
CTAM™ APPLICATION PROGRAMMER'S
GUIDE

Copyright c 1988 by Convergent, Inc., San Jose, CA. Printed in USA.

First Edition (Nov 1988) 73-00515-A

All rights reserved. No part of this document may be reproduced, transmitted,
stored in a retrieval system, or translated into any language without the prior writ-
ten consent of Convergent Technologies, Inc.

Convergent makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fit-
ness for any particular purpose. Further, Convergent reserves the right to revise
this publication and to make changes from time to time in its content without being
obligated to notify any person of such revision or changes.

Convergent, Convergent Technologies and NGEN are registered trademarks
of Convergent, Inc.

Art Designer, AutoBoot, AWS, Chart Designer, ClusterCard, ClusterNet,
ClusterShare, Context Manager, Context Manager/VM, CTAM, CT-DBMS,

CT-MAIL, CT-Net, CTIX, CTOS, CTOS/VM, CWS, DPL, Document Designer, GT,
I M A G E Designer, IWS, MiniFrame, Network PC, PC Emulator, PC Exchange,

Phone Memo Manager, PT, S/50, ^120, S/320, S/640, S'1280, S/Series,
Series/286i, Senes/386i, Server PC, Shared Resource Processor, Solution

Designer, SRP, TeleCluster, The Cluster, The Operator, Voice/Data Services,
Voice Processor, WGS/Calendar. WGS/DESKTOP, WGS/Mail, WGS/Office,
WGS/Spreadsheet, WGS/WordProcessor, WorkGroup Servers, and X-Bus are

trademarks of Convergent, Inc.

UNIX and RFS are trademarks of AT&T.

This manual was prepared on a Convergent Technologies ^320 Computer System
and printed on an Apple LaserWriter II Printer.

Contents

1 Overview 1-1
What Is C T A M ? 1-1
W h o Should Use This Manual? 1-3
H o w This Manual Is Organized 1-3
Conventions Used in This Manual 1-4
Related Documentat ion 1-5

2 CTAM Application User Interface 2-1
What A r e Forms and Menus? 2-2
Moving Within and Between Forms and Menus 2-3
Performing Other Functions 2-4

3 Using the CTAM Windowing System 3-1
Overview of the Window Terminal Concept 3-1
C T A M Window Manager Files 3-4
Language Dependent Files 3-6
Terminal Description Files 3-6
C T A M Terminal Support 3-12
Adding a New Terminal 3-13

4 Introduction to DPL Programming 4-1
The D P L Form and Menuing Tools 4-2
Using the Dialogue Interpeter 4-2

Resource File Example #1: 4-2
Resource File Example #2: 4-4

D P L Entities: Forms, Fields, and Items 4-5
Forms 4-7
Fields 4-8

Menu Fields 4-10

Contents iii

List Fields 4-12
Edit Fields 4-13
Text Fields 4-17

Items 4-17
I tem Attributes 4-18
I tem Values 4-19

Events 4-20
Scoping of Events 4-22
The Onkey Event 4-23

Action Routines 4-24
Event Language Control Flow 4-29
Variables 4-33

Defining Global Variables 4-37
Special Variables 4-38

Summary of Terms 4-40

5 Programmatic Forms and Menus 5-1
Compiling a D P L Program 5-2
The Base Set of Forms Calls 5-2

Example 1 5-2
Example 2 5-3

Using the Forms Compiler 5-5
Special Features 5-5
Restrictions 5-6

6 The CTAM Internationalization Kit 6-1
Internationalization Subroutines 6-1
Nationalization Files 6-9
Language Configuration Database 6-10

7 Using CTAM with COBOL, BASIC, and
FORTRAN 7-1
C O B O L 7-1
BASIC 7-3
F O R T R A N 7-4

iv CTAM Application Programmer's Guide

APPENDIXES

A Introduction to the CTAM Manual Pages A- l

Glossary Glossary-1

Index Index-1

LIST OF FIGURES

Figure Page
1-1 The C T A M Window Manager 1-2
2-1 Sample Form #1 2-2
2-2 Sample Form #2 2-3
3-1 The User/Kernel Interface Under C T A M 3-2
3-2 Using terminfo Description Files 3-7
4-1 Sample Form # 3 4-3
4-2 Sample Form #4 4-4
4-3 Sample Form # 5 4-5
4-4 Hierarchy of D P L Entities Under C T W M 4-6

LIST OF TABLES

Table Page
3-1 Default C T A M Keyboard Mapping 3-9
3-2 Released Terminal Support 3-13

Contents v

1
Overview

What Is CTAM?

The Convergent Terminal Access Method (CTAM) package consists
of a number of tools to aid software developers in the rapid creation
and integration of easy-to-use applications that use multiple, con-
currently active windows on low-cost ASCII terminals. Using CTAM,
developers can create new applications with intuitive, consistent for-
mats, or integrate existing programs into a windowing environment.

Among the components in the CTAM package, the Dialogue Pro-
gramming Language (DPL) is a simple description language used to
describe forms and menus that are displayed in windows. (Chapter 2
discusses forms and menus in detail.) Specifically, DPL describes two
things:

• How a form is to appear on the screen: where on the screen, how
large a window, what text is displayed in menu selections, which
attributes (such as highlighting) are turned on.

• What actions are to be initiated when specific selections are
activated: display another form or menu, run a shell script or
other program.

Tools in the CTAM package include:

c twm(lW) This program provides interactive multi-process win-
dow management , enabling applications to run con-
currently in movable, resizable windows on ordinary
ASCII terminals with no programming required.

dplrun(l) This runt ime program provides forms interpretation
and runs the stand-alone forms and menus specified in
DPL. Use dplrun to quickly create a menu-driven
interface for multiple applications and utilities.

Overview 1-1

rcc(l) This DPL compiler can be used to compile forms and
menus into an unalterable form for security or other
reasons.

Libraries (under /usr/lib) in the CTAM package include:

libctam.a This library of routines is used to create, display to, and
manipulate concurrent windows.

libdpl.a This library is used to add DPL-style forms and menus
to an application, programmatically.

libxnls.a This library of routines is used to develop applications
that work using a variety of natural languages.

The DPL forms and menuing system, along with the ASCII terminal
windowing system, comprise the CTAM applications development kit,
designed to provide a complete platform for end user presentation
software on a C T I X system.

The CTAM windowing system is designed to be extensible to work
with terminals not directly supported in the released product. Sup-
port for new terminals can be added by creating or modifying the
description files discussed in Chapter 3.

Figure 1 -1 illustrates the role the CTAM window manager (ctwm)
plays in converting ANSI x3.64 generic data received f rom an appli-
cation into terminal specific output. ANSI x3.64 is a standard set of
character sequences and escape codes for computer terminals. Data
received f rom the keyboard is passed to the application untouched.

An
Applicotion

such os
VI

CURSES

ANSI X3.64

Keyboard
Specific

CTAM

Terminal
Specific

H!

Keyboard ~ j D ^ L
Specific

5
n a \

Figure 1-1. The C T A M Window Manager

3 2 CTAM Application Programmer's Guide

Who Should Use This Manual?

The primary audience for this manual consists of programmers and
system integrators familiar with U N I X and C who want to develop
f o r m - and m e n u - driven applications and take advantage of the mul-
tiple windowing aspects of CTAM.

This manual is also intended for readers adding support for a new ter-
minal or for anyone interested in customizing the operation of
CTAM-based products.

How This Manual Is Organized

This chapter gives a brief overview of CTAM, an outline of the
manual 's contents, and a description of conventions used throughout
the manual.

Chapter 2, "CTAM Application User Interface," explains the basics
of selecting and activating forms and menus in CTAM-based pro-
grams.

Chapter 3, "Using the CTAM Windowing System," describes
CTAM's components in detail and provides an example procedure for
adding a new terminal.

Chapter 4, "Introduction to DPL Programming," explains how to
create and manipulate forms and menus using the Dialogue Program-
ming Language.

Chapter 5, "Programmatic Forms and Menus ," discusses ways in
which programs written in C or other languages can interact with
forms and menus.

Chapter 6, "CTAM Internationalization Ki t , " describes how to
develop software that works using a variety of natural languages.

Chapter 7, "Using CTAM with COBOL, BASIC and FORTRAN,"
outlines what you need to do to use the CTAM libraries with pro-
gramming languages other than C.

Appendix A contains CTAM—related manpages that are not included
in the CTIX Operating System Manual.

Overview 1-3

Conventions Used in This Manual

The following conventions are used throughout this manual:

• Italics (defaul t) indicate either a word that is displayed on the
screen, or a word that is described in the Glossary.

• Boldface indicates literal characters, like those in the command
dplrun, which appear or must be typed exactly as shown.

• Boldface characters followed by a number in parentheses, such
as dplrun(l) or sh (l) , are CTIX commands or file formats that
are described in Appendix A , or in either the CTIX Operating
System Manual (S/MT systems) or the CTIX/386 Operating Sys-
tem Manual (Server PC systems).

• Boldface with the first letter capitalized (Return) refers to the
terminal key to press.

Since DPL applications displaying forms and menus run on
many terminal types (and therefore, many different key-
boards), this manual makes use of virtual key names to
describe terminal keys. For example, instead of the virtual
key Enter, you might press Go, Do, or Linefeed, depending
on your terminal type. A complete list of virtual keys is given
in Table 3 -1 , "Defaul t CTAM Keyboard Mapping."

• A preceding caret (~) in a keystroke sequence indicates a con-
trol code; hold down the Control key (or Code key on a
P T / G T terminal) and press another key simultaneously. For
example, "Tab means press the Control key, and while hold-
ing it down, press the Tab key.

• The dash (-) indicates that you should press two keys at the
same time. For example, Shift-Help means press both the
Shift and the Help key simultaneously.

3 4 CTAM Application Programmer's Guide

Related Documentation

For fur ther information about C T I X programming, consult the CTIX
Programmer's Guide and the Programmer's Guide: CTIX. Supplement.

Overview 1-5

2
CTAM Application User Interface

One of the tools in the CTAM software development package is the
Dialogue Programming Language (DPL), a high level language for
developing form- and menu-based applications. Forms and menus are
displays on the screen containing items that can be selected by press-
ing a specified keystroke sequence. A dialogue is a session in which
an end user interacts with forms and menus to get services provided
by one or more application programs.

Chapter 4 discusses how to write programs in DPL. This chapter
describes how to interact as an end user with applications written in
DPL; the following tasks are described:

• How to move the cursor within and between forms and menus

• How to select items f rom menus

• How to fill in edit fields

• How to invoke help text, if available

• How to handle minor error situations

Since DPL applications displaying forms and menus run on many ter-
minal types (and therefore, many different keyboards), this manual
may not describe the keys that exactly match your terminal. Where
appropriate, a set of key names from various terminals are described;
the primary key names given are virtual (generic) key names. For a
complete list of virtual keys, see Table 3 -1 , "Defaul t CTAM Key-
board Mapping."

CTAM Application User Interface 2-1

What Are Forms and Menus?

A form is a display containing one or more fields. Fields vary in shape
and size, depending on the number and format of the items inside.
Some fields take up the whole screen; others take up enough space for
only a few characters. Depending on the type of field, items in a field
can be selected or edited, or if the field is for viewing only, neither
selected nor edited.

An item is a piece of text within a field. Normally, items appear one
per line in a single column.

In comparison to a form, which can contain more than one type of
field, a menu is a single field containing selectable, noneditable items.
In other words, you can choose an item on a menu list, but you can-
not change any of the items on the list. A menu can be part of a
form, but a form is never part of a menu.

A n example of a form containing various types of fields is displayed
in Figure 2-1 . Note that when there are more items in a field than
will fit within the coordinates specified for the field, the system
displays a scroll bar to the right of the menu or text field to indicate
that there are more items than those shown. The scroll bar is a verti-
cal highlighted bar with arrows indicating your relative position on
the list of items.

C u r r e n t F o r m L a b e l

Edi t F i e l d

C u r r e n t l y S e l e c t e d I t e m

(H i g h l i g h t e d)

Cu rso r L o c a t i o n

(B l i n k i n g)

V e r t i c a l S c r o l l Bar

M e n u F i e l d

D e f a u l t V a l u e

Nhen you h ive f i n i s h e d e d i t i n g the f o r i , press " E n t e r 1 , - f — A d d i t i o n a l P r o m p t s

JJser Adiiinistration
Change User Inforualion

Information About User 'david

Login Hmc : dav id
F u l l U«er nase: |i]
Hone d i r e c t o r y : 7 u / d a v i d

S t a r t u p » h e l l : / b i n / s h
Group:

T (Text F ie ld)

Ed i t f u l l user na ie f i e l d , or use "Tab' t o aove to another f i e l d .

P r o m p t L i ne

Figure 2-1. Sample Form #1

2-2 CTAM Application Programmer's Guide

Moving Within and Between Forms and Menus

In the example form below, the user is asked to make selections in
three fields: to select an entree, to fill in a wine choice, and to select
a dessert. The entree and dessert fields are examples of menu fields,
which contain selectable but noneditable items. The wine field is an
example of an edit field, which can be both selected and edited. The
prompt at the bottom is an example of a text field, which cannot be
selected or edited.

S e l e c t an Ent ree :
Chicken
Fish

Enter a Wine S e l e c t i o n :

S e l e c t a D e s s e r t : *Pie
Cake
F r u i t

Hake your s e l e c t i o n s and p r e s s 'Go' to execu te , j
nr p re s s T a n n e l ' to e x i t u i t h o u t execut ing the form. !

i I

Figure 2-2. Sample Form #2

The arrow keys (Up, Down, Forward, and Back) and the Tab and
Return keys move the cursor and make selections on the screen. In
the above example, you would move the cursor within the entree
menu field (using Up and Down) to make a selection. To save your
entree selection and move the cursor to the wine field, you would
press the Tab key.

You would then type a wine name and press Return. As with the
Tab key, Return moves the cursor to the next field. You would then
make your dessert selection (using Up and Down).

In edit fields, the Backspace key deletes the character to the left of
the cursor. The Forward and the Back keys move the cursor without
deleting existing text. The Delete key deletes the character at the
current cursor position. To insert text in the middle of what you have
already entered, move the cursor to where you want to insert and
enter the text.

CTAM Application User Interface 2-3

Fields with more than one item often contain preselected or default
values that can be changed by moving the cursor to another item in
the field. Currently selected items are represented either by a
highlighted bar or by an asterisk (*) that the system places to the left
of selected items. To see items that are off the screen in a scrollable
field (as in Figure 2-1) , use Down to force the list to scroll.
Remember that to move to another field without changing your selec-
tion in a menu field, you move the cursor using Tab or Return.

NOTE

For more advanced users, a shortcut is available for selecting
items in a menu field. Instead of striking the arrow keys a
number of times, you can enter the first few letters of the
choice that you desire, and the cursor moves to that choice.
For the above example, if the cursor is located in the entree
field, entering the letter 'F ' moves the cursor to Fish.

Multiple selection menu fields, also called list fields, allow you to
make more than one selection. (There are no list fields in the above
examples.) When a menu field allows multiple selections, the screen
provides instructions on how to make your choices. Usually you press
the Mark key (labelled Select on many other keyboards) to indicate
your choices. When you press Mark, usually an asterisk appears next
to your choice. To 'unmark ' something if you change your mind on a
selection, press Mark on that item a second time.

Performing Other Functions

To indicate that you are satisfied with your selection and that you
want it to be processed by the system, press the Enter key, also called
Go, Do, or Linefeed on supported terminals. Some applications ask
you to press the Finish key (also entered as *D on some terminals)
when you have completed filling out a form. (Recall that ~D means
that you hold the Control key down while you strike the l e t t e r ' d ' .)

The Cancel key (also entered as "X on some terminals) allows you to
exit a form or menu without executing the currently selected items.

3 4 CTAM Application Programmer's Guide

In many f o r m - and menu-based applications you can press Help (or
the appropriate key for your terminal) to display more information
about a function.

If characters on the screen are ever displayed improperly, such as bro-
ken lines around a menu, or unreadable characters on the screen, try
typing ~L; this control code instructs the system to repaint the screen.
If the screen is still unreadable, report the problem to your system
administrator.

If the system ever ignores your input, for advanced users, the
sequence instructs the system that you would like to exit the applica-
tion you are running. Note that this operation may cause the task
being performed to be left in an incomplete state, and should be used
only as a last resort.

CTAM Application User Interface 2 - 5

3
Using the CTAM Windowing System

This chapter describes the various components of the CTAM window-
ing system and their places in the CTIX file system. Read this chapter
if you are interested in either adding support for a new terminal or
learning more about CTAM internals.

Overview of the Window Terminal Concept

The CTAM Window Manager [ctwm(lW)] is a program that enables
multiple applications to run concurrently in movable, resizable win-
dows on an ordinary ASCII terminal. A window terminal is a software
construct presented to an application process by the window manager.

The window terminals used by applications running under the window
manager are provided by the window driver, wxt. The window driver
handles all communication between the application processes and the
physical terminal. Window devices (/dev/wxt/wnnn) are used to com-
municate with the terminal instead of tty devices (/dev/ttynnn).

Figure 3 - 1 illustrates the mechanics of CTAM at the user/kernel inter-
face for applications running under the window manager.

Using the CTAM Windowing System 3-1

Figure 3-1. The User/Kernel Interface Under C T A M

In Figure 3-1 , the keyboard server loops, reading from standard
input and packaging keystrokes; then it transmits the keystrokes to
the window driver by means of an ioctI(2). The window driver acts as
a multiplexer, routing data for window traffic. Keystroke input is
unpackaged and queued on appropriate CLISTs to be read by the
applications via standard system read calls.

In certain modes [see the discussion of keypad under wgetc(3W)],
virtual keys described in the kbmaps(4W) file for the terminal are
captured and replaced with the internal value of the virtual key as
defined in /usr/include/kcodes.h. In other modes, all keyboard input
is passed unchanged to the user process. (For more information on

3 2 CTAM Application Programmer's Guide

kbmaps and kcodes.h, see "Terminal Description Files," later in this
chapter.)

Output f rom applications is packaged by wxt along with a window
identifier and is routed to the window manager by means of an ioctl.

The window manager controls the screen, interpreting escape
sequences, translating screen controls (such as attribute selection and
cursor positioning), and determining how to layer output f rom wxt on
the physical terminal based on what part of each window is visible.
The window manager can also be used in interactive mode to create
new windows, size and move existing windows on the screen, perform
cut and paste, and so on.

Applications linked with the CTAM library (libctam.a) contain the
code necessary to display windows on the screen without using the
window manager. During initialization, the library finds out if ctwm
is running. If not, the library itself interprets outgoing escape
sequences and layers windows on the final output, writing the window
border characters and the visible contents of each window. If ctwm is
running, the library sends output and special information requests to
wxt using an ioctl.

During initialization, the window manager modifies the user's
$TERM variable, appending the suffix ctam, so that, for example,
the $TERM variable to300 is changed to to300ctam. As a result,
applications running in a window that make use of curses(3) send the
window manager a generic (CTAM) set of escape sequences to be
interpreted. On the output side, the window manager sends
terminal-specific sequences to the screen, based on the original value
of $TERM. The CTAM set of escape sequences is a subset of ANSI
x3.64. [For more information on escape sequences, see escape(7W)
in Appendix A.]

All processes using windows on a terminal can display at the " same"
time. Several processes may be using different windows on one tty,
but there can be only one controlling process, which receives key-
board data.

The window terminal structure means that not all escape sequences
work in windows. Some terminal display activities are not supported
in windows. For example, the vt220 double-height and double-width
characters cannot be supported. [The supported sequences can be
found in escape(7W).] The window manager filters out the control
codes for unsupported commands and ignores them; other unsup-
ported escape sequences may appear as an inverse video question
mark.

Using the CTAM Windowing System 3-3

Applications that at tempt to directly open their controlling tty by dev-
ice name do not work; however, applications can open /dev/tty or use
ttyname(3C) and isatty to get the correct device name.

Programs that read and write on U N I X standard input and output
function normally in a window environment. [For more information
on stdin and stdout, see stdio(3S).]

As opposed to coding keystroke sequences directly into applications,
all complex screen control should be done using curses(3); otherwise,
applications run only on terminals that emulate ANSI x3.64. For
example, in the line of code below, the escape sequence for highlight-
ing a string of text is coded directly into the program:

printf("\E[2m Hello World \E[0m»);

This works fine under CTAM; however, it is more efficient to per-
form the same task using libctam.a, because the code is applicable to
a wider range of terminals. For example:

(curses initialization)

wattron (win, A_REVERSE);
wprintf (win, -Hello World");
wattroff(win, A_REVERSE);

For more information on the files described in this chapter, see ter-
minfo(4) in the CTIX Operating System Manual, and see fonts(4W)
and kbmaps(4W) in Appendix A.

CTAM Window Manager Files

The CTAM window manager (ctwm) is a CTAM-based application
program that works in conjunction with a loadable software device
driver called wxt. In order for the window manager to function, wxt
must have been loaded and there must be corresponding special files
in /dev, listed below. Most systems should have wxt load automati-
cally during boot time; the CTAM installation software ensures that
this happens by modifying files under /etc, listed below.

3 4 CTAM Application Programmer's Guide

/etc/lddrv/wxt.o

This file is the wxt driver object code. This driver may be loaded
and unloaded manually with the lddrv(l) command. Normally, the
wxt driver is configured to be loaded automatically at system boot
time by the CTAM installation software.

/etc/master

The loadable driver must have an entry in /etc/master before it can be
loaded. The CTAM installation process creates an entry in this file if
none already exists.

/etc/drvload

During system startup, this shell script is executed to load and start
any loadable device drivers used by the system. The CTAM installa-
tion process appends a line to this file to cause the wxt device driver
to be loaded automatically each time the system is rebooted.

/dev/ttynnn

Each tty special file is named by " t ty" followed by three decimal
digits representing the device's minor number. These special files can
be opened by programs. The operating system ensures that the
corresponding /dev/wxt/wnnn file is accessed.

/dev/window

The special file /dev/window is used by the CTAM library to create
new windows, when running under the CTAM window manager.
When a process opens /dev/window, the open(2) is rerouted to an
unused window device, described below. This special file has the major
number of the wxt driver and the minor number zero.

/dev/wxt/wnnn

Each window special file is named by a " w " followed by three
decimal digits representing the device's minor number. Only files
named in this way work. The CTAM installation process automati-
cally creates 255 of these files, the maximum number.

Using the CTAM Windowing System 3-5

Language Dependent Files

There are two files that must be changed when nationalizing CTAM
for use in a language other than English. These files are stored in a
subdirectory of /usr/lib/ctam whose name is controlled by the $LANG
environment variable. For example, if $LANG is defined as french,
the files reside under /usr/lib/ctam/french. If the $LANG environ-
ment variable is not defined, CTAM applications default to the value
english_usa. The directory /usr/lib/ctam/english_usa contains two
files: ctwm.rf, which contains all of the prompts used by the CTAM
window manager, and dpl.rf, which contains the messages and labels
common to all DPL-based applications.

Terminal Description Files

The CTAM windowing system has been designed to be extensible to
work with terminals not supported in the released product. (For a list
of supported terminals, see Table 3 -2 .) To provide support for a new
terminal, you must add a number of files to the system that describe
various aspects of the terminal. The supporting files are described on
the pages that follow.

When reading the names of the files listed, substitute the name of a
particular terminal for the environment variable $TERM. Normally,
applications that use either standard terminfo or standard termcap
work in windows; applications using standard termcap use window
terminal capabilities described in /etc/CTWMtermcap. Extended or
customized versions of terminfo or termcap may not work without
modification.

/usr/lib/terminfo/?/$TERM and /usr/lib/terminfo/?/$TERMctam

Two different terminfo files must be added for every terminal used
with CTAM. First, the terminal must have a standard terminfo
description file. Second, the terminal must have a CTWM terminfo
description file with the name "c t am" appended. (The ? denotes the
first character in the terminal name.) For example, for a vt220 termi-
nal, there should be a /usr/lib/terminfo/v/vt220 file and a
/usr/lib/terminfo/v/vt220ctam file. [For more information on ter-
minfo files, see terminfo(4).]

3 6 CTAM Application Programmer's Guide

There are two basic ways in which terminal description files are used;
the first is by CTAM itself, and the second is by applications running
within CTAM windows.

Figure 3-2. Using terminfo Description Files

As illustrated on the right in Figure 3 -2 , applications using the win-
dow manager receive terminal specific keystroke sequences f rom the
wxt driver. Output f rom applications consists of ANSI x3.64 generic
data taken f rom the terminal 's CTWM terminfo file. When output-
ting to the screen, each application sends ANSI x3.64 data to the win-
dow manager, where the data is converted into terminal specific out-
put using the standard terminfo file.

As shown on the left, applications that do not use the window
manager receive terminal specific input and make use of the standard
terminfo file to send terminal specific output.

Using the CTAM Windowing System 3-7

The standard terminfo file describes the physical terminal, for the tty
driver's use. The CTWM terminfo file describes the window termi-
nal, enabling non-CTAM applications to work within windows. The
CTWM terminfo file consists of keyboard definitions f rom the stan-
dard terminfo description file and output sequences f rom the CTAM
description file, located in $TERMctam.ti, described later in this
chapter.

/usr/lib/ctam/kbmaps/$TERM. kb

Each terminal used with CTAM should have a keyboard description
file, which is an ASCII file consisting of three columns; white space
between columns is ignored. The first column contains the names of
CTAM virtual keys. A complete list of virtual key names is contained
in the file /usr/include/kcodes.h. The second column specifies the
byte sequence sent by the terminal when a specified key is pressed.
Control characters can be specified using the same kinds of textual
equivalents as those used in terminfo files with the .ti suffix. The
third column is optional and contains the key name used in prompts
displayed by some applications, such as the CTIX Administration
Tools [see adman (l)] . The kbmaps files for the supported terminals
listed in Table 3 - 2 provide examples of how to prepare keyboard
description files. Below is an example listing of
/usr/lib/ctam/kbmaps/wy85.kb:

Keyboard map for Wyse 85

DleteChar \177 shift-<X]
Backspace \010 <X]
Input Mode \E[2~ Insert-Here
Enter \E[29" Do
Help \E[28* Help
Dlete \E[3" Remove
Mark \E[4" Select
Find \E [1 - Find
Home \E[27~ Home
F1 \E[17" F6
F2 \E[18~ F7
F3 \E[19" F8
F4 \E[20~ F9
F5 \E[21~ F10
F6 \E[31~ F17
F7 \E[32~ F18
F8 \E[33~ F19
F9 \E[34" F20

3 8 CTAM Application Programmer's Guide

Only those keys that have an obvious counterpart on the new
terminal 's keyboard need be defined. Virtual keys that are not
defined have a default value. A listing of the default byte values (as
well as keystroke equivalents and internal octal values) for all virtual
keys is shown in Table 3 -1 . METABIT is a value assigned in
kcodes.h.

TABLE 3-1

Default CTAM Keyboard Mapping

virtual default character internal value
key name sequence (keystrokes) (see kcodes.h)

Esc \ E (Esc) 0033
Backspace \ 0 1 0 (Backspace) 0010
BackTab \ E \ t (Esc Tab) (0267 1 M E T A B I T)
Break (Ctrl-]) (0377 I M E T A B I T)
Return \ r (Return) 0015
Enter \ n (LineFeed) 0012
F1 \ E 1 (Esc 1) (03211 M E T A B I T)
F2 \ E 2 (Esc 2) (0322 I M E T A B I T)
F3 \ E 3 (Esc 3) (0323 1 M E T A B I T)
F4 \ E 4 (Esc 4) (0324 I M E T A B I T)
F5 \ E 5 (Esc 5) (0325 1 M E T A B I T)
F6 \ E 6 (Esc 6) (03261 M E T A B I T)
F7 \ E 7 (Esc 7) (0327 1 M E T A B I T)
F8 \ E 8 (Esc 8) (0330 I M E T A B I T)
F9 \ E 9 (Esc 9) (0215 1 M E T A B I T)
F10 \ E 0 (Esc 0) (02161 M E T A B I T)
s J F l \ E ! (Esc !) (02411 M E T A B I T)
s_F2 \ E O (Esc 0) (0242 I M E T A B I T)
s _ J 3 \ E # (Esc #) (0243 1 M E T A B I T)
s_F4 \ E $ (Esc $) (0244 I M E T A B I T)
s_F5 \ E % (Esc %) (0245 1 M E T A B I T)
s_F6 \ E \ ~ (Esc (0246 1 M E T A B I T)
s_F7 \ E & (Esc &) (0247 1 M E T A B I T)
s_F8 \ E * (Esc *) (02501 M E T A B I T)
s_F9 \ E ((Esc () (03761 M E T A B I T)
s_F10 \ E) (Esc)) (03761 M E T A B I T)
ClearLine \ E c i (Esc c i) (0331 1 M E T A B I T)
Creat \ E c r (Esc c r) (0332 I M E T A B I T)

Using the CTAM Windowing System 3-9

virtual default character internal value
key name sequence (keystrokes) (see kcodes.h)

U n d o \ E u d (Esc u d) (0333 M E T A B I T)
Find \ E f i (Esc f i) (0334 M E T A B I T)
Move \ E m v (Esc m v) (0335 M E T A B I T)
Dlete \ E d l (Esc d 1) (0336 M E T A B I T)
Mark \ E m k (Esc m k) (0337 M E T A B I T)
Save \ E s a (Esc s a) (0341 M E T A B I T)
Redo \ E r o (Esc r o) (0342 M E T A B I T)
Rplac \ E r p (Esc r p) (0343 M E T A B I T)
Copy \ E c p (Esc c p) (0344 M E T A B I T)
DleteChar \ 1 7 7 (Del) (0345 M E T A B I T)
InputMode \ E i m (Esc i m) (0346 M E T A B I T)
s_Move \ E M V (Esc M V) (0255 M E T A B I T)
s_DleteChar \ E D C (Esc D C) (0265 M E T A B I T)
s_Copy \ E C P (Esc C P) (0264 M E T A B I T)
Exit ~D (Ctrl-D) (0350 M E T A B I T)
Suspd ~W (Ctrl-W) (0351 M E T A B I T)
Cmd ~C (Ctrl-C) (0352 M E T A B I T)
Print \ E p r (Esc p r) (0353 M E T A B I T)
Beg \ E b g (Esc b g) (0354 M E T A B I T)
Prev \ E p v (Esc p v) (0355 M E T A B I T)
Back \ E b w (Esc b w) (0356 M E T A B I T)
Open \ E o p (Esc o p) (0361 M E T A B I T)
Rfrsh " L (Ctrl-L) (0362 M E T A B I T)
H o m e \ E h m (Esc h m) (0363 M E T A B I T)
U p \ E u p (Esc u p) (0364 M E T A B I T)
Down \ E d n (Esc d n) (0365 M E T A B I T)
Help \ E ? (Esc ?) (0366 M E T A B I T)
Opts \ E o t (Esc o t) (0367 M E T A B I T)
Cancl " X (Ctrl-X) (0370 M E T A B I T)
Page \ E p g (Esc p g) (0371 M E T A B I T)
End \ E e n (Esc e n) (0372 M E T A B I T)
Next \ E n x (Esc n x) (0373 M E T A B I T)
Forward \ E f w (Esc f w) (0374 M E T A B I T)
s_Exit \ E E X (Esc E X) (0270 M E T A B I T)
s_Back \ E B W (Esc B W) (0276 M E T A B I T)
Close \ E c l (Esc c 1) (0301 M E T A B I T)
Clear \ E c e (Esc c e) (0302 M E T A B I T)
s _ H o m e \ E H M (Esc H M) (0303 M E T A B I T)
Rol lUp \ E r u (Esc r u) (0304 M E T A B I T)

3 10 CTAM Application Programmer's Guide

virtual default character internal value
key name sequence (keystrokes) (see kcodes.h)

RollDn \ E r d (Esc
s_JIelp \ E H L (Esc
s_Page \ E P G (Esc
s ^Forward \ E F W (Esc

r d) (0305 I M E T A B I T)
H L) (0306 I M E T A B I T)
P G) (0311 I M E T A B I T)
F W) (0314 I M E T A B I T)

NOTE

Be sure that the key values for a new terminal do not collide
with the values of other default or defined key values.

For example, if a terminal 's kbmaps file defines Down as
\ E D , a collision condition exists with the default value of
s_DleteChar. If the terminal must use the conflicting value,
then its kbmaps file can redefine the value of s_DleteChar to
clear the collision.

/usr/lib/ctam/fonts/$TERM .ft

Terminals that use multiple font sets (beyond standard ASCII) should
have a font description file in /usr/lib/ctam/fonts to describe the alter-
nate character set controls. The font description file is similar in for-
mat to a .ti file in terminfo. A keyword is followed by an equals sign
" = " , which is followed by a definition string and terminated by a
comma or end-of - f i le .

For example, the file gt.ft is listed below:

smacs2=\E[12m,
rmacs2="0,
ctline=1,
ctgraph=2,
smstrike=\E[9m,
decgraph=b{2d\05421q2gd2y12ze21 h2>M2" [2j\1361 k'11_1 m]

1 x21 qK1 nL1 tR1 uS1 vN1 wM1,

For more information on font files, see fonts(4W) and the font files
distributed with the CTAM release.

Using the CTAM Windowing System 3-11

/etc/CTWMtermcap

If non-CTAM termcap-based applications are run in CTAM win-
dows, the generic CTAM window terminal capabilities must be
defined in /etc/CTWMtermcap. CTAM is released with a
/etc/CTWMtermcap file describing supported terminals. Additional
terminal descriptions can be added to CTWMtermcap in much the
same manner as customized $TERMctam.ti files are created. (A
sample listing of a $TERMctam.ti file is given at the end of this
chapter.) When ctwm starts up, the $TERMCAP environment vari-
able is set to /etc/CTWMtermcap.

/etc/termcap

All terminals used should have an entry in /etc/termcap, although
CTAM applications do not actually use /etc/termcap. This is so that
tset(l) correctly sets the $TERM variable for termcap-based applica-
tions when the user logs in.

CTAM Terminal Support

The eleven terminals supported
displayed in Table 3-2 :

as of CTAM Release 2.2 are

3 12 CTAM Application Programmer's Guide

TABLE 3-2

Released Terminal Support

Terminal Description

ct235 Convergent Technologies TO-235
ct250, to250 Convergent Technologies TQ-250
ct300, to300 Convergent Technologies T 0 - 3 0 0
for tune For tune Systems 32:16 terminal
gt Convergent Technologies Graphic Terminal
1220 Link 220
Pt Convergent Technologies Programmable Terminal
vtlOO D E C VT100
vt220 D E C VT220
wy85 Wyse 85
bt970 Televideo BT-970 (RBOC custom terminal)

In most cases, software terminal emulators or emulation modes on
other terminals work correctly when simulating one of the supported
terminal types. Emulator packages often add features and functions
not available on the original terminal. To take advantage of any
additional features, the terminal support files must be customized as
described in the section called "Add ing a New Terminal ," later in
this chapter.

In particular, most VT100 emulation provides at least ten function
keys. A real VT100 terminal has only four function keys. The key-
board values presented by the additional function keys vary in dif-
ferent emulation packages, so a modified /usr/lib/ctam/
kbmaps/vtlOO.kb may be needed to correctly map the additional
function keys.

Adding a New Terminal

In the example procedure below, a new terminal (a MicroTerm
A c t - I V A) is added to the system.

1. Terminals to be used with the CTAM window manager must
have both a standard terminfo file and a CTWM terminfo file.

Using the CTAM Windowing System 3-13

If there is no standard terminfo entry available for the terminal,
create an entry by copying an existing entry and modifying it as
described in terminfo(4). Sometimes a standard terminfo
source file for the terminal is supplied by the terminal manufac-
turer. The terminal manufacturer 's documentation is usually
the best information source to use when writing the standard
terminfo description.

If a standard terminfo (or termcap) entry exists for your termi-
nal, but your terminal is not supported by CTAM, you can con-
vert compiled terminfo (or termcap) entries into terminfo
source. Refer to captoinfo(lM) and infocmp (lM).

NOTE

A s of Release 2.2, CTAM may not fully support termi-
nals that reserve a blank character position for screen
attributes. These terminals are called "non-h idden attri-
bute" terminals.

CTAM requires a few specific terminfo capabilities for a usable
terminal. The capability clear_screen (clear) must be defined.
Cursor positioning is required, and can be provided by several
different capability definitions. If cursor_address (cup) is
defined, no other positioning capabilities are required. If cup is
not defined, then the terminal must have:

cursor_up (cuul) or cursor_home (home), and cursor_left
(cubl) or carriage_return (cr), and cursor_down (cudl) .

Terminals with hard_copy (he) or over_strike (os) defined are
not usable by CTAM. Other capabilities should be defined as
appropriate to completely describe the terminal, but only the
capabilities mentioned are required.

In this example, there already happens to be a description for
the terminal called "ac t4" . The compiled entry for this termi-
nal resides in /usr/Iib/terminfo/a/act4.

2. The CTWM terminfo file describes the window terminal and is
used by applications to convert terminal specific input into gen-
eric ANSI x3.64 output.

Prepare the CTWM terminfo file by merging your terminal 's
standard terminfo file keyboard descriptions with the window

3 14 CTAM Application Programmer's Guide

terminal descriptions in the $TERMctam.ti file. Use t ic(l) to
compile the terminfo source into /usr/lib/terminfo. A listing of
$TERMctam.ti, a skeleton CTWM terminfo source file, is given
at the end of this chapter.

3. Check operation of the window manager. Once the terminfo
entry is in place, the CTAM Window Manager should work. A
simple test is to type:

$ TERM=act4; export TERM
$ ctwm

The window manager should recognize the terminal and bring
up a default window running a shell. Check to see how well
everything works: Are the window borders solid or broken
lines? E)o any of the arrow keys or function keys work? If the
screen becomes garbled, then the terminfo description needs
work; if the borders or function keys do not work, but the
screen is otherwise ok, then further steps must be taken.

Other capabilities, such as line drawing, which enables ctwm to
draw more sophisticated looking windows, should be defined to
refine the output of the terminal. For more information on
these options, refer to terminfo(4).

4. Create a keyboard description file for the terminal. Make a
new file in /usr/lib/ctam/kbmaps for the terminal and name it
act4.kb (the name of the terminal followed by " . k b "). A t a
minimum, put entries for the terminal 's arrow keys and func-
tion keys in the file. Check the success of the new keyboard
description file by rerunning the window manager and trying
the function keys after typing ~Z.

5. If the terminal uses multiple fonts, use a font file in
/usr/lib/ctam/fonts to describe the alternate character set con-
trols. In this example, the file should be called
/usrAib/ctam/fonts/act4.ft. Check the success of the new font
description file by rerunning the window manager.

6. A t this point, all CTAM applications (this includes applications
such as the CTIX Administration Tools and WGS) should be
fully functional. If non-CTAM applications are to be used
under the window manager, then continue.

7. For termcap-based applications to properly recognize a
terminal 's arrow and function keys under the window manager,
an entry must be made in /etc/CTWMtermcap. This is

Using the CTAM Windowing System 3-15

considerably easier than adding the second terminfo description,
since the termcap file is an editable ASCII file. Append to the
file an entry called act4ctam that describes the terminal 's arrow
and function keys, followed by a " tc=c tam" entry that causes
the rest of the entry to be the same as the "ctarn" termcap
entry.

The code for the example terminfo source is as follows:

CTAM window terminal terminfo(4) source module.
$TERM represents your terminal's name as normally set in your
login profile. When running CTAM, the environment is modified
as TERM=$TERMctam so applications use the window terminal
capabilities rather than the physical terminal capabilities.

* *
Modify terminal information lines below to match your terminal
* *

$TERMctam| <terminal under CTAM 2.1 window manager*
keypad
list keypad capabilities from terminal's normal terminfo
description: kcubl, kcufl, and so on.

The remainder of this description entry defines the display capabilities
of the window terminal provided by the CTAM window driver, wxt, and
should not be modified.

booleans
msgr, am, xon,
numbers
cols#80, lines#24,
tabs
tbc=\E[3g, hts=\EH,
navigation
cup=\E[%i%p1 %d;%p2%dH, home=\E[H, ind=\ED, cr="M,
cub1="H, cud1=\E[B, cuf1=\E[C, cuu1=\E[A,
cub=\E[%p1%dD, cud=\E[%p1%dB, cuf=\E[%p1%dC, cuu=\E[%p1%dA,
nel=\EE, sc=\E7, rc=\E8,
erasing, inserting, deleting
ech=\E%p1 %dX,
clear=\E[H\E[2J, el=\E[K, ed=\E[J,
dch1=\E[P, dch=\E[%p1 %dP, dl1=\E[M, dl=\E[%p1%dM,
ich1=\E[0, ich=\E[%p1 %dO, il1=\E[L, il=\E[%p1 %dL,
bells, lights and whistles
bel="G, sgrO=\E[rrrO, smso=\E[7m, rmso=\E[m,
bold=\E[1m, dim=\E[2m, smul=\E[4, rev=\E[7m,
rmul=\E[24m, rmso=\E[27m, smso=\E[7m,
cnorm=\E[=C, civis=\E[=1C,
ldatt#6, smacs="N, rmacs=~0, ldvl=x, ldht=q, ldul=l, ldur=k,
ldbl=m, ldbr=j,
unsupported features
bwa, xsbo, xhpo, xenlo, eoo, gna, hco, hflo, kmo, hso, ino,
dao, dbo, miro, oso, esloko, xto, hzo, ulo,

3 16 CTAM Application Programmer's Guide

ito, Imo, xmco, pbo, vto, wslo,
cbto, csro, tbcO, hpao, cmdcho, mrcupo, llo, cwisO, dslo,
hdo, blinko, smcupO, smdco, smirO, proto, inviso, rmcupo,
rmdco, rmirO, flasho, ffo, fslo, islo, is20, is30, ifo, ipQ,
rmkxo, smkxO, smmo, rmmo,
pads, indno, rino, pfkeyo, pfloco, pfxo, mcOo, mc4o, mc5o,
repo, rs lo, rs20, rs3o, rfo, vpao, rio, sgro, htso, windo,
hto, tslo, ucO, huo, iprogo, mc5pO,

Using the CTAM Windowing System 3-17

4
Introduction to DPL Programming

This chapter concentrates on the basics of programming in the Dialo-
gue Programming Language (DPL), part of the CTAM applications
development package; the following areas are covered:

• Different contexts in which DPL can be used

• Tools available for compiling DPL programs

• How to specify basic entities (forms, fields, and items)

• How to specify events

• How to specify action routines

• How to specify flow of control f rom one event to the next

• How to specify variables

Throughout this chapter, there are a number of programmatic exam-
ples to help you gain a working knowledge of the DPL system. The
directory /usr/Iib/adman/english_usa, used by the CTIX Administra-
tion Tools program, contains several more examples of DPL.

For a description of how to interact with DPL-based applications as
an end user, see Chapter 2, " T h e CTAM Application User Inter-
face ."

Introduction to DPL Programming 4-1

The DPL Form and Menuing Tools

As described in Chapter 2, DPL is a high level language used to
develop applications that display forms and menus. A dialogue is a
session in which an end user uses keystroke sequences to interact with
forms and menus.

DPL comes with form compilation tools [rcc(l)] , a runt ime inter-
preter [dplrun(l)], and programming libraries [libdpl.a and
libctam.a] that allow DPL to be used in two kinds of contexts:

• As a description for a form that is used by an application program
written in C, FORTRAN, Pascal, COBOL, or BASIC. In this con-
text, which is described in Chapter 5, "Programmatic Forms and
Menus , " the application program makes calls to a forms library to
interact with the user.

• A s a description for a form that is accessed by a forms interpreter
program (dplrun) called the Dialogue Interpreter. In this con-
text, the form itself controls the session, commanding the Dialo-
gue Interpreter to display additional forms or to run programs or
shell scripts. Typically no programming other than DPL program-
ming is done here.

Using the Dialogue Interpeter

For a session that uses the Dialogue Interpreter, the applications
designer creates a forms definition file called a resource file (whose
file suffix by convention is .rf). The resource file contains the form
and menu definitions and the corresponding commands that drive the
interpreter.

Resource File Example #1:

To see how easy DPL is to use, try the example below on your sys-
tem. The DPL keywords used in the example are form, onhelp,
dohelp, field, menu, onselect, doexec, PopupForm, and text. Main-
form and otherform are names made up by the programmer, denot-
ing names of forms. $Enter, $Cancl and $Help are reserved variable
names, in this case describing keystrokes.

3 2 CTAM Application Programmer's Guide

As in the C programming language, extra tabs and spaces are ignored
in DPL code; thus, white space can be used to improve readability.
All of the keywords, variable names, and other constructs used in the
example are explained in the sections that follow.

form mainform "Professor Schmedlap's Bag of Tricks" (4,10)
onhelp { dohelp{ "/usr/lib/helpfile.hlp"); >
field menu (2,2)

"Run a Program" onselect{ doexec("Is"); >,
"Display Another Form" onselect{ PopupForm(otherform); >,
"Run a Shell Script" onselect{ doexec("sh","scriptname"); >;

field text (6,2)
"Select the desired function and press 'SEnter'.",
"Press 'SHeip' for further Information.";

form otherform "This Is Another Form" (6,13)
field text (2,2)

"This Is the text for the other form",
"that is displayed when a menu item",
"is selected. This is a text field.",
H R
"Press 'SCancI' to continue.";

The above example is executed from the shell like this:

$ dplrun file.rf

where file.rf contains the code listed above. The resulting display is a
form as shown in Figure 4—1.

Professor Schaedlao's Ban of Tricks

Display Another Form
Run a Shel l Sc r ip t

Selec t the des i red func t ion and press ^Co1.
Press vHelp' for f u r t h e r i n f o r n a t i o n .

Figure 4-1. Sample Form #3

The label Professor Schmedlap's Bag of Tricks appears in the border at
the top of the form. The upper left corner of the form is placed at
coordinates (4,10) on the screen (row 4, column 10), where the origin
(1,1) is at the top left corner of the screen.

Introduction to DPL Programming 4-3

The first menu item, Run A Program, is placed two rows, two
columns f rom the upper left corner of the form, at (2,2), followed by
the menu items Display Another Form and Run A Shell Script. These
are the menu items that can be selected by the application user. A t
location (6,2) relative to the upper left corner of the form, there is a
text field, a field that is displayed, but cannot be edited or selected.

If the first menu item is selected, the Dialogue Interpreter runs the
program Is. If the second item is selected, an additional form is
displayed. If the third item is selected, a shell script is executed. Fig-
ure 4—2 illustrates the resulting display if Display Another Form is
selected.

P r o f e s s o r Schwedlap's Baa of Tricks

t i i r t f fWimj . i J JMJ •

This i s the t e x t for the other f o r i
t h a t i s d isplayed when a nenu i t e n
i s s e l e c t e d . This i s a t e x t f i e l d , o 1 .

Press 'Cancel ' to cont inue .

Figure 4-2. Sample Form #4

Resource File Example #2:

The previous example represents a menuing session, in which the user
makes selections without editing any fields. Here is an example in
which a user edits a field on a form:

form mainform "Personal Data" (4,5)
onselect{ doexec("echo", Smainform.MyField); >

field text (3,2) "Enter Your Name:";
field MyField edit [boxed] (3,20)-(3,50) " ";

field text (5,2) "Select a Party:";
field menu [chcksel] (5,20) "Republican", "Democrat",

"Anarchist", "Other ";

field text (10,2) "Press SEnter to execute, SCancI to exit.";

3 4 CTAM Application Programmer's Guide

The resulting display, shown in Figure 4-3 , is a form prompting the
user to enter his name. The user input is then echoed on the screen
by the echo command. The variable name $mainform. My Field is
used much like a C structure field name, evoked by its use in the
doexec command. The variable name consists of the form name, a
dot, and the field name. The forms system fills in the value that the
user enters or selects for that field.

rl jjJji'iMBi.Mf-

Enter Your Mane:

S e l e c t a P a r t y : *Republ ican
Democra t
Anarchist
Other

P r e s s Go t o e x e c u t e , Cancel t o e x i t .

Figure 4-3. Sample Form #5

DPL Entities: Forms, Fields, and Items

There are three basic entities in DPL: forms, fields, and items.

The form is the basic unit of the DPL language. It is characterized by
a box on the screen, containing one or more fields.

Fields are the basic components of forms and can vary in shape and
size, depending on the number and format of the items inside. Some
fields take up the whole window, others take up enough space for
only a few characters.

There are four types of fields: menu, list, edit, and text. Each field
type is described in detail under "Fields," later in this chapter. See
Figure 2-1 , also, for typical examples of each field type.

An item is a piece of text within a field. Normally, items appear one
per line in a single column. Depending on the type of field, items in a
field can be selected or edited, or if the field is for viewing only, nei-
ther selected nor edited.

Introduction to DPL Programming 4-5

A n application can display one or more forms simultaneously. T h e
topmost f o rm is the active process, capable of receiving keyboard
input. U n d e r the CTAM window manager , a terminal screen can
display one or more windows (applications) running simultaneously.
As with forms , the topmost window is the process currently capable
of receiving s tandard input. T h e hierarchy of DPL entities running
under the CTAM window manager is illustrated in Figure 4 -4 .

In the simplest case, a terminal screen displays one window (with
invisible borders) , the window contains one fo rm, and the fo rm con-
tains one field with one item displayed. T h e shell is similar to a win-
dow displaying a fo rm that contains a single edit field (the p rompt
line).

Screen

Window 1

Form 1

Form 2

Form 3

Menu Field
Item 1 LJ
Item 2
ifem 3

Window 2

Form
Edit Field

Window 3
Form

Menu Field

"item 1 ;

[Item 2

Text Field
f i t em !

Figure 4-4. Hierarchy of D P L Enti t ies U n d e r C T W M

3 6 CTAM Application Programmer's Guide

Forms

A complete forms definition file consists of a form statement and one
or more field statements. A form statement is terminated by another
form statement or by an end of file, and consists of the keyword form
followed by a form name, an optional window label, and either the
optional window coordinates or an optional placement keyword.

The first form to be displayed can be specified on the command line
by using the - s option with the form name; for example:

$ dplrun -s firstform file.rf

where file.rf is the name of the DPL file, and firstform is the name
of the starting form to be displayed. If the -s option is not used with
a form name on the command line, the Dialogue Interpreter looks for
a form named mainform.

The form name is also referred to by other forms in the DPL pro-
gram, using the action routine called PopupForm, explained later in
this chapter.

On the form statement, the window label is surrounded with quotes
and follows the name. The coordinates of the upper left corner of the
form are given in absolute window coordinates, with (1,1) being the
upper left row and column, respectively, of the window in which the
form appears. Optionally, the absolute coordinates of the lower right
corner may also be given on form statements. Typical screens provide
about 20 rows1 and 80 columns. Here is an example form statement:

form formname "Form Label" (2,3)-(10,70)

As an alternative to the coordinates, the form designer can allow the
forms system to decide on the placement of a form, based on one of
three keywords:

form formname "Form Label" [son]

1. The bottom three lines of the screen are used for function key labels and
prompts. Starting with a 25 line screen and subtracting three rows for labels
and prompts, and two rows for the window border, there are 20 rows available
for forms.

Introduction to DPL Programming 4-7

A son fo rm is placed in a manner that partially but not completely
overlaps the calling fo rm, if possible. The son placement style is the
default if no upper left hand corner is specified for the form.

form formname " Form Label" [new]

A new form is placed completely outside the calling form, and not
over the top of any other existing forms, if possible.

form formname "Form Label" [popup]

A popup form is placed completely inside the calling form, if possi-
ble.

In the case where the form designer requires that the form label
occupy the entire width of the form, the fullwidth flag can be used:

form formname "Form Label" [fullwidth] (5,10)-(10,60)

If a forms application is intended to be used in conjunction with the
CTAM Window Manager , then the resize flag may be specified. The
resize flag allows you to use the window manager^ to change the size
of a form.

Fields

A field is defined by the keyword field followed by a field name, a
field type, the coordinates within the form where the field is to
reside, and a comma-separated list of items; field statements are ter-
minated with a semicolon. Only the field type and semicolon are
actually required after the keyword field.

2. Window manager mode is accessible only when running with the CTAM
Window Manager. For more information on the window manager, see
c twm(lW) in Appendix A.

3 8 CTAM Application Programmer's Guide

A simple text field might be specified like this:

field FleldName text (5,10)
" Press 'SEnter' to continue.";

The field's coordinates (specified above as row 5, column 10) specify
where within the form the field is to appear and are relative to the
upper left hand corner of the form. In other words, if the above field
statement is specified within a form that has its upper left corner at
(2,2), then the upper left corner of the field is displayed 7 rows, 12
columns f rom the upper left corner of the window.

As with form coordinates, field coordinates are optional. In the fol-
lowing definition, things surrounded by square brackets may be omit-
ted:

[([top left row] , [top left col]) [- ([bot right row] , [bot right col])]]

Elements of a field's coordinates that are not specified are figured out
by the forms system at runtime, based on how many rows and
columns are required to display the entire field. If the length of some
items within a field may change at runtime, you can either specify a
lower right hand coordinate large enough to accommodate the largest
item in the field or leave out the lower right hand coordinate. For
instance, if the variable $Enter is used in a text field, as in the previ-
ous example, the key name substituted at runtime for $Enter on some
terminals might be LineFeed (eight characters long), while on other
terminals the key name displayed might be Go (only two characters).
By allowing the forms system to determine the lower right hand coor-
dinate of the field, the display varies automatically for different
length items in each field.

Af t e r the field type keyword (menu, list, text, or edit), a field attri-
bute specification can be used. Field attributes can be used to alter
some of a field's characteristics. Some attributes are useful only with
some field types (each type is discussed in later sections of this
chapter), while other attributes may be used with any field type.

Field attributes are specified with a comma separated list of attribute
keywords enclosed by square brackets. Each field attribute is either
on or off with the default depending on the field type. If an attribute
keyword is preceded with a tilde (~) , that attribute is turned off.

Introduction to DPL Programming 4-9

The following are general purpose field attributes:

boxed Causes a box to be drawn around a field. The box is
drawn around the outside of the field's coordinates. If
the field is vertically scrollable, a scroll bar is drawn
along the right inside edge of the box. Likewise, if the
field is horizontally scrollable, a scroll bar is drawn
inside the box along the bottom edge. Default: off.

off If a field is off, the user is not able to move the cursor
to the field. Normally, text fields are off; menu, list,
and edit fields are on.

save When a form is closed and then later displayed, nor-
mally all of the field's values are recomputed and all
defaults are reset. However, by specifying the save
field attribute, a field's value is not recomputed but
retains its state from the previous invocation. This is
useful if you want a field's default value to be whatever
the user entered previously.

vbar, hbar These flags permit scroll bars to be drawn for fields that
do not have the boxed flag set. Default: off. Example:

field MyField menu [boxed, "vbar] (2,2)

Menu Fields

A menu field description contains a list of selectable items to make up
the field, and optional action routines to be executed if specified items
are selected. Menu items with their action routines are separated by
commas and terminated with a semicolon:

form formname "Form Label" (2,3)-(10,70)
field MenuName menu (4,4)

"Menu Item #1" onselect{ action routine #1 >,
"Menu Item #2" onselecH action routine #2 >,
"Menu Item #3" onselecK action routine *3 >;

In this example, the user may select one menu item. When it is
selected, the appropriate action routine is executed. (More informa-
tion on action routines is given later in this chapter.)

3 10 CTAM Application Programmer's Guide

The optional menu name (MenuName in the above example) is used
in certain types of action routines to make use of the chosen menu
item.

The coordinates (4,4) specify the upper left corner of the menu field,
relative to the upper left corner of the form. The lower right corner
may be specified by including a second set of coordinates as on the
form statement.

To make a multiple column menu (where menu items appear as a
table, in rows and columns), an asterisk is used following the relative
coordinates. Example:

form formname "Form Label" (2,3H10,70)
field MenuName menu (4,4) * 3

"Item 1",
"Item 2",
"Item 3",

"Item 50";

The "* 3" makes this a three column menu. Depending on the form
and menu size, the field may automatically be made to scroll either
horizontally or vertically.

The example below demonstrates a multiple column menu for which
the number of rows and columns is decided at runtime by the system.
A best fit is made:

field name menu (2,2)~(,70) *

This example demonstrates a multiple column menu that occupies 20
rows, and as many columns as is necessary:

field name menu (2,2)—(22,)*

Optional menu field attributes appear following the menu keyword,
in a comma-separated list of keywords inside square brackets. These
attributes affect the entire menu. To turn on the attribute, place it in
the list. T o turn it off, prefix a tilde (~). In this example, the
selected item is check marked, not highlighted, and the entire menu
field of the form is surrounded by a box:

Introduction to DPL Programming 4-11

form example "Example" (2,3)
field menu ["high, chcksel, boxed] (2,2)

"Menu Item #1" onselecH action routine *1 >,
•Menu Item *2" onselecH action routine #2 >,
"Menu Item #3" onselecH action routine #3 >;

Here is the full list of menu field attributes:

high This uses a highlighted bar as the cursor. Default: on.

chck This uses a check mark as the cursor. Default: off.

highsei This leaves the highlighted bar on the selected item(s).
Default: off.

chcksel This leaves a check mark on the selected menu item(s).
Default: off for menus, on for lists.

dash This causes a leading dash to be printed on the current
item. Default: on.

pulldown If the user presses the Command key (usually Control-C),
the menu expands to display all of the items.

writein This allows the user to type his or her own item instead of
choosing one from the menu. The typed in value
becomes the field's value instead of the item under the
cursor.

List Fields

A list field is actually a menu field in which more than one item may
be selected at a time. For example:

form PrintForm "Select Files To Be Printed" (4,4)
field items list (2,2)

" File"!" onselecH action routine #1 >,
"File2" onselecH action routine #2 >,
"File3" onselecH action routine #3 >;

A facility exists to use the multiple values that would exist in
$PrintForm.items in the above example. A named list field becomes
an array, like in the C programming language, containing the values
that the user entered. The count, useful on the while command,

3 12 CTAM Application Programmer's Guide

documented in a later section, is in element [0] of the array. For
example:

form PrintForm 'Select ONLY THREE files to be printed- (4,4)
onselect {

doexec("Ip", $PrlntForm.ltems[1]);
doexec("Ip", $PrintForm.ltems[2]);
doexec("Ip", $PrlntForm.ltems[3]);

>
field Items list (2,2)

'Is';

In the example above, note that a shell command surrounded by
backquotes is used to determine the field's elements at runtime. For
more information on defining menu items at runtime, see " I tems,"
later in this chapter.

Edit Fields

An edit field defines an area on the screen into which the user types
characters. Edit fields can be blank filled or they can be initialized
either statically with a string constant or dynamically with a shell
command. This edit field is blank filled:

field fieldname edit (2,2)-(2,50) "";

This edit field is initialized with a string constant:

field fieldname edit (2,2)-(2,50) "Default Value";

This edit field is initialized with the output of a shell command:

field fieldname edit (2,2)-(2,50)
'grep MyName/etc/passwd I cut -d: - f5 ' ;

If the save attribute is used on the edit field, and the form is
displayed for a second time during a session, the edit field is initial-
ized with the value that the user entered on the most recent use of the
form. Shell commands, as in the previous example, are not run a
second time. Example:

field fieldname edit [save] (2,2)-(2,50)
"First Default Value";

Introduction to DPL Programming 4-13

The blank attribute indicates that the edit field is silent; that is, when
a value is entered into it, the value is not echoed to the screen.
Blank is the only attribute that is entered after the double quotes in a
field statement. Example:

field text (2,2) "Enter your password: ";
field fieldname edit (2,23H2,40) "" [blank] ;

Edi t fields may span more than one line. Example:

field fieldname edit (2,2)
"name",
"address",
"phone number";

The value resulting f rom a multiline edit field is a string containing
newlines where the line boundaries are.

The value of an edit field may be type checked. The initial value of
the edit field is followed by a colon (:) and then a type verification
string. Example:

field fieldname edit (2,2)-(2,4)
"" : "###";

In this example, the forms system causes the terminal to beep if the
user enters anything other than 3 numeric digits.

The following characters can be used in a type verification string:

• Pound Sign. The # character means digits. That is, the charac-
ters 0 - 9 , as in the example above.

• Question Mark. The ? character stands for letters. These include
A - Z , a -z , and possibly other characters, depending upon the
national character set currently in use. For example:

field description edit (1,1)-(1,15)

This requires the user to enter a sixteen character name, using
only letters. Note also that in this case, the user would be
required to fill in all sixteen blanks with a letter.

3 14 CTAM Application Programmer's Guide

• Period. This is the wild card string. It matches anything that the
user enters. For example:

field PartNumber edit (1,1)-(1,9)

This example requires the user to enter a four digit part number ,
followed by any character (the wild card) followed by five letters.

• Brackets. Brackets define the ranges of type verification letters.
In the example below, the user must enter a number in the range
0 -5 , followed by a letter in the range n-z:

field value edit (1,1)-(1,2)
"" : "[0-5][n-z]";

A leading caret (") , used within bracketed ranges, allows the pro-
grammer to require any character but the range specified. In the
example below, the operator may enter anything but numeric
digits:

field value edit (1,1)-(1,5)
" " : "[~0-9]";

• Any character. By placing a character or set of characters in a
type verification string, the user is required to enter this character
value as part of the edit field. In the example below, the 'dash'
character (-) is required:

field PhoneNumber edit (1,1)-(1,11)

This example requires the operator to enter a phone number. H e
must enter the dashes with the appropriate number of digits.

As shown in the examples above, type verification strings may be
combined to build more complex input strings. In addition, the fol-
lowing constructs may be used along with these strings to aid the pro-
grammer in developing more complex verification strings:

Introduction to DPL Programming 4-15

• Asterisk. When an asterisk follows a type verification string, the
forms system interprets it as meaning "zero or more o f ' that
string. Example:

field number edit (1,1)-(1,5)
ft H • N £*« •

This means that the operator must enter zero or more digits into
that edit field.

• Plus. When a plus sign follows a type verification string, the
forms system interprets it as meaning "one or more o f ' that
string. Example:

field name edit (1,1)-(1,5)
nm ' n9+ w•

This means that the operator must enter one or more letters into
that edit field.

• Braces. A range of occurrences may be specified with the use of
braces. Example:

fieldname edit (1,1)-(1,6)
"" : "#{1,3}?*";

This means that the operator must enter between one and three
digits optionally followed by any number of alphabetic characters
(until the field is full of course).

NOTE

It is advisable to keep edit type specifications as simple as pos-
sible; otherwise, the user may be placed in an awkward situa-
tion in which no key is valid. For instance:

field name edit (1,1)-(1,10)
mN : •#+7??7«;

In this example, the user is allowed to type any number of
digits but must still type four alphabetics. If the user enters a
large number , the field can never be valid, because there will
not be room left to type the four alphabetics.

3 16 CTAM Application Programmer's Guide

For additional field verification constructs, listen to me now and read
about it later but know this next week: the onvalid and return
features are described under "Event Language Control Flow," later
in this chapter.

Text Fields

Text fields cannot be edited or selected; they are used as labels for
other fields, or they provide additional information in a form. Text
fields may be sets of quoted strings separated by commas, they may
end in a semicolon, or they may be assigned by the means of a shell
command. If the amount of text to be displayed exceeds the size of
the form, the text is made scrollable. Here is an example of a text
field being used as a prompt for an edit field:

form mainform
field text (2,2) "Enter your name: ";
field name edit (2,19)-(2,50) "";

The tail field attribute flag may be used with a text field to cause a
scrollable text field to be initially bottom justified.

Items

An item is a piece of text within a field. Normally, items appear one
per line in a single column. Depending on the type of field, items in a
field can tie selected or edited, or if the field is for viewing only, nei-
ther selected nor edited.

If there are more items in a field than will fit within the coordinates
specified for the field, the field is made scrollable. Such fields are
conventionally specified with the boxed field attribute to make their
special property more apparent to the user.

Most of the examples of menus up to this point have contained prede-
fined menu items, that is, the form designer has coded the selections
directly into the form, such as filel ,file2, and so on. This is impracti-
cal in certain types of applications. To get around this problem, the
Dialogue Interpreter supports backquotes similar to the way the shell
supports them; in this case, executing shell commands to get menu

Introduction to DPL Programming 4-17

items. The output of the shell command is captured by the forms sys-
tem, and used for the menu items. For example:

form RmForm "Remove A File" (2,3)-(20,60)
onselecH doexec("rm", SRmForm.f lie name); >
field filename menu (2,2)-(8,20)

'Is I sort";

In this example, the menuing system runs the Is command, pipes the
result through sort, and uses the resulting file list as the menu item
list. Thus, the menu items are not coded directly into the form, but
are built when the form runs and are comprised of file names from
the current directory.

Item Attributes

Items can be defined with an item attribute, following the quoted
string (before the equals sign, if any) and surrounded with square
brackets. These attributes affect only the item with which they
appear.

root This attribute instructs the Dialogue Interpreter to display
the item only if the user is root. Typically, this attribute
is used in system administration routines.

level This attribute works much like root, except that it gives
more complete control to the application designer in terms
of who can use the given menu items. There are eight
levels of end users: zero through seven. Level zero has
the highest amount of capability, and is equal to root.
The next levels can be used to gradually give users more
capabilities. Example:

form startform "Things you can do" (2,2)
field menu (2,2)

"All Capabilities" [level=0],
"System Programmer Capabilities" [level=1],
"Application Administrator" [level=2],
"Data Entry Clerk" [level=3];

3 18 CTAM Application Programmer's Guide

The level value is known to the dialogue interpreter by
looking at the effective group ID value} Members of
group zero (which is root's group) are set to level zero.
Members of group 100 are set to level 1; group 101 to
level 2, group 102 to level 3, and so on. End users see
menu items marked with their level number and above.
Note that programmers building menus into their C pro-
grams (discussed in Chapter 5) can set the level by means
of the SetLevel subroutine call and can get the level by
means of the GetLevel call.

default Instructs the Dialogue Interpreter to regard that item as
the default choice, and to position the cursor on that item
when the field is displayed. Example:

form RmForm "Remove A Subtree" (2,3)
onselect{ doexec("rm", "-r", SRmForm.filename); >
field filename menu (2,2)

"/u/YourHomeDir",
"/tmp" [default],
"/usr/misc" [root];

high The item is to be displayed in reverse video at all times.

blank The item is to be blank (all spaces). This is useful in edit
fields when it is desirable to inhibit echoing to the screen
for things such as passwords.

Item Values

The value of an item is usually the same as what appears on the
screen. However, a facility exists to substitute an alternate item value
that is different from the value that the user sees on the screen. That
is, an item can have a user value and a display value. For the exam-
ple below, assume that filel and fde2, and so on, are file names. In
this example, the file names are not what the user sees as menu

3. A user's effective group ID is usually the same as the user's group ID field in the
/etc/passwd file. Detailed discussions of how a user's effective group ID is
determined are contained in Section 2 of the CTIX Operating System Manual.

Introduction to DPL Programming 4-19

items. Instead the user sees menu items labeled The First File, The
Second File, and so on.

form CatForm "Cat A File" (2,3)
onselect{ doexec("cat", SCatForm.filename); >
field filename menu[high] (2,2)

•The First File" = "fllel",
"The Second Flle"= "flle2",
"The Third File" = "file3",
•The Fourth File"= "file4»;

The equals sign is followed by a quoted string, which is the value that
is placed into the variable $CatForm.filename when the menu item is
selected.

The value that is displayed is called the display value. The value that
is used in the program is called the user value. For information about
the way programs can distinguish between display and user values, see
"Variables ," later in this chapter.

Events

A n event defines the action or actions to be performed when the
selection associated with a form, field, or single menu item is com-
plete. Curly brackets O surround the action or actions to be per-
formed. Listed below are descriptions of each DPL event:

onact This event is executed each time the field is activated,
meaning each time the field is entered with the Tab
key.

onbadkey

oncancel

onclose

onhelp

oninit

This event is executed when the user types a key that is
not valid in the current context; for instance, if the user
types the Backspace key in a menu field, or types a key
that is considered invalid for a type verified edit field.

This event is activated by the Cancel key.

This event is activated by the Finish key.

This event is activated by the Help key.

This event is executed when a form is first displayed by
the forms system.

3 20 CTAM Application Programmer's Guide

onkey This event is executed when any keystroke is entered; it
can also be configured to execute when a specific key is
entered.

onselect This event is activated by the Enter key.

onvalid This event is executed when the user attempts to exit a
field. The programmer can perform value verification
in the onvalid event.

The DPL programmer has the use of many of the features of a tradi-
tional programming language in building event code. Action routines
such as doexec, dohelp, or PopupForm take on the form of subrou-
tine calls, while keywords such as if, else, while, and return offer
flow of control, allowing more useful programs to be written. The
event language also supports variables. For more information, see
"Even t Language Control Flow" and "Variables ," later in this
chapter.

In most of the preceding examples, there has been a one-to-one
correspondence between a menu item and an action taken when that
item is selected. This type of usage is frequently seen when a dif-
ferent kind of action is performed based on which menu item is
selected.

In other types of menu sessions, the same kind of action is performed
regardless of the menu item selected. For these sessions, the menu
item acts as data used in the action that is performed.

In the following example, the doexec action routine executes the pro-
gram whose name is given, and passes it any parameters provided. In
this case, the result is to cat (l) one of four files:

form CatForm "Cat A File" (2,3)
field menu[high] (2,2)

"filel" onselect { doexec("cat", "filel"); >,
"file2" onselect{ doexec("cat", "file2"); >,
"file3" onselect{ doexec("cat", "f!le3"); >,
"file4" onselect{ doexec("cat", "flle4"); >;

Using a single onselect command and by naming the menu, this
example shows a different way to cat one of the files:

Introduction to DPL Programming 4-21

form CatForm "Cat A File" (2,3)
onseiect{ doexec("cat", SCatForm.fllename); >
field filename menu[high] (2,2)

"filel",
»file2",
"fiie3",
«flle4";

In this example, the onselect statement is positioned outside of any
field on the form. When used in this way, the doexec action routine
is executed regardless of which menu item is selected. (For more
information on the placement of the onselect statement, see
"Events ," later in this chapter.)

The form name CatForm is used in the example to define a structure
with a field using the menu name filename. Again, these are used
much like C structs; in this case using the name of the form, a dot,
and the name of the field.

The use of the dollar sign is much like that in the shell language; it
tells the Dialogue Interpreter to substitute the actual value of the vari-
able.

Scoping of Events

Each event can be associated with a form, a field, or an item. For
example, the onhelp event below is associated with a form. This
means that when the user presses the Help key, the same help mes-
sage is displayed, no matter which field of the form the cursor is in at
the time:

form mainform
onhelp{ PopupForm(helpform); >
field fieldl menu

field field2 edit

3 22 CTAM Application Programmer's Guide

In the following example, the onhelp events are associated with fields.
This means that when the Help key is pressed, if the cursor is in
fieldl, one help message is displayed, and if the cursor is in field2, a
different help message is displayed. Example:

form malnform
field fieldl menu

onhelp{ PopupForm(helpforml); >
"Iteml

field field2 edit
onhelp< PopupForm(helpform2); >
"Default Value";

Note that when an event is associated with a field, the event appears
before the items in that field. When an event is associated with a
particular item in a field, the event is activated only if that item is
selected. In the example below, the event follows the menu item:

form mainform
field menu

"Iteml" onselect { doexec("prog"); >,
"Item2" onselect { doexec("prog2"); >;

The Onkey Event

As previously described, the onkey event is executed when any keys-
troke is entered, or it can be configured to execute when a specific
key is entered. This example traps on every keystroke:

form malnform "Trap All Keys" (2,2)
onkey{ NoteForm("Only arrow keys and 'SEnter' are legal");}
field menu "Iteml", "Item2", "Item3";

Like all events, the onkey event can be scoped to respond to all
fields, a single field, or a single item.

Introduction to DPL Programming 4-23

A special type of onkey event allows the forms programmer to t rap
only certain keys:

form malnform "Trap the SCmd key* (2,2)
field edit "" onkey($Cmd){ PopupForm(helpform); >;

In this example, if the user presses the $Cmd key (such as Control-C
on a VT100 terminal), the PopupForm action routine is executed.
The onkey event appears with a parameter surrounded by
parentheses; the parameter represents the name of a key, and it can
be: $Cmd for the command key, $F1 through $F10 for the function
keys, and $RollUp or $RollDn for the scrolling keys.

The key names that are available are listed in the file
/usr/include/kcodes.h. To use onkey for any special keys, such as the
function keys or arrow keys, get the name of the key f rom this file
and put a dollar sign before it. To perform keystroke handling on a
standard ASCII key, surround it with single quotes just like a C char-
acter constant in the onkey statement:

onkey(' I ') < doexec("/bln/sh"); >

To trap more than one key, use multiple onkey statements.

Action Routines

The doexec action routine has the syntax of a C subroutine call. U p
to 32 parameters become the name and command line values of an
"exec 'ed" program:

onselect { doexec("Is", "*.rf"); >

More than one action routine can appear on an onselect event,
separated by semicolons.

onselect { doexec("Is", "fllel");
doexec("sort", "fllel"); >

3 24 CTAM Application Programmer's Guide

The PopupForm action routine specifies the form name and the
parameters to be passed to the form. The parameters are quoted
strings, variables, or output f rom shell scripts. They correspond to $1,
$2, $3, and so on, in the called form. U p to thirty parameters are
allowed. End the list of parameters with a zero. Example:

form malnform "Demonstrate PopupForm Parameters" (2,3)
onselect { PopupForm(otherform, "Iteml", "Item2",

'echo Item3', Smainform.Name, 0);>
field Name edit (1,1H1.30) " Item4»;

form otherform 'Uses the Items from malnform" (6,8)
field menu (2,2)

"$1",
"$2",
"$3",
"$4";

When the above example is run, the value of $1 is Iteml, $2 is Item2,
$3 is Item3, and $4 is the value that the user entered for the field
Name in mainform.

The first parameter in PopupForm may be either the name of a
form, or a string that evaluates to the name of a form. Example:

form myform
onselect{ PopupForm(Smyform.mymenu); >
field mymenu menu

"Choicel" = "otherforml",
"Choice2" = "otherform2",
"Cholce3" = "otherform3";

form otherforml

form otherform2

form otherform3

The NoteForm action routine pops up a standard form labeled Note
and displays the text provided:

Introduction to DPL Programming 4-25

form mainform "Tests Noteform" (2,2)
onselect{ NoteForm("This Is a text message"); >
field ...

The forms system waits for the user to press the Cancel or Finish key
before clearing the form f rom the screen and continuing.

The ErrorForm action routine works like NoteForm, but the form is
labeled Error.

The SetPrompt action routine specifies the value of the prompt line
that is displayed when a field is active:

form mainform "Set up user Information" (2,2)
field loginid edit

oninit{ SetPrompt("Enter login ID");>
H R •

field name edit
oninit{ SetPrompt("Enter your name");}

N It •
field shell menu

oninit{ SetPrompt("Pick a shell");}
"C-shell",
"Bourne shell";

In the example above, the prompts are associated with edit fields and
menu fields. They are displayed at the bottom of the screen when the
field is entered. To associate a prompt with a text field, turn the
field on by using the field attribute [~off].

The SetRefreshRate action routine allows the programmer to refresh
the information on the screen after a specified interval. It is espe-
cially useful for administrative programs that display the status of
some part of the system. Example:

form mainform "Show the current time' (2,2)
field text (2,2) oninit{ SetRefreshRate(5); }

'date';
field text (4,2)

"Press 'SCancC to get out of this.";

In this example, the forms system refreshes the text field every five
seconds, in this case re-initializing the field by running the date pro-
gram. This means that the t ime would be updated every five
seconds.

3 26 CTAM Application Programmer's Guide

The RefreshField action routine is used to repaint the values in a
field without redrawing the entire form. Example:

form malnform "Dynamic Menu Items" (2,2)
onlnlH

SltemLlst = "Iteml Item2 Item3";
set SltemLlst;

>
onselect{

SltemLlst = SltemLlst + "Newltem";
set SltemLlst;
RefreshFleld("MyMenu");

>
field MyMenu menu (2,2)

"$1","$2","$3","$4","$5","$6","$7","$8»;

In this example, the variable $ItemList is assigned a value using the
command set. Variables can be set anywhere within event code.

If RefreshField is used without a field name, the currently selected
field is refreshed.

The LabelKey action routine allows the programmer to put a six
character label for the function keys at the bottom of the screen. U p
to 10 function keys can be displayed. The following example uses a
while statement (see "Even t Language Control Flow," in this
chapter) to label all ten keys:

form mainform "Label function keys" (2,2)
oninit <

$1 = 1;
whlle(Si <= 10) {

LabelKey(Si, "Key #"+$i);
SI = Si + 1;

>
>
onkey($F1) { PopupForm(flform);

LabelKey(1, "Done*); >
onkey($F2) { PopupForm(f2form);

LabelKey(2, "Done"); >
onkey(SF3) { PopupForm(f3form);

Label Key (3, "Done"); >

The first parameter is the key number (1-10, numbered left to right),
and the second is the key label value.

Introduction to DPL Programming 4-27

The LabelForm action routine changes the label at the top of the
form. Example:

form mainlorm 'Original Label' (2,2)
onselecH

LabelForm("New Label");

The SetSelect action routine dynamically sets the default item in a list
or menu field. I t is most useful in applications that build the menu
items at runtime. Example:

form mainform "Pick a file" (2,2)
field menu [chcksel] (2,2)

oniniH SetSelect("UsersFile"); >
'Is';

In this example, the menu is built at runtime by running Is. The Set-
Select action routine causes the file UsersFile to be marked as the
default.

GotoForm works just like PopupForm, transferring control to a new
form. It differs in that it closes the current form, and when the new
form is exited, control returns to the original parent form. Example:

form forml "demo"
onselecH PopupForm(form2);>
field text "Press '$Enter'.";

form form2
onselecH GotoForm(form3);>
field text "Press '$Enter'.";

form form3
field text "When you exit, control returns to forml";

The currently active field can be controlled with the action routines
AdvanceField, BackField, and SetCurrentField. AdvanceField and
Backfield cause the form to behave exactly as if the user had typed
the Tab or BackTab keys. SetCurrentField takes a single argument
that is the name of a field in the current form; that field becomes the
active field.

The CloseForm action routine closes the current form as if the user
had typed the $Close key (Finish on a PT, " D' on most other termi-
nals). Statements following CloseForm continue to be executed until
there are either no more statements or the return statement is

3 28 CTAM Application Programmer's Guide

executed. Since CloseForm requires no parameters but is an action
routine, it requires empty parentheses to follow it. Example:

form My Form "Illustrate CloseForm()" (2,2)
onselecH

PopupForm(forml);
PopupForm(form2);
CloseForm();

Event Language Control Flow

The keywords if, else, while, and return can be used to make up the
code in an event along with action routines, such as PopupForm,
doexec, and dohelp, described in the previous section. The syntax for
the control flow statements is much like that of the C programming
language. Example:

form malnform "Choose One Item" (3,3)
onselect{

If (Smainform.MyField == "Item 1")
PopupForm(forml);

else
PopupForm(form2);

>
field MyField menu (2,2)

"Item 1",
"Item 2",
"Item 3";

In the above example, control is transferred to forml if the menu
item chosen is Item 7; otherwise, control is transferred to form2. In
this way, flow of control is routed either to one PopupForm call or
another.

Introduction to DPL Programming 4-29

Loops can be built using the while keyword:

form mainform "Build Your Data Set" (2,2)
onselect {

Sdone = "Continue";
while(Sdone == "Continue") {

PopupForm(CreateFile);
PopupForm(AsklfDone);
Sdone = SAsklfDone.answer;

>
PopupForm(IntegrateDataSets);
CloseForm();

>
field name edit (2,19)-(2,50) "";
field text (2,2) "Enter your name: ";

form AsklfDone "Are you done?" (4,4)
field answer menu (2,2)

"Continue",
"All done";

form CreateFile "Enter the file name" (4,4)
field name edit (2,2H2,20)

onselect {
cp /etc/passwd SCreateFile.name';
CloseForm(); >

The above example asks for the user's name once, and then loops,
creating files, until the user selects the All done menu item in the
form AsklfDone.

In addition, this example illustrates the use of variables, which are
described in the next section. In brief, the variable $done can be
used anywhere within the event in the example above. The value of
$done could be a string value assigned f rom constants (such as Con-
tinue), a field value (such as SAsklfDone.answer), the result of a shell
script (such as, grep Gary /etc/passwd I cut - d : - f6) , or the value
assigned f rom another variable.

Values are assigned to variables using the equals sign (=) operator in
statements that end with a semicolon:

Svariable = "Value";

The operands that can appear in if and while statements are the same
as the values that can be assigned to variables: field values (such as,
$MyForm.MyField), string constants (values inside quotes), variables
($MyVar), the output f rom shell scripts (such as, echo xyz), integer

3 30 CTAM Application Programmer's Guide

constants, character constants, and action routines (used to check the
error return value).

The following operators can be used to make comparisons within if
and while statements:

== Equal to
1= Not equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
I I OR
&& AND
(Left parenthesis
) Right parenthesis
I NOT

Example:

form mainform "Choose a menu item" (2,2)
onselect<

$x = Smainform.item;
if ($x == "Iteml " I I $x == "Item2")

PopupForm(demo);
>
field Item menu (2,2)

"Iteml",
"Item2",
"ltem3";

In this example, the form demo is displayed if the menu item chosen
is Iteml or Iteml.

The following example illustrates the use of error returns from action
routines:

form mainform "See if SCancI was hit" (2,2)
onselect{

if (PopupForm(MyForm) != 0)
NoteForm("You pressed SCancI, didn't you?");

else
NoteForm("MyForm was exited normally");

>

If an if or while statement contains a string of comparisons using
A N D , the interpreter performs them one after the other f rom the left
to the right. If any one of them fails, it does not perform the

Introduction to DPL Programming 4-31

remaining comparisons, since the entire if would not evaluate to
T R U E . This has an interesting spinoff, when used with action rou-
tines:

form mainform "Calls lots of forms" (2,2)
onselecH

lf(PopupForm(fl) == 0 && PopupForm(f2) == 0)
PopupForm(f3);

>

In this example, the interpreter first displays form f l . If the user
presses the Cancel key, the return value of the PopupForm(fl) call
becomes nonzero. In this case, the interpreter does not even make
the call to PopupForm(f2), since the entire if statement could never
evaluate to T R U E .

In cases where there is more than one statement to be executed after
an if or an else, curly brackets { > are used to group the statements
together:

form frm "If test" (2,2)
onselecH

If (Jfrm.f1 == " Iteml" && $frm.f2 == "Item2") {
PopupForm(FirstTrueForm);
PopupForm(SecondTrueForm);

>
else <

PopupForm(FirstFalseForm);
PopupForm(SecondFalseForm);

>
field f1 menu "Iteml", "Item2", "Item3";
field f2 menu "Iteml", "Item2", "Item3";

The return statement is used to exit the event. The application user
sees the same form remaining on the screen. H e then has the oppor-
tunity to select other items and press Enter again, or to exit the form
using Finish or Cancel. Example:

3 32 CTAM Application Programmer's Guide

form MyForm "Illustrate return" (2,2)
onselect {

If ($MyForm.f1 == "Bad Choice") {
NoteForm("Rotten choice. Try again");
return;

>
PopupForm(nextform, $MyForm.f1);

>
field f1 menu

When used with the onvalid event, the return statement can use a
parameter , such as $TRUE or $FALSE, which controls the handling
of invalid values. If the return statement has a $TRUE parameter
value, the operator may enter additional field values or exit the form.
If the return statement has a $FALSE parameter value, the user may
not exit the current field. Instead, he must enter a value that satisfies
the constraints of the onvalid event. Example:

form mainform
field text (2,2) "Enter your age: ";
field age edit (2,18)-(2,20)

onvalid {
lf($mainform.age > 100 I I Smainform.age == 0) {

Note For m("Bad value. Try again.");
return $FALSE;

>
return $TRUE;

>

In this example, the type verification string (" # + ") appears with the
edit field. This assures that the user enters only digits, but does not
assure that he enters a number that is useful to the application. The
onvalid event allows the value to be checked, in this case using an if
statement, and returns the user to the edit field if the value is not
within a given range.

Variables

Variables are set using the equals sign (=) operator. Wherever a
variable appears in the program, its assigned value is substituted by
the form system. A variable is global; that is, its value may be
accessed and set anywhere that it appears. To access its value, the

Introduction to DPL Programming 4-33

variable should appear with no quotes around it, unless it is used out-
side of the event. For example, if a variable is used as a menu item
or as an edit field initial value, it should have quotes around it:

form mainform "Demonstrate Variables" (2,2)
onselecU

Svalue = "Item2";
PopupForm(otherform);
CloseForm();

>

form otherform
field menu

"Iteml",
•Svalue",
"Item3";

In the event following the onselect statement above, the variable
$value appears without quotes; when it appears in otherform, it is
surrounded by quotes, as are all menu items.

Generally, the value of a variable is a string value. The plus operator
can be used to concatenate string values together:

Svalue = "Stringl" + "String2";

The resulting value is "Str ingl String2". Another example:

Sx = "X" + SMyForm.MyField + 'echo xxx' + $1 + Svariable ;

Variables may assume numeric values, and arithmetic may be per-
formed on those values. The forms system notes the type of value
being assigned to a variable and performs integer operations at
appropriate times.

3 34 CTAM Application Programmer's Guide

form MyForm "Enter the correct value" (2,2)
onselect{

(tries = 0;
while ($trle» != 3) {

PopupForm(Question);
If (SQuestion.Answer == "Bad Answer") {

NoteForm("Try again.");
$ tries = Strles + 1;

> else {
PopupForm(cleanup);
CioseForm();

>
>
return;

>

In the above example, the forms system notes the type of value
assigned to the variable $tries, in this case a numeric value, and
stores that value so that numeric operations can be performed on it.
Thus, when the forms system encounters the plus operator, it per-
forms an addition of numerics rather than a concatenation of alpha-
betics.

The legal operations for numeric variables are:

+ addition
- subtraction
* multiplication
/ division
% modulo

Only the addition operation is valid for both strings and numeric vari-
ables. In the case where a string and a numeric appear in the same
operation, the forms system converts the numeric to a string:

$x = 123 + "xyz";

The resulting value would be the string "123xyz". If a numeric vari-
able is assigned a string value, the forms system converts the type of
the variable to be string. The result below would be "579string":

$x = 123 + 456;
$x = $x + "string";

Introduction to DPL Programming 4-35

The forms system converts operands into strings to perform comparis-
ons. As a side effect, integer comparisons of == and != work, but
inequalities do not. The Makelnt routine forces integer comparisons.
For example:

onselect {
$1 = 12;
Si = -13;

if (Makelnt (Si) <= Makelnt ($J))
{

Here is an example of arrays, using numeric variables, where the
value comes f rom a list:

form mainform "Print some files" (2,2)
onselect{

Scount = $malnform.flles[0];
$1 = 1;
whlle(Scount 1= 0) {

doexec("lp", $mainform.files[$l]);
SI = $1 + 1;
Scount = Scount - 1;

>
CloseForm();

>
field files list (2,2)

'Is';

Recall that the number of list items selected by the user is available in
element [0] of the array. Its value is used as a loop variable, to con-
trol the number of iterations through the loop.

Variable names that represent fields in the form may be manipulated
in the same way that any other variables are manipulated. For exam-
ple, they can be assigned like this:

form mainform
onselect{

If (Smainform.fieldl 1= "Special Case")
Smainform.field2 = "Special Choice";

3 36 CTAM Application Programmer's Guide

By default, $mainform.fieldl contains the user value of the field
fieldl in the form mainform when referenced in an expression. How-
ever, when assigned in the manner shown above, $mainform.fieldl
refers to the display value of the field. A convention exists that
allows either of the suffixes .dval and .uval to be added to a field
name to override the default values, if needed. The .dval suffix
explicitly refers to the display value of a field, the .uval suffix to the
user value of a field. Thus, the two assignments below are
equivalent:

$ MyForm.MyField = "value";

and

SMyForm.MyField.dval = "value";

When a value is assigned to a visible field, the field's value on the
screen changes. To change both the user value and the display value,
use the $ITEMFS reserved variable as shown, and separate the two
values with an equals sign:

form mainform
onit {

$ITEMFS = " = ";
SX = "The first f!le=file1 \nThe second file=flle2\n

The third flle=flle3";
>
field menu

"$X";

Defining Global Variables

Variables may be defined in a .rf file by placing assignment state-
ments before the first form definition. This allows global variables to
be defined before any particular action routine is executed. For
example:

Introduction to DPL Programming 4-37

$message1 = "Loading in files...";
$message2 = " Unable to find file $1";

form mainform

Using this mechanism, a program may increase its nationalizability by
placing all of its text in a .rf file.

Special Variables

There are a number of special variables, in addition to the key name
variables, such as $Enter, $Exit, $Cancl, and $Help. The $Cmd vari-
able has the name of the key that the user presses to get the current
command options. This is, for example, Control-C on many stan-
dard terminals. $Cmd is most logically used with the onkey event.
Example:

form mainform "Enter a login name" (2,2)
field myfield edit (2,2)-(2,30)

onkey(Cmd) {
PopupForm(namelist);
Smainform.myfield = Snamelistchoice;

}
"SLOGNAME";

field text "Enter '$Cmd' for a list of choices";

form namelist "Choices of login names" (5,5)
field choice menu "fred", "joe", "mary", "bob";

The $KEY special variable contains the value of the most recent key
entered by the operator. This value can be obtained by viewing the
file /usr/include/kcodes.h.

The $ERROR special variable is used to hold the error return value
from the most recent shell script. Example:

3 38 CTAM Application Programmer's Guide

form mainform "Create A File" (2,2)
onselect{

test - f Smalnform.name
If (SERROR 1= 0)

PopupForm(CreateFlle, Smalnform.name);
else

ErrorForm("File already exists");
>
field name edit (2,2)-(2,30) " • ;

In the example above, the user enters the name of a file. If the file
does not exist, the error return f rom the shell test command is
non-zero, allowing the PopupForm call to display the form
CreateFile, which presumably creates the file. Otherwise, an error
message is displayed.

Recall that the error return f rom a doexec command is assigned like
this:

SThisError = doexec("cat", Smalnform.name);

The forms system allows access to the user's environment variables,
such as $ L O G N A M E , $SHELL, and $ H O M E . When the application
program starts running, the forms system reads in the values of the
user's environment variables, and creates variables with those names.
If the form program references an environment variable that isn't
defined for the user, then the forms system assigns a zero length
string to that variable.

The $ L O G N A M E environment variable contains the login name of
the current user:

form malnform "Use the user's name" (3,3)
onselect{

NoteForm("Hello there, "+SLOGNAME);

Note that the concatenation operator (plus sign) has been used to
build a single string value that is passed to NoteForm.

The $ H O M E environment variable contains the home directory for
the current user:

Introduction to DPL Programming 4-39

form mainform "Remove A File" (2,2)
onselecH

doexec("rm", $HOME+$malnform.filename);
>
field filename edit (2,2)-(2,20) " ";

The $SHELL environment variable contains the full pathname of the
default shell for the current user:

form mainform 'Select an action" (2,2)
field menu (2,2)

'Shell Escape" onselecK doexec(SSHELL); >,
"Run the editor* onselect{ doexec("vi"); >,

The $LEVEL special variable contains the value of the level at which
the program is running.

Summary of Terms

This section summarizes most of the terms introduced in this chapter.

• Field Attributes affect an entire field. Keywords: boxed, high,
chck, chcksel, highsel, tail, save, off, vbar, hbar, writein, pull-
down, and dash.

• Item Attributes affect only the menu item or list item on which
they appear. Keywords: root, level, blank, default.

• Events, which are entered when the user presses a selection key
such as Finish, Enter, or Help, include the following: onselect,
onhelp, onkey, oninit, onclose, oncancel, onact, onvalid, onbad-
key.

• Action Routines take the form of subroutine calls that are used fol-
lowing onselect statements: PopupForm, NoteForm, ErrorForm,
doexec, SetPrompt, CloseForm, SetRefreshRate, LabelForm,
LabelKey, RefreshField, SetSelect, GotoForm, dohelp,
SetCurrentField, GetCurrentField, AdvanceField, BackField.

• Control Flow Keywords', if, else, while, return.

• Reserved Variables are used to represent key names: $Enter,
$Exit, $Cancl, $Help, $Cmd, $Tab; to hold the error return value

3 40 CTAM Application Programmer's Guide

f rom the most recent shell script: $ERROR; to hold the user's
login name: $LOGNAME; to hold the user's home directory:
$ H O M E ; and to hold the user's default shell: $SHELL.

Field Coordinates define the upper left and lower right relative
location of a field. Menu and list fields can be defined with multi-
ple columns.

Display Values/User Values refer to the menu item values that are
displayed versus the menu item values that are used by the pro-
gram. These are accessed by the menu name suffixes .dval and
.uval.

Introduction to DPL Programming 4-41

5
Programmatic Forms and Menus

This chapter describes how a developer can write a program in C that
interacts with the user by means of forms and menus. Although the
examples are in C, other programming languages such as FORTRAN,
Pascal, BASIC, and COBOL are supported by means of altered ver-
sions of the calls described in this chapter. For information on using
other languages than C with CTAM, see Chapter 7, "Using CTAM
with COBOL, BASIC, and FORTRAN."

There are two ways a programmer can make use of forms whose
definition resides in a resource file. The first way is to write the pro-
gram so that the resource file is opened when the program runs. This
allows application developers to provide single executable files whose
interaction with the user can be customized in the field, since the
resource file is an ASCII, editable file. For example, the text mes-
sages in the forms can be translated to a local language. In this type
of application, the resource file is read and parsed by means of a spe-
cial subroutine call at the beginning of the program.

The second way is to compile the form definition into the program.
[See rcc(l) .] Although the text in the form is not easily modified
from session to session, this technique has the advantages of added
program security and easier product management, since there is no
external forms definition file to keep track of.

Using either method of building a form-based application program,
the calls to display, access, and reset forms are the same. The
resource file remains the same in both models of programming. The
initialization calls differ slightly.

Programmatic Forms and Menus 5-1

Compiling a DPL Program

A C program that accesses forms at runtime must be linked with the
DPL and CTAM runtime libraries. This is usually done like this:

cc -o prog prog.c -Idpl -Ictam

The Base Set of Forms Calls

This section outlines the set of calls that allow an application
developer to build programs using forms. Chapter 4 describes the
complete set of calls available.

Example 1

Below is a listing of a file MyForms.rf:

form MyFormName "Pick an Item" (2,3)
field MyFieldName menu (2,2)

" Menu Item *1" ,
"Menu item *2" ,
"Menu Item *3" ;

Below is a listing of a file prog.c:

*include <dpl.h>

main()
{

char FieldValue[80];
form_t "MyFormName;

r For readability, this example ignores error returns. */

InitForms(O);
Wlndowlnlt(O);
OpenFormFile("MyForms.rf");
GetFormPtr("MyFormName", &MyFormName);

PopupForm(MyFormName, 0);
GetFieldValue(MyFormName, "MyFieldName", FieidValue);
NoteForm("The value entered was $1FieidValue, 0);

3 2 CTAM Application Programmer's Guide

WindowExlt(O);
>

In this example, the programmer has written a short DPL form defin-
ition that he wants accessed when his program runs. The call to Win-
dowlnit prepares the screen for the forms session. The InitForms call
sets up the forms subsystem. OpenFormFile opens the file containing
the form definition. GetFormPtr returns a structure pointer enabling
the use of subsequent forms and menuing calls. PopupForm displays
the form, the name of which is provided as a parameter , then receives
the user's input and resets the screen, returning control to the pro-
gram when the $Enter key is pressed.

The GetFieldValue call returns the string that holds the value selected
by the user. In this example, the returned value could be the string
" I tem # 1 " , " I t em # 2 " , or " I tem # 3 " , depending on which item the
user selected.

The NoteForm call pops up a form that displays a message and waits
for the user to press a key.

Example 2

The following example uses the same form definition file, forms.rf,
but uses the file in a compiled form; the resource compiler rcc(l) is
used to link the form into the executable program. In addition, the
example demonstrates the proper use of error returns.

Below is a listing of MyFile.rf:

form MyFormName "Pick an Item" (2,3)
field MyFieldName menu (2,2)

"Menu Item #1»,
"Menu Item #2",
"Menu Item *3";

Programmatic Forms and Menus 5-3

Below is a listing of a file prog.c:
*lnclude <dpl.h>

main()
{

char Field Value[80];
int err;
form_J 'MyFormName;

InitForms(O);
Windowinit(0);
lnit_MyF!le<);

H ((err = GetFormPtr("MyFormName", &MyFormName) 1= 0){
ErrorForm("Trouble in GetFormPtr", 0);
WindowExlt(l);

>

If ((err = PopupForm(MyFormName, 0)) 1= 0){
If (err 1= ERR_CANCELED)

ErrorForm("Error in PopupForm", 0);
WindowExit(l);

>

If ((err = GetFieldValue(MyFormName, "MyFieldName",
FieidValue)) 1= 0) {

ErrorForm("Trouble in GetFieldValue", 0);
WindowExit(1);

}

Note For m("The value entered was $1FieidValue, 0);

WindowExlt(O);
>

Whenever a form is compiled into an application, the call to
Init_MyFiIe must be made. The routine is created by the forms com-
piler, and the name is derived from the resource source file name.
For every resource file used, an initialization call is required, where
the name of that call is constructed with the name Init and the main
body of the file name (minus the .rf suffix).

3 4 CTAM Application Programmer's Guide

Using the Forms Compiler

The rcc program converts a resource file to a standard CTIX object
file, for linking into a program or for standalone use. If the rcc pro-
gram is only given the name of a .rf file, it attempts to produce an
executable a.out; otherwise, it produces an object file that can be
linked with other object files. Here is an example of the command
sequence used to build and run this program:

rcc prog.c MyFlle.rf
./a.out

All of the same options that are legal for cc are legal on rcc.

Special Features

Since the form definition is compiled into the program using rcc,
there are some additional action routine capabilities that are avail-
able. Recall that an action routine is a C syntax subroutine call like
doexec, SetPrompt, or dohelp. The user can add his own action rou-
tines by writing them in C and calling them from his form definition.
These are called event traps. For example:

form MyForm "Enter Your Name" (1,1)
field MyName edit onselect { MySub(SMyForm.MyName); >

In the above example, the user writes the C code for My Sub, and
MySub gets called after the edit field value is entered. The forms
system treats these calls to C as if they were function calls that return
a pointer. Thus, when the C code is written, it should be written to
return either a legitimate pointer or a zero:

Programmatic Forms and Menus 5-5

char *MySub(Param)
char 'Param;
<

return("Value");

return(0) ;
>

When in doubt, make all return routines, into return(O).

The forms system only passes parameters as strings. It allows up to
32 parameters.

Restrictions

When using rcc, no form names may be C program keywords. C
programming keywords are: auto, break, case, char, continue,
default, do, double, else, entry, extern, float, for, goto, if, int, long,
register, return, short, sizeof, static, struct, switch, typedef, union,
unsigned, and while.

3 6 CTAM Application Programmer's Guide

6
The CTAM Internationalization Kit

This chapter is arranged as a tutorial for the software developer who
wants to use the CTAM Internationalization Kit to develop software
that works using a variety of natural languages. The CTAM Interna-
tionalization Kit enables the programmer to build applications with
text messages, forms, and menus residing in files that are separate
f rom the executable files that make up the final product. These mes-
sages are accessed at runt ime by subroutines described in this chapter.

Note that the subroutines described in this chapter are modeled after
the proposed X/OPEN Nationalization Standard. A subset of the
X/OPEN capability is included.

Internationalization Subroutines

The following subroutines are contained in the library
/usr/lib/libxnls.a:

nl_init

int nl jnit(lang)
char *lartg,

The nl_init routine is called before all other nationalization subrou-
tines to establish the language of operation. If it is not called, subse-
quent subroutines operate in American English. It may only be
called once.

The parameter lang points to a character string which defines the
language for subsequent operations. For example:

The CTAM Internationalization Kit 6-1

nljnit("trench");

By convention, the environment variable SLANG contains the name
of the language of operation.

If the lang parameter is null, nl_init does the equivalent of this:

nljnit(getenv("LANG")) ;

If successful, nl_jnit returns zero; minus one if it fails. It fails if lang
does not contain the name of a valid language. To verify that the
language is valid, nl_init attempts to open the directory
/usr/lib/lang/$LANG, or, if the optional environment variable
SNLSPATH is set, the directory $NLSPATH/$LANG.

nl_langinfo

((include <langinfo.h>

unsigned char *ni_langinfo(item)
int item;

The nl_langinfo routine returns a pointer to a null- terminated string
containing information relevent to the language of operation. The
values of item are defined in langinfo.h described in a later section of
this chapter. For example:

nlJanginfo< ABDAY_1);

would return a pointer to the string " D o m " if the language of opera-
tion was Portuguese, and "Sun" for English. ABDAY_1, refers to
the abbreviation of the first day of the week.

The nl_Janginfo call is typically used to obtain details about the
current environment to be passed to subsequent nationalization calls.

3 2 CTAM Application Programmer's Guide

Ctype

•include <nl_ctype.h>

int isalpha(c)
unsigned char c;

These macros work the same as their counterparts in the standard
CTIX release, except that they use an 8-bi t character set. Each one
returns non-zero for true, zero for false. Below is the complete list:

isalpha c is a letter (upper-case or lower-case).

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit (the characters [0-9]).

isxdigit c is a hexadecimal digit (the characters [0-9],
[A - F] , or [a-f]) .

c is an alphanumeric (letter or digit).

c is a "white space" character (space, tab, return,
newline, vertical tab, or formfeed) .

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

isascii

c is a punctuation character (any printing character
except the space character, digits, and letters).

c is a printing character.

c is a character with a visible representation (print-
ing characters excluding "white space").

c is a control character (character codes less than
040, the 0177 character, codes in the range
0200-0237, 0377, or any other non-print ing charac-
ter).

c is an ASCII character, a code between 0 and 0177
(octal) inclusive.

The CTAM Internationalization Kit 6-3

conv

•include <nl_ctype.h>

unsigned char toupper(c)
unsigned char c;

unsigned char tolower(c)
unsigned char c;

unsigned char toascii(c)
unsigned char c;

These routines work like their counterparts in standard CTIX, except
that they operate on an 8-bi t character set. Toupper converts a char-
acter to upper case. Tolower converts a character to lower case.
Toascii converts a character to 7-bi t ASCII. For example, " A "
umlaut is converted to " A " .

ctime

•include <time.h>

char *nl_cxtime{ clock, format)
long 'clock;
char 'format;

char *nl_ascxtime{ tm, format)
struct tm *tm;
char 'format;

Nl_cxtime extends the functionality of the standard CTIX ctime call
by allowing date and time information to be output in a number of
different ways, as defined by the format, and by providing month
and weekday names in an appropriate form, as defined by the
language of operation set up by the nl init call.

The value of clock is obtained by means of the standard CTIX time
call.

Format contains a string which is similar to the format strings given
as the first argument to printf, where each field descriptor is preceded
by % and is replaced in the output by its corresponding value. A sin-
gle % is coded as %%. All other characters are copied to the output
without change.

3 4 CTAM Application Programmer's Guide

Below are the field descriptors:

n
t
m
d
Y
D
H
M
S
T
j

w
a

r
h

insert a newline character
insert a tab character
month of year - 01 to 12
day of month - 01 to 31
last 2 digits of year - 00 to 99
date as mm/dd/yy
hour - 00 to 23
minute - 00 to 59
second - 00 to 59
time as HH:MM:SS
Julian day - 001 to 366
day of week - 0 to 6 (Sunday is 0)
abbreviated weekday - Sun, Mon, Tue , . . .
abbreviated month - Jan, Feb, Mar , . . .
t ime in A M / P M notation

If format is null, the default t ime format for the language is used.
Note that this is the same as the format returned by this call:

nlJanginfcH D_T_FMT)

Example:

long clock;

nl_lnit("Italian");

clock = time();
printf(«%s", nl_cxtime(clock, "%a, %d %h 19%y %H:%M:%S")) ;

The output value for Saturday, May 17, 1986 would be:

sab, 17 mar 1986 11:46:50

Nl_ascxtime converts a tm structure to a 26 character string, like
nLcxtime, also allowing the date string to be formatted. The tm

The CTAM Internationalization Kit 6-5

structure is obtained by means of the standard CTIX localtime or
gmtime calls.

See the CTIX ctime(3C) routine for further information on handling
of CTIX t ime and date.

OpenTextFile

int OpenTextFlle(filename);
char 'filename;

OpenTextFile opens a file containing text messages to be used by the
program; these are the messages that are translated to a particular
language. The messages are accessed by the program by means of the
GetText function. Filename contains the name of the text file. If
the file is successfully opened, OpenTextFile returns zero.

The message file contains a series of assignment statements of the
form;

<variable name> = <text message>;

Where the variable name is any character string starting with dollar
sign ($). The text message is surrounded by quotes. For example:

$Prompt1 = "Please enter your name";

For fur ther examples, see the description of GetText.

Users of the DPL Forms and Menu package will note that the mes-
sage file format is identical to the use of variables in the DPL
language. If you want to use forms and menus along with the nation-
alization routines described in this chapter, you should define your
messages in your resource file along with the form definitions, and use
the OpenFormFile call instead of OpenTextFile.

OpenTextFile operates by opening the file, reading its contents into
memory, building a symbol table, and then closing the file. By the
time control is returned to the calling program, the file is closed; thus,
the number of files allowed open by the program is unaffected.

3 6 CTAM Application Programmer's Guide

GetText

unsigned char *GetText(VarName)
char 'VarName;

GetText is used to retrieve a message f rom the message file following
an OpenTextFile call. VarName contains the name of the variable
associated with the message that is desired ($Promptl in the previous
example).

Below is the message file:

$msg = "This is my English message";

Example C program:

printf("%s", GetText("$msg"));

This is the resulting output:

This Is my English message

nl_sprintf, nl_fprintf, nl_printf

Int nl_printf(format[, arg ...])
char 'format;

int nl_sprintf(s, format[, arg ...])
char *s, 'format;

int nl_fprintf(stream, format[, arg ...])
FILE 'stream;
char 'format;

These routines provide functionality similar to that of printf, sprintf,
and fprintf, except that the conversion character % in printf is
replaced by the sequence %digit$. (The following options should not
be used: %e, % E , %f, %F, %g, % G .) Digit is a decimal digit n
where conversions are applied to the nth argument in the argument
list, rather than the next unused argument. This feature is used to
allow text messages that are constructed at runtime to be
language-independent with respect to word ordering.

The CTAM Internationalization Kit 6-7

Below is the message file:

$MyMessage = 'Please Insert the %1$s Into the %2$s.'
SDisk = "disk";
SDrive = "disk drive";

Example:

char "format, "disk, "drive;

format = GetText("MyMessage");
disk = GetText("Disk");
drive = GetText("Drive");

nl_printf(format, disk, drive);

The resulting message is:

Please insert the disk into the disk drive.

In a language other than English, however, a grammatically correct
sentence may require that the words "disk drive" precede the words
"insert the disk" in the sentence. If this is the case, the conversion
specifications are reversed in the translated version of the message
file. The program remains unchanged.

If it is not necessary to alter the order of conversion characters, the
digit can be omitted.

nl_scanf, nl_sscanf, nl_fscanf

int nl_scanf(formatf .pointer...])
char "format;

int nl_sscanf(s, format[, pointer...])
char *s, "format;

int nl_fscanf(stream, format[, pointer...])
FILE "stream;
char "format;

3 8 CTAM Application Programmer's Guide

These routines provide functionality similar to that of scanf, sscanf,
and fscanf, except that the conversion character % in scanf is
replaced by the sequence %digit$. (The following options should not
be used: %e, % E , %f, %F, %g, % G .) Digit is a decimal digit n
where conversions are applied to the nth argument in the argument
list, rather than the next unused argument. This feature is used to
allow text messages that are constructed at runt ime to be
language-independent with respect to word ordering.

Nationalization Files

langinfo.h

This file is used along with nl_langinfo to retrieve information about
the current language:

D_T_FMT string tor formatting the date and time.
These are the "format descriptors"
documented under nl_cxtime.

DAY_1 name of the first day of the week

DAY_7 name of the last day of the week

ABDAY_1 abbreviated name of the first day of the week

ABDAY_7 abbreviated name of the last day of the week

MON_1 name of the first month in the Gregorian calendar

MON_12 name of the twelfth month

ABMON_1 abbreviated name of the first month

ABMON_12 abbreviated name of the twelfth month

RADIXCHAR radix character

THOUSEP separator for thousands

YESSTR affirmative response for yes/no questions

The CTAM Internationalization Kit 6-9

NOSTR negative response for yes/no questions

CRNCYSTR currency symbol, preceded by - If the
symbol should appear before the value,
or + If the symbol should appear after
the value.

Language Configuration Database

The language configuration database is used by the nationalization
libraries to obtain information about the current language. It resides
in the directory /usr/lib/lang. You need to create this file for any
language that your system does not yet support. You can modify this
file to fur ther customize for the needs of your installation.

The file makes use of keywords followed by equals signs to define the
requirements of the language. The keywords are the same as those
described for langinfo.h. Below is the example language database file
/usr/lib/lang/english_usa:

D_T_FMT= »%a %h %d %T 19%Y";

DAY_1= "Sunday";
DAY_2= "Monday";
DAY_3= "Tuesday";
DAY_4= "Wednesday";
DAY_j5= "Thursday";
DAY_6= "Friday";
DAY_7= "Saturday";

ABDAY_1= "Sun";
ABDAY_2= "Mon";
ABDAY_3= "Tue";
ABDAY_4= "Wed";
ABDAY_5= "Thu";
ABDAY_6= "Fri";
ABDAY_7= "Sat";

MON_1= "January";
MON_2= "February";
MON_3= "March";
MON_4= "April";
MON_5= "May";
MON_6= "June";
MON_7= "July";
MON_8= "August";
MON_j9= "September";
MON_10= "October";
MON_11= "November";

3 10 CTAM Application Programmer's Guide

M0N_12= "December";

ABM0N_1 = "Jan";
ABM0N_2= "Feb";
ABMONJ}= "Mar";
ABM0N_4= "Apr";
ABM0NJ5= "May";
ABM0N_6= "Jun";
ABM0N_7= "Jul",
ABM0N_8= "Aug";
ABM0N_J9= "Sep";
ABMON_IO= "Oct";
ABMON_11= "Nov";
ABMON_12= "Dec";

RADIXCHAR= ".";

THOUSEP= ",";

YESSTR= "yes";
NOSTR= "no";

CRNCYSTR= "+$";

The values used by the nationalization library follow the equals sign.
Leading blanks are ignored.

The CTAM Internationalization Kit 6-11

7
Using CTAM with COBOL,

BASIC, and FORTRAN

This chapter briefly outlines what you must do to use the program-
ming libraries in the CTAM release with programming languages
other than C.

COBOL

It is necessary to use a "wrapper" library in order to use the CTAM
libraries f rom LPI COBOL. This is because the CALL USING con-
struct always passes pointers to the parameters in COBOL, but the
CTAM libraries often expect simple values instead of pointers. In
addition, the use of strings in COBOL is inconsistent with the usage in
C.

Linking CTAM with COBOL has been done, and a prototype wrapper
library has been produced for that purpose. It is recommended that
you contact your technical support representative to obtain the code
for that wrapper for use as a template in building your own WTapper
library.

Specifically, the wrapper performs these functions:

• The wrapper library addresses the fact that COBOL maps all sub-
routine names to upper case when it generates calls to access
them. For example:

CALL "OpenFormFile" USING ere, FileName.

Gets turned into a call to OPENFORMFILE, in upper case.

Using CTAM with COBOL, BASIC, and FORTRAN 7-1

• The wrapper library massages all strings to be null terminated, as
expected by C.

• The wrapper returns the function return values f rom the CTAM
library in a parameter. Since COBOL does not support function
calls, this is the only way to obtain error codes. This example
demonstrates a C function call to CTAM:

ere = GetFormPtr("FormName", SpForm);

Here is the equivalent in COBOL:

CALL "GETFORMPTR" USING ere, "FormName", pForm.

• The wrapper puts the function return value into the variable ere.

Using the wrapper library, compile your programs like this:

Ipicobol myprog.cbl
Ipild -o myprog libwrapper.a -Idpl -Ictam

COBOL programs that use DISPLAY statements to output to the
screen in addition to CTAM calls for the same function have trouble
linking if their COBOL programs do cursor positioning as part of the
DISPLAY statement. The reason is that the loader finds duplicate
entry points when it links the CTAM libraries with the te rmcap
libraries f rom CTIX. This can be avoided by modifying the lpild shell
script.

Note that the typing of the parameters passed to the wrapper library
is very strict. Form pointers and error return values should always be
of type PIC 9(8) COMPUTATIONAL. All other parameters should be
PIC X variables, where the size accommodates your needs. Note that
strings returned by CTAM to the COBOL application contain null
bytes at the end of the string. CTAM does not blank pad like
COBOL.

3 2 CTAM Application Programmer's Guide

BASIC

It is not necessary to use a "wrapper" library in order to use the
CTAM libraries f rom BASIC. It is, however, necessary to build your
own version of BASIC that incorporates the CTAM libraries.
Rebuilding BASIC to call C subroutines is documented in the BASIC
release notice. For a prototype /usr/lib/basic/Basgen.config file, con-
tact your technical support representative.

Note that the calls to Windowlni t and Ini tForms are allowed to be
done only once by a program. The WindowExit call resets the screen
to normal operation and terminates the application. Since BASIC is an
interpreted environment, it is undesirable for an application to call
WindowExit , since this does not allow the interpreter to do large
amounts of necessary cleanup, such as flushing internal file buffers
and scheduling spoolers, before exiting. As an alternative, the call
wprexec resets the screen but leaves control in BASIC. This call
should be used instead of WindowExit . Since Windowlni t and Init-
Forms should only be called once, it is difficult to use the BASIC
RUN command to rerun a program without exiting BASIC and trying
again. It is recommended that you write wrappers for Windowlni t
and In i tForms that keep a flag to see if they have been called before,
and if they have been, to bypass the Windowlni t call:

int MyWindowlnit()
{

static flag = 0;

if (f lag == 0) {
flag ==1 ;
return WindowlnitQ;

>
return;

>

int MylnitForms()
•C

static flag = 0;

If (f lag == 0) {
flag = 1;
return InitFormsQ;

>
return;

>

Form pointers should be integer data types in BASIC. Strings work
correctly with no massaging needed. If a string is going to be stored

Using CTAM with COBOL, BASIC, and FORTRAN 7-3

by the CTAM libraries, you must first store dummy values into that
string to allocate the space for CTAM. This is demonstrated in line
56 of the example below:

5 defint 1, p
10 1 = MyWindowlnit
20 i = MylnitForms
25 x$ = "MyForm.rf"
30 i = OpenFormFile(ptr(x$))
35 myformS = "MyForm"
40 I = GetFormPtr(ptr(myformS), ptr(pForm))
50 I = PopupForm(pForm)
55 myfieldS = "MyField"
56 value$ = strlngS(80, " ")
60 i = GetFieldValue(pForm, ptr(myfieldS), ptr(values))
70 I = NoteForm(ptr(value?))
80 I = GetWindowldf pForm, ptr(id))
90 I = wprexec(id)
100 end

FORTRAN

It is necessary to use a "wrapper" library in order to use the CTAM
libraries f rom CTIX FORTRAN. This is because the subroutine cal-
ling construct always passes pointers to the parameters in FORTRAN,
but the CTAM libraries often expect simple values instead of pointers.
In addition, the use of characters in FORTRAN is inconsistent with
the usage in C.

Linking CTAM with FORTRAN has been done, and a prototype
wrapper library has been produced for that purpose. It is recom-
mended that you contact your technical support representative to
obtain code for that wrapper for use as a template in building your
own wrapper library.

Specifically, the wrapper performs these functions:

• It gets around the restriction that FORTRAN maps all subroutine
calls to lower case.

• It massages FORTRAN CHARACTER variables to conform to the
needs of CTAM.

To use the wrapper library described here, it is necessary to have a
FORTRAN compiler that supports the +cc compile time option, to
allow easy calling f rom FORTRAN to C.

3 4 CTAM Application Programmer's Guide

When designing your FORTRAN code to call CTAM, make all of the
form pointers be INTEGERM variables. The functions return
INTEGER*4 values. All strings should be FORTRAN CHARACTER
variables. When you expect CTAM to return a string, you must first
assign a value to that string to allocate the space for CTAM to
overwrite:

Character*80 Value

Value = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
call GetFieldValue(pForm, 'MyField', Value)

Using CTAM with COBOL, BASIC, and FORTRAN 7-5

A
Introduction to the CTAM Manual Pages

This appendix contains CTAM-related manual pages that are not
included in the CTIX Operating System Manual. Following this intro-
duction is a table of contents; the manual pages are presented alpha-
betically by section. Certain distinctions of purpose are made in the
headings:

COMMANDS AND APPLICATION PROGRAMS:

(1) (DPL) These are commands of general utility that are
used with DPL resource files.

(1W) (C T A M) These are commands used for invoking CTAM
window management facilities.

SUBROUTINES:

(3W) (C T A M) These functions constitute the CTAM library
libctam.a, which is automatically loaded by the
CTAM window manager [ctwm(lw)].

(3D) (DPL) These functions constitute the DPL library
libdpl.a, which is linked to resource files automati-
cally by the forms interpreter [dplrun(l)].

Introduction to the CTAM Manual Pages A-l

FILE FORMATS:

(4W) (C T A M) These entries describe the configuration files used
with the CTAM package.

SPECIAL FILES:

(7W) (C T A M) These entries describe special files that refer to
specific hardware peripherals and CTIX system
device drivers used by CTAM.

3 2 CTAM Application Programmer's Guide

TABLE OF CONTENTS

1. Commands and Application Programs

ctwm C T A M Window Manager
dplrun interpret a resource file
rcc compile a resource file into an object file
wtty set window configuration for ctwm

3. Subroutines

wattron, wattroff, wattrset control window attributes
wflush write all pending window output to the screen
WGetArgs , WSetArgs window control operations
wgetc, keypad, wndelay, weof get the next keystroke
wgoto, wgetpos control cursor in a window
WindowCreate, PadWindowCreate create a new window
Windowlnit , WindowExit begin and end windowing session
WindowLabel write to window special lines
WindowPrompt write to window special lines
WindowCmd write to window special lines
WindowSLK write to window special lines
wprexec, wpostwait suspend a C T A M process
wprintf output a formatted string in a window
wputc, wputs, wwrite output a character in a window
WSetSelect, WGetSelect select the current active window
Addl tem programmatically construct a menu
ClearCmd clear menu type-ahead
ClearList deselect all items in a field
CloseForm clear a form from the screen
DisplayForm display a form
DupForm create a duplicate of a form
ErrorForm display a message in an error window
ExpandString expand embedded parameters in a string
GetCurrentField active field control
SetCurrentField active field control
AdvanceField active field control
BackField active field control
GetFieldValue retrieve a field's value
GetNextValue retrieve a field's value
GetFieldSelValue retrieve a field's value
GetFieldCmdValue retrieve a field's value
GetFormError , GetFormKey, GetWindowId get the state of a form
GetFormPtr get pointer to a form structure
GetLevel get capability level of forms session
GetString get a message string from a resource file
HideField, RevealField control appearance of a field
InitForm initialize programmatic menu construction

- 1 -

InitForms initialize the forms system
InputForm get input from programmatic menus
KeyForm feed keystrokes to a form
MessageOn leave a message in a window
NoteForm display a message in a window
OpenFonn prepare a form to be displayed
OpenFormFile open resource file with forms definition
PopupForm display a form and get user input
RefreshField redisplay a field of a form
ResetForm prepare form for programmatic menu construction
SetEditDefault set the default edit field value
SetFormArgs set up arguments to a form
SetFormPos specify a form's size and position
SetLevel set capability level of a forms session
SetListDefault set the default list item(s)
SetMenuDefault set the default menu item

4. File Formats

fonts C T A M font mapping files
kbmaps C T A M keyboard mapping files

7. Special Files

escape window escape codes

- 2 -

CTWM(IW) (CTAM) CTWM(IW)

NAME
ctwm - C T A M Window Manager

SYNOPSIS
exec ctwm [-r visible rows] [-c visible columns] [-x start column]
[-y start row] [-h height] [-w width] [-e switch key] [-1 command file]
[-b] [-f] [-g] [-o] [-p] [-s] [-t] [initial shell]

wexec [-r visible rows] [-c visible columns] [-x start column]
[-y start row] [-h height] [-w width] [-b] [-1] [-g] [-p] [command]

wconfig [-u max. user windows] [-s max. super user windows]

DESCRIPTION
Ctwm is the CTAM window manager which enables multiple applications to
run simultaneously on a terminal in multiple windows transparent to the
application. With ctwm the output of several programs is coordinated for
display on the user's terminal such that each application is confined to a
particular rectangular region or "window" on the screen. Each window
functions as an entire virtual display screen distinct from the other
windows. Output sent to the screen by an application program is clipped
by the window manager to fit in its window's viewport. The viewport size
is defined by the number of rows and columns visible to the user between
the window borders when the window is un-obscured by other windows.
The size and placement of windows on the screen is arbitrary and
completely under user control.
Application programs are often written to take advantage of an entire
screen. CTAM supports full screen pads, where a pad is the screen area
into which the viewport allows the user to see. Commands are available to
scroll the pad, or change the viewport size to afford a full view of the
contents of the pad. Full screen pads are stored by CTAM for every
screen. As a result, programs that are written to use a whole screen work
correctly unchanged under the windowing system. To determine
individual terminal characteristics, the CTAM windowing system uses the
terminfo(4) database as well as the appropriate file under the directories
/usr/l ib/ctam/fonts and /usr/lib/ctam/kbmaps. [See fonts(4W) and
kbmaps (4VJ).]

The window manager supports features to manipulate windows. By
pressing Control-Z (Code-Z on a Convergent PT or G T terminal), the user
enters a mode in which all of his or her commands are directed to the
window manager. The user can change Control-Z to any other character
by setting the switch key option. In most cases, it is necessary to enter
Control-D (Finish on a Convergent PT or GT) to exit the window manager
and return control to the application running in the topmost window.
When in window manager mode, the user's function keys are labeled to
support the following features:

CTWM(IW) (CTAM) CTWM(IW)

CREATE Create a window. When this function key is selected, the
windowing system creates a new window with a user-defined
window size. The shell defined by initial shell is spawned
into that window.

SWITCH Switch topmost window. When this function key is selected,
the arrow keys can be used to select the window that is to
become the new topmost window. The topmost window is
the window that receives input from the keyboard. The user
presses the Down key to go forward through existing
windows, Up to go backward. After selecting the new
topmost window, the user enters Control-D, or Return, to
return control to the application program running in that
window. The user can also specify a particular window by
either entering the window number (i.e. 0-9 where 0 is
window #10) or the first letter of the window label. Control
is automatically returned to the application program running
in that window. If two or more windows have the same first
letter, the window with the lowest window number is
activated.

MOVE Moves a window. By selecting this function key, the user
enters a mode where the arrow keys on the terminal are used
to move the current topmost window. The arrow keys can
be preceded by a number to move the window more than
one slot at a time. When the user has placed the window in
the desired location, entering Control-D or Return returns
control to the application program running in that window.
To move the window more than one space at a time, a
number followed by an arrow key can be used.

GROW Grows a window. By selecting this function key, the user
enters a mode where the arrow keys on the terminal are used
to make the topmost window grow. Each arrow key grows
the corresponding window border in that direction. Arrow
keys can be preceded by a number to grow the window
more than one slot at a time. When the user has grown the
window to the desired size, pressing Control-D or Return
returns control to the application program running in that
window.

SHRINK Shrinks a window. By selecting this function key, the user
enters a mode where the arrow keys on the terminal are used
to make the topmost window shrink in size. Each arrow key
shrinks the corresponding window border in that direction.
The arrow key can be preceded with a number to shrink the
window more than one slot at a time. When the user has
shrunk the window to the desired size, pressing Control-D or
Return returns control to the application program running in
that window.

SCROLL Scrolls the pad. By selecting this function key, the user
enters a mode where the arrow keys on the terminal are used

- 2 -

CTWM(IW) (CTAM) CTWM(IW)

to scroll the display in the viewport. The user enters
Control-D, or Return, to return control to the application
program running in that window. To scroll the pad more
than one space at a time, a number followed by an arrow
key can be used.

MAX/PRE Size the window to the maximum or previous size. By
selecting this function key, the user enters a mode where the
window size is changed to the maximum or the previous size.
The user enters Control-D, or Return, to return control to
the application program running in that window.

MENU Displays a menu of all the existing window labels. The user
selects the desired window and presses Return to return
control to the application program running in that window.

TOPWIN Switch to top controlling window. This function replaces the
C R E A T E function if the -t option is present. This is useful
in the case where the user is only allowed to start new
activities through a particular controlling window. This
feature works well with the -s option (see below) in hiding
the operating system from the user.

PASTE Paste characters into a window that have been C U T from
another window. Any characters that are visible in a
window can be marked and then pasted into another
window. The window manager strips any attributes from the
characters, such as inverse video or underline. When they
are pasted into a window, they appear to the program
running in that window as if the operator had typed those
characters. The cut and paste procedure works like this:
Press Control-Z to invoke the window manager. Select the
window that you want to cut from. Press the Copy key
(labelled F i t on a Convergent TO-235 or T 0 2 5 0 , Copy on
a Convergent PT or GT). Next, move the cursor (using the
arrow keys) to the start of the area that is to be cut. Press
the Mark key (labelled Select on a TO-235/250, Mark on a
PT/GT). Cursor to the end of the area that is to be cut.
When you have marked the area to be cut, press Enter
(labelled Do on a T0235/250 , Go on a PT/GT). Next,
select the window to which you want to paste. Note that
after you have C U T something, a function key label PASTE
is displayed. Press this key to paste the cut data into the
window you specified.

To refresh the screen's current contents, press Control-L (or Code-L).
Control-C (or Code-C) pops up a menu of things to do on the screen.

To enter a shell command, type ! followed by the command and press
Return. The command is echoed on the command line and the command
is executed in a new window. After the command is finished, the user is
prompted to acknowledge this. Control is returned to the next active
window. This feature is disabled if the -s option is present.

CTWM(IW) (CTAM) CTWM(IW)

Star tup Opt ions
The initial shell is the name of the shell that the user would like started up
in all new windows created with the " C R E A T E " key. Vrows and vcols
tell the windowing system how large to make new windows. Start column
and start row describe the initial column and row position of the upper left
corner of the first window. The upper left corner of the screen is at
position (0,0).

If no sizing information is provided, ctwm defaults the window size to 22
rows by 78 columns, not counting the border characters. If vrows and/or
vcols are set, but not the initial positions, when the windowing system
creates a new window, it looks for a free area on the screen.

The -b option, if present, makes all windows borderless windows.

The -f option, if present, makes all windows fixed-size windows.

The -o option, if present, disallows the user from creating windows.

The -s option, if present, disallows the user from entering a shell
command on the command line.

The -t option, if present, makes the resulting window from the
corresponding shell command the top controlling window.

The -p option makes the pad and the viewport the same size.

The -g option prevents the window from scrolling to track the cursor.

If an application requires that the pad be a size other than that of the
physical screen, the height and width options can be used to set the default.
The wl(y(lW) command can be used to change this from the shell.
Programmatically, this can be changed by means of the WSetArgs [see
WGeMr$i(3W)] CTAM call.

The user can specify a list of commands to be executed in different
windows when the windowing system first starts up by specifying the
command list file name with the command file option. The format of the
command list is:

l-f #] [-c #] [-h #] [-w #] [-* #] [-y #]
1'Pl [-b] [-f] [-t] shell command [options]

All the options correspond to the ctwm options. For example,

-r 4 -c 10 date; pwd; exec $SHELL
SSHELL

creates a 4 by 10 window executing a shell and a full size window
executing another shell.

CTWM(IW) (CTAM) CTWM(IW)

The windowing system supports a user-configurable background character
to occupy the parts of the screen that do not contain a window. That
character is defined by the optional environment variables CTWM_BG and
CTWM_ATTR. For example, the following shell commands set the
character " . " as the background character, and run the window manager,
starting the C-shell in a 10 by 20 window:

$ CTWM_BG =. ; export CTWM.BG
$ txec ctwm -h 10 -w 20 c«h

If the CTWM_BG environment variable is not set, the background
character defaults to blank. The environment variable CTWM_ATTR
controls the attribute with which the background is displayed. The
attribute is defined by giving the parameters to the SGR escape sequence
[see «cape(7W)] to be used with CTAM_BG. For instance, setting
CTWM_ATTR equal to "7" would cause the background to be displayed
in reverse video.

The windowing system also supports a user-configurable forms and menu
file. The default file is /usr/l ib/ctam/english_Dsa/ctwm.rf. This file
contains all of the English text for the messages displayed by the window
manager. The user can specify a customized file by setting the
environment variable CTWM_FORM.

It is required that you start ctwm by using the shell's exec function (see
example above). When the window manager is run, the user's TERM
variable must be correctly set to the terminal on which the windowing
system will run. Note that when the initial shell is spawned by the
windowing system, the TERM variable is changed to reflect the
requirements of ctwm. For example, the TERM variable pt is changed to
ptctam. This must remain set in this way for correct operation of the
windowing system. In addition, ctwm sets the TERMCAP variable to
CTWMtermcap.

Window Signal
If an application running under the window manager wants to know when
any of its windows is selected or re-sized by the user via the window
manager, it should include a signal catching routine for SIGWIND (signal
number 20). This signal is sent whenever a window becomes active
(selected) or is re-sized by the window manager. If a program has
multiple windows open it should call WGetSelect to see which, if any, of its
windows is the active window. If the program has windows that can be
re-sized by the user (windows without the FIXEDSIZE flag set in their
window status structure), the program should call WGetArgs on each
window to see what actually happened.

SEE ALSO
wtty(lW), terminfo(4), fonts(4W), kbmaps(4W).

WARNINGS
Ctwm is designed to be run from the host machine. Applications to be run
over a network are supported in windows.

DPLRUN(l) (DPL) DPLRUN(1)

NAME
dplrun - interpret a resource file

SYNOPSIS

dpIrM [- i StartingForm] file.rf [...file2.rf...] [-c opts...]

DESCRIPTION
Dplrun interprets a resource file, executing the menu and form
information in the file. (For information on how to create a resource file,
sec Chapter 4 of this manual.) A resource file has the suffix .rf. The -s
option provides the interpreter with the name of the starting form to
display. If not used, the interpreter looks for the form named mainform.
The -c option allows the user to set the values of $1, $2, $3, etc., to be
used by the starting form.

EXAMPLES
dplrun -« StartingForm MyFlle.rf

dplrun MyFlle.rf -c Hello World

R C C (l) (DPL) R C C (l)

NAME
rcc - compile a form

SYNOPSIS
rcc options

DESCRIPTION
Rcc compiles a resource file into a CTIX object file suitable for linking
into " C " programs for execution. Rcc accepts the same set of options and
file types as the cc command in addition to files ending with .rf. The
libraries l ibdpl.a and l ibctam.a are automatically searched.

EXAMPLES
rcc - o myprog myforms.rf mycode.c

rcc —c myforms.rf
cc ~o myprog mycode.c myforms.o —Idpl - Ictam

WTTY(IW) (CTAM) WTTY(IW)

NAME
wtty - set window configuration for ctwm

SYNOPSIS
wtty [-height height] [-width width] [-vrows vrows]
[-vcols vcols] [-begx begx] [-begy begy]
[-border] [-fixedsize] [-padwin] [-track]

DESCRIPTION
This command should be run from the shell inside a CTAM window. It is
used to provide information about the window in which it is run or to alter
the parameters for the window.

If given no parameters, wtty reports the beginning X and Y coordinates of
the left hand corner of the window (begx, begy), the number of rows and
columns in the viewport (vrows, vcols), the height and width of the pad
(height, width), whether the window has borders, and whether the pad and
the viewport are the same size. See the description of c(wm(lW) for a
discussion on pads and viewports.

Height and width affect the size of the pad. Vrows and vcols affect the
size of the viewport. Begx and begy affect the beginning coordinates: the
upper left corner of the window. The -border flag causes the window to
be displayed without borders surrounding it. The -padwin flag causes the
pad and viewport to be "locked" together and always be equal. The
-fixedsize flag prohibits the user from changing the window size with the
window manager. The -track flag enables scrolling of the window to
track the cursor.

SEE ALSO
ctwm(lW), WGetArgs(3W).

W A T T R O N (3 W) (CTAM) WATTRON(3W)

NAME
wattron, wattroff, wattrset - control window attributes

SYNOPSIS
#inclode < c t a m . h >

int wattron(wid , onmask)
short wid;
short onmask;

int wat trof f (wid , ofTmask)
short wid;
short onmask;

int wattrset(wid, onmask , ofTmask)
short wid;
short onmask;
short o f fmask;

DESCRIPTION
These calls provide a procedural interface to the CTSGR escape sequence.
Wattron takes as arguments the window ID of the window to operate on
and a bit-mask representing which attributes to be turned on. Wattroff
takes the same arguments as wattron but the attributes are turned off
instead of on. Wattrset takes as arguments the window ID to operate on
and two bit-masks representing attributes to be turned on and off
respectively. The following constants are defined in c tam.h and can be
used to compute the mask: A_UNDERLINE, A_REVERSE,
A_BOLD, A_STRIKE, and A_DIM.

SEE ALSO
escape(7W).

WFLUSH(3W) (CTAM) WFLUSH(3W)

NAME
wflush - write all pending window output to the screen

SYNOPSIS
int wflush (wid)
short wid;

DESCRIPTION
Wflush causes the screen to be updated according to the current screen
image in memory. Output to windows is normally buffered and flushed as a
side effect of other CTAM calls such as wgetc(3W). Explicit calls to wflush
can be used to cause a more immediate screen update. Wflush takes as an
argument the window ID of the window to be flushed. When the program
is not running under the CTAM Window Manager, a window ID value of
-1 is treated as a special case and causes a terminal reset. A terminal reset
involves clearing the screen and re-painting the windows that were on it.
No application action is required to facilitate a reset.

DIAGNOSTICS
If the specified window ID does not correspond to a window currently
open by the calling process, wflush returns EOF and sets errno
accordingly.

SEE ALSO
wprintf(3W), wputc(3W), wgetc(3W).

WGETARGS(3W) (C T A M) WGETARGS(3W)

NAME
WGetArgs, WSetArgs - window control operations

SYNOPSIS
inc lude < c t a m . h >

int WGetArgs (wid, pwstat)
short wid;
struct wstat *pwstat;

int WSetArgs (wid, pwstat)
short wid;
struct wstat *pwstat;

DESCRIPTION
WGetArgs and WSetArgs allow certain aspects of a window to be
determined and changed. These aspects include the window size and
location on the screen. The parameters are a window ID as returned from
a previous WindowCreate(3W) call and a pointer to a window status
structure. A call to WGetArgs fills in the window status structure and a
call to WSeMr^j changes the specified window's settable parameters to the
values passed in pwstat. The new parameters must be legal values with the
same restrictions as those on the parameters passed in WindowCreate{3W).

The window status structure has the following form:

struct wstat {
short begy; r upper-left-corner row */
short begx; P upper-left-corner column */
short height; r number of logical rows */
short width; r number of logical columns */
short vrows; /* number of visible rows */
short vcols; r number of visible columns */
short vcoff; /* visible to logical column offset (RO) */
short vroff; r visible to logical row offset (RO) */
short crow; r current logical row of cursor (RO) */
short ccol; r current logical column of cursor (RO) */
unsigned short uffags; r flags */

The elements marked (RO) are read-only and attempts to change them
with WSetArgs are ignored. The uflags element consists of the following
flags ORed together:

NBORDER The window is to be displayed without a border.

FIXEDSIZE The window may not be re-sized by the window
manager. The window may still be re-sized if a program
executes a call to WSetArgs.

PADWIN The window is a "pad" window where the logical size
does not necessarily match the visual size. The logical
size is given by height and width and the visual size is
given by vrows and vcols.

WGETARGS(3W) (CTAM) WGETARGS(3W)

KB WIN The window is currently the active window if this flag is
set. This flag is read-only and cannot be changed via
WSetArgs.

EXAMPLES
r Expected Results: The height and width of the window change.
Th is is verified by WGetArgs.
*/
#include <ctam.h>
#include <stdio.h>

main 0
{
shortwindow;
struct wstatpwstat;
charbuffer(80];

(void)Windowlnit(O);
If ((window = WlndowCreate(1, 3, 15, 60, 0)) < 0)
{
fprintf(stderT, "WindowCreate failed n");
•xitO;
)
wnl(window, 1);
sprintf(buffer, "WSetArgs Example");
WindowLabel(window, buffer);

If (WGetArgs(window, &pwstat) < 0)
{
fprtntf(stderr, "WGetArgs failed n");
WindowExit(l);
}
wprintf(window, "height = %d.\n", pwstat.height);
wprlntf(window, "width = %d.\n", pwstat.width);
wprintf(window, "(Press return to continue.]");
(void)wgetc(wi ndow);

pwstat.height = 20; pwstat.width = 75;
if (WSetArgs(window, Spwstat) < 0)
{
fprintf(stderr, WSetArgs faile<f\n");
WindowExit(l);
I
If (WGetArgs(window, Apwstat) < 0)
{
fprintf(stderr, "WGetArgs failed\n");
WindowExi1(1);
}
wprintf(window, 'nheight = %d.\n", pwstat.height);
wprintf(window, "width = %d.\n", pwstat.width);
wflush(window);

wprlntf(window, "(Press return to continue.]");
(void)wgetc(window);
WindowDelete(window); WindowExit(O);
}

WGETARGS(3W) (CTAM) WGETARGS(3W)

WARNINGS
Programs that need to keep track of their windows' size and location
should follow calls to WSetArgs with calls to WGetArgs to obtain the
window's true status.

DIAGNOSTICS
WGetArgs and WSetArgs will return -1 upon failure.

SEE ALSO
WindowCreate(3W), WindowDelete(3W).

WGETC(3W) (CTAM) WGETC(3W)

NAME
wgetc, keypad, wndelay, weof - get the next keystroke from the keyboard

SYNOPSIS
#inc lnde < c t a m . h >

int wgetc (wid)
short wid;

int keypad (wid, flag)
short wid;
short flag;

int wndelay(wid, f lag)
short wid;
short flag;

int weof(wid)
short wid;

DESCRIPTION
Wgetc returns the next keystroke from the window (i.e. the keyboard).
The keyboard functions in " raw" mode, meaning that each key struck on
the keyboard is returned to the caller without normal input processing.
CTAM applications are expected to provide their own facilities for allowing
users to correct simple typing mistakes. The function will not normally
return until a keystroke is available. This routine is the window equivalent
of getchar(3S) and provides a terminal independent method of reading
from the keyboard.

Keypad is used to control the value returned by wgetc. Wid is ignored and
flag is effective for all windows. The argument flag specifies one of four
different modes of operation. If flag is 0, 7-bit mode is set. In 7-bit mode
function keys return sequences of 7-bit characters from successive calls to
wgetc. If flag is 1, 8-bit mode is set. In 8-bit mode function keys are
returned as a single 8-bit value. The use of keypad mode 1 is not
recommended. If flag is 2, unmapped or raw mode is set. In raw mode
all keys are passed through untouched by CTAM. If flag is 3, 16-bit mode
is set. In 16-bit mode function keys return a single 16-bit value. Mode 3
is the recommended mode (but see WARNINGS below).

Wndelay may be used to modify the behavior of wgetc when there are no
keystrokes available. Normally, if wgetc is called when there are no
keystrokes in the keyboard buffer, the process will sleep until the call can
be satisfied. However, if a call is made to Wndelay with flag set, calls to
wgetc will return E O F immediately if there are no keystrokes available.
No delay mode can be disabled by calling Wndelay with flag reset (set to
zero).

Weof returns zero if there are more keystrokes waiting in the keyboard
buffer and non-zero otherwise.

WGETC(3W) (C T A M) WGETC(3W)

EXAMPLES
First example:

r Description: Multi-window lest where one window has no delay
* and the other window has delay.

* Expected Results: Wgetc should automatically return with
* an EOF when there is no Input pending In the
* no-delay window and should block In the other.
*/
#include <ctam.h>
#include - stdio.h -

main 0

{ Int c, wlndowl, window2;

(void)Windowlnlt(O);

» ((windowl = WindowCreate<3, 1, 8, 75, 0)) < 0)
{fprintf(stderr, "WindowCreate tailed n); WlndowExil(l);}
wnl(window1, 1);

If (wndelay(window1,1) < 0)
{fprlntf(stderr, "wndelay failed\n); WlndowExit(l):)

WindowLabel(window1, "wgetc and wndelay Example: No-Delay Window ");

if ((window2 = WlndowCreate(13,1, 8, 75, 0)) < 0)
{ fprintf(s1derr, "WindowCreate failed\n"); WindowExil(l);}

wnl(window2, 1);
WindowLabel(wlndow2, "wgetc and wndelay Example: Blocking Window ");
wflush(window2);
wputs(window1, "Whatever you type should be echoed backAn");
wputs(window1, "You may end the test by typing RETURNAn");

win1:
WSetSelect(windowl);
while ((c = wgetc(windowl)) = = EOF)
{ wputs(window1, "Awaiting InputAn");

wfluah(windowl); sleep(3);
1
If (c = = 015)
{ WindowDelete(window1); WindowDelete(window2);

WindowExit(O);
I
else if (c = = '2') goto win2;
else wputc(window1, c);
while ((c = wgetc(wlndowl)) 1= 015)

wputc(window1, c);
wputc(window1, " n1); goto win1;

win2:
WSetSelect(window2);
while ((c = wgetc(window2» = = EOF)
{ fprintf(stderr, TAILED: Blocking window le no-delay.\n");

fflush(stderr);
WlndowDelete(window1); WlndowDelete<wlndow2);
WlndowExit(O);

}

WGETC(3W) (C T A M) W G E T C (3 W)

If (e == 015)
{ Window D*l*1*(wlr>dow1); WindowDelete<window2);

WlndowExlt(O);
}
•1 s t If (c = = '1') goto win1;
<• wputc<wlndow2, c);
wfill* ((c = wgetc<window2)) 1= 015)

wputc(wlndow2, c);
wputc(window2, \n'); goto wln2;

Second example:

/* Description: Demonstrates the us* of kcod*s.h with keypad.
*/

#includ* <ctam.h>
include <stdio.h>
#define BIGKEYS
#Include <kcodes.h>

main 0
{ int c, wid;

WlndowlnH(O);
If ((wid = WindowCr*at*{...) < 0)

keypad (0, 3);
wprintf("Pr*ss a function k*y.\n");
c = wgetc(wW);
If (c = = EXIT) r Exit comas from kcodes.h. */

WindowExHO;
switch (c) {

case F1:

case F2:

case F3:

FILES
/usr/include/kcodes.h - defines constants for returned keystrokes

WGETC(3W) (CTAM) WGETC(3W)

DIAGNOSTICS
Wgetc may return the integer constant EOF upon receipt of a signal or
other error. Wndelay and keypad return -1 on failure and 0 otherwise.

WARNINGS
When using keypad mode 3 it is necessary to define the pre-processor
constant "BIGKEYS" prior to including kcodes.h.

The keypad routine should not be called from DPL forms applications.
Note that the use of Wndelay or the modification of ioctl parameters
VMIN and V T I M E [see termio(7)] may cause escape sequences to be
broken. The result is that wgetc returns characters as if keypad{wid, 2)
were called, regardless of the keypad mode.

BUGS
The wid argument to keypad is ignored and the value of flag applies to all
windows.

WGOTO(3W) (CTAM) WGOTO(3W)

NAME
wgoto, wgetpos - control cursor in a window

SYNOPSIS
int wgoto(wid, row, column)
short wid;
short row, column;

int wgetpos(wid, prow, pcolumn)
short wid;
short *prow, *pcolumn;

DESCRIPTION
Wgoto can be used to move the cursor to a specific row and column within
the window. It is passed two coordinates that are zero-based (i.e., row 0,
column 0, are the coordinates of the upper left hand corner of the
window).

The wgetpos routine can be used find the current location of the cursor.
Wgetpos is passed a window ID and pointers to two memory locations that
will be filled with the cursor's row and column. Unlike wgoto, wgetpos
uses one-based coordinates so that when the cursor is in the upper left
hand corner of the window it will set row and column to (1,1).

DIAGNOSTICS
Both wgoto and wgetpos return -1 on failure.

WINDOWCREATE (3 W) (CTAM) WINDOWCREATE (3 W)

NAME
WindowCreate, PadWindowCreate - create a new window

SYNOPSIS
i n c l o d e < c t a m . h >

int WindowCreate (row, col , height, width, flags)
short row, col , height, width;
unsigned short flags;

int PadWindowCreate (row, col, height,
vrows, vcols, flags)
short row, col , height, width, vrows, vcols;
unsigned short flags;

int WindowDelete(wid)
short wid;

DESCRIPTION
WindowCreate creates a new window on the screen of the current
terminal. The windowing system must have been previously initialized
with a call to WindowInit(3W). The first two arguments, row and col,
give the character locations at which to place the upper left hand corner of
the window. Note that if the window has borders, then the first available
position on the window will be at location row +1 , col +1. The next two
arguments give the height and width of the window. The final argument is
a modifier to the window. Flags may be any of the following ORed
together:

N B O R D E R

F I X E D S I Z E

P A D W I N

N E W P O S

N T R A C K

The window is to be displayed without a border.

The window may not be re-sized by the window
manager. The window may still be re-sized if a program
performs a WSetArgs(3W) call on it or executes
wtty(1W).

The window is a "pad" window where the logical size
does not necessarily match the visual size. The logical
size is given by height and width and the visual size is
given by vrows and vcols.

The resulting window is to be positioned in a new area of
the screen, obscuring other windows as little as possible.

The screen does not scroll to follow the cursor.

PadWindowCreate also creates a new window. However, unlike a window
created with WindowCreate, the window will have a fixed virtual size and a
flexible physical size. The two additional parameters specify the initial
physical size (the visible rows and columns). A window created with
PadWindowCreate will be re-sizable with the window manager.

Creating a window implicitly selects it as the topmost window.

WINDOWCREATE(3W) (CTAM) WINDOWCREATE(3W)

WindowDelete removes the specified window from the screen possibly
causing previously overlapped windows to become visible. The deleted
window may no longer be written to with wputc.

EXAMPLES

/* Expected Result: Borderless window displaying prompt.

*/
#lnclude <ctam.h>
#lnclude <stdio.h>
main 0
{

shortwindow;

(vold)Wlndowlnil(O);

It ((window = WlndowCre«te(3,1,10, 60, NBORDERI FIXEDSIZE)) < 0)
{
fprlntf(std»rr, "WindowCreate failed\n");
WindowExlt(l);
}

wprlntf(window, "(Press return to continue.]");
wflush(wlndow);
(void)wgetc(window);
Window Delete(window);
WindowExit(O);

)

SEE ALSO
wputc(3W), wprintf(3W), WGetArgs(3W), wgetc(3W), escape(7W).

DIAGNOSTICS
WindowCreate and PadWindowCreate both return a new window ID upon
successful completion and -1 upon failure. WindowDelete returns 0 if
successful and -1 otherwise.

WARNINGS
If the requested window location and size would cause the window to
extend off the screen, the window may be created with a different number
of rows or columns than requested. WGeMrg.s(3W) should be used to
determine the actual size and location of the window.

WINDOWINIT (3 W) (CTAM) WINDOWINIT(3W)

NAME
Windowlnit, WindowExit - begin and end CTAM windowing session

SYNOPSIS
i n c l o d e < c t a m . h >
void WindowInit(O)

void WindowExit(ec)
short ec;

int iswind()

DESCRIPTION
Windowlnit initializes a CTAM windowing session on stdin and stdout. Stdin
is presumed to be a terminal device. CTAM looks for an environment
variable TERM which specifies the terminfo(4) name for a terminal using
the conventions of the windowing system. For example, the TERM
variable vtlOOctam is used to support VT-100 terminals under the
windowing system.

The terminal's screen is cleared in preparation for windowing activities.

WindowExit terminates a window session and the current process. The
parameter ec is passed to exit (2) and becomes the process exit value.

The iswind call may be used after a call to Windowlnit to determine
whether or not the application is running within windows [i.e., the CTAM
Window Manager crwm(lW) is already running]. If the program is
executing with windows, iswind returns non-zero; zero otherwise. Some
programs may want to alter their behavior when running under the window
manager by catching the window signal SIGWIND.

FILES
/usr/lib/terminfo/*/* - Terminal descriptions
/usr/lib/ctam/kbmaps/*.kb - Keyboard descriptions
/usr/lib/ctam/fonts/*.ft - font descriptions

SEE ALSO
terminfo(4), font(4W), kbmap(4W).

DIAGNOSTICS
If CTAM is unable to determine the terminal type, or obtain a good
terminfo description for the terminal, a message is printed and the
program is terminated.

WARNINGS
Between calls to Windowlnit and WindowExit, output to the terminal
should not occur through any other means than calls to CTAM. When
Windowlnit is called, a check is made to see whether or not some signals
are being caught. CTAM provides default signal handlers for several signals
if they are not already being caught or ignored.

WINDOWLABEL(3W) (CTAM) WINDOWLABEL (3 W)

NAME
WindowLabel, WindowPrompt, WindowCmd, WindowSLK - write to
window special lines

SYNOPSIS
#inc lude < c t a m . h >

int WindowLabel (wid, label)
short wid;
char *label;

int WindowPrompt (wid, ptext)
short wid;
char *ptext;

int WindowCmd (wid, ptext)
short wid;
char *ptext;

int WindowSLK (wid, kn, dummy, shortlabel, slkstring)
short wid;
short kn;
char *shortlabel;
char *slkstring;

DESCRIPTION
WindowLabel writes the string pointed to by label to the window specified
by wid. The string is displayed along the top of the window.
WindowPrompt writes the string pointed to by ptext to the prompt line of
the window specified by wid. WindowCmd writes the string pointed to by
ptext to the command line of the window specified by wid. WindowSLK
writes the string pointed to by shortlabel to the window's function key
label line, key number kn.

SEE ALSO
escape(7W).

WPREXEC (3 W) (CTAM) WPREXEC(3W)

NAME
wprexec, wpostwait - suspend a C T A M process

SYNOPSIS
int wprexec(wid)
short wid;

int wpostwait(wid)
short wid;

DESCRIPTION
These calls can be used when it is desired to suspend a CTAM application's
access to the terminal to allow another process to take over. The wprexec
routine is called by the parent before it forks to allow CTAM to
"remember" the terminal's state and reset the terminal to normal shell
modes. It takes a single argument, wid, the window number that the child
process will use for its output.

After the child process has completed, a call to wpostwait resets the
window specified by wid to its previous state. When running under the
C T A M Window Manager crwm(lW), the contents of the window will be
lost. In such cases it is the responsibility of the application to then restore
the window's contents. An application not running under the window
manager should call wflush(3W) with a window ID of -1 to cause the
screen to be re-painted.

DIAGNOSTICS
Upon failure these calls return a value of -1 to the application. Reasons
for failure include passing a window ID that does not correspond to a
window currently open by the application.

WPRINTF (3 W) (CTAM) WPRINTF (3 W)

NAME
wprintf - output a formatted string in a window

SYNOPSIS
#inc lnde < c t a m . h >

int wprintf (wid, fmt, argg . . .)
short wid;
char »fmt;

DESCRIPTION
Wprintf writes a formatted string to a window. The first parameter must
be a window ID returned by a previous call to WindowCreate. The format
string has the same form as in printf(3S).

SEE ALSO
wputc(3W), wflush(3W), escape(7W).

WPUTC(3W) (CTAM) WPUTC(3W)

NAME
wputc, wputs, wwrite - output a character to a window

SYNOPSIS
i n c l o d e < c t a m . h >

int wputc (wid, c)
short wid;
char c;

int wputs (wid, str)
short wid;
char *str;

int wwrite (wid, buff , len)
short wid;
char *str;
int len;

int wnl (wid, f lag)
short wid;
short flag;

DESCRIPTION
The calls wputc, wputs, and wwrite are used to control the contents of a
window. All characters passed to CTAM by these calls are interpreted by
CTAM to effect the display of text, erasure of text, cursor movement, and
highlighting of text. [See escape (7W) for a complete list of recognized
character sequences.] Calls to these routines aire buffered and do not
actually take effect until the buffer is flushed either implicitly by calls to
some other CTAM routines (such as wgetc(3W) or explicitly by a call to
wflush(3W).

Wputc writes a single character to the specified window. The first
parameter wid must be a window ID that was returned by a previous call
to WindowCreate (3W).

Wputs is identical to wputc except that it writes a null-terminated string to
the specified window.

Wwrite writes len bytes of the buffer pointed to by buff to the window
specified by wid. This call can be used to write a buffer that may contain
nulls to a window. The nulls are ignored by CTAM.

Wnl can be used to control the effect of the new-line character. If flag is
non-zero, a new-line character (octal 012) is displayed as a linefeed
followed by a carriage return. If flag is zero, a new-line character is
simply displayed as a linefeed.

WARNINGS
The default for newline mapping is off. That is, a newline character
output to a window generally only moves the cursor straight down one line.
Many programs will want to follow a call to WindowCreate with a call to

WPUTC(3W) (C T A M) WPUTC(3W)

wnl, setting flag to one. For instance, the following piece of code will
probably not have the expected results:

wid1 = WindowCrea1e<1,1,10,60,0);
wprintf(wld1, "Hello, wortdxn");
wprintt(wid1, "Goodbye, wor1d\n");

The output produced by these calls is the two lines of text, the first starting
in column zero, and the second starting in column 13. The programmer
should either insert a call to wnl before the print statements or should
include a '\r' after '\n'.

SEE ALSO
wprintf(3W), wflush(3W), WindowCreate(3W).

WSETSELECT(3W) (CTAM) WSETSELECT(3W)

NAME
WSetSelect, WGetSelect - select the current active window

SYNOPSIS
int WSetSelect (wid)
short wid;

int WGetSeIect()

DESCRIPTION
WSetSelect causes the window whose window ID is wid to become the
current active window. The active window is brought to the front of the
screen. For a discussion on determining the current active window, see
clwm(lW).

WGetSelect returns the window ID of the currently selected window.

EXAMPLES
/* Expected Results

*/

#include <ctam.h>
#include <stdio.h>

main 0
{ int i, c;

Int again = 1;

short row, col, window[5];

(void)Windowlnit(O);

r Create five windows and verify after each call. '

for (I = 0, row = 1, col = 3; I < 5; + +l, row + = 3, col + = 3) {
rf ((window[i] = WindowCreate(row, col, 10, 50, 0)) < 0)
{

fprintffstderr, "WindowCreate falled\n");
WindowExit(l);

}
wnl(window[i], 1);
WindowLabel(window[i], "WSetSelect Example");
wf!ush(window[i]);

)
i -= 1;
wprintf(window[i], This is the currently selected windowAn");
wprinff(window[i], "It should be completely exposedAn");
wprintf(window[i], Type a number from 1 to 5, or Return to exit. n");

r Change window selection. */

while (again)
{
if ((c = wgetc(window[i])) < '1' II c > '5')

if (c = = 015)
{

for (i = 0; I < 5; i + +)
{

WindowDelete(window[i]);

Create several windows. Interactively select
the new window.

WSETSELECT(3W) (CTAM) WSETSELECT(3W)

WlndowExtt(O);
}
again = 0;

}
else
{

wputc(window[l], c);
wpu1c(window[l], "n');
wprintf(window[i], T ry again, punkAn");

}
else If (c > '0' 4 4 c < '6 ')

{
I = c - 49; r ASCII conversion */
WSetSelect(window[i]);
if (WSe1Select(window[i]) < 0)

{
fprintf(stderr, "WSetSelect failedAn");
WlndowExil(l);
)

wprintf(window[i], Type 1 - 5, or Return to exHAn");
}

}
(void)wgetc(window[i]);
WindowExit(l);
}

DIAGNOSTICS
Both routines return -1 upon failure. WSetSelect fails if the window ID to
be selected is not currently associated with any window. WGetSelect fails
if there are no active windows, or if the currently active window is not
associated with the current process.

ADDITEM (3D) (DPL) ADDITEM (3D)

NAME
Addl tem - programmatically construct a menu

SYNOPSIS
i n c l o d e < d p l . h >
int Addl t em(pForm, F ie ldName, NewValne , UserValue , f lag)
form t *pForm;
char *Fie ldName;
char *NewVaIue;
char *UserValue;
nshort f lag;

DESCRIPTION
Addltem is used to add items to an existing field. FieldName is the name of
the field in the form to which the field items will be added. NewValue is
the field item value. UserValue is the optional value to return when the
field item is selected. It is analogous to the value on the right hand side of
the equals sign in a DPL program:

field menu
"Iteml" = Value 1
"Item2" = Value 2",

If flag is set to the value I S E L E C T E D , this field item is selected as the
default.

This call, along with the ResetForm, DisplayForm, InputForm, and
CloseForm calls, substitutes for the PopupForm call that is used in
applications that do not build their own field items.

CLEAR CMD(3D) (DPL) CLEARCMD(3D)

NAME
ClearCmd - clear menu type-ahead

SYNOPSIS
^include < d p l . h >
int C learCnd(pForm, FieldName)
form_t *pform;
char 'Fie ldName;

DESCRIPTION
ClearCmd is used by programs to control a field's command line. When
the user types characters in a menu or list field, those characters are
echoed on the command line. This call erases that line.

CLEARLIST(3D) (DPL) CLE ARLIST(3D)

NAME
ClearList - deselect all items in a field

SYNOPSIS
inc lnde < d p l . h >
int ClearList(pForm, FieldName)
form_t *pform;
char 'F ie ldName;

DESCRIPTION
ClearList may be used by programs to de-select all items in a list.

CLOSEFORM (3D) (D P L) CLOSEFORM(3D)

NAME
CloseForm - clear a form from the screen

SYNOPSIS
inc lude < d p l . h >
int CloseForm(pForm)
form l *pForm;

DESCRIPTION
CloseForm is used to clear the form from the screen after values have been
selected by the user by means of the InputForm call. This call is frequently
used in conjunction with the programmatic menu construction calls such as
Addltem, ResetForm, InilForm, and InputForm.

OpenForm, InputForm, and CloseForm can also be used to substitute for a
PopupForm call, where the program can check data values for correctness
before clearing the form from the screen.

EXAMPLES
#lnclud* <dpl.h>

mainO
{

form t *MyForm;
char FieldValue(80];
int err;
int Finished;

InitFormsO;
lnlt_MyFileO;
Wlndowlnit(O);
Ge1FormPtr{ "MyForm", &MyForm);

Finished = 0;
do {

OpenForm(MyForm);
InputFormf MyForm);
G*tFieldValu*(MyForm, "MyField", HeldValue);
if (strcmp(FieidValue, T h e Right Answer") 1= 0)

Not*Form("Wrong answer. Try again.", 0);
els*

Finished = 1;

) while (Finished l= 1);

Ck>seForm(MyForm);
WlndowExltf 0);

}

- 1 -

DISPL AYFORM (3D) (DPL) DISPLAYFORM(3D)

NAME
DisplayForm - display a form

SYNOPSIS
inc lude < d p l . h >
int DisplayForm(pForm)
form_t *pForm;

DESCRIPTION
DisplayForm is used in a mode where the programmer is using the
advanced features of the forms system to substitute for the PopupForm call.
DisplayForm updates a form by displaying new values that have been
added to a field by means of the KeyForm call.

DUPFORM(3D) (D P L) DUPFORM(3D)

NAME
DupForm - create a duplicate of a form

SYNOPSIS
inc lnde < d p l . h >

int DupForm(pForml , &pForm2)
form l *pForml;
form_t **pForm2;

int Destroy Form (pForm)
form t *pForm;

DESCRIPTION
DupForm creates a new form that is a duplicate of another form. The new
form will have all of the same characteristics as the original form in its
reset state. This call allocates memory for the second form. It does not
affect the screen.

DestroyForm should be used to reclaim the memory used by a form created
with DupForm.

EXAMPLES
#lnclude <dpl.h>

malnO
{

form_t 'MyForm, *MyForm2;
char FleldValue[80J;
Int err;

InilFormsf);
WindowlnltO;
OpenFormFile("test501.rt");

GetFormP1r("MyForm", & MyForm);

DupForm(MyForm, &MyForm2);

ResetForm(MyForm);
SetFormArgs(MyForm, 1 am form #1") ;
lnitForm(MyForm);
lnpu1Form(MyForm);

ResetForm(MyForm2);
SetFormArgs(MyForm2, "I am form #2") ;
lnHForm(MyForm2);
lnputForm(MyForm2);

Clos»Form(MyForm);
Clo*»Form(MyForm2);

DestroyForm(MyForm2);

WindowExitO;
}

- 1 -

ERRORFORM(3D) (D P L) ERRORFORM (3D)

NAME
ErrorForm - display a message in an error window

SYNOPSIS
int ErrorForm(format [, arg] 0)
char *format;

DESCRIPTION
ErrorForm creates a "popup window," and displays an error message in it,
waiting for the user to press a key before restoring the screen to its state
prior to the message. The format value is a character string with an
embedded $1, $2, $3, etc. into which the arg values are embedded. Like
PopupForm, the error value could be the value ERR_CANCELED, if the
Cancel key is used to exit the form.

EXAMPLES

ErrorForm(You had art error In this item: $1", ItemString, 0);

EXPANDSTRING (3D) (D P L) EXPANDSTRING (3D)

NAME
ExpandString - expand embedded parameters in a string

SYNOPSIS
unsigned char *ExpandString(fmt, [arg, . . .])
char • f a t ;
char *arg;

DESCRIPTION
ExpandString may be used to expand embedded parameters in a string.
The format string fmt may contain the embedded positional parameters $1,
$2, $3, etc. for which the arg values are substituted. In addition, the
format string may include embedded DPL variables. (For more
information on embedded variables, see "Variables," in Chapter 4 of this
manual.)

WARNINGS
ExpandString returns a pointer to a static buffer that is overwritten on
subsequent calls.

EXAMPLES
char

s = ExpandString(Th« $1 in $2", "rain", "Spain", 0);

fprintf(logfile,"Message: %s\n", s);

GETCURRENTFIELD(3D) (DPL) GETCURRENTFIELD(3D)

NAME
GetCurrentField, SetCurrentField, AdvanceField, BackField - active field
control

SYNOPSIS
inc lude < d p l . h >

char *GetCnrrentField(pForm)
forna t *pForm;

int SetCnrrentField(pForm, FieldName)
form_t *pForm;
char *FieldName;

int AdvanceField(pForm)
form t *pForm;

int BackFieId(pForm)
form_t *pForm;

DESCRIPTION
These calls may be used to control which field in a form is the currently
active field.

GetCurrentField returns a pointer to the name of the current field that is
selected. SetCurrentField causes the given field to be selected.
AdvanceField moves control to the next field; BackField to the previous
field.

GETFIELDVALUE(3D) (DPL) G ETFIELDV ALUE (3D)

NAME
GetFieldValuc, GetNextValue, GetFieldSelValue GetFieldCmdValue -
retrieve a field's value

SYNOPSIS
#inc lude < d p l . h >
int GetFieldValue(pForm, FieldName, Value)
f o r m t *pForm;
char 'Fie ldName;
char Value[size];

int GetNextValue(pForm, FieldName, Value)
form_t *pForm;
char •FieldName;
char Value[size];

int GetFieIdCmdValue(pForm, FieldName, Value)
form t *pForm;
char 'Fie ldName;
char Value[size];

int GetFieldSelValue(pForm, FieldName, Value)
form t *pForm;
char •FieldName;
char Value[size];

DESCRIPTION
GetFieldValue returns the value entered by a user during a PopupForm call.
PForm and FieldName identify the form and field. Value receives the
value entered or selected by the user. The size is determined by the
programmer with a maximum defined in dpl.h of MAXSTRLEN. The
type of the value is always a character string, null terminated. Value is
either the text value of the item selected, the text value of the first list item
selected, the text value of the actual return value (if the equals sign was
used on the item), the entered text for a writein menu item, or the value
entered in an edit field.

To get the multiple values from a list, use GetFieldValue for the first call,
and GetNextValue for subsequent calls.

GetNextValue is used like GetFieldValue, except that it is used to get some
of the values entered in a list field. In normal use, GetFieldValue is used
to get the first value, and GetNextValue to get the subsequent values, until
the error return is ERRJMOSELECT.

For menus and lists, the [writein] feature is used to allow users to enter
values that do not appear as items in the form. The GetFieldValue call
returns the value typed, if one was entered by the user. Under some
circumstances, it is required that the application know what menu item
was selected even though the user entered a value. GetFieldSelValue
serves this function, both when [writein] was used in the form and when
it is not used. GetFieldCmdValue is used to return the value entered by the
user.

GETFIELDVALUE(3D) (DPL) GETFIELDV ALUE (3D)

EXAMPLES
form MyForm "Pick A Flit" (2,2)

field FileName menu (2,2)
'It I sort';

#lnclude <dpl.h>
mainO
{ int err;

form_t 'MyForm;
char FieldValue[80];

If ((err = InltFormeO) 1= 0) {
printf("Forms system error \n");
exit(1);

}
Init.MyHleO;
Windowlnlt(O);
If ((err = PopupForm(MyForm, 0)) l= 0) {

ErrorForm('Forms call error 0);
WindowExlt(l);

}
err = GetReldValue(MyForm,TileName",FleldValue);
If (erT 1=0 K

ErrorForm("Can't get field ", 0);
WindowExit(l);

)

Using GetNextValue multiple items may be retrieved:

form mainform
field list (2,2) "Iteml", "Hem2", Hem3", "Item*", "1tem5";
field text (8,2) "Choose one or more of these Items";

#include <dpl.h>
malnO
{

form_t 'mainform;
char FieldVaiue[80];

InitFormsO;
Windowlnit(O);
OpenFormRle("MyRie.rT);
GetFormPtr("mainform", Amainform);

PopupForm(mainform, 0);
GetFieldValue(mainform, "MyReld", FleldValue);
NoteForm("Here's the first one: $1", FleldValue);
while{ GetNextValue(mainform, "MyField", FleldValue)

l= ERRNOSELECT)
NoteForm("Here's the next one: $1", FleldValue,0);

WlndowExlt(O);
)

- 2 -

GETFIELDVALUE(3D) (DPL) G ETFIELDV ALUE (3D)

DIAGNOSTICS
This routine returns zero if successful and an error code otherwise. The
error codes are defined in dpl.h.

SEE ALSO
Chapter 4, "Introduction to DPL Programming," in this manual.

G ETFORMERROR (3D) (DPL) G E T F O R M E R R O R (3 D)

NAME
GetFormError , GetFormKey, GetWindowId - get the state of a form

SYNOPSIS
i n c l a d e < d p l . h >

int GetFormError (pForm)
form_t *pForm;

int GetFormKey(pForm)
form_t *pForm;

int GetWindowId(pForm, pWid)
form_t *pForm;
short *pWid;

DESCRIPTION
GetFormError returns the last error from a form call.

GetFormKey returns the value of the key that was used to exit the last
form. The value of this key can be found in /usr / inclnde/kcodes .h .

GetWindowId returns the value of the CTAM window pointer that
corresponds to the given form.

EXAMPLES
#include <dpl.h>

mainO
{

format 'mainform;
char Fie!dValue[80];
int err;
short ID;
char c;

InitFormsO;
Windowlnlt(O);
OpenFormFile< "test333.rf");

GetFormPtr('mainform', (mainform) ;
OpenForm(mainform);
DisplayForm(mainform);

GetWindowld(mainform, &ID);
while((c = wgetc(ID)) 1= ' . ') {

KeyForm(mainform, c);
DispiayForm(mainform);

}
GetFieldValue(mainform, "name", FieidValue);
NoteForm("Here's the field: $1", FieidValue, 0);
CloseForm(mainform);
WindowExlt(O);

- 1 -

GETFORMPTR(3D) (D P L) GETFORMPTR (3D)

NAME
GetFormPtr - get pointer to a form structure

SYNOPSIS
ioc lude < d p l . h >
int GctFormPtr(FormName, pFormPtr)
char *FormName;
form_t **pFormPtr;

DESCRIPTION
GetFormPtr is used to obtain a form pointer for subsequent calls to the
forms and menuing system. PFormPtr is a 32-bit pointer, and can be
substituted with a PIC 9(8) COMPUTATIONAL variable in Cobol, an
INTEGER*4 in Fortran, a longint in Pascal, or an integer in Basic.

EXAMPLES
#include <dpl.h>
mainO
{ int err;

form_t *pForm;

If ((err = lni1Forms()) l= 0) {
printf("Forms system error \n");
exit(1);

1
Windowlnlt(O);
H ((err = OpenFormFile("MyForms.rf") 1= 0) {

ErrorForm("Problem with the forms file ", 0);
WindowExit(l);

}
H ((err = GetFormPtr("MyForm", &pForm)) I = 0) {

ErrorForm("GetFormPtr error ", 0);
WindowExit(l);

}
if ((err = PopupForm(MyForm, 0)) l= 0) {

ErrorForm("Forms call error", 0);
WindowExit(l);

1
WlndowExit(O);

1

DIAGNOSTICS
This routine returns zero if successful and an error code otherwise. The
error codes are defined in dpl.h. Likely causes of failure include not
having the requested form in the symbol table, in which case
E R R _ N O F O R M is returned.

SEE ALSO
OpenFormFile(3D).

GETLEVEL(3D) (D P L) GETLEVEL(3D)

NAME
GetLevel - get capability level of forms session

SYNOPSIS
int GetLevelO

DESCRIPTION
GetLevel is used to obtain the level value that is used with the level item
attribute in a resource file.

EXAMPLES
form mainform

field menu
"For Supervisees" [level=0],
Tor Important users" [levei = 1],
To r all users" [level=7];

#include <dpl.h>

mainO
{

int level;

level = GetLevelO;

DIAGNOSTICS
This routine returns zero if successful and an error code otherwise. The
error codes are defined in dp l .h .

SEE ALSO
SetLevel(3D).

GETSTRING (3D) (D P L) GETSTRING (3D)

NAME
GetString - get a message string from a resource file

SYNOPSIS
inc lade < d p l . h >
• • s igned char *GetString(VarName);
char *YarName;

DESCRIPTION
GetString is used to obtain a string constant from a resource file,
presumably for use in a message to the user. Embedding string constants
in a resource file and using OpenFormFile to access the file allows all user
messages to be field upgradable, for things such as translation to a local
language. VarName is the name of a variable in the resource file.

EXAMPLES
SGreetingMessage = "Guten Tag";
form mainform T h e rest of the form Ale" (2,2)

#lnclude <dpl.h>
malnO
{

Int err;
form_t *pFonn;

InHFormsO;
Wlndowlnil(O);
OpenFormFile("MyForms.rf");
GetFormPtr("MyForm", ApForm);
NotsFonn(GetString("GreettngMessage"), 0);

- 1 -

HIDEFIELD(3D) (D P L) HIDEFIELD(3D)

NAME
HideField, RevealField - control field's appearance

SYNOPSIS
i n c l u d e < d p l . h >

int HideField(pForm, Fie ldName)
form t *pForm;
char *Fie ldName;

int RevealFieId(p f o r m , F ie ldName)
form_t ' p F o r m ;
char *Fie ldName;

DESCRIPTION
HideField may be used to completely remove a field from a form. A field
that is hidden in this way will not appear when the form is displayed and
cannot be made into the current field. This call is useful for situations
where a field in an existing form is not needed.

In the example below, the form asks for the user to enter the time of day.
If the application is run in a country that uses a 24 hour clock, the menu
for ' A M ' and 'PM' will not appear.

EXAMPLES
form TimeOfDay Test 502" (2,2)

field text (2,2) "Hour: ";
field hour edit (2,10H2,15)""";
field text (4,2) "Minute: ";
field minute edit (4,10H4,15)"";
field AMPM menu (6,2) "AM", "PM";

#lnclude <dpl.h>

mainO
{

form. _t 'MyForm, *MyForm2;
char FieldValue[80];
int err;

InitFormsOl
Windowing;
OpenFormFile("test502.rf");

GetFormPtr("TimeOfDay", »MyForm);
ResetForm(MyForm);
If (LanguageMode = ~ GERMAN)

HideFleld(MyForm, "AMPM");
lnltForm(MyForm);
lnputForm(MyForm);
CloseForm(MyForm);
WindowExitO;

1

INITFORM(3D) (DPL) INITFORM(3D)

NAME
InitForm - initialize programmatic menu construction

SYNOPSIS
#inc lnde < d p l . h >
int I«itForm(pForm)
form t *pForm;

DESCRIPTION
InitForm is used to prepare the form for programmatic menu construction,
by means of the Addltem call and other calls. It creates the window for the
form.

This call, along with the ResetForm, DisplayForm, InputForm, Addltem, and
CloseForm calls, substitutes for the PopupForm call that is used in
applications that build their own menu items.

INITFORMS(3D) (D P L) INITFORMS (3D)

NAME
InitForms - initialize the forms system

SYNOPSIS
int InitPormsO

DESCRIPTION
InitForms prepares the forms system for subsequent forms and menuing
calls. It should be called before Windowlnit and should be called only
once by a program. Returns an error code if called a second time.

If the form is compiled and linked into the application by means of the
forms compiler rcc, it is necessary to perform further initialization. An
initialization call for every resource file used is required. That call would
be, for example, Initjcyz, where the resource file is named xyx . r f .

EXAMPLES
#lnclude <dpl.h>

mainO
{ Int err;

f o r m t 'MyForm;

H ((err = InltFormsO) 1= 0) {
printf("Forme system error \n");
exit(1);

}
lnlt. MyFlle(); /* assume the form is in MyFile.rf */
Windowlnit(O);

GetFormPtr("MyForm", &MyForm);
If ((err = PopupForm(MyForm, 0)) l= 0) {

ErrorForm(Forms call error ", 0);
WlndowExit(l);

}
WindowExit(O);

)

FILES
/usr/lib/ctam/english_usa/dpl.rf

SEE ALSO
WindowInit(3W).

INPUTFORM(3D) (DPL) INPUTFORM (3D)

NAME
InputForm - get input from programmatic menus

SYNOPSIS
i a c l n d e < d p l . h >
iat IaputKorm(pForm)
form t *pForm;

DESCRIPTION
InputForm is used to input values after programmatic menu construction.

This call, along with the InitForm, ResetForm, DisplayForm, Addltem, and
CloseForm calls, substitutes for the PopupForm call that is used in
applications that build their own menu items.

EXAMPLES
#lnclude <dpl.h>

mainO
{

form t 'MyForm;
char FieldValue[80];
int Finished;
Int re;

InltFormsO;
InltMyFlleO;
Windowlnit(O);
GetFormPtr("MyForm", SMyForm);

Finished = 0;
OpenForm(MyForm);

while (I Finished) {
rc = lnputForm(MyForm);
If (rc = = ERR BADKEY) {

ErrorFormCYou typed an Illegal key.",0);
continue;
)

If (rc = = ERR J O && errno = = EINTR)
continue;

Finished = 1;
}

If (re l= ERR_CANCELED) {
GetFieldV»lue< MyForm, "MyField", FieidValue);
NoteForm(Your answer was $1 ", FieidValue, 0);
}

CloseForm(MyForm);
WindowExlt(0);

1

INPUTFORM (3D) (D P L) INPUTFORM (3D)

Because of the mechanism by which CTIX signals work, the InputForm call
may return before input is complete. This would happen if a signal came
in during the time that the user is entering input. Here is one way that this
is handled:

whll«(lnpu1Form(pForm) = = ERR JO t rmo = = EINTfl)

KEYFORM(3D) (D P L) KEYFORM(3D)

NAME
KeyForm - feed keystrokes to a form

SYNOPSIS
iac lude < d p l . h >
iat KeyForaa(pForm, ch)
foraa_t *pForm;
short ch;

DESCRIPTION
In a mode where the programmer wants to use the OpenForm, InputForm,
and CloseForm calls in place of the PopupForm call, this call is used to feed
keystrokes to the form system. It is used instead of the InputForm call.
Typically, this call is used to perform type checking on each keystroke,
prior to the user filling in an entire field.

EXAMPLES
form MyForm

fteld adit ~

#lnclude cdpl.h -
malnO
{

short ID;

OpenForm(pForm);
GetWlndowld(pForm, AID);
DisplayForm(pForm);
whfla((ch = wgetc(ID)) l= LastKey) {

If (ch l= BadKey) {
KeyForm(pForm, ch);
DisplayForm(pForm);

) alsa
NotaForm("Bad key. Try again", 0);

1
Ge1FleldValue< pForm, "MyField", FieidValue);
CloseForm(pForm);

}

MESSAGEON(3D) (DPL) MESSAGEON(3D)

NAME
MessageOn - leave a message in a window

SYNOPSIS
int MessageOn(format [, arg] •)
char ' f o r m a t ;

int MessageOff ()
char *format

DESCRIPTION
MessageOn creates a window, and displays a message in it, but does not
wait for the user to press a key before returning control to the program.
The message is left on the screen until the program calls MessageOff. The
format value is a character string with an embedded SI, $2, $3, etc. into
which the arg values are embedded. The function value returned is an
error value.

EXAMPLES
char 'currentfile;

r let user know what we are doing */
MessageOn("Reading In file $1", currentfile, 0);

MessageOffQ;

DIAGNOSTICS
This routine returns zero if successful and an error code otherwise. The
error codes are defined in dpl .h.

SEE ALSO
NoteForm(3D) , ErrorForm(3D) .

NOTEFORM(3D) (DPL) NOTEFORM(3D)

NAME
NoteForm - display a message in a window

SYNOPSIS
iat NoteForm(format [, arg] . . . , •)
char ' format ;
char 'arg ;

DESCRIPTION
NoteForm creates a "popup window" and displays a message in it, waiting
for the user to press a key before restoring the screen to its state prior to
the message. The format value is a character string with an embedded $1,
$2, $3, etc. into which the arg values are embedded. Like PopupForm, the
error return could be the value ERR_CANCELED, if the Cancel key is
used to exit the form.

EXAMPLES
Not»Form("$1, $2", "Hallo", "world", 0);

OPENFORM (3D) (D P L) OPENFORM (3D)

NAME
OpenForm - prepare a form to be displayed

SYNOPSIS
#inclDde < d p l . h >
int OpenForm (pForm)
form t *pForm;

DESCRIPTION
OpenForm is used to prepare a form to be displayed. OpenForm,
InputForm, and CloseForm combine together to make up the functionality
of PopupForm, but afford the user the capability of checking user input
before the form is cleared from the screen.

EXAMPLES
#include - dpl.h -
mainO
{

form_t 'MyForm;
char FieldValue[80];
Int err;
Int Finished;

InitFormsO;
Init MyFileO;
Windowinit(O);

GetFormPtr("MyForm', &MyForm);

Finished = FALSE;
OpenForm(MyForm);

do {
lnputForm(MyForm);
GetFieldVaiue(MyForm, "MyFieid", FleldValue);
If (strcmp< FieidValue, "The Right Answer'"))

NoteForm("Bad answer. Try again.", 0);
else

Finished = TRUE;

} while(Finished != TRUE);

CioseForm(MyForm);

Window Ex it(0);)

- 1 -

OPENFORMFILE(3D) (D P L) OPENFORMFILE (3D)

NAME
OpenFormFile - open resource file with forms definition

SYNOPSIS
int OpenFormFi le (F i leName)
char *Fi leName;

DESCRIPTION
OpenFormFile is used for forms applications that do not use rcc, the forms
compiler, but instead access their forms from a file at runtime. FileName
is the name of the resource file. More than one OpenFormFile call per
program is legal. Forms read in with OpenFormFile remain for the
duration of the process, i.e. there is no need for a "CloseFormFile" call.

EXAMPLES
#lnclude <dpl.h>

mainO
{ Int arr ;

form_t 'MyForm;

If ((err = InHFormsO) 1= 0) 1
printf("Forms Initialization error \n");
exit(1);

}
Windowlnit(O);
if ((err = OpenFormFile("MyForms.rf") l= 0) {

ErrorForm("Problem with the forms file ", 0);
WindowExit(l);

}

GetFormPtr< "MyForm", &MyForm);
If ((err = PopupForm(MyForm, 0)) I = 0) {

ErrorForm("Forms call error ", 0);
WindowExit(l);

}
Window Ex it(0);

}

- 1 -

POPUPFORM(3D) (D P L) POPUPFORM (3D)

NAME
PopupForm - display a form and get user input

SYNOPSIS
i n c l u d e < d p l . h >
int PopupForm(pForm, [a r g l i s t . . . ,] 0)
form_t *pForm;
char *arg;

DESCRIPTION
PopupForm displays a form, gets user input, and restores the screen to its
prior state when the user input is complete. The user input is stored
internally and is accessible by means of the GetFieldValue call and other
calls. The function return value is either zero or an error code. Note that
if the Cancel key is used to exit the form, the error return is the value
E R R _ C A N C E L E D . The arglist is a list of pointers to strings to be used
as parameters to the form. This variable list must be terminated by a
zero.

PopupForm is a high-level aggregate of four other form calls: SetFormArgs,
OpenForm, InputForm, and CloseForm. Applications requiring finer
control over their forms should use the lower level calls.

EXAMPLES
form MyForm "Pick A File" (2,2)

field FileName menu (2,2)-<4,25)

"S2",
"$3";

#include <dpl.h>
mainO
{ int err;

form_t "MyForm;

If ((err = InitFormsO) != 0) {
printff 'Forms system error \n");
exit(1);

}
Init.MyFileO;
Windowlnit(O);
If ((err = PopupForm(MyForm, "Hem1", "Hem2",

"Item3", 0))! = 0)(
if (err I = ERR.CANCELED)

ErrorFormf "Forms call error", 0);
WindowExit(l);

}

WindowExit(O);
}

- 1 -

POPUPFORM(3D) (DPL) POPUPFORM (3D)

DIAGNOSTICS
This routine returns zero if successful and an error code otherwise. The
error codes are defined in dpl .h . The error code E R R _ C A N C E L E D is
returned if the user pressed the Cancel key to exit the form.

SEE ALSO
SetFormArgs(3D), OpenForm(3D), InputForm(3D), and CloseForm(3D).

REFRESHFIELD(3D) (DPL) REFRESHFIELD(3D)

N A M E
RefreshField - redisplay a field of a form

SYNOPSIS
i n c l u d e < d p l . h >
int RefreshFie ld(p f o r m , F ie ldName)
form t *pform;
char *Fie ldName;

DESCRIPTION
RefreshField is used to recalculate the items in a field when some action
has caused that field to be inaccurate. If the field was initialized by means
of a shell script, that shell script is run again.

RESETFORM (3D) (D P L) RESETFORM (3D)

NAME
ResetForm - prepare form for programmatic menu construction

SYNOPSIS
i a c l a d e < d p l . h >
iat R e s e t F o r a (p F o r a)
form t *pForm;

DESCRIPTION
ResetForm is used to prepare the form for programmatic menu
construction, by means of the Addltem call and other calls. It clears the
existing field values from the form. It should be called in every case that
menu items will be added to the menu.

This call, along with the InitForm, DisplayForm, InputForm, Addltem, and
CloseForm calls, substitutes for the PopupForm call that is used in
applications that build their own menu items.

EXAMPLES
form mainform "Demo menu" (2,2)

field mainmenu (2,2)

#lnclude < dpl.h >
malnO
{

form_t 'pmainform;
char textbuffer[80];
Int I;

InttForms(O);
Wtndowlnit(O);

OpenFormFile("MyFlle.rf");
GetFormPtr^ "mainform", &pmainform);

r throw away previous contents */
ResetForm(pmainform);

for(I = 1; I < = 4; I + +) {
sprintf(textbuffer, "This Is Item #%d", i) ;
Addltem(pmainform, "mainmenu", textbuffer,0,0);
}

lnHForm(pmainform); r Init new form */
lnputForm(pmainform); r get user selection */

GetFieldValue(pmainform, "mainmenu", textbuffer);

/* erase form from screen */
CloseForm(pmainform);
WindowExit(O);

}

SETEDITDEFAULT(3D) (DPL) SETEDITDEF AULT (3D)

NAME
SetEditDefault - set the default edit field value

SYNOPSIS
i n c l u d e < d p l . h >
int SetEditDefaul t (pForm, Fie ldName, Defanl tValae)
f o r m t *pForm;
char *Fie ldName;
char *Defanl tValue;

DESCRIPTION
SetEditDefault sets the default value for an edit field. FieldName is the
name of the edit field. DefaultValue is the character value to which the
field gets initialized.

Since the PopupForm call re-establishes the default value when it is called,
it is necessary to use the lower level ResetForm, InitForm, InputForm, and
CloseForm calls with SetEditDefault.

EXAMPLES
form MyForm "Enter the Name of Your State" (2,2)

field State edit (2,2H20,3)

#include <dpl.h>
mainO
{ int err;

form_t *MyForm;

If ((err = InilFormaO) != 0) {
printf("Forms system error \n");
exit(1);

)
Inlt.MyFlleO;
Wlndowlnlt(O);
GetFormPtr{ "MyForm", 4MyForm);
ResetForm^ MyForm);
if ((err = SetEditDefault(MyForm, "State", "Iowa") l = 0M

ErrorForm("SetEditDefault problem ", 0);
WlndowExit(l);

1
InltFormf MyForm);
lnputForm(MyForm);
CloseForm(MyForm);

DIAGNOSTICS
This routine returns zero if successful and an error code otherwise. The
error codes are defined in dpl .h .

SEE ALSO
SetMenuDefault(3D), SetListDefault(3D).

SETFORMARGS(3D) (DPL) SETFORMARGS(3D)

NAME
SetFormArgs - set up arguments to a form

SYNOPSIS
i a c l a d e < d p l . h >
iat SctForatArgs(pForm, [a r g l , arg2 , . . .] , 0)
f o r a t * p F o m ;
char *arg;

iat SetFormArgv(pForm, argy);
f o r « _ t *pForai;
char •arg* [a] ;

DESCRIPTION
In a mode where the programmer wants to use the OpenForm, InputForm,
and CloseForm calls in place of the PopupForm call, either of these calls is
used to set up the arguments that PopupForm passes to the form.
SetFormArgs takes a list of strings, while SetFormArgv takes an argv-style
array of pointers to strings. The maximum number of arguments is
defined by the constant M A X A R G C in dpl .h .

EXAMPLES
form mainform

field menu
'VI",

#includ* <dpl.h>
mainO
{

S*tFormArg»(pForm,
OpenForm(pForm);
lnpu1Form(pForm);
Ck>**Form(pForm);

", 11em2", '1t*m3", 0);

The four calls in the " C " example above are equivalent to this call:

PopupForm(pForm, Hem1", T1em2", "Item3", 0);

SETFORMPOS(3D) (DPL) SETFORMPOS(3D)

NAME
SetFormPos - specify a form's size and position

SYNOPSIS
i D d o d e < d p l . h >

int SetFormPos(p f o r m , begy, begx, height , width);
form t *pform;
short begy;
short begx;
short height;
short width;

DESCRIPTION
SetFormPos may be used to move or resize a form on the screen.

Pform identifies the form, and the other parameters are values in the wstat
struct. [See tVGeMr£s(3W).]

SETLEVEL(3D) (DPL) SETLE VEL (3D)

N A M E
SetLevel - set capability level of forms session

SYNOPSIS
int SetLevel(NewLevel)
int NewLevel ;

DESCRIPTION
SetLevel is used to change the level value that is used with the level item
attribute in a resource file. The NewLevel must be a value between 0 and
7.

EXAMPLES
form mainform

field menu
"For Superusers" [level=0],
Tor Important users" [level=1],
"For all users" [level=7];

#include <dpl.h>

mainO
{

SetLevel(0);

DIAGNOSTICS
This routine returns zero if successful and an error code otherwise. The
error codes are defined in dpl .h .

SEE ALSO
GetLevel(3D).

SETMENUDEFAULT (3D) (DPL) SETMENUDEFAULT (3D)

NAME
SetListDefault - set the default list item(s)

SYNOPSIS
inc lude < d p l . h >
int SetListDefanlt(pForm, FieldName, ListValue)
form_t •pForm;
char *FieldName;
char *ListValne;

DESCRIPTION
SetListDefault selects a list item as a default. This list item is typically
marked with an asterisk when the list is displayed.

FieldName is the name of the menu field whose menu value is to be
defaulted. ListValue is the value of the item to be marked as default.

This routine can be called multiple times, to set multiple defaults.

Since the PopupForm call re-establishes the default value when it is called,
it is necessary to use the lower level ResetForm, InitForm, InputForm, and
CloseForm calls with SetListDefault.

EXAMPLES
form MyForm Pick One Or Mora Item" (2,2)

field MyMenu Mat [chcksel] (2,2)
Hem1",
"Hem2",
"Hem3";

#include <dpl.h>
mainO
{ int err;

form_t *MyForm;

H ((err = InitFormsO) 1= 0) {
printf("Forma system error \n");
exit(1);

}
InitJAyFlleO;
Windowlnit(O);
GetFormPtr("MyForm", SMyForm);
ResetForm{ MyForm);
err = SetListDefault* MyForm, "MyMenu", "Item2");
It (err l= 0 M

ErrorForm{ "SetListDefault problem ", 0);
WindowExlt(l);
}

lnltForm(MyForm);
lnputForm(MyForm);
CloseForm(MyForm);

- 1 -

SETEDITDEFAULT(3D) (DPL) SETEDITDEF AULT (3D)

DIAGNOSTICS
This routine returns zero if successful and an error code otherwise. The
error codes are defined in dpl .h .

SEE ALSO
SetMenuDefault(3D), SetEditDefault(3D).

SETMENUDEFAULT (3D) (DPL) SETMENUDEFAULT (3D)

NAME
SetMenuDefault - set the default menu item

SYNOPSIS
i n c l u d e < d p l . h >
int SetMenuDcfauIt(pForm, F ie ldName, MenaValue)
form_t *pForm;
char *Fie ldName;
char *MennValue;

DESCRIPTION
SetMenuDefault selects a menu item as the default. When the menu is
initially displayed the cursor will be on the item specified by this call.

FieldName is the name of the menu field whose menu value is to be
defaulted. MenuValue is the value of the item to be marked as default.

Since the PopupForm call re-establishes the default value when it is called,
it is necessary to use the lower level ResetForm, InitForm, InputForm, and
CloseForm calls with SetMenuDefault.

EXAMPLES
form MyForm "Pick An Item" (2,2)

field MyMenu menu [chcksel] (2,2)
"Iteml",
"Item2",
"Item3";

#lnclude <dpl.h>
mainO
f

int err;
form_t 'MyForm;

If ((err = InitFormsO) 1= 0) {
printf("Forma system error \n");
exit(1);

}
Init MyFileO;
Windowlnit(O);
GetFormPtr("MyForm", AMyForm);
ResetForm(MyForm);
err = SetMenuDefault) MyForm, "MyMenu", Ttem2");
If (err l=0 K

ErrorForm("SetMenuDefault problem ", 0);
WindowExit(l);

1
lnitForm(MyForm);
lnputForm(MyForm);
CloseForm< MyForm);

- 1 -

S E T E D I T D E F A U L T (3 D) (DPL) S E T E D I T D E F AULT (3D)

DIAGNOSTICS
This routine returns zero if successful and an error code otherwise. The
error codes are defined in dpl .h .

SEE ALSO
SetListDefault(3D), SetEditDefault(3D).

FONTS(4W) (CTAM) FONTS(4W)

NAME
fonts - C T A M font mapping files

SYNOPSIS
/usr / l ib / c tam/ fonts /Vf t

DESCRIPTION
CTAM employs a font description database in order to map the virtual font
set available to an application to the actual fonts available on the terminal.
If no fonts beyond ASCII are available in the terminal then no font
description file is needed. However, if the terminal is capable of
displaying different fonts, then these fonts need to be described with a font
description file.

It is assumed that the terminal has one or more alternate fonts that may be
selected and de-selected by use of multi-character sequences. These
character sets are referred to as "alternate character sets." CTAM allows
up to three different alternate character sets to be used to describe fonts.
In order to correctly map CTAM's idea of what characters are going to
appear on the screen it is necessary to establish a mapping between
CTAM's virtual fonts and the terminal's real fonts. First, the sequences to
switch between the terminal's alternate character sets must be specified.
For example, if the terminal has a special graphics font that is selected by
the sequence (lBh, 65h) and de-selected by the sequence (lBh, 66h) then
the font file would contain the following:

»macs2 Ef, rmac«2 Eg,

The font mapping for each CTAM virtual character set is specified by a
string containing sequences of three tuples. The first character in each
tuple gives the position in the CTAM virtual character set by the equivalent
ASCII character. The second character gives the position in the terminal's
font of the desired physical character also by the equivalent ASCII
character. The third character specifies the alternate character set number
to be used to display the character or a tilde (-) to indicate that the high
order bit should be set when displaying the character. Alternatively, if the
terminal has a font that exactly matches a particular CTAM virtual font,
then that font may be specified by the name of the virtual font, followed
by an equals, followed by a single character representing the alternate
character set that must be used to display that font.

Names of virtual fonts include: usascii, ukascii, decmulti, decgraph,
ctgraph, ctline, user l , user2, and user3. Alternate character set 1 should
be specified in the terminal's terminfo description file using the smacs and
rmacs capabilities. Two additional alternate character sequences may be
defined in the font map file using smacs2, rmacs2, smacs3, and rmacs3.

EXAMPLES
The Fortune terminal has an alternate character set containing many of the
same symbols as the c i AM C T Graphics character set. In the following
example, nine of these special characters are mapped from the Fortune

FONTS(4W) (C T A M) FONTS(4W)

Systems Graphics Character Set onto the C T Graphics virtual font:

smacs=*N, rmaca="0,
ctgr»ph = X81 » 1 <01 $41 451 =11 l<1 ??1 v1,

The mapping string is made up of nine three-tuples each specifying a single
character. White space in the mapping string is ignored. The first three-
tuple states that the 'X ' position of the C T Graphics Character Set (58
hex) is displayed by outputting tin '8' (38 hex) when the terminal is in
alternate character set 1.

FILES
/usr/lib/ctam/fonts/*.ft - Terminal font description database

SEE ALSO
terminfo(4).
For descriptions of the decgraph and decmult i character sets refer to the
VT-220 Programmer's Reference Manual EK-VT220-RM or equivalent. For
descriptions of c tgraph and ct l ine character sets refer to the Convergent
Programmable Terminal Programmer's Guide.

KBMAPS(4W) (CTAM) KBMAPS (4W)

NAME
kbmaps - CTAM keyboard mapping files

SYNOPSIS
/ns r / l ib /c tam/kbmaps /* .kb

DESCRIPTION
CTAM programs access files in the directory /nsr / I ib /c tam/kbmaps (or a
directory named by the KBMAP environment variable) to determine
information about a terminal's keyboard beyond what is described by
terminfo(4). The information in the terminal's keyboard description file
supersedes whatever information is specified in terminfo. The files in
/us r / l ib /c tam/kbmaps consist of lines of three fields each. The first field
specifies the internal name of a key. A complete list of valid internal
names is contained in /nsr / include/kcodes .h. The second field specifies
what the terminal sends when that key is pressed. The third field is
optional and if present gives the keycap label for the key.

Key Semantics
The semantics of C T A M metakeys vary from one application to another.
However, since the internal names of some metakeys do not accurately
reflect their common usages, a list of basic keys and their meaning is
presented here:

RollUp
RollDn
Next
Prev
Forward
Back
Up
Down
Home
s_Home
Beg
End
Next
Prev
s_Forward
s_Back
ClearLine
DleteChar
InputMode

EXAMPLES
The following example is from a keyboard mapping file for a Fortune
terminal.

Scroll down
Scroll up
Next page
Previous page
Right arrow or character right
Left arrow or character left
Up arrow or line up
Down arrow or line down
Beginning of page
End of page
Beginning of document
End of document
Shift right arrow, next word
Shift left arrow, previous word
Control right arrow, full scroll right
Control left arrow, full scroll left
Erase field
Character delete
Toggle insert/replace mode

KBMAPS(4W) (CTAM) KBMAPS(4W)

Fortune keyboard description Die

F1 A a M F1
F2 A b M F2
F3 A c M F3
F4 A d M F4
F5 A e M F5
F6 -ArM F6
F7 Ag'M F7
FB A h M F8
F9 A I M F9
F10 "AkM F10
Help •A@"M Help
s Page As'M PrevScm
Beg A S M s-PrevScrn
Page A u M NextScm
End A U M s-NextScm
Home A X M s-Up
s_Home A Y M s-Down
Next "ATM •-Right
Prev A W M s-Left
Enter A q M Execute
InpulMode "ArM Insert
DleteChar "At"M Delete

WARNINGS
It is important to avoid ambiguities in keyboard definitions. If one key
sequence is a subset of another key sequence, the shorter of the two will
always prevail. A system integrator adding support for a new terminal
should watch out for this potential problem as CTAM does not check.

SEE ALSO
fonts(4W), terminfo(4).

ESCAPE(TW) (CTAM) ESCAPE (7 W)

NAME
escape - window escape codes

DESCRIPTION
CTAM windows emulate an extended ANSI X3.64 style terminal where
special sequences of characters embedded in the output stream control
certain aspects of the window. These aspects include character display
attributes like reverse video and underlining as well as scrolling and
erasing. Sequences of special characters written to the window via
wprintf{3W), wputc (3 W), and wputs(3W) are interpreted by CTAM along
with normal text.
There are three broad categories of control sequences: CO controls, CI
controls, and multiple character sequences. CO control sequences are the
familiar ASCII controls such as ODh (carriage return) and OAh (linefeed).
CI control sequences may be sent in two ways, as a single eight-bit value
or as the ASCII escape code lBh followed by a second character.
Multiple character sequences all begin with the CI control called the
Control Sequence Introducer. The CSI control code may expressed as the
single eight bit value 9Bh, or as the two character sequence lBh 5Bh
(Escape [). This type of control sequence is used for more complex
operations.

CO Controls
Name Sequence Description

N U L OOh
BEL 07h
BS 08h
H T 09h
LF OAh
VT OBh

Null (ignored)
Sound Bell
Backspace if col > 1
Horizontal tab
Linefeed; scroll up at bottom of scroll region.
Vertical tab; down one or scroll up at bottom
of scroll region.
Form Feed; same as VT
Carriage Return; cursor moves to column 1
Shift out; selects G1 character set for GL
Shift in; selects GO character set for GL

F F OCh
CR ODh
5 0 OEh
51 OFh

C I Controls
Name Sequence Description

IND 84h or Esc D Index (same as linefeed)
HTS 88h or Esc H Horizontal tab set
RI 8Dh or Esc M Reverse Index; scroll down in row 1
552 8Eh or Esc N Single shift G2 into GL for the next character
553 8Fh or Esc O Single shift G3 into G L for the next character
N E L 85h or Esc E New Line; move to column 1 of next line
CSI 8Bh or Esc [Control Sequence Introducer; see below

ESCAPE(TW) (CTAM) ESCAPE (7 W)

Name Sequence Description

SC Esc 7 Save cursor position and cursor attributes
RC Esc 8 Restore cursor position and attributes.
LS1R Esc " Lock shift G1 into GR
LS2 Esc n Lock shift G2 into G L
LS2R E s c } Lock shift G2 into GR
LS3 Esc o Lock shift G3 into G L
LS3R Esc 1 Lock shift G3 into GR

Mult iple Charac te r Sequences
Name Sequence Description

CUP CSI Psl ; Ps2 H Move cursor to column Psl , row Ps2
C U U CSI Pn A Move cursor up Pn lines
C U D CSI Pn B Move cursor down Pn lines
C U F CSI Pn C Move cursor forward Pn columns
CUB CSI Pn D Move cursor back Pn columns
CNL CSI E Move cursor to column 1 of next line
CPL CSI F Move cursor to column 1 of previous line

SU CSI Pn S Scroll up Pn lines
SD CSI Pn T Scroll down Pn lines

DCH CSI Pn P Delete Pn positions
ICH CSI Pn @ Insert Pn positions
E C H CSI Pn X Erase (change to space) next Pn posi

DL CSI Pn M Delete Pn lines
IL CSI Pn L Insert Pn lines

ELO CSIO K Erase cursor to end of line
ELI C S I 1 K Erase beginning of line to cursor
EL2 CSI 2 K Erase entire line

EDO CSIO J Erase cursor to end of display
EDI CSI 1 J Erase beginning of display to cursor
ED2 CSI 2 J Erase entire display

SGRO CSIO m Set all attributes to normal
SGR1 C S I 1 m Select bold
SGR2 CSI 2 m Select dim
SGR4 CSI 4 m Select underline
SGR7 CSI 7 m Select reverse
SGR9 CSI 9 m Select struck out
SGR21 CSI 21 m Turn off bold
SGR22 CSI 22 m Turn off dim
SGR24 CSI 24 m Turn off underlining
SGR27 CSI 27 m Turn off reverse
SGR29 CSI 29 m Turn off struck out

ESCAPE(TW) (CTAM) ESCAPE (7 W)

Name Sequence Description

TBCO CSIO g Remove horizontal tab stop
at current position

TBC3 CSI 3 g Remove all horizontal tab stops

CSR CSI Psl ;Ps2 r Set scroll region

DSR CSI n Device status report

CTSLPO CSI = 0;Ps2 @ Move to prompt line,
column Ps2 (see CTSLN)

CTSLP1 CSI = l;Ps2 @ Move to tag line,
column Ps2 (see CTSLN)

CTSLP2 CSI = 2;Ps2 @ Move to SLK line,
column Ps2 (see CTSLN)

CTSLP3 CSI = 3;Ps2 @ Move to command line,
column Ps2 (see CTSLN)

CTSLN CSI = Psl q Set the number of active noise
lines (Before any special
line positions (CTSLPO-3)
can be used,
CTSLN must be used.)

CTVISO CSI = OC Make cursor visible
CTVIS1 CSI = 1 C Make cursor invisible
C T M F CSI = Psl;.. R Map fonts Psl. . . to GO...
CTSU CSI = Psl;Ps2;Pn S Scroll lines Psl through Ps2

up Pn lines
CTSD CSI = Psl;Ps2;Pn T Scroll lines Psl through Ps2

down Pn lines
CTWN CSI = W Write window number
CTDSR CSI = b Device status report
CTSGR CSI = Psl ;Ps2m Select Psl = on mask;

Ps2 = off mask
CTSM2 CSI = 2 h Clear and enable window label
CTSM7 CSI = 7 h Save cursor (same as SC)
CTTRON CSI = 3 h Enable cursor tracking
C T T R O F F CSI = 3 1 Disable cursor tracking
CTRM2 CSI = 21 Disable window label
CTRM7 CSI = 7 1 Restore cursor (same as RC)
CTRESET CSI = P Reset window to initial modes
CTSD CSI = 0 w Disable scrolling
CTSE CSI = 1 w Enable scrolling

DECCOLM CSI ? 3 h Set window width to
132 columns

DECOM CSI ? 6 h Set origin (1,1) to be top
of scroll region

D E C A W M CSI ? 7 h Enable autowrap at column 80

ESCAPE(TW) (CTAM) ESCAPE (7 W)

Name Sequence Descript ion

D E C T C E M CSI ? 25 h Same as CTVISO
D E C R M 3 CSI ? 3 1 Set window width to

D E C R M 6 CSI ? 6 1 Set origin to be top of screen
D E C R M 7 CSI ? 7 1 Disable autowrap
D E C R M 2 5 CSI ? 25 1 Same as CTVIS1
D E C D S R CSI ? n Device status report

DSGO Esc (F
DSG1 Esc)F
DSG2 Esc * F
DSG3 Esc + F

Designate character set GO, , G l , G2 , or G3 as font F where F is: ' A ' for
U K A S C n , 'B' for US ASCII, '0' for DEC special graphics, ' < ' for D E C
multinational, ' = ' for PT special graphics, '2 ' for user font 1, '3' for user
font 2, or '4' for user font 3.

FILES
/usr/include/ctam. h

Glossary

action rout ine. A n action routine has syntax approximating that of a
C subroutine call and is invoked upon the occurrence of a particular
event.

a t t r ibute . A n attribute keyword (or flag) causes a particular charac-
teristic of a form or field to be turned on or off. If an attribute key-
word is preceded with a tilde (~) , that attribute is turned off. Each
field attribute is either on or off with the default depending on the
field type. Some attributes are useful only with some field types,
while other attributes may be used with any field type. Attr ibutes are
specified with a comma separated list of keywords enclosed by square
brackets.

CTAM. CTAM (the Convergent Terminal Access Method) is an
applications development kit for C T I X systems. CTAM provides a
device-independent ANSI X3.64 interface to terminals and a library
of routines for creating, manipulating, and displaying to windows.

defaul t . A default is a value that is selected for you by the system
unless you specify a different value.

dialogue. A dialogue is a session in which an end user interacts with
forms and menus to get services provided by one or more application
programs.

DPL. The Dialogue Programming Language is part of the CTAM
development package. DPL is a high level language that enables a
developer to create applications that display forms and menus.

edit field. A n edit field is an area in the display that can be modified
with keyboard input. See Figure 2 -1 for more examples of field
types.

Glossary-1

event. A n event defines the action or actions performed when a
selection associated with a form, field, or single menu item is com-
plete. Braces O surround the action(s) to be performed.

field. A field is a subset of a form; it is an area on the screen that
varies in shape and size, depending on the number and format of the
items inside. Depending on the type of field, items in a field can be
selected (menu fields) or edited (edit fields), or if the field is for
viewing only, neither selected nor edited (text fields). Some fields
take up the whole screen, others take up enough space for only a few-
characters.

flag. See attribute.

font description file. For terminals with font capability beyond
ASCII, files with the suffix .ft in the directory /usr/lib/ctam/fonts
enable CTAM to map the virtual font set available to an application
to the actual fonts available on a terminal. For more information,
see fonts(4w) in Appendix A .

form. A form is a display containing one or more fields, much like a
hardcopy questionaire form, which might contain a mixture of multi-
ple choice (menu field), fill in the blank (edit field), and general
information (text field) items.

internal value. The internal value is the octal code (defined in
/usr/include/kcodes.h) used by CTAM routines to identify a particular
keystroke sequence (see Table 3-1) .

item. A n item is a piece of text within a field. Normally, items
appear one per line in a single column.

keyboard description file. Files with the suffix .kb in the directory
/usr/lib/ctam/kbmaps contain information about a terminal 's key-
board beyond what is described by terminfo(4). For more informa-
tion, see kbmaps(4w) in Appendix A.

keyword. A DPL keyword is a predefined word that has a specific
meaning in DPL programs. For a list of various keywords and the
pages on which they appear, see "keywords ," in the Index.

main menu. The main menu is the top of an application's menu
hierarchy, providing access to the major functions within the pro-
gram.

major number. The major number represents a class of devices, such
as terminals or printers.

menu. A menu is a field containing a list of choices (items) f rom
which you make a selection. A menu can take up an entire screen or

Glossary-2 CTAM Application Programmer's Guide

be part of a form. On certain forms, pop-up menus can be displayed
by pressing a programmed sequence of keys.

metakey. Metakeys are keys function keys or action invoking keys,
such as Scroll Up or Delete, that can be programmed to invoke vari-
ous functions, depending on the current controlling process.

minor number. The minor number represents the specific device
within a class of devices.

pop-up menu. A pop-up menu is an optional menu display that is
used when there is not sufficient space in the current form to display
a list of items. P o p - u p menus are invoked f rom fields with this
option by pressing a programmed key sequence.

resource file. A resource file is a file with the suffix .rf that contains
menu and form information interpreted by dplrun.

special file. A special file is an entry in the /dev directory that is
associated with a device driver; it is a way of accessing a device such
as a terminal or window (virtual terminal).

text field. A text field contains items that are for viewing only; that
is, the items can not be selected or edited. The prompt line is a good
example of a text field. See Figure 2 -1 for more examples of field
types.

type verification string. Type verification strings are used to define
allowable characters in an input string so that characters entered into
an edit field can be evaluated as to their validity.

window terminal. A window terminal is a software construct
presented to an application process by the window manager (ctwm).

Glossary-3

Index

STERMctam.ti
listing of, 3-15

/dev/ttynnn, 3-5
/dev/window, 3-5
/dev/wxt/wnnn, 3-5
/dev, 3-4
/etc/CTWMtermcap, 3-12
/etc/drvload, 3-5
/etc/lddrv/wxt.o, 3-5
/etc/master, 3-5
/etc/termcap, 3-12
/etc, 3-4
/usr/include/kcodes.h, 3-8, 4-24
/usr/lib/ctam/english_usa/ctwm.rf,

3-6
/usrAib/ctam/english_usa/dpl.rf, 3-6
/usr/lib/ctam/fonts/$TERM.ft, 3-11
/usr/lib/ctam/kbmaps/$TERM.kb, 3-8
/usr/lib/libctam.a, 1-2
/usr/lib/libdpl.a, 1-2
/usrAibAibxnls.a, 1-2, 6-1
/usr/lib/terminfo/?/$TERM, 3-6
/usr/lib/terminfo/?/$TERMctam, 3-6

A

action routines, 4-24
AdvanceField, 4-28
BackField, 4-28
CloseForm, 4-28
doexec, 4-24
ErrorForm, 4-26
GotoForm, 4-28
LabelForm, 4-28
LabelKey, 4-27
NoteForm, 4-25

PopupForm, 4-25
RefreshField, 4-27
SetCurrentField, 4-28
SetPrompt, 4-26
SetRefreshRate, 4-26
SetSelect, 4-28

active process, 4-6
ANSI x3.64, 1-2, 3-3
arrow keys, 2-3

B

Backspace, 2-3
Back, 2-3
BASIC, 7-3

c
C routines

GetFieldValue, 5-3
GetFormPtr, 5-3
GetLevel, 4-19
InitForms, 5-3
Init_MyFile, 5-4
NoteFrom, 5-3
OpenFormFile, 5-3
PopupForm, 5-3
SetLevel, 4-19
WindowExit, 5-3
Windowlnit, 5-3

Cancel, 2-4
COBOL, 7-1
control codes, 1-4, 2-4
control flow, 4-29
control flow operators, 4-31
Control, 1-4

Index-1

conventions used, 1-4
CTAM

components, 1-1
defined, 1-1
window manager, 1-1, 3-1, 3-4,

4-8
ctwm(lW), 1-1, 3-1
curses(3), 3-3 to 3-4
cursor, 2-3

D

default values, 2-4
Delete, 2-3
dialogue, 2-1, 4-2
Down, 2-3
DPL, 2-1, 4-1
dplrun(l) , 1-1

E

Enter, 2-4
events, 4-20

control flow, 4-29
onact, 4-20
onbadkey, 4-20
oncancel, 4-20
onclose, 4-20
onhelp, 4-20
oninit, 4-20
onkey, 4-21, 4-23
onselect, 4-21
onvalid, 4-21
scoping of, 4-22
traps, 5-5

F

fields, 2-2, 4-5
attributes, 4-9

blank, 4-14
boxed, 4-10
chcksel, 4-12
chck, 4-12
dash, 4-12
hbar, 4-10
highsel, 4-12
high, 4-12
off, 4-10
pulldown, 4-12

save, 4-10, 4-13
tail, 4-17
vbar, 4-10
writein, 4-12

coordinates, 4-9
edit, 4-5, 4-13

initializing, 4-13
type checking, 4-14

editing, 2-2
list, 2-4, 4-5, 4-12
menu, 4-5, 4-10
multiple column, 4-11
scrollable, 2-2, 4-17
selecting, 2-2
specifying, 4-8
text, 4-5, 4-17
turning off attributes, 4-9
types, 4-9
view only, 2-2

Figures
C T A M Window Manager, 1-2
Hierarchy of DPL Entities Under

CTWM, 4-6
Sample Form # 1, 2-2
Sample Form #2, 2-3
Sample Form #3, 4-3
Sample Form #4, 4-4
Sample Form #5, 4-5
The User/Kernel Interface Under

CTAM, 3-2
Using terminfo Description Files,

3-7
Finish, 2-4
font description file, 3-11
forms, 2-1 to 2-2, 4-2, 4-5

compiler, 1-2
coordinates, 4-7
flags, 4-8

fullwidth, 4-8
new, 4-8
popup, 4-8
resize, 4-8
son, 4-8

how to specify, 4-7
interpreter, 1-1
labels, 4-7
library, 1-2
moving between, 2-3
moving within, 2-3

F O R T R A N , 7-4
Forward, 2-3

Glossary-2 CTAM Application Programmer's Guide

H

Help, 2-5

I

internal value, 3-2
items, 2-2, 4-5

attributes, 4-18
blank, 4-19
default, 4-19
high, 4-19
level, 4-18
root, 4-18

display value, 4-20
specifying, 4-17
user value, 4-20

K

keyboard description file, 3-8
keypad modes, 3-2
keys

arrow, 2-3
Backspace, 2-3
Back, 2-3
Cancel, 2-4
Control, 1-4
Delete, 2-3
Down, 2-3
Enter, 2-4
Finish, 2-4
Forward, 2-3
Help, 2-5
Mark, 2-4
Return, 2-3
Tab, 2-3
Up, 2-3
virtual, 1-4, 3-2, 3-8

keywords, 4-2
edit, 4-9
else, 4-29
field, 4-8
form, 4-7
fullwidth, 4-8
if, 4-29
list, 4-9
menu, 4-9
new, 4-8
popup, 4-8
resize, 4-8

return, 4-29
son, 4-8
text, 4-9
while, 4-29

L

lddrv(l) , 3-5
libctam.a, 3-3

M

major number, 3-5
Mark, 2-4
menus, 2-1 to 2-2, 4-2

moving between, 2-3
moving within, 2-3

minor number, 3-5

O

operators, 4-31

P

physical terminals, 3-1

R
rcc(l) , 1-2, 5-3
related documentation, 1-5
reserved variable names, 4-
resource file, 4-2, 5-1
Return, 2-3

S

scroll bar, 2-2
special files, 3-4
stdio(3S), 3-4

T

Tab, 2-3
terminal specific, 3-7
terminals

physical, 3-1
supported, 3-12
window, 3-1

terminfo(4), 3-6

tic(l), 3-15
tset(l), 3-12
type verification string, 4-14

u
Up, 2-3

V

variables, 4-33
environment

$HOME, 4-39
SLANG, 3-6
$LOGNAME, 4-39
SSHELL, 4-39
STERMCAP, 3-12
STERM, 3-3, 3-6, 3-12

global, 4-33, 4-37
legal operators, 4-35
reserved, 4-38
special, 4-38

$Cancl, 4-38
$Cmd, 4-38
SEnter, 4-38
{ERROR, 4-38
$Exit, 4-38
$Help, 4-38
$KEY, 4-38
$LEVEL, 4-40
$Tab, 4-40

vertical scroll bar, 2-2
virtual keys, 3-2, 3-8

w
wgetc(3W), 3-2
window devices, 3-1, 3-5
window driver, 3-1
window manager, 1-1, 3-1, 3-4, 4-8
window terminals, 3-1
windowing library, 1-2
wxt, 3-1, 3-4

Glossary-4 CTAM Application Programmer's Guide

