ASSEMBLY LANGUAGE MANUAL

Specifications Subject to Change.

Convergent Technologies, Convergent, CTOS, CT-BUS. IWS,
EWS, and MWS are trademarks of Convergent Technologies.

Copyright © 1980 by Convergent Technologies

CONTENTS

Guide to Technical Documentation............eoeue..

1

Introduction......covvieiiiii. cee eeeaen .

Choice Among Convergent Languages ettt 1

Features of the Assembly Language............
Design of the Instruction Set................
A Y AYS et tooetssnsrosatssssssnasossasnsonsssanas
Object Modules and Linking......... TR
Segments and Memory References..........c.o..

REGISEErS. .o ittt eennntennennneanan e e i e 5

AAAreSSing.ceereeeeesnsesnasassoossaoannnonss

ProceduUresS...coeeeesvonscnasonns ce et et e eenn ceen
MACTOS ..t ot ettt etaseetecnssoesssessssasoooansonnssssscess
EXample. . oot eirtennserososnscsnacnsns ce it eat e e RS
Invoking the Assembler from the Executive.......... .
Field Descriptions. Gttt e e Ceeeeen
2 Programs and SegmentsS......eeciercarsconrnronecnan .o
Segments............... TN [N .
SEGMENT/ENDS Directives....eeeeensseernnessoanonoanss
Segment Nesting. ceeses s ens J S

3

ASSUME Directive.............................
Loading Segment Registers......c.ceeieeveerons

Segment Override PrefiX....ieeeeveenennennanns

Anonymous References......c.ieeeeeectecvecnens
Memory Reference in String Instructions......
GROUP Directive. . iiiisereereonrsssernanssaass
ProCeAUrES . i veeesessssocscocenssesssnnocnsans

PROC/ENDP Directives....ieeeessvstonoessnnns

Calling a ProceduUre....c.coeeeeeseocsnssnnns

Recursive Procedures and Procedure Nesting on

the StacCK. . ittt ereetsssissessssssasocoens

Returning from a Procedure........ceeueeue.n
Location Counter ($) and ORG Directive.......
EVEN Directive..iiii it enernnnironennnes

Program Linkage (NAME/END, PUBLIC and EXTRN).

END Directive. .vieeieeeerossennconseoanenens

Data Definition..... .ottt iiiiiiiineiesnensanes
INtrodUuCtion. «veeetvnvennnsnnsos et e

{0703 ¢ 1= 3 - ¢ § o -
Attributes of Data Items........ et
SEGMENT .+ eavaeunnn Sttt i ee ittt e
OF FSET e v et vovnseosssonosssosscnsnssonn e

TYPE..oeoveanennns Cee e P TP

DISTANCE . ¢ttt vstoesecsessssssessssssonnans
Variable Definition (DB, DW, DD Dlrectlves) .

Constant Initialization........ Ceee et
Indeterminate Initialization......c..evvuuenn

Address Initialization (DW and DD Only)....
String Initialization.......ciiiiieiiacannn

. ve e e

e s s e s s
e . .

IEEEEEEE

v ee e e
e s e .

Contents

.16

.19
.20
.21
.22
.22
.23

.23
.25

.26

. .26

.27

iii

4

5

6

7

iv

Enumerated Initialization.c.ooiii ittt iiininennnnens 34

DUP Initialization.......cviieeeriennneunn .. et e e

Labels and the LABEL Dlrectlve.......
LABEL Directive....c.vevuieeennns SR f s es et aasenann
LABEL with Variables..:c.eeeerrereceesans Ch et e

LABEL with Code. ..t vierrvrnronennns T S
Label Addressability.....vivvevenneenn c ettt

ReCOrdS..ieuieenerenss IR PPN
Initializing Records........coeveu.

Structures.......eeeeeeen. Y s a A NN .
Default Structure Fields......c.vvuenn C et e i

Overridable Structure Fields......
Initializing Structures...........

Operands and Expressions........eoeee..
OpPerandS. . .veeeeeeeosoncveonvesosons

Immediate Operands......veeeineenerenseenns e N

Register Operands.......... e
Explicit Register Operands...... ..
Implicit Register Operands........

Segment RegisterS...eoeceeeroesassss

General Registers.......... Ceereieanan e

FlagsS... e eeveeenocasenens SR
Memory OperandS.seeeeeeenstieassans .

Memory Operands to JMP and CALL....... C et et

- VariableS.ceeeeessssstosnsiaasanns
Simple Varlables................
Indexed Variables........cveu.n
Double-Indexed Varlables........

Attribute OperatorsS....sveeeveeesses

e e e s . .
s e e e e s e s e
L N I I I I B R A RSP

..43

. .45

. .46
. .46

. .46
.46
. .48

..48

..48
..48

.. .49

PTR, the Type Overriding Operator..........cieveeueue...49
Segment OVerride...iveeieeieervessserintensensenansseassbO

32 (0) 33 F 0]
Value-Returning Operators...........ce... . ceeeseas5l
RecOrd OperatOrSesceeteeeeeeeessonssssnsonssssssssssasaeesB3
Operator Precedence in EXpressions........cieieenasens ...53
EQU Directive. iiieer it ioeiieensuioesssesannnnnsas ceveaes.54
PURGE Directive......covevenrens TS T ¢
Forward References....c.oeieiereeennnns e ceeeee.55
Instruction Format.......ce0vevvvnnnnnn T . 4
FlagS:eeeeteteeetosonstasenssonssnonss IR - 1]
Flag RegistersS..seiveeiirteecossseeronesossnns 2]
Flag Usage...veeeeeesoenn A .+.60

Auxiliary Carry Flag (AF).........
Carry Flag (CF).eeeeernnernnnnnnes
overflow Flag (OF).......cvvvunnne
Parity Flag (PF)........... e
Sign Flag (SF)ueeeeeeeeennnnnnnnns
ZerO Flag..veeeesooosnsonesons cee

Assembly Language Manual

R I I I IR N N AR Y

D I N A A A)

. .60
. .60
..60
. .60
..61
..61

8 Macro Assembler.........s..
Introduction. . veeeeeenssn
LOCAL Declaration........

Conditional Assembly.....eo00..

Repetitive Assembly......

Interactive Assembly (IN and OUT)....

Comments.....c.ov0. PERSPEN

Match Operation..........

Advanced Features........
Bracket and Escape.

MATCH Calling Patterns...

s e e s

e s e s e

v

Processing Macro Invocatlons.

Expanded and Unexpanded

Nested Macro Expansion..

9 Accessing Standard Services

Calling ConventionsS.......e.u...

Modes.

“s e

se e

e

“ e

. e v e 0 e
..... .. e e n e
P A A A

D I I I

c e e e

s e s e e
P

e s e e e e
s e s . .
s e s e e e
....... Y
. v e s e
D IR
R I I Y

s e v e s s
s e s s s e
st e e e

s e e e

‘e .

e e e

. ce s e
DECIT P

“ o e e .

from Assembly Code......c...

Register Usage Conventions.....
Segment and Group Conventions..

Main Program...........

5S and DS When Calling Object

Interrupts and the Stack.
Use Of MacCros.....eseees.

s e e e

s s e e e

.

oo . s e e e e e
I N A S “ e
. DR I I I NN

R I N IR

s e e e b e

Module Procedures.....

e s e e e st e

e s e e e e

s e e s e s

Virtual Code Segment Management and Assembly Code.....

System Programming Notes..

10 Assenmbly Control Directives....

EJECT...coven R
GEN:. o vveeteneesannssanonss
NOGEN. .. vt enansoonsnn
GENONLY. ¢ e v vt vevnssoonns
INCLUDE. v vvvvvnavennnssns

LIST . ieiineneseacnoononnnas

NOLIST:: ittt nnarttcnnnans
PAGELENGTH: ¢ ¢ ¢ e e v v evesens
PAGEWIDTH. ¢ e caveesnsoncan

PAGING: ¢ e v eveeevsssannsnns

NOPAGING.: v cosveessnasans

SAVE. ..ttt vrrnacnnane.

RESTORE. . .:cvvutevvacaans
TITLE. . oot eeeeanseneones

R

D A A A A A

s e v e
e e e
e e s et
e e s e
v e e
B R
D N BN
D
P I I I
e e e ae

“ae RTINS
R A A A
. DI
D .
....... Y

Using a Printer with Assembly Llstlngs.......

11 Sample Assembler Modules........

Appendix A: Instruction Set.....

Legend. . ..ovivevneeoonenn

Alternate Mnemonics.......

Appendix B: Reserved Words....

e e e e

.o
e
cs v

...... Cr—
s e .o
.o e

D
CRIEIRY “ e

. “ e
Tt e
.o e s
s e e s
s e s e e s e e
et e
e s e e e

Ce et e e
ca e e
s e s e e

Contents

..78

..83

..85

.A-4

.B~1

v

LIST OF FIGURES

Figure 1-1. Analysis of Sample Instruction........ P -3
Figure 1-2. Example of Complete Assembly Program......coce....9
Figure 2-1. CALL/RET Control Flow.......... N ceea.24
Figure 11-1. Error Message Module Program........ceeeeevess...88
Figure 11-2. Standalone Main Program........oeouoeeeeonsas teeeel91
Figure 11-3. Convergent-Compatible Main Program.............. .92

LIST OF TABLES

Table 2-1. String Instruction Mnemonics.........eieevevenees.. 20
Table 3-1. ConstantsS.......cceiuveas ce et ettt et I 4°]
Table 3-2. Target Label Addressability..... ceeneenasan [36
Table A-1. Effective Address Calculation Time..........c.....A=3
Table A 2 Alternate MNEmMONIiCS...ivtt ittt censeosnnnnnns eev..A-4
Table A-3 Instruction Set in Numeric Order of

Instruction COGe. ... vt vrvrsnereteensnannnnnsnssssA=5
Table A-4. Instruction Set in Alphabetic Order of

Instruction MNnemonic....veevevieeeennnnns ceeseeaA-12

vi Assembly Language Manual

GUIDE TO TECHNICAL DOCUMENTATION

This Manual is one of a series that documents the Convergent™
Family of Information Processing Systems. The series includes:

o Technical Summary

o Workstation Hardware Manual

o Peripherals Hardware Manual

o Central Processing Unit

] CTOS™ Operating System Manual

o Executive Manual

o Editor Manual

o BASIC Manual

o FORTRAN Manual

o COBOL Manual

o Pascal Manual

[¢] Assembly Language Manual

o Debugger Manual

o Utilities Manual

o Data Base Management System Manual

o 3270 Emulator Manual

o System Programmer's Guide

o Operator's Guide

This section outlines the contents of these manuals.
The Technical Summary briefly describes the hardware and software
of the Convergent Family of Information Processing Systems. It

summarizes the other manuals in one volume. It can be helpful to
read this overview before reading the other manuals.

The Workstation Hardware Manual describes the mainframe,
keyboard, and video display. It specifies system architecture,
printed circuit boards (motherboard, processor, I/O-memory, video

Documentation Guide vii

control, ROM expansion, and RAM expansion), keyboard, video
monitor, Multibus interface, communications interfaces, power
supply. and environmental characteristics of the workstation.

The Peripherals Hardware Manual describes the disk subsystems.
It specifies the disk controller motherboard, controller boards
for the floppy disk and the Winchester disks, power supplies,
disk drives, and environmental characteristics.

The Central Processing Unit describes the main processor, the

8086. 1t spec1f1es the machine architecture, instruction set
and programming at the symbolic instruction level.

The CTOS™ Operating System Manual describes the operating

system. It specifies services for managing processes, messages,
memory, exchanges, tasks, video, disk, keyboard, printer, timer,
communications, and files. In particular, it specifies the

standard file access methods.

The Executive Manual describes the command interpreter, the
program that first interacts with the user when the system is
turned on. It specifies commands for managing files and invoking
other programs such as the Editor and the programming languages.

The Editor Manual describes the text editor.

The BASIC, FORTRAN, COBOL, Pascal and Assembly Language Manuals

describe the system's programming languages. Each mannual
specifies both the 1language itself and also operating
instructions for that language. For Pascal, the manual 1is

supplemented by a popular text, Pascal User Manual and Report.

The Debugger Manual describes the Debugger, which is designed for
use at the symbolic instruction level. Together with appropriate
interlistings, it can be used for debugging FORTRAN, Pascal, and
assembly language programs. (BASIC and COBOL, in contrast, are
more conveniently debugged using special facilities described in
their respective manuals.)

The Utilities Manual describes miscellaneous programs such as the
Linker, which 1links together separately compiled object files,
and the Asynchronous Terminal Emulator.

The Data Base Management System Manual describes the data base
management system. It = specifies (1) the data definition
language, which defines the logical structure of data bases and
separately defines their physical organization, (2) the host
language interfaces for accessing data bases from each of the
system's programming languages, and (3) the utilities for
creating, loading, unloading, and reorganizing data bases.

The 3270 Emulator Manual describes the 3270 emulator package.

viii Assembly Language Manual

The System Programmer's Guide addresses the needs of the system
programmer or system manager for detailed information on
operaating system structure and system operation. It describes
(1) diagnostics, (2) procedures for customizing the operating
system, and (3) system utilities normally used only by a system
programmer or manager, for example, Initialize Volume, Backup,
and Restore.

The Operator's Guide addresses the needs of the average user for
operating instructions. It describes the workstation switches
and controls, keyboard function, and floppy disk handling.

Documentation Guide ix

1 INTRODUCTION

This Manual describes the Convergent assembler and assembly lang-
uage. The Manual is directed towards readers who understand some
assembly language reasonably well

To understand an assembler, it is usually helpful to first under-
stand the machine architecture of the target CPU. If you are not
already familiar with the machine-level architecture of the
Convergent Information Processing System, you can find it useful
to read the Central Processing Unit. That document also contains
a brief discussion of assembly language programming at an elemen-
tary level, and it describes the instruction set in detail. So,
if this Manual 1is too difficult, try reading the Central

Processing Unit.

Since this Manual is primarily a reference work, we do not expect
you to read it straight through. But 1if you are not entirely
conversant with Convergent assembly language, you should
initially read the first four sections.

Choice Among Convergent Languages

A programmer working with a Convergent Information Processing
System has many different languages to choose among. The choice
among languages involves several considerations.

o Does the program require the unique business features of
COBOL or the scientific features of FORTRAN?

o Is an interpreted language (such as BASIC) suitable?

o Will the system programming and data structuring facilities
of Convergent Pascal be particularly valuable in the program
to be written?

o Should the program be divided into parts to be written in
different languages and combined by the Linker?

If the program (or program part) requires direct access to
processor registers and flags, then assembly language is the best
choice. To the extent that memory utilization and object code
efficiency are more important than development speed and program-
mer productivity, assembly language is a better tool than Pascal
or FORTRAN.

It is rarely the case that an entire application system ought to
be written in assembly language. The programmer should determine
those parts in which direct access to machine features, efficien-
cy, and memory utilization are overriding concerns, and implement
those parts in assembly language, while writing the remainder of
the application in an appropriate high-level language.

Introduction 1

Features of the Assembly Language

The Convergent assembly language features a powerful instruction
set, sophisticated code and data structuring mechanisms, strong
typing (the ability to check that the use of data is consistent
with 1its declaration), a conditional assembly facility, and a
macro language with extensive string manipulation capabilities.

Design of the Instruction Set

A complete description of the instruction set is given in Appen-
dix A and in the Central Processing Unit.

This assembly language differs from most other assembly lan-

guages, which wusually have one instruction mnemonic for each

operation code (opcode). 1In this assembly language, a particular

instruction mnemonic ca be assembled into any of several
o 4 ra

opcodes: the type of ende on the type of operand.

n
ype of opcede
This assembly language is a "strongly typed" language because
mixed operand types are not permitted in the same operation (as,
for example, moving a declared byte to a word register). You
cannot inadvertently move a word to a byte destination, thereby
overwriting an adjacent byte, nor can you move a byte to a word
destination, thereby leaving meaningless data in an adjacent
byte. However, if you need to override the typing mechanisnm,
there is a special operation, called PTR, which allows you to do
this. See Section 4.

The assembly language makes it possible to convey much informa-
tion in a single, easy-to-code instruction. Consider this
instruction:

sUB [BP][SI].field4, CH

The contents of the 8-bit register CH are subtracted from a
memory operand; registers BP and SI are used to calculate the
address of the memory operand; and the identifier field4 and the
dot operator (.) are used to designate symbolically an offset
within the structure pointed to by BP and SI.

The register BP points within the run-time stack and is used, as
is the case in this example, when the operand is on the stack.
(The segment register Eor the stack segment is SS, so the 16-bit
contents of SS are automatically used together with BP in addres-
sing the memory operand.)

The 16-bit contents of register SI are the offset of the data
from the top of the stack. That is, the contents of BP and SI
are added in the effective address calculation.

In this context, the dot operator (.) refers to a structure.
(See Section 3 for a description of structure definitions.) The

2 Assembly Language Manual

identifier that follows, field4, identifies a structure field.
Its value gives the relative distance, in bytes, from the begin-
ning of the structure to field4. (Offset values for each field
of the structure relative to the beginning of the structure are
generated by the assembler. In this way the structure can be
used as a pattern of relative offset values, a "storage
template.")

This instruction combines the contents of the stack segment reg-
ister S$S, the end of stack register BP, the index register SI,
and the offset of field4, to form an absolute machine address.
The contents of the 8-bit register CH are subtracted from the
byte thus addressed. This instruction includes opcode, base
register, index register, structure displacement and relative
offset, type information, direction (register to memory), and
source register. The instruction assembles into only three
bytes.

Arrays

Arrays of bytes, words, doublewords, structures, and records
(defined below) can be defined and ijinitialized with, respec-
tively, the DB, DW, DD, structure-name, and record-name direc-
tives, as shown here:

rgb DB 50 DUP(66) ;Allocate 50 bytes, named rgb,
sinitialize each to 66.

rgw DW 100 DUP(0) ;Allocate 100 words, named rgw,
sinitialize each to 0.

rgdd DD 20 DUP(?) ;Allocate 20 doublewords, named

;rgdd, don't initialize them.

When you refer to array elements, be aware that the origin of an
array is 0. This means that the first byte of the array rgb is
rgb[0], not rgb[1l]. Its nth byte is rgb[n-1]. Also, be aware
that indexes are the number of bytes from the start of the array,
regardless of whether the array elements are bytes, words, or
doublewords.

Object Modules and Linking

An object module can contain any (or all) of the following: code,
constants, variable data. The Linker (see the Utilities Manual)
arranges the contents of a set of object modules into a memory
image, typically with all code together, all constants together,
and all variable data together. (This arrangement makes optimal
use of the addressing structures of the 8086.) Although the
Linker produces such arrangements automatically, the programmer
will occasionally want to exercise explicit control. The con-~-
cepts and facilities used to arrange memory are explained in
Section 2.

Introduction 3

Segments and Memory References

At assembly-time, you can define as many segments as you wish, as
long as each assembly module has least one segment. (You can
omit segment definition statements, in which case the default
segment is assigned the name ??SEG by the assembler.) Each inst-
ruction of the program and each item of data must lie within a
segment. Code and data may be mixed in the same segment, but
this is generally not done because such a segment cannot be link-
ed with object segments produced by Pascal or FORTRAN.

Here are examples of segments:

o global data segment,

o local data segment,

o stack segment, and

o main program segment (code).

A hardware segment in memory contains up to 64K bytes. It starts
at an address divisible by 16, called a paragraph boundary. A

paragraph number that is used to address the beginning of a hard-
ware segment is a segment base address.

A segment defined by the programmer is a logical segment. It
does not necessarily start at a paragraph boundary, so logical
segments need not correspond to hardware segments.

The paragraph numbers at which segments begin are contained, at
run-time, within the four 16-bit segment registers (CS, DS, ES,

and SS). At any time, there are four "current" segments. cs
always defines the current code segment. DS usually defines the
current data segment. SS always defines the current stack seg-

ment. ES can define an auxiliary data segment,

The memory address calculations done by the processor have two
components: a segment base address and an offset. The segment
base address must be in one of the four segment registers (CS,
DS ES, or SS).

When a program gets a data item from memory, the hardware com-
bines the 16-bit offset and the 16-bit segment base address as
follows:

20-bit physical address = 16*(segment base address) + offset
For example, if a program is assembled at offset 2400h within the
data segment, and if segment register DS is loaded with the value
3EO0h, then the physical address of the data is:

16*3E00h + 2400h = 40400h

4 Assembly Language Manual

The programmer is generally not concerned with this physical
address.

Registers

The registers are:

o 16-bit segment (CS, DS, SS, ES),

o 16-bit general (AX, BX, CX, DX, SP, BP, SI, DI),
o 8-bit general (AH, AL, BH, BL, CH, CL, DH, DL),
o) Base and index 16-bit (BX, BP, SI, DI), and

o 1-bit flag (AF, CF, DF, IF, OF, PF, SF, TF, ZF).

Segment registers vo.taln segment base addresses and wust be
approprlately initialized at run-time. (1f assembly language is
used only to 1mp1ement subroutines for a main program written in
a high-level language, this initialization is automatic.)

Each of the 16-bit general, 8-bit general, and base and index
registers can be used in arithmetic and logical operations. We
frequently call AX "the accumulator," but the processor actually
has eight 16-bit accumulators {(AX, BX, CX, DX, SP, BP, SI, DI)
and eight 8-bit accumulators (AH, AL, BH, BL, CH, CL, DH, DL).
Each 8-bit accumulator is the high-order or low-order byte of AX,
BX, CX, or DX.

Addressing

Operands can be addressed in several different ways with various
combinations of base registers (BX and BP), index registers (SI
and DI), displacement (adding an 8- or 16-bit value to a base or
index register or to both), and direct offset (1l6-bit addresses
used without the base or index register).

A two-operand instruction has a source operand, and a destination
operand, as in:

MOV destination, source

The source operand can be an immediate value (a constant that is
part of the instruction itself, such as the "7" in MOV CX, 7), a
register, or a memory reference. If the source is an immediate
value, then the destination operand can be either a register or a
memory reference. T

Introduction 5

9

Tenuew abenbuel ATquassy

W MOD 77
00000001]

ol otforderof | <] INSTRUCTION
{ l — ____,_T\/‘ x " POINTER
|

A ~= =

[NEXT: ADD [BP){SI | Field4,DX | SEGMENT BASE REGISTERS

%

’Y cs
\-/j/\/ | BASE OF CODE SEGMENT GENERAL REGISTERS s
| } BOTTOM OF STACK 1 AX s
| | | 8x = o
i | | cX
t
J : 1 ox
| H T
I v — [‘ INDEX_REGISTERS
] ! — b — — S1
| 7 4 DI
L / STACK MARKER
o’/ L o
r —-E— _—— BP
i
-4 STACK POINTER
TOP OF STACK |SP
LEGEND
‘ Data flow for this
addition operation SAMPLE VALUE MEANING) COMMENT
D=0 Memory destination D=1 would mean register
«—e 16-bit segment base value destination
W=1 Word operands . ¥=0 would be byte operands
! o 16-bit effective address M0D=01 B1splacement 1 byte; sign-extend *
ffset ithi REG=010 se DX register -
fo et) within segment R/M=010 Effective address=(BP+(SI)+disp. *
- -bit index or
‘*gisg{ageemebr:tt v‘a"hu: * For more encodings of MOD, REG and R/M, see the Central Processing Unit,
comprising part of offset page 156,

Figure 1-1. Analysis of a Sample Instruction.

Source and destination operands cannot both be memory references.

A memory reference is direct when a data item is addressed with-
out the use of a register, as in:

MUL prod, DX ;prod is addressed by 16-bit direct
;offset.

MOV CL, jones.bar ;O0f fset of jones plus bar is 16-bit direct
;offset.

A reference is indirect when a register is specified, as in:

MUL prod[BX], DX ;Destination address is base register plus
;16-bit displacement.
MOV CX, [BP][SI] ;Source address is sum of base register
;and index register.
See Figure 1-1 for an analysis of a sample instruction.
Procedures

The Convergent assembly language formalizes the concept of a
callable procedure by providing explicit directives to identify
the beginning and end of a procedure. Whereas other assembly
languages start a procedure with a label and end it with a return
instruction, the Convergent assembly language defines a procedure
as a block of code and data delimited by PROC and ENDP state-
ments. Thus the extent of a procedure is apparent. Here is an
example:

WriteFile PROC

RET
WriteFile ENDP

Procedures can be nested but must not overlap:

Introduction 7

WriteFile PROC

RET
WriteLine PROC

RET

WriteLine ENDP

Macros

The macro capability of the assembler is used to define abbrevi-
ations for arbitrary text strings, including constants, expres-
sions, operands, directives, sequences of instructions, comments,
etc. These abbreviations can take parameters: they are string
functions that are evaluated during assembly.

Fields of instruction can be parameters of macros. Macro calls
can be nested. Macro definitions can be saved in a file. By
including such a "macro library," the programmer can customize
the assembler to include frequently used expressions, instruction
sequences, and data definitions. The macro facility also
provides interactive assembly by means of a macro-time console
I/0 facility.

Example
See Figure 1-2 for an example of a complete assembly program.
Invoking the Assembler from the Executive

Invoke the assembler with the Executive's assemble command. The
following form appears:

Assemble
Source files
[Errors only?]
[GenOnly, NoGen, or Gen]
[Object file]
[List file]
[Error file]
[List on pass 1?]

8 Assembly Language Manual

uoT3ONPOIIUT

6

Convergent Macro Assembler X1 2Factorial Subroutine

Q000
0001
0003
000&6
0009
000B
000D

000F
0012
0015
0018
0019
001C
0Q01F
0020

000A
0006
55
8BEC
880100
B34E0A
F7EL
700F
E2FA

CA45E0S
2587907
B8000D
5D

CAQ600
B85&11E
S0

CA0600

VONOCVOPWON~

33
34
35
34
37

16:00 18-Sep-80 Page 1

$TITLE(Factorial Subroutine)
FactSeg SEGMENT WORD PUBLIC
ASSUME CS:FactSeg
PUBLIC Factorial
5 The calling pattern is Factoriall(n, pFactorialRet): ErcType
H n is a word representing a positive'integer
i pFactorialRet is a long pointer (4 bytes) to a word where the product is to be
H ErcType is a word of errvor status returned in AX:
i O if no error
H 7777 i# some error (e.g. overflow or invalid arg)
Factorial PROC FAR
Thn EQU 10 itelative offset of n within frame
rbp EQU & ivelative offset of pFactorialRet within frame
PUSH BP isave old frame pointer
MOV BP, SP ipoint to current stack top
MOV AX, 1 ;jinitialize prcduct
MOV CX, [BP+rbnl iCX gets n
Repeat: MUL CX imultiply by next factor
Jo Error ierror exit if overflow
LDOoP Repeat idecrement factor in CX and iterate
i If control falls through the LOOP, then we’re done
LES BX, DWORD PTRLBP+rbpl iset up to store result
MOV ES: (BX1, AX istore result
MoV AX, O ino error
POP BP iTestore prior frame pointer
RET & ipop the & bytes of argument from the stack
Error: MOV AX, 7777 iput error code into AX
POP BP iTestore prior frame pointer
RET & ipop the & bytes of argument from the stack
Factorial ENDP

FactSeg ENDS

END

There were no errors detected

stored

Figure 1-2. Example of a Complete Assembly Program.

You need to know how to fill in a form. This is described in
"Filling in a Form" in the Executive Manual.

Field Descriptions

Source files. Fill in the "Source files" field with a list of
the names of the source files to be assembled. It is the only
required field. If several files are specified, the result is
logically like asssembling the single file that is the concat-
enation of all the source files. (In a list of names of source
files, separate each name by a space. Do not use commas.)

As an example, suppose the program is contained in Main.Asm and
depends on a set of assembly-time parameters. You might maintain
two source fragments to define the parameters, one for debugging,
and one for production. Then "Source files" would be either:

ParamsDebugging .Asm Main.Asm
or:
ParamsProduction.Asm Main.Asm

[Errors only?]. Fill in the "[Errors only?] field with "Yes" if
you want a 1listing only of 1lines with errors. The listing
normally contains source and object code for all source lines.
Assembly produces an object file and a list file. The names of
the object and list files are specified as described below. The
default for "[Errors only?]" is "No", that is, a full listing.

[Genonly, NoGen, or Gen]. Fill in the "[GenOnly, NoGen, or Gen]"
field to specify how the results of macro expansion are listed.
This setting can also be made in the source with the assembly
control directives $GENONLY, $NOGEN, and $GEN. In GenOnly mode
the results of macro expansion are listed. In NoGen mode, the
listing contains the unexpanded macro invocations. In Gen mode,
the listing contains invocations and full expansions, as well as
intermediate stages of expansion. This last mode is most useful
in debugging complex macros. Note that these controls affect
only the content of the listing: the result of full expansions is
always assembled to produce the object code. The default for
"[GenOnly, NoGen, or Gen]" is GenOnly.

[Object file]l. Fill in the "[Object file]" field to specify to
which object file to write the object code that results from the
assembly. The default is the last source file. That is, if you
do not specify an object, a default object file is chosen as
follows: treating the last source name as a character string,
strip off any final suffix beginning with the character period
{(.), and add the characters ".0Obj". The result is the name of
the file. For example, if the last source file is:

10 Assembly Language Manual

[Dev] <Jones>Main
then the default object file is:

[Dev]<Jones>Main.Obj
If the last source file is:

Prog.Asm
then the default object file is:

Prog.0Obj
[List File]. A listing of the assembly is written to the speci-
fied list file. The default is the last source file. That is,
if no explicit listing file is specified, a file name is derived
from the last source file. With the examples given above, the
list files would be named, respectively:

[Dev]<Jones>Main.lst
and:

Prog.lst
[Error file]. Fill in the "[Error filel" field with the name of
the file to receive the "errors only" listing if you wish to
create both a full listing and a listing of just the errors. The
default is to create no such listing.
[List on pass 1?]. Fill in the "[List on pass 1?]" field with
"Yes" +to diagnose certain errors in macros. Listings are
normally generated only during the second assembly pass.
However, some programming errors involving macros prevent the
assembly process from ever reaching its second pass. To diagnose

such errors, specify "[List on pass 1?]" as "Yes". Listings are
then generated during both assembly passes. The default is "No".

Introduction 11

2 PROGRAMS AND SEGMENTS
Segments
SEGMENT/ENDS Directives

Each of the instructions and variables of a program is within
some segment. Segments can be named explicitly using the SEGMENT
directive, but if no name 1is specified for a segment, the
assembler assigns the name ??SEG. The SEGMENT directive also
controls the alignment, combination, and contiguity of seg-
ments. Its format is:

[segname] SEGMENT [align-typel] [combine-type] ['classname']

[segname] ENDS

The optional fields must be in the order given. The segment is
located on a memory boundary specified by [align-typel, as
follows:

1. PARA (the default)--the segment begins on a paragraph
boundary, an address with the least significant hexadecimal
digit of O.

2. BYTE--the segment can begin anywhere.

3. WORD--the segment begins on a word boundary, i.e., an even
address.

4. PAGE--the segment begins on an address divisible by 256.

Segments can be combined with other segments by the Linker as
specified by [combine-typel. Segment combination permits segment
elements from different assemblies to be overlaid or concatenated
by the Linker. Such segment elements must have the same segname,
classname, and an appropriate combine-type, as follows:

1. Not combinable (the default).

2. PUBLIC--when linked, this segment is concatenated (made adja-
cent) to others of the same name. The Linker controls the
order of concatenation during linkage, according to your
specifications.

3. AT expression--the segment is located at the 16-bit segment
base address evaluated from the given expression. The
expression arqgument is interpreted as a paragraph number.
For example, if you wish the segment to begin at paragraph
3223 (absolute memory address 32230h), specify AT 3223h. You
can use any valid expression that evaluates to a constant and

Programs and Segments 13

has no forward references. An absolute segment is permitted
to establish a template for memory to be accessed at run-
time; no assembly-time data or code is automatically loaded
into an absolute segment.

4. STACK--the elements are overlaid such that the final bytes of
each element are juxtaposed to yield a combined segment whose
length is the sum of the lengths of the elements. Stack
segments with the name STACK are a special case. When stack
segments are combined, they are overlaid but their lengths
are added together. When the Linker has combined all stack
segments, it forces the total length of the aggregate stack
segment to a multiple of 16 bytes. Compilers construct stack
segments automatically. However, if your entire program is
written in assembly language, you have to define an explicit
stack segment. There are special rules regarding the use of
the stack that must be observed for calls to standard object
module procedures. See Section 9, '"Accessing Standard
Services from Assembly Code" below.

5. COMMON--the elements are overlaid such that the initial bytes
of each element are juxtaposed to yield a combined segment
whose length is the largest of the lengths of the elements.

The optional classname can be used to affect the ordering of
segments in the memory image constructed by the Linker. See the
Utilities Manual for details.

Segment Nesting

You can code a portion of one segment, start and end another, and
then continue with the coding of the first. However, there is
only lexical, not physical nesting, since the combination rules
given above are always followed.

Lexically nested segments must end with an ENDS directive before
the enclosing SEGMENT directive 1is closed with its ENDS
directive.

The fundamental units of relocation and 1linkage are segment
elements, linker segments, class names, and groups.

An object module is a sequence of segment elements. Each segment
element has a segment name. An object module might consist of
segment elements whose names are B, C, and D.

The Linker combines all segment elements with the same segment
name from all object modules into a single entity called a linker
segment. A linker segment forms a contiguous block of memory in
the run-time memory image of the task. For example, you might
use the Linker to link these two object modules:

14 Assembly Language Manual

Object Module 1
containing segment elements B, C, D

Object Module 2
containing segment elements C, D, E

Linkage produces these four linker segments:

Linker Segment B consisting of element Bl
Linker Segment C consisting of elements Cl, C2
Linker Segment D consisting of elements D1, D2
Linker Segment E consisting of element E2

(In each of these cases, xi denotes the segment element x in
module i.)

The ordering of the various linker segments is determined by
class names. (A class name is an arbitrary symbol used to desi-
gnate a class.) All the linker segments with a common class name
and segment name go together in memory. For example, if B1l, D1,
and E2 have class names Red, while Cl has class name Blue, then

the ordering of linker segments in memory is:
B, D, E, C

If you look inside the linker segments, you see that the segment
elements are arranged in this order:

B1, D1, D2, E2, Cl, C2

(If two segment elements have different class names, then they
are considered unrelated for purposes of these algorithms, even
though they have the same segment name.)

As you see from this, segment names and class names together
determine the ordering of segment elements in the final memory
image.

The next step for the Linker is to establish how hardware segment
registers address these segment elements at run-time.

A group is a named collection of linker segments that is addres-
sed at run-time with a common hardware segment register. To make
the addressing work, all the bytes within a group must be within
64K of each other.

Several linker segments can be combined into a group. For
example, if B and C were combined into a group, then a single
hardware segment register could be used to address segment
elements Bl, Cl, and C2.

Segment, class, and group names can be assigned explicitly in
assembler modules using appropriate assembler directives. Most

Programs and Segments 15

compiled languages assign these names automatically. (See the
individual language manuals for details.)

ASSUME Directive
The ASSUME directive declares how the instructions and data spec-
ified during assembly are to be addressed from the segment base
registers during execution. The programmer must explicitly con-
trol the values in segment registers at run-time. Use of the
ASSUME directive permits the assembler to verify that data and
instructions will be addressable at run-time.
The ASSUME directive can be written either as:
ASSUME seg-reg:seg-name [, ...]
or:
ASSUME NOTHING
Here seg-reg is one of the segment registers.
Seg-name is one of these:
1. A segment name, as:
ASSUME CS:codeSeg, DS:dataSeg
2. A GROUP name that has been defined earlier, as:
ASSUME DS:DGroup, CS:CGroup
3. The expression SEG variable-name or SEG label-name, as:
ASSUME CS:SEG Main, DS:SEG Table
4. The keyword NOTHING, as:
ASSUME ES:NOTHING
A particular seg-reg:seg-name pair remains in force until another
ASSUME assigns a different segment (or NOTHING) to the given seg-
reg. To ASSUME NOTHING means to cancel any ASSUME in effect for
the indicated registers. A reference to a variable whose segment
is ASSUMEd automatically generates the proper object instruction;
a reference to a variable whose segment is not ASSUMEd must have

an explicit segment specification. (See the "Segment Override
Prefix" below.)

Here is an example:

16 Assembly Language Manual

Tables SEGMENT

xTab DW 100 DUP(10) ; 100-word array,
;initially 10's.
yTab DW 500 DUP(20) ; 500~-word array,

;initially 20's.
Tables ENDS

7Seg SEGMENT
zTab DW 800 DUP(30) ;800-word array,
;initially 30's.
72Seg ENDS

Sum SEGMENT

ASSUME CS:Sum,DS:Tables, ES:NOTHING ;Sum addressable through
;CS and Tables through
;DS. No assumption
:about ES.
Start: MOV BX, xTab ; XTab addressable by DS:

;defined in Tables.

ADD BX, yTab ;yTab addressable by DS:
;defined in Tables.

MOV AX, SEG zTab ;Now AX is the proper
;segment base address to
;address references to
;zTab.

MOV ES, AX ;ES now holds the
;segment base address
; for ZSeqg.

MOV ES:zTab, 35 ;zTab must be addressed
;with explicit segment
;override--the
;assembler doesn't know
;what segment register
;to use automatically.

Sum ENDS

In this example, the ASSUME directive:

1. Tells the assembler to use CS to address the instructions in
the segment Sum. (This fragment of program does not load
CS. CS must previously have been set to point to the segment
Sum. For example, CS is often initialized by a long jump or
long call.)

2. Tells the assembler to look at DS for the symbolic references
to xTab and yTab.

Loading Segment Registers
The CS register is loaded Dby a long jump (JMP), a long call

(CALL), an interrupt (INT n, or external interrupt), or by a
hardware RESET.

Programs and Segments 17

The instruction INT n loads the instruction pointer (IP) with the
16-bit value stored at location 4*n of physical memory, and loads
Cs with the 16-bit value stored at physical memory address 4*n+2.

A hardware RESET loads CS with OFFFFh and IP with O.

Here is an example of defining the stack and loading the stack
segment register, SS:

Stack SEGMENT STACK
DW 1000 DUP(0) ;1000-words of
;stack.
StackStart LABEL WORD ;Stack expands
;toward low memory.
Stack ENDS

StackSetup SEGMENT
ASSUME CS:StackSetup

MOV BX, Stack
Mov §S, BX
Mov SP, OFFSET StackStart ;start = end

sinitially
StackSetup ENDS

This example illustrates an important point: each of the two

register pairs SS/SP and CS/IP must be loaded together. The

hardware has special provision to assist in this: loading a

segment register by a POP or MOV instruction causes execution of

the very next instruction to be protected against all inter-
rupts. That is why the very next instruction, after the load of

the stack base register, SS, must load the stack offset register,

SP.

CS and its associated offset IP are loaded only by special
instructions and never by normal data transfers. SS and its
associated offset SP are loaded by normal data transfers but must
be loaded in two successive instructions.

Segment Override Prefix
If there is no ASSUME directive for a reference to a named vari-
able, then the appropriate segment reference can be inserted

explicitly as a segment override prefix coding. This is the
format:

Seg-reg:
Here seg-reg is CS, DS, ES, or SS, as in:
DS:xyz
This construct does not require an ASSUME directive for the vari-

able reference, but its scope is limited to the instruction in
which it occurs.

18 Assembly Language Manual

Thus, the two

equivalent:

following

Hohum SEGMENT

ASSUME CS:Hohum,
MOV AX, Frog
ADD AL, Toad
MOV Cicada,

Hohum ENDS

DS: Pond

AX

Hohum SEGMENT
ASSUME CS:Hohum
MOV AX, DS:Frog
ADD AL, DS:Toad
MOV DS:Cicada,
Hohum ENDS

AX

where Pond would be defined by:

Pond SEGMENT

Frog DW 100 DUP (0)

Toad DB 500 buP (0)

Cicada DW 800 DUP (0)
Pond ENDS

Anonymous References

program

fragments are

;100 words 0's
;500 bytes 0's
;800 words 0O's

correct

and

Memory references that do not include a variable name are called

anonymous references.

[BX]
[BP]

Hardware defaults
anonymous references,
operator. These are the hardwa

determine the

These are examples:

segment

re defaults:

Addressing Default
{BX] DS
[Bx][D1] DS
[Bx]1[sI1] DS
[spr] ss
[BP][DI] ss
[BP][SI] Ss
[D1] DS
[s1] DS

The exceptions to these default

1. PUSH, POP, CALL, RET, INT,

S are:

registers
unless there is an explicit segment prefix

for

these

and IRET always use SS and this
default cannot be overridden.

Programs and Segments

19

2. String instructions on operands pointed to by DI always use
ES and this default cannot be overridden.

Be particularly careful that an anonymous reference is to the
correct segment: unless there is a segment prefix override, the
hardware default is applied. For example:

ADD BX, [BP+5] is the same as ADD AX, SS:[BP+5]
MoV [Bx+4], CX is the same as MOV DS:[BX+4], CX
SUB [BX+SI], CX is the same as SUB DS:[BX+SI], CX
AND [BP+DI], DX is the same as AND SS:[BP+DI], DX
MoV BX, [SI].one is the same as MOV BX, DS:[SI].one
AND [DI], CX is the same as AND DS:[DI], CX

The following examples require explicit overrides since they
differ from the default usage:

ADD AX, DS:[BpP+5]

MOV CS:[BX+2], AX

XOR SS:[BX+SI1], CX

AND DS:[BP+DI], CX

MOV BX, CS:[DI].one

AND ES:[SI+4], DX

Memory Reference in String Instructions

The mnemonics of the string instructions are shown in Table
2-1. These include those that can be coded with operands (MOVS,
etc.) and those that can be coded without operands (MOVSB, MOVSW,
etc.).

Each string instruction has type-specific forms (e.g., LODSB,
LODSW) and a generic form (e.g., LODS). The asssembled machine
instruction is always type-specific. If you code the generic
form, you must provide arguments that serve only to declare the
type and addressability of the arguments.

Table 2-1. String Instruction Mnemonics.

Mnemonic Mnemonic Mnemonic

For Byte For Word For Symbolic
Operation Operands Operands Operands*
Move MOVSB MOVSW Movs
Compare CMPSB CMPSW CMPS
Load AL/AX LODSB LODSW LODS
Store from AL/AX STOSB STOSW STOS
Compare to AL/AX SCASB SCASW SCAS

*The assembler checks the addressability of symbolic operands.
The opcode generated is determined by the type (BYTE or WORD)
of the operands.

—_—

20 Assembly Language Manual

A string instruction must be preceded by a load of the offset of
the source string into SI, and a load of the offset of the desti-
nation string into DI.

The string operation mnemonic may be preceded by a '"repeat
prefix" (REP, REPZ, REPE, REPNE, or REPNZ), as in REPZ SCASB.
This specifies that the string operation is to be repeated the
number of times contained in CX.
String operations without operands (MOVSB, MOVSW, etc.) use the
hardware defaults, which are SI offset from DS, and DI offset
from ES. Thus:

MOVSB
is equivalent to:

MOVS ES:BYTE PTR[DT],[s1]

If the hardware defaults are not used, both segment and type
overriding are required for anonymous references, as:

MOVS ES:BYTE PTR[DI], S$S:[SI]
See Section 4 below for a discussion of PTR.
String instructions can not use [BX] or [BP] addressing.
For details of string instructions and their use with a repeat
prefix, see the Central Processing Unit, page 65. In particular,

note that repeat and segment override should not be used together
if interrupts are enabled.

GROUP Directive

The GROUP directive specifies that certain segments lie within
the same 64K bytes of memory. Here is the format:

name GROUP segname [, ...]

Here name is a unique identifier used in referring to the
group. segname can be the name field of a SEGMENT directive, an
expression of the form SEG variable-name, or an expression of the
form SEG label-name. (See "Value-Returning Operators" in Section
4 for a definition of the SEG operator.) [, ...l is an optional
list of segnames. Each segname in the list is preceded by a

comma .

This directive defines a group consisting of the specified seg-
ments. The group-name can be used much like a segname, except

that a group-name must not appear in another GROUP statement as a
segname.)

Here are three important uses of the GROUP directive:

Programs and Segments 21

1. Use it as an immediate value, loaded first into a general
register, and then into a segment register, as in:

MOV CX,DGroup
MOV ES,CX

The Linker computes the base value as the lowest segment in
the group.

2. Use it an ASSUME statement, to indicate that the segment
register addresses all segments of the group, as in:

ASSUME CS:CGroup

3. Use it as an operand prefix, to specify the use of the group
base value or offset (instead of the default segment base
value or offset), as in

MOV CX,OFFSET DGroup:xTab

(See "vValue-Returning Operators" in Section 4 for additional
information about OFFSET.)

It is not known during assembly whether all segments named in a
GROUP directive will fit into 64K; the Linker checks and issues a
message if they do not fit. Note that the GROUP directive is
declarative only, not imperative: it asserts that segments fit in
64K, but does not alter segment ordering to make this happen. An
example is:

DGroup GROUP dSeg, sSeg
An associated ASSUME directive that might be used with this group
is:

ASSUME CS:codel, DS:DGroup, SS:DGroup
You can not use forward references to GROUPs.
A single segment register can be used to address all the segments
in a group. This should be done carefully, however, because
offsets in instructions and data are relative to the base of the
group and not a particular segment.
Procedures
PROC/ENDP Directives
Procedures can be implemented using the PROC and ENDP direc-~
tives. Although procedures can be executed by in-line "fall-
through" of control, or jumped to, the standard and most useful
method of invocation is the CALL.

Here is the format of the PROC/ENDP directives:

22 Assembly Language Manual

name PROC [NEAR | FAR]
RET

nhame ENDP
name is specified as type NEAR or FAR, and defaults to NEAR.

If the procedure is to be called by instructions assembled under
the same ASSUME CS value, then the procedure should be NEAR. A
RET (return) instruction in a NEAR procedure pops a single word
of offset from the stack, returning to a location in the same
segment.

If the procedure is to be called by instructions assembled under
another ASSUME CS value, then the procedure should be FAR. A RET
in a FAR procedure pops two words, new segment base as well as
offset, and thus can return to a different segment.

Calling a Procedure

The CALL instruction assembles into one of two forms, depending
on whether the destination procedure is NEAR or FAR.

When a NEAR procedure is called, the instruction pointer (IP, the
address of the next sequential instruction) is pushed onto the
stack, and control transfers to the first instruction in the
procedure.

When a FAR procedure is called, first the content of the CS reg-
ister is pushed onto the stack, then the IP is pushed onto the

stack, and control transfers to the first instruction of the
procedure.

Multiple entry points to a procedure are permitted. All entry
points to a procedure should be declared as NEAR or FAR, depen-
ding on whether the procedure is NEAR or FAR.

All returns from a procedure are assembled according to the
procedure type (NEAR or FAR).

See Figure 2-1 for the procedure CALL/RET control flow.
Recursive Procedures and Procedure Nesting on the Stack

When procedures call other procedures, the rules are the same for
declaration, calling, and returning.

Programs and Segments 23

START
SEGA SEGMENT SEGB SEGMENT
ASSUME CS: SEGA ASSUME CS: SEGB
» COMMENCE PROC AGAIN PROC FAR
CALL BBB

ERGO: MOY BX, 5

XXX LABEL FAR

O, s

CALL XXX

TAO: INC AX

RET

B8B ENDP <3>

AGAIN ENDP
SEGA ENDS SEGB ENDS

KEY:

0) ©) ©) ®
Comes from any of: SP4—Sp-2 Spe— sp.2 1P4—(SP) 1p4=(5P)
o hardware reset (SP)g~—1P (SP)@= CS SPE=SP+2 SPdeSP+2
o external interrupt |IPg=O0FFSET BBB|CSqg= SEGB CS@=(sP)
o INT N SPgma SP-2 SPE=5P+2
o CALL BX SP) IP AND
o NEAR/FAR IPg— OFFSET XXX|SP4— SP+8
o JUMP/CALL R (For RET 8)
whatever the START,
CS @=—SEGA
1P 4~0FFSET COMMENCE

Figure 2-1. CALL/RET Control Flow,

24 Assembly Language Manual

A recursive procedure is one which calls itself, or one which
calls another procedure which then calls the first and so
forth. Here are two points to note about recursive procedures:

1. A recursive procedure must be reentrant. This means that it
must put local variables on the stack and refer to them with
[BP] addressing modes

2. A recursive procedure must remove local variables from the
stack before returning, by appropriate manipulation of SP.

The number of calls that can be nested (the "nesting limit") is
delimited by the size of the stack segment. Two words on the
stack are taken up by FAR calls, and one word by NEAR calls. Of
course, parameters passed on the stack and any local variables
stored on the stack take additional space.

Returning from a Procedure

The RET instruction returns from a procedure. It reloads IP from
the stack if the procedure is NEAR; it reloads both IP and SP
from the stack if the procedure is FAR. IRET is used to return
from an interrupt handler and to restore flags.

A procedure can contain more than one RET or IRET instruction,
and the instruction dJdoes not necessarily come 1last in the
procedure.

Location Counter ($) and ORG Directive

The assembly-time counterpart of the instruction pointer is the
location counter. The value contained in the location counter
is symbolically represented by the dollar sign ($). The value is
the offset from the current segment at which the next instruction
or data item will be assembled. This value is initialized to O
for each segment. If a segment is ended by an ENDS directive,
and then reopened by a SEGMENT directive, then the location coun-
ter resumes the value it had at the ENDS.

The ORG directive is used to set the location counter to a
nonnegative number. Here is the format:
ORG expression

The expression is evaluated modulo 65536 and must not contain any
forward references. The expression can contain $ (the current
value of the location counter), as in:

ORG OFFSET $+1000
which moves the location counter forward 1000 bytes.

An ORG directive may not have a label.

Programs and Segments 25

The use of the location counter and ORG are related to the use of
the THIS directive, which is discussed in "Attribute Operators"
in Section 4.

EVEN Directive

It is sometimes necessary to ensure that an item of code or data
is aligned on a word boundary. For example, a disk sector buffer
for use by the Operating System must be word aligned. The
assembler implements the EVEN directive by inserting before the
code or data, where necessary, a l-byte NOP (no operation)
instruction (90h). Here is an example:

EVEN
Buffer DW 256 DUP(0)

The EVEN directive can be used only in a segment whose alignment

+una ac gnecified in +the SECGMENT Jdirective ies WORD PARA or
type, as specified in the SEGMENT directive, is WORD, PARA, or
PAGE. It cannot be used in a segment whose alignment type is

BYTE.

Program Linkage (NAME/END, PUBLIC, and EXTRN)

The Linker combines several different assembly modules into a
single load module for execution. For more about the Linker, see
the Utilities Manual.

Three program linkage directives can be used by the assembly
module to identify symbolic references between modules. None of
these three linkage directives can be labeled. They are:

(] NAME, which assigns a name to the object module generated by
the assembly. For example:

NAME SortRoutines

If there is no explicit NAME directive, the module name is

derived from the source file name. For example, the source
file [Volname]<Dirname>Sort.Asm has the default module name
Sort.

o PUBLIC, which specifies those symbols defined within the
assembly module whose attributes are made available to other
modules at linkage. For example:

PUBLIC SortExtended, Merge

If a symbol is declared PUBLIC in a module, the module must
contain a definition of the symbol.

o EXTRN, which specifies symbols that are defined as PUBLIC in

other modules and referred to in the current module. Here is
the format of the EXTRN directive:

26 Assembly Language Manual

EXTRN name.type [, ...]

In this format, name is the symbol defined PUBLIC elsewhere
and type must be consistent with the declaration of name in
its defining module. type is one of:

o BYTE, WORD, DWORD, structure name, or record name (for
variables),

o NEAR or FAR (for labels or procedures), or
o ABS (for pure numbers; the implicit SIZE is WORD).

If you know the name of the segment in which an external symbol
is declared as PUBLIC, place the corresponding EXTRN directive
inside a set of SEGMENT/ENDS directives that use this segment
name. You may then access the external symbol in the same way as
if the uses were in the same module as the definition.

If you do not know the name of the segment in which an external
symbol 1is declared as PUBLIC, place the corresponding EXTRN
directive at the top of the module outside all SEGMENT/ENDS
pairs. To address an external symbol declared in this way, you
must do two things:

1. Use the SEG operator to load the 16-bit segment part into a

segment register. (See "Value-Returning Operators” in
Section 4 for a description of the SEG operator.) Here is an
example:

MOV AX, SEG Var ;Load segment base

MOV ES, AX ;value into AX, and thence to ES.

2. Refer to the variable under control of a corresponding ASSUME
(such as ASSUME ES:SEG var) or using a segment override
prefix.

END Directive

The end of the source program is identified by the END direc-
tive. This terminates assembly and has the format:

END [expression]

The expression should be included only in your main program and
must be NEAR or FAR and specifies the starting execution address
of the program. Here is an example:

END Initialize

Programs and Segments 27

3 DATA DEFINITION
Introduction

The names of data items, segments, procedures, and so on, are

called identifiers. An identifier is a combination of letters,
digits, and the special characters question mark (?), at sign
(@), and underscore (). An identifier may not begin with a
digit.

Three basic kinds of data items are accepted by the assember.

1. Constants are names associated with pure numbers--values with

no attributes. Here is an example
Seven EQU 7 ; Seven represents the constant 7.

While a value is defined for Seven, no location or intended
use 1is indicated. This constant can be assembled as a byte
(eight bits), a word (two bytes), or a doubleword (four
bytes).

2. Variables are identifiers for data items, forming the
operands of MOV, ADD, AND, MUL, and so on. Variables are
defined as residing at a certain OFFSET within a specific
SEGMENT. They are declared to reserve a fixed memory-cell
TYPE, which is a byte, a word, a doubleword, or the number of
bytes specified in a structure definition. Here 1is an
example:

Prune DW 8 ;Declare Prune a WORD of initial value OOQOOS8H.
3. Labels are identifiers for executable code, forming the

operands of CALL, JMP, and the conditional jumps. They are
defined as residing at a certain OFFSET within a specific

SEGMENT . The label can be declared to have a DISTANCE
attribute of NEAR if it is referred to only from within the
segment in which it is defined. A label is usually intro-

duced by writing:

label:instruction

which yields a NEAR label. See also PROC (under "Procedures"
in Section 2) and LABEL under "Labels and the LABEL
Directive” below, which can introduce NEAR or FAR labels.

Constants

There are five types of constants: binary, octal, decimal, hexa-
decimal, and string. Table 3-1 specifies their syntax.

Data Definition 29

Constant Type Rules For Formation Examples
Binary Sequence of 0's and 10B
(Base 2) 1's plus letter B. 11001011B
Octal Sequence of digits 76540
(Base 8) 0 through 7 plus 7777Q
either letter O or 77777Q
letter Q.
Decimal Sequence of digits 9903
(Base 10) 0 through 9, plus 9903D
optional letter D.
Hexadecimal Sequence of digits 77h
(Rase 16) 0 through 9 and/or 1Fh
letters A through OCEACh
F plus letter h. ODFh

(1f the first digit
is a letter, it must
be preceded by 0.)

STRING Any character '‘a', 'B'
string within 'ABC'
single quotes. 'Rowrff'
(More than two 'UP.URZ'
characters only
with DB.)

An instruction can contain 8- or 16-bit immediate values. Here
is an example:

MOV CH, 53H ;Byte immediate value
MOV CX, 3257H ;Word immediate value

Constants can be values assigned to symbols with the EQU direc-
tive. These are examples:

Seven EQU 7 ;7 used wherever Seven referenced
MOV AH, Seven ; Same as MOV AH, 7.

See Section 4 for the complete definition of EQU. The format is:
symbol EQU expression

Here, expression can be any assembly language item or expres-
sion. An example is:

xyz EQU [BP+7]

30 Assembly Language Manual

Attributes of Data Items

The distinguishing characteristics of variables and labels are
called attributes. These attributes influence the particular

machine instructions generated by the assembler.

Attributes tell where the variable or label is defined. Because
of the nature of the processor, it is necessary to know both in
which SEGMENT a variable or label is defined, and the OFFSET
within that segment of the variable or label.

Attributes also specify how the variable or label is used. The
TYPE attribute dJdeclares the size, in bytes, of a variable. The
DISTANCE attribute declares whether a label can be referred to
under a different ASSUMEd CS than that of the definition.

Here is a summary of the attributes of data items.
[e] SEGMENT

SEGMENT is the segment base address defining the variable or
label. To ensure that variable and labels are addressable at
run-time, the assembler correlates ASSUME CS, DS, ES, and SS
(and segment prefix) information with variable and 1label
references. The SEG operator (see "Value-Returning Opera-
tors" in Section 4) can be applied to a data item to compute
the corresponding segment base address.

e} OFFSET

OFFSET 1is the 16-bit byte displacement of a variable or
labels from the number of bytes from the base of the contain-
ing segment. Depending on the alignment and combine-type of
the segment (see Section 2, on the SEGMENT directive), the
run-time value here can be different from the assembly-time
value. The OFFSET operator (see "Value-Returning Operators”
in Section 4) can be used to compute this value.

o TYPE (for Data)

BYTE 1 byte

WORD 2 bytes

DWORD 4 bytes

RECORD 1 or 2 bytes (according to record definition)
STRUC n bytes (according to structure definition)

o DISTANCE (for Code)

NEAR Reference only in same segment as definition;
definition with LABEL, PROC, or id:.

FAR Reference in segment rather than definition; defi-
nition with LABEL or PROC.

Data Definition 31

variable Definition (DB, DW, DD Directives)

To define variables and initialize memory or both, use the DB,
DW, and DD directives. Memory is allocated and initialized by
DD, DW, and DD in units of BYTES (8 bits), WORDS (2 bytes), and
DWORDS (doublewords, 4 bytes), respectively. The attributes of
the variable defined by DB, DW, or DD are as follows:

o The SEGMENT attribute 1is the segment containing the
definition.

) The OFFSET attribute 1is the current offset within that
segment.

o The TYPE is BYTE (1) for DB, WORD (2) for DW, and DWORD (4)

for DD.
The general form for DB, DW and DD is either:
[variable-name] (DB | DW | DD) exp [, ...]

or:

[variable-name] (DB | DW | DD) dup-~count DUP (init [, ...]))

where variable-name is an identifier and either DB, DW, or DD

must be chosen.

The DB, DW, and DD directives can be used in many ways. The
possibilities are:

1 constant initialization,

2. indeterminate initialization (the reserved symbol "2"),
3. address initialization (DW and DD only),

4. string initialization,

5. enumerated initialization, and

6. DUP initialization.

Constant Initialization

One, two or four bytes are allocated. The expression is evalu-
ated to a 17-bit constant using twos complement arithmetic. For
bytes, the least significant byte of the result is used. For
words, the two least significant bytes are used with the least
significant byte the lower-addressed byte, and the most signifi-
cant byte the higher-addressed byte. (As an example, OAAFFh is
stored with the OFFh byte first and the OAAh byte second. For
double words, the same two bytes are used as for words, and they

are followed by an additional two bytes of zeros. Here are some
examples:

32 Assembly Language Manual

number DW 1F3Eh ;3Eh at number, 1Fh at
;number + 1
DB 100 :Unnamed byte
inches per_yard DW 3*12 ;Assembler performs arithmetic

Indeterminate Initialization

To leave initialization of memory unspecified, use the reserved

symbol "?".

Here are some examples:

b4 DW ? ;Define and allocate a word,
;contents indeterminate
buffer DB 1000 DUP(?) ;1000 bytes.

(The DUP clause is explained in "Dup Initialization" below.)

Address Initialization (DW and DD Only)

[variable-name] (DW | DD) init-addr
An address expression is computed with four bytes of precision--
two bytes of segment base and two bytes of offset. All four
bytes are used with DD (with the offset at the lower addresses),
but only the offset is used with DW. Address expressions can be
combined to form more complex expressions as follows:

o A relocatable expression plus or minus an absolute expression
is a relocatable expression with the same segment attribute.

o A relocatable expression minus a relocatable expression is an
absolute expression, but it is permitted only if both compo-
nents have the same segment attribute.

o Absolute expressions can be combined freely with each other.

o All other combinations are forbidden.

Here are some examples of initializing using address expressions:

pPRequest DD Request :32-bit offset and segment
;0f Request

pErc DD Request+5 ;0ffset of sixth byte in
;Request

oRequest DW Request ;16-bit offset of Request

String Initialization

Variables can be initialized with constant strings as well as
with constant numeric expressions. With DD and DW, strings of
one or two characters are permitted. The arrangement in memory
is tailored to the 8086 architecture this way: DW 'XY' allocates
two bytes of memory containing, in ascending addresses, 'Y',

Data Definition 33

‘X', DD 'XY' allocates four bytes of memory containing in
ascending addresses, 'Y', 'X', 0, O.

With DB, strings of up to 255 characters are permitted.
Characters, from left to right, are stored in ascending memory
locations. For example, 'ABC' is stored as 41h, 42h, 43h.

Strings must be enclosed in single quotes ('). A single quote is
included in a string as two consecutive single quotes. Here are
some examples:

Single Quote DB 'I''m so happy!'

Date DB '08/08/80"

Quote DB e

Jabberwocky DB '''TWAS BRILLIG AND THE

SLITHY TOVES...'
Run_Header DW 'GW'

Enumerated Initialization

[variable~-name] (DB | DW | DD) init [, ...1]
Bytes, words, or doublewords are initialized in consecutive
memory locations by this directive. An unlimited number of items
can be specified. Here are some examples:

Squares DW 0,1,4,9,16,25,36
Digit Codes DB 30h, 316,32h,33h, 34h,35h,36h,37h,38h,3%n
Message DB 'HELLO, FRIEND.', OAh

;14-byte text plus new line code
DUP Initialization

To repeat init (or list of init) a specified number of times, use
the DUP operator, in this format:

dup-count DUP (init)

The duplication count is expressed by dup-count (which must be a
positive number). init can be a numeric expression, an address
(if used with DW or DD), a question mark, a list of items, or a
nested DUP expression.

Note that in the DB, DW, and DD directives, the name of the vari-
able being defined is not followed by a colon. (This differs
from many other assembly languages.) For example:

Name DW 100 ;okay
Name: DW 100 ;s WRONG

Labels and the LABEL Directive
Labels identify locations within executable code to be used as

operands of jump and call instructions. A NEAR label is declared
by any of the following:

34 Assembly Language Manual

Start LABEL ;NEAR is the default

Start LABEL NEAR ;NEAR can be explicit
Start: :Followed by code
Start EQU $

Start EQU THIS NEAR

Start PROC ;NEAR is the default
Start PROC NEAR ;NEAR can be explicit

A FAR label is declared by any of the following:

Start2 EQU THIS FAR
Start2 LABEL FAR
Start PROC FAR

LABEL Directive

To create a name for data or instructions, use the LABEL direc-
tive, in the format:

name LABEL type

name is given segment, offset, and type attributes. The label is
given a segment attribute specifying the current segment, an
offset attribute specifying the offset within this seyment, and a
type as explicitly coded (NEAR, FAR, BYTE, WORD, DWORD, struc-
ture-name or record-name).

When the LABEL directive is followed by executable code, type is
usually NEAR or FAR. The label is used for jumps or calls, but
not MOVs or other instructions that manipulate data. NEAR and
FAR labels cannot be indexed.

When the LABEL directive is followed by data, type is one of the
other five classifications. An identifier declared using the
LABEL directive can be indexed if assigned a data type, such as,
BYTE, WORD, etc. The name is then valid in MOVs, ADDs, and so
on, but not in direct jumps or calls. (See Section 4 for indi-
rect jumps or calls.)

A LABEL directive using structure-name or record-name names data
and is assigned a type attribute according to the record or
structure definition.

The main uses of the LABEL directive, illustrated below, are:
accessing variables by an "alternate type," defining FAR labels,
and accessing code by an "alternate distance" (for example, defi-
ning a FAR label with the same segment and offset values as an
existing NEAR label).

LABEL with Variables
The assembler uses the type of a variable in determining the

instruction assembled for manipulating it. You can cause an
instruction normally generated for a different type to be assem-

Data Definition 35

bled by using LABEL to associate an alternative name and type
with a location. For example, the same area of memory can be
treated sometimes as a byte array and sometimes as a word array
with the definitions:

rgw LABEL WORD
rgb DB 200 DUP(O)

The data for this array can be referred to in two ways:

ADD AL, rgb[50] ;Add fiftieth byte to AL
ADD AX, rgw[38] ;Add twentieth word to AX

LABEL with Code

A label definition can be used to define a name of type NEAR and
FAR. This is only permitted when a CS assumption is in effect;
the CS assumption (not the segment being assembled) is used to
determine the SEG and OFFSET for the defined name.

For example,

Place LABEL FAR
SamePlace MUL CX,[BP]

introduces Place as a FAR label otherwise equivalent to the NEAR
label SamePlace.

Label Addressability
The addressability of a label is determined by:
1. its declaration as NEAR or FAR, and

2. its use under the same or different ASSUME:CS directive as
its declaration.

The four possibilities of code for each are shown in Table 3-2.

Table 3-2. Target Label Addressability.
Near Label Far Label

Same NEAR Jump/Call NEAR Jump
ASSUME CS: FAR Call
Different FAR Jump
ASSUME CS: Not allowed FAR Call

A NEAR jump or call is assembled with a 1- or 2~byte displacement
using modulo 64K arithmetic. 64K bytes of the current segment
can be addressed as NEAR.

36 Assembly Language Manual

A FAR jump or call is assembled with a 4-byte address. The
address consists of a 16-bit offset and 16-bit segment Dbase
address. An entire megabyte of memory can be addressed as FAR.

(The semantics of PROC/ENDP directives are discussed in Section
2.)

Records

A record is a format used to define bit-aligned subfields of
bytes and words. The two steps in using records are:

1. define and name a record format, and

2. 1invoke the record name as an operator, thereby allocating and
initializing memory.

Define a record by writing:

record-name RECORD field-name:width [=default][,]

Neither record-name nor any of the field names can conflict with
existing names. The sum of the widths of the fields can not
exceed 16 bits. Each width can be an expression, but must not
make forward references.

The assembler divides records into two classes, those with a
total width of up to 8 bits, and those with a total width of up
to 16 bits. A byte is allocated for each instance of a record of
the first class, and a word for each instance of a record of the
second class. The data of each record instance is right-justi-
fied within the allocated memory.

The definition of a record can include a specification of how

instances are to be initialized. This specification is given
with the optional [=default] clause. For example, this
definition:

HashEntry RECORD state:2=3, sKey:4, rbKey:9

might be used in setting up a hash table. Each entry has a 2-~bit
state field, a 4-bit "size of key" sKey, and a 9-bit "relative
byte of key in page" rbKey. The state field, being two Dbits
wide, can hold four values. The state field is explicitly speci-
fied to default to 3. The other fields are assigned the implicit
default value 0, since no explicit default is specified. A field
eight bits wide can have a single character as its default value,
as in bData:8='a'.

When a record is declared, the assembler associates with 1its
field names these special values:

o the width of the field,

Data Definition 37

o the bit position of the right end of the field, and

o a mask constant for extracting the field from an instance of
the record.

The width is computed with the WIDTH operator, the mask with the
MASK operator, and the bit position with the field name itself.
Thus, with HashEntry as above, the following holds.

state = 0Dh sKey = 9h rbKey = Oh
MASK state = EOOh MASK sKey = 1lEOOh MASK rbKey = 1FFh
WIDTh state = 3h WIDTh skey = 4h WIDTh rbKey = 9h

As another example, let us define the format for the first two
bytes of an instruction.

Inst2b RECORD Opcode. 6, D:1, W:1, Mod:2, Reg:3, Rm:3

The definition might be used in this way:

Inst_Table Inst2b 100 DUP(<,,,,,>) ;Code to initialize
:Inst Table
MOV AX, Inst Table[BX] :Load the entry at
;offset BX
AND AX, MASK Mod ;Mask off all but Mod
MOV CL, Mod
SHR AX, CL ;:Now AX contains Mod

This example also shows how, for each record field, the bit
position and MASK operator can be used to extract the field from
a record.

The assembler right-justifies a record's user-defined fields when
those fields do not occupy an entire word or byte. The fields
are moved to the least-significant bit-positions of the byte or
word defined by the record. For example, the definition:

Ascii Twice RECORD Cl:7,C2:7
would result in the format:
15 14 13 76

T {(undefined) | (C1) T {C2) T
2 bits 7 bits 7 bits

o

Initializing Records

After records have been declared, the record name and operator

can be used for allocation and initialization. There are two
formats:
Format 1:

[name] record-name <[init]C, ...1>

38 Assembly Language Manual

Format 2:

[name] record-name dup-count DUP (<[init] [, ...]>)

In both formats, the first byte or word (depending on the RECORD
definition) of the allocated memory 1s optionally named. The
record definition to be wused is specified by record-name.

Finally, the operand is a possibly empty 1list of initial field
values. For example:

<> Use field default values from the record definition.

<8,,10> Set initial values of the first and third fields to 8
and 10, respectively, but use the default from the
definition for the middle field.

The initial field values can be constants, constant expressions,
or the indeterminate initialization "?". If the expression eval-
uates to a number not expressible in binary within the width of
the corresponding record field, then the number is truncated on
the left. For example, 11001 binary, in a 2-bit field, is trun-
cated to Ol.

With Format 2, multiple instances of the record can be allocated
at once. The number of copies of the record to be allocated is
given by dup-count. Note that in this format, the angle-brackets
must be enclosed within parentheses as shown.

You can use a record as part or all of an expression, as in:
MOV AX, Inst2B<OP,D,W,MOD,REG,RM>
Structures

Just as records are used to format bit-aligned data at the byte
or word level, structures are used to define byte-aligned fields
within multibyte data structures.

Structures can be used to group together logically related data
items.

For example, suppose you give the name Car to a structure. You
use this structure to define individual fields of size (in bytes)
1, 2, 2, and 4 symbolically. The assembler generates the rela-
tive offsets:

Car STRUC ;No memory reserved--use this
;as template for Ford below

Year DB O ;Reference to .Year generates
;relative offset of 0O

Model DW O ;Reference to .Model generates
;relative offset of 1

Color DW O ;Reference to .Color generates
;relative offset of 3

License DB 'XXXX' ;Reference to .License generates

;relative offset of 5
Car ENDS

Data Definition 39

The body of the structure definition is delimited by the STRUC
and ENDS directives. The spacing of offsets within the structure
is determined by the enclosed DB, DW, and DD directives.

You now allocate real memory and initialize using Car as an
operator.

Ford Car<63,'FL',6'GR',6 'FOXY'> ;allocate and initialize

Note that the programmer-assigned name Car is used here as an
operator, and that the initialization of the structure is done
with both integer data (63) and character data ('FL').

This use of Car as an operator is the assembly-time analog of
this run-time initialization:

FORD DB 8 DUP(?) ;allocate 8 bytes
s(uninitialized)

MOV Ford.Year, 63 ;initialize Year field

MOV Ford.Model, 'FL' ;initialize Model field

MOV Ford.Color, 'GR' ;initialize Color field

MOV Ford.License, 'FOXY' ;initialize License field

It is also possible, as described below, to specify default
values during the definition of the structure, and to selectively
override these defaults during memory allocation. All this can
take place during assembly.

As another example, here is a structure that implements the
request block for the Close File operator used with the CTOS
Operating System:

RgCloseFile STRUC

sCntInfo DW 2
nReqPbCb DB O
nRespPbCb DB O
userNum DW ?
exchResp DW ?
ercRet DW ?
rqgCode DW 10
fh DW ?
RqCloseFile ENDS
rqCloseFilel RqCloseFile<,,,1,3,,,> ;Nondefault values
;are userNum 1,
;exchResp 3
MOV AX, fhNew
MOV rgCloseFilel.fh ;Fill in the fh
;field if an rq
CMP rgCloseFilel.ercRet, ercOk ;Is the error return
;equal to the value
;ercOK?

40 Assembly Language Manual

Structures are not restricted to use with statically allocated
data. For example

cMp [BP+rbRgCloseFile].rqgCode, 10 ;Examine rqCode in an
anonymous instance of
;RgCloseFile that's on the
rstack

Here is the general format of the STRUC/ENDS statement-pair,
together with the enclosed DB, DW, and DD directives:

structure-name STRUC

.

.) default [, ...]
[field-name] (DB | ow | pp) (dup-count DUP (default [, ...]))

structure-name ENDS

In this case, DB, DW, and DD are used just as defined earlier,
with the exception that there cannot be any forward references.
Matching STRUC/ENDS pairs must have the matching structure-
names. Field-names are optional: if used, they must be unique
identifiers.

Default Structure Fields

Default values for structure fields are as specified in the DB,
DW, or DD directives. Because the STRUC/ENDS pair does not allo-
cate memory, these default initializations have no immediate
effect. The defaults are used to initialize memory later when
the structure-name is used as a memory allocation operator as in
the allocation of rgCloseFilel, above.

Overridable Structure Fields

When memory is allocated certain structure-field default values
can be overridden by initial values specified in the allocation
expression; these are called simple fields. Other field values
that include a list or a DUP clause cannot be overridden. A DB
character string is considered simple. Here are some examples of
what can and cannot be overridden:

Super STRUC

DW ? ;Simple field: override okay
DB 'Message' ;Simple character string field: override
;okay
DD 5 DUP(?) ;Multiple field: no override
DB ?,2,3 ;Multiple field: no override
Super ENDS

Data Definition 41

Initializing Structures
After structures have been declared, they can be allocated and
initialized with the structure-name as oOperator. The general

format is similar to that for record initialization. (There are
two formats.)

Format 1:

[name] structure-name <[init]([, ...J>

Format 2 (with duplication):

[name] structure-name dup-count DUP (<[init] [, ...J]>)

In both formats, the first byte or word (depending on the struc-
ture definition) of the allocated memory is optionally named. The
structure definition to he used is specified by structure-name.

structure derinicion

Finally, the operand is a possibly empty list of initial field
values. For example:

<> Use field default values from the structure definiton.

<8,,10> Set initial values of the first and third fields to 8
and 10, respectively, but use the default from the
definition for the middle field.

The initial field values can be constants, constant expressions,
or the indeterminate initialization "?2".

One-byte strings can override any field. Two-byte strings can
override any DW or DD field. Multibyte strings can override a DB
field, but only if the overriding string is no longer than the
overridden string.

The number of copies of the structure to be allocated is
dup-count; it must evaluate to a positive integer.

42 Assembly Language Manual

4 OPERANDS AND EXPRESSIONS
Operands

The instruction set of the 8086 makes it possible to refer to
operands in a variety of ways. (The instruction set is described
in the Central Processing Unit.) Either memory or a register can
serve as the first operand (destination) in most two-operand
instructions, while the second operand (source) can be memory a
register, or a constant within the instruction. There are no

memory-to-memory operations.

A 16-bit offset address can be used to directly address operands
in memory. Base registers (BX or BP) or index registers (SI or
DI) or both, plus an optional 8- or 16-bit displacement constant,
can be used to indirectly address operands in memory.

Either memory or a register can receive the result of a two-
cperand operation. Any register or memory operand (but not a
constant operand) can be used in single-operand operations.
Either 8- or 16-bit operands can be specified for almost all
operations.

Immediate Operands

An immediate value expression can be the source operand of two-
operand instructions, except, for multiply, divide, and the
string operations. Here are the formats:

[label:] mnemonic memory-reference, expression

and

[label:] mnemonic register expression

Here [label] is an optional identifier. mnemonic is any two-
operand mnemonic (for example, MOV, ADD, and XOR) . See "Memory
Operands" below for the definition of memory-reference. In
summary, it has a direct 16-bit offset address, and is indirect
through BX or BP, SI or DI, or through BX or BP plus SI or DI,
all with an optional 8- or 16-bit displacement. In the second
format, register is any general-purpose (not segment) register.
For a definition of expression, see the rest of this section.

See Table 3-1 (Section 3) for rules on formation of constants.

The steps that the assembler follows in processing an instruction
containing an immediate operand are:

o Determine if the destination is of type BYTE or WORD.
o Evaluate the expression with 17-bit arithmetic.
o If the destination operand can accommodate the result, encode

the value of the expression, using twos complement arith-
metic, as an 8- or 16-bit field (depending on the type, BYTE

Operands and Expressions 43

or WORD, of the destination operand) in the instruction being
assembled.

In 8086 instruction formats, as in data words, the least signifi-
cant byte of a word is at the lower memory address.

MOV CH, 5 ;8-bit immediate value to register
ADD DX, 3000H ;16-bit immediate value to register
AND Table[BX], OFFOOh ;16-bit immediate value (where

;Table is a WORD) through BX,
;16-bit displacement

XOR Table[BX+DI+100], 7 ;16-bit immediate value through
;BX+DI+ (Table+100)

Register Operands

The 16-bit segment registers are CS, DS, SS, and ES. The 16-bit
general registers are AX, BX, CX, DX, SP, BP, SI, and DI. The 8-
bit general registers are AH, AL, BH, BL, CH, CL, DH, and DL.
The 16-bit pointer and index registers are BX, BP, SI, and DI.
The l-bit flag registers are AF, CF, DF, IF, OF, PF, SF, TF, and
ZF.

Segment base addresses are contained in segment registers and
must be initialized by the programmer.

Arithmetic and logical operations can be performed using each of
the general 8-bit, general 1l6-bit, and pointer and index 16-bit
registers. So, even though AX is often called "the accumulator,”
there are actually eight separate 16-bit accumulators and eight
8-bit accumulators as listed above. Each of the 8-bit accumula-
tors is either the high-order (H) or the low-order (L) byte of
AX, BX, CX, or DX.

After each instruction, the flags are updated to reflect condi-
tions detected in the processor or any accumulator. See Appendix
A and the Central Processing Unit for the flags affected for each
instruction.

These are the flag-register mnemonics:

AF: Auxiliary Carry
CF: Carry

DF: Direction

IF: Interrupt-enable
OF: oOverflow

PF: Parity

SF: Sign
TF: Trap
ZF: Zero

Explicit Register Operands

These are two-operand instructions that explicitly specify
registers:

44 Assenmbly Language Manual

Register to register

[label:] mnemonic reg, reg
Example.

ADD BX, DI ;BX=BX+DI
Immediate to register
[label:] mnemonic reg imm
Example:

ADD BX, 30H ;s BX=BX+30H

Memory to register

[label:] mnemonic reg mem

Example:
ADD BX, Table[DI]
Register to memory

[label:] mnemonic mem, reg

Example:

ADD Table[DI], BX

;BX=BX+DI'th entry in Table

;Increment DI'th entry in Table by BX

(Note that "i'th entry" means "entry at i'th byte.")

Implicit Register Operands

Instruction

AAA, AAD,
CBW, CWD
DAA, DAS
IN, OuT
MUL, IMUL,
LAHF, SAHF
LES
LDS
Shifts,
string
XLAT

AAM, AAS
IDIV

DIV,

Rotates

These instructions use registers implicitly:

Implicit Uses

AL, AH

AL, AX or AX:DX
AL

AL or AX

AL, AX or AX:DX
AH

ES

DS

CL

CcX, 81, DI

AL, BX

Operands and Expressions 45

The instructions with a single register operand have the form:
{label] mnemonic reg

Example:
INC DI ;DI=DI+1

Segment Registers

Segment registers are discussed in Section 2.

General Registers

When a 16-bit general register or pointer/index register is one

of the operands of a two-operand instruction, the other operand

must be immediate, a WORD reference to memory, or a WORD
register.

When an 8-bit general register (AH, AL, BH, BL, CH, CL, DH, DL)
is one of the operands of a two-operand instruction, the other
operand must be an 8-bit immediate quantity, a BYTE reference to
memory, or a BYTE register.

Flags

Instructions never specify the 1l-bit flags as operands; flag
instructions (as STC, CLC, CMC) manipulate all flags at once, and
other instructions affect one or more flags implicitly (as INC,
DEC, ADD, MUL, and DIV).

See Section 7 for flag operation and Appendix A for how each
instruction affects the flags.

Memory Operands

Memory Operands to JMP and CALL

The JMP and CALL instructions take a simple operand. There are a
number of different cases, determined by the operand. The

control transfer can be direct (with the operand specifying the
target address) or indirect (with the operand specifying a word

or doubleword containing the target address). The transfer can
be NEAR (in which case only IP changes) or FAR (both IP and CS
change) . Here are examples to illustrate the cases:

46 Assembly Lahguage Manual

Operand to JMP/CALL Direct/Indirect NEAR/FAR Target

NextIteration Direct NEARL NextIteration
FltMul Direct FARZ2 FltMul
DX Indirect NEAR CS:DX
LabelsNear[DI] Indirect NEAR3 Contained in
word at
LabelsNear[D1]
LabelsFar[DI] Indirect FAR4 Contained in
dword at
LabelsFar[DI]
DWORD PTR [BX] Indirect FAR Contained in
FAR dword at [BX]
WORD PTR [BX] Indirect NEAR Contained in

word at [BX]

)

same se

1Assuming NextIteration is a NEAR label in th
group as the jump or call.

2Assuming FltMul is a FAR label--a label to which control can
be transferred from outside the segment containing the label.

3Assuming LabelsNear is an array of words.

4Assuming LabelsFar is an array of dwords.

CALL differs from JMP only in that a return address is pushed
onto the stack. The return address is a word for a near call and
a dword for a far call.

If the assembler determines that the target of a JMP or CALL is
adddressable by a l-byte displacement from the instruction, it
uses a special short jump or call instruction. Here are some
examples:

Again: DEC BX

JNZ Again ;Short jump will be used.
JMP Last ;Not short because Last is a forward
;reference.
Last: e
JMP $+17 ;Short jump since displacement is in the

;range -128 to 127. BEWARE: Variable
;length instructions make it easy to get
;this wrong; it's safer to use a label.

JMP SHORT Last ;Forces assembly of a short transfer; it
;will yield an error if the target is
;not addressable with a l-byte
;displacement.

Operands and Expressions 47

(NOTE: Do not confuse the concepts of PUBLIC and EXTRN with NEAR
and FAR. PUBLICs and EXTRNs are used at assembly- and link~-time
only and are not run-time concepts. NEAR and FAR, in contrast,
control the instructions to be executed at run-time. It is
entirely possible for an EXTRN to be NEAR.)

Variables

This section covers the use of simple, indexed, and structured
variables as operands. If you are unfamiliar with how to define
and initialize variables, review Section 3.

Simple Variables. An unmodified identifier used the same way it
is declared is a simple variable. Here is an example:

whData DW 'AB'

MOV BX, wData

Indexed Variables. A simple variable followed by a square-
bracketed expression is an indexed variable. The expression in
square brackets is a constant or constant expression, a base
register (as BX or BP) or an index register (as SI or DI), a base
or index register plus or minus a constant expression (in any
order), or a base register plus an index register plus or minus a
constant or constant expression (in any order).

When you use indexed variables, be aware that the indexing is O-
origin (that is, the first byte is numbered 0), the index is
always a number of bytes, and the type is the type of the simple
variable to which the index 1is applied. For example, if the
table Primes is defined by:

Primes DW 250 DUP(?)
and register BX contains the value 12, then the instruction.

MOV Primes[BX], 17

sets the twelfth and thirteenth bytes of Primes (which are the
bytes of the seventh word in Primes) to 17.

Double-Indexed Variables. Double-indexed variables use a sum of
two displacements to address memory. Here is an example:

Primes[BX][SI+5]
Most forms of double indexing can be written with a more complex
single index expression. For example, these two forms are
completely equivalent:

var[Displ][Disp2]

and

48 Assembly Language Manual

Var[Displ+Disp2]

The displacements can be constants or expressions that evaluate
to constants, base or index registers (BX, BP, SI or DI) or
base or index registers plus or minus a constant offset. The
only restriction is that BX and BP can not both appear, and SI
and DI cannot both appear in the same double-indexed variable.

These three expressions are all invalid.
Primes[BX+BP]
primes[SI][2*BX]
primes[BX][BP]

Indexing can be used in combination with structures. Recall the
example given earlier

RqCloseFile STRUC

sCntInfo DW 2
nReqPbCb DB O
nRespPbCb DB O
userNum DW ?
exchResp Dw 2
ercRet DW ?
rqCode DW 10
fh ow ?

RqCloseFile ENDS
All of the following are valid:

MOV RgCloseFile.sCntInfo, AX

MOV [BX].userNum, AX

Mov [BP][SI-4].fh
Attribute Operators
In addition to indexing, structure, arithmetic, and logical oper-
ators, operands can contain a class of operators called attribute
operators. Attribute operators are used to override an operand's
attributes, to compute the values of operand attributes, and to
extract record fields.
PTR, the Type Overriding Operator

PTR is an infix operator. That is, it has two operands, and is
written between them in this format:

type PTR addr-expr

type is BYTE, WORD, DWORD, NEAR, FAR, or structure-name.
addr-expr is a variable, label, or number.

PTR sets or overrides the type of its operand without affecting
the other attributes of the operand, such as SEGMENT and

Operands and Expressions 49

OFFSET. Here are some examples of its use with data. Suppose
rgb and rgw are declared by:

rgb DB 100 DUP(?)
rgw DW 100 DUP(?)

Then:

INC rgb[sI]
INC rgw[SI]

generate, respectively, byte-increment and word-increment
instructions. Types can be overridden with:

INC WORD PTR rgb[SI] ;word increment

INC BYTE PTR rgw[SI] ;byte increment
Sometimes no variable 1is named in an instruction: the
instruction uses an "anonymous" variable. 1In such cases the PTR

operator must always be used. Thus:

INC WORD PTR [BX] ;word increment
INC BYTE PTR [BX] :byte increment
INC [BXx] ;INVALID because the operand [BX] is

; "anonymous."
Segment Override

The segment override operator is discussed in Section 2. It is
denoted by the colon, ":", and takes these three forms:

o seg-reqg:addr-expr

o segment-name addr-expr

o group-name:addr-expr

The SEGMENT attribute of a label, variable, or address-expression
is overridden by the segment override operator. The other attri-
butes are unaffected. The first two forms do a direct override;
the third recalculates the offset from the GROUP base.

SHORT

The single argument of the SHORT operator is an offset that can
be addressed through the CS segment register. When the target
code is within a 1l-byte signed (twos complement) self-relative
displacement, SHORT can be used in conditional jumps, jumps, and

calls. This means that the target must lie within a range no
more than 128 behind the beginning of the jump or call instruc-
tion, and no more than 127 bytes in front of it. (See "Memory

Operands to JMP and CALL Operands" in this Section for more on
SHORT.)

50 Assembly Language Manual

THIS
The single argqument of the THIS operator is a type (BYTE, WORD,
DWORD) or distance (NEAR, FAR) attribute. A data item with the

specified type or attribute is defined at the current assembly
location. Here are the formats:

THIS type
THIS distance

The segment and offset attributes of the defined data item are,
respectively, the current segment and the current offset. The
type or distance attributes are as specified. Thus the two
statements:

byteA LABEL BYTE
byteA EQU THIS BYTE

have the same effect. Similarly, $ is equivalent to:
THIS NEAR
In the example:

El1 EQU THIS FAR
E2: REPNZ SCASW

the two addresses, El and E2, differ exactly in that E1 is FAR
whereas E2 is NEAR.

Value-Returning Operators
Here are the value-returning operators:
(o] TYPE. It accepts one argument, either a variable or a

label. TYPE returns, for variables, 1 for type BYTE, 2 for
type WORD, 4 for type DWORD, and the number of bytes for a

variable declared with a structure type. TYPE returns, for
labels, either -1 or -2 (representing, respectively, NEAR or
FAR) .

o LENGTH. It accepts one argument, a variable. It returns the
number of units allocated for that variable. (The number
returned is not necessarily bytes.) Here are examples:

One DB 250(?) ; LENGTH One=250
Two DW 350(?) ; LENGTH Two=350

o SIZE. It returns the total number of bytes allocated for a
variable. SIZE is the product of LENGTH and TYPE.

o SEG. It computes the segment value of a variable or a

label. Use it in ASSUME directives or to initialize segment
registers, as described in Section 2.

Operands and Expressions 51

OFFSET. It returns the offset of a variable or label. At
time of linking, when the final alignment of the segment is
frozen the value is resolved. If a segment is combined with
pieces of the same segment defined in other assembly modules,
or is not aligned on a paragraph boundary. the assembly-time
offsets shown in the assembly listing can not be valid at
run-time- The offsets are properly calculated by the Linker
if you use the OFFSET operator.

The only attribute of a variable in many assembly languages
is its offset. A reference to the variable's name is a
reference also to its offset. Three attributes are defined
by this assembly language for a variable, so to isolate the
offset value, the OFFSET operator is needed. In a DW direc-
tive, however, the OFFSET operator is implicit.

When used with the GROUP directive, the OFFSET operator does
not yield the offset of a variable within the group. It
returns rather the offset of the variable within its
segment. Use the GROUP override operator to get the offset
of the variable within the group. Here is an example:

DGroup GROUP Data,??SEG
data SEGMENT
Xyz DB 0
DW Xyz ;0ffset within segment
DW DGroup :xyz ;O0ffset within group
data ENDS
ASSUME CS:??SEG, DS :DGroup
MOV CX,OFFSET xyz ;Loads seg offset of xyz
MOV CX,OFFSET Dgroup:xyz ;Loads group offset of
1 XYZ
LEA CX, xyz ;Also loads group offset
;of xyz

You may not use forward references to group-names.

52

Assembly Language Manual

Record Operators

The use of operators with records is illustrated in Section 3.
The definitions are repeated here for completeness. Associated
with each field of a record are the following:

o

e}

Sshift-count. This is the field-name of the record.

MASK operator. This operator has one argument, which is a
field-name. It returns a bit-mask that consists of 1's in
the bit positions included by the field and 0's elsewhere.

WIDTH operator. This operator returns the number of bits in
a record or field.

If the definition of a record formats 8 bits, the record is of
type BYTE, and if it formats 16 bits, of type WORD.

Operator Precedence in Expressions

The assembler evaluates expressions from left to right. It eval-
uates operators with higher precedence before other operators
that come directly before or after. To override the normal order
of precedence, use parentheses.

In order of decreasing precedence, here are the classes of
operators:

1.

Expressions within parentheses, expressions within angle
brackets (records), expressions within square brackets, the
structure "dot" operator, ".", and the LENGTH, SIZE, WIDTH,
and MASK operators.

PTR, OFFSET, SEG, TYPE, THIS, and "name:" (segment override).
Multiplication and division: *, /, MOD, SHL, SHR.

Addition and subtraction: +, -.

Relational operators: EQ, NE, LT, LE, GT, GE.

Logical NOT.

Logical AND.

Logical OR and XOR.

SHORT.

Operands and Expressions 53

EQU Directive

Use EQU to assign an assembly-time value to a symbol. This is
the format:

name EQU expression

Here are examples to illustrate the cases:

Yy EQU =z ;¥ is made a synonym for z.

xx EQU [Bx+DI1-3] ;XX is a synonym for an indexed reference
;-~note that the right side is evaluated
;at use, not at definition.

X EQU EX:Bar[BP+2] ;Segment overrides are also allowed.

xy EQU (TYPE y)*5 ;Random expressions are allowed.

RAX EQU AX ;Synonyms for registers are allowed.

Use the PURGE directive to delete the definition of a specified

symbol. After a PURGE, the symbol can be redefined. The
symbol's new definition is used by all occurrences of the symbol
after the redefinition. You cannot purge register names,

reserved words, or a symbol appearing in a PUBLIC directive.

54 Assembly Language Manual

5 FORWARD REFERENCES

The instruction set of the 8086 often provides several ways of
achieving the same end. For example, if a jump is within 128
bytes of its target, the control transfer can be a SHORT jump
(two bytes), a NEAR jump (three bytes), or a FAR jump (four
bytes) . If the assembler "knows" which case applies, it
generates the optimal object code.

However, for the convenience of the programmer, the assembly
language allows, in many cases, the use of a variable or label
prior to its definition. When the assembler encounters such a
forward reference, it must reserve space for the reference,
although it does not yet know whether the label (for example)
will turn out to be SHORT, NEAR, or FAR. The assembler makes a
“guess," 1if it must, about the memory required, and proceeds on
the basis of that guess.

Ihe assembler makes twoO successive passes over the source
program, and can always tell during the second pass whether a
guess made during the first pass was correct. If a guess is too
generous, the assembler can repair matters during the second pass
by, for example, inserting an extra no-op instruction after an
offending jump, and still produce valid output. If a guess is
too conservative, however, no such remedy is available, and the
assembler flags the forward reference as an error during the
second pass.

The programmer can generally repair this kind of error by a small
change to the source text and a reassembly. For example, the
insertion of an attribute coercion such as "BYTE PTR" or "FAR

PTR" is often a sufficient correction. However, the safest
course is to follow programming practices that make it
unnecessary for the assembler to guess. This can be done as
follows:

o Put EQU directives early in programs.
o Put EXTRN directives early in programs.
o Within a multisegment source file, try to position the data

segments (and hence the variable definitions) before the code
segments.

Forward References 55

6 INSTRUCTION FORMAT

The instruction format of the 8086 uses up to three fields to
specify the location of an operand in a register or in memory.
The assembler sets all three fields automatically when it
generates code. These fields, when used, make up the second byte
of an instruction, which is called the "MOD --- R/M" byte.

The two most significant bits of the "MOD --- R/M" byte are the
MOD field, which specifies how to interpret the R/M field.

The next three bits are occupied by the REG field, which
specifies an 8- or 16-bit register as an operand. Instead of
specifying a register, the REG field can, in some instructions,
refine the instruction code given in the first byte of an
instruction.

The next three bits are occupied by the R/M field, which can
specify either a particular register operand or the addressing
MODe to select a memory operand. This occurs in combination with
the MOD field.

The MOD and R/M fields determine the effective address (EA) of
the memory operand and the interpretation of successive bytes of
the instruction, as follows:

MOD Interpretation

00 DISP = 0
(disp-low and disp-high are absent)

01 DISP = disp-low sign-extended to 16 bits (disp-high
is absent)

10 DISP = disp-high, disp-low

11 There is no DISP (disp-low and disp-high are both

absent) and R/M is interpreted as a register.

If MOD # 11, then R/M is interpreted as follows:

R/M interpretation

000 [BxJ+[S1]+DISp

001 [BXJ+[DIJ+DISP

010 [BP]+[s1]+DISP

011 [BP]+[DIJ+DISP

100 [s1]+DISP

101 [pI]+DISP

110 [BP]+DISP if MOD # 0
DISP if MOD = 0

111 [BX]+DISP

Instruction Format 57

If MOD = 11, then the effective address is a register designated
by R/M. In word instructions, the interpretation is:

R/M Register
000 AX
001 CX
010 DX
011 BX
100 SP
101 BP
110 SI
111 DI

In byte instructions (W = 0), the interpretation is:

R/M Register
000 AL
001 CL
010 DL
o1l BL
100 AH
101 CH
110 DH
111 BH

58 Assembly Language Manual

7 FLAGS
Flag Registers

Certain results of data manipulations are distinguished or
denoted by flags. The flags that are affected by data
manipulations are AF, CF, OF, PF, SF, and ZF.

The four basic mathematical operations (addition, subtraction,
multiplication and division) are provided by the processor. 8-
and 16-bit operations are available, as are signed and unsigned
arithmetic. The representation of signed values is by standard
twos complement arithmetic. The addition and subtraction
operations serve as both signed and unsigned operations; the two
possibilities are distinguished by the flag settings.

Arithmetic may be performed directly on unpacked decimal digits
or on packed decimal representations.

Some operations indicate these results only by setting flags.
For example, the processor implements "compare" as a special
subtract which does not change either operand but does set flags
to indicate a zero, positive, or negative result.

By using one of the conditional jump instructions, a program can
test the setting of £five of the flags (carry, sign, zero,
overflow, and parity). The flow of program execution can be
altered based on the outcome of a previous operation. One more
flag, the auxiliary carry flag, is used by the ASCII and decimal-
adjust instructions.

It is important to wunderstand which instructions set which
flags. Suppose you wish to load a value into AX, and then test
whether the value is 0. The MOV instruction does not set ZF, so
the following does not work:

MOV AX, wDhata
Jz Zero

Instead, since ADD does set ZF, the following does work:

MOV AX, wData

ADD AX, O

JZ Zero
A flag can be set, but not tested, over the duration of several
instructions. In such cases, the intervening instructions mnust
be carefully checked to ascertain that they do not affect the
flag in question. This is generally a dangerous programming
practice.

(See Appendix A for the flags set by each instruction.)

Flags 59

Flag Usage

Most arithmetic operations set or clear six flag registers.
"Set" means set to 1, and "clear" means clear to 0.

Auxiliary Carry Flag (AF)

If an operation results in a carry out of or a borrow into the
low-order four bits of the result, AF is set; otherwise it is
cleared. A program cannot test this flag directly: it is used
solely by the decimal adjust instructions.

Carry Flag (CF)

If an operation results in a carry out of (from addition) or a
borrow into (from subtraction), the high-order bit of the result,
CF is set; otherwise it is cleared.

This flag usually indicates whether an addition causes a “"carry"
into the next higher order digit or a subtraction causes a
"borrow." CF is not, however, affected by increment (INC) and
decrement (DEC) instructions. CF is set by an addition that
causes a carry out of the high-order bit of the destination, and
cleared by an addition that does not cause a carry. CF is also
affected by the logical AND, OR, and XOR instructions.

The contents of an operand are moved one Oor more positions to the
left or right by the rotate and shift instructions. The carry
flag is treated as if it were an extra bit of the operand. Only
RCL, and RCR preserve the original value in CF. The value does
not, in these cases, remain in CF. The value is replaced with
the next bit rotated out of the source. If an RCL is used, the
value in CF is replaced by the high-order bit and goes into the
low-order bit. If an RCR is used, the value in CF is replaced by
the low-order bit and goes into the high-order bit. (This is
useful in multiple-word arithmetic operations.) In other rotates
and shifts, the value in CF is lost.

Overflow Flag (OF)
If a signed operation results 1in an overflow, OF 1is set;
otherwise it is cleared. (That is, an operation results in a

carry into the high-order bit of the result but not a carry out
of the high-order bit, or vice versa.)

Parity Flag (PF)
If the modulo 2 sum of the low-order eight bits of an operation

is 0 (even parity), PF is set; otherwise it is cleared (odd
parity).

60 Assembly Language Manual

Following certain instructions, the number of one bits in the
destination is counted and the parity flag set if the number is
even and cleared if the number is odd.

Sign Flag (SF)

If the high-order bit of the result is set, SF is set; otherwise
it is cleared.

Following an operation, the high-order bit of its target can be
interpreted as a sign. The SF flag is set equal to this high-
order bit by instructions that affect SF. Bit 7 is the high-
order bit of a byte and bit 15 is the high-order bit of a word.

Zero Flag (ZF)

If the result of an operation is 0, ZF is set; otherwise it is
cl

Following certain operations, 1f the destination is =zero, the
zero flag is set, and if the destination is not zero, the =zero
flag is cleared. Both ZF and CF are set by a result that has a
carry and a zero. Here is an example:

00110101
+11001011

~00000000 Carry Flag
Zero Flag

e

Flags 61

8 MACRO ASSEMBLER
Introduction

The assembler supports the definition and invocation of macros:
expressions, possibly taking parameters, that are evaluated
during assembly to produce text. The text that results is then
processed by the assembler as source code, just as if it had been
literally present in the input to the assembler. For example,
consider the program fragment.

$*DEFINE (Call2(subr,argl,arg2))(
PUSH %argl
PUSH %arg2
CALL $%$subr

%Call2 {(TITnout

b nl 23
....... \ Pu i ’

3~ :p-—
This fragment dJdefines a macro, Call2, of three arguments, and
then invokes it. The invocation is to the expanded form:

PUSH pl
PUSH p2
CALL Input

The character "$" is called the metacharacter and is used to
activate all macro processing facilities: macro invocations are
preceded by "%" and macro definitions Dby "$*". (The
metacharacter can be changed; how to do this is described later
in this Section.)

The simplest kind of macro definition takes the form:

$*DEFINE (MacroName ParameterList) (Body)

where MacroName is an identifier, ParameterList is a list of
parameter names enclosed in parentheses, and Body is the text of
the macro.

When parameter names appear in the Body, they are preceded by the
"$" character. A simple macro invocation takes the form:

¢MacroName (ArgList)

This expands to the corresponding macro Body with parameter names
of the macro definition replaced by arguments from the macro
invocation.

LOCAL Declaration

The purpose of macros is to permit the definition of a pattern--
the body of the macro--that is to be recreated at each invocation

Macro Assembler 63

of the macro. Thus two invocations of a macro normally expand to
source text differing only insofar as the parameters of
invocation differ. Consider however the definition:

¢*DEFINE (CallNTimes(n,subr))(
MOV AX,%n

Again: DEC AX
Jz Done
PUSH AX
CALL %subr
POP AX

JMP Again
Done:)

An invocation such as %CallNTimes(5,FlashScreen) expands to:

MOV AX,5
Again: DEC AX
JZ Done
PUSH AX
CALL FlashScreen
POP AX

JMP Again
Done:

A second invocation of this macro produces an error because it
doubly defines the labels Again and Done. The problem is that in
this case we want a new, unique pair of labels created for each
invocation. This can be done in a macro definition using the
LOCAL declaration. The proper form is illustrated by:

$*DEFINE(CallNTimes(n,subr)) LOCAL Again Done (
MoV AX, %n

%Again: DEC AX
JZ gDone
PUSH AX
CALL %subr
POP AX

JMP $Again
$Done:)

Conditional Assembly

In a manner carefully integrated with macro processing, the
assembler also supports assembly-time expression evaluation and
string manipulation facilities. These include the functions
EVAL, LEN, EQS, GTS, LTS, NEX, GES, LES, and SUBSTR. Here are
examples to illustrate the possibilities:

64 Assembly Language Manual

Evaluation

Function Example of Example Description

EVAL $EVAL(3*(8/5)) 3h Evaluate expression

LEN YLEN(First) 5h Length of string

EQS $EQS(AA,AA) OFFFFh String equality

GTS $GTS(y, x) OFFFFh String greater

LTS $LTS(y,x) Oh String less

NES $NES(AA, AB) OFFFFh String not equal

GES $GES(y,y) OFFFFh String greater or
equal

LES $LES(z,y) Oh String less or equal

SUBSTR $SUBSTR(abcde, 2,3) bced Substring

Note that these functions evaluate to hexadecimal numbers, and

that the relational functions (EQS, etc.) evaluate to OFFFFh if

the relation holds and Oh if it does not. The parameter to EVAL
+

sliindan +45 o sl o

nust cvaluate to a number.

The result of a numeric computation done during macro processing
can be given a symbolic name with the SET function, which is
invoked in the form:

$SET (name, value)
For example:

$SET (xyz, 7+5)

sets the macro variable xyz to value OCh. Subsequent to the use
of SET, %xyz is equivalent to OCh. Similarly, the invocation:

$SET (xyz, %xyz-1)
decrements the value of the macro variable xyz.

The macro facility also supports conditional and repetitive
assembly with the control functions IF, REPEAT, and WHILE.

IF has two versions

$IF (paraml) THEN (param2) ELSE (param3) FI
and

$IF (paraml) THEN (param2) FI
The first parameter is treated as a truth value--odd numbers are
true and even numbers false. If the first parameter is true, the
IF expression is equivalent to the value of its second parameter;
if the first parameter is false, the IF expression is equivalent

to the value of its third parameter (or to the null string if the
third parameter is omitted). For example:

Macro Assembler 65

$IF (1) THEN (aa) ELSE (bb) FI
is equivalent to aa, and:

3IF (2) THEN (aa) FI
is equivalent to the null string.

The IF function can be used in conjunction with macro variables
to provide conditional assembly. Suppose a program contains a
table that is to be searched for a value at run-time. If the
table is small, a simple linear search is best; if the table is
large, a binary search is preferable. Then you could code:

$IF (%sTable GT 10)

THEN(

:binary search version here
YELSE(

T
linear search here

)

The macro variable $sTable would have to be defined with some
numeric value; otherwise the expansion of the IF would yield an
error.

Sometimes it is convenient to control a conditional assembly by
whether or not a symbol has been defined: in the usual case, the
symbol is not defined and one alternative is selected, but if a
definition for the symbol is found, a different alternative is
selected. The macro processor supports this capability with the
ISDEF function. ISDEF may use two forms: one tests whether a
run-time symbol (for example, a label) has been defined, and the
other tests whether a macro-time symbol has been defined. In
both cases, the result is -1 if the symbol is defined, and O if
the symbol is not defined. The two forms are, $%ISDEF (symbol) to
check a run-time symbol, and, %*ISDEF (%symbol), to check a
macro-time symbol

Repetitive Assembly

REPEAT is used to assemble one of its parameters a specified
number of times. The form is:

SREPEAT (paraml) (param2)

For example:
$REPEAT (4)

(bpw O
)

is equivalent to:

66 Assembly Language Manual

DW
DwW
DW
DW

[oNeoNoNe]

(Note that in this, and in most examples involving the macro
facility, the parentheses are the delimiters of textual
parameters, so their placement is critical.)

WHILE is used to assemble one of its parameters a variable number
of times, depending on the result of an assembly-time computation
to be performed before each repetition. The form is:

$WHILE (paraml) (param2)

For example, suppose ¥nWords has the value 3h. Then the result
of:

$WHILE (%nWords GT 0) ($REPEAT (%nWords)
(DW gnWords
) $SET (nWords, %$nWords-1))

is:
DW 3h
DW 3h
DW 3h
DW 2h
DW 2h
DW 1h

When using the control functions REPEAT and WHILE it is
sometimes desirable to explicitly terminate expansion. This can
be done with EXIT, whose invocation stops the expansion of the
enclosing REPEAT, WHILE, or macro. For example, if %n is
initially 5, then the expression.

SWHILE(%n GT 0)
($REPEAT {(%n) ($IF (%n) THEN (%EXIT) FI DW %n
Y$SET (n, %n-1)

expands to:

Macro Assembler 67

Interactive Assembly (IN and OUT)

The macro capability supports interactive assembly, based on the
two functions IN and OUT, which are used, respectively, to read
input from the keyboard during assembly and to display
information on the video display during assembly. When using IN
and OUT, it is important to understand the two-pass nature of the
assembler. Since the assembler makes two passes over the text,
it expands all macros and macro-time functions twice. This
works, but the programmer must take care:

1. that expressions involving macro-time variables generate the
same code or data in both passes, and

2. that IN and OUT are not expanded twice.

The programmer may control these effects using the specially
defined macro variables PASS1 and PASS2., whose values are:

During First Pass During Second Pass

PASSl | -1 I 0 |
PASS2 | 0 [-1 |
Here is an example to illustrate these facilities. Suppose you

want to prompt the user for a number at the beginning of an
assembly, then use this (input) string later. Do this by
inserting, near the beginning of the source, this code:

$IF (%PASS1 EQ -1)
THEN (30UT (Enter table size in bytes)
$SET (sTable, %IN)) FI

The OUT and IN execute during the first pass only, and the user's
input becomes the value of the macro variable sTable; this can
later be referred to by %sTable.

Comments
You can write macro-time comments. The format is either:
$'text-not-containing-RETURN-or-apostrophe'
or
% 'text-not-containing-RETURN-or-apostrophe RETURN
(Here RETURN designates the character generated by the Convergent
RETURN key, code OAh.) Since the characters of the embedded text

of a comment are consumed without any effect, comments may be
used to insert extra returns for readability in macro

definitions.

68 Assembly Language Manual

Match Operation

The special macro function MATCH is particularly useful for
parsing strings during macro processsing. It permits its
parameters to be divided into two parts: a head and a tail. A
simple form is:

$MATCH (varl. var2) (text)

For example, following the expansion of:

$MATCH (varl, var2) (a, b, c, d)
The macro variable varl has the value "a" and var2 the value "b,
c, d4a". This facility might be used together with LEN and
WHILE. Consider the expression:

nead, arg) (%arg)

If %arg is initially the text 10, 20, 30, 40, then the expansion
is:

DW 10
DW 20
DW 30
DW 40

Advanced Features

The form of MATCH just described, as well as the form of macro
definition and call described above, are actually only special
cases. In fact the separator between the parameters of MATCH or
of a macro can be a user-specified separator other than comma.
The remainder of this Section explains this and a number of
related advanced features of the macro facility. Most
programmers find the macro facilities described above quite
sufficient for their needs; what follows can be deferred to a
second reading.

The entities manipulated during macro processing are macro
identifiers, macro delimiters, and macro parameters.

A macro identifier is any string of alphanumeric characters and
underscores that begins with an alphabetic character.

A macro delimiter is a text string used as punctuation between
macro parameters. There are three kinds of macro delimiters:

1. An identifier delimiter is the character "@" followed by an
identifier.

Macro Assembler 69

2. An implicit blank delimiter is any text string made up of the
"white space" characters space, RETURN, or TAB.

3. A literal delimiter is any other delimiter. Thus, all the
preceding examples have wused the comma as a literal
delimiter.

A macro parameter is any text string in which parentheses are
balanced. The following are valid parameters:

Xyz
(xyz)
((xyz) () (O))
whereas the following are not:
(
(O
xy) (
That is, parentheses are considered balanced if the number of
left and right parentheses is the same and, moreover, in reading
from left to right there is no intermediate point at which more
right than left parentheses have been encountered.

The most general form of macro definition is:

$*DEFINE (ident pattern) <locals> (body)

where:
1. the "*" is optional (see below for details),
2. ident is a macro identifier as defined above,

3. pattern and body are any balanced strings, and

4. <locals> 1is optional and, if present, consists of the

reserved word LOCAL and a list of macro identifiers separated
by spaces.

In all macro definitions illustrated above, the pattern has the
form:

(id1, id2, ..., idn)
and all invocations are of the form:
gident (paraml, param2 ..., paramn)

Here are examples to illustrate other cases. The definition:

70 Assembly Language Manual

$*DEFINE (DWDW A @AND B) (DW %A
DW %B)

requires an invocation such as:
$DWDW 1 AND 2

which expands to:

DW 1

DW 2
Here the delimiter preceding the formal parameter A and following
the formal parameter B is an implicit space. The delimiter
between the A and the B is the identifier delimiter @AND.
Bracket and Escape
The macro processor has two special functions, "bracket" and
“escape,” which are useful in defining invocation patterns and
parameters. The bracket function has the form:

% (text)

where text is balanced. The text within the brackets is treated
literally. Thus, given the defintion:

$*DEFINE (F(A))(%(3F(2)))
the invocation:

3F(1)
expands to:

3F(2)

since the %F(2) is embedded within a bracket function and hence
not treated as another macro call. Similarly, the definition:

¢*DEFINE (DWDW A AND B) (DW %A
DW %B)

declares three formal parameters A, AND, and B (with implicit
blank delimeters), whereas the definition:

$*DEFINE (DWDW A %$(AND) B) (DW %A
DW $B)

treats the AND as a literal delimeter, so that the invocation:
$DWDW 1AND2

yields the expanded form:

Macro Assembler 71

DW 1

DW 2
The escape function is useful to bypass requirements for balanced
text or to use special characters like "%" or "*" as regqular
characters.

The form is:
¥ntext

where n is a digit, 0 to 9, and text is a string exactly n

characters long. For example, you might define:

$*DEFINE (Concat(A,B))(%A%B)
and invoke this macro by:

$Concat (DW ,%1(3+,4%1))
yielding the expansion:

DW (3+4)
MATCH Calling Patterns

Generalized calling patterns are applicable to MATCH just as they
are to macro definition and invocation. The general form is:

$MATCH(identl macrodelimiter ident2)(balancedtext)

For example, if "arg" is initially:
10 xyz 20 xyz 30
then:
$WHILE (%LEN(R%arg) GT 0) (3MATCH(head @xyz arg) (%arg)
DW %head
)
expands to:
DW 10
DW 20
DW 30

Processing Macro Invocations

In processing macro invocations, the assembler expands inner
invocations as they are encountered. Thus, in the invocation:

SF(3G(1))

72 Assembly Language Manual

the argument to be passed to F is the result of expanding
$G(1). The expansion of inner invocations can be suppressed
using the bracket and escape functions. Thus, with both of the
invocations:

$F(%(3%G(1)))
$F(%5%G(1))

it is the literal text 3%G(l), not the expansion of that text,
that is the actual parameter of F.

Expanded and Unexpanded Modes

All macro processor functions can be evaluated in either of two
modes, expanded and unexpanded. When the function, invocation,
or definition is preceded by "%", the mode used is expanded; when
preceded by "%*", the mode used is unexpanded. 1In either case,

actual parameters are expanded and substituted for formal
parameters within the body of invoked macros. In unexpanded
mode, there is no further expansion. In expanded mode, macro

processing specified in the body of a macro is also performed.
For example, let the macros F and -G be defined by:

$*DEFINE(F(X)) (3G(%X))
$*DEFINE(G(Y)) (3Y+3Y)

Then the invocation:

$*F(1)
expands to:

$G(1)
whereas the invocation:

$F(1)
expands to:

1+1
Nested Macro Expansion
When macro expansion is nested inner expansions are according to
the mode they specify; on completion of inner expansions,
processing continues in the mode of the outer expansion. An
alternate way of saying this is that the parameters of user-
defined macros are always processed in expanded mode. The bodies
are processed in expanded mode when a "%" invocation is used, and
in unexpanded mode when a "%*" invocation is used. It is also

possible to invoke built-in functions in either expanded or
unexpanded mode. For each built-in function, some arguments are

Macro Assembler 73

classified as parameter-like and therefore processed in expanded
mode, whereas others are classified as body-1like and therefore
processed in expanded mode only if the invocation is with "g".

The complete table follows:

DEFINE (p-arg)(b-arg)
EQS (p-arg)

EVAL (p-arg)

GES (p-arg)

GTS (p-arg)

IF (p-arg) THEN (b-arg) ELSE (b-arg)
[SDEF (b-arg)

LEN (b-arg

LES (p-arg)

LTS (p-arg)

MATCH (p-arg)(b-arg)

MM ~
METACHAR {p-arg)

NES (p-arg

OUT (b-arg)

REPEAT (p-arg) (b-arg)

SUBSTR (b-arg, p-arg, p-arg)
WHILE (p-arg)(b-arg

where p-arg denotes parameter-like arguments and b-arg denotes
body-like arguments.

Assembly control directives, explained in section 10, begin with
a "$" after a RETURN. If a control is encountered in expanded
mode, it is obeyed; otherwise the control is simply treated as
text.

A different character can be substituted for the built-in
metacharacter "%" by calling the function METACHAR, in the form:

$METACHAR (newmetacharacter)

The metacharacter should not be a left or right parenthesis an
asterisk, an alphanumeric character, or a “white space”
character.

74 Assembly Language Manual

9 ACCESSING STANDARD SERVICES FROM ASSEMBLY CODE

You can access all system services from modules written in

assembly language. To do so, you must follow certain standard
calling conventions, register conventions, and segment/group
conventions. If, in addition, you wish to use the system's

virtual code management services, you must follow additional
virtual code conventions.

Calling Conventions

Here we explain how CTOS™ Operating System services and standard
object module procedures are invoked from programs written in

assembly language. The following example of a call to the
standard object module procedure ReadBsRecord 1is helpful in
understanding this subject. The calling pattern of this

procedure, described in detail in the CTOS™ Operating System
Manual, is

ReadBsRecord (pBSWA, pBufferRet, sBufferMax
psDataRet): ErcType

The Operating System and the standard object modules deal with
quantities of many different sizes, ranging from single-byte
quantities, such as Boolean flags, to multibyte quantities, such
as request blocks and Byte Stream Working Areas. Three of these
sizes are special: one byte, two bytes, and four bytes. Only
quantities of these sizes are passed as parameters on the stack
or returned as results in the registers. When it is necessary to
pass a larger gquantity as a parameter or to return a larger
quantity as a result, a pointer to the larger quantity is used in
place of the quantity itself. A pointer 1is always a 4-byte
logical memory address consisting of an offset and segment base
address.

For example, ReadBsRecord takes as parameters a pointer to a Byte
Stream Work Area (pBSWA), a pointer to a buffer (pBufferRet), a
maximum buffer size (sBufferMax), and a pointer to a word
containing the size of some data (psDataRet). ReadBsRecord
returns an error status of type ErcType. The pointers are all 4-
byte quantities, the size is a 2-byte quantity, and the error
status is a 2-byte quantity. Suppose that data is allocated by
the declarations:

sSBSWA EQU 130

sBuffer EQU 80

bswa DB sBSWA DUP(?)
buffer DB sBuffer DUP(?)
sData DW ?

Accessing Standard Services 75

Then to call ReadBsRecord, it is necessary first to push onto
the stack, in order, a pointer to bswa, a pointer to buffer, the
size of buffer (the constant sBuffer), and a pointer to sData.
If DS contains the segment base address for the segment
containing bswa buffer and sData, then this may be done by the

code:

PUSH DS ;Push the segment base address for bswa
MOV AX, OFFSET bswa ;Set BX to the offset of bswa

PUSH AX ;Push the offset of bswa

PUSH DS ;Ditto for the buffer

MOV AX, sBuffer :Get the buffer size into a register
PUSH AX ;Push this word onto the stack

PUSH DS ;Push the segment base address

MOV AX, OFFSET sData

PUSH AX rand then the offset of sData

CALL ReadBsRecord ;Do the call

Note that pointers are arranged in memory with the low-order
part, the offset, at the lower memory address, and the high-order
part, the segment base, at the higher memory address. However,
the processor architecture of the Convergent Information
Processing System is such that stacks expand from high memory
addresses toward low memory addresses; hence the high-order part
of a pointer is pushed before the low-order part. Note also that
the processor has no instruction that pushes an immediate
constant: that is why the constant sBuffer must first be loaded
into a register and that register pushed onto the stack.
Finally, note that this sample code actually computes the various
pointers at run-time. It would also be possible to have the
pointers precomputed by adding to the program the declaration:

PBSWA DD bswa
pBuffer DD buffer
psbhata DD sData

If this were done, then the appropriate calling sequence would
be:

LES BX, pBSWA
PUSH ES

PUSH BX

LES BX, pBuffer
PUSH ES

PUSH BX

MoV AX, sBuffer
PUSH AX

LES BX, psData
PUSH ES

PUSH BX

CALL ReadBxRecord

76 Assembly Language Manual

Note that the LES instruction loads the offset part of the
pointer into BX and the segment part into ES in a single
instruction.

Object module and system common procedures as well as procedural
references to system services must be declared EXTRN and FAR.
These declarations may not be embedded in a SEGMENT/ENDS
declaration. See line 6 of Figure 11-3.

The result returned by ReadBsRecord is a 2-byte quantity and
according to the Convergent calling conventions, is returned in
AX. If the result were a 4-byte quantity, the high-order part
would be returned in ES and the low-order part in BX.

All of the 4-byte quantities dealt with in this example are
pointers. There are many cases in which the Operating System and
standard object module procedures deal with 4-~byte quantities
other than pointers, such as logical file addresses (1fa). It is
important to understand that, as far as regards calling and
register conventions and stack formats, such 4-byte quantities
are dealt with exactly as 4-byte pointers. when they are
parameters, the high-order part is pushed first and the low-order
part second; when they are results, the high-order part is
returned in ES and the low-order part is returned in BX.

There is one additional case, not illustrated by the example of
ReadBsRecord. When a parameter is a single byte, such as a
boolean flag, two bytes on the stack are actually required,
although the high-order byte of these two bytes is not used.
Thus the instruction:

PUSH BYTE PTR[BX]

adds two bytes to the stack. One of these bytes is specified by
the operand of the PUSH instruction; the other is not set and no
reference should be made to it. Similarly, when the result of a
function is a single byte, that byte is returned in AL and no
reference should be made to the contents of AH.

Register Usage Conventions

When writing in assembly language a call to a standard object
module procedure or to the Operating System, be aware of the
Convergent standard register conventions. The contents of CS,
DS, SS, SP, and BP are preserved across calls: they are the same
on the return as they were just prior to the pushing of the first
argument. It is assumed that SS and SP point, respectively, to
the base of the stack and the top of the stack, and this stack
will, in general, be used by the called service. (Do not put
temporary variables in the stack area below SS.SP; see
"Interrupts and the Stack" below for details.) These conventions
place no particular requirement on the contents of BP unless
virtual code segment management services are being used. (See

Accessing Standard Services 77

"Virtual Code Segment Management and Assembly Code" below for
details of BP usage with virtual code.) The other registers and
the flags are not automatically preserved across calls to the
Operating System or the standard object module procedures. Any
other registers which must be saved in a particular application
must be saved explicitly by the caller. Although there is not an
absolute requirement that these register usage conventions be
followed in parts of an application that do not call standard
Convergent services, failing to follow them is not recommended in
the Convergent programming environment.

Segment and Group Conventions
Main Program

A main program module written in assembly language must declare
its stack segment and starting address in a special way. This is
illustrated in the sample module of Figure 11-2. 1In particular:

o The stack segment must have the combine type Stack. (See
line 22.)

o The starting address must be specified in the END
statement. (See line 27.)

When the program is run, the Operating System performs the
following steps:

o It loads the program.

o It initializes SS to the segment base address of the
program's stack.

o It initializes SP to the top of the stack.

o It transfers control to the starting address with interrupts
enabled.

SS and DS When Calling Object Module Procedures

If the program calls Convergent object module procedures, there
are additional requirements. The program format used in Figure
11-2 does not suffice. A correct program is given Figure 11-3,
illustrating the following points:

o The stack segment must have segment name Stack, combine type
Stack, and classname 'Stack'. See line 44.

o Although not required, it is standard practice that user code

be contiguous in memory with Convergent code and that code be
at the front of the memory image. This is achieved if all

78 Assembly Language Manual

code segments have classname 'Code' and this class 1is
mentioned before any other in the module. See lines 11-12.

[It is desirable to avoid forward references to constants. It
is also standard, though not required, to make user constants
contiguous with Convergent constants in the memory image and
to locate constants directly after code. You can achieve
both goals by giving all constant segments the classname
'Const' and by mentioning this classname before any other
save 'Code'. See lines 17-22

o} It is desirable to avoid forward references to data. It is
also standard, though not required, to make user data
contiguous with Convergent data in the memory image, and to
locate data directly after constants. You can achieve both
goals by giving all data segments the classname 'Data' and by
mentioning this classname before any others save 'Code' and
'Const’'. See lines 27-36. Note that EXTRN declarations for
data declared in object module procedures must be embedded in
the data SEGMENT/ENDS declarations.

o At any time that a call is made to an object module
procedure, DS and SS must contain the segment base address of
a special group named DGroup. This group contains the Data
Const, and Stack segments, and is declared as illustratedf in
line 53. In addition, at the time of a call to an object
module procedure, SP must address the top of a stack area to
be used by the called procedure. A correct initialization of
8S, SP and DS is illustrated in lines 62-68. These values
need not be maintained constantly, but, if they are changed,
they should be restored (using the appropriate top of stack
value in SP if it has changed) for any call to an object
module procedure. Note that the Operating System's interrupt
handlers save the user registers by pushing them onto the
stack defined by SS:SP. Therefore, some valid stack must be
defined at all times that interrupts are enabled.

Interrupts and the Stack

If interrupts are enabled, interrupt routines use the stack as
defined by SS and SP. Therefore you should never, even

temporarily, put data in the stack segment at a memory address
less than SS:SP.

Use of Macros

The instructions to set up parameters on the stack before a call
and to examine the result on return have a number of cases, as

discussed above. The instructions that must be executed differ
slightly according to whether a parameter is in a register, a
static variable, an immediate constant, a word, or a

doubleword. If you are programming a particular assembly module
in which not all of this variability occurs, it may be simplest

Accessing Standard Services 79

to program the required calling sequences just once, to include
them in your program as macro definitions, and to invoke them
using the assembler's macro expansion capability.

For example, the procedural interface to the Write operation is
given in the CTOS™ Operating System Manual as:

Write (fh, pBuffer, sBuffer, 1fa, psDataRet): ErcType

where fh and sBuffer are 2-byte quantities and pBuffer, 1fa, and
psDataRet are 4-byte quantities. The corresponding external

EXTRN Write: FAR

$*DEFINE(Write(fh pBuffer sBuffer lfa psDataRet))
(PUSH %fh
PUSH WORD PTR $pBuffer[2]
PUSH WORD PTR $pBuffer[0]
PUSH $sBuffer
PUSH WORD PTR %1fa[2]
PUSH WORD PTR %1fal[0]
PUSH WORD PTR $psDataRet[2]
PUSH WORD PTR %psDataRet[O]
CALL Write

)

Note that the 4-byte quantities are treated slightly differently
from the 2-byte quantities, requiring first a PUSH of the high-
order word, then a PUSH of the low-order word.

Here is an example of the use of this macro with "static" actual
parameters:

fhl DW ?
EVEN
buffer DB 512 DUP(?)
sBuf DW SIZE buffer
pBuf DD buffer
1fal DD ?
sDataRet DW ?
psDataRet DD sDataRet

;code to initialize fhl, buffer, and lfal

$Write(fh pBuffer sBuffer 1fa psDataRet)
You might, instead, want to invoke this macro with actual

parameters on the stack. Suppose that the quantities rbfhl,
rbsBuf, rbpBuf, rblfal, and rbpsData are on the stack and that

80 Assembly Language Manual

the top of stack pointer is in register BX. Here is a sample
invocation:

rbfhl EQU -6

rbsBuf EQU -8

rbpBuf EQU ~10

rblfal EQU -14

rbpsDat EQU -18

Write([BP+rbfhl] [BP+rbpBuf]

[BP+rbsBuf] [BP+rblfal]
[BP+rbpsData]

Virtual Code Segment Management and Assembly Code
The virtual code segment management services of the Convergent

Information Processing System permit the programmer to configure
a program (written in any of the Convergent compiled langauges,

in assembly language, or in a mixturc cf these} into overlays.
Although data cannot be overlaid with these services, code can be
overlaid. Moreover, the run-time operations whereby code
overlays are read into memory and discarded from memory are
entirely automatic. The programmer need only specify, when

linking the program, which modules are to be overlaid, and need
make no change to the progam apart from inserting at its start a
single procedure call to initialize virtual code segment
management services. (See the CTOS™ Operating System Manual for
details.)

The correct automatic operation of the virtual code facility
requires certain assumptions about stack formats and register
usage in the run-time environment to be satisfied. These
assumptions are automatically satisfied by the compiled languages
of the Convergent System; however, the assembly language
programmer must follow some simple rules if virtual code segment
management is to be used. If a program contains no calls to
overlaid modules from assembly language code or from procedures
called from assembly language code, then the presence of
assembly language code in the program has no affect on the
operation of virtual code segment management services. 1In this
case, there are no additional rules that the assembly language
programmer must follow.

An overlay fault is defined as a call to or return to an overlaid
module that is not in memory. An overlay fault automatically
invokes virtual code segment management services to read the
required overlay into memory and possibly to discard one or more
other overlays from memory. The virtual code segment management
services do this, in part, by examining the run-time stack.
Therefore, if there are control paths in a program such that the
stack may contain entries created by assembly language code when
an overlay fault occurs, the assembly language programmer is
subject to additional rules. These are the rules:

Accessing Standard Services 81

82

The register usage conventions discussed earlier must be
followed. The intervention of virtual code segment
management services preserves the registers SS, SP, DS, and
BP, and, if an overlay fault occurs during the return from a
function, preserves registers AX, BX, and ES where results
may be returned. Other registers are not, in general,
preserved, and therefore cannot be used to contain parameters
or return results.

The stack segment must be named STACK and must bhe part of
DGroup. (If a program is a mixture of assembly language code
and compiled code, and all code shares the same stack, this
happens automatically; if a main program is written in
assembly language, it must be done explicitly. See the
example of an assembly language main program for details.)

All procedures must be declared using the PROC and ENDP

directives. Procedure bedies may not overlap. That ig, the
pattern:
Outer PROC FAR
;Code of Outer
Inner PROC FAR

;Code of Inner
Inner ENDP

:More code of Outer
Outer ENDP

is not permitted and must be replaced by the pattern

Outer PROC FAR
;Code of Outer
;More code of Outer
Outer ENDP
Inner PROC FAR
;Code of Inner
Inner ENDP

Note that this is only a restriction on syntactic nesting:
there is no restriction on nested calls, and Outer can, in
any case, contain calls to Inner.

If all of these conventions are followed, then when control
enters an assembly language procedure, the most recent entry
on the stack is the return address. In addition to
preserving the value of BP, as discussed above, the procedure
must push this value of BP onto the stack before it makes any
nested call. No values may be pushed onto the stack between
the return address and the pushed BP. This convention
enables the virtual code segment management services to scan
the stack during an overlay fault; its violation is not
detected as an error but causes the overlaid program to fail

Assembly Language Manual

in unpredictable ways. Naturally, the pushed BP must be
popped during the procedure's exit sequence.

5. All code must be in a class named CODE.

6. The SEG operator may not be used on an operand in class CODE
nor in any segment that is part of an overlay. In
particular, an instruction such as:

Mov AX, SEG Procedure
is not permitted.

7. If a procedural value (that is, a value that points to a
procedure) is to be constructed, this must be done in a class
other than CODE by either:

pProc DD Procedure
or:

pProc DW Procedure
DW SEG Procedure

Such procedural values do not point directly at the procedure
(since the procedure may be in an overlay), but at a special
resident transfer vector created by the Linker. Such a
procedural value may be invoked by the code:

CALL DWORD PTR pProc

8. If a procedure is known to be resident, and it is desired to
address, not its entry in the resident transfer vector, but
the procedure code directly, this may be done using, in place
of SEG and OFFSET, the operators RSEG and ROFFSET. If RSEG
or ROFFSET is applied to a value in an overlay, an error is
detected during linking.

System Programming Notes

The rest of this Section describes some of the algorithms and
data structures that make up the virtual code segment management
facility. An understanding of these details is not needed by the
user of the virtual code segment management facility--they are
included for the information of the system programmer desiring a
model of the internal workings of the wvirtual code segment
management facility.

When you invoke the Linker, if you specify the use of overlays,
then the Linker creates in the run file a special segment in the
resident part of the program called the statics segment. This
segment contains a transfer vector (an array of 5-byte entries
called stubs with one stub for each public procedure in the

Accessing Standard Services 83

program) . A stub consists of one byte containing an operation
code, either JUMP or CALL, and four bytes containing a long
address. The Linker notes each call to a public procedure in an
overlaid program and transforms it to an intersegment indirect
call through the address part of the corresponding stub.

The contents of the address part of a stub for a procedure which
is in memory (i.e., either resident or overlaid but currently
swapped in) is the actual starting address of the procedure;
thus the call of such a procedure is slower than it would be in a
nonoverlaid program by only one memory reference.

The contents of the address part of a stub for a procedure not in
memory is the address of a procedure in the virtual code segment
management facility. Thus a call of such a procedure actually
transfers to the virtual code segment management facility. Such
a call of the virtual code segment management facility is a "call

fault."” When a call fault occurs, the virtual code segment
management facility reads the needed overlay into the swap
buffer. Before control is transferred to the called procedure,

two other steps are taken.

1. The address in all stubs for procedures in the overlay is
changed to the swapped-in address of the procedure.

2. If some overlays had to be deleted from the swap buffer to
make room for the new overlay, the stubs for their procedures
reset to the address of the procedure in the virtual code
segment management facility that deals with call faults. (It
is possible for an overlay to be deleted from memory even
though control is nested within it--i.e., even though a
return into it is pushed onto the stack. This situation is
handled properly: all such stacked return addresses are
modified to be the address Of a procedure in the virtual code
segment management facility that subsequently swaps the
overlay back into memory when a "return fault" occurs.)

The user will observe that, in the preceding discussion, no use
is made of the first byte of a stub the operation code. This
byte is, in fact, only used for calls of procedural values. The
virtual code segment management facility arranges that the
operation code is a jump instruction for an overlay in memory;
thus an invocation of a procedural argument for such a procedure
results in a call to a jump instruction which then transfers
control to the procedure. The virtual code segment management
facility arranges that the operation code for an overlay not in
memory is a call; since the address part of such a stub is the
address of the virtual code segment management facility, the
invocation of such a procedure results instead in the activation
of the virtual code segment management facility.

84 Assembly Language Manual

10 ASSEMBLY CONTROL DIRECTIVES

The Convergent assembly language contains facilities to control
the format of the assembly listing and to sequence the reading of
"included" source files. These facilities are invoked by
assembly control directives. Assembly control directives must
occur on one or more separate lines within the source (i.e., not
intermixed on the same line as other source code). An assembly
control line must begin with the character "$". Such a line may
contain one or more controls, separated by spaces. Here is an
example:

STITLE(Parse Table Generator) PAGEWIDTH(132) EJECT
The meanings of the individual controls are described below.
EJECT
The control line containing EJECT begins a new page.
GEN

All macro calls and macro expansions, including intermediate
levels of expansion, appear in the listing.

NOGEN

only macro calls, not expansions, are listed. However, if an
expansion contains an error, it is listed.

GENONLY

Only the final results of macro expansion, and not intermediate
expansions or calls, are listed. This is the default mode.

INCLUDE (file)

Subsequent source lines are read from the specified file until
the end of the file is reached. At the end of the included file,
source input resumes in the original file just after the INCLUDE
control line.

LIST

Subsequent source lines appear in the listing.

NOLIST

Subsequent source lines do not appear in the listing.

PAGELENGTH (n)

Pages of the listing are formatted n lines long.

Assembly Control Directives 85

PAGEWIDTH (n)

Lines of the listing are formatted a maximum of n characters
wide.

PAGING

The 1listing is separated into numbered pages. This is the
default.

NOPAGING
The listing is continous, with no page breaks inserted.
SAVE

The setting of the LIST/NOLIST flag and ‘the GEN/NOGEN/GENONLY
flag is stacked, up to a maximum nesting of 8.

RESTORE

The last SAVEd flags are restored.

TITLE (text)

The text is printed as a heading on subsequent listing pages.

The default title is the null string. The text must have
balanced parentheses. (See Section 8 for details.)

Using a Printer with Assembly Listings

The listing produced by the assembler is paginated with titles
and page numbers. Since the entire page image is formatted in
such a listing, it should be printed by APPENDing or COPYing to
[Lpt] rather than with the Executive's PRINT command. (The PRINT
command can be used to print such a listing, but only by
overriding many of its default values; these values were chosen
to make the printing of text files created with the Editor most
convenient.)

86 Assembly Language Manual

11 SAMPLE ASSEMBLER MODULES

This section contains three complete sample assembler modules.
The first, Figure 11-1, is a source module of the assembler
itself. It is the module that translates the assembler's
internal error numbers into textual error messages.

The second module Figure 11-2, is a skeleton of a "standalone"
assembler main program, and illustrates how the run-time stack is
allocated in an assembler module. This example follows a bare
minimum of the standard system conventions and does not 1link
properly to standard object module procedures.

The third module, Figure 11-3, is an assembler main program
compatible with Convergent conventions and linkable with standard
object module procedures, as described above in Section 9,
"Accessing Standard Services from Assembly Code."

Sample Assembler Modules 87

88

Tenuey obenbue] ATquUassy

iError message module for the assembler. Suitable for loading into an overlay in orcer to save space in the resident.

PUBLIC PAsciFromErc
ipAsciz = PAscirFromErc(erc, ofUpArrow)

i
iGiven an error code in DS:[BP+B1 (lst arg).
3

iReturns ES:BX = pointer to O terminated ascii string.
i Stores flag indicating whether uparrow is to accompany error message in location pointed at by DS: [(BP+&1 (2nd arg.)

;Define the segments we ave going to use. Do this here to get them in the desired physical order
iThe storage layout consists of the procedure code followed by & packed group of ascii strings, followed by two parallel arrays

AsmErr SEGMENT WORD PUBLIC ’‘CODE’ iSegment for the code of PAscizFromErc

AsmErr ENDS

AsmEr1 SEGMENT WORD PUBLIC ‘ERRORS’ iSegment for the ascii text of messages

AsmErl ENDS

AsmEr2 SEGMENT WORD PUBLIC ‘ERRORS’ i Segment for offsets to text, indexed by erc
rgRaRgch LABEL WORD

AsmEr2 ENDS

AsmEr3 SEGMENT WORD PUBLIC ‘ERRORS‘ iBegment for array of fUparvow flags, indexed by erc

T9fUpArrow LABEL BYTE

AsmEr3

ENDS

iAddress everything in this module thru CS: (which points to the base of ErrGroup)

ErrGroup GROUP AsmErr,

AsmErl, AsmEr2, AsmEr3

AsmErr SEGMENT
ASSUME CS:ErrGroup iTell the assembler what to expect in €S
PAsciiframErc PROC FAR iProcedure entry point
PUSH BP
Mov BP, SP iSave callers BP, set up local frame pointer
Mov BX, (BP+81 iBX = erc
cme BX, ercMax iCompare against maximum error #
JB Ok
Mov BX. ercMax~1 iToo big: use "Internal error" message
Ok:
MOV AL, rg fUpArrowlBX1 iFetch uparrow flag for this erc .
MOV D1, (BP+67 iFetch Callers DS relative pointer to where he wanted it stored
MoV (D1, AL ;Store it
SHL BX. 1 iBX = erc*2 so as to index array of words
Mov BX, rgRaRgch(BX] iFetch CS relative offset to error message text
MOV AX. CS
MOy ES. AX iReturn segment of text in ES
POP BP iRestare callers BP
RET 4H iDump args from stack and return

PAscizFromErc ENDP

Figure 11-1. Error Message Module Program. (Page 1 of 3.)

soTNpoON JeTquessy oTdwes

68

AsmErr ENDS

AsmEr! SEGMENT
iThis macro generates the text and the 2 parallel arrays

“#Define(Err(fUpArraw, erc, Tgchd)

(%4IF (Zerc GT ercMax) THEN (ercMax EQU Yerc) FI
orgch EQU % 7'Remember where we started the string’
DB ‘/rgch’, 0 %Z’The zero terminated ascii string’
AsmEr2 SEGMENT
ORG %erce
ow ErrGroup: orgch Z‘'The ErrGroup velazive offset (i.e. CS rel.) of ascii

AsmEr2 ENDS
AsmET3 SEGMENT
ali{ed serc
DB %fUpArrow %‘The uparrow flag’
AsmET3 ENDS
b

iDo the work
ercMax EQU o sInitialize max. defined error code

ZErr (1,00, Invalid numeric constant)

ZEvrr{{,01, Syntax error)

ZErr (0,02, Expression too complex)

%ZErr (0,03, Internal error #1)

ZErr(0.04. Invalid arithmetic operation for relocatable or external expression)
ZErr (1,05, Invalid use of register in expression)

ZErr (0,06, Invalid use of PTR, must operate upon address expression)
%Erv(1,07,Undefined symbol)

%ZErr (0, 08, Forward reference to EQU’‘ed register not permitted)

#Err (0,09, 812E and LENGTH must operate upon data symbol)

ZErr (1,10, Invalid argument to ASSUME, must not be Fforward reference)
%ZETr (0, 11, PROC/ENDP nesting too deep)

#ErT (0, 12, Mismatched PROC/ENDF)

ZErr (0,13, Invalid origin for absolute segment)

ZErr(0, 14, Invalid redefinition of syabal)

ZErr(0, 15, Mismatched SEGMENT/ENDS)

ZErr(0, 16, Expression must be absolute)

%Err(0,17,Value too large for field)

%ZErr{1,18,Strings > 2 characters allowed only in DB)
ZErr(0, 19, Invalid SEGMENT/GROUP prefix)

7%Err(0, 20, Label phase error, Pass 2 value differs from Pass 1 value)
ZErr{0, 21, No ASSUME CS: in effect, NEAR label cannot be defined)
%Err(0,22, Invalid GROUP member, must be a SECMENT name)
ZEPTr(0,23,Limit of 255 EXTRN symbols per ot ject module exceeded)
%“Err(0, 24, Duplicate declaration for symbol)

%Err (1,25, Not an address expression)

%Err(0, 26, Argument to END must be a NEAR/FAR label defined in this module)
%Err(0,27, Invalid argument to ORG, not absolute or offset)
ZErr(0,28. Too many GROUPs)

string”

Figure 11-1 Error Message Module Program. (Page 2 of 3.)

06

Tenueny a6HenbueT ATquassy

*1-11 @2anbta

‘weiboid o1npoW obessey aoaam

(‘€ 30 g @beq)

ZErrT (0, 29, Too many SEGMENTs)

%Err (0. 30, Too many GROUF members)

ZErr (0, 31, SEGMENT nesting too deep)

%Err(0,32, Invalid destination operand)

%Err (0,34, 0perand must bhe a BYTE, WORD or DWORD)
ZErr(0,35 Dperands not reachable thru segment registers)
ZErT(0, 35, Too little space reserved due to forward reference)
ZErr (0,37, Invalid combination of index and base registers)
ZErr(0,38. Invalid types of operands for this instruction)
7ZErr{0, 39, May not move immediate value to segment register)
ZErT (0,40, Invalid shift count)

%Err(0,41.RET outside of PROC/ENDP)

%Err(0.42.0perand must be NEAR or FAR)

ZErr (0,43, NEAR ,yump to different ASSUME CS.)

ZErr (0. 44, Conditional jump to FAR label)

ZErr (0,45, SHORT jump to further away than 128 bytes)

AETT (0, 45, Segment size exceeds 64K bytes)

ZErr(0.47.No END statment or open SEGMENT/ENDS PROC/ENDP)
ZErr (1,48, Missing rvight ‘‘%1)‘’)

ZErr(1.49, Invalid character following the Metacharacter)
ZErr(0,50, Invalid control)

ZErT{(0, 51, Undefined macro or contral)}

ZErr(1.52, Invalid call pattern)

%Err(1,53, Invalid pattern argument to MATCH)

%Err (1, 54, Invalid LOCAL symbol definition)

%Err (0. 55 Macro or INCLUDE nesting level too deep)
ZErr(0, 56, Invalid PAGEWIDTH or PAGELENGTH)

ZErT (0. 57, SAVE/RESTORE nesting level toc deep)

ZErr (0, 58, RESTORE without matching SAVE)
ZETr(0, 59, Attempt to redefine builtin function)
ZErri0,60.Macro attempts to redefine itself)

ZErr(0. 61, Instruction always uses ES., may not be overridden)
#Err(0.62,May not index NEAR or FAR expression)

4Err (0, 63, Attempt to divide or MOD by O)

ZErr(0, 44, Two memory operands are illegal)

ZErr(1,65 DUP factor must be positive integer)
LErr(0, &4, Internal Error #2)

AsmErl ENDS
END

S9INpPON JaTquassy o1dweg

16

Convergent Macro Assembler X1.2

0000
0002
0004
0007
0009
00O0B
000D
0010
Qo012

0000

There were no errors detected

8040
E644
BYFFFF
E2FE
33co
E&a4
BYFFFF
E2FE
€BEC

(96
0000)

CONDUDbWN -

24
25
26
27
28

15: 45 18-Sep-B80 Page

iSkeleton main program

Main SEGMENT WORD
ASSUME CS:Main

Begin:
iPut program here, in place of this code which beeps the beeper
Loopx: MOV AL, 40H
ouT A4H, AL
MOV CX, OFFFFH
LOGP + iheeper ON for about a second
XOR AX, AX
ouT 44H, AL
MOV CX, OFFFFH
LoorP $ iheeper OFF for about a second
JMP Loopx
iEnd of beeper ‘code
Main ENDS
Stack SEGMENT STACK iStack must have STACK combine type
DW 60H DUP (72) iNeed about &OH ward stack min, to run

sunder CTOS and use debugger
Stack ENDS

END Begin

Figure 11-2. Standalone Main Program.

Tenuely ebHbenbue] ATquassy

Convergent Macro Assembler X1.2

0000 AELF772069732074
68552074595D6520
bLLLFT7220616C4C20
b676FLFE4206D&56E
2074LF20626F ED6ES
207436F2074585520
516F53206F 652074
6885577220706172
7479

0042 4200

0000 0000
0002 0000

VONDABLN~

15:45 18-Sep-80 Page 1

iSample main program which links with Convergent Object module procedures
iThis program forever outputs the string "Now is the time ..." followed by an
iiteration count to the video.

iDeclare the OS and Object module procedures external, accessable by FAR CALL‘s
EXTRN WriteBsRecord: FAR, WriteByte:FAR, ErrorExit:FAR

iFirst declare code segment so that it is loaded first, class = Code so that it
7will be physically near Convergent code. Note that it need not be PUBLIC

Main SEGMENT WORD ‘Code ’
Main ENDS

iNext declare segment containing all constant cata which will be combined with
iConvergent segment of same name and class

Const SEGMENT WORD PUBLIC ‘Const’
rgchMsg DB ‘Now is the time for all good nen to come to the aid of their party’
cbMsg DW SIZE rgchMsg iCount of bytes in msg

Const ENDS

iNext declare segment containing all variable data which will be combined with
iConvergent segment of same name and class

Data SEGMENT WORD PUBLIC ‘Data“
EXTRN bsVid: BYTE ;We write to video using SAM’s preopened
ibytestream which is located in the Data segment
31t is important that this declaration be embeddec
i

in Data SEGMENT/ENDS directives as here

cloop bW o iCount of loops
cbWrittenRet oW ? iWord for WriteBsRecord to Treturn bytes written
Data ENDS

iStack segment. Should have name and class of Stack so as to be comdined with
iConvergent Stack segments (which contain space estimates for stack used by Convergent
isoftware). Space allocated here need only be sufficient for procedures in this
imodule plus a fixed overhead of about &0H words(i.e. 192 decimal bytes) which allows
i for interrupts and 0S calls

Stack SEGMENT STACK ‘Stack’ ;Naote especially the combine type = STACK.
inot PUBLIC.

Figure 11-3. Convergenki=Compatible Main Program. (Page 1 of 3.)

seTNpoW I Tquwessy ordues

Convergent Macro Assembler X1.2

0000

0000
0003

0005

o0oo8

000A

0010
0011
0015
0016
0017
0010
001¢C
0020
oozt
0025
0026
002U
002D

002F
0032
0035

[elelel]
003a
003E
CO3F
0041

96
0000)

ooco

o8-
BEDO

BCCOOO
BEDB

C70600000000

1E
800460000
50

1€
B8D0&0000

50
FF364200
1E
80060200
50
9A0000~~~=
23co0

754C

A10000
£31800
FFO&0000

LE
BD0&60000
50

BOOA
50

47

oW &0H DuP
wLimStack £0v THIS
STACK ENDS
Dgroup GROUP Const., Datas
JHere is the program code
Main SEGMENT
ASSUME CS:Main
Begin: MOV AX, Dgroup
MOV S5, AX
ASSUME 55:Dgroup
MOV SP, OFFSET Dg
MOV DS, AX
ASSUME DS: DgToup
MoV cloop, O
Loopyx:
SCALL WriteBsRecord(pbsVid

PUSH DS
LEA AX, bsVid
PUSH AX
PUSH ns
LEA AX. TgchMsg
PUSH AX
PUSH cbMsg
PUSH DS
LEA AX, cbiWritten
PUSH AX
CALL WriteBsRecar
AND AX, AX
JNE Error
MoV AX, cloop
CALL PrintHex
INC cloop
JCALL WrateByte(pbsvid, OAM)
PUSH
LEA AX.bsVid
PUSH AX
MOV AL, OAH
PUSH AX

15:45 18-Sep-BO Page 2

)

WORD JInitia) top of stack label. Because of the
Jway STACK segments are combined, tnis will
jlabel the enc of the combined Stack segment

Stack 1Al addressing of variables/constants thru

1& GROUP mamed Dgroup which is known to all
iObject mocule procedures and must be lcaced into SS and DS

JAll code in Main will be relative to start of Main

jLoad Dgroup into SS and DS

JTell the assembler about new seg register contents
roup:wLimStack; Init stack pointer, must immediately follow SS load

iNote that stack must be Telative to Dgrous since

ithat is what 1is in SS

JTell the assembler about new seg register contents

Jinitialire loop counter

prgchMsg, cbMsg, pcbWrittenRet)

1 (1) pbsVid
5(2) prgchMsy

i {3) cbMsg
1(4) peoWritienfet
Ret
4
sTest erc, Jump if an error occurred

Jprint loop counter
iand bump 1t

1 (1) pbsvid

) (2) CAH

Figure 11-3.

Convergent-Compatible Main Program. (Page 2 of 3.)

ve

Tenuel abenbuet ATquessy

Convergent Macro Assembler X1.2

0042 9A0000-——~
0047 23C0 '
0049 7530

004B EBC3

004D BF0400
0050 51
005t B104
0053 D3CO
0055 S0

0056 83D8
0058 BOE3OF
0058 80C330
005E BOFB39
0061 7603
0063 B0OC307

0064 1E

0067 BDO&000O
0068 50

006C 53

004D 9A0000~—~—
0072 23C0

0074 7505

0076 58
0077 59
0078 E2D&
007A C3

0078 50
007C 9A0000----

100
101

102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141

142
143
144
145
146

There were no errars detected

CALL
AND
JNE

JMP

ilLocal procedure to convert number

PrintHex
MoV
Print1l: PUSH
MOV
ROL
PUSH

MOV
AND
ADD
CMP
JBE
ADD
Print2:

JCALL WriteByt

PUSH

LEA

PUSH
PUSH
CALL Wri
AND

JNE

POP
POP
LooP
RET
PrintHex

WriteByte

AX, AX
Error

Loopx

PROC
cx. 4
cx
cL, 4
AX, CL
AX

BX, AX

BL, OFH
BL, ‘0’
BL, ‘9
Print2

NEAR

BL, ‘A’-‘0‘-10.

elpbsvid, BL)
DS

AX, bsV
AX

BX
teByte
AX, AX
Error

AX
cx
Printi

ENDP

iHere on fatal error,

iCALL ErrorExit(
Error: PUSH

erc)
AX

CALL ErrorExit

Main ENDS

END Begin

id

AX =

erc

15:45 18-Sep-B0 Page 3

3 Test erc, Jump if an error occurred

iLoop forever

in AX to 'hex and output to video

3Init digit count

spreserve digit count

iposition next digit

isave rotated word since WriteByte clobbers
sall the registers

imask it off
iconvert to ascii

i jump if 0-9

selse in range A-F

3 ¢1) pbsVid

i (2) BL

igump if non 2ero erc
irestore word to output

irestore digit count
iLoop 4 times

i(1) erc

iSpecify start address of Begin

Figure 11-3.

Convergent-Compatible Main Program. (Page 3 of 3.)

Appendix A: INSTRUCTION SET

Table A-3 1lists the instruction set in numeric order of
instruction code. Table A-4 1lists the instruction set in
alphabetical order of instruction mnemonic. This instruction set
is described in detail in the Central Processing Unit.

Legend

Each table contains seven columns.

The column labeled "Op Cd4d" 1is the operand code. "Memory
Organization" 1is explained in Section 6. The "Instruction"
column is the instruction mnemonic. The "Operand," if there is

one, is the operand acted upon by the instruction.

The "Summary" column contains a Dbrief summary of each
instruction. Parentheses surrounding an item means "the contents
of." For example, "(EA)" means "the contents of memory location
EA," and "(SS)" means "the contents of register SS." The infix
operators (+, -, OR, XOR, etc.) denote the standard arithmetic or
logical operation. CMP denotes a subtraction wherein the result
is discarded and only the values of the flags are changed.
"TEST" denotes a logical "AND" wherein the result is discarded
and only the values of the flags are changed.

The "clocks" column is the clock time for each instruction. (See

Table A-1 below.) Where two clock times are given in the
conditional instructions, the first is the time if the jump (or
loop) is performed, and the second if it is not. In all

instructions with memory (EA) as one of the operands, a second
clock time is given in parentheses. This is because in all these
instructions memory may be replaced by a register. In such
cases, the faster clock time applies. Where repetitions are
possible, a second clock time is also given in parentheses, in
the form "x+y/rep", where "x" is the base clock time, "y" is the
clock time to be added for each repetition, and "rep" is the

number of repetitions.

The "“flags" column enumerates the flag conditions, according to
this code:

S = set (to 1)
C = cleared (to 0)
X = altered to reflect operation result
U = undefined (code should not rely on these values)
R = replaced from memory (e.g., POPF)
blank = unaffected

Instruction Set A~1

These are the flags:

Auxiliary Carry flag
Parity flag
Carry flag

0 = overflow flag

D = Direction flag

I = Interrupt-enable flag
T = Trap flag

S = Sign flag

Z = Zero flag

A =

P =

C =

These symbols are used in the tables:

bREG
CF
Ext(h)
FLAGS
off

sign(w)

sba
SR

wAddr

wData
wEA

WREG

Interpretation

16-bit offset within a segment of a word (addressed
without use of base or indexing)

byte immediate constant

effective address of a byte

8-bit register (AH, AL, BH, CH, CL, DH, or DL)
value (0 or 1) of the carry flag

word obtained by sign extending byte b

values of the various flags

16-bit offset within a segment

word of all O0's if w is positive, all 1's if w is
negative

segment base address
segment register (CS, DS, ES, or SS)

16-bit offset within a segment of a word (addressed
without use of base or indexing)

word immediate constant
effective address of a word

16-bit register (AX, BX, CX, DX, SP, BP, SI, or DI)

A-2 Assembly Language Manual

Effective Address (EA) calculation time is according to Table A-1

below:

“Table A-1. Effective Address Calculation Time. |
EA Components Clocks*
Displacement only 6
Base or Index only (BX, BP, SI, DI) 5
Displacement

+ 2
Base or Index (BX, BP, SI, DI)
Base [BP+DI],[BX+SI] 7
+
Index [Bp+g1],[BX4DI] 8
Displacement EBP+DI]+DISP 11
+ BX+SIJ+DISP
Base
+ [BP+SI]+DISP 12
Index [BX+DI]+DISP
*Add two clocks for segment override. Add
four clocks for each 16-bit word transfer
with an odd address.

Instruction Set

A-3

Alternate Mnemonics

These instructions have synonymous alternate mnemonics:

Table A-2. Alternate Mnemonics.
Instruction Synonym Description
JA JNBE Jump if not below or equal
JAE JNB Jump if not below
JAE JNC Jump if not carry
JB JNAE Jump if not above or equal
JB Jc Jump if carry
JBE JNA Jump if not above
JG JNLE Jump if not less or equal
JGE JNL Jump if not less
JL JNGE Jump if not greater or equal
JLE JNG Jump if not greater
JNZ JNE Jump if not equal
JPE JpP Jump if parity
JPO JNP Jump if no parity
Jz JE Jump if equal
LOOPNZ LOOPNE Loop (CX) times while not equal
LOOPZ LOOPE Loop (CX) times while equal
REPZ REP Repeat string operation
REPZ REPE Repeat string operation while equal
REPNZ REPNE Repeat while (CX) # 0 and (ZF) = 1
SHL SAL Byte shift EA left 1 bit

A-4 Assembly Language Manual

_Table A-3. TInstruction Set in Numeric Order of Instruction Code. (Page 1 of 7.)
Op Memo. Instruc~-| Operand Summary Clocks Flags
Cd|organization| tion ODITSZAPC
00| MOD REGR/M |ADD bEA, REG (bEA)=({bEA)+(bREG) 16+EA(3)|X XXXXX
01| MOD REGR/M |ADD wEA, REG {wWER)=(wEA)+(WREG) 16+EA(3){X XXXXX
02| MOD REGR/M |ADD REG,bEA (bREG)=(bREG)+(bEA) 9+EA(3) |X XXXXX
03| MOD REGR/M |ADD REG,WEA (WREG)=(wREG)+(wWEA) 9+EA(3) |X XXXXX
04 ADD AL,bData| (AL)=(AL)+bData 4 X XXXXX
05 ADD AX,wData (AX)=(AX)+wData 4 X XXXXX
06 PUSH ES Push (ES) onto stack 10

07 POP ES Pop stack to ES 8

08| MOD REGR/M |[OR DEA, REG (bEA)=(bEA) OR (DbREG) 16+EA(3)]C xXxuxc
09{ MOD REGR/M [OR WEA, REG (WEA)=(wEA) OR (WREG) 16+EA(3}{C XXUXC
OA| MOD REGR/M |OR REG,bEA (pREG)=(bREG) OR (DbEA) 9+EA(3) |C XXUXC
OB| MOD REGR/M |OR REG,wEA (WREG)=(wREG) OR (wEA) 9+EA(3) {C XXUXC
oc OR AL,bData (AL)={(AL) OR bData 4 (o XXUXC
oD OR AX,wData (AX)=(AX) OR wData 4 [XXUXC
OE PUSH cs Push (CS) onto stack 11

OF {not used)

10| MOD REGR/M |ADC EA, REG (pEA)=(bEA)+(DREG)+CF 16+EA(3){X XXXXX
11{ MOD REGR/M [ADC EA, REG (WEA)=(wEA)+(wWREG)+CF 16+EA(3){X XXXXX
12{ MOD REGR/M [ADC REG, EA {bREG)=(bREG) +(bEA)+CF 9+EA(3) |X XXXXX
13] MOD REGR/M |ADC REG, EA {WREG)=(wWREG)+(WEA)}+CF 9+EA(3) |X peloeed
14 ADC AL, hData {AL)={AL)!bData+CF 4 X XXXXX
15 ADC AX,wData (AX)={AX)+wData+CF 4 X XXRAX
16 PUSH ss push (SS) onto stack 11 X XXXXX
17 POP SS Pop stack to SS 8

18| MOD REGR/M |SBB bEA, REG (bEA)=(bEA)~(bREG)~CF 16+EA(3)[X xxxxx
19| MOD REGR/M |SBB WEA, REG (wER)=(wER) - (WREG) -CF 16+EA(3)X XXXXX
1A| MOD REGR/M |SRBB REG,bEA {(bREG)=(bREG)-(bEA)-CF 9+EA(3) [X XXXXX
1B| MOD REGR/M |SBB REG, WEA (WREG)={wREG)~(wEA)-CF 9+EA(3) |X XXXXX
ic SBB AL,bData (AL)=(AL)-bData-CF 4 X XXXXX
1D SBB AL,wData {AX)=(AX)~-wData-CF 4 X OXXXXX
1E PUSH DS push (DS) onto stack 10

1F POP DS Pop stack to DS 8

20{ MOD REGR/M |AND DEA, REG (bEA)=(bEA) AND (bREG) 16+EA(3){C XXUXC
21| MOD REGR/M |AND WEA, REG (wEA)=(WEA) AND (wREG) 16+EA(3)|C XXuUxC
22| MOD REGR/M |AND REG,bEA (bREG)=(bREG) AND (DbEA) 9+EA(3) [C XXUXC
23| MOD REGR/M |AND REG, WwEA (WREG)=(wREG) AND (wEA) 9+EA(3) |C XXUXC
24 AND AL,bData (AL)=(AL) AND bData 4 C XXUXC
25 AND AX,wData (AX)=(AX) AND wData 4 C XXUuxc
26 ES: ES segment override 2

27 DAA Decimal adjust for ADD 4 X XXXXX
28| MOD REGR/M |[SUB bEA, REG (bEA)=(bEA)-(bREG) 16+EA(3)}| X XXXXX
29| MOD REGR/M |suB wEA, REG (wEA)=(wEA) - (WREG) 16+EA(3)] X XXXXX
2al MOD REGR/M |SuB REG,bEA (bREG)=(bREG)~(bEA) 9+EA(3) [X XXXXX
2B MOD REGR/M |SuB REG,wEA {wREG)=(wREG)-(wWEA) 9+EA(3) [X XXXXX
2¢c SUB AL,bData (AL)=(AL)-bData 4 X XXXXX
2D SUB AX,wData (AX)=(AX)-wData 4 X XXXXX
2E CS: CS segment override 2

2F DAS Decimal adjust for subtract|4 u XXXXX
30{ MOD REGR/M |XOR bEA, REG {bEA)=(bEA) XOR (bLREG) 16+EA(3)| C XXUXC
31| MOD REGR/M |XOR wEA, REG (wEA)=(wEA) XOR (WREG) 16+EA(3)|C XXUXC
32| MOD REGR/M {XOR REG,bEA (bREG)=(bREG) XOR (bEA) 9+EA(3) {C XXUXC
33| MOD REGR/M [XOR REG, WEA (WREG)=(wREG) XOR (WEA) 9+EA(3) [C XXUXC
34 XOR AL,bData (AL)=(AL) XOR bData 4 [o] XXUXC
35 XOR AX,wData (AX)=(AX) XOR wData 4 C XXUXC
36 SS: SS segment override 2

37 AAA ASCII adjust for add 4 u UUXUX
38| Mop REGR/M |cMp bEA,bDREG| FLAGS=(bEA)} CMP (DbREG) 9+EA X XXXXX
39| MOD REGR/M |cMp wEA, WREG FLAGS=(wEA) CMP (wREG) 9+EA X XXXXX
3a{ MOD REGR/M |cMp bREG,bEA FLAGS=(bREG) CMP (bEA} 9+EA X XXXXX

Instruction Set A-5

A-6

Table A-3.

Instruction Set in Nume

ric Order of Instruction Cod

(Page 2 of 7.)

op Memory Instruc-| Operand Summary Clocks Flags
cdjorganization tion ODITSZAPC
3B| MOD REGR/M [CMP WREG, wEA FLAGS=(WREG) CMP (wEA) 9+EA X XXXXX
3c CMP AL,bData FLAGS=(AL) CMP (bData) 4 X XXXXX
3D CMP AX,wData FLAGS=(AX) CMP (wData) 4 X XXXXX
3E DS: DS segment override 2

3F AAS ASCII adjust for subtract 4 U UUXUX
40 INC AX (AX)=(AX)+1 2 X XXXX
41 INC cx (cx)=(cxy+1 2 X XXXX
42 INC DX (DX)=(DX)+1 2 X XXXX
43 INC BX (BX)=(BX)+1 2 X XXX
44 INC sp {SP)=(SP)+1 2 X XXXX
45 INC BP (BP)=(BP)+1 2 X XXXX
46 INC s1 (s1)=(s1)+1 2 X XXXX
47 INC DI (DI)=(DI)+1 2 X XXXX
48 DEC AX {AX)=(AX)-1 2 X XXXX
49 DEC cx (cx)=(Ccx)-1 2 X XXXX
4n DEC DX (DX)=(DX)-1 2 X XXXX
4B DEC BX (8X)=(BX)-1 2 X XXXX
4C DEC sp (sp)=(sp)-1 2 X XxxX
4D DEC BP (BP)=(BP)-1 2 X XXXX
AE DEC E3 (s1)=(s1)-1 2 X XXXX
4F DEC DI (DT)=(DI)-1 2 X XXXX
S0 PUSH AX Push (AX) onto stack 11

51 PUSH cX push (CX) onto stack 11

52 PUSH DX Push (DX) onto stack 11

53 PUSH BX push (BX) onto stack 11

54 PUSH sp Push (SP) onto stack 11

55 PUSH BP push (BP) onto stack 11

56 PUSH sI Push (SI) onto stack 11

57 PUSH DI push (DI) onto stack 11

58 POP AX Pop stack to AX 8

59 POP CcX Pop stack to CX 8

5A POP DX Pop stack to DX 8

5B POP BX Pop stack to BX 8

5C POP Sp Pop stack to SP 8

5D POP BP Pop stack to BP 8

5E POP SI Pop stack to SI 8

5F POP DI Pop stack to DI 8

60 (not used)

61 (not used)

62 (not used)

63 (not used)

64 {not used)

65 (not used)

66 (not used)

67 (not used)

68 (not used)

69 (not used)

6A (not used)

6B (not used)

6C (not used)

6D (not used)

6E (not used)

6F (not used)

70 Jo PDISP Jump if overflow 16 or 4

71 JNO bDISP Jump if no overflow 16 or 4

72 JB bDISP Jump if below 16 or 4

73 JAE bDISP Jump if above or equal 16 or 4

74 Jz bDISP Jump if zero 16 or 4

75 JNZ bDISP Jump if not zero 16 or 4

Assembly Language Manual

Table A-3.

Instruction Set in Numeric Order of Instruction Cod

{Page 3 of 7.)

op Memory Instruc~{ Operand Summary Clocks Flags
_Cdlorganization tion ODITSZAPC
76 JBE bD1SP Jump if below or egual 16 or 4
77 JA bDISP Jump if above 16 or 4
18 JS bDISP Jump if sign 16 or 4
79 JNS bDISP Jump if no sign 16 or 4
1A JPE bDISP Jump if parity even 16 or 4
7B JPO bDISP Jump if parity odd 16 or 4
c JL bDISP Jump if less 16 or 4
7 JGE bPISP Jump if greater or equal 16 or 4
7E JLE bDISP Jump if less or egual 16 or 4
¥ JG bpisp Jump if greater 16 or 4
30| MOD 000 R/M|ADD bEA,bData | (bEA}=(bEA)+bData 17+EA X XXXXX
30| MOD 001 R/M(OR bEA,bData | (bEA}=(bEA) OR bData 17+EA C XXUXC
80| MOD 010 R/M|ADC bEA ,bData | (DEA)=(bEA)+bData+CF 17+EA X XXXXX
80| MOD 011 R/M |SBB bEA,bData | (bEA)=(bEA)-bData~CF 17+EA X XXXXX
80| MOD 100 R/M|AND bEA,bData | (PEA)=(bEA) AND bData 17+EA o] XXUXC
80| MOD 101 R/M[SUB bEA,bData | (bEA)=(bEA)-bData 17+EA X XXXXX
80| MOD 110 R/M{XOR bEA,bData [(PEA)=(bEA) XOR bpata 17+EA c XXUXC
80| MOD 111 R/M |CMP bEA,bData | FLAGS={bEA) CMP bpata 10+EA X XXXXX
81| MOD 000 R/M|ADD WwEA,wData [(WEA)={wEA)+wData 17+EA X XXXXX
81| MOD 001 R/M |OR WEA,wData | (WEA)={wEA) OR wData 17+EA c xXxuxec
31} MOD 010 R/M|ADC WER whata | {wEA)-{wEA)+wDa ta+CFP 174EBR X XXXXX
81| mMoD 011 R/M|SBB wEA,wData | (WEA)=(wEA)-wDa ta~CF 17+EA X XXXXX
81| MOD 100 R/M|AND WEA,wData | (WEA)={wEA) AND wData 17+EA C XXUXC
81| MOD 101 R/M{SUB WEA,wData | (WEA)=(wEA)-wData 174EA X XXXXX
81| MOD 110 R/MI[XOR WEA,wData | (WEA)=(wEA) XOR wData 17+EA [XXUXC
81 MOD 111 R/M [cMP wEA,wData { FLAGS=(wEA) XOR wData 10+EA X XXXXX
82| MOD 000 R/M|{ADD DEA,bData | (bEA)=(bEA)+bDa ta 17+EA X XXXXX
82(MOD 001 R/M (not used)
32{ MoD 010 R/M|ADC DEA,bData | (bEA)={bEA)+bDa ta+CF 174EA X XXX
82| MOD 011 R/M|SBB DbEA,bData { (bEA)=(bEA)~-bData-~CF 17+EA X XXXXX
82| MOD 100 R/M (not used)
32| MOD 101 R/M{SUB bEA,bData | (PEA)=(bEA)-bData 17+EA X XXXXX
82| MOD 110 R/M (not used)
82{ MOD 111 R/M[CMP DEA,bData | FLAGS=(bEA) CMP bData 10+EA XXX
83| MOD 000 R/M |ADD wEA,bData | FLAGS=(wEA)+Ext(bData) 17+EA X XXXXX
83] MOD 001 R/M (not used)
83| MOD 010 R/M{ADC wEA,bData | (wEA)=(wEA)+Ext{bData)+CF 17+EA X XXXXX
83| MOD 011 R/M|SBB wEA,bData | (wEA)=(wEA)-Ext(bData)-CF 17+EA X XXXXX
83] MOD 100 R/M (not used)
33(MOD 101 R/M{SUB wEA,bData { (wEA)=(wEA)-Ext(bData) 17+EA X XXXXX
83 MOD 110 R/M {not used)
33{ #OD 111 R/M|cMP wEA,bData | FLAGS=(wEA) CMP Ext(bData) | 10+EA X XXXXX
84(MOD REGR/M (TEST bEA,bREG FLAGS=(bEA) TEST (bREG) 9+EA(3) { C XXUXC
85| MOD REGR/M |TEST WEA,wREG | FLAGS=(wEA) TEST (wREG) 9+EA(3) | € XXUXC
86| MOD REGR/M |XCHG bREG,bEA | Exchange bREG, bEA 17+EA(4)
87{ MOD REGR/M [XCHG WREG, wEA Exchange WREG, wWEA 174+EA{4
38] MOD REGR/M MOV bEA, bREG (pEA)=(DREG) 9+EA(2)
39] MOD REGR/M |MOV wER, wREG (WEA)=(wWREG) 9+ER(2)
8A{ MOD REGR/M MOV PREG,bEA (bREG)=(bEA) 8+EA(2)
8B| MOD REGR/M [MOv WREG, wEA (WREG)=(wEA) 8+EA(2)
8C} MOD OSR R/M [Mov wEA, SR (wEA)=(SR) 9+EA(2)
8C{ MOD 1-- R/Mi{not used)
8p| MOD REGR/M |LEA REG, EA (REG)=effective address 2+EA(2)
8E| MOD OSR R/M [MOV SR,wEA (SR)=(wEA) 8+EA(2)
8E[MOD -- R/M [(not usegd)
8F| MOD 000 R/M |POP | EA Pop stack to EA I7+EA
8F| MOD 001 R/M{{not used)
8F| MOD 010 R/M|(not used)
8F| MOD 011 R/M|{not used)

v

Instruction Set A-7

Table A-3. Tnstruction Set in Numeric Order of Instruction Code. {Page 4 of 7.)

op Memory Instruc-]| Operand Summary Clocks Flags

cd|organization tion ODITSZAPC

8F| MOD 100 R/M|(not used)

8F} MOD 101 R/M|(not used)

8F| MOD 110 R/M|(not used)

8F| MOD 111 R/Mf{not used)

90 XCHG AX, AX NOP 3

91 XCHG AX,CX Exchange (AX), (CX) 3

92 XCHG AX, DX Exchange (AX), (DX) 3

93 XCHG AX, BX Exchange (AX), (BX) 3

94 XCHG AX, SP Exchange (AX), {SP) 3

95 XCHG AX,BP Exchange (AX), (BP) 3

96 XCHG AX, SI Exchange (AX), {(sI) 3

97 XCHG AX, DI Exchange (AX), (PI) 3

98 CBW (AX)=Ext(AL) 2

99 CwWD (DX)=sign(AX) 5

9A CALL off:sba Direct FAR call 28

9B WAITX Wait for TEST signal 34+WAITX

9c PUSHF Push FLAGS onto stack 10

9D POPF Pop stack to FLAGS 8 RRRRRRRRR

9E SAHF (FLAGS)=(AH) 4 RRRRRRRRR

9F LAHF (AH)=(FLAGS) 4

AO MoV AL,bAddr| (AL)=(bAddr) 10

Al MoV AX,wAddr (AX)=(wAddr) 10

A2 MoV bAddr, AL (bAddr) =(AL) 10

A3 MOV wAddr, AX (waddr)=(Ax) 10

A4 MOVSB Move byte string 18
(9+17/rep)

AS MOVSW Move word string 18 |
(9+17/rep)

A6 CMPSB Compare byte string 22 X XXXXX
(9+22/rep)

A7 CMPSW Compare word string 22 | X XXXXX
(9+22/rep)

A8 TEST AL,bbata FLAGS=(AL) TEST (bData) 4 X XXUXC

A9 TEST AX,bData FLAGS=(AX) TEST (wData) 4 X XXUXC

AA STOSB Store byte string 11
(9+10/rep)

AB STOSW Store word string 11
(9+10/rep)

AC LODSB Load byte string 12 {
(9+13/rep)

AD LODSW Load word string 12
(9+13/rep)

AE SCASB Scan byte string 15 X xxXxxx
{(9+15/rep)

AF SCASW Scan word string 1 | X XXXXX
(9+15/xrep)

BO MoV AL,bData (AL)=bbData 4

Bl MOV CL,bData (CL)=bData 4

B2 MOV DL,bData (DL)=bData 4

B3 MoV BL,bData {BL)=bData 4

B4 MOV AH,bData (AH)=bData 4

BS MOV CH,bData E 4

B6 MoV DH,bData 4

B7 MOV BH,bData (BH)=bData 4

B8 MOV AX,wData (AX)=wData 4

BY MoV CX,wData (CX)=wData 4

BA MoV DX,wData (DX)=wData 4

BB MoV BX,wData (BX)=wData 4

BC MoV SP,whata (Sp)=wData 4

A-8 Assembly Language Manual

. Instruction Set in Numeric Order of Instruction Code.

(Page § of 7.)

Memory Instruc-| Operand Summary Clocks Flags
Cd|Organization tion ODITSZAPC
BD MOV BP,wData 4
BE MOV SI,wData 4
BF MOV DI,wData {DI)=wData 4
co (not used)
cl {not used)
c2 RET wDa ta NEAR return; (Sp)=(sSP)+

wData 12
c3 RET NEAR return 8
Cc4| MOD REGR/M |LES REG, EA ES:REG=(wWEA+2) : (WEA) 16+EA
C5| MOD REGR/M |LDS REG, EA DS:REG={wEA+2) : (wEA) 16+EA
c6| MOD 000 R/M{MOV bEA,bData (bEAR)=(bData) 10+EA
Cc6| MOD 001 R/M|(not used)
C6} MOD 010 R/M|(not used)
C6| MOD 011 R/M|(not used)
C6! MOD 100 R/M|(not used)
C6| MOD 101 R/M|(not used)
Cc6| MOD 110 R/M|{not used)
C6| MOD 111 R/M|(not used)
c7| MOD 000 R/M|MoV | EA,wData (wEA)=wDa ta 10+EA
C7] MoD 001 R/M|(not used)
C7) MOD 010 R/Mif{not nced)
c7{ MOD 011 R/M}|(not used)
C7| MOD 100 R/M|(not used)
C7[MOD 101 R/M|(not used)
C7] MOD 110 R/M|(not used)
c7{ MOD 111 R/M|(not used)
c8 (not used)
c9 {(not useq)
CA RET whata FAR return, ADD

data to REG SP 17
CB RET FAR return 18
cC INT 3 Type 3 interrupt 52 cC
cD INT bbata Typed interrupt 51 cc
CE INTO Interrupt if overflow 53 or 4 cc
(Simple execution of the instruction takes 4 clocks, and actual interrupt, 53.)
CF IRET Return from interrupt 24 RRRRRRRRR
po| MOD 000 R/MROL bEA, 1 Rotate bEA left 1 bit 154EA X X
po| MOD 001 R/M|[ROR bEA,1 Rotate bEA right 1 bit 15+EA X X
DO| MOD 010 R/M|RCL DEA, 1 Rotate bEA left through

carry 1 bit 15+EA X X
po| MoD 011 R/M|RCR bEA, 1 Rotate bEA right through

carry 1 bit 15+EA X X
DO{ MOD 100 R/M [SHL bEA, 1 shift bEA left 1 bit 15+EA X X
po{ MOD 101 R/M|SHR bEA,1 shift bEA right 1 bit 15+EA X X
DO| MOD 110 R/M|(not used)
DO[MOD 111 R/M|SAR bEA,1 shift signed bEA

right 1 bit 1S+EA X XXUXX
pl{ MOD 000 R/M|ROL wEA, 1 Rotate wEA left 1 bit 15+EA X X
pl| MOD 001 R/M|ROR WEA, 1 Rotate wEA right 1 bit 15+EA X X
D1] MOD 010 R/M|RCL wEA, 1 Rotate wEA left through

carry 1 bit 15+4EA X X
p1| MOD 011 R/M|RCR wEA, 1 Rotate wEA right through

carry 1 bit 15+EA X X
D1} MOD 100 R/M|SHL wEA, 1 shift wEA left 1 bit 15+EA X X
Dl| MOD 101 R/M|SHR wEA, 1 Shift wEA right 1 bit LS+EA X X
Dl| MOD 110 R/M|[(not used)
D1] MOD 111 R/M|[SAR wEA, 1 Shift signed wEA

right 1 bit 15+EA X XXUXX

Instruction Set

A-9

Table A-3.

Instruction Set i1n Num

ric Order of Instruction Code.

{Page 6 of 7.)

Oop Mcmory Instruc~-| Operand Summary Clocks Flags
cd]organization tion ODITSZAPC
D2| MOD 000 R/M|ROL bEA,CL Rotate bEA left 20+EA
(CL) bits +4/bit] X X
D2| MOD 001 R/M|ROR bEA,CL Rotate bEA right 20+EA
(CL) bits +4/bit| X X
D2{ MOD 010 R/M|RCL bEA,CL Rotate bEA left through 20+EA
carry (CL) bits +4/bit] X X
D2| MOD 0l1l R/M|RCR DEA, CL Rotate bEA right through 20+EA
carry (CL) bits +4/bit] X X
p2{ MOD 100 R/M|SHL bEA,CL Shift bEA left 20+EA
{CL) bpits +4/pit| x X
D2| MOD 101 R/M|SHR bEA,CL Shift bEA right 20+EA
(CL) bits +4/bit| X X
D2{ MOD 110 R/M|(not used)
p2| MOD 111 R/M|SAR bEA,CL Shift signed bEA 20+EA
right (CL) bits +4/bit| X = XXUXX
D3| MOD 000 R/M|ROL wEA, CL Rotate WEA left 20+ER
(CL) bits +4/bit]| X X
D3| MOD 001 R/M|ROR wEA, CL Rotate wEA right 20+EA
(CL} bits +4/bit| X X
p3| MOD 010 R/M|RCL wEA, CL Rotate wEA left through 20+EA
carry (CL) bits +4/bit| X X
D3] MOD 011 R/M|RCR wEA, CL Rotate wEA right through 20+EA
carry (CL) bits +4/bit| X X
D3| MOD 100 R/M|SHL WEA, CL Shift wEA left 20+EA
(CL) bits +4/bit| X X
D3] MOD 101 R/M|SHR WEA, CL shift wEA right 20+EA
(CL) bits +4/bit| X X
D3| MOD 110 R/M|(not used)
D3] MOD 111 R/M|SAR wEA, CL shift signed wEA 20+4EA
right (CL) bits +4/bit | X XXUXX
D4{ 00001010 AAM ASCII adjust for multiply 83 U XXUXU
D5 00001010 AAD ASCII adjust for divide 60 U XXUXU
D6 (not used)
D7 XLAT TABLE Translate using (BX) 11
p8| MOD --- R/M|ESC EA Escape to external device 8+EA
EO LOOPNZ Loop (CX) times while
bDISP not zero 19 or 5
El LOOPZ bDISP Loop (CX) times while zero | 18 or 6
E2 LOOP bDISP Loop (CX) times 17 or 5
E3 JCXZ bDISP Jump if (CX)=0 18 or 6
£4 IN AL,bPort Input from bPort to AL 10
ES IN AX,wPort Input from wPort to AX 10
E6 ouT bPort, AL Output (AL) to bPort 10
E7 ouT wPort, AX Output (AX) to wPort 10
E8 CALL wDISP Direct near call 11
E9 JMP wDISP Direct near jump 7
EA JmMp wDISP,
wSEG Direct far jump 7
EB JMP bDISP Direct near jump 7
EC IN AL,DX Byte input from port
(DX) to REG aL 8
ED IN AX, DX Word input from port
(DX) to REG AX 8
EE our DX, AL Byte output (AL) to
port (DX) 8
EF our DX, AX word output (AX) to
port (DX) 8
FO LOCK Bus lock prefix 2
Fl (not used)
1
A-10 Assembly Language Manual

Table A-3. Instruction Set in Numeric Order of Instruction Code. ({Page 7 of 7.)

Memory Instruc—-| Operand Summary Clocks Flags
cd|organization tion ODITSZAPC
F2 REPNZ Repeat while (CX)#0

AND (ZF)=0 2
F3 REPZ Repeat while (CX)#0

AND (ZF)=1 2
F4 HLT Halt 2
FS cMC Complement carry flag 2 X
F6| MOD 000 R/M|TEST bEA,bData| FLAGS=(bEA) TEST bData 10+EA C XXUxc
F6| MOD 001 R/M|(not used)
F6| MOD 010 R/M{NOT ‘ bEA Byte invert bEA 16+EA
F6| MOD 011 R/MINEG DEA Byte negate bEA 16+EA X XXXXS
INote: Carry Flag is C if destination is 0.)
F6| MOD 100 R/M MUL bEA Unsigned multiply by (bEA){ 71 X UUUUX
F6| MOD 101 R/M|IMUL bEA Signed multiply by (bEA} 90 X uuuux
F6{ MOD 110 R/M{DIV bEA Unsigned divide by (bEA) 920 U uuuuu
F6| MOD 111 R/M|IDIV bEA Signed divide by (bEA) 112 U Uuuuy
F7| MOD 000 R/M|TEST WEA,wData| FLAGS={wEA) TEST wbData 1O0+EA c XXUXC
F7| MOD 001 R/M|[{not used)
F7| MOD 010 R/M|NOT WwEA Invert wEA 16+EA
F7| MOD 011 R/M [NEG WEA Negate WEA 16+EA X XXXXS
(Note: Carry Flag is C if destination is 0.)
F7| MOD 100 R/M;MUL WEA Unsigned multiply by (wea)! 124 X UUULX
¥7| MOD 101 R/M|IMUL wEA Signed multiply by (wEA) 144 X UuuuUx
F7| MOD 110 R/M|DLV wEA Unsigned divide by (wEA) 155 u yuuuuy
F7| MOD 111 R/M|IDIV WEA signed divide by (WEA) 177 U Uuuuu
F8 cLC Clear carry flag 2 c
F9 STC Set carry flag 2 s
FA CLI Clear interrupt flag 2 C
FB STI Set interrupt flag 2 s
FC CLD Clear direction flag 2 C
FD STD Set direction flag 2 c
FE| MOD 000 R/M|INC bEA (bEA}=(bEA}+1 15+FA X XXXX
FE| MOD 001 R/M{DEC bEA (bEA)=(bEA)-1 15+EA X XXXX
FE{ MOD 010 R/M|(not used)
FE| MOD 011 R/M}(not used)
FE} MOD 100 R/M{(not used)
FE| MOD 101 R/M|(not used)
FE| MOD 110 R/M|{not used)
FE[MOD 111 R/M|(not used)
FF| MOD 000 R/M|INC wEA (WEA)=(WEA)+1 15+EA X XXXX
FF| MOD 001 R/M|DEC wEA (wEA)=(wEA)-1 15+EA X XXX
FF| MOD 010 R/M|CALL EA Indirect NEAR call 13+EA
FF| MOD 011 R/M |CALL EA Indirect FAR call 29+EA
FF| MOD 100 R/M|JMP EA Indirect NEAR jump 7+EA
FF| MOD 101 R/M|JMP EA Indirect FAR jump 16+EA
FF| MOD 110 R/M|{PUSH EA Push (EA) onto stack 16+EA
FF| MOD 111 R/M|(not used)

Instruction Set A-11

Table A-4. Instruction Set in Alphabetic_Order of Instruction Mnemonic. (1 of 6.J
Instruc-| Operand Summary op Memory Clocks Flags
tion Cd|organization ODITSZAPC
AAA ASCII adjust for add 37 4 u Uuxux
AAD ASCII adjust for divide D5| 00001010 60 U XXUXU
AAM ASCII adjust for multiply |D4| 00001010 83 v XXUXU
AAS ASCII adjust for subtract |3F 4 u UUXUX
ADC AL,bData (AL)=(AL)+bData+CF 14 4 X XXXXX
ADC AX,wData (AX)=(AX)+wData+CF 15 4 X XXXXX
ADC bEA,bDatal (bEA)=(bEA)+bData+CF 80| MOD 010 R/M| 17+EA X XXXXX
ADC wEA,wData| (wWEA)=(wEA)+wData+CF 81| MOD 010 R/M{ 17+EA X XXXXX
ADC bEA,bData| (bEA)=(bEA)+bData+CF 82| MOD 010 R/M| 174EA X XXXXX
ADC wEA,bData| (wEA)=(wEA)+Ext(bData)+CF |83| MOD 010 R/M| 17+EA X XXXXX
ADC bEA, REG (bEA)=(DEA)+(bREG)+CF 10| MOD REGR/M | 16+EA(3) X XXXXX
ADC wEA, REG (WEA)=(wEA)+(WREG)+CF 11| MOD REGR/M 16+EA(3) X XXXXX
ADC REG,bEA (PREG)=(bREG)+(bEA)+CF 12 MOD REGR/M 9+EA(3); X XXXXX
ADC REG,wEA (WREG)=(WREG)+ (WEA)+CF 13| MOD REGR/M 9+EA(3) | X xxxxx
ADD AL,bData (AL)=(AL)+bData 04 4 X XXXXX
ADD AX,wData (AX)={AX)+wData 05 4 X XXXXX
ADD bEA, REG (bEA)=(DEA)+(bREG) 00| MOD REGR/M 16+EA(3) X XXXXX
ADD wEA, REG (WEA)=(wEA)+(WREG) 01| MOD REGR/M 16+EA(3) X XXXXX
ADD REG,bEA (DREG)=(bREG)+(DEA) 02| MOD REGR/M | 9+EA(3)| X XXXXX
ADD REG,WEA (WREG)=(WREG) + (WEA) 03| MOD REGR/M 9+EA(3) | X XXXXX
ADD hFA.bDatal (bEA)=(bEA)+bData 80| MOD 000 R/M| 17+EA X XXXXX
ADD wEA,wData| (wEA)=(wEA)+wData 81| MOD 000 R/M| l17+EA X XXXXX
ADD bEA,bData| {(bEA)=(bEA)+bData 82] MOD 000 R/M| 17+EA X XXXXX
ADD wEA,bData| FLAGS=(wEA)+Ext(bData) 83| MOD 000 R/M| 17+EA X XXXXX
AND AL,bData (AL)=(AL) AND bData 24 4 C XXUXC
AND AX,wData (AX)}=(AX) AND wData 25 4 C XXUXC
AND DEA, REG (bEA)=(bEA) AND (bREG) 20| MOD REGR/M | 16+EA(3) C XXUXC
AND wEA, REG (wEA)=(wEA) AND (WREG) 21| MOD REGR/M 16+4EA(3) C XxXXUXC
AND REG,bEA (PREG)=(bREG) AND (bEA) 22| MOD REGR/M 9+EA(3) | C XXUXC
AND REG,wEA (WREG)=(wWREG) AND {wEA) 23| MOD REGR/M | 9+EA(3)| € XXUXC
AND bEA,bData| (bEA)=(bEA) AND bData 80| MOD 100 R/M| 17+EA C XXUXC
AND wEA,wData| (wEA)=(wEA) AND wData 81| MOD 100 R/M| 17+EA c XXUXC
CALL off:sba Direct FAR call 9A 28
CALL wDISP Direct NEAR call E8 11
CALL EA Indirect NEAR call FF| MOD 010 R/M| 13+EA
CALL EA Indirect FAR call FF| MOD 011 R/M | 29+EA
CBW (AX)=Ext(AL) 98 2
cLc Clear carry flag F8 2 C
CcLD Clear direction flag FC 2 o]
CLI Clear interrupt flag FA 2
CMC Complement carry flag F5 2 X
cMP AL,bData FLAGS=(AL) CMP (bData) 3c 4 X XXX
CMP AX,wData FLAGS=(AX) CMP (wData) 3D 4 X XXXXX
CMP DEA,bREG | FLAGS=(bEA) CMP (bREG) 38| MOD REGR/M | 9+EA X XXXXX
cMp wEA, wREG FLAGS={wEA) CMP {WREG) 39, MOD REGR/M S+EA X XXXXX
CMP DREG,bEA | FLAGS=(bREG) CMP (bEA) 3A| MOD REGR/M 9+EA X XXXXX
CMP WREG, WEA FLAGS={wREG) CMP (wEA) 3B| MOD REGR/M 9+EA X XXXXX
cMP DEA,bData]| FLAGS=(bEA) CMP bData 80| MOD 111 R/M | 10+EA X XXXXX
CMP bEA,bData| FLAGS=(bEA) CMP bData 82| MOD 111 R/M | 10+EA X XXXXX
CcMP wEA,wData| FLAGS=(wEA) CMP wData 81| MOD 111 R/M | 10+EA X XXXXX
CMP wEA,bData] FLAGS={wEA) CMP Ext{bbData) |83 | MOD 111 R/M | 10+EA X XXXXX
CMPSB Compare byte string A6 22 X XXXXX
(9+22/rep)
CMPSW Compare word string A7 22 | X XXXXX
(9+22/rep)
CS: CS segment override 2E 2
CWD (DX)=Sign(AX) 99 S
DAA Decimal adjust for ADD 27 4 X XXXXX
A-12 Assembly Language Manual

Table A-4. Instruction Set in Alphabetic Order of Instruction Mnemonic. (2 of 6.}
Instruc—-{ Operand Summnary Op Memory Clocks Flage
tion Cd |organization ODITSZAPC
DAS Decimal adjust for 2F 4 u XXXXX
subtract
DEC AX (AX)=(Ax)-1 48 2 X X0
DEC BP (BP)=(BP)-1 4D 2 X XXXX
DEC BX (BX)=(BX)-1 4B 2 X XXXX
DEC fard (cx)=(cx)y-1 49 2 X XXXX
DEC DI (DI)=(DI)-1 4F 2 X XXX
DEC DX (DX)=(DX)-1 4A 2 X XXX
DEC DEA (bEA)=(bEA)-1 FE| MOD 001 R/M| 15+EA X XXXX
DEC wEA (wEA)={wEA)-1 FF| MOD 001 R/M| 15+EA X XXXX
DEC SP (SP)=(sp)-1 4c 2 X XXXX
DEC S1 (s1)=(s1)-1 4E 2 X XXXX
DIV bEA Unsigned divige by (bEA) F6} MOD 110 R/M} 90 U uuuuy
DIV wEA Unsigned divide by (wEA) F7| Mop 110 R/M| 155 u uuuuy
DS: DS segment override 3E 2
ES: ES segment override 26 . 2
ESC EA Escape to external device {D8| MOD --- R/M{ 8+EA
HLT Halt F4 2
IDIV bEA Signed divide by (bEA) F6! MOD 111 R/M|[112 U uuuuu
1DIV wEA Signed divide by (wEA) F7| MOD 111 R/M| 177 u uuuuy
IMUL DEA Signed multiply by (bEA) Fal MOD 101 R/M] SO X ULUUX
IMUL WEA Signed multiply by (wEA) F7{ MOD 101 R/M}| 144 X UUUUX
IN AL, DX Byte input from port EC
(DX} to REG AL 8
IN AL,bPort Input from bPort to AL E4 10
IN AX, DX Word input from port ED
(DX) to REG AX 8
IN AX,wPort Input from wPort to AX E5 10
INC AX (AX)=(AX)+1 40 2 X XXXX
INC BP (BP)=(BP)+1 45 2 X XXXX
INC BX (BX)=(BX}+1 43 2 X XXX
INC cX (cx)=(cx)+1 41 2 X XXXX
INC DI (DI)=(DI}+1 47 2 X Xxxx
INC DX (DX)=(DX)+1 42 2 X XXXX
INC bEA (bEA)=(bEA)+1 FE| MOD 000 R/M| 15+EA X XXX
INC wEA (WEA)=(wEA)+1 FF| MOD 000 R/M| 154EA X XXXX
INC sp (sP)=(spP)+1 44 2 X XXXX
INC s1 (s1)=(s51)11 46 2 X XXXX
INT bbata Typed interrupt CD 51 cc
INT 3 Type 3 interrupt CC 52 cC
INTO Interrupt if overflow CE 53 or 4 cc
Simple execution of the instruction takes 4 clocks, and actual interrupt, 53.)
IRET Return from interrupt CF 24 RRRRRRRRR
JA bDISP Jump if above 77 16 or 4
JAE bDIsP Jump if above or egual 73 16 or 4
JB bDISP Jump if below 72 16 or 4
JBE bDISP Jump if below or equal 76 16 or 4
Jc (Same as JB, JNAE.)
JCX2Z bDISP Jump if (CX)=0 E3 18 or 6
JE (Same as JzZ.)
JG bDISP Jump if greater 7F 16 or 4
JGE bDISP Jump if greater or equal 7D 16 or 4
JL bDISP Jump if less 7Cc 16 or 4
JLE bDISP Jump if less or equal 7E 16 or 4
JMP DDISP Direct NEAR jump EB 7
amp wDISP Direct NEAR jump E9 7
JMp wDISP, EA
wWSEG Direct FAR jump 7
JMp EA Indirect FAR jump FF| MOD 101 R/M| 16+EA
.TMD ra Tndiract NFAR jumn Frl Mon 100 R/MI1 74ER

Instruction Set

A-13

Table A-4. TInstruction Set in Alphabetic Order of Instruction Mnemonic. (3 of 6.)
Instruc~] operand Suminary op Memory Clocks Flags
tion Cd}Organization ODITSZAPC
JNA (Same as JBE.)
JNB {same as JAE.)
JNBE (same as JA.)
JNG (same as JLE.)
JNGE (Same as JL.)
JNL (Same as JGE.)
JNLE {Ssame as JG.)
JNO bDISP | Jump if no overflow 71 16 or 4
JNP (Same as JPO.)
JINS bDISP Jump if no sign 79 16 or 4
JNZ bDISP Jump if not zero 75 16 or 4
Jo bDISP Jump if overflow 70 16 or 4
JPE ©bDISP Jump if parity even A 16 or 4
JPO bDISP Jump if parity odd 7B 16 or 4
Js bDISP Jump if sign 78 16 or 4
Jz bDISP Jump if zero 74 16 or 4
LAHF (AH)=(FLAGS) 9F 4
LDS REG, EA DS : REG= (wEA+2) : (WEA) C5| MOD REGR/M 16+EA
LEA REG, EA (REG)=effective address 8D| MOD REGR/M 2+EA(2)
LES REG, EA ES:REG=(wEA+2) : (WER) C4| MOD REGR/M 16+EA
LODSR Load byte string AC 12
(9+13/rep)
LODSW Load word string AD 12
(3+13/rep)

LOCK Bus lock prefix FO 2
LOOP bDISP Loop (CX) times E2 17 or 5
LOOPE (Same as LOOPZ.)
LOOPNE (Same as LOOPNZ.)
LOOPNZ Loop (CX) times while EO

bDISP not zero 19 or 5
LOOPZ bDISP Loop (CX) times while zerolEl 18 or &
MOV bAddr,AL| (bAddr)=(AL) A2 10
MOV wAddr, AX{ (wAddr)=(AX) A3 10
MOV AH,bData| (AH)=bData B4 4
MoV AL,bAddr (AL)=(baddr) AO 10
MoV AL,bData (AL)=bData BO 4
MOV AX,wAddr {AX)={wAddr) Al 10
MOV AX,wData (AX)=wData B8 4
MOV BH,bData (BH)=bData B7 4
MoV BL,bData (BL)=bData B3 4
MOV BP,wDhata (BP)=wData BD 4
MoV BX,wData (BX)=wData BB 4
MOV CH,bData (CH)=bData BS 4
Mov CL,bData {CL)=bData B1 4
MoV cX,wbata| (CX)=wData B9 4
MoV DH,bData| (DH)=bbData B6 4
MOV DI,wData (DI)=wData BF 4
MOV DL,bData (DL)=bData B2 4
MOV DX,wData {DX)=wData BA 4
MOV bEA,bData (bEA)=(bData) c6 | MOD 000 R/M | 10+EA
MOV wEA, wData €7 | MOD 000 R/M | 10+EA
MoV DEA,bREG 88 | MOD REGR/M | 9+EA(2)
MOV WEA,wREG| (wEA)=(wREG) 89) MOD REGR/M | 9+EA(2)
MoV wWER, SR (wWEA)=(SR) 8C | MOD 0SR R/M | 9+EA(2)
MOV DREG,bEA| (bREG)=(bEA) 8A | MOD REGR/M | 8+EA(2)
MOV wREG, wEA| (WREG)=(wEA) 8B | MOD REGR/M | 8+EA(2)
MoV ST,wData (S1)=wData BE 4
MOV Sp,whata (sp)=wbhata BC 4
MOV SR, wWEA (sK)=(wEA) 8E | MOD OSR R/M | B+EA(2)

A-14 Assembly Language Manual

Table A-4. 1Instruction Set in Alphabetic Order of Instruction Mnemonic. (4 of 6.)
Instruc-| Operand Summary Op Memory Clocks Flags
tion cd|Organization ODITSZAPC
MOVS {Use MOVSB, MOVSW.)
MOVSB Move byte string A4 18
(9+17/rep)
MOVSW Move word string AS 18 |
(9+17/rep)
MUL bEA Unsigned multiply by (bEA) |F6| MOD 100 R/M| 71 X 8161105 ¢
MUL wEA Unsigned multiply by (wEA){F7| MOD 100 R/M| 124 X uuuux
NEG bEA Byte negate DEA F6| MOD 011 R/M| 16+EA X XXXXS
{Note: Carry Flag is C if destination is 0.)
NEG | wEA | Negate wEA F7| MOD 011 R/M| 16+EA X XXXXS
[Note: Carry Flag is C if destination is 0.)
NOP (Same as XCHG AX,AX)
NOT DEA Byte invert bEA F6| MOD 010 R/M| 16+EA
NOT WEA Invert wEA F7]| MOD D10 R/M} 16+EA
OR AL,bData (AL)=(AL) OR bData oc 4 C XXUXC
OR AX,wData (AX)=(AX) OR wData oD 4 C XXUXC
OR bEA,bData (bEA)=(bEA) OR bData 80| MOD 001 R/M| 17+EA C XXUXC
OR wEA,wData (wEA)=(wEA) OR wData 81| MOD 001 R/M|{ 17+EA [« XXUXC
OR bEA, REG (pEA)=(bEA) OR (DREG) 08| MOD REGR/M | 16+EA(3) C XXUXC
OR wEA, REG (wEA)=(wEA) OR (wREG) 09| MOD REGR/M 16+EA(3] C XXUXC
OR REG,bFA (PREG)={bREC) CR (bLEA) OA| MOD KEGR/M | 9+EA(3)| C XXUXC
OR REG,wEA (WREG)=(wWREG) OR (wEA) OB| MOD REGR/M | 9+EA(3){ C XXUXC
ouT DX, AL Byte output (AL) to EE
port (DX) 8
ouT DX, AX Word output (AX} to EF
port (DX) 8
OuT bPort,AL| Output (AL) to bPort E6 10
ouT wPort, AX Output (AX) to wPort E7 10
POP AX Pop stack to AX 58 8
POP BX Pop stack to BX 5B 8
POP BP Pop stack to BP 5D 8
POP <X Pop stack to CX 59 8
POP DI Pop stack to DI S5F 8
poOP bs Pop stack to DS 1F 8
POP DX Pop stack to DX S5A 8
POP EA Pop stack to EA 8F| MOD 000 R/M| I7+EA
POP ES Pop stack to ES 07 8
POP SI Pop stack to SI SE 8
POP SP Pop stack to SP 5C 8
POP Ss Pop stack to SS 17 8
POPF Pop stack to FLAGS 9D 8 RRRRRRRRR
PUSH AX Push (AX) onto stack 50 11
PUSH BP Push (BP) onto stack 55 11
PUSH BX Push (BX) onto stack 53 11
PUSH cs Push (CS)} onto stack OE 11
PUSH cx Push (CX) onto stack 51 11
PUSH DI Push (DI) onto stack 57 11
PUSH DS Push (DS) onto stack 1E 10
PUSH DX Push (DX) onto stack 52 11
PUSH EA Push (EA) onto stack FF| MOD 110 R/M| 16+EA
PUSH ES Push (ES) onto stack 06 10
PUSH s1 Push (S1) onto stack 56 11
PUSH sp Push (SP) onto stack 54 11
PUSH ss Push (S8S) onto stack 16 11 X XXXXX
PUSHF Push FLAGS onto stack ac 10
RCL bEA,1 Rotate bEA left thru DO | MOD 010 R/M
carry 1 bit 15+EA X X
RCL wEA,1 Rotate wEA left thru D1 | MOD 010 R/M
carrv 1 hit 15+4FA X

Instruction Set A-15

Table A-4. Instruction Set In Alphabetic Order of Instruction Mnemonic. (5 of 6.7

Instruc-[Operand Summary Op Memory Clocks Flags
tion cdjorganization ODITSZAPC

RCR DEA,CL Rotate bEA right thru D2{ MOD 011 R/M| 20+EA

carry (CL) bits +4/bit| X X
RCR wEA, CL Rotate wEA right thru D3| MOD 011 R/M| 20+EA

carry (CL) bits +4/bit] X X
RCR bEA,1 Rotate bEA right thru DO| MOD 011 R/M

carry 1 bit 15+EA X X
RCR wEA, 1 Rotate wEA right thru D1} MOD 011 R/M

carry 1 bit 15+EA X X
REP (Same as REPZ.)
REPE (Same as REPZ.)

AND (ZF)=1 2
REPNE (Same as REPNZ.)
REPNZ Repeat while (CX)#0 F2

AND (ZF)=0 2
REPZ Repeat while (CX)#0 F3
RET wData FAR return, ADD CA

data to REG SP 17
RET FAR return cB 18
RET NEAR return c3 8
RET whata NEAR return; (sP)=(SP)+ c2

(whata) 12
ROL bEA,CL Rotate bEA left D2| MOD 000 R/M| 20+EA

{CL) bits +4/bit| X X
ROL wEA, CL Rotate wEA left D3| MoD 000 R/M| 20+EA

(CL) bits +4/bit| X X
ROL bEA,1 Rotate bEA left 1 bit DO | MOD 000 R/M | 1S+EA X X
ROL wEA, 1 Rotate WwEA left 1 bit D1 | MOD 000 R/M| 1S+EA X X
ROR bEA,CL Rotate DEA right D2 | MOD 001 R/M | 20+EA

(CL) bits +4/bit| X X
ROR wEA, CL Rotate WEA right D3| Mop 001 R/M | 20+EA

(CL) bits +4/bit| x X
ROR bEA, 1 Rotate DEA right 1 bit DO | MOD 001 R/M | 15+EA X X
ROR wEA, 1 Rotate WEA right 1 bit D1 | MOD 001 R/M | 15+EA X X
SAHF (FLAGS)=(AH} 9E 4 RRRRRRRRR
SAL (Same as SHL.)
SAR bEA,CL Shift signed bEA D2 | MOD 111 R/M | 20+EA

right (CL) bits +4/bit| X XXUXX
SAR WwEA, CL Shift signed wEA D3| MOD 111 R/M | 20+EA

right (CL) bits +4/pit] X XXUXX
SAR bEA,1 shift signed bEA DO | MOD 111 R/M

right 1 bit 15+EA X XXUXX
SAR wEA, 1 Shift signed wEA D1 | MOD 111 R/M

right 1 bit 15+EA X XXUXX
SBB AL,bData (AL)=(AL)-bbData-CF ic 4 X XXXXX
SBB AL,wData (AX)=(AX)~-wData-CF 1D 4 X XXXXX
SBB bEA,bData (bEA)=(bEA)-bData-CF 80 | MOoD 011 R/M | 17+EA X XXXXX
SBB DEA,bData (bEA)=(bEA)-bbata-CF 82| MOD 011 R/M | 17+EA X XXXXX
SBB wEA,wData (wEA)=(wEA)-wData-CF 81 (MOD 011 R/M | 17+EA X OXXXXX
SBR wEA,bData (wEA)=(wEA)-Ext(bData)~CF 83| MOD 011 R/M | 17+EA X XXXXX
SBB bEA, REG bEA)-(bREG)~-CF 18 | MOD REGR/M 16+EA(3) X XXXXX
SBB wER, REG (WEA)}=(wEA) - (WREG) -CF 19 | MOD REGR/M 16+EA{3] X XXXXX
SBB REG,bEA (bREG)=(bREG)~{bEA)~-CF 1A | MOD REGR/M 9+EA(3) | X XXXXX
SBB REG,wEA (WREG)=(wREG)~(wWEA)-CF 1B { MOD REGR/M S+EA(3) | X XXXXX
SCASB Scan byte string AE 15 X XXXXX

(2+15/rep)
SCASW Scan word string AF 15 | X xxxxx
(9+15/rep)

SHL bEA, CL Shift bEA left D2 | MOD 100 R/M { 20+EA

(CL) bits +4/bit| X X

A-16 Assembly Language Manual

Table A-4. Instruction Set In Alphabetlic Order of Instruction Mnemonic. (6 of 6.7
Instruc-| Operand Summary Op Memory Clocks Flags
tion }E&; Organization ODITSZAPC

SHL wEA,CL Shift wER left D3} MOD 100 R/M| 20+EA

(CL) bits +4/bit!] x X
SHL bEA, 1 Shift bEA left 1 bit DO| MOD 100 R/M| 15+EA X X
SHL WEA, 1 Shift wEA left 1 bit DL{ MOD 100 R/M| 15+EA X X
SHR bEA, CL Shift bEA right D2{ MOD 101 R/M] 20+EA

(CL) bits +4/bit| x X
SHR wEA, CL Shift WEA right D3{ MOD 101 R/M| 20+EA

(CL) bits +4/bit| X X
SHR DEA,1 Shift bEA right 1 bit DO MOD 101 R/M| 15+EA X b'¢
SHR wEA, 1 Shift wEA right 1 bit Dl MOD 101 R/M} 15+EA X X
SS: SS segment override 36 2
STC Set carry flag F9 2 s
STD Set direction flag FD 2 [«
STI Set interrupt flag FB 2 s
STOSB Store byte string AA 11

{9+10/rep)
STOSW Store word string AB 11
(9410/rep)

SuB AL,bData | (AL)=(AL)-bData 2¢ 4 X XXXXX
SUB AX,wData (AX)=(AX)-wData 2D 4 X XXXXX
SUB bEA,bDatal (bEA)=(bRA)-bData Gy MOD 101 R/M| 17+EA X XXXXX
SUB bEA,bDatal (bEA)=(bEA)-bData 82| MOD 101 R/M{ 17+EA X XXXXX
SUB wEA,wData| (wEA)=(wEA)-wData 81{ MOD 101 R/M{ 17+EA X XXXXX
SUB WEA ,bDatal (wEA)=(wEA)-Ext(bbata) 831 MOD 101 R/M| 17+EA X XXXXX
SUB PEA, REG (bEA)=(bEA) - (bREG) 28| MOD REGR/M 16+EA(3] X XXXXX
SuB wEA, REG (wEA)=(wEA) - (WREG) 29 MOD REGR/M 16+EA(3)] X XXxXXX
SUB REG,bEA (bREG)=(bREG)-(bEA) 2A| MOD REGR/M 9+EA(3) | X XXXXX
SUB REG, wEA (WREG)=(wWREG) - (WEA) 2B MOD REGR/M 9+EA(3) [X XXX
TEST AL,bData FLAGS=(AL) TEST (bData) A8 4 X XXuxc
TEST AX,bData | FLAGS=(AX) TEST (wData) A9 4 X XXUXC
TEST bEA,bData] FLAGS={bEA) TEST bData F6| MOD 000 R/M| 10+EA (o XXUXC
TEST wEA,wData| FLAGS=(wEA) TEST wbhata F7| MOD 000 R/M| 10+EA C XXUxec
TEST DEA,bREG { FLAGS=(bEA) TEST (DREG) 841 MOD REGR/M | 9+EA(3)]| C XXUXC
TEST wEA, WREG FLAGS=(wWEA) TEST (wREG) 85) MOD REGR/M 9+EA{3) | C XXUXC
WALTX Wait for TEST signal 9B 3+WAITX
XCHG AX, AX NOP 90 3
XCHG AX, BP Exchange (AX), (BP) 95 3
XCHG AX, BX Exchange (AX), (BX) a3 3
XCHG AX,CX Exchange (AX)}, (cx) 91 3
XCHG AX,DIL Exchange (AX), (DI) 97 3
XCHG AX, DX Exchange (AX), (DX) 92 3
XCHG AX, SI Exchange (AX), (SI) 96 3
XCHG AX, SP Exchange (AX)}, (SP) 94 3
XCHG bREG,bEA | Exchange bREG, bDEA 86 | MOD REGR/M | 17+EA(4
XCHG WREG, wEA Exchange wREG, WEA 87 { MOD REGR/M 17+EA(4
XLAT TABLE Translate using (BX) D7 11
XOR AL,bData {AL)=(AL) XOR bData 34 4 C XXuxc
XOR AX,wData | (AX)=(AX) XOR whata 35 4 C XXUXC
XOR bEA,bData| (PEA)=(bEA) XOR bData 80] MOD 110 R/M| 17+EA C XXUXC
XOR wEA,wData] (wEA)=(wEA) XOR whata 81} MOD 110 R/M| 17+EA C XXUXC
XOR DEA, REG {pEA}=(bEA)} XOR (DREG) 30] MOD REGR/M 16+EA(3) C AXUXC
XOR wERA, REG (WEA)={wEA) XOR (wREG) 31} MOD REGR/M | 16+EA{3f C XXUXC
XOR REG,bEA {PREG}=(bREG) XOR (bEA) 327 MOD REGR/M | 9+EA(3)} C XXUXC
XOR REG, WwER {WREG)=(wREG) XOR (wEA) 33] MOD REGR/M | 9+EA(3} | C xxXuxc

Instruction Set

A-17

Appendix B:

AAD

AAS
ABS
ADC
ADD
AH

AND
ASSUME

RESERVED WORDS

ENDS
EQ
EQU
ES
ESC
EVEN
EXTRN
FAC
FALC
FAR
GE
GEN
GENONLY
GROUP
GT
HIGH
HLT
IDIV
IMUL
IN
InNC
INCLUDE
INT
INTO
IRET
JA
JAE
JB
JBCZ
JBE
Jc
JE
JGE
JL
JLE
Jamp
JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNLE
JNO
JNP
JNS
JNZ
Jo

JPE

JPO

Js

Jz
LABEL
LAHF
LDS

LE

LEA
LENGTH
LES
LIST
LOCK
LoDS
LODSB
LODSW
LOOP
LOOPE
LOOPNZ
LOOPZ
LOW

LT
MASK
MEMORY
MOD
MOV
Movs
MOVSB
MOVSW
MUL
NAME
NE
NEAR
NEG
NIL
NOGEN
NOLIST
NOPAGING
NOT
NOTHING
NOXREF
OFFSET
OR

ORG
ouT
PAGE
PAGELENGTH
PAGEWIDTH
PAGING
PARA
POP
POPF
PROC

Reserved Words

PTR
PUBLIC
PURGE
PUSH
PUSHF
RCL
RCR
RECORD
REPE
REPNE
REPNZ
REPZ
RESTORE
RET
ROR
SAL
SAR
SAVE
SBB
SCAS
SCASB
SCASW
SEG
SEGMENT
SHL
SHORT
SHR

SI

B-1

	001
	002
	003
	004
	005
	006
	007
	008
	009
	01
	010
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	B-01

