
Introduction to
LEVEL II COBOL ™

Introduction to LEVEL /I COBOL ™

The software described in this document is supplied under a license and may be
used or copied only in accordance with the terms of such license, and in particular
any warranty of fitness for Micro Focus software products for any particular
purpose is expressly excluded and in no event will Micro Focus be liable for any
consequential loss.

Copyright © 1988 by Convergent, Inc., San Jose, CA. Printed in USA.

First Edition (May 1988) 73-00473-A

All rights reserved. No part of this document may be reproduced, transmitted,
stored in a retrieval system, or translated into any language without the prior
written consent of Convergent, Inc.

Convergent makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Convergent reserves the right to revise
this publication and to make changes from time to time in its content without being
obligated to notify any person of such revision or changes.

Convergent, Convergent Technologies, and NGEN are registered trademarks of
Convergent, Inc.

Art Designer, AutoBoot, AWS, Chart Designer, ClusterCard, ClusterNet,
ClusterShare, Context Manager, Context Manager/VM, CTAM, CT-DBMS,

CT-MAIL, CT-Net, CTIX, CTOS, CTOS/VM, CWS, Document Designer, GT,
IMAGE Designer, IWS, MiniFrame, PC Emulator, PC Exchange,

Phone Memo Manager, PT, S/50, S1120, S/320, S/640, S11280, S/Series,
Seriesl286i, Series/386i, Server PC, Shared Resource Processor,

Solution Designer, SRP, TeleCluster, The Cluster, The Operator, Voice/Data
Services, Voice Processor, WGS/Calendar, WGS/DESKTOP, WGS/Mail,

WGS/Office, WGS/SpreadSheet, WGS/WordProcessor, WorkGroup Servers, and
X-Bus are trademarks of Convergent, Inc.

LEVEL II COBOL™ (LEVEL II COBOL) and ANIMATOR™ (ANIMATOR) are
trademarks of Micro Focus, Ltd.

MS-DOS® is a registered trademark of Microsoft Corporation.
Intel® is a registered trademark of Intel Corporation.

This document was produced using the Document Designer Series.

Contents

About this Manual
Keyboard Differences between CTOS workstations and PC's 11

Related Documentation. iii
Conventions iv

1 Introduction

2 Writing a COBOL Program on CTOS
Using CALL for Inter-Program Communication. 2-3
Using CALL to Take Advantage of Run-Time Extensions. . .. 2-4

ConvertWord 2-5
ConvertQuad .. 2-6
GetPointers. 2-7
MakePointer .. 2-8
UnMakePointer 2-9
WordAligned 2-10

Using CALL to Invoke Procedures Linked into the Run-Time
System. .. 2-11

Parameter Passing and Parameter Data Types 2-12
Byte .. 2-13
Byte String. .. 2-14
Word ... 2-15
Quad .. 2-16

Passing Structures as Parameters 2-17
Passing Parameters to the Forms Run-Time. 2-18

Device and File Management. .. 2-20
Sequential Files. .. 2-20
Line Sequential Files 2-21
Relative Files ... , 2-21

Contents iii

Indexed Sequential Files 2-22
File and Record Level Locking 2-22
Semantics of File and Record-Level Locking. 2-23
Locking Modes. 2-23
Specifying the Locking Mode. .. 2-24
Error Conditions While Using Locks. 2-31

3 Compiling a COBOL Program
Using the COBOL Compile Command Form. 3-1

Commalld ForIn 3-1
Parameter Fields . 3-2

Compiler Directives . 3-4
Notes on Combining Directives. 3-12

Default Compiler Directives 3-14
Changing the Compiler Defaults 3-15
Compiler Examples .. 3-15
Summary Information Shown on the Screen Display. • • . . • . . .• 3-17

Listing Formats 3-19
Effect of Incorrect Data Items. • • • • . • . • . • . . • • . • .. 3-22

4 Using the Native Code Generator
Using the Native Code Generator Command Form. 4-1

Command Form...................... 4-1
Parameter Fields 4-2

Directives. 4-3
Customizing the Defaults 4-5

5 Running a COBOL Program
Using the COBOL Run Command Form. 5-1

Command Form....................................... 5-1
Parameter Fields 5-1
Run-Time Switches. 5-4

The ANSI COBOL Debug Switch. 5-4
The Null Switch. 5-4
The Tab Switch. 5-5

COBOL Run Examples. 5-6
Running COBOL on an SRP . 5-8
Setting up a Customized Comlnand for your Program 5-9
Reading the Fields of a Customized Command Form 5-10

iv Manual Title

Using COBOL Communications. .. 5-12
Creating an Initialization File 5-12
Updating an Initialzation File 5-13
U sing an Initialization File. .. 5-13

6 Debugging a Program with the ANIMATOH.
Preparing to RUll the ANIMATOR 6-1
Using the Animate Command Form. 6-2

Command Form....................................... 6-2
Parameter Fields 6-2
ANIMATOR Commands............................... 6-3

Function Key/Letter Commands. 6-3
Letter Commands.. 6-4
Cursor Positioning Keys. .. 6-11

7 Configuring COBOL
Linking Procedures into the COBOL Run-Time System 7-1

Assembling LEVEL II COBOL. 7-2
Linking COBOL .Run 7-3
Updating the [Sys]<Sys>Directory 7-3

CRT Configuration 7-4
CRT Description . 7 - 5

General Configuration Options. 7-5
Screen Display Options . 7-6
Console Output Options. 7-6
Initialization and Reset Options. 7-7
Function List Options 7-9
Default CRT Handling Options. 7-12

Running the CONFIG Utility. 7-18

Index

General Procedure .. 7-18
CONFIG Function Operation. .. 7-19

List of Tables
1 Keyboard Differences . viii
2-1 Effect of NOFILESHARE Directive and LOCK Modes on

how Records and Files are locked. 2-28

Contents v

2-2 Effect of NOFILESHARE A UTOLOCK Directives and
LOCK Modes on how Records and Files are locked 2-29

2-3 Effect of NOFILESHARE WRITELOCK Directives and
LOCK Modes on how Records and Files are locked 2-30

3-1 Excluded Combinations of Directives. 2-13

vi Manual Title

About this Manual

This manual is your introduction to using LEVEL II COBOL 1M in the
CTOS ™ environment. It is a companion manual to the High Performance
LEVEL II COBOL Operating Guide, the High Performance LEVEL II
COBOL Language Reference Manual, and the High Performance LEVEL
II COBOL Error Messages Manual.

Use this manual for an overview of LEVEL II COBOL and to learn how
to compile and link your program on CTOS. This manual also provides
information about making calls that use the CTOS operating system
libraries, such as the Forms library and CTOS.lib.

The three Micro Focus companion manuals describe how to use LEVEL
II COBOL in the MS-DOS and CPM-86 environments. The High
Performance LEVEL II COBOL Language Reference Manual describes the
COBOL ANSI standard language. The High Performance LEVEL II
COBOL Operating Guide, describes the LEVEL II COBOL compiler
features.

In general, LEVEL II COBOL works very similarly under CTOS as it
works under MS-DOS or CPM-86. This manual, Introduction to
LEVEL II COBOL, explains those concepts and tasks that are different
under CTOS, so you will want to read this manual carefully before using
the companion manuals.

Use the companion manuals for detailed reference about the LEVEL II
COBOL language and compiler features. Note that in most cases this
manual describes the information you need to know first, then references
the other manuals for additional information.

LEVEL II COBOL runs in real mode under either the CTaS or the
CTOS/VM operating system. This manual assumes that you are familar
with the basic concepts of the Executive and your operating system. If

About this Manual vii

you are not, take some time to look at the Executive manuals for material
on how to use the command line interpreter and a basic description of the
file system, the "Getting Started" chapter of the CTOS Programmer's
Guide for an introduction on programming in the CTOS environment, the
Linker Manual for material on Linker concepts, and the CTOS/VM
Concepts Manual for an introduction to the operating system itself.

This manual also assumes that LEVEL II COBOL is installed on your
workstation. If it is not, see the LEVEL II COBOL Release Notice for
installation instructions. Note that you should ignore Getting Stared with
High Perjornlance Level II COBOL on MS-DOS if it is bound with your
Operating Guide. Use the release notice instead for installation
information.

Keyboard Differences between CTOS workstations and PC's

eTaS uses a different keyboard than is used by most MS-DOS
machines. The Micro Focus manuals occasionally refer to explicit key
names, so you should understand these differences. The table below
shows the differences

Table 1. Keyboard Differences

DOS key

Enter·
Escape
Control
Home*

eTOS key

Go
Cancel
Code
not applicable

*For use with COBOL ACCEPT statement, this key is a configuration option. See
Chapter 7 for more information.

LEVEL II COBOL offers a special configuration program that can be
used to set up keyboard mapping. For example, it is used to specify a

viii Introduction to LEVEL II COBOL

Home key. The configuration program is described in Chapter 7 of this
manual.

Related Documentation

Besides the Micro Focus -manuals discussed above, there arc several
manuals that you may need to use as you familarize yourself with writing
COBOL programs in the CTOS environment. For a complete list of
workstation documentation, see the Convergent Publications Catalog.

The CTOS Programmer's Guide is a reference guide for programming
under the CTOS operating system. It describes CTOS programming
practices and introduces the system to programmers who are using it for
the first time.

The CTOS/VM Concepts Manual, together with the CTOS/VM Reference
Manual, describes the CTOS/VM operating system. The CTOS/VM
Concepts Manual introduces the CTOS/VM operating system to the
programmer by presenting concepts in a basic-to-advanced order.
Included among the concepts in this manual are management of
processes, messages, memory, exchanges, video, keyboard, files, disks,
printers, communications, tape, and timers. CTOS/VM operations
pertaining to each concept are described briefly at the end of each
chapter. The manual also explains how to use the CTOS/VM operations
and provides information on the administrative aspects of the operating
system.

The CTOS/VM Reference Manual, together with the CTOS/VM Concepts
Manual, describes the CTOS/VM operating system. The CTOS/VM
Reference Manual describes each operation that is contained in the System
Image and in the standard object module library, CTOS.lib. The manual
also contains the format of each system structure.

The Executive Manual describes the interactive command interpreter that
interacts with the CTOS and CTOS/VM operating systems. The manual
is both a user's guide and a reference to the available commands. It
addresses command execution, file management and protection, and
program invocation. The manual also provides descriptions and details
about parameter fields for Executive commands.

About this Manual ix

The Forms Manual describes the Forms facility that includes the Forms
Editor, which is used to interactively design and edit forms, and the
Forms run time, which is called from an application program to display
forms and accept user input.

The ISAM Manual describes both the single-user and the multiuser
indexed sequential access method. It specifies the procedural interfaces
(and how to call them from various languages) and the utilities.

The Linker! Librarian Manual describes both the Linker, which links
together separately compiled object files, and the Librarian, which builds
and manages libraries of object modules.

The Status Codes Manual contains 'a complete list of all the status codes
that can be generated by a CTOS workstation or a Shared Resource
Processor (SRP), including bootstrap ROM error codes and CTOS
initialization codes. The manual also describes and interprets error status
codes.

Conventions

Italics are used to show variable items, for example, file names when you
would supply your own file name.

All numbers given are decimal unless indicated.

x Introduction to LEVEL II COBOL

1
Introduction

LEVEL II COBOL is a standard COBOL language system for use in the
CTOS environment. It is ANSI '74 COBOL as specified in American
National Standard Programming Language COBOL (ANSI X3.23 1974).
LEVEL II COBOL runs in real mode under either the CTOS or the
CTOS/VM operating system.

To create a LEVEL II COBOL program, you must first create source
files using one of the workstation text editors. The program must then be
compiled using the COBOL Compile command. The resultant file is an
intermediate file. The LEVEL II COBOL Run-Time System can
interpret and execute the intermediate file. You use the COBOL Run
command to invoke the COBOL Run-Time System (RTS).

After you have finished the debugging stages of programming, you may
want to use the COBOL Generate command (the Native Code Generator)
to convert the intennediate code into a native code file (mostly machine
language), which will execute more quickly. The native code file is also
executed through the Run-Time System with the COBOL Run command.
See the figure on the next page for a graphic description of this process.

The commands COBOL Compile, COBOL Generate, and COBOL Run
are all described in subsequent chapters of this manual.

Introduction 1-1

User
File(s)

(CRT)

Text Editor

Your
Source

Program

LEVEL II COBOL
Compiler

1

List
File

. Inter­
mediate

Code
Files

-----.. LEVEL II COBOL
Native Code Generator

1/ Native
Code
File

Run-Time System I
~--------------~~

\
User

File(s)

User
Printout

473.1-1

1-2 Introduction to LEVEL II COBOL

While you are debugging, you can use the ANIMATOR to make the task
easier. The ANIMA TOR works with the Run-Time System, so that you
can debug your program interactively. The ANIMATOR, which you
execute using the COBOL Animate command, is also described later in
this manual.

Note that the Micro Focus manuals that describe LEVEL II COBOL
refer to an interactive Command Line Interpreter, which allows programs
to be entered interactively as they are executed. This feature is not
supported in the CTOS environment.

The Micro Focus manuals also refer to a product called FORMS-2. This
forms product is also not supported in the CTOS environment. To use
forms with your COBOL program, use the CTOS product named Forms.

Ignore any references to the Command Line Interpreter or the FORMS-2
products that you find in the Micro Focus manuals.

There are some differences between the MS-DOS version of LEVEL II
COBOL described in the High Performance LEVEL II COBOL Operating
Guide and the CTOS version. For example, the Micro Focus manuals
describe a .BIN file name extension used with CALL and a SA VE86 file
used to create a custom command. When such differences occur, they
are called out in this manual. Be sure to read this manual as your first
source, then use the High Performance LEVEL II COBOL Operating
Guide.

Introduction 1-3

;u .
'] ~\t<·}

2
Writing a COBOL Program on CTOS

I

This chapter describes special information you need to know when you
are writing your LEVEL II COBOL programs. It frequently refers you to
the High Performance LEVEL II COBOL Operating Guide.

You can use any standard workstation text editor to create your source
code. Follow the standards for COBOL described in the High
Performance LEVEL II COBOL Language Reference Manual. The
compiler rejects most non-alphanumeric characters embedded in source
code, unless they are part of literal strings enclosed in quotes.

When you have completed your program, use the COBOL Compile
command, described in Chapter 3 of this manual, to compile it into
intermediate code. The Run-Time System (COBOL Run command) can
then be used to execute the intermediate code.

Chapter 4, "Writing COBOL Programs," and Chapter 5, "CRT Screen
Handling," in the High Performance LEVEL II COBOL Operating Guide
give useful information on writing efficient programs and writing
interactive screen programs. Note that with CTOS you do not have to use
the file Config.Pfk referred to in Chapter 5, "CRT Screen Handling."

You will also find several useful programming examples are distributed
with LEVEL II COBOL. See the LEVEL II COBOL Release Notice for
more information.

If you have a program with a particularly large PROCEDURE
DIVISION, you may want to take advantage of LEVEL II COBOL's
segmentation feature to split the PROCEDURE DIVISION into a small
permanent segment and multiple overlays, called independent segments.
This is discussed in detail in Chapter 2, "Handling Large Programs," in the
High Performance LEVEL II COBOL Operating Guide. Note that the
overlays discussed in that chapter are a COBOL feature and are not the

Writing a COBOL Program on CTOS 2-1

same as CTOS Virtual Code Segment Management, which you cannot use
from COBOL.

You might also want to make a particularly large program into several
smaller programs. LEVEL II COBOL supports the ability to dynamically
call programs or subprograms, whether written in COBOL or in assembly
language. You can also make calls to compiled subprograms originally
written in other languages, as long as they have been compiled using the
Intel medium model of computation.

Using the CALL verb, you can:

• CALL another COBOL module using ANSI standard Inter­
Program Communication.

• CALL LEVEL II COBOL extensions that are embedded in the
Run-Time System. The extensions provided with LEVEL II
COBOL are described in Chapter 3 of the High Performance
LEVEL II COBOL Operating Guide.

• CALL non-COBOL procedures that are linked into the COBOL
Run-Time System. For example, you can make calls to library
functions such as the Forms library functions or CTOS.lib functions
using the CALL verb. You can also call compiled procedures
written in other languages in this manner. You must explicitly link
with the necessary routines to be able to use this feature.

2-2 Introduction to LEVEL II COBOL

Using CALL for Inter-Program Communication

A COBOL application system can consist of more than one separately
compiled program. The set of COBOL programs that constitute the
application are known as the application suite. The COBOL application
suite is run by using the file name of the main program. All programs
other than the main program should have a LINKAGE SECTION in the
DATA DIVISION. The LINKAGE SECTION permits COBOL
programs to communicate, that is, pass parameters.

Programs communicate with each other using the CALL verb. The
general format of the CALL verb is discussed in detail in the High
Performance LEVEL II COBOL Language Reference Manual.

Use CALL to invoke each program or sub-program as needed. Called
programs are not linked into the main program, so they must be compiled
separately into intermediate or native code and must be physically present
to be used. Up to 64 calls can be made from anyone program.

When the CALL verb is executed, the intermediate code of the called
program is loaded into memory, assuming there is sufficient space. The
ON OVERFLOW verb detects whether a CALL has failed due to lack of
memory space. The CANCEL verb reclaims memory that was allocated
to programs which are no longer in use. The DATA DIVISION of each
program in the application suite must fit in memory. If it does not, the
CALL is ignored. You can use the ON OVERFLOW verb to detect this.

One segment of the PROCEDURE DIVISION must also fit into memory.
If necessary, other PROCEDURE DIVISION modules are overwritten
and reloaded as required.

Writing a COBOL Program on eTaS 2-3

Using CALL to Take Advantage of Run-Time
Extensions

Several useful procedures, such as procedures to read or write to a
specific memory location, are embedded in the Run-Time System. These
too are used through the CALL verb.

Most of the Run-Time extensions are described on pages 3-11 to 3-34 of
the High Performance LEVEL II COBOL Operating Guide. Note that the
references to Filename.Bin at the beginning of Chapter 3 can be ignored
by the CTOS user.

The additional extensions provided with the CTOS version of LEVEL II
COBOL are described on the following pages.

All the built in procedures can be called without configuring COBOL.

2-4 Introduction to LEVEL II COBOL

ConvertWord

The COBOL internal representation for storing data is based on the
format used for Motorola memory, which is the inverse of the
representation used in Intel memory. Since workstations use Intel 808x6
processors, you may need to convert from one format to another.

The ConvertWord procedure reorders the bytes that comprise Word-In
and stores the results in Word-Out. Word-In and Word-Out may be the
same data item.

Syntax:

Call "&ConvertWord" USING WORD-IN, WORD-OUT.

where

WORD-IN IS PIC 9(4) USAGE IS COMPo
WORD-OUT IS PIC 9(4) USAGE IS COMPo

Writing a COBOL Program 011 eTaS 2-5

ConvertQuad

The COBOL internal representation for storing data is based on the
format used for Motorola memory, which is the inverse of the
representation used in Intel memory. Since workstations use Intel 808x6
processors, you may need to convert from one format to another.

Reorders the bytes that comprise Quad-In and stores the results in
Quad-Out. Quad-In and Quad-Out may be the same data item.

Syntax:

CALL "& ConvertQuad" USING QUAD-IN, QUAD-OUT.

where

QUAD-IN IS PIC 9(9) USAGE IS CaMP.
QUAD-OUT IS PIC 9(9) USAGE IS CaMP.

2-6 Introduction to LEVEL II COBOL

GetPointers

GetPointers is used when you need to use pointer arithmetic. The
memory address of Data-Val is stored in Pointer- Val.

Syntax:

CALL "&GetPointer" USING POINTER-VAL, DATA-VAL.

where

POINTER-VAL IS PIC 9(9) USAGE IS COMPo
DATA-VAL IS any picture clause.

Writing a COBOL Program Oil CTOS 2-7

MakePointer

The pointer whose segment address is Segment-Add, and relative address
is Relative-Add, is stored in Pointe,-Val.

Syntax:

CALL "MakePointer" USING POINTER,-VAL SEGMENT -ADDR, RELATIVE­
ADDR.

where

POINTER-VAL IS PIC 9(9) USAGE IS CaMP.
SEGMENT -ADDR IS PIC 9(4) USAGE IS CaMP.
RELATIVE-ADDR IS PIC 9(4) USAGE IS CaMP.

2-8 Introduction to LEVEL II COBOL

UnMake Pointer

The segment address portion of Pointer- Val is stored in Segment-Addr.
The relative address portion is stored in Relative-Addr.

Syntax:

CALL "&UnMakePointer" USING POINTER-VAL, SEGMENT -ADDR,
RELATIVE-AD DR.

where

POINTER-VAL IS
SEGMENT -ADDR IS
RELATIVE-ADDR IS

PIC 9(9) USAGE IS COMPo
PIC 9(4) USAGE IS COMPo
PIC 9(4) USAGE IS COMPo

Writing a COBOL Program on CTOS 2-9

WordAligned

Some eTOS procedures, such as OpenByteStream, requre the use of
word-aligned buffers. The Word-Aligned procedure checks for a word­
aligned buffer.

If Data-Val is word aligned, a nonzero value is stored in Flag; otherwise,
o is stored in Data-Val.

Syntax:

CALL "&WordAligned" USING FLAG, DATA-VAL.

where

FLAG IS
DATA-VAL IS

PIC 9(2) USAGE IS COMPo
any picture clause.

2-10 Introduction to LEVEL II COBOL

Using CALL to Invoke Procedures Linked into the Run­
Time System

LEVEL II COBOL can directly call non-COBOL procedures when they
have been linked into the Run-Time System. This is how you call the
Forms library routines or use CTOS.lib routines.

Note that COBOL has its own procedures that access the operating
system and work effectively on all workstations. You only need to link
CTOS.1ib into the Run-Time System if you want to use CTOS.1ib
routines explicitly.

See the section entitled, "Linking Procedures into the COBOL Run-Time
System," in Chapter 7, "Configuring COBOL," for instructions on how to
set up the Run-Time System for this.

When using the CALL verb to invoke non-COBOL procedures, the
object of the CALL is the non-numeric literal that is the name of the
procedure, preceded by the ampersand (&) character.

For example, to call the CTOS Exit procedure write

CALL "&EXIT".

You can write the name of the procedure in either upper or lower case.

If the non-COBOL procedure does not return a value, pass the number
of parameters required by the procedure. For example, the CTOS
ErrorExit procedure requires one parameter, a status code, and does not
return a value. To call this procedure, write

CALL "&ERROREXIT" USING ercEXIT.

If the procedure returns a value, pass an extra parameter at the beginning
of the parameter list to receive the returned data. For example, the
CTOS CloseFile procedure requires one parameter, a file handle, and
returns a status code. To call this procedure write

CALL "&CLOSEFILE" USING ere, fh.

When passing a parameter, COBOL passes either its address or its value,
depending upon the interface of the called procedure. This is explained
in more detail below.

Writing a COBOL Program on CTOS 2-11

The COBOL Run-Time System provides several checks to detect
incorrect procedure calls. These include checks for calling an unknown
procedure and calling a procedure with an incorrect number of
parameters.

Parameter Passing and Parameter Data Types

COBOL passes either parameter addresses or values, depending on the
interface of the called procedure.

The Run-Time System gets information about procedure interfaces from
the assembly language module COBOLGen.Asm. COBOLGen.Asm is
discussed in more detail in Chapter 7 of this manual, "Configuring
COBOL."

COBOL can pass bytes, byte strings, words, and double words (quads).
However, COBOL cannot correctly pass structures containing words and
quads unless certain type conversion statements are added to the COBOL
program. This is explained in the section, "Passing Structures as
Parameters," below.

The data types that can be passed between a COBOL program and a
non-COBOL procedure are also described later in this chapter.

2-12 Introduction 10 LEVEL II COBOL

Byte

A byte is an 8-bit quantity, usually representing a character, an integer,
or a boolean value.

The COBOL PICTURE clauses that define a byte are

PICTURE 9(2) USAGE IS COMP.

which defines an integer or boolean value (true or false), and

PICTURE X(1).

which defines a character.

When using bytes as boolean values, 0 means false and 1 means true.

The COBOL statements below show the definition and use of a byte
parameter as a character (b) and as a boolean value (fOn).

01 b
01 fOn

PICTURE X(1) VALUE "A".
PICTURE 9(2) USAGE IS COMP VALUE O.

CALL "&WriteByte" USING ere, bswa, b.
CALL "&SetKbdUnencodedMode" USING ere, fOn.

Writing a COBOL Program on eTaS 2-13

Byte String

A byte string is a contiguous sequence of bytes or characters.

The COBOL PICTURE clause that defines a byte string is

PICTURE X(n)

where n is the length of the byte string.

The COBOL statements below show the definition and use of byte string
parameters (rgbFilename and rgbPassword).

01 rgbFilename
01 rgbPassword

PIC X(8) VALUE "Testfile".
PIC X(5) VALUE "xyzzy".

CALL I&OpenFile" USING ere, fh, rgbFilename, ebFilename, rgbPassword,
ebPassword, mode.

2-14 Introduction to LEVEL II COBOL

Word

A word is an 8-bit quantity, normally representing an integer.

The COBOL PICTURE clauses that define a word are

PICTURE 9(4) USAGE IS COMP

which defines an integer and

PICTURE X(2)

which defines two contiguous bytes.

The COBOL statements below show the definition and use of word
parameters (ere, fh, cbFilename, cbPassword, mode) and byte strings
(rgbFilename, RgbPassword).

01 erc
01 fh
01 rgbFilename
01 cbfilename
01 rgbPassword
01 cbPassword
01 mode

PIC 9(4) USAGE IS COMPo
PIC 9(4) USAGE IS COMPo
PIC X(8) VALUE "TestFile".
PIC 9(4) USAGE IS COMP VALUE 8.
PIC X(5) VALUE "xyzzy".
PIC 9(4) USAGE IS COMP VALUE 5.
PIC X(2) VALUE "mm".

CALL "&OpenFile" USING erc, fh, rgbFilename, cbFilename, rgbPassword,
cbPassword, mode.

Writing a COBOL Program on eTOS 2-15

Quad

A quad is a 32-bit quantity, normally representing an address (pointer) or
a logical file address (lfa).

The COBOL PICTURE clause that defines a quad is

PICTURE 9(9) USAGE IS COMPo

The COBOL statements below show the definition and use of a quad
parameter (pSegment).

01 Ere
01 cBytes
01 pSegment

PIC 9(4) USAGE IS COMPo
PIC 9(4) USAGE IS COMP, VALUE1 024.
PIC 9(9) USAGE IS COMPo

CALL "&AlloeMemorySL" USING ere, eBytes, pSegment.

2-16 Introduction to LEVEL II COBOL

Passing Structures as Parameters

Some procedures require structures as parameters. In these cases, the
address of the structure is actually passed.

A structure is a contiguous group of data items. The individual data items
are bytes, byte strings, words, and quads.

For example, the procedure RGParam takes a structure as a parameter.
The interface for RGParam is

RgParam (iParam, jParam, pSdRet) : EreType.

The final parameter, pSdRet, is a structure composed of a quad (pointer)
followed by a word.

COBOL cannot correctly pass structures as parameters. COBOL stores
the bytes that make up words and quads in a different order than is
expected by non-COBOL procedures. The COBOL Run-Time System
automatically reorders bytes for simple word and quad parameters,
however, reordering does not occur for structures.

Two built-in non-COBOL procedures, ConvertWord and ConvertQuad,
are provided so that you can explicitly reorder the word and quad
components of a structure parameter. They are described in the section
below.

If the word or quad contained in the structure is read by the non-COBOL
procedure, call ConvertWord or ConvertQuad before the CALL to the
non-COBOL procedure. If, however, the word or quad is read by the
non-COBOL procedure, call them after the CALL to the non-COBOL
procedure.

In the case of RGParam, the sd structure is written by the procedures.
The following example demonstrates a CALL to RgParam.

01 ere
01 iParam
01 jParam
01 sd.

03 pb
03 eb

CALL "&RgParam"
CALL ConvertQuad
CALL ConvertWord

PIC 9(4) COMPo
PIC 9(4) COMPo
PIC 9(4) COMPo

PIC 9(9) COMPo
PIC 9(9) COMPo

USING ere, iParam, jParam, sd.
USING pb, pb.
USING eb, eb.

Writing a COBOL Program on eTaS 2-17

Passing Parameters to the Forms Run-Time

The Forms Manual describes use of the Forms Run-Time in detail. You
will probably want to be somewhat familiar with Forms to understand
these examples.

COBOL correctly passes parameters, including structures, to all
procedures in the Forms Run-Time if the parameter data definitions
contained in the library file COBOLForms.edf are used.
COBOLForms.edf is distributed with LEVEL II COBOL. Check your
LEVEL II COBOL Release Notice for more information.

To use COBOLForms.edf, first copy it from the distribution media to
your working directory. Next, insert the following statement in the
WORKING-STORAGE section of the COBOL program that uses
Forms.

Copy "COBOLForms.edf".

The COpy statement causes the parameter data definitions in
COBOLForms.edf to be included in your COBOL program. These
definitions are listed in the example on the next page.

The parameter data definitions listed in the example are needed in the
Forms procedures GetFieldInfo and UserFillField.

Use fieldInfo and cbFieldlnfo as the last two parameters to GetFieldInfo.
When GetFieldInfo returns, field information is accessed by referencing
the elementary data items subordinate to fieldInfo.

Use InitState and ExitState as the last two parameters to UserFiIIField.
Initialize the init-ich field of InitState before the call to UserFillField.
When UserFiIlField returns, field state is accessed by referencing the
elementary items subordinate to ExitState.

2-18 Introduction to LEVEL II COBOL

01 InitState
02 init-ich
02 filler
02 filler

01 ExitState
02 exit-ich
02 filler
02 exit-ich
02 filler
02 fAutoExit
02 filler
02 fModified
02 filler
02 fEmpty
02 filler
02 filler

01 cbFieldlnfo

01 fieldlnfo.

PIC 9(2) COM P.
PIC 9(2) CaMP.
PIC X(6) CaMP.

PIC 9(2) CaMP.
PIC 9(2) CaMP.
PIC X(1).
PIC X(1).
PIC 9(2) CaMP.
PIC 9(2) CaMP.
PIC 9(2) CaMP.
PIC 9(2) CaMP.
PIC 9(2) CaMP.
PIC 9(2) CaMP.
PIC X(6).

PIC 9(2) CaMP VALUE 32.

02 info-iCol PIC 9(2) CaMP.
02 filler PIC 9(2) CaMP.
02 info-iUne PIC 9(2) CaMP.
02 filler PIC 9(2) CaMP.
02 info-cCol PIC 9(2) CaMP.
02 filler PIC 9(2) CaMP.
02 info-fShowDefault PIC 9(2) CaMP.
02 filler PIC 9(2) CaMP.
02 info-fAutoExit PIC 9(2) CaMP.
02 filler PIC 9(2) CaMP.
02 info-fRepeating PIC 9(2) CaMP.
02 filler PIC 9(2) CaMP.
02 info-attrSel PIC 9(2) CaMP.
02 filler PIC 9(2) CaMP.
02 info-attrUnSel PIC 9(2) CaMP.
02 filler PIC 9(2) CaMP.
02 info-indexFirst PIC 9(2) CaMP.
02 filler PIC 9(2) CaMP.
02 info-indexLast PIC 9(2) CaMP.
02 filler PIC 9(2) CaMP.
02 filler PIC X(1 0).
02 info-cchDefault PIC 9(2) CaMP.
02 filler PIC 9(2) CaMP.
02 info-rgchDefault PIC X(n).
where n is the value of info-cchDefault

Writing a COBOL Program on eTaS 2-19

Device and File Management

LEVEL II COBOL offers four methods of file organization: sequential,
line sequential, relative, and indexed sequential.

Note that only files of ORGANIZATION INDEXED can be shared for
read/write access from COBOL. Access is controlled by the CTOS
ISAM system service, which runs on the master workstation when
operating in a cluster configuration. Other file types will return the "file
locked" status if write-sharing is attempted.

File assignment is discussed on pages 6-5 to 6-9 in Chapter 6 of the High
Performance LEVEL II COBOL Operating Guide. That manual is
designed for the MS-DOS or CPM-86 user, so bear in mind that for use
on CTOS you need to use CTOS device and file specifications in place of
any device or file specifications used as examples. For example, use
[YID] not CON: for the video display. See the Executive Manual or the
CTOS/VM Concepts Manual if you need more information on how to use
CTOS device and file specifications. Note too that drive residency as
discussed in the High Performance LEVEL II COBOL Operating Guide is
not an issue for CTOS users.

Sequential Files

Sequential files (ORGANIZATION IS SEQUENTIAL) are read and
written using fixed length records. Use pages 6-9 to 6-14 of the fIigh
Performance LEVEL II COBOL Operating Guide to learn about sequential
files.

Sequential files cannot be shared for read/write access. Use Indexed
Sequential files instead if you need this capability.

Note that these are stored as CTOS Sequential Access Method files. The
Sequential Access Method (SAM) is discussed in detail in the CTOS/VM
Concepts Manual.

2-20 Introduction to LEVEL II COBOL

Line Sequential Files

Line Sequential files support variable length records and are used
primarily for text manipulation. (For example by a line editor program).
Use pages 6-14 to 6-16 of the High Performance LEVEL II COBOL
Operating Guide to learn about line sequential files.

Line Sequential files are stored as CTOS SAM files.

Relative Files

Relative files are used when you want to access data randomly by
specifying its position in the file. Relative files on CTOS are
implemented using the Direct Access Method (DAM) relative files.
DAM is discussed in more detail in the CTOS/VM Concepts Manual.

Do not use the High Performance LEVEL II COBOL Operating Guide to
learn about relative files.

All records stored in a relative file are uniquely identified by relative
record numbers. The relative record number of a record specifies the
record's logical ordinal position in the file. The first logical record has a
relative record number of 1: subsequent logical records have relative
record numbers of 2, 3, 4, and so on.

The data item specified by date-name-1 communicates a relative record
number between you and the operating system.

Relative files cannot be shared for read/write access. Use Indexed
Sequential files instead if you need this capability.

Writing a COBOL Program on CTOS 2-21

Indexed Sequential Files

Indexed Sequential files are implemented using the CTOS Indexed
Sequential Access Method (ISAM). See the ISAM Manual for detailed
information. Do not use the High Performance LEVEL II COBOL
Operating Guide for information about indexed sequential files.

Note that the name you supply for an indexed sequential file in your
program is the name of the data file. The default name for the associated
key (Le. index) file is produced using the extension .Ind with the root of
the data file name. For example the data file MyFile would generate a key
file name MyFile.lnd.

File and Record Level Locking

ISAM's powerful record-level and file-level locking capabilities provide
secure and independently controlled file access for each user in a multi­
user configuration. File and record locks permit exclusive access by one
user to a file or a record within a file.

LEVEL II COBOL provides the following methods for sharing ISAM
data files in a multi-user environment:

• Direct calls to the Convergent ISAM procedures. These may be
linked into the Run-Time system using the facility described in
Chapter 7, "Configuring COBOL." The Convergent ISAM
procedures are described in the ISAM Manual.

• The compile-time directives "FILESHARE", "AUTOLOCK", and
"WRITELOCK". These directives are described in this section, and
in Section 3, "Compiling a COBOL Program".

• Extensions to the 1974 ANSI standard syntax which can be included
in your COBOL programs. These extensions to 1974 ANSI COBOL
and their interaction with the "FILESHARE", "AUTOLOCK", and
"WRITELOCK" compiler directives are also described in this
section.

Caution: It is not recommended that you mix direct calls to ISAM
procedures with COBOL FILE CONTROL and PROCEDURE DIVISION
constructs for indexed sequential file operations in one program.

2-22 Introduction to LEVEL II COBOL

Semantics of File and Record-Level Locking

A lock regulates concurrent access to a file or record, thereby
maintaining data integrity when more than one user accesses the same file.
A lock is used to prevent other users from accessing a record of a file
that is locked for any purpose.

A file-level lock restricts access for all the records in a file, while a
record-level lock only restricts access to a single record.

Locking Modes

Locking modes control the way a user can access an ISAM record or file
when another user is already using it. LEVEL II COBOL supports three
locking modes. The ways a file can be opened and the locking modes
allowed for each case are shown in the table below:

The following are characteristics of EXCLUSIVE file-level locking:

EXCLUSIVE locking mode prevents any user except the one which has
the exclusive lock from accessing a file that is opened mode
EXCLUSIVE.

The whole file is locked as soon as the application executes an OPEN
on a file defined to be MODE EXCLUSIVE.

An application cannot open a file defined to be EXCLUSIVE if some
other application is already accessing that file.

If an application opens a file OUTPUT the locking mode is
EXCLUSIVE.

The following are characteristics of AUTOMATIC record-level locking:

Under AUTOMATIC locking, the locking action is not specified in the
PROCEDURE DIVISION code.

If an application opens a file 1-0, it can acquire a lock on one or more
records. There is a limit to the number of records that can be locked
simultaneously; that maximum is a function of constraints in ISAM.

If an application opens a file INPUT, it can never acquire a lock on a
record.

Writing a COBOL Program on CTOS 2-23

If an application opens a file OUTPUT, the implied locking mode is
EXCLUSIVE.

When a record is locked, other applications can neither read from nor
write to the record.

The following are characteristics of MANUAL record-level locking:

Under MANUAL locking, the locking action, when applicable, must
be specified in the procedure division code.

If an application opens a file 1-0, it can acquire a lock on one or more
records. There is a limit to the number of records that can be locked
simultaneously; that maximum is a function of constraints in ISAM.

If an application opens a file INPUT, it can never acquire a lock on a
record.

If an application opens a file OUTPUT, the implied locking mode is
EXCLUSIVE.

When a record is locked other applications can neither read from nor
write to the record.

SpeCifying the Locking Mode

Locking modes can be specified by using the extensions to the COBOL
syntax which is provided in LEVEL II COBOL, or by using the compiler
directives and recompiling your program. Tables 3-1 through 3-3, later
in this chapter, summarize the effect of various combinations of compiler
directives and extensions available in LEVEL II COBOL syntax.

Using Compiler Directives to Specify Locking Mode. The compiler
directives available to specify locking mode are "FILESHARE",
"AUTOLOCK", and "WRITELOCK".

2-24 Introduction to LEVEL II COBOL

The default locking in the LEVEL II COBOL that is released is:

OPEN INPUT No locking.

OPEN 1-0 Single record lock when READ is executed.

OPEN OUTPUT Entire file locked when OPEN is executed.

These defaults were obtained by specifying "NOFILESHARE",
"AUTOLOCK" and "NOWRITELOCK" when the LEVEL II COBOL
compiler was built. You may change the defaults for the compiler by
rebuilding it as described in the section, "Changing the Compiler
Defaults," in Chapter 3, "Compiling a COBOL Program."

Please keep in mind that the default locking described in the manual High
Performance LEVEL II COBOL Til Language Reference is EXCLUSIVE
locking. EXCLUSIVE locking is obtained by specifying the
"NOFILESHARE", "NOAUTOLOCK" and "NOWRITELOCK" compiler
directives.

Using Syntax Extensions to Specify Locking Mode. See the High
Performance LEVEL II COBOL Til Language Reference Manual, Chapter 7,
"Indexed Input and Output", for a description of the full specification of
FILE-CONTROL paragraph and PROCEDURE DIVISION syntax
extensions.

You may specify a locking mode for a file within your COBOL program
by using the LOCK MODE clause extension to the FILE-CONTROL
entry as shown below. Note that the LOCK MODE clause is optional. If
the LOCK MODE clause is left out of the FILE-CONTROL paragraph,
then the locking mode is the default as specified by the compiler
directives when you compile your program. If you do not specify
compiler directives when you compile your program, the defaults are the
directives specified when the compiler was built.

See page 7-11 of the High Performance LEVEL II COBOL Language
Reference Manual for an example.

Writing a COBOL Program on CTOS 2-25

AUTOMATIC or Manual Record-Level Locking can both be done for
single or multiple records. To obtain a lock the file must be opened 1-0.

• To use AUTOMATIC single record locking you must specify LOCK
MODE IS AUTOMATIC. Once read, a record remains locked
until the file is closed or a another record is read. No locks are
acquired when the WRITE or REWRITE commands are used.

• To use AUTOMATIC Multiple record locking you must specify
LOCK MODE IS AUTOMATIC WITH LOCK ON MULTIPLE
RECORDS. Once accessed, records remain locked until the file is
closed or a COMMIT or UNLOCK statement is executed. Locks
are acquired if the compiler directive WRITELOCK is specified at
compile time and the WRITE or REWRITE statement is executed.

• To use MANUAL single record locking you must specify LOCK
MODE IS MANUAL. A lock is acquired by executing a READ
WITH LOCK clause. Once a record is locked, it remains locked
until the file is closed or a another record is read. No locks are
acquired when a WRITE or REWRITE statement is executed.

• To use MANUAL multiple record locking you must specify LOCK
MODE IS AUTOMATIC WITH LOCK ON MULTIPLE
RECORDS. A lock is acquired by executing a READ WITH
LOCK. Locks are also acquired if the compiler directive
WRITELOCK is specified at compile time and a WRITE or
REWRITE statement is executed. Once a record is locked, it
remains locked until the file is closed or a COMMIT or UNLOCK
statement is executed.

To support a multi-user environment, extensions have been added to the
PROCEDURE DIVISION. They include the additional statements
COMMIT and UNLOCK, and additions to the READ statement. When
writing programs for a multi-user environment, errors involving locking
conditions must be taken into consideration.

To understand the function of the COMMIT and the UNLOCK
statement, one must first understand the concept of a Transaction in a
shared access environment. In Convergent ISAM a Transaction is the
smallest unit of work that involves transfer and use of data (this may
consist of a number of reads and writes). During a transaction the
records accessed are locked to prevent anyone else from reading or

2-26 Introduction to LEVEL II COBOL

changing one of those records until the data transfer is completed. At the
end of a transaction all the records locked during the transaction are
unlocked making them available to other users. For a full discussion of
the transaction mechanism see the Convergent ISAM Manual, chapter 2.

In COBOL transactions are not limited to the "smallest unit of work".
Instead, the default transaction in COBOL is the program as a whole.
When the first COBOL organization indexed file is opened, a transaction
is begun; the default is for it to be completed when the program ends.
The COMMIT and UNLOCK statements are provided to enable the user
to have more control of when records are released by an application so
others can use them.

• The COMMIT statement signifies the successful completion of a
transaction. It first unlocks all records and data sets locked by the
application system, completes the transaction and then starts a new
transaction for the application system.

• The UNLOCK statement releases all locks on the specified data set
without ending the current transaction.

• The READ statement also affects locking.

When "LOCK MODE IS MANUAL" is specified for a file that is
opened 1-0, a record is locked ONLY if the read statement has the
fonn "READ ... WITH LOCK". The record locked will be
unlocked when the next record is read.

When "LOCK MODE IS MANUAL WITH LOCK ON MULTIPLE
RECORDS" is specified for a file that is opened 1-0, a record is
locked ONLY if the read statement has the form "READ ... WITH
KEPT LOCK". To unlock records use the COMMIT or UNLOCK
statements depending on whether the user wishes to unlock all
records or just records in one data set.

For details on the syntax and semantics of the COMMIT, UNLOCK, and
additions to the READ statement, see Chapter 7 of the High Performance
LEVEL II COBOL Language Reference Manual.

Writing a COBOL Program on eTaS 2-27

Table 2-1. Effect of NOFILESHARE Directive and LOCK Modes on
how Records and Files are locked

Command to Lock

OPEN SELECT... single record multiple record whole tile
Mode LOCK MODE IS

INPUT
Not specified none none none
EXCLUSIVE none none OPEN
AUTOMATIC none none none

AUTOMATIC LOCK ON
MULTIPLE none none none
MANUAL none none none

MANUAL LOCK ON
MULTIPLE none none none

OUTPUT
Not specified none none OPEN

Any locking mode none none OPEN

1-0
Not specified none none OPEN
EXCLUSIVE none none OPEN
AUTOMATIC READ none none

AUTOMATIC LOCK ON
MULTIPLE none READ none
MANUAL READ WITH LOCK none none

MANUAL LOCK ON
MULTIPLE none READ WITH none

KEPT LOCK

The "LOCK MODE IS ... " clause is a LEVEL II COBOL extension to the 1974
ANSI standard X3.23.

2-28 Introduction to LEVEL II COBOL

Table 2-2. Effect of NOFILESHARE AUTO LOCK Directives and
LOCK Modes on how Records and Files are locked

Command to Lock

OPEN SELECT ... single record multiple record whole file
Mode LOCK MODE IS

INPUT
Not specified none none none

OUPUT
Not specified none none OPEN

1-0
Not specified READ none none

The "LOCK MODE IS ... " clause is a LEVEL II COBOL extension to the 1974
ANSI standard X3.23.

Writing a COBOL Program on eTaS 2-29

Table 2-3. Effed of NOFILESHARE WRITELOCK Diredives and
LOCK Modes on how Records and Files are locked

Command to Lock

OPEN SELECT... single record multiple record whole file
Mode LOCK MODE IS

INPUT
Not specified none none none
EXCLUSIVE none none OPEN
AUTOMATIC none none none

AUTOMATIC LOCK ON
MULTIPLE none none none
MANUAL none none none

MANUAL LOCK ON
MULTIPLE none none none

OUPUT
Not specified none none OPEN

Any locking mode none none OPEN

1-0
Not specified none none OPEN
EXCLUSIVE none none OPEN
AUTOMATIC READ none none

AUTOMATIC LOCK ON none READ none
MULTIPLE WRITE

REWRITE

MANUAL READ WITH LOCK none none

MANUAL LOCK ON none READ WITH KEPT LOCK none
MULTIPLE WRITE

REWRITE

The "LOCK MODE IS ... " clause is a LEVEL II COBOL extension to the 1974
ANSI standard X3.23.

2-30 Introduction to LEVEL II COBOL

Error Conditions While Using Locks.

When the Run-Time System detects an error, the application is notified
in the file status data item that is specified in the FILE STATUS IS
clause of the FILE-CONTROL paragraph. The following program
fragment shows an example of how you may test for errors that can occur
in a multi-user environment. The manual High Performance LEVEL II
COBOL Operating Guide contains a description of status-2 error
numbers.

FILE-CONTROL.
SELECT ...

ASSIGN TO ...
STATUS RTS-FileStatus.

WORKING-STORAGE SECTION.

01 RTS-FileStatus PIC X(02).
01 RTS-FileStat-Redefined

REDEFINES RTS-FileStatus.
03 RTS-FileStatus-1-X PIC X(01).
03 RTS-FileStatus-2 PIC 9(02)

PROCEDURE DIVISION.

READ ...

COMPo

IF RTS-FileStatus-1-X = ~ (means no exception status)

ELSE
IF RTS-FileStatus-1-X = T (means 'end of file')

ELSE
IF RTS-FileStatus-1-X = ~ (means 'invalid key~

ELSE
IF RTS-FileStatus-1-X = ~ (means look at status-2)
IF RTS-FileStatus-2 = ~(means the file is locked)

ELSE
IF RTS-FileStatus-2 = .D..6..8 (means the record is locked)

ELSE
IF RTS-FileStatus-2 = 2.13. (means too many locks acquired)

ELSE

Writing a COBOL Program on CTOS 2-31

See Appendix B of the High Performance LEVEL II COBOL Operating
Guide for examples that show detection of other Run-Time errors. The
sample program ByteStreamErrors.cbl on the release diskette illustrates
differences between detecting Run-Time errors and eTOS errors.

2-32 Introduction to LEVEL II COBOL

3
Compiling a COBOL Program

You use the Executive command, COBOL Compile, to compile your
COBOL source code. You can specify, in the command form, the source
file name, intermediate file name, listing file name, and whether or not
you want to use the ANIMATOR. Additional compiler directives, such
as listing width, whether or not to print line numbers or the date in the
listing, and whether or not to include the contents of files named in
COpy statements can also be specified.

This chapter assumes that you know how to use an Executive command
and how to use an at-file with an Executive command. If you do not, see
the Executive Reference Manual for details.

Note that this chapter should be used as a compiler reference rather than
Chapter 9 in the High Performance LEVEL II COBOL Operating Guide.

Using the COBOL Compile Command Form

To invoke the COBOL compiler from the Executive, type COBOL
Compile on the command line and presss Return to display the command
form.

Command Form

COBOL Compile
Source file
[Intermediate file]
[Listing file]
[For animation?]
[Other directives?] ___________________ _

Compiling a COBOL Program 3-1

Parameter Fields

Source file

Enter the name of the source file to be compiled. The file name can be
entered with or without a file extension (suffix beginning with ". It). If
you enter a file name without an extension and the file cannot be
found, the COBOL Run-Time System adds the extension .cbl to the
file name and searches for that file.

[Intermediate file]

Default: Sourcefilename .int

Enter the name of the file to which the compiler writes the intermediate
code. The default is to write the intermediate code to a file name that
is constructed by replacing the extension of the source file name with
.int.

[Listing file J

Default: Sourcefilename.lst

Enter the name of the file to which the compiler writes the compilation
listing. The default is to write the compilation listing to a file name that
is constructed by replacing the extension of the source file name with
.1st.

[For animation? J

Default: Yes

The default compiles the program and creates the additional files YOll

need if YOll want to use the ANIMATOR later for debugging. This
causes the compiler to generate extra files with extensions, such as
.ANM and .DOO, during compilation. These files, plus the source and
intennediate files, must be present to use animation. (For details on
~nimation, see Chapter 6, "Debugging a Program with the
ANIMATOR.")

3-2 Introduction to LEVEL II COBOL

[Other directives]

f'" t, ~ " i. # ,.,,::;)
c, !i;".t, ~,"\ 'I..,

LA! e. h.c; oJ ft,

There are a number of other directives that you can specify, in the form

[No]keyword[argument J

where

No Turns off the effect of the directives. No can adjoin
Keyword or can be separated from it by one or more
spaces. No is permitted where specified in "Other
Compiler Directives," later in this chapter.

Keyword Is the name of the compiler directive.

Argument Qualifies (where applicable) the effect of Keyword.
Argument must appear in parentheses or in double quotes,
as follows:

"argument"

(argument)

Argument can adjoin Keyword or be separated from it by one or more
spaces. An argument enclosed in double quotes can contain spaces; an
argument enclosed in parentheses cannot.

You can specify the same directive more than once. The directives are
processed from left to right, so the rightmost occurrence of a directive
is the one that will take effect. The exception to this rule is where the
rightmost occurrence of a directive is excluded by the value of a
previous directive. (For details, see "Excluded Combinations of
Compiler Directives," later in this chapter.)

If you have too many entries to place in the command form, you can
the entries in an at-file. Then, use the at-file name in the command
form prefixed by an at sign (@). (See the Executive Reference Manual
for details on the use of at-files.)

If you have too many entries to fit on the command line you can also
enter as many as fit, then type an ampersand (&). After you press Go
the compiler prompts you to enter additional directives interactively.
In this case the ampersand is considered a directive.

Compiling a COBOL Program 3-3

Compiler Directives

If you enter a period (.) the compiler stops and returns control to the
Executive. You might want to do this if you wanted to check the
compiler version number.

[NO] ALTER

Default: ALTER

Enter NO ALTER to prohibit ALTER statements within the program
being compiled. This allows the compiler to operate more efficiently.

[NO]ANIM

Default: ANIM

The default compiles the program in a manner suitable for later
animation. This directive takes effect over the parameter field [For
animation?] described above. The default (in either case) compiles a
program for animation. Entering NO ANIM for this directive,
therefore, turns off the default.

[NO] AUTOLOCK

Default: NOAUTOLOCK

AUTOLOCK makes the default locking AUTOMATIC, rather then
EXCLUSIVE for files opened 1-0 or EXTEND in a multi-user
environment. See the section, "Indexed Sequential Files," in Chapter 2
for more information.

[NO BELL]
[BELL "integer"]

Default: BELL "07"

If YOll enter BELL "integer" (where integer is the ASCII character in
decimal), that character is used to cause the bell (audio warning) to
sound.

3-4 Introduction to LEVEL II COBOL

By default, this directive is on and uses the value specified when the
workstation is configured to sound the bell. You can specify a different
value for the program by using BELL "integer" for this directive.

Turning the directive off (NO BELL or BELL "0") causes no bell
character to be set.

[NO] BRIEF

Default: NO BRIEF

Enter BRIEF to suppress the text of error messages (that is, error
numbers only are produced on the listing and console). The default is
NO BRIEF (unless no error message is found).

[NO] COMP

Default: NO CaMP

Enter CaMP to cause the compiler to produce much more compact
and efficient code for certain statements involving PIC 9(2) CaMP and
PIC 9(4) CaMP data items. This is described in Chapter 4 of the High
Performance LEVEL II COBOL Operating Guide.

The more efficient code leads to nonstandard behavior in cases of
numeric overflow. Specify this directive if you know that your
statements will not lead to numeric overflow (in which case the
semantics of your program will remain strictly in accord with ANSI
standard while giving you the advantage of the extra efficiency), or if
you mean to take advantage of the defined but nonstandard behavior on
overflow.

[NO] COPYLIST ["integer"]

Default: NO COPYLIST

Enter COPYLIST to list the contents of any files named in COpy
statements.

Whatever the state of this directive, the name of any copy file that is
open when a page heading is written is listed as part of the heading.

Compiling a COBOL Progranl 3-5

The optional integer (which must be 0 or 50-99) allows the selection of
particular segments with this directive. Zero means all root segments.
For example,

COPYLIST //53//

causes COPYLIST to be set in the IDENTIFICATION DIVISION and
in Segment 53 but not otherwise.

NO COPYLIST //53//

causes COPYLIST to be set in Segment 53 only.

[NO CRTWIDTH]
[CRTWIDTH "integer"]

Default: CRTWIDTH //128//

If you enter CR TWIDTH //integer ," you are specifying the width of the
user video display in characters (indicated by integer). This is used in
Format 1 (standard ANSI) DISPLAY statements to allow you to plan
points of data-items too long to fit on one physical video display line.

If you enter NO CRTWIDTH, the directive is turned off, causing
Format 1 DISPLAY statements to be rejected. Not using DISPLAY
statements saves memory space, because control tables are not
required.

[NO DATE]
[DATE "string"]

Default: DATE

The default causes the system date to be entered into the comment
entry in the DATE-COMPILED paragraph (if present). If the system
date is not available, you can specify the date with DATE "string" for
this directive.

This directive also causes the system date or the string you enter to be
written at the top of each page of the listing.

3-6 Introduction to LEVEL II COBOL

[NO DICDEV]
[DICDEV"drive"]

Default: NO DICDEV

During a run of the compiler, a work file (normally COBOL VOO) is
produced that is used in building the dictionary. This directive specifies
the volume and directory to which the dictionary file is to be directed.

If you enter NO DICDEV (the default) or if you do not include an
entry for this directive, the dictionary file is directed to the current
(default) directory.

[NO] ECHO

Default: ECHO

By default, this directive causes error lines and flags to be echoed to
the console. For each error, the source line producing it, the error
number, and (unless BRIEF is set) an explanatory message are
displayed on the screen.

[NO] ECHOALL

Default: NO ECHOALL

Enter ECHO ALL to send a full string to the video display as well as to
the default listing device (or to a device specified with the LIST or
PRINT directive).

[NO]ERRLIST

Default: NO ERRLIST

Use ERRLIST if you want the listing to only show the lines of COBOL
that have systax errors or flags. In this case, the listing also shows the
associated error messages for each line.

[NO] ERRQ

Default: NO ERRQ

If you enter ERRQ, you are asked whether to stop compilation at the
error or to continue when an error occurs.

Compiling a COBOL Program 3-7

[NO] FIL ESE/ARE

Default: NO FILESHARE

Entering FILESHARE, makes default locking AUTOMATIC, rather
than EXCLUSIVE, for files opened 1-0 in a multi-user environment.
It also automatically locks records on a WRITE or REWRITE
statement when the program is locking multiple records.

This directive works as though you specified the WRITELOCK and
AUTOLOCK directives.

[NO FLAG]
[FLAG (LOW, L-I, H-I, HIGH, LIII, IBM)]

Default: NO FLAG

LOW, L-I, H-I, HIGH, LIII, and IBM are levels of General Services
Administration (GSA) compiler verification flags. Verification flags
are extra lines in the listing that indicate the level of a COBOL source
statement and are written to the listing for all features higher than the
specified level.

LOW produces flags for all features higher than the LOW level of GSA
compiler certification.

L-I produces flags for all features higher than the Low-Intermediate
level of GSA compiler certification.

H - I produces flags for all features higher than the High-Intermediate
level of GSA compiler certification.

HIGH produces flags for all features higher than the High level of GSA
compiler certification.

Lll1 produces flags for only the LEVEL II COBOL extensions to
standard COBOL as it is specified in the ANSI COBOL standard
X3.231974.

IBM produces flags for only IBM-compatible non-standard COBOL.

3-8 Introduction to LEVEL II COBOL

[NO FORM]
[FORM "integer"]

Default: FORM "60"

Enter FORM "integer" (where integer is at least 3) to specify the
number of lines per page of the listing.

A form feed character is always produced at the head of the listing file
unless NO FORM is entered. Enter NO FORM to specify no form
feed characters or page headings anywhere in the listing.

If you direct the listing to the console (using the LIST directive), form
feed character interpretation depends on your video display.

[NO] IBM

Default: NO IBM

The default allows the use of IBM extensions. When the IBM directive
is enabled, ID, GOBACK, PASSWORD, ENTRY, SKIP-l, SKIP-2,
SKIP-3, and EJECT are all reserved words.

[NOINT]
[INT ''filespec'']

Default: INT

If you enter NO INT, no intermediate code file is produced (that is, the
compiler is used only as a syntax checker).

Enter INT "filespec" to specify the file to be used to hold the
intermediate code produced by the compiler. If the specified file
exists, it is overwritten. The compiler adds ".int" to the source file
name, replacing any existing file name extension.

This directive overrides any intermediate code file name that you may
have entered in the Intermediate file field.

Compiling a COBOL Program 3-9

[NOLISTj
[NOPRINTj
[LIST ''filespec'']
[PRINT ''filespec'']

Default: List file to source file name.LST.

If you enter NO LIST, no compilation listing is produced.

Enter LIST "filespec" to specify the destination of the listing file. If an
existing file is specified, it is overwritten.

Enter PRINT "devicespec" to print the listing directly to a valid device.
"Devicespec" can be any valid device specification, for example [VID],
[LPTj, or [GPSPrinterNamej.

This directive overrides any compilation listing file name that you may
have entered in the Listing file field.

[LISTWIDTH "nnn"j
[LW"nnn"]

Default: LISTWIDTH "SO"

Enter either LISTWIDTH nnn or L W nnn (where nnn is the number of
character positions) to set the width across the listing page.

OVERRIDE "implementor-name" = "new name"

Default: Implementor-name is unchanged

Enter OVERRIDE "implementor-name" = "new name" to change the
implementor-names permitted in the SPECIAL-NAMES paragraph to
the new-names specified. "CONSOLE" = "CRT" is an example.

[NO] QUAL

Default: QUAL

If you enter NO QUAL, qualified data or procedure names are
prohibited in the program being compiled. This allows the compiler to
operate more effectively.

3-10 Introduction to LEVEL II COBOL

[NO] QUERY

Default: QUERY

If the compiler is unable to find the COpy file, the default causes the
operator to be prompted to supply the file.

If you enter NO QUERY, an error is produced if a COpy file is
missing.

[NO] REF

Default: NO REF

Enter REF to include four digit location addresses on the right side of
the listing file. Note that a listing with location addresses may be
required to identify the locations reported in COBOL Run-Time
System error messages.

[NO] RESEQ

Default: NO RESEQ

Enter RESEQ to cause the compiler to produce COBOL line sequence
numbers in increments of 10, starting at 10.

[NO] SEC

Default: SEG

If you enter NO SEG, the compiler ignores segmentation by treating all
section numbers within the code as if they were O. As a result, a huge
program is produced.

[NO] TIME

Default: TIME

The default inserts the current system time following the system date
(inserted by the DATE directive) into the sonrce program and the
listing. TIME can only be used with the DATE directive.

Compiling a COBOL Program 3-11

[NO] WRITELOCK

Default: NOWRITELOCK

If you use WRITELOCK, the WRITE and REWRITE statements
acquire a record lock when the program is locking multiple records in a
shared data file in a multi-user environment.

[NO] XREF

Default: NO XREF

Enter XREF to produce a cross referenced listing. The listing consists
of an alphabetized list of all the data items and an associated sequence
number that shows the line where the data item (marked with a #) is
defined. Further sequence numbers show each time the data item is
used. The listing also shows the kind of data item and the length in
bytes of group items. The listing continues with a similar description of
paragraph names.

NOTE: The XREF directive requires some work space on the disk. While
the source code is compiling, work files are created that are later deleted.
The amount of disk space required depends on the size of your source
program and is related to the size of the data dictionary and the number of
data items referenced. As a result, the XREF directive may need up to
twice the space required by the source file. One work file (filename.5X1) is
not deleted by the compiler. You can delete this file immediately following
compilation.

Notes on Combining Directives

The use of certain directives implies that certain other directives are
ignored, even when they are specified. Table 3-1 shows the combinations
that are not permitted.

3-12 Introduction to LEVEL II COBOL

Table 3-1. Excluded Combinations of Directives

Directive Excluded Directives

ERRLIST COPYLIST

~EO~~EF

NOLIST COPYLIST
ERRLIST
[NO] FORM
LIST (or LIST "Filespec")
PRINT
[NO] REF
RESEQ
ECHOALL

ANIM [NO]CRTWIDTH

Compiling a COBOL Program 3-13

Default Compiler Directives

If no directives are specified, the compiler runs as if the following
directives had been specified:

file name
ALTER
ANIM
AUTOLOCK
BELL "07"
NO BRIEF
NOCOMP
NOCOPYLIST
CRTWIDTH "128"
DATE
NODICDEV
ECHO
NO ECHOALL
NOERRQ
NOERRLIST
NO FILESHARE
NO FLAG
FORM"60"
NO IBM
INTERMEDIATE FILE

(filename.int)
LISTING FILE

(filename .1st)
LISTWIDTH "80"
QUAL
QUERY
NO REF
NORESEQ
SEG
TIME
NO WRITELOCK
NOXREF

3-14 Introduction to LEVEL II COBOL

Changing the Compiler Defaults

You may require that the default settings of the compiler directives be
different from those described above. To rebuild the compiler with the
defaults of your choice, use the following procedure:

1. Path to the <COBOL> directory.

2. Enter COBOL Compile on the Executive command line.

3. In the Source file field, enter = (equal sign).

4. In the Other directives field, enter the name of the file to contain the
rebuilt compiler and the new defaults for the directives. Any
directives you do not specify retain their original defaults.

For example, to rebuild the COBOL compiler with default animation, you
would complete the command form as follows:

COBOL Compile
Source file \ -. __________________ _

[Intermediate file]
[Listing file]
[For animation?]
[Other directives?] _COBOLanim, _____________ _

Compiler Examples

The following form compiles the file MYPROG .ABC and produces a list
file MYPROG.LST, which is a resequenced version of the source file.
No intermediate code file is produced.

COBOL Compi Ie
Source file _MYPROG.ABC _____________ _
[Intermediate file]
[Listing file]
[For animation?)
[Other directives?) _NO FORM_RESEQ_NOINIT ________ _

The following fonn compiles MYPROG.CBL, produces a list file
MYPROG .LST with flags indicating all features higher than the LOW
level of certification, echoes error nlessages to the video display, and

Compiling a COBOL Program 3-15

produces an intermediate code file named MYPROG.INT. Note the
precedence of the later directives over previous different settings of the
same directives.

COBOL Compile
Source file _MYPROG.CB I _____________ _

[Intermediate file]
[Listing file]
[For animation?]
[Other directives?] _NO ECHO_fLAG(LOW) ECHO ______ _

The following form compiles MYPROG .CBL but produces no
intermediate file and no list file. The compiler is used to check the
program's syntax and to report errors to the console only. Note that,
because NOLIST is specified, NOFORM and ERRLIST are ignored.

COBOL Compile
Source file _MYPROG.CB 1 _____________ _

[Intermediate file]
[Listing file]
[For animation?]
[Other directives?] _NOFORM_ERRLlST_NOINT ________ _

The following form compiles MYPROG and inserts the system date and
time into the DATE-COMPILED paragraph (if present).

COBOL Compi Ie
Source file _MYPROG _______________ _

[Intermediate file]
[Listing file]
[For animation?]
[Other directives?] _DATE_TIME ______________ _

In the following example, entries for the [Other directives?] field are
placed in an at-file named DirList. "DirList" contains the following
entries:

BRIEF NOCRTWIDTH NOECHO NOFORM

This example compiles PI.CBL, does not compile DISPLAY statements,
does not produce error messages or page headings, suppresses echo of
errors to the console, and directs the compiler listing to the console.

3-16 Introduction to LEVEL II COBOL

COBOL Compile
Source file _PI __________________ _

[Intermediate file]
[Listing file] _VID _________________ _

[For animation?]
[Other directives?] _@DIRLlST ______________ _

Summary Information Shown on the Screen Display

After the command form has been completed and you press Go, the
compiler replies with:

*MICRO FOCUS COBOL Copyright(c) 1985, 1987 Micro Focus Ltd. Ref xxx-nnn
*Convergent Technologies version vvv
*LEVEL II COBOL V2.5.4 Copyright(c) 1985, 1987 Micro Focus Ltd.

where

xxx-nnn Is the compiler reference number

vvv Is the compiler version number

After all the directives have been acknowledged, the compiler opens its
files and starts to compile. At this point, it displays the message:

·compiling filename

If any file fails to open correctly, the compiler displays:

Open fail: filename

The compilation is aborted, returning control to the operating system.

Compiling a COBOL Program 3-17

When compilation is complete, the compiler displays the message:

*Errors-nnnnn Data-nnnnn Code-nnnnn Dict-mmmmm:nnnnnlppppp FIPS flagging off

where

Errors

Data

Code

Diet

FIPS flagging off

Shows the number of errors found.

Shows the size of RAM required (that is,
data area of the program produced).

Shows the number of bytes of code in the
disk file (that is, code area of the program
produced).

Where mmmmm shows the number of bytes
used in the data dictionary.

Where nnnnn shows the number of bytes
remaining in the data dictionary.

Where ppppp shows the total number of
compiler validation flags found or OFF if
the directive NO FLAG was entered or
assumed.

Shows either the number of compiler
validation flags found or OFF (if the
directive NOFLAG was entered or
assumed).

The data division and code sizes displayed by the compiler do not include
the overhead that is needed for segmented programs. The overhead is
variable, but a rough guide is to allow another 60 bytes for the root
segment and 30 bytes for each overlay.

NOTE: You should not use the intermediate code produced from an
unsuccessful compilation. Change the source, and then compile the
program again.

3-18 Introduction to LEVEL II COBOL

Listing Formats

The general layout of the list file is as follows:

*LEVEL II COBOL V2.5 filename Page nnnn

nn-mth-88 nn:nn*

*Options:

ssssss statement 1 hhhh

ssssss statement n hhhh

*LEVEL II COBOL V2.5 revision n URN xxxx/xxxxx/xxxxx

*Compiler Copyright(c) 1981, 1985 Micro Focus Ltd. REF XXX-nnnnnnnnn

*Errors-nnnnn Data-nnnnn Code-nnnnn Dict-mmm:nnn/ppp FIPS flagging off

where

ssssss

hhhh

XXX -nnnnnnnnn

is the sequence number of the statement.

is a reference number (in hexadecimal) showing
the address of each data name or procedure
statement. This number appears in the listing
only if you specified REF in the command line
before compiling.

is the compiler reference number.

The first two lines of the title information are repeated for each page.
The final line is the same as on the display.

Addresses of data names are relative to the start of the data area, while
addresses of procedure statements are relative to the start of the code
area. (There is an overhead at the start of the data area, and a few bytes
of initialization code at the start of the procedure area for each SELECT
statement.)

Compiling a COBOL Program 3-19

A syntax error is marked in the listing by an error line with the following
format:

ssssss

eee* ...
** compile error statement

where:

ssssss

eee

i Ilega I statement

(nnnn)**

is the sequence number of the line
containing the error.

shows the error number.

The asterisks (*) following the error number indicate the character
position of the error in the preceding incorrect source line. The asterisks
at the end of the line simply highlight the error line.

The number in parentheses at the end of the line shows the page of the
listing on which the previous error occurred. This enables the
programmer to trace back from one error to the previous error.

If errors occur, the information at the end of the list file contains a line:

*Last error on page: nnnn

A flag is marked in the listing by a flagging line with the following format:

ssssss flagged feature

**Ievel--- ------(nnnn)

3-20 Introduction to LEVEL II COBOL

where

ssssss

level

is the sequence number of the flagged line.

represents the level at which the feature is
flagged using the same acronyms as can be
entered in the command form (when setting
the lowest required flagging level):

LOW

L-1

H-1

HIGH

LIII

IBM

Low level

Low-intermediate level

High-intermediate level

High level

LEVEL II COBOL extensions

IBM-compatible extensions

The flagged feature is directly above the end of the dashes. The dashes at
the end of the line highlight the flagging line.

The number in parentheses at the end of the line shows the page of the
listing on which the previous flag occurred. This enables the programmer
to trace back from one flag to the previous flag.

If flags occur, the information at the end of the list file contains a line:

*Iast flag on page: nnnn

NOTE: A program in which flags are indicated can still be run. Errors
should always be corrected, however, and the program compiled again
before the object program is run.

Compiling a COBOL Program 3-21

Effect of Incorrect Data Items

Errors in data declarations are shown by an error message at compile
time. Subsequent data declarations may then be ignored by the compiler,
and can result in spurious error messages if these data items are referred
to in the program.

3-22 Introduction to LEVEL II COBOL

4
Using the Native Code Generator

The Native Code Generator is used to produce a program which the Run­
Time System can execute at optimum speed. The Native Code Generator
produces machine instructions from the intermediate code produced by
the compiler, the COBOL Compile command. When you first compile
your program, you will want to use the Run-Time System (the COBOL
Run command) to execute the intermediate code directly. The Native
Code Generator is usually used after you have completed debugging your
program.

The Native Code Generator is described in detail in Chapter 10 of the
High Performance LEVEL II COBOL Operating Guide. The command
form, directives, and customization of the defaults are described here.

Using the Native Code Generator Command Form

Command Form

To generate native code from an intermediate file, on the Executive
command line type COBOL Generate and press Return to display the
command form shown below.

COBOL Generate
File Name
[Oirectives?1 _____________________ _

U.sing the Native Code Generator 4-1

Parameter Fields

File Name

Enter the name of the intermediate code file for which the native code
is to be generated. It is assumed that the file has the .INT extension.

[Directives]

There are a number of directives that you can specify, in the form

[No]keyword[argument]

where

No

Keyword

Argument

Turns off the effect of the directives. No can adjoin
Keyword or can be separated from it by one or more
spaces. No is permitted where specified in "Other
Compiler Directives," later in this chapter.

Is the name of the compiler directive.

Qualifies (where applicable) the effect of Keyword.
Argument must appear in parentheses or in double quotes,
as follows:

"argument"

(argument)

Argument can adjoin Keyword or be separated from it by one or more
spaces. An argument enclosed in double quotes can contain spaces; an
argument enclosed in parentheses cannot.

You can specify the same directive more than once. The directives are
processed from left to right, so the rightmost occurrence of a directive
is the one that will take effect.

If you have too many entries to place in the command form, you can
the entries in an at-file. Then, use the at-file name in the command
form prefixed by an at sign (@). (See the Executive Reference Manual
for details on the use of at-files.

4-2 Introduction to LEVEL II COBOL

If you have too many entries to fit on the commandline you can also
enter as many as fit, then type an ampersand (&). After you press Go
the compiler prompts you to enter additional directives interactively.
In this case the ampersand is considered a directive.

Directives

[NO]ASM

Default: NO ASM

Use this directive when you want an assembly listing. The listing file
includes all details in mnemonic form. If NOASM is used with LIST,
it includes only the Native Code Generator identity, command line
details, and summary statistics.

[NO BELL]
[BELL "integer"]

Default: BELL "07"

If you enter BELL "integer" (where integer is the ASCII character in
decimal), that character is used to cause the bell (audio warning) to
sound.

By default, this directive is on and uses the value specified when the
workstation is configured to sound the bell. You can specify a different
value for the program by using BELL "integer" for this directive.

Turning the directive off (NOBELL or BELL "0") causes no bell
character to be set.

[NO] CHECK

Default: CHECK

If you want to supress checking of the Run-Time limit violations, use
NO CHECK.

Using the Native Code Generator 4-3

[NO FORM]
[FORM "integer"]

Default: FORM "60"

Enter FORM "integer" (where integer is at least 3) to specify the
number of lines per page of the listing.

A form feed character is always produced at the head of the listing file
unless NO FORM is entered. Enter NO FORM to specify no form
feed characters or page headings anywhere in the listing.

If you direct the listing to the console (using the LIST directive), form
feed character interpretation depends on your video display.

[NO J GNT ([device] external-filename])
"[device J external-filename] "

Default: .GNT extension is added.

Use this field to specify the name of the file the native code should be
written to. If you give an existing filename it will be overwritten.

If you specify NO GNT then only an assembly code listing is
generated.

[NO LISTJ
[NOPRINTJ
[LIST "filespec"J
[PRINT "filespec"J

Default: List file to source file name.LST.

If you enter NO LIST, no compilation listing is produced.

Enter LIST "filespec" to specify the destination of the listing file. If an
existing file is specified, it is overwritten.

Enter PRINT "devicespec" to print the listing directly to a valid device.
"Devicespec" can be any valid device specification, for example [VID],
[LPTJ, or [GPSPrinterNameJ.

This directive overrides any compilation listing file name that you may
have entered in the Listing file field.

4-4 Introduction to LEVEL II COBOL

Customizing the Defaults

(
You may require different default settings for the compiler directives than
those described here. To rebuild the Native Code Generator with the

)

'" defaults of your choice, use the following procedure:

1. Path to the <COBOL> directory.

2. Type COBOL Generate on the Executive command line, and press
t Return.

\, 3. In the File Name field, enter = (equal sign).
\
l
\ 4.

J

,i

In the Directives field, enter the Generate, and the new defaults for
the directives. Any directives you do not specify retain their original
defaults.

COBOL Generate
f File Name _= _____________________ _
\,-"' [Directives?l_Generate_ASM_No_Check ____________ _

Using the Native Code Generator 4-5

5
Running a COBOL Program

The COBOL Run-Time System can execute the intermediate code
produced by the COBOL Compile command or the native code produced
by the COBOL Generate command.

Use this chapter to learn about the Run-Time System, rather than
Chapter 11 in the High Performance LEVEL II COBOL Operating Guide.

Using the COBOL Run Command Form

To run an intermediate or native code program from the Executive, type
COBOL Run on the command line and press Return to display the
command form.

Command Form

COBOL Run
[File name] _____________________ _
[Parameters] _____________________ _

[Switches]

Parameter Fields

[File Name]

Enter the name of the intermediate or native code file to be run, with
or without a file name extension. If you do not enter a file name
extension, the Run-Time System searches for a file to load and execute
as follows:

Running a COBOL Program 5-1

1. The Run-Time System looks for a file with the name that you
specify.

2. If the Run-Time System cannot find this file, it adds the
extension .gnt to the file name and searches for the native code
file.

3. If the Run-Time System cannot find the native code file, it
adds the extension .int to the file name and searches for the
intermediate code file.

4. If the Run-Time System cannot find the intermediate code file,
it reports an error.

[Parameters]

Enter any parameters required by the program here. Parameters can be
read in on the console file device [KBD] as well as from the command
form. There can be as many parameters as the programmer requires,
and they can be text or numbers in any format, provided they do not
exceed 80 characters.

There are two methods of accessing the program parameters: READ
or ACCEPT.

You may declare [KBD] as a sequential or line sequential file. (Line
sequential is preferable, since fixed length records are not then
expected.) This file may then be accessed by a READ; READ returns
the command line program parameters until the command line is
exhausted. Subsequent READs expect console input. If there are no
command line parameters, the first READ returns spaces.

The first ACCEPT FROM CONSOLE statement in a program suite
returns the program parameters from the command line. The
CRTWIDTH directive (described in Chapter 3) affects the behavior of
the ACCEPT statement; ACCEPT is compiled as a sequence of
READs, each of CRTWIDTH characters, sufficient to fill the data
item specified.

Subsequent ACCEPT statements expect console input.

5 - 2 Introduction to Level II COBOL

[Switches]

COBOL enables you to control events in a program at run time
depending on whether or not programmable switches are set by the
operator. The operator sets these switches at run time by use of the
Switches parameter. Switches that have been set at run time remain set
when COBOL-called modules are processed.

The general format of the Switches parameter is

{±}S [, {±} S] ...

where

[] Shows an optional item.

{} Shows a choice.

+ or - Set the switch on or off, respectively. The default is that all
switches are off initially.

Shows that the preceding options enclosed in the outermost
brackets can be repeated.

S Is a digit in the range 0 to 7 corresponding to the programmable
switches you include in your program. You can specify them in
any order, and the last setting of the switch is the one that is
accepted. Initially, all these switches are off.

F Flags illegal numeric comparisons in intermediate code with
run-time error 163.

Running a COBOL Program 5-3

Run-Time Switches

The Run-Time switches that you can specify are

• the ANSI COBOL Debug switch

• the null switch

• the tab switch

The ANSI COBOL Debug Switch

You may include the ANSI COBOL debug switch as a parameter to
invoke the standard ANSI COBOL Debug feature.

The ANSI COBOL Debug switch has the form:

±D

The switch is set to on with +D; -D sets it off. The default is off.

The Null Switch

You may need to use the null switch if the line sequential data file you
want to work on was created with another version of COBOL. The
format of the data files may be incompatible with this version of COBOL,
so the null switch parameter is provided to allow you to make the files
compatible.

The null switch has the form:

±N

The switch is set to on with +N; -N sets it to off. The default is on. This
switch affects only the physical storage of data in a line sequential file.
Records written with one setting and read back with the same setting are
returned in exactly the same way.

NOTE: If you attempt to input a file with a +N setting where it was output
with a -N setting, or vice versa, unpredictable results will occur.

5-4 Introduction to Level II COBOL

When the null switch is set to - N, data records in a line sequential file
must contain only ASCII text characters (those with a value greater than
IBh, with the exception of the TAB character). However, if the null
switch is set to + N, any character is allowed in the data record of a line
sequential file.

The physical storage of data records is handled as follows:

With the null switch off:

• On output to disk, trailing spaces are removed, and a record
terminator (ODOAh) is appended to terminate the record. Printer
control characters may also be written to disk.

• The file is read as data records with each record terminated by a
record terminator. If the data in the record contains either Dh or
OAh, results can be unpredictable. Tab characters (09h) are
expanded to spaces; otherwise, the data record is returned intact.

With the null switch on:

• Before each record is written, it is examined, and all characters with
values less than IBh are written with a preceding null character (OOh)
to form 2-byte pairs.

On output to disk, trailing spaces are removed, and a record
terminator is appended to terminate the record.

• The file is read as records (some of which may contain 2-byte pairs
where the first byte is nUll) terminated by a record terminator. The
leading null of each 2-byte pair is removed to give the final data
record. Tab characters (09h) that do not form part of a 2-byte pair,
are expanded.

To enable or disable null handling for all line sequential files in a run unit,
a null switch is required. You can, however, change null handling for
individual files with subprogram calls.

The Tab Switch

You may also include the tab switch as a parameter to enable or disable
insertion of tab characters in a line sequential file. A tab switch is
provided to allow compatibility with other versions of COBOL.

Running a COBOL Program 5-5

The tab switch has the form:

+T

The switch is set to on with + T; - T sets it to off. The default is off.

When -Tis specified, all spaces in a line sequential file are written to
disk as space characters.

When + T is specified, multiple spaces before a tab stop position are
written as a tab character on output to disk.

On input, all tab characters are expanded to spaces to the next tab
position, regardless of the setting of the run-time switches. Tab positions
are every 8 character positions (for example, 9, 17, 25, and so on) and
cannot be changed.

To enable or disable tab insertion in line sequential files, a tab switch is
required. You can, however, change tab insertion for individual files with
subprogram calls.

COBOL Run Examples

The following example loads the program MYPROG from the
intermediate code file produced by the compiler and passes the
application program parameters 1 and 2 to MYPROG. The parameters
then are accessible to the ACCEPT statement.

COBOL Run
[File name]
[Parameters]
[Switches]

_MYPROG, ______________________________ __
_1_2 __________________________________ ~---

The following example loads the program SWITCHEDPROG from the
intermediate code file produced by the compiler with programmable
switches 3 and 6 on and 2 off. Note that the last setting of switch 6 is
accepted. Switches 1,4,5, and 7 are off by default.

COBOL Run
[File name] _SWITCHEDPROG, __________________ ~ __ _

[Parameters]
[Switches] _ - 2_ +3_ -6_ +6 ___________________________ _

5-6 Introduction to Level II COBOL

The following example loads the program SWITCHEDPROG from the
intermediate code file on volume [MYVOL] and directory <MYDIR>
with the ANSI COBOL DEBUG module invoked.

COBOL Run
[File name] _[MYVOL] < MYOIR>SWITCHEOPROG ______ _
[Parameters]
[Switches] _ +0 __________________ _

The following example loads the program SWITCHEDPROG from the
current directory and specifies that, in line sequential files, all characters
less than IBh, except for Tab and the file control characters, are treated
as data. Null is not inserted before data characters less than IBh on
output.

COBOL Run
[File name] _SWITCHEOPROG _____________ _

[Parameters]
[Switches] _ -N, ___________________ _

The following example loads the file SWITCHEDPROG .INT from the
current directory, and in line sequential files, outputs multiple spaces as
TAB characters.

COBOL Run
[File name] _SWITCH EOPROG _____________ _

[Parameters]
[Switches]

Running a COBOL Program 5-7

Running COBOL on an SAP

If you have an SRP as a master, you generally run COBOL at your local
workstation through the Executive. Sometimes, however, you may want a
program to execute at the SRP itself.

Your Executive manual describes the concepts behind executing a
command at the SRP. Check it and your release notice for background
information.

To run a command at the SRP you must use the SRP Command Line
Interpreter (CLI).

With LEVEL II COBOL using the CLI commands is slightly differently
than most other commands, because all the LEVEL II COBOL
commands (COBOL Compile, COBOL Run, COBOL Generate, and
COBOL Animate) are invoked using the same run file. This makes it
necessary to enter the command name in the CLI Run statement, as well
as the run file name.

To run an intermediate or native code program from the CLI, use the
RUN statement

$RUN ([Sys]<Sys>COBOL.RUN, 'COBOL Run'),Fllename,Parameters,Swltches

where, Filename, Parameters, and Switches correspond to the entries you
would use when invoking COBOL Run from the Executive command line.

Subparameter must be delimited by placing them in single quotes. Note
that if Filename, Parameters, or Switches has no entry you must still leave
a placeholder for that parameter. For example

$RUN ([Sys]<Sys>COBOL.RUN, 'COBOL Run'),MyProg, , '+D"-N'

5-8 Introduction to Level II COBOL

Setting up a Customized Command for your Program

You can create a customized Executive command to invoke your LEVEL
II COBOL program in a similar manner to the way you would create any
other Executive command. When you do so, users can just type
YourProgramName on the Executive command line to invoke your
program, rather than having to type COBOL Run and enter the run file
name.

Your Executive manual goes into detail to describe how to create a new
command using the Command File Editor or the New Command
command. If you are unfamiliar with this process you should probably
read that description before reading further. For simplicity, this manual
describes only the use of the New Command command.

To create a customized command to execute the file YourProgram.Int on
the Executive command line type New Command and press Return.
Complete the command form as shown, then press Go to create the new
command, YourProgram.

New Command
Command name
Run file
[Field names]
[Description]
[Overwrite ok?]
[Case (default '00']
[Command file]

_YourProgram ____________ _
_ [Sys]<Sys> COBOL. Run" ________ _
'Your Field Name 1' 'Your Field Name 2' __ _

Notice that in the Command name field you enter the intermediate or
native code file name, but do not include the suffix .Int or .Gnt.

Each of the field. names you enter in the Field names field becomes a
separate field of the Executive command you create. Your program can
read the data the user enters in these fields by using LINE
SEQUENTIAL input from the keyboard [KBD]. See "Reading the Fields
of a Custom Command Form," below.

To invoke the new command, the user types YourProgram on the
command line~ presses Return to display the command form, completes
the command form, then presses Go to execute the command.

Running a COBOL Program 5-9

For your new command to work properly, all the intermediate code or
native code files that make up the program must be in the system
directory, [Sys]<Sys>. If the program uses segmentation, do not forget
to move the files containing independent segments and inter-segment
reference information. These intermediate code files have extensions .Ixx
and .Isr, where xx represents a segment number. The native code files
have extensions .Gxx and .Gsr. If the program calls other modules, move
these into the system directory as well.

Reading the Fields of a Customized Command Form

A COBOL program reads the data entered in the fields of a custom
command form by reading sequential records of a file that is opened by
using the filename [KBD] , with LINE SEQUENTIAL organization, in
INPUT mode.

The first record returned corresponds to the data entered in the first field.
The second record corresponds to the second field, and so on. If the
field contains no data, the corresponding record is empty. It contains
only spaces.

When all the fields have been read, subsequent read operations will take
input from the keyboard.

If the form for the command YourProgram as shown below is used

YourProgram
Your Field Name 1
Your Field Name 2

~ffstEntry __________________________ _

_ Second Entry ______________________ _

the following program example shows how to read from the form.

5-10 Introduction to Level II COBOL

Program fragment from YourProgram:

FILE-CONTROL.
SELECT FieldNames

ASSIGN "[KBD]"
ORGANIZATION LINE SEQUENTIAL.

DATA DIVISION.

FILE SECTION.
FD FieidNames.
01 FieidNames-Buffer PIC X(80).

WORKING-STORAGE SECTION.
01 Display-Names.

03 Name-1
03 Name-2

PROCEDURE DIVISION.
p1.

PIC X(20).
PIC X(20).

.. Read the two fields of the Update command FieldNames.
OPEN INPUT FieldNames.
READ FieldNames.
MOVE FieldNames-Buffer TO Name-1.
READ FieldNames.
MOVE FieldNames-Buffer TO Name-2.
DISPLAY Display-Names.
STOP RUN.

"end*of*program*

Running a COBOL Program 5-11

Using COBOL Communications

LEVEL II COBOL supports ANSI Standard COBOL communications
facilities. This section describes the CTOS commands you use to create,
update, and use an initialization file for the communications facilities.
Operation of the communications facilities is described in Chapter 7 of
the High Performance LEVEL II COBOL Operating Guide.

Note that the High Performance LEVEL II COBOL Operating Guide
mentions that for MS-DOS and CPM-86 the Physical Device field does
not apply. It is however used for CTOS and refers to the
communications channel of the workstation. [COMM]A should be
specified for channel A and Console Number 1. [COMM]B should be
specified for channel B and Console Number 2.

The High Performance LEVEL II COBOL Operating Guide also mentions
about device drivers that are required for MS-DOS. These are not
required for CTOS.

Creating an Initialization File

To create an initialization file, on the Executive command line enter
COBOL RUD, and press Return. Complete the command form as shown
below, then press Go.

COBOL Run
[File name] _[Sys]<COBOL>COMMS, __________ _

[Parameters
[Switches]

Operation instructions are in the High Performance LEVEL II COBOL
Operating Guide

Note that the High Performance LEVEL II COBOL Operating Guide
mentions that for MS-DOS and CPM-86 the Physical Device field does
not apply. It is however used for CTOS and refers to the
communications channel of the workstation. [COMM]A should be
specified for channel A and Console Number 1. [COMM]B should be
specified for channel B and Console Number 2.

5-12 Introduction to Level II COBOL

Updating an Initialization File

You can update an initialization file in a similar manner to the way you
create one. Complete the COBOL Run form in the same way as you do
to create an initialization file, then press Go.

COBOL Run
[File name] _[Sys]<COBOL>COMMS, __________ _

[Parameters
[Switches]

At the first prompt, press U, then change parameters as required.

Using an Initialization File

When you have created an intialization file, this file can be used to define
symbolic consoles and queues to the Message Control System before the
program is run. The command to use an already existing file is shown
below.

COBOL Message Control System
[File name] _'nitializationFileName _____________ _
[Parameters
[Switches]

The default extension .MCS is often used for initialization file names, but
is not required.

Running a COBOL Program 5-13

A I f J
~~k~' "<VNfW VV\....1.. 'fvv.- ~), h' P"" :>""""6

Debugging a Program with the ANIMA TOR

The LEVEL II COBOL ANIMATOR is a COBOL debugging tool that
lets you watch your progranl execute. With the ANIMATOR, you can
stop the execution of the program dynamically and modify the values of
data items during execution. The ANIMATOR runs your compiled
intermediate code.

Preparing to Run the ANIMATOR

Before you use the LEVEL II COBOL ANIMATOR, you must have the
COBOL compiler and the ANIMATOR installed as described in the
LEVEL II COBOL Release Notice.

The ANIMATOR files and the COBOL compiler files are all assumed to
be in the directory [Sys]<COBOL> The directory of the source file you
want to animate is assumed to be the same one you are pathed to, unless
otherwise specified.

You should compile the program on the same disk as the one where you
install the ANIMATOR, and you must use the ANIM directive. This
causes the compiler to create additional files with the extensions .ANM,
.ACP, .DOO, and .Dnn (where n is the segment number of a segmented
program). The ANIMATOR uses these files during animation.

Additional compiler directives you may want to set if you intend to use
the ANIMATOR are RESEQ, REF, and COPYLIST. These supply you
with more information to use during the animation session. For details
about compiler directives, see Chapter 3, "Compiling a COBOL
Program."

Any library files referenced by COPY statements in your program should
also be present when you run the ANIMATOR.

Debugging a Program with the Animator 6-1

Caution: The ANIMATOR does not support screen displays that contain
highlighting. Do not use the Amirnator to run a program that highlights
the user screen.

Using the Animate Command Form

Command Form

To invoke the ANIMATOR from the Executive, type COBOL Animate
on the Executive command line and press Return to display the command
form.

COBOL Animate
[File name]
[Parametersl ______________________ _

[Switches]

Complete the parameter fields is described below. After you complete
the form, press Go. The program is displayed on the top portion of the
screen, and the cursor is shown on the first executable statement in the
Procedure Division. ANIMATOR commands are displayed on a menu
on the bottom of the screen below the dotted line.

Parameter Fields

File Name

Enter the name of the intermediate file (the file to which the compiler
wrote the intermediate code).

[Parameters]

The parameters the program needs to run must be entered interactively
after the ANIMATOR is invoked. Leave this field blank.

[Switches]

Enter switch parameters as required. For details, see Chapter 5,
"Running a COBOL Program."

6-2 Introduction to LEVEL II COBOL

ANIMATOR Commands

When you use the ANIMATOR, the program you are executing is
displayed on the top portion of the screen. ANIMATOR commands are
displayed on a menu on the bottom of the screen below the dotted line.

You select a particular ANIMATOR command by pressing a single key,
corresponding to the upper case letter in the command name as it appears
on the video display menu. For example, if you press X, you select the
eXchange command . You also can press x, since upper case and lower
case letters are equivalent for this purpose.

If your keyboard has function keys, the ANIMATOR is configured so
these keys correspond to some of the most commonly used ANIMA TOR
commands. You can therefore select these commands by pressing either
the appropriate letter or the function key.

Several commands contain menus of subcommands . You can select these
subcommands in the same way (that is, by function key or letter).

The rest of this section describes the ANIMA TOR commands in the
order that they appear on the video display.

Function Key/Letter Commands

The ANIMATOR command menu allows you to enter the following
commands by pressing a function key or a letter:

F1 or H = help. Displays information about the ANIMATOR commands
currently shown on the video display.

F2 or V - view. Displays the user screen. The user screen is what you see
if you run the program without animation. Press any key to return to the
ANIMATOR screen.

F3 or A = align. Aligns the display so that the line marked by the cursor
becomes the third line of the display.

F4 or X = exchange. Allows you to move the cursor into the other part of
the screen if you have a split screen. (For details on split screen display,
see the Text command in "Letter Commands," later in this section.)

Debugging a Program with the Animator 6-3

F5 or W = where. Moves the cursor to the statement that the
ANIMA TOR will execute next.

F6 or K = look-up. Prompts you to enter a line number. Then, that line
becomes the third line of the display.

F9 or < = word-left. Moves the cursor to the previous word in the sonrce
code.

F10 or > = word-right. Moves the cursor to the next word in the source
code.

Cancel. Has three different functions, depending on when it is pressed.
When the main menu is displayed, you exit from the ANIMATOR.
When any other menu is displayed, you return to the main menu. When a
program is executing, the program immediately stops, and you return to
the main menu.

letter Commands

The rest of the ANIMATOR commands in the main menu can be entered
only by letter. The letter you enter is the uppercase letter in each
command described below. Some of the commands have subcommands,
which are described along with their associated commands.

S(Step). Executes the statement marked by the cursor and then stops.

G (Go). Executes and animates the program. This means that the cursor
moves from statement to statement as each one is executed. The Go
command has the following subcommands:

0-9 = speed. Sets the speed of animation where 0 is the slowest and 9,
the fastest. You can enter the speed before you press G, or at any time
during animation.

Z(Zoom). Executes at the fastest speed, but does not animate. Press
the Cancel key to interrupt execution and return to the main menu.

The Go subcommands also offer function keys Fl to F4 and Cancel.
If you choose to use the letter equivalents of Fl to F4, you will have to
press two keys (:/) followed by the appropriate letter key.

6-4 Introduction to LEVEL II COBOL

Z(Zoom). Executes at the fastest speed, but does not animate. Press the
Cancel key to interrupt execution and return to the main menu.

I (next-If). Executes, but does not animate, up to the next IF statement.
Execution then stops.

P(Perform). Executes PERFORM paragraphs and CALLs within an
animated program but does not animate them. This allows you to execute
PERFORMs and CALLs that you know are free of bugs at the fastest
speed. The Perform command has the following subcommands:

S(Step). If the next statement to be executed is a PERFORM or
CALL, this command executes the instructions in the PERFORMed
paragraph or CALLed subprogram hut does not animate the
instructions. Otherwise this command acts like an ordinary Step
command.

E(Exit). When execution passes into a PERFORM paragraph, this
command executes the rest of the statements in the paragraph but does
not animate them. The cursor stops on the statement after the
PERFORM statement.

The Perform subcommands also offer function keys FI to FlO and
Cancel.

R(Reset). Allows you to specify which statement you want the
ANIMATOR to execute next. The Reset command has the following
subcommands:

C(Cursor-position). Specifies the statement marked by the cursor to be
the one the ANIMATOR executes next.

N(Next). Moves the cursor to the next statement in the source code.

S(Start). Moves the cursor to the first statement of the PROCEDURE
DIVISION for execution to start again.

Q(Quit-perform). Leaves the PERFORM paragraph currently being
executed without executing any more statements. The cursor moves to
the statement after the most recent PERFORM statement.

The Reset subcommands also offer function keys FI to FlO and
Cancel.

Debugging a Program with the Animator 6-5

B(Break). Allows you to set up to four breakpoints in the sonrce program,
so that when the program executes either with or without animation,
execution stops when it reaches a breakpoint. The Break command has
the following subcommands:

S(Set). Places a breakpoint on the statement pointed to by the cursor.

U(Unset). Removes the breakpoint at the statement pointed to by the
cursor.

C(Cancel all). Removes all breakpoints.

E(Examine). Shows where you have set breakpoints. The cursor moves
to the next breakpoint each time you enter E. If you press E after you
have seen the last breakpoint, the first breakpoint is redisplayed.

1(lf). Sets a breakpoint with an associated condition. The
ANIMATOR prompts you to enter the condition, so that execution
stops at this point only if the condition is fulfilled. The condition must
comply with COBOL syntax rules, and you can set only one condi­
tional breakpoint. The If command has the following subcommands:

Fl or IH = help. Displays information on conditional breakpoints.

F2 or Ie = clear. Clears the current condition to spaces.

Cancel. Returns you to the main menu without setting a breakpoint.

The Break subcommands also offer function keys Fl to FlO and
Cancel.

E(Env). Allows you to specify the environment of a program by setting
parameters to control the way a program is animated, displayed, and
executed. The Environment command has the following subcommands:

P(Program break). Specifies that a particular program within a suite is
animated, regardless of whether the suite as a whole is executed with
animation. The Program break command has the following sub­
commands:

T(This). Specifies the current program as the one to be animated.
Execution stops when this program is reached.

6-6 Introduction to LEVEL [[COBOL

S(Select). Prompts you to enter the name of the program you want
animated. The Select command has the following subcommands:

FI or IH = help. Displays information about the Select command.

F2 or IC = Clear. Clears the name currently displayed to spac.es.

Cancel. Returns you to the main menu without naming a program.

C(Cancel). Cancels the command and allows execution of the whole
suite without animation.

The Program break subcommands also offer function keys FI to FlO
and Cancel.

T(Threshold level). Allows you to set the level of PERFORM or CALL
below which the PERFORMed paragraph or CALLed subprogram is not
animated but executed as one instruction. The screen divider shows the
current PERFORM level, and the Threshold level is set at this level until
you change it. The Threshold level command has the following sub­
commands:

S(Set). Sets the level to the current level of PERFORM or CALL.

U (Unset). Animates all levels of PERFORM or CALL.

The Threshold level subcommands also offer function keys FI to FlO
and Cancel.

U(Until). Sets a general condition, which if it ever becomes true, causes
the program to stop. This condition is not associated with a specific state­
ment as the conditional breakpoint is. The Until command has the
following subcommands:

S(Set). Allows you to enter the condition. The ANIMATOR prompts
you to enter the condition, which must follow COBOL syntax. The
Set command has the following subcommands:

FI or IH = help. Displays information about setting a conditional
breakpoint.

F2 or IC = clear. Clears the condition currently displayed to spaces.

Cancel. Returns you to the main menu without specifying a condition.

Debugging a Program with the Animator 6-7

U(Unset) .• Cancels any condition you have already set.

E(Examine). Displays the condition you have already set.

The Until subcommands also offer function keys FI to FlO and
Cancel.

Q(Query). Displays and allows you to change the contents of a data item,
which you select either with the cursor or by entering the name of the
data item. The Query command has the following subcommands:

C(Cursor name). Displays the contents of the data item marked by the
cursor . You may need to move the cursor before you enter this
command, so that the cursor is at the first letter of the data name.

E(Enter name). Displays the contents of the data item whose name you
enter. The ANIMA TOR prompts you to enter the name. The Enter
name command has the following subconlmands:

FI or IH = help. Displays information about entering the name of the
data item.

F2 or IC = clear. Clears the contents of the data item currently
displayed to spaces.

Cancel. Returns you to the main menu without displaying the contents
of the data item.

The Query subcommands also offer function keys FI to FlO and
Cancel.

R(Repeat). Displays the same data item as the ANIMATOR displayed the
time before.

M(Monitor-off). Stops the constant display of the contents of the data
item.

When you have selected a data item, the ANIMATOR displays another
menu:

F1 or IH = help. Displays information about displaying data.

F2 or IC = clear. Clears the contents of the data item to spaces.

6-8 Introduction to LEVEL II COBOL

F3 or X - text or hex. Displays the contents of the data item as text or in
hexadccimal format. The F3 or IX key allows you to switch bctween the
two.

F4 or 1M - monitor. Constantly displays the contents of the data item as
the program executes.

F5 or IL = left. Allows YOll to move left in the data item if it is larger than
80 bytes of text or 16 bytes in hexadecimal format.

F6 or IR = right. Allows you to move right in the data item if it is larger
than 80 bytes of text or 16 bytes in hexadecimal format.

F7 or IU = up-table. Allows you to move to the previous entry if the data
item is subscripted or indexed.

F8 or 10 = down table. Allows you to move to the next entry if the data
item is subscripted or indexed.

F9 or 10 = hex/ASCII. (Hexadecimal format only) moves the cursor
between the hexadecimal and ASCII displays of the contents of the data
item. You can change the contents of the data item simply by entering
the new values.

Cancel. Returns you to the nlain menu without changing the data.

Depending on the type of data item you are displaying, not all of these
options are applicable; only the appropriate options will be displayed.

F(Find). Allows you to search forward from the cursor position for a
specified string. The ANIMATOR prompts you to enter the string,
which you must enter exactly as it appears in the source code. The Find
command has the following subcommands:

F1 or IH = help. Displays information about entering a string.

F2 or IC = clear. Clears the string currently displayed to spaces.

Cancel. Returns you to the main menu without searching for a string.

I(Locate). Finds the declaration of a data item, file name, or procedure.
The Locate command has the following subcommands:

Debugging a Program with the Animator 6- 9

C(Cursor name). Finds the declaration of the item pointed to by the
cursor.

E(Enter name). Finds the declaration of the item whose name you
enter. The Enter name command has the following subcommands:

FI or IH = help. Displays information about locating the declaration.

F2 or Ie = clear. Clears the data name cllrrently displayed to spaces.

Cancel. Returns you to the main menu without finding a declaration.

The Locate subcommands also offer function keys FI to FlO and
Cancel.

T(Text). Allows you to control the format of the screen. The Text
command has the following subcommands:

S(Split). Divides the screen at the current cursor position. You can
enter commands to operate on the part of the screen containing the
cursor, and, by using the F4 or X key, you can move the cursor
between the two parts of the screen.

J(Join). Returns to an undivided display after a Split command.

R(Refresh). Repaints the screen display. When a program contains a
Format 1 DISPLAY, the screen display may be corrupted.

The Text subcommands also offer function keys FI to FlO and Cancel.

0(00). Allows you to enter a COBOL statement that will be executed
immediately. The statement has immediate effect on your program, but
the statement is not permanently included in the source code. The
ANIMATOR prompts you to enter the COBOL statement you want
executed. The Do command has the following subcommands:

F1 or IH = help. Displays information about immediately executing a
COBOL statement.

F2 or Ie = clear. Clears the COBOL statement currently displayed to
spaces.

Cancel. Returns you to the main menu without executing a COBOL
statement.

6-10 Introduction to LEVEL II COBOL

0-9 = speed. Sets the speed at which your program is animated. The
slowest speed is 0; the highest, 9. You can set the speed by entering a
number before you enter the Go command, or at any time during
animation.

Cursor Positioning Keys

In addition to the function key and letter commands already described,
you have other keys that help you move around the source code. These
keys are described below:

Left arrow Moves the cursor one character to the left.

Right arrow Moves the cursor one character to the right.

Up arrow Moves the cursor up one line.

Down arrow Moves the cursor down one line.

Code-Prev Page Displays the previous 200 lines of source code.

Code-Next Page Displays the next 200 lines of source code.

Next Page Displays the next 20 lines of source code.

Prev Page Displays the previous 20 lines of source code.

Tab Moves the cursor to the next tab position right.

Shift-Return Moves the cursor to the eighth character position of
the next line.

Debugging a Program with the Animator 6-11

7
Configuring COBOL

LEVEL II COBOL can be configured to include library procedures and
other non-COBOL procedures, as is mentioned in Chapter 2. The CRT
display can also be specially configured. Both of these types of
configuration are described in this chapter.

Linking Procedures into the COBOL Run-Time System

LEVEL II COBOL is already set up so that you can easily link
procedures into your program from the Forms, ISAM, Graphics,
Sort/Merge, or CTOS.lib libraries. You can also link any procedures or
libraries you have created yourself into the Run-Time System if they have
been compiled using the medium model of computation.

Before you can link any procedures into the Run-Time System you must
have your workstation environment set up for the link. You will need to
have Standard Software, Graphics.lib, ISAM.lib, Forms.lib, and
SortMerge.lib all present, whether or not you want to link procedures
from these libraries into the Run-Time. See the LEVEL II COBOL
Release Notice for detailed information on these and other required files.

If you want to link your own procedures into the Run-Time you must first
edit COBOLGen.Asm to include them. Use the Editor to open the file
[Sys]<MF-RTS>COBOLGen.Asm. Instructions for changing the file
are included within it. Then go on to assemble the file.

If you only want to link standard procedures into the Run-Time you can
go directly to assembling COBOLGen.Asm without editing.

Configuring COBOL 7-1

Assembling LEVEL II COBOL

In the Executive, path to the [Sys]<MF-RTS> directory.

On the Executive command line, type Assemble and press Return to
display the Assembler command form. Complete the form as shown
below. (See the Assembly Language Manual for details on the
Assembler.)

Assemble
File _COBOlGen.Asm, ________ _

(Errors only?]
[GenOnly, NoGen, or Gen?]
[Object file]
[Error file]
[Li st on pass 1?]
[:fO:]
[:f1: (Default [Sys]<Edf>]

During assembly, the assembler asks questions of this type:

Will you be calling the Graphics Manager?

Will you be calling FORMS (yin)?

Will you be calling OpenFile or CloseFile (yin)?

If you answer y (for yes) to a question, the assembler creates an entry for
each procedure in the corresponding software package. To answer no to
a question, type n RETURN or just RETURN.

The procedure names and interfaces associated with each software
package are also part of the file, COBOLGen.asm.

After you have answered all questions asked by the assembler, the video
displays the following message:

..... configuring COBOL

Then, you are instructed to relink the COBOL Run-Time System to use
the procedures for Forms, Graphics, and so on.

7-2 Introduction to LEVEL II COBOL

Linking COBOL .Run

To relink the COBOL Run-Time System to produce COBOL.run, use
the submit file LinkCOBOL.sub. In the Executive, complete the Submit
command, as shown below:

Submit
File list _LinkCOBOl.sub, ____________ _

[Parameters]
[Force Expansion?] ___________________ _
[Show Expansion?] ___________________ _

LinkCOBOL.sub displays the Linker command form and fills in the fields
below:

Link
Object modules
Run file
[Map file)
[Publics)
[Line numbers?)
[Stack size)
[Max memory array size)
[Min memory array size)
[System build?)
[Version)
[Libraries)
[OS allocation?)
[Symbol file)

COBOLHead.obj ... COBOLTail.obj_obj.damutl.obj_
COBOL.run, _____________ _
COBOL.map, _____________ _

[Sys)<Sys>SortMerge.lib ... [Sys)<Sys>Graphics.lib_

COBOL.sym, _____________ _

When the form is filled in, press GO.

Updating the [Sys]<Sys>Oirectory

To use the COBOL Run-Time System, copy your new version of
COBOL.run to [Sys]<Sys>COBOL.run.

Configuring COBOL 7-3

~_~.;~ 9f) }~1~. : .. .,. .t)l.· -.... '.tt.~'.~~1 uwt_\~J w~'l. hAV<-
w ~ ., I. ~ fi

CRT Configuration ,.1- ~~r I 4 .M; ... ' .. .'. .'. ~ .. fl\.~ f I.... to of r tJ
1 Y'l w~ ~ 0.) i'ht}\wt" S'dh h')f·~ .. ~ C~(P.\. b.

" If your application has special keyboard or CRT requirements for c~v~~:;lt h.u.J
ACCEPT and DISPLAY statements, or if you want to configure COBOL
to interpret certain keys differently than the LEVEL II COBOL defaults,
you can tailor Run-Time System CRT handling capabilities to your
workstation or your application requirements.

You make the changes to the COBOL ACCEPT and DISPLAY interface
through a CRT configuration utility program called CONFIG. The
CONFIG utility allows you to inspect and alter the CRT description in
your ACCEPT/DISPLAY Module (ADIS). The Run-Time System uses
the ADIS module as a reference for how to interpret keystrokes.

LEVEL II COBOL is released with a Run-Time System designed to work
on your workstation. There is no need to run CONFIG unless you
require the values within the CRT description to be changed for either a
different set of CRT values or different application requirements such as
different tabbing positions for ACCEPT input, or different keys to make
the cursor move from field to field.

When you use CONFIG you can:

• Review a list of the currently defined ACCEPT/DISPLAY values of
your ACCEPT/DISPLAY Module (ADIS).

• Tailor your ACCEPT/DISPLAY Module (ADIS), so that the
interactive features of LEVEL II COBOL can be used with your
CRT and your application.

• Form one or more libraries of CRT definitions that may be used for
your ACCEPT/DISPLAY Module. Note that to use the library
feature of the CONFIG utility, ISAM must be installed and the
dataset CONFIG.TRM and its index set CONFIG.Ind must be
reorganized using the ISAM reorganize command.

The subsections that follow describe

• the values that can be specified within a CRT description.

• the default values

• the procedure for running CONFIG

7-4 Introduction to LEVEL II COBOL

CRT Description

The CONFIG Utility requests information required for building an
ACCEPT/DISPLA Y Module suitable for your CRT and your
applications. You can provide values that specify general configuration
options, physical characteristics, console output, and function key
configuration.

General Configuration Options

General configuration options refer to the type of CRT addressing.
Addressing choices are the following:

• Direct to a particular screen position. If you make this choice you
can further specify:

• screen coordinate format (Absolute binary value, 1-digit, 2-
digit, or 3-digit ASCII)

• whether the first coordinate is line or column

• increment to first and second coordinate (can be zero)

• whether there are leading, intermediate and trailing control
characters, and if so, their values

• Step addressing by single cursor moves. If you make this choice you
are also requested to specify key or hexadecimal sequence of
characters that move the cursor a step left, step right, step up, and
step down.

• User subroutine addressing by call to routine. If you make this
choice you are futher requested to specify:

• decimal number (in the range 0-255) that is used to call the
routine

• up to three bytes of parameter information

Configuring COBOL 7-5

Screen Display Options

You can also specify a number of CRT characteristics that govern screen
display characteristics. They are the following:

• Number of columns and rows. Number of columns and rows is
entered as a decimal. You must also specify whether it is safe to use
the last position on the screen.

• Echo, which specifies whether you have automatic echo (when the
CRT itself echoes characters) or whether it is the microcomputer
that echoes characters. Specifying CRT echo requires that you also
specify whether all characters (including control characters) are
echoed.

• Wraparound, which can be forward only, backward only, or both.
You can also specify whether highlighting is affected by wraparound.

Forward wraparound means that the cursor moves to a new line if a
character is written in the last column of the line

Backward wraparound means that the cursor moves to the last
position of the previous line if you backspace over the first column
of a line

• Highlighting can be Not Implemented, or you can specify how it is
implemented.

A 2 digit character mask that you specify can be used to implement
highlighting

Start and stop control strings can be used to implement highlighting.
If you choose this option you must specify the hexadecimal control
character start sequence, the hexadecimal control character stop
sequence, and the number of screen character positions used in the
control string.

Console Output Options

Console output configuration parameters allow you to specify the key or
hexadecimal sequences that clear the screen and sound the bell and the
location on the screen where messages and indicators are displayed.

7-6 Introduction to LEVEL II COBOL

Message and indicator position on the screen is specified as a row number
followed by a column number . You are requested to specify the
coordinate position for

• Abort confirmation

• Insert/replace indicator

• "Off End of Field" indicator

Text of messages and indicators can also be explicitly specified.

These refer to the actual messages/indicators that appear on your screen.
You are requested to specify the messages/indicators for:

• Abort confirmation.

• Indicating or clearing replace or insert mode. The insert/replace
mode indicator shows whether you are inserting characters or typing
over characters.

• Indicating "Off End of Field." When it is enabled, the message you
specify is displayed whenever you try to enter data beyond the end of
a data field.

• Clearing "Off End of Field" message.

Initialization and Reset Options

You can specify a control character string to initialize the CRT before
ACCEPT and DISPLAY statements. This allows you to disable scrolling,
etc. while executing the interactive facilities. You may specify the
hexadecimal sequences for the following:

• Initialize CRT before Display.

• Initialize CRT before Accept.

• Initialize CRT before a single character is accepted from the
keyboard.

• Initialize CRT before First Accept/Display. You can reset any of
the functions disabled by initialization. You may also specify the
hexadecimal sequences for:

Configuring COBOL 7-7

• Reset CRT after Display

• Reset CRT after Accept

• Reset CRT after a single character is accepted from the keyboard

You may specify how you want the cursor to behave and what you want
the fields to look like during the execution of an ACCEPT statement.

If you choose not to have automatic display of data fields, you must make
sure that your programs execute appropriate DISPLAY statements before
each ACCEPT statement. An appropriate DISPLAY statement displays
an image on the screen that corresponds with the contents of the relevant
data fields of the ACCEPT. The following options are available:

• Capability to specify whether you want the contents of data fields to
be automatically displayed during an ACCEPT statement. No
automatic display means that the screen remains as it is. Note that
numeric fields with full editing enabled will always be pre-displayed
when the cursor enters the field irrespective of the settings.

Choices you have for display of data during an ACCEPT statement
are:

• no display except on entry to numeric edited fields with numeric
editing enabled

• no display except on entry to numeric edited/non-edited fields
with numeric editing enabled

• predisplay of field on entry (individually as the cursor is moved
into them).

• pre-display of all fields before first data entry

• Capability to specify whether full editing of numeric fields is
required. This means that attempts to enter characters other than
digits, signs and decimal points are rejected. As data is entered,
fields are reformatted to show the editing symbols, such as insertion
symbols.

• Capability to specify whether you want the cursor to automatically
skip to the next field when the current data field is full. This applies
only within mUltiple data fields of one ACCEPT statement.

7-8 Introduction to LEVEL II COBOL

• Capability to specify the following choices for which keys
termination an ACCEPT (in addition to 'terminate accept' key
specified in ADIS Function Key List):

• no other method

• field-tab in the last field key

• data entry into the last position/field-tab in last field

You may enter up to 16 tab stop positions.

Function List Options

There are three function key list options that you can use. The
ACCEPT IDISPLA Y Module (ADIS) list must be configured. The Micro
Focus list is required by the ANIMATOR. The User Function list
configures the functions your program uses by default.

ACIS Function List. This list is required. If these function keys are not
defined, results can be unpredictable.

The keys are defined to the CONFIG utility either by pressing the actual
key, or by entering the hexadecimal equivalent of the key sequence.

In addition to defining these function keys, you can also map a second
key onto one that is already defined, so that both keys return the same
function key value to your program.

Configuring COBOL 7-9

Following is the list of ADIS Function Keys:

Function
number

Meaning

00 TERMINATE ACCEPT
01 ABANDON PROGRAM
02 MOVE TO START OF NEXT LINE
03 MOVE LEFT ONE CHARACTER
04 MOVE RIGHT ONE CHARACTER
05 MOVE UP ONE LINE
06 MOVE DOWN ONE LINE
07 MOVE TO START OF SCREEN
08 (HOME)MOVE TO NEXT TAB POSITION
09 MOVE TO PREVIOUS TAB POSITION
10 MOVE TO END OF SCREEN
11 MOVE TO NEXT FIELD
12 MOVE TO PREVIOUS FIELD
13 CHANGE CASE OF CHARACTER
14 UNTYPE CHARACTER (RUBOUT)
15 RElYPE CHARACTER
16 INSERT CHARACTER
17 DELETE CHARACTER
18 RESTORE DELETED CHARACTER
19 CLEAR TO END OF FIELD
20 CLEAR (RESET) FIELD
21 CLEAR TO END OF SCREEN
22 CLEAR (RESET) ENTIRE SCREEN
23 SET INSERT MODE
24 SET REPLACE MODE
25 RESET (UNDO) FIELD
26 MOVE TO START OF LINE/FIELD

7-10 Introduction to LEVEL II COBOL

Micro Focus Function List. The Micro Focus function list is required by
the ANIMATOR. This list gives you the capability to set up the function
keys FI to FlO, Escape/Cancel, and the function keys that allow you to
move around the screen text.

The MicroFocus Function List is:

Function
number
01
02
03
04
05
06
07
08
09
10
65
66
67
68
69
70
71

Meaning

FUNCTION KEY 1
FUNCTION KEY 2
FUNCTION KEY 3
FUNCTION KEY 4
FUNCTION KEY 5
FUNCTION KEY 6
FUNCTION KEY 7
FUNCTION KEY 8
FUNCTION KEY 9
FUNCTION KEY 10
ESCAPE (Cancel key)
PAGE UP (PREVIOUS PAGE)
PAGE DOWN (NEXT PAGE)
UP (PREVIOUS PAGE * 10)
DOWN (NEXT PAGE * 10)
TOP
BOTTOM

NOTE: Some systems begin their control sequences with an escape
character (IB hex). If your terminal does this, you should either configure
Escape (function 65) as two presses on the escape key, or if possible, define
a different key to perform the escape function. This means that sequences
that begin with IB hex do not cause an escape to be sent. If you configure
a fUllction key with a hexadecimal character that also starts a sequence,
unwanted results may occur.

User Function List. This is the list of functions your program uses by
default. To add functions to this list, you select a function number and
enter it with its associated keys, or hexadecimal equivalent. You may
define two or more keys with the same function.

Configuring COBOL 7-11

Default CRT Handling Options

This section shows a sample default set of configuration options. You can
check the current defaults for your version of LEVEL II COBOL by
using the Review option of the CONFIG utility. CONFIG is described
later in this chapter.

CRT General Configuration

1) Type of addressing

(A) Screen coordinate format

(B) First coordinate increment

(C) Second coordinate increment

(D) Leading control character sequence

(E) Intermediate control character
sequence

(F) Trailing control character sequence

(G) Is the line coordinate output first?

(H) Home cursor to top left hand corner

7-12 Introduction to LEVEL II COBOL

Direct

Absolute binary
value

00

00

FF,43

Not Defined

Not Defined

No

FF, 43, 00, 00

CRT Physical Characteristics

2) Number of CRT columns
Is it safe to use the
last position on the screen?

3) Number of CRT lines
Is it safe to use the
last position on the screen?

4) Does your CRT echo characters?

5) Does your CRT support wraparound?

Is highlighting affected by
wraparound?

6) Does your CRT support highlighting?

(A) Control character start sequence

(B) Control character stop sequence

(C) Number of characters used in
control string

80

No

29

No

No

Yes - Forward
only

Yes

Yes - Stop & start
strings

FF,41,45

FF,41,41

00

Configuring COBOL 7-13

Console Output Configuration

1) Clear screen procedure
F,FF

2) Sound bell sequence

3) Decimal coordinate positions for:

(A) Abort confirmation

(B) Insert/replace

(C) End of field

4) Messages/indicators for:

(A) Request abort confirmation

(B) Indicate replace mode

(C) Indicate insert mode

(D) Clear insert/replace mode

(E) Indicate OFF END OF FIELD

(F) Clear OFF END OF FIELD

5) Initialize CRT before:

(A) Display

(B) Accept

(C) Get single character

(D) First Accept/Display

7-14 Introduction to LEVEL II COBOL

FF,46,20,OO,OO,F

FF,43,OO,OO

07

25,01

25,79

25,79

Abort YIN?

Not Defined

I

" "

>

" "

FF,50,46

FF,50,46

Not Defined

FF ,56,4E,FF ,50,46

6) Reset CRT sequences after:

(A) Display

(B) Accept

(C) Get single character

7) Accept configuration

Not Defined

Not Defined

Not Defined

Note: Numeric fields with full editing enabled are always be pre­
displayed when the cursor enters the field irrespective of the
settings.

(A) Display of fields before accept? No

(B) Is full editing of numeric fields required? Yes

(C) Within an accept do you wish to move to the next field when the
current field is full? Yes

(D) Termination of accept (in addition to 'terminate accept' key)
Data entry into the last position/field-tab in last field

8) Tab positions 8,16,24,32,40,48,
56,64,72

Configuring COBOL 7-15

ADIS function key list:

Function ASCII CT
code keyboard

00 TERMINATE ACCEPT OA Return
01 ABANDON PROGRAM EB code-K
02 MOVE TO START OF NEXT LINE OD Bound
03 MOVE LEFT ONE CHARACTER OE left arrow
04 MOVE RIGHT ONE CHARACTER 12 right arrow
05 MOVE UP ONE LINE 01 up arrow
06 MOVE DOWN ONE LINE OB down arrow
07 MOVE TO START OF SCREEN (HOME) 91 code-ScrollUp
08 MOVE TO NEXT TAB POSITION 09 Tab
09 MOVE TO PREVIOUS TAB POSITION 89 code-Tab
10 MOVE TO END OF SCREEN 93 code-ScrollDn
11 MOVE TO NEXT FIELD 09 Tab
12 MOVE TO PREVIOUS FIELD 89 code-Tab
13 CHANGE CASE OF CHARACTER E6 code-f
14 UNTYPE CHARACTER (RUBOUT) 08 BackSpace
15 RETYPE CHARACTER F9 code-y
16 INSERT CHARACTER EF code-o
17 DELETE CHARACTER 7F Delete
18 RESTORE DELETED CHARACTER EC code-l
19 CLEAR TO END OF FIELD FA code-z
20 CLEAR (RESET) FIELD F8 code-x
21 CLEAR TO END OF SCREEN E5 code-e
22 CLEAR (RESET) ENTIRE SCREEN F3 code-s
23 SET INSERT MODE E9 code-i
24 SET REPLACE MODE Not Defined
25 RESET (UNDO) FIELD El code-a
26 MOVE TO START OF LINE/FIELD Not Defined

7-16 Introduction to LEVEL II COBOL

Micro Focus Function list:

CT Keyboard

01 FUNCTION KEY 1
02 FUNCTION KEY 2
03 FUNCTION KEY 3
04 FUNCTION KEY 4
05 FUNCTION KEY 5
06 FUNCTION KEY 6
07 FUNCTION KEY 7
08 FUNCTION KEY 8
09 FUNCTION KEY 9
10 FUNCTION KEY 10
65 ESCAPE (Cancel key)
66 PAGE UP (PREVIOUS PAGE)
67 PAGE DOWN (NEXT PAGE)
68 UP (PREVIOUS PAGE * 10)
69 DOWN (NEXT PAGE * 10)
70 TOP
71 BOTTOM

User Function Key list:

Not Defined

ASCII code

15 or 00
16
17
18
19
lA
lC
ID
IE
IF
07
05
OC
C5
CC
85
8C

Configuring COBOL 7-17

Running the CON FIG Utility

General Procedure

To run CONFIG:

1. Path to [Sys]<COBOL>.

2. Copy the CONFIG* files from the release diskettes.

3. Make a copy of the previous version of [sys]<COBOL>ADIS.254 as
a backup. For example, copy [sys]<COBOL>ADIS.254 to
[Sys]<COBOL>Saved>ADIS.254.

4. To perform the library functions in CONFIG, the ISAM files
CONFIG.TRM and CONFIG.Ind may have to be reorganized to run
on your system.

To reorganize, enter the ISAM Reorganize command as follows, and
press Go:

ISAM Reorganize
ISAM data set or DAM file
[Index file]
[Work file 1]
[Work file 2]
[Use parameters from ISAM data set?]
[Index keys (e.g., 8yte:10.8.ANU.W))
[8-Tree node size (2 sectors)]
[Data store file growth increment (30 sectors))
[Index file growth increment (30 sectors)]
[Initial index file size (30 sectors))
[Maximum initial 8-Tree node fullness (80%)]
[Overwrite ok?]

CONFIG.TRM­
_CONFIG.lnd __

-y------

5. On the Executive command line, enter COBOL Run and press
U.ETURN. Complete the COBOL Run command form as shown
below, and press Go to start the CONFIG utility.

COBOL Run
File Name
[Parameters?]
[Switches]

_Config _________ ------

7-18 Introduction to LEVEL II COBOL

CONFIG displays an introductory banner,

6. When the CONFIG utility prompts you for the name of the ADIS
file recognized by the current release of the compiler, if you have
LEVEL II COBOL version 2.5.4 release 1.0 or 2.0, type ADIS.254

Otherwise, check your release notice for the name of the ADIS file.

CONFIG utility displays a function menu and prompts you with a ?
to enter the integer associated with the function required. After the
specified function is completed, the menu is redisplayed and you are
prompted to enter a number for the next function you require.

The CONFIG functions are described below.

CON FIG Function Operation

Functions involving the ISAM dataset containing the library of
ACCEPT/DISPLAY Modules require that ISAM be installed.

The Main Menu of CONFIG Functions is:

1) QUIT Return control to the operating system.

2) UPDATE Write the new ACCEPT/DISPLAY Module to disk.

3) INPUT Enter a new set of accept/display values or retrieve an
ACCEPT/DISPLAY Module from the ISAM dataset
containing the library of ACCEPf/DISPLA Y Modules.

4) ALTER Change a single accept/display value.

5) REVIEW List the currently defined accept/display values

6) LIBRARY Review/save/delete/overwrite to/from the ISAM dataset
containing the library of ACCEPT/DISPLAY Modules.

QUIT

Main Menu choice 1, QUIT, returns you to the Executive.

Configuring COBOL 7-19

UPDATE

Main Menu choice 2, UPDATE, causes CONFIG to write your
updated ACCEPT/DISPLAY Module to disk.

This function is used to update the ACCEPT/DISPLAY Module that
you specify with the values you have changed using the ALTER
function, or the INPUT function.

INPUT

Main Menu choice 3, INPUT, causes CONFIG to ask if you wish to
input the configuration values from a CRT configuration file already
existing on the disk.

If you respond with an N selecting no, CONFIG prompts you to alter
or retain every value of your ACCEPT/DISPLAY Module. Default
values are taken from the currently loaded ACCEPT/DISPLAY
Module.

If you respond with a Y selecting yes, CONFIG prompts you to input a
CRT configurations file from the library containing
ACCEPT/DISPLAY Modules. Accessing this library requires that you
have ISAM installed. The default file name for the library containing
ACCEPT/DISPLAY Modules is the ISAM dataset CONFIG.TRM. Its
index file is CONFIG .Ind.

After entering the library file name, CONFIG displays the following:

This file contains the following configurations:
00: Quit - CRT not present
nn:

\
I (pre-specified ADIS descriptions)

nn:

When you enter the number associated with the file you require,
CONFIG loads the values from that file. If you wish to overwrite the
existing ADIS file with the newly loaded library file, you must enter a 2
for INPUT when the Main Menu of CONFIG reappears.

7-20 Introduction to LEVEL II COBOL

ALTER

Main Menu choice 4, ALTER, gives you the capability to selectively
change one or more ADIS values. The following ALTER Function
Sub-Menu is displayed:

0) Terminate the alter process
1) Alter CRT Miscellaneous Values
2) Alter Console Output value
3) Alter ADIS/user function key lists

If you enter 0 for the ALTER Sub-Menu function Terminate the alter
process, the alter process is terminated, and CONFIG returns to the
Main Menu of CONFIG for another function entry.

If you enter 1 for the ALTER Sub-Menu function Alter CRT
Miscellaneous Values, CONFIG displays the following list of
Miscellaneous CRT Sub-Menu functions:

0) Terminate the alter process
1) Alter addressing mode supported by CRT.
2) Alter the number of CRT columns
3) Alter the number of CRT lines
4) Alter auto character echo
5) Alter auto wraparound
6) Alter character highlighting

Miscellaneous CRT Sub-menu options. CONFIG prompts you to enter
the number for the required function from the ALTER CR T
Miscellaneous Values Sub-Menu. Following is a brief description of
each function of that Sub-Menu:

If you enter 0 selecting the ALTER CRT Miscellaneous Values
Sub-Menu function Terminate the alter process, the alter process is
terminated, and CONFIG returns to the Main Menu of CONFIG for
another function entry.

If you enter 1 selecting the ALTER CRT Miscellaneous Values
Sub-Menu function, you may alter the addressing mode to
correspond to the one supported by your CRT. There are three
addressing modes, direct addressing, step addressing and subroutine
addressing. Following is a description of the information requested
for each mode:

Configuring COBOL 7-21

0) Direct addressing to a particular screen position requires the
following information:

(A) Screen coordinate format (Either absolute binary value or
1-byte or 2-byte or 3-byte ASCII)

(B) First coordinate increment

(C) Second coordinate increment

(D) Leading control character sequence

(E) Intermediate control character sequence

(F) Trailing control character sequence

(G) Is the line coordinate output first?

(H) Hexadecimal character sequence to home the cursor to
top left hand corner

1) Step addressing by single position cursor moves requires that
you specify which keys perform the following functions:

(A) Move cursor one position left

(B) Move cursor one position right

(C) Move cursor one position up

(D) Move cursor one position down

(E) Home the cursor to top left

2) User subroutine addressing by call to routine requires that you
enter:

(A) Call code identifier number

(B) Parameter block - up to 3 2-digit

If you enter 2 selecting the ALTER CRT Miscellaneous Values
Sub-Menu function, you may alter the number of CRT columns to
correspond to your CRT by entering the number of columns in
decimal. You are also asked if it is safe to use the last position on
the screen.

7-22 Introduction to LEVEL II COBOL

If you enter 3 selecting the ALTER CRT Miscellaneous Values
Sub-Menu function, you may alter the number of CRT lines to
correspond to your CRT by entering the number of lines in decimal.
You are also asked if it is safe to use the last position on the screen.

If you enter 4 selecting the ALTER CRT Miscellaneous Values
Sub-Menu function, you may alter information about auto character
echo to correspond to your CRT.

You are asked: 'Does the CRT automatically echo input
characters?'. If you answer yes, you are asked: 'Are all
characters echoed (including control characters)?'

If you enter 5 selecting the ALTER CRT Miscellaneous Values
Sub-Menu function, you may alter information about auto
wraparound to correspond to your CRT.

Does the CRT forward wraparound onto the next line?
Does the CRT backward wraparound onto the previous line?
Is highlighting affected by wraparound/repositioning?

If you enter 6 selecting the ALTER CRT Miscellaneous Values
Sub-Menu function, you may alter information about character
highlighting to correspond to your CRT. There are three options
available for specifying highlighting capabilities of your CRT.
Following is a description of the information required for each
specification:

0) Not implemented requires no further information.

1) Implemented by a character mask requires a two digit hex
highlight mask, e.b. '80'.2) Implemented by start and stop control
strings requires the following information:

(A) Control character start sequence

(B) Control character stop sequence

(C) Number of characters at end of field used by the control
string

If you enter 2 selecting the ALTER Sub-Menu function to specify
'Alter Console Output value', CONFIG displays the following list of
Console Output Sub-Menu functions. CONFIG prompts you to enter
the number for the required function.

Configuring COBOL 7-23

0) Terminate the alter process
1) Alter the clear screen procedure
2) Alter the 'sound bell' sequence
3) Alter message positioning
4) Alter messageslindicators
5) Alter the initialize CRT sequences
6) Alter the reset CRT sequences
7) Alter accept configuration
8) Alter tab positions

Console Output Sub-Menu options.

If you enter 0 selecting the ALTER Console Output Value Sub­
Menu function 'Terminate the alter process', the alter process is
terminated, and CONFIG returns to the Main Menu of CONFIG for
another function entry.

If you enter 1 selecting the ALTER Console Output Value Sub­
Menu function, you may alter the clear screen procedure by entering
the ASCII code to correspond to the one supported by your CRT.

If you enter 2 selecting the ALTER Console Output Value Sub­
Menu function, you may alter the 'sound bell' sequence by entering
the ASCII code that corresponds to the one supported by your
CRT.

If you enter 3 selecting the ALTER Console Output Value Sub­
Menu function, you may specify decimal coordinate positions to alter
the message positioning for:
(A) Abort confirmation message
(B) Insert/replace mode indicators
(C) End of field indicator

If you enter 4 selecting the ALTER Console Output Value Sub­
Menu function, you may specify the message you wish to see on the
screen for:
(A) Request abort confirmation
(B) Indicate replace mode
(C) Indicate insert mode
(D) Clear insert/replace mode
(E) Indicate 'OFF END OF FIELD'
(F) Clear 'OFF END OF FIELD'

If you enter 5 selecting the ALTER Console Output Value Sub­
Menu function, you may specify the hexadecimal value to initialize

7-24 Introduction to LEVEL II COBOL

the CRT before:
(A) Display
(B) Accept
(C) 'Get single character'
(D) First Accept/Display

If you enter 6 selecting the ALTER Console Output Value Sub­
Menu function, you may specify the hexadecimal value to reset the
CRT after:
(A) Display
(B) Accept
(C) 'Get single character'

If you enter 7 selecting the ALTER Console Output Value Sub­
Menu function, you may alter information about your Accept
configuration.
The following options are available for specifying how you wish your
Accept statements to behave at execution time:

(A) Display of fields before accept has the following options
available:

(0) No display except on entry to numeric edited fields with
numeric editing enabled

(1) No display except on entry to numeric edited/non­
edited fields with numeric editing enabled

(2) Pre-display of field on entry

(3) Pre-display of all fields before first data entry

(B) Is full editing of numeric fields required?

(C) Within an accept do you wish to move to the next field
when the current data field is full?

(D) Termination of accept (in addition to 'terminate accept'
key) has the following options available:

0) No other method

1) Field-tab in the last field key

2) Data entry into the last position/field-tab in last field

Configuring COBOL 7-25

If you enter 8 selecting the ALTER CRT Miscellaneous Values
Sub-Menu function, you may alter tab positions by entering up to 16
positions as 2 digit decimal numbers, separated by commas E.G.
'08,16'.

If you enter 3 selecting the ALTER Sub-Menu function Alter
ADIS/user function key lists', CONFIG displays the following list of
ADIS/user function key lists Sub-Menu functions:

0) Terminate the alter process
1) ADIS function key list
2) Micro Focus Function list
3) User Function Key list

A DIS/user junction key Sub-menu options.

If you enter 0 selecting the ALTER ADIS/user function key lists
Sub-Menu function 'Terminate the alter process', the alter process
is terminated, and CONFIG returns to the Main Menu of CONFIG
for another function entry.

If you enter 1 selecting the ALTER ADIS/user function key lists
Sub-Menu function, you may alter ADIS function key list to
correspond to your CRT and/or applications.

If you change an item of the ADIS function key list, you may enter
the appropriate sequences as a string of two digit hex numbers
separated by commas, E.G. '01,OA' or " to remove the entry or "Q"
to quit from this list. You can define a key to return the value of a
different function, by mapping the keystroke to another function. To
do this, two values are required. Firstly you must enter the function
number being mapped to in quotes (E.g. "05" maps a keystroke to
function 05). Secondly the keystroke must be entered to the function
prompt. You may enter a new value,"RETURN" to keep the current
value, " to remove the entry or "Q" to quit from this list.

7-26 Introduction to LEVEL II COBOL

The following is the ADIS Function List:

00 TERMINATE ACCEPT
01 ABANDON PROGRAM
02 MOVE TO START OF NEXT LINE
03 MOVE LEFT ONE CHARACTER
04 MOVE RIGHT ONE CHARACTER
05 MOVE UP ONE LINE
06 MOVE DOWN ONE LINE
07 MOVE TO START OF SCREEN (HOME)
08 MOVE TO NEXT TAB POSITION
09 MOVE TO PREVIOUS TAB POSITION
10 MOVE TO END OF SCREEN
11 MOVE TO NEXT FIELD
12 MOVE TO PREVIOUS FIELD
13 CHANGE CASE OF CHARACTER
14 UNTYPE CHARACTER (RUBOUT)
15 RETYPE CHARACTER
16 INSERT CHARACTER
17 DELETE CHARACTER
18 RESTORE DELETED CHARACTER
19 CLEAR TO END OF FIELD
20 CLEAR (RESET) FIELD
21 CLEAR TO END OF SCREEN
22 CLEAR (RESET) ENTIRE SCREEN
23 SET INSERT MODE
24 SET REPLACE MODE
25 RESET (UNDO) FIELD
26 MOVE TO START OF LINE/FIELD

If you enter 2 selecting the ALTER ADIS/user function key lists
Sub-Menu function, you may alter Micro Focus Function key list
that is used by the ANIMATOR.

Configuring COBOL 7-27

The Micro Focus Function list for the ANIMATOR includes:

01 FUNCTION KEY 1
02 FUNCTION KEY 2
03 FUNCTION KEY 3
04 FUNCTION KEY 4
05 FUNCTION KEY 5
06 FUNCTION KEY 6
07 FUNCTION KEY 7
08 FUNCTION KEY 8
09 FUNCTION KEY 9
10 FUNCTION KEY 10
65 ESCAPE (Cancel Key)
66 PAGE UP (PREVIOUS PAGE)
67 PAGE DOWN (NEXT PAGE)
68 UP (PREVIOUS PAGE * 10)
69 DOWN (NEXT PAGE * 10)
70 TOP
71 BOTTOM

If you enter 3 selecting the ALTER ADIS/user function key lists
Sub-Menu function, you may alter User Function Key list to
correspond to your CRT and/or applications.

The ACCEPT/DISPLAY Module can return to the user program an
integer value which is associated with a function key sequence
entered by the program operator. You may enter the value required
and the associated key sequence.

REVIEW

Main Menu choice 5, REVIEW, lists all of the defined values of the
ACCEPT/DISPLAY Module you have currently loaded.

LIBRARY

Main Menu choice 6, LIBRARY, causes CONFIG to ask if you wish to
input the configuration values from the library containing
ACCEPT/DISPLAY Modules in the ISAM dataset CONFIG.TRM.
Its index file is CONFIG .Ind. This function requires that ISAM be
installed.

If the file you request does not exist, CONFIG has the capability to
create a library file using ISAM.

7-28 Introduction to LEVEL II COBOL

After entering the library file name, CONFIG displays the following
LIBRARY function Sub-Menu:

0) Terminate SAVE routine
1) Review CRT configurations available
2) Save a new configuration
3) Delete an existing configuration
4) Overwrite an existing configuration

If you enter 0 selecting the LIBRARY Sub-Menu function Terminate
SA VE routine, CONFIG returns the main menu of CONFIG
functions.

If you enter 1 selecting the LIBRARY Sub-Menu function Review
CRT configurations available, CONFIG displays the
ACCEPT/DISPLAY Module entries in your library dataset as follows:

This file contains the following configurations :-
00: Quit - CRT not present
nn :

\
/ (ADIS descriptions entered in RESPONSE '4')

nn:

If you enter 2 selecting the LIBRARY Sub-Menu function Save a new
configuration, CONFIG requests a descriptive name of up to 32
characters and enter the current ACCEPT/DISPLAY Module into the
library.

If you enter 3 selecting the LIBRARY Sub-Menu function Delete an
existing configuration, CONFIG displays the ACCEPT/DISPLAY
Module entries in your library dataset, and the request you to enter the
number associated with the dataset you wish to delete.

If you enter 4 selecting the LIBRARY Sub-Menu function Overwrite
an existing configuration, CONFIG displays the ACCEPT/DISPLAY
Module entries in your library dataset, and the request you to enter the
number associated with the dataset you wish to overwrite.

Configuring COBOL 7-29

& (ampersand), 2-10, 3-3,4-3
808x6, 2-5, 2-6

Abort, 7-7, 7-14, 7-24
ACCEPT, statement, 5-2, 5-6, 7-4 to

7-10.
See also CONFIG.

address, 2-7, 2-8, 2-9, 2-10, 2-12,
2-16, 2-17, 3-10, 3-19

ADIS module, 7-4, 7-9, 7-10, 7-16,
7-18, 7-19, 7-20, 7-21, 7-26 to
7-29.

AllocMemorySL, 2-16
ALTER, 3-4, 3-14, 7-4, 7-19 to 7-28
ampersand (&), 2-10, 3-3, 4-3
ANIM, 3-4, 3-13 to 3-15, 6-1
ANIMATOR, 1-4, 3-1, 3-2, 6-1 to

6-12, 7-9, 7-10, 7-27, 7-28
.ANM, file extension, 3-2, 6-1
ANSI, 1-1, 2-2, 2-22, 2-28, 2-29,

2-30, 3-5, 3-6, 3-8, 5-4, 5-7,
5-12

ANSI COBOL Debug switch, 5-4
application, 2-3, 2-23, 2-24, 2-27,

2-31, 5-6, 7-4, 7-5, 7-26, 7-28
arithmetic, 2-7
array, 7 .. 3
arrow, keys, 6-10, 7-16
ASCII, 3-4, 4-3, 5-5, 6-9, 7-5, 7-16,

7-17, 7-22, 7-24
Assembler, 7-1, 7-2
ASSIGN, 2-31, 5-10
asterisks, 3-20

Index

AUTOLOCK. 2-22. 2-24, 2-25, 2-29,
3-4. 3-8. 3-14

AUTOMATIC, 2-23. 2-26. 2-28.
2-30, 3-4, 3-8, 7-6, 7-8

backspace, 7-6, 7-16
banner, 7-19
BELL, 3-4, 3-5, 3-14. 4-3, 7-6. 7-14,

7-24
.BIN extension, 1-4, 2-4
binary, 7-5. 7-12, 7-22
bit, 2-13, 2-15, 2-16
boolean, 2-13
brackets, 5-3
Break, 6-6, 6-7
breakpoint, 6-6, 6-7
BRIEF. 3-5. 3-7, 3-14, 3-16, 7-21
buffer, 2-10, 5-10
byte, 2-5, 2-6, 2-12, 2-13, 2-14, 2-15,

2-17, 3-12, 3-18, 3-19, 5-5,
6-9, 7-5, 7-18, 7-22

bytestream work area, 2-13
ByteStreamErrors. 2-23

CALL, 1-4, 2-2 to 2-19, 6-5, 6-7"
7-2, 7-5, 7-22

interprogram communication 2-2
to 2-4

linked in procedures 2-11 to 2-19
run-time extensions 2-4 to 2-11

CANCEL, 2-3, 6-4, 6-5, 6-6, 6-7,
6-8,6-9, 6-10, 7-10, 7-17, 7-28

Index I-I

case, 2-10, 2-17, 2-23, 3-3, 3-4, 3-5,
3-7,4-3, 5-9, 6-3, 7-10, 7-16,
7-27

cbFieldInfo, 2-18, 2-19
cbFilename, 2-14, 2-15
cbPassword, 2-14, 2-15
cBytes,2-16
cchDefault, 2-19
certification, 3-8, 3-15
characters, 2-1, 2-14, 3-6, 3-9, 4-4,

5-2, 5-5, 5-6, 5-7, 7-5, 7-6,
7-7, 7-8, 7-13, 7-23, 7-29

CLI, 5-8
CloseFile, 2-10, 7-2
cluster, 2-20
COBOL Animate command, 6-1 to

6-13
COBOL.Asm, 2-12, 4-3, 4-5, 7-1, 7-2
COBOL Compile command, 1-1,

2-1, 2-22, 2-25, 2-26, 3-1,
3-15,3-16,3-17,3-18,3-20,
3-22,4-1, 5-1, 5-8, 6-1

command form 3-1 to 3-2
defaults 3-15
directives 3-4 to 3-14
examples 3-15

COBOLForms, 2-18
COBOLGen, 2-12, 7-1, 7-2
COBOL Generate command, 4-1 to

4-5
defaults, 4-5
directives, 4-3

COBOLHead, 7-3
COBOL Run command, 5-1 to 5-13

command form 5-1 to 5-3
communications 5-12 to 5-13
customized command 5-9 to 5-11
examples 5-6
SRP 5-8
switches 5-4 to 5-5

COBOLTail, 7-3
commands.

See COBOL Compile, COBOL
Generate, COBOL Run,
COBOL Animate

/-2 Introduction to LEVEL II COBOL

COMMIT, 2-26, 2-27
COMMS, 5-12, 5-13
Communication, 2-2, 2-3, 5-12
COMP, 2-5, 2-6, 2-7, 2-8, 2-9, 2-10,

2-13,2-15, 2-16, 2-17, 2-19,
2-31, 3-5, 3-14

compact, 3-5
Compile command

See COBOL Compile.
compiler, 2-1, 2-22, 2-24, 2-25, 2-26,

3-1 to 3-22, 4-1, 4-2, 4-3, 4-5,
5-6" 6-1, 6-2, 7-19

command form 3-1 to 3-2
defaults 3-15
directives 3-4 to 3-14
examples 3-15

CON, 2-20
Config.Pfk, 2-1
CONFIG, 7-4, 7-5, 7-9, 7-12, 7-18 to

7-29
configuration, 2-4, 2-10, 2-20, 2-22,

7-1 to 7-4, 7-4, 7-5 to 7-29
console, 3-5, 3-7, 3-9, 3-10, 3-16,

4-4, 5-2, 5-12, 7-5, 7-6, 7-14,
7-21, 7-23, 7-24, 7-25

ConvertQuad, 2-6, 2-17
ConvertWord, 2-5, 2-17
COPYLIST, 3-5, 3-6, 3-13, 3-14, 6-1
CPM, 2-20, 5-12
CRT, 2-1, 3-10, 7-1, 7-4, 7-5 to 7-29
CRTWIDTH, 3-6, 3-13, 3-14, 5-2
custom, command form, 5-8 to 5-1 °
Customizing, defaults, 3-15, 4-5

DAM, 2-21, 7-18
data, 2-5, 2-6, 2-7, 2-10, 2-12, 2-17,

2-18, 2-21, 2-22, 2-23, 2-26,
2-27, 2-31, 3-5, 3-6, 3-10,
3-12, 3-18, 3-19, 3-22, 5-2,
5-4,5-5, 5-7,5-9,5-10,5-10,
6-1, 6-8, 6-9, 6-10, 7-7, 7-8,
7-9, 7-15, 7-18, 7-25

dataset, 7-4, 7-19, 7-20, 7-28, 7-29

data structures
See Structures.

debugging, 1-1,1-4,3-2,4-1,5-4,5-7,
6-1 to 6-12

decimal, 3-4, 4-3, 7-5, 7-6, 7-8, 7-14,
7-22, 7-23, 7-24, 7-26

declaration, 3-22, 5-2, 6-9, 6-10
defaults, 2-22, 2-25, 2-27, 3-2, 3-4,

3-5, 3-6, 3-7, 3-8, 3-9, 3-10,
3-10, 3-12, 3-14, 3-15, 4-1,
4-3, 4-4,4-5, 5-3, 5-4, 5-6,
5-9, 5-13, 7-2, 7-4, 7-9, 7-10,
7-12, 7-20

customizing 3-15, 4-5
device, 2-20, 3-7, 3-10, 4-4, 5-2,5-12
device specification, 3-10, 4-4
DICDEV, 3-7, 3-14
directives, 2-22, 2-24, 2-25, 2-29,

2-30, 3-1, 3-3, 3-4, 3-8, 3-12,
3-13, 3-14, 3-15, 3-16, 3-17,
4-1, 4-2, 4-3, 4-5, 6-1

combining 3-12
defaults 3-14

DirList, 3-16, 3-17
disk, 2-20, 3-12, 3-18, 5-5, 5-6, 6-1,

7-19, 7-20
See also Volume.

display
See Video.

DISPLAY, statement, 7-1, 7-2, 7-4,
7-5, 7-6, 7-7, 7-8, 7-9, 7-14,
7-15, 7-19, 7-20, 7-25, 7-28,
7-29

ECHO, 3-7, 3-14, 3-16, 7-6, 7-13,
7-21, 7-23

ECHOALL, 3-7, 3-13, 3-14
Editor, 2-1, 2-21, 5-9, 7-1
EJECT, 3-9
environment, 1-1, 1-4, 2-22, 2-26,

2-31, 3-4, 3-8, 3-12, 6-6, 7-1
ere, 2-10, 2-13, 2-14, 2-15, 2-16, 2-17
ErcEXIT,2-10
ErcType,2-17

ERRLIST, 3-7, 3-13, 3-14, 3-16
ErrorExit, 2-10
errors, 2-26, 2-31,2-23,3-5,3-7,

3-10, 3-16, 3-18, 3-19, 3-20,
3-21, 3-22, 5-2, 5-3, 7-2

ERRQ, 3-7, 3-14
Escape, 7-10, 7-17, 7-28
examples, 1-4,2-1,2-2,2-10,2-17,

2-18, 2-20, 2-21, 2-22, 2-25,
2-31, 2-23, 3-6, 3-10, 3-15,
3-16, 4-4, 5-6, 5-7, 5-8, 5-10,
6-3, 7-18

Executive, 2-20, 3-1, 3-3, 3-4, 3-15,
4-1, 4-2, 4-5, 5-1, 5-8, 5-9,
5-12, 6-2, 7-2, 7-3, 7-18, 7-19

Exit, 2-10, 2-19, 6-4, 6-5
ExitState, 2-18, 2-19
EXTEND, 3-4
extension, 1-4, 2-2, 2-4, 2-22, 2-24,

2-25, 2-26, 2-28, 2-29, 2-30,
3-2, 3-8, 3-9, 3-21,4-2,4-4,
5-1, 5-2, 5-10, 5-13, 6-1

fAutoExit, 2-19
fieldInfo, 2-18, 2-19
file level locking

See Locking.
file management 2-3, 2-20 to 2-31
FILESHARE, 2-22, 2-24, 3-8,3-14
filespec, 3-9, 3-10, 3-13, 4-4
FileStat, 2-31
FileStatus, 2-31
FIPS, 3-18, 3-19
Flag, 2-10,3-7, 3-8, 3-14, 3-15, 3-16,

3-18, 3-20, 3-21, 5-3
FORMS, 1-4,2-2, 2-10, 2-18, 7-1,

7-2
fShowDefault,2-19

Generator, 1-1,4-1,4-3,4-5,4-6
GetFieldInfo,2-18
GetPointer, 2-7

Index 1-3

GetPointers, 2-7
.GNT, extension 4-4, 5-2, 5-9
GPSPrinterName, 3-10, 4-4

HOME, 7-10, 7-12, 7-16, 7-22, 7-27

IBM, 3-8, 3-9, 3-14, 3-21
IDENTFICATION DIVISION, 3-6
indexed sequential files, 2-20, 2-21,

2-22 to 2-31, 3-4
initialization file 5-12
InitState, 2-18, 2-19
INPUT, 2-23, 2-24, 2-25, 2-28, 2-29,

2-30, 5-2, 5-4, 5-6, 5-9, 5-10,
5-10, 7-4, 7-19, 7-20, 7-23,
7-28

integer, 2-13, 2-15, 3-4, 3-5, 3-6, 3-9,
4-3,4-4, 7-19, 7-28

Intel, 2-2, 2-5, 2-6
Interpreter, 1-4, 5-8
invoking, 5-8
iParam, 2-17
ISAM, 2-20, 2-22 to 2-32, 7-1, 7-4,

7-18, 7-19, 7-20, 7-28

jParam, 2-17

KBD, 5-2, 5-9, 5-10, 5-10
keyboard, 5-9, 5-10, 6-3, 7-4, 7-7,

7-8, 7-16, 7-17
keyword, 3-3, 4-2

libraries, 2-2, 2-10, 2-18, 6-1, 7-1,
7-4, 7-18, 7-19, 7-20, 7-28,
7-29

line sequential files 2-21
link, 2-2, 2-10, 2-22, 7-1, 7-3

I -4 Introduction to LEVEL II COBOL

listing, 3-1, 3-2, 3-5, 3-6, 3-7, 3-8,
3-9, 3-10, 3-10, 3-12, 3-14,
3-15,3-16,3-17,3-19,3-20,
3-21, 4-3, 4-4

LISTWIDTH, 3-10, 3-14
Locate, 6-9, 6-10
Locking, 2-22 to 2-31, 3-4, 3-8, 3-12

modes 2-23 to 2-24
errors 2-31

LOW, 3-8, 3-15, 3-16, 3-21
LPT, 3-10, 4-4

machine language, 1-1, 4-1
MakePointer, 2-8
Map, 7-3, 7-9
memory, 2-3, 2-4, 2-5, 2-6, 2-7, 3-6,

7-3
menu, 6-2, 6-3, 6-4, 6-5, 6-6, 6-7,

6-8, 6-9, 6-10, 7-19, 7-20,
7-21, 7-22, 7-23, 7-24, 7-25,
7-26, 7-27, 7-28, 7-29

Merge, 7-1
messages, 3-5, 3-7, 3-10, 3-15, 3-16,

3-22, 7-6, 7-7, 7-14, 7-24
microcomputer, 7-6
mode, 1-1, 2-14, 2-15, 2-23, 2-24,

2-25, 2-26, 2-27, 2-28, 2-29,
2-30, 5-10, 7-7, 7-10, 7-14,
7-16, 7-21, 7-24, 7-27

module, 2-2, 2-3, 2-12, 5-3, 5-7, 5-10,
7-3, 7-4, 7-5, 7-9, 7-19, 7-20,
7-28, 7-29

monitor, 6-9
Motorola, 2-5, 2-6
MS-DOS, 1-4, 2-20, 5-12

naming, 6-7
Native Code Generator 4-1 to 4-5

defaults 4-5
directives 4-3

NOASM,4-3
NOAUTOLOCK, 2-25, 3-4

NOBELL,4-3
NOCRTWIDTH, 3-16
node, 7-18
NOECHO, 3-16
NOFILESHARE, 2-25, 2-28, 2-29,

2-30
NOFLAG,3-18
NOFORM, 3-16
NoGen, 7-2
NOINIT, 3-15
NOINT, 3-16
NOLIST, 3-13, 3-16
NOWRITELOCK, 2-25, 3-12
Null switch 5-4 to 5-5

object, 2-10, 3-21, 7-2, 7-3
OPEN, 2-23, 2-25, 2-28, 2-29, 2-30,

3-5,3-17, 5-10, 7-1
OpenByteStream, 2-10
OpenFile, 2-14, 2-15, 7-2
operations, 2-22, 5-10
operator, 3-10, 5-3, 7-28
ORGANIZATION, 2-20,2-27,5-10,

5-10
OUTPUT, 2-23, 2-24, 2-25, 2-28,

2-29, 2-30, 5-4, 5-5, 5-6, 5-7,
7-5" 7-6, 7-12, 7-14, 7-21,
7-22, 7-23, 7-24, 7-25

OVERFLOW, 2-3,3-5
OVERRIDE, 3-10

parameters, 2-3, 2-10, 2-12, 2-13,
2-14, 2-16, 2-17, 2-18, 3-2,
3-4" 4-2, 5-1, 5-2, 5-3, 5-4,
5-5, 5-8, 5-12, 5-13, 6-2, 7-3,
7-5, 7-6, 7-18, 7-22

passing 2-12 to 2-17, 2-17 to 2-19
PASSWORD, 3-9
Path, 3-15, 4-5, 7-2, 7-18
PIC, 2-5, 2-6, 2-7, 2-8, 2-9, 2-10,

2-14 2-15 2-16 2-17 2-19
2-31: 3-5, 5-10 ' , ,

picture, 2-7, 2-10, 2-13, 2-14, 2-15,
2-16

pointer, 2-7, 2-8, 2-9, 2-16, 2-17
print, 3-1, 3-7, 3-10, 3-13, 4-4
Printer, 5-5
PROCEDURE, DIVISION, 2-1, 2-3,

2-5, 2-10, 2-10, 2-12, 2-17,
2-22, 2-23, 2-24, 2-25, 2-26,
2-31 3-10 3-15 3-19 4-5
5-10' 6-2 '6-5 6~9 7-2 7-4
7-14: 7-18, 7-24' , ,

procedures, 2-2, 2-4, 2-10, 2-10,
2-17,2-18, 2-22, 7-1, 7-2

processors, 2-5, 2-6
program,

compiling 3-1 to 3-22
debugging 6-1 to 6-11
optimizing 4-1 to 4-5
running 5-1 to 5-14
subprogram communication 2-3

Quad, 2-6, 2-12, 2-16, 2-17
QUAL, 3-10, 3-14
QUERY, 3-10, 3-14,6-8
queues, 5-13
Quit, 6-5, 7-19, 7-20, 7-26, 7-29

RAM, 3-18
range, 5-3, 7-5
read, 1-4, 2-4, 2-17, 2-20, 2-21, 2-24,

2-25, 2-26, 2-27, 2-28, 2-29,
2-30, 2-31, 5-2, 5-4, 5-5, 5-9,
5-10, 5-10

rebuilding the compiler, 2-25, 3-15,
4-5

record level locking
See Locking.

REF, 3-10, 3-13, 3-14,3-17, 3-19, 6-1
Reference, 2-1, 2-3, 2-25, 2-27,3-1,

3-3, 3-17, 3-19, 4-2, 5-10, 7-4
relative, address 2-8, 2-9
relative, files 2-20, 2-21

Index 1-5

reorder, 2-5, 2-6, 2-17
reorganize, 7-4, 7-18
RESEQ, 3-10, 3-13, 3-14, 3-15, 6-1
RESPONSE, 7-29
RESTORE, 7-10, 7-16, 7-27
RETYPE, 7-10, 7-16, 7-27
REWRITE, 2-26, 2-30, 3-8, 3-12
rgbFilename, 2-14, 2-15
rgbPassword, 2-14, 2-15
rgchDefault, 2-19
RGParam, 2-17
RUBOUT, 7-10, 7-16, 7-27
Run, 1-1, 1-4, 2-1, 2-2, 2-3, 2-4, 2-10,

2-12,2-17, 2-18, 2-22, 2-31,
2-23, 3-2, 3-7, 3-10, 3-21, 4-1,
4-3, 5-1, 5-2, 5-3, 5-4, 5-5,
5-6, 5-7, 5-8, 5-9, 5-10, 5-12,
5-13, 6-1, 6-2, 6-3, 7-1, 7-2,
7-3, 7-4, 7-18

Run-Time System 2-11 to 2-19, 5-1
to 5-13, 7-1 to 7-3

SAM, 2-20, 2-21
SAVE86,1-4
screen, 2-1, 3-7, 3-17, 6-2, 6-3, 6-7,

6-10, 7-5, 7-6, 7-7, 7-8, 7-10,
7-10, 7-12, 7-13, 7-14, 7-16,
7-22, 7-23, 7-24, 7-27

sectors, 7-18
SEG, 3-10, 3-14
segment, 2-1, 2-2, 2-3, 2-8, 2-9, 3-6,

3-18, 5-10, 6-1
segmentation, 2-1, 3-10, 5-10
SELECT, 2-28, 2-29, 2-30, 2-31,

3-19, 5-10, 6-3, 6-7, 6-8, 7-10
Sequential Access Method (SAM),

2-20,2-21
sequential, files, 2-20
SetKbdU nencodedMode, 2-13
Shared Resource Processor (SRP),

5-8
SKIP, 3-9, 7-8
SortMerge, 7-1, 7-3

1-6 Introduction to LEVEL II COBOL

spaces, 3-3, 4-2, 5-2, 5-5, 5-6, 5-7,
5-10, 6-6, 6-7, 6-8, 6-9, 6-10

speed, 4-1, 6-4, 6-5, 6-10
SRP, 5-8
STORAGE, 2-18, 2-31, 5-4, 5-5, 5-10
strings, 2-1, 2-12, 2-14,2-17,3-6,

3-7,6-9, 7-6, 7-7, 7-13, 7-23,
7-26

structures, 2-12, 2-17, 2-18
subprograms, 2-2, 5-5, 5-6, 6-5, 6-7
subroutine, 7-5, 7-21, 7-22
Switches, 5-1, 5-3, 5-4, 5-6, 5-7, 5-8,

5-12, 5-13, 6-2, 7-18

tab, 5-4, 5-5, 5-6, 5-7, 6-10, 7-9, 7-10,
7-15, 7-16, 7-24, 7-25, 7-26,
7-27

Tab switch, 5-5
terminate, 5-5, 7-9, 7-10, 7-15, 7-16,

7-21, 7-24, 7-25, 7-26, 7-27,
7-29

text, 1-1, 2-1, 2-21, 3-5, 5-2, 5-5, 6-3,
6-9, 6-10, 7-7, 7-10

Threshold, 6-7
Transaction, 2-26, 2-27
TRM, 7-4, 7-18, 7-20, 7-28

UNDO, 7-10, 7-16, 7-27
UNLOCK, 2-26,2-27
UnMake Pointer, 2-9
UNTVPE, 7-10, 7-16, 7-27
URN,3-19
USAGE, 2-5, 2-6, 2-7, 2-8, 2-9, 2-10,

2-13, 2-15, 2-16
UserFillField, 2-18

validation, 3-18
variable, 2-21, 3-18
verb, 2-2, 2-3, 2-4, 2-10

VID, 2-20, 3-10,3-17,4-4
video, 2-20, 3-6, 3-7, 3-9, 3-15, 4-4,

6-3, 7-2
Volume, 3-7, 5-7

Word, 2-5, 2-10, 2-15, 2-17, 6-4
WordAligned, 2-10
workstation, 1-1,2-1, 2-20, 3-5, 4-3,

5-8, 5-12, 7-1, 7-4
write, 2-4, 2-10, 2-20, 2-21, 2-24,

2-26, 2-30, 3-2, 3-8, 3-12,
7-19, 7-20

WriteByte, 2-13
WRITELOCK, 2-22, 2-24,2-26,

2-30, 3-8, 3-12, 3-14

XREF, 3-12, 3-14

Zoom, 6-4, 6-5

Index 1-7

