WGS™/WORD ERA™ Glossary Functions

Copyright © 1986, 1987 by TIGERA Corporation. All rights reserved. Printed in
the United States of America.

No part of this document may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior consent
in writing from TIGERA Corporation. For full details of the terms and conditions
for using TIGERA software, please refer to the TIGERA Corporation Software
License Agreement.

The information in this document is subject to change without notice and should
not be construed as a commitment by TIGERA Corporation. TIGERA Corporation
assumes no responsibility for any errors that may appear in this document.

This document contains samples of names, addresses, and products used to
illustrate the features and capabilities of WORD ERA. Any similarity to the
names, addresses, or products of actual individuals or companies is purely
coincidental.

TIGERA and WORD ERA are trademarks of TIGERA Corporation. UNIX is a
trademark of AT&T Bell Laboratories.

Reg. U.S. Pat. & Tm. Off.
First Edition April 1988 73-00428—-A

Convergent makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Convergent reserves the right to revise
this publication and to make changes from time to time in its content without being
obligated to notify any person of such revision or changes.

CONTENTS

CHAPTER 1

ABOUT GLOSSARY
WHO CAN LEARN GLOSSARY?
WHAT IS GLOSSARY?
Glossary Stores Text and Function Keywords
Glossary Entries are Easy to Create and Use
Glossary Entries Save Time
You Can Use Glossary Entries
to Automate Your Typing
Glossary Gives You Programming Power

You Can Create Glossary Entries in Two Ways

CHAPTER 2

CREATING A GLOSSARY DOCUMENT

THE GLOSSARY DOCUMENT

THE GLOSSARY FUNCTIONS MENU

HOW TO CREATE A GLOSSARY DOCUMENT
SUMMARY

[T e Y YA

Glossary Functions WORD ERA

iii

CONTENTS

CHAPTER 3

CREATING A GLOSSARY ENTRY BY EXAMPLE 11
HOW TO CREATE A GLOSSARY BY EXAMPLE 11
Entry c: Creating an Entry

to Type a Company Name 12
Entry d: Crcating an Entry
to Type a Company Name and Address 14
Entry e: Creating an Entry That Inserts Text 17
TIPS ON CREATING AND USING GLOSSARY
ENTRIES BY EXAMPLE 18
CHAPTER 4
WRITING GLOSSARY ENTRIES 23
BASIC ELEMENTS OF A GLOSSARY ENTRY 23
Entry Labels 24
Braces 25
Keywords 25
Strings 25
Comments 28
SCREEN SYMBOLS AND FORMAT LINES
IN THE GLOSSARY DOCUMENT 29
Screen Symbols 29
Format Lines in Glossary Documents 29

iy WORD ERA Glossary Functions

CONTENTS

WRITING GLOSSARY ENTRIES 30
Modifying a Glossary-by-Example Entry 30
Writing A Glossary Entry Memorandum Form 32
Writing Menu Glossary Entries 34
Learning More About Glossary 34

VERIFYING AND TROUBLESHOOTING 35
Glossary Verification Options 35
Correcting Verification Errors 37

ATTACHING A GLOSSARY DOCUMENT 39

DETACHING A GLOSSARY DOCUMENT 40

SUMMARY 40

CHAPTER 5

INTRODUCTION TO GLOSSARY PROGRAMMING 43

WHAT IS GLOSSARY PROGRAMMING? 43
Glossary is a Programming Language 43
The Verification Process Compiles Your Programs 44
The Structure of a WORD ERA Document 45

HOW TO STUDY PART 2 45

OVERVIEW OF GLOSSARY PROGRAMMING LANGUAGE ELEMENTS 46
Statements 46
Variables 47
Values 47
Logical Values 47
Relational, Equality, and Logical Operators 47
Assignment Operators 47
Functions, Arguments, and Expressions 48

Glossary Functions WORD ERA

CONTENTS

Conditional Statement Functions 48
Control Statement Functions 48
Labeled Statements (Identifiers) 49
Braces { } 49
Brackets [] 49
Parentheses () 49
String Opcrations 49
Mathematical Operations 50
PROGRAMMING STYLE 50
Entry a, An Example of Programming Stylc 50
Programming Style Conventions 51
SYNTAX 54
SUMMARY 56
CHAPTER 6
ELEMENTS OF GLOSSARY PROGRAMMING 57
STATEMENTS 57
Types of Statements 57
Single and Multiple Statecments 58
Statement Exccution Order 59
VARIABLES 60
Decclaring and Initializing Variables 60
Variable Names 61
VALUES 61
Assigning Values to Variables 62
Rules for Values 63

vi WORD ERA Glossary Functions

CONTENTS

LOGICAL VALUES 64
OPERATORS 67
Binary and Unary Operators 67
Assignment Operator 68
Mathematical Operators 69
The Modulo Operator 70
Using Mathematical Operators with Variables 70
Mathematical Assignment Operators 72
Relational Operators 75
Using Relational Operators with Alpha Strings 78
Relational Operators
and Alpha/Numeric Comparisons 80
Equality Operators 81
Logical Operators 82
Tables of Operators 87
FUNCTIONS, ARGUMENTS, AND EXPRESSIONS 91
Functions 91
Arguments 92
Expressions 93
USING PARENTHESES 96
Parentheses and Mathematical Expressions 96
Parentheses and Relational and Equality Expressions 97
Parentheses and Logical Expressions 98
SUMMARY 98

Glossary Functions WORD ERA vii

CONTENTS

CHAPTER 7
CONDITIONAL STATEMENTS 102
General Principles
for Using Conditional Functions 103
The Conditional if Statement 106
The Conditional if else Statement 111
SUMMARY 119
CHAPTER 8
CONTROL STATEMENTS 121
SUBROUTINES 122
Using the call Statement 122
Using the glossary Statement 126
Nesting Subroutine Calls 128
BRANCHING 130
The jump Statement 130
LOOPING 134
Points to Remember About Loops 135
Using the jump Statement for Loops 136
TERMINATING PROGRAM RECALL 142
Gracefully Terminating an Entry 142
TRAPPING FUNCTION ERRORS USING THE GLOBERR STATEMENT 143
TIMING YOUR PROGRAMS 143
SUMMARY 145
viii WORD ERA Glossary Functions

CONTENTS

CHAPTER 9
CONDITIONAL LOOP STATEMENTS 147
THE CONDITIONAL while STATEMENT 147
THE CONDITIONAL do while STATEMENT 150
SUMMARY 153
CHAPTER 10
FUNCTION DESCRIPTION LIST 156
HOW TO USE THE ALPHABETICAL LIST OF FUNCTIONS 156
TEXT CONVENTIONS USED IN THIS CHAPTER 158
GENERAL RULES FOR USING FUNCTIONS 159
LIST OF FUNCTIONS THAT REQUIRE ARGUMENTS 169
ALPHABETICAL LIST OF FUNCTIONS 164
abs 166
beg__doc 166
bot__page 16
call 162-
cat 163
char 162
clrpos 163
cursor 16%
date 16%
display 1646
do while 166
end doc 166

Glossary Functions WORD ERA

ix

CONTENTS

error 166
exit 168
false 164
feed 16
finscrt 163
globerr 168
if 168
if else 199
index 178
jump 17Q
key 172
keyin 17¢
keys 17%
keysin 17%
left margin 17%
len 17%
line 1746
loc 174
max

as used with numeric expressions 174
max

as used with alphabetical string expressions 1768
min

as used with numeric expressions 176
min

as used with alphabctical string expressions 17¢&
num l7§-
number 17%
occur 179
page_ no 179

X WORD ERA Glossary Functions

CONTENTS

pic 178
position 180
posmsg 188
prompt 189
right_margin 189
round 182
seg 182
spacing 183
status 18%
sub 18%
substr 18%
text 18%
text__len 186
time 188~
top__page 188
true 18%
truncate 188
unixfun 1888
unixpipe 18Q
while 139
word 190

CHAPTER 11

FUNCTION USAGE LIST 193

CONDITIONAL FUNCTIONS 195
Using Conditional Functions 195

Glossary Functions WORD ERA

Xi

CONTENTS

CONTROL FUNCTIONS
Using Control Functions
DISPLAY FUNCTIONS
Using Display Functions
The display Function
DOCUMENT READING FUNCTIONS
Using Document Reading Functions
Cursor Location Functions
Format and Status Lin¢ Functions
DOCUMENT WRITING FUNCTIONS
Using the feed and finscrt Functions
Using the cursor Function
ERROR AND LOGICAL FUNCTIONS
Using the globerr Function
Using true and false Logical Functions
INTERACTIVE FUNCTIONS
Using Interactive Functions
The key and keys Functions
The keyin and keysin Functions
Using Interactive Functions
with Display Functions
MATHEMATICAL FUNCTIONS
Using Mathematical Functions
Creating a Calculator
Using the max and min functions
OPERATING SYSTEM ACCESS FUNCTIONS
Using UNIX Operating System Access Functions
The date and time Functions
The unixfun and unixpipe Functions

nyn

Using command and command "|"

197
198
198
199
210
215
215
216
217
217
218
219
221
222
222
223
223
223
226

227
228
229
230
235
236
236
236
237
239

xii WORD ERA

Glossary Functions

CONTENTS

STRING FUNCTIONS 240
Using String Functions 241
Using substr to Reformat the date Function 242
Using the len function 244

SUMMARY 244

CHAPTER 12

ADMINISTERING GLOSSARY PROGRAMS 245

ADMINISTERING PROGRAMS 246
Program Planning 246
Program Applications 247
Program Access 248
Program Runtime 249
Program Backup, Storage, and Retrieval 250
Program Obsolescence 250
Program Duplication 251
Programs in a Multiuser Environment 251
Program Debugging (Troubleshooting) 252

CHAPTER 13

GLOSSARY INFORMATION FOR UNIX USERS 255

WORD ERA File Structure 255

Glossary Functions WORD ERA Xiii

CONTENTS

The .gl File 256
SUMMARY 257
CHAPTER 14
GLOSSARY ENTRY EXAMPLES 259

Contents of Glossary Documents 260
APPENDIX A
RESERVED WORDS AND SYMBOLS 265

Reserved Words 265

Reserved Symbols 266
APPENDIX B
COMPARISON OF GLOSSARY KEYWORDS AND FUNCTIONS 267

Keywords and Functions

Used in WORD ERA Applications 267

X1y WORD ERA Glossary Functions

CONTENTS

APPENDIX C
CHARACTER CODES 271
ASCII COLLATING SEQUENCE 272
OCTAL NUMBER CONVERSIONS 272
ATTRIBUTE CODES 272
DESCRIPTION OF TABLE C-1 274
WORD ERA DOCUMENT FORMAT CONTROL CODES 282
APPENDIX D
KEYWORDS BY USAGE 293
Combination Keywords 294
Formatting Keywords 295
Editing Keywords 296
Cursor Movement Keywords 298
KEYWORD ABBREVIATIONS 301
APPENDIX E
ERROR MESSAGES 303
YERIFICATION ERROR MESSAGES 303
GLOSSARY OPERATION ERROR MESSAGES 307

Glossary Functions WORD ERA xv

CONTENTS

ABOUT THIS BOOK

This book is a learning and refcrence guide for WORD ERA Glossary Functions.
It shows you:

How to create and use Glossary-by-Example entries
How to create glossary documents and write glossary entries
How to use glossary programming functions
How to use your glossary entries productively
If you know how to use WORD ERA you can learn to use Glossary Functions.

Glossary Functions is a WORD ERA fecature that provides you with a special
glossary document where you store frequently-typed words and phrases. You

can then have the stored text automatically typed in your document by recalling
it from the glossary document with two keystrokes. In addition to text, you can
store frequently-preformed word processing functions and recall them to perform
automatically in your document.

Using a glossary entry, you can automate almost any word processing task. You
can usc glossary entires to insert standard paragraphs for contract, reports, form
letters, wills, leases, and other repetitive, standard applications. Glossary entrics
help you type complicated documents that include tables, forms, multiple format
lines, numbered lists, or financial data.

Xvi WORD ERA Glossary Functions

-

CHAPTER 1

ABOUT GLOSSARY

WHO CAN LEARN GLOSSARY?

Anyone who knows WORD ERA can learn to use Glossary.

If you are not familiar with WORD ERA you can learn how to use it by studying
the WORD ERA Self-Paced Learning Guide.

WHAT IS GLOSSARY?
Glossary Stores Text and Function Keywords

WORD ERA Glossary is a function that provides you with a special glossary
document where you can store frequently-typed words and phrases in a glossary
entry. You can then have the stored text automatically typed in your document
by recalling the entry from the glossary document with just two keystrokes. You
can also perform word processing functions automatically (like Center, Indent, or
Execute) by storing keywords in your glossary document.

Glossary Entries are Easy to Create and Use

You type the text and function keywords as a glossary entry in the glossary
document. Each glossary entry is identified by a one-character label that you
assign. You can have as many as 94 entries in one glossary document.

To use a glossary entry while you are editing a document, you attach the glossary
document, press the GL key, then type the one-character entry label. The text
stored in the entry is typed at the cursor location in your document just as
though you had typed it from the keyboard, only much faster. The following
entry example types a company name. (Braces mark the beginning and ending of
the glossary entry.) _

All References to archive diskette should be changed to archive

media. Archive Media refers to diskettes, cartridge tapes, or reel-to~
reel tapes.

The appearance of the different screen symbols that are displayed on
your terminal may be different than described in the documentation.
The reason for this difference is that the screen symbols are terminal
independent. For example, the center symbol appears diamond-
shaped on some terminals. On other terminals, the center symbol
may be displayed as another shape.

Glossary Functions Refer to the WORD ERA terminal specification sheet for the

terminal type you are using, to see the screen symbols used to display
each WORD ERA text formatting character.

ABOUT GLOSSARY

entry a

{
}

"Tigera Corporation"

If you want the text to be centered and followed by returns, you include
keywords as instructions in your glossary entry. The following entry examplc
types a centered company name followed by two rcturns.

entry &
{

}

insert "(trademark pending)" execute

Glossary Entries Save Time

You save typing time and improve typing accuracy when you use glossary entries
to type text and perform repetitive functions. Glossarics are great time savers
when you frequently type legal or engineering phrases like, "herecinafter referred
to," or "gallium aluminum arsenide." For example, using glossary entry ¢, you can
insert the phrase "(trademark pending)" at the cursor location in your document.

entry b
{
"Tigera Corporation"

}

You Can Use Glossary Entries to Automate Your Typing

You can use a glossary entry to automate almost any word processing task. You
can create glossary entries that will insert standard paragraphs for contracts,
reports, or form letters anywhere you want them in your document. You can use
a glossary entry to type field labels for Records Processing list documents.
Glossary entrics help you type complicated documents that include tables, forms,
multiple format lines, numbered lists, or financial data.

2 WORD ERA Glossary Functions

ABOUT GLOSSARY

Glossary Gives You Programming Power

In addition to text and key function storage, Glossary gives you full programming
capability. In Part 2 you will learn how to use all the following programming
features:

Variables

Relational and assignment operators
Conditional testing

Control statements

Operating system command access
Document reading and writing functions
Display functions

Error and logical functions
Interactive functions

Mathematical functions

String functions

The following is just a small sample of the types of glossary programs you can
write to serve all your production needs:

Interactive glossary entries: Write interactive glossary entries with your
own prompts and error messages using the prompt and error functions.
Using the keysin function, write entries that stop during recall and
permit the operator to enter data, then continue the entry.

The combination of prompt, keysin, and error are invaluable tools
for designing glossary entries that fill out forms, request variable
information from the operator, or create lists.

Mathematical functions and calculations: Write glossary entries that work
with the WORD ERA Math function to perform calculations on numbers in
your document; update parts lists; calculate financial data; or do
incremental counts.

Conditional testing: Write entries that can ask questions about document
conditions and perform functions based on the answers. For example, if the
cursor is under the character "a", you may want some text deleted. If it is
not under "a", perhaps you want to insert text.

You will learn you how to use these and other glossary programming functions in
Part 2.

Glossary Functions WORD ERA 3

ABOUT GLOSSARY

You Can Create Glossary Entries in Two Ways
The following steps show two ways to create a glossary entry:

1. Glossary by example: creating a glossary entry by example in your
glossary document while you edit your text document.

The quickest way to store simple, short glossary entries is to create them
by example. While you are typing text and using functions in your text
document you are also storing them in your glossary document for later
recall. Chapter 3 teaches you how to create a glossary entry by
example.

2. Write a glossary entry: writing a glossary entry by typing it in your
glossary document.

You can utilize the full programming power of Glossary when you type
your glossary entries directly into your glossary document. A glossary
entry by example allows you to only store keystrokes (keywords and
characters). When you write a glossary program, you can use the full
range of Glossary functions, like if statements, while loops,
subroutines, math and string functions.

You will learn how to use these and other glossary functions to write
glossary programs in Part 2.

Chapter 4 in this Part teaches you how to write a glossary entry in your
glossary document.

You must have a glossary document before you can create a glossary entry by
example or write a glossary entry. Chapter 2 shows you how to create a glossary
document.

4 WORD ERA Glossary Functions

CHAPTER 2

CREATING A GLOSSARY DOCUMENT

THE GLOSSARY DOCUMENT

Before you can create a glossary entry you must create a glossary document. The
major differences between a text document and a glossary document are:

The glossary document is usually created and edited from the Glossary
Functions menu. The Glossary Functions menu is accessed by selecting
Glossary Functions from the WORD ERA Main menu.

The glossary document contains glossary entries instead of standard text.

The glossary document must be verified each time you add or change an
entry. The verification process compiles your entries into executable
programs and checks for programming errors at the same time. The
verification process is explained in detail in Chapter 4.

The glossary document must be attached, either from a menu or from a
document edit screen before you can use an entry. This chapter tells you
how to attach glossary documents.

You can perform all WORD ERA editing and formatting functions in a glossary
document. You can perform menu functions like delete, rename, move, copy,
print, or archive on a glossary document.

Figure 1 illustrates the relationship of your glossary document and glossary
entries to your text document.

As you can sce from Figure 1, glossary documents are created separately from
text documents. When you edit your text document, you attach the glossary
document and use the entries to enter text or perform functions.

Glossary Functions WORD ERA

CREATING A GLOSSARY DOCUMENT

Figure 1

and the Text Document

Text document

Relationship Between the Glossary Document, Glossary Entries,

GLOSSARY FUNCTIONS

menu

The glossary document
is created, edited
and verified from
the Glossary Functions

The entry programs

in the glossary document
are run within the text
document to perform
actions on text and

data.

Glossary Document

(..0)
(...)
(...)

THE GLOSSARY FUNCTIONS MENU

You can perform most glossary document activities from the Glossary Functions
menu. The Glossary Functions menu is shown in Figure 2. To display the menu,
sclect Glossary Functions from the WORD ERA Main menu.

You are already familiar with the first two selections on the Glossary Functions
menu, editing and creating documents. Verifying, attaching, and detaching arc
activities specific to glossary documents.

The step-by-step instructions following Figure 2 show you how to crecate, verify,
and attach a glossary document.

WORD ERA

Glossary Functions

CREATING A GLOSSARY DOCUMENT

Figure 2 The Glossary Functions Menu

(A

GLOSSARY FUNCTIONS

Please select next activity

Edit old Glossary —~— agl
Create New Glossary ~~- cgl
Verify glossary —-= vgl
Attach glossary -- agl
Detach glossary -— dgl

Crection library Is /u/training

L)
HOW TO CREATE A GLOSSARY DOCUMENT

The following steps show you how to quickly create, verify, and attach a glossary
document:

A2375

You should begin these steps from the WORD ERA Main menu.

Create the Glossary Document: There are three ways to create a glossary
document: Select Create New Glossary from the Glossary Functions menu. (The
new glossary document is automatically verified when you use this selection.)

Glossary Functions WORD ERA 7

CREATING A GLOSSARY DOCUMENT

Select Create New Document from the Main menu. (A new glossary document is
not automatically verified if you use this selection.) Use the shortcut code cgl
from any menu. (The new glossary is verified when you use this selection.)

Move the MARKER to Glossary Functions
Press EXECUTE
Move the MARKER to Create New Glossary

Press EXECUTE

Name the glossary document: The same naming conventions that apply to a
text document apply to naming a glossary document. Glossary documents are
identified on the Document Index by two asterisks (**) displayed before the
glossary document name. The asterisks are automatically added to a glossary
name when it is verified. The prototype document can be a text document, a
glossary document, or the default "0000."

Type glossl
Press EXECUTE

Press EXECUTE to accept the prototype default "0000."

Fill in the Glossary Summary: Notice that the summary screen is a "Glossary
Summary” rather than a "Document Summary.” You fill in the Glossary Summary
just like you do a Document Summary. The Statistics portion of the Glossary
Summary is also the same as a Document Summary.

Fill in the Glossary Summary by typing the Document Title, the Author, the
Operator, and the Comments lines

Press EXECUTE

The glossary document edit screen is displayed
The glossary document edit screen: The glossary document is just like a text
document. You can change the format line or add alternate format lines. You

can perform all editing and word processing functions. Also like a text
document, the glossary document has pages H, F, N, and W.

8 WORD ERA Glossary Functions

CREATING A GLOSSARY DOCUMENT

Do not enter any text in the glossary document. You have created it so you can
learn how to create a glossary by example. You should end the edit of the
glossary document now.

DO NOT enter any text in the glossary document.

Press CANCEL to display the END OF EDIT options menu

Press EXECUTE
Verify the glossary document: The verification process compiles glossary
entries into an executable code so you can run them as programs in your text
document. (It also checks for errors, as you will learn in the next chapter.)
Verification occurs automatically if you create or edit your glossary using the
Glossary Functions menu or the shortcut code cgl.
If you use the Main menu to create a new glossary document, you must go to the
Glossary Functions menu and use the Verify Glossary selection or remain at the
Main menu and use the shortcut code vgl to verify the glossary. Thereafter,
the glossary is verified no matter which edit selection you use.

The message Verifying is briefly displayed

The messages Press EXECUTE to continue and An empty glossary is
attached are displayed

(The glossary document is empty because you have no entries in it at this
time)

Press EXECUTE
Press CANCEL to return to the Main menu.
You have created, verified, and attached your new glossary document gloss1

In addition to creating and verifying a glossary document, you must attach it
before you can use it. You can also detach a glossary document.

Attach the glossary: The glossary document must be attached before you
can use its entries. There are five ways to attach a glossary document:

Glossary Functions WORD ERA 9

CREATING A GLOSSARY DOCUMENT

Verify the glossary; it is automatically attached after it is successfully
verified.

Use the Attach Glossary selection on the Glossary Functions menu.

Attach a glossary document while editing a text document, first press
COMMAND, then press GL, then type the glossary document name.

Use the shortcut code agl to attach a glossary document from any
menu.

Select Index from the Main menu (or use the shortcut code ixs to
display a Short Form Index), position the cursor on the glossary name,
and press the GL key. (A glossary document cannot be attached from
the Index if you use Command I or i to access the index while you are
editing a document.)

Detach the glossary document: When you attach a glossary document
you automatically detach any previously attached glossary document.
You can detach an attached glossary by selecting Detach Glossary from

the glossary functions menu or by using the shortcut code dgl from
any menu.

SUMMARY

In this chapter you learned how to use the Glossary Functions menu to create,
verify, and attach a glossary document.

In Chapter 3 you will learn how to create and use a glossary entry by example
while you edit a text document. Chapter 3 also gives you suggestions for creating
several glossary by example cntries.
In Chapter 4 you will learn:

how to write and edit entries in your glossary document,

the elements of a glossary entry,

and more about glossary entries and glossary documents.

Chapter 4 also provides examples and suggestions for writing glossary entries.

10 WORD ERA Glossary Functions

CHAPTER 3

CREATING A GLOSSARY ENTRY BY EXAMPLE

In Chapter 2 you learned how to use the Glossary Functions menu and how to
create a glossary document. In this chapter you will learn how to create and use
a glossary entry by example.

Using the Glossary by Example feature, you create a glossary entry that
duplicates your keystrokes as you perform them. (Keystrokes include text typing
and word processing functions like Insert or Return.)

Once you have created the entry, you can use it immediately within the document
you are editing. A glossary created by example becomes a permanent entry in
your glossary document, so you can use it with other documents as well.

Remember, you must have an existing glossary document attached before you can
create an entry by example.

NOTE: If you do not have a glossary document,

follow the steps in Chapter 2 to create one before you
begin this section.

HOW TO CREATE A GLOSSARY BY EXAMPLE

The following steps show you how to create three glossary entries by example and
recall them in your document:

entry ¢: This entry is a company name and address

entry d: This entry is a company name and address, centered
and typed on three lines

entry e: This entry inserts a name and title

Glossary Functions WORD ERA 11

CREATING A GLOSSARY ENTRY BY EXAMPLE

Entry c: Creating an Entry to Type a Company Name
Create a new text document: When you are learning to crcate glossary cntrics
or testing new entries, it is always a good idea to try them in a "test" document
before you use them in your regular documents.

Use Create New Document on the Main menu to create a necw text document

Namc the document learngloss

To begin, the cursor should be on Linc 1, Pos 1 of your text document
Attach the glossary document: Before you can create a glossary by example,
you must attach your glossary document glossl.

Press COMMAND

Press GL

Type glossl

Press EXECUTE
Start Glossary by Example Mode: To start creating your glossary entry, press
MODE, then press GL. The flashing message Glossary entry is displayed at the
bottom center of the screen. This message will continue to flash until you have
completed your entry.

Press MODE

Press GL
Type the entry: Type the entry exactly as you would like it to appear in your

document.

Remember: Every keystroke you make, including mistakes, is being duplicated
in your glossary entry.

12 WORD ERA Glossary Functions

CREATING A GLOSSARY ENTRY BY EXAMPLE

If you make a mistake: If you make a mistake while you are typing the entry
use the Backspace key to back up and correct the error. Or, you can press
CANCEL to terminate the entry and start over.

Type TIGERA Corporation

Concluding the entry: When you have finished typing the entry press MODE,
then press GL. You must now assign a label in response to the Which entry?
prompt.

Press MODE

Press GL

Assigning a label: To assign a label, type one character and press EXECUTE.
You can use any one of 94 keyboard characters as an entry label (allowing you 94
entries per glossary document). You should not use quotation marks, and there
are special considerations when you use space or backslash. You cannot duplicate
entry labels in the same glossary document. For example, you cannot have two
entries labeled a. If you inadvertently assign a duplicate label, the error message
Entry in use is displayed. If this occurs, press EXECUTE and assign a different
label. (See Chapter 4 for detailed information on entry labels).

Type ¢

Press EXECUTE
Recalling the entry: Now that you have created entry ¢, you can use it. To
recall an entry, press GL, then type the one character entry label. Try recalling
the entry several times. Notice how fast it is typed in your document.
To recall entry c:

Press GL

Type ¢
You have created your first glossary entry by example. If you have to type your
company name frequently, this entry is a practical example for you to use. Try

creating another entry, substituting the name of your company for "TIGERA
Corporation."

Glossary Functions WORD ERA 13

CREATING A GLOSSARY ENTRY BY EXAMPLE

If you did not type a space following "TIGERA Corporation" and recalled entry ¢
a few times, your screen probably looks like the following example:

TIGERA CorporationTIGERA CorporationTIGERA CorporationTIGERA
Corporation

If you had typed a space following the word "Systems" when you created the
entry, the example above would look like this:

TIGERA Corporation TIGERA Corporation TIGERA Corporation TIGERA
Corporation

If you type the space at the end of the phrase when you create the entry, you
won’t have to type it in your document. If, however, you will occasionally need
to end the phrase with punctuation, like a period or comma, don’t include the
space in the entry. You can see that you should give some consideration to
possible uses for your entries.

You can use short entries in a variety of ways. A company name is one example.
Other examples might be: proper names, lengthy titles, or words you have
difficulty typing or spelling.

You can end the edit of your document learngloss now, or remain in it and
continue with the next exercise.

Entry d: Creating an Entry to Type a Company
Name and Address

In entry d you will see how you can create an entry that will type both text and
function keys in your document. The function keys used in this example are
Center and Return. In entry ¢ you will use the function keys Insert and Execute.

Follow the steps below to create entry d:
Creating entry d: To begin this exercise, edit your document learngloss,

position the cursor a few lines below existing text, then attach your glossary
document glossl.

14 WORD ERA Glossary Functions

CREATING A GLOSSARY ENTRY BY EXAMPLE

If you ended the edit of learngloss when you completed the last exercise,
perform the following steps:

1. Edit your text document, learngloss
2. Attach the glossary document, glossl
Remember, the exact keystrokes you type are being duplicated in the glossary
entry. If you make too many mistakes or unnecessary keystrokes, the entry will
take longer to recall. If you want to terminate the entry and start over, press
CANCEL. The entry is not preserved until you assign an entry label.
To start entry d:

Position the CURSOR below any existing text in your document

Press MODE

Press GL

To type entry d:

Press CENTER

Type TIGERA Corporation
Press RETURN

Press CENTER

Type: 350 Bridge Parkway
Press RETURN

Press CENTER

Type Redwood City, CA 94065

Press RETURN

Glossary Functions WORD ERA

15

CREATING A GLOSSARY ENTRY BY EXAMPLE

To conclude entry d:
Prcss MODE
Press GL
Type d

Press EXECUTE

Recalling entry d: When you rccall entry d, notice that it is typed in your
document exactly as you typcd it when you were creating the entry, complete
with centers and returns.

To recall entry d:
Press GL

Type: d

Entry d should look like the following example when you recall it in your text
document.

TIGERA Corporation
350 Bridge Parkway
Redwood City, CA 94065

You can sece from entry d that the ability to use function keys (like Center and
Return) in your entries provides more possibilities for creative glossary
applications.

When you use entry ¢ or d, you must position your cursor beyond or below any
existing text before you recall the entry or the text will be overwritten by the

entry text. You can include the Insert function in your glossary entry to avoid
overwriting existing text. The next exercise shows you how to create an entry

that inserts text in your document.

You can ¢nd the edit of your document learngloss now, or remain in it and
continue with the next exercise.

16 WORD ERA Glossary Functions

CREATING A GLOSSARY ENTRY BY EXAMPLE

Entry e: Creating an Entry That Inserts Text

Follow the steps below to create entry e:

Creating entry e: To begin this exercise, edit your document learngloss,
position the cursor a few lines below existing text, then attach your glossary

document glossl1.

Perform these steps if you ended the edit of learngloss when you completed
the last exercise:

1. Edit your text document, learngloss

2. Attach the glossary document, glossl

To start entry e:
Position the CURSOR below any existing text in your document,
Press MODE

Press GL

To type entry e:
Press INSERT
Type Mr. John Jones, President

NOTE: Be sure to include the space following the title so you don’t
have to insert it later.

Press SPACE

Press EXECUTE

Glossary Functions WORD ERA 17

CREATING A GLOSSARY ENTRY BY EXAMPLE

To conclude entry e:

Press MODE

Press GL

Type: e

Press EXECUTE
Recalling entry e: To understand how entry e inserts text, position the cursor
within existing text. Press GL, then type e.

Position the cursor at the correct place to insert text

Press GL

Type e
Entry ¢ should look like the following example when you recall it in your text
document.

Mr. John Jones, President
You have now created and recalled three types of glossary entries by example.

The next section, Tips on Creating and Using Glossary Entrics by Example, gives
you additional information about glossary by example entries.

TIPS ON CREATING AND USING GLOSSARY
ENTRIES BY EXAMPLE

This following list provides additional information and gives you some points to
remember about glossary-by-example entries.

Cursor position: When you recall a glossary entry that does not include
the Insert function, be sure your cursor is positioned at the exact location
where you want the entry to be typed or inserted. If the cursor is
positioned on existing text, the text will be overwritten by the recalled
entry.

18 WORD ERA Glossary Functions

CREATING A GLOSSARY ENTRY BY EXAMPLE

Using function keys: Remember, anything you can type on the keyboard
you can save in a glossary entry. If you do a large volume of production
typing, you can use glossary entries to reduce the number of keystrokes you
have to type. For example, you can create a glossary by example entry to
copy an alternate format line. The keystroke sequence you type to create an
alternate format line is:

INSERT COPY FORMAT 2 EXECUTE

Typing this sequence requires five keystrokes, whereas performing it with a
glossary entry takes two keystrokes. To make this entry easy to remember,
use the number of the alternate format line as the entry label (in this
example the label would be entry 2).

Format lines: A recalled glossary entry always uses the current format
line in your text document (unless you include a format line as part of the
glossary entry).

Using text emphasis modes: If you always highlight or underline certain
words or phrases, you can shorten the time it takes to type them by
including the text emphasis modes in your glossary entries.

Paragraphs: You can use a glossary by example entry for short
paragraphs or forms; however, there is a finite limit to the amount of
keystrokes you can store by example (see "Length" below).

When you have a large volume of text or keystroke combinations you would
like to use in a glossary entry, you must write the entry directly in the
glossary document. Chapter 4 shows you how to do this.

Length: A glossary by example cannot exceed approximately 1024
characters in length. The character count includes text, screen symbols (like
RETURN and TAB), page and/or column breaks, and format lines. Since a
glossary by example records every keystroke you make, it includes the keys
you press to make corrections or move the cursor around. Unless you are
very sure exactly what the entry should contain, you may quickly reach the
maximum entry size.

Glossary Functions WORD ERA 19

CREATING A GLOSSARY ENTRY BY EXAMPLE

If you exceed the character limit while you are creating a glossary by
example entry, the Glossary entry prompt stops flashing and the Which
entry? prompt is displayed. You can cnter a label and press EXECUTE to
save the entry, or press CANCEL to terminate the entry,

Modifying or adding to an entry: You can edit your glossary document
and modify or add to any ¢ntry you have created by example. Chapter 4
shows you how to do this.

Using the Numeric keypad: You can use the numeric keypad just as you
would any other key on the keyboard while you are creating a glossary by
example.

Number of entries in a glossary document: You can create as many

glossary documents as you need, although you can only attach one¢ at a timec.
You can have up to 94 separate entries in ecach document. They can be
either entries you create by example or write.

Creating glossary by example entries from menus: You can create
glossary by example ¢ntri¢cs to automate keystrokes you perform from
menus. For example, if you frequently change between two librarices, you
may want to create a glossary by example to perform the following
keystroke sequence:

COMMAND chl library pathname RETURN

Although the shortcut code chl is quick to use, this menu glossary entry
is even quicker. From any menu, use the shortcut code agl to attach a
glossary document. Then follow the same procedure you learned in this
chapter to create a glossary entry by example.

Suggestions for creating glossary entries by example: There are as many
ways to use glossary by example entries as therc are types of work.
Consider using entries for repetitious typing; standard paragraphs; Records
Processing ficld labels (the Records Processing User’s Guide gives you an
example); and technical words and phrases.

You can create a glossary by example entry as you use the Math function to
quickly add rows or columns.

20

WORD ERA Glossary Functions

CREATING A GLOSSARY ENTRY BY EXAMPLE

Remember, you can print, archive, and perform other document filing functions
with a glossary document. When you have created a number of entries, it is easy
to lose track of what your entries do and which labels you have used. You may
want to print your glossary documents and keep them in a binder for reference.

In Chapter 4 you will learn how to write entries in your glossary document and
how to modify your existing glossary entries by example.

Glossary Functions WORD ERA 21

CREATING A GLOSSARY ENTRY BY EXAMPLE

22 WORD ERA Glossary Functions

CHAPTER 4

WRITING GLOSSARY ENTRIES

In Chapter 3 you learned how to create glossary entries by example. In this
chapter you will learn how to write glossary entries in your glossary document.
By learning to write entries you will be able to:

modify or add to your glossary-by-example entries

create longer (up to 33,000 characters) glossary entries

use all of the programming functions available in glossary
Before you write a glossary entry, you need to understand the elements that
compose the entry. Every glossary entry, including the entries you created by

example in Chapter 3, contain the same basic elements. These elements are
described in the following section:

BASIC ELEMENTS OF A GLOSSARY ENTRY

A glossary entry is composed of the following basic elements:

Entry label
Braces
Keywords
Strings
Comments

Figure 3 shows you a diagram of the elements of a short glossary entry that
inserts the text, "TIGERA Corporation,” in a document.

Glossary Functions WORD ERA

23

WRITING GLOSSARY ENTRIES

entry a - Entry label

{ - Beginning brace

insert "TIGERA Corporation” execute -+— Keywords andtextstring
This is the entry “body”

I - Ending brace

Figure 3 A diagram of the elements of a glossary entry

Entry e (the glossary-by-example cntry from Chapter 3) is similar to the
example shown in Figure 3. If you would like to compare the entrics, c¢dit your
glossary document gloss}, and look at c¢ntry e, it should look like the

following cxample. (If you made any corrections while you were crcating
entry e, your entry may contain extra keywords such as backspace or left.)

entry e

{

insert "Mr. John Jones, President " execute

}

As you can sce, although the entries insert different text, they both contain the
same structural elements. Read the following descriptions of these glossary entry
elements before you begin writing entries in your glossary document.

Entry Labels

Each glossary cntry starts with the word entry. The single character after this
word is the label. You have 94 keyboard characters available to use as entry
labels. These may be any uppercase or lowercase letter, numeral, or symbol such
as |, @, and ~.

To use either a space or a backslash as an entry label, you must prccede the label
with a backslash. To use a space as a label, type "entry \ ". To usc a backslash as
a label, type "entry \\"

24 WORD ERA Glossary Functions

WRITING GLOSSARY ENTRIES

Each entry label must be unique; you cannot have two entries labeled x in the
same glossary document. When you run a glossary entry in your word processing
document, you recall the entry by pressing the GL key and typing the single
character entry label. The label of the sample entry in Figure 4-1 is the
character a.

Braces

Two braces { } mark the beginning and ending of the entry. The text between the
braces is called the body of the entry. The body of the sample entry in Figure
4-1 contains the keywords insert and execute and the text string "TIGERA
Corporation."

Keywords

Keywords are names that represent the formatting, editing, and cursor movement
keys on the keyboard, such as Return, Tab, Delete, and Left (cursor left key).

When you use an entry containing keywords, each keyword will perform its
designated function. For example, in the sample entry below, the cursor moves
down three lines and deletes a character.

entry f

down(3)
delete execute

}

As shown in entry f, the repeated activation of a key can be specificd by a
number in parentheses immediately following the keyword. See the list of

keywords by usage in Appendix D for keywords that accept a parenthetical
number.

Strings

A string is any contiguous set of characters that will be typed or inserted into the
text document. It may be as short as one character, or may include several
paragraphs of text.

A string may consist of any combination of alphabetic or numeric characters,
including spaces and special characters such as a Required Space or Required
Hyphen.

Glossary Functions WORD ERA 25

WRITING GLOSSARY ENTRIES

To differentiate strings from keywords in an entry, you must enclose the strings
in quotation marks, as shown in the following example:

entry g
{

}

insert center "Monthly Report” return execute

The string in entry g is "Monthly Report." The keywords are insert, center,
return, and execute. When this entry is used in a document, the heading
"Monthly Report" is inserted and centered one line above any existing text.

Embedding Keywords in Strings

Entry { uses only keywords. Entry g uses both keywords and a text string. The
keywords in entry f are whole keywords, typed outside the string. You can also
embed certain keywords within the text string. These keywords are called
"abbreviated keywords." A list of keyword abbreviations is provided in Appendix
D.

In the following example, entry h is the same as entry f, except the keyword
abbreviations for center and return are embedded in the text string. Keyword
abbreviations are always preceded by a backslash.

entry h
{

)

insert "\cMonthly Report\r" execute

The first two characters in the string, \c, are an abbreviation for the keyword
center. The last two characters in the string, \r, are an abbreviation for the
keyword return. Abbreviated keywords must always be placed inside the quotes
in a string.

Since double quotation marks are used to define a string, you must always use the
keyword abbreviation \q instcad of the symbol (") when you want to quote a
word or phrase within a string. The following ¢xample shows the keyword
abbreviation for double quotation marks embedded in the string:

"The name of the company is \qTIGERA Corporation\q"

26 WORD ERA Glossary Functions

WRITING GLOSSARY ENTRIES

This string appears in the text document as:
The name of the company is "TIGERA Corporation”

You can also use the keyword quote to enclose words or phrases in quotation
marks as shown in the following example:

"The name of the company is" quote "TIGERA Corporation” quote
As you can see, using the keyword quote is awkward, since you have to split the
string into quoted and non-quoted segments.
Single vs Double-Quoted Strings
You can also enclose a string in single quotes (). However, a single-quoted string
is interpreted differently from a double-quoted string. For example, when the
string

"\¢cTIGERA Corporation\r"

is typed in the text document, the center symbol is typed, the string "TIGERA
Corporation” is typed, a return symbol is typed, and the cursor advances one line.

When the same string is enclosed in single quotes, it is typed in the text document
exactly as it appears in the glossary entry. The string

‘N\cTIGERA Corporation\r’
is typed in the text document as

\¢TIGERA Corporation\r

The Backslash in Strings

The backslash (\) is an escape character; it tells the system that the character
following it is to be treated in a special way (for example, \r performs a
different function than the solitary character "r"). When you include a

backslash in a string you must always precede it with another backslash as shown
in the following example:

"The backslash (\\) is a special character."

Glossary Functions WORD ERA 27

WRITING GLOSSARY ENTRIES

The string is typed in the document as

The backslash (\) is a special character,

Comments

Comments make glossary entries casier to understand and use by describing the
entry. Any text enclosed by /* and */ within an entry is a comment. When a
glossary document is verified, or an entry is executed, comments are ignored. As
a result, instructional and explanatory comments can be used frequently.
Comment lines are used to clarify the function of entry i, as shown in the
following example.

entry i
{
/* boldface 5 characters */
mode "b" /*Turn boldface on*/
right(5) /*Move cursor right five characters*/
mode "b" /*Turn boldface off*/

}

Comments can be composed of several lines of instructions. In the following
example, expanded comments have been added to entry i. Note that the

comments now provide instructions on how to use the entry as well as describing
it.

The comment paragraph must begin and end with the comment symbols.

entry i

{
/*This entry is used to boldface 5 characters. To use it, place the cursor on
the first character to be boldfaced. Press GL and type the label i*/

mode "b" /*Turn boldface on*/
right(5) /*Move cursor right five characters*/
mode "b" /*Turn boldface off*/

}

Never mix keywords and comments. If you have comments following keywords
on one line, be sure the commented section begins and ¢nds with the comment
symbols and does not include any keywords. The second example of entry i,
above, shows the correct usage of both instructional and explanatory comments.

28 WORD ERA Glossary Functions

WRITING GLOSSARY ENTRIES

Two other important issues to consider when you write a glossary entry are screen
symbols and format lines.

REMEMBER: Regardless of how complicated your
glossary entries become, they share the same structural
elements. Be sure you begin each entry with a label, start
the body of the entry with a left brace, enclose strings in
quotes, spell whole keywords correctly, use the correct
keyword abbreviation, and finish the entry with a right
brace.

SCREEN SYMBOLS AND FORMAT LINES
IN THE GLOSSARY DOCUMENT

Screen Symbols

Screen symbols that are displayed on the editing screen of your glossary
document, such as the Return and Tab triangles and the Center diamond, are not
recognized as keywords in the glossary program. You must type the full name of
the keyword, or use a keyword abbreviation in a string, for that keyword to
become part of the glossary program. You can use the standard Returns, Tabs,
Indents, and other screen symbols to format your glossary entry so it is easier to
read on the editing screen.

Format Lines in Glossary Documents

The format line in a glossary document has no effect when the entry is recalled
in a text document. The quoted strings in the glossary entry will wrap to adjust
to the right margin of the text document format line. To use a glossary entry to
change or insert a format line in the text, document you must make the format
line part of the glossary program.

Entry j is a short program that inserts an alternate format line in the text
document.

Glossary Functions WORD ERA 29

WRITING GLOSSARY ENTRIES

entry j
{
/*inserts alternate format line. Tabs at 8 and 37. Margin at 68.*/
insert
format space(7) tab space(28) tab space(30) return execute
execute

WRITING GLOSSARY ENTRIES

This section shows you how to modify an existing entry created by example. It
also gives you an example of a glossary entry you can write and try. If you
would like to understand more about the action of a particular keyword as you
are writing the examples refer to the Keywords by Usage list in Appendix D.

Modifying a Glossary-by-Example Entry

The only method you can use to add additional text or functions to an entry
created by example is to edit the entry in your glossary document. You can’t usc
the glossary-by-example feature to change or add to an entry created by example.
To see how you can add a phrase to entry d (the glossary-by-¢cxample entry you
created in Chapter 3),pcrform the following steps:

To modify entry d:

1. Select Glossary Functions from the Main mcnu.

2. Select Edit Old Glossary and press EXECUTE.

3. Type glossl and press EXECUTE twice.

4, Entry d in your glossary document should look like the following e¢xample:
(Text lines may be wrapped differently, depending on the format ling in
your glossary document. You may also have additional keystrokes in your

entry, depending on how many corrections you made while you were
creating the entry.)

30 WORD ERA Glossary Functions

WRITING GLOSSARY ENTRIES

entry d

center "TIGERA Corporation" return center "350 Bridge Parkway" return center
"Redwood City, CA 94065" return
)

5. Place the Cursor at the beginning of the entry body (the "¢" in center), and
press INSERT

6. Type the following line:
"Please send correspondence to:" return(2)

7. Press RETURN, then press EXECUTE. Your entry d should now look like
the following example

entry d

{

"Please send correspondence to:" return(2)

center "TIGERA Corporation” return center "350 Bridge Parkway" return center
"Redwood City, CA 94065" return

)

The keyword return(2) is used to place two returns between the line and the
address. Instead of return(2), you could use the keyword abbreviation for return.
However, because keyword abbreviations do not take a number argument, you
must type the abbreviation twice, like the following example.

"Please send correspondence to:\r\r"

Of course, if you only want one return after the line, you can type one keyword
abbreviation in the string, like the following example:

"Please send correspondence to:\r"
Either method, embedding the abbreviation or typing the keyword outside the

string, is correct. Use the method that seems most natural to you and
accomplishes your purpose efficiently.

Glossary Functions WORD ERA 31

WRITING GLOSSARY ENTRIES

Modify and Recall the Entry: Once you have modified the entry, perform the
following steps to verily, attach, and recall it in a document:

1. Press CANCEL
2, Press EXECUTE
3. The status message (Verifying) is displayed at the bottom of the screen.

4, If the glossary document verifies correctly, the menu from which you edited
the glossary document is displayed.

If the glossary document does not verify correctly, the verification screen is
displayed. If this occurs, press RETURN and read the Verifying and
Troubleshooting section in this chapter.

5. The glossary document is automatically attached when it is successfully
verificd. Press CANCEL to rcturn to the Main menu.

6. Edit your text document, learngloss.

7. Position the Cursor beclow any cxisting text.

8. Press GL, then type d.

9. The new version of entry d is typed in your document.

You can save time by creating glossary-by-cxample entrics as you perform your
regular typing, then modifying them as ncecessary. When you add text to an entry
created by example, the 1024 character limit no longer applies. You can add as
much text as you like, up to approximately 33,000 characters. In Part 2 of this
guide you will learn how to create ¢ven longer entrics by calling other entrics as
subroutines.

Writing A Glossary Entry Memorandum Form

If you want to practice before you begin writing your own cntrics, try writing

entry k in the next example. Entry k is a memorandum f{orm; you can change
any of the headings to match the ones you normally use.

32 WORD ERA Glossary Functions

WRITING GLOSSARY ENTRIES

To write entry k, perform the following steps:

1.

Select Glossary Functions, then edit your glossary document, glossl.

2. You can type entry k on the same page as the other entries, or you can put
in a page break and begin entry k on the next page. You can put as many
page breaks as you like in your glossary document (up to the 999 document
page limit). It is easy to find entries quickly if you start each entry on a
new page; however, you may want to group secveral short entries on one
page.

3. Type entry k exactly as shown in the following example. The entry is
shown with whole keywords outside the strings. If you prefer, you can use
the appropriate keyword abbreviations instead (refer to the list of keyword
abbreviations in Appendix D).

This entry inserts an alternate format line that sets the right margin at
65 and a tab stop at 10. Note that the keyword space takes a number
argument, this feature simplifies typing spaces in a glossary entry.

entry k

{
insert format space(9) tab space(54) return execute(2)
center "MEMORANDUM" return(2)

"DATE:" tab return(2)
"TO:" tab return(2)
"FROM:" tab return(2)
"ce:" tab return(2)
"SUBJECT:" tab return(2)

)

4. Press CANCEL, then press EXECUTE to verify and attach the glossary
document.

5. When the Glossary Functions menu is displayed, use the shortcut code

edd to edit your text document, learngloss.

Using the shortcut code edd from the Glossary Functions menu is a
quick way to edit a text document and check the action of a new
glossary program.

Glossary Functions WORD ERA 33

WRITING GLOSSARY ENTRIES

6. When the editing screen is displayed, press GL, then type k to recall
entry k.

7. If you need to modify entry k after you have seen it perform in the text
document, leave the document, edit the glossary, verify it, then recall it in
your text document. If you are writing a complicated glossary program, you
may nced to go back and forth between the glossary document and the text
document several times until you arc satisfied with the program’s

performance.

Writing Menu Glossary Entries

As you learned from the glossary tip in Chapter 3, you can create a glossary by
example entry to store keystrokes you perform from a menu. You can also writce
a glossary entry to perform menu keystrokes. However, neither glossary by
example entries nor written entries cross from the menu to the cditing screen, or
vice versa. For example, you can write a glossary entry that will create a
document, fill out the document summary, and take you to the editing screen, but
the entry will terminate at that point. To enter text you must use a different
entry. Both entries can be in the same glossary document.

Learning More About Glossary

You have complcted the basic exercises showing you how to create glossary
cntrics by example and how to write entries directly in the glossary document.

The remainder of this chapter provides reference information about verifying,
troubleshooting, attaching, and dectaching glossary documents.

The Keywords by Usage list and the Keyword Abbreviations list in Appendix D
are particularly useful. Study these lists carefully before you begin Part 2
Learning Glossary Programming.

If you feel you need to gain a little more understanding of glossary and how it
applies to your word processing tasks, write and use several of your own
programs before you attempt to learn the new functions in Part 2.

34 WORD ERA Glossary Functions

WRITING GLOSSARY ENTRIES

VERIFYING AND TROUBLESHOOTING

When you write a new glossary entry or modify an existing one, you MUST
verify the glossary document before you can use the entry. When verification
occurs, all entries in the glossary document are verified (even if you modified
only one entry). Therefore, the amount of time it takes to verify a glossary
document depends on the length of individual entries and how many entries you
have in the glossary document.

The verification process checks your glossary entries for several possible error
conditions. The basic error conditions are:

Every entry must have a label

Labels cannot be duplicated within the same glossary document

Every entry must begin and end with a brace

Keywords must be spelled and used correctly

Strings must begin and end with a single or double-quotation mark

Comment lines must begin and end with the correct comment symbols
Error conditions that are concerned with programming syntax are covered in
Part 2. A list of error messages is provided in Appendix E.
Glossary Verification Options
You have a variety of options available to verify a glossary document. You can
also choose not to verify it if you have edited it just to scan the contents or look
at an entry. All of these options are described in the following list:
Glossary Verification END OF EDIT Options

Like a text document, the END OF EDIT options menu is displayed when you
press CANCEL to end a glossary document editing session.

Glossary Functions WORD ERA 35

WRITING GLOSSARY ENTRIES

The optional choices on the menu are EXECUTE, RETURN, COPY, DELETE,
and FORMAT. Verification occurs automatically with some options and not with
others. Each option is described below:

NOTE: You can use the functions Autosave or

Command Return while you are editing your glossary
document. Your changes are saved as you edit; however,
entries are not verified until you end the edit of the
glossary document and press EXECUTE.

EXECUTE: Verification automatically occurs when you press
EXECUTE.

If you have just created the glossary document, you can only use the
EXECUTE verification option if the document was created from the
Glossary Functions menu.

You can create a glossary document from the Main menu; however, you
must verify it from the Glossary Functions menu or by using the shortcut
code vgl belfore you can usc the entries.

Once a glossary document has been verified, you can cdit it and use end of
edit verification options from any menu.

RETURN: The document is not verified. Returns you to the glossary
document editing screen.

COPY: Automatically verifies only the glossary document, not the copy.
Saves the glossary document with all changes. Creates a copy of the
glossary document that includes only the editing changes saved by using
Autosave or Command Return.

DELETE: Doecs not verify the glossary document. Decletes any changes
made during the cditing session e¢xcept changes that were saved by using
Autosave or Command Rcturn.

The DELETE option can be very useful if you want to look at the glossary
document without making any changes. Of course, like a text document,
any changes you make are deleted, so use this option with discretion.

36 WORD ERA Glossary Functions

WRITING GLOSSARY ENTRIES

FORMAT: Automatically verifies the glossary document and displays the
print menu.

The same END OF EDIT options apply when you edit a glossary document from
the Document Index.

Glossary Document Menu Verification Options
You can verify a glossary document without editing it in two ways, they are:
Select Verify Glossary from the Glossary Functions menu

Use the shortcut code vgl from any menu that accepts shortcut codes.

Glossary Document Verification Limitations

A glossary document cannot be verified in an open document window. If you
cdit a glossary entry in a window, you must return to the menu to verify the edit.
The changes remain in the entry but are not executable until the glossary
document is verified. You can work around this by jumping to the glossary
document window, then closing all other windows. You can then end the edit of
the glossary document normally and automatically verify it.

A glossary document verifies correctly when you usc Command i from a text
document editing screen to edit a glossary document; however, it is not
automatically attached. You may type or edit an entry using this method, but
you must attach the glossary document when you return to the text document
editing screen before you can use the new or modified entry.

Correcting Verification Errors

If errors in an entry or entries are detected during the vertification process, the
Verification errors options menu shown in the following example is displayed:

No. of errors detected :1
Verification errors options

RETURN to editing screen
DELETE to Glossary menu

Glossary Functions WORD ERA 37

WRITING GLOSSARY ENTRIES

The menu in the example shows that one error has been detected in the glossary
document. You are offered a choice of two options, RETURN or DELETE,
which are described below:

DELETE: Does not verify the glossary document. Saves any changes
made during the cditing session (including the crrors).

If you choose the DELETE option and do not correct the errors, you must
correct them. You must repeat the verification process before you can usc
any entry in the glossary document.

RETURN: Returns you to the glossary document c¢diting screen. Choose
this option to view and correct entry errors.

The verification process places messages about entry errors on the glossary
document work page (page w). To view this information, edit the glossary
document, press GO TO PAGE, then type w. The mecssage displayed on the

work page shows the date and time that the verification was performed and lists
the error or errors detected. A sample error message display is shown in the
following example:

EERARBRERKEKEREREREERRRAREEREEKERRER XX

Tue Apr 29, 1986 at 20:53:49

EEAKEAERAKEREBREBERA ALKk RRERRTRER

page 2, line 4 : syntax error : ‘{’

The error message example indicates that the entry on page 2 is probably missing
an ending brace.

After you have looked at the work page, you can go to the page and line number
indicated and correct the error or errors.

When you reverify the glossary document after making corrections, any new
errors detected are added at the bottom of the work page below existing messages.
You should delete error messages from the work page after you have corrected
the error.

Most glossary entry errors arc simple mistakes, like misspclled keywords, missing
braces, or duplicated entry labels. They arc usually easy to spot and correct.

38 WORD ERA Glossary Functions

WRITING GLOSSARY ENTRIES

Appendix E provides a complete list of verification error messages and gives you
suggestions for correcting them.

ATTACHING A GLOSSARY DOCUMENT

To use an entry in a glossary document, you must first attach the glossary
document. You can attach a glossary document from a menu, from a document
editing screen, or from the Document Index.

You can only attach and use one glossary document at a time. For example, if
you are using gloss1, and attach gloss2, then glossl is detached and you

can only use gloss2.

Several users can attach and use the same glossary document at the same time,
For example, you and your co-worker can both attach and use glossl at the
same time.

You cannot edit an attached glossary. If you attempt to edit an attached
glossary, the message "Document in use" is displayed.

You cannot delete, rename, or move an attached glossary document. Detach the
glossary document before using it with these functions.

You can use any one of the following methods to attach a glossary document:

Verify the glossary. A glossary document is automatically attached when it
is successfully verified.

Use the Attach Glossary selection on the Glossary Functions menu.

To attach a glossary from a document editing screen, press COMMAND,
press GL, then type the glossary document name.

Use the shortcut code agl to attach a glossary document from any menu.
To attach a glossary document from the Document Index, select Index from

the Main menu (or use the shortcut code "ixs"), position the cursor on the
glossary name, then press GL.

Glossary Functions WORD ERA 39

WRITING GLOSSARY ENTRIES

If you use Command i to access the Document Index from your document
editing screen, and then edit and modify a glossary document, you must
rc-attach the glossary document when you rcturn to your document editing
screen.

DETACHING A GLOSSARY DOCUMENT

You can detach an attached glossary by selecting Detach Glossary from the
Glossary Functions menu or by using the shortcut code dgl from any menu.

When you attach a glossary document, you automatically detach any previously
attached glossary document.

Figure 4 summarizes the glossary program writing, verifying, attaching, and
recalling procedure.

SUMMARY

You have completed Part | of this guide. You learned how to create a glossary
document and how to verify, attach, and detach it. You also learned how to
create a glossary by example entry, how to modify it, and how to write a glossary
entry.

In Part 2 you will learn how to use the glossary programming language and
glossary functions.

40 WORD ERA Glossary Functions

WRITING GLOSSARY ENTRIES

Figure 4 The Glossary Writing, Verifying, and Program Execution
Procedure

Glossary Document

GLOSSARY FUNCTIONS

eniry a

== Type entries or
Create entryb create entries by
Glossary = Example
Document

3
Verify

y
Edit text document

/

Text document Attach

_— Glossary

= Run
- program

A1537

Glossary Functions WORD ERA 41

WRITING GLOSSARY ENTRIES

42 WORD ERA Glossary Functions

CHAPTER 5

INTRODUCTION TO GLOSSARY PROGRAMMING

While you perform the e¢xercises and try out the examples in this book, you are
learning to write computer programs using the Glossary programming language.

While Glossary has a great deal in common with other types of computer
programming, it was spccifically designed to manipulate text and data inside a
WORD ERA text document. When you write a glossary entry, you are writing a
program. The basic glossary elements you learned in Part 1 can be used to type,
create headings and footings, and format your documents. Glossary programming
functions greatly expand the range of possible uses for glossary entries.

WHAT IS GLOSSARY PROGRAMMING?

A glossary entry is a computer program. Your glossary program is a set of
instructions that tells the computer what to do, how to do it, and in what order to
do it. In Part | you learned how to use combinations of keywords and strings as
program instructions.

In this part you will learn how to write more complicated instructions using
special glossary document reading and writing functions, interactive functions,
string functions, and mathematical functions. Conditional and control statements
permit you to control the order of program execution.

Glossary is a Programming Language

Programs have to be written in a language that the computer understands.
Glossary is a programming language that was developed especially for WORD
ERA users. Very much like a spoken language, glossary language has a
grammatical structure called syntax. It uses declarations called statements and
action words (verbs) called functions.

Glossary Functions WORD ERA 43

INTRODUCTION TO GLOSSARY PROGRAMMING

There are special programming language rules you must {ollow to communicatc
with and instruct the computcr. Chapters 6 through 9 give you these rules.

You may already know a programming language such as BASIC, PASCAL, or C
(the language most frequently used on the UNIX operating system). If so, the
syntax and logic of the Glossary programming language will be familiar to you.

The Verification Process Compiles Your Programs

Glossary is a compiled programming language. During the verification process,
your written glossary entry code is compiled into a compact form that can be
read by the machine.

Most programming languages must be converted to a machine-rcadable form by
an interprcter or a compiler. The two methods are similar in result but arc
different in execution:

An interpreted language (like some forms of BASIC) is translated
line-by-line as the program exccutes. If you made a syntax error in your
program code, the interpreter terminates the program and reports the error
to you. Usually you have to correct the error before you can rerun the
program.

A compiled language (like Glossary), waits until you have typed the entire
program and then compiles it into a machine-readable form. Any errors in
the program are reported to you after it is compiled (the glossary
verification process). The compiled form is called the object program. The
typed form is the source program. (How the objcct and source programs
affect the glossary document is described in Chapter 13, Glossary
Information for Operating System Users.)

The glossary program you write is compiled by the glossary verification process
into a form that is executable within your text document. You can also execute a
glossary program from a WORD ERA menu. This executable form is a .gl file.
To understand the .gl file, you need to understand the structure of a WORD
ERA document.

44

WORD ERA Glossary Functions

INTRODUCTION TO GLOSSARY PROGRAMMING

The Structure of a WORD ERA Document
A WORD ERA document actually consists of the three following files:
filename The textual portion of a document

filename.dc The history, statistics and page pointer information for
the document

filename.fr The formats, header page, footer page and work pagce
for this document

This structure is not apparent from the WORD ERA Document Index, which
displays only the base filename of the document. You don’t need to be concerned
about this fact, as WORD ERA treats all three files as one, for the purposes of
document control. However, for purposes of glossary, it is helpful for you to
understand what is happening "behind the scene."

When you compile a glossary document, a fourth file, the .gl file, is created.
The .gl file is the compiled and exccutable portion of the glossary document.

filename.gl The binary form of a glossary; only present if the
document is a compiled glossary.

If you are interested in learning more about the .gl and WORD ERA document
file structure, read Chapter 13.

As you learned in Part I, the glossary compiler reports program errors to you on
Page W of your glossary document. The glossary programming language has an
extensive syntax error list. Chapter 13, Administering Glossary Programs, tells
you how to troubleshoot (debug) your programs. Appendix E provides a list of
error messages received from the compiler. It also gives you a list of error
messages associated with glossary procedures.

HOW TO STUDY PART 2

This part gives you the fundamental knowledge you need to write Glossary
programs. While the information is specific to WORD ERA Glossary, the
principles apply to most computer languages. You’ll be learning more than you
realize!

Glossary Functions WORD ERA 45

INTRODUCTION TO GLOSSARY PROGRAMMING

Chapters 10 and 11 give you a detailed description of cach Glossary function.
When you want to know what a function docs and how to usc it, refer to
Chapters 10 and 11. Functions are listed alphabetically and by usage.

After you develop a working familiarity with these chapters, you will know
exactly where to turn for reference while you are writing your programs.

When new functions are introduced in program examples, they are briefly
described in the context of the program. If you would like detailed information
on any function, refer to Chapter 10.

Comment lines are deliberately omitted in some of the program examples to give
you an opportunity to read and understand an uncommented program.

All of the entry examples in this and following chapters are actual glossary
entries you can type and try. Typing and recalling some of the centries that
interest you the most will help vou quickly learn the principles of glossary
programming.

Although vou will learn best if you actually type the entries, you can save typing
time by using the entrics on the Glossary Diskette provided with this book. The
entries for this chapter and Chapter 6 arc in glossary document gloss2a on the
Glossary Diskctte. Chapter 14 tells you how to retrieve and use the glossary
documents on the Glossary Diskette.

OVERVIEW OF GLOSSARY PROGRAMMING
LANGUAGE ELEMENTS

The following list provides a brief description of the clements of the glossary
programming language you will learn in Chapters 6 through 9.

Statements

A statement is a declaration of purpose. A programming statement may be either
a single keyword or a whole scries of words consisting of variables, keywords,
functions, and strings. Statements belonging to conditional and control statements
must be enclosed in braces { }. Other types of statements do not nced braces.

46 WORD ERA Glossary Functions

INTRODUCTION TO GLOSSARY PROGRAMMING

Variables

Variables are names you assign to store alphabetic or numeric strings for
reference and manipulation. The content of a variable is called its value. The
variable name can be almost anything you wish. All variables that you use in
your program must be declared (given a name) and initialized (given a value).

Values

Variables and functions that contain values can return these values throughout
the execution of a program. For example, you can use the word function to
return the word at the cursor location in the text document. You assign the value
of the word function to a variable, then you can type that word elsewhere in

the document by feeding the variable to the document. Entry a in the
Programming Style section in this chapter illustrates this principle.

Logical Values

Logical values of true or false allow you to check for true or false conditions in
the document. For example, you can test for a true or false cursor condition by
using this statement: if(top page). If the cursor is at the top of the page, the
value will be true; if i1s not at the top of the page, the value will be false.

Relational, Equality, and Logical Operators

Relational and equality operators, such as > (greater than), == (equal to), and >=
(greater than or equal to), allow you to compare two values.

Logical operators, such as & (and), | (or), and ! (not), allow you to apply the logic
principles of Boolean algebra to glossary programming.

Assignment Operators

The assignment operator = allows you to assign a value to a variable.

Mathematical assignment operators, such as += or -=, are used to perform
mathematical operations on variables.

Glossary Functions WORD ERA 47

INTRODUCTION TO GLOSSARY PROGRAMMING

Functions, Arguments, and Expressions

The Glossary programming language has a built-in library of functions that can
detect the cursor’s location, prompt the operator for information, read text from a
document, manipulate strings, call another entry as a subroutine, and even
intcract directly with the operating system.

Functions have "arguments” that may contain on¢ or more "expressions.” For
example, the function posmsg has an argument in parentheses with three
expressions separated by commas as in call posmsg(2,12,"hello"). This statement
will place the word "hello" (expression 3) on the document edit screen at line 2
(expression 1) and position 12 (expression 2).

Conditional Statement Functions

Conditional statement functions such as if and while allow the glossary
entry to make decisions based on document conditions. For example, the
statement

if(end doc) {goto "1" execute exit}

bases its decision on whether or not the cursor is at the end of the document. If
it is, the cursor is sent to page 1

(goto "1" execute)
and the glossary program terminates

{exit}.

Control Statement Functions

Control statement functions such as call and jump change the order of

statement execution. Using the example for conditional statements, you could
have your program call another glossary entry (in the same glossary document) as
a subroutine by writing the statcment: if(end doc) {goto "1" execute call a}.
Program exccution control is transferred to glossary entry a by the call

function.

48 WORD ERA Glossary Functions

INTRODUCTION TO GLOSSARY PROGRAMMING

Labeled Statements (ldentifiers)

A word enclosed in brackets and followed by a statement or statements may
become the destination of a jump control statement. For example, the
statement "jump counter” will cause the program to continue execution at the
statement following the identifier [counter].

Braces { }

In addition to beginning and ending an entry, braces are also used to begin and
end bodies of conditional or control statements within the body of the entry.

Brackets []

Brackets are used to enclose the identifying word for labeled statements.

Parentheses ()

Parentheses enclose arguments and expressions. For example, in the statement
prompt("Enter Date"), the text string "Enter Date" is the expression and is
enclosed in parentheses as the argument to the prompt function.

String Operations

String functions allow you to perform a variety of operations on strings. For
example, you can select and use specific parts of strings, you can substitute one
part of a string for another, and you can concatenate two strings into one string.
Strings can be assigned to variables or they can be used as expressions within
function arguments. Mathematical calculations can be performed on numeric
strings.

String functions are used extensively in Records Processing control glossaries.
The WORD ERA Records Processing manual provides many useful entry
examples that use string functions.

Glossary Functions WORD ERA 49

INTRODUCTION TO GLOSSARY PROGRAMMING

Mathematical Operations

Mathematical operations, such as addition, subtraction, multiplication and
division, can be performed on numeric strings.

PROGRAMMING STYLE

Using the Glossary programming language, you can write long and complex
programs. Longer programs are difficult to read unless you follow a specific
style or convention. The style rccommended here is the standard C language style
that is adapted to glossary programming.

Glossary is a frec-form language that doesn’t carc what style you usc as long as
your syntax is correct. However, using style conventions can assist you in
writing, understanding, and reviewing your programs.

Entry a, An Example of Programming Style

The syntax of entry a in the following example is correct, but the logical
execution of the program is very hard to follow. Also, sincc the compiler lists the
line an error is on, it becomes difficult to pinpoint the error when the program
runs togcther on one or two lines.

entry a{title=word command note goto"w" goto down call feed(title) goto
note}

Formatting helps to clarify the entry. Formatting means using spaces between the
keywords, putting blocks of action on scparate lines, indenting, and adding
comments. Entry a is retyped in the following example. Notice how much ecasicr
it is understand the logical action of the program when returns, indents, and
comments are added.

entry a

{
title = word
command note
gOtO LRVl
goto down
call feed(title)
goto note

50 WORD ERA Glossary Functions

INTRODUCTION TO GLOSSARY PROGRAMMING

You can use entry 2 when you are typing or editing your document to create o
word list on Page W. When you have finished editing, you can then copy Page W
into a "word list document" to use with the Index Generator.

In entry a, the word function returns and assigns the word at the cursor
location in the text document to the program variable title. The location of

the cursor is marked by the keywords command note. The cursor is then sent to
the bottom of Page W, where the value of title is typed by thc statement, call
feed(title). The cursor is then sent back to the marked location in the text
document.

The feed function feeds string values into the document as though thcy are
being typed from the keyboard; call precedes a function when the function is
used as a statement.

You will learn more about all the function shown in entry a in the following
chapters.

Programming Style Conventions

Comments: Descriptive, well-placed comments make complex entries much

easier to understand. Even though you are not familiar with all the functions
used in entry a, you should be able to follow the logical sequence in the entry by
reading the comment lines. Comments can also provide instructions or
information for other people who are using your glossary entries.

Instructional comments at the beginning of a program can wrap for several lines.
The commented paragraph must start with the symbols /* (foreslash and asterisk),
and end with the symbols */ (asterisk and foreslash). When an ecxplanatory
comment following a program statement requires two lines use an Indent to wrap
the lines or begin and end each line with comment symbols.

Be especially observant about enclosing your comment lines with the comment
symbols. Also, be sure you do not accidentally include any program statements
within the comment symbols.

The compiler will not tell you if a symbol has been omitted and some very
unpredictable results may occur when you recall the program. Try using the
interactive glossary entry in Chapter 13 for entering comments while you arc
typing a program.

Glossary Functions WORD ERA 51

INTRODUCTION TO GLOSSARY PROGRAMMING

Spaces: Be sure to put spaces between keywords, variables, and functions. You
do not need to put spaces between a function and its argument. It makes no
difference to the compiler if you write return (2) instead of return(2). Howecver,
eliminating the space clearly associates the parcnthetical argument with its
function, as in feed(title) in entry a.

Indenting: Indenting establishes a visible hicrarchy of execution in a program
and links statements with their functions. It helps you to see cxactly where to
place braces for the beginning of the entry and for function bodies.

Entry b is used to "de-center” top-of-page headings throughout a document and
ignore centered headings that occur clsewhere in the document. The entry
performs recursively by using the labeled statement jump [loop] to repcatedly
execute its statcments until it reaches the end of the document. See if you can
understand the logical action of the entry before you read the description
following the example. Note that indenting clearly cstablishes and helps you to
understand the scquence of program cxccution.

entry b
{
[loopl]
if(end doc)
{
exit
)
goto center
if(top__page)
{
delete execute
jump loop
}
jump loop
)

In entry b, three large blocks that form the structure of the entry are:

52 WORD ERA Glossary Functions

INTRODUCTION TO GLOSSARY PROGRAMMING

I. The beginning and ending braces around the body of the entry.

2. The [loop]l and jump loop block. This loop keeps executing all the

if tests and instructions between [loop] and jump loop until the first
test, if(end __doc), proves true.

When the cursor reaches the end of the document the exit statement
following if(end doc) is executed and the program terminates.

3. The braces that surround each if function body. The function body for
the first if test is the single statement exit which terminates the
program if the cursor is at the end of the document.

The second test if (top_page), is comprised of the statements delete
execute jump loop, which delete the center symbol if the cursor is at the
top of the page.

Indenting provides steps through your glossary program. This is helpful when
you write the program, but more helpful a few weeks later when you read it
again and try to remember why you wrote it.

Braces: Braces are used to begin and end function bodies. Although it is not
necessary to use braces for only one statement, in the interest of consistency and
good programming practice, it is recommended that you enclose all function
bodies in braces.

Figure 5 shows how braces are used with function bodies. The figure uses the
if else function.

This function is described in Chapters 7 and 8. Dots (...) represent omitted
program statements.

Glossary Functions WORD ERA 53

INTRODUCTION TO GLOSSARY PROGRAMMING

Figure 5 Using Braces to Enclose Function Bodies

{ - Opening brace begins entry body.

<« Various statements are executed.

if(...) =—— The conditional statement if is a function.
Parentheses enclose the argument to the
function. (in the case of the if
function, the statements in the function body are
executed if the expression proves true.)

{. D
Function bodies contain
} - statements.
else — Braces surround function bodies
{ -]
} -

} - Closing brace ends entry body
SYNTAX

Syntax is the order in which the glossary language must be written. This chapter
tells you about general syntax usage. Chapter 10 gives you the specific syntax
required for each function.

The following entry inserts "Tigera Corporation” in a document. To work
properly the entry must be written in the correct execution order, or syntax.

entry ¢

{
}

insert "Tigera Corporation" execute

To insert a text string you must first invoke insert mode by pressing the Insert
key, second, you type the string, and third, you press the Execute key to exit the
insert mode. The entry would not work if you wrote it in a different syntax
such as the one shown in entry C.

54 WORD ERA Glossary Functions

INTRODUCTION TO GLOSSARY PROGRAMMING

entry C
{

}

"Tigera Corporation" execute insert

Type both entry ¢ and entry C in a glossary document. Recall them in a text
document and analyze the results. Entry C leaves you hanging in insert mode
because there is no execute keyword following the insert.

Figure 6 shows the standard function syntax for arguments and expressions, using

the prompt function as an example. You will learn about arguments and
expressions in the Chapter 6.

Figure 6 The Syntax for Functions, Arguments, and Expressions

prompt("Enter Date™)

B

The expression is part of the argument; some functions
may require or accept two or more expressions

Parentheses enclose the argument to the function

Artap

Function

Another type of syntax structure is shown in Figure 7, which illustrates the
syntax for a conditional statement. You will learn about conditional statements
in Chapters 7 through 9.

The specific syntax requirements for functions, conditional statements, control
statements, and parenthetical expressions are explained in text, examples, and
diagrams in the following chapters.

Glossary Functions WORD ERA 55

INTRODUCTION TO GLOSSARY PROGRAMMING

Figure 7 The Syntax for a Conditional Statement

if(char == "g") {delete execute}
Ak

A A T

Braces enclose the function body which may be a
statement or statements

String expression

Equality operator

The function char

Parentheses enclose the argument to the conditional if, the
argument may contain an expression or expressions

The conditional if statement; the entire line, including the
delete execute keywords, is a conditional statement

SUMMARY

You will find your glossary programs casy to type, verify, correct, and use if you
take the time to apply the programming principles described in this chapter.

Chapters 6 through 9 usec many glossary cntry examples to illustrate all the
glossary programming elements. You can type these entries in your glossary
document and recall them in a text document to sec how they work.

Or, to save time, you can usc the appropriate glossary document on the Glossary
Example Diskette enclosed with this Guide. The glossary document gloss2a
contains all the entry examples for Chapters 5 and 6. The glossary document
gloss2b contains entries for Chapters 7 through 9. There arc similar glossary
documents for Parts 1, 3, 4, and 5. The Glossary Diskette is described in
Chapter 14.

56 WORD ERA Glossary Functions

CHAPTER 6

ELEMENTS OF GLOSSARY PROGRAMMING

In this chapter you will learn how to use the following glossary programming
elements:

Statements

Variables

Values

Logical Values

Operators

Functions, Arguments, and Expressions

Parentheses

The labeled entries in this chapter are example glossary programs you can type in
a glossary document and recall in a text document. As you learn a programming
element you should try incorporating it into some of your earlier glossary entries
or write new entries using the entries in this chapter as guidelines.

If you want to save typing time, all labeled glossary entries in this chapter arc in

glossary document gloss2a on the Glossary Diskette provided with this book.
Chapter 14 tells you how to use the Glossary Diskette.

STATEMENTS

A glossary programming statement can be a single keyword or a whole series of
words consisting of keywords, variables, functions, and strings.

Types of Statements

Table 1 shows several types of glossary program statements.

Glossary Functions WORD ERA Y4

ELEMENTS OF GLOSSARY PROGRAMMING

TABLE 1 Examples of Statement Types
STATEMENT TYPE OF STATEMENT
return Keyword statement

insert "x" execute

cost = 27.32

call prompt("Enter Name")
if(char == "x") {delete execute}
do {right}while(char != "x")
jump loop

H "

[loop] goto "e" execute

Keyword statements
Assignment statement
Function call statement
Conditional statement
Conditional loop statement
Control statement

Labeled statement

Single and Multiple Statements

Multiple statements to conditional statements must be enclosed in braces { }; a
single statement does not require braces (however, enclosing all conditional
function statements in braces clearly identifies the relationship of the statement

to the conditional function).

Entry d contains examples of both single and multiple statements to conditional

functions:

The first conditional statement, if(globerr) exit, has the single
statement, exit, which is not enclosed in braces.

The second and third conditional if statements have multiple statements

which are enclosed in braces.

58

WORD ERA

Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

entry d
{
[repeat]
goto indent
if(globerr) exit
right
if(char == "o")
{
goto indent
jump repeat
)
if(char != "o")
{
insert
"0" indent
execute
jump repeat

Note that entry d assumes the standard bullet format for indented items to be:
Indent o Indent, since the lowercase "o" is most frequently used for bullets on
impact printers. 1f you are using a laser printer you can substitute the laser
printer bullet code for the lowercase "0." Also, indented items must begin with
characters other than "o" for the entry to work properly.

The globerr function is used in entry d to perform a graceful exit from the
program if the statement goto indent does not find an indent. The globerr
function is described in Chapter 8, in the section Trapping Function Errors Using
the globerr Function.

Statement Execution Order

Statements in a glossary program are executed in a top-down order, beginning
with the first statement after the opening brace and ending at the last statement
before the closing brace. As you can see from entry d, you can modify the
execution order of an entry by using conditional and control statements like if
and jump. Chapters 7 through 9 tell you how to control the execution

sequence of your programs.

Glossary Functions WORD ERA 59

ELEMENTS OF GLOSSARY PROGRAMMING

VARIABLES

An important feature of Glossary is the capability of storing a value and
recalling it as a constant or of changing it as the program runs. A valuc may be
a numecric string, an alphabetical string, or a mathematical expression. The
storage location for the valuc is called a variable.

Declaring and Initializing Variables

Each variable you are going to use must be declared and initialized in your
program by giving it a name and assigning it an initial value. It is important
that you initialize cach variable cither to 0 (zcero) or to an initial value the first
time you use it in your program. Doing this resets the variable each time vou usc
the program, or at cach iteration of a program loop.

You can initialize all variables at the beginning of your program or immediately
prior to their use. Analyze the entry examples in this book and note where the
variables are initialized.

For example, entry ¢ initializes the variables ourcost to a constant value of
64.25, markup to 0, and theircost to 0, then uses the keys function to
assign a value to markup. (The keys function pauses the program during
cxecution and allows you to enter data from the keyboard.)

The variables overcost and markup arc added, and the result is assigned to
theircost, which is typed in the document. The equal sign (=) following the
variables is an assignment opcrator, it assigns the value to the variable. You will
learn about assignment and other types of operators in this chapter.

entry e
{
ourcost = 64.25
markup = 0
theircost = 0
markup = keys
theircost = ourcost + markup
call feed(theircost)

60 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

Initializing variables to 0 at the beginning of a program is not strictly necessary,
but it is a good programming habit to acquire and can be very important when
you use programming languages other than glossary.

Variable Names

Variable names may be as many characters as you wish. Using short names keeps
your program concise.

These are the rules for variable names:

A variable name cannot be the same as a glossary reserved word name.
Glossary reserved words are the names of functions and keywords. See
Appendix A for a list of reserved words and symbols.

Two word variable names must be joined by an underbar (_) or a period (.).
Joining two-word variables by a period is a good way to distinguish them
from two-word function names (which are joined by an underbar) like

end _doc or top__page. You cannot use a space or a required space

between two-word variable names. Spaces in any form are not allowed as
any part of variable names. When you type the underbar, type
SHIFT/Underline. Do not use Mode " " (Mode Underline) to type the
underbar.

The variable name must always begin with an uppercase or lowercase letter.
It cannot begin with a number.

The variable name may consist of any combination of uppercase or
lowercase letters or the numbers 1 through 9. The only symbols that may be
used are the underbar (_), the period (.), or diacritical marks, such as the
umlaut () or the grave (‘) and acute () accents.

VALUES

A value may be a string or a mathematical expression. Values are returned by
functions or are assigned to and returned by variables. During program
execution you may pass a value to a variable or function or cause a current value
to be changed.

Glossary Functions WORD ERA 61

ELEMENTS OF GLOSSARY PROGRAMMING

Functions that return values have a standard value type. For example, the line
function always returns the linc number of the current cursor position in the text
document. The date function returns the system time and date. The

unixpipe function returns the standard output of an opcrating systcm

command.

Somc functions return true or false valucs. These are called logical values. The
beg doc function rcturns a numeric valuc of 1 (true) if the cursor is at the
beginning of the text document or 0 (false) if it is not.

Logical values are covered later in this chapter. You can refer to Chapter 5 for a
description of the value returned by each function.

Assigning Values to Variables

When you assign a value to a variable, you must use an assignment opcrator. The
standard assignment operator is the equal sign. This does not mcan "cqual to" but
instead means "assign the value on the right-hand side of the = sign to the
variable on the left-hand side of the = sign." (The equality opecrator is two cqual
signs ==, which means "equal to." Equality operators arc described in the
Operators section of this chapter.)

The syntax for assigning a value to a variable is shown in Figure 8.

It is valuable to remember the "right-hand, left-hand” definition. Mathematical

assignment operators (which you will learn about later in this chapter) depend on
the "right-hand side, left-hand side" assignment principle.

Figure 8 The Variable Assignment Syntax

variable = value

T

Numeric or text string
Assignment operator

Variable name

62 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

The following are examples of different types of values assigned to variables.
The variable names are arbitrary. You may use whatever names you choose.

figure_no = 0 month = "April" cost = $44.37 month.end = 31
X1 = "2137A" X2 = 22,370 count = 31 last.year = 86

The output of a function may also be assigned to a variable. The following
example assigns the output of the date function to the variable today. (The
date function returns the current system date and time.)

today = date
The current value of a variable can be assigned to another variable. For example:

month.end = cost figure.number = count

Rules for Values

A numeric value is @ number string, which may consist of the numbers 0
through 9 in any combination, and the dollar sign, the period, or the comma.
Mathematical calculations may be performed on a numeric value. A
numeric string does not need to be enclosed in quotation marks.

If numeric values containing commas are used as expressions in a function
argument, they must be enclosed in double quotes. This rule applies to
expressions in the form of variables or numbers.

An alphabetic value is a character string enclosed in double or single
quotation marks, (") or (*). If you are embedding keyword abbreviations or
octal numbers in your strings, use double quotation marks. (The use of
octal numbers is described in Chapter 12 and Appendix C.) The character
string may consist of any combination of letters, numbers, symbols, or
keyword abbreviations.

Double quotation marks (") within the string must be embedded by using the
keyword abbreviation \q.

Glossary Functions WORD ERA 63

ELEMENTS OF GLOSSARY PROGRAMMING

Single quotes (‘) may be used to enclose strings. However, codes such as
keyword abbreviations or octal representations are interpreted literally and
arc typed in the document.

Octal code numbers embedded in strings must be preceded by a backslash .
(See Appendix C for information about octal code numbers.)

Fach keyword abbreviation symbol counts as one character in a quoted
string. The string "\¢Tigera Corporation\r" has 19 characters even though
the abbreviations are translated to a single screen symbol when the string is
rccalled in a text document. This is an important consideration if you are
using string functions. (Examples of string functions using string counts arc
given in Chapter 11.) Other considerations in string character counts
include the use of octal numbers and WORD ERA document control codes.
(Appendix C describes the use of octal numbers and control codes.)

Mathematical calculations cannot be performed on an alphabetic string or
on alphanumeric combinations. For ¢xample, the string "12th" is considercd
as an alpha string, not a numeric string.

LOGICAL VALUES

You can assign logical values to variables using the functions true or false.
Entry f below illustrates onc way to use logical values.

Entry f is a glossary program that types a memorandum form. It uses false as

an argument to the display function to turn the editing screen display off

while the form is being typed. The true function turns the display back on at the
conclusion of the entry. Turning the display off during glossary exccution causes
the program to run faster.

entry f
{
call display(false) /*turn display off*/
"\cMEMORANDUM" /*center heading*/
return(2)
"DATE: " call feed(date) /*type system date and time*/
return(2)
"TO: John Brown" /*types who memo to line*/
64 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

return(2)

"FROM: Helen Smith" /*types who memo from line*/
return(2)

"SUBJECT: MEETING ON WEDNESDAY" /*types memo subject line*/
return(2)

call display(true) /*turn display on*/

Functions used in entry f are display, call, feed, and date. The

display function always refers to the current display on the document edit screen.
Note that the date function is placed in parentheses as an argument to the feed
function. The value returned by one function can become the value of another.
The call function is a statement that transfers execution control to another
function. A function is only preceded by call when it is used as a statement.

The true and false functions can be assigned to variables as shown below.
today = true yesterday = false

A true value returns the number 1, and a false value returns 0. Entry g below is an
example that uses true and false functions with a conditional if statement.
The entry is an interactive test that asks a question requiring a true or false answer.

entry g
{

answer = 0

"GLOSSARY TEST" return(2)

"Enter 1 if your answer is true. Enter 0 if your answer is false.”
return(2)

[questionl}

"QUESTION 1: A function can return a value." return(2)
"ANSWER: "

call prompt("Enter 1 or 0: ")

answer = keys

call feed(answer)

return(2)

call clrpos(1,50,31)

Glossary Functions WORD ERA 65

ELEMENTS OF GLOSSARY PROGRAMMING

if(answer == true)

{
"Correct. Most functions do return values, please refer to Chapter 5
for a description of the value type returned by each function.”

return(2)
exit
}
if(answer == false)
{

"Incorrect. Most functions return values, please refer to Chapter 5
for a description of the value type returned by each function.”
return(2)

exit

if((answer != true) | (answer != false))

{
"The number entered is not 1 or 0, please re-enter your answer."
return(2)
jump questionl

)

The student enters 1 if the answer is true or O if the answer is false. The 1 or 0 is
assigned to the variable answer. The value of answer is checked three times

by if statements. If the answer is 1 (true) the "Correct” message is printed. If the
answer is 0 (false) the "Incorrect” message is printed. If the student accidentally
enters a number other than 1 or 0, a message is printed and the student is given
another opportunity to answer the question.

Entry g uses the if, prompt, and clrpos functions, the cquality operators ==

and '=, and the logical operator | (logical or). The prompt function displays a
message in the prompt area of the screen. The message is whatever you type as a
quoted string in the argument to prompt. The clrpos function clears a

designated area of the screen. The screen arca is defined by the expressions in the
argument to clrpos. Expression 1 is the line number, expression 2 is the starting
position, and cxpression 3 is the number of characters to be replaced with blanks.

The if function is covered in Chapter 7. Equality and logical operators are
covered later in this chapter.

66 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

Functions That Return True or False Values: Many functions return a numeric
value of true (1), or false (0). The beg doc function, for example, returns a

value of true if the cursor is on the first character in the document and a value of
false if it is not. You can use these values by assigning beg doc to a variable, as
in the following example.

entry h
{
whereindoc = beg__doc
if(whereindoc == 1)
{
goto "e"
}

}

When a function requires a logical interpretation of an argument, any nonzero value
(equal to or greater than 1) returns a true value. A zero value in a logical
interpretation is always false.

OPERATORS

Operators are programming symbols that assign values, perform math, determine the
relationship of one valuec to another, assess equality, and designate logical
operations.

Binary and Unary Operators

There are two basic types of operators: binary and unary. Binary operators require
two operands, one to the left of the operator and one to the right of the operator, as
show in Figure 9. Operand means "that which is operated on,” and can be a
variable, a function, or an expression.

Figure 9 The Syntax for Binary Operators

operand = operand

T

Right operand

Operator

Left operand

ATS4T

Glossary Functions WORD ERA 67

ELEMENTS OF GLOSSARY PROGRAMMING

Unary operators require only one operand. There are two unary operators, the
logical not (!) and the unary minus (-). Unary operators arc placed to the left of the
operand as shown in the following examples.

The logical not (!) performs logical negative operations as shown in the entry
fragment below.

if(!bot_page) {...)

If the cursor is not (!) at the bottom of the page, the statements represented by

{...} are performed. Normally, the function bot-page returns a value of true if

the cursor is on the page break line, and false if it is not. These values are reversed
by the inclusion of the not operator ('bot page), a truc valuc is returned only if
the cursor is not at the bottom of the page.

The unary minus is an operator that takes the negative value of a number, as in
-z in entry i.

entry i
{
y = 200
z =150
X=y*-z /*x is assigned a value of -10000*/

call feed(x)
}

The cxpression y * -z results in the negative value -10000, since the unary
minus before the z converts the initialized value of z (50) to negative 50 (-50).

Assignment Operator

The section on variables in this chapter discussed the assignment operator =. This

operator is used to assign a value to a variable, a value to a function, the output of
a function to a variable, or the result of a mathematical operation to a variable or
function.

In addition to the standard assignment operator =, there are mathematical
assignment operators you can usc. These math operators are discussed in this
chapter under the section Mathematical Assignment Operators.

68 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

Mathematical Operators

You have a set of mathematical operators to perform addition, subtraction,
multiplication, and division in your programs. These operators are shown below.

OPERATOR FUNCTION

+ plus Addition

- minus Subtraction

* multiply Multiplication

/ divide Division

% modulo Yields remainder of division

Mathematical operations can be performed on numbers and numeric variables.
Numeric variables can store the results of a calculation, as shown in the examples
below.

entry j

{
balance = $25.20 + $100.00
call feed(balance)

}

In entry j, the numbers $25.20 and $100.00 are totaled and the result, $125.2, is
placed in the variable balance. You can do subtraction, multiplication, and
division in the same way, as shown in entry k.

entry k
{
top =190 - 3.2
bottom =54 * 2
percent = (top - bottom) / 100
call feed(percent)
)

A numeric variable can be used anywherec a number can. Consequently, top and
bottom can be used in a mathematical expression such as the one shown in
entry k.

Parentheses are used to ensure that the value of bottom is subtracted from top
before division occurs. The order of calculation precedence observed by the
mathematical operators is covered in this chapter under the section Precedence.

Glossary Functions WORD ERA 69

ELEMENTS OF GLOSSARY PROGRAMMING

When you write glossary programs to perform arithmetic you can gencrally follow
standard mathematical principles for parcntheses. The sections Functions,
Arguments and Expressions and Parentheses in this chapter provide more
information on parenthetical syntax.

Notice that numeric values can appear on cither side of a mathematical operator.

The Modulo Operator

The remainder of a division operation can be determined with the modulo %
rcmainder operator, as shown below,

leftover = 10 % 3

The variable leftover contains the value 1, since 10 divided by 3 leaves 1 (the
remainder).

Using Mathematical Operators with Variables

Entry | is used to number figure illustrations in a document. First, it scarches the
text document for the string "Figure ". When it finds the first "Figurc " it inserts
the number 1 after the space following "Figure ". It continues to scarch the
document, and cach time it finds "Figure " it adds | to the variable figure no
and inserts the incremented value. If the search fails the statement if(globerr)
{execute exit} causes the program to terminatc. (The globerr function is

described in Chapter 8.)

entry |
{
figure no =0
[loop]
search "Figure " execute
if(globerr)
{execute exit}
cancel
right(7)
figure no = figure no + 1
insert
call feed(figure no)
execute
jump loop

70 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

In entry |, the value of the variable figure no was increased by 1 at each repeat
of the search loop. The syntax for that addition was

figure_no = figure no + 1

where the current value of the variable is increased by 1, and the resulting value is
assigned to itself.

The math operation is performed on the right side of the assignment operator using
the current value of figure no. If figure no has a value of 10, the addition
of figure no + 1 produces the sum 11. This sum is now assigned to the variable

on the left side of the assignment operator, so figure _no now has a current valuc
of 11.

The assignment operator allows a variable to perform a mathematical calculation on
itself and reinitialize itself with the result. This is why you can’t simply say
figure no + 1. You must use the assignment operator =, as in figure no =

figure _no + 1. (You can usc mathematical assignment operators to shortcut the
syntax. These operators are described in the next section, Mathematical Assignment
Operators.)

The two uses of the assignment statements to the variable count in entry m
produce two different results. In the first assignment count is declared and
initialized to 0. In the second assignment, 1 is added to the value of count, and
the result is assigned to count.

entry m
{
count = 1 /*count has a value of 1*/
[loop]
count = count + 1 /*count has a value of 2*/
call feed(count) return
jump loop /*count will be increased by 1
for each loop repeat*/
)

Entry m is an endless loop. If you try it, the entry will continue to write numbers
in your document until you press the Cancel key to terminate the glossary entry.
Chapter 7 shows you how to break endless loops with conditional statements.

Glossary Functions WORD ERA 71

ELEMENTS OF GLOSSARY PROGRAMMING

Other mathematical operations can be performed the same way as shown in the
following entry examples. Remember, the numeric variable must be declared and
initialized to O or an initial valuc in the program prior to the math calculation.

entry n
{
linenumber = 8
linenumber = linenumber - 4 /*linenumber now has a value
of 4%/
call feed(linenumber)
}
entry o
{
cost = 35
markup = 10
cost = cost * markup /*cost now has a value of 350*/
call feed(cost)
}
entry p
{
average = 472
average = average / 16 /*average now has a value of
29.5*/

call feed(average)

Mathematical Assignment Operators

Mathematical assignment operators provide a shortcut for calculation assignments by
performing the calculation and the assignment in one statement. The mathematical
assignment operators are shown in the following list.

OPERATOR ASSIGNMENT FUNCTION

+= plus Addition

-= minus Subtraction

o multiply Multiplication

/= divide Division

%= modulo Yields remainder of division

72 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

In the previous examples, a calculation was performed on a variable and the
result assigned to the variable by using the syntax below

figure_no = figure_no + 1

Using the mathematical assignment operator +=, the same addition to
figure_no is achieved with fewer keystrokes, as show in the following
example.

figure no +=1

The += operator adds the value on the right to the value of the variable on the
left, then stores the result in the variable. Examples using all the mathematical
assignment operators are shown below.

enfry r

{
silo.storage = 1375000
current.crop = 478245
silo.storage += current.crop
potato.surplus = silo.storage
call feed(potato.surplus)

)

entry s
{
cost = 24
if(cost == 24)
{ cost -= 14
call feed(cost)

{
else
"The value of cost is not 24"
)
)
entry t
{
headcount = 12740
ticket.cost = $15

headcount *= ticket.cost
gate.receipts = headcount
call feed(gate.receipts)

Glossary Functions WORD ERA 73

ELEMENTS OF GLOSSARY PROGRAMMING

entry u
{
performers = 5
gate.receipts = 191100
gate.receipts /= performers
divideup = gate.receipts
call feed(divideup)

entry v

volunteers = 17
gate.receipts = 191100
gate.receipts %= volunteers
charity = gate.receipts

call feed(charity)

Remember, when using mathematical operators, the number source for the
calculation is on the right, and the storage destination for the result is on the
left. The current value on the left is changed by the operation; the value on the
right remains the same.

Use the standard assignment operator when the result of a calculation on a
variable is assigned to another variable. Entry w is an example of this type of
calculation. The variablc avgsales is multiplied by 12, and the standard
assignment operator is used to assign the result to forcast.

entry w

{
avgsales = 121,334
forcast = avgsales * 12
call feed(forcast)

}

When you try this example, note that the comma in the value assigned to
avgsales has no effcct on the calculation of avgsales * 12, The value in

forcast does not contain commas. The pic function is used to place commas,
periods, and dollar signs in function and variable number values, which are then
typed in a document. Entry x uses the pic function to format the value in
forcast with a dollar sign and a comma.

74 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

entry x

{
avgsales = 121,334
forcast = avgsales * 12
call feed(pic(forcast,"$,"))

The syntax for the pic function is
pic(expressionl,"expression2”).
The number in expression | is formatted with the symbols in expression 2. The
symbols must be in quotes. Expression 1 and expression 2 are separated by a
comma. Expression 2 can contain one or more of the following symbols:
dollar sign "$", plus sign "+", minus sign "-", comma ",", period "."

9

Refer to Chapter 10 for a complete description of the pic function.

Relational Operators

The relational operators are shown in the following list.

OPERATOR FUNCTION

> greater than

< less than

>= greater than or equal to
<= less than or equal to

Relational operators relate one value to another, asking such questions as

Is cost greater than saleprice?

Is temp less than 35?

Is total greater than or equal to 12444?
Is char less than or equal to "a"

You write these questions in your program by using relational operators in the
syntax shown in Table 2.

Glossary Functions WORD ERA 75

ELEMENTS OF GLOSSARY PROGRAMMING

TABLE 2 Syntax and Examples for

Relational Operators

SYNTAX EXAMPLE

VARIABLES AND FUNCTIONS:

variable operator variable if(cost > saleprice) {...}

variable operator function while(docpage < page no) {...}
function operator variable do {...} while(line >==line.no)
function operator function if(number=< (min(el,e2,e3,...)) {...}
SYNTAX EXAMPLE

STRING EXPRESSIONS:

string operator variable if("A" > letter) {...}

string operator function while(22 < number) {...}
variable operator string if(zipcode >== 94401) {...}
function operator string do (...) while(char <== "m")

As illustrated in Table 2, numbers and letters may be substituted for the
functions and variables on the right side of the operator. Entries y, z, B, and D
give examples using numbers on either side of the relational operator. The

section following the entries tells you about relational operators and alphabetic
strings.

entry y

{
cost = 3366

if(cost < 3368) {cost += 50}
call feed(cost) return

76 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

entry z
{
x =1
if(x < 2) {jump z)
[z] "This is a z jump"

}

Note that entry z jumps to an identifier in brackets [z] and executes the
statements following the identifier. (You can insert a statement like entry z in
your glossary entry to verify that the entry is performing as you think it should
be performing at a particular place in its execution.)

You will learn more about using identifiers and the jump statement in
Chapter 8.

entry B
{
if(page no >=2)
{
insert
"\cFigure " return(10) page
execute

}

entry D

{
if(line <= 12)
{
insert

return(S)

execute
}

}

None of the function statements enclosed in braces will be executed by the
glossary program unless the condition specified by the relational operator is true.
Entry B and entry D use the document recading functions page no and line.

The page no function reads the text document during program execution and
returns the current page number where the cursor is located. The line function
returns the current cursor line number.

Glossary Functions WORD ERA 77

ELEMENTS OF GLOSSARY PROGRAMMING

Using Relational Operators with Alpha Strings

You can use all of the relational operators with alphabetical strings. Just as the
computer interprets true and false values as 1 and 0, it interprets alphabetic,
numeric, and symbol characters as numbers. Each character has a number
equivalent that can be represented as either an octal or a hexadecimal number.
Appendix C contains a table of characters with octal number equivalents.

Since characters can be represented numerically, they can be ranked and collated
numerically. The majority of computers in the U.S. use the ASCII (American
Standard Code for Information Interchange) collating sequence for characters.
(The table in Appendix C is arranged in the ASCII collating sequence.) This
means you can write a glossary program that can select only those strings whose
beginning characters collate higher or lower than a specified character. An
example is shown in entry E.

Entry E is deliberately uncommented. To try the entry perform the following
steps.

1. Type entry E in your glossary document and verify it. (Or use entry E in
the glossary document gloss2a on the Glossary Diskette.)

entry E
{
{loop]
if(end_doc)
{exit)}
command note
if(char >= "a"

insert tab(2) execute

down
goto left
jump loop
}
else
{

insert tab execute
goto left

78 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

copy
return execute
goto "
goto down
execute
goto note
down
goto left
jump loop

2. Create a text document and type the following list on page | of the
document. Begin each word at the left margin and type a RETURN at the
end of every word. Be sure you capitalize the words exactly as shown on
the list.

Bicycle
gears
tires
handlebars
Pencil
eraser
lead
Computer
cpu
console
keyboard

Edit the document and place the cursor on the first character in the first word in
the list. Be sure your glossary document is attached, then press the GL key and
type your entry label.

Entry E formats a list into hierarchical order by placing a tab before each word
that begins with an uppercase letter and copies the word to page W (the
workpage). It places two tabs before each word that begins with a lowercase
letter.

Look at the ASCII table in Appendix C, notice that uppercase letters have a lower
number equivalent than lowercase letters. This is why the statement
if(char >= "a") places a tab before lowercase letters.

Glossary Functions WORD ERA 79

ELEMENTS OF GLOSSARY PROGRAMMING

The functions in entry E are the char, exit, and end doc functions. The

char function returns the character at the cursor location in the document.

The exit statement causes the entry to immediately terminate. Any statements
following the exit statement will not be executed. The end_doc function

returns a value of true if the cursor is at the end of the document, and false if it
is not. When the value is true, the statements (in braces) to the conditional if

are executed.

Entry E illustrates an interesting combination of keywords and functions in a
glossary program. It takes advantage of page W as a place to storc items during
program execution. It also uses command note and goto note to mark its place in
the document and return to that place. These are valuable features to remember
when you are planning a program.

When you are writing a program like entry E, it is important that you carefully
consider the cursor position in the document at each step of the program
execution. If you encounter any bugs during execution, print a hard copy of the
entry.

Walk through the program by reading the entry and manually performing the
action from the keyboard. You can quickly spot places where the cursor isn’t
where you thought it was supposed to be. Walking through a program in this
fashion is always a helpful procedure when you are troubleshooting your entry.

Relational Operators and Alpha/Numeric Comparisons

When you use relational operators to compare two numbers they are compared
according to their numeric value. When you compare a numeric value and an
alphabetic value, they are compared according to their ASCII collating order.

For example, entry F compares two numeric values (provided keys entry is
numbers only). The variable buy.price is assigned a value as a result of a
numeric comparison.

Entry G, however, compares a numeric and an alphabetic value. The result is that
this.month compares less than month, even though month 10 (October) comes
after June.

80 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

The point here is to be sure you really want to compare an alphabetic value to a
numeric value. In entry F, the value of month should have been 6 (June) to
provide an accurate value comparison.

entry F
{
stock = 10.25
today.market = keys
if(today.market < stock)
{
buy.price = today.market
call feed(buy.price)
)
sell.price = today.market
call feed(sell.price)

entry G
{

month = "June"
this.month = 10
if(this.month > month)
call feed(this.month)

else

call feed(month)

The ASCII collating sequence in Appendix C shows you the hierarchical ranking
srder of numbers, letters, and symbols.

Equality Operators

Equality operators determine if the value on the right is equal or not equal to the
value on the left; == means "equal to" and != mcans "not equal to." Some examples
are given below.

Glossary Functions WORD ERA 81

ELEMENTS OF GLOSSARY PROGRAMMING

entry H
{
grandtotal = 7836
if(grandtotal == 7836)

{
insert
"Grand Total"
execute
}
}
entry 1
{
day = 29

if(day != 1)
{
jump x

[x] "This is an x jump"

}
In entry H, grandtotal must have a value of 7836 before "Grand Total" can be

typed in the document. In entry I, the jump [x] statement will be executed if
day has a value other than 1.

Logical Operators

Logical operators perform logical operations on values. The logical operators are
& (logical and), | (logical or), and ! (logical not).

At their most basic level in program execution, logical operators depend on

whether a value is true or false. True is evaluated numerically as the number 1,
and false is evaluated numerically as the number 0 (zero).

The Logical and (&) Operator

There is only one possible true condition for the & operator. Expressions on
either side of the & operator must satisfy the true condition.

Entry J uses the logical & operator in a conditional if statement.

82 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

entry J

{

ingredients = 0

call prompt("Enter amount of apples: ")
apples = keys

call clrpos(1,50,31)
"Number of apples:

call feed(apples) return

call prompt("Enter amount of bananas: ")
bananas = keys

call clrpos(1,50,31)
"Number of bananas:

call feed(bananas) return
if((apples == 6) & (bananas == 2))

{ ingredients = apples + bananas

else

"Not the right amount of fruit for this receipt, you need 6 apples
and 2 bananas"
return(2)

}

fruitsalad = ingredients
"Total apples and bananas in the fruitsalad: " call feed(fruitsalad)
return(2)

If you typed and recalled entry J, you noticed that you had to enter 6 apples and
2 bananas. Because the logical & linked the two variables together, you could not
enter 8 apples and 2 bananas.

The conditional if has one full expression that includes the logical & operator:

if((apples == 6) &(bananas == 2))

and two subexpressions:

(apples == 6)
(bananas == 2)

Glossary Functions WORD ERA 83

ELEMENTS OF GLOSSARY PROGRAMMING

The subexpression (apples == 6) is only true if its value is 6. The
subexpression (bananas == 2) is only true if its value is 2.

The full expression ((apples == 6) & (bananas == 2)) is only true if both
subexpressions are true. You could state this logically as: if apples == 6 and
bananas == 2, therefore the expression is true, so execute the following statements
(add apples to bananas and store the result in ingredients).

The statement {ingredients = apples + bananas) is only executed if both
subexpressions are true.

Note that the full expression in entry J is contained in one set of parentheses.
The two subexpressions are separated by the & operator and each have their own
set of parentheses. The section Functions, Arguments, and Expressions later in
this chapter tells you more about using parentheses.

The Logical or (]) Operator

There are three possible true conditions and one false condition for the | operator.
Using the same example that was used for the & operator, you could construct
entry K, substituting the | opcrator for the & operator.

entry K
{ -

ingredients = 0

call prompt("Enter amount of apples: ")
apples = keys

call clrpos(1,50,31)
"Number of apples:

call feed(apples) return

call prompt("Enter amount of bananas: ")

bananas = keys

call clrpos(1,50,31) -
"Number of bananas: " call feed(bananas) return

84 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

if((apples == 6) | (bananas == 2))
{

ingredients = apples + bananas
else

"Not the right amount of fruit for this receipt, you need 6 apples
and 2 bananas"
return(2)

fruitsalad = ingredients
"Total apples and bananas in the fruitsalad: " call feed(fruitsalad)
return(2)

Since (apples == 6) is truc if apples equals 6, and (bananas == 2) is true
if bananas equals 2, any one of the following three conditions will prove true
and execute the statement {ingredients = apples + bananas).

This can be stated logically as:
when apples == 6 and bananas == 2, the full expression is true.
when apples == 6 and bananas does not == 2, the full expression is true.
when apples does not == 6 and bananas == 2, the full expression is true.

The only possible false condition where {ingredients = apples + bananas} would
not be executed is

when apples docs not == 6 and bananas does not == 2, the full
expression is false, ignore the statement in { L and skip to the next
statement.

The logical or is an either/or condition; onc or the other may be true, both may
be true, but neither may be false.

If you tried entry K, you noticed that you could enter any number for apples and
a 2 for bananas; any number for bananas and a 6 for apples; or a 6 for apples
and a 2 for bananas; and you received a total. However, if you entered 5 for
apples and 7 for bananas, for example, you received a zero. The | operator
provides more options than the & operator.

Glossary Functions WORD ERA 85

ELEMENTS OF GLOSSARY PROGRAMMING

The Logical not (!) Operator

You have already had an introduction to logical not (!) in the section on unary
operators and relational operators. Summarizing that introduction, logical not (!)
requires only one operand on the right side. It reverses the normal true condition
of the function, so that it returns a value of true only if the function is false.
Some examples are

if(lend doc) {...}

If the cursor is not at the end of the document, perform the statements
represented by (..}

if(top_page) {...)

If the cursor is not at the top of the page, perform the statements represented by

{...)

Entry J and K assume you always want bananas in your fruit salad. If you are
indifferent to bananas you can use entry L, where the combination of the keys
function, the logical | operator, and the equality operator != give you the option
of defaulting to bananas or sclecting your choice of fruit,

entry L

{
ingredients = 0
apples = "6 apples
bananas = "2 bananas

call posmsg(20,15,"Entering \qapples\q or \qbananas\q defaults amount")
call prompt("Enter amount and fruit: ")
fruit = keys
call clrpos(1,50,31)
call clrpos(20,15,46)

if((fruit == "apples") | (fruit == "bananas"))

{
ingredients = cat(apples,bananas)
fruitsalad = ingredients
"FRUITSALAD INGREDIENTS: "
call feed(fruitsalad) return(2)

}

else if ((fruit != "apples") | (fruit != "bananas"))

86 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

ingredients = cat(apples,fruit)
fruitsalad = ingredients
"FRUITSALAD INGREDIENTS: "
call feed(fruitsalad) return(2)

Functions that are new to you in this entry are posmsg and cat. The syntax
for posmsg is

posmsg(expressionl,expression2,expression3).
The syntax for cat is

cat(expressionl,expression2).
The posmsg function displays expression 3 at the line and position specified by
expression | and expression 2. Expression 3 may be a numeric or alphabetical
string, a variable, or a function that returns a value. The cat function
concatenates (brings together) expressionl and expression2, providing one
continuous string expression.

Tables of Operators

The tables on the next few pages provide a list of all the operators you can use in
your programs.

Glossary Functions WORD ERA 87

ELEMENTS OF GLOSSARY PROGRAMMING

TABLE 3

Relational Operators

Operator Definition Syntax Example Explanation
< Less than if(total < 2254) If total is less than
{"debit"} 2254, type "debit" in
document at cursor
location.
> Greater than if(total > 2254) If total is greater than
{"credit"}) 2254, type "credit" in
document at cursor
location.
<= Less than or if(cost <(10) If the value of cost is
equal to {cost += 2} less than or equal to
10, add 2 to cost.
Greater if(percent >=2) If the value of percent
>= than {jump loop} is greater than or equal
to 2, jump to [loop].
TABLE 4 Equality Operators
Operator Definition Syntax Example Explanation
Equal to if(char == "X") If character at cursor

1]
1]

{insert "XX" execute)

Not equal to if(char != "X")
{delete execute}

is equal to X, insert
XX in the document at
cursor location,

If character at cursor
is not equal to X,
delete it.

WORD ERA

Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

TABLE 5 Logical Operators

Operator Definition Syntax Example Explanation

& Logical and if((month == "Feb")& If the value of month

(day == 29)) {"leap is Feb, and the value
year"} of day is 29, type "leap
year" in the document
at cursor location.
Logical or if((name == "Joe") | If the value of name is
(name == "Jane")) Joe or Jane, type Joe or
{call feed (name)} Jane in the document
at the cursor location.
Logical not if(lend doc) If the cursor is not at
! {goto "e"} the end of the
document, go to the
end of the document.

TABLE 6 Mathematical Operators

Operator Definition Syntax Example Explanation

+ Plus inventory = 27 Add 27 and 114 and
(performs + 114 assign a value of 141to
addition) the variable inventory

(141 is the sum of 27
and 114).

- Minus stock = inventory Subtract the value in
(performs - sales sales from the value in
subtrac- inventory and assign
tion) the result to the

variable stock.

Glossary Functions

WORD ERA

89

ELEMENTS OF GLOSSARY PROGRAMMING

TABLE 6 Mathematical Operators (continued)

Operator Definition Syntax Example Explanation

* Multiply forcast = avgsales Multiply the value in
(performs *12 avgsales by 12 and
multipli- assign the result to the
cation) variable forcast.

/ Divide avgsales = sales83 / 12 Divide the value in
(performs sales83 by 12 and
division) assign the result to the

variable avgsales.

% Modulo sales.remainder = Take the remainder of

sales83 % 12 sales83 divided by 12
and assign it to
sales.remainder.

+= Addition personnel += 4 Add 4 to the value in
assignment personnel and assign
operator the result to personnel.

-= Subtrac- personnel -= 2 Subtract 2 from
tion personnel and assign
assignment the result to personnel.
operator

*= Multipli- expenses *= 12 Multiply expenses by
cation 12 and assign the result
assignment to expenses.
operator

/= Division expenses /= 12 Divide expenses by 12
assignment and assign the result in
operator expenses.

90 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

TABLE 6 Mathematical Operators (continued)

Operator Definition Syntax Example Explanation

Y%= Modulo expenses %= 6 Divide expenses by 6,
(divison take the remainder and
remainder assign it to expenses.
assignment
operator

- Unary minus loss = 12 *- sales Multiply the negative
takes value of sales by 12
negative and assign the result to
number of loss.
operand)

FUNCTIONS, ARGUMENTS, AND EXPRESSIONS
Functions

Glossary gives you a library of built-in functions you can call upon to perform
standard operations in your glossary programs. Chapter 10 provides you with an
alphabetical list of functions that describes the use of each function and its
syntax. Chapter 11 groups functions by usage and gives function application
examples for each use.

Functions can be used as statements or expressions. When you use a function as a
statement, you must call it from the function library by using the call
function, as shown below.

call prompt("Enter Date")
call feed(avgsales)
call feed(date)

Glossary Functions WORD ERA 91

ELEMENTS OF GLOSSARY PROGRAMMING

The call function is not required when a function is used as an expression. In
the last example shown above, the date function is used as an expression in the
argument to feed. Since the feed function is used as a statement, it must be
preceded by call.

Use of the call function is specified for each function that requires it in
Chapter 10.

Functions operate on data: Functions can gather and return data to you
during the execution of the glossary program. This data is the value in the
function. For example, when the date function is called in your program, it
sets its value to the system date.

today = date /*the value of date is set to
system date and time and
assigned to today*/

You can store the value of date in a variable (today = date) and use it
elsewhere in your program.

You can have the value returned to you by calling the feed function to type
the value of date in your document as shown in the example below.

call feed(date)

Functions perform operations: Two of these operations are performed by the
error and posmsg functions. The error function displays a message in the
error area of your screen. (The error area is at the bottom right of the screen.
System messages such as No glossary appear there.) The posmsg function
places a message on the screen at the location you specify.

For detailed information on functions refer to Chapters 10 and 11.

Arguments

Most functions require arguments. The expressions in parentheses following the
prompt and feed functions are the arguments to those functions.

92 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

call prompt("Enter Date")
call feed(avgsales)
call feed(date)

The argument to prompt is the alphabetic string expression "Enter Date." The
argument to the first feed function is the variable avgsales. The argument
to the second feed function is the date function.

The function date does not require a parenthetical argument. Its argument is
built-in because the only function it performs is to return the system date.
Chapter 10 tells you which functions require arguments and how to use them.

Expressions

Values inside the parenthetical argument are expressions. Some functions can
take several expressions, as in the previous examples for logical operators. In
those examples, the argument to the if function contains a full expression in
parentheses. The full expression has two subexpressions, each with its own set of
parentheses. The example for logical & is repeated below.

if((apples == 6) & (bananas == 2))
Since Glossary allows you to use an expression anywhere a value is allowed,

arguments can contain cither mathematical or string expressions. A mathcmatical
expression using the function max is shown below.

Note that multiple expressions in an argument must be separated by commas.
highest = max(110,a + b,227)

The function max evaluates its list of expressions and returns the highest

number for its value. If the value of a is 85 and the value of b is 72, what

value would max assign to highest? Try writing this example as an entry.
Remember to declare and initialize a and b as variables.

Glossary Functions WORD ERA 93

ELEMENTS OF GLOSSARY PROGRAMMING

Five different types of expressions are shown in the following example.

call prompt("Enter Date") Alphabetical string expression

call feed(avgsales) Variable used as an expression

call feed(date) Function used as an expression

call clrpos(22,48,12) Numeric string expressions

highest = max(110,a + b,227) Math cz}lculation as an
expression

Some functions require more than one expression in their arguments. The

posmsg function shown below requires three expressions. Multiple expressions

in an argument are separated by commas. Variables or functions can also be used
in most multiple expression arguments. The function descriptions in Chapter 10
show how many expressions are required for each function.

call posmsg(6,5,"Glossary in Progress")

Expressions with more than one part: In some functions, the argument takes

only one expression, but the expression is split into parts. The cursor function

is one example. Other functions requiring multiple part expressions are described
in Chapter 10.

call cursor("2,10,27")

When the cursor function is called in a glossary program, the cursor moves to
the page, line, and position numbers that are specified in the string expression in
its argument.

The three numbers separated by commas in the example for the cursor
function are not three separate expressions. They are parts of one expression that
is enclosed in quotes.

94 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

Variables cannot be substituted for parts of an expression because each
expression is considered as a separate argument to the function. One variable
may serve as the expression. It must contain all parts of the expression as a

quoted string. It is not quoted in the argument to cursor. An example is
shown below.

a="210,27"
call cursor(a)

Using Expressions with Cursor Movement Keywords: An added benefit the
glossary programming language gives you is the capability of using expressions
with keywords that take an argument. In Part 1 you learned how you can specify

up(12)

when you wanted to move the cursor up 12 lines. Or you could specify
tab(4)

when you wanted to type the tab symbol four times in your document.

You can also give an expression to the keyname, and it could be a variable. For
example:

moveup = 12
up(moveup)

x=6+4
tab(x)

It can even be a mathematical expression as in

up(3 * 3)
This book does not explore everything you can do with this feature. If you like
to experiment, using expressions with keywords could provide you with some

unique glossary programs. Keywords that take arguments are identified in
Appendix D.

Glossary Functions WORD ERA 95

ELEMENTS OF GLOSSARY PROGRAMMING

USING PARENTHESES

When more than one expression is part of an argument to a function, parentheses
may be required.

Parentheses and Mathematical Expressions

Using mathematical expressions requires care. Mathematical operators follow
rules of precedence when calculations are performed. Using parentheses correctly
with math expressions helps you avoid calculation errors.

A mathematical expression is the combination formed by an operator and its two
operands, as shown in Figure 10.

Figure 10 The Syntax of a Mathematical Expression

2 + 12

T

Operand 2
Plus operator

Operand]

PR

The result of a mathematical expression could be assigned to a variable without
parenthesizing the expression:

X=2+12 /*¥X has a value of 14*/

If you add another expression you also need to add parentheses to be sure the
calculations are performed in the correct order.

X=(2+12)* 14 /*X has a value of 196*/
In the example above, multiplication has a higher precedence order than addition

and is performed first. If the addition expression were not enclosed in
parentheses the result would be quite different, as shown in the example below.

06 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

X=2+12*14 /*X has a value of 170*/

Since the operation in parentheses has a higher precedence order than
multiplication, the parentheses ensure that addition is performed first.

Multiplication is performed second, and the result is assigned to the variable
X.

The fully parenthesized form would look like this:
X=(Q+12)*(14))

Fortunately, this level of parentheses is not necessary because the glossary
compiler knows what you mean by

X=Q2+12)* 14
The precedence for mathematical operators is listed below in order from the
highest to the lowest. Operators listed on the same line are equal in precedence.

If the full expression has subexpressions with operators that are equal in
precedence, calculations are performed from left to right.

TABLE 7 Precedence Order for Mathematical Operators

Operator Definition Order
O Parentheses First
- Unary minus Second
*/ % *= /= %= Multiplicative Third
+ - += -= Additive Fourth
= Assignment Fifth

Parentheses and Relational and Equality Expressions

The precedence order for relational and equality operators ranks lower than that
of mathematical operators. Relational and equality operators are of equal
precedence. In arguments such as the following you don’t need to parenthesize
the subexpressions.

Glossary Functions WORD ERA 97

ELEMENTS OF GLOSSARY PROGRAMMING

ifa+b<a+c){.)

if(medflies > fruittrees) {...}
Of course, if you add more complicated math to the first expression you will
need to add the appropriate parentheses around the subexpressions, as in the
example below.

if((a +b) * 4 < (a+0){.}

For lists and examples of relational and equality operators, see Tables 6-3 and 6-4
in this chapter.

Parentheses and Logical Expressions

Logical expressions have a lower precedence order than relational and equality
operators. However, you will need to use parentheses with most logical
expressions using the & and | operators because they usually contain several
subexpressions as shown in the examples below.

Sometimes the syntax of a function requires parentheses around logical
expressions. These cases are explained in Chapter 5.

if((a+b>a+c)&(d-g<(x-y)){.}
if((char == "2") | (char == "y")) {...}

The logical not ! is a unary operator and is always included within the
parenthetical expression. Some examples are given below.

if(lend doc) {...}
if(!top_page) {...)

You will learn more about parentheses by reading and trying the program
examples in the following chapters.

SUMMARY

When you begin to use the programming elements you learned in this chapter you
may initially receive more verification errors than you normally do, or your
programs may not execute the way you think they should. Some points to help
you troubleshoot your programs are:

98 WORD ERA Glossary Functions

ELEMENTS OF GLOSSARY PROGRAMMING

Be sure you have not used a reserved word to name a variable. Appendix A
provides a list of reserved words and symbols.

If any mathematical operations do not secem to be calculating correctly,
check your logic on a calculator. The compiler checks for syntax errors, it
does not check for logic errors.

Also be sure you have used parentheses properly.
Logical operators can be tricky to use. If you’re not familiar with the
principles of Boolean algebra you can get a book on the fundamentals from

the library or a textbook store.

Be sure you have provided the correct number and type of arguments to a
function.

Remember, the problem is usually something simple like a missing quotation
mark, a missing closing brace, or a misspelled keyword.

In Chapters 6 through 10 you will learn how to use conditional and control
statements to perform loops, call subroutines, and to change the execution order
of your programs.

Glossary Functions WORD ERA 99

ELEMENTS OF GLOSSARY PROGRAMMING

100 WORD ERA Glossary Functions

CHAPTER 7

CONDITIONAL STATEMENTS

Program statements are always exccuted in a straight line from the top to the
bottom of the glossary entry unless you change the execution order with a
conditional or control statement.

Conditional statements such as if, if else, while, and do while
change the execution order by evaluating conditions and making decisions. The
if and if else conditional statements are described in this chapter.

The while and do while conditional statements are shown in examples in
this chapter and described in detail in Chapter 9.

Control statements such as jump and call transfer execution control to a
different part of the entry or to another entry. The jump and call
statements are described in Chapter 8.

The globerr function allows you to exercise control by setting a trap for

keyword function error conditions. You can gracefully terminate an entry at any
point in its exccution by using the exit statement. The globerr and exit
statements are described in Chapter 8.

Correct placement of conditional and control statements within a program is
essential. Write a few programs of your own using these functions as you study
this chapter and Chapters 8 through 9. The glossary compiler gives you syntax
errors; it doesn’t check your logic. If an entry doesn’t work the first time, your
conditional tests or loop instructions are¢ probably in the wrong place. Shift them
around and try again. It may take an entry or two before the logic of
conditional and control statements is completely clear. The majority of entry
examples in this book use these functions.

Glossary Functions WORD ERA 101

CONDITIONAL STATEMENTS

CONDITIONAL STATEMENTS

The term conditional statement means the function, its arguments and
expressions, and the statement or statements that are executed as a result of the
conditional test.

Multiple statements to conditional functions are always enclosed in braces.
Although you are not required to enclose single statements in braces, it is helpful
to use braces because they distinguish conditional statements from other
statements in the program.

The four conditional functions and their syntax structures are shown in the
following list. The functions are: if, if else, while, and do while.

if
if(expression)

statement or statements

}
if else
if(expression)
statement or statements
)
else
{
statement or statements
)
while
while(expression)
statement or statements
}

102 WORD ERA Glossary Functions

CONDITIONAL STATEMENTS

do while
do
{
statement or statements
}
while(expression)

General Principles for Using Conditional Functions

Conditional functions are your program decision makers. Decisions are based on
the evaluation of three types of program runtime conditions:

Conditions in the text document during program execution

Conditions arising from interactive operator input during program
execution

Conditions in the program during execution

These conditions are described in the following text and shown in entries a, b,
and c.

The expressions in the argument to conditional functions specify the conditions
for evaluation. If the expressions evaluate as true, the statements following the
argument are executed. If false, they are skipped.

The following general usage principles apply to all conditional functions.

EVALUATING CONDITIONS IN THE TEXT DOCUMENT

When you are using a conditional statement to evaluate document conditions, you
are evaluating the cursor position in the document. Look at the Document
Reading Functions section in Chapter 1}. Each of these functions is asking a
question about the cursor location. Is the cursor at the beginning of the
document (beg doc)? What character is it on (char)? What line number is

it on (line)? What is the vertical spacing of the current format line

(spacing)? What is the exact page, line, and position location of the cursor in
the document (loc)?

Glossary Functions WORD ERA 103

CONDITIONAL STATEMENTS

All document reading functions return a value that can be assigned to a variable,
evaluated as a conditional expression, or used by a function.

Some functions return number values from the document status line. The line
function, for example, returns the line number of the current cursor location.
Your program works somewhat like you do; while you are editing a text
document, you can glance at the status line at the top of the screen and tell
which line number the cursor is on. The program also uses this information
during its execution in the document.

Other functions, such as beg _doc and left__margin, return a logical true or
false value. A true value is always returned as I, and a false value is always
returned as 0. If someone asks you if your cursor is at the beginning of the
document while you are editing, you will respond "yes" (true) if it is and "no"
(false) if it is not. The beg doc function makes this same evaluation while
the program is executing and responds with a true or false answer.

You can take another logical step with true/false functions by using the logical
not (!) operator. The statement

while(lend__doc)
{

}

counter +=1

increases the variable vounter by 1 as long as the cursor is not at the end of
the document. The logical not (!) operator changes end _doc so that it only
returns a value of true if it is not at the end of the document. Normally,
end doc returns a value of true if it is at the end of the document.

Entry a in this chapter uses two conditional if statements to evaluate document
conditions during program c¢xecution.

EVALUATING INTERACTIVE OPERATOR INPUT

The interactive functions key, keys, keyin, and keysin allow you to

enter data as the program is being executed. The entered data can be stored in a
variable then evaluated and acted upon by a conditional statement.

104 WORD ERA Glossary Functions

CONDITIONAL STATEMENTS

When you use key and keys, the data is assigned to a variable. If you want
the data to be typed in the document you can use the feed function with the
key or keys variable as shown in the following entry fragment.

name = keys
call feed(name)

The keyin and keysin functions type the data directly into the document.
If you want to store the data it must be read back from the document and
assigned to a variable.

Which interactive method you choose for your program depends on the result you
want to achieve. If you nced to evaluate the data with a conditional statement,
key and keys are the most direct functions to use.

Entry b in this chapter is an example that uses both methods of interactive data
entry.

EVALUATING CONDITIONS IN THE PROGRAM

Values in variables are usually the internal program conditions that are evaluated
during execution. As you have scen from several previous examples in this book,
variable values can change as a result of mathematical calculations, reassignment
of string expressions, or other factors. Your program can be written to
continually evaluate a variable by using a conditional statement.

For example, entry A below types the value of count in the document until
count reaches 80. The variable count is typed and incremented by the do

statement and is continuously evaluated by the conditional while until it
reaches 80.

entry A

{
count = 2
do

call feed(count) return
count += 2

while(count <= 80)

Glossary Functions WORD ERA 105

CONDITIONAL STATEMENTS

Entry c in this chapter is an example that evaluates the same variable for two
different program conditions.
CONDITIONAL STATEMENTS CAN CHANGE EXECUTION ORDER
Execution order of the program can be changed by the statements to a conditional
function. Entries a, b, and ¢ in this chapter illustrate this action.
EVALUATING WORD ERA SCREEN SYMBOLS
One of the document conditions you will want to evaluate is whether or not the
cursor is under a screen symbol, such as a Return, Tab, or Center symbol. Asking
these questions with a conditional statement involves using both WORD ERA
document format codes and octal numbers. Appendix C gives you syntax
requirements and examples for this type of evaluation.
The Conditional if Statement
The syntax for the conditional if statement is

if(expression)

statement or statements

}

The argument to if may contain various combinations of expressions and
operators, as shown in examples in this book.

Examples of the if statement are shown in entries a, b, and ¢ in this chapter.

USING AN IF STATEMENT TO EVALUATE DOCUMENT CONDITIONS

Entry a is an example of if statements that evaluate conditions in the text
document during program execution. This entry goes to the top of the next page
and inserts format line 2. If there is no next screen (the end of the document),
the program terminates. If the next screen is page 10, it inserts the string "This
page intentionally left blank."

106 WORD ERA Glossary Functions

CONDITIONAL STATEMENTS

This entry only executes once. If you want to use it to reformat several pages,
you will need to add a loop. The entry is rewritten to use a conditional while
loop in Chapter 9. Entries b and ¢, which follow this entry, both use the jump
statement to perform loops. Loops are covered in Chapter 8, under the section
Looping.

entry a
{
goto nextscrn
if(globerr)
{

cancel execute

)

insert copy format "2" execute execute
if(page no == 10)
{

goto south

insert page

return(6)

"\¢This page intentionally left blank\r"
execute

}

call error("Entry Concluded")

call prompt("Press Execute to Continue")
call keyin

call clrpos(1,50,29)

call clrpos(25,51,28)

}

Entry a is concluded gracefully by a series of prompts to the operator. The error
message notifies the operator that the entry has concluded, the prompt message
asks the operator to enter a keystroke to continue, the keyin function allows

the operator to enter one keystroke, and the clrpos statements clear the error

and prompt messages.

Glossary Functions WORD ERA 107

CONDITIONAL STATEMENTS

EVALUATING INTERACTIVE INPUT

Entry b is an example of an if test that evaluates conditions arising from
interactive operator input during program execution. This entry interactively
types an invoice in the text document.

Using the conditional if statement to perform a yes/no branch, the invoice is
typed again on a new page if the operator enters a y or Y in response to the
prompt "Invoice? Type y or n." A jump statement is used to repeat the loop
and type the invoice again. Jump statements are covered in Chapter 8.

If the operator enters an n or N, the program terminates.

entry b
{
[typeagain]
"\cAMALGAMATED WIDGETS, INC.A\r"
"\¢cINVOICE\r"
"NAME: "

call prompt("Enter Name")
call keysin

return

"ADDRESS: "

call prompt("Enter Address")
call keysin

call clrpos(1,50,29)

return(2)

"Thank you for your patronage. Your balance for widgets and goodies
purchased through June 30 is: " return(2)

tab(2)
"AMOUNT DUE: "
call prompt("Enter Balance")
call keysin
call clrpos(1,50,29)
return(2)
insert
page
execute
goto north

108 WORD ERA Glossary Functions

CONDITIONAL STATEMENTS

call prompt("Invoice? Type y or n: ")
answer = keys
call clrpos(1,50,29)

if((answer

{
}

= lly") I (answer == "YII))

jump typeagain

if((answer == "n") [(answer == "N"))
{

exit
)

)

Note the difference between the keysin function and the keys function in

entry b. The keysin function allows the operator to enter an unlimited number
of keystrokes. When all data is entered the operator must press EXECUTE to
restart the entry. The data entered in response to keysin is typed directly in

the document. The keys function also allows entry of unlimited keystrokes,
however, the data entered is stored in a variable, not typed in the document. The
value of the variable (data entered in response to keys) can then be compared

by a conditional function as illustrated in entry d, or it can be typed in the
document at any point by using the call feed(variable) statement.

Also note that entry b provides for lowercase or capital letter input by using the
logical or | operator in the argument to the conditional if. The yes/no branch is a
convenient programming device for many applications. Some of the more
common uses are

Educational tests requiring yes/no answers
Queries to repeat a loop
Decision to call a subroutine (subroutines are covered in Chapter 8)

EVALUATING CONDITIONS IN THE PROGRAM

Entry ¢ is an example of an if test that evaluates conditions in the program
during execution. This entry types the numbers 1 through 50, each on a separate
line. When the 50th line is typed, the cursor goes to the top of the page and the
entry concludes.

Glossary Functions WORD ERA 109

CONDITIONAL STATEMENTS

entry ¢

{

linenumber = 0

[typenumbers]
linenumber += 1
if(linenumber <= 9)

{
}

if(linenumber > 50)

{

IIOII

return goto north exit

call feed(linenumber)
return
jump typenumbers

}

Many legal documents require line numbers, entry ¢ can be modified for typing
line numbers before existing text lines by adding the insert execute keywords.
Try writing another program to perform this function. You can base it on entry
¢ and add the appropriate keywords. First, create a text document and type the
required 50 separate lines of text. Second, write the entry to insert a number
before each line. Third, recall the entry and make sure it works.

USING FLOW CHARTS TO PLAN PROGRAMS

Figure 11 shows a typical flow chart used to diagram a program using the
conditional if statement. Flow charts are a device you can use for

pre-thinking your programs. You don’t have to be formal with them, just sketch
your programming ideas on a piece of scratch paper. Use squares for the action
parts of the program and diamonds for the conditional decision-making sections.
Draw lines to indicate the flow of execution through the program. Using flow
charts to analyze your logic will make the actual program writing much easier
than if you approached it cold.

110 WORD ERA Glossary Functions

CONDITIONAL STATEMENTS

Figure 11 Flow Chart Using the Conditional if Statement

if (end_doc) Evaluate expression.

Is the
cursor at the

end of the Test expression.
document?
If false ftrue
() if true, execute
o statement.
goto "e” . If false, skip
statement and
areun continue execution.

The Conditional if else Statement

The else statement gives you an alternative statement to execute when the
expressions in the argument to if prove false.

As you have seen in the previous examples, if can be used by itself as a
conditional statement. The else, however, is dependent on if and can’t be
used alone.

Although there are two separate statement blocks in the if else structure (one
for if and one for else), it is considered as a single conditional statement.

The syntax for a conditional if else statement is

Glossary Functions WORD ERA 111

CONDITIONAL STATEMENTS

if(expression)

statement or statements

}

else

{
}

statement or statements

The argument to if may contain various combinations of expressions and
operators.

The execution of an if else statement follows this order:

True Condition: When the if(expression) proves true, the if
{statement)} is executed, and the else {statement} is skipped.

False Condition: When the if(expression) proves false, the if
{statement} is skipped, and the else {statement} is executed.

The statements to else are always enclosed in braces.
Examples using if else are shown in entries d and e.

Figure 12 shows a sample flow chart for the if else statement.

USING FLAGS IN A PROGRAM

Entry d is a program to consecutively number figures and tables throughout a
document. When the document was first typed, the operator used a glossary entry
to place a flag before each figure and table heading. A flag is a symbol you put
in a document for several programming purposes. The two most common purposes
are:

To provide a unique search string for the program. For example, the Table
of Contents Generator (which is a program) searches for the symbol
combination MERGE NOTE MERGE to extract headings. When you choose
a flag for this purpose be sure and use a symbol or symbol combination that
is not used elsewhere in the document. The merge symbol is a convenient
character to use for flags because it isn’t generally used in a text document.
Also, you want to choose a flag that doesn’t print.

112 WORD ERA Glossary Functions

CONDITIONAL STATEMENTS

Figure 12 Flow Chart Using the Conditional if else Statement

if (end_doc) Evaluate expression.

Is the
cursor at the
end of the
document?

Text expression.

If false Ittrue

Iftrue, execute
statement.

Iffalse, skip
if statement and
execute else statement.
In this case, the
eise statementis a

| branch to the
goto e’ ... identifier [counter].

else
{jump counter}

Remaining statement is not executed.

To provide a signal to terminate the program if the flag is encountered.
This type of flag is typically used in conjunction with a conditional
statement.

Though it is unlikely that a merge symbol will be encountered in the document,
entry d uses else to ignore a non-flag merge symbol. Entry d is a universal

type of program that could be used in many different documents. When you
write a program like this it is always a good idea to provide a trap for other uscs
of the flag character in the document.

NOTE: Merge symbols are used in Records Processing
List and Format documents, so choose another flag
symbol if you’re writing glossaries to perform operations
in these documents.

Glossary Functions WORD ERA 113

CONDITIONAL STATEMENTS

In entry d, the flag used for figures is <fx, and the flag used for tables
is <tx, which are unlikely combinations to encounter in a document.

entry d
{
figureno = 0
tableno = 0
[searchloop]
search "<" execute
if(globerr)
{
execute exit
}
cancel
right

if((char == "f") | (char == "t"))
{

jump typenumb

)
else
{
jump searchloop
}
[{typenumb]
if(char == "f")
{
figureno += 1
goto left delete "x" execute
insert
"FIGURE "
call feed(figureno)
execute
)
else
{
tableno +=1
goto left delete "x" execute
insert
"TABLE "
call feed(tableno)
execute
}
jump searchloop
}
114 WORD ERA

Glossary Functions

CONDITIONAL STATEMENTS

Entry d searches for the left-facing merge symbol <. The globerr function

is used to trap a search failure and terminate the entry. When it finds a <, it
moves one character to the right. If the character is an "f" or a "t" the program
jumps to the identifier [typenumb], otherwise it repeats the search by jumping to
[searchloop].

At [typenumb], the character is checked again. If it is an "f," the variable
figureno is incremented by 1, the flag is deleted, and the string "FIGURE "
and the value of figureno are typed in the document.

If the character is not an "f" it has to be a "t" because the first if used the |
operator to make sure the character was an "f" or a "t."

The else provides the statement to increment the tableno variable, delete the
flag, and type the string and value of tableno in the document.

The final jump statement goes to [searchloop] and starts the search for the next
< symbol.

CONSIDERING PROGRAM RUNTIME

The application performed by entry d could be a less complex program to write
by using two separate entries. One would search for <fx, increment the
figureno variable, delete the flag, and type the string and value in the
document. The other entry would perform the same operations for <tx.
However, this method would require two passes through the entire document.
The runtime would be double the runtime for entry d.

NESTING IF AND IF ELSE STATEMENTS

When you nest statements, you put one statement inside another, rather like
putting a series of smaller boxes inside bigger boxes. There are two ways to type
nested if else statements in a program. Both methods perform the same way
when the program is executed. Using method I or 2 is a style convention.
Whichever method you choose, be consistent throughout your program.

Note that the else statement to the first if is another if else statement.

Glossary Functions WORD ERA 115

CONDITIONAL STATEMENTS

Method 1: One statement follows another. The second if else statement is
indented to indicate that it is subordinate to the first statement.

Method 2: The following nested statement is called an else if structure. If it
seems to be a clearer way of nesting than method 1, use it.

Method 1:
if(expression)

statement or statements

)
else
if(expression)
statement or statements
}
else
{
statement or statements
)
Method 2:
if(expression)

statement or statements

else if(expression)

{

statement or statements
}
else
{

statement or statements
)

Nesting your if else statements helps you to write tighter programs with fewer
jump statements. You can nest as many if else statements as you need for
making multiple decisions.

Entry ¢ shows a more concise way to write entry d using nested if else
statements.

116 WORD ERA Glossary Functions

CONDITIONAL STATEMENTS

Entry d usecd two if else statements. One checked the character flag and
jumped to [typenumb] or [searchloop]. The second if else at [typenumb]
checked the character again and incremented figureno or tableno, depending
on the character.

Entry e nests its statements using the if else structurc. This method eliminates
the jump to the identifier [typenumb].

entry e
{
figureno = 0
tableno = 0
[searchloop]
search "<" execute
if(globerr)
execute exit
)
cancel
right

if(char == "f")

figureno += 1
goto left delete "x" execute

insert
"FIGURE "
call feed(figureno)
execute
else if(char == "t")
{
tableno +=1
goto left delete "x" execute
insert
"TABLE "
call feed(tableno)
execute
)
else
{

jump searchloop

)

jump searchloop

Glossary Functions WORD ERA 117

CONDITIONAL STATEMENTS

Figure 13 shows a sample flow chart for nested if else statements.

Figure 13 Flow Chart Using Nestled if and if else Statements

If false

If false

if (end_doc)

Is the
cursor at the
end of the
document?

Iftrue

cursor at the
beginning of
the document?

{ijump counter}

i

goto “e

Evaluate if expression.

Text expression.

If true, Execute
if statement.

If false, skip
if statement and
evaluate else if
expression.

Text expression.

iftrue, execute
else if statement.

If false, skip
else if statement
and continue
execution.

118

WORD ERA

Glossary Functions

CONDITIONAL STATEMENTS

SUMMARY

In this chapter you learned how to use the conditional if and if else
statements. In Chapter 9 you will learn how to use the conditional loop
statements while and do while.

Remember, when you are using a conditional statement to evaluate conditions in
the text document during program exccution you are evaluating the cursor
location. If your program is not working properly be sure you know where the
cursor is (or is supposed to be).

A good way to check your program’s action is to edit the glossary document, then
create a window for the text document. Attach and run the glossary entry in the
text document window. Using this method you can look at the entry and watch it
run at the same time.

Glossary Functions WORD ERA 119

CONDITIONAL STATEMENTS

120 WORD ERA Glossary Functions

CHAPTER 8

CONTROL STATEMENTS

As you learned in Chapter 7, conditional statements make decisions in your
programs. Based on those decisions, control statements can transfer execution
control to another part of your glossary entry or transfer control to another entry
in the same glossary document.
While frequently used with conditional statements, control statements are not
dependent on them. Execution control can be transferred at any point in a
program.
Glossary control statements are

call

glossary

jump

exit

globerr
The call and glossary functions transfer execution control to subroutines,
(glossary is a keyword, not a function; however, it is included nere because it
performs as a control statement.)

The jump function branches to an identifier within the same entry.

When the exit function is invoked, it terminates the currently executing entry.

Glossary Functions WORD ERA 121

CONTROL STATEMENTS

While not strictly a control function, the globerr function allows you to
exercise control by setting a trap for keyword function error conditions.

SUBROUTINES

Subroutines are glossary entries that can be called and used by other glossary
entries. They can be used two ways:

As dependent programs that can only be used for a specific calling
entry.

As independent programs that can be called from several different
entries in the same glossary document. (Entries w, x, and y, in this
section are examples of independent subroutines. Entries w, x, and y
are used as multiple-choice subroutines for entry f, but they could also
be called by other entries.)

Using the call Statement

The call function transfers execution control to a function or a subroutine.
The syntax for call is

call function(expression)
call entry label

You were introduced to call in many previous examples in this book. This
section tells you in more detail how to usc the call statement for subroutines.

HOW TO CALL A SUBROUTINE

The calling entry specifies the called entry by the entry label following the
call function:

call label
For example:

call a call x call B call F

122 WORD ERA Glossary Functions

CONTROL STATEMENTS

The call statement can only call entries that have alphabetical character labels
with the letters a-z or A-Z. To call entries with numeric or symbol labels, use the
glossary statement. For example:

glossary "1" glossary "@"
glossary "9" glossary "$§"

ORDER OF SUBROUTINE EXECUTION

When call is used to call another entry as a subroutine, the statements in the
subroutine are executed, then program execution continues at the statement
immediately after the subroutine call (unless directed elsewhere by the
subroutine).

Figure 14 illustrates the flow of statement execution between the calling entry
and the subroutine.

Figure 14 Calling a Glossary Subroutine Using the call Function
enfry a entryb
—

{ —
(...) e These (o02) e— All of these
{...) statements (...) statements
E ces ; are executed E .- ; are executed
(...) Controlis ()
(oos) transferred {(...)
(...} to entry b (.o4)

call b ' (o00) .
(.00) -] b
(o0} Control returns —_— -
(...) to entry a.
E oo ; +—The remaining statements are executed

} | The entry concludes

Glossary Functions WORD ERA 123

CONTROL STATEMENTS

Examples of the call Statement

Entry f uses nested if else statements to choose between four alternate
subroutines.

Entry f is a form letter responding to a customer’s request for information. It
pauses processing after the second paragraph and prompts the operator for a
choice of dealer addresses.

The typed character is assigned by the keys statement to the variable dealer.
Nested if else statements determine which character was assigned to dealer
and also call the correct subroutine.

NOTE: Chapter 11 shows you how to use the substr function to alter the
value returned by date so it reads June 3, 1984.

entry f
{
insert
format space(7) tab space(23) tab space(35) return execute
execute
tab(2) call feed(date)
return(4)

"Dear Customer:" return(2)

tab "We are pleased you are considering us for your major supplier of
widgets. Our widgets are the finest in the world. They are available in 24
vibrant colors and make a variety of sounds at random moments."

return(2)

tab "The Amalgamated Widget dealer in your area is:"
return(2)
indent

call prompt("Choose: w,x,y,2")
dealer = keys
call clrpos(1,50,30)

124 WORD ERA Glossary Functions

CONTROL STATEMENTS

if(dealer == "w")

{ call w}
else if(dealer == "x")
{ call x}
else if(dealer == "y")
{call y}
else
{ call z)
return(2)

tab "Again, thank you for your interest. There is no better tool than a
colorful, pleasant sounding Amalgamated widget."
return(2)

tab(2) "Sincerely yours" return

tab(2) "AMALGAMATED WIDGETS, INC." return(4)
tab(2) "J. Redd Widget, Jr." return

tab(2) "Vice-President, Sales" return

Entries w, X, y, and z are used as subroutines for entry f. Because they do not
contain dependencies on entry f, they may also be called by other entries in the
same glossary document.

entry w

{
"GENERAL WIDGETS, Box 123, Chicago, Illinois"

)
entry x
{
"HAND-HELD WIDGETS, Pluto Street, Anaheim, California"
}
entry y
{
"ALL PURPOSE WIDGETS, Steep Hill Blvd., San Francisco, California"
)

Glossary Functions WORD ERA 125

CONTROL STATEMENTS

entry z

{
"There is no ALMAGAMATED WIDGET dealer in your area, please contact
our headquarters sales department at the address on this letterhead."

Using the glossary Statement

Using the keyword glossary in a program produces the same effect as pressing
the GL key from the keyboard. If a glossary document is attached, the prompt
"Which entry?" appears. You can respond to the prompt by providing the entry
label in the program or by using the keyin or keysin function to type the

label interactively.

You can use the keyword glossary to temporarily transfer control from one
glossary entry to another glossary entry with any one of the following statements.

glossary "label"
or
glossary call keyin

or
glossary call keysin

Both glossary entries must be in the same glossary document.

When you use the glossary statement you must always enclose the entry label in
quotes.

In most instances, using keysin is preferable to using keyin. The keyin

function permits the input of only one keystroke from the operator. If a mistake
is made, no correction is possible. The keysin function permits backspacing to
correct an incorrectly typed character.

Entry g provides an example using an interactive glossary statement to call a
subroutine. Figure 15 illustrates the glossary call keyin statement.

126 WORD ERA Glossary Functions

CONTROL STATEMENTS

Figure 15 Interactively Calling a Glossary Entry as a Subroutine Using the
glossary Statement

the remaining

entry c entry d
{ ——» {
(o.) <« These (...) «<— All of these
C...) statements (.0 statements
E s ; are executed E . ; are executed
(...) Control is ()
(o) transferred (ved)
(on) ioenfryd (...)
glossary (I
call keyin ¥| (...)
(...) = }
(.. Control returns | I
(.
(..
(.

)

.)

L) to entry c;
)
)

statements are
} executed

*Control is transfered to entry d when operator types d.

Entry g uses the statement glossary call keysin to interactively select a glossary
subroutine. Entries o and p are examples you can use as subroutines if you want
to try this entry. The sales figures could be an entry containing a lengthy sales
report that is also used as a subroutine by other report-type entries. Note that
entry g calls entry y (shown as a subroutine for entry {) to type the "TO:" line of
the memorandum.

entry g
{
"\¢cMEMORANDUM" return (2)
"TO: " call y return(2)
"FROM: J. Redd Widget, Jr., Vice-President, Sales" return(2)
"SUBJECT: SALES QUOTA" return(2)
"Congratulations on achieving 100 percent over sales quota last month. You
will be crowned WIDGET KING OF THE MONTH at this month’s
Almalgamated Widget Bash."
return(2)
"Last month’s sales figures for all regions were:"
return(2)

Glossary Functions WORD ERA 127

CONTROL STATEMENTS

glossary call keysin

return(2)
"Your sales quota projection for this month is being sent by separate memo."
return(2)
}
entry O
"$1,500,000.00"
)
entry P
"$250.00"
)

Nesting Subroutine Calls

Subroutine calls can be nested so that entry a calls entry b, which calls entry c,
which calls entry d.

When a subroutine has executed all its statements, it always returns control to the
entry that called it. When a subroutine returns to its calling entry, execution
resumes at the statement immediately after the call statement.

Entry h gives you a simple example of nested subroutines. Try it and you’ll get
an idea of what the flow is like through the subroutine structure.

Figure 16 illustrates four nested subroutines.
entry h
{
"Help! I'm in a maze! Where do I go next?" return

call i

"Oh! Safe at last!" return(2)

128 WORD ERA Glossary Functions

CONTROL STATEMENTS

entry i

{
"Not this way. Maybe there’s a door here..." return
call j
"Great, its a light at the end of the tunnel!" return

}
entry j
"No door, I'm in a tunnel. Which way now?" return
"I think the tunnel is winding up. What’s that I see?" return
)
Figure 16 Nested Subroutine Calis Using the call Function
END NESTED CALLS eniry e START NESTED CALLS
{ .
(...) |e——— Program begins:
Statement after call f Statement is executed
call fis executed > (...)
Program ends }
Entry e transfers
entry f control to entry §
Entry freturns
to entry e {
(vvd) [Statements are executed
(oo2)
call g
Entry g returns > }
to entry f Entry f concludes and
transfers control to
entry g entry g
{
(..0) Statement is executed
Statement after call h
call his executed -] (...)
L—|—
Entry g transfers
controlto entry h
entry h
{
(oo0) = Statements are executed
(v0s)
Entry h returns (.o0) |
toentryg } A Entry h concludes

Glossary Functions WORD ERA 129

CONTROL STATEMENTS

BRANCHING

Program execution control can be unconditionally transferred to a different part
of an entry or to another entry in the same glossary document. This procedure is
called branching because you branch off the main (or trunk) statement execution
line.

Unlike subroutines, branches do not return to their point of departure; execution
continues from the branch.
The jump Statement

The jump function performs a branch to a labeled statement within the same
entry.

Jumping always unconditionally transfers execution control to a labeled
statement. The jump statement is usually invoked by a conditional statement
as in the following examples:

if(lend doc)
{

)

jump typemore

if(bot__page)
)

exit
else
{
}

jump goagain

The jump statement can also be used to perform loops. More information
about looping can be found in the next section, Looping.

130 WORD ERA Glossary Functions

CONTROL STATEMENTS

jump identifier
[identifier]
statement or statements

Branching within the Same Entry Using the jump Statement

The syntax for the jump statement is

The jump statement must always have an identifier to jump to. It may be any

word you choose except a reserved word (see Appendix A for a list of reserved
words). The identifier permits the same character composition rules as variable
names. The identifier must always be enclosed in brackets [].

The statements following the identifier are called labeled statements.

The jump statement and identifiers are used in many of the previous examples
in this and other chapters. Figure 17 illustrates the execution flow for jumps.

entry ¢

—~—

o)
es)
.e)
mp)identifier
ved)
eed)
eed)
ees)
identifer]

..)
..)

—— o s~ o~
* e e

—_—
Y

—~— et
. e
. o
~—

are executed.

[identifier]

«—— These statements
are not executed

r¢—————— These statements

————— Execution jumps to

are executed.

are executed.

ATsGT

l«————— [abeled statements

[<«— These statements

Glossary Functions

WORD ERA

131

CONTROL STATEMENTS

USING A GLOSSARY OR CALL STATEMENT TO BRANCH

You can use glossary or call to branch to another entry, but you must be sure
it is the last statement in the main entry.

If statements exist after the glossary or call statement, place an exit
statement after the glossary or call statement. When the called entry returns
to the calling entry, it will read the exit statement and terminate.

Figures 18 and 19 illustrate the use of glossary and call to perform branches to
another entry in the same glossary document.

132 WORD ERA Glossary Functions

CONTROL STATEMENTS

Figure 18 Branching to Another Entry Using the glossary Statement
entry a entry b
{ {
(...) +— These (...)
(...) statements (...) e— All of
(...) are (...) these
if(expression) executed (...) statements
{ glossary "b" (...) are
exit ~ (...) executed
} (...)
(.00) <— These (.04)
(...) statements (...)
(...) are not (...)
} executed }
if expression
istrue

Entry a branched to entry b, execution resumes at the top
of entry b. After statements in entry b are executed,
control returns to entry a. The exit function ensures that
any statements which follow "b" statement are executed.

Figure 19 Branching to another entry using the call Function
entry ¢ entryd
{ = R
(...) =— These (...)
(.04) statements (...) j— All of
(o0d) are (...) these
(...) executed (0d) statements
call d (.od) are
} E; executed
(...)
Entry c branches to entry d. (...)
Program execution control } :

is transferred to entry d

Execution resumes at
the top of entry d and
concludes at the bottom
of entry c.

(When there are statements in entry ¢ following the call statement, entry d
returns control to entry c and the remaining statements in entry c are
executed).

Glossary Functions WORD ERA 133

CONTROL STATEMENTS

Control 1s temporarily transferred from one glossary entry to another glossary
cntry by the call function. The call function is normally used as a

subroutine or function call. It can be used to branch when no other statements
follow the call statement. If other statements follow call, you must use an

exit statement as shown in Figure 18. Both glossary entries must be in the
same glossary document.

In Figure 19 entry ¢ executes its statements then branches to entry d using the
statement call d. Execution resumes at the top of entry d. The statements in
entry d are executed, and control is returned to entry ¢. Since there are no more
statements to execute in entry ¢, the entry is terminated.

LOOPING

When you write a program without a loop instruction, the program executes
straight through its statements one time only. When you add a loop to the same
program, the program will repeat itself over and over again. You have to stop
this repetition by the strategic placement of a conditional expression.

Two very powerful looping functions are the while and the do while

statements. They accomplish the loop and at the same time provide the
conditional expression for stopping the loop. These looping functions are covered
in Chapter 9 Conditional Loop Statements. Both while and do while observe

the general principles of conditional statements that were covered in Chapter 7.

The jump statement can be used to perform loops by placing a jump
statement at the bottom of the loop statements and an identifier at the top.

Whether you use while, do while, or jump to perform your loop depends
on the result you wish to achieve with your program and, to a large extent, with
the performance of WORD ERA.

Since many of the previous examples in this book used loops, you probably have a
pretty good idea of what loops can do by now. Entries k and | show you more
examples of programs using loops.

134 WORD ERA Glossary Functions

CONTROL STATEMENTS

There are as many ways to use loops as there are programs. They can count pages
or lines in the document for you; they can increment variables; they can
repeatedly search for a string in the document. Your specific application will
dictate when and which types of loops you need in your programs.

Points to Remember About Loops

There are some important points you should always remember when you construct
program loops:

A loop will keep looping unless it is terminated at some point by a
conditional expression. The globerr function is frequently used to break
a loop (globerr is covered later in this chapter).

Variables must always be declared and initialized outside the loop, or their
value will be reinitialized each time the loop repeats.

Subroutines can be nested to perform counting or calculation loops on
variables in the calling entry. Be sure the variables a subroutine uses are
declared and initialized in the calling entry outside of any loops.

A do while loop will always execute its statement at least once. (See
Chapter 9.)

A while loop will never execute its statement if the condition starts out
false. (See Chapter 9.)

The call and glossary statements can be used to make an entry recall

itself. When call and glossary are used to perform loops, execution

always begins at the statement immediately following the entry label. Any
variables will be reinitialized at the next repeat of the loop. It is generally
better programming practice to use the while, do while, and jump
statements to loop.

When you write programs using loops, first write the program without the
loop. Recall it in the text document and be sure the first iteration works.
Then add the loop to the entry.

Glossary Functions WORD ERA 135

CONTROL STATEMENTS

A runaway loop that isn’t working properly can trample right through your
document, perhaps causing some damage on the way. It is always a good
idca to make a copy of your document to use for testing new glossary
programs. If the program works properly in the copy you'll know you can
safely make i1t available for general use.

Using the jump Statement for Loops

The jump statement is frequently used to perform loops because the beginning
and the ending of the loop can be specifically set by the jump statement and the
identifier.

When you use jump to perform a loop, remember there must always be an
identifier for the jump statcment to jump to. The identifier marks the place
where the loop repeats its statements. If you forget to put the identifier in your
program the glossary compiler will remind you with a verification error.

You must have a conditional statement that breaks the loop somewhere between
the identifier and the jump statement, or the loop will repeat itself indefinitely.
The conditional statement may direct program execution elsewhere by branching,
calling a subroutine, or causing the entry to terminate by using an exit
statement. The conditional statement is the predictable, graceful way to break a
loop.

A loop can break itself unpredictably when it encounters an error condition, such
as scarch not finding its string, no next screen, or the cursor is at the end of the
document. This is not a graceful way to allow the loop to break because you are
not fully controlling the course of program execution, and the result may be
totally unpredictable.

You can use the if or if else conditional statements to break loops. The
while and do while functions are in themselves conditional statements. Both
while and do while are covered in Chapter 9.

Figure 20 shows the program execution flow when the jump statement is used
to loop.

136 WORD ERA Glossary Functions

CONTROL STATEMENTS

Figure 20 Using the jump Statement to Perform a Loop
Before the loop is added After the loop is added
entry a entry b
{ {
(...) = Execution (...0) [— Statements prior
...) begins here (o) to the loop only
C...) (o) execute once
(ood) (oul)
(o) [identifier] |=— Loop begins
(+.v) = All statements QN -
QR are executed (...) Body of loop
(ved) once lﬁ(expr) executes
(...) repeatedly
(...) = Execution exit until if(expr)
} ends here } true, exit
C.o0) statement
E v ; terminates
() Lo
Jump
identifier L« if{expr) is
} false, program
jumps to the

identifier and
executes the
statements
between the
identifier and
the jump
statement

EXAMPLES USING THE JUMP STATEMENT

Entry k is an example of the jump statement. This entry gives you a good
example of how to use mathematical operators to perform calculations on a table
in a document. (You can also use the Math function to manually perform these
calculations from your document editing screen, or use a combination of Math
and Glossary by Example.)

To try entry Kk, first, type the following table example in a document. Be sure to
use decimal tabs to enter the numbers as the entry searches for a decimal tab to
begin its calculations. This table is on Page N of the glossary document

gloss2b on the Glossary Diskette. If you don’t want to take the time the type
the table, copy it from Page N of gloss2b into your text document.

Glossary Functions WORD ERA 137

CONTROL STATEMENTS

Second, type entry k which follows the example. (Entry k is also included on the
Glossary Diskette in the glossary document gloss2b). An analysis of entry k

follows the entry example.

EXAMPLE FOR USE WITH ENTRY K:

AMALGAMATED WIDGETS, INC.

MONTH END SALES STATEMENT

Price Mfg Cost Net
Part Qty Per Item per Item Sales
red widget 400 $25 $2
green widget 327 $27 $3
blue widget 728 $48 $7
orange widget 120 $17 $1
yellow widget 247 $86 8
black widget 124 $14 $2
white widget 867 $14 $2
violet widget 974 $87 $9
TOTAL
entry k
{
salesqty = 0
priceper = 0
grossale = 0
mfgcosts = 0
netsales = 0
[loop]
search decimaltab execute
if(globerr)
{
execute
return(2) call finsert(time)
exit
}
cancel
138 WORD ERA Glossary Functions

CONTROL STATEMENTS

salesqty = number
priceper = number

grossale = priceper * salesqty
right
insert

call feed(grossale)
execute

mfgcosts = number
netsales = grossale - mfgcosts * salesqty
right
insert
call feed(netsales)
execute
jump loop

Entry k performs several calculations on the "Amalgamated Widgets Month End
Sales Statement” table that precedes the entry example. The same calculations arc
performed for each line. First, "Price Per Item" is multiplied by "Quantity,"
which becomes the "Gross Sales" amount. Second, "Manufacturing Cost per Item"
is multiplied by "Quantity" and is subtracted from "Gross Sales." The result
becomes the "Net Sales” amount.

When the entry is recalled, the first line is calculated and the amounts entered.
The jump loop statement at the end of the program causes the entry to resume
execution at the search decimaltab statement following the [loop] identifier. The
next line is calculated, and the entry continues looping until search fails to find
another decimaltab. When this occurs, the if(globerr) statement causes the

exit statement to exccute and the entry terminates.

Variables are set for each number value required by the calculations. Note that
the variables are declared and initialized outside the [foop] identifier.

The number function is new to you in this entry. It is a document reading
function that returns the number at the cursor location. When number 1s used,
the cursor moves to the space or character following the number in the document.
The number is read if the cursor is on the number itself or on the screen symbol
immediately preceding it.

Glossary Functions WORD ERA 139

CONTROL STATEMENTS

Entry 1 adds the number formatting function pic, a "Total" branch, and some
finishing touches to entry k. You were introduced to the pic function in
Chapter 6. The syntax for pic is pic(expressionl,expression2). It formats
the number in c¢xpression 1 with the symbols in expression 2.

The last statement in entry 1 is call Z. Entry Z is a subroutine that is shown
at the end of this chapter. It is a nice way to finish an entry and notify the
operator of its conclusion.

When you recall entry I, note that it runs considcrably faster than entry k. The
increase in execution time is caused by the following changes:

The addition of the statements call display(false) and call

display(true), which turn the display off at the beginning and on at the
end of the program. The program runs faster if the screen display is not
constantly refreshed.

The replacement of the statement search decimaltab execute... cancel with
the statement goto decimaltab. This is a more direct method that eliminates
several keystrokes and a screen refresh.

The replacement of the statements insert call feed... execute with the
statements call finsert(pic(...)). The finsert function inserts the

contents of its expression at the cursor location. Again, this is a faster
method that ¢liminates keystrokes and a screen refresh. See Chapter 10 for
a detailed description of the finsert function.

entry 1

{
call display(false)
salesqty = 0
priceper = 0
grossale = 0
mfgcosts = 0
netsales = 0
salestotal =
grosstotal =
nettotal = 0

140 WORD ERA Glossary Functions

CONTROL STATEMENTS

[loop]
goto decimaltab
if(globerr)

jump total
)
salesqty = number
salestotal += salesqty
priceper = number
grossale = priceper * salesqty
grosstotal += grossale
right
call finsert(pic(grossale,"$,"))
mfgcosts = number
netsales = grossale - mfgcosts * salesqty
nettotal += netsales

right
call finsert(pic(netsales,"$,"))
jump loop
[total]
{
command search "TOTAL" execute cancel
goto right
insert
decimaltab call feed(pic(salestotal,","))
decimaltab
decimaltab call feed(pic(grosstotal,"$,"))
decimaltab
decimaltab call feed(pic(nettotal,"$,"))
execute
return(2)

"Gross sales:
call feed(pic(grosstotal,"$,"))
" are calculated by multiplying the quantity, "
call feed(pic(salestotal,","))
", times price per each." return(2)
"Net sales: "call feed(pic(nettotal,"$,"))
" are calculated by multiplying manufacturing cost per each times
quantity, and subtracting the result from gross sales."
return(2)
call display(true) return(2) call finsert(time)
} goto up
call Z

Glossary Functions WORD ERA 141

CONTROL STATEMENTS

TERMINATING PROGRAM RECALL

A program is terminated when all its statements are executed or it can be
deliberately terminated at any point in its execution by the exit statement.

The exit statement makes an entry cease exccution. When the exit statement
is encountered during the program, execution will immediately stop. Statements
following the exit statement will not be performed.

When you use an exit statement in a subroutine, it pertains only to the
subroutine. It will cause the subroutine ONLY to stop execution. The entry that
called the subroutine continues at the statement immediately following the
subroutine call.

Gracefully Terminating an Entry

A graceful way to conclude an entry is to notify the operator that it is finished.
Entry Z is a short subroutine that can be called by any entry in your glossary
document. Modify it to your taste or use it as is.

Notice that the prompts follow standard WORD ERA message conventions (Press
Execute to Continue). This is a principle to keep in mind when you are designing
programs. Pcople become used to pressing keys automatically at certain times
{most of the time without looking at the prompts). If you deviate from standard
practice, do so with good reason, and make sure your glossary users understand
which keys to press and when.

entry Z
{ call error("Entry Concluded")
call prompt("Press Execute to Continue")
call keyin
call clrpos(1,50,29)
call clrpos(25,51,28)
exit

In entry Z, the keyin function allows the operator to enter one keystroke.
Although the prompt calls for EXECUTE to be entered, any key will work,

142 WORD ERA Glossary Functions

CONTROL STATEMENTS

TRAPPING FUNCTION ERRORS
USING THE GLOBERR STATEMENT

There are several word processing functions that search for characters or symbols
as part of their function. This type of function sounds a beep tone when it fails
to find the specified object of its search. For example, a beep tone sounds when
a GO TO PAGE function (like GO TO PAGE INDENT, or GO TO PAGE
CENTER) does not find the specified symbol. The beep tone sounds when the
search function fails to find its specified string. Nextscrn and Prevscrn cause a
beep if there is no next or previous screen.

As you have seen from previous glossary program examples, you can use the
globerr function as part of a conditional statement to trap the failure of a

word processing "search” function and exit the program, jump to a branch of the
program, or call a subroutine. The globerr function is particularly valuable

for breaking any type of "search" loop.

The globerr function can return its value to a variable, a conditional
statement, or a function. The value returned by globerr is 1 if true and 0 if
false. The initial value is false, globerr returns a value of true if a preceding
glossary operation resulted in an error condition that caused a beep tone. The
value of globerr is reset to false after it is used.

Sce Chapter 10 for a functional description of globerr.

TIMING YOUR PROGRAMS

Entry 1 in this chapter showed you how to increase the response time of a
glossary program by turning the display off and substituting functions. If you
want to evaluate glossary execution time for comparison or scheduling purposes
you can use the time function to include a time stamp statement in your
program. Entry K and L give you an example of how to use the time function
to determine the difference in execution time betwcen the feed and finsert
functions. Both entries insert the same paragraph of text.

Glossary Functions WORD ERA 143

CONTROL STATEMENTS

entry

entry

K
call feed(time)
return(2)

call feed("While creating or editing a document, you can automatically save
the document every time a preset number of keystrokes is reached. Pressing
STOP prompts you to enter the desired number of keystrokes allowed before
the document is written to the hard disk. The default number of keystrokes
is 1024. You can also press COPY before entering the number of keystrokes
to save a copy of the document before making any further editing
changes.")

return(2)

call feed(time) return(2)

L
call finsert(time)
return(2)

call finsert("While creating or editing a document, you can automatically
save the document every time a preset number of keystrokes is reached.
Pressing STOP prompts you to enter the desired number of keystrokes
allowed before the document is written to the hard disk. The default
number of keystrokes is 1024. You can also press COPY before entering the
number of keystrokes to save a copy of the document before making any
further editing changes.")

return(2)

call finsert(time) return(2)

144

WORD ERA Glossary Functions

CONTROL STATEMENTS

Depending on your system load, you’ll find approximately five seconds execution
time difference between entry K and entry L. The run time difference between
entry K and entry L is approximately one minute.

SUMMARY

In this chapter you learned how to use control statements, to call subroutines,
perform loops, and terminate an entry. In the next chapter you will learn how to
use the conditional loop statements while and do while.

Glossary Functions WORD ERA 145

CONTROL STATEMENTS

146 WORD ERA Glossary Functions

CHAPTER 9

CONDITIONAL LOOP STATEMENTS

The while and do while statements provide an expedient method of
combining the conditional evaluations performed by if and if else and the
looping functions performed by jump and its identifier.

All of the general principles about conditional functions described in Chapter 7
apply to the while and do while statements.

The main distinction to remember between if and while conditional

statements is that if asks a question before it executes its statements. The
conditional if can branch or use the if else combination to execute an

alternative statement. The while function executes its statements as long as its
condition proves true and has no other alternative. The two types of conditional
statements can be nested together to form programming combinations. Entry o in
this chapter shows an example of this combination.

THE CONDITIONAL while STATEMENT

The syntax for the conditional while statement is

while(expression)

{
}

The while function repeatedly executes its statement or statements as long as
its expression remains true. Multiple statements to while are always enclosed
in braces. The argument to while may consist of various combinations of
expressions and operators.

statement or statements

When the expression becomes false, the statement or statements are not executed,
and the program continues after the closing brace in the while statement.

Glossary Functions WORD ERA 147

CONDITIONAL LOOP STATEMENTS

The condition stated by while(expression) is evaluated before the execution of
the {statement or statements}). The statements to while will never be executed
if the condition starts out false. In the following syntax examples, the statements
are executed if the cursor is on the character "x" (in the first example) or the line

at the cursor location is less than line 20 (in the second example).

while(char == "x")

{

delete execute

)
while(line < "20")
{
insert
tab
execute
return

Entries m and n use the while statement to perform conditional loops. Entry o

combines entries m and n into on¢ program.

Entry m is a rewrite of entry a in Chapter 7, which used a conditional if
statement. A loop was also added to the entry by the while statement. To add
a loop to entry a, you would have to use the jump statement. The while
statement takes care of both requirements, the conditional test and the loop.

entry m
{
while(page no != 10)
{
insert
copy format "2" execute
execute

goto nextscrn
if(globerr) {exit}

}
insert
return(6)
"\¢This page intentionally left blank\r"
execute
)
148 WORD ERA

Glossary Functions

CONDITIONAL LOOP STATEMENTS

entry n
{
while(page no <= 4)
goto down
insert
center call feed(page no) "--Introduction”
execute
goto nextscrn
if(globerr) {exit)
}
}

Entry o combines entries m and n to reformat a document. Note the nested if
statement inside the while statement.

entry o
while(page no < 10)

insert

copy format "2" execute
execute

if(page no <= 4)

{

goto down
insert
center call feed(page no) "--Introduction”
execute
)
goto nextscrn
if(globerr) {exit}
}
insert
page return(6)
"\c¢This page intentionally left blank\r"
execute

Glossary Functions WORD ERA 149

CONDITIONAL LOOP STATEMENTS

THE CONDITIONAL do while STATEMENT

Like the while function, the do while function allows repeated execution of
a statement or statements based on the true condition of its expression.

The do statement enclosed in braces is executed repeatedly as long as the value
of the expression or expressions in the argument to while remain true. When

the value becomes false, the statement is not executed and the program continues
at the statement following the while(expression).

Since the test of the expressions takes place after each execution of the do
statement, the statement will be executed at least once whether or not the
expression to while is true.

The syntax for the do while statement is

do
{

statement or statements
while(expression)

The argument to while may consist of various combinations of expressions and
operators. Multiple statements to do must be enclosed in braces.

Entry p is an example of the do while statement. It uses a do while
conditional loop to add the "Inventory" column on the "Amalgamated Widgets
Parts List." example which follows entry p.

entry p

{
inventory = 0
numbertest = 0
do
{

search decimaltab execute cancel
right
numbertest = num(char)

150 WORD ERA Glossary Functions

CONDITIONAL LOOP STATEMENTS

if(numbertest == 0)
{
insert
call feed(inventory)
execute

}

inventory += number

while (numbertest == 1)

The num function is new to you in this entry. It returns a value of 1 (true) if
the value of its expression is a number. If the expression is not a number num

returns a value of 0 (false).

When you type the "Parts List" in your text document, be sure to use decimal tabs
with the numbers, and place a decimal tab and a return following "TOTAL" in
the text document. (This example is on Page N of the glossary document gloss2b

on the Glossary Diskette).

Type this example in a text document and recall entry p. The column is added

and the total entered.

AMALGAMATED WIDGETS, INC.

PARTS LIST

Part Description

June 30
Inventory

red widget
green widget
blue widget
orange widget
yellow widget
black widget
white widget
violet widget

TOTAL

Glossary Functions WORD ERA

151

CONDITIONAL LOOP STATEMENTS

Entry q is provided as a contrasting example to entry p. It performs exactly the
same column addition as entry p, using the jump, if, and globerr

functions. Note that this entry searches for TOTAL after the column is addced
and inserts the decimal tab and the value of the variable inventory. (Entry p
requires an existing decimal tab following TOTAL.)

entry q
{
inventory = 0
[loop]
search decimaltab
if(globerr)
execute
search "TOTAL" execute cancel
goto right
insert
decimaltab call feed(inventory)
execute exit
}

execute cancel
inventory += number

jump loop

These two ecxamples illustrate that there is no absolutely correct way to write a
program. Many methods will work and work well; use the method that is casiest
and most comfortable for you.

152 WORD ERA Glossary Functions

CONDITIONAL LOOP STATEMENTS

SUMMARY

You have completed Part 2 of this book Learning Glossary Programming. Part 3
Glossary Functions Reference and Usage Guide provides you with detailed
descriptions of the glossary functions and guides to using them. Part 4 tells vou
how to administer your glossary programs, and offers suggestions and information
for operating system users. Part 5 describes the Glossary Diskette provided with
this book, and gives you some additional glossary programs to use.

Remember, all the glossary entry ecxamples shown in this part are in glossary
document gloss2a and gloss2b on the Glossary Diskette. You can use these
programs without modification, or modify them to suit your requirements.

Glossary Functions WORD ERA 153

CONDITIONAL LOOP STATEMENTS

154 WORD ERA Glossary Functions

CHAPTER 10

FUNCTION DESCRIPTION LIST

This is an alphabetical reference chapter for all functions used in the Advanced
Glossary programming language. Use it as you would a dictionary to look up a
function. Each function entry includes:

A description of the function

The type of value returned by the function

The permissible syntax statements for the function
Program examples are provided in this chapter where appropriate to clarify the
nature of the function. For additional programming examples, refer to the other

chapters and appendices in this book.

Chapter 11 provides a compendium of functions by usage. Examples are provided
for each usage group.

HOW TO USE THE ALPHABETICAL LIST OF FUNCTIONS

Functions are listed alphabetically by name. Information about the function is
arranged in the format shown in Figure 21. The beg doc function is used as
an example in Figure 21.

Suppose you looked up the beg doc function on the alphabetical list. How
would you use this information to help you write a program? The list following
Figure 21 describes each part of the format and gives you a few suggestions on
its usage.

Glossary Functions WORD ERA 155

FUNCTION DESCRIPTION LIST

beg_doc
Type:
Value:

Syntax:

The beg_doc function returns a value of true if the cursor is on the first
character of the document. Otherwise, it returns a value of false.

document reading
1 if true, 0 if false

conditional function(beg_doe)
conditional function(!beg_doc)
variable = beg_doc

call function(beg_doc)

Figure 21 Example of Function Information Format

The following list provides a detailed description of the format shown in

Figure 21.
Function:

Type:

Value:

Functions are listed in alphabetical order by name.

This is a cross-reference to the usage list of functions
in the second section of this chapter. If you arc not
familiar with this type of function, look it up on the
usage list and rcad the description and example for
that usage group. The beg doc function is a

document reading function, so you know that it returns
information from the text document as its valuc.

This is the type of value returned by the function. In
the case of beg doc, it is a numeric value that

returns a2 number 1 if true (the cursor is at the
beginning of the document) or a 0 (zcro) if false (the
cursor is not at the beginning of the document). Other
types of functions return alphabctic or numeric string
values.

156

WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

Syntax:

Description:

These arc possible and permissible ways of using the
function. Most functions can bc used in a variety of
statements; some are restricted to only one or two. The

beg doc function can be used as an expression to a
conditional if or while. It can have its value assigned

to a variable, or it can be used by another function, such as
status or error.

The syntax combinations shown may not represent all
possible combinations for the function. For example, if the
syntax is shown as "conditional function(position opcrator
expression),” you can just as casily reverse the expressions to
have "conditional function(expression operator position)."
Don’t limit yoursell to experimentation with just the
combinations shown. You will probably find others that suit
your programming requirements exactly.

The paragraph following the syntax list tells you what the
function does and how it performs. The values required for
cach cxpression in the argument are listed and explained.
Brief program cxamples are used where appropriate to
clarify the action of the function. This descriptive
paragraph is similar to a dictionary definition and should be
used in the same¢ way. Program cxamples of how functions
are used arc in the Usage List of Functions in this chapter
and in other chapters and appendices in this book.

Glossary Functions

WORD ERA 157

FUNCTION DESCRIPTION LIST

TEXT CONVENTIONS USED IN THIS CHAPTER

In syntax cxamples, expressions may be shown as
function(expressionl,expression2,expression3)
or as

function(el,e2,e3,e4,e5)

Three dots following the last expression in an argument mcan morc ¢Xpressions
arc allowed, as

function(expressionl,expression2,...)

In some diagrams and figures, omitted program statements are represented by

)

158 WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

GENERAL RULES FOR USING FUNCTIONS

Functions that return values can be usecd anywhere an ¢xpression can be uscd, as
shown in the following syntax examples:

variable = function
conditional function(function operator expression)

call function(function)

Functions that return values of true or false can be used anywhere an expression
can be used. Returned values will always be 1 if true or 0 if false.

When a function is used as a statement it must be preceded by the call
function.

The argument to a function is always enclosed in parenthesecs.

Unless otherwise stated, an expression to a function can be a string expression, a
variable, a mathematical expression, or a function.

Multiple expressions within a function argument are separated by commas unless
otherwise stated in the function description. (Expressions to conditional
functions are treated differently. See the syntax descriptions for if, if else,
while, and do while.)

Glossary Functions WORD ERA 159

FUNCTION DESCRIPTION LIST

LIST OF FUNCTIONS THAT REQUIRE ARGUMENTS

abs(cxpression)

cat(cxpressionl,expression?)
clrpos(cxpressionl,cxpression2,cxpression3)
cursor(cxpression)®*

display(expression)

do while(expression)

error(expression)
feed(expressionl,expression2*)
finsert(cxpression)

if(expression)

if(cxpression)else
index(expressionl,expression2,expression3¥®)
len(cxpression)
max(expressionl,expression2,...)
min(expressionl,expression2,...)
num{expression)
occur(cxpressionl,expression2)
pic(expressionl,expression?)
posmsg(expressionl,expression2,expression3)
prompt{cxpression)
round(expressionl,expression2)
seg(expressionl,expression2 cxpression3,expressiond™)
status(expression)
sub(expressionl,expression2,expression3,expressiond expressions)
substr(expressionl,ecxpression2,expression3*)
text(expressionl,expression2)**
truncate(expressionl,expression2)
unixfun(expression)**
unixpipe(expressionl,expression2)**
while(expression)

* The numbered expression marked by an * is optional in the argument.

** The entire expression must be enclosed within quotation marks

160 WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

ALPHABETICAL LIST OF FUNCTIONS

abs

Type: mathematical

Value: absolute value of a number
Syntax: variable = abs(expression)

conditional function(abs(expression) operator expression)
call function(abs(expression))

The abs function provides the absolute or positive value of the xpression.

The value in the expression must be a number. It may contain a leading dollar
sign, commas, a decimal point, and/or leading or trailing minus or plus signs. It
may not contain any alphabetic characters or other symbols,

beg_ doc

Type: document reading

Value: 1 if true, 0 if false

Syntax: conditional function(beg doc)

conditional function(beg doc)
variable = beg doc
call function(beg doc)

The beg__doc function returns a value of true if the cursor is on the first
character of the document. Otherwise, it returns a value of false. When it is
preceded by the logical not operator ! the combination 'beg doc returns a
value of true only if beg doc is not on the first character of the document.
The beg doc function treats all of the following as characters: screen symbols,
characters from alternate character sets, spaces, alphabetic characters, numeric
characters.

Glossary Functions WORD ERA 161

FUNCTION DESCRIPTION LIST

bot_ page

Type: document reading

Value: 1 if true, 0 if false

Syntax: conditional function(bot page)

conditional function(bot page)
variable = bot_page
call function(bot page)

The bot_page function returns a value of true if the cursor is beyond the last
character of the page. Otherwise, it returns a value of false. When it is preceded
by the logical not operator (!) the combination 'bot page returns a value of

true only if bot_ page is not beyond the last character of the page. The

bot page function trcats all of the following as characters: screen symbols,
characters from alternate character sets, spaces, alphabetic characters, numeric
characters.

call

Type: control

Value: call does not return a value
Syntax: call function(expression)

call label

The call function is a statement that transfers execution control to a built-in
function. A function is only preceded by call when it is used as a statement,
The call statement is not required when a function is used as an expression.
When a function is called, the function is executed. Control then returns to the
statement immediately following the function call.

The call function is also used to transfer execution control to a glossary ecntry

in the same glossary document. When call is uscd to call another entry as a
subroutine, the statements in the subroutine are executed, then program c¢xecution
continues at the statement immediately after the subroutine call (unlcss dirccted
clsewhere by the subroutine).

162 WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

cat

Type: string

Value: a continuous string expression that results from the concatenation
of expressionl and expression2

Syntax: variable = cat(expressionl,expression2)

conditional function(cat(el,e2) operator expression)
call function(cat(el,e2))

The cat function concatenates (brings together) expressionl and expression2
and provides one continuous string expression.

char

Type: document reading

Value: character at cursor location
Syntax: variable = char

conditional function(char operator expression)
call function(char)

The char function passes the character found at the cursor position to the
variable. The cursor remains on the character on the document screen.

clrpos

Type: display

Value: clrpos does not return a value

Syntax: call clrpos(expressionl,expression2,expression3)

Glossary Functions WORD ERA 163

FUNCTION DESCRIPTION LIST

The clrpos function displays the number of blanks specified by expression3 at

the line specified by expressionl and the character position specified by
expression2. Permissible screen parameters for ¢lrpos are lines 1 through 25

and positions 1 through 80. Messages extending beyond position 80 or line 25 will
result in screen display anomalies. The blanks posted by clrpos can be clecared

at the end of glossary execution by pressing CANCEL and RETURN, CANCEL
and EXECUTE, or CTRL w (simultancously press CTRL and w). The clrpos
function does not replace characters in the document. It is a temporary display.

cursor

Typc: display

Value: cursor docs not rcturn a value
Syntax: call cursor(expression)

The cursor function moves the cursor to the location specified by the
expression. If the expression contains the string value "3,9,12", the cursor moves
to page 3, line 9, position 12. The page designation may be a numbercd page, or
page h, f, or w. The expression in the argument to cursor must be a quoted
string in the form "page, line, position,” or it may be a single unquoted variablc
whose value is the quoted string expression.

date

Type: operating system access

Value: the current system date and time
Syntax: variable = date

conditional function(date opcrator ¢xpression)
call function(date)

The date function returns the current system date and time in the form
Thu May | 09:40:00 1986.

164 WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

display

Type: display

Value: display does not return a value
Syntax: call display(expression)

The display function turns the display on if the value of expression is true
(non-zero) and off if the value is false (zero). The syntax to turn the display
OFF is call display(false). To turn the display ON the syntax is

call display(true).

do while
Type: conditional
Value: do while does not return a value
Syntax: do
{ statement or statements
while(expression)

(expression) may consist of various combinations of expressions
and operators:

while(expression operator expression)
As long as proper parenthetical syntax is followed, the argument
to while may contain a theoretically unlimited number of
expressions and operators,

{Multiple statements} to do must be enclosed in braces.

The do while function allows repeated execution of a statement or statements
based on true or false conditions. The true or false conditions are specified by
the expressions in the argument to while. The do statements enclosed in

braces are executed repeatedly as long as the value of the expression in the
argument to while remains true. When the value becomes false, the do
statements are not executed, and the program continues after the while
argument. Since the test of the expressions takes place after each execution of
the do statements, the statements will be executed at least once whether or not
the argument to while is true.

Glossary Functions WORD ERA 165

FUNCTION DESCRIPTION LIST

end__doc

Type: document recading

Value: 1 if true, O if false

Syntax: conditional function(end doc)

conditional function(lend doc)
variable = end _doc
call function(end doc)

The end _doc function returns a value of true if the cursor is beyond the last
character of the document. Otherwise, it returns a value of false. When it is
preceded by the logical not operator (!) the combination 'end doc rcturns a
value of truc only if end doc is beyond the last character of the document.
The end _doc function treats all of the following as characters: screen symbols,
characters from alternate character sets, spaces, alphabetic characters, numeric
characters.

error

Type: display

Value: string

Syntax: call error(expression)

The error function displays the value of expression highlighted in the error
scction of the screen (line 25, character locations 51 to 79). The error display

is accompanied by a beep tone. The length of the error string cannot exceed 29
characters. Strings longer than 29 characters will result in screen display
anomalies. The error message can be cleared with the clrpos function, by
pressing CTRL/w, by including the CTRL/w statement "\027" in the program, or
by invoking an editing function, like INSERT or DELETE.

166 WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

exit

Type: control

Value: exit does not return a value
Syntax: exit

The exit statement makes an entry cease execution. When the exit statement
is encountered in the program, execution will immediately stop. Statements
following the exit statement will not be performed. The exit statement in a
subroutine pertains only to the subroutine. It will cause the subroutine to stop
execution. The entry that called the subroutine will continue at the statement
immediately following the subroutine call.

false

Type: logical

Value: provides a numeric value of 0
Syntax: variable = false

conditional function(expression operator false)
call function(false)

The false function is used to provide a false value for a variable or a
function. It can also serve as an expression in a conditional statement. The
false function always returns a value of zero.

feed

Type: document writing

Value: feed does not return a value
Syntax: call feed(expressionl,expression?2)

Glossary Functions WORD ERA 167

FUNCTION DESCRIPTION LIST

The feed function types the value in expressionl as if it came from the
keyboard. Expression2 is optional. If it is included, the value in expression] will
be typed the number of times specified by expression2. The typed characters
from expressionl remain as part of the document text. The feed function docs
not insert, and it overwrites existing text if the cursor is not in a blank arca of
the screen. To insert, nest a call feed {...} statecment in an inscrt modeas

follows:

insert call feed(expression) execute.

finsert

Type: document writing

Value: finsert docs not return a valuc
Syntax: call finsert(expression)

The finsert function inserts the contents of the expression into a document at
the cursor location. The finsert function must be used when a returned valuc
contains screen symbols such as a RETURN, TAB, INDENT, or CENTER. Thesc
symbols are displayed in the document as symbols; however, they are read by
functions such as char or text as WORD ERA document control codes.
(Appendix C describes WORD ERA document control codes.) Use finsert to
insert values returned by the text function. (See the description of the text
function in this chapter.)

globerr

Type: error

Value: 1 if true, 0 if false
Syntax: variable = globerr

conditional function(globerr operator expression)
call function(globerr)

168 WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

The initial value of globerr is false. It only returns a value of true if the
preceding search or goto [symbol] glossary operation resulted in an error
condition that caused a beep tone. For example, the search function fails to find
its specified string, and the beep tone sounds. The globerr function is
particularly useful for breaking a "search" loop. The value of globerr is reset

to false after it is used. The globerr function can be used with the glossary
keywords:

search nextscrn prevscrn goto command indent
goto indent goto center goto dectab goto tab

in the form: keyword(s) if(globerr) {...}

if

Type: conditional

Value: if does not return a value
Syntax: if(expression)

statement or statements

)

(expression) may consist of various combinations of expressions
and operators:

if(expression operator expression)
As long as proper parenthetical syntax is followed, the argument
to if may contain a thcoretically unlimited number of
expressions and opcrators.

Multiple {statements} to if must be enclosed in braces.

The if conditional statement allows the glossary program to make decisions

based on specified conditions in the document. The expression in the argument is
evaluated, and if true, the statement or statements enclosed in braces are
executed. If the expression in the argument is false, the statements enclosed in
braces are skipped, and program execution continues immediately beyond the last
brace in the if statement.

Glossary Functions WORD ERA 169

FUNCTION DESCRIPTION LIST

if else
Type: conditional
Value: the if else statement docs not return a value
Syntax: if(expression)
{
statement or statements
}
else
{
statement or statements
}

(expression) may consist of various combinations of cxpressions
and opecrators:
if(cxpression operator expression)

As long as proper parenthetical syntax is foliowed, the argument
to if may contain a theorctically unlimited number of
expressions and operators.

Multiple {statecments} to if must be cnclosed in braces.
Multiple {statements) to else must be enclosed in braces.

The if else conditional statement allows the program to execute ¢ither the if
statements or the else statements, depending on a true or false condition of the
expression in the argument to if, (else docs not requirc an argument; it

relies on the argument to if).

The expression in the argument to if is evaluated. If true, the statecment or
statements enclosed in braces are exccuted. The statements following else arc
skipped, and program execution continues at the statement immediately after the
closing brace in the else statement (unless directed elsewhere by the if
statements).

If false, the statements to if are skipped, and the statcments to else arc
executed. Program c¢xccution then continues at the statement immediately after
the closing brace in the else statement (unless directed elsewhere by the else
statements).

170 WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

index

Type: string

Value: character number where expression2 begins inside expressionl
Syntax: variable = index(expressionl,expression2)

variable = index(¢xpressionl,expression2,expression3)
conditional function(index(el,e2,e3) operator expression)
call function(index(el,c2,e3))

The index function searches for an occurrence of expression2 inside of
expressionl, beginning at the character number provided by expression3,
Expression3 is optional. If it is not present, the search begins at character | of
expressionl. If expression2 is not found inside expressionl, a false (zero) value is
returned. If it is found, the value returned is the first character position inside
expressionl where expression2 begins.

jump

Type: control

Vatue: jump docs not return a value
Syntax: jump identifier

[identifier]
statement or statements

The jump statement unconditionally transfers program execution control to the
statement immediately following a labeled identifier. The identifier may be any
word other than reserved keywords and must be enclosed in brackets. The rules
for naming variables also apply to identifiers.

The labeled statement can be anywhere in the entry. Unlike a subroutine call,
the program does not return to the statement following the jump statement
after executing the labeled statements.

Glossary Functions WORD ERA 171

FUNCTION DESCRIPTION LIST

key

Type: interactive

Value: key accepts one keystroke from the keyboard. Typically, this
value is passed to a variable

Syntax: variable = key

call function(key)
conditional function(key operator expression)

The key function pauses program c¢xccution until the operator types onc key.
This key can be assigned to a variable or used by a function. The typed key is
not written in the document. Any key on the keyboard is accepted by key and
can bec assigned to a variable. This includes character keys, cursor movement
keys, and function and editing keys such as RETURN, TAB, EXECUTE,
DELETE, or INSERT. The key function does not accept spccial characters
accessed by CTRL y keystroke combinations.

keyin

Type: interactive

Value: keyin does not return a value
Syntax: call keyin

The keyin function pauses program e¢xecution so that the operator can type onc
key. When a character key or screen symbol key such as RETURN or TAB 15
pressed, it is typed in the document and remains as part of the text. Any key
pressed counts as a keystroke, including cursor control keys and function and
editing keys such as EXECUTE or DELETE. Execution of the entry resumecs
after the key is typed.

172 WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

keys

Type: interactive

Value: keys accepts unlimited keystrokes from the keyboard.
Typically, this value is passed to a variable

Syntax: variable = keys

call function(keys)
conditional function(keys operator expression)

The keys function pauses program execution so that any number of characters
may be typed. Only standard character keys are accepted by the keys
function. A beep will sound if a function or editing key is pressed. When the
EXECUTE or RETURN key is pressed by the operator, program execution
continues, and the entered string of characters is passed to the variable or
function. Characters entered to keys will appear to overwrite existing text in
the document. This is a temporary condition and can be cleared at the end of
glossary execution by pressing CTRL/w or by including the statement "\027",
which is the octal representation for CTRL/w, in the program.

keysin

Type: interactive

Value: keysin does not return a value
Syntax: call keysin

The keysin function pauses program execution so that the operator can type an
unlimited sequence of keys. These may be character keys for data entry or
formatting keys such as TAB, RETURN, or PAGE.

Characters are typed in the document and remain as part of the text. Execution
of the entry resumes when the EXECUTE key is pressed by the operator.

Glossary Functions WORD ERA 173

FUNCTION DESCRIPTION LIST

left__margin

Type: document reading
Value: 1 if true, 0 if false
Syntax: conditional function(left margin)

conditional function(!left margin)
variable = left__margin
call function(left margin)

The left _margin function returns a value of true if the cursor is on the first
character of a line. Otherwise, it returns a value of false. When it is preceded
by the logical not operator (!) the combination !left margin returns a value of
true only if left margin is not on the first character of a line.

len

Type: string

Value: number of characters in expression
Syntax: variable = len(expression)

conditional function(len(expression) opcrator ¢xpression)
call function(len(expression))

The len function returns a number value equivalent to the number of

characters in its cxpression. Keyword abbreviations, WORD ERA document
control codes, and octal numbers that are embedded in the string are included in
the character count. Keyword abbreviations, such as \r, count as one character.
Octal numbers, such as \007, count as one¢ character. WORD ERA document
control codes, such as \B\, count as 2 characters. (The backslash (\) is used as an
escape character for embedments and does not count as a character unless it is
escaped by another backslash, as "\\". The combination "\\" counts as onc
character.)

174 WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

line

Type: document reading

Value: line number for the cursory
Syntax: variable = line

conditional function(line opcrator expression)
call function(line)

The line function returns the line number of the cursor location in the
document.

loc

Type: document reading

Value: page, line, and position of the cursor in the form "1,4,6"
Syntax: variable = loc

conditional function(loc operator expression)
call function(loc)

The loc function returns a value that specifies the page, line, and position of
the cursor location in the document. The value is returned in three segments

separated by commas; for example, the string h,2,44 translates as header page, line
2, position 44, The string 10,18,66 translates as page 10, line 18, position 66. The

page designation may be a numbered page or page h, f, or w.

max max as used with numeric ¢xpressions

Type: mathematical

Value: the expression containing the highest number of all stated
expressions

Glossary Functions WORD ERA

175

FUNCTION DESCRIPTION LIST -

Syntax: variable = max(expressionl,expression?,...)
conditional function(max(el,e2,..) operator ¢xpression)
call function(max(cl,c2,..))

The max function evaluates all of its stated expressions and rcturns the highest
expression (number) as its value.

max max as used with alphabctical string cxpressions
Type: string)
Value: the highest alpha string expression based on ascending order of

the ASCII collating sequence

Syntax: variable = max(expressionl,expression2,...)
conditional function(max(el,c2,...) operator cxprcssion) -
call function{(max(expressionl,expression?2,...))

The max function returns as its value the highest of its alphabctic string

expressions in ascending order according to the ASCII collating sequence provided
in Appendix C. Any number of string expressions can be compared.

min min as used with numeric e¢xpressions
Type: mathematical -
Value: the exp‘ression containing the lowest number of all stated

expressions B}
Syntax: variable = min(expressionl,expression2,...)

conditional function(min(el,e2,..) operator ¢xpression)
call function(min(expressionl,expression2,...))

The min function evaluates all of its stated expressions and returns the lowest
expression (number) as its value. -

176 WORD ERA Glossary Functions -

FUNCTION DESCRIPTION LIST

min
Type:

Value:

Syntax:

min as used with alphabetical string expressions
string

the lowest alpha string expression based on descending order of
the ASCII collating sequence

variable = min(expressionl,expression2,...)
conditional function(min(el,e2,..) operator expression)
call function(min(expressionl,expression2,...))

The min function returns as its value the lowest of its alphabetic string
expressions in descending order according to the ASCII collating sequence
provided in Appendix C. Any number of string expressions can be compared.

num
Type:
Value:

Syntax:

mathematical
1 if true, O if false
variable = num(expression)

conditional function(num(expression))
call function(num(expression))

The num function returns a value of true if the expression is numeric, and a
value of false if it is not. Only numeric strings are recognized. If the string
contains any alphabetic characters, a value of 0 is returned. The number may
contain a leading dollar sign, commas, a decimal point, and/or leading or trailing
minus or plus signs.

Glossary Functions WORD ERA 177

FUNCTION DESCRIPTION LIST -

number .
Type: document reading
Value: number-at the cursor location =
Syntax: variable = number

conditional function(number opcrator expression) -
call function(number)

The number function passes the number found at or to the immediate right

of the cursor position to the variable. Only numeric strings arc rccognized. If
the string contains any alphabetic characters, "12th" for example, a value of 0 is
returned to the variable. The number may contain a lcading dollar sign, commas,
a decimal point, and/or leading or trailing minus or plus signs. If the cursor is
on or after a decimal point, only the decimals, including the period, are returned.

The number may not contain any change of text emphasis attributes such as -
boldface, underlines, or double underlines. For example, the number 4428 will
return a zero value because the underline attribute changes halfway through the
number. The number 4428 will return the correct value only if it is preceded by
a space. A number that is part of a sequence of emphasized characters will
return the correct value. The cursor moves past the end of the number on the
document screen.

occur

Type: string)
Value: the number of segments in a delimited string -
Syntax: variable = occur(expressionl,expression2)

conditional function(occur(el,e2) operator expression)
call function(occur(expressionl,expression2))

The occur function provides the number of segments in expressionl delimited

by the character in expression2. The character in expression2 must be enclosed in -
quotes. If a variable is used in expression2, it does not need to be quoted. (Scc

the seg function for a description of delimiting characters.)

178 WORD ERA Glossary Functions -

FUNCTION DESCRIPTION LIST

page_ no
Type:
Value:

Syntax:

document reading
page number for the cursor
variable = page_no

conditional function(page no operator expression)
call function(page no)

The page no function returns the page number of the cursor location in the

document.

pic
Type:
Value:

Syntax:

mathematical
pic does not return a value
variable = pic(expressionl,expression?)

call function(pic(expressionl,expression2))
conditional function{pic(el,e2) operator expression)

The pic function formats the number in expression! with common numeric
symbols such as § or -. Expression] may be a numeric string, a variable with a
numeric value, or a function that returns a numeric value. Expression2 specifics
the symbols to be used by expressionl. Expression2 must be a quoted string or a
variable that contains the quoted string. Expression2 may have one or more of
the following symbols:

Symbol

$
+

Meaning

Precede number with a dollar sign

Precede number with a plus sign

Follow number with a minus sign

Insert a comma every three digits if number is greater than
999

Insert a decimal point two decimal places from right of
number

Glossary Functions WORD ERA 179

FUNCTION DESCRIPTION LIST

position

Type: document reading

Value: character position for the cursor
Syntax: variable = position

conditional function(position operator expression)
call function(position)

The position function returns the character position of the cursor location in
the document.

posmsg

Type: display

Value: posmsg doecs not return a value

Syntax: call posmsg(expressionl,expression2,expression3)

The posmsg function displays expression3 at the line specified by expression|
and the character position specified by expression2. Expression3 may be an
alphabetic or numeric string, a variable, or a function. Pcrmissible screen
parameters for posmsg are lines 1 through 25 and positions 1 through 80.
Messages extending beyond position 80 or line 25 will result in screen display
anomalies. (See the "Display Functions" section that appears later in this chapter
for additional information about screen display functions.)

The mecssage posted by posmsg can be cleared by the clrpos function or, at

the end of glossary execution, by pressing CTRL w (simultancously press the
CTRL key and w) or by including the CTRL w statcment "\027" in th¢ program.
The posmsg function does not replace characters on the screen. It is a
temporary display.

180 WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

prompt

Type: display

Value: string

Syntax: call prompt(expression)

The prompt function displays the value of the expression highlighted in the
prompt section of the screen (line 1, characters 50 to 79). The length of the
prompt string cannot e¢xceced 30 characters. Strings longer than 30 characters
result in screen display anomalies. The prompt message can be cleared by the
clrpos function; by including the null prompt statement, call prompt("")

in the program; by pressing CTRL/w; by including the CTRL/w statement "\027"
in the program; or by invoking an editing function, like INSERT or DELETE.

right__margin

Type: document reading
Value: 1 if true, 0 if false
Syntax: conditional function(right margin)

conditional function(!right margin)
variable = right _margin
call function(right margin)

The right _margin function returns a value of true if the cursor is on the last
character of a line. Otherwise, it returns a value of false. When 1t is preceded
by the logical not operator ! the combination !right margin returns a value of
true only if right margin is not on the last character of a line.

Glossary Functions WORD ERA 181

FUNCTION DESCRIPTION LIST

round

Type: mathematical

Value: rounded value of a numeric expression to the specificd decimal
place

Syntax: variable = round(expressionl,expression?)

conditional function(round(el,e2) opcrator expression)
call function(round(el,e2)

The round function rounds expressionl at the number of decimal places

specified by expression2. If the fractional part beyond the specified decimal
place is 5 or greater, 1 is added to the last decimal. If it is Iess than 5, nothing is
added to the last decimal.

seg

Type: string

Value: the string segment from expression3 to expressiond or to the ¢nd
of the entire string if expression4 is omitted

Syntax: variable = seg(expressionl,expression2,cxpression3)

variable = seg(cl,c2,¢3,c4)
conditional function(seg(el,e2,e3,e4)) opcrator cxpression)
call function(seg(el,e2,e3,e4))

The seg function evaluates strings whose discrete segments are separated by a
specific delimiting character. Examples are a social security number segmented
with hyphens, "526-43-9090," or a string scgmented by spaces, "table 5x10 15 $95."
Any character may be used to segment the string. This character is called the
delimiter.

Expressionl is the entire segmented string. Expression2 is the character used for
the segment delimiter. The character in expression2 must be enclosed in quotes.
If a variable is used in expression2, it doesn’t need to be quoted.

182 WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

The value returned by seg is any portion of the string beginning with the
segment specified by expression3 and ending with expression 4. If expressiond is
omitted, the value returned begins at the segment specified by expression3 and
concludes at the end of the entire string.

spacing

Type: document reading

Value: present format setting for vertical line spacing
Syntax: variable = spacing

conditional function(spacing operator expression)
call function(spacing)

The spacing function returns the vertical line spacing of the closest format

line above the cursor location in the document. The vertical line spacing is
displayed on the document editing screen in two locations: 1. In the second status
line following the word "Spacing.” 2. In the first position of the format line. To
change the vertical line spacing during program execution use the keyword
combination: command "s n" where "n" stands for the vertical line space number
or letter. The line number returned by the line function reflects the Spacing
setting, not the relative line position displayed on the editing screen.

status

Type: display

Value: string

Syntax: call status(expression)

The status function displays the value of the expression in the status area of
the screen (line 25, characters 27 to 50). The length of the status string cannot
exceed 24 characters. Strings longer than 24 characters result in screen display
anomalies.

Glossary Functions WORD ERA 183

FUNCTION DESCRIPTION LIST

The status message can be cleared by the clrpos function; by including the
null status statement, call status("") in the program; by pressing CTRL/w;
by including the CTRL/w statement "\027" in the program; or by invoking an
editing function, like INSERT or DELETE.

sub

Type: string

Value: sub performs a substitution function; if it can be said to return
a value, the value would be the substitution scgment in
expression5

Syntax: variable = sub(el,e2,e3,e4.e5)

conditional function(sub(el,e2,e3,e4,e5) operator expression)
call function(sub(el,e2,e3,e4,e5))

The sub function substitutes the string in expression5 for the string segments
specified by expression3 and expressiond. Expressionl gives the entire segmented
string. Expression2 gives the delimiter character used to segment the string in
expressionl. Expression3 gives the segment number where the substitution should
begin. Expressiond gives the segment number where the substitution should end.
Expression5 gives the string to be substituted for expression3 through expressiond,
(See the seg function for a description of delimiting characters.)

substr

Type: string

Value: the string segment extracted from a string
Syntax: variable = substr(expressionl,expression?)

variable = substr(expressionl,expression2,expression3)
conditional function(substr(el,e2,¢3) operator expression)
call function(substr(el,e2,e3))

184 WORD ERA lossary Functions

FUNCTION DESCRIPTION LIST

The substr function returns as its value a substring that is extracted from a
string. The string is spccified by expressionl, which may be a numeric or
alphabetic string, a variable, a function, or a math calculation. It is taken from
the character position specified in expression2 to the end of the string.
Expression3 is optional. If it is used, the substring is taken from expression2 to
the character position specified by expression3.

text

Type: document reading

Value: text extracted from a document from expressionl through
expression2

Syntax: variable = text(expressionl,expression2)

call function(text(expressionl,expression2))
conditional function(expression operator text(exprl,expr2))

The text function extracts text from a document between the document
locations specified by expressionl and expression2. Document locations are
specified in the form page, line, position. Each expression must be enclosed in
quotation marks. For example, the statement:

variable = text("1,14,22".,"2,17,33")

assigns the block of text from page 1, line 14, position 22, through page 2, line 17,
position 33, to the variable.

The loc function may be used to specify beginning or ending text extraction
locations. (The loc function returns the current cursor location in the
document.)

variable = text(loc,"4,1,6")
You can extract one character at the cursor position by using the statement

variable = text(loc,loc)

Use text when you want to know if the cursor is on a screen symbol such as
RETURN, TAB, INDENT, DEC TAB, or CENTER.

Glossary Functions WORD ERA 185

FUNCTION DESCRIPTION LIST

The following syntax example uses a conditional if and the text function to
determine if the cursor is on a RETURN symbol.

retl = "\\B\\\012"
ret2 = text(loc,loc)
if(retl =(ret2) {...}

The value in retl is the WORD ERA document control code for the RETURN
symbol you see on the screen. (The RETURN symbol looks like a left-facing
triangle.) Appendix C provides more information about WORD ERA document
control codes.

The value (text from the document) returned by text can be assigned to a
variable or placed directly in the document by using the finsert function, as in

call finsert(text("1,4,1","1,10,31™)

You must use finsert to insert the value rcturned by text into your

document. The text function retains WORD ERA document control codes for
screen symbols such as RETURN, TAB, or CENTER in the text that it reads from
the document. The finsert function recognizes these document control codes

and inserts their equivalent screcen symbols in the document.

Format lines in the extraction location in the document are not retained by
text. When text values are inserted they observe the closest format line
above the insertion location.

text len

Type: document reading

Value: present default setting for document text length
Syntax: variable = text_len

conditional function(text len operator expression)
call function(text len)

The text len function returns the current text length setting of the document.
(The text length setting is shown on the second status line on the edit screen.)

186 WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

time
Type:
Value:

Syntax:

Operating system access
the current system time
variable = time

conditional function(time operator expression)
call function(time)

The time function returns the current system time in the form 09:40:00. The
time is represented in military or 24-hour, format. For example, 2:00 in the
afternoon is shown as 14:00:00.

top__ page
Type:
Value:

Syntax:

document reading
1 if true, O if false

conditional function(top page)
conditional function(!top page)
variable = top page

call function(top page)

The top_page function returns a value of true if the cursor is on the first
character of the first line of a page. Otherwise, it returns a value of false. When
it is preceded by the logical not operator ! the combination !top page returns a
value of true only if top_ page is not on the first character of the first line of

a page.

true
Type:
Value:

Syntax:

logical
provides a numeric value of 1
variable = true

conditional function(expression operator true)
call function(true)

Glossary Functions WORD ERA 187

FUNCTION DESCRIPTION LIST

The true function is used to provide a true value for a variable or a function.
It can also serve as an expression in a conditional statcment. The true
function always returns a valuc of 1.

truncate

Type: mathematical

Value: truncated value of a numeric expression to the specified decimal
place

Syntax: variable = truncate(expressionl,expression2)

conditional function(truncate(el,c2) operator ecxpression)
call function(truncate(cl,e2))

The truncate function truncates expressionl at the number of decimal places
specified by expression2. The fractional part beyond the specified point is
deleted regardless of its value.

unixfun

Type: UNIX access

Value: unixfun docs not return a value
Syntax: call unixfun(expression)

The unixfun function executes the operating system command in the

expression. The output of the command is not written to the document. The
unixfun function operates similarly to the WORD ERA function "Command "
The Operating System Access Functions section in Chapter 11 gives examples of
how to use both unixfun and command "!" in glossary programs.

188 WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

unixpipe

Type: Operating system access

Value: returns the output of a operating system command
Syntax: variable = unixpipe(expressionl,expression2)

The unixpipe function assigns the standard output of a operating system
command to a variable. The data in expression?2 is piped to the command in
expressionl.

Expressionl is the entire operating system command line. Expressionl must be
enclosed in quotation marks.

Expression2 is data required for the command line. In entry a below, the
operating system command expr is accessed for a simple calculation. Variable
a is assigned the calculation. Since expr only requires command line input,

b is used as a null expression for expression2.

entry a

{
a = "expr 44 + 77"
b - "w
x= unixpipe(a,b)
call finsert(x)

Entry b is another example of the unixpipe function. This entry uses the
keys function to assign the variables for unixpipe. If the command in
variable a does not require data from variable b, enter a2 null by pressing
EXECUTE when the program pauses for keys entry to variable b.

entry b
{
"Enter a: "
a= keys
call feed(a)
insert return execute
"Enter b :"

Glossary Functions WORD ERA 189

FUNCTION DESCRIPTION LIST

b = keys

call feed(b)

insert return(2) execute
x = unixpipe(a,b)

call finsert(x)

You must use the finsert function instead of the feed function to type the
value rcturned by unixpipe in the document.

The unixpipe function operates similarly to the WORD ERA function
"Command |." The Operating System Access Functions section in Chapter 11 gives
examples that use both unixpipe command "|" in glossary programs,.

while
Type: conditional
Value: while does not return a value
Syntax: while(¢cxpression)
{ statement or statements
}

(expression) may consist of various combinations of expressions
and operators:

while(expression operator expression)

As long as proper parenthetical syntax is followed, the argument
to while may contain a theorctically unlimited number of
expressions and operators.

Multiple {statements} to while must be enclosed in braces.

The while function allows repeated execution of a statement or statements

based on true or false conditions in the document. The truc or false conditions
are specified by the expressions in the argument to while. The statement
enclosed in braces is executed repeatedly as long as the value of the expression in
the argument to while remains true.

190 WORD ERA Glossary Functions

FUNCTION DESCRIPTION LIST

When the value becomes false, the statement is not executed and the program
continues after the closing brace in the while statement. The test of the
expressions takes place before each execution of the statement.

word

Type: document reading
Value: word at cursor location
Syntax: variable = word

conditional function(word operator expression)
call function(word)

The word function passes the word found at the cursor position or the nearest
word to the right of the cursor to the variable. When the word function is

used during program execution, the cursor is moved past the end of that word on
the document screen. A word is defined as a sequence of characters, including
punctuation, that begins and ends with a space or spaces. Spaces surrounding the
word are not stored in the variable.

Glossary Functions WORD ERA 191

FUNCTION DESCRIPTION LIST

192 WORD ERA Glossary Functions

CHAPTER 11

FUNCTION USAGE LIST

FUNCTION USAGE LIST

Functions can be grouped by the type of actions they perform when a glossary
program is exccuting. For example, when you use display functions such as
prompt, clrpos, and status, you can place messages on the text document

cditing screen. Document reading functions such as char and page no

return information about the text document. Opecrating system access functions
allow you to use a wide range of operating system commands in your glossary
programs.

In this list, functions are organized by the usage groups shown in Table 8. The
introduction to each usage group describes the functions in that group and
provides programming suggestions. Glossary entry examples are provided for
each group.

Sce the Alphabetical List of Functions in Chapter 10, and other chapters in this

book for additional examples and more detailed information about spccific
functions.

TABLE 8. Usage Groups and Their Functions

Usage Group Function
Conditional Functions do while
if
if else
while

Glossary Functions WORD ERA 193

FUNCTION USAGE LIST

Control Functions call
exit
glossary
jump

Display Functions clrpos
cursor
display
error
posmsg
prompt
status

Document Reading Functions beg doc
bot page
char
end_ doc
left margin
line
loc
number
page no
position
right _margin
spacing
text
text len
top__page
word

Document Writing Functions feed
finsert

Error and Logical Functions globerr
false
true

Interactive Functions key
keyin
keys
keysin

194 WORD ERA Glossary Functions

FUNCTION USAGE LIST

Mathematical Functions abs
max
min
num
number
pic
round
truncate

Operating System Access Functions date
time
unixfun
unixpipe

String Functions cat
index
len
max
min
occur
seg
sub
substr

CONDITIONAL FUNCTIONS
do while

if

if else

while

Using Conditional Functions

Use a conditional function when you want your program to ask a question and
execute different statements based on the response. Typical questions are: What
i1s the cursor position in the document? What did the operator just type? What is
the current value of a particular variable, string, or function?

Glossary Functions WORD ERA 195

FUNCTION USAGE LIST

A conditional function is part of a conditional statement. The conditional
statement includes the function, its arguments and expressions, and the statement
or statements that are executed as a result of the conditional test. The
conditional test is based on the evaluation of expressions in the argument to the
function. Conditional functions are typically used to perform a branch or a loop,
call a subroutine, or terminate the program.

The while and do while functions perform conditional loops. The statement
repetition action of a loop is combined with the conditional test. Remember that
do while always executes its statements at lecast once because the conditional

test is made after the statement is executed. The while function performs its
test before its statements are executed. If the condition starts out false, the
while statement or statements are never executed.

The if and if else functions perform conditional tests. Their statements are
exccuted basced on the true or false result of the test. They do not perform loops
as the while and do while functions do. You have to use a jump or

while statement in combination with if to perform a loop.

Chapters 7 and 8 give you in-depth information and program examples for each
conditional function.

Entry ¢ is a handy program that boldfaces only alphabetical characters. You can
use this entry to boldface a word in parentheses, a word that ends with some
form of punctuation, or a word followed by a space.

entry ¢

{
mode"b"
while(((char >= "A") & (char <= "2")) | ((char >= "a") & (char <= "z")))
{

right
)
mode "b"

}

This entry usecs the conditional loop while, the logical operators & and |, and

the char function. It makes usc of the ASCII collating sequence to restrict the
boldface to alphabetic characters. (The ASCII sequence is described in Appendix
C.) You can use this entry for any text emphasis mode by changing mode "b" to
another mode.

1906 WORD ERA Glossary Functions

FUNCTION USAGE LIST

Entry ¢ could also be written using a do while statement, as shown in entry d.
There is a subtle distinction in the way each entry performs its operation. Entry
¢, which uses while, will terminate execution if the word begins with an
excluded character such as a number or symbol. Entry d, which uses do while,
always executes its statement once regardless of the character. You can prove
this by trying both entries on the character combination: 2word

Entry ¢ will not bold "2word" because the test is made before the statements are
executed. Entry d does bold "2word" because the statements are executed before
the test is performed.

entry d
{
mode "b"
do
{
right
}

while(((char >= "A") & (char <= "Z")) | ((char >= "a") & (char <= "z")))

mode "b"

See entry D under the section Mathematical Functions and entry 1 under
Document Reading Functions section in this chapter for examples that use the
conditional if and if else statements.

CONTROL FUNCTIONS

call
exit
glossary

jump

Glossary Functions WORD ERA 197

FUNCTION USAGE LIST

Using Control Functions

Use control functions to control the statement execution order of your program.
The jump statement transfers control to a block of labeled statements in the
program. The statements are labeled by an identifying name in brackets called
the identifier. You can use jump to perform a branch or a loop.

The call statement transfers exccution control to a built-in function or a
subroutine. When a function is used as a statement (rather than an expression) it
is always preceded by the call statement. A subroutine is another glossary
entry in the same glossary document. The glossary statement transfers
exccution control to another cntry in the same glossary document. Either call
or glossary can be used to make an entry recall itself.

The exit statement causes the program to terminate.

Chapter 8 gives you in-depth information and program examples for each control
function.

See entry | under the section "Document Reading Functions" in this chapter for
an entry that uses control functions. Entry | also provides an example of how to

construct an entry that switches execution sequence between various parts of the
program, depending on conditional tests.

DISPLAY FUNCTIONS

clrpos

cursor (See also Document Writing Functions)
display

error

posmsg

prompt

status

198 WORD ERA Glossary Functions

FUNCTION USAGE LIST

Using Display Functions

You can usc display functions in your programs to place messages on the text
document editing screen, put the cursor in a specified location, or turn the screen
display refresh function off and on.

Following is a brief summary of cach display function. Refer to the alphabetical
list of functions in Chapter 10 for detailed function descriptions.

clrpos

cursor

display

error

posmsg

prompt

status

Clears the editing screen by displaying the number of blanks
specified by expression3 at the line and position specified by
expressions 1 and 2. Does not overwrite existing text and is
cleared by pressing CTRL/w or by the next function that cause
the editing screen to refresh. The statement call

clrpos(6,14,10) clears the screen on line 6 from position 14
through 24

Sends the cursor to the page, line, and position specified in the
expression. The statement call cursor("2,4,33") sends the cursor
to page 2, line 4, position 33 of the text document.

The statement call display(false) turns the screen display off,
and the statement call display(true) turns the screen display on.

Displays a message in the error area of the editing screen, line 25,
positions 51 through 79.

Displays the message in expression3 at the line and position
locations specified by expressions 1 and 2. The statement call
posmsg(4,6,"Hello") displays the word "Hello" at line 4, position 6
on the document editing screen.

Displays a2 message in the prompt area of the editing screen, line
1, positions 50 through 79.

Displays a message in the status area of the editing screen, line 25,
positions 26 through 79.

Glossary Functions WORD ERA 199

FUNCTION USAGE LIST

To best utilize display functions you need to understand how your WORD ERA
editing screen works.

THE EDITING SCREEN

When you are working in your document, you are looking at a visual display
called the editing screen. The editing screen is a grid that mcasures 25 vertical
lines (rows) by 80 horizontal character positions (columns).

This grid is all you can sec of your document at onc time even if you have a
document that is 60 lines long and 250 characters wide. To sce more of your
document, you must press Prevscrn or Nextscrn to jump from screen to screcn or
use the cursor control keys to scroll horizontally or vertically between screens.

Figure 11-1 shows the editing screen grid layout of 25 vertical lines by 80
horizontal positions.

The grid line and position numbers arc called the physical editing screen
locations. They never change in relation to the changing line and position
numbers of your text. The text line and position numbers are called the logical
editing screen locations.

PHYSICAL AND LOGICAL LOCATIONS

Physical screen location line and position numbers are not the same as logical
screen location line and position numbers. Physical location refers to the

non-changing grid in Figure 22 and the reserved areas of the screen shown in
Figure 23. Logical locations refer to changing text line and position numbers.

200 WORD ERA Glossary Functions

FUNCTION USAGE LIST

Figure 22 Editing Screen Grid

80 Character positions displayed
1

25 Lines displayed
i

Glossary Functions WORD ERA 201

FUNCTION USAGE LIST

Figure 23 Editing Screen Reserved Areas

Status Line 1

Status Line 2
Format Line Prompt area line 1, character locations 50-79
1 33 41 50 \ 80
1 \ | [
2 Ky NI
3 X

25 |

Status area line 25, character locations 26-79
Error area line 25, character locations 51-79

202 WORD ERA Glossary Functions

FUNCTION USAGE LIST

Try the following two short entries to see the difference between a physical
location and a logical location. Entry e uses the posmsg function to place a
message on line 1, position 43. Entry f uses the cursor function to send the
cursor to line 1, position 1, then inserts a message. (Since the cursor function
has to go to a page location and posmsg does not, be sure you are on page 1 of
your document so that you can see both messages displayed at once.)

entry e

{ ;
call psmsg(1,43,"THIS IS A POSMSG ON LINE 1,POS 43.")

entry f
{
call cursor("1,1,1")
insert
"THIS IS TEXT LINE 1, POS 1."
return(2)
execute

Although both posmsg and cursor specified line 1, the messages appeared on
different lines. What is line 1 to the cursor function, which uses a logical
location, is actually line 4 to the posmsg function, which uses a physical
location.

Notice that the posmsg message was displayed at position 43 so it would not
conflict with status line 1. Status line 1 is in a reserved screen area as shown in
Figure 23. Reserved screen areas are described later in this section.

If you are trying this exercise and are still in your document, press CTRL and w
(CTRL/w). The physical location message disappears because posmsg is a

display function and is not inserted as text in the document. The message
inserted by entry f remains in the document. When you use posmsg to display

a message over existing text the text is never actually overwritten. This principle
is illustrated by entry 1 in this section.

Glossary Functions WORD ERA 203

FUNCTION USAGE LIST

Physical Screen Locations: From the examples, you can see why the physical
screen locations on the grid in Figure 22 are the numbers you must use when you
specify line and position locations for the posmsg and clrpos functions,

The posmsg and clrpos functions can be positioned at any location on the

editing scrcen grid you choose. Acceptable line locations are 1 through 25.
Acceptable character positions are¢ I through 80. If you specify a line or position
location outside these numbers, the error message bad location will appear during
program execution, and the entry will terminate. Messages that extend beyond §0
characters on line 25 will cause screen display anomalies.

The prompt, status, and error functions have their message placement
predefined in specific editing screen rescrved areas as shown in Figure 23.

Logical Editing Screen Locations: As you can te¢ll from entry e, reserved arcas
of the editing screen are important considerations when you are using display
functions. These areas are reserved for system-generated prompt, status, and
error messages.

When you use the prompt, status, error, posmsg or clrpos functions

in reserved areas, you can overwrite system prompts and document status lines.
In addition, your display function messages can be totally or partially cleared by
system-generated or your own program-generated messages.

Depending on your program, you may want to replace a system message or status
line with your own message. You should always try your program in a text
document that you keep for testing glossary entries. Check your placement of
display functions and sce how they interact with system-gencrated displays. If
you are using keywords such as insert, search, delete, copy, or replace, the
messages that are integral to these functions will clear your program-generated
messages. You may need to put additional messages in your program, or just rely
on the system messages if they serve your purpose.

Figure 23 shows the reserved arcas of the editing screen. Lines 1 through 3 are
reserved for the two document status lines, the format line, and system-gencrated

prompt messages. Line 25 is reserved for system-generated status and error
messages.

204 WORD ERA Glossary Functions

FUNCTION USAGE LIST

The prompt, status, and error functions all have predefined message
display locations in the reserved areas as follows:

prompt messages display on line 1, positions 50 through 79
status messages display on line 25, positions 26 through 79
error mcssages display on line 25, positions 51 through 79.

These function messages display only in their reserved areas. Use the posmsg
function to display messages anywhere on the editing screen.

As you have seen from entries ¢ and f, the line and position numbers for physical
locations are not the same as logical locations for text line and position numbers.
Logical locations reflect the number of text lines per page or the number of
characters per line.

Logical Editing Screen Locations: Although 25 lines are displayed on the

editing screen, only 21 lines are available for text typing. These are lines 4
through 24 on Figure 24, which shows physical screen locations versus logical
scrcen locations. The line indicator in the first status line reflects the number of
the text line on the screen. If you place your cursor on Page 1, Line 1, Pos 1 in
your document, the cursor is actually on line 4 of the screen display, but the line
indicator will read "Line 1."

Think of the logical text location on the screen as a moving picture under a piece
of transparent glass. The text is framed by the reserved areas of the screen,
which are lines 1-3, and line 25. In Figure 25 text lines 1 through 21 are framed
by the reserved areas. The text within the frame can be scrolled up and down
(vertical scroll), or from side to side (horizontal scroll).

Glossary Functions WORD ERA 205

FUNCTION USAGE LIST

Figure 24 Physical Screen Locations vs. Logical Screen Locations

Status Line 1
Status Line 2

Format Line Prompt area line 1, character locations 50-79
1 33 41 50 80
1 \ [
2 LN
3 X
al1 T
512
6|3
714 o
8|5 E
9|s E’
107 °
11] 8 5
12| 9 Bl
13} 10 %
14 | 11 — -
15 | 12 R4
el
16 [13 2
17 | 14 c
18 | 15 =
19 16 %
20 | 17 =
21|18 o~
22 | 18
23 | 20
24 |21 _]
25

Status area line 25, character locations 26-79
Error area line 25, character locations 51-79

80 text character positions displayed at one time

2006 WORD ERA Glossary Functions

FUNCTION USAGE LIST

Figure 25 Text is Framed by Reserved Areas of the Screens

Status Line 1
Status Line 2

Format Line Prompt area line 1, character locations 50-79

1 33 41 50 80

1 1

2 L N\

3 X
This is a reference chapter for all the functions in the Gtossary progranming
language. Use it as you would a dlictionary to look up a function. The first
section is an alphabetical list by function name. I't includes a description ot
the function, the type of value required, and permissiblie syntax statements for
its use. The second section is a tist of function by usage type. Examples are
provided for each usage group. Program examples are provided where appropriate
to ctaritfy the nature of the function.w
-
Functions can be grouped by the type of actlons they perform when a glossary
program is executing. For example, when you use display functlons such as
prompt. clrpes, and status, you can place messages on the text document sditing
screen. Document reading functions such as char and page _no return information
about the text document. Operating system access functions allow you to use a
wide range of operating system commands in your glossary programs.«
-
In this list, functions are organized by the usage groups . The introduction
to each usags group describes the functions In that group and provides
programming suggestions. Glossary entry exampies are provided for each group.=
-
See the “Alphabetical List of Functlons” for additiona! examples and more
detailed information about speclfic functlions. e

25

28 51 80

Status area line 25, character locations 26-79

Error area line 25, character locations 51-79

Glossary Functions

WORD ERA

207

FUNCTION USAGE LIST

Messages posted by the posmsg and clrpos functions can be "pasted”

anywhere on the "glass" overlaying the text. They do not become part of the text;
they temporarily overlay it. Figure 26 shows text with an overlaid message
posted by posmsg.

Figure 26 A posmsg Message Temporarily Overlays Screen Text

Doc advgloss Page 1 Line 1 Pos 1
word Format 1 Spacing 1 length 54
(e ..l . . 2. .. 3. 4 5 . G kT e

This is a reference chapter for all the functions in the Glossary prograrming
language Use it as you would a dictionary to look up a function. The first
section is an alphabetical list by function name. It includes a description of
the function, the type of value required. and permissible syntax statements for
its use. The second section is a list of function by usage typs. Examples are
provided for each usage group. Program examples are provided where appropriate
to clarify the nature of the function.«

-

Functions can be grouped by the type of actions they perform when a glossary
Program S 6XOCUliNasuwsnukkanhnktennrernrnnkasenkerrkexxaeUNClions such as
prompt, clrpos, ands GLOSSARY IN PROGRESS xtext document editing
SCreen. DOCUMBNY Myawwkaxaxrxaxkaxak¥xcNAsnnaknkaaxneansnaex _NO return informatior
about the text document. Operating system access functlions ailow you to use a

wide range of operating system commands in your glossary programs.«
<

In this list, functions are organized by the usage groups . The iIntroduction
to each usage group describes the functions in that group and provides
programming suggestions. Glossary entry examples are provided for each group.«
<

See the "Alphabetical List of Functions” for additional examples and more
detailed information about specific functions.«=

You can demonstrate this concept shown in Figure 26 by trying entry g. Use a
text document that has a format line of 250 characters. Place your cursor on
position 250 and recall the entry. The message is displayed at the physical screcn
location of line 4, position 7, which is the logical screen location of line 1,
position 187.

208 WORD ERA Glossary Functions

FUNCTION USAGE LIST

entry g
{

}

call posmsg(4,7,"This is a posmsg on line 4, pos 7,(text line 1).")

When you have used display functions in a few programs, the physical locations
and logical locations will become easy to remember. You can use display
functions in a variety of programming situations. They are particularly valuable
when you are writing programs for others to use, as you can post non-disruptive
messages to the user on the screen during the execution of your program.

Clearing Display Messages from the Screen: Removing your messages is as
important as posting them. You can use three methods to clear display functions:

Clear prompt, status, and error messages by system-generated

prompt, status, or error messages, or by another message in the currently
executing glossary entry. If you use this method you must be sure a
replacement message is generated immediately after your message. This
method doesn’t work for posmsg unless its message is posted in a reserved
area.

Use the clrpos function to replace the message with blanks. Remember,
clrpos is an overlay of text; it does not replace text in your document.
Entry 1 uses clrpos in a while loop to clear the entire screen. This
method works well for prompt, status, and error messages because

they are in reserved (non-text) areas. It doesn’t work as well for posmsg
because you are still obscuring underlying text with blanks.

Use CTRL/w to clear messages. Using CTRL/w in your program is
generally the best method for clearing the posmsg function. Try
recalling entry h, which uses all four message display functions.

entry h
{
call prompt("HI")
call status("HI")
call error("HIY)
call posmsg(4,7,"HI")

Glossary Functions WORD ERA 209

FUNCTION USAGE LIST

After the entry has displayed in your document, press CTRL/w. All messages arc
cleared. To use CTRL/w in your program, you have to represent it by its octal
number, 027. (Octal numbers are described in Appendix C.)

Entry i in this section uses octal 027 (CTRL/w) as a quoted string. Like keyword
abbreviations in a quoted string, the octal number is preceded by a backslash.

When the status and error functions are displayed simultaneously in a
program, be sure the status message does not extend into the error message
area (positions 51 through 79). Any characters in the status message at
position 51 and beyond will be overwritten by the error message which begins
at position 51.

The display Function

The editing screen display is restored each time you perform a standard function
such as Insert, Delete, Copy, or Replace. When these standard functions are part
of your program, the screen is restored during program execution, just as it is
while you are editing. Although the glossary restores the screen faster than
normal editing does, it still slows the program down.

You can use the display function to turn the screen display restore off during
program execution. This is particularly valuable for lengthy programs, as the
runtime is reduced because the screen does not have to be continually restored.

A good example is entry | in Chapter 8, which uses the statement

call display(false) at the beginning of the program to turn the display off.

The screen display is turned back on at the end of the program by the statement
call display(true).

If you typed and recalled entry 1 in Chapter 8, using the "Amalgamated Widgets"
example, you observed a semi-static display. Try removing both display
statements from the entry and running it. Notice that the entry runs longer
because the screen is being restored.

210 WORD ERA Glossary Functions

FUNCTION USAGE LIST

Entry i shows you how to use a combination of display, posmsg, and

clrpos to spced up entries and provide notification that an entry is running.
Entry i also uses the keyword statement command format to turn off the status
line update. This is another technique to speed up glossary program exccution
time.

Entry i incorporates a variation of entry | shown in Chapter 8.

The "Amalgamated Widgets Month End Sales Statement” from Chapter 8§ is
repeated in this chapter for your reference in trying entries i (the example is on
Page N of glossary document gloss2b on the Glossary Diskette.

The posmsg messages in entry 1 use octal numbers and attribute codes to
display the messages in reverse video and flash modes. (Keyword abbreviations
for modes cannot be embedded in posmsg messages).

The octal numbers and attribute codes shown in posmsg strings apply to
terminals manufactured by Fortune Systems’ Corporation. Consult your terminal
manufacturer for information about character sets, attributes, and octal
equivalents that apply to your terminal.

If the posmsg strings shown in programs in this book do not work correctly on
your terminal, remove the octal and attribute codes from the message string. For
example, if the posmsg statement

call posmsg(7,26,"\034HD \0341d \034HBGLOSSARY IN PROGRESS\034Ib
\034HD \0341d")

does not display properly, change it to:
call posmsg(7,26,"GLOSSARY IN PROGRESS")
Appendix C describes octal numbers and attribute codes.

The "Glossary in Progress” flashing module in entry i1 could be placed in a
scparate entry and used as a subroutine with many different entries.

Glossary Functions WORD ERA 211

FUNCTION USAGE LIST

entry i

{

call posmsg(5,26,"\034HD

call display(false)
command format

linenumber = 1
while(linenumber < 25)

call clrpos(linenumber,1,80)
linenumber += 1

}

call posmsg(6,26,"\034HD \0341d

call posmsg(7,26,"\034HD

\034HD \0341d")

\0341d")

\034HD

call posmsg(8,26,"\034HD \0341d \034HD
call posmsg(9,26,"\034HD \0341d")
salesqty = 0
priceper = 0
grossale = 0

mfgcosts = 0
netsales = 0

salestotal = 0
grosstotal = 0
nettotal = 0

floop]

goto decimaltab
if(globerr)
{

jump total

}

salesqty = number
salestotal += salesqty
priceper = number
grossale = priceper * salesqty
grosstotal += grossale
right
call finsert{pic(grossale,"$,"))

\0341d")

\034Id \034HBGLOSSARY IN PROGRESS\0341Ib

\0341d")

212

WORD ERA

Glossary Functions

FUNCTION USAGE LIST

mfgcosts = number

netsales = grossale - mfgcosts * salesqty
nettotal += netsales

right
call finsert(pic(netsales,"$,"))

jump loop
[total]

{
command search "TOTAL" execute cancel
goto right
insert
decimaltab call feed(pic(salestotal,","))
decimaltab
decimaltab call feed(pic(grosstotal,"$,"))
decimaltab
decimaltab call feed(pic(nettotal,"$,"))
execute

return(2)

"Gross sales: "
call feed(pic(grosstotal,"$,"))
" are calculated by multiplying the quantity, "
call feed(pic(salestotal,","))
", times price per each.” return(2)
"Net sales: "call feed(pic(nettotal,"$,"))
"
quantity, and subtracting the result from gross sales."
return(2)

1\027"

command format
call display(true)

}

are calculated by multiplying manufacturing cost per each times

Entry i uses the same "Amalgamated Widgets Month End Sales Statement” example

as entry 1 in Chapter 8. You can find the example on Page N of glossary
document gloss2b on the Glossary Diskette.

Glossary Functions WORD ERA

213

FUNCTION USAGE LIST

The cursor Function

The cursor function can be considered both a display and a document writing
function. You can move the cursor to any logical location you choose. The
cursor cannot be placed in a reserved screen area unless you call it there with a
combination of posmsg and key or keys functions. Entry D (under the

section Mathematical Functions in this chapter) gives you an example of moving
the cursor with the posmsg and key functions.

Try writing some sample entrics to test the cursor function. Examples are
shown in entries j and k. For additional information about the cursor
function, see the section "Document Writing Functions" in this chapter.

entry j
{

}

call cursor("4,6,22")

entry k
{
call cursor("1,47,2")
insert
"COMPANY CONFIDENTIAL"
execute

Entry j sends the cursor to page 4, line 6, position 22. Note that the expression to
cursor is a quoted string with its parts separated by commas. Entry k sends

the cursor to page 1, line 47, position 2, then inserts the string "COMPANY
CONFIDENTIAL." For additional information about the cursor function see the
section Document Writing Functions in this chapter.

214 WORD ERA Glossary Functions

FUNCTION USAGE LIST

DOCUMENT READING FUNCTIONS

beg doc

bot page
char

end doc
left margin
line

loc

number

page no
position
right margin
spacing

text

text len
top__page

word

Using Document Reading Functions

During program execution, document reading functions return values from the
text document that reflect the cursor position, status line information, or format
line information. Document reading functions can be categorized by different
types of cursor location functions, as follows.

Glossary Functions WORD ERA 215

FUNCTION USAGE LIST

Cursor Location Functions

Cursor location functions are grouped into two typcs:
those that return numeric or alphabetic string values, and
those that return true or false values.

Numeric or Alphabetic Values: The line, loc, page no, and position

functions return numeric values equal to the cursor location in the text document.
The number function returns a numeric value equal to the number at the

cursor location. The char, text, and word functions return alphabectic

string values equal to the character, text block, or word at the cursor location.

Some points to remember about using the text function are that the finsert
function must be used to insert the value returned by text in the document;
format lines in the document are not retained by the text function; when the
value of text is inserted, it observes the format line immediately above the
insertion location. See the alphabetical listing for text in Chapter 10 for
additional information. Entry b in Chapter 12 shows you an interesting way to
use the text function.

True or False Values: The beg doc, bot page, end doc,

left _margin, right margin, and top__page functions return true or false

(1 or 0) values based on the cursor location in the text document. The two most
common conditional tests for functions that return true or false values, are the
if test and the if not test (using the logical not operator !) shown in entry 1

entry 1
{
if(top page)
{
jump legend

else if(!top__page)

{
goto up jump legend
)
[legend]
insert
center "For Immediate Release" return(2)
execute

216 WORD ERA Glossary Functions

FUNCTION USAGE LIST

Entry | performs two conditional tests on the cursor position. If the cursor is at
the top of the page if(top page) the string is inserted. If the cursor is not at
the top of the page it is sent there by the statement goto up, then the string is
inserted. Note that the second test, if({top page) uses the logical not operator.

You could also write the conditional tests by literally checking the numeric true
or false values as shown in entry m. This method is a bit more cumbersome that
entry I, but works equally well. Again, illustrating that there is more than one
way to write a glossary entry.

entry m
{
if(top page == 1)
{
jump legend

}
else if(top page == 0)

{
goto up jump legend
)
[legend]
insert
center "For Immediate Release” return(2)
execute

Format and Status Line Functions

The spacing function returns the vertical spacing value for the current format
line. The text__len function returns the current text length default for the
document.

DOCUMENT WRITING FUNCTIONS

cursor (See also Display Functions)
feed

finsert

Glossary Functions WORD ERA 217

FUNCTION USAGE LIST

Using the feed and finsert Functions

The feed and finsert functions write the values returncd from a function or

a variable in your document. Both functions must be preceded by the call
function when they arc used as statcments (rather than expressions). There arc
three major differences between feed and finsert: document writing
performance, treatment of WORD ERA document control codes, and treatment of
keyword abbreviations.

Document Writing Performance: The feed function writes characters in the
document as if they werc being typed from the keyboard (except much faster). If
the cursor is on existing text in the document when feed is called by the program,
the text will be overwritten. You can avoid overwriting by using the keywords
insert and execute as part of the feed statement. The following example

inserts the date at the cursor location in the document.

insert call feed(date) execute

The finsert function inserts characters in the document. Existing text is not
overwritten, and the action is very fast since characters or blocks of text arc
inserted all at once. You do not have to usc the keywords insert and cxccutce
since insertion is automatically performed by finsert. Using finscrt, the
statement example above is written as

call finsert(date)

Treatment of Document Control Codes: The finsert function recognizes and
writes WORD ERA document control codes as screen graphics, such as a
left-facing triangle for Return, a diamond for Center, or an arrow for Indent.
Document control codes can be part of values returned by the text function,
values used by unixpipe, values assigned to variables, or values returned by
document reading functions.

The feed function treats document control codes as string values and writes
them as strings, such as \B\ (return), \c\ (center).

218 WORD ERA Glossary Functions

FUNCTION USAGE LIST

You can demonstrate the different ways feed and finsert treat document

control codes by trying entries n and 0. When you recall these entries, place your
cursor on a screen graphic such as Return, Indent, or Decimaltab in your text
document. The feed function types the control code, and the finsert

function types the actual screen graphic.

entry n
{
character = char
insert
call feed(character)
execute
}
entry o
{
character = char
call finsert(character)
}

Appendix C gives you a list of document control codes and tells you how to use
them in your glossary programs.

Treatment of Keyword Abbreviations: You must use feed to write string
values that contain keyword abbreviations such as \r, \¢, or \t. The finsert
function does not recognize keyword abbreviations.

CTRL/Y Characters: Control Y characters are special characters that are
accessed by typing CTRL/y then typing a character. Control Y characters are
most frequently used for coding laser printer fonts and typing foreign or
accented characters. Both finsert and feed recognize and print Control Y
characters.

Using the cursor Function

While not strictly a document writing function, you can control cursor location
in the document with the cursor function. You can send the cursor to a specified
location, then call feed or finsert to write a value.

Glossary Functions WORD ERA 219

FUNCTION USAGE LIST

The cursor function uses the logical screen location line and position numbers
discussed in the Display Functions section in this chapter. The cursor cannot be
placed in the reserved screen areas, lines 1 through 3 and line 25.

Open and Unopened Editing Screen Areas: When you are using the cursor
function, you must consider unopened arcas of the screen. For example, assume
that your text begins on page 1, line 1, with an indent set at position 6. The text
ends on line 3, position 36. The screen is "open" from line 1, position 1, to line 3,
position 36. The remainder of the screen is "unopen" because it does not contain
characters.

The statement: call cursor("1,3,48") would send the cursor to line 3, position 36,
because position 48 is not an open arca of the screen. The cursor function gets
as close as it can to the specified location.

When a program is executing in a document, you can’t always know which areas
of the screen are open or closed. If this is a concern in your program, assign the
desired cursor position to a variable. Then use the loc function to return the
cursor position and compare it to the variable.

Entry p gives you an example that uses the cursor and loc functions to

control the cursor position. If you want to try this entry, set up a document with
a return (no text or spaces) on line 22, position I, of page 4. The cursor is not
able to go to position 12 (curpos = "4,22,12") because the screen area is not open
at that position.

The cursor is called and sent to the location specified by curpos. The arrival
location of the cursor is checked by comparing loc against curpos. If they
don’t match, the incorrect location is displayed in the status area, and the
error message tells you the cursor is in the wrong location. If they do match,
dollars is inserted by finsert at the cursor location.

The program sends the cursor as close as it can get, "4,22,12", then allows you the
option of moving the cursor to position 12. To move the cursor, you have to
space to position 12, which opens that screen area, then press EXECUTE. If you
don’t want to move the cursor, type quit and press EXECUTE. The exit
statement terminates the entry.

220 WORD ERA Glossary Functions

FUNCTION USAGE LIST

entry p

{
dollars = $4,782.25
curpos = "4,22,12"
call cursor(curpos)
if(loc != curpos)

{
call status(loc)
call error("Cursor is in wrong location")
call posmsg(1,43,"\034H‘Move cursor to 4,22,122\0341‘")
call posmsg(2,43,"\034H‘Type y & EXECUTE\034I‘")
call posmsg(3,43,"\034H‘Quit? type quit & EXECUTE\034I‘")
response = keys
"\027"
if((response == "y") | (response == "Y"))
call posmsg(1,43,"\034H‘Move cursor to 4,22,12\0341‘")
call posmsg(2,43,"\034H‘& press EXECUTE\0341‘")
call keysin
call finsert(dollars)
n\027||
exit
)
if((response == "quit") | (response == "QUIT"))
{
exit "\027"
)
)

call finsert(dollars)

ERROR AND LOGICAL FUNCTIONS
false
globerr

true

Glossary Functions WORD ERA 221

FUNCTION USAGE LIST -

Using the globerr Function

Use the globerr function to trap standard word proccssing function errors. A
standard function such as Search, Nextscrn, Prevscrn, or Go To Page [symbol], is
considered to be in an error condition when it sounds a beep because it cannot
actualize its function. Search beeps when it cannot find another instance of the
word it is searching for. Nextscrn beeps when there is no next screen to go to.

The globerr function helps you to branch, loop, or tecrminate an entry
gracefully if a standard function fails. Entry r and entry s are examples that usc
the globerr function.

entry r
{
search "manufacturer" execute
if(globerr)
{
execute exit -
}
cancel
insert
"computer "
execute -
)
entry s .
{
while(!globerr)
{ -
goto nextscrn
call finsert(text("1,2,1","1,6,27"))
)
)

Using true and false Logical Functions

Use the true and false functions to assign logical values or to perform

logical comparisons with other values. The true function always returns a
value of 1. The false function always returns a value of 1. Entries f and g in
Chapter 6 are examples that use true and false functions.

222 WORD ERA Glossary Functions

FUNCTION USAGE LIST

Entry C under the Mathematical Functions section in this chapter shows another

way to usc logical functions.

INTERACTIVE FUNCTIONS

key
keys
keyin

keysin

Using Interactive Functions

Interactive functions let you stop the program so that you can type data from the

keyboard. There are two types of interactive functions, the key and keys
functions, which return their input to a variable or to a function, and the
keyin and keysin functions, which type their input directly in the
document.

The key and keys Functions

When you use the key and keys functions, the data is stored in a variable or
used by a function. It is not typed in the document unless you use feed or
finsert statements. There are two ways to write key or keys input to the
document with feed (or finsert, which is interchangeable with feed in

most instances):

Assign key or keys input to a variable, then write the value to the
document by using the statements

variable = key
call feed(variable)

variable = keys
call feed(variable)

Glossary Functions WORD ERA

223

FUNCTION USAGE LIST

Use the following feed statement (in this case, key or keys is not
stored in a variable):

call feed(key) or call feed(keys)

The key function: The key function accepts onc typed kcy from you, then
immediately continues program exccution.

Any key on the keyboard (including Control Y character combinations) is
accepted by key and may be assigned to a variable. Because the character you
type as input to key does not appear on the screen you may want to usc a
conditional statement to check the validity of the entered character.

Entries t and u show two methods you can use to validate key entry. Entry t
assigns a value to a variable and usecs key as the first expression to the
conditional if. When the key is entered, it is compared to the second

expression, answer. The entered key is not assigned to a variable. In entry u

the entered key is stored in a variable and the two variables are compared. Since
entry u capturcs the key in a variable, an incorrect answer (as well as a correct
answer) can be typed in the document.

entry t

{
answer = 7
call prompt("Enter Answer")
if(key == answer)

"Correct, the answer is " call feed(answer)

}

else

{

}
ll\027"

"Incorrect, the answer is " call feed(answer)

224 WORD ERA Glossary Functions

FUNCTION USAGE LIST

entry u
{
realanswer = 7
call prompt("Enter Answer: ")
answer = key
if(answer == realanswer)

"Correct, the answer is " call feed(answer)

}

else

L

"Incorrect, the answer is
call feed(answer)

call feed(realanswer) ", not "

)
ll\027"

The keys function: The keys function accepts an unlimited number of
character keys that are assigned to a variable or a function. Program execution
continues when you press EXECUTE or RETURN. Only character keys
(including Control Y characters) are accepted by keys. A beep sounds if a
formatting or editing key, such as Copy, Insert, Delete, or Search is entered.

The string from keys can be checked by a conditional function, but it is more
difficult than checking key because a greater amount of data can be input.
The characters you type in response to keys are typed on the editing screen.
Like posmsg messages, they overlay existing text and are not cleared until you
press CTRL/w or CANCEL and RETURN. This overlay feature of keys can
be confusing because it obscures existing text. If you include the CTRL w
statement ("\027") immediately after the keys statement in your program you
can clear keys input without terminating the program or disrupting your text.

Remember, input to key or keys does not become part of the document.

You must use feed or finsert to write key or keys directly or to write

their assigned variables to the document. When you want to write directly to the
document, it is simpler to use keyin or keysin, which perform this function
naturally.

Glossary Functions WORD ERA 225

FUNCTION USAGE LIST

The keyin and keysin Functions

These functions are very similar to key and keys except that their input
cannot be stored in a variable. Instead, it is written directly to the document.
Unless they are used as expressions, both functions are preceded by the call
statement,

The keyin function accepts any keyboard key and writes it to the document.
Program execution continues immediately after you type the key. You cannot
correct a mistake (even though you can sce it on the screen) until the program
concludes.

The keysin function accepts an unlimited numbers of keys. It will accept any
key on the keyboard except EXECUTE. Pressing EXECUTE terminates keysin
entry, and program execution continues.

Since keysin accepts multiple keys, you can use the Backspace or Cursor
Control keys to correct typing mistakes. You cannot use the standard editing
functions, such as Insert or Delete, because they require EXECUTE to conclude
their function, which also concludes keysin entry. Pressing CANCEL during
keysin entry terminates the glossary program.

Because both functions place their input directly in the document, existing text
will be overwritten unless your cursor is in a blank area of the screcn or you usc
the keywords insert and execute. Entry x uses insert and execute to insert
keysin input in the document.

Because of the text overwriting characteristics inherent in keyin and keysin,
placement of the cursor is an important consideration when you use intcractive
functions with display functions.

entry v
{
insert
call keysin
execute

226 WORD ERA Glossary Functions

FUNCTION USAGE LIST

Using Interactive Functions with Display Functions

When you place a key or keys statement in your program after a display
function statement like prompt, status, error, or posmsg, the cursor

jumps to the position immediately following the function message. After you
enter the requested data, the cursor jumps back to its original location.

This is not a particularly important consideration when you are using the key
function, since its single key is not displayed on the screen. However, when you
use keys, the input to keys appears to overwrite whatever text exists at the
message location. As you have discovered, these characters can be cleared by
using a CTRL w statement (octal 027) in your program.

When keyin and keysin functions are used with display functions, the cursor
remains in its position and entered data becomes part of the document at that
location.

Try writing some short test programs similar to the following examples if you are
uncertain how interactive and display functions affect one another. When you
find a combination that works best for your application, put it in your program.

entry x

{
call posmsg(11,40,"enter key: ")
x = key
call feed(x)

}
entry y
{
call prompt(“enter keyin: ")
}
entry z
{
call error("enter keys: ")
y = keys
call feed(y)
}

Glossary Functions WORD ERA 227

FUNCTION USAGE LIST

entry A
{

call prompt("enter keysin: ")
call keysin

Refer to other chapters in this book for additional examples that use interactive

functions.

Entry D in the Mathematical Functions section in this chapter makes extensive

use of interactive functions.

MATHEMATICAL FUNCTIONS

abs

max
min
num
number
pic
round
truncate
Mathematical Operators
+ - * / %
Mathematical Assignment Operators
+= = *= /= Y= =
228 WORD ERA

Glossary Functions

FUNCTION USAGE LIST

Using Mathematical Functions

Mathematical functions can be used in a wide variety of programs. You need not
restrict their use only to mathematical applications. For example, if you want to
be sure the cursor is not on a number, use a combination of num and char

to check the character.

The num function returns a value of 1 (true) if its expression is numeric and a
value of 0 (false) if its expression is not numeric. The char function is a
document reading function that returns the character at the cursor location.
Entry B shows you how to be sure a character is not a number. The entry moves
the cursor right to boldface characters until a number is encountered, then turns
off the boldface mode.

entry B
{

mode "b"
while(num(char) == false)

{
)

mode "b"

right

As you have seen from several programs examples in previous chapters,
mathematical operators can be used for counting loops. Entry C can be used as a
subroutine with other entries to clear the entire screen. The entry uses the
mathematical assignment operator += to increment the variable linenumber.

entry C
{
linenumber = 1
while(linenumber < 25)
{
call clrpos(linenumber,1,80)
linenumber += 1

Glossary Functions WORD ERA 229

FUNCTION USAGE LIST

Creating a Calculator

Entry D is a program for crecating a calculator that can perform simple
mathematical calculations from your text document editing screen.

Although WORD ERA has a built-in Math function that is much more complcte
and faster than Entry D, the program is included in this book because it provides
an excellent example of mathecmatical functions usage. (Entry D is in glossary
document gloss3 on the Glossary Diskette.)

Entry D uses all of the mathematical operators, the interactive functions key
and keys, conditional if else functions, and the display functions posmsg
and clrpos.

Note that posmsg uses octal numbers and attribute codes to display its message
in reverse video and sound a beep. Octal numbers and attribute codes are
described in Appendix C.

An analysis of entry D follows the entry example. To use the entry recall it from
your document editing screecn and follow the instructions in the posmsg
prompts.

entry D

{
operandl = 0
operator = 0
operand2 = 0
result = 0

call posmsg(25,1,"\034HD CALCULATOR IS ON \0341d\007")
call posmsg(1,42,"\034HD Use Document Number? Type y or n : \0341d")
call posmsg(2,50,"")
answer = key
if((answer == "y") | (answer == "Y"))

call clrpos(1,42,38)

call posmsg

(1,42,"\034HD Place Cursor on Number; Press Execute \0341d")
call keysin

operandl = number

call clrpos(1,42,39)

230 WORD ERA Glossary Functions

FUNCTION USAGE LIST

call posmsg(2,42,"\034H* Absolute Value of Number? y or n:
\0341‘")

absolute = key

if((absolute == "y") | (absolute == "Y"))

call clrpos(1,42,38)
) call clrpos(2,42,38)
operandl = abs(operandl)

)
- else if((absolute == "n") | (absolute == "N"))
{
call clrpos(1,42,38)
_ call clrpos(2,42,38)
)
}
else if((answer == "n") | (answer == "N"))

call clrpos(1,42,38)
call clrpos(2,42,38)
- call posmsg(1,42,"\034HD Enter Number & Press Execute:
\0341d\007")
call posmsg(2,50,"")
operandl = keys
call clrpos(1,42,38)
call clrpos(2,50,30)
)
call posmsg
(1,42,"\034HD Enter Operator(+,-,*,/,%) & Execute: \0341d\007")
call posmsg(2,50,"")
- operator = keys
call clrpos(1,42,38)
call clrpos(2,50,30)

call posmsg(1,42,"\034HD Use Document Number? Type y or n : \034Id")
call posmsg(2,50,"")
answer = key
if((answer == "y") | (answer == "Y"))
{
call clrpos(1,42,38)
- call posmsg
(1,42,\034HD Place Cursor on Number; Press Execute \0341d")
call keysin
. operand2 = number
call clrpos(1,42,39)

Glossary Functions WORD ERA

231

FUNCTION USAGE LIST

call posmsg(2,42,"\034H* Absolute Value of Number? y or n:
\0341‘")

absolute = key

if((absolute == "y") | (absolute == "Y"))

call clrpos(1,42,38)
call clrpos(2,42,38)
operand2 = abs(operand2)
)
else if((absolute == "n") | (absolute == "N"))
{
call clrpos(1,42,38)
call clrpos(2,42,38)
)

else if((answer == "n") | (answer == "N"))
call clrpos(1,42,38)
call clrpos(2,42,38)
call posmsg(1,42,"\034HD Enter Number & Press Execute:
\0341d\007")
call posmsg(2,50,"")
operand2 = keys
call clrpos(1,42,38)
call clrpos(2,50,30)
)

if(operator == "+")
{

result = operandl + operand2

llse if(operator == "-")

result = operandl - operand2
i:lse if(operator == "*")
{ result = operandl * operand2
ilse if(operator == "/")

{
}

result = operandl / operand2

232 WORD ERA Glossary Functions

FUNCTION USAGE LIST

else if(operator == "%")

{

}
call posmsg(1,42,"\034HD Calculation result is: \0341d\007")
call posmsg(2,50,round(result,2))
call posmsg(25,42,"\034HD Press EXECUTE to continue \0341d\007")
call keyin
"\027"

result = operandl % operand2

Analysis of Entry D Functions

The round and truncate functions: The round or truncate function

reduces result numbers to a manageable size. In the syntax example below, the
round function rounds result to two decimal places. The example uses the
result posmsg statement from entry D. If you did not use round or

truncate on a calculation like 222 / 13, the result would be
17.07692307692307692307, which is a very long number.

call posmsg(2,50,round(result,2))
The round function adds 1 if the fractional part beyond the specified decimal
place is 5 or greater. If it is less than 5, nothing is added. The result of the

calculation 222 / 13 using round is 17.08.

Alternatively, you can use truncate. In the syntax example below, the
truncate function truncates result at two decimal places.

call posmsg(2,50,truncate(result,2))
The truncate function does not mathematically round result, it just chops
off the end. Using truncate, the result of 222 / 13 is 17.07 (rather than 17.08,

the result achieved from rounding).

Be sure to use round if you want a truly rounded result number.

Glossary Functions WORD ERA 233

FUNCTION USAGE LIST

Calculating with a Number in the Document: The number function reads a
number from the document as part of your calculation. Entry D us¢s a yes/no
branch and the number function to allow you to usc a number typed in the
text as an operand in the calculation.

The number function returns the number at the cursor location. It recognizes
numbers only; a value of 0 is returned if the number is preceded by a required
space or contains any alphabetical characters. The number may contain a leading
dollar sign, commas, a decimal point, and/or leading or trailing plus or minus
signs. (Refer to the functional definition of number in Chapter 10 for a

detailed description.)

Using the abs function: The abs function takes the absolute value of a
number. Essentially, it strips away any signs (such as + or -) and treats the
number as an unsigned number. For example, suppose the office administrator
for the "Leche Dairy," has prepared the following letter.

Dear Customer:

Your bill for home dairy delivery in February was 47.32,
minus -4.27 crediting overpayment for January, which amounts to $

Thank you for your patronage of Leche Dairy.

Vaca Bovine, Office Administrator

Ms. Bovine wants to use the late charge number in the letter as an operand to the
glossary calculator (entry s). However, the calculator doesn’t deal well with the
minus sign in front of the number (-4.27). By using the abs function she can

use the signed number in the document.

Adding Additional Functionality to the Calculator: The calculator is still a
basic program. As such, it is a good program to experiment with. See what
additional features you can add to the calculator. Here are some suggestions:
Add a feature that allows you to insert the calculation result in your document,
Add a loop to allow another calculation without exiting the calculator.

234 WORD ERA Glossary Functions

FUNCTION USAGE LIST

Add featurcs that save the numbers entered on the first calculation and
allow you to use them in the sccond calculation.

Use the pic function to add commas to result numbers above 999. See
the description of pic in the alphabetical function list in Chapter 10.

Using the max and min functions

When you write glossary programs for others to use, you have no way of knowing
the exact document conditions during program execution. This means you have
to build more document reading or program analysis functions into your
programs.

The max and min functions provide an example of this concept. Assume

that you want to use the highest number value of three variables in your
program. Two of the variables are declared and initialized in the program, but
the third variable must be read from the document. You don’t know what the
document number variable is because it varies each time the glossary is used.

You can use the max function to provide the variable evaluation. Entry E
gives you an example that uses max to display the highest variable in the
status areca. You could then write another programming statement that allows
the operator to make a decision based on the highest variable number displayed
by status. Entry E could also b¢ written using the min function to provide

the value of the lowest variable.

entry E
{
thisis = 25
thatis = 44
call posmsg
(1,42,"\034HD Place cursor on number & press Execute \0341d")
call keysin
call clrpos(1,42,38)
docnumis = number
highest = max(thisis, thatis, docnumis)
call status(highest)
call posmsg(1,42,"\034HD Press Execute to Continue \0341d\007")
call keyin
11\027u

Glossary Functions WORD ERA 235

FUNCTION USAGE LIST

OPERATING SYSTEM ACCESS FUNCTIONS

nen

command

IIIII

command
date

time
unixfun

unixpipe

Using UNIX Operating System Access Functions

These functions allow you to include UNIX operating system commands in your
glossary programs. If you have never used UNIX at the shell command level, vou
should read a commercial book on the UNIX operating system beforc using
unixfun and unixpipe. You don’t nced to know UNIX to usc the date

and time functions.

The date and time Functions

Use the date function to return the system date and time. Use the time

function to return only the time. Entry J in the section "String Functions” in this
chapter shows you how to use the substr and if else functions to modify

the value returned by date so that it can be used in a business letter.

Entry F is a glossary entry you can use to periodically display the date and time
from your text document cditing screen. Remember, both the date and time
function take their values from the system date and time, so if your system datc
and time have been set incorrectly your entry will also be incorrect.

entry F
{
call posmsg(2,38,"\034HD IT IS NOW: \0341d\007")
call posmsg(2,51,date)
call posmsg(25,37,"\034HD Press EXECUTE to clear time \034Id") call
keyin
ll\027"

236 WORD ERA Glossary Functions

FUNCTION USAGE LIST

Note that the date function is used as an expression to the posmsg function.
Since the date function returns a string value (the date) it is used in place of
the third expression in the posmsg argument, which is normally a quoted

string. You could use this method for any function which returns a displayable
value.

Entry F uses octal number and attribute code combinations to place the posmsg
message in reverse video. Octal numbers and attribute codes are described in
Appendix C. The octal number for CTRL/w is used to clear the posmsg
messages from the editing screen when you press EXECUTE.

Entry G below, uses the time function to display just the time. Note that entry
G uses unixfun to execute the UNIX command "sleep 7" to display the time
for seven seconds.

entry G
{
call posmsg(2,42,"\034HD THE TIME IS: \0341d\077")
call clrpos(2,56,1)
call posmsg(2,58,time)
call unixfun("sleep 7")
call clrpos(2,40,35)

The unixfun and unixpipe Functions

Both of these functions give you access to a wide range of UNIX commands you
can invoke from the document editing screen.

When you call unixfun in your program, it performs the following actions.

1. Escapes from the document to the standard UNIX Bourne shell sh
(this action is transparent, you do not literally see this occurring).

2. Executes the UNIX command in its argument, for example, the
statement call unixfun("pwd") displays the current working directory
pathname at the cursor location in your text document.

Glossary Functions WORD ERA 237

FUNCTION USAGE LIST

3. Displays the standard output from the UNIX command at the cursor
location in your text document. Characters displayed by unixfun are
not written to the document and can be cleared from the screen by
pressing CTRL/w or including the octal "\027" in your glossary
program.

Because the UNIX command must be an expression in the argument to
unixfun, you cannot use the interactive functions keys or keysin to enter
the argument to unixfun. You can, however, use the interactive functions
key or keys by assigning the input to a variable and using the statement

xinput = "keys"

call unixfun(xinput)
A programming alternative to unixfun is the keyword statement command "!".
Command "!" is described in this section.

When you call unixpipe in your program, it performs the following actions.
1. The unixpipe function escapes to the standard UNIX Bourne shell sh

2. Executes its commands and writes the standard output of the UNIX
command in your text document.

3. The standard output from a unixpipe command is written directly to the
document and becomes a part of it.

"

The keyword statement command "|" is an alternative to unixpipe. Command

"I" is described below.

You must assign the value returned by unixpipe to a variable as shown in

entry H. There arec two expressions in the argument to unixpipe, ¢xpressionl is
the UNIX command in quotes. Expression2 is the data expected by the command.
Since very few UNIX commands expect data, the second expression may be a null
as shown in entry H.

238 WORD ERA Glossary Functions

FUNCTION USAGE LIST

entry H

{

X = llwholl

b = me
y = unixpipe(x,b)
call finsert(y)

)

Refer to the functional description of unixpipe in Chapter 10 for two glossary
entry examples that use unixpipe.

Using command and command "|"

Both command " and command "|" are not functions, they are keywords. They are
included here because their action is equivalent to unixfun and unixpipe.

Entry I is an example that uses both command "!" and command "|".

entry I

{
call display(false)
command "!"
"sort documentb -0 documentbh”
return
execute
command
execute
"cat documentb"”
return
call display(true)

}

nn "y

Entry t uses command "", command "|", and the UNIX command sort to sort a
WORD ERA document and write the sorted result to a text document you are
currently editing. (To sort text on the document editing screen use the keyword
statement command merge or command MERGE.)

To try this entry, prepare the document to be sorted (documentb in the example)
by typing a simple list of words, one word per line. Change the glossary entry so
that the name of this document replaces "documentb.”

Glossary Functions WORD ERA 239

FUNCTION USAGE LIST

Edit the document where you want the sorted list and recall the entry. As the
comments in entry I indicate, you could replace the document name with the
keysin function and interactively enter the name while the entry is executing,

If you are totally unfamiliar with command """ and command "|", try using both
commands a few times from your text document before you use them in a
glossary entry.

To use command "" from your document editing screen, press COMMAND then
type ! You are now in the UNIX command shell. Type a UNIX command and
press EXECUTE or RETURN. The output of the command is displayed on the
screen, and the prompt "Press execute to continue" appears. Press EXECUTE.
You are returned to the document editing screen,

To use command "|" from your document editing screen, press COMMAND, then

type |. The prompt "Replace what?" appears. Highlight the document text you

want to replace and press EXECUTE. You are now in the UNIX command shell.

Type a UNIX command and press EXECUTE or RETURN. The output of the
command replaces the text you highlighted in your document.

Good UNIX commands to practice with are who, which gives you a listing of .
all users currently logged onto the system, or ls, which gives you a listing of

your current directory.

When the output of unixpipe is returned to your document, it is not formatted

like it 1s in the UNIX shell. You may want to write a glossary program to
reformat it in your document.

STRING FUNCTIONS

cat
index
len

max P

240 WORD ERA Glossary Functions

FUNCTION USAGE LIST

occur
seg
sub

substr

Using String Functions
The previous entries in this book have shown you how to assign alphabetic or
numeric strings to variables, how to type the string value of a variable in your
document, and how to compare one string value against another.
String functions provide even more flexibility in your programming use of string
values. You can use string functions in many ways. Some suggestions for their
use might be to
Extract a portion of the string and assign it to another variable.
Substitute a segment of a string with a different segment.
Find out if a specific sequence of characters is included in the string.
Combine strings from two different variables to form one string.

Find out how many characters a string contains.

Compare multiple strings to determine their highest or lowest ASCII
collating value.

The following entries all use string functions.

Using substr to Reformat the date Function

Entry J uses the substr and cat functions to format the value returned by
the date function so that it can be used in a business letter. The date
function returns the system date and time in this format:

Fri Jul 14 19:25:14 1987

Glossary Functions WORD ERA 241

FUNCTION USAGE LIST

For most business letters, you probably want the date to read
July 14, 1987

In entry J, the output of date is assigned to today. The substr function
extracts the month from today by specifying positions 5 through 7. This value
is stored in month. The full spelling of the current month plus a space is then
reassigned to the variable month.

The day and year are extracted from today by substr and assigned respectively
to day and thisyear. The cat function is used to concatenate a comma

and the year (with the leading space) into the variable year. The variables
month and day are assigned to thisday by cat, thisday and year

are concatenated and assigned to currentdate, which is typed in the document.

Entry J can be called as a subroutine by other entries that require the date in a
standard business format.

entry J
{
today = date

month = substr(today,5,7)

if(month == "Jan") {month = "January "}
if(month == "Feb") {month = "February "}
if(month == "Mar") {month = "March "}
if(month == "Apr") {month = "April "}
if(month == "May") {month = "May "}
if(month == "Jun") {month = "June "}
if(month == "Jul") {month = "July "}
if(month == "Aug") {month = "August "}
if(month == "Sep") {month = "September "}
if(month == "Oct") {month = "October "}
if(month == "Nov") {month = "November "}
if(month == "Dec") {month = "December "}

day = substr(today,9,10)
thisyear = substr(today,20)
year = cat(",",thisyear)

thisday = cat(month,day)
currentdate = cat(thisday,year)
call feed(currentdate) return

242 WORD ERA Glossary Functions

FUNCTION USAGE LIST

When you use a string function like substr, you must know the position of the
string segments to extract them. To determine the positions before you write
your program, write a short program to check the string. Be careful, however,
which date function you use in your program. Entries K and L both return the
date, however the value returned by entry K (which uses the glossary date
function) and entry L (which uses command "' to return the system date is quite
different, as shown below.

entry K

{
today = date
call feed(today)

}

entry L

{
command "|"
execute
lldate"
execute

}

This is the date returned by entry L, which uses command "" to bring the system
date directly from UNIX.

Sat Jul 14 08:17:57 PDT 1984
This is the system date returned by the date function in entry K.
Sat Jul 14 08:19:59 1984
The direct system date includes the timezone "PDT." If you used this date to
count positions for substr, your position count after the time segment would be
off by four characters.
Using the len function
Use the len function to determine how many characters are in a string. Entry
M is used as a subroutine for an interactive mailing list program. If the operator

typed the full name for a state rather than the two-character abbreviation, an
error message appears, and the operator is asked to re-enter the state.

Glossary Functions WORD ERA 243

FUNCTION USAGE LIST

entry M
{
call prompt("Enter state: ")
state = keys
call clrpos(1,50,30)
if(len(state) > 2)
{

call error("State too long, re-enter: ")
state = keys

call feed(state)
ll\027|l

The most frequent uses for the index, occur, seg, and sub functions are
in Records Processing control glossary entries. See the Records Processing User’s
Guide for program examples.

SUMMARY

This chapter completes Part 3 Glossary Functions Reference and Usage Guides.
Chapters 12 and 13 provide administrative and operating system information for
the word processing supervisor and UNIX user. Chapter 14 provides usage
instructions for the Glossary Diskette accompanying this manual.

244 WORD ERA Glossary Functions

CHAPTER 12

ADMINISTERING GLOSSARY PROGRAMS

Administering programs is just as important as writing them. Whether you are
writing programs for yourself or for others, you will be responsible for testing,
review, maintaining, and updating your programs. You will derive the greatest
benefit from your glossary programs by reviewing and updating them frequently.
This chapter offers you practical advice on glossary program administration.

Such topics as program planning, troubleshooting, and program obsolescence are
covered. You are shown how to set up and maintain a glossary program log book.
Administering programs in a multiuser environment and program security are also
discussed.

When you become proficient in writing glossary programs, two things usually
occur: You rapidly acquire a large collection of programs, and you write
programs for other people to use.

When you reach this point, the following considerations become vital:

Program planning: Why do we need it? How long will it take to write it?
Is the time spent writing it worth it? Is the planned application suitable for
a glossary program? Would it be better to use a spreadsheet or Records
Processing?

Program applications: What does the program do? Who should use it? How
do you use it?

Program access: Where are the glossary documents on the system? Which
program is in which glossary document?

Program runtime: How long does it take to run? How do I schedule
runtime? How much system space does it consume?

Glossary Functions WORD ERA 245

ADMINISTERING GLOSSARY PROGRAMS

Program backup, storage, and retrieval: Where are the programs stored?
How often do programs need to be backed up? Where is the hard copy
kept?

Program obsolescence: Is it still good for anything? Can it be updated or
should a new program be written?

Program duplication: Why are there different versions of the same program
on the system? Which one is correct?

Programs in a multiuser environment: How did my glossary document get
renamed? Who's editing my glossary when I want to edit it? Who made all
those weird changes to my program?

Program debugging (troubleshooting): What syntax error? This isn’t a bug,
it’s a monster! Hooray, I fixed the bug, let’s go to lunch.

This chapter discusses each of these considerations and gives you some technical

tips.

ADMINISTERING PROGRAMS

The following considerations are detailed from the bulleted items on the previous

page.

Each item illustrates a different facet of program administration.

Program Planning

You should consider writing a glossary program for the following reasons:

You or someone you are supervising is continually re-keying or copying the
same text. It could be an address, legal paragraphs, form letters, technical
terms, or standard forms.

You are typing tables in your document, then hand-calculating them and
inserting the results. You can decide to use the Math feature, use a glossary
program, or a combination of both.

246

WORD ERA Glossary Functions

ADMINISTERING GLOSSARY PROGRAMS

You are required to fill out complicated standard forms that arc pre-printed
on tractor-fed computer paper or snap-apart carbon copies. You can use the
Forms Processing feature, a glossary program, or a combination of both.

You are working with mailing lists, parts lists, or inventory lists where some
items remain standard and other itcms change periodically. Glossary
programs are an integral part of the Records Processing feature.

Of course, therc are many other reasons for writing a program. Some of them
will be particular to your own working environment. The reasons listed are the
most universal programming applications. As a criterion, if you are performing
the same task on a periodic basis, you should consider it a program candidate.

When you are planning a glossary program to perform production tasks, you
should analyze the amount of time it will take to write the program against the
amount of time saved by the program. Obviously, you don’t want to spend three
hours writing a program that will save five minutes one time only. But, if you
spend three hours writing a program that will save five minutes a day, your time
is well spent.

Sometimes you can get too ambitious with a glossary program. If you are

planning to use glossary programs for extremely large financial spreadsheets or

massive mailing lists, you should consider using another application, such as a

spreadsheet, database program, or Records Processing. These applications are

specifically designed to serve your spreadsheet or data base needs and run much

faster than a glossary program for these uses.

Program Applications

You need to provide three kinds of information for every program you write:
What the program does (its application)

How the program flow is executed (why it works the way it does)

How the program is used (which keys you press or what you type if it is
interactive)

Glossary Functions WORD ERA 247

ADMINISTERING GLOSSARY PROGRAMS

Set up a "Glossary Program Information" notebook. Provide a separate tab for
each glossary document and include the following information:

Index of the glossary document that shows c¢ach entry label with a one-line
comment about the entry, (see entry b for a program that does this for you)

Printed hard copy of every entry

Instruction sheet for entries that are long enough or complicated enough to
require instruction

The amount of information required about a program increases with the
complexity of the program. Comment lines in the entry are probably sufficient
for simple programs.

Longer programs or programs designed for temporary employees to use require
hard copy documentation. See entry a in the section "Program Examples" in this
chapter for an example of a good, concise instruction sheet for a glossary
program.

The effort you make in setting up and maintaining adequate glossary records is

rewarded by the amount of time you save in keeping track of your programs and
their uses.

Program Access

In addition to knowing how your programs work and how to use them, you need
to know where they are on the system. If you are working on a single-user
system, you probably don’t have any difficulty remembering which glossary
documents are in which library. On a multiuser system with four or more users,
this can sometimes be a problem.

One solution is to create a library specifically for glossaries. Call this library
"glos" (or something similar and short). Keep all multiuser glossaries in this
library so that they are in one place and are accessible by all users.

248 WORD ERA Glossary Functions

ADMINISTERING GLOSSARY PROGRAMS

Do not create this library through WORD ERA. Instead, use the newuser login to
make a new account. This way, you place the library under the user login
directory and shorten the pathname you must use to attach the glossary from
your document. To attach a glossary from another user, you must give the full
pathname, which includes the /u/ directory, the user’s login directory, the
glossary library, and the glossary name. For example:

/u/barbara/Glossaries/usegl

To attach the glossary from the /u/ directory the pathname is
/u/glos/glossaryname, which is shorter. To edit a glossary you can either log in
as "glos" or use the full pathname, /u/glos/glossaryname.

You can expedite this further by writing a program such as entry 1 below to do
everything for you except enter the glossary document name.

entry 1

{
command
glossary

"/u/glos/"

If you are a UNIX user, you can use the In command to link glossaries to all
user home directories. Chapter 13 shows you how to do this.

When you are working in your text document and need to use an entry but can’t
remember the label, use entry i in Chapter 14 to give you an index of your
glossary document. You can also include an index display as an entry in your
glossary document.

Program Runtime

Runtime is a real consideration in glossary programming. All glossary programs
execute in the "foreground,” and your terminal is unavailable for use with other
applications while the program is running. With a multiuser system, you can use
another terminal to run the program. However, in a busy production
environment, this is not always a feasible alternative. As you have learned,
turning the display refresh of f by using the call display(false) statement helps
speed up glossary runtime.

Glossary Functions WORD ERA 249

ADMINISTERING GLOSSARY PROGRAMS

You could create a schedule to run lengthy programs during lunch hours, in the

evenings, or overnight. The "glossary in progress” program shown in Chapter 11
is helpful for this purpose. It notifies people that a program is running and that
the terminal should not be used until the program is finished.

Again, if your programs take excessively long to run, glossary may not be a
suitable solution for your application.

Program Backup, Storage, and Retrieval

Like any WORD ERA document of value, programs should be backed up to an
archive Diskette every time a change is made. The Diskettes should be stored in
a safe place, be clearly labeled, and be available for quick retrieval.

You can keep a record of program archive Diskettes by printing the program
archive Diskette index and placing it in the front of your "Glossary Information
Notebook."

Always keep a hard copy of your program filed in your notebook, your filing
cabinet, your desk drawer, or your pocket, but do keep a hard copy. If someonc
accidentally deletes it from the system and you lose the archive Diskette at the
same time, its going to be difficult to rewrite all that programming code.

Program Obsolescence

Programs become obsolete when your office procedures change, when you think
of a better program, or when you update an old program. Periodically review the
programs you have on the system or on archive Diskettes and delete obsolete
programs. They take up space and can cause confusion if someone tries to use
them.

When you update a program, get rid of the previous version. You can keep a
hard copy file of all your old programs if you like or have a special archive
Diskette just for obsolete programs.

Try to write your programs with an eye toward future modification. Comment
lines and documentation help a lot when you are updating an old program. It’s
too easy to forget what your logic was if the program flow is not clearly
described. Working on someone else’s program is even more difficult.

250 WORD ERA Glossary Functions

ADMINISTERING GLOSSARY PROGRAMS

If possible, have periodic meetings of all the glossary writers in your department
to review programs. You can also discuss and establish standard commenting and
documenting procedures for programs. If your group writes a large number of
programs, these meetings can help spread information about glossary usage and
can provide a vehicle for sharing new programs.

Program Duplication

Several versions of the same program can cause a lot of confusion. Be sure to
note revision numbers on your programs. File or delete old versions. Notify all
your program users when you replace an old program with a new one.

Programs in a Multiuser Environment

As you learned in Chapter 4, several users can attach and use the same glossary
document at the same time. You cannot edit, archive, copy or move a glossary
document while another user has it attached or is editing it. You can, however,
attach, use, and edit a glossary document (although no other user can attach, or
otherwise access the glossary document while you are editing it).

You must be especially careful with glossaries on a multiuser system. A user who
is logged on the system under a different account than yours can delete, rename,
or move the glossary to an archive Diskette without your knowledge. Be sure to
check with all users on your system before you perform any of these functions on
a glossary document.

Use the comments line on the glossary document summary to establish ownership
of your glossary programs. A comment like "Please see System Administrator
before making any program changes" informs someone accessing the document
that you do not want changes made without your permission.

Notations in your glossary hard copy notebook will help clarify questions
regarding who has responsibility for specific programs.

Glossary Functions WORD ERA 251

ADMINISTERING GLOSSARY PROGRAMS

If you are concerned about security or do not want to permit other users to access
your glossary documents you can:

Password your glossary documents (see Chapter 4 for information about
password protecting glossary documents).

Change file permissions on your glossary documents (refer to the WORD
ERA Reference Guide and FOR:PRO User’s Guide for information about
file permissions).

Program Debugging (Troubleshooting)

A bug is programming parlance for an error in a program. Debugging is the
process of finding and correcting bugs. Most bugs can be classified as errors in
the following categories:

Syntax
Execution
Logic

SYNTAX BUGS: Syntax bugs occur when you violate a rule in the Glossary
language. They can be errors in statecment construction, incorrect use of a
function, a misspelled keyword or function, too many or too few expressions in a
function argument, missing identifiers, or incorrectly named variables.

As you have already experienced, your glossary compiler helps you find and
correct syntax bugs. Sometimes the messages are a bit cryptic, but they generally
point you in the right direction. Refer to Appendix E for a descriptive list of all
error messages associated with Glossary Functions.

EXECUTION BUGS: Execution bugs occur during program execution and
usually cause the program to terminate abruptly (crash). They can result from
trying to divide by zero, from using incorrect keyword sequence for a standard
WORD ERA function, or from leaving out an input statement (like key or
keysin). Even if the program verified as correct it may not execute correctly.
The glossary compiler cannot detect execution bugs unless they are related to
syntax bugs.

252 WORD ERA Glossary Functions

ADMINISTERING GLOSSARY PROGRAMS

LOGIC BUGS: Logic bugs are sometimes the most difficult errors to track

down because they are particularly prevalent when you are using loops and
branches. Some of the following ideas may help you to detect these errors: Try
temporarily removing a loop to test the statement execution for one pass; check
all your variable names and be sure they are initialized to 0 or an initial value; if
you are using the same variable more than once in the program, make sure it’s
spelled correctly each time; be sure you don’t inadvertently duplicate variables;
check your subroutine calls are you calling the correct entry?

A very subtle logic bug can occur when you are programming mathematical
calculations. The program can appear to be running properly, but the
calculations are wrong. You should always check your program results against a
set of known results. If you write a program to add a column of figures, also add
the column on a hand calculator to be sure the program is adding correctly.

POINTS TO REMEMBER: Here are some cardinal rules to remember about
writing and debugging programs:

Don’t get frustrated if it doesn’t work right the first time.
The bug is probably something simple.
Debug your program systematically by developing a troubleshooting routine.

Rely on your sixth sense and intuitive judgement.

Glossary Functions WORD ERA 253

ADMINISTERING GLOSSARY PROGRAMS

254 WORD ERA Glossary Functions

CHAPTER 13

GLOSSARY INFORMATION FOR UNIX USERS

WORD ERA File Structure

As a UNIX user, you can perform filing operations on WORD ERA documents

from the UNIX shell.

Before you do this, however, you should be acquainted

with the files that comprise a WORD ERA document. WORD ERA utilizes these
files to store and manipulate document information. The files and their
extensions are listed in Table 13-1.

Table 8 WORD ERA Document Files

WORD ERA
Document Files

Description

filename

filename.dc

filename.fr

filename.gl

filename.ex

The textual portion of a document

The history, statistics and page pointer information for
the document

The formats, header page, footer page and work page
for this document

The compiled and executable binary form of a glossary
document

The compiled and executable form of an exception
dictionary

Glossary Functions

WORD ERA 255

GLOSSARY INFORMATION FOR UNIX USERS

When you perform a UNIX command such as rm, c¢p, or mv, you must

follow the WORD ERA document name by the metacharacter (*) to ensure that
all files are included. For example, the following command removes the WORD
ERA file report from the directory (library).

rm report®*

The .gl File

As indicated above, the .gl file is only present if the document is a compiled
glossary. The .gl file is a binary file. When a glossary is created, either by
example or hand-coding, the glossary compiler creates the .gl file.

The text file (base file without an extension) is the glossary source file. The
object file is the .gl binary code for the glossary entries.

Because the .gl file is fully executable without the presence of the other
associated files, there are some interesting things you can do with it. Some of
them are:

Use the In command to link the .gl file across directories. Users can
then conveniently use the glossary entries without giving the full
pathname when they attach the glossary document.

If you want to maintain write security on your glossary documents,
change read and write permissions on the files. The .gl file is still
executable, but users without the proper permissions cannot edit the
glossary and change the entries.

To save space on the system you can delete all but the .gl file. Since it
is binary object code, it is executable without the other files. Be sure to
copy the entire file to an archive disk before you delete the files. When
you want to make additions to the glossary document or edit an entry,
you can load the three files back on the system, edit the glossary
document and recompile it.

256 WORD ERA Glossary Functions

GLOSSARY INFORMATION FOR UNIX USERS

SUMMARY

In Chapter 11 you learned how to use the UNIX access functions unixfun and
unixpipe, as a UNIX user you will find many interesting ways to use these
functions in your glossary programs.

Refer to Appendices C and E for additional information of interest to the UNIX
user.

Glossary Functions WORD ERA 257

GLOSSARY INFORMATION FOR UNIX USERS

258 WORD ERA Glossary Functions

CHAPTER 14

GLOSSARY ENTRY EXAMPLES

Your WORD ERA Installation Diskette number four (labeled 4 of 4), also
contains the following four glossary documents:

gloss1, gloss2a, gloss2b, and gloss3

All the glossary entry cxamples shown in this book are in these glossary
documents.

To retrieve the glossary documents from the installation diskette:

1.

10.

Be sure you are in the correct WORD ERA library. (You may want to
create a special library for the glossary documents.)

Select Filing from the Main menu and press EXECUTE

Select Retrieve from archive from the Filing menu and press EXECUTE
Insert the WORD ERA Installation Diskette and press EXECUTE

When the diskette information is displayed, press EXECUTE to continue
Type gloss1, the name of the first glossary document

Press EXECUTE twice

Retricve the remaining three glossary documents: gloss2a, gloss2b, gloss3

When you have retrieved all four glossary documents, select Remove archive
diskette from the Filing menu and Press EXECUTE

Press EXECUTE, then remove the diskette.

Glossary Functions WORD ERA 259

GLOSSARY DISKETTE

You can attach any one of the glossary documents and use the entries in it as you
learn glossary. Using the glossary documents saves you typing time if you want
to try some of the longer entries in the book.

In addition to glossary entries, the example tables used with entries k and 1 in
Chapter 8 are provided on Page N of glossary document gloss2b.

You can edit the glossary documents and modify any entry. As you read this
book you will probably find several entries you can use for your own word
processing activities.

Contents of Glossary Documents

The contents of each glossary document are shown in the following list. The
chapter in this book where the entry appears is shown in a comment line after
the entry label. Page numbers correspond to the entry page in the glossary
document.

Entries in Glossary Document: glossl

entry a /*in Chapter 1*/ 1
entry b /*in Chapter 1*/ 2
entry ¢ /*in Chapters 1 and 3*/ 3
entry d /*in Chapter 3*/ 4
entry e /*in Chapter 3*/ 5
entry f /*in Chapter 4%/ 6
entry g /*in Chapter 4%/ 7
entry h /*in Chapter 4%/ 8
entry i /¥in Chapter 4%/ 9
entry j /*in Chapter 4%/ 10
entry D /*in Chapter 4 (modified entry d)*/ 11
entry k /*in Chapter 4%/ 12
Entries in Glossary Document: gloss2a

entry A /*in Chapter 5%/ 1
entry a /*in Chapter 5%/ 2
entry b /¥in Chapter 5%/ 3
entry ¢ /*in Chapter 5%/ 4
entry C /*in Chapter 5%/ 5
entry d /*in Chapter 6%/ 6

260 WORD ERA Glossary Functions

GLOSSARY DISKETTE

entry € /*in Chapter 6*/ 7
entry f /*in Chapter 6*/ 8
entry g /*in Chapter 6*/ 9
entry h /*in Chapter 6*/ 10
entry i /*in Chapter 6*/ 11
entry j /*in Chapter 6*/ 12
entry k /*in Chapter 6*/ 13
entry 1 /*in Chapter 6*/ 14
entry m /*¥in Chapter 6*/ 15
entry n /*in Chapter 6*/ 16
entry o /*in Chapter 6*/ 17
entry p /*in Chapter 6*/ 18
entry r /*in Chapter 6%/ 19
entry s /*in Chapter 6*/ 20
entry t /*in Chapter 6*/ 21
entry u /*in Chapter 6*/ 22
entry v /¥in Chapter 6*/ 23
entry w /*in Chapter 6*/ 24
entry X /*in Chapter 6*/ 25
entry y /*in Chapter 6*/ 26
entry z /*in Chapter 6*/ 27
entry B /¥in Chapter 6*/ 28
entry D /*in Chapter 6*/ 29
entry E /*in Chapter 6*/ 30
entry F /*in Chapter 6*/ 31
entry G /*in Chapter 6*/ 32
entry H /*in Chapter 6*/ 33
entry I /¥in Chapter 6%/ 34
entry J /*in Chapter 6*/ 35
entry K /*in Chapter 6%/ 36
entry L /*in Chapter 6*/ 37

Entries in Glossary Document: gloss2b

entry A /*in Chapter 7%/ 1
entry a /*in Chapter 7%/ 2
entry b /*in Chapter 7%/ 3
entry ¢ /*in Chapter 7%/ 4
entry d /*in Chapter 7*/ 5
entry e /*in Chapter 7*/ 6
entry f /*in Chapter 8*/ 7

Glossary Functions WORD ERA 261

GLOSSARY DISKETTE

entry w
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
cntry
entry
entry
entry q

TOBZEHARNTF— =T gQm N« x

/*in Chapter 8%/
/*in Chapter 8*/
/*in Chapter 8*/
/*in Chapter 8*/
/*in Chapter 8*/
/*in Chapter 8*/
/*in Chapter 8*/
/¥in Chapter 8*/
/*in Chapter 8*/
/*in Chapter 8*/
/*in Chapter 8*/
/*¥in Chapter 8*/
/*in Chapter 8%/
/*in Chapter 8*/
/*in Chapter §*/
/*in Chapter 9*/
/*in Chapter 9*/
/*in Chapter 9%/
/*in Chapter 9%/
/*in Chapter 9*/

Entries in Glossary Document: gloss3

entry a
entry b
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry t

w g OB g TR e o a0

/*in Chapter 10*/
/*in Chapter 10*/
/*in Chapter 11*/
/*in Chapter 11%/
/*in Chapter 11*/
/*in Chapter 11%*/
/*in Chapter 11*/
/*in Chapter 11*/
/*in Chapter 11*/
/*in Chapter 11*/
/*in Chapter 11*/
/*in Chapter 11*/
/¥in Chapter 11%*/
/*in Chapter 11*/
/*in Chapter 11*/
/*in Chapter 11%/
/*in Chapter 11*/
/*in Chapter 11*/
/*in Chapter 11%/

s ot okt it bkt Pk kot
OO0 -IAUNRERWND—=OVOO I WUV h WHN -

262

WORD ERA Glossary Functions

GLOSSARY DISKETTE

entry u /¥in Chapter 11%/ 20
entry v /*¥in Chapter 11%*/ 21
entry x /*in Chapter 11*/ 22
entry y /*in Chapter 11%/ 23
entry z /*in Chapter 11*/ 24
entry A /*¥in Chapter 11*/ 25
entry B /*in Chapter 11*/ 26
entry C /*in Chapter 11%*/ 27
entry D /¥in Chapter 11*/ 28
entry E /*in Chapter 11%*/ 29
entry F /*in Chapter 11*/ 30
entry G /*in Chapter 11*/ 31
entry H /¥in Chapter 11*/ 32
entry I /*¥in Chapter 11*/ 33
entry J /¥in Chapter 11*/ 34
entry K /¥in Chapter 11%*/ 35
entry L /*in Chapter 11*/ 36
entry M /¥in Chapter 11*/ 37
Glossary Functions WORD ERA 263

GLOSSARY DISKETTE

264 WORD ERA Glossary Functions

APPENDIX A

RESERVED WORDS AND SYMBOLS

The words and symbols in this appendix are reserved for Glossary and Records

Processing keywords, functions, and operators.

The list of reserved words below

cannot be used as variable names or identifier names in any glossary program.

Functions marked with an asterisk (*¥) can only be used in Records Processing
Control-Glossary Documents.

Reserved Words

abs DOWN insert occur spacing
ascending* down jump PAGE status
backspace EAST key page STOP

beg doc east keyin page no stop

bot page else keys pic sub

call end doc keysin position subscript
CANCEL entry LEFT posmsg substr
cancel error left PREVSCRN SUPERSCRI.
cat EXECUTE left margin prevscrn T
CENTER execute len prompt superscript
center exit line quote TAB

char false loc REPLACE tab

clrpos feed max replace text
COMMAND finsert MERGE RETURN text len
command FORMAT merge return thru*
COPY format min RIGHT time

copy gl MODE right top page
cursor globerr mode right margin true

date glossary MOVE round truncate
DECIMALTAB GOTO move save record* unixfun
decimaltab goto NEXTSCRN SEARCH unixpipe
DECTAB HELP nextscrn search up

dectab help NORTH seg up
DELETE if north select record* WEST
delete INDENT NOTE sort* west
descending* indent note SOUTH while
display index num south word

do INSERT number space

Glossary Functions WORD ERA 265

RESERVED WORDS AND SYMBOLS

Reserved Symbols

The characters in the following list arc reserved for use by Glossary and can only
be used for their designated purpose.

Function Symbol
Mathematical + - * / %
Relational and Equality < > <= >= == !=
Logical ! & |

Assignment =

Mathematical Assignment += -= *= /= Y%=
Statement () (Y [

266 WORD ERA Glossary Functions

APPENDIX B

COMPARISON OF GLOSSARY KEYWORDS AND FUNCTIONS

The glossary language is provided for two WORD ERA applications: Glossary
and Records Processing Control Glossary Documents. Although the glossary
writing procedure is the same for both, the compliment of glossary keywords and
functions is different for each application, as shown by the following list:

Glossary uses all keywords and functions except special Records Processing
selection and sorting functions.

Records Processing uses most Glossary functions, plus special record
selecting and sorting functions.

The following list shows which keywords and functions can be used for each
application.

Keywords and Functions Used in WORD ERA Applications

Records
Name Type Glossary Processing

abs function X X
ascending function X
backspace keyword X X
beg doc function X

bot page function X

call function X X
cancel keyword X X
cat function X X

Glossary Functions WORD ERA 267

COMPARISON OF GLOSSARY KEYWORDS AND FUNCTIONS

Records
Name Type Glossary Processing
center keyword X X
char function X
clrpos function X
command keyword X X
COPY keyword X X
copy keyword X X
cursor function X
date function X
decimaltab keyword X X
dectab keyword X
delete keyword X
descending function X
display function X
do function X X
DOWN keyword X
down keyword X
EAST keyword b
east keyword X
else function X X
end__doc function X
entry label X X
error function X X
execute keyword X
exit function X X
false function X X
feed function X
finsert function X
FORMAT keyword X
format keyword X
gl keyword X
globerr function X
glossary keyword X
goto keyword X
help keyword X
if function X X
indent keyword X
index function X X
insert keyword X
jump function X X
268 WORD ERA Glossary Functions

COMPARISON OF GLOSSARY KEYWORDS AND FUNCTIONS

Records

Name Type Glossary Processing
key function X X
keyin function x

keys function X X
keysin function X

LEFT keyword X

left keyword X

left margin function X

len function X X
line function X

loc function X

max function X X
MERGE keyword X

merge keyword X

min function X X
mode keyword X

MOVE keyword X

move keyword X

nextscrn keyword X

NORTH keyword X

north keyword X

note keyword X

num function X X
number function X

occur function X X
PAGE keyword X

page keyword X

page no function X

pic function X

position function X

posmsg function X

prevscrn keyword X

prompt function X X
quote keyword X

REPLACE keyword X

replace keyword X

return keyword X

RIGHT keyword X

right keyword X

Glossary Functions

WORD ERA 269

COMPARISON OF GLOSSARY KEYWORDS AND FUNCTIONS

Records
Name Type Glossary Processing
right margin function X
round function X X
save_record function X
SEARCH keyword X
search keyword X
seg function X X
select record function X
sort function X
SOUTH keyword X
south keyword X
space keyword X
spacing function X
status function X X
stop keyword X
sub function X X
subscript keyword X
substr function X X
SUPERSCRIPT keyword X
superscript keyword X
tab keyword X
text function X
text len function X
thru function X
time function X
top page function X
true function X X
truncate function X X
unixfun function b'e
unixpipe function X
uUp keyword X
up keyword X
WEST keyword X
west keyword X
while function x X
word function X
270 WORD ERA Glossary Functions

APPENDIX C

CHARACTER CODES

This appendix describes character and attribute codes that can be used in your
glossary programs. Table C-1, which is arranged in the ASCII (American
Standard Code for Information Interchange) collating sequence, shows each
WORD ERA character, its octal number, attribute codes, the attribute set by the
code, and related document format control codes.

Each WORD ERA character is represented by a corresponding decimal, octal, and
hexadecimal number. Only octal numbers are discussed in this appendix.

The octal numbers and attribute codes shown in posmsg strings apply to
terminals manufactured by Fortune Systems’ Corporation. Consult your terminal
manufacturer for information about character sets, attributes, and octal
equivalents that apply to your terminal.

If the posmsg strings shown in programs in this book do not work correctly on
your terminal, remove the octal and attribute codes from the message string. For
example, if the posmsg statement

call posmsg(7,26,"\034HD \0341d \034HBGLOSSARY IN PROGRESS\0341Ib
\034HD \0341d")

does not display properly, change it to:

call posmsg(7,26,"GLOSSARY IN PROGRESS")

Table C-2 gives a descriptive listing of WORD ERA document format control
codes.

Glossary Functions WORD ERA 271

CHARACTER CODES

ASCIl COLLATING SEQUENCE

The ASCII collating sequence is a standard set of numeric codes used to represent
characters. Entry a underscores a word, excluding punctuation and numbers, by
comparing characters according to their ASCII number value.

entry ¢
{
modell_"
while(((char >= "A") & (char <= "Z")) | ((char >= "a") & (char <= "z")))
{
right
)
mode " "

OCTAL NUMBER CONVERSIONS

Use octal numbers in your glossary entries to include a control character in the
program. For example, entry b includes two octal codes: \007 (CTRL G) sounds
the keyboard bell, and \027 (CTRL W) refreshes the screen display. Table C-1
defines the action of control characters in a WORD ERA document. Not all
control characters on the ASCII list are applicable to WORD ERA. Their actions
are listed as undefined on Table C-1.

entry b
{
call posmsg(1,43,"Enter Amount: \007")
amount = keys
ll\027"
call feed(amount)

ATTRIBUTE CODES

Glossary provides you with a set of keyword abbreviations for text emphasis
modes, such as boldface, or underline. These abbreviations can be embedded in
strings used by variables or functions. The only glossary functions that don’t
accept keyword mode abbreviations are display functions such as posmsg or
prompt.

272 WORD ERA Glossary Functions

CHARACTER CODES

To emphasize display function messages you must use attribute codes. Attribute
codes are letters or symbols that are assigned to octal numbers 001 through 077 on
the ASCII set. Each attribute code sets a specific emphasis mode or combination
of modes. Attribute codes and the modes they set are shown in Table C-1.

Entry ¢ and entry d illustrate the difference between keyword mode
abbreviations and attribute codes to highlight a message. In entry c, the keyword
abbreviation \b for boldface is embedded in the call feed string. In entry d,
which uses the posmsg function, the attribute code for boldface must be

proceded by an octal code and an operator selector (the operator selectors H and I
are described below).

entry ¢
call feed("\bCustomer Name:\b ")

return(2)
call keysin

entry d

{
call posmsg(1,43,"\034H* Customer Name:\0341‘")
name = keys
"\027"

The syntax to use an attribute code in a display function message is

display function("\034 operator_selector on attribute code message \034
operator__selector_off attribute_code")

The following examples for prompt and posmsg use the syntax shown above to
display their messages in blink mode:

prompt("\034HB PRESS EXECUTE TO CONTINUE \034IB")
posmsg(25,43,"\034HB PRESS EXECUTE TO CONTINUE \034IB")

The rules for the attribute code syntax are:

Glossary Functions WORD ERA 273

CHARACTER CODES

Turn on the attribute code with the sequence
\034H attribute code

Backslash escapes the octal 034 and prevents it from being treated as
text in the message.

Attribute codes are Fortune Systems’ extended terminal commands, and
must be preceded by a CTRL \ (octal 034).

Capital H is an operator selector to use when adding an attribute. It
"turns on" the attribute code at the beginning of the message.

Turn off the attribute code with the sequence
\034I attribute code

Capital I is an "operator selector" to subtract an attribute. It "turns off"
the attribute code at the end of the message.

The entire string, including octal numbers, operator selectors, attribute
codes, and the message, must be enclosed in double quotation marks.

DESCRIPTION OF TABLE C-1

Table C-1 is ranked in ascending ASCII collating sequence. Column 1 shows the
ASCII character; column 2 shows the corresponding octal number; columns 3 and
4 show the attribute code and the attribute set or attribute combination by the
attribute code.

Column 5 shows the WORD ERA Document Format Control Code. These codes
are covered in detail in this appendix under the section WORD ERA Document
Format Control Codes, and also in Table C-2.

Column 6 shows the WORD ERA action performed by a control character. If the
character is not applicable in WORD ERA, it is listed as undefined.

In Table C-1, a caret (*) before a character means the character is a control
character. To type a control character, you simultaneously press CTRL and the
character key.

274 WORD ERA Glossary Functions

CHARACTER CODES

TABLE C-1. Character Codes

Attri- Document
Attri- bute Attribute WORD ERA
ASCII Octal bute Set by Control Code Action
Char Number Code Code ON OFF Performed
@ 000 Undefined
~A 001 A \O\ Co\ Overstrike
B 002 B b \Z\ Cz\ Flash(Blink)
~C 003 C bo Undefined
D 004 D T \RY\ Cr\ Reverse video
~“E 005 E ro Undefined
~F 006 F rb Undefined
~G 007 G rbo Keyboard
bell
~H 010 H h Backspace
~ 011 I ho 011 Tab
~J 012 J hb 012 Return
(sof't)
\B\012 Return
(hard)
~K 013 K hbo 013 Ignore
(Margin
break)
~L 014 L hr 014 Required
page
(hard)

Glossary Functions WORD ERA 275

CHARACTER CODES

TABLE C-1. Character Codes (continued)

Attri- Document
Attri- bute Attribute WORD ERA
ASCII Octal bute Set by Control Code Action
Char Number Code Code ON OFF Performed
\A\014 Optional
page
(sof't)
M 015 M hro Undefined
N 016 N hrd Lock GI
char set*
~0 017 O hrbo Lock GO
char set*
~P 020 | 1 \UN Cu\ Low
underline
~Q 021 Q lo Undefined
"R 022 R 1b Undefined
~S 023 S 1bo Undefined
~T 024 T Ir Undefined
~U 025 U Iro Undefined
vV 026 A\ Irb Undefined
W 027 w Irbo Restore
~X 030 X d \D\ Cd\ Double
underline
Y 031 Y do Invoke G2
character®
~Z 032 z db Undefined
276 WORD ERA Glossary Functions

CHARACTER CODES

TABLE C-1. Character Codes (continued)

Attri- Document
Attri- bute Attribute WORD ERA

ASCII Octal bute Set by Control Code Action

Char Number Code Code ON OFF Performed

“ 033 [dbo Escape

~\ 034 \ dr Undefined

~1 035] dro Invoke G3
character®*

~n 036 A drb Undefined

~ 037 . drbo Reset
character
set*

(space) 040 ¢ H A XA Cx\ Highlight
(bold)

! 041 a Ho

" 042 b Hb

043 c Hbo

$ 044 d Hr

% 045 e Hro

& 046 f Hrb

! 047 g Hrbo

(050 h Hh

) 051 i Hho

* 052 j Hhb

+ 053 k Hhbo

Glossary Functions WORD ERA 277

CHARACTER CODES

TABLE C-1. Character Codes (continued)

Attri- Document
Attri- bute Attribute WORD ERA

ASCII Octal bute Set by Control Code Action
Char Number Code Code ON OFF Performed
s 054 1 Hhr
- 055 m Hhro

056 n Hhrb
/ 057 0 Hhrbo
0 060 p H1
1 061 q Hlo
2 062 r Hlb
3 063] Hlbo
4 064 t Hlr
5 065 u Hlro
6 066 v Hlrb
7 067 w Hlrbo
8 070 X Hd
9 071 y Hdo

072 A Hdb
; 073 { Hdbo
< 074 ; Hdr
= 075 } Hdro
> 076 ~ Hdrb

077 177 Hdrbo
@ 100
278 WORD ERA Glossary Functions

CHARACTER CODES

TABLE C-1. Character Codes (continued)

Attri- Document
Attri- bute Attribute WORD ERA
ASCII Octal bute Set by Control Code Action
Char Number Code Code ON OFF Performed

A 101
B 102
C 103
D 104
E 105
F 106
G 107
H 110
I 111
J 112
K 113
L 114
M 115
N 116
0 117
P 120
Q 121
R 122
S 123
T 124
U 125

Glossary Functions WORD ERA 279

CHARACTER CODES

TABLE C-1. Character Codes (continued)

Attri- Document
Attri- bute Attribute WORD ERA
ASCII Octal bute Set by Control Code Action
Char Number Code Code ON OFF Performed

126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152

> = - T N < X E <

-

oo ™ 0 oo O o 8

[y

e

280 WORD ERA Glossary Functions

CHARACTER CODES

TABLE C-1. Character Codes (continued)

Attri- Document
Attri- bute Attribute WORD ERA
ASCII Octal bute Set by Control Code Action
Char Number Code Code ON OFF Performed

k 153
154
155
156
157
160
161
162
163
t 164
165
166
167
170
171
172
173
174
} 175
~ 176
cancel

del 177

[~ w = o0 v O B g -

<

— ~ N < % g

Glossary Functions WORD ERA 281

CHARACTER CODES

WORD ERA DOCUMENT FORMAT CONTROL CODES

WORD ERA formatting characters are displayed on your document editing screen
as graphic symbols, such as a right facing triangle for Tab, a diamond for Center,
or an arrow for Indent. Each of these characters has a control code sequence
embedded in the document. If you are familiar with UNIX commands, you can
sec these codes by using the more command to view the document from the

UNIX shell. Figure C-1 shows you how a fragment of text looks on the document
edit screen, Figure C-2 shows the same text viewed through UNIX.

Figure C-1 How Text and Formatting Characters Look on the Document
Editing Screen

Doc gloss Page 1 Line 1 Pos 1

word Format 1 Spacing 1 Length 54

LG U S I S - Y X DI S S NN SR A TS SR o S <
<4

|

<

Creating and Using a Glossary Document «

<

4

There are seven steps you must know to create and use any glossary document.d
<4

1.-3Creete a glossary document. There are three ways to create a glossary
document .4

Figure C-2. How WORD ERA Text and Control Codes Look from the
UNIX Shell

NANTLAGINABY

\B\

Creating and Using a Glossary Document\B\
\B\

\B\

There are seven steps you must Know to create and use any glossary document.\B\
\B\

1.\NI\\U\Create a glossary document\U\. There are three ways to create a
glossary document.\B\

\B\

282 WORD ERA Glossary Functions

CHARACTER CODES

As you can scc by comparing the two figures, the combination of an an optional
page break, the format line, and a return, requires the control sequence
VANLAGINAB\.

How to use Document Format Control Codes in Programs

Most of the document control codes shown in Table C-2 have keyword
abbreviations that can be used in strings or can be assigned to variables. For
example, the keyword abbreviations for a tab and a return are \t and \r. These
keyword abbreviations, however, cannot be used in a variable when you want to
evaluate a value returned by a document reading function like char or text.
Entry ¢ dctermines if the character at the cursor position is a return. The
document control code sequence for the return symbol is assigned to retl. The
character at thc cursor position is assigned to ret2 by the text function. The
two variables are compared and the string "this is a return" is inserted in the
document if the cursor is under a return. If the cursor is not under a return, the
string "it is NOT a return" is inserted in the document. (You could also use the
char function to return the value of the character at the cursor position.)

entry e

{

retl = "\\B\\\012"
ret2 = text(loc,loc)

if(retl =(ret2)

{insert "this is a return" execute)
else

{insert "it is NOT a return” execute}

)

Use the finsert function to type the value of variables containing document
control codes in your document. You can use feed and finsert
interchangeably for octal or keyword abbreviations, but you must use finsert
for document control code and octal combinations like this sequence for an
optional page break \\A\\\014.

Table C-2 shows each WORD ERA document format control code, the action
performed in the document, and a brief description of the code and how the code
can be used in your programs.

Glossary Functions WORD ERA 283

CHARACTER CODES

TABLE C-2. WORD ERA Document Control Codes

Control
Code

Action
Performed

Description

\Gnnn\

~L

\A\"L

Format number
identification

Required page
break

Optional page
break

A WORD ERA document may
contain 100 different format lines.
The control sequence \Gnnn\ sets a
specific format line number. The
"nnn" stands for a format number
between 1 and 100 and is displayed
in the document as a format line for
setting tabs, columns, and margins.

A required page break that

is not deleted by the pagination
process; displayed in the document as
a double dashed line. The syntax for
assignment to a glossary program
variable is: variable = "\014"

An optional page break that

can be deleted by the pagination
process; displayed in the document as
a single-dashed line. The syntax for
assignment to a glossary program
variable is:

variable = "\\A\\\014"

284

WORD ERA Glossary Functions

CHARACTER CODES

TABLE C-2. WORD ERA Document Control Codes (continued)

Control
Code

Action
Performed

Description

~

~J

\B\"J

~“K

Tab

Return (soft)

Return (hard)

Ignore

Begin text line at the next tab
position in the format line (if no tab
exists in the format line, advance one
space); displayed in the document as
a right facing triangle. The syntax
for assignment to a glossary program
variable is:

variable = "011"

Word wrap return used to change the
line ending whenever editing causes
the text to rewrap; not displayed in
the document. The syntax for
assignment to a glossary program
variable is: variable = "012"

Return that is not changed by word
wrap; displayed in the document as a
left facing triangle. The syntax for
assignment to a glossary program
variable is;

variable = "\\B\\\012"

Used to break contiguous character
strings at the right margin; not
displayed in the document, and
deleted when the line is reformatted.

Glossary Functions

WORD ERA 285

CHARACTER CODES

TABLE C-2. WORD ERA Document Control Codes (continued)

Control
Code

Action
Performed

Description

A\

\UA

\u\

\D\

\d\

A XA

Ax\

Backslash

Underline on

Underline off

Double Underline on

Double Underline off

Bold on

Bold off

Since backslash is used as a control
code delimiter, a backslash typed in
the document is escaped by
backslashes.

Occurs before the first character in
an underlined sequence and turns
underline mode on.

Occurs after the last character in an
underlined sequence and turns *
underline mode off.

Occurs before the first character in a -
double underlined sequence and
turns double underline mode on.

Occurs after the last character in a
double underlinsd sequence and
turns double underline mode off.

Occurs before the first character in a
bold sequence and turns bold mode
on.

Occurs after the last character in a
bold sequence and turns bold mode
of f.

286

WORD ERA Glossary Functions h

CHARACTER CODES

TABLE C-2. WORD ERA Document Control Codes (continued)

Control
Code

Action
Performed

Description

\O\

\o\

\R\

\r\

\Z\

\z\

A\S\

Overstrike on

Overstrike off

Reverse video on

Reverse video off

Blink (Flash) on

Blink (Flash) off

Superscript

Occurs before the first character in
an overstrike sequence and turns
overstrike mode on.

Occurs after the last character in an
overstrike sequence and turns
overstrike mode off.

Occurs before the first character in a
reverse video sequence and turns
reverse video mode on.

Occurs after the last character in a
reverse video sequence and turns
reverse video mode off.

Occurs before the first character in a
blink sequence and turns blink mode
on.

Occurs after the last character in a
blink sequence and turns blink mode
of f.

When the document is printed, a
superscript symbol causes the printer
to index up 1/4 line; displayed in the
document as an up arrow.

Glossary Functions

WORD ERA 287

CHARACTER CODES

TABLE C-2. WORD ERA Document Control Codes (continued)

Control
Code

Action
Performed

Description

\s\

\M\

\t\

\I\

\i\

Subscript

Right-Flush Tab

Decimal Tab

Indent

Indent, generated

When the document is printed, a
subscript symbol causes the printer to
index down 1/4 line; displayed in the
document as a down arrow.

Right justify text under a format
line right-flush tab (r) until a
Return, Tab, or another Right-flush
Tab is encountered; displayed in the
document as a left arrow.

Align numbers ty decimal point
(period) under tab stop in format
line; displayed in the document as a
short vertical line joined to an
underbar.

Left justify wrapped text under a
format line tab until a hard return is
encountered; displayed in the
document as a right arrow.

Generated by the pagination process
when a page break causes an
indented paragraph to split between
pages; deleted by the pagination
process when the indented paragraph
is rejoined by removing the page
break; displayed in the document as
a regular indent.

288

WORD ERA Glossary Functions

CHARACTER CODES

TABLE C-2. WORD ERA Document Control Codes (continued)

Control
Code

Action
Performed

Description

\c\

A<\

\>\

\n\

\Nnnn}\

Center

Merge on

Merge off

Note

Footnote Reference

Center a single line between the right
and left margins; displayed in the
document as a diamond.

Left field name delimiter for
Records Processing and as a marker
for other applications; displayed in
the document as a bright <.

Right field name delimiter for
Records Processing and as a marker
for other applications; displayed in
the document as a bright >.

Document character strings enclosed
in notes, or begun with a note and
ended in a return, are suppressed
during printing. Optionally, the
characters may be printed by
selecting "With notes" on the
document print menu; displayed in
the document as a double
exclamation mark.

Footnote reference number, where
nnn stands for the footnote number;
displayed in text as a number in
reverse video.

Glossary Functions

WORD ERA 289

CHARACTER CODES

TABLE C-2. WORD ERA Document Control Codes (continued)

Control
Code

Action
Performed

Description

\-\

\H\

\A

\FA

Hyphen, required

Hyphen, generated

Space, required

Column break,
required (hard)

Placed in front of a word to prevent
hyphenation during the hyphenation
process; placed inside a word to mark
the required break point for the
hyphenation process; displayed in the
document as an inverted T. (Also
called a discretionary hyphen.)

Generated by the hyphenation
process; removed if subsequent
document editing causes the line to
rewrap; displayed in the document as
a bright hyphen.

Prevents separation of words by
marginal word wrap; displayed in the
document as a square U, printed as a
space.

Required column break not
deleted by the pagination process;
displayed in the document as a
double dotted line.

290

WORD ERA Glossary Functions

CHARACTER CODES

TABLE C-2. WORD ERA Document Control Codes (continued)

Control Action
Code Performed Description
\C\ Column break, Optional column break
optional (soft) deleted by the pagination process;
displayed in the document as a single
dotted line.
Yed\ Character from Selects a character from

the G2 set

the G2 character set. If the
character is not accented the
sequence \"Yc\ is present. If an
accented character is chosen, then
the sequence is \"Ycd\.

*Refer to the Fortune Systems’ publication Using Fortune Terminals

Glossary Functions

WORD ERA 291

CHARACTER CODES

202 WORD ERA Glossary Functions

APPENDIX D

KEYWORDS BY USAGE

Keywords can be grouped by the functions they perform. The following lists are
a guide for using formatting, editing, and cursor movement keywords.

Cursor position and movement is an extremely important factor in glossary
programming. If you are not thoroughly familiar with cursor movement during
WORD ERA functions, you should study these lists carefully. They tell you
about cursor action when a function is invoked.

When you use an entry containing keywords, the functions they perform are
activated. Some keywords may be repeatedly activated by typing a number in
parentheses after the keyword. It is easier to type return(3) than return return
return.

Keywords marked with an asterisk (*) in the following lists accept numbers in
parentheses.

Keywords in capital letters perform the same function that is accomplished by
pressing that key and the shift key simultaneously.

Formatting Keywords

Keywords such as tab, indent, decimal tab, and return change the format of
document text. On the editing screen they appear as symbols, such as a
left-facing triangle for return or a diamond for center. When these keywords are
used as part of a glossary program, the symbol for the keyword is typed in the
document at the cursor location.

Editing Keywords

Keywords such as format, search, copy, insert, and delete cause a function to
occur when the text document is being edited.

Glossary Functions WORD ERA 293

KEYWORDS

Cursor Movement Keywords

Keywords such as left, north, backspace, and prevscrn move the cursor to a
specific location in the document without changing the text or the format. When
you are using cursor movement keywords in your glossary program, remember
that the cursor moves character-by-character, not position-by-position. The cursor
cannot occupy blank areas of the screen. Sometimes an area may appear to be
blank but is actually occupied by spaces. The cursor can move across spaces in
the same way it moves across characters.

Combination Keywords

To use some keywords you must use a combination of keywords. For example, to
invoke a Right-flush Tab you must use the keyword combination command
indent.

2904 WORD ERA Glossary Functions

KEYWORDS

Formatting Keywords

Keyword Performance in glossary program

center* The center symbol appears on the screen; any following
text is centered.

dectab* or The decimal tab symbol appears at the next

decimal tab*

indent*

page*
PAGE*

return®

subscript*
superscript*®

tab*

available tab stop. Either keyword can be used.

The indent symbol appears on the screen at the next
available tab stop. The text after it is indented.

Inserts an optional page or column break.
Inserts a required page or column break.

The return symbol appears on the screen and the cursor
moves down one line.

The subscript symbol appears on the screen.
The superscript symbol appears on the screen.

The tab symbol appears on the screen at the next
available tab stop.

Glossary Functions

WORD ERA 295

KEYWORDS

Editing Keywords

Keyword

Performance in glossary program

cancel*

command

copy

COPY

delete*

execute*

format*

glossary or

An executing function is canceled, or the document edit is
canceled and the "END OF EDIT options" screen appears.

The command function is invoked and the message "Which
command?" appears on the screen.

The copy function is invoked and the message "Copy
what?" appears on the screen.

The copy text between documents function is invoked.
The "COPYING TEXT BETWEEN DOCUMENTS" screen
appears.

The delete function is invoked and the message "Delete
what?" appears.

Completes other keyword functions, such as insert, delete,
copy, and move.

The cursor moves up into the first available format line
and the screen message "Change format” appears. To
create an alternate format line use the keywords insert
format.

The glossary function is invoked and the message

gl "Which entry?" appears. This is the same as pressing the
GL key on the keyboard. You can use ¢ither keyword.

help The word processing HELP screen is invoked.

insert The insert function is invoked and the message "Insert
what?" appears.

296 WORD ERA Glossary Functions

KEYWORDS

Editing Keywords (continued)

Keyword Performance in glossary program

merge* The left-hand symbol for merge appears on the screen.

MERGE* The right-hand symbol for merge appears on the screen

mode The mode function starts and the message "What mode?"
appears. This must be followed by a character in quotes,
indicating which mode to use, such as "b" for boldface
mode, or "F" for flash mode.

move The move function is invoked and the message "Move
what?" appears on the screen.

MOVE The move text between documents function is invoked.
The "MOVING TEXT BETWEEN DOCUMENTS" screen
appears.

note* The note symbol appears on the screen.

quote* The keyword quote must be used when quotation marks
are required within a string. (The double quote symbol is
not permitted in a quoted string.)

replace The replace function is invoked and the message "Replace
what?" appears.

REPLACE The global search and replace function is invoked. The
"GLOBAL SEARCH AND REPLACE" screen appears.

search The search function is invoked and the message "Search

for what?" appears.

Glossary Functions

WORD ERA 297

KEYWORDS

Editing Keywords (continued)

Keyword Performance in glossary program

SEARCH The cursor is moved to the beginning of the document
and the search function is invoked. Ths message "Search
for what?" appears. Use the keywords command search to
invoke a backward search.

stop The Autosave function is invoked and the message

"Keystrokes before saving?" is displayec.

Cursor Movement Keywords

Keyword Performance when used in glossary program

backspace* The cursor moves back one character.

down* The cursor moves down one line. If there is no text
immediately below it on the next line, the cursor will not
occupy the same position it did on the previous line.
Alternatively, you can use the keyword south.

DOWN* Moves the cursor according to the current cursor mode.
This is equivalent to pressing the Shift key and the Down
cursor key simultaneously. Alternatively, you can use the
keyword SOUTH.

east® The cursor moves one character to the right. You can also
use the keyword right.

298 WORD ERA Glossary Functions

KEYWORDS

Cursor Movement Keywords (continued)

Keyword

Performance when used in glossary program

goto

left*

nextscrn*

north*

NORTH*

prevscrn®

right*

south*

The cursor moves to a specified location in the document.
For example: goto "12", goto "e¢", goto nextscrn, goto left.

The cursor moves one character to the left. You can also
use the keyword west.

The cursor moves forward to the first character on the
next full screen. The keywords goto nextscrn move the
cursor to the top of the next page.

The cursor moves up one line. If there is no text
immediately above it, the cursor will not occupy the same
position it did on the previous line. You can also use the
keyword up.

Moves the cursor according to the current cursor mode.
This is equivalent to pressing the Shift key and the Up
cursor key simultaneously. Alternatively, you can use the
keyword UP.

The cursor moves to the first character on the previous
full screen. The keywords goto prevscrn move the cursor
to the top of the previous page.

The cursor moves one character to the right. You can also
use the keyword east.

The cursor moves down one line. If there is no text
immediately below the cursor on the next line, it will not
occupy the same position it did on the previous line. You
can also use the keyword down.

Glossary Functions

WORD ERA 299

KEYWORDS

Cursor Movement Keywords (continued)

Keyword Performance when used in glossary program

SOUTH* Moves the cursor according to the current cursor mode.
This is equivalent to pressing the Shift key and the Down
cursor key simultanecously. Alternatively, you can use the
keyword DOWN.

The cursor moves up one line. If there is no text
immediately above the cursor, it will not occupy the same
position it did on the previous line. You can also use the
keyword north.

up

Up* Moves the cursor according to the current cursor mode.
This is equivalent to pressing the Shift key and the Up
cursor key simultaneously. Alternatively, you can use the
keyword NORTH.

west* The cursor moves one character to the left. You can also
use the keyword left.

300 WORD ERA Glossary Functions

KEYWORDS

KEYWORD ABBREVIATIONS

Keyword abbreviations allow you to embed keywords in quoted strings. Not
every keyword has a corresponding abbreviation; those that do are listed in Table

D-4.

Keyword Abbreviations

Function Code Keyword Syntax
backslash A\
bold face ON \B mode "b"
bold face OFF \b mode "b"
center \¢C center
decimal tab \. dectab or decimaltab
mode"f"
flash (blink) ON \F mode"f"
flash (blink) OFF \f command "n"
footnote reference \N help or command help
help \h
command "-"
hyphen (generated) \H
hyphen (optional) \- indent
indent (generated) \T merge
indent \i MERGE
merge ON \< note
merge OFF \> mode "/"
note \n mode "/"
overstrike ON \O page
overstrike OFF \O PAGE
page break (optional) \g quote
page break (required) \G return
quote (double) \q
return (required) \r mode "r"
return (word wrap) \W mode "r"
reverse video ON \V command indent
reverse video OFF \v command " "
right-flush tab \R
space (required) \(space)
Glossary Functions WORD ERA 301

KEYWORDS

Keyword Abbreviations (continued)

Function Code Keyword Syntax
stop \p stop (Autosave)
superscript \S superscript
subscript \s subscript

tab \t tab

underline ON \U mode "_ "
underline OFF \u mode "_ "
underline (double) ON \D mode "="
underline (double) OFF \d mode "="

octal representation™* \nnn

* The word space in parentheses represents a typed space that is not visible.

** Octal number abbreviations in strings are covered in Appendix C; the "nnn"

stands for a three-digit octal code.

302 WORD ERA Glossary Functions

APPENDIX E

ERROR MESSAGES

This appendix lists Glossary error messages. Glossary error messages are grouped
in two types: verification error messages that appear on page w (workpage) of
the glossary document, and glossary operation messages that occur when you
attempt to attach a glossary document or use an entry.

VERIFICATION ERROR MESSAGES

All verification errors messages are preceded by the legend: page n, line n: where
n stands for the page and line number of the error in the glossary document. For
example, suppose that entry a below is on page 6 of glossary document gltest and
the entry contains two errors. When gltest was verified, the error messages
following entry a were posted on page w.

entry a
{
call posmsg("Enter Amount: \007")
amount = keys
"\027"
call feed(amount)

AEXRERREIEAEEERRESEREEREXES RS EEHEES

Tue Aug 7, 1984 at 14:43:39

EEREXXERXXEERXEBERENREEE XXX L LN RER

page 6 , line 3 : 3 arguments expected for posmsg()
page 6 , line 10 : syntax error

Glossary Functions WORD ERA 303

ERROR MESSAGES

The first error message reports "3 arguments expected for posmsg()." The term
"arguments,” as used by the compiler, means "expression(s)." In entry a,
expressions one and two, the line and position numbers were omitted. The second
error message reports a "syntax error” on line 10. The syntax error is due to the
reversed ending brace. The ending brace should be }.

The error message "syntax error" is reported for a wide variety of situations. The
best procedure is to check for the most obvious errors first, such as missing
commas between expressions, reversed braces or parentheses and so on. As you
become familiar with glossary, you will be able to spot most syntax errors before
verification.

Occasionally the compiler reports syntax errors on the line below the line that
contains the error. Be sure to check the line above if you can’t find the error on
the reported line.

304 WORD ERA Glossary Functions

ERROR MESSAGES

Verification Error Messages

Message

Possible Errors

syntax error

Any of the messages below may follow "syntax

: Improper use of function

: Unexpected variable

: Cannot start another entry here

: call

sif

: else

: jump

An error exists in the statement
syntax. When "syntax error" is
displayed alone, the error could be
missing or incorrect symbols are
present. When the error is followed
by a colon and another message, the
error is specific to the message.

error."

Function not preceded by the call
statement; function misspelled;
function cannot be used in the
statement.

Parentheses around a function
argument are missing; extraneous
text exists in the glossary document;
a keyword is misspelled.

The ending brace on the previous
entry is missing.

The call statement is not complete.

The if statement syntax is not
correct.

The else statement syntax is not
correct.

The jump statement syntax is not
correct.

Glossary Functions

WORD ERA 305

ERROR MESSAGES

Verification Error Messages (continued)

Message Possible Errors

: while The while staternent syntax is not
correct,

1 do The do statement syntax is not

: Assignment operator

: Comparison operator

: Keystrokes not allowed

unmatch character detected()

n argument(s) expected for x

multiply defined entry name

Unknown symbol

correct.

The assignment operator = is used
incorrectly.

One of the comparison operators ==,
I=, <=, >= is used incorrectly.

A keyword or function name is
misspelled; a syntax statement is
incorrect.

The character in parentheses may
be one of the fcllowing: (,), [,], or
". A missing quote is the most
common error causing this message.

n stands for number of arguments
and x stands for function requiring
arguments. The expected number
of arguments (expressions) for the
function are not present.

Two entries in the glossary
document have the same label.

An incorrect symbol appears in the
entry; this error is most common in
mathematical applications.

306

WORD ERA Glossary Functions

ERROR MESSAGES

Verification Error Messages (continued)

Message Possible Errors

Illegal glossary entry name Too many characters are in the
entry label; an illegal symbol
appears in the entry label.

GLOSSARY OPERATION ERROR MESSAGES

Glossary operation error messages occur when you are attaching a glossary
document or using a glossary entry.

Message Possible Errors

Cannot attach The glossary document entered does
not exist or the name was entered
incorrectly.

No glossary entry The glossary label entered does not

exist or it was entered incorrectly.

Bad location The line and position numbers
specified for the posmsg or clrpos
functions exceed the allowable
range (lines 1 through 25, positions
1 through 80).

Unknown function A records processing function such
as sort or select-record, is part of a
regular glossary entry running in a
text document.

Glossary Functions WORD ERA 307

ERROR MESSAGES

308 WORD ERA Glossary Functions

INDEX

INDEX

.gl File; 256

Abbreviations, Keywords ; 301

Abs; 160

Administering Glossary Programs; 245
Alpha/numeric Comparisons; 80
Alphabetical List Of Functions; 160
Arguments; 92

Ascii Collating Sequence; 272
Assigning Values To Variables; 62
Assignment Operators; 47, 68
Attaching A Glossary Document; 39
Attribute Codes; 272

Basic Elements Of A Glossary Entry; 23
Beg__doc; 160

Binary Operators; 67

Bot__page; 161

Braces { }; 25, 49

Brackets []; 49

Branching; 130

Call; 161, 122

Cat; 162

Char; 162

Character Codes; 271

Clrpos; 162

Combination Keywords; 294
Comments; 28

Comparison Of Glossary Keywords And Functions; 267
Conditional Do While Statement; 150
Conditional Function Usage; 195
Conditional If Else Statement; 111
Conditional If Statement; 106
Conditional Loop Statements; 147
Conditional Statement Functions; 48
Conditional Statements; 102
Conditional While Statement; 147
Contents Of Glossary Documents; 260
Control Codes, Document Format; 282
Control Functions Usage; 197
Control Statement Functions; 48
Control Statements; 121

Correcting Verification Errors; 37

Glossary Functions WORD ERA

INDEX

Creating A Glossary Document; 5
Creating A Glossary Entry By Example; 11
Cursor Movement Keywords; 298
Cursor; 163

Date; 163

Declaring And Initializing Variables; 60
Detaching A Glossary Document; 40
Display Functions Usage; 198

Display; 164

Do While; 164

Document Format Control Codes; 282
Document Reading Functions Usage; 215
Document Writing Functions Usage; 217
Editing Keywords; 296

Elements Of A Glossary Entry; 23
Elements Of Glossary Programming; 57
End__doc; 165

Entry Examples; 259

Entry Labels; 24

Equality Operators; 81

Error And Logical Functions Usage; 221
Error Messages; 303

Error Messages; 307

Error; 165

Exit; 166

Expressions; 93

False; 166

Feed; 166

Finsert; 167

Format Lines In Glossary Documents; 29
Formatting Keywords; 295

Function Description List; 155

Function Usage List; 193

Functions That Require Arguments; 159
Functions, Arguments, And Expressions; 48
Functions; 91

General Principles For Using Conditional Functions; 103
General Rules For Using Functions; 158
Globerr; 167

Glossary By Example; 11

Glossary Document; 5

Glossary Entry Examples; 259

Glossary Functions Menu; 6

Glossary Information For Unix Users; 255

I-2 WORD ERA Glossary Functions

INDEX

Glossary Operation Error Messages; 307
Glossary Programming Language Elements; 46
Glossary Programming Language; 43

Glossary Statement; 126

Glossary Verification Options; 35

Gracefully Terminating An Entry; 142

If Else; 169

If; 168

Index; 170

Interactive Functions Usage; 223

Jump Statement For Loops; 136

Jump Statement; 130

Jump; 170

Key; 171

Keyin; 171

Keys; 172

Keysin; 172

Keyword Abbreviations; 301

Keywords By Usage; 293

Keywords; 25

Labeled Statements (Identifiers); 49

Left _margin; 173

Len; 173

Line; 174

List Of Functions That Require Arguments; 159
Loc; 174

Logical Operators; 82

Logical Values; 47, 64

Looping; 134

Mathematical Assignment Operators; 72
Mathematical Functions Usage; 228
Mathematical Operations; 50

Mathematical Operators With Variables; 70
Mathematical Operators; 69

Max (As Used With Alphabetical String Expressions); 175
Max (As Used With Numeric Expressions); 174
Min (As Used With Alphabetical String Expressions); 176
Min (As Used With Numeric Expressions); 175
Modifying A Glossary-by-example Entry; 30
Modulo Operator; 70

Nesting Subroutine Calls; 128

Num; 176

Number; 177

Occur; 177

Glossary Functions WORD ERA I-3

INDEX

Octal Number Conversions; 272

Opecrating System Access Functions Usage; 236
Operators; 67

Page no; 178

Parentheses (); 49, 96

Parentheses And Equality Expressions; 97
Parentheses And Logical Expressions; 98
Parentheses And Mathematical Expressions; 96
Parentheses And Relational Expressions; 96
Pic; 178

Points To Remember About Loops; 135
Position; 179

Posmsg; 179

Program Access; 248

Program Applications; 247

Program Backup, Storage, And Retrieval; 250
Program Debugging (Troubleshooting); 252
Program Duplication; 251

Program Obsolescence; 250

Program Planning; 246

Program Runtime; 249

Programming Language Elements; 46
Programming Language; 43

Programming Style Conventions; 51
Programming Style; 50

Programs In A Multiuser Environment; 251
Prompt; 180

Relational Operators And Alpha/numeric Comparisons; 80

Relational Operators With Alpha Strings; 78
Relational Operators; 75

Relational, Equality, And Logical Operators; 47
Reserved Symbols; 266

Reserved Words And Symbols; 265

Reserved Words; 265

Right__margin; 180

Round; 181

Rules For Values; 63

Screen Symbols In The Glossary Document; 29
Seg; 181

Single And Multiple Statements; 58

Spacing; 182

Statement Execution Order; 59

Statements; 46, 57

Status; 182

I-4 WORD ERA

Glossary Functions

INDEX

String Functions Usage; 240

String Operations; 49

Strings; 25

Sub; 183

Subroutines; 122

Substr; 183

Syntax; 54

Tables Of Operators; 87

Terminating Program Recall; 142

Text; 184

Text__len; 185

Time; 186

Timing Programs; 143

Tips On Glossary Entries By Example; 18
Top__page; 186

Trapping Function Errors Using The Globerr Statement; 143
True; 186

Truncate; 187

Types Of Statements; 57

Unary Operators; 67

Unix Operating System Access Functions Usage; 236
Unix User’s Glossary Information; 255
Unixfun; 187

Unixpipe; 188

Values; 47, 61

Variable Names; 61

Variables; 47, 60

Verification Error Messages; 303

Verifying And Troubleshooting Glossaries; 35
While; 189

Word Era Document Format Control Codes; 282
Word Era File Structure; 255

Word; 190

Writing A Glossary Entry Memorandum Form; 32
Writing Glossary Entries; 23, 30

Writing Menu Glossary Entries; 34

Glossary Functions WORD ERA

