CTOS/VM™ CONCEPTS

Copyright © 1987 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

First Edition (August 1987) 09-00945-01

All rights reserved. No part of this document may be reproduced, trans-
mitted, stored in a retrieval system, or translated into any language without
the prior written consent of Convergent Technologies, Inc.

Convergent Technologies makes no representations or warranties with respect
to the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. Further, Convergent
Technologies reserves the right to revise this publication and to make changes
from time to time in its content without being obligated to notify any person
of such revision or changes.

Convergent Technologies and NGEN are registered trademarks of
Convergent Technologies, Inc.

Art Designer, AutoBoot, Chart Designer, ClusterCard, ClusterNet,
ClusterShare, Context Manager/VM, Convergent, CT-DBMS, CT-MAIL,
CT-Net, CTIX, CTOS, CTOS/VM, DISTRIX, Document Designer, The
Operator, AWS, CWS, IWS, S/50, S/120, S/160, S/220, S/320, S/640,
S/1280, Multibus, TeleCluster, Voice/Data Services, Voice Processor,
WGS/Calendar, WGS/Desktop Manager, WGS/Mail, and X-Bus are
trademarks of Convergent Technologies, Inc.

CONTENTS

RELATED DOCUMENTATION.t eteeeeeencanenns xxvii

1 INTRODUCTION ...ttt eeeeeecencoccnncocncnnsns 1-1
WHAT IS CTOS/VM? .ttt ettt et e e 1-1
WHAT DOES CTOS/VM OFFER? 1-1
CTOS FEATURES ittt ii e 1-2

Multiprogramming 1-2
Multitasking 1-2
Event-Driven, Priority-Ordered
Process Scheduling 1-3
Messaged-Based Operation 1-3
Nationalization 1-4
CTOS/VM ENHANCEMENTS . .. vt iiiiiieeeeennn 1-4
Protected Mode Operation 1-4
Real Mode Operating System (RMOS) 1-4
Virtual 8086 Modeo .o... 1-5
Variable Partitions with Code
Sharing Capability 1-5
HOW THE OPERATING SYSTEM IS STRUCTURED .. 1-5
USING THIS MANUALt iii ittt iiiineenn 1-6
Organization 1-7
Chapter Ordering 1-8

2 OVERVIEW OF OPERATING SYSTEM CONCEPTS ...
OPERATING SYSTEM STRUCTURE
PrOCESS i ittt ittt e e
Kernel e e
Event-Driven Priority Scheduling..
Interprocess Communication (IPC)
Inter-CPU Communication (ICC)
Configurable Command Interpreter
Other Operating System Features
File System Management
Device Handlers
DISTRIBUTED ENVIRONMENT AND CLUSTERING
Local Resource-Sharing Networks
(Clusters)i i,
CT-Net Network

N NDDNDDNDDNDNDNDDNDDNDDNDNDN
1
OO Ul U1 U NDNDNDNE PR R R

NN
| |
o

Contents iii

OPERATING SYSTEM TYPES 2-8

Workstation Operating Systems 2-8
SRP Operating Systems 2-10
PROGRAM AND PARTITIONt uviiununennen. 2-11
SYSTEM MEMORY ORGANIZATION 2-12

Partition Managing Programs 2-14

SWapPing . ..o ii e 2-14

User Numbercuiiuuunnn.. 2-15
APPLICATION PARTITION MEMORY
ORGANIZATION . .t ittt ittt ettt et e e e et 2-17
VIRTUAL CODE MANAGEMENT FACILITY 2-18
FIXED AND VARIABLE PARTITIONS 2-18
CODE SHARINGttt ittt i i eeee e 2-18

3 USING CTOS/VM OPERATIONS ...vveeeeeenncnn -
ASSUMPTIONS . .t ittt ittt ettt et it e e e e -
NAMING CONVENTIONSt itittteeeeenn. -
INTERFACE . . . ittt e e e e e e e et e e e -

Format,

Example Statement
OPERATION TYPES ittt iieieen
Object Module Procedure
System-Common Procedure
Kernel Primitives
Accessing System Services Using the

W W wwwwwwww
I
< 0 U1 U W NN R R

Request Procedural Interface 3-7
Accessing System Services Using the
Kernel Primitives 3-8
INTERFACE LEVELS ittt it tiieeenn 3-9
ADDRESSING MEMORYt iiiiieiianen. 3-10
Logical Memory Address 3-11
Linear Memory Address 3-14
Physical Memory Address 3-14
MEMORY ADDRESSING IN THIS MANUAL 3-15
ADVANTAGES TO PROTECTED MODE
MEMORY ADDRESSING 3-15
Extended MemOTryuuiiiuunienenn. 3-15
Protection L. 3-15

iv CTOS/VM Concepts

PROGRAM MANAGEMENTccoeeeeeococenns
WHAT IS A PROGRAMttt itiitiinnenn.
Segments i e e
Linker e
PROGRAM LOADING INTO MEMORY
EXTIT RUN FILE ittt it e
Terminating Programs
Deallocation of System Resources
OPERATIONS .. . ittt et e et et e e e
Error Handlinguuueeo..
Normal Program Exit

IO N N N N NN
1
QO U AR WN R R R

PARAMETER MANAGEMENTcc0ceeeeeeeann 5-1
EXAMPLE PROGRAM 5-1
PARAMETERS . . @ ittt ittt e e e e e e e et e e 5-2
OVERVIEW OF PARAMETER MANAGEMENT
STRUCTURES AND OPERATIONS 5-3
APPLICATION SYSTEM CONTROL BLOCK
(BSCB) ittt e e e e e e 5-4
VARIABLE LENGTH PARAMETER BLOCK (VLPB) 5-4
Querying Parameters in the Variable
Length Parameter Block 5-5
Example of a Variable Length Parameter
Block for the Delete Command 5-7
Operations for Constructing the
Variable Length Parameter Block 5-8
Initialization 5-8
Parameter Construction 5-8
VARIABLE LENGTH PARAMETER BLOCK
STRUCTURE i i et i e 5-9
OPERATIONS . . . ittt it it i et e i et 5-10
Querying Parameters 5-10
Constructing Parameters 5-10
INPUT/OUTPUT ..t iveeeeeeoenocsanonnasansns 6-1
DEVICE INDEPENDENCE VERSUS DEVICE
DEPENDENCE ittt i e e 6-1
I/0 FACILITIES i ittt ettt et e e 6-3

Contents v

vi

SEQUENTIAL ACCESS METHODceceeeeenen
CUSTOMIZING THE SEQUENTIAL ACCESS
METHOD . . .t ittt it et e e e e e e e e e e
BYTE STREAM . . . ittt ittt it e eeeee e
USING A BYTE STREAM
TYPES OF BYTE STREAMS
Disk Byte Streams
Printer Byte Streams
Generic Print System Byte Streams
Pre-GPS Spooler Byte Streams
Keyboard Byte Streams
Communications Byte Streams
X.25 Byte Streams 0.
Video Byte Streams
Tape Byte Streams
DEVICE/FILE SPECIFICATIONS
DEVICE/FILE SPECIFICATION PARSING
OPERATIONS . . .ottt it it i e i e
BasSic i e e
Advanced e e

DEVICE-DEPENDENT SAMcceeeeeeccccnns

DEVICE-DEPENDENT OPERATIONS WITH

GENERIC PREFIXES

DEVICE-SPECIFIC OPERATIONS

OPERATIONS . . . ittt it e et e e e
Generic Prefixes
Device-Specific L.

VIDEO .ttt titeeeeensenensonsnsonansnnsnns
VIDEO ATTRIBUTESttt
VIDEO SOFTWAREttt ittt
PROGRAM/VIDEO SUBSYSTEM INTERACTION
Sequential Access Method (SAM)
Using the Current Screen Setup....
Using SAM Directly
Augmenting the SAM Operations
Special Characters in Video
Byte Streams o 0.
Multibyte Escape Sequences
QUeryVidBS . .ttt e

CTOS/VM Concepts

~
1
[y

N 39

[N N N B N N NN |
[l T I I R |

H O O WV WV J J U Ul Uk wWwN

7-11
7-16
7-17
7-17
7-18

W W WV VWYV W WV WV
1
(ST, T OO N SR Y

O OV
I
o o O

10

Video Access Method (VAM)
Video Display Management (VDM)
Reinitializing the Video Subsystem
Forms-Oriented Interaction
Advanced Text Processing
WORKSTATION VIDEO CAPABILITIES
Video Capabilities
Character Cell
Character Mapo nn.

Video Attributes

CULSOL . ottt e e e e
Video Refresh
WRITING PROGRAMS THAT RUN ON DIFFERENT
WORKSTATION MODELS . ..t i ittt it teeeeeenn
SYSTEM DATA STRUCTURES: THE VIDEO
CONTROL BLOCK AND FRAME DESCRIPTOR
COLOR GRAPHICS ATTRIBUTE PROCEDURES
OPERATIONS . . i it ittt ettt e et et et e e
VAM Operationsuuiiiiieennnnn.
VDM Operationsuuiiiieennnnn.
Color Programming Operations
Direct Access to Video Data Structures
Operationsiiiiinnnnn.

KEYBOARD MANAGEMENT¢c0cteeeeeocens
KEYBOARD MODES . . . ot ittt ittt et eeeeeeee
KEYBOARD MAPPING TABLEcuuiuenennn
SYSTEM INPUT PROCESSc.iuiiiiuenon.
PHYSICAL KEYBOARD . . .t i ittt i iietieeeenn
USING THE KEYBOARD MODES

Unencoded Modeuu....

Character Modeiiiiieenn.
TYPE-AHEAD BUFFER
ACTION KEY . ..ttt et i et i e
KEYBOARD AND VIDEO INDEPENDENCE
USING THE KEYBOARD ENCODING TABLE
USING THE SYSTEM INPUT PROCESS

Submit File Mode

Recording Modeoo..

Submit File Escape Sequences
APPLICATION PROGRAM TERMINATION

Contents

9-9
9-10
9-11
9-13
9-13
9-14
9-14
9-16
9-17
9-17
9-18
9-18
9-18

9-19
9-20
9-21
9-21
9-22
9-24

10-1
10-1
10-2
10-3
10-5
10-6
10-6
10-6
10-7
10-7
10-9
10-9
10-10
10-11
10-13
10-13
10-17

vii

THE MOUSE SYSTEM SERVICE
OPERATIONS

11 FILE MANAGEMENT

Commonly Used
Less Frequently Used

e o e o o e 0 0 0 0 0 0 0 0 0 s 0 s e s e s e s

OVERVIEW OF FILE SYSTEM CAPABILITIES

Efficiency
Reliabilityo. ..
CONVvVenienceououeeeuwuene..

STRUCTURED FILE ACCESS METHODS ..
LOCAL FILE SYSTEM
FILE SPECIFICATIONS

Node ...
Volume
Volume Name
System Volume
Scratch Volume
Volume Control Structures .
Directory ...t
File ... e
Passwordttt
Directory and File Specificati
Abbreviated Specifications ...

AUTOMATIC VOLUME RECOGNITION
FILE PROTECTION

viii

Protection by Password
Volume Password
Directory Password
File Password
Device Password

ons

Using a Password for Access

Protection by Protection Level
How Protection Levels Work

How the Operating System Validates

Protection Levels

Protection by Volume Encryption
CREATING AND ACCESSING A FILE ...

Program Interface Levels

Structured File Access Methods

Byte Streams
File Management Operations

CTOS/VM Concepts

10-17
10-18
10-18
10-18

11-1
11-2
11-2
11-2
11-3
11-4
11-4
11-5
11-5
11-6
11-6
11-6
11-7
11-7
11-8
11-9
11-9
11-11
11-12
11-13
11-14
11-14
11-15
11-15
11-16
11-16
11-17
11-17
11-18

11-20
11-23
11-25
11-25
11-25
11-25
11-26

12

Logical

File Addresscouuuuun..

File Handlet
Performing I/0 ... ivi ..
Creating a File,
Opening a File
Reading and Writing a File
Closing a File
Local File Systemccuuo...
LEsToMasterttt
VOLUME CONTROL STRUCTURES
Volume Home Block
Allocation Bit Map and Bad Sector

File ...

File Header Blockciiunn..
Disk Extent
Extension File Header Block
Master File Directory and

Directoriesttt
System Directory

SYSTEM DATA

STRUCTURES

User Control Block
Device Control Block

WILD CARD O

$ DIRECTORY

OPERATIONS
Basic ..

PERATIONS

Basic Utility Operations
File Attributes

Default

Path

Directories,
Long-Lived Files,
File Handle Operations
Asynchronous File I/O
Volume Data Structures

DISK MANAGEMENTccceecececccccncns

ACCESSING A
DEVICE SPEC
PASSWORD ..
OPERATIONS

DISK DEVICE
IFICATION AND DEVICE

Contents

11-26
11-27
11-28
11-28
11-30
11-31
11-33
11-34
11-35
11-36
11-37

11-37
11-37
11-38
11-38

11-38
11-39
11-40
11-40
11-41
11-41
11-42
11-44
11-44
11-44
11-45
11-45
11-46
11-46
11-47
11-47
11-48

12-1
12-1

12-2
12-3

ix

13 PRINTING MANAGEMENTcco0eeeneeeans 13-1
COMPONENTS . .. ittt i e e e 13-1
INTERFACE CONSIDERATIONS 13-2

14 COMMUNICATIONS PROGRAMMINGceoveeenes 14-1

WHAT SAMC IS USED FORo.... 14-1
What Programs Use SamC 14-2
What Programs Cannot Use SamC 14-2

USING SAMC AT THE DEVICE-INDEPENDENT

INTERFACE LEVELttt 14-3

USING SAMC AT THE DEVICE-DEPENDENT

INTERFACE LEVEL, 14-4
The SamC Operations 14-5

Asynchronous Interface 14-5
The AcquireByteStreamC Operation
(Low-Level Open)oooeo.. 14-6
Dynamically Changing Parameters ... 14-6
Querying and Setting Status Lines . 14-7
The CheckForOperatorRestartC
Operationouiiiiiennnnn. 14-7
OPERATIONS . . ittt it et e e et et e e 14-8
15 SERIAL PORT MANAGEMENTcceceeeeees 15-1

ACCESS BELOW THE BYTE STREAM LEVEL

(CommLiine)ttt ittt e e 15-1

SERIAL PORT OPERATIONS 15-3
Serial Port Requests 15-3

InitCommLineoovuieeeno.. 15-3
ResetCommLine, 15-4
ChangeCommLineBaudRate 15-5

Serial Port System-Common Procedures . 15-5
ReadCommLineStatus 15-5
WriteCommLineStatus 15-6
OPERATIONS . . ittt it et e e et et e e 15-7

16 PARALLEL PORT MANAGEMENTccce0ec.. 16-1

OPERATIONS . . . ittt it e e et et e e e 16-2

T/ 0 e e e e 16-2
Interrupt Handling 16-2

X CTOS/VM Concepts

17 SRP TERMINAL MANAGEMENT
OPERATIONS

18 TAPE MANAGEMENTccceveeeees

SOFTWARE REQUIREMENTS/INSTALLATION

INTERFACE LEVELS
Byte Stream Level
Request Level

TAPE BYTE STREAMS

TAPE FILES AND TAPE NAMING
Tape Names
Examples

QIC TAPE i
Format
Operation

READING AND WRITING TO QIC TAPE

Single-Volume QIC Tape File ..

Multicartridge QIC Tape File

Writing to Tape
Reading from Tape
SPECIAL CARE FOR QIC TAPE
HALF-INCH TAPE
Format
Operation

READING AND WRITING TO HALF-INCH

OPERATIONS

TAPE

Quarter-Inch and Half-Inch Tape

Quarter-Inch Tape

19 GENERIC PRINT ACCESS METHODcccc..

20 STRUCTURED FILE ACCESS METHODS

STRUCTURED FILE ACCESS METHOD

CHARACTERISTICS
HYBRID ACCESS PATTERNS

MODIFYING AND READING DATA FILES

OPERATIONSt

21 INDEXED SEQUENTIAL ACCESS METHOD

Contents

17-1
17-3

18-1
18-1
18-2
18-2
18-2
18-3
18-3
18-4
18-5
18-6
18-6
18-8
18-9
18-10
18-10
18-10
18-10
18-14
18-14
18-14
18-16
18-17
18-18
18-18
18-19

19-1

20-1
20-2
20-4

20-5
20-7

21-1

xi

22 RECORD SEQUENTIAL ACCESS METHOD

23

24

RSAM FILES AND RECORDSovou...
WORKING AREA i i e
BUFFER . ..o e e e e e e
OPERATIONS ittt e e n

BasSiC it e e e
Advancedt e e e e e e e e e

DIRECT ACCESS METHODccceceeeecanenn
DAM FILES, RECORDS, AND RECORD

FRAGMENTS e e
WORKING AREA i e e e
BUFFER . . .o e e e

Buffer Size and Sequential Access
Buffer Management Modes: Write-
Through and Write-Behind

OPERATIONS it i i

BasSiC it e e e
Advancedt e e e e e e e e

MEMORY MANAGEMENTcciceeeeencecenns
TYPES OF MEMORY
ADDRESSING MEMORY,
SEGMENTS e e

Code, Static Data, and Dynamic

Data Segments
Long-Lived and Short-Lived Memory
Deallocations
Long-Lived Memory Uses
Short-Lived Memory UseS

OPERATIONS ittt e e n

Short-Lived Memoryo eunnenenn.
Long-Lived MEmMOTY . .. vvvuueennnnnnnn
Short-Lived and Long-Lived Memory
Address Translation
Alias Managemento.oueenieon..
Other e

25 UTILITY OPERATIONSctiteeeeeecnneenns

xii

DATE/TIME MANAGEMENTiuiuenennon.

System Date/Time Structure
System Date/Time Format

CTOS/VM Concepts

22-1
22-1
22-2
22-2
22-3
22-3
22-3

23-1

23-1
23-2
23-2
23-3

23-4
23-5
23-5
23-5

24-1
24-1
24-2
24-2

24-4

24-8

24-9
24-10
24-10
24-11
24-11
24-12
24-13
24-14
24-15
24-16

25-1
25-1
25-1
25-1

26

27

28

Expanded Date/Time Format 25-2

STRING COMPARING . ..ot vttt ettt eeieeeenn 25~2
OUTPUT ROUTINESttt ittt 25-4
CONFIGURATION FILE PARSINGc.... 25-4
TEXT EDITING ...t ittt ittt et eeeeeeee e 25-5
INFORMING USER OF WAITING MAIL 25-5
OPERATIONS . . i it ittt it e e et et et ee et 25-6
Date/Time Management 25-6
String Comparingououeueiuenenen.. 25-7
Output Routines 25-9
Configuration File Parsing 25-10
Text EAitingoiiii.. 25-11
Other e 25-11
SYSTEM DEFINITIONScceeeeeeccecocceaos 26-1
METHODS OF OBTAINING SYSTEM INFOR-
MATION . oottt et e e et e e e et e e e e e 26-6
OPERATIONS . . . ittt ittt it it e e e e 26-8
Cluster Management 26-8
Disk Managementc.c...... 26-8
File Managementououiunenene... 26-8
Operating System 26-9
User Name Management (name Entered
at Signlmn) eiiii i 26-11
Video ..o e 26-11
MULTIPROGRAMMINGceceeeeeecencocnnnses 27-1
PROCESS MANAGEMENTccteeeeeeceecnces 28-1
PROCESS . . ittt e e i e e e 28-1
End User, 28-1
Programmert 28-1
Operating System 28-2
PROCESS MANAGEMENT, 28-2
CONTEXT OF A PROCESSt 28-3
PROCESS PRIORITIES AND PROCESS
SCHEDULING . ..ttt ittt ettt ettt et ee e 28-4
PROCESS STATESt ittt it it i it i e 28-6
OPERATIONS . . . ittt ettt e e e 28-8

Contents xiii

29 INTERPROCESS COMMUNICATION 29-1

AN IPC EXAMPLE . . .ttt ittt ettt eieiee e 29-1
WHAT REALLY HAPPENS iitiiiinnn. 29-2
Request Procedural Interface 29-2
System Service i, 29-3
SUMMARY . . . e 29-3
OTHER IPC APPLICATIONSt 29-4
Communication Within an Application
Partition i 29-5
Communication Between Application
Partitions 29-5
Synchronization 29-6
Resource Management 29-7
WHY UNDERSTAND IPC? ...ttt ttiieteneeenns 29-8
REQUEST CODES . . ittt ittt et ieeee e 29-8
INTERPROCESS COMMUNICATION (IPC)
COMPONENTS . .ottt ettt ettt e e e 29-11
THE KERNEL PRIMITIVESc0uoiueeen.. 29-13
Kernel Primitives for Sending a
MeSSage . .ottt e e 29-13
Request and Respond 29-13
Send 29-16
ForwardRequest and RequestDirect .. 29-17
Kernel Primitives for Receiving a
MESSaAgEe . . vttt e e e 29-17
Walt o e 29-17
Check o 29-18
THE EXCHANGEt 29-18
Types of Exchanges 29-19
Exchange Allocation 29-20
Sending a Message to an Exchange 29-21
Waiting for a Message at an Exchange . 29-23
Exchange Queueso, 29-24
THE MESSAGE ittt ii e 29-25
REQUEST BLOCK FORMAT0oi... 29-26
Standard Header 29-27
Control Information 29-29
Routing Code, 29-29
Request Data Item 29-30
Response Data Item 29-30
EXAMPLE REQUEST BLOCK00ov... 29-31

xiv CTOS/VM Concepts

ACCESSING SYSTEM SERVICES

Using th
Interfac
Using th
Directly

e Request Procedural
i e
e Kernel Primitives

CLUSTER/NETWORK COMMUNICATION

Cluster
Cluster

Configuration
Workstation Agent

Master Agent i

CT-Net .

ROUTING BY FILE HANDLE

Rules fo
The File

r Routing by Handle
Handle

ROUTING BY FILE SPECIFICATION

Rules fo
Expandin
THE ROUTING

r Routing by Specification ...
g File Specifications
CODE ...

ROUTING REQUESTS

FILTERS ...

INTERPROCESS COMMUNICATION SUMMARY

OPERATIONS

30 INTER-CPU COMMUNICATIONccceueeeeenn

SLOT NUMBER
SRP ROUTING

TYPES i i

SRP LINEAR ADDRESSING

Linear P
Linear O
BLOCKS

olinter
ffset

CPU DESCRIPTION TABLE
DOORBELL INTERRUPT
INTERBOARD ROUTING0.iiuinnnnn.

How a Me

ssage Is Sent

Sending Requests
Sending Responsesc.ouuu...

How a Me

ssage Is Received

Request? L ool
Response? i,

Sending
OPERATIONS

and Receiving Messages

Contents

29-33

29-33

29-34
29-36
29-37
29-37
29-38
29-38
29-39
29-40
29-40
29-41
29-41
29-42
29-43
29-46
29-47
29-50
29-52

30-1
30-2
30-3
30-3
30-6
30-6
30-6
30-7
30-7
30-7
30-8
30-9
30-10
30-10
30-11
30-12
30-12
30-14

XV

31

32

xvi

SYSTEM SERVICES MANAGEMENT
INTERPROCESS COMMUNICATION
TYPES OF SYSTEM SERVICEScocu...
Built-in System Services
Dynamically Installable System
Services e e
REQUEST ROUTING TABLE0.o0...
WHAT REALLY HAPPENS
Requests i e
The System Service
GUIDELINES FOR WRITING A SYSTEM SERVICE
Initialization and Conversion to a
System Service i,
System Service Main Program
Restrictions and Requirements of
Operationiiiiiiinnnnn.
GUIDELINES FOR DEFINING SYSTEM SERVICE
REQUESTS . . . ittt e e i e e e e
GUIDELINES FOR CREATING A LOADABLE
REQUEST FILEttt ittt
SYSTEM REQUESTSttt
Termination and Abort Requests
Termination Request to the File
System e
Swapping Requests
FILTERS . & ittt ittt ettt e e e e e
TYPES OF FILTERS ... ittt it tteeieeenn
Replacement
One-Way Pass-Through
Two-Way Pass-Through
System Requests for Filters
Use of Filters
Example of a Filter Not Serving a
Swapping Requesto.iiii...
DEINSTALLATION OF A SYSTEM SERVICE
OPERATIONS . . . ittt i et it e e
Basic Requests Used by All System
Services e e
System Requests

PROGRAM AND PARTITION MANAGEMENT
AN EXECUTABLE PROGRAMuiuiiiunennen.
Segments e
LinKer ..ttt e e e e

CTOS/VM Concepts

31-1
31-1
31-4
31-4

31-5
31-5
31-7
31-7
31-8
31-8

31-8
31-12

31-13

31-13

31-16
31-18
31-19

31-20
31-21
31-22
31-22
31-22
31-23
31-24
31-25
31-26

31-26
31-27
31-29

31-29
31-30

32-1
32-1
32-2
32-3

Code Sharing
Program Sizingiii..
MULTIPROGRAMMING AND PARTITION
MANAGEMENT . . . ittt e e e e e e et e e e e et
Types of Partitions
Fixed and Variable Partitions
User Numberccuiiuunnnnn.
Obtaining Partition Status
Communication Between Application
Partitions
Memory Organization of an
Application Partition
PROGRAM LOADING INTO MEMORY
EXTIT RUN FILEttt
TERMINATING PROGRAMSt iiiieieeenn
REMOVING PARTITIONSttt iiitteieennnn
DEALLOCATION OF SYSTEM RESOURCES
PARTITION ORGANIZATION IN MEMORY
At System Initialization
Single Application Partition in
MEMOTLY . ot ittt e et e e e e e e e e
More Than One Application Partition
in MemOTY . v v v vttt ettt e e e e e e e e
Partition Swapping
APPLICATION PARTITION WITH MORE THAN
ONE RUN FILEttt ittt ettt et
OPERATIONS . .. ittt ittt ittt it e e e et
Program Management
Error Handlinguouueenn..
Normal Program Loading and Exiting
Tasks . i e e
Partition Management
Basic Operations
Program Swapping
Partition Creation Under Program
Control
Communication Between Partitions ..

Contents

32-3
32-4

32-4
32-4
32-5
32-5
32-6

32-6

32-7
32-8
32-9
32-9
32-10
32-11
32-12
32-12

32-12

32-14
32-15

32-18
32-20
32-20
32-20
32-21
32-22
32-22
32-22
32-23

32-23
32-24

xvii

33 TIMER MANAGEMENT

REALTIME CLOCK . ..ttt ittt ettt eeee e e
PROGRAMMABLE INTERVAL TIMER
TIMER MANAGEMENT OPERATIONS
Delay vt e
Realtime Clock

Timer Management

Timing a Single Interval

Repetitive Timing
Programmable Interval Timer

OPERATIONS

Delay ...t
Realtime Clock
Programmable Interval Timer

34 VIRTUAL CODE MANAGEMENToceeeeeeenen
MODEL OVERVIEW
DATA STRUCTURES

Overlay Zone Header
StaticsDesc
Return Overlay Descriptors
ProcInfoNonRes

PROTECTED MODE OPERATION
REAL MODE OPERATION

Intercepting Calls
Intercepting Returns
Importance of Call/Return

Conventions

REAL AND PROTECTED MODE OPERATION

Calls to Procedural Address
Adjusting Addresses

OPERATIONS

BasicC ...t
Advancedt

€es

35 QUEUES AND QUEUE MANAGEMENT
QUEUES e
QUEUE MANAGER

xviii

Run Files
Installation/Deinstallation

CTOS/VM Concepts

33-1
33-1
33-1
33-2
33-2
33-2
33-3
33-4
33-4
33-6
33-8
33-8
33-8
33-8

34-1
34-2
34-3
34-5
34-5
34-6
34-7
34-9
34-10
34-10
34-11

34-16
34-16
34-16
34-17
34-20
34-20
34-20

35-1
35-1
35-2
35-2
35-2

36

OVERVIEW OF QUEUE MANAGEMENT
Clients ... e
SEIVELS it ittt it e e e
Sequence for Using Queue Management ..
Queue Index File
Dynamically Manipulating Queues

QUEUE ENTRY FILEt iiiinenennnn
Queue Entry File Format
Queue Entry File Examples

QUEUE ENTRY ittt ittt i e

CLIENT OPERATIONSttt
Adding an Entry to a Queue
Reading Queue Entries

Queue Entry Handle
Queue Status Block
Removing an Entry

SERVER OPERATIONSttt itiiiiiinnnn.
Establishing Servers
Marking Queue Entries
Unlocking Queue Entries
Queue Entry Formats

OPERATIONS . . . ittt it e e et et e e e
Client GrOUD « v v v v vttt e e e e e e e et
Server GroUDttt
Client/Server GIOUD « « vt vvemnenneennn

INTERRUPT HANDLERS¢¢tteeeeeeeecnccenn
TERMINOLOGY . .ttt ittt et e e e e e e e e e e e
EXTERNAL INTERRUPT HANDLING MODEL
Device Handling
Device Handler Process
Device Interrupt Handler
Controlling When External
Interrupts Occur
The Interrupt Flag................
The Programmable Interrupt
Controller
Pending and Lost Interrupts
Nonmaskable Interrupts (NMIs)
CTOS/VM Interrupt Handler Styles
CRIHs and CMIHS
Guidelines for Writing a CRIH
Guidelines for Writing a CMIH

Contents

35-3

35-4

35-5

35-5

35-7

35-9
35-10
35-11
35-13
35-13
35-14
35-14
35-15
35-15
35-16
35-16
35-17
35-17
35-17
35-18
35-18
35-19
35-19
35-19
35-21

36-1
36-1
36-4
36-4
36-6
36-7

36-8
36-8

36-9
36-11
36-12
36-12
36-16
36-17
36-20

xix

RIHs and MIHSo i ittt eeennn 36-22

Guidelines for Writing an RIH..... 36-22
Guidelines for Writing an MIH..... 36-25
EXAMPLES OF CTOS/VM EXTERNAL
INTERRUPT HANDLERSt 36-26
Parallel Port Interrupt Handlers 36-26
X-Bus Interrupt Handlers 36-26
XINTO and XINTIL ... ii ittt it eeeenn 36-26
0 36-27
PSEUDOINTERRUPTSttt 36-27
INTERNAL INTERRUPTS 36-28
Software Interrupts 36-29
Program Exceptions 36-29
Faults e 36-30
TRAP HANDLERS . .. it ittt ittt it e e e 36-31
PACKAGING OF INTERRUPT HANDLERS 36-32
Application Program 36-33
System Service e 36-33
OPERATIONS . . i it ittt ettt e et et et e e 36-34
37 X-BUS MANAGEMENT¢ceceeeeeccccccnces 37-1
X-BUS OVERVIEWttt 37-1
X-BUS MODULE IDs AND BASE I/0
ADDRESSES . . . e e e 37-2
X-BUS MODULE/PROCESSOR MEMORY ACCESS 37-3
Accessing X-Bus Module Memory 37-4
Using X-Bus Operations to Access
Module MEMOTY . .o v vt it iieeeeen 37-4
Specifying a Window Size 37-5
Accessing Modules in Protected Mode .. 37-5
Accessing Modules in Real Mode 37-6
X-BUS DMA . ittt et e e e e e e 37-6
COMMUNICATION AND START-UP PROTOCOLS 37-7
BT S e e e e 37-7
X-BUS INTERRUPTS 37-8
OPERATIONS .. . ittt et et it i e e 37-9
38 CONFIGURATION MANAGEMENTcc00eeee. 38-1

XX CTOS/VM Concepts

39 CLUSTER MANAGEMENTccceeeeeoceenns

40

CLUSTER ENV
STATUS
POLLING ...
Roll Cal
Repoll .

IRONMENTt iiiiiinnnnn

L

REQUEST ROUTING ACROSS THE CLUSTER

OPERATIONS

NATIVE LANGUAGE SUPPORTcieeeeeeeen
INTERNATIONALIZATIONt it
THE NLS TABLES ittt ii i
NLS TABLE DESCRIPTIONS

Keyboard Mapping

File Sys
Lowercas

tem Case
e to Uppercase

Video Byte Streams Text

Uppercas
Key Cap

e to LOWEerCase
Legends,

Date and Time Formats

Number a

nd Currency Formats

Date Name Translations
Collating Sequencecouo..

Characte

Y Class . v ittt e e e

Yes or No Strings
NLS OPERATIONS ittt ittt
INTERNATIONALIZING APPLICATION

PROGRAMS ..
Existing
New Prog

Programs
TAMS & ot o v v e o et oo o oo oo osossoease

QUERYING THE NLS TABLES
NATIONALIZATION ...t ittt ittt ittt e e
MESSAGE FILE CREATION

Using Me

ssage Files

MacCrosSt
Using a Small Number of Messages ..

OPERATIONS
Utility
Messages

Contents

39-1
39-1
39-2
39-2
39-2
39-3
39-3
39-5

40-1
40-2
40-2
40~5
40-5
40-6
40-6
40-7
40-7
40-7
40-8
40-8
40-11
40-11
40-12
40-12
40-13

40-14
40-14
40-15
40-15
40-16
40-17
40-18
40-19
40-19
40-20
40-20
40-22

xxi

APPENDIX

GLOSSARY

INDEX

LIST OF

Figure

10-1.
10-2.

11-1.

17-1.

xxii

A: SPOOLER MANAGEMENT.............
FIGURES
Relationships of Operating System

Concepts. ...t i e

Memory Organization.................

Memory Organization with Applica-

tion Partition and Free Memory......

Memory Organization Under

Partition Management................

Memory Organization of an Applica-

tion Partition.............

Interface Levels...........a..
Memory Address Translations.........

From Source Language Modules to

Program in Memory............ououe.o...

Matrix of a Variable Length Parameter
Block for the Executive.............

Filled-in Variable Length Parameter

Interface Levels....................

Keyboard.,
System Input Process................

Effects of Volume Encryption........

Ports/Access Methods Relationship...

CTOS/VM Concepts

Figure Page

18-1. General QIC Tape Format............. 18-6
18-2. Detail of a QIC Tape File........... 18-7
18-3. Multicartridge QIC Tape

Operation Sequence.................. 18-11
18-4. General Half-Inch Tape Format....... 18-15
18-5. Detail of a Half-Inch Tape File..... 18-16
24-1. From Source Language Modules to

Program in Memory...........u.uuuun.. 24-5
24-2. Memory Organization of an

Application Partition............... 24-17
28-1. Process States...................... 28-7
29-1. Interaction of Client and System

Service ProCessSeS...........ouuuue.. 29-2
29-2. Processing Flow of Client and

System Service ProcessSeS............ 29-4
29-3. Communication Between Processes..... 29-5
29-4. How IPC Is Used with ICMS........... 29-6
29-5. Synchronization..................... 29-7
29-6. Buffer Management................... 29-9
29-7. Request Primitive................... 29-14
29-8. Respond Primitive................... 29-15
29-9. Send Primitive............ 29-16
29-10. Wait Primitive........... 29-17
29-11. Sending a Message to an Exchange.... 29-22
29-12. Waiting for a Message at

an Exchange........... 29-23
29-13. Messages Queued at an Exchange...... 29-24
29-14. Processes Queued at an Exchange..... 29-25
29-15. Request Block for the Write

Operation.ot eennnna. 29-31
29-16. Interaction of Filter Process with

Client and System Service Process... 29-47
29-17. Request Routing 29-48
29-18. Interprocess Communication

SUMMATLY « v v v vttt et e e e et e et e et e e e e et 29-50
30-1. How a Message Is Sent............... 30-8
30-2. How a Message Is Received........... 30-11
30-3. Interaction of Client and

System Service Using ICC............ 30-13

Contents xxiii

Figure Page

31-1. Interaction of Client and System

Service ProCesSSeS........ueeeumnnne.. 31-2
31-2. Processing Flow of Client and

System Service Processes............ 31-4
31-3. Request Routing Table Fields........ 31-6
31-4. Before Conversion to a

System Service............ 31-9
31-5. Conversion to a System Service...... 31-11
31-6. System Service Program Model........ 31-12
31-7. One-Way Pass-Through Filter......... 31-23
31-8. Two-Way Pass-Through Filter......... 31-24
32-1. From Source Language Modules

to Program in MemoIry................ 32-2
32-2. Memory Organization of an

Application Partition............... 32-7
32-3. Memory Organization at System

Initialization........... 32-13
32-4. Memory Organization Showing a

Single Application Partition

Containing a Program................ 32-14
32-5. Memory Organization with More

Than One Application Partition

In MEMOTY .« v v vttt e e e et e e e e e e e 32-16
32-6. SWapPing. e 32-17
32-7. Program Consisting of More Than

One Run File in an Application

Partition......... L. 32-19
34-1. Virtual Code Facility Data

Structures and Their Locations...... 34-4
34-2. Stub Structure............... ... 34-8
34-3. Tracing the Stack When an Overlay

Is Discarded.......... 34-13
35-1. Example of a Configuration with

the Queue Management Facility....... 35-4
35-2. Example of a Queue Index File....... 35-9

xxiv CTOS/VM Concepts

Figure

36-1.
36-2.
36-3.
36-4.
36-5.
36-6.
36-7.
36-8.
36-9.
36-10.

37-1.

LIST OF

10-1

11-1
11-2

26-1
28-1
29-1
29-2

29-3
29-4

Interrupt Hierarchy.................
Device Handler.............ccuuunino..
Interrupt Nesting...................
Interrupt Handler Styles............
CRIHs and CMIHS........ououiuiuinininnnn..
User-Written CRIH Summary...........
User-Written CMIH Summary...........
RIHs and MIHS....... ...t
User-Written RIH Summary............
User-Written MIH Summary............

X-Bus Configuration.................

TABLES

Workstation Operating System
FeatUres.t
SRP Processor Board Features........

Video Capabilities..................
Character Cell Size.........ouuuu...

Permitted Codes in Submit File
Escape SequencCesS. unnennn.

Protection Levels..........ou.n..
Bit Number Designations for
Protection Level......... ...

System Structures..............
Process State Transition............

Request Code Levels.................
Format of a Request Block Header....
Net Routing Information.............
Bit Combinations for Bits 5

Through 7 of RtCode.................

Contents

Page
2-9
2-10
9-15
9-16
10-14
11-19
11-21
26-2
28-17

29-11
29-27
29-44

29-45

XXV

Figure
30-1

31-1
31-2

35-1

40-1
40-2

40-3
40-4

xxvi

SRP Request Routing TypesS...........

RequestTemplate.txt Fields..........
Creating a Loadable Request File....

Examples of Queues..................

NLS Tables...........
Number and Currency Formats Key
Elements.o.iiiiiiii..
NLS Operation Summary...............
Operations for Internationalizable
Programs.ou it

CTOS/VM Concepts

31-14
31-18

35-13

40-3

40-9
40-13

40-14

RELATED DOCUMENTATION

This manual is one of a set that documents the
Convergent family of information processing sys-
tems. The set can be grouped as follows:

Introductory

Context Manager/VM Manual

Diagnostics Manual (NGEN)

Executive Manual Installation Guide (NGEN)
Operator's Guide (NGEN)

Quarter-Inch Cartridge Tape for NGEN
Status Codes Manual

Hardware

Color Monitor Manual

Dual Floppy Disk Manual

Ethernet Hardware Manual

Floppy/Hard Disk Manual (see Dual Floppy Disk
description)

Graphics Controller Manual: Model GC-001

Graphics Controller Manual: Model GC-003

Hard Disk Upgrades and Expansions Manual

Keyboard Manual

Monochrome Monitors Manual

Mouse Hardware Manual

Multiline Port Expander Manual

PC Emulator Hardware Manual

Power System Manual

Processor Manuals

Quarter-Inch Cartridge Tape Hardware Manual

Voice Processor Manual

Related Documentation xxvii

Operating Systems
CTOS Programmer's Guide
CTOS/VM Concepts Manual

DISTRIX Operating System Manual
MS-DOS Manuals

Programming Languages

1APX286 Programmer's Reference Manual

80386 Programmer's Reference Manual (Intel)

Assembly Language Manual
BASIC Compiler Manual

BASIC (Interpreter) Manual (see BASIC Compiler

description)

COBOL Manual (see BASIC Compiler description)

FORTRAN-86 Reference Manual (see BASIC
Compiler description)

GW-BASIC Operations Manual

GW-BASIC Reference Manual

Pascal Reference Manual (see BASIC Compiler

description)
Workstation C Programmer's Guide (see

Workstation C Language Manuals description)

Program Development Tools

COBOL Animator Manual

Debugger Manual

Editor Manual

Font Designer Manual

Forms Manual

Graphics Terminal Font Designer
Linker/Librarian Manual

Mouse Services Manual

Raster Font and Icon Designer Manual

xxviii CTOS/VM Concepts

System Administration
Generic Print System Programmer's Guide
Printing Guide

Data Management Facilities
CT-DBMS Manual

ISAM Manual
Sort/Merge Manual

Office Automation

Graphics
Graphics Programmer's Guide

Voice
Voice/Data Services Manual

Communications

Asynchronous Terminal Emulator Manual
CT-Net Reference Manual
Modem Server Reference Manual

Other

80286 Architecture

Related Documentation

xxix

The following section outlines the contents of these
manuals.

INTRODUCTORY

The Context Manager/VM Manual describes and
teaches the use of the Context Manager/VM, which
allows the user to run applications concurrently

and transfer from one application to another. It
also describes the interaction between the Context
Manager and the Window Services, in which the user
can simultaneously view several applications on
the screen.

The NGEN Diagnostics Manual outlines the tests
used to verify proper operation of the modules of

a workstation. The manual describes tests for in-
dividual modules, along with bootstrap procedures
and customization programs.

The Executive Manual describes the interactive
command interpreter that interacts with the CTOS
and CTOS/VM operating systems. The manual is both
a user's guide and a reference to the available
commands . It addresses command execution, file
management and protection, and program invocation.
The manual also provides descriptions and details
about parameter fields for Executive commands.

The NGEN Installation Guide describes procedures
for unpacking, assembling, cabling, and powering
up an NGEN workstation.

The NGEN Operator's Guide describes the operator
controls, use of the floppy disk drives, verifi-

cation of workstation operations, and use of software
release notices.

XXX CTOS/VM Concepts

The Quarter-Inch Cartridge Tape for NGEN Manual
explains the wuse of quarter-inch cartridge tape

software, primarily for backing up and restoring
hard disks. The manual also describes the use of
the Quarter-Inch Tape maintenance utilities and the
Tape Copy utility.

The Status Codes Manual contains a complete list
of all the status codes that can be generated by a
CTOS workstation or a Shared Resource Processor
(SRP), including bootstrap ROM error codes and
CTOS initialization codes. The manual also de-
scribes and interprets crash status codes.

HARDWARE

The Color Monitor Manual describes the operation
and connections of the 15-inch Color Monitor used
with the NGEN workstation.

The Dual Floppy Disk Manual and the Floppy/Hard
Disk Manual describe the architecture and theory
of operation for the respective NGEN disk modules.

They discuss the applicable disk drives and con-
trollers, and contain the applicable OEM disk
drive manuals.

The Ethernet Hardware Manual describes the Ether-
net Module in terms of its software and hardware
interfaces to the NGEN workstation. The manual
also provides detailed information on installing
the Ethernet Module into an NGEN configuration,
and on various networking and cabling options.

The Graphics Controller Manual: Model GC-001
describes the architecture, theory of operation,
and external interfaces for model GC-001 of the

Graphics Controller Module, which accommodates
either a Monochrome or Color Monitor.

Related Documentation xxxi

The Graphics Controller Manual: Model GC-003
gives instructions for installing Model GC-003 of
the Graphics Controller Module. The manual also
provides the functional description and theory of
operation for the module, and describes software
interfaces and external interfaces.

The Hard Disk TUpgrades and Expansions Manual
describes the architecture and theory of operation
of the Disk Upgrade and Disk Expansion Modules.

The Keyboard Manual describes the architecture,

theory of operation, and external interfaces for
the NGEN keyboard.

The Monochrome Monitors Manual describes the oper-
ation and connections of the Standard and High
Resolution Monochrome Monitors used with the NGEN
workstation.

The Mouse Hardware Manual describes the architec-
ture, theory of operation, and external interfaces
for the NGEN mouse.

The Multiline Port Expander Manual describes the

architecture, theory of operation, and external
interfaces for the NGEN Multiline Port Expander
Module.

The PC Emulator Hardware Manual describes the PC
Emulator hardware at a functional block and compo-
nent level. The manual also describes the PC
Emulator Module register set and explains how to
attach the module onto the workstation's X-Bus.

The Power System Manual describes the operation
and connections for the 36-Volt Power Supply and
the dc/dc converters used with the NGEN work-
station.

xxxii CTOS/VM Concepts

The Workstation C Language Manuals (includes the

Workstation C Programmer's Guide and C Programming

Language Manual) describe the C programming
language, enhancements to the language, library
functions, and operating instructions for running
Workstation C on the CTOS and DISTRIX operating
systems. The manuals also provide troubleshooting
information.

PROGRAM DEVELOPMENT TOOLS

The COBOL Animator Manual describes the COBOL
Animator, a debugger that allows the wuser to
interact directly with the COBOL source code
during program execution.

The Debugger Manual describes the Debugger, which

is designed for wuse at the symbolic instruction

level. It can be used in debugging C, FORTRAN,
Pascal, and assembly language programs. (COBOL
and BASIC, in contrast, are more conveniently

debugged wusing special facilities described 1in
their respective manuals.)

The Editor Manual describes the test editor that
interacts with the CTOS and CTOS/VM operating
systems.

The Font Designer Manual describes how to design
a new character set for display on the workstation

monitor. The Font Designer produces vector fonts,
as opposed to the raster fonts that are produced
with the Raster and Icon Font Designer.

The Forms Manual describes the Forms facility that
includes the Forms Editor, which 1s used to
interactively design and edit forms, and the Forms
run time, which is called from an application
program to display forms and accept user input.

Related Documentation xxxiii

The Graphics Terminal Font Designer Manual

describes how to use the Graphics Terminal Font
Designer package to create, edit, and load fonts.

The Linker/Librarian Manual describes Dboth the
Linker, which 1links together separately compiled
object files, and the Librarian, which builds and
manages libraries of object modules.

The Mouse Services Manual describes the Mouse

Server and the object module library for
applications programmers. It also includes a
short description of end-user commands.

The Raster Font and Icon Designer Manual describes

the interactive utility for designing new fonts
(character sets) for the video display.

SYSTEM ADMINISTRATION

The Generic Print System Programmer's Guide is a

guide for writing applications that use the
Generic Print System or the Generic Print Access
Method. It addresses applications that transfer
data to the printer as well as more sophisticated
applications with status checking and printer
control. The manual includes descriptions of
the Generic Print System and Generic Print Access
Method procedural interfaces.

The Printing Guide provides information on how to

install any supported printing device on your
standalone workstation or a workstation within a
cluster. It describes the Print Manager, which is
the interface to the Generic Print System, and how
to use the Print Manager to control and monitor
the status of printing devices. Printer trouble-
shooting is also discussed.

xxxiv CTOS/VM Concepts

The Processor Manuals describe the respective
Processor Modules. Each manual in this two-

volume set covers one processor module and details
the architecture and theory of operation of the
printed circuit boards, external interfaces, and
memory expansion, as well as X-Bus specifications.

The Quarter-Inch Cartridge Tape Hardware Manual
describes the architecture, theory of operation,
and hardware specifications for the Quarter-Inch
Cartridge Tape Module.

The Voice Processor Manual describes the archi-
tecture, theory of operation, external interfaces,
and hardware specifications for the Voice Proces-
sor Module.

OPERATING SYSTEMS

The CTOS Programmer's Guide is a reference guide
for programming under the CTOS operating system.
It describes CTOS programming practices and
introduces the system to programmers who are using

it for the first time.

The CTOS/VM Concepts Manual together with the
CTOS/VM Reference Manual, describes the CTOS/VM
operating system. The CTOS/VM Concepts Manual
introduces the CTOS/VM operating system to the
programmer by presenting concepts in a basic-to-
advanced order. Included among the concepts in
this manual are management of processes, messages,
memory, exchanges, video, keyboard, files, disks,
printers, communications, tape, and timers.
CTOS/VM operations pertaining to each concept are
described briefly at the end of each chapter. The

manual also explains how to wuse the CTOS/VM
operations and provides information on the admin-
istrative aspects of the operating system.

Related Documentation XXXV

The DISTRIX Operating System Manual describes
DISTRIX, an operating system derived from the UNIX
System V operating system. It describes commands,
application programs, system calls, subroutines,
special files, file formats, games, miscellaneous
facilities, and system maintenance procedures.

The MS-DOS Manuals describe the single-user
operating systems originally designed for the
8086-based personal computer systems.

PROGRAMMING LANGUAGES

The IAPX286 Programmer's Reference Manual (Intel)
describes the architecture of the 1Intel 80286
microprocessor.

The 80386 Programmer's Reference Manual describes

the 80386 32-bit microprocessor.

The Assembly Language Manual describes the machine
architecture of the associated CPU, the assembly
language, instruction set, and programming at the

symbolic instruction level.

The BASIC Compiler and BASIC (Interpreter), COBOL,

FORTRAN, FORTRAN-86 Reference, and Pascal
Reference manuals describe the system's program-
ming languages. Each manual specifies both the

language itself and operating instructions for
that language.

The GW-BASIC Manuals describe the version of BASIC
that runs on the MS-DOS operating system.

XxXvi CTOS/VM Concepts

DATA MANAGEMENT FACILITIES

The CT-DBMS Manual describes the CT-DBMS database
management system, which consists of a data
manipulation language for accessing and manipu-
lating the database, as well as wutilities for
administering database activities such as mainte-
nance, backup and recovery, and status reporting.

The ISAM Manual describes both the single-user and
the multiuser Indexed Sequential Access Method
(ISAM) . It specifies the procedural interfaces
(and how to call them from various languages) and
the utilities.

The Sort/Merge Manual describes the Sort and Merge
utilities that run as a subsystem invoked at the
Executive command level, and the Sort/Merge object
modules that can be called from an application
program.

OFFICE AUTOMATION

GRAPHICS

The Graphics Programmer's Guide describes the
graphics 1library procedures for applications and
systems programmers. In addition to an alphabetic

reference section describing all graphics proce-
dures, the manual includes annotated program
examples that explain important graphics concepts
and show typical sequences of procedure calls.

Related Documentation xxxvii

VOICE

The Voice/Data Services Manual describes the Voice
Data Services, a device driver that provides a
request and procedural interface between applica-
tions software and the Voice Processor Module.

COMMUNICATIONS

The Asynchronous Terminal Emulator Manual de-
scribes the asynchronous terminal emulator.

The CT-Net Reference Manual provides information

for system administrators on installing, configur-
ing, maintaining, and monitoring their local
nodes, and on communicating with remote nodes.

The Modem Server Reference Manual describes the
configuration, installation, maintenance, modems,
and programmatic interface of the Modem Server.
This system service controls up to six asyn-

chronous communications lines, accommodating up to

four clients per 1line. The Modem Server is used
with CT-Net, CT-MAIL, and the Multimode Terminal
Emulator (MTE); it can also be wused with wuser-

defined communications agents.

OTHER
The 80286 Architecture by Stephen P. Morse and
Douglas J. Albert describes the architecture of

the Intel 80286 microprocessor (John Wiley & Sons,
Inc., New York, N.Y.).

xxxviii CTOS/VM Concepts

1 INTRODUCTION

WHAT IS CTOS/VM?

CTOS/VM is Convergent Technologies' operating
system with wvirtual machine (VM) capability. It
is designed for microprocessors that support pro-
tected mode operation. Currently, these micro-
processors are the 80286 and 80386 (available on
workstations only). This manual also describes
the real mode operating systems based on the 80186
microprocessor (available on Shared Resource Pro-
cessors and workstations) .

WHAT DOES CTOS/VM OFFER?

CTOS/VM offers a CTOS software foundation shared
by all Convergent proprietary operating systems.
CTOS features include the following:

e multiprogramming
e nultitasking

e event-driven, priority-ordered process
scheduling

e messaged-based operation

e nationalization

Introduction 1-1

Additionally, CTOS/VM offers the following en-
hancements:

e protected mode operation
e Real Mode Operating System (RMOS)
e virtual 8086 mode

e <variable partitions with code sharing
capability

CTOS FEATURES

MULTIPROGRAMMING

Multiprogramming is the ability to run more than

one program in memory at the same time. Multi-
programming supports the independent invocation
and scheduling of multiple ©processes. Addi-

tionally, it supports concurrent I/O and multiple
processor implementations.

MULTITASKING

Multitasking is the ability for any program to
have more than one process (thread of execution).
(Note that in this manual, multitasking is called
multiprocessing.)

The Executive, for example, consists of two
processes: one accepts your keystrokes, while a
second displays the time of day.

1-2 CTOS/VM Concepts

EVENT-DRIVEN, PRIORITY-ORDERED PROCESS SCHEDULING

Each process (thread of execution) 1is assigned a
priority and 1is scheduled for execution based on
that priority. The Kernel scheduler uses this
priority scheme to provide efficient scheduling.
In the Executive, for example, the clock process
runs at a higher priority than the process accep-
ting user keystrokes.

Scheduling is driven by system events. Whenever
an event, such as the completion of an I/O oper-
ation, makes a higher priority process eligible
for execution, that process is scheduled to
execute immediately.

This scheduling technique is called event-driven,
priority scheduling. It simplifies scheduling
and provides faster response times than scheduling
techniques that are entirely time-based.

MESSAGE-BASED OPERATION

CTOS/VM 1is message-based. Programs, as well as
the operating system, consist of processes, each
managing various resources and communicating by
means of messages. Overall execution occurs be-
cause messages requesting services are dispatched
and processed.

Message-based operation permits the dynamic
installation/deinstallation of system services
without regenerating the system or altering oper-
ating system code. Dynamic installation/
deinstallation provides the convenience of adding
services, such as printing, gqueue management, the
mouse, or windowing support, at any time. Ser-
vices can be Convergent-provided or user-written.

Unlike subroutine calls, messages can be filtered
and redirected across networks, simplifying the
development of distributed and multiprocessing
applications.

Introduction 1-3

NATIONALIZATION

Native language support (NLS) provides a set of
utilities, run time libraries, and data structures
that can be used for the easy portation of soft-
ware to run in various languages.

CTOS/VM ENHANCEMENTS

PROTECTED MODE OPERATION

Protected mode operation provides the advantages
of extended memory and protection. Programs can
reference memory extending beyond the first mega-
byte up to the maximum allowed by the processor
and hardware. Protected mode system structures
place 1limitations on the memory programs can
access, thereby preventing programs from over-
writing code or referencing static memory al-
located to other programs.

REAL MODE OPERATING SYSTEM (RMOS)

Real mode operating system (RMOS) support allows

you to run any existing real mode application
program on a protected mode operating system with-

out modifying code, recompiling, or relinking.
The real mode program has wvirtual machine capa-
bility. This means that it appears to be execut-

ing autonomously in a multiprogramming environ-
ment .

1-4 CTOS/VM Concepts

VIRTUAL 8086 MODE

Virtual 8086 mode is a virtual machine imple-
mentation that supports the execution of multiple
operating systems, such as MS-DOS, in a multi-
programming environment. In virtual 8086 mode, a
region of memory 1s allocated and assigned the
operating system characteristics of an 8086

microprocessor. (For details, see the 80386 Pro-
grammer's Reference Manual.) Each memory region,
thus, provides a 1 megabyte address space within
which a program can execute. Concurrently, appli-

cation programs can execute in real mode (RMOS) or
in protected mode in other memory regions.

VARIABLE PARTITIONS WITH CODE SHARING CAPABILITY

Variable partitions and code sharing provide effi-
cient memory wusage. A variable partition can
change in size dynamically to meet the require-
ments of the program currently executing. The
code of the executing program can be shared by the
same type of program in a different variable
partition.

HOW THE OPERATING SYSTEM IS STRUCTURED

The basic components of the operating system are

e the Kernel

e system service processes
e system-common procedures
e object module procedures

e device and interrupt handlers

Introduction 1-5

The Kernel, the most primitive yet most powerful
operating system component, provides process man-
agement and message-based process communication
facilities.

System service processes manage system resources,
such as files and memory.

The operating system's device handlers and inter-

rupt handlers are accessed indirectly through the
convenient interfaces provided by the system ser-
vice processes.

System-common procedures are procedures that per-

form some common system functions. The Video Ac-
cess Method 1is a collection of system-common
procedures.

Object module procedures are procedures that are
supplied as part of an object module library file

and can be 1linked with the application program.
They are not part of the System Image itself. The
Sequential Access Method (SAM) 1is a collection of
object module procedures.

USING THIS MANUAL

This manual guides you through an overview of how
the operating system works. This manual and the
CTOS/VM Reference Manual are a set that describes
the CTOS/VM operating system.

The CTOS/VM Reference Manual contains a description
of each operation in the System Image and in the
standard operating system library, CTOS.lib. TUse the
CTOS/VM Reference Manual as a programming guide. You
can use CTOS/VM with several different programming
languages.

1-6 CTOS/VM Concepts

ORGANIZATION

This manual is organized as follows:

e Chapter 1 introduces you to the CTOS/VM
operating system: it highlights those fea-
tures that are unique to the operating
system and summarizes this manual's organi-
zation.

e Chapter 2 provides an overview of the
operating system concepts described in
detail in later chapters.

e Chapter 3 introduces you to the wvarious
types of CTOS/VM operations and explains
ways you can use these operations in your
programs.

e Chapter 4 describes program management,
which consists of those operations used by a
program to self-load into memory, to
self-exit from memory, and to handle error
conditions. This subject 1s presented
at a more advanced level in Chapter 32,
"Program and Partition Management," which
describes how a partition managing program
performs comparable operations to manage
several programs in memory at once.

e Chapter 5 presents parameter management, a
method of passing information from one pro-
gram to its successor within the same parti-
tion of memory.

e Chapters 6 through 23 describe how I/O can
be performed to devices, such as disks,
video, tape, and communication channels.

e Chapters 24 through 34 cover operating
system theory. These chapters describe such
subjects as memory and partition management,
system services, and how the operating sys-
tem uses interprocess communication (IPC)
and inter-CPU communication (IPC). These
chapters also present more advanced program-
ming concepts.

Introduction 1-7

e Chapter 35 describes how gqueues are
managed.

e Chapters 36 and 37 are related to the I/O
chapters (Chapter 6 through 23) but cover
the more advanced concepts of interrupts
and X-Bus management.

e Chapters 38 through 40 are dedicated to the
administrative aspects of the operating
system. As a programmer, you may not be in-
volved in customizing your system. You may
find it beneficial, however, to nationalize
your programs so that they can be used on
operating systems in other countries.

e Appendix A describes spooler management.

CHAPTER ORDERING

Figure 1-1 gives you a visual overview of the
organization of this manual and shows the rela-
tionships of the operating system concepts. Each
box contains a chapter title and its corresponding
chapter number.

In Figure 1-1, the chapters are prioritized in a
need-to-know order. Program management, param-
eters, and 1I/0, for example, are programming
concepts that you need to know early to get
started with programming. These chapters are
among the first presented in the manual.

Later chapters are located toward the right and
lower-right regions in the figure. These chapters
contain more advanced concepts and operating
system theory.

1-8 CTOS/VM Concepts

_

L00—-S¥6
(14 Joddng G| yuswsbouop| (91| Juswabouon] |z1 LS
9€
abonbuoq T EoE.wWMM:c_” Hod Hod jJuswaboupp Juawabouby SJ9|pUDH
SADN |joURS 191j0ibd %sia sng—x 3dnuiisy)
M £1[uswisbouon] [v1 L 6
EoEouocc: Jewebouby [LITVIPET Buiwoiboig «coE&ocaz Juowebouopy Juswabouoy
uoninbyuoy edoj dy$| [suonpolunwwoy bunuug o4 PJ00qAay 98pIA
I F\ ,
C l | ﬂ
r
1€ | Juswaboupy 6Z cZ [44 12| NVS
EELIIVES .«co_czEEoo ROVNWWOD juspusdeq
weysAg NdO—J433u] s8900Jdueju| NvQ WYSI —201A9(Q
L []
iXy Z2¢| Juswebouoy i 0T SPOYJaN °
muco.toooco: uonHog 5200V 3|14 E wmuwvd
h Joun| puo ,_.c_!woi pasnyonag WVdD |oluanbag
G€| Juewsbouoyy 9Z (=74 \z4 |
anenY Eo&&cco: suoniuyaqg suonoidg juswsabouopy Indino ue
it ! webouo
puo mo:u:c voo |ONJIA waysAg Annn Kowap /indy) ¥ ._ouoEEou
T
L
T

juswsbouppy
wboubouy

Relationships of Operating System
Concepts

Figure 1-1.

1-9

Introduction

The chapter boxes associated with multiprogramming

(Chapter 27), for example, provide advanced con-
cepts. You do not need to wunderstand these
concepts right away. You can use the operations

in the CT0OS/VM Reference Manual without ever know-
ing the concept of messages and message passing,
for example, which is the basis of IPC
(Chapter 29).

As vyou become more familiar with the operating
system, vyou can take advantage of the more ad-
vanced programming techniques.

Note that the chapter Dboxes associated with
configuration management (Chapter 38) are not
connected to the other chapter boxes. This 1is
because you may never be involved in the adminis-
trative activities described in these chapters.
If you are a system administrator, you have reason
to investigate this area.

Use Figure 1-1 as a quick reference guide as you
are getting acquainted with the operating system.
You will find these chapters (and the 1list of
operations described at the end of each) presented
again in an overview figure at the beginning of
the CTOS/VM Reference Manual.

1-10 CTOS/VM Concepts

2 OVERVIEW OF OPERATING SYSTEM CONCEPTS

This chapter is an overview of operating system
concepts. These concepts are described in detail
in later chapters of this manual.

OPERATING SYSTEM STRUCTURE

PROCESS

A process 1s an independent thread of execution

for a program. It carries with it the context
(that 1s, the processor registers) necessary to
that thread. One or more processes are created

each time a program is scheduled for execution.

The operating system assigns each process a
priority to schedule its execution appropriately:
priorities range from 1 (highest) to 255 (lowest/
null).

System service processes are processes that man-

age system resources. All processes, including
system service processes, are scheduled for exec-
ution in the same way based on their assigned
priority.

KERNEL
The Kernel is the most primitive yet most power-
ful component of the operating system. It

provides

e event-driven priority scheduling
e TInterprocess Communication (IPC)

e Inter-CPU Communication (ICC)

Overview of 0OS Concepts 2-1

Event-Driven Priority Scheduling

To meet the need for high performance, the oper-
ating system Kernel provides efficient
event-driven priority scheduling.

Each process 1is assigned one of 255 priorities
and 1is scheduled for execution based on that

priority. Whenever an event, such as the com-
pletion of an I/O operation, makes a higher
priority process eligible for execution, re-
scheduling occurs immediately. This results in a

more responsive system than scheduling tech-
niques that are entirely time-based.

Interprocess Communication (IPC)

The Kernel's IPC primitives, such as Request and
Wait (or Check), are the primary building blocks
for synchronizing process execution and trans-
mitting information between processes.

Messages and Exchanges. A process can send a
message, wait for a message, or poll (check) for
a message. When a process waits for a message,

its execution is suspended until a message 1is
sent to it, thus allowing processes to synchro-
nize execution. A process can also check to
determine if a message 1is available without
suspending its execution.

The operating system 1is message-based. When a
process sends a message, it actually sends the
message to an exchange rather than directly to

another process. Exchanges function as message
centers where processes send messages Or pPro-
cesses wait or check for messages. Within a

single processor, overhead 1is minimized, Dbecause
only the address of the message is moved, not the
message itself.

2-2 CTOS/VM Concepts

A single process can serve several exchanges, in
which case it can select one of several kinds of
messages to process mnext. This feature can be
used to set priorities for the work the process
is to perform.

Also, several processes can serve the same ex-
change, thereby sharing the processing of a
single kind of message.

System Service Processes. The operating system
includes a number of system service processes. A
system service process receives IPC messages to
request the performance of its services.

Examples of operating system services include
opening or closing disk files, sending output to a

printing device, or accepting keyboard input. A
process requesting a system service is a client
process. Any process, including another system
service process, can be a client. The use of

system service processes and the formalized
interface provided by IPC results in a highly
modular environment that increases reliability
and flexibility.

System services can be linked-in system services
in the operating system. The file management
system and the keyboard services are examples.

A system service also can be dynamically instal-
lable. The Queue Manager and CT-Mail are exam-
ples. Once installed, a dynamically installable
system service 1is indistinguishable in operation

from a linked-in service.

Each of the functions provided by the system
service can be accessed by a procedural call from
a high-level 1language, such as Pascal or C, as
well as from assembly language. The request
procedural interface masks all the complexities
of wusing IPC: it automatically uses a default
response exchange and builds the request block
message on the stack of the client process.

Overview of 0OS Concepts 2-3

Kernel primitives also can be called directly.
This allows an increased degree of concurrency
between multiple I/0 operations and computation.
The calling process, for example, can perform
calculations while it 1is waiting for other data
to be written to a disk file.

Filters. You can customize the function of a
system service by writing a filter for that
service.

A filter intercepts messages destined for another
system service. It may modify the effect of the
messages, but it does not modify either the call-
ing process or the system service for which the
messages were intended.

Inter-CPU Communication (ICC)

The ICC facility provides for communication be-
tween CPUs among the different processor boards
on the SRP. ICC is an extension of IPC.

If the requested system service 1is on the same
SRP processor board as the client process, the
Kernel uses IPC. If, however, the service is on
a different processor board, the Kernel uses ICC.
ICC passes request and response messages between
processor boards.

The SRP 1is compatible with the workstations at
the request level. Whether your program runs on
an SRP or on a workstation, vyour program can
access system services in the same way (that is,
either by using the request procedural interface
or by calling the Kernel primitives).

2-4 CTOS/VM Concepts

CONFIGURABLE COMMAND INTERPRETER

Interaction with the workstation operator is a
function of the Executive, not the operating sys-
tem. This allows you to choose how to use the
screen and the keyboard.

The Executive 1s an interactive command inter-
preter providing a user interface that includes a
HELP facility, command files, and the interactive
addition of new commands. The Executive is also
a normal application-level program.

You can easily replace the Executive with a cus-
tomized command interpreter of your own design.
(For details on the Executive, see the Executive
Manual.)

OTHER OPERATING SYSTEM FEATURES
File System Management

The file system management provides a hierar-
chical organization by node, volume, directory,
and file. A volume (formatted disk) 1is automat-
ically recognized when you place it online (mount

it) . A file can be dynamically expanded or con-
tracted as long as it fits on one disk (1
gigabyte), and it can be protected by password
(optionally encrypted) and protection level
number. Concurrent file access 1is controlled by
read (shared) , peek (shared) , and modify

(exclusive) access modes.

While providing convenience and security, the
file management system supplies you with the full
throughput capability of the disk hardware. This

includes reading or writing any 512 byte sector
of any open file with one disk access, reading or
writing up to 65K bytes (127 sectors) of any open
file with one disk access, overlapping I/O with
process execution, and optimizing disk arm
scheduling.

Overview of 0OS Concepts 2-5

The duplication of critical wvolume control struc-
tures protects the integrity of disk file data
against hardware malfunction. Two Volume Home
Blocks can be created for each volume. In addi-
tion, two File Header Blocks can be created for
each file on a volume.

In the Executive, vyou can use the Backup Volume
command to recover a file if either of its redun-

dant File Header Blocks is wvalid. The IVolume
command can be used to suppress the duplication
of wvolume control structures. (This reduces

reliability, however, and is not recommended.)

Device Handlers

The operating system 1s designed to accommodate
user-written device handlers. A device handler
can be part of the application program, or it can
be a system service. The Kernel can either save
process context, allowing the wuse of handlers
written in high-level 1languages, or an assembly
language interrupt handler can receive the inter-
rupt directly from the hardware. IPC provides an
efficient, vyet formal, interface from interrupt
handler to device handler and from device handler
to application program.

DISTRIBUTED ENVIRONMENT AND CLUSTERING

LOCAL RESOURCE-SHARING NETWORKS (CLUSTERS)
The operating system provides support for local

resource-sharing networks (clusters), as well as
for standalone workstations.

2-6 CTOS/VM Concepts

A cluster configuration consists of cluster work-
stations connected to a master. The master can

be a master workstation or the SRP. Essentially
the same operating system executes in each
cluster workstation as in the master workstation

(or in the combined processors of the SRP). The
master provides resources, such as file system
management and queue management, for all work-
stations in the cluster. Concurrently, a master

workstation can support its own interactive
application program processing.

In the cluster configuration, the IPC facility 1is
extended to provide transparent access to system
services that execute in the master. While some
services (such as gqueue management, 3270 emu-
lator, and database management) migrate to the
master, others (such as video management and key-
board management) remain at the cluster work-
station. A cluster workstation with its own file
system can service file requests 1locally as well
as send file requests to the master.

One high-speed, RS-422 channel 1is standard on
each workstation. In cluster configurations con-
nected to a master workstation, the master and
all of the workstations connected to it use this
channel for intercluster communications. For
large clusters with an SRP master, multiple
RS-422 channels are provided.

CT-NET NETWORK

The CT-Net network extends the operating system
resource-sharing capability. CT-Net provides
for sharing resources (such as the file system,
CT-ISAM, X.25 Network Gateway, and printing ser-
vices) between workstations in clusters that are
connected by communications lines over long
distances.

Overview of 0OS Concepts 2-7

OPERATING SYSTEM TYPES

Operating systems are available for workstations
and for the SRP.

Workstation operating systems are of the
following types:

° standalone workstation (Stnd)
e master workstation (Mstr)
e cluster workstation (Clstr)

e cluster workstation with local file system
(ClstrLfs)

An SRP operating system can contain the following
processors:

e (Cluster Processor (CP)

e Data Processor (DP), which is a Storage
Processor (SP) and Storage Controller (SC)
combination

° File Processor (FP)
e Storage Processor (SP)

e Terminal Processor (TP)

WORKSTATION OPERATING SYSTEMS

Table 2-1 gsummarizes features available on each
workstation operating system.

2-8 CTOS/VM Concepts

Table 2-1
WORKSTATION OPERATING SYSTEM FEATURES

Operating Cluster Master File
System Agent Agent System
Stnd X
Mstr X X
Clstr X

ClstrLfs X X

The differences between each workstation oper-
ating system are a function of the services each
has to offer.

The cluster workstation operating system differs
from the standalone workstation in the (optional)
exclusion of the file management service and the
disk handler, and the inclusion of the Cluster
Agent. The cluster workstation with a local file
system includes a file management service.

The master workstation operating system differs
from the standalone only in its inclusion of the
Master Agent. The master workstation can provide
file services for the -entire cluster config-
uration.

Overview of 0OS Concepts 2-9

SRP OPERATING SYSTEMS

An SRP operating system comprises several dif-
ferent processor boards. Each processor board
contains a CTOS Kernel and memory, and generally
provides a subset of the services offered by a
workstation operating system. Services provided
by individual ©processor boards can be shared
among all others. Interboard communication 1is
achieved by means of a high-speed bus using the
ICC facility. Together, the processor boards
function as a unified operating system.

In general, an SRP operating system consists of
at least one FP or DP and one CP.

Table 2-2 summarizes features provided by each SRP
processor.

Table 2-2
SRP PROCESSOR BOARD FEATURES

SRP Master RS-232-C File Half-Inch
Processor RS-422 System Tape
Agent
FP X
DP (SP+SC) X X
CP X X
TP X
SP X

2-10 CTOS/VM Concepts

The FP as well as the DP provide file management
services, differing only in the type of hardware
upon which the service is performed. The FP ser-
vices hard disks, whereas the DP services the SMD
class of disk drives. The DP, in addition, sup-
ports half-inch tape. Note that the SP handles
half-inch tape exclusively.

The CP and TP contain peripheral ports for

cluster and network communications. The CP
provides a Master Agent to transport messages
over RS-422 channels (to locally clustered
workstations) and an RS-232-C communications

service to support asynchronous terminals and
communications media. The TP specializes in
RS-232-C communications services only.

PROGRAM AND PARTITION

An executable program can consist of code, data, and
one or more processes in a memory partition.

NOTE: The term partition, as used in this manual, shows the bounds of
a program while that program is in memory. Actual partition sizes and
locations vary with each operating system. In addition, partition
contents (protected mode operating systems) are not contiguous in
physical memory, and portions (such as code) may be shared between
partitions. In previous operating system versions, a partition actually
was a static memory cell into which various programs were loaded.

A program 1is loaded into a memory partition from
a disk-resident file or run file. Run files are
created by compiling and/or assembling source
language modules into object modules and linking
the object modules together into code and data
segments.

When a currently active program such as the Exec-
utive requests it to do so, the operating system
reads the run file into memory, relocates inter-
segment references, and schedules the program for
execution.

Overview of OS Concepts 2-11

NOTE: This manual generally describes a logical model of the operating
system rather than a particular implementation. In certain cases,
however, such as in the description of "System Memory Organization"
that follows, the implementation is indicated to point out significant
feature differences. (For details, see the Release Notice for your version
of the operating system.)

SYSTEM MEMORY ORGANIZATION

System memory consists of two types of partitions:

e System partitions: A system partition
can contain the operating system or a
dynamically installed system service.

e Application partitions: An application

partition can contain an application
program.

When a system is initiated, the operating system
is loaded into system partitions at the low and
high address ends of memory. (See Figure 2-1.)

Operating system data is loaded at low and high
addresses.

e Data at the low address end includes the
system structures and the Interrupt
Vector Table (real mode only) .

e Data at the high address end includes
the loadable request files and the NLS
tables.

2-12 CTOS/VM Concepts

Real Mode Protected Mode
Operating System Operating System

High End of Memory - - -~ - - - =~ -~ - - e e

Operating System Data

~>| Operating System Code

System Service

System Service

Operating System Data
Free Memory
System Service
System Service
Free Memory
Operating System Code }—J
Operating System Data Operating System Data
Low End of Memory -- -~ 945-002

Figure 2-1. Memory Organization

Operating system code 1is loaded at the low ad-
dress end for real mode and at the high address

end for protected mode. Code includes the System
Image and the file system, 1f present. For
protected mode, a resident Debugger optionally

can be loaded as part of the code.

Overview of OS Concepts 2-13

As shown in Figure 2-1, most of the operating
system 1is loaded at the high end of memory for
protected mode. This is one of the advantages of
protected mode: it frees more memory for appli-
cation programs to run in the first megabyte.

In either mode, dynamically installed system ser-
vices are 1loaded into system partitions located
at the high address end of memory.

The remaining memory at initialization is defined
as free memory.

To bring an application program into memory, the
operating system creates a new application par-
tition in free memory into which it 1loads the
program. The partition is placed at the high
address end of free memory. (See Figure 2-2.)

PARTITION MANAGING PROGRAMS

A partition managing program is a program that
can create new application partitions and load
programs into them. The Context Manager 1s such
an example. (For details on the Context Manager,
see the Context Manager/VM Manual.)

If a partition managing program exists in memory,
additional application partitions also can exist
in memory.

SWAPPING

When space for new partitions 1s needed, the
operating system swaps partition managed programs
out of memory to a disk file or to upper memory
(above the first megabyte) .

Figure 2-3A shows the Context Manager and Program
W, Program X, and Program Y in memory. Figure
2-3B shows Program X swapped out and Program Z
swapped in.

2-14 CTOS/VM Concepts

High End of Memory
System Service

System Service

Application
Partition
Containing an
Application
Program

Free Memory

IS

Operating System

Low End of Memory

945-003

Figure 2-2. Memory Organization with Application
Partition and Free Memory

USER NUMBER

Each partition has a wunique user number (his-
torically the same as a partition handle) that is

shared by all processes in the partition. The
user number refers to the resources associated
with the specified partition. It does not refer

to a partition's particular size or physical lo-
cation in memory.

In a cluster or network environment, the re-
sources of each cluster workstation partition are
identified at the other workstations by a user
number, which has been translated so as to be
unique among all workstations.

Overview of OS Concepts 2-15

As an example of a user number, each partition
containing a program in Figure 2-3 1s a different
user number. Note that Program Z's partition is
in the same basic location that Program X's par-
tition occupied when it was resident in memory.
The user number of Program X's partition,
however, can be used to refer to Program X, even
when Program X is not resident in memory.

High End of . - .
Memory T System Partition T System Partition
Context Manager Context Manager
Program W Program W
Program X
Disk File Program Z
Program X
/ F/ 7
ree Memory
v /
Program Y Program Y
Operating System Operating System
Low End of Partition Partition
Memory

945004

Figure 2-3. Memory Organization Under Partition
Management

2-16 CTOS/VM Concepts

APPLICATION PARTITION MEMORY ORGANIZATION

The two types of memory allocation available to
an application program are short-lived and long-
lived. Within each application partition, short-
lived memory expands downward from high memory
locations, while long-lived memory expands upward

from low memory locations. (See Figure 2-4.)
~ ~
High End of Memory 3
Application Program
(Code)
Fem e e =]
Short~Lived Memory .
¢ Application
Partition

Common Unallocated
Memory Pool

Long—Lived Memory

Low End of Memory /

A
945-005

Figure 2-4. Memory Organization of an
Application Partition

A program allocates short-lived memory to hold
information it needs while executing. For exam-
ple, it may mneed to build a record structure.
Short-lived memory cannot be used to pass infor-
mation to other partitiomns.

When the execution of a program is terminated,

the short-lived memory of its partition is auto-
matically deallocated.

Overview of OS Concepts 2-17

Long-lived memory, however, 1is deallocated only

at the specific request of the program. It is,
therefore, wuseful for passing information from
one program to another. The Executive uses

long-lived memory for passing parameters to
application programs that will run in the same
partition. The Executive typically deallocates
long-lived memory whenever it is reloaded.

Programs can allocate and deallocate short-lived
and 1long-lived memory by making operating system
requests. A program in one partition cannot al-
locate or deallocate memory in another partition.

VIRTUAL CODE MANAGEMENT FACILITY

The Virtual Code Management facility permits the
execution of an application program that exceeds
the physical memory of an application partition,
by the use of relocatable overlays. To ensure
optimal performance, the use of this facility is
under the programmer's control.

FIXED AND VARIABLE PARTITIONS

A partition can be a fixed partition or a vari-
able partition. A fixed partition always uses a
fixed amount of memory. A variable partition
(protected mode operating systems only) can use
up to the maximum amount of memory that the pro-
gram executing in it may allocate. (For details,
see the Linker/Librarian Manual.)

CODE SHARING

Variable partitions (protected mode operating
systems only) permit a program's code to Dbe
shared by the same type of program in another
variable partition. Shared code can be located

anywhere in physical memory.

2-18 CTOS/VM Concepts

3 _USING CTOS/VM OPERATIONS

This chapter 1is provided to help you get started
using the CTOS/VM operations in the programs that
you write.

ASSUMPTIONS

It is assumed that the operating system has been
successfully installed on your workstation. In
addition, vyou should have installed the language
compiler for the high-level language you will be
using and the Software Development Utilities. The
Software Development Utilities include the Linker,
the Librarian, the Assembler, CTO0S.lib, and so
forth. (See the Release Notice for Standard Soft-
ware for more information.)

If the above assumptions are correct, you can use
your workstation for writing software programs.

You also should have available the documentation
you will need to refer to while you are writing
your programs. At a minimum, you will need the
CTOS/VM Reference Manual. The Linker/Librarian
Manual, the Assembly Language Manual, the Debugger
Manual, and the appropriate programming language

manual are other supporting software manuals that
you should have when you are ready to compile,
link, and run your program.

NAMING CONVENTIONS

You will notice that certain conventions are used
to name variables in the CTOS/VM Reference Manual
and other supporting software manuals. You need
to familiarize vyourself with the naming conven-

tions used in these manuals to understand what the
variables mean when you write programs that wuse
the CTOS/VM operations.

Using CTOS/VM Operations 3-1

See the Quick Reference card on Naming Conventions
that 1s packaged with this manual. It provides
information on the naming conventions most com-
monly used.

It is recommended that you follow the same naming
conventions when you are developing software.

INTERFACE

The programmatic interface to any of the CTOS/VM
operations is a procedural call.

FORMAT

The format of the procedural interface is given
for each operation in the CTOS/VM Reference Man-
ual. The following are examples of what this

format looks like for three CTOS/VM operations:

WildCardInit (pb, cb, pBuf, sBuf): ercType

PutFrameCharsAndAttrs (iFrame, iCol, iLine,
pbText, cbText, pbAttrs, cbAttrs):
ercType

OpenFile (pFhRet, pbFilespec, cbFileSpec,
pbPassword, cbPassword, mode) :
ercType

The operation name 1is to the 1left of the left

parenthesis. You cannot change this name. The
names enclosed within the parentheses are variable
names representing parameters. Note that these

variable names follow the naming conventions de-
scribed in the Quick Reference card.

3-2 CTOS/VM Concepts

For example,

pFhRet

means the memory address (p) of a file handle (Fh)
returned (Ret) to your program.

The CTOS/VM Reference Manual includes a de-

scription for each operation. The description
tells you what to fill in for each parameter to
the procedural interface. (See the following ex-

ample for details.)

Almost all CTOS/VM operations are written as func-
tion calls. A function call returns a one-word
status code commonly known as an erc. Each of the
preceding examples 1s an operation that returns a

status code and, therefore, is labeled ercType.

If an ercType operation returns with no error, it
returns a status code of 0 or ercOK. The oper-
ating system itself does not report any errors to
the wuser; 1t simply returns status codes to
programs that use operating system services. Pro-
grammers should always check the returned status
code and provide for error reporting or recovery.

EXAMPLE STATEMENT
To use the procedural interface format, you must

write it as a language statement. For example,
the format of OpenFile looks like

OpenFile (pFhRet, pbFilespec, cbFileSpec,
pbPassword, cbPassword, mode) :
ercType

Using CTOS/VM Operations 3-3

The following is an example of how you can fill in
the parameters to OpenFile in Pascal. Each vari-
able name (from left to right) is described and
followed by what you write for it.

1. pFhRet is the address to which the file
handle for the open file will be
returned, for example:

ADS fh

2. pbFileSpec 1s the address of a file
specification. You might declare the
file specification as an LSTRING type
and address it by reference, for exam-
ple:

ADS 1lsFileSpec[1]

3. cbFileSpec is the length in bytes of the
specification, for example:
lsFileSpec.len

4. pbPassword is the memory address of the

file password. For example, no password
required is indicated as

NULL

5. cbPassword is the length in bytes of the
password. For example, no password 1is
indicated as

3-4 CTOS/VM Concepts

6. mode is a two-letter constant indicating
the mode in which the file is to be opened.
For example, read mode is indicated as

lmrl
The completed OpenFile statement in Pascal is thus

erc := OpenFile(ADS fh, ADS 1sFileSpec|[1],
lsfileSpec.len, NULL, 0, 'mr');

OPERATION TYPES

Your program can use the procedural interface with
any of the following types of operations:

e object module procedure
e system-common procedure

o (operation that uses the) request pro-
cedural interface to system services

e Kernel primitive

Each CTOS/VM operation in the CTOS/VM Reference
Manual is identified as one of these types.

Each operation type functions 1in the operating
system in a different way.

OBJECT MODULE PROCEDURE

An object module procedure 1is a procedure in a
library. It is not part of the operating system
code itself. The Linker 1links an object module
with your program as part of the code that is exe-
cuted when your program is run.

Using CTOS/VM Operations 3-5

WildCardInit is an example of an object module
procedure. When your program executes a call to
WildCardInit, control is transferred to the
WildCardInit code. When WildCardInit has complet-
ed executing, it returns to the next executable
instruction in your program.

WildCardInit 1is in the standard operating system
library, CTOS.lib. All of the CTOS.lib object
module procedures are included in the "Operations"
chapter in the CTOS/VM Reference Manual.

SYSTEM-COMMON PROCEDURE

A system-common procedure does not reside in a

library nor is it linked with your program. It is
a procedure within the operating system itself. A
system-common procedure is either so common that
it should not have to be duplicated, or it 1is
hardware-dependent code too extensive to be in-
cluded in every program written. System-common
procedures increase program performance.

PutFrameCharsAndAttrs is an example of a
system-common procedure.

3-6 CTOS/VM Concepts

KERNEL PRIMITIVES

The Kernel primitives are part of the operating
system. They are

Check
CreateProcess
ForwardRequest
PSend

Request
RequestDirect
RequestRemote
Respond

Send

Wait

WaitLong

These primitives are described in Chapter 29,
"Interprocess Communication, " and Chapter 30,
"Inter-CPU Communication."

ACCESSING SYSTEM SERVICES USING THE REQUEST
PROCEDURAL INTERFACE

The request procedural interface is a routine
within the operating system wused to access a
system service. It calls the Kernel primitive,
Request, to do this. The request procedural in-
terface is not linked with your program. Instead,
an interrupt is generated, which transfers control
to the request procedural interface routine. Your
program is placed in a waiting state while the routine
executes.

The request procedural interface first constructs
a request block. The request block is a message
used by all interprocess communications. It 1is
constructed according to specific conventions from
the parameters vyou supplied in the procedural
interface.

Using CTOS/VM Operations 3-7

The request procedural interface then calls Re-
quest to route the request block to the system
service. When the system service completes its
service, it fills in its response in the request
block and calls the Kernel primitive, Respond.
Respond routes the request Dblock back to vyour
program.

Upon completion, a status code is returned to your
program. A status code of 0 (ercOK) indicates
that the system service performed the operation
with no error.

The CTOS/VM operations that use the request
procedural interface are request-based operations.
OpenFile 1is an example. You can identify the
request-based operations in the CTOS/VM Reference
Manual by the request block format following the
operation description.

ACCESSING SYSTEM SERVICES USING THE KERNEL
PRIMITIVES

To access a system service wusing Kernel prim-
itives, you are required to construct the request
block vyourself for the specified request-based
operation. Then you must call the Kernel prim-
itives, Request and Wait (or Check), for the
request to be serviced.

This method of accessing a system service has the
advantage of allowing vyour program to continue
execution while 1t periodically checks for the

response from the system service. The request
procedural interface always requires that vyour
program wait for the response. The request pro-

cedural interface, however, is easier to use.

It 1s recommended that vyou read the advanced
chapters in this manual before you use the Kernel
primitives in this way. (See Chapter 29, "Inter-
process Communication," for more information.)

3-8 CTOS/VM Concepts

INTERFACE LEVELS

Figure 3-1 shows the I/O chapters in this manual.
Each chapter (except Chapter 6, "Input/Output,"
which is introductory) presents the interfaces you

can use to perform I/O to and from hardware de-
vices.

i

Sequential
Access
Method

0]

Device—
Dependent ISAM RSAM DAM
SAM

i
]

Keyboard File Printing Communi— SRP
Video Manage— Manage— Manage— cations Terminal
ment ment ment Program— Manage—
ming ment
9 10 [1] [13 14
L]
Disk Parallel Serial
Manage— Port Port
ment Manage— Manage—
ment ment
[12 [16 15

Interrupt)’:—Bus _
Handlers anage
ment
36 37I
945-006

Figure 3-1. Interface Levels

Using CTOS/VM Operations 3-9

I/0 interfaces are available for the same device
at different interface levels. The level of an
interface implies the degree of control a program
has over a hardware device when it wuses that
interface. Low-level interfaces provide greater
hardware control than high-level interfaces but,
at the same time, restrict a program to performing
I/0 to fewer devices.

The chapters closer to the top of Figure 3-1
describe high-level interfaces. Low-level inter-
faces are described in the chapters towards the
bottom. The chapters with device names such as
"Video" and "Disk Management," for example, de-
scribe low-level interfaces.

If you are getting acquainted with the CTOS/VM
operations, the easiest way to access a device is

at a high level. For example, you can use the
operations in the Sequential Access Method (SAM)
chapter to access the wvideo device. The SAM

interfaces are easier to use than the low-level
video interfaces, because you write fewer state-
ments in your program.

You will discover that there are advantages and
disadvantages to using different interface levels.

The subject of interface 1levels 1is discussed at

length in the I/0 chapters. (See these chapters
for more information.)

ADDRESSING MEMORY

In real mode, you are limited to a 1 megabyte phys-
ical address space. This means that your program
can reference each of the 1,048,576 Dbytes by a
unique physical address.

The physical memory address (PA) 1is the actual
location in system memory.

3-10 CTOS/VM Concepts

In protected mode, the physical address space ex-
tends beyond the first megabyte. The amount of
physical memory your program can address 1is deter-
mined by your system's processor and its hardware

limitations. A 80286 processor, for example, is
capable of providing a 16 megabyte physical ad-
dress space. The actual address space, however,

igs determined by the hardware.

(For details on protected mode addressing, see the
iAPX 286 Programmer's Reference Manual, the 80286
Architecture, and the 80386 Programmer's Reference
Manual.)

A segment 1s a contiguous area of less than 64K
bytes within the physical address space. The
operating system uses segmented addressing. This
means every address 1is relative to a segment.
(See Chapter 24, "Memory Management," for de-
tails.)

You can think of a memory address as having a
logical, a 1linear, and a physical translation.
Figure 3-2 summarizes these translations.

LOGICAL MEMORY ADDRESS
The logical memory address 1s the 32 bit memory

address as viewed by an application program. For
example,

pFh

is the logical memory address (denoted by p) of a
file handle (denoted by Fh) . The logical memory
address 1s used more frequently than either its
physical or linear memory address translation.

Using CTOS/VM Operations 3-11

Real Mode Protected Mode

SA RA SA RA
Logical Se
gment Selector
Memory Address Offset (SN) Offset
Address
x16 LDT or GDT
Segment Base Address Segment Base Address
7z 2224
RN N
QIF)‘—*Q A
20-bit Linear Address= 24— or 32—bit Linear Address=
20-bit Physical Address 24— or 32-bit Physical Address

I

Page Table Paging Enabled

32-bit Physical Address 945-007

Figure 3-2. Memory Address Translations

The logical memory address consists of a segment
address (SA) and a relative address (RA). (The
relative address is commonly called the offset.)
The syntax of a logical memory address in assembly
language is

SA:RA

The SA portion is the high-order 16 bits of the
logical memory address.

3-12 CTOS/VM Concepts

The SA is interpreted differently,

whether the processor 1is executing in real or
protected mode.

In real mode, the SA is multiplied by 16
to determine the segment base address in
physical memory.

In protected mode, the SA is a selector
(SN) . It selects a segment descriptor
entry in a protected mode system struc-
ture [either a Local Descriptor Table
(LDT) or a Global Descriptor Table
(GDT) 1.

The segment descriptor selected by the SN

contains a segment base address, which
may be located anywhere in physical
memory. For this reason, 1f you are
writing a program you want to execute in
protected mode, vyour program should not
depend upon the wvalue of the SN. (For
details on writing protected mode pro-
grams, see the Engineering Update for
2.0 CTOS/VM.)

depending upon

in

The RA (or offset) is the low-order 16 bits of a
logical address. It is the distance, in bytes,

the

target location from the Dbeginning of

segment .

of
the

Using CTOS/VM Operations 3-13

LINEAR MEMORY ADDRESS

The linear memory address is computed differently
in real and in protected modes. (See Figure 3-3.)

. In real mode, a 20 bit linear memory
address is computed by multiplying the SA
of the logical address by 16 and adding
the RA.

e TIn protected mode, a 24 or 32 bit linear
memory address is computed by adding the
RA to the 24 or 32 bit segment Dbase
address.

PHYSICAL MEMORY ADDRESS

The physical memory address is the actual location
in system memory.

e TIn real mode, the physical memory address
is equivalent to the 1linear memory
address.

e TIn protected mode, the physical memory
address 1is equivalent to the linear mem-
ory address unless paging is enabled.

If paging is enabled, the 32 bit 1linear
memory address maps to a 32 bit physical
memory address via a page table struc-
ture.

3-14 CTOS/VM Concepts

MEMORY ADDRESSING IN THIS MANUAL

A Dbyte of memory does not have a unique logical
memory address. The same byte of memory can be
referred to by many different combinations of SAs
and RAs.

In this manual, the term memory address means the
logical memory address. (Chapter 30, "Inter-CPU
Communication," describes a linear address wused
for routing requests between processor boards on
the SRP. This 1is the only case in which the
memory address has a different meaning.)

ADVANTAGES TO PROTECTED MODE MEMORY ADDRESSING

Protected mode addressing provides certain ad-
vantages over real mode.

EXTENDED MEMORY

Protected mode extends memory, allowing you to run
programs beyond the first megabyte of physical
memory . Real mode programs, however, are limited
to the first megabyte.

As an end user, this means you can run more pPro-
grams in memory. As a programmer, you can refer-
ence physical memory addresses extending beyond
the first megabyte up to the maximum allowed by your
processor and hardware.

PROTECTION

In protected mode, programs are prevented from
referencing static memory allocated to other pro-
grams, or from overwriting code. This is because
LDTs and GDTs provide for limit and type checking,
which place limitations on the memory programs can
access.

Using CTOS/VM Operations 3-15

4 PROGRAM MANAGEMENT

The Program Management facility provides opera-

tions used by a program to self-load into memory,
to self-exit from memory, and to handle error
conditions.

WHAT IS A PROGRAM?

An executable program can consist of code, data,
and one or more processes 1in a partition in
memory.

A program is loaded into memory from a
disk-resident file or run file. Run files are
created by compiling and/or assembling source
language modules 1into object modules and linking
the object modules together into code and data
segments. (See Figure 4-1.)

SEGMENTS

A code segment contains only processor instruc-
tions (code) and 1is never modified once it is

loaded into memory. Several processes can execute
instructions from the same code segment. (For
details, see "Code, Static Data, and Dynamic Data
Segments" in Chapter 24, "Memory Management.")

A static data segment contains initial wvalues of
program data structures and is writable once in
memory. Every invocation of a program gets a new
static data segment.

Program Management 4-1

Source Language
Module(s) Compiler(s) and/or Assembler
(Code and Data)

Object
Module

(Optional)
Library or
Libraries

Run File

Operating System Loader Memory

945-008

Figure 4-1. From Source Language Modules to
Program in Memory

LINKER

The Linker reads the object module(s) and combines
the segment elements contained within the modules
according to their segment names, class names, and
directives from the user. (For details, see the
Linker/Librarian Manual.)

The run file that is created by the Linker con-
sists of segments. Segments can be combined based
on a series of different segmentation models.
Most programming languages use the medium model,
although the operating system also supports small
and large model. (For details, see the CTOS
Programmer's Guide.)

4-2 CTOS/VM Concepts

A run file created by linking object modules pro-
duced by the Pascal compiler, for example, con-
sists of one code segment for each object module
included in the 1link and a single static data
segment . The single static data segment, or
DGroup, combines the static data and stack re-
quirements of all the object modules.

A run file of this form is considered standard;
assembly language programmers are urged to adopt
this standard wunless other considerations are
overriding. The COBOL compiler and BASIC inter-
preter do not produce object modules. (For de-
tails, see the Linker/Librarian Manual.)

PROGRAM LOADING INTO MEMORY

When a program is loaded into memory, the run file
is read into the short-lived memory of the
application partition. For real mode programs,
any logical memory addresses existing in either
the code or data segments (intersegment refer-
ences) are adjusted to reflect the memory address
at which the program is 1loaded. For protected
mode programs, the Loader adjusts the base ad-
dresses in each Local Descriptor Table (LDT)
descriptor.

The Virtual Code Management facility allows you to
run a program that is larger than the available
memory in an application partition. If the Vir-
tual Code Management facility is in use, all the
static data segments and the resident code segment

are loaded in memory. The nonresident code seg-
ments are loaded in memory only as needed. (See
Chapter 34, "Virtual Code Management, " for
details.)

A program is loaded by the Chain, Exit, ErrorExit,
LoadPrimaryTask, or LoadInteractiveTask operation.

Program Management 4-3

Note that LoadPrimaryTask and LoadInteractiveTask
must be followed by a call to SwapInContext or
AssignKbdOwner if a program is to be loaded into

memory by a partition managing program. (For de-
tails on partition managing programs, see Chapter
32, "Program and Partition Management.")

EXIT RUN FILE

When the currently executing program exits, the
exit run file is the next program that is loaded

into the partition. Exit run files are
user-specified. Each application partition has
its own. For example, the Executive sets itself
as the exit run file: the user starts the
application from the Executive, and when the

application is done, the Executive is reloaded.

A program can specify an exit run file for its
partition by wusing the SetExitRunFile operation.
A program can determine the exit run file of its
partition by using the QueryExitRunFile operation.

If no exit run file is specified in a partition,
the partition becomes vacant.

TERMINATING PROGRAMS

The application program terminates itself by using
the Chain, Exit, or ErrorExit operation.

When a program terminates, the operating system
issues termination requests. Termination regquests

(system requests) are messages that notify system
services of a program's termination. Upon receipt
of a termination request, system services release
resources, such as open files, that may be allo-
cated to the terminating program. (For details,
see Chapter 31, "System Services Management.")

4-4 CTOS/VM Concepts

DEALLOCATION OF SYSTEM RESOURCES

Only the resources allocated to an exiting program
are deallocated when that program terminates.

The resources that are deallocated include

e Short-lived memory. (See Chapter 24,
"Memory Management.")

e Exchanges. (See Chapter 29, "Interpro-
cess Communication.")

e Files opened by the OpenFile operation
(except long-lived files). (See Chapter
11, "File Management.")

e Timer Request Blocks allocated by the
OpenRTCClock operation. (See Chapter 33,
"Timer Management.")

e Communications channels allocated by the
InitCommLine operation. (See Chapter 15,
"Serial Port Management.")

e Global Descriptor Table selectors (SGs)
(protected mode). (See the 1iAPX 286
Programmer's Reference Manual, the 80286
Architecture, and the 80386 Programmer's
Reference Manual.)

Program Management 4-5

OPERATIONS

The Program Management operations described below
are categorized as error handling and normal
program exit operations. Operations are arranged
in a most to least frequent use order. (See the
CTOS/VM Reference Manual, Chapter 3, "Operations,"
for a complete description of each operation.)

ERROR HANDLING

FatalError Terminates operation of the appli-
cation program and passes an abnor-
mal status code to the exit run
file.

CheckErc Checks status codes. If CheckErc
is called with a nonzero status
code, FatalError is called with
that value.

ErrorExit* Terminates the current application
program in an application partition
and passes an abnormal status code
to the exit run file.

ErrorExitString*
Returns a string (usually printed)
to the exit run file.

*Dynamically installed system services use these
operations at a certain time during installation.
(For details, see Chapter 31, "System Services
Management . ")

4-6 CTOS/VM Concepts

Crash Causes system operation on a work-
station to terminate, a crash dump
to be written, the operating system
to be reloaded, and SignOn to dis-
play the cause of the crash when it
is restarted.

SetMsgRet Same as ErrorExitString except the
program does not exit.

NORMAL PROGRAM EXIT

Exit* Terminates the current application
program in an application partition
and passes a normal status code to
the exit run file.

Chain¥* Replaces the current application
program in an application partition
with the specified run file.

SetExitRunFile
Establishes a new exit run file for
an application partition.

QueryExitRunFile
Returns the name, password, and
priority of the exit run file of an
application partition.

*Dynamically installed system services wuse these
operations at a certain time during installation.
(For details, see Chapter 31, "System Services
Management.")

Program Management 4-7

5 PARAMETER MANAGEMENT

The Parameter Management facility provides a
structured mechanism for passing limited informa-
tion from one application program to its successor
within the same application partition.

EXAMPLE PROGRAM

The Executive 1is a typical example of an applica-
tion program that uses the Parameter Management
facility.

The Executive interfaces with the wuser through a
forms-oriented interface. A forms-oriented inter-

face accepts parameters from the user.

The Executive thus passes user-supplied parameters
to other programs. The way that the Executive
does this 1s described below. (See the Executive
Manual for details.)

In the Executive, the user types a command name on
the command 1line. When the user presses Return,
the Executive is given the command.

The Executive responds by writing the
user-requested command form to the screen. The
command form contains the appropriate prompts for

the user to enter data.

If the wuser, for example, types Delete on the
command line and presses Return, the following
command form appears:

Delete

File list
[Confirm each?]

Parameter Management 5-1

The command form consists of a 1list of prompts.
The wuser enters data on the 1lines (parameter
fields) in the form next to the prompts, correct-
ing typing errors if necessary. When satisfied
with the contents of the fields, the user presses
Go to execute the command.

The Executive passes the parameters to the Delete
program. The Delete program, in turn, deletes the
user-specified files.

A forms-oriented interface, such as the Executive,
is one type of program that can use the Parameter
Management facility to its advantage. Parameter
Management, however, can be used by any applica-
tion program in a partition that needs to provide
information to any other program that will run in
the same partition.

PARAMETERS

A Qarameter consists of zero or more subparam—
eters.

In the Executive Delete command described above,
the prompt [Confirm each?], for example, accepts
either

e zero parameters (meaning the user did not
enter any information)

. one parameter (a Yes answer)

A subparameter typically consists of an arbitrary
sequence of characters not including a space.

The prompt [File 1list] in the Executive Delete
command allows the user to enter one or more file

names. Each file name 1is a subparameter; the
parameter 1s the complete file 1list the wuser
entered on the File 1list 1line. (For details on

Executive parameters, see the Executive Manual.)

5-2 CTOS/VM Concepts

As another example, the parameter

1 abc Work.Fri

contains three subparameters, which are 1, abc, and
Work.Fri. The space is the delimiter that separates
the subparameters.

A space can be embedded within a subparameter by
including the entire subparameter in single quotes.

For example, the parameter

'l abc' Work.Fri

contains two subparameters: 1 abc and Work.Fri.

OVERVIEW OF PARAMETER MANAGEMENT STRUCTURES AND
OPERATIONS

Programs using the Parameter Management facility
must organize parameter data to simplify the
method in which other programs extract the
parameters.

The organized data 1is stored in the Variable
Length Parameter Block (VLPB), a data structure in
long-lived memory of the application partition.
[For details, see "Variable Length Parameter Block
(VLPB) , " later in this chapter.] The memory
address of the VLPB is stored in the Application
System Control Block (ASCB) of the partition.
[For details, see "Application System Control
Block (ASCB)," later in this chapter.]

To place parameter data in an organized fashion
into the VLPB, programs can use the Parameter
Management operations for constructing the VLPB.
(These operations are described in "Operations for
Constructing the Variable Length Parameter Block,"
later in this chapter.)

Parameter Management 5-3

To extract parameters from the VLPB, programs can
use the Parameter Management operations for
querying the parameters stored in that structure.
(These operations are described in "Querying
Parameters in the Variable Length Parameter
Block," later in this chapter.)

APPLICATION SYSTEM CONTROL BLOCK (ASCB)

An Application System Control Block (ASCB) is
automatically created in an application partition

when the partition is created. The ASCB contains
the memory addresses of various types of partition-
specific information, such as the VLPB. This

information is available to be queried by
programs, such as the Executive, which execute in

the partition. (See Chapter 26, "System Defini-
tions," for details on how a program can obtain
partition information from the ASCB. For details

on the ASCB structure, see Table 4-1 in the
CTOS/VM Reference Manual.)

VARIABLE LENGTH PARAMETER BLOCK (VLPB)

The Variable Length Parameter Block (VLPB) is a
partition structure used by the Parameter Manage-
ment facility to communicate parameters to pro-
grams.

The VLPB is created in the long-lived memory of an
application partition. Its memory address is
stored in the pVLPB field of the ASCB.

Conceptually, the VLPB can be described as a
two-dimensional sparse array of strings. The Exe-
cutive command form illustrates the parts of this
array as follows:

e FEach element (iParam, jParam) in the array

is the value of a subparameter entered into
an Executive command form.

5-4 CTOS/VM Concepts

e Each row (iParam) of the array corresponds
to a line in the command form, with one row
for each parameter.

e FEach column (jParam) of the array cor-
responds to a subparameter.

QUERYING PARAMETERS IN THE VARIABLE LENGTH
PARAMETER BLOCK

A program can query the VLPB to obtain parameter
information by wusing three operations: RgParam,
CParams, and CSubParams.

e RgParm returns the memory address of the
array element specified by (iParam,
jParam) . Each element of the array
returned by RgParam is actually a 6 byte
block of memory called an sdType. The
first 4 bytes are the memory address of
the string. The last 2 bytes are the
length of the string.

e (CParams returns the number of parameters
stored in the VLPB. CParams, for
example, is the number of fields in an
Executive command form plus 1.

e (CSubParams returns the number of sub-
parameters stored in the VLPB for a
specified parameter. CSubParams, for
example, is the number of subparameters
the user entered in a specified field of
an Executive command form.

Figure 5-1 shows the matrix of a VLPB array for
the Executive.

Parameter Management 5-5

rgParams SubParam SubParam SubParam... SubParam
(jParam) (jParam) (jParam) ... (jParam)
(vLPB) 0 1 2 . n
Param O <command <case> <Redo
(iParam 0) name> keystroke
buffer>
Param nx (n,0) (n,1) (n,2)
(iParam n)
*where the values in row n are the subparameters of the nth parameter

945-009

Figure 5-1. Matrix of a Variable Length Parameter
Block for the Executive

The Executive places the following information in
row 0 (iParam O0):

. The Executive command name, such as
Delete, is placed into element (0,0).

e The case value entered when the command
was created is placed into element
(0,1). The case wvalue specifies which
command invoked the current run file (disk
resident file) when more than one
possibility exists. The case value can
be queried by a run file to determine
which command invoked it.

e The Redo keystroke buffer is placed into
element (0,2). The Redo keystroke buffer
contains the entire series of keystrokes
that the user typed.

Rows 1 through n store the parameters and sub-
parameters that the user entered in the command
form.

5-6 CTOS/VM Concepts

EXAMPLE OF A VARIABLE LENGTH PARAMETER BLOCK FOR
THE DELETE COMMAND

If the Executive Delete command were filled out as
follows:

0 Delete
1 File 1list abc def gh
2 [Confirm each?] vy

the VLPB would look like the matrix shown in Figure
5-2.

rgParams SubParam SubParam SubParam
(VLPB) (jParam) (jParam) (jParam)
0 1 2
Param
(iParam)
Delete 00 Delete abc def ghy
Param
(iParam)
1 abe def gh
Param
(iParam)
y
945-010

Figure 5-2. Filled-in Variable Length Parameter
Block

When the user presses Go, the Executive organizes
the data to simplify the extraction of the
parameters.

The RgParam operation provides access to the
parameters by returning to the caller the memory
address of the array element specified by (iParam,
jParam) .

In Figure 5-2, for example, the memory address of

abc is returned by RgParam (1,0); the address of
def is returned by RgParam (1,1).

Parameter Management 5-7

OPERATIONS FOR CONSTRUCTING THE VARIABLE LENGTH
PARAMETER BLOCK

Initialization

The following operation sequence is recommended to
initialize a VLPB:

e (Call ResetMemoryLL to reset the
long-lived memory of the partition. Note
that ResetMemoryLL also deletes the
contents of the Redo keystroke buffer.

e (Call AllocMemoryLL to allocate the number
of bytes required for containing the VLPB
structure.

e Call RgParamInit to initialize the spec-
ified memory for the VLPB.

Parameter Construction

The construction of parameters for a VLPB is
supported by three object module procedures:
RgParamSetSimple, RgParamSetEltNext, and
RgParamSetListStart.

RgParamSetSimple creates one subparameter per row
of the VLPB sparse array.

To construct a VLPB array with more than one
subparameter per row, a program must first call
RgParamSetListStart. RgParamSetListStart sets the
global wvariable for placing the subparameters in
the VLPB. Following a call to RgParamSetListStart,
a call to RgParamSetEltNext must be made for each
subparameter to be created in the row.

The VLPB and the parameter-passing services of the

Executive are applicable to any application pro-
gram using the operating system.

5-8 CTOS/VM Concepts

VARIABLE LENGTH PARAMETER BLOCK STRUCTURE

The VLPB structure is a self-describing,
two-dimensional array of character strings. Each
element of the array rgSdoParam is a pair (ob, cb)
of words, where

e ob is the offset within the VLPB of the
corresponding row of the two-dimensional
array

e cb is the number of bytes occupied by the
row

The strings that make up a row are prefixed with a
1 byte count and packed together without padding.

When a program uses the operations for con-
structing a VLPB (described previously), the VLPB
structure is filled in with values.

(See Table 4-31 in the CTOS/VM Reference Manual,
for the format of the VLPB.)

Parameter Management 5-9

OPERATIONS

The Parameter Management operations described
below are categorized Dby function. (See the
CTOS/VM Reference Manual, Chapter 3, "Operations,"
for a complete description of each operation.)

QUERYING PARAMETERS

The operations below are used by every program to
query parameters in the VLPB.

CParams Returns the number of parameters
stored in the VLPB.

CSubParams Returns the number of subparameters
stored in the VLPB for a specified
parameter.

RgParam Provides access to the parameters

stored in the VLPB.

CONSTRUCTING PARAMETERS

The operations below are wused by only a few
systems programs to construct parameters.

RgParamInit Initializes the specified memory to
be the VLPB.

RgParamSetSimple
Creates a parameter with one sub-
parameter.

RgParamSetEltNext

Creates an additional subparameter
of the current parameter in the
VLPB.

RgParamSetListStart
Initiates the creation of a param-
eter with multiple subparameters.

5-10 CTOS/VM Concepts

6 INPUT/OUTPUT

This chapter 1is a guide to the CTOS/VM 1I/O
facilities. It presents interface options avail-
able and discusses considerations you need to make
regarding these options.

Figure 6-1 shows the I/0 chapters in this manual.
Each chapter (except this chapter, which 1is
introductory) presents interfaces you can use to
send I/0 to a hardware device.

I/0 interfaces are available for the same device

at different interface 1levels. The 1level of an
interface implies the relative degree of program
control over a hardware device. Low-level inter-

faces provide greater hardware control than
high-level interfaces but, at the same time, limit
program I/O to fewer devices.

In Figure 6-1, the chapters towards the top
describe high-level interfaces. Low-level inter-
faces are described in the chapters towards the
bottom.

DEVICE INDEPENDENCE VERSUS DEVICE DEPENDENCE

A program's capability to run on various devices
is a characteristic built into the program's
design as a result of its interface level.

A device-independent program is capable of per-
forming I/O0 to devices of different types, such as
video, tape, or keyboard. Using high-level inter-
faces, thus, results in device independence.

You can write a device-independent program, for
example, Dby wusing the Sequential Access Method
(SAM) operations.

Input/Output 6-1

Input/
Output

(¢]

l

Sequential
Access
Method

GPAM

(]

o L@

Structured
File Access
Methods

[

SAM

Device—
Dependent ISAM

J‘E 21

RSAM

12

|

)
]

6-2

Keyboard File Printing Communi~ SRP Tape
Video Manage— Manage— Manage— cations Terminaol Manage-
ment ment ment Program— Manage— ment
ming ment
10 [11] 3] n 17 18
[f
Disk Parallet Serial
Manage— Port Port
ment Manage— Manage—
ment ment

cTOS/

Figure 6-1.

VM Concepts

Interrupt :(‘—Bus
Handlers anage-
ment
945-0086

Interface Levels

A device-dependent program is limited to per-
forming I/O to a limited number of devices or a
particular type of device. Using the low-level
interfaces, thus, results in a device-dependence.

The video device, for example, has its own group
of video operations for performing I/0 functions.
These operations result in video device-
dependence. The file system, keyboard, and other
devices have their own comparable operations.

A device-dependent program provides for more

direct control over the physical device but, at
the same time, requires more effort to write.

I/0 FACILITIES

Any of the following I/O facilities can be used
for the same device:

e High-level to low-level device access to

data:

- Sequential Access Method (SAM). SAM
is known more familiarly as Dbyte
streams. Using these high-level

interfaces results in device-indepen-
dence. (See Chapter 7, "Sequential
Access Method.")

- Device-Dependent SAM. Using certain
operations at this lower level results
in device-dependence. (See Chapter 8,

"Device-Dependent SAM.")

Input/Output 6-3

6-4

Device level. The operations at this
level are specific to a given type of
device and thus result in device-
dependence. (See the device-named
chapters, such as Chapter 9, "Video,"
and Chapter 10, "Keyboard Management."
These are shown towards the bottom in
Figure 6-1.)

The chapters entitled "Disk Manage-
ment, " "Parallel Port Management, "
and "Serial Port Management" describe
operations that are even <closer to
the actual device details than the
operations described in the other

device-named chapters. (See Figure
6-1.)
Interrupt handlers and X-Bus. The

chapters entitled "Interrupt Handlers"
and "X-Bus Management" describe oper-
ations associated with more than one
device.

High-level device access to special kinds
of data:

Generic Print Access Method (GPAM).
GPAM provides high-level I/O0 for com-
plex documents that may include text,
graphics, or special text attributes.
GPAM 1is an object module library that
provides device independent formatting

commands used for printing. (See
Chapter 19, "Generic Print Access
Method.")

High-level device access to structured
data files:

File access methods. Chapter 20,
"Structured File Access Methods," is a
guide to three high-level I/O inter-
faces to structured data files.

CTOS/VM Concepts

7 SEQUENTIAL ACCESS METHOD

The Sequential Access Method (SAM) provides
device-independent access to a default set of real
devices, such as the screen, printer, files, and
keyboard. To transfer data to or from the device,
SAM wuses a character-oriented sequence of bytes
known as a byte stream.

SAM consists of object module procedures in the
standard operating system library, CTOS.lib.

SAM provides an alternative to the direct pro-
gramming interfaces available at the
device-dependent level. (The device-dependent
interfaces are listed in chapters, such as "Video"
or "Serial Port Management," which are associated
with device names.)

With SAM you can write a program that can be

e used flexibly to access any of the avail-
able devices

e written with a minimum amount of code

If, for example, you want to write a compiler
program that accepts 1its data from either the
keyboard or a file and directs its listing to the
screen, a printer, or a file, it would be to your
advantage to use SAM's device-independent level of
interface.

If, however, vyou know that your program will
always perform I/O to a single device, it would be
to your advantage to wuse the device-dependent
level of interfaces for that device.

Sequential Access Method 7-1

Device-dependent interfaces are specific to each
kind of peripheral device available on a work-
station. Programming at the device-dependent
level has the advantages of

e maximizing run time efficiency

e providing access to the specialized fea-
tures of the peripheral device hardware
(for example, controlling the cursor at
the video level)

CUSTOMIZING THE SEQUENTIAL ACCESS METHOD

The default devices that SAM supports are as
follows:

e disk

e parallel printer
e spooler

e keyboard

e null

e video

For some applications, you may not need to use all
of the devices supported by SAM. For example, a
program might use SAM only to obtain keyboard
input and to display text on the screen.

If this 1is the only way you use SAM 1in a
particular application, vyou can configure SAM's
device-dependent object modules selectively to
support only the devices you need.

7-2 CTOS/VM Concepts

You generate SAM (SAMGen) by editing a configu-
ration file, assembling it, and linking the
resulting object module with your program.

Specific uses of a SAMGen are

e reduction of the memory needed by an
application program by eliminating
unneeded device support

e inclusion of support for communications
and RS-232-C serial communications print-
ers

e inclusion of support for tape

e inclusion of support for the Generic
Print System (GPS)

e inclusion of user-written, device-
specific SAM object modules

(For details on customizing SAM object modules,
see "Building a Customized SAM" in the CTOS
Programmer's Guide.)

BYTE STREAM

A byte stream is a readable (input) or writable
(output) sequence of 8-bit bytes. An input byte
stream can be read until either the reader chooses
to stop reading or until status code 1 ("End of
file") 1is returned. An output byte stream can be
written until the writer chooses to stop writing.
(Of course there are physical limitations: a file
could expand, for example, to fill all available
disk storage.)

Sequential Access Method 7-3

A Byte Stream Work Area (BSWA) 1s a 130 byte
memory work area for the exclusive use of SAM
operations. Any number of Dbyte streams can be
open concurrently, using separate BSWAs. A BSWA
must be allocated for each byte stream opened.
(For details on the BSWA, see the CTOS Program-
mer's Guide.)

USING A BYTE STREAM

To open a byte stream, call the OpenByteStream
operation, supplying the following parameters:

e the device/file specification string from
the list in "Device/File Specifications,"
presented later in this chapter

e a password if appropriate

e the mode (indicating whether I/0 is
needed)

e the address of the 130 byte BSWA

e the address and size of the
user-allocated buffer

When calling other device-independent operations
such as ReadBsRecord, WriteBsRecord, or
CloseByteStream, vyou supply the address of the
same BSWA.

There are two predefined and already allocated
BSWAs (bsvid for video frame 0 and bsKbd for the
keyboard) . These special BSWAs are defined in SAM
standard object modules. Because these BSWAs are
already opened, it is not necessary (nor allowed)
to specify them as arguments to OpenByteStream or
CloseByteStream. These byte streams may be used
by passing the memory address of bsVid or bsKbd to
the appropriate byte stream operations.

7-4 CTOS/VM Concepts

TYPES OF BYTE STREAMS

The types of byte streams that SAM supports are
described below.

DISK BYTE STREAMS

A disk byte stream is a byte stream that uses a

file on disk. A wvalid file name follows the stan-
dard file naming conventions. (For details on
file naming, see Chapter 11, "File Management.")

Disk byte streams permit both input and output to
be directed to the same open byte stream (that is,
the same BSWA) .

The standard operations of SAM are augmented by
two operations that allow random access to files:

GetBsLfa and SetBsLfa. These device-dependent
operations are available only for disk Dbyte
streams and return status code 7 ("Not imple-
mented") if attempted on other byte streams. (For

details, see Chapter 8, "Device-Dependent SAM.")

PRINTER BYTE STREAMS

A printer byte stream is a byte stream that per-
forms direct printing. Valid strings for printer
byte streams are [LPT] and [PTR]n. n is any valid
RS-232-C serial communications channel in a [COMM]

device specification if a printer is attached to
that serial port. (For details on communications
channels, see "Device/File Specifications," later
in this chapter.)

Sequential Access Method 7-5

Direct printing transfers text directly from ap-
plication program memory to the specified parallel
or serial printer interface of the workstation on
which the application program is executing. A
printer byte stream cannot be used to access a
printer assigned to the GPS or to the spooler.

(See "Generic Print System Byte Streams" and
"Pre-GPS Spooler Byte Streams," next in this
chapter.)

The selected configuration file determines the
printer characteristics. (See the Create Configu-
ration File command in the CTOS System Administra-

tor's Guide.) For example, the configuration file
controls whether a printer byte stream suspends
execution of the caller wuntil the workstation
operator corrects a condition requiring manual
intervention or reports it to the calling program.

Normally printer byte streams change tab and
end-of-1line characters to the form expected by the
printer. Return (code 0Ah), for example, can be
transformed to a Carriage Return/Linefeed combi-
nation for some printers, or Jjust to a Carriage
Return (code 0Dh) or to a Linefeed (code 0Ah) for
others. Tab characters can be transformed to
spaces for printers without mechanical tabs.
These transformations are controlled by the se-
lected configuration file.

Any of three printing modes can be specified with
the SetImageMode operation: normal, image, or
binary. SetImageMode sets the printing mode any
time following the opening of the printer
byte stream. This differs from the effect of
SetImageMode when used with pre-GPS spooler byte
streams.

For compatibility between spooled and direct

printing, SetImageMode should be used before the
first WriteBsRecord or WriteByte operation.

7-6 CTOS/VM Concepts

Normal mode converts tabs into spaces and converts
end-of-line characters to device-dependent codes.

Image mode and binary mode perform no code con-
version.

Binary mode does not print the banner page or send
any extra code not in the file to the printer, nor
does 1t recognize the escape sequences controlling
special video capabilities. (For details on the
video escape sequences, see Chapter 9, "Video.")

GENERIC PRINT SYSTEM BYTE STREAMS

A Generic Print System (GPS) byte stream is a byte
stream that is sent to a GPS printing device. GPS
byte streams supersede pre-GPS spooler byte
streams. (See "Pre-GPS Spooler Byte Streams,"
next 1in this chapter. Also see '"Device/File
Specification Parsing," later in this chapter.)

For compatibility with pre-GPS spooler byte
streams, GPS byte streams implement the
SetImageMode operation in the same way as pre-GPS
spooler byte streams.

PRE-GPS SPOOLER BYTE STREAMS
(See the Printing Guide before wusing a pre-GPS

spooler byte stream and for details on pre-GPS
spooler escape sequences. For details on pre-GPS

printing, see Appendix A, "Spooler Management.")

A pre-GPS spooler byte stream automatically cre-

ates a uniquely named disk file for temporary text
storage. It then transfers the text to the disk
file and expands the disk file as necessary. When
the spooler byte stream is closed, a request is
queued for the spooler by the Queue Manager for
later printing of the previously created disk
file. The temporary file is deleted after it 1is
printed. This is spooled printing.

Sequential Access Method 7-7

Normally, pre-GPS spooler byte streams change tab
and end-of-line characters to the form expected by
the printer. For example, a system Return (code
0Ah) can be transformed to a Carriage Return/
Linefeed combination for some printers, or just to
a Carriage Return (code O0Dh) or a Linefeed (code
0Ah) for others. Tab characters can be trans-
formed to spaces for printers without mechanical
tabs. These transformations are controlled by the
selected configuration file. (For details, see
the Create Configuration File command in the CTOS
System Administrator's Guide.)

Any of three printing modes can be set with the
SetImageMode operation: normal, image, or binary.
SetImageMode sets the printing mode only if it is
called immediately following the opening of the

spooler byte stream. This differs from the effect
of SetImageMode when wused with printer byte
streams. (See "Printer Byte Streams," earlier in

this chapter.)

For compatibility Dbetween spooled and direct
printing, SetImageMode should be used before the
first WriteBsRecord or WriteByte operation.

Normal mode prints the banner page between files,
converts tabs into spaces, converts end-of-line
characters to device-dependent codes, and recog-
nizes the escape sequences for manual interven-
tion. (For details on banner pages, see the
Printing Guide.)

Image mode prints the banner page between files
and recognizes the escape sequences, but performs
no code conversion.

Binary mode does not print the banner or send any
extra code not 1in the file to the printer, nor
does it recognize the escape sequences. Escape
sequences are special character sequences that
invoke special functiomns.

7-8 CTOS/VM Concepts

KEYBOARD BYTE STREAMS

A keyboard byte stream is equivalent to using the

ReadKbd operation in character mode. (For details
on keyboard program modes, see Chapter 10, "Key-
board Management.") The keyboard byte stream does

not support unencoded keyboard mode.

To support device-independence, keyboard Dbyte
streams return status code 1 ("End of file") when
the FINISH (ASCII value 4) key 1is pressed, and
status code 4 ("Operator intervention") when the

CANCEL (ASCII value 7) key is pressed.

(For details on submit file escape sequences, see
Chapter 10, "Keyboard Management.")

COMMUNICATIONS BYTE STREAMS

A communications byte stream is a byte stream that
uses an RS-232-C serial communications channel
(serial port). Communications byte streams pro-
vide support for the two communications channels
of the serial input/output (SIO) communications

controller. Operation is in asynchronous, full-
duplex mode without explicit modem control. Like
disk Dbyte streams, communications byte streams

permit both input and output to be directed to the
same open byte stream (that is, the same BSWA).
Only one byte stream can be opened for each
communications channel of the SIO controller.

The selected configuration file determines the
communications characteristics. (For details, see
the Create Configuration File command in the CTOS
System Administrator's Guide.)

Normally, communications byte streams strip null
(00h) and delete (7Fh) characters from the stream
of received data characters. Image mode (set with
the SetImageMode operation) specifies that commun-
ications byte streams pass all incoming characters
to the requesting program exactly as received.

Sequential Access Method 7-9

X.25 BYTE STREAMS

An X.25 byte stream is a byte stream that enables
data transmission via the X.25 Network Gateway.
(For details, see the X.25 Network Gateway Man-
ual.)

Each open X.25 byte stream corresponds to a vir-
tual circuit that 1is initiated when the byte
stream is opened, and cleared when the byte stream
is closed. Setting up and clearing of the wvirtual
circuit is .controlled through the wuse of a
configuration file.

VIDEO BYTE STREAMS
A video byte stream is a byte stream that uses the

video display. The standard SAM operations are
augmented by

e Certain characters that have special in-
terpretation.

e Multibyte escape sequences. The multi-
byte escape sequences (beginning with the
character O0OFFh) can be used to control
the special workstation video capabili-
ties.

e One device-dependent operation. The
QueryVidBs operation returns information
about video byte streams.

(See Chapter 9, "vVideo," for details on video byte
streams and on other ways to control the wvideo
subsystem.)

7-10 CTOS/VM Concepts

TAPE BYTE STREAMS

A tape byte stream reads or writes a tape as a

purely sequential device. It looks for the pat-
tern of file marks that designate the beginning and
end of a file. Within the 1limits specified by

the tape configuration file, tape byte streams for
half-inch tape ignore exact record and block sizes
when reading.

With tape byte streams, you can read or write to
tape using the standard byte stream interface.
Valid tape names include the characters [TAPE] or

[QIC] plus additional information. (For details
on tape naming, see Chapter 18, "Tape Manage-
ment.")

In read mode, records are read from the tape as a
sequence of bytes until a file mark is encoun-
tered. The user is not aware of the record size.

For half-inch tape in Write mode, the record size
is obtained from the tape configuration file.

Tape byte streams are not included in the standard
SamGen. They must be included by performing a
custom SamGen. (For details, see the CTOS Pro-
grammer's Guide.)

DEVICE/FILE SPECIFICATIONS

The device/file specification string is any of the
following:

{node} [volname] <dirname>filename
File identified by its full file

specification. Abbreviated speci-
fications are also allowed. (See
Chapter 11, "File Management," for

details on file names.)

Sequential Access Method 7-11

[LPT] & [Vvolname] <dirname> filename

Centronics-compatible printer con-
nected to the parallel ©printer
port. (See Appendix A, "Spooler
Management.")

&[volname] <dirname>filename is op-
tional. It describes a configura-
tion file containing the printer
characteristics. A default con-
figuration file is used if none is
specified. (For details, see the
Create Configuration File command
in the CTOS System Administrator's
Guide.)

[PTRIn& [volname] <dirname>filename

7-12

RS-232-C-compatible printer, where
n identifies the serial I/0 (SIO)
communications channel to which
the printer 1is connected and can
be any of the channels listed
below.

&[volname] <dirname>filename is op-
tional. It describes a configura-
tion file containing the printer
characteristics. A default con-
figuration file is used if none is
specified. (For details, see the
Create Configuration File command
in the CTOS System Administrator's
Guide.)

CTOS/VM Concepts

[COMM] n& [volname] <dirname>filename

Communications channel n of the SIO
communications controller, where n
identifies the channel.

&[volname] <dirname>filename is op-

tional. It describes a configura-
tion file containing the communi-
cations characteristics. A de-
fault configuration file 1is wused
if none 1is specified. (For de-
tails, see the Create Configura-

tion File command in the CTOS
System Administrator's Guide.)

Valid channel identifiers are listed below:

Channel
Synonyms

A 0 0A

g H @D Q= MEOA
W o J oUW N

Processor
Channel Device
A Workstations,
SRP, TP and CP
B Workstations,
SRP, TP and CP
C SRP - TP and CP
D SRP - TP only
E SRP - TP only
F SRP - TP only
G SRP - TP only
H SRP - TP only
I SRP - TP only
J SRP - TP only

Sequential Access Method 7-13

The following specifications support the XC-002 port

expander module:

1A Leftmost XC-002, Channel A
1B Leftmost XC-002, Channel B
1C Leftmost XC-002, Channel C
1D Leftmost XC-002, Channel D
2A Second XC-002, Channel A
2B Second XC-002, Channel B
2C Second XC-002, Channel C
2D Second XC-002, Channel D
[QICm]n Quarter-inch cartridge
(For details on tape
"Tape Names" in Chapter 18,
Management.")
[TAPEsm] n Half-inch tape.

tape naming, see

Chapter 18,

{node} [queuename] reportname
Spooled printer.

7-14

"Tape
"Tape Management.")

The queue name 1is

the name of the pre-GPS scheduling
queue associated with the spooler.
[SPL] is the default mname of the
first spooled printer.

The report name is a text string of
up to 12 characters that is in-
cluded in the Spooler Status
command's status display. (For
details, see the CTOS System
Administrator's Guide.)

CTOS/VM Concepts

[KBD]

Keyboard. This also includes the
system input process used for sub-

mit files and batch Jjobs. (For
details on the system input proc-
ess, see Chapter 10, "Keyboard
Management," 1in this manual. For

details on Dbatch, see the C(CTOS
System Administrator's Guide.)

[X25]n&[volname] <dirname>filename

[NUL]

[VID]

[VIDIn

X.25 wvirtual circuit, where n is a
network identification that cur-
rently must be zero.

&[volname] <dirname>filename is op-
tional. It describes a configura-
tion file containing the circuit
characteristics. (For details,
see the X.25 Network Gateway
Manual.)

Null device. Input operations al-
ways return status code 1 ("End of
file"). Output operations discard

all output but return status code 0
(ercOK) .

Video frame 0. The frame must be
established 1in advance wusing the
Video Access Method (VAM) or the
Executive. (For details, see Chap-
ter 9, "vVideo.")

Video frame n.

Sequential Access Method 7-15

DEVICE/FILE SPECIFICATION PARSING

To determine the type of byte stream you are spec-
ifying, SAM parses the device/file specification
string supplied to OpenByteStream. This string
parsing process is described below.

Scanning from left to right, SAM first looks for a
left bracket (I[).

If a left bracket ([) is not found and disk byte
streams are included in the SAM configuration, SAM
assumes the string to be a file name. The byte

stream is a disk byte stream, which is directed to
a disk file.

If a left bracket ([) 1is found, Sam attempts to
match the string characters and the string length
within the square brackets to the reserved words
for system devices, such as KBD, LPT, and PTR.

1. If a match occurs, SAM specifically
looks for any characters to the right of
the right square bracket (]).

a. If a left angle bracket (<) 1is found,
the string is assumed to be a file
name, and the byte stream is
therefore a disk byte stream.

b. If no characters are found, the
string 1s a reserved word for a
device, and the device byte stream is
directed to the specified device.

2. If no match occurs and GPS is installed,
SAM assumes the byte stream is a GPS
byte stream. Otherwise, 1f the spooler
is installed, the byte stream is assumed
to be a pre-GPS spooler byte stream.

7-16 CTOS/VM Concepts

OPERATIONS

The SAM operations described below are categorized
as basic or advanced. Operations are arranged in
a most to least frequent use order. (See the
CTOS/VM Reference Manual, Chapter 3, "Operations,"
for a complete description of each operation.)

BASIC

OpenByteStream Opens a device/file as a byte
stream.

ReadBsRecord Reads the specified count of bytes
from the open input byte stream to
the specified memory area.

ReadByte Reads 1 byte from the open input
byte stream.

WriteBsRecord Writes the specified count of bytes
to the open output byte stream from
the specified memory area.

WriteByte Writes 1 byte to the open output
byte stream.

CloseByteStream
Closes the open byte stream.

OutputToVvido
Provides programs, such as system
services, with the ability to per-
form minimal output to the wvideo
device without 1linking to a full
video byte stream.

Sequential Access Method 7-17

ADVANCED

ReadBytes

CheckpointBs

Reads up to the specified count of
bytes from the open input byte
stream. ReadBytes returns the mem-
ory address of the start of the
byte stream but does not move the
bytes to a separate buffer.

Writes any partially full buffers
of the open output byte stream and
waits for all write operations to
complete successfully Dbefore re-
turning.

ReleaseByteStream

QueryVidBs

Abnormally closes the device/file
associated with the open output
byte stream.

Allows your program to obtain in-
formation about a video byte
stream.

7-18 CTOS/VM Concepts

8 DEVICE-DEPENDENT SAM

The Sequential Access Method (SAM) discussed 1in
Chapter 7 highlights the device-independent aspect
of SAM. By using the basic operations described
in that chapter, you are allowing your program to
be portable to a number of devices.

SAM, however, has a device-dependent portion to
its code for each type of device it supports.

The device-independent operations map to
device-dependent operations specific to each
device. Mapping is done automatically each time
a device-independent operation is called. It is
based on information stored in the Byte Stream
Work Area. (See Chapter 7, "Sequential Access
Method.")

DEVICE-DEPENDENT OPERATIONS WITH GENERIC PREFIXES

Calling a device-independent operation results in
mapping to a device-dependent operation with a
generic prefix.

To send output to an open line printer byte
stream, for example, you would call the
device-independent operation, WriteBsRecord.
WriteBsRecord, in turn, calls the device-dependent
operation, FlushBufferLP. The generic prefix is
FlushBuffer. LP (the name of the specific device)
is appended to the prefix.

Device-Dependent SAM 8-1

The device-independent operations and the generic
prefixes to their device-dependent versions are as
follows:

Device-Independent

Operation Generic Prefix
OpenByteStream OpenByteStream. ..
ReadByte,

ReadBsRecord FillBuffer...
WriteByte,

WriteBsRecord FlushBuffer. ..

part of

CloseByteStream CheckPointBs. ..

part of

CloseByteStream ReleaseByteStream. ..
SetImageMode SetImageMode. ..

(For details, see the CTOS Programmer's Guide,

"Building a Customized SAM.")

8-2 CTOS/VM Concepts

DEVICE-SPECIFIC OPERATIONS

To handle select types of byte streams in special
ways, you can incorporate certain device-specific
operations directly into your program. The
device-specific operations are as follows:

Operation Applicable Byte Streams

SetImageMode Communications, printer,
Generic Print System (GPS),
pre-GPS spooler

PutBackByte Disk (async and sync)
GetBsLfa Disk (async and sync)
SetBsLfa Disk (async and sync)
QueryVidBs Video
If vyou wuse these operations, vyou limit your
program to specific devices. If, for example, you

use GetBsLfa 1in your byte stream, your program
will work only if you specify a disk file name.

Note that, although GetBsLfa and SetBsLfa pertain
to files, these operations are called only through
byte streams and are therefore included in this

chapter rather than in Chapter 11, "File Manage-
ment." The same 1is true of QueryVidBs, which is
included here instead of in Chapter 9, "Video."

QueryVidBs 1s a byte stream path for manipulating
the video device.

(See the CTOS Programmer's Guide, "Building a
Customized SAM," for details on how to use these
operations in customizing your program.)

Device-Dependent SAM 8-3

OPERATIONS

The device-dependent SAM operations described below
are categorized by interface function. Operations
are arranged in a most to least frequent use order.
(See the CTOS/VM Reference Manual, Chapter 3,
"Operations," for a complete description of each
operation.)

GENERIC PREFIXES

Every type of byte stream has operations whose names
begin with the prefixes below.

OpenByteStream. ..
Opens a specific device/file as a
byte stream.
FillBuffer... Reads data from the device into a
user-specified buffer.
FlushBuffer... Writes data from a wuser-specified
buffer to the device.
CheckPointBs. ..

Ensures that all data in the buffer
has been output to the device
(forms part of the CloseByteStream
operation) .

ReleaseByteStream.. .
Releases the device for wuse by
other programs (completes the
CloseByteStream operation) .

SetImageMode. ..
Affects the interpretation of bytes
read from or written to the device
(for example, controls whether tabs
are expanded or not) .

8-4 CTOS/VM Concepts

DEVICE-SPECIFIC

The operations below limit your program to specific

devices.

SetImageMode Sets the normal, image, or binary
mode for printer, spooler, and
communications byte streams.

PutBackByte Returns 1 byte to the open input
disk byte stream.

GetBsLfa Returns the 1logical file address
at which the next I/O operation
will occur for the open disk byte
stream.

SetBsLfa Sets the 1logical file address at
which the I/O operation is to
continue for the open disk Dbyte
stream.

QueryVidBs Returns video information about

the type of wvideo device asso-
ciated with an open video Dbyte
Stream.

Device-Dependent SAM 8-5

9 VIDEO

This chapter describes the video facility. The
video facility is a highly flexible means for the
display of alphanumeric and graphic information.
Workstation video is of two types: character map
and bit map.

Although most character map workstations can be
equipped to display graphics, the primary feature
is the wvideo hardware contained to support the
character map. The hardware reads characters and
attributes from memory. It then converts them
from the extended ASCII (8 Dbit) memory repre-
sentation to a pattern of illuminated dots, called
pixels, that it displays on the screen. During
this conversion, the wvideo hardware references a
translation table (font) that is loaded into the
video hardware under program control. Character
map fonts are created with the Font Designer.

A bit map workstation does not contain hardware to
support the character map (although it contains

graphics hardware). Instead, the video software
provides character map emulation to support
character-only application programs. The font can

be modified, but it is of a different format from
the character map font. Bit map fonts are created
with the Raster Font and Icon Designer.

The wvideo facility 1is described here from the
viewpoint of

e how you can use it to your advantage in
your programs

e what video capabilities are available to
you with each hardware type

(The details of programming using color are
described in the CTOS/VM Reference Manual,
Appendix F, "Using Color.")

Video 9-1

VIDEO ATTRIBUTES

Video attributes can be either screen or character
attributes and control the visual presentation of
characters on the screen.

e Screen attributes control the pre-
sentation of the entire screen. Examples
are blank, reverse video (dark characters
on a light background), half-bright, num-
ber of characters per line, and the pre-
sence or absence of character attributes.

e Character attributes control the
presentation of a single character. Examples
are reverse video, blinking, half-bright,
underlining, bold, and struck-through.

VIDEO SOFTWARE

The video software consists of a device-
independent and a device-dependent level of inter-
face to the wvideo facility. Each 1level provides

varying degrees of screen and character attribute
control.

The screen consists of a number of separate,

rectangular areas called frames. Each frame can
be scrolled up or down independently of other
frames. You can select from several features,

including multiple frames and scrolling of each
frame, to enhance your program video output.

9-2 CTOS/VM Concepts

The video software consists of the following two
interface levels:

e At the device-independent level, you can
use the Sequential Access Method (SAM).
SAM provides device-independent access to
devices such as the printer, files, key-

board, as well as the screen. (See
Chapter 7, "Sequential Access Method.")
SAM provides automatic scrolling.

Video-specific extensions to the SAM
provide direct cursor addressing, control
of character attributes, and so on.

e At the device-dependent 1level,* you can
use

- The Video Access Method (VAM). VAM
operations provide vyou with direct
access to the characters and character
attributes of each frame. They in-
clude explicit control of scrolling.

- The Video Display Management facility
(VDM) . VDM consists of operations
for screen setup: VDM controls the way
that the screen appears. For example,
the VDM operations enable you to split
the screen into frames. VDM and VAM
can be used together or independently,
as described in "Program/Video Subsys-
tem Interaction," which follows.

*Actually, VAM and VDM are device type-
dependent operations. Although they 1limit
your program output to a video device, they
allow you to write to the wvideo on any type of
workstation.

Video 9-3

PROGRAM/VIDEO SUBSYSTEM INTERACTION

You can choose to direct your program output to
the screen using any of several methods. The
methods described below range from simple (re-
quiring little programming effort) to more complex
(requiring more programming effort but providing
greater output control).

SEQUENTIAL ACCESS METHOD (SAM)

You can use SAM's device-independent operations in
two basic ways, as described below.

Using the Current Screen Setup

If you are writing a program such as a compiler
that will be invoked by the Executive to display
messages in a streaming or sequential way, you do

not need to initialize the video display. In-
stead, you can take advantage of the Executive's
screen setup. Screen setup allows vyou to use
the device-independent SAM operations, such as
OpenByteStream, specifying the video as your de-
vice string. SAM then generates a video byte
stream for wuse by the video display. You can

alternately use the pre-opened byte stream, bsvVid.

The Executive eliminates the need to reinitialize
the wvideo Dbecause vyour program, when invoked,
inherits the Executive's

e character font
e character map (in system memory)

. three frames (Command Frame, Event Frame,
and Status Frame)

which comprise the Executive's current screen
setup.

9-4 CTOS/VM Concepts

SAM's video byte stream extensions support mul-
tiple frames, character attributes, and explicit
positioning of characters in a frame, but do not
support line attributes (other than cursor posi-
tion) . SAM recognizes a few special cursor-
positioning characters including Return, Next
Page, Backspace, and Tab. When a special char-
acter or full line would cause the cursor to move
below the bottom line of the frame, SAM
automatically scrolls the frame and repositions
the cursor.

Using SAM Directly

If you choose not to have vyour program use the
Executive screen setup, you can still use SAM's
device-independent operations as above, but you

also must initialize the screen. [See "Video
Display Management (VDM)," later in this chapter.]
For example, 1f vyou want your program to be

invoked directly by the Context Manager, you must
use VDM to initialize the screen.

AUGMENTING THE SAM OPERATIONS

If you want greater control over the video byte
stream, you can augment the SAM device-independent
operations by the following:

e Special interpretation of certain
characters.
e Multibyte escape sequences. The multi-

byte escape sequences (beginning with the
character OFFh) can be used to control
the special video capabilities of the
Convergent workstations.

e One device-dependent operation. The op-
eration QueryVidBs returns information
about video byte streams.

Each of these methods is described below.

Video 9-5

Special Characters in Video Byte Streams

(See Table J-7 in the CTOS/VM Reference Manual for
the special characters interpreted by video byte
streams.) Note that a multibyte escape sequence
is available to disable all these special inter-
pretations except OFFh.

Multibyte Escape Sequences
Multibyte escape sequences can

e control screen attributes

e control character attributes

e control scrolling and cursor positioning
e dynamically redirect a video byte stream

e automatically pause between full frames
of text

e perform various other miscellaneous func-
tions

Note that where the escape sequences include
alphabetic characters, uppercase and lowercase are
equivalent.

Controlling Screen Attributes. Screen attributes
can be controlled with four multibyte escape
sequences. (See Table J-4 in the CTOS/VM Refer-
ence Manual.) Each of the 3 byte sequences begins
with the escape byte OFFh and continues with a
pair of characters represented by the specified 8
bit ASCII character codes.

9-6 CTOS/VM Concepts

Controlling Character Attributes. Character at-
tributes can also be controlled with multibyte
escape seguences. (See Table J-2 in the CTOS/VM
Reference Manual.)

Workstations support six character attributes:
blinking, bold, half-bright, reverse video,
struck-through, and underline.

You can wuse the escape sequence for subsequent
characters in video byte streams to set all six
character attributes in any combination.

Controlling Scrolling and Cursor Positioning.
Characters are normally written to the frame

sequentially, with the cursor advancing one
character position at a time, from left to right
and top to bottom. A cursor is normally displayed
at the character position where the next character
will be displayed. Text 1s automatically scrolled
each time a character 1is written to the lower
right corner of a frame. When such a scroll

occurs, the entire contents of the frame scroll up
one 1line, and the contents of the previous top
line of the frame disappear.

(See Table J-5 in the CTOS/VM Reference Manual for
the escape sequences that directly control scroll-
ing and cursor positioning.)

Dynamically Redirecting a Video Byte Stream. When
a video byte stream is opened, it is designated as
directed to one of the frames. However, a special
escape sequence makes it possible to dynamically
redirect a video byte stream.

An independent cursor position is recorded for

each frame. The position within frame i is re-
stored automatically when a video byte stream is
redirected to frame 1i. (See Table J-1 1in the

CTOS/VM Reference Manual.)

Video 9-7

Automatically Pausing Between Full Frames of Text.
Automatic pausing between full frames of text can
be controlled through multibyte escape sequences.
When this pause facility is enabled and further
output to the frame would cause text to Dbe
scrolled off the top of the frame, the message

Press NEXT PAGE or SCROLL UP to continue

is displayed on the 1last line of the frame. At
this point, if the user presses Next Page, output
continues for another full frame of text. If the
user presses Cancel, status code 4 ("Operator
intervention") is returned to the calling process.
If the user presses Finish, status code 1 ("End of
file") 1is returned to the calling process. If

the user presses any other key, the audio alarm is
momentarily activated. (See Table 3j-3 1in the
CTOS/VM Reference Manual for the escape sequences

controlling pause.)

Since the automatic pause facility reads char-
acters from the keyboard (using the operation

ReadKbdDirect), there is potential for interaction
with the client's use of the keyboard. (See
Chapter 10, "Keyboard Management," for a descrip-

tion of the ReadKbdDirect operation.)

A single client using a keyboard byte stream and
one or more video byte streams will operate cor-
rectly. A more complex environment may require
using program-specific logic to control pauses in
scrolling. Automatic pausing can be affected by

e use of the unencoded keyboard mode

e use of ReadKbd instead of a keyboard byte
stream

9-8 CTOS/VM Concepts

e keyboard input performed by one client
while another uses a video byte stream

e keyboard input initiated by the Kernel
primitive, Request, but not immediately
followed by the Kernel primitive, Wait

Miscellaneous Functions. See Table J-6 in the
CTOS/VM Reference Manual for a description of the
escape sequences that perform miscellaneous
functions.
QueryVidBs

The QueryVidBs operation returns information about

a video byte stream, such as frame number or
current line number. (See the CTOS/VM Reference
Manual, Chapter 3, "Operations," for a complete

description of this operation.)

VIDEO ACCESS METHOD (VAM)

If you want more direct control over the screen
than SAM provides, you can use the Video Access
Method (VAM) operations. If your program does
not require special screen setup, you can use the
VAM operations independently of the Video Display
Management (VDM) operations. [See "Video Display
Management (VDM)," next in this chapter.]

VAM provides direct access to the characters and
character attributes of each frame. VAM opera-
tions can

e Put a string of characters anywhere in a
frame.

e Specify character attributes for a string
of characters.

Video 9-9

e Scroll a frame up or down a specified
number of lines.

° Position a cursor in a frame. (Each
frame can have its own cursor.)

VIDEO DISPLAY MANAGEMENT (VDM)

If you choose not to use the Executive's screen
setup or if your program is not invoked Dby the
Executive, you can reinitialize the video subsys-
tem using the VDM facility before using the VAM or
SAM operations.

The VDM facility sets up the screen. By using the
VDM operations, your program can

e determine the video capability present

. load a new character font into the font
RAM

e stop video refresh on a character map
workstation (useful when moving or chang-
ing the size of the frames or the
character map)

. change screen attributes, such as reverse
video and half-bright, while the screen
is being video-refreshed

e calculate the amount of memory needed for
the character map based on the preferred
height and width of the characters, and
the ©presence or absence of character
attributes

° initialize each of the frames

e initialize the character map

9-10 CTOS/VM Concepts

Once the character map is set up and video refresh
is started, you can use the VAM or the SAM
operations to control the screen image by modi-
fying the characters and attributes stored in the
character map.

Reinitializing the Video Subsystem

Your program needs to reinitialize the wvideo
display only if the intended state is not the same
as that provided by the Executive.

To reinitialize the wvideo display, you must in-
clude a particular sequence of software operations
similar to the following:

1. Use the QueryVidHdw operation to deter-
mine the level of video capability pre-
sent on the workstation in use.

2. Optionally use the LoadFontRam operation
to read the character font from a file
to memory and then load this font into
the font RAM.

3. Use the ResetVideo operation to place
the following information in the Video
Control Block:

e number of characters per line
e number of lines per screen

e the presence or absence of character
attributes

4. Use the InitVidFrame operation to spec-
ify the screen coordinates and dimen-
sions of each of the frames.

Video 9-11

5. Use the SetScreenVidAttr operation to
set reverse video or half-bright, 1if
wanted.

6. Use the InitCharMap operation to ini-
tialize the character map.

7. Use the SetScreenVidAttr operation to
initiate video refresh.

On bit map workstations, you do not have to turn
video refresh off and on during initialization.

On character map workstations that have graphics
capability, wusing the SetScreenVidAttr operation
to turn off video refresh turns off only the char-
acters, not the graphics. However, on bit map
workstations, where graphics and characters are
not separated, both are turned off.

Following reinitialization, your program can dis-
play information by using VAM or SAM.

The Executive also allows you to use the Screen
Setup command to respecify the following wvideo
characteristics:

e reverse video
e number of characters per line
e number of lines

e the presence or absence of character
attributes

e suppress pause between pages
° color
e screen timeout

(For details on the Screen Setup command, see the
Executive Manual.)

9-12 CTOS/VM Concepts

FORMS-ORIENTED INTERACTION

VAM is ideal for forms-oriented interaction, that
is, interaction in which a form is displayed in a
frame and the workstation user enters data into
the blank fields of the form. Direct cursor ad-
dressing and modification of individual characters
and character attributes support this interaction.

For example, the PutFrameAttrs operation is used

to highlight the field to be entered next. It
sets reverse video for the range of character
positions that constitute the field. After the

field is entered, PutFrameAttrs is used again to
reset the reverse video attribute on the character
positions of the field.

ADVANCED TEXT PROCESSING

VAM is also ideal for applications that perform
advanced text processing, because it provides
scrolling up and down of entire or partial frames.
It is easy, for example, to scroll up the top four
lines of a frame and insert a new line of text
between the o0ld fourth and fifth lines. During
scrolling, character attributes scroll along with
the text they affect.

Video 9-13

WORKSTATION VIDEO CAPABILITIES

The workstation types and models have different
video capabilities. These are summarized in
Table 9-1. (See the CTOS System Administrator's
Guide for information on configuring the video for
your workstation.)

VIDEO CAPABILITIES

Note that, in the discussion below, the descrip-
tions of +video <capabilities apply to either
character map or bit map workstations, wunless
specified otherwise.

9-14 CTOS/VM Concepts

Table 9-1
VIDEO CAPABILITIES

CHARACTER BIT MAP
MAP Low- Hi- Hi-res
res res zoomed
Character
Attributes
Blinking Yes * * *
Bold Yes Yes Yes Yes
Half-bright Yes T Yes No
Reverse video Yes Yes Yes Yes
Struck-through Yes Yes Yes Yes
Underline Yes Yes Yes Yes
Loadable font Yes Yes Yes Yes
Number of
characters/line 80 80 80 146
Number of lines/
screen 29 29 38 38

* Blinking is substituted with an outline char-
acter.

Half-bright is emulated for consistency across
the hardware, but it is recommended that you do
not wuse it in your programs for the low-
resolution monitor.

Video 9-15

Character Cell

Table 9-2 shows the character cell sizes available
for character map and bit map workstations.

Table 9-2
CHARACTER CELL SIZE

WORKSTATION

TYPE/MODEL SIZE
Character map 9 x 12
Bit map
Low-resolution 9 x 12
monitor
High-resolution 12 x 20
monitor

High-resolution
zoomed monitor 7 x 20

Based on the character cell size of your partic-
ular workstation, you can obtain other information
describing the 1level of video capability pro-
grammatically by wusing the QueryVidHdw or the

QueryVideo operation. (For details, see the de-
scriptions of these operations in the CTOS/VM
Reference Manual, Chapter 3, "Operations.")

9-16 CTOS/VM Concepts

Character Map

On a character map workstation, characters disp-
layed on the screen are stored in a contiguous
area called the character map. The video con-
troller has its own RAM containing a 4K byte char-
acter map and a 4K byte soft font.

The character map consists of 2K bytes of words.
Each word in the character map contains one ASCII
character byte (low byte) and one attribute byte
(high Dbyte) that applies only to that specific
character. The map and font can be updated at any
time and the result is immediately visible on the
screen.

On a bit map workstation, there is no video con-
troller with its own character map: the character
map is a software virtual map.

Video Attributes

Screen attributes control the presentation of the
entire screen. The screen attributes are blank,
half-bright, and reverse video.

Character attributes control the presentation of a
single character. Character attributes can
be present or absent, depending on the value of
a screen attribute. If character attributes are
present, then each character has an 8 bit char-
acter attribute field; 6 of the 8 bits 1in the
character attribute field are used to specify the
presence or absence of the attributes: blinking,
bold, half-bright, reverse video, struck-through,
and underline.

Video 9-17

Font

You can create workstation fonts using one of the
font design applications provided. For character
map workstations, use the Font Designer; for bit
map workstations, use the Raster Font and Icon
Designer.

The font contains pixel information for all 256

characters. Character map workstations also sup-
port half-pixel shift in any pixel row of a
character. This allows the Font Designer to

maximize resolution.

Cursor

On a character map workstation, the standard cur-
sor is a blinking underline and is not changeable
by software. Bit map workstations have a

software-loadable cursor. The cursor bit array is
superimposed in the character.

VIDEO REFRESH

On character map workstations, the wvideo RAM 1is
contained within the ©processor module and is
accessible to the processor at a fixed location in
the processor's address space. The location of
the character map cannot be changed. To switch
screens, it 1s necessary to copy the contents of
the character map.

9-18 CTOS/VM Concepts

WRITING PROGRAMS THAT RUN ON DIFFERENT WORKSTATION
MODELS

Different workstation models have different num-

bers of lines on the screen. Therefore, care must
be taken to write code that can run on a screen
with a variable number of 1lines. This type of

code can be written as follows.

During initialization, include a call to
QueryVidHdw or QueryVideo. (For details on these
operations, see Chapter 3, "Operations," in the
CTOS/VM Reference Manual.) The memory address of
a block of wvideo information is returned. At
offset 1 in this block is a 1 byte field called
nLinesMax. This field contains the number of
lines on the screen. The lines are numbered from
0 to n-1 (where n is equal to the nth line).

When writing calls to operations that require row
and column coordinates (such as PutFrameChars or
PutFrameAttrs), the row coordinate should be used
as a variable rather than as a constant.

For example, to write a message on the line of the
screen that 1s 2 from the bottom, the row co-
ordinate used is nLinesMax-3.

SYSTEM DATA STRUCTURES: THE VIDEO CONTROL BLOCK
AND FRAME DESCRIPTOR

The Video Control Block (VCB) contains all infor-
mation known to the operating system about the
video display, including the location, height, and
width of each frame, and the coordinates at which
the next character is to be stored in the frame by
SAM. You can obtain the memory address of the VCB
by calling the GetpStructure operation with

a structCode value of 2. (GetpStructure is de-
scribed in Chapter 3, "Operations," in the CTOS/VM
Reference Manual. See Table 4-32 in that same

manual for the format of the VCB.)

Video 9-19

The VCB contains an array of frame descriptors. A
frame descriptor is a component of the VCB and
contains all information known about one of the
frames. The number of frame descriptors in the
VCB is specified at system build. (See Table 4-13
in the CTOS/VM Reference Manual for the content of
a frame descriptor.)

COLOR GRAPHICS ATTRIBUTE PROCEDURES

Alphanumeric color procedures are available on
color monitor workstations. Character attributes
such as blinking, half-bright., reverse video, and
underlining are ordinarily under hardware control
through the alphanumeric style RAM. The graphics
control board has an alternate style RAM that
enables eight different attribute combinations to
be used on a screen.

The graphics style RAM includes color and
intensity specification with reverse video and un-
derlining. Blinking cannot be specified with this
style RAM.

An 8 byte memory work area is allocated to specify
the entries that are passed to the graphics style
RAM. Each byte uses the low-order 6 bits for the
color specification and the high-order 2 bits for
reverse video and underlining, respectively.

If you want to use color in your programs or if
you want to program the graphics control reg-

isters, you must use the ProgramColorMapper
operation. (For details and examples of how this
is done, see the CTOS/VM Reference Manual,

Appendix F, "Using Color.")

9-20 CTOS/VM Concepts

OPERATIONS

The video operations described below are cate-
gorized by software function. Operations are
arranged in a most to least frequent use order.
(See the CTOS/VM Reference Manual, Chapter 3,
"Operations," for a complete description of each
operation.)

VAM OPERATIONS

PutFrameChars Overwrites the specified character
positions in the specified frame
with the specified text string.

PutFrameAttrs Establishes the same character at-
tribute for a range of character
positions within a specified frame.

PutFrameCharsandAttrs
Combines the PutFrameChars and
PutFrameAttrs functions so that a
sequence of characters can be
written in a single call.

QueryFrameChar Returns a single character located
in the character map at the speci-
fied coordinates of the specified
frame.

QueryFrameCharsandAttrs
Returns a character string and
its associated attributes from the
character map at the specified co-
ordinates.

PosFrameCursor
Establishes a visible cursor within
the specified frame at the speci-
fied coordinates.

Video 9-21

QueryFrameCursor
Returns the cursor position for the
specified frame.

ScrollFrame Scrolls the specified portion of
the specified frame up or down by
the specified number of lines.

MoveFrameRectangle
Moves an arbitrary rectangle of
characters and corresponding attri-
butes within a frame of the
character map to another position
in the map.

QueryFrameBounds
Returns the size in number of
columns and lines for the specified
frame.

VDM OPERATIONS

QueryVidHdw Places information describing the
level of wvideo capability of the
workstation in the specified memory
area. QueryVidHdw fills in only
certain fields 1in the specified
memory area according to the oper-
ating system version.

QueryVideo Performs the same function as
QueryVidHdw except QueryVideo fills
in all fields 1in the specified
memory area.

LoadFontRam Reads the character font from the
specified open file to the spec-
ified memory area and then trans-
fers the font to the font RAM.

9-22 CTOS/VM Concepts

ResetVideo

Suspends video refresh, resets all
screen attributes, and changes the
values stored in the VCB to reflect
the specified parameters.

ResetFrame Restores the frame to its initial
state, - that is, all character posi-
tions are blanked and all character
attributes are reset.

InitVidFrame Defines the screen coordinates and
dimensions of one of the frames.

SetScreenVidAttr
Sets/resets a specified screen
attribute.

InitCharMap Initializes the character map.

SetVideoTimeOut

Causes the screen refresh to turn
off after a specified time has e-
lapsed during which no keyboard
activity has occurred.

QueryFrameBounds

Returns the size in number of col-
umns and lines for the specified
frame.

Video 9-23

COLOR PROGRAMMING OPERATIONS

ProgramColorMapper

Sets and queries the palette and or
control structure.

SetAlphaColorDefault

Sets up a default alpha palette and
control structure.

LoadColorStyleRam

Specifies 8 bytes that are passed
to the color graphics style RAM.
These attribute settings display
different combinations of color,
reverse video, and underlining.

SetStyleRam Sets a flag that indicates which of
the following style RAMs 1is to be
used: the graphics style RAM or
the standard alphanumeric style
RAM.

SetStyleRamEntry

Modifies a single 1 byte entry in
the graphics style RAM.

9-24 CTOS/VM Concepts

DIRECT ACCESS TO VIDEO DATA STRUCTURES OPERATIONS

It is possible, although not recommended, to ac-
cess the video data structures directly at an
interface 1level Dbelow VAM and VDM. Although
programming at this lower 1level can be more
efficient than using VAM or SAM, your program will
not be compatible among the several workstation
models. Specifically, it will not work on a bit
map workstation.

The following operations provide direct access to
the video data structures.

LockVideo Locks the wvideo structures used by
the operating system.

UnLockVideo Is used after calling LockVideo to
remove a lock on the video struc-
tures used by the operating system.

LockVideoForModify
Modifies the wvideo structures used
by the operating system.

UnLockVideoForModify
Is used after LockVideoForModify is
called to remove a lock on the vid-
eo structures used by the operating
system.

Video 9-25

10 KEYBOARD MANAGEMENT

The Keyboard Management facility enables an appli-

cation program to control the keyboard.

The keyboard microprocessor transmits each event
of a sequence of pressed/released keys to keyboard
management .

Although this chapter refers to the keys by the
standard symbols engraved on them, the function of
each key 1is completely under the control of the
application program.

KEYBOARD MODES

The application program can request input from the
keyboard 1in either of two modes: unencoded or
character.

In unencoded mode, the program receives an 8 Dbit
keyboard code for each key depressed/released. For
example, 1in the following sequence of pressed/
released keys, the program would receive a key-
board code for each of the four key transitions:

1. Press Shift.
2. Press A.

3. Release A.

4. Release Shift.

The program also would receive a different key-
board code for the depression/release of the left
Shift key than it would for the depression/release
of the right Shift key.

Keyboard Management 10-1

Unencoded mode provides maximum flexibility. With
unencoded mode, a program can, for example, use
any key as a Shift key, provide a hierarchy of
Shift keys, and make decisions based on how long a

key remains pressed. These are only three of many
possibilities. The Editor makes extensive use of
the flexibility afforded by unencoded mode. (See
the Editor Manual. Note especially the descrip-

tion of Move and Copy.)

In character mode, the program receives an 8 Dbit
character code when a key other than Shift, Code,
Lock, or Action is pressed.

In the same four-event key sequence described
above (for unencoded mode), a program in encoded
mode would receive only one character code, the
code for uppercase A.

Character mode provides the program with the same
kind of information as a traditional n-key roll-

over encoded keyboard. However, even character
mode provides greater flexibility than an encoded
keyboard. As keyboard management converts the

sequence of keyboard codes to character codes, it
accesses a keyboard mapping table to direct its
translation.

KEYBOARD MAPPING TABLE

A keyboard mapping table maps keyboard codes to

character codes. Keyboard mapping is implemented
by the Keyboard Encoding Table included in the
operating system at system build or by the NLS
Keyboard Mapping Table loaded as part of the
Nls.sys file. (For details on the NLS Keyboard
Mapping Table and the Nls.sys file, see Chapter
40, "Native Language Support.")

10-2 CTOS/VM Concepts

To modify the built-in table, you must regenerate
the operating system. (For details, see the CTOS
System Administrator's Guide and the Release
Notice for your version of the operating system.)
The contents of the table 1loaded as part of
Nls.sys can be modified dynamically. (For de-
tails, see Chapter 40, "Native Language Support.")

Modifying the Keyboard Encoding Table allows the
keyboard to be customized without requiring the
program to support the complexity of directly
interpreting the unencoded keyboard.

SYSTEM INPUT PROCESS

Keyboard management 1is augmented by the system
input process. The system input process permits
all the characters typed at the keyboard to be
recorded in a file, in addition to returning them
to the application program requesting them. (Note
that the application program must be in character
mode.)

The file can be used as a record of all data typed
by the user. The file also can be played back as
a submit file, in which the sequence of characters
it contains is substituted for characters typed at

the keyboard. The use of submit files allows the
convenient repetition of command sequences. A
submit file might be used, for example, to run the
sequence of programs necessary to produce

end-of-month reports.

Keyboard Management 10-3

The Editor can be used to prepare a submit file
containing the same sequence of characters that
would be typed to the desired programs. When this
submit file 1is activated by a request from a
program or an Executive command, a character from
the file is returned to the program whenever it
requests a character from the keyboard. (Since
the system input process always operates in char-
acter mode, this 1s not applicable to a program
that uses the keyboard in unencoded mode.)

A submit file does not preclude direct access to
the keyboard. The program can bypass an active
submit file and read characters directly from the

keyboard. This 1is necessary when the program
needs confirmation that a physical action was
performed. For example, if a submit file is used

to produce a sequence of reports, the program
needs to accept confirmation from the keyboard,
rather than from the submit file, that the correct
report forms are loaded into the printer.

When requesting a character, a program can specify
that the character must come from the keyboard
rather than the submit file. Also, a special
sequence of characters (an escape sequence) in the
submit file can cause 1input to be accepted
temporarily directly from the keyboard. Pressing
a special key causes the input source to revert to
the submit file.

(For details, see "Using the System Input Pro-
cess," later in this chapter.)

10-4 CTOS/VM Concepts

PHYSICAL KEYBOARD

The physical keyboard is shown in Figure 10-1. The
keyboard includes special function keys and keys
with LEDs. Application programs control some of
the keyboard LEDs. In unencoded mode, applica-
tion programs control the LED in the Lock key;
in character mode, this LED is under the control of
keyboard management.

Screen Control LED Function Key Cursor Control
Key Pad Indicators Pad (F1-F10) Key Pad
' i I
)
3 ok ’ Bound
LT FETIERIE
T EREETEEEFREETE] FREE
T Q ||fw |[[€ [[iR [T WY [ifu (It o I[P - (‘ i 1 l N =
= FEFFEFFFEEE] ARG
SRES zxlcvie v TG = . [
\ Code Code A
et ‘r
\ 945-011
Control Alphanumeric Numeric
Key Pad Key Pad Key Pad

Figure 10-1. Keyboard

The keyboard microprocessor transmits each event
of a sequence of pressed/released keys to keyboard
management.

When a key 1is pressed or released, the keyboard

microprocessor transmits a sequence of bytes to
indicate all keys currently pressed.

Keyboard Management 10-5

Keyboard management memory retains which keys are
pressed. When it receives a byte sequence from
the keyboard microprocessor, it compares the keys
currently reported as pressed to the ones it
stored as pressed. The differences are the keys
pressed/released. This information is represented
in the keyboard code for each key.

USING THE KEYBOARD MODES

An SetKbdUnencodedMode operation can be used by an
application program to specify the mode (character
or unencoded) in which the ReadKbd and the
ReadKbdDirect operations are to function.

UNENCODED MODE

In unencoded mode, the program receives the
keyboard code returned by ReadKbd or ReadKbdDirect.
The 7 low-order bits of the 8 bit keyboard code
identify the key; the high-order bit 1is 0 to
indicate key depression and 1 to indicate key
release. (See the CTOS/VM Reference Manual,
Appendix C, for the specific 7 bit code generated
for each key of the physical keyboard.)

CHARACTER MODE

In character mode (the default mode) the program
receives the character code returned by ReadKbd or

ReadKbdDirect. The 8 bit character code signifies
a key pressed other than Shift, Code, Lock, or
Action. Pressing Shift, Code, or Lock does not
generate a character «code, but influences the
character codes generated for other keys pressed
simultaneously. Action has a special, system-wide
meaning. (For details, see "Action Key," later in

this chapter.)

10-6 CTOS/VM Concepts

TYPE-AHEAD BUFFER

Keyboard management provides a type-ahead buffer
to store character codes (or keyboard codes, if in

unencoded mode) not yet read by a program. If the
user types too many characters before processing,
the excess 1is discarded. When a program reads
beyond the characters buffered successfully,
it receives status code 610 ("Type-ahead buffer
overflow") . The size of the type-ahead buffer is

usually 128 characters but can be changed at
system build. The content of the type-ahead buf-
fer is discarded by

° SetKbdUnencodedMode, 1f the mode is ac-
tually changed.

e Chain and ErrorExit, 1f the status code
is abnormal (nonzero) . (For details,
see "Application Program Termination,"
later in this chapter.)

ACTION KEY

Action 1is a special kind of Shift key; it is
processed specially, even in unencoded mode. The
interpretation of all other keys is modified while
Action is pressed.

Key combinations that include Action are processed
independently of calls by the program to ReadKbd
or ReadKbdDirect and are not affected by character
or keyboard codes stored in the type-ahead buffer.

The key <combination Action-Delete <clears the
type-ahead buffer.

The key combination Action-Overtype blanks out the
screen. It does not affect any ongoing activity,
but simply makes the screen blank. To reactivate
the video display, press any nonediting key, such
as Shift or Code.

Keyboard Management 10-7

The key combination Action-Finish terminates the
execution of the current program and invokes the
exit run file. The DisableActionFinish operation
disables this feature.

The key combinations Action-A and Action-B invoke
the Debugger if the Debugger i1is included in the
operating system at system build.

Key combinations that include Action are available
for program interpretation. Pressing Action in
conjunction with any other key causes the keyboard
code for that key to be stored in keyboard
management memory. The keyboard code (also
called an action code) can be obtained by calling
ReadActionCode or ReadActionKbd. Calling either
of these operations avoids changing modes to
obtain this information, thereby allowing the
type-ahead buffer to continue while the program
tests for special user intervention.

The BASIC interpreter, for example, uses
Action-Cancel to interrupt computation without
interfering with type-ahead. The Context Manager
uses Action-Go, Action-Next, and Action-F1 to

Action-F10 for switching from one context (user
number) to another.

ReadActionKbd can be called to determine immediately
if an Action key sequence 1is wused. Typically,
ReadActionKbd is used asynchronously. (For
details on the asynchronous wuse of requests,
see Chapter 29, "Interprocess Communication.")

10-8 CTOS/VM Concepts

KEYBOARD AND VIDEO INDEPENDENCE

Keyboard management does not automatically echo
characters to the video device. A program can
assign various functions to each character and
can select whether or not to echo the characters.
Keyboard management attaches no special signi-
ficance to keys such as Finish, Help, Return, or
Delete. Action 1is the only key with special
significance.

USING THE KEYBOARD ENCODING TABLE

The Keyboard Encoding Table translates keyboard
codes to character codes. The table provides
translation of the following:

e the character code to generate if Shift is
pressed

e whether Lock has the effect of Shift for
this key

e whether the key is typematic (repeats)

e the initial delay before beginning type-
matic repeating

e the frequency of typematic repeating

e whether a key responds to diacritical key
handling

Diacritical key handling is wuseful for displaying
characters with diacritical marks, such as the
German a with an umlaut. The first key of a dia-
critical key pair enables diacritical mode; the
second key displays the diacritical result. Any
of the character codes can be assigned diacritical
key handling.

Keyboard Management 10-9

You can use either of two methods to set wup
diacritical key handling. You can modify the
built-in keyboard table, which requires regene-
rating the operating system; or (an easier method)
you can edit the Keyboard Mapping table in the

Nls.sys file and rebootstrap your system. (For
details, see Chapter 40, "Native Language
Support.")

The Keyboard Encoding Table provides an 8 bit

superset of the ASCII printable characters. (See
the Standard Character Set in Appendix B in the
CTOS/VM Reference Manual.) All 256 8 bit
character codes can be generated from the
keyboard. Each of the first 128 character codes

(and some of the second 128) can be generated
either by pressing a single key or by pressing
Shift while pressing another key. Pressing Code
while pressing another key causes the high-order
bit to be set (80h to be inclusive ORed) in the
character code that would otherwise be generated.
Thus, the use of Code (or Code and Shift) permits
the generation of the remainder of the 256
character codes.

USING THE SYSTEM INPUT PROCESS

The system input process permits all the char-
acters typed at the keyboard to be recorded in a
file, in addition to returning them to the appli-

cation program requesting them. The application
program must be in unencoded mode.

The system input process provides for three modes
of operation: normal, recording, and submit.

e TIn submit mode, input is read from the

submit (recorded) file rather than from
the keyboard.

10-10 CTOS/VM Concepts

e TIn recording mode, a copy of the keyboard

input is written to a recording file.

° In normal mode, neither
nor submit mode is active.

recording mode

The system input process is shown in Figure 10-2.

Physical
Keyboard
Keyboard
ReadedDhect: Process
Application
Program ReadKbd Record
e [PV S
Input Submit
Process | A —— |
N———1

Figure 10-2. System Input Process

SUBMIT FILE MODE

In submit mode, input 1is read

(recorded) file rather than

from the

Disk
File

945-012

submit

from the keyboard.

Submit files can provide the convenience of auto-

matically repeating command sequences.

Keyboard Management

10-11

To activate a submit file, SetSysInMode can be
called by an application program or through an
Executive command. (For details, see SetSysInMode
in the CTOS/VM Reference Manual, Chapter 3 "Oper-
ations.")

A submit file remains active until

e all characters in the file are read
e an end-of-file escape sequence is read
e SetSysInMode is called again

Calling the ReadKbd operation while a submit file
is active causes a character to be read from the

file and returned to the calling program. After
all characters are read from the submit file, it
is automatically closed. Subsequent calls to
ReadKbd cause characters to be read directly from
the keyboard. Transition of input source from
submit file to keyboard is totally transparent to
the application program. If, however, a program

needs to know whether a submit file is active, the
QueryKbdState operation can be called to provide
this information.

A submit file can be disabled temporarily by the
SetKbdUnencodedMode operation or by a read-direct
escape sequence. (See "Submit File Escape Se-
quences," later in this chapter, for details on
the read-direct escape sequence.)

The system input process 1is not available to
application programs that use the keyboard in
unencoded mode. This 1s because, 1in unencoded
mode, the ReadKbd operation reads keyboard codes
from the keyboard, not the submit file. Calling
SetKbdUnencodedMode with an fOn parameter value of
FALSE, however, sets character mode again and
reactivates the submit file. Subsequent char-
acters thus are read from the submit file.

10-12 CTOS/VM Concepts

The ReadKbdDirect operation is available to read
from the keyboard at all times, regardless of
whether a submit file is active.

The submit file 1is disabled temporarily when a
read-direct escape sequence is read from the
submit file. (See "Submit File Escape Sequences,"
later in this chapter for, details.)

RECORDING MODE

SetSysInMode can specify recording mode. When
recording mode 1is activated, all characters typed
at the keyboard and read in character mode by
ReadKbd (but not by ReadKbdDirect) are written to
a recording file, in addition to being returned to
the application program calling ReadKbd. (Note
that Action keys are not recorded.)

A recording file can be used later as a submit
file to repeat the same sequence of input char-
acters. A recording file and a submit file cannot
be active simultaneously.

SUBMIT FILE ESCAPE SEQUENCES

Certain sequences of characters (escape seguences)
invoke special functions when read from a submit
file. A gubmit file escape sequence consists of
two or three characters.

e The first character of the escape
sequence is the character code 03h (¢),
which indicates the presence of an
escape sequence.

e The second 1s a code to identify the
special function.

e The third character, if present, is an
argument to the special function.

Keyboard Management 10-13

The permitted codes are shown in Table 10-1.
Additional escape sequences are used by the Submit
command . (See the Executive Manual for details.)

Table 10-1
PERMITTED CODES IN SUBMIT FILE ESCAPE SEQUENCES

Character Code Function

¢ 03h A two-character escape se-
quence that represents the
character code 03h. Since
03h (¢) is used to introduce
escape sequences, this
escape sequence (that 1is,
two consecutive ¢'s) is the
only way to represent the ¢
in a submit file.

1 31h A three-character, read-
direct escape sequence.
(See the discussion follow-
ing this table.)

2 32h An end-of-file escape se-
quence. When this two-
character escape sequence is
read during a ReadKbd oper-
ation, the submit file is
closed. The current and
subsequent ReadKbd
operations read characters
directly from the keyboard.
(This escape sequence is
meaningful only in submit
files that were created
through the Editor rather
than as recording files.)

10-14 CTOS/VM Concepts

The read-direct escape sequence is a

three-character submit file escape sequence that
causes ReadKbd to read characters directly from
the keyboard wuntil a specified key 1is pressed.
The third byte of the escape sequence specifies
the key that 1is to terminate input from the
keyboard. When the specified key 1is pressed, its
keyboard code is not returned to the program.
Rather, the current and all subsequent ReadKbd
operations read characters from the submit file
(unless another escape sequence redirects the
input source) .

For example, it 1s frequently useful to have the
user enter data into a single field of an
Executive command form during the operation of a
submit file. (See the Executive Manual for de-
tails.) To accomplish this, the submit file
should contain the following line of code:

data for the previous field
0Ah (Return/Next)

the 3 character escape sequence 03h, 31h, 0Ah
((¢, 1, Return/Next)

0Ah (Return/Next)

data for the next field

Keyboard Management 10-15

When the escape sequence 1is read from the submit
file, the cursor 1is blinking in the leftmost
character position of the field that 1is to be
entered manually. The user then enters the selec-
ted data into the field and presses either Return
or Next (symbolized by Return|Next). Pressing
Return|Next resumes the execution of the submit
file, but control is not returned to the program.
The second Return|Next in the submit file ends the
entry of data into the field and advances to the
next field of the form.

As another example, it may be useful to have the
user enter data into all the fields of a form
during playback of the submit file. To accomplish
this, include the four characters

03h, 31h, 1Bh, 1Bh

in the submit file. This causes all characters
except Go (1Bh) to be read from the keyboard.
When the operator completes the form and presses
Go, the Go read from the keyboard resumes the
playing of the submit file. The Go in the submit
file (the 1Bh following the three-character escape
sequence) completes the processing of the form.
(See the Executive Manual for details.)

10-16 CTOS/VM Concepts

APPLICATION PROGRAM TERMINATION

When an application program terminates (because of
the Chain, Exit, or ErrorExit operations, or
Action-Finish), termination has the following
effects on keyboard management:

e TIf the keyboard was in unencoded mode, it

is reset to character mode, and the
content of the type-ahead Dbuffer is
discarded.

e The Action-Finish feature is reenabled.

° The action code, if any, is discarded.
If the program terminates abnormally (because of
the Chain or ErrorExit operations with a nonzero

status code, or Action-Finish), termination has
the following additional effects:

e The content of the type-ahead buffer is
discarded.

e The submit or recording file is closed.

Termination of the program does mnot affect the
keyboard LEDs. The Executive, however, resets the
LEDs when it is loaded.

THE MOUSE SYSTEM SERVICE

If the Mouse system service 1s installed, wuse
the Mouse operation, ReadInputEvent, rather than
ReadKbd or ReadKbdDirect for Mouse and keyboard
input. (See the Mouse System Services Manual for
details on the Mouse system service and the Mouse
operations.)

Keyboard Management 10-17

OPERATIONS

The keyboard management operations described below
are categorized by use. Operations are arranged
in a most to least frequent use order. (See the
CTOS/VM Reference Manual, Chapter 3, "Operations,"
for a complete description of each operation.)

COMMONLY USED

ReadKbd Reads one character from the key-
board, or from a submit (submit)
file if one is active.

Beep Activates an audio tone for
.3 second.

SetKbdLed Turns on/off one of the keyboard
LEDs.

QueryKbdLeds Returns the status (on/off) of the
keyboard LEDs.

LESS FREQUENTLY USED

SetKbdUnencodedMode
Selects unencoded or character
mode .

ReadKbdDirect Reads one character code (or key-
board code, 1f 1in unencoded mode)
from the keyboard.

DisableActionFinish
Disables operating system interpre-
tation of Action-Finish.

10-18 CTOS/VM Concepts

SetSysInMode

CheckpointSysIn

QueryKbdState

ReadActionCode

Changes the state of the system
input process.

Writes the content of the current,
partially filled, output buffer to
the recording file 1if the system
input process is in recording mode.

Returns the status of the keyboard
and of the system input process to
a structure provided by the pro-
gram.

Returns the action code, if any,
and resets the indication that an
action code is available.

ReadActionKbd Detects Action key sequences.

Keyboard Management 10-19

11 _FILE MANAGEMENT

The file management system provides a hierarchical

organization of disk file data by node, volume,

directory, and file. The operating system auto-
matically recognizes a volume when vyou place it
online (mount it). A file can have a 50 character
file name, a 12 character password, and a file
protection 1level. A file can Dbe dynamically
expanded and contracted without limit as
long as it fits on one disk (1 gigabyte). Concurrent
access 1s controlled by read (shared) , peek

(shared), and modify (exclusive) access modes.

While providing convenience and reliability, the
file management system supplies you with the full
throughput capability of the disk hardware. This
includes reading or writing any 512 byte sector of
an open file with one disk access, reading or
writing up to 65K bytes (127 sectors) of an open
file with one disk operation, overlapping I/0 with
process execution, and optimizing disk arm sched-
uling.

You can access files located at a cluster work-

station that has local storage as well as files
located at the master.

File Management 11-1

OVERVIEW OF FILE SYSTEM CAPABILITIES

EFFICIENCY

File system efficiency 1is provided through the
following methods:

e Careful data placement: The operating
system places the volume control struc-
tures, which are resident on each volume,
at locations that minimize disk arm
movement .

The operating system brings the Volume
Home Block into memory when you place a
volume online. In addition, it retains
the most recently used directory and file
information in memory.

e Randomization (hashing) techniques: The
operating system uses randomization
techniques for placing an entry i1in a
directory sector and later for locating
the entry. These techniques reduce the
number of disk reads required to access
directory information.

RELIABILITY

Reliability is provided through the following fea-
tures:

e Duplication of two volume control struc-
tures: the Volume Home Block and the
File Header Blocks.

This duplication ensures that damage to
one copy of a volume control structure does
not cause data loss.

11-2 CTOS/VM Concepts

e Ordered updating of volume structures:
This ensures that the volume will not be
corrupted by power failure, hardware
malfunction, or software error.

e Multilevel (volume, directory, or file)
password protection.

e Multiple file protection 1levels: A file
protection 1level specifies the access
allowed to a file when the program
requesting access does not provide a
valid volume or directory password.

e Optional volume encryption: You can
optionally encrypt the passwords of all
files and directories created on a

volume. Volume encryption ensures that a
file cannot be opened without a wvalid
password.

CONVENIENCE

Convenience 1is provided through the following
means:

e Hierarchical organization of disk file
data by node, volume, directory, and
file.

e TLong file names (up to 50 characters).

e Dynamic file length: You can determine
the file length when you create the file,
and you can change file length later.

e Removable file volumes (floppy disks).

File Management 11-3

e Automatic recognition of volumes placed
online: read (shared), peek (shared), or
modify (exclusive) file modes.

e Device independence: The device on which
a file is located is transparent to you.

STRUCTURED FILE ACCESS METHODS

Structured file access methods augment the file
management system by providing additional
structured access to disk file data. The
structured file access methods are

e The Record Sequential Access Method.
(See Chapter 22.)

e The Direct Access Method. (See Chapter
23.)

e The Indexed Sequential Access Method.
(See the ISAM Manual.)

LOCAL FILE SYSTEM

A cluster workstation can have its own local
file system. The local file system allows a
cluster workstation to access files on its
local disks as well as files on disks at the
master. The operating system routes
processing requests to either the 1local or
master file system on the Dbasis of file

specifications or handles. (For details on
routing requests, see Chapter 29, "Interprocess
Communication.™")

11-4 CTOS/VM Concepts

You can bootstrap a cluster workstation either
from a file at the master or from the 1local
file system. A cluster workstation boot-
strapped from its local file system 1is a
self-contained entity that accesses the master
only for shared files. If a malfunction occurs
at the master, the cluster workstation can
continue to operate normally, provided all of
the files you access are on your workstation's
local disks.

An application program can access a master file
system in the same way the program accesses a
standalone workstation's local file system. A
program that works on a standalone workstation
will work correctly on a cluster workstation
that accesses master files.

FILE SPECIFICATIONS

The file management system organizes disk file
data hierarchically by node, volume, directory,
file, and (optionally) password.

NODE

A system connected to CT-Net can access the

files of other network nodes, subject to
password protection. If the file vyou are
requesting 1is not on your node, vyou must

specify the different node when attempting to
access the file.

A node name is a string of characters. It can
have a maximum of 12 characters.

File Management 11-5

VOLUME

The files of the system are located on volumes.
In the Executive, use the IVolume command to

format and initialize a volume. (For details on
IVolume, see the CTOS System Administrator's
Guide.) You can protect a volume by a volume

password and by volume encryption.
A floppy disk and the media sealed inside a

hard disk drive are examples of volumes. A
floppy disk is a removable volume.

Volume Name

A volname (volume name) is a string of
characters. It can have a maximum of 12
characters.

System Volume

Sys is a mnemonic for the volume name of the
disk from which the operating system was
bootstrapped.

For example, 1in a hard disk system where the
operating system was bootstrapped from hard
disk drive 0, you can use Sys instead of its
volume name.

In a cluster workstation without 1local disk
storage, Sys 1is a synonym for the volume name
of the disk on the master from which the
workstation was bootstrapped.

!1Sys signifies the volume name of the disk from

which the master of the cluster was Dboot-
strapped.

11-6 CTOS/VM Concepts

Scratch Volume

You can reference the volume on which scratch
(temporary) files are placed either Dby its

mnemonic, Scr, or by its real name. The volume
to be used as the scratch volume (Sys Dby
default) is determined at system build
(SysGen) . For protected mode, the scratch
volume also can be determined by an entry in
[Sys] <Sys>Config.sys. (For details, see the

CTOS System Administrator's Guide.)

Volume Control Structures

A volume contains several volume control struc-
tures: the Volume Home Block, the File Header
Blocks, and the Master File Directory, among
others.

The Volume Home Block 1s the root structure of
information for a disk volume.

The File Header Block of each file contains
information about that file and about the disk
address and size of each of its Disk Extents.
(A Disk Extent is one or more contiguous disk
sectors.)

The Master File Directory contains an entry for
each directory on the volume. The directories
provide fast access to the File Header Block of

a specific file. They do not, however, contain
any information about the file that is not also
contained in its File Header Block.

Volume Home Blocks (working and initial copies)
and File Header Blocks (primary and secondary
copies) each have duplicates on the volume for
reliability.

File Management 11-7

The location on the volume of the Volume Home
Blocks, the File Header Blocks, and the other
volume control structures minimizes disk arm
movement and therefore maximizes efficiency.
The File Header Blocks are located in a single
area of the volume, the disk address and size
of which are recorded in the working and
initial copies of the Volume Home Block.
Volume control structures that the operating

system accesses frequently, including the
primary and secondary copies of the File Header
Blocks, are located near the middle of the
disk.

DIRECTORY

The files of a volume are divided into one or
more directories. A directory is a collection
of related files on one volume. The maximum
number of directories that you can create on a
volume depends on the size of the Master File
Directory, which you can specify when vyou
initialize the wvolume. The maximum number of
files that you <can create in a directory
depends on two factors:

e the directory =size that vyou specified
when you created the directory

e the length of all names of all files in
that directory

A directory can be protected by a directory
password.

You <can create a directory with the CreateDir
operation and delete it with the DeleteDir opera-

tion.

A dirname (directory name) 1is a string of char-
acters. It can have a maximum of 12 characters.

11-8 CTOS/VM Concepts

FILE

A file is a set of bytes (on disk) that are treat-
ed as a unit. The files of a volume consist of
integral numbers of 512 byte sectors and must be
completely contained on one disk (1 gigabyte).

You can create a file with the CreateFile oper-
ation and delete it with the DeleteFile operation.
Once you create a file, you can access it with the
OpenFile operation and close it with the CloseFile
operation.

The ChangeFileLength operation changes the length
of an open file.

The RenameFile operation renames an existing file.

A file is protected by a file protection level and
by an optional file password.

A filename (file name) is a string of characters.
It can have a maximum of 50 characters.

PASSWORD
Four types of password protection are available:
e volume
e directory
e file
e device

A volume password protects a volume. A directory

password protects a directory on a volume. A
file password protects a file in a directory on a
volume. A device password is used with operations

that work directly with the disk.

File Management 11-9

You can specify a volume password at the time you
initialize the volume wusing the IVolume command.
Use the CreateDir operation to specify a directory
password. You can specify a file password using
the SetFileStatus operation.

Volume, directory, and file passwords can consist
of all alphanumeric characters, plus the period (.)
and the hyphen (-). A volume, directory, or file
password can have a maximum of 12 characters.

You can access a file if vyou know its volume,

directory, or file password. Knowing a volume
password allows you to access all of the direc-
tories and files of that volume. Knowing a

directory or file password permits access that is
dependent on the file protection level specified
for each file. (For details, see "File Protec-
tion," later in this chapter.)

The OpenFile operation accepts a single password.
This password is compared first against the volume
password, then against the directory password, and
last against the file password (if one was speci-
fied). You are granted access to open the file
if any of these comparisons matches provided the
file protection level permits access. (For details,
see "File Protection," later in this chapter.)

The CreateFile operation accepts a single password
that authorizes vyou to create a file 1in the
specified directory. It is not a password to be
assigned to the file being created. This password
is compared first against the volume password and
then against the directory password. You are
granted access to create the file if either of
these comparisons matches. (The SetFileStatus
operation assigns a password to the file being
created. The CreateDir operation assigns a pass-
word to the directory being created.)

11-10 CTOS/VM Concepts

You <can specify a default password wusing the
SetPath operation. The default password is wused
whenever an explicit password is not specified to
an operation. The default password, like an ex-
plicit one, is compared to the volume, directory,
and file passwords.

Valid passwords are required for some Executive
commands, such as Backup Volume, IVolume, and the
User File Editor. If you fail to supply the pass-
word or supply an incorrect one, status code 219
("Access denied") is returned.

The protection provided by each of the four

password types 1is discussed in "Protection by
Password, " later in this chapter.

DIRECTORY AND FILE SPECIFICATIONS

You refer to a directory by a directory specifi-
cation. A directory sgpecification has the form

{node} [volname] dirname

You refer to a file by a file specification. A
full file specification has the form

{node} [volname] <dirname>filename“password

The distinction Dbetween wuppercase and lowercase
in directory and file specifications is not sig-
nificant in matching directory and/or file names
during directory search; the distinction 1is,
however, preserved by the file management system
to make the directory and file specifications
easier to read.

File Management 11-11

It is recommended that node names, volume names,
and directory names consist only of alphanumeric
characters, plus the period (.) and the hyphen
(-). It 1s recommended that file names consist
of alphanumeric characters, plus the period (.),
the hyphen (-), and the right angle bracket (>).

ABBREVIATED SPECIFICATIONS
If you previously established a default specifi-
cation, vyou can refer to a file or directory by

an abbreviated specification.

The SetPath operation establishes a default node,

a default volume, a default directory, and a
default password. The SetPrefix operation establi-
shes a default file prefix. SetPath and

SetPrefix establish defaults for the user number
of the caller.

If a program has issued the SetPath operation
with the default volname of [MasterVol] and the
default dirname of <Susan>, you can access the
files

[MasterVol] <Susan>Todays>work
[MasterVol] <Susan>Yesterdays>work

as either
<Susan>Todays>work <Susan>Yesterdays>work
if just the volname is omitted, or
Todays>work Yesterdayss>work
if the default volname and default dirname are

omitted; <dirname> cannot be omitted unless
[volname] is also omitted.

11-12 CTOS/VM Concepts

If a program has issued the SetPrefix operation
with the default file prefix of Todays>, in
addition to the default volname and dirname
established by the SetPath operation above, you
can access the files

[MasterVol] <Susan>Todays>work
[MasterVol] <Susan>Yesterdays>work

as
work

and
<Susan>Yesterdays>work

You could no longer speci