| v co

SYSTEM PROGRAMMER'S GUIDE

Specifications Subject to Change.

Convergent Technologies, Convergent, CTOS, CT-NET, CT-BUS,
AWS, and IWS are trademarks of Convergent Technologies, Inc.
Fourth Edition (February 1982)

This edition (numbered A-09-00014-02-C) replaces the previous
editions (numbered A-09-00014-02-B, A-09-00014-02-A, and
A-09-00014-01-A) and makes them obsolete.

Copyright © 1982 by Convergent Technologies, Inc.

Contents

Pfe.face 0...0..0...000000000'.00..0.0....o-coo.oo.n..too.ol.000V

Summafy Of Changes © © 0 0 00 00 000 0000060200 000080000000 000000000000 Vii

Guide to Technical Documentation ® ® 0 0 0 0 00 0 0% 00 0O 00 S SO0 0020 003000 ix

l. Getting Started .cceeeescecesoccsossscssossssnsosssoscsccscsss
Software Installation eceeeceececccsecccsccccsccccccsnnses
Using the 0S in a Hard Disk-Based Environment eeeeeceeece.
Using the 0S in a Cluster or Mini-Cluster Environment ..

. Using the 0S in a Floppy Disk-Based Environment ...c.e...
Using the 0S in an AWS-220 or AWS-230 Standalone

Environment ...ececeecccescoscsescscscssoscscssosnscsse

Using the DebUgger ..eeeseecccscceccssscssccscsccsssscnscses

b
|
W

[
~No

=

2. CTOS Failure AnalYSis ® ® ® 0 0 8 0 & 0 0 0 5 00 OO OO OO0 S0 000 000 00 e 0o
CTOS Initialization Error Description and Analysis
CTOS Crash Status Description and AnalySisS .eeeoceecesces

|
N

3. Building a Customized CTOS System IMAJE .eeeececvcccsccces
System BUIld ceeeeoccscccccsccossssccosssoscssccssscsoccocas
Adding CTOS System Service ProCeSSeS cccecesccecssscscscss
Removing Optional CTOS SErviCeS cuieececscssccccccocccescs
Building a CTOS System IMAJEe cesescscccsssccssssscscscsns

|
WN -

4. Building a Customized SAM ...ceeececcccoscccsccoccsoscccscs
Excluding Byte StreamsS ..cececcccscsccsccscsccsccsccscose
Including a Convergent Byte Stream .eeeccescecccscccccscses
Substituting an Alternative Byte Stream .cceceececcescoccss

D D D wWwwww [NS I \S I \V]
I
COIN-

5. System Programming seeececesssscsscsscescssescscsnscccscccsscss
Communications (SIO) Programming ceeeccceccocccccsccocss
Debugging Hints for System ImMplementorS cecececceccsccsss
Notes on the DebUJger ..ceccccsscecsscosscocscssssscssccsss
Notes on System Initialization ..cceceecececcccccccccncas
Notes on System Signon ceeeecesesscsscsscsscsscsccsccsscasaes
Notes on the EXeCUtivVe .iceeeececccssccosssccccccsccnnces

LIS LINC, I I C R, Y
|
= 00O W

wu
[

i
B WN e

6. Mini-Cluster ArchiteCtUre .ieiceescescccccscsccssossscscocse
Hardware Configuration ceeeececccccccsccscssccoscssnosccscces
Software COMPONENtS sceecscsesseccccssccscsssssscscsocss
Communications ProtoCol ..ceeccececcccccsscsoscsosccocccss
Theory of Operation ..eeeeeeeccesccesccscecscscoscsscosossssocs
Performance ConsiderationsS .eeeeecceccscccsccosccscoocccoces

[e) e o) We) Mo We))
|

Contents iii

7.

8.

9.

Cluster ArchitectUre seeecesecsecssecsse
Hardware Configuration .c.eeseececees
Software Components ..eececsscsass
Communications ProtocCol e.eceeoecesos
Theory of Operation ceeececessecss
Performance Considerationse..

IWS Diagnostics ® 0 & & 2 5 0 9 O 2 0O 0P e N e
Summary of DiagnoSticCsS ceseessoses
When and How to Run Diagnostics ..

»

.

® © 060 0695006058000 000

. e

° o

.

® 5 0000000 00

® e 00800 2 0900

® o600 000 0 00

® s 0 0 0 0

> ®

»

o o

* o 0

Running Diagnostics from a Cluster Workstation
Video DI1IagnoStiC ceeseeseesscessscenccsacescs
Keyboard DiagnoStiC cueeeseeesssscssssscnnsas
Floppy D1agnoStiC seeeeesscossccssscscnnnans
Winchester DIiagnoStiC seeeeescccsccsnssscens
Printer)
Communications DiagnosSticC cieeecseececnces
CommIOP DiagnosStiC seeeessessoessscasncsns

System Diagnostic (Memory, Timers,

AWS DiagnoStiCS ceeeesssscsscssasscssssnsnce
Summary of DiagnostiCS ceeesescsscscsoses
When and How to Run Diagnostics ...soeees
Running Diagnostics from an AWS ..eeeeess

System Diagnostic

(Video, Timer, Keyboard)

Memory DiagnosStiC seeeeecccessssssscscsssces

Printer DiagnosStic seieeeseccssssas
AWS-22¢/230¢ Floppy Diagnostic
AWS-240 Disk Diagnostic s.eeeesees
Communications DiagnoStic seeeeees

19. Troubleshooting the CommIOP

iv

System Programmer's Guide

® o 2 0 00 0 ¢

® e 0 00008 20

® 2 0 0 0 00 0 0

o 2

® o 0 500 000900 900

.

»

LU T I B
WNN

L]
| CO 0O CO 0 o o NN
1

|
B wwN |
QU ROV N -

o 00 0
I

PREFACE

It is assumed that the reader of this guide is very familiar with
computer concepts and terms. Further, it 1is assumed that the
reader has already read and has available for reference:

Operator's Guide
Installation Guide

CTOS Operating System Manual
Executive Manual

Utilities Manual

Workstation Hardware Manual
Peripherals Hardware Manual

It may be of interest that this document was prepared using the
Convergent Word Processor.

Preface v

SUMMARY OF CHANGES

This edition (#9-00014-02-C) of the System Programmer's Guide
differs from the preceding one (09-00014-¢2-B) in the ways
summarized below.

AWS WORKSTATIONS

Several sections have been added, and all sections have

been updated to reflect the introduction of the AWS
220, AWS 230, and AWS 2440 workstations.

SYSINIT and SIGNON

Notes have been added to Section 5 (System Programming)
which describe these new features.

EXECUTIVE

The Executive's handling of the font and the command
table has changed. See "Notes on the Executive" in
Section 5 (System Programming).

CUSTOMIZING SAM

The description of OpenByteStream has been updated to
reflect the use of the Queue Manager by Spooler Byte
Streams.

APPENDIX

The four appendicies have been removed. These were
source listings of the assembly language modules
Sysgen.Asm, Request.Asm, RqLabl.Asm, and Samgen.Asm.
These source files are contained in the Standard
Software release diskettes.

Summary of Changes vii

GUIDE TO TECHNICAL DOCUMENTATION

This Manual is one of a set that documents the
Convergent™ Family of Information Processing
Systems. The set can be grouped as follows:

Introductory
Installation Guide
Operator's Guide
Executive Manual

Hardware
Workstation Hardware Manual
AWS-210 Hardware Manual
Peripherals Hardware Manual

Operating System
CTOS™ Operating System Manual
System Programmer's Guide
System Utilities Manual
Batch Manual

Programming Languages
COBOL Manual
FORTRAN Manual
BASIC Manual
Pascal Manual
Assembly Language Manual

Program Development Tools
Editor Manual
Debugger Manual
Linker/Librarian Manual

Data Management Facilities
ISAM Manual
Forms Manual
Sort/Merge Manual

Text Management Facilities
Word Processing Manual
Font Designer Manual

Communications
Asynchronous Terminal Emulator Manual
3270 Terminal Emulator Manual
2780/3780 RJE Terminal Emulator Manual

This section outlines the contents of these
manuals.

Documentation Guide ix

Introductory

Hardware

The Installation Guide describes the procedure
for unpacking, cabling, and powering up a system.

The Operator's Guide addresses the needs of the
average user for operating instructions. It
describes the workstation switches and controls,
keyboard function, and floppy disk handling.

The Executive Manual describes the command
interpreter, the program that first interacts
with the user when the system is turned on. It
specifies commands for managing files and
invoking other programs such as the Editor and
the programming language compilers.

The Workstation Hardware Manual describes the
mainframe, keyboard, and video display. It
specifies system architecture, printed circuit
boards (Motherboard, Processor, I1I/0-Memory, Video

Control, ROM Expansion, and RAM Expansion),
keyboard, video mwonitor, Multibus interface,
communications interfaces, power supply, and

environmental characteristics of the workstation.

The AWS-210 Hardware Manual describes the
mainframe, keyboard, and video display of the
AWS-210 workstation. It specifies architecture,
theory of operation of the printed «circuit
boards, (Motherboard, Deflection, and CPU),
keyboard, video monitor, expansion interface,
communications interface, power supply, and
environmental characteristics of the workstation.

The Peripherals Hardware Manual describes the
disk subsystems. It specifies the disk
controller Motherboard, controller boards for the
floppy disk and the Winchester disks, power
supplies, disk drives, and environmental
characteristics.

Operating System

The CTOS™ Operating System Manual describes the
Operating System. It specifies services for
managing processes, messages, memory, exchanges,
tasks, video, disk, keyboard, printer, timer,
communications, and files. In particular, it

X System Programmer's Guide

specifies the standard file access methods: SAM,
the Sequential Access Method; RSAM, the Record
Sequential Access Method; and DAM, the Direct
Access Method.

The System Programmer's Guide addresses the needs
of the system programmer or system manager for

detailed information on Operating System
structure and system operation. It describes (1)
cluster architecture and operation, (2)

procedures for building a customized Operating
System, and (3) diagnostics.

The System Utilities Manual describes utilities
such as Backup Volume, IVolume, Restore, Change
Volume Name, PLog, Maintain File, Dump, etc.

The Batch Manual describes the batch manager,
which executes batch jobs under control of job
control language (JCL) files.

Programming Languages

The COBOL, FORTRAN, BASIC, Pascal, and Assembly
Language Manuals describe the system's
programming languages. Each manual specifies
both the language itself and also operating
instructions for that language.

The Pascal Manual is supplemented by a popular
text, Pascal User Manual and Report.

The Assembly Language Manual is supplemented by a
text, the Central Processing Unit, which
describes the main processor, the 8086. It
specifies the machine architecture, instruction
set, and programming at the symbolic instruction
level.

Program Development Tools

The Editor Manual describes the text editor.

The Debugger Manual describes the Debugger, which
is designed for use at the symbolic instruction
level. Together with appropriate interlistings,
it can be used for debugging FORTRAN, Pascal, and
assembly language programs. (COBOL and BASIC, in
contrast, are more conveniently debugged using
special facilities described in their respective
manuals.)

Documentation Guide xi

Data Management

Text Management

Communications

The Linker/Librarian Manual describes the Linker,
which 1links together separately compiled object
files, and the Librarian, which Dbuilds and
manages libraries of object modules.

Facilities

The ISAM Manual describes the multikey Indexed
Sequential Access Method. It specifies the
procedural interfaces and shows how these
interfaces are called from the various languages.

The Forms Manual describes the Forms facility
that includes (1) the Forms Editor, which is used
to interactively design and edit forms, and (2)
the Forms run time, which is called from an
application program to display forms and accept
user input.

The Sort/Merge Manual describes (1) the Sort and
Merge utilities that run as a subsystem invoked
at the Executive command level, and (2) the
Sort/Merge object modules that can be called from
an application program.

Facilities

The Word Processing Manual describes the word
processor. It specifies the interactive word
processor and the list processor that merges text
from records into the blanks of a form document.

The Font Designer Manual describes the
interactive utility for designing new fonts
(character sets) for the video display.

The Asynchronous Terminal Emulator Manual

describes the asynchronous terminal emulator.

The 3270 Terminal Emulator Manual describes the
3270 emulator package.

The 2780/3780 RJE Terminal Emulator Manual
describes the 2780/3780 emulator package.

xii System Programmer's Guide

specifies the standard file access methods: SAM,
the Sequential Access Method; RSAM, the Record
Sequential Access Method; and DAM, the Direct
Access Method.

The System Programmer's Guide addresses the needs
of the system programmer or system manager for

detailed information on Operating System
structure and system operation. It describes (1)
cluster architecture and operation, (2)

procedures for building a customized Operating
System, and (3) diagnostics.

The System Utilities Manual describes utilities
such as Backup Volume, IVolume, Restore, Change
Volume Name, PLog, Maintain File, Dump, etc.

The Batch Manual describes the batch manager,
which executes batch jobs under control of job
control language (JCL) files.

Programming Languages

The COBOL, FORTRAN, BASIC, Pascal, and Assembly
Language Manuals describe the system's
programming languages. Each manual specifies
both the 1language itself and also operating
instructions for that language.

The Pascal Manual is supplemented by a popular
text, Pascal User Manual and Report.

The Assembly Language Manual is supplemented by a
text, the Central Processing Unit, which
describes the main processor, the 8086. It
specifies the machine architecture, instruction
set, and programming at the symbolic instruction
level.

Program Development Tools

The Editor Manual describes the text editor.

The Debugger Manual describes the Debugger, which
is designed for use at the symbolic instruction
level. Together with appropriate interlistings,
it can be used for debugging FORTRAN, Pascal, and
assembly language programs. (COBOL and BASIC, in
contrast, are more conveniently debugged using
special facilities described in their respective
manuals.)

Documentation Guide xi

Data Management

Text Management

Communications

The Linker/Librarian Manual describes the Linker,
which links together separately compiled object
files, and the Librarian, which builds and
manages libraries of object modules.

Facilities

The ISAM Manual describes the multikey Indexed
Sequential Access Method. It specifies the
procedural interfaces and shows how these
interfaces are called from the various languages.

The Forms Manual describes the Forms facility
that includes (1) the Forms Editor, which is used
to interactively design and edit forms, and (2)
the Forms run time, which is called from an
application program to display forms and accept
user input.

The Sort/Merge Manual describes (1) the Sort and
Merge utilities that run as a subsystem invoked
at the Executive command 1level, and (2) the
Sort/Merge object modules that can be called from
an application program.

Facilities

The Word Processing Manual describes the word
processor. It specifies the interactive word
processor and the list processor that merges text
from records into the blanks of a form document.

The Font Designer Manual describes the
interactive utility for designing new fonts
(character sets) for the video display.

The Asynchronous Terminal Emulator Manual
describes the asynchronous terminal emulator.

The 3270 Terminal Emulator Manual describes the
3270 emulator package.

The 2780/3780 RJE Terminal Emulator Manual
describes the 2780/3780 emulator package.

xii System Programmer's Guide

1. GETTING STARTED

Convergent software is distributed on floppy diskettes.
The CTOS operating system 1is contained on several
consecutively numbered floppy diskettes. These
diskettes are configured so that it is possible to boot

a workstation from one of the diskettes and run such
utilities as IVolume, Backup Volume, and Restore.

The exact contents of each distribution diskette is
listed in the Release Notice.

Software Installation

Using the

Using The

The Release Notice for Standard Software contains
detailed instructions for software installation. After
the standard software is installed, optional software
should be installed as described in the Release Notice
for the particular software. The contents of
Convergent distribution diskettes is also listed in the
Release Notice for the standard or optional software.

0S in a hard disk-based environment

When you have finished the installation procedures des-
cribed in the Release Notices, your hard disk system
will be ready for use. These procedures place the
Convergent software in directory <Sys>, and create the
directory <Spl> for the use of the Spooler. You will
wish to create more directories before you begin to
create files. Directories allow you to group related
files and to protect those files with a common
password. The "Create Directory" command is described
in the Executive Manual.

0S in a Cluster or Mini-Cluster Environment

The use of the 0S in a Cluster or Mini-Cluster environ-
ment is the same as that in a single user environment,

except that the disks connected to the Master Work-
station are shared by all workstations in the cluster.

As in the hard disk-based environment, directories
should be created on the hard disk for grouping vyour
files.

Part of the installation procedure installs a special
directory ("$") for each user. These directories are
useful for programs which need to use a temporary file.

Placing the file in the $ directory allows the program
to execute at multiple workstations without collision

Getting Started 1-1

in file names. These directories are described in the

"File Management" section of the CTOS Operating System
Manual.

1-2 System Programmer's Guide

Using the 0S in an IWS floppy disk-based environment

The CTOS distribution floppy disks that you received
are your master copy of Convergent software. They are

shipped without write enable tabs and contain little or
no unused file space. Do NOT put write enable tabs on

these floppies and/or attempt to use them as your
working copy of the operating system.

You will also have received a "“Starter Kit" set of

diskettes with your floppy disk-based system. The
contents of these disks 1s described in the Release

Notice.

It is recommended that you don't actually use these
diskettes, but that you copy them and use the copies.

You may easily copy a diskette using tests 5 (format)
and 12 (copy) of the Floppy Diagnostic (see

"Diagnostics" section of this manual).

One of these diskettes will be for bootstrapping CTOS,
and running certain system utilities, and the others
will be for running various programs supplied by
Convergent. The minimum set of files for a bootable
diskette is

SysImage.Sys
Signon.Run
Sys.Font
.User

A diskette for using the Executive will need to contain

the files
Exec.run (or CommExec.Run)
Files.run (optional)
VolumeStatus.run (optional)
Sys.Cmds

You may want to copy the files from the distribution
floppy disks onto a larger number of floppy disks in

order to retain file space on each floppy disk for the
creation of work files (for the assembler, editor,

etc.). While the grouping of files on floppy disks is
a matter of preference, you may want to consider this
organization:

1. a system floppy that contains:

a CTOS system image
Signon.Run

Getting Started 1-3

.User
Exec.Run
Sys.Font
Sys.Cmds
Copy.Run
Command.Run
Files.Run
Format.Run

2. an Editor floppy that contains:

Exec.Run
Sys.Cmds
Editor.Run

3. an Assembler floppy that contains:

Exec.Run

Sys.Cmds
Assembler.Run

4. a Linker/Librarian floppy that contains

Exec.Run

Sys.Cmds
Librarian.Run
Linker.Run

CTOS.Lib

5. a floppy for each optional language
(BASIC, FORTRAN, COBOL, Pascal)

1-4 System Programmer's Guide

Using The 0S in an AWS-220 or AWS-23@ standalone environment

Using the 0S in AWS standalone environments requires a
fairly well ©planned strategy that organizes the
application into functional units partitioned between
mini-floppy diskettes. This is necessary in order to
minimize the amount of diskette switching that the user
must perform due to the limited capacity of the mini-
floppies. The suggested strategy 1is similar to that
used for the wuser copies of the system software
mentioned in the previous section.

As an example, we have a 58@-line BASIC application
that utilizes Convergent Forms and ISAM, and includes a
49@-line Pascal module. This application uses 5 forms
and 3 ISAM data sets (each of which is composed of 2
files).

We have configured this application to run on an AWS-
220, using one diskette to boot from and a second to
contain the data sets. The user places the boot
diskette in the floppy drive (f8) and boots. After
CTOS initialization and system Signon the application
is 1loaded. It reads the 5 forms from the boot
diskette, then requests that the user replace the boot
diskette with his data diskette. It then opens the 3
data sets and proceeds with the application.

The boot diskette contains the following files:

SysImage.sys
Signon.Run
Signon.txt

.User

Basic.Run
Application.basic (The application program)
Menu.form
AddStock.form
AddNewItem,form
EnterOrder.form
FillOrderLine.form

And the data diskette contains:

Item.isam Item.ind

Order.isam Order.ind
OrderLine.isam OrderLine.ind

Thus we have a "natural" partitioning into the system
and user environments. Diskette 1 contains the
operating system (sysImage.sys), the system support
utilities and data (Signon.Run, Signon.txt, and .User),
the BASIC interpreter (Basic.Run), the application
BASIC program (Application.basic), and the forms used

Getting Started 1-5

1-6

by the application. Diskette 2 contains the data sets

used by the application. Once the system is booted the
user has signed on, the boot diskette is no longer

needed. The data diskette is used for all subsequent
interactions.

On a 220 we take maximum advantage of the one diskette

drive. On a 230 we could either leave both diskettes
mounted or allow for two data diskettes.

System Programmer's Guide

Using The Debugger

The use of the Convergent Debugger is straightforward.
The debugger is automatically installed on hard disk

and Cluster systems by the procedures described in the
Release Notice for Standard Software.

In floppy disk-based systems, use of the debugger is
more complicated. The debugger requires two files on
the system diskette for swapping memory back and forth
to disk. These files are opened for the debugger
during CTOS initialization. Since the removal of a
floppy diskette from the floppy drive causes all files
on that diskette to be closed by CTOS, you must not
remove the system floppy from drive @ if you plan to
use the debugger. Also, this diskette must not be
write protected, as the debugger needs to be able to
write to it.

The minimum set of files which you must place on this
diskette are as follows:

Exec.run
Sys.Cmds
Sysimage.sys
Sys.Font
Debugger.sys
Signon.Run
.User

You must leave at least 96 sectors free on the floppy,

so that the second debugger file, DebuggerSwap.sys, may
be created by CTOS during its initialization.

Getting Started 1-7

2.

CTOS FAILURE ANALYSIS

CTOS Initialization Error Status Description and Analysis

The CTOS operating system tests the following hardware
components in its initialization process:

Memory parity error detection circuitry

Memory above 128K
Keyboard

Interrupt Circuitry
Programmable interval timer (PIT)

In addition, on IWS workstations the following hardware
components are tested during CTOS initialization:

Bus timeout circuitry

Video
Real time clock (RTC)

If the video test succeeds but any of the other tests

fail, it will display the following message on the
screen:

INITIALIZATION ERROR STATUS xxxxh

Each bit set in the error status word corresponds to an
error condition detected during the test. The meaning
of each bit is described below. The operating system
will continue to load the Executive if any error other
than a video error is detected. If the video test
fails, the operating system will halt and beep 10
times. It also displays the error code in the LED's on
the keyboard (and on the Memory-I/0 board of IWS
workstations). In order to distinguish from the error
codes which are displayed by the bootstrap ROM, the
operating system turns on the LED's on the OVERTYPE key
and on the LOCK key.

The LED's on the Memory-I/0O board of IWS workstations
are numbered according to the following convention: if

you are facing the LED's on the Memory-I/0 board, the
right most LED is LED @ and the left most one is LED 5.

CTOS Failure Analysis 2-1

Memory—- Keyboard
I/0 LED LED Error Description

[4] Fl0 IWS - Video hardware does not
respond. Possible cause:

(a) There is no video board

(b) The video board not seated

1 F9 IWS - Dma failure 1in "load
font"

2 F8 INS - Dma failure 1in "read
font".

3 F3 IWS - The font read back from

the Font RAM fails to compare
with the font written to it.

The errors generated by other tests are recorded in the
bits of the initialization error status word that is
displayed on the video screen. The meaning of each bit
is:

Bit 4 Memory test failure (128k and up).

Bit 5 IWS - Bus timeout interrupt 1is not
generated when a non-existent memory
location is referenced.

Bit 6 Bad memory parity is not detected.

Bit 7 Keyboard hardware does not respond.
Possible causes are:

(a) Keyboard not connected

2-2 System Programmer's Guide

Bit 8

Bit 9

Bit A

Bit B

Bit C

Bit D

Bit E

Bit F

(b) 80848 in the keyboard

(c) 8251A USART

Keyboard does not return good status

after the reset command. Possible cause
are:

(a) keys are pressed during the
initialization.

(b) 8848 in the keyboard

Keyboard ROM checksum failure. Possible
cause: Bad 8048 in the keyboard.

Keyboard loopback test failure.

Keyboard interrupt test failure - no
interrupt 1is generated during 1loopback,
or TRANSMIT READY status in 8251A does
not generate interrupt.

IWS RTC test failure - no RTC interrupt,

or time interval between two RTC
interrupts is inconsistent with the time

interval measured by PIT.

PIT test failure - no PIT interrupt.

Continuous PIT interrupts.

(Mini-Cluster master workstation CTOS
only) Communications hardware test fail-
ure.

CTOS Failure Analysis 2-3

CTOS Crash Status Description and Analysis

2-4

When the CTOS operating system detects a fatal error
condition, it reports the error, dumps memory to a
crash file (if the CrashDump.Sys file exists) and
reboots itself,.

If the Debugger is configured into the operating system
and is loaded in memory when the fatal error occurs,
the operating system will enter the debugger before it
does a memory dump and reboot. You can use the
debugger to investigate the cause of the fatal error.
When the GO key is pressed, the debugger will exit and
the system will proceed with the memory dump and reboot
sequence.

The error message is displayed on the video screen in
the system crash and reboot sequence. It is displayed
when the error condition is detected, and also when the
debugger is entered. During system reboot, the video
screen is blanked but the error messages reappear after

the 0S 1is reloaded. The same information is again
displayed by SysInit and Signon when they reinitialize
the screen. The information is also placed in the

system log file, [Sys]<sys>Log.Sys (use the PLog
command to display the log file).

The error messages contain an error code and eight
status words. They are displayed in the following
format:

CRASH STATUS (ERC xXxX.)
xxxxh xxxxh xxxxh xxxxh xxxxh xxxxh xxxxh xxxxh

The decimal value of the error code is displayed in the

parentheses. The eight status words are displayed in
hexdecimal. See Appendix A of the CTOS Operating
System Manual for a description of the error codes.

The information placed in the system 1log file also
contains a ninth word which is the workstation type of
the station which 1logged the error. The types are

defined as follows:

.ss Standalone IWS

... Cluster workstation

)

1

2 .. Mini-Cluster master workstation

3 ... CommIOP cluster master workstation

System Programmer's Guide

4 ... Application cluster workstation
5 ... Application standalone workstation

The first status word contains the hexdecimal error
code. The second word is the process number of the
process that was running when the fatal condition
occurred. The seventh and the eighth word contain the
CS and IP of the instruction following the procedure
call to the CTOS fatal error handler, unless specified
otherwise. The other four words either are unused or
have information unique to each error condition. The
error conditions which use those four words are
described below.

Error Code Description Of Error Status

21 Memory protection fault. The third
word contains the value of port 56h.

The seventh and eighth words are CS
and IP when the memory protection

fault interrupt was detected.

22 Bus Timeout. The seventh and eighth
words are the CS and 1IP of the
instruction following the one that
caused the bus timeout (usually by
doing I/O to a non-existent port or
referencing a non-existent memory

location). (On an 1IWS, the third
word contains the wvalue of port
56h.)

23 Memory Parity. The seventh and

eighth words are CS and IP when the
parity error interrupt was detected.
The fifth and the sixth words
indicate the memory location where
the parity error was detected. The
fifth word contains the 16 least
significant bits of the 206 bits
physical memory address and the 4 low
order bits of the sixth word contain
the 4 most significant bits. The

CTOS Failure Analysis 2-5

24

25

26

27

fourth word contains the current
contents of the memory location where
the memory parity error was detected.
(On an IWS, the third word contains
the value of port 56.)

Power failure (IWS only). The third

word contains the value of port 56.
The seventh and eighth words are CS
and IP when the power failure

interrupt was detected.

Unknown non-maskable interrupt. The
third word contains the value of port
56. The seventh and eighth words are
CS and IP when the non-maskable
interrupt was detected.

Stray interrupt. The third word
contains "interrupt type" multiplied
by 6 The seventh and eighth words
are the CS and IP when the interrupt
was detected.

On an IWS workstation, the fourth and
fifth words contain the values of the
ISR and the IRR register of 8259A
respectively. The sixth word
contains the wvalue of the mask
register of the 8259A.

Divide overflow. The seventh and
eighth words are the CS and IP of the
instruction following the one that
caused the overflow. The other
status words contain the same
information as they would £for an
error 26.

2-6 System Programmer's Guide

3. BUILDING A CUSTOMIZED CTOS SYSTEM IMAGE

The versions of the CTOS Operating System that are
contained on the set of distribution floppy disks are
configured to support the maximum set of peripherals
and features. The parameters are set to accomodate
relatively high (but not maximum) system throughput.
After you have become familiar with the operating
system, you may wish to build a customized version
that: changes parameters, excludes features that you do
not need, incorporates your own system service
processes and device handlers.

This section of the System Programmer's Guide is in
four parts, covering the different aspects of building
a customized OS. Additional information is also

available in the "CTOS Configuration" section of the
current Release Notice for Standard Software.

System Build

On the Standard Software release disks (refer to the
release notice for directories of the diskettes) are
the file "Sysgen.Asm" plus "prefix" files for each
version of CTOS that are assembled with "sysgen.Asm"
("Swp.Asm", "Res.Asm", "Mws.Asm", etc.). These files
contain definitions in which various CTOS parameters

are defined. This section describes the various CTOS
structures that the sysgen parameters affect.

In the "Sysgen.Asmn" module (and also in "Request.Asm"),
there are various conditionals based on the type of

CTOS being built. These conditionals are documented in
the file "Sysgen.Asm" mentioned above.

As the conditionals defined in Sysgen.Asm vary slightly
from release to release, whenever you get a new release
of the Standard Software, you should read the comments

contained in the beginning of Sysgen.Asm before making
any changes to that file or to the related "prefix"

files that are assembled with it.

When making changes in "sysgen.asm" or "request.asm",
make sure that the change is made for the appropriate
type of CTOS you are creating.

Sysgen $SET Macros

Building a Customized CTOS System Image 3-1

Near the beginning of "Sysgen.Asm" are several calls to
The Assembly Language macro "%Set". Care should be
taken when changing the wvalues in the macros, as
different values will cause CTOS's size to change. The
form of the macro calls is "%Set(parameter, value)",
where "parameter" is a counter or flag used in building
CTOS structures, and "value" is a non negative integer
that 1is assigned to "“parameter". Each of these Iis
described in detail in comments in "Sysgen.Asm", along
with instructions on how to change them.

These declarations may be made in the "prefix" file

which is assembled with "Sysgen.Asm", in which case the

declarations in "Sysgen.Asm" are ignored.

Keyboard Translation Table

In "sysgen.asm" is an array called "rgInfoIKey". This
is used by the keyboard process to map keystrokes to
characters. Each entry in the array has three fields,
the value returned when unshifted, when shifted, and

any attributes that may apply. In front of the table,
is a section that defines the masks which may be OR'd

together to define the attributes assigned to any
character.

Device Declarations

Near the end of Sysgen.Asm are the device declarations.
A device is a floppy disk or a hard disk. For each
device, CTOS allocates a structure called a Device
Control Block ("dcb") which has a size of 76 bytes.
The default definitions for IWS operating systems are
for 3 hard disks and 2 floppy disks. There 1is an
Assembly Language macro used to define these devices,
"dcbDisk". The fields of each macro are defined in

Sysgen.Asm. Each device 1is assigned a name and a
password in 1its declaration. The default names are
"fg", "f1" (floppy disks), "dg", "d1", "d2" (hard
disks). For each hard disk device the password

assigned is the same as its name. The floppies are not
assigned passwords in the standard release.

Adding CTOS System Service Processes

You can add custom services to CTOS. These may be in

two forms, initialization routines that are executed
when CTOS is first booted, and resident CTOS system

service processes.

System Programmer's Guide

Initialization Routines -- There are three kinds of
CTOS initialization routines, "hardware", "intDisable",
and "intEnable". The "hardware" routines are specified
in "sysgen.asm" with the macro "InitProcHardware()".
The "intDisable" routines are called before all of the
CTOS processes are initialized, and before interupts
are enabled. The "intEnable" routines are called after
the processes have been started, with interupts
enabled. These three types of routines are described
in some detail in "sysgen.asm". In all three cases,
object modules which contain the subroutines must be
added to the appropriate 1link 1list ("objLinkSwp",
"objLinkRes", "objLinkCws", etc.). The new modules
should Dbe placed after "sysgen.obj" and before
"osEnd.obj" in the list of object modules.

Resident CTOS services: process declarations -- A user
service may be added to CTOS in the form of a resident
process. This 1is added by declaring the process

interface in "sysgen.asm", and by including the object
modules related +to the process in the —correct
"objLinkxxx" file. Any intitialization routines are
linked after "sysgen.obj" in the list, and the resident
code before "sysgen.obj". The process 1is declared
using the macro "OsProcDesc", with four parameters,
entry point, stack size, priority, and default
exchange. The entry point is the address (CS:IP) that
will be be used when the process 1is first started
(placed on the run queue). The stack size 1is the
maximum number of bytes that the process will need to
execute, including space for 1local (stack) variables,
procedure calls, CTOS request interface routines (which
use 64 bytes to build a request on the caller's stack),
and various interrupts (Convergent requires at 1least
128 bytes dedicated for this purpose in order to save
process context). The process priority must be picked
carefully. In general, a process which is a "user" of
services supplied by another process should have lower
priority, but the writer of any new process must decide
the priorities. The 1last parameter in a process
declaration 1is the default exchange. If this is not
required (i.e. the process does not use any of the CTOS
services which require a default exchange) then @ may
be used. If the process does require a default
exchange (or any other exchanges) then these exchanges
should be allocated in "sysgen.asm" by setting the
parameter "nSysExchange" to a higher number (Convergent
processes require 24 exchanges).

Building a Customized CTOS System Image 3-3

Resident CTOS services: request interface(s) -- A
process which implements a new service must have some
way of interacting with users. The mechanism is the
"request". This may be accomplished by intercepting a
request generated by the Convergent interface, or by
adding a new request. To intercept a request, all that
is required is to replace the exchange number in the
"SysRequest" macro with an exchange which is dedicated
to the new process. This new exchange should NOT be
the default exchange of the process. The new process
would then "wait" at it's dedicated exchange for
messages., The addition of a new request means using
the "UsrRequest" macro in "request.asm" in the same
fashion as the "SysRequest" macros define requests for
services provided by Convergent CTOS processes. The
fields are the exchange where the request is to be
sent, the size of the control information 1in the
request, the number of request and response "PbCb"'s,
the local service code, the request number, and a
description of the arguments put on the stack when the
CTOS subroutine interface 1is used. The "SysRequest"
and "UsrRequest" macros generate ten tables which may
be used by a process in servicing a request. The
tables and their sizes are public and are in segments
defined as follows:

segment segment segment

name: name: class: group: type:
RgRgExchgSys RgSegd Const DGroup word
RgSCntlInfoSys RgSegl Const DGroup word
RgNRegPbCbSys RgSeg?2 Const DGroup byte
RgNRespPbCbSys RgSeg3 Const DGroup byte
RgLocalServiceCodeSys RgSeg4 Const DGroup word
RcLookUpSys OCode Code RqGroup word
nSysRequest Data Data DGroup word
RgRgqExchgUsr RgSegy Const DGroup word
RgSCntlInfoUsr RgSegl Const DGroup word
RgNRegPbCbUsr RgSeg?2 Const DGroup byte
RgNRespPbCbUsr RgSeg3 Const DGroup byte
RgLocalServiceCodeUsr RqgSeg4 Const DGroup word
RcLookUpUsr OCode Code RgGroup word
nUsrRequest Data Data DGroup word

CTOS Procedural Interface

The tables are indexed into by the request number
(times 2 for word tables, complemented for

"UsrRequest"'s). The primary function of these tables
is to allow CTOS to format a request block for the

3-4 System Programmer's Guide

user, based on the request number of the interface that

the user has called. For example, suppose a user
invokes the "LoadTask" routine as follows:

push ax ; fh of the open file (will be placed
; in the request block at offset 12)
push bx priority (will be placed in the

~e e

request block at offset 14)
Xor ax,ax

push ax fDebug (will be placed at offset

16)

“e we

call LoadTask load the task

e

cmp ax, @ see if any error

~e

jne Error

The routine “LoadTask" is declared in "CTOS.lib"

("rqLabl" module), and is an entry into the procedural
interface, with the only information being passed is

the request code for "LoadTask", or 29. From the
request number the procedural interface indexes 1into
the "RcLookUpSys (Usr) " table generated by the

invocation of the macro:

$SysRequest (29, "LoadTask", exchTask, AA@Gh,
6, 8, 9, %(%fh, %w(l4) &w(1l6)))

The value in the table is an "offset" pointer to an
(unlabeled) table describing how many arguments to
expect on the stack, and the location in the request
block that each is to be copied. Using this
information, the interface takes arguments off of the
stack, builds a request block (on the user's stack),
and makes a "request" in behalf of the user. The
procedural interface routine then waits at the user's
default response exchange for the CTOS service to
"respond". When the service routine is finished and
does a "respond" with the request block, the Procedural
Interface routine gets a message which is a pointer to
the original request block, and the routine then takes
out the "ercRet" (offset 8 1in the request block),
cleans up the user's stack, and returns to the user
with "ercRet" in 8086 register AX.

CTOS Request Dispatcher

Building a Customized CTOS System Image 3-5

The Request Dispatcher uses the Rq field of the request
block to get the information it needs to process the
request. It will send a message pointing to the
request block to the appropriate exchange as defined in
the "SysRequest" or "UsrRequest" macro. The dispatcher
uses "rgRgExchgSys(Usr)" to find out where to the
request goes. The remaining tables are available as a
convienence to the service process in deciding what to
do with a request. Convergent CTOS processes handle

many requests each, and to make it easy to distinguish

between then the local service code is used. The local
service code for a user process is defined in whatever

manner the process wishes. In particular,
"RgLocalServiceCodeUsr" may be accessed in an Assembly
Language program by declaring it as follows:

RgSeg4 segment public 'const'
extrn RgLocalServiceCodeUsr: word
RgSeg4 ends

To index into a user request table, take the request
number from the request block, complement it, double it
if you are indexing into a word table, and index into
the array:

mov si, word ptr requestBlock+1d get rg code

e

not si negate code

.

shl si, 1 double index

-e

mov ax, rgLocalServiceCodeUsr([si] get local code

e

Any errors are reported to the caller by placing the
error code in the "ercRet" field of the request block.
When the service is complete, the caller may be
requeued on the ready queue by issueing a "respond" to
the response exchange in the request block. The
calling process will be placed on the ready queue, and
when it is run the dispatcher will continue from the
"wait" issued earlier, remove the error code from the
request block, clean up the user stack, and return with
the error code in register ax.

Program Termination
If a user process needs to know when an application

program has been terminated, the macro
"$TerminationRequest" in "sysgen.asm" may be used.

3-6 System Programmer's Guide

When an application has been terminated (with an

"ErrorExit" or "Chain") a request will be generated for
each number given. The requests will have one

argument, the termination code. Also, any CTOS process

may terminate the currently running applicatio program
by doing a call to ErrorExit with the termination code
as an argument. Note that since the termination
process has lower priority than other system processes,
that this call will return (unlike the same call issued
by an application program).

The module "RqgLabl.asm" is used for defining the names
of the wvarious CTOS routines. The twenty bit
addressing of the 8086 processor is taken advantage of
to construct various unique combinations of segment
address and offsets which all enter CTOS at the same
place. The formula used is:

CS
ip

-(rq * @FFF8h)
21¢h + ((rgq * 2) AND @Fh) + (88h * (rq / 8))

W

From this address CTOS determines the request number of
the routine using the inverse formula:

rq = ((ip AND @Fh) / 2) + NEG(cs)

These formulas are included in macro definitions in
"RqLabl.asm", which are invoked as:

$RgName (29, "LoadTask")

If this module 1is changed the new object module
resulting should be added to the libraries "CTOS.lib"
and "0S.lib" using the Convergent Librarian.

For each of the three modules "sysgen", "request" and
"rqLabl" there is a macro definition file which
contains the defintions of macros used in the module.
You should NOT make changes to these files. They are:

Sysgen.mdf
Request.mdf
RgLabl.mdf
Removing Optional CTOS Services
There are several standard services which are included

in CTOS that may be removed at the user's discretion.

Building a Customized CTOS System Image 3-7

Debugger

Hard Disk

In general, removing a CTOS service requires two steps,
removing references in "sysgen.asm" of that service,
and replacing the object module(s) which implement the
service with (Convergent supplied) dummy modules. The
optional CTOS services are described below:

The Convergent debugger is optional. To remove the
debugger from CTOS, remove the debugger initialization
routine declaration from "sysgen.asm"

("$InitProcIntEnable(InitDebugNub)"), assemble the new
(copy of) "sysgen.asm", and 1link CTOS with the
following modules replaced or deleted in the link files
(i.e. objLinkSwp", "objLinkRes", etc.):

replace the first occurence of DBG.LIB(...) with
"DBG.LIB(dbgDum)"

delete the second occurence of DBG.LIB(...) from
the list -

If your configuration does not include a hard disk, you
may wish to remove the hard disk handlers in CTOS.
This involves reducing the number of "vhb"'s to be the
number of floppy disk devices, remove the hard disk
initialization routine "CheckDisks" (Delete
"$InitProcIntDisable(CheckDisks)" in "sysgen.asm"),
remove the hard disk device declarations, and to 1link
the new CTOS with the following modules replaced or
deleted in the link files:

replace "hDisk" with "hDkdum"
delete "fsIn3" from list

Programmable Interval Timer

If you do not require the timer (all Convergent Comm
programs require this timer) you may remove the handler

from CTOS. Simply 1link CTOS with "timdum" instead of
"timer" in "objLinkSwp" or "objLinkRes".

Building A CTOS System Image

In order to build a new CTOS, you must first assemble
Sysgen.Asm with its prefix file, and then link all of

the CTOS object modules together. The CTOS release
disks contains the 1libraries which have all of the

3-8 System Programmer's Guide

required object modules, as well as the source files
for Sysgen, Request, and RgqLabl. In addition, you will
find a submit files that 1links CTOS (link.sub), and one
that assembles the Assembly Language programs
(assemble.sub). Also, there are files (used by the
link.sub submit file) that contain the list of object
modules required for the CTOS standard versions.

If the only changes you have made are to the parameters
in "sysgen.asm", then you will not need to modify any
other files. Simply submit "Assemble.sub" with
arguments "Sysgen Res" (or "Swp" or "Mws", etc.), and
(if there are no errors) then submit "link.sub" with
the appropriate argument ("Res" for a resident CTOS,
"Swp" for a swapping CTOS, "Mws" for a mini-cluster
master, etc.). If you have made changes involving CTOS

services, then vyou may have to modify the files
containing the 1list of object modules for the CTOS
versions you wish to build (ObjLinkSwp, ObjLinkRes,
etc.). The result of the Linker may then be copied
into [sys]<sys>SysImage.sys to complete the building of
a custom CTOS.

EXAMPLE -- Configure the a CommIOP-Cluster System for 1
CommIOP and 3 cluster workstations per channel. This
is done by changing Sysgen.Asm (a Copy of the

original) as follows (the meaning of the %Set macros

and the "rglIopChan" statement is described in comments
in the file Sysgen.Asm) for the parameters in the

condition WsType 3:

Change $%Set(nIop, 2) to %Set (nlIop, 1)
3Set (nWsLinel,4) gSet (nWsLinel, 3)
3Set (nWsLine2,4) $Set (nWsLinel, 3)
%$Set (nWsLine3,4) gSet (nWsLinel,d)
%Set (nWsLine4,4) $Set (nWsLinel,)

This allows 7 users (6 cluster workstations plus the
master). Next, assemble Sysgen by typing into the
Executive command form "Submit" and filling out the
fields as follows:

Submit
File name Assemble.Sub
[Arguments] Sysgen Iop

[Force Expansion?]
[Show Expansion?]

After you press go, the Assembler is invoked with the
form filled in to assemble the sysgen modules. When

assembly is complete, submit the file "Link.sub" with
argument "Iop":

Building a Customized CTOS System Image 3-9

3-10

Submit
File name Link.Sub
[Arguments] Iop
[Force Expansion?]
[Show Expansion?]

The Linker form is filled in, leaving the cursor at the
version number field. The default is "Usr-Iop" but you
may enter anything you wish. If the version has any
spaces, it must be surrounded by single quotes. Press
GO again, to invoke the Linker program. A new version
of CTOS named "CtIop.run" is created, and may be copied
into [sys]<sys>Sysimage.sys as described in the Release
Notice for Standard Software.

For additional examples of customized operating
systems, look at the system build files for CtRes.Run,
CtSwp.Run, CtInit.Run, and CtFd.Run (files Sysgen.Asm,
Res.Asn, Swp.Asm, Init.Asm, Fd.Asm, ObjLinkRes,
ObjLinkSwp, ObjLinkInit, and ObjLinkFd). These IWS
standalone operating systems have the following
characteristics:

CTOS version: Res Swp Init Fd
debugger ? yes yes no no
max number of floppies 2 2 1 2
max number of hard disks 3 3 1)
memory resident ? yes no yes yes

System Programmer's Guide

4. BUILDING A CUSTOMIZED SAM

Excluding

The Sequential Access Method (SAM) implementation
contained in CTOS.Lib may be customized by generating a

tailored SAMGEN module. First, the SAMGEN.ASM source
file must be edited to reflect the desired device

support. After editing, the SAMGEN.ASM file must be

assembled and then the resulting object file,
SAMGEN.OBJ, must be included in the 1list of object

modules at link time. Alternately, if the new

SAMGEN.OBJ 1is to become the default SAMGEN.OBJ, the
Librarian utility may be wused to overwrite the

SAMGEN.OBJ module contained in CTOS.Lib. The default
SAMGEN.OBJ contained in CTOS.Lib 1is configured to
include disk, keyboard, video, parallel printer, null,
and spooler byte streams. The default SAMGEN.OBJ
excludes communication and serial printer byte streams.

Byte Streams

A particular byte stream that 1is not wused by an

application system may be excluded from the customized
SAMGEN.OBJ in order to reduce the applicaton system's

memory requirements. To exclude a byte stream, the

3DeviceOpen macro and all %tagProc macros (also any
3DevDepProc macros in the case of disk or video byte

streams) associated with the byte stream to be omitted

should be deleted from the SAMGEN.ASM file. For
example, to exclude disk and spooler byte streams, the

following source lines would be deleted from
SAMGEN.ASM:

$DeviceOpen ([Disk], OpenByteStreamAD)

$DeviceOpen([Spl], OpenByteStreamSpl)

$TagProc (tagDiskRead, FillBufferAD,
FlushBufIllegal, CheckPointBsAD,

ReleaseByteStreamAD)

$tagProc (tagDiskWrite, FillBufIllegal,
FlushBufferAD, CheckPointBsAD,
ReleaseByteStreamAD)

$tagProc (tagSplWrite, FillBufIllegal,
FlushBufferAD, CheckpointBsAD,
ReleaseByteStreamSpl)

$DevDepProc (GetBsLfa, GetBsLfaAsync)

%DevDepProc (SetBsLfa, SetBsLfaAsync)

Building a Customized SAM 4-1

Including

Note that in the above example, two device dependent

procedures, GetBsLfa and SetBsLfa, are associated with
disk byte streams and must also be deleted. After

editing, the SAMGEN.ASM source file must be assembled

and the resulting object module included in the list of
object modules in the Linker form.

a Convergent Byte Stream

A user may also include Convergent supplied byte
streams that are not included in the default SAMGEN.OBJ
module, Implementations of serial printer and

communication byte streams are included in CTOS.Lib but
are not specified in the default SAMGEN.OBJ module. To

include either of these byte streams in a customized

SAMGEN.OBJ, appropriate entries must be made in
SAMGEN.ASM. For example, to add both serial printer and

communication byte streams, the following entries must
be made in SAMGEN.ASM:

3DeviceOpen ([Comm], OpenByteStreamC)
$DeviceOpen([SLpt], OpenByteStreamSLp)

$tagProc (tagCommRead, FillBufferC, FlushBufIllegal,
CheckPointBsC, ReleaseByteStreamC)

$tagProc (tagCommWrite, FillBufIllegal,
FlushBufferC, CheckPointBsC,

ReleaseByteStreamC)

$tagProc (tagCommModify, FillBufferC, FlushBufferC,
CheckPointBsC, ReleaseByteStreamC)

$tagProc (tagSLptWrite, FillBufIllegal,
FlushBufferC, CheckPointBsC,
ReleaseByteStreamC)

After editing, the SAMGEN.ASM source file must be
assembled and the resulting object module included in
the list of object modules in the Linker form.Adding a
User Byte StreamA user may also add his own byte stream

to the SAM configuration contained in CTOS.Lib. After
coding the five device dependent routines which are

needed (OpenProc,FillProc,FlushProc,CheckPointProc, and

ReleaseProc), entries for the new byte stream must be
added to the SAMGEN.ASM source file. For example, to

add a read only byte stream and a write only byte

stream for a device Foo, the following entries must be
made in SAMGEN.ASM:

gDeviceOpen([Foo]l, OpenByteStreamFoo)

4-2 System Programmer's Guide

%tagProc(tagFooRead, FillBufferFoo,

FlushBufIllegal, CheckPointBsFoo,
ReleaseByteStreamFoo)

$tagProc(tagFooWrite, FillBufIllegal,
FlushBufferFoo, CheckPointBsFoo,
ReleaseByteStreamFoo)

After editing, the SAMGEN.ASM source file must be
assembled and the resulting object module included in
the 1list of object modules in the Linker form. The
object modules for the five device dependent routines
may be either added to CTOS.Lib or included in the 1list
of object modules in the Linker form.

Substituting an Alternate Byte Stream

A user may wish to substitute an alternate version of a
byte stream for the version contained in CTOS.Lib. This
new version may be either a Convergent supplied byte
stream or a user written byte stream. For example, to
substitute Convergent supplied synchronous disk byte
streams for asynchronous disk byte streams, the first
group of source lines shown below should be replaced
with the second group of source lines:

$DeviceOpen ([Disk], OpenByteStreamAD)

$tagProc(tagDiskRead, FillBufferAD,

FlushBufIllegal, CheckPointBsAD,
ReleaseByteStreamAD)

$tagProc(tagDiskWrite, FillBufIllegal,

FlushBufferAD, CheckPointBsAD,
ReleaseByteStreamAD)

3tagProc (tagSplWrite, FillBufIllegal,
FlushBufferAD, CheckPointBsAD,
ReleaseByteStreamSpl)

¢DevDepProc (GetBsLfa, GetBsLfaAsync)
$DevDepProc (SetBsLfa, SetBsLfaAsync)
$DeviceOpen([Disk], OpenByteStreamSD)

%$tagProc(tagDiskRead, FillBufferSD,

FlushBufIllegal, CheckPointBsSD,
ReleaseByteStreamSD)

$tagProc(tagDiskWrite, FillBufIllegal,

FlushBufferSD, CheckPointBsSD,
ReleaseByteStreamSD)

Building a Customized SAM 4-3

$tagProc(tagSplWrite, FillBufIllegal,
FlushBufferSD, CheckPointBsSD,
ReleaseByteStreamSpl)

$DevDepProc (GetBsLfa, GetBsLfaSync)
$DevDepProc (SetBsLfa, SetBsLfaSync)

Note that in the above example, since spooler byte

streams share several routines with disk byte streams,
the %tagProc macro for spooler byte streams must also
be replaced. After editing, the SAMGEN.ASM source file

must be assembled and the resulting object module

included in the 1list of object modules in the Linker
form.

Byte Stream Work Area

The Byte Stream Work Area (BSWA) is a 130 byte memory
work area for use by the various byte streams. The
first 14 bytes of the BSWA are common among all the
byte streams and are used by the device independent
part of the Sequential Access Method. The other 116

bytes are free to be used by the particular byte

streams. The 14 byte common area should be initialized
by the OpenProc routine called by OpenByteStream. The

format of the common area and the initial wvalues for
each field are shown below:

Offset Field Size Initial Vvalue

g pBuffer 4 g

4 sBuffer 2 buffer size (in bytes)
6 ibRead 2 (Note 1)

8 ibWrite 2 (Note 2)

19 fOkToPutBack 1 TRUE or FALSE

11 fPutBack 1 FALSE

12 bPutBack 1 /]

13 tag 1 Appropriate tag value

Notes:
1. ibRead is the read position in the buffer. If the

byte stream is write only, then ibRead should be set to
PgFFFFH. Otherwise, ibRead should set to 4.

2. ibWrite is the write position in the buffer. If the

byte stream is read only, ibWrite should be set to
YFFFFH. Otherwise, ibWrite should set to 4.

3. TRUE = @FFH FALSE = 0.

Byte Stream Buffer Area

4-4 System Programmer's Guide

The Byte Stream Buffer Area is a user supplied memory

area to be used by the various byte streams to buffer
I/0. The pBuffer and sBuffer fields of the BSWA are

used by the device dependent part of byte streams to
describe a buffer to be used by the device independent
part of byte streams. The device independent part of
byte streams will transfer user data to/from the buffer
described by the pBuffer and sBuffer fields. When this
buffer is fully exhausted, a device dependent routine
will be called to write/read a new buffer. Examples of
three different buffering schemes follow.

1) No Buffering. Some byte streams (such as keyboard
and video) do not buffer their I/0 and therefore ignore
the Byte Stream Buffer Area. These byte streams set the
sBuffer field in the BSWA to zero. Consequently, every

read or write operation will cause a device dependent
routine to be called.

2) Single I/0 Buffer. Some byte streams (such as
synchronous disk byte streams) use a single I/0 buffer.
These byte streams use the pBuffer and sBuffer fields
in the BSWA to describe this buffer.

3) Pool of Asynchronous I/O Buffers. Some byte streams
(such as asynchronous disk byte streams) divide the
Byte Stream Buffer Area into a pool of I/0 buffers to
be used with asynchronous I/0. The pBuffer and sBuffer
fields in the BSWA describe a single buffer to be used
by the device independent part of byte streams while
other buffers from the pool may be involved in
asynchronous I/0.

For example, asynchronous disk byte streams divide the
Byte Stream Buffer Area into two buffers. For an output
byte stream (modeWrite), one of these two buffers may
be used for an asynchronous write operation while the
other 1is being filled with user data by the device
independent part of byte streams. When the buffer being
filled by the device independent part of byte streams
becomes full, the device dependent routine,
FlushBufferProc, is called to write the full buffer.
FlushBufferProc will make sure any asynchronous write

operations involving the other buffer have finished and
then start an asynchronous write operation with the

buffer just filled. Finally, the pBuffer and sBuffer

fields of the BSWA are set to point at the empty buffer
which was either idle or just finished an asynchronous

write operation.

The %DeviceOpen Macro

Building a Customized SAM 4-5

The macro $DeviceOpen(deviceName,OpenProc) declares a
procedure OpenProc which will be called when
OpenByteStream is called with a device spec that
matches the deviceName declared in %DeviceOpen.
OpenByteStream will attempt to match the passed device
spec with each of the deviceNames declared with the
gDeviceOpen macro. If a match occurs, the appropriate
OpenProc proc- ure will be called. If no match occurs,
the device spec is not in brackets ([...]), and disk
byte streams are included in the SAM configuration, the
device spec is assumed to be a filespec and the
OpenProc for disk byte streams is called.

If no match occures and the device name is in brackets
([+..]1), and if the spooler byte streams are included,
the device spec is assumed to be a spooler queue name.

If no match occurs and disk byte streams are not
included in the SAM configuration, the error code "Not
Implemented" (7) is returned from OpenByteStream. The
device specification passed to OpenByteStream and the
device name declared with the %DeviceOpen macro are

compared up to the number of characters in the device
name. Thus, the device spec "[Comm]B" used to call

OpenByteStream will match the device name "[Comm]"
because the first six characters (the length of the
device name) match.

The OpenProc procedure called by OpenByteStream is
responsible for initializing the common part of the
Byte Stream Work Area (BSWA) and assigning a value to
the tag byte of the BSWA. This tag value will be used
to route the device independent calls (WriteByte,
WriteBsRecord, ReadByte, etc.) to the appropriate
device dependent routines declared by the %tagProc
macro. The procedural interface for the device
dependent OpenProc is the same as the device
independent OpenByteStream call:

OpenProc (pBSWA, pbDevSpec, cbDevSpec, pbPassword,
cbPassword, mode, pBufferArea,
sBufferArea) : ErcType

The %tagProc Macro

4-6

The macro $tagProc (tagName, FillBufferProc,
FlushBufferProc, CheckPointBsProc, ReleaseProc)
declares four device dependent procedures to be called
when the various device independent procedures
(ReadByte and ReadBsRecord, Writebyte and
WriteBsRecord, CheckPointBs, ReleaseByteStream) are

called. The tagName parameter 1is declared as a PUBLIC
BYTE and is given a value. This value is used to route

System Programmer's Guide

the device independent calls to the apppropriate device

dependent routines. The apprpriate tag should be
decalred as an EXTERNAL BYTE within the OpenProc

procedure and the tag byte of the BSWA should be
assigned this tag value (see above section). Note that
both CheckPointProc and then ReleaseProc are called
when the device independent routine CloseByteStream is
called. The procedural interfaces for FillBufferProc,
FlushBufferProc, CheckPointProc, and ReleaseProc are

shown below.

Building a Customized SAM 4-7

FillBufferProc

4-8

DESCRIPTION

The FillBufferProc routine is called whenever a read
operation is attempted with an empty buffer. The ibRead
field of the BSWA is the index pointing to the next
byte of the buffer described by the pBuffer and sBuffer
fields. An empty buffer condition is detected when
ibRead >= sBuffer. The FillBufferProc may either (or
both) :

1) Fill the buffer and set ibRead to a value less than
sBuffer. The user's following read byte stream
operations will be serviced from this buffer until it

is exhausted. If no additional string is to be passed
back to the user (see below) set cbRet to zero.

2) Pass a string of bytes (up to cbMax long) back to
the user. The pbRet and cbRet parameters should be set
to point at the string. If this string is the only data
to be passed back to the user (no buffer), the pBuffer
and sBuffer fields in the BSWA should remain unchanged.

Byte streams using buffered I/O0 should pass a buffer of

data back by setting cbRet to 2zero and updating
pBuffer, sBuffer, and ibRead (case 1 above).

Byte streams wusing unbuffered I/0 (e.g. keyboard)
should keep ibRead set to @FFFFH so that FillBufferProc
will be called for any read operation. FillBufferProc
should then return bytes via cbRet and pbRet (case 2
above).

The procedure FillBufIllegal is a fill buffer routine
that returns ercNotImplemented (7) whenever it |is
called. Byte streams for which read operations are
illegal should set ibRead to gFFFFH and use
FillBufIllegal so that FillBufIllegal is called for any
read operation.

PROCEDURAL INTERFACE

FillBufferProc (pBSWA,cbMax,pPbRet,pCbRet) :ErcType

where

PBSWA is the memory address of the same Byte
Stream Work Area that was supplied to
OpenByteStream.

System Programmer's Guide

cbMax is the maximum count of bytes of data
that the calling process will accept.
pPbRet is the memory address of 4 bytes
into which the memory address of the
data is returned.

pCbRet is the memory address of a word into

which the actual count of data bytes
made available is returned.

Building a Customized SAM 4-9

FlushBufferProc

4-19

DESCRIPTION

The FlushBufferProc routine is called whenever a write
operation is attempted with an full buffer. The ibWrite
field of the BSWA is the index pointing to the next

byte of the buffer described by the pBuffer and sBuffer
fields. An full buffer condition 1is detected when

ibWrite >= sBuffer. The FlushBufferProc may either (or
both)

1) Write the buffer and set ibWrite to a value less

than sBuffer. The user's following write byte stream
operations will be serviced with this buffer until it

is once again full. If no additional string is to be
written (see below) set cbRet to zero.

2) Write a string of bytes described by the pb and cb
parameters. The cbRet word should be set to the count
of bytes written from this string. If this string is
the only data to be written (no buffer), the pBuffer
and sBuffer fields in the BSWA should remain unchanged.

Byte streams using buffered I/O should write a buffer

of data, set <cbRet to zero, and update pBuffer,
sBuffer, and ibWrite (case 1 above).

Byte streams using unbuffered I/0 (e.g. video) should
keep ibWrite set to @FFFFH so that FlushBufferProc will

be called for any write operation. FlushBufferProc
should then write the string described by cb and pb and
return the number of bytes written in cbRet (case 2

above) .

The procedure FlushBufIllegal is a flush buffer routine
that returns ercNotImplemented (7) whenever it |1is
called. Byte streams for which write operations are
illegal should set ibWrite to @FFFFH and use
FlushBufIllegal so that FlushBuflIllegal is called for
any write operation.

PROCEDURAL INTERFACE

FlushBufferProc (pBSWA,pb,cb,pCbRet) :ErcType

where

PBSWA is the memory address of the same Byte
Stream Work Area that was supplied to
OpenByteStream.

System Programmer's Guide

pb

cb

pCbRet

is the memory address of the data to be
written.

is the count of bytes to write.

is the memory address of the word into
which the count of data bytes
successfully written is returned.

Building a Customized SAM 4-11

CheckPointProc

DESCRIPTION

The CheckPointProc procedure checkpoints the open
output byte stream identified by the memory address of
the Byte Stream Work Area. CheckPointProc writes any
partially full buffers and waits for all write
operations to complete successfully before return- ing.
fIsPartOfClose is a flag that is set to TRUE is this
call to CheckPointProc is part of a device independent
call to CloseByteStream.

PROCEDURAL INTERFACE

CheckPointProc (pBSWA,fIsPartOfClose):ErcType

where

PBSWA is the memory address of the same Byte
Stream Work Area that was supplied to
OpenByteStream.

fIsPartOfClose is set to TRUE if this call to
CheckPointProc is part of a call to the
device independent procedure
CloseByteStream.

ReleaseProc

4-12

DESCRIPTION

The ReleaseProc procedure closes the device/file
associated with the open output byte stream identified
by the memory address of the Byte Stream Work Area.
ReleaseProc does not properly write remaining parially
full buffers before closing the device/file.

PROCEDURAL INTERFACE

ReleaseProc (pBSWA):ErcType

where

pPBSWA is the memory address of the same Byte
Stream Work Area that was supplied to
OpenByteStream,

System Programmer's Guide

The %DevDepProc Macro

The macro %DevDepProc (devDepCall,devDepProc) declares a
routine devDepProc to be called when the device
dependent routine devDepCall is called. This macros
allows for substitution of alternate routines to handle
the any device dependent byte stream routines defined
(such as QueryVidBs, GetBsLfa, SetBsLfa, or
SetImageMode). The wuser may also omit any device
dependent routines by deleting the appropriate
$DevDepProc macros.

Supplied Routines

Several routines contained in CTOS.Lib may be useful to
a user who is writing his own byte stream.
FlushBufIllegal and FillBufIllegal both return the
error code "Not Implemented" (7) when called and can be
used with read only and write only byte streams.
ChkptNop returns the status code "OK" (@) when called
and can be used for which no CheckPoint actions are
neccessary (e.g. read only byte streams. ReleaseEasy
returns status code "OK" (¥) when called and can be
used with devices that require no disconnect logic.

Error Checking

A certain amount of error checking is recommended for

all byte streams. Each of the device dependent routines
FillBufferProc, FlushBufferProc, CheckPointProc, and
ReleaseProc should check the tag byte in the passed
BSWA to make sure it is appropriate for the device
dependent routine (i.e. ReleaseByteStreamD would check
that the BSWA tag byte was either tagDiskRead or
tagDiskWrite). If the BSWA tag is not appropriate, the
device dependent routine should return the error code
"Invalid BSWA" (2325). The device dependent routine
OpenProc should check that the mode parameter is
appropriate to the byte stream (i.e. OpenByteStreamK
would check that mode was equal to modeRead). If the
mode is not appropriate, the device dependent routine
?penpgoc should return the error code "Invalid Mode"
2315).

Building a Customized SAM 4-13

5. SYSTEM PROGRAMMING
Communications (SIO) Programming

There are several idiosyncrasies of the Serial
Input/Qutput (SIO) and Multi-Protocol Serial Controller
(MPSC) ICs which must be considered when writing a
Communications Handler for the Convergent System.
These are especially important in an IWS Cluster
configuration, 1in which a programming error in one
workstation might conceivably bring down the entire
cluster. While there is considerably less danger in an
AWS configuration, where separate Controller ICs are
used for Cluster and RS-232 communications, it is still
good programming practice to adhere to the following
restrictions, so that the Handler may be used
throughout the Convergent Family.

Since the SIO and MPSC controllers contain 2 "channels"
which support 2 independent communication 1lines,
extreme care is necessary, when programming one
channel, to ensure that commmunications which may be
going on in the other channel are not disturbed.

Since all Convergent communications software uses the
"Status Affects Vector" mode of interrupt handling, all
user-written software which 1is to coexits with any
Convergent handlers must also wuse this mode, as
supported by the CTOS Communications Interrupt Handler.

This 1implies that any user-written handlers which
change Write Register 1 of Channel B must always set
the "Status Affects Vector"™ bit (bit 2); since the
Channel Reset operation 1leaves all internal SIO/MPSC
registers in an undefined state, this register in
particular must be re-written immediately following a
Channel Reset. Interrupts must be disabled during the
interval surrounding a Channel Reset and the re-writing
of register 2. In general, it 1is recommended that
interrupts be disabled during any code sequence which
issues I/0 instructions to the SI0 or MPSC controller,
or, for that matter, any I/0 device.

Another programming restriction, that pertains whenever
Communications DMA 1is in progress, is that any 1I/0
instruction to the SIO Controller must be made using
the LockIn and LockOut routines supplied by Convergent
in CTOS.Lib. These routines use a combination of LOCK
prefixes, Segment over-ride prefixes, and JMP

instructions to ensure that the I/O is done correctly.
This restriction is critical in that failure to obey it

can have unpredictable results on both the 1I/0

operation being attempted, and the DMA operation in
progress on the other Channel. In a cluster

System Programming 5-1

5-2

environment, this will almost certainly result in a
system crash at the workstation in question, and
possibly severe performance degradation throughout the
cluster. While this restriction is not necessary on an
AWS workstation, it is recommended that all general-
purpose software adhere to it, so as to work throughout
both the AWS and IWS families. The LockIn and LockOut
procedures are described in the "Communications
Management" section of the CTOS Operating System
Manual.

System Programmer's Guide

Debugging hints for system implementors

A majority of of the subtle debugging problems you will
encounter will be caused by one of these mistakes:

Providing insufficient stack space - and thus

overwriting data or code. You need to provide
enough stack for the parameters, local
variables and return addresses of all
subroutines which might be active at any one
time, plus 64 bytes for CTOS to build requests
blocks if you use any CTOS services, plus 64
bytes for CTOS to save your process state when
an interrupt occurs in the system.

Removing more or fewer items from the stack

upon procedure exit than you pushed before
calling the procedure.

Modifying the contents of a Request Block while
it is still being operated upon by an operating
system service.

Attempting to wutilize the default response

exchange for requests of an asynchronous
nature. The use of any procedural interface to
an operating system service, or the use of any
object module procedure (such as the sequential
access method), REQUIRES that the default
response exchange be dedicated to use in a
purely synchronous manner (Each Request that
specifies the default response exchange must be
followed by a Wait that specifies the same
exchange before another Request may specify
it.)

Whenever you find that the software you are debugging
is failing in a way which appears to be random or to
resemble hardware or operating system failure, we
suggest that you carefully desk check your code for the
mistakes listed above.

System Programming 5-3

Notes on the Debugger

5-4

The Debugger requires two files to be present on the
[Sys] volume, the "Debugger File" and the "Debugger
Swap File."

If the Debugger File is not found during CTOS
initialization, the Debugger will not be activated. If
it is found, it will be opened and left open. (If the
Debugger is activated, it may be deactivated and the
Debugger File closed using the Debugger's CODE-K
command; see the Debugger Manual for details.)

If the Debugger Swap File is not found during CTOS
initialization, it will be created.

At IWS workstations the Debugger File is
[Sys]<Sys>Debugger.Sys. At AWS workstations the
Debugger File is [Sys]<Sys>DebuggerAws.Sys.

At IWS and AWS workstations which were booted locally,
i.e. at master, stand-alone, or 1locally booted 1local
file system workstations, the Debugger Swap File is
[Sys]<Sys>DebuggerSwap.Sys.

At IWS and AWS <cluster and 1local file system
workstations which were booted from the master, the
Debugger Swap File 1is [Sys]<$nnn>DebuggerSwap.Sys,

where "nnn" is the wuser number assigned to the
workstation (refer to "Cluster Architecture" section of

this manual).

The Operating System reads the Debugger from the

Debugger File into the common pool of unallocated
memory just above the <current 1limit of 1long-lived
storage. If there is not enough unallocated memory,
the Operating System makes room by saving memory on the
Debugger Swap File, Then, when the Debugger yields
control, the saved memory is restored. Therefore, if
you are using the Debugger, you cannot count on the
contents of unallocated memory. In addition, beware
that if you are debugging a program that contains an
interrupt handler, that interrupt handler will not be
aware that the Debugger has been swapped in and hence
malfunction. For example, if you have issued the
request OpenRTClock, and if the storage of the request
block is overlaid by the swapped-in Debugger, the
program will fail. Similarly, a pseudo-interrupt
handler wused in conjunction with the Programmable
Interval Timer will continue running after the Debugger
has been swapped in and therefore function improperly.
Beware of using the Swapping Debugger in such
circumstances.

System Programmer's Guide

If the Debugger is not activated, ACTION-A and ACTION-B
will sound the audio alarm but have no other effect.
In addition, if an application system generates an
Interrupt 3 (in order to enter the Debugger), the
application system will Error Exit with the status code
"Debugger crash" (190#5). (See the Debugger Manual for

details.)

System Programming 5-5

Notes on System Initialization

5-6

After CTOS has finished 1its 1initialization, it will
automatically chain to a user-specified run file. This

file is specified as the "Chain File" parameter in the
system build configuration file (SysGen.Asm), and

defaults to [sys]<sys>SysInit.Run if not specified.

SysInit 1s used to run a Batch stream (see the Batch
Manual) after a workstation has booted but before the

user signs on. This batch stream can be used to
initialize system services, e.g. the Queue Manager, the

Spooler, or ISAM.

On a workstation which booted from a local disk, the

file [Sys]<Sys>SysInit.Jcl is used as a batch stream.

If this file does not exist, then SysInit exits
immediatly.

On a workstation which booted from communication lines,
the file [Sys]<Sys>WSxxx>SysInit.Jcl is used as a batch

stream, where "xxx" is the workstation type (see
Section 6, "Mini-Cluster Architecture", below). If
this file does not exist, then the file
[Sys]<Sys>WS>SysInit.Jcl 1is used. If neither file

exists, then SysInit exits immediatly.

If there is a batch stream to be run, SysInit will
initialize the video and, if applicable, display the
most recent crash status. Furthermore, it will display
a text file if so desired. SysInit then chains to

[Sys]<Sys>Batch.Run to run the batch stream. Detailed
discussions of these functions follow:

1) Vvideo. If the workstation is an IWS, the font file
[sys]<sys>Sys.Font is loaded and the video is
initialized with 80 columns and 34 1lines. Otherwise
the workstation is an AWS; the video is initialized
with 88 columns and 28 1lines. Errors which occur

during this phase of the initialization cause the
system to crash.

2) Crash Status. TIf the system was rebooted following

a crash, SysInit will display the crash status on the
video display.

3) Text File. SysInit will look for a text file with
the name [sys]<sys>SysInit.Txt. If it exists, it will
be displayed on the video display. Note that this is a
convenient mechanism by which messages can be broadcast
to several workstations. As an example, consider a
configuration in which all cluster workstations boot
from communication lines. Whenever these workstations
boot, any messages contained in SysInit.Txt will be

displayed.

System Programmer's Guide

4) Batch Stream, SysInit then chains to

[Sys]<Sys>Batch.Run to run the batch stream for the
workstation. If the <chain operation fails (e.g.

because [Sys]<Sys>Batch.Run does not exist), SysInit
error exits with an appropriate error status.

When the batch stream is completed, Batch exits.
Example 1:

A typical SysInit batch stream file for a master
workstation installs system services such as the Queue
Manager and the Spooler. To do this, you would create
a file <sys>SysInit.Jcl on the [SYS] volume of the
master workstation. The following batch stream would

install the Queue Manager and the Spooler using default
parameters.

$Job SysInit

SRun [sys]<sys>InstallQmgr.Run
SRun [sys]<sys>InstallSpl.Run
$End

(For a discussion of how to pass parameters to the
subsystems, see the Batch Manual.)

Example 2:

Suppose a cluster has several IWS workstations without
local file systems, two of which are used to run the
Spooler, The two special workstations are set up as
type 8 workstations (by setting an internal switch -
see Section 6 below). The following batch stream is
stored in [Sys]<Sys>WS@#8>SysInit.Jcl on the master,
and is run by the special workstations whenever they
boot. It installs the Spooler (with default
parameters).

$Job SysInit8

SRun [sys]<sys>InstallSpl.Run
$End

System Programming 5-7

Notes on System Signon

5-8

During the initialization of CTOS, a user-specified
file is set up as the initial Exit Run File. This file
is specified as the "Exit File" parameter in the system
build configuration file (SysGen.Asm), and defaults to
[sys]<sys>Signon.Run if not specified.

Signon is used to check attempted access to the system
by users when they begin operations, and to specify the
system configuration each user uses.

When the workstation is booted using an Operating
System with default "“Chain File"™ and "Exit File"
parameters, CTOS initializes then chains to SysInit
with Signon as the Exit Run File. (If SysInit is not
present, then CTOS chains to Signon directly.) Signon
either runs a Batch stream then exits to Signon, or
exits to Signon directly.

Signon re-initializes the video, displays a crash
status if applicable, types out an optional text file
and finally displays a form into which the user enters
a name and password. The video, crash status and text
file operations of Signon are almost identical to those
discussed in the previous section for SysInit.Run; the
only difference is that the text file
[Sys]<sys>Signon.Txt is displayed on the video instead
of [Sys]<sys>SysInit.Txt.

A system administrator grants access to the system for
a wuser creating the file [sys]<sys>xxxx.User where
"xxxx" 1s the user's name. If he wishes to force the
user to use a password, he password-protects the file
(see the Set Protection command described 1in the
Executive Manual). After the user enters his name and
password and presses GO, Signon attempts to open this
file for reading. If the file is not there or if an
improper password is supplied, Signon will return an
error message and request a valid wuser name and
password. Otherwise, the file is parsed for a series
of arguments which characterize that particular user.
The format for these arguments is ":KeyWord:Data" and
are as follows:

A) Path (required). Three fields must be
present in all user files --- ":SignonVolume:",
":SignonDirectory:" and ":SignonFilePrefix:".

Signon uses these arguments to do a SetPath
request on behalf of the user immediately after
Login.

B) Password (optional). The argument supplied
to ":SignonPassword:" 1is used as the password

System Programmer's Guide

for all subsequent file operations. If not

supplied, the password entered by the user is
used.,

C) Exit File (required). Whenever this
particular wuser exits from an application
subsystem (either normally or abnormally), CTOS
will automatically 1load and execute the run
file specified as the ":SignonExitFile"
argument.

D) Text File (optional). If- the entry for
":SignonTextFile:" exists, that file is
displayed on the video screen immediately after
the user signs on.

E) Chain File (optional). If the entry for
":SignonTextFile:" exists, Signon will chain to
it after completing. If this argument does not
exist, ©Signon will exit to the argument
supplied to ":SignonExitFile:". If an error
occurs, an appropriate mesage is displayed and
the user must attempt to signon again.
Parameters are passed to the chain file in the
same manner as they are in the Executive
parameter interface.

F) Executive Command File (optional). If the
entry ":ExecCmdFile:" exists, Signon stores it
in the Application System Control Block (See

theCTOS Operating System Manual). The
Executive uses this field to determine which
file to read commands from. (See "Notes on the

Executive," below.)

In order for the password mechanism to work, the user
configuration file must be read-access protected, and
both the [Sys]<Sys> directory and the Sys volume must
have passwords. If the user does not supply a valid
file, directory, or volume password, the attempt to
open his .User file will fail, and Signon will display
an error message and force the user to try again.

Example 1:

Joseph uses the Executive to issue commands and invoke
subsystems. His user configuration file
([sysl<sys>Joseph.User) is as follows:

:SignonExitFile: [sys]<sys>CommExec.Run
:SignonVolume:Win

System Programming 5-9

5-10

:SignonDirectory:Joseph
:SignonFilePrefix:

:SignonPassword:

:SignonTextFile: [sys]<sys>System.Txt

This file exhibits several characteristics of interest.
First, as desired, any termination from a subsystem
causes an exit to the run file [sys]<sys>CommExec.Run
(the Executive). Since there is no Chain file

argument, the Executive will also be invoked as soon as
Signon finishes. The path will be set to [Win]<Joseph>

and the text file [sys]<sys>System.Txt will be
displayed using video bytestreams. The password Joseph
supplies in the Signon form will be used for all
subsequent file system operations.

Example 2:

Consider an data entry operator. You may wish to limit

the capability of this user to running your order entry
application program written in BASIC.

:SignonExitFile: [sys]<sys>Signon.Run
:SignonChainFile: [sys]<sys>Basic.Run
Basic

[sys]<sys>OrderEntry.Bas

19

:SignonVolume:Sys
:SignonDirectory:0Orders
:SignonFilePrefix:

:SignonPassword:

As soon as Signon is complete, this user will enter the
Basic Interpreter with his path set to [Sys]<Orders>.
The sequence of parameters to the Chain File are
identical to those appearing in the Executive command
form: "Basic" is the command name,
"[sys]<sys>OrderEntry.Bas" is the initial program to be
loaded and run, and "10" is the maximum number of files
that Basic will allow to be open at once. When the
BASIC interpreter exits, the user will be returned to
Signon rather than the Executive.

System Programmer's Guide

Notes on the Executive

The command interpretation functions of the Executive
are table driven. The table is contained in a file,
which defaults to [sys]<sys>Sys.Cmds, unless otherwise

specified in the wuser confiquration file. If the
effective command file is malformed or cannot be read,
the Executive uses [sys]<sys>Sys.Cmds. If

[sys]l<sys>Sys.Cmds is unusable, the Executive will not
function. You should boot from a floppy disk known to
contain a good Sys.Cmds and, while this Sys.Cmds is
effective, repair the malformed Sys.Cmds, for example
by replacing it with a good version.

The effective command file may be modified using the
Executive commands New Command and Remove Command, as
described in the Executive Manual. To aid you in
configuring this "fiTe to ~ sult your specialized
requirements, the Release Disks contain the following
files: Sys.Cmds, Sys.Cmds-Initial, and Cmds.Sub.
Sys.Cmds is the standard Convergent command table -- it
defines all the commands listed in the Command Summary
of the Executive Manual. Sys.Cmds-Initial is a minimal
set of commands, containing Path, Logout, New Command,
Copy, Screen Setup, and Submit., If the current command
file contains these commands, then the submit file
Cmds.Sub can be run to add all of the other commands.
You can, in addition, edit a copy of this submit file
and submit this edited copy to configure a customized
command file.

The effective command file may change during the course
of a session. The file will be closed each time vyou
execute a Copy, Print, Rename, Delete, Set Protection,
or any command that invokes an application system.
When the Executive subsequently reopens the command
file, it will again determine the effective file as
described above. Note that the automatic volume
recognition performed by the Operating System does not
extend to automatic command file recognition: 1if your
user configuration file specifies a command file on a
volume which is not mounted, so that the effective
command file is [sys]<sys>Sys.Cmds, mounting the
missing volume will not automatically change the
effective command file.

Note that the Executive uses several files in addition
to its run file. The first of these,
[sys]<sys>Sys.Font, contains the standard Convergent

font. It is loaded whenever the Executive is loaded at
an IWS and the field fExecFont of the Application

System Control Block is 4. (This field is set to @ by
the LoadFont operation. Thus if an application system
loads an alternate font and does not set fExecFont to

System Programming 5-11

5-12

255 (@FFh), the Executive will reload the standard font
when the subsystem exits.) The Executive will not
function on an IWS unless [sys]<sys>Sys.Font exists.
(If this file contains an alternate font, the Executive

will use the alternate font instead of the standard
font.)

Another file used by the Executive is Copy.run, in
directory [sys]<sys>. The Copy command 1is doubly
implemented: both in Copy.run and within the Executive.
If Copy.run is not present, the Executive implements
its Copy function using the built-in Copy. If Copy.run
is present it may or may not be used: the choice 1is
based on whether, with the full Executive in memory,
there is enough memory available for file buffers that
are large enough to permit an efficient copy.

System Programmer's Guide

6. MINI-CLUSTER ARCHITECTURE

Hardware Configquration

A Convergent Mini-Cluster System consists of one master
workstation, up to three cluster workstations, up to
three interconnect cables, and two terminators. There
are no restrictions on the position of the master
workstation within the c¢luster. However, the total
length of cable must not exceed 800 feet. The RS-422
communications channel is used for cluster operation,
allowing interconnect via 1inexpensive twisted pair
cable, rather than coaxial cable. For IWS masters,
Communications channel A must be configured for RS-422
operation; this channel is reserved by the CTOS
Operating System for use by the Cluster, and may not be
used by applications subsystems. For AWS-24¢ masters,
the dedicated RS-422 channel is used, without
interfering with the two dedicated RS-232 channels. The
standard speed for cluster communications is 3087
Kilobaud.

Software Components

The difference Dbetween the Mini-Cluster and
Standalone configurations of the Operating System is
the presence of an Agent Process. The Mini-Cluster
System contains two versions of the Operating System
(one for the master workstation, and the other for the
cluster workstations). The master workstation version
of CTOS contains a process known as the 'SRP Agent',
and cluster workstation version of CTOS contains the
'Workstation Agent' process.

The SRP Agent process communicates with the cluster
workstations and issues requests on their behalf to the
processes on the master workstation. The Workstation
Agent process routes requests to the master
workstation.

The master workstation 1is bootstrapped exactly as a
standalone. A cluster workstation without 1local mass
storage 1is loaded from the master workstation. The
Cluster Workstation Operating System run file |is
obtained from a different file for each possible type

of cluster workstation. If the file
[Sys]<Sys>WSnnn>SysImage.Sys exists, where "nnn" is the
workstation type, then it 1is 1loaded. Otherwise the
file [Sys]1<Sys>WS>SysImage.Sys is loaded. The

workstation type is determined as follows:

Mini-Cluster Architecture 6-1

Workstation Workstation Type

IWS 2030 (Switch settable - see below)
AWS-210 255
AWS-229 254
AWS-230 254
AWS-240 253

The type of an IWS workstation can be set by changing
the setting of an internal switch. Bits 5 - 8 of
switch S2 on the I/0-Memory board encode the
workstation type, with bit 5 the most significant and
"On" denoting 1. For example if switch 5 is On and
switches 6, 7, and 8 are all Off, the workstation type
is 1900 binary (8 decimal).

Cluster Workstations with 1local mass storage may be
bootstrapped exactly as a standalone, if a diskette
containing a valid system image has been inserted in
drive @, or one is present on the hard disk, if any.

A Crash Dump capability is also included for cluster
workstations. If a file of the form
[Sys]<Sys>WSnnn>CrashDump.Sys is present, a crashdump
is performed by workstation nnn after a system crash.
Additional files are also required if it is desired to
use the debugger from a cluster workstation. This is
described in detail in the Debugger Manual.

Communications Protocol

6-2

The protocol wused for cluster communications 1is a
subset of the American National Standard for Advanced
Data Communications Control Procedures, ANSI X3.66-1979
(also known as ADCCP). The UN (Unbalanced, normal
response mode, modulo 8) Class of Procedure is used,
with Two-Way-Alternate Transmission. Optional functions
4, 5, and 6 (respectively, Unnumbered Information,
Initialization, and Unnumbered Polling) are also
included within the protocol, and used for Cluster
Workstation Boot and CrashDump. This protocol belongs
to a group referred to as the 'bit-oriented' protocols,
which also include IBM's Synchronous Data Link Control
(SDLC) and the International Standard for High-level
Data Link Control (HDLC), and is almost totally
compatible with the appropriate subset of the 1latter
two protocols,.

System Programmer's Guide

Theory of Operation

The master workstation assumes the role of the primary
station in cluster communications, and as such,
controls all operation over the communications 1link.
This is one of the two main functions of the Srp Agent
Process, the other being the presentation of user
requests to the Master Workstation Operating System and
returning their responses to the proper <cluster
workstation.

The Agent maintains two lists of cluster workstations;
those from which it is receiving proper responses to
its polling are referred to as Responsive workstations;
those which have not been responding to polls are
referred to as Unresponsive.

Every 100 milliseconds, the Agent begins a polling
cycle, during which it polls all responsive
workstations. If the polling cycle has not expired, an
unresponsive workstation is polled. There is at least
one unresponsive workstation polled every half second.
Responses that are to be returned to cluster
workstations have priority over polling messages and
are sent as soon as possible.

The mechanism for ©polling is as follows: an
appropriate control frame is transmitted over the 1link,
and the 1line is then monitored for a reply from the
cluster workstation. At the cluster workstation, the
internal tables of the CTOS nucleus have been set up to
route file system requests (and others to be processed
by the master workstation) to the exchange of the Agent
Process., Thus, when such a request is made, the
Workstation Agent is activated. It notes the occurence
of the request in an internal array (rgRcb), and when a
poll 1is received from the master workstation, the
request is moved to an internal buffer and transmitted
to the Master.

When the request is received by the Master SRP Agent,
a series of protocol and higher 1level checks is
performed. Assuming these are successful, the request
is moved to one of a group of buffers within the master
workstation known as Transmission Buffers. Fields
within the request are modified to ensure that the
request is returned to the SRP Agent's exchange , and
that the response fields of the request are returned to
buffers allocated within the Transmission Buffer.

The request is then issued by the SRP Agent. When the
response 1is returned, the SRP Agent, at its first

opportunity, adds protocol information to the response
and transmits it to the cluster workstation. The

Mini-Cluster Architecture 6-3

Workstation Agent searches its tables for the matching
request, and moves the response data to the requestor's
buffers. It then issues a Respond call for the request,
which is returned to the requestor.

In general, the error recovery procedures of the ADCCP
protocol are capable of recovering from the vast
majority of errors which may occur during normal
operation. The protocol does, however, depend quite
heavily on strict adherance to certain configuration
rules. In particular, each workstation within a cluster
must be assigned a unique workstation id number when
the system is first configured. An attempt to bring up
two workstations with the same id will probably result
in both crashing. A similar fate will befall an attempt
to bring up two master workstations on the same
cluster.

Within these constraints, the cluster software Iis
designed to be extremely resilient; the master
workstation's communication with one cluster
workstation is unaffected by any normal events at any
other cluster workstation, such as powering down or
pressing the Reset button. Except for the highly
unlikely set of failure modes which leave the RS-422
transmitter constantly enabled, it 1is also similarly
unaffected by hardware or software failures at another
workstation.

A crash at the master workstation results in the error
code "master workstation not running" being returned to
any requests from cluster workstations., Thus, a
properly written application system may respond in a
fail-soft manner, and resume full operation when the
master workstation comes back up. Note that any files
which had been opened have to be re-opened, since all
files are closed when the master workstation restarts
operation after failure.

Performance Considerations

The performance of a Convergent Mini-Cluster System is
heavily dependent on the following parameters which may
be configured at System Build time:

o Number of Sectors per Transmission Buffer

o Number of Transmission Buffers and Request
Control Blocks

The first parameter has a significant impact on both
the system's performance, and the amount of memory
available for application systems at the master

System Programmer's Guide

workstation. Since the Workstation Agent splits mass
storage requests larger than a single buffer into
multiple requests, this parameter 1limits the maximum
size request that can be performed (from a cluster
workstation) in a single revolution of the disk. The
Convergent-supplied Operating System uses a value of
five (5) sectors per transmission buffer. Applications
doing significant numbers of large disk transfers and
desiring better performance should use a higher value;
those doing mostly small disk transfers or needing more
memory should use a lower value.

For the cluster workstation, this parameter affects
only the size of the DMA buffer and the maximum request
size for that particular workstation. (e.g. other
cluster workstations can have a CTOS with different
Sysgen parameter size for the number of sectors in the
Transmission Buffer. The master workstation must have
a Transmission Buffer that is at least as large as that
of any of the cluster workstations').

The second parameter limits the total number of
requests which may be 1in progress at the master
workstation at one time. For applications doing only
synchronous 1/0, one buffer per workstation is
sufficient. For maximum performance in applications
doing asynchronous I/0 operations, this parameter
should be set to the maximum number of outstanding
requests times the number of workstations; however, a
tradeoff must be performed in order to determine the
optimum compromise for the application's memory
requirements.

The Convergent-supplied Operating System use a value of
six transmission buffers (two per workstation).
Formulae for computing the memory requirements for
transmission buffers are given in the System Build
section. In the cluster workstation this parameter
specifies the number of Request Control Blocks.

Mini-Cluster Architecture 6-5

7. CLUSTER ARCHITECTURE

Hardware Configuration

A Convergent Cluster System consists of:

o 1 Master Workstation,

o1l or 2 CommIOPs,

o up to 16 Cluster Workstations,
up to 16 interconnect cables,
up to 4 terminators.

(oo}

A Communications I/0 Processor (CommIOP) is a
programmable controller that occupies one Multibus
slot. Each CommIOP supports two RS-422 communication
channels operating at 307 Kilobaud. The total length
of the twisted pair cable attached to each line must
not exceed 800 feet. Up to four cluster workstations
may be attached to each line.

Both SIO communication channels on the master
workstation are available to the user.

Software Components

The difference between the Cluster and Standalone
configurations of the Operating System is the presence
of an Agent Process. The Cluster System contains two
versions of the Operating System (one for the master
workstation, and the other for the cluster
workstations). The master workstation version of CTOS
contains a process known as the 'Srp Agent', and the
cluster workstation contains the 'Workstation Agent'
process.

The difference between a Cluster and Mini-Cluster
configurations is that the CommIOPs handle
communication with the cluster workstations for the
Cluster configuration. In Mini-Cluster configqurations,
the master workstation directly handles this
communication. In a Cluster configuration, both SIO
channels on the master workstation are available to the
user. The Operating System for the cluster workstation
is 1identical in both configurations. It is named
[Sys]1<Sys>WS>SysImage.Sys.

The Master Workstation Operating System is bootstrapped
exactly as a standalone except for the fact that the
CommIOPs are also loaded at initialization time. The
CommIOP code file is [sys]<sys>CommIOP>sysImage.sys. A
memory dump of the CommIOP can optionally be performed
at initialization time to a file named
[sys]<sys>CommIOPn>sysimage.sys where "n" is the
CommIOP number.

Cluster Architecture 7-1

Communications Protocol

Theory of

The protocol used for cluster communications 1is a
subset of the American National Standard for Advanced
Data Communications Control Procedures, ANSI X3.66-1979
(also known as ADCCP). The UN (Unbalanced, normal
response mode, modulo 8) Class of Procedure is used,
with Two-Way-Alternate Transmission. Optional functions
4, 5, and 6 (respectively, Unnumbered Information,
Initialization, and Unnumbered Polling) are also
included within the protocol, and used for Cluster
Workstation Boot and CrashDump. This protocol belongs
to a group referred to as the 'bit-oriented' protocols,
which also include IBM's Synchronous Data Link Control
(SDLC) and the International Standard for High-level
Data Link Control (HDLC), and 1is almost totally
compatible with the appropriate subset of the latter
two protocols.

Operation

In a Mini-Cluster configuration, the Srp Agent process
controls communications with the cluster workstations
in addition to submitting requests on behalf of the
cluster workstation to the master workstation
processes. In a Cluster configuration, the CommIOP
controls communications with the cluster workstations.

The CommIOPs and the master workstation communicate by
means of a set of queues located in the master's
memory. These queues contain addresses of buffers
which are used by the CommIOP to copy requests received
by the cluster workstation.

The CommIOP contains its own indepedent processor. It
handles communications with the cluster workstations
and transfers incoming requests and outgoing responses
between the CommIOP's internal buffers and the master
workstation's memory. Each CommIOP has two channels or
lines.

The CommIOP maintains two lists of cluster workstations
for each of its lines: those from which it is receiving

responses to polling are referred to as Responsive
workstations, those which have not been responding to

polls are referred to as Unresponsive workstations.

Every 5@ milliseconds, the CommIOP begins a polling
cycle for one of its lines (therefore, each line has a
polling cycle every 100 milliseconds). During the
polling «cycle, the CommIOP polls all responsive
workstations. If the polling cycle has not expired, an
unresponsive workstation is polled. There is at least
one responsive workstation polled every half second.

7-2 System Programmer's Guide

The remaining time in the cycle is used for polling any
cluster workstations which provided requests or were
given responses during the initial polls. Responses
that are to be returned to cluster workstations have
priority over polling messages and are sent as soon as
possible.

The master workstation's Agent process contains a
module called the IOP Handler. This handler takes
incoming requests received from the CommIOP and issues
them on behalf of the cluster workstations. Responses
are placed on the CommIOP's outgoing queue to be
subsequently transmitted to the cluster workstation.

With the addition of the CommIOP, a cluster has more
memory available for wuser functions on the master
workstation than a comparable mini-cluster
configuration since it does not have a DMA buffer, has
fewer transmission buffers, and has less code.

Performance Considerations

The performance of a Convergent Cluster System is
heavily dependent on the following parameters which may
be configured at System Build time:

o Number of sectors per Transmission Buffer

o Number of Transmission Buffers and
Request Control Blocks

o Cluster Line Balancing

The first parameter (Number of sectors per Transmission
Buffer) has a significant impact on both the system's
performance, and the amount of memory available for
applications systems at the master workstation. Since
the Workstation Agent splits mass storage requests
larger than a single transmission buffer into multiple
requests, this parameter 1limits the maximum size
request that can be performed on a cluster workstation
in a single revolution of the disk.

The Convergent-supplied Operating System uses a value
of five (5) sectors per transmission buffer.
Applications doing significant numbers of 1large disk
transfers and desiring better performance should use a
higher value; those doing mostly small disk transfers
or needing more memory should use a lower value.

For the cluster workstation, this parameter affects
only the size of the DMA buffer (twice the size of the
transmission buffer) and the maximum request size for
that particular workstation. (e.g. other cluster
workstations could have a CTOS with different Sysgen
parameter size for the number of sectors in the

Cluster Architecture 7-3

7-4

Transmission Buffer. The master workstation must have
a Transmission Buffer that is at least as large as that
of any of the Cluster Workstations).

The second parameter 1limits the total number of
requests which may be in progress at the master
workstation at one time. For applications doing only
synchronous I/0, one buffer per workstation is
sufficient. For maximum performance 1in applications
doing asynchronous I/0 operations, this parameter
should be set to the maximum number of outstanding
requests times the number of workstations; however, a
tradeoff must be performed in order to determine the
optimum compromise for the application's memory
requirements.

The number of cluster workstations for each
communications line is configurable. The distribution
among the 1lines can determine performance at the
cluster workstation. For example, if one line has one
cluster workstation attached, and the other has 3, the
performance of the single <cluster workstation is
significantly better than the other three.

It is not necessary for each line to be filled (i.e. a
line may be configured for 4 workstations and have only
1 cluster workstation attached to it). However, for
each cluster workstation configured, system control
structures are allocated in the master workstation,
which imposes a memory penalty.

System Programmer's Guide

'.y*

8.

IWS DIAGNOSTICS

There are three kinds of IWS diagnostics: Bootstrap
ROM, CTOS initialization, and stand-alone.

The function of the diagnostic in the Boot ROM is to
ensure that enough of the Information Processing System
(IPS) is functional to permit the Boot ROM to load the
OS5 or a diagnostic from disk or from Comm (RS-422
Communications line). The Boot ROM checksums the ROM,
tests the first 128kb of memory, and attempts to read
from the floppy, Winchester, or Comm using DMA but not
interrupts. If an error is detected, it displays a
definitive error code in the six LED's of the Memory-
I/0 board and beeps the audio output. The error code
is as precise as possible and differentiates between
"missing address mark in data field" and "data error in
data field" for example.

By design, the Boot ROM does NOT test any functions
which are not required to 1load a program from
disk/floppy/comm. This is to keep the code in the Boot
ROM as small as possible. It does NOT test 1I/0
interrupts, non-maskable interrupts (parity error,
etc.), memory above 128kb, video, keyboard, etc. The
CTOS initialization code tests all of these functions
before loading the Convergent Executive.

CTOS 1initialization verifies the operation of 1I/0
interrupts, non-maskable interrupts (parity error,
etc.), memory above 128kb, wvideo, keyboard (reset,
checksum, loop-back), real-time clock, interval timer,
SIO (status during and after initialization only), etc.
CTOS initialization failure detection is described in
the section "CTOS Failure Analysis" of the System
Programmer's Guide.

The stand-alone diagnostics are intended to determine
whether each major element of an IPS is functional.
When possible, they isolate to the board level. Each
stand-alone diagnostic is supplied on its own floppy
disk in a format suitable for loading by the Bootstrap
ROM.

Stand-alone diagnostics may be run by an untrained
person using all default parameters to determine

whether the function is error-free. They can also be
run by trained personel to identify the exact manner of

failure.

IWS Diagnostics 8-1

Summary of Diagnostics

Video

Keyboard

Floppy

Winchester

The Video Stand-alone Diagnostic 1loads the font,
cursor, and style RAMs. It then displays a sequence of
moving patterns which exercise all modes, characters,
and attributes. The video output on the screen
provides visual verification of correct operation. If
an error is detected, this diagnostic displays an error
message on the video screen (if possible) and displays
an error code in the internal LED's and keyboard LED's.

The Keyboard Stand-alone Diagnostic presumes that the
video is operational. It resets the keyboard
microprocessor, checksums the keyboard ROM, performs a
loop-back test, and prompts the user to type characters
on the keyboard. It continuously displays on the video
an indication of all keys currently depressed. Each
time a key with an LED is depressed, the state of the
LED is toggled. Error messages are displayed on the
video.

Using default parameters, the Floppy Disk Stand-alone
Diagnostic requests a scratch floppy in drive zero and
tests seek, format, and single and multi- sector
write/read. Entry of specific parameters allows a wide
variety of tests to be run on drives @, 1 or both.

Similar to Floppy.

System (memory, timers, printer)

Using default parameters, the System Diagnostic
verifies the operation of I/O interrupts, non-maskable
interrupts (parity error, etc.), memory, video,
keyboard (reset, checksum, loop-back), real-time clock,
and programmable interval timer. Entry of specific
parameters allows a wide variety of tests to be run.
These include several tests of the line printer.

Communications (SIO)

Using the default parameters, the Communication Stand-
alone Diagnostic requires that a loop-back cable be in-
stalled and tests both channel A and B in Asynchronous,
Character-Synchronous, and Bit-Synchronous (BOP) modes
with and without interrupts and with and without DMA.
The diagnostic asks whether channel A is switch
selected for RS-232c or RS-422 and performs its test
accordingly. Entry of specific parameters allows a
wide variety of tests to be run.

8-2 System Programmer's Guide

Communications Input/Output Processor

Using default parameters, the CommIOP Stand-alone
Diagnostic loads diagnostic code into the CommIOP
memory, requests that a loop-back cable be installed
and tests both channel A and B in Asynchronous and Bit-
Synchronous (BOP) modes with and without interrupts and
with and without DMA. It also tests the interval
timer, interrupts to/from the 8085, and the ability of
the CommIOP to access IPS memory. Entry of specific
parameters allows these tests to be varied.

IWS Diagnostics 8-3

When and How To Run Diagnostics

Except for the video diagnostic, all stand-alone
diagnostics presume that the video subsystem is
operational and use the video screen to display error
messages. Except for the video and keyboard
diagnostics, all stand-alone diagnostics presume that
the keyboard is operational and accept input from the
keyboard. Because of these dependencies, the preferred
sequence of execution is: video first, keyboard second,
then others as desired.

Special Keys Used in the Stand-Alone Diagnostics

8-4

key: use:

BACK SPACE deletes last character typed

DELETE deletes all characters typed

RETURN indicates field entered

GO begins execution

FINISH terminates the test being executed

(Hold the FINISH key depressed until
the diagnostic acknowkedges)

ACTION (hold ACTION and press "A" to enter
Debugger; press GO to exit Debugger)

System Programmer's Guide

Running Diagnostics from a Cluster Workstation

Bootstrapping from the master

CAUTION

In order to run diagnostic from a cluster workstation
which doesn't have any disk drives, it is neccessary to
bootstrap the diagnostic from the master workstation.
This 1is done wusing the Bootstrap command of the
Executive. Insert the diagnostic floppy into drive fg
at the master workstation., Next, type in at the
cluster workstation the BootStrap command as follows:

Command BootStrap
BootStrap
File name [f@]<Sys>Sysimage.sys

The diagnostic will be loaded into memory and will
start execution. As soon as this happens, the station
is no longer a part of the cluster.

When running the Communication Diagnostic, disconnect
the cluster cables from the workstation after the
diagnostic is loaded and before any tests are run.

Bootstrapping from a floppy

If you are unable to bootstrap from the master, a last
resort would be to disconnect the Mass Storage
SubSystem from the master workstation and connect it to
the cluster workstation to be tested. You should NOT
move the Mass Storage SubSystem, as that might
permanently damage the Winchester disk.

When the mass storage subsystem is attached (read the
Installation Manual for instructions), power up the
Mass Storage Subsystem and the workstation, and insert
the diagnostic floppy into floppy drive #. You should
now be able to bootstrap the diagnostic from the
floppy. Note that the <cluster workstation is NOT
capable of bootstrapping from a Winchester disk.

IWS Diagnostics 8-5

Video Diagnostic

8-6

The video diagnostic tests the operation of the
Convergent video subsystem. To run this diagnostic,
insert the floppy disk labelled "Video Diagnostic" into
floppy drive zero and press the RESET button. After
being loaded from the floppy, the diagnostic presents a
series of pictures on the screen. Each picture
includes a rectangular area in the upper center of the
screen that contains descriptive text . If the picture
does not match the description, the video hardware is
not functioning correctly. If a Convergent advanced-
video board is installed, the diagnostic will recognize
it and display some additional pictures to test its
features. The video diagnostic does not use the
keyboard. Thus, no interaction with the diagnostic is
necessary or possible.

The status of the screen attributes 1is displayed
prominently at the top of the screen. The screen
attributes are:

o) Screen width (80/132 columns)
o Character attributes (yes/no)
o Brightness (half/full)

o Background (dark/light, ie. normal or reverse
video)

The sequence of pictures is as follows:

Banner, which runs in two phases. The first introduces
the diagnostic. The second clears the text frame,
identifies the video as either standard or advanced,
and tests the font by reading it back from the video
board. This is the only picture that does not use
character attributes.

Font display, which shows the Convergent font in light-
background cells against a dark background.

Cursored string, which fills the screen with text, and
displays a cursor on each line except where overlaid by
the descriptive text. This runs in 132-column mode
with dark background, then again in 8@-column mode with
light background.

Checkerboard, which tests for pincushion distortion and
edge sharpness.

Mosquito Net, which displays a field of one-pixel-thick
lines to test for pincushion distortion and 1line
clarity.

System Programmer's Guide

Character Attributes, which shows fields of text with
all possible character attributes: blinking, half-
bright, underlined, and reverse video. The picture is
shown twice, once with dark background with screen
full-bright, and then in light background with screen
half-bright.

Advanced Video Style, which is only run on advanced
video hardware. This test loads the style ram and
shows the advanced video features: double height and
width, superscripts and subscripts, bold, double-
underline, offset subscripts, and cursor—-attribute.

The sequence of pictures repeats until the Reset button
is pushed.

IWS Diagnostics 8-7

Keyboard Diagnostic

8-8

The keyboard diagnostic tests the proper operation of
the Convergent keyboard. Insert the floppy disk
labelled "Keyboard Diagnostic" into floppy drive # and
press the RESET button. The diagnostic identifies
itself and displays a picture of the keyboard on the
screen. You should not press any keys until the test
specifically asks you to do so. If there is no Keyboard
display, first make sure the brightness control is
properly adjusted.

First, the RESET function of the 8@48 keyboard
microprocessor 1is tested. This assures that the
keyboard 1is properly connected to the system, and is
correctly responding. Proper functioning of this test
displays "RESET OK" on the bottom of the screen.

Next, the keyboard ROM checksum is compared to the
proper value. The test displays "Checksum ROM OK" and
continues to the next test. An error during this test
probably indicates improper functioning of the 8048.

The loopback test sends all ©possible character
combinations to the keyboard which are then echoed
back. If this test fails, the value sent and the value
echoed are displayed on the screen.

The final test requires operator interaction. Press
any key on the keyboard and the corresponding key on
the screen should be displayed in reverse video.
Pressing a key which has an LED associated with it
toggles it on / off.

System Programmer's Guide

Floppy Diagnostic

Preface

Overview

Operation

This description of the floppy disk diagnostic is not,
in itself, sufficient to enable troubleshooting of a
malfunctioning floppy disk controller or drive. Refer
to the Peripherals Hardware Manual for information on
the Floppy Disk Controller. This information
(especially the instruction set of the uPD765 and the
format of the main status register and other status
registers) is wvital to understanding the status
information included in error messages.

This description is sufficiently self-contained,
however, to permit the reader to perform an extensive
battery of tests and to determine whether the floppy
disk subsystem 1is performing correctly or requires
remedial attention.

The objective of the Floppy Disk Diagnostic (FDD) is to
exercise all functions of the floppy disk controller
and drives and (in the event of malfunction) to
identify the failing function and mode of failure as
completely as possible.

In addition to testing the floppy disk controller and
drives, this diagnostic pre-tests the area of memory
which it is going to use as a buffer and is prepared to
detect and report non-maskable (type 2) interrupts and
all varieties of extraneous interrupts. The floppy disk
diagnostic depends on the correct operation of the
processor, memory, and the 8237-2 DMA controller.

Unless explicitly requested otherwise, it also depends
on the 8259A interrupt controller.

The "functions" ("tests" 19 - 17) allow you to
read/modify the data of a specified sector,
repetitively execute format/read/write operations in a
manner suitable for troubleshooting with test
equipment, and perform other miscellaneous functions.

When first loaded, FDD announces itself:

FLOPPY DIAGNOSTTICGC Xx.yy
Insert scratch floppy in each drive to be tested.

Change Parameters (Y/N)?

IWS Diagnostics 8-9

Suggestion

8-10

Answer N <RETURN> to run the standard test sequence
using drive @ and default settings for all parameters.
Answer Y <RETURN> to select the drive(s) to be tested,
the test sequence, or non-standard parameter settings.

If you specify that you want to change parameters, you
are asked:

Enter each drive # to test followed by <RETURN>

Type <RETURN> when all drive #'s have been entered.
drive # to test:

Type in each drive number to test followed by <RETURN>.
Type <RETURN> only when all drives to test have been
specified. You will hear a beep if you type <RETURN>
without listing any drives to test.

You are asked:
Run standard test sequence?

Answer Y <RETURN> to select the standard test sequence
(1, 2, 3, 5, 6, 8, 6, and 8) to be run on the drive(s)
which you have selected. The tests are itemized below.
If you answer N <RETURN>, the list of available tests
and functions are 1listed on the screen. You are
prompted:

test # to run:

Type in each test number that you wish to run followed
by <RETURN>. You will hear a beep if no such test
number exists. You can specify up to eight tests to
run. When you have specified the test sequence you
wish to run, type an additional <RETURN>.

The standard test sequence is the best test of the
floppy controller, the electronics of the floppy drive,
and the floppy disk. Test 7 is the best test of the
floppy disk head load mechanism and pressure pad. Test
9 tests the interrupt when the access door is opened or
closed. Function 12 is occasionally useful as a test
because the data patterns are more varied.

System Programmer's Guide

Test Descriptions
Test 1 - Selection

The selection test verifies the basic functioning of
the processor/floppy interface by reading the selected
drive's status. If no floppy is inserted in the drive,
the message 'Drive not ready' is displayed. If the
floppy being tested does not have a write tab, the
message 'Write protect set for drive n' is displayed.

Test 2 - Recalibrate

This test checks out the basic control functions to the
stepper motor. The test first issues a "recalibrate"
command followed by a "seek" command to cylinder 77.
Then another recalibrate command is issued, which is
aborted by turning off the stepper motor. If this test
is successful, the test performs a full recalibrate and
checks for proper operation.

Test 3 - Seek Sequential

This test seeks from track # to track 77 a track at a
time and reports any error conditions.

Test 4 - Seek Random

This test seeks to tracks 38, 37, 39, 36, 77, 0.

Test 5 - Format

The floppy disk in the selected drive is formatted.
The floppy disk is then re-read to check if the data
compares to the data written on the floppy. This data
(called the filler data) is a changeable parameter (see
below) .

Test 6 - Sequential Write/Read Single Sectors

Each sector on the disk is written one at a time. For
each track, sectors 1, 3, 5, ... are first written, and
then sectors 2, 4, 6 ... The data value written in
sectors 1, 3, 5... is specified by the filler

IWS Diagnostics 8-11

parameter. Sectors 2, 4, 6 ... are written with the
1's complement of the filler parameter. After each
track is written, the data in each sector is verified
with the data written.

Test 7 - Random Write/Read Single Sectors

This tests is similar to test 6, except the data 1is
written to tracks 38, 37, 39, 36 ...77, 9. Test 7 1is
the best test of the floppy drive head load mechanism.
If test 7 shows errors when test 6 does not, the
problem is almost certainly in the floppy drive rather
than the floppy controller or the floppy disk. Check
the pressure pad and the head load mechanism.

Test 8 - Sequential Write/Read Multiple Sectors

This test writes to the floppy one-half track at a
time. The first half will be written with the filler
word, the second half is written with the 1's
complement of the filler. The sectors is then read and
compared to the data written.

Test 9 - Ready/Not-Ready Interrupt

This test verifies that the opening/closing of the door
causes an interrupt with the proper drive status. The
test prompts you to open the door (in order to make the
drive not ready). The test expects you to do so within
39 seconds. The test then prompts you to close the
door to check the "ready" interrupt.

Function 19 - Read a Track

This function reads an entire track into a buffer and
print it 256 bytes at a time. You are prompted with:

Cylinder number:

Type in a number from & to 77 followed by <RETURN>.
The 256 bytes of sector 1 are printed, you are prompted
with:

More?

System Programmer's Guide

Type in Y <RETURN> to see the next buffer, etc. Type N
<RETURN> to be again prompted for a new cylinder. Type
<RETURN> to the cylinder number prompt to terminate the
function.

Function 11 - Display/Modify

This function allows you to read and optionally modify
a selected sector. You are prompted with:

cylinder :

Type a decimal number from @ to 77 followed by
<RETURN>. (Type just <RETURN> if you wish to exit this
function.) You are prompted with:

sector :

Type a decimal number from 1 to the number of sectors
on a cylinder (this is 15 for a standard double density
floppy disk) followed by <RETURN>. The first 256 bytes
of the sector will be displayed. You are prompted
with:

more?

Type Y <RETURN> if you wish to see the next 256 bytes
of the sector, type N <RETURN> if you do not. You are
then asked if you wish to modify the sector:

modify?

Type N <RETURN> to inspect another sector or exit the
function. Type Y <RETURN> to modify selected bytes in
the sector. You are prompted with:

byte :

Type in a decimal byte number from @ to 511. The
current value of the byte is displayed in hex:

n: xx
Type in the new hexadecimal value for the byte followed
by <RETURN>. Just type <RETURN> if you want do not
want to modify the byte. The prompt "byte :" will
continue until you type <RETURN> only. You are then be
asked:

Write sector?

IWS Diagnostics 8-13

Type Y <RETURN> if you wish to write the sector to disk
or N <RETURN> if you decide not to write the sector.

You are now prompted with "cylinder”. Type another
cylinder number, or Jjust <RETURN> to terminate the
function.

Function 12 - Copy

This function copies the data from the first drive
specified in the initial prompt to the second drive.
Note that the target floppy disk must have been
formatted (using test 5) before function 12 can copy
onto it. The data is copied one track at a time.
After each track is copied, the data on the target disk
is verified.

Function 13 - Read ID
You are prompted with:
cylinder:

Type in the cylinder number that you wish to read (from
@ to 77) followed by <RETURN>. Type just <RETURN> to
terminate the function. This function displays the 1ID
of the next sector to pass under the read/write head.

NOTE: Functions 14, 15, and 16 are designed to support
troubleshooting using test equiptment.

Function 14 - Format Loop

All the sectors of cylinder @ are formatted
continuously until <FINISH> is pressed. This test runs
solely on the first drive selected.

Function 15 - Read Loop

The sectors on cylinder @ are read continuously until
<KFINISH> is pressed. This test (like tests 14 and 16)
runs solely on the first drive specified.

Function 16 - Write Loop

8-14 System Programmer's Guide

The sectors on cylinder @ are written continuously
until <FINISH> is pressed. This test (like tests 14
and 15) runs solely on the first drive specified.

Function 17 - Compare

The data written on the first two drives selected is
compared against each other.

Function 18 - Set Double Density

This function pre-sets parameters to double density
(512 byte sectors). These are:

double density - YES

sector size code - 2

gap length (read/write) - 1Bh
gap length (format) - 54h
data length - @FFh

bytes per sector - 512
sectors per track - 15

No actual test is performed. This function 1is useful
to 1include in a 1loop to interchange single/double
density testing.

Function 19 - Set Single Density

This function pre-sets parameters to single density
(512 byte sectors). These are:

double density - NO

sector size code - 2

gap length (read/write) - 1Bh
gap length (format) - 3Ah
data length - @FFh

bytes per sector - 512
sectors per track - 8

Parameter Prompts

After the test sequence to be performed is selected,
you are able to vary test parameters. Certain ones
should be modified with great care since they can
either cause the diagnostic to 1incorrectly report
failure, or to crash. You <can leave the default
setting of a parameter by entering <RETURN>, or enter a
new value followed by <RETURN> to change it. You will

IWS Diagnostics 8-15

hear a beep if the parameter value you specified is
incorrect (e.g. typing in "maybe" to a yes/no question.
You are prompted with:

<RETURN> to leave the parameter unchanged,
<GO> to begin tests.

When you are ready to start the test, make sure that
scratch disks are placed in the appropriate drive(s).
Press <GO>. The tests will begin.

To terminate the test sequence, press and hold
<FINISH>. To suspend a test, press and hold the space
bar; to resume the test press <GO>. The parameters
are:

times to run

The default value is 1. The test sequence which you
entered us run for this number of times unless an error
occurs or you press <FINISH> to interrupt the test.

output to line printer:

The default is NO. Specify Y <KRETURN> if you wish to
monitor the test output to the line printer.

page breaks

The default is NO. Specify Y <RETURN> if you wish to be
prompted with "Press NEXT PAGE to continue" each time
there is a full page of text on the video.

halt on error:

The default 1is YES. Any data error which 1is not
recoverable after the specified number of retries (see
below) will cause the test sequencing to the be
aborted. Specify N <RETURN> to continue the test
sequence even on hard (non-recoverable) data errors.

suppress error printouts:

The default is NO. Type Y <RETURN> if you do not wish
to see the floppy status messages on each error.

8-16 System Programmer's Guide

use interrupts:

The default is YES. Type N <RETURN> if you wish all
floppy interaction to proceed using status checking
strategies instead of interrupts.

retry count:

The default is 4. Specify a new decimal number
followed by <RETURN> to indicate the number of retries
to be performed on any data read/write error.

filler data:

The default is 55 <hex>. This parameter specifies the
data to be written in each byte of each sector for any
formatting, or writing operation.

buffer address high byte:
second byte:

third byte:
buffer address 1low byte:

The above four parameters specify the buffer address to
be used for all read/write/format operations. This
parameter allows testing of DMA transfers to/from high
memory addresses. The first 2 bytes specify a segment
base address; the 1last 2 bytes specify an offset
address. Do NOT specify an odd address or an address
lower than the default.

The remaining parameters are very interdependent and
should be changed only by people who are have a
thorough knowledge of the disk controller:

double density

single sided

sector size code

gap length (read/write)

gap length (format)

first byte of Specify parameters
second byte of Specify parameters
data length

bytes per sector

sectors per track

tracks per cylinder

IWS Diagnostics 8-17

cylinders per disk

maximum seek time

loop on error

halt while waiting

ignore end of cylinder status
bypass errors

software debug

8-18 System Programmer's Guide

Floppy Duplication

Floppy diskettes may be duplicated on dual floppy disk-
based systems using tests 5, 12, and 17. In order to
duplicate a diskette, the following procedure may be
used.

Place the Floppy Diagnostic diskette in drive @ and
bootstrap from it. When the program is loaded, remove
the diagnostic diskette from drive # and place the
diskette to be copied in drive ¢ (remove the write-
Protect tab first). Place a blank diskette in drive 1.

Format the blank diskette in drive 1 with test 5 by
answering the diagnostics prompts as follows (not shown
here is other information displayed by the diagnostic
before each prompt is given):

Change Parameters (Y/N)? y <RETURN>

drive # to test: 1 <RETURN>
drive # to test: <RETURN>
Run standard test sequence? n <RETURN>
test # to run: 5 <RETURN>
test # to run: <RETURN>
times to run: <GO>

When the format is completed, copy and verify the
diskettes by running tests 12 and 17 as follows:

Change Parameters (Y/N)? y <RETURN>

drive # to test: @ <RETURN>
drive # to test: 1 <RETURN>
Run standard test sequence? n <RETURN>
test # to run: 12 <RETURN>
test # to run: 17 <RETURN>
test # to run: <RETURN>
times to run: <GO>

Before the copy actually begins, you will be asked to
verify that you actually want to do it. If so, then
answer yes to the prompt:

Copying from drive: @ to drive: 1
OK? y <RETURN>

If you are duplicating a number of diskettes, you may
optimize the above two steps by formatting all the
blank diskettes first, and then copying all of them.
After the first format is done, answer No to the
prompt:

Change Parameters (Y/N)? n <RETURN>

IWS Diagnostics 8-19

The diagnostic remembers the parameters you had
previously entered, and will go right into the format
test. Similiarly, you only need change parameters for
the first time you do the copy/verify tests.

8-20 System Programmer's Guide

Winchester Diagnostic

CAUTION

Preface

Overview

Operation

The Winchester diagnostic erases all files from the
Winchester disk.

This description of the Winchester disk diagnostic is
not, in itself, sufficient to enable troubleshooting of
a malfunctioning Winchester disk controller or drive.
Refer to the Peripherals Hardware Manual for
information on the Winchester Disk Controller. This
information (especially the format of the main status
register and other status registers) is vital to
understanding the status information included in error
messages.

This description is sufficiently self-contained, how-
ever, to permit the reader to perform an extensive
battery of tests and to determine whether the
Winchester disk subsystem is performing correctly or
requires remedial attention.

The objective of the Winchester Disk Diagnostic is to
exercise all functions of the Winchester disk
controller and drives and (in the event of malfunction)
to identify the failing function and mode of failure as
completely as possible.

In addition to testing the Winchester disk controller
and drives, the diagnostic pre-tests the area of memory
which it is going to use as a buffer and is prepared to
detect and report non-maskable (type 2) interrupts and
all varieties of extraneous interrupts. The Winchester
disk diagnostic depends on the correct operation of the
processor, memory, and the 8237-2 DMA controller.
Unless explicitly requested otherwise, it also depends
on the 8259A interrupt controller.

When first loaded, Winchester Disk Diagnostic announces
itself:

IWS Diagnostics 8-21

WINCHESTER DI AGNOSTTIGC Rev X.Y

CAUTTION

All files on Winchester disk will be erased.
Drive # to test :

Type in the drive number to be tested followed by
<RETURN>. The drive number should be @, 1, 2, or 3.
After the drive number 1is entered, Winchester Disk
Diagnostic will display the parameters associated with
the drive, that 1is, number of cylinders, number of
heads, and number of sectors per track. Then you are
prompted:

Change Parameters (Y/N)?
If you answer N <RETURN> the standard test sequence
will be run on the drive specified. Answer Y <RETURN>
to select the test sequence or non-standard parameter
settings.You are prompted:

Run standard test sequence?

Answer Y <RETURN> to run the test sequence (1, 2, 3,
4, 5, 6, 7, 8, and 10) on the drive you selected. The
tests are itemized below. Answer N <RETURN> to select
your own test sequence. You are prompted with:

Display test menu?

Enter Y <KRETURN> if vyou want to see the 1list of
available tests listed on the screen. You are prompted:

test # to run:

Type in each test number that you wish to run followed
by <RETURN>. A beep is sounded if no such test number
exists. When you have specified the test sequence to
run, type <RETURN>.

Test Descriptions
Test 1 - Selection
The selection test asserts basic functioning of the

processor / Winchester interface by reading the
selected drive's status.

Test 2 - Recalibrate

8-22 System Programmer's Guide

Test 3

Test 4

Test 5

Test 6

This test checks out the recalibrate command. The test
issues a "recalibrate" command followed by a "seek"
command to the last cylinder of the disk.

- Seek Sequential

This test seeks from cylinder # to the last cylinder a
cylinder at a time and reports any error conditions.

Seek Random

This test seeks to cylinders @, n-1, 1, n-2, ... n/2,
d.

Format Disk

The media on the selected drive is formatted. Any
error conditions are reported.

Write/Read Single Sectors

This test selects three cylinders to test: the cylinder
#, the last cylinder, and the cylinder in the middle.
Each sector on these three cylinders is written one at
a time on each cylinder. The order the sectors within a
track is 1, 3, 5, ... 2, 4, 6 ... Random data is used.
After each cylinder is written, the data in each sector
is verified,

Test 7 - Random Write/Read Multiple Sectors

This test writes to the entire disk a track at a time.
Random data is used. After each track is written, the
data are verified. The order of cylinders written is @,
n-1, 1, n-2, ...

Test 8 - Sequential Write/Read Multiple Sectors

This test is the same as Test 7, execept that the order
of cylinders written is 29, 1, 2, 3, 4, 5 ...

Test 9 - Get Drive Parameters

IWS Diagnostics 8-23

This test issues the 'Drive configuration command' and
displays the 6 bytes of drive parameters.

Test 1§ - Write / Read Beyond Head/Cylinder Boundary

Test 11 -

Test 12 -

Test 13 -

Test 14 -

This test is similar to test 8 except that each
write/read goes over a track boundarye.

Sequential Write / Read Single Sectors

Each sector on the disk is written one at a time on
each cylinder. The order the sectors within a track is
1, 3, 5, «es 2, 4, 6 ... Random Data is used. After
each cylinder is written, the data in each sector is
verified.

Overlapped Seek

This test issues "seek commands" to every drive
specified, waits the "naximum seek time", and checks
the completion status of all the drives under test.
This operation is done for each cylinder on the disk.
Even numbered drives (8, 2..) start from cylinder @,
odd numbered drives (1, 3..) start from the innermost
cylinder.

Sequential Write/Read single sector, Overlapped Seeks

This tests first selects a drive and seeks to the
target cylinder. It then issues seek commands to all
other drives specified, and writes a sector on the
first drive. After verifying the seek completion
status of the other drives, it re-reads the sectors and
verifies the data read.

Invalid head & cylinder

This test issues a seek to a cylinder with an illegal
head number. It then issues a seek to an invalid
cylinder number. The resulting status messages are
displayed on the screen.

8-24 System Programmer's Guide

Test 15 - Display/Modify a Sector

This test allows you to read and optionally modify a
selected sector. You are prompted with:

Action(read data- @ OR <CR>, read ID- 1)? <hex>:
Type in the function you wish to perform.
cylinder? <hex>:

Type in a hexdecimal number from % to the number of
cylinders on the disk followed by <RETURN>. Type <GO>
if you wish to exit this test. You are prompted with:

head? <hex>:
Type 0 to 3 followed by <RETURN>.
sector? <hex>:

Type a hexdecimal number from 1 to the number of
sectors on a cylinder followed by <RETURN>. The first
256 bytes of the sector will be displayed. You will be
prompted with:

more?

Type Y <RETURN> if you wish to see the next 256 bytes
of the sector, type N <RETURN> if you do not. You will
then asked if you wish to modify the sector:

modify?

Type N <RETURN> to see another sector. If you type Y
<RETURN>, you are again prompted with "cylinder:",
"head", "sector". Type in <RETURN> for each if you
wish to write the modified contents to the same sector.
You can copy the contents to another sector by changing
any or all the values. If you type N <RETURN>, you will
be prompted once again with 'action(read data- @ OR
<CR>, read ID- 1)'. Type Y <RETURN> if you wish to
modify selected bytes in the sector. You will be
prompted with:

byte :

Type a decimal byte number from # to 511. The current
value of the byte will be displayed in hex:

XX

Type the new hexadecimal value for the byte followed by
<RETURN>, Type Jjust <RETURN> if you want do not want

IWS Diagnostics 8-25

Test 16

Test 17

Test 18

8-26

to modify the byte. The prompt "byte :" will continue
until you type <RETURN> only. You will then be asked:

Write sector?

Type Y <RETURN> if you wish to write the sector to
disk; type N <RETURN> otherwise. If Y <RETURN> is
typed, you will again be prompted with "Action(read
data- @ OR <CR>, read ID- 1)". Type Jjust GO if you
wish to end this test. If N <RETURN> is typed, this
test will exit.

Command looping

This test allows you to prepare a loop of individual
commands to the controller. This test is intended to
be used primarily with special test equipment.

Get Diagnostics

It is not currently supported.

Sequential Write/Read Single Sectors II

This test is similar to test 6 except each word in a
sector is written with its own word index number in the
sector. This test is useful to detect any
cylinder/head addressing problems with the drive.

System Programmer's Guide

Parameter

Prompts

After the test sequence is selected, you are able to
vary certain test parameters. Certain ones should be
modified with great care since they can either cause
the diagnostic to incorrectly report failure, or cause
the diagnostic to crash. You can leave the default
setting of a parameter by entering just <RETURN>, or
change the value by entering a new value followed by
<RETURN>. You will hear a beep if the parameter value
you specified is incorrect (e.g. typing in "maybe" to a
yes/no question. You now have the opportunity to
change various parameters. You are prompted with:

THE FOLLOWING PARAMETERS ARE AVAILABLE FOR CHANGE
<RETURN> to leave the parameter unchanged,
<GO> to begin tests.

Press <GO> when you are ready to start the tests. The
parameters are:

times to run:

output to

The default value is 1. The test sequence which you
entered will run for this number of times unless an
érror occurs or you press <FINISH> to interrupt the
test.

line printer:

The default is NO. Specify Y <RETURN)> if you wish to
monitor the test output to the line printer.

page breaks:

The default is NO. Specify Y <RETURN)> if you wish to be
prompted with "Press NEXT PAGE to continue" each time
there is a full page of text on the video.

halt on error:

The default is NO. Any data error which 1is not
recoverable after the specified amount of retries (see
below) will not cause the test sequencing to Dbe
aborted. However the test sequence will stop if some
disk controller errors are detected. Specify Y <RETURN>

IWS Diagnostics 8-27

to stop the test sequence even on hard (non-
recoverable) data errors.

suppress error printouts:

The default is NO. Type Y <RETURN> if you do not wish
to see the Winchester status messages on each error.

use interrupts:

The default is YES. Type N <RETURN> if you wish for
all Winchester interaction to proceed using status
checking strategies instead of interrupts.

retry count:

The default is 4. Specify a new decimal number
followed by <RETURN> to indicate the number of retries
to be performed on any data read/write error.

filler data —-- format parameter:

The default is 39h. This parameter specifies the byte
value written in each sector when the disk is formatted
(test 5).

loop on error:

The default is NO. This default should be changed only
by qualified hardware personnel.

buffer address high byte:
second byte:
third byte:
buffer address 1low byte:

The above four parameters specify the buffer address to
be used for all read/write transactions. This
parameter allows testing of DMA transfers to/from high
memory addresses. Do not specify an odd address or an
address lower than the default.

8-28 System Programmer's Guide

Operation

The remaining parameters are very interdependent and
should be changed only by people who are have a
thorough knowledge of the disk controller.

offset -- Format parameter
space -- Format parameter
bytes per sector

sectors per track

tracks per cylinder
cylinders per disk

maximum seek time

maximum I/0 completion time
perform seek before read/write
halt while waiting

software debug

read diagnostics

change dma word count

Each test in the sequence will be performed on the
drive specified. To abort the testing, press and hold
any key on the keyboard while a test is in progress.
The test stops and you are prompted with:

Press GO to continue, FINISH to terminate the test.

Press FINISH to restart the diagnostic and to select a
new test sequence and/or parameters.

Incomplete Data Transfer

In tests 6, 7, 8, 19, 11, 13, 15, and 18, if a residual
dma count 1is deteced after the data transfer, the
message "Incomplete data transfer" is displayed and
the test continues. This indicates a transient error
which 1is automatically corrected by the Operating
System and may therefore be safely ignored. (The value
of the residual byte count can be displayed by setting
the "Halt on error" parameter to "YES" and rerunning
the test.)

IWS Diagnostics 8-29

System Diagnostic (memory, timers, pPrinter)

Operation

The system diagnostic tests the clocks, memory, and the
printer. Insert the floppy disk 1labelled "System
diagnostic" into floppy drive @ and press the RESET
switch. The diagnostic identifies itself and asks for
parameters. If you want to run the standard tests
(memory, clock test) then answer N to the "Change
parameters" question and press <RETURN>. Each test
runs and displays any errors on the screen.

The test sequence can be aborted by pressing the
<CANCEL> or <FINISH> keys.

When first loaded, the System diagnostic announces
itself:

SYSTEM DI AGNOSTTIC REV X.y
Change parameters (Y/N)?

Type N and <RETURN> if you want to run the standard
tests. No further questions are asked and the tests
begin to run.

Type Y to select a new test sequence. The diagnostic
displays a list of available tests.

Run standard tests?

Type Y and <RETURN> if you want to run the standard
test sequence. You are then prompted with various test
parameters which you can selectively change. IF you
type N, the program will ask you to type in the test
numbers. Type in a test number followed by <RETURN>.
When you have entered all the desired tests, press
<RETURN> only.

Test Descriptions

Test 1 —--

Memory Test

This tests all memory except that which is used by the
program. It initially finds the memory bounds by
accessing words at 4K increments until a non-existent
memory interrupt occurs. It then writes and reads back
zeroes in those same 1locations until ONES are read
(indicating non existent memory). If a discrepancy is
found, the diagnostic will print out the possible

8-30 System Programmer's Guide

switch settings, the actual amount of memory available,
and the test limits.

The memory test has six distinct passes. The passes
are:

Write and read @'s to all test memory.

Write and read 1's to all test memory.

Write and read address patterns (even addresses)
Reread even address patterns from test memory.
Write and read address patterns (odd addresses) .
Reread odd address patterns from test memory.

O O0O0Co0OO0OO©

Errors during the memory test usually come in one of
two varieties:

o Word read does not equal the word written.
o Parity errors.

If an error occurs during the test, the relevant
information will be displayed you will be prompted with
"Continue ?" Type Y and <RETURN> if you want to
continue the test, or N and <RETURN> if you want to
restart the program.

Test 2 -- Memory Test (GALPAT)
This memory test runs an exhaustive test of the memory
from 64K. This test takes several hours to run. A '*!
will be printed for every 32K which it tests. Parity
errors and invalid data will be reported.

Test 3 -- Parity Error Test
This test verifies the proper functioning of the parity
generation/checking logic. A byte is written with odd
parity. It is then re-read with even parity checking.
If no parity interrupt is generated, the wuser is
informed that the test failed.

Test 4 -- RAM Write Protect Test
This test verified the proper functioning of the write
protect feature.

Test 5 -- Clock / Programmable Timer Test

IWS Diagnostics 8-31

Test 6

Test 7

Test 8

8-32

This test verifies the proper functioning of the system
clocks. It sets the Programmable Interval Timer (PIT)
to interrupt after one second, and counts the number of
ticks received from the Real Time Clock (RTC). After
the PIT has interrupted, the number of ticks counted is
compared to the RTC frequency entered. Variations will
be reported. The test also reports an error if the PIT
does not interrupt within 2 seconds.

Real Time Clock

This test 1insures that the real time clock is
functioning properly. The test displays COUNTING DOWN
from XXX MIN YYY SEC. If the real time clock is
functional, the minutes and seconds will count down to
zero and the test will terminate.

The test indicates improper real time clock functioning
if no interrupts have occurred within a half second.
The test indicates whether the problem appears to be an
interrupt problem, or the real time clock itself.

Printer control function and interrupt test

This test requires interaction with the operator and
issues form feeds, vertical tabs, line feeds, carriage
returns, bells, and other assorted control codes to the
printer. This test assures that the system to printer
interface is functioning correctly.

Printing test

This test sends a sliding print pattern to the 1line
printer. If the continuous printing parameter is YES,
this test terminates only when the operator presses
<FINISH> or <CANCEL> or a printer error is discovered.
The operator should assure that the pattern is regular.

System Programmer's Guide

Parameter Prompts

The diagnostic displays a selection of parameters which
can be changed. These parameters may have no effect on
the tests that you have selected. You can press
<RETURN> 1if you do not wish to change a parameter.
Press <GO> when you are ready to begin the test. You
are prompted:

THE FOLLOWING PARAMETERS ARE AVAILABLE FOR CHANGE
<RETURN> to leave current value unchanged,

<GO> when all parameters are satisfactory.

Times to run?

The default is 1. Press <RETURN> if you want to run
each selected test only once. Otherwise, type the
number of times you wish the test to run.

Stop on memory error

The default is YES. This parameter applies to the
memory test. Type N and <RETURN> to have the test
print the memory error messages but continue with the
test.,

of seconds to run real time clock test?

The default is 5. This parameter is applicable only
for test 3 (real time clock test).

Frequency of real time clock?

The default is 60 Hz. Type in 5¢ for a 50Hz clock.

Page Breaks?

The default is NO. Specify Y <RETURN> if you wish to
be prompted with "Press NEXT PAGE to continue" each
time there is a full page of text on the video.

Print status on line printer interrupt?

The default is NO. Typing in YES will cause the line
printer status to be displayed every interrupt. This
parameter 1is applicable only for the printer tests.

IWS Diagnostics 8-33

Continuous printing on slide test?

The default is NO. Specify YES if test 4 is to print
continuously until <FINISH> 1is pressed. If NO is
selected, test 5 prints 66 lines to the printer.

Test printer using interrupts?

The default is YES. Type NO if you want to test the
printer using BUSY 1looping. This parameter is
applicable only for the printer tests.

8-34 System Programmer's Guide

Communications Diagnostic

The Communications Diagnostic tests the Serial
Input/Output (SIO) communications controller. Both SIO
channels (A and B) are exercized using externally
installed loopback plugs. Channel A 1is internally
jumpered for RS-232¢c or RS-422 (cluster) operation.
The loopback plug and parameter specification must
agree with the internal jumpering. If either channel
is Jjumpered for external clocking, an external clock
signal must be provided for that channel.

The default parameters for this test assume that
communications channel A is set to RS-422 and channel B
is RS-232 (this is the setting set at the factory). If
your system has both channels set to RS-232 then vyou
must change the parameters and answer NO to the
Parameter Prompt "Channel A RS-422?2".

Loopback Requirements

For RS-232 Configurations, each channel must have the
following signals looped back:

FROM TO
Transmit Data (pin 2) Receive Data (pin 3)
Request to Send (pin 4) Clear To Send (pin 5)

Carrier (pin 8)

Data Terminal Ready (pin 2@) Data Set Ready (pin 6)
Ring Indicator
(pin 22)

Secondary Transmit (pin 14) Secondary Receive Data
(pin 16)

For RS-422 Cluster configurations, the required signal
loopback for channel A is provided within the system;
the workstation should not be connected to an
operational cluster during testing. Workstations that
are jumpered for RS-422 operation but that do not have
the motherboard jumpered to use the cluster (dual 9-
pin) connectors, require a 25 pin RS-422 loopback plug
to be connected to channel A. Channel B requires a RS-
232c loopback plug in all configurations.

IWS Diagnostics 8-35

Standard test Sequence

Parameter

The following tests are executed unless otherwise
specified: 1, 2, 3, 4, 5, 6, 7, 9, 16, 12, 13. 1If you
specify a different test sequence, do not specify test
6 or test 10 as the first data test.

Prompts

The following parameters can be changed if desired.
You are prompted with:

<RETURN> to leave the parameter unchanged,
<GO> to begin tests.

Times to run:

Number of times to execute sequence of tests: default
is 5.

Bypass Errors?

Specify YES to allow test to continue if error is
encountered.

Specify YES when running test 11.

Software Debug?

Channel A

For use by Convergent software engineers.

RS-4227?

Specify NO if Channel A is configured RS-232.

8-36 System Programmer's Guide

Test Descriptions

Test 1 - Static Status Test

This test wverifies that all control signals are

properly looped back, that a clock signal is present,
that the internal jumpers are consistent, and that the

RS-422 clock detector operates properly.

Test 2 - Asynchronous Mode Test
This test exercises both channels of the SIO in

Asynchronous mode, at varying baud rates and character
lengths. All possible parity settings are tested.

Test 3 - Character Sync Multi-Sync Test

This test wverifies that the SIO 1is capable of
recognizing all wvalid Sync characters, in character
synchronous mode. Both channels are tested, at varying
baud rates.

Test 4 - Character Sync Data Transfer Test

This test checks data transfer in character synchronous
mode, at varying baud rates. Both channels are tested.

Test 5 - Character Sync CRC-16 Test
This test checks the operation of the SIO's CRC

generation and checking circuitry, in character
Synchronous mode, using CRC-16.

Test 6 - Character Sync DMA Test - DMA In

This test performs high speed data transfer over
Channel A, in Character Synchronous mode, using program
status loop for transmission and DMA for reception.

Test 7 - Bit Sync Data Transfer Test

IWS Diagnostics 8-37

Test

Test

Test

Test

Test

Test

NOTE

8

This test checks data transfer in bit synchronous mode,
at varying baud rates. Both channels are tested.

(not used)

9 - Bit Sync Abort Test

10

11

12

13

This test checks the SIO's ability to recognize and
generate an abort condition, in bit synchronous mode.

Bit Sync DMA Test - DMA In

This test performs high speed data transfer over
Channel A, in Bit Synchronous mode, using program
status loop for transmission and DMA for reception.

Inter-processor Test

This test performs £full speed (615K baud) transfers
between two systems, using DMA for both transmission
and reception. For proper operation, both systems must
be running this test, configured for RS-422 cluster
operation, and connected by a standard cluster cable.
They must not, however, be connected to an operational
cluster at this time.

Character Sync Dma Test - DMA Out

This test performs high speed data transfer over
Channel A, in Character Synchronous mode, using DMA for
transmission and program status loop for reception.

Bit Sync Dma Test - DMA Out

This test performs high speed data transfer over
Channel A, 1in Bit Synchronous mode, using DMA for
transmission and program status loop for reception.

System Programmer's Guide

Tests 1, 6, 10, 12, and 13 are the only tests that do
not use interrupts.

Error Message Format

For errors detected during the test, a standard error
message will be displayed, giving a description of the
error category, followed by a message of the following
form:

Channel n I =i Was: a b ¢ Shd Be: x y z

where "n" is the channel on which the error occurred (A
or B).

For Data Transfer errors, "i" indicates the decimal
byte position within the block at which the error
occurred, aa is the hexadecimal value received, and "x"
is the hexadecimal value expected. "b", "c", "y", and
"z" are not meaningful.

For Status errors, "a" indicates the SIO status
(Register @) received, and "x" the status expected. In
test 1, "b" "c" indicates the received value of the
Extended Status Register (port 66h), and "y" "z" the
value expected. "b", "c", "y", and "z" are all
hexadecimal. "i" is not meaningful for status errors

and "b", "c", "y", and "z" are not meaningful for tests
other than test 1.

IWS Diagnostics 8-39

CommIOP Diagnostic

Overview

The CommIOP diagnostic verifies the proper operation of
each CommIOP. The diagnostic is a system confidence
test of the CommIOP processor, 1its RAM, the CT to
multibus path, and the CommIOP communications
hardware. Each CommIOP is tested individually.

The CommIOP has its own microprocessor which interprets
commands provided by the workstation. The diagnostic
gives various commands to the CommIOP and interprets
the results.

To run the diagnostic you must 1insert a Cluster
Communication Cable between the lines of the CommIOP to
be tested. For CommIOP 1, connect the cable between
"LINE 1" and "LINE 2" on the back of the workstation.
For CommIOP 2, use "LINE 3" and "LINE 4",

The CommIOP LED

Operation

The CommIOP has an LED which is 1located at the top
center of the board. When the workstation is powered
up, or the RESET button is pressed, the microprocessor
blinks this LED. If the LED does not blink, the
CommIOP is not functioning properly.

The CommIOP uses the LED to blink its current status
with a two digit code. The first digit 1is blinked,
followed by a short pause (the LED is off), and then
the second digit is blinked.

Under normal circumstances it 1is not necessary to
interpret the code being displayed since error
conditions are reported by the diagnostic. There are
conditions, however, when the CommIOP cannot report the
error to the diagnostic due to hardware malfunction on
the CommIOP, In this case, it 1is necessary to
interpret the code being displayed. A 1list of these
status codes is provided below.

Bootstrap the CommIOP diagnostic, by inserting the
CommIOP Installation Diskette in the floppy drive and
pressing the RESET button in the back of the
workstation.

When first 1loaded, the CommIOP diagnostic announces
itself:

8-49 System Programmer's Guide

COMMIOP DIAGNOSTTIC Rev X.VY

Change Parameters?

Answer N RETURN to run the standard test sequence on
CommIOP 1 (configured for I/0 address 8040). Answer Y
RETURN to run only certain tests, or to change certain
test parameters (such as to run the test on CommIOP 2).

The list of parameters is given below.

If you answer yes to "Change Parameters?", you are
prompted:

Run all tests?

Answer Y RETURN to run all the tests. Type N RETURN if
you wish to select a list of individual tests to run.
The tests available are displayed on the screen. Type
in each test number you wish to run followed by RETURN.
When all the desired test numbers have been entered,
press RETURN only. If you select a nonexistent test or
improperly type in a test number (for instance 1A
RETRURN), an audible tone 1is signalled. Simply re-
enter the test number correctly.

Test Descriptions
Test 1 - IOP Functional Test

This test wverifies the basic functioning of the
CommIOP. The following items must be functioning or
correctly set up in order for this test to succeed:

o The proper address must be selected on CommIOP
address selection switches (bits 1-4 on switch
SW1 on the CommIOP board). See the CommIOP
Installation Instructions for the correct switch
settings.

o The CommIOP ©processor, ROM, and multibus
interface must be functional.

o The Multibus-to-CT address mapping switch S2
(located on the CPU board of the workstation)
must be correct. See the CommIOP Installation
Instructions for the correct switch settings.

Any failure of the above items cause this test to fail.
If the functional test fails, check the following to
isolate the fault.

IWS Diagnostics 8-41

8-42

o Make sure the address selection switches (bits
1-4 on switch SWl) on the CommIOP(s) are
properly set. This 1is the problem 1if the
diagnostic displays the message
"No CommIOP is responding at port address :
XxXxx".

o Make sure that the LED on the CommIOP blinks on
and off when the RESET button of the workstation
is pressed. Reboot the diagnostic, and check if
the LED is blinking. 1If it is not, the CommIOP
hardware is ©probably faulty.

o If the LED does indeed blink when RESET, but
stays on or off, after Test 1 is run (and
failed), the 1likely problem is the CommIOP-to-
CT Multibus path. Make sure that bit 1 on S2 of
the CPU board on the workstation is ON.

o If the test is still failing, and the LED is
blinking before and after the test is run, then
check the two-digit code which is being
displayed on the LED. The code should be 12
when the workstation 1is first RESET, and 11
after the test has run. If another code is
displayed, refer to the CommIOP Status Codes
Section below for an interpretation of the
error.

Test 2 - CommIOP Memory Test

This test checks the CommIOP's memory. The test writes
P's, 1's, and an address pattern in each location of
the CommIOP's memory. Any errors are reported by the
diagnostic.

The diagnostic correlates any single bit errors to the
actual chip location on the CommIOP board.

Test 3 - Multibus Test

This test verifies the CommIOP-to-CT Multibus path.
One or more 16K segments are selected on the CT memory.
The CommIOP performs memory tests on these segments,
Any errors are reported by the diagnostic.

Test 4 - CommIOP to CT Interrupt Test

This test verifies that interrupts from the CommIOP to
the workstation function correctly. A small test
program is loaded in the CommIOP memory. This program
interrupts the workstation.

System Programmer's Guide

Parameter

Interrupts from all possible levels are monitored by
the diagnostic. The diagnostic indicates whether no
interrupt was received or an interrupt(s) occured on a
level which is different from the one specified (see
Parameters) in the parameter 1list.

If this test fails, verify that the interrupt 1level
selection switches (bits 5-8 on switch SWl of the
CommIOP board) are properly set. See the CommIOP
Installation Instructions for the proper switch
settings.

Test 5 - CommIOP Comm Test

This test verifies the communications portion of the
CommIOP hardware. A small test program is loaded into
the CommIOP which loops messages between the two
channels. 1In order to run this test, you must install
a cluster communications cable between the channels of
the CommIOP to be tested (lines 1 and 2 for CommIOP 1,
lines 2 and 3 for CommIOP 2).

The most common error message displayed is:
"SI0 Channels are not cross—connected.”

If this error message is displayed, make sure that the
cable 1is properly connected between the two 1lines.
Also make sure that the ribbon cable connector is
properly attached to the CommIOP board (see the CommIOP
Installation Instructions).

Prompts

After the test sequence to be performed is selected,
you are able to change certain test parameters. When
the diagnostic is first run, certain default settings
are chosen for the test. To leave the current setting
of the parameter, press RETURN. To change a parameter,
enter the new value followed by RETURN. A audible tone
is sounded if an invalid parameter is entered.

To begin the tests, press GO.

To abort the tests, press and hold FINISH. To suspend
a test, press any key other than GO or FINISH. To
resume the test, press GO.

times to run

The default value 1is 1. The test sequence selected
will run for this number of times unless an error
occurs (and "Stop on Error?" was selected) or FINISH is
pressed.

IWS Diagnostics 8-43

Stop on error?

The default is Yes. Specify N RETURN is you wish the
tests to continue after errors. The number of errors
encountered during the tests are displayed at the end
of the diagnostic.

CommIOP address

The default is 8@44. Enter 8040, 8#41, 8050, 8051 to
specify CommIOP 1, 2, 3, or 4 respectively. Any other
value is rejected before the tests are run.

CommIOP Interrupt Level

CT memory

Number of

Operation

The default is 2. Specify the interrupt 1level to be
used by the CommIOP to communicate with the
workstation. Levels @, 2, 5 or 6 are available to the
CommIOPs.

The operating software uses the same interrupt level
for all of the CommIOPs. The standard interrupt level
used is level 2.

address 16K segment for Multibus test

The default is 4 (i.e. 64 to 79K) on the workstation.
This parameter is used by Test 3 (Multibus test).
Specify any segment which you wish to use for the test.
You cannot specify a segment less than 64K (4), since
the CommIOP would overwrite the diagnostic. Also you
cannot specify a segment which is outside CT memory
bounds or greater that 512K (32).

16K segments to test

The default is 1. This parameter 1is used by Test 3
(Multibus test). Specify the number of 16K segments to
be tested. All of the segments must be within CT
memory bounds and less that 512K.

The diagnostic first verifies that all parameters are
correct. The diagnostic displays an error message if
an invalid CommIOP address or interrupt 1level was
specified, or if a segment is outside the valid range.
Change the parameter which was flagged as incorrct and
run the test again.

Each test is performed by the CommIOP and monitored by
the diagnostic. The code executed by the CommIOP
microprocessor for tests 1 through 3 resides 1in the
CommIOP ROM. The code for tests 4 and 5 is loaded by
the CommIOP from CT memory.

8-44 System Programmer's Guide

CommIOP Status Codes

The following

is the 1list of status codes which are

blinked by the CommIOP but are not returned to the
diagnostic due to hardware malfuntions.

11

12

13
14

Command executed successfully.

No command has been received from
the master since the workstation
was RESET.

If this status is flashed after a
test 1is run, the workstation to
CommIOP connection is not
functioning properly.

Checksum error in CommIOP Boot ROM.

The CommIOP Multibus register is
not functioning correctly.

IWS Diagnostics 8-45

9.

AWS DIAGNOSTICS

There are three kinds of diagnostics: Bootstrap ROM,
CTOS initialization, and stand-alone. Unless other-
wise stated, the following applies to the entire AWS
family of machines. (I.e. AWS-210, 220, 230, 2409).

The function of the diagnostic in the Boot ROM is to
ensure that enough of the Application Work Station
(AWS) is functional to permit the Boot ROM to load the
OS or a diagnostic from disk or from Comm (RS-422
Communications line). The Boot ROM checksums the ROM,
tests the memory, and attempts to read from the
floppy, Winchester, or Comm using DMA Dbut not
interrupts. If an error 1is detected, it displays a
definitive error code on the screen and beeps the audio
output.

The AWS Boot ROM will initialize the video, comm, and
keyboard before attempting to 1load a program from
disk/floppy/comm. It does NOT test I/0 interrupts or
non-maskable interrupts (parity error, etc.). The CTOS
initialization code tests all of these functions before
loading the Convergent Executive.

CTOS 1initialization verifies the operation of 1I/0
interrupts, non-maskable interrupts (parity error,
etc.), system memory, video, keyboard (reset,
checksum, loop-back), real-time clock, interval timer,
SIO (status during and after initialization only), etc.
CTOS initialization failure detection is described in
the section "CTOS Failure Analysis" of the System
Programmer's Guide.

The stand-alone diagnostics are intended to determine
whether each major element of an AWS is functional.
When possible, they isolate to the board level. Each
stand-alone diagnostic may be loaded by the Boot ROM
from individual floppy diak or from the master work
station over the comm line.

Stand-alone diagnostics may be run by an untrained
person using all default parameters to determine
whether the function is error-free. They can also be
run by trained personel to identify the exact manner of
failure.

AWS Diagnostics 9-1

Summary of Diagnostics

System (video, timer, keyboard)

Memory

Floppy

9-2

The System Diagnostic verifies the operation of I/0
interrupts, non-maskable interrupts (parity error,
etc.), video, keyboard (reset, checksum, 1loop-back),
real-time clock, and programmable interval timer. Using
default parameters, the video, timer, and keyboard
tests are executed consecutively in that order.
However, each test within the system diagnostic may be
exercised 1individually and specific parameters changed
to allow a wide variety of tests to be run.

Video

The Video test displays a sequence of moving
patterns which exercise all modes, characters, and
attributes. The video output on the screen
provides visual verification of correct operation.
If an error is detected, this diagnostic displays
an error message on the video screen (if possible)
and displays an error code in the internal LED's
and keyboard LED's.

Keyboard

The Keyboard test presumes that the video is
operational. It resets the keyboard micro-
processor, checksums the keyboard ROM, performs a
loop-back test, and prompts the user to type
characters on the keyboard. It continuously
displays on the video an indication of all keys
currently depressed. Each time a key with an LE.
is depressed, the state of the LED is toggled.
Error messages are displayed on the video.

Timer

The timer test verifies the correct operation of
the 8253 programmable interval timer and its
associated interrupt logic.

The Memory Diagnostic tests are different from the
Memory Test of the AWS Boot ROM in that the Boot ROM
test does not test with parity enabled, and uses a
simpler pattern for its test. The boot ROM test tests
all of memory, while this test tests all of the memory
except that which the program uses.

Using default parameters, the Floppy Disk Stand-alone
Diagnostic requests a scratch floppy in drive zero and
tests seek, format, and single and multi- sector

System Programmer's Guide

write/read. Entry of specific parameters allows a wide
variety of tests to be run on drives @, 1 or both.

Winchester
Similar to Floppy.

Communications (SIO)

Using the default parameters, the Communication Stand-
alone Diagnostic requires that a loop-back cable be in-
stalled and tests both channel A and B in Asynchronous,
Character-Synchronous, and Bit-Synchronous (BOP) modes
with and without interrupts and with and without DMA.
The diagnostic asks whether <channel A is switch
selected for RS-232c or RS-422 and performs its test
accordingly. Entry of specific parameters allows a
wide variety of tests to be run.

AWS Diagnostics 9-3

when and How To Run Diagnostics

Except for the video diagnostic, all stand-alone
diagnostics presume that the wvideo subsystem is
operational and use the video screen to display error
messages. Except for the video and keyboard
diagnostics, all stand-alone diagnostics presume that
the keyboard is operational and accept input from the
keyboard. In addition, the keyboard diagnostic assumes
that the 8253 interval timer is operating properly.
Because of these dependencies, the System Diagnostics
should be executed before other stand-alone diagnostics
are performed.

Special Keys Used in the Stand-Alone Diagnostics

9-4

key: use:

BACK SPACE deletes last character typed

DELETE deletes all characters typed

RETURN indicates field entered

GO begins execution

FINISH terminates the test being executed

(Hold the FINISH key depressed until
the diagnostic acknowkedges)

ACTION (hold ACTION and press "A" to enter
Debugger; press GO to exit Debugger)

System Programmer's Guide

Running Diagnostics from an AWS

Diagnostic programs may be loaded from the master work station
or, if local storage is present, from a floppy disk.

Bootstrapping from the master

In order to run diagnostic from a cluster workstation
which doesn't have any disk drives, it is neccessary to
bootstrap the diagnostic from the master workstation.
This may be done in one of two ways.

(1)

(2)

Using the Bootstrap command of the Executive to
load diagnostics from the master work station.

Insert the floppy containing the diagnostic
into drive f@ at the master workstation. Next,
type in at the <cluster workstation the
Bootstram command as follows:

Command Bootstrap
Bootstrap
File name [f@]<Ct>xxx

where "xxx" 1is the name of the run file
containing the diagnostic to be run, e.q.
AwsSystem.diag. (See the Release Notice for

the precise names of the diagnostic run files
and for the floppy on which each is contained.)

Loading diagnostics with Boot ROM.

First, copy the run file for the diagnsotic to
be run from the distribution diskette to a file
[Sys]<Sys>WSnnn>SysImage.Sys on the master work
station, where "nnn" is any workstation type
not otherwise used by the system. "'nnn" must
be less than 256. (See the release notice for
the locations and names of the diagnostic
files.)

One possible numbering scheme for diagnostic
files residing permanently at the master
workstation is as follows:

nnn Description

100 System Diagnostic

191 Memory Diagnostic

192 Printer Diagnostic

103 Floppy Diagnostic

104 Communication Diagnostic
195 Winchester Diagnostic

AWS Diagnostics 9-5

CAUTION

After copying the diagnostic to be run onto
system volume, push the reset button of the AWS
while holding down the space bar. The boot ROM
menu and the version number should be dispalyed
as follows:

V X.X
B,C,D,L,M,P,T:

Next type a 'T' after the colon. The boot ROM
should respond with

V X.X
B,C,D,L,M,P,T:T
0S:

Next, enter the three digit workstation type
for the diagnostic to be 1loaded, then press
RETURN. The boot ROM menu will be redisplayed:

V X.X
0S:nnn

Type the 1letter 'B' to start 1loading the
diagnostic.

When running the Communication Diagnostic, disconnect
the cluster cables from the workstation after the
diagnostic is loaded and before any tests are run.

Bootstrapping from a floppy

9-6

Insert the diskette containing the diagnostic to be
executed into the floppy drive. If the power is
already on, simply press the reset button. Otherwise,
turn the power on and the diagnostic will be loaded
without further user intervention.

System Programmer's Guide

System Diagnostic

The AWS workstation System Diagnostic tests the video,

timer, and keyboard. When the diagnostic is 1loaded,
you will be asked:

Change Parameters (Y/N) ?

If you type in "no" followed by a RETURN then the three
tests will automaticaly start executing. If you answer
"yes" then the diagnostic will display its menu and
ask:

Tests are:

1l - video test
2 - Timer test
3 - Keyboard test

Standard test sequence is 1, 2, and 3.
Run Standard Test Sequence (Y/N) ?

If you say "yes", then the tests that will be run are
the , video, timer and keyboard in that order. If you
say "no", then you will be asked:

Test to run ?

Type in the number of each test followed by a <cr>
(RETURN) character. After all test numbers are
entered, type in a final RETURN.

After the test selection is made, you will be prompted
to enter any optional parameters to the tests:

THE FOLLOWING PARAMETERS ARE AVAILABLE FOR CHANGE

<cr> to leave current value unchanged
<GO> when all parameters are satisfactory

Times to Run ? [1]

The number of times to run is the only parameter for
this diagnostic. Type in a GO character to start the
test sequence.

Test 1 -- Video Test

The video test is the same as that of the IWS
video diagnostic (see System Programmer's Guide,
section 8 for description of IWS diagnostics),
except that it runs through all of its patterns
only once, and then starts the next test.

AWS Diagnostics 9-7

9-8

Test 2 -- Timer Test

The timer test verifies the correct operation of
the 8253 programmable interval timer and its
associated interrupt logic.

Test 3 -- Keyboard Test

The AWS keyboard test is the same as the IWS
test, except that if you type ACTION-FINISH (hold
down both keys at once), the test terminates and
goes on to the next test in the sequence.

In the Video and Timer tests, if you type in a
CANCEL character while the test is running, the
tests will pause until a GO or FINISH character
is typed in. If a GO character is typed in, the
test will continue, and if a FINISH is typed in
the test sequence will be terminated.

System Programmer's Guide

Memory Diagnostic

The AWS workstation Memory Diagnostic tests the
workstation memory. When the diagnostic is loaded, you
will be asked:

Change Parameters (Y/N) ?

If you type in "no" followed by a RETURN then the first
(shorter) test will automaticaly start executing. If
you answer "yes" then the diagnostic will display its
menu and ask:

Tests are:

1 - Memory test
2 - Memory test - Galpat

Standard test sequence is 1.
Run Standard Test Sequence (Y/N) ?

If you say "yes", then the only test that will be run
is the first memory test. If you say "no", then vyou
will be asked:

Test to run ?
Type 1in the number of each test followed by a <cr>
(RETURN) character. After all test numbers are
entered, type in a final RETURN.

After the test selection is made, you will be prompted
to enter any optional parameters to the tests:

THE FOLLOWING PARAMETERS ARE AVAILABLE FOR CHANGE

<cr> to leave current value unchanged
<GO> when all parameters are satisfactory

The first parameter you may change is:
Times to Run ? [1]

The default will be in brackets. To change this, type
in the number of times vyou wish to execute the
test,followed by a RETURN.

The next parameters is:
Stop on memory error ? [yes]

Type in a "y" or a "n" followed by a RETURN to change
this.

AWS Diagnostics 9-9

9-10

The last parameter is:

Start segment for Galpat (1 = 64K, 2 = 128k, etc.)
[1]

If you are using the Galpat memory test, you may wish
to <change this parameter if you suspect a memory
problem in a specific memory range.

Type in a GO character to start the test sequence.

Test 1 -- Memory test

The Memory Diagnostic tests are different from the
Memory Test of the AWS Boot ROM in that the Boot ROM
test does not test with parity enabled, and uses a
simpler pattern for its test. The boot ROM test tests
all of memory, while this test tests all of the memory
except that which the program uses. This test has six
distinct passes. The passes are:

Write and read #'s to all test memory.

Write and read 1's to all test memory.

Write and read address patterns (even addresses)
Reread even address patterns from test memory.
Write and read address patterns (odd addresses).
Reread odd address patterns from test memory.

OO0 O0OO0O0OO0

If an error occurs during the test, the relevant

information will be displayed and you will be prompted
with:

Continue ?

Type "y" and RETURN if you want to continue the test,
or "n" and RETURN if you want to restart the program.

Test 2 -- Memory Test (Galpat)

This memory test runs an exhaustive test of the memory
from 64K. This test takes several hours to run. A
sequence of "*" characters will be displayed during the
test so that you may know it is running. Parity and
invalid data will be reported.

If you type in a CANCEL character while the test is
running, the tests will pause until a GO or FINISH
character is typed in. 1If a GO character is typed in,
the test will continue, and if a FINISH is typed in the
test sequence will be terminated.

System Programmer's Guide

Printer Diagnostic

Operation

The objective of the AWS Printer Diagnostic is to test
the parallel printer port and its supporting logic, and
(in the event of a malfunction) locate and identify the
cause of the malfunction as completely as possible.

The printer port may be exercised both with and without
using interrupts. In addition, there are several
parameters controlling the operation of the diagnostic
program that may be modified by the operator.

The diagnostic requires that a printer with a
Centronics interface be connected to the printer port
on the AWS.

When first loaded, the AWS Printer Diagnostic announces
itself with:

AWS Printer Diagnostic Rev x.y
Copyright 1981 by Convergent Technologies Inc.

Change Parameters (Y/N) ?

If you answer N <RETURN> when the diagnostic has just
been loaded, the standard test sequence will be run
with a default set of control parameters. Answering
N <RETURN> on subsequent runs of the diagnostic will
use the previously selected test sequence and control
parameters. If the test sequence and control parameters
are to remain unchanged, the tests will begin executing
immediately. Answering Y <RETURN> to this prompt at any
time will allow the test sequence and control
parameters to be changed before the tests are executed.

If the test sequence and control ﬁarameters are to be
changed, the diagnostic will prompt with:

Run standard test sequence (Y/N) ?

If you answer Y <KRETURN>, the standard test sequence
will be selected. The standard test sequence consists
of tests 1 & 2. (See the Test Descriptions section of
this document for a detailed description of each test.)
If you answer N <RETURN>, the diagnostic will allow the
test sequence to be changed before the tests are
executed.

AWS Diagnostics 9-11

9-12

If the test sequence is to be changed, the diagnostic
will display a menu of the available tests and prompt
with:

Enter test # followed by RETURN,
or just RETURN to end selections.

Test # to run

Type in the number of the test that you wish to run,
followed by <RETURN>. A beep is sounded if no such test
number exists. The tests may be entered in any sequence
desired, and may be repeated within the sequence. A
maximum of 2 tests is allowed in the sequence. The test
entering mode may be exited either by entering 2 tests,
or by entering <RETURN> with no test number.

Once the test sequence has been defined, the diagnostic
will afford the opportunity to change certain control
parameters. (See the Control Parameters section of this
document for a detailed description of each parameter.)
The diagnostic will prompt with:

Enter new parameter value, followed by <RETURN>,
just <RETURN> to leave the current value unchanged,
or <GO> to begin tests.

The diagnostic will then 1list a parameter and its
current value, and will prompt for a new value.
Answering <RETURN> will keep the current value of the
parameter unchanged. Answering [value]l<RETURN> will
make [value] the new value for the parameter. If
[value] 1is inappropriate for the given parameter, a
beep will be sounded, and you will be prompted to
reenter the parameter value. After keeping or changing
the value for a parameter, the diagnostic will 1list the
next parameter for examination or modification. After
the last parameter has been examined or modified, the
diagnostic will start over with the first parameter.
Answering <GO> whenever the diagnostic prompts for a
parameter value will finish the parameter modification
and start execution of the tests. It is not necessary
to examine or modify all of the parameters prior to
test execution. The diagnostic will use the most recent
set of parameters.

As the tests are executed, the diagnostic will display

and update the test being run and the current test
sequence pass.

System Programmer's Guide

At any time during the execution of the tests, pressing
<FINISH> will abort the execution of the test in
progress and restart the diagnostic. Pressing any other
key (except <GO>) will suspend the execution of the
test in progress. After suspending the test execution,
the diagnostic will prompt with:

Testing suspended...
Press <GO> to resume, <FINISH> to terminate

Pressing <GO> will resume testing at the point where it
was suspended. Pressing <FINISH> will terminate the
test in progress and retart the diagnostic.

Should a malfunction occur, the error detected and the
current printer port status will be displayed.
Depending on the operating parameters selected, the
testing will either be continued or aborted at this
time.

AWS Diagnostics 9-13

Test Descriptions
Test 1 --- Barber pole - No interrupts

This test outputs one page (66 lines of 132 columns) of
a test pattern consisting of all 96 printable ASCII
characters. Each successive 1line is shifted one
character to the 1left, resulting in a 'barber pole'
pattern. Before the test pattern is transmitted, the
status of the printer is checked. If the printer is
busy, not selected, or the printer buffer is busy, an
error will be flagged, and the test suspended. If the
printer status is ok, the diagnostic will then transmit
the test pattern. After each character is transmitted
to the printer, the diagnostic polls the printer
status. If the printer buffer does not become free to
accept another character before the maximum wait time
(see the Parameter Descriptions section of this
document for details), an error is flagged and the test
is suspended.

Test 2 --- Barber pole - Interrupts

This test is identical to test 1, except that after a
character is transmitted to the printer, instead of
polling the printer status, the diagnostic waits for an
interrupt to be generated by the printer acknowledge,
signifying that the printer is ready to receive another
character. If the interrupt is not received before the
maximum wait time (see the Parameter Descriptions
section of this document for details), or the printer
Status shows the printer is still busy after the
interrupt, an error 1is flagged, and the test is
suspended.

Test 3 -—-- Printer function tests

This test allows any sequence of hex character or
control codes to be output to the printer. The
diagnostic prompts to input a hex control code. The
code may be entered from the keyboard as 1 or 2 hex
digits, followed by <RETURN>. An invalid hex entry will
cause a beep to be sounded and the prompt re-issued.
The code will be transmitted to the printer
immediately, and the diagnostic will then wait for a
printer acknowledge interrupt, signifying that the
printer is ready to receive another character. If the
interrupt is received before the maximum wait time (see
the Parameter Descriptions section of this document for
details) and the printer status shows the printer not

9-14 System Programmer's Guide

busy after the interrupt, the diagnostic will prompt to
input another control code. The test may be exited at
any time by pressing <KFINISH> when prompted to enter a
control code. If a printer acknowledge interrupt is not
received before the maximum wait time, or the printer
status shows the printer busy after the acknowledge
interrupt, an error 1is flagged and the test is
suspended.

AWS Diagnostics 9-15

Parameter Descriptions
Times to run Default value [1]

Determines how many times the selected test sequence
will run (how many passes). The test sequence will be
run this many times, or until an error occurs.
Parameter value may be any decimal number from 1 to
9999,

Max printer wait time (ms) Default value [6000]

Determines the maximum time (in milliseconds) the
diagnostic should wait for the printer to become ready
to accept another character before declaring that an
error has occurred. In test 1, this is the maximum time
that the diagnostic should spend polling the printer
status. In tests 2 & 3, this is the maximum time that
the diagnostic should spend waiting for an acknowledge
interrupt from the printer. Parameter value may be any
decimal number from @ to 9999, however, the minimum
must be at least as long as the time required for the
printer to execute its slowest function (usually a full
page form feed), or false timeout errors will be
flagged.

Software debug Default value [NO]

Determines if the debugger may be entered after an
error 1is detected. After an error is detected and
displayed, if this option is selected, the diagnostic
will prompt with:

Debug ?
Answer with Y <RETURN> if you wish to enter the

debugger at this time. Answer with N <RETURN> if not.
Parameter value may be YES or NO.

Bypass errors & continue Default value [NO]

Determines if the testing may be continued after the
detection of an error. After an error is detected and
displayed, if this option is selected, the diagnostic
will prompt with:

Ignore error & continue ?

9-16 System Programmer's Guide

Answer with Y <RETURN> if you wish the testing to
continue where it left off when the error was detected.
Answer with N <RETURN> if you wish the testing to be

aborted and the diagnostic restarted. Parameter value
may be YES or NO.

AWS Diagnostics 9-17

Error Message Format

9-18

If a malfunction should occur, and the diagnostic
detects an error during testing, an error message will
be displayed and testing will be suspended. The error
message displayed contains two sections: the error
message, and the printer status.

The error message section is a brief explanation of the
type of error that was detected by the diagnostic (e.g.
>>> Timeout waiting for printer interrupt <<<).

The printer status section displays the status of the
printer port at the time of the error. Each status port
bit is displayed (bit function and actual state).

System Programmer's Guide

AWS-220/230 Floppy Diagnostic

Preface

Overview

Operation

This description of the floppy disk diagnostic is not,
in itself, sufficient to enable troubleshooting of a
malfunctioning floppy disk controller or drive. Refer
to the AWS-220/23¢ Hardware Manuals for information on
the Floppy Disk Controller. This information
(especially the instruction set of the uPD765 and the
format of the main status register and other status
registers) is wvital to understanding the status
information included in error messages.

This description is sufficiently self-contained,
however, to permit the reader to perform an extensive
battery of tests and to determine whether the floppy
disk subsystem 1is performing correctly or requires
remedial attention.

The objective of the AWS Floppy Disk Diagnostic is to
test the floppy disk controller and drives, and (in the
event of a malfunction) locate and identify the cause
of the malfunction as completely as possible.

Any or all floppy drives on the system may be tested by
the diagnostic. The diagnostic also pre-tests the area
of memory that will be used as the disk I/0O buffer &
reports any errors found. The diagnostic assumes that
the processor, memory (other than that in the buffer),
8237-2 DMA Controller, and the 8259A Interrupt
Controller are all functioning properly.

There are several tests and functions that may be run
in the diagnostic. The sequence of tests to be run may
be selected by the operator. In addition, there are
several parameters controlling the operation of the
diagnostic program that may be modified by the
operator.

When first loaded, the AWS Floppy Disk Diagnostic
announces itself with:

AWS Floppy Disk Diagnostic Rev x.y
Copyright 1981 by Convergent Technologies Inc.

AWS Diagnostics 9-19

9-2¢

Change Parameters (Y/N) ?

If you answer N <RETURN> when the diagnostic has just
been loaded, the standard test sequence will be run
with a default set of control parameters. Answering
N <RETURN> on subsequent runs of the diagnostic will
use the previously selected test sequence and control
parameters. If the test sequence and control parameters
are to remain unchanged, the tests will begin executing
immediately. Answering Y <RETURN> to this prompt at any
time will allow the test sequence and control
parameters to be changed before the tests are executed.

If the test sequence and control parameters are to be
changed, the diagnostic will prompt with:

Run standard test sequence (Y/N) ?

If you answer Y <RETURN>, the standard test sequence
will be selected. The standard test sequence consists
of tests 1, 2, 3, 4, 5, 6, 7 & 8. (See the Test
Descriptions section of this document for a detailed
description of each test.) If you answer N <RETURN>,
the diagnostic will allow the test sequence to be
changed before the tests are executed.

If the test sequence is to be changed, the diagnostic
will display a menu of the available tests and
functions and prompt with:

Enter test # followed by RETURN,
or just RETURN to end selections.

Test # to run

Type in the number of the test that you wish to run,
followed by <RETURN>. A beep is sounded if no such test
number exists. The tests may be entered in any sequence
desired, and may be repeated within the sequence. A
maximum of 8 tests is allowed in the sequence. The test
entering mode may be exited either by entering 8 tests,
or by entering <RETURN> with no test number.

Once the test sequence has been defined, the diagnostic
will afford the opportunity to change certain control
parameters. (See the Control Parameters section of this
document for a detailed description of each parameter.)
The diagnostic will prompt with:

System Programmer's Guide

Enter new parameter value, followed by <KRETURN>,
just <RETURN> to leave the current value unchanged,
or <GO> to begin tests.

The diagnostic will then 1list a parameter and its
current value, and will prompt for a new value.
Answering <RETURN> will keep the current value of the
parameter unchanged. Answering [value]l<RETURN> will
make [value] the new value for the parameter. 1If
[value] 1is 1inappropriate for the given parameter, a
beep will be sounded, and you will be prompted to
reenter the parameter value. After keeping or changing
the value for a parameter, the diagnostic will list the
next parameter for examination or modification. After
the last parameter has been examined or modified, the
diagnostic will start over with the first parameter.
Answering <GO> whenever the diagnostic prompts for a
parameter value will finish the parameter modification
and start execution of the tests. It is not necessary
to examine or modify all of the parameters prior to
test execution. The diagnostic will use the most recent
set of parameters.

As the tests are executed, the diagnostic will display
and update the test being run and the current test

sequence pass.
At any time during the execution of the tests, pressing

<FINISH> will abort the execution of the test in
progress and restart the diagnostic. Pressing any other
key (except <GO>) will suspend the execution of the
test in progress. After suspending the test execution,
the diagnostic will prompt with:

Testing suspended...
Press <GO> to resume, <FINISH> to terminate

Pressing <GO> will resume testing at the point where it
was suspended. Pressing <FINISH> will terminate the
test in progress and retart the diagnostic.

Should a malfunction occur, the error detected and the
current floppy controller status will be displayed.
Depending on the operating parameters selected, the
testing will either be continued or aborted at this
time.

AWS Diagnostics 9-21

Test and Function Descriptions

Test 1 - Selection

Test

The selection test verifies the basic functioning of
the processor / floppy interface by reading the status
of the selected drive. If the selected drive does not
have a floppy 1inserted and the door closed, then
message 'Drive not ready' will be displayed. If the
floppy being tested has a write protect tab applied,
the message 'Write protect set for drive n' |is
displayed. Any other errors detected are also
displayed.

2 - Recalibrate

This test <check the basic function of the head
positioning mechanism and track zero sensor. The test
first 1initializes the floppy interface, 1issuing a
recalibrate command to the floppy controller in the
process. The test then 1issues a command to step the
head inward to the center of the disk. The test finally
issues another recalibrate command, stepping the head
to track #. Any errors detected are displayed.

Test 3 - Seek sequential

Test

This test checks the function of the head positioning
mechanism by stepping the head from track @ to the
innermost track on the disk, one track at a time. Any
errors detected are displayed.

4 - Seek random

This test checks the function of the head positioning
mechanism by stepping the head from track TPD/2 to
track TPD/2-1 to track TPD/2+1 to track TPD/2-2 to
track TPD/2+2 etc... Where TPD is the number of tracks
per disk. Any errors detected are displayed.

Test 5 - Format

9

22

This test formats the diskette(s) 1in the selected
drive(s). The diskettes are formatted a track at a
time. Data is first written to the disk, and then read
back, to verify it. The format used is spiraled, that

System Programmer's Guide

is, 1logical sector 1 on each track 1is 1located 3
physical sectors farther from the index hole than
logical sector 1 on the previous track. If the disk is
double sided, both sides of each track are formatted
before the head is moved to the mext track.

Test 6 - Sequential write/read Single sectors

This test writes data to each sector on a track, one
sector at a time. First, the odd numbered 1logical
sectors are written, using the filler data (See the
Operating Parameters section of this document for
details). Then the even numbered logical sectors are
written, using the one's compliment of the filler data.
After all the sectors on the track are written, the
data in each sector 1is verified against the data
written. The test is repeated on three tracks, track g,
track TPD/2 and track TPD-1, where TPD is the number of
tracks per disk. If the disk 1is double sided, both
sides of each track are tested before the head is moved
to the next track. Any errors detected are displayed.

Test 7 - Random write/read Single sectors

This test is the same as test 6, except that all tracks
are tested, in the same order as in test 4.

Test 8 - Sequential write/read Multiple sectors

This test writes data to each sector on a track, one
half track at a time. First, sectors 1 to SPT/2 are
written, using the filler data (See the Operating
Parameters section of this document for details). Then
sectors SPT/2+1 to SPT are written, using the one's
compliment of the filler data. SPT is the number of
sectors per track on the disk. The data in each sector
is then verified against the data written. If the disk
is double sided, both sides of each track are tested
before the head is moved to the next track. Any errors
detected are displayed.

Test 9 - Ready/Not-ready interrupt
This test verifies that the opening and closing of the

floppy drive door causes an interrupt with the proper
drive status. The test first prompts to make the drive

AWS Diagnostics 9-23

not ready, by opening the door. The test expects this
to be accomplished within 30 seconds. If the interrupt
is not received within the time allotted, or the drive
status is incorrect after the interrupt is received, an
error will be displayed. If all goes well opening the
door, the test then prompts to make the drive ready
again, by opening the door. The test also expects this
to be accomplished within 30 seconds. Likewise, if this
interrupt is not received within the allotted time, or
the drive status is incorrect after the interrupt, an
error will be displayed.

Function 18 - Read a track

This function reads an entire track into the DMA
buffer, and displays it 256 bytes at a time. The test
prompts for a cylinder number and, if the disk is
double sided, a head number. Any invalid entries will
be flagged. Enter just '<RETURN>' to the cylinder
number prompt to exit the function. The track specified
will then be read into the buffer, and the first 256
bytes will be displayed. The test will prompt with
'More ?'. Answer with 'Y <KRETURN>' to display the next
256 bytes in the buffer. Answer with 'N <RETURN>' to
read another track.

Function 11 - Display/Modify

9-24

This function allows you to display, and optionaly,
modify any sector on the disk. The test prompts for a
cylinder number, a sector number, and, if the disk is
double sided, a head number. Any invalid entries will
be flagged. Enter Jjust '<RETURN>' to the cylinder
number prompt to exit the function. The sector
specified will be read into the DMA buffer, and the
first 256 bytes will be displayed. The test will prompt
with 'More ?'. Answer with 'Y <RETURN>' to display the
next 256 bytes in the buffer. Answer with 'N <RETURN>'
to continue the test. The test then prompts with
'Modify ?'. Answer 'N <RETURN>' to inspect another
sector or exit the test. Answer 'Y <RETURN>' 1if you
wish to modify the sector. The test will prompt with
'Byte ?'. Enter the decimal number of the byte you wish
to modify, or just return to quit making changes. The
test will then display the byte number and 1its hex
value. Enter a new hex value for the byte followed by
'<{RETURN>' if you wish to change the byte, or Jjust
'<RETURN>' if you do not wish to change the byte. After
you have completed modifying the sector, the test will
prompt with 'Write sector ?'. Answer with 'Y <RETURN>'

System Programmer's Guide

if you wish the sector to be re-written with the
modified data, and with 'N <RETURN>' if you do not wish
to re-write the sector.

Function 12 - Copy

This function copies the entire contents of one
diskette onto another. The source and destination
drives are determined by the initial 'Drives to test ?°
prompt when the diagnostic was first started. The
source drive 1s the first drive specified, and the
destination drive is the second drive specified. The
destination diskette must be formatted (using test 5 or
some other means...) prior to attempting to copy to it.
After eack track is written to the destination disk, it
is verified against the data on the source disk. If the
disk is double sided, both sides of the diskette is
copied and verified before the head is moved to the
next track.

Function 13 - Read ID

This function reads the ID field of the next sector to
pass under the read/write head. The test prompts for
the cylinder number, and if the disk is double sided,
for the head number.

Note: Functions 14, 15 & 16 are designed to support
troubleshooting using test equipment.

Function 14 - Format loop

This function continuously formats one track on the
disk. The test prompts for the cylinder number, and if
the disk is double sided, the head number. This test
runs continuously until '<FINISH>' is pressed.

Function 15 - Read loop

This function continuously reads one track on the disk.
The test prompts for the cylinder number, and if the
disk is double sided, the head number. This test runs
continuously until '<FINISH>' is pressed.

AWS Diagnostics 9-25

Function 16 - Read loop

This function continuously writes one track on the
disk. The test prompts for the cylinder number, and if
the disk is double sided, the head number. This test
runs continuously until '<FINISH>' is pressed.

Function 17 - Compare

9-26

This function compares the data on two diskettes. It is
the same as the verify portion of the copy function

(Function 12).

System Programmer's Guide

Parameter Descriptions
Times to run Default value [1]

Determines how many times the selected test sequence
will run (how many passes). The test sequence will be
run this many times, or until an error occurs.

Parameter value may be any decimal number from 1 to
9999.

Output to line printer Default value [No]

Determines if the information displayed on the screen
during the course of running the diagnostic will also
be echoed on the line printer port. If no printer is
plugged in, or the printer plugged in fails to become
on-line and ready in 10 seconds, an error message is
displayed on the screen, and the operator is prompted
to either try the printer again, or stop echoing.

Page breaks Default value [No]

Determines if the diagnostic will pause and wait for a
keyboard input each time the screen becomes filled with
information.

Halt on: error Default value [Yes]

Determines if testing is to be halted after a non-
recoverable error has occurred. If set to 'No', testing
will be continued even after a non recoverable error
has occurred.

Suppress error printouts Default value [No]

Determines if the floppy controller status is to be
printed each time an error occurs.

Use interrupts Default value [Yes]

Determines if all floppy status checking should be done
by using interrupts from the floppy controller, or by
polling the floppy controller.

AWS Diagnostics 9-27

Retry count Default value [4]

Determines the number of times a read or write
operation is to be retried in the event of an error.

Filler data Default value [55h]

Specifies the data to be written in each byte of a
sector in any format or write operation.

Buffer segment address lo / hi
Buffer offset address lo / hi Default value [varies]

The four parameters together determine the starting
address of the block of memory to be used as the DMA
buffer for all disk I/0. The buffer size is computed as
follows :

BufferSize = BytesPerSector * SectorsPerTrack

The buffer must be word aligned, and must not cross a
64k memory boundary, due to DMA hardware limitations.
If the Dbuffer parameters entered violate these
conditions, an error will be flagged, and the
diagnostics will be restarted, allowing the parameters
to be changed.

Max seek wait time (ms) Default value [4000]

Determines the maximum time (in milliseconds) the
diagnostic should wait for the floppy disk drive to
finish any operation before declaring that an error has
occurred. Parameter value may be any decimal number
from @ to 9999, however, the minimum must be at least
as long as the time required for the floppy disk drive
to execute a full disk seek, or false timeout errors
will be flagged.

Bypass errors & continue Default value [NO]
Determines if the testing may be continued after the
detection of an error. After an error is detected and
displayed, if this option is selected, the diagnostic
will prompt with:

Ignore error & continue ?

9-28 System Programmer's Guide

Answer with Y <RETURN> if you wish the testing to
continue where it left off when the error was detected.
Answer with N <RETURN> if you wish the testing to be
aborted and the diagnostic restarted. Parameter value
may be YES or NO.

Software debug Default value [NO]

Determines 1if the debugger may be entered after an
error 1is detected. After an error is detected and
displayed, if this option is selected, the diagnostic
will prompt with:

Debug ?

Answer with Y <KRETURN> if vyou wish to enter the
debugger at this time. Answer with N <RETURN> if not.
Parameter value may be YES or NO.

The remaining parameters are very interdependent, and should be
changed only by those who have a thorough knowledge of the disk
controller.

Sector size code

Gap length (read/write)

Gap length (format)

First byte of Specify parameters
Second byte of Specify parameters
Data length

Bytes per sector

Sectors per track

Tracks per cylinder

Cylinders per disk

Loop on error

Halt while waiting

Ignore end of cylinder status

AWS Diagnostics 9-29

Error Message Format

9-30

When an error is detected by one of the diagnostic
tests or functions, a brief description of the error
detected is displayed, followed by the status of the
floppy disk interface. The status information includes
any or all of the following that are currently in
effect or are abnormal:

1) The floppy controller command most recently
executed. The command is displayed as a string of hex
bytes.

2) The contents of the working main status register of
the floppy controller, as of the most recent command.

3) The status bytes returned by the floppy controller
from the most recent command.

4) The interrupt main status byte from the £floppy
cotroller, from the most recent interrupt.

5) The 1Interrupt working main status byte from the
floppy controller, from the most recent interrupt.

6) The Interrupt status bytes returned by the floppy
controller from the most recent interrupt.

7) The residual byte count from the last DMA transfer.

8) The number of soft errors that have occurred during
the execution of the current command.

9) The number of hard errors that have occurred during
the execution of the current command.

19) The total number of interrupts received during the
execution of the current pass of the current test or
function.

The interpretation of the bytes displayed in items 1-6
above may be found in the product data sheets for the
NEC uPD765 floppy disk controller.

System Programmer's Guide

AWS-240 Disk Diagnostic

CAUTION

Preface

Overview

Operation

The Disk diagnostic erases all files from the disk.

This description of the disk diagnostic is not, in
itself, sufficient to enable troubleshooting of a
malfunctioning disk controller or drive. Refer to the
Peripherals Hardware Manual for information on the
AWS-240 Disk Controller. This information (especially
the format of the main status register and other status
registers) is wvital to wunderstanding the status
information included in error messages.

This description is sufficiently self-contained, how-
ever, to permit the reader to perform an extensive
battery of tests and to determine whether the
Winchester disk subsystem is performing correctly or
requires remedial attention.

The objective of the Disk Diagnostic is to exercise all
functions of the disk controller and both winchester
and floppy disk drives. 1In the event of a malfunction,
it will identify the failing function and mode of
failure as completely as possible.

In addition to testing the disk controller and
drives, the diagnostic pre-tests the area of memory
which it is going to use as a buffer and is prepared to
detect and report non-maskable (type 2) interrupts and
all wvarieties of extraneous interrupts. The disk
diagnostic depends on the correct operation of the
processor, memory, and the 8237-2 DMA controller.
Unless explicitly requested otherwise, it also depends
on the 8259A interrupt controller.

When first 1loaded, the Disk Diagnostic announces
itself:

DIGSK DIAGNOSTTIC Rev X.Y

AWS Diagnostics 9-31

9-32

CAUTTION
All files on disk will be erased.
Drive # to test :

Type in the drive number to be tested followed by
<RETURN>. The drive number should be 06, 1, 2, or 3.
After the drive number 1is entered, Winchester Disk
Diagnostic will display the parameters associated with
the drive, that 1is, number of cylinders, number of
heads, and number of sectors per track. Then you are
prompted:

Change Parameters (Y/N)?

If you answer N <RETURN> the standard test sequence
will be run on the drive specified. Answer Y <RETURN>
to select the test sequence or non-standard parameter
settings.You are prompted:

Run standard test sequence?

Answer Y <RETURN> to run the test sequence (1, 2, 3,
4, 5, 6, 7, 8, and 18) on the drive you selected. The
tests are itemized below. Answer N <RETURN> to select
your own test sequence. You are prompted with:

Display test menu?

Enter Y <RETURN> if you want to see the 1list of
available tests listed on the screen. You are prompted:

test # to run:

Type in each test number that you wish to run followed
by <RETURN>. A beep is sounded if no such test number
exists. When you have specified the test sequence to
run, type <RETURN>.

System Programmer's Guide

Test

Test

Test

Test

Test

Test

Test

Descriptions

1

Selection

The selection test asserts basic functioning of the
processor / disk interface by reading the selected
drive's status.

Recalibrate
This test checks out the recalibrate command. The test

issues a "recalibrate" command followed by a "seek"
command to the last cylinder of the disk.

Seek Sequential

This test seeks from cylinder @ to the last cylinder a
cylinder at a time and reports any error conditions.

Seek Random

This test seeks to cylinders ¢, n-1, 1, n-2, ... n/2,
ag.

Format Disk

The media on the selected drive is formatted. Any
error conditions are reported.

Write/Read Single Sectors

This test selects three cylinders to test: the cylinder
@, the last cylinder, and the cylinder in the middle.
Each sector on these three cylinders is written one at
a time on each cylinder. The order the sectors within a
track is 1, 3, 5, ... 2, 4, 6 ... Random data is used.
After each cylinder is written, the data in each sector
is verified.

Test 7 - Random Write/Read Multiple Sectors

AWS Diagnostics 9-33

This test writes to the entire disk a track at a time.
Random data is used. After each track is written, the
data are verified. The order of cylinders written is &,
l’l—l, 1, n°2, oo e

Test 8 - Sequential Write/Read Multiple Sectors

This test is the same as Test 7, execept that the order
of cylinders written is @, 1, 2, 3, 4, 5 ...

Test 9 - Get Drive Parameters

This test issues the 'Drive configuration command' and
displays the 6 bytes of drive parameters.

Test 10 - Write / Read Beyond Head/Cylinder Boundary

This test 1is similar to test 8 except that each
write/read goes over a track boundary.

Test 11 - Sequential Write / Read Single Sectors

Each sector on the disk is written one at a time on
each cylinder. The order the sectors within a track is
1, 3, 5, «.. 2, 4, 6 ... Random Data is used. After
each cylinder is written, the data in each sector is
verified.

Test 12 - Invalid head & cylinder

This test issues a seek to a cylinder with an illegal
head number. It then issues a seek to an invalid
cylinder number. The resulting status messages are
displayed on the screen.

Test 13 - Display/Modify a Sector

This test allows you to read and optionally modify a
selected sector. You are prompted with:

Action(read data- @ OR <CR>», read ID- 1)? <hex>:

Type in the function you wish to perform.

9-34 System Programmer's Guide

cylinder? <hex>:

Type in a hexdecimal number from @ to the number of
cylinders on the disk followed by <RETURN>. Type <GO>
if you wish to exit this test. You are prompted with:

head? <hex>:
Type @ to 3 followed by <RETURN>.
sector? <hex>:

Type a hexdecimal number from 1 to the number of
sectors on a cylinder followed by <RETURN>. The first
256 bytes of the sector will be displayed. You will be

prompted with:

more?

Type Y <KRETURN> if you wish to see the next 256 bytes
of the sector, type N <RETURN> if you do not. You will
then asked if you wish to modify the sector:

modify?

Type N <RETURN> to see another sector. If you type Y
<RETURN>, vyou are again prompted with "cylinder:",
"head", "sector". Type in <RETURN> for each if you
wish to write the modified contents to the same sector.
You can copy the contents to another sector by changing
any or all the values. If you type N <RETURN>, you will
be prompted once again with 'action(read data- @ OR
<CR>, read ID- 1)'. Type Y <RETURN> if you wish to
modify selected bytes in the sector. You will be
prompted with:

byte :

Type a decimal byte number from @ to 511. The current
value of the byte will be displayed in hex:

XX

Type the new hexadecimal value for the byte followed by
<RETURN>, Type just <RETURN> if you want do not want

to modify the byte. The prompt "byte :" will continue
until you type <RETURN> only. You will then be asked:

Write sector?
Type Y <RETURN> if you wish to write the sector to
disk; type N <RETURN> otherwise. If Y <RETURN> is

typed, you will again be prompted with "Action(read
data- @ OR <CR>, read ID- 1)". Type just GO if you

AWS Diagnostics 9-35

Test 14

wish to end this test. If N <RETURN> is typed, this
test will exit.

Command looping

This test allows you to prepare a loop of individual
commands to the controller. This test is intended to
be used primarily with special test equipment.

Test 15 - Get Diagnostics

Test 16

9-36

It is not currently supported.

Sequential Write/Read Single Sectors II

This test is similar to test 6 except each word in a
sector is written with its own word index number in the
sector, This test is useful to detect any
cylinder/head addressing problems with the drive.

System Programmer's Guide

Parameter

Prompts

After the test sequence is selected, you are able to
vary certain test parameters. Certain ones should be
modified with great care since they can either cause
the diagnostic to incorrectly report failure, or cause
the diagnostic to crash. You can leave the default
setting of a parameter by entering just <RETURN>, or
change the value by entering a new value followed by
<RETURN>. You will hear a beep if the parameter value
you specified is incorrect (e.g. typing in "maybe" to a
yes/no question. You now have the opportunity to
change various parameters. You are prompted with:

THE FOLLOWING PARAMETERS ARE AVAILABLE FOR CHANGE
<RETURN> to leave the parameter unchanged,
<GO> to begin tests.

Press <GO> when you are ready to start the tests. The
parameters are:

times to run:

output to

The default value is 1. The test sequence which you
entered will run for this number of times unless an
error occurs or you press <FINISH> to interrupt the
test.

line printer:

The default is NO. Specify Y <RETURN> if you wish to
monitor the test output to the line printer.

page breaks:

The default is NO. Specify Y <KRETURN> if you wish to be
prompted with "Press NEXT PAGE to continue" each time
there is a full page of text on the video.

halt on error:

The default 1is NO. Any data error which 1is not
recoverable after the specified amount of retries (see
below) will not cause the test sequencing to be
aborted. However the test sequence will stop if some
disk controller errors are detected. Specify Y <RETURN>

AWS Diagnostics 9-37

to stop the test sequence even on hard (non-
recoverable) data errors.

suppress error printouts:

The default is NO. Type Y <RETURN> if you do not wish
to see the disk status messages on each error.

use interrupts:

The default is YES. Type N <RETURN> if you wish for
all disk interaction to proceed using status checking
strategies instead of interrupts.

retry count:

The default is 4. Specify a new decimal number
followed by <RETURN> to indicate the number of retries
to be performed on any data read/write error.

filler data -- format parameter:

The default is 39h. This parameter specifies the byte
value written in each sector when the disk is formatted
(test 5).

loop on error:

The default is NO. This default should be changed only
by qualified hardware personnel.

buffer address high byte:
second byte:

third byte:

buffer address 1low byte:

The above four parameters specify the buffer address to
be used for all read/write transactions. This
parameter allows testing of DMA transfers to/from high
memory addresses. Do not specify an odd address or an
address lower than the default.

9-38 System Programmer's Guide

Operation

The remaining parameters are very interdependent and
should be changed only by people who are have a
thorough knowledge of the disk controller.

offset -- Format parameter
space -- Format parameter
bytes per sector

sectors per track

tracks per cylinder
cylinders per disk

maximum seek time

maximum I/O completion time
perform seek before read/write
halt while waiting

software debug

read diagnostics

change dma word count

Each test in the sequence will be performed on the
drive specified. To abort the testing, press and hold
any key on the keyboard while a test is in progress.
The test stops and you are prompted with:

Press GO to continue, FINISH to terminate the test.

Press FINISH to restart the diagnostic and to select a
new test sequence and/or parameters.

Incomplete Data Transfer

In tests 6, 7, 8, 10, 11, 13, 15, and 18, if a residual
dma count 1s deteced after the data transfer, the
message "Incomplete data transfer" is displayed and
the test continues. This indicates a transient error
which is automatically corrected by the Operating
System and may therefore be safely ignored. (The value
of the residual byte count can be displayed by setting
the "Halt on error" parameter to "YES" and rerunning
the test.)

AWS Diagnostics 9-39

Communications Diagnostic

The objective of the AWS Communications Diagnostic is
to test the Multi-Protocall Serial Communications
Controller (MPSC) and its supporting logic, and (in the
event of a malfunction) locate and identify the cause
of the malfunction as completely as possible.

Both channels of the MPSC may be exercised in several
different modes of operation. All combinations of
operating parameters that are appropriate for each mode
of operation are automatically tested. In addition,
there are several parameters controlling the operation
of the diagnostic program that may be modified by the
operator.

The diagnostic requires that each channel tested be
looped back externally. The loopback requirements are
described below.

Loopback Requirements

Operation

In order for the diagnostic to operate properly, each
channel to be tested must be 1looped back to itself
externally. The following pins on the external RS-232
connectors must be connected to each other as follows:

Outputs (Pin #) Inputs (Pin #)
TXD (2) —-————————————— RxD (3)
RTS (4) ————==—=—= +--- CTS (5)

+--— CD (8)
DTR (20) =———=————=v +-—— DSR (6)
+-—— RI (22)

STD (14) ==—===——————em SRD (16)

When first loaded, the AWS Communications Diagnostic
announces itself with:

AWS Communications Diagnostic Rev X.y
Copyright 1981 by Convergent Technologies Inc.

Change Parameters (Y/N) ?

9-49 System Programmer's Guide

If you answer N <RETURN> when the diagnostic has just
been loaded, the standard test sequence will be run on
both communications channels with a default set of
control parameters. Answering N <RETURN> on subsequent
runs of the diagnostic will use the previously selected
test sequence and control parameters. If the test
sequence and control parameters are to remain
unchanged, the tests will begin executing immediately.
Answering Y <RETURN> to this prompt at any time will
allow the test sequence and control parameters to be
changed before the tests are executed.

If the tests and control parameters are to be changed,
the diagnostic will prompt with:

Run standard test sequence (Y/N) ?

If you answer Y <RETURN>, the standard test sequence
will be selected. The standard test sequence consists
of tests 1, 2, 3, 4 & 5. (See the Test Descriptions
section of this document for a detailed description of
each test.) If you answer N <RETURN>, the diagnostic
will allow the test sequence to be changed before the
tests are executed.

If the test sequence is to be changed, the diagnostic
will display a menu of the available tests and prompt

with:

Enter test # followed by RETURN,
or just RETURN to end selections.

Test # to run

Type in the number of the test that you wish to run,
followed by <RETURN>. A beep is sounded if no such test
number exists. The tests may be entered in any sequence
desired, and may be repeated within the sequence. A
maximum of 5 tests is allowed in the sequence. The test
entering mode may be exited either by entering 5 tests,
or by entering <RETURN> with no test number.

Once the test sequence has been defined, the diagnostic
will afford the opportunity to change certain control
parameters. (See the Control Parameters section of this
document for a detailed description of each parameter.)
The diagnostic will prompt with:

AWS Diagnostics 9-41

9-42

Enter new parameter value, followed by <RETURN>,
just <RETURN> to leave the current value unchanged,
or <GO> to begin tests.

The diagnostic will then 1list a parameter and its
current value, and will prompt £for a new value.
Answering <RETURN> will keep the current value of the
parameter unchanged. Answering [value]<RETURN> will
make [value] the new value for the parameter. If
[value] 1is 1inappropriate for the given parameter, a
beep will be sounded, and you will be prompted to
reenter the parameter value. After keeping or changing
the value for a parameter, the diagnostic will list the
next parameter for examination or modification. After
the last parameter has been examined or modified, the
diagnostic will start over with the first parameter.
Answering <GO> whenever the diagnostic prompts for a
parameter value will finish the parameter modification
and start execution of the tests. It is not necessary
to examine or modify all of the parameters prior to
test execution. The diagnostic will use the most recent
set of parameters.

As the tests are executed, the diagnostic will display
and update the test being run, the current test
sequence pass being run, the channel currently being
tested, and the current set of test parameters being
used (if appropriate).

At any time during the execution of the tests, pressing
<FINISH> will abort the execution of the test in
progress and restart the diagnostic. Pressing any other
key (except <GO>) will suspend the execution of the
test in progress. After suspending the test execution,
the diagnostic will prompt with:

Testing suspended...
Press <GO> to resume, <FINISH> to terminate

Pressing <GO> will resume testing at the point where it
was suspended. Pressing <FINISH> will terminate the
test in progress and retart the diagnostic.

Should a malfunction occur, the error detected will be
displayed, a list of probable causes will be given, and
the current MPSC status will be displayed. Depending on
the operating parameters selected, the testing will
either be continued or aborted at this time.

System Programmer's Guide

Test Descriptions

Test 1 --- Static status tests

This test actually runs several sub-tests of increasing
complexity to test the basic Processor/MPSC/RS-232
interfaces. The first sub-test that is run checks the
interface between the Processor and the MPSC by writing
to and reading from control registers within the MPSC.
This sub-test determines if the Processor and the MPSC
can successfully communicate to each other. The second
sub-test that is run checks the interface between the
MPSC and the outside world (a la RS-232). Several
control 1lines are tested for proper loopback and
function. The signals tested are:

Data Terminal Ready
Request to Send

Clear to Send

Carrier Detect

Data Set Ready

Ring Indicator
Secondary Transmit Data
Secondary Receive Data

The third and final sub-test that 1is run checks the
same control signals as the second sub-test, but does
so using interrupts between the MPSC and the Processor.

Test 2 --- Asynchronous mode tests

This test transmits and receives data from the MPSC,
through the RS-232 transmitters, through the loopback,
through the RS-232 receivers and back into the MPSC.
The MPSC is initialized to transmit and receive data in
asynchronous format. The transmit data is obtained from
a transmit buffer, under interrupts, and the received
data 1is placed into a receive buffer, also under
interrupts. After all data in the transmit buffer has
been transmitted & received, the buffers are compared
for errors, and any found are displayed. Any other
errors detected during the execution of the test are
displayed when detected. All combinations of baud rate
(2400, 4800, 9600 and 1920@ baud), data length (5, 6,
7, and 8 bits), parity (none, odd and even parity), and
stop bits (1, 1 1/2 and 2) are tested.

Test 3 —--- Character sync CRC-16 tests

AWS Diagnostics 9-43

This test is the same as test 2 except that the MPSC is

initialized

to transmit and receive data in Bi-Sync

format with the CRC-16 CRC polynomial. The test is run

at each of

19209 baud).

several baud rates (2400, 4898, 9608 and
Data length is fixed at 8 bits and parity

is fixed at none during the tests.

Test 4 --- Bit sync data transfer tests

This test is the same as test 2 except that the MPSC is

initialized
sync format
run at each
2400 baud).

to transmit and receive data in SDLC bit
with the SDLC CRC polynomial. The test is
of several baud rates (309, 600, 1200 and
Data length is fixed at 8 bits and parity

is fixed at none during the tests.

Test 5 --- Bit sync abort / idle line tests

9-44

This test is the same as test 2 except that the MPSC is

initialized
sync format
run at each
249@ baud).
is fixed

to transmit and receive data in SDLC bit
with the SDLC CRC polynomial. The test is
of several baud rates (3080, 600, 1208 and
Data length is fixed at 8 bits and parity

at none during the tests. Normal data

transmission and reception is tested, as in test 4. In
addition, generation and recognition of an abort

transmission

sequence and restarting of the

transmission is tested.

System Programmer's Guide

Parameter Descriptions
Times to run Default value [1]

Determines how many times the selected test sequence
will run (how many passes). The test sequence will be
run this many times on each channel to be tested, or
until an error occurs. Parameter value may be any
decimal number from 1 to 9999.

Test Channel A ... Test Channel B Default value [YES]

Determines which channels to test. There 1is an
individual YES/NO parameter for each of channels A & B.
Parameter value may be YES or NO.

Max interrupt wait time (ms) Default value [200]

Determines the maximum time (in milliseconds) the
diagnostic should wait for an I/O interrupt before
declaring that an error has occurred. Parameter value
may be any decimal number from # to 9999, however, the
minimum must be at least as long as the transmission
time for a single character or false timeout errors
will be detected.

Echo on line printer Default value [NO]

Determines if all diagnostic dialogue should be copied
to the parallel 1line printer port as well as the
screen. If the dialogue is to be echoed to the printer,
and if at any time the printer is not plugged in, not
ready, or not on line for more than 1@ seconds, the
diagnostic will ask for permission to continue echoing
to the printer. The echo feature may be continued or
disabled at that time. Parameter value may be YES or
NO.

Software debug Default value [NO]

Determines if the debugger may be entered after an
error is detected. After an error is detected and
displayed, if this option is selected, the diagnostic
will prompt with:

Debug ?
Answer with Y <RETURN> if vyou wish to enter the

debugger at this time. Answer with N <RETURN> if not.
Parameter value may be YES or NO.

AWS Diagnostics 9-45

Bypass errors & continue Default value [NO]

Determines if the testing may be continued after the
detection of an error. After an error is detected and
displayed, if this option is selected, the diagnostic
will prompt with:

Ignore error & continue ?

Answer with Y <RETURN> if you wish the testing to
continue where it left off when the error was detected.
Answer with N <RETURN> if you wish the testing to be
aborted and the diagnostic restarted. Parameter value
may be YES or NO.

9-46 System Programmer's Guide

Error Screen Format

If a malfunction should occur, and the diagnostic
detects an error during testing, an error information
screen will be displayed. The screen contains much
information pertaining to the error that was detected.

The information given on the error information screen
is divided into several areas as outlined below:

e e +
e e +
|]Test information |
e +
o +
|Error information |
e e e e e ——————————— +
ettt +

|MPSC status information

o e e +
o e +
|[Extended status register information |
o e +
ettt +
|[Dialogue |
e +
e +

Test information section

The test information section contains details of the
test that was running when the error occurred. The test
number and name, the channel being tested, the test
sequence pass, and all test parameters at the time of
the error are displayed here.

Error information section

AWS Diagnostics 9-47

The error information section contains details of the
error condition that was detected. The actual error
that was detected (e.g. >>> Receive error - Data <K<K),
as well as the actual and expected test results (if
applicable for this error condition) are displayed
(e.g. Was - 35 Should be - 34).

Probable causes section

The probable causes section 1lists from 1 to 3
conditions that may have caused the error to occur. The
causes given are by no means the only possible things
that could or would cause the error detected. They do
however provide a starting point from which the cause
of the error may be located.

MPSC Status section

The MPSC status information section displays the status
of the MPSC channel being tested when the error
occurred. In addition to the actual state of each bit
in the MPSC status registers at the time of the error,
the expected state of each status register bit is given
(8, 1 or X (don't care)). A complete description of
each bit in the two MPSC status registers (RR@ and RR1)
may be found in the MPSC data sheets (Intel 8274 or NEC
7701) .

Extended status register information section

The extended status register information section
displays the information contained 1in the Extended
Communications Status Register at the time of the
error. The register contains information for both
communications channels, however, only the information
pertaining to the channel being tested is displayed. As
in the MPSC Status section of the error screen, both
the actual state of the each bit in the register at the
time of the error, and the expected state of each bit
is displayed.

Dialogue section

The dialogue section is where any dialogue with the

diagnostic program takes place. All requests for
debugging, continuing or aborting the testing (see the

9-48 System Programmer's Guide

Operating Parameters section of this document for
details) take place here.

AWS Diagnostics 9-49

14. TROUBLESHOOTING THE COMMIOP

The Convergent Cluster System contains 1 or 2
Communications I/O Processors (CommIOPs). The CommIOP

is an independent processor which communicates with the
master workstation by means of shared memory.

Any problems encountered by the CommIOP in its
communications lines or its own hardware are reported
to the master workstation. These are entered in the
System Error Log ([sys]l<sys>Log.sys). The contents of
the log can be printed with the PLog Utility (see
Utilities Manual).

The following is a list of messages which are logged
and suggested solutions:

CommIOPs not successfully loaded.

Error reading file [sys]<sys>CommIop>sysimage.sys

The CommIOP load file cannot be found or cannot be read
by the CTOS initialization. Make sure that the file
exists (if not, copy it from the CommIOP Installation
Diskette), and that it 1is un-protected (remove any
password on the file).

CommIOP n not successfully started.

Initialization error xxxx.

The CommIOP could not be loaded correctly. A list of
CommIOP error codes are listed below. Run the CommIOP
diagnostic to verify that it is correctly functioning.

CommIOP n crashed with error xxxx.

The CommIOP crashed during operation. A 1list of
CommIOP error codes are listed below. Run the CommIOP
diagnostic to verify that it is correctly functioning.

CommIOP carrier problem for line y.

The CommIOP detected line communication problems on the
specified line. Remove the cluster workstations one at
a time from the line until the message Commiop channel
restart after carrier problem for line y appears in the
log.

CommIOP Error Codes

The following is a 1list of error codes which are
returned by the CommIOP when any error conditions are
detected. Run the CommIOP diagnostic to isolate the
malfunction. Some error codes are not included in this
list since they are only returned by CommIOP test
functions and are of no other interest.

Troubleshooting the CommIOP 19-1

19-2

8601

8602

8603

83604

83605

8606

8607

8619

8615

8616

2199

219A

219B

219C

219D

219E

219F

21A2

21A7

21A8

CommIOP time out.

The CommIOP did not return completion
information within an allotted period of
time.

If you get this error at initialization,
the CommIOP is most probably not
functioning. If you get this error after
the CommIOP was started, make sure that
the CommIOP code file
[sys]<sys>CommIOP>sysimage.sys was not
corrupted.

Line not configured.
The communications 1line number 1f not
currently configured in the system.

Missing system image for CommIOP,.
Missing or un-readable 1load image for
CommIOP
([sys]<sys>CommIOP>SysImage.Sys).

CommIOP loading error.

The CommIOP could not be loaded
successfully.

Invalid CommIOP data structure,

The CommIOPs queues unexpectedly
overflowed. This 1is most probably a
software problem. Analyze the CommIOP
crash dump file.

CommIOP channel restart.
The CommIOP line was restarted following
a carrier problem.

CommIOP channel hold.

A problem on the CommIOP 1line was
discovered. All communications with the
cluster workstations are discontinued

until the problem 1is solved. This
problem usually requires human
intervention.

CommIOP command failure.
The CommIOP returned erroneous control
information to the master.

Bad Master Workstation to CommIOP
command.

The CommIOP did not recognize the
command from the master workstation.

CommIOP Boot Checksum failure.
The CommIOP checksum test failed while

System Programmer's Guide

8617

8618

8621

8622
8623

8624

8631

8632

8633

8634

8635

8636
8637

8641

21A9

21AA

21AD

21AE

21AF

21B9

21B7

21B8

21B9

21BA

21BB

21BC
21BD

21C1

loading its code file from the master
workstation.

CommIOP Stacker/destacker failure.

The Multibus interface hardware
(stacker/destacker) on the CommIOP is
not functional.

Bad CommIOP interrupt.

The CommIOP received an interrupt from
an unknown source,

CommIOP RAM failure in write / read
test.

CommIOP RAM failure. Illegal bit set.

CommIOP RAM failure. Illegal bit
cleared.

CommIOP RAM failure in addressing test.

CommIOP handler time out.

The CommIOP did not get proper status
information from the master workstation.
The most probable cause is a software
problem in the master workstation which
caused the Agent Process to be
permanently suspended.

CommIOP invalid check word.
The 'CHECK' word in the CommIOP queues
was invalid.

CommIOP RAM checksum error.

The CommIOP periodically checksums its
code area. This test failed during
operation. Run the memory test in the
CommIOP diagnostic.

Invalid CommIOP message.
The CommIOP received a message from the
master workstation which was invalid.

Invalid CommIOP buffer pointer.
The CommIOP received a memory address of
a buffer which is invalid.

CommIOP carrier problem.
CommIOQOP software inconsistency.

CommIOP timer failure.
The timer hardware on the CommIOP failed
the initialization tests.

Troubleshooting the CommIOP 19-3

19-4

8642 21C2

8643 21C3

8644 21C4

CommIOP DMA failure.
The DMA hardware on the CommIOP failed
the initialization tests.

CommIOP SIO static test failure.

The Communication hardware on the
CommIOP failed the static initialization
test.

CommIOP SIO functional test failure.
The Communication hardware on the
CommIOP failed the functional test.

System Programmer's Guide

USER'S COMMENT SHEET System Programmer's Guide
DP-100 A-09-00014-02-C

We welcome your comments and suggestions. They help us improve
our manuals. Please give specific page and paragraph references
whenever possible.

Does this manual provide the information you need? 1Is it at the
right level? What other types of manuals are needed?

Is this manual written clearly? What is unclear?

Is the format of this manual convenient in arrangement, in size?

Is this manual accurate? What is inaccurate?

Name Date
Title Phone
Company Name/Department

Address

City State Zip Code

[[] Please check here if you'd like a reply.

Thank you.
All comments become the property of Convergent Technologies, Inc.

Seal or tape for mailing - do not use staples

fold _

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1309 SANTA CLARA, CA.

" POSTAGE WILL BE PAID BY -

Convergent Technologie%m

2500 Augustine Drive
Santa Clara, Ca. 95051

ATTN: TECHNICAL PUBLICATIONS

fold

U

+=\ Convergent Technologies
2500 Augustine Drive, Santa Clara, CA 95051 e (408) 727- 8830
‘ Printed in U.S.A.

