
LINKER/LIBRARIAN MANUAL

Specifications Subject to Change.

Convergent Technologies is a registered trademark
of Convergent Technologies, Inc.

Convergent, CT-DBMS, CT-MAIL, CT-Net, CTIX, CTOS,
DISTRIX, AWS, IWS, MegaFrame, MiniFrame,

NGEN, and X-Bus are trademarks of
Convergent Technologies, Inc.

CP/M-86 is a trademark of Digital Research.
MS and GW are trademarks of Microsoft Corp.

UNIX is a trademark of Bell Laboratories.

Second Edition (March 1985) A-09-00941-01-A

Copyright © 1985 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. Title to and ownership of
the documentation contained herein shall at all
times remain in Convergent Technologies, Inc.,
and/or its suppliers. The full copyright notice
may not be modified except with the express
written consent of Convergent Technologies, Inc.

CONTENTS

SUMMARY OF CHANGES.......................... vii

RELATED DOCUMENTATION........... ix

CONVENTIONS. • xi

1

2

3

USING THE LINKER (BINDER)
INTRODUCTION•.
USING THIS MANUAL•............

Understanding the Linker .••...........

1-1
1-1
1-2
1-2

Errors. 1-2
Naming Conventions.................... 1-2

INVOKING THE LINKER..................... 1-3
Run File Versions......... •........... 1-3
Version 4: Link Command Form......... 1-3
Version 6: Bind Command Form......... 1-4
Parameter Fields........... 1-4

HOW THE LINKER WORKS•............
TWO-PASS LINKER•................
LIBRARY SEARCH ALGORITHM
ARRANG ING MEMORy

Segment Element Names and Classes
Creating Linker Segments
Combination Rules•............
Addressing Linker Segments
Alignment Attributes

LIMITS
STRUCTURE OF RUN FILE HEADERS

SIZING PROGRAMS AND READING THE MAP FILE
PROGRAM MEMORY REQUIREMENTS •............

Run-Time Library Code
Simple Programs
Swapping Programs
Programs that Allocate Memory

READING THE MAP FILE•............
Version 4

Addresses•............
:Names••...........
Classes

Version 6•.•..........
Public Symbols and Line Numbers

2-1
2-1
2-1
2-2
2-2
2-6
2-7
2-8
2-9

2-11
2-11

3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-4

Contents iii

4

5

6

FURTHER INFORMATION ABOUT LINKER
OPTIONS .•...•...•.....••.•.••..••.••..••
ALLOCATING MEMORY SPACE•....•

DS Allocation ..•..•....•..•..•..•...••
The Memory Array••...•

LINKING A SWAPPING PROGRAM •..•....•....•
ADJUSTING STACK SIZE•.•.••....

Reducing the Stack .••.••....•...•.•.••
Correcting Stack Overflow•....•

FILE NAMING CONVENTIONS .•....•....••••••

LIBRARIAN•...•.......•...•....•.••.•
INTRODUCTION .••.••.••...••.•••.••.••.•.•
INVOKING THE LIBRARIAN •..•.•......•••.••
PARAMETER FIELDS .•.•........•.•...••...•

TROUBLESHOOTING•..••
LINKER HARNINGS AND ERRORS ..•...•.••.•••
LIBRARIAN ERRORS•...•..•••....••...•

Multiply Defined Symbols ••.••...•••.••
Excess Public Symbols ..•........••...•
Housekeeping Concerns .••...•.....•..•.

4-1
4-1
4-1
4-3
4-4
4-6
4-6
4-6
4-7

5-1
5-1
5-2
5-3

6-1
6-2

6-49
6-49
6-49
6-50

GLOSSARY. . . • • . • . . . • . . • • •. Glossary-1

INDEX. • • • • • . . • . . • • • . • • . . . • • . • • • . • • . . • • • • • Index-1

LIST OF FIGURES

Figure

2-1.
2-2.

3-1.
3-2.
3-3.

3-4.

4-1.
4-2.
5-1.

How the Linker Builds a Run File •.••
Combination of Stack and Common
Segment Elements •.•.•..•..••.•••••.•
Sample Version 4 Map File .••.••••.••
Sample Version 6 Map File •..••••••••
Sample Version 4 Map File with Lists
of Public Symbols and Line Numbers .•
Sample Version 6 Map File with Lists
of Public Symbols and Line Numbers .•
A Program with DS Allocation .•••••..
A Program with the Memory Array ••.••
Sample Cross-Reference Listing ••...•

iv Linker/Librarian Manual

2-4

2-8
3-2
3-4

3-5

3-6
4-2
4-4
5-7

LIST OF TABLES

Table

2-1.

2-2.
2-3.

Version 4 and Version 6 Run File
Header Format•.............
Address Structure
Prototype Descriptor Structure

2-11
2-14
2-15

Contents v

SUMMARY OF CHANGES

The 10.0 release of the Linker and the Librarian
are described in this second edition of the
Linker/Librarian Manual. The manual has been
reorganized and substantially rewritten for this
edition.

The 10.0 Linker generates either a version 4 or a
version 6 run file, depending on which of two
commands is given. Both commands are documented,
and their uses and differences are noted.

In addition to describing how to use the Linker,
this edition contains much new material that
explains how the Linker works and how to use its
output. New topics are as follows:

o library search algorithm

o structure of the run file headers

o determining the size of a program

o reading the map file

o load-time and run-time memory allocation
methods

o swapping programs (virtual code segment
management)

o adjusting the size of the stack

This edition also contains extensive documentation
of Linker warning and error messages, wi th
suggested causes and remedies.

Summary of Changes vii

RELATED DOCUMENTATION

The following manuals, or related products, are
referenced in this manual. It may be helpful to
have copies of them on hand when you are using
this manual.

The complete Guide to Technical Documentation is
provided in the Executive Manual or similar
command-line interpreter manual for your operating
system.

Assembly Language Manual

Context Manager Man~~l

CTOS Operating System Manual

CTOS Progra~er's Guide

Debugger Manual

Executive Manual

Forms Manual

FORTRAN-86 Release Notice

Standard Software Release Notice

Status Codes Manual

In addition,
should have
manual.

the compiled-language programmer
available the appropriate language

The Assembly Language Manual specifies the machine
architecture, instruction set, and programming at
the symbolic instruction level.

The Context Manager Manual describes and teaches
the use of the Context Manager, which allows the
user to run applications concurrently and inter­
change them on the screen almost instantly.

Related Documentation ix

The CTOS Operating System Manual describes the
CTOS operating system. It specifies services for
managing processes, messages, memory, exchanges,
tasks, video, disks, keyboard, printer, timer,
communications, and files. In particular, it
specifies the standard file access methods: SAM,
the sequential access method: RSAM, the record
sequential access method; and DAM, the direct
access method.

The CTOS Programmer's Guide (formerly titled the
System Programmer's Guide) addresses the needs of
the system programmer or system manager for
detailed information on the CTOS operating system
structure and system operation.

The Debugger Manual describes the Debugger, which
is designed for use at the symbolic instruction
level. It can be used in debugging C, FORTRAN,
Pascal, and assembly language programs. (COBOL
and BASIC, in contrast, are more conveniently
debugged using special facilities described in
their respective manuals.)

The Executive Manual describes the command inter­
preter, the program that first interacts with the
user when the system is turned on. It describes
available commands and discusses command execu­
tion, file management, program invocation, and
system management. It also addresses status in­
quiry, volume management, the printer spooler, and
execution of batch jobs.

The Forms Manual describes the Forms facility that
includes (I) the Forms Editor, which is used to
interactively design and edit forms, and (2) the
Forms run time, which is called from an
application program to display forms and accept
user input.

The Status Codes Hanual contains complete listings
of all status codes, bootstrap ROM error codes,
and CTOS initialization codes. The codes are
listed in numerical order along with any message
and an explanation.

x Linker/Librarian Manual

CONVENTIONS

FORTRAN LANGUAGE NAMES

Two kinds of FORTRAN are supported. They are
referred to in this manual and all related
documentation by the names FORTRAN and FORTRAN-86.
Discussions that include one of these names often
do not apply to the other.

NUMBERS

Numbers are decimal except when suffixed with "h"
for hexadecimal.

MEMORY ADDRESS

Memory address refers to the logical memory
address. (See the IIMemory Management II section in
the eTOS Operating System Manual.)

VARIABLE NAMES

Variables are named according to a formal
convention. The name of a variable implies some
of its characteristics.

A variable name is composed of up to three parts:
a prefix, a root, and a suffix.

PREFIXES

Prefixes used in this manual are as follows:

b

c

i

n

p

byte (8-bi t character or unsigned
number)

count (unsigned number)

index (unsigned number)

number (unsigned number, same as
IIC")

logical memory address (pointer:
32 bits consisting of the offset
and the segment base address)

Conventions xi

q

rb

rg

sb

w

quad (32-bit unsigned integer)

relative byte (a 16-bit offset from
an arbitrary base address)

array of

array of bytes, where first byte is
the size

word (16 bit)

Prefixes can be compounded: for example, in this
manual, the compounded prefix rbrg indicates the
position of an array relative to the beginning of
the run file header.

ROOTS

The root of a variable name can be unique to that
variable, a commonly used root, or a combination
of the two. Common roots that appear in thi s
manual are

Ifa

mp

par

sa

ra

SUFFIXES

logical file address

map

paragraph

segment address

relative address

The suffix identifies the use of the variable.
The only suffix used in this manual is

Max

EXAMPLES

the maximum length of an array or
buffer (thus one greater than the
largest allowable index)

iProtoDescMax the maximum SN index

rbrgrle the offset of the array of reloca­
tion pointers from the beginning of
the run file header

xii Linker/Librarian Manual

USING THE LINKER (BINDER)

INTRODUCTION

The Linker (also called the Binder) is a program
development utility that combines object modules
(files produced by compilers and assemblers) into
run files.

A run file is the image of a task (in relocatable
form) linked into the standard format required by
the operating system loader. The run file
consists of a header and a memory image. The
header describes the run file and provides certain
initial values and an array of pointers that allO\~
the operating system to relocate the run file to
any appropriate location in memory.

A run file produced by the Linker can thus be used
with various memory configurations or as one of
the tasks of a multitask application system.

The Linker has these features:

o It resolves external references (references
from one object module to variables and entry
points of other object modules).

o It builds a run file that can be efficiently
loaded. The run file is organized so that the
operating system can load it with a minimal
number of disk accesses and data transfers.

0 It does not require specification of the
eventual memory address of the task. (The run
file is relocatable at load time.)

0 It can search through libraries of object
modules and select exactly those modules
required by a particular application.

o It can construct run files containing overlays
for use with the operating system I s Virtual
Code Segment Management facility (also called
the Swapper).

Using the Linker (Binder) 1-1

USING THIS MANUAL

UNDERSTANDING THE LINKER

If you are linking a program written in a high­
level language, and if there is nothing unusual
about the program, you probably do not need to
know much about how the Linker works or about most
of its special features and options. You can read
the beginning of the next section, "Invoking the
Linker, /I fill in the first three fields of the
Linker command form, and ignore most of the rest
of this manual.

If you want to use overlays in your program,
search libraries in other than the default manner,
or directly control the way in which the task
image will be arranged in memory, you need to
understand more about the Linker before you can
correctly complete the command form. See Section
2, "How the Linker Works. 1I

ERRORS

If the Linker displays the screen message

There were n errors detected

at the end of the link, examine the map file. The
errors are listed in this file. (See "Reading the
Map File ll in Section 3, IISizing Programs and
Reading the Map File.") Section 6, "Trouble­
shooting,1I discusses each of these errors and
suggests possible causes and solutions.

A given version of the Linker is compatible with
only certain versions of CTOS.lib and of the
supported compilers and assembler. Using a
noncurrent assembler, compiler, or CTOS .lib can
resul t in errors, especially with a noncurrent
overlay manager.

NAMING CONVENTIONS

Conventions used in this manual are described in
the "Conventions" section at the beginning of this
manual and in Section 4.

1-2 Linker/Librarian Manual

INVOKING THE LINKER

RUN FILE VERSIONS

The Linker can produce either a version 4 or a
version 6 run file. A version 4 run file is
appropriate for all 8086- and 80186-based
operating system versions and is required for
MegaFrame eTaS 3.0. A version 6 run file can also
run on workstation operating system version 9.1.
A version 6 run file should be generated to run on
workstation operating system versions later than
9.1.

Two separate
Linker, one

commands
for each

are
run

used
file

to invoke
version.

the
To

aenerate a version 6 run file, use the command
"Bind. II To generate a version 4 run file, use the
command II Link . II These commands are installed as
part of the Standard Software installation. (See
the Standard Software Release Notice for details.)

VERSION 4: LINK COMMAND FORM

To create a version 4 run file, invoke the Linker
from the Executive by entering II Link II in the
command field and pressing RETURN. The parameter
fields for the IILinkll command form are as follows:

Link
Object modules
Run file
[Map file]
[publics?]
[Line numbers?]
[Stack size]
[Max memory array size]
[Min memory array size]
[System build?]
[Version]
[Libraries]
[DS allocation?]
[Symbol file]

Using the Linker (Binder) 1-3

VERSION 6: BIND COMMAND FORM

To create a version 6 run file, invoke the Linker
from the Executive by entering "Bind" in the
command field and pressing RETURN. The parameter
fields for the "Bind" command form are as follows:

Bind
Object modules
Run file
[Map file]
[Publics?]
[Line numbers?]
[Stack size]
[Max array, data, code]
[Min array, data, code]
[System build?]
[Version]
[Libraries]
[OS allocation?]
[Symbol file]

PARAMETER FIELDS

In either form, you must fill in the first two
fields. You can allow optional fields (those in
square brackets) to assume their default values by
leaving them blank.

Each field is described briefly in the following
pages. Cross references to explanatory sections
appear under some field descriptions. Normally,
you need to specify only the first three fields.

Press GO to execute the command.

Object modules
Enter a list of names of one or
more object module or library
files. Separate the names with
spaces. The Linker combines these
object modules to form a run file.
An example of listing object mod­
ules is shown on the facing page.
(For a discussion of file suffixes,
see "File Naming Conventions" in
Section 4.)

1-4 Linker/Librarian Manual

You can list both ordinary obj ect
modules and specific ones to be ex­
tracted from libraries. To extract
from a library, use this syntax:

LibraryName (Modulel Module2 .)

where Modulel, Module2, and so on,
are the names of the object modules
to be extracted. Note that these
module names are separated by
spaces. You may use or omit the
space after LibraryName.

Do not use a space between the
opening parenthesis and the first
module name.

An example of specifying library
modules is shown below.

EXAMPLE: LISTING OBJECT MODULES

To build a run file from the three object
modules A.obj, B.obj, and C.obj, fill in the
"Object modules" field of the Linker form this
way:

Object modules A.obj B.obj C.obj

EXAMPLE: SPECIFYING LIBRARY MODULES

Assume that Z.lib contains the object modules
V, W, and X. To build a run file consisting
of object modules A, B, W, X, and C, fill in
the "Object modules" field of the Linker form
this way:

Object modules A.obj B.obj Z.lib(W X) C.obj

The same run file results if the original
W.obj and X. obj are speci fied in the "Obj ect
modules" field as

Object modules ~obi B.obj W.obj X.obj C.obj

Using the Linker (Binder) 1-5

Run file

[Map file]

Using the Linker, you can construct
a task containing code in overlays.
(Swapping programs and the Virtual
Code Segment Management facility
are discussed in Section 4 under
"Linking a Swapping Program.")

To use over lays, list first those
modules whose code is to be
permanently resident in memory.
Then list the first module to be
overlaid, follo,,"led by .. /0". List
the remaining modules in that
overlay. Begin a new overlay by
again appending "/0" to the first
module in the new overlay. (See
the example on the facing page.)

Enter the name of the run file to
be built. 1';1is field is not
optional. It is conventional to
use the suffix ". run" in creating
the name of a run file.

Default: RunFileName.map

Enter the name of the map file.
The default map file name is
derived as described in Section 4
under "File Naming Conventions."

If you do not complete the
remaining 10 fields of the Linker
command form, the Linker generates
a short map file. This map
contains an entry for each segment
and shows the relative address and
length of the segment in the memory
image.

To interpret
"Reading the
3 •

the map
Map File"

file, see
in Section

1-6 Linker/Librarian Manual

EXAMPLE: USING OVERLAYS

To construct a run file using overlays, first
list on the "Object modules" line those
modules whose code you want to place entirely
in the resident portion of the program.

Object modules _A_._o_b~j ______________________________ _

Then continue by listing the first module
whose code you wish to place in an overlay.
Append "/0" to the name of this module. (The
"/0" is case insensitive.)

Object modules _A_._o_b~j __ B_._o_b~j~/_o ______________________ ~

Now list the names of all further object
modules whose code is to appear in the same
overlay with that of B.obj. Do not append
11/011 to their names.

Object modules A.obj B.obj/o Z.lib(W)

When you wish to start a new overlay, once
again list the name of the first module in
that overlay and append 11/011. Thus the module
designated with 11/011 and all modules
thereafter are placed in one overlay, until
the next "/0" designation is made.

Note that modules from one library can be
placed in separate overlays: the "/011 syntax
is simply used within the parentheses
enclosing the library module list.

Object modules A.obj B.obj/o Z.lib(W X/o) D.obj/o

This run file consists of a resident portion
with the code from A, and a nonresident
portion made up of three overlays. One
overlay contains the code from Band W. The
second contains the code from X. The third
contains the code from D.

Your module list cannot exceed one line. If
it does, use the lIat-file ll convention
discussed in the Executive Manual, Section 5,
"Advanced Concepts."

Using the Linker (Binder) 1-7

[Publics?]

[Line numbers?]

[Stack size]

Default: No public symbols listed

Enter "yes" or "y" if you want to
include a list of the values
(relative addresses) of all public
symbols at the end of the map file.
This list is sorted first alpha­
betically and then numerically.

If you
respond,
listed.

enter
public

"no" or
symbols

do
are

not
not

To interpret
"Reading the
3.

the map
Map File"

file, see
in Section

Default: No line numbers listed

Enter "yes" or "y" to include a
list of line numbers and addresses
of all source statements in the map
file. This list of line numbers
comes after the list of public
symbols, if any. Not all compilers
produce object modules containing
line number information.

If you enter "no" or do not
respond, the map file does not
include line numbers and addresses.

To interpret
"Reading the
3 •

the map
Map File"

file, see
in Section

Default: Compiler's estimate

To change the stack size from the
compiler's estimate, enter the
number of bytes in decimal. The
stack is composed of words, so this
number must be even.

The default value in this field is
the compiler's estimate of the
correct stack size.

For details on estimating stack
size, see "Adjusting Stack Size" in
Section 4.

1-8 Linker/Librarian Manual

The following two fields occur only in the "Link"
command form (version 4 run file):

[Max memory array size] Default: "

[Min memory array size] Default: "

Fill in these two fields to leave
data space (the memory array) above
the highest memory address of the
task. Enter a decimal number of
bytes.

The default values are " for both
fields.

For a discussion of the
array, see "Allocating
Space" in Section 4.

memory
Memory

The following two fields occur only in the "Bind"
command form (version 6 run file):

[Max array, data, code] Defaults: """

[Min array, data, code] Defaults: """

Each of these fields can contain
val ues for three parameters. Use
spaces to separate the entries,
which must be decimal numbers of
bytes. The default values are" in
all cases. If you do not fill in
these fields, allocation of 4K
bytes of short- and long-lived
memory is allowed.

Fill in the first parameter in each
field (Max array and Min array) to
leave data space (the memory array)
above the highest memory address of
a task. For a discussion of the
memory array, see "Allocating
Memory Space" in Section 4.

Using the Linker (Binder) 1-9

The second parameters (Max data and
Min data) specify the amount of
short-lived memory that the
application will use.

The third parameters (Max code and
Min code) are reserved for future
enhancement.

[System build?] Default: No system build

[Version]

Enter "yes" or "y" to build special
versions of the operating system.
To do a system build, carefully
follow the procedure described in
the eTOS Programmer's Guide or the
Standard Software Release Notice.

Normally, to link a swapping
program, you use the II /0" notation
in the IIObject modules" field, as
described above. The resulting
program contains overlays and also
several data structures for use by
the S\vapper.

If you use the 11/011 notation and
you also enter lIyes II in the
II [System build?] II field, the
overlays are crea ted, but the
related data structures are not.
This result is correct when you are
building an operating system:
hence the name of this field.

If you enter II no II or do not
respond, normal data structures are
created for swapping programs.

Default: No version specified

Fill in this field to add a version
specification (in the form of an
alphanumeric string) to the header
of the run file. If this parameter
has embedded spaces, the whole
string must be enclosed by single
quotation marks (').

1-1" Linker/Librarian Manual

[Libraries]

The letters Ver and a space are
prefixed to the string that you
enter, and the result is placed in
the run file header. Also, the
public variable sbVerRun is auto­
matically defined in the run file.
It consists of the parameter string
(not including liVer ..) preceded by
a single byte containing the length
of that string.

For example, if you enter

2.0

the string

Ver 2.0

appears in the run file header.
The value of sbVerRun is

3 2 o

You can examine the version number
in the run file header by using the
Dump command in the Executive.
(See the Executive Manual.)

If you do not respond, no version
specification is produced. (Allow­
ing this field to default may
result in an unresolved external
error for sbVerRun if you are
linking the operating system or
certain other supported software.)

Default: Search eTOS.lib

Enter the list of library files
that you want searched. Separate
the names with spaces. The library
files must have been created by the
Librarian utility.

Using the Linker (Binder) 1-11

The default is to search only the
library [Sys] <Sys>CTOS .lib, plus
those libraries indicated by object
modules such as those in Pascal and
FORTRAN. CTOS .lib is always the
last library searched.

The Linker treats the object
modules that it selects from these
libraries as if they had been
specified in the "Object modules"
field: that is, they are linked
with the resident portion of a task
that uses overlays. To link object
modules obtained from libraries
into overlays, you must name the
library and the overlaid modules in
the "Object modules;; field, as
discussed above under "Object
modules."

To suppress all default library
searching, enter "None" in this
field. (It follows that you cannot
have a library named "None.")

To suppress default searching of
libraries other than the ones you
want, including that of eTaS .lib,
name the libraries you want
searched, followed by "None." See
the example below.

EXAMPLE: SEARCHING LIBRARIES

In this example, the Linker searches the
libraries A.lib and B.lib, but no others.

[Libraries] A.lib B.lib None

1-12 Linker/Librarian Manual

[DS allocation?] Default: Language dependent

Enter "yes" or "y" to locate OGroup
at the end of a 64K-byte segment
addressed by the OS register.
Under this arrangement, the last
byte of DGroup is located at
OS:0FFFF.

For modules in most languages, if
you enter "no" or do not respond,
there is no OS allocation, and
OGroup beg ins at OS: 0. However,
Pascal and FORTRAN modules cause
the default value in this field to
be yes.

The purpose of OS allocation is to
enable allocation of memory at run
time that is addressable using OS.
This field has meaning only with
tasks that use a single value in OS
during their entire execution and
that include the group OGroup with
DS equal to OGroup. This category
includes all small- and medium­
model tasks.

Object module procedures and tasks
produced by the Pascal, FORTRAN,
and BASIC compilers use a single
value in DS during their entire
execution and include the group
DGroup with OS equal to DGroup.
This feature must be used for
linking Pascal tasks that make use
of the Pascal heap.

For a discussion of groups, see the
Assembly Language Manual. Models
of segmentation are described in
the "Languages, Stack Formats, and
Calling Conventions" section of the
CTOS Programmer's Guide.

Using the Linker (Binder) 1-13

[Symbol file] Default: RunFileName.sym

Enter the name of a file to which
the Linker writes a symbol table of
the run file. The symbol table
notes the locations of all public
symbols within the program. (See
the Debugger Manual for an
explanation of the use of this
file.)

The default is to
of the symbol file
the run file, as

der i ve the name
from the name of
discussed under

"File Naming conventions II in
Section 4.

If you do not want a symbol file,
enter "[NUL]".

1-14 Linker/Librarian Manual

2 HOW THE LINKER WORKS

TWO-PASS LINKER

The Linker makes two passes through the modules
being linked. On the first pass , it reads all
object modules, extracting external and public
symbol information, and builds a symbol table. It
examines this symbol table for unresolved external
references. If it finds such references, it
searches the libraries that you specify for object
modules whose public symbols resolve the external
references.

On the second pass, the Linker assigns relative
addresses, relocating as necessary, to all data in
all object modules and links the object modules,
constructing a run file ready for the operating
system loader.

LIBRARY SEARCH ALGORITHM

Having built a symbol table during its first pass,
the Linker runs through all the symbols, checking
to see whether any of them occurs in the first
library listed for searching. If it finds a
symbol declared in a module in the library, it
extracts that module from the library and links it
into the program. The extracted module may
contain further undefined symbols.

The Linker cycles over the entire list of symbols,
old and new, comparing them to the first library
until no further library modules are extracted.
It then steps to the second library and repeats
this process, and so on for the third and
subsequent libraries.

When the Linker has completed the search of the
last library, it may have extracted further
undefined symbols in later libraries that were
defined in earlier libraries. The Linker thus
goes back to the first library and searches again
for any undefined symbols. In this way, it cycles
through all the libraries repeatedly until it has
made one complete cycle without extracting any new
module. At this point it stops and reports any
symbols that remain undefined.

How the Linker Works 2-1

NOTE

If the same public symbol is defined in more
than one library, and if that symbol is
declared external in an extracted library
module, you cannot assume that the definition
used is in the first library listed for
searching. From the point at which it
extracted the module, the Linker steps on to
the next library and extracts the first
definition it encounters.

ARRANGING MEMORY

The Linker is basically a concatenation device
that accepts object modules, takes them apart into
their component pieces, collects pieces of the
same types for efficiency, and uses a set of rules
to put these collections back together in a
certain order to form a memory image of the task
in the run file.

The rules that the Linker uses in ordering the
pieces are easiest to understand if we give names
to the components and collections of components
involved and build a model like that in Figure 2-1
to show what is happening. This model does not
exactly represent what the Linker does, but it is
accurate enough for our purposes. (This example
is not intended to correspond to the examples of
maps shown in Section 3 under "Reading the Map
File. lI

)

SEGMENT ELEMENT NAMES AND CLASSES

In the example in Figure 2-1, three Object modules
are to be linked. They have been listed in the
IIObj ect modules II field of the Linker command form
as follows:

Object modules Modl.obj Mod2.obj Mod3.obj

To provide an illustration of some Linker ordering
rules, let us say that Modl.obj was written in one
language, and Mod2.obj and Mod3.obj in another.

2-2 Linker/Librarian Manual

Each of these object modules is made up of several
segment elements, each of which has been declared
PUBLIC. It happens that all these object modules
have segment elements that contain code, data,
constants, and stack, although this is not true of
all object modules.

Each segment element in each module has both a
name and a class. In high 1 evel languages, the
compiler assigns name and class. In Figure 2-1,
the name and class of each segment are separated
by a slash:

Data/Data
ModI_code/Code

This arrangement can become confusing because many
compilers assign names to segment elements that
are the same as the classes of those segment
elements. Data/Data is an example. Usually the
code segment element carries the name of the
module: in Modl.obj, the ModI segment element is
of class Code. Most compilers append the class
name as part of the code segment element name,
which in this case results in ModI code.

The most common classes are Code, Data, Const, and
Stack. A given compiler always arranges the
segment elements by class in a certain order.

In assembly language, you have more control over
what the Linker ultimately does. You can assign
any name you want to any segment element, and you
can define more than one of a class and place them
in any order wi thin the module. You can make up
whatever class names you want.

The segment elements in Modl.obj are not in the
same order as in the other two object modules.
Apparently, the two different compilers that
produced them do not order segment elements in the
same way--or else, perhaps, an assembly language
programmer wrote Mod2. obj and Mod3. obj and chose
the order of segment elements within them.

How the Linker Works 2-3

Step 1.

Input Object Modules

Mod1.obj

Data/Data

Const/Const

Elements Stack/Stack
Segment€

Modl_code/Code

\

Step 2.
Look at Modl for Order
Sort <

<
<
(

<
\
<
~

<

<
<

Mod2.obj

Mod2_code/Code

Data/Data

Const/Const

Stack/Stack

v

j
Linker

j
x.run

Datal/Data

Data2/Data

Data3/Data

Const1/Const

Const2/Const

Const3/Const

Stack 1 /Stack

Stack2/Stack

Stack3/Stack

)
)

)

)

)
)

>
}

}

Modl_code/Code }

Mod2-eode/Code)

\. Mod3_code/Code }

J

Mod3.obj

Mod3_code/Code

Data/Data

Const/Const

Stack/Stack

Low

High

941-001

Figure 2-1. How the Linker Builds a Run File.
(Page 1 of 2)

2-4 Linker/Librarian Manual

Step 3.

Establish Linker Segments

Step 4.

Establ ish Segment
Addressing

Data/Data

Const/Const

Stack/Stack

Mod Lcode/Code

Mod2_code/Code

Mod3_code/Code

DS = SS----

SP----

Data,
Data2
Data3

Const,
Const2
Const3

Stack,
Stack2
Stack3

Modl_code

Mod2_code

Mod3_code

1" DGmup

Data,
Data2
Data3

~---------

Const,
Const2
Const3

~---------

Stack,
Stack2
Stack3

Mod'_code

Mod2-code

Mod3_code

Low

High

DGroup
< 64K bytes

~ Separate Linker ""7 Code Segments

941-001

Figure 2-1. How the Linker Builds a Run File.
(Page 2 of 2)

How the Linker Works 2-5

CREATING LINKER SEGMENTS

After the Linker has resolved all external
references in the modules, it builds the run file.
Starting with the first module listed (Modl.obj),
it takes the first segment element in that module,
looks at its class, creates a category for that
class, and places the segment element in that
category. It then makes a second category for the
second class of segment element that it
encounters, and so on through the first module.

In the example, the result is the creation of four
categories arranged in the same order as the
segment element classes in Modl.obj: data,
constants, stack, and code.

These categories will eventually become linker
segments.

Having pulled apart Modl.obj in this way, the
Linker goes on to Mod2.obj. It takes each segment
element in Mod2.obj, examines its class, and
places it in the linker segment already created
for that class. If there is no linker segment for
that class, the Linker creates a new one for it at
the end of the list of linker segments.

When the Linker has sorted the parts of all three
modules, the result is as shown in Step 2 of
Figure 2-1.

NOTE

Linker segments are ordered by class in the
same order that appears in the first module
listed. Thus, you can impose an ordering
template on the Linker by writing an assembly
language module that does nothing except
declare segment elements in the desired class
order. Place this module first in the list of
modules to be linked.

This template object module often is called
First.obj. (See the FORTRAN-86 Release Notice
for an example of a ready-made First. obj and
its use.)

2-6 Linker/Librarian Manual

COMBINATION RULES

Our model is incomplete without an indication of
how segment elements are combined or superimposed
to form linker segments.

In most cases, the Linker appends one segment
element to another as it goes through the modules
and does not distinguish boundaries between a
segment element from one module and that from the
next. This is true of data and constant segment
elements.

In the case of stack segment elements, the Linker
combines them by overlaying them with their high
addresses superimposed but with their lengths
added together. It then forces the total length
of this aggregate stack segment to a multiple of
16 bytes. This arrangement is shown in Figure
2-2. The fact that high addresses are
superimposed is unimportant unless you have
created a label at the high end of one of the
stack segment elements. In such a case, the label
floats to the high end of the aggregate stack.

Compilers construct stack segments automatically.
However, if your entire program is written in
assembly language, you must define an explicit
stack segment. (See the Assembly Language Manual
for details.)

Segment elements that have been assigned the
combination attribute COMMON in assembly language
(not shown in this example) are special also.
When COMMON segment elements are combined, they
are overlaid with low addresses superimposed. The
length is that of the largest element. This
arrangement is also shown in Figure 2-2.

Code segment elements are placed together, but
they are not combined unless they have identical
names as well as the same class. (This rule
actually applies to all segment elements, but it
is most obvious with code segment elements.)

Step 3 in Figure 2-1 shows the linker segments
created in this example.

How the Linker Works 2-7

Highr-----'------------------'7I----.... High

Low __ --'
Highr----......,--------'

Stack 2
10K bytes

Low __

Highr----......,

Stack3
7K bytes

Low __

High r------, High

Common2
10K bytes

Common3
7K bytes

Low __ --'

Stack
22K bytes

..... ___ ... Low

Common
10K bytes

High

Hi9hl common11 Low 10....-1 ----' __ ~
5Kbytes ~

Low~ ___ ~ _____________________ ~. ______ Low

Figure 2-2. Combination of Stack and Common
Segment Elements.

ADDRESSING LINKER SEGMENTS

941-002

Finally, the Linker establishes the way in which
the hardware segment registers address these
linker segments when the program is run. In most
cases, a group has been defined in the program.

A group is a named collection of linker segments
addressed at run time with a common hardware
segment register: tha t is, 16-bi t offset
addressing can be used throughout the group. All
the locations within the group must be within 64K
bytes of each other.

2-8 Linker/Librarian Manual

It is typical for a program to contain a group
called DGroup, ,,.,hich contains data, constants, and
stack. (The medium-model compiled languages use
DGroup. In assembly language, you can define
whatever groups you want, or none.) For DGroup,
the hardware segment register is DS. SS has the
same value.

In a version 4 run file, other portions of the
program may fall between the beginning and the end
of a group, as long as the distance from the
beginning to the end of the group does not exceed
64K bytes.

In a version 6 run file, all the linker segments
in a group must be contiguous. The Linker
combines all the segments of a group into one
segment, which is addressed with one selector.

The example in Figure 2-1 contains DGroup, which
is shown in Step 4. In this type of run file,
information is retained about where within DGroup
the data, constant, and stack linker segments
begin and end. The value of the SS register is
set equal to that of DS. SP is set to equal the
highest address in the group, as shown in the
figure.

Groups are discussed in the ~ssembly Language
Manual. Models of segmentation are covered in the
"Language, Stack Formats, and Calling Conventions"
section of the eTOS Programmer's Guide.

ALIGNMENT ATTRIBUTES

Segment elements have alignment attributes. Most
compiled languages assign these attributes auto­
matically, but in assembly language, you assign
them explicitly. (See the Assembly Language
Manual, Section 2, "Programs and Segments," for
details.)

How the Linker Works 2-9

A segment
attributes.

can have one
These are

of several alignment

o byte (a segment that can be located at any
address)

o word (a segment that can be located only at an
address that is a mUltiple of two)

o paragraph (a segment that can be located only
at an address that is a multiple of 16)

The Linker packs segments containing data and code
end to end. Alignment characteristics can cause a
gap between the segments. The Linker adjusts the
relative addresses in the segments accordingly.

SUMMARY OF SEGMENT ORDERING

All public segment elements having the same
segment name and class name are combined in
the order seen by the Linker.

All segment elements having the same class
name are placed together in the order seen by
the Linker.

All segment elements of the first class seen
by the Linker are placed first in the run
file, followed by all the segment elements of
the second class, and so on.

A group definition does not affect segment
ordering. Rather, a group definition asserts
that all segments in a group are contained
wi thin a 64K-byte region in the run file.
This is required if all the segments of the
group are to be addressed using a single value
in a segment register. In version 6 run
files, all segments in a group must be
contiguous.

2-19 Linker/Librarian Manual

LIMITS

Exact limits on the size of a program that can be
linked are difficult to compute. In general, the
maximum size of a linkable program and the speed
at which the link takes place are directly related
to the amount of memory available and the number
of public symbols in the program.

If a run file is too large for the Linker, it is
probably too large to run on an 8086 processor.

STRUCTURE OF RUN FILE HEADERS

The header of the run file produced by the Linker
contains a variety of information describinq the
file. The format of the version 6 run fiie is
shown in Table 2-1. The version 4 run file is
identical through the cIdiv field at offset 36.
The remainder of the format exists only in version
6 run files. The version 4 parameters saStack,
saStart, and saMainDs are called snStack, snStart,
and snMainDs in version 6.

Table 2-1. Version 4 and Version 6 Run File
Header Format. (Page 1 of 3)

Size
Offset Field (bytes) Descrietion

0 wSignature 2 Run file signature

2 ver 2 Run file format
version

4 cpnRes 2 Run file size

6 irleMax 2 Maximum relocation
entry index

8 cparDirectory 2 Relocation directory
size

10 cparMinAlloc 2 Minimum memory array
size

12 cparMaxAlloc 2 Maximum memory array
size

How the Linker Works 2-11

Table 2-1. Version 6 Run File Header Format.
(Page 2 of 3)

Offset Field ----
14

16

18

20

22

24

26

sa Stack
(snStack)

raStackInit

wchksum

raStart

saStart
(snStart)

rbrgrle

iovMax

I 28 ~ saMainDs
(snMainDs)

30 allFs

32 verAlt

34 rbIdiv

36 cIdiv

Version 6 Only:

38 qbMinData

42 qbMaxData

46 rbRgProtoDesc

Size
(bytes) Description

2

2

2

2

2

2

2

2

2

2

2

2

4

4

2

Initial stack
segment

Initial stack offset

Run file checksum

Initial code offset

Initial code segment

Relocation directory
offset

Maximum overlay
index

Initial data segment
(large model)

Constant 0FFFFh

Alternate run file
format version

Idiv table offset

Size of idiv table

Minimum virtual data
partition size

Maximum virtual data
partition size

Prototype descriptor
table offset

2-12 Linker/Librarian Manual

Table 2-1. Version 6 Run Fi1e Header Format.
(Page 3 of 3)

Size
Offset Field (byte~) Description

48 iProtoDescMax 2 Maximum prototype
descriptor index

50 rbRgRqLablE 2 Resident request
fixup table offset

52 iRqLablEMax 2 Maximum resident
request fixup index

54 rbMpSnSa 2 SN to SA translation
table

56 iSnMax 2 Maximum SN index

58 snFirst 2 SN of first proto­
type descriptor

60 slCode 2 First code segment
selector

62 cSlCode 2 Count of code
segments

64

66

68

70

72

76

80

82

86

slData

cSlData

slStack

cSlStack

lfaSbVerRun

dateTime

cModify

qbMinCode

qbMaxCode

2

2

2

2

4

4

2

4

4

First data segment
selector

Count of data
segments

Stack segment
selector

Constant 1

File address of
sbVerRun

Time stamp

Modify count

VM hint information

VM hint information

How the Linker Works 2-13

The wSignature and ver fields (offsets 0 and 2)
identify the run file and its version. The cpnRes
field gives the size of the run file, excluding
overlays.

The next four fields (offsets 6 through 12)
provide information about relocation data in the
file. The relocation directory is an array of
locators used by the operating system in
relocating the file. These locators (rle) have
the structure shown in Table 2-2. The memory
array is described under "Allocating Memory Space"
in Section 4, "Further Information About Linker
Options. II

Table 2-2. Address Structure.

Offset Field

o ra
2 sa

Size
(bytes)

2
2

At offsets 14 through 22, initial values are given
for the stack and code segments.

At offsets 24 through 28, the location of the
relocation directory and the number of overlays
are identified. The saMainDs field gives the
initial value of the DS register for a large model
program (for example, a FORTRAN-86 program).

The information at offsets 30 through 36 pertains
to correction by the Linker and the operating
system code of a known hardware problem with the
IDIV instruction on early versions of the 80186
processor.

The version 4 run file header ends at this point.
The remaining fields occur only in the version 6
header.

2-14 Linker/Librarian Manual

The fields qbMinData and qbMaxData (offsets 38 and
42) are used in sizing partitions on the
8086/80186 processors and for determining an upper
bound on how much data space a process can control
on the 80286 processor.

The rbRgProtoDesc and iProtoDescMax fields at
offsets 46 and 48 contain 'bhe offset and maximum
index of the prototype local descriptor table
(LDT). The 80286 loader refers to this prototype
data structure in building an LDT.

The prototype LDT structure is shown in Table 2-3.
The first field, limit, is the limit of a segment.
The second, lfaLow, is the logical file address
(lfa) of the segment on the file. This lfa allows
the segment to be found when it is to be faul ted
in. Since the lfa is a 24-bit quantity, the next
field, lfaHi, is needed to supply the high eight
bi ts of this address. The field at offset 5,
bAccess, identifies the type of the segment as
code, data, and so on.

Table 2-3. Prototype Descriptor Structure.

Size
Offset Field (b:ttes)

0 limit 2
2 lfaLow 2
4 lfaHi 1
5 bAccess 1
6 reserved 1
7 reserved 1

The fields at offsets 50 through 58 resolve issues
involved in creating a version 6 run file that can
run both in real mode (8086/80l86 and 80286
processors) and in protected mode (80286 proces­
sor). Different types of addressing are used in
the two cases.

How the Linker Works 2-15

A version 6 run file uses call gates and global
pointers to address certain operating system
structures in protected mode on the 80286
processor. The two fields at offsets 50 and 52
allow the version 6 file to be converted to the
flexible addi ti ve address mechanism that must be
used for such addressing if the task is to be run
in real mode.

The fields at offsets 54 through 58 describe a
table that maps each of the 80286 protected-mode
selectors to a real-mode segment address (SA).

The next six fields (offsets 60 through 68)
separately identify and describe the code, data,
and stack portions of a version 6 run file that is
to be run in real mode on a variable-partition
operating system.

At offsets 70 through 86, several items are
declared that simplify routine operations. The
IfaSbVerRun field allows the operating system to
find the location in a run file where the version
number is declared, so that that number can be
changed by a utility program without relinking.

The date Time stamp allows the Debugger to compare
a symbol file to a run file and report an error if
there is a difference.

The cModify field allows a count to be kept of the
number of times a run file has been modified.

The qbMinCode and qbMaxCode fields pertain to the
use of virtual memory. They indicate to the
operating system the approximate size of the
working set in bytes.

2-16 Linker/Librarian Manual

3 SIZING PROGRAMS AND READING THE MAP FILE

PROGRAM MEMORY REQUIREMER'l'S

Determining the actual amount of memory that a run
file needs is important in all applications. For
example , it allows the user to minimize the size
of the partition that the program will require
when executed under the Context Manager. If the
program is too large, it will not execute on
systems with small memory.

The memory requirement depends on these consider­
ations:

o size of the data segment (for example, stack
plus constants plus variables)

o size of the resident code (both the code
written by the programmer and the code
extracted from libraries)

o size of the overlay area, if swapping is used

o extra memory allocated at load
memory array) or later (by
AllocMemorySL or AllocMemoryLL)

RUN-TIME LIBRARY CODE

time (the
calls to

For compiled languages like Pascal, even a minimal
program requires the language run-time library, as
well as associated support code from CTOS.lib.
Almost all programs require 20K to 40K bytes of
space for run-time library code for this reason.
The largest component usually is Sequential Access
Method code.

Code from the run-time library is included in the
map file.

SIMPLE PROGRAMS

For simple programs, you can read the memory
required directly from the map. The size is the
"stop" address of the last segment (usually
MEMORY) listed in the map. This number is the
hexadecimal count in bytes from the first byte of
the first segment.

Sizing Programs and Reading the Map File 3-1

SWAPPING PROGRAMS

Swapping programs should usually be sized on the
"stop" address of the last segment of the resident
portion, with the size of the required swap buffer
added in.

PROGRAMS THAT ALLOCATE MEMORY

To size a program that allocates memory, add the
maximum amount of memory that will be allocated.
For programs that do DS allocation (for example,
Pascal programs that use the "New" function), add
the extra amount of DS that will be required. Use
of memory array is subject to the availability of
a minimal amount. (See "Allocating Memory Space"
in Section 4, "Further Information about Linker
Options.")

READING THE MAP FILE

VERSION 4

Figure 3-1 shows a sample map file for a version 4
run file.

Addresses

The first three columns in the map show the
beginning and ending addresses and the length of
each segment. The starting addresses under
"Start" are offsets, not absolute addresses. The
offsets are relative to the base memory address at
which the operating system loads the run file.
This base address is determined at run time.

Linker (Version)

Start

(/JfIH2J(/J(/Jh
(/J(/J(/J22h
(/J(/J(/J22h
(/J(/J(/J9(/Jh
(/J(/J(/J9Ch

Stop

(/J(/J(/J2(/Jh
(/J(/J(/J22h
(/J(/J(/J87h
(/J(/J(/J9Bh
(/J(/J(/J9Ch

Length

(/J(/J2lh
(/J(/J(/J(/Jh
(/J(/J66h
(/J(/J(/JCh
(/J(/J(/J(/Jh

Program entry point at (/J(/J(/J(/J:(/J(/J(/J(/J

Name

EXAMPLE_CODE
CONST
DATA
STACK
MEMORY

Figure 3-1. Sample Version 4 Map File.

3-2 Linker/Librarian Manual

Class

CODE
CONST
DATA
STACK
MEMORY

941-003

Names

The fourth column gives the name of each segment.
In the case of a code segment, this name is not
the file name of the module.

In most high-level language programs, you assign
this module name at the beginning of the module.
The compiler creates the code segment name by
appending an underscore and a suffix to this
assigned module name, and the Linker reports the
resulting name here.

In assembly language, you can directly name each
segment as you wish. The Linker does not append a
suffix to the segment name.

Many programmers choose to assign the same name as
both the file name of a module and the module name
within the program, for easy reference. This
convention is particularly helpful when you are
using the map to decide what segments to place in
overlays, since file names, and not internal
module names, are entered in the "Object modules"
field of the Linker command form. You are not
required to use this convention, however.

Classes

The fifth column in the map gives the class of
each segment. The Linker groups segments by class
and uses class to assign order in the program.
(See "Ordering Linker Segments" under "How the
Linker Works," above.)

VERSION 6

Figure 3-2 shows a map file for a version 6 run
file. It is similar in format to the version 4
map file, but it includes another column of
numbers in parentheses between "Length" and
"Name."

These numbers are 80286 selectors. For each code
segment, this selector is the value of the CS
register while it is executing, if you are running
in 80286 protected mode. For a data segment, this
number is the selector that would be used to
access data within it.

Sizing Programs and Reading the Map File 3-3

Linker (Version)

Start Stop Length Name

00000h 00020h 0021h (0084h) EXAMPLE CODE
00030h 00030h 0000h (008Ch) CONST
00030h 00095h 0066h (008Ch) DATA
000A0h 000ABh 000Ch (008Ch) STACK
000B0h 000B0h 0000h (008Ch) MEMORY

Program entry point at 0000:0000 (0084:0000)

Figure 3-2. Sample Version 6 Map File.

Class

CODE
CONST
DATA
STACK
MEMORY

941 -004

For all segments within a g~ven group, the
selector number is the same. (See the Assemb.iy
Language Manual for a discussion of groups.)

PUBLIC SYMBOLS AND LINE NUMBERS

Figure 3-3 is the same version 4 map file with the
values of all public symbols and their addresses
listed. The symbols are sorted first alpha­
betically and then numerically. The public symbol
lists are followed by a list of line numbers.

a list of public symbols by entering
"[Publics?]" field of the Linker com­

You request a list of line numbers
by entering "y" in the II [Line

field.

You request
"y" in the
mand form.
separately
numbers?]"

The Address column in Figure 3-3 contains the
notation XXXX:YYYYh, the hexadecimal address of
the public symbol.

The Overlay column contains IIRes" if the symbol is
in the resident portion of your task, an integer
(n) if it is in the nth overlay, and "Abs ll if it
is absolute. An absolute symbol is one with a
specified place in memory (for example, an address
within the operating system).

Line numbers are intended for use during
debugging. They allow you to examine a known part
of your program at a known address, even though
there is no public symbol at that address. The
addresses, however, are relative to the beginning
of the run file, so you must do some arithmetic in
order to use them.

3-4 Linker/Librarian Manual

Linker (Version)

Start Stop Length

ell!HHH:lh elelel2elh el021h
elelel22h eleJel22h elelelelh
elelel22h eJelel87h eleJ66h
elelel9eJh elelel9Bh eleJeJCh
eleleJ9Ch eleleJ9Ch 13 1313 0h

Publics by name

ANOTHERSAMPLEPROCEDURE
MAIN
SAMPLEDATA
SAMPLETABLE
SAMPLE PROCEDURE

Publics by value

SAMPLE PROCEDURE
ANOTHERSAMPLEPROCEDURE
MAIN
SAMPLEDATA
SAMPLETABLE

Line numbers for EXAMPLE_CODE

Name

EXAMPLE_CODE
CONST
DATA
STACK
MEMORY

Address Overlay

eleleJ0:el0elDh Res
1313013: 13131 2h Res
elelel2:el0el2h Res
elelel2:eJ0el4h Res
0eleleJ:el0el8h Res

Aaar@ss Overlay

elelelel:el008h Res
13131313: el0elDh Res
elelelel:el012h Res
1313132: el0el2h Res
0002: 00el4h Res

4 el0elel:0el08H 5 elelelel:0elelBH 6 00elel:elel0DH
8 elelelel:elel1elH

Class

CODE
CONST
DATA
STACK
MEMORY

7 elelelel:eleJelDH

9 elelelel:elel12H 113 elelelel:elel12H 11 elelelel:elel15H 12 eleJelel:elellAH
13 000el:elel1FH
14 elelelel:elelel0H 15 elelelel:elel08H

Program entry point at 1313013:13131313
941-005

Figure 3-3. Sample Version 4 Map File with Lists
of Public Symbols and Line Numbers.

Figure 3-4 shows a list of public symbols and a
list of line numbers and addresses in a version 6
map file.

In the list of public symbols in the version 6
map, the name of the public symbol is followed by
two addresses. The first is the address in real
mode, and the second is that in protected mode.

In a version 6 run file, operating system absolute
addresses are converted to an 80286-compatible
form (call gate and global descriptor table, or
GDT), but they are still denoted as absolute in
this listing. Application-de fined absolute ad­
dresses are not permitted in version 6 run files.

Sizing Programs and Reading the Map File 3-5

Linker (Version)

Start Stop Length Name Class

1IJIIJIIJIIJIIJh 1IJIIJ1IJ211Jh lIJeJ21h (1IJ1IJ84h) EXAMPLE CODE CODE
eJlIJlIJ 3 IIJh 1/JIIJ1IJ311Jh 1IJIIJIIJIIJh (1IJ1IJ8Ch) CONST CONST
1IJIIJ1/J311Jh 011J1IJ9Sh 1IJ1IJ66h (1IJ1IJ8Ch) DATA DATA
IIJIIJIIJAI/lh eJIIJIIJABh IIJlIJlIJCh (lIJeJ8Ch) STACK STACK
IIJIIJIIJBlIJh IIJIIJIIJBlIJh IIJlIJeJlIJh (1IJ1IJ8Ch) MEMORY MEMORY

Publics by name Address Overlay

ANOTHERSAMPLEPROCEDURE I/JlIJeJlIJ:lIJeJlIJDh (lIJeJ84:eJeJ0Dh) Res
MAIN 1IJ1IJ1IJ1IJ:1IJ1Il12h (""84:0112h) Res
SAMPLEDATA I/JlIleJ3:lIJeJlIllIJh (1Il1ll8C:0011lIlJh) Res
SAMPLETABLE 1IJ011l3:011l1lJ2h (011l8C:0011l2h) Res
SAMPLE PROCEDURE lIleJlIllIJ:1IJ1IJ1/J8h (1Il1ll84:011l08h) Res

Publics by value Address Overlay

SAMPLE PROCEDURE 0011l1ll:@011l8h (1Il084:0008h) Res
ANOTHERSAMPLEPROCEDURE 011l1ll0:011l0Dh (1Il084:000Dh) Res
MAIN 1Il1ll1ll1ll:1Il012h (1Il084:011l12h) Res
SAMPLEDATA 01/JeJ3:lIllllllllllh (1Il1ll8C:011l0eJh) Res
SAMPLETABLE eJ1Il1ll3:eJ1Il1ll2h (1Il08C:0002h) Res

Line numbers for EXAMPLE CODE

4 lIleJlIllll:1Il1ll1ll8H S eJeJeJeJ:eJeJeJBH 6 eJeJeJ0:eJeJeJDH 7 1Il1ll1ll1ll:IIlIllIllDH
8 0eJeJeJ:eJeJ1eJH
9 eJeJlIJeJ:1Il1ll12H 1 III IIlllleJlIl:1Il1ll12H 11 1Il1ll1ll1ll:lIlllllSH 12 1Il1ll1ll1ll:lIlllllAH

13 1Il1ll1ll1ll:1Il1IJ1FH
14 1Il1ll1ll1ll:IIlIllIllIllH IS 1Il1ll1ll1ll:1Il1ll1ll8H

Program entry point at 1Il1ll1ll1ll:1Il1ll1ll1ll (1Il1ll84:0011l1ll)
941-006

Figure 3-4. Sample Version 6 Map File with Lists
of Public Symbols and Line Numbers.

3-6 Linker/Librarian Manual

4 FURTHER INFORMATION ABOUT LINKER OPTIONS

ALLOCATING MEMORY SPACE

Normally, when a task is loaded in a partition,
its high end is placed at the high-address end of
memory. (See Section 4, IIMemory Management, II and
Section 5, IITask and Partition Management,lI in the
eTOS Operating System Manual, Volume 1.)

During compilation or assembly, a program can
allocate memory that it will need during
execution. This extra memory takes up space in
the program's disk file.

Sometimes it is more efficient for a program to
allocate a portion of memory only at load time or
during execution. Usually, if a program needs to
allocate short-lived memory during execution, it
does so via calls to AllocMemorySL or
ExpandAreaSL, and the memory is allocated toward
lower addresses. This memory is addressed with
32-bit segment-and-offset addresses.

The Linker allows you to choose either or both of
two unrelated options for allocation of memory
space at load or run time. These options are OS
allocation and the memory array.

DS allocation allows your program to allocate
short-lived memory toward lower addresses as
usual, but to address it efficiently with only
l6-bit offset addresses.

The memory array
allocate memory
program.

DS ALLOCATION

option allows the
at high addresses

program to
above the

The data segment (addressed by DS) has a maximum
size of 64K bytes, and your program takes up a
certain amount of that. OS allocation allows you
to define a maximum-size data segment, even though
your program's data segment would normally be
smaller. The excess space in this maximum data
segment extends beyond your program toward lower
memory addresses. You allocate memory in this
space with AllocMemorySL or ExpandAreaSL, and you
can address within this space with l6-bit offset
addresses from DS.

Further Information About Linker Options 4-1

To achieve this arrangement, you speci fy "yes" in
the "[DS allocation?]" field of the Linker corrunand
form. The Linker then gives DS the lowest
possible value that still allows the data segment
to encompass your program's data (or DGroup).
This arrangement is shown in Figure 4-1.

High

Program

~------------

64K bytes

DsL
Data Portion

Unallocated Memory

Operating System

low
941-007

Figure 4-1. A Program with DS Allocation.

Note that the program must be arranged with the
data segment as its first or lowest-address
segment. If your compiler does not order the
classes in this way, or if you are writing in
assembly language, you must specify the segment
ordering in the first obj ect module listed for
linking. (See "Creating Linker Segments" in
Section 2, "How the Linker \vorks.")

4-2 Linker/Librarian Manual

DS allocation has several advantages. It allows
the l6-bit DS-relative addressing discussed above.
Also, memory allocated within this space adjoins
the common pool of available memory below the
program and can be deallocated and reallocated
flexibly by the program. However, the program
must make procedure calls for memory allocation,
and the l6-bit addressable space is less than 64K
bytes.

THE MEMORY ARRAY

The memory array is allocated at the high-address
end of your program at load time, not through
procedure calls. To use the memory array, you
specify values in the "[Max memory array]" and
"[Min memory array]" fields of the Link command
form or in the first parameters of the "[Max
array, data, code]" and "[Min array, data, code]"
fields of the Bind command form. The memory array
is shown in Figure 4-2.

You do not have to know the size of your program
or how much memory is available in the partition
to specify a memory array. The cParMemArray field
of the Application System Control Block structure
contains the number of paragraphs of memory array
actually available. If the partition cannot
accommodate the minimum memory array you
requested, the program is not loaded, and the
operating system returns a status code and error
message.

If you want the task always to load at the lowest
possible address, that is, with maximum memory
array at the end of the task, set the minimum to 0
and the maximum to 1000000.

The memory array has several advantages. It is
not limited to less than 64K bytes but can occupy
all available memory in a partition. The program
need make no procedure calls to allocate memory
during execution. The task is at lower addresses
than the memory array. The memory array can be
referenced from DS if DGroup is placed at the end
of the program.

Further Information About Linker Options 4-3

High

Memory Array

Program

Unallocated Memory

Operating System

~ ________________________ ~ Low

941-008

Figure 4-2. A Program with the Memory Array.

The memory array is static, however. You cannot
reclaim any of it for other uses, and it persists
throughout execution. Also, in the form described
here, it cannot, in general, be referenced from
DS. Usually, the ES register is loaded with the
lowest address of the memory array.

LINKING A SWAPPING PROGRAM

The Virtual Code Segment Management facility,
informally referred to as the Swapper, allows an
application program that is larger than the memory
in its partition to run, but with a performance
trade-off. For this purpose, the program's code
is divided into variable~length code segments.
One, the resident code segment, is permanently in
memory. The remaining segments, or overlays,

4-4 Linker/Librarian Manual

reside on disk until they are needed. When a
procedure in a nonresident overlay is called, the
Overlay Manager of the Swapper brings it into
memory.

The term "code segment," as used here, is not the
same as a linker segment. A Swapper code segment,
whether resident or in an overlay, may contain
several linker code segments. An overlay, for
example, can include differently named code
segments originating from several different
modules.

Only code, and not data, is placed in overlays.

Module code segments produced by high-level
language compilers are pure, so a particular
Swapper code segment in memory that is no longer
needed can be overlaid by another Swapper code
segment. When the first code segment is needed
again, it is reread from the run file. Under this
system, only code segments, and not data segments,
are swapped. Nothing is written back to disk, so
there is no need for a disk swap file.

The Swapper can be used with programs written in
all of the system's high-level languages, and also
by assembly language programs that follow certain
rules. Little or no modification is needed to
make an existing program swap. You must write a
small amount of initialization code, and you must
specify in the Linker command form which modules
are to contribute code to which overlays. (See
"Invoking the Linker" in Section I for details on
what to enter in the "Object modules" field.)

The Swapper model is more fully described in
Section 6, "Virtual Code Segment Management," in
the CTOS Operating System Manual. To write a
swapping program or to adapt an existing one, see
"Virtual Code Segment Management" in the CTOS
Programmer's Guide for detailed directions. See
also the appropriate language manual. In some
languages, you cannot place certain modules from
the run-time library in overlays. In assembly
language, you must follow call/return conventions
and certain other rules if your swapping program
is to work. Small-model programs in the C
language are not compatible with the Swapper.

Further Information About Linker Options 4-5

ADJUSTING STACK SIZE

All compilers produce information in object
modules from which the Linker can compute the size
of the required stack segment. For safety, this
information usually specifies a stack that is
larger than the actual requirements.

REDUCING THE STACK

If your program has a data segment that is close
to the 64K-byte size limit, in many cases you can
reclaim space by reducing the stack size. For
example, if you link a program that uses Forms,
ISAM, and Graphics, the Linker supplies extra
stack space for each of these products. Examine
the size of the default stack by looking at the
map file. It is often possible to reduce the
amount of stack space by as much as one third
without problems.

To estimate the needed stack size more closely,
run the program under the Debugger and set a
breakpoint at the end of execution or at another
convenient point after which the stack has just
reached its largest requirement. Because the
stack is initialized to zeros, you can now check
to see how much of the low part of the stack is
still zeros in order to find the maximum
requirement. Allow another 128 bytes (64 bytes
for interrupt handlers and 64 bytes for making
requests) and reduce the stack size accordingly.

CORRECTING STACK OVERFLOW

In rare cases, the compiler can supply information
that causes the Linker to undercompute the
required stack size. An example is a task with
many recursive procedures.

The stack grows down from higher to lower
addresses. If a program's needs exceed the stack
size, the stack can overwrite whatever precedes it
in the link map, causing abnormal program
behavior. In this case, relink the program,
speci fying a larger stack in the Linker command
form. The amount of stack needed is highly
program dependent and cannot be estimated neatly.
Increase the stack to the maximum allowed within

4-6 Linker/Librarian Manual

the limitations of your data segment. If the
program now runs, reduce the stack size according
to the guidelines under "Reducing the Stack,"
above.

FILE NAMING CONVENTIONS

In the II[Map file]1I and "[Symbol fileJ" fields of
the Linker conunand forms, you can specify file
names if you wish. If you do not, a default file
name is assigned as follows: the run file name is
treated as a character string, and any suffix
beginning with a period is removed. For a map
file, the new suffix II .mapll is added. For a
symbol file, the new suffix is lI. sym".

For example, if the run file is Prog.run, the
defaul t map file is Prog .map and the symbol file
is Prog.sym. If the run file is [Dev] <Jones>Main,
the map file is [Dev]<Jones>Main.map and the
symbol file is [Dev]<Jones>Main.sym.

Supported
matically
names.

compilers and
append ".obj"

the as sernbler
to object module

auto­
file

Further Information About Linker Options 4-7

5 LIBRARIAN

IN'l"RODUCTION

The Librarian is a program development
that creates and maintains libraries of
modules. A library has three uses:

utility
object

1. It can be a parameter in the II [Libraries] II
field of the Linker command form, to specify
that the Linker should search the library for
object modules that satisfy unresolved
external references. (See Section I, IIUsing
the Linker (Binder},11 for details.)

2. It is a convenient unit in which to collect
several object modules and distribute them as
a single file. The Librarian extraction
facility, which is described below and is also
available in the Linker, can be used to
extract specific modules from the unit.

3. It is a convenient unit in which to collect
several forms created with the Forms Editor.
(See the Forms Manual.)

In the first use, you do not have to know the
names of the object modules composing a library.
The Linker's library search algorithm
automatically selects from the library exactly the
required modules. Linking obj ect modules from a
library specified in the II [Libraries] II field of
either Linker command form is faster than linking
the same modules specified individually in the
IIObject modules ll field, because in the former case
only one file is opened.

In the second and third uses, you must specify the
desired object module or form name to extract it
from the library.

The Librarian builds or manipulates libraries in
these ways:

o It builds a new library when given the name of
a new library file and the object modules that
are to compose it.

Librarian 5-1

o It modifies ~ existing library when given the
names of obj ect modules to be added to or
deleted from it. (This includes the case in
which a module in a library is to be replaced
by a new module with the same name.)

o It extracts from ~ library one or more object
modules when given the names of the desired
object module files.

o It produces a sorted ~-reference listing
of the object modules and public symbols in
the library.

INVOKING THE LIBRARIAN

To invoke the Librarian from ~ne Executive, ~yp~
the command "Librarian", or a unique abbreviation,
in the command field and press RETURN. The
parameter fields of the Librarian command are as
follows:

Librarian
Library file
[Files to add]
[Modules to delete]
[Modules to extract]
[Cross-reference file]
[Suppress confirmation?]

You must fill in the
can allow optional
brackets) to assume
leaving them blank.

"Library
fields
their

file"
(those

default

field. You
in square
values by

Press GO to execute the Librarian command.

You can request multiple operations in one
invocation of the Librarian. Modules are deleted,
added, and extracted, in effect, in that order. A
cross-reference listing reflects the state of the
library after all operations are completed.

If you are revising a library module and wish to
reinsert it, it is most efficient to use the
"[Files to add]" field and allow the Librarian to
overwrite the preexisting module of the same name.
Deleting the old module and adding the new one
takes approximately twice as long.

5-2 Linker/Librarian Manual

If you do not wish to receive
confirmation in this kind
example, when the operation

a message asking for
of situation (for
occurs in a Submit

file) , respond "y" to the "[Suppress
confirmation?]" field.

At the end of a library is a text string that
identifies its version. Whenever you modify a
library, the text string is lost. For suggestions
on housekeeping to avoid confusion resulting from
use of altered libraries, see "Librarian Errors"
in Section 6, "Troubleshooting."

PARAMETER FIELDS

Library file Enter the file name of the object
module library. Typically, it has
the form

LibraryName.lib

If the specified file already
exists, it is the starting point
for any 1 ibrary to be built.
Before changes are made, the
contents of the file are preserved
intact in a file whose name is the
original name plus the suffix
"-old" . However, if no files are
added and no modules are deleted
(for example, if you only request a
listing), then the input library is
not modified and no "-old" file is
generated. If modifications are
requested, then the updated library
is named as speci fied by "Library
file."

If the specified file does not
exist, you are prompted to confirm
the creation of a new library file.
You can suppress this request for
confirmation by specifying "yes" in
the "[Suppress confirmation?]"
field.

Librarian 5-3

[Files to add] Default: No files added

Enter the list of files containing
object modules that you want to add
to the library. Separate the names
with spaces.

If you do not respond, no files are
added.

The name of the added module within
the library is derived from the
name of the added object file. All
leading volume, directory, and
SUbdirectory specifications are
dropped. Any final extension
beginning with a period is dropped.
For example, if the file name is

[Sys] <Jones>Sort.obj

then the module name is Sort. If
the file name is

<Jones>Working>Sort

then the file name is also Sort.

You are prompted for confirmation
if an object module that you want
to add has the same name as an
object module already in the
library. If you confirm the re­
placement, the file containing the
module with the same name replaces
the existing object module.

You are also prompted for
confirmation if a public symbol
declared in a module that is to be
added conflicts with a public
symbol already in the library. If
you confirm the duplication, the
module containing the duplicate
definition is added, but the public
symbols (both old and new) are
removed from the index of symbols
searched by the Linker.

5-4 Linker/Librarian Manual

Since the Linker must sometimes
search a library for a module
defining a given public symbol, it
is unusual to create a library in
which two object modules define the
same public symbol. (This kind of
duplicate definition might reason­
ably occur in a library intended
just as a convenient unit in which
to collect object modules, and not
for automatic search.)

You can suppress these requests for
confirmation by specifying "yes" or
"y" in the II [Suppress confir­
mation?]" field.

[Modules to delete] Default: No modules deleted

Enter the list of modules that you
want to delete from the library.
Separate the names with spaces.

If you do not respond, no modules
are deleted.

[Modules to extract] Default: No modules
extracted

List the object modules of an
existing library that you want to
extract to form individual object
module files. Separate the names
with spaces. The specification is
a list of entries of either of the
forms

ModuleName

or

FileName (ModuleName)

If the first form is used, files
containing the specified obj ect
modules are created with names of
the form ModuleName.obj. If the
second form is used, the file name
can be specified explicitly.

Librarian 5-5

When the Librarian is used to
modify a library (the most common
use), the U [Modules to extract] "
field is not used. Extraction does
not modify a library.

If you do not respond, no modules
are extracted.

[Cross-reference file] Default: No listing
produced

Enter the name of the file to which
the Librarian is to write a cross­
reference listing of public symbols
and object module names. A cross­
reference listing has two parts:

1. The first part lists public
symbols in alphabetic order
and, for each public symbol,
the name of the module that
defines it.

2. The second part lists module
names in alphabetic order and,
for each module, the names of
the public symbols it defines.

If the same symbol is defined in
different modules within a library,
these duplicate symbol names are
removed from the index of symbols
to be searched by the Linker.
However, they are listed in the
cross-reference file. The first
such symbol encountered is followed
by one asterisk, the second by two,
and so on. The modules in which
they occur are listed.

If you do not respond, no cross­
reference listing is produced.

Figure 5-1 shows a sample listing
produced by use of the U[Cross­
reference file]U option.

5-6 Linker/Librarian Manual

Librarian (Version)

ANOTHERSAMPLEPROC example ANOTHERSAMPLEPROC2 example2

MAIN example MAIN2 .•••..••..••..•........ example2

SAMPLEDATA•. example SAMPLEDATA2 •••...•.•....•... example2

SAMPLEPROC example SAMPLEPROC* example2

SAMPLETABLE example SAMPLETABLE2•.....•.•. example2

example (Length 0093H bytes)

ANOTHERSAMPLEPROC
SAMPLEPROC

MAIN
SAMPLETABLE

SAMPLEDATA

example2 (Length 0093H bytes)

ANOTHERSAMPLEPROC2
SAMPLEPROC*

MAIN2
SAMPLETABLE2

SAMPLEDATA2

941-009

Figure 5-1. Sample Cross-Reference Listing.

[Suppress confirmation?] Default: Prompts for
confirmation

Respond to this field with "yes" or
"y" if you do not want prompts for
confirmation when creating new
library files (with the "Library
file" field) or replacing existing
object modules (with the "[Files to
add]" field).

If you enter "no" or
respond, the Librarian
prompts for confirmation.

do not
issues

Librarian 5-7

6 TROUBLESHOOTING

LINKER WARNINGS AND ERRORS•............

Bad max parameter
Bad numeric parameter•............
Bad yes/no parameter•............
IDIV instruction in overlay ...••............
Illegal segment address reference

type n•............
Input file read error, bad object module ...•
Invalid Abs#l Fixup
Invalid Abs#2 Fixup•............
Module compiled with publics

is not resident
Multiply defined symbol
Non "CODE" class loaded into overlay
Noncontiguous GROUPS not 286 compatible
No 'OverlayFault' procedure loaded ..•.......
No run file
No STACK segment
Odd length STACK .••.........•••...•.........
Odd size stack requested; rounded up
Proc near nnnn in FileName doesn't

follow CALL/RET conventions•...
Program size exceeds Linker capacity
Relocation offset is too large
Relocation offset from group is

too large •................•.............
Relocation offset of near reference

is too large•.••..........•..
Requested stack size exceeds 64K •...........
Segment of absolute or unknown type ..•......
Symbol file hash table overflow .•...........
Symbol table capacity exceeded
Too many PUBLIC symbols
Unresolved externals•.......

NUMERIC STATUS CODES

LIBRARIAN ERRORS•...........

Troubleshooting

6-2

6-3
6-4
6-5
6-6

6-7
6-11
6-12
6-12

6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21

6-22
6-23
6-24

6-24

6-26
6-28
6-29
6-30
6-31
6-32
6-33

6-34

6-49

6-1

LINKER WARNINGS AND ERRORS

If an error occurs during linking, the Linker
displays the message

There were n errors detected

Descriptions of the errors are written to the map
file.

The Linker reports three kinds of status messages:

Warning

Error

Fatal error

Informative. Often, the link is
completed. The program mayor may
not run.

Definitely indicates that there is
a problem that would prevent the
linked program from running.

Causes the link to be aborted.

Linker status messages are listed on the following
pages. Unnumbered status messages appear first,
in alphabetic order. Numbered messages follow in
numeric order.

Numeric status codes for the Linker have the range
4400 through 4423. Status codes from this range
that do not appear in the following list are part
of normal internal Linker error checking, and you
should never see one displayed. Should you
observe such a status code, it results from a
Linker or compiler error and should be reported.

Many errors result from conditions that are under
the control of the assembly language programmer,
but that are under the control of the compiler,
not the programmer, in a high-level language.

6-2 Linker/Librarian Manual

Bad max parameter

EXPLANATION

In the "Link" command form fields "[Max memory
array size]" and "[Min memory array size]" or in
the "Bind" command form fields .. [Max array, data,
code]" and "[Min array, data, code]," the minimum
specified is greater than the maximum.

SYSTEM ACTION

The link is not initiated.

OPERATOR RESPONSE

Invoke the Linker again, and verify that the value
of "[Max memory array size]" is greater than that
of "[Min memory array size]."

Troubleshooting 6-3

Bad numeric parameter

EXPLANATION

In either Linker command form,
parameter has been entered in
numeric parameter was expected.

SYSTEM ACTION

The link is not initiated.

OPERATOR RESPONSE

an unrecognized
a field where a

Invoke the Linker again, and verify numeric
entries in the various fields of the command form.

6-4 Linker/Librarian Manual

Bad yes/no parameter

EXPLANATION

A yes/no response to a field in either Linker
command form is expected and what is entered does
not correspond to either answer.

SYSTEM ACTION

The link is not initiated.

OPERATOR RESPONSE

Invoke the Linker again, correcting the yes/no
response parameter. Check the following fields:

[Publics?]
[Line numbers?]
[System build?]
[DS allocation?]

Troubleshooting 6-5

IDIV instruction in overlay

EXPLANATION

This message arises only when a Pascal or FORTRAN
program contains code that results in an IDIV
(integer division) instruction within an overlay.
On an early version of the 80186 microprocessor, a
problem existed with integer division on negative
operands. System software automatically detects
and corrects the problem on affected machines at
program load time. However, if IDIV instructions
aDDear in an overlay, the Linker can detect but
c~~not correct the problem.

The message is reported when you link the program
on any system, but it indicates a real problem
only if you plan to run the resulting run file on
one of the affected systems.

SYSTEM ACTION

The link is completed successfully.

PROGRAMMER RESPONSE

Move the code containing IDIV into the resident,
or ensure that all integer-division operands are
positive. This is the safest course if you do not
know on which machines your program will be run.

The alternative is to avoid using the DIV operator
in Pascal or an I/J construction in FORTRAN (where
I and J are integers) unless you are sure that all
operands are positive.

6-6 Linker/Librarian Manual

Illegal segment address reference type n

EXPLANATION

This group of messages, where n can have the
values I through 5, is related only to the use of
overlays. These messages can result from either
user or Linker errors. (For a discussion of the
Swapper, see Section 6, "Virtual Code Segment
Management," in the CTOS Operating System Manual,
Vol ume I . See al so the section with the same
title in the CTOS Programmer's Guide.)

Type 1

You are attempting to call a procedure in an
overlay, but the Linker has not previously
recognized and created a stub for that procedure
while setting up the data structures necessary for
swapping. This message is usually preceded by the
message "Proc near nnnn in FileName doesn't follow
CALL/RET conventions" earlier in the link.
However, because the Linker cannot detect all
cases of call/return violations, the Type I
message may appear alone. Its meaning is the same
in either case.

Type 2

This type occurs only in assembly language or PL/M
programs. In a swapping program, it is illegal to
use only one part of the two-part address of a
procedure. This error indicates that a procedure
address has been used partially or incorrectly.
For detailed rules for writing a swapping program
in assembly language, see "Virtual Code Segment
Management and Assembly Code" in the Assembly
Language Manual, Section 9, "Accessing Standard
Services from Assembly Code."

Troubleshooting 6-7

Illegal segment address reference type n
(continued)

Type 3

As with the Type 2 error, this error
that the parts of a procedure addres s
separated. In this case, however,
resul ts from a known problem in
versions of the Assembler. This error
occur with a current Assembler.

Type 4

indicates
have been
the error
noncurrent
should not

As with Types 2 and 3, a procedure address has
been split. This error results from a compiler
error in which code that is incompatible with the
Swapper is produced. It should not occur.

Type 5

This error occurs only in assembly language
programs when a segment and offset are used in
other than the two allowed ways: a long CALL
instruction or a DD instruction. For details, see
"Virtual Code Segment Management and Assembly
Code" in the Assembly Language Manual, Section 9,
"Accessing Standard Services from Assembly Code."

SYSTEM ACTION

The link is aborted.

PROGRAMMER RESPONSE

Type I

Examine your assembly language program for
call/return violations. If a call/return
violation warning was issued, it indicates the
location at which to examine your program. (The
location cited with the Type I message merely
indicates where the call occurred. In the absence

6-8 Linker/Librarian Manual

Illegal segment address reference type n
(continued)

of a warning message, you can use this information
if you have a compilation listing by looking at
the assembly code generated by the compiler to see
what was being called.)

Certain run-time library modules in noncurrent
versions of high-level languages also generated
code that violated call/return conventions.
Either place such modules and the calls to them in
the resident portion of your program's code or
upgrade your language version to current level.

See the CTOS Operating System Manual, Section 6,
"Virtual Code Segment Management, " and the
analogous section in the CTOS Programmer's Guide
for a detailed discussion of writing a swapping
program. See also the appropriate language manual
and release notice for language-specific
restrictions.

Type 2

Examine your assembly language code for incorrect
use of partial procedure addresses. In PL/M, it
is possible to generate the same error by using
the construction

P = @ProcedureName

which generates the statement

MOV AX, SEG ProcedureName

This instruction is illegal in the context of
overlays.

To find the address of a procedure name in PL/M in
a swapping program, you must define it as a static
constant in a DECLARE statement. For example:

DECLARE pProcedureName POINTER INITIAL
(@ProcedureName):

Troubleshooting 6-9

Illegal segment address reference type n
(continued)

Type 3

This error is not under the control of the
programmer. If your assembler is noncurrent,
upgrade to the current version.

Type 4

This error
programmer.

TypeS

is not under the control of the
Make sure your compiler is current.

Examine your assembly language code for use of a
procedure address used in instructions other than
a long CALL or DD. This error usually results
from using a far JMP, which is il~egal in an
overlaid program.

6-18 Linker/Librarian Manual

Input file read error, bad object module

EXPLANATION

This error can result when you have submitted an
invalid object module to the Linker.

SYSTEM ACTION

The link is aborted.

PROGRAMMER RESPONSE

Check your compiler to see that it is current.

Check to see if you have submitted a source file
or an object module that is a misnamed text file.

Troubleshooting 6-11

Invalid Absll Fixup

Invalid Absl2 Fixup

EXPLANATION

These messages pertain to FORTRAN-86 and indicate
relocation errors. They may result from either a
Linker or a compiler error. It should not appear.

SYSTEM ACTION

The link is completed, but the resulting run file
is invalid.

PROGRAMMER RESPONSE

The conditions that cause these errors are not
under the control of the programmer. Check to see
that your Linker and compiler versions are
current.

6-12 Linker/Librarian Manual

Module compiled with publics is not resident

EXPLANATION

This error occurs only in BASIC programs. The
BASIC compiler includes an option for compilation
wi th public symbols. In a swapping program, a
BASIC module compiled with public symbols cannot
be placed in an overlay.

SYSTEM ACTION

The link is completed.
executable.

PROGRAMMER RESPONSE

The run file is not

Do not place such a module in an overlay.

Troubleshooting 6-13

Multiply defined symbol

EXPLANATION

The same public symbol cannot be defined more than
once in a program. (The same public symbol can be
defined in more than one place in a library~ If
a public symbol is defined more than once, the
Linker uses the first definition that it
encounters. (This definition is not necessarily
the first one you would encounter in traversing
all the library modules in the order in which they
appear in the library. See "Library Search
Algorithm" under "How the Linker Works" in Section
1, "Linker (Binder).") All subsequent references
to that symbol go to the first-encountered
defini tion. On encountering the second defin­
ition, the Linker ignores the definition and
issues this error.

SYSTEM ACTION

The link is completed.

PROGRAMMER RESPONSE

When the Linker encounters the second definition
of the symbol and reports this error, it does not
report the location of the first definition in the
map. If the second (or later) definition is the
one you wish to preserve, use the Librarian to
generate a listing that reports the location of
each occurrence of the multiply defined symbol,
and reorder the object module list to put the
desired module first.

6-14 Linker/Librarian Manual

lion • CODE II class loaded into overlay

EXPLAliATION

In a swapping program, only segments with the
class name "code" can be placed in overlays.
Placing a segment of any other class in an overlay
produces this error.

SYSTEM ACTION

The link is completed. In most cases the run file
is not executable.

PROGRAMMER RESPONSE

In general, place only code in overlays.

The program may run if the affected overlay is not
to be used as an overlay: for example, if you
have placed data in an overlay as a convenient way
of getting it into a run file but not loading it
into memory.

Troubleshooting 6-15

Noncontiguous GROUPS not 286 compatible

EXPLANATION

Spli tting of grouped segments with insertion of
nongroup material, as described under the
"Relocation offset is too large" error, below, is
not permitted in a program to run on the 80286
processor. Submitting such a module to the Linker
to produce a version 6 run file results in this
error.

SYSTEM ACTION

The link is completed~ the run file is invalid.

PROGRAMMER RESPONSE

If your compiler (for example, certain versions of
the FORTRAN-86 compiler) produces obj ect modules
in which splitting occurs, link your FORTRAN
program with First.obj as the first object module
in the list, as described in the FORTRAN-86
Release Notice~ or write your own template
assembly language module to reorder the segments,
as described under the "Relocation offset is too
large ll error, below.

6-16 Linker/Librarian Manual

No 'OverlayFault ' procedure loaded

EXPLANATION

In a swapping program, no call to InitOverlays or
Ini tLargeOverlays was made, and thus the overlay
handler is not loaded.

SYSTEM ACTION

The link is completed, but the program should not
be run.

PROGRAMMER RESPONSE

Insert a call to InitOverlays or InitLargeOverlays
in your program. For details on writing a
swapping program, see "Virtual Code Segment
Management" in the CTOS Programmer's Guide.

Troubleshooting 6-17

No run file

EXPLANATION

No run file name was specified
command form. The run file name
optional and does not default.

SYSTEM ACTION

The link is not initiated.

OPERATOR RESPONSE

in the
field

Linker
is not

Invoke the Linker again, and enter a name in the
"Run file" field.

6-18 Linker/Librarian Manual

No STACK segment

EXPLANATION

A stack segment must exist in the program. This
error usually occurs in an assembly language
program when you have forgotten to include the
stack. It may also occur when you are linking an
unusual program that you do not intend actually to
run.

SYSTEM ACTION

The link is completed, but the program will not
run. Attempting to run such a program by pressing
CODE-GO causes a system crash without entry into
the Debugger.

PROGRAMMER RESPONSE

In an assembly language program, include a stack
segment.

Troub1eshooting 6-19

Odd length STACK

EXPLANATION

The length of stack segments must be an even
number of bytes. The Linker verifies this length
and reports this error if it finds an odd count.

The odd-length stack, if found, was generated by
the compiler.

SYSTEM ACTION

The link is completed successfully. The stack
size is rounded up to the next even number.

PROGRAMMER RESPONSE

This problem is not under the control of the
programmer. Verify that your compiler is current.

The run file will probably execute correctly.

6-28 Linker/Librarian Manual

Odd size stack requested: rounded up

EXPLANATION

Because the stack is composed of words, the length
of the stack must be an even number of bytes.
This warning results when you request an odd­
length stack in the "Stack size" parameter of
either Linker command form or in an assembly
language program.

SYSTEM ACTION

The stack size is automatically rounded up to the
next even number. The link proceeds normally.

OPERATOR RESPONSE

No action is needed. To avoid such messages,
specify an even-length stack for the
["Stack size"] parameter or in your assembly
language program.

Troub1eshooting 6-21

Proc near nnnn in File.ame doesn't follow
CALL/RET conventions

EXPLANATION

In a swapping program, accepted call/return
conventions are not followed. Because the Swapper
must trace the stack during a return to a
procedure in an overlay, an abnormal stack causes
such a program to fail.

The Linker cannot detect all cases of call/return
convent-ion violations; and not all such reports
are fatal. However, when such a warning is
accompanied by a later message of the form

Illegal segment address reference of type n

a fatal error has occurred. (See the discussion
of the "Illegal segment address reference" errors,
in this section.)

SYSTEM ACTION

The link is completed.

PROGRAMMER RESPONSE

A true call/ return convention violation usually
occurs in an assembly language program, but it can
resul t from the use of a noncurrent compiler or
from placing an inappropriate run-time library
module in an overlay.

This condition probably is not a problem in a
nonswapping program. However, it is best to
follow the call/return conventions because program
maintenance may make a program swap at a later
time.

For details on writing a swapping program, see
"Virtual Code Segment Management" in the CTOS
Programmer's Guide; see also the appropriate
language manua-l-.---

6-22 Linker/Librarian Manual

Program size exceeds Linker capacity

Too many PUBLIC symbols

EXPLANATION

These errors may be reported because insufficient
memory is available to the Linker. There is no
fixed limit on the size of the program to be
linked, but certain tables built by the Linker
must be resident in memory. If these tables
cannot be built, one of these errors results.

SYSTEM ACTION

The link is aborted.

OPERATOR RESPONSE

Increase the amount of memory available to the
Linker.

Troubleshooting 6-23

Relocation offset is too large

Relocation offset from group is too large

EXPLANATION

Some high-level language compilers use a medium
model in which the sum of data, constant, and
stack segments is limited to 64K bytes. Usually,
these error messages mean that your program
contains too much data, which causes the sum of
these segments to exceed 64K bytes. This
situation can arise when a program with a large
data declaration 1S being ported from another
system.

In some cases, one of these errors arises when a
compiler inserts another kind of area between two
of the segments mentioned. For example, the
FORTRAN compiler produces object modules in which
data and constant segments are separated by a
common area, thus:

data, common area, constants, stack

The Linker retains the same segment ordering that
it encounters in the first Object module listed
for linking. Thus, the run file in this example
would contain the linker segments data, common,
constants, and stack, in that order. The total
extent of these linker segments, from the
beginning of data to the end of stack, must be
less than 64K bytes. A large common area may
cause the sum to exceed 64K bytes.

Another cause of this split-and-insertion problem
is the placement of the memory segment (which
contains nothing but is taken into account when
the Linker checks for this error) at the end of
the series of segments.

Any violation of this 64K-byte restriction
produces one of these relocation offset errors.
(A "Segment size exceeds 65520" error, status code
4405, is generated if anyone segment exceeds 64K
bytes.)

6-24 Linker/Librarian Manual

Relocation offset is too large

Relocation offset from group is too large
(continued)

SYSTEM ACTION

The link is completed, but the run file is
invalid.

PROGRAMMER RESPONSE

\\T'hen this 0,...""""" ~ caused simply lJy excessive
length, dynamically allocate short-lived memory
(using AllocMemorySL) in your program, rather than
declar ing large arrays, buffers, and so on. In
FORTRAN, you can reduce data segment lengths by
moving variables into common blocks.

When the error is caused by spi it and insertion,
as described above, use an assembly language
program that does nothing but declare the class
names of the segments in a different order,
placing this module first in the list of modules
to be linked. This first module serves as a
template, and the Linker then orders segments from
the following modules in the same way. (For a
discussion of ordering by class name, see the
Assembly Languag~ Manual. For a FORTRAN-86
program, see "Using Arrays Larger than 64KII in the
FORTRAN-86 Release Notice, for details.)

Troub1eshooting 6-25

Relocation offset of near reference is too large

EXPLANATION

A near call is one in which the called address is
less that 64K bytes from the caller's address, and
16-bit addressing can be used. A far call is one
outside this range, for which 32-bi t addressing
must be used.

In most high-level language compilers, the medium
model is used, and any call between modules with a
public symbol is a far call. However, in a small­
model program such as that generated by the C
compiler, or in certain assembly language
programs, near calls are generated between
modules. In this case, if the caller and the
called address are more than 64K bytes apart, the
above error is reported.

SYSTEM ACTION

The link is completed, but the run file is
invalid.

PROGRAMMER RESPONSE

Make your program smaller, or reorder the object
modules to bring references and addresses closer
together.

If the caller and called addresses both come from
a high-level language, this error usually results
from an attempt to call a variable in a data
segment.

If the caller or the called address comes from
assembly language, make sure both addresses are in
the same group. If possible, change the near call
to a far call.

6-26 Linker/Librarian Manual

Relocation offset of near reference is too large
(continued)

In many cases, the error message reports a public
symbol name, which you can use to identify the
call that generated the error. If, however, the
error message reports only a hexadecimal address,
you should examine a compilation listing and
determine from the assembly code what was being
called when the error occurred.

Troub1eshooting 6-27

Requested stack size exceeds 64K

EXPLANATION

The stack may not exceed 64K bytes in length.

SYSTEM ACTION

The link is not initiated.

OPERATOR RESPONSE

Invoke
number
field.

6-28

the Linker again, and enter a decimal
smaller than 64K in the "[Stack size]"

Linker/Librarian Manual

Segment of absolute or unknown type

EXPLAliATION

Certain types of segments, such as absolute
segments, are not generated by the Assembler or
the supported compilers, but they are available
from other related assemblers and compilers. The
Linker cannot handle such segments, and it reports
this message if you submit one to it.

SYSTEM ACTION

The link is completed, but the run file may be
invalid.

PROGRAMMER RESPONSE

Verify that the object modules submitted were
generated by the supported assembler or compilers.

Troub1eshootinq 6-29

Symbol file hash table overflow

EXPLANATION

The upper limit on the size of the symbol table in
the symbol file (512 sectors, or 256K) has been
exceeded. There may be too many public symbols in
the program. This message may also appear if
there are many public symbols with very long
names.

SYSTEM ACTION

The link is aborted.

PROGRAMMER RESPONSE

Reduce the number of public symbols in the
program. If many symbols have long names, reduce
the length of the names.

6-38 Linker/Librarian Manual

Symbol table capacity exceeded

EXPLARATION

The capacity of the symbol table is a function of
the number of symbols, the length of the symbol
strings, and the use of overlays. Using overlays
nearly doubles the amount of symbol table space
required by a program. The symbol table capacity
is 5l2K bytes, which must accommodate the symbol
names and a certain overhead per symbol.

SYSTEM ACTION

The link is aborted.

PROGRAMMER RESPOBSE

Reduce the number of public symbols in the
program: or reduce symbol length by using a more
terse naming convention.

Troub1eshooting 6-31

Too many PUBLIC symbols

See "Program size exceeds Linker capacity," above.

6-32 Linker/Librarian Manual

Unresolved externals

EXPLANATION

The Linker matches external references with symbol
defini tions in other program or library modules.
If such a match cannot be found for an external
reference, this message results. The list of the
undefined symbols and the modules in which they
appear is written to the map file.

If you allow the II[Version]1I field to default when
you are linking the operating system VL any
product that uses a version number, an unresolved
external error results and is recorded in the map
file.

SYSTEM ACTION

The link is completed. In many cases the Linker
can modify the code of a CALL instruction that
calls an undefined symbol, changing it into a call
to the Debugger. The Linker cannot, however, make
this adjustment on indirect calls.

On this system, unlike some others, a program
containing unresolved externals can be run. Doing
so is risky, however. Al though calls to the
Debugger may happen in most cases, sometimes the
resul t is a call to location 0: 0 and a system
crash.

PROGRAMMER RESPONSE

You can run a program containing undefined symbols
if you know that they will not be called: for
example, when development is still in progress and
the routine referred to by the undefined name has
not been written.

Verify the list of unresolved externals to make
sure that the names reported are those that you
expect. If an unresolved external is reported for
the version number, relink the program, specifying
a version number in the II [Version] II field of the
Linker command form.

Troub1eshooting 6-33

200 Write error on run file
to Write error on symbol file
299

Write error on list file

Cannot open temporary file

Write error in temporary file

VM read error

EXPLANATION

Any of these six messages indicates that a file
system error has occurred. The numerical status
code related to the file system is passed through
by the Linker.

The first three messages often indicate that the
disk is full.

The last three messages are related to the fact
that where memory is limited, the Linker creates a
temporary file called VM.tmp. If the directory
for temporary files (the $ directory) is damaged
or missing, the Linker cannot create this file,
and one of these errors is reported.

SYSTEM ACTION

The link is aborted.

PROGRAMMER RESPONSE

Determine the nature of the file system error and
correct it. (For a list of file system errors,
see the Status Codes Manual.)

6-34 Linker/Librarian Manual

299 Error during legalese
to
299

EXPLANATION

Using the development version of the Linker
command form, it is possible to append to the run
file a file named "legalese," which contains
copyright or other information. One of these
errors, typically with status code 203, results
when the file to be appended is missing or
unreadable.

SYSTEM ACTION

The link is completed normally, but the message
appears to notify the user. The program is not
abnormal and will run successfully.

OPERATOR RESPONSE

Supply the needed file if you wish to have its
contents appended to the run file.

Troub1eshooting 6-35

400 Not enough memory available

EXPLANATION

The Linker swaps and adapts itself to the amount
of available memory on a system, but it must have
a certain minimum memory in order to run. If this
amount is not available, this message results.

SYSTEM ACTION

The link is aborted.

OPERATOR RESPONSE

If running the Linker under the Context Manager,
reconfigure the partition size, adding more memory
until the Linker can run.

If running the Linker under a single-partition
operating system, do whatever housekeeping is
necessary to increase the amount of available
memory, or run the link on a system with more main
memory.

The more memory is available to the Linker, the
faster the link takes place.

6-36 Linker/Librarian Manual

1388
to
1398

Heap errors

EXPLANATION

Errors in this series are
management errors. You should
these errors reported.

SYSTEM ACTION

in ternal memory
never see one of

Such an error usually causes the system to exit to
the Executive or to hang.

OPERATOR RESPONSE

I f you ever observe such an error I you should
report it.

Troubleshooting 6-37

4488 Attempt to access data outside of segment
bounds, possib1y bad object modu1e

EXPLANATION

This error can result when an invalid object
module produced by a faulty compiler is submitted
to the Linker. However, it also results from a
known problem in the assembler. If you do not use
a segment directive in your assembly language
program, or if you declare code or data outside
any segment, the assembler supplies a segment
called ??SEG. Such an object module is invalid
and causes the Linker to produce this message.

SYSTEM ACTION

The link is aborted.

PROGRAMMER RESPONSE

In an assembly language program, make sure to
include a segment directive. Other occurrences of
this error, caused by compiler or Linker errors,
are not within the programmer's contro1.

6-38 Linker/Librarian Manua1

4483

4484

Too many segment or class names

Too many segments

EXPLANATION

No more than 255 segments can be declared in a
single module. (The overall program may contain
more than 255 segments.)

Further, no more than 255 different names of
segments and classes can exist in one module.

SYSTEM ACTION

The link is aborted.

PROGRAMMER RESPONSE

Examine your program with this limitation in mind.
You should not encounter this restriction in
normal programming, but certain special kinds of
modules may approach this limit. In such a case,
divide the module.

Troub1eshooting 6-39

4405 Segment size exceeds 65520

EXPLANATION

One segment cannot be larger than 65,520 bytes
(not 65,536). This error pertains only to a
single segment, not to a group or sum of segments
(for example, DATA, CONST, and STACK).

SYSTEM ACTION

The link is aborted.

PROGRAMMER RESPONSE

If you are writing in assembly language or Pascal,
reduce the size of the segment to less than
65,520. In FORTRAN-86 only, it is possible to use
a special segment directive to create a
65,536-byte segment that is accepted.

In small-model C, reduce the total amount of data
or code in your program, or move to a larger model
of computation.

6-40 Linker/Librarian Manual

4406 Too many groups

EXPLANATION

A given program module may not contain more than
10 groups. The entire program may contain up to
2~6 groups. (For a discussion of groups, see the
Assembly Language Manual, Section 2, "Programs and
Segments. II)

SYSTEM ACTION

The link is aborted.

PROGRAMMER RESPONSE

The limits should never be encountered under
normal programming conditions. Check the number
of groups defined in your program.

Troub1eshooting 6-41

4487

4488

Too many public symbols in one module

Too many external symbols in one module

EXPLANATION

These errors occur only if the Linker is operating
in insufficient memory.

SYSTEM ACTION

The link is aborted.

OPERATOR RESPONSE

Increase the amount of memory available to the
Linker.

6-42 Linker/Librarian Manual

4489 Invalid object module

EXPLABATION

The Linker does not recognize the format of an
object module. An invalid object module can
result from a compiler error or from direct damage
to the file.

SYSTEM ACTION

The link is aborted.

OPERATOR RESPONSE

Verify that you are indeed submitting an object
module, and not a text file such as the source
file, to the Linker.

Troubleshooting 6-43

4411 Too many common symbols in one module

EXPLANATION

This error occurs only if the Linker is operating
in insufficient memory.

SYSTEM ACTION

The link is aborted.

OPERATOR RESPONSE

Increase the amount of memory available to the
Linker.

6-44 Linker/Librarian Manual

4413 Bad object module, segment or group index
out of range

EXPLANATION

An invalid object module, usually created by a
faulty compiler, has been submitted to the Linker.

SYSTEM ACTION

The link is aborted.

PROGRAMMER RESPONSE

Upgrade to the current compiler.

Troubleshooting 6-45

4414 Too many public procedures in
resident/overlay

EXPLABATION

The maximum number of procedures
portion or any single overlay
program is 4,096.

SYSTEM ACTION

The link is aborted.

PROGRAMMER RESPONSE

in the resident
in a swapping

This limit
programming.
overlays.

should seldom be reached in normal
If it is, divide the code into more

6-46 Linker/Librarian Manual

4418

4419

4428

Too many segments

Too many segments

Too many areas

EXPLANATION

The Linker requi·res a certain minimum memory to
run successfully. If memory is insufficient, one
of these errors may be reported.

SYSTEM ACTION

The link is aborted.

OPERATOR RESPONSE

Make more memory available to the Linker.

Troub1eshooting 6-47

4422

4423

Bad object module, external index out of
range

Bad object module, external index out of
range

EXPLABATION

An invalid object module, usually created by a
faulty compiler, has been submitted to the Linker.

SYSTEM ACTION

The link is aborted.

PROGRAMMER RESPONSE

Upgrade to the current compiler.

6-48 Linker/Librarian Manual

LIBRARIAN ERRORS

Many of the status messages reported by the
Librarian are similar to those of the Linker
because the two programs are related in their
structure and function. The causes of Librarian
status messages generally fall into categories:

o command form entry errors

o file system errors

o invalid object modules

o multiply defined symbols

o symbol table full, excess public symbols

Most status messages are self explanatory and are
described under the analogous Linker messages in
the previous subsection. In many cases, the
remedy is obvious.

MULTIPLY DEFINED SYMBOLS

Messages concerning multiply defined public
symbols are exceptions. See" [Files to add]" and
"[Cross-reference file]" under "Parameter Fields"
in Section 5, "Librarian."

EXCESS PUBLIC SYMBOLS

Also, unlike the situation in the Linker, you
cannot remedy errors involving excess public
symbols by increasing the amount of available
memory, since memory management in the Librarian
is less sophisticated than that in the Linker. If
one of these errors is reported, you must divide
your library into two libraries.

In a library where there are many multiply defined
symbols, the symbol table may be of adequate size
if you choose to add, delete, or extract modules,
but it may be exceeded if you request a listing.
In order to list the symbols, the Librarian must
expand the single statement of a multiply defined
symbol, creating separate symbols with varying
numbers of asterisks. In this process, the symbol
table can be exceeded.

Troubleshooting 6-49

HOUSEKEEPING CONCERNS

Whenever you use the Librarian to add or delete a
module, the identifying text string at the end of
the library file is lost. This change is
intentional, because a string that identi fies a
version should not remain if the library has been
changed.

If this deletion causes problems for you, use the
following housekeeping methods:

o Create a <Lib> directory.

o Copy the needed libraries into it from their
distribution diskettes.

o Rename each library with a descriptive name
(for example, s9. 0lDBMS .lib) . A common
convention is to preserve the original version
number in the new name for future reference as
to the origin of the library.

o If you use the Librarian to add or change a
module, again rename the library (for example,
9. 3CTOSsamGenAll. lib)

o When you link, explicitly list the libraries
in the II [Libraries] II field of either Linker
command form (using the "at-file" convention
if necessary), and be sure to use "none" as
the last entry. (The "at-file" convention is
discussed under "Substituting the Contents of
a File for a List of Subparameters" in Section
5, "Advanced Concepts," in the Executive
Manual.)

6-58 Linker/Librarian Manual

GLOSSARY

See also the Glossary in the eTOS Operating System
Manual, Volume 2.

absolute symbol. An absolute symbol is a symbol
that has a speci fied place in memory (as, for
example, an address within the operating system).

alignment attribute. The alignment attribute of a
segment element specifies whether it can be
aligned on a byte, word, or paragraph boundary.

class name. A class name is an arbitrary symbol
used to designate a class.

DGroup. 1J~roup

data, constant,
group.

is a group that usually includes
and stack linker segments. See

DS allocation. OS allocation, an option in the
Linker, locates OGroup at the end of a 64K-byte
segment addressed by the OS register.

external reference. An external reference is a
reference from one object module to variables and
entry points of other object modules.

extraction. Extraction is the copying of a module
from a library into another file or into a program
being linked. Extraction does not delete the
extracted module from the library.

group. A group is a named collection of linker
segments that is addressed at run time with a
common hardware segment register. To make the
addressing work, all the bytes within a group must
be within 64K of each other.

Librarian. The Librarian is a program development
utili ty that creates and maintains libraries of
object modules. The Linker can search
automatically in such libraries to select just
those object modules referred to by a program.

Linker.
utility
produced
files.

The Linker is a program development
that combines obj ect modules (files
by compilers and assemblers) into run

Glossary-l

linker segment. A linker segment is a single
entity consisting of all segment elements with the
same segment name.

map. The map file, which is created by the
Linker, contains an entry for each linker segment
and shows the rela ti ve address and length of the
segment in the memory image. It can also list
public symbols and line numbers with addresses.

memory array. The memory array is data space
allocated at load time above the highest address
of the task.

object module. An object module is the result of
a single compilation or assembly. A single object
module is contained in an object module file
(.obj), while many object mouules can be contained
in a library file (.lib).

offset.
location
segment.

The
is

number
distant

of bytes by which a memory
from the beginning of a

overlay. An overlay is a code segment made up of
the code from one or more object modules. An
overlay is loaded into memory as a unit and is not
permanently memory resident.

public symbol. An ASCII character string
associated with a public variable, a public value,
or a public procedure.

public variable. A public variable is a variable
whose address can be referenced by a module other
than the module in which the variable is defined.

relocation. The operating system relocates a task
image in available memory by supplying physical
addresses for the logical addresses . in the run
file at load time.

relocation directory. The relocation directory is
an array of locators used by the operating system
in relocating the task image.

resident. The resident portion of a program
remains in memory throughout execution. See also
overlay and virtual code segment management.

Glossary-2 Linker/Librarian Manual

run file. A run file is the image of a task (in
relocatable form) linked into the standard format
required by the operating system loader. The run
file consists of a header and a memory image.

segment. A segment is a contiguous (usually
large) area of memory that consists of an integral
number of paragraphs. Segments are usually
classified into one of three types: code, static
data, or dynamic data. Each kind of segment can
be either shared or nonshared.

segment element. A segment element is a section
of an object module. Each segment element has a
segment name.

short-lived memory. Short-lived memory is ('m area
of memory in an application partition. When a
task is loaded, the operating system allocates
short-lived memory to contain its code and data.
Short-lived memory can also be allocated directly
by a client process in its own partition. Common
uses of short-lived memory are input/output
buffers and the Pascal heap.

swapping. See virtual code segment management.

virtual code segment management. Virtual code
segment management (also called swapping) is the
method of virtual memory supported by the CTOS
operating system. The code of each task is
divided into variable-length segments that reside
on disk in a run file. As the task executes, only
those code segments that are required at a
particular time actually reside in the main memory
of the application partition; the other code
segments remain on disk unti 1 they, in turn, are
required. When a particular code segment is no
longer required, it is simply overlaid by another
code segment.

unresolved external reference. An unresolved
external reference is a public symbol that is used
by some module but not defined by any of the
modules being linked.

Glossary-3

INDEX

Page numbers in boldface indicate the principal dis­
cussion of the topic.

80286 processor
absolute address con­

version for, 3-5
protected mode of,

3-3, 3-5
selectors on, 3-3

Absolute addresses, 3-4,
3-5

Address
of public symbol, 3-4
of task, 1-1, 3-2
relative, assigning,

2-1
Addressing

allocated memory, 4-1
to 4-4

data segment, 4-1 to
4-4

linker segments, 2-8
to 2-9, 2-10

in protected mode,
2-15 to 2-16

in real mode, 2-15 to
2-16

segment, 1-13
Algorithm, library

search; see
Libraries:
searching

Alignment attributes,
2-9 to 2-10

Allocation
data space, 1-9
memory, 1-13, 4-1 to

4-4
Assembler, versions of,

1-2
Assembly language, 2-3,

2-6, 2-9, 3-3
defining stack in, 2-7
segment order in, 4-2
swapping programs, 4-5

Attributes
alignment, 2-9 to 2-10
combination, 2-7

Bind command, 1-4, 1-9,
4-3

form, 1-4
parameter fields, 1-4

to 1-14

C language, 4-5
Class

name, 3-3
ordering by Linker,

2-3, 2-6, 2-10,
4-2

segment element, 2-3,
2-10

Code segment
in map file, 3-3
name, 3-3

Combination rules, seg­
ment element, 2-7

Command form
Bind, 1-4
Librarian, 5-2
Link, 1-3

Commands, 1-3, 1-4
COMMON segment

elements, combination
of, 2-7

length, 2-7
Compatibility of soft­

ware versions, 1-2
Compiled language, 1-2,

2-3, 2-9, 3-3, 4-5,
4-6

Compiler, 2-7
versions of, 1-2

Context Manager, 3-1

Index-l

Conventions, xi
call/return, 4-5
naming, 1-2, 1-6, 3-3

CTOS
MegaFrame, 1-3
versions, 1-3

CTOS.lib
and program size, 3-1
searching, 1-11 to

1-12
versions of, 1-2

Data
space, allocating, 1-9
seg.ment, 4~6

addressing, 4-1 to
4-4

in map file, 3-3
Debugger, 4-6
Default

library searching,
1-12

values, 1-4
Descriptor table, local,

2-15
DGroup, 1-13, 2-9, 4-2,

4-6
DS

allocation, 1-13, 3-2,
4-1 to 4-3

register, 2-9, 4-1 to
4-4

value of, 1-13

Errors
Librarian, 1-2, 6-49

to 6-58
Linker, 1-2, 1-11, 6-2

to 6-48
stack overflow, 4-6

ES register, 4-4
External references,

1-1, 1-11, 2-1 to
2-2, 3-4, 5-1

Extraction of library
module, 1-5, 2-1 to
2-2, 5-1

Fatal error, 6-2
Fields, parameter: see

Parameter fields
File names

conventions, 4-7
library, 5-3

Files, library: see
Object modules

First.obj, 2-6
Forms, collection in

library, 5-1
FORTRAN, DS allocation

in, 1-13
FORTRAN-86, 2-6

Group, 2-8 to 2-9, 2-10:
see also DGroup

in version 4 run file,
2-9

in version 6 run file,
2-9

Header, run file: see
Run file header

High-level language,
1-2, 2-3, 2-7, 2-9,
3-3, 4-5

Image, task, 1-1
Invocation

Librarian, 5-2
Linker, 1-3

Language, compiled: see
Compiled language

Language, high-level:
see High-level
language

LDT: see Local descrip­
tor table

Length of segments, 2-7

Index-2 Linker/Librarian Manual

Librarian, 1-11, 5-1 to
5-7

command form, 5-2
cross-reference

listing, 5-2, 5-6
errors, 6-49 to 6-50
invoking, 5-2

Libraries
adding modules to,

5-2, 5-4
building, 5-1, 5-4
deleting modules from,

5-2, 5-5
identifying text

string in, 5-3
modules in overlays,

1-7
of object modules, 5-1

to 5-7
revising or modifying,

5-2, 5-4, 5-5,
6-50

searching, I-II, 2-1
to 2-2, 5-1, 5-5,
5-6

specifying for
linking, 5-1

Limits on linkable pro­
gram size, 2-11

Line numbers
in map file, 3-4 to

3-5
listing in map file,

1-8
Link command, 1-3, 1-9,

4-3
form, 1-3
parameter fields, 1-4

to 1-14
Linker

errors and warnings,
1-11, 6-2 to 6-48

features of, 1-1, 1-2
invoking, 1-3 to 1-14
ordering rules, 2-2,

2-6, 2-10, 4-2
segment, 2-6, 2-7,

2-10
addressing, 2-8 to

2-9, 2-10
Listing

Librarian; see
Librarian

Linker; see Map file

Loading, I-I, 4-1, 4-3
Local descriptor table,

2-15
Long-lived memory, 1-9,

4-1

Map file, 1-2
addresses in, 3-2
code segment in, 3-3
data segment in, 3-3
default name of, 1-6
error reporting in,

6-2
line numbers in, 1-8,

3-4
narnp; 4-7
public symbols in,

1-8, 3-4 to 3-5
reading, 3-1 to 3-6
specifying, 1-6
stack size in, 4-6

Medium-model task, 2-9
DS allocation with,

1-13
Memory

address of task, 4-1,
4-3

allocation, 1-9, 1-13,
4-1 to 4-4

and program size,
3-1, 3-2

arranging, 1-13, 2-2
to 2-UJ

task image in, 1-2
array, 1-9, 4-1, 4-3

to 4-4
and program size,

3-2
image of task, 2-2
long-lived, 1-9, 4-1
requirements of pro-

gram, 3-1
short-lived, 1-9 to

1-10, 4-1
Model of computation or

segmentation, 1-13,
2-9, 4-5

Module name, 3-3
Modules, object; see

Object modules
Multiply defined symbol;

see Public symbol

Index-3

Name
library module, 5-4
module, 2-3
segment element, 2-3,

2-10
Naming conventions, 1-2,

1-6, 3-3
for file names, 4-7

Object modules, 1-4,
2-1, 2-2, 2-3

adding to library,
5-2, 5-4

deleting from library,
5-2, 5-5

extraction from
libraries, 1-5,
5-1, 5-2, 5-5

file names, 4-7
Librarian listing of,

5-2, 5-6
libraries of, 5-1 to

5-7
listing as input, 1-4

to 1-6
names in library, 5-4
specifying, 2-6

Operating system
building, 1-10, 1-11
versions, 1-3

Ordering
rules, Linker, 2-2,

2-6, 2-10, 4-2
template, 2-6, 4-2

Order of classes, 2-3,
2-6, 2-10, 4-2

Overflow, stack, 4-6
Overlays, 1-1, 1-2, 1-6,

1-7, 1-10, 1-12,
2-14, 3-3, 3-4, 4-4
to 4-5

library modules in,
1-7

Parameter fields
Bind command, 1-4
Librarian, 5-2
Link command, 1-3

Pascal
DS allocation in, 1-13
program size, 3-2

Program
memory address, 3-2
size, 3-1

in Pascal, 3-2
Protected mode, 3-3, 3-5

addressing, 2-15 to
2-16

Public symbols, 1-1,
1-14, 2-1 to 2-2

Librarian listing of,
5-2, 5-6

in map file, 1-8, 3-4
to 3-5

multiply defined, 5-4,
5-6

number of, 2-11
undefined, 2-1

Real mode addressing,
2-15 to 2-16

References, external,
1-1, 2-1 to 2-2, 5-1

Relocation, 1-1, 4-1,
4-3

directory, 2-14
Resident code segment,

4-4 to 4-5
Rules

ordering, 2-2, 2-6,
2-10, 4-2

segment element combi­
nation, 2-7

Run file, 2-1
building, 2-6 to 2-10
finding size of, 3-1
header, I-I, 1-11

structure of, 2-11
to 2-16

name, 1-6
size limits, 2-11
version 4, 2-11 to

2-14
version 6, 2-11 to

2-16
versions, 1-3, 1-9

Run-time library and
program size, 3-1

sbVerRun, 1-11
Searching libraries,

1-11, 2-1 to 2-2,
5-1, 5-5, 5-6

Index-4 Linker/Librarian Manual

Segment; see also Seg­
ment element

addressing, 2-8 to
2-9, 2-10

class, 2-2, 2-10, 3-3
code, 2-7
length, 3-2
linker, 2-6, 2-7, 2-10
meaning, 4-5
name, 2-2, 2-10, 3-3
ordering rules, 2-6,

2-10, 4-2
registers, 2-8 to 2-9,

2-10
selector value, 3-3

Segmentation; see Model
of computation or
segmentation

Segment element, 2-3,
2-10; see also
Segment

class, 2-3, 2-6, 2-10
code, 2-3
combination rules, 2-7
COMMON, 2-7
constants, 2-3
data, 2-3
name, 2-3, 2-10
stack, 2-3, 2-7

Selectors, 3-3
Short-lived memory, 1-9

to 1-10, 4-1
Size

of group, 2-8, 2-10
limits on linkable

program, 2-11
of program, 3-1 to 3-2

Small-model tasks
DS allocation with,

1-13
swapping and, 4-5

SP register, 2-9
SS register, 2-9
Stack

default size, 1-8, 4-6
initial values in, 4-6
overflow, correcting,

4-6
reducing size of, 4-6
segment

elements, combina­
tion of, 2-7

length, 2-7

specifying size of,
1-8, 4-6 to 4-7

Status
codes, 6-2 to 6-48
messages, 6-1 to 6-50

Swapper, 1-1, 1-2, 1-6,
1-7, 1-12, 2-14,
3-3, 3-4, 4-4 to
4-5; see also Over­
lays; Swapping
programs

Swapping programs; see
also Swapper

linking, 4-4 to 4-5
size of, 3-2

Symbol
file, 1-14

name, 4-7
table, 1-14, 2-1
public; see Public

symbols
System build, 1-10

Task
image, 1-1

arranging in memory,
1-2

memory address, 1-1,
1-2, 3-2, 4-1, 4-3

memory image, 2-2
Template, ordering, 2-6,

4-2
Troubleshooting, 1-2,

6-1 to 6-58

Undefined symbols, 2-1
Unresolved external

reference, 1-11,
2-1, 5-1

Version 4 run file, 1-3,
1-9

groups in, 2-9
header format, 2-11 to

2-14
map file for, 3-2

Index-5

Version 6 run file, 1-3,
1-9

groups in, 2-9
header format, 2-11 to

2-16
map file for, 3-3 to

3-4, 3-5, 3-6
Version number, 2-16

examining, 1-11
Versions

of library, 5-3
operating system, 1-3
of run files, 1-3, 1-9
of software, compati-

bility, 1-2, 1-3
specifying, 1-10 to

1-11

Virtual Code Segment
Management, 1-1,
1-6, 1-7, 4-4 to
4-5: see also
Swapper: Swapping
programs: Overlays

Warnings, Linker, 6-2 to
6-48

IndeI-6 Linker/Librarian Manual

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06

