
ASSEMBLY LANGUAGE MANUAL

Specifications Subject to Change.

Convergent Technologies, Convergent, CTOS, CT-BUS, IWS,
EWS, and MWS are trademarks of Convergent Technologies.

Copyright © 1980 by Convergent Technologies

CONTENTS

Guide to Technical Documentation vii

1 Introduction....................• 1
Choice Among Convergent Languages 1
Features of the Assembly Language 2
Design of the Instruction Set 2
Arrays•..................... 3
Object Modules and Linking 3
Segments and Memory References 4
Reg isters ... 5
Addressing•..................... 5
Procedures .. 7
Macros .. S
Example•..................... S
Invoking the Assembler from the Executive S

Field Descriptions 10

2 Programs and Segments•................... 13
Segments ... 13

SEGMENT/ENDS Directives 13
Segment Nesting•................... 14

ASSUME Directive•................... 16
Loading Segment Registers 17
Segment Override Prefix 1S
Anonymous Re ferences•................... 19
Memory Reference in String Instructions 20
GROUP Directive•.................... 21
Procedures ... 22

PROC/ENOP Directives•................... 22
Calling a Procedure•............................... 23
Recursive Procedures and Procedure Nesting on
the Stack•...................... 23
Returning from a Procedure 25

Location Counter ($) and ORG Directive 25
EVEN Directive•.................... 26
Program Linkage (NAME/END, PUBLIC and EXTRN) 26

END Directive .. 27

3 Data Definition .. 29
Introduction ... 29
Constants .. 29
Attributes of Data Items 31

SEGMENT•.•.................. 31
OFFSET ... 31
TYPE ... 31
DISTANCE ... 31

Variable Definition (DB, DW, DO Directives)•.... 32
Constant Initialization 32
Indeterminate Initialization 33
Address Initialization (DW and DD Only) 33
String Initialization•.........•........ 33

Contents iii

Enumerated Initialization 34
DUP Initialization 34

Labels and the LABEL Directive •........................•. 34
LABEL Directive•...•............. 35
LABEL with Variables•................ 35
LABEL with Code••..•.........•... 36
Label Addressability•.............•.. 36

Records•............• 37
Initializing Records 38

Structures••..............•........••............•... 39
Default Structure Fields 41
Overridable Structure Fields•.... 41
Initializing Structures ••.................•...••...•... 42

4 Operands and Expressions•......... 43
Operands•.•....•...............................•.•• 43
Immedia te Operands•............•................ 43
Reg ister Operands••......••........•....... 44

Explicit Register operands 44
Implicit Register Operands•...............• 45
Segment Registers ..•..................•................ 46
General Registers•................ 46
Flags •..........•..................•..•..............•. 46

Memory Operands ..•..••................................... 46
Memory Operands to JMP and CALL•....••.......... 46
Variables ..•.....•.............•...............•....... 48

Simple Variables•......•.•.•.•..•.•..•.......•. 48
Indexed Variables•.............................. 48
Double-Indexed Variables•...•..•......... 48

Attribute Operators 49
PTR, the Type Overriding Operator•....••.•........ 49
Segment Override•.........•................... 50
SHORT •.....•...•..........••..........•••...•.•.•..•... 50
THIS•...•...•........•••......•.......•........ 51

Value-Returning Operators•...•....•..........•..... 51
Record Opera tors .•..•...........••.....••.•.•.•...•...... 53
Operator Precedence in Expressions .•.••.•...•.•.......... ~3
EQU Directive ..•.••....•.............•..•.•......•.•..... 54
PURGE Directive ..••........................•..•.......... 54

5 Forward References ... 55

6 Ins truction Format •.............................•.........• 57

7 Flags ...•..••..•.......•.........•........•.....•........•. 59
Flag Registers ..••.......•...•.......•.•..•.........•...• 59
Flag Usage ...•• 60

Auxiliary Carry Flag (AF) •...•••.....••.•.••••....••.•• 60
Carry Flag (CF) .•....•.............••......•........••. 60
Overflow Flag (OF)••••......•.•.•.•.•.......• 60
Parity Flag (PF)•........•.•...•••.......• 60
Sign Flag (SF) ...•..••...•..••...•.•..•.•.•••.•.••.•.•. 61
Zero Flag ...•...••................•...•.•...••.•....... 61

iv Assembly Language Manual

8 Macro Assembler•...........•..•.•..•••.• 63
Introduction •..••..•...•.•..•...•....•..•.•..••..••..•••• 63
LOCAL Declaration ...•••..•....•..•.•...••..•.....•.•.•.•. 63
Condi tiona 1 Assembly ..••.•.......•.....•.•..•.•••....•••• 64
Repetitive Assembly .•••.................•........•.•..••. 66
Interactive Assembly (IN and OUT) .•..•.••.....•..•.•.••.. 68
Comments ..•..•.....••........••.•.....•.........•....•.•• 68
Match Operation ..•....••.••.•...•..•..••......•......•..• 69
Advanced Features •...•••......•....•.•..•..•••.•.•.••.••. 69

Bracket and Escape .••..•..•..••..•...•.•......•.•...••• 71
MATCH Calling Patterns •......•.................•....••• 72
Processing Macro Invocations•...•..•.•.•.•..•.•..• 72
Expanded and Unexpanded Modes ..••....•.........•....••. 73
Nested Macro Expansion ..•..•..•..••..•....•....•...•..• 73

9 Accessing Standard Services from Assembly Code .•..•.•.•••.• 75
Calling Conventions .•....•...•....•••.•..•..•....•••••.•• 75
Register Usage Conventions ••...•...••.••.•..•.....•.•..•• 77
Segment and Group Conventions .•..•.•••..•.••.•.•.•..•.••• 78

l'1ain Program ..•••..•.....•.•.....•.•••.•........•.....• 78
5S and DS When Calling Object Module Procedures •.•••••. 78

Interrupts and the Stack•......••....•..•.•..•.....•. 79
Use of Macros•...••.•••.•.•..•••••.••.•..•.•..•...• 79
Virtual Code Segment Management and Assembly Code ••.....• 81
System Programrning Notes ..••..••...•••...•..•.•..•.•••.•• 83

10 Assembly Control Directives ..•••...•.••••............•.•••. 85
EJECT .•.•.....•.••..•••..••••••.••.••••.•••••••.••••.•••. 85
GEN •.••.•••.••..••••.•••........•..•••••.•••.•.•.•.•••••• 85
NOGEN .•..••..••.•.•.•..•.••••.•••...•••.•••.••••..•.••..• 85
GENONLY ..•..••••••.•...••..••...••..•••..••.••••.•••.•••• 85
INCLUDE .••.••.••••.•••••.••••••..••.•••.••••••••••••••••• 85
LIST ..••.•••.•••..•••.••••..•....•..•••.••••••.•••••••••• 85
NOLIST •••.•••••••.••••.•.•••••.•••..••.••.••.••••.••••••• 85
PAGELENGTH ..••••••••.•.•....•...•..•••••.•..•..•..•.••.•• 85
PAGEWIDTH ••.•••.••••••.•..••...••••..•..•..••••••..•••••• 86
PAGING ..••.•••...•.•.••...•••..•.....••..••..••..•.•••.•• 86
NOPAG ING ••..••.••.••..••..••••••.••..••.••.••••..••.••••• 86
SAVE .•••••.••.••••.••..•..•..•....•..•.••........•....••• 86
RESTORE •.•.•.•..•..•••..•..•.••..•...•.••....••....•.•••• 86
TITLE•.•..•.•.••....•...................•.•..•.•.••.• 86
Using a Printer with Assembly Listings ••..••.•...••....•• 86

11 Sample Assembler Modules •••.....••..••..•.....•....•.•..•... 87

Appendix A: Instruction set ..•....•....•.••...•.•..•........• A-l
Legend .•..••.....••••........••..••.•....•....••.••...•• A-1
Al terna te Mnemonics ••.•••.••••.•••..•••••...•.•.••.•..•• A-4

Appendix 8: Reserved Words •.••••••••..••.••..••••....••.•..•• 8-1

Contents v

LIST OF FIGURES

Figure 1-1.
Figure 1-2.
Figure 2-1.
Figure 11-1.
Figure 11-2.
Figure 11-3.

Analysis of Sample Instruction 6
Example of Complete Assembly Program 9
CALL/RET Control Flow 24
Error Message Module Program 88
Standalone Main Program 91
Convergent-Compatible Main Program 92

LIST OF TABLES

Table 2-l. String Instruction Mnemonics 20
Table 3-l. Constants•................. 29
Table 3-2. Target Label Addressability 36
Table A-l. Effective Address Calculation Time A-3
Table A-2. Alternate Mnemonics A-4
Table A-3. Instruction Set in Numeric Order of

Instruction Code A-5
Table A-4. Instruction set in Alphabetic Order of

Instruction Mnemonic A-12

vi Assembly Language Manual

GUIDE TO TECHNICAL DOCUMENTATION

This Manual is one of a series that documents the Convergent'"
Family of Information Processing Systems. The series includes:

o Technical Summary

o Workstation Hardware Manual

o Peripherals Hardware Manual

o Central Processing Unit

o CTOS'" Operating System Manual

o Executive Manual

o Editor Manual

o BASIC Manual

o FOR'rRAN Manual

o COBOL Manual

o Pascal Manual

o Assembly Language Manual

o Debugger Hanual

o Utilities Manual

o Data Base Management System Manual

o 3270 Emulator Manual

o System Programmer's Guide

o Operator's Guide

This section outlines the contents of these manuals.

The Te.£~ni.£~~ Summar'y briefly describes the hardware and software
of the Convergent Family of Information Processing Systems. It
summarizes the other manuals in one volume. It can be helpful to
read this overview before reading the other manuals.

The Workstation Hardware Manual describes the mainframe,
keyboard,-and videod:ls-play. --Itspecifies system architecture,
printed circuit boards (motherboard, processor, I/O-memory, video

Documenta tion Guide vii

control, ROM expansion, and RAM expansion), keyboard, video
monitor, Multibus interface, communications interfaces, power
supply, and environmental characteristics of the workstation.

The Per~~~_~~ .!:!~rd~~r~. MaE;ual. describes the disk subsystems.
It specifies the disk controller motherboard, controller boards
for the floppy disk and the Winchester disks, power supplies,
disk drives, and environmental characteristics.

The Central processing Unit describes the main processor, the
8086-. - U-specifIes---the-machine architecture, instruction set
and programming at the symbolic instruction level.

n~e CTOS m Operating Sys~em Manual describes the operating
system:--rt specifies serv~ces t:or managing processes, messages,
memory, exchanges, tasks, video. disk, keyboard, printer, timer,
communications, and files. In particular, it specifies the
standard file access methods.

The Executive Manual describes the command interpreter, the
program that ffrst interacts with the user when the system is
turned on. It specifies commands for managing files and invoking
other programs such as the Editor and the programming languages.

The ~ditor Manual describes the text editor.

The ~AS!C, FOR'!'BAN, COBOL, R~~cal, and Assem~ Langu~g~ Ma.E;uals
describe the systelTI'S prog ramming languages. Each mannual
specifies both the language itself and also operating
instructions for that language. For Pascal, the manual is
supplemented by a popular text, Pa~~~ Us~ Manu~~ and Re~IJ:_.

The Debugger Manual describes the Debugger, which is designed for
use at the symbolic instruction level. Together with appropriate
interlistings, it can be used for debugging FORTRAN, Pascal, and
assembly language programs. (BASIC and COBOL, in contrast, are
more conveniently debugged using special facilities described in
their respective manuals.)

The Utilities Manual describes miscellaneous programs such as the
Linker,-which links together separately compiled object files,
and the Asynchronous Terminal Emulator.

The Data ~se ~~nage~nt ~stem Ma~~~ describes the data base
management system. It specifies (l) the data definition
language, which defines the logical structure of data bases and
separately defines their physical organization, (2) the host
language interfaces for accessing data bases from each of the
system's programming languages, and (3) the utilities for
creating, loading, unloading, and reorganizing data bases.

~le 3270 Emulator ,Manual describes the 3270 emulator package.

viii Assembly Language Manual

The System PrE~rammer's Guide addresses the needs of the system
programmer or system manager for detailed information on
operaating system structure and system operation. It describes
(1) diagnostics, (2) procedures for customizing the operating
system, and (3) system utilities normally used only by a system
programmer or manager, for example, Initialize Volume, Backup,
and Restore.

The Operator's Guide addresses the needs of the average user for
operating instructions. It descr ibes the workstation switches
and controls, keyboard function, and floppy disk handling.

Documentation Guide ix

1 INTRODUCTION

This Manual describes the Convergent assembler and assembly lang­
uage. The Manual is directed towards readers who understand some
assembly language reasonably well

To understand an assembler, it is usually helpful to first under­
stand the machine architecture of the target CPU. If you are not
already familiar with the machine-level architecture of the
Convergent Information processing System, you can find it useful
to read the Central processing Unit. That document also contains
a brief discussion of assembly language programming at an elemen­
tary level, and it describes the instruction set in detail. So,
if this Manual is too difficult, try reading the Central
Processing Unit. ----

Since this Manual is primarily a reference work, we do not expect
you to read it straight. through. But if you are not entirely
conversant with Convergent assembly language, you should
initially read the first four sections.

Choice Among Convergent Languages

A programmer working with a Convergent Information
System has many different languages to choose among.
among languages involves several considerations.

Processing
The choice

o Does the program require the unique business features of
COBOL or the scientific features of FORTRAN?

o Is an interpreted language (such as BASIC) suitable?

o Will the system programming and data structuring facilities
of Convergent Pascal be particularly valuable in the program
to be written?

o Should the program be divided into parts to be written in
different languages and combined by the Linker?

If the program (or program part) requires direct access to
processor registers and flags, then assembly language is the best
choice. To the extent that memory utilization and object code
efficiency are more important than development speed and program­
mer productivity, assembly language is a better tool than Pascal
or FORTRAN.

It is rarely the case that an entire application system ought to
be written in assembly language. The programmer should determine
those parts in which direct access to machine features, efficien­
cy, and memory utilization are overriding concerns, and implement
those parts in assembly language, while writing the remainder of
the application in an appropriate high-level language.

Introduction 1

Features of the Assembly Language

The Convergent assembly language features a powerful instruction
set, sophisticated code and data structuring mechanisms, strong
typing (the ability to check that the use of data is consistent
with its declaration), a conditional assembly facility, and a
macro language with extensive string manipulation capabilities.

Design of the Instruction Set

A complete description of the instruction set is given in Appen­
dix A and in the Centr~l.. RE"ocessing .!!ni t.

This assembly language differs from most other assembly lan­
guages, which usually have one instruction mnemonic for each
operation code (opcode). In this assembly language, a particular
instruction mnemonic can be assembled into any of several
opcodes; the type of opcode depends on the type of operand~

This assembly language is a "strongly typed" language because
mixed operand types are not permitted in the same operation (as,
for example, moving a declared byte to a word register). You
cannot inadvertently move a word to a byte destination, thereby
overwriting--in-iadjacent byte, nor can you move a ?yte to a word
destination, thereby leaving meaning less data in an adjacent
byte. However, if you need to override the typing mechanism,
there is a special operation, called PTR, which allows you to do
this. See Section 4. ----

The assembly language makes it possible to convey much informa­
tion in a single, easy-to-code instruction. Consider this
instruction:

SUB [BP][Sr].field4, CH

The contents of the 8-bit register CH are subtracted from a
memory operand~ registers BP and SI are used to calculate the
address of the memory operand; and the identifier field4 and the
dot operator (.) are used to designate symbolically an offset
within the structure pointed to by BP and SI.

The register BP points within the run-time stack and is used, as
is the case in this example, when the operand is on the stack.
(The segment reg ister for the stack segment is SS, so the l6-bi t
contents of SS are automatically used together with BP in addres­
s ing the memory operand.)

The l6-bit contents of register 81 are the offset of the data
from the top of the stack. That is, the contents of BP and SI
are added in the effective address calculation.

In this context, the dot operator (.) refers to a structure.
(See Section 3 for a description of structure definitions.) The

2 Assembly Language Manual

identifier that follows, field4, identifies a structure field.
Its value gives the relative distance, in bytes, from the begin­
ning of the structure to field4. (Offset values for each field
of the structure relative to the beginning of the structure are
generated by the assembler. In this way the structure can be
used as a pattern of relative offset values, a "storage
templa te. ")

This instruction combines the contents of the stack segment reg­
ister SS, the end of stack register BP, the index register SI,
and the offset of field4, to form an absolute machine address.
The contents of the 8-bit register CH are subtracted from the
byte thus addressed. This instruction includes opcode, base
register, index register, structure displacement and relative
offset, type information, direction (register to memory), and
source register. The instruction assembles into only three
bytes.

Arrays

Arrays of bytes, words, doublewords, structures, and records
(defined below) can be defined and initialized with, respec­
tively, the DB, OW, DO, structure-name, and record-name direc­
tives, as shown here;

rgb

rgw

rgdd

DB 50 DUP(66)

OW 100 DUP(O)

DO 20 DUP(?)

;Allocate 50 bytes, named rgb,
;initialize each to 66.
;Allocate 100 words, named rgw,
;initialize each to O.
;Allocate 20 doublewords, named
irgdd, don't initialize them.

When you refer to array elements, be aware that the origin of an
array is O. This means that the first byte of the array rgb is
rgb[O]' not rgb[l]. Its nth byte is rgb[n-l]. Also, be aware
that indexes are the number of bytes from the start of the array,
regardless of whether the array elements are bytes, words, or
doublewords.

Object Modules and Linking

An object module can contain any (or all) of the following: code,
constants, variable data. The Linker (see the Utilities Manual)
arranges the contents of a set of object modules into-a-memory
image, typically with all code together, all constants together,
and all variable data together. (This arrangement makes optimal
use of the addressing structures of the 8086.) Although the
Linker produces such arrangements automatically, the programmer
will occasionally want to exercise explicit control. The con­
cepts and facilities used to arrange memory are explained in
Section 2.

Introduction 3

Segments and Memory References

At assembly-time, you can define as many segments as you wish, as
long as each assembly module has least one segment. (You can
omit segment definition statements, in which case the default
segment is assigned the name ??SEG by the assembler.) Each inst­
ruction of the program and each item of data must lie within a
segment. Code and data may be mixed in the same segment, but
this is generally not done because such a segment cannot be link­
ed with object segments produced by Pascal or FORTRAN.

Here are examples of segments;

o global data segment,

o local data segment,

o stack segment, a.nd

o main program segment (code).

A hardware se~nt in memory contains up to 64K bytes. It starts
at an address divisible by 16, called a 2aragraph bo~dar~. A
paragraph number that is used to address the beginning of a hard­
ware segment is a segment base ad.3ress.

A segment defined by the programmer is a logical segment. It
does not necessarily start at a paragraph boundary, so log ical
segments need not correspond to hardware segments.

The paragraph numbers at which segments beg in are contained, at
run-time, within the four 16-bit segment registers (CS, DS, ES,
and SS). At any time, there are four "current" segments. CS
always defines the current code segment. DS usually defines the
current data segment. SS always defines the current stack seg­
ment. ES can define an auxiliary data segment.

The memory address calculations done by the processor have two
components: a segment base address and an offset. The segment
base address must be in one of the four segloent reg isters (CS,
DS ES, or SS).

When a program gets a data item from memory, the hardware com­
bines the 16-bit offset and the l6-bit segment base address as
follows:

20-bit physical address = 16* {segment base address) + offset

For example, if a program is assembled at offset 2400h within the
data segment, and if segment register DS is loaded with the value
3EOOh, then the physical address of the data is:

16*3EOOh + 2400h = 40400h

4 Assembly Language Manual

The programmer is generally not concerned with this physical
address.

Registers

The registers are:

0 16-bit segment (CS, DS, SS, ES) ,

0 16-bit general {hlC BX, CX, DX, SP, BP, SI, DI} ,

0 8-bit general (AH, AL, BH, BL, CH, CL, DH, DL) ,

0 Base and index 16-bit (BX, BP, SI, DI), and

0 i-bit flag (AF, CF, DF, IF, OF, PF, SF, TF, ZF) .

Seglnent registers contain segment base addresses and must U~
appropriately initialized at run-time. (If assembly language is
used only to implement subroutines for a main program written in
a high-level language, this initialization is automatic.)

Each of the 16-bi t general, 8-bi t general, and base and index
registers can be used in arithmetic and logical operations. We
frequently call AX "the accumulator," but the processor actually
has eight 16-bit accumulators (AX, BX, CX, DX, SP, BP, SI, DI)
and eight 8-bit accumulators (AH, AL, BH, BL, CH, CL, DH, DL).
Each 8-bit accumulator is the high-order or low-order byte of AX,
BX, CX, or DX·

Addressing

Operands can be addressed in several different ways with various
combinations of base registers (BX and BP), index reg isters (SI
and DI), displacement (adding an 8- or l6-bit value to a base or
index register or to both), and direct offset (16-bit addresses
used without the base or index register).

A two-operand instruction has a sou~~~ operand, and a ~estin~~on
operand, as in:

MOV source

The source operand can be an immediate value (a constant that is
part of the instruction itself, such as the "7" in MOV CX, 7), a
reg ister, or a memory reference. If the source is an immediate
value, then the destination operand can be-e-rther a register or a
memory reference-.------

Introduction 5

LEGEND

ADO r BP II 51 J. Field4, OX I

~
I
I

I
J
I
I
I L _____ _

~ Data flow for this
~-- addition operation

- l6-bit segment base value

}--. l6-bit effective address
(offset) within segment

1 8- or l6-bit index or
r-"'displacement value

comprising part of offset

BASE REGISTERS

~~~~~~----;;;;';1iAi~:j;rnm:s--1====:::!.._--JCS 

SAMPLE VALUE 
0=0 

W=l 
MOOa01 
REG=010 
R/M= 010 

MEAN I NG 
Memory destination 

Word operands 
Oisplaceft1ent 1 byte; sign-extend 
Use OX register 
Effective address=(BP+(SI)+disp. 

OS 
I------~ 
I-__________ ~ES 

rt==~~_JSS 

COMMENT 
0=1 would mean register 
destination 
~~O would be byte operands 

* :~~em~~~. encodings of MOD, REG and R/M, see the Central Processing !:1.!!.1.!, 

Figur-e 1-1. Analysis of a Sample Instruction. 

~-------------------------------



Source and de~~ination operands cannot both be memory references. 

A memory reference is direct when a data item is addressed with­
out the use of a register, as in: 

MUL prod, DX 

MOV CL, jones.bar 

;prod is addressed by 16-bit direct 
;offset. 
;Offset of jones plus bar is 16-bit direct 
;offset. 

A reference is !.ndirect when a register is specified, as in: 

MUL prod[BX], DX 

MOV CX, [BP][SI] 

:Destination address is base register plus 
;16-bit displacement. 
;Source address is sum of base register 
;and index register. 

See Figure 1-1 for ~n analysis of a sample instruction. 

Procedures 

The Convergent assembly language formalizes the concept of a 
callable procedure by providing explicit directives to identify 
the beg inning and end of a procedure. Whereas other assembly 
languages start a procedure with a label and end it with a return 
instruction, the Convergent assembly language defines a procedure 
as a block of code and data delimited by PROC and ENDP state­
ments. Thus the extent of a procedure is apparent. Here is an 
example: 

WriteFile PROC 

RET 

RET 
WriteFile ENDP 

Procedures can be nested but must not overlap: 

Introduction 7 



WriteFile PROC 

RET 
\vri teLine PROC 

RET 

WriteLine ENDP 

WriteFile ENDP 

Macros 

The macro capability of the assembler is used to define abbrevi­
a tions for arbitrary text strings, including constants, expres­
sions, operands, directives, sequences of instructions, comments, 
etc. These abbreviations can take parameters: they are string 
functions that are evaluated during assembly. 

Fields of instruction can be parameters of macros. Macro calls 
can be nested. Macro definitions can be saved in a fi Ie. By 
including such a "macro library," the programmer can customize 
the assembler to include frequently used expressions, instruction 
sequences, and data definitions. The macro facility also 
provides interactive assembly by means of a macro-time console 
I/O facility. 

Example 

See Figure 1-2 for an example of a complete assembly program. 

Invoking the Assembler from the Executive 

Invoke the assembler with the Executive's assemble command. The 
following form appears: 

,l\ssemble 
Source files 
[Errors only?] 
[GenOnly, NoGen, or Gen] 
[Object file] 
[List file] 
[Error file] 
[List on pass I?] 

8 Assembly Language Manual 



H 
::s 
rt 
1'"'\ 
o 
0-
t: 
() 
rt 
~. 

o 
::s 

Convergent Macro Assemblpr XI 2Factorial Subroutine 16:00 18-Sep-80 Page 

OOOA 
0006 

0000 55 
0001 811EC 
0003 !l80100 
0006 B34EOA 
0009 F7EI 
OOOB 700F 
0000 E2FA 

OOOF C45E06 
0012 268907 
0015 B80000 
0018 50 
0019 CA0600 
OOIC B8611E 
OOIF 50 
0020 CA0600 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

33 
34 
35 
36 
37 

There were no errors detected 

$TITLE(Factorial Subroutine) 
FactSeg SEGMENT WORD PUBLIC 

ASSUME CS:FactSeg 
PUBLIC Factorial 

;The calling pattern is Factorialtn. pFactorialRet): ErcType 
n is a word representing a positive'integer 
pFactorialRet is a long pointer (4 bytes) to a word where the product is to be stored 
ErcType is a word o' error status returned in AX: 

o if no 
7777 if error (e. g. over'low or invalid arg) 

Factorial PROC FAR 
rbn EGU 10 relative o"set o' n within 'rame 
rbp EGU 6 relative of'set o. pFactorialRet within frame 

PUSH BP save old frame pointer 
MOV BP. SP poi n t to curl' e n t 5 ta c k top 
MOV A X • 1 i nit i ali I e pre due t 
MOV CX. [BP+rbnJ CX gets n 

Reppat: MUL CX multiply by next 'actor 
JO Error error exit i. overflow 
LOOP Repeat decrement factor in ex and iterate 

; I. control .alls through the LOOP. then we 're done. 
LES BX. DWORD PTR[BP+rbpJ set up to store result 
MOV ES: (BX). AX store resul t 
MOV AX. 0 no error 
POP BP restore prior frame pointer 
RET 6 pop the 6 bytes of argument from the stack 

Error: MOV AX. 7777 put errOl" code into AX 
POP BP restor~ prior frame pointer 
RET 6 pop the 6 bytes of argument from the stack 

Factorial ENDP 

FactSeg ENDS 

END 

Figure 1-2. Example of a Complete Assembly Program. 



You need to know how to fill in a form. This is described in 
II Filling in a Form" in the Executive Manual. 

Field Descriptions 

Source files. Fill in the "Source files" field with a list of 
the names of the source files to be assembled. It is the only 
required field. If several fi les are speci fied, the result is 
logically like asssembling the single file that is the concat­
enation of all the source files. (In a list of names of source 
files, separate each name by a space. Do not use commas.) 

As an example, suppose the program is contained in Main.Asm and 
depends on a set of assembly-time parameters. You might maintain 
two source fragments to define the parameters, one for debugging, 
and one for production. Then "Source files" would be either: 

ParamsDcbugging.Asm Main,Asm 

or: 

ParamsProduction.Asm Main.Asm 

[Errors only?]. Fill in the "[Errors only?] field with "Yes" if 
you want a listing only of lines with errors. The listing 
normally contains source and object code for all source lines. 
Assembly produces an object file and a list file. The names of 
the object and list files are specified as described below. The 
default for "[Errors only?]" is "No", that is, a full listing. 

[Genonly, NoGen, or Gen]. Fill in the "[GenOnly, NoGen, or Gen]" 
field to specify how the results of macro expansion are listed. 
This setting can also be made in the source with the assembly 
control directives $GENONLY, $NOGEN, and $GEN. In GenOnly mode 
the results of macro expansion are listed. In NoGen mode, the 
listing contains the unexpanded macro invocations. In Gen mode, 
the listing contains invocations and full expansions, as well as 
intermediate stages of expansion. This last mode is most useful 
in debugg ing complex macros. Note that these controls affect 
only the content of the listing: the result of full expansions is 
always assembled to produce the object code. The default for 
II [GenOnly, NoGen, or Gen]" is GenOnly. 

[Object file]. Fill in the "[Object file]" field to specify to 
which object file to write the object code that results from the 
assembly. The default is the last source file. That is, if you 
do not specify an object, a default object file is chosen as 
follows; trea ting the last source name as a character string, 
strip off any final suffix beginning with the character period 
( . ), and add the characters ".Obj". The result is the name of 
the file. For example, if the last source file is: 

10 Assembly Language Manual 



[OevJ<Jones>Main 

then the default object file is: 

[OevJ<Jones>Main.Obj 

If the last source file is: 

Prog .Asm 

then the default object file is: 

Prog.Obj 

[List File]. A listing of the assembly is written to the speci­
fied list file. The default is the last source file. That is, 
if no explicit listing file is specified, a file name is derived 
from the last source file. With the examples given above, the 
list files would be named, respectively: 

[OevJ<Jones>Main.lst 

and: 

Prog.lst 

[Error file]. Fill in the "[Error file]" field with the name of 
the file to receive the "errors only" listing if you wish to 
create both a full listing and a listing of just the errors. The 
default is to create no such listing. 

[List on pass 11]. Fill in the "[List on pass l?]" field with 
"Yes" to diagnose certain errors in macros. Listings are 
normally genera ted only during the second assembly pass. 
However, some programming errors involving macros prevent the 
assembly process from ever reaching its second pass. To diagnose 
such errors, specify "[List on pass l?J" as "Yes". Listings are 
then genera ted during both assembly passes. The default is "No". 

Introduction 11 





2 PROGRAMS AND SEGMENTS 

Segments 

SEGMENT/ENDS Directives 

Each of the instructions and variables of a program is within 
some segment. Segments can be named explicitly using the SEGMENT 
directive, but if no name is specified for a segment, the 
assembler assigns the name ??SEG. The SEGMENT directive also 
controls the alignment, combination, and contiguity of seg­
ments. Its format is; 

[segn~me] SEGMENT [align~] [~ombine-t~] ['classname'] 

[segnalTl~] ENDS 

The optional fields must be in the order given. The segment is 
located on a memory boundary specified by [align-1:YE~]' as 
follows: 

1. PARA (the default)--the segment begins on a paragraph 
boundary, an address with the least significant hexadecimal 
digit of O. 

2. BYTE--the segment can begin anywhere. 

3. WORD--the segment beg ins on a word boundary, i. e., an even 
address. 

4. PAGE--the segment begins on an address divisible by 256. 

Segments can be combined with other segments by the Linker as 
specified by [.combine-type]. Segment combination permits segment 
elements from different assemblies to be overlaid or concatenated 
by the Linker. Such segment elements must have the same ~name, 
c~~~sn~e, and an appropriate combin~-1:~, as follows: 

1. Not combinable (the default). 

2. PUBLIC--when linked, this segment is concatenated (made adja­
cent) to others of the same name. The Linker controls the 
order of concatenation during linkage, according to your 
speci fica tions. 

3. AT expression--the segment is located at the l6-bit segment 
base address evaluated from the given expression. The 
expression argument is interpreted as a paragraph nwnber. 
For example, if you wish the segment to begin at paragraph 
3223 (absolute memory address 32230h), specify AT 3223h. You 
can use any valid expression that evaluates to a constant and 

Programs and Segments 13 



has no forward references. An absolute segment is permitted 
to establish a template for memory to be accessed at run­
time; no assembly-time data or code is automatically loaded 
into an absolute segment. 

4. STACK--the elements are overlaid such that the final bytes of 
each element are juxtaposed to yield a combined segment whose 
length is the sum of the lengths of the elements. Stack 
segments with the name STACK are a special case. When stack 
segments are combined, they are overlaid but their lengths 
are added together. When the Linker has combined all stack 
segments, it forces the total length of the aggregate stack 
segment to a multiple of 16 bytes. Compilers construct stack 
segments automatically. However, if your entire program is 
written in assembly language, you have to define an explicit 
stack segment. There are special rules regarding the use of 
the stack that must be observed for calls to standard object 
module procedures. See Section 9, "Accessing Standard 
Services from Assembly Code" below. 

5. COMMON--the elements are overlaid such that the initial bytes 
of each element are juxtaposed to yield a combined segment 
whose length is the largest of the lengths of the elements. 

The optional classname can be used to affect the ordering of 
segments in theInemory image constructed by the Linker. See the 
Utili tie~ Manual_ for details. 

Segment Nesting 

You can code a portion of one segment, start and end another, and 
then continue with the coding of the first. However, there is 
only lexical, not physical nesting, since the combination rules 
given above are always followed. 

Lexically nested segments must end with an ENDS directive before 
the enclosing SEGMENT directive is closed with its ENDS 
directive. 

The fundamental units of relocation and linkage are segment 
~ements_, linker seg~ents, class names, and groups. 

An object module is a sequence of segment elements. Each segment 
element has a segment name. An object module might consist of 
segment elements whose names are B, C, and D. 

The Linker combines all segment elements with the same segment 
name from all object modules into a single entity called a linker 
segment. ~inker segment forms a contiguous block of memory in 
the -run-time memory image of the task. For example, you might 
use the Linker to link these two object modules: 

14 Assembly Language Manual 



Object Hodule 1 
containing segment elements B, C, D 

Object Module 2 
containing segment elements C, 0, E 

Linkage produces these four linker segments: 

Linker Segment B consisting of element Bl 
Linker Segment C consisting of elements el, C2 
Linker Segment D consisting of elements Dl, 02 
Linker Segment E consisting of element E2 

(In each of these cases, xi denotes the segment element ~ in 
module ~.) 

The ordering of the various linker segments is determined by 
class names. (A class name is an arbitrary s~~bol used to desi­
gnate a class.) All1the-rinker segments with a common class name 
and segment name go together in memory. For example, if Bl, 01, 
and E2 have class names Red, while Cl has class name Blue, then 
the ordering of linker segments in memory is: 

B, D, E, C 

If you look inside the linker segments, you see that the segment 
elements are arranged in this order: 

Bl, Dl, D2, E2, Cl, C2 

(If two segment elements have different class names, then they 
are considered unrelated for purposes of these algorithms, even 
though they have the same segment name.) 

As you see from this, segment names and class names together 
determine the ordering of segment elements in the final memory 
image. 

The next step for the Linker is to establish how hardware segment 
regis!-ers address these segment elements at run-t-ime. 

A ~ is a named collection of linker segments that is addres­
sed at run-time with a common hardware segment register. To make 
the addressing work, all the bytes within a group must be within 
64K of each other. 

Several linker segments can be combined into a group. For 
example, if Band C were combined into a group, then a single 
hardware segment register could be used to address segment 
elements Bl, Cl, and C2. 

Segment, class, and group names can be assigned explicitly in 
assembler modules using appropriate assembler directives. Most 

Programs and Segments 15 



compiled languages assign these names automa tically. 
individual language manuals for details.) 

ASSUME Directive 

(See the 

The ASSUME directive declares how the instructions and data spec­
ified during assembly are to be addressed from the segment base 
registers during execution. The programmer must explicitly con­
trol the values in segment registers at run-time. Use of the 
ASSUME directive permits the assembler to verify that data and 
instructions will be addressable at run-time. 

The ASSUME directive can be written either as: 

ASSUME seg-reg:seg-name [, ... J 

or: 

ASSUME NOTHING 

Here seg-reg is one of the segment registers. 

Seg-.!!ame is one of these: 

1. A segment name, as; 

ASSUME CS~codeSeg, DS:dataSeg 

2. A GROUP name that has been defined earlier, as: 

ASSUME DS:DGroup, CS:CGroup 

3. The expression SEG variable-name or SEG label-name, as: 

ASSUME CS:SEG Main, DS:SEG Table 

4. The keyword NOTHING, as: 

ASSUME ES:NOTHING 

A particular seg-r~:seg~ pair remains in force until another 
ASSUME assigns a different segment (or NOTHING) to the given seg­
~. To ASSUME NOTHING means to cancel any ASSUME in effect for 
the indicated registers. A reference to a variable whose segment 
is ASSUMEd automatically generates the proper object instruction; 
a reference to a variable whose segment is not ASSUMEd must have 
an explicit segment specification. (See the "Segment Override 
Prefix" below.) 

Here is an example: 

16 Assembly Language Manual 



Tables SEGMENT 
xTab OW 100 

yTab OW 500 

Tables ENDS 

ZSeg SEGMENT 
zTab OW 800 

ZSeg ENDS 

Sum SEGMENT 

OUP(10) 

OUP(20) 

OUP(30) 

; 100-word array, 
; initially 10' s. 
; SaO-word array, 
;initially 20's. 

;8a0-word array, 
;initially 30's. 

ASSUME eS:Sum,OS:Tables,ES:NOTHING ;Sum addressable through 
;CS and Tables through 
;DS. No assumption 

Start: MOV BX, xTab 

ADD BX, yTab 

MOV AX, SEG zTab 

MOV ES, AX 

MOV ES: zTab, 35 

Sum ENDS 

:about ES. 
;xTab addressable by OS: 
;defined in Tables. 
;yTab addressable by OS: 
;defined in Tables. 
iNow AX is the proper 
; segment base address to 
;address references to 
;zTab. 
;ES now holds the 
isegment base address 
; for ZSeg. 
izTab must be addressed 
;with explicit segment 
;override--the 
;assembler doesn't know 
iwhat segment register 
ito use automatically. 

In this example, the ASSUME directive: 

1. Tells the assembler to use es to address the instructions in 
the segment Sum. (This fragment of program does not load 
es. es must previously have been set to point to the segment 
Sum. For example, es is often initialized by a long jump or 
long call.) 

2. Tells the assembler to look at OS for the symbolic references 
to xTab and yTab. 

Loading Segment Registers 

The es reg ister is loaded 
(CALL), an interrupt (INT 
hardware RESET. 

by a long jump (JMP), a long call 
.!!., or external interrupt), or by a 

Programs and Segments 17 



The instruction INT n loads the instruction pointer (IP) with the 
l6-bit value stored at location 4*n of physical memory, and loads 
CS with the l6-bit value stored at-physical memory address 4*n+2. 

A hardware RESET loads CS with OFFFFh and IP with O. 

Here is an example of defining the stack and loading the stack 
segment register, SS: 

Stack SEGMENT STACK 
DW 1000 DUP(O) 

StackStart LABEL WORD 

Stack ENDS 

StackSetup SEGMENT 
ASSUME 
MOV 
MOV 
MOV 

StackSetup ENDS 

CS:StackSetup 
BX, Stack 
SS, BX 
SP, OFFSET StackStart 

;lOOO-words of 
;stack. 
;Stack expands 
;toward low memory. 

; start = end 
; initially 

This example illustrates an important point: each of the two 
register pairs SS/SP and CS/IP must be loaded together. The 
hardware has special provision to assist in this: loading a 
segment register by a POP or MOV instruction causes execution of 
the very next instruction to be protected against all inter­
rupts. That is why the very next instruction, after the load of 
the stack base register, ss, must load the stack offset register, 
SP. 

CS and its associated offset IP are loaded only by special 
instructions and never by normal data transfers. SS and its 
associated offset SP are loaded by normal data transfers but must 
be loaded in two successive instructions. 

Segment Override Prefix 

If there is no ASSUME directive for a reference to a named vari­
able, then the appropriate segment reference can be inserted 
explicitly as a segment override prefix coding. This is the 
format: 

Here seg-reg is CS, DS, ES, or SS, as in: 

DS:xyz 

This construct does not require an ASSUME directive for the vari­
able reference, but its scope is limited to the instruction in 
which it occurs. 

18 Assembly Language Manual 



Thus, the following two program fragments are correct and 
equivalent: 

Hohum SEGMENT 
ASSUME CS:Hohum, DS:Pond 

MOV AX, Frog 
ADD AL, Toad 
MOV Cicada, AX 

Hohum ENDS 

Hohum SEGMENT 
ASSUME CS:Hohum 

MOV AX, DS:Frog 
ADD AL, DS:Toad 
MOV DS:Cicada, AX 

Hohum ENDS 

where Pond would be defined hv· 
--~ . 

Pond SEGMENT 
Frog DW 
Toad DB 
Cicada DW 

100 DUP (0) 
500 DUP (0) 
800 DUP (0) 

Pond ENDS 

Anonymous References 

100 words a's 
500 bytes 0' s 
800 words D's 

Memory references that do not include a variable name are called 
anonymous refereEces. These are examples; 

[BX] 
[BP] 

Hardware defaults determine the segment registers for these 
anonymous references, unless there is an explicit segment prefix 
operator. These are the hardware defaults: 

[BX] OS 
[BX][D1] DS 
[BX] [s1] DS 

[BP] ss 
[BP] [DI] SS 
[BP][SI] ss 

[Dr] DS 
[SI] DS 

The exceptions to these defaults are: 

1. PUSH, POP, CALL, RET, INT, and IRET always use SS and this 
default cannot be overridden. 

Programs and Segments 19 



2. String instructions on operands pointed to by DI always use 
ES and this default cannot be overridden. 

Be particularly careful that an anonymous reference is to the 
correct segment: unless there is a segment prefix override, the 
hardware default is applied- For example: 

ADD BX, [BP+5] is the same as ADD AX, SS: [BP+5] 
MOV [BX+4] , CX is the same as MOV DS: [BX+4], CX 
SUB [BX+SI] , CX is the same as SUB DS: [BX+SI], CX 
AND [BP+DI] , DX is the same as AND SS: [BP+DI], DX 
MOV BX, [SI].one is the same as MOV BX, DS:[SI].one 
AND [DI], ex is the same as AND DS:[DI], CX 

The following examples require explicit overrides since they 
differ from the default usage: 

ADD AX, DS;[SP+S] 
MOV CS:[BX+2], AX 
XOR SS:[BX+SI], CX 
AND DS:[BP+DI], CX 
MOV BX, CS:[DI].one 
AND ES:[SI+4], DX 

Memory Reference in String Instructions 

The mnemonics of the string instructions are shown in Table 
2-1. These include those that can be coded with operands (MOVS, 
etc.) and those that can be coded without operands (MOVSB, MOVSW, 
etc.) . 

Each string instruction has type-specific forms (e.g., LODSB, 
LODSW) and a generic form (e.g., LODS). The asssembled machine 
instruction is always type-specific. If you code the generic 
form, you must provide arguments that serve only to declare the 
type and addressability of the arguments. 

Table 2-1. String Instruction Mnemonics. 

Mnemonic Mnemonic Mnemonic 
For Byte For Word For Symbol ic 

O12eration .OEerands Operands °Eerands* 

Move MOVSB MOVSW MOVS 
Compare CMPSB CMPSW CMPS 
Load AL/AX LODSB LODSW LODS 
Store from AL/AX STOSB STOSW STOS 
Compare to AL/AX SCASB SCASW SCAS 

*The assembler checks the addressability of symbolic operands. 
The opcode generated is determined by the type (BYTE or WORD) 

__ ~o~f~_t~h~e~o~p~e~r~a~n~d=s~~. __________________ . __________________________________ _ 

20 Assembly Language Manual 



A string instruction must be preceded by a load of the offset of 
the source string into SI, and a load of the offset of the desti­
nation string into DI. 

The string operation mnemonic may be preceded by a "repeat 
prefix" (REP, REPZ, REPE, REPNE, or REPNZ), as in REPZ SCASB. 
This specifies that the string operation is to be repeated the 
number of times contained in ex. 

String operations without operands (MOVSB, MOVSW, 
hardware defaults, which are SI offset from DS, 
from ES. Thus; 

MOVSB 

is equivalent to: 

MOVS ES:BY~E P~R[DIJ;[SIJ 

etc.) use the 
and DI offset 

If the hardware defaults are not used, both segment and type 
overriding are required for anonymous references, as: 

MOVS ES:BYTE PTR[DI], SS:[SI] 

See Section 4 below for a discussion of PTR. 

String instructions can not use [BX] or [BP] addressing. 

For deta i 1s of string instructions and their use with a repeat 
prefix, see the Cen~al Processing Unit, page 65. In particular, 
note that repeat and segment override should not be used together 
if interrupts are enabled. 

GROUP Directive 

The GROUP directive specifies that certain segments lie within 
the same 64K bytes of memory. Here is the format: 

name GROUP ~egname [, ... ] 

Here name is a unique identifier used in referring to the 
group.~gname can be the name field of a SEGMENT directive, an 
expression of-the form SEG variable-name, or an expression of the 
form SEG label-name. (See "Value-Returning Opera t.ors" in Section 
4 for a definition-of the SEG operator.) [, ... ] is an optional 
list of ~.9:names. Each segn_~me in the list is preceded by a 
comma. 

This directive defines a group consisting of the specified seg­
ments. The 2~E12:-na_~_ can be used much like a ~na~, except 
that a group-name must not appear in another GROUP statement as a 
se<J.!l~me. ) 

Here are three important uses of the GROUP directive: 

Programs and Segments 21 



1. Use it as an immediate value, loaded first into a general 
register, and then into a segment register, as in: 

MOV CX,DGroup 
MOV ES,CX 

The Linker computes the base value as the lowest segment in 
the group. 

2. Use it an ASSUME statement, to indicate that the segment 
register addresses all segments of the group, as in: 

ASSUME CS:CGroup 

3. Use it as an operand prefix, to specify the use of the group 
base value or offset (instead of the default segment base 
value or offset), as in 

MOV CX,OFFSET DGroup:xTab 

(See "Value-Returning Operators" in Section 4 for additional 
information about OFFSET.) 

It is not known during assembly whether all segments named in a 
GROUP directive will fit into 64K: the Linker checks and issues a 
message if they do not fit. Note that the GROUP directive is 
declarative only, not imperative: it asserts that segments fit in 
64K, but does not alter segment ordering to make this happen. An 
example is: 

DGroup GROUP dSeg, sSeg . 
An associated ASSUME directive that might be used with this group 
is: 

ASSUME CS:codel, DS:DGroup, SS:DGroup 

You can not use forward references to GROUPs. 

A single segment register can be used to address all the segments 
in a group. This should be done carefully, however, because 
offsets in instructions and data are relative to the base of the 
group and not a particular segment. 

Procedures 

PROC/ENDP Directives 

Procedures can be implemented using the PROC and ENDP direc­
tives. Although procedures can be executed by in-line "fall­
through" of control, or jumped to, the standard and most useful 
method of invocation is the CALL. 

Here is the format of the PROC/ENDP directives; 

22 Assembly Language Manual 



name PROC [NEAR I FAR] 

RET 

name ENDP 

name is specified as type NEAR or FAR, and defaults to NEAR. 

If the procedure is to be called by instructions assembled under 
the same ASSUME CS value, then the procedure should be NEAR. A 
RET (return) instruction in a NEAR procedure pops a single word 
of offset from the stack, returning to a location in the same 
segment. 

If the procedure is to be called by instructions assembled under 
another ASSUME CS value, then the procedure should be FAR. A RET 
in a FAR procedure pops two words, new segment base as well as 
offset, and thus can return to a different segment. 

Calling a Procedure 

The CALL instruction assembles into one of two forms, depending 
on whether the destination procedure is NEAR or FAR. 

When a NEAR procedure is called, the instruction pointer (IP, the 
address of the next sequential instruction) is pushed onto the 
stack, and control transfers to the first instruction in the 
procedure. 

When a FAR procedure is called, first the content of the CS reg­
ister is pushed onto the stack, then the I P is pushed onto the 
stack, and control transfers to the first instruction of the 
procedure. 

Mul tiple entry points to a procedure are permitted. All entry 
points to a procedure should be declared as NEAR or FAR, depen­
ding on whether the procedure is NEAR or FAR. 

All returns from a procedure are assembled according to the 
procedure type (NEAR or FAR). 

See Figure 2-1 for the procedure CALL/RET control flow. 

Recursive Procedures and Procedure Nesting on the Stack 

When procedures call other procedures, the rules are the same for 
declaration, calling, and returning. 

Programs and Segments 23 



KEY: 

SEGA SEGMENT 
ASSUME CS: SEGA 

CO~IMENCE PROC 

(START) G) 
Comes from any of: SP+-SP-2 
o hardware reset (SP).it-IP 
o external interrupt IP+-OFFSET 
0 INT N 
0 CALL BX 
o NEAR/FAR 
o JUMP/CALL 

START, Whatever the 
CS ~SEGA 
IP~OFFSET COMMENCE 

® 
SP~ SP-2 
(SP)+- CS 

BBB CS+- SEGB 
SP4- SP-2 
(SP)+- IP 
IP+- OFFSET 

SEGB SEGMENT 
ASSUME CS: SEGB 

AGAIN PROC FAR 

SEGB ENDS 

G) 
IP+-(SP) 
SP+SP+2 
CS"'(SP) 
SP4-SP+2 

AND 
XXX SP4- SP+8 

(For RET 8) 

Figure 2-1. CALL/RET Control Flow. 

24 Assembly Language Manual 

(!) 
IP+(SP) 
SP"SP+2 



A recursive procedure is one which calls itself, or one which 
calls another procedure which then calls the first and so 
forth. Here are two points to note about recursive procedures; 

1. A recursive procedure must be reentrant. This means that it 
must put local variables on the stack and refer to them with 
[BP] addressing modes 

2. A recursive procedure must remove local variables from the 
stack before returning, by appropriate manipulation of SP. 

The number of calls that can be nested (the "nesting limit") is 
delimi ted by the size of the stack segment. Two words on the 
stack are taken up by FAR calls, and one word by NEAR calls. Of 
course, parameters passed on the stack and any local variables 
stored on the stack take additional space. 

Returning from a Procedure 

The RET instruction returns from a procedure. It reloads IP from 
the stack if the procedure is NEAR; it reloads both IP and SP 
from the stack if the procedure is FAR. IRET is used to return 
from an interrupt handler and to restore flags. 

A procedure can contain more than one RET or IRET instruction, 
and the instruction does not necessarily come last in the 
procedure. 

Location Counter ($) and ORG Directive 

The assembly-time counterpart of the instruction pointer is the 
location counter. The value contained in the location counter 
is symbolically represented by the dollar sign ($). The value is 
the offset from the current segment at which the next instruction 
or data item will be assembled. This value is initialized to 0 
for each segment. If a segment is ended by an ENDS directive, 
and then reopened by a SEGMENT directive, then the location coun­
ter resumes the value it had at the ENDS. 

The ORG directive is used to set the location counter to a 
nonnegative number. Here is the format: 

The expression is evaluated modulo 65536 and must not contain any 
forward-references. The expression can contain $ (the current 
value of the location counter), as in: 

ORG OFFSET $+1000 

which moves the location counter forward 1000 bytes. 

An ORG directive may not have a label. 

Programs and Segments 25 



The use of the location counter and ORG are related to the use of 
the THIS directive, which is discussed in "Attribute Operators" 
in Section 4. 

EVEN Directive 

It is sometimes necessary to ensure that an 
is aligned on a word boundary. For example, 
for use by the Operating System must be 
assembler implements the EVEN directive by 
code or data, where necessary, a l-byte 
instruction (90h). Here is an example: 

EVEN 
Buffer DW 256 DUP(O} 

item of code or data 
a disk sector buffer 
word aligned. The 

inserting be fore the 
NOP (no operation) 

The EVEN directive can be used only in a segment whose alignment 
type, u..;J specified in the SEGME~1T directive, is \&10RD, rAP~, V.L 

PAGE. It cannot be used in a segment whose alignment type is 
BYTE. 

Program Linkage (NAME/END, PUBLIC, and EXTRN) 

The Linker combines several different assembly modules into a 
single load module for execution. For more about the Linker, see 
the Utilities Manual. ------
Three program linkage directives can be used by the assembly 
module to identify symbolic references between modules. None of 
these three linkage directives can be labeled. They are: 

o NAME, which assigns a name to the object module generated by 
the assembly. For example: 

NAME SortRoutines 

If there is no explicit NAME directive, the module name is 
derived from the source file name. For example, the source 
file [Volname]<Dirname>Sort.Asm has the default module name 
Sort. 

o PUBLIC, which specifies those symbols defined within the 
assembly module whose attributes are made available to other 
modules at linkage. For example: 

PUBLIC SortExtended, Merge 

If a symbol is declared PUBLIC in a module, the module must 
contain a definition of the symbol. 

o EXTRN, which specifies symbols that are defined as PUBLIC in 
other modules and referred to in the current module. Here is 
the format of the EXTRN directive: 

26 Assembly Language Manual 



EXTRN name.~ [, ... ] 

In this format, name is the symbol defined PUBLIC elsewhere 
and type must be consistent with the declaration of name in 
its defining module. ~ is one of: 

o BYTE, WORD, DWORD, structure name, or record name (for 
variables) , 

o NEAR or FAR (for labels or procedures), or 

o ABS (for pure numbers; the implicit SIZE is WORD). 

If you know the name of the segment in which an external symbol 
is declared as PUBLIC, place the corresponding EXTRN directive 
inside a set of SEGMEN'r/ ENDS directives that use this segment 
name. You may then access the external symbol in the same way as 
if the uses were in the same module as the definition. 

If you do not know the name of the segment in which an external 
symbol is declared as PUBLIC, place the corresponding EXTRN 
directive at the top of the module outside all SEGMENT/ENDS 
pairs. To address an external symbol declared in this way, you 
must do two things: 

1. Use the SEG operator to load the l6-bit segment part into a 
segment register. (See "Value-Returning Operators" in 
Section 4 for a description of the SEG operator.) Here is an 
example: 

MOV AX, SEG Var 
MOV ES, AX 

;Load segment base 
;value into AX, and thence to ES. 

2. Refer to the variable under control of a corresponding ASSUME 
(such as ASSUME ES:SEG var) or using a segment override 
prefix. 

END Directive 

The end of the source program is identified by the END direc­
tive. This terminates assembly and has the format: 

END [expression] 

The expression should be included only in your main program and 
must~NEAR-or FAR and specifies the starting execution address 
of the program. Here is an example~ 

END Initialize 

Programs and Segments 27 





3 DATA DEFINITION 

Introduction 

The names of data items, segments, procedures, and so on, are 
called identifiers. An identifier is a combination of letters, 
digits,-andthe-special characters question mark (?), at sign 
(@), and underscore ( ). An identifier may not begin with a 
digit. -

Three basic kinds of data items are accepted by the assember. 

1. Constants are names associated with pure numbers--values with 
no attributes. Here is an example 

Seven EQU 7 ;Seven represents the constant 7. 

While a value is defined for Seven, no location or intended 
use is indicated. This constant can be assembled as a byte 
(eight bits), a word (two bytes), or a doubleword (four 
bytes) . 

2. Variables are identifiers for data items, forming the 
operands of MOV, ADD, AND, MUL, and so on. Variables are 
defined as residing at a certain OFFSET within a specific 
SEGMENT. They are declared to reserve a fixed memory-cell 
TYPE, which is a byte, a word, a doubleword, or the number of 
bytes specified in a structure definition. Here is an 
example: 

Prune DW 8 ;Declare Prune a WORD of initial value 0008H. 

3. Labels are identifiers for executable code, forming the 
operands of CALL, JMP, and the conditional jumps. They are 
defined as residing at a certain OFFSET wi thin a specific 
SEGMENT. The label can be declared to have a DISTANCE 
attribute of NEAR if it is referred to only from within the 
segment in which it is defined. A label is usually intro­
duced by writing: 

label:instruction 

which yields a NEAR label. See also PROC (under "Procedures" 
in Section 2) and LABEL under "Labels and the LABEL 
Directive" below, which can introduce NEAR or FAR labels. 

Constants 

There are five types of constants: binary, octal, decimal, hexa­
decimal, and string. Table 3-1 specifies their syntax. 

Data Definition 29 



------------TabTe--3=-l:---Cons-tants~-----------

--------------.--------.-------

Binary 
(Base 2) 

Octal 
(Base 8) 

Decimal 
(Base 10) 

Hexadecimal 
(Rase 16) 

STRING 

Rules For Formation ------------

Sequence of O's and 
l's plus letter B. 

Sequence of digits 
o through 7 plus 
either letter a or 
letter Q. 

Sequence of digits 
o through 9, plus 
optional letter D. 

Sequence of digits 
o through 9 and/or 
letters A through 
F plus letter h. 
(If the first digit 
is a letter, it must 
be preceded by 0.) 

Any character 
string wi thin 
single quotes. 
(More than two 
characters only 
with DB.) 

lOB 
11001011B 

76540 
7777Q 
77777Q 

9903 
9903D 

77h 
IFh 
OCEACh 
ODFh 

'A', 'B' 
'ABC' 
'Rowrff' 
'UP.URZ' 

An instruction can contain 8- or 16-bit immediate values. 
is an example: 

MOV eH, 53H 
MOV ex, 3257H 

;Byte immediate value 
;Word immediate value 

Here 

constants can be values assigned to symbols with the EQU direc­
tive. These are examples: 

Seven EQU 7 
MOV AH, Seven 

;7 used wherever Seven referenced 
;Same as MOV AH,7. 

See Section 4 for the complete definition of EQU. The format is; 

symbol EQU expression 

Here, expression can be any assembly language item or expres­
sion. -An example is: 

xyz EQU [BP+7] 

30 Assembly Language Manual 



Attributes of Data Items 

The distinguishing characteristics of variables and labels are 
called attributes. These attributes influence the particular 
machine instructions generated by the assembler. 

Attributes tell where the variable or label is defined. Because 
of the nature of the processor, it is necessary to know both in 
which SEGMENT a variable or label is defined, and the OFFSET 
within that segment of the variable or label. 

Attributes also specify how the variable or label is used. The 
TYPE attribute declares the size, in bytes, of a variable. The 
DISTANCE attribute declares whether a label can be referred to 
under a different ASSUMEd CS than that of the definition. 

Here is a summary of the attributes of data items. 

o SEGMENT 

SEGMENT is the segment base address defining the variable or 
label. To ensure that variable and labels are addressable at 
run-time, the assembler correlates ASSUME CS, DS, ES, and SS 
(and segment prefix) information with variable and label 
references. The SEG operator (see "Value-Returning Opera­
tors" in Section 4) can be applied to a data item to compute 
the corresponding segment base address. 

o OFFSET 

OFFSET is the l6-bit byte displacement of a variable or 
labels from the number of bytes from the base of the contain­
ing segment. Depending on the alignment and combine-type of 
the segment (see Section 2, on the SEGMENT directive), the 
run-time value here can be different from the assembly-time 
value. The OFFSET operator (see "Value-Returning Operators" 
in Section 4) can be used to compute this value. 

o TYPE (for Data) 

BYTE 
WORD 
DWORD 
RECORD 
STRUC 

1 byte 
2 bytes 
4 bytes 
1 or 2 bytes (according to record definition) 
n bytes (according to structure definition) 

o DISTANCE (for Code) 

NEAR Reference only in same segment as definition; 
definition with LABEL, PROC, or id:. 

FAR Reference in segment rather than definition: defi­
nition with LABEL or PROC. 

Data Definition 31 



Variable Definition (DB, DW, DD Directives) 

To define variables and initialize memory or both, use the DB, 
DW, and DD directives. Memory is allocated and initialized by 
DO, DW, and DD in units of BYTES (8 bits), WORDS (2 bytes), and 
DWORDS (doublewords, 4 bytes), respectively. The attributes of 
the variable defined by DB, DW, or DO are as follows: 

o The SEGMENT attribute is the 
definition. 

segment containing the 

o The OFFSET attribute is the current offset within that 
segment. 

o The TYPE is BYTE (1) for DB, WORD (2) for OW, and DWORD (4) 
for DD. 

The -.-~--~- .... , 'j t:;::1lt:;::.L a. .L form for DB, Dl'l and DD is either; 

or: 

[variable-name] (DB I DW I DD) ~~~count DUP (init [, ... ]» 

where variable-name is an identifier and either DB, DW, or DD 
must bechosen:------

The DB, DW, and DD directives can be used in many ways. The 
possibilities are: 

1 constant initialization, 

2. indeterminate initialization (the reserved symbol "?"), 

3. address initialization (DW and DD only), 

4. string initialization, 

5. enumerated initialization, and 

6. DUP initialization. 

Constant Initialization 

One, two or four bytes are allocated. The expression is evalu­
ated to a l7-bit constant using twos complement arithmetic. For 
bytes, the least significant byte of the result is used. For 
words, the two least significant bytes are used with the least 
significant byte the lower-addressed byte, and the most signifi­
cant byte the higher-addressed byte. (As an example, OAAFFh is 
stored with the OFFh byte first and the OAAh byte second. For 
double words, the same two bytes are used as for words, and they 
are followed by anadditional two bytes of zeros. Here are some 
examples: 

32 Assembly Language Manual 



number DW IF3Eh 

DB 100 
DW 3*12 

Indeterminate Initiali~ation 

;3Eh at number, IFh at 
;number + 1 
;Unnamed byte 
;Assembler performs arithmetic 

To leave initialization of memory unspecified, use the reserved 
symbol "?". 

Here are some examples: 

x DW ? 

buffer DB 1000 DUP(?) 

;Define and allocate a word, 
;contents indeterminate 
; 1000 bytes. 

(The DUP clause is explained in "Dup Initial iza tion" below.) 

Address Initialization (DW and DD Only) 

[variable-name] (DW I DD) init-addr 

An address expression is computed with four bytes of precision-­
two bytes of segment base and two bytes of offset. All four 
bytes are used with DD (with the offset at the lower addresses), 
but only the offset is used with DW. Address expressions can be 
combined to form more complex expressions as follows; 

o A relocatable expression plus or minus an absolute expression 
is a relocatable expression with the same segment attribute. 

o A relocatable expression minus a relocatable expression is an 
absolute expression, but it is permitted only if both compo­
nents have the same segment attribute. 

o Absolute expressions can be combined freely with each other. 

o All other combinations are forbidden. 

Here are some examples of initializing using address expressions: 

pRequest DD Request ;32-bit offset and segment 
;of Request 

pErc DD Request+S ;Offset of sixth byte in 
;Request 

oRequest DW Request ;16-bit offset of Request 

String Initialization 

Variables can be initialized with constant strings as well as 
with constant numeric expressions. With DD and DW, strings of 
one or two characters are permitted. The arrangement in memory 
is tailored to the 8086 architecture this way: DW 'XY' allocates 
two bytes of memory containing, in ascending addresses, 'y', 

Data Definition 33 



'X'. DD 'XY' allocates 
ascending addresses, 'Y', 

four bytes 
'X', 0, O. 

of memory containing in 

with DB, 
Characters, 
locations. 

strings of up to 255 characters are permitted. 
from left to right, are stored in ascending memory 
For example, 'ABC' is stored as 4lh, 42h, 43h. 

Strings must be enclosed in single quotes ('). A single quote is 
included in a string as two consecutive single quotes. Here are 
some examples: 

Single_Quote 
Date 
Quote 
Jabberwocky 

Run Header 

DB 
DB 
DB 
DB 

DW 

'I' 'm so happy! ' 
'08/08/80' 

"'TWAS BRILLIG AND THE 
SLITHY TaVES ... ' 

'GW' 

Enumerated Initialization 

(DB I DW I DO) ini t [, ... ] 

Bytes, words, or doublewords are initialized in consecutive 
memory locations by this directive. An unlimited number of items 
can be specified. Here are some examples: 

squares OW 
Digit_Codes DB 
Message DB 

DUP Initialization 

0,1,4,9,16,25,36 
30h,316,32h,33h,34h,35h,36h,37h,38h,39h 
'HELLO, FRIEND.' ,0Ah 
;l4-byte text plus new line code 

To repeat init (or list of init) a specified number of times, use 
the DUP operator, in this format: 

dup-count DUP (ini~) 

The duplication count is expressed by dup-count (which must be a 
positive number). init can be a numeric expression, an address 
(if used with OW or DoL a question mark, a list of items, or a 
nested DUP expression. 

Note that in the DB, OW, and DO directives, the name of the vari­
able being defined is not followed by a colon. (This differs 
from many other assemblY-languages.) For example: 

Name OW 100 
Name: OW 100 

;okay 
; WRONG 

Labels and the LABEL Directive 

Labels identi fy locations wi thin executab Ie code to be used as 
operands of jump and call instructions. A NEAR label is declared 
by any of the fOllowing: 

34 Assembly Language Manual 



Start LABEL NEAR is the default 
Start LABEL NEAR NEAR can be explicit 
Start: Followed by code 
Start EQU $ 
Start EQU THIS NEAR 
Start PROC ;NEAR is the default 
Start PROC NEAR ;NEAR can be explicit 

A FAR label is declared by any of the following: 

Start2 
Start2 
Start 

EQU THIS FAR 
LABEL FAR 
PROC FAR 

LABEL Directive 

To create a name for data or instructions, use the LABEL direc­
tive, in the format: 

_name LABEL ~ 

name is given segment, offset, and type attributes. The label is 
given a segll!.~~ attribute specifying the current segment, an 
offset attribute specifying the offset within this segment, and a 
~2~ as explicitly coded (NEAR, FAR, BYTE, WORD, DWORD, struc­
ture-name or record-name). 

When the LABEL directive is followed by executable code, ~ is 
usually NEAR or FAR. The label is used for jumps or calls, but 
not MOVs or other instructions that manipulate data. NEAR and 
FAR labels cannot be indexed. 

When the LABEL directive is followed by data, ~ is one of the 
other five classifications. An identifier declared using the 
LABEL directive can be indexed if assigned a data type, such as, 
BYTE, WORD, etc. The name is then valid in MOVs, ADDs, and so 
on, but not in direct jumps or calls. (See Section 4 for indi­
rect jumps or calls.) 

A LABEL directive using structure-name or record-name names data 
and is assigned a type attribute according to the record or 
structure definition. 

The main uses of the LABEL directive, illustrated below, are: 
accessing variables by an "alternate type," defining FAR labels, 
and accessing code by an "alternate distance" (for example, defi­
ning a FAR label with the same segment and offset values as an 
existing NEAR label) . 

LABEL with Variables 

'rhe assembler uses the type of a variable in determining the 
instruction assembled for manipulating it. You can cause an 
instruction normally generated for a different type to be assem-

Data Definition 35 



bled by using LABEL to associate an al terna tive name and type 
wi th a location. For example, the same area of memory can be 
treated sometimes as a byte array and sometimes as a word array 
with the definitions: 

WORD rgw 
rgb 

LABEL 
DB 200 DUP(O) 

The data for this array can be referred to in two ways: 

ADD AL, rgb[50] 
ADD AX, rgw[38] 

LABEL wi th Code 

~Add fiftieth byte to AL 
~Add twentieth word to AX 

A label definition can be used to define a name of type NEAR and 
FAR. This is only permitted when a CS assumption is in effect; 
the CS assurnption (not the segment- heing assembled) is used to 
determine the SEG and OFFSET for the defined name. 

For example, 

Place 
SamePlace 

LABEL FAR 
MUL CX,[BP] 

introduces Place as a FAR label otherwise equivalent to the NEAR 
label Sameplace. 

Label Addressability 

The addressability of a label is determined by: 

1. its declaration as NEAR or FAR, and 

2. its use under the same or different ASSUME:CS directive as 
its declaration. 

The four possibilities of code for each are shown in Table 3-2. 

Table 3-2. Tar et Label Addressabilit . ----

Same 
ASSUME CS: 

Different 
ASSUME CS: 

Near Label Far Label ----- ------
NEAR Jump/Call NEAR Jump 

FAR Call 

FAR Jump 
Not allowed FAR Call 

L _______________________________________ ~ 

A NEAR jump or call is assembled with a 1- or 2-byte displacement 
using modulo 64K arithmetic. 64K bytes of the current segment 
can be addressed as NEAR. 

36 Assembly Language Manual 



A FAR jump or call is assembled with a 4-byte address. The 
address consists of a 16-bi t offset and 16-bi t segment base 
address. An entire megabyte of memory can be addressed as FAR. 

(The semantics of PROC/ENDP directives are discussed in Section 
2. ) 

Records 

A record is a format used to define bit-aligned subfields of 
bytes and words. The two steps in using records are: 

1. define and name a record format, and 

2. invoke the record name as an operator, thereby allocating and 
initializing memory. 

Define a record by writing: 

record-name RECORD field-name:width [=default][, .... ] 

Neither record-name nor any of the field names can conflict with 
existing names. The sum of the widths of the fields can not 
exceed 16 bits. Each width can b~ expression, but must not 
make forward references-.--

The assembler divides records into two classes, those with a 
total width of up to 8 bits, and those with a total width of up 
to 16 bits. A byte is allocated for each instance of a record of 
the first class, and a word for each instance of a record of the 
second class. The data of each record instance is right-justi­
fied within the allocated memory. 

The definition of a 
instances are to be 
with the optional 
definition: 

record can include a specification of how 
ini tialized. This specification is given 
[=default] clause. For example, this 

HashEntry RECORD state;2=3, sKey:4, rbKey:9 

might be used in setting up a hash table. Each entry has a 2-bit 
state field, a 4-bit "size of key" sKey, and a 9-bit "relative 
byte of key in page" rbKey. The state field, being two bits 
wide, can hold four values. The state field is explicitly speci­
fied to default to 3. The other fields are assigned the implicit 
default value 0, since no explicit default is specified. A field 
eight bits wide can have a single character as its default value, 
as in bData:8='a'. 

When a record is declared, the assembler associates with its 
field names these special values: 

o the width of the field, 

Data Definition 37 



o the bit position of the right end of the field, and 

o a mask constant for extractin:.:J the field from an instance of 
the record. 

The width is computed with the WIDTH operator, the mask with the 
MASK operator, and the bit position with the field name itself. 
Thus, with HashEntry as above, the following holds. 

state 
MASK state 
WIDTh state 

ODh 
EOOh 

3h 

sKey 
MASK sKey 
WIDTh skey 

9h 
lEOOh 

4h 

rbKey 
MASK rbKey 
WIDTh rbKey 

Oh 
IFFh 

9h 

As another example. let us define the format for the first two 
bytes of an instruction. 

Inst2b RECORD Opcode 6, 0:1, W:l, Mod:2, Reg;3, Rm:3 

The definition might be used in this way: 

Inst Table Inst2b 100 DUP ( < , , , , , > ) ;Code to initialize 
;Inst Table 

MOV AX, Inst_Table[BX] ; Load-the entry at 
;offset BX 

AND AX, MASK Mod ;Mask off all but Mod 
MOV CL, Mod 
SHR AX, CL ;Now AX contains Mod 

This example also shows how, for each record field, the bit 
position and MASK operator can be used to extract the field from 
a record. 

The assembler right-justifies a record's user-defined fields when 
those fields do not occupy an entire word or byte. The fields 
are moved to the least-significant bit-positions of the byte or 
word defined by the record. For example, the definition: 

Ascii Twice RECORD Cl:7,C2:7 

would result in the format: 

15 14 13 7 6 0 
I (undefine-d~)~rl~---~(-C~1~)----~I~--~(C-2~)~--~I 

2 bits 7 bits 7 bits 

Initializing Records 

After records have been declared, the record name and operator 
can be used for allocation and initialization. There are two 
formats: 

Format 1: 

[name] ~E!:cord-name < [ini t] [, ... ] > 

38 Assembly Language Manual 



Format 2; 

[nameJ record-name dup-count DUP «[initJ [, ... J» 

In both formats, the first byte or word (depending on the RECORD 
definition) of the allocated memory is optionally named. The 
record definition to be used is specified by record-name. 
Finally, the operand is a possibly empty list of initiaCfieTd 
values. For example; 

<> 
<8, ,10> 

Use field default values from the record definition. 
Set initial values of the first and third fields to 8 
and 10, respectively, but use the default from the 
definition for the middle field. 

The initial field values can be constants, constant expressions, 
or the indeterminate initialization "?". If the expression eval­
uates to a number not expressible in binary within the width of 
the corresponding record field, then the number is truncated on 
the left. For example, 11001 binary, in a 2-bit field, is trun­
cated to 01. 

With Format 2, multiple instances of the record can be allocated 
at once. The number of copies of the record to be allocated is 
given by dup-count. Note that in this format, the angle-brackets 
must be enclosed within parentheses as shown. 

You can use a record as part or all of an expression, as in: 

MOV AX, Inst2B<OP,D,W,MOD,REG,RM> 

Structures 

Just as records are used to format bit-aligned data at the byte 
or word level, structures are used to define byte-aligned fields 
within multibyte data structures. 

Structures can be used to group together logically related data 
items. 

For example, suppose you give the name Car to a structure. You 
use this structure to define individual fields of size (in bytes) 
1, 2, 2, and 4 symbolically. The assembler generates the rela­
tive offsets: 

Car STRUC ;No memory reserved--use this 
;as template for Ford below 

Year DB 0 ;Reference to . Year generates 
;relative offset of 0 

Model DW 0 ; Reference to .Model generates 
;relative offset of 1 

Color DW 0 ;Reference to .Color generates 
;relative offset of 3 

License DB 'XXXX' ;Reference to .License generates 
;relative offset of 5 

Car ENDS 

Data Definition 39 



The body of the structure definition is delimited by the STRUC 
and ENDS directives. The spacing of offsets within the structure 
is determined by the enclosed DB, DW, and DD directives. 

You now allocate real memory and initialize using Car as an 
operator. 

Ford Car<63, 'FL', 'GR' ,'FOXY'> ;allocate nnd initialize 

Note that the programmer-assigned name Car is used here as an 
operator, and that the initialization of the structure is done 
with both integer data (63) and character data ('FL'). 

This use of Car as an operator is the assembly-time analog of 
this run-time initialization: 

FORD DB 8 DUP(?) 

MOV Ford.Year,63 
MOV Ford.Model, 'FL' 
MOV Ford.Color, 'GR' 
MOV Ford.License, 'FOXY' 

;allocate 8 bytes 
7 (uninitialized) 
;initialize Year field 
;initialize Model field 
;initialize Color field 
;initialize License field 

It is also possible, as described below, to specify default 
values during the definition of the structure, and to selectively 
override these defaults during memory allocation. All this can 
take place during assembly. 

As another example, here is 
request block for the Close 
Operating System: 

RqCloseFile 
sCntlnfo 
nReqPbCb 
nRespPbCb 
userNum 
exchResp 
ercRet 
rqCode 
fh 

RqCloseFile 

STRUC 
DW 2 
DB 0 
DB 0 
DW ? 
DW ? 
DW ? 
DW 10 
DW ? 

ENDS 

a structure that 
File opera tor used 

implements the 
wi th the CTOS 

rqCloseFilel RqCloseFile<, ,,1,3, ,,> Nondefault values 
are userNum I, 
exchResp 3 

MOV AX, fhNew 
MOV rqCloseFilel.fh 

CMP rqCloseFilel.ercRet, ercOk 

40 Assembly Lang uage Manual 

;Fill in the fh 
;field if an rq 
;Is the error return 
;equal to the value 
;ercOK? 



Structures are not restricted to use with statically allocated 
data. For example 

CMP [BP+rbRqCloseFileJ.rqCode,lO ;Examine rqCode in an 
anonymous instance of 

;RqCloseFile that's on the 
: stack 

Here is the general format of the STRUC/ENDS statement-pair, 
together with the enclosed DB, DW, and DD directives: 

structure-name STRUC --------

[ f · J ( I I ) ( default [, ... J ) 
~eld-name DB DW DD ~~count DUP (default [, ... J) 

structure-name ENDS 

In this case, DB, DW, and DD are used just as defined earlier, 
with the exception that there cannot be any forward references. 
Matching STRUC/ENDS pairs must have the matching structure­
names. Field-names are optional: if used, they must be unique 
identifiers. 

Default Structure Fields 

Default values for structure fields are as specified in the DB, 
DW, or DD directives. Because the STRUC/ENDS pair does not allo­
cate memory, these default initializations have no immediate 
effect. The defaults are used to initialize memory later when 
the structure-name is used as a memory allocation operator as in 
the allocation of rqCloseFilel, above. 

Overridable Structure Fields 

When memory is allocated certain structure-field default values 
can be overridden by initial values specified in the allocation 
expression; these are called simple fields. Other field values 
that include a list or a DUP clause cannot be overridden. A DB 
character string is considered simple. Here are some examples of 
what can and cannot be overridden: 

Super STRUC 
DW ? 
DB 'Message' 

DD 5 DUP{?) 
DB ?,2,3 

Super ENDS 

;Simple field: override okay 
;Simple character string field: override 
;okay 
;Multiple field: no override 
;Multiple field: no override 

Data Definition 41 



Initializing Structures 

After structures have been declared, they can be allocated and 
ini tialized with the structure-name as opera tor. The general 
format is similar to that for record initialization. (There are 
two formats.) 

Format 1: 

[name] structure-name <[init][, ... ]> 

Format 2 (with duplication): 

[name] structure-name dup-count DUP « [ini t] [, ... ] > ) 

In both formats, the first byte or word (depending on the struc­
ture definition) of the allocated memory is optionally named. The 
structure definition to be used is speC!i fi eo hy stnwture-name. 
Finally, the operand is a possibly empty list ofTriltiaT-fteld 
values. For example: 

<> Use field default values from the structure definiton. 

<8,,10> Set initial values of the first and third fields to 8 
and 10, respectively, but use the default from the 
definition for the middle field. 

The initial field values can be constants, constant expressions, 
or the indeterminate initialization "?". 

One-byte strings can override any field. Two-byte strings can 
override any DW or DD field. Multibyte strings can override a DB 
field, but only if the overriding string is no longer than the 
overridden string. 
The number of copies of the structure to be allocated is 
dup~~unt; it must evaluate to a positive integer. 

42 Assembly Language Manual 



4 OPERANDS AND EXPRESSIONS 

Operands 

The instruction set of the 8086 makes it possible to refer to 
operands in a variety of ways. (The instruction set is described 
in the Central processing Unit.) Either memory or a register can 
serve as the first operand (destination) in most two-operand 
instructions, while the second operand rSource) can be memory a 
register, or a constant wi thin the instruction. There are no 
memory-to-memory operations. 

A 16-bit offset address can be used to directly address operands 
in memory. Base registers (BX or BP) or index registers (SI or 
01) or both, plus an optional 8- or l6-bit displacement constant, 
can be used to indirectly address operands in memory. 

Ei ther memory or a reg ister can receive the result of a two­
operand operation. Any register or memory operand (but not a 
constant operand) can be used in single-operand operations. 
Either 8- or 16-bit operands can be specified for almost all 
operations. 

Immediate Operands 

An immediate value expression can be the source operand of two­
operand instructions, except, for multiply, divide, and the 
string operations. Here are the formats: 

[label: ] mnemonic 

and 

[label:] mnemonic _register expression 

Here [label] is an optional identifier. mnemonic is any two­
operand mnemonic (for example, MOV, ADD, and XOR). See "Memory 
Operands" below for the definition of memory-reference. In 
summary, it has a direct 16-bit offset address, and is indirect 
through BX or BP, S1 or 01, or through BX or BP plus S1 or 01, 
all with an optional 8- or 16-bit displacement. In the second 
format, register is any general-purpose (not segment) register. 
For a definition of eXJ?~ess!...on, see the rest of this section. 
See Table 3-1 (Section 3) for rules on formation of constants. 

The steps that the assembler follows in processing an instruction 
containing an immediate operand are: 

o Determine if the destination is of type BYTE or WORD. 

o Evaluate the expression with 17-bit arithmetic. 

o If the destination operand can accommodate the result, encode 
the value of the expression, using twos complement arith­
metic, as an 8- or 16-bit field (depending on the type, BYTE 

Operands and Expressions 43 



or WORD, of the destination operand) in the instruction being 
assembled. 

In 9086 instruction formats, as in data words, the least signifi­
cant byte of a word is at the lower memory address. 

MOV CHi 5 
ADD DX,3000H 
AND Table[BX], OFFOOh 

XOR Table[BX+DI+lOO], 7 

Register Operands 

;8-bit immediate value to register 
;l6-bit immediate value to register 
;l6-bit immediate value (where 
;Table is a WORD) through BX, 
;l6-bit displacement 
;l6-bit immediate value through 
iBX+DI+(Table+lOO) 

The l6-bit segment registers are CS, OS, SS, and ES. The l6-bit 
qeneral registers are AX, BX, ex, OX, SP, BP, SI, and 01. The 8-
bit general registers are AH, AL, BH, BL, CH, CL, DH, and DL. 
The 16-bit pointer and index registers are BX, BP, SI, and 01. 
The I-bit flag registers are AF, CF, OF, IF, OF, PF, SF, TF, and 
ZF. 

Segment base addresses are contained in segment registers and 
must be initialized by the programmer. 

Arithmetic and logical operations can be performed using each of 
the general 8-bit, general l6-bit, and pointer and index l6-bit 
registers. So, even though AX is often called "the accumulator," 
there are actually eight separate 16-bit accumulators and eight 
8-bit accumulators as listed above. Each of the 8-bit accumula­
tors is either the high-order (H) or the low-order (L) byte of 
AX, BX, CX, or OX. 

After each instruction, the flags are updated to reflect condi­
tions detected in the processor or any accumulator. See Appendix 
A and the Central Processing Unit for the flags affected for each 
instruction. 

These are the flag-register mnemonics: 

AF: Auxiliary Carry 
CF: Carry 
DF: Direction 
IF: Interrupt-enable 
OF: Overflow 
PF: Parity 
SF: Sign 
TF: Trap 
ZF: Zero 

Explicit Register Operands 

These are two-operand instructions that explicitly specify 
registers: 

44 Assembly Language Manual 



o Register to register 

Example. 

ADD BX, DI ; BX=BX+DI 

o Immediate to register 

[label:] mnemonic ~ imm 

Example: 

ADD BX, 30H ;BX=BX+30H 

o Memory to register 

[ label:] mnemonic ~ mem 

Example: 

ADD BX, Table[DI] ;BX=BX+DI'th entry in Table 

o Register to memory 

[label:] mnemonic mem, E.~ 

Example: 

ADD Table[DI], BX ; Increment DI'th entry in Table by BX 

(Note that ".l'th entry" means "entry at i'th byte.") 

Implicit Register Operands 

These instructions use registers implicitly: 

Instruction 

MA, AAD, AAM, AAS 
CBW, CWD 
DAA, DAS 
IN, OUT 
MUL, IMUL, DIV, IOIV 
LAHF, SAHF 
LES 
LOS 
Shi fts, Rotates 
String 
XLAT 

Implicit Uses 

AL, AH 
AL, AX or AX:DX 

AL 
AL or AX 

AL, AX or AX:OX 
AH 
ES 
OS 
CL 

CX, sr, 01 
AL, BX 

Operands and Expressions 45 



The instructions with a single register operand have the form: 

Example: 

INC DI iDI=DI+l 

Segment Registers 

Segment registers are discussed in Section 2. 

General Registers 

When a l6-bit general register or pointer/index register is one 
of the operands of a two-operand instruction, the other operand 
must be immediate, a WORD reference to memory, or a WORD 
register. 

When an 8-bit general register (AH, AL, BH, BL, CH, CL, DH, DL) 
is one of the operands of a two-operand instruction, the other 
operand must be an 8-bit immediate quantity, a BYTE reference to 
memory, or a BYTE register. 

Flags 

Instructions never specify the l-bit flags as operandsi flag 
instructions (as STC, CLC, CMC) manipulate all flags at once, and 
other instructions affect one or more flags implicitly (as INC, 
DEC, ADD, MUL, and DIV). 

See Section 7 for flag operation and Appendix A for how each 
instruction affects the flags. 

Memory Operands 

Memory Operands to JMP and CALL 

The JMP and CALL instructions take a simple operand. There are a 
number of different cases, determined by the operand. The 
control transfer can be· direct (with the operand specifying the 
target address) or indirect (with the operand specifying a word 
or doubleword containing the target address). The transfer can 
be NEAR (in which case only IP changes) or FAR (both IP and CS 
change). Here are examples to illustrate the cases: 

46 Assembly Language Manual 



Operand to JMP/CALL Direct/Indirect NEAR/FAR Target 

NextIteration Direct NEARI NextIteration 
FltMul Direct FAR2 FltMul 
DX Indirect NEAR CS:DX 
LabelsNear[DI] Indirect NEAR3 Contained in 

word at 
LabelsNear[DI] 

Lab e 1 s Fa r [D I ] Indirect FAR4 Contained in 
dword at 
LabelsFar[DI] 

DWORD PTR [BX] Indirect FAR Contained in 
FAR dword at [BX] 

WORD PTR [BX] Indirect NEAR Contained in 
word at [BX] 

lAssuming NextIteration is a NEAR lahel in the same segment or 
group as the jump or call. 

2Assuming FltMul is a FAR label--a label to which control can 
be transferred from outside the segment containing the label. 

3Assuming LabelsNear is an array of words. 

4Assuming LabelsFar is an array of dwords. 

------------------------------------------------
CALL differs from JMP only in that a return address is pushed 
onto the stack. The return address is a word for a near call and 
a dword for a far call. 

If the assembler determines that the target of a JMP or CALL is 
adddressable by a I-byte displacement from the instruction, it 
J,lses a special short jump or call instruction. Here are some 
examples: ------

Again: 

Last: 

DEC BX 
JNZ Again 
JMP Last 

JMP $+17 

;Short jump will be used. 
;Not short because Last is a forward 
;reference. 

iShort jump since displacement is in the 
;range -128 to 127. BEWARE: Variable 
;length instructions make it easy to get 
;this wrong; it's safer to use a label. 

JMP SHORT Last ;Forces assembly of a short transfer; it 
will yield an error if the target is 
not addressable with a I-byte 
displacement. 

Operands and Expressions 47 



(NOTE: Do not confuse the concepts of PUBLIC and EXTRN with NEAR 
and FAR. PUBLICs and EXTRNs are used at assembly- and link-time 
only and are not run-time concepts. NEAR and FAR, in contrast, 
control the instructions to be executed at run-time. It is 
entirely possible for an EXTRN to be NEAR.) 

Variables 

This section covers the use of simple, indexed, and structured 
variables as operands. If you are unfamiliar with how to define 
and initialize variables, review Section 3. 

Simple Variables. An unmodified identifier used the same way it 
is declared is a simple variable. Here is an example: 

wData DW 'AB' 

MOV BX, wData 

Indexed Variables. A simple variable followed by a square­
bracketed expression is an indexed variable. The expression in 
square brackets is a constant or constant expressl.on, a base 
register (as BX or BP) or an index register (as SI or DI), a base 
or index reg ister plus or minus a constant expression (in any 
order), or a base register plus an index register plus or minus a 
constant or constant expression (in any order) 

When you use indexed variables, be aware that the indexing is 0-
orl.g in (that is, the first byte is numbered 0), the index is 
always a number of bytes, and the type is the type of the simple 
variable to which the index is applied. For example, if the 
table Primes is defined by: 

Primes DW 250 DUP(?} 

and register BX contains the value 12, then the instruction. 

MOV primes[BX], 17 

sets the twelfth and thirteenth bytes of Primes (which are the 
bytes of the seventh word in Primes) to 17. 

Double-Indexed Variables. Double-indexed variables use a sum of 
two displacements to address memory. Here is an example: 

Primes[BX][SI+5] 

Most forms of double indexing can be written with a more complex 
single index expression. For example, these two forms are 
completely equivalent: 

Var[Displ][Disp2] 

and 

48 Assembly Language Manual 



Var[Displ+Disp2] 

The displacements can be constants or expressions that evaluate 
to constants, base or index registers (BX, BP, SI or DI) or 
base or index reg isters plus or minus a constant offset. The 
only restriction is that BX and BP can not both appear, and SI 
and D1 cannot both appear in the same double-indexed variable. 

These three expressions are all invalid. 

primes[ BX+BP] 
primes[SI][2*BX] 
primes[BX][BP] 

Indexing can be used in combination with structures. Recall the 
example given earlier 

RqCloseFile STRUC 
sCntInfo DW 2 
nReqPbCb DB 0 
nRespPbCb DB 0 
userNum DW ? 
exchResp DW ? 
ercRet DW ? 
rqCode DW 10 
fh DW ? 

RqCloseFile ENDS 

All of the following are valid: 

Mav RqCloseFile.sCntInfo, AX 
MaV [BX].userNum, AX 
MaV [BP][SI-4].fh 

Attribute Operators 

In addition to indexing, structure, arithmetic, and logical oper­
ators, operands can contain a class of operators called attribute 
operators. Attribute operators are used to override an operand's 
attributes, to compute the values of operand attributes, and to 
extract record fields. 

PTR, the Type Overriding Operator 

PTR is an infix operator. That is, it has two operands, and is 
wri tten between them in this format: 

~ PTR addr-expr 

~ is BYTE, WORD, DWORD, NEAR, FAR, or structure-name. 
addr-expr is a variable, label, or number. 

PTR sets or overrides the type of its operand without affecting 
the other attributes of the operand, such as SEGMENT and 

Operands and Expressions 49 



OFFSET. Here are some examples of its use with data. 
rgb and rgw are declared by: 

rgb DB 
rgw DW 

Then: 

100 DUP(?) 
100 DUP(?) 

INC rgb[ SI] 
INC rgw[SIJ 

Suppose 

generate, respectively, byte-increment and 
instructions. Types can be overridden with: 

word-increment 

INC WORD PTR rgb[SI] 
INC BYTE PTR rgw[SI] 

;word increment 
;byte increment 

sometimes no variable is named in 
instruction uses an "anonymous" variable. 
operator must always be used. Thus: 

;word increment 
;byte increment 

an instruction: the 
In such cases the PTR 

INC WORD PTR [BX] 
INC BYTE PTR [BX] 
INC [BX] ; INVALID because the operand [BX] is 

; "anonymous." 

Segment Override 

The segment override operator is discussed in Section 2. 
denoted by the colon, ":", and takes these three forms: 

o ~eg-reg :addr-expr 

o segment-name addr-expr 

o group-name:a~dr-e~ 

It is 

The SEGMENT attribute of a label, variable, or address-expression 
is overridden by the segment override operator. The other attri­
butes are unaffected. The first two forms do a direct override; 
the third recalculates the offset from the GROUP base. 

SHORT 

The single argument of the SHORT operator is an offset that can 
be addressed through the CS segment register. When the target 
code is within a I-byte signed (twos complement) self-relative 
displacement, SHORT can be used in conditional jumps, jumps, and 
calls. This means that the target must lie within a range no 
more than 128 behind the beginning of the jump or call instruc­
tion, and no more than 127 bytes in front of it. (See "Memory 
Operands to JMP and CALL Operands" in this Section for more on 
SHORT. ) 

50 Assembly Language Manual 



THIS 

The single argument of the THIS operator is a type (BYTE, WORD, 
DWORD) or distance (NEAR, FAR) attribute. A data item with the 
specified type or attribute is defined at the current assembly 
location. Here are the formats: 

THIS type 
THIS distance 

The segment and offset attributes of the defined data item are, 
respectively, the current segment and the current offset. The 
type or distance attributes are as specified. Thus the two 
statements: 

by teA 
by teA 

LABEL 
EQU 

BYTE 
THIS BYTE 

have the same effect. Similarly, $ is equivalent to: 

THIS NEAR 

In the example: 

El EQU THIS FAR 
E2: REPNZ SCASW 

the two addresses, El and E2, differ exactly in that El is FAR 
whereas E2 is NEAR. 

Value-Returning Operators 

Here are the value-returning operators: 

o TYPE. It accepts one argument, either a variable or a 
label. TYPE returns, for variables, 1 for type BYTE, 2 for 
type WORD, 4 for type DWORD, and the number of bytes for a 
variable declared with a structure type. TYPE returns, for 
labels, either -lor -2 (representing, respectively, NEAR or 
FAR) . 

o LENGTH. It accepts one argument, a variable. It returns the 
number of units allocated for that variable. (The number 
returned is not necessarily bytes.) Here are examples; 

One DB 250(1) 
Two DW 350(1) 

;LENGTH One=250 
;LENGTH Two=350 

o SIZE. It returns the total number of bytes allocated for a 
variable. SIZE is the product of LENGTH and TYPE. 

o SEG. It computes the segment value of a variable or a 
label. Use it in ASSUME directives or to initialize segment 
registers, as described in Section 2. 

Operands and Expressions 51 



o OFFSET. It returns the offset of a variable or label. At 
time of linking, when the final alignment of the segment is 
frozen the value is resolved. If a segment is combined with 
pieces of the same segment defined in other assembly modules, 
or is not aligned on a paragraph boundary, the assembly-time 
offsets shown in the assembly listing can not be valid at 
run-time The offsets are properly calculated by the Linker 
if you use the OFFSET operator. 

The only attribute of a variable in many assembly languages 
is its offset. A reference to the variable's name is a 
reference also to its offset. Three attributes are defined 
by this assembly language for a variable, so to isolate the 
offset value, the OFFSET operator is needed. In a DW direc­
tive, however, the OFFSET operator is implicit. 

The variables in address expressions that appear in DW and DD 
directives h~vc an implicit OFFSET. 

When used with the GROUP directive, the OFFSET operator does 
not yield the offset of a variable within the group. It 
returns rather the offset of the variable within its 
segment. Use the GROUP override opera tor to get the offset 
of the variable within the group. Here is an example: 

DGroup GROUP Data, ??SEG 
data SEGMENT 

xyz DB 0 

DW xyz ;Offset within segment 
DW DGroup:xyz ;Offset within group 

data ENDS 
ASSUME CS:??SEG,DS:DGroup 
MOV eX,OFFSET xyz ; Loads seg offset of xyz 
MOV eX,OFFSET Dgroup:xyz ;Loads group offset of 

;xyz 
LEA ex, xyz ;Also loads group offset 

;of xyz 

You may not use forward references to group-names. 

52 Assembly Language Manual 



Record Operators 

The use of operators with records is illustrated in Section 3. 
The definitions are repeated here for completeness. Associated 
with each field of a record are the following: 

o Shift-count. This is the field-name of the record. 

o MASK operator. This operator has one argument, which is a 
field-name. It returns a bit-mask that consists of l's in 
the bit positions included by the field and D's elsewhere. 

o WIDTH operator. This operator returns the number of bits in 
a record or field. 

If the definition of a record formats 8 bits, the record is of 
type BYTE, and if it formats 16 bits, of type WORD. 

Operator Precedence in Expressions 

The assembler evaluates expressions from left to right. It eval­
uates operators with higher precedence before other operators 
that come directly before or after. To override the normal order 
of precedence, use parentheses. 

In order of decreasing precedence, here are the classes of 
operators: 

1. Expressions within parentheses, expressions within angle 
brackets (records), expressions wi thin square brackets, the 
structure "dot" operator, ".", and the LENGTH, SIZE, WIDTH, 
and MASK operators. 

2. PTR, OFFSET, SEG, TYPE, THIS, and "name:" (segment override). 

3. Multiplication and division: * /, MOD, SHL, SHR. 

4. Addition and subtraction; +, -

5. Relational operators: EQ, NE, LT, LE, GT, GE. 

6. Logical NOT. 

7. Log ical AND. 

8. Logical OR and XOR. 

9. SHORT. 

Operands and Expressions 53 



EOU Directive 

Use EQU to assign an assembly-time value to a symbol. 
the format: 

This is 

name EQU _expression 

Here are examples to illustrate the cases: 

Y 
xx 

x 
xy 
RAX 

PURGE 

EQU z 
EQU [BX+DI-3] 

EQU EX: Bar[BP+2] 
EQU (TYPE y)*5 
EQU AX 

Directive 

:y is made a synonym for z. 
;xx is a synonym for an indexed reference 
:--note that the right side is evaluated 
:at use, not at definition. 
:Segment overrides are also allowed. 
iRandom expressions are allowed. 
:Synonyms for registers are allowed. 

Use the PURGE directive to delete the definition of a specified 
symbol. After a PURGE, the symbol can be redefined. The 
symbol's new definition is used by all occurrences of the symbol 
after the redefinition. You cannot purge register names, 
reserved words, or a symbol appearing in a PUBLIC directive. 

54 Assembly Language Manual 



5 FORWARD REFERENCES 

The instruction set of the 8086 often provides several ways of 
achieving the same end. For example, if a jump is within 128 
bytes of its target, the control transfer can be a SHORT jump 
(two bytes), a NEAR jump (three bytes), or a FAR jump (four 
bytes). If the assembler "knows" which case applies, it 
generates the optimal object code. 

However, for the convenience of the programmer, the assembly 
language allows, in many cases, the use of a variable or label 
prior to its definition. When the assembler encounters such a 
forward reference, it must reserve space for the reference, 
al though -~does not yet know whether the label (for example) 
will turn out to be SHORT, NEAR, or FAR. The assembler makes a 
"guess," if it must, about the memory required, and proceeds on 
the basis of that guess. 

The assembler makes two successive passes over the source 
program, and can always tell during the second pass whether a 
guess made during the first pass was correct. If a guess is too 
generous, the assembler can repair matters during the second pass 
by, for example, inserting an extra no-op instruction after an 
offending jump, and still produce valid output. If a guess is 
too conservative, however, no such remedy is available, and the 
assembler flags the forward reference as an error during the 
second pass. 

The programmer can generally repair this kind of error by a small 
change to the source text and a reassembly. For example, the 
insertion of an attribute coercion such as "BYTE PTR" or "FAR 
PTR" is often a sufficient correction. However, the safest 
course is to follow programming practices that make it 
unnecessary for the assembler to guess. This can be done as 
follows: 

o Put EQU directives early in programs. 

o Put EXTRN directives early in programs. 

o Within a multisegment source file, try to position the data 
segments (and hence the variable definitions) before the code 
segments. 

Forward References 55 





6 INSTRUCTION FORMAT 

The instruction format of the 8086 uses up to three fields to 
specify the location of an operand in a register or in memory. 
The assembler sets all three fields automatically when it 
generates code. These fields, when used, make up the second byte 
of an instruction, which is ca lIed the "MOD --- RIM" byte. 

The two most significant bits of the "MOD --- RIM" byte are the 
MOD field, which specifies how to interpret the RIM field. 

The next three bits are occupied by the REG field, which 
specifies an 8- or 16-bit register as an operand. Instead of 
specifying a register, the REG field can, in some instructions, 
refine the instruction code given in the first byte of an 
instruction. 

The next three bits are occupied by the RIM field, which can 
specify either a Pci.tt.i..c.:ular register operand or the addressing 
MODe to select a memory operand. This occurs in combination with 
the MOD field. 

The MOD and RIM fields determine the effective address (EA) of 
the memory operand and the interpretation of successive bytes of 
the instruction, as follows: 

MOD 

00 

01 

10 

11 

Interpretation 

DISP = a 
(disp-low and disp-high are absent) 

DISP = disp-low sign-extended to 16 bits (disp-high 
is absent) 

DISP = disp-high, disp-low 

There is no DISP (disp-low and disp-high are both 
absent) and RIM is interpreted as a register. 

If MOD f II, then RIM is interpreted as follows: 

~/M interp_~_ta 0on_ 

000 [BX]+[ SI]+DISP 
001 [BX]+[DI]+DISP 
010 [BP]+[SI]+DISP 
all [BP]+[DI]+DISP 
100 [SI]+DISP 
101 [DI]+DISP 
110 [BP]+DISP if MOD f 0 

DISP if MOD 0 
111 [BX]+DISP 

Instruction Format 57 



If MOD = 11, then the effective address is a register designated 
by RIM. In word instructions, the interpretation is: 

R/l1 _Register 

000 AX 
001 CX 
010 DX 
011 BX 
100 8P 
101 BP 
110 81 
111 D1 

In byte instructions (W 0), the interpretation is: 

RIM Register 

000 AL 
001 CL 
010 DL 
011 BL 
100 AH 
101 CH 
110 DH 
111 BH 

58 Assembly Language Manual 



7 FLAGS 

Flag Reg isters 

Certain results of data manipulations are distinguished or 
denoted by flags. The flags that are affected by data 
manipulations are AF, CF, OF, PF, SF, and ZF. 

The four basic mathematical operations (addition, subtraction, 
multiplication and division) are provided by the processor. 8-
and l6-bit operations are available, as are signed and unsigned 
arithmetic. The representation of signed values is by standard 
twos complement arithmetic. The addition and subtraction 
operations serve as both signed and unsigned operations; the two 
possibilities are distinguished by the flag settings. 

Arithmetic may be performed directly on unpacked decimal digits 
or on packed decimal representations. 

Some operations indicate these results only by setting flags. 
For example, the processor implements "compare" as a special 
subtract which does not change either operand but does set flags 
to indicate a zero, positive, or negative result. 

By using one of the conditional jump instructions, a program can 
test the setting of five of the flags (carry, sign, zero, 
overflow, and parity). The flow of program execution can be 
altered based on the outcome of a previous operation. One more 
flag, the auxiliary carry flag, is used by the ASCII and decimal­
adjust instructions. 

It is important to understand which instructions set which 
flags. Suppose you wish to load a value into AX, and then test 
whether the value is o. The MOV instruction does not set ZF, so 
the following does not work: 

MOV AX, wData 
JZ Zero 

Instead, since ADD does set ZF, the following does work: 

MOV AX, wDa ta 
ADD AX, 0 
JZ Zero 

A flag can be set, but not tested, over the duration of several 
instructions. In such cases, the intervening instructions must 
be carefully checked to ascertain that they do not affect the 
flag in question. This is generally a dangerous programming 
practice. 

(See Appendix A for the flags set by each instruction.) 

Flags 59 



Flag Usage 

Most arithmetic operations set or clear six flag registers. 
"Set" means set to I, and "clear" means clear to O. 

Auxiliary Carry Flag (AF) 

If an operation results in a carry out of or a borrow into the 
low-order four bits of the result, AF is set; otherwise it is 
cleared. A program cannot test this flag directly: it is used 
solely by the decimal adjust instructions. 

Carry Flag (CF) 

If an operation results in a carry out of (from addition) or a 
borrow into (from subtraction), the high-order bit of the result, 
CF is set; otherwise it is cleared. 

This flag usually indicates whether an addition causeS a "carry" 
into the next higher order digit or a subtraction causes a 
"borrow. II CF is not, however, affected by increment (INC) and 
decrement (DEC) instructions. CF is set by an addition that 
causes a carry out of the high-order bit of the destination, and 
cleared by an addition that does not cause a carry. CF is also 
affected by the logical AND, OR, and XOR instructions. 

The contents of an operand are moved one or more positions to the 
left or right by the rotate and shift instructions. The carry 
flag is treated as if it were an extra bit of the operand. Only 
RCL and RCR preserve the original value in CF. The value does 
not, in these cases, remain in CF. The value is replaced with 
the next bit rotated out of the source. If an RCL is used, the 
value in CF is replaced by the high-order bit and goes into the 
low-order bit. If an RCR is used, the value in CF is replaced by 
the low-order bit and goes into the high-order bit. (This is 
useful in multiple-word arithmetic operations.) In other rotates 
and shifts, the value in CF is lost. 

Overflow Flag (OF) 

If a signed operation results in an overflow, OF is set; 
otherwise it is cleared. (That is, an operation results in a 
carry into the high-order bit of the result but not a carry out 
of the high-order bit, or vice versa.) 

Parity Flag (PF) 

If the modulo 2 sum of the low-order eight bits of an operation 
is 0 (even parity), PF is set; otherwise it is cleared (odd 
parity) . 

60 Assembly Language Manual 



Following certain instructions, the number of one bits in the 
destina tion is counted and the parity flag set if the number is 
even and cleared if the number is odd. 

Sign Flag (SF) 

If the high-order bit of the result is set, SF is set; otherwise 
it is cleared. 

Following an operation, the high-order bit of its target can be 
interpreted as a sign. The SF flag is set equal t? this high­
order bit by instructions that affect SF. Bi t 7 ~ s the high­
order bit of a byte and bit 15 is the high-order bit of a word. 

Zero Flag (ZF) 

If the result of an operation is 0, ZF is set: otherwise it is 
cleared. 

Following certain 
zero flag is set, 
flag is cleared. 
carry and a zero. 

00110101 
+11001011 
06000600 

operations, if the destination is zero, the 
and if the destination is not zero, the zero 
Both ZF and CF are set by a result that has a 
Here is an example: 

Carry Flag 
Zero Flag 

1 
1 

Flags 61 





8 MACRO ASSEMBLER 

Introduction 

The assembler supports the definition and invocation of macros: 
expressions, possibly taking parameters, that are evaluated 
during assembly to produce text. The text that results is then 
processed by the assembler as source code, just as if it had been 
literally present in the input to the assembler. For example, 
consider the program fragment~ 

%*DEFINE (CaI12(subr,argl,arg2»( 
PUSH %argl 
PUSH %arg2 
CALL %subr 

%Cal12 (!nput,pl,p2) 

This fragment defines a macro, Cal12, of three arguments, and 
then invokes it. The invocation is to the expanded form: 

PUSH 
PUSH 
CALL 

pI 
p2 
Input 

The character "%" is called the metacharacter and is used to 
activate all macro processing facilities: macro invocations are 
preceded by "%" and macro definitions by "%*". (The 
metacharacter can be changed; how to do this is described later 
in this Section.) 

The simplest kind of macro definition takes the form: 

%*DEFINE (~acroName ParameterList) (Body) 

where MacroName is an identifier, ParameterList is a list of 
parameter names enclosed in parentheses, and ~od~ is the text of 
the macro. 

When parameter names appear in the Body, they are preceded by the 
"%" character. A simple macro invocation takes the form: 

%MacroName (ArgList) 

This expands to the corresponding macro Body with parameter names 
of the macro definition replaced by arguments from the macro 
invocation. 

LOCAL Declaration 

The purpose of macros is to permit the definition of a pattern-­
the body of the macro--that is to be recreated at each invocation 

Macro Assembler 63 



of the macro. Thus two invocations of a macro normally expand to 
source text differing only insofar as the parameters of 
invocation differ. Consider however the definition: 

%*DEFINE (CallNTimes(n,subr))( 
t10V AX, %n 

Again: DEC AX 

Done: ) 

JZ Done 
PUSH AX 
CALL %subr 
POP AX 
JMP Again 

An invocation such as %CallNTimes(S,FlashScreen) expands to: 

MOV AX,S 
Again: DEC AX 

JZ Done 
PUSH AX 
CALL FlashScreen 
POP AX 
JMP Again 

Done: 

A second invocation of this macro produces an error because it 
doubly defines the labels Again and Done. The problem is that in 
this case we want a new, unique pair of labels created for each 
invocation. This can be done in a macro definition using the 
LOCAL declaration. The proper form is illustrated by: 

%*DEFINE(CallNTimes(n,subr) LOCAL Again Done ( 
MOV AX, %n 

%Again: DEC AX 

%Done: ) 

JZ %Done 
PUSH AX 
CALL %subr 
POP AX 
JMP %Again 

Conditional Assembly 

In a manner carefully integrated with macro processing, the 
assembler also supports assembly-time expression evaluation and 
string manipulation facilities. These include the functions 
EVAL, LEN, EQS, GTS, LTS, NEX, GES, LES, and SUBSTR. Here are 
examples to illustrate the possibilities; 

64 Assembly Language Manual 



Evaluation 
Function Example ~~xample Description 

EVAL %EVAL(3*(8/5» 3h Evaluate expression 
LEN %LEN(First) 5h Length of string 
EQS %EQS(AA,AA) OFFFFh String equality 
GTS %GTS(y,x) OFFFFh String greater 
LTS %LTS(y,x) Oh String less 
NES %NES(AA,AB) OFFFFh String not equal 
GES %GES(y,y} OFFFFh String greater or 

equal 
LES %LES(z,y} Oh String less or equal 
SUBSTR %SUBSTR(abcde,2,3} bcd Substring 

Note that these functions evaluate to hexadecimal numbers, and 
that the relational functions (EQS, etc.) evaluate to OFFFFh if 
the relation holds and Oh if it does not. The parameter to EVAL 
must evaluate to a number. 

The result of a numeric computation done during macro processing 
can be given a symbolic name with the SET function, which is 
invoked in the form: 

%SET (name_, va 1 ue ) 

For example: 

%SET (xyz, 7+5) 

sets the macro variable xyz to value OCh. Subsequent to the use 
of SET, %xyz is equivalent to OCh. Similarly, the invocation: 

%SET (xyz, %xyz-l) 

decrements the value of the macro variable xyz. 

The macro facility also supports conditional and repetitive 
assembly with the control functions IF, REPEAT, and WHILE. 

IF has two versions 

%IF (paraml) THEN (param2) ELSE (param3) FI 

and 

%IF (paraml) THEN (~ram2) FI 

The first parameter is treated as a truth value--odd numbers are 
true and even numbers false. If the first parameter is true, the 
IF expression is equivalent to the value of its second parameter; 
if the first parameter is false, the IF expression is equivalent 
to the value of its third parameter (or to the null string if the 
third parameter is omitted). For example: 

Macro Assembler 65 



%IF (1) THEN (aa) ELSE (bb) FI 

is equivalent to aa, and: 

%IF (2) THEN (aa) FI 

is equivalent to the null string. 

The IF function can be used in conjunction with macro variables 
to provide conditional assembly. Suppose a program contains a 
table that is to be searched for a value at run-time. If the 
table is small, a simple linear search is best; if the table is 
large, a binary search is preferable. Then you could code: 

%IF (%sTable GT 10) 
THEN( 

;binary search version here 
)ELSE( 
;linear search here 

) 

The macro variable %sTable would have to be defined with some 
numeric value; otherwise the expansion of the IF would yield an 
error. 

sometimes it is convenient to control a conditional assembly by 
whether or not a symbol has been defined: in the usual case, the 
symbol is not defined and one alternative is selected, but if a 
defini tion for the symbol is found, a different alternative is 
selected. The macro processor supports this capability with the 
ISDEF function. ISDEF may use two forms: one tests whether a 
run-time symbol (for example, a label) has been defined, and the 
other tests whether a macro-time symbol has been defined. In 
both cases, the result is -1 if the symbol is defined, and 0 if 
the symbol is not defined. The two forms are, %ISDEF (symbol) to 
check a run-time symbol, and, %*ISDEF (%symbol), to check a 
macro-time symbol 

Repetitive Assembly 

REPEAT is used 
number of times. 

to assemble one 
The form is: 

%REPEAT (~aml) (param2) 

For example: 

%REPEAT (4) 
( DW 0 
) 

is equivalent to: 

66 Assembly Language Manual 

of its parameters a specified 



DW 0 
DW 0 
DW 0 
DW 0 

(Note that in this, and in most examples involving the macro 
facili ty, the parentheses are the delimiters of textual 
parameters, so their placement is critical.) 

WHILE is used to assemble one of its parameters a variable number 
of times, depending on the result of an assembly-time computation 
to be performed before each repetition. The form is: 

%WHILE (paraml) (param2) 

For example, suppose %nWords has the value 3h. 
of: 

%WHILE (%nWords GT 0) (%REPEAT (%nWords) 
( DW %nWords 
) %SET (nWords, %nWords-l» 

is: 

DW 3h 
DW 3h 
DW 3h 
DW 2h 
DW 2h 
DW lh 

Then the result 

When using the control functions REPEAT and WHILE it is 
sometimes desirable to explicitly terminate expansion. This can 
be done with EXIT, whose invocation stops the expansion of the 
enclosing REPEAT, WHILE, or macro. For example, if %n is 
initially 5, then the expression~ 

%WHILE(%n GT 0) 
(%REPEAT (%n) (%IF (%n) THEN (%EXIT) FI DW %n 

) %SET (n, %n-l) 

expands to: 

DVl 4 
DW 4 
DW 4 
DW 4 
DW 2 
DW 2 

Macro Assembler 67 



Interactive Assembly (IN and OUT) 

The macro capability supports interactive assembly, based on the 
two functions IN and OUT, which are used, respectively, to read 
input from the keyboard during assembly and to display 
information on the video display during assembly. When using IN 
and OUT, it is important to understand the two-pass nature of the 
assembler. Since the assembler makes two passes over the text, 
it expands all macros and macro-time functions twice. This 
works, but the programmer must take care: 

1. that expressions involving macro-time variables generate the 
same code or data in both passes, and 

2. that IN and OUT are not expanded twice. 

The programmer may control these effects using the specially 
defined macro variablA~ PASSl and PASS2. whose values are: 

PASSl 
PASS2 

During First Pass During Second Pass T -1 ,---"-'-~----"'--c:"'-O---=-~ 

1 0 -1 

Here is an example to illustrate these facilities. Suppose you 
want to prompt the user for a number at the beginning of an 
assembly, then use this (input) string later. Do this by 
inserting, near the beginning of the source, this code: 

%IF (%PASSl EO -1) 
THEN (%OUT (Enter table size in bytes) 

%SET (sTable, %IN» FI 

The OUT and IN execute during the first pass only, and the user's 
input becomes the value of the macro variable sTable: this can 
later be referred to by %sTable. 

COmments 

You can write macro-time comments. The format is either: 

%'text-not-containing-RETURN-or-apostrophe' 

or 

%'text-not-containing-RETURN-or-apostrophe RETURN 

(Here RETURN designates the character generated by the Convergent 
RETURN key, code OAh.) Since the characters of the embedded text 
of a comment are consumed without any effect, comments may be 
used to insert extra returns for readability in macro 
definitions. 

68 Assembly Language Manual 



Match Operation 

The special macro function MATCH is particularly useful for 
parsing strings during macro processsing. It permits its 
parameters to be divided into two parts: a head and a tail. A 
simple form is: 

%MATCH (yarl. var2) (text) 

For example, following the expansion of: 

%MATCH (varl, var2) (a, b, c, d) 

The macro variable varl has the value "a" and var2 the value 
together with LEN 

"b, 
and c, dOl. This facility might be used 

WHILE. Consider the expression: 

~WUTT~ (~T~U(~ ___ \ 
gU.I. ... .L.LJ..I."II \ -g.J.,Jul."f \ "OUL'j J GT 0) (%i·jATCH 

I, • \neaa, argj (%arg) 
DW %head 

» 
If %arg is initially the text 10, 20, 30, 40, then the expansion 
is; 

DW 10 
DW 20 
DW 30 
DW 40 

Advanced Features 

The form of MATCH just described, as well as the form of macro 
definition and call described above, are actually only special 
cases. In fact the separator between the parameters of MATCH or 
of a macro can be a user-specified separator other than comma. 
The remainder of this Section explains this and a number of 
related advanced features of the macro facility. Most 
programmers find the macro facilities described above quite 
sufficient for their needs ~ what follows can be deferred to a 
second reading. 

The entities manipulated during macro processing are macro 
identifiers, macro delimiters, and macro parameters. 

A macro identifier is any string of alphanumeric characters and 
underscores that begins with an alphabetic character. 

A macro delimi ter is a text string used as punctuation between 
macro parameters. There are three kinds of macro delimiters: 

1. An identifier delimiter is the character "@" followed by an 
identi fier. 

Macro Assembler 69 



2. An implicit blank delimiter is any text string made up of the 
"wh-ite space" characters space, RETURN, or TAB. 

3 . A literal delimiter is any other delimiter. 
preceding examples have used the comma 
delimiter. 

Thus, 
as a 

all the 
literal 

A macro parameter is any text string in which parentheses are 
balanced. The following are valid parameters: 

xyz 
(xyz) 
((xyz)()((») 

whereas the following are not; 

( 
(( ) 
xy)( 

Tha t is, parentheses are considered balanced if the number of 
left and right parentheses is the same and, moreover, in reading 
from left to right there is no intermediate point at which more 
right than left parentheses have been encountered. 

The most general form of macro definition is: 

where: 

1. the "*,, is optional (see below for details), 

2. ident is a macro identifier as defined above, 

3. pattern and pody are any balanced strings, and 

4. <loc~~_> is optional and, if present, consists of the 
reserved word LOCAL and a list of macro identifiers separated 
by spaces. 

In all macro definitions illustrated above, the pattern has the 
form; 

( idl, id2, ... , idE.) 

and all invocations are of the form: 

.paramn) 

Here are examples to illustrate other cases. The definition: 

70 Assembly Language Manual 



%*DEFINE (DWDW A @AND B)(DW %A 
OW %B) 

requires an invocation such as~ 

%DWDW 1 AND 2 

which expands to: 
OW 1 
OW 2 

Here the delimiter preceding the formal parameter A and following 
the formal parameter B is an implicit space. The delimiter 
between the A and the B is the identifier delimiter @AND. 

Bracket and Escape 

The macro processor has two special functions I "bracket" and 
"escape, i. which are useful in defining invocation patterns and 
parameters. The bracket function has the form: 

where text is balanced. The text within the brackets is treated 
literally. Thus, given the defintion: 

%*DEFINE (F(A»(%(%F(2») 

the invocation: 

%F(l) 

expands to: 

%F(2 ) 

since the %F(2) is embedded within a bracket function and hence 
not treated as another macro call. Similarly, the definition: 

%*DEFINE (DWDW A AND B)(DW %A 
ow %B) 

declares three formal parameters A, AND, and B (with implicit 
blank delimeters), whereas the definition: 

%*DEFINE (DWDW A %(AND) B)(DW %A 
ow %B) 

treats the AND as a literal delimeter, so that the invocation: 

%DWDW lAND2 

yields the expanded form: 

Macro Assembler 71 



OW 1 
OW 2 

The escape function is useful to bypass requirements for balanced 
text or to use special characters like "%" or "*,, as regular 
characters. 

The form is: 
%ntext 

where n is a digit, 0 to 9, and text is a string exactly.!:!. 
characters long. For example, you might define: 

%*OEFINE (Concat(A,B»(%A%B) 

and invoke this macro by: 

%Concat (DW ,%1(3+,4%1» 

yielding the expansion: 

DW (3+4) 

MATCH Calling Patterns 

Generalized calling patterns are applicable to MATCH just as they 
are to macro definition and invocation. The general form is: 

%l-1ATCH( identl macrodelimi ter ident2) (balancedtext) 

For example, if "arg" is initially: 

10 xyz 20 xyz 30 

then: 

%WHILE (%LEN(%arg) GT 0) (%MATCH(head @xyz arg) (%arg) 
DW %head 

expands to: 

DW 10 
DW 20 
DW 30 

Processing Macro Invocations 

In processing macro invocations, the assembler expands inner 
invocations as they are encountered. Thus, in the invocation: 

%F(%G(l) ) 

72 Assembly Language Manual 



the argument to be passed to F is the result of expanding 
%G (1) . The expansion of inner invocations can be suppressed 
using the bracket and escape functions. Thus, with both of the 
invoca tions : 

%F(%(%G(1») 
%F(%5%G(1» 

it is the literal text %G(1), not the expansion of that text, 
that is the actual parameter of F. 

Expanded and Unexpanded Modes 

All macro processor functions can be evaluated in either of two 
modes, expa~~ed and un~ande~. When the function, invocation, 
or definition is preceded by "%", the mode used is expanded; when 
preceded by "%*", the mode used is unexpanded. In either case, 
actual 1")'::' r~m,::.r~,....c: ~ l""O expanded and sUbstituted for formal 
paramete~;- ~ithi~- the body of invoked macros. In unexpanded 
mode, there is no further expansion. In expanded mode, macro 
processing specified in the body of a macro is also performed. 
For exalople, let the macros F andG be defined by: 

%*DEFINE(F(X»(%G(%X» 
%*DEFINE(G(Y»(%Y+%Y) 

Then the invocation: 

%*F( 1) 

expands to; 

%G(l) 

whereas the invocation: 

%F(l) 

expands to: 

1+1 

Nested Macro Expansion 

When macro expansion is nested inner expansions are according to 
the mode they specify; on completion of inner expans~ons, 
processing continues in the mode of the outer expansion. An 
alternate way of saying this is that the parameters of user­
defined macros are always processed in expanded mode. The bodies 
are processed in expanded mode when a n%n invocation is used, and 
in unexpanded mode when a n%*n invocation is used. It is also 
possible to invoke built-in functions in either expanded or 
unexpanded mode. For each built-in function, some arguments are 

Macro Assembler 73 



classified as parameter-like and therefore processed in expanded 
mode, whereas others are classified as body-like and therefore 
processed in expanded mode only if the invocation is with "%". 

The complete table follows: 

where £-arg denotes parameter-like arguments a.nd b-~ denotes 
body-like arguments. 

Assembly control directives, explained in section la, begin with 
a "$" a fter a RETURN. If a control is encountered in expanded 
mode, it is obeyed; otherwise the control is simply treated as 
text. 

A different character can be substituted for the built-in 
metacharacter "%" by calling the function METACHAR, in the form: 

%METACHAR (newmetacharacter) 

The metacharacter should not be a left or right parenthesis an 
asterisk, an alphanumeric character, or a "white space" 
character. 

74 Assembly Language Manual 



9 ACCESSING STANDARD SERVICES FROM ASSEMBLY CODE 

You can access all system services from modules written in 
assembly language. To do so, you must follow certain standard 
calling conventions, register conventions, and segment/group 
conventions. If, in addition, you wish to use the system IS 

virtual code management services, you must follow additional 
virtual code conventions. 

calling Conventions 

Here we explain how CTOS~ Operating System services and standard 
object module procedures are invoked from programs written in 
assembly language. The following example of a call to the 
standard object module procedure ReadBsRecord is helpful in 
understanding this subject. The calling pattern of this 
procedure, described in deta il in the CTOS~ .2.E.e.E~~i.E.s.. ~~~~ 
Manual, is 

ReadBsRecord (pBSWA, pBufferRet, sBufferMax 
psDataRet): ErcType 

The Operating System and the st~ndard ob j ect modules deal with 
quanti ties of many different S1.zes, rang ing from sing ie-byte 
quantities, such as Boolean flags, to multibyte quantities, such 
as request blocks and Byte Stream Working Areas. Three of these 
sizes are special: one byte, two bytes, and four bytes. Only 
quantities of these sizes are passed as parameters on the stack 
or returned as results in the registers. When it is necessary to 
pass a larger quantity as a parameter or to return a larger 
quantity as a result, a pointer to the larger quantity is used in 
place of the quantity itself. A pointer is always a 4-byte 
logical memory address consisting of an offset and segment base 
address. 

For example, ReadBsRecord takes as parameters a pointer to a Byte 
Stream Work Area (pBSWA), a pointer to a buffer (pBufferRet), a 
maximum buffer size (sBufferMax), and a pointer to a word 
containing the size of some data (psDataRet). ReadBsRecord 
returns an error status of type ErcType. The pointers are all 4-
byte quanti ties, the size is a 2-byte quantity, and the error 
status is a 2-byte quantity. Suppose that data is allocated by 
the declarations: 

sBSWA EQU 130 
sBuffer EQU 80 

bswa DB sBSWA DUP(?) 
buffer DB sBuffer DUP(?) 
sData DW ? 

Accessing Standard Services 75 



Then to ca 11 ReadBsRecord, it is necessary first to push onto 
the stack, in order, a pointer to bswa, a pointer to buffer, the 
size of buffer (the constant sBuffer-), and a pointert-o-sOata. 
If OS contains the segment-base address for the segment 
containing ~wa ~~ffer and sData, then this may be done by the 
code: 

PUSH 
MOV 
PUSH 
PUSH 
MOV 
PUSH 
PUSH 
MOV 
PUSH 
CALL 

OS 
AX, OFFSET bswa 
AX: 
DS 
AX, sBuffer 
AX 
DS 
AX, OFFSET sOa ta 
AX 
ReadBsRecord 

;Push the segment base address for bswa 
;Set BX to the offset of bswa 
;Push the offset of bswa 
;Ditto for the buffer 
;Get the buffer size into a register 
;Push this word onto the stack 
;Push the segment base address 

:and then the offset of sOata 
;Do the call 

Note that pointers are arranged in memory with the low-order 
part, the offset, at the lower memory address, and the high-order 
part, the segment base, at the higher memory address. However, 
the processor architecture of the Convergent Information 
Processing System is such that stacks expand from high memory 
addresses toward low memory addressesj hence the high-order part 
of a pointer is pushed before the low-order part. Note also that 
the processor has no instruction that pushes an immediate 
constant: that is why the constant sHuffer must first be loaded 
into a register and that registe~ pushed onto the stack. 
Finally, note that this sample code actually computes the various 
pointers at run-time. It would also be possible to have the 
pointers precomputed by adding to the program the declaration: 

pBSWA DO 
pBuffer DD 
psData DD 

bswa 
buffer 
sData 

If this were done, then the appropriate calling sequence would 
be: 

LES BX, pBSWA 
PUSH ES 
PUSH EX 
LES BX, pBuffer 
PUSH ES 
PUSH EX 
MOV AX, sBuffer 
PUSH AX 
LES BX, psData 
PUSH ES 
PUSH BX 
CALL ReadBxRecord 

76 Assembly Language Hanual 



Note that the LES instruction loads the offset 
pointer into BX and the segment part into ES 
instruction. 

part 
in a 

of the 
single 

Object module and system common procedures as well as procedural 
references to system services must be declared EXTRN and FAR. 
These declarations may not be embedded in a SEGMENT/ENDS 
declaration. See line 6 of Figure 11-3. 

The result returned by ReadBsRecord is a 2-byte quantity and 
according to the Convergent calling conventions, is returned in 
AX. If the result were a 4-byte quantity, the high-order part 
would be returned in ES and the low-order part in BX. 

All of the 4-byte quanti ties dealt with in this example are 
pointers. There are many cases in which the Operating System and 
standard ob j ect module procedures deal with 4-byte quanti ties 
other than pointers, such as logical file nddresses (Ifa). It is 
important to understand that, as far as regards calling and 
register conventions and stack formats, such 4-byte quantities 
are dealt with exactly as 4-byte pointers. when they are 
parameters, the high-order part is pushed first and the low-order 
part second; when they are results, the high-order part is 
returned in ES and the low-order part is returned in BX. 

There is one additional case, not 
ReadBsRecord. When a parameter 
boolean flag, two bytes on the 
although the high-order byte of 
Thus the instruction: 

PUSH BYTE PTR[BX] 

illustrated by the example of 
is a single byte, such as a 
stack are actually required, 

these two bytes is not used. 

adds two bytes to the stack. One of these bytes is specified by 
the operand of the PUSH instruction; the other is not set and no 
reference should be made to it. Similarly, when the result of-a 
function is a sing le byte, that byte is returned in AL and no 
reference should be made to the contents of AH. 

Register Usage Conventions 

When writing in assembly language a call to a standard object 
module procedure or to the Operating System, be aware of the 
Convergent standard reg ister conventions. The contents of CS, 
OS, SS, SP, and BP are preserved across calls: they are the same 
on the return as they were just prior to the pushing of the first 
argument. It is assumed that SS and SP point, respectively, to 
the base of the stack and the top of the stack, and this stack 
will, in general, be used by the called service. (Do not put 
temporary variables in the stack area below SS; SP; see 
"Interrupts and the Stack" below for details.) These conventions 
place no particular requirement on the contents of BP unless 
virtual code segment management services are being used. (See 

Accessing Standard Services 77 



"Virtual Code Segment Management and Assembly Code" below for 
details of BP usage with virtual code.} The other registers and 
the flags are not automatically preserved across calls to the 
Opera ting System or the standard object module procedures. Any 
other registers which must be saved in a particular application 
must be saved explicitly by the caller. Although there is not an 
absolute requirement that these register usage conventions be 
followed in parts of an application that do not call standard 
Convergent services, failing to follow them is not recommended in 
the Convergent programming environment. 

Segment and Group Conventions 

Main Program 

A main program module written in assembly language must declare 
its stack segment and starting address in a special way. This is 
illustrated in thp. sample module of Figure 11-2. In particular: 

o 

o 

The stack segment must have the combine type Stack. 
line 22.} 

The starting address must be 
statement. (See line 27.) 

specified in the 

(See 

END 

When the program is run, the Operating System performs the 
following steps: 

o It loads the program. 

o It initializes SS to the segment base address of the 
program's stack. 

o It initializes SP to the top of the stack. 

o It transfers control to the starting address with interrupts 
enabled. 

SS and DS When Calling Object Module Procedures 

If the program calls Convergent object module procedures, there 
are additional requirements. The program format used in Figure 
11-2 does not suffice. A correct program is given Figure 11-3, 
illustrating the following points: 

o The stack segment must have segment name Stack, combine type 
Stack, and classname 'Stack'. See line 44. 

o Although not required, it is standard practice that user code 
be contiguous in memory with Convergent code and that code be 
at the front of the memory image. This is achieved if all 

78 Assembly Language Manual 



code segments have classname 'Code' and this class is 
mentioned before any other in the module. See lines 11-12. 

o It is desirable to avoid forward references to constants. It 
is also standard, though not required, to make user constants 
contiguous with Convergent constants in the memory image and 
to locate constants directly after code. You can achieve 
both goals by giving all constant segments the classname 
'Const' and by mentioning this classname before any other 
save 'Code'. See lines 17-22 

o It is desirable to avoid forward references to data. It is 
also standard, though not required, to make user data 
contiguous with Convergent data in the memory image, and to 
locate data directly after constants. You can achieve both 
goals by giving all data segments the classname 'Data' and by 
mentioning this classname before any others save 'Code' and 
'Const' . See lines 27-36. Note thR t EXTRN declarations for 
data declared in object module procedures must be embedded in 
the data SEGMENT/ENDS declarations. 

o At any time that a call is made to an object rnodule 
procedure, DS and SS must contain the segment base address of 
a special group named DGroup. This group contains the Data 
Const, and Stack segments, and is declared as illustratedf in 
line 53. In addition, at the time of a call to an object 
module procedure, SP must address the top of a stack area to 
be used by the called procedure. A correct initialization of 
SS, SP and DS is illustrated in lines 62-68. These values 
need not be maintained constantly, but, if they are changed, 
they should be restored (using the appropriate top of stack 
value in SP if it has changed) for any call to an object 
module procedure. Note that the Operating System's interrupt 
handlers save the user reg isters by pushing them onto the 
stack defined by SS:SP. Therefore, some valid stack must be 
defined at all times that interrupts are enabled. 

Interrupts and the Stack 

I f interrupts are enabled, interrupt routines use the stack as 
defined by SS and SP. Therefore you should never, even 
temporarily, put data in the stack segment at a memory-address 
less than SS:SP. 

Use of Macros 

The instructions to set up parameters on the stack before a call 
and to examine the result on return have a number of cases, as 
discussed above. The instructions that must be executed differ 
slightly according to whether a parameter is in a register, a 
static variable, an immediate constant, a word, or a 
doubleword. If you are programming a particular assembly module 
in which not all of this variability occurs, it may be simplest 

Accessing Standard Services 79 



to program the required calling sequences just once, to include 
them in your program as macro definitions, and to invoke them 
using the assembler's macro expansion capability. 

For example, the procedural interface to the Write operation is 
given in the ~TOS'" Operating System Manual as~ 

Write (fh, pBuffer, sBuffer, lfa, psDataRet): ErcType 

where fh and sBuffer are 2-byte quanti ties and pBuffer, lfa, and 
...f25IDataRet are 4-byte quanti ties. The corresponding external 
declarai[[on and macro definition would be; 

EXTRN Write: FAR 
%*DEFINE(Write(fh pBuffer sBuffer lfa psDataRet» 

(PUSH %fh 
PUSH WORD PTR %pBuffer[2] 
PUSH WORD PTR %pBuffer[O] 
PUSH %sBuffer 
PUSH WORD PTR %lfa[2] 
PUSH WORD PTR %lfa[O] 
PUSH WORD PTR %psDataRet[2] 
PUSH WORD PTR %psDataRet[O] 
CALL Write 

Note that the 4-byte quantities are treated slightly differently 
from the 2-byte quanti ties, requiring first a PUSH of the high­
order word, then a PUSH of the low-order word. 

Here is an example of the use of this macro with "static" actual 
parameters: 

fhl DW ? 
EVEN 

buffer DB 512 DUP(?) 
sBuf DW SIZE buffer 
pBuf DD buffer 
lfal DD ? 
sDataRet DW ? 
psDataRet DD sDa taRet 

;code to initialize fhl, buffer, and lfal 

%write(fh pBuffer sBuffer lfa psDataRet) 

You might, instead, want to invoke this macro with actual 
parameters on the stack. Suppose that the quantities rbfhl, 
rbsBuf, rbpBuf, rblfal, and rbpsDa ta are on the stack and that 

80 Assembly Language Manual 



the top of stack pointer is in reg ister BX. 
invocation: 

rbfhl 
rbsBuf 
rbpBuf 
rblfal 
rbpsDat 

EQU -6 
EQU -8 
EQU -10 
EQU -14 
EQU -18 
%Write( [BP+rbfhl] [BP+rbpBuf] 

[BP+rbsBuf] [BP+rblfal] 
[BP+rbpsData] 

Here is a sample 

virtual Code Segment Management and Assembly Code 

The virtual code segment management services of the Convergent 
Information Processing System permit the programmer to configure 
a program (written in any of the Convergent compiled langa uges, 
in assembly language, or in a mixture of these) into overlays~ 
Although data cannot be overlaid with these services, code can be 
overlaid. Moreover, the run-time operations whereby code 
overlays are read into memory and discarded from memory are 
entirely automatic. The programmer need only specify, when 
linking the program, which modules are to be overlaid, and need 
make no change to the progam apart from inserting at its start a 
sing Ie procedure call to initialize virtual code segment 
management services. (See the eTOS'" Operating System Manual for 
details. ) 

The correct automatic operation of the virtual code facility 
require~ certain assumptions about stack formats and register 
usage 1.n the run-time environment to be satisfied. These 
assumptions are automatically satisfied by the compiled languages 
of the Convergent System; however, the assembly language 
programmer must follow some simple rules if virtual code segment 
management is to be used. If a program contains no calls to 
overlaid modules from assembly language code or from procedures 
called from assembly language code, then the presence of 
assembly language code in the program has no affect on the 
operation of virtual code segment management services. In this 
case, there are no additional rules that the assembly language 
programmer must follow. 

An overlay fault is defined as a call to or return to an overlaid 
module that is not in memory. An overlay fault automatically 
invokes virtual code segment management services to read the 
required overlay into memory and possibly to discard one or more 
other overlays from memory. The virtual code segment management 
services do this, in part, by examining the run-time stack. 
Therefore, if there are control paths in a program such that the 
stack may contain entries created by assembly language code when 
an overlay fault occurs, the assembly language programmer is 
subject to additional rules. These are the rules: 

Accessing Standard Services 81 



1. The reg ister usage conventions discussed earlier must be 
followed. The intervention of virtual code segment 
management services preserves the registers SS, SP, DS, and 
BP, and, if an overlay fault occurs during the return from a 
function, preserves registers AX, BX, and ES where results 
may be returned. Other registers are not, in general, 
preserved, and therefore cannot be used to contain parameters 
or return results. 

2. The stack segment must be named STACK and must be part of 
DGroup. (If a program is a mixture of assembly language code 
and compiled code, and all code shares the same stack, this 
happens automatically; if a main program is written in 
assembly language, it must be done explicitly. See the 
example of an assembly language main program for details.) 

3. All procedures must be declared using the PROC and ENDP 
directives. That is, the 
pattern: 

Outer PROC FAR 
; Code of Outer 

Inner PROC FAR 
;Code of Inner 

Inner ENDP 
;More code of Outer 

Outer ENDP 

is not permitted and must be replaced by the pattern 

Outer PROC FAR 
;Code of Outer 
;More code of Outer 

Outer ENDP 
Inner PROC FAR 

; Code of Inner 
Inner ENDP 

Note that this is only a restriction on 
there is no restriction on nested calls, 
any case, contain calls to Inner. 

syntactic nesting: 
and Outer can, in 

4. If all of these conventions are followed, then when control 
enters an assembly language procedure, the most recent entry 
on the stack is the return address. In addition to 
preserving the value of BP, as discussed above, the procedure 
must push this value of BP onto the stack before it makes any 
nested call. No values may be pushed onto the stack between 
the return address and the pushed BP. This convention 
enables the virtual code segment management services to scan 
the stack during an over+ay fault; its violation is not 
detected as an error but causes the overlaid program to fail 

82 Assembly Language Manual 



in unpredictable ways. Na turally, the pushed BP must be 
popped during the procedure's exit sequence. 

5. All code must be in a class named CODE. 

6. The SEG operator may not be used on an operand in class CODE 
nor in any segment that is part of an overlay. -In 
particular, an instruction such as: 

MOV AX, SEG Procedure 

is not permitted. 

7. If a procedural value (that is, a value that points to a 
procedure) is to be constructed, this must be done in a class 
other than CODE by either; 

pProc DD Procedure 

or: 

pProc DW Procedure 
DW SEG Procedure 

Such procedural values do not point directly at the procedure 
(since the procedure may be in an overlay), but at a special 
resident transfer vector created by the Linker. Such a 
procedural value may be invoked by the code: 

CALL DWORD PTR pProc 

8. If a procedure is known to be resident, and it is desired to 
address, not its entry in the resident transfer vector, but 
the procedure code directly, this may be done using, in place 
of SEG and OFFSET, the operators RSEG and ROFFSET. If RSEG 
or ROFFSET is applied to a value in an overlay, an error is 
detected during linking. 

System programming Notes 

The rest of this Section describes some of the algorithms and 
data structures that make up the virtual code segment management 
facility. An understanding of these details is not needed by the 
user of the virtual code segment management facility--they are 
included for the information of the system programmer desiring a 
model of the internal workings of the virtual code segment 
management facility. 

When you invoke the Linker, if you specify the use of overlays, 
then the Linker creates in the run file a special segment in the 
resident part of the program called the statics segment. This 
segment contains a transfer vector (an array of 5-byte entries 
called stubs with one stub for each public procedure in the 

Accessing Standard Services 83 



program} . A stub consists of one byte containing an operation 
code, either JUMP or CALL, and four bytes containing a long 
address. The Linker notes each call to a public procedure in an 
overlaid program and transforms it to an intersegment indirect 
call through the address part of the corresponding stub. 

The contents of the address part of a stub for a procedure which 
is in memory (i.e., either resident or overlaid but currently 
swapped in) is the actual starting address (')f the procedure; 
thus the call of such a procedure is slower than it would be in a 
nonoverlaid program by only one memory reference. 

rne contents of the address part of a stub for a procedure not in 
memory is the address of a procedure in the virtual code segment 
management facility. Thus a call of such a procedure actually 
transfers to the virtual code segment management facility. Such 
a call of the virtual code segment management facility is a "call 
Tnlllt." When a call fault occurs, the virtual code segment 
Inanagement facility reads the needed overlay into the swap 
buffer. Before control is transferred to the called procedure, 
two other steps are taken. 

I. The address in all stubs for procedures in the overlay is 
changed to the swapped-in address of the procedure. 

2. If some overlays had to be deleted from the swap buffer to 
make roOIn for the new overlay, the stubs for their procedures 
reset to the address of the procedure in the virtual code 
segment management facility that deals with call faults. (It 
is possible for an overlay to be deleted from memory even 
though control is nested within it--i.e., even though a 
return into it is pushed onto the stack. This situation is 
handled properly: all such stacked return addresses are 
modified to be the address of a procedure in the virtual code 
segment management facility that subsequently swaps the 
overlay back into memory when a "return fault" occurs.) 

The user will observe that, in the preceding discussion, no use 
is made of the first byte of a stub the operation code. This 
byte is, in fact, only used for calls of procedural values. The 
virtual code segment management facility arranges that the 
opera tion code is a jump instruction for an overlay in memory; 
thus an invocation of a procedural argument for such a procedure 
results in a call to a jump instruction which then transfers 
control to the procedure. The virtual code segment management 
facility arranges that the operation code for an overlay not in 
memory is a call: since the address part of such a stub is the 
address of the virtual code segment management facility, the 
invocation of such a procedure results instead in the activation 
of the virtual code segment management facility. 

84 Assembly Language Manual 



10 ASSEMBLY CONTROL DIRECTIVES 

The Convergent assembly language contains facilities to control 
the format of the assembly listing and to sequence the reading of 
"included" source files. These facilities are invoked by 
ass~mbly" cont_~~ di..E~_ctiv!:,:~. Assembly control directives must 
occur on one or more separate lines within the source (i.e., not 
intermixed on the same line as other source code). An assembly 
control line must begin with the character n$". Such a line may 
contain one or more controls, separated by spaces. Here is an 
example: 

$TITLE(Parse Table Generator) PAGEWIDTH(132) EJECT 

The meanings of the individual controls are described below. 

EJECT 

The control line containing EJECT begins a new page. 

GEN 

All macro calls and macro expansions, including intermediate 
levels of expansion, appear in the listing. 

NOGEN 

Only macro calls, not expansions, are listed. 
expansion contains an error, it is listed. 

GENONLY 

However, if an 

Only the final results of macro expansion, and not intermediate 
expansions or calls, are listed. This is the default mode. 

INCLUDE (file) 

Subsequent source lines are read from the specified file until 
the end of the file is reached. At the end of the included file, 
source input resumes in the original file just after the INCLUDE 
control line. 

LIST 

Subsequent source lines appear in the listing. 

NOLIST 

Subsequent source lines do not appear in the listing. 

PAGELENGTH (.!!.) 

Pages of the listing are formatted n lines long. 

Assembly Control Directives 85 



PAGEWIDTH (.!!.) 

Lines of the listing are formatted a maximum of E.. characters 
wide. 

PAGING 

The listing is separated into numbered pages. 
default. 

NOPAGING 

This is the 

The listing is continous, with no page breaks inserted. 

SAVE 

The setting of the LIST/NOLIST flag and the GEN/NOGEN/GENONLY 
flag is stacked, up to a maximum nesting of 8. 

RESTORE 

The last SAVEd flags are restored. 

TITLE (text) 

The text is printed as a heading on subsequent listing pages. 
The default title is the null string. The text must have 
balanced parentheses. (See Section 8 for deta ils :)--

Using a Printer with Assembly Listings 

The listing produced by the assembler is paginated with titles 
and page numbers. Since the entire page image is formatted in 
such a listing, it should be printed by APPENDing or COPYing to 
[Lpt] rather than with the Executive's PRINT command. (The PRINT 
command can be used to print such a listing, but only by 
overriding many of its default values; these values were chosen 
to make the printing of text files created with the Editor most 
convenient. ) 

86 Assembly Language Manual 



11 SAMPLE ASSEMBLER MODULES 

This section contains three complete sample assembler modules. 
The first, Figure 11-1, is a source module of the assembler 
itself. It is the module that translates the assembler's 
internal error numbers into textual error messages. 

The second module Figure 11-2, is a skeleton of a "standalone" 
assembler main program, and illustrates how the run-time stack is 
allocated in an assembler module. This example follows a bare 
minimum of the standard system conventions and does not link 
properly to standard object module procedures. 

The third module, Figure 11-3, is an assembler main program 
compatible with Convergent conventions and linkable with standard 
object module procedures, as described above in Section 9, 
"Accessing Standard Services from Assembly Code." 

Sample Assembler Modules 87 



CD 
CD 

iErroT' message module for the assembler. SUitable for loading into an overlay in oreer to save space in the resident. 

PUBLIC PAst i ,FromErc 
i pAsc i t = PAst i tFromErc (ere, of UpArrow) 
; 

;Given an error code in DS:[BP+8] (1st argl. 
J 

; Returns ES: ax ~ pointer to 0 terminated ascii string. 
Stores 'lag indicating whether uparrow is to accompany eT'ro1" message in locB':ion pointed at by OS: CBP+6] (2nd argo ) 

i Define the segments we are going to use, Do this here to get them in the desired ph'Jsical order 
JThe storage laljDut consists of the procedure code followed by a packed group of ascii strings, folloll.led by two parallel arrays 

A.mErr SEG~IENT WORD PUDL I C 'CODE' 
AsmErr ENDS 

A.mErl SEG~IErH WORD PUBLIC 'ERRORS' 
AsmErl ENDS 

AsmEr2 SEGMENT WORD PUBLIC 'ERRORS' 
.. gRaRg c h LABEL WORD 
AsmE .. 2 ENDS 

AsmE .. 3 SEGMENT WORD PUBLIC 'ERRORS' 
.. g fUpAr .. ow LABEL BYTE 
AsmE .. 3 ENDS 

i Segment for the code of PAst i zFromErc 

; Segment for the ascii text of messa.ges 

; Segment fo .. offsets to text, indexed b~ 

; Segment fo .. a .. ray of fUpa .. row flags, indexed b~ ere 

; Address everything in this module thru CS: (which points to the base of ErrGroup) 
E .... Group GROUP AsmErr. A.mErl, AsmEr2, AsmE!':! 

A.mErr SEGMENT 
ASSUME CS: ErrG .. oup 

PAsc i ,F .. omErc PROC FAR 
PUSH BP 
MOV BP, SP 

MOV ax, CBP+8J 
CMP BX,ercMal 
JIl Ok 
MOV BX, ercMax-l 

Ok: 
MoV AL rg fUpArrowCBX] 
MoV 01, [DP+b"] 
MoV [OIl. AL 

SHL IlX. I 
MoV IlX, "gRaRgch[BX] 
~10V AX, CS 
MOV ES, AX 

PDP BP 
RET 4H 

PAsc i lFromErc ENDP 

iTell the ;,..emb1e .... hat to "peet in CS 

; Procedure entrlJ point 

; Save callers BP, set up local frame pOinter 

; ax = erc 
; Compare against maximum error .at 

; TDo big: use "Internal error II message 

; Fetch uparrow flag for this erc 
iFetch Callers OS relative pointer to wheT'e he wanted it stored 
; Store it 

; ax -= erc*2 SD as to indel arraI.J of wo..,.ds 
i Fetch CS relative oFfset to error messa.ge text 

; Return segment of text in E5 

iRestore callers BP 
iOump args from stack and return 

Figure 11-1. Error Message Module Program. (PagE! 1 of 3.) 



AsmErr ENDS 

AsmEr 1 SEGMENT 

;This macro generates the text and the 2: parallel arrays 

X*Define(ErrCfUpArrow. ere. rgch» 
(XIF (Xerc GT ereMad THEN (ercMax EQU Xerc). FI 
orgch EQU $ 

DB 'Xrgch',O 
7.,'Remember where we started the string' 
X'The zero terminatl~d ascii string' 

AsmEr2 SEGMENT 
ORG Xerc*2 
DW ErrGroup: org c h X'The Err-Group rela':ive offset (i. e CS reI. ) of ascii string' 

AsmEr2 ENDS 
AsmEr3 SEGMENT 

ORG Xerc 
DB XfUpArrow X'The uparrow flag' 

AsmEr3 ENDS 
) 

; Do the work 

ercMax EQU ; Initialize max. de~:ined error code 

'l.Err(I,OO, Invalid numeric constant) 
XErrC!. Ot. Syntax error) 
'l.Err(O.02,Expression too complex) 
'hErr (0.03. Interna 1 error tH) 
1.£.,(0.04. Invalid arithmetic operation for relocatable or external expression) 
'l.Err(1.05. Invalid use of register in expression) 
'%Err(O. 06. lnval id use of PTR. must operate upon address expression) 
%Errll.07.Undefined symbol) 
'l.Err(O.08.Forward reference to EQU"ed register not permitted) 
'l.ErrlO. 09. SI ZE and LENGTH must op erate up on data symb 0 I) 
Y.Err(L 10. Invalid argument to ASSUME, must not be forward reference} 
%En'(O.ll.PROC/ENDP nesting too deep) 
7.ErrCO. 12. Mismatched PROC/ENOP) 
7.Err(O.13. Invalid origin tOr absolute segment) 
'l.Err(O. 14. Inval id redefinition of sljt1lbQl) 
XErr(O. 15. Mismatched SEGMENT/ENDS) 
'l.Err(O. 16. Expression must be absolute) 
%Err(O. 17. Value too large fa" field) 
'l.Err(L IS. Strings :> 2 characters allowed only in DB) 
%Err(O.19. Invalid SEGMENT/GROUP prefix) 
'l.Err(O.20,Label phase eTrOT. Pass 2 value differs from Pass 1 value> 
i.Err(O. 21. No ASSUME CS: in effect. NEAR label cannot be defi,.d) 
XErr(O. 22. Invalid GROUP member. must be a SEGMENT name) 
XErr(0.23.Limit of 255 EXTRN s~mbols pe" object module e.c.ejed) 
'l.Err(0.24.0uplicate declaration for .~mbol) 

'l.Err(L25.Not an address express.ion) 
'l.Err(O. 26. Argument to END mu.t b. a NEAR/FAR label defined in thlS module) 
Y.Err(O. 27. Inval id argum,nt to ORG. not absolute or offset) 
'l.Err(O. 28. Too many GROUP.) 

Figure 11-1 Error Message: 1-1ouule Pro9ram. (Page 2 of 3.) 



~ 
0 

~ tTj CIl 
~. CIl 

Ul ('I) c:: §. Ii 
t-' ('I) 

'"< t-' 

F: t-' 
I 

~ t-' 
I.Q 
c:: 
III 

t':I \.Q 
Ii Ii) 
Ii 

3: 0 
III Ii 
~ 

3: c:: (1) III rn t-' rn 
III 

Ul 
(1) 

~ 
0-
c:: 
t-' 
(1) 

'tl 
Ii 
0 

I.Q 
1"\ 
III 
3 

'tl 
III 

Ul 
(1) 

w 

0 
HI 

W 

:l.Err(O. 29. Too many SEGME:NTs) 
:l.Err(0.30.Too many GROUp members) 
:l.Err(O. 31. SEG~lENT nesting too deep) 
:l.Err(O. 32. Inval id destination operand) 
:l.Err(0.34.0perand must be a BYTE. WORD or DWORD) 
:l.Err(0.35.bperands not reachable thru segment registers) 
:l.Err(O.36.Too little sp~ce reserved due to forward reference) 
:l.Err(O.37. Invalid combination of index and base registers) 
:l.Err(O.38.Invalid types of operands for this instruction) 
:l.Err(O.39.May not move immediate value to segment register) 
:l.Err (0.40. Inval id sh i ft count) 
:l.Err(0.41.RET outside of PROC/ENDP) 
:l.Err(0.42.0perand must be NEAR or FAR) 
:l.Err(O.43.NEAR Jump to ,hfferent ASSUME CS.) 
:l.Err(O.44.Conditional Jump to FAR label) 
:l.Err(O.45.SHORT Jump to further away than 128 bytes) 
:l.Err(O.46.Segment Sile exceeds 64K bytes) 
:l.Err(O.47.No END statment or open SEGMENT/ENDS PROC/ENDP) 
I.Err(1.48.Missing Tight ":1.1)") 
:l.Err(I.49. Invalid character following the Metacharacter) 
I.Err(O. 50. Invalid controll 
:l.ErriO. 51. Undefined macro or control) 
I.Err(l.52.Invalid call pattern) 
I.Err( 1. 53. Inval id pattern argument to MATCH) 
:l.Err(l. 54. Invalld LOCAL symbol definition) 
:l.Err(O. 55. Macro or INCLUDE nesting level too deep) 
I.Err(O. 56. InvalId PAGEWIDTH or PAGELENGTH) 
:l.Err(0.57.SAVE/RESTORE nesting level too deep) 
:l.Err(O.58.RESTORE wlthout matching SAVE) 
:l.Err(0.59.Attempt to redeFine bUIltin function) 
:l.ErriO.60.Macro attempts to redefIne itself) 
:l.Err(O. 61. Instruction always uses ES .• may not be overrldden) 
I.Err(0.62.May not index NEAR or FAR expression) 
:l.Err(O.63.Attempt to divide or MOO by 0) 
:l.Err(O. 64. Two memory operands are Illegal) 
I.Err(1.65.DUP factor must be positive integer) 
hErr(O. 66. Internal Error #2) 

AsmErl ENDS 
END 



Conv .. rg .. nt Macro Ass .. mbl .. r Xl. 2 

0000 B040 
0002 E644 
0004 B9FFFF 
0007 E2FE 
0009 33CO 
OOOB E644 
0000 B9FFFF 
0010 E2FE 
0012 EEEC 

0000 ( 96 
0000) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

24 
25 
26 
27 
28 

Th .. r .. wer .. no errors detec ted 

15:45 18-Sep-BO Page 

.Skeleton main program 

Na in SEGMENT WOR 0 
ASSUME CS: Ma in 

Beg in: 

.Put program here. in place o' this code which beeps the beeper 
Loop.: NOV AL.40H 

OUT 44H. AL 
MOV CX.OFFFFH 
LOOP $ .beeper ON for about a second 
XOR AX. AX 
OUT 44H.AL 
MOV CX.OFFFFH 
LOOP $ .beeper OFF For about a second 
JMP Loop. 

.End of beeper code 

Main ENDS 

Stack SEGMENT STACK 
DW 60H OUP (?) 

Stack ENDS 

END 3eg in 

.Stack must have STACK combine type 

.Need about 60H word stack min. to run 

.under CTOS and use debugger 

Figure 11-2. Standalone Main Program. 



Convergent Macro Assembler XI.2 IS: 45 IS-Sop-SO Page 

0000 4E6F772069732074 
68652074696D6520 
666F7220616C6C20 
67 6F 6F 64206D656E 
20746F20636F 6D65 
20746F2074686520 
616964206F 66~074 
6865697220706172 
7479 

0042 4200 

0000 0000 
0002 0000 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 
21 

iSample main program which links with Convergent Object module procedures 
iThis. program forever outputs the string "Now is the time "followed by 
i iteration count to the video. 

;Declare the OS and Object module procedures external. accessable by FAR CALL's 
EXTRN WriteBsRecord: FAR. WriteByte: FAR. Error-Exit: FAR 

iFirst declare code segment so that it is loaded first. class::: Code 50 that it 
iwill be physically near Convergent code. Note that it need not be- PUBLIC 

Ma in 
Ma in 

SEGMENT WORD 
ENDS 

'Cod e I 

iNext declare segment containing all constant cata which will be combined with 
i Convergent segment of same name and class 

Const SEGMENT WORD PUBLIC 'Const' 

rgchMsg DB 'Now is the time for all good nen to come- to the aid of their party' 

cbMsg OW SIZE rgchMsg j Count of bytes in msg 

22 Con s tENDS 
23 
24 iNext declare segment containing all variable data which UJ1II be combined with 
25 i Convergent segment of same name and class 
26 
27 
29 
29 
30 
31 

32 
33 
34 
35 
36 
37 

Da t a SEGMENT WORD 
EXTRN bsVid, BYTE 

doop OW 
cbWrittenRet 

Data ENDS 

o 
OW 

PUBLIC 'Data' 
;We write to video uSlng SAM's preopened 
; bytestream WhlCh is located in the Data segment 
; It is lmportant that thlS declaration be embedder 
; in Data SEGMENT/ENDS dlT'ectives as here 

i Count of loops 
; Word for WrlteBsRecoT'd to return bytes ull~itten 

38 ;Stack segment. Should have name and class of Stack so as. to be combined with 
39 ,Convergent Stack segments (which contain space estimates for stack used by Convergent 
40 i software). Space allocated here need only be sufficlent for procedures in thlS 
41 imodule plus a Filed overhead of about bOH words(l. e 192 dE"clmal bytes) which allows 
42 ; for lnterrupts and as calls 
43 
44 
45 
46 

Stack SEGMENT STACK 'Stack' ;Note especially the comblne type = STACK.. 
; not PUBLIC 

Figure 11-3. Converge~Compatible Main Program. (Page 1 of 3.) 



Convergent "'.cra Assembler Xl. 2 15:45 18-Sep-80 Pag~ 

0000 < 90 
00001 

OOCO 

0000 06----
0003 DEDO 

0005 BeCOOO 

OOOS SEDS 

OOOA C70600000000 

0010 IE 
0011 8D060000 
0015 50 
0016 IE 
00 I 7 8 D060000 
0010 50 
001 C FF364~OO 
0020 IE 
0021 8D060200 
0025 50 
0026 9AOOQQ----
0020 23CO 
0020 754C 

002F AlOOOO 
0032 E81800 
0035 FF060000 

0039 IE 
003A 80060000 
003E 50 
003F OOOA 
0041 50 

60H 

wLimStack EOU 

50 

DUP (7) 

THIS WDRD I If'll tia' top of stac II lab e 1. BeCBuse of the 
Iwa!j STACK segments are combinedl tills ',LIllI 
,label the f!nc of the comb Ined Stac ~ segmE'nt 

51 STACK ENDS 
52 
53 Dgraup GROUP Canst. Data. Stack I All addressing of varlab 1 el/constants thru 

J,g GROUP named Ogroup wM u:ll is ~,",own to all 

56 
57 
58 
59 
60 

62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 

EIO 
81 
B2 
83 
84 
85 

87 
88 
89 
90 
91 
92 
93 

97 
98 

; Object module procedures and must be loaol!'d into 55 and OS 

J Here is the pragT'am code 

Ma 1 n SEGME:NT 
ASSUME CS: MaIn J All code in Main wlll be relative to start of' Main 

BegIn MOV AX. Dgroup ; Load Dgroup into 55 and DS 
I"'OV 55. AX 

ASSU11E 55: Dgroup J Tell the ils!iembleT' about new seg register contl!'ntl 
MOV SP.OFF5ET DgT'oup:wLimStack. Init stack pOlnter. mu~t lmmpdiatE'lL; follow 55 load 

i Note that stack must be T"elatlve to DgT'oUP since-
j that IS what IS In 55 

MOY OS, AX 
ASSUME DS: DgT'oup ITell the assemble,.. about new seg registpT' contents 

MOY c loop. 0 ; Inl tia 1 i ze loop counter 

LaopJj: 
; CALL. Wrltel3sRecord(pbsVid. prgchMsg. cbMsg. pcbWrittenRet) 

PUSH OS 
LEA AX. bsVid 
PUSH AX 
PUSH DS 
LEA AX. rgchMsg 
PUSH AX 
PUSH ctlMsg 
PUSH DS 
LEA AX, cbWritt.nR.t 
PUSH AX 
Ci\L.L W,...iteBsReco,..d 
AND AX, AX 

,.lNE Error 

MOY AX. c: loop 
CALL PrintHl!t 
INC cloop 

J CALL Wrlterlyte(pbsVid. OAH) 
PUSH DS 
LEA AX.bsVid 
PUSH AX 
110Y AL,OAH 

J (1) pbsVi d 

; 13) cbMsg 
1(4) pcbWrit':onR.t 

I Test ("rei Jump i' an erro,.. occurred 

J print loop C ounte,.. 
I and bump 1 t 

J (1) pbsVid 

J (2) OAH 

Figure 11-3. Convergent-Compatible Main Pro9ram. (Page2of3.) 



\0 
~ 

>' rn 
rn 
(I) 

~ 
~ 

'< 
t-< 
PI 

~ 
C 
PI 

l.Q 
(I) 

3: 
PI 
:J 
C 
PI 
~ 

Conver Q ent Mac r 0 Assetnb 1 er Xl. 2 

0042 9AOOOO---- E 100 
0047 23CO . 101 
0049 7530 102 

103 
0040 EOC3 104 

105 
106 
107 
108 

0040 890400 109 
0050 51 110 
0051 Bl04 111 
0053 03CO 112 
0055 50 113 

114 
0056 8008 115 
0058 80E30F 116 
0050 80C330 117 
005E 80FB39 118 
0061 7603 119 
0063 80C307 120 

121 
122 

0066 IE 123 
0067 80060000 E 124 
006B 50 125 
006C 53 126 
0060 9AOOOO---- E 127 
0072 23CO 128 
0074 7505 129 

130 
0076 58 131 
0077 59 132 
0078 E206 133 
007A C3 134 

135 
136 
137 
138 
139 

007B 50 140 
007C 9AOOOO---- E 141 

142 
143 
144 
145 
146 

15: 45 18-Sep-80 Page 

CALL WriteB~te 
AND AX. AX 

..JNE Error ; Test ere. Jump if an error occurred 

.JMP Loopx ; Loop forever 

iLocal procedure to convert number in AX to 'hex and output to video 

PrintHex PROC NEAR 
MOV CX.4 

Printl : PUSH CX 
MOV CL.4 
ROL AX. CL 
PUSH AX 

MOV BX. AX 
AND BL.OFH 
ADO BL. '0' 
CMP BL. '9' 

.JOE Print2 
ADO BL. ·A'-'0'-10. 

Print2: 
,CALL WriteB~te(pbsVid. BL) 

PUSH OS 
LEA AX, bsVid 
PUSH AX 
PUSH BX 
CALL WriteB~te 
AND AX. AX 

.JNE Error 

POP AX 
POP CX 
LOOP Printl 
RET 

PrintHe. ENDP 

,Hel'e an fatal error. AX erc 

,CALL ErrorE'; t (erc) 

; Init digit count 
; preserve digit count 

.i position next digit 
; save rotated word 
.all the register~ 

i rna 5 kit 0 f f 
j convert to ascii 

; Jump if 0-9 
i else in range A-F 

,(1) pbsVid 

,(2) BL 

i Jump if non zero ere 

; restore word to output 
irestore digit count 
; Loop 4 times 

Error: PUSH AX , (1) erc 
CALL ErrorE, i t 

Main ENOS 

Write-Byte clobbers 

END Beg in ;Speci~y start address o~ Begin 

Figure 11-3. Convergent-Compatible Main Program. (Page 3 of 3.) 



Appendix A: INSTRUCTION SET 

Table A-3 lists the instruction set in numeric order of 
instruction code. Table A-4 lists the instruction set in 
alphabetical order of instruction mnemonic. This instruction set 
is described in detail in the Cen~ral Processing_ Unit. 

Legend 

Each table contains seven columns. 

The column labeled "Op Cd" is the operand code. "Memory 
Organiza tion" is explained in Section 6. The" Instruction" 
column is the instruction mnemonic. The "Operand," if there is 
one, is the operand acted upon by the instruction. 

The "Summary" column contains a brief summary of each 
instruction. Parentheses surrounding an item means "the contents 
of.n For example, n(EA)" means "the contents of memory location 
EA," and n(SS)" means "the contents of register SS." The infix 
operators (+, -, OR, XOR, etc.) denote the standard arithmetic or 
logical operation. eMP denotes a subtraction wherein the result 
is discarded and only the values of the flags are changed. 
"TEST" denotes a log ical "AND" wherein the result is discarded 
and only the values of the flags are changed. 

The "clocks" column is the clock time for each instruction. (See 
Table A-I below.) Where two clock times are given in the 
conditional instructions, the first is the time if the jump (or 
loop) is performed, and the second if it is not. In all 
instructions with memory (EA) as one of the operands, a second 
clock time is given in parentheses. This is because in all these 
instructions memory may be replaced by a reg ister. In such 
cases, the faster clock time applies. Where repetitions are 
possible, a second clock time is also given in parentheses i in 
the form "x+yjrep" , where "x" is the base clock time, "y" is the 
clock time to be added for each repetition, and "rep" is the 
number of repetitions. 

The "flags" column enumerates the flag conditions, according to 
this code: 

S 
C 
X 
U 
R 

blank 

set (to 1) 
cleared (to 0) 
altered to reflect operation result 
undefined (code should not rely on these values) 
replaced from memory (e.g., POPF) 
unaffected 

Instruction Set A-l 



These are the flag s: 

0 Overflow flag 
D Direction flag 
I Interrupt-enable flag 
T Trap flag 
S Sign flag 
Z Zero flag 
A Auxiliary Carry flag 
P parity flag 
C Carry flag 

These symbols are used in the tables: 

S~0.l_ 

bAddr 

bData 

bEA 

bREG 

CF 

Ext(E.} 

FLAGS 

off 

Sign(~} 

sba 

SR 

wAddr 

wData 

wEA 

wREG 

16-bit offset within a segment of a word (addressed 
without use of base or indexing) 

byte immediate constant 

effective address of a byte 

8-bit register (AH, AL, BH, CH, CL, DH, or DL) 

value (0 or 1) of the carry flag 

word obtained by sign extending byte b 

values of the various flags 

16-bit offset within a segment 

word of all a's if w is positive, alII's if w is 
negative 

segment base address 

segment register (CS, DS, ES, or SS) 

l6-bit offset within a segment of a word (addressed 
without use of base or indexing) 

word immediate constant 

effective address of a word 

16-bit register (AX, BX, CX, DX, SP, BP, SI, or DI) 

A-2 Assembly Language Manual 



Effective Address (EA) calculation time is according to Table A-l 
below: 

Displacement only 

Base or Index only (BX, BP, SI, DI) 

Displacement 
+ 

Base or Index 

Base 
+ 

Index 

Displacement 
+ 

Base 
+ 

Index 

(BX, BP, SI, DI) 

[BP+DI], [BX+SI] 

rQO.~T' rDV.LnT' 
&..~ .... _ ... ~ I L LJ.l1t. 'J.J...L.J 

[BP+DI]+DISP 
[BX+SI]+DISP 

[BP+SI]+DISP 
[BX+DI]+DISP 

Clocks* -----

6 

5 

9 

7 

o 
o 

11 

12 

*Add two clocks for segment override. Add 
four clocks for each 16-bi t word transfer 
with an odd address. 

Instruction Set A-3 



Alternate Mnemonics 

These instructions have synonymous alternate mnemonics: 

--------------~~----~--~---------------~-----------------, Table A-2. Alternate Mnemonics. 
Instruction 

JA 
JAE 
JAE 
JB 
JB 
JBE 
JG 
JGE 
JL 
JLE 
JNZ 
JPE 
JPO 
JZ 
LOOPNZ 
LOOPZ 
REPZ 
REPZ 
REPNZ 
SHL 

Synonym Description 

JNBE 
JNB 
JNC 
JNAE 
JC 
JNA 
JNLE 
JNL 
JNGE 
JNG 
JNE 
JP 
JNP 
JE 
LOOPNE 
LOOPE 
REP 
REPE 
REPNE 
SAL 

Jump if not below or equal 
Jump if not below 
Jump if not carry 
Jump if not above or equal 
Jump if carry 
Jump if not above 
Jump if not less or equal 
Jump if not less 
Jump if not greater or equal 
Jump if not greater 
Jump if not equal 
Jump if parity 
Jump if no parity 
Jump if equal 
Loop (CX) times while not equal 
Loop (CX) times while equal 
Repeat string operation 
Repeat string operation while equal 
Repeat while (CX) , 0 and (ZF) = 1 
Byte shift EA left 1 bit 

A-4 Assembly Language Manual 



Table A 3. Instruct lon Set In Numeric Order of InstructIon Code. (Paqe 1 of 7.) 
Op Memory Instruc- Operand Summary ClocKs Flags 
Cd Or'1anizalion lion 001 TSZAPC 

00 MOD REGR/M 
01 MOD REGR/M 
02 MOD REGR/M 
03 MOD REGR/M 
04 
05 
06 
07 
08 MOD REGR/M 
09 MOD REGR/M 
OA MOD REGR/M 
DB MOD Rr;GR/M 
DC 
OD 
OE 
OF 
10 MOD REGR/M 
11 MOD Rr;GR/M 
12 MOD REGR/M 
13 MOD REGR/M 
14 
15 
16 
17 
18 MOD REGR/M 
19 MOD REGR/M 
lA MOD REGR/M 
IB MOD REGR/M 
lC 
10 
IE 
IF 
20 MOD REGR/M 
21 MOD REGR/M 
22 MOD REGR/M 
23 MOD REGR/M 
24 
25 
26 
27 
28 MOD REGR/M 
29 MOD Rr:GR/M 
2A MOD REGR/M 
2B MOD REGR/M 
2C 
20 
2E 
2F 
30 MOD REGR/M 
31 MOD REGR/M 
32 MOD REGR/M 
33 MOD REGR/M 
34 
35 
36 
37 
38 MOD REGR/M 
39 MOD REGR/M 
3A MOD REGR/M 

ADD 
ADD 
ADD 
ADD 
ADD 
ADD 
PUSH 
POP 
OR 
OR 
OR 
OR 
OR 
OR 
PUSH 
(not 
ADC 
ADC 
ADC 
ADC 
Ant": 
ADC 
PUSH 
POP 
SBB 
SBB 
SBB 
SBB 
SBB 
SBB 
PUSH 
POP 
AND 
AND 
AND 
AND 
AND 
AND 
ES: 
OM 
SUB 
SUB 
SUB 
SUB 
SUB 
SUB 
CS: 
DAS 
XOR 
XOR 
XOR 
XOR 
XOR 
XOR 
SS: 
AM 
eMP 
eMP 
eMP 

used) 

bEA,REG 
WEA, REG 
REG, bEA 
REG,wEA 
AL,bData 
AX,wData 
ES 
ES 
bEA, REG 
wEA, REG 
REG, bEA 
REG,wEA 
AL, bDa ta 
AX,wData 
CS 

I

EA'REG 
EA, REG 
REG, EA 
REG, EA 
-~L. bD~ ta 
AX,wData 
SS 
SS 
bEA,REG 
WEA, REG 
REG,bEA 
REG,wEA 
AL, bDa ta 
AL,wData 
DS 
DS 
bEA,REG 
wEA,REG 
REG, bEA 
REG,wEA 
AL,bData 
AX,wData 

bEA,REG 
wEA, REG 
REG, bEA 
REG,wEA 
AL,bData 
AX,wData 

bEA,REG 
wEA, REG 
REG,bEA 
REG,wEA 
AL,bData 
AX,wData 

bEA,bREG 
wEA,wREG 
bREG,bEA 

(bEA)~(bEA)+(bREG) 
(WEA)~(wEA)+(wREG) 
(bREG)~ (bREG)+(bEA) 
(wREG)~ (WREG )+(WEA) 
(AL) ~ (AL) +bDa ta 
(AX)~ (AX)+wData 
Push (ES) onto stacK 
Pop staCK to ES 
(bEA)=(bEA) OR (bREG) 
(wEA)=(wEA) OR (WREG) 
(bREG)=(bREG) OR (bEA) 
(wREG)=(WREG) OR (WEA) 
(AL)=(AL) OR bData 
(AX)=(AX) OR wData 
Push (CS) onto stacK 

(bEA)=(bEA)+(bREG)+CF 
(wEA)=(WEA)+(WREG)+CF 
(bREG)~(bREG)+(bEA)+CF 
(wREG)=(wREG)+(wEA)+CF 
(.n.L)~{AL' lbData+-CF 
(AX)=(AX)+wData+CF 
Push (SS) onto stacK 
Pop stack to SS 
(bEA)=(bEA)-(bREG)-CF 
(WEA)~(wEA)-(wREG)-CF 
(bREG)~(bREG)-(bEA)-CF 
(wREG)=(wREG)-(wEA)-CF 
(AL)~ (AL)-bDa ta-CF 
(AX)=(AX)-wData-CF 
Push (DS) onto stacK 
Pop stack to DS 
(bEA)=(bEA) AND (bREG) 
(wEA)=(wEA) AND (wREG) 
(bREG)=(bREG) AND (bEA) 
(wREG}~(WREG) AND (WEA) 
(AL}=(AL) AND bData 
(AX)=(AX) AND wData 
ES segment override 
Decimal adjust for ADD 
(bEA}=(bEA}-(bREG) 
(wEA)=(wEA)-(wREG) 
(bREG}=(bREG)-(bEA) 
(wREG)=(wREG)-(wEA) 
(AL)=(AL}-bData 
(AX) = (AX) -wDa ta 
CS segment override 
Decimal adjust for subtract 
(bEA}=(bEA) XOR (bREG) 
(wEA}=(wEA) XOR (wREG) 
(bREG)=(bREG) XOR (bEA) 
(wREG)=(wREG) XOR (wEA) 
(AL)=(AL) XOR bData 
(AX}=(AX) XOR wData 
SS segment override 
ASCII adjust for add 
r'LAGS=(bEA) eMP (bREG) 
FLAGS=(wEA) eMP (wREG) 
FLAGS=(bREG) eMF (bEA) 

l6+EA(3) X 
16+EA(3) X 
9+EA(3) X 
9+EA(3) x 
4 X 
4 X 
10 
8 
16+EA(3} C 
16+EA(3) C 
9+EA(3) C 
9+EA(3) C 
4 C 
4 C 
11 

16+EA(3) X 
16+EA( 3) X 
9+EA(3} X 
9+EA( 3) X 
4 x 
4 X 
11 X 
8 
16+EA(3} X 
16+EA(3) x 
9+EA(3} X 
9+EA(3) x 
4 X 
4 X 
10 
8 
16+EA(3) C 
16+EA(3) C 
9+EA(3) C 
9+EA( 3} C 
4 C 
4 C 
2 
4 X 
16+EA(3) x 
16+EA(3} X 
9+£A(3) x 
9+EA(3) x 
4 X 
4 X 
2 
4 U 
16+EA(3) C 
16+EA(3) C 
9+EA(3) C 
9+I::A(3) C 
4 C 
4 C 
2 
4 U 
9+EA X 
9+EA X 
9+EA X 

XXXXX 
XXXXX 
XXXXX 
XXXXX 
XXXXX 
XXXXX 

XXUXC 
XXUXC 
XXUXC 
XXUXC 
XXUXC 
XXUXC 

XXXXX 
XXXXX 
XXXXX 
XXXXX 
XXXXX 
XXXXX 
XXXXX 

XXXXX 
XXXXX 
XXXXX 
XXXXX 
XXXXX 
XXXXX 

XXUXC 
XXUXC 
XXUXC 
XXUXC 
XXUXC 
XXUXC 

XXXXX 
XXXXX 
XX XXX 
XXXXX 
XXXXX 
XXXXX 
XXXXX 

XXXXX 
xxuxc 
XXUXC 
XXUXC 
XXUXC 
XXUXC 
XXUXC 

UUXUX 
XXXXlC 
XXXXX 
XXXXX 

Instruction Set A-5 



Table ~-3. Instruction Set In NumeriC Order of Instruct10n Code. CPa e 2 of 7.) 
Op Memory Instruc- Operand Swrunary Clocks Flags 
Cd Organization tion OD1TSZAPC 

3B 
3C 
30 
3E 
3F 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
4A 
4B 
4C 
40 
4E 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
5A 
5B 
5C 
50 
5E 
5F 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
6A 
6B 
6C 
6D 
6E 
6F 
70 
71 
72 
73 
74 
75 

MOD REGR/M CMP 
CMP 
CMP 
DS: 
AAS 
INC 
INC 
INC 
INC 
INC 
INC 
INC 
INC 
DEC 
DEC 
DEC 
DEC 
DEC 
DEC 
DrX 
DEC 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
(not 
(not 
(not 
(not 
(not 
(not 
(not 
{not 
(not 
(not 
{not 
(not 
(not 
{not 
(not 
(not 
JO 
JNO 
JB 
JAE 
JZ 
JNZ 

used) 
used) 
used) 
used) 
used) 
used) 
used) 
used) 
used) 
used) 
used) 
used) 
used) 
used) 
used) 
used) 

wREG,wEA 
AL,bData 
AX, wDa ta 

AX 
ex 
DX 
BX 
SP 
BP 
SI 
01 
AX 
ex 
DX 
BX 
SP 
BP 
SI 
D! 
AX 
ex 
DX 
BX 
SP 
BP 
SI 
D1 
AX 
CX 
DX 
BX 
SP 
BP 
SI 
D1 

bD1SP 
bDISP 
bOISP 
bDISP 
bDISP 
bDISP 

A-6 Assembly Language Manual 

FLAGS=(WREG) eMP (wEA) 
FLAGS=(AL) CMP (bData) 
FLAGS=(AX) CMP (wData) 
DS segment overr ide 
ASCII adjust for subtract 
(AX)=(AX) +l 
(cx)=(ex)+1 
(DX)=( DXl+1 
(BX)=(BX)+l 
(SP)=(SP)+l 
( BP) = ( BP) +1 
(S1)=(SI)+1 
(D1)=(D1)+1 
(AX)=( AX)-1 
(eX) = (eX)-1 
( DX ) = ( DX ) -1 
(BX)=(BX)-l 
(SP)=(SP)-l 
( sp) = ( BP)-l 
(S1)=(SI)-l 
(DIl=(DI)-l 
Push (AX) onto stack 
Push (ex) onto stack 
Push (DX) onto stack 
Push (BX) onto stack 
Push (SP) onto stack 
Push (BP) onto stack 
Push (SI) onto stack 
Push (Dr) onto stack 
Pop stack to AX 
Pop stack to ex 
Pop stack to DX 
Pop stack to BX 
Pop stack to SP 
Pop stack to BP 
Pop stack to SI 
Pop stack to 01 

Jump f overflow 
Jump f no overflow 
Jump f below 
Jump f above or equal 
Jump f zero 
Jump f not zero 

9+EA 
4 
4 
2 
4 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
11 
11 
11 
11 
11 
11 
11 
11 
8 
8 
8 
8 
8 
8 
8 
8 

16 or 4 
16 or 4 
16 or 4 
16 or 4 
16 or 4 
16 or 4 

x 
x 
x 

u 
x 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

XXXXX 
Xxxxx 
Xxxxx 

UUXUX 
XXXX 
XXXX 
XXXX 
XXXX 
XXXX 
xxxx 
XXXX 
XXXX 
XXXX 
Xxxx 
XXXx 
XXXX 
XXXX 
XXXX 
XXXX 
XXXX 



Table 1'.-3. Instruct~on Set ~n Numer~c Order of Ins truction Code. (Paqe 3 of 7.) 
Op Memory lnstruc- Operand Summary ClocKs Flags 
Cd Organization tion OOITSZAPC 

76 JBE bOISP Jump if below or equal 16 or 4 
77 JA bOISP Jump if above 16 or 4 
78 JS bOISP Jump if sign 16 or 4 
79 JNS bOISP Jump if no sign 16 or 4 
7A JPE bOISP Jump if parity even 16 or 4 
7B JPO bDISP Jump if parity odd 16 or 4 
7C JL bDISP Jump if less 16 or 4 
7D JGE bOISP Jump if greater or equal 16 or 4 
7E JLE bDISP Jump if less or equal 16 or 4 
7F JG bOISP Jump if greater 16 or 4 
30 MOO 000 RIM ADD bEA,bData (bEA) ~ (bEA) +bDa ta 17+£1'. X XXXXX 
80 MOD 001 RIM OR bEA,bData (b£A.I~(bEAI OR bData 17+EA C XXUXC 
80 MOD 010 RIM AOC bEA,bData (b£AI~(bEAI+bData+CF 17+EA X XXXXX 
80 MOD 011 RIM SBB bEA,bData (bEA)~(bEA)-bData-CF 17+EA X XXXXX 
80 MOD 100 RIM AND bEA,bData (bEA)~(bEA) AND bData 17+EA C XXUXC 
80 MOD 101 RIM SUB bEA,bData (bEA)~(bEA)-bData 17+EA X XXXXX 
80 MOD 110 RIM XOR bEA,bData (bEA) = (bEA) XOR bData 17+EA C XXUXC 
80 MOD 111 RIM CMP bEA, bData FLAGS~ (bEA) CMP bOata 10+EA X XXXXX 
81 MOD 000 RIM ADD wEA,wData (wEA)=(WEA)+wData 17+EA X XXXXX 
81 MOD 001 RIM OR wEA,wData (wEA)=(WEA) OR wData 17+EA C XXUXC 
81 MOD 010 RIM ADC ~E.lJ,. , .. ·:Da t~ {W~A)~(wEAj+wData+CF 17+£A X XXXXX 
81 MOD 011 RIM SBB wEA,wData (wEA)~(WEA)-wData-CF 17+EA X XXXXX 
81 MOD 100 RIM AND wEA,wOata (wEA)=(wEA) AND wData 17+EA C XXUXC 
81 MOD 101 RIM SUB wEA,wData (wEA)=(wEA)-wDa ta l7+EA X XXXXX 
8l MOD llO RIM XOR wEA,wData (wEA)=(wEA) XOR wData 17+EA C XXUXC 
81 MOD III RIM CMP wEA,wData FLAGS= (wEA) XOR wData 10+EA X XXXXX 
82 MOD 000 RIM ADD bEA,bDa ta (bEA) = (bEl'.) +bDa ta 17+EA X XXXXX 
82 MOD 001 RIM (not used) 
82 MOD 010 RIM ADC bEA,bData (bEA) = (bEl'.) +bDa ta+CF 17+EA X XXXXX 
132 MOD 011 RIM SBB bEl'., bOa ta (bEA)= (bEA) -bDa ta-CF 17+EA X XXXXX 
82 MOD 100 RIM (not used) 
82 MOD 101 RIM SUB bEA,bDa ta (bEA) = (bEl'.) -bOa ta 17+EA X XXXXX 
82 ~10D 11 0 RIM (not used) 
82 MOD )ll RIM eMP bEA,bData FLAGS= (bEl'.) eMP bData 10+EA X XXXXX 
83 MOD 000 RIM ADD wEA,bData FLAGS= ('olEA) +Ext (bData) 17+EA X XXXXX 
83 MOD 001 RIM (not used) 
83 MOD 010 RIM ADC wEA,bData (wEA)=(wEA)+Ext(bData)+CF 17+EA X XXXXX 
83 MOO 011 RIM SBB wEA,bData (wEA)=(wEA)-Ext(bData)-CF 17+EA X XXXXX 
83 MOD 100 RIM (not used) 
83 MOD 101 RIM SUB wEA,bData (wEA)~ (wEA)-Ext(bDa tal 17+EA X XXXXX 
83 MOD 110 RIM (not used) 
83 r~oo 111 RIM eMP 'olEA, bDa ta FLAGS=(wEA) eMP Ext(bData) 10+EA X XXXXX 
84 MOD REGR/M TEST bEl'., bREG FLAGS= (bEl'.) TEST (bREG) 9+EA(3) C XXUXC 
85 MOD REGR/M TEST wEA,wREG FLAGS~ ('olEA) TEST (wREG) 9+EA(3) C XXUXC 
86 MOD REGR/M XCHG bREG,bEA Exchange bREG, bEA 17+EA(4) 
87 MOD REGR/M XCHG wREG,wEA Exchange wREG, wEA 17+EA(4 
88 MOD REGR/M MOV bEA,bREG (bEA)~(bREG) 9+EA(2) 
89 MOD REGR/M MOV wEA,wREG (wEA)=(wREG) 9+EA( 2) 
81'. MOD REGR/M MOV bREG,bEA (bREG)=(bEA) 8+EA(2) 
8B MOD REGR/M MOV wREG,wEA (WREG)~(wEA) 8+EA(2) 
8e MOD OSR RIM MOV wEA,SR (WEA)=(SR) 9+EA(2) 
8e MOD 1-- RIM (not used) 
80 MOD REGR/M LEA I REG, EA (REG)~effective address 2+EA(2) 
8E MOD OSR RIM MOV SR,wEA (SR)=(WEA) 8+EA(2) 
8E MOD -- RIM (not used) 
8F MOD 000 RIM POP lEA Pop stack to EA 17+EA 
8F MOD 001 RIM (not used) 
SF MOD 010 RIM (not used) 
8F MOD 011 RIM (not used'> 

Instruction Set A-7 



Ta~le A-3. Instruct10n Set 1n Numer1c Order of Instruct10n Code. (Page 4 of 7.) 
Op Memory Instruc- Operand summary ClocKs Flags 
Cd Organization tion 001TSZAPC 

8F MOD 100 RIM (not use~) 
8F MOD 101 RIM (not used) 
8F MOD 110 RIM (not used) 
8F MOD 111 RIM (not used) 
90 XCHG AX,AX 
91 XCHG AX,CX 
92 XCHG AX,DX 
93 XCHG AX, BX 
94 XCHG AX,SP 
95 XCHG AX,BP 
96 XCHG AX,S1 
97 XCHG AX,D1 
98 CBW 
99 
9A 
9B 
9C 
90 
9E 
9F 
AO 
Al 
A2 
A3 
A4 

AS 

A6 

A7 

A8 
A9 
AA 

AB 

AC 

AD 

AE 

AF 

BO 
Bl 
B2 
B3 
B4 
BS 
B6 
B7 
B8 
B9 
BA 
BB 
BC 

CWO 
CALL 
WA1TX 
PUSHF 
POPF 
SAHF 
LAHF 
MOV 
MOV 
MOV 
MOV 
MOVSB 

MOVSW 

CMPSB 

CMPSW 

TEST 
TEST 
STOSB 

STOSW 

LODSB 

LODSW 

SCASB 

SCASW 

MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 

off:sba 

AL, bAddr 
AX,wAddr 
bAddr,AL 
wAddr ,AX 

AL,bData 
AX,bData 

AL,bData 
CL,bData 
DL,bData 
BL,bData 
AH,bData 
CH, bOa ta 
DH,bData 
BH, bDa ta 
AX,wData 
CX,wData 
DX,wData 
BX,wData 
SP,wData 

Nap 
Exchange (AX), 
Exchange (AX), 
Exchange (AX), 
Exchange (AX), 
Excha ng e (AX), 
Exchange (AX), 
Exchange (AX), 
(AX)=Ext(AL) 
(OX)=Sign(AX) 
Direct FAR call 

(CX) 
(OX) 
(BX) 
(SP) 
(BP) 
( Sr) 
(Or) 

Wait for TEST signal 
Push FLAGS onto stacK 
Pop stack to FLAGS 
(FLAGS) = (AH) 
(AH)=(FLAGS) 
(AL) = (bAddr) 
(AX)=(wAddr) 
(bAddr)=(AL) 
(wAddr)=(AX) 
Move byte string 

l~ove word string 

Compare byte string 

Compare word string 

FLAGS~(AL) TEST (bData) 
FLAGS=(AX) TEST (wOata) 
store byte string 

store word string 

Load byte string 

Load word string 

Scan byte string 

Scan word string 

(AL)=bData 
(CL)=bData 
(DL)~bData 
(BL)=bData 
(AH)=bOata 
(CH)~bOata 
(OH)=bData 
(BH)=bData 
(AX)=wData 
(CX)=wData 
( DX)=wData 
(BX)=wData 
( Sp)=wData 

A-8 Assembly Language Manual 

3 
3 
3 
3 
3 
3 
3 
3 
2 
5 
28 
3+WA1TX 
10 
8 RRRRRRRRR 
4 RRRRRRRRR 
4 

10 I 10 
10 
10 
18 
(9+17/rep) 
18 I 
(9+l7/rep) 
22 I X 
(9+22/rep) 
22 I X 
(9+22/rep) 

: I~ 
11 
(9+l0Irep) 
11 I 
(9+l0/rep) 
12 I 
(9+l3/rep) 
12 I 
(9+l3/rep) 
15 I X 
(9+l5/rep) 
15 I x 
(9+lS!t-ep) 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

xxxxx 

XXXXX 

XXUXC 
XXUXC 

xx XXX 

XXXXX 



TableE~~---In s truct~~~-i n Numeili Order-Of In struc Uoncode ~--(page--5-ofT.1-
Op Memory Instruc- Operand Swrunary Clocks Flags 
Cd Organization tion ODITSZAPC 

BD MOV BP,wData (BP)~wData 4 
BE MOV SI, wDa ta (SI)~wData 4 
Bf MOV 01 ,wDa ta (DI )~wDa ta 4 
CO (not used) 
Cl (not used) 
C2 RI::T wData NEAR return; (SP)~(SP)+ 

wData 12 
C3 RET NEAR return 8 
C4 MOD REGRIM LES REG, EA ES: REG~ (wEA+2) : (WEA) l6+EA 
C5 MOD REGR/M LDS REG, EA DS:REG~(wEA+2): (WEA) l6+EA 
C6 MOD 000 RIM MOV bEA,bDa ta (bEA)-~ (bDa tal 10+EA 
C6 MOD 001 RIM (not used) 
C6 MOD 010 RIM (not used) 
C6 MOD all RIM (not used) 
C6 MOD 100 RIM (not used) 
C6 MOD 101 RIM (not used) 
C6 MOD 110 RIM (not used) 
C6 MOD III RIM (not used) 
C7 MOD 000 RIM MOV I EA, wDa ta (wEA) ~wDa ta 10+EA 
C7 MOD 001 RIM (not used) 
C7 MOD 010 RIM (nnt l..!sed) 
C7 MOD 011 RIM (not used) 
C7 MOD 100 RIM (not used) 
C7 MOD 101 RIM (not used) 
C7 MOD 110 RIM (not used) 
C7 MOD 111 RIM (not used) 
C8 (not used) 
C9 (not used) 
CA RET wData FAR return, ADO 

data to REG SP 17 
CB RET FAR return 18 
CC INT Type 3 interrupt 52 CC 
CD INT bData Typed interrupt 51 CC 
CE INTO Interrupt if overflow 53 or 4 CC 

(Simple execution of the instruction takes 4 clocks, and actual interrupt, 53. ) 
CF IRET Return from interrupt 24 RRRRRRRRR 
DO MOD 000 RIM ROL bEA,l Rotate bEl'. left 1 bit 15+EA X X 
DO MOD 001 RIM ROR bEA,l Rota te bEl'. right 1 bit 15+EA X X 
DO MOD 010 RIM RCL bEA,l Rotate bEl'. left through 

carey 1 bit 15+£1'. X X 
DO MOO 011 RIM RCR bEA,l Rotate bEl'. right through 

carry 1 bit 15+EA X X 
DO MOD 100 RIM SHL bEA,l Shi ft bEl'. Ie ft 1 bit 15+EA X X 
00 MOD 101 RIM SHR bEA,l Shift b£A right 1 bit 15+£A X X 
DO MOD 110 RIM (not used) 
00 MOD 111 RIM SAR bEA,l Shift signed bEA 

right 1 bit 15+£A X XXUXX 
01 MOD 000 RIM ROL wEA,l Rotate wEA left 1 bit 15+EA X X 
01 MOD 001 RIM ROR wEA,l Rotate wEI'. right 1 bit 15+EA X X 
01 MOD 010 RIM RCL wEA,l Rotate wEA left through 

carry 1 bit 15+EA X X 
01 MOD 011 RIM RCR w£A,l Rotate wEA right through 

carry 1 bit 15+£A X X 
Dl MOD 100 RIM SHL wEA,l Shift wEI'. left 1 bit 15+EA X X 
D1 MOD 101 RIM SHR wEA,l Shift wEA right 1 bit 15+£1'. X X 
01 MOD 110 RIM (not used) 
Dl MOD 111 RIM SAR I wEA,l Shift signed wEA 

right 1 bit 15+EA X XXUXX 

Instruction Set A-9 



Table A-3. Instruct10n Set 1.n NUmerIc Order of Instruct10n Code. (Page 6 ol '.J 
Op Hc:mory Instruc- Operand swrunary Clocks Flag. 
Cd Organization tion ODITSZAPC 

02 MOD 000 RIM ROL bEA,CL Rotate bEA left 20+EA 
(CL) bits +4/bit X X 

02 MOD 001 RIM ROR bEA,CL Rota te bEA right 20+EA 
(CL) bits +4/bit X X 

D2 MOD 010 RIM RCL bEA,CL Rotate bEA left through 20+EA 
carry (CL) bits +4/bit X X 

02 MOD 011 RIM RCR bEA,CL Rota te bEA right through 20+EA 
carry (CL) bits +4/bit X X 

D2 MOD 100 RIM SHL bEA,CL Shi ft bEA left 20+EA 
(CL) bits +4/bit X X 

02 MOD 101 RIM SHR bEA, CL Shift bEA right 20+EA 
(CLl bits +4/bit X X 

D2 MOD 110 RIM (not used) 
D2 MOD III RIM SAR bEA,CL Shi ft si'jned bEA 20+EA 

right (CL) bits +4/bit X XXUXX 
D3 MOD 000 RIM ROL wEA,CL Rotate wEA left 20+EA 

(CL) bits +4/bit X X 
D3 MOD 001 RIM ROR wEA, CL Rotate wEA right 20+EA 

(CLl bits +4/bit X X 
D3 MOD 010 R/M RCL wEA,CL Rotate wEA left through 20+EA 

carry (CL) bits +4/bit X X 
D3 MOD 011 RIM RCR wEA,CL Rotate wEA right through 20+EA 

carry (cLl bits +4/bit X X 
D3 MOD 100 RIM SHL wEA,CL Shift wEA left 20+EA 

(CL) bits +4/bit X X 
03 MOD 101 RIM SHR wEA,CL Shi ft wEA right 20+EA 

(CL) bits +4/bit X X 
03 MOD 110 RIM (not used) 
D3 MOD III RIM SAR 

I 
wEA,CL Shift signed wEA 20+EA 

right (CL) bits +4/bit X XXUXX 
D4 00001010 AAM ASCII adjust for multiply 83 U XXUXU 
05 00001010 AAD ASCII adjust for divide 60 U XXUXU 
06 (not used) 
D7 XLAT T'IBLE Translate using ( BX) 11 
D8 MOD --- RIM ~2SC EA Escape to external device 8+EA 
EO LOOPNZ Loop (CX) times while 

bOISP not zero 19 or 5 
El LOOPZ bDISP Loop (CX) times while zero 18 or 6 
E2 LOOP bOISP Loop (CX) times 17 or 5 
E3 JCXZ bDISP Jump if (CX)=O 18 or 6 
E4 IN AL,bPort Input from bPort to AL 10 
E5 IN AX,wPort Input from wPort to AX 10 
E6 OUT bPort,AL Output (AL) to bPort 10 
E7 OUT wPort,AX Output (AX) to wPort 10 
E8 CALL wOISP Direct near call 11 
E9 JMP wDISP Direct near jump 7 
EA JMP wDISP, 

wSEG Direct far jump 7 
r2B JMP bDISP Direct near jump 7 
EC IN AL,DX Byte input ft-om port 

(OX) to },EG AL 8 
ED IN AX,DX Word input from port 

(DX) to REG AX 8 
EE OUT DX,AL Byte output (AL) to 

port (DX) 8 
EF OUT DX,AX Word output (AX) to 

port (DX) 8 
FO LOCK Bus lock prefix 2 
Fl (not use~) 

A-lO Assembly Language Manual 



Table A-3. Instruction set in Numeric Order of Instruction Code. (Page 7 of 7.) 
Op Memory Instruc- Operand Surrunary Clocks Flags 
Cd Organization tion ODITSZAPC 

F2 REPNZ 

F3 REPZ 

F4 HLT 
F5 CMC 
F6 MOD 000 RIM TEST 
F6 MOD 001 RIM (not 
F6 MOD 010 RIM NOT 
F6 MOD all RIM NEG 

Repeat while (CX)fO 
AND {ZF)=O 

Repeat while (CX)fO 
AND (ZF)=l 

Halt 
Complement carry flag 

bEA,bData FLAGS~(bEA) TEST bData 
used) 

I bEA Byte invert bEA 
bEA Byte negate bEl'. 

; Note: Ca rry Flag is C 
F6 MOD 100 RIM MUL 

if destination is 0.) 

I 

bEl'. Unsigned multiply by (bEl'.) 
F6 MOD 101 RIM IMUL 
F6 MOD 110 RIM DIV 
F6 MOD III RIM IDIV 
F7 MOD 000 RIM TEST 
F7 MOD 001 RIM (not 
F7 MOD 010 RIM NOT 
F7 MOD all RIM NEG 

: Note: Ca rry Flag is 
F71 MOD 100 R(M\MUL 
.7 MOO 101 RIM IMUL 
F7 MOD 110 RIM DIV 
F7 MOD III RIM IDIV 
F8 CLC 
F9 STC 
FA CLI 
FB STI 
FC 
FD 
FE MOD 000 
FE MOD 001 
FE MOD 010 
FE MOD 011 
FE MOD 100 
FE MOD 101 
FE MOD 110 
FE MOD 111 
FF MOD 000 
FF MOD 001 
FF MOD 010 
FF MOD all 
FF MOD 100 
FF MOD 101 
FF MOD 110 
FF MOD 111 

CLD 
STD 

RIM INC 
RIM DEC 
RIM (not 
RIM (not 
RIM (not 
RIM (not 
RIM (not 
RIM (not 
RIM INC 
RIM DEC 
RIM CALL 
RIM CALL 
RIM JMP 
RIM JMP 
RIM PUSH 
RIM (not 

bEl'. Signed multiply by (bEl'.) 
bEA Unsigned divide by (bEl'.) 
bEA Signed divide by (bEl'.) 
wEI'., wDa ta FLAGS~ (wEI'.) TEST wDa ta 

used) 

I wEA Invert wEI'. 
wEA Nega te wEA 

C if destination is 0.) 
I wEI'. I Unsigned multiply hy (",1':1>.) 

wEI'. Signed multiply by (wEA) 
wEI'. Unsigned divide by (wEI'.) 
wEA Signed divide by (wEI'.) 

Clear carry flag 

bEl'. 
bEl'. 

used) 
used) 
used) 
used) 
used) 
used) 

used) 

wEI'. 
wEI'. 
EA 
EA 
EA 
EA 
EA 

Set carry flag 
Clear interrupt flag 
Set interrupt flag 
Clear direction flag 
Set direction flag 
(bEA)~(bEA)+l 
(bEA)~(bEA)-l 

(wEA)= (wEA)+1 
{wEA)=(WEA)-l 
Indirect NEAR call 
Indirect FAR call 
Indirect NEAR jump 
Indirect FAR jump 
Push (EA) onto stack 

2 

2 
2 
2 
10+EA 

16+EA 
16+EA 

71 
90 
90 
112 
10+EA 

16+EA 
16+EA 

121 
144 
155 
177 
2 
2 
2 
2 
2 
2 
15+EA 
15+EI'. 

15+EI'. 
15+EA 
13+EA 
29+EI'. 
7+EA 
l6+EA 
16+EI'. 

Instruction Set 

x 
C XXUXC 

x XXXXS 

x UUUUX 
x UUUUX 
U UUUUU 
U UUUUU 
C XXUXC 

x XXXXS 

x uuuux 
x UUUUX 
U UUUUU 
U UUUUU 

c 
S 

C 
C 

x XXXX 

C 
S 

x XXXX 

x XXXX 
x XXXX 

A-ll 



Table A-4 Instructlon Set 1n Alphabet1c Order of Instruct10n Hnemonic (1 of 6 
Instruc- Operand Summary Op Memory Clocks F1aga 

tion Cd Organization ODITSZAPC 

AAA ASCII adjust for add 37 4 U UUXUX 
AAD ASCII adjust for divide D5 00001010 60 U XXUXU 
AAH ASCII adjust for multiply D4 00001010 83 U XXUXU 
AAS ASCII adjust for subtract 3F 4 U UUXUX 
ADC AL,bData (AL) ~ (AL) +bDa ta+CF 14 4 X XXXXX 
ADC AX,wData (AX)~ (AX) +wData+CF 15 4 X XXXXX 
ADC bEA,bData (bEA)~(bEA)+bData+CF 80 MOD 010 RIM 17+EA X XXXXX 
ADC wEA,wData (wEA)~(wEA)+wData+CF 81 MOD 010 RIM 17+EA X XXXXX 
ADC bEA,bDa ta (bEA) ~ (bEA) +bDa ta+CF 82 MOD 010 RIM 17+EA X XXXXX 
ADC wEA, bDa ta (wEA)~(wEA)+Ext(bData)+CF 83 MOD 010 RIM 17+EA X XXXXX 
ADC bEA,REG (bEA)~(bEA)+(bREG)+CF 10 MOD REGR/M 16+EA(3) X XXXXX 
ADC wEA, REG (wEA)~(wEA)+(wREG)+CF 11 MOD REGR/M 16+EA(3) X XXXXX 
ADC REG, bEA (bREG)~(bREG)+(bEA)+CF 12 MOD REGR/M '''At'll X XXXXX 
ADC REG,wEA (WREG) = (wREG) + (wEA) +CF 13 MOD REGR/M 9+EA(3) X XXXXX 
ADD AL,bData (AL)=(AL)+bData 04 4 X XXXXX 
ADD AX,wData (AX)=(AX)+wData 05 4 X XXXXX 
ADD bEA,REG (bEA)=(bEA)+(bREG) 00 MOD REGR/M 16+EA(3) X XXXXX 
ADD wEA, REG (wEA)~(wEA)+(wREG) 01 MOD REGR/M 16+EA(3) X XXXXX 
ADD REG, bEA (bREG)~(bREG)+(bEA) 02 MOD REGR/M 9+EA(3)1 X XXXXX 
ADD REG,wEA (wREG)~ (WREG) + (WEA) 03 MOD REGR/M 9+EA(3) X XXXXX 
h .. 'If) hEII.bData (bEA)~(bEA)+bData 80 MOD 000 RIM 17+EA X XXXXX 
ADD wEA,wData (wEA)~(wEA)+WData 81 MOD 000 RIM 17+EA 

I 

X XXXXX 
ADD bEA, bDa ta (bEA) ~ (bEA) +bData 82 MOD 000 RIM 17+EA X XXXXX 
ADD wEA,bData FLAGS~ (wEA) +Ext(bData) 83 MOD 000 RIM 17+EA X XXXXX 
AND AL,bData (AL)~(AL) AND bData 24 4 C XXUXC 
AND AX,wData (AX)=(AX) AND wData 25 4 C XXUXC 
AND bEA,REG (bEA) = (bEA) AND (bREG) 20 MOD REGR/M 16+EA(3) C XXUXC 
A.ND wEA, REG (wEA)~(wEA) AND (wREG) 21 MOD REGR/M 16+EA(3) C XXUXC 
AND REG, bEA (bREG) ~ (bREG) AND (bEA) 22 MOD REGR/M 9+EA(3) C XXUXC 
AND REG,wEA (wREGl~(WREGl AND (wEAl 23 MOD REGR/M 9+EA(3) C XXUXC 
AND bEA,bDa ta (bEA)~(bEA) AND bData 80 MOD 100 RIM 17+EA C XXUXC 
AND wEA,wData (wEA)~(wEA) AND wData 81 MOD 100 RIM 17+EA C XXUXC 
CALL off:sba Direct FAR call 9A 28 
CALL wDISP Direct NEAR call E8 11 
CALL EA Indirect NEAR call FF MOD 010 RIM 13+EA 
CALL EA Indirect FAR call FF MOD all RIM 29+EA 
CBW (AX)=Ext(AL) 98 2 
CLC Clear carry flag F8 2 C 
CLD Clear direction flag FC 2 C 
CLI Clear inter rupt flag FA 2 C 
CMC Complement carry flag F5 2 X 
CMP AL,bData FLAGS~(AL) CMP (bData) 3C 4 X XXXXX 
CMP AX, wDa ta FLAGS=(AX) CMP (wData) 3D 4 X XXXXX 
CMP bEA, bREG FLAGS = (bEA) OIP (bREG) 38 MOD REGR/M 9+EA X XXXXX 
CMP wEA,wREG FLAGS=(wEA) CMP (wREG) 39 MOD REGR/M 9+EA X XXXXX 
CMP bREG,bEA FLAGS~ (bREG) CMP (bEA) 3A MOD REGR/M 9+EA X XXXXX 
CMP wREG,wEA FLAGS~(wREG) CMP (wEA) 3B MOD REGR/M 9+EA X XXXXX 
CMP bEA,bData FLAGS=(bEA) CMP bData 80 MOD III RIM 10+EA X XXXXX 
CMP bEA,bDa ta FLAGS~ (bEA) CMP bDa ta 82 MOD III RIM 10+EA X Xxxxx. 
CMP wEA,wData FLAGS~(wEA) CMP wData 81 MOD 111 RIM 10+EA X XXXXX 
CMP wEA,bData FLAGS=(wEA) CMP Ext(bData) 83 1100 III RIM 10+EA X XXX XX 
CMPSB Compare byte string A6 22 X XXXXX 

(9+22/rep) 
CMPSW Compare word string A7 22 I X XXXXX 

(9+22/rep) 
CS: CS segment override 2E 2 

I 
CWO (OX) ~Sign( AX) 99 5 
DAA Decimal adjust for ADD 27 4 X XXXXX 

A-l2 Assembly Language Manual 



Table A-4 Instruct10n Set 1n A1phabet1C Order of Instruct10n Mnemonic (2 of 6 
Instruc- I Operand I 

Swmnary Op Memory ClocKs Flags 
tion Cd Organization ODITSZAPC 

DA5 Decimal adjust for 2F 4 U XXlOCX 
subtract 

DEC AX (AX)~(AX)-l 48 2 X XXXX 
DEC BP (BP)~( BP)-l 4D 2 X XXXX 
DEC BX (BX)",( BX)-1 4B 2 X XXXX DEC ex (cXl=(CXl-l 49 2 X XXXX 
DEC 01 (01 )=(01 )-1 4F 2 X XXXX 
DEC ox (DX)=( DX)-1 4A 2 X XXX)( 
DEC bEA (bEA)=(bEA)-l FE MOD 001 RIM 15+EA X XXlOC 
DEC wEA (WEA)=(wEA)-l FF MOD 001 RIM 15+EA X XXXX 
DEC SP (SP)=(SP)-1 4C 2 X XXXX 
DEC 51 (SI)~(SI)-l 4E 2 X XXXX 
DIV bEA Unsigned divide by (bEA) F6 MOD 110 RIM 90 U UUUUU 
DIV wEA Unsigned divide by (WEA) F7 MOD 110 RIM 155 U UUUUU 
DS: OS segment override 3E 2 
ES: ES s egmen t overr ide 26 2 
ESC EA Escape to external device 08 MOD --- RIM 8+EA 
HLT Halt F4 2 
IDIV bEA Signed divide by (bEA) F6 MOD III RIM 112 U uuuuu 
IDIV wEA Signed divide by (wEA) F7 MOD 111 RIM 177 U UUUUU 
IMUL bEA Signed multiply by rbEA) 1"6 MOD "" r.../~.~ 90 X uuuux 
IMUL W!o:A Signed multiply by (WEA) F7 MOD 101 RIM 144 X UUUUX 
IN AL,DX Byte input from port EC 

(OX) to REG AL 8 
IN AL, bPort Input from bPort to AL E4 10 
IN AX,DX Word input from port ED 

(DX) to REG AX 8 
IN AX,wPort Input from wPort to AX E5 10 
INC AX (AX)=(AX)+l 40 2 X XXXX 
INC BP (BP)"'(BP)+l 45 2 X XXXX 
INC BX ( BX)"'(BX)+l 43 2 X XXXX 
INC CX (CX)=(CX)+l 41 2 X XXXX 
INC 01 (DI)=(D1)+1 47 2 X XXXX 
INC OX ( DX)=(OX)+1 42 2 X XXXX 
INC bEA (bEA)=(bEA)+l FE MOD 000 RIM lS+EA X XXXX 
INC wEA (wEA)~(WEA)+1 FF MOD 000 RIM lS+EA X XlOCX 
INC SP (SP)=(SP)+l 44 2 X XXXX 
INC SI (SI)=(SI)+1 46 2 X XXXX 
INT bData Typed interrupt CD 51 cc 
INT 3 Type 3 interrupt CC 52 CC 
INTO Interrupt if overflow CE 53 or 4 ce 
Simple execution of the instruction takes 4 clocks, and actual interrupt, 53. ) 
IRET 

I 
Return from interrupt CF 24 RRRRRRRRR 

JA bDISP Jump if above 77 16 or 4 
JAE bDISP Jump if above or equal 73 16 or 4 
JB bOISP Jump if below 72 16 or 4 
JBE bOISP Jump if below or equal 76 16 or 4 
JC (Same as JB, JNAE.) 
JCXZ bOISE' I Jump if {CX)=O E3 18 or 6 
JE (Same as JZ.) 
JG bOISP Jump if greater 7F 16 or 4 
JGE bOISP Jump if greater or equal 70 16 or 4 
JL bOISP Jump if less 7C 16 or 4 
JLE bDISP Jump if less or equal 7E 16 or 4 
JMP bDISP Direct NEAR jump EB 7 
JMP wDISP Direct NEAR jump E9 7 
JMP wDISP, EA 

wSEG Direct FAR jump 
JMP EA Indirect FAR jump FF MOD 101 RIM 16+EA 
.TMP F", Tnni r,:::t.rt- NF.A R ;11mn 1"1" MOO IOc) RIM 7+F.A 

Instruction Set A-13 



Ta'DIe A-'1. Instruct1.on Set 1.n A],£habet1.c Order of lnstructlon Hnemon1.c. {3 of 6.J 
Instruc- Operand Swrunary Op Memory Clocks Flags 

tion Cd Organization ODITSZl\PC 

JNA (Same as'JBE.) 
JNB (Same as JAE. ) 
JNBE (same as JA. ) 
JNG (Same as JLE. ) 
JNGE (Same as JL. ) 
JNL (Same as JGE. ) 
JNLE (Same as JG.) 
JNO bD1SP I Jump if no overflow 71 16 or 4 
JNP (Same as JPO.) 
JNS bDISP Jump if no sign 79 16 or 4 
JNZ bDISP Jump if not zero 75 16 or 4 
JO bDISP Jump if overflow 70 16 or 4 
JPE bDISP Jump if parity even 7.0. 16 or 4 
JPO bDISP Jump if parity odd 7B 16 or 4 
JS bDISP Jump if sign 78 16 or 4 
JZ bDISP Jump if zero 74 16 or 4 
LAHF (AH)=(FLAGS) 9F 4 
LOS REG,EA DS:REG=(wEA+2):(wEA) C5 MOD REGR/M 16+EA 
LEA REG,EA (REG)=effective address 80 MOD REGR/M 2+EA(2) 
LES REG,EA ES:REG=(wEA+2): (wEA) C4 MOD REGR/M 16+EA 
TJ"'If)<:'R Load byte string AC 12 

(9+13/rep) 
LODSW Load word string AD 12 I 

(9+13/rep) 
LOCK Bus lock prefix FO 2 
LOOP bDISP Loop (CX) times E2 17 or 5 
LOOPE (Same as LOOPZ. ) 
LOOPNE (Same as LOOPNZ. ) 
LOOPNZ Loop (CX) times while EO 

bDISP not zero 19 or 5 
LOOPZ bDISP Loop (CX) times while zero El 18 or 6 
MOV bAddr,AL (bAddr)=(AL) A2 10 
MOV wAddr,AX (wAddr)=(AX) A3 10 
MOV AH,bData (AH)=bData B4 4 
110V AL, bAddr (AL)=(bAddr) AO 10 
MOV AL,bData (AL)=bData BO 4 
MOV AX,wAddr (AX}=(wAddr) Al 10 
MOV AX,wData (AX}=wData B8 4 
MOV BH,bData (BH}=bData B7 4 
MOV BL,bData (BL)=bData B3 4 
MOV BP, wDa ta (BP)=wData BD 4 
MOV BX,'vData (BX) '~wDa ta BB 4 
MOV CH,bData (CH)=bData B5 4 
MOV CL, bDa ta (CL}=bData B1 4 
MOV CX,wData (CX}=wData B9 4 
MOV DH,bData (DH)=bData B6 4 
MOV DI,wData (Dl )=wData BF 4 
MOV DL,bData (DL)=bData B2 4 
MOV DX,wData (DX)=wData BA 4 
MOV bEA,bData (bEA)~ (bDa ta) C6 MOD 000 R/M 10+EA 
MOV wEA, wData (wEA)=(wData) C7 MOD 000 R/M 10+EA 
MOV bEA,bREG (bEA}=(bREG) 88 MOD REGR/M 9+EA(2} 
MOV wEA,wREG (WEA}=(WREG) 89 MOD REGR/M 9+EA(2) 
MOV wEA, SR (wEA)=(SR) 8C MOD OSR R/M 9+EA(2) 
MOV bREG, bEA (bREG)=(bEA) 8.0. MOD REGR/M 8+EA(2) 
MOV wREG,wEA (wREG) = (WEA) 8B MOD REGR/M 8+EA( 2) 
MOV sr, wData (SI )=wData BE 4 
MOV SP, wData (SI!)=wData BC 4 
MOV SR,wEA (SR)=(wEA) 8E MOD OSR R/M 8+EA(2) 

A-14 Assembly Language Manual 



Table A~4. Instructlon Set in Alphabetic Order of Instruction Mnemonic. (4 of 6.) 
Instruc- Operand Summary Op Memory ClocKs 

tion Cd Orqanization 
Flags 

OOITSZAPC 

MOVS 
MOVSB 

MOVSW 

MUL 
MUL 
NEG 

{Note: 
NEG 

(Note: 
NOP 
NOT 
NOT 
OR 
OR 
OR 
OR 
OR 
OR 
OR 
OR 
OUT 

OUT 

OUT 
OUT 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POPF 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSHF 
RCL 

RCL 

(Use MOVJB, MOVSW.) 
Move byte string A4 

Move word string AS 

bEA Unsigned multiply by (bEA) F6 MOD 100 RIM 
MOD 100 RIM 
MOD 011 RIM 

wEll. Unsigned multiply by (wEll.) F7 
bEA Byte negate bEA F6 

Carry Flag is e if destination is 0.) 
I wEA ! Negate wEll. 

Carry Flag 1S C if destination is 0.) 
(Same as XCHG AX, AX) 

bEl'. I Byte invert bEl'. 
wEA Invert wEA 
AL,bData (AL)=(AL) OR bData 
AX,wData (AX)=(AX) OR wData 
bEA,bOata (bEA)~(bEA) OR bData 
wEA,wData (wEA)=(WEA) OR wData 
bEl'., REG I (bEA)~(bEA) OR (bREG) 
wEA,REG (wEA)=(wEA) OR (wREG) 
REG. bRA (hREG)=(bREC) ...,J.," (bEA) 
REG,wEA (wREG)=(wREG) OR (wEll.) 
OX,AL Byte output (AL) to 

port (OX) 
DX,AX Word output (AX) to 

port (OX) 
bPort,AL Output (ALl to bPort 
wPort,AX Output (AX) to wPort 
AX Pop stack to AX 
BX 
BP 
ex 
DI 
OS 
ox 
EA 
ES 
SI 
SP 
SS 

AX 
BP 
BX 
es 
ex 
01 
OS 
OX 
Ell. 
ES 
SI 
SP 
SS 

bEA,l 

wEA,l 

Pop stack to BX 
Pop stack to BP 
Pop stack to ex 
Pop stack to 01 
Pop stack to OS 
Pop stack to OX 
Pop stack to EA 
Pop stack to ES 
Pop stack to 51 
Pop stack to SP 
Pop stack to SS 
Pop stack to FLAGS 
Push (AX) onto stack 
Push (BP) onto stack 
Push (BX) onto stack 
Push (CS) onto stack 
Push (ex) onto stack 
Push (01) onto stack 
Push (OS) onto stack 
Push (OX) onto stack 
Push (EA) onto stack 
Push (ES) onto stack 
Push (51) onto stack 
Push (SP) onto stack 
Push (SS) onto stack 
Push FLAGS onto st_ack 
Rotate bEl'. left thru 

carry 1 bit 
Rotate wEll. left thru 

rArrv 1 hit-

F7 

F6 
F7 
OC 
00 
80 
81 
08 
09 

MOD 011 RIM 

MOD 010 RIM 
MOD 010 RIM 

MOD 001 RIM 
MOD 001 RIM 
MOD REGR/M 
MOD REGR/M 

OA MOD RC(jJ{/M 
MOD REGR/M OB 

EE 

EF 

E6 
E7 
58 
5B 
50 
59 
SF 
IF 
SA 
8F MOD 000 R/M 
07 
5E 
5C 
17 
90 
50 
55 
53 
OE 
51 
57 
IE 
52 
FF MOD 110 RIM 
06 
56 
54 
16 
9C 
DO MOD 010 R/M 

Dl MOD 010 R/M 

18 
(9+l7/rep) 
IB I 
(9+l7/rep) 
71 X 
124 X 
16+EA X 

16+EA X 

16+EA 
16+EA 
4 C 
4 C 
17+EA e 
l7+EA C 
16+EA(3 C 
l6+EA(3 C 
9+EA(3) e 
9+EA(3) e 

B 

8 
10 
10 
8 
8 
8 
B 
8 
8 
8 
I7+EA 
B 
8 
8 
8 

UUUUX 
UUUUX 
XXXXS 

XXXXS 

XXUXC 
XXUXC 
XXUXC 
XXUXC 
XXUXC 
XXUXC 
XXUXC 
xxuxe 

8 RRRRRRRRR 
11 
11 
11 
11 
11 
11 
10 
11 
16+EA 
10 
11 
11 
11 
10 

lS+EA 

1 <;+F.A 

X XXXXX 

x x 

Instruction Set A-IS 



Table A-4. Inst.ruct.1on Set In Alphabetic Order of Instruct10n Mnemon1C .. {5 of: l:.J 
Instruc- Operand Summary Op Memory ClocKs Flaga 

tion Cd Or:ganization ODITSZAPC 

RCR bEA,CL Rota t.e bEl'. right thru D2 MOD Oll R/M 20+EA 
carry (CL) bit.a +4/bit X X 

RCR wEA,CL Rot.at.e wEI'. right. t.hru D3 MOD 011 R/M 20+EA 
carry (CL) bit.a +4/bit X X 

RCR bEA, 1 Rotate bEl'. right thru DO MOD 011 R/M 
carry 1 bit 15+EA X X 

RCR wEA,l Rota te wEI'. right thru Dl MOD 011 R/M 
carry 1 bit 15+EA X X 

REP (Same as REPZ. ) 
REPE (Same as REPZ.) 

I AND (ZF)=l 2 
REPNE (Same as REPNZ. ) 
REPNZ Repeat while (CX),1o F2 

AND (ZF)=O 2 
REPZ Repeat while (CX),1o F3 
RET wData FAR return, ADD CA 

data to REG SP 17 
RET FAR return CB 18 
RET NEAR return C3 8 
RET wData NEAR return; (Sp)=(Sp)+ C2 

(wData; 12 
ROL bEA,CL Rotate bEl'. left D2 MOD 000 RIM 20+EA 

(CL) bits +4/bit X X 
ROL wEA,CL Rotate wEI'. left D3 MOD 000 RIM 20+EA 

(CL) bits +4/bit X X 
ROL bEA,l Rotate bEA left 1 bit DO MOD 000 RIM lS+EA X X 
ROL wEA, 1 Rotate wEI'. left 1 bit 01 MOD 000 RIM 15+EA X X 
ROR bEA,CL Rota te bEl'. right 02 MOD 001 RIM 20+EA 

(CL) bits +4/bit X X 
ROR wEA,CL Rotate wEI'. right 03 MOD 001 RIM 20+EA 

(CL) bits +4/bit X X 
ROR bEA,l Rotate bEl'. right 1 bit DO MOD 001 RIM 15+EA X X 
ROR wEA,l Rota te wEI'. right 1 bit 01 MOD 001 RIM lS+EA X X 
SAHF (FLAGS) = (AH) 9E 4 RRRRRRRRR 
SAL (Same as SHL. ) 
SAR bEA,CL Shift signed bEA 02 HOD 111 RIM 20+EA 

right (CL) bits +4/bit X XXUXX 
SAR wEA,CL Shift signed wEI'. 03 MOD III RIM 20+EA 

right (CL) bits +4/bit X XXUXX 
SAR bEA,l Shift signed bEl'. DO ~10D III RIM 

right 1 bit 15+EA X XXUXX 
SAR wEA,l Shift signed wEI'. D1 MOD III RIM 

right 1 bit 15+EA X X.XUXX 
SBB AL,bData (AL)=(AL)-bData-CF lC 4 X XXXXX 
SBB AL,wData (AX) = (AX) -wDa ta-CF ID 4 X XXXXX 
SBB bEl'., bDa ta (bEA)= (bEl'.) -bDa ta-CF 80 MOD 011 RIM 17+EA X XXXXX 
SBB bEA,bData (bEA)=(bEA)-bOata-CF 82 MOD 011 RIM I7+EA X XXXXX 
SBB wEA,wData (wEA)=(wEA)-wData-CF 81 MOD 011 RIM 17+EA X XXXXX 
SBB wEA,bData (wEA)= (wEA) -Ext(bOata) -CF 83 MOD 011 RIM 17+EA X XXXXX 
SBB bEA, REG (bEA)=(bEA)-(bREG)-CF 18 MOD REGR/M 16+EA(3 X XXXXX 
SBB wEA, REG (wEA)=(wEA)-(WREG)-CF 19 MOD REGR/M 16+EA(3 X XXXXX 
SBB REG, bEA (bREG)= (bREG)- (bEA) -CF II'. MOD REGR/M 9+EA(3 ) X XXXXX 
SBB REG,wEA (wREG)=(WREG) - (wEA) -CF IB MOD REGR/M 9+EA(3) X XXXXX 
SCASB Scan byte string AE 15 X XXXXX 

(9+lS/rep) 
SCASW Scan word string AF 15 IX XXXXX 

(9+1S/rep) 
SHL bEA,CL Shi ft bEl'. Ie ft D2 MOD 100 RIM 20+EA I 

(CL) bits +4/hit X X 

A-l6 Assembly Language Manual 



Table A 4 -
Instruc-

tion 

SHL 

SHL 
SHL 
SHR 

SHR 

SHR 
SHR 
SS: 
STC 
STD 
STI 
STOSB 

STOSW 

SUB 
SUB 
SUB 
SUB 
SUB 
SUB 
SUB 
SUB 
SUB 
SUB 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
WAITX 
XCHG 
XCHG 
XCHG 
XCHG 
XCHG 
XCHG 
XCHG 
XCHG 
XCHG 
XCHG 
XLAT 
XOR 
XOR 
XOR 
XOR 
XOR 
XOR 
XOR 
XOR 

Instructlon Set in Alphabetlc Order of lnstructlon Mnemonic ---r&Of60 
Operand Swrunary Op 

Cd 

wEA,CL Shift wE1'. left D3 
(CL) bits 

bEA,l Shift bEA left 1 bit DO 
wEA,l Shift wE1'. left 1 bit Dl 
bEA,CL Shift bEA right 02 

(CL) bits 
wEA,CL Shift wEA right 03 

(CL) bits 
bEA,l Shift bEA right 1 bit DO 
wEA,l Shift wEA right 1 bit 01 

SS segment override 36 
Set carry flag F9 
Set direction flag FD 
Set interrupt flag FB 
Store byte string AA 

Store word string AB 

AL,bData (AL)= (AL) -bDa ta 2C 
AX,wData (AX)=(AX)-wData 2D 
bEA,bData (bEA1=(hRI\)-brBta 80 
bEA,bData (bEA1=(bEA1-bData 82 
wEA,wData (wEA)= (WEA) -wDa ta 81 
wEA,bData (wEA)= (WEA) -Ext(bDa tal 83 
bEA,REG (bEA)=(bEA)-(bREG) 28 
wEA,REG (wEA)= (WEA)- (WREG) 29 
REG,bEA (bREG) = (bREG) - (bEA) 2A 
REG,wEA (wREG) = (wREG) - (wEA) 2B 
AL,bData FLAGS=(AL) TEST (bData) A8 
AX,bData FLAGS=(AX} TEST (wData) A9 
bEA,bData FLAGS=(bEA) TEST bData F6 
wEA,wData FLAGS=(WEA} TEST wData F7 
bEA, bREG FLAGS= (bEA) TEST (bREG) 84 
wEA,wREG FLAGS=(wEA) TEST (wREG) 85 

Wait for TEST signal 9B 
AX, AX NOP 90 
AX,BP Exchange (AX), (BP) 95 
AX,BX Exchange (AX), (BX) 93 
AX,CX Exchange (AX) , (CX) 91 
AX,Dr Exchange (AX) , (Dr) 97 
AX,DX Exchange (AX), (OX) 92 
AX, sr Exchange (AX) , ( SI) 96 
AX,SP Exchange (AX), (SP) 94 
bREG, bEA Exchange bREG, bEA 86 
wREG,wEA Exchange wREG, wE!\. 87 
TABLE Translate using (BX) D7 
AL,bData (AL)=(AL) XOR bData 34 
AX, wData (AX)=(AX) XOR wData 35 
bEA,bData (bEA)=(bEA) XOR bData 80 
wEA,wData (wEA)= (wEA) XOR, wData 81 
bEA, REG (bEA)=(bEA) XOR (bREG) 30 
wEA,REG (wEA)=(WEA) XOR (wREG) 31 
REG,bEA (bREG)=(bREG) XOR (bEA) 32 
REG,wEA (wREG)=(wREG) XOR (wEA) 33 

Memory 
Orqanization 

MOD 100 R/M 

MOD 100 R/M 
MOD 100 R/M 
MOD 101 RIM 

MOD 101 R/M 

MOD 101 R/M 
MOD 101 R/M 

MOD 10l RiM 
MOD 101 R/M 
MOD 101 R/M 
MOD 101 R/M 
MOD REGR/M 
MOD REGR/M 
MOD REGR/M 
MOD REGR/M 

MOD 000 R/M 
MOD 000 R/M 
MOD REGR/M 
HOD REGR/M 

1'1 aD REGR/M 
MOD REGR/M 

MOD 110 R/M 
MOD 110 R/M 
MOD REGR/M 
MOD REGR/M 
MOD REGR/M 
MOD REGR/M 

Clocks Flags 
ODITSZAPC 

20+EA 
+4/bit X X 

15+E1'. X X 
15+EA X X 
20+EA 
+4/bit X X 

20+EA 
+4/bit X X 

15+EA X X 
15+EA X X 
2 
2 S 
2 C 
2 S 
11 
(9+10/rep) 
11 I 
(9+l0/rep) 
4 

I~ 4 
17+EA X 
17+EA X 
17+EA X 
17+EA X 
16+EA(3 X 
16+EA(3 X 
9+EA(3) X 
9+EA( 3) X 
4 X 
4 X 
10+EA C 
10+EA C 
9+EA(3) C 
9+EA( 3) C 
3+WAITX 
3 
3 
3 
3 
3 
3 
3 
3 
17+EA(4 
17+EA(4 
11 
4 C 
4 C 
17+EA C 
17+EA C 
16+EA( 3 c 
16+EA(3 C 
9+EA(3) C 
9+EA(3) C 

XXXXX 
XXXXX 
XXXXX 
XXXXX 
XXXXX 
XX XXX 
XXXXX 
X XXX X 
XXXXX 
XXXXX 
XXUXC 
XXUXC 
XXUXC 
XXUXC 
XXUXC 
XXUXC 

XXUX C 
C 
C 
C 
C 
C 
C 
C 

XXUX 
XXUX 
XXUX 
XXUX 
XXUX 
XXUX 
XXUX 

Instruction Set 1\-17 





Appendix B: RESERVED WORDS 

A ENDS JPO PTR 
AM EQ JS PUBLIC 
AAD EQU JZ PURGE 
AAM ES LABEL PUSH 
AAS ESC LAHF PUSHF 
ABS EVEN LOS RCL 
ADC EXTRN LE RCR 
ADD FAC LEA RECORD 
AH FALC LENGTH REPE 
AL FAR LES REPNE 
AND GE LIST REPNZ 
ASSUME GEN LOCK REPZ 
AT GENONLY LODS RESTORE 
AX GROUP LODSB RET 
BH GT LODSW ROR 
BL HIGH LOOP SAL 
BP HLT LOOPE SAR 
BX IDIV LOOPNZ SAVE 
BYTE IMUL LOOPZ SBB 
CALL IN LOW s('!>'S 
CEn·! INC LT SCASB 
CH INCLUDE MASK SCASW 
CL INT MEMORY SEG 
CLC INTO MOD SEGMENT 
CLD IRET MOV SHL 
CLI JA MOVS SHORT 
CMC JAE MOVSB SHR 
CMP JB MOVSW SI 
CMPS JBCZ MUL SIZE 
CMPSB JBE NAME SP 
CMPSW JC NE SS 
COMMON JE NEAR STACK 
CS JGE NEG STC 
CWD JL NIL STD 
cx JLE NOGEN STI 
DM JMP NOLIST STOS 
DAS JNA NOPAGING STOSB 
DB JNAE NOT STOSW 
DD JNB NOTHING SUB 
DEC JNBE NOXREF TEST 
DH JNC OFFSET THIS 
DI JNE OR TITLE 
DIV JNG ORG TYPE 
DL JNGE OUT WAIT 
DS JNLE PAGE WIDTH 
DUP JNO PAGE LENGTH WORD 
DW JNP PAGEWIDTH XCHG 
DWORD JNS PAGING XLAT 
DX JNZ PARA XLATB 
EJECT JO POP XOR 
END JP POPF ? 
ENDP JPE PROC ??SEG 

Reserved Words B-1 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	01
	010
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	B-01

