
a en
o
'C
CD
::::I

Z»
!'C
:E'C
o ==
~n _. Q)
::J ... to _.
000
CD ::J .,
$. "'0
() ~
CD 0 (J)cg
~
Q)

3
3 _.
::J
cg -::J ...
CD ;.
n
CD
en
'C

~ _ _.
n
Q) ... _.
o
::J

PRENTICE
HALL

Application Programming
Interface Specification
Networking Services

eTaS/Open Application Programming
Interface Specification

Networking Services

Prentice Hall
. Englewood Cliffs, New Jersey 07632

Author: Bert Miller
Cover design: April Bishop
Editors: Carol Collins, Gregory Viau, Tamara Westen
Page design: Milena Martin-Arana
Production editing: Phyllis McCrea
Editorial/production supervision: Harriet Tellem
Prepress buyer: Mary McCartney
Manufacturing buyer: Susan Brunke
Acquisitions editor: Karen Gettman
Editorial Assistant: Connie Uccelli

10 1992. 1991 Convergent, Inc.

- A Simon & Schuster Company
" Published by Prentice-Hall, Inc.

=- Englewood Cliffs, New Jersey 07632

The publisher offers discounts on this book when ordered in bulk quantities.
For more information, write: Special Sales/Professional Marketing, Prentice-Hall, Inc.,
Professional & Technical Reference Division, Englewood Cliffs, New Jersey 07632.

Copyrighted material used from X/Open Company Ltd., X/OPEN PORTABILITY GUIDE: Networking Services.
101988. pp. 1-88,95-136. Reproduced by permission of Prentice Hall, Englewood Cliffs, New Jersey 07632.

Convergent, Convergent Technologies, CTOS, and NGEN are registered trademarks of Convergent Technologies,
Inc.

Convergent makes no representations or warranties with respect to the contents hereof and specifically disclaims
any implied warranties of merchantability or fitness for any particular purpose. Further, Convergent reserves the
right to revise this publication and to make changes from time to time in its content without being obligated to notify
any person of such revision or changes.

Draft 1.0 (June 1991). This document was produced using the Document Designer
Series.

All rights reserved. No part of this book may be reproduced, transmitted, stored
in a retrieval system, or translated into any language without permission in
writing from Convergent Inc. or the publisher.

Printed in the United States of America

ill 9 8 7 6 5 4 3 2

ISBN 0-13-194655-2

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Contents

About This Manual ix

1 Overview
What Is CTOS/Open?.................. 1-1
The OSI Reference Model . 1-2
CTOS/Open Networking Services. 1-5
Status of This Specification .. 1-6

2 Protocal Manager
Protocol Manager Overview . 2-1
Parameter Definition File (PDF) . 2-1
Protocol Manager Services . 2-2

RegisterServiceProvider 2-3
DeregisterServiceProvider . 2-6
RegisterServiceClient. 2-8
DeregisterServiceClient . 2-11
RequestServiceProvider. 2-13
QueryProtocolManager . 2-16
UpdateProtocolManager . 2-19

Protocol Manager Status Data Structures. 2-21
Service Provider Descriptor Block (SPDB) 2-21
Service Client Descriptor Block (SCDB) 2-22

Draft 1.0 iii

3 Link Layer
Link Layer Overview. 3-1
Parameter Definition File for Link Layers 3-3
Link Layer Name.......... 3-4
Link Layer Services. 3-4

OpenStationLL . 3-5
OpenStationSL -. 3-8
CloseStation 3-11
ReadDLFrame 3-13
WriteDLFrame '. . . . 3-17
DirectStation. .. 3-21
DirectLink. 3-24

Link Layer Status Data Structures 3-27
Generic Statistical Header Block (GHB) 3-27

DirectStation Commands . 3-29
Link Layer Independent Commands. 3-29
Link Layer Dependent Commands . 3-33

DirectLink Commands 3-35
Link Layer Independent Commands. 3-35
Link Layer Dependent Commands . 3-36

4 Transport Layer
Transport Layer Overview 4-1
References ... 4-5
Explanatory Notes 4-6

Transport Endpoints 4-6
Transport Providers 4-6
Association of a Process to an Endpoint 4-7
Use of Same Protocol Address. 4-8
Modes of Service 4-8
Error Handling 4-9
Synchronous and Asynchronous Execution Modes 4-9

Events and tjookO 4-12
Event Management 4-12

iv eTOS/Open API: Networking Services Draft 1.0

XTI Overview. .. 4-14
Overview of Connection-Oriented Mode. 4-14

Initialization/Deinitialization Phase 4-15
Overview of Connection Establishment. 4-16
Overview of Data Transfer 4-19
Overview of Connection Release 4-22

Overview of Connectionless Mode 4-24
Initialization/Deinitialization Phase 4-24
Overview of Data Transfer 4-25

Mandatory XTI Features. 4-27
Optional XTI Features 4-28
XTI Functions Versus Protocols 4-29
States and Events in XTI 4-31

Transport Interface States 4-31
Outgoing Events . 4-33
Incoming Events. 4-35
Transport User Actions 4-37
State Tables ... 4-37
Events and TLOOK Error Indication 4-40

Transport Protocol-Specific Options 4-41
Connection Mode Options 4-42
Connectionless Mode Options 4-42

CTOS Support of XTI procedures 4-43
Support of Optional Procedures 4-43
Support of Multiple Procedures by a Single Request 4-44
Use of Multiple Requests by a Single Procedure. 4-45
Parameter Definition File for the Transport Layer 4-45

XTI Library Functions and Parameters 4-46
t_accept .. 4-47
t_bind . 4-53
t_close . 4-60

Draft 1.0 v

t_connect .. 4-63
t_getinfo .. 4-70
t_getstate .. 4-76
tjisten .. 4-80
tjook.................. 4-85
t_open 4-89
t_optmgmt 4-97
tJcv .. 4-102
tJcvconnect ... 4-106
tJcvdis ... 4-111
tJcvrel. .. 4-116
tJcvudata ... 4-119
tJcvuderr 4-125
t_snd ... 4-128
t_snddis .. 4-134
t_sndrel 4-138
t_sndudata ... 4-141
t_sync ... 4-147
t_unbind ; 4-152

Using the Transport Layer Interface 4-155
Transport Layer Interface Sequence of Functions 4-155
Example in Connection-Oriented Mode 4-156
Example in Connectionless Mode .. 4-158
Writing Protocol Independent Software 4-159

Appendixes
A Error Codes... A-1

B Link API Event Codes B-1

C Transport API Definitions . C-1

D ISO Transport Protocol Information D-1

E Internet Transport SpeCific Information. E-1

Index.... 1-1

vi eTOS/Open API: Networking Services Draft 1.0

List of Figures

1-1. OSI Reference Model 1-4

3-1. Link Layer ~ . 3-2

4-1. Transport Layer 4-3

4-2. Transport Interface States. 4-32

4-3. Transport Interface Outgoing Events. 4-34

4-4. Transport Interface Incoming Events. 4-36

4-5. Transport Interface User Actions 4-37

4-6. Initialization/De-initialization State Table. 4-38

4-7 . Data-Transfer State Table for Connectionless-mode
Service '. 4-38

4-8. Connection/Release/Data-Transfer State Table for
Connection-mode Service . 4-39

List of Tables

ATM-1 CTOS Variable-Naming Convention. xi

Draft 1. 0 vii

About This Manual

Purpose of This Manual

This manual describes the procedural interface for each of the procedures
in the eTOS/Open Standard for Networking Services. This manual is a
companion volume to the other books in the eTOS/Open documentation
set. This eTOS/Open Standard defines a common subset of application
interfaces that is consistent across all versions of eTOS. Application
software that conforms to the eTOS/Open Standard will run on eTOS
platforms from multiple vendors that support the standard.

Note that the eTOS/Open Standards are specifications that are
implemented by several eTOS-based operating systems. The Standard
alone is not an operating system.

Audience

This specification is directed to software developers and Independent
Software Vendors (ISV s) who will write networking applications that
conform to the eTOS/Open Standard. It assumes that the reader has
experience writing such applications under eTOS or under another
operating system.

Draft 1.0 About This Manual ix

Related Documentation

In addition to this manual, the following books are included in the
documentation set for eTOS/Open:

CTOS/ Open Application Programming Interface Specification. This
document describes the procedural interface definitions for each of the
procedures supported by the CTOS/Open· standard. It defines a
common set of application interfaces that is consistent across all
CTOS/Open-compliant versions of CTOS. The specification is
intended for use by software developers and independent software
vendors (ISV s) who want to write applications that conform to the
CTOS/Open standard. It assumes that the reader has experience
writing applications under eTOS or under another operating system.

CTOS/ Open Application Programming Interface Specification: Printing
Services. This document describes how to write applications that use
the Generic Print System (GPS) or the Generic Print Access Method
(GPAM).

CTOS/ Open Application Programming Interface Specification: Computer
Graphics Interface (CGI). This document describes each CGI operation
and explains how to write CGI programs.

CTOS/ Open Application Programming Interface Specification: Graphical
User Interface (GUI). This document introduces XVT (Extensible
Virtual Toolkit) and describes its relationship to other windowing
interfaces. It also reviews the current XVT operations set, which
includes functions, macros, constants, and types. This specification is
intended for programmers who want to write applications that run in
different window environments and work across all CTOS-based
platforms. This document is a preliminary working draft. The final
draft will be available some time after the release of XVT on CTOS.

CTOS/ Open Programming Practices and Standards: Application Design.
This document describes practices and standards programmers should
follow to ensure that their applications are portable between
implementations of eTOS. Following the recommendations in the
standard can greatly simplify porting an application from one
CTOS-based operating system to another. This manual can also serve
as a "programmer's primer" for those new to CTOS/Open. It provides
many programming examples.

x CTOS/ Open API: Networking Services Draft 1.0

CTOS/Open Programming Practices and Standards: User Interface
Design. This document provides guidelines for designing graphical user
interfaces for CTOS-based applications. It contains information about
the user-interface standard called Common User Access (CVA), which
has become part of the public domain. This document is a working
draft.

Exploring CTOS. This book, available from Prentice Hall, provides an
excellent overview of the CTOS operating system and the fundamentals
of message based operating systems, illustrating how they make a highly
efficient platform for distributed applications.

Organization

This manual is organized as follows:

• Chapter 1 introduces you to the purpose and definition of the
CTOS/Open Standard for Networking Services.

• Chapter 2 presents the procedures for the CTOS/Open Protocol
Manager.

• Chapter 3 presents the procedures for the CTOS/Open Link Layer
Interface.

• Chapter 4 presents the procedures for the CTOS/Open Transport
Layer Interface.

• Appendix A describes the error codes for the networking services.

• Appendix B describes the event codes for the networking services
Link Layer Interface.

• Appendix C describes the event codes and other information for the
networking services Transport Layer Interface.

Draft 1.0 About This Manual xi

The CTOS Naming Convention

The examples in this book follow a specific naming convention, which is
designed to improve the readability of source code. This naming
convention incorporates explanatory prefixes and suffixes on all variables
and procedure names. The variable names should also be explanatory.
These conventions are particularly important when programming in a
language like C, which tends toward cryptic syntax.

Each variable takes the form <Prefix><Root>Name<Suffix>. Prefix,
root, and suffix do not all have to be present. In fact, most variables do
not use the suffix. Table ATM-l describes the CTOS naming convention.

For example, the following variables define a data buffer:

pBuffer. A pointer to the start of the buffer.

sBufferMax. The maximum size of the buffer.

sBufferDataRet. The size of the data actually written to the buffer,
returned by the procedure that writes to the buffer.

psBufferDataRet. Address of sBufferDataRet. Passed to the
procedure that writes to the buffer, telling that procedure where to
return the value of sBufferDataRet.

xii eTOS/Open API: Networking Services Draft 1.0

Table ATM-1. CTOS Variable-Naming Convention
(Page 1 of 2)

Token Meaning

PREFIXES:

b

c

n

o

p

q

rg

s

sb

w

cb

pb

Draft 1.0

Byte. A character or unsigned a-bit integer.

Count. A two-byte unsigned integer.

Flag. A one-byte flag. True - OFFh, False - O.

Index. A two-byte unsigned integer.

Literal. A constant.

Number. A two-byte unsigned integer. Same as
Count.

Offset. A two-byte offset from a segment base
address.

Pointer. A logical memory address. Consists of
a two-byte segment identifier and a two-byte
offset.

Quad. A four-byte unsigned integer.

Array. Usually used with another prefix. For
example, the prefix "rgb" identifies an array of
bytes.

Size. A two-byte unsigned integer.

String. An array of bytes where the first byte is
the size of the string.

Word. A two-byte integer.

Count of bytes.

Pointer to a string of bytes.

continued

About This Manual xiii

Table ATM-1. CTOS Variable-Naming Convention
(Page 2 of 2)

Token Meaning

ROOTS:

erc

exch

fh

If a

ra

rq

sa

sn

sr

userNum

SUFFIXES:

Last

Max

Ret

Two-byte status code.

Two-byte exchange number.

Two-byte file handle.

Four-byte logical file address.

Two-byte relative address. Synonymous with
offset.

Request block. Size varies.

Two-byte segment identifier.

Selector. Segment identifier for a protected­
mode memory address.

Paragraph number. Segment identifier for a real­
mode memory address.

Two-byte user number.

Largest allowable index in an array.

Maximum size of an array or buffer (Max"" Last +
1).

Indicates a variable whose value is set by a
called procedure, and returned to the current one.

xiv eTaS/Open API: Networking Services Draft 1.0

1
Overview

What Is CTOS/Open?

The CTOS/Open Advisory Council (CTOS/Open for short) was formed as
a joint effort among manufacturers, resellers, distributors, software
developers, hardware developers, and users to establish and promote the
CTOS-based architecture as a standard for distributed network computing.

The aim of CTOS/Open is to increase the number of CTOS-based
applications and to maximize the return on investment in software
development for independent vendors and users. CTOS/Open sets
portability standards for the CTOS operating system and its variants, and
integrates evolving standards into a common, beneficial, and continuing
strategy.

The CTOS/Open Application Programming Interface (API) Specification
defines a set of procedural interfaces for the CTOS operating system.
This common CTOS interface definition ensures portability of application
software across CTOS platforms from multiple vendors. In addition, it
provides direction for future development by defining a consistent
migration path for software. This approach enables new technological
advances to coexist with earlier developments, and protects costly
investments made in software development.

Draft 1.0 Overview 1-1

The 081 Reference Model

ISO defines an architectural model, called the Open Systems
Interconnection Reference Model, that provides a common basis for the
coordination of standards. These standards enable different types of
computer equipment (for example, mainframes and workstations) from
different manufacturers to interconnect and communicate. This model
also provides a common reference for maintaining consistency for all
standards, protocols, and services for computer communications as well as
a functional framework for development of new standards. The
eTaS/Open API for Networking Services is based on the lower layers of
the OSI model.

The OSI Reference Model represents a seven-layer architecture as a
"stack." Each layer uses the services of the layer below and provides
services to the layer above. All seven layers have peer-to-peer protocols
that allow services of each layer to communicate with services of the same
layer on another system.

Grouping protocols by layer allows flexibility and modularity. Each layer
of the OSI model groups functions logically:

• Layer One, the Physical Layer, defines physical transfer of
information between nodes. It specifies terminal interfaces, electrical
characteristics, and mechanical connections. It also specifies
functions and procedures for using and maintaining a physical
connection for bit transmission between two data-link entities.

• Layer Two, the Data Link Layer, controls the point-to-point transfer
of information over the physical link between two network entities.
It manages the link connection supervising data interchange,
synchronizing and delimiting. It also manages frame sequencing, link
flow control, error detection and recovery at the Physical Layer, and
identification and parameter exchange.

• Layer Three, the Network Layer, switches and routes information
from point-to-point through a connected group of systems. It
controls routing, relaying, and network connections. It also controls
logical channel control, segmenting and blocking, error detections
and recovery, sequencing and flow control.

1-2 eTOS/Open API: Networking Services Draft 1.0

• Layer Four, the Transport Layer, specifies end-to-end data integrity
and quality of service. It also provides Transport to Network address
mapping, multiplexing, end-to-end error detection and recovery
control, flow regulation, and end-to-end segmentation and sequencing
of data units.

• Layer Five, the Session Layer, coordinates interaction and dialogue
between Presentation entities. It provides administration services
such as establishing and releasing session connections, and dialogue
services such as data exchange, interaction management and
synchronization, and recovery from Transport connection failure.

• Layer Six, the Presentation Layer, allows an application to properly
represent and interpret the data being communicated. It specifies
data interpretation, transformation, formatting, structuring, and
syntax selection. This layer is responsible for conversion between
standard representations of data and the format unique to a particular
system.

• Layer Seven, the Application Layer, allows the application processes
to gain access to OSI communication services, and to communicate
with their application process partners by means of Application
entities and protocols. The Application Layer provides services such
as file transfer, security and access control, remote job entry, job
initiation and termination, synchronizing cooperating applications,
and message transfer system management function, as well as
application management.

Draft 1.0 Overview 1-3

Each OSI layer described in Figure 1-1 provides services to its users in the
layer above by using functions available within that layer and the services of
the layers below. At each layer boundary, the lower layer is the provider of
a service, or service provider. The upper layer is the user, or client, of the
service, and is called a service client.

Layer 7 application

Layer 6 presentation

Layer 5 session

Layer 4 transport

Layer 3 network

Layer 2 data link

Layer 1 physical

Figure 1-1. OSI Reference Model

1-4 eTOS/Open API: Networking Services Draft 1.0

eTOS/Open Networking Services

The CTOS/Open Advisory Council introduced the eTOS/ Open Application
Programming Interface Specification: Networking Services to increase the
number of networking applications available for CTOS-based systems.
These networking services are based on existing standard APIs (such as
X/Open) where such standards exist. These networking services, although
modeled after the layers of the OSI reference model, will be independent
of any specific underlying protocol, and can be implemented by products
which use non-OSI protocols.

Initially, interfaces are defined for the OSI Data Link Layer and the OSI
Transport Layer. These are the layers where standardization on an open
API will most benefit CTOS vendors and users today, by increasing
application portability to and from non-CTOS platforms, by facilitating
simultaneous application development for CTOS and non-CTOS platforms,
and by permitting the development by independent vendors of applications
which will operate with CTOS platforms from multiple vendors and with
applications from other independent vendors.

Future versions of this specification will include additional interfaces.

This CTOS/Open specification is not itself an operating system. It is a
definition of permissible procedural interfaces to a CTOS/Open compliant
version of CTOS. Porting an application that conforms to the CTOS/Open
Standard from one CTOS-based operating system to another should
require, at most, relinking the program with the set of library procedures
on the target system.

The APIs described in this document may be implemented in products sold
separately from the CTOS-based operating system. Consult each product's
documentation to determine whether or not the product implements this
specification.

For brevity, the standard CTOS/Open API that is defined in this
specification is referred to simply as the Standard, or the eTOS/ Open
Standard.

Draft 1.0 Overview 1-5

Status of This Specification

This revision of the CTOS/ Open Applications Programming Interface:
Networking Services is Draft 1.0. Draft 2.0 is not expected to include
changes to the API for the Link Layer and the Protocol Manager functions

,related to the Link Layer. Some minor changes are expected in the future
to the API for the Transport Layer and the Protocol Manager functions
related to that layer.

1-6 CTOS/Open API: Networking Services Draft 1.0

2
Protocol Manager

Protocol Manager Overview

This document, in subsequent sections, will describe several CTOS request
interfaces without specific request codes. The Protocol Manager is the
means of dynamically informing Service Clients which request codes to use
to access the services of their target Service Providers.

The Protocol Manager is a system service which allows a connection to be
established between Service Providers and Service Clients for device
independence. The role of the Protocol Manager includes four key areas:

• Providing directory services to Service Clients by returning address
information for Service Providers (fully qualified device
specifications)

• Giving out Service Provider request codes to Service Clients

• Tracking active Service Providers and Service Clients to provide
current configuration information

• Facilitating parameter passing from a Service Client to a Service
Provider

Parameter Definition File (PDF)

A properly written Service Client ought to be able to use the services of
many different Service Providers. Similarly, a well-written Service
Provider ought to be able to provide services to many different Service
Clients. To accomplish these goals, each Service Client must be able to
pass to the Service Provider specific parameters describing the service
desired. These parameters often are specific to each Service

Draft 1.0 Protocol Manager 2-1

Provider/Service Client pair, so they ought not be hard-coded into the
Service Client.

The Protocol Manager provides for all these needs by the use of Parameter
Definition Files (PDF). Service dependencies are kept in a Parameter
Definition File rather than in the Service Client or Service Provider
themselves. The parameters in a PDF are dependent upon the type of the
Service Provider. Every parameter in the file is terminated by a new line
character (hexadecimal OA). Comments delimited by a pair of colons are
allowed in the string. Optionally, a string itself can be directly specified in
the OpenStationSL, OpellStatiollLL, or copen request; in this case, the
same rules must be followed.

The only required information is the Service Provider Name (excluding the
Device Specification which is supplied by the Protocol Manager), which is
the first entry in the file or string. Any comments in the PDF must be
deleted prior to passing the PDF string in the opening call (OpenStatioIlSL ,
OpenStationLL, or Copell). This function will be done by the Protocol
Manager if the PDF is a file.

See the Link Layer and Transport Layer sections for more details on the
use of Parameter Definition Files for these layer boundaries.

Protocol Manager Services

The Protocol Manager supports the following requests:

RegisterServiceProvider
DeregisterServiceProvider
RegisterServiceClient
DeregisterServiceClient
RequestServiceProvider
QueryProtocolManager
UpdateProtocolManager

2-2 eTOS/Open API: Networkillg Services Draft 1.0

RegisterServiceProvider

Description

A Service Provider makes the RegisterServiceProvider call to the Protocol
Manager to declare its name and the set of request codes it serves. For
instance, a Link Layer makes the RegisterServiceProvider call to enable
Link Clients to locate the Link Layer's services, and a Transport Provider
makes the RegisterServiceProvider call to enable Transport Clients to
locate the Transport Provider's services.

A Service Provider also passes configuration information in a structure
called the Service Provider Descriptor Block (see Protocol Manager Status
Data Structures). Each Service Provider must specify a unique name.

Procedural Interface

RegisterServiceProvider (pbProtManDeviceSpec, cbProtManDeviceSpec,
prgRequestCodes, srgRequestCodes, pSPDB, sSPDB): ErcType

where

pbProtManDeviceSpec
cbProtM an DeviceSpec

describe a device specification for the Protocol Manager.

prgRequestCodes
srgRequestCodes

describe an array of words: the request codes served by this Service
Provider.

pSPDB
sSPDB

describe the Service Provider Descriptor Block (detailed later in the
subsection Service Provider Descriptor Block).

Draft 1.0 Protocol Manager 2-3

RegisterServiceProvider

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode

12 pbProtManDeviceSpec
16 cb Prot Man DeviceSpec

18 prgRequestCodes
22 srgRequestCodes

24 pSPDB
28 sSPDB

Possible errors returned:

Size
(Bytes)

1
1
1
1
2
2
2
2

4
2

4
2

4
2

(continued)

Contents

o
o
3
o

OC159h

ErclnvalidSize, ErcNoSpace, ErclnvalidName, ErcDuplicateName.

The structure for rgRequestCodes has the following format when the
Service Provider is a Link Layer:

2-4 eTOS/ Open API: Networking Services Draft 1.0

(continued)

Offset

o
2
4
6
8

10
12

Field

OpenStationSL request code
OpenStationLL request code
CloseStation request code
ReadDLFrame request code
WriteDLFrame request code
DirectStation request code
DirectLink request code

RegisterServiceProvider

Size
(Bytes)

2
2
2
2
2
2
2

The structure for rgRequestCodes has the following format when the
Service Provider is a Transport Layer:

Offset

o
2
4

6
8

10
12

Size
Field (Bytes)

Lopen request code 2
Lclose request code 2
Lrcv ILrcvudata/Lrcvuderr I
Lsndudata request code 2
Lsnd request code 2
Laccept/Lbind/LconnectlLrcvconnectl
Llisten/Llook/Lgetstate/Lrcvdisl
Lrcvrel/Lsnddis/Lsndrel/Loptmgmti
Lunbind request code 2
Lsync/Lgetinfo request code 2
request code routed by Device
Specification for deinstali/status monitor 2

A Transport Layer may supply zero in any of these fields to indicate that it
does not support the corresponding function. For instance, a Transport
Layer which provides only a connectionless service would return zero for
all requests which are only used in connection-oriented service.

Draft 1.0 Protocol Manager 2-5

DeregisterServiceProvider

Description

A Service Provider makes the DeregisterServiceProvider call to the
Protocol Manager to notify it that the Service Provider will no longer serve
the previously declared set of request codes. This request should be issued
by the Service Provider just prior to allowing itself to be deinstalled.

Procedural Interface

DeregisterServiceProvider (pbProtManDeviceSpec, cbProtManDeviceSpec,
pbServiceName, cbServiceName): ErcType

where

pbProtM an DeviceSpec
cbProt M an DeviceSpec

describe a device specification for the desired Protocol Manager.

pbServiceName
cbServiceName

describe the Service Name of the Service Provider which is being
deregistered.

2-6 eTaS/Open API: Networking Services Draft 1.0

(continued)

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode

12 pbProtMan OeviceSpec
16 cbProtManOeviceSpec

18 pbServiceName
22 cbServiceName

Possible errors returned:

DeregisterServiceProvider

Size
(Bytes)

1
1
1
1
2
2
2
2

4
2

4
2

Contents

o
o
2
o

OC15Ah

ErcInvalidName, ErcNotRegistered, ErcInvalidUser.

Draft 1.0 Protocol }tfanager 2-7

RegisterServiceClient

Description

A Service Client makes the RegisterServiceClient call to the Protocol
Manager to declare its name, its own device specification (which the
Service Client should determine programmatically), and the request code it
serves for its query request. This request is optional for the Service
Client, as it plays no part in connecting a Client with its Service Provider.

This request is used to help manage a complex network. It allows the
development of monitor utilities which keep track of the status of every
software layer in a network. All Client Names should be unique in the
network.

Note that a program may be both Service Providers and Service Clients.
In this case the program would issue both a RegisterServiceProvider and a
RegisterServiceClient.

Procedural Interface

Register Service Client (pb Prot M anDeviceSpec, cbProt M all DeviceSpec ,
pbCliellt Name, cbCliellt N am e, pbCliellt DeviceSpec, cbClient DeviceSpec,
pAuxInfoStruct, sAuxInfoStruct): ErcType

where

pbProtMallDeviceSpec
cbProt M anDeviceSpec

describe a device specification for the desired Protocol Manager.

pbClientName
cbClielltName

describe the Service Client Name.

2-8 CTOS/Open API: Networking Services Draft 1.0

(continued)

pb Client DeviceSpec
cb Client DeviceSpec

RegisterServiceClient

describe a device specification for the Service Client. A value of zero
for cbClientDeviceSpec means that no Device Specification for th~
Service Client is supplied.

pAuxlnfoStruct
sA uxlnfoStruct

describe a structure, of which the only currently defined element is the
Service Client's Query Request code (a word). A value of zero means
that no request code is supplied.

Draft 1.0 Protocol Manager 2-9

RegisterServiceClient

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet

10 rqCode

12 reserved

18 pbProtMan DeviceSpec
22 cbProtMan DeviceSpec

24 pbClientName
28 cbClientName

30 pbClientDeviceSpec
34 cbClientDeviceSpec

36 pAuxl nfoStruct
40 sAuxl nfoStruct

Possible errors returned:

Size
(Bytes)

1
1
1
1
2
2
2
2

6

4
2

4
2

4
2

4
2

(continued)

Contents

6
o
4
o

OC15Bh

ErcInvalidSize, ErcNoSpace, ErcInvalidName, ErcDuplicateName.

2-10 eTOS/Open API: Networking Services Draft 1.0

DeregisterServiceClient

Description

A Service Client makes the DeregisterServiceClient call to inform the
Protocol Manager that the Service Client will no longer use the services of
its Service Provider(s) and will no longer serve the previously declared
query request code. This request should be issued by the Service Client
prior to allowing itself to be deinstalled. This request is optional for the
Transport Client.

Procedural Interface

Deregister LinkClient (pbProt M anDeviceSpec, cb ProtM an DeviceSpec,
pbClientName, cbClientName): ErcType

where

pbProtManDeviceSpec
cbProtManDeviceSpec

describe a device specification for the desired Protocol Manager.

pbClientName
cbClientName

describe the Service Client Name. This name must be unique within
the network.

Draft 1.0 Protocol Manager 2-11

DeregisterServiceClient

Request Block

Size
Offset Field (Bytes)

0 sCntlnfo 1
1 RtCode 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

12 pbProtManDeviceSpec 4
16 cbProtMan DeviceSpec 2

18 pbClientName 4
22 cbClientName 2

Possible errors returned:

ErcInvalidSize, ErcNotRegistered, ErcInvalidUser.

2-12 eTOS/Open API: Networking Services

(continued)

Contents

o
o
2
o

OC15Ch

Draft 1.0

RequestServiceProvider

Description

A Service Client makes a RequestServiceProvider call to the Protocol
Manager to determine the set of request codes served by the desired
Service Provider and the Service Provider's device specification. The
Service Client specifies the Service Provider name (excluding the Device
Specification). The Protocol Manager interprets the Parameter Definition
File (PDF) on behalf of the Service Client and returns the requested
Service Provider's Device Specification for use in the subsequent request
(for instance, OpenStationSL, OpenStationLL, or t_open) to the Service
Provider.

Procedural Interface

Request ServiceProvider (fP D FN ame, pb ProtM an DeviceSpec,
cbProtManDeviceSpec, pPDFName, sPDFName, pStructRet, sStructRet):
ErcType

where

fPDFName

is a flag. If set to TRUE, the pb/cb pair for PDFName specifies a
Parameter Descriptor File (PDF) name. If set to FALSE, the pb/cb
pair for PDFName specifies a Parameter Descriptor String.

pbProtManDeviceSpec
cbProtManDeviceSpec

describe a device specification for the desired Protocol Manager.

pPDFName
sPDFName

describe either a Parameter Descriptor String or a file specification for
a Parameter Descriptor File.

Draft 1.0 Protocol Manager 2-13

RequestServiceProvider

pStructRet
sStructRet

(continued)

describe the structure below, which is filled in by the Protocol
Manager.

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet

10 rqCode

12 1PDFName
13 Reserved

18 pbProtM an DeviceSpec
22 cbProtMan DeviceSpec

24 pPDFName
28 sPDFName

30 pStructRet
34 sStructRet

2-14 eTOS/Open API: Networking Services

Size
(Bytes)

1
1
1
1
2
2
2
2

1
5

4
2

4
2

4
2

Contents

6
o
2
1

OC15Dh

Draft 1.0

(continued) RequestServiceProvider

The structure for StructRet has the following format:

Offset

o
2

2+X
4+X

4+X+Y
6+X+Y

Size
Field (Bytes)

Length of Device Specification 2
Device Specification for Service Provider X
Size of request code array 2
rgRequestCodes Y
Length of Parameter Return Area 2
Parameter Return area Z

The format of rgRequestCodes is the same as for RegisterServiceProvider.
A Transport Client should check for request codes which are zero: these
indicate that the corresponding request is not supported by the Transport
Layer.

Possible errors returned:

Any file system error, ErcBadRetSize, ErclnvalidName,
ErcNotRegistered, ErclnvalidPDF.

Draft 1.0 Protocol Manager 2-15

QueryProtocolManager

Description

The QueryProtocolManager request returns the information specified in
the Service Provider Descriptor Block for all active Service Providers.
The Protocol Manager always contains this information which is updated
when necessary by the Service Providers using the UpdateProtocolManager
request. The QueryProtocolManager request also returns the information
given from Service Clients in the RegisterServiceClient request. The
request codes for all of the Service Provider's "query" requests are also
returned enabling the caller to query any Service Provider directly for more
detailed installation and statistical information. In addition, any Service
Clients which have issued a RegisterServiceClient request will have their
Client Name, Device Specification, and "query" request code returned in
this request. See the section on Protocol Manager Status Data Structures
for the formats in which the data is returned.

Procedural Interface

Query ProtocolM anager (pbProtManDeviceSpec, cbProtManDeviceSpec,
pProtManStatRet, sProtManStatRet, psProtManStatRet,
ssProtManStatMax): ErcType

where

pbProtM anDeviceSpec
cbProtManDeviceSpec

describe a device specification for the desired Protocol Manager.

pProtManStatRet
sProtM anStatRet

describe a buffer where the Status information is to be returned by the
Protocol Manager.

2-16 eTOS/ Open API: Networking Services Draft 1.0

(continued)

psProtManStatRet
ssProtM anStatRet

QueryProtocolManager

describe a word where the Protocol Manager returns the number of
bytes of Status information actually returned.

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode

12 pb Prot M an OeviceSpec
16 cb ProtMan OeviceSpec

18 pProtManStatRet
22 sProtManStatMax

24 psProtManStatRet
28 ssProtManStatMax

Possible errors returned:

ErcBadRetSize.

Draft 1.0

Size
(Bytes)

1
1
1
1
2
2
2
2

4
2

4
2

4
2

Contents

o
o
1
2

OC15Eh

2

Protocol Manager 2-17

QueryProtocolManager (continued)

The structure for ProtManStatRet has the following format:

Size
Offset Field (Bytes)

o Version of this copy of Protocol Manager 4
(The high order word is the major revision level and
the low order word is the minor revision level.)

4 Number of Service Providers registered 2

6 Number of Service Clients registered 2

8 Array of Service Provider Descriptor Blocks, N
(one for each Service Provider registered)

8+N Array of Service Client Descriptor Blocks, M
(one for each Service Client registered)

2-18 eTaS/Open API: Networking Services Draft 1.0

UpdateProtocolManager

Description

A Service Provider makes the UpdateProtocolManager call to to notify the
Protocol Manager that a change or event such as a line down condition or
new Service Client issuing an open request, such as an OpenStationSL,
OpenStationLL, or t_open, has occurred. An updated SPDB block is
passed to the Protocol Manager.

Procedural Interface

UpdateProtocolManager (pbProtManDeviceSpec, cbProtManDeviceSpec,
pSPDB, sSPDB): ErcType

where

pbProtManDeviceSpec
cbProtManDeviceSpec

describe a device specification for the desired Protocol Manager.

pSPDB.
sSPDB

describe the Service Provider Descriptor Block.

Draft 1.0 Protocol Manager 2-19

UpdateProtocolManager

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode

12 pbProtManDeviceSpec
16 cbProtMan DeviceSpec

18 pSPDB
22 sSPDB

Possible errors returned:

Size
(Bytes)

1
1
1
1
2
2
2
2

4
2

4
2

(continued)

Contents

o
o
2
o

OC15Fh

ErcInvalidSize, ErcInvalidName, ErcNotRegistered, ErcInvalidUser.

2-20 eTOS/Open API: Networking Services Draft 1.0

Protocol Manager Status Data Structures

Service Provider Descriptor Block (SPDB)

This structure is passed to the Protocol Manager by
RcgisterServiccProvidcr and UpdateProtocolManager, and returned by the
Protocol Manager in response to QueryProtocolManager.

Offset

o
2
3

3+X
4+X

4+X+Y
5+X+Y
6+X+Y
6+X+Y+Z
7+X+Y+Z
7+X+Y+Z+W
8+X+Y+Z+W
9+X+Y+Z+W

Field
Size

(Bytes)

Length of remainder of this SPDB
Size of Service Provider Name
Service Provider Name
Size of Service Provider Device Specification
Service Provider Device Specification

2
1
X
1
Y

Number of Channels 1
Size of Channel Names field 1
Channel Name(s) [separated by a colon] Z
Size of Channel Types field 1
Channel Type(s) [separated by a colon] W
Number of defined Service Clients 1
Provider Status flag (up/down; down - 0) 1
Query request code (DirectLink for Link Layers) 2
(This field only present in SPDB when SPDB is from
QueryProtocolManager, not ReglsterServiceProvider.)

The fields above which refer to "Channels" are intended for flexible use by
the programmer. A Link Layer might refer to

:A: or : [COMM]A:

for Channel Names. Channel Types might refer to

:RS-232: or :X21:

A Transport Layer, in the Channel Types field, might refer to

:X25: or :Ethernet:

Draft 1.0 Protocol Manager 2-21

Service Client Descriptor Block (SCDB)

This structure is returned by the Protocol Manager in response to
QueryProtocolManager.

Offset Field

o Length of remainder of this SCDS

2 Size of Service Client Name

3 Service Client Name

15 Size of Service Client Device Specification

16 Service Client Device Specification

16+N Service Client Query request code

2-22 eTOS/Open API: Networking Services

Size
(Bytes)

2

12

N

2

Draft 1.0

3
Link Layer

Link Layer Overview

The CTOS Link Layer Interface is modeled on the ANSI/IEEE standard
802.2 and the ISO/DIS standard 8802.2, although not all protocols
provided by the Link Layers will necessarily confonn to these
specifications. These specifications describe, in an abstract fashion, the
services to be provided by a Data Link Layer service provider. Such a
service provider is responsible for error-free delivery of data packets
between adjacent nodes in a network.

The CTOS Link Layer Interface provides a standard programming
interface through which software programs implementing Layer Three (Le.,
OSI Network Layer, X.2S Packet layer, IP Layer, SNA Path Control) can
access services provided by Layer Two software (Link Layer) without
detailed knowledge of the underlying link type. Ideally, the upper layer
will have no knowledge of the link layer details. Even in less-than-ideal
circumstances, this standard

• Provides flexibility in configuration

• Facilitates support of new links to an upper layer

• Maximizes the benefits when new link layers are developed

Draft 1.0 Link Layer 3-1

SNA

Path

Control

SDLe

OSI Internet

Network Protocol

\ I
Link Loyer Interface

Token

Ring

\
Ethernet

Figure 3-1. Link Layer

X.25

Pocket

Layer

I
I

\
LAPS

The CTOS/Open Link Layer Interface defines the programmatic interface
between the Link Layer Service Providers (Link Layers) and the Layer
Three implementations, or link layer service users (Link Clients).

A Link Layer handles one or more Link Clients. Each Link Client
accesses the Link Layer through a Link Layer Service Access Point
(LSAP). Some of the services provided by a Link Layer apply to the link
layer as a whole, while others are specific to one LSAP. CTOS LSAP
requests (station requests) are routed by station handle once the LSAP is
opened. Link requests are routed by device specification.

There are three elements of the CTOS Link Layer Interface which
facilitate device independence: the Station Descriptor File, the Link Layer
Name, and the Protocol Manager.

3-2 CTOS/Open API: Networking Services Draft 1.0

Parameter Definition File for Link Layers

A Link Client calls either OpenStationSL or OpenStationLL to establish
connection with the Link Layer. Link dependencies are removed from the
parameters of these procedures by placing them in a Parameter Definition
File. The parameters in the file are dependent upon the type of the Link
Layer, and may include a type-of-operation indicator. Every parameter in
the file is terminated by a new line character (hexadecimal OA).
Comments delimited by a pair of colons are allowed in the string.
Optionally, a string itself can be directly specified in the OpenStation call;
in this case, the same rules must be followed.

The only required information is the Link Layer Name (excluding the
Device Specification which is supplied by the Protocol Manager), which is
the first entry in the file or string. In addition, if the Link Layer allows the
option to not receive Events in response to ReadDLFrame, the parameter
"Events Requested?" should be the second entry. Any comments in the
PDF must be deleted prior to passing the PDF string in the OpenStation
call. This function will be done by the Protocol Manager if the PDF is a
file.

The following example is a Parameter Definition File for an SDLC Link
Layer, as used by an SNA Path Control Link Client:

:Link Layer Name:SDLC
:Events Requested?:Yes
:Line Address:1
:Initial connection?:Yes
:User Handles XID?:No
:Switched ID:0008D
:ID Block:03D

The next example is a Parameter Definition File for an Ethernet Link
Layer, as used by an OSI Network Layer Link Client:

:Link Layer Name:Ethernet
:Events Requested?:Yes
:Local LSAP:FE

Draft 1.0 Link Layer 3-3

In either of these two cases, more parameters could be added to the PDF
to accomodate implementation-dependent requirements. Product-specific
parameter formats and permitted values should be supplied in the product
documentation for each product. The Parameter Definition File for the
Link Layer API is sometimes also called a Station Descriptor File (SDF).

Link Layer Name

A Link Layer Name is a name assigned to or by a link layer
implementation at installation time. The maximum length of a name for
this purpose is 12 characters. Clients of the Link Layer relate to it by the
name. The combination of the Link Layer Name and Station Descriptor
File provides a Link Layer (device) type independent interface.

Link Layer Services

Link Layers serve the following set of requests:

OpenStationSL
OpenStationLL
CloseStation
ReadDLFrame
WriteDLFrame
DirectStation
DirectLink

These requests are common to all Link Layers. A unique set of request
codes is assigned to each Link Layer type. However, the layout and
parameters for the request blocks are always the same.

All requests are available by either Request or Procedural interface. In
order for Service clients to achieve device independence, only the Request
interface should be used. The Procedural interface is provided as a
convenience for non-generic applications which have hard-coded the
procedural request names and provide a rqLabl.asm file for those requests.

CTOS originates the Abort, Terminate, Change User Number, and Swap­
ping requests. Link Layers should process these as described in Chapter 8
of eTaS/Open Programming Practices and Standards: Application Design.

3-4 eTaS/Open API: Networking Services Draft 1.0

OpenStationLL

Description

The OpenStationLL request opens an LSAP for the calling Link Client.
In addition, it may optiona1ly open an initial link connection if the SDF so
specifies.

A Link Client makes the OpenStationLL call to open a station after
obtaining the request code set and Link Layer Name, including Device
Specification, from the Protocol Manager using the
RequestServiceProvider procedure. The Link Layer marks the Station
Handle as long-lived.

Procedural Interface

OpenStationLL (pbLLDeviceSpec, cbLLDeviceSpec, pbClientName,
cbClientName, pSDString, sSDString, pSthRet, pcbMaxDataRet):
ErcType

where

pLLDeviceSpec
sLLDeviceSpec

describe a device specification for the desired Link Layer.

pClientName
sClientName

describe a string containing the Link Client's name. The maximum
size a1lowed is 12 characters.

pSDString
sSDString

describe the SDF input string.

Draft 1.0 Link Layer 3-5

OpenStation LL (continued)

pSth

points to a word where the Station Handle is returned. This handle is
used in subsequent requests to the Link Layer.

pcbMaxDataRet

points to a word where the maximum size of user data is returned.

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode

12 reserved

18 pbLLDeviceSpec
22 cbLLDeviceSpec

24 pbClientName
28 cbClientName

30 pSDString
34 sSDString

36 pSthRet
40 sSthRet

42 pcbMaxDataRet
46 scbMaxDataRet

3-6 eTOS/Open API: Networking Services

Size
(Bytes)

1
1
1
1
2
2
2
2

6

4
2

4
2

4
2

4
2

4
2

Contents

6
o
3
2

2

2

Draft 1.0

(continued) OpenStationLL

The Link Layer system service will record the user number of the
Open Station request to prevent subsequent access to the station by other
users until the CloseStation is issued by the opening user.

Possible errors returned:

ErcInvalidSDStringFmt, ErcInvalidSDContent, ErcAlreadyOpen,
ErcNoAddress, ErcLinkDown, ErcBadLinkClientName,
ErcNoResources, ErcBadLLName.

Draft 1.0 Link Layer 3-7

OpenStationSL

Description

The OpenStationSL request opens an LSAP for the calling Link Client.
In addition, it may optionally open an initial link connection if the SDP so
specifies.

A Link Client makes the OpenStationSL call to open a station after
obtaining the request code set and Link Layer Name, including Device
Specification, fronl the Protocol Manager using the
RequestServiceProvider procedure. The Link Layer marks the Station
Handle as short-lived.

Procedural Interface

OpenStationSL (pbLLDeviceSpec, cbLLDeviceSpec, pbClientName,
cbClientName, pSDString, sSDString, pSthRet, pcbMaxDataRet):
ErcType

where

pbLLDeviceSpec
cbLLDeviceSpec

describe a device specification for the desired Link Layer.

pbClientName
cbClielltName

describe a string containing the Link Client's name. The maximum
size allowed is 12 characters.

pSDString
sSDString

describe the SDP input string.

pSth

points to a word where the Station Handle is returned. This handle is
used in subsequent requests to the Link Layer.

3-8 CTOS/Open API: Networking Services Draft 1.0

(continued) OpenStationSL

pcbMaxDataRet

points to a word where the maximum size of user data is returned.

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode

12 reserved

18 pbLLDeviceSpec
22 cbLLDeviceSpec

24 pbClientName
28 cbClientName

30 pSDString
34 sSDString

36 pSthRet
40 sSthRet

42 pcbMaxDataRet
46 scbMaxDataRet

Draft 1.0

Size
(Bytes)

1
1
1
1
2
2
2
2

6

4
2

4
2

4
2

4
2

4
2

Contents

6
o
3
2

2

2

Link Layer 3-9

OpenStationSL (continued)

The Link Layer system service will record the user number of the
OpenStation request to prevent subsequent access to the station by other
users until the CloseStation is issued by the opening user.

Possible errors returned:

ErclnvalidSDStringFmt, ErclnvalidSDContent, ErcAlreadyOpen,
ErcNoAddress, ErcLinkDown, ErcBadLinkClientNaine,
ErcNoResources, ErcBadLLName.

3-10 eTOS/Open API: Networking Services Draft 1.0

CloseStation

Description

The CloseStation request is used to release resources assigned by the Link
Layer and make the station (LSAP) available to another user. If this
request is issued while link connections are open, those connections are
automatically closed.

Procedural Interface

CloseStation (Sth): ErcType

where

Sth

is the Station Handle returned by the OpenStation request.

Draft 1.0 Link Layer 3-11

CloseStation (continued)

Request Block

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 2
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

12 Sth 2

If the user has any outstanding requests at the time of issuance of the
CloseStation, all the requests will be returned before the close request is
completed.

Possible errors returned:

. ErcWrongUser, ErcNotOpen.

3-12 eTOS/ Open API: Networking Services Draft 1.0

ReadDLFrame

Description

The Link Client issues a ReadDLFrame to request the next received frame
or a Link Layer event. The delivered field includes only the user data
portion of the frame. The received message can be either connectionless
(for instance, a VI frame) or connection-oriented (for instance, an I
frame).

Procedural Interface

ReadDLFrame (Sth, pFrameRet, sFrameMax, psFrameRet): ErcType

where

Sth

is the Station Handle returned by the OpenStation request.

pFrameRet
sFrameMax

describe a structure where the information frame, the event code, and
the remote LSAP of the frame's sender, are returned.

psFrameRet

points to a word in which the size of the returned frame is stored.

Draft 1.0 Link Layer 3-13

ReadDLFrame (continued)

Request Block

Note that this request may be implemented as a CTOS Read/Write
(%R W) request. The Link Client may issue a ReadDLFrame for up to
65535 bytes in a single request, if the Link Layer will allow that large a
frame. To the Link Layer, this will appear as multiple requests.

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode

12 Sth

14 Reserved

18 pFrameRet
22 sFrameMax

24 psFrameRet
28 ssFrameRet

3-14 eTOS/Open API: Networking Services

Size
(Bytes)

1
1
1
1
2
2
2
2

2

4

4
2

4
2

Contents

6
o
o
2

2

Draft 1.0

(continued) ReadDLFrame

The structure described by pFrameRet/sFrameRet has the following form:

Size
Offset Field (Bytes)

0 EventCode 2
2 RemoteLSAPtype 2
4 RemoteLSAPLength 2
6 RemoteLSAPData variable

6+var FrameType 2
8+var FrameLen 2
10+var FrameData variable2

If the EventCode is non-zero, the values in the remainder of the structure
are undefined. See Appendix A for a list of the EventCodes and their
meaning.

RemoteLSAPtype indicates the format in which the address is returned:

o
1
2
3
4

DLCi
IEEE LSAP format, SAP + MAC address
IEEE broadcast LSAP
DIX Ethernet
HDLC format (one-byte address)

The value of RemoteLSAPLength is media-dependent. Typical values are:

2

8

Draft 1.0

for a DLCi

Connectionless Token-Ring, SAP plus MAC Address
or Connectionless Ethernet, SAP plus MAC Address

Link Layer 3-15

ReadDLFrame (continued)

FrameType indicates the type of frame received (other values of
FrameType may be used as a ServiceClass indicator for connectionless
frames):

o
1
2
3
4
5
6

I frame (or, generally, any connection-oriented frame carrying data)
UI frame (or any connectionless frame carrying data)
TEST frame
XI D command with Poll bit set
XI D response with Final bit set
XI D response without Final bit set
XID command without Poll bit set

Possible errors returned:

ErcWrongUser, ErcNotOpen, ErcRcvDataTrunc, ErcNullBuffer,
ErcLinkDown, ErcReqCanceled, ErcStnClosed, ErcDeinstallLink,
ErcN oResources, ErcReceiveTruncation, ErclnvalidFrameSpec,
ErclnvalidLSAPSpec, ErcLineDown.

3-16 eTOS/Open API: Networking Services Draft 1.0

WriteDLFrame

Description

The Link Client issues a WriteDLFrame call to request the Link Layer to
transmit a message from the station. This Inessage can be either
connectionless (for instance, a VI frame) or connection-oriented (for
instance, an I frame).

Procedural Interface

WriteDLFrame (Sth, pFrame, sFrame, sFrameTotal, pbCoulltRet,
cbCountRet): ErcType

where

Sth

is the Station Handle returned by OpenStation.

pFrame
sFrame

describe a structure containing data to be transmitted and the remote
LSAP to which the data is to be transmitted.

sFrameTotal

indicates whether the data pointed to by pFrame/sFrame is complete.
If the frame to be transmitted by the Link Layer is too large to be sent
in a single request, multiple requests can be used. sFrameTotal should
be set to the size of the total frame. The Link .Layer knows that it has
received the entire frame when the sum of sFrame for individual
requests is equal to sFrameTotal. If sFrameTotal is equal to zero, then
sFrame is taken to indicate the length of this franle and the frame is
assumed to be complete.

Draft 1.0 Link Layer 3-17

WriteDLFrame

pbCountRet
cbCountRet

(continued)

describe a word where the count of bytes successfully transmitted is
returned.

Request Block

Note that this request may be implemented as a CTOS Read/Write
(%R W) request. The Link Client may issue a WriteDLFrame for up to
32767 bytes in a single· request, if the Link Layer will allow that large a
frame. To the Link Layer, this will appear as multiple requests.

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode

12 Sth

14 Reserved

16 sFrameTotal

18 pFrame
22 sFrame

24 pbCountRet
28 cbCountRet

3-18 CTOS/Open API: Networking Services

Size
(Bytes)

1
1
1
1
2
2
2
2

2

2

2

4
2

4
2

Contents

6
o
1
1

2

Draft 1.0

(continued) WriteDLFrame

The structure described by pFrame/sFrame has the following form (on the
first request only if the frame is to be conveyed in a series of requests; on
the remainder this pb/cb points to FrameData):

Size
Offset Field (Bytes)

0 RemoteLSAPType 2
2 RemoteLSAPLength 2
4 RemoteLSAPData variable

4+var FrameType 2
6+var FrameLength 2
8+var FrameData variable2

RemoteLSAPtype indicates the format in which the address is passed. A
value of zero indicates that RemoteLSAPData contains a DLCi. The
value of RemoteLSAPLength is media-dependent. Typical values are 2
(for a DLCi), 8 (Connectionless Token-Ring, SAP plus MAC Address),
or 10 (Connectionless Ethernet, SAP plus MAC Address).

Draft 1.0 Link Layer 3-19

WriteDLFrame (continued)

FrameType indicates the type of frame received (other values of
FrameType may be used as a ServiceClass indicator for connectionless
frames):

o
1
2
3
4
5
6

I frame (or, generally, any connection-oriented frame carrying data)
UI frame (or any connectionless frame carrying data)
TEST frame
XID command with Poll bit set
XID response with Final bit set
XID response without Final bit set
XID command without Poll bit set

Possible errors returned:

ErcWrongUser, ErcNotOpen, ErcXmtDataTrunc, ErcNullBuffer,
ErcLinkDown, ErcReqCanceled, ErcStnClosed, ErcDeinstallLink,
ErcInvalidState, ErcLineDown, ErcLinkReset, ErcNoResources,
ErcInvalidDataSize, ErcInvalidCommand.

3-20 eTOS/ Open API: Networking Services Draft 1.0

DirectStation

Description

The Link Client issues a DirectStation request to direct the station
operation of the Link Layer. The DirectStation request is routed by
FileHandle and so can be issued only by the user that issued the
OpenStation. An error code ErcWrongUser is returned by the Link Layer
if this request is received from a user other than the one that issued the
OpenStation. Conceptually, this request is used by the Link Client only to
request any service which is specific to an LSAP or to a Link Connection.
See the section on DirectStation commands for specifics of each
bCommand option.

Procedural Interface

DirectStation (Sth, bCommand, AuxByte, AuxWord, pSend, sSend,
pReceive1, sReceive1, pReceive2, sReceive2): ErcType

where

Sth

is the Station Handle returned by OpenStation.

bCommand

defines the supported Link Layer commands. Values ranging from
0-127 indicate commands common to all Link Layers, and values
ranging from 128-255 indicate Link Layer dependent commands. See
the section on DirectStation commands for specific value definitions.

AuxByte
AuxWord

are auxiliary fields that have values dependent upon the command
entered in the bCommand parameter.

Draft 1.0 Link Layer 3-21

DirectStation

pSend
sSend

describe the data buffer to be sent to the Link Layer.

pReceivel
sReceivel

describe a buffer where the Link Layer is to return data.

pReceive2
sReceive2

(continued)

describe an area (normally a word) where the Link Layer is to return
data (normally the actual size of the data returned into
pReceivel/ sReceivel) .

3-22 eTOS/Open API: Networking Services Draft 1.0

(continued) DirectStation

Request Block

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 1
3 nRespPbCb 1 2
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

12 Sth 2

14 bCommand

15 AuxByte

16 AuxWord 2

18 pSend 4
22 sSend 2

24 pReceive1 4
28 sReceive1 2

30 pReceive2 4
34 sReceive2 2

Possible errors returned:

EreBadCommand, EreNotSupported, EreLinkDown, Ere WrongU ser,
EreNotOpen, ErcLineDown, ErcReqCanceled, ErcStnClosed,
EreBufferTooSmall.

Draft 1.0 Link Layer 3-23

DirectLink

Description

Any program can issue a DirectLink request to direct the Link Layer
operation. The DirectLink request is routed by FileSpec where the
DirectStation request is routed by FileHandle. Conceptually, this request
is used by the Link Client, or by any other program, to request a service
which must apply to the entire Link Layer.

Procedural Interface

DirectLink (bCommand, pLLDeviceSpec, sLLDeviceSpec, pSend, sSend,
pReceivel, sReceivel, pReceive2, sReceive2): ErcType

where

bCommand

defines the supported Link Layer commands. Values ranging from
0-127 indicate commands common to all Link Layers, and values
ranging from 128-255 indicate Link Layer dependent commands. See
the section on DirectLink commands for specific value definitions.

pLLDeviceSpec
sLLDeviceSpec

describe a device specification for the desired Link Layer. The Link
Name must also be specified here following the device specification.

pSend
sSend

describe the data buffer to be sent to the Link Layer.

pReceivel
sReceivel

describe a buffer where the Link Layer is to return data.

3-24 CTOS/Open API: Networking Services Draft 1.0

(continued)

pReceive2
sReceive2

DirectLink

describe an area (normally a word) where the Link Layer is to return
data (normally the actual size of the data returned into
pReceivel/ sReceivel).

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode

12 bCommand

13 Reserved

18 pLLDeviceSpec
22 sLLDeviceSpec

24 pSend1
28 sSend1

30 pReceive1
34 sReceive1

36 pReceive2
40 sReceive2

Draft 1.0

Size
(Bytes)

1
1
1
1
2
2
2
2

5

4
2

4
2

4
2

4
2

Contents

6
o
2
2

Link Layer 3-25

DirectLink (continued)

Possible errors returned:

ErcBadCommand, ErcNotSupported, ErcLLActive, ErcBadLLName,
ErcBufferTooSmall.

See the section on DirectLink commands for specifics of each bCommand
option.

3-26 CTOS/Open API: Networking Services Draft 1.0

Link Layer Status Data Structures

Generic Statistical Header Block (GHB)

The Generic Statistical Header Block (GHB) is returned by the Link Layer
as a response to a DirectStation (with QueryStation command) or for a
DirectLink (with QlleryLink) command. The fields on this page are
completely generic. All Link Layers must support these. The remainder
of the fields, on the next page, are a recommended ordering of statistics
with general applicability.

Offset

o
1

1+X
2+X

2+X+Y
3+X+Y
4+X+Y
4+X+Y+Z
5+X+Y+Z
5+X+Y+Z+W
6+X+Y+Z+W
7+X+Y+Z+W

9+X+Y+Z+W
13+X+Y+Z+W

29+X+Y+Z
33+X+Y+Z
35+X+Y+Z
37+X+Y+Z
38+X+Y+Z
40+X+Y+Z
42+X+Y+Z
44+X+Y+Z
45+X+Y+Z

Draft 1.0

Field
Size

(Bytes)

Size of Link Layer Name 1
Link Layer Name X
Size of Link Layer Device Specification 1
Link Layer Device Specification Y
Number of Channels 1
Size of Channel Names field 1
Channel Name(s) [separated by a colon] Z
Size of Channel Types field 1
Channel Type(s) [separated by a colon] W
Number of defined Link Clients 1
Line Status flag (Physical Layer up/down) 1
DirectLink request code 2
(This field is zero when the LOB is returned by QueryLink)
Total Info Frames Received 4
Total Info Frames Transmitted 4

Switched Block 10
of TEST commands received
of TEST commands transmitted
Validity mask (nSummaryMask)
of machine checks
of communications checks
of program checks
Validity mask (nCommMask1)
Validity mask (nCommMask2)

4
2
2
1
2
2
2
1
1

Link Layer 3-27

Size
Offset Field (Bytes)

46+X+Y+Z # of nonproductive timeouts 1
47+X+Y+Z # of idle timeouts 1
48+X+Y+Z # of retransmissions 1
49+X+Y+Z # of receiver overruns 1
50+X+Y+Z # of transmitter underruns 1
51+X+Y+Z # of conection problems 1
52+X+Y+Z # of FCS errors 1
53+X+Y+Z # of primary aborts 1
54+X+Y+Z # of frame reject responses transmitted 1

55+X+Y+Z # of DCE errors 1
56+X+Y+Z # of transmit timeouts 1
57+X+Y+Z # of invalid adapter status 1
58+X+Y+Z # of adapter machine checks 1
62+X+Y+Z # Total Frames Received 4
66+X+Y+Z # Total Frames Transmitted 4
70+X+Y+Z # Total Error Frames 4
74+X+Y+Z cb Memory allocated internally in Link Layer 4
78+X+Y+Z cb Memory free internally in Link Layer 4
82+X+Y+Z Size of following additional information 2

Any additional statistics returned should include Link Layer specific
information. One example would be for an Ethernet Link Layer to return
the number of collisions (data which does not apply to other Link Layers).

3-28 eTOS/Open API: Networking Services Draft 1.0

DirectStation Commands

Link Layer Independent Commands

All Link Layers should support the independent commands listed in the
following table. If, however, a command is not supported by the Link
Layer, an error code indicating non-support is returned (ErcNotSupported,
31105). These commands include standard ISO 8802.2 and IEEE 802.2
functions and management functions common to all Link Layers.

bCommand Command
Value Name

Query station

2 Reset statistics data

3 Cancel requests

4 Reset Logical Link

5 Open Logical Link

6 Close Logical Link

10 Set busy mode

Draft 1.0

Description

Requests performance statistics for a
station.

Resets statistics counters to zero.

Causes all outstanding requests to be
returned.

Causes the Link Layer to reinitialize the
specified connection. The AuxWord
parameter should be the DLCi.

Requests the Link Layer to initiate an LLC
connection with a remote RLSAP/RMAC
address.

Requests the Link Layer to terminate an LLC
connection; requests disconnection. The
AuxWord parameter should be the DLCi.

Causes the Link Layer to mark this station or
connection as "busy." For instance, an
HDLC Link Layer would start sending RNA.
The Link Layer should also enter busy mode
whenever it does not have an outstanding
read request from the Link Client. The
AuxWord parameter should be the DLCi.

Link Layer 3-29

bCommand Command
Value Name

11 Set not busy mode

Description

Causes the Link Layer to mark this station or
connection as "not busy." For instance, an
HOLe Link Layer would resume sending RR.
The Link Layer should also exit busy mode
whenever it receives a read request from a
Link Client who did not have one
outstanding. The AuxWord parameter should
be the OLCi.

For all commands except Query Station, Open Logical Link, and Close
Logical Link, all of the request block parameters except AuxWord are not
used and should be set to zero.

Query Station Command

When Query Station (1) is specified in the bCommand parameter, specify
the last parameters for the DirectStation request as follows:

• pSend: Not used.

• sSend: Not used.

• pReceivel: A pointer to a buffer where the GHB is returned.

• sReceivel: The size of the GHB.

• pReceive2: A pointer to a word where the Link Layer returns the size
of the GHB.

• sReceive2: 2.

3-30 CTOS/Open API: Networking Services Draft 1.0

Open Logical Link Command

When Open Logical Link (5) is specified in the bCommand parameter,
specify the last parameters for the DirectStation request as follows:

• AuxByte: Class of Service. When multiple priorities are available,
this selects which should be used for this connection.

• pSend: A pointer to a Remote LSAP structure.

• sSend: The size of the structure.

• pReceive1: A pointer to a word where the Data Link Connection
indicator (DLCi) is returned.

• sReceive1: 2.

• pReceive2: Not used.

• sReceive2: Not used.

The structure for the Remote LSAP has the following format:

Size
Offset Field (Bytes)

0 RemoteLSAPType 2
2 RemoteLSAPLength 2
4 RemoteLSAPData variable

4+variable Optional Data variable

The DLCi is the Data Link Connection indicator for the connection. The
confirmation status is returned in ercRet of the request block.

Draft 1.0 Link Layer 3-31

Close Logical Link Command

The Link Client issues a Close. Logical Link command to terminate a
connection with a remote SAP address. When the Link Layer responds to
the request, an ercRet of zero confirms that the disconnect was successful.

When Close Logical Link (6) is specified in the bCommand parameter,
specify the last parameters for the DirectStation request as follows:

• AuxWord: The DLCi returned by Open Logical Link command.

• pSend: Not used.

• sSend: Not used.

• pReceive1: Not used.

• sReceive1: Not used.

• pReceive2: Not used.

• sReceive2: Not used.

3-32 CTOS/Open API: Networking Services Draft 1.0

Link Layer Dependent Commands

Commands listed in the following table mayor may not be supported by a
Link Layer. If a command is not supported by the Link Layer, an error
code indicating non-support is returned (ErcNotSupported, 31105). These
commands are intended to allow for hardware or device dependencies
which cannot be avoided.

bCommand Command
Value Name

128 Transmit XI D

131 Transmit TEST

133 Notify Link Role

134 Connect Logical Link

137 Change Timers

138 Change Windows

139. ISDN Mux

140 MF-EstablishLink

141 MF-ReleaseLink

Draft 1.0

Description

Causes an SDLC/SNA XID to be
transmitted.

Causes a TEST frame to be transmitted.

If a Link Layer can handle different roles
(Le., primary vs. secondary), this
command instructs the Link Layer which
role to assume.

Confirms the initiation of a Token-Ring
LLC connection and supplies Token-Ring
bridge routing information.

Dynamically change per-connection
timers.

Dynamically change per-connection
transmit or receive window size.

LAPD

LAPD

LAPD

Link Layer 3-33

For the Transmit XID, Transmit Set Link Mode, Transmit DISC,
Transmit TEST, the pSend/sSend parameters point to a transmit buffer
and the other parameters are not used. For the Link Reset command, no
parameters are used. For the Notify Link Role command, pSend/sSend
point to a word indicating the role and the other parameters are not used.
For the MF-EstablishLink and MF-ReleaseLink commands, AuxWord
should be the DLCi. For all commands, pointers not used should be set to
zero.

Connect Logical Link Command

The Link Client issues an Connect Logical Link command to conlplete a
connection with a remote SAP address.

When Connect Logical Link (134) is specified in the bCommand
parameter, specify the last parameters for the DirectStation request as
follows:

• AuxWord: The DLCi returned by the Open Logical Link command.

3-34 CTOS/Open API: Networking Services Draft 1.0

DirectLink Commands

Link Layer Independent Commands

The commands in the following table include management functions
common to all Link Layers and physical layer operations of wide
applicability to many Link Layer types. If a command is not supported by
a Link Layer, an error code indicating non-support is returned
(ErcN otSupported).

bCommand Command
Value Name Description

Query Link Layer statistics p/sReceive1 pOint to a buffer where a
GHB is returned.

2 Deinstall p/sReceive1 pOint to a partition handle.

3 Make outgoing call p/sSend1 point to a phone number or a
X.21 PDN destination address.

4 Enable Incoming call No parameters are used.

6 Disconnect call No parameters are used.

7 Disable Incoming call No parameters are used.

10 Reset Link Layer Causes the Link Layer to reinitialize itself.

Draft 1.0 Link Layer 3-35

Link Layer Dependent Commands

The commands in the following table generally apply to specific Link
Layers only. If the command is not supported, the Link Layer returns an
error code indicating non-support (ErcNotSupported).

bCommand Command
Value Name

150 Configure

151 Individual Address SetUp

152 Add Multi-Cast or Group Address

153 Remove Multi-Cast or Group Address

154 Reset Link Layer Statistics

155 Set Functional Address

156 Reconfigure (pSend1/sSend1 pOint to reconfiguration data)

157 Loopback control (Local vs. Remote loopback)

158 Activate ISDN (pSend1/sSend1 points to a channel name)

159 Deactivate ISDN (pSend1/sSend1 points to a channel name)

3-36 eTOS/Open API: Networking Services Draft 1.0

4
Transport Layer

Transport Layer Overview

The CTOS Transport Layer Interface is modeled on the X/Open Company
Ltd.'s X/Open Transport Interface. Both a library procedural interface
(object module procedures) and a eTaS request interface are defined.
The library procedural interface is completely identical to the X/Open
Transport Interface (XTI) and is provided because it is widely recognized
as an industry standard. The library procedural interface is the
appropriate one to use when writing an application which must be portable
between several different operating systems. The CTOS request interface
is provided for performance and efficiency (especially when handling
full-duplex flow). Its use is appropriate when writing a CTOS upper layer
program which must be able to operate over many different transport
providers.

The X/Open specification describes an API for a set of services modeled
on the ISO OSI Transport layer. An OSI Transport layer service provider
is responsible for error-free delivery of data between any two nodes in a
network, regardless of the topology of the network or the number of nodes
in-between. The X/Open specification can be used with any underlying
transPQrt protocol which delivers this service.

Draft 1.0 Transport Layer 4-1

The CTOS Transport Layer Interface provides a standard programming
interface through which software programs can access communication
services provided by transport layer software (for instance, OSI Transport
Layer or Transmission Control Protocol) without detailed knowledge of the
underlying transport type. One example is an implementation of the OSI
Session Layer using this interface to access the services of an
implementation of the OSI Transport Layer. Ideally, the upper layer will
have no knowledge of the transport layer details. Even in less-than-ideal
circumstances, this standard

Provides flexibility in configuration

Facilitates support for new transport layers to an upper layer

Maximizes the benefits when new transport layers are developed

The transport layer described in Figure 4-1 is important because it is the
lowest layer in the OSI Reference Model that provides the basic service of
reliable, end-to-end data transfer needed by applications and higher layer
protocols. In doing so, this layer hides the topology and characteristics of
the underlying network from its users. More important, however, the
transport layer defines a set of services common to layers of many
contemporary protocol suites, including the International Standards
Organization (ISO) protocols, the Transmission Control Protocol and
Internet Protocol (TCPIIP) of the ARPANET, Xerox Network Systems
(XNS), and the IBM-defined Netbeui protocol commonly used by personal
computers on a local-area network.

4-2 eTOS/Open API: Networking Services Draft 1.0

OSI Internet LAN

Session Utilities Manager

Layer

\ J I
Transport Layer Interface

I \
OSI

TCP/IP Transport Netbeui

Layer

Figure 4-1. Transport Layer

Draft 1.0 Transport Layer 4-3

X/Open defined the XTI specification as a transport service interface
which is independent of any specific transport provider. The interface is
provided by way of a set of library functions, originally for the C
programming language (for CTOS, any language may be used). XTI was
originally intended to run on various versions of UNIX.

X/Open intended XTI to describe a wide set of functions and facilities
which vary in importance and/or usefulness. An application will be
portable across systems incorporating XTI (for instance, between UNIX
systems and CTOS) if one or both of the following is true:

• The application has been written such that it can modify its behavior
according to any subset of these functions and facilities which may be
supported by each of the transport providers over which the
applications is intended to work, or

• The application uses only the mandatory functions which are
guaranteed to be supported by the transport provider.

Note that the choice of functions and facilities may be confusing for
implementors of both applications and providers. Therefore XTI
distinguishes between those functions and facilities which are considered to
be mandatory, and those which are optional, for the purpose of identifying
the minimum workable subset. The CTOS/Open Transport Layer
Interface extends the set of functions and facilities which are considered to
be mandatory beyond the set considered mandatory by X/Open.

XTI was originally concerned primarily with the ISO [ref 1], OSI
Transport Service Definition (Connection-oriented or Connectionless) [ref
2] . However, it may be adapted for use over other types of transport
provider. In particular, XTI has been extended to include TCP [ref 3] and
UDP [ref 4] because of the popularity of these protocols.

4-4 eTaS/Open API: Networking Services Draft 1.0

References

[ref 1]

[ref 2]

[ref 3]

[ref 4]

Draft 1.0

The OSI model is described in:

ISO 7498 Information Processing Systems
Open Systems Interconnection
Basic Reference Model {IS : 1984}

The reference documents for ISO transport are
summarized in this array:

Connection-oriented Connectionless

protocol definition IS 8073-1986 IS 8602

service definition IS 8072-1986 IS 8072/Add.1-1986

The reference document for TCP protocol is:

TCP Transmission Control Protocol
Military Standard
(Mil-std-1778 Source A) and RFC 793 (Source B)

The reference document for UDP protocol is:

UDP User Datagram Protocol
RFC 768 (Source B)

where:

Source A Defense Communication Agency
DDN Protocol Handbook (Volume One)
DOD Military Standard Protocols (DEC 1985)

Source B Defense Communication Agency
DDN Protocol Handbook (Volume Two)
DARP A Internet Protocols (Dec 1985)

Transport Layer 4-5

Explanatory Notes

Transport Endpoints

A transport endpoint specifies a communication path between a transport
user and a specific transport provider, which is identified by a local file
descriptor (fd). When a user opens a transport provider identifier, a local
file descriptor fd is returned which identifies the transport endpoint. A
transport provider is defined to be the transport protocol that provides the
services of the transport layer. All requests to the transport provider must
pass through a transport endpoint. The file descriptor fd is returned by
the function LopenO and is used as an argument to the subsequent
functions to identify the transport endpoint. A transport endpoint (fd and
local address) can support only one established transport connection at a
time.

To be active, a transport endpoint must have a transport address
associated with it by the LbindO function. A transport connection is
characterized by the association, of two active endpoints, made by using
the functions of establishment of transport connection. The fd is a
communication path to a transport provider. There is no direct
assignation of the processes to the transport provider. So multiple
processes which share the same fd (whether created by the eTaS
CreateProcessO or LoadTaskO operations or the POSIX fork 0 operation)
may access a given communication path.

Note that to guarantee portability, the applications may only perform
operations defined in the XTI on fds returned by LopenO. Other
operations are permitted but these will have system-dependent results.

Transport Providers

The transport layer may comprise one or more transport providers at the
same time. The identifier parameter of the transport provider passed to
the LopenO function determines the required transport provider. To keep
the applications portable, the identifier parameter of the transport provider
should not be hard-coded into the application source code.

4-6 CTOS/ Open API: Networking Services Draft 1.0

An application which wants to manage multiple transport providers must
call LopenO for each provider. For example, a server application which is
waiting for incoming connect indications from several transport providers
must open a transport endpoint for each provider and listen for connect
indications on each of the associated file descriptors.

A transport provider may provide only connectionless service, only
connection-oriented service, or both.

Association of a Process to an Endpoint

One process can simultaneously open several fds. However, in
synchronous mode, the process must manage the different actions of the
associated transport connections sequentially. Conversely, several
processes can share the same fd but they have to synchronize themselves
so as not to issue a function that is unsuitable to the current state of the
transport endpoint.

It is important to remember that the transport provider treats all users of a
transport endpoint as a single user. If multiple processes are using the
same endpoint, they should coordinate their activities so as not to violate
the state of the provider. The LsyncO function returns the current state of
the provider to the user, thereby enabling the user to verify the state
before taking further action. This coordination is valid only among
cooperating processes; it is possible that a process or an incoming event
could change the provider's state after a LsyncO is issued.

A process can listen for an incoming connect indication on one fd and
accept the connection on a different fd which has been bound with the qlen
parameter (see LbindO) set to zero. This facilitates the writing of a
listener application whereby the listener waits for all incoming connect
indications. on a given Transport Service Access Point (TSAP). The
listener will accept the connection on a new fd and service the request
without blocking other incoming connect indications.

Draft 1.0 Transport Layer 4-7

Use of Same Protocol Address

If several endpoints are bound to the same protocol address, only one at
the time may be listening for incoming connections. However, others may
be in data transfer state or establishing a transport connection as initiators.

Modes of Services

The transport service interface supports two modes of service: connection
mode and connectionless mode. A single transport endpoint may not
support both modes of service simultaneously.

The connection-mode transport service is circuit-oriented and enables data
to be transferred over an established connection in a reliable, sequential
manner. This service enables the negotiation of the parameters and
options that govern the transfer of data. It provides an identification
mechanism that avoids the overhead of address transmission and
resolution during the data transfer phase. It also provides a context in
which successive units of data, transferred between peer users, are
logically related. This service is attractive to applications that require
relatively long lived, data stream-oriented interactions.

In contrast, the connectionless-mode transport service is message-oriented
and supports data transfer in self-contained units with no logical
relationship required among multiple units. Thes'e units are also known as
datagrams. This service requires a pre-existing association between the
peer users involved, which determines the characteristics of the data to be
transmitted. No dynamic negotiation of parameters and options is
supported by this service. All the information required to deliver a unit of
data (for instance, destination address) is presented to the transport
provider, together with the data to be transmitted, in a single service
access which need not relate to any other service access. Also, each unit
of data transmitted is entirely self-contained, and can be independently
routed by the transport provider. This service is attractive to applications
that involve short-term request/response interactions exhibit a high level of
redundancy, are dynamically reconfigurable, or do not require guaranteed,
in-sequence delivery of data.

4-8 eTOS/Open API: Networking Services Draft 1.0

Error Handling

Two levels of error are defined for the transport interface. The first is the
library error level. Each library function has one or more error returns.
Failures are indicated by a return value of -1. An external integer, Lerrno
(which is defined in the header <xti.h> for the C programming language)
holds the specific error number when such a failure occurs. This value is
set when errors occur but is not cleared on successful library calls, so it
should be tested only after an error has been indicated. If implemented,
the optional diagnostic function, LerrorO, prints out information on the
current transport error. The state of the transport provider may change if
a transport error occurs.

The second level of error is the operating system service routine level. A
special library level error number has been defined called [TSYSERR]
which is generated by each library function when an operating system
service routine fails or some general error occurs. When a function sets
Lerrno to [TSYSERR], the specific system error may be accessed through
the external variable errno.

For example, a system error can be generated by the transport provider
when a protocol error has occurred. If the error is severe, it may cause
the file descriptor and transport endpoint to be unusable. To continue in
this case, all users of the fd must close it. Then the transport endpoint
may be re-opened and initialized.

Synchronous and Asynchronous Execution Modes

The transport service interface is inherently asynchronous; various events
may occur which are independent of the actions of a transport user. For
example, a user may be sending data over a transport connection when an
asynchronous disconnect indication arrives. The user must somehow be
informed that the connection has been broken.

Draft 1.0 Transport Layer 4-9

The transport service interface supports two execution modes for handling
asynchronous events, synchronous mode and asynchronous mode. In the
synchronous mode of operation, the transport primitives wait for specific
events before returning control to the user. While waiting, the user cannot
perform other tasks. For example, a function that attempts to receive data
in synchronous mode will wait until data arrives before returning control to
the user. Synchronous mode is the default mode of execution. It is useful
for user processes that want to wait for events to occur, or for user
processes that maintain only a single transport connection.

The asynchronous mode of operation, on the other hand, provides a
mechanism for notifying a user of some event without forcing the user to
wait for the event. The handling of networking events in an asynchronous
manner is seen as a desirable capability of the transport interface. This
would enable users to perform useful work while expecting a particular
event. For example, a function that attempts to receive data in
asynchronous mode will return control to the user immediately if no data is
available. The user may then periodically poll for incoming data until it
arrives. The asynchronous mode is intended for those applications that
expect long delays between events and have other tasks that they can
perform in the meantime or handle multiple connections concurrently.

The two execution modes are not provided through separate interfaces or
different functions. Instead, functions that process incoming events have
two modes of operation: synchronous and asynchronous. The desired
mode is specified through the O_NONBLOCK flag, which may be set
when the transport provider is initially opened (UNIX systems allow this
flag to be set using the fcntlO operating system service routine before any
specific function or group of functions is executed, but CTOS allows this
flag to be set only on LopenO). The effect of this flag is local to this
process and is completely specified in the description of each function.

4-10 eTaS/Open API: Networking Services Draft 1.0

Nine (only eight if the orderly release is not supported) asynchronous
events are defined in the transport service interface to cover both
connection mode and connectionless-mode service. They are represented
as separate bits in a bit-mask using the following defined symbolic names:

• T~ISTEN

• T_CONNECT

• TJ)ATA

• T_EXDATA

• TJ)ISCONNECT

• T_ORDREL

• T_UDERR

• T_GODATA

These are described in the section entitled Event Management.

A process that issues functions in synchronous mode must still be able to
recognize certain asynchronous events and act on them if necessary. This
is handled through a special transport error [TLOOK] which is returned by
a function when an asynchronous event occurs. The LlookO function is
then started to identify the specific event that has occurred when this error
is returned.

Another means to notify a process that an asynchronous event has
occurred is polling. The polling capability enables processes to do useful
work and periodically poll for one of the above asynchronous events. This
facility is provided by setting O_NONBLOCK for the appropriate
primitive(s).

Draft 1.0 Transport Layer 4-11

Events and t_lookO

All events that occur at a transport endpoint are stored by XTI. These
events are retrievable one at a time using the ClookO function. If multiple
events occur, it is implementation-dependent in what order ClookO will
return the events. An event is outstanding on a transport endpoint until it
is consumed. Every event has a corresponding consuming function which
handles the event and clears it. Two events, T_GODATA and
T_GOEXDATA are also cleared as they are returned by ClookO. The
following table summarizes this:

Event Cleared on L/ookO?

T_LlSTEN No
T_CONNECT No
T_DATA No
T_EXDATA No
T _DISCON N ECT No
T_UDERR No
T_ORDREL No
T_GODATA Yes
T_GOEXDATA Yes

Event Management

Consuming XTI functions

L//sten()
Ucvconnect()
Lrcv{udata}()
Lrcv()
Lrcvdls()
Lrcvuderr()
Lrcvre/()
Lsnd{udata}()
Lsnd()

Each XTI call deals with one transport endpoint at a time. It is not
possible for client programs, using the XTI library calls, to wait for several
events from different sources, particularly from several transport
connections at a time. Although X/Open recognizes the need for this
functionality, no mechanism to support this functionality has been
standardized by X/Open.

4-12 eTOS/Open API: Networking Services Draft 1.0

On CTOS, this function is provided by permitting the transport client to
keep multiple LlookO requests outstanding simultaneously. (This fulfills
the mechanism which X/Open calls Event Management or EM). Processes
can be notified of the following events:

A connect request fro111 a remote user was received by a transport
provider (connection-mode service only); this event may occur under
the following conditions:

1. file descriptor is bound to a valid address.

2. no transport connection is established at this time.

In connection mode only; a connect response was received by the
transport provider; occurs after a Lconnec/O has been issued.

"Normal data (whole or part of Transport Service Data Unit (TSDU})
was received by the transport provider .

• TJ,XDATA

Expedited data was received by the transport provider .

• TJ)ISCONNECT

In connection mode only; a disconnect request was received by the
transport provider. It may be reported on both data transfer
functions and on the LacceplO and LsnddisO functions.

An orderly release request was received by a transport provider
(connection mode with orderly release only).

In connectionless mode only; an error was found in a previously sent
datagram. It may be notified on the LrcvudalaO or LunbindO
function calls.

Draft 1.0 Transport Layer 4-13

Flow control restrictions on normal data flow have been lifted.
Normal data may be sent again.

Flow control restrictions on expedited data flow have been lifted.
Expedited data may be sent again.

Xli Overview

Overview of Connection-Oriented Mode

The connection-mode transport service consists of four phases of
communication:

• Initialization/Deinitialization.

• Connection Establishment.

• Data Transfer.

• Connection Release.

A state machine is described in the subsection Transport Layer Interface
Sequence of Functions which defines the legal sequence in which functions
from each phase may be issued.

In order to establish a transport connection, a user (application) must:

1. Supply a transport provider identifier for the appropriate type of
transport provider (using LopenO); this establishes a transport
endpoint through which the user may communicate with the provider.

2. Associate (bind) an address with this endpoint (using LbindO).

3. Use the appropriate connection functions (using LconnectO, or
LlistenO and LacceptO) to establish a transport connection .. The set
of functions depends on whether the user is an initiator or responder.

4-14 eTOS/Open API: Networking Services Draft 1.0

4. Once the connection is established, normal, and if authorized,
expedited data can be exchanged. Of course, expedited data may be
exchanged only if:

• The provider supports it.

• Its use is not precluded by the selection of protocol characteristics,
for instance, the use of Class O.

• Negotiation as to its use has been agreed between the two peer
transport providers.

5. The transport connection can be released at any time by using the
disconnect functions. Then the user can either de-initialize the
transport endpoint by closing the file descriptor returned by LopellO
(thereby freeing the resource for future use), or specify a new local
address (after the old one has been unbound), or reuse the same
address and establish a new transport connection.

Initialization/Deinitialization Phase

The functions that support initialization/deinitialization tasks are described
below. All such functions provide local management functions; no
information is sent over the network.

LopenO

LbindO

LoptmgmtO

LunbindO

Draft 1.0

This function creates a transport endpoint and returns
protocol-specific information associated with that
endpoint. It also returns a file descriptor that serves as
the local identifier of the endpoint.

This function associates a protocol address with a given
transport endpoint, thereby activating the endpoint. It
also directs the transport provider to begin accepting
connect indications if so desired.

(OPTIONAL) This function enables the user to get or
negotiate protocol options with the transport provider.

This function disables a transport endpoint such that no
further request destined for the given endpoint will be
accepted by the transport provider.

Transport Layer 4-15

LcloseO This function informs the transport provider that the user
is finished with the transport endpoint, and frees any
local resources associated with that endpoint.

The following functions are also local management functions, but can be
issued during any phase of communication:

LgetinfoO

LgetstateO

LsyncO

LlookO

(OPTIONAL) This function returns protocol-specific
information associated with the specified transport
endpoint.

(OPTIONAL) This function returns the current state of
the transport endpoint.

This function synchronizes the data structures managed
by the transport library with the transport provider.

This function returns the current event(s) associated with
the given transport endpoint.

Overview of Connection Establishment

This phase enables two transport users to establish a transport connection
between them. In the connection establishment scenario, one user is
considered active and initiates the conversation, while the second user is
passive and waits for a transport user to request a connection.

In connection mode:

• First, the user has to establish an endpoint, or in other words to open
a communications path between the application and the transport
provider.

• Once established, an endpoint must be bound to an address and
more than one endpoint may be bound to the same address.

• An endpoint can be associated with one, and only one, established
transport connection.

4-16 eTOS/Open API: Networking Services Draft 1.0

• It is possible to use an endpoint to receive and enqueue incoming
connect indications (only if the provider is able to accept more than
one outstanding connect indication; this nlode of operation is
declared at the time of calling LbindO by setting qlen greater than 0).
However, if more than one endpoint is bound to the same address,
only one of theln may be used in this way.

• The LlistenO function is used to look for an enqueued connect
indication; if it finds one (at the head of the queue), it returns details
of the· connect indication, and a local sequence number which
uniquely identifies this indication or it may return a negative value
with Lerrno set to [TNODATA]. The number of outstanding
connect requests to dequeue is limited by the value of the qlen
parameter accepted by the transport provider on the LbindO call.

• If the endpoint has more than one connect indication enqueued, the
user should dequeue all connect indications· (and disconnect
indications) before accepting or rejecting any or all of them. The
number of outstanding connect indications is limited by the value of
the qlen parameter accepted by the transport provider on the call to
LbindO·

• When accepting a connect indication, the transport service user may
issue the accept on the same (listening) endpoint or on a different
endpoint.

If the same endpoint is used, the listening endpoint can no longer be
used to receive and enqueue incoming connect indication. The
bound protocol address will be found to be busy for the duration of
the active transport endpoint. No other transport endpoints may be
bound to the SaIne protocol address while the listening endpoint is in
the data transfer or disconnect phase (that is, until a LunbindO call
is issued).

If a different endpoint is used, the listening endpoint can continue to
receive and enqueue incoming connect requests.

• If the user issues a Lconnect() on a listening endpoint, again, that
endpoint can no longer be used to receive and enqueue incoming
connect requests.

Draft 1.0 Transport Layer 4-17

The functions that support these operations of connection establishment
are:

LconnectO This function requests a connection to the transport user
. at a specified destination and waits for the remote user's
response. This function may be executed in either
synchronous or asynchronous mode. In synchronous
mode, the function waits for the remote user's response
before returning control to the local user. In
asynchronous mode, the function initiates connection
establishment but returns control to the local user before
a response arrives.

LrcvconnectO This function enables an active transport user to
determine the status of a previously sent connect request.
If the request was accepted, the connection establishment
phase will be complete on return from this function. This
function is used in conjunction with LconnectO to
establish a connection in an asynchronous manner.

LlistenO This function enables the passive transport user to receive
connect indications from other transport users.

LacceptO This function is issued by the passive user to accept a
particular connect request after an indication has been
received.

4-18 eTaS/Open API: Networking Services Draft 1.0

Overview of Data Transfer

Once a transport connection has been established between two users, data
luay be transferred back and forth over the connection in a full duplex
way. Two functions have been defined to support data transfer in
connection mode as follows:

LsndO

LrcvO

This function enables transport users to send either
normal or expedited data over a transport connection.

This function enables transport users to receive either
normal or expedited data over a transport connection.

In data transfer phase, the occurence of the T.-DISCONNECT event
implies an unsuccessful return from the called function (LsndO or LrcvO)
with Lerrllo set to [TLOOK]. The user must then issue a LlookO call to
get more details.

Receiving Data

If data (normal or expedited) is immediately available, then a call to LrcvO
returns data. If the transport connection no longer exists, then the call
returns immediately, indicating failure. If data is not immediately available
and the transport connection still exists, then the results of a call to LrcvO
depends on the 1110de:

• asynchronous mode:

The call returns immediately, indicating failure. The user must
continue to "poll" for incoming data, either by issuing repeated calls
to LrcvO, or by using the LlookO.

Draft 1.0 Transport Layer 4-19

• synchronous mode:

The call is blocked until one of the following conditions becomes
true:

data (normal or expedited) is received.

a disconnect indication is received.

a signal has arrived.

The user may issue a LlookO to determine if data is available.

If a nornlal TSDU is to be received in multiple LrcvO calls, then its
delivery may be interrupted at any time by the arrival of expedited data.
The application can detect this by checking the flags field on return from a
call to LrcvO; this will be indicated by LrcvO returning:

• Data with T_EXPEDITED flag not set and T~ORE set: (this is a
fragment of normal data).

• Data with T-EXPEDITED set (and T~ORE set or unset); this is an
expedited message (whole or part of, depending on the setting of
T_MORE). The provider will continue to return the expedited data
(on this and subsequent calls to LrcvO until the end of the Expedited
Transport Service Data Unit (ETSDU) is reached, at which time it
will continue to return normal data. It is the user's responsibility to
remember that the receipt of normal data has been interrupted in this
way.

4-20 eTOS/Open API: Networking Services Draft 1.0

Sending Data

If the data can be accepted immediately by the provider, then it is
accepted, and the call returns the number of octets accepted. If the data
cannot be accepted because of a permanent failure condition (for instance,
transport connection lost), then the call returns immediately, indicating
failure. If the data cannot be accepted immediately because of a transient
condition (for instance, lack of buffers, flow control in effect), then the
result of a call to LsndO depends on the execution mode:

• asynchronous mode:

The call returns immediately, indicating failure. If the failure was
due to flow control restrictions, then it is possible that only part of
the data will actually be accepted by the transport provider. In this
case, LsndO will return a value that is less than the number of octets
requested to be sent. The user may either retry the call to LsndO
with ,the remaining data and the T.-MORE flag set appropriately or
first receive notification of the clearance of the flow control
"restriction using LlookO, then resend the data.

• synchronous mode:

The call is blocked until one of the following conditions becomes
true:

- The flow control restrictions are cleared and the transport
provider is able to accept a new data unit. The LsndO function
then returns successfully.

- A disconnect indication is received. In this case the LsndO
function returns unsuccessfully with Lerrllo set to [TLOOK]. The
user can issue a LlookO function to determine the cause of the
error. For this particular case LlookO will return a
T_DISCONNECT event. Data that was being sent will be lost.

- An internal problem occurs. In this case the LsndO function
returns unsuccessfully with Lerrno set to [TSYSERR]. Data that
was being sent will be lost.

Draft 1.0 Transport Layer 4-21

Normal data and expedited data constitute two distinct flows of data. If
the normal flow is blocked, the user may nevertheless continue using the
expedited one, but in sychronous mode a second process is needed.

Note that XTI supports two modes of sending data, record-oriented and
stream-oriented. In the record-oriented mode, the concept of TSDU is
supported, that is, message boundaries are preserved. In stream-oriented
mode, message boundaries are not preserved and the concept of TSDU is
not supported. A transport user can determine the mode by using the
LgetinfoO function, and examining the tsdu field. If tsdu is greater than
zero, this indicates that record-oriented mode is supported and the return
value indicates the maximum TSDU size. 'If tsdu is zero, this indicates
that stream-oriented transfer is supported. For more details see
. LgetinfoO·

Overview of Connection Release

The ISO Connection-oriented Transport Service Definition supports only
the abortive release. However, the TCP Transport Service Definition also
supports an orderly release. So, some XTI implementations may support
this orderly release.

An abortive release may be started from either the connection
establishment phase or the data transfer phase. When in the connection
establishment phase, a transport user may use the abortive release to reject
a connect request. In the data transfer phase, either user may abort a
connection at any time. The abortive release is not negotiated by the
transport users and it takes effect immediately on request. The user. on the
other side of the connection is notified when a connection is aborted. The
transport provider may also initiate an abortive release, in which case both
users are informed that the connection no longer exists. There is no
guarantee of delivery of user data once an abortive release has been
initiated.

4-22 eTaS/Open API: Networking Services Draft 1.0

Whatever the state of transport connection, its user(s) will be informed as
soon as possible of the failure of the connection through a disconnect
event or an unsuccessful return from a blocking LsndO or LrcvO call. If
the user wants to prevent loss of data by notifying the remote user of an
imminent connection release, it is the user's responsibility to use an upper
level mechanism. For example, the user may send specific (expedited)
data and wait for the response of the remote user before issuing a
disconnect request.

The orderly release capability is an optional feature of TCP. If supported
by the TCP transport provider, orderly release may be started from the
data transfer phase to enable two users to gracefully release a connection.
The procedure for orderly release prevents the loss of data that may occur
during an abortive release.

The functions that support connection release are:

LsnddisO

LrcvdisO

LSlldrelO

LrcvrelO

Draft 1.0

This function can be issued by either transport user to
initiate the abortive release of a transport connection. It
may also be used to reject a connect request during the
connection establishment phase.

This function identifies the reason for the abortive release
of a connection, where the connection is released by the
transport provider or another transport user.

(OPTIONAL) This function can be called by either
transport user to initiate an orderly release. The
connection remains intact until both users call this
function and LrcvrelO.

(OPTIONAL) This function is called when a user is
notified of an orderly release request, as a means of
informing the transport provider that the user is aware of
the remote user's actions.

Transport Layer 4-23

Overview of Connectionless Mode

The connectionless-mode transport service consists of two phases of
communication: initialization/deinitialization and data transfer. A brief
description of each phase and its associated functions is presented below.
A state machine is described in the subsection Transport Layer Interface
Sequence of Functions that defines the legal sequence in which functions
from each phase may be issued.

In order to permit the transfer of connectionless data, a user (application)
nlust:

1. Supply a transport endpoint for the appropriate type of provider
(using LopenO); this establishes a transport endpoint in which the
user may communicate with the provider.

2. Associate (bind) an address with this transport endpoint (using
LbindO)·

3. The user may then send and/or receive connectionless data, as
required, using the functions LsndudataO and LrcvudataO. Once the
data transfer phase is finished, the application may either directly
close the file descriptor returned by LopellO (using LcloseO), thereby
freeing the resource for future use, or start a new exchange of data
after disassociating the old address and binding a new one.

Initialization/Deinitialization Phase

The functions that support the initialization/deinitialization tasks are the
same functions used in the connection-mode service.

4-24 eTOS/Open API: Networking Services Draft 1.0

Overview of Data Transfer

Once a transport endpoint has been activated, a user is free to send and
receive data units through that endpoint in connectionless mode as follows:

LsndudataO

LrcvudataO

LrcvuderrO

This function enables transport users to send a
self-contained data unit to the user at the specified
protocol address.

This function enables transport users to receive data units
from other users.

This function enables transport users to retrieve error
information associated with a previously sent data unit.

The only possible events reported to user are [T_UDERR], [T_DATA]
and [T_GODATA]. Expedited data cannot be used with a connectionless
transport provider.

Receiving Data

If data is available (a datagram or a part), the LrcvudataO call returns
immediately, indicating the number of octets received. If data is not
immediately available, then the result of the crcvudataO call depends on
the chosen mode:

• asynchronous mode:

The call returns immediately, indicating failure. The user must either
retry the call repeatedly, or "poll" for incoming data by using the
LlookO function so as not to be blocked.

Draft 1.0 Transport Layer 4-25

• synchronous mode:

The call is blocked until one of the following conditions becomes
true:

- A datagram is received.

- An error is detected by the transport provider.

- A signal has arrived.

The application may use the LlookO function to know if data is
available instead of issuing a LrcvudataO call which may be blocking.

Sending Data

• synchronous mode:

In order to maintain some flow control, the LsndudataO function
returns when sending a new datagram becomes possible again. A
process which sends data in synchronous mode may be blocked for
SOlne time.

• asynchronous mode:

The transport provider may refuse to send a new datagram for flow
control restrictions. In this case, the LsndudataO call fails returning
a negative value and setting Lerrno to [TFLOW]. The user may retry
later or use the L/ookO function to be informed of the flow control
restriction removal.

If LsndudataO is called before the destination user has activated its
transport endpoint, the data unit may be discarded.

4-26 eTOS/Open API: Networking Services Draft 1.0

Mandatory Xli Features

This section is concerned with the mandatory features of any
implementation of XTI. ltnplementors of transport providers may use this
section as a guide to let them know which requests must be implemented.

• The following functions, which correspond to the subset common to
connection-oriented and connectionless services, are always
implemented:

LbindO
LcloseO
L/ookO
LopenO
LsyncO
LunbindO

• If a Connection-oriented Transport Service is provided, then the
following functions are always implemented:

LacceptO
LconnectO
LlistenO
LrcvO
LrcvcollnectO
LrcvdisO
LsndO
LSllddisO

• If XTI supports the access to the Connectionless Transport Service,
the following three functions are always implemented:

LrcvudataO
LrcvuderrO
LsndudataO

• Mandatory mechanisms:

Synchronous mode

Asynchronous mode

Draft 1.0 Transport Layer 4-27

Transport Providers which provide only a Connectionless Transport
Service may choose not to provide request codes for the functions which
they need not support, and Transport Providers which provide only a
Connection-oriented Transport Service may choose not to provide request
codes for the functions which they need not support.

Optional XTI Features

This section lists those XTI features which are designated as being
optional. An optional feature is defined as one whose implementation by a
provider is not mandatory; consequently, the availability of such a feature
cannot be guaranteed to applications .

• Optional functions:

LerrorO
LgetinloO
LgetstateO
LoptmgmtO
LallocO
LlreeO

[Not implemented by CTOS at this time]

[Not implemented by CTOS at this time]
[Not implemented by CTOS at this time]

NOTE: If a function is not implemented, then the name must be
retained, but should return a value of -1 if started (except for LallocO
which returns a null pointer), with Lerrno set to [TNOTSUPPORT]) .

• The orderly release mechanism (using LsndrelO and LrcvrelO) is
optionally supported, although its use is makes applications not
portable onto the ISO Transport Layer.

4-28 eTaS/Open API: Networking Services Draft 1.0

• Optional mechanisms:

- the ability to manage (enqueue) more than one incoming connect
indication at anyone time.

- automatic (default) generation of an address. This mechanism is
not mandatory while no name server has been defined.

Transport Providers may choose not to provide request codes for the
optional functions which they choose not to support.

Xli Functions Versus Protocols

The table below presents all the functions defined in XTI. Only the
functions preceded by the character "M" are mandatory in XTI implemen­
tations. The optional functions are preceded by the character "a".
Functions not implemented on CTOS are preceded by the character "U".
The character "x" indicates that the mapping of that function is possible
onto Connection-oriented or Connectionless Transport Service. The table
indicates the type of utility functions as well.

Draft 1.0 Transport Layer 4-29

Necessary for Protocol Utility Functions

Connection
Functions Oriented Connectionless General Memory

M LacceptO x
U LaJlocO x
M LbindO x x
M Lc/oseO x x
M LconnectO x
U LerrorO x
U LfreeO x
0 LgetinfoO x
0 tz:etstateo x
M L IstenO x
M L/ookO x x
M LopenO x x
0 LoptmgmtO x
M LrcvO x
M LrcvconnectO x
M LrcvdisO x
0 Lrcvre/O x
M Lrcvudata() x
M Lrcvuderr() x
M LsndO x
M LsnddisO x
0 Lsndre/O x
M LsndudataO x
M LsyncO x
M LunbindO x x

Classification of The XTI Functions

4-30 eTOS/Open API: Networking Services Draft 1.0

States and Events in Xli

The Figures 4-2 to 4-8 are included to describe the possible states of the
transport provider as seen by the transport user, describe the incoming and
outgoing events that may occur on any connection and identify the
allowable sequence of function calls. Given a current state and event, the
transition to the next state is shown as well as any actions that nlust be
taken by the transport user.

The allowable sequence of functions is described in Figures 4-6, 4-7, and
4-8. The support functions, Lgetstate() , Lgetinfo(), LiookO, and LsyncO
are excluded from the state tables because they do not affect the state of
the interface. Each of these functions may be issued from any state except
the uninitialized state.

Transport Interfaces States

XTI manages a transport endpoint by using at most eight states:

• T_OUTCON

• T_INCON

• TJ)ATAXFER

• TJNREL

• T_OUTREL

The states T_OUTREL and TJNREL are significant only if the optional
orderly release function is both supported and used.

Figure 4-2 describes all possible states of the transport provider as seen by
the transport user. The service type may be connection mode, connection
mode with orderly release, or connectionless mode.

Draft 1.0 Transport Layer 4-31

State Description Service Type

T_UNINIT uninitialized - initial T_COTS
and final state of interface T_ClTS

T_COTS_ORO

T_UNBND unbound T_COTS
T_COTS_ORO
T_ClTS

T_IDlE no connection established T_COTS
(this is the normal state for T _Cl TS) T_COTS_ORO

T_ClTS

T_OUTCON outgoing connection pending for T_COTS
active user T_COTS_ORO

T_INCON incoming connection pending for T_COTS
passive user T_COTS_ORO

T_DATAXFER data transfer T_COTS
T_COTS_ORO

T_OUTREl outgoing orderly release T_COTS_ORO
(waiting for orderly release indication)

T_INREl incoming orderly release T_COTS_ORD
(waiting to send orderly release request)

Figure 4-2. Transport Interface States

4-32 eTaS/Open API: Networking Services Draft 1.0

Outgoing Events

The following outgoing events correspond to the successful return of the
specified user-level transport functions, where these functions send a
request or response to the transport provider. In Figure 4-3, some events
(for instance, acceptX) are distinguished by the context in which they
occur. The context is based on the values of the following:

ocnt

fd

resfd

count of outstanding connect indications (connect
indications passed to the user but not accepted or rejected)

file descriptor of the current transport endpoInt

file descriptor of the transport endpoint where a connection
will be accepted

Note that OCllt is meaningful only for the listening transport endpoint (Jd).

Draft 1.0 Transport Layer 4-33

Event Description Service Type

opened successful return of LopenO T_COTS, T_COTS_ORO, T_ClTS

bind successful return of LblndO T_COTS, T_COTS_ORO, T_ClTS

optmgmt successful return of LoptmgmtO T _COTS, T _COTS_ORO, T _Cl TS

unbind successful return of LunblndO T_COTS, T_COTS_ORO, T_ClTS

closed successful return of Lc/oseO T_COTS, T_COTS_ORO, T_ClTS

connect1 successful return of LconnectO T_COTS, T_COTS_ORO
in synchronous mode

connect2 TNOOATA error on LconnectO T_COTS, T_COTS_ORO
in asynchronous mode, or
TlOOK error due to a dis-
connect indication arriving
on the transport endpoint

accept1 successful return of LacceptO T_COTS, T_COTS_ORO
with ocnt - 1, fd - resfd

accept2 successful return of LaeceptO T _COTS, T _COTS_ORO
with oent ... 1, fd < > resfd

accept3 successful return of LaeceptO T _COTS, T _COTS_ORO
with oent > 1

snd successful return of LsndO T_COTS, T_COTS_ORO

snddis1 successful return of LsnddisO T _COTS, T _COTS_ORO
with oent <- 1

snddis2 successful return of LsnddisO T _COTS, T _COTS_ORO
with oent > 1

sndrel successful return of Lsndre/O T_COTS_ORO

sndudata successful return of LsndudataO T_ClTS

Figure 4-3. Transport Interface Outgoing Events

4-34 eTOS/Open API: Networking Services Draft 1.0

Incoming Events

The following incoming events correspond to the successful return of the
specified user-level transport functions, where these functions retrieve data
or event information from the transport provider. One incoming event is
not associated directly with the return of a function on a given transport
endpoint:

pass_conn, which occurs when a user transfers a connection to another
transport endpoint. This event occurs on the endpoint that is being
passed the connection, despite the fact that no function is issued on
that endpoint. The event pass_conn is included in the state tables to
describe what happens when a user accepts a connection on another
transport endpoint.

In Figure 4-4, the rcvdis events are distinguished by the context in which
they occur. The context is based on the value of ocnt, which is the count
of outstanding connect indications on the current transport endpoint.

Draft 1.0 Transport Layer 4-35

Incoming
Event Description Service Type

listen successful return of LlistenO T_COTS
T_COTS_ORD

rcvconnect successful return of tJCVCDnnectO T_COTS
T_COTS_ORD

rcv successful return of Lrcv() T_COTS
T_COTS_ORD

rcvdis1 successful return of LrcvdisO T_COTS
with Dcnt - 0 T_COTS_ORD

rcvdis2 successful return of tJcvdlsO T_COTS
with Dcnt .. 1 T_COTS_ORD

rcvdis3 successful return of LrcvdisO T_COTS
with Dcnt > 1 T_COTS_ORD

rcvrel successful return of tJcvre/O T_COTS_ORD

rcvudata successful return of LrcvudataO T_CLTS

rcvuderr successful return of LrcvuderrO T_CLTS

pass_conn received a passed connection T_COTS
T_COTS_ORD

Figure 4-4. Transport Interface Incoming Events

4-36 eTaS/Open API: Networking Services Draft 1.0

Transport User Actions

Some state transitions are accompanied by a list of actions the transport
user must take. These actions are represented by the notation [11], where n
is the number of the specific action as described in Figure 4-5.

[1] Set the count of outstanding connect indications to zero.

[2] Increment the count of outstanding connect indications.

[3] Decrement the count of outstanding connect indications.

[4] Pass a connection to another transport endpoint as indicated in LacceptO.

Figure 4-5. Transport Interface User Actions

State Tables

Figures 4-6, 4-7, and 4-8 describe the possible next states, given the current
state and event. The state is that of the transport provider as seen by the
transport user.

The contents of each box represent the next state given the current state
(column) and the current incoming or outgoing event (row). An empty
space represents a state/event combination that is invalid. Along with the
next state, each space may include an action list (as specified in Figure
4-5). The transport user must take the specific actions in the order
specified in the state table.

A separate table is shown for initialization/deinitialization, data transfer in
connectionless mode and connection/release/data-transfer in connection
mode.

Draft 1.0 Transport Layer 4-37

Event T _UNINIT State T_UNBND State T_IDLE State

opened T_UNBND

bind T_IDLE [1]

optmgmt T_IDLE

unbind T_UNBND

closed T_UNINIT T_UNINIT

Figure 4-6. Initialization/Deinitialization State Table

Event

sndudata

rcvudata

rcvuderr

T_IDLE State

T_IDLE

T_IDLE

T_IDLE

Figure 4-7. Data-Transfer State Table for Connectionless-Mode Service

4-38 eTOS/Open API: Networking Services Draft 1.0

T_IDLE T_OUTCON T_INCON LDATAXFER T_OUTREL T_INREL

Event State State State State State State

connect1 LDATAXFER

connect2 LOUTCON

rcvconnect LDATAXFER

listen LINCON[2] LINCON[2]

accept1 LDATAXFER[3]

accept2 LIDLE[3][4]

accept3 LINCON[3][4]

snd T_DATAXFER LINREL

rcv LDATAXFER LOUTREL

snddis1 LIDLE T_IDLE[3] LIDLE LIDLE LIDLE

snddis2 LINCON[3]

rcvdis1 LIDLE LIDLE LIDLE LIDLE

rcvdis2 LIDLE[3]

rcvdis3 T_INCON[3]

sndrel LOUTREL LIDLE

rcvrel T_INREL LIDLE

pass_conn LDAT AXFER

closed LUNINIT LUNINIT LUNINIT LUNINIT LUNINIT LUNINIT

Figure 4-8. Connection/Release/Data-Transfer State Table for
Connection-Mode Service

Draft 1.0 Transport Layer 4-39

Events and TLOOK Error Indication

The following list desribes the asynchronous events which cause an XTI
call to return with a [TLOOK] error:

LacceptO TJ)ISCONNECT, T_LISTEN

LconnectO TJ)ISCONNECT, T_LISTEN

LlistenO T_DISCONNECT

LrcvO TJ)ISCONNECT, T_ORDREL

LrcvconnectO T_DISCONNECT

LrcvrelO T_DISCONNECT

LrcvudataO T_VDERR

LsndO TJ)ISCONNECT, T_ORDREL

LsndudataO T_VDERR

LUllbilldO T~ISTEN

LsndrelO T_DISCONNECT

Once a [TLOOK] error has been received on a transport endpoint using
an XTI function, subsequent calls to that and other XTI functions, to
which the same [TLOOK] error applies, will continue to return [TLOOK]
until the event is consumed. An event causing the [TLOOK] error can be
determined by calling LlookO and then can be consumed by calling the
corresponding consuming XTI function as defined in the table in the
section Events and tlookO, earlier in this chapter.

4-40 eTaS/Open API: Networking Services Draft 1.0

Transport Protocol-Specific Options

In order to maintain protocol independence the transport specific options
and structures are not generally defined. They are, however, defined for
each particular transport provider (for instance, TCP or ISO) within the
appropriate appendix.

The interface allows the transport user to set protocol-specific options
through the LcollllectO, LacceptO, and LlistenO function calls. Each of
these functions provide an opt parameter which is a struct netbuf. The
netbuf structure contains:

Offset Field

o maxlen

2 len

4 pBuf

Size
(Bytes)

2

2

4

Contents

max buffer length

length of data in
buffer

pointer to data buffer

To pass options through this interface, the pBuf field of the netbuf
structure must point to the option structure specified for the transport
provider (see the appropriate appendix).

Draft 1.0 Transport Layer 4-41

Connection Mode Options

In connection mode, an option structure is defined which contains those
parameters needed to establish a transport connection. Connection
parameters comprise two main categories: service related parameters and
management related parameters (or protocol option parameters).

The service related parameters are those parameters which define the
quality of the transport service that the user wishes to obtain. These
parameters are not mandatory and the user may omit thenl if there is no
particular requirement. If the transport provider cannot offer the required
quality of service, it will refuse either to establish or accept the
connection. If the requirements of the user concerning the quality of
service are too high, the establishment of the connection may be refused
either by the local transport provider, the remote transport provider, or
the remote end user.

The management parameters define some management features needed by
the transport provider to establish the transport connection. These
parameters are strongly bound to the local environment of the application.
These parameters depend on the location of the two transport endpoints
and the type of network being used. In most applications, management
parameters should be hidden from the user.

Normally, the transport user should only specify the service related
parameters and not the management parameters. It is meaningless to
specify both categories of parameters at the same time.

Connectionless Mode Options

In connectionless mode an option structure, which contains parameters
describing the required quality of service is defined. These parameters are
optional and the transport user may omit to define them if there is no
particular requirement. Note that if the transport provider cannot offer
the quality of service which is indicated as mandatory by the user, it will
refuse to send the associated data.

4-42 eTaS/Open API: Networking Services Draft 1.0

CTOS Support of XTI Procedures

Support of Optional Procedures

The X/Open Transport Interface specification describes, in addition to the
procedures given below, the optional procedures LallocO, LfreeO, and
LerrorO. These procedures are also regarded as optional in the
CTOS/Open Transport Layer API. An X/Open compliant interface is
required to retain these procedures by name, but is permitted to return a
value of -1 if used, with Lernzo set to [TNOTSUPPORT]. The exception
to this is LallocO, which returns a null pointer if unimplemented.

For CTOS product implementors who wish to provide these procedures
with the normal CTOS calling convention rather than the C calling
convention, the following information is provided:

LallocO takes three word parameters and returns a pointer.

LfreeO takes one pointer parameter and one word parameter, and returns
a word.

LerrorO takes one pointer parameter and returns a word.

Draft 1.0 Transport Layer 4-43

Support of Multiple Procedures by a Single Request

XTI library functions do not map one-for-one onto their underlying
requests. In some cases, multiple library functions make use of the same
request. The cases where this occurs are summarized here:

LconnectO and LrcvconnectO are implemented as a single request which is
issued by the Transport Client when LconnectO is called. If this is in
asynchronous mode, the XTI library procedure returns before the request
is responded to by the Transport Provider, which responds only when a the
connection attempt has been successful or an error has occurred. After
the response comes back, the Transport Client can call LrcvconnectO to
determine whether the connection attempt has been successful.

LsyncO, LgetillfoO, and LoptmgmtO are implemented as a single request
which returns both sets of data. LsyncO and LgetinfoO share the same
request block structure as well as the same request code. LoptmgmtO uses
the same request code but has a different request block structure.

LlookO and LgetstateO are implemented as a single request which returns
both sets of data.

LrcvdisO and "LrcvrelO are implemented as a single request with an
additional parameter to tell them apart.

LsnddisO and LsndrelO are implemented as a single request with an
additional parameter to tell them apart.

LsndudataO and LrcvuderrO are implemented as a single request which is
issued by the Transport Client when LsndudataO is called. The XTI
library procedure returns before the request is responded to by the
Transport Provider, which responds only after an error has occurred, or
no more errors will be reported to it by the network. After the response
comes back, the Transport Client can call LrcvuderrO to find out what
error occurred.

4-44 eTOS/Open API: Networking Services Draft 1.0

Use of Multiple Requests by a Single Procedure

In addition, the LopellO function issues two requests: the request associ­
ated directly with LopenO, and the LgetinfoO/LsyncO request.

Parameter Definition File for the Transport Layer

A Transport Client calls Lopen to establish connection with the Transport
Provider. Transport dependencies are removed from the parameters of
these procedures by placing them in a Parameter Definition File. The
parameters in the file are dependent upon the type of the Transport
Provider. Every parameter in the file is terminated by a new line character
(hexadecimal OA). Parameter labels, or comments, delimited by a pair of
colons are allowed in the file but not in the string if passed directly to the
Transport Provider (the Protocol Manager automatically deletes
comments).

The only required information is the Transport Provider Name (excluding
the Device Specification which is supplied by the Protocol Manager) which
is the first entry in the file or string.

The following example is a Parameter Definition File for an ISO Transport
Layer, as used by an ISO Session Layer client:

:Transport Layer Name:ISO TP4

More parameters could be added to the PDP to accomodate
implementation-dependent requirements.

Draft 1.0 Transport Layer 4-45

Xli Library Functions and Parameters

This section first discusses several conventions used to describe the library
routines, and then discusses the library routines and their underlying
requests.

Key for Parameter Arrays

For each XTI library function description,' a table is given which
summarizes the contents of the input and output parameter. The key is
given below:

x The parameter value is meaningful (input parameter must be set
before the call and output parameter may be read after the call).

(x) The content of the object pointed to by the x pointer is
meaningful.

? The parameter value is meaningful but the parameter is optional.

(?) The content of the object pointed to by the ? pointer is optional.

I The parameter value is meaningless.

The parameter after the call keeps the same value as before the
call.

x(x) The parameter (a pointer) is meaningful because it points to a
meaningful object.

?(?) The parameter (a pointer) is meaningful if non-zero, and the
object to which it points is meaningful if present.

Return of TlOOK Error

Many of the XTI functions contained in this chapter return a [TLOOK]
error to report the occurrence of an asynchronous event. For these
functions a complete list describing the function and the events is provided
in the subsection entitled Events and TLOOK Error Indication, earlier in
this section.

4-46 eTOS/Open API: Networking Services Draft 1.0

t_accept

Description

Parameters Before call After call

fd x /

resfd x /

call.addr.maxlen / /

calJ.addr.len x /

call.addr.pBuf . 1(1) /

call.opt.maxlen / /

calJ.opt.len x /

call.opt.pBuf 1(1) /

call. udata. maxlen / /

calJ.udata.len x /

call.udata.pBuf 1(1) /

call.sequence x /

Laccept is issued by a transport user to accept a connect request. The
parameter fd identifies the local transport endpoint where the connect
indication arrived, resfd specifies the local transport endpoint where the
connection is to be established, and pCall points to a structure which
contains information required by the transport provider to complete the
connection.

In call, addr is the address of the caller, opt indicates any protocol-specific
parameters associated with the connection, udata' points to any user data
to be returned to the caller, and sequence is the vallie returned by Llisten
that uniquely associates the response with a previously received connect
indication.

Draft 1.0 . Transport Layer 4-47

(continued)

A transport user may accept a connection on either the same or a different
local transport endpoint than the one on which the connect indication
arrived. Before the connection can be accepted on the same endpoint
(resfd equals fd), the user must have responded to any previous connect
indications received on that transport endpoint (using caccept or Csnddis).
Otherwise, caccept will fail and set Cerrito to [TBADF].

If a different transport endpoint is specified (resfd not equal to fd), the
endpoint must be bound to a protocol address (if it is the same, qlell must
be set to 0) and must be in the TJDLE state (see cgetstate) before the
caccept is issued.

For both types of endpoints, caccept will fail and set cerrno to [TLOOK]
if there are indications (for instance, connect or disconnect) waiting to be
received on that endpoint.

The values of parameters specified by opt and the syntax of those values
are protocol-specific. The udata argument enables the called transport
user to send user data to the caller and the amount of user data must not
exceed the limits supported by the transport provider as returned in the
connect field of the info argument of copen or Lgetinfo. If the len field of
udata is zero, no data will be sent to the caller. All the maxlen fields are
meaningless.

Procedural Interface

caccept (fd, resfd, pCall): Integer

where

fd

is the file descriptor returned by copen for the original local transport
endpoint. This should be the file descriptor used in the clisten
procedure which returned with notification of the call now being
accepted.

4-48 CTOS/Open API: Networking Services Draft 1.0

(continued)

resfd

is the file descriptor where the connection is to be established. This
should be another file descriptor returned by Lopell. It can be the
same asfd.

pCall

is a pointer to a structure call of type t_call which contains the
following fields:

Offset Field Length

0 addr.maxlen 2

2 addr.len 2

4 addr.pBuf 4

8 opt.maxlen 2

10 opt.len 2

12 opt.pBuf 4

16 udata. maxlen 2

18 udata.len 2

20 udata.pBuf 4

24 sequence 2

Draft 1.0 Transport Layer 4-49

t_accept (continued)

Request Block

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 10
1 RtCode 1 0
2 nReqPbCb 1 3
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

12 fd 2

14 opcode 2

16 reserved 2

18 resfd 2

20 call.sequence 2

22 call.addr.pBuf. 4
26 call.addr.Jen 2

28 call.opt.pBuf 4
32 call.opt.len 2

34 call.udata.pBuf 4
38 call.udata.Jen 2

4-50 eTOS/Open API: Networking Services Draft 1.0

(continued)

Errors

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TOUTSTATE]

[TACCES]

[TBADOPT]

[TBADDATA]

[TBADADDR]

[TBADSEQ]

[TLOOK]

Draft 1.0

The file descriptor fd or resfd does not refer to a
transport endpoint, or the user is illegally accepting
a connection on the same transport endpoint on
which the connect indication arrived.

The function was called in the wrong sequence on
the transport endpoint referenced by fd, or the
transport endpoint referred to by resfd is not in the
appropriate state.

The user does not have permission to accept a
connection on the responding transport endpoint
or to use the specified options.

The specified options were in an incorrect format
or contained illegal information.

The amount of user data specified was not within
the bounds allowed by the transport provider.

The specified protocol address was in an incorrect
format or contained illegal information.

An invalid sequence number was specified.

An asynchronous event has occurred on the
transport endpoint referenced by fd and requires
immediate attention.

Transport Layer 4-51

[TNOTSUPPOR T]

[TSYSERR]

Return Value

(continued)

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of
this function.

Upon successful completion; a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Lconnect, Lgetstate, Llisten, Lopen, Loptmgmt, Lrcvconnect.

4-52 eTaS/Open API: Networking Services Draft 1.0

t_bind

Description

Parameters Before call After call

fd x I

req.addr.maxlen I

req.addr.len x>-o I

req.addr.buf x(x) I

req.qlen x>-o I

ret.addr. maxlen x

ret.addr.len I x

ret.addr.buf x (x)

ret.qlen I x>-o

The cbind function associates a protocol address with the transport
endpoint specified by fd and activates that transport endpoint. In
connection mode, the transport provider may begin queuing incoming
connect indications or servicing a connection request on the transport
endpoint. In connectionless mode, the transport user may send or receive
data units through the transport endpoint.

The addr field of the t_bind structure specifies a protocol address and the
qlen field is used to indicate the maximum number of outstanding connect
indications.

Draft 1.0 Transport Layer 4-53

(continued)

The parameter req is used to request that an address, represented by the
netbuf structure addr, be bound to the given transport endpoint. The
parameter len specifies the number of bytes in the address and pBuf points
to the address buffer. The parameter maxlen has no meaning for the req
argument. On return, ret contains the address that the transport provider
actually bound to the transport endpoint (this may be different from the
address specified by the user in req). In ret, the user specifies maxlen,
which is the maximum size of the address buffer, and pBuf, which points
to the buffer where the address is to be placed. On return, len specifies
the number of bytes in the bound address and pBuf points to the bound
address. If maxlen is not large enough to hold the returned address, an
error will result.

If the requested address is not available, or if no address is specified in req
(the len field of addr in req is zero), the transport provider will assign an
appropriate address to be bound only if automatic generation of an address
is supported, and will return that address in the addr field of ret. The user
can compare the addresses in req and ret to determine whether the
transport provider bound the transport endpoint to a different address than
that requested. If in any XTI implementation the Lbind function does not
allocate a local transport address, then the returned address is always the
same as the input address and the structure req.addr must be filled by the
user before the call, otherwise, if the local address is not provided for the
call (req.addr.len equals 0), Lbind will return -1 with Lerrno set to
[TNOADDR].

The parameter req may be a null pointer, if the user does not wish to
specify an address to be bound. Here, the value of qlen is assumed to be
zero, and the transport provider must assign an address to the transport
endpoint. Similarly, ret may be a null pointer, if the user does not care
what address was bound by the provider and is not interested in the
negotiated value of qlen. It is valid to set req and ret to the null pointer for
the same call, in which case the provider chooses the address to bind to
the transport endpoint and does not return that information to the user.

4-54 eTOS/Open API: Networking Services Draft 1.0

(continued)

The q/en field has meaning only when initializing a connection-mode
service. It specifies the number of outstanding connect indications and the
transport provider should support for the given transport endpoint. An
outstanding connect indication is one that has been passed to the transport
user by the transport provider but which has not been accepted or
rejected. A value of q/en greater than zero is only meaningful when issued
by a passive transport user that expects other users to call it. The value of
q/en will be negotiated by the transport provider and may be changed if the
transport provider cannot support the specified number of outstanding
connect indications. On return, the q/en field in ret will contain the
negotiated value.

This function allows more than one transport endpoint to be bound to the
same protocol address (however, the transport provider must also support
this capability), but it is not possible to bind more than one protocol
address to the same transport endpoint. If a user binds more than one
transport endpoint to the same protocol address, only one endpoint can be
used to listen for connect indications associated with that protocol address.
In other words, only one Lbind for a given protocol address may specify a
value of q/en greater than zero. In this way, the transport provider can
identify which transport endpoint should be notified of an incoming
connect indication.

If a user attempts to bind a protocol address to a second transport
endpoint with a value of q/en greater than zero, the transport provider will
assign another address to be bound to that endpoint or, if automatic
generation of addresses is not supported, will return -1 and set Lerrno to
[TADDRBUSY]. When a user accepts a connection on the transport
endpoint that is being used as the listening endpoint, the bound protocol
address will be found to be busy for the duration of the connection, until a
LUllbind or Lclose call has been issued. No other transport endpoints
may be bound for listening on that same protocol address while that initial
listening endpoint is active (in the data transfer phase or in the TJDLE
state). This will prevent more than one transport endpoint bound to the
same protocol address from accepting connect indications.

Draft 1.0 Transport Layer 4-55

Procedural Interface

cbind (fd, pReq, pRet): Integer

where

fd

is the file descriptor returned by Copen.

pReq,
pRet

(continued)

are pointers to structures req and ret, of type t_bind, which contain the
following fields:

Offset

o
2

4

8

where

pret.addr.len
sret.addr.len

Field

addr.maxlen

addr.len

addr.pBuf

qlen

Length

2

2

4

2

describe a word where the length of the address chosen by the
transport provider is returned.

pret.qlen
sret.qien

describe a word where the queue length chosen by the transport
provider is returned.

4-56 eTaS/Open API: Networking Services Draft 1.0

(continued)

Request Block

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 8
1 RtCode 1 0
2 nReqPbCb 1 1
3 nRespPbCb 1 3
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2

12 fd 2

14 opcode 2 2

16 reserved 2

18 req.qlen 2

20 req.addr.pBuf 4
24 req.addr.len 2

26 ret.addr.pBuf 4
30 ret.addr. maxlen 2

32 pret.addr.len 4
36 sret.addr.len 2 2

38 pret.qlen 4
42 sret.qlen 2 2

Draft 1.0 Transport Layer 4-57

(continued)

Errors

On failure, the procedural interface sets Lerrllo equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TOUTSTATE]

[TBADADDR]

[TNOADDR]

[TACCES]

[TBUFOVFL W]

[TSYSERR]

[TADDRBUSY]

T~e specified file descriptor does not refer to a
transport endpoint.

The function was issued in the wrong sequence.

The specified protocol address was in an incorrect
format or contained illegal information.

The transport provider could not allocate an
address.

The user does not have permission to use the
specified address.

The number of bytes allowed for an incoming
argument is not sufficient to store the value of that
argument. The provider's state will change to
TJDLE and the information to be returned in ret
will be discarded.

A system error has occurred during execution of
this function.

The address requested is in use and the transport
provider could not allocate a new address.

4-58 eTOS/Open API: Networking Services Draft 1.0

(continued)

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, the
procedural interface returns a value of -1 and sets Lerrno to indicate an
error.

See Also

Lc/ose, Lopen, Loptmgmt, Lunbind.

Draft 1.0 Transport Layer 4-59

Description

Parameters Before call After call

fd x I

The Lclose function informs the transport provider that the user is finished
with the transport endpoint specified by fd, and frees any local library
resources associated with the endpoint. In addition, Lclose closes the file
descriptor associated with the transport endpoint.

The function Lclose should be called from the T_VNBIND state (see
Lgetstate). However, this function does not check state information, so it
may be called from any state to close a transport endpoint. If this occurs,
the local ·library resources associated with the endpoint will be freed
automatically. In addition, the file descriptor will be closed. The close
will be abortive if there are no other descriptors in this, or in another
process which reference the transport endpoint, and in this case will break
any transport connection that may be associated with that endpoint.

Procedural Interface

Lclose (fd): Integer

where

fd

is the file descriptor returned by Lopen.

4-60 eTOS/Open API: Networking Services Draft 1.0

(continued)

Request Block

This request closes the file descriptor and all routes which it may hold
open.

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 2
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exehResp 2
8 ere Ret 2
10 rqCode 2

12 fd 2

Errors

On failure, the procedural interface sets Lernzo equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

Draft 1.0

The specified file descriptor does not refer to a
transport endpoint.

Transport Layer 4-61

(continued)

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Lgetstate, Lopen, Lunbind.

4-62 eTaS/Open API: Networking Services Draft 1.0

t_connect

Description

Parameters Before call After call

fd x I

sndeall.addr .maxlen I I

sndeall.addr.len x I

sndealLaddr.pBuf x(x) I

sndealLopt.maxlen I I

sndeall.opUen x I

sndeall.opt.pBuf 1(1) I

sndeall. udata. maxlen I I

sndeall. udata.len x I

sndeall. udata. pBuf 1(1) I

sndeall.sequenee I I

reveall.addr. maxlen x I

revealLaddr.len I x

reveall.addr. p Buf x (x)

revealLopt. maxlen x I

reveall.opUen I x

revealLopt.pBuf x (x)

reveall.udata.maxlen x I

reveal I. udata.len I x

reveall.udata.pBuf x (?)

revealLsequenee I I

This function enables a transport user to request a connection to the
specified destination transport user. This function can only be issued in
the TJDLE state.

Draft 1.0 Transport Layer 4-63

(continued)

The parameter fd identifies the local transport endpoint where communi­
cation will be established.

The netbuf structure sndeall specifies information needed by the transport
provider to establish a connection and reveall specifies information that is
associated with the newly established connection.

In sndeall, addr specifies the protocol address of the destination transport
user, opt presents any protocol-specific information that might be needed
by the transport provider, udata points to optional user data that may be
passed to the destination transport user during connection establishment
and sequence has no meaning for this function.

On return, in reveall, addr contains the protocol address associated with
the responding transport endpoint, opt represents any protocol-specific
information associated with the connection, and udata points to optional
user data that may be returned by the destination transport user during
connection establishment and sequence has no meaning for this function.

The opt argument permits users to define the options that may be passed
to the transport provider. These options are specific to the underlying
protocol of the transport provider and are described for ISO and TCP
protocols in Appendixes C, D and E. The user may choose not to
negotiate protocol options by setting the len field of opt to zero. In this
case, the provider may use default options.

If used, sndeall.opt.buf must point to the corresponding options structures
(isoco_options, isocl_options or tcp_options); the maxlen and buf fields
of the netbuf structure pointed by reveall.addr and revcall.opt must be set
before the call.

The udata argument enables the caller to pass user data to the destination
transport user and receive user data from the destination user during
connection establishment. However, the amount of user data must not
exceed the limits supported by the transport provider as returned in the
connect field of the info argument of copen or cgetinfo. If the len of
udata is zero in sndcall, no data will be sent to the destination transport
user.

4-64 eTOS/Open API: Networking Services Draft 1.0

(continued)

On return, the addr, opt and udata fields of rcvcall will be updated to
reflect values associated with the connection. Thus, the maxlen field of
each argument must be set before issuing this function to indicate the
maximum size of the buffer for each. However, rcvcall may be a null
pointer, in which case no information is given to the user on return from
Lconnect.

By default, Lconnect executes in synchronous mode, and will wait for the
destination user's response before returning control to the local user. A
successful return (for instance, a return value of zero) indicates that the
requested connection has been established. However, if O_NONBLOCK
is set (using Lopen) , Lconnect executes in asynchronous mode. In this
case, the call will not wait for the remote user's response, but will return
control immediately to the local user and return -1 with Lerrno set to
[TNODATA] to indicate that the connection has not yet been established.
In this way, the function simply initiates the connection establishment
procedure by sending a connect request to the destination transport user.
The Lrcvconnect function is used in conjunction with Lconnect to
determine the status of the requested connection.

Draft 1.0 Transport Layer 4-65

Procedural Interface

Leonneet (fd, pSndeall, pReveall): Integer

where

fd

is the file descriptor returned by Lopen.

pSndeali
pReveall

(continued)

are pointers to structures sndeall and reveall, of type t_call, which
contain the following fields:

Offset Field Length

0 addr.maxlen 2

2 addr.len 2

4 addr.pBuf 4

8 opt.maxlen 2

10 opUen 2

12 opt.pBuf 4

16 udata.maxlen 2

18 udata.len 2

20 udata.pBuf 4

24 sequence 2

4-66 eTaS/Open API: Networking Services Draft 1.0

(continued)

Request Block

The request for this procedure is the same as for Lrcvconnect. Lcollnect
will, in asynchronous mode, return before the Transport Provider responds
to this request.

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exehResp
8 ereRet

10 rqCode

12 fd

14 opeode

16 reserved

18 sndeall.addr.pBuf
22 sndeall.addr.len

24 sndeall.opt.pBuf
28 sndeall.opt.len

30 sndeall.udata.pBuf
34 sndeall. udata.len

36 reveall.addr.pBuf
40 reveall.addr .maxlen

42 reveall.opt.pBuf
46 reveall.opt.maxlen

48 reveall.udata.pBuf
52 reveall. udata. maxlen

Draft 1.0

Size
(Bytes)

1
1
1
1
2
2
2
2

2

2

2

4
2

4
2

4
2

4
2

4
2

4
2

Contents

6
o
3
3

3

Transport Layer 4-67

(continued)

The pb/cb pairs

rcvcall.addr.pBuflrcvcall.addr.maxlen
rcvcall.opt.pBuflrcvcall.opt.maxlen
rcvcall.udata.pBuflrcvcall.udata.maxlen

all describe a structure as follows:

Offset

o
2

Errors

Field

cbRet
data

(Bytes)

2
X

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TOUTSTATE]

[TNODATA]

[TBADADDR]

[TBADOPT]

[TBADDATA]

The specified file descriptor does not refer to a
transport endpoint.

The function was issued in the wrong sequence.

O_NONBLOCK was set, so the function success­
fully initiated the connection establishment pro­
cedure, but did not wait for a response from the
remote user.

The specified protocol address was in an incorrect
format or contained illegal information.

The specified protocol options were in an incorrect
format or contained illegal information.

The amount of user data specified was not within
the bounds allowed by the transport provider.

4-68 eTOSIOpen API: Networking Services Draft 1.0

(continued)

[TACCES]

[TBUFOVFLW]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

Return Value

The user does not have permission to use the
specified address or options.

The number of bytes allocated for an incoming
argument is not sufficient to store the value of that
argument. If executed in synchronous mode, the
provider's state, as seen by the user, changes to
T_DATAXFER, and the connect indication
information to be returned in rcvcall is discarded.

An asynchronous event has occurred on this
transport endpoint and requires immediate
attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of
this function.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Laccept, Lgetinfo, Llisten, Lopen, Loptmgmt, Lrcvconnect.

Draft 1.0 Transport Layer 4-69

t_getinfo

Description

Parameters Before call After call

fd x /

info.addr / x

info.options / x

info.tsdu / x

info.etsdu / x

info.connect / x

info.discon / x

info.servtype / x

The Lgetinfo function returns the current characteristics of the underlying
transport protocol associated with file descriptor fd. The info structure is
used to return the same information returned by Lopen. This function
enables a transport user to access this information during any phase of
communication.

The values of the fields in info have the following meanings:

addr

options

A value greater than or equal to zero indicates the
maximum size of a transport protocol address; a value of -1
specifies that there is no limit on the address size; and a
value of -2 specifies that the transport provider does not
provide user access to transport protocol addresses.

A value greater than or equal to zero indicates the
maximum number of bytes of protocol-specific options
supported by the provider; a value of -1 specifies that there
is no limit on the option size; and a value of -2 specifies
that the transport provider does not support user-settable
options.

4-70 eTOS/Open API: Networking Services Draft 1.0

(continued)

tsdu

etsdu

connect

discon

servtype

Draft 1.0

A value greater than zero specifies the maximum size of a
transport service data unit (TSDU); a value of zero
specifies that the transport provider does not support the
concept of TSDU, although it does support the sending of
a data stream with no logical boundaries preserved across a
connection; a value of -1 specifies that there is no limit on
the size of a TSDU; and a value of -2 specifies that the
transfer of normal data is not supported by the transport
provider.

A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of
zero specifies that the transport provider does not support
the concept of ETSDU, although it does support the
sending of an expedited data stream with no logical
boundaries preserved across a connection; a value of -1
specifies that there is no limit on the size of a ETSDU;
and a value of -2 specifies that the transfer of expedited
data is not supported by the transport provider.

A value greater than or equal to zero specifies the
maximum amount of data that may be associated with
connection establishment functions; a value of -1 specifies
that there is no limit on the amount of data sent during
connection establishment; and a value of -2 specifies that
the transport provider does not allow data to be sent with
connection establishment functions.

A value greater than or equal to zero specifies the
maximum amount of data that may be associated with the
Lsnddis and Lrcvdis functions; a value of -1 specifies that
there is no limit on the amount of data sent with these
abortive release functions; and a value of -2 specifies that
the transport provider does not allow data to be sent with
the abortive release functions.

This field specifies the service type supported by the
transport provider.

Transport Layer 4-71

(continued)

If a transport user is concerned with protocol independence, these fields
may be accessed to determine how large the buffers must be to hold each
piece of information. An error will result if a transport user exceeds the
allowed data size on any function. The value of each field may change as a
result of option negotiation. The function cgetinfo enables a user to
retrieve the current characteristics of the underlying transport protocol.

The servtype field of info specifies one of the following values on return:

The transport provider supports a connection-mode
service but does not support the optional orderly
release facility.

The transport provider supports a connection-mode
service with the optional orderly release facility.

The transport provider supports a connectionless­
mode service. For this service type, Copen will
return -2 for etsdu, connect and discon.

4-72 eTaS/Open API: Networking Services Draft 1.0

(continued)

Procedural Interface

cgetinfo (fd, pInfoRet): Integer

where

fd

is the file descriptor returned by Lopen.

pInfoRet

is a pointer to a structure info of type t_info which contains the
following fields:

Offset Field

o addr

4 options

8 tsdu

12 etsdu

16 connect

20 discon

24 servtype

Draft 1.0

Size
(Bytes)

4

4

4

4

4

4

4

Contents

max size of the transport protocol
address

max number of bytes of
protocol-specific options

max size of a transport service data
unit (TSDU)

max size of an expedited transport
service data unit (ETSDU)

max amount of data allowed on
connection establishment functions

max amount of data allowed on
Lsnddis and Lrcvdis functions

service type supported by the
transport provider

Transport Layer 4-73

(continued)

Request Block

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exehResp 2
8 ere Ret 2
10 rqCode 2

12 fd 2

14 opeode 13

16 reserved 2

18 plnfoRet 4
22 slnfoRet 2

4-74 eTaS/Open API: Networking Services Draft 1.0

(continued)

Errors

On failure, the procedural interface sets Lerrllo equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TSYSERR]

[TNOTSUPPORT]

Return Value

The specified file descriptor does not refer to a
transport endpoint.

A system error has occurred during execution of
this function.

This function is not supported by the underlying
transport provider.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Lopen.

Draft 1.0 Transport Layer 4-75

Description

Parameters Before call After call

fd x /

Procedural Interface

Lgetstate (fd): Integer

where

fd

is the file descriptor returned by Lopen.

The Lgetstate function returns the current state of the provider associated
with the transport endpoint specified by fd.

4-76 eTaS/Open API: Networking Services Draft 1.0

(continued)

Request Block

NOTE: This is the same request (and same opcode) as cloak.

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet

10 rqCode

12 fd

14 opcode

16 reserved

18 pRetArea
22 sRetArea

Size
(Bytes)

1
1
1
1
2
2
2
2

2

2

2

4
2

Contents

6
o
o
1

4

4

The pb/cb pair pRetArea/sRetArea describes a structure as follows:

Offset

o
2

Draft 1.0

Field

LookEventCode
StateCode

Size
(Bytes)

2
2

Transport Layer 4-77

(continued)

Errors

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TSTATECHNG]

[TSYSERR]

[TNOTSUPPORT]

The specified file descriptor does not refer to a
transport endpoint. This error may be returned
when the fd has been previously closed or an
erroneous number may have been passed to the
call.

The transport provider is undergoing a transient
state change.

A system error has occurred during execution of
this function.

This function is not supported by the underlying
transport provider.

4-78 eTOS/Open API: Networking Services Draft 1.0

(continued)

Return Value

State is returned upon successful completion. Otherwise, a value of -1 is
returned and LernlO is set to indicate an error. The current state is one of
the following:

T_UNBND

TJDLE

T_OUTCON

TJNCON

T~ATAXFER

T_OUTREL

unbound

idle

outgoing connection pending

incoming connection pending

data transfer

outgoing orderly release (waiting for an orderly
release indication)

incoming orderly release (waiting to send an
orderly release request)

If the provider is undergoing a state transition when Lgetstate is called, the
function will fail.

See Also

Lopell.

Draft 1.0 Transport Layer 4-79

t_listen

Description

Parameters Before call After call

fd x I

call.addr.maxlen x I

call.addr.len I x

call.addr.buf x (x)

call.opt.maxlen x I

call.opt.len I x

call.opt.buf x (x)

call.udata.maxlen x I

call.udata.len I x

call.udata.buf x (?)

call.sequence I x

The Llisten function listens for a connect request from a calling transport
user. The argument fll identifies the local transport endpoint where
connect indications arrive, and on return, call contains information
describing the connect indication.

In call, addr returns the protocol address of the calling transport user, opt
returns protocol-specific parameters associated with the connect request,
udata returns any user data sent by the caller on the connect request and
sequence is a number that uniquely identifies the returned connect
indication. The value of sequence enables the user to listen for multiple
connect indications before responding to any of them.

Since this function returns values for the addr, opt and udata fields of call,
the maxlen field of each must be set before issuing the Llisten to indicate
the maximum size of the buffer for each.

4-80 eTOS/Open API: Networking Services Draft 1.0

(continued)

By default, Llisten executes in synchronous mode and waits for a connect
indication to arrive before returning to the user. IIowever, if
O_NONBLOCK is set using Lopen, Lliste;, executes asynchronously,
reducing to a poll for existing connect indications. If none are available, it
returns -1 and sets Lerrno to [TNODATA].

Procedural Interface

Llistell (fd, pCall): Integer

where

fd

is the file descriptor returned by Lopen.

pCall

is a pointer to a structure call of type t_call which contains the
following fields:

Offset Field Length

0 addr.maxlen 2

2 addr.len 2

4 addr.pBuf 4

8 opt.maxlen 2

10 opt./en 2

12 opt.pBuf 4

16 udata.maxlen 2

18 udata.len 2

20 udata.pBuf 4

24 sequence 2

Draft 1.0 Transport Layer 4-81

t_listen

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet

10 rqCode

12 fd

14 opcode

16 reserved

18 call.addr.pBuf
22 call.addr.maxlen

24 call.opt.pBuf
28 call.opt.maxlen

30 call.udata.pBuf
34 call.udata.maxlen

36 pcall.sequence
40 scall.sequence

where

pcall.sequence
scall.sequence

Size
(Bytes)

1
1
1
1
2
2
2
2

2

2

2

4
2

4
2

4
2

4
2

(continued)

Contents

6
o
o
4

5

2

describe a word where the sequence number chosen by the transport
provider is returned.

4-82 eTOS/ Open API: Networking Services Draft 1.0

(continued) t_listen

The pbl cb pairs

call.addr.pBuflcall.addr.maxlen
call. opt.pBuflcall. opt. maxlell
call.udata.pBuflcall.udata.maxlen

all describe a structure as follows:

Offset

o
2

Errors

Field

cbRet
data

Size
(Bytes)

2
X

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TBADQLEN]

[TBUFOVFL W]

[TNODATA]

Draft 1.0

The specified file descriptor does not refer to a
transport endpoint.

The argument qlen of the endpoint referenced by fd
is zero.

The number of bytes allocated for an incoming
argument is not sufficient to store the value of that
argument. The provider's state, as seen by the
user, changes to TJNCON, and the connect
indication information to be returned in call is
discarded. The value of sequence returned can be
used to do a Lsnddis.

O_NONBLOCK was set, but no connect
indications have been queued.

Transport Layer 4-83

t_listen

[TLOOK]

[TNOTSUPPORT]

[TOUTSTATE]

[TSYSERR]

Return Value

(continued)

An asynchronous event has occurred on this
transport endpoint and requires immediate
attention.

This function is not supported by the underlying
transport provider.

The function was issued in the wrong sequence on
the transport endpoint referenced by fd.

A system error has occurred during execution of
this function.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Laccept, Lbind, Lconnect, Lopen, Loptmgmt, Lrcvconnect.

4-84 eTOS/ Open API: Networking Services Draft 1.0

Description

Parameters Before call After call

fd x /

The clook function returns the current event on the transport endpoint
specified by fd. This function enables a transport provider to notify a
transport user of an asynchronous event when the user is calling functions
in synchronous mode. Certain events require immediate notification of the
user and are indicated by a specific error, [TLOOK], on the current or
next function to be executed. Details on events which cause functions to
fail [T_LOOK] may be found in the section Events and TLOOK Error
Indication.

This function also enables a transport user to poll a transport endpoint
periodically for asynchronous events.

Procedural Interface

Clook (fd): Integer

where

fd

is the file descriptor returned by Copen.

Draft 1.0 Transport Layer 4-85

(continued)

Request Block

NOTE: This is the same request (and same opcode) as cgetstate.

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

12 fd 2

14 opcode 2 4

16 reserved 2

18 pRetArea 4
22 sRetArea 2 4

The pb/cb pair pRetArea/sRetArea describes a structure as follows:

Size
Offset Field (Bytes)

0 LookEventCode 2
2 StateCode 2

4-86 eTaS/Open API: Networking Services Draft 1.0

(continued)

Errors

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TSYSERR]

Return Value

The specified file descriptor does not refer to a
transport endpoint.

A system error has occurred during execution of
this function.

Upon success, Llook returns a value that indicates which of the allowable
events has occurred, or returns zero if no event exists. One of the
following events is returned:

T_LISTEN

T_CONNECT

T_DATA

T_EXDATA

T_UDERR

T_ORDREL

T_GODATA

Draft 1.0

Connection indication received.

Connect confirmation received.

Normal data received.

Expedited data received.

Disconnect received.

Datagram error indication.

Orderly release indication.

Flow control restrictions on normal data flow have
been lifted. Normal data may be sent again.

Flow control restrictions on expedited data flow
have been lifted. Expedited data may be sent
again.

Transport Layer 4-87

(continued)

On failure, -1 is returned and Lerrno is set to indicate an error. If the
request is being used directly, rather than the XTI library interface, the
following event may also be returned:

See Also

This is a request by the Transport Service Provider
to the transport client to send sync data so that
another user of this transport endpoint can be
synchronized.

Lopen, Lsnd, Lsndudata.

4-88 eTaS/Open API: Networking Services Draft 1.0

t_open

Description

Parameters Before call After call

pbProviderName x I

oflag x I

info.addr I x

info. options I x

info.tsdu I x

info.etsdu I x

info. connect I x

info.discon I x

info.servtype I x

The copen function must be called as the first step in the initialization of a
transport endpoint. This function establishes a transport endpoint by
supplying a transport provider identifier that indicates a particular
transport provider (for instance, OSI transport protocol) and returning a
file descriptor that identifies that endpoint.

The argument pbProviderName points to a transport provider identifier,
which is of one of three types. The default type, if neither O_FILESPEC
nor O_NAME_PDS is set in oflag, is the name by which the Transport
Service Provider is known to the Protocol Manager. If OYILESPEC is
set, the argument pbProviderName points to a file specification for a
Parameter Definition File. This file, examples of which are given in the
section Parameter Definition File for the Transport Layer, contains a
Transport Provider Name and optional parameter data. If O_NAME_PDS
is set, the argument pbProviderName points to a string of the following
format:

Draft 1.0 Transport Layer 4-89

Offset

o

1+X

3+X

4+X

4+X+Y

5+X+Y

Field

cbName

Name

cbParams

cbParam1

Param1

cbParam2

Param2

Size
(Bytes)

X

2

1

Y

z

(continued)

Contents

length of the transport provider
name

transport provider name

length of parameter definition string

length of first parameter

first parameter

length of second parameter

second parameter

where additional parameters can be added as needed to the end of the
structure.

The argument oflag identifies any open flags. oflag is constructed from
O~DWR optionally bitwise inc1usive-or'ed with O_NONBLOCK,
OYILESPEC, and O_NAMEJ>DS. oflag has significance only to the
XTI library; it is not passed on to the Transport Provider.

The file descriptor returned by copen will be used by all subsequent
functions to identify the particular local transport endpoint.

This function also returns various default characteristics of the underlying
transport protocol by setting fields in the t_info structure. The values of
the fields have the following meanings:

addr A value greater than or equal to zero indicates the
maximum size of a transport protocol address; a value of
-1 specifies that there is no limit on the address size; and a
value of -2 specifies that the transport provider does not
provide user access to transport protocol addresses.

4-90 eTaS/Open API: Networking Services Draft 1.0

(continued)

options

tsdu

etsdu

connect

Draft 1.0

A value greater than or equal to zero indicates the
maximum number of bytes of protocol-specific options
supported by the provider; a value of -1 specifies that there
is no limit on the option size; and a value of -2 specifies
that the transport provider does not support user-settable
options.

A value greater than zero specifies the maximum size of a
transport service data unit (TSDU); a value of zero
specifies that the transport provider does not support the
concept of TSDU, although it does support the sending of
a data stream with no logical boundaries preserved across a
connection; a value of -1 specifies that there is no limit on
the size of a TSDU; and a value of -2 specifies that the
transfer of normal data is not supported by the transport
provider.

A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of
zero specifics that the transport provider does not support
the concept of ETSDU, although it does support the
sending of an expedited data stream with no logical
boundaries preserved across a connection; a value of -1
specifies that there is no limit on the size of a ETSDU;
and a value of -2 specifies that the transfer of expedited
data is not supported by the transport provider.

A value greater than or equal to zero specifies the
maximum amount of data that may be associated with
connection establishment functions; a value of -1 specifies
that there is no limit on the amount of data sent during
connection establishment; and a value of -2 specifies that
the transport provider does not allow data to be sent with
connection establishment functions.

Transport Layer 4-91

discon

servtype

(continued)

A value greater than or equal to zero specifies the
maximum amount of data that may be associated with the
t_snddis and crcvdis functions; a value of -1 specifies that
there is no limit on the amount of data sent with these
abortive release functions; and a value of -2 specifies that
the transport provider does not allow data to be sent with
the abortive release functions.

This field specifies the service type supported by the
transport provider.

If a transport user is concerned with protocol independence, these fields
may be accessed to determine how large the buffers must be to hold each
piece of information. An error will result if a transport user exceeds the
allowed data size on any function.

The servtype field of info specifies one of the following values on return:

The transport provider supports a connection-mode
service but does not support the optional orderly
release facility.

The transport provider supports a connection-mode
service with the optional orderly release facility.

The transport provider supports a connectionless­
-mode service. For this service type, Copen will
return -2 for etsdu, connect and discon.

4-92 eTOS/Open API: Networking Services Draft 1.0

(continued)

A single 'transport endpoint may support only one of these three services at
one time.

If pbrgInfo is set to a null pointer by the transport user, no protocol
information is returned by copen.

Procedural Interface

Copen (pbProviderName, of lag, pbrgInfo): Integer

where

pbProviderName

is a pointer to a null-terminated string containing either a Transport
Service Provider Name; a file specification for a transport parameter
definition file; or a Transport Service Provider Name plus a parameter
definition string, depending on the value of of lag.

oJlag

is a word.

Draft 1.0 Transport Layer 4-93

(continued)

pbrgInfo

is a pointer to an array info of type t_info, which contains the following
fields:

Offset Field

o addr

4 options

8 tsdu

12 etsdu

16 connect

20 discon

24 servtype

Reql:Jest Block

Size
(Bytes)

4

4

4

4

4

4

4

Contents

max size of the transport protocol
address

max number of bytes of
protocol-specific options

max size of a transport service data
unit (TSDU)

max size of an expedited transport
service data unit (ETSDU)

max amount of data allowed on
connection establishment functions

max amount of data allowed on
Lsnddis and Lrcvdis functions

service type supported by the
transport provider

The request block for Copen does not obtain the t_info data. Instead, the
XTI library issues both the Copen request and the cgetinfo request when a
call to the Copen function is made.

Although this request is routed by Device Spec, no Device Spec is
supplied to Copen. Prior to issueing the copen request, the XTI library
issues a RequestServiceProvider request to the Protocol Manager. The
Device Spec for the Transport Service Provider is returned by the Protocol
Manager.

4-94 eTOS/Open API: Networking Services Draft 1.0

(continued)

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode

12 Reserved

18 pbProviderDeviceSpec
22 cbProviderDeviceSpec

24 pbClientName
28 cbClientName

30 pPDString
34 cPDString

36 pbFdRet
40 cbFdRet

pbDeviceSpec/ cb DeviceSpec

Size
(Bytes)

1
1
1
1
2
2
2
2

6

4
2

4
2

4
2

4
2

Contents

6
o
3
1

2

describe a device specification for the desired Transport Service
Provider. If not supplied by the Transport Client,
cbProviderDeviceSpec should be set to zero.

pbClientName/cbClientName

describe a string where the Transport Client can place its own name.
This string can be up to twelve bytes long. This string is optional. If
not supplied by the Transport Client, cbClientName should be set to
zero.

Draft 1.0 Transport Layer 4-95

(continued)

pP DString/ cPDString

describe a string of Parameter Definition File data, in the format
returned by RequestTransportProvider. (This string may not be
required by some Transport Providers.)

pbFdRet/cbFdRet

describe a word where the file descriptor of the connection being
opened is returned. This is the function return value.

Errors

On failure, the procedural interface sets Lermo equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADFLAG]

[TBADNAME]

[TSYSERR]

Return Value

An invalid flag is specified.

Invalid transport provider name.

A system error has occurred during execution of
this function.

A valid file descriptor is returned upon successful completion. Otherwise,
a value of -1 is returned and Lerrno is set to indicate an error.

4-96 eTaS/Open API: Networking Services Draft 1.0

Description

The Loptmgmt function enables a transport user to retrieve, verify or
negotiate protocol options with the transport provider. The argument fd
identifies a bound transport endpoint.

The opt fields identify protocol options and the flags field is used to
specify the action to take with those options.

Parameters Before call After call

fd x I

req.opt.maxlen I I

req.opUen x I

req.opt.buf x(x) I

req.flags x I

ret.opt.maxlen x I

ret.opt.len I x

ret.opt. buf x (x)

ret.flags I x

The options are represented by a netbuf structure in a manner similar to
the address in Lbind. The argument req is used to request a specific
action of the provider and to send options to the provider. The argument
len specifies the number of bytes in the options, pBuf points to the options
buffer and maxlen has no meaning for the req argument. The transport
provider may return options and flag values to the user through ret. For
ret, maxlen specifies the maximum size of the options buffer and pBuf
points to the buffer where the options are to be placed. On return, lell
specifies the number of bytes of options returned. The value in maxlell
has no lneaning for the req argument, but must be set in the ret argument
to specify the maximum number of bytes the options buffer can hold. The
actual structure and content of the options is iInposed by the transport
provider.

Draft 1.0 Transport Layer 4-97

(continued)

The [lags field of req must specify one of the following actions:

T-l)EFAULT

This action enables the user to negotiate the values
of the options specified in req with the transport
provider. The provider will evaluate the requested
options and negotiate the values, returning the
negotiated values through ret.

This action enables the user to verify whether the
options specified in req are supported by the
transport provider. On return, the [lags field of ret
will have either T_SUCCESS or T_FAILURE set
to indicate to the user whether the options are
supported. These flags are only meaningful for the
T_CHECK request.

This action enables a user to retrieve the default
options supported by the transport provider into
the opt field of ret. In req, the len field of opt must
be zero and the pBuf field may be null.

If issued as part of the connectionless-mode service, Loptmgmt may block
due to flow control constraints. The function will not complete until the
transport provider has processed all previously sent data units.

4-98 eTOS/Open API: Networking Services Draft 1.0

(continued)

Procedural Interface

Loptmgmt (Jd, pReq, pRet): Integer

where

fd

is the file descriptor returned by Lopen.

pReq
pRet

are pointers to structures req and ret, of type t_optmgmt, which contain
the following fields:

Offset Field Length

0 opt.maxlen 2

2 opt.len 2

4 opt.pBuf 4

8 flags 4

Draft 1.0 Transport Layer 4-99

(continued)

Request Block

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 8
1 RtCode 1 0
2 nReqPbCb 1 1
3 nRespPbCb 1 3
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

12 fd 2

14 opcode 2 7

16 reserved 2

18 req.flags 2

20 req.opt.pBuf 4
24 req.opt.len 2

26 ret.opt.pBuf 4
30 ret.opt.maxlen 2

32 ret.opt.plen 4
36 ret.opt.slen 2 2

38 pFlagsRet 4
42 sFlagsRet 2 2

4-100 eTOS/Open API: Networking Services Draft 1.0

(continued)

Errors

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TOUTSTATE]

[TACCES]

[TBADOPT]

[TBADFLAG]

[TBUFOVFLW]

[TSYSERR]

[TNOTSUPPORT]

Return Value

The specified file descriptor does not refer to a
transport endpoint.

The function was issued in the wrong sequence.

The user does not have permission to negotiate the
specified options.

The specified protocol options were in an Incorrect
format or contained illegal information.

An invalid flag is specified.

The number of bytes allowed for an incoming
argument is not sufficient to store the value of that
argument. The information to be returned in ret
will be discarded.

A system error has occurred during execution of
this function.

This function is not supported by the underlying
transport provider.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Laccept, Lconnect, Lgetinfo, Llisten, Lopen, Lrcvconnect.

Draft 1.0 Transport Layer 4-101

t_rev

Description

Parameters Before call After call

fd x /

pBufRet x (x)

sBufMax x /

pFlagsRet I x

The Lrcv function receives either normal or expedited data. The argument
fd identifies the local transport endpoint through which data will arrive,
pBufRet points to a receive buffer where user data will be placed and
sBufMax specifies the size of the receive buffer. The argument pflagsRet
points to flags, which may be set on return from Lrcv and specifies
optional flags.

By default, Lrcv operates in synchronous mode and will wait for data to
arrive if none is currently available. However, if O_NONBLOCK is set
(using Lopen), Lrcv will execute in asynchronous mode and will fail if no
data is available. (See [TNODATA].)

On return from the call, if T.-MORE is set in flags, this indicates that
there is more data and the current transport service data unit (TSDU) or
expedited transport service data unit (ETSDU) must be received in
mUltiple Lrcv calls. Each Lrcv with the T_MORE flag set indicates that
another Lrcv must follow immediately to get more data for the current
TSDU. The end of the TSDU is identified by the return of a Lrcv call
with the T_MORE flag not set. If the transport provider does not support
the concept of a TSDU as indicated in the info argument on return from
Lopen or Lgetinfo, the T_MORE flag is not meaningful and should be
ignored.

4-102 eTOS/Open API: Networking Services Draft 1.0

(continued)

On return, the data returned is expedited data if T_EXPEDITED is set in
flags. If the number of bytes of expedited data exceeds sBufMax, Lrcv will
set T_EXPEDITED and T_MORE on return from the initial call.
Subsequent calls to retrieve the remammg ETSDU will have
T_EXPEDITED set on return. The end of the ETSDU is identified by the
return of a Lrcv call with the T~ORE flag not set.

If expedited data arrives after part of a TSDU has been retrieved, receipt
of the remainder of the TSDU will be suspended until the ETSDU has
been processed. Only after the full ETSDU has been retrieved (T_MORE
not set), will the remainder of the TSDU be available to the user.

In synchronous mode, the only way for the user to be notified of the
arrival of normal or expedited data is to issue this function or check for
the T~ATA or T_EXDATA events using the Llook function.

Procedural Interface

Lrcv (fd, pBufRet, sBufRet, pFlagsRet): Integer

where

fd

is the file descriptor returned by Lopen.

pBufRet
sBufMax

describe the buffer into which receive data is to be returned.

pFlagsRet

is a pointer to a word where a series of bit flags, OR-ed together, is
returned.

Draft 1.0 Transport Layer 4-103

t_rcv

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode

12 fd

14 opcode

16 reserved

18 pBufRet
22 sBufMax

24 pFlagsRet
28 sFlagsRet

Size
(Bytes)

1
1
1
1
2
2
2
2

2

2

2

4
2

4
2

(continued)

Contents

6
o
o
2

16

2

The pb/cb pair pBufRet/sBufMax describes a structure as follows:

Offset

o
2

Field

cbRet

data

Size
(Bytes)

2

X

4-104 eTaS/Open API: Networking Services Draft 1.0

(continued)

Errors

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TNODATA]

[TLOOK]

[TNOTSUPPOR T]

[TOUTSTATE]

[TSYSERR]

Return Value

The specified file descriptor does not refer to a
transport endpoint.

O_NONBLOCK was set, but no data is currently
available from the transport provider.

An asynchronous event has occurred on this
transport endpoint and requires immediate
attention.

This function is not supported by the underlying
transport provider.

The function was issued in the wrong sequence on
the transport endpoint referenced by jd.

A system error has occurred during execution of
this function.

On successful completion, Lrcv returns the number of bytes received.
Otherwise, it returns -1 on failure and Lerrno is set to indicate an error.

See Also

Lgetinjo, Llook, Lopen, Lsnd.

Draft 1.0 Transport Layer 4-105

t_rcvconnect

Description

Parameters Before call After call

td x /

call.addr.maxlen x /

call.addr.len / x

call.addr.buf x (x)

calLopt.maxlen x /

calLopt.len / x

calLopt.but x (x)

call.udata.maxlen x /

call.udata.len / x

calLudata.buf x (1)

call.sequence / /

The Lrcvconnect function enables a calling transport user to determine the
status of a previously sent connect request and is used in conjunction with
Lconnect to establish a connection in asynchronous mode. The
connection will be established on successful completion of this function.

The argument fd identifies the local transport endpoint where
communication will be established, and call contains information
associated with the newly established connection.

In call, addr returns the protocol address associated with the responding
transport endpoint, opt presents any protocol-specific information
associated with the connection, udata points to optional user data that may
be returned by the destination transport user during connection
establishment and sequence has no meaning for this function.

4-106 eTOS/Open API: Networking Services Draft 1.0

(continued)

The maxlen field of each argument must be set before issuing this function
to indicate the maximum size of the buffer for each. However, pCall may
be a null pointer, in which case no information is given to the user on
return from Lrcvconnect. By default, Lrcvconnect executes in synchronous
mode and waits for the connection to be established before returning. On
return, the addr, opt and udata fields reflect values associated with the
connection.

If O_NONBLOCK is set (using Lopen) , Lrcvconnect executes in
asynchronous mode, and reduces to a poll for existing connect
confirmations. If none are available, Lrcvconnect fails and returns
immediately without waiting for the connection to be established. (See
[TNODATA].) In this case, Lrcvconnect must be called again to complete
the connection establishment phase and retrieve the information returned
in call.

Draft 1.0 Transport Layer 4-107

t_rcvconnect (continued)

Procedural Interface

Lrcvconnect (fd, pCall): Integer

where

fd

is the file descriptor returned by Lopen.

pCall

is a pointer to a structure of type t_caIl, which contains the following
fields:

Offset Field Length

0 addr.maxlen 2

2 addr.len 2

4 addr.pBuf 4

8 opt.maxlen 2

10 opt.len 2

12 opt.pBuf 4

16 udata.maxlen 2

18 udata.len 2

20 udata.pBuf 4

24 sequence 2

Request Block

The request block for this procedure is the same as for Lconnect, which
returns before the response to its request. This procedure returns the
response to the request.

4-108 CTOS/Open API: Networking Services Draft 1.0

(continued)

Errors

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TBUFOVFLW]

[TNODATA]

[TLOOK]

[TNOTSUPPORT]

[TOUTSTATE]

[TSYSERR]

Draft 1.0

The specified file descriptor does not refer to a
transport endpoint.

The number of bytes allocated for an incoming
argument is not sufficient to store the value of that
argument and the connect information to be
returned in call will be discarded. The provider's
state, as seen by the user, will be changed to
T_DATAXFER.

O_NONBLOCK was set, but a connect
confirmation has not yet arrived.

An asynchronous event has occurred on this
transport endpoint and requires immediate
attention.

This function is not supported by the underlying
transport provider.

The function was issued in the wrong sequence on
the transport endpoint referenced by fd.

A system error has occurred during execution of
this function.

Transport Layer 4-109

(continued)

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Caccept, Lbind, Lconnect, Clisten, copen, Loptmgmt.

4-110 eTaS/Open API: Networking Services Draft 1.0

Description

The Lrcvdis function is used to identify the cause of a disconnect and to
retrieve any user data sent with the disconnect.

The argument fd identifies the local transport endpoint where the
connection existed.

Parameters Before call After call

fd x I

discon.udata.maxlen x I

discon.udata.len I x

d iscon. udata. pBuf x (?)

discon.reason I x

discon.sequence I ?

The field reason specifies the field the reason for the disconnect through a
protocol dependent reason code, udata identifies any user data that was
sent with the disconnect, and sequence may identify an outstanding connect
indication with which the disconnect is associated. The field sequence is
only meaningful when Lrcvdis is issued by a passive transport user who has
executed one or more Llisten functions and is processi ng the resulting
connect indications. If a disconnect indication occurs, sequence can be
used to identify which of the outstanding connect indications is associated
with the disconnect.

If a user does not care if there is incoming data and does not need to now
the value of reason or sequence, discon may be a null pointer and any user
data associated with the disconnect will be discarded. However, if a user
has retrieved more than one outstanding connect indication (using Llisten)
and discon is a null pointer, the user will be unable to identify with which
connect indication the disconnect is associated.

Draft 1.0 Transport Layer 4-111

Procedural Interface

crcvdis (fd, pDiscon): Integer

where

fd

is the file descriptor returned by copen.

pDiscon

(continued)

is a pointer to a structure discon of type t_discon, which contains the
following fields:

Offset Field Length

0 udata.maxien 2

2 udata.len 2

4 udata.pBuf 4

8 reason 2

10 sequence 2

4-112 eTOS/Open API: Networking Services Draft 1.0

(continued)

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode

12 fd

14 opcode

16 reserved

18 discon.udata.pBuf
22 discon. udata.maxlen

24 pd iscon. udata.len
28 sdiscon.udata.len

30 pbStructRet
34 cbStructRet

where

pdiscon.udata.len
sdiscon.udata.len

Size
(Bytes)

1
1
1
1
2
2
2
2

2

2

2

4
2

4
2

4
2

Contents

6
o
o
3

8

2

4

describe a word where the count of bytes actually received is returned
by the transport provider.

Draft 1.0 Transport Layer 4-113

(continued)

The pb/cb pair pbStructRet/cbStructRet describe a structure as follows:

Offset Field

reason

Size
(Bytes)

o
2 sequence

2

2

Errors

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TNODIS]

[TBUFOVFL W]

[TNOTSUPPORT]

[TSYSERR]

[TOUTSTATE]

The specified file descriptor does not refer to a
transport endpoint.

No disconnect indication currently exists on the
specified transport endpoint.

The number of bytes allocated for incoming data is
not sufficient to store the data. If fd is a passive
endpoint with ocnt > 1, it remains in state
TJNCON; otherwise, the endpoint state is set to
TJDLE.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of
this function.

The function was issued in the wrong sequence on
the transport endpoint referenced by fd.

4-114 eTOS/Open API: Networking Services Draft 1.0

(continued)

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Lconnect, Llisten, Lopen, Lsnddis.

Draft 1.0 Transport Layer 4-115

Description

Parameters Before call After call

fd x /

The Crcvrel function is used to acknowledge receipt of an orderly release
indication. The argument fd identifies the local transport endpoint where
the connection exists. After receipt of this indication, the user may not
attempt to receive more data because such an attempt will block forever.
However, the user may continue to send data over the connection if
csndrel has not been called by the user.

This function is an optional service of the transport provider, and is only
supported if the transport provider returned service type T_COTS_ORD
on copell or cgetillfo.

Procedural Interface

crcvrel (fd): Integer

where

fd

is the file descriptor returned by Copen.

4-116 eTOS/Open API: Networking Services Draft 1.0

(continued)

Request Block

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 3
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

12 fd 2

14 opcode 2 9

16 reserved 2

18 discon. udata. buf 4
22 discon.udata.maxlen 2

24 pdiscon. udata.len 4
28 sdiscon.udata.len 2 2

30 pbStructRet 4
34 cbStructRet 2 4

Draft 1.0 Transport Layer 4-117

(continued)

Errors

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TNOREL]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

[TOUTST ATE]

Return Value

The specified file descriptor does not refer to a
transport endpoint.

No orderly release indication currently exists on the
specified transport endpoint.

An asynchronous event has occurred on this
transport endpoint and requires immediate
attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of
this function.

The function was issued in the wrong sequence on
the transport endpoint referenced by fd ..

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Lgetinfo, Lopen, Lsndrel.

4-118 eTaS/Open API: Networking Services Draft 1.0

Description

Parameters Before call After call

fd x I

unitdata.addr .maxlen x I

unitdata.addr .Ien I x

unitdata.addr .buf x (x)

unitdata.opt.maxlen x I

unitdata.opt.len I x

unitdata.opt.buf x (x)

unitdata.udata.maxlen x I

unitdata. udata.len I x

un itdata. udata. buf x (x)

flags I x

This function is used in connectionless-mode to receive a data unit from
another transport user.

The argument fd identifies the' local transport endpoint through which data
will be received, unitdata holds information associated with the received
data unit, and flags is set on return to indicate that the complete data unit
was not received.

The maxlen field of addr, opt and udata must be set before calling this
function to indicate the maximum size of the buffer for each.

On return from this call, addr specifies the protocol address of the sending
user, opt identifies protocol-specific options that were associated with this
data unit, and udata specifies the user data that was received.

Draft 1.0 Transport Layer 4-119

(continued)

By default, Lrcvudata operates in synchronous mode and will wait for a
data unit to arrive if none is currently available. However, if
O_NONBLOCK is set (using Copen), udata will execute in asynchronous
mode and will fail if no data units are available.

If the buffer defined in the udata field of unitdata is not large enough to
hold the current data unit, the buffer will be filled and T_MORE will be
set in flags on return to indicate that another Lrcvudata should be called
to retrieve the rest of the data unit.

Subsequent calls to Lrcvudata will return zero for the length of the address
and options until the full data unit has been received.

4-120 eTOS/Open API: Networking Services Draft 1.0

(continued)

Procedural Interface

Lrcvudata (fd, pUnitdata, pflags): Integer

where

fd

is the file descriptor returned by Lopell.

pUnitdata

is a pointer to a structure unitdata of type t_unitdata, which contains
the following fields:

Offset Field Length

0 udata.maxien 2

0 addr.maxlen 2

2 addr.len 2

4 addr.pBuf 4

8 opt.maxlen 2

10 opUen 2

12 opt.pBuf 4

16 udata.maxlen 2

18 udata.len 2

20 udata.pBuf 4

pflags

is a pointer to a word where a series of bit flags, OR-ed together, is
returned.

Draft 1.0 Transport Layer 4-121

t_rcvudata (continued)

Request Block

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 4
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

12 fd 2

14 opcode 2 17

16 reserved 2

18 unitdata.addr. pBuf 4
22 unitdata.addr. maxlen 2

24 unitdata.opt.pBuf 4
28 unitdata.opt.maxlen 2

30 unitdata. udata. pBuf 4
34 unitdata.udata. maxlen 2

36 pflags 4
40 sflags 2 2

4-122 eTaS/Open API: Networking Services Draft 1.0

(continued)

The pbl cb pairs

unitdata.addr.buflunitdata.addr.maxlen
unitdata.opt.buflunitdata.opt.maxlen
unitdata.udata.buflunitdata.udata.maxlen

all describe a structure as follows:

Offset

o
2

Errors

Field

cbRet

data

Size
(Bytes)

2

X

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TNODATA]

[TBUFOVFLW]

Draft 1.0

The specified file descriptor does not refer to a
transport endpoint.

O_NONBLOCK was set, but no data units are
currently available from the transport provider.

The number of bytes allocated for the incoming
protocol address or options is not sufficient to
store the information. The unit data information
to be returned in unitdata will be discarded.

Transport Layer 4-123

[TLOOK]

[TNOTSUPPORT]

[TOUTSTATE]

[TSYSERR]

Return Value

(continued)

An asynchronous event has occurred on this
transport endpoint and requires immediate
attention.

This function is not supported by the underlying
transport provider.

The function was issued in the wrong sequence on
the transport endpoint referenced by fd.

A system error has occurred during execution of
this function.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Lopen, Lrcvuderr, Lsndudata.

4-124 eTOS/Open API: Networking Services Draft 1.0

Description

Parameters Before call After call

fd x I

uderr.addr.maxlen x I

uderr.addr.len x

uderr .addr. buf x (x)

uderr.opt.maxlen x I

uderr .opt.len I x

uderr.opt.buf x (x)

uderr.error I x

The Lrcvuderr function is used in connectionless mode to receive infor­
mation concerning an error on a previously sent data unit, and should only
be issued following a unit data error indication. It informs the transport
user that a data unit with a specific destination address and protocol
options produced an error.

The argument fd identifies the local transport endpoint through which the
error report will be received. The maxlell field of addr and opt must be
set before calling this function to indicate the maximum size of the buffer
for each.

On return from this call, the addr structure specifies the destination
protocol address of the erroneous data unit, the opt structure identifies
protocol-specific options that were associated with the data unit and error
specifies a protocol dependent error code.

If the user does not care to identify the data unit that produced an error,
uderr may be set to a null pointer, and Lrcvuderr will simply clear the
error indication without reporting any information to the user.

Draft 1.0 Transport Layer 4-125

(continued)

Procedural Interface

Lrcvuderr (fd, pUderr): Integer

where

fd

is the file descriptor returned by Lopen.

pUderr

is a pointer to a structure uderr of type t_uderr, which contains the
following fields:

Offset Field Length

0 addr.maxlen 2

2 addr.len 2

4 addr.pBuf 4

8 opt.maxlen 2

10 opt.len 2

12 opt.pBuf 4

16 error 4

Request Block

The request block for this procedure is the same as for Lsndudata, which
returns before the response to its request. This procedure returns the
response to the request.

4-126 eTOS/Open API: Networking Services Draft 1.0

(continued)

Errors

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TNOUDERR]

[TBUFOVFL W]

[TNOTSUPPORT]

[TSYSERR]

Return Value

The specified file descriptor does not refer to a
transport endpoint.

No unit data error indication currently exists on the
specified transport endpoint.

The number of bytes allocated for the incoming
protocol address or options is not sufficient to
store the information. The unit data error infor­
mation to be returned in uderr will be discarded.

This function is not supported by the underlying
transport provider. .

A system error has occurred during execution of
this function.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Lrcvudata, Lsndudata.

Draft 1.0 Transport Layer 4-127

Description

The Lsnd function is used to send either normal or expedited data.

Parameters Before call After call

fd x /

pBuf x(x) /

sBuf x /

flags x /

The argument fd identifies the local transport endpoint over which data
should be sent, pBuj points to the user data, sBuf specifies the number of
bytes of user data to be sent and flags specifies any optional flags:

TJ,XPEDITED If set in flags, the data will be sent as expedited
data and will be subject to the interpretations of
the transport provider.

If set in flags, this indicates to the transport
provider that the transport service data unit
(TSDU) (or expedited transport service data unit -
ETSDU) is being sent through lnultiple Lsnd calls.
Each Lsnd with the T_MORE flag set indicates
that another LSlld will follow with more data for
the current TSDU. The end of the TSDU (or
ETSDU) is identified by a Lsnd call with the
T_MORE flag not set. Use of T~ORE enables a
user to break up' large logical data units without
losing the boundaries of those units at the other
end of the connection. The flag implies nothing

4-128 eTaS/Open API: Networking Services Draft 1.0

(continued)

about how the data is packaged for transfer below
the transport interface. If the transport provider
does not support the concept of a TSDU as
indicated in the info argument on return from
copen or cgeninfo, the T~ORE flag is not
meaningful and should be ignored.

By default, csnd operates in synchronous mode and may wait if flow
control restrictions prevent the data from being accepted by the local
transport provider at the time the call is made. However, if
O_NONBLOCK is set (using Copen), csnd will execute in asynchronous
mode, and will fail immediately if there are flow control restrictions. The
process can arrange to be informed when the flow control restrictions are
cleared using clook.

On successful completion, csnd returns the number of bytes accepted by
the transport provider. Normally this will equal the number of bytes
specified in sBuf.

However, if O_NONBLOCK is set, it is possible that only part of the data
will actually be accepted by the transport provider. In this case, csnd will
return a value that is less than the value of sBuf. If sBuf is zero and
sending of zero octets is not supported by the underlying transport service,
Csnd will return -1 with Cerrno set to [TBADDATA].

The size of each TSDU or ETSDU must not exceed the limits of the
transport provider as returned in the TSDU or ETSDU fields of the info
argument of copen or cgetinfo. Failure to comply will result in protocol
error. (See [TSYSERR].)

The error [TLOOK] may be returned to inform the process that an event
(for instance, a disconnect) has occurred.

Draft 1.0 Transport Layer 4-129

Procedural Interface

Lsnd (fd, pBuf, sBuf, flags): Integer

where

fd

is the file descriptor returned by Lopen.

pBuf
sBuf

describe the data to be transmitted.

flags

(continued)

is a word which is the OR-ed together value of a set of bit flags.

4-130 eTaS/Open API: Networking Services Draft 1.0

(continued)

Request Block

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 1
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

12 fd 2

14 reserved 3

17 flags

18 pBuf 4
22 sBuf 2

24 pcbRet 4
28 scbRet 2 2

pcbRetl scbRet

describe a word where the count of bytes actually transmitted is
returned. This is the function return value for Lsnd.

Draft 1.0 Transport Layer 4-131

(continued)

Errors

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TBADDATA]

[TBADFLAG]

[TFLOW]

[TNOTSUPPORT]

[TLOOK]

[TOUTSTATE]

[TSYSERR]

The specified file descriptor does not refer to a
transport endpoint.

Illegal amount of data; zero octets is not supported.

An invalid flag was specified.

O_NONBLOCK was set, but the flow control
mechanism prevented the transport provider from
accepting any data at this time.

This function is not supported by the underlying
transport provider.

An asynchronous event has occurred on this
transport endpoint.

The function was issued in the wrong sequence on
the transport endpoint referenced by fd.

A system error has occurred during execution of
this function. A protocol error may not cause
Lsnd to fail until a subsequent access of the
transport endpoint.

4-132 eTOS/Open API: Networking Services Draft 1.0

(continued)

Return Value

On successful completion, Lsnd returns the number of bytes accepted by
the transport provider. Otherwise, -1 is returned on failure and LerTlzo is
set to indicate the error.

NOTE: In asynchronous mode, if the number of bytes accepted by the
transport provider is less than the number of bytes requested, this may
indicate that the transport provider is blocked due to flow control.

NOTE: It is important to remember that the transport provider treats all
users of a transport endpoint as a single user. Therefore, if several
processes issue concurrent Lsnd calls, then the different data may be
intermixed.

See Also

Lgetinfo, Lopen, Lrcv.

Draft 1.0 Transport Layer 4-133

t_snddis

Description

Parameters Before call After call

fd x /

call.addr .maxlen / /

call.addr.len / /

call.addr.buf / /

call.opt. maxlen / /

call.opt.len / /

call.opt.buf / /

call.udata.maxlen / /

call.udata.len x /

call.udata.buf 1(1) /

call.sequence 1 /

The LSllddis function is used to initiate an abortive release on an already
established connection or to reject a connect request. The argument fd
identified the local transport endpoint of the connection, and call specifies
information associated with the abortive release.

The values in call have different semantics, depending on the context of
the call to Lsnddis. When rejecting a connect request, call must be
non-null and contain a valid value of sequence to uniquely identify the
rejected connect indication to the transport provider. The sequence field is
only meaningful if the transport connection is in the TJNCON state. The
addr and opt fields of call are ignored. In all other cases, call need only
be used when data is being sent with the disconnect request. The addr,
opt and sequence fields of the t_call structure are ignored. If the user does
not wish to send data to the remote user, the value of call may be a null
pointer.

4-134 eTaS/Open API: Networking Services Draft 1.0

(continued)

The udata structure specifies the user data to be sent to the remote user.
The amount of user data must not exceed the limits supported by the
transport provider as returned in the discoll field of the info argument of
Lopen or Lgetinfo. If the len field of udata is zero, no data will be sent to
the remote user.

Procedural Interface

Lsnddis (fd, pCall) " Integer

where

fd

is the file descriptor returned by Lopell.

pCall

is a pointer to a structure call of type t_call, which contains the
following fields:

Offset Field Length

0 addr.maxlen 2

2 addr.len 2

4 addr.pBuf 4

8 opt.maxlen 2

10 opt.len 2

12 opt.pBuf 4

16 udata.maxlen 2

18 udata.len 2

20 udata.pBuf 4

24 sequence 2

Draft 1.0 Transport Layer 4-135

t_snddis (continued)

Request Block

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 8
1 RtCode 1 0
2 nReqPbCb 1 1
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

12 fd 2

14 opcode 2 10

16 reserved 2

18 call.sequence 2

20 call.udata.buf 4
24 call.udata.len 2

4-136 eTOS/Open API: Networking Services Draft 1.0

(continued)

Errors

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TOUTSTATE]

[TBADDATA]

[TBADSEQ]

[TNOTSUPPORT]

[TSYSERR]

Return Value

The specified file descriptor does not refer to a
transport endpoint.

The function was issued in the wrong sequence on
the transport endpoint referenced by fd.

The amount of user data specified was not within
the bounds allowed by the transport provider.
Some outbound data queued for this endpoint may
be lost.

An invalid sequence number was specified, or a
null call pointer was specified when rejecting a
connect request. Some outbound data queued for
this endpoint may be lost.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of
this function.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Lconnect, Lgetinfo, Llisten, Lopen.

Draft 1.0 Transport Layer 4-137

Description

Parameters Before call After call

fd x /

The Lsndrel function is used to initiate an orderly release of a transport
connection and indicates to the transport provider that the transport user
has no more data to send. The argument fd identifies the local transport
endpoint where the connection exists. After calling Lsndrel, the user may
not send any more data over the connection. However, a user may
continue to receive data if an orderly release indication has not been
received.

This function is an optional service of the transport provider and is only
supported if the transport provider returned service type T_COTS_ORD
on Lopen or Lgetinfo.

Procedural Interface

Lsndrel (fd) : Integer

where

fd

is the file descriptor returned by t_open.

4-138 eTOS/Open API: Networking Services Draft 1.0

(continued)

Request Block

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

12 fd 2

14 opcode 2 11

16 reserved 2

Draft 1.0 Transport Layer 4-139

(contfnued)

Errors

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TFLOW]

[TLOOK]

[TNOTSUPPOR T]

[TOUTSTATE]

[TSYSERR]

Return Value

The specified file descriptor does not refer to a
transport endpoint.

O_NONBLOCK was set, but the flow control
mechanism prevented the transport provider from
accepting the function at this time.

An asynchronous event has occurred on this
transport endpoint and requires immediate
attention.

This function is not supported by the underlying
transport provider.

The function was issued in the wrong sequence on
the transport endpoint referenced by fd.

A system error has occurred during execution of
this function.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Lgetinfo, Lopen, Lrcvrel.

4-140 eTOS/Open API: Networking Services Draft 1.0

Description

Parameters Before call After call

fd x /

unitdata.addr.maxlen / /

unitdata.addr.len x /

unitdata.addr .buf x(x) /

unitdata.opt.maxlen / /

unitdata.opUen x /

unitdata.opt.buf 1(1) /

unitdata. udata.maxlen / /

unitdata. udata.len x /

u nitdata. udata. buf x(x) /

The Lsndudata function is used in connectionless mode to send a data unit
to another transport user.

The argument fd identifies the local transport endpoint through which data
will be sent.

In unitdata, addr specifies the protocol address of the destination user, opt
identifies protocol-specific options that the user wants associated with this
request and udata specifies the user data to be sent. The user may· choose
not to specify what protocol options are associated with the transfer by
setting the len field of opt to zero. In this case, the provider may use
default options.

If the len field of udata is zero, and sending of zero octets is not supported
by the underlying transport service, Lsndudata will return -1 with Lerrno
set to [TBADDATA].

Draft 1.0 Transport Layer 4-141

(continued)

By default, Lsndudata operates in synchronous mode and may wait if flow
control restrictions prevent the data from being accepted by the local
transport provider at the time the call is made. However, if
O_NONBLOCK is set (using Lopen) , Lsndudata will execute in
asynchronous mode and will fail under such conditions. The process can
arrange to be notified of the clearance of a flow control restriction using
Llook.

If the amount of data specified in udata exceeds the TSDU size as
returned in the tsdu field of the info argument of Lopen or Lgeninfo, the
provider will generate a protocol error. (See [TSYSERR].) If Lsndudata
is called before the destination user has activated its transport endpoint
(see Lbind), the data unit may be discarded.

The request block for Lsndudata may be outstanding at the transport
provider for an indeterminate amount of time. The transport provider
keeps the request until all possible errors are available to it.

4-142 eTaS/Open API: Networking Services Draft 1.0

(continued)

Procedural Interface

Lsndudata (fd, pUnitdata) : Integer

where

fd

is the file descriptor returned by Lopen.

pUnitdata

is a pointer to a structure unitdata of type t_unitdata, containing the
following fields:

Offset Field Length

0 addr.maxlen 2

2 addr.len 2

4 addr.pBuf 4

8 opt.maxlen 2

10 opt.len 2

12 opt.pBuf 4

16 udata.maxlen 2

8 udata.len 2

20 udata.pBuf 4

Draft 1.0 Transport Layer 4-143

t_sndudata (continued)

Request Block

This is the same request code as is used tor Lrcv and Lrcvudata.

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 3
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

12 fd 2

14 opcode 2 18

16 reserved 2

18 unitdata.addr.pBuf 4
22 unitdata. add r .Ien 2

24 unitdata.opt.pBuf 4
28 unitdata.opt.len 2

30 unitdata.udata.pBuf 4
34 unitdata.udata.len 2

36 puderr .error 4
40 suderr.error 2 4

4-144 eTOS/Open API: Networking Services Draft 1.0

(continued)

where

puderr.error
suderr.error

describe a double word area where the error field for Lrcvuderr is
returned.

Errors

On failure, the procedural interface sets Lerrno equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADDATA]

[TBADF]

[TFLOW]

[TLOOK]

[TNOTSUPPORT]

[TOUTSTATE]

[TSYSERR]

Draft 1.0

Illegal amount of data; zero octets is not supported.

The specified file descriptor does not refer to a
transport endpoint.

O_NONBLOCK was set, but the flow control
mechanism prevented the transport provider from
accepting any data at this time.

An asynchronous event has occurred on this
transport endpoint.

This function is not supported by the underlying
transport provider.

The function was issued in the wrong sequence on
the transport endpoint referenced by Id.

A system error has occurred during execution of
this function. A protocol error may not cause
Lsndudata to fail until a subsequent access of the
transport endpoint.

Transport Layer 4-145

(continued)

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Lopen, Lrcvudata, Lrcvuderr.

4-146 eTOS/Open API: Networking Services Draft 1.0

Description

Parameters Before call After call

fd x /

For the transport endpoint specified by fd, Lsync synchronizes the data
structures managed by the transport library with information from another
user of the same transport endpoint. In doing so, it can convert an
uninitialized file descriptor (possessed by another eTOS task or possibly
obtained using POSIX fork and exec functions) to an initialized transport
endpoint, assuming that file descriptor referenced a transport endpoint, by
updating the necessary library data structures. This function allows two
cooperating processes to synchronize their interaction with a transport
provider.

For example, if a process forks a new process and issues an exec, the new
process must issue a Lsync to build the private library data structure
associated with a transport endpoint and to synchronize the data structure
with the relevant provider information.

It is important to remember that the transport provider treats all users of a
transport endpoint as a single user. If multiple processes are using the
same endpoint, they should coordinate their activities so as not to violate
the state of the transport endpoint. The function Lsync returns the
current state of the transport endpoint to the user, thereby enabling the
user to verify the state before taking further action. This coordination is
only valid among cooperating processes; it is possible that a process or an
incoming event could change the endpoint's state after a Lsync is issued.

If the transport endpoint is undergoing a state transition when Lsync is
called, the function will fail.

Draft 1.0 Transport Layer 4-147

(continued)

Procedural Interface

Lsync (fd) : Integer

where

fd

is the file descriptor returned by Lopen.

Request Block

This is the same request block and request code used for Lgetinfo. It also
shares the same request code as the Loptmgmt request. Lsync uses two
formats for this request.

4-148 eTOS/Open API: Networking Services Draft 1.0

(continued)

Format One: Retrieval of sync data. This request causes the Transport
Provider to issue a T_SENDSYNC event to the oldest other user of this
transport endpoint.

Offset

0
1
2
3
4
6
8
10

12

14

16

18
22

where

opcode

Field

sCntlnfo
RtCode
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode

fd

opcode

reserved

psyncdataret
ssyncdataret

Size
(Bytes)

1
1
1
1
2
2
2
2

2

2

2

4
2

Contents

6
o
o
1

14

is a word. The value of 14 indicates that this request is for the Lsync
retrieval function.

pSyncDataRet
sSyncDataRet

describe a buffer where the complete state of this transport endpoint,
as seen by another user of this endpoint, is returned.

Draft 1.0 Transport Layer 4-149

(continued)

Format Two: Sending of sync data. The XTI library issues this request in
response to receipt of a T_SENDSYNC event (which is never passed on to
the library user).

Offset

0
1
2
3
4
6
8
10

12

14

16

18
22

where

opcode

Field

sCntlnfo
RtCode
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode

fd

opcode

reserved

psyncdata
ssyncdata

Size
(Bytes)

1
1
1
1
2
2
2
2

2

2

2

4
2

Contents

6
o
1
o

15

is a word. The value of 15 indicates that this request is for the Lsync
data send function.

pSyncData
sSyncData

describe a buffer where this user sends the state of this transport
endpoint, as it sees it, to the transport service provider. The format of
this data is transparent to the transport service provider.

4-150 eTaS/Open API: Networking Services Draft 1.0

(continued)

Errors

On failure; the procedural interface sets Lerrllo equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TSTATECHNG]

[TSYSERR]

Return Value

The specified file descriptor does not refer to a
transport endpoint. This error may be returned
when the fd has been previously closed or an
erroneous number may have been passed to the
call.

The transport endpoint is undergoing a state
change.

A system error has occurred during execution of
this function.

On successful completion, the state of the transport endpoint is returned.
Otherwise, a value of -1 is returned and Lerrno is set to indicate an error.
The state returned is one of the following:

T_UNBIND

TJDLE

T_OUTCON

TJNCON

T~ATAXFER

T_OUTREL

TJNREL

Draft 1.0

unbound

idle

outgoing connection pending

incoming connection pending

data transfer

outgoing orderly release (waiting for an orderly
release indication)

incoming orderly release (waiting for an orderly
release request)

Transport Layer 4-151

Description

Parameters Before call After call

fd x /

The Lunbind function disables the transport endpoint specified by fd
which was previously bound by Lbind. On completion of this call, no
further data or events destined for this transport endpoint will be accepted
by the transport provider.

Procedural Interface

Lunbind (fd) : Integer

where

fd

is the file descriptor returned by Lopen.

4-152 eTOS/Open API: Networking Services Draft 1.0

(continued)

Request Block

Size
Offset Field (Bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

12 fd 2

14 opcode 2 12

16 reserved 2

Errors

On failure, the procedural interface sets Lernzo equal to one of the
following errors (which are returned in the ercRet field of the request
block):

[TBADF]

[TOUTSTATE]

[TLOOK]

[TSYSERR]

Draft 1.0

The specified file descriptor does not refer to a
transport endpoint.

The function was issued in the wrong sequence.

An asynchronous event has occurred on this
transport endpoint.

A system error has occurred during execution of
this function.

Transport Layer 4-153

(continued)

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and Lerrno is set to indicate an error.

See Also

Lbind.

4-154 eTOS/Open API: Networking Services Draft 1.0

Using the Transport Layer Interface

Transport Layer Interface Sequence of Functions

In order to describe the allowable sequence of function calls, this section
gives some rules regarding the maintenance of the state of the interface:

• It is the responsibility of the transport provider to keep record of the
state of the interface as seen by the transport user.

• The transport provider will never process a function that places the
interface out of state.

• If the user issues a function out of sequence, the transport provider
will indicate this were possible through an error return on that
function. The state will not change. In this case, if any data is
passed with the function when not in the TJ)ATAXFER state, that
data will not be accepted or forwarded by the transport provider.

• The uninitialized state (T_UNINIT) of a transport endpoint is the
initial state, and the endpoint must be initialized and bound before
the transport provider may view it as active.

• The uninitialized state is also the final state, and the transport
endpoint must be viewed as unused by the transport provider. The
CcloseO function will close the transport provider and free the
transport library resources for another endpoint.

• According to the state table in the section entitled State Tables,
CcloseO should only be issued from the T_UNBND state. If it is
issued from any other state and no other user has that endpoint open,
the action will be abortive, the transport endpoint will be successfully
closed, and the library resources will be freed for another endpoint.
When CcloseO is issued, the transport provider must ensure that the
address associated with the specified transport endpoint has been
unbound from that endpoint. Also, the provider should send
appropriate disconnects if CcloseO is not issued from the unbound
state.

Draft 1.0 Transport Layer 4-155

The following rules apply only to the connection-mode transport service:

• The transport connection release phase can be initiated at any time
during the connection establishment phase or data transfer phase.

• The only time the state of a transport service interface of a transport
endpoint may be transferred to another transport endpoint is when
the LacceptO function specifies such action. The following rules
then apply to the cooperating transport endpoints:

- The endpoint that is to accept the current state of the interface
must be bound to an appropriate protocol address and must be in
the T_IDLE state.

- The user transferring the current state of an endpoint must have
correct permissions for the use of the protocol address bound to
the accepting transport endpoint.

- The endpoint that transfers the state of the transport interface is
placed into the T_IDLE state by the transport provider after the
completion of the transfer if there are no more outstanding
connect indications.

Example in Connection-Oriented Mode

The following table shows the allowable sequence of functions of an active
user and passive user communicating using a connection mode transport
service. This example is not meant to show all the functions that Inust be
called but rather to highlight the important functions that request a
particular service. Blank lines are used to indicate that a function would
be called by another user prior to a related function being called by the
remote user. For example, the active user calls LconnectO to request a
connection and the passive user would receive an indication of the connect
request (using the return from LlistenO) and then would call the LacceptO.

The state diagram that follows shows the flow of the events through the
various states. The active user is represented by a solid line and the
passive user is represented by a dashed line. This example shows a
successful connection being established and terminated using connection­
mode transport service without orderly release.

4-156 eTOS/Open API: Networking Services Draft 1.0

Active User Passive User

LopenO LopenO
LbindO LbindO

LlistenO
LconnectO

LacceptO
LrcvconnectO
LsndO

LrcvO
LsnddisO

LrcvdisO
LunbindO LunbindO
LcloseO LcloseO

Draft 1.0 Transport Layer 4-157

Example in Connectionless Mode

The following table shows the allowable sequence of functions of a user A
and user B communicating using a connectionless transport service. This
example is not meant to show all the functions that must be called but
rather to highlight the important functions that request a particular service.
Blank lines are used to indicate that a function would be called by another
user prior to a related function being called by the remote user.

The state diagram that follows shows the flow of the events through the
various states. This example shows a successful exchange of data between
the user A and the user B.

User A

LopenO
LbindO
Lsn du data 0

LunbindO
LcloseO

User B

LopenO
LbindO

LrcvudataO
LunbindO
LcloseO

4-158 eTaS/Open API: Networking Services Draft 1.0

Writing Protocol Independent Software

In order to maximize portability of XTI applications between different
kinds of machines and to support protocol independence, there are some
general rules:

1. An application should only make use of the functions and mech­
anisms described as being mandatory features of XTI.

2. In the connection-mode service, the concept of a transport service
data unit (TSDU) may not be supported by all transport providers.
The user should make no assumptions about the preservation of
logical data boundaries across a connection.

3. If an application is not intended to run only over an ISO transport
provider, then the name of device should not be hard-coded into it.
While software may be written for a particular class of service (for
instance, connectionless-mode service), it should not be written to
depend on any attribute of the underlying protocol.

4. The protocol-specific service limits returned on the LopellO and
LgeninfoO functions must not be exceeded. It is the responsibility of
the user to access these limits and then adhere to the limits through­
out the communication process.

5. The user program should not look at or change options that are
specific to the underlying protocol. The Loptmgmt() function enables
a user to access default protocol options from the transport provider,
which may then be blindly passed as an argument on the appropriate
connect establishment function. Optionally, the user can choose not
to pass options as an argument on connect establishment functions.

6. Protocol-specific addressing issues' should be hidden from the user
program. Similarly, the user must have some way of accessing
destination addresses in an invisible manner, such as through a name
server. However, the details for doing so are outside the scope of this
interface specification.

Draft 1.0 Transport Layer 4-159

7. The reason codes associated with LrcvdisO are protocol dependent.
The user should not interpret this information if protocol indepen­
dence is a concern.

8. The error codes associated with LrcvuderrO are protocol dependent.
The user should not interpret this information if protocol indepen­
dence is a concern.

9. The optional orderly release facility of the conncetion-mode service
(that is, LsndrelO and LrcvrelO) should not be used by programs
targeted for multiple protocol environments. This facility is not
supported by all connection based transport protocols. In particular,
its use will prevent programs from successfully communicating with
ISO open systems.

4-160 eTOS/Open API: Networking Services Draft 1.0

A
Error Codes

Error Codes

This appendix lists error codes returned by the Protocol Manager, the Link
Layer, and XTI.

Protocol Manager Error Codes

Mnemonic

ErclnvalidSize

ErcNoSpace

ErcBadDeinstall

Draft 1.0

Code

53312

53313

53314

Description

An invalid size is specified in the
request pb/cbs. This error code is
returned to an application if it
specifies an invalid request or response
cb size.

This code is returned to an application
making a register request (either a
Link Layer or Link Client) if the
maximum number of applications as
specified in the installation have
already been registered.

Protocol Manager is active, that is,
some Link Layers or Link Clients are
registered. This error code is returned
to the Deinstall utility if some of the
Link Layers or Link Clients are active
(registered with Protocol Manager).
Note that Protocol Manager
deinstallation is not allowed in this
case.

Error Codes A-I

Mnemonic

ErcInvalidName

ErcDuplicateN arne

ErcBadRetSize

ErcInvalidSDF

ErcInvalidUser

ErcN otRegistered

Code Description

53315 The name specified in a request is
invalid. This error is returned if the
length of name or node name specified
in a request is invalid. A name is
invalid if it is nlore than 12 characters.
A node name is invalid if it has more
than 12 characters or has mismatched
braces (right brace missing).

53316 The name specified in a register
request is already registered with the
Protocol Manager. This error will be
returned to a Link Layer or Link
Client when it makes a register request
and the name specified in the request
is already registered with Protocol
Manager.

53317 The size of the returned information is
not sufficient. Invalid value in
response pb/cbs.

53318 Invalid SD File format. The Protocol
Manager returns this error if the Link
Layer Name in the SD file (the first
parameter) is invalid.

53319

53320

Invalid User number on a Deregister
request received from a Link Layer or
Link Client (a different user number
than the one used in the original
Register request).

The Link Layer is not installed on the
system. Returned to a Link Client
when it makes the RequestLinkLayer
request or to a Link Layer making a
Deregister or Update request.

A-2 eTaS/Open API: Networking Services Draft 1.0

Mnemonic Code

ErcDeinsCM 53321

ErcDeinsOS 53322

Description

Returned to a deinstall request when
request was issued on a different
workstation.

Returned to a deinstall request when
the program is executing on a single
partition real-mode operating system.

Link Layer Error Codes

Mnemonic

ErcAlreadyOpen

ErcN oAddress

ErcNotOpen

ErcWrongUser

ErcBadCommand

ErcN otSupported

ErcXmtDataTrunc

Draft 1.0

Code Description

31100 The station address is already in use.

31101 The station address is not configured
or there are no more free addresses
(LSAPs).

31102 An attempt was made to access an
unopen station. This error code is
returned if an operation other than
OpenStation and DirectLink is issued
before OpenStation.

31103 A service was requested by someone
other than the opening user.

31104 Undefined command in DirectLink.

31105 A defined command which is not
supported by this Link Layer was used
in DirectLink.

31106 The buffer size given in
WriteDLFrame request is larger than
the maximum frame install parameter
(if any).

Error Codes A-3

Mnemonic

ErcRcv DataTrunc

ErcN ullBuffer

ErcLineDown

ErcAborted

ErcReqCanceled

ErcDeinstOS

ErcDeinstCM

ErcLLActive

ErcBadRetSize

ErcBadLLName

ErcSwapped

ErclnvalidSDF

Code Description

31107 Received frame is larger than the
maximum frame install parameter or
buffer provided in ReadDLFrame
request. The excess data is lost.

31108 The buffer size specified in Read or
WriteDLFrame request is zero.

31109 The Line (media) is inoperable.

31110 Abort or terminate condition.

31111 An outstanding request was canceled
due to a DirectStation cancel COlll­

mand.

31112 Attempt to deinstall on a
single-partition operating system or
attempt to deinstall from a remote
workstation.

31113 Deinstall request when the Context
Manager is installed.

31114 Deinstall request when there is a Link
Client or the Link Layer is active.

31125 The request code list or station
information buffer is too small.

58200 Duplicate or invalid Link Layer name.

58201 CM Swapping condition response.

58203 The specified SDF file is either invalid
or nonexistent.

A-4 eTOS/Open API: Networking Services Draft 1.0

Mnemonic

ErcInvalidSDStringFmt

ErcInvalidSDContent

ErcBufferTooSmall

ErcDeinstallLink

ErcBadLinkClientN arne

ErcBadInstallParam

ErcBadDataSize

ErcGroupAddrDetect

ErcStnClosed

ErcInvalidState

Draft 1.0

Code

58204

58205

58207

58208

58209

58211

58212

58213

58217

58218

Description

The passed SD string is invalid.

The information in the SD string is not
valid for this Link Layer.

The buffer passed to the Link Layer is
too small to use.

There has been a fatal error in the
link. Deinstall the link and restart.

The Link Client Name passed in the
request was invalid.

Invalid parameter value specified
during installation.

The size of the data passed to the Link
Layer is incorrect.

A message was received with a
broadcast or multicast address.

A CloseStation request was received.
This error code is returned with the
read/write requests which are queued
up in the Link Layer.

This error is returned by the link if it
receives a request when it is in an
invalid state. For example: A
WriteDLFrame (I-Frame) command
before a link connection is active.

Error Codes A-5

Mnemonic

ErcReceiveTruncation

ErcInvalidLSAPSpec

ErcLinkReset

ErcInvalidFrameSpec

ErcN oResources

Code

58219

58224

60211

60212

60213

Description

This error code, like 31107
(ErcRcvDataTrullc), indicates that the
received frame is larger than the buffer
provided in ReadDLFrame. However,
this error code indicates that the
remaining data is still available and
will be returned on the next
ReadDLFrame.

Invalid remote LSAP specification for
this Link Layer.

This error code indicates that an estab­
lished link connection has been reset
at Layer Two and is reestablished. All
outstanding WriteDLFrame requests
are returned with this status code if
LAPD or the network resets the
connection.

Invalid frame type specification for
this Link Layer.

This error code indicates that the Link
Layer has run out of some resource.
When returned in response to a
ReadDLFrame or WriteDLFrame
request, it indicates that the client has
issued too many of these requests
simultaneously.

60214 Reserved for future use by Link Layer
API.

60215 Reserved for future use by Link Layer
API.

60216 Reserved for future use by Link Layer
API.

A-6 eTOS/Open API: Networking Services Draft 1.0

Mnemonic Code

ErcLinkDown 60217

Xli Error Codes

Description

This error code indicates that the link
connection has been released or has
not been established.

This error is returned to the
OpenStation request or DirectStation
(bCommand = OpenLogicalLink or
ResetLogicaILink). It indicates that
the link layer could not establish or
reset a link connection on behalf of
the user and that the link connection is
down.

All outstanding WriteDLFrarne re­
quests are returned with this status
code if the network releases the
connection.

The range 60113 to 60210 is reserved for the Transport Layer APi.

Mnemonic Code Description

ErcBadAddress 60113 Corresponds to [TBADADDR].

ErcBadOption 60114 Corresponds to [TBADOPT].

ErcAccess 60115 Corresponds to [T ACCES].

ErcBadfd 60116 Corresponds to [TBADF].

ErcNoAddress 60117 Corresponds to [TNOADDR].

ErcOutOfState 60118 Corresponds to [TOUTST ATE].

ErcInvalidSeq N urn 60119 Corresponds to [TBADSEQ].

Draft 1.0 Error Codes A-7

Mnemonic Code Description

ErcTLook 60121 Corresponds to [TLOOK].

ErcUDataTooLong 60122 Corresponds to [TBADDATA].

ErcBufferOverflow 60123 Corresponds to [TBUFOVFLW].

ErcFlowControl 60124 Corresponds to [TFLOW].

ErcNoData 60125 Corresponds to [TNODATA].

ErcNoDisID 60126 Corresponds to [TNODIS].

ErcNoUnitData 60127 Corresponds to [TNOUDERR].

ErcBadFlag 60128 Corresponds to [TBADFLAG].

ErcN oOrderly Release 60129 Corresponds to [TNOREL].

ErcN otSupported 60130 Corresponds to [TNOTSUPPORT].

ErcStateChange 60131 Corresponds to [TSTATECHNG].

ErcN oSuchStruct 60132 Corresponds to [TNOSTRUCTfYPE].

ErcBadName 60133 Corresponds to [TBADNAME].

ErcBadQueueLength 60134 Corresponds to [TBADQLEN].

ErcAddressBusy 60135 Corresponds to [TADDRBUSY].

NOTE: rTSYSERR] is returned by the XTI library whenever the response
error code is outside the bounds 60113-60210.

A -8 eTaS/Open API: Networking Services Draft 1.0

B
Link API Event Codes

Event Codes

Event codes are returned by the ReadDLFrame request if needed by the
application.

Catastrophic events (recommended action is to Deinstall the Link Layer
or reboot):

03 Internal catastrophic event.

Critical events (reconfiguration recommended):

11 Buffer resources exhausted.

Other events (no action is required):

20 Line active subsequent to a line down event (33).

21 Write I-frame confirmed.

29 FRMR returned.

Operational events (operator intervention is or may be required):

33

34

35

Draft 1.0

Line or physical link down (examples are DSR off for a
modem connection, or disconnection from the ring for
Token Ring).

Link down due to security problem.

Logical Link up (examples: SABM, SNRM, SABME
received while Link is down).

Link API Event Codes B-1

36 Logical Link down (example: DISC received while Link
is up).

37 Logical Link reset (examples: SABM, SNRM, SABME
received while Link up).

Operational events (programmatic intervention may be required):

40 Connect Indication

41 Disconnect Indication

42 Reset

43 Flow control (the byte following RemoteLSAPData is zero
if the remote node has just sent its first RR following an
RNR, and non-zero if the remote node has just sent its
first RNR).

B-2 eTaS/Open API: Networking Services Draft 1.0

c
Transport API Definitions

XTI Library Error Codes

Mnemonic Code Description

TBADADDR 1 Incorrect address format

TBADOPT 2 Incorrect option format

TACCES 3 Incorrect permissions

TBADF 4 Illegal transport fd

TNOADDR 5 Couldn't allocate addr

TOUTSTATE 6 Out of state

TBADSEQ 7 Bad call sequence number

TSYSERR 8 System error

TLOOK 9 Event requires attention

TBADDATA 10 Illegal amount of data

TBUFOVFLW 11 Buffer not large enough

TFLOW 12 Flow control

TNODATA 13 No data

TNODIS 14 DisconJnd not found on queue

TNOUDERR 15 Unit data error not found

Draft 1.0 Transport API Definitions C-J

TBADFLAG

TNOREL

TNOTSUPPORT

TSTATECHNG

TNOSTRUCTYPE

TBADNAME

TBADQLEN

TADDRBUSY

16

17

18

19

20

21

22

23

Xli Library Event Codes

Mnemonic

T.LISTEN

T_CONNECT

T-DATA

T-EXDATA

T-DISCONNECT

T_UDERR

T_ORDREL

T_GODATA

Code

000lh

0002h

0004h

0008

0010h

0040h

0080

0100

0200

8000

Bad flags

No orderly release found on queue

Primitive not supported

State is in process of changing

Unsupported struct-type requested

Invalid transport provider name

Queue length is zero

Address in use

Description

Connection indication received

Connect confirmation received

Normal data received

Expedited data received

Disconnect received

Datagram error indication

Orderly release indication

Sending normal data is again possible

Sending expedited data is again
possible

The transport service provider requests
this transport service client to send
sync data, so that another user of this
endpoint can be synchronized.

C-2 CTOS/Open API: Networking Services Draft 1.0

XTI Library Flag Definitions

Mnemonic Code Description

T_MORE 00lh More data

T_EXPEDITED 0021h Expedited data

T_NEGOTIATE 004h Set options

T_CHECK 008h Check options

T~EFAULT 010h Get default options

T_SUCCESS 020h Successful

TYAILURE 040h Failure

XTI Library Service Type Definitions

Mnemonic Code Description

T_COTS 01 Connection-oriented transport service

T_COTS_ORD 02 Connection-oriented with orderly
release

T_CLTS 03 Connectionless transport service

XTI Library State Codes

Mnemonic Code Description

T_UNBIND 1 Unbound

T_IDLE 2 Idle

T_OUTCON 3 Outgoing connection pending

TJNCON 4 Incoming connection pending

T~ATAXFER 5 Data transfer

Draft 1.0 Transport API Definitions C-3

6 Outgoing release pending

7 Incoming release pending

Xli General Purpose Values

Mnemonic Code

T_YES 1

T_NO 0

T_UNUSED -1

T_NULL 0

T_ABSREQ 8000h

Xli Flags for t_open

Mnemonic

O_RDWR

O_NONBLOCK

Code

0002h

0004h

2000h

4000h

Description

Read/Write flag

If set, indicates that Non-Blocking
mode is requested.

If set, indicates that the
pbProviderName parameter for copen
points to a Parameter Definition File,
which contains the actual Provider
Name and possible additional
parameters.

If set, indicates that that
pbProviderName parameter for Copen
points to a string which contains both a
Provider Name and a Parameter
Definition String.

C-4 CTOS/Open API: Networking Services Draft 1.0

Specific ISO Option and Management Parameters

Mnemonic Code

T_CLASSO 0

T_CLASS1 1

T_CLASS2 2

T_CLASS3 3

T_CLASS4 4

T_PRITOP 0

T_PRIHIGH 1

T_PRIMID 2

T_PRILOW 3

T_PRIDFLT 4

T_NOPROTECT 1

T_PASSIVEPROTECT 2

T_ACTIVEPROTECT 4

T_LTPDUDFLT 128

Draft 1.0 Transport API Definitions C-5

TCP Specific Environment

Mnemonic Code

TYOUTINE 0

T_PRIORITY 1

TJMMEDIATE 2

TYLASH 3

T_OVERRIDEFLASH 4

T_CRITIC_ECP 5

TJNETCONTROL 6

T_NETCONTROL 7

C-6 CTOS/ Open API: Networking Services Draft 1.0

o
ISO Transport Protocol Information

This appendix describes the protocol-specific information that is relevant
for ISO transport providers.

Generalities

Protocol Address

In an ISO environment, the protocol address is the T-Address (Transport
Address). This contains the Transport Service Access Point (TSAP) and
Network Service Access Point (NSAP) for both the local and the remote
nodes.

Sending Zero Octets of Data

The transport service definition, both in connection-oriented mode and in
connectionless mode, does not permit transmission of a TSDU of zero
octets. So, if a nbytes or len parameter is set to zero, the call to Lsnd or
Lsndudata call will always return unsuccessfully with ~ 1 and Lerrno set to
[TBADDATA].

Expedited Data

In connection-oriented mode and when the transport class permits it,
expedited data option must be negotiated during the connection estab­
lishment phase. In connectionless mode, this feature is not supported.

Draft 1.0 ISO Transport Protocol Information D-l

Option Structure and Parameters

What follows is a description of the ISO options and options structure for
both connection-mode and connectionless-mode transport.

Connection Mode

The functions Laccept, Llisten, Lconnect, Lrcvconnect, and Loptmgmt
contain an opt argument which is of type struct netbuf. The opt.buf
argument of the netbuf structure should point to a isoco_options
structure which contains the following parameters of quality of service:

Size
Offset Field (Bytes) Contents

0 throughput 32 thrpt structure containing throughput

32 transdel 16 reqvalue structure containing transit
delay

48 reserrorrate 8 rate structure containing residual
error rate

56 transffailprob 8 rate structure containing transfer
failure probability

64 estfailprob 8 rate structure containing connection
establishment failure probability

72 relfailprob 8 rate structure containing connection
release failure probability

80 estdelay 8 rate structure containing connection
establishment delay

88 reldelay 8 rate structure connection release
delay

96 connresil 8 netbuf structure connection
resilience

104 protection 2 protection valve

106 priority 2 priority valve

108 mngmt 13 management structure containing
management parameters

121 expd expedited data: T_YES or T_NO

D-2 eTOS/Open API: Networking Services Draft 1.0

Where 'the rate structure contains:

Offset

o
4

Field

targetvalue

minacceptvalue

Size
(Bytes)

4

4

The reqvalue structure contains:

Offset

o
8

Field

called

calling

Size
(Bytes)

8

8

The thrpt structure contains:

Size
Offset Field (Bytes)

0 maxthrpt 16

16 avgthrpt 16

Contents

target value

minimum acceptable value

Contents

rate structure containing called rate

rate structure containing calling rate

Contents

reqvalue structure containing
maximum throughput

reqvalue structure containing average
throughput

Draft 1.0 ISO Transport Protocol Information D-3

The management structure contains:

Offset Field

o dflt

2 Itpdu

4 reastime

6 class

7 altclass

8 extform

9 flowctrl

10 checksum

11 netexp

12 netrecptcf

General Remarks

Size
(Bytes)

2

2

2

Contents

T_YES: the following parameters are
ignored: default values are used

T _NO: the following parameters are
used:

maximum length of TPDU (in octets)

reassignment time (in seconds)

preferred class; value:
T _CLASSO-T _CLASS4

alternative class

extended format: T_YES or T_NO

flow control: T _YES or T _NO

checksum (cl. 4): T_ YES or T _NO

network expedited data: T_YES or
T_NO

receipt confirmation: T _YES or T _NO

• Unused fields (values or flags) should be set to T_UNUSED.

• If used, the flag fields (extform, flowctrl, checksum, netexp,
netrecptcf and expd) will be set to either T_YES or T_NO.

• If the user does not want to define any option, the options pointer is
set to the null pointer.

• When the variable opt is used as output parameter (on calling
Clisten) the item opt.buf will point, before the call, to an initialized
isoco_options structure.

• If the user does not want to specify some requirements concerning
the QOS parameters (except protection and priority), the parameter
must be set to T_UNUSED.

D-4 eTOS/ Open API: Networking Services Draft 1.0

• In the rate structure, the two fields which contain the ratio of lost
or erroneous TSDUs to total TSDUs transmitted are expresssed as
a power of 10. The implicit length of TSDU is 128 octets.

• The reqvalue structure is used to describe the throughput and the
transit delay. In the reqvalue structure, the millacceptvalue field of
struct rate contains the minimum acceptable value for throughput
and the maximum acceptable value for transit delay. These fields
may be set to 0 if the throughput or transit delay are not absolute
(mandatory) requirements for the user.

• For the throughput field, if avgthrpt (average throughput) is not
defined (both fields set to T_UNUSED), XTI considers that the
average throughput has the same values as the maximum throughput
(maxthrpt).

• The priority field may be set by one of the five following symbolic
constants to define the level of priority:

TYRIDFLT

T_PRILOW

T_PRIMID

T_PRIHIGH

T_PRITOP

lower level (default level)

low level

medium level

high level

higher level of priority

The priority field is not considered as a mandatory requirement. If
the transport provider does not support this feature, it will ignore
this user requirement.

• The protection field defines the general level of protection. Several
levels are defined. The symbolic constants listed below are used as
flags to specify the required level of protection:

T_NOPROTECT no protection feature

T_PASSIVEPROTECT protection against passive monitoring

Draft 1.0 ISO Transport Protocol Information D-5

T.-ACTIVEPROTECT protection against modification, re­
play, deletion or addition

Both T_PASSlVEPROTECT and T_ACTIVEPROTECT may be
set simultaneously but are exclusive with T_NOPROTECT. If the
T_ACTIVEPROTECT or T_PASSIVEPROTECT flags are set, the
user may indicate that this is an absolute requirement by also setting
the T_ABSREQ flag. In this case, the function called will fail if the
transport provider cannot respect this condition.

Connectionless Mode

In connectionless mode, the functions Lsndudata, Lrcvudata and
Loptmgmt called to send or receive a data unit, or retrieve information,
use a variable, unitdata.opt, as input or output parameter. This variable,
whose type is struct netbuf, comprises a field, opt.buf, which must point
to a struct isocl_options. This structure contains:

Size
Offset Field (Bytes) Contents

a transdel 2 struct rate transit delay

2 reserrorrate 2 struct rate residual error rate

4 protection 2

4 priority 2

where struct rate is as defined for connection-oriented options.

General Remarks

• The value of the standard priority for the priority field is
T_PRIDFLT. The definition of the priority field is the same as in
connection-oriented mode.

• For the transit delay field (transdel) , if described, the
minacceptvalue field is considered as containing a mandatory
requirement. Otherwise the user should set it to T_UNUSED.

D-6 eTaS/Open API: Networking Services Draft 1.0

• For the reserrorrate field, see the remarks for the same parameters
in the section on Connection Mode.

• On the call to Lrcvudata, the variable unitdata.opt is used as an
output parameter. As described in Connection Mode, the user
must provide an initialized isocl_options structure.

• The transit delay parameter is the most important and useful in
Connectionless mode.

Warnings on the Use of Option Parameters

Both sections above describe a mechanism for selecting and/or
negotiating options in connection or connectionless mode through the
Transport Service interface. It is important to note that:

• Some of the parameters listed are not well defined (by ISO) in
terms of their use and interpretation; these parameters are:

protection

transfer failure probability

connection resilience

Consequently, the use of these parameters is not recommended
until their use is better defined.

• Management options may be selected by some other (local) means,
and the list of management options may be extended to include
other such options related to any particular Transport Service
implementation.

• Ultimately, a provider may ignore all selections, except in the case
where a mandatory selection cannot be supported; in this case, the
provider will refuse the selection.

Draft 1.0 ISO Transport Protocol Information D-7

Class Limitation of Some Parameters

The fields listed below are significant only in the following cases:

expd if class > 2 or class 2 with the explicit flow control option
selected

protection if class> 0

flowctrl if class = T_CLASS2

checksum if class = T _CLASS4

netexp if class = 1

netrecptcf if class = 1

Default Values

The following table provides the default values of some parameters when
the corresponding fields are set to T_UNUSED or, for all except the first
two, when the dflt field in the structure management is set to T_YES by
the user.

Field Name Default Value Meaning

expd T_NO no expedited flow

priority T_PRIDFLT standard priority

checksum T_NO no checksum

extform T_NO no extended format

flowctrl T_YES flow control

netrcptcf T_NO no receipt confirmation

netexp T_NO no network expedited data

Itpdu T _L TPDUDFL T length of TPDU

The fields class, altclass and reastime are system and connection
dependent.

D-8 eTOS/Open API: Networking Services Draft 1.0

Functions

Laccept

The parameter call.udata.len must be in the range 0 to 32. The user
may send up to 32 octets of data when accepting the connection.

If fd is not equal to resfd, resfd should have been bound to the same
address as fd, with the qlen parameter set to 0 when the Lbind was
called for that resfd.

A process can listen for an incoming indication on a given fd and then
accept the connection on another endpoint, resfd, which has been
bound to the same or a different protocol address with the qlen
parameter (of the Lbind function) set to o. The protocol address
bound to the new accepting endpoint (resfd) should in general be the
same as the listening endpoint (Jd), because at the present time, ISO
8072, Transport Service Definition does not authorize acceptance of an
incoming connection indication with a responding address different
from the called address except under certain conditions (see IS 8047,
Paragraph 12.2.4, Responding address), but it also states this may be
changed in the future.

Lbind

The addr field of the t_bind structure represents the local TSAP.

Lconnect

The sndcall.addr structure specifies the remote called TSAP. In the
present version, the returned address set in rcvcall.addr will have the
same value.

If the user chooses to negotiate options, the sndcall.opt structure must
point to the isoco_options structure. The setting of the sndcall.udata
is optional for ISO connections but with no data, the len field of udata
must be set to O. The maxlen and buf fields of the netbuf structure
pointed to by rcvcall.addr and rcvcall.opt must be set before the call.

Draft 1.0 ISO Transport Protocol Information D-9

Clisten

The call.addr structure contains the remote calling TSAP. Since at
most 32 octets of data will be returned with the connect indication,
call.udata.maxlen should be set to 32 before the call to Clisten.

If the user has set qlen greater than 1 (on the call to Cbind), the user
may queue up several connect indications before responding to any of
them. The user should be forewarned that the ISO transport provider
may start a timer to be sure of obtaining a response to the connect
request in a finite time. Thus, if the user enqueues the connect
indications for too long a time before responding to them, the transport
provider initiating the connection will disconnect it.

Copen

The function Copen is called at the first step in the initialization of a
transport endpoint. This function returns various default character­
istics of the underlying transport protocol by setting fields in the t_info
structure.

The following should be the values returned by the call to Copen with
an ISO transport provider:

Parameters Before Call After Call
Connection Connection less

name x / /

oflag x / /

info.addr / x x

info.options / x x

info.tsdu / -1 -1

info.etsdu / 16 -2

info.connect / '1'1 '1 c.. -c..

info.discon / 64 -2

info.servtype / T_COTS T_CLTS

D-10 eTOS/Open API: Networking Services Draft 1.0

Lrcvconnect

On return, the call.addr structure contains the remote calling TSAP.
Since at most 32 octets of data will be returned to the user,
call.udata.maxlen should be set to 32 before the call to Lrcvconnect.

Lrcvdis

Since at most 64 octets of data will be returned to the user,
discoll.udata.maxlen should be set to 64 before the call to Lrcvdis.

Lrcvudata

The ullitdata.addr structure specifies the remote TSAP. The quality of
service associated with the received data unit is returned in the
isocLoptions structure pointed to by unitdata.opt.buf. If the
T.-MORE flag is set, an additional call to Lrcvudata is needed to
retrieve the entire TSDU. Only normal data is returned via a call to
Lrcvudata.

Lrcvuderr

The uderr.addr structure contains the remote TSAP. The
isocl_options structure pointed to by uderr.opt.buf identifies the quality
of service associated with the data unit received.

Lsnddis

Since at most 64 octets of data may be sent with the disconnect,
call.udata.len will have a value less than or equal to 64.

Lsndudata

The unitdata.addr structure specifies the remote TSAP. If the user
chooses to associate quality of service with this request, the
unitdata.opt structure must point to the isocl_options structure. An
ISO connectionless transport service does not support the sending of
expedited data.

Draft 1.0 ISO Transport Protocol Illformation D-ll

E
Internet Transport Specific Information

This appendix describes the protocol-specific information that is relevant
for TCP and UDP transport providers.

Generalities

• T~ORE flag and TSDUs

The notion of TSDU is not supported by a TCP transport provider,
thus the T_MORE flag shall be ignored when TCP is used. The
TCP PUSH flag cannot be used through the XTI interface because
Section 9.2.7 from [ref 3] states that: "Successive pushes may not
be preserved because two or more units of pushed data may be
joined into a single pushed unit by either the sending or receiving
TCP. Pushes are not visible to the receiving Upper Level Protocol
and are not intended to serve as a record boundary marker."

• Expedited data

Normal and expedited flows are not two distinct flows in TCP.
Once the send window is filled, the local process is not allowed to
send any data, normal or expedited. When the send window opens
again, it is open for both normal and expedited data. Expedited
data cannot be sent by UDP.

Draft 1.0 Internet Transport Specific Information E-1

• Orderly release

The orderly release functions, Lsndrel and Lrcvrel, were defined to
support the orderly release facility of TCP. However, its use is not
recommended so that applications using TCP may be ported to use
an ISO transport provider. The specification of TCP states that
only established connections may be closed with orderly release,
(such as on an endpoint in TJ)ATAXFER state) .

• Timeouts

It is not possible to redefine a new value for the timeout on each
TCP request. The user can specify a value at the time of connec­
tion establishment which is flXed for the life of the connection.

Option Parameters

What follows is a description of the protocol-specific transport options
for TCP and UDP.

Connection Mode: TCP

The functions Laccept, Llisten, Lconnect, Lrcvconnect, and Loptmgmt
contain an opt argument which is of type struct netbuf. The opt.buf
argument of the netbuf structure should point to a tcp_options structure
which contains:

Offset Field

0 precedence

2 timeout

8 ma)Lseg_size

12 secopt

Size
(Bytes)

2

4

4

10

Contents

abort timeout (expressed in
milliseconds for TCP)

maximum segment size

secoptions structure containing
security options for TCP

£-2 eTOS/ Open API: Networking Services Draft 1.0

where the secoptions structure contains:

Size
Offset Field (Bytes)

0 security 2

2 compartmente 2

4 handling 2

6 tcc 4

General Remarks

Contents

security field

compartment

handling restrictions

transmission control code

• Unused fields (values or flags) should be set to T_UNUSED.

• If the user does not want to define any option, the options pointer is
set to the null pointer.

• When the variable opt is used as output parameter (on calling
Llisten) the item opt.buf will point, before the call, to an initialized
tcp_options structure.

• If the user does not want to specify some requirements, the
corresponding parameters must be set to T_UNUSED.

• The precedence field is used to express the precedence level in TCP.
It may be set to one of the following symbolic constants:

Draft 1.0

T~OUTINE

TYRIORITY

T_IMMEDIATE

T_FLASH

T_OVERRIDEFLASH

T_CRITIC~CP

Internet Transport Specific Information E-3

TJNETCONTROL

T_NETCONTROL

• The four parameters of the secoptions structure are provided to
define the security options:

1. The security field defines the general level of security.

2. The compartment field defines the compartment parameter.

3. The handling field defines the handling restrictions parameter.

4. For the tcc field which defines the transmission control code,
only the 3 low-order bytes are used.

Connectionless Mode: UDP

UDP uses no options, so the opt arguments to Lsnddata and Lrcvudata
should be set to zero or the null pointer, as appropriate.

Functions

Laccept

Since data may not be sent with a connect accept, call.udata.len must
be set to zero.

Lbind

The addr field of the t_bind structure represents the local socket.

Lconnect

The sndcall.addr structure specifies the remote socket. In the present
version, the returned address sel in rcvcall.addr will have the same
value.

If the user chooses to negotiate options, the sndcall.opt structure must
point to the tcp_options structure. Since data may not be sent with a
Lconnect, sndcall.udata.len must be set to zero.

E-4 eTOS/Open API: Networking Services Draft 1.0

Clisten

Since data may not be sent with a connect, call.udata.maxlen must be
set to zero before the call to Clisten. The call.addr structure contains
the remote calling socket.

copen

The function copen is called at the first step in the initialization of a
transport endpoint. This function returns various default character­
istics of the underlying transport protocol by setting fields in the t_info
structure.

The following should be the values returned by the call to copen and
cgetinfo with the indicated transport providers:

Parameters Before Call After Call
TCP UDP

name x I I

oflag x I I

info.addr I x x

info.options I x -2

info.tsdu I 0 x

info.etsdu I -1 -2

info. connect I -2 -2

info.discon I -2 -2

info.servtype I T_COTS or T_CLTS
T_COTS_ORD

Draft 1.0 Internet Transport Specific Information E-5

Lrcv

The T~ORE flag should be ignored. It T~XPEDITED flag is set,
out-of-band data is received.

Lrcvconnect

Since data may not be sent with a connect, call.udata.maxlen must be
set to zero before the call to t_rcvconnect. On return, the call.addr
structure contains the remote calling socket.

Lrcvdis

Since data may not be sent with a disconnect, the discon.udata
structure will not be meaningful.

Lrcvudata

No options are supported by UDP, so unitdata.opt.maxlell should be
zero.

Lsnd

The T_MORE flag should be ignored. If T~XPEDITED flag is set,
out-of-band data is sent (at least one octet must be sent).

Lsnddis

Since data may not be sent with a disconnect, discoll.udata.len must be
set to zero.

Lsndudata

No options are supported by UDP, so unitdata.opt.len should be zero.
Also, be aware that the maximum size of a connectionless TSDU
varies among implementations.

E-6 eTOS/Open API: Networking Services Draft 1.0

Accepting a connect request, 4-47
Activating a transport endpoint, 4-53
API (Application Programming

Interface)
changes to specification, 1-6
purpose of, 1-1

Application Layer, definition of, 1-3
Application Programming Interface.

See API
Applications, CTOS

networking services, 1-5
portability of, 1-1
porting, 1-5

ARPANET, 4-2
Asynchronous events, polling for,

4-85
Asynchronous mode

establishing connection, 4-106
transport service, 4-10

bCommand values, 3-29, 3-33, 3-35,
3-36

bind function description, 4-53 to
4-59

Binding a transport endpoint, 4-53
Blocks

Generic Statistical Header. See
GHB

Service Client Descriptor Block.
See SCDBB

Service Provider Descriptor. See
SPD

Draft 1.0

Index

Changes to API specification, 1-6
Channel fields, 2-21
Client. See Service client
Close Logical Link command, 3-32
CloseStation request syntax

description, 3-11 to 3-12
Closing

link connections, 3-11
transpoint endpoint fd, 4-60

Colons in parameter definition file,
2-2

Commands
Close Logical Link, 3-32
Connect Logical Link , 3-34
Link Layer dependent, 3-33, 3-36
Link Layer independent, 3-35, 3-29
Open Logical Link, 3-31
in parameter definition file, 2-2
Query Station, 3-30

Communication path, 4-6
Connect Logical Link command,

3-34
Connect requests, accepting, 4-47
Connecting

with Link Layer, 3-3
transport users, 4-64

Connection mode
connection/release/data transfer

state table, 4-39
example, 4-156
option structure, 4-42
TCP options, E-2 to E-4
transport service, 4-8

Index 1-1

Connectionless mode
data transfer state table, 4-38
example, 4-158
option structure, 4-42
transport service, 4-8
UDP options, E-4 to E-6

Connections
acknowledging release of, 4-116
asychronous mode, 4-106
closing, 3-11
detecting request for, 4-80
establishment, 4-16 to 4-18
multiple, 4-10
rejecting request for, 4-134
releasing transport, 4-138

CTOS applications. See Applications,
CTOS

CTOS/Open Advisory Council, 1-1

Data
receiving, 4-19 to 4-20, 4-102,

4-119
sending, 4-21 to 4-22, 4-128, 4-141

Data Link Layer, definition of, 1-2
Data structures

Link Layer, 3-27 to 3-28
Protocol Manager, 2-21 to 2-22
synchronizing, 4-147
remote LSAP, 3-31

Declaring
Service Client name, 2-8
Service Provider name, 2-3

Deinstalling
Service Client, 2-11
Service Provider, 2-6

DeregisterServiceClient syntax
description, 2-11 to 2-12

DeregisterServiceProvider syntax
description, 2-6 to 2-7

Device independence, 3-2
Device specification of Service

Provider, 2-13
DirectLink commands, 3-35 to 3-36
DirectLink request syntax

description, 3-24 to 3-26

DirectStation Commands, 3-29 to
3-34

DirectStation request syntax
description, 3-21 to 3-23

Disabling transport endpoints, 4-152
Disconnect, cause of, 4-111
Documents, 4-5

EM. See Event Management
Error codes

Link Layer, A-3 to A-7
Protocol Manager, A-I to A-3
XTI Library, C-l to C-2

Error handling, 4-9
Errors, receiving information about,

4-125
ETSDU (Expedited Transport

Service Data Unit), 4-20
Event codes, XTI Library, C-2
Event Management (EM), 4-12 to

4-14
Events

incoming, 4-35 to 4-36
outgoing, 4-33 to 4-34
at transport endpoint, 4-12

Examples
connectionless mode, 4-158
connection-oriented mode, 4-156

Expedited Transport Service Data
Unit. See ETSDU

Failures, 4-9
fd (file descriptor), 4-6
File descriptor. See fd
File, rqLabl.asm, 3-4
Flag definitions, XTI Library, C-3 to

C-3
Frames

requesting, 3-13
writing, 3-17

Functions calls, sequence of, 4-155

Index 1-2 eTOS/Open API: Networking Services Draft 1.0

GHB (Generic Statistical Header
Block), 3-27

Initialization/deinitialization state
table, 4-38

Initializing transport endpoint, 4-89
International Standards Organization.

See ISO
Internet transport information, E-1

to E-6
IP Layer, 3-1
ISO (International Standards

Organization)
management parameters, C-5
protocols, 4-2
transport protocol, D-1 to D-11

Layer 1. See Physical Layer
Layer 2. See Data Link Layer
Layer 3. See Network Layer
Layer 4. See Transport Layer
Layer 5. See Session Layer
Layer 6. See Presentation Layer
Layer 7. See Application Layer
Layers of OSI Reference Model, 1-2

to 1-4
Length of Link Layer Name, 3-4
Library procedural interface, 4-1
Link API event codes, B-1 to B-2
Link Clients, 3-2

connecting with Link Layer, 3-3
opening LSAP for, 3-5, 3-8

Link Layer, 3-1 to 3-36
data structures, 3-27 to 3-28
dependent commands, 3-33, 3-36
error codes, A-3 to A-7
illustration of, 3-2
independent commands, 3-29, 3-35
name, 3-4
operation, 3-24
overview, 3-1

Draft 1.0

PDF, 3-3
requesting a service, 3-24
service providers, 3-2
services, 3-4 to 3-26
Service Access Point. See LSAP
station operation, 3-21

Listener application incoming Ids,
4-7

Listening for a connect request, 4-80
Local management functions, 4-15
Long-lived interactions, 4-8
Long-lived Station Handle, 3-5
LSAP (Link Layer Service Access

Point)
opening for Link Client, 3-5, 3-8
station requests, 3-2

Management functions, 3-35
Mandatory XTI features, 4-27
Messagees, transmitting from station,

3-17
Modes, service, 4-8. See also

Connection mode;
Connectionless mode

Names, Link Layer, 3-4
Netbeui protocol, 4-2
Network Layer, definition of, 1-2
Networking Services, CTOS/Open,

1-5

Object module procedures, 4-1
Open Logical Link command, 3-31
Open Systems Interconnection

Reference Model. See OSI
Reference Model

Opening
LSAP for Link Client, 3-5, 3-8
transport endpoint, 4-89

Index 1-3

OpenStationLL request syntax
description, 3-5 to 3-7

OpenStationSL request syntax
description, 3-8 to 3-10

Operating system errors, 4-9
Optional XTI features, 4-28
Options, protocol-specific, 4-41
OSI Network Layer, 3-1
OSI Reference Model

definition, 1-2 to 1-4
illustration of, 1-4

O_NONBLOCK flag, 4-10

Parameter arrays, key to, 4-46
Parameter Definition Files. See PDF

(Parameter Definition File)
PDF (Parameter Definition File)

for Link Layers, 3-3
purpose of, 2-1 to 2-2
Transport Layer, 4-45

Peer to peer protocols, 1-2
Physical Layer, definition of, 1-2
Pointers, unused, 3-34
Polling for asynchronous events, 4-85
Portability

of CTOS applications, 1-1
of networking applications, 1-5
rules, 4-159

Porting CTOS applications, 1-5
Presentation Layer, definition of, 1-3
Procedures

multiple XTI, 4-44
optional XTI, 4-43

Processes sharing Ids, 4-7
Protocol addresses, endpoints on

same, 4-8
Protocol Manager, 2-1 to 2-22

data structures, 2-21 to
error codes, A-1 to A-3
overview, 2-1
services, 2-2 to 2-22
updating, 2-19

Protocols
independent software, 4-159
negotiating options, 4-97
peer to peer, 1-2

Query Station command, 3-30
QueryProtocolManager syntax

description, 2-16 to 2-18

rcvdis function description, 4-111 to
4-115

ReadDLFrame request
event codes, B-1 to B-2
syntax description, 3-13 to 3-16

Receiving data, 4-19 to 4-20, 4-102,
4-119

References, 4-5
RegisterServiceClient syntax

description, 2-8 to 2-10
RegisterServiceProvider syntax

description, 2-3 to 2-5
Rejecting a connect request, 4-134
Releasing

LSAP resources, 3-11
transport connection, 4-138

Remote LSAP structure, 3-31
Requesting

connection to transport user, 4-63
frames, 3-13
Link Layer service, 3-24

Requests, Protocol Manager, 2-2 to
2-20 .

RequestServiceProvider syntax
description, 2-13 to 2-15

rqLabl.asm file, 3-4
Rules

connection mode transport service,
4-156

portability, 4-159
Transport Layer, 4-155

SCDB (Service Client Descriptor
Block) structure, 2-22

SDF (Station Descriptor File), 3-4
Sending data, 4-21 to 4-22, 4-128,

4-141
Service Client. See also User

deinstalling, 2-11
name declaration, 2-8

Index 1-4 eTOS/Open API: Networking Services Draft 1.0

Service Client. See also User (cont.)
new open request, 2-19
upper layer as, 1-4

Service Client Descriptor Block. See
SCDB

Service Provider
change notification, 2-19
deinstalling, 2-6
device specification, 2-13
lower layer as, 1-4
name declaration, 2-3
status information, 2-16

Service Provider Descriptor Block.
See SPDB

Service type definitions, XTI
Library, C-3

Services, Link Layer, 3-4 to 3-26
Session Layer, 1-3
Short-lived Station Handle, 3-8
Short-term interactions, 4-8
SNA Path Control, 3-1
SPDB (Service Provider Descriptor

Block) structure, 2-21
State codes, XTI Library, C-3
States

transition of, 4-37
of transport endpoint, 4-76
transport interface, 4-31 to 4-32

Station Descriptor File. See SDF
Station Handles

long-lived, 3-5
short-lived, 3-8

Station operation of Link Layer, 3-21
Station requests, 3-2
Stations, closing, 3-11
Status information, Service Provider,

2-16
Structures. See Data structures
Synchronizing data structures, 4-147
Synchronous mode transport service,

4-10

TCP
connection mode options, E-2 to

E-4
environment mnemonics, C-6

Draft 1.0

TCP/IP, 4-2
TLOOK error returned by XTI calls,

4-40
Transmit buffer, 3-34
Transport API definitions, C-1 to

C-6
Transport endpoint, 4-6

activating, 4-53
closing endpoint fd, 4-60
current event on, 4-85
current state, 4-76
disabling, 4-152
events, 4-12
initializing, 4-89
multiple events, 4-12

Transport Layer, 4-1 to to 4-160
definition of, 1-3
illustration of, 4-3
overview, 4-1
parameter definition file, 4-45
using the interface, 4-155 to

Transport protocol characteristics
returned, 4-70

Transport provider states,4-31
Transport providers, 4-6
TSYSERR, 4-9
Laccept function description, 4-47 to

4-52
Lclose function description, 4-60 to

4-62
LCOllllect function description, 4-63

to 4-69
Lermo, 4-9
cgetillfo function description, 4-70

to 4-75
cgetstate function description, 4-76

to 4-79
Llistell function description, 4-80 to

4-84
Llook function description, 4-85 to

4-88
Lopell function

description, 4-89 to 4-96
XTI flags, C-4

Loptmgmt function description, 4-97
to 4-101

Lrcv function description, 4-102 to
4-105

Index I-5

Lrcvconnect function description,
4-106 to 4-110

Lrcvrel function description, 4-116
to 4-118

Lrcvudata function description,
4-119 to 4-124

Lrcvuderr function description,
4-125 to 4-127

Lsnd function description, 4-128 to
4-133

Lsnddis function description, 4-134
to 4-137

Lsndrel function description, 4-138
to 4-140

Lsndudata function description,
4-141 to 4-146

Lsync function description, 4-147 to
4-151

Lunbind function description, 4-152
to 4-154

UDP connectionless mode options,
E-4 to E-6

U pdateProtocolManager syntax
description, 2-19 to 2-20

User actions transport interface, 4-37

WriteDLFrame request syntax
description, 3-17 to 3-19

X.25 Packet Layer, 3-1
XNS, 4-2
XTI

connection establishment, 4-16 to
4-18

connection-oriented mode, 4-14 to
4-15 .

data transfer, 4-19 to 4-22
error codes, A-7 to A-8
flags for Lopen, C-4
function classifications, 4-30
general purpose values, C-4
initialization/deinitialization phase,

4-15 to 4-16
mandatory features, 4-27
optional features, 4-28
optional procedures, 4-43

XTI Library
error codes, C-1 to C-2
event codes, C-2
flag definitions, C-3 to C-3
service type definitions, C-3
state codes, C-3

Index 1-6 eTaS/Open API: Networking Services Draft 1.0

Application Programming
Interface Specification
Networking Services

With nearly one million workstation users worldwide, eTOS provides an excel­
lent platform for developing distributed, networked applications. eTOS is the only
message-based, distributed operating system available for microprocessor­
based workstations.

The eTOS/Open Networking Services consist of networking procedures that are
common to all eTOS-based operating systems. 8y using these procedures,
eTOS programs can directly communicate with workstations and mainframes
to provide optimal networked solutions for today's business needs.

The transport layer of the eTOS/Open Networking Services complies with
broadly accepted standards supported byi'IEEE, OSI, and XlOpen. Programs
that use this layer can remain portable across a wide range of platforms.

GTOS/Open Application Programming Interface Specification: Networking
Services provides a clear and thorough description of each procedure in the
eTOS/Open Networking Services. This book serves as an ideal reference for
programmers who write networked applications.

In these pages, you'll find:

• An introduction of the eTOS/Open Standard for Networking Services

• A discussion of the seven layers of the OSI model

• Descriptions of the procedures for the GTOS/Open Protocol Manager

• Descriptions of the procedures for the eTOS/Open Link Layer Interface

• Descriptions of the procedures for the eTOS/Open Transport Layer Interface

• Descriptions of the error codes for the eTOS/Open Networking Services,
as well as the event codes for the Link Layer Interface and the Transport
Layer Interface

ISB N 0-13-194655-2

PRENTICE HALL
Englewood Cliffs, NJ 07632 .

r

