
Pascal
Reference
Volume 2

PASCAL REFERENCE MANUAL: VOLUME 2

Specifications Subject to Change.

Convergent Technologies, Convergent, CTOS,
CT-BUS, CT-DBMS, CT-MAIL, CT-Net, DISTRIX,

AWS, IWS, and NGEN are trademarks of
Convergent Technologies, Inc.

CP/M-86 is a trademark of Digital Research.
MS, GW and XENIX are trademarks of Microsoft Corp.

UNIX is a trademark of Bell Laboratories.

Third Edition (September 1984) A-09-00868-01-A

Copyright © 1981, 1984
by Convergent Technologies, Inc.

All rights reserved. Title to and ownership of
the documentation contained herein shall at all
times remain in Convergent Technologies, Inc.
and/or its suppliers. The full copyright notice
may not be modified except with the express
written consent of Convergent Technologies, Inc.

CONT.ENTS: VOLUME 2

13 INTRODUCTION TO PROCEDURES AND

14

FUNCTIONS •••••••••••••••••••••••••••••••
PROCEDURES ••••••••••••••••••••••••••••••
FUNCTIONS ••••••••••..•••••••••••••••••••
PARAMETERS TO PROCEDURES AND FUNCTIONS ••

Va 1 ue Parameters ••••••• ~ ••••••••••••••
Reference Parameters ••••••••••••••••••

Super Array Parameters ••••••••••••••
Constant and Segment Parameters •••••

Procedural and Functional
Parameters•...........

DIRECTIVES AND ATTRIBUTES •••••••••••••••
The FORWARD Directive •••••••••••••••••
The EXTERN Directive ••••••••••••••••••
The PUBLIC Attribute ••••••••••••••••••
The ORIGIN Attribute ••••••••••••••••••
The INTERRUPT Attribute •••••••••••••••
The PURE Attribute ••••••••••••••••••••

AVAILABLE PROCEDURES AND FUNCTIONS ••••••
FILE SySTEM •••••••••••••••••••••••••••••
DYNAMIC ALLOCATION ••••••••••••••••••••••
DATA CONVERSION •••••••••••••••••••••••••
ARITHMETIC FUNCTIONS ••••••••••••••••••••
STRING INTRINSICS •••••••••••••••••••••••
INTEGER/WORD CONVERSION PROCEDURES ••••••
EXPRESSION EVALUATION •••••••••••••••••••
INITIALIZATION, TERMINATION, AND ERROR

13-1
13-3
13-5
13-8
13-8
13-9

13-11
13-12

13-13
13-18
13-21
13-21
13-22
13-23
13-24
13-26

14-1
14-3
14-3
14-5
14-6
14-9

14-10
14-10

ROUTINES. •• 14-10
I/O ROUTINES •••••••••••••••••••••••••••• 14-11
SEMAPHORE ROUTINES •••••••••••••••••••••• 14-11
DIRECTORY OF PROCEDURES AND FUNCTIONS ••• 14-12

ABORT ••••••••••••••••••••••••••••••••• 14-12
ABS. • • • • • • • • • • • • • • • • • • . • . • • • • • • • • • • • •• 14-13
ACSRQQ and ACDRQQ •••••.••••••••••••••• 14-13
AISRQQ and AIDRQQ ••••••••.•••••••••••• 14-13
ALLHQQ. •• 14-14
ALLMQQ. • • • • • • • • • • • • • • . • • . • • • • • • • • • • • •• 14-14
ANSRQQ and ANDRQQ ••••••••••••••••••••• 14-14
ARCTAN •••••••••••••••••••.•••••••••••• 14-15
ASSRQQ and ASDRQQ ••••••••••••••••••••• 14-15
ASSIGN •••••••••••••••••••••••••••••••• 14-15
ATSRQQ and ATDRQQ ••••••••••••••••••••• 14-16
A2SRQQ and A2DRQQ .•••••••••••••••••••• 14-16
BEGOQQ •••••••••••••••••••••••••••••••• 14-16
BEGXQQ. • • • • • • • • • • • • • • • • • • . • • • • • • • • • • •• 14-17
BYLONG. •• 14-18
B"YWORD •••••••••••••••••••••••••••••••• 14-18

Contents: Volume 2 iii

CHR •••••••••••••••••••••••••••••••••••
CHSRQQ and CHDRQQ •••••••••••••••••••••
CLOSE •••••••••••••••••••••••••••••••••
CNSRQQ and CNDRQQ ••••••••••••••••••••
CONCAT ••••••••••••••••••••••••••••••••
COPYLST •••••••••••••••••••••••••••••••
COPYSTR •••••••••••••••••••••••••••••••
COS •••••••••••••••••••••••••••••••••••
DECODE ••••••••••••••••••••••••••••••••
DELETE ••••••••••••••••••••••••••••••••
DISCARD •••••••••••••••••••••••••••••••
DISMQQ ••••••••••••••••••••••••••••••••
DIS POSE •••••••••••••••••••••••••••••••
DIS POSE •••••••••••••••••••••••••••••••
ENCODE ••••••••••••••••••••••••••••••••
ENDOQQ ••••••••••••••••••••••••••••••••
ENDXQQ ••••••••••••••••••••••••••••••••
EOF •••••••••••••••••••••••••••••••••••
EOLN ••••••••••••••••••••••••••••••••••
EVAL ••••••••••••••••••••••••••••••••••
EXSRQQ and EXDRQQ •••••••••••••••••••••
EXP •••••••••••••••••••••••••••••••••••
F ILLC •••••••••••••••••••••••••••••••••
FILLSC •••••••••••••••••••• ,; •••••••••••
FLOAT •••••••••••••••••••••••••••••••••
FLOAT 4 ••••••••••••••••••••••••••••••••
FREECT ••••••••••••••••••••••••••••••••
FREEMQQ •••••••••••••••••••••••••••••••
GET •••••••••••••••••••••••
GETMQQ ••••••••••••••••••••••••••••••••
GTYUQQ ••••••••••••••••••••••••••••••••
HIBYTE ••••••••••••••••••••••••••••••••
HIWORD ••••••••••••••••••••••••••••••••
INS ERT ••••••••••••••••••••••••••••••••
LADDOK ••••••••••••••••••••••••••••••••
LDSRQQ and LDDRQQ •••••••••••••••••••••
LMULOK ••••••••••••••••••••••••••••••••
LN ••••••••••••••••••••••••••••••••••••
LNSRQQ and LNDRQQ •••••••••••••••••••••
LOBYTE ••••••••••••••••••••
LOCKED ••••••••••••••••••••••••••••••••
LOWER •••••••••••••••••••••••••••••••••
LOWORD ••••••••••••••••••••••••••••••••
MARKAS ••••••••••••••••••••••••••••••••
MDSRQQ and MDDRQQ •••••••••••••••••••••
MEMA VL ••••••••••••••••••••••••••••••••
MNSRQQ and MNDRQQ •••••••••••••••••••••
MOVEL •••••••••••••••••••••••••••••••••
MOVE·R ••••.•••••••••••••••••••••••••••••
MOVESL ••••••••••••••••••••••••••••••••
MOVESR ••••••••••••••••••••••••••••••••
MXSRQQ and MXDRQQ •••••••••••••••••••••

iv Pascal Manual

14-19
14-19
14-19
14-20
14-20
14-20
14-21
14-21
14-22
14-23
14-23
14-23
14-24
14-24
14-25
14-25
14-26
14-26
14-27
14-27
14-27
14-28
14-28
14-28
14-29
14-29
14-29
14-30
14-30
14-30
14-31
14-31
14-31
14-32
14-32
14-32
14-33
14-33
14-33
14-34
14-34
14-35
14-35
14-36
14-37
14-37
14-38
14-38
14-39
14-40
14-41
14-41

NEW •••••••••••••••••••••••••••••••••••
ODn •••••••••••••••••••••••••••••••••••
ORD •••••••••••••••••••••••••••••••••••
PACK ••••••••••••••••••••••••••••••••••
PAGE ••••••••••••••••••••••••••••••••••
PISRQQ and PIDRQQ •••••••••••••••••••••
PL WOO ••••••••••••••••••••••••••••••••
POS ITN ••••••..••••••••••••••.•••••••••
PREALLOCHEAP ••••••••••••••••••••••.•••
PREALLOCLONGHEAP ••••••••••••••••••••••
PRED ••••••••••••••••••••••••••••••••••
PRSRQQ and PRDRQQ •••••••••••••••••••••
PTWQQ ••••••••••••••••••••••••••••••••
PUT •••••••••••••••••••••••••••••••••••
READ ••••••••••••••••••••••••••••••••••
READFN ••••••••••••••••••••••••••••••••
READLN ••••••••••••••••••••••••••••••••
READSET •••••••••••••••••••••••••••••••
RELEAS ••••••••••••••••••••••••••••.•••
RESET •••••••••••••••••••••••••••••••••
RESULT ••••••••••••••••••••••••••••••••
RETYPE ••••••••••••••••••••••••••••••••
REWRITE •••••••••••••••••••••••••••.•••
ROUND •••••••••••••••••••••••••••••.•••
ROUND4 ••••••••••••••••••••••••••••••••
SADOOK ••••••••••••••••••••••••••••••••
SCANEQ ••••••••••••••••••••••••••••••••
SCA:t~NE ••••••••••••••••••••••••••••••••
SEEK ••••••••••••••••••••••••••••••••••
SHSRQQ and SHDRQQ •••••••••••••••••••••
SIN •• ' •••••••••••.•...•••••.•.•••••..•.
SIZEOF ••••••••••••••••••••••••••••••••
SMULOK ••••••••••••••••••••••••••••••••
SNSRQQ and SNDRQQ •••••••••••••••••••••
saR .••.•••..••.•...•....•••...•••.••.•
SQRT ••••••••••••••••••••••••••••••••••
SRSRQQ and SRDRQQ •••••••••••••••••••••
succ•..............•.....•.......
THSRQQ and THDRQQ •••••••••••••••••••••
TNSRQQ and TNDRQQ •••••••••••••••••••••
TRUNC •••••••••••••••••••••••••••••••••
TRUNC4 ••••••••••••••••••••••••••••••••
UADDOK ••••••••••••••••••••••••••••••••
UMULOK •••••••••••••••••••••••••••••.••
UNLOCK ••••••••••••••••••••••••••••••••
UNPACK ••••••••••••••••••••••••••••••••
UPPER •••••••••••••••••••••••••••••••••
WRD •••••••••••••••••••••••••••••••••••
WRITE and WRITELN •••••••••••••••••••••

14-42
14-44
14-44
14-45
14-45
14-46
14-46
14-46
14-47
14-48
14-48
14-49
14-49
14-49
14-50
14-50
14-51
14-51
14-52
14-53
14-53
14-54
14-55
14-56
14-56
14-57
14-57
14-58
14-58
14-58
14-59
14-59
14-59
14-60
14-60
14-60
14-60
14-61
14-61
14-61
14-62
14-62
14-63.
14-63
14-64
14-64
14-65
14-66
14-67

Contents: Volume 2 v

15

16

17

18

FILE-oRIENTED PROCEDURES AND FUNCTIONS ••
FILE SYSTEM PRIMITIVE PROCEDURES AND
FUNCTIONS •••••••••••••••••••••••••••••••

GET and PUT •••••••••••••••••••••••••••
RESET and REWRITE •••••••••••••••••••••
EOF and EOLN ••••••••••••••••••••••••••
PAGE ••••••••••••••••••••••••••••••••••
Lazy Evaluation •••••••••••••••••••••••

TEXTFILE INPUT AND OUTPUT •••••••••••••••
READ and READLN •••••••••••••••••••••••
READ Formats ••••••••••••••••••••••••••
WRITE and WRITELN ••
WRITE Formats •••••••••••••••••••••••••

EXTEND LEVEL I/O ••••••••••••••••••••••••
Extend Lev~1 Procedures •••••••••••••••
Temporary Files •••••••••••••••••••••••

COMPILABLE PARTS OF A PROGRAM •••••••••••
PROGRAMS •••••••••••••
MODULES •••••••••••••••••••••••••••••••••
UN I TS •••••••••••••••••••••••••••••••••••

INTERFACE Division ••••••••••••••••••••
IMPLEMENTATION Division •••••••••••••••

METACOMMANI>S ••••••••••••••••••••••••••••
OPTIMIZATION LEVEL ••••••••••••••••••••••
ERROR HANDLING AND DEBUGGING ••••••••••••
SOURCE FILE CONTROL •••••••••••••••••••••
LISTING FILE CONTROL ••••••••••••••••••••
LISTING FILE FORMAT •••••••••••••••••••••

USING THE PASCAL COMPILER •••••••••••••••
COMPILING, LINKING, AND RUNNING
PASCAL: OVERVIEW •••••••••••••••••••••••

Compiler Options ••••••••••••••••••••••
Invoking the Compiler •••••••••••••••••
Linking a Pascal Program ••••••••••••••
Running a Pascal Program ••••••••••••••

Example •••••......••••••••••.•..••••
COMPILER STRUCTURE AND MEMORY

lS-1

IS-2
IS-3
lS-4
1S-6
lS-7
lS-7

1S-10
IS-13
IS-IS
IS-18
15-20
1S-24
IS-24
15-29

16-1
16-3
16-8

16-11
16-17
16-19

17-1
17-6
17-8

17-1S
17-19
17-23

18-1

18-2
18-3
18.;..S
18-8

18-12
18-12

REQUIREMENTS •••••••••••••••••••••••••••• 18-14
VIRTUAL CODE MANAGEMENT FACILITy •••••••• 18-16

vi Pascal Manual

19 RUN TIME AND DEBUGGING ••••••••••••••••••
OVERVIEW OF THE PASCAL RUN TIME •••••••••
DEBUGGING •••••••••••••••• ~ ••••••••••••••
RUN-TIME ARCHITECTURE •••••••••••••••••••

Run-Time Routines •••••••••••••••••••••
Memory Organization •••••••••••••••••••

Initialization and Termination ••••••••••
Machine Level Initialization ••••••••••
Program Level Initialization ••••••••••
Program Termination •••••••••••••••••••
Using the Initialization and
Termination Points in Your Program ••••

Error Handling ••••••••••••••••••••••••••
Machine Error Context •••••••••••••••••
Source Error Context ••••••••••••••••••

AVOIDING THE USE OF RUN-TIME ROUTINES •••
Examples•...............•.

Example 1: Min.Pas ••••••••••••••••••
Example 2: Max.Pas ••••••••••••••••••

19-1
19-1
19-3
19-4
19-4
19-5
19-8

19-10
19-11
19-13

19-14
19-16
19-18
19-19
19-21
19-22
19-22
19-24

APPENDIX A: COMPILER ERROR MESSAGES........ A-l

APPENDIX B: COMPARISONS TO THE ISO STANDARD
AND OTHER PASCALS.............. B-1

APPENDIX C: PASCAL SYNTAX DIAGRAMS......... C-l

APPENDIX D: SUMMARY OF RESERVED WORDS AND
PREDECLARED IDENTIFIERS........ D-l

APPENDIX E: CONVERSION TO AND FROM IEEE
FORMAT. • E-l

APPENDIX F: USING PASCAL AS A SYSTEMS
PROGRAMMING LANGUAGE........... F-l

APPENDIX G: INTERNAL REPRESENTATIONS OF
DATA TYPES..................... G-l

APPENDIX B: PROGRAMMING EXAMPLES........... H-l

GLOSSARY Glossary-l

INDEX Index-l

Contents: Volume 2 vii

LIST OF FIGURES

Figure

16-1.
16-2.

18-1.
19-1.

A Unit•..•..........• 16-11
Unit with File X.INT and a
Compiland Using the Unit •••••••••••• 16-13
DS Allocation ••••••••••••••••••••••• 18-11
Memory Organization, Single Partition
Operating System •••••••••••••••••••• 19-7

LIST OF TABLES

13-1.

14-1.

14-2.

14-3.
14-4.

14-5.
14-6.
15-1.

15-2.
17-1.
17-2.
17-3.
17-4.
17-5.
17-6.
17-7.
19-1.
19-2.
19-3.
19-4.
B-1.
D-l.

Directives and Attributes for
Procedures and Functions •••••••••••• 13-19
Categories of Available Procedures
and Functions....................... 14-2
File System Procedures and
Functions
Predeclared Arithmetic Functions ••••
REAL Functions from the Run-time
Library
Conversion to INTEGER •••••••••••••••
Conversion to WORD ••••••••••••••••••
File System Procedures and
Functions
Lazy Evaluation •••••••••••••••••••••
Metacommand Notation ••••••••••••••••
Metacomrnands ••••••••••••••••••••••••
Optimization Level ••••••••••••••••••
Error Handling and Debugging ••••••••
Source File Control •••••••••••••••••
Listing File Control Metacommands •••
Symbol Table Notation •••••••••••••••
Unit Identifier Suffixes ••••••••••••
Pascal Program Structure ••••••••••••
Error Number Classification •••••••••
Run-Time Values in BRTEQQ •••••••••••
Our Pascal and UCSD Pascal ••••••••••
Predeclared Identifiers at the

14-3
14-7

14-8
14-44
14-66

15-1
15-8
17-2
17-3
17-6
17-9

17-15
17-19
17-22

19-4
19-9

19-17
19-18

B-14

Standard Level...................... D-2
D-2. Predeclared Identifiers at the Extend

F-1.
F-2.
F-3.

viii

Level•........................
Pascal Data Types for Use with CTOS.
Character Attributes ••••••••••••••••
LED Parameters ••••••••••••••••••••••

Pascal Manual

D-3
F-4

F-ll
F-15

13 INTRODUCTION TO PROCEDURES AND FUNCTIONS

Procedures and functions are both subprograms
(subroutines) that execute under the supervision
of a main program. A procedure is a subprogram
that is invoked as a program statement. A
function is the same as a procedure, except that
it returns a value and is invoked as an expression
instead of as a statement.

Unlike programs, procedures and functions can be
nested wi thin each other and can even call them­
selves. Furthermore, they have sophisticated
parameter passing capabilities that programs lack.

The general format for procedures and functions is
similar to the format for programs. The three­
part structure includes a heading, declarations,
and a body. The declarations and body together
are called the block.

In a program text, procedures and functions are
declared before the main body of the program, and
before any other procedures or functions that call
them. They can alternatively be defined as EXTERN
and declared in a different module; the reference
is then resolved later by the Linker. The decla­
ration of a procedure or function associates an
identi fier with a portion of a program. Later,
you can activate that portion of the program with
the appropriate procedure statement or function
designator.

Example of a procedure declaration:

{Heading}
PROCEDURE MODEL (I: INTEGER; R:REAL)~

{Beginning of declaration section}
LABEL 123
CONST ATOP = 199;
TYPE INDEX = 0 .• ATOP;
VAR ARAY: ARRAY [INDEX] OF REAL: J: INDEX:

{Function declaration}
FUNCTION FONE (RX: REAL): REAL;
BEGIN

FONE := RX * I
END;

Introduction to Procedures and Functions 13-1

13-2

{Procedure declaration}
PROCEDURE FOUT (RY: REAL)~
BEGIN

WRITE ('Output is ., RY)
END~

{Body of procedure MODEL}
BEGIN

FOR J := 0 TO ATOP DO
IF GLOBALVAR THEN

END:

{Activation of procedure FOUT with}
{value returned by function FONE.)

FOUT (FONE (R + ARAY [J]»
ELSE GOTO 123:

123: WRITELN ('Done')~

Pascal Manual

PROCEDURES

The foregoing example illustrates the general for­
mat of a procedure declaration. The heading is
followed by:

o declarations for labels, constants, types,
variables, and values

o local procedures and functions

o the body, which is enclosed by the reserved
words -BEGIN and END

When the body of a procedure finishes execution,
control returns to the program element that called
it.

At the extend leve1 you can use the RETURN state­
ment to exit the current procedure, function,
program, or implementation. (See Section 12,
"Statements," for a discussion of how to use the
RETURN statement.)

A RETURN statement is a GOTO to an implied empty
statement after the last statement in the current
procedure or function or the body of a program or
implementation.

At the standard level, declarations must appear in
the following order:

1. LABEL

2. CONST

3. TYPE

4. VAR

5. procedures and functions

At the extend 1evel, you can have any number of
LABEL, CONST, TYPE, VAR, and VALUE sections, as
well as procedure and function declarations, in
any order.

Introduction to Procedures and Functions 13-3

Although data declarations (CONST, TYPE, VAR,
VALUE) can be intermixed with procedure and func­
tion declarations, in practice, it is clearer to
give all data declarations first. However, if you
put variable declarations after procedure and
function declarations you can guarantee that these
variables will not be used by any of the
procedures or functions.

In general, the initial values of variables are
not defined. However, you can use the VALUE
section to explicitly initialize program, module,
implementation, STATIC, and PUBLIC variables. The
VALUE section, an extension offered by this
version of Pascal, should follow the VAR section.
If the initialization switch ($INITCK) is on, all
INTEGER, INTEGER subrange, REAL and pointer vari­
ables are set to an unini tialized value. File
variables are always initialized, regardless of
the setting of the initialization switch.

13-4 Pascal Manual

FUNCTIONS

Like procedures, functions are subprograms. A
function, however, is invoked in an expression,
instead of a statement. Also, a function returns
a single value.

A function declaration defines the parts of a
program that compute a value. A function is acti­
vated when a function designator, which is part of
an expression, is evaluated.

A function declaration has the
procedure declaration, except
also gives the type of value
function.

same format as a
that the heading

returned by the

Example of a function heading:

FUNCTION MAXIMUM (I, J: INTEGER): INTEGER:
{Returns an INTEGER value}

At the standard
pointer or any
INTEGER4.)

level,
simple

functions can
type {ordinal,

return a
REAL, or

At the extend level, functions can return any
simple, structured, or reference type. However,
they cannot return any type that cannot be
assigned (that is, a super array type or a struc­
ture containing a file.) A super array derived
type is permitted, however.

A function identifier on the left side of an
assignment within the function body or the body of
its internal procedure or function does not invoke
the function recursively. Instead, it refers to
the function's local variable, which contains its
current value. The local variable is created by
the compiler, not declared in the VAR section by
the programmer. On return from the function, the
value of the local variable is returned.

Using the function identifier in one of the
following places in the function block gets the
address of the local variable:

o a reference parameter

o the record of a WITH statement

o the operand of an ADR or ADS operator

Introduction to Procedures and FUnctions 13-5

A function identifier used in an expression within
the body of the function invokes the function
recursively, rather than giving the current value
of the function.

Within the block of a function, either in the body
itself or in a procedure or function nested within
the block, at least one assignment to the function
identifier must be executed to set the return
value. The compiler does not generate code to
check for this assignment unless the initial­
ization switch ($INITCK) is on and the returned
type is INTEGER, REAL, or a pointer. However, if
there is no assignment at all to the function
identifier, the compiler issues an error message
during compilation.

To obtain the current value of the function within
an expression within its block, use the RESULT
function. RESULT takes the function identifier as
a parameter and is available at the extend level.

The following is an example of the RESULT function
used to obtain the current value of a function
within an expression.

FUNCTION FACT (F: REAL): REAL:
BEGIN

FACT := 1:
WHILE F > 1 DO

BEGIN

END:

FACT := RESULT (FACT) * F: F := F-l
END

Using the RESULT function is more efficient than
using a separate local variable for the value of
the function and then assigning this local vari­
able to the function identifier before returning.
If the function has a structured value, the usual
component selection syntax can follow the RESULT
function.

Instead of using the function I s local variable,
you can invoke the function recursively and uS,e
the return value.

13-6 Pascal Manual

To do this for a function, you must force
evaluation by putting the function designator in
parentheses, as shown:

TYPE IREC = RECORD I: INTEGER END~

FUNCTION SUM (A, B: INTEGER): IREC~
{Return sum of A and B.}
BEGIN

IF TUESDAY THEN {On Tuesdays we recurse}
BEGIN

IF B '" THEN
BEGIN SUM := A~
RETURN END~

WITH (SUM (A,B-l»{Call SUM recursively}
DO SUM.I := I + 1

END~

{I is result of call}
END
ELSE {Use function's local variable}

WITH SUM
DO I := A + B {I is local variable}

At the extend level you can use the RETURN
statement to exit the current procedure, function,
program, or implementation. (See Section 12,
"Statements," for a discussion of how to use the
RETURN statement.)

Introduction to Procedures and Functions 13-7

PARAMETERS TO PROCEDURES AND FUNCTIONS

Procedures and functions can take three different
types of parameters:

o Value parameters, which pass an actual value.

o Re ference parameters, which pass the address
of a variable.

o Procedural and functional parameters, which
pass a procedure or function.

Each of these is discussed separately in the fol­
lowing paragraphs.

The discussion mentions both formal and actual
parameters. A formal parameter is the parameter
given when the procedure or function is declared,
by specifying an identifier in the heading. When
the function or procedure is called, an actual
parameter substitutes for the formal parameter
given earlier and takes the form of a variable,
value, or expression.

Extend level Pascal has several parameter
features:

o A super array type can be passed as a refer­
ence parameter.

o A reference
READONLY.

parameter can be declared

o Explicit segmented reference parameters can be
declared.

VALUE PARAMETERS

When a value parameter is passed, the actual
parameter is an expression. That expression is
evaluated in the scope of the calling procedure or
function and the value is assigned to the formal
parameter. The formal parameter is a variable
local to the procedure or function called.

Thus, formal value parameters are always local to
a procedure or function.

13-8 Pascal Manual

Example of value parameters:

{Function declaration}
FUNCTION ADD (A, B, C : REAL): REALi

{A, B, and C are formal value parameters}

X := ADD (Y, ADD{l.ll, 2.222, 3.333),
(Z * 4»

In this particular function invocation, Y, ADD
(••), and (Z * 4) are the expressions that make up
the actual parameters. In this example, these
expressions must all evaluate to the type REAL.
(The example also calls the function ADD to
evaluate an actual parameter.)

The actual parameter expression must be
assignment-compatible with the type of the formal
parameter.

Passing structured types by value is permitted;
however, it is inefficient, since the entire
structure must be copied. A value parameter of a
SET, LSTRING, or subrange type requires a run-time
error check if the range-checking switch
($RANGECK) is on. In addition, SET and LSTRING
value parameters may require extra generated code
for size adjustment.

A file variable or super array variable cannot be
passed as a value parameter, s ince it cannot be
assigned. However, a variable with a type derived
from a super array or a file buffer variable can
be a value parameter. File buffer variables are
then evaluated as they would be in an expression.

REFERENCE PARAMETERS

When a reference parameter is passed at the
standard level, the keyword VAR precedes the
formal parameter. In addition, the actual param­
eter must be a variable, not an expression.

The formal parameter denotes this actual variable
during the execution of the procedure. Any oper­
ation on the formal parameter is performed
immediately on the actual parameter, by passing
the machine address of the actual variable to the
procedure. This address is an offset into the
default data segment.

Introduction to Procedures and Functions 13-9

Example of reference parameters:

PROCEDURE CHANGE VARS (VAR A,B,C : INTEGER):
[A,B,and C are formal reference parameters.}
{They denote variables, not values.}

CHANGE_VARS (X,y,z):

In this example, X, Y, and Z must be variables,
not expressions. Note that, the variables X, Y,
and Z are altered whenever the formal parameters
A, B, and C are altered in the declared procedure.
This differs from the handling of value param­
eters, which can affect only the copies of values
of variables. If the selection of the actual
parameter involves indexing an array or derefer­
encing a pointer or address, these actions are
executed before the procedure itself. The type of
the actual parameter must be identical to the type
of the formal parameter.

Passing a nonlocal variable as a VAR parameter
puts a slash (/) or percent sign (%) in the G
(global) column of the listing file. (See the
subsection "Listing File Format, II in Section 17,
IIMetacommands II for information about how to
interpret the listing file characters.)

None of the following can be passed as VAR
parameters:

o components of PACKED structures (except CHAR
of a STRING or LSTRING)

o variables with READONLY or PORT attributes,
including CONST and CONSTS parameters and the
FOR control variable

Passing a file buffer variable by reference gener­
ates a warning message, because it bypasses the
normal file system call generated by the use of
any buffer variable. These calls are not
generated when a file variable is passed by
reference.

A VAR parameter passes an address that is really
an offset into a default data segment. In some
cases, access to objects residing in other
segments is required. To pass these objects by
reference, you must tell the compiler to use a

13-10 Pascal Manual

segmented address containing both segment register
and offset values. To do so, you can use the
extend level parameter prefix VARS instead of VAR:

PROCEDURE CONCATS (VARS T,S: STRING);

You can only use VARS as a data parameter in pro­
cedures and functions, not in the declaration
section of programs, procedures, or functions.

Super Array Parameters

Super array parameters can appear as formal refer­
ence parameters. This allows a procedure or
function to operate on an array with a particular
super array type (also a component type and index
type), but without any fixed upper bounds. The
formal parameter itself is a reference parameter
of the super array type.

The actual parameter type must be a type derived
from the super array type or the super array type
i tsel f (that is, another reference parameter or
dereferenced pointer.) Except for comparing
LSTRINGS, super array type parameters cannot be
assigned or compared as a whole.

The actual upper and lower bounds of the array are
available with the UPPER and LOWER functions: this
permits routines that can operate on arrays of any
size. An LSTRING actual parameter can be passed
to a reference parameter of the super array type
STRING. Therefore, the super array parameter
STRING can be used for procedures and functions
that operate on strings of both STRING and LSTRING
types.

Example of super array parameters:

TYPE REALS = ARRAY [0 •• *J OF REAL:

PROCEDURE SUMRS (VAR X: REALS;CONST X: REALS);
BEGIN

END;

(For more information, see the subsections "Super
Arrays," "STRINGs," and "LSTRINGs II in Section 6,
"Arrays, Records, and Sets.")

Introduction to Procedures and Functions 13-11

Constant and Segaent Parameters

At the extend level, a formal parameter preceded
by the reserved word CONST implies that the actual
parameter is a READONLY reference parameter. This
is especially useful for parameters of structured
types, which can be constants, since it eliminates
the need for a time-consuming value parameter
copy. The actual parameter can be a variable,
function result, or constant value.

No assignments can be made to the CONST parameter
or any of its components. CONST super array types
are permitted. A CONST parameter in one procedure
cannot be passed as a VAR parameter to another
procedure. However, it is permissible to pass a
VAR parameter in one procedure as a CONST param­
eter in another.

Example of a CONST parameter:

PROCEDURE ERROR (CONST ERRMSG: STRING):

A CONST parameter is passed as an address that is
really an offset into a default data segment. In
some cases, access to objects residing in other
segments is required. To pass these obj ects by
reference, you must tell the compiler to use a
segmented address that contains both the segment
address and the offset values.

The extend level includes the parameter prefix
CONSTS. Use of CONSTS parameters parallels use of
VARS for formal reference parameters.

Example of a CONSTS parameter:

PROCEDURE CAT (VARS T: STRING: CONSTS S:
STRING) :

A CONSTS parameter can only be used as a data
parameter in procedures and functions, not in the
declaration section of programs, procedures, and
functions.

You can also pass the value of an expression as a
CONST or CONSTS parameter. The expression is
evaluated and assigned to a temporary (hidden)
variable in the frame of the calling procedure or
function. You should enclose such an expression
in parentheses to force its evaluation.

13-12 Pascal Manual

A function identifier can be passed by reference
as a VAR, VARS, CONST, or CONSTS parameter. The
function's local variable is' passed, so the call
must occur in the function's body or in a pro­
cedure or function declared within the function.

The value returned by a function designator can
also be passed, like any expression, as a CONST or
CONSTS parameter. Like any expression passed by
reference, the function designator should be
enclosed in parentheses, as shown:

PROCEDURE WRITE ANSWER (CONSTS A: INTEGER);
BEGIN

WRITELN (' THE ANSWER IS, II A)
END;

FUNCTION ANSWER: INTEGER;
BEGIN

ANSWER : = 42:
WRITE ANSWER (ANSWER)
{Pass-reference to local variable}

END:

PROCEDURE HITCH_HIKE:
BEGIN

WRITE ANSWER «ANSWER»
{Call-ANSWER, assign to temporary }
{variable, pass reference to temporary}
{variable.}

END:

PROCEDURAL AND FUNCTIONAL PARAMETERS

Procedural parameters can be useful in the fol­
lowing circumstances:

o in numerical analysis

o in calling some library routines

o in special applications

In numerical analysis, for example, you might pass
a function to a procedure or function that finds
an integral between limits, a maximum or minimum
value, and so on. Some interesting algorithms in
areas such as parsing and artificial intelligence
also use procedural parameters.

Introduction to Procedures and Functions 13-13

When a procedural or functional parameter is
passed, the actual identifier is that for a proce­
dure or function. The formal parameter is a
procedure or function heading, including any
attributes, preceded by the reserved word
PROCEDURE or FUNCTION.

For example, examine these declarations:

TYPE DOOR = (FRONT, BARN, CELL, DOG HOUSE);
SPEED = (FAST, SLOW, NORMAL); -
DIRECTION = (OPEN, SHUT);

PROCEDURE OPEN DOOR WIDE;
(VAR A : DOOR;-B : SPEED; C DIRECTION) ;

PROCEDURE SLAM DOOR;
(VAR DR :-DOOR; SP : SPEED; DIR

DIRECTION) ;

PROCEDURE LEAVE DOOR AJAR;
(VAR DD : DOOR;-SS : SPEED; DD

DIRECTION);

All the procedures in the example have parameter
lists of equal length. The types of parameters
are not only compatible, but also identical. The
formal parameters need not be identically named.

A procedural or functional parameter can accept
one of these procedures if the procedure or func­
tion is set up correctly, as shown:

FUNCTION DOOR STATUS (PROCEDURE MOVE DOOR
(VAR X: DOOR; Y: SPEED; Z: DIRECTION);

VAR XX: DOOR; YY: SPEED; ZZ: DIRECTION):
INTEGER;

{"PROCEDURE MOVE DOOR II is the formal}
{procedural parameter; next two lines}
{are other formal parameters.}

BEGIN

13-14

DOOR STATUS := 0;
MOVE-DOOR (XX, YY, ZZ);
{One-of the three procedures declared}
{previously is executed here.}

IF XX = BARN AND ZZ = SHUT
THEN DOOR STATUS := 1;

Pascal Manual

END;

IF XX = CELL AND ZZ = OPEN
THEN DOOR_STATUS := 2;

IF XX = DOG HOUSE AND ZZ
THEN DOOR_STATUS := 3

SHUT

Use of the procedural parameter MOVEDOOR might
occur in program statements as follows:

IF DOOR STATUS
(SLAM-DOOR, CELL, FAST, SHUT) 0

THEN -
SOCIETY := SAFE;

IF DOOR STATUS
(OPEN-DOOR WIDE, BARN, SLOW, OPEN) 0

THEN - -
COWS ARE OUT := TRUE:

IF DOOR STATUS
(LEAVE AJAR, DOG_HOUSE, SLOW, OPEN) 0

THEN -
DOG CAN GET IN := TRUE:

In each case above, the actual procedure list is
compatible with the formal list, both in the
number and in the types of parameters. I f the
parameter passed were a functional parameter, then
the function return value would also have to be of
an identical type.

In addition, the set of attributes for both the
formal and actual procedural type must be the
same, except that the PUBLIC and ORIGIN attributes
and EXTERN directive are ignored.

A PUBLIC or EXTERN procedure, or any local proce­
dure at any nesting level, can be passed to the
same type of formal parameter. However, the PURE
attribute and any calling sequence attributes must
match.

A procedure or function passed as a parameter to
an EXTERN procedure or function must itself be
PUBLIC or EXTERN. The procedural parameter must
also be declared PUBLIC in the external procedure
declaration. If they are nested, they must be
declared at the lowest nesting level.

You cannot pass predeclared procedures and func­
tions compiled as inline code; you can only call
them in passed subroutines. Also, the READ,
WRITE, ENCODE, and DECODE families are translated

Introduction to Procedures and Functions 13-15

into other calls by the compiler, based on the
argument types, and so cannot be passed. Cor­
responding routines in the file unit or
encode/decode unit can be passed, however. For
example, a READ of an INTEGER becomes a call to
RTIFQQ and this procedure can be passed as a
parameter.

The following intrinsic procedures and
cannot be passed as procedure or
parameters:

functions
function

o at the standard level

ABS
ARCTAN
CHR
COS
DISPOSE
EOF

EOLN
EXP
LN
NEW
ODD
ORD

o at the extend level

BYLONG
BYWORD
DECODE
ENCODE
EVAL
FLOAT

FLOAT4
HIBYTE
HIWORD
LOBYTE
LOWER
LOWORD

PACK
PAGE
PRED
READ
READLN
SIN

READFN
READSET
RESULT
RETYPE
ROUND
ROUND4

SQR
SQRT
SUCC
UNPACK
WRITE
WRITELN

SIZEOF
TRUNC
TRUNC4
UPPER
WRD

When a procedure or function passed as a parameter
is finally activated, any nonlocal variables
accessed are those in effect at the time the
procedure or function is passed as a parameter,
rather than those in effect when it is activated.
Internally, both the address of the routine and
the address of the upper frame (in the stack) are
passed.

Example of formal procedural parameter use:

PROCEDURE ALPHA:
VAR I: INTEGER:

PROCEDURE DELTA:
BEGIN

WRITELN ('Delta done')
END:

PROCEDURE BETA (PROCEDURE XPR);
VAR GLOB: INTEGER:

13-16 Pascal Manual

PROCEDURE GAMMAr
BEGIN

GLOB := GLOB + I
ENDr

BEGIN

END:

BEGIN
GLOB := 0:
IF I 0

THEN BEGIN
I := lr XPRr BETA (GAMMA)
END

ELSE BEGIN

END;

GLOB := GLOB + IrXPR
END

I := 0;
BETA (DELTA)

The following list describes what happens in this
example when ALPHA is called:

o BETA is called, passing the procedure DELTA.

o This latter call creates an instance of GLOB
on the stack (call it GLOB1).

o BETA first clears GLOBl by setting it to zero.
Then, since I is 0, the THEN clause is
executed, which sets I to one and executes
XPR, which is bound to DELTA.

o Therefore, 'Delta done' is written to OUTPUT.

o Now BETA is called recursively. BETA is

0

0

o

pas sed GAMMA, and, at this time, the access
path to any nonlocal variables used by GAMMA
(for instance, GLOB1) is passed as well.

The second call to BETA creates another
instance of GLOB (GLOB2). When GLOB2 is
cleared this time, I is 1, so GLOB2 is
incremented.

The XPR is called, Which is bound to GAMMA,
so GAMMA is executed and increments the
instance of GLOB active when GAMMA was passed
to BETA, GLOB1.

GAMMA returns, the second BETA call
the first BETA call returns, and
ALPHA returns.

Introduction to Procedures and Functions

returns,
finally,

13-17

DIRECTIVES AND ATTRIBUTES

A directi ve gives information about the location
of a procedure or function. A directive replaces
the block of the procedure or function (decla­
rations and body) and indicates that only the
heading of the procedure or function occurs.
Directives are available in standard Pascal.
EXTERN and FORWARD are the only directives availa­
ble. EXTERN can only be used with procedures or
functions directly nested in a program, module,
implementation, or interface. This restriction
prevents them from access ing nonlocal stack
variables.

An attribute gives additional information about a
procedure or function. Attributes are available
at the extend level. They are placed after the
heading, enclosed in brackets and separated by
commas. Available attributes include ORIGIN,
PUBLIC, PURE, and INTERRUPT.

Table 13-1 displays the directives and attributes
that apply to procedures and functions, and the
sections below describe them in detail.

The following rules apply when you combine attri­
butes in the declaration of procedures and
functions:

o A function can be given the PURE attribute.

o Procedures and functions with attributes must
be nested directly within a program, module,
or unit. The only exception to this rule is
the PURE attribute. (Modules and units are
discussed in Section 16, "Compilable Parts of
a Program. ")

o PUBLIC and EXTERN are mutually exclusive, as
are PUBLIC and ORIGIN.

13-18 Pascal Manual

Table 13-1. Directives and"Attributes for
Procedures and Punctions.

Name Purpose

Directivea

FORWARD

EXTERN

Attributeb

PUBLIC

ORIGIN

INTERRUPT

PURE

Lets you call a procedure or
function before you give its
block in the source file.

Indicates that a procedure
or function resides in an­
other module.

Indicates that a procedure
or function can be acces sed
by other modules.

Tells the compiler where the
code for an EXTERN pro­
cedure or function resides.

Gives a procedure a special
calling sequence that saves
program status on the stack.

Signifies that the function
does not modify any global
variables.

a
b

Available at the standard level

Available at the extend level

The EXTERN or FORWARD directive is given auto­
matically to all constituents of the interface of
a unit: in the implementation, PUBLIC is given
automatically to all constituents that are not
EXTERN.

Since you declare the constituents of a unit only
in the interface (not in the implementation), the
interface is where you give the attributes You
can give the EXTERN directive in an implementation

Introduction to Procedures and Functions 13-19

·by declaring all EXTERN procedures and functions
first; you cannot use ORIGIN in either the inter­
face or implementation of a unit.

In a module, you can give a group of attributes in
the heading that applies to all directly nested
procedures and functions. The only exception to
this rule is the ORIGIN attribute, which can apply
only to a single procedure or function.

If the PUBLIC attribute is one of a group of
attributes in the heading of a module, an EXTERN
attribute given to a procedure or .function within
the module explicitly overrides the global PUBLIC
attribute. If the module heading has no attribute
clause, the PUBLIC attribute is assumed for all
directly nested procedures and functions. You can
suppress the default PUBLIC attribute for each
module by including empty attribute brackets ([]).
Then, individual items can be declared PUBLIC or
not within the module.

The PUBLIC attribute allows a procedure or func­
tion to be called from other compilands (that is,
separately compiled parts of the program) and
cannot be used with the EXTERN directive. The
EXTERN directive permits a call to a procedure or
function declared in another compiland. PUBLIC,
EXTERN, and ORIGIN provide a low level way to link
Pascal routines with other Pascal routines or
routines in other languages.

A procedure or function declaration with the
EXTERN or FORWARD directive consists only of the
heading, without the block. EXTERN routines have
an implied block outside of the program. FORWARD
routines are FULLY DECLARED (that is, they have a
block) later in the same compiland. Both direc­
tives are available at the standard level of
Pascal. The keyword EXTERNAL is a synonym for
EXTERN.

The PURE attribute applies only to functions, not
to procedures. PURE is the only attribute that
can be used in nested functions.

13-28 Pascal Manual

THE FORWARD DIRECTIVE

A FORWARD directive allows you to call a procedure
or function before you fully declare it in the
source text. This permits indirect recursion,
where A calls Band B calls A.

You make a FORWARD declaration by specifying a
procedure or function heading, followed by the
directi ve FORWARD. The procedure or function is
actually declared later, without repeating the
formal parameter list, the attributes, or the
return type of a function.

Example of a FORWARD directive

{Declaration of ALPHA, with parameter list}
{and attributes}
FUNCTION ALPHA (Q,R: REAL): REAL [PUBLIC];
FORWARD;

{Call for ALPHA}
PROCEDURE BETA (VAR S,T: REAL);
BEGIN

T := ALPHA (S, 3.14)
END;

{Actual declaration of ALPHA,}
{without parameter list or attributes}
FUNCTION ALPHA;
BEGIN

ALPHA := (Q = R);
IF R < 0.0 THEN BETA (3.l4, ALPHA)

END;

THE EXTERN DIRECTIVE

The EXTERN directive identifies a procedure or
function that resides in another loaded module.
You give only the heading of the procedure or
function, followed by the word EXTERN. The
actual declaration (with the body) of the proce­
dure or function is presumed to exist in some
other module.

EXTERN is an attribute when used with a variable,
but a directive when used with a procedure or
function. As with variables, the keyword EXTERNAL
is a synonym for EXTERN.

Introduction to Procedures and Functions 13-21

The EXTERN directive for a particular procedure or
function within a module overrides the PUBLIC
attribute given for the entire module. The EXTERN
directive is also permitted in an implementation
of a unit for a constituent procedure or function.
All such external constituents must be declared at
the beginning of the implementation, before all
other procedures and functions.

Any procedure or function with the EXTERN direc­
tive must be directly nested within a program.
You can also link Pascal programs by linking
separately compiled units. See Section 16,
"Compilable Parts of a Program."

Examples of procedure and function headings
declared with the EXTERN directive:

FUNCTION POWER (X,Y: REAL): REAL: EXTERN:

PROCEDURE ACCESS (KEY: KYTP) [ORIGIN SYSB+4]:
EXTERN;

In these examples, the function POWER is declared
EXTERN, as is the procedure ACCESS. Both are
declared and defined in external compilands.
ACCESS also has the ORIGIN attribute, which is
discussed below in the sUbsection "The ORIGIN
Attribute."

You can not declare a procedure or function EXTERN
if you have previously declared it FORWARD.

THE PUBLIC ATTRIBUTE

The PUBLIC attribute indicates a procedure or
function that you can access from other com­
pilands. In general, you access PUBLIC procedures
and functions from other compilands by declaring
them EXTERN in the modules that call them. Thus,
you declare a procedure PUBLIC and define it in
one module, then use it in another simply by
declaring it EXTERN.

As with PUBLIC variables, the names of PUBLIC pro­
cedures and functions are included in the symbol
file produced by the Linker.

PUBLIC and ORIGIN are mutually exclusive: PUBLIC
routines need a following block, and ORIGIN rou­
tines must be EXTERN.

13-22 Pascal Manual

Any procedure or function with the PUBLIC attri­
bute must be directly nested within a program or
implementation. A higher level way to link
routines is to link separately compiled units.
See Section 16, "Compilable Parts of a Program"
for details.

Examples of procedures and functions declared
PUBLIC:

FUNCTION POWER (X, Y: REAL): REAL [PUBLIC]:
{The function POWER is available to other }
{modules because it has been declared PUBLIC.}
BEGIN

END:

PROCEDURE ACCESS (KEY: KYTP)
[ORIGIN SYSB+4, PUBLIC]:
BEGIN

END:
{Illegal since ORIGIN must also be EXTERN.}

THE ORIGIN ATTRIBUTE

The ORIGIN attribute can only be used with the
EXTERN directive: ORIGIN tells the compiler where
the procedure or function can be found directly,
so the Linker does not require a corresponding
PUBLIC identifier.

Examples of procedures and functions given the
ORIGIN attribute:

PROCEDURE OPSYS [ORIGIN 8]: EXTERN:

FUNCTION A TO D (C: SINT): SINT [ORIGIN #100]:
EXTERN:

In the first example, the procedure OPSYS begins
at the absolute decimal address 0:8 and is
declared EXTERN.

The value of the ORIGIN (#100 in the second
example) can be any constant expression (composed
of constants and identifiers of constants.)

Introduction to Procedures and Functions 13-23

In the second example, the function A TO 0 takes a
DINT value as a parameter (SINT is the predeclared
integer subrange from -127 to +127). The function
is located at the hexadecimal address 100 (0:100).

As with the ORIGIN variables, the compiler uses
the address to find the code and gives no direc­
tives to the Linker. This permits, for example,
calling routines at fixed addresses in ROM. In
simple cases, it can substitute for a linking
loader.

Remember that ORIGIN always implies EXTERN. Thus,
procedures or functions that have previously been
declared FORWARD cannot be declared with the
ORIGIN attribute. Nor can you give ORIGIN as an
attribute after the module heading.

Currently, you cannot use the ORIGIN attribute
with a constituent of a unit, either in an inter­
face or in an implementation.

As with variables, the origin can be a segmented
address, for example:

PROCEDURE OPSYS [ORIGIN 2:8]: EXTERN:

A nonsegmented procedural origin assumes the cur­
rent code segment with the offset given with the
attribute.

THE INTERRUPT ATTRIBUTE

The INTERRUPT attribute applies only to procedures
(not to functions or variables). It gives a pro­
cedure a special calling sequence that saves
program status on the stack, which in turn allows
a hardware interrupt to be processed, status to be
restored, and control returned to the program, all
without affecting the current state of the
program.

Example of
attribute:

a procedure with

PROCEDURE INCHAR [INTERRUPT]:

the INTERRUPT

Because procedures with the INTERRUPT attribute
are intended to be inVOked by hardware interrupts,
you cannot invoke them with a procedure statement.
An INTERRUPT procedure can only be invoked when

13-24 Pascal Manual

the interrupt associated with it occurs. Further­
more, INTERRUPT procedures take no parameters.
(To associate an INTERRUPT procedure with an
interrupt see Section 23, .. Interrupt Handlers" in
the CTOS Operating System Manual.)

Declaring a procedure with the INTERRUPT attribute
ensures that the procedure conforms to the con­
straints of an interrupt handler in which

o a special calling sequence saves all status on
the stack

o the status saved includes machine registers
and flags, plus any special global compiler
data such as the frame pointer

o the saved status is restored upon exit from
the procedure

All INTERRUPT procedures must be nested directly
within a compiland.

Interrupts are not automatically vectored to
INTERRUPT procedures and are neither enabled or
disabled by an INTERRUPT procedure.

This version of Pascal does not provide interrupt
vectoring or enabling.

An INTERRUPT procedure should usually return
normally, in order to continue processing in the
interrupted routine. Therefore,

o You should not execute a GOTO that leaves an
INTERRUPT procedure.

o All debug checking should be turned off (that
is, $DEBUG-, $ENTRY-, and $RUNTIME-)~

o Stack overflow cannot be checked even if
$STACKCK is on.

The use of INTERRUPT procedures introduces re­
entrancy into Pascal code: generated code is re­
entrant, as is the run-time system (except for the
heap unit and portions of the file unit.

Note that caution should be used
reentrant code is used in INTERRUPT
For example, if the heap allocator

when non­
procedures.

is executing

Introduction to Procedures and Functions 13-25

when an interrupt occurs and the INTERRUPT proce­
dure tries to allocate a block from the heap, the
structure of the heap could become invalid. This
condition causes a run-time error.

It is safest to avoid performing any I/O within
the INTERRUPT procedure. Alternatively, you can
avoid most problems with I/O in an INTERRUPT
procedure by not opening or closing any fi-les
(that is, not declaring any local file variables
or creating files on the heap) and by not per­
forming input or output with any file that might
be in the process of performing I/O when the
interrupt occurs.

THE PURE ATTRIBUTE

The PURE attribute applies only to functions, not
to procedures or variables. PURE indicates to the
compiler's optimizer that the function does not
modify any global variables either directly or by
calling some other procedure or function.

Example of a PURE declaration:

FUNCTION AVERAGE (CONST TABLE: RVECTOR):
REAL [PURE):

For further illustration, examine these
statements:

A := VEC [I * 10 7):
B := FOO:
C := VEC [I * 10 9):

If the function FOO is given the PURE attribute,
the optimizer only generates code to compute 1*10
once. However, FOO, if it is not declared PURE,
can modify I so that 1*10 must be recomputed after
the call to FOO.

Functions are not considered PURE unless given the
attribute explicitly. A PURE function should not

o assign to a nonlocal variable

o have any VAR or VARS parameters (CONST and
CONST parameters are permitted)

o call any functions that are not PURE

13-26 Pascal Manual

o Use the value of a global variable.

o Modify the referents of references passed by
value (for example, pointer or address type
referents.)

o Do input or output.

Note, however, that the compiler does not check
for the restrictions listed above.

Since the result of a PURE function with the same
parameters must always be the same, the entire
function call may be optimized away.

For example, if in the following statements DSlN
is PURE, the compiler only calls DSlN once

HX := A * DSlN (P[l, J] * 2):
HY := B * DSlN (P[l, J] * 2):

Introduction to Procedures and Functions 13-27

14 AVAILABLE PROCEDURES AND FUNCTIONS

All versions of Pascal predeclare a large number
of common procedures and functions, which you do
not have to declare in a program. Since pre­
declared procedures and functions are defined in a
scope "outside" the program, you can redefine
these identifiers within your program if you wish.

Library procedures and functions are also avail­
able. To use these you must declare them as
external to your program (EXTERN).

Available procedures and functions implemented by
our version of Pascal can be divided into two
types:

o Those that are predeclared.

o Those that are not predeclared but are a part
of the run-time library. These procedures and
functions must be declared explicitly.

To promote portability, some of the predeclared
procedures and functions for this version of
Pascal are available only at the extend level.

It is useful when discussing these procedures and
functions to categorize them by what they do
rather than by how they are implemented. Table
14-1 shows this categorization.

Following is a description of each of the cate­
gories shown in the Table 14-1 and a list of the
procedures and functions that each category
includes.

Under the heading "Directory of Functions and Pro­
cedures," at the end of this section, you will
find a detailed alphabetical directory of all the
available procedures and functions. The entry for
each procedure or function in this directory
includes the syntax and a description, plus
examples and notes as appropriate.

Available Procedures and Functions 14-1

Table 14-1. Categories of Available
Procedures and Functions.

Category

File system

Dynamic
allocation

Data
conversion

Arithmetic

String
intrinsics

INTEGER/WORD
Conversion

Expression
evaluation

Initialization,
termination, and
error routines

I/O routines

Semaphore
routines

Purpose

Operate on files of dif­
ferent modes and structures

Dynamically allocate and de­
allocate memory at run time

Convert data from one type
to another

Perform common transcen­
dental and other numeric
functions

Operate on STRING
LSTRING type data

and

Compose and decompose one­
byte, two-byte, and four­
byte items

Provide various procedures
for use in evaluating func­
tions

Provide initialization, ter­
mination, and error handling

Provide direct I/O to and
from keyboard and video

Ensure exclusive access to
a resource in a concurrent
system

14-2 Pascal Manual

FILE SYSTEM

The Pascal file system supports a variety of pro­
cedures and functions that operate on files of
different modes and structures. These procedures
and functions fall into three categories, as shown
in Table 14-2.

Table 14-2. File System Procedures and
Functions.

Category Procedure Function

Primitive

Textfile I/O

Extend level I/O

GET
PAGE
PUT
RESET
REWRITE

READ
READLN
WRITE
WRITELN

ASSIGN
CLOSE
DISCARD
READSET
READFN
SEEK

EOF
EOLN

For details on each of these procedures and func­
tions, see Section 15, "File-Oriented Procedures
and Functions."

DYNAMIC ALLOCATION

Two memory areas are available for Pascal pro­
grams, the short and long heap. The short heap is
at most 64K bytes long, whereas the long heap can
be longer.

Two procedures, NEW and DISPOSE, allow dynamic
allocation and deal location of data structures at
run time. NEW allocates a variable in the short
heap, and DISPOSE releases it.

Available Procedures and Functions 14-3

Library heap management routines, which complement
the standard NEW and DISPOSE procedures include:

o ALLHQQ

o FREECT

0 MARK1\S

0 MEMAVL

0 RELEAS

Returns the pointer value for an
allocated variable with the size
requested

Returns an estimate of how many
times NEW can be called to allocate
heap variables

Marks the upper and lower limits of
the heap

Returns the number of bytes availa-
ble between the stack and the heap

Disposes of heap space past the
area set with a previous MARKAS
call

The above routines are not predeclared, but are
available to you in the run-time library. You
must declare them, with the EXTERN directive,
before using them in a program.

At the extend level, the intrinsic function SIZEOF
determines the current size of a variable.

A Pascal program can allocate and deallocate
memory from the long heap using the functions
described below. (Naturally, to access data in the
long heap, the user must specify both the segment
and the offset addresses, that is, the data are
accessed using ADS type variables.) If, at allo­
cation request, not enough memory is available
from the long heap, memory from the short heap is
allocated.

o ALLMQQ Allocates a block of not more than
64K bytes on the long heap and
returns the block address

o

o

14-4

FREMQQ

GETMQQ

Frees a memory block from the long
heap: returns 0 if no errors are
encountered, nonzero otherwise

Performs ALLMQQ and provides addi­
tional error checking; terminates
the program and returns an error
message

Pascal Manual

o DISMQQ Performs FREMQQ with additional
error checking~ terminates the pro­
gram and returns an error message

Two functions are available for preallocating
memory space.

o PREALLOCHEAP
Lets you specify how much storage
to be allocated for the short heap.
You can then use short lived memory
wi thout worrying about overlapping
memory with the heap.

o PREALLOCLONGHEAP
Preallocates the short-lived memory
for the long heap. If
PREALLOCLONGHEAP has not been
called by the user, the first call
to a long heap allocation routine
allocates as much short-lived
memory as possible for the short
heap and take all the rest of the
short-lived memory for the long
heap (to satisfy the current and
possible future requests). To avoid
all the rest of the short-lived
memory being allocated for the long
heap, you can use PREALLOCLONGHEAP.

DATA CONVERSION

Use the following procedures and functions to con­
vert data from one type to another:

CHR
FLOAT
FLOAT4
ODD
ORD
PACK
RETYPE
TRUNC
TRUNC4
UNPACK
WRD

Available Procedures and Functions 14-5

Thre~ of these convert any ordinal type to a par­
ticular ordinal type:

o CHR (ordinal) to CHAR

o ORD (ordinal) to INTEGER

o WRD (ordinal) to WORD

Six of the conversion procedures and functions
convert between INTEGER or INTEGER4 and REAL:

o FLOAT Converts INTEGER to REAL

o FLOAT4 Converts INTEGER4 to REAL

o TRUNC Converts REAL to INTEGER

o TRUNC4 Converts REAL to INTEGER4

o ROUND Rounds REAL to INTEGER

o ROUND4 Rounds REAL to INTEGER4

PACK and UNPACK transfer components between packed
and unpacked arrays. (Note, however, that in our
version of Pascal, packed and unpacked arrays have
the same format.)

ODD tests to see if the ordinal value of a vari­
able is odd.

At the extend level, the RETYPE function changes
the type of an expression arbitrarily.

ARITHMETIC FUNCTIONS

All arithmetic functions take a CONSTS parameter
of type REAL4 or REAL8 or a type compatible with
INTEGER. ABS and SQR also take WORD and INTEGER4
values.

All functions on REAL data types check for an
invalid (unini tialized) value. They also check
for particular error conditions and generate a
run-time error message if an error condition is
found.

If the math-checking switch is on ($MATHCK),
errors in the use of the functions ABS and SQR on

14-6 Pascal Manual

INTEGER, WORD, and INTEGER4 data generate a run­
time error message. If the switch is off, the
result in case of an error is undefined.

Table 14-3 lists the arithmetic function
available, along with the run-time routine calls
generated by the compiler depending on whether
single or double precision is required.

Table 14-3. Predeclared Arithmetic Functions.

Name °Eeration REAL4 REAL8

ABS Absolute value (inline) (inline)
ARCTAN Arc tangent ATSRQQ ATDRQQ
COS Cosine CNSRQQ CNDRQQ
EXP Exponential EXSRQQ EXDRQQ
LN Natural log LNSRQQ LNDRQQ
SIN Sine SNSRQQ SNDRQQ
SQR Square SNSRQQ SNDRQQ
SQRT Square root SRSRQQ SRDRQQ

PRED and SUCC are arithmetic functions that oper­
ate on ordinal types. They determine the ordinal
predecessor or successor to a variable, respec­
tively. PRED AND SUCC are not predeclared.

The following no-overflow arithmetic routines are
not predeclared, but are available to you in the
run-time library. You must declare them, with the
EXTERN directive, before using them in a program.

These functions implement l6-bit and 32-bit modulo
ari thmetic. Overflow or carry is returned, in­
stead of invoking a run-time error:

o LADDOK

o LMULOK

o SADDOK

o SMULOK

o UADDOK

o UMULOK

Available Procedures and Functions 14-7

The run-time library provides several additional
REAL4 and REAL8 functions, as shown in Table 14-4.
If you use them, you must declare them with the
EXTERN directive.

Table 14-4. REAL Functions from the Run-time
Library.

°Eeration REAL4 REAL8

Arc cosine ACSRQQ ACDRQQ
Integral trunc AISRQQ AIDRQQ
Integral round ANSRQQ ANDRQQ
Arc sine ASSRQQ ASDRQQ
Arc tangent AlB A2SRQQ A2DRQQ
Hyperbolic cosine CHSRQQ CHDRQQ
Decimal log LDSRQQ LDDRQQ
Modulo MDSRQQ MDDRQQ
Minimum MNSRQQ MNDRQQ
Maximum MXSRQQ MXDRQQ
Power (REAL8**INTG4) PIDRQQ
Power (REAL4**INTG4) PISRQQ
Power (REAL ** REAL) PRSRQQ PRDRQQ
Hyperbolic sine SHSRQQ SHDRQQ
Hyperbolic tangent THSRQQ THDRQQ
Tangent TNSRQQ TNDRQQ

Some common mathematical functions are not stand­
ard in Pascal, but are relatively simple to imple­
ment with program statements or to define as
functions in a program. Some typical definitions
follow:

SIGN (X)
POWER (X, Y)

is
is

ORD (X > 0) - ORD (X < 0)
EXP (Y * LN (X»

You can also write your own functions in Pascal to
do the same thing. The PURE attribute is useful.
to obtain more efficient code when you define such
functions. For example:

14-8

FUNCTION POWER (A, B: REAL): REAL [PURE]:
BEGIN

IF A <= 0 THEN

END;

ABORT ('Nonplus real to power', 24, 0);
POWER := EXP (B * LN (A»:

Pascal Manual

STRING INTRINSICS

The following intrinsics are available for use
with STRINGs and LSTRINGs at the standard level:

o CON CAT

o DELETE

o INSERT

o COPYLST

o COPYSTR

o POSITN

o SCANEQ

o SCANNE

Concatenates strings

Deletes a specified number of char­
acters from an LSTRING

Inserts a STRING into an LSTRING

Copies a STRING to an LSTRING

Copies a STRING to another STRING

Returns the position of a pattern
within a STRING

Searches a STRING for a pattern and
returns the number of characters
skipped before the pattern is found

Operates like SCANEQ, except it
stops scanning when a character not
equal to the specified pattern is
found

At the extend level, the following string intrin­
sics are also available:

o

o

o

o

o

o

FILLC

FILLSC

MOVEL

MOVER

MOVESL

MOVESR

Fills a specified memory region
wi th a speci fied number of copies
of one character

Fills a specified memory region
wi th a specified number of copies
of one character

Starting at the lowest addressed
byte of an array, moves a specified
number of bytes

Starting at the highest addressed
byte of an array, moves a specified
number of bytes

Like MOVEL,
ADSMEM

Like MOVER,
ADSMEM

but

but

operates with

operates with

Available Procedures and Functions 14-9

The extend level
convert between
variables.

intrinsics
internal and

ENCODE and DECODE
string forms of

INTEGER/WORD CONVERSION PROCEDURES

At the extend level, the following intrinsic
procedures and functions are available to compose
and decompose one-byte, two-byte, and four-byte
items.

0 HIBYTE Returns the most significant byte
of an INTEGER or WORD

0 LOBYTE Returns the least significant byte
of an INTEGER or WORD

0 BYWORD Forms a WORD from two byte values

0 HIWORD Returns the high order word of the
four bytes of the INTEGER4

0 LOWORD Returns the low order word of the
four bytes of the INTEGER4

0 BYLONG Forms an INTEGER4 from two WORD or
INTEGER values

EXPRESSION EVALUATION

At the extend level, the following intrinsic
procedures and functions are available for deter­
mining current value of expressions:

o EVAL

o LOWER

o UPPER

In addition, RESULT, another extend level intrin­
sic, determines the current value of a function.

INITIALIZATION, TERMINATION, AND ERROR ROUTINES

BEGOQQ and ENDOQQ are called during initialization
and termination, respectively. BEGOQQ and ENDOQQ
are empty procedures. You can write your own
BEGOQQ or ENDOQQ, for example, to invoke a

14-10 Pascal Manual

debugger or to write customized messages, such as
the time of execution, to the video display. If
you write you own, you must declare them [PUBLIC]
and include the name in the "Object Modules" field
of the command form when you link the program.

BEGXQQ can be called to restart a program and
ENDXQQ to terminate it.

At the extend level, the intrinsic procedure ABORT
invokes a run-time error.

I/O ROUTINES

The following library routines support direct
input to and output to and from the keyboard or
video display.

o GTYUQQ

o PTYUQQ

o PLYUQQ

Reads a specified number of charac­
ters from the keyboard and stores
them in memory

Writes characters from memory to
the video display

Writes a linefeed character to the
video display

These routines must be declared EXTERN when used.

SEMAPHORE ROUTINES

The two procedures, LOCKED and UNLOCK, provide a
binary semaphore capability. You can use them to
ensure exclusive access to a resource in a
concurrent system.

Available Procedures and Functions 14-11

DIRECTORY OF PROCEDURES AND FUNCTIONS

This subsection contains a list of all available
procedures and functions, both those that are
predeclared and those library routines that can be
used if declared as external (EXTERN). Each entry
includes the heading, the category to which the
operation belongs, and a description of what the
procedure or function does. . Notes and examples
are included as appropriate. The headings given
are the same for both REAL4 or REAL8, unless
specifically stated otherwise.

ABORT

PROCEDURE ABORT (CONST MESS
WORD) ;

STRING; ERRl, ERR2

An extend level intrinsic procedure.

Halts program execution in the same way as an
internal run-time error. The STRING is an
error message. The string parameter is a
CONST, not a CONSTS parameter. The first WORD
is an error code. (See Appendix H, "Messages,"
for error code allocations.) ERR2, which can
be anything, returns a file error status code
from the operating system.

The parameters, as well as any information
about the machine state (program counter,
frame pointer, stack pointer) and the source
position of the ABORT call (if the $LINE
and/or $ENTRY debugging switches are on), are
given to you in a termination message or are
available to the debugging package.

If the $RUNTIME switch is Qn, error messages
report the location of the procedure or func­
tion that has called the routine in which
ABORT was called. If $RUNTIME is on, $LINE
and $ENTRY should be off, and routines in a
source file should only call other $RUNTIME
routines.

14-12 Pascal Manual

ADS

FUNCTION ASS (X: NUMERIC): NUMERIC;

An arithmetic function.

Returns the absolute value of X. Both X and
the return value are of the same numeric type:
REAL4, REALS, INTEGER, WORD, or INTEGER4.
Since WORD values are unsigned, ABS (X) always
returns X if X is of type WORD.

ACSROQ and ACDROQ

FUNCTION ACSRQQ (CONSTS A: REAL4): REAL4; EXTERNi
FUNCTION ACDRQQ (CONSTS A: REALS): REALSi EXTERNi

Arithmetic functions.

Return the arc cosine of A. Both A and the
return value are of type REAL4 or REALS, as
shown.

These functions are from the run-time library
and must be declared EXTERN before use.

AISROQ and AIDROQ

FUNCTION AISRQQ (CONSTS A: REAL4): REAL4i EXTERNi
FUNCTION AIDRQQ (CONSTS A: REALS): REALS; EXTERN;

Arithmetic functions.

Return the integral part of A, truncated to­
ward zero. Both A and the return value are of
type REAL4 or REALS, as shown.

These functions are from the run-time library
and must be declared EXTERN before use.

Available Procedures and Functions 14-13

ALLHQQ

FUNCTION ALLHQQ (SIZE: WORD): WORD: EXTERN:

A library routine (heap management function).

Returns zero if the heap is full, one if the
heap structure is in error, MAXWORD if the
allocator has been interrupted. Otherwise, it
returns the pointer value for an allocated
variable with the size requested.

Generally,
function.

ALLHQQ is used
For example:

with the RETYPE

P VAR := RETYPE (p TYPE, ALLHQQ (28»:
{RETYPE converts the value returned by}
{ALLHQQ (28) to the type P TYPE.}
{This value is assigned to-P_VAR.}

IF WRD (p VAR) < 2 THEN GO ABORT:
{PVAR is then checked for a heap}
{full or heap structure error.}

ALLMQQ

FUNCTION ALLMQQ(wants: WORD) : ADSMEM: EXTERN:

Allocates a block of 'wants' bytes on the long
heap and returns the block address. The block
cannot be larger than 64K bytes.

This function is from the run-time library and
must be declared EXTERN before use.

ANSRQQ and ANDRQQ

FUNCTION ANSRQQ (CONSTS A: REAL4): REAL4: EXTERN:
FUNCTION ANDRQQ (CONSTS A: REAL8): REAL8: EXTERN:

Arithmetic functions.

Like AISRQQ and AIDRQQ, return the truncated
integral part of A, but round away from zero.
Both A and the return value are of type REAL4
or REAL8, as shown.

These functions are from the run-time library
and must be declared EXTERN before use.

14-14 Pascal Manual

ARCTAN

FUNCTION ARCTAN (X: REAL): REAL:

An arithmetic function.

Returns the arc tangent of X in radians. Both
X and the return value are of type REAL. To
force a particular precision, declare ATSRQQ
(CONSTS REAL4) and/or ATDRQQ (CONSTS REAL8)
and use them instead.

ASSROQ and ASDROQ

FUNCTION ASSROQ (CONSTS A: REAL4): REAL4: EXTERN:
FUNCTION ASDRQO (CONSTS A: REAL8): REAL8; EXTERN;

Arithmetic functions.

Return the arc sine of A. Both A and the
return value are of type REAL8 or REAL4, as
shown.

These functions are from the run-time library
and must be declared EXTERN before use.

ASSIGN

PROCEDURE ASSIGN (VAR F
STRING) ;

FILE OF •• ; CONSTS N:

A file system procedure (extend level I/O).

Assigns an operating system filename in a
STRING (or LSTRING) to a file F.

See the subsection IIExtend Level Procedures II
in Section 15, IIFile-Oriented Procedures and
Functions,1I for a description.

Available Procedures and Functions 14-15

ATSRQQ and ATDRQQ

FUNCTION ATSRQQ (CONSTS A: REAL4): REAL4; EXTERN;
FUNCTION ATDRQQ (CONSTS A: REAL8): REAL8; EXTERN;

See ARCTAN.

A2SRQO and A2DROO

FUNCTION A2SRQQ (A, B: REAL4): REAL4; EXTERN;
FUNCTION A2DRQQ (A, B: REAL8): REAL8; EXTERN;

Arithmetic functions.

Return the arc tangent of (A/B).
B, as well as the return value,
REAL4 or REAL8, as shown.

Both A and
are of type

These functions are from the run-time library
and must be declared EXTERN before use.

BEGOOO

PROCEDURE BEGOQQ; EXTERN;

A library routine (initialization).

BEGOQQ is called during initialization, and
the default version does nothing. However,
you can write your own version of BEGOQQ, if
for example, you want to invoke a debugger or
to write customized messages to the video
display, such as the time of execution.

See also ENDOQQ.

14-16 Pascal Manual

BEGXQO

PROCEDURE BEGXQQi EXTERNi

A library routine (initialization).

After your program is linked and loaded,
BEGXQQ is the defined entry point for the load
module.

As the overall initialization routine, BEGXQQ
performs the following actions:

o resets the stack and the heap

o initializes the file system

o calls BEGOQQ

o calls the program body

Invoking this procedure to restart a program
does not take care of closing any files that
may have previously been opened. Similarly,
it does not reinitialize variables originally
set in a VALUE section or with the
initialization switch on.

Available Procedures and Functions 14-17

BYLONG

FUNCTION BYLONG(HI:WORD or INTEGER or INTEGER4;
LO:WORD or INTEGER or INTEGER4); INTEGER4

An extend level intrinsic function.

Converts WORDS or INTEGERs (or the LOWORDs of
INTEGER4s) to an INTEGER4' val ue • BYLONG con­
catenates the low order words of the operand.

The low-order word of the first operand
becomes the high-order word of the result.
The low-order word of the second operand
becomes the low-order word of the result.

If the first val ue is of type WORD,
significant bit becomes the sign
result.

its most
of the

To ass ign a WORD to an INTEGER4, use BYLONG
instead of the ORD function, because ORD will
sign-extend the WORD. For example,

Integer4Var := BYLONG (0, WordExpression);

BYWORD

FUNCTION BYWORD (PARI, PAR2): WORD;

An extend level intrinsic function.

Converts bytes (or the LOBYTEs of INTEGERs or
WORDs) to a WORD val ue. PARI and PAR2 can
have any ordinal type. BYWORD returns a WORD
with the first byte in the most significant
part and the second byte in the least
significant part:

BYWORD (A, B)

14-18 Pascal Manual

LOBYTE(A) * 256
+ LOBYTE(B)

CHR

FUNCTION CHR (X: ORDINAL): CHAR:

A data conversion function.

Converts any ordinal type to CHAR. The ASCII
code for the result is the internal binary
representation of X. This is an extension to
the ISO standard, which requires X to be of
type INTEGER. An error occurs if ORO (X) >
255 or ORO (X) < 0. However, the error is
caught only if the range-checking switch
($RANGECK) is on.

CHSROQ and CHDROQ

FUNCTION CHSRQQ (CONSTS A: REAL4): REAL4; EXTERN;
FUNCTION CHDRQQ (CONSTS A: REAL8): REAL8; EXTERN;

Arithmetic functions.

Return the hyperbolic cosine·of A. Both A and
the return value are of type REAL4 or REAL8,
as shown.

These functions are from the run-time library
and must be declared EXTERN before use.

CLOSE

PROCEDURE CLOSE {VAR F : FILE OF •• };

A file system procedure (extend level I/O).

Performs an operating system close on a file,
ensuring that the file access is terminated
correctly.

See the subsection "Extend Level Procedures"
in Section 15, "File-Oriented Procedures and
Functions," for a description of CLOSE.

Available Procedures and Functions 14-19

CNSROQ and CNDROQ

FUNCTION CNSRQQ (CONSTS A: REAL4): REAL4:
FUNCTION CNDRQQ (CONSTS A: REAL8): REAL8:

See COS.

COIiCAT

PROCEDURE CONCAT (VARS D: LSTRING: CONSTS 5:
STRING) :

A string intrinsic procedure.

Concatenates S to the end of D. The length of
D increases by the length of S. An error
occurs if D is too small, that is, if UPPER
(D) < D.LEN + UPPER (S).

COPYLST

PROCEDURE COPYLST (CONSTS S: STRING: VARS D:
LSTRING) :

A string intrinsic procedure.

Copies S to LSTRING D. The length of D is set
to UPPER (S). An error occurs if the length
of S is greater than the maximum length of D,
that is, if UPPER (S) > UPPER (D).

14-20 Pascal Manual

COPYSTR

PROCEDURE COPYSTR (CONSTS S: STRING: VARS D:
STRING) ;

cos

A string intrinsic procedure.

Copies S to STRING D. The remainder of D is
set to blanks if UPPER (S) < UPPER (D). An
error occurs if the length of S is greater
than the maximum length of D, that is I if
UPPER (S) > UPPER (D).

FUNCTION COS (X: NUMERIC): REAL:

An arithmetic function.

Returns the cosine of X in radians. Both X
and the return val ue are of type REAL. To
force a particular precision, declare CNSRQQ
(CONSTS REAL4) and/ or CNDRQQ (CONSTS REAL8)
and use them instead.

Available Procedures and Functions 14-21

DECODE

FUNCTION DECODE (CONST LSTR: LSTRING, X:M:N):
BOOLEAN:

An extend level intrinsic function.

Converts the character string in the LSTRING
to its internal representation and assigns
this to X. If the character string is not a
valid external ASCII representation of a value
whose type is assignment compatible with X,
DECODE returns FALSE and the value of X is
undefined.

DECODE works exactly the same as the READ
procedure, including the use of M and N
parameters. When X is a subrange, DECODE
returns FALSE if the value is out of range
(regardless of the setting of the range­
checking switch.) Leading and trailing spaces
and tabs in the LSTRING are ignored. All
other characters in the LSTRING must be part
of the representation.

X must be one of the types INTEGER, WORD,
enumerated, one of their subranges, BOOLEAN,
REAL4, REAL8, INTEGER4, or a pointer.
(Address types need the .R or .5 suffix.)

The LSTR parameter must reside in the default
data segment.

See also ENCODE.

14-22 Pascal ·Manual

DELETE

PROCEDURE DELETE (VARS D: LSTRING; I, N: INTEGER);

A string intrinsic procedure.

Deletes N characters from D, starting with D
[IJ. An error occurs if an attempt is made to
delete more characters starting at I than it
is possible to delete, that is, if D.LEN < (I
+ N - 1).

DISCARD

PROCEDURE DISCARD (VAR F : FILE OF ••);

A file system procedure (extend level I/O).

Closes and deletes an open file.

See the subsection "Extend Level Procedures,"
in Section 15, "File-Oriented Procedures and
Functions," for a description.

DISMQO

FUNCTION DISMQQ(block : ADSMEM); EXTERN;

Performs FREMQQ with error checking.

This function is from the run-time library and
must be declared EXTERN before use.

Available Procedures and Functions 14-23

DISPOSE

PROCEDURE DISPOSE (VARS P: POINTER);

A dynamic allocation procedure (short form).

Releases the memory used for the variable
pointed to by P. P must be a valid pointer;
it can not be NIL, uninitialized, or pointing
at a heap item that already has been DISPOSEd.
These are checked if the NIL check switch in
on.

P should not be a reference parameter or a
WITH statement record pointer, but these
errors are not caught. A DISPOSE of a WITH
statement record can be done at the end of the
WITH statement without problem.

I f the variable is a super array type or a
record with variants, you can safely use the
short form of DISPOSE to release the variable,
regardless of whether it was allocated with
the long or short form of NEW. Using the
short form of DISPOSE on a heap variable allo­
ca ted with the long form of NEW is an ISO­
defined error not detected by our version of
Pascal.

DISPOSE

PROCEDURE DISPOSE
(VARS P: POINTER; TI, T2, •• TN: TAGS);

A dynamic allocation procedure (long form).

The long form of DISPOSE works the same as the
short form. However, the long form checks the
size of the variable against the size implied
by the tag field or array upper bound values
TI, T2, •• Tn. These tag values should be the
same as those defined in the corresponding NEW
procedure.

See also SIZEOF, which uses the same array
upper bounds or tag value parameters to return
the number of bytes in a variable.

14-24 Pascal Manual

ENCODE

FUNCTION ENCODE (VAR LSTR: LSTRING, X:M:N):
BOOLEAN;

An extend level intrinsic function.

Converts the expression X to its external
ASCII representation and puts this character
string into LSTR. Returns TRUE, unless the
LSTRING is too small to hold the string gener­
ated. In this case, ENCODE returns FALSE and
the value of the LSTR is undefined. ENCODE
works exactly the same as the WRITE procedure,
including the use of M and N parameters. (See
the subsection "Read Formats" in Section 15,
"File-Oriented Procedures and Functions," for
a discussion of these parameters.)

X must be one of the types INTEGER, WORD,
enumerated, one of their subranges, BOOLEAN,
REAL 4 , REAL8, INTEGER4, or a pointer.
(Address types need the .R or .S suffix.)

The LSTR parameter must reside in the default
data segment.

See also DECODE.

PROCEDURE ENDOQQ; EXTERN;

A library procedure (termination).

ENDOQQ is called during termination and the
defaul t version does nothing. However, you
can write your own version of ENDOQQ if, for
example, you want to invoke a debugger or to
write customized messages, such as the time of
execution, to the video display.

Since ENDOQQ is called after errors are
processed, if ENDOQQ itself invokes an error,
the result is an infinite termination loop.

See also BEGOQQ.

Available Procedures and Functions 14-25

ENDXOO

PROCEDURE ENDXQQ : EXTERN:

EOF

The termination procedure.

ENDXQQ is the overall termination routine and
performs the following actions:

o It calls ENDOQQ.

o It terminates the file system (closing any
files opened by the Pascal file system).

o It returns to the operating system (or
whatever called BEGXQQ).

ENDXQQ can be useful for ending program exe­
cution from inside a procedure or function,
without calling ABORT. ENDXQQ corresponds to
the HALT procedure in other Pascals.

FUNCTION EOF: BOOLEAN:
FUNCTION EOF (VAR F : FILE OF ••): BOOLEAN;

A file system function.

Indicates whether the current position of the
file is at the end of the file F for
SEQUENTIAL and TERMINAL file modes. EOF with
no parameters is the same as EOF (INPUT).

See the subsection "EOF and EOLN" in Section
15, "File-Oriented Procedures and Functions,"
for a description.

14-26 Pascal Manual

EOLN

FUNCTION EOLN: BOOLEAN:
FUNCTION EOLN (VAR F : FILE OF ••): BOOLEAN;

A file system function.

Indicates whether the current position of the
file is at the end of a line in the textfile
F. EOLN with no parameters is the same as
EOLN (INPUT) •

See the subsection ItEOF and EOLN, It in Section
15, "File-Oriented Procedures and Functions, It
for a description.

EVAL

PROCEDURE EVAL (EXPRESSION, EXPRESSION,);

An extend level intrinsic procedure.

Evaluates expression parameters only, but ac­
cepts any number of parameters of any type.
EVAL is used to evaluate an expression as a
statement. It is commonly used to evaluate a
function for its side effects only, without
using the function return value.

EXSRQO and EXDRQO

FUNCTION EXSRQQ (CONSTS A: REAL4): REAL4: EXTERN;
FUNCTION EXDRQQ (CONSTS A: REAL8): REAL8; EXTERN;

See EXP.

Available Procedures and Functions 14-27

EXP

FUNCTION EXP (X: NUMERIC): REAL;

An arithmetic function.

Returns the exponential value of X (that is, e
to the X). Both X and the return value are of
type REAL. To force a particular precision,
declare EXSRQQ (CONSTS REAL4) and/or EXDRQQ
(CONSTS REAL8) and use them instead.

FILLC

PROCEDURE FILLC (D: ADRMEM: N: WORD; C: CHAR):

An extend level intrinsic procedure.

Fills D with N copies of the CHAR C.

Note that no bounds checking is done.

See al so PROCEDURE FILLSC for segmented
address types. The MOVE and FILL procedures
(MOVESL, MOVESR, MOVEL, MOVER, FILLC AND
FILLSC) take value parameters of type ADRMEM
and ADSMEM, but since all ADR (or ADS) types
are compatible, the ADR (or ADS) of any vari­
able or constant can be used as the actual
parameter.

FILLSC

PROCEDURE FILLSC (D: ADSMEM; N:WORD: C: CHAR):

An extend level intrinsic procedure •.

Fills D with N copies of the CHAR C. No
bounds checking is done.

This procedure is the same as FILLC except
that the target parameter is VARS.

14-28 Pascal Manual

FLOAT

FUNCTION FLOAT (X: INTEGER): REAL:

A data conversion function.

Converts an INTEGER value to a REAL value.
You normally do not need this function, since
INTEGER-to-REAL is usually done automatically.
However, because FLOAT is needed by the run­
time package, it is included at the standard
level.

FLOAT4

FUNCTION FLOAT4 (X: INTEGER4): REAL;

A data conversion function.

Converts an INTEGER4 value to a REAL value.
This type of conversion is also done auto­
matically; however, it is possible to lose
precision. (Losing precision is not an
error.)

FREECT

FUNCTION FREECT (SIZE: WORD): WORD: EXTERN:

A library function.

Returns an estimate of the number of times NEW
could be called to allocate heap variables
with length SIZE bytes. FREECT takes into
account adjacent free blocks and is generally
used with the SIZEOF function. However, it
does not assume that any stack space will be
needed. Since stack space generally is
needed, the value returned should be reduced
accordingly.

Example:

IF FREECT (SIZEOF (REC, TRUE, 5» > 2
THEN DO SOMETHING

Available Procedures and Functions 14-29

FREMOO

FUNCTION FREMQQ(block : ADSMEM) : WORD: EXTERN:

GET

Frees a memory
Returns 0 if no
otherwise.

block from the long heap.
errors encountered, nonzero

This function is from the' run-time library and
must be declared EXTERN before use.

PROCEDURE GET (VAR F : FILE OF ••):

A file system procedure.

GET either reads the currently pointed-to com­
ponent of F to the buffer variable F.... and
advances the file pointer, or sets the buffer
variable status to empty.

See the subsection "GET and PUT, II in Section
15, "File-Oriented Procedures and Functions,"
for a description.

GETMOQ

FUNCTION GETMQQ (wants : WORD) : ADSMEM: EXTERN:

Performs ALLMQQ with error checking.

This function is from the run-time library and
must be declared EXTERN before use.

14-30 Pascal Manual

GTYUQO

FUNCTION GTYUQQ (LEN: WORD: LOC: ADSMEM): WORD:
EXTERN:

A library function (terminal I/O).

Reads a maximum of LEN characters from the
keyboard and stores them in memory beginning
at the address LOC. The return value is the
number of characters actually read. GTYUQQ
always reads the entire line you enter. Any
characters typed beyond the end of the buffer
length are lost.

Example:

LSTR.LEN := GTYUQQ (UPPER{LSTR),
ADS LSTR(l»:

Together with PTYUQQ and PLYUQQ, GTYUQQ is
useful for dOing terminal I/O in a low­
overhead environment. These functions are
part of a collection of routines called
Unit U, which implements the Pascal file
system.

BIBYTE

FUNCTION HIBYTE (I : INTEGER or WORD): BYTE:

An extend level intrinsic function.

Returns the most significant byte of an
INTEGER or WORD.

See also LOBYTE.

BIWORD

FUNCTION HIWORD (I : INTEGER4): WORD:

An extend level intrinsic function.

Returns the high-order word of the four bytes
of the INTEGER4. The sign bit of the INTEGER4
becomes the most significant bit of the word.

See also LOWORD.

Available Procedures and Functions 14-31

INSERT

PROCEDURE INSERT
(CONSTS S:STRING: VARS D:LSTRING: I:INTEGER):

A string intrinsic procedure.

Inserts S starting just before D [I]. An
error occurs if D is too small, that is, if

UPPER (D) < UPPER (S) + D.LEN

or if

D.LEN + I < I

LADDOK

FUNCTION LADDOK
(A, B: INTEGER4: VAR C: INTEGER4): BOOLEAN:
EXTERN:

A library routine (no-overflow arithmetic).

Sets C equal to A pI us B. One of two func­
tions that do 32-bit signed arithmetic without
causing a run-time error, even if the ari th­
metic debugging switch is on. Both LADDOK and
LMULOK return TRUE if there is no-overflow,
and FALSE if there is.

These routines are useful for extended­
precision arithmetic, modulo 2**32 arithmetic,
or arithmetic based on user input data.

LDSROO and LDDROO

FUNCTION LDSRQQ (CONSTS A: REAL4): REAL4: EXTERN:
FUNCTION LDDRQQ (CONSTS A: REAL8): REAL8: EXTERN:

Arithmetic functions.

Return the logarithm, base 10, of A. Both A
and the return value are of type REAL4 or
REAL8, as shown.

These functions must be declared EXTERN before
use.

14-32 Pascal Manual

LMULOK

FUNCTION LMULOK
(A, B: INTEGER4; VAR C: INTEGER4): BOOLEAN:
EXTERN:

A library routine (no-overflow arithmetic).

Sets C equal to A times B. One of two func­
tions that do 32-bit signed arithmetic without
causing a run-time error on overflow. Normal
arithmetic can cause a run-time error even if
the arithmetic debugging switch is off. Both
LMULOK and LADDOK return TRUE if there is no­
overflow, and FALSE if there is.

These routines are useful for extended­
precision arithmetic, modulo 2**32 arithmetic,
or arithmetic based on user input data.

FUNCTION LN (X: REAL): REAL:

An arithmetic function.

Returns the logarithm, base e, of X. Both X
and the return value are of type REAL. To
force a particular precision, declare LNSRQQ
(CONSTS REAL4) andlor LNDRQQ (CONSTS REAL8)
and use them instead. An error occurs if X is
less than or equal to zero.

LNSRQQ and LNDRQQ

FUNCTION LNSRQQ (CONSTS A: REAL4): REAL4: EXTERN:
FUNCTION LNDRQQ (CONSTS A: REAL8): REAL8: EXTERN;

See LN.

Available Procedures and Functions 14-33

LOBYTE

FUNCTION LOBYTE (I : INTEGER or WORD): BYTE:

An extend level intrinsic function.

Returns the least significant byte of an
INTEGER or WORD.

See also HIBYTE.

LOCKED

FUNCTION LOCKED (VARS SEMAPHORE: WORD): BOOLEAN:
EXTERN:

A library function (semaphore).

If the semaphore is available, LOCKED returns
the value TRUE and sets the semaphore unavail­
able. Otherwise, if it is already locked,
LOCKED returns FALSE. UNLOCK sets the sema­
phore available. As it is a binary semaphore,
there are only two states.

See also UNLOCK.

14-34 Pascal Manual

LOWER

FUNCTION LOWER (EXPRESSION): VALUE;

An extend level intrinsic function.

LOWER takes a single parameter of one of the
following types: array, set, enumerated, or
subrange. The value returned by LOWER is one
of the following:

o the lower bound of an array

o the first allowable element of a set

o the first value of an enumerated type

o the lower bound of a subrange

LOWER uses the type and not the value of the
expression. The value returned by LOWER is
always a constant.

See also UPPER.

LOWORD

FUNCTION LOWORD (I : INTEGER4): WORD;

An extend level intrinsic function.

Returns the low-order WORD of the four bytes
of the INTEGER4.

See also HIWORD.

Available Procedures and Functions 14-35

MARKAS

PROCEDURE MARKAS (VAR HEAPMARK: INTEGER4)~ EXTERN:

A library procedure (heap management).

Parallels the MARK procedure in other Pascals.
MARKAS marks the upper and lower limits of the
short heap. The DISPOSE procedure is
generally more powerful, but MARKAS can be
useful for converting from other Pascal
dialects.

In other Pascals, the parameter is of a
pointer type. However, in our version of
Pascal, two words are needed to save the heap
limits, since the heap grows toward both
higher and lower addresses. The HEAPMARK
variable should not be used as a normal
INTEGER4 number~ it should only be set by
MARKAS and passed to RELEAS.

To use MARKAS and RELEAS, pass an INTEGER4
variable, M for example, as a VAR parameter to
MARKAS. MARKAS places the bounds of the heap
in M. The low-order word of M receives the
relative address of the beginning of the heap,
the high-order word of M that of the end of
the heap. To release heap space, simply
invoke the procedure with RELEAS (M).

Note that to use MARKAS and RELEAS you should
not use the long heap at all. These two
procedures also work as intended only if you
never call DISPOSE.

14-36 Pascal Manual

MDSRQO and MDDRQO

FUNCTION MDSRQQ (CONSTS A, B: REAL4): REAL4~
EXTERN~

FUNCTION MDDRQQ (CONSTS A, B: REAL8): REAL8~
EXTERN~

Arithmetic functions.

A modulo B, defined as:

MDSRQQ (A, B)
MDDRQQ (A, B)

A - AISRQQ (A/B) * B
A - AIDRQQ (A/B) * B

Both A and B are of type REAL4 or REAL8, as
shown. These functions are from the run-time
library and must be declared EXTERN before
use.

MENAVL

FUNCTION MEMAVL: WORD~ EXTERNi

A library function (heap management).

Returns the number of bytes available between
the stack and the heap. MEMAVL acts like the
MEMAVAIL function in UCSD Pascal. If you have
previously used DISPOSE, MEMAVL can return a
value less than the actual number of bytes
available.

Available Procedures and Functions 14-37

MNSROQ and MNDROO

FUNCTION MNSRQQ (CONSTS A, B: REAL4): REAL4:
EXTERN:

FUNCTION MNDRQQ (CONSTS A, B: REALB): REALB:
EXTERN:

Arithmetic functions.

Return the value of A or
smaller. Both A and Bare
REALB, as shown.

B, whichever is
of type REAL4 or

These functions are from the run-time library
and must be declared EXTERN before use.

See also MXSRQQ and MXDRQQ.

MOVEL

PROCEDURE MOVEL (S, D: ADRMEM: N: WORD):

An extend level intrinsic procedure.

Moves N characters (bytes) starting at SA to
DA, beginning with the lowest addressed byte
of each array.

Regardless of the value of the range and index
checking switches, there is no bounds
checking.

Example:

MOVEL (ADR 'New String Value', ADR V, 156)

See also PROCEDURE MOVESL for segmented
address types. Use MOVEL and MOVESL to shift
bytes left or when the address ranges do not
overlap.

The MOVE and FILL procedures (MOVESL, MOVESR,
MOVEL, MOVER, FILLC, AND FILLSC) take value
parameters of type ADRMEM and ADSMEM. How­
ever, since all ADR (or ADS) types are
compatible, the ADR (or ADS) of any variable
or constant can be used as the actual
parameter. These are dangerous but sometimes
useful procedures.

14-38 Pascal Manual

MOVER

PROCEDURE MOVER (S, D: ADRMEMr N: WORD}i

An extend level intrinsic procedure.

Like MOVEL, but starts at
addressed byte of each array.
MOVESR to shift bytes right
address ranges do not overlap.
there is no bounds checking.

Example:

the highest
Use MOVER and
or when the

As with MOVEL,

MOVER (ADR V[0], ADR V[4], 12)

See also PROCEDURE MOVESR
address types.

for segmented

The MOVE and FILL procedures (MOVESL, MOVESR,
MOVEL, MOVER, FILLC, AND FILLSC) take value
parameters of type ADRMEM and ADSMEM. How­
ever, since all ADR (or ADS) types are
compatible, the ADR (or ADS) of any variable
or constant can be used as the actual
parameter. These are dangerous but sometimes
useful procedures.

Available Procedures and Functions 14-39

MOVESL

PROCEDURE MOVESL (S, D: ADSMEM; :N: WORD);

An extend level intrinsic procedure.

Moves N characters (bytes) starting at SA to
DA beginning with the lowest addressed byte of
each array.

Regardless of the value of the range and index
checking switches, there is no bounds
checking.

Example:

MOVESL (ADS 'New String Value', ADS V, 16)

This procedure is the same as MOVEL, except
that the target parameter is VARS.

See also PROCEDURE MOVEL for relative address
types. Use MOVEL and MOVESL to shi ft bytes
left or when the address ranges do not
overlap.

The MOVE and FILL procedures (MOVESL, MOVESR,
MOVEL, MOVER, FILLC, AND FILLSC) take value
parameters of type ADRMEM and ADSMEM. How­
ever, since all ADR (or ADS) types are com­
patible, the ADR (or ADS) of any variable or
constant can be used as the actual parameter.
These are dangerous but sometimes useful
procedures.

14-40 Pascal Manual

MOVESR

PROCEDURE MOVESR (S, D: ADSMEM: N: WORD):

An extend level intrinsic procedure.

Like MOVESL, but starts at
addressed byte of each array.
MOVESR to shift bytes right
address ranges do not overlap.

the highest
Use MOVER and
or when the

As with MOVESL, there is no bounds checking.

Example:

MOVER (ADR V[0], ADR V [4], 12)

See also PROCEDURE MOVER for relative address
types.

This procedure is the same as MOVER, except
that the target parameter is VARS.

The MOVE and FILL procedures (MOVESL, MOVESR,
MOVEL, MOVER, FILLC, AND FILLSC) take value
parameters of type ADRMEM and ADSMEM.
However, since all ADR (or ADS) types are
compatible, the ADR (or ADS) of any variable
or constant can be used as the actual
parameter. These are dangerous but sometimes
useful procedures.

MXSRQQ and MXDRQQ

FUNCTION MXSRQQ (CONSTS A, B: REAL4): REAL4:
EXTERN:

FUNCTION MXDRQQ (CONSTS A, B: REAL8): REAL8:
EXTERN:

Arithmetic functions.

Return the value of A or B, whichever is
larger. Both A and B are of type REAL4 or
REALB, as shown.

These functions are from the run-time library
and must be declared EXTERN before use.

See also MNSRQQ and MNDRQQ.

Available Procedures and Functions 14-41

NEW

PROCEDURE NEW (VARS P: POINTER) 1

A library procedure (heap management, short
form) •

Allocates a new variable (for example, V) on
the heap and at the same time assigns a
pointer to V to the pointer .variable P (a VARS
parameter) • The type of V is determined by
the pointer declaration of P. If V is a super
array type, use the long form of the procedure
instead. If V is a record type with variants,
the variants giving the largest possible size
are assumed, permitting any variant to be
assigned to p

PROCEDURE NEW (VARS P: POINTER~ TI, TI •• TN:
TAGS) ~

A library procedure (heap management, long
form) •

Allocates a variable with the variant speci­
fied by the tag field values TI through Tn.
The tag field values are listed in the order
in which they are declared. Any trailing tag
fields can be omitted.

If all tag field values are constant, Pascal
allocates only the amount of space required on
the heap, rounded up to a word boundary. The
value of any omitted tag fields is assumed to
be such that the maximum possible size is
allocated.

If some tag fields are not constant values,
the compiler uses one of two strategies:

o It assumes that the first nonconstant tag
field and all following tags have unknown
values, and allocates the maximum size
necessary.

o It generates a special run-time call to a
function that calculates the record size
from the variable tag values available.
This depends on the implementation. A
similar procedure applies to DISPOSE and
SIZEOF.

You should set all tag fields to their proper
values after the call to NEW and never change

14-42 Pascal Manual

them. The compiler does not do any of the
following:

o assign tag values

o check that they are initialized correctly

o check that their value is not changed
during execution

According to the ISO standard, a variable
created with the long form of NEW cannot be

o used as an expression operand

o passed as a parameter

o assigned a value

The compiler does not catch these errors.
Fields within the record can be used normally.

Assigning a larger record to a smaller one
allocated with the long form of NEW would wipe
out part of the heap. This condition is
difficult to detect at compile time. There­
fore, any assignment to a record in the heap
that has variants uses the actual length of
the record in the heap, rather than the
maximum length.

However, an assignment to a field in an
invalid variant can destroy part of another
heap variable or the heap structure itsel f.
This error is not caught unless all tag values
are explicit, the tag values are correct, and
the tag checking switch is on.

The extend level allows pointers to super
arrays. The long form of NEW is used as
described above, except that array upper bound
values are given instead of tag values. All
upper bounds must be given. Bounds can be
constants or expressions: in any case, only
the size required is allocated.

The entire array referenced by such a pointer
cannot be assigned or compared, except that
LSTRINGs can always be compared. The entire
array can be passed as a referenced parameter
if the formal parameter is of the same super
array type. Components of the array can be
used normally.

Available Procedures and Functions 14-43

ODD

FUNCTION ODD (X: ORDINAL): BOOLEAN:

ORD

A data conversion function.

Tests the ordinal value X to see whether it is
odd. ODD is TRUE only if ORO (X) is odd:
otherwise it is FALSE.

This function can also be used with INTEGER4.

FUNCTION ORO (X: VALUE): INTEGER:

A data conversion function.

Converts to INTEGER any value of one of the
types shown in Table 14-5, according to the
rules given.

Table 14-5. Conversion to INTEGER.

Type of X Return value

INTEGER X

WORD <= MAXINT X

WORD > MAXI NT

CHAR

Enumerated

INTEGER4

Pointer

X - 2 * (MAXINT + 1) (that is,
same 16 bits as at start)

ASCII code for X

Position of X in the type
definition, starting with 0

Lower 16 bits (that is, same as
ORD(LOWORD(INTEGER4»

Integer value of pointer

14-44 Pascal Manual

PACK

PROCEDURE PACK
(CONSTS A: UNPACKED; I: INDEX; VARS Z: PACKED);

A data conversion procedure.

Moves elements of an unpacked array to a
packed array. If A is an ARRAY [M •• N] OF T
and Z is a PACKED ARRAY [U •• V] OF T, then PACK
(A, I, Z) is the same as:

PAGE

FOR J := U TO V DO Z [J] := A [J - U + I]

In both PACK and UNPACK, the parameter I is
the initial index within A. The bounds of the
arrays and the value of I must be reasonable;
that is, the number of components in the
unpacked array A from I to M must be at least
as great as the number of components in the
packed array Z. The range-checking switch
controls checking of the bounds.

PROCEDURE PAGE;
PROCEDURE PAGE (VAR F : FILE OF ••);

A file system procedure.

Causes skipping to the top of a new page when
the textfile F is printed. PAGE with no
parameter is the same as PAGE (OUTPUT).

See subsection "PAGE," in
Oriented Procedures and
description of PAGE.

Section 15,
Functions,"

Available Procedures and Functions

"File­
for a

14-45

PISRQQ and PIDRQQ

FUNCTION PISRQQ
(CONSTS A: REAL4; CONSTS B: INTEGER4): REAL4;
EXTERN;

FUNCTION PIDRQQ
(CONSTS A: REAL8; CONSTS B: INTEGER4): REAL8;
EXTERN;

Arithmetic functions.

The return value is A**B (A to the INTEGER
power of B). A is of type REAL4 or REAL8, as
shown. B is always of type INTEGER4.

These functions are from the run-time library
and must be declared EXTERN before use.

PLYUOQ

PROCEDURE PLYUQQ; EXTERN;

A library routine (terminal I/O).

Write an end-of-line character to the video
display.

Together with GETYQQ and PTYUQQ, PLYUQQ is
useful for doing terminal I/O in a 1 ow­
overhead environment. These functions are
part of a collection of routines called Unit
U, which implements the Pascal file system.

POSITB

FUNCTION POSITN (CONSTS PAT: STRING; CONSTS
S:STRING; I:INTEGER):INTEGER

A string intrinsic function.

Returns the integer pos i tion of the pat tern
PAT in S, starting the search at S [I]. If
PAT is not found or if I > upper (S), the
return value is 0. If PAT is the null string,
the return val ue is 1. There are no error
conditions.

14-46 Pascal Manual

PREALLOCBEAP

FUNCTION PREALLOCHEAP (VARS CBALLOC: WORD): WORD:
EXTERN;

A library function.

Allocates short-lived memory from the oper­
ating system memory pool. This memory is
unused after this call. It then can be used
for the heap by heap management routines.

This preallocation is useful if your program
then calls the operating system directly to
allocate short-lived memory. (See Section 4,
IIMemory Management II in the ~ Operating
System Manual for further information on
memory organization and management.)

Lets you specify how much storage is to be
allocated for the short heap. You can then
use short-lived memory without worrying about
running out of heap space.

CBALLOC Is the count of bytes to allocate
for the heap

If cbAlloc is #0FFFF, the maximum
possible storage is allocated for
the heap

Available Procedures and Functions 14-47

PREALLOCLONGBEAP

FUNCTION PREALLOCLONGHEAP (CPARA: WORD)
EXTERN;

A run-time library function.

WORD;

Normally, the first call to a long heap allo­
cation routine allocates as much short-lived
memory as possible for the short heap and
takes all the rest of the short-lived memory
for the long heap (to satisfy the current and
possible future requests). To avoid the rest
of the short-lived memory being allocated for
the long heap, you can preallocate the short­
lived memory for the long heap using
PREALLOCLONGHEAP.

CPARA is the number of paragraphs (number of
bytes divided by 16) to be allocated for the
long heap. This procedure

o allocates as much short-lived memory as
possible for the short heap

o allocates CPARA paragraphs of short-lived
memory for the long heap

PRED

If there are less than CPARA paragraphs
available, all available short-lived
memory is allocated.

If CPARA #0FFFF, then all available
short-lived memory is allocated.

FUNCTION PRED (X: ORDINAL): ORDINAL;

Determines the ordinal "predecessor" to X.
The ORD of the result returned is equal to ORD
(X) - 1. An error occurs if the predecessor
is out of range or overflow occurs. These·
errors are caught if appropriate debug
switches are on.

This function can also be used with INTEGER4.

14-48 Pascal Manual

PRSROO and PRDROO

FUNCTION PRSRQQ (A, B: REAL4): REAL4~ EXTERN~
FUNCTION PRDRQQ (A, B: REAL8): REAL8: EXTERN:

Arithmetic functions.

The return value is A**B (A to the REAL power
of B). Both A and B are of type REAL4 or
REAL 7, as shown. An error occurs if A < 0
(even if B happens to have an integer value).

These functions are from the run-time library
and must be declared EXTERN before use.

PTYUQO

PROCEDURE PTYUQQ (LEN: WORD: LOC: ADSMEM): EXTERN;

PUT

A library routine (terminal I/O).

Writes LEN characters, beginning at LOC in
memory, to the video display.

Example:

PTYUQQ (8, ADS 'PROMPT: ')~

Together with GETYQQ and PLYUQQ, PTYUQQ is
useful for doing terminal I/O in a low­
overhead environment. These functions are
part of a collection of routines called Unit
U, which implements the Pascal file system.

PROCEDURE PUT (VAR F : FILE OF ••);

A file system procedure.

Wri tes the value of the file buffer variable
FA to the currently pointed-to component of F
and advances the file pointer.

See the subsection "GET and PUT" in Section
15, "File-Oriented Procedures and Functions,"
for a description.

Available Procedures and Functions 14-49

READ

PROCEDURE READ {VAR F
PN} ;

FILE OF •• ; PI, P2,

A file system procedure.

READ reads data from files.
READLN are defined in terms
primitive operation, GET.

Both READ and
of the more

See the subsection "Textfile Input and Output"
in Section 15, "File-Oriented Procedures and
Functions," for a description.

READFIif

PROCEDURE READFN (VAR F
PN) ;

FILE OF •• I PI, P2, ••

A file system procedure (extend level I/O).

READFN is the same as READ (not READLN) with
two exceptions:

o File parameter F should be present (INPUT
is assumed but a warning is given.)

o If a parameter P is of type FILE, a
sequence of characters forming a valid
filename is read from F and assigned to P
in the same manner as ASSIGN.

Parameters of other types are read in the same
way as in the READ procedure.

See the subsection "Extend Level Procedures"
in Section 15, "File-Oriented Procedures and
Functions," for a description.

14-58 Pascal Manual

READLN

PROCEDURE READLN (VAR F
PN) :

FILE OF .. , PI, P2 ••

A textfile I/O procedure.

At the primitive GET level, without param­
eters, READLN (F) is equivalent to the
following:

BEGIN
WHILE NOT EOLN (F) DO GET (F):
GET (F)

END

The procedure READLN is very much like READ,
except that it reads up to and including the
end of line.

See the subsection IITextfi1e Input and
Output, II in Section 15, IIFi1e-Oriented
Procedures and Functions, II for a description.

READSET

PROCEDURE READSET
(VAR F : FILE OF •• : VAR L: LSTRING: CONST S:
SETOFCHAR);

A file system procedure (extend level I/O).

READSET reads characters and puts them into L,
as long as the characters are in the set Sand
there is room in L.

See the subsection IIExtend Level Procedures II
in Section 15, IIFi1e-Oriented Procedures and
Functions,1I for a description.

Available Procedures and Functions 14-51

RELEAS

PROCEDURE RELEAS (VAR HEAPMARK: INTEGER4); EXTERN;

A library routine (heap management).

Parallels the RELEASE procedure in other
Pascals. RELEAS disposes of heap space past
the area set with a previous MARKAS call. The
DISPOSE procedure in this version of Pascal is
generally more powerful, but RELEAS can be
useful for converting from other Pascal
dialects.

In other Pascals, the parameter is of a
pointer type. However, this version needs two
words to save the heap limits, since the heap
grows toward both higher and lower addresses.
The HEAPMARK variable should not be used as a
normal INTEGER4 number: it should only be set
by MARKAS and passed to RELEAS.

To use MARKAS and RELEAS, pass an INTEGER4
variable, M for example, as a VAR parameter to
MARKAS. MARKAS places the bounds of the heap
in M. To release heap space, simply invoke
the procedure with RELEAS (M).

MARKAS and RELEAS work as intended only if
DISPOSE is never called.

14-52 Pascal Manual

RESET

PROCEDURE RESET (VAR F : FILE OF •.):

A file system procedure.

Resets the current file position to its
beginning and does a GET (F).

See the subsection II RESET and REWRITE II in
Section 15, "File-Oriented Procedures and
Functions," for a description of RESET.

RESULT

FUNCTION RESULT (FUNCTION-IDENTIFIER): VALUE:

An extend level intrinsic function.

Used to access the current value of a func­
tion: can only be used within the body of the
function itself or in a procedure or function
nested within it.

Available Procedures and Functions 14-53

RETYPE

FUNCTION RETYPE (TYPE-IDENT, EXPRESSION):
TYPE-IDENTr

An extend level intrinsic function.

Provides a generic type escape, returns the
value of the given expression as if it had the
type named by the type identifier. The types
implied by the type identifier and the expres­
sion should usually have the same length, but
this is not required. RETYPE for a structure
can be followed by component selectors (array
index, fields, reference, etc).

NOTE

RETYPE is a "dangerous" type escape and
may not work as intended.

Example:

14-54

CONST MODE READ = 'mr'r

TYPE COLOR = (RED, BLUE, GREEN)r
S2 = STRING (2)r

VAR C : CHAR:
I, J : INTEGERr
R : REAL4:
TINT: COLOR:
W : WORD:

R := RETYPE (REAL4, 'abed'):
{Here, a 4-byte string literal is}
{converted into a real number.}
{Note that REAL4 numbers also}
{require 4 bytes.}

TINT := RETYPE {COLOR, 2)r
{Here, 2 is converted into a color,}
{which in this case is GREEN.}
{This is a relatively "safe" use}
{of the RETYPE function.}

Pascal Manual

C := RETYPE (52, I) [J]i
{Here, I is retyped into a two-}
{character string. Then J selects}
{a single character of the string}
{which is assigned to C.}

W := RETYPE (WORD, MODEREAD)i
{W receives the value #6D72 since}
{this is the ASCII representation}
{of Imr"}

There are two other ways to change type in
this version of Pascal.

o You can declare an address variable of the
type wanted and assign to it the address
of any other variable (using ADR).

o You can declare a record with one variant
of each type needed, assign an expression
to one variant, and then get the value
back from another variant. (This is an
error not caught at the standard level.
Note that the relative mapping of
variables is subject to change between
different versions of the compiler.)

Each of these methods has its own subtle
differences and quirks and should be avoided
whenever possible.

REWRITE

PROCEDURE REWRITE (F)i

A file system procedure.

Resets the current file position to its
beginning.

See the subsection "RESET and REWRITE" in
Section 15, "File-Or iented Procedures and
Functions," for a description of REWRITE.

Available Procedures and Functions 14-55

ROUND

FUNCTION ROUND (X: REAL): INTEGER:

An arithmetic function.

Rounds X to the nearest integer. X is of type
REAL4 or REAL8; the return value is of type
INTEGER. The numbers with a fractional part
of 0.5 are rounded to the nearest even
integer.

Examples:

ROUND (1.6) is 2
ROUND (-1.6) is -2
ROUND (1.5) = ROUND (2.5) = 2

An error occurs if ABS (X + 0.5) >= MAXINT.

ROUND4

FUNCTION ROUND4 (X: REAL): INTEGER4;

An arithmetic function.

Rounds real X to the nearest integer. X is of
type REAL4 or REAL8; the return value is of
type INTEGER4. Numbers with a fractional part
of 0.5 are rounded to the nearest even
integer.

Examples:

ROUND4 (1.6) is 2
ROUND4 (-1.6) is -2

An error occurs if ABS (X + 0.5) >= MAXINT4.

14-56 Pascal Manual

SADDOK

FUNCTION SADDOK
(A, B: INTEGER: VAR C: INTEGER): BOOLEAN: EXTERN:

A library routine (no-overflow arithmetic).

Sets C equal to A plus B. One of two func­
tions that do l6-bit signed arithmetic without
causing a run-time error on overflow. Normal
arithmetic can cause a run-time error even if
the arithmetic debugging switch is off. Both
SADDOK and SMULOK return TRUE if there is no­
overflow, and FALSE if there is. These
routines can be useful for extended-precision
arithmetic, or modulo 2**16 arithmetic, or
arithmetic based on user input data.

SCABEQ

FUNCTION SCANEQ
(LEN: INTEGER: PART: CHAR; CONSTS S: STRING; I:
INTEGER): INTEGER:

A string intrinsic function.

Scans S, starting at S [I], and returns the
number of characters skipped. SCANEQ stops
scanning when a character equal to pattern PAT
is found or LEN characters have been skipped.
If LEN < 0, SCANEQ scans backwards and returns
a negative number. SCANEQ returns the LEN
parameter if it finds no characters equal to
pattern PAT or if I > UPPER (S). There are no
error conditions.

Available Procedures and Functions 14-57

SCANNE

FUNCTION SCANNE
(LEN: INTEGER~ PAT: CHAR~ CONSTS S: STRING~ I:
INTEGER): INTEGER~

A string intrinsic function~

Like SCANEQ, but stops scanning when a charac­
ter not equal to pattern PAT is found.

Scans, starting at S [I], and returns the
number of characters skipped. SCANEQ stops
scanning when a character not equal to pattern
PAT is found or LEN characters have been
skipped. If LEN < 0, SCANEQ scans backwards
and returns a negative number. SCANEQ returns
LEN parameter if it finds all characters equal
to pattern PAT or if I > UPPER (S). There are
no error conditions.

SEEK

PROCEDURE SEEK (VAR F : FILE OF .. , N: INTEGER4) ~

A file system procedure (extend level I/O).

In contrast to normal sequential files, DIRECT
files are random access structures. SEEK is
used to randomly access components of such
files.

See the subsection "Extend
Section 15, "File-Oriented
Functions," for details.

SBSROQ and SHDROQ

Level I/O"
Procedures

in
and

FUNCTION SHSRQQ (CONSTS A: REAL4): REAL4~ EXTERN~
FUNCTION SHDRQQ (CONSTS A: REAL8): REAL8~ EXTERN;

Arithmetic functions.

Return the hyperbolic sine of A. A is of type
REAL4 or REAL8, as shown.

These functions are from the run-time library
and must be declared EXTERN before use.

14-58 Pascal Manual

SIN

FUNCTION SIN (X: NUMERIC): REAL~

An arithmetic function.

Returns the sine of X. X is in radians. Both
X and the return value are of type REAL. To
force a particular precision, declare SNSRQQ
(CONSTS REAL4) andlor SNDRQQ (CONSTS REAL8)
and use them instead.

SIZEOF

FUNCTION SIZEOF (VARIABLE: WORD)~
FUNCTION SIZEOF (VARIABLE, TAGl, TAG2, •• TAGN):
WORD~

An extend level intrinsic function.

Returns the size of a variable in bytes. Tag
values or array upper bounds are set as in the
NEW and DISPOSE functions. If the variable is
a record with variants, and the first form is
used, the maximum size possible is returned.
If the variable is a super array, the second
form, which gives upper bounds, must be used.

SMULOK

FUNCTION SMULOK
(A, B: INTEGER; VAR C: INTEGER): BOOLEAN~ EXTERN;

A library routine
function).

{no-overflow arithmetic

Sets C equal to A times B. One of two func­
tions that do l6-bit signed arithmetic without
causing a run-time error on overflow. Normal
arithmetic can cause a run-time error, even if
the arithmetic debugging switch is off. It
returns TRUE if there is no overflow, and
FALSE if there is.

This routine can be useful for extended­
precision arithmetic, or modulo 2**16
arithmetic, or arithmetic based on user input
data.

Available Procedures and Functions 14-59

SNSROQ and SNDROQ

FUNCTION SNSRQQ (CONSTS A: REAL4): REAL4: EXTERN:
FUNCTION SNDRQQ (CONSTS A: REAL8): REAL8: EXTERN:

See SIN.

SOR

FUNCTION SQR (X: NUMERIC): NUMERIC:

SORT

An arithmetic function.

Returns the square of X, where X is of type
REAL, INTEGER, WORD, or INTEGER4.

FUNCTION SQRT (X): REAL

An arithmetic function.

Returns the square root of X, where X is of
type REAL. To force a particular precision,
declare SRSRQQ (CONSTS REAL4) andlor SRDRQQ
(CONSTS REAL8) and use them instead. An error
occurs if X is less than 0.

SRSRQO and SRDROQ

FUNCTION SRSRQQ (CONSTS A: REAL4): REAL4: EXTERN:
FUNCTION SRDRQQ (CONSTS A: REAL8): REAL8: EXTERN:

See SQRT.

14-60 Pascal Manual

SUCC

FUNCTION SUCC (X: ORDINAL): ORDINAL;

A data conversion function.

Determines the ordinal .. successor II to X. The
ORD of the returned result is equal to ORD (X)
+ 1. An error occurs if the successor is out
of range or overflow occurs. These errors are
caught if appropriate debug switches are on.

This function can also be used with INTEGER4.

THSRQQ and THDROO

FUNCTION THSRQQ (CONSTS A: REAL4): REAL4; EXTERN;
FUNCTION THDRQQ (CONSTS A: REAL8): REAL8; EXTERN;

Arithmetic functions.

Return the hyperbol ic tangent of A.
and the return val ue are of type
REAL8, as shown.

Both A
REAL4 or

These functions are from the run-time library
and must be declared EXTERN before use.

TNSRQQ and TNDROO

FUNCTION TNSRQQ (CONSTS A: REAL4): REAL4; EXTERN;
FUNCTION TNDRQQ (CONSTS A: REAL8): REAL8; EXTERN;

Arithmetic functions.

Return the tangent of A. Both A and the
return value are of type REAL4 or REAL8, as
shown.

These functions are from the run-time library
and must be declared EXTERN before use.

Available Procedures and Functions 14-61

TRONC

FUNCTION TRUNC (X: REAL): INTEGER;

An arithmetic function.

Truncates X toward zero. X is of type REAL4
or REAL8, and the return value is of type
INTEGER.

Examples

TRUNC (1.6) is 1
TRUNC (-1.6) is 1

An error occurs if ABS (x - 1.0) >= MAXINT.

TRmTC4

FUNCTION TRUNC4 (X: REAL): INTEGER4;

An arithmetic function.

Truncates real X toward zero. X is of type
REAL4 or REAL8, and the return value is of
type INTEGER4.

Examples:

TRUNC4 (1.6) is 1
TRUNC4 (-1.6) is -1

An error occurs if ABS (X -1.0) >= MAXINT4.

14-62 Pascal Manual

UADDOK

FUNCTION UADDOK (A, B: WORD; VAR C: WORD):
BOOLEAN: EXTERN:

A library routine
function) •

{no-overflow arithmetic

Sets C equal to A pI us B. One of two func­
tions that do l6-bit unsigned arithmetic
without causing a run-time error on overflow.
Normal arithmetic can cause a run-time error
even if the arithmetic debugging switch is
off. The following is the binary carry
resulting from this addition of A and B:

WRD (NOT UADDOK (A, B, C»

Both UADDOK and UMULOK return TRUE if there is
no overflow and FALSE if there is. These
routines are useful for extended-precision
arithmetic, modulo 2**16 arithmetic, or
arithmetic based on user input data.

UMULOK

FUNCTION UMULOK (A, B: WORD: VAR C: WORD):
BOOLEAN: EXTERN:

A library routine
function).

(no-overflow arithmetic

Sets C equal to A times B. One of two func­
tions that do l6-bit unsigned arithmetic
without causing a run-time error on overflow.
Normal arithmetic can cause a run-time error
even if the arithmetic debugging switch is
off. This routine returns TRUE if there is no
overflow and FALSE if there is.

UMULOK is useful for extended-precision arith­
metic, modulo 2**16 arithmetic, or arithmetic
based on user input data.

Available Procedures and Functions 14-63

UNLOCK

PROCEDURE UNLOCK (VARS SEMAPHORE: WORD): EXTERN:

A library routine (semaphore procedure).

UNLOCK sets the semaphore available. As a
binary semaphore, there are only two states.
UNLOCK can be called any' number of times and
can be used to initialize the semaphore.

See also LOCKED.

UNPACK

PROCEDURE UNPACK
(CONSTS Z: PACKED: VARS A: UNPACKED; I: INDEX);

A data conversion procedure.

Moves elements from a PACKED array to an
UNPACKED array. If A is an ARRAY [M •• N] OF T,
and Z is a PACKED ARRAY [U •• V] OF T then the
above call is the same as:

FOR J := U TO V DO A [J - U + I] := Z [J]

In both PACK and UNPACK, the parameter I is
the initial index within A. The bounds of the
arrays and the value of I must be reasonable:
that is, the number of components in the
unpacked array A from I to M must be at least
as great as the number of components in the
packed array Z. The range-checking switch
controls checking of the bounds.

See also PACK.

14-64 Pascal Manual

UPPER

FUNCTION UPPER (EXPRESSION): VALUE;

An extend level intrinsic function.

UPPER, like LOWER, takes a single parameter of
one of the following types: array, set,
enumerated, or subrange. The value returned
by UPPER is one of the following:

o the upper bound of an array

o the last allowable element of a set

o the last value of an enumerated type

o the upper bound of a subrange

The value returned by UPPER is always a
constant, unless the expression is of a super
array type. In this case, the actual upper
bound of the super array type is returned.
UPPER uses the type and not. the value of the
expression.

See also LOWER.

Available Procedures and Functions 14-65

WRD

FUNCTION WRD (X: VALUE): WORD;

A data conversion procedure.

Converts to WORD any of the types shown in
Table 14-6, according to the rules given.

Table 14-6. Conversion to WORD.

Type of X Return value

WORD X

INTEGER >= 0 X

INTEGER < 0 X + MAXWORD + 1 (that is, the
same 16 bits as at start)

CHAR ASCII code for X

Enumerated Position of X in the type
definition, starting with 0

INTEGER4

Pointer

Lower 16 bits (that is, the
same as LOWORD(INTEGER4)

Word value of pointer

14-66 Pascal Manual

WRITE and WRITELN

PROCEDURE WRITE (VAR F FILE OF •• ; PI, P2, ••
PN):
PROCEDURE WRITELN (VAR F : FILE OF •• ; PI, P2, ••
PN) ;

File system level intrinsic procedures.

Write data to files. WRITE and WRITELN are
defined in terms of the more primitive
operation PUT. WRITELN is the same as WRITE,
except it also writes an end-of-line.

The first parameter to WRITE specifies the
output file to be written. This parameter can
be omitted only if the first parameter to be
written is not of the type FILE. If the
output file parameter is omitted, the default
output file is OUTPUT.

Parameters to WRITE
should be written
notation.

that are address types
using the • Sand • R

See the subsection "WRITE and WRITELN" in
Section 15, "File-Oriented Procedures and
Functions," for a description.

Available Procedures and Functions 14-67

15 FILE-ORIENTED PROCEDURES AND FUNCTIONS

This section discusses the file I/O procedures and
functions, as well as two special features our
version of Pascal provides that facilitate your
use of files, lazy evaluation, and concurrent I/O.
(All procedures and functions that are available
to you either because they are predeclared or be­
cause they are part of the run-time library,
except those that relate to file input and output,
are discussed in detail in Section 14, "Intro­
duction to Procedures and Functions.")

The Pascal file system supports a variety of
procedures and functions that operate on files of
different modes and structures. These procedures
and functions can be categorized as shown in Table
15-1.

Table 15-1. File System Procedures and
Functions.

Category

Primitive

Procedures Functions

Textfile I/O

Extend
level I/O

GET
PAGE
PUT
RESET
REWRITE

READ
READLN
WRITE
WRITELN

ASSIGN
CLOSE
DISCARD
READSET
READFN
SEEK

EOF
EOLN

Fi1e-oriented Procedures and Functions 15-1

FILE SYSTEM PRIMITIVE PROCEDURES AND FUNCTIONS

This section describes the seven primi ti ve file
system procedures and functions, which perform
file I/O at the most basic level. Later descrip­
tions of READ and WRITE procedures are defined in
terms of the primitives GET and PUT. Lazy evalu­
ation is also discussed in this section. In all
the descriptions that follow, F is a file param­
eter (files are always reference parameters), and
FA is the buffer variable.

All file variables operated on by these procedures
must reside in the default data segment. This
restriction increases the efficiency of file
system calls.

GET and PUT Read and write from the buffer
variable, FA.

GET assigns the next component of a
file to the buffer variable.

PUT performs the inverse operation
and writes the value of the buffer
variable to the next component of
the file F.

RESET and REWRITE

EOF and EOLN

PAGE

Set the current position of a file
to its beginning.

RESET prepares for later GET and
READ procedures.

REWRITE prepares for later PUT and
WRITE procedures.

Used to check for end-of-file and
end-of-line conditions. They re­
turn a BOOLEAN result. In general
these values indicate when to stop
reading a line or a file.

Helps in formatting textfiles. It
is not a necessary procedure in the
same sense as GET and PUT.

15-2 Pascal Manual

GET AND PUT

GET and PUT are used to read to and write from the
buffer variable, F~. GET assigns the next compo­
nent of a file to the buffer variable. PUT
performs the inverse operation and writes the
value of the buffer variable to the next component
of the file F.

PROCEDURE GET (VAR F);

A primitive file system intrinsic procedure.

If there is a next component in the file F,
then

0 The current file position is advanced to
the next component.

0 The value of this component is assigned to
the buffer variable F

0 EOF (F) becomes FALSE.

Advancing and assigning may be deferred inter­
nally, depending on the mode of the file.
(See the subsection "Lazy Evaluation" below.)

If no next component exists, then EOF (F)
becomes TRUE and the value of F~ becomes
undefined. EOF (F) must be FALSE before GET
(F), since reading past the end of file
produces a run-time error. However, since
DIRECT mode permits repeated GET operations
at the end of the file, if F has mode DIRECT,
EOF (F) can be TRUE or FALSE. If F~ is a
record with variants, the compiler reads the
variant with the maximum size.

File-oriented Procedures and Functions 15-3

PROCEDURE PUT (VAR F)~

A primitive file system intrinsic procedure.

Wri tes the value of the file buffer variable
F~ at the current file position and then
advances the position to the next component.
The following rules apply:

o For SEQUENTIAL and TERMINAL mode files,
PUT is permitted if the previous operation
on F was a REWRITE, PUT, or other WRITE
procedure, and if it was not a RESET, GET,
or other READ procedure.

o For DIRECT mode files, PUT can occur
immediately after a RESET or GET.

Exceptions to these rules generate errors.
The value of FA always becomes undefined after
a PUT.

EOF (F) must be TRUE before PUT (F), unless F
is a DIRECT mode file. EOF (F) is always TRUE
after PUT (F). If F~ is a record with vari­
ants, the variant with the maximum size is
written.

RESET AND REWRITE

The procedures RESET and REWRITE are used to set
the current position of a file to its beg inning.
RESET is used to prepare for later GET and READ
operations. REWRITE is used to prepare for later
PUT and WRITE operations.

PROCEDURE RESET (VAR F)i

A primitive file system intrinsic procedure.

15-4

Resets the current file position to its begin­
ning and does a GET (F). If the file is not
empty, the first component of F is assigned to
the buffer variable FA, and EOF (F) becomes
false. If the file is empty, the value of FA
is undefined and EOF (F) becomes true. RESET
initializes a file F before it is read. For
DIRECT files, writing can be done after RESET
as well.

Pascal Manual

A RESET closes the file and then opens it. If
the file did not exist it is created and then
opened. An error occurs if the file name has
not been set (as a program parameter or with
ASSIGN or READFN) or if the file cannot be
found by the operating system. If an error
occurs during RESET, the file is closed, even
if the file was opened correctly and the error
came with the initial GET.

RESET (INPUT) is done automatically when a
program is initialized, but is also allowed
explicitly. RESET on a file with mode DIRECT
allows either reading or writing, but the file
is not created automatically. Also, the ini­
tial GET reads record number one on a DIRECT
mode file.

Note that an explicit GET (F) immediately
following a RESET (F) assigns the second
component of the file to the buffer variable.
However, a READ (F, X) following a RESET (F)
sets X to the first component of F, since READ
(F, X) is "X : = FA; GET (F)".

PROCEDURE REWRITE (VAR F);

A primitive file system intrinsic procedure.

Posi tions the current file to its beginning.
The value of FA is undefined and EOF (F)
becomes TRUE. This is needed to initialize a
file F before writing. (For DIRECT files,
reading can also be done after REWRITE.)

A REWRITE closes the file and then opens it.
If the file does not exist, it is created. If
it does exist, its old value is lost (unless
it has mode DIRECT). The file name must have
been set (as a program parameter or with
ASSIGN or READFN). If an error occurs during
REWRITE, the file is closed. If possible, an
existing file with the same name is not
affected when a REWRITE error occurs, but
that file can be deleted.

REWRITE (OUTPUT) is done automatically when a
program is initialized, but can also be done
explicitly if desired. REWRITE on a DIRECT
mode file allows both reading and writing.
REWRITE does not do an initial PUT the way
RESET does an initial GET.

File-oriented Procedures and Functions 15-5

EOF AND EOLN

The functions EOF and EOLN check for 'end-of-file
and end-of-line conditions, respectively. They
return a BOOLEAN result. In general, these values
indicate when to stop reading a line or a file.

FUNCTION EOF: BOOLEAN:
FUNCTION EOF (VAR F): BOOLEAN:

A primitive file system intrinsic function.

For SEQUENTIAL and TERMINAL file modes,
returns TRUE if the buffer variable FA is
positioned at the end of the file F, FALSE
otherwise. Therefore, if EOF (F) is TRUE,
either the file is being written or the last
GET has reached the end of the file.

With the DIRECT file mode, if EOF (F) is TRUE,
ei ther the last operation was a WRITE (the
file mayor may not be positioned at the end
in this case) or the last GET reached the end
of the file.

EOF without a parameter is equivalent to EOF
(INPUT). EOF (INPUT) is generally never TRUE,
except if INPUT is reassigned to another file,
or when FINISH (04) AND CANCEL (07) are
encountered. Calling the EOF (F) function
accesses the buffer variable FA.

FUNCTION EOLN: BOOLEAN:
FUNCTION EOLN (VAR F:TEXT): BOOLEAN:

15-6

A primitive file system intrinsic function.

Returns TRUE if the current position of the
file is at the end of a line in the textfile F
after a GET (F), FALSE otherwise. The file
must have ASCII structure.

According to the ISO standard, calling EOLN
(F) when EOF (F) is TRUE is an error. The
compiler detects these errors in most cases.
The file F must be a file of type TEXT.

Pascal Manual

If EOLN (F) is TRUE, the value of F.... is a
space, but the file is positioned at a line
marker. EOLN without a parameter is equi va­
l ent to EOLN (INPUT) • Call ing the EOLN (F)
function accesses the buffer variable F

PAGE

The procedure PAGE helps in formatting textfiles.
It is not a "necessary" procedure in the same
sense as GET and PUT.

PROCEDURE PAGE:
PROCEDURE PAGE (VAR F:TEXT):

A primitive file system intrinsic procedure.

Causes skipping to the top of a new page when
the textfile F is printed. Since PAGE writes
to the file, the initial conditions described
for PUT must be TRUE. The file must have
ASCII structure. PAGE without a parameter is
equivalent to PAGE (OUTPUT).

If F is not positioned at the start of a line,
PAGE (F) first writes a line marker to F.
PAGE (F) writes a formfeed, CHR (12).

LAZY EVALUATION

Lazy evaluation is designed to solve a recurring
problem in Pascal, specifically, how to READ from
a terminal in a natural way.

The underlying problem is that the ISO standard
defines the procedure RESET with an initial GET.
Although acceptable in Pascal's original batch
processing, sequential file environment, this kind
of read-ahead does not work for interactive I/O.

Lazy evaluation is used by our version of Pascal
as a way of deferring actual physical input (text­
files only) when a buffer variable is evaluated.

For example, if a normal file is RESET and then
READ, the RESET procedure calls the GET procedure,
which sets the buffer variable to the first compo­
nent of the file. However, if the file is the
keyboard, this first component does not yet exist.

File-oriented Procedures and Functions 15-7

Therefore, at a terminal or workstation, you must
first type a character to accommodate the GET
procedure. Only then will you be prompted for any
input.

Lazy evaluation eliminates this problem for text­
files by giving the file's buffer variable a
special status value that is either "full" or
"empty."

The normal condition after a GET (F) is empty.
The status is full after a buffer variable has
been assigned to or assigned from. Full implies
that the buffer variable value is equal to the
currently pointed-to component. Empty implies
just the opposite, that the buffer variable value
does not equal the value of the currently pointed­
to component and input to the buffer variable has
been deferred. Table 15-2 summarizes these rules.

Table 15-2. Lazy Evaluation.

Status
At

Statement Call Action

GET (F) Full Point to next file
component. Becomes
EMPTY, since value
pointed to is not
in buffer variable.

GET (F) Empty

Reference Full
to FA

Reference Empty
to FA

15-8 Pascal Manual

Load buffer variable
with current file
component, then point
to next file compo­
nent. Becomes EMPTY,
since value pointed
to is not in buffer
variable.

No action required.

Load buffer variable
with current file
component.

Status
On
Exit

Empty

Empty

Full

Full

Note that RESET (F) first sets the status full and
then calls GET, which sets the status to empty
without any physical input.

Example of lazy evaluation with automatic RESET
call:

{INPUT is automatically a textfile.)
{RESET (INPUT): done automatically.}
WRITE (OUTPUT, "Enter number: II):
READLN (INPUT, FOO):

The automatic initial call to the RESET procedure
calls a GET procedure, which changes the buffer
variable status from full to empty. The first
physical action to the terminal is the prompt
output from the WRITE. READLN does a series of
the following operations:

temp := INPUT"':
GET (INPUT)

Physical input occurs when each .INPUT'" is fetched
and the GET procedure sets the status back to
empty.

READLN ends with the sequence:

WHILE NOT EOLN DO GET (INPUT):
GET (INPUT)

This operation skips trailing characters and the
RETURN (0Ah). The EOLN function invokes the
physical input. Entering the carriage return sets
the EOLN status. Both the GET procedure in the
WHILE loop and the trailing GET set the status
back to empty. The last physical input in the
sequence above is reading the carriage return.

Fi1e-oriented Procedures and Functions 15-9

TEXTFILE INPUT AND OUTPUT

Human-readable input and output in standard Pascal
are done with textfiles. Textfiles are files of
type TEXT and always have ASCII structure. Nor­
mally, the standard textfiles INPUT and OUTPUT are
given as program parameters in the PROGRAM
heading:

PROGRAM IN_AND_OUT (INPUT,OUTPUT);

Other text files usually represent some input or
output device such as a terminal, a card reader, a
line printer, or an operating system disk file.
The extend level permits using additional files
not given as program parameters.

In order to facilitate the handling of textfiles,
the four standard procedures READ, READLN, WRITE,
and WRITELN are provided, in addition to the
procedures GET and PUT.

READ and READLN
Read data from textfiles. READ and
READLN are defined in terms o~ the
more primitive operation, GE~.

The procedure READLN is very much
like READ, except that it reads up
to and including the end of line.

WRITE and WRITELN
Write data to textfiles. WRITE and
WRITELN are defined in terms of the
more primitive operation, PUT.

The procedure WRITELN writes a line
marker to the end of aline. In
all other respects, WRITELN is
analogous to WRITE.

These procedures are more flexible than GET and
PUT in the syntax for their parameter lists,
allowing, among other things, for a variable
number of parameters. Moreover, the parameters
need not necessarily be of type CHAR, but can also
be of certain other types, in which case the data
transfer is accompanied by an implicit data
conversion operation. In some cases, parameters
can include additional formatting values that
affect the data conversions used.

l5-le Pascal Manual

If the first variable is a file variable, then it
is the file to be read or written. Otherwise, the
standard file INPUT is automatically assumed as
the default value for reading, and OUTPUT the
default value for writing.

These two files have TERMINAL mode and ASCII
structure and are predeclared as:

VAR INPUT, OUTPUT: TEXT~

The compiler treats INPUT and OUTPUT the same as
other textfiles. They can be used with ASSIGN,
CLOSE, RESET, REWRITE, and the other procedures
and functions. However, even if present as pro­
gram parameters, they are not initialized with a
file name. Instead, they are assigned to the key­
board and video, respectively. RESET of INPUT and
REWRITE of OUTPUT are done automatically, whether
or not they are present as program parameters.

Textfiles represent a special case among file
types insofar as they are structured into lines by
"line markers." If, upon reading a textfile F,
the file position is advanced to a line marker
(that is, past the last character of a line), then
the value of the buffer variable F" becomes a
blank, and the standard function EOLN (F) yields
the value true. For example:

'T' 'E' 'X, 'T' 'L' 'I' 'N' 'E'

{EOLN TRUE} {F" , } t
Advancing the file posi tion once more causes one
of three things to happen:

o If the end of the file is reached, then EOF
(F) becomes TRUE.

o If the next line is empty, that is, if the
next character in the file is the RETURN (0Ah)
a blank is assigned to F", and EOLN (F)
remains TRUE.

o Otherwise, the first character of the next
line is assigned to FA and EOLN (F) is set to
FALSE.

File-oriented Procedures and Functions 15-11

Since line markers are not elements of type CHAR
in standard Pascal, they can·, in theory, only be
generated by the procedure WRITELN. However, in
this version of Pascal, the actual character
RETURN (0Ah) is used for the line marker. You
can, therefore. WRITE a line marker, for example,
WRITE{f,CHR(10»; but not READ one.

When a textfile being written is closed, a final
line marker is automatically appended to the last
line of any non empty file in which the last char­
acter is not already a line marker.

When you reach the end of a textfile during a
READ, a line marker for the last line is returned
even if one was not present in the file. Lines in
a textfile always end with a line marker.

Any list of data written by a WRITELN is usually
readable with the same list in a READLN (unless an
LSTRING occurs that is not on the end of the
list.)

Interacti ve prompt and response is very easy in
Pascal. To have input on the same line as the
prompt, use WRITE for the prompt. READLN must
always be used for the response. For example:

WRITE {'Enter command: 'h
READLN (response);

If no file is given,
procedures and functions
file or the OUTPUT file.
type INTEGER, then READ
(INPUT, I).

15-12 Pascal Manual

most of the textfile
assume either the INPUT
For example, if I is of

(I) is the same as READ

READ AND READLN

PROCEDURE READ
PROCEDURE READLN

File system intrinsic procedures for textfile
I/O.

READ and READLN read data from textfiles.
Both are defined in terms of the more
primitive operation, GET. That is, if P is of
type CHAR, then READ (F, p) is equivalent to:

BEGIN
P : = F :
{Assign buffer variable F to P.}
GET (F)
{Assign next component of file to F }

END

READ can take more than one parameter, as in
READ (F, PI, P2, •• Pn). This is equivalent
to the following:

BEGIN
READ (F, PI):
READ (F, P2):

READ (F, Pn)
END

The procedure READLN is analogous to READ,
except that it reads up to and incl uding the
end of line. At the primitive GET level,
without parameters, READLN is equivalent to
the following:

BEGIN
WHILE NOT EOLN (F) DO GET (F):
GET (F)

END

A READLN with parameters, as in READLN (F, PI,
P2, •• Pn), is equivalent to the following

BEGIN
READ (F , PI, P 2 , •• Pn):
READLN (F)

END

Fi1e-Oriented Procedures and Functions 15-13

READLN is often used to skip to the beginning
of the next line. It can only be used with
textfiles (ASCII mode).

If no other file is specified, both READ and
READLN read from the standard INPUT file.
Therefore, the name INPUT need not be
designated explicitly. For example, these two
READ statements perform identical actions:

READ (PI, P2, P3)
{Reads INPUT by default}
READ (INPUT, PI, P2, P3)

At the standard level, parameters PI, P2, and
P3 above must be of one of the following
types:

CHAR
INTEGER
REAL

The extend level also allows READ variables of
the following types:

WORD
an enumerated type
BOOLEAN
INTEGER4
a pointer type
STRING
LSTRING
REAL8

When the compiler reads a variable of a sub­
range type, the value read must be in range.
Otherwise, an error occurs, regardless of the
set ting of the range-checking swi tch
($ RANGECK) •

The procedure READ can also read from a file
that is not a text file (for example, a BINARY
file). The form READ (F, PI, P2, •• Pn) can
be used on a BINARY file. However, this READ
does not work as expected after a SEEK on a
DIRECT mode file.

15-14 Pascal Manual

For BINARY files, READ (F, X) is equivalent
to:

BEGIN
X : = F 7

GET (F)
END

READ FORMATS

The READ process for formatted types (everything
except CHAR, STRING, and LSTRING) first reads
characters into an internal LSTRING and then
decodes the string to get the value. (See al so
the discussion of DECODE in Section 14, "Available
Procedures and Functions. ")

Two important points apply to formatted reads:

o Leading spaces, tabs, formfeeds, and line
markers are skipped.

For example, when doing READLN (I, J, K) where
I, J, and K are integers, the numbers can all
be on the same line or spread over several
lines.

o Characters are read as long as they are in the
set of characters valid for the type wanted.

For example, "-1-2-3" is read as the string of
characters for a single INTEGER, but gives an
error when the string is decoded. This means
that items should be separated by spaces,
tabs, line markers, or characters not per­
mitted in the format.

Most of the formatting rules below apply to the
function DECODE, as well as to READ and READLN.

INTEGER and WORD types
If P is of type INTEGER, WORD, or a
subrange thereof, then READ (F, p)
implies reading a sequence of char­
acters from F, which form a number
according to the normal Pascal
syntax, and then assigning the
number to P. Nondecimal notation
(16#C007, 8#74, 10#19, 2#101,
#Face) is accepted for both INTEGER

File-oriented Procedures and Functions 15-15

and WORD, with a radix of 2 through
36. If P is of an INTEGER type, a
leading plus (+) or minus (-) sign
is accepted. If P is of a WORD
type, numbers up to MAXWORD are
accepted (0 •• 65535).

REAL and INTEGER4 types
If P is of type REAL, or at the
extend level of type REAL or
INTEGER4, READ (F, p) implies
reading a sequence of characters
from F tha t form a number of the
appropriate type and assigning the
number to P. Nondecimal notation
is not accepted for REAL numbers,
but is accepted for INTEGER4 num­
bers. When reading a REAL value, a
number with a leading or trailing
decimal point is accepted, even
though this form gives a warning if
used as a constant in a program.

Enumerated and Boolean types

Reference types

At the extend level, if P is an
enumerated type or BOOLEAN, a
number is read as a WORD subrange
and a value is assigned to P such
that the number is the ORD of the
enumerated type's value. In addi­
tion, if P is type BOOLEAN, reading
one of the character sequences
'TRUE' or 'FALSE' causes true and
false, respectively, to be assigned
to P. The number read must be in
the range of the ORD values of the
variable.

At the extend level, if P is a
pointer type, a number is read as a
WORD and assigned to P, so that
writing a pointer and later reading
it yields the same pointer value.
The address types should be read as
WORDs using .R or .S notation.

15-16 Pascal Manual

String types At the extend level, if Pis a
STRING (n), the next IIn ll characters
are read sequentially into P.
Preceding line markers, spaces,
tabs, or formfeeds are not skipped.
I f the line marker is encountered
before n characters have been read,
the remaining characters in Pare
set to blanks and the file position
remains at the line marker.

If the STRING is filled with n
characters before the line marker
is encountered, the file position
remains at the next character. In
a few implementations there may be
a limit of 256 characters on the
length of a STRING read. P can be
the super array type STRING (for
example, a reference parameter or
pointer referent variable).

At the extend level, if P is an
LSTRING (n), the next n characters
are read sequentially into P, and
the length of the LSTRING is set to
n. Preceding line markers, spaces,
tabs, or formfeeds are not skipped.
If the line marker is encountered
before n characters have been read,
the length of the LSTRING is set to
the number of characters read and
the file position remains at the
line marker.

If the LSTRING is filled with n
characters before the line marker
is encountered, the file position
remains at the next character. P
can be the super array type LSTRING
(for example, a reference parameter
or pointer referent variable).
READ (LSTRING) is handy when
reading entire lines from a text­
file, especially when the length of
the line is needed. For example,
the easiest way to copy a text file
is by using READLN and WRITELN with
an LSTRING variable.

File-Oriented Procedures and Functions 15-17

WRITE AND WRITELN

PROCEDURE WRITE
PROCEDURE WRITELN

File system intrinsic procedures for textfile
I/O.

WRITE and WRITELN write data to textfiles.
Both are defined in terms of the more primi­
tive operation, PUT. That is, if P is of type
CHAR and F is of type TEXT, then WRITE (F, p)
is equivalent to:

BEGIN
F.... : = P;
{Assign P to buffer variable F }
PUT (F)
{Assign F to next component of file}

END

WRITE can take more than one parameter, as in
WRITE (F, PI, P2, •• Pn). This is equivalent
to the following:

BEGIN
WRITE (F, PI);
WRITE (F, P2);

WRITE (F, Pn)
END

The procedure WRITELN writes a line marker to
the end of line. In all other respects,
WRITELN is analogous to WRITE. Thus, WRITELN
(F, PI, P2, •• Pn) is equivalent to:

15-18

BEGIN
WRITE (PI, P2, •• Pn);
WRITELN (F)

END

Pascal Manual

If either WRITE or WRITELN has no file param­
eter, the default file parameter is OUTPUT.
Therefore, the first statement in each of the
following pairs is equivalent to the second:

WRITE (PI, P2, •• Pn);
WRITE (OUTPUT, PI, P2, Pn);

WRITELN (PI, P2, •• Pn)i
WRITELN (OUTPUT, PI, P2, •• Pn)

At the
can be
types:

standard level,
expressions of

parameters in a WRITE
any of the following

CHAR
INTEGER
REAL

BOOLEAN
STRING

At the extend level, expressions can also be
of the following types:

WORD
an enumerated type
INTEGER4
a pointer type
LSTRING
REAL 8

Parameters may take optional M and N values
(see the subsection "WRITE Formats," for
information about M and N parameters).

Although the procedure WRITE can also write to
a BINARY file (that is, not a textfile), this
is not recommended for DIRECT files after a
SEEK operation, because the complementary READ
form does not work as you might expect.

For BINARY files, WRITE (F, X) is equivalent
to:

BEGIN
F := Xi
PUT (F)

END

The form WRITE (F, PI, P2, Pn) is also
acceptable. Normally, BINARY writes do not
accept M and N values.

File-oriented Procedures and Functions 15-19

WRITE FORMATS

In textfiles, data parameters to WRITE and WRITELN
may take one of the following forms:

P P:M P:M:N P: :N

P can be numeric (INTEGER, REAL, REAL 8 , subrange),
CHAR, BOOLEAN, or STRING. Alternatively, P can be
an enumerated type, WORD, a pointer, or an
LSTRING. M and N are expressions whose integer
values are field-width parameters.

M and
INTEGER
ways.

N values
and are

are
used

value parameters of type
for formatting in various

In WRITE, the M value is the field width used as
the number of characters to write.

The N value signifies:

o the number of decimal places if P is of type
REAL

o the output radix if P is of type INTEGER,
WORD, INTEGER4, or pointer

The extend level permits M and N values for both
READs and WRITEs, and permits giving N without M,
as in:

P: :N

Using them in a nonstandard way is an error not
detected at the standard level. In some cases
only M or N, or neither, is actually used; unused
M and N values are ignored.

Omitting M or N is the same as using the value
MAXINT. For example, WRITE (l2:MAXINT) uses the
default M value (8 in this case).

Currently, M and N values are not accepted for
BINARY files.

In WRITE, the M value is the field width used as
the number of characters to write. In ISO-Pascal,
M must be greater than zero, and if the expression
being written requires less than M characters,
then it is padded on the left with spaces.

15-29 Pascal Manual

At the extend level, M can also be negative or
zero. If it is negative, the absolute value of M
is used, but padding of spaces occurs on the right
instead of the left. If it is zero, no characters
are written. These are ISO standard errors not
detected by this compiler.

If the representation of the expression cannot fit
in ABS (M) character positions, then extra
positions are used as needed for numeric types, or
the value is truncated on the right for string
types. If M is omitted or equal to MAXINT, a
default value is used.

Most of the following formatting rules apply to
the function ENCODE as well as to WRITE.

INTEGER and WORD types
If P is of type INTEGER, WORD, or a
subrange thereof, then the decimal
representation of P is written on
the file. If P is a negative
INTEGER, a leading minus sign is
always written. WORD values are
never negative. For INTEGER and
WORD values, the default M value is
8.

If ABS (M) is smaller than the
representation of the number, addi­
tional character positions are used
as needed. N is used to write
in hexadecimal, decimal, octal,
binary, or other base numbering
using N equal to a number from 2 to
36: this is an extension to the ISO
standard. If N is not 10 (or
omitted or MAXINT), then padding on
the left is with zeros and not
spaces. Omitting N or setting N to
MAXI NT or 10 implies a decimal
radix.

WORD decimal numbers from 32768 to
65535 are written normally and not
in their negative integer equi va­
lents. All values written should
be separated by spaces or some
other character not valid in num­
bers, so that val ues are read as
separate numbers.

File-oriented Procedures and Functions 15-21

REAL and INTEGER4 types
If P is of type REAL or REAL8, a
decimal representation of the
number P, rounded to the specified
number of decimal places, is writ­
ten on the file. If the N is
missing or equal to MAXINT, a
floating-point representation of P
is written to the file, consisting
of a coefficient and a scale
factor. If N is included, a
rounded fixed point representation
of P is written to the file, with N
digits after the decimal point. If
N is zero, P is written as a
rounded integer, with a decimal
point. The default value of M for
REAL values is 14.

Some examples of WRITE operations
on REAL and REAL8 values:

This Statement Produces This Output

WRITE (123.456) 1 1.2345600E+021
WRITE (123.456:20)
WRITE (123.456::3)
WRITE (123.456:2:3)
WRITE (123.456:-20:3)

1 1.2345600000000E+021
123.456 1

1 123.4561
1123.456

At the extend level, if P is of
type INTEGER4, the decimal repre­
sentation of P is written on the
file. The N value is used to set
the radix, as in type INTEGER. The
default M value is 14.

Enumerated and Boolean types

15-22

At the standard level, if P is of
type BOOLEAN, then one of the
strings 'TRUE ' or 1 FALSE 1 is writ­
ten to the file as a STRING. The
ORD value is never written for
BOOLEAN types as it is for enu­
merated types, although you can use
WRITE(ORD) (p» instead.

Pascal Manual

Reference types

String types

At the extend level, if P is a
pointer type, then it is written as
a WORD. Wri ting a pointer and
later reading it produces the same
pointer value. The address types
should be written as WORD values
using .R or .S notation.

If P is of type STRING (n), the
value of P is written on the file.
The default value of M is the
length of the STRING, lin. II If ABS
(M) is less than the length of the
string, only the first ABS (M)
characters are written. If M is
zero, nothing is written. If the
STRING is truncated, it is always
truncated on the right, even if M
is negative.

At the extend level, if P is of
type LSTRING (n), the value of P is
wri tten on the file. The default
value of M is the current length of
the string, P.LEN. If ABS (M) is
less than the current length, only
the first ABS (M) characters are
written. If M is zero, nothing is
written. If the STRING is trun­
cated, it is always truncated on
the right, even if M is negative.
If ABS (M) is greater than the
current length, spaces, not charac­
ters, fill the remaining posi tions
past the length in the LSTRING.
Note that a string of M blanks can
be written with NULL:M.

File-oriented Procedures and Functions 15-23

EXTEND LEVEL I/O

At the extend level, these additional I/O features
are available:

o You can access three FCB (File Control Block)
fields: F.MODE, F.TRAP, and F.ERRS.

o A number of
predeclared.

additional procedures are

o Temporary files are available.

The subsection "Extend Levell/Oil in Section 7,
"Files," discusses FeB fields in the context of
files. The additional procedures and temporary
files are described in below.

EXTEND LEVEL PROCEDURES

PROCEDURE ASSIGN (VAR F: CONSTS N: STRING):

A file system procedure (extend level I/O).

Assigns an operating system file name in a
STRING (or LSTRING) to a file F. As a rule,
ASSIGN truncates any trailing blanks. ASSIGN
overrides any file name set previously. A
file name must be set before the first RESET
or REWRITE on a file. ASSIGN on an open file
(after RESET or REWRITE but before CLOSE) pro­
duces an error. ASSIGN to INPUT or OUTPUT is
allowed, but since these two files are opened
automatically, they must be closed before
being assigned to.

PROCEDURE CLOSE (VAR F):

A file system procedure (extend level I/O).

Performs an operating system close on a file,
ensuring that the file access is terminated
correctly. This is especially important for
file variables allocated on the stack or the
heap. Since these files must be closed before
a RETURN or DISPOSE loses the file control
block (FCB), they are closed automatically
when a RETURN or DISPOSE releases stack or
heap file variables.

15-24 Pascal Manual

File variables with the STATIC attribute in
procedures and functions are also closed auto­
matically when the procedure or function
returns. Files allocated statically at the
program, module, or implementation level are
automatically closed when the entire program
terminates.

If necessary, when a CLOSE is executed, a file
being written to has its operating system buf­
fers flushed. However, the buffer variable is
not PUT. If a file of type TEXT is being
written and the last nonempty line does not
end with a line marker, one is added to the
end of the last line. If the file has the
mode SEQUENTIAL and is being written, an end­
of-file is written.

Note that some run-time errors may remove
control from the run-time system. In these
cases, files being written may not be closed,
and the information in them may be lost. A
CLOSE on a file that is already closed or
never opened (no RESET or REWRITE) is per­
mitted. CLOSE is not ignored if error
trapping is on and there was a previous error.
CLOSE turns off error trapping for the file
and clears the error status if no errors were
found.

PROCEDURE DISCARD (VAR F}i

A file system procedure (extend level I/O).

Closes and deletes an open file. DISCARD is
much like CLOSE except that the file is
deleted.

File-oriented Procedures and Functions 15-25

PROCEDURE READFN (VAR F: PI, P2, Pn):

A file system procedure (extend level I/O).

READFN is the same as READ (not READLN) with
two exceptions:

o File parameter F should be present (INPUT
is assumed, but a warning is given if F is
omitted) •

o If a parameter P is of type FILE, a
sequence of characters forming a valid
file name is read from F and assigned to P
in the same manner as ASSIGN.

Parameters of other types are read in the same
way as the READ procedure.

Note that READFN is like READ, not like
READLN, and does not read the trailing line
marker. If the first parameter in a READFN
call is a file of any type, it is assumed to
be the textfile from which characters are
read. It is not assumed that the file's name
should be read using INPUT as the default
source.

READFN is used internally to read a program's
parameters. It is useful when reading a file
name and assigning the file name to a file in
one operation.

PROCEDURE READSET
(VAR F: VAR L: LSTRING, CONST S: SETOFCHAR):

A file system procedure (extend level I/O).

READSET reads characters and puts them into L,
as long as the characters are in the set Sand
there is room in L. If no file parameter is
given, INPUT is assumed, as in READ and WRITE.
Leading spaces, tabs, formfeeds, and line
markers are always skipped.

Reading ceases at the first line marker, which
is never in the type CHAR.

15-26 Pascal Manual

READSET, along with ENCODE, is used by the
run-time system to do the formatted READ
procedures, as well as to read file names with
READFN. It is handy when reading and parsing
input lines for simple command scanners.

The Land S parameters must reside in the
default data segment.

PROCEDURE SEEK (VAR Fi N: INTEGER4)i

A file system procedure (extend level I/O).

In contrast to normal sequential files, DIRECT
files are random access structures. SEEK is
used to randomly access components of such
files. To use a DIRECT file, the MODE field
must be set to DIRECT before the file is
opened with RESET or REWRITEi the file, F,
must be a DIRECT mode file.

If the file is actually
sequentially, the usual
procedures can be used.

read
READ

or written
and WRITE

SEEK modifies a field in file F so that the
next GET or PUT applies to record number N.
The record number parameter N can be of type
INTEGER or WORD, as well as of type INTEGER4.
For textfiles (ASCII structure), records are
linesi for other files (BINARY structure),
records are components. Record numbers start
at one (not zero). If F is an ASCII file,
SEEK sets the lazy evaluation status "empty."
If F is a BINARY file SEEK waits for I/O to
finish and sets the concurrent I/O status
"ready."

SEEK is best illustrated by some examples.
Assume for instance, that a BINARY structured,
DIRECT mode file contains the following CHAR
contents:

'A' 'B' 'e' 'D' 'E' 'F' 'G'

n = 2 3 4 5 6 7 8

File-Oriented Procedures and Functions 15-27

An implicit SEEK 1 is done after a REWRITE or
a RESET. Thus, with DIRECT mode files, the
following sequences of commands might be
given:

RESET (F) i
{Initial SEEK 1, followed by GETi}
{FA now holds IA I .}
SEEK (F, 5);
{File position set to 5: FA still holds 'AI}
C := FA
{C now equal to 'A': C does not equal 'E'}

Note that the fifth component is not assigned
to C, as you might expect. To obtain this
value, the following sequences of commands
should be executed:

RESET (F) i
{Initial SEEK 1, followed by GETi}
{FA now holds 'A'.}
SEEK (F I 5) i
{File positioned at 5.}
GET (F) i
{File buffer variable is loaded with "E".}
C := F'"
{C gets value IE'.}

The rule is to always follow a SEEK (F, N)
with a GET to ensure that the nth component is
contained in the buffer variable.

GET and PUT operate normally on DIRECT mode
files with BINARY structured files. However,
READ and WRITE work only with ASCII files,
that is, textfiles. READ, in particular, will
not work with DIRECT mode BINARY files,
because it assigns the buffer variablels value
before it performs a GET. On the other hand,
GET and PUT are not normally used with ASCII
structured DIRECT mode files. Lazy evaluation
makes READ and WRITE more appropriate. Care
should always be taken when mixing normal
sequential operations with DIRECT mode SEEK
operations.

15-28 Pascal Manual

TEMPORARY FILES

Sometimes a program needs a "scratch" file for
temporary, intermediate data. If this is the
case, you can create a temporary file that is
independent of the operating system. To do so,
without having to give the file a name in a
specific format, ASSIGN a zero character as the
name of the file. For example:

ASSIGN (F, CHR (0»

The file system creates a unique name for the file
when it sees that a zero has been assigned as its
name.

Temporary files are deleted when they are closed,
either explicitly or when the file gets deallo­
cated. RESET and REWRITE do not delete the file.

File-oriented Procedures and Functions 15-29

16 COMPI LABLE PARTS OF A PROGRAM

The compiler can compile three kinds of source
files: programs, modules, and implementations of
units. Modules and implementations of units can
be compiled separately and later be linked to a
program without recompilation. Note that at the
standard level, you can compile only entire
programs; however, at the extend level you can
also compile modules and units.

Example of a compilable program:

PROGRAM MAIN (INPUT, OUTPUT);
BEGIN

WRITELN (I Main Program I)
END. {Main}

Example of a compilable module:

MODULE MOD DEMO;
{No parameter list in heading}

PROCEDURE MOD_PROC;
BEGIN

WRITELN
(IOutput from MOD PROC in MOD_DEMO. I)

END;
END. {Mod_Demo}

Example of a compilable unit:

INTERFACE:
UNIT UNIT DEMO (UNIT PROC);
{UNIT PROe is the only exported identifier}
PROCEDURE UNIT_PROC:

END;
IMPLEMENTATION OF UNIT_DEMO;

PROCEDURE UNIT PROC;
BEGIN -

WRITELN
(IOutput from UNIT PROC in UNIT_DEMO. I)

END;
END. {Unit_Demo)

Compi1ab1e Parts of a Program 16-1

I f you compile the last two examples shown above
(MODULE MOD DEMO and UNIT UNIT DEMO) separately,
you can later incorporate them into the main pro­
gram shown below by linking all three compilands:

{INTERFACE required at the start of any}
{source that implements or uses a unit.}

INTERFACE:
UNIT UNIT DEMO (UNIT PROC):
PROCEDURE-UNIT_PROC:­

END:

PROGRAM MAIN (INPUT, OUTPUT):
{USES clause below needed to connect}
{implementation and program.}
USES UNIT_DEMO:

{EXTERN declaration needed to connect}
{module's procedure.}
PROCEDURE MOD PROC: EXTERN:
BEGIN -

WRITELN('Output from Main Program.'):
MOD PROC:
UNIT PROC:

END. - {End of main program.}

When the program MAIN is executed, the output con­
sists of the following:

Output from Main Program

Output from MOD PROC in MOD DEMO

Output from UNIT PROC in UNIT DEMO

This section describes the rules governing the
construction and use of programs, modules, and
units. There are programming examples for Pascal
in Appendix H, "Programming Examples."

16-2 Pascal Manual

PROGRAMS

Except for its heading and the addition of a
period at the end, a Pascal program has the same
format as a procedure declaration. The statements
between the first BEGIN and last END are called
the body of the program.

Example of a program:

{Program heading}
PROGRAM ALPHA (INPUT, OUTPUT, A_FILE,

PARAMETER) ;

{Declaration section}
VAR A_FILE: TEXT; PARAMETER: STRING (10);

{Program body}
BEGIN

REWRITE (A FILE);
WRITELN (A-FILE, PARAMETER);

END. -
{Ends with period (.)}

The word "ALPHA" following the reserved word
"PROGRAM" is the program identifier. The program
identifier becomes the identifier for a parameter­
less PUBLIC procedure, at a scope above all other
identifiers in the program. This procedure also
has the PUBLIC identifier ENTGQQ, which is called
during initialization to start program execution.

You could call the program body as a PUBLIC proce­
dure from another program, or from a module or
unit, using the program identifier or ENTGQQ as
the procedure name. (However, this is not recom­
mended.) You can also redeclare the program
identifier within a program, and the usual scoping
rules apply. The program identifier is at the
same level as the predeclared identifiers, so
giving a program an identifier like INTEGER or
READ generates an error message.

The program parameters denote variables that are
set from outside the program. The program commu­
nicates with its environment through these
variables.

At the standard level, all variables of any FILE
type should be present as program parameters,
since there is no other way to give an operating
system file name to the file. However, at the
extend level, you can use the ASSIGN and READFN

Compilable Parts of a Program 16-3

procedures to assign file names, so file variables
need not appear as program parameters.

The program parameters denote entities outside the
program through which the program communicates
wi th its environment. Program parameters differ
entirely from procedure parameters: they are not
passed as parameters to the procedure that is the
body of the program. All· program parameters,
except INPUT and OUTPUT, must be declared in the
variable declaration part of the block consti­
tuting the program. If there are no program
parameters and the files INPUT and OUTPUT are not
referenced, use the following form instead:

PROGRAM <identifier>:

The two standard files INPUT and OUTPUT receive
special treatment as program parameters. (See
Section 7, "Files," for a discussion of INPUT and
OUTPUT.) Values for INPUT and OUTPUT are not set
like other program parameters and should not be
declared, since they are already predeclared.
Each should be present as a program parameter if
used either explicitly or implicitly in the
program:

WRITE (OUTPUT, 'Prompt: I):
READLN (INPUT, p):
WRITE (' Prompt: '):
READLN (p):

{explicit use}

{implicit use}

The compiler gives a warning if you use INPUT and
OUTPUT in the program but omit them as program
parameters. The only effect of INPUT and OUTPUT
as program parameters is to suppress this warning.

You can redefine the identifiers INPUT and OUTPUT.
However, all textfile input and output procedures
and functions (READ, EOLN, etc.) still use the
original definition. RESET (INPUT) and REWRITE
(OUTPUT) are generated automatically, whether or
not they are present as program parameters; you
can also generate them explicitly.

Program initialization gives a value to every pro­
gram parameter variable, except INPUT and OUTPUT.
Each parameter must be either of a simple type or
of a STRING, LSTRING, or FILE type (that is, any
type accepted by the READFN procedure). Program
parameters must be entire variables: no component
selection is permitted.

16-4 Pascal Manual

Internally, each program parameter uses the file
INPUT and generates READFN calls. Before each
parameter is read, a special call is made to the
internal routine PPMFQQ. PPMFQQ gets characters
returned from an operating system interface
routine called PPMUQQ, which gets them from the
command form. PPMFQQ then effectively puts those
characters at the start of the fi Ie INPUT. The
identifier of the parameter is passed to both
routines (PPMFQQ and PPMUQQ). The identifier is
used as a prompt.

The use of program parameters can best be illus­
trated by showing how to change a program into a
procedure. Suppose you have a program like the
following:

PROGRAM ALPHA (INPUT, OUTPUT, PI, P2, •• Pn)~
<declarations>
{Including those for PI, P2, •• PnJ
BEGIN

<body>
END.

PROGRAM ALPHA could then become the following
procedure:

PROCEDURE PPMFQQ (CONST S : STRING)~ EXTERN~

PROCEDURE PPEFQQ~

PROCEDURE ALPHA [PUBLICJ~
<declarations>
{Including those
BEGIN

PPMFQQ (I PI I) ~
PPMFQQ (I P 2 I) ~

for PI, P2, •• PnJ

READFN (INPUT, PI)~
READFN (INPUT, P2)~

PPMFQQ ('PN')~ READFN (INPUT, Pn)i
PPEFQQ~

{Called after all parameters are readJ
<program statements>

END~

See Section 19, "Run Time and Debugging," for more
information on the routine PPMFQQ.

For program parameters of type FILE, the parameter
in the command form is the file name. For other
parameters, the value of the program variable is
ini tialized to the value read from the command
form. The program parameters INPUT and OUTPUT are
exceptions~ no parameter in the command form
affects them.

Campilable Parts of a Program 16-5

If program parameters other than the special
parameters INPUT and OUTPUT are used, note that
you can supply the parameters in the Run command
form or the program must be installed as an Execu­
tive command with the corresponding parameters.
For example, consider a program that types a file
to the video display using the file name as input.
It would be installed as an Executive command with
one field, "File name. II The listing of such a
program appears below.

Note that if an error occurs or if a program re­
quires more parameters than appear on the command
form, then the PPMFQQ routine reverts to handling
parameter values itself. It prompts you for every
parameter with the parameter's identifier and
reads the value you give it for the parameter.

The example below illustrates the use of program
parameters:

{ TYPE command - type a file to the video}
{display. Accept a file as program parameter:}
{open this file for reading. Read 1 byte from}
{the input file and echo to the video display.}
{Loop until end of file on input.}

PROGRAM TypeFile (output, inFile):
VAR

16-6

b : BYTE:
{file to type to the video display}

inFile: FILE of BYTE:

BEGIN
{open the input file}

Reset(inFile}:
{ready to begin typing}

WriteLn('Typing •• I):

{loop until EOF on input}
WHILE NOT EOF(inFile} DO

BEGIN
{read 1 byte from the input}

Read(inFile, b):
{echo this byte to the video display}

Wr i te (chr (b)) ;
END; {end while}

{finished typing}
WriteLn:
WriteLn('DONE'):

END. {end TypeFile}

Pascal Manual

This example assumes the program was invoked with
a command form such as:

Type
File name __ __

(For detail s of how to construct
see the New Command command in
Manual.)

command forms,
the Executive

Also note that the workstation operating system
has more sophisticated parameter management facil­
i ties than those offered by the Pascal run-time,
and can be used to access all subparameters
entered in the command form, as well as the com­
mand name itself. (See the subsection "Parameter
Organization ll in Section 7, "Parameter Manage­
ment, II of the eTOS Operating System Manual for
detail s.)

Compilab1e Parts of a Program 16-7

MODULES

Modules provide a simple, straightforward method
for combining several compilab1e segments into one
program. Units, described in the next subsection,
provide a more powerful and structured method for
achieving the same end.

Basically, a module is a program without a body.
The identifier in the module heading has the same
scope as a program identifier. The heading can
also include attributes that apply to all proce­
dures and functions in the module. There are no
module parameters: nor is there a module body. A
module ends with the reserved word END and a
period.

Example of a module:

MODULE BETA [PUBLIC]: {optional attributes}

PROCEDURE GAMMA:
BEGIN WRITELN ('Gamma') END:

FUNCTION DELTA: WORD;
BEGIN DELTA := 123 END;

END.

16-8 Pascal Manual

{no body before END}

After the module identifier, you can give one or
more attributes (in brackets) to apply to all the
procedures and functions nested directly in the
module. Depending on which, if any, attributes
you specify, the following assumptions or restric­
tions apply:

o If there is no attribute list at all, the
PUBLIC attribute is assumed. However, if a
list is present but empty (for example, MODULE
BETA [J:) PUBLIC is not assumed.

o The EXTERN directive used with a
procedure or function overrides
attribute given (or assumed) for
module.

particular
the PUBLIC
the entire

o EXTERN and ORIGIN cannot be given as
attributes for an entire module, although you
can specify them for individual procedures and
functions in a module.

o If PURE is used, the module must contain only
functions for PURE.

Al though a module contains no body, only decla­
rations, you can use it as a parameterless
procedure: that is, you can declare the module
identifier as a procedure and call it from other
programs, modules, or units. (If it is called
from a procedure in the module i tsel f, a decla­
ration is not necessary.) A module procedure
(unlike a similar procedure for programs or units)
is never called automatically, since there is no
way for the compiler to know whether a module has
been loaded and thus whether to generate a call to
it.

However, in some cases, the compiler generates
module initialization code that should be executed
by calling the module as an EXTERN procedure. If
such code is necessary, the compiler gives the
warning

Initialize Module

If you see this message, declare the module as a
parameterless EXTERN procedure and call the
procedure once before anything in the module is
accessed. (You will need to do this if the module
declares any FILE variables.)

Compilable Parts of a Program 16-9

Given a module M that declares its own file
variables, a program that uses M should look like
this:

PROGRA11 P (INPUT, OUTPUT)

PROCEDURE M~ EXTERN;
BEGIN

M~

END.

{Run-time call}
{initializes file}
{variables.}

MODULE M~

VAR F: FILE OF BYTE;
PROCEDURE USE_Fi

END;
END.

If the module USES any interfaces that require
ini tialization, the compiler generates a warning
that you should declare the module EXTERN and call
it as described in the previous paragraph.

If module M does not contain any of its own file
variables or use any initialized units, there is
no need to invoke M as a procedure in the body of
the program or to declare it as an EXTERN
procedure.

Variables within modules are not automatically
given any attributes. Except for the ini tializa­
tion of FILE variables mentioned above, variables
within modules are treated as program variables.

16-10 Pascal Manual

UNITS

Uni ts provide a structured way to access sepa­
rately compiled modules. A unit has two parts:

Interface Contains the declarations for the
routines (procedures and func­
tions), variables, and types, for
example.

Implementation
Contains the actual code for the
routine. Since the implementation
does not define the routines it is
implementing, it must textually
include the interface.

The interface appears at the front of an implemen­
tation of a unit and at the front of any program,
module, interface, or implementation that uses a
unit. The interface appears before the heading.

A unit contains constants, types, super types,
variables, procedures, and functi"ons, all of which
are declared in the interface of the unit. Any
program, module, or implementation, or another
interface can use an interface. An implementation
contains the bodies of the procedures and func­
tions in a unit, as well as optional initializa­
tion for the unit. The general scheme is shown in
Figure 16-1.

INTERFACE: UNIT X:
<identifier-declarations>
END;

<heading>
USES X:
<declarations>
<optional-body>
END.

{Compiland that}
{USEs the Unit X}
{Interface}

Figure 16-1. A Unit.

IMPLEMENTATION OF X:
<identifier­

implementations>
<optional-body>
END.

{Implementation of X.}

Compilable Parts of a Program 16-11

Note that if you use units, rather than modules,
the run-time library is automatically 1 inked to
your program.

When you are using units, their interfaces go
before everything else in a source file, either in
an IMPLEMENTATION or in the program, module, or
other unit that uses it. In Figure 16-1, the
INTERFACE is shared; the same INTERFACE exists in
both the IMPLEMENTATION source file and in the
other source file. Conversely, any other program,
module, or unit could USE UNIT X i similarly,
there could be another IMPLEMENTATION OF X, in
assembly language, for example.

By separating the interface from the implemen­
tation, you can write and compile a program before
or while writing the implementation. Or you can
load a program with one of several implementations
(for example, you could have one in Pascal or in
assembly language). A large Pascal program is
often better organized as a main program and a
number of units. However, only a program, module,
interface, or implementation can USE a unit, not
an individual procedure or function.

A program, module, implementation, or interface
that USES an interface must start with the source
file for that interface. Generally, the interface
source file is a separate file, and a $INCLUDE
metacomrnand at the start of the source file brings
in the interface source i tsel f at compile time.
Because there is then only one master copy of the
interface, this is easier and more reliable than
physically inserting the interface everywhere it
is used (and running the risk of ending up with
several different versions).

In some applications, you might want several ver­
sions of the same interface. The $INCLUDEd file
is copied from the desired interface version
before the program using it is compiled.
Naturally, every version must declare the common.
identifiers i each might al so have some constant
values for use in $IF metacomrnands for the
version-specific portions of the interface.

Suppose the INTERFACE for UNIT X in Figure 16-1 is
contained in the file X.INT. If that is so, the
compiland using the unit and the IMPLEMENTATION of
the unit need only $INCLUDE the interface file at
the start of the source file, as shown in Figure
16-2.

16-12 Pascal Manual

{$INCLUDE:'X.INT'}

<compiland-heading> IMPLEMENTATION OF X~
USES Xi <identifier-
<declarations> implementations>
<optional-body> <optional-body>
END. END.

Figure 16-2. Unit with File X.IBT and a Compi1and
Using the Unit.

If a procedure (or a variable) is declared in a
module, then it has a PUBLIC attribute there and
an EXTERN directive in any program that USEs it.
This syntactical difference between the declara­
tions makes it impossible to put the declarations
in one file and $INCLUDE them into both
compilands, as could be done with an interface.
(Note that what is declared in an interface is not
redeclared in the declaration section of the
compilands that INCLUDE that interface.)

A source file of any kind contains zero or more
unit interfaces, separated by semicolons, and
followed by a program, a module, or an implemen­
tation, which is followed by a period. Each of
these entities is called a "division." See the
next subsections, "Interface Division," and
"Implementation Division," for details about
divisions.

A unit contains the unit identifier, followed by a
list of identifiers in parentheses. These identi­
fiers are called the constituents of the unit and
are the ones provided by a unit or required by a
program, module, or other unit. These are
exported by the interface. The unit is preceded
by the keyword UNIT (for a provided unit) or USES
(for a required one.)

Compilable Parts of a Program 16-13

All unit identifiers in a source file must be
unique. The identifiers in parentheses, however,
can differ in the providing and requiring divi­
sions. That is, a compiland that uses a procedure
from a unit can use a procedure name different
from the one supplied by the interface. In this
case, the name matching is done via the identifier
lists. For example:

INTERFACE:
UNIT V (p, Q, R);
{List of identifiers declared in the unit.}

END;

PROGRAM TEST (INPUT, OUTPUT);
{Program using V}
USES V(A, B, C);
{The above list is matched against the
interface's list A = P, B = Q, C = R.}
BEGIN

A; { Pis call ed }
B; {Q is called}
C; {R is called}

END;

The identifier list in a USES clause is optional:
if not given, the identifiers in the UNIT list are
used by default. In that case, a compiland using
a unit must use the same names for the unit's pro­
cedures and variables as are used in the
interface. Giving different identifiers in a USES
clause allows you to change the identifiers in
case several different interfaces have identifier
conflicts. Multiple USES clauses can be combined:
thus, the following statements are equivalent:

USES A: USES B: USES C:
USES A, B, C;

Note also that a unit can introduce optional ini­
tialization code. Such code is implied by the
words BEGIN and END at the end of an interface and
is provided in an optional body in an
IMPLEMENTATION.

16-14 Pascal Manual

Example of a unit that introduces initialization
code:

The interface file, GRAPHI:

INTERFACE:
UNIT GRAPHICS (BJUMP, WJUMP):
{Exported identifiers are BJUMP and WJUMP.}
(In the above PROGRAM, MOVE and PLOT}
{are aliases for these identifiers.}
PROCEDURE BJUMP (X, Y: INTEGER):
PROCEDURE WJUMP (X, Y: INTEGER):
{Procedure headings only above.}

BEGIN
{BEGIN implies initialization code.}
END:

The interface file, BASEPL:

INTERFACE:
UNIT BASEPLOT (BLACK, WHITE, DRAWLINE):

{Other identifiers besides procedure}
{identifiers can be exported.}
{Note that BLACK and WHITE are}
{exported constant identifiers.}

TYPE RAINBOW = (BLACK, WHITE, RED, BLUE,
GREEN);

PROCEDURE DRAWLINE (C: RAINBOW: H, V:
INTEGER):

{No BEGIN: therefore, not an initialized}
{unit.}
END:

The program file, PLOTBOX:

{$INCLUDE:'GRAPHI'}
PROGRAM PLOTBOX (INPUT, OUTPUT);

USES GRAPHICS (MOVE, PLOT):
{MOVE and PLOT are USEd identifiers.}
BEGIN

MOVE (0, 0):
PLOT (10, 0): PLOT (10, 10):
PLOT (0, 10); PLOT (0, 0);

END.

Compilable Parts of a Program 16-15

The implementation file:

{$INCLUDE: 'GRAPHI'}
{$INCLUDE: 'BASEPL'}
{The following implementation USES}
{the UNIT BASEPL. Thus, the interface}
{is included above and the unit}
{used below.}
IMPLEMENTATION OF GRAPHICS;
{Implementation is invisible to user.}

USES BASEPLOTi
{Procedures BJUMP and WJUMP are}
{implemented below.}
{Note that only the identifiers}
{are given in the heading.}
{The parameter lists are given}
{in the interface.}

PROCEDURE BJUMPi
BEGIN DRAWLINE (BLACK, X, Y) ENDi

PROCEDURE WJUMPi
BEGIN DRAWLINE (WHITE, X, Y) ENDi

BEGIN
{Begin initialization.}

DRAWLINE (BLACK, 0, 0)
END.

A USES clause can occur only directly after a pro­
gram, module, interface, or implementation
heading. When the compiler encounters a USES
clause, it enters each constituent identifier
(from the UNIT clause or USES clause itself) in
the symbol table. Identifiers for variables, pro­
cedures, and functions are associated with the
corresponding identifiers in the interface, which
then become external references for the Linker.

If the sample program and implementation above
were compiled, every reference to the procedure
PLOT would generate an external reference to
WJUMP. However, references to DRAWLINE would use
the same identifier for the external reference.

Constants
types) in
program's
fier, if
identical
clause.

and types (including any super array
the interface are simply entered in the
symbol table (along with the new identi­
any) • Thus, a type in an interface is
to the corresponding type in the USES

16-16 Pascal Manual

Record field identifiers are the same in the
program, interface, and implementation. Enumer­
ated type constant identifiers must be given
explicitly, if needed; they are not automatically
implied by the enumerated type identifier. Labels
cannot be provided by an interface, since the
target label of a GOTO must occur in the same
division as the GOTO.

INTERFACE DIVISION

The structure of an interface is as follows:

o An interface section starts with the reserved
word INTERFACE, an optional version number in
parentheses (assumed to be 0 if not given),
and a semicolon.

o Next comes the keyword UNIT, the unit identi­
fier, the list of exported (constituent)
identifiers in parentheses, and another
semicolon.

o Any other units required by this interface
come next, in USES clauses.

o The last section is the actual declarations
for all identifiers given in the interface
list, using the usual CONST, TYPE, and VAR
sections and procedure and function headings,
in any order. No LABEL or VALUE sections are
permitted.

o The interface ends with BEGIN END
semicolon, if it has initialization,
with END and a semicolon, if it
initialization.

and a
or just
has no

Except for ORIGIN, which cannot currently be used
in interfaces, most available attributes can be
given to variables, procedures, and functions.
Because the PUBLIC or EXTERN attribute or EXTERN
directive is given automatically depending whether
the interface is given with the implementation of
that unit (PUBLIC is used in that case) or in a
compiland using the unit (EXTERN), you must not
specify attributes that conflict (for example,
PUBLIC and EXTERN).

Compi1ab1e Parts of a Program 16-17

Usually the only identifiers you declare are the
constituents, but other identifiers are permitted.
If the interface needs a call to initialize the
unit, the keyword BEGIN generates the call. The
interface ends with the reserved word END and a
semicolon.

Example of an interface division:

INTERFACE (3);
UNIT KEYFILE (FINDKEY, INSKEY, DELKEY,

KEYREC) :
USES KEYPRIM (KFCB, KEYREC);
PROCEDURE FINDKEY (CaNST NAME: LSTRING:

VAR KEY: KEYREC:
VAR REC: LSTRING);

PROCEDURE INSKEY (CaNST REC; LSTRING;
VAR KEY: KEYREC);

PROCEDURE DELKEY (CaNST KEY: KEYREC);
PROCEDURE NEWKEY (CaNST KEY: KEYREC);

BEGIN
{Signifies initialized unit.}
{No code is permitted here.}
END;

An exported identi fier is used by programs and
modules that use the same interface, rather than
within the interface only.

In the example above, KEYREC is part of the unit
KEYPRIM, but is exported as part of the unit
KEYFILE. KFCB is also part of the KEYPRIM unit,
but is not exported by the KEYFILE unit. NEWKEY
is defined in the interface, but not exported by
the KEYFILE unit. This is permitted, but point­
less, since NEWKEY is unknown even in the imple­
mentation of the unit.

Memory available at compile time limits the number
of identifiers the compiler can process. This
limit can be a problem if you have many inter­
faces, especially interfaces that use other
interfaces. The symptom is the following error
message:

Compiler Out Of Memory

The message occurs before the final USES clause in
the program, module, or implementation you are
compiling.

16-18 Pascal Manual

If you get this message you can reduce the number
of identifiers in interfaces USEd by other inter­
faces. For example, make a single interface that
conta ins only types (and type-related constants)
shared by your other interfaces, and only USE this
interface in the others.

I f you include any file variables
face, the unit must be initialized.
does not give the usual warning,

in the inter­
The compiler

Initialize Variable

when you declare a file in an interface.
interface contains files, be sure to end
BEGIN END so that it will be initialized.

IMPLEMENTATION DIVISION

If your
it with

You can compile an implementation of a unit sepa­
rately from other programs, modules, or units, but
you must compile it along with its interface.

The structure of an implementation is as follows:

o An implementation of an interface starts with
the reserved words IMPLEMENTATION OF, followed
by the unit identifier and a semicolon.

o Next comes a USES clause for units it needs
for its own use, only.

o Then comes the usual LABEL, CONSTANT, TYPE,
VAR, and VALUE sections and all procedures and
functions mentioned as constituents (which
must be declared at the higher level) or used
internally, in any order.

VALUE and LABEL sections can appear in the
implementation, but not in the interface.

Compilable Parts of a Program 16-19

Example of an implementation:

IMPLEMENTATION OF KEYFILE~
USES KEYPRIM (KEYBLOCK, KEYREC)~

VAR KEYTEMP: KEYREC~

PROCEDURE FINDKEY~
{No parameters or attributes here: they}
{go into the interface.}
BEGIN

{Code for FINDKEY}

END~

PROCEDURE INKEY:
BEGIN .

{Code for INKEY}

END:

PROCEDURE DELKEY:
BEGIN

{Code for DELKEY}

END~

BEGIN .
{Any user's initialization code goes here.}
{Internal initialization code is}
{produced automatically by the compiler.}
{It is not placed here by the user}

END.

Constants, variables, and types declared in the
interface are not redeclared in the implementa­
tion. However, you can declare other "private"
ones. Procedures and functions that are constitu­
ents of the unit do not include their parameter
list (it is implied by the interface) or any
attributes. (The PUBLIC attribute is implied,
unless the EXTERN directive is given explicitly.)

16-28 Pascal Manual

All procedures and functions in the INTERFACE must
be defined in the IMPLEMENTATION. However, they
can be given the EXTERN directive so that several
IMPLEMENTATIONs (or an IMPLEMENTATION and assembly
code) can implement a single INTERFACE. All pro­
cedures and functions with the EXTERN directive
must appear first: the compiler checks for this
and issues an error message if the EXTERN
directive is missing or misplaced.

You can implement a unit in assembly language, in
which case all variables, procedures, and func­
tions defined in the interface should generate
publ ic definitions for the Linker. You can al so
implement units in other programming languages,
such as FORTRAN, or in a mixture of languages. If
the interface is not implemented in Pascal, it
must give the proper calling sequence attribute.
(You must be familiar with calling sequences and
internal representation of parameters).

Several Pascal run-time units are implemented
partially in Pascal and partially in assembly
language. As mentioned, any IMPLEMENTATION
section that does not implement all interface
procedures and functions must, at the start of the
IMPLEMENTATION, declare such procedures and func­
tions to be EXTERN.

An implementation, like a program, can have a
body. The body is executed when the program that
uses the unit is invoked, so any initialization
needed by the unit can be done. This includes
internal initialization, such as file variable
initialization, as well as user initialization
code. If the source file contains several units,
each implementation body is called in the order
its unit name appears in the USES clause found in
the source file. However, initialization code for
a unit is executed only once, no matter how many
clauses refer to it.

The body, as in a program, is a list of statements
enclosed with the reserved words BEGIN and END.
At initialization time, the version number of the
interface with which the implementation was com­
piled is compared against the version number of
the interface with which the program was compiled.
These must be the same. This checking prevents
you from trying to run a program with obsolete
implementations. If no version number is given,
zero is assumed.

Compilable Parts of a Program 16-21

The keyword BEGIN before the final END indicates a
unit with initialization. If the word BEGIN is
omi tted, the implementation must not have a body
and no initialization takes place. Uninitialized
units lack the following:

o user initialization code

o a guarantee of only one initialization

o a version number check

The format for an initialized implementation of a
unit is similar to a program:

IMPLEMENTATION OF <unit-identifier>
<declarations>
BEGIN

<body>
END.

{Initialization code}

The format for an uninitialized implementation of
a unit is similar to a module:

IMPLEMENTATION OF <unit-identifier>
<declarations>
{No initialization code}
END.

If the implementation for an uninitialized unit
declares any files or USES any interfaces that
require initialization, the compiler warns you to
ini tialize the implementation. Initialization is
done automatically if you add the keyword BEGIN to
both the interface and the implementation. As
with a module, you can declare an uninitialized
unit to be a procedure with the EXTERN attribute
and then initialize it by calling it in another
compiland.

16-22 Pascal Manual

17 METACOMMANDS

Metacommands make up the compiler control lan­
guage. Metacommands are compiler directives that
allow you to control such things as the following:

o debugging and error handling

o optimization level

o use of the source file during compilation

o listing file format

Metacommands are given within comments. You can
specify one or more metacommands at the start of a
comment. Separate mul tiple metacommands with
ei ther spaces or commas. Spaces, tabs, and line
markers between the elements of a metacommand are
ignored. Thus, the following are equivalent:

{$PAGE:l2}
{$PAGE : l2}

To disable metacommands within comments, place any
character that is not a tab or space in front of
the first dollar sign, as shown:

{x$PAGE:l2}

You can change most compiler directives during the
course of a program. For example, the metacommand
$LIST controls whether or not a listing is gener­
ated. Most of a program might use $LIST- (no
listing generated), with a few sections using
$LIST+ as needed. However, some metacommands,
such as $LINESIZE, normally apply to an entire
compilation.

I f you are writing Pascal programs for use with
other compilers, keep in mind the fact that meta­
commands are always nonstandard and rarely
transportable.

MetacolIDDands 17-1

Internally, metacommands invoke or set the value
of a metavariable. Metavariables are c1assi fied
as typeless, integer, on/off switch, or string:

o Typeless metavariables are invoked when used,
as in $SIMPLE.

o Integer metavariables can be set to a numeric
value, as in $PAGE:l0l.

o On/off switches can be set to a numeric value
so that a value greater than zero turns the
switch on and a value equal or less than zero
turns if off, as in $MATHCK:l. Generally - is
used to set the switch to off, as in $MATHCK-,
and + is used to set it to on, as in $MATHCK+.

o String metavariables can be set to a character
string value, such as with $TITLE: 'COM
PROGRAM' •

Table 17-1
observed
follow.

illustrates the notational conventions
in the metacommand descriptions that

Table 17-1. Metacommand Notation.

Notation Meaning

:<n>

+ or -

:'<text>'

Metacommand is type1ess.

Metacommand is an integer.

Metacommand is an on/off switch.
+ sets value to 1 (on).
- sets value to 0 (off).
Default is indicated by + or -
in heading.

Metacommand is a string.

String values in the metalanguage can be either a
literal string or string constant identifier.
Constant expressions are not allowed for either
numbers or string s, although you can achieve the
same effect by declaring a constant identifier
equal to the expression and using the identifier
in the metacomrnand.

17-2 Pascal Manual

In metacommands only, Boolean and enumerated con­
stants change to their ORD values. Thus, a
Boolean FALSE value becomes 0 and TRUE becomes 1.

A complete alphabetic listing of Pascal metacom­
mands is given in Table 17-2 and each command is
discussed in detail further on in this section.

Table 17-2. Metacommands. (Page 1 of 3)

Metacommand Name

$ BRAVE

$DEBUG

$ENTRY

$ERRORS

$GOTO

$ INCLUDE

$INCONST

$INDEXCK

$INITCK

$IF $THEN
$ELSE $END

Function

Sends error messages and
warnings to the video
display.

Turns on or off all the debug
checking.

Generates procedure entry /
exit calls for the Pascal
error handling routines.

Sets the number of errors
allowed per page.

Flags GOTO statements
"considered harmful."

as

Switches compilation from the
current source file to the
source file named.

Allows interactive setting of
constant values at compile
time.

Checks that array index
values are in range, in-
cluding super array indexes.

Checks for uninitialized
values.

Allows conditional compila­
tion of source.

Metacommands 17-3

Table 17-2. Metacommands. (Page 2 of 3)

Metacommand Name

$INTEGER

$LINE

$LINESIZE

$LIST

$MATHCK

$MESSAGE

$NILCK

$OCODE

$PAGE

$PAGEIF

$PAGESIZE

$PUSH

Function

Sets the length
INTEGER type.

of the

Generates
for Pascal
routines.

line number calls
error processing

Sets listing width.

Turns on or off the source
listing.

Checks for mathematical
errors such as overt low and
division by zero.

Allows the display of a
message on the video display
at compilation time.

Checks
values.

for bad pointer

Turns on disassembled object
code listing.

Sets the page number for the
next page.

Skips to the next page if
less than a specified number
of lines are left on the
page.

Sets the length of a listing
in lines.

Saves the current value of
all metacomrnands.

$POP Restores the saved value of
all metacornrnands.

17-4 Pascal Manual

Table 17-2. Metacommands. (Page 3 of 3)

Metaconunand Name

$RANGECK

$ REAL

$ROM

$RUNTIME

$SIMPLE

$SIZE

$SKIP

$SPEED

$STACKCK

$SUBTITLE

$SYMTAB

$TITLE

$WARN

Function

Checks for subrange validity.

Sets the length of the REAL
type.

Gives a warning on static
initialization.

Determines the context of
run-time errors.

Disables
tions.

global optimiza-

Minimizes the size of code
generated.

Skips
lines
page.

a specified number of
or skips to end of

Minimizes the execution time
of code.

Checks for stack overflow at
procedure or function entry.

Sets the page subtitle.

Sends the symbol table to the
listing file.

Sets the page title.

Gives a warning message in
the listing file.

MetacODB'llands 17-5

OPTIMIZATION LEVEL

The metacornrnands shown in Table 17-3 let you
control the degree to which optimization is used.

Table 17-3. Optimization Level.

Name Description

$INTEGER: <n> Sets the length of the INTEGER
type (default is 2.)

$REAL: <n>

$ROM-

$SIMPLE

$SIZE

$SPEED

Sets the length of the REAL
type.

Gives an error on static ini­
tialization.

Disables global optimizations.

Minimizes the size of code gen­
erated. $SIZE is the default
setting.

Minimizes the execution time of
code.

$INTEGER and $REAL set the length (that is,
precision) of the standard INTEGER and REAL data
types. $INTEGER can only be set to 2 (the
default), for l6-bit integers. However, you can
set $REAL to either 4, or 8 (the default), to make
type REAL identical to REAL4 or REAL8,
respectively.

The $SIMPLE metacornrnand turns off common
subexpression optimization. $SIZE and $SPEED
currently turn it back on again. $SIZE, $SPEED,
and $SIMPLE are all mutually exclusive. The
default is $SIZE.

17-6 Pascal Manual

If $ROM is set, the compiler gives an error
message that static data are initialized in either
of the following situations:

o at a VALUE section

o every place where static data initialization
occurs due to $INITCK (described in the
subsection "Debugging and Error Handling.")

MetacOIIIIDands 17-7

ERROR HANDLING AND DEBUGGING

The metacommands shown in Table 17-4 are for error
handling and debugging using Pascal error handling
routines. They also generate code to check for
run-time errors.

Note that debugging in this context refers to
Pascal's own error handling routines and not to
the use of the programming tool, the Debugger,
which is available as a part of the standard
software for your workstation.

If any check is on when the compiler processes a
statement or when the program executes it at run­
time, tests relevant to the statement are done. A
run-time error invokes a call to the run-time
support routine, EMSEQQ (synonymous with ABORT).
When EMSEQQ is called, the compiler passes the
following information to it:

o an error message

o a standard error code

o an optional error status value, such as an
operating system return code

EMSEQQ also has available:

o the program counter at the location of the
error

o the stack pointer at the location of the error

o the frame pointer at the location of the error

o the current line number (if $LINE is on)

o the current procedure or function name and the
source filename in which the procedure or
function was compiled (if $ENTRY is on)

17-8 Pascal Manual

Table 17-4. Error Handling and Debugging.

Metacomrnand Description

$BRAVE+ Sends error messages and warnings to
the video display.

$DEBUG- Turns on or off all the debug
checking (those with CK suffix below
and $ENTRY.)

$ENTRY- Generates procedure entry/exit calls
for Pascal error handling routines.

$ERRORS:<n> Sets the number of errors allowed per
page (default is 25).

$GOTO-

$INDEXCK-

$INITCK-

$LINE-

$MATHCK-

$NILCK­

$RANGECK-

$RUNTIME-

$STACKCK-

$ WARN +

Flags GOTO statements as "considered
harmful. "

Checks that array index values are in
range, including super array indexes.

Checks for the use of unini tialized
values.

Generates line number calls for the
Pascal error handling routines.

Checks for mathematical errors such
as overflow and division by zero.

Checks for bad pointer values.

Checks for subrange validity.

Determines the context of run-time
errors.

Checks for stack overflow at proce­
dure or function entry.

Gi ves a warning message
listing file.

in

MetacOIIDDands

the

17-9

Each of these metacomrnands is discussed in more
detail on the following pages:

$ BRAVE +

$DEBUG-

$ENTRY-

$ERRORS:<n>

Sends error messages
to the video display
to writing them to
file) •

and warnings
(in addition
the listing

Turns on or off all the debug
switches; INDEXCK, INITCK, MATHCK,
NILCK, RANGECK, STACKCK. It is
useful to use $DEBUG- at the begin­
ning of a program to turn all
checking off and then selectively
turn on only the debug switches you
want. Alternatively, you can use
this metacommand to turn all
debugging on at the start and then
selectively turn off those you do
not need as the program progresses.
By default, some error checks are
on and some off.

Generates procedure and function
entry and exit calls. This lets
the error handler determine the
procedure or function in which an
error has occurred. Since this
switch generates a substantial
amount of extra code for each pro­
cedure and function, you should use
it only when debugging. Note that
$LINE+ requires $ENTRY+. Thus,
$LINE+ turns on $ENTRY, and $ENTRY­
turns off $LINE.

Sets an upper limit for the number
of errors allowed per page. . Com­
pilation aborts if that number is
exceeded. The default is 25 errors
and/or warnings per page.

17-1'" Pascal Manual

$GOTO-

$INDEXCK-

$INITCK-

Flags GOTO statements with a
warning that they are "considered
harmful." This warning can be use­
ful in either of the following
circumstances:

o to flag all GO TO statements
during the process of debugging

o to encourage
grarnrning in
environment

structured pro­
an educational

Generates code to check that array
index values, including super array
indexes, are in range. Since array
indexing occurs so often, bounds
checking is enabled separately from
other subrange checking.

Generates code to check for the
occurrence of uninitialized values,
such as the following:

o unini tial ized INTEGERs and
2-byte INTEGER subranges with
the hexadecimal value 16#8000

o unini tialized I-byte INTEGER
subranges with the hexadecimal
value 16#80

o uninitialized pOinters with the
value 1 (if $NILCK is also on)

o uninitialized
special value

REALs with a

The $INITCK metacornrnand generates
code to

o set such values uninitialized
when they are allocated

o set the value of INTEGER range
FOR-loop control variables
unini tialized when the loop
terminates normally

o set the value of a function
that returns one of these types
uninitialized when the function
is entered

Metacoamands 17-11

$LINE-

$INITCK never generates any ini­
tia.1ization or checking for WORD or
address types. Statically allo­
cated variables are loaded with
their initial values. Also,
$INITCK does not check values in an
array or record when the array or
record itself is used.

Variables allocated on the stack or
in the heap are assigned initial
values with generated code.
$INITCK does not initialize any of
the following classes of variables:

o variables mentioned in a VALUE
section

o variant fields in a record

o components
allocated
procedure

of a
with

super array
the NEW

Generates a call to the error
handler for each source line of
executable code. This allows the
error handler to determine the
number of the line in which an
error has occurred. Because this
metacommand generates a substan­
tial amount of extra code for each
line in a program, you should turn
it on only when debugging. Note
that $LINE+ requires $ENTRY+, so
$LINE+ turns on $ENTRY, and $ENTRY­
turns off $LINE.

$MATHCK- Generates code to check for mathe­
matical errors, including INTEGER
and WORD overflow and division by
zero. $MATHCK does not check for
an INTEGER result of exactly
-MAXINT-l (#8000) : $INITCK does
catch this value if it is assigned
and later used.

17-12 Pascal Manual

$NILCK-

$RANGECK-

Turning $MATHCK off does not always
disable overflow checking. There
are, however, library routines that
provide addition and multiplication
functions that permit overflow
(LADDOK, LMULOK, SADDOK, SMULOK,
UADDOK, and UMULOK). (See Section
14, "Available Procedures and Func­
tions," for a description of each
of these functions.)

Generates code to check for the
following conditions:

o

o

dereferenced pointers
values are NIL

uninitialized pointers
$INITCK is also on

whose

if

o pointers that are out of range

o pointers that point to a free
block in the heap

$NILCK occurs whenever a pointer is
dereferenced or passed to the
DISPOSE procedure. $NILCK does not
check operations on address types.

Generates
validity
stances:

code to check subrange
in the following circum-

o assignment to subrange vari­
ables

o CASE statements
OTHERWISE clause

without an

o actual parameters for the CHR,
SUCC, and PRED functions

o indexes in PACK and UNPACK
procedures

o set and LSTRING assignments and
value parameters

o super array upper bounds passed
to the NEW procedure

Metacommands 17-13

$RUNTIME-

$STACKCK-

$WARN+

If the $RUNTIME switch is on when a
procedure or function is compiled,
the "location of an error" is the
place where the procedure or
function was called rather than the
location in the procedure or
function itself. This information
is normally sent to your video
display, but you could link in a
custom version of EMSEQQ, the error
message routine, to do something
different (such as invoke the run­
time Pascal error handling routines
or reset a controller). For more
information on error handling, see
Section 19, II Run Time and
Debugging. II

Checks for stack overflow when
entering a procedure or function
and when pushing parameters larger
than 4 byte s on the stack. Stack
overflow is never checked in pro­
cedures with the INTERRUPT
attribute.

Sends warning messages to the
listing file (this is the default).
If this switch is turned off, only
fatal errors are printed in the
source listing.

17-14 Pascal Manual

SOURCE FILE CONTROL

A small group of metacommands provide some measure
of control over the use of the source file during
compilation. These commands are listed in Table
17-5 and described in more detail below.

Table 17-5.

Name

$IF <constant>
$THEN <textl>
$ELSE <text2>

Source File Control.

Description

Allows conditional compil­
ation of <textl> source if
<constant> is greater than
zero.

$INCLUDE:'<filename>' Switches compilation from
the current source file to
the source file named.

$INCONST: <identifier> Allows interactive setting
of constant values at com­
pile time.

$MESSAGE: ' <text> ' Displays message on the
video to indicate which
version of a program is
compiling.

$PUSH Saves the current value of
all metacommands.

$POP Restores the saved value of
all metacommands.

Metacommands 17-15

Because the compiler keeps one look-ahead symbol,
it actually processes metacommands that follow a
symbol before it processes the symbol itself.
This characteristic of the compiler can be a
factor in cases such as the following:

CONST 0 = 1:
{$IF 0 $THEN}
{o is undefined in the $IF.}

CONST 0 = 1: DUMMY 0:
{$IF 0 $THEN}
{Now 0 is defined.}
X := p"':
{$NILCK+}
{NILCK applies to p'" here.}

X := p"':
{NILCK doesn't apply to P.}
{$NILCK-}

{$IF <constant> $THEN} <text> {$END}

17-16

Allows for conditional compilation
of a source text. If the value of
the constant is greater than zero,
then source text following the $IF
is processed: otherwise it is not.

An $IF $THEN $ELSE construction is
also available, as in the following
example:

{$IF MSDOS $THEN}
SECTOR = S12:
{$ELSE}
SECTOR S128:
{$END}

To simulate an $IFNOT construction,
use the following form of the
metacommand:

$IF <constant>
$ELSE <text>
$END

Pascal Manual

$ INCLUDE

$INCONST

The constant can be a literal
number or constant identifier. The
text between $THEN, $ELSE, and $END
is arbitrary; it can include line
breaks, comments, other metacom­
mands (including nested $IFs), etc.
Any metacommands wi thin skipped
text are ignored, except, of
course, corresponding $ELSE or $END
metacommands.

Examples using the metaconditional:

{$IF FPCHIP $THEN}
CODEGEN (FADDCALL,Tl,LEFTP)
{$END}
{$IF COMPSYS $ELSE}
IF USERSYS THEN DOITTOIT
{$END}

Allows the compiler to switch proc­
essing from the current source to
the file named. When the end of
the file that was included is
reached, the compiler switches back
to the original source and con­
tinues compilation. Resumption of
compilation in the original source
file begins with the line of source
text that follows the line in which
the $INCLUDE occurred. Therefore,
the $ INCLUDE metacommand should
always be last on a line.

Allows you to enter the values of
the constants (such as those used
in $IFs) at compile time, rather
than editing the source. This is
useful when you use metacondi­
tionals to compile a version of a
source for a particular environ­
ment, customer, target processor,
etc. Compilation can be either
interactive or batch oriented.
For example, the metacommand
$INCONST:YEAR produces the fol­
lowing prompt for the constant
YEAR:

Inconst: YEAR

Metacommands 17-17

$MESSAGE

$PUSH and $POP

Enter the desired parameter, for
example, 1984:

Inconst: Year = 1984

The response is presumed to be of
type WORD. The effect is to
declare a constant identifier named
YEAR with the' value 1984. This
interactive setting of the constant
YEAR is equivalent to the constant
declaration:

CONST YEAR = 1984;

except that the metacornrnand can be
given anywhere in the program.

Allows you to send messages to the
video display during compilation.
This is particularly useful if you
use metaconditiona1s extensively,
for example, and need to know which
version of a program is being
compiled.

Example of the $MESSAGE metacom­
mand:

{$MESSAGE: 'Message on screenl'}

Allow you to create a meta­
environment that you can store with
$PUSH and invoke with $POP. $PUSH
and $POP are useful in $INCLUDE
files for saving and restoring the
metacornrnands in the main source
file.

17-18 Pascal Manual

LISTING FILE CONTROL

The metacomrnands listed in Table 17-6 and
described in this subsection allow you to format
the listing file as you wish. Listing file
format, itself, is discussed in the subsection by
that name.

Table 17-6. Listing File Control Metacommands.

Metacomrnand Description

$LINESIZE: <n> Sets the width of listing.
Default is 131.

$LIST+ Turns on or off the source
listing. Errors are always
listed.

$OCODE+ Turns on the disassembled
object code listing.

$PAGE+ Skips to the next page.

$PAGE:<n>

$PAGEIF:<n>

$PAGESIZE:<n>

$SKIP:<n>

$SUBTITLE:'<text>'

$SYMTAB+

$TITLE: '<text>'

Line number is not reset.

Sets the page number for
the next page (does not
skip to next page).

Skips to the next page if
less than n lines are left
on the current page.

Sets the page length of a
listing in lines. Default
is 55.

Skips n lines or to the end
of page.

Sets the page subtitle.

Sends the symbol table to
the listing file.

Sets the page title.

Metacommands 17-19

$LINESIZE:<n> Sets the maximum length of lines in
the listing file. Default is 131.

$LIST+ Turns on the source listing.
Except for $LIST-, metacommands
themselves appear in the listing.
The format of the listing file is
described in the subsection,
IIListing File Format, II below.

$OCODE+ Turns on the symbolic listing of
the generated code to the object
listing file. This listing looks
like an assembly listing, with code
addresses and operation mnemonics.
The symbolic listing will not be
generated unless you specify a file
name in the [Object list file]
field of the Pascal command form.

$PAGE+ Forces a new page
listing. The page
listing file is
incremented.

in the source
number of the
automatically

$PAGE: <n> Sets the page number of the next
page of the source listing.
$PAGE:<n> does not force a new page
in the listing file.

$PAGEIF:<n> Conditionally performs $PAGE+, if
the current line number of the
source file plus n is less than or
equal to the current page size.

$PAGESIZE:<n> Sets the maximum size of a page in
the source listing. The default is
55 lines per page.

$SKIP: <n> Skips n lines or to the end of the
page in the source listing.

$SUBTITLE: '<subtitle>'
Sets the name of a subtitle that
appears beneath the title at the
top of each page of the source
listing.

17-28 Pascal Manual

$SYMTAB+ If on at the end of a procedure,
function, or compiland, sends
information about its variables to
the listing file (for example, see
lines 14 and 17 in the sample
listing file in the subsection,
"Listing File Format"). The left
columns contain the following:

o the offset to the variable from
the frame pointer (for vari­
ables in procedures and
functions)

o the offset to the variable in
the fixed memory area (for main
program and STATIC variables)

o the length of the variable

A leading plus or minus sign indi­
cates the sign of a frame offset.

The first line of the $SYMTAB
listing contains the offset to the
return address, from the top of the
frame (zero for the main program).
It also contains the length of the
frame, from the framepointer to the
end including front end temporary
variables. Code generator tempo­
rary variables are not included.

For functions, the second line con­
tains the offset, length, and type
of the value returned by the
functions. The remaining lines
list the variables, including their
type and attribute keywords, as
shown in Table 17-7.

$TITLE:'<title>'
Sets the name of a title that
appears at the top of each page of
the source listing.

Metacommands 17-21

Table 17-7. Symbol Table Notation.

Keyword Meaning

Public Has the PUBLIC attribute

Extern Has the EXTERN attribute

Origin Has the ORIGIN attribute

Static Has the STATIC attribute

Const Has the READONLY attribute

Value Occurs in a VALUE section

ValueP Is a value parameter

VarP Is a VAR or CONST parameter

VarsP Is a VARS or CONSTS parameter

ProcP Is a procedural parameter

Segmen Uses segmented addressing

Regist Parameter passed in register

17-22 Pascal Manual

LISTING FILE FORMAT

Listing file format is controlled by including
various metacornrnands within the program.

The following discussion of listing file format is
keyed to this sample listing:

Page 1

06/25/84

11:21:24
JG Ie

00

00
10

20

20
20

+ 21

21
21

/ 21
21

* 21
% 21

21
10

Line#
1

Pascal 9.0

PROGRAM foo: {$symtab+}
2
3
4 VAR i:integeri k:ARRAY [-9 •• 0J OF

integer,
4 --------------------------Warning

156 , Assumed ,"
5 FUNCTION bar (VAR j: integer):

integer:
6 VAR k: ARRAY [0 •• 9J OF integer;
7 BEGIN
8 6GOTO 1: {jump forward}
8 "Warning 281 Label Assumed

Declared
8 "Warning 173 Insert:
8 --------------"Warning 281 Label

Assumed Declared
9 i:= bar (j)i{assign to global}

10 l:{label}
11 j:= bar {i)i{global to VAR parm}
12 GOTO l:{jump backward}
13 RETURN: GOTO Ii {other jumps}
14 i:= bar {i)i{other global

reference}
15 j:= bar (j):{no global references}
16 END:
16 ----------"306 Function Assignment

Not Found

Me tacODBDands 17-23

Symtab 16 Offset Length Variable - BAR
2 24 Return offset,

Frame length
2 2 (function return)

: Integer
+ 4 2 J : Integer VarP

22 20 K :Array

17
10 18 BEGIN
11 19 i := bar (i):
00 20 END.

Symtab 20 Offset Length Variable
0 50 Return offset,

Frame length
28 2 I :Integer Static
30 20 K :Array Static

Errors Warns In Pass One
1 4

The listing file above is created when the sample
program shown below is compiled:

PROGRAM foo; {$symtab+}
VAR i:integer; k:ARRAY [-9 •• 0] OF integer,
FUNCTION bar (VAR j: integer): integer;
VAR k: ARRAY [0 •• 9] OF integer;
BEGIN

6 GOTO 1: {jump forward}
i := bar (j):{assign to global}
1: {label}
j := bar (i); {global to VAR parm}
GOTO 1; {jump backward}
RETURN; GOTO l;{other jumps}
i := bar (i); {other global reference}
j:= bar (j}:{no global references}
END:

BEGIN
i := bar (i):

END.

Every page of the listing file has a heading that
includes such information as your title and
subtitle, set with the metacommands $TITLE and
$SUBTITLE, respectively. I f these metacommands
appear on the first source line, they take effect
on the first page. The page number appears in the
right side of the first line of the heading. The
date and time appear in the second and third line,
respecti vely. You can set the page number with
$PAGE:<n> or start a new page with $PAGE+.

17-24 Pascal Manual

The fourth line of the listing contains the column
labels. The contents of the first three columns
are as follows:

The JG column Contains flag characters generated
for your information. Jump flags,
which appear under the J, can
contain one of the following
characters:

+ forward jump (BREAK or GOTO a
label not yet encountered)

*

backward jump (CYCLE or GOTO a
label already encountered)

other jumps (RETURN or a mix­
ture of jumps)

Codes for
local to
function)
under G:

global variables (not
the current procedure or

appear in the column

assignment
variable

to a nonlocal

/ passing a nonlocal variable as
a reference parameter

% a combination of the two

The IC column Contains information about the
current nesting levels.

The digit under "I" refers to the
identifier (scope) level, which
changes with procedure and function
declarations, as well as with
record declarations and WITH
statements.

The digit shown in the C column
refers to the control statement
level: this number changes with
BEGIN and END, CASE and END, and
REPEAT and UNTIL pairs.

Metacommands 17-25

The value in the C column is incre­
mented each time control passes to
a nested statement: conversely,
this value is decremented each time
control passes back to the nesting
statement.

The number in this column is useful
for finding missing END keywords.

If a line does not contain any code
processed by the compiler, all
these columns are blank. Thus you
can locate a portion of the source
accidentally commented out or
skipped due to an $IF and $END
pair.

The Line# column
Shows the line number of the line
in the source file. A $INCLUDEd
file gets its own sequence of line
numbers. If $LINE is on, this line
number and the source file name
identify run-time errors.

Two kinds of compiler messages appear in the
listing: errors and warnings. A compilation with
any errors cannot generate code. A compilation
with warnings only can generate code, but the code
may be bad. Warnings start with the word
"Warning" and a number (see, for example, line 4
in the sample listing). Errors start with an
error number (see line 16 in the sample listing).
See Appendix A, "Compiler Error Messages, II for a
complete list of all warning and error messages.

You can suppress warning messages with the meta­
command $WARN-, but this is not generally
recommended. The metacommand $BRAVE+ sends error
and warning messages to the video display (as well
as to the listing file). However, if there are
more than can fit on a single screen, the first.
ones scroll off.

The location of the error is indicated in the
listing file with a caret (A). The message itself
can appear to the left or right of the caret and
is preceded by a dashed line.

17-26 Pascal Manual

Sometimes, the compiler does not detect an error
until after the listing of the following line. In
this case, the error message line number is not in
sequence. Tabs are allowed in the source and are
passed on to the listing unchanged. If the tab
spacing is every eight columns, the error pointer
(A) is generally correct. However, an error
pointer near the end of a line can be displaced if
the following line has tabs.

If the compiler encounters an error from which it
cannot recover, it gives the message "Compiler
Cannot Continue!". This message appears if any of
the following occur:

o The keyword PROGRAM
INTERFACE, or MODULE)
program, module, or
missing.

(or
is not
unit

IMPLEMENTATION,
found, or the
identifier is

o The compiler encounters an unexpected end-of­
file.

o The compiler finds too many errors: the maxi­
mum number of errors per page is set with the
$ERRORS metacommand (the default is 25).

o The identifier scope becomes too deeply
nested. The maximum level to which procedures
can be statically nested is 15.

When the compiler is unable to continue, for what­
ever reason, it simply writes the rest of the
program to the listing file with very little error
checking.

Metacommands 17-27

18 USING THE PASCAL COMPILER

You run a Pascal program by first compiling its
one or more source modules, using the Linker to
link the resul ting object files with the Pascal
library, and invoking the resulting run file. The
run file is usually invoked through the Executive.

The Pascal compiler translates your Pascal source
programs into object modules. The compiler
provides a source listing, error messages, and a
number of compiler metacommands to aid in program
development and debugging.

The compiler comes with a set of object libraries
to be linked with your code. These libraries pro­
vide complete run-time support for input/output,
arithmetic functions, and inline code execution by
the optional 8087 Numeric Data Processor that is
available with some workstations. When you link
your program, the Linker automatically accesses
these libraries when necessary. (The run-time
libraries are discussed in Section 19, "Run Time
and Debugging.")

Using the Linker, you can also combine Pascal
object modules with those of other languages, for
example FORTRAN, to facilitate writing applica­
tions that need different languages for different
parts.

Pascal supports systems programming by providing
access to all operating system services, such as
direct (random) access to disk files, interrupt
handling, and process creation. Calls also extend
the range of services needed by the commercial
application programmer: DAM, ISAM, Sort/Merge,
and the Forms Run Time.

Using the Pascal Compiler 18-1

COMPILING, LINKING, AND RUNNING PASCAL: OVERVIEW

To create and execute a Pascal program,

1. Create and edit the source file. You can use
the Editor or the Word Processor to create the
source file.

2. Compile the program. The compiler flags
syntax errors as it reads your source file.
You can place compiler controls called meta­
commands within your program to generate
diagnostic calls for run-time errors. If com­
pilation is successful, the compiler creates a
relocatable object file.

3. Use the Linker to link compiled object files
with the run-time library. A compiled object
file is not executable and must be linked with
one or more run-time libraries, using the
Linker. Separately compiled subroutines in
other languages or assembly language programs
can also be linked to your program at this
time. The Linker produces an executable file
called a run file.

4. Use the Executive Run command to execute the
resul ting run file. (AI ternati vely, you can
use the Executive command New Command to
create a special command that you can use to
execute your run file.)

Repeat this
successfully
errors.

process
compiled,

until your
linked, and

program has
run without

Since compiler metacommands can slow your program
down, once the program runs without errors, remove
or comment out any metacommands that are no longer
necessary, then recompile, relink, and rerun your
program.

18-2 Pascal Manual

COMPILER OPTIONS

The compiler creates from your source file an
object module, which must be linked to create a
executable module, or ~ file.

In addition, the compiler creates a source list
file (often referred to as the listing file), and
you can optionally request that the compiler
create an object list file.

The source list file gives the date and time of
the compilation and a line-by-line account of the
source file, with page headings and messages. Any
error messages are also shown on your workstation
screen. Appendix A "Compiler Error Messages"
lists all the compiler error messages.

The various flags, level numbers, error message
indicators, and symbol tables included in the
listing file make it useful for error checking and
debugging.

If you used the $INCLUDE metacomrnand to include
other source files in the compilation, these files
are also included in the source list file.

The listing file and its format is discussed more
fully in Section 17, "Metacomrnands."

The object list file is a symbolic assembler-like
listing of the object code. The addresses in the
listing are relative to the start of the program
or module.

The object listing file is used to

o check to see whether a different construct in
assembly language would improve program
efficiency

o provide a guide for debugging

Metacomrnands allow you to specify the form
content of your source code, object code,
output listing.

Using the Pascal Compiler

and
and

18-3

Control s are provided to copy source code from
other files in addition to the main source file.
The compiler also provides an optional symbol
listing and controls to format the output listing
to your own specifications. Using compiler
metacornmands is discussed in Section 17,
"Metacommands. 1I

18-4 Pascal Manual

INVOKING THE COMPILER

You can compile Pascal source files by giving the
Pascal command through the Executive on any work­
station that has sufficient memory.

To invoke the compiler, type "Pascal" into the
Executive command form. The Executive then
displays the Pascal command form below:

Pascal
Source file
[Object file]
[List file]
[Object list file]

Source file

[Object file]

[List file]

Enter the name of the source file
you want to compile.

Enter the
compiler to
object file.

name
give

you wish the
to the compiled

If no name is specified, the com­
piler assigns a default name to the
object file. The default name is
created by removing from the source
file name the last period (.) and
any suffix following that period,
then adding the suffix ".Obj". For
example, for the source file
[Dev]<Work>Program.l.Pas the com­
piler creates a default object file
named [Dev]<Work>Program.l.Obj. If
the source file does not have a
suffix, then ".obj" is appended
directly to the end of the file
name.

Enter the name of the list file to
be created by the compiler. The
list file is a listing of the
source file and any warnings or
error messages generated during
compilation. If no list file name
is specified, the default name used
is the source file name with the
suffix ... LST" •

TO list portions of the list file,
see the $LIST metacommand.

Using the Pascal Compiler 18-5

[Object list file]
Enter the name you wish the com­
piler to use for the listing of the
generated object code. If no file
name is specified, the object list
file is not generated.

To list only portions of the object
list file, see the $OCODE meta­
command.

After you have completed the Pascal command form,
press GO and compilation begins.

The program is compiled in three
are discussed in detail in
"Compiler Structure" below.

passes. These
the subsection

After the compiler completes Pass One the fol­
lowing message is displayed.

Pass One No Errors Detected

If the compiler detects errors during compilation,
messages such as the following appear:

Pass One
Pass One

2 Warnings Detected
3 Errors Detected

The error and warning messages also appear on your
list file.

An error is
program from
compilation.

a mistake that would prevent
running correctly and stops

the
the

A warning indicates a condition that will not
prevent the program from running, but which can
produce invalid results or can be poor programming
practice.

See Appendix A, "Compiler Error Messages," for a
complete listing of messages and information about
how to correct the errors in your program.

18-6 Pascal Manual

Pass Two of the compiler produces the object file.
When it is complete a message similar to the one
below is displayed:

Code Area Size
Cons Area Size
Data Area Size

#05EC
#00E6
#0264

1516)
230)
612)

Pass Two No Errors Detected

The first three lines indicate, first in hexadeci­
mal and then in decimal notation, the amount of
space taken by executable code (Code), constants
(Cons), and variables (Data). The number of
errors given is for Pass Two only.

The third pass produces the object list file and
is executed only if you request one.

For a more detailed discussion of the compiler see
the subsection "Compiler Structure" below.

Using the Pascal Compiler 18-7

LINKING A PASCAL PROGRAM

The Linker is invoked through the Executive, by
typing "Link II (or as many letters as required to
make the command unique) into the Executive
command form. The following form is displayed:

Link
Object modules
Run file
[List file]
[Publics?]
[Line numbers?]
[Stack size]
[Max memory array size]
[Min memory array size]
[System build?]
[Version]
[Libraries]
[DS Allocation]
[Symbol file]

Using the Linker and completing each of the fields
of the Link form are discussed in detail in the
Linker /Librarian Manual. The following special
features of the Linker are important for use with
Pascal:

Object modules
Enter the name(s) of the object
modules you want linked. Leave a
space between each object file
specification. (If you have too
many entries to fit on the command
line, you must place the entries in
a file, called an at-file, then
place the file name on the command
line prefixed by an at sign (@).
The use of at-files is discussed in
the Executive Manual.)

If your program includes run-time
overlays, you must include the file
[Sys]<Sys>PasSwp.obj in this field.

If your program incl udes floating
point calculations and you have an
8087 chip installed on your work­
station, you can include the entry
@[Sys]<Sys>Pascal8087.fls. (If you
do not have an 8087 chip installed

18-8 Pascal Manual

[Stack size]

[Libraries]

on your workstation and your pro­
gram uses floating point constants
or variables, the 8087 emulator is
automatically linked to your
programs.)

If you are linking a minimal Pascal
program, include
[Sys]<Sys>Pasmin.obj.
Pascal is discussed
section "Avoiding
Library" in Section
and Debugging."

the file
Minimal

in the sub­
the Run-time
19, "Run time

Default for Pascal: 8K

I f you wish to change stack size,
specify the desired size here.

When linking a Pascal program, the
Linker automatically searches the
library [Sys]<Sys>Pascal.Lib (if it
exists) for any unresolved external
symbols. The library
[Sys]<Sys>CTOS.Lib is also
searched.

You can specify any additional
libraries you wish, for example, if
you are linking with subprograms
written in other languages, then
the libraries for those languages
must be specified.

I f you are linking a program from
which you wish to exclude any
references to the Pascal run-time
library, it is recommended that you
specify the libraries that you do
wish to link with your program
followed by the word none. For
example,

[Libraries] [Sys]<Sys>CTOS.Lib none

In this case, if any calls are made
to the run time, the Linker
indicates an unresolved external.

Using the Pascal Compiler 18-9

[DS Allocation?] Default for Pascal: Yes

18-10

This field is used to minimize the
run-time value of DS (the data
segment register) by offsetting all
references to group DGroup.

Group DGroup consists of 64K bytes
or less allocated for constants,
data, and stack.

If you specify "Yes", the default,
then the entire 64K bytes can be
used for your data if necessary.
The Code Segment is loaded at the
high end of memory, above the data
segment. Relative addressing
starts at the highest word, no
matter how much space is really
needed for DGroup.

If you specify "No," however, the
data segment takes only the amount
of space actually needed and is
loaded at the high end of memory,
with the Code Segment below it.

For example, if your program uses
only 32K of data and you specify
"Yes" for [DS Allocation?] then the
address of DS is DS: FFFF, whereas
if you specify "No" the address is
DS:$00032K. Figure 18-1 illus­
trates this.

Most Pascal applications require
[DS Allocation?] to be "Yes. "
Object module procedures and tasks
produced by the Pascal compiler use
a single value in DS during their
entire execution, and include the
group DGroup with DS equal to
DGroup. This feature must be used.
for linking Pascal tasks that make
use of the Pascal heap.

Run files linked using Pasmin.obj
can have DS Allocation set to
either "Yes" or "No."

Pascal Manual

[OS Allocation?] NO [OS Allocation?] YES

DATA CODE

CODE
.... DSt

DATA
64K

Bytes

1
os ---.

Operating System Operating System

Low End of Memory Low End of Memory

Figure 18-1. OS Allocation.

Using the Pascal Compiler 18-11

RUHNING A PASCAL PROGRAM

Once a run file has been obtained through use of
the Linker, a Pascal program can be run either by
using the Executive's Run command, or by creating
a customized command, using the New Command
command. Parameters can be passed to the Pascal
program parameters declared in the program header
whether you create a customized command form or
use the Run command.

(See Section 16, "Compilable Parts of a Program"
for information on passing program parameters from
the command form to the program.)

EXAMPLE

The sample program below writes the contents of
two fields to the video display. The run file for
the program has the name Write.Run.

Program ReadParam(OUTPUT, fieldl, field2):

VAR fieldl, field2 : LSTRING (255):

BEGIN

WriteLn(fieldl):
WriteLn(field2);

END.

If you run the program by completing the Executive
Run command form as shown below, and the words
"this" and "that" are written to the video
display, "this" and "that" are the parameters for
fieldl and field2, respectively.

Run
Run file
[CaseJ
[Parameter IJ
[Parameter 2J
[Parameter 3J
[Parameter 16J

Write.Run

this
that

18-12 Pascal Manual

To create a customized
Write. Run, you can complete
Command form as shown below.

command to invoke
the Executive New

New Command
Command name
Run file
Field names
Description
[Overwrite ok?]
[Case (default

1001)]
[Command file]

Write
Write.Run
'Field I' 'Field 2'
'Write 2 fields to screen'

Then when you type "Write" into the Executive com­
mand line and press RETURN, the following command
form is displayed:

Write
Field 1
Field 2

After you complete the form and press GO,
Write.run is invoked and the parameters you typed
into the parameter fields Field 1 and Field 2 are
written to the video display.

(Using the New Command command and the Run command
is described in detail in Section 13, "Commands,"
of the Executive Manual and in the subsection
"Adding a New Command" in Section 5, "Advanced
Concepts," of the same manual.)

Using the Pascal Compiler 18-13

COMPILER STRUCTURE AND MEMORY REQUIREMENTS

The structure of the compiler is described in this
subsection for your information only. It is not
necessary to understand this information to use
the compiler.

The compiler is written in Pascal.

The compiler is divided into three phases, or
passes, each of which performs a specific part of
the compilation process.

Pass One, executed by [Sys]<Sys>PascalFE.Run per­
forms the following actions:

0 reads the source program

0 translates the source into an intermediate
code

0 produces the source listing file

0 produces the symbol table file

0 produces the intermediate code file

Pass One creates two intermediate files,
Pasibf.Sym and Pasibf.Bin. These incorporate
information from your source file and from the
file Paskey, which contains Pascal predecla­
rations. These two files are always written to
your default directory.

Pass Two is performed by [Sys]<Sys>PascalOpt.Run
and does the following:

o optimizes the intermediate code

o generates target code from intermediate code

o produces and reads an intermediate binary file

o produces the object (link text) file

Pass Two reads and then deletes Pasibf. Sym and
Pasibf.Bin. Pass Two creates and, if you did not
request an object listing file, later deletes the
intermediate file Pasibj.Tmp. If you requested an
object listing, the second pass also creates the
intermediate file Pasibf.Oid.

18-14 Pascal Manual

The third pass; performed by the file
[Sys]<Sys>PascalLst.Run, produces the object
listing file and is only invoked if you specifi­
cally request an object listing when you complete
the Pascal command form. During the third pass
the files Pasibf.Tmp and Pasibf.Oid are deleted.

All intermediate files contain Pascal records. A
cornmon constant and type definition file is used
called Pascom.nnm, which defines the intermediate
code and symbol table types. A similar file is
used during the second and third passes for the
intermediate binary file definition.

The intermediate code (or ICode) record contains
an ICode number, opcode, and up to four arguments;
an argument can be the ICode number of another
ICode to represent expressions in tree form, or
another value, such as a symbol table reference,
constant, or length. The intermediate binary code
record contains several variants for absolute code
or data bytes, public or external references,
label references and definitions, etc.

The symbol table record is complex, with a variant
for every kind of identifier (such as, assorted
data types, variables, procedures, and functions.)

The compiler itself takes memory, and in addition
needs memory for its internal tables. It puts
some of these tables into the long heap, the
others into the short heap. The long heap is
limited only by the computer memory. Exact size
of the compiler and memory requirements for the
short heap and the compiler stack are detailed in
the Pascal Release Notice.

A compilation can sometimes terminate abnormally
on the first pass with the error message 'Compiler
Out of Memory.' This message usually indicates
stack/heap space overflow. Examples of infor­
mation that is stored in the short heap are:
PUBLIC and EXTERN declarations, and TYPE declara­
tions. Reducing the number of the these decla­
rations in your program, can help it to compile
successfully. Note, however, that these decla­
rations do not affect the size of the program when
it runs. They only affect memory requirements
during compilation.

Using the Pascal Compiler 18-15

VIRTUAL CODE MANAGEMENT FACILITY

Pascal is compatible with the Virtual Code
Management facility. The Virtual Code Management
facility is described in detail in Section 6,
"Virtual Code Segment Management," in the £.!Q§.
Operating System Manual.

As with all applications that use the Virtual Code
Management facility, the swap buffer must be
allocated and initialized before any overlay is
called. You can overlay both portions of the
Pascal run-time system and portions of your own
program.

To include portions of the run-time system in
overlays, the following are necessary:

o Include PasSwp.obj in the Object modules field
of the Linker command form.

o Write a procedure called BEGOQQ to perform
user initialization. These procedures must be
included (in the Object Modules field of the
Linker command form) when the Pascal
application is linked.

Pascal provides an empty procedure, BEGOQQ as an
entry point. You can use it to initialize a swap
buffer before any Pascal run-time initialization
takes place. You must allocate and initialize the
swap buffer in BEGOQQ to ensure that the swap
buffer is ready when the Pascal run-time system is
invoked.

For example:

module misoqq[J~

Type adsw = ads of word;

(* InitOverlays is a CTOS function
initializing a swap
buffer.

*)

Function InitOverlays(pBuf:adsw;cb:word):word~
extern;

Procedure CheckErc(erc:word); extern;

18-16 Pascal Manual

Var buf: array[1 •• 10240] of word~
(* Memory for a swap buffer of 10240

bytes.*)

(* The following procedure initializes the
above swap buffer.*)

procedure begoqq [pub1ic]~
begin

CheckErc{InitOver1ays(ads buf[1],10240»
end~
end.

The following modules, however, must always be
resident:

Cmpd7A1t Comr7A1t Oemr7A1t Erre ErreeA1t
Emtr7A1t Emur7A1t Emus7At1 Heah Lscw7A1t
MishcA1t Misg6A1t Misy Pasmax Riauqq Ribuqq
Rndc7 TsdrA1t.

If the Pasca18087.Lib is used, its modules must
also be resident.

If the Linker issues warnings regarding CALL/RET
conventions for the modules listed above, such
warnings can be ignored, because a procedure that
is resident in memory and does not pass control to
any nonresident procedure does not have to satisfy
the CALL/RET conventions, and the set of proce­
dures above satisfies this requirement.

(See the subsection "Virtual Code Segment Manage­
ment and Assembly Code" in Section 9, "Accessing
Standard Services from Assembly Code," in the
Assembly Language Manual for a discussion of­
overlay conventions.)

Using the Pascal Compiler 18-17

19 RUN TIME AND DEBUGGING

The run-time support libraries contain object
modules that can be linked to your program to
satisfy unresolved external references. When your
Pascal program is linked, the library files
[Sys]<Sys>Pascal.Lib and [Sys]<Sys>CTOS.Lib are
automatically searched and the appropriate modules
are linked to it if necessary.

The run-time support libraries provide all
input/output (I/O) support needed to run your
programs on your system. If you choose to use
floating-point software routines all required
arithmetic and interface software is also provided
by the run-time libraries. If you have the 8087
chip installed on your system, you can specify a
special library at link time to take advantage of
this chip for your floating-point routines. (See
Section 18, "Using the Pascal Compiler," for more
information on how to link your program.)

OVERVIEW OF 'l'HE PASCAL RUN TIME

Run-time routines linked to a Pascal program are
described briefly below. Pascal run-time routines
all have six character names and end in the suffix
QQ. Run-time routines are discussed in detail in
the subsection "Run-Time Architecturel! below.

The run file produced by the Linker for a Pascal
program has the entry pOint BEGXQQ, which is a
routine written in assembly language. This rou­
tine sets the initial stack pointer, the starting
address of the heap, and various other routine
variables. There is also a call to initialize the
Pascal file system. Finally, there is a call to
the Pascal program, which is always given the name
ENTGQQ.

The Pascal main program continues the initializa­
tion process. Every unit mentioned in a USES
clause in any interfaces or in the program is
ini tialized by calling it as a procedure, in the
order of the USES clauses. Any files declared in
the program are initialized by calling NEWFQQ for
each one. Finally, any program parameters are
read and assigned to their variables, and the
actual program code begins.

Run Time and Debugging 19-1

When the program terminates, the call to ENTGQQ
returns to procedure BEGXQQ, which calls ENDXQQ.
The Pascal file system is then called to close all
open files and to discard all temporary files. A
call to Exit in the operating system terminates
the program.

Inside a Pascal application, many calls are also
made to the Pascal run time to accomplish tasks
too complicated to be done by straight generated
code. For example, most error checking is accom­
plished by calling run-time helpers. You can
identify these calls by their names: all run-time
routines have six character names ending in QQ.

Note that run-time routines are not reentrant.
Therefore, if one application creates several
processes that execute concurrently a piece of
code written in Pascal, care must be taken that
only one of them is executing Pascal run-time code
at anyone time.

All CTOS facilities are available for use from
Pascal. Interfaces to routines are described in
the CTOS Operating System Manual and examples of
the use of the operating system from Pascal are
given in this manual in Appendix F, "Using Pascal
as a Systems Programming Language."

19-2 Pascal Manual

DEBUGGING

Pascal programs may be run under the control of
the Debugger. (Note that the term Debugger here
does not refer to Pascal error handling routines,
but to the Debugger available with the standard
software for your workstation.) To pass control
to the Debugger, use CODE-GO rather than GO when
you invoke your program. Using the Debugger is
described in detail in the Debugger Manual.

The use of symbol files and object list files is
very helpful in the debugging of Pascal programs.

The symbol file gives you the addresses of public
variables for your program. The symbol file is
created by the Linker when your program is linked.
The name of the symbol file has the extension
II.Symtl.

The entry point into the main program is ENTGQQ (a
public variable).

The object list file is a symbolic assembler-like
listing of the object code that lists addresses
of the instructions relative to the start of the
program or module.

The example below shows code from an object list
file for the Pascal statement i := i+l~ where i is
an integer.

L5:
** 000011 MOV AX, I
** 000014 INC AX
** 000015 MOV I,AX

The L5 indicates that this statement is on line 5
of the program. The numbers on the left side of
the code indicate the hexadecimal offset from the
beginning of the code segment for the particular
instruction. For example, the MOV AX, I instruc­
tion begins at CS:ll, where CS is the current code
segment address.

Run Time and Debugging 19-3

RUN-TIME ARCHITECTURE

RUN-TIME ROUTINES

The Pascal run-time entry point and variable names
all have six characters, the last three of which
consist of a unit identification letter followed
by the letters "00".

Table 19-1 shows the current unit identifier
suffixes.

Table 19-1. Unit Identifier Suffixes.
(Page 1 of 2).

Suffix

AOO

BOO

CQO

DOQ

EOO

FQO

GOO

HOO

IOQ

JQO

KQQ

LOO

MOO

NQO

Unit Function

Reserved

Compile time utilities

Encode, decode

Double precision real

Error handling

Pascal file system (Unit F)

Generated code helpers

Heap allocator

Reserved

Reserved

FCB definition

STRING, LSTRING

Reserved

Reserved

19-4 Pascal Manual

Table 19-1. Unit Identifier Suffixes.
(Page 2 of 2).

Suffix

POO

ROO

SOO

TOO

UOO

VOO

WOO

XOO

YQO

ZOO

Unit Function

Reserved

Real (single precision)

Set operations

Reserved

Operating system file system

Reserved

Reserved

Initialize/terminate

Special utilities

Reserved

MEMORY ORGANIZATION

Memory on the CPU is divided into segments, each
containing up to 64K bytes. The Linker also puts
segments into classes and groups. All segments
wi th the same class name are loaded next to each
other. All segments with the same group name must
reside in one area up to 64K bytes long; that is,
all segments in a group can be accessed with one
segment register.

Pascal uses the medium model of computation, that
is, it uses multiple code segments, but only one
data segment, called DGroup. Memory is allocated
within DGroup for all static variables, constants
that reside in memory, the stack, and the short
heap.

Run Time and Debugging 19-5

DGroup is addressed using the DS (current data) or
SS (current stack) segment register. Normally, DS
and SS contain the same value, although DS may be
changed temporarily to some other segment and
changed back again. 5S is never changed~ its seg­
ment registers always contain abstract .. segment
values" and the contents are never examined or
operated on. Long addresses, such as ADS vari­
ables, use the ES segment register for addressing.

Memory in DGroup is normally allocated from the
top down~ that is, the highest addressed byte has
DGroup offset 65535, and the lowest allocated byte
has some posi ti ve offset. This allocation means
offset zero in DGroup may address a byte in the
code portion of memory, in the operating system
below the code, or even below absolute memory
address zero. (In the latter case the values in
D5 and SS are "negative.")

DGroup has two parts:

o a fixed-length upper portion containing static
variables and constants

o a variable-length lower portion containing the
heap and the stack

After your program is loaded, during ini tializa­
tion (in ENTXQQ), the fixed upper portion is
placed as high as possible to make room for the
lower portion. If there is enough memory, DGroup
is expanded to the full 64K bytes; if there is
not enough room for this , it is expanded as much
as possible.

Figure 19-1 illustrates memory organization as
described above.

Note that memory organization appears differently
than as shown in Figure 19-1, if, when you link
your program, you set the field .. [DS Allocation?]
to "No." In that case the Data segment is not.
expandable and is loaded above the Code segment.
(See the subsection "Linking Your Program" in
Section 18, "Using the Compi ler," for an explana­
tion of D5 Allocation.)

19-6 Pascal Manual

Top (Highest Address)

Installed System Services

CODE

DS Offset 65536

CONST

DATA

Stack
Heap

DS Offset >= 0

Long Heap

Unused

Long-Lived Memory

Operating System

Address 0:00

Figure 19-1. Memory Organization, Single
Partition Operating System.

Run Time and Debugging 19-7

INITIALIZATION AND TERMINATION

Every executable file contains one, and only one,
starting address. As a rule, when object modules
are involved, this starting address is at the
entry point BEGXQQ in the module PASMAX. A pro­
gram (as opposed to a module or implementation)
has a starting address at the entry point ENTGQQ.
BEGXQQ calls ENTGQQ.

The following discussion assumes that a main pro­
gram along with other object modules is loaded and
executed. However, you can also link a main
program in assembly or some other language with
other object modules. In this case, some of the
initialization and termination done by the PASMAX
module may need to be done elsewhere.

When a program is linked with the run-time library
and execution begins, several levels of ini tia1-
ization are required. The levels, in the order in
which they occur, are the following:

o machine-oriented initialization

o run-time initialization

o program and unit initialization

The general scheme is shown in Table 19-2.

19-8 Pascal Manual

Table 19-2. Pascal Program Structure.

PASMAX module

ENDXQQ: {Aborts corne here}
Call ENDOQQ
Call ENDYQQ
Call ENDUQQ
Call ENDX87
Exit to operating system

BEGXQQ: Set stack pointer, frame pointer
Initialize PUBLIC variables
Set machine-dependent flags,
registers, and other values
Call INIX87
Call INIUQQ
Call BEGOQQ
Call ENTGQQ {Execute program}
Call ENDXQQ {Termination}

INTR module

INIX87: Real processor initialization

ENDX87: Real processor termination

UNIT U module

INIUQQ: Operating system specific file unit
initialization

ENDUQQ: Operating system specific file unit
termination

MISO module

BEGOQQ: (Available for other user
initialization procedures)

ENDOQQ: (Available for other us~r
termination procedures)

Program module

ENTGQQ: Call INIFQQ
If $ENTRY on, CALL ENTEQQ
Initialize static data
Initialize units
FOR program parameters DO

Call PPMFQQ
Execute program
If $ENTRY on, CALL EXTEQQ

Run Time and Debugging 19-9

Machine Level Initialization

The entry point of a load module is the routine
BEGXQQ, in the module PASMAX. BEGXQQ does the
following:

0 Initializes constant and static variables.
The initial stack pointer is put into PUBLIC
variable STKBQQ and is used to restore the
stack pointer after an interprocedure GOTO to
the main program.

o Sets the frame pointer (that is, the pointer
to the current procedure) to zero.

o Initializes
zero or NIL.

a number of PUBLIC
These include

variables

RESEQQ, a machine error context

to

CSXEQQ, a source error context list header

PNUXQQ, an initialized unit list header

HDRFQQ, an open file list header

o Sets machine dependent registers, flags, and
other values.

o Sets the short heap control variables. BEGHQQ
and CURRQQ are set to the lowest address for
the heap: the word at this address is set to
a heap block header for a free block the
length of the initial heap. ENDHQQ is set to
the address of the first word after the heap.
(The initial heap is empty.) The stack and
the heap grow together, and the PUBLIC vari­
able STKHQQ is set to the lowest legal stack
address (ENDHQQ, plus a safety gap).

The long heap is initialized when the user
calls a long heap routine.

o If the program uses REAL numbers, calls
INIX87, the real processor initializer. This
routine initializes an 8087 or sets 8087
emulator interrupt vectors, as appropriate.

o Calls INIUQQ, the file unit initializer. If
the file unit is not used and you do not want
it loaded, a dummy INIUQQ routine that only
returns must be loaded. Pasmin. Obj provides
an empty INIFQQ instead of calling INIUQQ.

19-18 Pascal Manual

o Calls BEGOQQ, the escape initializer. In a
normal load module, an empty BEGOQQ that only
returns is included. However, this call
provides an escape mechanism for any other
ini tialization. For example, it could ini­
tialize tables for an interrupt driven
profiler or to initialize overlay management.

If you want a non empty initialization, you
must writer your own BEGOQQ routine. (See
Appendix F, "Using Pascal as a Systems Pro­
gramming Language," for an example of a module
that uses BEGOQQ to allocate and initialize a
swap buffer.)

o Calls ENTGQQ, the entry point of your program.

o Calls ENDXQQ, the termination procedure.

Program Level Initialization

Your main program continues the initialization
process. First, the file system, a parameterless
procedure called INIFQQ, is called. If you link
your program with Pasmin.Obj, an empty INIFQQ is
provided.

After the file initialization, if the metacommand
$ENTRY is on during compilation, ENTEQQ is called
to set the source error context. Next, each file
at the program level gets an initialization call
to NEWFQQ.

After static data ini tialization comes uni t
initialization. Every USES clause in the source,
including those in INTERFACEs, generates a call to
the initialization code for the unit.

Units mayor may not contain initialization code.
If the interface contains a trailing pair of BEGIN
and END statements, initialization code in the
implementation is presumed. Units are ini­
tialized in the order that the USES clauses are
encountered.

Finally, any program parameters are read or other­
wise initialized, and your program begins. Except
for INPUT and OUTPUT, PPMFQQ is called for each
parameter to set the parameter's string value as
the next line in the file INPUT. Then one of the
READFN routines "reads" and decodes the value,

Run Time and Debugging 19-11

assigning it to the parameter. The parameter's
identifier is passed to PPMFQQ for use as a
prompt. PPMFQQ first calls PPMUQQ to get the text
of any parameters from the command form. If
PPMUQQ returns an error, then PPMFQQ does the
prompting and reads the response directly.

User unit initialization is much like user program
initialization. The following actions occur:

o error context initialization, if $ENTRY meta­
command was on during compilation

o variable (file) initialization

o unit initialization for USES clause

o user unit initialization

Calls to initialize a unit can come from more than
one unit. The unit interface has a version
number, and each initialization call must check
that the version number in effect when the unit
was used in another compilation is the same as the
version number in effect when the unit imple­
mentation itself was compiled. Except for this,
unit initialization calls after the first one
should have no effect; that is, a unit's initial­
ization code should be executed only once. Both
version-number checking and single, initial-code
execution are handled with code automatically
generated at the start of the body of the unit.
This has the effect of

IF INUXQQ (useversion, ownversion, intrec,
unitid)

THEN RETURN

The interface version number used by the compiland
using the interface is always passed as a value
parameter to the implementation initialization
code. This is passed as "useversion" to INUZQQ.
The interface version number in the implementation­
itself is passed as "ownversion" to INUXQQ.
INUXQQ generates an error if the two are unequal.

INUZQQ also maintains a list of initialized units.
INUXQQ returns true if the unit is found in the
list, or else puts the unit in the list and
returns false. The list header is PNUXQQ. A list
entry passed to INUXQQ as "initrec" is initialized
to the address of the unit I s identifier (unitid)
plus a pointer to the next entry.

19-12 Pascal Manual

User modules (and uninitialized implementations of
uni ts) may have initial iza tion code, much like a
program and unit implementation I s initialization
code, but without user initialization code or
INUXQQ calls.

The initialization call for a module or uninitial­
ized unit cannot be issued automatically. When
the module is compiled, a warning is given if an
initialization call is required (that is, if there
are any files declared or USES clauses.) To
initialize a module, declare the module name as an
external procedure and call it at the beginning of
the program.

Program Termination

Program termination occurs in one of three ways:

o The program may terminate normally, in which
case the procedure ENDXQQ is called.

o The program may abort because of an error
condition, either with a user call to ABORT or
a run-time call to an error handling routine.
In either case, an error message, error code,
and error status are passed to EMSEQQ, which
does whatever error handling it can and calls
ENDXQQ.

o ENDXQQ can be declared as an external proce­
dure and called directly.

ENDXQQ first calls ENDOQQ, the escape terminator,
which normally just returns to ENDXQQ. Then
ENDXQQ calls ENDYQQ, the generic file system ter­
minator. ENDYQQ closes all open Pascal files,
using the file list headers HDRFQQ and HDRVQQ.
ENDXQQ calls ENDUQQ, the file unit terminator.
Finally, ENDXQQ calls ENDX87 to terminate the
real number processor (8087 or emulator.) As with
INIUQQ and INIFQQ, if your program requires no
file handling, you can declare empty parameterless
procedures for ENDYQQ and ENDUQQ. The main
initialization and termination routines are in
module PASMAX. Procedure BEGOQQ is in the module
MISOALTl; ENDUQQ is in RICUQQ; and ENDYQQ is in
MISY.

Run Time and Debugging 19-13

Using the Initialization and Termination Points in
Your Program

The routines BEGOOO and ENDOOO are provided by the
run-time library as entry points for you to use.
The program example that follows uses these entry
points to display the date and time.

{$debug-}

Program UserInitAndTermination (Output)~

Type

{This program sample describes how to use the
initialization and termination entry points
that the run time provides for the user.

The nubs provided for initialization and
termination are labeled 'BEGOOO' and 'ENDOOO'
respectively.

Since these entry points are defined by the
run-time library, this compiland must be
linked with Pascal.Lib.}

pbType = ads of word~
DateTimeType = array [1 •. 2] of word~
ExpDateTimeType = array [1 •• 4] of wordi

Var [public]
lsDateTime :lstring(30)~
DateTime :DateTimeType~
ExpDateTime:ExpDateTimeType~

{Definition of CTOS externals to be used:}

Var [extern]
bSVid:array [1 •• 130] of byte;
{'bsVid' is an open video bytestream declared
in CTOS.Lib}

Function FormatTime
(plsDateTimeRet:pbTypei
pExpDateTime:pbType) :wordi extern~

Function GetDateTime
(pDateTimeRet:pbType) :wordi extern;

Function ExpandDateTime
(dateTime :DateTimeTypei
pExpDateTime:pbType) :wordi extern~

19-14 Pascal Manual

Function WriteBsRecord (
pBswa :pbType;
pbRec :pbType;
cbRec :word;
pbCbRet :pbType) :wordi extern;

Procedure CheckErc
(erc :word)i extern;

Procedure BEGOQQ[public];
var cbRet :word;
begin
{This procedure will be called by the run­
time initialization. It will display a
banner with the date/time}
CheckErc (GetDateTime (ads DateTime»;
CheckErc (ExpandDateTime (DateTime, ads

ExpDateTime»;
CheckErc (FormatTime (ads IsDateTime, ads

ExpDateTime»;
CheckErc (WriteBsRecord (ads bsVid,

ads 'Program initialization at '
26, ads cbRet»;

CheckErc (WriteBsRecord (ads bsVid,
ads IsDateTime[l], IsDateTime.len,
ads cbRet»;

CheckErc (WriteBsRecord (ads bsVid, ads
#0a, 1, ads cbRet»;

end;

Procedure ENDOQQ[public]:
var cbRet :word:
begin

{This procedure will be called by the run­
time termination before the first
executable statement of the program. It
will display a banner with the date/time.
Note that if the CTOS calls 'Exit' or
'ErrorExit' are used the run-time
termination is circumvented.}

CheckErc (GetDateTime (ads DateTime»:
CheckErc (ExpandDateTime (DateTime, ads

ExpDateTime»:
CheckErc (FormatTime (ads IsDateTime, ads

ExpDateTime»:
CheckErc (WriteBsRecord (ads bsVid, ads

'Program termination at " 23, ads
cbRet»:

CheckErc (WriteBsRecord (ads bsVid, ads
IsDateTime[l], lsDateTime.len, ads
cbRet»i

CheckErc (WriteBsRecord (ads bsVid, ads #0a,
1, ads cbRet»;

end;

Run Time and Debugging 19-15

begin{start of program, after run-time
initialization}
Writeln;
Write In ('Hello'):
Writeln:

end.

ERROR HANDLING

Run-time errors are detected in one of four ways:

o The user program calls EMSEQQ
ABORT).

o A run-time routine calls EMSEQQ.

(that is,

o An error checking routine in the error module
calls EMSEQQ.

o An internal helper routine calls an error mes­
sage routine in the error unit which, in turn,
calls EMSEQQ.

Handling an error detected at run-time usually
involves identifying the type and location of the
error and then terminating the program. The error
type has three components

o a message

o an error number (Pascal error code)

o an error status code (operating system return
code)

The message describes the error and the number can
be used to look up more information. The error
status value is undefined, although for file
system errors it may be an operating system return
code. However, the error status value may also be
used for other special purposes. Table 19-3 shows
the general scheme for error code numbering.

An error location has two parts:

o machine error context

o source program context

19-16 Pascal Manual

The machine error context is the program counter,
stack pointer, and stack frame pointer at the
point of the error. The program counter is always
the address following a call to a run-time routine
(for example, a return address.)

Table 19-3. Error Number Classification.

Range Classification

1- 999 Reserved for user ABORT calls

1000-1099 Unit U file system errors

1100-1199 Unit F file system errors

1200-1299 Unit V file system errors

1300-1999 Reserved

2000-2049 Heap, stack, memory

2050-2099 Ordinal and long integer arithmetic

2100-2149 Real and double real arithmetic

2150-2199 Structures, sets, and strings

2200-2399 Reserved

2400-2449 Unused

2450-2499 Other internal errors

2500-2999 Reserved

The source program context is optional~ it is
controlled by metacommands. If the $ENTRY meta­
command is on the program context consists of

o the source file name of the compiland con­
taining the error

o the name o·f the routine in which the error
occurred (program, unit, module, procedure, or
function)

Run Time and Debugging 19-17

o the line number of the routine in the listing
file

o the page number of the routine in the listing
file

If the $LINE metacommand is also on, the line
number of the statement containing the error is
also given. Setting $LINE also sets $ENTRY.

Machine Error Context

By default, run-time routines are compiled with
the $RUNTIME metacommand set. This generates
special calls for each run-time routine at the
entry and exit points so that, for any error that
occurs in a run-time routine, the location of that
error is in the user program. The entry call,
BRTEQQ, saves the context (frame pointer, stack
pointer, and program counter) at the point where
the run-time routine is called by the user
program. The exit call restores the context. The
run-time entry helper, BRTEQQ, uses the run-time
values shown in Table 19-4.

Table 19-4. Run-Time Values in BRTEQQ.

Value DescriEtion

RESEQQ Stack pointer

REFEQQ Frame pointer

REPEQQ Program counter offset

RECEQQ Program counter segment

The first thing that BRTEQQ does is examine
RESEQQ. If this value is not zero, the current
run-time routine was called from another run-time
routine and the error context has already been
set, so it just returns. If RESEQQ is zero, how­
ever, the error context must be saved. The
caller's stack pointer is determined from the
current frame pointer and stored in RESEQQ. The
address of the caller' s saved frame pointer and

19-18 Pascal Manual

return address (program counter) in the frame is
determined. Then the caller's frame pointer is
saved in REFEQQ. The caller' s program counter
(for example, BRTEQQ's caller's return address) is
saved: the offset in REPEQQ and the segment (if
any) in RECEQQ.

The run-time exit helper, ERTEQQ, has no param­
eters. It determines the caller's stack pointer
(again, from the frame pointer) and compares it
against RESEQQ. If these values are equal, the
original run-time routine called by your program
is returning, so RESEQQ is set back to zero.

EMSEQQ uses RESEQQ, REFEQQ, REPEQQ and RECEQQ to
display the machine error context.

Source Error Context

Giving the source error context involves extra
overhead, since source location data must be
included in the object code in some form. This is
done with calls that set the current source
context as it occurs. These calls can also be
used to break program execution as part of the
debug process. The overhead of source location
data, especially line number calls, can be signi­
ficant. Routine entry and exit calls, while
requiring more overhead individually, are much
less frequent, so the overall overhead is less.

The procedure entry call to ENTEQQ passes two VAR
parameters: the first is a LSTRING containing the
source file name: the second is a record that
contains the following:

o the line number of the procedure (a WORD)

o the page number of the procedure (a WORD)

o the procedure or function identifier (an
LSTRING)

The file name is that of the compiland source (the
main source file name, not the names of any
$ INCLUDE fi les •) I f one name is given in an
INTERFACE and another in a USES clause, the USES
identifier is used. The line and page are those
designated by the procedure header.

Run Time and Debugging 19-19

Entry and exit calls are generated for the main
program, unit initialization,. and module initial­
ization, in which case the identifier is the
program, unit, or module name, respectively.

The procedure exit call to EXTEQQ does not pass
any parameters. It pops the current source rou­
tine context off a stack maintained in the heap.

The line number call to LNTEQQ passes a line
number as a val ue parameter. The current line
number is kept in the PUBLIC variable CLNEQQ.
Since the current routine is always available (be­
cause $LINE implies $ENTRY), the compiland source
file· name and the name of the routine containing
the line are available along with the line number.
Line number calls are generated just before the
code in the first statement on a source line. The
sta tement can, of course, be part of a larger
statement. The $LINE+ metacommand should be
placed at least a couple of symbols before the
start of the first statement intended for a line
number call. ($LINE- also takes effect early.)

Most of the error handling routines are in modules
ERRE and PASE. The source error context entry
points ENTEQQ, EXTEQQ, and LNTEQQ are in the debug
module DEBE.

19-2121 Pascal Manual

AVOIDING THE USE OF RUN-TIME ROUTINES

You may wish to write programs with Pascal that
are specifically designed to use a minimum amount
of memory. To do so, you should not use Pascal
features that call run-time routines in your
source code, and should avoid linking your program
to the run-time library.

Use of the file input/output, real numbers, and
sets all involve the run-time library routines.
Units involve use of the run-time library,
although use of modules does not. Use of the
$DEBUG metacommand also brings in the run time.
Section 14, "Available Procedures and Functions,"
indicates which procedures and functions are
implemented through the run-time library.

The Pascal run-time modules linked with a Pascal
program may occupy from 36.5 to 70K bytes of
memory. Out of that, 4 to 5.5K bytes are taken by
the run-time data. Run-time data, the user' s
data, the stack, and the short heap all share one
memory segment (64K bytes). For more information,
see your current Pascal Release Notice.

You can suppress linking the run-time library by
explicitly specifying the module
[sys]<sys>PasMin.obj in the object module line of
the Linker command form. In this case, your
program must provide the run-time support that is
normally provided by the Pascal run time. This
includes file and memory management and also all
the run-time services that use the file and memory
management (for instance, the 8087 emulator). If
you do link in PasMin.Obj, you can enter either
"Yes" or "No" for [DS Allocation?].

A useful technique when avoiding the run-time
library support is to enter "none" as the last
parameter for the [Libraries] field of the Linker
command form. This ensures that
[Sys]<Sys>Pascal.Lib is not linked to your program
and the run time cannot be accessed. Any calls
made to the run time then appear as unresolved
external references. (See the subsection "Linking
a Pascal Program" in Section 18, "Using the Pascal
Compiler," for an example of how to complete the
[Libraries] field.)

Run Time and Debugging 19-21

EXAMPLES

Each sample program below performs the same func­
tion. The first program does not use the run-time
routines.

Example 1: Min.Pas

{$debug-}

Program TypeFile_NoRunTime;

{This program does not use any elements of the
Pascal run-time system. ByteStreams are used
in place of Pascal r/o and CTOS parameter
management is used instead of Pascal parameter
management. Also the metacomrnand '$debug-' is
included to turn off the run-time error
checking.}

Const

Type

modeRead=#6d72:
modeWrite=#6d77:

pbType
ppType
sdType

=ads of word:
=ads of pbType:
=record

pb [00]:pbType;
cb [04] :word:
end;

pSdType =ads of sdType;

Function RgParam (
iParam,
jParam :word:
pSdRet :pSdType) :word: extern:

Function OpenByteStream
pBswa :pbType:
pbFileSpec :pbType:
cbFileSpec :word:
pbPassword :pbType:
cbPassword :word:
mode :word:
pbBuffer :pbType:
cbBuffer :word) :word: extern;

Function ReadByte (
pBswa :pbType:
pByte :pbType) :word: extern;

19-22 Pascal Manual

Function WriteByte (
pBswa :pbType:
b :byte) :word: extern:

Function CloseByteStream (
pBswa :pbType) :word: extern:

Procedure CheckErc (
erc :word) : extern:

Var [publicJ
ere,
cbRet :word:
bswa :array [1 •• 130] of byte:
bsBuffer:array [1 •• 1024J of byte:
b :byte:

Var [externJ
bsVid :byte: {open video bytestream

from CTOS.Lib}

Procedure Init[public]:
var sd :sdType:
begin
CheckErc (RgParam (1,0, ads sd»:
{get 1st Executive paramameter, the file to be
typed, and open it}
CheckErc (OpenByteStream (ads bswa,

sd.pb,

end;

sd.cb,
ads I I,

0,
modeRead,
ads bsBuffer,
1024» ;

Procedure TypeFi1e[public];
begin
While true do

begin
ere := ReadByte (ads bswa, ads b);
if erc<>0 then break; {end of file}
CheckErc (WriteByte (ads bsVid, b»;
end:

CheckErc (CloseByteStream (ads bswa»:
end;

Run Time and Debugging 19-23

begin {program start}
Init;
TypeFile;

end.

Example 2: Max.Pas

Program
(Input,OutPut,lsFileSpec);

TypeFile_UsingRunTime

Var

{This program types the file specified by the
first parameter of a command form
('lsFileSpec'), to the Video}

[public]
inputFile,
outputFile
lsFileSpec
b

:file of byte;
:lstring(9l);
:byte;

Procedure Init[public];
begin
{the Pascal initialization run time loads
lsFileSpec, see "program" statement with the
first field of the Executive command form}

inputFile.trap := true; {trap I/O errors}
Assign (inputFile, lsFileSpec);
Reset (inputFile);
Assign (outputFile, '[vid]');
Rewrite (outputfile);
end;

Procedure TypeFile[public];
begin
While true do

begin

end;

Read (inputFile, b);
if inputFile.errs <> 0 then break; {end of

file}
Write (outputFile,b);
end;

begin{program start}
Init;
TypeFile;

end.

19-24 Pascal Manual

APPENDIX A: COMPILER ERROR MESSAGES

This section lists error messages generated by the
Pascal compiler. For operating system status
messages and error codes see the Status ~
Manual.

ERRORS DETECTED BY THE FRONT END (PARSER/SEMANTIC
ANALYZER

Front end error and warning messages include a
number as well as a message, and most contain a
row of dashes and an arrow to the location of the
error. The front end recovers from most errors.
However a few such errors are called panic errors,
in which case the front end only lists the rest of
the program. Panic errors also give the message:

Compiler Cannot Continue!

and occur in the following conditions:

o Error count set by $ERRORS exceeded.

o End of file occurs when not expected.

o Identifier scopes too deeply nested.

o Cannot find PROGRAM, MODULE, or IMPLEMENTATION
keyword.

o Cannot find PROGRAM, MODULE, or IMPLEMENTATION
identifier.

The word "Warning" before a message indicates the
intermediate code files produced by the front end
are correct, and the condition is not severe or is
just considered "unsafe." Other messages indicate
true errors: writing to the intermediate files
stops, and these files are discarded when the
front end is finished.

The error message "Compiler" refers to an internal
consistency check which failed: no matter what
source program is compiled, there should be no way
to get one of these messages. The comment in this
list refers to the compiler routine containing the
call.

Compiler Error Messages A-I

FRONT END ERROR LIST

Decimal
Value

101

102

103

104

105

106

107

108

109

Meaning

Invalid Line Number

Line number is above 32767: there are
too many lines in the source file.

Line Too Long Truncated

Source lines are currently limited to
142 characters.

Identifier Too Long Truncated

Any identifier longer than the maximum
is truncated.

Number Too Long Truncated

Numeric constants are limited to the
identifier length.

End of String Not Found

The line ended before the closing quote
was found.

Assumed String

A doubl e quote (..) or an accent mark
(') is assumed to enclose a string: use
a single quote (I) instead.

Unexpected End of File

End of file appears in a number, or
metacommand, etc. [while scanningJ.

Metacommand Expected Command Ignored

A $ at the start of a comment is not
followed by an identifier.

Unknown Metacommand Ignored

A metacommand identifier was unknown or
invalid in this version.

A-2 Pascal Manual

Decimal
Value

110

III

112

113

114

115

116

117

Meaning

Constant Identifier Unknown or Invalid
Assumed Zero

A metacornrnand is set to a constant
identifier (as in $DEBUG: A) and the
identifier is unknown or not constant
of the right type.

[Unassigned]

Invalid Numeric Constant Assumed Zero

A metacornrnand is set to a numeric
constant (as in $DEBUG: 1) and the con­
stant has the wrong format or is out of
range.

Invalid Meta Value Assumed Zero

A metacornrnand is set to neither a
constant or identifier.

Invalid Metacornrnand

One of +, -, or : is expected following
a metacommand.

Wrong Type Value for Metacommand
Skipped

The metacommand expects a string but an
integer is given, or vice versa.

Meta Value Out of Range Skipped

o The $LINESIZE integer value was
below 16 or above 160.

o The $REAL:N integer value was not 4
or 8.

o The $INTEGER:N integer value was
not 2.

File Identifier Too Long Skipped

The $ INCLUDE string value for the
filename was too long.

Compiler Error Messages A-3

Decimal
~

118

119

120

121

122

123

124

125

126

127

Meaning

Too Many File Levels

There are too many $ INCLUDE
nesting levels.

Invalid Initialize Meta

file

A $POP metacommand has no corresponding
$PUSH metacommand.

CONST Identifier Expected

A $INCONST metacommand was not followed
by an identifier.

Invalid INPUT Number Assumed Zero

The user input invoked by $INCONST was
invalid in some way.

Invalid Metacommand Skipped

A $IF and its value was not followed by
$THEN or $ELSE.

Unexpected Metacommand Skipped

A $THEN, $ELSE, or $END was found
unrelated to a $IF metacommand.

Unexpected Metacommand

The metacommand was not in a comment:
it was processed anyway.

Assumed Hexadecimal

A # was led without a "16" warning.

Invalid Real Constant

A type REAL constant was used with a
leading or trailing decimal point.

Invalid Character Skipped

Source file character is not acceptable
in program text.

A-4 Pascal Manual

Decimal
Value

128

129

130

131

132

Meaning

Forward Proc Missing

The procedure or function given in the
message was declared FORWARD but not
found. [Message occurs in $SYMTAB
area.]

Label Not Encountered

The label given in the message was
declared or used in a GOTO, BREAK, or
CYCLE but not found. [Message occurs
in $SYMTAB area].

Program Parameter Bad

The program parameter given in the
message was never declared or has the
wrong type for READFN. [Message occurs
in $SYMTAB area].

[Unassigned]

[Unassigned]

NOTE

The following overflow errors can occur in
several contexts.

133

134

135

Type Size Overflow

The data type implies a structure big­
ger than 32766 bytes.

Constant Memory Overflow

Constant memory allocation has gone
above 65534 bytes.

Static Memory Overflow

Static memory allocation has gone above
65534 bytes.

Compiler Error Messages A-5

Decimal
Value

136

137

138

139

140

141

142

Meaning

Stack Memory Overflow

Stack frame memory allocation has gone
above 65534 bytes.

Integer Constant Overflow

A type INTEGER or other, signed con­
stant expression out of range.

Word Constant Overflow

A type WORD or other unsigned constant
expression is out of range.

Value Not in Range for Record

Record tag value is not in range of
variant, in a structured constant, a
long form NEW/DISPOSE/SIZEOF, or other
application.

Too Many Compiler Labels

The compiler needs internal labels: the
program is too big.

Compiler [in BOUNDS]

This refers to an internal consistency
check which failed: no matter what
source program is compiled, this mes­
sage should not occur. The compiler is
in error, not your source program. The
comment in this list refers to the com­
piler routine containing the call.

Too Many Identifier Levels

Identifier
(This is a
explanation
section.)

scope level is over
compiler panic error.

at the front of

15.
See

this

A-6 Pascal Manual

Decimal
Value

143

144

145

146

Meaning

Compiler [in DECLEVL]

This refers to an internal consistency
check which failed: no matter what
source program is compiled, this mes­
sage should not occur. The compiler is
in error, not your source program. The
comment in this list refers to the com­
piler routine containing the call.

Compiler [in LOOKUP7; often a PASKEY
file format error]

I f this error occurs, you can rename
the file [Sys]<Sys>Paskey to another
name (thus, saving it) and try to re­
compile your program. However, this
error refers to an internal consistency
check that failed; no matter what
source program is compiled, this mes­
sage should not occur.

Identifier Already Declared

An identifier can only be declared once
in a given scope level.

Unexpected End of File

End of file in a statement, decla­
ration, etc. [while parsing].

NOTE

The following common substitution mistakes get
their own special messages, and are corrected
with just a warning.

147 Assumed

148 Assumed

149 := Assumed =

Compiler Error Messages A-7

Decimal
Value Meanins

150 Assumed :=

151 [Assumed

152 Assumed [

153 Assumed]

154] Assumed

155 Assumed

156 Assumed

157 to
161 [Unassigned]

NOTE

If a particular symbol is expected in the
source but not found, it may be inserted with
one of the following messages.

162 Insert Symbol

[this message should not occur: it is a
minor compiler error]

163 Insert ,

164 Insert

165 Insert

166 Insert .=

167 Insert OF

168 Insert]

169 Insert

170 Insert [

171 Insert

A-8 Pascal Manual

Decimal
Value Meanins

172 Insert DO

173 Insert

174 Insert .
175 Insert

176 Insert END

177 Insert TO

178 Insert THEN

179 Insert *

180 to
184 [Unassigned]

NOTE

If a particular symbol is expected in the
source but is found after some invalid
symbols, the invalid ones are deleted with the
following two messages.

185

186

187

188

Invalid Symbol - Begin Skip

End Skip

End Skip

The previous error message ended with
the phrase "Begin Skip"; this message
marks the end of skipped source text.

Section or Expression Too Long

Compiler limit; try rearranging the
program or breaking up long expressions
by assigning intermediate values to
temporary variables.

Compiler Error Messages A-9

Decimal
Value

189

190

191

192

193

194

195

196

197

Meaning

Invalid Set Operator or .Function

These include, for example, MOD oper­
ator or ODD function with sets.

Invalid Real Operator or Function

These include, for example, MOD oper­
ator or ODD function with reals.

Invalid Value Type for Operator or
Function

These
ator
type.

include, for example,
or ODD function with

[Unassigned]

[Unassigned]

Type Too Long

MOD oper­
enumerated

A variable or type with greater than
32766 bytes is used.

Compiler [in SIZEOFT, {B}]

This refers to an internal consistency
check that failed: no matter what
source program is compiled, this mes­
sage should not occur. The compiler is
in error, not your source program. The
comment in this list refers to the com­
piler routine containing the call.

Zero Size Value

Use of the empty record "RECORD END" as
if it had a size.

Compiler [in ALLOCAT, {B}]

This refers to an internal consistency
check that failed; no matter what
source program is compiled, this mes­
sage should not occur. The compiler is
in error, not your source program. The
comment in this list refers to the com­
piler routine containing the call.

Pascal Manual

Decimal
Value

198

199

200

201

202

203

204

205

Meaning

Constant Expression Value out of Range

Check array index, subrange assignment,
other subrange check.

Integer Type Not Compatible with Word
Type

A common error that indicates confusing
signed and unsigned arithmetic: either
change the positive signed value to un­
signed with WRD () or change the
unsigned value « MAXINT) to signed
with ORD ().

[Unassigned]

Types Not Assignment Compatible

Check assignment statement or value
parameter: see the subsection "Type
Compatibility" in Section 4, "Introduc­
tion to Data Types."

Types Not Compatible in Expression

Expression mixes incompatible types:
see the subsection "Type Compatibility"
in Section 4, "Introduction to Data
Types. II

Not Array - Begin Skip

A variable followed by a left bracket
(or parenthesis) is not an array.

Invalid Ordinal Expression Assumed
Integer Zero

The expression has the wrong type or a
type that is not ordinal.

Invalid Use of PACKED Components

A component of a PACKED structure has
no address (it may not be on a byte
boundary): it cannot be passed by
reference.

Compiler Error Messages A-II

Decimal
Value

206

207

208

209

210

211

212

213

214

A-l2

Meaning

Not Record Field Ignored

A variable followed by a dot is not a
record, address, or file.

Invalid Field

A record variable and dot are not
followed by a valid field.

File Dereference Considered Harmful

When the address of a file buffer
variable is calculated, the special
actions normally done with buffer vari­
ables, that is, lazy evaluation (for
textfiles) or concurrency (for binary
files), cannot be done; the buffer
variable at this address may not be
valid. (See Section 7, "Files, II and
Section 15, "File-Oriented Procedures
and Functions.")

Cannot Dereference Value

A variable followed by a caret is not a
pointer, address, or file.

Invalid Segment Dereference

A variable resides at a segmented
address, but a default segment address
is needed. You may need to make a local
copy of the variable.

Ordinal Expression Invalid or Not
Constant

A constant ordinal expression
expected.

[Unassigned]

[Unassigned]

Out of Range for Set - 255 Assumed

An element of a set constant must
an ordinal value <= 255.

Pascal Manual

was

have

Decimal
Value

215

216

217

218

219

220

221

222

223

Meaning

Type Too Long or Contains File - Begin
Skip

A structured constant must have 255 or
fewer bytes: also, it cannot be or con­
tain a file type or an LSTRING type.

Extra Array Components Ignored

An array constant has too many compo­
nents for the array type.

Extra Record Components Ignored

A record constant has too many compo­
nents for the record type.

Constant Value Expected Zero Assumed

A value in a structured constant is not
constant.

[Unassigned]

Compiler [in STRCONS]

This refers to an internal consistency
check which failed: no matter what
source program is compiled, this mes­
sage should not occur. The compiler is
in error, not your source program. The
comment in this list refers to the com­
piler routine containing the call.

Components Expected for Type

A structured constant
components for its type.

needs

Overflow
Constant

255 Components in String

more

A string constant must have 255 or
fewer bytes.

Use NULL

The predeclared constant NULL must be
used instead of two quotes.

Compiler Error Messages A-13

Decimal
Value

224

225

226

227

228

229

230

231

232

A-14

Meaning

Cannot Assign with Supertype LSTRING

A super array LSTRING cannot be source
or the target of assignment.

String Expression Not Constant

String concatenation with the asterisk
only applies to constants.

String Expected Character - 255 Assumed

Somehow a string constant had no char­
acters, perhaps using NULL.

Invalid Address of Function

Assignment or other address reference
to the function value is not in the
scope of the function. This error also
occurs when RESULT is used outside the
scope of the function.

Cannot Assign to Variable

Assignment to READONLY, CaNST, or FOR
control variable.

[Unassigned]

Unknown Identifier Assumed Integer -
Begin Skip

Unknown identifier,
address is needed.

for which

VAR Parameter or WITH Record Assumed
Integer - Begin Skip

Invalid identifier,
address is needed.

Cannot Assign to Type

for which

the

the

The target of assignment is a file or
otherwise cannot be assigned.

Pascal Manual

Decimal
Value

233

Meaning

Invalid Procedure or Function
Parameter - Begin Skip

An error in the use of
procedure or function,
following:

an intrinsic
such as the

o The first parameter to NEW or
DISPOSE is not a pointer variable.

o

o

o

The long form of
SIZEOF record tag
found.

a NEW/DISPOSE/
value was not

The long form of a NEW/DISPOSE/
SIZEOF super array, has too many
bounds.

The long form of
SIZEOF super array,
enough bounds.

a NEW/DISPOSE/
does not have

o A NEW or SIZEOF super array was not
given bounds.

o ORD or WRD was performed on a value
that is not of an ordinal type.

o LOWER or UPPER was performed on an
invalid value or type.

o PACK or UNPACK was performed on a
super array, array of files.

o The first parameter to RETYPE is
not a type identifier.

o A RESULT parameter is not a func­
tion identifier.

o A CODEBYTE parameter
greater than 255.

value is

o An intrinsic is used which is not
available in this version.

o ORD or WRD of an INTEGER4 value out
of range.

o A HIWORD or LOWORD parameter is not
ordinal or INTEGER4.

Compiler Error Messages A-IS

Decimal
Value

234

235

236

237

238

239

240

A-l6

Meaning

Type Invalid Assumed Integer

o A parameter to READ, WRITE, ENCODE,
or DECODE is not of type INTEGER,
WORD, REAL, BOOLEAN, enumerated, or
pointer.

o A parameter to
not of type
LSTRING.

READ and WRITE
CHAR, STRING,

is
or

o A parameter to READFN is not of
type FILE.

o A program parameter does not have a
"readable" type: in this case the
error occurs at the BEGIN keyword
for the main program.

Assumed File INPUT

The first READFN parameter is not a
file, so INPUT is assumed.

Not File Assumed Text File

The first parameter to READ or WRITE
(or READLN or WRITELN) was assumed to
be the file but this assumption was not
correct: please give INPUT or OUTPUT
explicitly to avoid this message.

Assumed INPUT

INPUT was not given as a program
parameter.

Assumed OUTPUT

OUTPUT was not given as a program
parameter.

LSTRING Expected

The target of a
DECODE must be an

[Unassigned]

Pascal Manual

READSET,
LSTRING.

ENCODE, or

Decimal
Value

241

242

243

244

245

246

247

248

249

Meaning

Invalid Segment Variable

The variable resides at a segmented
address, but a default segment address
is needed. You may need to make local
copy of the variable.

File Parameter Expected - Begin Skip

READSET expects a textfile parameter.

Character Set Expected

READSET expects
parameter.

a SET OF

Unexpected Parameter - Begin Skip

CHAR

EOF, EOLN, and PAGE do not take more
than one parameter.

Not Text File

EOLN, PAGE, READLN and WRITELN only
apply to textfiles.

[Unassigned]

Invalid Function

Use of the intrinsic function WRD is
invalid.

Size Not Identical

The warning is given in RETYPE: it may
or may not work as intended.

Procedural Type Parameter List Not
Compatible

The parameter lists for formal and
actual procedural parameters are not
compatible. The number of parameters
is different: the function result type
or parameter type is different: or the
attributes are wrong.

Compiler Error Messages A-17

Decimal
Value

250

251

252

253

254

255

256

257

A-I8

Meaning

Cannot Use Procedure with Attribute

You cannot call an INTERRUPT procedure,
directly or indirectly.

Unexpected Parameter - Begin Skip

The procedure or function has no param­
eters, but a left parenthesis was
found.

Cannot Use Procedure or Function as
Parameter

An intrinsic procedure or function
cannot be passed as parameter.

Parameter Not Procedure or Function -
Begin Skip

A procedural parameter was expected;
you need a procedure or function here.

Supertype Array Parameter Not
Compatible

Actual parameter is not same or derived
super type as formal.

Compiler [in ACTUALSJ

This refers to an internal consistency
check which failed; no matter what
source program is compiled, this
message should not occur. The compiler
is in error, not your source program.
The comment in this list refers to the
compiler routine containing the call.

VAR or CONST Parameter Types Not
Identical

Actual and formal reference parameter
types must be identical.

Parameter List Size Wrong - Begin Skip

Too few or too many parameters were
used; skips only if too many.

Pascal Manual

Decimal
Value

258

259

260

261

262

263

264

265

266

Meaning

Invalid Procedural Parameter to EXTERN

The actual procedure or function is
invoked with intrasegment calls, and so
cannot be passed to an external code
segment. Give the PUBLIC attribute to
the procedure or function to fix this.

Invalid Set Constant for Type

The set is not constant, the base types
are not identical, or the constant is
too big.

Unknown Identifier in Expression
Assumed Zero

The identifier is undefined (or mis­
spelled) in an expression.

Identifier Wrong in Expression Assumed
Zero

A general identifier
expression has occurred;
file type ide

error
for

in an
example,

Assumed Parameter Index or Field -
Begin Skip

After error 260 or 261, anything in
parentheses or square brackets, or a
dot followed by an identifier, is
skipped.

[Unassigned]

[Unassigned]

Invalid Numeric Constant Assumed Zero

A decode error in an assumed INTEGER
(or WORD) literal constant.

[Unassigned]

Compiler Error Messages A-19

Decimal
~

267

268

269

270

271

272

273

274

275

276

277

A-20

Meaning

Invalid Real Numeric Constant

A decode error in an assumed type REAL
literal constant.

Cannot Begin Expression Skipped

A symbol cannot start an expression, so
it has been deleted.

Cannot Begin Expression Assumed Zero

A symbol cannot start an expression, so
zero has been inserted.

Constant Overflow

DIV or MOD by the
(INTEGER or WORD).

Word Constant Overflow

constant zero

Unary minus, on a WORD operand (try NOT
word + 1).

Word Constant Overflow

WORD constant minus a WORD constant
gives a negative result.

[Unassigned]

[Unassigned]

Invalid Range

The lower bound of a subrange is
greater than upper bound (e.g., 2 •• 1).

CASE Constant Expected

A constant value is expected for a CASE
statement or record variant.

Value Already in Use

In a CASE statement or record variant,
a val ue has already been assigned (as
in CASE 1 •• 3: XXX: 2: YYY: END).

Pascal Manual

Decimal
Value

278

279

280

281

282

283

284

285

286

Meaning

Invalid Symbol

was used in a CASE or record
variant.

Label Expected

In a BREAK, CYCLE, or GOTO statement,
or starting a statement, or in a LABEL
section, the expected label was not
found.

Invalid Integer Label

Nondecimal notation (e.g., 8#77, etc.)
is not allowed in labels.

Label Assumed Declared

This label did not appear in the LABEL
section.

[Unassigned]

Expression Not Boolean Type

The expression following IF, WHILE, or
UNTIL must be BOOLEAN.

Skip to End of Statement

An unexpected ELSE or UNTIL clause was
skipped.

Compiler [in STATEMT {B}]

This refers to an internal consistency
check which failed: no matter what
source program is compiled, this mes­
sage should not occur. The compiler is
in error, not your source program. The
comment in this list refers to the com­
piler routine containing the call.

Ignored

A semicolon before ELSE is always in
error, and is skipped.

Compiler Error Messages A-21

Decimal
Value

287

288

289

290

291

292

A-22

Meaning

[Unassigned]

Skipped

A colon after OTHERWISE is always in
error, and is skipped.

Variable Expected For FOR Statement -
Begin Skip

A variable identifier must come after
FOR.

[Unassigned]

FOR Variable Not Ordinal or Static or
Declared in Procedure

The FOR statement control variable must
not be

o type REAL, INTEGER4, or other non­
ordinal type

o the component of an array, record,
or file type

o the referent of a pointer type or
address type

o in the stack or heap,
locally declared

unless

o nonlocally declared,
static memory

unless in

o a reference parameter (VAR or VARS
parameter)

o a variable with a segmented ORIGIN
attribute

Skip to :=

In a FOR statement, the assignment is
expected here.

Pascal Manual

Decimal
Value

293

294

295

296

297

298

299

300

301

302

303

Meaning

GOTO Invalid

The GOTO or label here involves an
invalid GOTO statement.

GOTO Considered Harmful

The $GOTOCK metacomrnand is on, and here
is a GOTO.

[Unassigned]

Label Not Loop Label

The BREAK or CYCLE label is not before
a FOR, WHILE, or REPEAT.

Not in Loop

The BREAK or CYCLE statement is not in
a FOR, WHILE, or REPEAT.

Record Expected - Begin Skip

A WITH statement expects a record
variable.

[Unassigned]

Label Already in Use Previous Use
Ignored

This label has already appeared in
front of a statement.

Invalid Use of Procedure or Function
Parameter

A procedure parameter was used as a
function, or vice versa.

[Unassigned]

Unknown Identifier Skip Statement

The starting statement identifier is
undefined (or misspelled).

Compiler Error Messages A-23

Decimal
Value

304

305

306

307

308

309

310

311

A-24

Meaning

Invalid Identifier Skip Statement

A general
statement:

identifier error starts a
for example, file type ide

Statement Not Expected

A MODULE or uninitialized IMPLEMEN­
TATION with a main BEGIN •• END.

Function Assignment Not Found

Somewhere in the function's body its
value must be assigned.

Unexpected END Skipped

An END was unexpected; perhaps a
missing BEGIN, CASE, or RECORD.

Compiler [in CONTEXT {B}]

This refers to an internal consistency
check which failed: no matter what
source program is compiled, this mes­
sage should not occur. The compiler is
in error, not your source program. The
comment in this list refers to the com­
piler routine containing the call.

Attribute Invalid

An attribute valid only for procedures
and functions was given for variable or
vice versa, or an invalid attribute mix
such as PUBLIC and EXTERN was used.

Attribute Expected

A left bracket indicates attributes,
but this is not an attribute.

Skip to Identifier

This symbol was skipped to get to the
identifier which follows.

Pascal Manual

Decimal
Value

312

313

314

315

316

317

318

319

320

321

322

Meaning

Identifier Expected

A list of identifiers is expected, but
this is not an identifier.

[Unassigned]

Identifier Expected Skip to :

A new identifier to be declared was
expected but not found.

Type Unknown or Invalid Assumed
Integer - Begin Skip

Parameter or function return type not
identifier, undeclared, or value
parameter or function return with file
or super array.

Identifier Expected

No identifier appears after a PROCEDURE
or FUNCTION in a parameter list.

[Unassigned]

Compiler internal error.

Compiler internal error.

Previous Forward Skip Parameter List

The parameter list and function return
type are not repeated when a forward
(or interface) procedure or function is
defined.

Not EXTERN

A procedure or function with the ORIGIN
attribute must be EXTERN.

Invalid Attribute with Function or
Parameter

An INTERRUPT proc.edure cannot have
parameters or be a function.

Compiler Error Messages A-25

Decimal
Value

323

324

325

326

327

328

329

330

331

A-26

Meaning

Invalid Attribute in Procedure or
Function

A nested procedure or function cannot
have attributes or be EXTERN.

Compiler internal error.

Already Forward

FORWARD cannot be used twice for the
same procedure or function.

Identifier Expected for Procedure or
Function

The keywords PROCEDURE or FUNCTION must
be followed by an identifier.

Invalid Symbol Skipped

FORWARD or EXTERN directives are never
used in interfaces.

EXTERN Invalid with Attribute

An EXTERN procedure cannot have the
PUBLIC attribute.

Ordinal Type Identifier Expected
Integer Assumed - Begin Skip

An ordinal type identifier is expected
for a record tag type.

Contains File Cannot Initialize

A file in a record variant, while
allowed, is considered unsafe and is
not initialized automatically with the
usual NEWFQQ call.

Type Identifier Expected Assumed
Integer

This error occurs when an ordinal type
identifier is expected.

Pascal Manual

Decimal
Value

332

333

334

335

336

337

338

339

340

Meaning

Invalid Type

Declaring the WORD type.

Not Supertype Assumed String

This looks like a super array type
designator but type identifier is not a
super array type so STRING super array
type is assumed.

Type Expected Integer Assumed

This is a general message; a type
clause or type identifier is expected.

Out of Range 255 for LSTRING

An LSTRING designator cannot have an
upper bound over 255.

Cannot Use Supertype Use Designator

Super array type must be reference
parameter or pointer referent.

Supertype Designator Not Found

All upper bounds must be given in a
super array designator.

Contains File Cannot Initialize

A super array of a file type, while
allowed, is considered unsafe and is
not initialized automatically with the
usual NEWFQQ call.

Supertype Not Array Skip to ;

An Integer is assumed. The keyword
SUPER is always followed by ARRAY in a
type clause.

Invalid Set Range Integer 0 to 255

The base type of a set must be within
the subrange 0 •• 255.

Compiler Error Messages A-27

Decimal
Value

341

342

343

344

345

346

347

348

349

A-28

Meaning

File Contains File

A file type cannot contain a file type,
directly or indirectly.

PACKED Identifier Invalid Ignored

The PACKED keyword must be followed by
one of ARRAY, RECORD, SET, or FILE; it
cannot be followed by a type
identifier.

Unexpected PACKED

The PACKED keyword only applies to
structured types. (See above.)

[Unassigned]

Skip to ;

A semicolon is expected at the end of a
declaration (not at end of line).

Insert ;

Semicolon expected at end of
declaration (at end of line).

Cannot Use Value Section with ROM
Memory

Setting $ROM on prevents the use of a
VALUE section.

UNIT Procedure or Function Invalid
EXTERN

In an IMPLEMENTATION, any interface
procedures and functions not imple­
mented must be declared EXTERN at the
beginning of the IMPLEMENTATION, but
this EXTERN occurs later.

[Unassigned]

Pascal Manual

Decimal
Value

350

351

352

353

354

355

356

357

Meaning

Not Array - Begin Skip

A variable in a VALUE section followed
by square bracket not array.

Not Record - Begin Skip

A variable in VALUE section followed by
a dot is not a record type.

Invalid Field

In the VALUE section
assumed to be a field
record.

an identifier
is not in the

Constant Value Expected

In the VALUE section a variable can
only be initialized to a constant.

Not Assignment Operator Skip to :

The assignment operator was not found
in a VALUE section.

Cannot Initialize Identifier Skip to :

A symbol in the VALUE section is not a
variable declared at this level in
fixed (STATIC) memory, or has the
ORIGIN or EXTERN attribute.

Cannot Use Value Section

Put the VALUE section in the IMPLEMEN­
TATION, not the INTERFACE.

Unknown Forward Pointer Type Assumed
Integer

The identifier for the referent of a
reference type declared earlier in this
TYPE (or VAR) section was never
declared itself.

Compiler Error Messages A-29

Decimal
Value

358

359

360

361

362

363

364

A-38

Meaning

Pointer Type Assumed Forward

In this TYPE section, a pointer or
address type occurred in which the
referent type was already declared in
an enclosing scope, but the identifier
for the referent type was declared
again later in the same TYPE section.
For example: TYPE A=WORD: PROCEDURE B:
TYPE C=AA: A=REAL:Message says the
forward type is used in this case (such
as, REAL).

Cannot Use Label Section

Put a LABEL section in the IMPLEMEN­
TATION, not the INTERFACE.

Forward Pointer to Supertype

The referent of a reference type
declared in this TYPE section is a
super array type: the supertype
declaration must come earlier.

Constant Expression Expected Zero
Assumed

In a CONST section, the expression is
not constant.

Attribute Invalid

In a VAR section, PUBLIC or ORIGIN with
are used with EXTERN, or ORIGIN in
attribute brackets after the VAR
keyword.

[Unassigned]

Contains File Initialize Module

File variables must be initialized.
Thus, when a file variable is declared
in a module the module must be called
(as a parameter1ess procedure) to
initialize these files.

Pascal Manual

Decimal
Value

365

366

367

368

369

370

371

372

Meaning

Origin Variable Contains File Cannot
Initialize

File variables must be initialized, but
ORIGIN variables are never initialized,
so the user must initialize this file.

UNIT Identifier Expected Skip to

USES was not followed by the identifier
of a unit.

Initialize Module to Initialize UNIT

A USES clause triggers a unit initial­
ization call, but to invoke this call
the module must be called as a
procedure.

Identifier List Too Long - Extra
Assumed Integer

In a USES clause with a list of identi­
fiers, more identifiers were found in
the list than are constituents of the
interface.

End of UNIT Identifier -List Ignored

In a USES clause with a list of identi­
fiers, fewer identifiers were found in
the list than are constituents of the
interface.

[Unassigned]

UNIT Identifier Expected

After the phrase INTERFACE; a UNIT
identifier was not found.

Compiler error

This error occurs when the keyword UNIT
is missing in an interface.

Compiler Error Messages A-3l

Decimal
Value

373

374

375

376

377

378

A-32

Meaning

Identifier in UNIT List Not Declared

One of the identifiers in the interface
UNIT list was not declared in the body
of the interface.

Program Identifier Expected

No identifier appears after the PROGRAM
or MODULE keyword. (This is a compiler
panic error. See explanation at the
front of this section.)

UNIT Identifier Expected

No unit identifier after IMPLEMENTATION
OF. (This is a compiler panic error.
See explanation at the front of this
section.)

Program Not Found

PROGRAM, MODULE, or IMPLEMENTATION OF
keywords not found (panic). Can occur
if source file is not a Pascal
compiland.

File End Expected Skip to End

The assumed end of the compiland was
processed, but there is more.

Program Not Found

The main body of a PROGRAM or- initial­
ized IMPLEMENTATION, or the final END
of a MODULE or other IMPLEMENTATION,
was not found.

Pascal Manual

ERRORS DETECTED BY THE BACK END (OPTIMIZER/CODE
GENERATOR)

The following program errors are detected by the
back end:

o Attempt to divide by zero. For example,

A DIV 0.

o Overflow during integer constant folding. For
example,

MAXINT+A+MAXINT.

o Expression too complex or too many internal
labels.

(Try breaking up the expression by using
assignments to temporary variables.)

The optimizer and code generator perform a large
amount of internal consistency checking. When one
of these checks encounters an unexpected
condition, the result is an internal error
generated by the module where the inconsistency
was discovered.

Such errors should generally not occur. When they
do occur, we request that they be reported
promptly. Since it may be difficult to analyze
such reports unless they include the complete
source code involved, please include the complete
source code in a machine readable form.

The format of an optimizer error message is as
shown below:

*** Internal Error <error number>
Near Line <source line number>
Contact Technical Support

where <error number> is an internal error number
and <source line number> is the last source line
number seen by the optimizer. The error may not
have occurred exactly at this line, but it is
likely to be wi thin a few lines following this
line. The <source line number> corresponds to the
line numbers on the listing generated by the front
end.

Compiler Error Messages A-33

Modu~e OPTIM (Status Numbers 8 to 99)

1 Bad ICode file format (PRSDEC10).

2 Bad symbols file format: cannot find function
return variable (READ_SYMTAB).

3 Multiple symbols file entries for symbol that
is not a procedure or function (READ_SYMTAB).

4 Forward reference to an Icod4 number (XLATE).

5 ICode reference to a missing symbol
(XLATE_SYM) •

6 Duplicate ICode numbers in same block
(ENTER_XLATE).

7 Invalid or unexpected operand for ADDR ICode
(PHASEl).

8 Invalid addressing mode for ADDR ICode
(PHASEl).

9 Invalid or unexpected operand for DRRR ICode
(PHASEl).

10 Invalid or unexpected operand for DRFR ICode
(PHASEl).

11 Invalid symbol type for UPPR ICode (PHASEl).

12 Invalid addressing mode for ASMS/ASVS
(PHASEl).

13 Bad tree format~ assignment target tree does
not have a SYMR node as its leftmost lead
(DEL_TARGET) •

14 Unknown ICode value (SUREX).

15 Bad statement list returned from SPLITTREE
(OPTIM - main program).

16 Bad statement list returned from PHASEI
(OPTIM) •

17 Bad statement list returned from CHECK LENGTH
(OPTIM) •

18 Bad statement list returned from PHASE2
(OPTIM) •

19 Bad statement list returned from PHASE3
(OPTIM) •

20 Bad statement list returned from MD XFURM
(OPTIM) •

21 Bad statement list returned from SUREX
(OPTIM) •

A-34 Pascal Manual

Module GEN6 (Status Numbers 188 to 199)

100 Static nesting level < 0 (NESTLEV).

101 Invalid or unexpected operand for OFFR ICode
(MD_XFORM) •

102 Invalid flag values for CONR (MD_XFORM).

103 Invalid or unexpected operand for UPPR ICode
(MD _XFORM) •

104 Invalid symbol type for UPPR operand
(MD_XFORM) •

105 Too many levels of indirection for UPPR
operand (MD_XFORM).

106 Invalid addressing mode for VALP ICode
(MD_XFORM) •

107 Invalid or unexpected operand for LVAP ICode
(MD_XFORM) •

108 Multiple definition of an internal label
(GENDONE) •

109 Cannot load long constant value with a length
> 4 (CASELONR).

110 Invalid offset value for OFSR ICode
(CASEOFSR).

111 Register table entry or use count for OFSR
ICode is bad (CASEOFSR).

112 Invalid nesting for procedure/function call
(CALLPF) •

113 Invalid fUnction return length (CASECALP).

114 Bad use count for SFRT ICode operands
(CASESFRT).

115 Symbol type is invalid, must be a variable
(CLASS) •

116 Operand use count is already 0 (COUNTUSE).

117 User label must begin a basic block
(DEF _ULAB) •

118 Duplicate definition of user label
(DEF _ULAB) •

119 Address flag missing for LONR ICode
(EMITIMM) •

120 Address flag missing for SYMR ICode
(EMITIMM) •

Compiler Error Messages A-35

121 Variable must be static (EMITIMM).

122 Symbol type must be variable (EMITIMM).

123 Invalid ICode type (EMITIMM).

124 Cannot save a mu1tibyte value (EMPTYREG).

125 Invalid register contents (EMPTYREG).

126 Symbol type must be variable (GENREF).

127 Missing address flag for long constant
reference (GENREF).

128 Invalid ICode type (GENREF).

129 Value must be in an index register (GENREF).

130 Value must be in an index register (GENREFI).

131 No registers available for allocation
(GETREG) •

132 Register BX already in use (IMBXES).

133 Register must be SI or DI (INDREF).

134 Symbol must be variable (INDREF).

135 Missing address bit for long constant refer-
ence (LOADR).

136 Symbol must be a variable (LOADR).

137 Invalid ICode type (LOADR).

138 Symbol type must be a label (LONGGOTO).

139 Register residence flags do not match reg-
ister table contents (MOVER).

140 Value must be in some register (REGN).

141 Invalid operand register specified by tem­
plate (REGSPEC).

142 Operand's register residence flag does not
match the specified register (REGSPEC).

143 Operand must be in a register (X_BINOP).

144 Unexpected opcode value (X_BINOP).

145 Contents of BX do not match operand
(X_CHKBXES) •

146 Invalid ICode operator (X_CMPI).

147 Invalid ICode operand (X_CMPI).

148 Invalid variable kind (must be static) or
address bit missing (X_CMPI).

149 Invalid ICode operator~ must have two
operands (X_COMOPR).

A-36 Pascal Manual

150 Desired register already in use (WANTREG).

151 Desired register already in use (X_DONE).

152 Index must already be in a register
(X_DONEA) •

153 Invalid register contents (X_DONEA).

154 Symbol must be a variable (X_DONEA).

155 Invalid ICode operand (X_DONEA).

156 Invalid condition code for IF template
(X IFCOND).

157 Invalid condition code for IFOPR template
(X_IFOCOND) •

158 Register BX contents are wrong (X_INREGS).

159 Source register is empty (X_MOVREG).

160 Register residence flag for operand is bad
(X_MOVREG) •

161 Invalid register designated; cannot access
high half of register (X_SELFH).

163 Invalid ICode for assignment target (X_STOR).

164 Invalid ICode operator; must have two
operands (X_REVOPR).

165 Invalid opcode value (X_UNIOP).

166 Invalid register specification (X_XCHG).

167 Cannot exchange registers containing part of
a multiregister value (X_XCHG).

168 Register residence flag does not match
register table contents (X_XCHG)

169 Register residence flag does not match
register table contents (X_XCHG).

170 Register table contents do not match their
associated register residence flags
(INTERPRET) •

171 Operand must be a CONR node (INTERPRET).

172 No match for this operand class in the
templates for this ICode (SCANCLASS).

173 Register BX is already in use (INTERPRET).

174 Use count was not decremented properly
(INTERPRET) •

175 Use count was not decremented properly
(INTERPRET) •

176 Error in template processing (INTERPRET).

Compiler Error Messages A-37

177 Invalid register specification; cannot access
high/low half of the register (INTERPRET).

178 Invalid or unexpected template operator
(INTERPRET).

179 Invalid length for OFFR ICode: must be length
1, 2, or 4 (GEN_SUBTREE).

180 Symbol table entry for RTPP ICode does not
match the current procedure/function
(GEN_SUBTREE).

181 Symbol table entry for RTPP ICode must be a
procedure or function (GEN_SUBTREE).

182 Invalid or unexpected ICode value
. (GEN_SUBTREE).

Module SUBR (Status Numbers 2BB to 299)

200 Value too large to convert to WORD type, BOOT
compiler only (WRDTOINT).

201 Missing address bit for assignment target
(TARGCHECK).

202 Invalid ICode for assignment target
(TARGCHECK).

203 Unexpected opcode value, BOOT compiler only
(GET_OPCFLAGS).

204 Invalid opcode flag value (GETTYP).

205 Invalid opcode flag value (GETTYP).

Module FOLD (Status Numbers 3BB to 399)

300 Invalid operand count, must have two operands
(FOLD_CONS).

301 Invalid constant values for operands to the
NOTB ICode (FOLD_CONS).

Module CHKLEN (Status Numbers 4BB to 499)

400 Operand length cannot be 0 (CHECKLEN).

401 Length of operands must match if both are
greater than 0 (CHECKLEN).

402 Operand length must be -1, 1, or 2
(CHECKLEN).

A-38 Pascal Manual

403 Operand length must be -1, 1, or 2
(MUSTlOR2).

404 New length must be 1 or 2 (COERCE).

405 Assignment target must be variable or
function (TARG_LEN).

406 Invalid ICode for assignment target
(TARG_LEN) •

407 Invalid symbol type for SYMR ICode
(CHECK_LENGTH).

408 Assignment target length must be 4 for AS48
(CHECK_LENGTH).

409 Invalid addressing for VAXP operand
(CHECK_LENGTH).

410 Unexpected ICode value (CHECK_LENGTH).

Module CTL6 (Status Numbers 588 to 599)

500 Code generator-computed code size does not
match the computed code size.

501 Invalid class override, CS DTYP record
(BINPS).

502 Invalid symbol type, CS_SYM record (BINPS2).

503 Internal label reference to an undefined
label, CS_CJMP record (BINPS2).

504 Internal label reference to an undefined
label, CS_ILAB record (BINPS2).

505 Internal label location does not match
current location counter, CS DILB record
(BINPS2). -

506 User label reference to an undefined label,
CS_ULAB record (BINPS2).

507 User label location does not match current
location counter, CS_DULB record (BINPS2).

508 P-code procedure/function entry address does
not match current location counter,
CS_PFBEG/CS PROB record (BINPS2).

509 Procedure/function entry address does not
match current location counter, CS PFBEG/CS
PROB record (BINPS2). -

510 Unknown binary interpass file record type
(BINPS2).

Compiler Error Messages A-39

Module DUMP86 (Status numbers 688 to 699)

600 Unexpected interpass record type (GETBYTE).

601 Unexpected end of data (GETDATA).

602 Invalid data size (GETDATA).

603 Invalid data size (GETDATA).

604 Unexpected end of data (GETDISP).

605 Unexpected interpass record type (GETDISP).

606 Unexpected end of data (GETLABEL).

607 Invalid label type, must be short label
(GETLABEL).

608 Unexpected interpass record type (GETLABEL).

609 Invalid opcode (WRITEOP).

610 Invalid opcode, no PUSH CS opcode exists
(PUSHPOPSEG).

611 Cannot do sign extension on operands for
logical operators AND, OR, XOR (BINARYOPS).

612 Invalid mode value (LOADPTR).

613 Invalid opcode value (SHIFTOPS).

614 Unused opcode (GROUPC).

615
to
626 Unused opcode (DUMP86)

Module DUMP (Status Numbers 788 to 799)

700 Invalid opcode value (OPNAME).

701 Unknown working value (DMPIID).

702 Unexpected symbol type (DMPIID).

703 Invalid operator mode value (WRIMOD).

704 Unexpected ICode value (DMPNOD).

705 Unexpected interpass record type (DMPBREC).

A-48 Pascal Manual

RUN-TIME ERROR MESSAGES

Errors detected at run time are either file system
errors or other program exceptions. File system
errors are described first.

FILE SYSTEM ERRORS

File system error codes
and are based on the
control block.

range from 1000 to 1999
ERRC field of the file

? Error: <error type> error in file <file name>
Error Code <error code>, System status <status code>
PC=<program counter>,FP=<frarne pointer>,SP=<stack pointer>

852-013

File system errors are reported in the following
format:

If <error code> is in the range 1000 to 1099, then
the error was detected by the CTOS operating
system and <status code> is a CTOS status code.
See the Status Codes Manual for interpretation of
status codes.

If <error code> is in the range 1100 to 1999, then
the error was detected by the Pascal file system.
These error codes are explained below:

Decimal
Value

1100

1101

1102

1103

1104

Meaning

ASSIGN or READFN of file name to open
file.

Reference to buffer variable of closed
textfile.

Textfi1e READ or WRITE call to closed
file.

READ when EOF is true (SEQUENTIAL
mode) •

READ to REWRITE file, or WRITE to RESET
file (SEQUENTIAL mode).

Compiler Error Messages A-41

Decimal
Value Meaning

1105 EOF call to closed file.

1106 GET call to closed file.

1107 GET call when EOF is true (SEQUENTIAL
mode).

1108 GET call to REWRITE file (SEQUENTIAL
mode).

1109 PUT call to closed file.

1110 PUT call to RESET file (SEQUENTIAL
mode).

1111 Line too long in DIRECT textfile.

1112 Decode error in textfile READ BOOLEAN.

1113 Value out of range in textfile READ
CHAR.

1114 Decode error in textfile READ INTEGER.

1115 Decode error in textfile READ SINT
(integer subrange).

1116 Decode error in text file READ REAL.

1117 LSTRING target not big enough in
READSET.

1118 Decode error in textfile READ WORD.

1119 Decode error in textfile READ BYTE
(word subrange).

1120 SEEK call to closed file.

1121 SEEK call to file not in DIRECT mode.

1122 Encode error (field width> 255) in
textfile WRITE BOOLEAN.

1123 Encode error (field width> 255) in
textfile WRITE INTEGER.

A-42 Pascal Manual

Decimal
Value

1124

1125

Meaning

Encode error (field width> 255) in
textfile WRITE REAL.

Encode error (field width> 255) in
textfile WRITE WORD.

1126 Decode error in textfile READ INTEGER4.

1127 Encode error in text file WRITE
INTEGER4.

The <error type> field of the file system error
report is based on the ERRS field of the file
control block. Error types are described below:

o (no error).

1 Hard data. Hard data error.

2 Device name. Invalid device or volume name.

3 Operation. Invalid operation: GET if EOF,
RESET a printer, etc.

4 File system. File system internal error.

5 Device offline. Device or volume no longer
available.

6 Lost file. File no longer available.

7 File name. Invalid syntax, name too long,
etc.

8 Device full. Disk full, directory full, etc.

9 Unknown device. Device or volume not found.

10 File not found.

11 Protected file.

12 File in use.

13 File not open.

14 Data format. Data format, decode, or range
error.

15 Line too long. Buffer overflow.

Compiler Error Messages A-43

OTHER RUN-TIME ERRORS

Nonfile
2999.
errors
always
check,

system error codes range from 2000 to
In some cases, metacornmands control whether
are checked. In other cases, they are
checked. The metacornrnand controlling a

if any, is given in the list below.

2800 to 2849 Memory Errors

Since the stack and the heap grow toward each
other, these errors are all related: for example,
a stack overflow can cause a IIHeap is Invalid II
error if $STACKCK is off and the stack overflows.

Decimal
Value

2000

2001

2002

2003

2004

A-44

Meaning

Stack Overflow

While calling a procedure or function,
the stack ran out of memory. Checked
if $STACKCK+ and in some other cases.

No Room in Heap

Not enough room is available in the
heap for a new variable. This error is
always detected.

Heap Is Invalid

While allocating memory in the heap for
a new variable, an error in the heap
structure was found. This error is
always detected.

Heap Allocator Interrupted

An interrupt procedure was invoked that
interrupted NEW and called NEW again.
The heap allocator modifies the heap:
thus it is a critical section.

Allocation Internal Error

An unexpected error return occurred
while requesting additional heap space
from the operating system. Contact
technical support.

Pascal Manual

Decimal
Value

212'31

212'32

212'33

212'34

2035

Meaning

Nil Pointer Reference

DISPOSE or $NILCK+ found a pointer with
a NIL value.

Uninitia1ized Pointer

DISPOSE or $NILCK+ found an uninitial­
ized pointer. Pointers are given this
value only if $NILCK is on.

Invalid Pointer Range

DISPOSE or $NILCK+ found a pointer that
does not point into the heap or is
otherwise invalid. The pointer may
have pointed to a DISPOSED block that
was removed from the heap.

Pointer to Disposed Var

DISPOSE or $NILCK+ found a pointer to a
heap block that has been disposed.
Calling DISPOSE twice for the same
variable is invalid.

Long DISPOSE Sizes Unequal

When the long form of DISPOSE was used,
the actual length of the variable did
not equal the length based on the tag
values given.

2850 to 2899 Ordinal Arithmetic

Decimal
Value

20512'

Meaning

No CASE Value Matches Selector

In a CASE statement without an OTHER­
WISE clause, none of the branch
statements had a CASE constant value
equal to the selector expression value.
This is checked if $RANGECK+ is used.

Compiler Error Messages A-45

Decimal
Value

2051

2052

2053

2054

2055

2056

A-46

Meaning

Unsigned Divide by Zero

WORD value divided by zero.
checked if $MATHCK+ is used.

Signed Divide by Zero

This is

INTEGER value divided by zero. This is
cheeked if $MATHCK+ is used.

Unsigned Math Overflow

A WORD result
0 •• MAXWORD. This
$MATHCK+ is used.

Signed Math Overflow

occurred outside
is checked if

An INTEGER result occurred outside
-MAXI NT •• MAXINT. This is checked if
$MATHCK+ is used.

Unsigned Value Out of Range

Assignment of a value parameter in
which the source value is out of range
for the target value. The target can
be a subrange of WORD (including BYTE),
or CHAR, or an enumerated type.

This error can also occur in SUCC and
PRED functions, and when the length of
an LSTRING is assigned. These are
checked with $RANGECK+.

Another time this error occurs is when
an array index is out of bounds and the
array has an unsigned index type. This
is checked with $INDEXCK+.

Signed Value Out of Range

This is the same as 2055, but applies
to the INTEGER type and its subranges.

Pascal Manual

Decimal
Value

2057

2058

Meaning

Uninitialized 16-Bit Integer Used

An INTEGER or 16-bit INTEGER subrange
variable is used without being assigned
first, or such a variable has the
invalid value, -32768. This condition
is checked with $INITCK+.

Uninitialized 8-Bit Integer Used

A SINT or 8-bit INTEGER subrange vari­
able is used without being assigned
first, or such a variable has the
invalid value -128. This condition is
checked with $INITCK+.

2100 to 2149 Type REAL Arithmetic

Decimal
Value

2100

2HH

2104

2105

Meaning

REAL Divide by Zero

A REAL value was divided by zero. This
condition is always detected.

REAL Math Overflow

A REAL value is too large for represen­
tation. This condition is always
detected.

SQRT of Negative Argument

A square root
argument < 0.
detected.

function is used on an
This condition is always

LN of Non-Positive Argument

A natural log function
argument <= 0. This
always detected.

is used on
condition

an
is

Compiler Error Messages A-47

Decimal
Value

2106

2131

2132

2133

2135

2136

A-48

Meaning

TRUNC/ROUND Argument Range

Results from converting
the range of INTEGER.
is always detected.

a REAL outside
This condition

Tangent Argument Too Small

The tangent argument is
the result is invalid.
is always detected.

so small that
This condition

Arcsin or Arccos of REAL> 1.0

The arcsin or arccos
greater than one. This
always detected.

argument is
condition is

Negative Real Raised to a Real Power

An invalid argument in exponentiation.
This condition is always detected.

REAL Math Underflow

The significance of a REAL expression
was reduced to zero.

REAL Indefinite
previous error)

(uninitialized or

The REAL value called "indefinite" was
encountered: this can occur if $INITCK
was on and an unini tialized real
variable was used, or if a previous
error set a variable to indefinite as
part of its masked error response.

Pascal Manual

2158 to 2199 Structured Type Errors

Decimal
Value

2150

2151

2180

2181

Meaning

String Too Long in COPYSTR

A COPYSTR intrinsic source string is
too large for target string. This
condition is always detected.

LSTRING Too Long in Intrinsic Procedure

A target LSTRING is too small in
INSERT, DELETE, CONCAT, or COPYLST
intrinsic procedure. This condition is
always detected.

Set Element Greater Than 255

A value in a constructed set is above
maximum. This condition is always
detected.

Set Element Out of Range

A value in a set assignment or set
value parameter is too large for the
target set. This condition is detected
with $RANGECK+.

Compiler Error Messages A-49

2200 to 2249 INTEGER4 Arithmetic Errors

Decimal
Value Meaning

2200 INTEGER4 Divide by Zero

2201 INTEGER4 Math Overflow

2234 INTEGER4 Zero to Negative Power

2250 to 2999 Other Errors

Decimal
~

2450

A-50

Meaning

Unit Version Number Mismatch

During unit initialization, the user
(the one with the USES clause) and the
implementation of an interface were
discovered to have been compiled with
unequal interface version numbers.
This condition is always detected.

Pascal Manual

APPENDIX B: COMPARISONS TO THE ISO STANDARD
AND OTHER PASCALS

COMPARISONS TO THE ISO STANDARD

Our version of Pascal generally conforms to the
ISO Pascal standard, Level 0 and Levell, cur­
rently being developed by the ANSI/IEEE committee.
However, the conformant array mechanism, a method
of passing arrays of different bounds as one
parameter type, proposed in Levell, has not been
implemented.

The super array type, a feature of our version of
Pascal, provides conformant array parameters, as
well as dynamic length arrays allocated on the
heap.

In general , programs correctly written to the ISO
standard (Level 0) or to the ANSI/IEEE standard
should run correctly, without changes, under this
Pascal.

The ISO standard defines a large number of error
conditions, but allows a particular implementation
to handle an error by documenting the fact that
the error is not detected. These" errors not
detected," and other differences are described
below. A program that conforms or tests conform­
ance to the ISO standard and is written with our
version of Pascal must have the metacommand $DEBUG
on and must not use any extend level features.

The following minor extensions to the current
ISO/ANSI/IEEE standard are allowed:

o The question mark (?) can substitute for the
caret (A).

o The underscore (_) can be used in identifiers.

identifiers,
extend level
the standard

and new pre­
this version

Because of the way the compiler binds
the new reserved words added at the
cannot be used as identifiers at
level. A new directive, EXTERN,
declared functions are standard in
of Pascal.

The current differences between the standard level
of our version of Pascal and the current

Comparisons to Other Pascals B-1

ISO/ANSI/IEEE standard are summarized in the
following pages.

o The ISO standard requires a separator between
numbers and identifiers or keywords.

In some cases, this version does not require a
separator between a number and an identifier
or keyword, for exampl e, f'100mod" is accepted
as "100 mod" without error.

o The ISO standard does not allow passing a
component of a PACKED structure as a reference
parameter.

This version of Pascal specifically permits
passing a CHAR element of a PACKED ARRAY
[l •• n] OF CHAR as a reference parameter.
Passing a tag field as a reference is an error
not detected. Passing other packed components
gives the usual error.

o The ISO standard does not include the textfile
line-marker character in the set of CHAR
values.

o

Our version of Pascal permits all 256 8-bit
values as CHAR values ~ the RETURN character,
CHR(10), is also the line marker character.

The ISO standard requires a
given for all possible tag
version does not.

variant
values.

to be
This

o The ISO standard requires that an identifier
have only one meaning in any scope.

Using an identifier and then redeclaring it in
the same scope is an error not detected by
this compiler. For example, the following,

CaNST X=Yi VAR Y: CHARi

has two meanings for Y in the same scope. The
latest definition for an identifier is
generally used by this version of Pascal.
There is one ambiguous case: If you declare
type Faa in one scope and in an inner scope
TYPE P = A FOOi FOO = typei then Faa has two
meanings and intent is ambiguous. In this
case, the compiler uses the later definition
of Faa and issues a warning.

B-2 Pascal Manual

o The ISO standard requires field width "M II to
be greater than zero in WRITE and WRITELN
procedures.

0

Our version of Pascal treats M < 0 as if M =
ABS (M), but field expansion takes place from
the right rather than the left. M can also be
zero, to WRITE nothing. Textfile READ (LN) and
WRITE (LN) parameters can take both M and N
parameters (ignored if not needed). The form
"V:N" is allowed. When writing an INTEGER,
the N parameter sets the output radix: when
reading or writing an enumerated type, the N
parameter sets the ordinal number or constant
identifier option.

The ISO standard does not allow a variable
created with the long form of NEW to be
assigned, used in an expression , or passed as
a parameter. However, this is difficult to
check for at compile time and expensive to
check at run time.

This version of Pascal allows assignments to
these variables using the actual length of the
target variable. The ISO standard error is
not detected.

o The ISO standard does not allow the short form
of DISPOSE to be used on a structure allocated
wi th the long form of NEW. The ISO standard
only permits a variable allocated with the
long form of NEW to be released with the long
form of DISPOSE, and no tag fields should
change between the calls.

Our version of Pascal allows the short form of
DISPOSE to be used on a structure allocated
with the long form of NEW, and does not check
for changes in tag values.

o The ISO standard declares that when a "change
of variant II occurs (such as when a new tag
value is assigned), all the variant fields
become undefined.

This version of Pascal does not set the fields
unini tialized when a new tag is assigned and
so does not detect use of a variant field with
an undefined value.

Comparisons to Other Pascals B~3

o The ISO standard does not allow
with an active reference (that is,
of executing WITH statement or
reference parameter) to be disposed
variable) or changed by a GET or
file buffer variable).

a variable
the records

an actual
(if a heap
PUT (if a

Our version of Pascal does not detect these as
errors.

o The ISO standard currently defines I MOD J as
an error if J < 0 and the result of MOD is
positive, even if I is negative.

This version of Pascal does not currently use
the new draft standard semantics for the MOD
operator. Programs intended to be portable
should not use MOD unless both operands are
positive.

o The ISO standard at Level 1 defines conformant
array.

Our version of Pascal does not implement the
conformant array concept in Level 1 of the ISO
standard. Super arrays provide much the same
functionality in a more flexible way.

o The ISO standard requires the control variable
of a FOR loop to be local to the immediate
block. Any assignment to this control
variable is an error.

This version of Pascal allows a nonlocal
variable to be used if it is STATIC, so either
a local variable or one at the PROGRAM level
can be a FOR statement control variable. This
version of Pascal also does not detect an
assignment to the control variable as an error
if assignment occurs in a procedure or
function called within the FOR statement.

o The ISO standard requires the CHR argument to·
be INTEGER.

This version of Pascal allows CHR to take any
ordinal type.

B-4 Pascal Manual

SUMMARY OF EXTENSION TO THE ISO STANDARD OFFERED
BY OUR VERSION OF PASCAL

This outline summarizes the extensions to the ISO
standard which are offered by this version of
Pascal. Unless otherwise noted, all are at the
extend level.

SYNTACTIC AND PRAGMATIC FEATURES

o the metalanguage at the standard level

$ BRAVE
$DEBUG
$ENTRY
$ ERRORS
$GOTO
$ INCLUDE
$INCONST
$INDEXCK
$INTICK
$IF $THEN $ELSE $END
$INTEGER
$LINE
$LINESIZE
$LIST
$MATHCK
$MESSAGE
$NILCK
$OCODE
$ PAGE

$PAGEIF
$PAGESIZE
$POP
$PUSH
$RANGECK
$REAL
$ROM
$RUNTIME
$SIMPLE
$SIZE
$SKIP
$SPEED
$STACKCK
$SUBTITLE
$SYMTAB
$TITLE
$WARN

o· extra listing at the standard level

flags for jumps, globals, identifier
level, control level, headers, trailers

textual error and warning messages

o syntactic additions

1 as comment to end of line

square brackets equivalent to BEGIN/END

o nondecimal number notation

numeric constants with # or nn#
(where nn = 2 •• 36)

DECODE/READ takes # notation

ENCODE/WRITE with N of 2, 8, 10, 16

Comparisons to Other Pascals B-5

o extended CASE range

for CASE statements and r~cord variants

OTHERWISE for all other values

A •• B for range of values

DATA TYPES AND MODES

'0 WORD type, WRD function, MAXWORD constant

o REAL4 and REAL8 types

o INTEGER4 type, MAXINT4 const;

o FLOAT4, ROUND4, and TRUNC4 functions

o address types at the extend level

ADR and ADS types and operators

VARS and CONSTS parameters

o SUPER array types

conformant parameters

dynamic length heap variables

multidimensional super arrays

STRING and LSTRING super types

o LSTRING type NULL constant, .LEN field

o explicit byte offsets in records at the extend
level

o CONST and CONSTS reference parameters for
constants and expressions

o structured (array, record, and set) constants

o extended functions returning any assignable
type

o variable selection on values returned from
functions

B-6 Pasca1 Manua1

o attributes:

EXTERN
EXTERNAL
INTERRUPT
ORIGIN
PORT

OPERATORS AND INTRIHSICS

o extend level operators:

PUBLIC
PURE
REAOONLY
STATIC

bitwise logical: AND OR NOT XOR

set operators: < >

o constant expressions:

string constant
operator

concatenation with *

numeric, ordinal, Boolean expressions in
type clauses

other constant functions:

CHR UPPER
DIV WRD
HIBYTE *
HIWORD +
LOBYTE
LOWER <
LOWORD <=
MOD <>
ORO
RETYPE >
SIZEOF >=

0 additional intrinsic functions at the extend
level:

ABORT LOWER
BYLONG LOWORD
BYWORD MOVEL
DECODE MOVER
ENCODE MOVESL
EVAL MOVESR
FILLC RESULT
FILLSC RETYPE
HIBYTE SIZEOF
HIWORD UPPER
LOBYTE

Comparisons to Other Pasca1s B-7

o intrinsic functions that operate on strings:

for STRING or LSTRING: COPYSTR POSITN
SCANEQ SCANNE

for LSTRING only: CONCAT INSERT DELETE
COPYLST

o Pascal library functions at the standard
level:

ALLHQQ
BEGOQQ
BEGXQQ
ENDOQQ
ENDXQQ
FREECT
GTYUQQ
LADDOK
LMULOK
LOCKED

MARKAS
MEMAVL
PLYUQQ
PTYUQQ
RELEAS
SADDOK
SMULOK
UADDOK
UMULOK
UNLOCK

CONTROL FLOW AND STRUCTURE FEATURES

o control flow statements: BREAK, CYCLE, and
RETURN

o sequential control operators: AND THEN and OR
ELSE in IF, WHILE, REPEAT

o extend FOR loop: FOR VAR variable

o VALUE section to initialize static variables

o mixed order LABEL, CONST, TYPE, VAR, VALUE
sections

o compilable MODULES, with global attributes

o UNIT INTERFACE and IMPLEMENTATION:

interface version number, version checking

optional rename of constituents

guaranteed unique unit initialization

optional unit initialization

B-8 Pascal Manual

EXTEND LEVEL I/O AND PILES

o textfile line-length declaration, TEXT (nnn)

o READ enumerated, Boolean, pointer, STRING,
LSTRING

o WRITE enumerated, pointer, LSTRING

o negative M value to justify left instead of
right

o temporary files

o DIRECT mode files, SEEK procedure

o ASSIGN, CLOSE,
procedures

DISCARD, READSET, READFN

o FILEMODES type and constants, F.MODE access

o error trapping, F.TRAP and F.ERRS access

o enumerated I/O using identifier as string

o full FCBFQQ type equivalent to FILE types.

Comparisons to Other Pascals B-9

COMPARISONS WITH OTHER VERSIONS OF PASCAL

At the standard level, our version of Pascal con­
forms to the current ISO draft standard. In
theory, therefore, programs written in accordance
wi th the ISO standard are portable and can be
compiled with this compiler with no problem.

In practice, however, the majority of Pascal pro­
grams are written with at least some nonstandard
features. In these cases, it is necessary to
al ter the Pascal source file to conform to the
conventions used by this version of Pascal.

IMPLEMENTATIONS OF PASCAL

The areas in which different implementations of
the Pascal language differ from one another fall
into one of the following categories:

o interactive I/O

Our version of Pascal implements lazy evalu­
ation to handle interactive I/O in a natural
way. Other Pascals may implement this feature
in different ways. For example, some systems
require an initial READLN.

o string handling

This version of Pascal supports the super
array type LSTRING to handle variable-length
strings efficiently. The ISO standard pro­
vides the PACK and UNPACK procedures for
dealing with strings; other Pascals often have
some improvement on the string handling
facilities described in the standard.

o compiler controls

Compiler controls implemented either as com­
mands within source comments vary from Pascal·
to Pascal. To ensure portabil i ty, eliminate
all embedded controls from comments.

o maximum set size

8-10

The maximum set size varies from Pascal to
Pascal. Some Pascals limit set size to 16 or
64 elements. In this version, sets may con­
tain up to 256 elements. This allows support
of the SET OF CHAR.

Pascal Manual

o type compatibility

The rules for type compatibility vary in their
strictness. In some Pascals, structurally
equivalent types with different names are com­
patible: in others (and in the ISO Standard),
they are not.

o out of block GOTOs

Some Pascals do not permit the out-of-block
GOTOs that are permitted in by this version.

o heap management

Rather than use the procedures NEW and DISPOSE
for managing dynamic allocation of memory,
some Pascal s use the MARK and RELEASE proce­
dures. This version of Pascal supports both
method s • (MARKAS and RELEAS are the names
used for MARK and RELEASE in this version of
Pascal.)

o OTHERWISE in CASE statements and variant
records

If OTHERWISE is omitted in a CASE statement,
control does not automatically pass to the
next executable statement as in some other ex­
tended Pascals. Also, some other Pascals use
the word ELSE or OTHERS instead of OTHERWISE.

o assigning file names

The ASSIGN procedure in this version of Pascal
sets an operating system file name for a file.
Some other Pascals use a second parameter to
RESET and REWRITE for the file name.

o separate compilation

Most Pascals exclude the EXTERN (or EXTERNAL)
directive for procedures and functions. Many
support the idea of a MODULE and/or an INTER­
FACE and IMPLEMENTATION, although the syntax
may differ. Some do not support PUBLIC and
EXTERN variables (but may use a FORTRAN COMMON
approach.) In the latter case, for portabil­
ity, you should give all global variables in
one VAR section, using [PUBLIC] in the PROGRAM
and [EXTERN] in the MODULE, and $INCLUDE the
same variable declarations in each.

Comparisons to Other Pascals B-11

o program parameters

Some Pascals ignore
some Pascals, all
parameters.

o procedural parameters

program parameters. In
files must be program

Several Pascals do not permit passing proce­
dures and functions as parameters. Many do
not permit passing any predeclared procedures
or functions.

UCSD PASCAL AHD OUR VERSION OF PASCAL

Because UCSD Pascal is one of the more prevalent
Pascals for microcomputers, conversion of source
files from UCSD to this version, and vice versa,
is likely to be a common occurrence. This section
discusses the differences and similarities between
the two Pascals.

Our version of Pascal has incorporated many of the
UCSD extensions in one form or another. Table B-1
compares UCSD extensions with similar extensions
available in this version.

The following notes describe comparative points of
interest.

o The UCSD STRING [n] type is logically similar
to the LSTRING (n) type offered by this ver­
sion of Pascal. Both contain the length of a
variable length string in element zero of an
ARRAY of CHAR.

o UCSD Pascal allocates pointer variables· on the
heap with MARK and RELEASE (in this version
MARKAS and RELEAS.) Other Pascals normally
use NEW and DISPOSE. Both methods of dynamic
memory allocation are available with this
version.

B-12 Pascal Manual

o Uni ts are the
exceptions:

same, with the following

In this version of Pascal, an INTERFACE
must appear first in any compliance using
it. Since UCSD Pascal has its own special
file system, the name of the unit can be
used to find the interface file name in a
standard way.

Our version of Pascal requires a list of
all identifiers exported from the unit in
the UNIT clause itself and makes it
optional in a USES clause. Different
identifiers may be given in a USES clause
to avoid identifier conflicts.

Finally, this version provides for unit
initialization code and interface version
control. Neither of these are available
in UCSD Pascal.

o CONCAT is a function in UCSD Pascal; in our
version of Pascal, it is a procedure.

o In UCSD Pascal, when a CASE statement whose
control value does not select a statement is
executed, the statement following the CASE
statement is executed. In this version, you
must include an empty OTHERWISE clause to
obtain this effect.

o UCSD Pascal permits the use of the EOF (F) and
EOLN (F) functions on a closed file; in this
version, this is an error.

o UCSD Pascal permits comparison of records and
arrays with the equal size (=) and the not­
equal sign «». In this version, you must
RETYPE the records and arrays to the same
length STRING type, and then compare them as
strings.

Comparisons to Other Pascals B-13

Table 8-1. Our Pascal and UCSD Pascal.

UCSD Extension

ATAN
BLOCKREAD
BLOCKWRITE
CLOSE
CLOSE (F, LOCK)
CLOSE (F, PURGE)
CONCAT
COPY
DELETE
EXIT
FILLCHAR
HALT
INSERT
IORESULT, $1
LENGTH
LOG
MARK
MEMAVAIL
MOVE LEFT
MOVERIGHT
POS
RELEASE
SCAN
SEEK
SIZEOF
STR
STRING En]
UNIT
Untyped Files

8-14 Pascal Manual

Equivalent

ARCTAN
GETUQQ
PUTUQQ
CLOSE
CLOSE (F)
DISCARD (F)
CONCAT
COPYLST or MOVEL
DELETE
RETURN or GOTO
FILLC and FILLSC
ENDXQQ
INSERT
ERRS and TRAP fields
.LEN or STR [0]
LNDRQQ
MARKAS
MEMAVL
MOVEL and MOVESL
MOVER and MOVESR
POSITN

SCANEQ and SCANNE
SEEK
SIZEOF
ENCODE
LSTRING (n)
UNIT
FCBFQQ type

APPENDIXC: PASCAL SYNTAX DIAGRAMS

The diagrams on the following pages show the
fundamental syntax of the Pascal language. They
are arranged in the order that you would be likely
to use the elements while writing a program. The
meaning of the differently shaped outlines is as
follows:

o Ovals

o Boxes

o Circles

o Arrows

Indicate reserved words or symbols.
These must be typed as shown.

Indicate higher-level constructions
that usually have syntax diagrams
of their own.

Indicate
required
shown.

punctuation
and must be

that
typed

is
as

Help to show the path through the
diagram, including any possible
looping (that is, repetition of
syntax elements.)

Pasca1 Syntax Diagrams C-l

Source File

identifier

declarations

identifier

IMPLEMENTATION identifier

identifier attributes

declarations

C-2 Pascal Manual

Identifier

Number

Label

Uselist

identifier

852-002

Pascal Syntax Diagrams C-3

Declarations

attributes

identifier attributes

variable expression

852-003

C-4 Pascal Manual

Heading

PROCEDURE identifier

FUNCTION

identifier attributes

Attributes

identifier

852-004

Pascal Syntax Diagrams C-S

Type

identifier

expression expression

852-005

C-6 Pascal Manual

Fields

identifier

expression

Body

declarations

852-006

Pascal Syntax Diagrams C-7

Statement

identifier

C-8 Pascal Manual

controlled
statement

expression

statement

852-007

Controlled Statement

statement

OTHERWISE

boolean
expression

expression

expression

statement

statement

Pascal Syntax Diagrams

852-008

C-9

Boolean Expression

expression

Expression

Simple

Term

852-009

C-lS Pascal Manual

Factor

identifier

expression

identifier

variable

Cases

-r ___ ex_pression----' t----"--i[~~ex-pression-----.:----I 1 ~) ~
-0-- 852-010

Pascal Syntax Diagrams C-II

Real Number

Variable

identifier

852-011

C-l2 Pascal Manual

Constant

identifier

expression expression

*

852-012

Pascal Syntax Diagrams C-lJ

APPENDIX D: SUMMARY OF RESERVED WORDS
AND PREDECLARED IDENTIFIERS

RESERVED WORDS

Reserved words at the standard level:

AND
ARRAY
BEGIN
CASE
CONST
DIV
DO
DOWNTO
ELSE
END
FILE
FOR
FUNCTION
GOTO
IF
IN
LABEL
MOD

NIL
NOT
OF
OR
PACKED
PROCEDURE
PROGRAM
RECORD
REPEAT
SET
THEN
TO
TYPE
UNTIL
VAR
WHILE
WITH

Additional reserved words at the extend level:

ADR
ADS
BREAK
CONSTS
CYCLE
IMPLEMENTATION
INTERFACE
MODULE

Names of attributes:

EXTERN
EXTERNAL
INTERRUPT
ORIGIN
PORT

Names of directives:

EXTERN
EXTERNAL
FORWARD

OTHERWISE
RETURN
UNIT
USES
VALUE
VARS
XOR

PUBLIC
PURE
READONLY
STATIC

Reserved Words and Predeclared Identifiers D-I

Logically, directives are reserved words. Since
addi tional directives are allowed in ISO Pascal,
all are included at the standard level. Note that
EXTERN is both a directive and an attribute:
EXTERNAL is a synonym for EXTERN in both cases.
This provides compatibility with a number of other
Pascals.

PREDECLARED IDENTIFIERS

Predeclared identifiers for this version of Pascal
are summarized in Tables D-l and D-2.

Table D-l. Predeclared Identifiers at the
Standard Level.

ABS
ARCTAN
BOOLEAN
CHAR
CHR
COS
DISPOSE
EOF
EOLN
EXP
FALSE
FLOAT
GET
INPUT
INTEGER
LN
MAXINT
NEW
ODD
ORD
OUTPUT

D-2 Pascal Manual

PAGE
PACK
PRED
PUT
READ
READLN
REAL
RESET
REWRITE
ROUND
SIN
SQR
SQRT
SUCC
TEXT
TRUE
TRUNC
UNPACK
WRITE
WRITELN

Tab1e D-2. Predec1ared Identifiers at the
Extend Level.

ABORT
ADRMEM
ADSMEM
ASSIGN
CLOSE
BYLONG
BYTE
BYWORD
COPYLST
CONCAT
COPYLST
COPYSTR
DECODE
DELETE
DIRECT
DISCARD
ENCODE
EVAL
FCBGQQ
FILEMODES
FILLC

FILLSC
FLOAT 4
HIBYTE
HIWORD
INSERT
INTEGERI
INTEGER2
INTEGER4
LOBYTE
LOWER
LOWORD
LSTRING
MAXINT4
MAXWORD
MOVEL
MOVER
MOVESL
MOVESR
NULL
POSITN

READFN
READSET
REAL4
REAL8
RESULT
RETYPE
ROUND4
SCANEQ
SCANNE
SEEK
SEQUENTIAL
SINT
SIZEOF
STRING
TERMINAL
TRUNC4
UPPER
WORD
WRD

Reserved Words and Predeclared Identifiers D-3

APPENDIX E: CONVERSION TO AND FROM IEEE FORMAT

Pascal releases numbered 8.0 and higher use IEEE
real number format. IEEE format is not compatible
with the format used for real numbers in releases
of the Pascal compiler numbered less than 8.0.

If you need to convert real
format to the other, you can
following library routines:

o To IEEE Format

numbers from
do so using

PROCEDURE M2lSQQ (VARS RMS, RIEE: REAL4)

o From IEEE Format

PROCEDURE I2MSQQ (VARS RIEEE, RMS: REAL4)

one
the

RMS and RIEEE are real numbers in the old format
and IEEE format, respectively.

If you are using the old format, REAL numeric
constants must be greater than or equal to 1.0E-38
and less than l.0w+38. For IEEE format, by con­
rast, REAL numeric constants are kept in double
precision and so can range from about lE-306 to
IE306.

Conversion to and from IEEE Format E-l

APPENDIX F: USING PASCAL AS A SYSTEMS PROGRAMMING
LANGUAGE

Pascal is becoming an increasingly popular lan­
guage for systems programming in the 8086 environ­
ment. The structured approach of the language
allows the programmer to easily add assembly
language routines wherever necessary for optimum
performance. At the same time, the structure of
Pascal makes programs that use it easy to read and
maintain.

Wi th Pascal, you can access all CTOS operating
system services, such as direct (random) access to
disk fi les, interrupt handling, and process
creation through Pascal. You can also access DAM,
ISAM, Sort/Merge, and the Forms Run Time from
Pascal.

Application notes which give examples and detailed
information on how to use a variety of CTOS
utilities, such as the video and forms, from
Pascal are available from technical support.

Pascal as a Systems Programming Language F-l

MAKING CALLS TO CTOS UTILITIES FROM PASCAL

Pascal allows you to easily access operating
system utilities. For instance to make a call to
OpenFile simply declare it as a function as below:

FUNCTION OpenFile(pfh: FhTypePtr; pbFileSpec:
StringPtr; CbFileSpec: WORD;
pbPassword: StringPtr; cbPassword:
WORD; mode: WORD): ErcType: EXTERN:

Since such utilities are used frequently, it is a
helpful technique to define them separately in an
external definition file (EDF), so that they can
be referenced from an-y-pi-ogram or module using the
metacornrnand $INCLUDE.

The subsection "EDF File Example" shows one such
EDF file, Syslit.Edf, which defines several
generally useful data types.

A program can then be written that uses proce­
dures, functions, and literals from Syslit.Edf
simply by including the line below.

(* $INCLUDE: 'Syslit.Edf' *)

Once this is done, all the procedures, functions,
constants, and literals can be used as if declared
within the program itself.

EDF FILE EXAMPLE

(*
FILE: Syslit.Edf

SYStem LITeral External Definition File
Generally useful Pascal types for CTOS interface

*)

TYPE

ErcType
FlagType
FhType
LfaType
ModeType
POINTER
QUAD

WORD;
BOOLEAN;

= WORD:
INTEGER4;
WORD;
ADS of WORD;

= INTEGER4;

F-2 Pascal Manual

CONST

ercOk
modeAppend
modeModify
mode Read
modeWrite

0;
RETYPE (WORD,
RETYPE (WORD,
RETYPE (WORD,
RETYPE (WORD,

'rna' } ;
'mrn'};
'mr' } ;
'mw'}:

Pascal data types are not totally adequate for use
wi th the CTOS operating system: therefore, data
types that are roughly equivalent were chosen for
Syslit.Edf in the example above. The semantics of
the data types used in Syslit.Edf are shown below:

ErcType

FlagType

FhType

LfaType

ModeType

POINTER

QUAD

2-byte unsigned integer: contains
error status returned from a CTOS
facility. Error status of 0 is no
error.

I-byte unsigned integer.
flag is off, and I means
on.

o means
flag is

2-byte unsigned integer: contains a
file handle (number) that uniquely
identifies open files for the file
system.

4-byte unsigned integer: contains a
logical file address (number) that
identifies an offset from the
beginning of a file.

2-byte string: contains two charac­
ters that indicate a file's access
mode for the file system.

4-byte segmented address:. contains
two words, of which the low word is
the relative address within a seg­
ment, and the high word is the
segment base address.

4-byte unsigned integer: contains
a number in the range 0 to
4,294,967,295 (used for arithmetic
involving logical file addresses).
Note that INTEGER4 does not satisfy
this range.

Pascal as a Systems Programming Language F-3

Table F-l shows the CTOS type and the equivalent
Pascal type.

Table F-I. Pascal Data Types for Use with CTOS.

CTOS T:t::Ee

ercType

pbType or
pointer

flagType

fhType

modeType

lfaType or
quadType

Eguivalent Pascal T:t:Ee

WORD

ADS of WORD

BOOLEAN {00h false, 0lh true}

WORD

WORD

ADS of WORD, or INTEGER4

ADS of WORD works here if the type
is used for displacement only or if
the math performed on the type is
WORD math.

INTEGER4 is not strictly an Lfa or a
Quad, since the most significant bit
is used as a sign, but it works for
positive numbers.

F-4 Pascal Manual

CTOS· STRUCTURES AND PASCAL

Pascal word-aligns all fields in a record.

eTOS structures, however, are often not word­
aligned. In these cases you can use the explicit
offset syntax for record fields.

For example:

ExpDateTimeType

(See the subsection
Section 6, "Arrays,
discussion.

record
year [00] :word:
month[02]:byte:
monthDay[03]:byte:
weekDay[04]:byte i

hour[05]:byte:
minute[06]:byte:
second[07]:byte:
end:

"Explicit
Records,

Field Offsets" in
and Sets," for a

Pascal as a Systems Programming Language P-5

ACCESSING CTOS STRUCTURES FROM PASCAL: EXAMPLE

{This is an example of how to access CTOS struc­
tures from Pascal. The program displays the OS
version found in the System Common Address Table
(SCAT), the amount of memory allocated to CTOS
found in the System Configuration Block (SCB), and
the total amount of memory in the workstation,
also found in the SCB.}

{$debug-}

Program TaikingToCTOS (Output);

Type
pbType ads of word;

{pointer to word}
ppType ads of pbType;

{pointer to pointer}
paraType word;

{a paragraph of memory is 16 words}

{Type definition for System Configuration Block,
below, describes memory as follows:

saMernMax ---------- top of memory
I

saMaxSL ---------- top of short-lived memory
I
I

saCurrSL ---------- bottom of short-lived
memory

saCurrLL ---------- top of long-lived memory

saMinLL ---------- top of CTOS /
bottom of long-lived memory

---------- bottom of memory (0:0)

Segment addresses point to paragraphs; they can be
multiplied by the paragraph size (16 bytes) to
determine the physical location in bytes of the
segment.

Note: When accessing CTOS structures whose fields
are not word aligned, explicit offsets must be
used in field definition, since Pascal will
otherwise word-align fields.}

F-6 Pascal Manual

SCBType

pSCBType

record
SysBuildType
OsType
saMinLL
saCurrLL
saCurrSL
saMaxSL
saMernMax
end;
ads of SCBType;

VersionType Istring(30):

[00J :byte;
[en J :byte;
[02J:paraType i

[04J:paraType:
[06J:paraType:
[08J:paraType:
[10J:paraType:

{version is an 'sb' string, a.k.a, lstring}

pVersionType = ads of VersionType:

{definitions of ~TOS externals:}

Function GetpStructure (
structCode :word:
ph :word:
{partition handle}
ppStructureRet :ppType :word: extern:

Procedure CheckErc (
erc :word); extern:

Procedure DumpCTOSVersion [publicJ;
Const oVersion = #254:

{oVersion is the relative address of the
pointer to the pointer to the version. It can
be found in the System Common Address Table
(SCAT) described in the CTOS Operating System
Manual, Volume 2. The segment address for all
fields in the SCAT is zero}

var
pVersion :pVersionType:

{pointer to CTOS version}
Version :VersionType:

begin

{GetpStructure takes as arguments a structure
code or relative address of a structure
defined in the SCAT, a partition handle (if
zero then the handle of the partition the
program is running in), and the address of the
address to be returned}

Pascal as a Systems Programming Language F-7

CheckErc (GetpStructure (oVersion, 0,
ads pVersion»;

Version := pVersionAi
{deference pointer to our lstring}

{note: deferencing structure pointers
requires the run time. Structure pointers
can be deferenced without the run time on a
field by field basis}

Writeln ('CTOS version
end;

, , Version) :

Procedure DumpMemoryMap [public];
Const oSCB = #2C8;
{relative address of the pointer to the System
Configuration Block}

var

begin

sOsMemory,
sMaxMemory,
sParagraph
pSCB
{pointer to

:integer4:
:pSCBType:

SCB}

CheckErc (GetpStructure (oSeB, 0, ads pSCB»;
sParagraph := 16;
sOsMemory := sParagraph * pSCBA.saMinLL;
sMaxMemory := sParagraph * pSCBA.saMemMax;
Writeln ('OS memory', sOsMemory, , bytes');
Writeln ('Total memory', sMaxMemory, , bytes');
"end;

begin
DumpCTOSVersion;
DumpMemoryMap;

end.

F-8 Pascal Manual

CONTROL OF THE VIDEO DISPLAY

You can control the video display using one of
three different methods: Video Bytestreams,
Direct Video Access (Video Access Method) through
CTOS, or the Forms package.

Using Forms is described in detail in the Forms
Manual. Examples of using Forms with Pascar-are
available as application notes from technical
support.

Section 19, "Video," in the £!2§. Operatin1 System
Manual describes the Video Access Method VAM) in
detail. In addition, an example showing the use
of VAM is included at the end of this section.
Direct Video Access has the advantage that it does
not use the Pascal run-time library.

The remainder of this section describes video byte
streams and shows how to control the video display
from your Pascal program by writing a multibyte
escape sequence to the display. This allows you
to use WRITE and WRITELN to send an escape
sequence to the screen in Pascal in the same way
that you can use OpenByteStream in CTOS. In this
way, a program can

o control character attributes (blinking, re­
verse video, underscoring, half-bright)

o control screen attributes (reverse video, half
bright)

o fill a rectangle with a single character

o control scrolling of lines

o direct video display output to any frame

o control pausing between full frames of data

a control the keyboard LED indicators

a erase to the end of the current line or frame

Pascal as a Systems Programming Language F-9

A multibyte escape sequence consists of the video
display escape character, a command character, and
parameters. The video display escape character is
CHR (255) • To print an escape character, precede
it with another escape character.

The following pages give the format for escape
sequences that control the various features of the
video display. Note that these formats show the
asterisk (*) as the concatenation operator, but
the asterisk can only be used to create constant
string expressions. Variable string expressions
with concatenation, should use the LSTRING
intrinsic CONCAT.

ERROR CONDITIONS IN ESCAPE SEQUENCES

An escape character sequence is in error if the
command characters or parameters are unrecognized
or the parameters are inconsistent.

The following program turns on the cursor, writes
the message "This is a test," and waits for input:

PROGRAM Test (INPUT, OUTPUT)~
VAR

LS : LSTRING (128)~

BEGIN
LS := CHR(255) * Ivn'~
Write (LS, 'This is a testl)~
ReadLn;

END.

VIDEO DISPLAY COORDINATES

Pascal interprets some parameters as ~ and ~
coordinates on the video display.

A value of 255 for x or ~ specifies, respectively,
the last column or line of the frame.

If the value of x or ~ is
greater than the last column
parameters are in error.

F-HJ Pascal Manual

less than 255 and
or line, then the

CONTROLLING CHARACTER ATTRIBUTES: THE 'A' COMMAND

Two formats are available for giving the IAI
command.

Format 1

CHR(255) * IA<pararneter>I

where

<parameter>
is a character in the range A to P.

Format 1 is used to enable or disable character
attributes for characters following the escape
sequence. Table F-2 shows the attributes enabled
or disabled for each escape sequence using the IAI
command.

A yes in Table F-2 indicates that the attribute is
enabled: otherwise, it is disabled.

Table F-2. Character Attributes.

Half-
Mode Blink Reverse Underline brisht

CHR(255) * IAAI no no no no
CHR(255) * IABI no no no yes
CHR(255) * IAC I no no yes no
CHR(255) * IADI no no yes yes
CHR(255) * IAEI no yes no no
CHR(255) * IAFI no yes no yes
CHR(255) * IAG I no yes yes no
CHR(255) * IARI no yes yes yes
CHR(255) * IAII yes no no no
CHR(255) * IAJ I yes no no yes
CHR(255) * IAKI yes no yes no
CHR(255) * IALI yes no yes yes
CHR(255) * IAMI yes yes no no
CHR(255) * IAN I yes yes no yes
CHR(255) * IAO I yes yes yes no
CHR(255) * IApl yes yes yes yes

Pascal as a Systems Programming Language F-ll

Format 2

CHR (255) * I AZ I

Format 2 is used to enable a mode whereby writing
a character into a character position does not
change the character attributes of that character
position.

CONTROLLING SCREEN ATTRIBUTES: THE IHI AND IRI
COMMANDS

Format 1

CHR(255) * 'H<parameter> I

where

<parameter>
is N or F.

Format 1 is used to turn the half bright attri­
bute on if the <parameter> is N or off if the
<parameter> is F.

Format 2

CHR(255) * 'R<parameter>I

where

<parameter>
is N or F.

Format 2 is used to turn the reverse video attri­
bute on if the <parameter> is N or off if the
<parameter> is F.

CONTROLLING CURSOR POSITION AND VISIBILITY: THE
IC I AND IV' COMMANDS

Format 1

CHR(255) * ICI * CHR{<Xposition»
* CHR«Yposition»

where

<Xposition> and <Yposition>
are integer expressions.

Format I is used to position the cursor at coordi­
nates «Xposition>,<Yposition».

F-12 Pascal Manual

Format 2

CHR(255) * 'V'<parameter>

where

<parameter>
is N or F.

Format 2 is used to make the cursor visible if the
<parameter> is N or to make the cursor invisible
if the <parameter> is F.

FILLING A RECTANGLE: THE • F' COMMAND

CHR(255) * 'F' * <character>
* CHR«Xposition»
* CHR«Yposition»
* CHR«width» * CHR«height»

where

<character>
is any character;

<Xposition>, <Yposition>, <width>, and <length>
are integer expressions.

The 'F' command is used to fill a rectangle on the
video display with <character>. The currently
enabled character attributes are given to each
character in the rectangle. A <character> always
speci fies a character in the standard character
set.

The coordinates «Xposition>,<Yposition»
the upper left corner of the rectangle.
of 255 for <width> and <height> specifies,
tively, the remaining width or height
frame.

specify
A value
respec­
of the

CONTROLLING LINE SCROLLING: THE • S· COMMAND

CHR(255) * '5'
* CHR«firstline»
* CHR«lastline»
* CHR«count» * '<direction>'

where

<direction>
is 0 or U.

Pasca1 as a Systems Programming Language F-13

If the <direction> is D, the'S' command is used
to scroll down a portion of the frame beginning at
line <firstline> and extending to (but not in­
cluding) <lastline>. The <count> lines are
scrolled and the top <count> lines of the frame
portion are filled with blanks.

If the <direction> is U, the'S' command is used
to scroll up a portion of the frame beginning at
line <lastline> and extending to (but not
including) <firstline>. The <count> lines are
scrolled and the bottom <count> lines of the frame
portion are filled with blanks.

DIREC"l'ING VIDEO DISPLAY OU"l'PU"l': THE IX I COMMAND

CHR(255) * 'X' * CHR«frame>}

The 'X' command is used to direct video output to
the <frame>'th frame of the video display.

The video display is divided into frames. (See
Section 19, "Video," in the £!.Q§. Operating System
Manual for a discussion of video frames.)

The main frame is the default frame.

If <frame> is 1, the 'X' command is used to direct
video output to the Status Frame at the top of the
video display.

If <frame> is 2, the output is directed to the
line that separates the Status Frame from the main
frame.

CONTROLLING PAUSING BETWEEN FULL FRAMES: THE I P I

COMMAND

CHR(255) * 'P<parameter>,

where

<parameter>
is N or F.

F-14 Pascal Manual

If the <parameter> is N, the 'p' command is used
to enable the pause facility. When the pause
facility is enabled and further output to the
frame would cause data to be scrolled off the top
of the frame, the message:

Press NEXT PAGE or SCROLL UP to continue

is displayed on the last line of the frame.

If the <parameter> is F, the 'p' command is used
to disable the pause facility.

CONTROLLING THE KEYBOARD LED INDICATORS: THE • I •
COMMAND

CHR(255) * 'I<parameter>,

where

<parameter>
is I, 2, 3, a, 9, 0, or T.

The 'I' command is used to turn on an LED
indicator on the keyboard according to the Table
F-3.

Table F-3. LED Parameters.

<parameter>

I
2
3
a
9
o
T

Key

FI
F2
F3
Fa
F9
Fl0
OVERTYPE

ERASING TO THE END OF THE LINE OR FRAME: THE • E •
COMMAND

CHR(255) * 'E<parameter>,

where

<parameter>
is L or F

Pascal as a Systems Programming Language F-15

If the <parameter> is L, the lEI command is used
to erase to the end of the line.

If the <parameter> is F, the lEI command is used
to erase to the end of the frame.

Erasing sets characters to spaces and turns off
all character attributes.

EXAMPLE OF PASCAL CONTROL OF THE VIDEO DISPLAY

{$debug-}

Program VideoSample_PascalRuntime (Input, Output):

{Video sample using multibyte esacpe sequences
and the Pascal run time. The program clears
frame zero, paints a screen, accepts input
from three field, and displays/scrolls the
input on the lower portion of the screen.}

Const
cMaxFields
bEsc
bReverse
bHalfBright
bNormal
bSpace

Type
fieldType
fieldDescType

Var [public]
iField
IsSpace
rgFieldDesc

=3:
=chr(#ff): {escape character}
=chr(#45):
=chr(#42);
=chr(#41):
=chr (#20) i

=lstring(10):
=record
colLabel
rowLabel
colInput
rowInput
IsLabel
IsInput
cbInput
end;

:word:
:fieldType:

:byte:
:byte:
:byte:
:byte;
:fieldType:
:fieldTypej
:word:

:array [wrd(I) •• wrd{cMaxFields)]
of fieldDescType;

F-16 Pascal Manual

Value
lsSpace
rgFieldDesc[l].colLabel
rgFieldDesc[l].rowLabel
rgFieldDesc[l].collnput
rgFieldDesc[l].rowlnput
rgFieldDesc[l].lsLabel
rgFieldDesc[l].cblnput
rgFieldDesc[2].colLabel
rgFieldDesc[2].rowLabel
rgFieldDesc[2].collnput
rgFieldDesc[2].rowlnput
rgFieldDesc[2].lsLabel
rgFieldDesc[2].cblnput
rgFieldDesc[3].colLabel
rgFieldDesc[3].rowLabel
rgFieldDesc[3].collnput
rgFieldDesc[3].rowlnput
rgFieldDesc[3].lsLabel
rgFieldDesc[3].cblnput

Procedure PutAttrs (
bAttr :char)
var

escSeq :string(3);
begin
escSeq[l] := bEsc;
escSeq[2] := 'A';
escSeq[3] := bAttr;
Wri te (escSeq);
end;

Procedure PutField (
iCol,
iRow
LsField
var

:byte:
:fieldType)

escSeq :string(4):
begin
escSeq[l] := bEsc;
escSeq[2] := 'C';
escSeq[3] := chr{iCol):
escSeq[4] := chr(iRow);
PutAttrs (bHalfBright):
Wri te (escSeq):
Write (lsField);
PutAttrs (bNormal):
end; {PutField}

:= ' ;
:= 30;
:= 4;
:= 40;
:= 4;
:= 'Field 1 ' ;
:= 10;
:= 30;
:= 5;
:= 40;
:= 5;
:= 'Field 2' • ,
:= 10;
:= 30;
:= 6;
:= 40;
:= 6;
:= 'Field 3' ;
:= 10;

[public];

[Public]:

Pascal as a Systems Programming Language F-l7

Procedure InitVideo [Public];
begin
{position cursor at top of frame and clear
frame}
PutField (#00, #00,' ');
Write (bEsc * 'EF');
input.trap := true;
end; {InitVideo}

Function GetField (
iCol,
iRow :byte;
Var lsField :fieldType;
cbText :word) :boolean
var

escSeq :string(4);
begin
escSeq[l] := bEsc;
escSeq[2] := 'C';
escSeq[3] := chr(iCol);
escSeq[4] := chr(iRow);
Wri te (esc Seq);
PutAttrs (bNormal);
Write(lsSpace);
Write (escSeq);
Readln (lsField) ;
if input. errs <> 0 then

{e.g. finish is depresssed}
getField := false

else getField := true;
end; {GetField}

Procedure Scroll [public];
var

escSeq :string(6);
begin
{Scroll rows 12 to 27 up by 1 line}
escSeq(l] := bEsc;
escSeq[2] := 'S';
escSeq(3] := chr(12);
escSeq[4] := chr(28);
escSeq[5] := chr(0l);
escSeq[6] := lUI;
Write (escSeq) ;
end;

F-l8 Pascal Manual

[Public];

begin
InitVideo:
for iField := 1 to cMaxFields do

with rgFieldDesc[iField] do
PutField (colLabel,rowLabel,

lsLabel):
iField := Ii
While true do

begin
with rgFieldDesc[iField] do

begin
lsInput := lsSpace:
if not GetField (collnput,rowlnput,

lsInput,cblnput) then

end.

break:
Scroll:
PutField (40,27, lsInput):
if iField < cMaxFields then

end:
end;

iField := iField + 1
else iField := 1:

Pascal as a Systems Programming Language F-19

EXAMPLE OF CTOS CONTROL OF THE VIDEO DISPLAY USING
VAM

{$debug-}

Program VideoSample_Vam:

{Video sample using VAM and VDM. This program
does not make Pascal run-time calls and may be
linked with Pasmin.Obj. The program resets
the video, paints an initial screen, accepts
input from three fields, and displays and
scrolls the .input on the lower portion of the
screen.

An alternative method of
video and keyboard is
package. The advantage of
the appl ication need not
screen coordinates, and
perform type conversion.}

dealing with the
to use the Forms
using Forms is that
deal with physical
input/output calls

Const
cMaxFields
ercOk
bAttrInput
bAttrOutput
bCr

=3~
=0;
=#04~
=#01:
=#0a:
=#lb:
=#08:
=#04:
=#20:

{reverse video}
{half-bright}
{RETURN/NEXT key}
{GO key}
{BACKSPACE key}
{FINISH key}
{SPACE key}

Type

bGo
bBackSpace
bFinish
bSpace

pbType
pbyType
prgbType

=ads of word;
=ads of byte:
=ads of array

[wrd(1) •• wrd(2)] of byte:
fieldDescType =record

colLabel :word:
rowLabel :word:
colInput :word;
rowInput :word:
lsLabel :lstring(20):
rgbInput : array

[wrd(1) •• wrd(20)] of byte:
cbInput :word:

end:

F-20 Pascal Manual

Var [public]
erc,
iField
lsSpace
rgFieldDesc

:word:
:lstring(20):
:array
[wrd(l) •• wrd(cMaxFields)]
of fieldDescType;

Value
lsSpace :=

,
rgFieldDesc[l].colLabel := 30;
rgFieldDesc[l].rowLabel := 4:
rgFieldDesc[l].collnput := 40;
rgFieldDesc[l].rowlnput := 4:
rgFieldDesc[l].lsLabel := 'Field
rgFieldDesc[l].cblnput := 10;
rgFieldDesc[2].colLabel := 30;
rgFieldDesc[2].rowLabel := 5;
rgFieldDesc[2].collnput := 40;
rgFieldDesc[2].rowlnput := 5;
rgFieldDesc[2].lsLabel := 'Field
rgFieldDesc[2].cblnput := 10;
rgFieldDesc[3].colLabel := 30:
rgFieldDesc[3].rowLabel := 6:
rgFieldDesc[3].collnput := 40:
rgFieldDesc[3].rowlnput := 6:
rgFieldDesc[3].lsLabel := 'Field
rgFieldDesc[3].cblnput := 10:

{VAM, VDM, Keyboard Management external
definitions:}

Function ResetVideo
nCols,
nLines :word;
fAttr :boolean:
bSpace :byte:

1 ' :

2' ;

3' :

, :

psMapRet :pbtype) :word; extern:
Function InitVidFrame

iFrame,
iCol,
iRow,
nWidth,
nHeight :word:
borderDesc,
borderChar,
borderAttr :byte:
fDblh,
fDblw :boolean) :word:

Pascal as a Systems Programming Language

extern:

P-2l

Function InitCharMap (
pMap :pbtype;
sMap :word)

Function SetScreenVidAttr
iAttr :word:
fAttr :boolean}

Function ResetFrame (
iFrame :word)

Function PutFrameChars
iFrarne,
iCol,
iRow :word:
pbText :pbType:
cbText :word}

Function PutFrameAttrs
iFrarne,
iCol,
iRow :word:
bAttr :byte:
nPos :word}

Function ScrollFrame (
iFrame,
iLineStart,
iLineMax,
cLines :word:
£Up :boolean)

Function PosFrarneCursor
iFrame,
iCol,
iLine :word}

Function ReadKbd (
pByte :pbyType)

Function Beep

Procedure CheckErc (
erc :word)

Procedure Exit

Function InitVideo (
nCol,
nRow : word) : word
var

F-22

pCharMap
sCharMap

Pascal Manual

:pbType:
:word:

:word;

:word;

:word:

:word:

:word;

:word:

:word;

:word:
:word;

:extern:
:extern:

extern;

extern;

extern;

extern;

extern:

extern:

extern:

extern:
extern;

[Public]:

begin
InitVideo := ercOk;
erc := ResetVideo (nCol,nRow,true,#20,

ads sCharMap);
if erc<>ercOk then

begin InitVideo:=erc; return: end;
erc := InitVidFrame

(0,0,0,nCol,nRow,#00,#20,#00,false,false);
if erc<>ercOk then

begin InitVideo:=erc; return; end;
pCharMap.r:=0:
pCharMap.s:=0;
{null pCharMap means use existing character
map}
erc := InitCharMap (pCharMap, sCharMap):
if erc<>ercOk then

begin InitVideo:=erc: return: end:
erc := SetScreenVidAttr (l,true):
if erc<>ercOk then

begin InitVideo:=erc: return: end;
erc := resetFrame (0):
if erc<>ercOk then InitVideo:=erc;
end: {InitVideo)

Function PutField (
iCol,
iRow :word:
pbText :pbType:
cbText :word) :word [Public]:
begin
PutField := ercOk:
erc := PutFrameAttrs

(0, iCol, iRow, bAttrOutput, cbText):
if erc<>ercOk then

begin PutField := erc: return; end:
erc := PutFrameChars

(0, iCol, iRow, pbText, cbText):
if erc<>ercOk then

PutField := erc:
end: {PutField)

Function GetField (
iCol,
iRow :word:
pbText :prgbType:
cbText :word)
Var

iPos,
ib :word:
b :byte:

:word [Public]:

Pascal as a Systems Programming Language F-23

begin
GetField := ereOk;
ere := PutFrarneAttrs

(0, iCol, iRow, bAttrlnput, ebText);
if ere<>ereOk then

begin GetField := ere; return; end;
ere := PutFrarneChars

(0, iCol, iRow, ads lsSpaee[l], ebText);
if ere<>ereOk then

begin GetField := ere; return; end;
iPos : = 1;
While true do

F-24

begin
ere := PosFrarneCursor

(0 , (iCol + iPos - 1), iRow);
if ere<>ereOk then

begin GetField := ere: return: end;
ere := ReadKbd (ads b);
case b of

bCr, bGo
bFinish
bBaekSpaee

otherwise

end: {case}
end; {while}

Pascal Manual

:break:
: exit;
:if iPos > 1 then

begin
pbTextA[iPos] := bSpaeei
iPos := iPos - I;
ere := PutFrarneChars

(0, (iCol + iPos - 1),
iRow, ads #20,1) ;

if ere<>ercOk then
begin GetField:=erc;

return; end;
end

else ere:=beepi
if iPos > ebText then

ere := beep

end;

else
begin
ere := PutFrarneChars
(0, (iCol + iPos - 1),
iRow, ads b, 1) :

if ere<>ereOk then
begin GetField:=ere;

return: end;
pbTextA[iPos] := b;
iPos := iPos + Ii

for ib:= iPos to cbText do
pbTextA[ib] := bSpacei
{pad with blanks}

erc := PutFrameAttrs
(0, iCol, iRow, bAttrOutput, cbText);

if erc<>ercOk then
GetField := erc;

end: {GetField}

begin

end.

CheckErc {InitVideo (80,28»;
{initialize video for 80 columns, 28 lines}

for iField := 1 to cMaxFields do
with rgFieldDesc[iField] do

CheckErc {PutField (colLabel,rowLabel,
ads lsLabel[l],
wrd(lsLabel.len»);

iField := 1;
While true do

begin
with rgFieldDesc[iField] do
begin
CheckErc (GetField (collnput,rowlnput,

ads rgblnput,cblnput»;
CheckErc (ScrollFrame (0,12,28,l,true»;
CheckErc (PutField (40,27, ads

rgblnput,cblnput»;
if iField < cMaxFields then

iField := iField + 1
else iField := 1;

end;
end;

Pascal as a Systems Programming Language F-25

APPENDIX G: INTERNAL REPRESENTATIONS OF DATA TYPES

INTEGER AND WORD

INTEGER values are l6-bit twos complement numbers,
but a subrange requiring 8 bits or less (in the
range -127 •• 127) is allocated an 8-bit byte. WORD
values are l6-bit unsigned numbers, but a WORD
subrange in the range 0 •• 255 is allocated an a-bit
byte. For l6-bi t INTEGER and WORD values, the
least significant byte has the lower, even
address.

INTEGER4

INTEGER4 values are 32-bi t twos complement
numbers, with the least significant byte at the
lowest, even address and more significant bytes at
increasing addresses. There are no subranges for
INTEGER4 (as there are for INTEGER2.)

IEEE 4-byte real numbers have a sign bit, a-bit
excess 127 binary exponent, and a 24-bit mantissa.
The mantissa represents a number between 1.0 and
2.0. Since the high-order bit of the mantissa is
always 1, it is not stored in the number. This
representation gives an exponent range of 10**38
and 7 digits of precision. The maximum real
number is normally 1.70l4llE38.

For both INTEGER4 and REAL numbers, a number with
an exponent of all zeros is considered zero. An
exponent of all ones is a flag for an invalid real
number, or "not a number" (NaN).

REAL

The REAL4 type is in 32-bi t IEEE format, and the
REAL8 type is in 64-bit IEEE format. The IEEE
standard format is as follows:

REAL4

REAL8

Sign bit, a-bit binary exponent with bias
of 127, 23-bit mantissa

Sign bit, II-bit binary exponent with bias
of 1023, 52-bit mantissa

Internal Representations of Data Types G-l

In both cases the mantissa has a "hidden" most
significant bit (always one) and represents a
number greater than or equal to 1.0 but less than
2.0. An exponent of zero means a value of zero,
and the maximum exponent means a value called NaN
(not a number). Bytes are in "reverse" order~ the
lowest addressed byte is the least significant
mantissa byte.

The REAL4 numeric range is barely seven signi­
ficant digits (24 bits), with an exponent range of
E-38 to E+38. The REAL8 numeric range includes
over fifteen significant digits (53 bits), with an
exponent range of E-306 to E+306.

As an extension to standard Pascal, the exponent
character can be "0" or "d" as well as "E" or "e",
for example, 12. 34d56. Note that, the 0 or d
exponent character does not indicate double pre­
cision, as it does in FORTRAN.

For both INTEGER4 and REAL numbers, a number with
an exponent of all zeros is considered zero. An
exponent of all ones is a flag for an invalid real
number or NaN.

CHAR, BOOLEAN, AND ENUMERATED TYPES

CHAR values and BOOLEAN values take 8 bits. CHAR
values correspond to the ASCII collating sequence.
For BOOLEAN values, FALSE is 0 and TRUE is 1. The
low';"order bit (bit 0) is generally used to check
this value. Bits 1 through 7 are presumed to be
0.

Enumerated values take 8 bits if 256 or fewer
values are declared: otherwise 16 bits are
declared. Values are assigned starting at 0.
Subrange values take either 8 or 16 bits.

REFERENCE TYPES

Pointer values currently take 16 bits. A pointer
is a default data segment offset. A pointer to a
super array type is followed by the bounds (see
the subsection "Super Arrays" below), increasing
the length of the pointer value (DS/S5).

G-2 Pascal Manual

ADR -and ADS are offset addresses and segmented
addresses, respectively. For segmented addresses,
the offset is the lower address, and the segment
follows.

The heap contains heap blocks, which may be allo­
cated or free. A heap block contains a header
WORD, with a IS-bit length (in WORDs) and the
lower-order bit, which is ON- for free blocks and
OFF for allocated blocks. The starting and ending
heap addresses are WORD variables in BEGHQQ and
ENDHQQ.

PROCEDURAL AND FUNCTIONAL PARAMETERS

Procedural parameters contain a reference to the
location of the procedure or function along with a
reference to the upper frame pointer.

The parameter always contains two words, in one of
two formats:

o In the first format, the first word contains
the actual routine's address (a local code
segment offset), and the second word contains
the upper frame pointer. The upper frame
pointer is zero if the actual routine is not
nested in a procedure or function and, there­
fore, the routine has no upper frame pointer.

o In the second format, used for segmented
address targets, the first word is zero and
the second word contains a data segment offset
address. This is an offset to two words in
the constant area that contain the segmented
address of the actual routine. There is never
an upper frame pointer in this case.

SUPER ARRAYS

Representation of a super array type is similar
whether it is a reference parameter or the refer­
ent of a pointer. First comes the address
(reference parameter) or pointer value, which is
ei ther 2 or 4 bytes long. Following the address
are the upper bounds, which are signed or unsigned
16-bit quantities. The bounds occur in the same
order as they are declared. A pointer value to a
super array type is normally longer than other
pOinters, since the upper bounds are included.

Internal Representations of Data Types G-3

SETS

The number of bytes allocated for a SET is:

(ORD (upperbound) DIV 16) * 2 + 2

This is always an even number from 2 to 32 bytes.
For example, SET of 'A' •• ' Z' requires 12 bytes.
Internally, a set consists of an array of bits,
with one bit for every possible ORD value from 0
to the upper bound. Bits in a byte are accessed
starting with the most significant bit. The
occurrence of a given ORD value as an element of a
set implies the bit is 1, and the byte and bit
position of a given ORD value of any set is the
same. For example, the ORD value of tAl is 65,
and the second bit (that is, 2 #01000000) of the
ninth byte in a set is 1 if 'A' is in the set.

A FILE type in a program is a record called a file
control block (of type FCBFQQ) in the file unit.
The initial portion of the FCBFQQ record is
standard for all files, but the remainder is
available for use by the file system. The end of
the FCB contains the current buffer variable. The
internal form of a file varies depending on the
target file system.

STRUCTURES

For arrays and records, the internal form is com­
prised of the internal forms of the components, in
the same order as in the declaration. Arrays,
records, variants, sets, and files always start on
a word boundary. In any case, variables cannot be
allocated more than MAXWORD (64K) bytes.

A PACKED type has the same representation as an
unpacked one.

A variable or component 16 bits or larger is
always aligned on a word boundary: therefore, it
always has an even byte address. The only
exception is when explicit field offsets are given
by the user in .a program.

G-4 Pascal Manual

An 8-bit
boundary,
(array or
which can
an array
boundary.

variable is also aligned on a word
but an a-bit component of a structure
record) is aligned on a byte boundary,

be at an even or odd address. Currently
of 8-bit variables starts on a word

Internal Representations of Data Types G-S

APPENDIX H: PROGRAMMING EXAMPLES

EXAMPLES SHOWING THE USE OF MODULES AND UNITS

The following two examples both perform the same
job, converting a temperature in Celsius to
Fahrenheit. Both use an external function.

Example 1 uses a module to declare the function,
while Example 2 uses a unit.

All the examples in this Appendix were compiled
and run with 9.0 level software.

EXAMPLE 1

The two files are separately compiled, then linked
to create the run file Pel.Run. Pel.Pas contains
the main program, and Pe2. Pas contains a module
that declares a function that changes temperature
from Celsius to Fahrenheit.

Instructions for compiling, linking, and running
the two compilands are given in the subsection
.. Instructions for Compiling, Linking, and Running
Example 1."

Main Program: Pel.Pas

(* Files Pel.Pas and Pe2.Pas must be compiled
separately and linked together.*)

(* This program converts Celsius temperature to
Fahrenheit. It prompts the user to enter the
Celsius temperature, then converts . that to
Fahrenheit, and displays the result on the screen.
It then prompts the user for another Celsius
temperature, and so on. The program terminates
when the user enters a number less than -200.
*)

(*The program uses an external function,
Fahrenheit, to compute the Fahrenheit temperature.
That function is declared in a separate compiland
in the file Pe2.Pas
*)

Programming Examples H-I

Program CelsiusToFahrenheit(Input,Output);

VAR celsTemp : REAL:

FUNCTION Fahrenheit (celsius
EXTERN;

BEGIN

REPEAT

(* Prompt the user for input.*)

REAL)

write ('Enter Celsius temperature l
);

REAL;

write (I (-200 or less to exit): I):

(* Read the response.*)

readln{celsTernp);

IF celsTernp <= -200 THEN BREAK; (* Check for
sentinel value*)

(* Convert Celsius temperature to Fahrenheit and
display the result.*)

writeln;
writeln(celsTemp:6:3,' C = I,

Fahrenheit(celsTemp):6:3,' FI);
writeln;

UNTIL FALSE

END.

B-2 Pasca1 Manua1

Module:. Pe2.Pas

(* Files Pel.Pas and Pe2.Pas must be compiled
separately and linked together. *)

(*This file contains a module declaring the
function Fahrenheit.
*)

module Fah;

FUNCTION Fahrenheit(cels:REAL) : REAL;

(* This function converts Celsius temperature to
Fahrenheit.
ON ENTRY: cels is temperature in degrees Celsius.
RETURN: The function returns temperature in
degrees Fahrenheit.
*)

BEGIN

Fahrenheit := cels * (9/5) + 32

END; (* End of Fahrenheit.*)

END. (* End of module.*)

Programming Examples B-3

Instructions for Compiling, Linking, and Running
Example 1

To invoke the compiler, type "Pascal" into the
Executive command form. Complete the Pascal com­
mand form as shown below, then press GO:

Pascal
Source file Pel.Pas
[Object file] -----------------------------
[List file]
[Object list file]

After the program has compiled, compile the module
the same way, but complete the command form as
shown below:

Pascal
Source file Pe2.Pas
[Object file] -----------------------------
[List file]
[Object list file]

Then link the resulting two object files, Pel.Obj
and Pe2. Obj • The Linker is invoked through the
Executive, by typing "Link" (or as many letters as
required to make the command unique) into the
Executi ve command form. Compl ete the form as
shown below:

Link
Object modules
Run file
[List file]
[Publics?]
[Line numbers?]
[Stack size]
[Max memory array size]
[Min memory array size]
[System build?]
[Version]
[Libraries]
[OS Allocation]
[Symbol file]

H-4 Pascal Manual

Pel.Obj Pe2.0bj
Pel.Run

The resulting run file, Pel.Run, can be invoked by
completing the Run command form as shown below.
Remember, to terminate the program, enter a
Celcius temperature of less than -200.

Run
Run file Pel.Run
[CaseJ ~--~~--------------------------
[Parameter IJ
[Parameter 2J
[Parameter 3J
[Parameter 16J

Programming Examp1es 8-5

EXAMPLE 2

The three files shown below perform the same job
as the files shown in Example 1.

Pe3.Pas contains the main program, and Pe4.Pas
contains a unit that declares a function that
changes temperature from Celsius to Fahrenheit.

These two files are separately compiled, then
linked to create the run file Pe3.Run.

The interface file, Pei.Inf (the third file shown
below), is used by both Pe3.Pas and Pe4.Pas. It
is ~ compiled separately.

Instructions for compiling, linking, and running
the two compilands are given in the subsection
"Instructions for Compi 1 ing, Linking, and Running
Example 2."

Main Program: Pe3.Pas

(* This file, Pe3.Pas, must be compiled separately
and 1 inked together with Pe4. Pas. Both Pe3. Pas
and Pe4.Pas use an interface in the file Pei3.Inf.
The File Pei3.Inf cannot be compiled separately.*)

(* Pe3.Pas and Pe4.Pas implement the same program
as the files Pel.Pas and Pe2.Pas in Example 1, but
here we use a unit instead of a module to
i~plement the function Fahrenheit.*)

(* This program converts Celsius temperature to
Fahrenhei t. It prompts the user to enter the
Celsius temperature, then it converts it to
Fahrenheit, and displays the result on the screen.
It then prompts the user for another Celsius
temperature, and so on. The program terminates
when the user enters a number less then -200.
*)

(*The program uses an external function,
Fahrenheit, to compute the Fahrenheit temperature.
That function is declared in a separate compiland
in the file Pe4.Pas
*)

8-6 Pascal Manual

(* $INCLUDE: 'Pei3.Inf' --- interface file.*)

Program CelsiusToFahrenheit(Input,Output):

USES Fah(Fahrenheit)i

VAR celsTemp : REAL;

BEGIN

REPEAT

(* Prompt the user for input.*)

write ('Enter Celsius temperature');
write (' (-200 or less to exit): '};

(* Read the response.*)

readln(celsTemp);

IF celsTemp <= -200 THEN BREAK; (* Check for
sentinel value*)

(* Convert Celsius temperature to Fahrenheit and
display the result.*)

writeln;
writeln(celsTernp:6:3,' C = "

Fahrenheit(celsTemp):6:3,' F');
writeln;

UNTIL FALSE

END.

Programming Examples 8-7

Unit: Pe4.Pas

(* Pe4.Pas must be compiled separately and linked
together with Pe3.Pas. Both files use an
interface in the file Pei3. Inf. File Pei3. Inf
cannot be compiled separately.*)

(*This file contains an implementation of unit Fah
*)

(* $INCLUDE: 'Pei3.Inf' --- interface file.*)

IMPLEMENTATION OF Fahi

FUNCTION CompFah: (* (eels : REAL) : REAL *)

(* This function converts Celsius temperature to
Fahrenheit.
ON ENTRY: cels is temperature in degrees Celsius.
RETURN: The function returns temperature in
degrees Fahrenheit.
*)

BEGIN

CompFah := cels * (9/5) + 32

END: (* End of CompFah.*)

END. (* End of module.*)

Interface: Pei3.INF

(* Interface
INCLUDEd into
file is not
separately).
*)

for the unit Fah. This file is
the files Pe3.Pas and Pe4.Pas. This
a compiland {it is not compiled

INTERFACE (2): (* 2 is a version number.*)

UNIT Fah{CompFah)i

FUNCTION CompFah{cels REAL) REAL:

END:

8-8 Pascal Manual

Instructions for Compiling, Linking, and Running
Example 2

Invoke
section
Running
Pe4.Pas
form as

the compiler, as described in the sub­
"Instructions for Compil ing, Linking, and
Example 1," above, and compile Pe3.Pas and
each separately. Complete the command

shown below:

Pascal
Source file Pe3.Pas -------------------------------[Object file]
[List file]
[Object list file]

Pascal
Source file Pe4.Pas
[Object file] ~~~~---------------------
[List file]
[Object list file]

Then link the resulting two object files, Pe3.0bj
and Pe4.0bj, by completing the Linker command form
as shown below:

Link
Object modules
Run file
[List file]
[Publics?]
[Line numbers?]
[Stack size]
[Max memory array size]
[Min memory array size]
[System build?]
[Version]
[LibrariesJ
[DS AllocationJ
[Symbol file]

Pe3.0bj Pe4.0bj
Pe3.Run

The resulting run file, Pe3.Run, can be invoked by
completing the Run command form as shown below.
Remember, to terminate the program, enter a
Celsius temperature of less than -200.

Run
Run file Pe3.Run
[Case] ---------------------------------
[Parameter IJ
[Parameter 2J
[Parameter 3J
[Parameter 16J

Programming Examples 8-9

EXAMPLE 3: BINARY TREE SEARCH

The following example shows a more complicated
Pascal program than the examples given above. The
program reads a file of characters, orders them
(by their ASCII value), and prints them out in
order. It stores the characters in an ordered
binary tree and traverses the tree in order.
Characters are read until it reaches the end of
file or a period character (.) whichever comes
first. The program uses an additional program
parameter, Keyfile, as well as the file Input and
Output.

The entire example consists of two compilands (a
main program and a module that defines procedures)
and an $ INCLUDEd file that is not compiled
separately.

Instructions for compiling, linking, and running
the program appear below.

H-H' Pascal Manual

MAIN PROGRAM: MAINTREE. PAS

(* This file has the main program for the trees
example. The program reads a file of keys, builds
an ordered binary tree out of them, then traverses
the tree in order, displaying the keys.
*)

PROGRAM DisplayOrderedKeys{input,output,keyFile)i

(* $INCLUDE:'Tree.Dcl ' --- TYPE declarations.*)

VAR keyFile: KeyFileTypei (* input file of keys.*)

(* External procedures and functions.*)

FUNCTION BuildTree (VAR keyFile : KeyFileType)
TreeNodePtriEXTERNi

(*This function builds a tree and returns
a pointer to the tree.

PARAMETER: keyFile --- the file where the keys
are.

RETURN: the function returns a pointer to the tree
built.

*)

PROCEDURE TraverseTreeInOrder{root: TreeNodePtr;
PROCEDURE Action{key:KeyType))i EXTERNi

(* This procedure traverses a tree in order while
calling a procedure to process each key.
PARAMETERS: root --- pointer to tree root,

*)

Action --- procedure to process each
key.

PROCEDURE DisplayKey(key:KeyType)i EXTERNi

(* This procedure displays a key on the screen.
PARAMETER: key --- key to display.
*)

(* Internal procedure.*)

Programming Examples B-ll

PROCEDURE DisplayTree(root:TreeNodePtr)i

(* This procedure displays the keys ordered by
their value on the screen. It writes a heading,
then the keys.
PARAMETER : root --- pointer to the tree root.
*)

BEGIN

(* Write the heading.*)

writelni
writeln(,
writelni

ORDERED KEYS') i

(*Display the keys.*)

TraverseTreeInOrder{root,DisplayKey);

writeln (* New line at the end*)

ENDi

BEGIN (* Main program*)

reset{keyFile)i

DisplayTree(BuildTree(keyFile»i

writelni
writeln{'Program terminated.')

END.

B-12 Pascal Manual

MODULE: TREEMODULE. PAS

(* This module contains procedures to build and
display trees.*)

module trees[];

(* $INCLUDE: ITree.Dcl l *)

CaNST
SentinKey = 1.1; (* Sentinel key value.*)

FUNCTION GetNewNode(VAR root:TreeNodePtr;
key: KeyType) : TreeNodePtr;

(* This function finds a place in a tree where a
key should be inserted, creates a node for
the key and inserts the node into the tree.
It does not fill the node fields.
PARAMETERS: root --- a pointer to the tree root,

key --- the key.
RETURN: The function returns a pointer to the new

node.
Note that root can be changed if the tree is
empty. *)

BEGIN

IF root NIL
THEN

(* If tree is empty*)

ELSE

END;

BEGIN
new(root):
GetNewNode :=
END

(* root points to new node*)
root (* return the pointer*)

(* tree is not empty *)

IF key <= rootA.nodeKey
THEN (* Insert new node into*)

(* left sub-tree*)

GetNewNode := GetNewNode(rootA.left,key)

ELSE (* Into right sub-tree*)

GetNewNode := GetNewNode(rootA.right,key)

(*---------------------------------------*)

Programming Examples H-13

PROCEDURE FillNode(node : TreeNodePtr:
key: KeyType):

(* This procedure initializes new node fields:
left and right pointers to NIL, the key to 'key'.
PARAMETERS: node --- pointer to the node,

key --- the key. *)
BEGIN

WITH node" DO
BEGIN

END:

left := NIL:
right := NIL:
nodeKey := key
END

(*--------------------------------------*)
PROCEDURE InsertKey(VAR root : TreeNodePtr:

key KeyType)i

(* This procedure inserts a key into a tree.
PARAMETERS: root --- pointer to tree root,

key --- the key.
*)

BEGIN

FillNode{GetNewNode{root,key),key)

END:

(*-----------------------------------*)

H-14 Pascal Manual

FUNCTION BuildTree (VAR keyFile : KeyFileType) :
TreeNodePtr [PUBLIC]:

(*This function builds a tree and returns
a pointer to the tree.

PARAMETER: keyFile --- the file where the keys
are.

RETURN: the function returns a pointer to the tree
built.

*)

VAR
key : KeyType:
root : TreeNodePtr:

(* holds current key. *)
(*pointer to tree root.*)

BEGIN

root := NIL:

REPEAT (*Loop reading keys and inserting*)
(*them into the tree. *)

IF (EOF(keyFile» THEN BREAK; (*Stop reading*)
(*keys if reached*)
(* end of file. *)

(* read a key and insert it into the tree.*)

read (keyFile,key):
InsertKey (root,key):

UNTIL key = SentinKey:

BuildTree := root

END:

(*-----------------------------------*)

Programming Examples H-15

PROCEDURE TraverseTreeInOrder{root: TreeNodePtr:
PROCEDURE Action{key:KeyType» [PUBLIC]:

(* This procedure traverses a tree in order while
calling a procedure to process each key.
PARAMETERS: root --- pointer to tree root,

*)

Action --- procedure to process each
key.

BEGIN

IF root <> NIL
THEN

END:

BEGIN
(* Traverse left sub-tree*)
TraverseTreeInOrder{rootA.left,Action):
(* Process root key*)
Action{rootA.nodeKey);
(* Traverse right sub-tree*)
TraverseTreeInOrder{rootA.right,Action)
END

(*--------------------------------------*)

PROCEDURE DisplayKey{key:KeyType) [PUBLIC]:

(* This procedure displays a key on the screen.
PARAMETER: key --- key to display.
*)

BEGIN

write{key)

END;

END.

8-16 Pascal Manual

INCLUDED DECLARATION FILE: TREE.DeL

(* Declarations for the tree example *)

TYPE
KeyType = CHAR: (* Type of tree key*)
KeyFileType = FILE OF KeyType:
TreeNodePtr = ATreeNode: (* Pointer to tree*)
TreeNode = RECORD

nodeKey : KeyType:
left : TreeNodePtr;
right : TreeNodePtr

END:

Programming Examples H-17

INSTRUCTIONS FOR COMPILING, LINKING, AND RUNNING
EXAMPLE 3

Example 3 is compiled exactly as Example 2, except
that the two compilands are TreeMain.Pas and
TreeModule. Pas. The file Tree. Dcl is included
automatically in both files because the $INCLUDE
metacommand is used in both source files.

After you have compiled, link the two object
files, TreeMain.Obj and TreeModule.Obj, completing
the Linker command form as shown below:

Link
Object modules.
Run file
[List file]
[Publics?J
[Line numbers?]
[Stack sizeJ
[Max memory

array size]
[Min memory

array sizeJ
[System build?]
[Version]
[Libraries]
[OS AllocationJ
[Symbol file]

TreeMain.Obj TreeModule.Obj
TreeMain.Run

The resulting run file, TreeMain.Run, can be
invoked by completing the Run command form as
shown below. The parameter Inputfile is any file
containing ASCI I characters that you choose to
use. Inputfile must be the name of a real file in
your directory.

Run
Run file TreeMain.Run
[CaseJ ~~~~~~~-------------------
[Parameter 1] Inputfile
[Parameter 2J ~~~~~--------------------------
[Parameter 3]
[Parameter l6J

8-18 Pascal Manual

GLOSSARY

actual parameter. See formal parameter.

attribute. An attribute gives additional infor­
mation about a procedure or function. Attributes
are available at the extend level. They are
placed after the heading, enclosed in brackets,
and separated by commas.

body. The body of a program or implementation is
a list of statements enclosed with the reserved
words BEGIN and END.

compile time. Compile time is the time when the
compiler is executing, during which it compiles
the source file and creates an object file.

constant. A constant is a value that is known
before a program starts that will not change as
the program progresses. A constant can be given
an identifier, but you cannot alter the value
associated with that identifier during the exe­
cution of the program. When you declare a
constant, its identifier becomes a synonym for the
constant itself.

directive. A directive gives information about
the location of a procedure or function. A direc­
tive replaces the block of the procedure or
function (declarations and body) and indicates
that only the heading of the procedure or function
occurs. Directives are available in standard
Pascal.

escape sequence. An escape sequence is a sequence
of characters that invokes special functions.

expressions. Expressions are constructions that
evaluate to values.

extend level. The extend level is the language
level that describes features specific to our
version of Pascal, as opposed to standard Pascal.

external reference. An external reference is a
variable or routine in one module that is referred
to by a routine in another module. The variable
or routine is often said to be "defined" or
"public" in the module in which it resides.

Glossary-l

The Linker tries to resolve external references by
searching for the declaration of each such
reference in other modules. If such a declaration
is found, the module in which it resides is
selected to be part of the executable module (if
it is not already selected) and becomes part of
your executable file. These other modules are
usually library modules in the run-time library.

field. Each component of a record type is called
a field. The definition of a record type speci­
fies the type and an identifier for each field
within the record.

file. A file is a structure that consists of a
sequence of components, all of the same type.

File Control Block (FCB). There is a File Control
Block for each open file. The FCB contains infor­
mation about the file such as the device on which
it is located, the user count (that is, how many
file handles currently refer to this file), and
the file mode (read or modify). The FCB is
pointed to by a User Control Block and contains a
pointer to a chain of File Area Blocks. The FCB
is memory resident.

formal parameter. A formal parameter is the
parameter given when the procedure or function is
declared, with an identifier in the heading. When
the function or procedure is called, an actual
parameter substitutes for the formal parameter
given earlier: here the parameter takes the form
of a variable, value, or expression.

function. A function is a subprogram that can be
invoked in expressions wherever values are called
for. A function executes under the supervision of
a main program. Functions can be nested wi thin
each other and can be called recursively.

A function can also be thought of as a procedure
that returns a value of a particular type.

heap. The heap is a dynamically growing and
shrinking region of memory allocated for pointer
variables.

identifier. An identifier is a name that denotes
the constants, variables, data types, procedures,
functions, or other elements of a Pascal program.

Glossary-2 Pascal Manual

impl~mentation of a unit. The compilation unit
where the actual code for a routine exists is
called an implementation of the interface. Since
the implementation does not define the routines it
is implementing, the implementation must textually
include the interface. Any compilation unit that
wishes to call a routine implemented in a
different compilation unit must then explicitly
name the unit it wishes to use and also textually
include the unit's interface. See also interface
and unit.

interface. An interface contains the declarations
for a routine. The code for the routine, however,
exists in another compilation unit called the
implementation of the interface. See also unit.

link time. Link time is the time when the Linker
is executing, during which it links together
object files and library files.

M and N parameters. M and N parameters are value
parameters of type INTEGER and are used for for­
matting in various ways. M and N are expressions
whose integer values are field-width parameters.

metacommand. A metacomrnand is a compiler direc­
tive that you use to control such options as
optimization level, use of the source file during
compilation, listing file format, and debugging
and error handling.

module. Module is a general term for a discrete
unit of code. There are several types of modules,
including relocatable and executable modules. In
addi tion in this version of Pascal, module is a
specific type of Pascal compiland.

Modules are a less structured and less powerful
way than units to combine several compilands into
one program. A module is a program without a
body. (AI though there are no program statements
in a module body, a module does become a procedure
without parameters that can be called from other
commands using the module identifier.)

object module. The object files created by the
compiler are relocatable, that is they do not
contain any absolute addresses. Linking produces
an executable module, that is one that contains
the necessary addresses to proceed with loading
and running the program.

Glossary-3

operator. An oper.ator is a form of punctuation
that indicates some operation to be performed, for
example, the plus sign (+).

ordinal type. An ordinal type is
type that is finite and countable.
include the following simple types:
CHAR, BOOLEAN, enumerated types,
types.

a simple data
Ordinal types

INTEGER, WORD,
and subrange

Note that INTEGER4, though finite and countable,
is not an ordinal type.

overlay. An overlay is a code segment, made up of
the code from one or more object modules. An
overlay is loaded into memory from disk only when
it is needed and is not permanently memory­
resident.

parameter. A parameter provides
mechanism that allows a process
with a variation of its arguments.

a substitution
to be repeated

pointer. A pointer type is a set of values that
point to variables of a given type and is used for
creating, using, and destroying variables allo­
cated from an area called the heap. Pointers are
generally used for trees, graphs, and list
processing. The use of pointers is portable,
structured, and relatively safe.

procedure. A procedure is a subprogram that is
invoked as a statement and executes under the
supervision of a main program. Procedures can be
nested within each other and can be called
recursively.

program. A program is a series of instructions
for the computer that perform a specified task.
In Pascal, a program can include references to
other compilable units, such as modules, or
implementations of units, as well as the series of
instructions themselves.

record type. A record structure acts as a tem­
plate for conceptually related data of different
types. The record type itself is a structure con­
sisting of a fixed number of components, usually
of different types.

reference. A reference to a variable or constant
is an indirect way to access it.

Glossary-4 Pascal Manual

relocatable modules. The module's code can be
loaded and run at different locations in memory.
Relocatable modules contain routines and variables
represented as offsets relative to the start of
the module. These routines and variables are said
to be at relative offset addresses.

routine. A routine is code, residing in a module,
that represents a particular procedure or
function. More than one routine can reside in a
module.

run file. A run file is a memory image of a task
(in ready-to-run form) linked into the standard
format required by the operating system loader.

run time. The time during which a compiled and
linked program is executing. By convention, run
time refers to the execution time of your program
and not to the execution time of the compiler or
the Linker.

run-time library. Contains the run-time routines
needed to implement the Pascal language. A
library module usually corresponds to a feature or
subfeature of this version of Pascal.

simple data type. A simple data type is a data
type that cannot be divided into other types. The
simple data types fall into three categories:
ordinal types, REAL, and INTEGER4.

stack. The stack is an area in the default data
segment used for temporary storage of variables.

statement. A statement is a Pascal command that
performs an action, such as computing, assigning,
altering the flow of control, and reading and
writing files. Statements denote actions that the
program can execute. Statements are found in the
bodies of programs, procedures, and functions and
are executed as a program runs.

A simple statement has no parts that are them-.
selves other statements; a structured statement
consists of two or more other statements.

string constant. A string constant is a sequence
of characters that can be expressions or values of
the STRING type.

Glossary-5

string literal. A string literal is a sequence of
characters enclosed in single quotation marks.

structured data type. A structured data type is a
data type that is composed of other types, for
example, arrays.

super type. A super type is like a set of types
or like a function that returns a type. A super
type declaration determines the set of types that
designators of that super type can assume: it also
associates an identifier with the super type.
Super type declarations also occur in the TYPE
section. The only super types currently available
are super arrays.

tag field. A record can have several variants, in
which case a specific field called the tag field
indicates which variant to use. The tag field can
have an identifier and storage in the record.

type. A type is the set of values that a variable
or value can have wi thin a program. Types are
ei ther predeclared or declared explicitly. See
also super type.

The type declaration associates an identifier with
a type of value. You declare types in the TYPE
section of a program, procedure, function, module,
interface, or implementation (not in the heading
of a procedure or function).

unit. A unit is a program module made up of an
interface and an implementation. A unit is a
group of procedures and functions (but no main
program) that are compiled together. A unit has
two parts, an implementation and an interface.

The unit interface specifies all identifiers that
are defined in the unit that have definitions used
in another compilation unit. The unit implemen­
tation contains the actual code for all procedures
and functions carried out by the unit.

The unit is preceded by the keyword UNIT
unit provided, and with the keyword USES
unit required.

for a
for a

value. A value can be any of the following: a
variable, a constant, a function designator, a
component of a value, or a variable referenced by
a reference value.

Glossary-6 Pascal Manual

value section. You use the VALUE section to give
initial values to variables in a program, module,
procedure, or function. You can also initialize
the variable in an implementation, but not in an
interface.

variable. A variable is a value that is expected
to change during the course of a program. Every
variable must be of a speci fic data type. A
variable can have an identifier.

Glossary-7

INDEX

This index covers both Volumes 1 and 2. Sections 1
through 12 are in Volume 1. Sections 13 through the
Glossary are in Volume 2.

Page numbers in boldface indicate the principal
discussion of a topic.

*, 11-4
+, 11-4

, 11-4
:=, 12-5
<, 11-7
<=, 11-7
<>, 11-7
=, 11-7
>, 11-7
>=, 11-7

ABORT, 14-12, 17-8,
19-16

A2DRQQ, 14-16
A2SRQQ, 14-16, 17-8,

19-16
ABS, 14-13
Access modes, files, 7-6

to 7-7
ACDRQQ, 14-13
ACSRQQ, 14-13
Actual parameter, 13-8
Addition operators, 11-4
Address, segmented,

13-11
Address types, 8-4 to

8-9, G-3
comparing, 11-8
predeclared, 8-6
READs, 15-16
using, 8-8 to 8-10
WRITEs, 15-23

Address variables, 10-8
to 10-9, 10-13

ADR, 8-8 to 8-10
ADRMEM, 8-6
ADS, 8-8 to 8-10
ADSMEM, 8-6
AIDRQQ, 14-13
AISRQQ, 14-13
ALLHQQ, 14-4, 14-14

ALLMQQ, 14-4, 14-14
Allocation of memory,

14-3 to 14-5
AND, 11-5, 11-7
AND THEN, 12-28
ANDRQQ, 14-14
Angle brackets «»,

11-10
ANSI/IEEE standard

Pascal, comparisons
to, B-1 to B-14

ANSRQQ, 14-14
ARCTAN, 14-15
Arithmetic, floating

point, 5-9, 18-8
Arithmetic functions,

14-6 to 14-8
predeclared, 14-7
writing your own, 14-8

Arrays, 6-2 to 6-15
conformant, 6-5, B-1
constant, 9-11 to 9-13
declarations, 6-2
index, 5-10, 6-2, 18-6

to 18-7
internal representa­

tion, 6-26, G-4
PACKED, 6-8, 6-3
super arrays, 6-4 to

6-15, B-1, G-3
variable-length, 6-4

to 6-15
ASCII character set,

1-18
ASCII files, 7-5
ASDRQQ, 14-15
ASSIGN, 7-2, 7-9, 14-15,

15-24, 16-3
Assignment compati­

bility, 4-7 to .4-8,
12-5 to 12-7

address types, 8-8
INTEGER, 5-3

Index-1

Assignment compati­
bility (cont.)

pointer types, 8-3
STRINGs and LSTRINGs,

6-11
WORD, 5-3

Assignment statement,
10-5, 12-5 to 12-7

ASSRQQ, 14-15
ATDRQQ, 14-16
At sign (@), 2-7
ATSRQQ, 14-16
Attributes,

combining, 10-16,
13-18

declaring, 13-19
in modules, 16-9
procedural and func-

tional, 13-15,
13-18 to 13-27

variable, 10-10 to
10-16

video, F-9
Attributes, by name

EXTERN, 10-12 to 10-13
INTERRUPT, 13-14 to

13-26
ORIGIN, 18-13 to

18-14, 13-23 to
13-24

PORT, 18-13 to 18-14,
13-10

PUBLIC, 18-12 to
HJ-13, 13-20,
13-22 to 13-23

PURE, 13-20, 13-26
READONLY, 18-14 to

18-15, 13-10
STATIC, 10-11 to 10-12

$BRAVE, 17-10
Base type, 5-2
BEGIN and END, 12-2,

12-3, 12-11
BEGOQQ, 14-10, 14-16
BEGXQQ, 14-17, 19-1,

19-8
Binary files, 7-5
Binary numbers, 9-7 to

9-8
Binary tree search ex­

ample, H-10 to H-18

Index-2 Pascal Manual

Bitwise logical func-
tions, 11-5

Block, 13-1
Body, 1-4 to 1-5, 12-1
BOOLEAN type, 5-3, 11-2,

G-2
expressions, 11-7
READs, 15-16
WRITEs, 15-22

Bounds-checking, 5-6
Bounds, super array, 6-6
Braces, ({}), 2-3
Brackets, ([]), 6-24,

10-14, 13-20
BREAK statement, 12-24

to 12-25
Buffer variable, 7-3 to

7-4, 10-8
BYLONG, 14-18
BYTE, 5-6
BYWORD, 14-18

Calculating expressions,
1-12, 11-1

Calling sequence, 13-24
Carriage return, 2-1
CASE constant, 6-19,

12-4
CASE statement, 5-10,

9-4, 12-15 to 12-18
constants in, 5-5
in variant records,

6-19
Case, upper or lower,

2-1
Changing type value,

11-18
CHAR, 5-3, G-2
Character constants, 9-9

to 9-10
Characters, 2-1 to 2-7

case, 2-1
separators, 2-2 to 2-3
special uses in

Pascal, 2-1 to 2-7
underscore, 2-2
unused, 2-6 to 2-7

CHDRQQ, 14-19
CHR, 14-19
CHSRQQ, 14-19
CLOSE, 7-9, 14-19, 15-24
CNDRQQ, 14-20

CNSRQQ, 14-20
Colon and equals sign

(:=),12-5
Command form, 18-5
Comments, 2-3 to 2-4

metacommands, 17-1
Comparison, STRINGs and

LSTRINGs, 6-12
Comparisons to other

versions of Pascal,
B-1 to B-14

Compatibility between
types, 4-5 to 4-8

address types, 8-8
pointer types, 8-3
STRINGS, 6-8

Compi1ands, 1-4 to 1-7,
16-1 to 16-22

accessing one from
another, 13-22

modules, 16-8 to 16-10
units, 16-11 to 16-22;

see also Modules
and Units

Compiler, 18-1 to 18-17
bounds-checking, 5-6
compilands, 16-1 to

16-22
controlling source

file, 17-15 to
17-18

directives, 1-2, 17-1
to 17-27; see also
Metacommands

error messages, 19-16,
A-I to A-58

intermediate files,
18-14

invoking, 18-5 to 18-7
language levels, 1-2
listing file control,

17-19 to 17-22
memory requirements,

18-14 to 18-15
metacommands, 1-2,

17-1 to 17-27
optimization, 5-6
options, 18-3 to 18-4
run-time routines,

19-9
structure, 18-14 to

18-15
variables, 10-1

Compound statements,
12-11 to 12-12

Computing a value, 1-12
CONCAT, 14-20
Concatenation of

strings, 9-14
Conditional statements,

12-12 to 12-18
Conformant array, 6-5,

B-1
CaNST parameters, 18-15,

13-12
CONST section, 9-3, 13-3
Constant arrays, 9-11 to

9-13
Constant coercions, 4-5
Constant expressions,

5-7, 9-14 to 9-15,
11-3

Constant records, 9-11
to 9-13

Constant sets, 9-11 to
9-13

Constants, 1-14, 9-1 to
9-15

arrays, 9-11 to 9-13
CASE, 6-19, 12-4
character, 9-9 to 9-10
identifiers, 3-1, 9-1,

9-3
INTEGER, 9-6
LSTRINGs, 6-10
MAXI NT , 5-1
numeric, 9-4
parameters, 13-12
predeclared, 6-10, 9-6
REAL, 5-9, 9-5
records, 9-11 to 9-13
sets, 9-11 to 9-13
structured, 9-11 to

9-13
type compatibility,

4-5
WORD, 9-6

CONSTS parameters, 8-7
to 8-8, 10-15, 13-12

Controlling the video
display, F-9 to F-29

Control variable, 12-20,
13-10

Conversion, INTEGER to
WORD, 14-10; see
also Assignment
compatibility

COPYLST, 6-13, 14-28
COPYSTR, 6-13, 14-21
COS, 14-21

Index-3

CTOS, F-l to F-22
example showing how to

access, F-6 to F-8
structures, F-5

CYCLE statement, 12-24
to 12-25

$DEBUG, 11-14, 13-25,
11-H'

Data conversion func­
tions, 14-5 to 14-6

Data types; see Types
Debugging, 19-3

metacommands, 17-8 to
17-14

Declaration section,
1-4, 3-3

Declaration
arrays, 6-2
constants, 9-3
files, 7-1 to 7-2
functions, 1-9, 13-1,

13-5 to 13-7
pointer types, 8-3
procedures, 1-9, 13-1

to 13-4
variable attributes,

1121-1121; see also
Types

variables, 1121-3
DECODE, 14-22
DELETE, 14-23
Derived type, 6-4
DGroup, 18-1121, 19-6
Diagrams, syntax, C-l to

C-13
Digits, 2-2
DIRECT access mode, 7-6

to 7-8
Directives, 13-18 to

13-27
compiler; see Meta­

commands
EXTERN, 13-21 to 13-22
FORWARD, 13-19, 13-21

DISCARD, 7-9, 14-23,
15-25

DISMQQ, 14-4, 14-23
DISPOSE, 14-3, 14-24
DIV, 11-5
Division, 11-4 to 11-5
DS Allocation, 18-1121

Index-4 Pascal Manual

$ERRORS, 17-1121
$END, 17-16 to 17-17
$ENTRY, 13-25, 17-18,

19-17
EDF file, F-2
Empty record, 6-2121
Empty sets, 11-11
Empty statement, 12-2,

12-5
EMSEQQ, 17-8, 19-16
ENCODE, 14-25
END, 12-3, 12-11
End-of-file, 15-6
End-of-line, 15-6
ENDOQQ, 14-1121, 14-25
ENDXQQ, 14-26
ENTGQQ, 16-3, 19-8
Entry point, 19-1
Enumerated types, 5-4 to

5-5, G-2
changing to, 5-4
constants, 9-1
READs, 15-16

EOF, 14-26, 15-6
EOLN, 14-27, 15-6
Equal to (=), 11-7
ErcType, F-3
Error checking, 12-6

run-time routines,
19-2

Error handling
metacommands, 17-8 to

17-14
run-time support

library, 19-16 to
19-2121

Error messages, 19-16,
A-I to A-58

in listing file, 17-26
Escape sequences, video,

F-ll21 to F-16
EVAL, 11-17, 14-1121,

14-27
Evaluating expressions,

11-14 to 11-17,
14-1121

Examples, H-l to H-18
accessing CTOS, F-6 to

F-8
binary tree search,

H-ll21 to H-18
minimal Pascal, 19-22

to 19-24

Examples (cont.)
module, 1-5, 6-1 to

6-5
units, 1-5, 6-6 to 6-9
video display, F-16 to

F-25
Exclamation point (1),

2-3
EXDRQQ, 14-27
EXP, 14-28
Explicit field offsets,

6-21 to 6-23
Exponents, 5-9, 9-5
Expressions, 1-12, 11-1

to 11-18
BOOLEAN, li-7
common subexpressions,

12-7
constant, 5-7, 9-14 to

9-15, 11-3
conversion of types

in, 11-3 to 11-6
evaluating, 11-14 to

11-17, 14-10
INTEGER, 11-3
optimization, 11-12,

11-14 to 11-17
passing the value of,

11-14 to 11-17,
13-12

set, 11-9 to 11-11
simple types, 11-2 to

11-6
type compatibility,

4-6, 5-2
using functions

within, 1-8, 11-12
to 11-13, 11-17 to
11-18

EXSRQQ, 14-27
Extensions to standard

Pascal, B-5 to B-9
EXTERN attribute, varia­

bles, 10-12 to 10-13
EXTERN directive, 13-21

to 13-22
External definition

file, F-2

FCBFQQ, 7-9
Features, comparisons to

other versions of
Pascal, B-1 to B-14

Field, 6-16
identifier, 3-1, 6-16,

10-7
tag field, 6-18
values, 10-7
variables, 10-7

File
external definition

(EDF), F-2
listing format, 17-23

to 17-27
object list, 19-3
symbol, 19-3: see also

Files
File Control Block,

accessing fields of,
15-24

File-oriented functions,
15-1 to 15-29

File-oriented proce­
dures, 15-1 to 15-29

Files, 7-1 to 7-12
access modes, 7-6 to

7-7
ASCII, 7-5
binary, 7-5
buffer variable, 7-3

to 7-4, 10-8
declaring, 7-1 to 7-2
INPUT and OUTPUT, 7-2,

7-8, 15-11, 16-4
internal representa­

tion, G-4
temporary, 15-29
text, 7-5, 15-18 to

15-12
File structure, 7-5
File system, 14-3, 15-2

to 15-18
File variable, 7-9
FILLC, 14-28
FILLSC, 14-28
FLOAT, 14-19
FLOAT4, 14-19
Floating point arith-

metic, 5-9, 18-8
FOR statement, 5-10,

12-28 to 12-24
Formal parameter, 13-8
Format, READ, 15-15
Format, WRITE, 15-20 to

15-23
Formatting, textfiles,

15-7
FORWARD, 13-19, 13-21

Inde][-5

Frames, video display,
F-14

FREECT, 14-4, 14-19
FREMQQ, 14-4, 14-38
Function identifier,

13-5
Functions, 1-8 to 1-9,

13-1 to 13-27
arithmetic, 14-6 to

14-8
current value, 11-17,

13-6
data conversion, 14-5

to 14-6
declaration, 1-9,

13-1, 13-5 to 13-7
designating in an

expression, 11-12
to 11-13

directives, 13-18 to
13-27

directory of available
functions, 14-1 to
14-67; see also
Functions, by name

file-oriented, 15-1 to
15-29

identifiers, 3-1
parameters, 13-8 to

13-17, G-3
predeclared, 14-1
REAL values, 5-9
using as a procedure,

11-17 to 11-18i
Bee also Attri­
butes, by name

Functions, by name
A2DRQQ, 14-16
A2SRQQ, 14-16, 17-8,

19-16
ABS, 14-13
ACDRQQ, 14-13
ACSRQQ, 14-13
AIDRQQ, 14-13
AISRQQ, 14-13
ALLHQQ, 14-4, 14-14
ALLMQQ, 14-4, 14-14
ANDRQQ, 14-14
ANSRQQ, 14-14
ARCTAN, 14-15
ASDRQQ, 14-15
ASSRQQ, 14-15
ATDRQQ, 14-16
ATSRQQ, 14-16
BYLONG, 14-18

Index-6 Pascal Manual

BYWORD, 14-18
CHDRQQ, 14-19
CHR, 14-19
CHSRQQ, 14-19
CNDRQQ, 14-20
CNSRQQ, 14-20
COS, 14-21
DECODE, 14-22
DISMQQ, 14-4, 14-23
ENDOQQ, 14-10, 14-25
EOF, 14-26, 15-6
EOLN, 14-27, 15-6
EXDRQQ, 14-27
EXP, 14-28
EXSRQQ, 14-27
FLOAT, 14-19
FLOAT4, 14-19
FREECT, 14-19
FREMQQ, 14-30
GET, 14-38, 15-3
GETMQQ, 14-4, 14-38
GTYUQQ, 14-31
HIBYTE, 14-31
HIWORD, 14-31
LADDOK, 14-32
LDDRQQ, 14-32
LDSRQQ, 14-32
LMULOK, 14-33
LN, 14-33
LNDRQQ, 14-33
LNSRQQ, 14-33
LOBYTE, 14-34
LOCKED, 14-34
LOWER, 13-11, 14-35
LOWORD, 14-35
MDDRQQ, 14-37
MDSRQQ, 14-37
MEMAVL, 14-37
MNDRQQ, 14-38
MNSRQQ, °14-38
MXDRQQ, 14-41
MXSRQQ, 14-41
ODD, 14-44
ORO, 14-44
PIDRQQ, 1tt.-46
PISRQQ, 14-46
POSITN, 14-46
PRDRQQ, 14-49
PREALLOCHEAP, 14-47
PREALLOCLONGHEAP,

14-48
PRED, 14-48
PRSRQQ, 14-49
PURE, 13-20, 13-26
RESULT, 13-6, 14-53

Functions, by name
(cont.)

RETYPE, 11-18, 14-54
to 14-55

ROUND, 14-56
ROUND4, 14-56
SADDOK, 14-57
SCANEQ, 14-57
SCANNE, 14-58
SHDRQQ, 14-58
SHSRQQ, 14-58
SIN, 14-59
SIZEOF, 14-59
SMULOK, 14-59
SNDRQQ, 14-60
SNSRQQ, 14-60
SQR, 14-60
SQRT, 14-60
SRDRQQ, 14-60
SRSRQQ, 14-60
SUCC, 14-61
THDRQQ, 14-61
THSRQQ, 14-61
TNDRQQ, 14-61
TNSRQQ, 14-61
TRUNC, 14-62
TRUNC4, 14-62
UADDOK, 14-63
UMULOK, 14-63
UPPER, 13-11, 14-65
WRD, 5-2, 14-66

$GOTO, 17-11
GET, 14-38, 15-3
GOTO Statements, 12-8 to

12-10
using BREAK and CYCLE

instead, 12-24
greater than (», 11-7
greater than or equal to

(>=), 11-7
GTYUQQ, 14-11, 14-31

Heading, 1-4
Heap, 8-1, 10-11, 11-11,

12-27, 14-3 to 14-5,
14-42 to 14-43,
19-5, B-1, G-3

Hexadecimal numbers, 9-7
to 9-8

HIBYTE, 14-31
HIWORD, 14-31

$IF, 17-16 to 17-17
$INCLUDE, 16-12, 17-17

example, H-6 to H-9
$INCONST, 17-17
$INDEXCK, 17-11
$INITCK,11-5, 13-4,

13-6, 17-11
$INTEGER, 17-6
1I2MSQQ, E-l
IC column of listing

file, 17-25
Identical types, 4-5
Identifiers, 1-17, 3-1

to 3-5
case of characters

used, 2-1
constant, 3-1, 9-1,

9-3
construction of, 2-1

to 2-2
declaring, 3-3
enumerated types, 5-4
field, 6-16
function, 13-5
module, 16-8
predeclared, 3-5, D-1

to D-3
program, 16-3
restrictions, 2-1 to

2-6
scope, 3-2 to 3-4
STRING, 6-8
super type, 6-4
unit, 3-1, 16-13 to

16-14
variable, 3-1, 10-1,

18-6
IEEE real number format,

5-8
conversion of REAL

numbers from old
format to, E-1

IF statement, 12-12 to
12-14

Implementations of
units, 16-19 to
16-22: see also
Units, examples

IN, 11-10
Incompatible types: see

Compatibility be­
tween types

Index expression, 10-6
to 10-7

Index-7

'Index type of an array,
6-2

Initialization, 14-10,
19-8 to 19-13

metacommand, 17-11
program, 16-4
using to write your

own routines,
19-14

INPUT (file), 7-8,
15-11, 16-4

Input/Output, 7-9, 15-7
to 15-9

extend level, 15-24 to
15-29

file, 7-2
predeclared files,

15-10 to 15-12
routines, 14-11
textfi1es, 15-19 to

15-12, 15-24 to
15-29

INSERT, 14-32
INTEGER, 5-1 to 5-2,

11-2
assignment compati­

bility, 5-3
changing to enumer­

ated, 5-4
changing to WORD,

14-10
constants, 9-6
expressions, 11-3
internal representa-

tion, G-1
READs, 15-15
WRITEs, 15-21

INTEGERl, 5-2, 5-6
INTEGER2, 5-2
INTEGER4, 5-10, 11-2

assigning to WORD,
5-10

constants, 9-6
internal representa­

tion, G-1
READs, 15-16
WRITEs, 15-22

Interactive 1/0
Interface, 16-17 to

16-19; see also
Units, examples

Index-8 Pascal Manual

Internal representation
of data types, G-l
to G-5

arrays, 6-26
pointer types, 8-4
records, 6-26
sets, 6-26
super array, 6-6

INTERRUPT attribute,
13-14 to 13-26

Interrupt vectoring and
enabling, 13-25

Invoking the compiler,
18-5 to 18-7

ISO Pascal, comparisons
to, B-1 to B-14

JG column of listing
file, 17-25

Keyboard LED indicators,
F-9

$LINE, 17-12
$LINESIZE, 17-20
$LIST, 17-20
LABEL section, 12-3,

13-3
LADDOK, 14-32
Lazy evaluation, 15-7 to

15-9
LDDRQQ, 14-32
LDSRQQ, 14-32
LED indicators, F-9
Length access, STRINGs

and LSTRINGs, 6-12
Less than «), 11-7
Less than or equal to

«=), 11-7
Letters, 2-1; see also

Characters
Libraries; see Run-time

support library
Line number of listing

file, 17-25

Lines, in textfi1es, 2-1
Linking, 18-8 to 18-11
Listing file, 18-3

control, 17-19 to
17-22

format, 17-23 to 17-27
Literals, REAL, 5-9
LMULOK, 14-33
LN, 14-33
LNDRQQ, 14-33
LNSRQQ, 14-33
LOBYTE, 14-34
LOCKED, 14-34
Loop label, 12-4
Looping, use of BREAK

and CYCLE, 12-24
LOWER, 13-11, 14-10,

14-35
Lower case, 2-1
LOWORD, 14-35
LSTRING, 6-6, 6-9 to

6-15
comparing, 11-8
concatenation, 9-14
constants, 6-10, 9-9

to 9-18
differences from

STRINGs, 6-10
examples, 6-14 to 6-15
intrinsics, 14-9 to

14-10
parameter passing,

6-13
READs, 15-17
type compatibility,

4-5 to 4-6
WRITEs, 15-23

$MATHCK, 14-6, 17-12
$MESSAGE, 17-18
M21SQQ, E-1
MARKAS, 14-4, 14-36
MAXINT, 5-1
MAXINT4, 5-10
MDDRQQ, 14-37
MDSRQQ, 14-37
MEMAVL, 14-4, 14-37
Memory allocation, 14-3

to 14-5
Memory organization,

19-5 to 19-7

Memory requirements,
compiler, 18-14 to
18-15

Metacommands, 1-2, 17-1
to 17-27

error handling and de­
bugging, 17-8 to
17-14

giving, 17-1
listing file control,

17-19 to 17-22
optimization with,

17-6
source file control,

17-15 to 17-18
summary, 17-3 to 17-5

Metacommands, by name
$BRAVE, 17-10
$DEBUG, 11-14, 13-25,

17-18
$END, 17-16 to 17-17
$ENTRY, 13-25, 17-18,

19-17
$ERRORS, 17-10
$GOTO, 17-11
$IF, 17-16 to 17-17
$INCLUDE, 16-12, 17-17
$INCONST, 17-17
$INDEXCK, 17-11
$INITCK, 11-5, 13-4,

13-6, 17-11
$INTEGER, 17-6
$LINE, 17-12
$LINESIZE, 17-20
$LIST, 17-20
$MATHCK, 17-12
$MESSAGE, 17-18
$NILCK, 17-13
$OCODE, 17-20
$PAGE, 17-20
$PAGEIF, 17-20
$PAGESIZE, 17-20
$POP, 17-18
$PUSH, 17-18
$RANGECK, 5-6, 12-6,

12-17, 13-9, 17-13
$REAL, 5-8, 17-6
$ROM, 10-4, 17-6
$RUNTIME, 13-25,

17-14, 19-18
$SIMPLE, 11-12, 12-6,

17-6
$SIZE, 17-6

Index-9

Metacommands, by name
(cont.)

$SKIP, 17-20
$SPEED, 17-6
$STACKCK, 13-25, 17-14
$SUBTITLE, 17-20
$SYMTAB, 17-21
$THEN, 17-16 to 17-17
$TITLE, 17-21
$WARN, 17-14

Metavariab1es~ see Meta­
commands and Meta­
commands, by name

Minimizing program size,
19-21 to 19-24

Minus (-), 11-4
MISO, 19-9
MNDRQQ, 14-38
MNSRQQ, 14-38
MOD, 11-5
Mode of file, 7-2
Modules, 1-4 to 1-7,

16-8 to 16-1"
attributes for proce­

dures and func­
tions, 16-9

example, 1-5, H-l to
H-5

identifiers, 3-1, 16-8
structure, 1-5 to 1-7
suppressing the

default PUBLIC
attribute, 13-20

MOVE, 6-13
MOVEL, 14-38
MOVER, 14-39
MOVESL, 14-40
MOVESR, 14-41
Multiplication, 11-4
MXDRQQ, 14-41
MXSRQQ, 14-41

$NILCK, 17-13
NaN, 5-8, 11-9
NEW, 14-3, 14-42 to

14-43
Nondecima1 numbering,

9-7 to 9-8
NOT, 11-5, 11-7
Not a number (NaN), 5-8,

11-9
Not equal to «», 11-7

Index-II Pascal Manual

Notation, 1-18, 2-1 to
2-7, 17-16

NULL, 6-10, 9-10
Null set, 6-24
Numbering, nondecima1,

9-7 to 9-8
Numbers, 5-1 to 5-10

legal digits, 2-2
Numeric constants, 9-4

$OCODE, 17-20
Object file, 18-5
Object list file, 18-3,

19-3
Octal numbers, 9-7 to

9-8
ODD, 14-6, 14-44
Offsets, explicit f~eld

offsets, 6-21 to
6-23

Operand, 11-1
Operating system, acces­

sing with Pascal,
F-l to F-22

Operators, 1-12, 2-5 to
2-6, 11-1 to 11-2

AND THEN, 12-28
and types, 11-2
BOOLEAN, 11-7, 12-28
INTEGER quotient and

remainder, 11-5
OR ELSE, 12-28
precedence, 11-1,

11-15
quotient, 11-5
relational, 11-2
remainder, 11-5
sets, 11-10

Optimization, 5-6,
10-14, 12-6 to 12-7,
12-23

expressions, 11-14 to
11-17

metacommands for, 17-6
minimal run-time use,

19-21 to 19-24
Optimizer, 13-26
OR, 11-5, 11-7
OR ELSE, 12-28
ORO, 14-44

Ordinal types, 5-1 to
5-7

changing to Boolean,
5-3

changing value, 5-2
subranges, 5-5

ORIGIN attribute, 13-23
to 13-24

variables, 10-13 to
10-14

OTHERWISE statement, in
variant records,
6-19

OUTPUT (predeclared
file), 7-2, 7-8,
15-11 .

Overflow, 11-14, 13-25,
14-7

error messages, A-5,
A-33

Overlays, 18-16 to 18-17
run-time overlays,

18-8
Overview of Pascal

language, 1-1 to
1-18

$PAGE, 17-20
$PAGE, 17-20
$PAGEIF, 17-20
$PAGESIZE, 17-20
$POP, 17-18
$PUSH, 17-18
PACK, 14-6, 14-45
PACKED, 13-10
PACKED array, 6-3, 6-8
PACKED types, 8-11
PAGE, 14-45, 15-7
Panic errors, A-I
Parameters, 13-8

actual, 13-8
CONST, 10-15, 13-12
CONSTANT, 13-12
CONSTS, 8-7 to 8-8,

10-15
formal, 13-8
internal representa­

tion, G-3
list, 10-3

passing, 11-15 to
11-16, 13-6 to
13-17

by reference, 13-12
to 13-13

to STRINGs and
LSTRINGs, 6-13

procedural and func­
tional, 13-13 to
13-17

program, 7-8, 16-4,
H-10 to H-18

reference, 4-5 to 4-6,
8-7 to 8-8, 13-9
to 13-11

segment, 13-12
super array, 13-11
value, 13-8 to 13-9
VARS, 8-7 to 8-8

Parentheses in expres­
sions, 11-15

Parts of a program, 1-4
to 1-10

TYPE section, 4-4
VALUE section, 1-13

Pascal, 1-1 to 1-18
CTOS, F-1 to F-22
command form, 18-5
comparisons to other

versions, B-1 to
B-14

compiler, 18-1 to
18-17

library: Bee Run-time
support library

notation, 1-18, 2-1 to
2-7, 17-16

program examples, H-l
to H-5

running a program,
18-12 to 18-13

systems programming
with, F-l to F-22

Pascal.Lib: Bee Run-time
support library

PASMAX, 19-9
Passing parameters, 13-6

to 13-17
file buffer variable,

7-3
PIDRQQ, 14-46

Index-II

PISRQQ, 14-46
Plus (+), 11-4
PLYUQQ, 14-11
Pointer type, 6-5, 8-1

to 8-4
compatib1ity, 8-3
declarations, 8-3
internal representa-

tion, 8-4, G-2 to
G-3

READs, 15-16
WRITEs, 15-23

Pointer variables, 10-8
to 10-9

PORT attribute, proce­
dural, 13-10

PORT attribute, vari­
ables, 10-13 to
10-14

Portability, 1-2, 5-8,
8-1

POSITN, 14-46
PPMFQQ, 16-6
PRDRQQ, 14-49
PREALLOCHEAP, 14-5,

14-47
PREALLOCLONGHEAP, 14-5,

14-48
Precision, 5-9
PRED, 14-48
Predeclared address

types, 8-6
Predeclared constants,

9-6
Predeclared functions,

14-1
Predeclared identifiers,

3-5
summary, D-1 to D-3

Predeclared types, 6-6
Primitives, 15-1 to

15-29
Procedural types, 8-12
Procedures, 1-8 to 1-9,

13-1 to 13-27
data conversion, 14-5

to 14-6
declaration, 13-1 to

13-4
directives, 13-18 to

13-27
directory, 14-1 to

14-67
file-oriented, 15-1 to

15-29

Index-12 Pascal Manual

file system, 14-3
identifiers, 3-1
parameters, 13-8 to

13-17, G-3
predeclared, 14-1

Procedures, by name
ABORT, 14-12, 16-8,

19-6
ASSIGN, 7-2, 7-9,

14-15, 15-24, 16-3
BEGOQQ, 14-10, 14-16
BEGXQQ, 14-17, 19-1,

10-8
CLOSE, 7-9, 14-19,

15-24
CONCAT, 14-20
COPYLST, 6-13, 14-28
COPYSTR, 6-13, 14-21
DELETE, 14-23
DISCARD, 7-9, 14-23,

15-25
DISPOSE, 14-3, 14-24
ENCODE, 14-25
ENDXQQ, 14-26
EVAL, 11-17, 14-10,

14-27
FILLC, 14-28
FILLSC, 14-28
GET, 14-30, 15-3
INSERT, 14-32
MARKAS, 14-4, 14-36
MOVE, 6-13
MOVEL, 14-38
MOVER, 14-39
MOVESL, 14-40
MOVESR, 14-41
NEW, 14-3, 14-42 to

14-43
PACK, 14-6, 14-45
PAGE, 14-45, 15-7
PTYUQQ, 14-11, 14-49
PUT, 14-49, 15-4
READ, 14-58, 15-2,

15-13 to 15-17
READFN, 7-2, 7-9,

14-50, 15-26, 16-3
READLN, 14-51, 15-13

to 15-17
READSET, 7-9, 14-51,

15-26
RELEAS, 14-4, 14-52
RESET, 14-53, 15-4 to

15-5
RESULT, 11-17 to

11-18, 13-6, 14-53

Procedures, by name
(cont.)

REWRITE, 14-55, 15-5
SEEK, 7-9, 14-5S,

15-27 to 15-28
UNLOCK, 14-6, 14-64
UNPACK, 14-64
WRITE, 14-67, 15-2,

15-18 to 15-23
WRITELN, 14-67, 15-18

to 15-23
Procedure statements,

12-7 to 12-S
Program examples: see

Examples
Program parameters, 7-8,

16-3
example, H-10 to H-1S

Programs, 1-4 to 1-5
compiling, lS-l to

lS-17
entry point, 19-1
identifiers, 3-1, 16-3
initialization, 16-4
linking, lS-S to IS-II
parameters: see Pro-

gram parameters
parts of, 16-1 to

16-22
Pascal examples, H-1

to H-5
portability, 1-2, 5-S,

B-1
running, lS-12 to

lS-13
size, 19-21 to 19-24
structure, 1-3 to

1-18, 1-13, 16-1
to 16-7, 19-9

VALUE section, 10-4
VAR section, 10-3

PRSRQQ, 14-49
PTYUQQ, 14-11, 14-49
PUBLIC attribute, 13-20,

13-22 to 13-23
variables, 18-12 to

18-13
Punctuation, 2-4 to 2-5

syntax diagrams, C-13
PURE attribute, 13-20,

13-26
PUT, 14-49, 15-4

Question mark, (7), 2-7,
B-1

$RANGECK, 5-6, 12-6,
12-17, 13-9, 17-13

$REAL, 5-S, 17-6
$ROM, 10-4, 17-6
$RUNTIME, 13-25, 17-14,

19-1S
Radix, 9-7 to 9-S
Range-checking, 5-6: see

$RANGECK
Range of data types: see

Internal representa­
tion

READ, 14-58, 15-2, 15-13
to 15-17

formats, 15-15
READFN, 7-2, 7-9, 14-50,

15-26, 16-3
Reading, STRINGs and

LSTRINGs, 6-12
READLN, 14-51, 15-13 to

15-17
READONLY attribute,

18-14 to 18-15,
13-10

READSET, 7-9, 14-51,
15-26

REAL type, 5-8 to 5-9,
11-2

comparing, 11-9
constants, 9-5
conversion to IEEE

format, E-1
internal representa­

tion, 5-S, G-l
mixing with INTEGER,

11-4
READs, 15-16
WRITEs, 15-22

REAL4, 5-S to 5-9
REALS, 5-S to 5-9
Record, 6-16 to 6-23

constant, 9-11 to 9-13
empty, 6-20
explicit field off-

sets, 6-21 to 6-23
field, 6-16

Index-13

'Record (coot.)
field variables and

values, 10-7
internal representa­

tion, 6-26, G-4
variant record, 6-17

to 6-21, 9-4
WITH statement, 12-26

to 12-28
Recursion, 13-1
Reference parameters,

4-5 to 4-6, 8-7 to
8-8, 13-9 to 13-11

Reference types, 8-1 to
8-12, G-2 to G-3

comparing, 11-8
compatibility, 4-6
READs, 15-16
WRITEs, 15-23

Reference variables,
H.I-8 to 10-9

Relative address types;
see Address types
and ADR

RELEAS, 14-4, 14-52
Remainder, 11-5
REPEAT statement, 12-19

to 12-20
Repetitive statements,

12-18 to 12-25
Reserved words, 2-6

summary, D-1 to D-3
RESET, 14-53, 15-4 to

15-5
RESULT, 11-17 to 11-18,

13-6, 14-53
RETURN statement, 12-26
RETYPE, 11-18, 14-54 to

14-55
REWRITE, 14-55, 15-5
ROUND, 14-56
ROUND4, 14-56
Run file, 18-3, 18-12
Run-time error messages,

A-41 to A-50
Run-time routines, 19-9
Run-time support

library, 16-12, 19-1
to 19-24

architecture, 19-4 to
19-20

avoiding, 19-21 to
19-24

entry point, 19-1

Index-14 Pascal Manual

error handling, 19-16
to 19-20

initialization, 19-1,
19-8 to 19-13

memory organization,
19-5 to 19-7

program structure,
19-9

suffixes, 19-4
using initialization

and termination
points, 19-14 to
19-16

Running a program, 18-12
to 18-13

$SIMPLE, 12-6, 17-6,
11-12

$SIZE, 17-6
$SKIP, 17-20
$SPEED, 17-6
$STACKCK, 13-25, 17-14
$SUBTITLE, 17-20
$SYMTAB, 17-21
SADDOK, 14-57
SCANEQ, 14-57
SCANNE, 14-58
Scientific notation, 9-5
Scope of identifiers,

3-2 to 3-4
Screen; see Video

display
Screen attributes, F-9
SEEK, 7-9, 14-58, 15-27

to 15-28
Segment, data segment,

18-10
Segment parameters,

13-12
Segmented address,

passing as a parame­
ter, 13-11

Segmented address types;
see Address types
and ADS

Semaphore, 14-11
Semicolon, 12-2
Separator characters,

2-2 to 2-3, 12-2
SEQUENTIAL access mode,

7-6 to 7-7
SET, 11-2

Set constants, 5-5
Set constructors, 5-5
Set expressions, 11-9 to

11-11
SET of CHAR, 5-3
Sets, 6-24 to 6-26

and variables, 11-11
base type, 5-10, 6-24
bytes allocated for,

6-26
constant, 9-11 to 9-13
efficient use of, 6-25
empty, 11-11
internal representa-

tion, 6-26, G-4
null set, 6-24
operators, 11-10

SHDRQQ, 14-58
SHSRQQ, 14-58
Simple statements, 12-5

to 12-10
Simple type expressions,

11-2 to 11-6
Simple types, 5-1 to

5-10
compatibility, 4-6

SIN, 14-59
Sine,14-15
SINT, 5-2, 5-6
SIZEOF, 14-4, 14-59
SMULOK, 14-59
SNDRQQ, 14-60
SNSRQQ, 14-60
Source file, metacom­

mands to control,
17-15 to 17-18

SQR, 14-60
SQRT, 14-60
Square brackets ([]),

13 -20
instead of BEGIN and

END, 12-3
SRDRQQ, 14-60
SRSRQQ, 14-60
Stack, 11-11, 13-1,

13-2, 14-3 to 14-5,
15-24, 18-9, 19-5

Standard ISO Pascal,
comparisons to, B-1
to B-14

Standard Pascal, exten­
sions to, B-5 to B-9

Statement, CASE, 6-19
Statement, OTHERWISE,

6-19

Statement labels, iden­
tifiers for, 3-1

Statements, 1-10 to
1-11, 12-1 to 12-18,
12-24 to 12-25

compound, 12-11 to
12-12

conditional, 12-12 to
12-18

empty, 12-2, 12-5
labels, 12-3 to 12-4
procedure, 12-7 to

12-8
repetitive, 12-18 to

12-25
separating, 12-2
sequential control,

12-28
simple, 12-5 to 12-10
structured, 12-1,

12-11 to 12-28
syntax, 12-2 to 12-4

Statements, by name
Assignment, 10-5, 12-5

to 12-7
BREAK, 12-24 to 12-25
CASE, 9-4, 12-15 to

12-18
CYCLE, 12-24 to 12-25
FOR, 12-20 to 12-24
GOTO, 12-3, 12-8 to

12-U'
IF, 12-12 to 12-14
REPEAT, 12-19 to 12-20
RETURN, 12-26
WHILE, 12-18 to 12-19
WITH, 12-26 to 12-28

STATIC attribute, 10-11
to 10-12

Status messages, A-I to
A-50

STRINGs, 6-6 to 6-15
concatenation, 9-14
comparing, 11-8
constant, 9-9 to 9-10
examples, 6-14 to 6-15
intrinsics, 14-9 to

14-10
identifier, 6-8
type compatibility,

4-6, 6-8
constant, 6-8, 9-9 to

9-10
parameter passing,

6-9, 6-13

Index-IS

STRINGs (cont.)
READs, 15-17
variable length: see

LSTRING
WRITEs, 15-23

Structure of programs,
16-1 to 16-7

Structure, run-time,
19-9

Structured constants,
9-11 to 9-13

Structured statements,
12-11 to 12-28

Structured types, 6-1,
8-11

Structures, internal
representation, G-4

Subrange types, 5-5 to
5-7, 15-14

Subranges, using con­
stant expressions as
bounds, 5-7

Subroutines: see Proce­
dures, Functions,
Modules, or Units

Subtraction operators,
11-4

SUCC, 14-61
Super arrays, 6-4 to

6-15
compatibility, 4-5
identifiers, 3-1
predeclared, 6-6
internal representa-

tion, 6-6, G-3
parameters, 13-11
upper bound, 6-6

Super type identifiers,
6-4

Swap buffer, 18-16 to
18-17

Symbol, 17-16
Symbol file, 19-3
Syntax

diagrams, C-1 to C-13
statements, 12-2 to

12-4: see also
Notation

Systems programming, F-1
to F-22

$THEN, 17-16 to 17-17
$TITLE, 17-21
Tag field, 6-18

Index-16 Pascal Manual

Tangent, 14-15, 14-16
Temporary files, 15-29
TERMINAL access mode,

7-6 to 7-7
Termination, 19-8 to

19-13
Text files, 7-5, 15-10

to 15-12
formatting, 15-7
THDRQQ, 14-61
THSRQQ, 14-61
TNDRQQ, 14-61
TNSRQQ, 14-61
Trouble shooting, error

messages, A-I to
A-50

TRUNC, 14-62
TRUNC4, 14-62
TYPE section, 4-4
Type compatibility,

STRINGs, 6-8
Type conversion, 11-3 to

11-6
Type declaration, 4-3 to

4-4
TYPE section, 13-3
Types, 1-14 to 1-15, 4-1

to 4-8
address, 8-4 to 8-9,

15-16, 15-23
and expressions, 5-2
array, 6-2 to 6-15
assignment compati-

bility, 4-5, 4-7
to 4-8

base, 5-2
BOOLEAN, 5-3, 11-2,

15-16, 15-22
BYTE, 5-6
CHAR, 5-3
Compatibility, 4-5 to

4-8, 6-8, 4-5 to
4-8

conversion, 14-5 to
14-6

conversion in expres­
sions, 11-3 to
11-6

declaring, 4-3 to 4-4
derived type, 6-4
Enumerated, 5-4 to

5-5, 15-16, 15-22
file, 7-1 to 7-12
for variables or

values, 4-1

Types (cont.)
identical, 4-5
identifiers and, 3-1
identity of, 4-5
INTEGER, 5-1 to 5-2,

11-2, 15-15, 15-21
INTEGERl, 5-6, 5-2
INTEGER2, 5-2
INTEGER4, 5-10, 11-2,

15-16, 15-22
internal representa­

tion of, G-l to
G-5

LSTRING, 6-6, 6-9 to
6-15, 15-17, 15-23

ordinal, 5~1 to 5-7
PACKED, 8-11
pointer, 6-5, 8-1 to

8-4, 15-16, 15-23
predeclared subrange,

5-6
procedural, 8-12
REAL, 5-8 to 5-9,

11-2, 15-16, 15-22
REAL4, 5-8 to 5-9
REAL8, 5-8 to 5-9
Record, 6-16 to 6-23
Reference, 4-1, 8-1 to

8-12, 15-16, 15-23
SET, 11-2
sets, 6-24 to 6-26
simple, 4-1, 5-1 to

5-18
SINT, 5-2, 5-6
STRING, 6-6 to 6-9,

15-17, 15-23
structured, 4-1, 8-11,

6-1
subrange, 5-5 to 5-7,

15-14
super array, 6-4 to

6-15, 13-11, B-1
super, 4-4
WORD, 5-2 to 5-3,

Il-D, 15-15, 15-21

UADDOK, 14-63
UMULOK, 14-63
Unary minus, 11-4
Unary plus, 11-4
Underscore (_), 2-2, B-1

Units, 1-4 to 1-7, 16-11
to 16-22, 19-21

examples, 1-5, H-6 to
H-9

identifiers, 3-1,
16-13 to 16-14

in other languages,
16-21

structure, 1-6 to 1-7
using attributes with,

13-19
version number of

implementation,
16-21

Unit U, 19-9
UNLOCK, 14-64
UNPACK, 14-6, 14-64
UPPER, 13-11, 14-10,

14-65
Upper case, 2-1
USCD Pascal, comparisons

to, B-12 to B-14
USE, 16-12

Value parameters, 13-8
to 13-9

VALUE section, 1-13,
18-4, 13-3

Values, 1-13, 18-1 to
18-16

computing, 1-12
enumerated set of, 5-4
field, 10-7
in assignment state­

ments, 10-5
indexed, 10-6 to 10-7

VAR, 13-9
VAR parameter, 13-12
VAR section, 18-3,

10-10, 13-3
Variables, 1-13, 18-1 to

HJ-16
address, 10-8 to 10-9,

10-13
assignment statement,

12-5
attributes for, 10-10

to 10-16
buffer, 10-8 to 10-9
declaring, 18-3, 10-10
field, 10-7

IndeI-17

Variables (cont.)
identifiers, 3-1, 10-6
in assignment state-

ments, 10-5
indexed, 10-6 to 10-7
initializing, 10-4
memory location, 10-11
multiple attributes,

10-16
names, 1-17
passing segmented

address of, 8-7 to
8-8

reference, 10-8 to
10-9

segmented address,
10-13

types, 4-1
using, 10-5 to 10-10
value, 14-6: see also

Variant record
Variant record, 6-17 to

6-21, 9-4
empty, 6-20
labels, 5-5

VARS, 13-11
VARS parameters, 8-7 to

8-8, 13-12
Video display, F-9 to

F-29
frames, F-14

Virtual Cod~ Management
facility, 18-16 to
18-17

Index-18 Pascal Manual

$WARN, 17-14
Warnings, A-I
WHILE, 12-18 to 12-19
WITH, 12-26 to 12-28
WORD, 5-2 to 5-3, 11-2

assigning INTEGER4 to,
5-10

assignment compati­
bility, 5-3

changing to enumer­
ated, 5-4

constants, 9-6
internal representa­

tion, G-1
READs, 15-15
WRITEs, 15-21

Word ANDing, 5-2
Word shifting, 5-2
WRD, 5-2, 14-66
WRITE, 14-61, 15-2,

15-18 to 15-23
WRITELN, 14-67, 15-18 to

15-23
Writing, STRINGs and

LSTRINGs, 6-12

XOR, 11-5

USER'S COMMENT SHEET

Pascal Reference Manual, Volume 2
Third Edition
A-09-00868-01-A

We welcome your comments and suggestions. They help us
improve our manuals. Please give specific page and paragraph
references whenever possible. .

Does this manual provide the information you need? Is it at the
right level? What other types of manuals are needed?

Is this manual written clearly? What is unclear?

Is the format of this manual convenient in arrangement, in size?

Is this manual accurate? What is inaccurate?

Name Date _____ _

Title Phone ______ _

Company Name/Department

Address

City ________ _ State Zip Code

Thank you. All comments become the property of Convergent Technologies, Inc.

II
BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 1807 SAN JOSE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Convergent Technologies
Attn: Technical Publications
2700 North First Street
PO Box 6685
San Jose, CA 95150-6685

11.1",1,1,,"11,1,1,11 " ,1,1'111111111"1111,1,1" I

9J9H PIO:J

BldelS 10N 00 eseBld

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

edel.

Convergent
2700 North First Street
San Jose, CA 95150-6685

Printed in USA

