such as "mother- in-law".

2. Basic Requests

2.1 Paragraphs

Paragraphs are begun by using the .pp request. For example, the
input:

•PP
Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago,...

produces a blank line followed by an indented first line. The result
is:

Now is the time for all good men to come to the aid of their
party. Four score and seven years ago,...

Writing Papers with NROFF Using -me 11--3

Notice that the sentences of the paragraphs must not begin with a
space, since blank lines and lines beginning with spaces cause a break.
For example, if I had typed:

•PP
Now is the time for all good men

to come to the aid of their party.
Four score and seven years ago,...

The output would be:

Now is the time for all good men
to come to the aid of their party. Four score and seven years

ago,...

A new line begins after the word "men" because the second line
began with a space character.

There are many fancier types of paragraphs, which will be described
later.

2.2 Headers and Footers

Arbitrary headers and footers can be put at the top and bottom of
every page. Two requests of the form .he title and .fo title define the
titles to put at the head and the foot of every page, respectively. The
titles are called three-part titles, that is, there is a left-justified part, a
centered part, and a right-justified part. To separate these three parts
the first character of title (whatever it may be) is used as a delimiter.
Any character may be used, but backslash and double quote marks
should be avoided. The percent sign is replaced by the current page
number whenever found in the title. For example, the input:

.he " % ' •

. fo ' Jane Jones ' ' My Book '

results in the page number centered at the top of each page, "Jane
Jones" in the lower left corner, and "My Book" in the lower right
corner.

10- S Programmer's Guide: CTIX Supplement

2.3 Double Spacing

N R O F F will double space output text automatically if you use the

request .Is 2, as is done in this section. You can revert to single

spaced mode by typing .Is 1.

2.4 Page Layout

A number of requests allow you to change the way the printed copy
looks, sometimes called the layout of the output page. Most of these
requests adjust the placing of "white space" (blank lines or spaces).
In these explanations, characters in italics should be replaced with
values you wish to use; bold characters represent characters which
should actually be typed.

The .bp request starts a new page.

The request .sp N leaves N lines of blank space. N can be omitted
(meaning skip a single line) or can be of the form Ni (for N inches) or
Nc (for N centimeters). For example, the input:

.sp 1.5i
My thoughts on the subject
.sp

leaves one and a half inches of space, followed by the line "My
thoughts on the subject," followed by a single blank line.

The .in +N request changes the amount of white space on the left of
the page (the indent). The argument N can be of the form +N (mean-
ing leave N spaces more than you are already leaving), -N (meaning
leave less than you do now), or just N (meaning leave exactly N
spaces). N can be of the form Ni or Nc also. For example, the input:

initial text
.in 5
some text
.in +l i
more text
.in -2c
final text

produces "some text" indented exactly five spaces from the left

Writing Papers with NROFF Using -me 11—5

margin, "more text" indented five spaces plus one inch from the left
margin (fifteen spaces on a pica typewriter), and "final text" indented
five spaces plus one inch minus two centimeters from the margin.
That is, the output is:

initial text
some text

more text
final text

The .ti +N (temporary indent) request is used like .in +N when the
indent should apply to one line only, after which it should revert to
the previous indent. For example, the input:

.in l i

.ti 0
Ware, James R. The Best of Confucius,
Halcyon House, 1950.
An excellent book containing translations of
most of Confucius ' most delightful sayings.
A definite must for anyone interested in the early foundations
of Chinese philosophy.

produces:

Ware, James R. The Best of Confucius, Halcyon House, 1950. An
excellent book containing translations of most of Confu-
cius' most delightful sayings. A definite must for any-
one interested in the early foundations of Chinese phi-
losophy.

Text lines can be centered by using the .ce request. The line after the
.ce is centered (horizontally) on the page. To center more than one
line, use .ce N (where N is the number of lines to center), followed by
the N lines. If you want to center many lines but don't want to count
them, type:

.ce 1000
lines to center
.ce 0

The .ce 0 request tells NROFF to center zero more lines, in other
words, stop centering.

All of these requests cause a break; that is, they always start a new-
line. If you want to start a new line without performing any other
action, use .br.

10- S Programmer's Guide: CTIX Supplement

2.5 Underlining

Text can be underlined using the .ul request. The .ul request causes
the next input line to be underlined when output. You can underline
multiple lines by stating a count of input lines to underline, followed
by those lines (as with the .ce request). For example, the input:

.ul 2
Notice that these two input lines
are underlined.

will underline those eight words in N R O F F . (In T R O F F they will be
set in italics.)

3. Displays

Displays are sections of text to be
Major quotes, tables, and figures
examples used in this document,
are output single spaced.

set off from the body of the paper,
are types of displays, as are all the
All displays except centered blocks

3.1 Major Quotes

Major quotes are quotes which are several lines long, and hence are
set in from the rest of the text without quote marks around them.
These can be generated using the commands .(q and .)q to surround
the quote. For example, the input:

As Weizenbaum points out:
•(q
It is said that to explain is to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming,...
•)q

generates as output:

As Weizenbaum points out:

It is said that to explain is to explain away. This maxim
is nowhere so well fulfilled as in the areas of computer
programming,...

Writing Papers with NROFF Using -me 11--7

3.2 Lists

A list is an indented, single spaced, unfilled display. Lists should be
used when the material to be printed should not be filled and justified
like normal text, such as columns of figures or the examples used in
this paper. Lists are surrounded by the requests .(1 and .)1. For
example, type:

Alternatives to avoid deadlock are:
•0
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding
•)1

will produce:

Alternatives to avoid deadlock are:

Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding

3.3 Keeps

A keep is a display of lines which are kept on a single page if possible.
An example of where you would use a keep might be a diagram.
Keeps differ from lists in that lists may be broken over a page boun-
dary whereas keeps will not.

Blocks are the basic kind of keep. They begin with the request .(b
and end with the request ,)b. If there is not room on the current
page for everything in the block, a new page is begun. This has the
unpleasant effect of leaving blank space at the bottom of the page.
When this is not appropriate, you can use the alternative, called float-
ing keeps.

Floating keeps move relative to the text. Hence, they are good for
things which will be referred to by name, such as "See figure 3" . A
floating keep will appear at the bottom of the current page if it will
fit; otherwise, it will appear at the top of the next page. Floating
keeps begin with the line .(z and end with the line .)z. For an exam-
ple of a floating keep, see figure 1. The .hi request is used to draw a
horizontal line so that the figure stands out from the text.

10- S Programmer's Guide: CTIX Supplement

.(z

.hi
Text of keep to be floated.
.sp
.ce
Figure 1. Example of a Floating Keep,
.hi
,)z

Figure 1. Example of a Floating Keep.

3.4 Fancier Displays

Keeps and lists are normally collected in nofill mode, so that they are
good for tables and such. If you want a display in fill mode (for
text), type .(1 F (Throughout this section, comments applied to .(1
also apply to .(b and .(z). This kind of display will be indented from
both margins. For example, the input:

. (I F
And now boys and girls,
a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer!
Yes kids, you too can have one of these modern
data processing devices.
You too can produce beautifully formatted papers
without even batting an eye!

will be output as:

And now boys and girls, a newer, bigger, better toy than
ever before! Be the first on your block to have your own
computer! Yes kids, you too can have one of these
modern data processing devices. You too can produce
beautifully formatted papers without even batting an eye!

Lists and blocks are also normally indented (floating keeps are nor-
mally left justified). To get a left-justified list, type .(1 L. To get a
list centered line-for-line, type .(1 C. For example, to get a filled, left
justified list, enter:

Writing Papers with NROFF Using -me 11--9

.(1 L F
text of block

The input:

•0
first line of unfilled display
more lines
•)1

produces the indented text:

first line of unfilled display
more lines

Typing the character L after the .(1 request produces the left justified
result:

first line of unfilled display
more lines

Using C instead of L produces the line-at-a-time centered output:

first line of unfilled display
more lines

Sometimes it may be that you want to center several lines as a group,
rather than centering them one line at a time. To do this use cen-
tered blocks, which are surrounded by the requests .(c and .)c. All
the lines are centered as a unit, such that the longest line is centered
and the rest are lined up around that line. Notice that lines do not
move relative to each other using centered blocks, whereas they do
using the C argument to keeps.

Centered blocks are not keeps, and may be used in conjunction with
keeps. For example, to center a group of lines as a unit and keep
them on one page, use:

.(b L
,(c
first line of unfilled display
more lines
•)c
,)b

to produce:

10- S Programmer's Guide: CTIX Supplement

first line of unfilled display
more lines

If the block requests (.(b and .)b) had been omitted the result would
have been the same, but with no guarantee that the lines of the cen-
tered block would have all been on one page. Note the use of the L
argument to .(b; this causes the centered block to center within the
entire line rather than within the line minus the indent. Also, the
center requests must be nested inside the keep requests.

4. Annotations

There are a number of requests to save text for later printing. Foot-
notes are printed at the bottom of the current page. Delayed text is
intended to be a variant form of footnote; the text is printed only
when explicitly called for, such as at the end of each chapter. Indexes
are a type of delayed text having a tag (usually the page number)
attached to each entry after a row of dots. Indexes are also saved
until called for explicitly.

4.1 Footnotes

Footnotes begin with the request .(f and end with the request .)f.
The current footnote number is maintained automatically, and can be
used by typing ** , to produce a footnote number1. The number is
automatically incremented after every footnote. For example, the
input:

1. Like this.

Writing Papers with NROFF Using -me 11--11

•(q
A man who is not upright
and at the same time is presumptuous;
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances.**
•(f
**James R. Ware,
.ul
The Best of Confucius,
Halcyon House, 1950.
Page 77.
•)f
•)q

generates the result:

A man who is not upright and at the same time is
presumptuous; one who is not diligent and at the same time
is ignorant; one who is untruthful and at the same time is
incompetent; such men I do not count among acquain-
tances.2

It is important that the footnote appears inside the quote, so that you
can be sure that the footnote will appear on the same page as the
quote.

4.2 Delayed Text

Delayed text is very similar to a footnote except that it is printed
when called for explicitly. This allows a list of references to appear
(for example) at the end of each chapter, as is the convention in some
disciplines. Use \ * # on delayed text instead of \ * * as on footnotes.

If you are using delayed text as your standard reference mechanism,
you can still use footnotes, except that you may want to reference
them with special characters* rather than numbers.

2. James R . Ware , The Best of Confucius, Halcyon House, 1950. Page 77.
* Such as an asterisk.

10- S Programmer's Guide: CTIX Supplement

4.3 Indexes

An "index" (actually more like a table of contents, since the entries
are not sorted alphabetically) resembles delayed text, in that it is
saved until called for. However, each entry has the page number (or
some other tag) appended to the last line of the index entry after a
row of dots.

Index entries begin with the request .(x and end with .)x. The .)x
request may have a argument, which is the value to print as the "page
number". It defaults to the current page number. If the page
number given is an underscore (" _ ") no page number or line of dots
is printed at all. To get the line of dots without a page number, type
.)x " " , which specifies an explicitly null page number. The .xp
request prints the index.

For example, the input:

.(x
Sealing wax
,)x
.(X
Cabbages and kings
•) x _
.(X
Why the sea is boiling hot
.)x 2.5a
.(x
Whether pigs have wings
.)x " "
.(X
This is a terribly long index entry, such as might be used
for a list of illustrations, tables, or figures; I expect it to
take at least two lines.
,)x
.xp

generates:

Sealing wax 9
Cabbages and kings
Why the sea is boiling hot 2.5a
Whether pigs have wings
This is a terribly long index entry, such as might be used for a
list of illustrations, tables, or figures; I expect it to take at
least two lines 9

Writing Papers with NROFF Using -me 11--13

The .(x request may have a single character argument, specifying the
"name" of the index; the normal index is x. Thus, several "indices"
may be maintained simultaneously (such as a list of tables, table of
contents, etc.).

Notice that the index must be printed at the end of the paper, rather
than at the beginning where it will probably appear (as a table of con-
tents) ; the pages may have to be physically rearranged after printing.

5. Fancier Features

A large number of fancier requests exist, notably requests to provide
other sorts of paragraphs, numbered sections of the form 1.2.3 (such
as used in this document), and multicolumn output.

5.1 More Paragraphs

Paragraphs generally start with a blank line and with the first line
indented. It is possible to get left-justified block-style paragraphs by
using .lp instead of .pp, as demonstrated by the next paragraph.

Sometimes you want to use paragraphs that have the body indented,
and the first line exdented (opposite of indented) with a label. This
can be done with the .ip request. A word specified on the same line
as .ip is printed in the margin, and the body is lined up at a prespeci-
fied position (normally five spaces). For example, the input:

.ip one
This is the first paragraph.
Notice how the first line
of the resulting paragraph lines up
with the other lines in the paragraph,
.ip two
And here we are at the second paragraph already.
You may notice that the argument to .ip
appears
in the margin,
.lp

We can continue text...

produces as output:

10- S Programmer's Guide: CTIX Supplement

one This is the first paragraph. Notice how the first line of the
resulting paragraph lines up with the other lines in the para-
graph.

two And here we are at the second paragraph already. You may
notice that the argument to .ip appears in the margin.

We can continue text without starting a new indented paragraph by
using the .lp request.

If you have spaces in the label of a .ip request, you must use an
"unpaddable space" instead of a regular space. This is typed as a
backslash character (" \ ") followed by a space. For example, to print
the label "Part 1", enter:

.ip " Par t \ 1"

If a label of an indented paragraph (that is, the argument to .ip) is
longer than the space allocated for the label, .ip will begin a new line
after the label. For example, the input:

.ip longlabel
This paragraph had a long label.
The first character of text on the first line
will not line up with the text on second and subsequent lines,
although they will line up with each other.

will produce:

longlabel
This paragraph had a long label. The first character of text on
the first line will not line up with the text on second and subse-
quent lines, although they will line up with each other.

It is possible to change the size of the label by using a second argu-
ment which is the size of the label. For example, the above example
could be done correctly by saying:

.ip longlabel 10

which will make the paragraph indent 10 spaces for this paragraph
only. If you have many paragraphs to indent all the same amount,
use the number register ii. For example, to leave one inch of space
for the label, type:

.nr ii li

somewhere before the first call to .ip. Refer to the reference manual
for more information.

Writing Papers with NROFF Using -me 11--15

If .ip is used with no argument at all no hanging tag will be printed.
For example, the input:

.ip [a]
This is the first paragraph of the example.
We have seen this sort of example before,
•ip
This paragraph is lined up with the previous paragraph,
but it has no tag in the margin.

produces as output:

[a] This is the first paragraph of the example. We have seen this
sort of example before.

This paragraph is lined up with the previous paragraph, but it
has no tag in the margin.

A special case of .ip is .np, which automatically numbers paragraphs
sequentially from 1. The numbering is reset at the next .pp, .lp, or
.sh (to be described in the next section) request. For example, the
input:

.np
This is the first point,
.np
This is the second point.
Points are just regular paragraphs
which are given sequence numbers automatically
by the .np request.
•PP
This paragraph will reset numbering by .np.
.np
For example,
we have reverted to numbering from one now.

generates:

(1) This is the first point.

(2) This is the second point. Points are just regular paragraphs
which are given sequence numbers automatically by the .np
request.

This paragraph will reset numbering by .np.

(1) For example, we have reverted to numbering from one now.

The .bu request gives lists of this sort that are identified with bullets
rather than numbers. The paragraphs are also crunched together.

10- S Programmer's Guide: CTIX Supplement

For example, the input:

.bu
One egg yolk
.bu
One tablespoon cream or top milk
.bu
Salt, cayenne, and lemon juice to taste
.bu

A generous two tablespoonfuls of butter

produces3:

• One egg yolk
• One tablespoon cream or top milk
• Salt, cayenne, and lemon juice to taste
• A generous two tablespoonfuls of butter

5.2 Section Headings

Section numbers (such as the ones used in this document) can be
automatically generated using the .sh request. You must tell .sh the
depth of the section number and a section title. The depth specifies
how many numbers are to appear (separated by decimal points) in the
section number. For example, the section number 4.2.5 has a depth
of three.

Section numbers are incremented in a fairly intuitive fashion. If you
add a number (increase the depth), the new number starts out at one.
If you subtract section numbers (or keep the same number) the final
number is incremented. For example, the input:

3. By the way, if you put the first three ingredients in a a heavy, deep pan and
whisk the ingredients madly over a medium flame (never taking your hand off
the handle of the pot) until the mixture reaches the consistency of custard (just
a minute or two), then mix in the butter off-heat , you will have a wonderful
Hollandaise sauce.

Writing Papers with NROFF Using -me 11--17

.sh 1 "The Preprocessor"

.sh 2 "Basic Concepts"

.sh 2 "Control Inputs"

.sh 3

.sh 3

.sh 1 "Code Generation"

.sh 3

produces as output the result:

1. The Preprocessor
1.1. Basic Concepts
1.2. Control Inputs
1.2.1.
1 .2 .2 .
2. Code Generation
2 . 1 . 1 .

You can specify the section number to begin by placing the section
number after the section title, using spaces instead of dots. For
example, the request:

.sh 3 "Another section" 7 3 4

will begin the section numbered 7.3.4; all subsequent .sh requests will
number relative to this number.

There are more complex features which will cause each section to be
indented proportionally to the depth of the section. For example, if
you enter:

.nr si N

each section will be indented by an amount N. N must have a scaling
factor attached, that is, it must be of the form Nx, where JC is a char-
acter telling what units N is in. Common values for x are i for inches,
c for centimeters, and n for ens (the width of a single character). For
example, to indent each section one-half inch, type:

.nr si 0.5i

After this, sections will be indented by one-half inch per level of
depth in the section number.

Section headers without automatically generated numbers can be done
using:

.uh "Title"

10- S Programmer's Guide: CTIX Supplement

which will do a section heading, but will put no number on the sec-
tion.

5.3 Parts of the Basic Paper

There are some requests which assist in setting up papers. The .tp
request initializes for a title page. There are no headers or footers on
a title page, and unlike other pages you can space down and leave
blank space at the top. For example, a typical title page might
appear as:

•tp
.sp 2i
- O C
T H E G R O W T H OF TOENAILS
IN UPPER PRIMATES
.sp
by
.sp
Frank N. Furter
•)1

.bp

Writing Papers with NROFF Using -me 11--19

12
Typesetting Mathematics — User's Guide

(Second Edition)

Abstract

This is the user's guide for a system for typesetting mathematics,
using the phototypesetters on the UNIX and GCOS operating systems.

Mathematical expressions are described in a language designed to be
easy to use by people who know neither mathematics nor typesetting.
Enough of the language to set in-line expressions like
lim (tan x)sin2jr = 1 or display equations like

X-tt/2

G (z) „!n C(z exp

Sjr
2!

S> z'

t, +21- +
,4,20
- mi =

II

5 2 z 2 5-?z4

l + + — — +
2 2 :-2!

k
Si

l*'Jt i! 2k'k7 m -k,„!

can be learned in an hour or so.

The language interfaces directly with the phototypesetting language
T R O F F , so mathematical expressions can be embedded in the running
text of a manuscript, and the entire document produced in one pro-
cess. This user's guide is an example of its output.

Source: Brian W. Kernighan and Lorinda L. Cherry1, Typesetting Mathematics —
User's Guide (Second Edition) (Murray Hill, N . J . : Bell Laboratories, 1978).

Typesetting Mathematics — User's Guide (Second Edition) 12—1

The same language may be used with the UNIX formatter NROFF to
set mathematical expressions on DASI and GSI terminals and Model
37 teletypes.

1. Introduction

EON is a program for typesetting mathematics on the Graphics Sys-
tems phototypesetters on the UNIX operating system. The EON
language was designed to be easy to use by people who know neither
mathematics nor typesetting. Thus EON knows relatively little about
mathematics. In particular, mathematical symbols like + , —, x ,
parentheses, and so on have no special meanings. EON is quite happy
to set garbage (but it will look good).

EQN works as a preprocessor for the typeset ter f o r m a t t e r , TROFF[l] ,
so t he n o r m a l m o d e of opera t ion is to p repa re a d o c u m e n t with both
ma thema t i c s and ord inary text in terspersed, and let EQN set the
ma thema t i c s while TROFF does t he body of the text.

On UNIX, EQN will also produce mathematics on DASI and GSI ter-
minals and on Model 37 teletypes. The input is identical, but you
have to use the programs NEQN and NROFF instead of EQN and
TROFF. Of course, some things won't look as good because terminals
don't provide the variety of characters, sizes and fonts that a
typesetter does, but the output is usually adequate for proofreading.

T o use EQN on UNIX,

eqn files I troff

2. Displayed Equations

To tell EQN where a mathematical expression begins and ends, we
mark it with lines beginning .EQ and .EN. Thus if you type the lines

.EQ
x=y+z
.EN

your output will look like

10- S Programmer's Guide: CTIX Supplement

x =y +z

The .EQ and .EN are copied through untouched; they are not other-
wise processed by EQN. This means that you have to take care of
things like centering, numbering, and so on yourself. The most com-
mon way is to use the TROFF and NROFF macro package package
" - m s " developed by M. E. Lesk[3], which allows you to center,
indent, left-justify and number equations.

With the " — ms" package, equations are centered by default. To
left-justify an equation, use EQ I instead of .EQ. To indent it, use
.EQ I. Any of these can be followed by an arbitrary 'equation
number' which will be placed at the right margin. For example, the
input

.EQ I (3.1a)
x = f(y/2) + y/2
.EN

produces the output

x=f(y/2)+y/2 (3.1a)

There is also a shorthand notation so in-line expressions like -IT,2 can
be entered without .EQ and EN. We will talk about it in section 19.

3. Input Spaces

Spaces and newlines within an expression are thrown away by EQN.
(Normal text is left absolutely alone.) Thus between .EQ and .EN,

x=y+z

and

x = y + z

and

x = y
+ z

and so on all produce the same output

x = v + z

You should use spaces and newlines freely to make your input

Typesetting Mathematics — User's Guide (Second Edition) 12—3

equations readable and easy to edit. In particular, very long lines are
a bad idea, since they are often hard to fix if you make a mistake.

4. Output Spaces

To force extra spaces into the output, use a tilde " ~ " for each space
you want:

x~=~y~+~z

gives
x = y + z

You can also use a circumflex " ~ w h i c h gives a space half the width
of a tilde. It is mainly useful for fine-tuning. Tabs may also be used
to position pieces of an expression, but the tab stops must be set by
TROFF commands.

5. Symbols, Special Names, Greek

EON knows some mathematical symbols, some mathematical names,
and the Greek alphabet. For example,

x=2 pi int sin (omega t)dt

produces
x = 2ir§ sin(cLir)df

Here the spaces in the input are necessary to tell EQN that int, pi, sin
and omega are separate entities that should get special treatment.
The sin, digit 2, and parentheses are set in roman type instead of
italic; pi and omega are made Greek; and int becomes the integral
sign.

When in doubt, leave spaces around separate parts of the input. A
very common error is to type f(pi) without leaving spaces on both
sides of the pi. As a result, EQN does not recognize pi as a special
word, and it appears a s / (p i) instead of / (I T) .

A complete list of EQN names appears in section 23. Knowledgeable
users can also use TROFF four-character names for anything EQN
doesn't know about, like \(bs for the Bell System sign

10- S Programmer's Guide: CTIX Supplement

6. Spaces, Again

The only way EQN can deduce that some sequence of letters might be
special is if that sequence is separated from the letters on either side
of it. This can be done by surrounding a special word by ordinary
spaces (or tabs or newlines), as we did in the previous section.

You can also make special words stand out by surrounding them with
tildes or circumflexes:

x~ = ~2~ pi~int~sin~ (~ omega" t~)~dt

is much the same as the last example, except that the tildes not only
separate the magic words like sin, omega, and so on, but also add
extra spaces, one space per tilde:

x = 2 tt f sin (co t) dt

Special words can also be separated by braces -C > and double quotes
" . . . " , which have special meanings that we will see soon.

7. Subscripts and Superscripts

Subscripts and superscripts are obtained with the words sub and sup.

x sup 2 + y sub k

gives

EQN takes care of all the size changes and vertical motions needed to
make the output look right. The words sub and sup must be sur-
rounded by spaces; x sub2 will give you xsub2 instead of x2. Further-
more, don't forget to leave a space (or a tilde, etc.) to mark the end
of a subscript or superscript. A common error is to say something
like

y = (x sup 2)+l

which causes

_ v = (x2)+.

instead of the intended

Typesetting Mathematics — User's Guide (Second Edition) 12—5

y =(*2)+i

Subscripted subscripts and superscripted superscripts also work:

x sub i sub 1

is

A subscript and superscript on the same thing are printed one above
the other if the subscript comes first:

x sub i sup 2

is

Other than this special case, sub and sup group to the right, so
x sup y sub z means xy', not xy

 z.

8. Braces for Grouping

Normally, the end of a subscript or superscript is marked simply by a
blank (or tab or tilde, etc.) What if the subscript or superscript is
something that has to be typed with blanks in it? In that case, you
can use the braces -C and > to mark the beginning and end of the sub-
script or superscript:

e sup -Ci omega t>

is
e i "><

Rule: Braces can always be used to force EQN to treat something as a
unit, or just to make your intent perfectly clear. Thus:

x sub -Ci sub 1> sup 2

is
2

' i

with braces, but

x sub i sub 1 sup 2

is

10- S Programmer's Guide: CTIX Supplement

which is rather different.

Braces can occur within braces if necessary:

e sup -Ci pi sup -Crho + !>>

The general rule is that anywhere you could use some single thing like
x, you can use an arbitrarily complicated thing if you enclose it in
braces. EQN will look after all the details of positioning it and mak-
ing it the right size.

In all cases, make sure you have the right number of braces. Leaving
one out or adding an extra will cause EQN to complain bitterly.

Occasionally you will have to print braces. To do this, enclose them
in double quotes, like " { " . Quoting is discussed in more detail in
section 14.

9. Fractions

To make a fraction, use the word over.

a+b over 2c —1

gives
a +b

2c

The line is made the right length and positioned automatically.
Braces can be used to make clear what goes over what:

-(alpha + beta} over -Csin (x)}

is
ct + ft

s in(*)

What happens when there is both an over and a sup in the same
expression? In such an apparently ambiguous case, EQN does the sup
before the over, so

— b sup 2 over pi

Typesetting Mathematics — User's Guide (Second Edition) 12—7

2

IS instead of - b 71 The rules which decide which operation is
TT

done first in cases like this are summarized in section 23. When in
doubt, however, use braces to make clear what goes with what.

CAUTION

Square roots of tall quantities look lousy, because a root-sign
big enough to cover the quantity is too dark and heavy:

sqrt -Ca sup 2 over b sub 2>

is

Big square roots are generally better written as something to the
power M>:

10. Square Roots

To draw a square root, use sqrt:

sqrt a+b + 1 over sqrt -Cax sup 2 +bx+c>

is
v ^ T b + 1

v ax 2+ bx +c

(a2/b 2 f

which is

(a sup 2 /b sub 2) sup half

12—8 Programmer's Guide: CTIX Supplement

11. Summation, Integral, Etc.

Summations, integrals, and similar constructions are easy:

sum from i=0 to -Ci= inf> x sup i

produces

i =0

Notice that we used braces to indicate where the upper part i'=°°
begins and ends. No braces were necessary for the lower part i'=0,
because it contained no blanks. The braces will never hurt, and if the
from and to parts contain any blanks, you must use braces around
them.

The from and to parts are both optional, but if both are used, they
have to occur in that order.

Other useful characters can replace the sum in our example:

int prod union inter

become, respectively,

/ n u n

Since the thing before the from can be anything, even something in
braces, from-to can often be used in unexpected ways:

lim from -Cn — > inf> x sub n =0

is
lirru,, =0

12. Size and Font Changes

By default, equations are set in 10-point type with standard
mathematical conventions to determine what characters are in roman
and what in italic. Although EQN makes a valiant attempt to use
esthetically pleasing sizes and fonts, it is not perfect. To change sizes
and fonts, use size n and roman, italic, bold and fat. Like sub and
sup, size and font changes affect only the thing that follows them, and
revert to the normal situation at the end of it. Thus

Typesetting Mathematics — User's Guide (Second Edition) 12—9

bold x y

is
X V

and

size 14 bold x = y +
size 14 {alpha + beta>

gives
X = y + a + P

As always, you can use braces if you want to affect something more
complicated than a single letter. For example, you can change the
size of an entire equation by

size 12 -C ... >

Legal sizes which may follow size are 6, 7, 8, 9, 10, 11, 12, 14, 16,
18, 20, 22, 24, 28, 36. You can also change the size by a given
amount; for example, you can say size +2 to make the size two points
bigger, or size —3 to make it three points smaller. This has the
advantage that you don't have to know what the current size is.

If you are using fonts other than roman, italic and bold, you can say
font X where X is a one character T R O F F name or number for the
font. Since EQN is tuned for roman, italic and bold, other fonts may
not give quite as good an appearance.

The fat operation takes the current font and widens it by overstriking:
fat grad is V and fat -Cx sub i j is xi.

If an entire document is to be in a non-standard size or font, it is a
severe nuisance to have to write out a size and font change for each
equation. Accordingly, you can set a "global" size or font which
thereafter affects all equations. At the beginning of any equation,
you might say, for instance,

.EQ
gsize 16
gfont R

.EN

to set the size to 16 and the font to roman thereafter. In place of R,
you can use any of the TROFF font names. The size after gsize can
be a relative change with + or —.

10- S Programmer's Guide: CTIX Supplement

Generally, gsize and gfont will appear at the beginning of a document
but they can also appear thoughout a document: the global font and
size can be changed as often as needed. For example, in a footnote*
you will typically want the size of equations to match the size of the
footnote text, which is two points smaller than the main text. Don't
forget to reset the global size at the end of the footnote.

13. Diacritical Marks

To get funny marks on top of letters, there are several words:

x dot X

x dotdot X

x hat X

x tilde X

x vec X

x dyad X

x bar X

x under £

The diacritical mark is placed at the right height. The bar and under
are made the right length for the entire construct, as in x+y +z ; other
marks are centered.

14. Quoted Text

Any input entirely within quotes (" . . . ") is not subject to any of the
font changes and spacing adjustments normally done by the equation
setter. This provides a way to do your own spacing and adjusting if
needed:

italic "sin(x)" + sin (x)

is
sin(x) + sin(.r)

X Like this one, in which we have a few random expressions like x, and ir2. The
sizes for these were set by the command gsize -2.

Typesetting Mathematics — User's Guide (Second Edition) 12—11

Quotes are also used to get braces and other EQN keywords printed:

" { size alpha >"

is
•C size alpha >

and

roman " { size alpha > "

is
•C size a l p h a >

The construction " " is often used as a place-holder when grammati-
cally EQN needs something, but you don't actually want anything in
your output. For example, to make 2He, you can't just type sup 2
roman He because a sup has to be a superscript on something. Thus
you must say

"" sup 2 roman He

To get a literal quote use " V " . TROFF characters like \(bs can
appear unquoted, but more complicated things like horizontal and
vertical motions with \h and \ v should always be quoted. (If you've
never heard of \h and \ v , ignore this section.)

15. Lining Up Equations

Sometimes it's necessary to line up a series of equations at some hor-
izontal position, often at an equals sign. This is done with two opera-
tions called mark and lineup.

The word mark may appear once at any place in an equation. It
remembers the horizontal position where it appeared. Successive
equations can contain one occurrence of the word lineup. The place
where lineup appears is made to line up with the place marked by the
previous mark if at all possible. Thus, for example, you can say

.EQ I
x+y mark = z
.EN
.EQ I
x lineup = 1
.EN

10- S Programmer's Guide: CTIX Supplement

to produce
x +y =z

X = 1

For reasons too complicated to talk about, when you use EQN and
" - m s " , use either EQ I or .EQ L. Mark and lineup don't work with
centered equations. Also bear in mind that mark doesn't look ahead;

x mark =1

x+y lineup =z
isn't going to work, because there isn't room for the x+y part after
the mark remembers where the x is.

16. Big Brackets, Etc.

To get big brackets [], braces { >, parentheses (), and bars
around things, use the left and right commands:

left -C a over b + 1 right >
left (c over d right)

+ left [e right]

is

The resulting brackets are made big enough to cover whatever they
enclose. Other characters can be used besides these, but the are not
likely to look very good. One exception is the floor and ceiling char-
acters:

left floor x over y right floor
<= left ceiling a over b right ceiling

produces

X a -

y b

Several warnings about brackets are in order. First, braces are typi-
cally bigger than brackets and parentheses, because they are made up
of three, five, seven, etc., pieces, while brackets can be made up of
two, three, etc. Second, big left and right parentheses often look
poor, because the character set is poorly designed.

Typesetting Mathematics — User's Guide (Second Edition) 12—13

The right part may be omitted: a "left something" need not have a
corresponding "right something". If the right part is omitted, put
braces around the thing you want the left bracket to encompass. Oth-
erwise, the resulting brackets may be too large.

If you want to omit the left part, things are more complicated,
because technically you can't have a right without a corresponding
left. Instead you have to say

left " " right)

for example. The left " " means a "left nothing". This satisfies the
rules without hurting your output.

17. P i les

There is a general facility for making vertical piles of things; it comes
in several flavors. For example:

A ~ = ~ left [
pile -C a above b above c >
~ ~ pile -C x above y above z >

right]

will make

a x
b y
c z

The elements of the pile (there can be as many as you want) are cen-
tered one above another, at the right height for most purposes. The
keyword above is used to separate the pieces; braces are used around
the entire list. The elements of a pile can be as complicated as
needed, even containing more piles.

Three other forms of pile exist: [pile makes a pile with the elements
left-justified; rpile makes a right-justified pile; and epile makes a cen-
tered pile, just like pile. The vertical spacing between the pieces is
somewhat larger for /-, r- and cpiles than it is for ordinary piles.

10- S Programmer's Guide: CTIX Supplement

roman sign (x)~ = ~
left -C

Ipile -CI alxjve 0 above -1>
~~ lpile
-Cif~x>0 above if~x=0 above if~x<0>

makes

signU)
: i f jt > 0
0 if ^ =0
- 1 if x <0

Notice the left brace without a matching right one.

18. Matrices

It is also possible to make matrices. For example, to make a neat
array like

x, x ^
n

V , V

you have to type

matrix -C
ccol -C x sub i above y sub i >
ccol { x sup 2 above v sup 2 >

>
This produces a matrix with two centered columns. The elements of
the columns are then listed just as for a pile, each element separated
by the word above. You can also use Icol or rcol to left or right
adjust columns. Each column can be separately adjusted, and there
can be as many columns as you like.

The reason for using a matrix instead of two adjacent piles, by the
way, is that if the elements of the piles don't all have the same
height, they won't line up properly. A matrix forces them to line up,
because it looks at the entire structure before deciding what spacing
to use.

A word of warning about matrices— each column must have the same
number of elements in it. The world will end if you get this wrong.

Typesetting Mathematics — User's Guide (Second Edition) 12—15

19. Shorthand for In-line Equations

In a mathematical document, it is necessary to follow mathematical
conventions not just in display equations, but also in the body of the
text, for example by making variable names like x italic. Although
this could be done by surrounding the appropriate parts with .EQ and
.EN, the continual repetition of .EQ and .EN is a nuisance. Further-
more, with ' —ms', .EQ and .EN imply a displayed equation.

EQN provides a shorthand for short in-line expressions. You can
define two characters to mark the left and right ends of an in-line
equation, and then type expressions right in the middle of text lines.
To set both the left and right characters to dollar signs, for example,
add to the beginning of your document the three lines

.EQ
delim $$
.EN

Having done this, you can then say things like

Let Salpha sub i$ be the primary variable, and let SbetaS be zero.
Then we can show that $x sub 1$ is $>=0$.

This works as you might expect—spaces, newlines, and so on are sig-
nificant in the text, but not in the equation part itself. Multiple equa-
tions can occur in a single input line.

Enough room is left before and after a line that contains in-line
n

expressions that something like does not interfere with the lines
; = i

surrounding it.

To turn off the delimiters,

.EQ
delim off
.EN

CAUTION

Don't use braces, tildes, circumflexes, or double quotes as
delimiters— chaos will result.

10- S Programmer's Guide: CTIX Supplement

20. Definitions

E Q N p r o v i d e s a f a c i l i t y s o y o u c a n g i v e a f r e q u e n t l y - u s e d s t r i n g o f

c h a r a c t e r s a n a m e , a n d t h e r e a f t e r j u s t t y p e t h e n a m e i n s t e a d o f t h e

w h o l e s t r i n g . F o r e x a m p l e , i f t h e s e q u e n c e

x sub i sub 1 + y sub i sub 1

appears repeatedly throughout a paper, you can save re-typing it each
time by defining it like this:

define xy 'x sub i sub 1 + y tub i sub 1'

This makes xy a shorthand for whatever characters occur between the
single quotes in the definition. You can use any character instead of
quote to mark the ends of the definition, so long as it doesn't appear
inside the definition.

Now you can use xy like this:

.EQ
f(x) = xy ...
.EN

and so on. Each occurrence of xy will expand into what it was
defined as. Be careful to leave spaces or their equivalent around the
name when you actually use it, so EQN will be able to identify it as
special.

There are several things to watch out for. First, although definitions
can use previous definitions, as in

. E Q
define xi ' x sub i '
define xil ' xi sub 1 '
.EN

don't define something in terms of itself. A favorite error is to say

define X ' roman X '

This is a guaranteed disaster, since X is now defined in terms of
itself. If you say

define X ' roman " X " '

however, the quotes protect the second X, and everything works fine.

EQN keywords can be redefined. You can make /' mean over by say-
ing

Typesetting Mathematics — User's Guide (Second Edition) 12 —17

d e f i n e / ' o v e r '

o r r e d e f i n e over a s / w i t h

d e f i n e o v e r ' / '

If you need different things to print on a terminal and on the
typesetter, it is sometimes worth defining a symbol differently in
NEON and EON. This can be done with ndefine and tdefine. A defin-
ition made with ndefine only takes effect if you are running NEQN; if
you use tdefine, the definition only applies for EON. Names defined
with plain define apply to both EON and NEON.

21. Local Motions

Although EON tries to get most things at the right place on the paper,
it isn't perfect, and occasionally you will need to tune the output to
make it just right. Small extra horizontal spaces can be obtained with
tilde and circumflex. You can also say back n and fwd n to move
small amounts horizontally, n is how far to move in 1/100's of an em
(an em is about the width of the letter 'm' .) Thus back 50 moves
back about half the width of an m. Similarly you can move things up
or down with up n and down n. As with sub or sup, the local motions
affect the next thing in the input, and this can be something arbi-
trarily complicated if it is enclosed in braces.

22. A Large Example

Here is the complete source for
abstract of this guide.

the three display equations in the

. E Q I
G(z)~mark =~ e sup -C In ~ G(z) >
~ = ~ exp left (
sum from k> = l -CS sub k z sup k> over k r igh t)
~ = ~ prod from k> = l e sup {S sub k z sup k /k>
.EN
. E Q I
lineup = left (1 + S sub 1 z +
-C S sub 1 sup 2 z sup 2 > over 2! + ... r i gh t)

12—18 Programmer's Guide: CTIX Supplement

left (1+ { S sub 2 z sup 2 > over 2
+ -C S sub 2 sup 2 z sup 4 > over -C 2 sup 2 cdot 2! >
+ ... r i gh t) ...
.EN
.EQ I
lineup = sum from m>=0 left (
sum from
pile -C k sub 1 ,k sub 2 , . . . , k sub m >=0
above
k sub 1 +2k sub 2 + ... +mk sub m =m>
-C S sub 1 sup -Ck sub 1> > ovi." <1 sup k sub 1 k sub 1 ! >
-C S sub 2 sup -Ck sub 2> > over <2 sup k sub 2 k sub 2 ! >

{ S sub m sup -Ck sub m> > over -Cm sup k sub m k sub m ! >
right) z sup m
.EN

23. Keywords, Precedences, Etc.

If you don't use braces, EQN will do operations in the order shown in
this list.

dyad vec under bar tilde hat dot dotdot
fwd back down up
fat roman italic bold size
sub sup sqrt over

from to

These operations group to the left:

over sqrt left right

All others group to the right.
Digits, parentheses, brackets, punctuation marks, and these
mathematical words are converted to Roman font when encountered:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re Im and if for det

Typesetting Mathematics — User's Guide (Second Edition) 12—19

These character sequences are recognized and translated as shown.

> = - approx ~

< = < nothing
= cdot
i= times X

• — ± del V
— > - grad V
< — « -

< < « ,..., , .
> > » sum 2
inf
partial
half

00

3
%

int
prod

I

n
prime union

inter
u
n

To obtain Greek letters, simply spell them out in whatever case you
want:

D E L T A A iota L

G A M M A r kappa K

LAMBDA A lambda A.
O M E G A n mu M-
PHI <t> nu V

PI n omega 0)

PSI omicron o
SIGMA 2 phi 4>
T H E T A 0 P' 77
UPSILON Y psi <!»
XI z? rho p
alpha a sigma a
beta p tau T

chi X theta e
delta 5 upsilon D
epsilon e xi S
eta Tl zeta i
gamma 7

10- S Programmer's Guide: CTIX Supplement

These are all the words known to EQN (except for characters with
names), together with the section where they are discussed.

above 17, 18 lpile 17
back 21 mark 15
bar 13 matrix 18
bold 12 ndefine 20
ccol 18 over 9
col 18 pile 17
cpile 17 rcol 18
define 20 right 16
delim 19 roman 12
dot 13 rpile 17
dotdot 13 size 12
down 21 sqrt 10
dyad 13 sub 7
fat 12 sup 7
font 12 tdefine 20
from 11 tilde 13
fwd 21 to 11
gfont 12 under 13
gsize 12 up 21
hat 13 vec 13
italic 12 - - 4, 6
lcol 18 { ' } 8
left 16 If II 8, 14
lineup 15

24. Troubleshooting

If you make a mistake in an equation, like leaving out a brace (very
common) or having one too many (very common) or having a sup
with nothing before it (common), EQN will tell you with the message

syntax error between lines x and y, file z

where x and y are approximately the lines between which the trouble
occurred, and z is the name of the file in question. The line numbers
are approximate—look nearby as well. There are also self-
explanatory messages that arise if you leave out a quote or try to run
EQN on a non-existent file.

Typesetting Mathematics — User's Guide (Second Edition) 12—21

If you want to check a document before actually printing it (on UNIX
only),

eqn files >/dev/null

will throw away the output but print the messages.

If you use something like dollar signs as delimiters, it is easy to leave
one out. This causes very strange troubles. The program checkeq
checks for misplaced or missing dollar signs and similar troubles.

In-line equations can only be so big because of an internal buffer in
TROFF. If you get a message "word overflow", you have exceeded
this limit. If you print the equation as a displayed equation this mes-
sage will usually go away. The message "line overflow" indicates you
have exceeded an even bigger buffer. The only cure for this is to
break the equation into two separate ones.

On a related topic, HON does not break equations by itself—you must
split long equations up across multiple lines by yourself, marking each
by a separate .EQEN sequence. EQN does warn about equations
that are too long to fit on one line.

25. Use on UNIX

To print a document that contains mathematics on the UNIX
typesetter,

eqn files I troff

If there are any TROFF options, they go after the TROFF part of the
command. For example,

eqn files I troff -ms

A compatible version of EQN can be used on devices like teletypes
and DASI and GSI terminals which have half-line forward and reverse
capabilities. To print equations on a Model 37 teletype, for example,
use

neqn files I nroff

The language for equations recognized by NEQN is identical to that of
EQN, although of course the output is more restricted.

10- S Programmer's Guide: CTIX Supplement

To use a GSI or DASI terminal as the output device,

neqn files I nroff -TA

where A is the terminal type you are using, such as 300 or 300S.

EQN and NEON can be used with the TBL program[2] for setting
tables that contain mathematics. Use TBL before [N]EQN, like this:

tbl files I eqn I troff
tbl files I neqn I nroff

26. Acknowledgments

We are deeply indebted to J. F. Ossanna, the author of TROFF, for
his willingness to extend TROFF to make our task easier, and for his
continuous assistance during the development and evolution of EON.
We are also grateful to A. V. Aho for advice on language design, to
S. C. Johnson for assistance with the YACC compiler-compiler, and to
all the EON users who have made helpful suggestions and criticisms.

References

[1] J. F. Ossanna, "NROFF/TROFF User's Manual ," Bell Labora-
tories Computing Science Technical Report #54, 1976.

[2] M. E. Lesk, "Typing Documents on UNIX," Bell Laboratories,
1976.

[3] M. E. Lesk, "TBI. — A Program for Setting Tables," Bell
Laboratories Computing Science Technical Report #49, 1976.

Typesetting Mathematics — User's Guide (Second Edition) 12—23

13
Tbl — A Program to Format Tables

Abstract

Tbl is a document formatting preprocessor for troff or nroff which
makes even fairly complex tables easy to specify and enter. It is
available on the PDP-11 U N I X system and on Honeywell 6000 GCOS.
Tables are made up of columns which may be independently cen-
tered, right-adjusted, left-adjusted, or aligned by decimal points.
Headings may be placed over single columns or groups of columns.
A table entry may contain equations, or may consist of several rows
of text. Horizontal or vertical lines may be drawn as desired in the
table, and any table or element may be enclosed in a box. For exam-
ple:

1970 Federal Budget Transfers
(i n b i l l i ons o f do l la rs)

State Taxes
collected

Money
spent Net

New York 22.91 21.35 -1 .56
New Jersey- 8.33 6.96 -1 .37
Connecticut 4.12 3.10 -1 .02
Maine 0.74 0.67 -0 .07
California 22.29 22.42 +0.13
New Mexico 0.70 1.49 +0.79
Georgia 3.30 4.28 +0.98
Mississippi 1.15 2.32 + 1.17
Texas 9.33 11.13 + 1.80

Source: M. H. Lesk, Tbl - A Program to Format Tables (Murray Hi l l , N.J.: Bell
L a b o r a t o r i e s , 1979) .

Tbl — A Program to Format Tables 13—1

Introduction

Tbl turns a simple description of a table into a troff or nroff [1] pro-
gram (list of commands) that prints the table. Tbl may be used on
the PDP-11 UNIX [2] system and on the Honeywell 6000 GCOS system.
It attempts to isolate a portion of a job that it can successfully handle
and leave the remainder for other programs. Thus tbl may be used
with the equation formatting program eqn [3] or various layout macro
packages [4,5,6], but does not duplicate their functions.

This memorandum is divided into two parts. First we give the rules
for preparing tbl input; then some examples are shown. The descrip-
tion of rules is precise but technical, and the beginning user may
prefer to read the examples first, as they show some common table
arrangements. A section explaining how to invoke tbl precedes the
examples. To avoid repetition, henceforth read troff as " t r o f f or
nroff:'

The input to tbl is text for a document, with tables preceded by a
" . T S " (table start) command and followed by a " . T E " (table end)
command. Tbl processes the tables, generating troff formatting com-
mands, and leaves the remainder of the text unchanged. The " . T S "
and " . T E " lines are copied, too, so that troff page layout macros
(such as the memo formatting macros [4]) can use these lines to del-
imit and place tables as they see fit. In particular, any arguments on
the " . T S " or " . T E " lines are copied but otherwise ignored, and may
be used by document layout macro commands.

The format of the input is as follows:

text
.TS
table
. T E
text
.TS
table
. T E
text

where the format of each table is as follows:

10- S Programmer's Guide: CTIX Supplement

.TS
options ;
format .
data
.TE

Each table is independent, and must contain formatting information
followed by the data to lie entered in the table. The formatting infor-
mation, which describes the individual columns and rows of the table,
may be preceded by a few options that affect the entire table. A
detailed description of tables is given in the next section.

Input Commands

As indicated above, a table contains, first, global options, then a for-
mat section describing the layout of the table entries, and then the
data to be printed. The format and data are always required, but not
the options. The various parts of the table are entered as follows:

1) OPTIONS. There may be a single line of options affecting the
whole table. If present, this line must follow the .TS line
immediately and must contain a list of option names separated
by spaces, tabs, or commas, and must be terminated by a semi-
colon. The allowable options are:

centcr center the table (default is left-adjust);

expand make the table as wide as the current line length;

box enclose the table in a box;

allbox enclose each item in the table in a box;

doublebox enclose the table in two boxes;

tab (A) use A instead of tab to separate data items.

linesize (n) set lines or rules (e.g. from box) in n point type;

delim (xy) recognize x and y as the eqn delimiters.

The tbl program tries to keep boxed tables on one page by issu-
ing appropriate "need" (.ne) commands. These requests are
calculated from the number of lines in the tables, and if there
are spacing commands embedded in the input, these requests
may be inaccurate; use normal troff procedures, such as keep-
release macros, in that case. The user who must have a multi-

Tbl — A Program to Format Tables 13—3

p a g e b o x e d t a b l e s h o u l d u s e m a c r o s d e s i g n e d f o r t h i s p u r p o s e ,

a s e x p l a i n e d b e l o w u n d e r " U s a g e . "

2) FORMAT. The format section of the table specifies the layout
of the columns. Each line in this section corresponds to one
line of the table (except that the last line corresponds to all fol-
lowing lines up to the next .T&, if any — see below), and each
line contains a key-letter for each column of the table. It is
good practice to separate the key letters for each column by
spaces or tabs. Each key-letter is one of the following:

L or 1 to indicate a left-adjusted column entry;

R or r to indicate a right-adjusted column entry;

C or c to indicate a centered column entry;

N or n to indicate a numerical column entry, to be aligned
with other numerical entries so that the units digits
of numbers line up;

A or a to indicate an alphabetic subcolumn; all correspond-
ing entries are aligned on the left, and positioned so
that the widest is centered within the column (see
example on page 21);

S or s to indicate a spanned heading, i.e. to indicate that
the entry from the previous column continues across
this column (not allowed for the first column, obvi-
ously); or

to indicate a vertically spanned heading, i.e. to indi-
cate that the entry from the previous row continues
down through this row. (Not allowed for the first
row of the table, obviously).

When numerical alignment is specified, a location for the
decimal point is sought. The rightmost dot (.) adjacent to a
digit is used as a decimal point; if there is no dot adjoining a
digit, the rightmost digit is used as a units digit; if no alignment
is indicated, the item is centered in the column. However, the
special non-printing character string \ & may be used to over-
ride unconditionally dots and digits, or to align alphabetic data;
this string lines up where a dot normally would, and then disap-
pears from the final output. In the example below, the items
shown at the left will be aligned (in a numerical column) as
shown on the right:

13—4 Programmer's Guide: CTIX Supplement

13
4 .2
26 .4 .12
abc
a b c \ &
43X&3.22
749.12

13
4 .2

26 .4 .12
abc

abc
433.22

749.12

NOTE

If numerical data are used in the same column with
wider L or r type table entries, the widest number is cen-
tered relative to the wider L or r items (L is used instead
of 1 for readability; they have the same meaning as key-
letters). Alignment within the numerical items is
preserved. This is similar to the behavior of a type data,
as explained above. However, alphabetic subcolumns
(requested by the a key-letter) are always slightly
indented relative to L items; if necessary, the column
width is increased to force this. This is not true for n
type entries.

CAUTION

The n and a items should not be used in the same
column.

For readability, the key-letters describing each column should
be separated by spaces. The end of the format section is indi-
cated by a period. The layout of the key-letters in the format
section resembles the layout of the actual data in the table.
Thus a simple format might appear as:

which specifies a table of three columns. The first line of the
table contains a heading centered across all three columns; each
remaining line contains a left-adjusted item in the first column
followed by two columns of numerical data. A sample table in
this format might be:

e s s
I n n .

Tbl — A Program to Format Tables 13—5

Overall title
Item-a 34.22 9.1
Item-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

There are some additional features of the key-letter system:

Horizontal lines — A key-letter may be replaced by
(underscore) to indicate a horizontal line in place of the
corresponding column entry, or by '=' to indicate a dou-
ble horizontal line. If an adjacent column contains a hor-
izontal line, or if there are vertical lines adjoining this
column, this horizontal line is extended to meet the
nearby lines. If any data entry is provided for this
column, it is ignored and a warning message is printed.

Vertical lines — A vertical bar may be placed between
column key-letters. This will cause a vertical line between
the corresponding columns of the table. A vertical bar to
the left of the first key-letter or to the right of the last one
produces a line at the edge of the table. If two vertical
bars appear between key-letters, a double vertical line is
drawn.

Space between columns — A number may follow the key-
letter. This indicates the amount of separation between
this column and the next column. The number normally
specifies the separation in ens (one en is about the width
of the letter 'n').* If the "expand" option is used, then
these numbers are multiplied by a constant such that the
table is as wide as the current line length. The default
column separation number is 3. If the separation is
changed the worst case (largest space requested) governs.

Vertical spanning — Normally, vertically spanned items
extending over several rows of the table are centered in
their vertical range. If a key-letter is followed by t or T,
any corresponding vertically spanned item will begin at
the top line of its range.

M o r e p rec ise ly , an en is a n u m b e r o f po in ts (1 p o i n t = 1/72 i nch) equa l to ha l f
the c u r r e n t type size.

10- S Programmer's Guide: CTIX Supplement

Font changes — A key-letter may be followed by a string
containing a font name or number preceded by the letter f
or F. This indicates that the corresponding column
should be in a different font from the default font (usually
Roman). All font names are one or two letters; a one-
letter font name should be separated from whatever fol-
lows by a space or tab. The single letters B, b, I, and i
are shorter synonyms for fB and f l . Font change com-
mands given with the table entries override these specifi-
cations.

Point size changes — A key-letter may be followed by the
letter p or P and a number to indicate the point size of
the corresponding table entries. The number may be a
signed digit, in which case it is taken as an increment or
decrement from the current point size. If both a point
size and a column separation value are given, one or more
blanks must separate them.

Vertical spacing changes — A key-letter may be followed by
the letter v or V and a number to indicate the vertical line
spacing to be used within a multi-line corresponding table
entry. The number may be a signed digit, in which case
it is taken as an increment or decrement from the current
vertical spacing. A column separation value must be
separated by blanks or some other specification from a
vertical spacing request. This request has no effect unless
the corresponding table entry is a text block (see below).

Column width indication — A key-letter may be followed by
the letter w or W and a width value in parentheses. This
width is used as a minimum column width. If the largest
element in the column is not as wide as the width value
given after the w, the largest element is assumed to be
that wide. If the largest element in the column is wider
than the specified value, its width is used. The width is
also used as a default line length for included text blocks.
Normal troff units can be used to scale the width value; if
none are used, the default is ens. If the width specifica-
tion is a unitless integer the parentheses may be omitted.
If the width value is changed in a column, the last one
given controls.

Equal width columns — A key-letter may be followed by the
letter e or E to indicate equal width columns. All
columns whose key-letters are followed by e or E are

Tbl — A Program to Format Tables 13—7

m a d e t h e s a m e w i d t h . T h i s p e r m i t s t h e u s e r t o g e t a

g r o u p o f r e g u l a r l y s p a c e d c o l u m n s .

NOTE

The order of the above features is immaterial; they
need not be separated by spaces, except as indi-
cated above to avoid ambiguities involving point
size and font changes. Thus a numerical column
entry in italic font and 12 point type with a
minimum width of 2.5 inches and separated by 6
ens from the next column could be specified as

np!2w(2.5i)fI 6

Alternative notation — Instead of listing the format of succes-
sive lines of a table on consecutive lines of the format sec-
tion, successive line formats may be given on the same
line, separated by commas, so that the format for the
example above might have been written:

c s s, 1 n n .

Default — Column descriptors missing from the end of a for-
mat line are assumed to be L. The longest line in the for-
mat section, however, defines the number of columns in
the table; extra columns in the data are ignored silently.

3) DATA. The data for the table are typed after the format.
Normally, each table line is typed as one line of data. Very
long input lines can be broken: any line whose last character is
\ is combined with the following line (and the \ vanishes).
The data for different columns (the table entries) are separated
by tabs, or by whatever character has been specified in the
option tabls option. There are a few special cases:

Troff commands within tables — An input line beginning with
a ' . ' followed by anything but a number is assumed to be
a command to troff and is passed through unchanged,
retaining its position in the table. So, for example, space
within a table may be produced by " . sp" commands in
the data.

13—8 Programmer's Guide: CTIX Supplement

Full width horizontal lines — An input line containing only
the character _ (underscore) or = (equal sign) is taken to
be a single or double line, respectively, extending the full
width of the table.

Single column horizontal lines — An input table entry con-
taining only the character _ or = is taken to be a single or
double line extending the full width of the column Such
lines are extended to meet horizontal or vertical lines
adjoining this column. To obtain these characters expli-
citly in a column, either precede them by \ & or follow
them by a space before the usual tab or newline.

Short horizontal lines — An input table entry containing only
the string _ is taken to be a single line as wide as the
contents of the column. It is not extended to meet
adjoining lines.

Vertically spanned items — An input table entry containing
only the character string \ ~ indicates that the table entry
immediately above spans downward over this row. It is
equivalent to a table format key-letter of ' " ' .

Text blocks — In order to include a block of text as a table
entry, precede it by T{ and follow it by T>. Thus the
sequence

. . . T-f
block of
text
T} . . .

is the way to enter, as a single entry in the table, some-
thing that cannot conveniently be typed as a simple string
between tabs. Note that the T> end delimiter must begin
a line; additional columns of data may follow after a tab
on the same line. See the example on page 17 for an
illustration of included text blocks in a table. If more
than twenty or thirty text blocks are used in a table, vari-
ous limits in the troff program are likely to be exceeded,
producing diagnostics such as "too many string/macro
names" or "too many number registers."

Text blocks are pulled out from the table, processed
separately by trojf, and replaced in the table as a solid
block. If no line length is specified in the block of text
itself, or in the table format, the default is to use
L xc/(N +1) where L is the current line length, C is the

Tbl — A Program to Format Tables 13—9

number of table columns spanned by the text, and N is the
total number of columns in the table. The other parame-
ters (point size, font, etc.) used in setting the block of text
are those in effect at the beginning of the table (including
the effect of the " . T S " macro) and any table format
specifications of size, spacing and font, using the p, v and
f modifiers to the column key-letters. Commands within
the text block itself are also recognized, of course. How-
ever, troff commands within the table data but not within

CAUTION

Although any number of lines may be present in a
table, only the first 200 lines are used in calculating
the widths of the various columns. A multi-page
table of course, may be arranged as several
single-page tables if this proves to be a problem.
Other difficulties with formatting may arise
because, in the calculation of column widths all
table entries are assumed to be in the font and size
being used when the " .TS" command was encoun-
tered, except for font and size changes indicated
(a) in the table format section and (b) within the
table data (as in the entry \ s + 3 \ f I d a t a \ f P \ s 0) .
Therefore, although arbitrary troff requests may be
sprinkled in a table, care must be taken to avoid
confusing the width calculations; use requests such
as ' .ps' with care.

ADDITIONAL COMMAND LINES. If t h e f o r m a t of a t ab le m u s t
be changed after many similar lines, as with sub-headings or
summarizations, the " . T & " (table continue) command can be
used to change column parameters. The outline of such a table
input is:

10- S Programmer's Guide: CTIX Supplement

.TS
options ;
format .
data

,T&
format .
data
,T&

format .
data
.TE

as in the examples on pages 14 and 21. Using this procedure,
each table line can be close to its corresponding format line.

CAUTION

It is not possible to change the number of columns, the
space between columns, the global options such as box,
or the selection of columns to be made equal width.

Usage

On UNIX, tbl can be run on a simple table with the command

tbl input-file I troff

but for more complicated use, where there are several input files, and
they contain equations and ms memorandum layout commands as
well as tables, the normal command would be

tbl file-1 file-2 . . . I eqn I t r o f f - m s

and, of course, the usual options may be used on the troff and eqn
commands. The usage for nroff is similar to that for troff, but only
TELETYPE® Model 37 and Diablo-mechanism (DASI or GSI) termi-
nals can print boxed tables directly.

For the convenience of users employing line printers without adequate
driving tables or post-filters, there is a special -TX command line
option to tbl which produces output that does not have fractional line

Tbl — A Program to Format Tables 13—11

motions in it. The only other command line options recognized by tbl
are -ms and -mm which are turned into commands to fetch the
corresponding macro files; usually it is more convenient to place these
arguments on the troff part of the command line, but they are
accepted by tbl as well.

Note that when eqn and tbl are used together on the same file tbl
should be used first. If there are no equations within tables, either
order works, but it is usually faster to run tbl first, since eqn normally
produces a larger expansion of the input than tbl. However, if there
are equations within tables (using the delim mechanism in eqn), tbl
must be first or the output will be scrambled. Users must also beware
of using equations in n-style columns; this is nearly always wrong,
since tbl attempts to split numerical format items into two parts and
this is not possible with equations. The user can defend against this
by giving the delim(xx) table option; this prevents splitting of numeri-
cal columns within the delimiters. For example, if the eqn delimiters
are $$, giving delim($$) a numerical column such as "1245 $+- 16$"
will be divided after 1245, not after 16.

Tbl limits tables to twenty columns; however, use of more than 16
numerical columns may fail because of limits in troff, producing the
"too many number registers" message. Troff number registers used
by tbl must be avoided by the user within tables; these include two-
digit names from 31 to 99, and names of the forms #x, x I , ~x,
and x—, where .r is any lower case letter. The names ## , # - , and

are also used in certain circumstances. To conserve number regis-
ter names, the n and a formats share a register; hence the restriction
above that they may not be used in the same column.

For aid in writing layout macros, tbl defines a number register TW
which is the table width; it is defined by the time that the " . T E "
macro is invoked and may be used in the expansion of that macro.
More importantly, to assist in laying out multi-page boxed tables the
macro T# is defined to produce the bottom lines and side lines of a
boxed table, and then invoked at its end. By use of this macro in the
page footer a multi-page table can be boxed. In particular, the ms
macros can be used to print a multi-page boxed table with a repeated
heading by giving the argument H to the " . T S " macro. If the table
start macro is written

.TS H

a line of the form

.TH

must be given in the tabic after any table heading (or at the start if

13—12 Programmer's Guide: CTIX Supplement

none). Material up to the " .TH" is placed at the top of each page of
table; the remaining lines in the table are placed on several pages as
required. Note that this is not a feature of tbl, but of the ms layout
macros.

Examples

Here are some examples illustrating features of tbl. The symbol © in
the input represents a tab character.

Output:

Language Authors Runs on

Fortran Many Almost anything
PL/1 IBM 360/370
C BTL 11/45,116000,370
BLISS Carnegie-Mellon PDP-10,11
IDS Honeywell H6000
Pascal Stanford 370

Input:

.TS
box;
c c c
111.
Language® Authors ©Runs on

Fortran © Many © Almost anything
PL/1 ©IBM ©360/370
C © BTL © 11/45,H6000,370
BLISS © Carnegi e-Mellon © PDP-10,11
IDS © Honeywell © H6000
Pascal ©Stanford ©370
.TE

Tbl — A Program to Format Tables 13—13

Input: Output:

.TS
allbox;
e s s
c c c
n n n .
AT&T Common Stock
Year © Price © Dividend
1971 ©41-54 © $2.60
2©41-54©2.70
3 ©46-55 ©2.87
4©40-53 ©3.24
5 ©45-52 ©3.40
6©51-59© .95*
.TE
* (first quarter only)

AT&T Common Stock
Year Price Dividend
1971 41-54 $2.60

2 41-54 2.70
3 46-55 2.87
4 40-53 3.24
5 45-52 3.40
6 51-59 .95*

* (first quarter only)

Input:
. T S
b o x ;
c f B s s s .

C o m p o s i t i o n o f Foods

,T&
c l e s s
c l e s s
c I c I c I c .
F o o d © P e r c e n t bv W e i g h t
\ ' © _
\ " © P r o t e i n © Fa t © C a r b o -
\ - © \ " © \ - © h y d r a t e

,T&
1 I n I n I n .
A p p l e s © . 4 © .5 © 13 .0
H a l i b u t © 18 .4 © 5 .2 © . . .
L i m a b e a n s © 7 . 5 © . 8 © 2 2 . 0
M i l k © 3 .3 © 4 , 0 © 5 .0
M u s h r o o m s © 3 . 5 © . 4 © 6 . 0
R y e b r e a d © 9 . 0 © , 6 © 5 2 . 7
.TE

Output:

Composition of Foods

Food
Percent by Weight

Food
Protein Fat Carbo-

hydrate
Apples .4 .5 13.0
Halibut 18.4 5.2
Lima beans 7.5 .8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 .4 6.0
Rye bread 9.0 .6 52.7

13—14 Programmer's Guide: CTIX Supplement

Output:

Major New York Bridges
Bridge Designer Length

Brooklyn
Manhattan
Williamsburg

J. A. Roebling
G. Lindenthal
L. L. Buck

1595
1470
1600

Queensborough Palmer &
Hornbostel

1182

Triborough O. H. Ammann
1380

Triborough O. H. Ammann
383

Bronx Whitestone
Throgs Neck

O. H. Ammann
O. H. Ammann

2300
1800

George Washington O. H. Ammann 3500

Input:

.TS
box;
CSS
c I c I c
1 I 1 I n .
Major New York Bridges

Bridge © Designer © Length

Brooklyn©J. A . Roebling© 1595
Manhat tan©G. Lindenthal©1470
Williamsburg©L. L . Buck©1600

Queensborough © Palmer & © 1182
© Hornbostel

© ©1380
Triborough © O. H . Ammann©_
© ©383

Bronx Whitestone © O. H . Ammann©2300
Throgs Neck © O . H . Ammann©1800

George Washington © O. H . Ammann©3500
.TE

Tbl — A Program to Format Tables 13—15

Input:

.TS
c c
n p - 2 I n I .

© Stack

1 ©46

2 ©23

3 ©15
'T; _
4 ©6 .5
©_

5 ©2.1
©
.TE

Output:

Stack
1 46
2 23
3 15
4 6.5
5 2.1

Input:

.TS
b o x ;

L L L
L L _
L L I LB
L L _
L L L .
J a n u a r y © f e b r u a r y © m a r c h

a p r i l © m a y

j u n e © j u l y © M o n t h s

a u g u s t © S e p t e m b e r

o c t o b e r © n o v e m b e r © d e c e m b e r

.TE

Output:

january february march
april may april may
june july Months
august September august September
october november december

13—16 Programmer's Guide: CTIX Supplement

Output:

New York Area Rocks
Era Formation Age (years)

P r e c a m b r i a n R e a d i n g P rong > 1 b i l l i o n

Pa leozo ic M a n h a t t a n P rong 400 m i l l i o n

Mesozo i c N e w a r k Bas in ,
i nc l . S tock ton ,
L o c k a t o n g , and
B r u n s w i c k fo r -
ma t ions ; also
W a t c h u n g s and
Palisades.

200 m i l l i o n

Cenozo ic Coasta l P la in O n L o n g I s land
30 ,000 years;
Cre taceous sedi-
ments redepo-
s i ted by recent
g lac ia t ion .

Input:

.TS
allbox;
cfl s s
c cw(li) cw(li)
lplO lplO lplO.
New York Area Rocks
Era ©Formation ©Age (years)
Precambrian©Reading Prong®>1 billion
Paleozoic ©Manhattan Prong ©400 million
Mesozoic©T-C
.na
Newark Basin, incl.
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
T> ©200 million
Cenozoic ©Coastal Plain © T {
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation.
.ad
T>
.TE

Tbl — A Program to Format Tables 13—17

Input:

.EQ
delim $$
.EN

.TS
doublebox;
c c
11.
Name © Definition
.sp
.vs +2p
G a m m a © $ G A M M A (z) = int sub 0 sup inf t sup {z-l> e sup -t dtS
Sine®$sin (x) = 1 over 2i (e sup ix - e sup -ix)$
Error ©$ roman erf (z) = 2 over sqrt pi int sub 0 sup z e sup -C-t sup 2> d'
Bessel © $ J sub 0 (z) = 1 over pi int sub 0 sup pi cos (z sin theta) d theta
Zeta©S zeta (s) = sum from k=l to inf k sup -s Re~s > 1)5
.vs -2p
.TE

Output:

Name Definition

Gamma roo=j;v V d r
Sine 2 i
Error

Bessel 1 en Jn(z)=— J cos(zsin8)dQ
tr ^

Zeta 5(5)= i t (R o t)
i- = i

Output:

Name

James J. Florio
William J. Hughes
James J. Howard
Frank Thompson, Jr.
Andrew Maguire
Robert A. Roe
Henry Helstoski
Peter W. Rodlno, Jr.
Joseph G. Mlnish
Helen S. Meyner
Dominlck V. Daniels
Edward J. Patten

Millicent Fenwick
Fdwin B. Forsythe
Matthew J. Rinaldo

New Jersey Representatives
(Democrats J

Office address

23 S. White Horse Pike, Somerdale 08083
2920 Atlantic Ave., Atlantic City 08401
801 Bangs Ave. . Asbury Park 07712
10 Rutgers PI., Trenton 08618
115 W. Passaic St., Rochelle Park 07662
U.S.P .O. , 194 Ward St., Paterson 07510
666 Paterson Ave., East Rutherford 07073
Suite 1435A, 970 Broad St., Newark 07102
308 Main St., Orange 07050
32 Bridge St.. Lamhertville 08530
895 Bergen Ave. . Jersey City 07306
Natl. Bank Bldg.. Perth Amboy 08861

(Republicans)
41 N Bridge St.. Somervillc 08876
301 Mill St., Mcx>rc.stowii 08057
1961 Morns Ave. . Union 07083

609-627
609-345
201-774
609-599
201-843
201-523
201-939
201-645
201-645
609-397
201-659
201 826

8222
4844
1600
1619
0240
5152
9090
3213
636.3

-1830
7700
4610

201-722-8200
609-235-6622
201-687-4235

This is a paragraph of normal text placed here only to indicate where
the left and right margins are. In this way the reader can judge the
appearance of centered tables or expanded tables, and observe how
such tables are formatted.

13—18 Programmer's Guide: CTIX Supplement

Input:

.ps 8

.vs lOp

. T S

center b o x ;
e s s
c i s s
c c c
IB 1 n .
N e w Jersey Representa t i ves
(D e m o c r a t s)
.sp .5
N a m e C D O f f i c e address © Phone
.sp .5
James J . F l o r i o © 2 3 S. W h i t e Horse P ike , Somerda le 08083 © 6 0 9 - 6 2 7 - 8 2 2 2
W i l l i a m J . H u g h e s © 2 9 2 0 A t l a n t i c A v e . , A t l a n t i c C i t y 08401 © 6 0 9 - 3 4 5 - 4 8 4 4
James J . H o w a r d © 8 0 1 Bangs A v e . , A s b u r y Park 0 7 7 1 2 © 2 0 1 - 7 7 4 - 1 6 0 0
F r a n k T h o m p s o n , J r . © 1 0 Ru tge rs P I . , T r e n t o n 0 8 6 1 8 © 6 0 9 - 5 9 9 - 1 6 1 9
A n d r e w M a g u i r e © 1 1 5 W . Passaic S t . , Roche l l e Park 07662 © 2 0 1 - 8 4 3 - 0 2 4 0
R o b e r t A . R o e © U . S . P . O . , 194 W a r d S t . , Paterson 0 7 5 1 0 © 2 0 1 - 5 2 3 - 5 1 5 2
H e n r y H e l s t o s k i © 6 6 6 Paterson A v e . , Hast R u t h e r f o r d 07073 0 2 0 1 - 9 3 9 - 9 0 9 0
Peter W . R o d i n o , J r . © S u i t e 1 4 3 5 A , 970 B r o a d S t . , N e w a r k 0 7 1 0 2 © 2 0 1 - 6 4 5 - 3 2 1 3
Joseph G . M i n i s h © 3 0 8 M a i n S t . , Orange 0 7 0 5 0 © 2 0 1 - 6 4 5 - 6 3 6 3
H e l e n S . M e y n e r © 3 2 B r i dge S t . , L a m b e r t v i l l e 0 8 5 3 0 © 6 0 9 - 3 9 7 - 1 8 3 0
D o m i n i c k V . D a n i e l s © 8 9 5 Bergen A v e . , Jersey C i t y 0 7 3 0 6 © 2 0 1 - 6 5 9 - 7 7 0 0
E d w a r d J . Pat ten © N a t l . B a n k B l d g . , Per th A m b o y 08861 © 2 0 1 - 8 2 6 - 4 6 1 0
.sp .5
,T&
c i s s
IB 1 n .

(R e p u b l i c a n s)
.sp ,5v
M i l l i c e n t F e n w i c k © 4 1 N . B r i dge S t . , Somerv i l l e 0 8 8 7 6 © 2 0 1 - 7 2 2 - 8 2 0 0
E d w i n B . F o r s y t h e © 3 0 1 M i l l S t . , M o o r e s t o w n 0 8 0 5 7 © 6 0 9 - 2 3 5 - 6 6 2 2
M a t t h e w J . R i n a l d o © 1 9 6 1 M o r r i s A v e . . U n i o n 0 7 0 8 3 © 2 0 1 - 6 8 7 - 4 2 3 5
. T E
.ps 10
.vs 12p

Tbl — A Program to Format Tables 13—19

Output:

Readability of Text
L i n e W i d l h and L e a d i n g for 10-Po in t T v p e

Line Set 1-Point 2-Point 4-Point
Width Solid Leading Leading Leading
9 Pica -9 .3 -6 .0 -5 .3 -7 .1

14 Pica -1 .5 -0 .6 -0 .3 -1 .7
19 Pica -5 .0 -5 .1 0.0 -2 .0
31 Pica -3 .7 -3 .8 -2 .4 -3 .6
43 Pica -9 .1 -9 .0 -5 .9 -8 .8

Input:

.TS
box, tab(:) ;
cb s s s s
cp-2 s s s s
c I I c I c I c I c
c I I c I c I c I c
r2 I I n2 I n2 I n2 I n .
Readability of Text
Line Width and Leading for 10-Point Type

Line : Set: 1-Point: 2-Point: 4-Point
Width : Solid : Leading: Leading: Leading

9 Pica : \ - 9 . 3 : \ - 6 . 0 : \ - 5 . 3 A - 7 . 1
14 Pica : \ - 4 . 5 : \ - 0 . 6 : \ - 0 . 3 : \ - l .7
19 Pica : \ - 5 . 0 : \ - 5 . 1 : 0 . 0 A - 2 . 0
31 Pica : \ - 3 . 7 : \ - 3 . 8 : \ - 2 . 4 : \ - 3 .6
43 Pica : \ - 9 . 1 : \ - 9 . 0 : \ - 5 .9 : \ - 8 . 8
.TE

13—20 Programmer's Guide: CTIX Supplement

Output:

Some L o n d o n T r a n s p o r t Stat ist ics
(Year 1964)

R a i l w a y rou te m i les 244
T u b e 66
Sub-sur face 22
Sur face 156

Passenger t r a f f i c — ra i lway
Journeys 674 m i l l i o n
A v e r a g e length 4.55 mi les
Passenger mi les 3 ,066 m i l l i o n

Passenger t r a f f i c — road
Journeys 2 ,252 m i l l i o n
A v e r a g e length 2 .26 mi les
Passenger mi les 5 ,094 m i l l i o n

Veh i c l es 12,521
R a i l w a y m o t o r cars 2,905
R a i l w a y t ra i l e r cars 1,269
T o t a l r a i l w a y 4 ,174
Omn ibuses 8,347

Staf f 73 ,739
A d m i n i s t r a t i v e , etc. 5 ,582
C i v i l eng inee r ing 5 ,134
E l e c t r i c a l eng. 1,714
M e c h . eng. — r a i l w a y 4 ,310
M e c h . eng. — road 9 ,152
R a i l w a y ope ra t i ons 8 ,930
R o a d opera t ions 35,946
O the r 2 ,971

Input:

. T S
c s
c i p -2 s
1 n
a n .
Some L o n d o n T r a n s p o r t Stat ist ics
(Y e a r 1964)
R a i l w a y rou te m i l e s © 2 4 4
T u b e © 6 6
Sub-sur face © 2 2
S u r f a c e ® 156
.sp .5
.T&
1 r
a r .

Passenger t r a f f i c \ - r a i l w a y
J o u r n e y s ® 6 7 4 m i l l i o n
A v e r a g e l e n g t h ® 4 . 5 5 mi les
Passenger m i l e s ® 3 , 0 6 6 m i l l i o n
,T&
1 r
a r .

Passenger t r a f f i c \ - r o a d
J o u r n e y s ® 2 , 2 5 2 m i l l i o n
A v e r a g e l e n g t h © 2 . 2 6 mi les
Passenger m i l e s © 5 , 0 9 4 m i l l i o n
,T&
1 n
a n .
.sp .5
V e h i c l e s © 12,521
R a i l w a y m o t o r c a r s © 2 , 9 0 5
R a i l w a y t ra i l e r c a r s © 1,269
T o t a l r a i l w a y © 4 , 1 7 4
Omn ibuses © 8 , 3 4 7
,T&
1 n
a n .
.sp .5

S t a f f © 73,739
A d m i n i s t r a t i v e , e t c . © 5 , 5 8 2
C i v i l e n g i n e e r i n g ® 5 , 1 3 4
E l e c t r i c a l e n g . © 1,714
\ l e c h . e n g . \ - r a i lway © 4 , 3 1 0
M e c h . e n g . \ - r o a d © 9 , 1 5 2
R a i l w a y o p e r a t i o n s © 8 , 9 3 0
R o a d o p e r a t i o n s © 3 5 , 9 4 6
O t h e r © 2 , 9 7 1
. T E

Tbl — A Program to Format Tables 13—465

Output:

Some I n t e r e s t i n g Places

N a m e D e s c r i p t i o n Prac t i ca l I n f o r m a t i o n

American Muse-
um of Natural
History

T h e co l lec t ions f i l l 11.5
acres (M i c h e l i n) o r 25
acres (M T A) o f exh ib i -
t i on hal ls on f ou r f loors.
T h e r e is a fu l l -s ized re-
p l i c a o f a b lue wha le
and the w o r l d ' s largest
star sapph i re (stolen in
1964) .

Hours
Location
Admission
Subway
Telephone

10-5, ex. Sun 11-5. Weil, to 9
Central Park West & 79th St.
Donation: V Oil asked
AA to 81st St.
212-873-4225

Bronx Zoo A b o u t a m i l e long and
largest zoo in A m e r i c a .
A l i on eats 18 pounds o f
mea t a day wh i l e a sea
l i on eats 15 pounds o f
f ish.

Houn;

luxation

Admission
Subway
Telephone

10-4:30 winter, to 5:00 sum
mer
185th St. & Southern Blvd.
the Bronx.
$1.00. but Tu.We.Th free
2. 5 to Hast Tremont Ave.
212-933-1759

Brooklyn Museum Five f loors o f gal ler ies
con ta i n A m e r i c a n and
anc ien t ar t . T h e r e are
A m e r i c a n p e r i o d rooms
and a rch i t ec tu ra l orna-
ments saved f r o m w r e c k -
ers, such as a classical
f i gu re f r o m Pennsylvania
Stat ion.

Hours
I , x.a",< >n

Admission
Subway
Telephone

Wed-Sat. 10-5. Sun 12 5
Eastern Parkway & Washing-
ton Ave.. Bnxiklvn.
Free
2.3 to Lastem Parkwav
718-638-5000

New-York Histor-
ical Society

A l l the o r i g i na l pa in t ings
fo r A u d u b o n ' s Birds of
America are here, as are
exh ib i t s o f A m e r i c a n
decora t i ve arts. N e w
Y o r k h is to ry , H u d s o n
R i v e r schoo l pa in t ings ,
carr iages, and glass pa-
perwe igh ts .

Hours
Location
Admission
Subway
Telephone

Tues-Kri & Sun. 1-5; Sat 10-5
Central Park West & 77th St
Free
A A to 81st St.
212-873-3400

Input:
. T S
b o x ;
c b s s s
c I c I c s
l t i w (. 7 5 i) I l t w (1 . 5 i) I lp8 I l w (1 . 2 5 i) p 8 .
Some In te res t i ng Places

N a m e ® D e s c r i p t i o n © Prac t ica l I n f o r m a t i o n

T {
A m e r i c a n M u s e u m o f N a t u r a l H i s t o r y

13—22 Programmer's Guide: CTIX Supplement

T } © T {
T h e co l l ec t i ons fill 1 1 . 5 acres (M i c h e l i n) or 25 acres (M T A)
o f e x h i b i t i o n hal ls on f o u r f l o o r s . T h e r e is a fu l l -s ized r e p l i c a
o f a b lue wha le and the w o r l d ' s largest star sapph i re (stolen in 1 9 6 4) .
T > © H o u r s © 10-5, e x . Sun 11-5, W e d . to 9
\ - © \ " © L o c a t i o n © T {
Cen t ra l Park Wes t & 79 th St .
T >

© \ ~ © A d m i s s i o n © D o n a t i o n : $1 .00 asked
\ - © \ - © S u b w a v © A A to 81st S t .
V © \ - © T e l e p h o n e © 2 1 2 - 8 7 3 - 4 2 2 5

B r o n x Z o o © T - C
A b o u t a m i l e l ong and .6 m i l e w i d e , th is is the largest zoo in A m e r i c a .
A l i on eats 18 pounds
o f mea t a day wh i l e a sea l i on eats 15 pounds o f f i sh .
T > © H o u r s © T - C
10-4:30 w i n t e r , to 5:00 s u m m e r
T >
\ " © \ " © L o c a t i o n © T {
185th St . & Southern B l v d , the B r o n x .
T >
\ ~ © \ ~ © A d m i s s i o n © $ 1 . 0 0 , b u t T u , W e , T h free
\ " © \ ~ © Subwav © 2 , 5 to East T r e m o n t A v e .
\ * © \ * © T e l e p h o n e © 212-933-1759

B r o o k l y n M u s e u m © T <
F i ve f l oo rs o f gal ler ies con ta i n A m e r i c a n and anc ien t a r t .
T h e r e are A m e r i c a n p e r i o d r o o m s and a rch i t ec tu ra l o rnamen ts saved
f r o m w r e cke r s , such as a classical f i gu re f r o m Pennsy lvania S ta t i on .
T > © H o u r s © W e d - S a t , 10-5, Sun 12-5

© \ ~ © L o c a t i o n © T {
Eastern P a r k w a y & W a s h i n g t o n A v e . , B r o o k l y n .
T >
\ - © \ - © A d m i s s i o n © Free
\ - © \ - © S u b w a v © 2 , 3 to Eas te rn P a r k w a v .

© \ ~ © T e l e p h o n e © 7 1 8 - 6 3 8 - 5 0 0 0

T-C
N e w - Y o r k H i s t o r i c a l Society
T } ® T {
A l l the o r i g i n a l pa in t ings f o r A u d u b o n ' s
.1
Bi rds o f A m e r i c a
. R
are here, as are exh ib i t s o f A m e r i c a n deco ra t i ve arts, N e w Y o r k h is to ry ,
H u d s o n R i v e r schoo l pa in t ings , carr iages, and glass p a p e r w e i g h t s .
T > © H o u r s © T - C
T u e s - F r i & Sun, 1 -5 ; Sat 10-5
T >

© \ - © L o c a t i o n © T {
C e n t r a l Park Wes t & 77 th S t .
T >
\ " © \ * © A d m i s s i o n © Free

© \ ~ © S u b w a y © A A to 81st St .
© \ - © T e l e p h o n e © 2 1 2 - 8 7 3 - 3 4 0 0

.TF.

Tbl — A Program to Format Tables 13—23

Output:

Name
Holmdel
Murray Hill
Whippany
Indian Hill

Bell La te Locations
Address Area Code Phone

201 949-3000
201 582-6377
201 386-3000
312 690-2000

Holmdel, N. J. 07733
Murray Hill, N. J. 07974
Whippany, N. J. 07981
Naperville, Illinois 60540

Input:

.TS
expand;
c s s s
c c c c
l i n n .
Bell Labs Locations
Name ® Address © Area Code © Phone
Holmdel ©Holmdel, N . J . 07733©201 ©949-3000
Murray Hill ©Murray Hill, N . J . 07974 ©201 ©582-6377
Whippany ©Whippany, N . J . 07981 ©201 ©386-3000
Indian Hill © Naperville, Illinois 60540 ©312 ©690-2000
.TE

Acknowledgments

Many thanks are due to J. C. Blinn, who has done a large amount of
testing and assisted with the design of the program. He has also writ-
ten many of the more intelligible sentences in this document and
helped edit all of it. All phototypesetting programs on UNIX are
dependent on the work of J. F. Ossanna, whose assistance with this
program in particular has been most helpful. This program is pat-
terned on a table formatter originally written by J. F. Gimpel. The
assistance of T. A. Dolotta, B. W. Kernighan, and J. N. Sturman is
gratefully acknowledged.

13—24 Programmer's Guide: CTIX Supplement

References

[1] J . F . O s s a n n a , NROFF/TROFF User's Manual, C o m p u t i n g S c i -

e n c e T e c h n i c a l R e p o r t N o . 5 4 , B e l l L a b o r a t o r i e s , 1 9 7 6 .

[2] K. Thompson and D. M. Ritchie, "The U N I X Time-Sharing
System," Comm. ACM. 17, pp. 3 6 5 - 7 5 (1974).

[3] B. W. Kernighan and L. L. Cherry, " A System for Typesetting
Mathematics," Comm. ACM. 18, pp. 151-57 (1975).

[4] M. E. Lesk, Typing Documents on UNIX, Bell Laboratories
internal memorandum.

[5] M. E. Lesk and B. W. Kernighan, Computer Typesetting of
Technical Journals on UNIX, Computing Science Technical
Report No. 44, Bell Laboratories, July 1976.

[6] J. R. Mashey and D. W. Smith, PWB/MM — Programmer's
Workbench Memorandum Macros, Bell Laboratories memoran-
dum.

Tbl — A Program to Format Tables 13 25

List of Tbl Command Characters and Words

Command Meaning Section
a A Alphabetic subcolumn 2
allbox Draw box around all items 1
b B Boldface item 2
box Draw box around table 1
c C Centered column 2
center Center table in page 1
doublebox Doubled box around table 1
e E Equal width columns 2
expand Make table full line width 1
f F Font change 2
i I Italic item 2
1 L Left adjusted column 2
n N Numerical column 2
Mill Column separation 2
P P Point size change 2
r R Right adjusted column 2
s S Spanned item 2
t T Vertical spanning at top 2
tab (x) Change data separator character 1
T{ T> Text block 3
v V Vertical spacing change 2
w W Minimum width value 2
.XX Included troff command 3
1 Vertical line 2
11 Double vertical line 2

Vertical span 2
Vertical span 3

= Double horizontal line 2,3
Horizontal line 2,3
Short horizontal line 3

10- S Programmer's Guide: CTIX Supplement

14
S/1280 Inter-CPU Communication

The Inter-CPU Communication facility (ICC) provides communication
between programs running on S/1280's various CPUs. The system
kernels running on the various Application Processors use ICC to
coordinate with each other and with CTOS; this permits these kernels
to act as a single CTIX kernel.

CTIX processes can use ICC to communicate with each other or with
CTOS system services. If both processes participating are CTIX
processes, TCC is simply an enhanced communication facility and it
does not matter whether the two processes actually run on different
CPUs. If one of the processes provides a CTOS system service, ICC' is
a means to use CTOS controlled resources directly, without working
through the CTIX kernel.

Processes need no special status or permissions to use ICC. Each ICC
action is executed by a CTTX system call.

The important concept behind ICC is that processes provide other
processes services. For example, a database service permits the
storage and retrieval of records; a spooling service queues files.

ICC labels CTIX processes by the roles they play in ICC communica-
tions. A server is a process that provides a service; a client is a pro-
cess that uses a service. For example, users might run query pro-
grams to specify retrievals. The query programs send messages to a
database management service; the program in charge of the database
does the actual retrieval. The query programs are clients of the data-
base management service; the retrieval program is the server for the
database management service. These labels are only valid in refer-
ence to a particular service: a server for one service might be a client
of another service.

S/1280 Inter-CPU Communication 14—1

E a c h I C C i n t e r a c t i o n c o n s i s t s o f t w o m e s s a g e s . A request i s a m e s -

s a g e f r o m a c l i e n t t o a s e r v e r . A response i s a r e t u r n m e s s a g e f r o m a

s e r v e r t o a c l i e n t . A s e r v e r m u s t p r o v i d e a r e s p o n s e t o e a c h r e q u e s t .

Clients and servers do not address each other directly. A client speci-
fies that a message is a request to a specific service; the kernel sends
the request to whatever server provides that service. A server speci-
fies that a message is a response to a specific request; the kernel sends
the response the sender of that request.

Points of View

When a process uses ICC it plays the role of client or server. This
role affects the way the process views ICC. Here we summarize the
points of view. For the moment, we assume a process has but one
point of view.

The Client

There are actually two kinds of client. The basic client uses a simpli-
fied system call that is adequate for most uses. The general client has
a complicated repertoire of system calls.

A basic client sends a single message and waits for its response. This
action requires a single system call that dispatches the request, waits
for the response, and copies the response (Figure 14-1).

A general client can send any number of messages at a time. It
manages the resulting responses with one or more message queues
(Figure 14-2). The client must periodically examine these queues
and delete responses from them.

14—2 Programmer's Guide: CTIX Supplement

Figure 14-1. A Basic Client

Figure 14-2. A General Client

S/1280 Inter-CPU Communication 14—3

A b a s i c c l i e n t a c t u a l l y p o s s e s s e s a r e s p o n s e q u e u e j u s t l i k e t h a t o f a

g e n e r a l c l i e n t . T h e k e r n e l m a n a g e s t h e q u e u e o n t h e c l i e n t ' s b e h a l f .

The Server

A server manages its incoming requests with one or more request
queues (Figure 14-3). Every request for a particular service goes to a
specific request queue. A server that provides more than one service
can use one request queue or several.

A server need not respond to requests in the order it receives them,
but it must respond to every request.

Figure 14-3. A Server

14—4 Programmer's Guide: CTIX Supplement

Exchanges

Clients and servers manage their message queues via exchanges. One
exchange handles each queue. When a client sends a request, it tells
the kernel to queue the resulting response at a specific exchange.
When a server wants to provide a service, it tells the kernel to queue
requests for that service at a specific exchange. A process specifies
an exchange when it asks the kernel for newly queued messages.

A Note on Source Code

This section mentions several standard structure types and constants.
CTIX provides a C version of these definitions in /usr/include/exch.h.
In a C ICC program, include this file with

#include <exch.h>

Programmers who work in languages other than C should see the
appropriate language manual for definitions of equivalent data struc-
tures.

The Basic Client

For the basic client, each ICC interaction has three steps:

• Describing the request with the request block.

• Calling the service.

• Examining the response.

The Request Block

A client describes a request with a data structure called a request
block (Figure 14-4). ICC requires that each request begin with a
standard group of fields called a request header. A server can require
additional data fields. We will discuss the data fields first.

A request block contains three groups of data fields:

S/1280 Inter-CPU Communication 14—5

• Control information i s d a t a t h a t t h e c l i e n t s e n d s t o t h e s e r v e r b y

p l a c i n g i t i n t h e r e q u e s t b l o c k . T h e c o n t r o l i n f o r m a t i o n

i m m e d i a t e l y f o l l o w s t h e r e q u e s t h e a d e r .

• Request PbCbs immediately follow the control information.
Each request PbCb specifies the beginning of and length of a
block of data. This data is sent to the server.

• Response PbCbs immediately follow the request PbCbs. Each
response PbCb specifies the beginning and length of a block of
unused memory. Response data goes into this memory.

A pointer to bytes!count of bytes (PbCb) describes a data area outside
the request block. The user include file defines a PbCb this way:

struct PbCb {
char *pc_offset;
unsigned short pc_eount;

>;

Q J I G N O R E

« - - ? B Y T E S

R E Q U E S T

B L O C K '

N U M B E R O f C O N T R O L B Y T E S

N U M B E R O E R E Q U E S T P B C B S

N U M B E R OF R E S P O N S E P B C B S

R E S P O N S E E X C H A N G E D E S C R I P T O R

H E Q U E S T COL1F

C O N T R O L I N F O R M A T I O N

R E Q E S T P B C B

R E S P O N S E P B C B

R E Q U E S T DATA

A R E A F O R R E S P O N S E D A T A

Figure 14-4. A Basic Client's Request to JEEVES

14—6 Programmer's Guide: CTIX Supplement

Some servers are rigid as to the number and kind of data fields. A
CTOS server, in particular, must always have a specific number of
control information bytes, request PbCbs, and response PbCbs. Be
sure to follow the data field rules specified for the service.

The include file defines a request header thus:

struct rqheader -C
unsigned short r_sCntInfo;
unsigned char r_nReqPbCb;
unsigned char r_nRespPbCb;
unsigned short r_userNum;
unsigned short r_exchResp;
unsigned short r_ercRet;
unsigned short r_rqCode;

>;

The client does not set r_userNum or r_ercRet. The other fields
require the following values:

r_sCntInfo Number of bytes of control information.

r_nReqPbCb Number of request PbCbs.

r_nRespPbCb Number of response PbCbs.

r_exchResp The response exchange descriptor. The definition of
this term is not important to a basic client. Set
r_exchResp to the value returned by ExQueryD-
fltRespExch (no arguments). We will define
response exchange descriptor when we get to general
clients.

r_rqCode The request code. This specifies the service
addressed.

Example

Suppose that a service is identified by the constant JEEVES. JEEVES
requires two bytes of control information, one request PbCb, and one
response PbCb. A client of JEEVES might declare the request block
thus:

S/1280 Inter-CPU Communication 14—7

struct jblock -C
struct rqheader jheader;
short jcinfo;
struct PbCb reqdata;
struct PbCb respdata;

> jmess;

The client sends 13 in the control data and a string name as request
data. The client provides an array respdata for the response data.
The following code sets up the request block:

jmess.jheader.r_sCntInfo = 2;
jmess. jheader.r_nReqPbCb = 1;
jmess.jheader.r_nRespPbCb = 1;
jmess.jheader.r_exchResp = exQueryDf!tRespExch();
jmess.jheader.r_rqCode = JEEVES;
jmess.jcinfo = 13;
jmess.reqdata.pc_offset = name;
jmess.reqdata.pc_count - strlen(name);
jmess. respdata. pc_offset = respdata;
jmess. respdata. pc_count = sizeof(respdata);

Call the Service

ExCall sends a request block to a service and waits for a response.
This system call is defined thus:

exCall(reqblp);
struct rqheader *reqblp;

Reqblp must point to the request block that describes the request. If
the kernel succeeds in sending the request and obtaining a response,
exCall returns 0. If the kernel cannot send the message, exCall
returns -1 and sets the external variable errno.

10- S Programmer ' s Guide: CTIX Supplement

E x a m p l e

T h i s c a l l p a s s e s s e n d s t h e J E E V E S r e q u e s t b l o c k :

if (exCall(&jmess) == -1) -C
perror("can't send message");

exit(l);
>

The Modified Request Block

A successful use of exCall modifies the request block. This provides
the error return code and response data from the server:

• R_ercRet in the request header contains the server's return
code. Conventionally, a zero return code means that the
server performed the client's service.

• Each region of memory described by a response PbCb contains
response data from the server. If a server provides more data
than the client allowed for, the kernel right-truncates the
server data to fit. ICC conventions do not provide a way for
the server to tell the client the amount of response data actu-
ally sent; the server's own conventions must provide for this, if
necessary.

Figure 14—5 shows how a response from J E E V E S modifies the client's
request block.

The General Client

The general client takes separate action to issue requests and to
receive responses. This section describes requests and responses as
separate issues—but remember that each request produces a response.

S/1280 Inter-CPU Communication 14—9

[I - N O U S E F U L V A L U E

2 B Y T E S

R E T U R N C O D E

1 J

- R E S P O N S E D A T A

Figure 14-5. Request Block Modified by Response From JEEVES

The Request Side

The general client describes its request with a request block. This
request block has the same format as a request block used by a basic
client, but two fields change in function:

• R_exchResp in the request header. This must be an exchange
descriptor. If a client only uses one response queue, it can use
the exchange descriptor returned by exQueryDfltRespExch. If
a client uses more than one response queue, it must allocate
additional exchanges with exAllocExch (no arguments). The
kernel will queue the response to this request at the exchange
indicated by r_exchResp.

10- S Programmer's Guide: CTIX Supplement

• The client need not specify the pc_offset fields in the response
PbCbs: the kernel ignores them. It is still important to put
the data area sizes in the pc_count fields: the kernel passes
this data to the server.

Figure 14—6 shows a general client's request to JEEVES.

The general client sends requests with exRequest, which is defined
thus:

unsigned short exRequest(reqblp);
struct rqheader •reqblp;

As with exCall, reqblp points to a request block that describes the
request.

I j I G N O R E D

< 2 B Y T E S -

HEADER ^

R E Q U E S T t

B L O C K

(N O . B Y T E S I

(M A X . B Y T E S I

- N U M B E R OF C O N T R O L B Y T E S

- D U M B E R O E R E Q U E S T P B C B S

- N U M B E R O F R E S P O N S E P B C B S

- R E S P O N S E E X C H A N G E D E S C R I P T O R

R E Q U E S T C O D E

- - C O N T R O L I N F O R M A T I O N

- R E Q U E S T P B C B

- R E S P O N S E P B C B

R E Q U E S T D A T A

Figure 14-6. A General Client's Request to JEEVES

ExRequest returns a request descriptor. The request descriptor
uniquely identifies the request and its response in subsequent dialo-
gues between the client and the kernel.

ExRequest copies the request block before it returns. Thus the client
can safely modify or deallocate the request block once ExRequest
returns.

S/1280 Inter-CPU Communication 14—11

E x a m p l e

T h e g e n e r a l c l i e n t v e r s i o n o f o u r JEEVES e x a m p l e u s e s t h e f o l l o w i n g

c a l l :

if (rqdesl = exRequest(&jmess) == RQDES JNVALID) -C
perror("can't send message");
exit(l);

>

This call copies jmess and the request data area and sends them to
the server. It leaves jmess unaltered. The ICC include file defines
RQDES_INVALID, a value that cannot be a valid request descriptor.

The Response Side

Responses queue up at the client's exchanges in the order the servers
send them. This order may not correspond to the order in which the
client sent the requests.

The general client discovers the current contents of the queue by
doing a series of checks on the exchange. The first check tells the
client about the oldest response in the queue; the second check tells
about the second-oldest response, and so on. When the client sees a
response it wants to read, it must copy it from the queue; this
removes the response from the queue and makes subsequent checks
start over with the oldest response still on the queue.

There are two ways to do checks. They differ only in their action
when their are no new responses to report on:

• ExCheck checks the queue. If there are no new responses
(responses that are not yet returned to a wait or check), it
returns immediately with the value -1 and sets the external
variable errno to ENOMSG.

• ExWait checks the queue. If there are no new responses
(responses that are not yet returned to a wait or check), it
waits until a new response arrives.

These are the definitions of exCheck and exWait:

14—12 Programmer's Guide: CTIX Supplement

exCheck(exch, mstat);
unsigned short exch;
struct msgret *mstat;

exWait(exch, mstat);
unsigned short exch;
struct msgret *mstat;

Exch is the exchange descriptor; mstat points to a structure to which
the kernel writes a report on the message. ExCheck and exWait
return -1 on error or failure.

This is the definition of the msgret structure in the include file.

struct msgret -C
unsigned short m_rqCode;
unsigned short m_reqdest;
int m_size;
char m_flag;
unsigned short m_ercRet;
unsigned char m_cputype;
unsigned char m_slot;
struct rqheader *m_offset;

>;

When exCheck or exWait report on a new response, the returned
msgret structure looks like this:

m_rqCode The service that is responding.

m_reqdest The request descriptor. This is the same value the
client got from exRequest when it sent the request.

m_size Size of the response. This is the size of the request
block, plus the sizes of any response data blocks, plus
the number of bytes used to make the response data
blocks begin on even addresses.

m_flag The value MRESPONSE.

m_ercRet The server's error return code. This is same value that
is in r_ercRet in the response header.

The remaining fields give information on the physical location of the
message and its host CPU.

If a general client wants to copy the response, it must set up a request
block to receive the data. This block has the same format and data
as the one passed to exRequest. In addition, the client must provide

S/1280 lnter-CPU Communication 14—13

t h e a d d r e s s o f e a c h r e s p o n s e d a t a a r e a ; t h i s g o e s i n t h e pc_count
f i e l d s o f e a c h r e s p o n s e P b C b .

The response area sizes need not be the same sizes specified in the
request: the client may want to specify bigger areas if the size of the
response (m_size in the msgret structure) indicates that the server
ignored the client's original response data maximums. In any case,
the kernel right-truncates any response data blocks that will not fit the
client's areas.

It is reasonable for a client to set up a single request block, with com-
plete response PbCbs, and use this block both for sending the request
and for copying the response.

Example

Figure 14-7 shows a request block ready to receive a response from
J E E V E S .

I] I G N O R E D

N U M B E R O F C O N T R O L B Y T E S

N U M B E R O F R E Q U E S T P B C B S

N U M B E R OF R E S P O N S E P B C B S

R E S P O N S E E X C H A N G E D E S C R I P T O R

(M A X . B Y T E S l

- R E Q U E S T C O D E

- R E S P O N S E P B C B

• • A R E A F O R R E S P O N S E D A T A

1040 -007

Figure 14-7. Ready for Response from JEEVES

14—14 Programmer's Guide: CTIX Supplement

Reqdes is the same request descriptor returned by exRequest and in
m_reqdes in the response's msgret structure.

The exCpResponse system call copies a response:

exCpResponse(reqdes, reqblp)
unsigned short reqdes;
struct rqheader *reqblp;

Reqdes is the request descriptor; reqblp points to the request block
that is to receive the reply. The kernel modifies,

• r_ercRet in the header to the server's return code;

• each data area indicated by a response PbCb.

ExCpResponse modifies the same request block fields as does exCall.
See Figure 14-5

Mixing General and Basic Roles

A single client can use both exCall and exRequest. A response to an
exCall request is handled separately from other responses going to the
same exchange. ExCall does not affect the status of any message
anywhere, except its own request and response.

The Server

The server behaves very much like the general client: it monitors
queues of incoming messages (requests) and it has a single, indepen-
dent, stream of outgoing messages (responses). To receive requests,
the process must associate an exchange with a request code.

Choosing the Request Code

Convergent Technologies reserves all request codes less than 49152
(OxCOOO). Any service you add must have a request code between
49153 (OxCOOl) and 65535 (OxFFFF).

Choose new request codes in as few continuous sequences as you can.
Each continuous sequence of request codes requires a certain amount

S/1280 Inter-CPU Communication 14—15

o f o v e r h e a d i n c e r t a i n s y s t e m t a b l e s . I t i s v e r y e a s y t o f i l l u p t h e s e

t a b l e s .

Setting Up the Service

A server, like a general client, must provide one exchange for each
message queue. It can use the standard exchange specified by
ExQueryDfltRespExch, or it can allocate additional exchanges with
ExAllocExch.

A server then assigns each of its exchanges one or more services. It
does this with exServeReq:

exServeReq(exch, code)
unsigned short exch;
int code;

Exch is an exchange descriptor. Code is the request code for the ser-
vice. The first process to specify a request code with exServeReq is
the only server for that request code.

The Request Side

The server, like the general client, monitors its message queues with
exCheck or exWait. ExCheck and exWait deal with request queues
in precisely the way they deal with response queues. We must, how-
ever, take a second look at the msgret structure.

m_rqCode The request code specified by the client. This distin-
guishes services when a single exchange is associated
with more than one service

m_reqdest The request descriptor. This uniquely identifies the
request and its response in subsequent server system
calls.

m_size Size of the request. This is the request block, plus any
request data, plus any padding to make blocks of
request data appear at even addresses.

m_flag The value MREQUEST.

m_ercRet No useful value.

14—16 Programmer's Guide: CTIX Supplement

The values in the other fields serve no purpose in the current imple-
mentation.

The server must dispose of each request on the queue. The exCpRe-
quest call copies a request:

exCpRequest(reqdes, reqblp)
unsigned short reqdes;
struct rqheader *reqblp;

As with exCpResponse, exCpRequest removes the message from the
queue and restarts at the oldest message subsequent checking on the
queue.

ExCpRequest copies the message to the memory pointed to by
reqblp; reqblp must be an even address. ExCpRequest puts the
request data blocks directly after the request block; each data block
begins at an even address. ExCpRequest modifies the request PbCbs
so that they describe the new copies of the request data blocks. With
this exception, the request block and data blocks all contain the values
placed in them by the client. The response exchange descriptor and
response data pointers, however, are meaningless to the server.

Example

The JEEVES server is run when the system first comes up. It begins
by appropriating its request code:

ex = ExQueryDfltRespExchO;
if (exServeReq(ex, JEEVES) = = - !) {

perror("JEEVES server: can't get request code");
exit(l);

>

The server must then periodically check its exchange. When it dis-
covers a request it wants to deal with, the server copies the request:

jmess = (struct jblock *) malloc(mstat.m_size)
exCpRequest(mstat. m_reqdest, j mess);

Figure 14-8 shows a request received by the JEEVES server.

S/1280 Inter-CPU Communication 14—17

The Response Side

T h e s e r v e r u s e s a r e q u e s t b l o c k t o d e s c r i b e a r e s p o n s e . I t s e t s

• R_ercRet in the request block header. This indicates the
return code.

I j N O U S E F U L V A L U E

- — 2 B Y T E S «-

Figure 14-8. Request Copied by JEEVES Server

• Each response PbCb. Each PbCb must describe the location
and size of a block of response data.

It is reasonable, but not necessary, for a server to use the same
request block that it copied from its request queue.

The server sends the response with exRespond:

exRespond(reqdes, reqblp)
unsigned short reqdes;
struct rqheader *reqblp;

14—18 Programmer's Guide: CTIX Supplement

£22 :Ti\ORt D

C O D b

fc$PllNSfc P B C B

RESPONSE DATA

Figure 14-9. JEEVES Server Ready to Send Response

Reqdes is a request descriptor that indicates which request provoked
the response. Reqblp points to the request block that describes the
response.

Example

Figure 14—9 shows a response set up by the JEEVES server.

Mixing Roles

A process that provides one or more services (playing the role of
server) may use other services (playing the role of client). It is all
right for such a process to use a single exchange for both requests and
responses. On such an exchange, the requests and responses form a
single queue of messages.

S/1280 Inter-CPU Communication 14—19

The mixed-role process must apply exCpRequest and exReject only to
requests and exCpResponse only to responses.

Note that exCall does not affect the status of any waiting request or
response.

Example

exServeReq(exchange = ExQueryDfltRespExch(), JEEVES);
for (;;) {

ex\Vait(exchange, &mstat)
switch (mstat.m_flag) -C

case MREQUEST:
inblock = alloc(mstat.msize);
exCpRequest(mstat.m_reqdes, inblock);

(action on request, including exRespond)

break;

case MRESPONSE:
exCpResponse(mstat.m_reqdes, outblock);

(action on response)

break;
>

Simplified Access to a Request Queue

Most servers will normally do an exWait, followed closely by an
exCpResponse. These two actions are combined in exGetNext. It is
different from a simple exWait/exCpResponse sequence in the follow-
ing ways:

10- S Programmer's Guide: CTIX Supplement

• I t i g n o r e s r e s p o n s e s .

• I t i s a s i n g l e s y s t e m c a l l . T h i s s a v e s w o r k b y t h e k e r n e l .

• Like exCall, it does not affect the status of any messages it
does not copy.

ExGetNext takes the following form:

exGetNext(exch, reqblp, size)
unsigned short exch;
struct rqheader *reqblp;
unsigned short size

where

exch is the descriptor for the exchange of interest;

reqblp points to the buffer that is to receive the message;

size is the size of the buffer.

Any message that is too big for the buffer is right-truncated to fit.

Message Queue Access Summary

This section summarizes how a process accesses the messages in a
message queue. Note that first-in first-out (FIFO) access is simplest,
but not mandatory.

FIFO access to a message list occurs only when a process follows each
check of the exchange (exCheck or exWait) with a copy (exCpRe-
quest, exCpResponse) or disposal of the newly discovered message.

A process can thumb through the msgret structures for the entire
message queue simply by not copying or discarding any message at
the exchange between checks. Repeated calls to exCheck return suc-
cessively newer msgret structures until there aren't any more;
repeated calls to exWait return successively newer msgret structures
forever.

Any copy or discard on a message waiting at an exchange resets the
procedure for that exchange: subsequent checks start over with the
oldest message.

ExCall, however, ignores all messages except the request it sends and
the response it waits for and copies; ExGetNext ignores all messages
except the request it copies.

S/1280 lnter-CPU Communication 14—21

O n e c a n t h i n k o f e a c h m e s s a g e a s h a v i n g a " n o t i c e d " f l a g . A s u c -

c e s s f u l e x C h e c k o r e x W a i t a l w a y s n o t i c e s t h e o l d e s t m e s s a g e w h o s e

" n o t i c e d " f l a g i s o f f . T h e f o l l o w i n g e v e n t s a f f e c t t h i s f l a g :

• The message's arrival at the queue turns that message's
"noticed" flag o f f .

• An exCheck or exWait that notices a message turns that
message's "noticed" flag on.

• An exCpResponse or exCpRequest on a message in a queue
turns off the "noticed" flag of every message in the queue.

ExCall and exGetNext do not affect the noticed flag of any message.

Releasing Unwanted Exchanges

All processes share a finite pool of exchanges. A process's death
automatically deallocates its exchanges. A process that will continue
working but has no further use for an exchange should relinquish it
with exDeallocExch:

exDeallocExch(exch)
unsigned short exch;

Exch is the descriptor of the unwanted exchange.

The death of a process deallocates all its exchanges. Process death is
the only way to deallocate the default response exchange.

The kernel has standard actions for messages still waiting at an
exchange when the exchange is deallcoated. The kernel discards any
responses still waiting at the deallocated exchange. The kernel issues
an exReject on any requests still waiting at the deallocated exchange:

exReject(rd, ercServiceNotAvail);

where rd is the request's request descriptor, and ercServiceNotAvail
is a constant defined in the include file.

14—22 Programmer's Guide: CTIX Supplement

Setting Final Action

The deallocation of a request's exchange may be a signal that the
request is obsolete. For example, a client might terminate suddenly
before its server has acted on a particularly time-consuming request.
It is useful for a client to prepare, in advance, messages that indicate
that it is no longer able to wait for a response. ExSendOnDealloc
provides a way to tie a request to the deallocation of a particular
exchange.

exSendOnDealloc(reqblp)
struct rqheader *reqblp;

This call specifies a final request. Reqblp points to the request block;
exSendOnDealloc returns a request descriptor. ExSendOnDealloc
causes the kernel to copy the final request indicated by reqblp; but
the kernel does not immediately queue the request at the server's
exchange. The status of the final request's response exchange con-
trols the final request: when this exchange is deallocated, the kernel
queues the final request. Thus the client dispatches the final request
either by dying or by a call to exDeallocExch.

Note that a server must respond to a final request, even though the
client will never read the response.

A client can cancel a final request:

exCnxSendOnDealloc(req)
unsigned short req;

Req is the request descriptor from the call to exSendOnDealloc.

Summary of System Calls

Here is a complete summary of ICC system calls. On error or failure,
all these calls return - 1 and set the external variable errno. Only
those functions indicated return a useful value on success. For errno
values, see intro(3) and perror(3) in the MegaFrame CTIX Operating
System Manual. Always test for equality with -1: some calls return
valid negative values. Only indicated functions return useful values
on success.

S/1280 Inter-CPU Communication 14—23

Obtain and abandon exchanges.

exQueryDfltRespExch()
Returns the exchange descriptor for the default response
exchange. Despite the name, you must specify this exchange
explicitly, and you can accept requests on a default response
exchange.

exAllocExch()
Allocates an exchange and returns the exchange descriptor.

exDeallocExch(ex)
unsigned short ex;

Deallocates the exchange specified by ex.

Call a server.

exCall(reqblk)
struct rqheader *reqblk;

Sends the request described by request block reqblk; waits for
the response; copies the response. ExCall ignore all messages
except its own request and response.

Send a message.

cxRequest(reqblp)
struct rqheader *reqblp;

Transmits the request described by request block reqbl.
Returns a request descriptor.

exRespond(reqdes, reqblp)
unsigned short reqdes;
struct rqheader *reqblp;

Transmits a response to the request indicated by reqdes.
Reqblp describes the response.

Check for waiting messages.

exWait(ex, mstat);
unsigned short ex;
struct msgret *mstat;

Gets status structure for oldest unnoticed message waiting at
exchange specified by ex. ExWait writes the status structure
to the location pointed to by mstat. If there are no unnoticed
messages at the specified exchange exWait waits until there
are.

10- S Programmer's Guide: CTIX Supplement

exCheck(ex, mstat);
unsigned short ex;
struct msgret *mstat;

Gets status structure for oldest unnoticed message waiting at
exchange specified by ex. ExCheck writes the status structure
to the location pointed to by mstat. If there are no messages
at the specified exchange, exCheck sets errno to ENOMSG
and returns -1.

A successful exWait or exCheck marks the discovered message
as "noticed": subsequent checks on the same exchange pro-
duce only newer messages. Any disposal of a message waiting
at an exchange (exCpRequest, exCpResponse, exReject, but
not exCall or exGetNext) marks all messages on the exchange
as "unnoticed": subsequent checks on the exchange start over
with the very oldest message on the exchange.

Dispose of a response.

exCpResponse(reqdes, reqst)
short reqdes;
struct request *reqst;

Copies the response indicated by reqdes.

Dispose of a request.

exCpRequest(reqdes, reqst)
unsigned short reqdes;
struct request *reqst;

Does not copy the request indicated by reqdes; sets the
request's return code field to code and sends the message back
as a response. ExReject does not permit the server to examine
the control data or other request fields.

Get the next request.

exGetNext(exch, reqblp, size)
unsigned short exch;
struct rqheader *reqblp;
unsigned short size

Copies the oldest request waiting at exch to reqblp. If the
request is more than size bytes, it is right-truncated.

S/1280 Inter-CPU Communication 14—25

Set final action.

short exSendOnDealloc(reqblk)
struct rqheader *reqblk;

Reads the request described by the request block pointed to by
reqblk, but doesn't send it until this process dies or otherwise
deallocates the request's response exchange. Returns a request
descriptor that is only good for cancelling the request.

A Note on Communicating with CTOS

Integer value conversion is necessary if client and server don't both
run under CTIX. CTIX runs on Application Processors, which are
based on the Motorola 68010 and 68020. CTOS runs on all others
S/1280 processors, which are based on the INTEL 80186. Motorola
and INTEL use opposite byte ordering for integer values. ICC does
this conversion automatically for the request block header. For
integers in the control information and in the request and response
data, the programmer must do the conversion. See swapshort(3C) in
the MegaFrame CTIX Operating System Manual.

CTIX ICC for the CTOS Programmer

ICC differs in important ways from its CTOS counterpart, Inter-
Process Communication (IPC). For the benefit of programmers
whose previous experience is with CTOS, we summarize these differ-
ences.

System Primitives

Most of the differences between ICC primitives and IPC primitives
reflect an important difference between CTIX and CTOS: CTIX
processes cannot access each other's memory. Thus CTIX processes
must send and receive copies of messages, not just pointers to mes-
sages.

ExCall provides services not available under CTOS. Its use is strongly
encouraged because it requires less work by the CTIX kernel.

10- S Programmer's Guide: CTIX Supplement

CTIX does not support an equivalent of Send or Psend.

Exchanges and Messages

A CTIX exchange can serve as both request and response exchange.

A CTIX exchange identifier is called an exchange descriptor. Unlike
CTOS identifiers, descriptors are not unique, except among exchanges
owned by the same process.

Each CTIX exchange belongs to a specific process. Only the
exchange's owner can receive messages at that exchange.

The CTIX programmer is encouraged to use explicitly the default
response exchange. Use of this exchange in asynchronous messages is
perfectly safe.

CTIX does not strictly enforce first-in-first-out access to an exchange's
messages. ExCall sends a request and then waits for the correspond-
ing response, ignoring all other responses. A certain usage of exWait
and exCheck (see "Message Queue Access Summary", above) gives a
process random access to an exchange's queue of messages.

S/1280 Inter-CPU Communication 14—27

15
CTIX System Assembler User's Guide

I n t roduct ion

This chapter is a CTIX system assembler user's guide for the
Motorola 68010, 68020, and 68881. This chapter should be used in
conjunction with the MC68000 16 Bit Microprocessor User's Manual*,
the MC68020 32-Bit Microprocessor User's Manual**, and the
MC6888! Floating-Point Coprocessor User's Manual'\. Programmers
familiar with the MC68010, MC68020, and MC68S81 should be able
to program in CTIX assembly language by referring to this chapter;
however, this is not a manual for a processor itself. Details about the
effects of instructions, meanings of status register bits, handling of
interrupts, and many other issues are not dealt with here.

NOTE

This chapter refers to the MC68010, MC68020, and MC68881
as "MC68K" processors. This chapter also refers to the
MC68000 16-Bit Microprocessor User's Manual, the MC68020
32-Bit Microprocessor User's Manual, and the MC6888!
Floating-Point Coprocessor User's Manual as "MC68K user
manuals."

* MC68000 16-BIT MICROPROCESSOR Users Manual, T h i r d E d i t i o n ;
F.nglewood Cl i f f s , N .J . : Prent ice-Ha l l . 19S2.

** MC68020 32-BIT MICROPROCESSOR User's Manual. Second E d i t i o n ;
Eng lewood Cl i f f s , N .J . : Pren t i ce -Ha l l , 1985.

t MC6SSS1 FLO A TlKG-I'OtST COPROCESSOR User's Manual, F i rs t E d i t i o n ,
19S5.

CTIX System Assembler User's Guide 15- -1

Organization

This section describes

• how to invoke the assembler

• general syntax rules and program organization

• pseudo-operations, span-dependent optimization, and address
modes

• major differences between CTIX and other assemblers

Table 15-3 presents all MC68K instruction formats alphabetically by
operation.

Use of the Assembler

The CTIX system command as invokes the assembler and has the fol-
lowing syntax:

as [—o output] file

This causes the named file to be assembled. The output of the assem-
bly is left on the file output specified by the -o flag. If no such specif-
ication is made, the output is left in a file whose name is formed by
removing the .s suffix, if there is one, from the input file name and
appending an .o suffix.

The C'TIX assembler, versions 5.0 and higher, supports flexnames.
' 'Flexname" is the AT&T term for the feature that allows a program
identifier to tie longer than eight characters. The following are avail-
able as backward compatibility options: the - T option to as, which
truncates symbols to eight characters, and the - G option to Id, which
changes the symbol name look-up algorithm. (Refer to a i (l) and
ld(1) in the CTIX Operating System Manual).

10- S Programmer's Guide: CTIX Supplement

General Syntax Rules

Assembler Code Elements

Identifiers, registers, constants, and comments are basic elements that
typically occur in CTIX assembly code. The following paragraphs
describe each of these elements.

Identifiers

An identifier is a string of characters taken from the set a-z, A-Z, - .
%, and 0-9. The first character of an identifier must lie a letter

(upper or lower case) or an underscore. Upper and lower case letters
are distinguished. For example,

con35 and CON35

are two distinct identifiers.

There is no limit on the length of an identifier.

The value of an identifier is established by the set pseudo-operation
or by using it as a label. (For more information on set pseudo-
operations and labels, see "Symbol Definition Operations" and
"Location Counters and Labels," respectively, below.)

The tilde (~) has special significance to the assembler. A ~ used
alone as an identifier means "the current location." A ~ used as the
first character in an identifier becomes a " . " in the symbol table.
This allows symbols such as .eos and .Ofake to make it into the sym-
bol table (as required by the Common Object File Format.)

Registers

An MC68K processor register is an identifier preceded by the charac-
ter %, The predefined registers are

CTIX System Assembler User's Guide 15- -3

%d0 %d4 %a0 %a4 %f0 %f4 %cc %usp %isp
%dl %d5 %al %a5 %fl %f5 %pc %caar 'Sfmsp
%d2 %d 6 %a2 %a 6 %f2 %f6 %sp %cacr %sfc
r/rd3 %d7 %a3 %al %f3 %f7 %sr %dfc %vbr

%fp

NOTE

The registers %a7 and %sp represent the same machine regis-
ter. Likewise, %a6 and %fp are equivalent.

Constants

The assembler deals with integer and floating-point constants. They
may be entered as decimal, octal, hexadecimal, or character con-
stants. Internally, the assembler treats all constants as 32-bit binary
two's complement quantities or as floating point, where applicable.

Numerical Constants. All numerical constants must be preceded by
ampersand (&). Otherwise, the number is assumed to be an absolute
address.

A decimal constant is a string of digits beginning with a non-zero
digit.

An octal constant is a string of digits beginning with zero.

A hexadecimal constant consists of the characters Ox or OX followed
by a string of characters from the set 0-9, a-f , and A-F. In hexade-
cimal constants, upper and lower case letters are not distinguished.

Floating point constants are preceded by Of. Double floating point
constants are preceded by Od.

Examples of decimal, octal, hexadecimal, and floating point constants
are listed as follows:

set const,&35 # Decimal 35
mov.w &035,%dl # Octal 35 (decimal 29)
set const,&0x35 # Hex 35 (decimal 53)
mov.w &0xff,%dl # Hex ff (decimal 255)
fmov.l &0fl23,%f0 # Floating point 123

10- S Programmer's Guide: CTIX Supplement

Character Constants. All character constants must be preceded by
ampersand (&). Character constants may be ordinary or special.

An ordinary character constant consists of a single-quote (') followed
by an arbitrary ASCII character other than \ . The value of the con-
stant is equal to the ASCII code for the character. Special meanings
of characters are overridden when used in character constants. For
example, if '# is used, the # is not treated as introducing a comment.

A special character constant consists of ' \ followed by another charac-
ter. All of the special character constants, and examples of ordinary
character constants, are listed as follows:

Constant Value Meaning
& ' \ b 0x08 Backspace
& ' \ t 0x09 Horizontal Tab
& ' \ n 0x0a Newline (Line Feed)
& ' \ v 0x0b Vertical Tab
& ' \ f 0x0c Form Feed
& ' \ r OxOd Carriage Return
& ' \ \ 0x5c Backslash (\)

& " 0x27 Single Quote
&'0 0x30 Zero
&'A 0x41 Capital A
&'a 0x61 Lowercase A

Comments

Comments are introduced by the character # and continue to the end
of the line. Comments may appear anywhere and are ignored by the
assembler. (See also the discussion of the ident pseudo-operation in
"Location Counter Control and Other Section Operations" below.)

Format of Assembly Language Line

Typical lines of CTIX assembly code look like:

CTIX System Assembler User's Guide 15- -5

Clear a block of memory at location %a3

text 2
mov.w &const,%dl

loop: clr.l (%a3)+
dbf %dl,loop # go back for const

repetitions
init2:

clr.l count; clr.l credit; clr.l debit;

These general points about the example should be noted:

• An identifier occurring at the beginning of a line and followed
by a colon (:) is a label. One or more labels may precede any
assembly language instruction or pseudo-operation. Refer to
"Location Counters and Labels," below, for more informa-
tion.

• A line of assembly code need not include an instruction. It
may consist of a comment alone (introduced by #), a label
alone (terminated by :), or it may be entirely blank.

• It is good practice to use tabs to align assembly language
operations and their operands into columns, but this is not a
requirement of the assembler. An opcode may appear at the
beginning of the line, if desired, and spaces may precede a
label. A single blank or tab suffices to separate an opcode
from its operands. Additional blanks and tabs are ignored by
the assembler.

• It is permissible to write several instructions on one line by
separating them by semicolons. The semicolon is syntactically
equivalent to a newline. A semicolon inside a comment is
ignored.

Program Organization

A CTIX program is organized in section that are maintained and
identified by location counters and labels, respectively. The following
paragraphs describe sections, location counters, and labels.

10- S Programmer's Guide: CTIX Supplement

Sections

A program in CTIX assembly language is normally broken into text,
data, or bss sections. Instructions are usually placed in text sections,
initialized data in data sections, and uninitialized data in bss sections.
However, the assembler does not enforce this convention; for exam-
ple, it permits intermixing of instructions and data in a text section.

The assembler permits up to nine separate sections, three of which
must be text, data, and bss. (User-defined sections and comment sec-
tions are discussed below in "Location Counter Control and Other
Section Operations.") The assembly language program may switch
freely between them by using assembler pseudo-operations. (See
"Location Counter Control and Other Section Operations," below.)
When generating the object file, the assembler concatenates all sec-
tions of the same name to generate a single section of that name. For
example, if there are no section or ident pseudo-operations in the
source file, the object file contains only one text section and one data
section.

There is only one bss section to begin with, and it maps directly into
the object file.

Because the assembler keeps together everything from a given section
when generating the object file, the order in which information
appears in the object file may not be the same as in the assembly
language file. For example, if the data for a program consists of

data 1 # section 1
short 0x1111
data 0 # section 0
long Oxffffffff
data 1 # section 1
byte 0x2222

then equivalent object code would be generated by

dataO
longOxffffffff
shortOxl 111
byte0x2222

CTIX System Assembler User's Guide 15- -7

Location Counters and Labels

The assembler maintains separate location counters for each section.
The location counter for a given section is incremented by one for
each byte generated in that section.

The location counters allow values to be assigned to labels. When an
identifier is used as a label in the assembly language input, the
current value of the current location counter is assigned to the identif-
ier. The assembler also keeps track of which section the label
appeared in. Thus, the identifier represents a memory location rela-
tive to the beginning of a particular section. See "Location Counter
Control and Other Section Operations," below, for more information
on values that are assigned to location counters.

Types

Identifiers and expressions may have values that are absolute, relocat-
able, or undefined external types.

In the simplest case, an expression (or identifier) may have an abso-
lute value, such as 29, -5000, or 262143.

An expression (or identifier) may have a value relative to the start of
a particular section. Such a value is known as a relocatable value.
The memory location represented by such an expression cannot be
known at assembly time, but the relative values (i.e., the difference)
of two such expressions can be known if they refer to the same sec-
tion. Identifiers that appear as labels have relocatable values.

If an identifier is never assigned a value, it is assumed to be an unde-
fined external. Such identifiers may be used with the expectation that
their values will be defined in another program, and hence known at
load time; but the relative values of undefined externals cannot be
known.

10- S Programmer 's Guide: CTIX Supplement

Expressions

A l l c o n s t a n t s a r e a b s o l u t e e x p r e s s i o n s . A n i d e n t i f i e r m a y b e t h o u g h t

o f a s a n e x p r e s s i o n h a v i n g t h e i d e n t i f i e r ' s t y p e . F o r c o n c i s e n e s s , t h e

f o l l o w i n g a b b r e v i a t i o n s a r e u s e d :

abs absolute expression
rel relocatable expression
ext undefined external

Expressions, except for floating point, may be built up from lesser
expressions using the following operators:

Add +
Subtract -
Multiply *
Divide /
Left shift <<
Right shift >>
Exclusive-OR
Bit $
One's complement !
Modulus %%
OR I
A N D &&

Parentheses may be used to coerce the order of evaluation; otherwise
the operators are evaluated, from highest to lowest precedence-, as fol-
lows:

unary minus, !, Highest
*, /, %%
+ , binary minus « , >>

&&, I , ~ Lowest

Division by zero is illegal.

Expressions may be built up from lesser expressions using +, - , *,
and / according to the following type rules:

CTIX System Assembler User's Guide 15—9

a b s + a b s = a b s

a b s + r e l = r e l + a b s = r e l

a b s + e x t = e x t + a b s = e x t

abs - abs = abs
rel - abs = rel
ext - abs = ext
rel - rel = abs, if the two relocatable expressions

are relative to the same section

abs * abs = abs
abs / abs = abs

-abs = abs

Expressions using < < , > > , " , $, ! , % % , I , and && only make sense
in absolute expressions.

CAUTION

Use of a rel-rel expression is dangerous, particularly when
dealing with identifiers from text sections. The problem is
that the assembler will determine the value of the expression
before it has resolved all questions about span-dependent
optimizations. Use this feature at your own risk!

Pseudo-Operations

Pseudo-operations establish values for identifiers and expressions.
The following paragraphs identify data initialization, symbol defini-
tion, location counter control, symbolic debugging, and switch table
pseudo-operations.

Data Initialization Operations

Data initialization operations establish values for expressions. Each
operation is presented by operation name, followed by the argument
types and a description of the operation.

15—10 Programmer's Guide: CTIX Supplement

byte abs,abs,...

One or more arguments, separated by commas, may be
given. The values of the arguments are computed to pro-
duce successive bytes in the assembly output.

short abs,abs,...

One or more arguments, separated by commas, may be
given. The values of the arguments are computed to pro-
duce successive 16-bit words in the assembly output.

long expr,expr,...

One or more arguments, separated by commas, may be
given. Each expression may be absolute, relocatable, or
undefined external. A 32-bit quantity is generated for
each such argument (for relocatable or undefined external
expressions, the value may not be filled in until load
time).

ASCII string,string,...

One or more strings may be given, separated by commas.
The values of the arguments are computed to produce
ASCII strings.

float fexpr,fexpr,...

One or more arguments, separated by commas, may be
given. The values of the arguments are computed to pro-
duce 32-bit floating point values, fexpr is a floating point
constant.

double fexpr,fexpr,...

One or more arguments, separated by commas, may be
given. The values of the arguments are computed to pro-
duce 64-bit floating point values, fexpr is a floating point
constant.

space abs

The value of abs is computed, and the resultant number
of bytes of zero data is generated. For example,

space 6

is equivalent to

byte 0, 0, 0, 0, 0, 0

CTIX System Assembler User's Guide 15- -509

A l t e r n a t i v e l y , a r g u m e n t s m a y b e b i t - f i e l d e x p r e s s i o n s . A b i t - f i e l d

e x p r e s s i o n h a s t h e f o r m

n : v a l u e

where both n and value denote absolute expressions. The quantity n
represents a field width; the low-order n bits of value become the con-
tents of the bit-field. Successive bit-fields fill up 32-bit long quantities
starting with the high-order part. If the sum of the lengths of the
bit-fields is less than 32 bits, the assembler creates a 32-bit long with
zeros filling out the low-order bits. For example,

long4:-l, 16:0x7f, 12:0, 5000

and

long4:-l, 16:0x7f, 5000

are equivalent to

Iong0xf007f000, 5000

Bit fields may not span pairs of 32-bit longs. Thus

long24:0xa, 24:0xb, 24:0xc

yields the same thing as

longOxOOOOOaOO, OxOOOOObOO, OxOOOOOcOO

Symbol Definition Operations

Symbol definition operations establish values for identifiers. Each
operation is presented by operation name, followed by the argument
types and a description of the operation.

set identifier,expr

The value of identifier is set equal to expr, which may be
absolute or relocatable.

comm identifier,abs

The named identifier is to be assigned to a common area
of size abs bytes. If identifier is not defined by another
program, the loader will allocate space for it.

15—12 Programmer's Guide: CTIX Supplement

The type of identifier becomes undefined external.

lcomm identifier,abs

The named identifier is assigned to a local common of
size abs bytes. This results in allocation of space in the
bss section.

The type of identifier becomes relocatable.

global identifier

This causes identifier to be externally visible. If identifier
is defined in the current program, then declaring it global
allows the loader to resolve references to identifier in other
programs.

If identifier is not defined in the current program, the
assembler expects an external resolution; in this case,
therefore, identifier is global by default.

Location Counter Control and Other Section
Operations

Location counter control operations establish values for location
counters. Each operation is presented by operation name, followed
by the argument types and the operation description.

data abs

The argument, if present, must evaluate to 0, 1, 2, or 3;
this shows the number of the data section into which
assembly is to be directed. If no argument is present,
assembly is directed into data section 0. (Note that the
abs argument may not be supported in future releases.)

text abs

The argument, if present, must evaluate to 0, 1, 2, or 3;
this shows the number of the text section into which
assembly is to be directed. If no argument is present,
assembly is directed into text section 0.

Before the first data or text operation is encountered,
assembly is, by default, directed into text section 0.
(Note that the abs argument may not be supported in
future releases.)

CTIX System Assembler User's Guide 15- -13

ident "comment string"

This operation causes a comment section to be created if
there is no comment section already and puts the comment
string into the comment section. This is used for SCCS
"what" strings [see what(\) in the CTIX Operating System
Manual],

(Not available on versions of the CTIX assembler previ-
ous to 6.0.)

section name, "flag"

This operation causes the creation of a new section, which
is identified by name and has an attribute corresponding
to flag. Attributes are defined in <sys!scnhdr.h>. The
argument flag and associated attribute is one of the fol-
lowing:

b STYPJ3SS
c STYP_COPY
i STYP_INFO
d STYP_DSECT
X STYP_TEXT
n STYP_NOLOAD
0 STYP_OVER
1 STYP _LIB
w STYP_DATA

NOTE: A new section is created as described above, but
it is not loaded by the CTIX kernel unless there is an iftle
for it and the iftle has been linked. (An iftle is an Id input
file containing link editor command language scripts.) For
information on creating an iftle, see "The Link Editor" in
Programmer's Guide: UNIX System V.

(Not available on versions of the CTIX assembler previ-
ous to 6.0.)

org expr

The current location countcr is set to expr. Expr must
represent a value in the current section, and must not be
less than the current location counter.

The current location counter is rounded up to the next
even value.

10- S Programmer's Guide: CTIX Supplement

align abs

The argument must evaluate to 0, 1, 2, 3, or 4; this shows
the alignment of the following instructions or data to the
nearest abs byte boundary. For example, even is the same
as align 2.

Symbolic Debugging Operations

The special assembler pseudo-operations, file and In, and the symbol
attribute operations place debugging information into the object code
file. This information typically includes line numbers and informa-
tion about C language symbols, such as their type and storage class.
The CTIX system C compiler generates symbolic debugging informa-
tion when the -g option is used. Assembler programmers may also
include such information in source files.

file and In

The File pseudo-operation passes the name of the source file into the
object file symbol table. It has the form

file "filename"

where filename consists of one to 14 characters.
The In pseudo-operation makes a line number table entry in the
object file. That is, it associates a line number with a memory loca-
tion. Usually the memory location is the current location in text.
The format is

In line [,value]

where line is the line number. The optional value is the address in
the text, data, or bss section that is associated with the line number.
The default when value is omitted (which is usually the case) is the
current location in the text section.

CTIX System Assembler User's Guide 15- -15

S y m b o l A t t r i b u t e O p e r a t i o n s

T h e s y m b o l a t t r i b u t e o p e r a t i o n s i n c l u d e b a s i c s y m b o l i c t e s t i n g a n d

a t t r i b u t e - a s s i g n i n g p s e u d o - o p e r a t i o n s .

Basic Symbolic Testing Operations. The basic symbolic testing
pseudo-operations are def and endef. These operations enclose other
pseudo-operations that assign attributes to a symbol and must be
paired, as follows:

def name
Attribute
Assigning
Operations

endef

As an example,

defx
val-16
sell
tvpe06
endef

is equivalent to the C language statement

int x;

NOTE
I
! def does not define the symbol, although it does create a sym-

bol table entry. Because an undefined symbol is treated as
external, a symbol that appears in a def but never acquires a
value will eventually result in an error at link edit time. To
allow the assembler to calculate the sizes of functions for other
CTIX system tools, each def/endef pair that defines a function
name must be matched by a def/endef pair after the function
in which a storage class of -1 is assigned.

Attribute-Assigning Operations. The attribute-assigning operations
described below apply to the symbol name that appears in the opening
def pseudo-operation in "Basic Symbolic Testing Operations," above.

15—16 Programmer's Guide: CTIX Supplement

val expr

Assigns the value expr to name. The type of the expres-
sion expr determines with which section name is associ-
ated. If value is the current location in the text section
is used.

scl expr

Declares a storage class for name. The expression expr
must yield an ABSOLUTE value that corresponds to the
C compiler's internal representation of a storage class.
The special value -1 designates the physical end of a func-
tion.

type expr

Declares the C language type of name. The expression
expr must yield an ABSOLUTE value that corresponds to
the C compiler's internal representation of a basic or
derived type.

tag str

Associates name with the structure, enumeration, or
union named str that must have already been declared
with a def/endef pair.

line expr

Provides the line number of name, where name is a block
symbol. The expression expr should yield an ABSO-
L U T E value that represents a line number.

size expr

Gives a size for name. The expression expr must yield an
ABSOLUTE value. When name is a structure or an
array with a predetermined extent, expr gives the size in
bytes. For bit fields, the size is in bits.

dim exprl, expr2,...

Indicates that name is an array. Each of the expressions
(exprl, expr2,...) must yield an ABSOLUTE value that
provides the corresponding array dimension.

CTIX System Assembler User's Guide 15- -17

Switch Table Operation

I n t h e s w i t c h t a b l e o p e r a t i o n , t h e C T I X s y s t e m C c o m p i l e r g e n e r a t e s

a c o m p a c t s e t o f i n s t r u c t i o n s , d e t e r m i n e d b y a s p e c i a l swbeg o p e r a -

t i o n . l o r t h e C" l a n g u a g e s w i t c h c o n s t r u c t . F o r e x a m p l e ,

sub. 1 &l.%dO
cm p. 1 %d0,&4
bhi LV21
atlu.w ' ; d o / ; d n
IT! OV. w 10(9cpc, %d0. w), %d0
imp 6(9rpc,%d0.w)
sw ix.-g <k.5

1/722:

short! / r l5-L9r22
shortI.9r21-L%22
short! / 7 16-I//722
sh,ortI. r;21-F r 'r22
shortl 17-1 / r 2 2

The special swbeg pseudo-operation communicates to the assembler
that the lines following it contain rel-rel subtractions. Remember that
ordinarily such subtractions are risky because of span-dependent
optimization. Here, however, the assembler makes special allowances
for the subtraction because the compiler guarantees that both symlxils
will lx defined in the current assembler file, and that one of the sym-
lxils is a fixed distance away from the current location.

The swbeg pseudo-operation takes an argument that looks like an
immediate operand. The argument is the number of lines that follow
swbeg and that contain switch table entries. Swbeg inserts two words
into text. The first is the ILLEGAL instruction code. The second is
the number of table entries that follow. The CTIX system disassem-
bler needs the I t .LEGAL instruction as a hint that what follows is a
switch table. Otherwise it would get confused when it tried to decode
the table entries (differences between two svmlxils) as instructions.

15 IX Programmer's Guide: CTIX Supplement

Span-Dependent Optimization

The assembler makes certain choices about the object code it gen-
erates based on the distance between an instruction and its
operand(s). Choosing the smallest, fastest form is called span-
dependent optimization. Span-dependent optimization occurs most
obviously in the choice of object code for branches and jumps. It also
occurs when an operand may be represented by the program counter
relative address mode instead of an absolute two-word (long) address.

The span-dependent optimization capability is normally enabled; the
- n command line flag disables it. When this capability is disabled,
the assembler makes worst-case assumptions about the types of object
code that must be generated.

The CTIX system compiler generates branch instructions without a
specific offset size. When the optimizer is used, it identifies branches
that could be represented by the short form, and it changes the opera-
tion accordingly. The assembler only chooses between long and
very-long representations for branches.

Branch instructions, such as bra, bsr, and bgt, can have either a byte
or a word pc-relative address operand. A byte size specification
should be used only when the user is sure that the address intended
can be represented in the byte allowed. The assembler will take one
of these instructions with a byte size specification and generate the
byte form of the instruction without asking questions.

Although the largest offset specification allowed is a word, large pro-
grams could conceivably have need for a branch to a location not
reachable by a word displacement. Therefore, equivalent long forms
of these instructions might be needed. When the assembler
encounters a branch instruction without a size specification, or with a
word size specification, it tries to choose between the long and very
long forms of the instruction. If the operand can be represented in a
word, then the word form of the instruction will be generated. Oth-
erwise the very long form will be generated. For unconditional
branches, e.g., br, bra, and bsr, the very long form is just the
equivalent jump (jmp and jsr) with an absolute address operand
(instead of pc-relative). For conditional branches, the equivalent very
long form is a conditional branch around a jump, where the condi-
tional test has been reversed.

Table 15-1 summarizes span-dependent optimizations. The assembler
chooses only between the long form and very long form, while the
optimizer chooses between the short and long forms for branches (but

CTIX System Assembler User's Guide 15- -19

not bsr).

T A B L E 1 5 - 1

ASSEMBLER SPAN-DEPENDENT OPTIMIZATIONS

Instruction Short Form Long Form

br, bra, bsr byte offset word offset

Very Long Form

jmp or jsr with absolute
long address

conditional
branch

jmp, jsr

byte offset word offset

pc-relative
address

short conditional branch
with reversed condition
around jmp with abso-
lute long address

absolute long
address

lea.l , pea.l pc-relative
address

absolute long
address

Address Mode Syntax

Table 15-2 summarizes the assembler syntax for the MC68K address-
ing modes. The following notations are used in this table:

n represents any digit from 0 to 7.

Rn, xn represent MC68K data or address registers.
Xn

d represents a displacement, and may stand for any abso-
lute expression.

bd stands for an absolute expression that represents a base
displacement.

od stands for an absolute expression that represents an
optional outer displacement.

S (as in %xn.S) stands for one of the operation size attri-
bute letters b, w, or 1, representing a byte, word, or

15—20 Programmer's Guide: CTIX Supplement

long operation.

s c a l e (a s i n % x n . S * s c a l e) r e p r e s e n t s a v a l u e of 2 , 4 , o r 8 .

It is important to note that expressions used for the absolute address-
ing modes need not be absolute expressions in the sense defined in
"Types," above. Although the addresses used in those addressing
modes must eventually be filled in with constants, that can be done by
the loader—there is no need for the assembler to compute them. The
Absolute Long addressing mode is commonly used for accessing
undefined external addresses.

CTIX System Assembler User's Guide 15—21

TABLE 15-2

EFFECTIVE ADDRESS MODES (Page 1 of 2)

Motorola
Syntax

CTIX
Assembler

Syntax Effective Address Mode

Dn

An

(An)

(An)+

-(An)

di6(AN)
(d 1 6 , A N)

d 8 (An,Rn. W)
d 8 (An,Rn.L)

(d s , A n , X n .

S I Z E * S C A L E)

(b d , A n , X n .

S I Z E * S C A L E)

%dn

%an

(%an)

(%an)+

-(%an)

d(%an)

d(%an,%xn.w)
d(%an,%xn.l)

d (% a n , % x n . S)

b d (% a n ,

% x n . S)

Data Register Direct

Address Register Direct

Address Register Indirect

Address Register Indirect with
Postincrement

Address Register Indirect with
Predecrement

Address Register Indirect
with Displacement
(d signifies a signed 16-bit
absolute displacement)

Address Register Indirect
with Index

(d signifies a signed 8-bit
absolute displacement)

A d d r e s s R e g i s t e r I n d i r e c t w i t h

I n d e x (8 - B i t D i s p l a c e m e n t)

A d d r e s s R e g i s t e r I n d i r e c t w i t h

I n d e x (B a s e D i s p l a c e m e n t)

([b d , A n] , X n .

S I Z E * S C A L E ,

o d)

([b d , A n , X n .

S I Z E * S C A L E]

o d)

o d ((b d , % a n] ,

% x n . S * s c a ! e)

o d ([b d , % a n ,

% x n . S * s c a ! e])

M e m o r y I n d i r e c t P o s t - I n d e x e d

M e m o r y I n d i r e c t P r e - I n d e x e d

Address modes in boldface are for the MC68020 processor.

15—22 Programmer's Guide: CTIX Supplement

T A B L E 1 5 - 2

E F F E C T I V E A D D R E S S M O D E S (P a g e 2 o f 2)

Motorola
Notation

Assembler
Notation

Effective
Address Mode

xxx. W xxx Absolute Short Address
(xxx signifies an expression
yielding a 16- or 32-bit
memory address)

xxx. L xxx Absolute Long Address
(xxx signifies an expression
yielding a 32-bit memory
address)

LABEL(PC) d(%pc) Program Counter with
Displacement
(d signifies a signed 16-bit
absolute displacement)

LABEL(PC,Rn. W)
LABEL(PC,Rn.L)

d(%pc,%rn.w)
d(%pc,%rn.l)

Program Counter with Index
(d signifies a signed 8-bit
absolute displacement)

(d8,PC,Xn.
SIZE*SCALE)

d(%pc,%xn.S) Program Counter Indirect
with Index (8-Bit
Displacement)

(bd,PC, Xn.
SIZE*SCALE)

bd(%pc,%xn.S) Program Counter Indirect
with Index (Base
Displacement)

([bd,PC],Xn.
SIZE.SCALE,od)

od([bd,%pc],
%xn.S*scaIe)

Program Counter Memory
Indirect Post-Indexed

([bd,PC,Xn.
SIZE*SCALE],
od)

od([bd, %pc,
%xn.S*scale

Program Counter Memory
Indrect Pre-Indexed

#xxx & X X X Immediate Data
(xxx signifies an absolute
constant expression)

Address modes in boldface are for the MC68020 processor.

CTIX System Assembler User's Guide 15—23

Machine Instructions

T a b i c 1 5 - 3 s h o w s h o w M C 6 8 K i n s t r u c t i o n s s h o u l d b e w r i t t e n f o r t h e

a s s e m b l e r . T h e f o l l o w i n g n o t a t i o n s a r e u s e d i n t h i s t a b l e :

A (as in add.A) stands for one of the address operation size
attribute letters w or I, representing a word or long opera-
tion.

S (as in add.S) stands for one of the operation size attribute
letters b, w, or 1, representing a byte, word, or long opera-
tion.

FMT (as in fadd.FMT) stands for

• one of the operation size attribute letters b, w, or 1,
representing a word or long operation.

• one of the floating-point data format attribute letters s,
d, x, or p, representing a single precision, double preci-
sion, extended precision, or packed BCD operation.

CC In the contexts bCC, dbCC, and sCC, the letters CC
represent any of the following condition code designations
(except that f and t may not be used in the bCC instruc-
tion):
cc carry clear
cs carry set
eq equal
f false
ge greater or equal
gt greater than
hi high
hs high or same (=cc)
le less or equal
lo low (=cs)
ls low or same
lt less than
mi minus
ne not equal
pl plus
t true
vc overflow clear
vs overflow set

EA Represents an arbitrary effective address.

15—24 Programmer's Guide: CTIX Supplement

I An absolute expression, used as an immediate operand.

Q Represents an absolute expression evaluating to a number
from 1 to 8.

L Represents a label reference, or any expression representing
a memory address in the current section.

The following represent registers:

%ax %dx %fm
%ay %dy %fn
%an %dn

Refer to the notes under "meaning" in Table 15-3 for additional
information concerning registers not listed here. Refer to Appendix
C of the MC68020 user manual for instruction formats and the hex
values of operation codes.

NOTE

MC68020 instruction formats are in boldface. MC68881
instruction formats begin with the letter f.

CTIX System Assembler User's Guide 15- -25

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 11 o f 1 7)

Operation Assembler Syntax Meaning
A B C D

A D D

A D D A

A D D I

A D D Q

A D D X

A N D

A N D I

A N D I
to C C R

A N D I
to SR

A S L

A S R

Bcc

a b c d . b

add.S

add. A

add.S

add.S

addx.S

and.S

and.S

and .b

a n d . w

asl.S

asl .w

asr.S

asr .w

b C C

% d y , % d x
- (% a y) , - (% a x)

E A , % d n
% d n , E A
E a , % a n

& I . E A

6 0 . E A

%dy,9f-dx
- (% a y) , - (% a x)

E A , % d n
% d n , E A

6 1 . E A

& I , % c c

& I . % s r

% d x , % d y
& Q , % d y

& I . E A

% d x , % d y
& Q . % d v

& I . E A

L

A d d D e c i m a l w i t n
E x t e n d

A d d B ina ry

A d d Address

A d d I m m e d i a t e

A d d Q u i c k

A d d E x t e n d e d

A N D L o g i c a l

A N D I m m e d i a t e

A N D I m m e d i a t e to
C o n d i t i o n Codes

A N D I m m e d i a t e to
the Status Reg is ter
(P r i v i l eged I ns t r uc t i on)

A r i t h m e t i c Shi f t
(L e f t)

A r i t h m e t i c Shi f t
(R i g h t)

B ranch C o n d i t i o n a l l y
(16 -b i t D i sp l acemen t)

M C 6 8 0 2 0 i ns t ruc t i on f o rma ts are in bo ld face .

MC6SSS1 ins t ruc t i on fo rma ts beg in w i t h the le t ter f.

15—26 Programmer's Guide: CTIX Supplement

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 10 o f 1 7)

Operation Assembler Syntax Meaning

b C C . b L B ranch Cond i t i ona l l y
(Short) (8 -b i t D isp lace-
ment)

B C H G bchg % d n , E A
& I , E A

Test a B i t and Change

No te : b c h g should be
w r i t t en w i t h no suf f ix .
I f the second operand is
a data register, .1 is
assumed; o therwise .b is.

B C L R bc l r % d n , E A
& I , E A

Test a B i t and Clear

No te : bc l r should be
wr i t t en w i t h no suf f ix .
I f the second ope rand is
a data register, .1 is
assumed; o therwise .b is.

BFCHG bfchg EA Test Bit Field and
Change

BFCER bfclr EA Test Bit Field and
Clear

IiFEXTS bfexts F.A,%dn Extract Bit Field
Signed

BFEXTU bfextu EA,%dn Extract Bit Field
Unsigned

BFFFO bfffo EA,%dn Find First One in
Bit Field

BFINS bfins %dn,EA Insert Bit Field

BFSET bfset EA Set Bit Field

M C 6 8 0 2 0 i n s t r u c t i o n f o r m a t s a r e in b o l d f a c e .

M C 6 8 8 8 1 i n s t r u c t i o n f o r m a t s b e g i n w i t h t h e l e t t e r f.

CTIX System Assembler User's Guide 15—-27

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 11 o f 1 7)

Operation Assembler Syntax Meaning

B F T S T b f ts t E A Test B i t F ie ld

B K P T b k p t & I B r e a k p o i n t

B R A b r a L B r a n c h A l w a y s
(1 6 - b i t D i s p l a c e m e n t)

b r a . b L B r a n c h A l w a y s (S h o r t)
(8 - b i t D i s p l a c e m e n t)

b r
b r . b

L
L

S a m e as b r a
S a m e as b r a . b

B S E T bset % d n , E A
& I , E A

T e s t a B i t a n d Set

N o t e : bset shou ld be
w r i t t e n w i t h no su f f i x .
I f the second o p e r a n d is
a data reg is ter . . 1 is
assumed; o therw ise .b is.

B S R bsr L B r a n c h to S u b r o u t i n e
(1 6 - b i t D i s p l a c e -
m e n t)

b s r . b L B ranch to Subrou t ine
(Shor t) (8 -b i t D isp lace-
men t)

B T S T bts t % d n , E A
& I . E A

T e s t a B i t a n d Set

N o t e : btst shou ld be
w r i t t e n w i t h no su f f i x .
I f the second o p e r a n d is
a data reg is ter , . 1 is
assumed; o therw ise .b is.

C A I . I . M c a l l m & I , E A C A L L M o d u l e

M C 6 8 0 2 0 i ns t ruc t i on f o r m a t s are in bo ld face .

M C 6 8 S S 1 i ns t ruc t i on f o rma ts beg in w i t h the le t ter f.

15—28 Programmer's Guide: CTIX Supplement

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 10 o f 1 7)

Operation Assembler Syntax Meaning

C A S cas.S % d c , % d u , E A

C A S 2

C I - I K

C H K 2

C L R

C M P

C M P A

C M P I

C M P M

cas2.A

c h k . w

chk2 .S

c l r . S

c m p . S

c m p . A

c m p . S

c m p . S

% d c l : % d c 2 ,
% d u l : % d u 2 ,
(% r n l : % r n 2)

E A , % d n

E A , % r n

E A

% d n , E A

% a n , E A

E A , & I

(% a x) + ,
(% a y) +

C o m p a r e a n d S w a p
wi th O p e r a n d
Note: c represents com-
pare; u represents update
value. See MC68020
User's Manual for details.

C o m p a r e and Swap
w i t h O p e r a n d

Note: c l and c2 represent
compare operands; ul and
u2 represent update
values; rnl and rn2
represent effective
addresses. See MC68020
User's Manual for details.

C h e c k Reg i s t e r
A g a i n s t B o u n d s

Check Regis ter
Aga ins t Bounds

C l e a r an O p e r a n d

C o m p a r e

C o m p a r e A d d r e s s

C o m p a r e I m m e d i a t e

C o m p a r e M e m o r y

M C 6 8 0 2 0 i n s t r u c t i o n f o r m a t s a r e in b o l d f a c e .

M C 6 8 8 8 1 i n s t r u c t i o n f o r m a t s b e g i n w i t h t h e l e t t e r f.

CTIX System Assembler User's Guide 15—-29

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 11 o f 1 7)

Operation Assembler Syntax Meaning

CMI '2

DRcc

D I V S

DIVSL

D I V U

DIVUL

cmp2.S

d b C C

dbra

db r

d ivs .w

divs.l
divs.l
divs.l

d i v u . w

divu.l
divu.l
divul.l

%rn,EA

% d n , L

% d n , L

% d n , L

E A , % d n

EA,%dq
EA,%dr:%dq
EA,%dr:%dq

E A , % d n

EA,%dq
EA,%dr:%dq
EA,%dr:%dq

Note : The order o f
operands in C T I X
assembly language is the
reverse of that in the
M C 6 8 0 0 0 User 's
Manua l .

Compare Register
Against Bounds

Test Cond i t i on , Dec-
rement and Branch

Decrement and
Branch A lways

Same as db ra

Signed D i v i de

Signed Divide

Note: r represents
remainder; q represents
quotient.

Uns igned D i v i d e

Unsigned Divide

Note: r represents
remainder; q represents
quotient.

E O R eor.S % d n , E A Exc lus i ve -OR Log i ca l

MC6S020 ins t ruct ion formats are in bo ldface.

M C 6 8 8 8 1 ins t ruc t ion formats begin w i t h the letter f.

15—30 Programmer's Guide: CTIX Supplement

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 10 o f 1 7)

Operation Assembler Syntax Meaning

E O R I

E O R I
to C C R

E O R I
to SR

E X G

E X T

EXTB

F A B S

F A C O S

F A D D

F A S I N

eor.S

eo r .b

exg. l

ext. A

extb.l

f a b s . F M T
fabs.x
fabs.x

f a c o s . F M T
facos.x
facos.x

f a d d . F M T
fadd.x

f a s i n . F M T
fasin.x
fasin.x

& I , E A

& I , % c c

& I , % s r

% r x , % r y

%dn

%dn

E A , % f n
% f m , % f n
%fn

E A , % f n
% f m , % f n
%fn

E A , % f n
% f m , % f n

E A , % f n
% f m , % f n
%fn

Exc lus i ve -OR Immed ia te

Exc lus i ve -OR Immed ia te
to C o n d i t i o n Codes

Exc lus i ve -OR Immed ia te
to the Status Register
(Pr iv i leged Ins t ruc t ion)

Exchange Registers

Sign Ex tend

Sign Extend

Abso lu te Va lue

A r c Cosine

A d d

A r c Sine

F A T A N f a t a n . F M T
fatan.x
fa tan.x

E A , % f n
% f m , % f n
%fn

A r c Tangent

F A T A N I I f a t a n h . F M T
fatanh.x
fa tanh.x

E A , % f n
% f m , % f n
%fn

H y p e r b o l i c A r c
Tangent

M C 6 8 0 2 0 i n s t r u c t i o n f o r m a t s a r e in b o l d f a c e .

M C 6 8 8 8 1 i n s t r u c t i o n f o r m a t s b e g i n w i t h t h e l e t t e r f.

CTIX System Assembler User's Guide 15—-31

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 11 o f 1 7)

Operation Assembler Syntax Meaning

F B c c

F C M P

F C O S

F C O S I I

F D B c c

F D I V

F E T O X

F R T O X M 1

F G E T K X P

F G E T M A N

F I N T

f b C C . A

f c m p . F M T
f c m p . x

f c o s . F M T
fcos.x
fcos.x

f c o s h . F M T
fcosh.x
fcosh.x

f d b C C

f d i v . F M T
fd i v . x

f e t o x . F M T
fe tox .x
fe tox .x

f e t o x m l . F M T
f e t o x m l . x
f e t o x m l . x

f g e t e x p . F M T
fge texp .x
fge texp .x

f g e t m a n . F M T
fge tman .x
f ge tman .x

f i n t . F M T
f i n t . x
f i n t . x

E A , % f n
% f m , % f n

E A , % f n
% f m , % f n
% f n

E A , % f n
% f m , % f n
% f n

% d n , L

E A , % f n
% f m , % f n

E A , % f n
% f m , % f n
% f n

E A , % f n
% f m , % f n
% f n

E A , % f n
% f m , % f n
% f n

E A , % f n
% f m , % f n
%fn

E A , % f n
% f m , % f n
%fn

B r a n c h C o n d i t i o n a l l y

C o m p a r e

Cos ine

H y p e r b o l i c Cos ine

Test C o n d i t i o n , D e c -
remen t and B ranch

D i v i d e

G e t E x p o n e n t

G e t Mant issa

In teger Part

M C 6 8 0 2 0 i ns t ruc t i on f o rma ts are in bo ld face .

M C 6 8 8 8 1 ins t ruc t i on f o rma ts beg in w i t h the le t ter f.

15—32 Programmer's Guide: CTIX Supplement

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 10 o f 1 7)

O p e r a t i o n A s s e m b l e r S y n t a x M e a n i n g

F I N T R Z f i n t r z . F M T
f i n t r z . x
f i n t r z . x

E A , % f n
% f m , % f n
% f n

In teger Par t , R o u n d -
t o - Z e r o

F L O G I O f l o g l O . F M T
floglO.x
floglO.x

E A , % f n
% f m , % f n
% f n

L o g m

F L O G 2 f l o g 2 . F M T
flog2.x
flog2.x

E A , % f n
% f m , % f n
%fn

L o g ;

F L O G N f l o g n . F M T
f logn.x
f logn .x

E A , % f n
% f m , % f n
% f n

Loge

F L O G N P 1 f l o g n p l . F M T
f l o g n p l . x
flognpl.x

E A , % f n
% f m , % f n
% f n

Loge<*+1>

F M O D f m o d . F M T
f m o d . x

E A , % f n
% f m , % f n

M o d u l o R e m a i n d e r

F M O V E f m o v . F M T
f m o v . F M T
f m o v . p
f m o v . p

E A , % f n
% f m , E A
% f m , E A { k >
% f m , E A - C % d n >

M o v e F loa t i ng -Po in t
Da ta Regis ter

F M O V E f m o v . l
f m o v . l

E A , % f p c r
% f p c r , E A

M o v e System C o n t r o l
Regis ter

No te : f p represents one
o f three con t ro l regis-
ters. See M C 6 8 8 8 1
User 's M a n u a l fo r
detai ls.

F M O V E C R f m o v e c r . x & n , % f n M o v e Constant R O M

M C 6 8 0 2 0 instruct ion f o r m a t s are in boldface.
M C 6 8 8 8 1 instruct ion fo rma t s begin with the letter f.

CTIX System Assembler User's Guide 15—-33

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 11 o f 1 7)

Operation Assembler Syntax Meaning

N o t e : n is o f fset . See
M C 6 8 8 8 1 User ' s M a n u a l
fo r detai ls.

F M O V E M f m o v e m . x
f m o v e m . x
f m o v e m . x
f m o v e m . x

& I , E A
% d n , E A
E A . & I
E A , % d n

M o v e M u l t i p l e D a t a
Registers

F M O V E M f m o v e m . l
f m o v e m . l

& I . E A
E A . & I

M o v e M u l t i p l e C o n -
t r o l Regis ters
N o t e : T h e i m m e d i a t e
o p e r a n d is a mask desig-
na t i ng w h i c h f loa t ing-
p o i n t registers are to be
m o v e d to memory1 or
w h i c h f l oa t i ng -po in t
registers are to rece ive
m e m o r y data. N o t a l l
addressing modes are
p e r m i t t e d and the
co r respondence be tween
mask b i ts and floating-
p o i n t register n u m b e r s
depends on the address-
ing m o d e used. See
M C 6 8 8 8 1 Use r ' s M a n u a l
fo r detai ls.

F M U L

F N E G

f m u l . F M T
f m u l . x

f n e g . F M T
fneg.x
fneg .x

E A , % f n
% f m , % f n

E A , % f n
% f m , % f n
% f n

M u l t i p l y

Negate

F N O P f n o p N o O p e r a t i o n

M C 6 8 0 2 0 i ns t ruc t i on f o rma ts are in bo ld face .

M C 6 8 8 8 1 i ns t ruc t i on f o rma ts beg in w i t h the le t ter f.

15—34 Programmer's Guide: CTIX Supplement

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 1 0 o f 1 7)

O p e r a t i o n A s s e m b l e r S y n t a x M e a n i n g

F R E M

F S A V E

F S C A L E

f r e m . F M T
f r e m . x

F R E S T O R E f res tore

fsave

f s c a l e . F M T
fscale.x

E A , % f n
% f m , % f n

E A

E A

E A , % f n
% f m , % f n

I E E E R e m a i n d e r

Res to re I n t e r n a l State
(P r i v i l eged I n s t r u c t i o n)

Save I n t e r n a l State
(P r i v i l eged I n s t r u c t i o n)

Scale E x p o n e n t

FScc f b C C . b E A Set A c c o r d i n g to
C o n d i t i o n

F S G L D I V f s g l d i v . F M T
fsg ld iv .x

F S G L M U L f s g l m u l . F M T
f sg lmu l . x

F S I N f s i n . F M T
fs in .x
fs in .x

E A , % f n
% f m , % f n

E A , % f n
% f m , % f n

E A , % f n
% f m , % f n
% f n

Single Prec is ion D i v i d e

Single Prec is ion
M u l t i p l y

Sine

F S I N C O S

F S I N H

f s i n c o s . F M T
fs incos.x

f s i n h . F M T
fs inh .x
fs inh .x

E A , % f c : % f s
% f m , % f c : % f s

E A , % f n
% f m , % f n
% f n

S imu l taneous Sine
and Cos ine

N o t e : s represents s ine;
n represents cos ine.

H y p e r b o l i c Sine

F S Q R T f s q r t . F M T
f sq r t . x
f sq r t . x

E A , % f n
% f m , % f n
% f n

Square R o o t

MC68020 instruction formats are in boldface.
MC68881 instruction formats begin with the letter f.

CTIX System Assembler User's Guide 15—-35

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 1 1 o f 1 7)

Operation Assembler Syntax Meaning

F S U B

F T A N

F T A N F I

F T E N T O X

F T R A P P c c

F T S T

F T W O T O X

I L L E G A L

I M P

JSR

L E A

L I N K

LINK

f s u b . F M T
fsub.x

f t a n . F M T
f tan.x
f tan.x

f t a n h . F M T
f tanh.x
f tanh.x

f t e n t o x . F M T
f ten tox .x
f ten tox .x

f t r a p p C C
f t r a p p C C . w
f t r appCC.1

f t s t . F M T
f tst .x

f t w o t o x . F M T
f two tox . x
f two tox . x

i l legal

j m p

jsr

lea. l

l i n k . w

link.)

E A , % f n
% f m , % f n

E A , % f n
% f m , % f n
% f n

E A , % f n
% f m , % f n
%fn

E A , % f n
% f m , % f n
%fn

& I
& I

E A
% f m

E A , % f n
% f m , % f n
% f n

E A

E A

E A , % a n

% a n , & I

%an,&I

Subtract

Tangent

H y p e r b o l i c Tangent

10*

T r a p Cond i t i ona l l y

Test Ope rand

Take I l lega l
Ins t ruc t ion T r a p

Jump

Jump to Subrout ine

L o a d E f fec t i ve Address

L i n k and A l l oca te

Link and Allocate

M C 6 8 0 2 0 ins t ruct ion formats are in boldface.

M C 6 8 8 8 1 ins t ruc t ion formats begin w i t h the letter f .

15—36 Programmer's Guide: CTIX Supplement

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 10 o f 1 7)

O p e r a t i o n A s s e m b l e r S y n t a x M e a n i n g

L S L

L S R

M O V E

M O V E
U S P

M O V E A

M O V E C

lsl.S

l s l .w

lsr .S

l s r .w

m o v . S

M O V E m o v . w
to C C R

M O V E m o v . w
to SR

M O V E m o v e . w
f r o m C C R

M O V E m o v . w
f r o m SR

m o v . l

m o v . A

m o v e c . l

% d x , % d y
& Q , % d y

& I , E A

% d x , % d y
& Q , % d y

& I , E A

E A . E A

L o g i c a l Sh i f t (L e f t)

L o g i c a l Sh i f t (R i g h t)

M o v e D a t a f r o m
Source to D e s t i n a t i o n

N o t e : I f the des t ina t ion
is an address reg is ter , the
i ns t ruc t i on genera ted is
M O V E A .

E A , % c c M o v e to C o n d i t i o n
Codes

E A , % s r M o v e to the Status
Reg is te r
(P r i v i l eged I n s t r u c t i o n)

% c c , E A M o v e F r o m the C o n -
d i t i o n C o d e Reg is ter

% s r , E A M o v e f r o m the Status
Reg is te r
(P r i v i l eged I n s t r u c t i o n)

% u s p , % a n M o v e User Stack Po in te r
%an ,%usp (P r i v i l eged I n s t r u c t i o n

i f Superv isor State)

E A , % a n M o v e Add ress

% c r , % r n M o v e C o n t r o l Reg is te r

MC68020 instruction formats are in boldface.
MC68881 instruction formats begin with the letter f.

CTIX System Assembler User's Guide 15—-37

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 11 o f 1 7)

Operation Assembler Syntax Meaning

M O V E M

movec . l

m o v m . A

M O V E P

M O V E Q

M O V E S

MULS

M U L S

M U L U

movp . A

mov. 1

moves. S
moves. S

muls.l
mills.I

mu ls .w

m u l u . w

% r n , % c r

& I , E A
E A , & I

% d x , D (% a y)

& I , % d n

% r n , E A
E A , % r n

EA,%dl
EA,%dh:%dl

E A , % d n

E A , % d n

(Pr iv i leged Ins t ruc t ion)

M o v e M u l t i p l e
Registers

No te : The immed ia te
operand is a mask desig-
nat ing wh i ch registers
are to be moved to
memory or w h i c h regis-
ters are to receive
m e m o r y data. N o t al l
addressing modes are
pe rm i t ted , and the
correspondence between
mask bi ts and register
numbers depends on the
addressing mode used.
See M C 6 8 0 0 0 User 's
M a n u a l for detai ls.

M o v e Per iphera l Da ta

M o v e Q u i c k (when I
f i ts in one byte)

M o v e Address Space
(Pr iv i leged Ins t ruc t ion)

Signed Multiply

Note: h represents high
order; 1 represents low
order.

Signed M u l t i p l y

Uns igned M u l t i p l y

M C 6 8 0 2 0 ins t ruc t ion formats are in bo ldface.

M C 6 8 8 8 1 ins t ruc t ion formats begin w i t h the letter f.

15—38 Programmer's Guide: CTIX Supplement

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 10 o f 1 7)

Operation Assembler Syntax Meaning

MULU

N B C D

N E G

N E G X

N O P

N O T

O R

O R I

O R I
to C C R

O R I
to SR

PACK

mulu.l
mulu.l

n b c d . b

neg.S

negx.S

nop

not .S

or .S

or .S

o r . b

P E A

R E S E T

pack

p e a . l

reset

EA,%dl
EA,%dh:%dl

E A

E A

E A

E A

E A , % d n
% d n , E A

& I , E A

& I , % c c

& I , % s r

- (%ax),- (%ay),
&number

%dx,%dy,
&number

E A

Unsigned Multiply

Note: h represents high
order; 1 represents low
order.

Negate D e c i m a l w i t h
E x t e n d

Negate

Negate w i t h E x t e n d

N o Opera t i on

Log i ca l C o m p l e m e n t

Inc lus i ve -OR Log i ca l

I nc lus i ve -OR I m m e d i a t e

Inc lus i ve -OR I m m e d i a t e
to C o n d i t i o n Codes

Inc lus i ve -OR I m m e d i a t e
to the Status Register
(Pr iv i leged Ins t ruc t i on)

Pack

Push E f fec t i ve Address

Reset Ex te rna l Dev ices

M C 6 8 0 2 0 i n s t r u c t i o n f o r m a t s a r e in b o l d f a c e .

M C 6 8 8 8 1 i n s t r u c t i o n f o r m a t s b e g i n w i t h t h e l e t t e r f.

CTIX System Assembler User's Guide 15—-39

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 11 o f 1 7)

Operation Assembler Syntax Meaning

R O L

R O R

R O X L

R O X R

R T D

R T E

RTM

R T R

R T S

S B C D

rol .S

ro l .w

ror .S

r o r . w

rox l .S

r o x l . w

roxr .S

r o x r . w

r t d

rte

r tm

r t r

rts

sbcd .b

% d x , % d y
& Q , % d y

& I , E A

%dx ,%dy
& Q , % d y

& I , E A

% d x , % d y
& Q , % d y

& I , E A

% d x , % d y
& Q , '

& I , E A

& n u m b e r

% d y , % d x
- (%ay) , - (%ax)

(Pr iv i leged Ins t ruc t ion)

Rota te w i t h o u t E x t e n d
(L e f t)

Ro ta te w i t h o u t Ex tend
(R igh t)

Rota te w i t h Ex tend
(L e f t)

Ro ta te w i t h E x t e n d
(R igh t)

Re tu rn and Deal locate
Parameters

Re tu rn f r o m Excep t i on
(Pr iv i leged Ins t ruc t ion)

Return from Module

R e t u r n and Restore
Cond i t i on Codes

Re tu rn f r o m Subrout ine

Subtract D e c i m a l w i t h
Ex tend

M C 6 8 0 2 0 ins t ruc t ion formats are in bo ldface.

M C 6 8 8 8 1 ins t ruc t ion formats begin w i t h the letter f.

15—40 Programmer's Guide: CTIX Supplement

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 10 o f 1 7)

Operation Assembler Syntax Meaning

See s C C . b E A Set A c c o r d i n g to
Cond i t i on

STOP stop &I L o a d Status Register
and Stop
(Pr iv i leged Ins t ruc t ion)

S U B sub.S E A , % d n
% d n , E A

Subtract B inary

S U B A sub. A E A , % a n Subtract Address

S U B I sub.S & I , E A Subtract I m m e d i a t e

S U B Q sub.S & O . E A Subtract Q u i c k

S U B X subx.S % d y , % d x
- (%ay) , - (%ax)

Subtract w i t h Ex tend

S W A P swap.w % d n Swap Register Ha lves

T A S tas.b E A Test and Set an Ope rand

T R A P t rap &I T r a p

TRAPcc trapCC
trapCC.w
trapCC.l

&I
&I

Trap on Condition

T R A P V t rapv T r a p on O v e r f l o w

T S T tst.S E A Test an Ope rand

U N L K un lk %an U n l i n k

TJNPK unpk -(%ax),- (%ay),
&number

Unpack Binary Coded
Decimal

M C 6 8 0 2 0 i n s t r u c t i o n f o r m a t s a r e in b o l d f a c e .

M C 6 8 8 8 1 i n s t r u c t i o n f o r m a t s b e g i n w i t h t h e l e t t e r f.

CTIX System Assembler User's Guide 15—-41

T A B L E 1 5 - 3

M C 6 8 K I N S T R U C T I O N F O R M A T S (P a g e 11 o f 1 7)

Operation Assembler Syntax Meaning

u n p k % d x , % d y ,
& n u m b e r

M C 6 8 0 2 0 i ns t r uc t i on f o rma ts are in bo ld face .

M C 6 S 8 8 1 i ns t ruc t i on f o r m a t s beg in w i t h the le t te r f.

15—42 Programmer's Guide: CTIX Supplement

Assembler Differences

C T I X a s s e m b l e r c o d i n g d i f f e r s f r o m t h e c o d i n g c o n v e n t i o n s u s e d i n

t h e M C 6 8 K u s e r m a n u a l s i n t w o w a y s .

Comparison Instructions

The CTIX assembler expects to see comparison operands in the
reverse order of that presented in the MC68K user manuals. As an
example, an MC68K instruction might look like

CMP.W D5,D3 Is D3 less than D5?
BLE IS_LESS Branch if less.

The equivalent CTIX assembler instruction is

cmp.w %d3,%d5 # Is d3 less than d5?
ble i s j e s s # Branch if less.

The CTIX assembler follows the convention used by other assemblers
supported in the UNIX system (both the 3B 20S computer and the
VAX follow this convention). This convention makes for straightfor-
ward reading of compare-and-branch instruction sequences. How-
ever, it does lead to the peculiarity that if a compare instruction is
replaced by a subtract instruction, the effect on the condition codes
will be entirely different. This may be confusing to programmers
who are used to thinking of a comparison as a subtraction whose
result is not stored. Users of the assembler who become accustomed
to the convention will find that both the compare and subtract nota-
tions make sense in their respective contexts.

Overloading of Opcodes

The CTIX assembler permits operations which do more or less the
same thing to be specified by a single assembly instruction. For
example, the MC68K user manuals list the instructions SUB, SUB A,
SUBI, and SUBQ, which all have the effect of subtracting their
source operand from their destination operand. The CTIX assembler
allows all these operations to be specified by the single assembly
instruction sub. On the basis of the operands given to the sub

CTIX System Assembler User's Guide 15—13

instruction, the CTIX assembler selects the appropriate MC68K
operation code.

Care must be taken when using this feature, since not all forms of
such operations are semantically identical. For example, while SUB,
SUBI, and SUBQ all affect the condition codes in a consistent way,
SUBA does not affect the condition codes at all. Consequently, the
CTIX assembler user must be aware that when the destination of a
sub instruction is an address register (which causes the sub to be
mapped into the operation code for SUBA), the condition codes will
not be affected.

10- S Programmer's Guide: CTIX Supplement

I
Index

A

Assembler. See CTIX assembly
language.

B

be
addit ion, 2-5
arrays, 2-7 to 2-8, 2-19
assignment statement, 2-10
auto statement, 2-21
automatic variables, 2-6
base of input and output, 2-2,

2-15

break statement, 2-20
C simi lar i ty, 2-2
comments, 2-11, 2-13
compound statement, 2-8, 2-19
constants, 2-14, 2-16
control statement, 2-8 to 2-9
decimal places, 2-1, 2-15
define functions, 2-6
define statement, 2-21
division, 2-2

exponentiation, 2-2, 2-5, 2-17
expression statement, 2-19
for statement, 2-20
functions, 2-6 to 2-7
hexadecimal numbers, 2-4
ibase variable, 2-3, 2-5
identif iers, 2-13 to 2-14, 2-19
i f statement, 2-20
keywords, 2-13 to 2-14
leaving, 2-11
math l ibrary, 2-11
mul t ip l icat ion, 2-2

named expressions, 2-14, 2-18
obase variable, 2-3, 2-5
qui t statement, 2-21
quoted string statements, 2-20
relational operators, 2-18
remainder, 2-5
return statement, 2-6 to 2-7, 2-21
scaling, 2-5
sqrt funct ion, 2-3
storage classes, 2-19
subscripted variable, 2-7
subtraction, 2-2
tokens, 2-13
unary operators, 2-16
whi le statement, 2-20

c
C T I X assembly language

absolute type of expression, 15-11
to 15-12, 15-20 to 15-21,
15-23, 15-25

address mode, 15-2, 15-19, 15-22
to 15-23

as command, 15-2
attr ibute assigning operation,

15-15 to 15-16, 15-20
blank assembly code lines, 15-6
bss section, 15-7, 15-13, 15-15
byte operation, 15-11, 15-19,

15-21, 15-24
character constants, 15-5
comment section, 15-14
comments, 15-3
comparison instructions, 15-43
constants, 15-3 to 15-4

Index /—1

data ini t ial izat ion, 15-10
data section, 15-7, 15-13
decimal constant, 15-4
division by zero, 15-9
double f loating point constant,

15-4, 15-11
effective address mode, 15-24
evaluation of operators, 15-9
expressions, 15-9 to 15-10
flexname, 15-2
f loating point constant, 15-4, 15-9,

15-11
format of assembly language line,

15-5
g opt ion, 15-15
hexadecimal constant, 15-4
ident pseudo-operation, 15-14
identif iers, 15-3, 15-8, 15-10
instruction formats, 15-26
invoking the assembler, 15-2
labels, 15-8
location counter, 15-8
location counter control , 15-10,

15-13
long operation, 15-21, 15-24
machine instruction, 15-24
n command, 15-19
numerical constants, 15-4
octal constants, 15-4
operators, 15-9
ordinary character constants, 15-5
overloading of opcodes, 15-43
predef ined registers, 15-3
program sections, 15-6
pseudo-operations, 15-2 to 15-3,

15-6 to 15-7, 15-10, 15-15 to
15-16, 15-18

registers, 15-3 to 15-4, 15-20,
15-25, 15-33

relocatable type of expression,
15-8

section pseudo-operation, 15-14
i f i le, 15-14

sections, 15-7
span-dependent opt imizat ion,

15-2, 15-10, 15-18 to 15-20
special character constants, 15-5
swbeg, 15-18
swbeg, 15-18
switch table, 15-18
symbol def ini t ion, 15-10, 15-12

symbolic debugging, 15-15
syntax, 15-3, 15-20, 15-22
text section, 15-7, 15-13, 15-15
types, 15-8
undefined external type of expres-

sion, 15-8
word operation, 15-21, 15-24

D

dc
addit ion, 3-4, 3-6
and BC language, 3-1
commands, 3-1 to 3-2, 3-10 to

3-11
computations wi th integers, 3-1,

3-6
design choices, 3-11
division, 3-7, 3-12
dynamic string storage allocator,

3-5
exponentiation, 3-8, 3-12
input conversion and base, 3-9
internal ar i thmetic, 3-6
internal registers and program-

ming, 3-10
numbers, 3-2
output commands, 3-9
output format and base, 3-9
push-down registers and arrays,

3-11
remainder, 3-8
square root, 3-8
stack commands, 3-10
subtraction, 3-6

E

eqn
brackets, 12-13
character sequences, 12-20
displayed equations, 12-2
example of, 12-18
fractions, 12-7
Greek letters, 12-20
keywords, 12-19
l ining up, 12-12
local motions, 12-18
matrices, 12-15

10- S Programmer's Guide: CTIX Supplement

piles, 12-14
size and font changes, 12-9
spacing, 12-3 to 12-5
square roots, 12-8
subscripts, 12-5
superscripts, 12-5
t roubleshoot ing, 12-21
usage, 12-22
words recognized by, 12-21

I

I C C
cl ients, 14-1 to 14-3, 14-5 to 14-6,

14-9, 14-11
cont ro l in fo rmat ion , 14-6
discarding a response, 14-21
exchanges, 14-5, 14-10, 14-12,

14-16, 14-22, 14-27
message queues, 14-2, 14-5,

14-16, 14-21
obsolete messages, 14-23
Pbcbs, 14-6 to 14-7
random access to a message

queue, 14-27
request blocks, 14-5, 14-10 to

14-11
mod i f ied , 14-9 to 14-10

request codes, 14-15 to 14-16
request descr iptor , 14-19, 14-23
requests, 14-4
response data, 14-8 to 14-9, 14-18
response exchange, 14-7
responses, 14-12, 14-18
servers, 14-4, 14-15, 14-18 to

14-19

standard include f i le , 14-7, 14-12

M
m4

arguments, 1-6
ar i thmet ic , 1-2, 1-7
basic operat ions, 1-2
bu i l t - in macros, 1-2 to 1-3
condit ionals, 1-9
def in ing macros, 1-3
features, 1-1
file manipu la t ion, 1-8
p r in t ing , 1-11
quot ing, 1-4

summary of bui l t - ins, 1-12
system command. 1-9
usage, 1-2

me
displays, 11-7, 11-9
double spacing, 11-5
footnotes, 11-11
headers and footers, 11-4
indented paragraphs, 11-14
indent ing, 11-5
indexes, 11-13
keeps. 11-8
lists, 11-8
paragraphs, 11-3
paragraphs, indented, 11-14
quotes, 11-7
section headings, 11-17
spacing, 11-5
under l in ing, 11-7
usage, 11-1

m m

abstracts, 9-43
accents, 9-83
authors, 9-42
captions, 9-59
cover sheets, 9-74
displays, 9-52 to 9-54
equations, 9-58
errors and debugging, 9-84, 9-100.

9-103
examples

footnotes, 9-61, 9-95
letters, 9-97
lists, 9-30, 9-36, 9-92
lists w i t h hanging indents, 9-88
page headers and footers, 9-67

fonts, changing of , 9-76
footnotes, 9-60 to 9-63
format changing, 9-46
fo rmat t ing concepts, 9-2, 9-12,

9-17

headings, 9-17, 9-19 to 9-27
for two-co lumn output , 9-80

hyphenat ion, 9-14
l ist ing figures and tables, 9-60
lists, 9-30, 9-32 to 9-36, 9-38
macros, summary of , 9-105
memorandums, 9-40, 9-43 to 9-44,

9-49

Index I—3

modi fy ing macros, 9-86
number registers, 9-9
number registers, summary of ,

9-111
page headers and footers, 9-63 to

9-67
page number ing, 9-26
paragraphs, 9-17
po in t size, 9-82
references, 9-74 to 9-75
released-paper style, 9-47
strings, summary of , 9-110
table of contents, 9-26, 9-71
tables, 9-56
titles, 9-41
two-co lumn output , 9-79 to 9-80
usage, 9-5, 9-7 to 9-8
vert ical spacing, 9-80, 9-82

accents, 10-12
box ing words or lines, 10-10
changeable registers, 10-12, 10-27
commands, summary of , 10-11,

10-15
cover sheets and f irst pages, 10-3
dat ing, 10-11
displays, 10-9, 10-23
document typing, 10-1 to 10-4,

10-11, 10-13
beginning, 10-2

double columns, 10-4, 10-25
equations, 10-13, 10-26
examples, 10-17
footnotes, 10-9, 10-23
headings, 10-3 to 10-4, 10-22
indented paragraphs, 10-6
keeping blocks together, 10-10
keeps, 10-25
lists, 10-7, 10-22
mathematics, 10-13
memos, prepar t ion o f , 10-17,

10-21
mul t i - co lumn formats, 10-4
mul t ip le indents, 10-7, 10-24
n ro f f / t r o f f commands, 10-11
page headings, 10-3
paragraph indents, 10-6
references for fur ther study, 10-13
register names, 10-15
signature l ine, 10-11
tables, 10-9, 10-28

under l in ing, 10-8
usage, 10-29

N

nro f f / t ro f f
appl icat ions, 7-1
arguments, 7-29 to 7-30
character set, 7-61 to 7-63
commands, summary of , 7-5, 7-12
comments, 7-40 to 7-41
condit ionals, 7-10, 7-47 to 7-48
cont ro l characters, 7-39 to 7-40
diversions, 7-7, 7-30 to 7-31
environment switching, 7-11, 7-49

to 7-50
error messages, 7-52 to 7-53
escape sequences, 7-13
examples, 7-52 to 7-53

footnotes, 7-57 to 7-58
last page, 7-60 to 7-61
mul t ip le columns, 7-57 to 7-58
page margins, 7-53 to 7-54
paragraphs and headings, 7-55

to 7-56
fields, 7-36 to 7-37
f i le switching, 7-11, 7-50 to 7-51
font and character size cont ro l ,

7-5, 7-18
fonts, 7-18 to 7-19, 7-61 to 7-62
format t ing documents, 7-15 to

7-16
hyphenat ion, 7-9, 7-44 to 7-45
input character translations, 7-37

to 7-38
input /output conventions, 7-9
insertions, 7-11, 7-49 to 7-50
ligatures, 7-37 to 7-38
l ine drawing, 7-43 to 7-44
line length and indent ing, 7-7,

7-27 to 7-28
l ine number ing, 7-10, 7-46 to 7-47
l ine-spacing, 7-26 to 7-27
local mot ions, 7-40 to 7-41
macros and strings, 7-7, 7-28 to

7-29
mark ing hor izontal place, 7-42 to

7-43
number registers, 7-8, 7-14, 7-33

10- S Programmer's Guide: CTIX Supplement

to 7-34
opt ions and effects, 7-2
overstr ik ing, 7-38 to 7-39, 7-42 to

7-43
page cont ro l , 7-5, 7-21
po in t size, 7-19
requests, summary of , 1-5, 7-12
tabs, 7-8, 7-35 to 7-36
text f i l l i ng and adjusting, 7-6, 7-23

to 7-24
t i t les, 7-10, 7-45 to 7-46
traps, 7-7, 7-31 to 7-32
under l in ing, 7-38 to 7-39
usage, 7-2
vert ical spacing, 7-6, 7-25 to 7-27
w id th funct ion, 7-41 to 7-42
zero-width characters, 7-42 to

7-43

s
sed

addresses, 6-4
appending lines, 6-8
command format , 6-3
delet ing lines, 6-7
f low-o f -cont ro l funct ions, 6-3,

6-16
funct ions, 6-7, 6-10, 6-12, 6-14
ho ld and get funct ions, 6-14
input /output funct ions, 6-12
mul t ip le input- l ine funct ions, 6-14
order of appl icat ion o f edi t ing

commands, 6-3
pat tern space, 6-3
regular expressions, 6-2, 6-5
selecting lines for edi t ing, 6-4
subst i tut ion w i th in lines, 6-10
terminate execut ion, 6-17
usage, 6-2

w r i t i ng to a f i le, 6-11 to 6-12

T
tb l

co lumn w id th , determin ing, 13-7
command characters, summary of ,

13-26
data, 13-8
default parameters, 13-8
examples, 13-13

font changes, 13-7
format t ing, 13-4
hor izontal lines, 13-6, 13-9
input commands, 13-3
input fo rmat , 13-2
opt ions, 13-3
po in t size changes, 13-7
spacing between columns, 13-6
text blocks, 13-9
t r o f f commands w i th in tables,

13-8
usage, 13-11
use w i th eqn, 13-11
vert ical lines, 13-6
vert ical spacing, 13-7
vert ical spanning, 13-6, 13-9

t ro f f
character set, 8-31
condit ionals, 8-26
diversions, 8-28
environments, 8-27
fonts, 8-6
l ine drawing, 8-11
l ine length and indent ing, 8-9
local mot ions, 8-11
macros, 8-16
macros w i th arguments, 8-23
number registers, 8-21
page number ing, 8-18
po in t sizes, 8-4
special characters, 8-6
strings, 8-15
tabs, 8-10
t i t les, 8-18
usage, 8-2
vert ical spacing, 8-4

V
v i

abbreviat ions, 4-29
appending text, 4-11, 4-15, 4-35
arrow keys, 4-4
back ing up in input mode, 4-12
character funct ions, 4-38
commands, summary of , 4-10,

4-14, 4-18, 4-32, 4-34, 4-38,
5-5

cont ro l characters, 4-16, 4-35

Index I—5

correct ions, 4-12 to 4-13
undoing, 4-14

counts, 4-31
delet ing text, 4-13, 5-10
dupl icat ing text, 4-15, 4-17 to

4-18
edi t ing files, 4-3, 4-19, 5-4
edi t ing L ISP programs, 4-27
edi t ing on slow terminals, 4-21
ESC key, 4-5
escaping to shell, 4-19
ex, 4-36, 5-16
exi t ing fi les, 4-6, 4-19, 5-4
insert characters, 5-15
insert ing text, 4-11, 4-15, 5-10
macros, 4-28
mark ing and returning, 4-20
moving around on the screen, 4-8
mov ing text, 4-15, 4-17, 5-11
mov ing w i th in a l ine, 4-9
recover ing lost files, 4-25
recover ing lost text, 4-24
replacing text, 5-11
scrol l ing and paging, 4-6, 5-5
searches, 4-7, 4-33, 5-9
set commands, 4-22, 5-18
setting opt ions, 4-22
terminals

selecting of , 5-3
speci fy ing type, 4-2
upper case only, 4-36

undoing changes, 4-14

/—6 Programmer's Guide: CTIX

