
Programming Practices
and Standards
Application Design

. < .;,;.~.1'
" ~. ...

. -;. ~

. . t.

GTOS/Open
Programming Practices and Standards

Application Design

PRENTICE HALL
Englewood Cliffs, New Jersey 07632

Authors: ALAN COLEMAN and MARGARET MORRIS
Cover design: APRIL BISHOP
Page design: MILENA MARTIN-ARANA

Editorial/production supervision: MARY ROTTINO
Manufacturing buyers: KELLY BEHR and SUSAN BRUNKE
Acquisitions editor: KAREN GETTMAN

© 1991, 1990 by Convergent, Inc.

=- Published by Prentice-Hall, Inc. I! - A Division of Simon & Schuster
==- Englewood Cliffs, New Jersey 07632

Convergent, Convergent Technologies, NGEN, and CTOS are registered
trademarks of Convergent, Inc.

Context Manager, CTOS, CTOS/VM, Generic Print System, Shared
Resource Processor, SRP, The Cluster, and X-Bus are trademarks of
Convergent, Inc.

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, write:

Special Sales/College Marketing
Prentice-Hall, Inc.
College Technical and Reference Division
Prentice Hall
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, transmitted, stored in a retrieval system,
or translated into any language without permission
in writing from Convergent, Inc. or the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-194382-0

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do"Brasil, Ltda., Rio de Janeiro

Contents

About This Manual
Purpose of This Manual. .. xxiii
Audience. .. xxiv
Related Documentation. .. xxiv
How to Use This Manual xxvi
The CTOS Naming Convention....................... xxvi

Part I - The Essentials

1 eTaS Overview
What Is CTOS/Open? . 1-1
The Major Features of CTOS 1-1

Multiprogramming. 1-2
Multitasking . 1-2
Process Scheduling . 1-2
Message-Based Operation 1-3
Extensible Via System Services. 1-4
Nationalization. 1-4

Important Concepts. 1-4
Processes, Messages and Exchanges. 1-4
The Request/Response Model. 1-6
Programs and Partitions . 1-7
The Distributed Environment 1-8
System Memory Organization 1-8
Application Memory Organization . 1-9

The Anatomy of a Program 1-11
Segmentation . 1-11

Contents iii

Types of External Procedures, and How to Call Them. 1-11
A Note About pbcbs 1-13
What Happens When a Program Starts. 1-14
What Happens When a Program Exits. 1-14

2 Basic Input and Output
Device-Independent 1/0 . 2-1

The Sequential Access Method (SAM) 2-1
What Is a Byte Stream? .. 2-2
Supported Byte Streams. 2-2
Device and File Specification Parsing 2-4
Using a Generic Byte Stream 2-5
Using Byte Streams for File Access. 2-8
Using Byte Streams for Video Access. 2-9
Using Byte Streams for Keyboard Access. 2-12
Other Uses for Byte Streams. .. 2-14

Device-Specific 1/0 .. 2-14
File Management. .. 2-14

Wild Cards. .. 2-16
Temporary Files 2-17

Keyboard Management. .. 2-18
Video Management - V AM and VDM .. 2-20

3 Error Handling Conventions
Error Checking: General Practice. 3-1
The FatalError Procedure and the fDevelopement Flag. 3-2
Program Exit Modes: Exit, ErrorExit, ErrorExitString,
and Crash 3-2
Trapping Protection Faults . 3-3
Error Logging: WriteLog................................. 3-6

4 Parameters and Command Form Processing
The Executive. 4-1
Command Forms and Parameters. 4-1
The Variable-Length Parameter Block (VLPB) 4-2
Reading Input Parameters from the VLPB. 4-4
Creating a New VLPB for the Exit Run File... 4-6

iv eTOSIOpen Programming Practices and Standards

5 Protected Mode Programming Guidelines
Real Mode and Protected Mode Compatibility. 5-1
Review of Segmented Addressing . 5-2
Real Mode versus Protected Mode Pointers. 5-2
General Programming Guidelines 5-3
Language-Specific Guidelines. .. 5-11
Real Mode Guidelines. .. 5-12

6 Writing Your Application for International Use
Introduction .. 6-1
Using the NLS Tables and System Calls 6-2

U sing the NLS Procedures. 6-4
U sing the NLS Tables. 6-5
U sing Alternative NLS Tables 6-7

Linking Alternative Tables with Your Program 6-7
Using Additional NLS Tables. 6-8

U sing Message Files. 6-8
About Message Files. 6-8
Strategies for Using Messages. 6-9
Using Messages as Needed. 6-10

Standard Message Routines 6-11
Message File Macros 6-13

Pre-Loading Messages. 6-15
Using a Very Small Number of Messages. 6-16

7 Tips for the Application Writer
Introduction ... 7-1
Program Structure and Design. 7-1
Keyboard-Handling Conventions. 7-3

Application-Independent Key Meanings and Their Use 7-3
Application-Dependent Key Use Conventions. 7-4
Keyboard Events an Application Must Handle. 7-6

Screen Layout Conventions .. 7-6
Function Key Menus. 7-6
Help........ 7-7
Status Information 7-8
Creating An Executive Screen 7-8

Contents v

Cleanliness ... 7-9
Guidelines for Screen Handling 7-9

File Suffix Conventions. 7-10
The Scratch Volume. 7-11

8 Writing Request-Based System Services
Introduction 8-1
Requests and Request Levels. 8-1
Registering Request Codes. 8-4

By Telephone. 8-4
By FAX.. 8-5

Conserving Request Codes and Memory . 8-5
Conserving Memory with Efficient Request Code Use 8-6
Conserving Request Code Numbers. 8-6

Operations Performed by a System Service for Applications ... 8-7
Server/Client Communication. 8-7
The Server/Client Relationship. 8-8
Connection Establishment . 8-8
A Note About Handles 8-10
The Real Work .. 8-11
Connection Termination 8-12
Connectionless Requests ... 8-13

Operations Performed by a System Service for the
Operating System . 8-13

Termination and Abort Requests . 8-14
Swapping Requests. 8-16

Installation and Deinstallation . 8-17
Installation . 8-17
Deinstallation. .. 8-20
Deinstallation on Error. 8-22

System Services that Act as Filters . 8-23
Types of Filters . 8-23
Requirements for Filters 8-24
Note on Keyboard Filters. 8-25

System Services that Act as Agents 8-25
Role of the Client Agent ... 8-26
Role of the Server Agent. .. 8-27
Request-Passing Guidelines for Agents. 8-28

vi eTOS/ Open Programming Practices and Standards

Piecemealing of Very Large Request Blocks 8-28
Defining Request Codes for a System Service. 8-30

What You Need to Define. 8-30
Defining a Request . 8-31

The Structure of a Request. 8-32
Defining the Procedural Interface 8-34
Defining Request Routing . 8-35

Making a Loadable Request Set 8-39
Making a Request Label Object File 8-40

9 Writing System-Common Services
Introduction .. 9-1
Request-Based vs. System-Common Services. 9-1

The System-Common Model . 9-1
Special Features of System-Common Procedures. 9-3
Requirements for System-Common Procedures 9-3
Deciding Which Type of Service is Appropriate for Your Task 9-4

Writing System-Common Procedures 9-5
Defining Parameters for a Procedure 9-6
Installation and Deinstallation ; 9-7

Installation . 9-8
Deinstallation. .. 9-11

Defining System-Common Procedure Numbers. 9-12
What You Need to Define .. 9-12
Making a System-Common Label Object File..... 9-13

Part II - Advanced Topics

10 Stack Format and Calling Conventions
Introduction .. 10-1
MepIory Addressing. 10-1
Program Segmentation. 10-2
Memory Organization 10-3

The Medium Model. 10-3
Code Segments . 10-5
Unallocated Memory 10-5
Notes on the Stack. 10-5

Contents vii

Values of DS and SS in Medium Model 10-6
Changing Memory Organization from the Default for Your
Compiler. 10-7
Code Sharing . 10-7
Disposable Initialization Code. 10-8

Creating a COED Module. 10-8
Disposing of the Code in a COED Module 10-9

Using DS Allocation . 10-9
What Is DS Allocation? . 10-9

DS Allocation in Real Mode 10-10
DS Allocation in Protected Mode 10-10

Procedure Calls and the Stack. .. 10-11
Overview. .. 10-11
Parameter Passing .. 10-12
Standard Stack Format. .. 10-12
Standard Prolog and Epilog .. 10-13

11 Mixed-Language Programming
Issues in Mixed-Language Programming. 11-1

Parameter Passing and the Stack. 11-1
Returned Values 11-2
Procedure Initialization and Cleanup . 11-3

Calls to CTOS and to the System Libraries. 11-3
Model of Computation. 11-3
Parameter Naming Convention. 11-3
Parameter Passing Convention 11-4
Returned Values 11-4
Mediation . 11-5

Calls Between Languages 11-6
Model of Computation. 11-7
Parameters and Returned Values 11-7
Run-Time Initialization. 11-7
Floating-Point Number Formats 11-7

12 Writing Multi-Process Programs
Why Use Multiple Processes? 12-1
Process Management . 12-2

The Multi-Process Model. 12-2
Process States ... 12-3

viii eTOS/ Open Programming Practices and Standards

Process Scheduling 12-4
The Process Control Block 12-5
Summary. 12-6

Creating a Process . 12-6
The Process Descriptor 12-6
Setting Up the Stack. 12-8
Setting Priority. .. 12-10
Starting the Process. .. 12-11

Process Termination 12-12
Communicating with Other Processes. .. 12-13

13 Using the Kernel Message Primitives
Types of Kernel Primitives . 13-1
Why Use Kernel Messaging Primitives? 13-3
Sending Messages. 13-4

The Send Primitive . 13-4
The PSend Primitive . 13-4
The Request and Respond Primitives. 13-5
The ForwardRequest and RequestDirect Primitives. 13-5

Receiving Messages . 13-7
The Wait Primitive 13-7
The Check Primitive . 13-7

Building a Request Block . 13-8
Where to Find Examples. .. 13-11

Request. .. 13-11
Respond .. 13-11
Send ... 13-11
PSend .. 13-11
Wait ' 13-12

Example of an Asynchronous Request. .. 13-12
A Semaphore Using Send and Wait 13-13

14 Using Virtual Code Management - Overlays
Introduction ... 14-1
The Virtual Code Management Model. 14-1
Overlay Capabilities and Restrictions. 14-2

Number and Size of Overlays and Procedures 14-2
Types of Procedures that Can Be Overlaid 14-3
Procedures and Pointers to Procedures. 14-3

Contents ix

Supported Models. .. 14-3
Restrictions on Interrupt Handling Routines 14-3
Restrictions on Multiprocess Programs. 14-4
Segment Types that Can Be Overlaid. 14-4
Supported Languages. 14-4
Call/Return Conventions. 14-5

Trade-Offs. 14-5
Basic Steps in Creating an Overlay Program 14-6

Contents of Overlays 14-7
Size of the Overlay Zone . 14-7
Initialization. 14-8
Linking an Overlay Program. 14-9

Fine-Tuning Your Overlay Program. .. 14-10
Overlay Zone Size. .. 14-10
Other Memory Management Tools 14-11

ReInitOverlays and ReInitLargeOverlays 14-11
MoveOverlays .. 14-12

Performance Optimization Tools 14-12
Permanence and Release From Permanence 14-12
Changing LRU Time Stamping 14-13

Optimizing Overlay Contents. .. 14-13
Overlaying Library Modules 14-13

Utilities. .. 14-14
MapCsIOvly ... 14-14
MapIOylyCs ... 14-14
Forcing an Overlay into Memory. .. 14-14

Overlay Programs in Assembly Language. 14-15
Troubleshooting ... 14-16

Linker Errors .. 14-16
Call/Return Violation 14-16

Debugging an Overlay Application .. 14-16
Thrashing ... 14-16
Looping in MpRetAdrBNear. .. 14-17
Linker Limitations. .. 14-17

15 Timer Management
CTOS Timing Services .. 15-1
Using Delay and ShortDelay 15-2

x eTOS/ Open Programming Practices and Standards

U sing The Real-Time Clock . 15-3
Setting Up the Timer Request Block (TRB) 15-3
Processing Real-Time Clock Events. 15-5
Avoiding Timing Windows with the Real-Time Clock. 15-7
Timing a Single Interval with the Real-Time Clock. 15-8

Using the Programmable Interval Timer 15-10
Setting Up the Timer Pseudo-Interrupt Block (TPIB) 15-10
Writing the Timer Interrupt Handler .. 15-13
A Sample Program Loop Using the Programmable
Interval Timer 15-13

16 Memory Management
Short-Lived and Long-Lived Memory...... 16-1
Fixed-Size versus Variable-Size Data Segments. 16-2
Working with Variable-Size Data Segments. 16-3
Working with Fixed-Size Data Segments. 16-5
Using DS Allocation. 16-7
Working with Data Structures Greater than 64K. 16-9
Swapping. .. 16-10

17 Building a Customized SAM
Introduction .. 17-1

The Components of a Byte Stream. 17-1
The Default SAM Configurations. 17-2

Steps to Customizing SAM. 17-3
The SamGenAll.asm File. 17-3
Editing the SamGenAll.asm File. 17-4

Excluding Byte Streams. 17-4
Including Communications, GPS, and Serial Printer
Byte Streams .. 17-6
Adding a User Written Byte Stream...... 17-6
Substituting an Alternate Byte Stream. 17-7

Adding New Byte Streams.. 17-9
The Byte Stream Work Area. 17-9
The Byte Stream Buffer Area 17-10

No Buffering. .. 17-11
Single Input/Output Buffer 17-11
Pool of Asynchronous Buffers 17-11

Opening a Byte Stream and the %DeviceOpen Macro 17-12

Contents xi

The %tagProcs Macro 17-13
The %DevDepProc Macro 17-14
Operating System-Supplied Null Routines 17-14
Error Checking .. 17-15

Template %tagProcs Routines 17-15
OpenProc ... 17-16
FillBufferProc ... 17-18
FlushBufferProc .. 17-20
CheckPointProc .. 17-22
ReleaseProc ... 17-23
SetImageModeProc 17-24

18 Communications Programming
Layered Support for Communications Programming 18-1

What Is SAM for Communications (SamC)? 18-1
Who Cannot Use Communications Byte Streams 18-2

U sing Communications Byte Streams at the Device-
Independent Interface Level. 18-2

The Sequential Access Method (SAM) . 18-2
Device Specifications . 18-2
Configuration Files . 18-4
Notes on Customizing SAM for Communications.... 18-4

Using Communications Byte Streams at the Device-
Dependent Interface Level . 18-5

The Communications Sequential Access Method (SamC) 18-5
Using SamC Without SamGen 18-6
Some Special Features of SamC . 18-6

Asynchronous Interface. 18-6
AcquireByteStreamC Interface (Low-Level Open) 18-7
Ability to Change Parameters Dynamically. 18-11
Ability to Query and Set Status Lines 18-11

Writing Synchronous Communications Applications 18-11
Access Below the Byte Stream Level (CommLine) 18-11
Guidelines for Compatible Synchronous Applications 18-12
The CommLine Interface. .. 18-13

InitCommLine. .. 18-13
ResetCommLine 18-14
ChangeCommLineBaudRate .. 18-14
CommLine Status Procedures 18-14

xii eTOS/ Open Programming Practices and Standards

Opening a Serial Communications Channel with
InitCommLine .. 18-15

Building a Communications Line Control Block 18-15
Initializing the Communications Line 18-16
Initializing the Serial Controller .. 18-18

CommLine Interrupt Service Routines 18-20
The Four Interrupt Service Routines for a
Communications Channel .. 18-20
Raw Communications Interrupt Service Routines. 18-21
Mediated Interrupt Service Routines. 18-23

Inside CTOS: A Guide to Performance Enhancement 18-23
Interrupt Dispatching (The Comm Nub) 18-24
Raw Interrupts. .. 18-24
Mediated Interrupts 18-25

19 Interrupt Handlers
Interrupts and Exceptions. 19-1

Types of Interrupts . 19-1
Types of Exceptions . 19-2

When to Use an Interrupt or Exception Handler. 19-3
Types of Interrupt and Exception Handlers. 19-3

Types of Interrupt Handlers 19-3
Raw Interrupt Handlers. 19-4
Mediated Interrupt Handlers 19-4
Communications Interrupt Handlers . 19-5

Types of Exception Handlers 19-5
Trap Handlers and Pseudo-Interrupt Handlers 19-5
State of the System on Entry to an Exception Handler 19-6
System Pseudo-Interrupt Handlers. 19-6

Writing Raw Interrupt Handlers 19-7
Writing Mediated Interrupt Handlers 19-8
Writing System Pseudo-Interrupt Handlers 19-9
Writing Exception Handlers. 19-9
Writing 80386 Exception Handlers. .. 19-11

20 Inter-Module Communication
Introduction .. 20-1
Information Required .. 20-2

Contents xiii

Performing I/O to X-Bus Modules 20-3
The X-Bus I/O Base Address 20-3
Determining a Module's I/O Base Address. 20-4
Performing the I/O . 20-4

Accessing Memory in X-Bus Modules. 20-5
Setting Up an X-Bus Window 20-5
Reading and Writing to Module Memory. 20-6

Servicing X-Bus Module Interrupts. 20-6
The Elements of Your Program 20-7
Establishing Communication with an X-Bus Module. 20-7
The X-Bus Interrupt Handler 20-8

Appendix A
Accessing CTOS Operations from Assembly Language. A-I
Argument Passing A-I
Register Usage . A-2
BP Register . A-3
Segments, Classes, and Groups. A-4
Example Program........... A-5

Appendix B
NLS Templates. B-1

Appendix C
Message File Macro Definitions. C-l
Macros Not Under Program Control C-l
Macros Under Program Control C-2

Appendix D
Source Code Listings. D-l
Chapter 1. D-l
Chapter 2. D-2

BSGeneric.c. D-2
BSVidEscape.c .. D-7
FileCalls.c. .. D-13
WildCard.c .. D-18
VAMText.c D-21

Chapter 3. .. D-30
Erc80Handler.c .. D-30

xiv eTOS/ Open Programming Practices and Standards

FaultHandler .asm D-32
LogMessage.c. .. D-33

Chapter 4. .. D-35
Params.c D-35

Chapter 5. .. D-41
SegAccess.c .. D-41

Chapter 6. .. D-43
AsNeededMsg.c. .. D-43
PreLoadMsg.c D-46
ServerMsgs.c D-50
SampleMsg. txt .. D-51

Chapter 7 .. D-52
Chapter 8. .. D-53

FooServerRq.c. .. D-53
FooServerRequest.txt .. D-61
FooServerRqLabe1.asm D-62
QueryFooServerRq.c D-62

Chapter 9. .. D-65
FooServerSc.c .. D-65
FooSysCommonLabe1.asm D-70
QueryFooServerSc.c .. D-70

Chapter 10. .. D-72
Chapter 11 .. D-72

Mediator .asm .. D-72
TestMediator.c .. D-73

Chapter 12. .. D-75
Multiproc.c. .. D-75
Coedproc.c... D-81
Main.asm ... D-83

Chapter 13. .. D-85
QueryFooServerAsync.c D-85

Chapter 14. .. D-89
VCSM.c D-89
OverlayO.c .. D-91
Overlayl.c .. D-92
Overlay2.c .. D-93

Chapter 15 .. D-95
RtcTimer.c .. D-95

Contents xv

RtcTimer.Single.c .. D-98
PitTimeout.c ... D-I00

Chapter 16 .. D-I04
Chapter 17 .. D-I04
Chapter 18 .. D-I04

SamC.c ... D-I04
FdxIni.c .. D-I09
FdxIsr.asm .. D-113
FdxMain.c .. D-120
FdxParams.c ... D-123
FdxSub.c .. D-125
Fdx.h ... D-126
Comm.h .. D-128

Chapter 19 .. D-131
GenInt.asm .. D-131
TestInts.c ... D-133

Chapter 20 .. D-136

Index. I-I

Figures

Part I

1-1. Message Passing 1-5

1-2. The Request/Response Model. 1-6

1-3. System Memory Organization. 1-9

1-4 Application Partition Organization 1-10

1-5. Segment Organization in an Application Partition. 1-12

4-1. Sample Variable-Length Parameter Block 4-3

8-1. The Role of Agents in Request Passing 8-26

9-1. Threads of Execution in System Services 9-2

xvi eTOS/ Open Programming Practices and Standards

Figures (continued)

Part II

10-1. Typical Memory Organization in Medium Model
Programs ... 10-4

10-2. DS Allocation. .. 10-11

10-3. Standard Stack Format. .. 10-13

12-1. A Single-Process Model vs. a Multi-Process Model. 12-3

12-2. Process States . 12-4

13-1. Model for Use of the ForwardRequest and RequestDirect
Primitives. 13-6

16-1. Fixed-Size versus Variable-Size Segments. 16-2

16-2. Expanding and Shrinking a Variable-Length Segment. 16-4

16-3. Allocating Short-Lived Memory Using AllocMemorySL 16-7

16-4. Memory Using DS Allocation 16-8

B-1. NLS Templates. B-4

Tables

ATM-1. CTOS Variable-Naming Convention xxv

Part I

6-1. NLS Table Numbers 6-3

7-1. Application-Independent Key Meanings. 7-3

7-2. Application-Dependent Key Meanings 7-5

7-3. Common File Suffixes. 7-10

8-1. A Sample Request Block 8-2

8-2. Request Code Levels . 8-3

8-3. Termination Request Block 8-15

8-4. Swapping Request Block. 8-17

Contents xvii

Tables (continued)

8 .. 5. A Piecemealable Request Block. 8-29

8-6. Request Definition Fields 8-32

8-7. System Request Definition Directives . 8-34

8-8. Request Procedural Interface Parameter Directives 8-36

8-9. Request Network Routing Directives. 8-37

8-10. Request SRP Routing Directives. 8-38

Part II

12-1. Process Descriptor Fields for the CreateProcess
Operation. 12-7

12-2. Process Priority Values and Recommended Uses 12-11

13-1. CTOS Kernel Primitives and Their Uses 13-1

13-2. A Sample Request Block 13-8

15-1. Timer Request Block Format. 15-4

15-2. Timer Pseudo-Interrupt Block Format 15-11

17-1. Correspondence of %tagProcs Procedures to Byte Stream
Procedures. .. 17-13

18-1. SAM Communications Device Specifications 18-3

18-2. Communications Configuration Descriptor 18-8

Listings

Part I

1-1. Declaring and Calling a CTOS External Procedure. 1-13

2-1. A Sample Program Using Byte Streams 2-7

2-2. Variable Declarations for Byte Streams 2-8

2-3. Positioning a Byte Stream in a File 2-9

2-4. Sending Escape Codes to Video. 2-12

2-5. A Procedure to Read a String from a Byte Stream. 2-13

xviii eTaS/Open Programming Practices and Standards

Listings (continued)

2-6. Opening a File. 2-15

2-7. Writing to a File. 2-16

2-8. Building a List of File Names from a Wildcard. 2-17

2-9. Procedure to Read a String from the Keyboard. 2-20

2-10. VAM and VDM Setup' Procedure 2-23

3-1. Procedure to Check for End-of-File. 3-1

3-2. Setting a Protection Fault Handler. 3-4

3-3. Assembly Routine for Generic Trap Handler 3-5

3-4. Procedure to Create a System Error Log Entry. 3-6

4-1. Reading a Variable-Length Parameter Block (VLPB) 4-5

4-2. Evaluating a Parameter in a VLPB. 4-5

4-3. Building a Variable-Length Parameter Block (VLPB) 4-8

5-1. Comparing Pointer Equality 5-4

5-2. Initializing Pointers. 5-7

5-3 Creating a Pointer Alias 5-10

6-1. Loading an NLS Table into an Application 6-6

6-2. Setting Up the Message File Environment. 6-12

6-3. Displaying a Message from a Message File. 6-14

6-4. Pre-Loading Messages into Program Memory. 6-16

6-5. Using the Server Message File Procedures. 6-18

7-1. Sample Help Window Display Procedure. 7-7

7-2. Creating an Executive Screen. 7-8

8-1. An Open Connection Request . 8-10

8-2. Processing a Data Request 8-12

8-3. A Close Connection Request. 8-13

8-4. An Application Termination Request. 8-15

8-5. System Service Installation. 8-20

Contents xix

Listings (continued)

8-6. System Service Deinstallation Procedure 8-22

8-7. Deinstalling on Error . 8-22

8-8. Sample Request Definition File . 8-32

8-9. Sample Request Label File . 8-40

9-1. Sample System-Common Procedure 9-6

9-2. System-Common Service Installation 9-10

9-3. System-Common Service Deinstallation Procedure. 9-12

9-4. Sample System-Common Label File. 9-13

Part II

11-1. A C-Language to CTOS Mediator. 11-6

12-1. Using DS-Allocated Memory to Create a Process's
Stack ... 12-10

12-2. Procedure to Create a Process. .. 12-12

12-3. Permanently Suspending a Process 12-13

13-1. A General Procedure to Build Request Blocks 13-10

13-2. A Code Fragment that Calls the Request Block
Procedure ... 13-10

13-3. A Program Loop Using the Check Primitive 13-12

13-4. Code to Set Up a Semaphore 13-14

13-5. A Procedure That Uses a Semaphore 13-14

14-1. Initializing Overlays. 14-9

15-1. A Time-of-Day Clock Display Procedure Using Delay. 15-2

15-2. Building a TRB and Starting the Real-Time Clock. 15-5

15-3. Repetitive Timing Using the Real-Time Clock. 15-7

15-4. Timing a Single Interval with the Real-Time Clock 15-9

15-5. Building a Timer Pseudo-Interrupt Block (TPIB) 15-12

15-6. Calling the InitPIT TPIB-Building Procedure 15-12

xx eTaS/Open Programming Practices and Standards

Listings (continued)

15-7. A Timer Interrupt Handler. .. 15-13

15-8. A Main Loop that Uses the PIT to Check for Timeouts 15-15

16-1. Using a Variable-Length Segment 16-5

16-2. Allocating Fixed-Size Segments .. 16-6

16-3. Allocating DS-Relative Memory. 16-9

18-1. Opening a Channel with AcquireByteStreamC 18-10

18-2. Building a Communications Line Control Block. 18-16

18-3. Opening a Channel with InitCommLine 18-18

18-4. Initializing the Serial Controller for Synchronous
Communication 18-19

18-5. A Receive Interrupt Service Routine. 18-21

19-1. An Assembly Language Stub for an Exception
Handler ... 19-10

19-2. An Assembly Language Stub for an 80386 Exception
Handler .. 19-12

20-1. Calculating an X-Bus Module's Base Address. 20-4

20-2. Performing I/O to an X-Bus Module. .. 20-5

20-3. Setting Up an X-Bus Window ... (. .. 20-6

20-4. Skeleton of an X-Bus Multiplexed Interrupt Service
Routine ... 20-10

Contents xxi

About This Manual

This manual describes recommended techniques and practices for writing
portable applications that follow the CTOS/Open standard for the
CTOS® operating system. This manual is a companion volume to the
eTaS/Open Application Programming Interface Specification.

The eTOS/Open standard is a specification which is implemented by
several eTOS-based operating systems. The standard is not itself an
operating system. When this manual talks about CTOS/Open, it means
the specification. When it talks about CTOS, or about eTOS-based
operating systems, it means those operating systems that conform to the
CTOS/Open standard.

The eTOS/Open standard is a common subset of features. The operating
systems that comply with it generally have additional features beyond the
ones included in the CTOS/Open standard.

Purpose of This Manual

This manual describes practices and standards programmers should follow
to ensure that their applications are portable across the various
implementations of the CTOS/Open standard. Following the recommen­
dations in the standard can greatly simplify porting an application from
one eTOS-based operating system to another.

This manual can also serve as a "programmer's primer" for those new to
CTOS/Open. It provides many examples, showing how to write
commonly-used operations. This manual does not provide an in-depth
conceptual explanation of CTOS implementation internals. For more
comprehensive conceptual information, see the manuals for the
CTOS-based ope~ating system you use.

About This Manual xxiii

Audience

This manual is intended for programmers who want to write portable
applications for CTOS-based operating systems. Programmers who are
experienced with these operating systems, and programmers new to them,
should both find the recommendations and examples in this book useful.

Related Documentation

The following documents may be useful to programmers who read this
book.

eTaS/Open Books

• CTOS/Open Application Programming Interface Specification

This document describes the procedural interface definitions for
each of the procedures supported by the CTOS/Open Standard. It
defines a common set of system interfaces that is consistent across
all CTOS/Open-compliant versions of CTOS. The specification is
intended for use by software developers and Independent Software
Vendors (ISVs) who want to write applications that conform to the
CTOS/Open Standard and are therefore portable across vendor
platforms. It assumes that the reader has experience writing
applications under CTOS or under another operating system.

• CTaS/ Open Application Programming Interface Specification:
Computer Graphics Interface (CGI)

This document describes each CGI operation and explains how to
write your own CGI programs.

• CTOS/ Open Application Programming Interface Specification:
Graphical User Interface (GUI)

This document introduces an eXtensible Virtual Toolkit (XVT) and
describes its relationship to other windowing interfaces. It also
reviews the current XVT operation set, which includes functions,

xxiv CTOS/ Open Programming Practices and Standards

macros, constants, and types. This specification is a virtual API
and is intended for programmers who want to write applications that
run in several different window environments and work across all
CTOS-based platforms.

• eTaS/Open Application Programming Interface Specification:
Networking Services

This document describes the standard Link Layer interface used
under the CTOS operating system. It defines the common requests
used by all Link Layers and the requests used by the Data Link
Manager. This specification also provides the standard format for
reporting Link Layer status, and documents Link Layer error
messages/codes, event codes, and commands. The final draft of
this manual will include information on the Transport Layer.

• eTaS/Open Application Programming Interface Specification: Printing
Services (GPS)

This document describes how to write applications that use the
Generic Print System (GPS) or the Generic Print Access Method
(GPAM).

• eTaS/Open Programming Practices and Standards: User Interface
Design

This document provides guidelines for designing graphical user
interfaces for CTOS-based applications. It contains information
about the user interface standard call Common User Access
(CUA), which has become part of the public domain. This manual
is a working draft.

• Exploring eTaS

This book gives a conceptual overview of the CTOS architecture.
Additionally, it explains the advantages of developing applications
on a distributed, message-based operating system.

About This Manual xxv

Intel Manuals

• iAPX 286 Programmer's Reference Manual

This book describes the features and instruction set of the Intel
80286 microprocessor .

• 80386 Programmer's Reference Manual

This book describes the features and instruction set of the Intel
80386 microprocessor.

How to Use This Manual

This manual is organized by function. Individual chapters are devoted to
each of the most commonly-used functional areas of eTOS. To use this
manual, examine the chapter or chapters that apply to your project, and
make use of the examples and recommendations you find there. To look
up specific topics, use the index at the back of the manual.

The CTOS Naming Convention

The examples in this book follow a specific naming convention, which is
designed to promote the readability of source code. The underlying
principal of the naming convention is this: use explanatory prefixes and
suffixes on all variables and procedure names. Elementary programming
practice dictates that the names themselves should also be explanatory.
These conventions are particularly important when programming in a
language like e, which tends toward cryptic syntax.

Each variable takes the form <Prefix><Root>Name<Suffix>. Prefix,
root, and suffix do not all have to be present. In fact, most variables use
only a prefix and a root in combination with the variable name itself. The
following table describes the eTOS naming convention.

xxvi eTOS/ Open Programming Practices and Standards

Table ATM-1. CTOS Variable-Naming Convention
(Page 1 of 2)

Token Meaning

PREFIXES:

b

c

n

o

p

q

rg

s

sb

w

cb

pb

Byte. A character or unsigned 8-bit integer.

Count. A two-byte unsigned integer.

Flag. A one-byte flag. True - OFFh, False - o.

Index. A two-byte unsigned integer.

Literal. A constant.

Number. A two-byte unsigned integer. Same as
Count.

Offset. A two-byte offset from a segment base
address.

Pointer. A logical memory address. Consists of
a two byte segment identifier and a two-byte
offset.

Quad. A four-byte unsigned integer.

Array. Usually used with another prefix. For
example, the prefix "rgb" identifies an array of
bytes.

Size. A two-byte unsigned integer.

String. An array of bytes where the first byte is
the size of the string.

Word. A two-byte integer.

Count of bytes.

Pointer to a string of bytes.

About This Manual xxvii

Table ATM-1. CTOS Variable-Naming Convention
(Page 2 of 2)

Token Meaning

ROOTS:

erc

exch

fh

If a

ra

rq

sa

sn

sr

userNum

SUFFIXES:

Two-byte status code.

Two-byte exchange number.

Two-byte file handle.

Four-byte logical file address.

Two-byte relative address. Synonymous with
offset.

Request block. Size varies.

Two-byte segment identifier.

Selector. Segment identifier for a protected­
mode memory address.

Paragraph number. Segment identifier for a real­
mode memory address.

Two-byte user number.

Last Largest allowable index in an array.

Max Maximum size of an array or buffer
(Max - Last + 1).

Ret Indicates a variable whose value is set by a
called procedure and returned to the current one.

xxviii eTOS/ Open Programming Practices and Standards

For example, to define a data buffer using this naming convention, we can
assign four variable names:

pBuffer. A pointer to the start of the buffer.

sBufferMax. The maximum size of the buffer.

sBufferDataRet. The size of the data actually written to the buffer,
returned by the procedure that writes to the buffer.

psBufferDataRet. Address of sBufferDataRet. Passed to the
procedure that writes to the buffer, telling that procedure where to
return the value of sBufferDataRet.

About This Manual xxix

Part I - The Essentials

1
GTOS Overview

This chapter gives a brief overview of the major features of CTas. It is
intended for programmers who already have some familiarity with a
CTOS-based operating system. For introductory information about your
operating system, or for more in-depth conceptual information about it,
see the manuals for your operating system.

What Is CTOS/Open?

The CTOS/Open Advisory Council (CTOS/Open for short) was formed
as a joint effort among manufacturers, resellers, distributors, software
developers, hardware developers, and users to establish and promote the
CTOS-based architecture as a standard for distributed network
computing.

The aim of CTOS/Open is to increase the number of CTaS-based
applications available and to maximize the return on investment in
software development for independent vendors and users. CTaS/Open
sets portability standards for the CTaS operating system and its variants,
and integrates evolving standards into a common, beneficial, and
continuing strategy.

The Major Features of CTOS

CTOS has numerous features which, until recently, could only be found
in operating systems designed for minicomputers and mainframes. This
section describes some of the CTOS architecture's advanced features.

eTOS Overview 1-1

Multiprogramming

Multiprogramming is the ability of an operating system to run more than
one program at a time. In a mUltiprogramming system, several programs
are loaded into memory, and compete for processor time. The operating
system manages the memory needs of each program, preventing the
programs from overwriting each other. The operating system also ensures
that each program receives a reasonable amount of processor time.

Multitasking

Multitasking, also called multiprocessing or multithreading, is related to
multiprogramming. Multitasking is the ability of a single program to run
more than one task at a time, similar to the way the operating system runs
more than one program at a time.

In CTOS terminology, a program that performs more than one task is
called a mUltiprocess program. Each of the threads of execution in a
multiprocess program is called a process.

Process Scheduling

Any multitasking or multiprogramming operating system needs a method
to determine which process should be running at any given point in time.
CTOS uses an event-driven, preemptive priority scheduling scheme.

Each process is assigned a priority, with more critical processes (such as
the operating system itself) receiving a higher priority than less critical
processes. When a given process is running, it can be interrupted at any
time by a higher-priority process. The lower-priority process cannot
resume until all higher-priority processes have relinquished control of the
processor (to wait for 110, for example).

A process can never be interrupted by a lower-priority process. If no
higher-priority processes are ready to run, the process will execute until it
relinquishes control, no matter how many lower-priority processes are
waiting.

1-2 eTOS/ Open Programming Practices and Standards - Part I

As a general rule, the highest-priority process that is ready to run always
has control of the processor.

The only exception occurs when a lower-priority process briefly disables
the processor's interrupts to protect a critical section of code. A process
should never disable interrupts for more than a few processor
instructions.

Message-Based Operation

eTas is a message-based operating system. The active programs and
processes in a eTaS system communicate with each other and with the
operating system by passing messages. Messages can be used to request
services from the operating system and from other programs, to
synchronize process execution, and to respond to requests for services.
A message is simply a four-byte data item. Usually, the message is the
address of a larger unit of data.

Messages are routed through exchanges. An exchange can be thought of
as a mail box allocated by a process, but controlled by the operating
system. When one process sends a message to another process, the
operating system posts the message at the target process's exchange. The
target process can then retrieve the message, and post a reply to the
sending process's exchange.

Note that processes generally use messages to exchange the addresses of
larger units of data. That data remains in the sender's memory, but is
accessible to the receiver of the message. This allows very large data
items to be exchanged with very little overhead.

The simple and flexible nature of eTaS messages allows them to be used
for almost any type of interprocess communication. Also, unlike the
subroutine calls used by many operating systems, messages can be
intercepted before they arrive at their destination. This allows them to be
modified or rerouted across a network without the sender's knowledge.

eTOS Overview 1-3

Extensible Via System Services

One of the primary advantages of the CTOS message-based architecture is
that it allows the operating system to be "extended". As mentioned above,
messages can be intercepted. Operating system messages are no different
from application programs' messages, and can therefore be intercepted
also.

This fact allows system programmers to write special programs, called
system services, that either implement new types of messages, or filter
and modify operating system messages. A system service can thus add
new feature areas to the operating system, or change the operation of
existing ones.

Further, system services can be dynamically installed and deinstalled.
This allows the operating system to be modified or enhanced, then
restored to its original state easily and without disruption.

Nationalization

Native language support (NLS) provides a set of utilities, run-time
libraries, and data structures that can be used for the easy porting of
software to run in various languages. Certain kinds of information, such
as keycap legends and date and time formats, has been removed from the
operating system itself and placed into a configuration file.
Nationalization requires only modifying the configuration file and message
files; relinking the software is not necessary.

Important Concepts

The following sections describe several essential concepts for a working
knowledge of CTOS.

Processes, Messages, and Exchanges

In a previous section, we discussed the message-based nature of CTOS.
In the CTOS operating system, processes pass messages to each other via
exchanges.

1-4 eTaS/Open Programming Practices and Standards - Part I

The passing of messages is completely transparent to most application
programs, but it is helpful to understand the mechanism. Figure 1-1
shows the message-passing process.

.,. AllocExch(&ExchA)
AllocExch(&ExchB)

Wait(ExchA,
Send(ExchA, pMsg) .. I Exchange A I ...

I I
, &pMsgRet)

Wait(ExchB, - I I Send(ExchB, pMsg) &pMsgRet) I Exchange B I -

Process 1 Operating System Process 2

Figure 1-1. Message Passing

Each process in the figure allocates an exchange for its own use. It can
then receive messages at that exchange. The two processes can send
messages directly to each other's exchanges, if they know each other's
exchange numbers. This knowledge is easy to acquire if the two processes
are part of the same program. Simply store the exchange numbers in an
area of memory to which both processes have access.

If the two processes reside in different programs, however, they cannot
discover each other's exchange numbers directly. In this case, the
processes can communicate using the request/response model.

eTOS Overview 1-5

The Request/Response Model

One of the most important concepts in eTaS is the request/response
model. Most communication between application processes and the
operating system uses this model.

Processes should not send messages directly, unless they are part of the
same program. Instead, they should use requests. Every type of request
has a unique numerical code. When a process wants to serve a particular
request code, it notifies the operating system. The operating system then
routes all requests which contain that request code to the process that
volunteered to serve them.

The operating system maintains a table of all the request codes in the
system, and of the exchanges at which they are served, so that it knows
how to route each one correctly.

Figure 1-2 shows a diagram of the request/response model.

- AllocExch (&ExchA)
AllocExch(&ExchB) ... ,

ServeRq(RqCode, ".

ExchA)

Request(pMsgRet) 1 • Look up Request .. Wait(ExchA,

Code. &pRq)

2. Route Request to
Server Exchange

Wait(ExchB,
Route Response to Respond(pRq) &pMsgRet) - Client Exchange -

Client Operating System Server

Figure 1-2. The Request/Response Model

1-6 eTOS/Open Programming Practices and Standards - Part I

The client application in the figure needs a service provided by another
process. It therefore sends a request to the operating system for that
particular service, and waits for a response. The operating system routes
the request to the process which serves that request. The server of the
request may be the operating system itself, or an appropriate system
service.

The service provider performs the work required by the request, and
sends back a response. The client application receives the response, and
continues its execution.

Client programs can continue to execute while they wait for a response
from a system service. Instead of simply waiting for the message to
return, the client continues to do other work, but checks periodically to
see if the message has returned.

Programs and Partitions

A program consists of code, data, and one or more processes. A
partition is the area of memory in which a program runs. Partitions are
longer-lived than programs.

When a partition is first created, it receives control of certain areas of
memory. The operating system also loads a program into the new
partition. Usually, this program is a user shell, such as the Executive,
though the operating system can load an application program directly.

Any series of programs can then run in the partition, one after the other.
Usually, the user returns to the shell between applications, although this is
not required. Multiple programs can also run in a partition
simultaneously. The partition itself continues to exist either until the
system is rebooted, or until it is removed by a partition-management
program, such as the Context Manager.

eTas Overview 1-7

The Distributed Environment

The message-based nature of eTOS is uniquely suited to a distributed
computing environment, and the hardware that runs eTOS-based
operating systems has networking built in.

The building block of the eTOS distributed environment is the cluster. A
cluster consists of one master and any number of cluster workstations.
The master functions as a server for the cluster workstations, and is
connected to them by a local area network. All workstations, including
the master, can be used by people for their individual work.

When an application on a cluster workstation issues a request, its
operating system serves the request locally if possible. If no process on
the workstation serves that request code, the operating system
automatically routes the request to the master for processing, unless the
programmer defines the request as one that should not be routed.

The application does not know where the request is served. It simply
issues a request, and receives a response. Network routing is completely
transparent to it.

System Memory Organization

The operating system treats system memory as one large free area, into
which it loads programs. There are certain rules for how it loads these
programs, however.

Figure 1-3 shows the memory organization in a sample system. Portions
of the operating system reside at both the highest and the lowest addresses
in physical memory. Each program is then loaded at the highest available
portion of memory. So, as system services and other programs are
loaded, the range of available memory shrinks toward the lower
addresses.

1-8 eTOS/ Open Programming Practices and Standards - Part I

High End of Memory
Operating System Data

Operating System Code

System Service

System Service

Low End of Memory
Operating System Data

Figure 1-3. System Memory Organization

Application Memory Organization

As described above, programs run in partitions. A partition is an area of
memory which the operating system has reserved for the use of a
particular program, or succession of programs.

Each program is subdivided into segments. A segment is an area of
memory which contains a certain type of information used by the
program. Some segments contain code, others constants or static data,
and one contains the program's stack. Figure 1-4 shows an example of
how an application partition is organized.

eTOS Overview 1-9

High End of Memory

Low End of Memory

Application Program
(Code and Data)

Allocated Memory
(Short-Lived)

u~
%ia

Allocated Memory
(Long-Lived)

Application
Partition

Figure 1-4 Application Partition Organization

A program rarely fills its partition completely at the moment it is loaded.
Therefore, the partition contains some amount of unallocated memory,
which the program can allocate and release dynamically. eTOS defines
two kinds of allocatable memory; short-lived and long-lived.

Short-lived memory is the type of dynamic memory available under most
operating systems. The program can allocate and release it at will. When
the program terminates, the operating system releases any short-lived
memory that the program did not explicitly release.

Long-lived memory can also be allocated and released at will, but
long-lived memory is handled differently when the program terminates. If
a program does not release its long-lived memory, that memory remains
allocated after the program terminates. This allows the program to pass
information to a successor program in the same partition.

1-10 eTOS/ Open Programming Practices and Standards - Part I

j

The Anatomy of a Program

Programs that run in a eTOS operating system share certain
characteristics. The following sections highlight several aspects that are
common to all programs under eTOS.

Segmentation

All programs are divided into segments. Unless your program is written
in Assembly language, your compiler generates code to set up your
program's segments automatically.

At the minimum, a program has one segment which contains its code, and
one which contains its constant data, static data, and stack. It may also
use other, dynamically allocated data segments.

Most programs do not fit the minimum configuration, however. More
commonly, a program has several code segments, a constant data
segment, one or more static data segments, and a stack segment. In
addition, most programs make use of dynamically allocated memory.

There is no required order for segments under eTOS, but DGroup
(which normally contains constant data, static data, and the stack) must
be separate from the program's code.

Figure 1-5, on page 1-12, shows the organization of a sample program in
memory.

Types of External Procedures, and How to Call Them

eTOS pr.ovides several different types of external procedures, but an
application can call them all in the same way. The types of procedures
are:

• object module procedures

• system-common procedures

• request procedural interfaces

• kernel primitives

eTOS Overview 1-11

High End of
Partition Memory

Low End of
Partition Memory

I-

__ Sta_ck --I} DGroup Constant Data

Static Data

Code Segment

Code Segment

Code Segment

Short-Lived
Memory

Long-Lived Memory

Figure 1-5. Segment Organization in an Application Partition

All these types of procedures can be called as external procedures from
an application, but what actually happens in the operating system is
different for each. For the purposes of this manual, they can all be
treated as external procedures.

Listing 1-1 shows an example of an external procedure definition, and of a
subsequent call to that procedure in the C language. If you use a different
programming language, the syntax may differ, but the information is
similar.

1-12 eTOS/ Open Programming Practices and Standards - Part I

Note the two lines that begin with the pragma statement. These lines are
required only because the C language uses a different parameter-passing
convention than CTOS does. Some C compilers also provide a header
file that contains these definitions. See your compiler manual for
information about your compiler's calling convention. For more
information about the calling convention used by CTOS, see "Stack
Format and Calling Conventions" in Part II of this manual.

pragma Calling_convention(CTOS_CALLING_CONVENTIONS);
extern ErcType AllocAreaSL(Word cbArea , Pointer

ppAreaRet);
pragma Calling_convention();

erc AllocAreaSL(cbMyArea, &pMyArea);

Listing 1-1. Declaring and Calling a CTOS External Procedure

A Note About pbcbs

Many of the CTOS/Open operations require the calling program to pass
the address of some data item, and the size of that data item. These two
parameters can be thought of as a pair, and are often called a pbcb, which
is an abbreviation for "pointer to bytes and count of bytes". A pbcb
defines an area of the calling program's memory which is Inade available
to the called operation.

Two basic types of pbcb exist: request pbcbs and response pbcbs. For
both types, the calling application passes a pointer to an area of its
memory and the size of that area. The difference between the two types
lies in who reads the information pointed to by the pbcb.

For example, a request pbcb might consist of a pointer to the beginning of
a character string and the count of characters in the string. A response
pbcb might consist of a pointer to an area of memory allocated for a
returned string, and the size of that area (the maximum count of
characters that can be returned).

So, in both cases the calling application passes a pointer and a count of
bytes, which together define an area of memory. For a request pbcb, the

eTOS Overview 1-13

called operation reads the· contents of that area of memory, and takes
appropriate action. For a response pbcb, the called operation writes
return information to that area of memory. The program then reads the
returned information and takes appropriate action.

What Happens When a Program Starts

When a user starts a program, the operating system loader loads the
program into short-lived memory, and starts it. The operating system
allocates any memory that is needed at the start of the program, and
makes the appropriate segment information available to the program.

Unless you write your program in assembly language, your compiler
generates code that sets up your program's environment, then passes
control to your main procedure.

The memory allocated by the operating system may be located anywhere
in the machine's physical memory. There is no guarantee that any two
segments are adjacent. This allows the operating system to make the
most efficient use of its available memory. Generally, however, the
operating system loads each program at the highest available address in
physical memory.

The operating system also builds a structure called an Application System
Control Block (ASCB), which contains the information the operating
system needs to know about your program. The ASCB also contains
information that the program needs, such as the location of its input
parameters. The program can use various procedure calls to retrieve
information from the ASCB. A program generally should not read
directly from the ASCB, however, and should never write directly to the
ASCB.

What Happens When a Program Exits

When a program terminates, control passes to the program's exit run file.
By default, a program's exit run file is the environment (such as the
Executive) from which it was launched. The program can change the exit
run file to the name of another program, however, using the
SetExitRunFile operation. This allows a series of programs to execute
one after the other in the same partition.

1-14 eTOS/ Open Programming Practices and Standards - Part I

The operating system also performs some housekeeping when an
application terminates. When the operating system detects that a program
wants to terminate, it notifies all the system services on the workstation.
Those services can then deallocate any resources the terminating
application was using, such as memory buffers or temporary files.

eTOS Overview 1-15

2
Basic Input and Output

This chapter describes how an application can read and write data, using
the operations in the CTOS/Open standard.

Device-Independent 1/0

CTOS provides both device-dependent and device-independent I/O.
Device-independent I/O is easiest to use and most portable, but it has
limited capabilities. Device-dependent I/O gives greater control over a
given device, but limits the application to communication with a particular
type of device.

For the purposes of this manual, device dependence refers to dependence
on a type of device (such as video). It does not refer to dependence on a
particular subtype of device (such as a bit-mapped monitor).

The Sequential Access Method (SAM)

The Sequential Access Method (SAM) provides a generalized,
device-independent method of performing I/O. SAM allows a program to
read input and write output in the same way, no matter what device the
program is actually communicating with.

This lets you use the same subroutines to perform I/O to different
physical devices, reducing the amount of new code a program requires.
Because the SAM interface is consistent across device types, it also
allows input and output to be redirected.

Compatibility comes at a price, however. SAM routines generally take
more execution time than equivalent, device-dependent routines.
Therefore, if execution speed is at a premium the device-dependent

Basic Input and Output 2-1

routines may be more appropriate. In addition, if the application
communicates with only a single type of device, the SAM routines require
more memory than a single device-dependent procedure does.

What Is a Byte Stream?

The generalized method SAM uses for I/O is called a byte stream. A
byte stream is exactly what its name implies: a series of bytes which a
program reads or writes in sequential order. Byte streams can be used for
input, for output, or for both. A byte stream must be opened before it is
used, and should be closed when it is no longer needed.

An input byte stream can be read either until the reader chooses to stop
reading or until the reader receives a nonzero status code (such as "end of
file") in response to a read request. An output byte stream can be written
until the writer chooses to stop, or until some physical boundary (such as
a full disk) is encountered.

While all byte streams share a set of common procedures, SAM also
provides a few device-dependent procedures for each type of byte stream.
These procedures allow a small amount of device dependent control for
different types of byte streams.

Each byte stream requires a 130-byte byte stream work area (BSWA).
Some types of byte streams require an additional buffer area. A program
can have any number of byte streams open at a time, but it must have a
separate BSW A for each one.

Supported Byte Streams

CTOS supports most commonly-used byte streams automatically. You
can also add new types of byte stream to your program, by customizing
SAM. Customizing SAM is discussed in Part II, Chapter 17, "Building a
Customized SAM." The byte stream device types supported by the
operating system are listed below.

• [Vid] or [Vid]n

The video byte stream. [Vid] specifies video frame o. [Vid]n allows
the program to specify any defined video frame. Video frames are

2-2 eTOS/ Open Programming Practices and Standards - Part I

discussed below in "Yideo Management - YAM and YDM." Yideo
byte streams are write-only.

The video byte stream is pre-opened by the operating system, and
can be accessed using the external array variable bs Vid as the
BSWA.

• [Kbd]

The keyboard. This byte stream includes input from submit files
and batch files. The keyboard byte stream is read-only.

The keyboard byte stream is pre-opened by the operating system,
and can be accessed using the external array variable bsKbd as the
BSWA.

• {Node} [Vol] < Dir>jilename

Any file identified by a full or partial file specification.

• [LPT]&jilespec

A Centronics-compatible printer connected to the parallel printer
port. &jilespec is optional, and specifies a configuration file for the
printer.

• [PTR]n&jilespec

A serial printer attached to serial port n. As with the [LPT] device,
&jilespec is optional, and specifies a configuration file for the
printer.

• [COMM]n&jilespec

Serial communications port n. &jilespec is optional, and specifies a
configuration file for the communications port.

• [QICm]n or [TAPEj]k

Quarter-inch cartridge (QIC) tape drive m, tape file n, or half-inch
tape drive j, tape file k.

Basic Input and Output 2-3

• {Node}{QueueNameJreportname

Spooler queue name. QueueName is the name of the scheduling
queue for the spooler. The default is [SPL]. Reportname is a text
string by which the entry is identified.

• [NUL]

The system Null device .. All input operations return status code 1
("End of file"). All output operations return status code 0, but the
output is discarded.

• [X2S]n&jilespec

X.2S virtual circuit, where n is the network identifier. &jilespec is
optional, and specifies a configuration file that defines the virtual
circuit's characteristics.

Device and File Specification Parsing

To determine the type of byte stream you want, SAM parses the device or
file specification as follows:

1. It scans from left to right for an open-bracket symbol ('[').

If SAM does not find an open-bracket, it assumes the string is a file
name, and opens or creates a file with that name.

If SAM does find an open-bracket symbol, it continues parsing the
specification.

2. After it finds an open-bracket symbol, SAM tries to match the
bracketed string to each of the reserved strings for system devices
(for example, KBD).

If SAM finds a match, it attempts to open the requested device.

If SAM does not find a match, it continues parsing the
specification.

2-4 eTaS/Open Programming Practices and Standards - Part I

3. Next, SAM checks for a left angle-bracket ('<').

If SAM finds one, it assumes the string is a file specification, and
opens a disk byte stream.

If SAM does not find an angle-bracket, it assumes the string
identifies a Generic Print System byte stream or a Spooler byte
stream.

Using a Generic Byte Stream

Before using a byte stream, a program must open it. To do so, the
program passes SAM the following information:

• a device or file specification for the byte stream

• a password, if required

• the byte stream mode (read, write, or both)

• the address of the byte stream's BSWA

• the address and size of the additional buffer, if required

After it opens the byte stream, the program can use it at will. The
program should explicitly close the byte stream before exiting, however.
If a byte stream remains open when a program exits, the operating system
closes the byte stream, but does not check that all the program's data was
written to it.

Listing 2-1 shows the body of a simple program that reads input from the
keyboard, echoes it to the screen, then writes the input to a byte stream
of the user's choice. It uses the procedure, GetByteStream, to open the
byte stream. It then uses another procedure, GetString, to obtain a string
of characters from an input device. It then writes the characters to the
byte stream. Finally, if the byte stream is a file, the procedure
ReplaceLineFeeds replaces all line feeds with page breaks. The GetString
and ReplaceLineFeeds procedures are defined later in this chapter.

Listing 2-2 shows the variable declarations for the byte streams used in
Listing 2-1. The entire program listing can be found in Appendix D.

Basic Input and Output 2-5

GetByteStream (char *BSWA)
[
ErcType erc;
Word cbRet;

do [
CheckErc (WriteBsRecord (bsVid,rgbBsPrompt,

sizeof(rgbBsPrompt), &cbRet»;
cbString = GetString(bsKbd, rgbString, STRSIZE);
if (cbString > 0) [

erc = OpenByteStream (BSWA, rgbString, cbString,
NULL, 0, MODIFYMODE,
rgMyBuffer,sizeof(rgMyBuffer»;

if (erc == ERCNOTIMPLEMENTED)
[/* Mode modify not applicable, check write */
erc = OpenByteStream (BSWA, rgbString,

cbString, NULL, 0, WRITEMODE,
rgMyBuffer, sizeof(rgMyBuffer»;

if (erc == ERCNOTIMPLEMENTED)

}

[/* Mode write not applicable */
CheckErc (WriteBsRecord (bsVid, rgblnvalidBs,

strlen(rgblnvalidBs),&cbRet»;
CheckErc (WriteBsRecord (bsVid, rgbString,

cbString, &cbRet»;
CheckErc (WriteByte (bsVid,LINEFEED»;
erc = ERCBOGUS; /* set error to loop back */
)

else CheckErc (erc);
}

else /* empty string, go get another one */
[

}

CheckErc (WriteByte (bsVid,LINEFEED»;
erc = ERCBOGUS; /* set error so we can loop back */
)

while (erc != 0); /* if they make a mistake, ask again */
}
main() [
ErcType erc;
Word cbRet;

GetByteStream (MyBSWA);

/* read input with echo, then output it */
/* single RETURN stops the input request */
do [

CheckErc (WriteBsRecord (bsVid, rgbPrompt,
sizeof(rgbPrompt), &cbRet»;

continued ...

2-6 eTaS/Open Programming Practices and Standards - Part I

cbString = GetString (bsKbd, rgbString, STRSIZE);
if (cbString > 0) [

CheckErc (WriteByte (MyBSWA, LINEFEED»;
CheckErc (WriteBsRecord (MyBSWA, rgbString,

cbString, &cbRet»;
)

while (cbString != 0);

ReplaceLineFeeds (MyBSWA);
return(O);
)

Listing 2-1. A Sample Program Using Byte Streams

/* file access constants */
#define WRITEMODE Ox6D77 /* 'mw' */
#define READMODE Ox6D72 /* 'mr' */
#define MODIFYMODE Ox6D6D /* 'rnrn' */

/* allocation sizes */
#define STRSIZE 128
#define ALLOC_SIZE OxlOO

/* input characters */
#define LINEFEED OxOA
#define FORMFEED OxOC

/* key definitions
#define FINISH
#define CANCEL
#define RETURN
#define Go

/* error codes */

*/
Ox04
Ox07
OxOA
OxlB

#define ERCOK OxOO
#define ERCEOF OxOl
#define ERCOPERATOR Ox04
#define ERCNOTIMPLEMENTED Ox07
#define ERCINVALIDBSWA Ox91S
#define ERCBOGUS OxFFFF

/* define the pre-opened byte streams */
extern char bsVid[];
extern char bsKbd[];

continued ...

Basic Input and Output 2-7

/* define my global variables */
char rgbString[STRSIZE]i /* general purpose string */
char MyBSWA[130]i
int cbStringi
Word rgMyBuffer[S12]i

char rgbBsPrompt[] =
"\nType a device or file spec for the Byte Stream
you want."
"\nPress CANCEL if you make a mistake: "i

char rgbExit[] =
"\n\nPress GO to confirm FINISH, or CANCEL to
continue."i

char rgbInvalidBs[] =
"\n\nBytestream is invalid for output: "i

char rgbPrompt[]
"\n\nType a character string, then press RETURN:

Listing 2-2. Variable Declarations for Byte Streams

Using Byte Streams for File Access

" . I

Byte streams are commonly used to read and write sequential data files.
The program in Listing 2-1 could be used for that purpose.

Byte streams which access files also have two device dependent
procedures available to them: GetBsLfa, and SetBsLfa. These
procedures let a program determine and change the current Logical File
Address (LF A) of a byte stream in a file. The Logical File Address is
simply the offset, in bytes, of the current file position from the beginning
of the file. The first byte in the file has an LF A of zero.

Listing 2-3 shows a procedure from the generic byte stream program.
This procedure converts all line feeds in a file byte stream to form feeds.

2-8 eTaS/Open Programming Practices and Standards - Part I

ReplaceLineFeeds (char *BSWA) (
char bIni
ErcType erCi
long Lfai
/* flush my buffers */
CheckErc (CheckPointBs (BSWA»i
erc = GetBsLfa (BSWA, &Lfa)i
if (erc == ERCOK) { /* it's a file */

CheckErc (SetBsLfa (BSWA, O»i
erc = ReadByte (BSWA, &bIn)i
while (erc == ERCOK) {

if (bIn == LINEFEED) {
/* change this to a form feed just for fun */
CheckErc (GetBsLfa (BSWA, &Lfa»i
CheckErc (SetBsLfa (BSWA, (Lfa - l»)i
CheckErc (WriteByte (BSWA, FORMFEED»i
)

/* get the next character */
erc = ReadByte (BSWA, &bln)i
)

else if (erc != ERCINVALIDBSWA)
ErrorExit (erc)i /* something is wrong */

/* flush the buffer and close the file */
CheckErc (CloseByteStream(BSWA»i
)

Listing 2-3. Positioning a Byte Stream in a File

Using Byte Streams for Video Access

Video byte streams have one device dependent procedure, QueryVidBs,
which returns information about the current state of the video byte
stream. However, video byte streams can also use escape codes to
modify the state of the byte stream. Escape codes allow the program to
perform the following functions:

• control screen display attributes

• control character display attributes

• control scrolling and cursor position

Basic Input and Output 2-9

• control cursor visibility

• redirect the video byte stream to a different video frame

• enable or suppress a pause between screen-fulls of text

See Appendix D in the CTOS/Open Application Programming Interface
Specification for a detailed description of the available byte stream escape
sequences.

In addition, for simple byte stream video 110, eTOS provides the
OutputToVidO procedure. This procedure outputs a text string to the
current cursor position in video frame 0 (the default text frame), and is
useful for displaying simple text messages.

Listing 2-4 shows a procedure that lets a user type an escape code, then
sends that escape code to the video device. If the first character typed is
an 'E', the rest of the string is interpreted as an escape code, otherwise
the string is displayed as typed by the user.

PrintEscape (char *rgbEscape, char cbEscape) {
char i, nCol, nFrame, nLinei
ErcType erCi
Word cbReti

/* save the current cursor location */
CheckErc (QueryVidBs (bsVid, &strVidStatus»i
nFrame = strVidStatus.nFramei
nCo I = strVidStatus.nColi
nLine = strVidStatus.nLinei
/* change to frame 0 (working frame) */
CheckErc (WriteBsRecord (bsVid, escToFrameO,

sizeof(escToFrameO), &cbRet»i
/* now print out the user entered escape sequence */
CheckErc (WriteByte (bsVid, ESCAPE»i
for (i = Oi i < cbEscapei i++) [

erc = WriteByte (bsVid, *(rgbEscape+i»i
if (erc == ERCINVALIDVIDESCAPE) [

/* change to frame I (title frame) */
CheckErc (WriteBsRecord (bsVid, escToFrame1,

sizeof(escToFramel), &cbRet»i
/* print out error message */
CheckErc (WriteBsRecord (bsVid, rgblnvEscape,

strlen(rgblnvEscape) , &cbRet»i
return (-l)i
)

continued ...

2-10 CTOS/Open Programming Practices and Standards - Part I

/* output the sample string */
CheckErc (WriteBsRecord (bsVid, rgbTest, strlen(rgbTest),

&cbRet)) ;

/* reset the frame just in case, can't use a canned */
/* sequence */
rgbEscape[O] = ESCAPE;
rgbEscape[l] = REDIRECT;
rgbEscape[2] = nFrame;
CheckErc (WriteBsRecord (bsVid, rgbEscape, 3, &cbRet»;

/* reset the cursor post ion */
rgbEscape[l] = COLSET;
rgbEscape[2] = nCol;
rgbEscape[3] = nLine;
CheckErc (WriteBsRecord (bsVid, rgbEscape, 4, &cbRet»;
return (0);
}

maine)
[
char
char
Word

i, j;
*pString;
cbRet;

ClearFrames ();
CheckErc (WriteBsRecord(bsVid, rgbIntro,

sizeof(rgbIntro), &cbRet»;
/* get escape sequence, do it, ask for a new one */
do [

i = OJ
j = 0;
CheckErc (WriteBsRecord (bsVid, rgbPrompt,

sizeof(rgbPrompt), &cbRet»;
cbString = GetString(bsKbd, rgbString, STRSIZE);
if (cbString > 0)

if (rgbString[i] == 'E')
[/* we have the start of an escape sequence */
i++;
while (rgbString[i] != 0) [

if (isalpha (rgbString[i]) != FALSE)
rgbEscape[j] = rgbString[i];
i++;
j++;
}

else if (isdigit (rgbString[i]) != FALSE) [
pString = &(rgbString[i]);

continued ...

Basic Input and Output 2-11

rgbEscape[j] = atoi (pString);
j++;
while (isdigit (rgbString[i]) != FALSE)

i++;
)

else i++;
) /* end while rgbString[i] */

rgbEscape[j] = 0; /* null-terminate it */
PrintEscape(rgbEscape, j);
) /* end if it starts with E */

else CheckErc (Beep (»;
) /* end if strsize > 0 */

while (cbString != 0);

return(O);
)

Listing 2-4. Sending Escape Codes to Video

Using Byte Streams for Keyboard Access

There are no device-dependent procedures for keyboard byte streams, but
keyboard byte streams return the following status codes when the Finish
and Cancel keys are pressed .

• Finish (ASCII value 04) returns status code 1 ("End of file").

• Cancel (ASCII value 07) returns status code 4 ("Operator
intervention").

Listing 2-5 shows a simple procedure that gets a string from the keyboard
using a keyboard byte stream. Notice that the CheckErc procedure is not
used when reading from a byte stream, because CheckErc causes the
program to exit if it receives any status code other than zero.

2-12 eTOS/Open Programming Practices and Standards - Part I

GetString(char *BSWA, char *rgb, Word cbMax) {
char bIn;
char class;
char i = 0;
ErcType erc;

/* zero the string */
while «rgb[i] != 0) && (i < cbMax»

rgb[i++] = 0;

/* collect the chars */
i = 0;
while (TRUE) [

erc = ReadByte (BSWA, &bIn);
if (ere == ERCEOF) HandleFinishKey (BSWA)i

/* Finish key pressed */
else if (erc == ERCOPERATOR) return(-l)i

/* Cancel key pressed */
else [

switch (bIn) [
case GO:
case RETURN:

return (i)i
default:

/* check if it's a keyboard char */
CheckErc (NlsClass (NULL, bIn, &class»i
if (class <= 2)

[/* valid character, echo it out */
CheckErc (WriteByte (bsVid, bIn»i
rgb[i] = bIni
if (i < STRSIZE) i++;
}

else Beep ()i /* invalid character entered */
breaki
) /* end of switch */

/* end of else */
} /* end of while */

return(O)i
)

Listing 2-5. A Procedure to Read a String from a Byte Stream

Basic Input and Output 2-13

Other Uses for Byte Streams

Byte streams can be used for almost any type of I/O. Other common
types of byte streams that this chapter does not discuss are printer I/O
and communication port I/O.

In addition, you can create new instances of the standard byte stream
procedure calls for special devices. For example, you could write byte
stream procedures to communicate with a magnetic card reader, then link
them with your program. The program could then use the standard byte
stream interface for I/O, but use a device called [CardRdr], or something
similar.

For more information on defining new byte streams, see Part II, Chapter
17, "Building a Customized SAM."

Device-Specific 1/0

When the Sequential Access Method procedures are not able to perform
the functions you need, you can use a second layer of I/O procedures.
These procedures are more specific to the I/O device, and are therefore
less portable.

File Management

CTOS provides a direct interface to the file system, as do almost all
operating systems. Most programs use the byte stream interface unless
they use a structured file format. In some cases, however, using the
direct file system calls may be more efficient.

Listing 2-6 shows a procedure that opens a file using the direct file calls.
The procedure first assumes the file exists and tries to open it. If the file
does not exist, the procedure creates it. Listing 2-7 shows a procedure
that writes to a previously opened file using the direct file calls. A listing
for the program that contains both procedures can be found in Appendix
D.

Note that the procedure in Listing 2-7 assumes the existing End-of-File
pointer is divisible by 512. If it is not, the procedure will fail. Normally,
as in the example, a program saves entire files at a time when it uses the
direct file calls. Therefore, only the last call to the procedure results in

2-14 eTOS/Open Programming Practices and Standards - Part I

an End-of-File pointer that may not be divisible by 512: the true end of
the file.

Word GetFile () (
ErcType erc;
Word fh, cbRet;
DWord qZero = 0;

do (
CheckErc (WriteBsRecord (bsVid, rgbBsPrompt,

sizeof(rgbBsPrompt),&cbRet»;
cbString = GetString(bsKbd, rgbString, STRSIZE);
if (cbString > 0) (

erc = OpenFile(&fh, rgbString, strlen(rgbString) ,
NULL, 0, MODIFYMODE);

if{erc == ERCNOSUCHFILE) (/* create the file */
CheckErc(CreateFile(rgbString,

strlen(rgbString),NULL,O,O»;
continued ...

CheckErc(OpenFile(&fh, rgbString,
strlen(rgbString), NULL, 0,
MODIFYMODE));

else (
CheckErc(erc);
/* reset file size and EOF pointer */
CheckErc(SetFileStatus(fh, 6, &qZero,

sizeof (qZero»);
CheckErc(ChangeFileLength(fh, qZero));
)

else (/* empty string, go get another one */
CheckErc (WriteByte (bsVid,LINEFEED»;
erc = ERCBOGUS;~ /* set error so we can loop back */
)

)
while (erc != 0); /* if they make a mistake, ask again */
return (fh) ;
)

Listing 2-6. Opening a File

Basic Input and Output 2-15

void StoreData(Word fhMyHandle, Word cBytes) {
DWord qEOFPtri
DWord Ifai
Word sDataReti

/* get current Ifa and EOF pointer */
CheckErc(GetFileStatus(fhMyHandle,O,&lfa,sizeof(lfa»)i
CheckErc(GetFileStatus(fhMyHandle, 6, &qEOFPtr,

sizeof(qEOFPtr»)i
/* increase file size */
Ifa += 512i
CheckErc(ChangeFileLength(fhMyHandle, Ifa))i
CheckErc(Write(fhMyHandle, rgbMyBuffer, SMYBUFFER,

qEOFPtr, &sDataRet))i
/* reset EOF pointer */
qEOFPtr += cBytesi
CheckErc(SetFileStatus(fhMyHandle, 6, &qEOFPtr,

sizeof(qEOFPtr»)i

Listing 2-7. Writing to a File

Wild Cards

CTOS provides two procedures to ease wildcard processing. CTOS
defines two wildcard characters: ,*, and '?'. The asterisk ('*') indicates
that any string of 0 or more characters can be inserted at that position in
the string and considered a match. The question mark ('?') indicates that
any single character can be inserted at that Iposition in the string and
considered a match.

The Executive normally expands wildcards on a command form
automatically, but if a program needs to read a file specification from
another source, it should be prepared to handle wildcards. Listing 2-8
shows a simple routine that displays a list of files that match an entered
file specification.

2-16 eTOS/Open Programming Practices and Standards - Part I

ErcType ListMatches (char *pFs) {
EreType ere = 0;
sdType sdFs;
Word *pBuffer;
Word ebRet;

sdFs.pb = NULL;
sdFs.eb = 0;

if «pBuffer = malloe (MEMSIZE»
ErrorExit(ERCINSUFFMEM);

NULL)

/* initialize the wild card expansion environment */
CheekEre (WildCardlnit (pFs, strlen(pFs), pBuffer,

MEMSIZE));

while (ere == ERCOK) {
/*get next file matching the wild card speeifieation*/
ere = WildCardNext (pBuffer, &sdFs);
if (ere == ERCOK) [

CheekEre (WriteBsReeord (&bsVid, sdFs.pb, sdFs.eb,
&ebRet)) ;

CheekEre (WriteByte (&bsVid, RETURN»;
}

else if (ere == ERCEOF) return(O);
else return (ere);
}

Listing 2-8. Building a List of File Names from a Wildcard

Temporary Files

When a program makes use of temporary files, it should create them in
the current volume's <$> directory. This directory is reserved by the
operating system for temporary files. The operating system also performs
a file name translation to prevent multiple instances of the same program
from trying to use the same temporary file name.

When a program opens a file <$> Foo.tmp, the operating system expands
the file specification to <$OOO>nnnnn> Foo.tmp, where nnnnn is the user
number for that partition. This expansion is invisible to the program, so
the program can always use the same temporary file name.

Basic Input and Output 2-17

Because the user numbers at a cluster workstation are reassigned
whenever the workstation is booted, you should never use the <$>
directory for permanent files.

Keyboard Management

Using byte streams to read the keyboard is a relatively inefficient process.
A program incurs all the byte stream overhead, but usually ends up
reading one keystroke at a time. Using the keyboard-specific operations
is more efficient and more flexible.

An application can read from the keyboard in either of two modes. The
first, encoded mode, is the simpler one. In encoded mode, the
application simply receives an ASCII character code whenever the user
types one. The operating system makes the state of any special keys, such
as Code or Shift, transparent to the application.

In un en coded mode, however, the application receives a keyboard code
whenever a key is pressed or released. It is the application's
responsibility to track and account for the states of any special keys. For
example, the keyboard events that would return the character 'A' in
encoded mode could return the following keyboard codes in unencoded
mode:

• Left shift key depressed.

• 'A' key depressed.

• 'A' key released.

• Left shift key released.

Reading the keyboard in encoded mode is easier, but somewhat less
flexible, than unencoded mode.

Listing 2-9 shows a modified version of the GetString procedure used in
earlier listings. This procedure reads directly from the keyboard, in
encoded mode. The procedure no longer uses byte streams, and now uses
the TextEdit procedure to evaluate the entered character. TextEdit is a
preferred method of processing keyboard input, since it handles most
special keys for its client application.

2-18 eTOS/Open Programming Practices and Standards - Part I

/* read a string from the keyboard, echo it to a video
frame, and handle various special keys */
int GetString (char *str, int iFrarne) {
char bIn; /* the character */
char i = 0;
ErcTypeerc;

/* set up buffer for TextEdit */
tbPtr = &textBlock;
textBlock.prgch= str;
textBlock.cchMax= STRSIZE;
textBlock.cchMac= 0;
textBlock.ichCursor= 0;

/* initialize string */
while «str[i] != 0) && (i < STRSIZE»

str[i++] = 0;

/* make cursor visible */
CheckErc (PosFrameCursor (iFrame, iCurCol, iCurLine»;

/* get the chars */
while (TRUE) {

CheckErc (ReadKbd (&bIn»;
switch (bIn) {
case FINISH:

PrintMsg (rgbExitString);
CheckErc (ReadKbd (&bIn»;
if (bIn == GO) ErrorExit(O);
else PrintMsg(NULL);
break;

case CANCEL:
return(-l);

case GO:
case RETURN:

/* make cursor invisible */
CheckErc (PosFrameCursor (iFrame, ESCAPE, ESCAPE»;
return(textBlock.cchMac);

case HELP:
/* turn off cursor */
CheckErc (PosFrameCursor(iFrame, ESCAPE, ESCAPE»;
DisplayHelp ();
/* turn it back on */
CheckErc(PosFrameCursor(iFrame, (iCurCol +

break;
case Fl:

textBlock.ichCursor), iCurLine»;

continued ...

Basic Input and Output 2-19

case FlO:
/* tell them they pressed a function key */
PrintMsg (rgbFuncKeyMsg)i
CheckErc (ReadKbd (&bIn))i
PrintMsg (NULL)i
breaki

default:
/* add the char to the string if it's a valid char */

ere = TextEdit (bIn, tbPtr)i
/* beep if it isn't */
if (ere != 0) [

CheckErc (Beep ())i
breaki
}

/* display the modified TextEdit buffer, and move
the cursor */

CheckErc (PutFrameChars (iFrame, iCurCol, iCurLine,
textBlock.prgch, textBlock.cchMax))i

CheckErc (PosFrameCursor (iFrame, (iCurCol +
textBlock.ichCursor), iCurLine))i

breaki
} /* end of switch */

} /* end of while */
return(O)i
}

Listing 2-9. Procedure to Read a String from the Keyboard

Video Management - VAM and VDM

Video byte streams are the simplest video interface to use, but they allow
little more than line-oriented output. The Video Access Method (V AM)
and Video Display Management (VDM) allow a program to use multiple
display frames, and to control how those frames appear on the screen.

Before a program can use V AM and VDM, it must set up its screen. To
do so, the application must perform the following steps in the order
shown below:

1. Call QueryVidHdw to determine the workstation's video capabilities.

2. (Optional) Call LoadFontRam to load a customized screen font.

2-20 eTOS/Open Programming Practices and Standards - Part I

3. Call ResetVideo to initialize the video control structures.

4. Call InitVidFrame to initialize each display frame the application will
use.

5. (Optional) Call SetScreenVidAttr to set reverse video or half-bright
video.

6. Call InitCharMap to initialize the character map.

7. Call SetScreen VidAttr to set the screen refresh attribute.

Listing 2-10 shows the standard setup procedures used for V AM and
VDM. The program first resets the screen, then establishes its own
screen display, consisting of several display frames. A program that uses
this procedure can be found in Appendix D.

Note that the procedure uses the values returned by QueryVidHdw to set
global values for the number of rows and columns on the screen. Note
also that the procedure computes the number of lines in a frame based on
those returned values. Because different hardware may support different
numbers of rows or columns on the screen, these values should always be
considered variable.

void Initvideo ()
Word cb, sMapi /* counter, char map */
Byte rgbVidHdw[3]i

/* find out the screen size */
CheckErc (QueryVidHdw (&rgbVidHdw, sizeof(rgbVidHdw»)i
nLines rgbVidHdw[l]i
nCols rgbVidHdw[2]i

/* reset the screen */
CheckErc (ResetVideo (nCols, nLines, TRUE, Ox20, &SMap»i

/* set the size of frame ° */
sFrameO = nLines - 6i

/* Initialize the frames */
CheckErc (InitVidFrame (MAINFRAME,O,3,nCols,sFrameO,O,

THINBORDERCHAR,O,O,O»i
CheckErc (InitVidFrame (TITLEFRAME,O,O,nCols,3,O,

THICKBORDERCHAR,O,O,O»i
continued ...

Basic Input and Output 2-21

CheckErc (InitVidFrame (MSGFRAME,0,nLines-2,nCols,1,0,0,
0,0,0»;

CheckErc (InitVidFrame (FKEYFRAME,0,nLines-3,nCols,3,0,0,
0,0,0));

CheckErc (InitVidFrame (HELPFRAME,0,nLines-6 ,nCols, 3,0,
0,0,0,0»;

CheckErc (InitCharMap (0, sMap»;
CheckErc (SetScreenVidAttr (REFRESH, TRUE»;

/* reset the frames */
CheckErc (ResetFrame (MAINFRAME»;
CheckErc (ResetFrame (TITLEFRAME»;
CheckErc (ResetFrame (MSGFRAME»;
CheckErc (ResetFrame (FKEYFRAME»;

/* display the title */
cb = sizeof (rgbTitle);
CheckErc (PutFrameChars (TITLEFRAME, «nCols-cb)/2), 0,

rgbTitle, cb»;

/* display the frame border */
cb = sizeof (rgbOut);
memset (&rgbOut, THINBORDERCHAR, cb);
CheckErc (PutFrameChars (TITLEFRAME, 0, 2, rgbOut, cb»;

/* display the function keys */
DisplaySoftKeys();
} /* end InitVideo */
/* Display the function key menu on the screen */
void DisplaySoftKeys ()
[
Word cbOut, i;
struct FunctionKeyType

[
ByteFKeyStart;
ByteFKeyCount;
} rgCol[] = [[0,23}, [24,31}, [56,23} };

/* construct the function key display */
for (i = 0; i < 80; i++)

switch (i)
[

case 7:
case 15:
case 31:
case 39:
case 47:
case 63:

continued ...

2-22 eTOS/Open Programming Practices and Standards - Part I

case 71:
rgbOut[i] VERTICALBAR;
break;

default:
rgbOut[i] = rgbFkeys[i];
}

/* display the function keys */
cbOut = sizeof (rgbOut);
CheckErc (PutFrameChars (FKEYFRAME, 0, 2, rgbOut,

cbOut)) ;

/* display the frame border */
memset (&rgbOut, THICKBORDERCHAR, cbOut);
CheckErc (PutFrameChars (FKEYFRAME, 0, 0, rgbOut,

cbOut)) ;

for (i = 0; i <= 2; i++)
CheckErc (PutFrameAttrs (FKEYFRAME,

rgCol[i] .FKeyStart, 2, HALFBRITEREVERSE,
rgCol[i] .FKeyCount»;

Listing 2-10. VAM and VDM Setup Procedure

Basic Input and Output 2 - 23

3
Error Handling Conventions

This chapter describes the error handling functions available under
CTOS, and some common ways to use them.

Error Checking: General Practice

A general, recommended method of error checking under CTOS is the
use of the CheckErc and FatalError procedures. CheckErc exits by
calling FatalError whenever it encounters a nonzero status code. This
makes CheckErc useful for general error checking when a program should
abort in case of error.

If a program needs to take specific action when it encounters a particular
status code, the program usually must implement its own procedure to
handle that error code. Listing 3-1 shows an example of a procedure that
checks for the end-of-file status code. It returns True if end-of-file is
encountered, and False if no error is encountered. If it receives any
status code other than zero or end-of-file, it calls FatalError to exit.

CheekEofEre(EreType ere)
{
if(erc == ercOK)

return(FALSE)i
else if(erc == ercEOF)

return(TRUE)i
else

FatalError(erC)i

Listing 3-1. Procedure to Check for End-of-File

Error Handling Conventions 3-1

The FatalError Procedure and the fDevelopement Flag

FatalError allows the program to control its mode of termination. Most
standard object modules distributed with CTaS call FatalError or
CheckErc when they encounter errors. CheckErc also calls FatalError
when it detects an error.

Normally, FatalError just calls ErrorExit with the encountered error
code, but you can substitute your own procedure for it. For example, a
system service might include a FatalError routine that causes the service
to deinstall itself. This allows system services to call object module
procedures without concern for the error handling within those
procedures.

The FatalError procedure also checks a flag, fDevelopement (misspelled
for historical reasons), before it terminates the program. If this flag is set
to any value other than zero, FatalError enters the Debugger instead of
calling Error Exit.

To use the fDevelopement flag, just declare it as an external unsigned byte
variable in your program and set it to TRUE. All calls to FatalError will
then enter the Debugger instead of exiting.

Program Exit Modes: Exit, ErrorExit, ErrorExitString,
and Crash

Each program must choose the appropriate exit mode when it encounters
a severe error. In general, Exit should only be used after successful
completion of a program's execution. When a program must exit on
error, it should usually call FatalError, but can call ErrorExit or
ErrorExitString directly if it needs to.

ErrorExitString works like ErrorExit, except that it allows the program to
supply an information string along with the error code. The information
string can be displayed or examined by the exit run file.

Crash should be used only when absolutely necessary. For example, after
a system service is installed, it may need to call Crash if it detects an
error which may affect other programs, and from which it cannot recover.
This prevents the system from spreading the effect of the error to other

3-2 eTOS/Open Programming Practices and Standards - Part I

applications. Crash should only be used in those rare cases when not
crashing the system could result in consequences worse than crashing.

For example, if a system service that filters calls to the file system
encounters a severe error, the consequences could affect any program that
opens a file. In this case, the service should probably call Crash.

Trapping Protection Faults

Under some circumstances, an application may need to trap any
protection faults it causes. For example, a system service may want to
enter diagnostic information in the system error log, then deinstall itself
whenever it encounters a protection fault.

Also, an application program might want to trap protection faults and
ensure that any critical information is written to disk before it exits. For
example, the Editor traps faults in order to write its recovery typescript
file to disk before exiting.

Listing 3-2 shows a procedure to set up a protection fault handler, and the
procedure called by the fault handler. Note that any procedure called by
a fault handler must exit in some manner. It can never return to the main
program, or to the procedure that caused the fault.

Listing 3-3 shows the fault handler itself, which is written in Assembly
language. Because they are trap handlers, all protection fault handlers
must be written in Assembly language. For more information about trap
handlers, see Chapter 19, "Interrupt Handlers" in Part II of this guide.

Error Handling Conventions 3-3

typedef void (*PF)()i /* pointer to function */
extern void _fault_handler()i /* our assembly function */
extern bsVid[]i
PF p_fault_handler = Oi /* pointer to fault handler */
Pointer BadCSIP = NULLi /* used to store addr of fault */

/* set up a protection fault trap handler. Input */
/* param is a pointer to the function that handles */
/* fault recovery or exit */
PF set_fault_handler(PF handler)
[
PF old_handleri
ErcType erCi

/* are we in protected mode? */
if «FProtectedMode(» == FALSE

return Oi
/* save old fault handler so we can restore it later */
old_handler = p_fault_handleri
p fault handler = handleri
/* set the new handler as the erc 80 handler for this */
/* program */
if(erc=SetTrapHandler(13, (Pointer)_fault_handler) != 0)

exit(erc)i
return old handleri
} -

/* function to deal with protection fault */
void HandleFault() {
Word junklengthi
Word erCi
char logmsg[] = "Erc 80 (Protection Fault) in Erc80.run"i

/* tell 'em about it */
WriteBsRecord(bsVid, "Bad Pointer at CS:IP: ", 23,
&junklength)i
PutPointer(BadCSIP, OxlO)i
/* log the errror */
do [

erc = LogMessage(&logmsg, strlen(logmsg))i
if(erc == 290) /* buffer full erc */

Delay(l)i /* delay then retry */
) while(erc == 290)i

ErrorExit(80)i
}

Listing 3-2. Setting a Protection Fault Handler

3-4 eTOS/Open Programming Practices and Standards - Part I

; FaultHandler.asm -- generic GP fault handler
extrn ErrorExit:far

DGroup group Data
assume ds: DGroup

Data segment word public 'Data'
;tell the Assembler about p_fault_handler
extrn p fault handler:WORD
extrn BadCSIP~WORD ;tell it about CSIP pointer
Data ends

stack segment stack 'stack'
db 4 dupe?)

Stack ends

FaultHandler segment word 'code'
assume cs: FaultHandler
public Fault Handler
_Fault_Handler proc far

mov ax, dgroup
mov ds, ax
;load p_fault_handler
movax, ds:word ptr p_fault_handler
movdx, ds:word ptr p_fault_handler + 2
or ax, dx ; is p_fault_handler NULL?
j z exit ; if it is , exit
mov bx, sp ; else
mov cX,ss: [bx+2] ;get CS:IP of fault
mov BadCSIP, cx
mov cx, ss: [bx+4]
mov BadCSIP+2, cx
;then jump to fault
jmpdword ptr p_fault_handler

exit:
mov ax, 80
push ax
call ErrorExit

_Fault_Handler endp
FaultHandler ends
end; FaultHandler.asm

Listing 3-3. Assembly Routine for Generic Trap Handler

Error Handling Conventions 3-5

Error Logging: WriteLog

Listing 3-4 shows a procedure that receives a text string as its parameter,
then enters that string in the system error log. Because the error log
buffer can become full, the calling procedure should check for that
condition and take appropriate action. For example, the HandleFault
routine in Listing 3-2 uses a delay loop to ensure that the message is
always logged.

Error logging should be used for any situation in which an error may be
difficult to trace. For example, if a system service encounters a severe
error, and deinstalls itself as a result, it should log the occurrence. It
should also log any additional information the user may need to determine
the source of the error.

A program's entry in the system log must have a record type of OFFF7h.
This record type tells the system that the log entry is a text message.
Using any other record type may result in an unreadable entry in the
system log. WriteLog does not check for invalid user entries.

/* LogMessage - Routine that correctly logs a text string
*/

Word LogMessage(Pointer pbMessage, Word cbMessage)
(
ErcType ere;
struct (

Word TextCode; /* value to indicate msg to Plog */
Word cbText;
Byte rgbText[120];
) LogMsg;

LogMsg.TextCode = OxFFF7; /* must always be OxFFF7 */
LogMsg.cbText = cbMessage;
/* copy the message to the LogMsg structure */
memcpy(&(LogMsg.rgbText), pbMessage, cbMessage);
/* write the entry and return the erc */
return(WriteLog(&LogMsg, cbMessage + 4»;
}

Listing 3-4. Procedure to Create a System Error Log Entry

3-6 eTOS/Open Programming Practices and Standards - Part I

4
Parameters and Command Form Processing

This chapter describes how an application can retrieve and interpret its
initialization parameters when it is loaded into memory. This chapter also
explains how to build a block of parameters for an application to pass to
its successor.

The Executive

The Executive is the most widely available command-entry shell used with
eTOS. The Executive lets users enter commands by typing the command
name then filling out a menu which contains the command's parameters.
A sample Executive menu might look like this:

Rename
File To
File From
[Overwrite OK?]
[Confirm Each?]

The user fills in the desired information on the menu, then presses Go to
execute the command.

Command Forms and Parameters

Each input line on a command form constitutes one parameter. Some
commands have no parameters, others have many. There is no specific
limit on the number of parameters a command can have.

Each parameter consists of zero or more subparameters. If a line on the
command form is left blank, that parameter has zero subparameters.
Each entry on the line constitutes one subparameter. An entry consists of

Parameters and Command Form Processing 4-1

a string of characters, either separated by spaces or enclosed in delimiters
(single quotes).

The list below shows two examples.

File To Ralph Sampson Julie

This parameter has three subparameters: "Ralph", "Sampson" and
"Julie".

File To 'Ralph Sampson' Julie

This parameter has two subparameters: "Ralph Sampson", and
"Julie".

The Executive passes input parameters to the application program in a
structure called a Variable-Length Parameter Block (VLPB).

While using an Executive command-form is the most common method of
passing parameters to a program, there is no requirement to use it. Any
program can pass start-up parameters to any other program by building a
Variable-Length Parameter Block (VLPB). The rest of this chapter
explains the general method of receiving and passing parameters with a
VLPB.

The Variable-Length Parameter Block (VLPB)

The Variable-Length Parameter Block (VLPB) is a data structure in which
parameters and subparameters are stored. The VLPB resides in the
long-lived memory of an application partition. The program running in
that parJition can use procedural calls to retrieve parameters from the
VLPB. It can also store parameters in the VLPB for a program to which
it chains (its successor in the partition).

The address of the VLPB for a partition can be found in the partition's
Application System Control Block, but it is rarely practical to write to the
VLPB directly. The parameter management operations are much easier
to use.

Conceptually, the VLPB is a two-dimensional sparse array of strings,
indexed by row (iParam) and column (jParam). In terms of the Executive
command form, the array is described by the following list.

4-2 eTOS/ Open Programming Practices and Standards - Part I

• Each row in the array (iParam) corresponds to one line on the
command form.

• Each column (jParam) in the array corresponds to one subparametcr
position. For example, when jParam is zero, it refers to the first
subparameter in a given row.

• Each element in the array (iParam, jParam) consists of one
subparameter typed on the Executive command form.

User parameters begin at parameter one. Parameter zero is reserved for
system information. Parameter zero contains:

the command name at subparameter zero

the command case at subparameter one

the Redo keystroke buffer at subparameter two.

Figure 4-1 shows the contents of a VLPB for a sample Executive
command.

rgParams Subparameter Subparameter Subparameter

(VLPB) UParam) UParam) UParam)
0 1 2

Parameter Rename
(iParam) Rename 00 Fred Rogers

0 Ralph Sampson

Parameter
(iParam) Fred Rogers

1

Parameter
(iParam) Ralph Sampson

2

Figure 4-1. Sample Variable-Length Parameter Block

Parameters and Command Form Processing 4-3

Reading Input Parameters from the VLPB

A program can retrieve parameters from the VLPB using three
operations: CParams, CSubParams, and RgParam.

First, the program should call CParams to determine the number of
parameters in th,e VLPB. The program can then call CSubParams for
each parameter, to determine how many sub parameters each parameter
has. Finally, the program can call RgParam to retrieve each
subparameter.

Listing 4-1 shows a simple procedure for reading parameters from the
VLPB. The procedure retrieves each subparameter from the VLPB, then
prints the subparameter as a string of characters. The program that
contains Listing 4-1 is in Appendix D.

Applications more often need to check individual subparameters for a
particular value. They might use a procedure like the one in Listing 4-2.
It checks a parameter to see if that parameter contains a "yes" or a "no",
and sets a flag accordingly.

void ListPararns () {
char i = 0, fOut = Oi
ErcType erCi
pbcbtype pParami
Word cParam, cSubParami /* count of params */
Word iParam, jParami/* parameter indices */

cParam CParams ()i /* get input param count */

/* scan through each parameter, forget parameter 0 */
for (iParam = Ii iParam < cParami iParam++) [

/* get the count of subparameters for this parameter */
cSubParam = CSubParams (iParam)i
if (cSubParam > 0) [

fOut = TRUEi
printf("\n\nParameter %d has %d subparameter(s).",

iParam, cSubParam)i
/* if the subparam count is > 0, print them */
for (jParam = Oi jParam < cSubParam; jParam++) [

erc = RgParam (iParam, jParam, &pParam)i

continued ...

4-4 eTOS/Open Programming Practices and Standards - Part I

}

/* quit if no parameter, break if no */
/* subparameter */
if (ere == ERCNOPARAM) return;
else if (ere == ERCNOSUBPARAM) break;
else CheckEre (ere);
for (i = 0; i < pParam.eb ; i++)

rgStr[i] = *(pParam.pb + i);
rgStr[i] = 0;
printf("\nThe entry in parameter %d,

subparameter %d is 'is'", iParam, jParam,
rgStr) ;

/* end of for jParam */

/* end of for iParam*/

/* we have no parameters passed to us */
if (fOut != TRUE)

printf ("\n\nNo parameters passed to %s.",
pChainFile);

Listing 4-1. Reading a Variable-Length Parameter Block (VLPB)

/* is there input for this parameter? */
if(CSubparams(INCFLAGPARM) > 0) {

/* get the first subparameter */
CheekEre(RgParam(INCFLAGPARM, FirstSub, Paramptr»;
/* set flag for yes or no */
CheekErc(NlsYesOrNo(NULL, Paramptr, &IneludeFlag);
}

else
/* default */
IneludeFlag = TRUE;

Listing 4-2. Evaluating a Parameter in a VLPB

Parameters and Command Form Processing 4-5

Creating a New VLPB for the Exit Run File

To pass parameters to a successor program in a partition, the current
program must construct a VLPB for its successor. To do this, the
program first resets the existing VLPB, then creates an area of memory
for its new VLPB.

The program can then enter its parameters in its newly-created VLPB.
When a parameter has only one sub parameter , the program can use
RgParamSetSimple to enter the value of that parameter.

When a parameter has multiple subparameters, though, the program must
use RgParamSetListStart to begin the list of subparameters. It must then
call RgParamSetEltNext for each subparameter entry.

Listing 4-3 shows a procedure for building a VLPB, and shows how the
VLPB can be used to pass parameters to a successor program in a
partition. This program passes only character strings, but numbers or
pointers to areas of long-lived memory could also be passed in the VLPB.

The body of the program first resets the long-lived memory in the
application partition. This deletes the previous VLPB.

Next, the program allocates memory for the new VLPB, and initializes it.
Reinitializing the long-lived memory prevents the program from writing
past the end of the existing VLPB and possibly destroying data.

The main program then calls GetNewParams, which fills in the new
VLPB.

Finally, the program in the listing chains to itself. This causes it to
execute again, using the new VLPB. The program that contains Listing
4-3 can be found in Appendix D.

4-6 eTaS/Open Programming Practices and Standards - Part I

void main() {
Pointer pVLPB; /* used to build new VLPB */

/* initialize the video */
CheckErc (ResetFrame (EXECFRAME»;
printf (pMsgIntro);

/* display all the parameters passed to me */
ListParams C);

/* reset long-lived memory, then allocate a new VLPB */
CheckErc (ResetMemoryLL C»~;
CheckErc {AllocMemoryLL (ALLOC_SIZE, &pVLPB»;

/* Init the parameter block */
CheckErc{RgParamInit (pVLPB, ALLOC_SIZE, (MAXPARAMS-l»);

/* fill it in */
GetNewParams C);

/* tell the user I am chaining to myself */
printf (pMsgChaining);
CheckErc {Chain (pChainFile, strlen{pChainFile),

NULL, 0, PRIORITY, 0, FALSE»;

void GetNewParams() {
char bIn, fSkip;
int cbStr;
pbcbtype pParam;
Word iParam = 1, jParam = 0;

while (iParam <= MAXPARAMS) [
printf ("\n\nPress GO to enter parameter %d, RETURN to

skip, CANCEL to Chain, or FINISH.\n", iParam);
fSkip = FALSE;

/* loop until we get one of the above characters */
while (TRUE) [

CheckErc (ReadKbd (&bIn»;
if (bIn == FINISH) ErrorExit{O);
else if (bIn == CANCEL) return;
else if (bIn == GO) break;
else if (bIn == RETURN) [

fSkip = TRUE;
break;
}

else CheckErc (Beep (»;
}

continued ...

Parameters and Command Form Processing 4-7

/* don't skip this parameter, collect subparameters */
if (fSkip != TRUE) {

/* initialize the subparam list for this param */
CheckErc (RgParamSetListStart (iParam»;
while (jParam <= MAXPARAMS) {

/* get the next subparameter */
cbStr = GetString(rgStr, pMsgParam)i
if (cbStr > 0) {

pParam.pb = rgStr;
pParam.cb = cbStr;
/* store it in the VLPB */
CheckErc (RgParamSetEltNext (&pParam»i
jParam++;
)

/* we do not have a subparameter entry */
else break;
} /* end of while jParam */
/* end of if fSkip */

iParam++;
} /* end of while iParam */

Listing 4-3. Building a Variable-Length Parameter Block (VLPB)

4-8 eTOS/Open Programming Practices and Standards - Part I

5
Protected Mode Programming Guidelines

This chapter describes the special programming requirements of the Intel
protected mode architecture in the eTOS environment. This chapter
provides guidelines that are sufficient for almost all applications. Where
appropriate, this chapter refers you to additional sources of information.

Real Mode and Protected Mode Compatibility

Because protected mode is more restrictive than real mode, most
programs that run in protected mode can also run in real mode. This
chapter gives guidelines to help ensure that programs are compatible with
protected mode addressing.

A full description of basic protected mode concepts is contained in the
following Intel manuals:

• iAPX 286 Programmer's Reference Manual

• 80386 Programmer's Reference Manual

Several of the compatibility issues presented are a result of differences in
memory addressing between real and protected mode. This section
assumes that you understand the addressing concepts of logical, linear,
and physical memory addresses, which are described in the references
cited above.

Emphasis in this section is on the logical memory address (commonly
called a pOinter). The pointer is what the programmer normally perceives
when writing programs, while the physical address is used only by the
processor, Pointer construction and manipUlation are crucial to protected
mode compatibility.

Protected Mode Programming Guidelines 5-1

Review of Segmented Addressing

On Intel microprocessors, instructions do not accept physical addresses as
operands; they accept only logical addresses (also called pointers). A
logical address is formed from two parts, the segment address (SA) and
the relative address (RA).

The SA identifies a region of memory (called a segment), while the RA
identifies a particular byte within that region. The RA is often referred to
as an offset from the SA. These addresses are usually written SA:RA (for
example, 1E27:0000).

As each instruction executes, the processor hardware converts the two-part
logical address to a physical address, which is then used to access physical
memory. This translation is invisible to the program. No program can
address physical memory directly. It can only use logical addresses.

Because every logical address is always relative to some segment address
(SA), the Intel architecture is referred to as a segmented addressing model.
Note the contrast to a linear addressing model such as the Motorola
architecture, where instructions accept single, 32-bit linear addresses
instead of SA:RA pairs. In the Motorola architecture, all addresses can
be thought of as offsets from location zero in memory.

Real Mode versus Protected Mode Pointers

As discussed above, a pointer consists of a segment address (SA) and an
offset (RA), and references a particular location in a program's memory
space. The offset portion of a pointer is always the count of bytes from
the beginning of the segment to the location referenced. The segment
address, though, has different meanings in real mode and in protected
mode.

In real mode, a segment address (SA) refers to a physical location in
memory. Every sixteenth byte in memory has a segment address assigned
to it. The segment address times 16 equals the physical address of that
byte. For this reason, real mode segment addresses are sometimes
referred to as paragraph numbers (16 bytes equals one paragraph in the
Intel architecture).

5 - 2 eTOS/ Open Programming Practices and Standards - Part I

In protected mode, a segment address refers only to an entry in a
descriptor table maintained by the processor. The processor uses the
segment address as a key to look up a physical memory address in the
descriptor table. Because of this, there is no direct relation between the
segment address and any location in physical memory. Protected mode
segment addresses are sometimes referred to as selectors, to emphasize
their function as a table lookup index.

In real mode, pointer arithmetic can be performed, because any pointer
refers directly to some location in physical memory. In protected mode,
however, no pointer ever refers to a location in physical memory. Instead,
pointers refer to an index in a descriptor table, and to the offset from
whatever location that index points to. Segment arithmetic or direct
comparison of pointers is meaningless in protected mode, because any
index in a descriptor table can point to any location in memory.

General Programming Guidelines

GUIDELINE: Do not use segment address arithmetic.

Compatible programs cannot add or subtract segment addresses to
produce new segment addresses, because segment address arithmetic does
not work in protected mode. (For reasons, see "Real Mode Versus
Protected Mode Pointers," earlier in this section.)

GUIDELINE: Use FComparePointer to compare pointers.

Because multiple selectors may refer to the same physical memory
location, protected mode programs cannot depend on the binary
comparison of pointer values to test for pointer equality. (Pointers are
equal if they reference the same byte location).

Compatible programs should use FComparePointer with a case value of 1
to test for pointer equality.

Protected Mode Programming Guidelines 5-3

Example:

/* Compare the pointer equality of a response pointer */
/* to a request block pointer.*/
Pointer pRqReti
Word Rqi

CheckErc(Wait(exch, &pRqRet»i
if(FComparePointer(pRqRet, &Rq, 1) == TRUE) [

/* The pointers are equal (that is, they reference */
/* the same byte location).*/i
)

Listing 5-1. Comparing Pointer Equality

GUIDELINE: For contiguous data objects larger than 64K bytes,
use multiple segments.

A real mode program can make a single call to AllocAllMemorySL to
allocate a large data object (more than 64K bytes), then address the data
using segment address arithmetic. This technique fails in protected mode.
(See "Real Mode Versus Protected Mode Pointers," earlier in this section
for details ~)

The recommended method for compatible programs is to make multiple
calls to AllocMemorySL. This will decompose the large data object into
multiple segments, each of which is then addressable by a returned
pointer. The memory allocated by multiple calls to AllocMemorySL is
contiguous.

GUIDELINE: Use compatible memory management operations.

Several memory management operations have been specifically designed
for use by compatible programs. These are

AllocAreaSL
ExpandAreaLL
ExpandAreaSL
ShrinkAreaLL
ShrinkAreaSL

5-4 eTOS/Open Programming Practices and Standards - Part I

These memory operations manage memory allocation and deallocation
within a single segment. For more information about these operations,
see Chapter 16, "Memory Management" in Part II of this manual, or see
the eTaS/Open Application Programming Interface Specification.

Compatible programs that depend on detecting contiguity between
separately allocated chunks of memory should use these operations. They
provide up to 64K bytes of contiguous memory. A program can test for
contiguity within a segment by comparing pointer offsets (RAs).

Compatible programs should use ExpandAreaSL instead of
AllocMemorySL if they make multiple calls to allocate small, fixed-length
segments. This is because, in protected mode, each call to
AllocMemorySL allocates a new selector, while ExpandAreaSL does not.

GUIDELINE: Use ExpandAreaSL to allocate DS-relative memory.

The Linker's data segment (DS) allocation option enables run time
expansion of a program's static data area. The Linker assigns static data
addresses at the high-order end of the data segment's 64K-byte range,
leaving address space below for expansion.

DS allocation requires that static data be located at the low-order end of
the program image. For more information about DS allocation, see
Chapter 10, "Stack Format and Calling Conventions," and Chapter 16,
"Memory Management" in Part II of this manual.

Compatible programs should use ExpandAreaSL instead of
AllocMemorySL to dynamically expand the data segment. Programs that
use AllocMemorySL will not work in protected mode because, instead of
expanding the existing data segment, each call to AllocMemorySL
allocates a new selector for a new segment.

GUIDELINE: Do not use the memory array option.

The Linker's memory array option directs the operating system to allocate
additional memory at the end of a program's static data. If a program
needs additional memory relative to its static data segment, it should use
the DS Allocation option described above.

Protected Mode Programming Guidelines 5-5

GUIDELINE: Do not use segment registers to store data.

In real mode, segment registers can be used to store data with no adverse
consequences.

In protected mode, however, loading a segment register with a value that
is not a valid selector will cause a protection fault, which is a fatal event
in a program.

Compatible programs should use segment registers only for valid segment
addresses.

GUIDELINE: Use proper NIL pointers.

A NIL pointer, also called a NULL pointer, is a pointer that has a
segment address of zero.

Historically, when a pb/cb (pointer/length) pair was used, a cb of zero
was often used to indicate a NIL pointer. This convention does not work
in protected mode, because the arbitrary data in the uninitialized pb
(pointer) may be loaded into a segment register before the length is
checked. If this happens, it causes a protection fault.

Compatible programs should always initialize NIL pointers to zero.

Example:

Pointer
Word
Pointer

pReti
cbReti
Pi

/* Call the InitPbCb procedure (defined later) to set */
/* the pointer to NULL.*/
InitPbCb(&pRet, &cbRet)i

/* Use of a NIL pointer prevents a general protection */
/* (GP) fault if pRet is copied.*/
p = pReti
}

continued ...

5-6 eTaS/Open Programming Practices and Standards - Part I

/* Use a procedure (InitPbCb, in this example) to set */
/* the pb/cb to zero.*/
void InitPbCb(Pointer ppRet, Pointer pCbRet) (
*ppRet = 0;
*pCbRet = 0;
)

GUIDELINE:

Listing 5-2. Initializing Pointers

Code segments should have CODE or COED for the
name of the segment class.

In protected mode, the contents of a segment are executable as code only
if the segment is typed as a code segment.

Compatible programs should use the class name CODE or COED for
code segments. Most compilers use the CODE class name for code
segments, though there are special cases. The COED class name is
created by the Coed source build utility and is used to designate
initialization code that is deallocated after use.

Make sure that code segments defined in assembly language programs
have the class name CODE or COED.

Example:

;declare a code segment with name "myCode" and class
; "CODE"
myCode segment 'CODE'

myCode ends

GUIDELINE: COED Segments

COED segments can be deallocated after the initialization code in them
has been used. COED segments are simply code segments having the
class name COED. This class name is created by the Coed source build
utility.

Protected Mode Programming Guidelines 5-7

COED segments must be located at the beginning of the run file image,
immediately before static data. A program normally deallocates its
COED segments using the DeallocMemorySL operation.

In real mode, the size of the memory deallocation is computed using
segment address arithmetic. This does not work in protected mode.

Compatible programs using COED segments should use different
deallocation schemes in real and protected mode. Deallocation should be
based on a run time check of the execution mode using the
FProtectedMode operation.

In protected mode, deallocate the COED segments by calling
DeallocMemorySL for each COED segment using the following
parameters:

pSegment

cBytes

Is SN :RA, where SN is the COED segment selector, and
RA is 0.

Is OFFFFh, meaning deallocate the entire segment.

The usual stack discipline rules apply to DeallocMemorySL. COED
segment deallocation must occur before the program's first call to
AllocMemorySL or AllocAreaSL. COED segments must be deallocated
in the order of first defined (in other words, located lowest in the
program's memory image), first deallocated.

For more information about disposable code, see Chapter 10, "Stack
Format and Calling Conventions" in Part II of this manual.

GUIDELINE: Writable code segments are not permitted.

In protected mode, nothing can be written to a segment that is defined as
a code segment. Therefore, compatible programs cannot have writable
variables in the code segment, nor can they contain self-modifying code.

If you need to write to an executable segment, or need to make a writable
segment executable, you must first create an alias for the existing segment.
Then, you can use the SetSegmentAccess operation to change the
segment type so that it may be written (or executed).

The following example creates an alias for the program's data segment. It
then sets changes the segment type to CODE. If the array in the example

5-8 eTOS/Open Programming Practices and Standards - Part I

contained machine-language instructions instead of characters, they could
be executed. Instead, the example just prints the array to verify that the
alias is valid, then compares the original and alias pointers.

Example:

Pointer
Selector
Word

union[

pData;
sgCode;
offset;

POINTERWords PtrStr;
Pointer ptr;
} u;

char pTestMsg [] = "\"This is a test\"\n";
char pCodeMsg [] =

"The string referenced by the code pointer
char pDataMsg [] =

"The string referenced by the data pointer
char pDiffMsg []

" . ,

" . ,

"\nAlias Code Pointer and Data Pointer reference
different locations";

char pSameMsg []
"\nAlias Code Pointer and Data Pointer reference the
same location";

void main () {

/* get the offset of our Test Message array within DS */
pData = &pTestMsg;
offset = offsetof (pData);
printf (pDataMsg);
printf (pData);

/* now we want an alias based on the start of our DS */
offsetof (pData) = 0;

/* create the alias and define it as executable code */
CheckErc (CreateAlias (pData, &sgCode»;
CheckErc (SetSegmentAccess (sgCode, 10»;

/* now construct a pointer to our code and print the */
/* string */
u.PtrStr.ra = offset;
u.PtrStr.sa = sgCode;
printf (pCodeMsg);
printf (u.ptr);

continued ...

Protected Mode Programming Guidelines 5-9

/* finally compare data pointer and code pointer */
pData = &pTestMsg;
if (FComparePointer (pData, u.ptr, 1) != FALSE)

printf (pSameMsg);
else

printf (pDiffMsg);
ErrorExit (0);
}

Listing 5-3. Creating a Pointer Alias

GUIDELINE: Avoid timing loops.

Compatible programs should not contain timing loops or busy wait loops
that depend on instruction execution speed. Use the Delay operation
when the delay time is at least 100 milliseconds. Use the ShortDelay
operation when the amount of time is less then 100 milliseconds.

Example:

/* delay 0.5 sec */
CheckErc(Delay(S»;

GUIDELINE: Use only compatible instructions.

The 80186 and 80286 microprocessors provide extensions to the 8086
microprocessor instruction set. Similarly, the 80386 provides additional
extensions.

A compatible program should use the instruction set of the least capable
machine on which it is to run.

If a program needs to run on 80186-based computers, as well as 80286 and
80386 computers, do not use the PUSH SP instruction. When it executes
that instruction, the 80186 pushes a different value than the 80286 and
80386 do.

5-10 eTaS/Open Programming Practices and Standards - Part I

Language-Specific Guidelines

GUIDELINE: NIL pointer problems may occur as a result of certain
coding sequences.

In protected mode, it is valid to put 0 in a segment register, but not valid
to use it to address data. A segment register with 0 in it is "out of action"
temporarily. Of course, attempting to reference data at paragraph
number 0 in real mode is usually an error as well, at least in a user
program.

Constructs such as the following PL/M example, however, may be valid in
real mode but cause a protection fault in protected mode, due to the kind
of code generated by the compiler.

Example:

declare pFoo
declare foo based pFoo

pointer;
word;

if (pFoo <> 0) AND (foo = 1) then
do;

end;

In PL/M, the preceding construct gives the compile'r permission to test
pFoo and foo in either order. Access to foo, however, must NEVER
take place if pFoo is NIL, or a general protection fault will occur. To
avoid this fault, the preceding code should be rewritten as follows:

declare pFoo
declare foo based pFoo

pointer;
word;

if pFoo <> 0 then
IF foo = 1 then

do;

end;

Protected Mode Programming Guidelines 5-11

GUIDELINE: Check the Execution mode.

A compatible program may have good reason to use different algorithms
in real and protected modes. Such programs may still be packaged as a
single run file by including both algorithms with run time checks in the
code to choose between them.

Compatible programs should use the FProtectedMode operation to
determine their execution mode.

Example:

if(FProtectedMode() != FALSE) [
/*Use a protected mode algorithm.*/i
}

else [
/*Use a real mode algorithm.*/i
}

Real Mode Guidelines

GUIDELINE: Use only those procedures that are available to real
mode programs.

Certain operations (such as SgFromSa) are available only in protected
mode. These operations are generally not useful to real mode
applications and are therefore not available to them. If a real mode
program attempts to use one of these procedures, the program will either
fail to link or it will encounter an error at run time.

5 -12 eTOS/ Open Programming Practices and Standards - Part I

6
Writing Your Application for International Use

This chapter describes the nationalization functions available under
CTOS, and some common ways to use thenl.

Introduction

The Native Language Support (NLS) facilities of CTOS allow you to write
applications that accept input and display output in multiple languages. In
addition, you can use message routines to store messages in a separate
message file. This allows your application to be translated into other
languages more easily.

For the purposes of this discussion, internationalization means
language-independence. Internationalized source code is written in such a
way that the resulting program can run in different languages without
modifying the executable file itself. Nationalization is the process of
making external modifications to internationalized software so that the
software runs in a specific language.

NLS can be used by an application in two ways. Applications can use the
set of NLS tables and routines, which provide commonly used,
nationalized functions. Applications also can use the message procedures
to create text messages, which then can be removed from the program
code and placed in separate message files.

The scope of the NLS tables and their associated routines is system-wide.
Message files, on the other hand, are applicable on a program-by-program
basis. These two concepts are completely independent. As such, they are
discussed separately in this section.

Writing Your Application for International Use 6-1

Using the NLS Tables and System Calls

Operating systems that support the eTaS/Open standard include a source
file called Nls.asm and a macro definition file called Nls.mdf. Nls.asm
consists of a collection of tables used to control several different
internationalizable aspects of software. Included among the tables, for
example, are an uppercase to lowercase character translation table, a
date/time format table, and a symbols table for numbers and currency.
Most vendors ship an Nls.asm file appropriate for the country of purchase,
but in some cases the user modifies this file. To nationalize the operating
system, the user:

• makes any necessary changes to Nls.asm

• assembles Nls.asm to create Nls.obj

• uses the Link command to link Nls.obj with no stack, creating the
NLS configuration file, [Sys]<Sys>Nls.sys

When the operating system is bootstrapped, it looks for
[Sys]<Sys> Nls.sys. If the file is present, the operating system loads the
contents of the file into memory and makes the NLS tables available to
applications.

Each of the NLS tables in Nls.sys begins with a two-character signature to
ensure table validity. For example, the Keyboard Encoding table begins
with the signature, KE. The table data follows immediately thereafter.
When the operating system loads the NLS tables, it verifies that the
operating system table signatures are correct. Other tables can be added
as required. (See "Using Alternative NLS Tables," later in this section.)

You can use the NLS tables through a set of routines in the standard
object module libraries. These NLS routines return nationalized results
depending on the contents of the NLS tables. In most cases, the
programmer does not need to know the structure of any of the tables. If
an application is written using the appropriate NLS routines, proper results
are returned to the program for French, if there is a French Nls.sys,
German, if there is a German Nls.sys, and so on. If there is no Nls.sys
file, all of the routines return the U.S. standard. Therefore, U.S. systems
do not need the Nls.sys file.

6-2 eTOS/ Open Programming Practices and Standards - Part I

Table 6-1 lists the NLS tables, and the procedures that reference them.
Individual implementations may have other table, as well. Each of these
routines is described in detail in the eTOS/Open Application Programming
Interface Specification.

Table 6-1. NLS Table Numbers
(Page 1 of 2)

Number Table Routine(s)

o Keyboard Encoding

File System Case

2 Lowercase to Uppercase

3 Video Byte Streams

4 Uppercase to Lowercase

5 Key Cap Legends

6 Date and Time Formats

7 Number & Currency Formats

8 Date Name Translations

9 Collating Sequence

10 Character Class

11 Yes or No Strings

12

None (used by operating system
keyboard process)

None (used by operating system file
system)

NlsCase

None (used by video byte streams)

NlsCase
NlsULCMPB

GetNlsKeyCapText

NlsStdFormatDateTime
NlsFormatDateTime

NlsNumberAndCurrency

GetNlsDateName
NlsParseTime

NlsCollate

NlsClass

NlsYesOrNo
NlsYesNoOrBlank

Not Used

Writing Your Application for International Use 6-3

Number

13

14

15

16

17

Table 6-1. NLS Table Numbers
(Page 2 of 2)

Table Routine(s)

Special Characters N IsSpecialCharacters

Keyboard Chords None (used by operating system)

Not Used

Multi-byte Escape Sequences None (used by operating system
keyboard process)

Operating System Strings Called by standard library routines.

Using the NLS Procedures

The NLS procedures can be used like any other CTOS library procedure.
The NlsYesOrNo routine is shown below as an example. NlsYesOrNo is
designed to allow programmers to parse "yes" and "no" strings quickly and
consistently. The procedural interface to this routine is as follows:

ere = NlsYesOrNo(pNlsTableArea, pSdParam, &fYN)i

The first parameter for all the NLS routines is pNlsTableArea. This is a
pointer to the NLS tables that should be used for this call. Typically, you
would use the system NLS tables loaded at boot time from Nls.sys. To do
this, just pass a NULL pointer as the value of pNlsTableArea. The NULL
pointer tells the operating system to use the tables loaded at boot time.

Alternatively, you could pass a pointer to a different set of NLS tables,
loaded by your program. This might be useful if you need to have a single
application that works correctly in two or more languages at the same time.
However, most applications simply pass NULL for this parameter.

NlsYesOrNo typically is called to get an answer to a prompt from an
Executive parameter that ends in a question mark (?), such as [Confirm
each?].

6-4 eTOS/ Open Programming Practices and Standards - Part I

The most common way to use this procedure is in conjunction with the
RgParam procedure. This is shown as follows:

struct [
char _far *pb;
Word cb;
) sdParam;

CheckErc(RgParam(iParam, jParam, &sdParam));
erc = NlsYesOrNo(NULL, &sdParam, &fYN);
if(erc != ercOK) [

/* Error condition, not yes or no */

The procedure first validates the parameters, then sets the flag, fYN. The
flag is TRUE (OxFF) if the user entered some string that matched one of
the strings in Nls.sys meaning yes. If, however, the user entered
something matching one of the strings meaning no (or left the field blank),
the flag is FALSE (OxOO).

The Executive, for example, uses NlsYesOrNo to examine the answer to
the [Confirm each?] parameter to the Type command, and for the
[Details?] parameter of the Files command. The Executive calls the
related routine, NlsYesNoOrBlank, to examine the answer to the
[Overwrite OK?] parameter to the Copy and Rename commands as well as
other commands.

Using the NLS Tables

The NLS tables can be used in two ways. The simplest and most
straightforward way is to use the NLS routines, as described above. Each
routine identifies the proper NLS table and provides appropriate defaults.
Alternatively, you can obtain a pointer to a particular table and either use
it directly or copy the data from the table into your own program for use
later.

As an example, consider lowercase to uppercase conversion. If you are
writing a program in which you occasionally need to get the uppercase of a
particular character, you could code a call as follows:

erc = NlsCase(NULL, bCharLower, &bCharUpper, TRUE);

Writing Your Application for International Use 6-5

The NlsCase procedure does all the work of finding the proper table and
indexing that table to find the uppercase of the character. This method
generally is preferred because of its simplicity. However, using the routine
does require a small amount of overhead in code size and execution speed.

If you have an application in which you will be performing lowercase to
uppercase translations many times per second, you may want to use an
alternative approach. This approach requires that you build a default
lowercase to uppercase translation table into your program.

To internationalize the table, you need to add some initialization code. In
the beginning of your program, you need to find out if the associated NLS
table was loaded at boot time. If it was, you should copy the contents of
that NLS table over the default values in your built-in table. To do this,
you must obtain a pointer to the proper table and copy the table to your
local data area.

Listing 6-1 shows the code required to accomplish this. See Appendix D
for a listing of the entire program.

char rgbLowerToUpper [] = { 0, I, 2, 3, ... , 255) i
/* create a 256-byte array, and fill in desired */
/* default translation value for each entry */

maine)

Pointer pLowerToUpperi

/* Get Pointer to LowerToUpper Table (No.2) */
erc = GetpNlsTable(NULL, 2, &pLowerToUpper)i
if(erc == ercOK)

/* add 2 to bypass the table signature */
memcpy(&rgbLowerToUpper, (pLowerToUpper+2), 256)i

Listing 6-1. Loading an NLS Table into an Application

Your program can then get the uppercase equivalent of a character by
using the character itself as an index into this table. The code to do this
would be written as follows:

bCharUpper = rgbLowerToUpper[bCharLower]i

6-6 eTaS/Open Programming Practices and Standards - Part I

Since you are just indexing an array, instead of calling a procedure, your
code executes many times faster than it would if you used the NlsCase
procedure.

Using Alternative NLS Tables

As mentioned above, the operating system validates the NLS tables shown
in Table 6-1 at system boot time. If any of the table signatures disagree
with the expected signature, an error message is written to the system
PLog. You can modify the table list in two ways: you can substitute an
alternative set of NLS tables, or you can create an additional NLS tables
file.

Whichever method you use to extend the NLS tables, your application (or
system service) initialization code should validate that the tables were
loaded correctly. Validation should include a call to NlsVerifySignatures.
(For details on this routine, see the eTOS/Open Application Programming
Interface Specification.)

Nls Verify Signatures returns status code 0 ("ErcOK") if all signatures match
or status code 13501 ("Bad signature") if one or more of the signatures do
not match the expected value(s).

Linking Alternative Tables with Your Program

To use an alternate table set, customize Nls.asm to suit your needs, then
assemble it and give the resulting object file a unique name. Next, link
that file into your program. Finally, at run time you must pass the address
of the tables in your linked-in module as the first parameter to the NLS
routines that your program calls.

Note that this method isolates your program from the NLS tables used by
the operating system. If the computer on which your program runs has
been nationalized in some special way, your application will not have
access to that information.

Writing Your Application for International Use 6-7

Using Additional N LS Tables

While the standard NLS tables address the most commonly needed
nationalized data, they cannot address all possible cases. Some programs
use tabular data that must be nationalized, but is not defined in Nls.sys and
cannot be treated as a message. If your program has a need for such data,
you can create an additional NLS table file that is specific to your
program.

To build program-specific NLS tables, create a new assembly file that
contains the contents of the additional tables. If there is an existing table
in Nls.asm that is similar to the one you want to add, you should use it as
a template. Also, be sure to give your new table a unique table number
and signature. After you have defined your table, assemble the customized
table file and link it, as if it was the Nls.asm file. The result is a file that
might be called, for example, "MyProgNLS.sys."

After you have created your program-specific NLS tables file, you need to
gain access to it from your program. To do this, you can use the
operations OpenNlsFile and GetpNlsTable, as shown in the following
example.

CheckErc(OpenNlsFile("FooNls. sys" , 10, &Password,
sPassword, &pMyNlsArea»;

CheckErc(NlsVerifySignatures(pMyNlsArea, 1, &wMyTable,
&wSignature)) i

CheckErc(GetpNlsTable(pMyNlsArea, MYTABLE, &pMyTable»i

/* some operation that uses the table */
MyNls0peration(pMyTable, paraml, param2);

Using Message Files

There are several ways to use message files. The following sections
explain what message files are, and how they are used.

About Message Files

Message files allow you to remove all messages (character strings) from
your program and to place them in a separate file called a message file.

6-8 eTaS/Open Programming Practices and Standards - Part I

Instead of linking the strings into your program, your program retrieves its
messages from this external file. Once this is done, you can nationalize
the program's message strings simply by editing the message file.

The message file actually exists in two forms: text and binary. The text
form is designed to be readable by people and consists of ASCII entries in
the form:

<colon> number <colon> <delim> TextString <delim>[, <delim>
TextString <delim>]

The delimiter can be any ASCII character. The portion of the syntax in
brackets is optional, and can be repeated as many times as you desire.
This allows a text string to be broken into any number of substrings. Each
substring can use a differerent delimiter, which can be useful if a message
contains your delimiter character.

The following is a sample message:

:2000: "This is a sample text message."

By convention, a text file has the name ProgramNameMsg.txt.

The binary form is the one your program reads. After you create the text
file, you must convert it to binary format before your program can use it.

To convert a message text file to a binary file, use the Create Message File
utility in the Executive. Fill out the command form as follows:

Create Message File
Text file programNameMsg.txt
[Message, file]

By defaul~, the name of the binary file is the same name as the text file
except that the .txt extension is replaced with .bin. So, the binary file
created above is ProgramNameMsg.bin.

Strategies for Using Messages

There are several issues to consider when deciding on a strategy for using
messages with a particular program. A strategy that is correct for one
program may be entirely incorrect for another. Among the issues are the
following.

Writing Your Application for International Use 6-9

• How would the program work if a message is missing?

• How would the program work without a message file?

• How many messages will be used?

• What are the memory constraints?

• How critical is the speed of message retrieval?

One of the first choices you must make is whether or not you will have
default messages linked into your program. For example, the workstation
initialization program, SignOn.run, must work correctly even if its
associated message file, ExecMsg.bin, is missing. So, in the absence of
ExecMsg.bin, the SignOn program continues to work correctly in English.

For most application programs, however, the strings should usually be
removed from the source and placed in the message file. This saves the
amount of memory that the message strings would normally occupy.

A program that uses message files needs only two built-in messages in the
native language: "Message file not found" and "Message not found." If the
message file cannot be found during initialization, the program generally
should call ErrorExitString, and terminate with the "Message file not
found" message, also giving the name of the missing message file.

If the message file was opened correctly but the program receives erc
13503 ("ErcMsgNotFound") when it trys to retrieve a message, you may
choose to substitute the "Message not found" message for the one
intended. In most cases, this probably does not need to be a fatal error
condition. Your program should also display the message number and
message file name for the message that was not found, so that the problem
can be more easily corrected.

Using Messages as Needed

There are two ways to handle message routines. The first approach is
designed for application programs that have a large number of messages
and that may need to expand macros within messages. Alternatively, a
separate set of routines can be used for system services or for any
applications that need a very small number of messages. The full message
file scheme is discussed first.

6-10 eTOS/Open Programming Practices and Standards - Part I

Standard Message Routines

The message routines shown below are the basic set provided in the
operating system standard library. In addition to the routines descrbed
here, there are two other sets which have similar function.

The "Alt" message routines (such as InitAltMsgFile) allow an application
to have multiple message files open at a time. The "Erc" message routines
(such as InitErcFile) retrieve messages only from the file
[Sys]<Sys>ErcMsg.bin, which contains operating system error message
text strings. This section describes the basic set, but the information
applies to the "Alt" and "Erc" sets as well.

Finally, there is also a fourth set of message routines, which provide
minimal functionality. These routines are useful for programs which
require only a small number of messages. See "Using a Very Small
Number of Messages," later in this chapter, for more information on those
routines.

InitMsgFile

GetMsg

Opens a binary message file for subsequent
retrieval of numbered messages.

Retrieves a message from the message file, expands
any embedded macros, and places the expanded
message in memory.

GetMsgUnexpanded Retrieves a message from the message file and
places the unexpanded message in memory. The
length of the unexpanded message can be retrieved
using the GetMsgUnexpandedLength procedure.

ExpandLocalMsg Retrieves a message from memory and either sends
the expanded message to the video (frame 0) or
copies the message to a user-supplied byte stream.

PrintMsg Retrieves a message from the message file and
either sends the expanded message to video (frame
0) or copies it to a user-supplied byte stream.

CloseMsgFile Closes an open message file.

(For details on each of these routines, see the eTaS/Open Application
Programming Interface Specification.)

Writing Your Application for International Use 6-11

A program calls InitMsgFile during initialization to establish the message
file to use. Then, when it needs to use a message from the message file, it
calls GetMsg, ExpandLocalMsg, or PrintMsg to expand and display the
message.

Typically, you would create a procedure, such as InitMsgEnvironment, to
handle the details of initializing the message file. This routine can be
written as shown in Listing 6-2. See Appendix D for a listing of the
program that calls this procedure.

The message buffer in the listing, rgbBuffer, is used by GetMsg,
GetMsgUnexpanded, and/or PrintMsg when they read from the message
file. The size of this buffer should be determined according to the size of
the binary message file. Increasing the size of the buffer can increase
performance when your message file is large.

InitMsgEnvironrnent(Pointer pbMsgFileName, Word
cbMsgFileNarne, Pointer pBuf, Word
sBuf, Pointer pCache, Word sCache)

ErcType erc;

erc = InitMsgFile(pbMsgFileName, cbMsgFileName, 0, 0,
pBuf, sBuf, pCache, sCache);

if(erc != ercOK)
ErrorExitString(erc, &rgbCantAccessMsgFile,

strlen(rgbCantAccessMsgFile));
return(erc);
}

maine)
[
Word
Word
char

rgbBuffer[Ox200];
rgbCache[Ox400];
MsgFileName[] = "ProgMsg.bin";

InitMsgEnvironment(MsgFileName, strlen(MsgFileName),
rgbBuffer,sizeof(rgbBuffer), rgbCache,
sizeof(rgbCache»;

Listing 6-2. Setting Up the Message File Environment

6-12 eTOS/Open Programming Practices and Standards - Part I

The cache buffer, rgbCache, is used to keep a cache of the
most-recently-used messages. The size of the cache buffer should be
determined by how often you reuse messages. If messages are never
reused, you should use the minimum of 1024 bytes.

Message File Macros

Each message may have one or more macros embedded in the text. These
macros are expanded when the message is displayed, making message
creation more flexible. A macro is identified by a leading percent sign
(%), followed by one or more characters with no spaces. The meanings of
these characters are described below.

Macro

%U

%Dn
%Kn
%nD
%nN
%nS
%n

String to be insterted

Workstation user name (which expands to NULL if the user name
in the Application System Control Block is of 0 length)
Date/time formatted with template number n
Key cap text for key number n
Display nth parameter as date/time
Display nth parameter as a number
Display nth parameter as a string
Display nth parameter as a string (the default)

As an example, assume the following message:

:2000: "Copying on %010 from %OS to % 1 S ... "

Further assume that the date was Jan 1, 1989 and the strings Abc and Def
were supplied. (For details on the different date time expansions, see
Appendix B.) The expanded message would be

Copying on 01/01/89 from Abc to Oef ...

The Executive was one of the first programs to use message files. You can
look at [Sys] <Sys>ExecMsg.txt for examples of how to construct
messages.

Following is a detailed example of how you would write code to display
such a message with macro expansion.

Writing Your Application for International Use 6-13

Assume you create the message

:3000: "There are %ON files in directory named %1 S."

This message takes two parameters: the first is numeric and the second is
a string. The parameters are passed in an array of sdType parameters.
An sdType is a 6 byte block of memory in which the first 4 bytes contain
the address of the parameter, and the last 2 bytes contain the parameter
size. The following code would be used to output the full message:

NOTE: The size passed in the sdType parameter for numeric parameters
determines how the number macro is expanded. A size of 1 implies a byte
value; 2, a word value; and 4, a double word or quad value.

main()
[
sdType
Word
Word
Word
char

rgSd[2];
iMsgNum;
nFiles;
cbDirName;
rgbDirName[12];

rgSd[O] .pb
rgSd[O] .cb
rgSd[l] .pb
rgSd[l] .cb

&nFiles;
2; /* two bytes in a word */
&rgbDirName;
cbDirName;

CheckErc(PrintMsg(iMsgNum, &rgSd, 12
/* two six-byte sdParams */, &bsVid);

Listing 6-3. Displaying a Message from a Message File

6-14 eTOS/Open Programming Practices and Standards - Part I

Pre-Loading Messages

As discussed above, most application programs load messages on an
as-needed basis. In some cases, though, pre-loading is the better method.

You should preload the text messages if your program requires the fastest
possible performance. If your prime consideration is memory usage,
however, you should only load messages as needed. Sometimes, you may
want to use a combination of the two.

Preloading messages requires your program to get its messages from the
message file and load them into memory during initialization. To do this,
you create an array of message numbers for the program to use. Then,
during initialization, your program calls GetMsgUnexpanded to load a copy
of each message into memory for quick access later. (Since these
messages may have macros, you should use GetMsgUnexpanded. That
way, you only expand the macro(s) when you actually use the message.)
For each message used, you should call AllocAreaSL or ExpandAreaSL
to get the necessary dynamic memory in which the message can be stored.

Listing 6-4 shows a code fragment that pre-loads messages into a program's
memory. It assumes that InitMsgEnvironment, or a similar procedure, has
already been called.

sdType rgMsgArray[MSGMAX];
char rgbTempMsgBuffer[MAXMSGLENGTH];

i=O;
while(erc == 0 && i < MSGMAX) [

erc = GetMsgUnexpanded((FIRSTMSGNUM+i),
&rgbTempMsgBuffer,MAXMSGLENGTH,&(rgMsgArray[i] .cb»;

if(erc == ercMsgNotFound) [
WriteByte(&bsVid, NewLine);
MsgErc(ExpandLocalMsg(¶ms, sizeof(params),

&rgbMsgNotFound, strlen(rgbMsgNotFound),
&bsVid, 1024, &i, fTRUE));

break;
}

else CheckErc(erc);

if(i == 0)
CheckErc(AllocAreaSL((rgMsgArray[i] .cb+l),

& (rgMsgArray[i] .pb»);
continued ...

Writing Your Application for International Use 6-15

else {
selectorof(rgMsgArray[i] .pb)

selectorof(rgMsgArray[i-l] .pb);
CheckErc(ExpandAreaSL((rgMsgArray[i] .cb+l),

selectorof(rgMsgArray[i] .pb),
&(offsetof (rgMsgArray [i] .pb»));

memcpy(rgMsgArray[i] .pb, rgbTempMsgBuffer,
rgMsgArray[i] .cb);

i++;
} /* end of while */

Listing 6-4. Pre-Loading Messages into Program Memory

If your application has linked-in text strings and you want to overwrite
them by pre-loading messages, the preloading should follow the process
below.

• For each message, call GetMsgUnexpanded to retrieve the message
from the message file and to place the message in a temporary
buffer.

• If the size of the loaded message is less than or equal to that of the
linked-in message, you can overwrite the linked-in message.
(Remember to overwrite the size also.)

You may also decide to use some combination of the above methods. For
example, you could preload messages that are always used and choose to
load all other messages on an as-needed basis.

Using a Very Small Number of Messages

As mentioned earlier, there is an alternative set of routines that can be
used for system services or other programs that use a minimal number of
messages. This approach allows your program to copy the entire contents
of the message file into a memory buffer and then extract the messages
from there. These routines do not support any macro expansion. The
three routines listed below can be called.

6-16 eTaS/Open Programming Practices and Standards - Part I

Opens a message file. OpenServer MsgFile

GetServerMsg Retrieves a message from the previously opened
message file.

CloseServerMsgFile Closes the message file.

For details of each of these routines, see the eTOS/Open Application
Programming Interface Specification.

OpenServerMsgFile performs the following operations:

• opens the specified message file

• calls GetFileStatus to determine the size of the file

• allocates enough memory to contain the message file

• reads the entire contents of the file into memory

To retrieve a particular message, your program must call GetServerMsg.
When your program is finished using messages, it should call
CloseServerMsgFile, which closes the message file and deallocates the
memory it allocated for messages.

Listing 6-5 shows a sample use of the server message file routines. A
program that uses the routine can be found in Appendix D.

InitServerMsgEnvironment(Pointer pbMsgFileName,
Word cbMsgFileName)

ErcType erCi

erc = OpenServerMsgFile(pbMsgFileName, cbMsgFileName, 0,
0, FALSE);

if(erc != ercOK)
ErrorExitString(erc, &rgbCantAccessMsgFile,

strlen(rgbCantAccessMsgFile))i
return(erc)i
)

continued ...

Writing Your Application for International Use 6-17

maine)
{
sdTypesdMsgReti
Word iMsgNum = 56100i
Word cbReti
char rgMsgFi1eName[] = "ServerMsg.bin"i

InitServerMsgEnvironment{&rgMsgFileName,
strlen{rgMsgFileName))i

MsgErc{GetServerMsg{iMsgNum, &sdMsgRet))i

WriteByte{&bsVid, NewLine)i
WriteBsRecord(&bsVid, sdMsgRet.pb, sdMsgRet.cb, &cbRet)i

Listing 6-5. Using the Server Message File Procedures

6-18 eTOS/Open Programming Practices and Standards - Part I

7
Tips for the Application Writer

Introduction

This chapter describes some common practices which we recommend
following. Following these practices promotes a common user interface,
and enhances usability of your application and of the system as a whole.

Program Structure and Design

CTOS programs written in a high-level language (for example, in C) or in
Assembly language can be viewed at three different levels.

• The program level

• The module level

• The procedure level

The program level is the highest-level view. It consists of the executable
image, or run file. When the program is started, this file is loaded into
memory from disk. It then performs the work it was designed to do.
Each program is made up of one or more modules.

A module is an individual source code file, which has been compiled or
assembled to object form. The code in each module should perform
related functions. Large programs should be built of multiple, logically
grouped modules. Programs written in this manner are much easier to
maintain than those which use a single, monolithic source file. Once the
modules for a program have been created, they can be linked together to
form the executable program.

Tips for the Application Writer 7-1

Each module contains one or more procedures. A procedure is simply a
section of code which can be called by a symbolic name. This allows
commonly-used functions to be written only once, but used at multiple
locations in a program. The principle of modularity used for modules
applies to procedures, as well. Multiple, specific procedures are usually
more efficient than a single, general-purpose procedure with many
options.

The source code in each module is compiled or assembled into a
relocatable object module. As mentioned above, these object modules
can then be linked together by the Linker into a run file. Object modules
can also be stored in object module libraries which group many individual
object modules in a common repository. The Linker extracts the
individual object modules from the library at link time, as needed.

The Linker makes two passes when linking object modules into a
program. During the first pass, the Linker reads each module and
extracts symbol information from them. It puts this information in a
symbol table. The Linker then searches the available libraries for
occurrences of those symbols, and extracts the appropriate object module
(or modules) from the libraries. Both CTOS.Lib and CTOSToolKit.lib
are searched automatically by default during this process.

On the second pass the Linker inserts relocation information in the
program image, so that the symbols in the object modules are replaced by
their offsets in the program image. Finally, the Linker writes the
newly-created executable run file to disk.

The Linker can create any of several different run file types, depending
on the command used, and on the options specified. Portable programs
should use the Bind command, not the Link command. Portable
programs should also use only the following entries for the Run File Mode
parameter .

• Real

This entry creates a real mode run file. This type of run file
executes in real mode only. It therefore runs only in the lowest one
megabyte of memory on a workstation. This type of run file cannot
access extended memory.

7-2 eTOS/ Open Programming Practices and Standards - Part I

• Protected

This entry creates a protected mode run file, with addressing based
on a Local Descriptor Table. This type of run file executes in
protected mode on systems that support protected mode, and in real
mode on systems that do not. Protected mode run files can be
located anywhere in memory. This is the most commonly used run
file mode for portable programs .

• GDTProtected

This entry creates a protected mode run file, with addressing based
on the system's Global Descriptor Table. As with the Protected
entry, this run file executes in protected mode on systems that
support protected mode, and in real mode on systems that do not.
This entry allows other programs to gain direct access to this
program's code and data. This option is used almost exclusively by
system-common services.

Keyboard-Handling Conventions

Application-Independent Key Meanings and Their Use

Certain keys and combinations of keys should be handled by any
application. Some are taken care of by the operating system (for
example, Action-Finish), but others are the responsibility of the
application. Table 7-1 describes the common key usage convention for
CTOS applications.

Table 7-1. Application-Independent Key Meanings
(Page 1 of 2)

Key Sequence

Action-Finish

Usage

Application takes no action, unless it
has disabled Action-Finish. Operating
System terminates application.

Tips for the Application Writer 7-3

Table 7-1. Application-Independent Key Meanings
(Page 2 of 2)

Key Sequence

Cancel

Code-"feature key"

F1 to F10

Finish

Go

Help

Next

Shift-Code-"feature key"

Usage

Stop current operation, and return to
previous prompt, menu, or state.

Perform the application-defined
operation specified by the Code­
"feature key" combination.

Display menu, or prepare to perform an
operation. Wait until the Go key is
pressed to perform the operation.

Display exit prompt, and wait for the Go
key to be pressed.

Perform the requested action.

Display help information.

Move to the next text field.

Perform the application-defined
operation specified by the Shift-Code­
"feature key" combination.

Application-Dependent Key Use Conventions

Certain keys and key combinations may not be needed by all applications,
but should perform a consistent function when they are used. For
example, not all applications need to implement screen scrolling, but
those that do should use the scrolling keys in a consistent manner.

Table 7-2 describes the usage conventions for these keys.

7-4 eTOS/ Open Programming Practices and Standards - Part I

Table 7-2. Application-Dependent Key Meanings
(Page 1 of 2)

Key Sequence Usage

Arrow Key Move the cursor one character position
(or one line) in the direction of the
arrow.

Bound

Code-Arrow Key

Code-Mark

Code-Next Page

Code-Scroll Up! Code-Scroll Down

Copy

Delete

Mark

Move

Highlight all characters between the
current cursor position and a previously­
marked cursor position. Prepare to
perform an editing function on the
marked block of text.

Move the cursor as far as it can go in
the direction of the arrow. For example,
to the end of the current line or to the
top of the current video frame.

Unmark a previously-marked block of
text.

Insert New Page character (OCh).

Scroll the contents of the screen up!
down one full screen.

Copy a previously-marked block of text
to the current cursor location. Dis­
places, but does not destroy existing
text.

Delete the single character or the
marked block of text at the current
cursor location.

Highlight the character at the current
cursor position, and prepare to perform
an editing function on it.

Move a previously-marked block of text
to the current cursor location. Dis­
places, but does not destroy existing
text.

Tips for the Application Writer 7-5

Table 7-2. Application-Dependent Key Meanings
(Page 2 of 2)

Key Sequence

Next Pagel Prev Page

Scroll Upl Scroll Down

Shift-Arrow Key

Shift-Scroll Upl Shift-Scroll Down

Usage

Scroll the contents of the screen upl
down one full page or one full screen.

Scroll the contents of the screerl upl
down one line.

Move the cursor five character positions
(or five lines) in the direction of the
arrow.

Scroll the contents of the screen upl
down five lines.

Keyboard Events an Application Must Handle

An application should make a reasonable response to any input it receives
from the keyboard. If the input is not what the application expects, it
should beep. It should also display an error or prompt message, if one is
not already displayed.

Screen Layout Conventions

While no strict guidelines currently exist for an application's screen
layout, certain conventions have been widely used historically. Following
these conventions promotes a consistent look between applications.

Function Key Menus

If an application uses function keys, it should provide a function key
menu on the screen. The function key menu should appear at the bottom
of the screen, so that it is easy to relate the menu to the function keys on
the keyboard. If an application needs to use the entire screen, it should
display its function key menu when the Help key is pressed.

7-6 eTOS/Open Programming Practices and Standards - Part I

For an example showing how to display a function key menu on the
screen, see "Video Management - V AM and VDM" in Chapter 2.

Help

Applications should provide some form of help to the user. At the least,
the application should display a list of commands or function key
meanings when the user presses the Help key.

Listing 7-1 shows a V AM procedure which displays a help window when
called. The procedure sets up its window, displays a message, then
prompts the user for a response. In this case, the only accepted response
is Cancel, which causes the routine to restore the previous contents of the
screen and then return to the caller.

/* display a help message */
void PutHelp() [
char *pHelpMsg = "You Pressed the Help key. Press
Cancel to continue.";
Word sHelpMsg = 51;
Word sFrameBuf;
char inchar;

/* frame buffer is number of chars in frame */
sFrameBuf = 3 * Cols;

CheckErc(InitVidFrame(HELPFRAME,0,Lines-6,Cols, 3,0,0,0,
0,0»;

CheckErc(QueryFrameCharsAndAttrs(HELPFRAME, 0, 0,
pbTextBuf, sFrameBuf, pbAttrBuf, sFrameBuf»;

CheckErc(ResetFrame(HELPFRAME»;
CheckErc(PutFrameChars(HELPFRAME, 0, 0, thinline, Cols»;
CheckErc(PutFrameChars(HELPFRAME,0,2,pHelpMsg,sHelpMsg));

CheckErc(ReadKbd{&inchar));
while{inchar != Cancel) [

Beep() ;
CheckErc(ReadKbd(&inchar));
)

CheckErc(PutFrameCharsAndAttrs(HELPFRAME, 0, 0,
pbTextBuf, sFrameBuf, pbAttrBuf, sFrameBuf));

Listing 7-1. Sample Help Window Display Procedure

Tips for the Application Writer 7-7

Status Information

Status information that applies to an entire program, such as the time of
day, should be displayed at the top of the screen. Status information that
applies to a particular video frame, such as a filename in an editor, should
be displayed at the top of that video frame.

Creating An Executive Screen

Many utilities use the same screen display as the Executive for their user
interface. Such utilities can use the CreateExecScreen procedure to set
up the screen, rather than implementing the setup code themselves.

The CreateExecScreen procedure takes three parameters: the size of the
video character map, the number of columns on the screen, and the
number of lines on the screen. These parameters should NOT be hard­
coded in the program, but should instead be retrieved by the
QueryVidHdw procedure. Using QueryVidHdw allows the program to
work with displays that have varying numbers of rows and columns.

Listing 7-2 shows a code fragment that sets up an Executive-type screen
display using CreateExecScreen.

/* first find out the screen dimensions */
CheckErc(QueryVidHdw(&rgbVidHdw, sizeof(rgbVidHdw) »i
nLines = rgbVidHdw[l]i
nCols = rgbVidHdw[2]i

/*now reset the video and get the size of the char map */
CheckErc(ResetVideo(nCols, nLines, TRUE, BLANK, &sMap»i

/* now create the executive screen */
CheckErc(CreateExecScreen(sMap, nCols, nLines»i

Listing 7-2. Creating an Executive Screen

The Executive screen consists of three display frames, numbered 0
through 2. Each is described below.

7-8 eTOS/Open Programming Practices and Standards - Part I

• Frame 0 - the user input frame

This is the primary frame, and consists of the entire screen except
for the top three lines. All user input and user output should be
displayed in this frame.

• Frame 1 - the status frame

This frame consists of the top two lines of the screen. This frame
should display status information, such as the current path and the
current date and time.

• Frame 2 - the event frame

This frame consists of the third line of the screen, and generally
contains a horizontal line separating the status frame from the user
input frame. This frame is used to display system events, such as
mail notification.

After the call to CreateExecScreen, these frames are initialized, but
empty. It is the application's responsibility to fill in the frames with the
appropriate information.

To be consistent with other applications that use the Executive screen, the
application should display its name in the upper left-hand corner of the
status frame. It should also display the current date and time in the lower
right-hand corner of the status frame.

If an application requires a customized video display, see "Yideo
Management - YAM and YDM" in Chapter 2, "Basic Input and Output."

Cleanliness

Programs should observe general programming cleanliness guidelines, so
that future enhancements to the operating system do not break them.

Guidelines for Screen Handling

In most implementations of CTOS, it is possible to get the address of the
memory in which the screen image is stored, and to write directly to video
memory. It is common practice in some operating systems, such as
MS-DOS, for applications to write directly to video memory.

Tips for the Application Writer 7-9

Portable CTOS applications should never write directly to video memory.
They should instead use the V AM and VDM calls to display information
on the video screen. This allows compliant applications to continue
executing in the background when they are used with a context
management shell, such as the Context Manager. Applications that write
directly to the screen execute only when they are the foreground process.

File Suffix Conventions

Applications that have special-purpose files should append a descriptive
suffix to those files. Table 7-3 describes some filename suffixes
commonly used by application programs for their files.

Filename Suffix

. bin

. config

.fls

. lib

. Ist

-Old

. sub

. sys

.tmp

Table 7-3. Common File Suffixes
(Page 1 of 2)

Usage

A binary message file .

A configuration file .

A file that contains a list of file
specifications .

A library of object module procedures .

A listing file.

The original version of a file that is
currently being modified .

A submit file.

A system file .

A temporary file created by an
application.

7-10 eTOS/Open Programming Practices and Standards - Part I

Filename Suffix

.ts

. txt

Table 7-3. Common File Suffixes
(Page 2 of 2)

Usage

A typescript file, used for error
recovery.

A text file .

The Scratch Volume

All eTOS systems have a special volume, the scratch volume, for the
storage of temporary files. The volume name of the scratch volume is
[Scr], and it behaves like any other eTOS volume. Application programs
can create and delete files and directories on the scratch volume at will.

In many installations, the scratch volume is mapped to the user's [Sys]
volume. However, the scratch volume could just as well be mapped to a
RAM disk, for performance enhancement. Therefore, only files which
are truly temporary should be stored on the scratch volume. In addition,
temporary files on the scratch volume should be deleted after the
application is finished using them.

Any file that may be needed for recovery after a system failure must not
be stored on the scratch volume. Such files should be stored as
temporary files on the [Sys] volume or on some other real volume.

Tips for the Application Writer 7-11

8
Writing Request-Based System Services

Introduction

Two types of system services exist: request-based system services, and
system common services. The two are somewhat similar, in that each
performs a service for a client application, but the methods by which the
two types perform the service are quite different.

Request-based system services are the most common type. A request­
based system service exchanges messages with its clients, in order to
perform work for them. The client and the system service are completely
separate processes within the machine, which exchange data and
cooperate in order to perform their work.

A request-based system service can reside anywhere in a network. It need
not be on the same processor as its client.

System common services are less widely used, mainly because they are a
fairly recent feature of the operating system. A system common
procedure is a globally accessible procedure, managed by the operating
system. When a client calls a system common procedure, that procedure
executes as if it were part of the client application.

A system common procedure must reside on the same processor as its
client. For more information on system common procedures, see Chapter
9, "Writing System-Common Services."

Requests and Request Levels

Request-based system services communicate with their clients using a
request-response model. In the abstract model, the client sends a request
to the service, and the service responds to it. In reality, the client builds

Writing Request-Based System Services 8-1

a data structure called a request block, which contains everything the
service needs to process that request. The service receives the request
block, performs the requested work, then returns the request block to the
client.

Table 8-1 shows the format of a sample request block.

Table 8-1. A Sample Request Block

Size
Offset Field (Bytes) Contents

0 sCntllnfo Size of Control Info
RtCode Routing Code

2 nReqPbCb # of Request Data Items
3 nRespPbCb # of Response Data Items
4 userNum 2 Client's User Number
6 exchResp 2 Response Exchange
8 ercRet 2 Status Code Returned
10 rqCode 2 Request Code

12 fh 2 File Handle (control info)
14 If a 4 Logical File Address

(control info)

18 pbData 4 Pointer and Size of Data
22 cbData 2 (request data item)

24 pbCountRet 4 Returned Byte Count
28 cbCountRet 2 (response data item)

The request block contains several kinds of information. It contains
information that describes itself, so that the operating system can pass it
to the system service. It contains a request code, so that the operating
system can identify the desired system service. Third, it contains two
types of application-specific data.

8-2 eTaS/Open Programming Practices and Standards - Part I

The application-specific data in a request block can be request data, or
response data. The application uses request data to pass information to
the system service. When the system service has finished processing the
request, it uses the response data areas to pass information back to the
client application.

Request data should always appear before response data in the request
block. The operating system expects response data items to be located at
the highest offsets in the request block.

Every request has a request code. The request code is simply a number
that uniquely identifies that type of request. Each system service usually
serves several request codes, including codes for data requests from
clients, for special operating system requests, and for a deinstallation
request.

Since each request code must be unique, only one system service can use
a given request code. If two system services try to use the same request
code, one or both of the services will fail. For this reason, Unisys allows
developers to register a certain range of request codes. Once you have
registered a request code, it is yours alone. No one else should use it.
You can reserve request codes in Level A or B. Registering request
codes is discussed below in "Registering Request Codes."

Table 8-2 shows the categories of request codes, and their numerical
ranges. Levels 0 through B are reserved for internal and for registered
use. Levels C through F are available for unrestricted use.

Level

o
1
2
3
4

Table 8-2. Request Code Levels
(Page 1 of 2)

Hexadecimal Values

0000 to OFDF and FFEO to FFFF
1000 to 1 FFF
2000 to 2FFF
3000 to 3FFF
4000 to 4FFF

Writing Request-Based System Services 8-3

Level

5
6
7
8
9
A*
B
C*
D
E*
F

Table 8-2. Request Code Levels
(Page 2 of 2)

Hexadecimal Values

5000 to 5FFF
6000 to 6FFF
7000 to 7FFF
8000 to 8FFF
9000 to 9FFF
AOOO to AFFF
BOOO to BFFF
COOO to CFFF
DOOO to DFFF
EOOO to EFFF
FOOO to FFDF

* User levels which support a procedural interface.

Registering Request Codes

There are two ways to obtain registered request codes in the A and B
ranges; by FAX or by telephone.

When you register request codes, you ask for a certain quantity of them,
and Technical Support assigns the numbers for you.

By Telephone

To register request codes by telephone, call the Unisys Network
Computing Group in San Jose, California, USA. The telephone number
is:

(408) 434-2848

You must call between 9AM and 5PM United States Pacific Standard
Time (or Pacific Daylight Time in the Summer months).

8-4 eTOS/Open Programming Practices and Standards - Part I

Ask for the CTOS/BTOS Technical Support Department.

By FAX

To register request codes by FAX, send your FAX to the following
United States telephone number:

(408) 434-2131

Address your FAX to "CTOS/BTOS Request Codes." If you fail to
address your FAX to "CTOS/BTOS Request Codes" it may be misrouted.
The FAX number is available 24 hours a day.

All FAXed requests to register request codes must include the following
information:

• Your name. This consists of your company name and the name of a
person who can be contacted if questions arise about your request.
You should also include a telephone number and a FAX number
where the contact person can be reached.

• The total number of request codes WITH a procedural interface that
you need.

• The total number of request codes WITHOUT a procedural
interface that you need.

• A full description of the request block for each request you want to
register. See Table 8-1 for the format of a request block.

Do not fill in the rqCode field.

Technical Support will notify you which request code numbers they have
assigned to you as soon as possible after receiving your FAX.

Conserving Request Codes and Memory

Request codes are a finite resource. They should not be wasted. In
addition, efficient use of request codes has a direct relation to the size of
the operating system.

Writing Request-Based System Services 8-5

Conserving Memory with Efficient Request Code Use

CTOS maintains a table in memory for each request code level. This
table contains entries for all requests in that level, up to the number of
the highest one currently defined. Even if a request code number is
undefined, CTOS reserves a slot for it if any request code with a larger
number is defined.

For example, assume that on a particular workstation the highest
currently-defined request code in level E is OE187h, and you add a new

,request code as number OEFOOh. The operating system must now reserve
table entries for all the request codes between OE187h and OEFOOh. Each
table entry requires 8 bytes, which in this case adds up to' a lot of wasted
memory.

This is one reason Technical Support assigns request codes in the A and
B levels. By assigning request codes incrementally, they can keep the
number of wasted request table slots to a minimum.

Conserving Request Code Numbers

Use the following techniques to keep the number of request codes needed
by your system services to a minimum:

1. When several service functions require similar parameters, add a
"CaseValue" field and use a single request code for all of them.

2. Use the same request for Termination, Abort and Swapping requests.
The three can be distinguished by the contents of the request block.
For more information on these requests, see "Termination and Abort
Request" and "Swapping Requests" later in this chapter.

Efficient use of request codes may not be necessary if you are writing a
system service purely for your own use. However, if you ever plan to
distribute it or to sell it, both your customers and the operating system
developers will appreciate your efforts.

8-6 eTaS/Open Programming Practices and Standards - Part I

Operations Performed by a System Service for
Applications

A request-based system service performs functions for its client programs.
The function a system service performs can be anything at all, but most
often a system service controls access to a shared resource. For example,
the queue manager is a system service.

Server/Client Communication

The service and its client communicate using two kernel primitives,
Request and Respond. The client uses the Request primitive to send a
request block to the system service. The service processes the request,
then uses the Respond primitive to send the same request block back to
the client. The service sends the request block to the exchange specified
by the client in the response exchange field of the request block.

The client can issue the Request primitive directly, or it can use a request
procedural interface for the request. If the client uses the Request
primitive, the client must build the request block itself. If the client uses
the request procedural interface for a request, the operating system builds
the request block for the client. Most clients use the request procedural
interface.

When the operating system detects that a Request primitive was issued
(either directly or through a procedural interface), the operating system
kernel checks the request code in the client's request block. It then uses
the request code as an index into its request routing table, which contains
the exchange number of the service that serves each valid request code.
The operating system looks up the exchange at which the request is
served, then sends the address of the request block to that exchange.

When the system service receives the request block's address, it first
checks the contents of the request block. If the information is valid, the
service performs the requested service for the client, and fills in any
response information in the request block. In addition, the service enters
a value of zero (ercOK) in the status code field of the request block. If
the service encounters an error, or if the request block is not valid, the
service enters the appropriate error code in the status code field of the
request block.

Writing Request-Based System Services 8-7

Finally, the service responds to the client by calling the Respond
primitive. The operating system then routes the response back to the
client's exchange, where the client has been waiting for it.

The Server/Client Relationship

When a server provides a service to a client, the two establish a
relationship between them. This relationship may last only for the time it
takes to respond to a single request, or it may last for a longer term.
Much of the discussion in the following sections treats events differently
depending on how they make use of this client/server relationship.

Most of the time, the client establishes a long-term relationship with the
server, so that the two can exchange a series of requests and responses.
A typical example of this is reading a sequential file. All the read
operations affect the same file, and each one depends on the successful
completion of all the previous ones. In such cases, the service must
remember not only which file is being read, but also who the client is, in
order to close that file if the client terminates abnormally.

This kind of long-term relationship is called a connection. When a client
needs to use a service over a period of time, the client must first establish
a connection, then use that connection ina series of requests. Then,
when it is finished, it must destroy the connection. Anyone connection
links one client program to one system service. Clients may have several
simultaneous connections to the same or to different services, and vice
versa. Each connection, however, is independent of all other
connections.

Connections are not peer-to-peer. The client always initiates each
communication, and the service replies to it. These roles apply to only
one particular connection, however. A given program may act as the
server on a connection to one program and as the client on a connection
to another program.

Connection Establishment

To establish a connection, the client submits a request to the server. This
request must identify which system service the client wants to use. This
can be done explicitly or by default. In most cases, the client also

8-8 eTOS/Open Programming Practices and Standards - Part I

identifies a specific resource that it wishes to access. The identification of
the resource can sometimes also be used to identify the server. This is
the case for the file system, for example.

Assuming that the resource is available, and that the client has the right
to access it, the server establishes the session by returning a reference
number, which is used to identify all requests that pertain to this session.
This reference number is called a handle. All connection handles are
treated as if they were file handles, making them easier to work with. If
the resource is unavailable, or if access to it is barred, the server returns
an error code instead of a handle.

The handle is used not only by the client and the server, but also by the
operating system and the communications network to refer to the
connection. To ensure that all handles are unique, the network, the
operating system, or both may need to map the handle to a different
value. Neither the client nor the server should assume that the other sees
the same value for the handle as it does. The only guarantee is that the
handle on all subsequent requests over a connection will have the same
value as the one returned when the connection was opened.

Listing 8-1 shows how a system service might handle a connection opening
request.

/* Open a connection, return a handle */
void OpenConnection(OpenRqType *pRq)
[
Word wHandlei

/* find an available handle */
wHandle = Oi
while((rgHandles[wHandle] != 0) &&

(wHandle < MAXCONNECTIONS))
wHandle++i

/* if all the handles are in use */
if(wHandle == MAXCONNECTIONS) [

pRq->RqHead.ercRet = ercNoHandlesi
}

/* if one is available */
else [

/* put the handle number in returned handle field */
* (pRq->pHandleRet) = wHandlei

continued ...

Writing Request-Based System Services 8-9

/* put client's usernum in the handle array at */
/* position wHandle * /
rgHandles[wHandle] = pRq->RqHead.userNum;
/* return ercOK and increment connection count */
pRq->RqHead.ercRet = 0;
cOpenConnections++;
}

Respond(pRq);
}

Listing 8-1. An Open Connection Request

A Note About Handles

As mentioned above, all handles are treated as file handles, which are
16-bit numbers. The top four bits of the handle are used by the operating
system for routing, leaving 12 bits for the service to use. The meaning of
the top four bits (bits 12 to 15) are listed below.

• Bit 12. Unused. Should always be O.

• Bits 13 and 14. Can be set by the system service to indicate that the
service resides on the master.

• Bit 15. Set by network software to indicate that the service resides
on a remote network node.

Most system services can simply set all four bits to zero, and let the
operating system take care of the routing. However, there is one special
case for cluster routing.

If the same system service may be installed on both a cluster workstation
and the master, the operating system on the cluster workstation must be
able to identify which handles belong to the service on the master.

To accomplish this, the system service on the master should set bits 13
and/or 14 in its handles, and the service on the cluster workstation should
leave them both unset. The following two code fragments show how a
service can determine whether it resides on a master workstation, then set
the appropriate bits.

8-10 eTOS/Open Programming Practices and Standards - Part I

The first determines whether a program resides on the master, and sets a
flag accordingly. The second sets the appropriate bits in the handle.

/* Get the system config. block structure */
CheckErc(GetpStructure(Ox2C8 ,0, &pMySysConfigRet»;
/* check byte at offset 33, clusterconfig byte */
if(pMySysConfigRet->ClusterConfiguration == 2)

fMasterOS TRUE;
else

fMasterOS = FALSE;

if(fMasterOs == TRUE)
/* OR the handle with Ox6000 to set bits 13 and 14 */

wHandle = wHandle I Ox6000;
/* put the handle number in returned handle field */
* (pRq->pHandleRet) = wHandle;

The Real Work

Once the connection is established, the client and server use requests to
manipulate the resource that was allocated for the connection. Typically
these requests perform read, write andlor control operations. The
requests are guaranteed to be delivered to the server in the order in which
they were sent. The server can respond to them in any order, however.

Connection-oriented requests do not identify the server or the resource
they affect. They must specify the connection handle instead.

If a request is routed to a remote processor, it cannot exceed 2.SK bytes
in size. If a request, such as a disk read, requires more than 2.SK of
returned data, the operating system takes special action. The client still
issues only a single request, but the operating system breaks it up. The
result is that the server receives several separate requests, each for less
than 2.SK of data. Then, the operating system collects the server's
responses into a single response to match the client's single request.

The only difficulty arises if errors occur on more than one of the server's
requests. The server can return one error code on each, but the client
can only receive one error code, because it only issued one request. If
this happens, the operating system returns the numerically highest error
code. For this reason, more severe error codes should be assigned higher
numbers.

Writing Request-Based System Services 8~ 11

Listing 8-2 shows a function that returns a string of data in response to a
request. The client passes a valid connection handle, the address and size
of a buffer, and the address of a variable in which the server returns the
actual size of the returned string.

void ProcessDataRequest(DataRqType *pRq)
[
Word i=O;

/* check for valid handle */
if(pRq->RqHead.userNum != rgHandles[(pRq->wHandle)l) [

pRq->RqHead.ercRet = erclnvalidHandle;
TerminatelfErcNotOk(Respond(pRq), (RqHeaderType *)

pRq) ;
return;
}

/* calculate the maximum string size */
if(pRq->cbDataRet < srgMsgRet)

i pRq->cbDataRet;
else

i = srgMsgRet;

/* put the message and the size in the user's buffer */
memcpy(pRq->pbDataRet, &rgMsgRet, i);
*«Word *)(pRq->psDataRet» = i;

/* respond to the request */
pRq->RqHead.ercRet = 0;
TerminatelfErcNotOk(Respond(pRq), (RqHeaderType *) pRq);
}

Listing 8-2. Processing a Data Request

Connection Termination

When a client is finished with a connection, it should request the server to
terminate the session. This type of request is generally called a close
request. A close request asks the server to release any resources
associated with a given connection handle and to terminate the connection
with the client who owns that handle.

When it receives a close request, the server must first reply to any
outstanding requests on that connection. It can then reply to the close
request and deallocate any resources associated with the connection.

8-12 eTOS/Open Programming Practices and Standards - Part I

/* Close connection procedure. Assumes that the */
/* service has already served any outstanding requests */
void CloseConnection(CloseRqType *pRq)
(

/* if the user number matches the value in the array */
/* of handles (if the handle is valid) */
if(rgHandles[pRq-)wHandle] == pRq-)RqHead.userNum) (

/* reset the handle and decrement the connection */
/* count */
rgHandles[pRq-)wHandle] = 0;
cOpenConnections--;
pRq-)RqHead.ercRet = 0;
)

/* if the user number doesn't match rgHandles */
else

pRq-)RqHead.ercRet = erclnvalidHandle;
Respond(pRq);
}

Listing 8-3. A Close Connection Request

Connectionless Requests

Short term relationships can be handled by connectionless requests. A
connectionless request can be used whenever the execution of the request
is independent of all previous and future requests. This means that the
server does not need to "remember" anything about the client after it has
responded to the request. Connectionless requests are used most often
for status requests, configuration updates, and deinstallation requests.

Operations Performed by a System Service for the
Operating System

While a client and a server participate in a connection, the client's
environment may change in ways that the server must know about, even if
the client need not know about them. For example, the client may not
know if it is swapped to disk temporarily, but the server must know so
that it does not write to memory that no longer belongs to its client.

Writing Request-Based System Services 8-13

When such an event occurs, the operating system notifies all servers by
issuing a specific request and waiting for a response. The following
sections describe each of these requests, and the server's action when one
is received.

Termination and Abort Requests

Whenever a client application program attempts to terminate, the
operating system issues termination requests. These requests contain the
user number of the terminating application, and a status code indicating
the cause of termination. The operating system does not finish
terminating the client application until it receives a response for each of
the termination requests it issued.

The operating system issues a termination request when an application
terminates for normal reasons, such as successful completion or detection
of an error. For example, the application may have called Exit or
ErrorExit, or the user may have pressed Action-Finish.

The operating system issues an abort request when an abnormal event
causes the application to terminate. For example, the master issues an
abort request for a client if it loses communication with the cluster
workstation on which the client resides.

When a service receives a termination request, it must first respond to all
outstanding requests from the terminating client. It can then deallocate
any resources owned by the client, and respond to the termination
request. A service must always respond to all outstanding requests from
the client before it responds to the termination request. Note that the
server's action when it receives a termination request is almost identical to
the one for a close connection request.

An abort request is identical to a termination request, except that the
application's termination status code is always 8200. Some services may
need a separate procedure to handle abort requests, but most can use the
same request for both termination and abort.

Table 8-3 shows the format of a termination request. The userNum field
contains the terminating user number. The ercRet field should be set to 0
by the server. The ercTermination field contains the status code with
which the application terminated (for example, 0 for normal termination).

8-14 eTaS/Open Programming Practices and Standards - Part I

Table 8-3. Termination Request Block

Size
Offset Field (Bytes) Contents

0 sCntllnfo 2
RtCode 0

2 nReqPbCb 0
3 nRespPbCb 0
4 userNum 2 User Number
6 exchResp 2 Response Exchange
8 ercRet 2 Status Code Returned

10 rqCode 2 Termination Request Code

12 ercTermination 2 Termination Status Code

Listing 8-4 shows how a service might handle tennination and abort
requests.

/* Terminate connection procedure. Assumes that */
/* service has already served any outstanding requests.*/
void ProcessTerminationRequest(SystemRqType *pRq)
{
Word wHandle = 0;

/* if the user has one or more open connections */
while(wHandle < MAXCONNECTIONS) {

if(rgHandles[wHandle] == pRq->RqHead.userNum) {
/* reset them and decrement connection count */
rgHandles[wHandle] = 0;
cOpenConnections--;
)

wHandle++;
)

/* respond with erc 0 */
pRq->RqHead.ercRet = 0;
Respond(pRq);
)

Listing 8-4. An Application Termination Request

Writing Request-Based System Services 8-15

Swapping Requests

The operating system issues a swapping request when a user application is
about to be swapped to disk. The swapping request is used to prevent the
service from issuing a response to the user application, until that
application has been swapped back into memory.

If a server receives a swapping request for a given user number, and has
no outstanding requests from that user number, the service should
respond immediately. The service has no need to take special action,
even if it has a connection with that user.

If a server has outstanding requests from the user, though, it must handle
the swapping request in one of three ways:

• Delay its response to the swapping request until it has responded to
all pending requests for the user. This option should only be used if
the service can respond to all the pending requests in a small amount
of time.

• Reply to all the pending requests with a status code of 37, which
indicates "Service not completed." This tells the operating system
that those requests have not been processed. The operating system
keeps a list of these requests for the swapped user, and reissues
them when the user is swapped back into memory. This option
should be used only if the user's requests can be suspended
indefinitely without causing problems for the server or for its other
clients.

• Reply to the swapping request without taking any specific action.
This option should be avoided, since it prevents the application from
being swapped to disk.

Any server that may hold a request for a significant amount of time
before responding to it should serve swapping requests. Failure to do so
can randomly prevent applications from being swapped to disk.

Table 8-4 shows the format of a swapping request. The userNum field
contains the user nu~ber of the user who is being swapped to disk.

8-16 eTaS/Open Programming Practices and Standards - Part I

Table 8-4. Swapping Request Block

Size
Offset Field (Bytes) Contents

0 sCntlinfo 2
RtCode 0

2 nReqPbCb 0
3 nRespPbCb 0
4 userNum 2 User Number
6 exchResp 2 Response Exchange
8 ercRet 2 Status Code Returned
10 rqCode 2 Swapping Request Code

12 reserved 2

Installation and Deinstallation

The life cycle of a system service can be viewed as three consecutive
phases. The first is the installation phase, which includes notifying the
operating system of the requests it serves, and converting to a system
service. Next comes the active phase when the service accepts requests
from clients and performs the work it was designed to do. The third
phase is deinstallation, which terminates the system service.

Installation

Installing a system service is not particularly difficult, however there are
several guidelines that must be followed to prevent undesirable situations.

The critical point in the installation of a system service is the
ConvertToSys operation. Certain actions must be performed prior to
ConvertToSys, and others lllUSt be performed afterward. Performing an
action on the "wrong side" of ConvertToSys can result in abnormal
termination, or other problems.

A typical installation sequence is:

Writing Request-Based System Services 8-17

1. Call GetPartitionHandle to see if it is already installed in another
partition. A system service should not install if it is already present
on the current processor.

2. Allocate any permanent resources to be used by the system service.
This includes allocating exchanges, allocating short-lived memory,
and creating any additional processes. No long-lived resources
should be allocated before ConvertToSys, however.

3. Query the current status of any requests the service will serve, using
QueryRequestlnfo. This lets the service make sure the requests are
declared in the operating system. If any of its requests are not
declared, the service should abort. The service should also save the
values returned by the queries so that it can restore them when it is
deinstalled.

4. Perform ConvertToSys, then Exit. The ConvertToSys operation
changes all processes, exchanges and memory in the partition from
application status to system service status. This converts the
partition to a system service partition.

The Exit operation then reloads the exit run file into a new
foreground partition, and returns control to the system service
program. The Exit operation does not terminate the system
service's execution.

5. Change priority, so that the service runs at a higher priority than any
potential client application.

6. Use the SetPartitionName operation to identify the service to the
operating system.

7. Perform a ServeRq operation for each request the system service will
handle. To prevent timing windows, requests from the operating
system (such as swapping requests) should be served first, followed
by all requests other than connection-opening requests. Connection­
opening requests should be served last.

The order of the operations before ConvertToSys can be changed, and
the order of the operations after ConvertToSys can be changed.
However, compatible programs should gen'erally not move an operation
from before to after ConvertToSys, or from after to before.

Listing 8-5 shows an example of how a system service might install itself.

8-18 eTOS/Open Programming Practices and Standards - Part I

void maine) (
RqHeaderType
int

*pRq;
i = 0;

CheckErc(GetUserNumber(&usernum»;
CheckErc(AllocExch(&exchServe»;

/* This is the already-installed test. If already */
/* present, set up an appropriate exit message, and */
/* exit*/

if (GetPartitionHandle(&rgServerName, srgServerName,
&PhRet) == ercOK)[

ErrorExitString(O, &rgInstMsgI, srgInstMsgI);
)

/* query the requests. If any are undefined, exit */
while(i<NUMREQUESTSSERVED) [

CheckErc(QueryRequestInfo(FIRSTREQUESTNUM+i,
&(rqInfo[i]), srqInfo»;

i++;
)

/* BECOME A SERVER */
/* Since the server is not already installed, install */
/* now. Set up an appropriate exit message, and */
/* convert to sys (become a server). * /
/* The ErrorExitString call after the convertosys */
/* call allows the reloading of an exec in the */
/* primary partition. */

/* Note: you must do setmsgret before convertosys. */
/* Can't print a string to the screen after */
/* converttosys. */

CheckErc(SetMsgRet(&rgInstMsg2, srgInstMsg2));
erc = ConvertToSys();
if(erc != 0) [

ErrorExitString(erc, &rgInstErrorMsg,
srgInstErrorMsg);

)
else

Exit(O);

/* All servers must run at a priority higher than 40, */
/* else deadlocks can occur. */

preTerminateIfErcNotOk(ChangePriority(12»;

/* Set the partition name so that the deinstallation */
/* program can obtain this partition handle.*/

preTerminateIfErcNotOk(SetPartitionName(O,
&rgServerName, srgServerName»;

continued ...

Writing Request-Based System Services 8-19

/* Now serve the Request to the service exchange for */
/* this program. * /

preTerminateIfErcNotOk{ServeRq{SWAPRQ, exchServe»i
preTerminateIfErcNotOk{ServeRq{TERMINATERQ,

exchServe»i
preTerminateIfErcNotOk{ServeRq{DATARQ, exchServe»i
preTerminateIfErcNotOk{ServeRq{DEINSTRQ, exchServe»i
preTerminateIfErcNotOk{ServeRq{CLOSERQ, exchServe»i
preTerminateIfErcNotOk{ServeRq{OPENRQ, exchServe»i

/* Server loop ... */
/* Check for new request. If there is one, */
/* process it. */

while{TRUE) (
Wait{exchServe, &pRq)i
ProcessRequest(pRq)i
)

Listing 8-5. System Service Installation

Deinstallation

System services are trusted entities, and the operating system relies on the
fact that they do not disappear unexpectedly. Because of this, terminating
a system service requires care.

Usually, the system service writer also writes a utility program that
deinstalls the service. Not surprisingly, this program is called a
deinstallation utility.

Deinstalling a system service is accomplished in three phases. First, the
deinstallation utility sends a request to the system service, telling it to shut
down its operation. Second, when the service receives the deinstallation
request it must perform the following actions:

1. Check for open connections with client applications. The service
should refuse to deinstall if it has any open connections. Note,
however, that some application errors could leave an unused
connection open. It is the system service's responsibility to handle
this possibility (for example, through its abort request handling).

8-20 eTOS/Open Programming Practices and Standards - Part I

2. Restore the request table in the operating system to its original state,
by issuing ServeRq operations with the old exchange numbers the
service saved at installation time. These ServeRq operations should
be issued in the opposite order as at installation time. In other
words, connection-opening requests should be "unserved" first. This
ensures that the service receives no new requests.

3. Respond to ALL outstanding requests (except the deinstallation
request) with an appropriate error code. This ensures that no
requests are lost when the server deinstalls.

4. Close any connections the server may have opened as a client (with
the file system, for example).

5. Unlock its own partition by calling SetPartitionLock, then respond to
the deinstallation request.

6. Terminate by calling ExitAndRemove.

When the deinstallation utility receives the service's response, it should
take appropriate action, based on the status code returned by the service.

Listing 8-6 shows the deinstallation procedure for a sample system service.

void Delnstall(pRq)
RqHeaderType *pRq;
(
RqHeaderType *pWaitingRq;

/* pRq only points to data when a deinstall request is */
/* received. Is null when deinstalling on error */
if(pRq != NULL) (

if(cOpenConnections > 0) (

)

/* there are connections open */
pRq-)ercRet = ercOpenConnections;
Respond(pRq);
return;
)

/* if no open connections, or if deinstalling on error */

continued ...

Writing Request-Based System Services 8-21

/* unserve the requests */
while{i<NUMREQUESTSSERVED)

CrashlfErcNotOk{ ServeRq{ FIRSTREQUESTNUM+i,
rqlnfo [i] . exch));

i++;
)

/* Loop here to clear all messages on this exchange */
while (Check{exchServe, &pWaitingRq) == ercOK) (

ProcessRequest{pWaitingRq);
)

/* All done, unlock partition, and deinstall */
CrashlfErcNotOk (SetPartitionLock{FALSE»;
Respond(pRq); /* respond to deinst. rq */
ExitAndRemove{);/* bye */
Crash(3); /* bad problem if we ever get here */

Listing 8-6. System Service Deinstallation Procedure

Deinstallation on Error

If a system service encounters a severe error, it should usually deinstall
itself, instead of crashing the system. A system service should only call
Crash when the consequences of continuing may. be worse than a crash.
Listing 8-7 shows a sample procedure that deinstalls a system service in
event of an error. The procedure logs an error message in the system log,
then deinstalls the service.

void TerminatelfErcNotOk{Word ere, RqHeaderType *pRq)
{

if (erc != ercOK) (
LogMessage{rgmsgError, strlen{rgmsgError»;
if{pRq != NULL)

pRq-}ercRet = 33; /* service not available */
Delnstall(pRq);
)

Listing 8-7. Deinstalling on Error

8-22 eTOS/Open Programming Practices and Standards - Part I

System Services that Act as Filters

So far, this chapter has discussed services that simply receive requests
and reply to them. However, a service can also intercept a request before
it gets to its intended server. A service that intercepts requests is called a
filter. Filters can provide a wide variety of functions, usually involving
pre-processing or post-processing of requests.

A filter must always be installed on the same processor as the service
whose requests it is filtering. The filter must also be installed after that
service. Once installed, the filter serves some or all of the requests
intended for the filtered service.

A filter does not need to filter all of the requests of the original service,
but it usually needs to serve the requests from the operating system
(termination, abort, and swapping), and the deinstallation request. The
filter must serve the filtered service's deinstall request, so that it can
deinstall before the filtered service does. A filter should also intercept
termination, abort, and swapping requests if the filtered service
implements them.

Types of Filters

There are three types of filters:

• Replacement Filters

A replacement filter performs the work required for a given request,
then responds to the client. The request never reaches the filtered
system service.

• One-way Filters

When a one-way filter receives the request it filters, it performs
some action based on the content of the request block, then
forwards the request to the filtered system service, using
ForwardRequest. The filtered service then responds to the client
directly.

Writing Request-Based System Services 8-23

• Two-way Filters

When a two-way filter receives the request it filters, it makes
changes to the request block, then changes the exchResp field to its
own exchange number. Then, it passes the request to the filtered
system service, using RequestDirect.

Because the filter's exchange number appears in the request block,
the filtered service sends its response to the filter. The filter can
then restore the client's exchange number to the request block, and
respond to the client.

A filter can treat each request individually. Most filters will act as a
one-way filter for some requests, and as a two-way or replacement filter
for others.

Requirements for Filters

A filter should be invisible both to the client application and to the
filtered service. To ensure this transparency, filters should observe the
following guidelines:

1. One-way filters must not modify the client's request block. They will
not have a chance to restore its contents later.

2. One-way filters must use ForwardRequest to pass the client's request
block to the filtered service.

3. Two-way filters can modify the client's request block, but they must
restore it to it's original form before they respond to the client.

4. Two-way filters must use RequestDirect to pass the client's request
block to the filtered service.

5. Any filter that filters connection-oriented requests must serve the
filtered service's operating system requests, and its deinstallation
request.

8-24 eTOS/Open Programming Practices and Standards - Part I

Note on Keyboard Filters

All keyboard filters should filter the keyboard swapping request. The
following example describes the consequences of a keyboard filter not
performing a ServeRq on keyboard swapping requests.

The Context Manager maintains an outstanding ReadActionKbd request
to the keyboard manager for Action key combinations. The key combina­
tion, Action-Next, for example, alerts the Context Manager to switch to a
different context.

Assume that a two-way filter has been installed to intercept ReadKbd
requests.

Under the Context Manager, a user is running an Executive program as
the current context. The Executive is issuing a series of ReadKbd
requests while the user types characters on the command line. The user
types the characters C, 0, and P, followed by the key combination
Action-Next.

The Context Manager, whose priority is higher than the Executive,
receives the Action-Next key combination before the filter receives the P
keystroke. In response, the Context Manager initiates a swap to bring in
the chosen context.

A swapping request is issued by the operating system. The request
bypasses the filter and goes directly to the keyboard process, which
responds.

The filter, which was not notified of the context switch, holds onto the
ReadKbd request, waiting for the keystroke. The keyboard process will
not send the keystroke, though, because it has received and responded to
a swapping request for the client application. As a result, the swap fails
with status code 813 ("Cannot swap out this partition").

System Services that Act as Agents

Agents are a special category of system service, and are used most often
in communications software. Like filters, agents intercept requests before
they arrive at their destination service. However, while a filter modifies a
request and forwards it to a service on the same processor, an agent acts
as a means to transport requests between processors.

Writing Request-Based System Services 8-25

Two types of agent exist; the client agent and the server agent. The client
agent resides on the same processor as the client application. The server
agent resides on the same processor as the system service the client
needs.

Figure 8-1 shows the model of interaction between a client and a server
through agents.

Client's
Processor

z

Service's
Processor

Figure 8-1. The Role of Agents in Request Passing

Role of the Client Agent

When the client agent receives a connection-opening or a connectionless
request, it must determine which processor hosts the requested system
service. It does this by parsing the data field pointed to by one of the
request pbcb pairs in the request block. For example, it might parse the
pbcb that identifies the file specification on a open file request. The
request definition tables in the operating system identify which pbcb
should be used.

The response to a connection-opening request always contains a handle
from the remote service. The agent must save this handle for its own use,
and allocate anew, local handle, for use by the client application. It then
returns this new handle to the client.

8-26 eTaS/Open Programming Practices and Standards - Part I

When the client agent receives a subsequent connection-oriented request
from the client, such as a read on a previously opened file, that request
contains the local handle. The agent must then look up the handle it
received from the remote service, and forward the request block to the
service agent at the remote processor.

Finally, when it receives a close request, it must forward that request to
the remote service. Then, after it receives a response from the remote
service, it deallocates the remote connection handle, and responds to the
client. This frees both the local and the remote connection handle for use
on a subsequent connection.

In a network environment, the client agent must also track which remote
processors a client has communicated with, and forward system requests
for the client to all those processors. This allows the remote processors
to deallocate resources when the client terminates. In addition, when it
receives a response from a remote processor to a termination request, the
agent must deallocate the handles for any resources on the remote
processor that are owned by the terminating client.

Role of the Server Agent

The server agent acts on behalf of a remote client, by submitting the
client's requests to the local operating system. To perform this role, the
server agent must allocate local memory to store a copy of the client's
request block, and any associated data.

When the remote client issues a request, the service agent receives the
request block and request data from the remote client agent. It can then
forward the request block to the local destination system service. When
the server agent receives a response from the local system service, it
sends the request block and the response data back to the client agent.

The service agent must also ensure that all user numbers are unique on its
local processor. If a remote client has the same user number as a local
partition, the service agent must map the client's user number to an
unused local user number.

Writing Request-Based System'Services 8-27

Request-Passing Guidelines for Agents

The transfer of requests between processors is optimized to minimize the
amount of data that must actually be transferred. When a request is sent
from a client agent to a server agent, the lower level network interfaces
should send only the request block and the data pointed to by the request
pbcb pairs.

When a response is sent from a server agent to a client agent, the lower
level network interfaces needs to send only the request block and the data
pointed to by the response pbcb pairs.

Implicit in these definitions is the fact that the contents of a request block
may change as it passes through a network, and still remain valid.
Therefore, agents should not count on receiving the same values in a
request block that the client originally put there. Agents can, however,
count on receiving consistent information in a series of requests. For
example, all requests an agent receives for a given connection will contain
the same connection handle, but the connection handle seen by an agent
may be different from the one seen by the client application.

Piecemealing of Very Large Request Blocks

As described above, the service agent must provide local storage for the
request blocks, request data, and response data. Therefore, it is possible
for a request to be too large to fit in the service agent's buffers. This
occurs most often for disk read and write requests, where using large
blocks of data tends to optimize disk access time.

When a request is too large for its server agent to handle, the client agent
should use piecemealing. Piecemealing consists of breaking a large request
into several smaller requests, each of which is sent to the server agent
individually.

In order to support piecemealing, a request must follow the format shown
in Table 8-5. The request always has two pbcbs. The first one may be
either a request or a response, depending on whether the operation
performs a read or a write. The second is always a response pbcb. For
piecemealing to occur, the request must also be defined as a
piecemealable request in its :NetRouting: field in the request definition
file.

8-28 eTOS/Open Programming Practices and Standards - Part I

Table 8-5. A Piecemealable Request Block

Size
Offset Field (Bytes) Contents

0 sCntlinfo 6
RtCode 0

2 nReqPbCb o or 1
3 nRespPbCb 1 or 2
4 userNum 2 User Number
6 exchResp 2 Response Exchange
8 ercRet 2 Status Code Returned
10 rqCode 2 Request Code

12 fh 2 File Handle

14 If a 4 Logical File Address

18 pbData 4 Data Buffer
22 cbData 2

24 pbCountRet 4 Returned Byte Count
28 cbCountRet 2 2

When the client agent detects a request that is too big for the service
agent, and if the request can be piecemealed, it generates a series of
requests small enough to fit in the service agent's buffer.

In each request, the client sends a piece of the original data, and changes
the logical file address to indicate the position of that piece in the original
data. As each response returns, the client agent adds the count of bytes
processed to a running total.

Thus, after the server agent has responded to all the piecemealed
requests, the client agent has a count of the total number of bytes
processed.

If an error occurs in the processing of one piece of a piecemealed request
block, the client application receives the error code. If more than one
piece of the original request encounters an error, the client application

Writing Request-Based System Services 8-29

receives only the numerically largest error code. Because the client only
issued one request, it can only receive one error code.

Defining Request Codes for a System Service

Almost all system services, except some filters, need one or more unique
request codes, so that clients can make use of their services. The
following sections describe how to define requests for a system service.

What You Need to Define

Before you can install your system service and let client applications begin
using it, you must do two things. First, you must define your requests to
the operating system, or it will not allow your service to serve them.
Second, if you use a procedural interface you must create an object file
that defines the names of your requests for the client application.
Otherwise, the Linker will be unable to tie the symbolic name of your
request to the operating system's request number.

To successfully define your requests to the operating system, you must
perform the following three steps:

1. Choose your request codes. Requests that need a procedural
interface must be defined in request level A, C, or E.

2. Define the format of your requests in a request definition text file
(for example, ServerRequest.txt).

3. Create a binary request file (for example, ServerRequest.sys) from
your request definition text file, using the Make Request Set utility.

4. Merge your binary request file with the operating system's request
file, using the Install New Request utility.

For a client application to use your requests, you must also do the
following:

1. Create a request label file that defines the procedure name for each
of your request codes that has a procedural interface (for example,
ServerRqLabel.asm) .

8-30 eTOS/Open Programming Practices and Standards - Part I

2. Assemble your request label file into an object file (for example,
ServerRqLabel.obj).

3. Link or Bind the object file into the client application.

Both these procedures are described in the following sections.

Defining a Request

The request definition text file defines all aspects of your system service's
requests. The following sections explain the items you need to define.
Listing 8-8 shows part of a sample request definition file. Each of the
fields on the request definitions is defined below.

:WsAbortRq:OD905h
:TerminationRq:OD905h

:RequestCode:OEFOOh
: RequestName: GetFooText
:Version: 2
:LclSvcCode:OOOOh
:ServiceExch:exchlnstalledMastr
:sCntlnfo: 2
:nReqPbCb: 0
:nRespPbcb:2
:Params: w(12), p(14), w(18), p(20), c(2,24)
:NetRouting:rFh
:SrpRouting:NoRouting

:RequestCode:OEFOlh
: RequestName:DeinstallFooServer
:Version: 1
:LclSvcCode:OOOOh
:ServiceExch:exchlnstalledMastr
:sCntlnfo: 0
:nReqPbCb: 0
:nRespPbcb:O
:Params: none
:NetRouting:noRouting
:SrpRouting:NoRouting

:RequestCode:OEF02h
: RequestName:OpenFooServer
:Version: 1
:LclSvcCode:OOOOh

continued ...

Writing Request-Based System Services 8-31

:ServiceExch:exchlnstalledMastr
:sCntlnfo: 0
:nReqPbCb: 0
:nRespPbcb:l
:Params: p(12), c(2,16)
:NetRouting:OpenFh, CloseAtTermination
:SrpRouting:NoRouting

Listing 8-8. Sample Request Definition File

The Structure of a Request

Each request in the request definition file is defined by a set of fields.
Each field is identified by a field name, which is enclosed in colons. The
contents of the field follows the field name, on the same line. The field
names themselves are keywords recognized by the Make Request Set
utility. Each request definition contains the fields described in Table 8-6.

Table 8-6. Request Definition Fields
(Page 1 of 2)

Field

:RequestCode:

: RequestName:

:Version:

Description

This field marks the start of the definition of a
request. The value in this field is the request code
number.

Declares the name of the request, for
documentation purposes. If the request has a
procedural interface, the procedural name should
be entered in this field. The procedural name is
not read by the operating system.

Defines the version number of the request (default
= 0). This field controls the merging of request
files. If two requests have the same request code,
the one with the lower version number will be
overwritten.

8-32 eTaS/Open Programming Practices and Standards - Part I

Table 8-6. Request Definition Fields
(Page 2 of 2)

Field Description

:LclSvcCode: Is used by the operating system for a special case
but is generally not used in writing system services
(default - 0). A value of ODA31 h indicates a dummy
request.

:ServiceExch:

:sCntlnfo:

:nReqPbCb:

:nRespPbCb:

:Params:

:NetRouting:

:SrpRouting:

Note: You can put a signature value in this field
when you define your request. Your service can
then check for the signature at run time, using
QueryRequestlnfo. This allows you to verify that no
other service has usurped your request code.

Defines the exchange to which the request is
routed before the first ServeRq operation for that
request. This field can have either of two values:

ExchlnstaliedMastr indicates that the request
should be routed to the master if the service is not
installed locally.

ExchlnstaliedLocal indicates that the request
should not be routed, and status code 33 should
be returned if the service is not installed locally.

Indicates the number of bytes of control
information (default - 6).

Indicates the number of request pb/cb pairs in the
request block.

Indicates the number of response pb/cb pairs in
the request block.

Defines the request procedural interface for the
request. This field is used by the operating system
for validation of request blocks. A fuller discussion
of this field can be found later in this chapter.

Describes how the request should be routed in a
networked environment. This field is described in
more detail later in this chapter.

Describes how requests are routed between
processor boards on the Shared Resource
Processor (SRP). This field is described in more
detail later in this chapter.

Writing Request-Based System Services 8-33

System requests must be identified to the operating system, as well as
defined. System requests should be identified at the beginning of the
request definition file, then defined in the body of the file with the other
requests. To identify a system request, you must enter the desired request
code in the data field of the appropriate request definition directive. For
example, :WsAbortRq:OEFOSh.

Table 8-7 describes the system request directives.

Table 8-7. System Request Definition Directives

Directive

:WsAbortRq:

:TerminationRq:

:SwappingRq:

Description

Identifies the request code for an abort request.

Identifies the request code for a termination
request.

Identifies the request code for a swapping request.

Defining the Procedural Interface

The :Params: field of each request definition defines the parameters for
the procedural interface to the request. It contains one or more
directives, each of which tells the operating system the size of one
parameter, and that parameter's location in the request block. The
parameters should be defined in the same order as they appear in the
procedural interface.

When a client calls a system service via a procedural interface, it first
pushes any required parameters onto the stack, then calls the procedure
name. This passes control to the operating system, which builds a request
block using the parameters pushed by the client. The operating system
uses the information in the :Params: field to determine the size of each
parameter, and its location in the request block. It then pops each
parameter off of the stack, and copies it to the appropriate place in the
request block.

8-34 eTOS/Open Programming Practices and Standards - Part I

The operating system has no way to check for correct use or number of
parameters. The programmer who defines the procedural interface must
make sure that valid parameters of the correct size are pushed in the
correct order, or the request block the operating system creates will
contain garbage.

The directives available for the :Params: field of the request definition are
described in Table 8-8. Each :Params: field usually contains multiple
directives, separated by commas. Note that there are five basic directives
and five compound directives. The compound directives are most useful
when sCntInfo is six.

Defining Request Routing

You must define two types of routing for each request: Network Routing,
and SRP Routing. The :NetRouting: field defines how a request should
be routed in a networked environment. The :SrpRouting: field defines
how a request should be between processors on an SRP. Neither field
affects routing across the local cluster.

The :NetRouting: field can contain multiple directives, separated by
commas. The network routing directives are described in Table 8-9.

The :SrpRouting: field can contain only one directive. The SRP routing
directives are described in Table 8-10.

Writing Request-Based System Services 8-35

Table 8-8. Request Procedural Interface Parameter Directives

Directive Description

none Indicates that there are no parameters for this
procedural interface.

w(x) The word at the top of the stack should be moved
to offset x in the request block.

b(x) The byte at the top of the stack should be moved
to offset x in the request block. Note that while
only a single byte is placed in the request block, a
full word is popped from the stack.

p(x) The double-word (pointer) at the top of the stack
should be moved to offset x in the request block.

c(v, x) The constant value v should be placed at offset x of
the request block. No parameter is popped from
the stack.

Ita Equivalent to w(16), w(14). This directive specifies
that the logical file address, which is stored in the
second and third words of control information, is
currently at the top of the stack.

pbcbO Equivalent to p(18), w(22). This directive specifies
that two parameters, a pointer and a word, should
be popped from the stack and moved to locations
18 and 22 in the request block.

pbcb1 Equivalent to p(24), w(28). This directive specifies
that two parameters, a pointer and a word, should
be popped from the stack and moved to locations
24 and 28 in the request block.

pbcb2 Equivalent to p(30), w(34). This directive specifies
that two parameters, a pointer and a word, should
be popped from the stack and moved to locations
30 and 34 in the request block.

pbcb3 Equivalent to p(36), w(40). This directive specifies
that two parameters, a pointer and a word, should
be popped from the stack and moved to locations
36 and 40 in the request block.

8-36 eTOS/Open Programming Practices and Standards - Part I

Table 8-9. Request Network Routing Directives
(Page 1 of 2)

Directive Description

NoRouting Indicates that this request should not be routed
outside the current cluster. When this directive is
used, it must be used alone.

FileSpec This request should be routed according to the file
specification pointed to by the first pbcb pair in the
request block. The default path should be inserted
if the file name does not start with either a left
brace ("r) or a left bracket ("[").

FileSpec2 Routing is identical to FileSpec. This directive tells
the operating system that there is a second file
name in the request block, which may need default
path insertion.

FileSpecP2S2 This request should be routed according to the file
specification pointed to by the second pbcb pair in
the request block. The default path should be
inserted if needed.

DevSpec This request should be routed according to the
device specification pointed to by the first pbcb
pair. Routing is similar to FileSpec, but no default
path is inserted.

DirSpec This request should be routed according to the
directory specification pointed to by the first pbcb
pair in the request block. The default path should
be inserted if the directory name does not start
with either a left brace ("{") or a left bracket (''['').

rFh This is a connection-oriented request, and must be
routed according to the file handle contained in the
first word of control information. This code can be
used with FileSpec or DirSpec routing, to indicate
that the actual routing should be by file handle, but
that the operating system may need to insert the
default path in one or more file specifications.

SpecPW Indicates that the default password may need to be
inserted. When used with file, directory, or device
routing, each name pbcb is assumed to have a
pbcb immediately following it which points to a
password. Otherwise, the first pbcb in the request
block is assumed to point to a password.

Writing Request-Based System Services 8-37

Table 8-9. Request Network Routing Directives
(Page 2 of 2)

Directive Description

RW This is a read or write request and may be
piecemealed. This code should be used only if the
request conforms to the required format for
piecemealable requests.

OpenFh Indicates a connection-opening request. The
resource handle should be returned in the first
response pbcb in the request block.

CloseAtTermination This directive should be used with the OpenFh
directive. It indicates that the new connection is
non-permanent and should be closed if the client
terminates. If this directive is not included in an
OpenFh request, the connection remains open after
the client terminates.

CloseFh Indicates a connection-closing request, and tells
the operating system that the corresponding file
handle should be released. The rFh directive
should also be included for connection-closing
requests.

Table 8-10. Request SRP Routing Directives
(Page 1 of 2)

Directive Description

NoRouting SRP routing is unspecified. The operating system
defaults to rRemote.

rLocal Indicates that the request should be served on the
same processor.

rRemote The request is served locally if possible, else it is
routed according to the SRP request routing table.

8-38 eTaS/Open Programming Practices and Standards - Part I

Table 8-10. Request SRP Routing Directives
(Page 2 of 2)

Directive Description

rHandle The request is routed by file handle. Routing is
similar to network routing by handle, but the
mechanism applies only to file system requests.
NOTE: This routing scheme requires special
handles. See your operating system documentation
for details.

rFileld The low-order byte of the handle identifies the
processor to which the request should be routed.
NOTE: This routing scheme requires special
handles. See your operating system documentation
for details.

rLineNumber Route to the processor which owns the cluster line
specified in the handle. NOTE: This routing
scheme requires special handles. See your
operating system documentation for details.

rDevice Route the request by handle or by file specification
to the processor specified by the routing name.
The routing name serves as a key to look up the
target processor in the Master FP Name Table.

Making a Loadable Request Set

After the requests have been defined in a request definition file, they
must be merged with the operating system on which the service or. its
client will run. Software products that use requests should merge those
requests as part of their installation script when they are first installed on
a user's hard disk.

Before the requests can be merged, they must be converted to binary
form, using the Make Request Set utility.

After the requests have been converted to binary form, they can be
merged with the operating system, using the Install New Request utility.

For more information about these utilities, see your operating system
documentation.

Writing Request-Based System Services 8-39

Making a Request Label Object File

Finally, to allow the client application to call the request procedural
interface by its symbolic name, you must create an object file that defines
the name, and link that file with the client application.

Most implementations of eTaS/Open provide an Assembler macro,
%RqName, which aids in defining request labels. This macro is generally
located in the file RqLabl.mdf. See your operating system documentation
for more information. Listing 8-9 shows an example of arequest label file
for a system service.

; request labels for the requests in FooServerRq.c
; FooServerRqLabel.asm

$INCLUDE([Sys]<Sys}RqLabl.mdf)

% RqName(OEFOOh, "GetFooText")
% RqName(OEFOlh, "DeinstallFooServer")
%RqName(OEF02h, "OpenFooServer")
% RqName(OEF03h, "CloseFooServer")

Listing 8-9. Sample Request Label File

8-40 eTaS/Open Programming Practices and Standards - Part I

9
Writing System-Common Services

Introduction

Two types of system services exist: request-based system services, and
system-common services. The two are somewhat similar, in that each
performs a service for a client application, but the methods by which the
two types perform the service are quite different.

Request-based system services are described in the previous chapter.
This chapter describes system-common services.

Request-Based vs. System-Common Services

Request-based system services and system-common services are suited to
different types of work. This section describes how the system-common
model differs from the request-based model, and gives guidelines for
deciding which model is more appropriate for a given task.

The System-Common Model

The system-common model is different from the request-based model in
one major way.

In the request-based model, the client sends a request to the service. The
service then takes over control of the processor and performs its work.
While the system service executes, the client process waits. When the
service has finished, it sends a response to the client. This allows the
client to regain control of the processor and begin executing again.

In the system-common model, there are no requests or responses. When
the system-common service installs itself, it tells the operating system the

Writing System-Common Services 9-1

entry point and parameters of each of its system-common procedures.
After it has defined its system-common procedures to the operating
system, the service simply waits to deinstall. It performs no more work,
itself.

To use a system-common procedure, clients simply call the procedure as
if it were part of the client program. The operating system detects that
the called procedure is actually a system-common procedure, and
transfers the client's execution point to the beginning of the
system-common procedure.

The client never gives up control of the processor. The system-common
procedure executes as part of the client process. Then, when the system­
common procedure returns, the operating system resets the client's
execution point to the appropriate place in the client program.

Figure 9-1 shows the threads of execution in a request-based system
service model, and in the system-common service model.

Client

Request

I

System
Service

Response

Request-Based System
Service Model

Client

Call

System­
Common

Procedure

Return

System-Common
Service Model

Figure 9-1. Threads of Execution in System Services

9-2 eTOS/ Open Programming Practices and Standards - Part I

In summary, a system-common service consists of one or more globally
accessible procedures, which are managed by the operating system. When
a client calls a system-common procedure, that procedure executes as if it
were part of the client application. The system-common service itself
performs no work other than installing and deinstalling the procedures it
controls.

Special Features of System-Common Procedures

System-common procedures have two features that give them an
advantage over request-based system services under some circumstances:

• System-common services eliminate the need to define requests,
except for the service's deinstallation request .

• Because system-common services do not use requests, they eliminate
the overhead associated with the request mechanism.

Eliminating the need to define requests is mainly a point of convenience.
This feature can also make system-common services easier to install on a
hard disk, because they often eliminate the need to merge request files.

Because system-common procedures eliminate the task switches and other
overhead required by the request mechanism, they have a significant
performance advantage over request-based system services. This can save
a substantial amount of execution time, especially for short procedures.

Requirements for System-Common Procedures

Because system-common procedures execute as if they were part of the
client application, there are several requirements they must meet.

• A system-common service must reside on the same processor as its
client.

• All system-common procedures must be reentrant.

• System-common services must use selectors from the processor's
Global Descriptor Table (GDT).

Writing System-Common Services 9-3

\

The major restriction on system-common procedures is that a
system-common service must reside on the same processor as its client.
Because system-common procedures do not use the request mechanism,
there is no way for a client to communicate with a service that resides on
different processor.

All system-common procedures must also be reentrant. A reentrant
procedure is one which may be entered repeatedly, and may be entered
before prior executions of the same procedure have been completed.
Neither its external parameters nor its instructions can be modified during
its execution.

System-common procedures must be reentrant because clients execute the
actual code' in the system-common procedure, and a system-common
service can have multiple clients. Therefore, one client may begin I

executing a procedure before the previous client has finished executing it.

All system-common procedures must use the processor's Global
Descriptor Table (GDT). This allows the client to execute code that
resides in the system-common procedure without requiring the operating
system to perform any selector aliasing.

In order for a program to use the processor's GDT, the program must be
linked using the Bind command, with a run file mode of "GDTProtected."

Deciding Which Type of Service is Appropriate for Your Task

Request-based services and system-common services are each suited to
different circumstances. When clients may need to access the system
service across the cluster or over a network, the service must be
request-based. However, if the service will always reside on the same
processor as its client, a system-common service can provide better
performance.

9-4 eTOS/ Open Programming Practices and Standards - Part I

Writing System-Common Procedures

A system-common service can be thought of as a collection of
independent procedures. Each procedure has its own entry point, and has
no necessary relationship to any other procedure. In practice, the
procedures in a system-common service are usually related to each other,
because they usually perfonn similar or related operations.

The procedures in a system-common service may also reference the
service's global data, to obtain status or other information. If a system­
common procedure needs access to the service's global data, the
procedure needs to load the service's global data segment address in its
data segment register. If the service is compiled using the Large model of
computation, this occurs automatically. See your programming language
documentation for more information.

System-common procedures should generally not write to the service's
global data, because that would violate the rules for reentrance.
System-common procedures should only write to local variables and to
memory addresses passed as parameters by the client.

Listing 9-1 shows an example of a system-common procedure which
performs a task similar to the one in the request-based system service
from Chapter 8. The pragma, CTOS_CALLING_CONVENTIONS,
informs the compiler that the procedure should use the standard CTOS
calling convention, described in Part II of this manual, instead of the C
language calling convention.

The variables rgMsgRet and cbMsgRet are a character string and its size,
located in the service's global data. .

Writing System-Common Services 9-5

/* Process calls to our system-common procedure */
pragma Calling_convention(CTOS_CALLING_CONVENTIONS);
ErcType GetFooText(Pointer pbDataRet, Word cbDataRet,

Pointer psDataRet)
[
Word i=O;

/* get the maximum size of the message */
if(cbDataRet < cbMsgRet)

i cbDataRet;
else

i = cbMsgRet;

/* put the message in the user's buffer */
memcpy(pbDataRet, rgMsgRet, i);
*«Word *) psDataRet) = i;

/* return ercOK */
return(O);
}
pragma Calling_convention();

Listing 9-1. Sample System-Common Procedure

Defining Parameters for a Procedure

When a system-common service installs one of its system-common
procedures, it passes two things to the operating system: the
system-common procedure number, and a character string that defines the
parameters for that procedure.

This section explains the format of the parameter-definition string.
System-common procedure numbers are discussed later in this chapter,
under "Defining System-Common Procedure Numbers."

System-common services should supply a parameter-definition string for
each system-common procedure they install. If a procedure takes no
parameters, the parameter-definition string should be a null pointer with a
zero length.

The syntax for defining system-common procedure parameter lists is
shown in the following paragraphs. This syntax is in Backus-Naur Form
(BNF) language.

9-6 eTOS/ Open Programming Practices and Standards - Part I

<definition string> ::= <definition string> <term>

<term> ::= <word term>
I <selector term>
I <pointer term>
I <pointer term> <count term>

<word term> ::= w
<selector term> ::= s
<pointer term> ::= <input pointer term>

I <returned pointer term>
<input pointer term> ::= p
<returned pointer term> ::= q
<count term> ::= c

For example, for the call

GetFooText(Pointer pbDataRet, Word cbDataRet, Pointer
psDataRet)

the string defining the parameter list would be "pcp" where the calling
sequence is "pointer, count, pointer." The operating system can then use
this string to create alias pointers, if it needs to. For example, when the
operating system intercepts (traps) a call made by a real mode program to
the installed procedure, the operating system creates an alias GDT
selector for each pointer in the parameter-definition string.

The operating system may modify this string for its own purposes
internally, but it will not change the meaning or the order of the
parameters. Any changes are purely for the operating system's internal
use. A system-common service should not, however, expect to receive
the same parameter definition string on a System Common Query that it
passed on a previous SystemCommonInstall.

Installation and Deinstallation

System-common services can be installed and deinstalled, much like
request-based system services. Usually, a system-common service serves
only a single request. That request is issued by the service's deinstallation
utility, and is used to deinstall the service.

Writing Systeln-Common Services 9-7

Installation

A system-common service uses almost the same installation procedure as
a request-based system service does. The key difference is that instead of
serving a request for each of its major functions, a system-common
service installs each of its system-common procedures.

The system-common service first calls System Common Query for each
procedure to determine whether the desired system-common procedure
number has already been declared to the operating system. This step is
even more important that the QueryRequestlnfo call in a request-based
service. This is because a system-common service performs no process
comparable to merging request files for a request-based service.
Therefore, if two system-common services use the same system-common
procedure number, that fact may not be detected until run time.

As with a request-based system service, a system-common service should
save the existing state of its system-common procedure numbers, then
restore them when it deinstalls.

A typical installation sequence is:

1. Call GetPartitionHandle to see if the service is already installed in
another partition. A system service should not install if it is already
present on the current processor.

2. Allocate any resources to be used by the system-common service.
This includes allocating exchanges, allocating memory, and creating
any additional processes.

3. Query the current status of the deinstallation request the service will
serve. This lets the service make sure the request is declared in the
operating system. If the request is undeclared, the service should
abort. The service should also save the values returned by the query
so that it can restore them when it is deinstalled.

4. Query the current status of the system-common procedure numbers
the service will use. This lets the service make sure they are not
already in use. The service should save the values returned by the
queries so that it can restore them when it is deinstalled.

5. Perform ConvertToSys, then Exit. The ConvertToSys operation
changes all processes, exchanges and memory in the partition from

9-8 eTaS/Open Programming Practices and Standards - Part I

application status to system service status. This converts the
partition to a system service partition. The Exit operation then
reloads the exit run file into memory.

6. Change priority, so that the service runs at a higher priority than any
potential client application.

7. Use the SetPartitionName operation to identify the service to the
operating system.

8. Perform a ServeRq operation for the deinstallation request.

9. Perform a SystemCommonlnstall operation for each of the service's
system-common procedures.

As with a request-based system service, the order of the operations before
ConvertToSys can be changed, and the order of the operations after
ConvertToSys can be changed. Compatible programs generally should
not, however, move an operation from before to after ConvertToSys, or
from after to before.

Listing 9-2 shows an example of how a system-common service might
install itself. The service installs its system-common procedures, then
waits at its exchange for a deinstallation request.

void main(){
RqHeaderType *pRqi

CheckErc(GetUserNumber(&usernum»i
CheckErc(AllocExch(&exchServe»i

/* This is the already-installed test. If already */
/* present, set up an exit message, and exit */

if (GetPartitionHandle(rgServerName, srgServerName,
&PhRet) == ercOK) [

ErrorExitString(O, rgInstMsgl, srgInstMsgl)i

/* query the system-common procedure. If it is in */
/* use, error exit. */

CheckErc(SystemCommonQuery(IDSYSCOM, &rgSysComInfo,
sSysComInfo»i

if(rgSysComInfo.fDefined != FALSE)
ErrorExitString(O, rgRqInUse, srgRqInUse)i

continued ...

Writing System-Common Services 9-9

/* query the request. If it is in use, error exit. */
CheckErc(QueryRequestInfo(DEINSTRQ, &rqInfo,

sizeof(rqInfo»)i

/* BECOME A SERVER */
/* Since the server is not already installed, install */
/* now. Set up an appropriate exit message, and */
/* convert to sys (become a server). */
/* The ErrorExitString call after the convertosys call*/
/* allows the reloading of an exec in the primary */
/* partition. */
/* Note: you must do setmsgret before convertosys. */
/* Can't print a string to the screen after */
/* converttosys. */

CheckErc(SetMsgRet(rgInstMsg2, srgInstMsg2))i
erc = ConvertToSys()i
if(erc != 0) [

ErrorExitString(erc, rgInstErrorMsg,
srgInstErrorMsg)i

else
Exit(O)i

/* All servers must run at a priority higher than 40, */
/* else deadlocks can occur. */

preTerminatelfErcNotOk(ChangePriority(12»i

/* Set the partition name so that the deinstallation */
/* program can obtain this partition handle. */

preTerminateIfErcNotOk(SetPartitionName(O,
rgServerName, srgServerName»i

/* Now serve the Request to the service exchange for */
/* this program. */

preTerminateIfErcNotOk(ServeRq(DEINSTRQ, exchServe»i
preTerminatelfErcNotOk(SystemCommonInstall(IDSYSCOM,

(Pointer) GetFooText, rgParams,
srgParams, 0, NULL, O»i

/* Server loop... */
/* Check for a request. If there is one, deinstall. */

while(TRUE) [
Wait(exchServe, &pRq)i
Delnstall(pRq)i
)

Listing 9-2. System-Common Service Installation

9-10 eTaS/Open Programming Practices and Standards - Part I

Deinstallation

The procedure to deinstall a system-common service is similar to the one
for a request-based service.

A system-common service generally serves only a deinstallation request,
so it need not concern itself with outstanding requests. However, there is
a deinstallation issue raised by the nature of system-common procedures:
a client may be currently executing the procedure when it is deinstalled.

If this happens, the client's selector is suddenly invalid. The next
instruction the client program executes will cause a protection fault, and
the client program will fail. For this reason, a system-common service
should only be deinstalled if none of its clients are active.

When a system-common service receives a deinstallation request, it
should:

1. Restore the request table in the operating system to its original state
for the service's deinstallation request, by issuing a ServeRq opera­
tion with the saved value from installation time.

2. Restore the system-common procedure table by calling
SystemCommonlnstall with each saved value from installation time.

3. Close any connections the service may have opened as a client (with
the file system, for example).

4. Unlock its own partition by calling SetPartitionLock, then respond to
the deinstallation request.

5. Terminate by calling ExitAndRemove.

Listing 9-3 shows the deinstallation procedure for a system-common
service.

Writing System-Common Services 9-11

void DeInstall(RqHeaderType *pRq)

/* unserve the requests */
CrashlfErcNotOk(ServeRq(DEINSTRQ, rqlnfo.exch»i
CrashlfErcNotOk(SystemCommonlnstall(IDSYSCOM,

rgSysComlnfo.pProc, rgSysComlnfo.rgbPararnDef,
rgSysComlnfo.srgbParamDef, 1, NULL, 0))i

/* All done, unlock partition, and deinstall */
CrashlfErcNotOk (SetPartitionLock(FALSE»i

/* unlock partition */
Respond(pRq)i /* respond to deinst. rq */
ExitAndRemove()i /* bye */
Crash(3); /* Bad problem if we ever get here */

Listing 9-3. System-Common Service Deinstallation Procedure

Defining System-Common Procedure Numbers

Like requests, system-common procedures each have a code number that
identifies them to the operating system. For applications to use them,
each system-common procedure also needs to have a symbolic natne.

What You Need to Define

For a client program to call a system-common procedure, it must know
the symbolic name for that procedure. To define symbolic names for
your system-common procedures, you must create a system-common label
object file, then link that file with the client application. This way, the
client application can simply call the system-common procedure by name,
as an external procedure. For example:

GetFooText(&rgbServerData, cbServerData, &sDataRet)i

System-common procedures can use procedure numbers 6000h through
7FFFh without restriction. You can also reserve system-common
procedure numbers in the range from 4000h to 5FFFh by contacting
Unisys Network Computing Group, CTOS/BTOS Technical Support.

9-12 eTOS/ Open Programming Practices and Standards - Part I

Making a System-Common Label Object File

Most implementations of eTaS/Open provide an Assembler macro,
% OsSubLab , which aids in defining system-common procedure labels.
This macro is generally located in the file OsSub.mdf. See your operating
system documentation for more information. Listing 9-4 shows an
example of a system-common procedure definition file for a
system-common service.

STACK SEGMENT STACK 'STACK'
DB 512 DUP (?)

STACK ENDS

$include([Sys]<Sys>ossub.mdf)

%OsSubLab(26005, "GetFooText")

default stack

Listing 9-4. Sample System-Common Label File

Writing System-Common Services 9-13

Part /I - Advanced Topics

10
Stack Format and Calling Conventions

This chapter describes the segment ordering, stack format, and calling
conventions used with CTOS.

Introduction

Several compiled languages and assembly language are supported on the
CTOS-based operating systems. These operating systems and their system
libraries use a medium model of computation and a conventional stack
format for all procedure calls.

As a historical note, these conventions were derived from the PL/M-86
programming language, in which the original implementation of CTaS was
written.

Memory Addressing

Memory addressing is described in detail in Chapter 5, "Protected Mode
Programming Guidelines" in Part I of this manual. As a brief review of
that section, recall that CTOS addresses memory using a 32-bit segmented
address. The high-order 16 bits contain the part of the address called the
segment selector, which identifies a particular segment in memory. The
low-order 16 bits contain an offset within that segment. A memory
address is written as follows:

segment selector:offset

The meaning of the segment selector value differs, depending upon
whether the operating system is a real mode operating system or a
protected mode operating system. In real mode, a segment selector refers
to a specific paragraph in a 1-megabyte address space. In protected mode,

Stack Format and Calling Conventions 10-1

a segment selector is simply an index into a descriptor table maintained by
the processor. There is no relation between a protected-mode selector
and any location in physical memory.

Individual bytes within a segment are addressed by the offset from the
segment selector. Because the offset contains 16 bits, there are 64K
possible addresses within the segment.

Program Segmentation

Generally, a program is written in several separate source files. Each of
these source files is compiled into an object module. An object module is
composed of one or more segment elements of different classes. The
classes used in an object module are typically code, static data, constant
data, and stack.

When the object modules are linked, the Linker follows a set of ordering
rules to generate a run file. The Linker sorts and recombines the segments
in each object module by class to produce larger linker segments. From
this point on, these linker segments are referred to simply as segments.
(For a more detailed discussion of the Linker's function, see your
operating system documentation.)

When the program executes, each of these segments receives a unique
selector, which identifies the area of memory in which that segment
resides. When the program calls a procedure or accesses data, the
processor updates its registers, so that the called procedure or data can be
addressed.

If the new address is in the same segment at the previously-used one, the
processor only needs to update the register that contains the offset of the
requested item. When only the offset must be changed, the event is called
a near reference (for data) or a near call (for a procedure).

If the new address is in a different segment from the previously-used one,
the processor must load both the selector and the offset of the desired
item. This requires the processor to change the contents of two registers,
instead of one. This requires more time than changing just the offset.
When both the segment and the offset must be changed, the event is called
afar reference (for data) or afar call (for a procedure).

10-2 eTOS/ Open Programming Practices and Standards - Part II

Most programs that run under CTOS use the medium model of
segmentation. In the medium model, all calls are far and all references to
static data and the stack are near.

Memory Organization

The Medium Model

As noted in the previous section, the medium model of segmentation is the
most common one used by CTOS programs. One of the requirements of
the medium model is that the total size of the program's static data
segment, constant data segment, and stack segment must be less than 64K
bytes. In other words, all data in those three parts of the progratn be
addressable as offsets from one segment register (normally DS).

This requirement exists because, in the medium model, these three
segments are defined as a group. A group is simply a collection of
segments that total less then 64K bytes in size. Grouping the segments
allows all the data in them to be addressed as offsets frOln a single segment
register.

In the medium model, the static data segment, the constant data segment,
and the stack segment are defined as a group called DGroup. Hence the
size restriction. Unless you program in assembly language, you don't need
to define DGroup yourself - your compiler does it for you.

Why group segments? Why not address them each individually? The
answer is speed. Loading a segment register takes time, so the less often a
program has to load one, the faster it runs. This effect is especially great
when a segment is referenced frequently during program execution, as the
ones in DGroup are.

Figure 10-1 shows typical memory organization for a medium model
program. The order of the data, constant, and stack segments within
DGroup can vary. For details, see "Changing Memory Organization From
the Default for Your Compiler," later in this section.

In real mode, code segments and the data/stack segments (DGroup) are
loaded adjacent to each other in memory, with DGroup normally
positioned at higher addresses than code. This organization matches the
one shown in Figure 10-1.

Stack Format and Calling Conventions 10-3

High End of
Partition Memory

Low End of
Partition Memory

1---__ c_o_n_:_=_nCt_k D_a_t_a_-i I'I(o-o-G-ro-u-p SP

Static Data
'I(DS,SS

Code Segment

Code Segment

Code Segment

Short-Lived
Memory

Long-Lived Memory

Figure 10-1. Typical Memory Organization in Medium Model Programs

In protected mode, however, code is loaded independently of data and may
be located anywhere in memory. In protected mode, the program does not
need to know where its code is physically located. The operating system
manages all the addressing required.

The medium-model memory organization originated with the PL/M
compiler, and most languages conform to it. See your programming
language manual for more information.

10-4 eTaS/Open Programming Practices and Standards - Part II

Code Segments

Any number of separate code segments, each of which may contain up to
64K bytes, are addressed based on the CS (Code Segment) register. Only
one code segment, the currently executing one, is addressable at a time.
The current code segment (and therefore the value in the CS register)
changes with each far procedure call, far jump, or far return. All calls,
jumps, and returns are far in the medium model, unless explicitly
overridden. The IP (Instruction Pointer) register contains the offset of the
next instruction to be executed.

Figure 10-1 shows DGroup positioned just above and adjacent to the
program's code segments. This representation is typical in real mode. As
mentioned earlier, in protected mode, code segments are loaded indepen­
dently and may be located anywhere in memory.

Unallocated Memory

In real mode, a pool of unallocated memory is located below and
immediately adjacent to the program, as shown in Figure 10-1. In
protected mode, however, the memory pool is usually located just below
and adjacent to DGroup, while the program's code may be anywhere, as
was described earlier in this section. Short-lived memory is dynamically
allocated toward lower addresses from the higher end of the memory pool.
Long-lived memory is allocated toward higher addresses from the lower
end of the pool. (For details, see the discussion of memory management
in your operating system manual.)

Notes on the Stack

Initially, the value in the SP (Stack Pointer) register is the highest address
in the stack segment: the top of the stack. The value in SP decreases as
the stack grows downward in memory.

Most compilers automatically provide more than enough stack space for
their programs, but some programs may need to allocate extra space. This
is more likely to be needed when a program performs many nested
procedure calls (for example, if it uses recursion).

Stack Format and Calling Conventions 10-5

Caution: If the stack requirements of the program exceed what is allotted,
the growing stack can ovenvrite program data, which may cause
unpredictable results. If your program links successfully but malfunctions,
and you suspect stack overflow, increase the stack size.

Values of OS and SS in Medium Model

In medium model, the DS (Data Segment) and SS (Stack Segment)
registers have the same value. Both contain the selector that identifies
DGroup.

In a program, the "objects" that you manipulate are usually static constants,
static data variables, and the local variables on the stack. (See "Procedure
Calls and the Stack," later in this section, for details on the stack format.)
It is most efficient to address all three using the same segment selector.
As a simple example, assume that A is a static data variable, B is a local
variable, and C is a constant in the following expression:

A=B+C

If all three objects can be addressed by the same segment selector, only the
offset of each object is needed to do the calculations. If they cannot all be
addressed by the same segment register, then the processor incurs more
addressing overhead.

If DS and SS are equal, and an object on the stack (referenced from SS) is
assigned to a static variable (referenced from DS), there is no segment
register overhead required.

Caution: A common error in writing a mUltiprocessing program is to
create a stack that jails to follow the convention of equating DS and SSe
This error has no effect as long as you are fetching or storing the values of
variables. However, it can cause invalid pointers to variables. Invalid
pointers cause protection faults.

10-6 eTOS/ Open Programming Practices and Standards - Part II

Changing Memory Organization from the Default for Your Compiler

High-level language compilers produce program modules in which the
segment elements appear in a characteristic order by segment class (such
as Code or Data). The Linker accepts the class order of the first object
module it encounters as the order for the entire program.

Under some circumstances (for example, when using DS allocation, which
is discussed next), you may need to change the order in which program
segments are organized in memory. To do so, you must write an assembly
language module that does nothing except declare segments in the order
you want them. Then, list this template module first in your input to the
Linker. (Such a template module may already be available with your
language, under the file name of First.obj.)

The following is an example of such a template module:

stack segment word 'stack'
stack ends
data segment 'data'
data ends
const segment 'const'
const ends
memory segment 'memory'
memory ends
dgroup group stack,DATA,const,memory

code segment 'code'
code ends

end

Code Sharing

Most compilers emit code that supports the code-sharing feature of CTOS.
The only requirement for code sharing is that code be separate from data.
If this requirement is met, then multiple instances of the same program can
share a single set of code segments. Each new instance of the program
receives a new data segment, and selectors for the existing code segments.

Stack Format and Calling Conventions 10-7

Disposable Initialization Code

CTOS allows two class names for executable code segments: CODE and
COED. Most programs use only CODE segments, which are normal,
executable code segments. Some programs, however, need code which can
be used once and then thrown away.

For example, a system service has no need to keep its installation code
after it has installed itself. To conserve memory, a system service writer
could put the installation code in a COED segment, then deallocate that
segment after the service installs itself.

Creating a COED Module

If you program in Assembly language, creating a COED segment is easy.
Simply define a segment with class name COED and put your installation
code in it. Then make that segment the first one in your program's
memory image (in other words, at the lowest addresses in memory).

If you program in a high-level language, however, you need a utility to
convert the class name in the object module your compiler emits. Most
implementations of CTOS provide a utility that performs this function.
See your operating system documentation for more information.

To create a COED segment in a high-level language:

1. Create a small Assembly language template file that defines the
COED segment as the first segment in the run file. See "Changing
Memory Organization from the Default for Your Compiler" for
details.

2. Put the disposable code in a separate source file from the rest of your
code.

3. Compile that file to an object module.

4. Run the conversion utility on that object module.

5. Link the disposable code module with the rest of your program. Be
sure to specify your segment template file as the first file on the
Linker's input line.

10-8 eTOS/Open Programming Practices and Standards - Part II

The run file you create should now have a COED segment at the bottom of
its memory image, which contains the disposable code.

Disposing of the Code in a COED Module

COED segments are treated as if they were dynamically allocated memory.
For this reason, the COED segment must be disposed of before the
program allocates any dynamic memory.

After the program has executed the disposable code, it should release the
COED segment that contains the code. To do so, the program can simply
call DeallocMemorySL. For example, a COED segment that contains the
procedure Initialize can be deallocated as follows:

pCOEDSeg = NULL;
selectorof(pCOEDSeg) = selectorof(Initialize);
CheckErc(DeallocMemorySL(pCOEDSeg, OxFFFF));

The above code fragment first creates a pointer to the segment which
contains the Initialize procedure (the COED segment), with an offset of o.
Next, the fragment calls DeallocMemorySL with the pointer to the COED
segment, and the hexadecimal value OxFFFF. These parameters tell the
operating system to deallocate the entire segment.

Using OS Allocation

DS allocation is a Linker option, which allows a program to "pre-allocate"
some memory that can be addressed using DS. The following sections
discuss the memory organization of a program that uses DS allocation.
For information about how to access the memory reserved by DS
allocation, see Chapter 16, "Memory Management," later in this manual.

The following discussion assumes that the medium model of segmentation
is used.

What Is OS Allocation?

DS allocation allows your program to address parts of memory not
occupied by the program with offsets relative to DS. Your program can

Stack Format and Calling Conventions 10-9

then use these parts of memory for dynamic data objects (such as the
separate stacks for several processes) and still address them efficiently.

DS allocation causes the Linker to create an expand-down segment for
DGroup. Expand down segments are of maximum segment size (64K
bytes) and grow towards lower addresses. Thus, when DS allocation is
used, the operating system's program loader positions the highest byte of
data in DGroup at offset OFFFFh, allowing DS to be the base for a full
64K-byte segment.

DS allocation presents different challenges in real mode and in protected
mode.

DS Allocation in Real Mode

In real mode, code and data are loaded contiguously with code normally
positioned below and adjacent to data, as was shown in Figure 10-1. If you
were to specify DS allocation in conjunction with the memory organization
shown in Figure 10-1, and if DGroup occupied less than a full 64K byte
segment, the DS (and SS) would point to some location in a code segment
(or in the memory pool just below the code segments).

Because of this, you may need to reorder your program segments so that
DGroup resides at the lowest program addresses. To do this, you need to
write an assembly language program, as described in "Changing Memory
Organization From the Default for Your Compiler," earlier in this chapter.

A typical example of memory arrangement using DS allocation is shown in
Figure 10-2. This arrangement places the value of DS and SS somewhere
in the pool of unallocated memory. During execution, the program can
allocate and deallocate short-lived memory within the range of DS and
address it with offsets.

DS Allocation in Protected Mode

Because protected mode operating systems load code and data separately,
you just need to notify the Linker that you want DS allocation. An
assembly language module is not needed.

10-10 eTaS/Open Programming Practices and Standards - Part II

High End of
Memory

64K
Bytes

Low End of
Memory

Code Segment

Code Seg ment

Code Segment
~ --Stack

Const

Data

Unallocated
Memory

~

Figure 10-2. DS Allocation

Procedure Calls and the Stack

Overview

SP

DS,SS

A procedure (subroutine) call requires interrupting the sequential execution
of code, continuing execution at a different location, then returning to the
point from which the call was made. When one procedure calls another,
therefore, the environment must be saved so that it is possible to return
later. Typically, a procedure call also requires passing some input
parameters.

The program's stack is used to fulfill both of these requirements. The
stack also may be used by interrupt and trap handlers to save the context
of a process when a system interrupt occurs. (See the discussion of
interrupt handlers in your operating system manual for more information
on interrupts.)

Stack Format and Calling Conventions 10-11

Parameter Passing

Parameters may be passed either by reference or by value. When a
parameter is passed by value, a copy of the parameter's current value is
placed on the stack for access by the called procedure. Such a parameter
can only be a 1-, 2-, or 4-byte quantity, because those are the sizes that the
stack can accommodate. When parameters are passed by value, the called
procedure cannot affect the original value of the parameter in the caller's
data space. The called procedure can only change the copy it received.

When a parameter is passed by reference, the address of the parameter,
not its current value, is placed on the stack. In this way, a called
procedure can access a parameter of any size, despite the stack's size limit
of 1, 2, or 4 bytes on the value actually passed. When parameters are
passed by reference, the called procedure can change the contents of the
parameter in the caller's data space.

Different languages use different parameter-passing conventions. The
procedures in CTOS expect parameters to be passed by value. If a
parameter is a word (wMyWord, for example), the procedure expects a
word value, not a pointer to a word value.

Standard Stack Format

The standard medium-model stack format for CTOS is shown in Figure
10-3. This stack format originated with PL/M, and most available
high-level language compilers adhere to it. Each location shown on the
stack is a 2-byte word.

The initial value of the SP (stack pointer) register is at the highest address
of the stack. The stack grows down toward lower addresses as objects are
pushed onto it. Thus, as the stack grows, the address of the top of the
stack (SP) becomes smaller.

When a procedure is called, the first thing it should do is execute a few
instructions to set up its stack frame. These instructions are sometimes
called a prolog.

10-12 eTOS/Open Programming Practices and Standards - Part II

Input Parameter 1

Input Parameter 2

Calling Procedure's CS

Calling Procedure's IP

8P
Calling Procedure's BP

.... ,.

Local Variables

~ ,. SP

Figure 10-3. Standard Stack Format

The format shown in Figure 10-3 is how the stack appears after this
standard prolog has been executed. Certain operating system components,
such as the Virtual Code Management facility and the Debugger, trace
procedure calls through the stack. If the stack format is nonstandard,
these features will not work correctly.

The standard stack format allows parameters and local variables to be
referenced in a simple, standard way for all procedures. The description
of the standard prolog and epilog, below, explain why.

Standard Prolog and Epilog

All procedures should contain a standard prolog and epilog. The prolog
sets up the procedure's stack frame. The epilog removes it. The standard
prolog and epilog are shown at the top of the next page.

Stack Format and Calling Conventions 10-13

PUSH BP
MOV BP,SP
SUB SP,n

MOV SP, BP
POP BP
RET m

iProlog

iEpilog

In the prolog above, the value of BP (the base of the caller's stack frame)
is pushed onto the stack, after which the value of SP is copied to BP,
establishing a new stack frame.

Next, the SUB SP,n instruction subtracts n bytes of stack space for local
and temporary variables from the value of SP. This allows the called
procedure to address input parameters and local variables relative to BP.
Input parameters have a positive offset from BP (the first parameter is at
BP+6). Local variables have a negative offset from BP (the first local
variable is at BP-2).

In the epilog, the stack pointer (SP) is first set equal to the base pointer
(BP), eliminating the local variables from the stack. This step also restores
to SP the value it contained after the PUSH BP instruction in the prolog.

Next, the value of the caller's BP is popped from the stack. This step
restores BP to the value it had on entry to the procedure.

Finally, the RET m (return to caller's CS:IP) instruction tells the processor
to return to the caller, and to pop m bytes from the stack when it does so.
This returns control to the caller, and sets SP to point to value it contained
before the caller pushed any input parameters onto the stack.

Note that in code generated by most C compilers, where a variable number
of arguments can be passed, the epilog differs slightly. The value of m on
the RET statement is always 0 in the C language, because the called
procedure cannot know in advance how many parameters it will receive.
In the C language, the caller pops its own parameters when control returns
to it. See your C compiler manual for details.

10-14 eTOS/Open Programming Practices and Standards - Part II

11
Mixed-Language Programming

This chapter describes the issues that need to be addressed when a
program contains object modules built by different language compilers.

Issues in Mixed-Language Programming

Object modules whose source code was written in different programming
languages can be linked together and can work successfully. However,
doing so requires somewhat more work than linking object modules whose
source code was written in the same language. This extra work consists of
resolving any differences in the way the two programming languages
handle procedure calls and returns.

Two common cases exist where a program may include object modules
compiled from different source languages:

• When a program calls a eTaS library procedure from a language
other than PL/M.

• When a program calls a subroutine which was written in another
language. For example, a FORTRAN program might call a
customized library function which was written in Pascal.

The following sections describe the issues that may need to be addressed
before such calls can work properly.

Parameter Passing and the Stack

In general, a called procedure expects its input parameters to be of
specific sizes, and located in specific positions on the stack. Therefore, if
a called procedure expects a two-byte parameter, the calling program must
be sure to pass a two-byte parameter to that procedure.

Mixed-Language Programming 11-1

The calling program must also be sure to pass the correct number of
parameters, in the correct order. Some languages push parameters in a
left-to-right order, so that the leftmost parameter is the "bottom"
parameter on the stack. Other languages push parameters in a right-to-left
order, so that the leftmost parameter is the "top" parameter on the stack.

In addition, some languages pass parameters by value, others pass
parameters by reference. When a language passes a parameter by value, it
passes the current value of the parameter. When a language passes a
parameter by reference, it passes the address of the parameter. If a
procedure expects one type but receives the other, failure is guaranteed.

Finally, in some languages (such as PL/M) the called procedure removes
the parameters from the stack before it returns to the caller. In other
languages (such as C) the calling procedure removes the parameters from
the stack after the called procedure returns.

In summary, items that need to be addressed for successful parameter­
passing are:

• The size of each parameter.

• The order in which parameters are placed on the stack.

• The total number of parameters the procedure expects.

• Whether the parameters are passed by value or by reference.

• Whether the caller or the callee has responsibility for removing the
parameters from the stack.

When mixing code from different compilers, read the documentation for
both of them carefully. It should explain how each of the compilers
addresses these issues.

Returned Values

The calling program expects any returned values to be located in certain
pre-determined registers on return from the called function.

Almost all languages return byte and word values in the AL and AX
registers, respectively. However, the registers in which pointer and
doubleword values are returned varies from language to language.

11-2 eTaS/Open Programming Practices and Standards - Part II

Procedure Initialization and Cleanup

Some languages insert a significant amount of initialization code before
the actual program begins. This code often sets up the memory
environment in which the program executes. Any procedures written in
that language assume that this initialization has been performed. If a
main program written in another language wants to call such a procedure,
that program must set up whatever environment the procedure expects.

Calls to ClOS and to the System Libraries

The following sections describe the requirements for calling CTOS library
procedures. For detailed information about an individual programming
language compiler, see the manual for that compiler.

Model of Computation

All CTOS library procedures use the medium model of computation.
They can be called without special effort by programs compiled using any
of the medium, big, large, or huge models. They can also be called by
small ,model programs, if the program is able to explicitly specify that the
call is FAR (in other words, that the called procedure resides in a
different code segment).

See Chapter 10, "Stack Format and Calling Conventions" for more
information about the medium model of computation.

Parameter Naming Convention

The description of the parameters to each CTOS library function follows
a naming convention that identifies the function and data type of each
parameter. The full naming convention is described in the preface to this
manual, but the following are three important highlights:

• Any parameter whose name begins with a lowercase p (for pointer)
is passed by reference. For example, the parameter pFoo is the
address of Foo.

Mixed-Language Programming 11-3

• Any parameter whose name does not begin with lowercase p is
passed by value. For example, the parameter Foo is the value
currently stored in Foo.

• Any parameter whose value will be changed by the called procedure
has the suffix Ret at the end of its name. For example, the
parameter pFooRet is the address of Foo, and indicates that the
called procedure will change the value stored in Foo.

Parameter Passing Convention

eTaS calls expect parameters to be placed on the stack in order from left
to right. Because the stack grows downward in memory, this means that
the first parameter pushed onto the stack is at the highest address, and
the last parameter pushed is at the lowest address.

In addition, all eTaS calls pop their parameters off of the stack when
they return to the caller. On return from a eTaS procedure, the caller's
stack pointer has been reset to the value it had before any parameters
were pushed. The caller does not need to perform any stack cleanup.

See your compiler manual for information on your language's parameter­
passing convention.

Returned Values

eTaS calls return values in the following registers, according to their data
type.

Data Type of
Returned Value

byte

word

doubleword

pointer

Register(s) Used

AL

AX

DX:AX

ES:BX

11-4 eTOS/ Open Programming Practices and Standards - Part II

See your compiler manual for information on your language's register
usage convention for returned values.

Mediation

Some compilers allow the programmer to override the defaults and
specify the desired calling conventions in the source code file. Many,
however, allow only the default convention for that programming
language.

When the programming language convention does not match the CTaS
convention, a mediator is needed. A mediator is simply a small program
module which converts the native language format to the one expected by
CTaS procedures.

Listing 11-1 shows an example of a mediator between a C language
program and the CTaS WriteBsRecord procedure. Remember that in C,
parameters are pushed in the opposite order from CTOS, and the caller
(instead of the callee) pops the parameters off of the stack.

MedWriteBsRecord segment word 'code'
assume cs: MedWriteBsRecord

on entry stack has: Needs to be:
bp+lS sn(pcbRet) sn(pBSWA)
bp+16 o(pcbRet) o(pBSWA)
bp+14 cb sn(pb)
bp+12 sn(pb) o(pb)
bp+lO o(pb) cb
bp+S sn(pBSWA) sn(pcbRet)
bp+6 o(pBSWA) o(pcbRet)

i We need to reverse the positions of the parameters
public _MedWriteBsRecord
_MedWriteBsRecord proc far

pusll.bp
mov bp, sp

push [bp+S]
push [bp+6]

push [bp+12]
push [bp+lO]

push[bp+14]

push pBSWA, seg and offset

push pb, seg and offset

push cb

continued ...

Mixed-Language Programming 11-5

push [bp+lS]
push [bp+16]

; push pcbRet, seg and offset

callWriteBsRecord ; make the call

rnov sp,bp
pop bp
ret ;don't pop original stack. Caller does.

_MedWriteBsRecord endp
MedWriteBsRecord ends
end; Mediator.asm

Listing 11-1. A C-Language to CTOS Mediator

The mediator procedure (MedWriteBsRecord) accepts the same
parameters as WriteBsRecord, but in the opposite order. The main work
of the MedWriteBsRecord procedure consists of pushing these parameters
in the order that eTOS expects them. After it has done this,
MedWriteBsRecord calls WriteBsRecord.

This particular mediator does not need to pop the parameters it pushes
from the stack, because the eTOS procedure pops the parameters for it.
Neither does it pop the parameters it receives, because the C-Ianguage
calling procedure pops them.

The mediator in Listing 11-1 only mediates a single CTOS procedure. A
mediator for mUltiple procedures might use an Assembler macro that
defines the number and size of parameters for each CTOS procedure.
When a particular eTOS procedure is called, the mediator would then act
according to the values set by the macro, as defined for that procedure.

See your compiler manual for information on whether your compiler
supports the eTOS calling conventions natively or through a mediator.

Calls Between Languages

The requirements for successful calls between languages are similar to the
requirements for calls to eTOS procedures. Some additional concerns
are described below.

11-6 eTOS/Open Programming Practices and Standards - Part II

Model of Computation

In theory, a module written in one model of computation can call a
module written in any other model of computation. To accomplish this,
however, the programmer must compensate for any differences in stack
format between models. In addition, some compilers may make
assumptions about register contents based on the model of computation.

For example, a compiler might assume DS and SS to be equal, and use
that assumption when addressing a variable. If DS and SS are in fact not
equal because the procedure was called by a program compiled in a
different model, problems ensue.

Only those with a solid understanding of the various models, and of their
effects on code and data segmentation, should attempt to mix models.

Parameters and Returned Values

When calling between languages, the programmer must ensure that all
parameter passing, stack format, and returned value conventions match.
If they don't, the programmer may need to write a mediator to
compensate for the differences.

Run-Time Initialization

Whenever calling a procedure that was written in a different language, a
program must ensure that it creates whatever environment the procedure
expects.

Floating-Point Number Formats

Most compilers use a standard IEEE floating-point number format, which
is also the one used by the Intel 80x87 Numeric Coprocessors.

I-Iowever, some languages (such as Basic) use a different format, and
some (such as COBOL) lack floating-point numbers entirely.

If you want to mix languages that have different floating-point number
formats, you can either avoid using floating-point numbers, or you can
write a conversion utility for them.

Mixed-Language Programming 11-7

12
Writing Multi-Process Programs

This chapter describes how to write a program that executes more than
one process at a time. It also gives some reasons why a program might
want to operate that way.

Why Use Multiple Processes?

Applications often need to do multiple things at the same time. For
example, the Executive maintains a time-of-day clock in a corner of the
screen while it processes user commands.

As another example, a program may need to perform work while it waits
for the user's next keystroke. A single-process program could do this by
repeatedly polling the keyboard, instead of actually waiting for a
keystroke. It could then perform any other needed work during the time
between its keyboard polls.

However, in a multi-tasking environment like eTOS this method is highly
undesirable. Using a continuous polling method prevents all
lower-priority tasks from running while the polling program is in its
"busy-loop," checking for a keystroke and doing work in between. Even if
the polling program has no work to do, it still repeatedly checks for a
keystroke, wasting processor time and degrading system performance.

The solution to this type of problem is to use multiple processes.

To display the time of day, the Executive creates a second, higher-priority
process which is inactive most of the time. This process gets the current
time, displays it, then tells the operating system to reactivate the process
after a certain period of time (approximately one minute). When the
operating system reactivates it, the process performs the same functions
again.

Writing Multi-Process Programs 12-1

In the meantime, the main process of the Executive can receive and
execute user commands. The Executive waits for keystrokes entered by
the user, and processes them as they are received. Because a good deal
of computer time elapses between keystrokes, the clock display process
can update the clock regularly without interfering with the interactive user
process.

If a program needs to perform work in between keystrokes, it could
create a second, lower-priority process which performs that work. The
program would then consist of two processes. The first is a normal­
priority process, which waits for a keystroke and, when one arrives,
performs the work associated with it.

The second process is a lower-priority one which performs the other,
"background" work when there is any to be done. Giving the second
process a lower priority ensures that all keystrokes are processed
promptly. If the second process had a higher priority, the keyboard
process would have to wait until the second process finished all its work
before a keystroke could be read.

Process Management

The examples in the previous section describe two occasions where a
program can take advantage of the multiprocessing capabilities of CTOS.
This section describes multiprocessing in a more general way.

The Multi-Process Model

The reason for multiprocessing is efficiency. Most processes perform
bursts of CPU-intensive work, each followed by a waiting period while the
process accesses an I/O device. A simple example is a process which
processes the records in a file. The process reads a record and performs
work on it, then reads another record and perfonns work on it, and so
on.

If the operating system allowed only one process to exist, the CPU would
sit idle while the I/O device performed its work. Multiprocessing
eliminates most of this idle time by switching control of the CPU between
processes. Figure 12-1 shows the difference in how programs execute in a
single-process model and in a multi-process model.

12-2 eTaS/Open Programming Practices and Standards - Part II

Single-Process Model

Program 1

I/o I/O I/O
Program 2

I/O I/O

Multi-Process Model

Program 1

I/O I/O I/O
Program 2

I/O I/O Idle I/O

Time

Figure 12-1. A Single-Process Model vs. a Multi-Process Model

Process States

In a multi-process environment, each process can be in one of several
states at any given time. Three general process states exist.

• First, a process may be in Wait state; waiting for some external
event such as I/O .

• Second, it may be in Scheduled state; ready to run, but not yet
running.

Writing Multi-Process Programs 12-3

• Third, it may be in Active state; running, in which case it is the
process that currently controls the CPU.

Only one process runs at a time. Any number may be scheduled or
waiting for some type of event.

Figure 12-2 shows the flow of a process from one state to the next. Each
process in the system passes from the Active state, to Waiting, to
Scheduled, to Active again, as it processes information and performs I/O.

Figure 12-2. Process States

Process Scheduling

As mentioned above, only one process can control the CPU at a time.
Therefore, some method is needed to allocate control to each process in a
reasonable fashion. No process should be allowed to use all the available
CPU time, and no process should be allowed to languish without any CPU
time. Various methods have been devised to accomplish this, but this
section concentrates on the one used by CTOS.

CTOS uses a method called event-driven preemptive priority scheduling to
manage control of the CPU. This means simply that the operating system
always gives control to whatever process is ready to run and has the
highest priority.

The term event-driven means that whenever a system event occurs, the
kernel evaluates which process should have control of the CPU. System
events occur frequently, and serve many functions. For example, a

12-4 eTOS/Open Programming Practices and Standards - Part II

system event occurs whenever a program sends a message or issues a
request, and whenever an I/O device issues an interrupt.

The term preemptive means that when the kernel evaluates which process
should have control, it doesn't care whether the current process has
finished its work. A process may be interrupted at any time, whenever a
system event occurs. If another process with a higher priority has become
ready to run, the kernel preempts the current one and transfers control to
the higher priority process.

The term priority means that the kernel schedules each process based on
its priority. The priority of a process indicates the importance of that
process, relative to the others in the system. For example, the processes
that make up the operating system have higher priority than the ones in
user applications. Process priorities are discussed further in "Setting
Priority" later in this chapter.

Note that if no system events occur, the kernel never gets a chance to
reschedule the processes. If enough time passes between system events, a
time-critical process in the operating system will be unable to execute and
the workstation will crash. Therefore, programs should avoid
CPU-intensive constructs (such as infinite loops) that could indefinitely
prevent any system events from occurring.

The Process Control Block

The operating system stores the general information about a process in a
structure called a process control block. This structure contains
operating-system-specific information about the process. This information
includes the priority, the default response exchange, and the user number
of the process, along with other information.

Whenever a process loses control of the CPU, the processor hardware
itself saves the information needed to restore the execution of that
process in a Task State Segment. This information includes the process's
current register contents, the current value of its instruction pointer and
stack pointer, and any other information that may be needed to resume its
execution.

Only the most sophisticated of system programs (such as the operating
system itself) need to concern themselves with process control blocks and

Writing Multi-Process Programs 12-5

Task State Segments. For the purposes of most programs, task switching
is entirely transparent.

Summary

Each program can be considered a miniature copy of the system as a
whole. When a program makes use of multiple processes, the same rules
apply within the program that apply to the program's interaction with the
system as a whole.

If the processes within a program have different priorities, those with
higher priorities will always preempt those with lower priorities. This fact
can be used to ensure that expected results are always achieved, as in the
example where the keyboard-handling process had a higher priority.

Creating a Process

When your program starts, it consists of a single process. If you want it
to have multiple processes, you must create each additional process you
want. A process that creates another process is considered the parent of
the new process. The new process is the child of the process that created
it.

The Process Descriptor

In order to create a child process, the parent must give the operating
system some information about the desired initial state for this child
process. The parent accomplishes this by building a process descriptor. It
then passes the process descriptor to the operating system as a parameter
to its process-creation operation call.

The operating system provides two process-creating operations:
CreateProcess and NewProcess. The CreateProcess operation uses a
short form of the process descriptor, and is more convenient for most
applications. The NewProcess operation uses a more complex process
descriptor, allowing greater control of the child process's initial state.
NewProcess also returns the process ID of the child, for later use by the
parent.

12-6 eTOS/Open Programming Practices and Standards - Part II

Table 12-1 describes the fields in the process descriptor for the
CreateProcess operation. The process descriptor for the NewProcess
operation contains additional fields for the remaining processor registers.
See the eTOS/ Open Application Programming Interface Specification for
more information on the NewProcess operation.

Table 12-1. Process Descriptor Fields for the Create Process
Operation

(Page 1 of 2)

Offset Field
Size

(Bytes) Description

o pEntry

4 saOata

6 saExtra

8 saStack

4

2

2

2

The memory address at which to begin execu­
tion of the new process. This address is
usually the address of a function or procedure.

The base address of the segment which
contains the new process's global data. This
value is loaded into the Data Segment (OS)
register when the process is scheduled for
execution.

In all except the Large model of computation,
this value must equal saStack (below). Also, if
the child process needs to access data in the
parent's data space, this value must equal the
value of the parent's OGroup.

The value to be loaded into the Extra Segment
(ES) register when the new process is
scheduled for execution. This value must be a
valid segment base address or zero. It is
usually zero.

The base address of the segment which
contains the new Rrocess's stack. This value
is loaded into the Stack Segment (SS) register
when the process is scheduled for execution.
In all except the Large model of computation,
this value must equal saOata.

Writing Multi-Process Programs 12-7

Table 12-1. Process Descriptor Fields for the CreateProcess
Operation

Offset Field

10 oStacklnit

12 priority

13 fSys

14 defaultRespExch

16 fSuspend

Size
(Bytes)

2

2

Setting Up the Stack

(Page 2 of 2)

Description

The initial value of the created process's Stack
Pointer (SP) register. This value represents
the top of the created process's stack, and
must be a valid offset from the segment base
address in saStack. oStacklnit should be set
to the offset of the last (highest in memory)
word in a memory area allocated for the
created process's stack.

Priority at which the new process should be
scheduled for execution. The highest possible
priority is 0; the lowest is 254.

Always FALSE.

If the new process will make operating system
calls, the parent process must allocate an ex­
change using the AllocExch operation and
provide it here. The exchange becomes the
default response exchange of the new
process. To avoid possible conflict, the
parent process must never use this exchange
again.

If TRUE, the new process is not scheduled for
execution. If FALSE, the process is sche­
duled for execution. FALSE is the normal
setting.

Each process needs its own dedicated stack. In most models of
computation, this stack should be in the same segment as the process's
global data. In other words, the data segment register (DS) and the stack
segment register (SS) should contain the same segment base address. See
your compiler manual for more information about the models of
computation that it uses.

12-8 eTOS/Open Programming Practices and Standards - Part II

There are two commonly used methods to make sure DS and SS refer to
the same segment.

• Create a static array in the program's global data segment, and use
that array as the child process's stack.

This method creates a fixed-size stack, which is hard-coded in the
program source file. If a program creates many processes, each
must have a separate stack array .

• Type Yes in the DS Allocation field on the Linker command form,
and use some or all of the DS-Allocated memory as the child
process's stack.

This method allows the stack for each process to be defined
dynamically at run time. If a program creates many processes, it
still must allocate a separate stack for each one.

Listing 12-1 shows a routine that allocates a large area of DS-Allocated
memory, then decomposes it into stacks for three separate processes.

void AllocateArrays ()
[

Offset
Pointer
Selector
Word

raData;
pData;
snData;
cb, i;

/* get the selector for DGROUP */
pData = &raData;
snData = selectorof (pData);

/* call ExpandAreaSL to get the segment limit offset */
CheckErc {ExpandAreaSL {O, snData, &raData»i

/* now expand the data segment to the size we need */
cb = STACKSZ * 6;
CheckErc {ExpandAreaSL (cb, snData, &raData»;

continued ...

Writing Multi-Process Programs 12-9

/* set the offset for the three stacks */
for (i = 0; i < 3; i++) {

switch (i) {
case 0:

selectorof (rgTimeStack) snData;
offsetof (rgTimeStack) raData;
break;

case 1:
selectorof (rgProlStack) snData;
offsetof (rgProlStack) raData;
break;

case 2:
selectorof (rgPro2Stack) snData;
offsetof (rgPro2Stack) raData;
break;
}

/* set the next offset value */
raData += (STACKSZ * 2);

Listing 12-1. Using DS-Allocated Memory to Create a Process's Stack

Setting Priority

Each process must have a priority level associated with it. The priority
level is simply a number between 0 and 255, with 0 representing the
highest priority.

The ranges of priorities and their recommended uses are described in
Table 12-2.

12 -10 eTaS/Open Programming Practices and Standards - Part II

Table 12-2. Process Priority Values and Recommended Uses

Priority Description

0-9 Operating System internal processes.
Not for use by application programs or
system services.

10-64 System Service processes. Available for
use by system services, but generally not
for use by application programs.

65-254 Application program processes. Most
application processes run in the range
from 112 to 128 (70h to 80h).

255 Null process. Used only by the
operating system idle process.

Starting the Process

Starting a process is simply a matter of building a process descriptor, then
calling CreateProcess. Listing 12-2 shows a procedure which receives a
pointer to a function, some stack information and the address of an empty
process descriptor from its caller, then creates a new process using those
parameters. The function pointer should consist of the address of the
child process's "main" routine.

void StartProcess(PF pProc, Pointer pStack, Word cbStack,
ProcDescType *ProcDesc)

Offset raStacki
Selector saStacki
Word exchi

/*allocate a default response exchange for the process*/
CheckErc (AllocExch (&eXch»i

/* get the selector and offset of the stack */
saStack selectorof (pStack)i
raStack = offsetof (pStack)i

continued ...

Writing Multi-Process Programs 12-11

/* set up the process descriptor */
ProcDesc->pEntry pProc;
ProcDesc->saData saStack;
ProcDesc->saExtra 0;
ProcDesc->saStack saStack;
ProcDesc->oStacklnit raStack + cbStack -
ProcDesc->priority Ox7F;
ProcDesc->fSys 0;
ProcDesc->defaultExch exch;
ProcDesc->fSuspend 0;

/* create the process */
CheckErc (CreateProcess (ProcDesc»;
)

2;

Listing 12-2. Procedure to Create a Process

Process Termination

The only way to terminate a process is for the program that owns it to
exit. If any process in a program calls one of the standard exit calls (Exit,
ErrorExit, Chain, etc.), the operating system terminates all processes
owned by that program. This method suits the most common type of
multiprocess program, in which the program creates additional processes
and uses them throughout its entire period of execution.

Some programs, however, may need to create a process, use it for a
while, then dispose of it. In general, program designs that allocate and
deallocate a large number of processes are not recommended for use with
CTOS. This is because a program cannot fully terminate a process and
deallocate the process's resources.

While it cannot deallocate the resources associated with a process, a
program can ensure that a process never executes again. Once the
process in question finishes its work, the process should call AllocExch,
to obtain a new response exchange. It should then call the Wait primitive
to wait at that exchange. Because it has never used that exchange to
make a request, it will never receive a message there, and it will therefore
never return from its Wait call. This "infinite wait" prevents the process
from ever executing again.

12-12 eTOS/Open Programming Practices and Standards - Part II

Listing 12-3 shows a code fragment that performs this function.

void Proc2 ()
[

Pointer pMsgFoo;
Word exchFoo;

CheckErc (AllocExch (&exchFoo»;
CheckErc(Wait(exchFoo, &pMsgFoo»;
}

Listing 12-3. Permanently Suspending a Process

Communicating with Other Processes

A process can communicate with any other process by using the Request/
Response mechanism. In addition, processes that are owned by the same
program can communicate using the Send message primitive.

The Send primitive allows a process to send a 4-byte message to another
process. The message contents are undefined. The programmer can use
them for any purpose desired.

If the communicating processes do not share a global data segment, it is
generally unwise to use the Send primitive to pass pointers. The
processes should instead use the Request mechanism (described in
Chapter 1, "CTOS Overview") for that purpose.

For detailed information about the Request, Respond, and Send
primitives, see Chapter 13, "Using the Kernel Message Primitives."

Writing Multi-Process Programs 12-13

13
Using the Kernel Message Primitives

This chapter explains the CTOS kernel message primitives, and how using
them can help to maximize the efficiency of your program.

This chapter assumes that you are familiar with the concepts of messages,
requests, and exchanges. If you need more information on those
concepts, see Chapter 1, "CTOS Overview" in Part I of this manual, or
see your operating system documentation.

Types of Kernel Primitives

The CTOS kernel primitives fall into two basic categories: those used to
send messages and those used to receive messages. The following table
gives a brief description of each kernel primitive. The kernel primitives
are discussed individually, in detail, later in this chapter.

Table 13-1. eTOS Kernel Primitives and Their Uses
(Page 1 of 2)

Kernel
Primitive

Send

PSend

Description

Sends a four-byte message to a specified
exchange. Should only be used within a
program, not between programs or between
partitions. No network routing.

Identical to Send, except intended for use by
interrupt handlers.

Using the Kernel Primitives 13-1

Table 13-1. eTOS Kernel Primitives and Their Uses
(Page 2 of 2)

Kernel
Primitive Description

Request Sends a predefined request block to a system
service. Messages sent by this primitive can be
routed over a network. Requests made using this
primitive can be filtered.

ForwardRequest Sends a predefined request block from a filter
service directly to the filtered system service.
Returns to the client application, bypassing the
filter service. Used by one-way filters.'
Messages sent by this primitive can be routed
over a network.

RequestDirect Sends a predefined request block from a filter
service directly to the filtered system service.
Returns to the filter service. Used by two-way
filters. Messages sent by this primitive can be
routed over a network.

Respond Sends a response to a Request primitive. Used
by system services to respond to client
applications. Messages sent by this primitive can
be routed over a network.

Wait Waits at a specified exchange for a message.
Does not return until a message is posted at the
exchange. This primitive suspends execution of
the calling process until a message is received.

Check Checks whether a message has been posted at a
specified exchange .. Returns a message if one is
available, otherwise returns an error code. This
primitive does not suspend execution of the
calling process.

13-2 eTaS/Open Programming Practices and Standards - Part II

Why Use Kernel Messaging Primitives?

Using the eTOS kernel messaging primitives directly instead of using a
high-level procedural interface requires significantly more work. Why
bother?

Most of the time, using the kernel primitives is more trouble than it's
worth. However, in certain situations using the kernel primitives can
dramatically improve your application's performance. The following list
describes some things you can do with the kernel primitives:

• Send asynchronous (non-blocking) requests to the operating system
or to a system service.

When a program uses the procedural interface to an operating
system request or a system service request, the program halts until it
receives the response to that request. In effect, it performs a
Request immediately followed by a Wait. Using kernel primitives,
the program can send its request, and continue to execute. Instead
of waiting for the response, the program checks periodically to see if
the response has arrived.

• Overlap computation and 110 operations for a process.

Overlapping computation and I/O is really an application of
asynchronous request use, but bears separate mention. Some I/O
functions, such as disk operations, provide an asynchronous
procedural interface. Most, however, do not. To overlap
computation and I/O on devices other than disks, the program must
use the kernel primitives.

• Implement customized communication between the processes in a
program.

The various processes in a multiprocess program often depend on
each other to perform various functions. The kernel messaging
primitives can be used for process synchronization, as semaphores,
and to exchange small items of data within a program.

The following sections describe each of the kernel message primitives,
and their uses. Several examples follow those sections.

Using the Kernel Primitives 13-3

Sending Messages

Two primary mechanisms exist for sending messages, the Send primitive
and the Request and Response primitives. The Request primitive also has
two variants, ForwardRequest and RequestDirect.

The Send Primitive

Send is the simplest of the message-sending primitives. It simply passes a
four-byte message to another process. This four-byte message may itself
be the message data, or it may be a pointer to a larger area which
contains the message data.

See "Message-Based Operation" in Chapter 1 of this manual for general
information about message passing.

The Send primitive should be used only for communication between
processes within a single program. It should not be used for
communication between programs or between partitions. Also, the Send
primitive does not work across a network. Only local processes can
communicate using Send.

There are two reasons for this. First, it is quite difficult for one program
to discover another program's exchange without implementing a request to
do so, and Send requires an exchange as one of its parameters.

Second, the message passed by Send is undefined, and the operating
system performs no processing on it. Therefore, if one program passes a
pointer to another program, that pointer is almost certainly invalid for the
program that receives it, because the two programs use different Local
Descriptor Tables.

The PSend Primitive

The PSend primitive is almost identical to the Send primitive. It
performs the same function, but is intended for use by interrupt handlers.
If an interrupt handler needs to send a message to a process, it must use
the PSend primitive instead of Send.

13-4 eTOS/Open Programming Practices and Standards - Part II

The Request and Respond Primitives

The Request and Respond primitives are discussed in "The
Request/Response Model" in Chapter 1 of this manual.

To recap that section, a client uses the Request primitive to send a
request block to a system service. When the system service receives the
request block, it performs the work requested, then uses the Respond
primitive to send the request block back to the client.

The Request and Respond primitives are designed for a server-client
model of communication, and are optimized to perform that type of
communication efficiently locally, within a cluster, and over a network.

The ForwardRequest and RequestDirect Primitives

These two variations on the Request primitive are used primarily by
system services which act as filters for another service's requests. For
more information on filters, see "System Services that Act as Filters" in
Chapter 8.

Figure 13-1 (on the following page) illustrates the use of the
ForwardRequest and RequestDirect primitives.

The ForwardRequest primitive allows one program to examine a request
from another program, then pass the request on to a third program. The
response from the third program goes to the original requestor, not to the
program that issued the ForwardRequest.

ForwardRequest is generally used by one-way filters, so that the request
they have intercepted returns directly to the application that originally
generated it.

The RequestDirect primitive is similar to the ForwardRequest primitive,
except that the response returns to the filter program, instead of to the
original requestor.

RequestDirect is generally used by two-way filters, so that the request they
have intercepted returns to them for further processing. The two-way
filter then uses Return to pass the request back to the application that
originally generated it.

Using the Kernel Primitives 13-5

Request ForwardRequest

One-Way
...

Client
,

System
Filter Service

Respond
.,

\

Request RequestDirect
....

Two-Way
...

Client System
Filter Service

Respond Respond
" "

Figure 13-1. Model for Use of the FonvardRequest and RequestDirect
Primitives

13-6 eTOS/Open Programming Practices and Standards - Part II

Receiving Messages

Two primitives can be used to receive messages: Wait and Check. When
a message has already arrived, both primitives operate in the same way.
They differ, however, when no message is currently available.

The Wait Primitive

The Wait primitive is the simplest way to receive a message. If a program
expects a message, it can simply Wait at its exchange. When a message
arrives, control returns to the program. In the meantime, the program
halts its execution. If no message ever arrives, control never returns to
the program.

For most programs the Wait primitive gives sufficient performance,
because normally the program is only idle for a short time. In fact, the
procedural interface to most operating system requests eventually results
in a Request followed by a Wait.

The Check Primitive

The Check primitive differs from the Wait primitive in one simple way:
the Check primitive returns control to the program immediately, whether
or not a message is present at the exchange. This allows a program to
poll for messages at an exchange, performing other work between polls.
Programs that use Check instead of Wait have a more complex main loop,
but they can be made more efficient than similar programs that use Wait.

To use the Check primitive, the program must allocate an exchange to use
for asynchronous requests. It should not use its default response
exchange for this purpose. The default response exchange should be
reserved for the exclusive use of the operating system procedural
interface.

See "Example of an Asynchronous Request," later in this chapter, for a
sample program loop that uses the Check primitive.

Using the Kernel Primitives 13-7

Building a Request Block

Whenever a program uses the kernel Request primitive, it must build its
own request block. Table 13-2 shows the general format of a request
block. See Chapter 8, "Writing Request-Based System Services" for more
detailed information about request blocks.

Table 13-2. A Sample Request Block

Size
Offset Field (Bytes) Contents

0 sCntlinfo Size of Control Info
1 RtCode Routing Code
2 nReqPbCb # of Request Data Items
3 nRespPbCb 1 # of Response Data Items
4 userNum 2 Client's User Number
6 exchResp 2 Response Exchange
8 ercRet 2 Status Code Returned
10 rqCode 2 Request Code

12 fh 2 File Handle (control info)
14 If a 4 Logical File Address

(control info)

18 pbData 4 Pointer and Size of Data
22 cbData 2 (request data item)

24 pbCountRet 4 Returned Byte Count
28 cbCountRet 2 (response data item)

Listing 13-1 shows a generalized procedure for building a request block,
taking advantage of the variable-length argument list allowed by the C
language.

Listing 13-2 shows a code fragment that calls the procedure.

13-8 eTOS/Open Programming Practices and Standards - Part II

/* this procedure builds a request block. It accepts a
variable-length argument list, and builds the request
block appropriately.
The request-block parameter string types are:
%B a Byte type, %0 a OoubleWord type, %0 an Offset

type (same as Word), %P a Pointer type, %S a Selector
type, %W a Word type
*/

ErcType BuildRequestBlock(RqHeaderType *pRq,
Byte sCntInfo, Byte nReqPbCb, Byte nRespPbCb,
Word exchResp, Word rqCode,
char *pPararnString, •••)

va list pArgs; /* points to each arg in turn */
Word userNum;
Pointer pRqBlockContents;
ErcType erc;

/* get user number */
CheckErc(GetUserNumber(&userNum»;

/* fill in request block header */
pRq-)sCntInfo = sCntInfo;
pRq-)RtCode = 0;
pRq-)nReqPbCb = nReqPbCb;
pRq-)nRespPbCb = nRespPbCb;
pRq-)userNum = userNum;
pRq-)exchResp = exchResp;
pRq-)ercRet 0;
pRq-)rqCode = rqCode;

/* fill in variable part */
/* set up argument list */

va_start(pArgs, pParamString);

/* set pointer to first byte of rq block contents */
pRqBlockContents = pRq;
offsetof(pRqBlockContents) += 12;

while(*pParamString) [
if(*pParamString != '%')

pParamString++;
else switch(*(++pParamString»
case 'B':

*(Byte *) pRqBlockContents = va_arg(pArgs, Byte);
offsetof(pRqBlockContents) += sizeof(Byte);
break;

case '0':
*(OWord *) pRqBlockContents =

va_arg(pArgs, OWord);
continued ...

Using the Kernel Primitives 13-9

offsetof(pRqBlockContents) += sizeof(DWord);
break;

case 'p':
*(Pointer *) pRqBlockContents

va_arg(pArgs, Pointer);
offsetof(pRqBlockContents) += sizeof(Pointer);
break;

case'S' :
*(Selector *) pRqBlockContents =

va_arg(pArgs, Selector);
offsetof(pRqBlockContents) += sizeof(Selector);
break;

case '0':
case 'W':

*(Word *) pRqBlockContents = va_arg(pArgs, Word);
offsetof(pRqBlockContents) += sizeof(Word);
break;

default:
break;

}
} /* end of while */

return(O);
}

Listing 13-1. A General Procedure to Build Request Blocks

/* allocate enough memory for max req. block size */
if«pMyRq = malloc(MAXRQSIZE» == NULL)

ErrorExit(400);

/* build the request block */
CheckErc(BuildRequestBlock(pMyRq, 2, 0, 2, exchMine,

RQGETFOOTEXT, "%W %P %W %P %W", hConnect,
&rgbServerData, sizeof(rgbServerData), &cbRet,
2));

/* request a message from the server */
CheckErc (Request(pMyRq));

Listing 13-2. A Code Fragment that Calls the Request Block
Procedure

13-10 eTaS/Open Programming Practices and Standards - Part II

Where to Find Examples

Examples showing the use of kernel primitives can be found in various
locations throughout this book. Repeating all the examples here would be
redundant, so this section refers you to an appropriate section for each
primitive.

Request

An example of the Request primitive is shown later in this chapter, in
"Example of an Asynchronous Request." That example shows the most
common use of the Request primitive; to allow a program to perform
other work while a request is outstanding.

Respond

You can find an example using the Respond primitive in Chapter 8,
"Writing Request-Based System Services" in the subsection titled "The
Real Work." In that example, a system service uses the Respond
primitive to respond to requests from its clients.

Send

You can find an example of the Send primitive later in this chapter, in "A
Semaphore Using Send and Wait." The example shows a common use of
Send within a program.

PSend

You can find an example using PSend in Chapter 15, "Timer
Management" in the subsection titled "Writing the Timer Interrupt
Handler." The example shows how an interrupt handler can send a
message to a program process.

Using the Kernel Primitives 13-11

Wait

You can find an example of the Wait primitive later in this chapter, in "A
Semaphore Using Send and Wait." You can also find an example using
the Wait primitive in Chapter 15, "Timer Management," in the subsection
titled "Processing Real-Time Clock Events."

Example of an Asynchronous Request

The following code fragment shows a common method of performing
asynchronous requests. The main loop executes repeatedly until a key is
pressed. On each iteration, the loop sends a request, then enters a
subloop. The subloop repeatedly checks for a response, and performs
some other work -if the response has not yet arrived. Finally, when the
response arrives, the main loop processes the response, then starts again
at the top.

Note that a program should always check the status code returned by the
Request primitive. If the Request primitive returns a non-zero status
code, the request was not sent. Therefore, if the program called Wait
under those circumstances, it would wait forever.

/* loop checking for a keyboard character, anyone */
while (ReadKbdDirect (CHECKONLY, &bKey)

ERCNOCHARAVAIL)
{
/* request a message from the service */
CheckErc (Request(pMyRq))i

/* do some other stuff while the rq is outstanding */
while(Check(exchMine, &pMyRq) == ercNoMessage)

PutChar(Ox2E)i /* Ox2E == . */
}

/* display the message from the service */
OutputToVidO (&rgbServerData, cbRet)i
/* now wait awhile before continuing */
CheckErc (Delay (DELAYRATE»i
)

Listing 13-3. A Program Loop Using the Check Primitive

13-12 eTOS/Open Programming Practices and Standards - Part II

A Semaphore Using Send and Wait

Semaphores are a simple but powerful application of the kernel
primitives, Send and Wait. The architecture of eTOS messages and
exchanges allows semaphores to be implemented in a very natural way.

As discussed earlier in this chapter, when a process Waits at an exchange
for a message, control returns to the process only when a message is
present. This makes it possible to implement a semaphore, simply by
allocating an exchange and ensuring that no more than one message is
ever present at that exchange.

To implement a semaphore in this way:

1. Allocate an exchange which will control the semaphore.

2. Send one message to that exchange to "prime" it. This message flags
the semaphore as available. The message contents can be anything
the program wants.

3. Write the procedures that depend on the semaphore.

Each procedure should Wait on the semaphore exchange before
entering its critical section. When it receives a message (indicating
the semaphore is available) it owns the semaphore and can perform
its work. When it finishes, it should Send the message back to the
semaphore exchange, freeing the semaphore again.

As long as all semaphore-dependent procedures Wait once, then
Send once, only one message can ever be present on the semaphore
exchange.

Listing 13-4 shows the setup code required to implement a semaphore.
This code could reside in the program's main routine, or in an
initialization routine.

Listing 13-5 shows a procedure that claims the semaphore, performs its
work, then releases the semaphore.

Using the Kernel Primitives 13-13

/* Semaphore exchange is a global variable */
Word MallocSemaphorei

void main(void) {
Pointer ptri

/* Create a an exchange to be used as a semaphore */
CheckErc(AllocExch(&MallocSemaphore»i
CheckErc(Send(MallocSemaphore, (Pointer)OxOl»i

Listing 13-4. Code to Set Up a Semaphore

void *myMalloc(size t size) {
Pointer Pi -
Pointer pMsgReti

CheckErc (Wait (MallocSemaphore, &pMsgRet»i

p = malloc(size)i

CheckErc(Send(MallocSemaphore, (Pointer)OxOl»i

return Pi
}

Listing 13-5. A Procedure That Uses a Semaphore

13-14 eTOS/Open Programming Practices and Standards - Part II

14
Using Virtual Code Management - Overlays

Introduction

The Virtual Code Management facility (also called the Overlay Manager)
allows you to run a program that is larger than the available memory in an
application partition. This section presents practical guidelines on how to
incorporate Virtual Code Management into your programs.

The Virtual Code Management Model

The Virtual Code Management facility allows the execution of programs
whose code size exceeds the size of the partition in which they run. To
achieve this, only portions of the code reside in memory at any given time;
the remainder are on disk. It is the job of the Virtual Code Management
facility to ensure that the portions of the code that are currently needed for
execution are actually in memory.

The code in the run file of a program using the Virtual Code Management
facility either is part of one of several overlays, or is resident. (Here­
after, a program that uses the Virtual Code Management facility is called
an overlay program.) When the overlay program begins execution, the
resident cDde is loaded into memory, where it remains for the duration of
the program's execution. At some point in the program's execution,
when a call is made to a procedure in one of the overlays, the Virtual
Code Management facility reads that overlay into memory into an area of
memory called the overlay zone so that the program can continue
execution.

The Virtual Code Management facility keeps as many overlays as possible
in memory at once. When another overlay that would exceed the available
space is called into memory, the Virtual Code Management facility uses a
least-recently-used (LRU) algorithm to determine which currently resident
overlay to discard.

Using Virtual Code Management - Overlays 14-1

The Virtual Code Management facility is designed to run in both real
mode and protected mode. If an application program is written following
the rules for protected mode programs, a single overlay program run file
can be created that will run in either real mode or protected mode.
Which mode it actually runs in depends on which operating system is
present. Guidelines for writing protected mode programs can be found in
Chapter 5, "Protected Mode Programming Guidelines."

Internally, the Virtual Code Management facility operates quite differently
in protected mode than in real mode. From an application program's
point of view, however, there is no difference.

See your operating system documentation for an explanation of the theory
behind Virtual Code Management and why you must use certain accepted
call/return conventions with it. In addition, your operating system
documentation includes a description of each data structure involved.
While understanding that material is not required to use this chapter, you
may find it helpful.

Overlay Capabilities and Restrictions

Number and Size of Overlays and Procedures

Your program may contain up to 255 nonresident code segments (overlays)
of up to 64K bytes each.

The theoretical maximum number of procedures is 10,000 total for all
segments. However, including this number of procedures in an overlaid
program would require an entire 64K data segment devoted to the overlay
management data structures.

Therefore, for Medium model programs the maximum number of
procedures is somewhat less, since all the elements of DGroup (including
the overlay management structures) must fit into a single 64K segment. In
practice, this limitation very rarely impacts a program. The program is far
more likely to fill up DGroup with stack space and/or with static data than
with overlay management structures.

14-2 eTaS/Open Programming Practices and Standards - Part II

Types of Procedures that Can Be Overlaid

All procedures in an overlay that may be called from the resident portion
of a program, or from another overlay, must be declared public. An
overlay can contain non-public procedures, but they can only be called
safely from within that overlay.

Most compilers either make procedures public by default or give you the
option of declaring them public or private. See your compiler
documentation for more information. A simple way to test whether a
procedure is public or not is to enter the Debugger while the program is
running, then attempt to examine the procedure using its symbolic name.
If the Debugger does not recognize the symbolic name, the procedure is
not public.

Procedures and Pointers to Procedures

The Virtual Code Management facility supports calls to a pointer to a
procedure, as well as to the procedure itself. It is not necessary to
eliminate these calls.

Supported Models

Large-model as well as medium-model programs can make use of the
Virtual Code Management facility.

Restrictions on Interrupt Handling Routines

Interrupt handling routines must be in the resident code segment, and they
must not call any procedure that is in an overlay. This restriction includes
real interrupt handlers, such as those in communications programs, and
also software pseudo-interrupt handlers, such as the Programmable Interval
Timer.

Using Virtual Code Management - Overlays 14-3

Restrictions on Multiprocess Programs

In real mode, only one process of a multiprocess program can use
overlays. Other processes must be entirely resident, including anything
that they call.

While this restriction is relaxed in protected mode, it is usually wise to
conform to it. This is especially true if you want to distribute a single run
file that can execute in either mode.

Also, debugging a multiprocess program in which multiple processes use
overlays can be extremely difficult. Programming errors in this type of
program can result in strange and subtle effects whose cause is almost
impossible to isolate. In general, using overlays with multiple processes is
not recommended.

Segment Types that Can Be Overlaid

Only code segments, not data segments, can be placed in overlays. This
restriction arises historically from the 8086/80186 processors, which do not
handle faulting or paging. The Virtual Code Management facility is
implemented through a software design that allows it to trap CALL and
RET instructions. Instructions that write to memory cannot be trapped on
those processors, so data must be resident.

Supported Languages

You can use the Virtual Code Management facility with all the system's
high-level languages. In some languages, certain modules of the run-time
library cannot be placed in overlays. Some other restrictions also exist
with individual languages. These are discussed in the appropriate language
manuals.

You can also use the Virtual Code Management facility with a program
written in assembly language, if you follow the guidelines described in this
section.

14-4 eTOS/Open Programming Practices and Standards - Part II

Call/Return Conventions

The most important single restriction on overlay programs is that they must
follow the system's accepted call/return conventions.

All routines in overlays must always obey the standard call/return
conventions. Even routines in the resident portion of the program must
follow the conventions if they call routines in overlays. Only a resident
routine that never calls an overlaid routine may deviate.

If you are using a high-level language, this point is probably not of concern
to you, because almost all compilers produce code that adheres to these
conventions. This point does, however, explain why certain run-time
library modules must be resident in some languages: the modules do not
follow call/return conventions.

If you are working in assembly language, you must follow certain rules in
order to obey CTOS call/return conventions. These rules are detailed in
Chapter 10, "Stack Format and Calling Conventions."

The CTOS call/return conventions order the stack arguments in such a
way that the Virtual Code Management Facility can locate the return
address for each call.

This ability is needed for real mode programs, which otherwise might
return to a swapped-out procedure. Doing so would execute whatever
code had been swapped in at that address, causing interesting results. In
protected mode, CALLs and RETs to swapped-out procedures each cause
the processor to generate a Not Present fault, which gives control to the
Overlay Manager.

Trade-Offs

Whenever the Virtual Code Management facility brings an overlay into
memory, it reads that overlay from a disk. This can take a substantial
amount of time: from just a few to several hundred milliseconds,
depending on the situation. Therefore, you need to consider memory
versus performance trade-offs when using overlays.

Because Virtual Code Management is a set of object module procedures,
its code is linked into your program. Only slight overhead (less than 5K
bytes) is incurred frOlll the code of the Overlay Manager. In addition, the

Using Virtual Code Management - Overlays 14-5

facility constructs several global data structures in your program. These
data structures result in 9 bytes of overhead for each procedure in your
program: 5 bytes of overhead in the resident portion of your program, and
4 bytes in the overlay that contains the procedure. While this overhead is
not substantial, it can make a difference in some situations.

The location of the run file in the overall system configuration should also
be considered. Each overlay is read from the place where the run file was
loaded. If the run file is located on a local hard disk, performance is
optimal. If the run file is being read by a cluster workstation from the
master, then reading an overlay takes place at cluster speed. If the run file
is located on a floppy disk, then the floppy disk cannot be removed.
Performance also is limited across a network. Thus an overlay program
works best from a local hard disk or on a high-speed cluster.

Basic Steps in Creating an Overlay Program

It is relatively simple and quick to write or adjust a high-level language
program to use overlays successfully. The basic steps are described
below. Using overlays in the most efficient way, however, is more
time-consuming and is the subject of "Fine-Tuning Your Overlay
Program," later in this chapter.

To create a program that uses overlays:

1. Decide upon the contents of the resident portion of the program and
of each overlay.

2. Determine the appropriate size for the overlay zone.

3. Modify the program initialization to allocate memory for the overlay
zone and to call InitOverlays or InitLargeOverlays to initialize the
overlay zone.

4. Modify the Object modules list for the Linker to include /0
designations for the overlay modules.

5. Relink the modified program.

14-6 eTOS/Open Programming Practices and Standards - Part II

Contents of Overlays

The first and most important step is to decide which modules should go
into the resident portion of your code and which should be in overlays.
This step requires that you thoroughly understand how your program
works: how often certain routines are used and in what order they call
each other.

Routines that are used so often that they would almost always be in
memory clearly should be placed in the resident portion of the program.
Routines that are often used together should be grouped into an overlay so
that they are brought into memory together and are resident at the same
time. Routines that rarely or never call each other can be in separate
overlays.

You may select to restructure your source files to change the grouping of
your subroutines at this point, because each overlay consists of one or
more entire modules. For example, if only one subroutine out of many in
a module is being called repeatedly, but the others are not, it may be
worthwhile to place the frequently called subroutine in a separate module,
and either make that module a separate overlay or make it part of the
resident code. Otherwise, all the unused routines are read into memory
and take up space every time the often-used routine is called.

Some tools you can use to analyze and refine this aspect of your program
are discussed under "Fine-Tuning Your Overlay Program," later in this
chapter.

Size of the Overlay Zone

The overlay zone is the memory area into which your program overlays are
placed as they are read from disk. The more memory you allocate for the
overlay zone, the more overlays can be present in memory at once. A
small overlay zone causes overlays to be read into memory more
frequently, thereby decreasing program performance.

In real mode, the overlay zone must be, at minimum, the size of the largest
overlay in your program plus overhead of about 1024 bytes.

In protected mode, the overlay zone must be, at minimum, the combined
size of the two largest overlays. You can approximate the overlay zone

Using Virtual Code Management - Overlays 14-7

size by considering which overlays are likely to be resident at the same
time and allowing enough memory for them in the overlay zone.

In addition, if you use any very small overlays, you should note that the
Overlay Manager reads from disk no less than 512 bytes at a time, and
starts reading only on a 512-byte sector boundary. Therefore, a small
overlay may require up to 512 bytes of additional "headroom" in the overlay
zone while it is loaded.

Lastly, when you actually run the overlay program, you may find that its
dynamic behavior is somewhat different from what you expected. You
may want to adjust the size of the overlay zone at that point.

Tools for analysis of your program's behavior are discussed in
"Fine-Tuning Your Overlay Program," later in this chapter. A method for
creating a variable-sized overlay zone also is covered there.

Initialization

In most of the high-level languages, you just need to add a few lines of
code early in the initialization of the program. This code must be in the
resident part of the program. Typically, a program calls AllocMelnorySL
to allocate memory for the overlay zone, but it could statically declare a
large array. It then calls one of the two procedures, InitOverlays or
InitLargeOverlays, passing a pointer to the overlay zone and the desired
overlay zone size.

InitOverlays takes a count of bytes as the size of the overlay zone.
InitLargeOverlays is identical, except that it takes a count of 16-byte
paragraphs and therefore can describe an overlay zone of up to 1M bytes.

Listing 14-1 shows a code fragment that initializes the overlay zone for a
program.

/* Determine the size of our overlays */
CheckErc (GetOvlyStats (&OverlayStats, 6»;

/* convert bytes to paragraph count */
cSwapParas = (OverlayStats.cbOvMax +

OverlayStats.cbOv2ndMax) » 4;

continued ...

14-8 eTOS/Open Programming Practices and Standards - Part II

/* round it up to a Sl2-byte disk sector boundary */
cSwapParas = «cSwapParas + OxOOlF) & OxFFEO);
/* add an extra sector */
cSwapParas += Ox0020;

/* Allocate memory for the Swap Buffer; Swap buffer */
/* needs to be large enough to accomodate both the */
/* largest and second largest overlays. */
CheckErc (AllocMemorySL (cSwapParas*l6, &pSwapBuffer»;

/* Initialize the virtual Code Management facility */
CheckErc (InitLargeOverlays (pSwapBuffer, cSwapParas»;

Listing 14-1. Initializing Overlays

Linking an Overlay Program

You specify which modules are to go into which overlays when you link
your program. On the Object modules line of the Linker form, resident
object modules are named first. An object module that is to be placed in
an overlay is identified by /0 appended to its name. That module and each
succeeding one without a /0 are placed in one overlay.

The following example illustrates the form.

Bind
Object modules 81 obj 82.obj Ov1 A.objto Ov1 B.obj Ov2.objto

In this example, R1.obj and R2.obj are placed in the resident portion of
the program. Ov1A.obj is the ffrst module in a nonresident overlay, and
Ov1B.obj is placed in the same overlay. Ov2.obj is placed in a second
overlay, because the /0 appended to it indicates the beginning of a new
overlay.

Using this syntax, you can group object modules into overlays according to
your decisions as to what is most efficient.

The Linker's default is to place all modules extracted from libraries in the
resident part of the code. I-Iowever, the same /0 syntax can be applied to

Using Virtual Code Management - Overlays 14-9

modules from libraries. On the Object modules line of the Linker form,
put the name of the library and, in parentheses, the names of those library
modules that you want to have placed in overlays, with /0 appended as
before.

The following example illustrates the form.

Bind
Object modules R1.obj Foo,lib (Mod1/0 Mod2/o)

In this example, modules Modi and Mod2 from Foo.lib are placed in
separate overlays. If the /0 had appeared only after ModI, both modules
would have been placed in the same overlay.

Note that when you want to place library modules, you must enter the
names of those modules on the Object modules line of the command form.
You cannot use the /0 designation on the Libraries line of the Linker form.

Remember that the total size of all the code in each overlay must be less
than 64K bytes, including Virtual Code Management facility overhead.

Fine-Tuning Your Overlay Program

As mentioned earlier, it is not difficult to create an overlay program. If
you want to maximize the efficiency of the overlay program's execution,
you may want to use some of the tools and methods described in this
section.

Overlay Zone Size

Although you can simply choose a static size for your overlay zone, it is a
better practice to have your program determine dynamically what the
overlay zone size should be, according to some formula. During program
development and maintenance, the sizes of overlays may change. Also, an
adaptable program can run in memories of different sizes on different
workstations.

14-10 eTOS/Open Programming Practices and Standards - Part II

Your formula might, for example, set mlmmum and maximum overlay
zone sizes. The minimum might be the sum of your two largest overlays,
and the maximum, equal to the sum of the sizes of all overlays. The
program can then set the overlay zone size to the appropriate value for the
program's current environment.

You can get the information needed for such a formula by a call to the
GetOvlyStats procedure. GetOvlyStats returns a data structure which
contains the size of the largest and second-largest overlays in your
program, as well as the total size of all overlays. This call is used in
Listing 14-1, earlier in this chapter.

Other Memory Management Tools

RelnitOverlays and RelnitLargeOverlays

If the overlay zone is only one of several entities competing for the
program's memory space (for example, if the overlay zone and a growing
heap share the program's dynamically allocated memory), you may want to
resize the overlay zone during execution. The two procedures for
accomplishing this are RelnitOverlays and RelnitLargeOverlays.

These procedures allow the program to change the size of the overlay zone
dynamically, in response to changing conditions. When you resize the
overlay zone, you change the value of the highest memory address it will
use. The overlay zone grows toward higher addresses, and shrinks toward
lower addresses.

Shrinking the size of the overlay zone is straightforward. Simply call
RelnitOverlays or RelnitLargeOverlays with the new overlay zone size.
This frees the unused space at the high-memory end of the overlay zone
for use by other parts of the program. It is then up to the program to
identify the freed area, and use it as needed.

Enlarging the overlay zone can be somewhat more complex, because the
overlay zone must remain contiguous. Before calling RelnitOverlays or
RelnitLargeOverlays, the program must "clean up" the area into which the
overlay zone will grow. If the program leaves valid data in the new overlay
zone area, that data will eventually overwrite (or be overwritten by) an
overlay, with catastrophic results.

Using Virtual Code Management - Overlays 14-11

MoveOverlays

In some cases, the cleanup required to enlarge an overlay zone cannot be
accomplished without moving the overlay zone. You can relocate the
overlay zone to any location, using the MoveOverlays operation.
MoveOverlays simply relocates the existing overlay zone to a new place in
memory.

Before using MoveOverlays, the program must ensure that the new region
of memory is large enough to hold the entire overlay zone.

Performance Optimization Tools

Permanence and Release From Permanence

You can make an overlay reside permanently in memory by calling either
the MakePermanent or MakePermanentP procedure. After one of these
procedures is called, the specified overlay cannot be discarded until the
program calls the ReleasePermanence procedure. (The overlay can,
however, be moved by the MoveOverlays procedure.)

MakePermanent causes the overlay from which it is called to become
permanently resident in memory. This procedure allows any overlay to
make itself permanent.

MakePermanentP allows any part of the program (such as the resident
part, or another overlay) to make a specified overlay permanent. To use
MakePermanentP, the program passes a pointer to the overlay that it wants
to make permanent. The program can get this information by calling
MapIOvlyCs, which is discussed in "Utilities," later in this section.
MapIOvlyCs receives an overlay number and returns the code segment
(CS) of the overlay.

The program can then build a pointer, using the returned code segment
and an offset of zero, which it passes to MakePermanentP. Note that all
pointers a program passes to MakePermanentP should have an offset of
zero.

ReleasePermanence causes all permanent overlays to revert to their
normal, non-permanent status.

14-12 eTOS/Open Programming Practices and Standards - Part II

Changing LRU Time Stamping

The Overlay Manager's least-recently-used (LRU) algorithm chooses which
overlays to discard based on their age, which is the length of time since
they were read into memory. However, the Overlay Manager has no way
to know how often or how recently the procedures in the overlay were
called. It only knows how recently the overlay that contains them was
loaded.

So, even if an overlay has the largest age value, there may have been
recent activity in that resident overlay of which the Overlay Manager is not
aware. The MakeRecentlyUsed procedure allows the program to correct
the Overlay Manager's age information.

A call to MakeRecentlyUsed adjusts the apparent age of the overlay from
which it is called, making that overlay less likely to be discarded.
UpdateOverlayLRU allows any part of a program to adjust the age of any
specified overlay.

Optimizing Overlay Contents

Deciding which modules to place in overlays requires you to understand
what is happening dynamically in your program. For a moderate-size
program, thinking carefully about how your program executes is usually
sufficient. For a complex program, however, tools are available to help
you analyze your overlay program's behavior.

Before using overlays at all, you should link your program and study the
map file produced by the Linker . You may find that the overhead of the
Virtual Code Management facility is not worth the savings in overlaying
your code.

Overlaying Library Modules

Often a program may consist of a small portion of code written by the
programmer and a much larger portion made up of code from libraries
such as CTOS.1ib, Graphics.lib, and so on. Most library routines, with the
exception of communications routines and others involving interrupts, can
be placed in overlays. The problem is to identify which ones are suitable
candidates without knowing their internals.

Using Virtual Code Management - Overlays 14-13

To determine the module name in which a particular library procedure
resides, examine the cross-reference file for that library. You can generate
cross-reference files with the Librarian.

Once you know the module name, you can search the cross-reference file
for the names of the other procedures in that module. Once you have that
information, you can determine whether the module is a good candidate
for an overlay, based on how often you call the procedures in it. For
example, if you only call one of the procedures in the module, and you call
that procedure only rarely, the module is a very good candidate for an
overlay.

NOTE: For details on the procedures discussed in this section, see the
CTOS/Open Application Programming Interface Specification.

Utilities

The following are some other overlay procedures which you can use in
your overlay programs.

MapCslOvly

You can call the MapCsIOvly procedure, passing it the code segment
portion of a memory address. MapCsIOvly returns the overlay number in
which that address is located.

MaplOvlyCs

Given an overlay number, MapIOvlyCs returns the code segment portion
of the address in memory where it is located. Use this procedure to get an
overlay's address before calling MakePermanentP or any other procedure
that requires the address as a parameter.

ForCing an Overlay into Memory

You can force an overlay to be read into memory without calling a
procedure in it by using MapCsIOvly and MapIOvlyCs. You can only do

14-14 eTaS/Open Programming Practices and Standards - Part II

this after the overlay has been in memory at least once, though. The
paragraphs below explain how.

In order to force an overlay into memory, you must know its overlay
number. A program can determine this at run time by using the
MapCsIOvly procedure while the overlay is resident. To use this
procedure, the program must first determine the code segment (CS) of one
of the procedures in the overlay. See your language compiler
documentation for information on how to get this value in your
programming language.

Once the program knows the code segment of a procedure in the overlay,
it should call MapCsIOvly to obtain the overlay number for that overlay.
Thereafter, the program can force the overlay to become resident at any
time by calling MapIOvlyCs. This procedure receives an overlay number,
and returns the current code segment of that overlay if it is already
resident. If the overlay is not already resident, the Overlay Manager loads
it from disk and then returns its code segment value.

Overlay Programs in Assembly Language

While high-level language compilers shield the programmer from the
pitfalls of making sure that code conforms to various conventions, the
assembly language programmer has no such protection. If you are in this
position, be sure to read the description of how the Virtual Code Manage­
ment facility works in your operating system documentation. Also refer to
your assembly language manual for rules you must follow to make sure that
your overlay program will work.

In particular, your program must conform to the system's call/return
conventions. In real mode, when an overlay is discarded, the stack is
traced so that pointers to the discarded procedure can be corrected. The
stack must be in the expected order when this occurs, or the program will
fail in unexpected ways.

Using Virtual Code Management - Overlay~ 14-15
\

Troubleshooting

Linker Errors

Some errors during linking can be ignored and some indicate real
problems.

Call/Return Violation

A link error that states that the program does not follow call/return
conventions can arise if you have placed a library module that does not
follow the conventions in an overlay.

Most such call/return errors are harmless, if the called procedure does not
call any other procedures. However, if such a message is accompanied by
other messages identifying illegal segment references, the error is fatal. If
such a program is run, it fails sporadically. This type of error is a
legitimate call/return violation. The Linker reports the offset within the
module where the cause of the problem is located. You can use a code
listing from the compiler or assembler to figure out which line of source
code corresponds to this location. It is also possible to use the File
Debugger on a run file with the symbol file and examine the instructions to
locate your error.

See your Linker manual for details on each Linker error.

Debugging an Overlay Application

The Debugger is compatible with overlay programs. You can set
breakpoints in overlays. When you examine code that is not currently in
memory, the Debugger prints it within braces ({}).

Thrashing

Thrashing, or excessive and time-consuming disk input/output as a result
of reading overlays into memory, indicates that you should reorganize the
contents of your overlays. Procedures that call each other frequently
should be in the same overlay.

Alternatively, you can make the overlay zone bigger.

14-16 eTaS/Open Programming Practices and Standards - Part II

Looping in MpRetAdrBNear

If your program fails by looping in the MpRetAdrBNear procedure,
call/return conventions may have been violated, or the stack may have
been overwritten in some way . (You can see this looping behavior by using
the Code-T command to display a stack trace in the Debugger, or by using
symbols from a symbol file and single-stepping.) Check to see that you
have not either written nonconforming assembly language code or placed a
forbidden high-level language module in an overlay.

This kind of failure occurs in real mode during the stack trace when an
overlay is discarded and the Virtual Code Management facility does not
find the expected format. The program runs successfully until discarding
of the overlay occurs.

Linker Limitations

The Linker can detect many cases of call/return convention violations, but
not all. Therefore, a real mode program failure may still encounter a
call/return violation, even though the Linker returned no errors. This
problem occurs mainly with programs written in assembly language.

Using Virtual Code Management - Overlays 14-17

15
Timer Management

This chapter describes the various timing services that eTaS makes
available to programs. eTaS provides a range of timing services for
different purposes.

CTOS Timing Services

Three types of timing services are available under eTaS. These types
are:

• Delay-oriented operations

This type of operation causes a process to pause, or "sleep" for a
specific period of time.

• Real-time clock operations

The real-time clock operations provide a mechanism for repetitive
timing operations, in which a program must perform a task at
regular intervals. eTaS real-time clock services support intervals as
short as 100 ms.

• Precise interval-timing operations.

Interval timing operations allow a program to set an "alarm clock" to
go off after a specific period of time. Meanwhile, the program can
perform other work. The programmable interval timer supports
intervals as short as 50 microseconds.

Each of the three types lends itself to a different situation, and each is
described in the following sections.

Timer Management 15-1

Using Delay and ShortDelay

The Delay and ShortDelay operations allow a program to pause for a
specific period of time, then resume execution. The Delay operation
allows the program to pause for any amount of time between 100
milliseconds (ms) and 1.8 hours, with a granularity of 100 ms. The
ShortDelay operation allows the program to pause for any amount of time
between 1 ms and 1 minute, with alms granularity.

The delay operations should be used when a process needs to stop all
work for a specific, known period of time. An example of such a process
is one which displays the current date and time at the top of the screen.
The process should spend most if its time idle, and only "wake up" once or
twice a minute to update its display. The process should not use any
processor time while it is idle.

Listing 15-1 shows a procedure that performs this function. The
procedure assumes the presence of an Executive-type screen which it can
manipulate using V AM.

/* Time of day display from Multiproc.c */
void TimeProc ()
(
Word cSpaces, iCol;

while (TRUE) {
/* get the system date and time, expand and then */
/* display it */
CheckErc (GetDateTime (&sysTime»;
CheckErc (NIsStdFormatDateTime (NULL, OxFFFF, sysTime,

&rgchTime, sizeof (rgchTime), &cchTime»;
CheckErc (PutFrameChars (1, nCols-cchTime, 1,

&rgchTime, cchTime»;
/* now fill in the blank space from the path to the */
/* time */
iCol = strlen (rgchPath);
cSpaces = nCols - cchTime - iCol;
CheckErc(PutFrameChars(l,iCol,l,rgchSpaces,cSpaces»;

/* now wait awhile */
CheckErc (Delay (10»; /* set to 10, for 1 second */
)

Listing 15-1. A Time-or-Day Clock Display Procedure Using Delay

15-2 eTOS/Open Programming Practices and Standards - Part II

The procedure uses the Delay operation to ensure that it uses no
processor time while it "sleeps". The procedure in the example should be
its own, independent process, so that the Delay call affects only the time
display. For more information on multi-process programs, see Chapter
12, "Writing Multi-Process Programs."

Using The Real-Time Clock

The real-time clock allows a program to perform repetitive timing
operations, at precise intervals. The real-time clock can time intervals as
short as 100 ms.

Note, however, that the first timed interval of a series can expire as much
as 99 ms early. Subsequent intervals are precisely timed. If you are
curious how this can happen, analyze the real-time clock process
described in "Processing Real-Time Clock Events," later in this section.

Setting Up the Timer Request Block (TRB)

The real-time clock uses messages and exchanges to communicate with its
clients. When a client application needs to use the real-time clock, it
should first allocate an exchange, which it uses for subsequent
communication with the real-time clock.

Next, the application builds a timer request block (TRB), which contains
all the information about the timing service requested, and includes the
number of the exchange the application allocated for communication with
the timing services. Finally, the application calls the OpenRTClock
procedure. This procedure tells the system timer to use the information in
the TRB to perform timing services for the caller.

The TRB remains active until the client either calls CloseRTClock, or
terminates.

Table 15-1 describes the format of the timer request block (TRB).

Listing 15-2 shows a procedure that sets up a TRB and opens the real-time
clock.

Timer Management 15-3

Table 15-1. Timer Request Block Format
(Page 1 of 1)

Field
Offset Name

o counter

2 counterReload

4 cEvents

6 exchResp

8 ercRet

10 rqCode

Size
(bytes)

2

2

2

2

2

2

Description

Number of 100 ms periods remaining
before timer expires. Decremented every
100 ms.
Value to be reloaded into counter when
the timer expires (when counter reaches
zero). If this field is set to zero, the
counter does not repeat.
Number of times the timer has expired
before. If this field is zero, timer services
sends a message to exchResp, then
increments this field to 1. If this field is
non-zero, timer services just increments
the field by 1.
The timer services client's response
exchange.
Status code. Not used by timer services.
The client may use this field as desired.
"Request code." Not used by timer
services. If a client has multiple timers on
the same exchange, each should place a
unique value in this field. This allows the
individual timers to identify their TRBs.

/* Build a timer block, then start the timer. */
Word InitTimer(TRBType *pTimerblock, Word cPeriods,

Word rqCode)
{
Word exchTimer;

/* build the TRB */
pTimerblock-)cEvents = 0;
pTimerblock-)ercRet = 0;
pTimerblock-)counter = cPeriods;
pTimerblock-)counterReload = cPeriods;
pTimerblock-)rqCode = rqCode;

continued ...

15 -4 eTOS/ Open Programming Practices and Standards - Part II

/* allocate an exchange, and put it in the TRB */
CheckErc(AllocExch(&exchTimer»;
pTimerblock-)exchResp = exchTimer;

CheckErc(OpenRTClock(pTimerblock»i
/* return the exchange for future communication with */
/* the timer */
return(exchTimer);
}

Listing 15-2. Building a TRB and Starting the Real-Time Clock

Processing Real-Time Clock Events

To use the real-time clock effectively, you should understand how timer
services uses the TRB. Every 100 ms, the timer services are activated and
perform the following sequence of operations for each active TRB.

1. Check the contents of the counter field. If it is zero, exit.

2. Decrement the counter field by one.

3. If the counter field is now zero, continue. Otherwise, exit.

4. If the cEvents field is zero, send the address of the TRB to the
exchange specified in the exchResp field. The address sent is the
address of the TRB itself, not the address of a copy.

5. Increment the cEvents field by one.

6. Copy the contents of the counterReload field into the counter field.

7. Exit.

The key event in this process is number 4. The real-time clock only sends
a message to the client if cEvents is zero. This means the client must
reset the cEvents field to zero at some point after receiving each message
from the real-time clock. If the client fails to do so, it will wait forever
for its next message from the real-time clock.

The cEvents field also allows the client to determine whether it has fallen
behind its timer, and to take appropriate action. Before resetting the

Timer Management 15-5

cEvents field, the client should verify that its value is not greater than one.
If the cEvents field contains a value greater that one, the client has missed
cEvents-1 timer events. It is up to the client application to take any action
necessary to make up for missed timer events.

Listing 15-3 shows a program main loop whose work is timed by the
real-time clock. The program sets up the real-time clock, then performs
some work every time the clock expires:

main() [
Word iTimeCount,
Word iIterations
TRBType Timerblock;
TRBType *pTRBRet;

wMyRqCode = Ox5457;

iMaxIterations, exchMyTimeri
0, wMyRqCode;

printf("Enter time interval for RealTime Clock (1 100
msec) : ") ;

scanf("%d", &iTimeCount);
printf("\nEnter number of times RTC should fire: ");
scanf("%d", &iMaxIterations);

/* start the real-time clock */
exchMyTimer = InitTimer(&Timerblock, 0, wMyRqCode);

/* Start Timer */
/* Load reload field first, in case interval is short */
Timerblock.counterReload = iTimeCount;
Timerblock.counter = iTimeCount;

/* loop forever */
while (TRUE) [

/* wait for a message from the RTC */
CheckErc(Wait(exchMyTimer, &pTRBRet»;
if(pTRBRet->rqCode != wMyRqCode)

printf("Received wrong timer block from RTC.\n");
/* do the work, then make sure we haven't missed a */
/* tick. If we have, loop until cEvents is O. */
do [

DoMyWor k () ;
if(++iIterations >= iMaxIterations)

CheckErc(CloseRTClock(pTRBRet»;
return(O);
)

/* note: If processor is slow, loop might not */
/* keep up with timer. Would therefore drop a */
/* tick occasionally. */

continued ...

15-6 eTOS/Open Programming Practices and Standards - Part II

if(pTRBRet->cEvents > 1) (
printf("Missed a tick\n");
}

/* if we're up to date (cEvents == 0), go back to */
/* the Wait */

while(--pTRBRet->cEvents > 0);

Listing 15-3. Repetitive Timing Using the Real-Time Clock

Because the program may be unable to complete its work before the next
time the clock expires, the program contains a secondary loop. This loop
checks the value of cEvents. If cEvents is zero, the loop exits and waits
for the next timer event. If cEvents is greater than zero, the wait would
be infinite, so the loop instead performs the program's normal work, then
decrements cEvents.

Because the program only leaves this secondary loop when cEvents is
zero, the program can fall behind its timer and still continue working.
Presumably, the program will eventually catch up to the timer.

Avoiding Timing Windows with the Real-Time Clock

Notice the While statement in the secondary loop of the program (the last
line of code in Listing 15-3). This statement decrements the cEvents field
in the TRB, then compares the field to zero. In theory, though, the timer
might go off between the time the program decrements cEvents and the
time it compares cEvents to zero.

If this happened, the program would process the same timer event twice.
First, the program would process the event immediately, because the
real-time clock incremented cEvents to one before the program checked
the value of cEvents. Then, the program would process the event again
because the real-time clock sent a message to the program when the timer
expired.

Because of the way the example program is written, this event is very
unlikely. The compiled machine code for the program decrements and
compares in two successive machine instructions. Therefore, the timer

Timer Management 15-7

would have to expire precisely between those two instructions for the
problem to occur.

There is a way to ensure to that this window never occurs, though. To do
so, the program must perform all modification and comparison of the
cEvents field as a single, atomic operation. A program can accomplish
this in any of several ways. The simplest way is to disable interrupts
before examining or modifying cEvents, then re-enable interrupts after the
modification and comparison are complete.

A second, more complex, way to prevent the cEvents timing window is to
make a copy of the cEvents field. To do so, allocate memory for the copy
and set its value to zero. Then use the 80x86 processor's XCHG
instruction to exchange the contents of the copy for the current value in
cEvents. This sets cEvents to zero and sets the copy to the value in
cEvents, using a single machine instruction. The program can now safely
perform operations on the copy without affecting the real-time clock.
Naturally, the program must perform this exchange operation every time it
receives a message from the real-time clock, to get the new value of
cEvents.

See your compiler manual for information on whether your compiler
allows you to explicitly disable and enable interrupts, and on whether it
allows you to force use of the XCHG instruction. If your compiler does
not allow these things, you may need to write a subprocedure in assembly
language. Or, you can find a way for the program to detect and recover
from the effects of the timing window.

Timing a Single Interval with the Real-Time Clock

When a program needs to time a single interval, it can usually use the
Delay function. Sometimes, though, the program may need to continue
performing work while it waits for the interval to expire. It can
accomplish this by using the real-time clock.

To time a single interval with the real-time clock, the program first sets up
a timer block and opens the real-time clock. The program should initialize
the counter and counterReload fields to zero. Then, when the program
needs to time its event, it loads a value into the counter field, but leaves
the counterReload field set to zero. This starts the real-time clock,
ensuring that it will only time the interval once.

15-8 eTaS/Open Programming Practices and Standards - Part II

While the timer is counting, the program can perform its normal work,
periodically calling Check for the timer exchange to see if it has received a
message from the real-time clock.

Remember that for the first interval in a series, the real-time clock can
expire as much as 100 ms early. This caveat applies whenever a program
times a single interval, because each single interval is the only one in its
series, making it the "first" interval.

Listing 15-4 shows a main loop that times a single interval with the
real-time clock. Note that because the program only Checks the
exchange, and does not Wait, the program will receive the clock's message
some period of time after the message arrives at the exchange.

main() {
Word iTimeCount, exchMyTimer, wMyRqCode;
ErcType erc= 0 ;
TRBType Timerblock;
TRBType *pTRBRet;

wMyRqCode = Ox5457;

/* get the interval */
printf("Enter time interval for RealTime Clock (1 100

msec) : ") ;
scanf("%d", &iTimeCount);

/* set up the real-time clock, but don't start it */
exchMyTimer = InitTimer(&Timerblock, 0, wMyRqCode);
/* start the clock */
Timerblock.counter = iTimeCount;
/* loop until timer expires */
while(TRUE) {

/* check for a message from the RTC */
erc = Check(exchMyTimer, &pTRBRet);
if(erc == ercNoMessage)

DoMyWork();
else if(erc == 0)

break;
else

CheckErc(erc);
)

CheckErc(CloseRTClock(pTRBRet»;
CheckErc(DeallocExch(exchMyTimer»;
)

Listing 15-4. Timing a Single Interval with the Real-Time Clock

Timer Management 15-9

Using the Programmable Interval Timer

The programmable interval timer allows you to set more precise timing
intervals than the real-time clock. It also requires significantly more work
to use. Using the programmable interval timer, you can time intervals as
short as 50 microseconds. However, repetitive timing of very short
intervals can cause substantial processor overhead, with corresponding
performance degradation.

As with the real-time clock, there is a caveat about short intervals. Unlike
the real-time clock, the programmable interval timer guarantees that a
timed interval will never be shorter than the requested time. Because of
this guarantee, the interval may be a few microseconds longer than the
requested time.

Setting Up the Timer Pseudo-Interrupt Block (TPIB)

Like the real-time clock, the programmable interval timer uses a data
structure to communicate with its client application. This structure is
called the timer pseudo-interrupt block (TPIB). The TPIB contains the
time interval requested, and the address of a user-written interrupt
handler. The programmable interval timer calls this interrupt handler
when the requested interval has passed.

The interrupt handler then performs an application-specific action.
Usually, these interrupt handlers do little more than send a message to a
process in the application.

To use the programmable interval timer, the programmer must perform
three actions. First, she must include an appropriate timer interrupt
handler in the program. Second, the program must create a TPIB, which
contains the information needed by the programmable interval timer.
Finally, the program must call SetTimerInt to establish each interval.

Table 15-2 describes the format of a TPIB.

15-10 eTaS/Open Programming Practices and Standards - Part II

Table 15-2. Timer Pseudo-Interrupt Block Format
(Page 1 of 1)

Field Size
Offset Name (bytes) Description

0 IinkField1 4 Used by the operating system.

4 IinkField2 4 Used by the operating system.

8 plntHandler 4 The address of the timer interrupt
handier's entry point (its initial CS:IP).

12 saOata 2 Selector of the data segment used by the
timer interrupt handler. This value is
loaded into OS on entry to the interrupt
handler.

14 clntervals 2 The number of 50-microsecond periods
that should elapse before the timer
interrupt occurs.

16 pRqBlkRet 4 The memory address to which the address
of this TPIB should be written when the
timer interrupt occurs. This field allows
the interrupt handler to examine a TPIB in
a data segment other than the one
specified in saOata.

20 footPrint 2 Used by the operating system.

22 delta 2 Used by the operating system.

24 reserved 8 Reserved for use by the operating system.

Listing 15-5 shows a procedure that sets up a TPIB, and optionally starts
the programmable interval timer. The procedure also allocates an
exchange for communication with the timer interrupt handler.

Listing 15-6 shows the code which calls the procedure in Listing 15-5.

Timer Management 15-11

/* Build a timer block. Start timer if flag is set. */
Word InitPIT(TPIBType *pTimerblock, Word cPeriods,

pFunc pFunction, Word fStart)
[
Pointer pData=&exchPublic;

/* build the TPIB */
pTimerblock->linkl = 0;
pTimerblock->link2 = 0;
pTimerblock->plntHandler = pFunction;
pTimerblock->saData = selectorof(pData);
/* assumes DGROUP for int handler's DS */
pTimerblock->clntervals = cPeriods;
pTimerblock->pRqBlkRet = &pTimerTPIB;
pTimerblock->footprint = 0;
pTimerblock->delta = 0;
pTimerblock->resl = 0;
pTimerblock->res2 = 0;

/* allocate an exchange */
CheckErc(AllocExch(&exchPublic));

if(fStart != FALSE)
CheckErc(SetTimerlnt(pTimerblock));

return(exchPublic)i
)

Listing 15-5. Building a Timer Pseudo-Interrupt Block (TPIB)

pTimerlntFunc &HandleTimer;

/* set up the Timer */
exchMyTimer = InitPIT(&Timerblock, iTimeCount,

pTimerlntFunc, fStartUp)i

Listing 15-6. Calling the InitPIT TPIB-Building Procedure

15 -12 eTOS/ Open Programming Practices and Standards - Part II

Writing the Timer Interrupt Handler

The programmable interval timer transfers control to a user-written
interrupt handler when the requested interval expires. This interrupt
handler is of the mediated type, meaning that it can call operating system
procedures. However, like any interrupt handler, it should be kept as
brief as possible.

Listing 15-7 shows an example of a timer interrupt handler. In this
example, the interrupt handler checks to see if the program has completed
some portion of its work, as indicated by a flag. If the program has not,
the interrupt handler logs the fact that a timeout occurred, then sends a
message to the program's main process.

/* Timer int handler */
void _far HandleTimer()
[
ErcType erc;
/* if work is not done, indicate timeout. Else do */
/* nothing. */
if(fWorkDone==FALSE) [

/* Log the event */
cTimeOuts++;
/* notify the client */
erc = PSend(exchPublic, (Pointer) OxOOOOOOOl);
if(erc != 0)

Crash(erc);

Listing 15-7. A Timer Interrupt Handler

A Sample Program Loop Using the Programmable Interval Timer

Listing 15-8 shows a main loop that sets up and uses the sample timer
interrupt handler. The main loop prompts the user for a time period, a
loop iteration count, and a count of subroutine calls for each loop
iteration. The program sets the timer at the start of each loop iteration,
then calls the subroutine DoMyWork either until it reaches the subroutine
count or until a timeout occurs.

Timer Management 15-13

After each loop iteration, the program resets the timer, and notifies the
user if the timer went off between the time work was completed and the
time at which the timer was reset. Although there are only a few
instructions between these two events, certain input combinations can
cause almost every loop iteration to encounter this timing window.

void maine) [
Word iTimeCount;
Word exchMyTimer;
Word cBytesRet = 0;
Word fStartUp = FALSE;
long fTimeOut;
TPIBType Timerblock;
pFunc pTimerIntFunc;
ErcType erc= 0 ;

pTimerIntFunc = &HandleTimer;

printf("Enter time interval for the PIT (1 = 50
microsec) : ") ;

scanf("%d", &iTimeCount);
printf("\nEnter count of times main loop should run: H);
scanf("%d", &iMaxIterations);
printf("\nEnter number of times subroutine should be

called: ");
scanf("%d", &iSubIterations);

/* set up the Timer */
exchMyTimer = InitPIT(&Timerblock, iTimeCount,

pTimerIntFunc, fStartUp);
if(exchMyTimer == 0)

ErrorExit(10);

/* loop as many times as we want */
while(iIterations < iMaxIterations)

/* start the timer */
CheckErc(SetTimerInt(&Timerblock»;
putchar('\n ');
PutWord(iIterations, 10);
putchar(I ');

while (TRUE) [
/* do the work */
fWorkDone = DoMyWork();
/* check for a message from the PIT */
erc = Check(exchMyTimer, &fTimeOut);
if (erc == 0) [

WriteBsRecord(bsVid, "\nA timeout occurred",
19, &cBytesRet);

continued ...

15 -14 eTOS/ Open Programming Practices and Standards - Part II

iCount=O;
break;
)

else if(erc != ercNoMessage)
CheckErc(erc);

if(fWorkDone == TRUE) [
/* if timer went off after we finished the */
/* work, we don't care */

erc = ResetTimerlnt(&Timerblock);
if(erc == ercOK)

break;
/* if timer went off during timing window */
else if(erc == ercBadQueue) [

printf("\nTimer event in window.");
break;
)

else
FatalError(erc);

)
/* end of while TRUE */

ilterations++;
)

printf("\nExecution Complete.");
printf("\nPerformed %d iterations. %d timeouts

occurred.", ilterations, cTimeOuts);

Listing 15-8. A Main Loop that Uses the PIT to Check for Timeouts

Timer Management 15-15

16
Memory Management

This chapter explains how to use the memory management features of
eTOS.

Short-Lived and Long-Lived Memory

As described in the section on application memory organization in "eTOS
Overview" in Part I, eTOS provides two types of dynamically-allocatable
memory.

Short-lived memory exists only until the application terminates.

Long-lived memory continues to exist after the application terminates,
either until the partition is removed, or until another application in that
partition calls ResetMemoryLL.

Short-lived memory is the most commonly used, and is the type described
in this chapter. Long-lived memory allocation works essentially the same
way as short-lived allocation, so the information in this chapter also
applies to that type.

The general rule for all memory allocation is this: the most recently
allocated segment must be deallocated first. So, for example, if a
program allocates three segments (A, B, and e) it must deallocate them
in reverse order (e, B, then A).

This rule applies to all memory of a given type, but does not apply
between types. In other words, long-lived memory is unrelated to
short-lived memory. Short-lived segments must be deallocated in their
order, and long-lived segments must be deallocated in their order, but the
two orders are separate. The operating system does not care whether a
program allocated a long-lived segment in between allocating short-lived
segments.

Memory Management 16-1

Fixed-Size versus Variable-Size Data Segments

When a program allocates memory, it can allocate a fixed-size segment or
a variable size segment. Whether the segment is of fixed or variable size,
it counts as one segment allocation for deallocation purposes.

Figure 16-1 shows the difference between variable-size segments and fixed­
size segments.

64K bytes

High End of Memory

Program Program

I------f~ S:9FFFh I------i~ S:OFFFFh

40K bytes
from

AllocMemorySL

Unallocated
Memory

40K bytes
from

AllocAreaSL

Returned ~ Returned
~ Pointer 1-------1 Pointer

(S:OOOOh) Memory (S:6000h)
Add ressa ble

by calling
ExpandAreaSL

~ S:OOOOh

Figure 16-1. Fixed-Size versus Variable-Size Segments

Fixed-size segments are allocated by the AllocMemorySL call, and
deallocated by the DeallocMemorySL call.

Fixed-size segments always start with an offset of zero. The program can
then fill the segment in any way it pleases.

16-2 eTaS/Open Programming Practices and Standards - Part II

Variable-size segments are allocated by the AllocAreaSL call. The size of
the segment can be changed by the ExpandAreaSL and ShrinkAreaSL
calls. There is no explicit deallocation call for variable-length segments.
To deallocate a variable-length segment, the program must use
ShrinkAreaSL to shrink the segment to a length of zero bytes. The
operating system then deallocates the segment.

Variable-length segments always start with a nonzero offset, and are
expand-down segments. When an application allocates a variable-length
segment, it receives a pointer to the bottom of the allocated area. When
it expands the segment, it receives a pointer to the bottom of the
expanded area. The operating system adds the new space below the
existing space, but in the same segment.

Working with Variable-Size Data Segments

Variable-size data segments are created with the AllocAreaSL procedure.
Once an area has been allocated, it can be expanded or contracted by the
ExpandAreaSL and ShrinkAreaSL procedures.

Only the most recently allocated segment can be used as a variable-length
segment. Even if a segment was allocated using the AllocAreaSL call, it
cannot change size unless it is the last segment allocated.

The example in Listing 16-1 uses compatible memory management
operations to allocate and deallocate short-lived memory within a
segment.

Figure 16-2 shows what memory would look like just after AllocAreaSL
was called in Listing 16-1. S represents the segment's selector. Note that
a program can only reference the memory in the range of S:FCOOh to
S:FFFFh at this point. Attempting to access the unallocated memory
shown below S:FCOOh would result in a general protection fault.
ExpandAreaSL expands the addressable area to lower addresses, the
lowest of which in the example is S:F800h.

Any amount of allocated memory can be deallocated using
ShrinkAreaSL, but the memory must be deallocated from the lowest
allocated memory address.

Memory Management 16-3

High End of Memory

1024 bytes

1024 bytes

64K bytes

Memory
Addressable

by calling
ExpandAreaSL

~ S:OFFFFh

Returned
~ Pointer 1

(S:OFCOOh)

Returned
~ Pointer2

(S:OFBOOh)

~ S:OOOOh

Figure 16-2. Expanding and Shrinking a Variable-Length Segment

void main
Pointer
Pointer
Offset
Selector

/*

(){
pSegmenti
pExpandSegi
RelAddri
SegAddr;

Allocate an initial segment of 1024 bytes.
*/
CheckErc (AllocAreaSL (1024, &pSegment));

/*
Need to strip the segment address (sa) for call to
ExpandAreaSL

*/
SegAddr = selectorof (pSegment);
CheckErc (ExpandAreaSL (1024, SegAddr, &ReIAddr));

continued ...

16-4 eTOS/Open Programming Practices and Standards - Part II

/*

*/

Need to cr~ate pointer to last segment that was
allocated, to give to ShrinkAreaSL.

selectorof (pExpandSeg) = selectorof (pSegment);
offsetof {pExpandSeg} = RelAddr;

CheckErc {ShrinkAreaSL (pExpandSeg, 1024»;

CheckErc {ShrinkAreaSL (pSegment, 1024»;
/*

Segment is now of 0 length (deallocated)
*/
) /* End of main () */

Listing 16-1. Using a Variable-Length Segment

Working with Fixed-Size Data Segments

An application can allocate additional fixed-size data segments at any
time, using AllocMemorySL.

As stated above, if an application needs to make many requests for small
amounts of memory, it should use AllocAreaSL and ExpandAreaSL. If
an application allocates large, fixed-size blocks of memory, however, it
should use AllocMemorySL.

The most important fact to remember when working with multiple,
dynamically-allocated segments is that segments must be deallocated in the
opposite order from the one in which they were allocated. In other
words, the last segment allocated must be the first segment deallocated.

Listing 16-2 shows how to allocate and to deallocate memory using
AllocMemorySL and DeallocMemorySL, respectively. Figure 16-3 shows
what memory would look like in the example after the second call to
AllocMemorySL.

Memory Management 16-5

#define ALLOCSZ Ox2000
char pMsglst[]= "A message in one segment concatenated";
char pMsg2nd[]= "with a message in another segment.";

long 19Palst, 19Pa2nd;
Pointer pMemlst, pMem2ndi

void main () {

/* allocate two segments of memory */
CheckErc (AllocMemorySL(ALLOCSZ, &pMemlst»i
CheckErc (AllocMemorySL(ALLOCSZ, &pMem2nd»;

/* get the physical addresses */
CheckErc (PaFromP (pMemlst, 0, &lgPalst»;
CheckErc (PaFromP (pMem2nd, 0, &lgPa2nd»;

/* show memory, physical addresses */
printf("\nAllocated %d Byte Segment, %x:%x, at Physical

Address %ld.", ALLOCSZ, selectorof (pMemlst),
offsetof (pMemlst), 19Palst);

printf ("\nAllocated %d Byte Segment, %x:%x, at Physical
Address %ld.", ALLOCSZ, selectorof (pMem2nd),
offsetof (pMem2nd), 19Pa2nd);

/* copy our messages into the allocated memory */
strcpy (pMemlst, pMsglst);
strcpy (pMem2nd, pMsg2nd);

/* display what we put in the memory segments */
printf ("\n\n%s %s", pMemlst, pMem2nd);

/* deallocate memory in opposite order of allocation */
/* ALLFS = OxFFFF, tells the OS to figure the size */
CheckErc (DeallocMemorySL (pMem2nd, ALLFS»;
CheckErc (DeallocMemorySL (pMemlst, ALLFS»;
ErrorExit (0);
)

Listing 16-2. Allocating Fixed-Size Segments

16-6 eTOS/Open Programming Practices and Standards - Part II

High End of Memory

I-----------I+_ S1 :07FFFh

32K bytes

32K bytes

Unallocated
Memory

Returned
+- Pointer 1

(S1 :OOOOh)

Returned
+- Pointer2

(S2:0000h)

Figure 16-3. Allocating Short-Lived Memory Using AllocMemorySL

Using OS Allocation

The Linker's data segment (DS) allocation option enables run time
expansion of a program's static data area. When this option is selected,
the Linker assigns static data addresses at the high-order end of the data
segment's 64K byte range. This leaves 64K minus the size of the
program's actual static data as address space for expansion.

Figure 16-4 shows the memory image of a program that uses DS
allocation.

DS allocation requires that static data be located at the low-order end of
the program image. For details on DS allocation, see Chapter 10, "Stack
Format and Calling Conventions," earlier in this manual.

Programs should use ExpandAreaSL to dynamically expand their static
data segment. Programs that use AllocMemorySL for this purpose will
not work in protected mode because, instead of expanding the existing
data segment, each call to AllocMemorySL allocates a new selector for a
new segment.

Memory Management 16-7

High End

of Memory
Code

CS ~t-----------t

Static Data

DGroup

Memory
Addressable

by calling
ExpandAreaSL

(64K Byte Range of OS)

OS --"'~-----------1

Figure 16-4. Memory Using DS Allocation

Listing 16-3 shows a program which determines the available memory in
its static data segment, then allocates all of that available memory. It
prints out what the highest address in that memory is, and copies a string
to the new memory area.

#define
Pointer
Offset
Selector

ALLOCSZ
pData;
raData;
snDatai

Ox2000

char pStr [] "\n\nSegment base offset in DGROUP "i

void main ()

/* we must get the selector of DGROUP */
pData = &raDatai
snData = selectorof (pData)i

/* call ExpandAreaSL to get the segment limit offset */
CheckErc (ExpandAreaSL (0, snData, &raData»i

continued ...

16-8 eTOS/Open Programming Practices and Standards - Part II

/* display DGROUP limit with a string in DGROUP */
printf (pStr)i
printf ("before expansion is: 0%4Xh (%5u).", raData,

raData)i

/* now expand the data segment to its maximum size */
CheckErc (ExpandAreaSL (ALLOCSZ, snData, &raData))i

/* display DGROUP limit with a string in expanded area */
/* of DGROUP */
offsetof (pData) = raDatai
strcpy (pData, pStr)i
printf (pData)i
printf ("after expansion is: 0%4Xh (%5u).", raData,

raData) i

/* now shrink the segment back to the original */
CheckErc (ShrinkAreaSL (pData, ALLOCSZ))i

/* call ExpandAreaSL to get the segment limit offset */
CheckErc (ExpandAreaSL (0, snData, &raData))i

/* display DGROUP limit with a string in DGROUP */
printf (pStr) i
printf ("after shrinkage is: 0%4Xh (%5u).", raData,

raData) i

/* get out */
ErrorExi t (0) "
}

Listing 16-3. Allocating DS-Relative Memory

Working with Data Structures Greater than 64K

The recommended method for compatible programs to build large
structures is to make multiple calls to AllocMemorySL. This decomposes
the large data object into multiple segments, each of which is then
addressable by a returned pointer. The memory allocated by multiple
calls to AllocMemorySL is contiguous.

Memory Management 16-9

Swapping

When the operating system swaps a program from memory to disk, it does
not notify the program. When the program is swapped back into memory,
nothing has changed, from the program's point of view, except the system
time. For an application, being swapped is like a "lost weekend".

Applications need not do anything to prepare for, or to recover from,
being swapped. System services, however, may need to know whether
any of their clients have been swapped to disk. For more information on
that subject, see Chapter 8, "Writing Request-Based System Services," in
Part I of this manual.

16-10 eTOS/Open Programming Practices and Standards - Part II

17
Building a Customized SAM

Introduction

The Sequential Access Method (SAM) is a subroutine package in
CTOS.lib that can be configured to include or exclude support for
particular devices. It allows programs to input or output a generic stream
of bytes via device-independent calls. These calls are mapped to
device-dependent routines for each device type.

Three reasons to customize SAM include:

1. To include byte streams which are excluded from the default byte
streams configuration.

2. To exclude byte streams from the configuration, in order to save
memory at execution time.

3. To add customized byte streams for existing or new devices.

The Components of a Byte Stream

Each device-dependent portion of SAM is referred to informally as the
byte streams for that device: for example, video byte streams interprets a
stream of bytes sent by a program to the video device. The package of
subroutines called communications byte streams handles input and output
to and from communications ports.

A generic byte streams package is composed of

• a set of tagProcs, which identify several standard device-specific read
and write operations for the device. The tagProcs operations are
explained more in "Structure of SamGenAll.asm" in this chapter.

Building a Customized SAM 17-1

• a Byte Stream Work Area (BSW A) which is used to control
operation of the byte stream. The BSW A is described in "The Byte
Stream Work Area" in this chapter.

• a device name, which must be supplied by the program when it calls
OpenByteStream.

• a buffer for the transferred data (described under "The Byte Stream
Buffer Area" in this chapter)

The user program is responsible for providing the BSWA in its data
segment. In addition, a program that uses byte streams must be linked
with the correct set of byte streams. The program can then call the
generic, device-independent procedures OpenByteStream, ReadBsRecord,
WriteBsRecord, and so on. These generic procedures then call the
appropriate device-dependent procedure for each device.

For more general information about SAM, see the description of the
Sequential Access Method in Chapter 2, "Basic Input and Output."

The Default SAM Configurations

Because SAM is composed of object module routines, the byte stream
routines for each device must be linked with the program and therefore
make the program larger. A configuration mechanism called SamGen
allows you to determine which byte streams are included, however. This
lets you include the ones you use, without incurring overhead for ones you
do not use.

As implemented in the SamGen.obj module in CTOS.lib, SAM is
configured to include disk, keyboard, video, parallel printer, null, and
spooler byte streams. This default configuration excludes communications,
serial printer, generic print system (GPS), and tape byte streams.

A variant of SamGen, called SamGenAll.obj, is packaged as part of
Standard Software. It includes all the bytes streams in SamGen, plus
communications, GPS, and serial printer byte streams, but excludes tape
byte streams. If you name [Sys]<Sys>SamGenAIl.obj in the Object
Modules field of the Linker command form, it is used in place of the
default SamGen.obj.

17-2 eTOS/ Open Programming Practices and Standards - Part II

Tape byte streams are included in CTOS.lib. To include tape byte
streams, you must edit SamGenAll.asm, as described later in this section.

For details on the structure and use of communications byte streams
(SamC), see Chapter 18, "Communications Programming" in this manual.

Steps to Customizing SAM

If your application uses only some of the devices defined in SamGen, you
can make your executable file smaller by linking in only those byte stream
packages that you need. Conversely, if you want to add a new byte
streams package, you can do that as well. To accomplish this, you must
create a customized SamGen module that includes only the byte streams
you want, then link that module into your program. The steps required to
generate a customized SamGen module are listed below. Each step is
described in more detail later in this chapter.

1. Create a file, such as YourSamGen.asm, from the source file,
SamGenAll.asm. (SamGenAll.asm is distributed with standard
software.) Then, edit YourSamGen.asm to include only the devices
your program needs to use.

2. Assemble YourSamGen.asm to produce YourSamGen.obj.

3. When you link your program, include the resulting object file,
YourSamGen.obj, in the list of object modules on the Linker
command form. Your module then takes precedence over the
default SamGen module in CTOS.lib.

The SamGenAII.asm File

SamGenAll.asm is an assembly language source file which defines the
device-dependent procedures for each device SAM supports. The file uses
assembly language macros to present the definitions in a fairly easy-to-use
format. The file also contains extensive comments that explain how to edit
it. You do not have to know assembly language to do so.

The definitions of the macros themselves are contained in the file
SamGen.mdf but you should rarely, if ever, need to examine or modify
them.

Building a Customized SAM 17-3

This section gives a brief overview of the macros and their functions. The
macros are described in more detail later in this chapter.

After initial comments, SamGenAll.asm lists several macros which use the
following template:

%DeviceOpen ([DeviceNarne], OpenProc)

One %DeviceOpen Inacro appears for each type of device. It identifies
the device-dependent procedure which opens that device. The procedure
named on the %DeviceOpen macro is called whenever a program calls
OpenByteStream for that device name.

The %DeviceOpen macros are followed by a comment explaining how to
edit the next list of macros, which have the form

%tagProcs (tagName, FillBufferProc,
FlushBufferProc, CheckPointBsProc,
ReleaseProc, SetlmageModeProc)

There is one %tagProcs macro for each mode of operation (read, write
and modify) supported by each device. These macros map a
device-dependent routine to each of the generic SAM procedures for that
device in that mode. For example, WriteBsRecord calls the procedure
defined as FlushBufferProc when the buffer for the device is full.

Finally, after another comment, a few more macros of this form appear:

%DevDepProc (DevDepCall, DevDepProc)

These macros identify device-dependent routines which can be used only
with that device.

Editing the SamGenAII.asm File

Excluding Byte Streams

If an application program does not use a particular device, you can reduce
the program's memory requirements by excluding that byte stream from
the customized SamGenAll.obj. To do so, delete the following macros
associated with the byte stream device you want to omit:

17-4 eTOS/Open Programming Practices and Standards - Part II

• the %DeviceOpen macro for the device

• all °10 tagProcs macros for the device

• any °/oDevDepProc macros for the device

For example, to exclude disk and spooler byte streams, you would delete
the following source lines from SamGenAll.asm:

%DeviceOpen ([Disk], OpenByteStreamAD)
%DeviceOpen ([Spl], OpenByteStreamSpl)

%tagProcs (tagDiskRead, FillBufferAD,
FlushBufIllegal, CheckPointBsAD,
ReleaseByteStreamAD,
SetlmageModeIllegal)

%tagProcs (tagDiskWrite, FillBufIllegal,
FlushBufferAD, CheckPointBsAD,
ReleaseByteStreamAD,
SetlmageModeIllegal)

%tagProcs (tagDiskModify, FillBufferAD,
FlushBufferAD, CheckPointBsAD,
ReleaseByteStreamAD,
SetlmageModeIllegal)

%tagProcs (tagSplWrite, FillBufIllegal,
FlushBufferAD, CheckPointBsAD,
ReleaseByteStreamSpl,
SetlmageModeSpl)

%DevDepProc (GetBsLfa, GetBsLfaAsync)
%DevDepProc (SetBsLfa, SetBsLfaAsync)

In this example, two device-dependent procedures, GetBsLfa and
SetBsLfa, are associated with disk byte streams and must be deleted.

After editing SamGenAll.asm, you must assemble it and include the
resulting SamGenAll.obj in the Object modules field of the Linker
command form when you link your program. This causes the Linker to
use your customized SamGen module instead of the one in eTOS.Lib.

Building a Customized SAM 17-5

Including Communications, GPS, and Serial Printer Byte Streams

Serial printer and communications byte streams are not included in the
default SamGen.obj module in CTOS.1ib. You can add them by linking
with [Sys]<Sys>SamGenAll.obj.

Adding a User Written Byte Stream

You can add your own byte stream to the SAM configuration in CTOS.lib.
To do so,

1. Write the six necessary device-dependent routines, and add them to
CTOS.lib:

OpenProc, to open the device

FillProc, to fill the device's buffer

FlushProc, to flush the device's buffer

CheckPointProc, to verify that a read or write has been completed

ReleaseProc, to close the device

SetImageModeProc, to set the device to binary or ASCII mode, if
appropriate

2. Edit SamGenAll.asm to include entries for the new byte stream.

Templates for and descriptions of the six device-dependent routines are
given under "Template %tagProcs Routines," later in this chapter.

For example, to add a read-only byte stream and a write-only byte stream
for a device Foo, add the following entries to SamGenAll.asm:

%DeviceOpen ([Foo], OpenByteStreamFoo)

%tagProcs (tagFooRead, FillBufferFoo,
FlushBufIllegal, CheckPointBsFoo,
ReleaseByteStreamFoo,
SetlmageModeFoo)

17-6 eTOS/Open Programming Practices and Standards - Part II

%tagProcs (tagFooWrite, FillBufIllegal,
FlushBufferFoo, CheckPointBsFoo,
ReleaseByteStreamFoo,
SetlmageModeFoo)

If SetImageModeFoo is inappropriate for your type of byte streams,
specify SetImageModeIllegal instead of SetImageModeFoo in the
0/0 tagProcs macro.

After editing, you would assemble SamGenAll.asm and include the
resulting SamGenAll.obj in the list of object modules in the Linker
command form.

Substituting an Alternate Byte Stream

You can also substitute an alternate version of a byte streams package
instead of using the version contained in CTOS.lib. This new version can
be a byte stream that came with your operating system or one that you
have written.

For example, to substitute synchronous disk byte streams for the default
asynchronous disk byte streams, you should replace the first group of
source lines shown below with the second group:

Group 1:

%DeviceOpen ([Disk], OpenByteStreamAD)

%tagProcs (tagDiskRead, FillBufferAD,
FlushBufIllegal, CheckPointBsAD,
ReleaseByteStreamAD,
SetlmageModeIllegal)

%tagProcs (tagDiskWrite, FillBufIllegal,
FlushBufferAD, CheckPointBsAD,
ReleaseByteStreamAD,
SetlmageModeIllegal)

%tagProcs (tagDiskModify, FillBufferAD,
FlushBufferAD, CheckPointBsAD,
ReleaseByteStreamAD,
SetlmageModeIllegal)

continued ...

Building a Customized SAM 17-7

%tagProcs (tagSplWrite, FillBufIllegal,
FlushBufferAD, CheckPointBsAD,
ReleaseByteStreamSpl,
SetlmageModeSpl)

%DevDepProc (GetBsLfa, GetBsLfaAsync)
%DevDepProc (SetBsLfa, SetBsLfaAsync)

Group 2:

%DeviceOpen ([Disk], OpenByteStreamSD)

%tagProcs (tagDiskRead, FillBufferSD,
FlushBufIllegal, CheckPointBsSD,
ReleaseByteStreamSD,
SetlmageMode)

%tagProcs (tagDiskWrite, FillBufIllegal,
FlushBufferSD, CheckPointBsSD,
ReleaseByteStreamSD,
SetlmageMode)

%tagProcs (tagDiskModify, FillBufferSD,
FlushBufferSD, CheckPointBsSD,
ReleaseByteStreamSD,
SetlmageMode)

%tagProcs (tagSplWrite, FillBufIllegal,
FlushBufferSD, CheckPointBsSD,
ReleaseByteStreamSpl,
SetlmageMode)

%DevDepProc (GetBsLfa, GetBsLfaSync)
%DevDepProc (SetBsLfa, SetBsLfaSync)

Note that because spooler byte streams share several routines with disk
byte streams, the %tagProcs macro for spooler byte streams must also be
replaced in this example.

After editing SamGenAll.asm (or a copy of it), you must assemble the file,
then include the resulting object module in your list of object modules on
the Linker command form.

17-8 eTOS/Open Programming Practices and Standards - Part II

Adding New Byte Streams

The previous parts of this chapter have described how to modify SAM to
include or exclude various existing byte streams. The following sections
describe how to create your own. These byte streams may supplement
existing ones, or they may replace them entirely.

Each of the following sections covers one aspect of creating a new byte
stream.

The Byte Stream Work Area

The Byte Stream Work Area (BSWA) is a 130-byte memory work area for
use by the various byte streams. The first 14 bytes of the BSWA are
common among all the byte streams and are used by the
device-independent part of SAM. The other 116 bytes are available for
use by the device-dependent operations to record the internal state of the
byte stream.

The 14-byte common area must be initialized by the OpenProc routine for
the device. The format of the common area and the values to which each
field should be initialized are shown below:

Offset

o

4
6
8

10
11
12
13

where

pBuffer

Size
Field (bytes) Initial Value

pBuffer 4 address of user-
supplied buffer.

sBuffer 2 buffer size (bytes)
ibRead 2 (see below)
ibWrite 2 (see below)
fOkToPutBack 1 TRUE or FALSE
fPutBack FALSE
bPutBack 0
tag appropriate

tag value

Is the address in memory of the byte stream buffer area.
This parameter is received as a parameter on the
OpenByteStream call.

Building a Customized SAM 17-9

sBuffer Is the size in bytes of the byte stream buffer area. This
parameter is received as a parameter on the
OpenByteStream call.

ibRead Is the read position in the buffer. If the byte stream is
write only, then ibRead should be set to OFFFFh.
Otherwise, ibRead should be set to O.

ib Write Is the write position in the buffer. If the byte stream is
read only, ibWrite should be set to OFFFFH.
Otherwise, ib Write should be set to O.

fOkToPutBack Is TRUE if the byte stream supports the PutBackByte
procedure. Some byte streams (disk byte streams, for
example) allow you to read a byte and, if you want to,

j to put it back. For example, if the current character is
a delimiter indicating the start of a new string, you can
put it back so that when reading starts again later, you
get the first byte of the new string.

fputBack Is TRUE if a byte was put back.

bPutBack Is the most-recently put-back byte if fputBack is TRUE.

tag Is a byte that identifies the type, of byte stream.

In the above table, TRUE is OFFh and FALSE is O.

The Byte Stream Buffer Area

The byte stream buffer area is a user-supplied memory area which is used
by the various byte streams to buffer input and output. The pBuffer and
sBuffer fields of the BSW A describe a buffer for the device-independent
part of SAM. This buffer must be word-aligned. The device-independent
part of byte streams moves user data to or from this buffer, in response to
the program's SAM procedure calls. When the buffer is exhausted, a
device-dependent routine is called to write or read a new buffer.
Descriptions of three different buffering schemes follow.

17-10 eTOS/ Open Programming Practices and Standards - Part II

No Buffering

Some byte streams (for example, keyboard and video) do not buffer their
input or output, and therefore ignore the byte stream buffer area. These
byte streams set the sBuffer field in the BSWA to zero. When a byte
stream uses this method, every read or write operation causes a
device-dependent routine to be called.

Single Input/Output Buffer

Some byte streams (such as synchronous disk byte streams) use a single
input/ output buffer. These byte streams use the pBuffer and sBuffer fields
in the BSW A to describe this buffer. When a byte stream uses a single
buffer, it can perform only one operation at a time.

Pool of Asynchronous Buffers

Some byte streams (such as asynchronous disk byte streams) divide the
byte stream buffer area into a pool of input/output buffers which are used
with asynchronous input and output. The pBuffer and sBuffer fields in the
BSW A describe the next available buffer for use by the device-independent
part of byte streams. Meanwhile, other buffers from the pool may be
involved in asynchronous input and output. As operations continue, the
pBuffer and sBuffer fields change to indicate the next available buffer.

For example, asynchronous disk byte streams divide the byte stream buffer
area into two buffers (called A and B here). For an output byte stream
(mode Write), buffer A may be used for an asynchronous write to the disk
while buffer B is being filled with user data by the device-independent part
of byte streams. At this point, pBuffer and sBuffer describe buffer B.

When buffer B becomes full, the device-dependent routine, to which we
give the generic name FlushBufferProc here, is called to write buffer B.
FlushBufferProc makes sure that any asynchronous write operations
involving buffer A have finished and then starts an asynchronous write
operation with buffer B. It then sets the pBuffer and sBuffer fields of the
BSW A to point to buffer A, which either is idle or has just finished its
own asynchronous write operation.

Building a Customized SAM 17-11

Opening a Byte Stream and the %DeviceOpen Macro

The macro %DeviceOpen (deviceName, OpenProc) declares a procedure
generically referred to here as OpenProc. The OpenProc procedure is
called by OpenByteStream when a program attempts to open deviceName.
In other words, every time OpenByteStream is called, with a device
specification that matches the deviceName declared on this %DeviceOpen
macro.

For example, if Samgen.asm contains the line "%DeviceOpen([Foo],
OpenFooProc)", then the procedure OpenFooProc is called whenever a
program attempts to open the device [Foo] by calling OpenByteStream.

OpenByteStream identifies the appropriate OpenProc by attempting to
match the passed device specification with each of the defined
deviceNames. If a match occurs, OpenByteStream calls the appropriate
OpenProc procedure. If no match occurs, OpenByteSteam does the
following:

• If the device specification is not entirely enclosed by brackets ([. . .
]), and disk byte streams are included in the SAM configuration, the
device specification is assumed to be a file specification, and the
OpenProc for disk byte streams is called.

If disk byte streams have not been included in the SAM
configuration, OpenByteStream returns status code 7 ("not
implemented") in this case.

• If the device name is in brackets, and the Generic Print System byte
streams have been included, the device specification is assumed to
be a generic print device.

• If the device name is in brackets, and the spooler byte streams have
been included, the device specification is assumed to be a spooler
queue name.

When OpenByteStream tests for a match, it only compares the number of
characters contained in the device name on the %DeviceOpen macro
declaration. Thus, if a program calls OpenByteStream with a device
specification of [Comm]B, OpenByteStream matches the device name to
the [Comm] device. It ignores the B, which is used later by the OpenProc
procedure for the [Comm] device.

17-12 eTaS/Open Programming Practices and Standards - Part II

For more information on OpcnProc procedures, see "Template % tagProcs
Routines," later in this chapter.

The %tagProcs Macro

The % tagProcs macro declares a tag name and five device-dependent
procedures, each of which is called by the corresponding
device-independent procedure. The tagProcs macro is defined as

%tagProcs (tagName, FillBufferProc, FlushBufferProc,
CheckPointBsProc, ReleaseProc,
SetlmageModeProc)

The tagName field should usually take the form "tag<DeviceName>
<OpenMode>". For example, the % tagProcs macro for the [Foo] device
opened in write mode would be "tagFoo Write".

The device-dependent procedures correspond to the SAM device­
independent procedures as shown in Table 17-1, below.

Table 17-1. Correspondence of %tagProcs Procedures to Byte
Stream Procedures

%tagProcs
Procedure Name

Fill BufferProc

Flush BufferProc

CheckPointProc

ReleaseProc

SetlmageModeProc

Byte Streams
Procedure Name

ReadByte, ReadBytes, ReadBsRecord

Write Byte, Write BsRecord

CheckPointBs

ReleaseByteStream

SetlmageMode

Building a Customized SAM 17-13

When a program calls CloseByteStream, the generic portion of SAM calls
CheckPointProc, then calls ReleaseProc.

The tagName for a device is declared as a public byte variable by the
macro and is given a value. This value is used to route the
device-independent calls to the appropriate device-dependent routines.

Each OpenProc procedure should declare its tagName as an external byte
variable, and should assign its value to the tag byte in the BSW A when it is
called. This allows the OpenProc procedure to gain access at runtime to
the value assigned by the %tagProc macro. (See "Opening a Byte Stream
and the %DeviceOpen Macro," above.)

The procedural interfaces for the template procedures FillBufferProc,
FlushBufferProc, CheckPointProc, ReleaseProc, and SetImageModeProc
are given in "Template %tagProcs Routines," later in this chapter.

The %DevDepProc Macro

The macro %DevDepProc declares a device-dependent procedure which is
called whenever a program calls the device-dependent procedure name
specified on the macro. The syntax of the %DevDepProc macro is:

%DevDepProc (devDepCall, devDepProc)

devDepCall is the procedure name that programs can use. devDepProc is
the actual name of the procedure.

This macro allows for substitution of alternate routines for any existing
device-dependent byte stream routines (such as QueryVidBs, GetBsLfa,
SetBsLfa, or SetImageMode).

Operating System-Supplied Null Routines

Several null routines contained in eTOS .lib may be useful if you are
writing your own byte stream. These routines do nothing except return a
status code.

The routines FlushBufillegal, FillBufillegal, and SetImageModeIllegal all
return status code 7 ("Not implemented") when called. These routines can
be assigned on the % tagProcs macro if that type of operation is not

17-14 eTaS/Open Programming Practices and Standards - Part II

supported by the device. For example, they might be used with read-only
and write-only byte streams or with byte streams for which the
SetImageMode procedure is inappropriate.

The routine ChkptNop returns status code 0 (normal execution) when
called and can be used when CheckPoint actions are unnecessary. For
example, this procedure might be used with read-only byte streams.

The routine ReleaseEasy returns status code 0 when called and can be
used with devices that require no disconnect logic (such as the keyboard).

To use one of these routines for your byte stream, simply put its name in
the appropriate field on the %tagProcs macro.

Error Checking

All byte stream routines should check the input parameters for errors.
The following paragraphs give some general guidelines for error checking
in customized byte streams.

The OpenProc routine for a device should check that the open-mode
parameter is appropriate to the byte stream. If the mode is not
appropriate, OpenProc should return status code 2315 ("Invalid mode").

For example, OpenByteStreamK (for the keyboard byte stream) should
check that the mode parameter is equal to mode Read.

Second, each of the device-dependent routines FillBufferProc,
FlushBufferProc, CheckPointProc, ReleaseProc, and SetImageModeProc
should check the tag byte in the received BSW A to make sure it specifies
the correct device for the device-dependent routine. If the BSW A tag is
not appropriate, the device-dependent routine should return status code
2325 ("Invalid BSW A").

For example, ReleaseByteStreamD should check that the BSW A tag byte
is either TagDiskRead or TagDiskWrite.

Template %tagProcs Routines

The template routines FillBufferProc, FlushBufferProc, CheckPointProc,
ReleaseProc, and SetImageModeProc are described next in this section.

Building a Customized SAM 17-15

OpenProc

OpenProc (pBSWA, pbFilespec, cbFilespec, pbPassword, cbPassword, mode,
pBufferArea, sBufferArea): ercType

Description

The OpenProc routine is called when a program calls OpenByteStream for
the corresponding device. At a minimum, the OpenProc routine must
perform the following functions:

1. Place appropriate values in the control fields of the Byte Stream
Work Area, and set the tag byte to tagIllegal. This initializes the
BSW A, without allowing the program to call it yet.

2. Check that the mode (read, write or modify) is valid for the device.
Return erc 7 (not implemented) if the mode is invalid.

3. Perform any operations required to open the device itself.

4. Initialize the buffer(s), if any, used for the byte stream.

5. Place the appropriate tagName value in the tag field of the BSWA,
then return. The byte stream is now open, and the program can
make calls to it.

Received Parameters

pBSWA

pbFilespec

cbFilespec

pbPassword

cbPassword

Is the memory address of the Byte Stream Work Area.

Is the address of the character string that identifies the
device.

Is the length of the character string that identifies the
device.

Is the address of the password string for the device.

Is the length of the password string.

17-16 eTOS/Open Programming Practices and Standards - Part II

(continued) Open Proc

mode Is the open mode for the device.

pBufferArea Is the address of a user-provided buffer area for data
exchange with the device.

sBufferArea Is the size of the user-provided buffer area.

Building a Customized SAM 17-17

Fi II BufferProc

FillBufferProc (pBSWA, cbMax, pPbRet, pCbRet): ercType

Description

The FillBufferProc routine is called whenever the program attempts a read
operation with an empty buffer. An empty buffer condition is detected
when the ibRead field in the BSW A is greater than the sBuffer field. The
ibRead field is an index which points to the first unread byte in the buffer
described by the pBuffer and sBuffer fields. The FillBufferProc may do
either or both of the following when called:

• Fill the buffer and set ibRead to a value less than sBuffer. The user's
subsequent read byte stream operations are served from this buffer
until it is exhausted. If no additional string is to be passed back to
the user (see below), set cbRet to zero .

• Pass a string of bytes (up to cbMax long) back to the user. The
pbRet and cbRet parameters should be set to point at the string. If
this string is the only data to be passed back to the user (no buffer),
the pBuffer and sBuffer fields in the BSW A should remain
unchanged.

Byte streams using buffered input/output should pass a buffer of data back
by setting cbRet to zero and updating pBuffer, sBuffer, and ibRead (the
first case above). The generic part of SAM then reads the data from the
buffer and passes it to the program.

Byte streams using unbuffered input/output (for example, keyboard) should
keep ibRead set to OFFFFh to force a call to FillBufferProc for every read
operation. FillBufferProc should then return bytes via cbRet and pbRet
(the second case above).

The procedure FillBufIllegal is a fill buffer routine that returns status
code 7 ("Not implemented") whenever it is called. Byte streams for which
read operations are illegal should set ibRead to OFFFFh. The %tagProcs
macro for this type of byte stream should name FillBufIllegal as the
FillBufferProc parameter.

17-18 eTOS/Open Programming Practices and Standards - Part II

(continued) Fi II BufferProc

Received Parameters

pBSWA

cbMax

pPbRet

pCbRet

Is the memory address of the same Byte Stream Work Area
that was supplied to OpenByteStream.

Is the maximum count of bytes of data that the calling process
will accept.

Is the memory address of 4 bytes into which the memory
address of the data is returned.

Is the memory address of a word into which the actual count
of data bytes made available is returned.

Building a Customized SAM 17-19

FlushBufferProc

FlushBufferProc (pBSWA, pb, cb, pCbRet): ercType

Description

The FlushBufferProc routine is called whenever the program attempts a
write operation with a full buffer. The ib Write field of the BSW A is an
index pointing to the next byte of the buffer described by the pBuffer and
sBuffer fields. A full buffer condition is detected when ib Write is greater
than or equal to sBuffer.

The FlushBufferProc may do either or both of the following when it is
called:

• Write the contents of the buffer to the device and set ib Write to a
value less than sBuffer. The user program's subsequent write byte
stream operations are serviced using this buffer until it fills up again.
If no additional string is to be written (see below), set cbRet to zero .

• Write a string of bytes described by the pb and cb parameters. The
cbRet word should be set to the count of bytes written from this
string. If this string is the only data to be written (no buffer), the
pBuffer and sBuffer fields in the BSW A should remain unchanged.

Byte streams using buffered input and output should write a buffer of data
to the device, set cbRet to zero, and update pBuffer, sBuffer, and ibWrite
(first case above).

Byte streams using unbuffered output (for example, video) should keep
ib Write set to OFFFFh so that FlushBufferProc is called for every write
operation. FlushBufferProc should then write the string described by cb
and pb to the device, then return the number of bytes written in the cbRet
parameter (second case above).

The procedure FlushBufIllegal is a flush buffer routine that returns status
code 7 ("Not implemented") whenever it is called. Byte streams for which
write operations are illegal should set ibWrite to OFFFFh. The %tagProcs
macro for this type of byte stream should name FlushBufIllegal as the
FlushBufferProc parameter.

17-20 CTOS/ Open Programming Practices and Standards - Part II

(continued) FlushBufferProc

Received Parameters

pBSWA Is the memory address of the same Byte Stream Work Area
that was supplied to OpenByteStream.

pb Is the memory address of the data to be written.

cb Is the count of bytes to write.

pCbRet Is the memory address of the word into which the count of data
bytes successfully written is returned.

Building a Customized SAM 17-21

CheckPointProc

CheckPointProc (pBSWA, fIsPartOfClose): ercType

Description

The CheckPointProc procedure performs a checkpoint on the open output
byte stream specified by the BSW A. CheckPointProc writes any partially
full buffers to the device, then waits for all write operations to complete
successfully before returning. The flag parameter fIsPartOfClose is TRUE
if this call to CheckPointProc is part of a device-independent call to
CloseByteStream.

Received Parameters

pBSWA

fIsPa rt Of Close

Is the memory address of the BSWA.

Is TRUE if this call to CheckPointProc is part of a call
to the device-independent procedure CloseByteStream.

17-22 CTOS/Open Programming Practices and Standards - Part II

ReleaseProc

ReleaseProc (pBSWA): ercType

Description

The ReleaseProc procedure closes the device or file associated with the
open output byte stream specified by the BSWA. ReleaseProc does not
write any buffers before closing the device or file. If partially full buffers
need to be written to the device, the byte stream's CheckPointProc should
be called.

Typically, ReleaseProc is called when a CloseByteStream call returns a
status code other than O. ReleaseProc should relinquish any and all
resources that the byte stream has reserved (for example, exchanges, files,
memory, and so on), then return.

Received Parameters

pBSWA Is the memory address of the BSW A.

Building a Customized SAM 17-23

Setl mageModeProc

SetImageModeProc (pBSWA, mode): ercType

Description

The SetImageModeProc procedure sets the normal, image, or binary mode
for printer, spooler, and communications byte streams. If attempted on
other byte stream types, it should return status code 7 ("Not
implemented").

SetImageModeProc is used to control the transparency or interpretation of
escape codes or control characters embedded in the byte stream. For
example, some printer drivers use escape sequences to position the print
head, and to perform other control functions. However, if you wish to
print binary data, you may want to turn off escape sequence processing,
because some sequences of binary bits may look like escape sequences.

Binary mode is used for raw binary data. All interpretation of data as
control is turned off.

On byte streams that support various image modes, the
SetImageModeProc simply sets an image-mode flag somewhere in the
BSW A. The FillBuffer and FlushBuffer procs must act appropriately,
based on the setting of the flag.

Received Parameters

pBSWA Is the memory address of the same BSW A that was supplied to
OpenByteStream.

mode Is a code as follows:

o for normal mode
1 for image mode
2 for binary mode

Normal mode performs character conversion on the byte
stream. For example, tabs are converted to spaces and line
endings are convert~d to the appropriate device codes.

17-24 eTOS/Open Programming Practices and Standards - Part II

(continued) SetlmageModeProc

Image mode performs no character conversion, but recognizes
escape codes.

Binary mode performs no character conversion, and recognizes
no escape codes. It simply passes bytes to the device.

Building a Customized SAM 17-25

18
Communications Programming

1

Layered Support for Communications Programming

CTas provides interfaces to its communications features at several
different levels. Each communications application can use the interface
which gives the appropriate balance between performance and ease of
programming.

The higher-level interfaces, SAM and SamC, are simple to use and deliver
good performance for most asynchronous communications applications.
The lower-level interface, CommLine, is less simple to use but provides an
extremely high-performance interface suitable for high-speed communi­
cations, and for synchronous communications applications.

What Is SAM for Communications (SamC)?

Communications byte streams, or SamC, is the RS-232-C device­
dependent portion of the Sequential Access Method (SAM). It is the
standard CTaS driver for asynchronous RS-232-C serial communication.
This includes the use of communication ports for terminals, modems, and
serial printers, as well as for direct connection.

Using the standard CTaS RS-232-C driver frees the application
programmer from writing interrupt service routines, buffer management
procedures, serial controller initialization sequences, and other low-level
device-oriented routines. Unless your application performs synchronous
RS-232-C communication, communications byte streams should be flexible
enough to meet all its serial communication needs.

You can use communications byte streams indirectly, using the normal
SAM procedures, or you can take advantage of the special
device-dependent subroutines of SamC. Using the generic SAM

Communications Programming 18-1

procedures preserves device independeHce, but suffers a slight
performance penalty. Using the SamC procedures loses device
independence, but gives greater control over the serial device interface and
delivers better performance.

Communications byte streams have been extensively optimized,
particularly at the SamC level. This interface provides better performance
than any but the most carefully crafted user-written routines.

Who Cannot Use Communications Byte Streams

Applications which use a synchronous RS-232-C communication protocol
cannot use communications byte streams. If you are writing a synchronous
application, skip the next two main sections, and read "Writing
Synchronous Communications Applications," later in this chapter.

Using Communications Byte Streams at the
Device-Independent Interface Level

The Sequential Access Method (SAM)

This section describes what you
ports from your application
ReadBsRecord, WriteBsRecord,
procedures.

Device Specifications

need to know to access communication
at the level of OpenByteStream,

and the other device-independent SAM

To support port expander modules and mUlti-processor servers, SAM
recognizes more devices than are found on a typical workstation.

SAM accepts the device specifications described in Table 18-1.

18-2 eTaS/Open Programming Practices and Standards - Part II

Table 18-1. SAM Communications Device Specifications

Channel Processor
Synonyms Channel Device

A 0 OA A Workstations, SRP/XE

8 08 8 Workstations, SRP/XE

C 2 C SRP/XE
0 3 0 SRP/XE
E 4 E SRP/XE
F 5 F SRP/XE
G 6 G SRP/XE
H 7 H SRP/XE
I 8 I SRP/XE
J 9 J SRP/XE

1A n/a Port Expander 1, Channel 1
18 n/a Port Expander 1, Channel 2
1C n/a Port Expander 1, Channel 3
10 n/a Port Expander 1, Channel 4

2A n/a Port Expander 2, Channel 1
28 n/a Port Expander 2, Channel 2
2C n/a Port Expander 2, Channel 3
20 n/a Port Expander 2, Channel 4

These specifications are valid in SAM device specifications for [comm} or
[ptr} byte streams, with or without an associated configuration file name.
For example, the following are all valid:

[comm]lA
[ptr]2b& <mydir>myconfig. sys
[comm]lD&cfile.cnfg

In the first example above, no configuration file is specified, and
communications byte streams looks for a default configuration file named
as follows:

[Sys]<Sys>CommlAConfig.Sys

Communications Programming 18-3

Other specifications may be valid in the future, as new hardware is
introduced. Programs should treat device specifications as uninterpreted
strings, allowing the system to accept or reject them.

Configuration Files

To use communications byte streams at the device-independent level, it is
necessary to have a configuration file for each channel. More than one
channel can use the same configuration file, in which case that file's name
must be specified explicitly on the OpenByteStream request for each
channel. Use the Create Configuration File command to create or edit
these configuration files. (See your operating system documentation for
details.)

Some channels on port expander modules support NRZI encoding.
Workstation processor channels do not. See your port expander hardware
documentation for more information. If a program attempts to open a
channel on which a specified option is unsupported, status code 7 ("Not
implemented") is returned.

Notes on Customizing SAM for Communications

The Sequential Access Method (SAM) is a subroutine package that can be
configured to include or exclude support for particular devices. Each type
of device has a corresponding type of byte stream. You can produce a
custom configuration of SAM by editing and reassembling the file
[Sys]<Sys>SamGenAll.asm.

The default configuration of SAM does not include communications byte
streams. Therefore, if you link your application with CTOS.lib without
providing an alternative SamGen module, your application cannot use the
communications-specific procedures in SamC.

If you explicitly include [Sys]<Sys>SamGenAll.obj in your link, that file is
used in place of the version of SamGen in CTOS.lib. This configuration
includes all types of byte streams (except [tape] byte streams), including
[comm] and [ptr] byte streams).

You can choose your own subset of the byte stream types you need by
editing and reassembling a SamGen source file, then including the resulting

18-4 eTOS/Open Programming Practices and Standards - Part II

object file in your link. The procedure for doing this is described in
Chapter 17, "Building a Customized SAM" in this manual.

Using Communications Byte Streams at the
Device-Dependent Interface Level

The Communications Sequential Access Method (Same)

Communications byte streams itself is referred to as SamC, to distinguish
it from the rest of the Sequential Access Method (SAM).

Programs that are distinctly communications-oriented can take advantage
of a more powerful and flexible set of services than those available at the
device-independent level. Programs which are not communications­
oriented (such as the CTaS Executive) can still use communications byte
streams via SAM, just like any other type of byte stream.

In addition to playing its role as part of SAM, SamC supports additional
calls that are not appropriate for other types of byte streams. Most of
these additional calls are described in this chapter. All the communi­
cations byte stream interfaces, including those called by SAM, are
described in the CTOS/Open .Application Programming Illterface Specifi­
cation.

The interfaces provide control over communications byte streams at a
lower level (closer to the hardware) than do the SAM device-independent
interfaces. Although more complex to use, they constitute a more
complete set of services. Applications may also supplement the SAM
interfaces by occasionally using SamC interfaces.

SamC can act as a complete replacement for SAM if only communications
byte streams need to be supported. (How to do this is discussed below
under "Using SamC Without SamGen.") Used in this fashion,
communications byte streams is a general-purpose device driver for
asynchronous RS-232-C communications. It can form the heart of
virtually any communications product except those that use synchronous
communications protocols. Both half and full duplex communications are
supported efficiently with a variety of line control and data editing options.
Among other conveniences, using communications byte streams frees you
from writing interrupt service routines.

Communications Programming 18-5

Using SamC Without SamGen

Programs that use SamC directly can avoid including any modules from the
device-independent parts of SAM. If none of the device-independent
SAM interfaces are used, several modules that support these interfaces are
excluded at link time, saving memory. In addition, this removes the need
to configure SAM using SamGen.asm.

To avoid including other parts of SAM besides SamC itself, use only the
SamC interfaces. These interfaces are listed under the heading
"Communications Programming" in Figure 2-1 in the eTOS/ Open
Application Programming Interface Specification. Do not use the
device-independent SAM interfaces listed under "Sequential Access
Method" in the same figure.

In addition, to avoid including SamGen from CTOS.lib automatically, you
must include in your program the following global public data declarations:

Byte tagCommWrite = 1;
Byte tagCommRead = 2;
Byte tagCommModify = 3;
Byte tagptrWrite = 4;

Otherwise, the Linker includes parts of SAM even though you do not call
them.

Some Special Features of SamC

This section describes some of the features of SamC, which distinguish it
from the more generic SAM interface.

Asynchronouslntenace

The FillBufferAsyncC, FlushBufferAsyncC, and CheckPointBsAsyncC
procedures are variants of FillBufferC, FlushBufferC, and
CheckPointBsC, respectively. Because communications byte streams is a
subroutine package, you cannot issue asynchronous (nonblocking) requests
to it as you can with disk or keyboard byte streams, for example. This
ability is frequently useful, and sometimes required.

18-6 eTaS/Open Programming Practices and Standards - Part II

The asynchronous SamC interface allows an application to check for the
availability of data, without having to wait if none is available.

Additional parameters allow the caller to specify what SamC should do if
the operation cannot be completed immediately. See the CTOS/ Open
Application Programming Interface for more information on the individual
calls.

AcquireByteStreamC Interface (Low-Level Open)

The OpenByteStream and OpenByteStreamC interfaces require a
configuration file which contains the communications line configuration
parameters (baud rate and so on) shown in Table 18-2.
AcquireByteStreamC is a lower-level interface that accepts an in-memory
structure corresponding to the contents of the configuration file. This
allows applications to avoid using configuration files if they do not truly
need them.

AcquireByteStreamC also provides more control over the buffer sizes
chosen for the receive and transmit queues. Under OpenByteStrea~C,
the user supplies a single memory area of a chosen size, which
OpenByteStreamC divides up between receive and transmit queues.
AcquireByteStreamC allows the program to specify each queue explicitly.

Communications Programming 18-7

Table 18-2. Communications Configuration Descriptor
(Page 1 of 2)

Size
Offset Field (bytes) Description

0 type The types and their values are

Parallel Printer 1
Serial Printer 2
Communications 3

baudRate 2 The transmit baud rate (0-19200 bits per
second)

3 stopBits 2 The stopBits value is 0-2.

5 charSize The charSize value is 5-8.

6 parity No parity 0
Even parity 1
Odd parity 2
One parity 3
Zero parity 4

7 IineControl The line control modes and their values
are

No line control 0

XON/XOFF mode

Clear to Send (CTS) mode 2

Both XON/XOFF and CTS modes 3

8 2 Unused

10 TxMap The output new line mapping modes and
their values are

Binary mapping 0

New line

Carriage Return

Carriage Return/Linefeed 2

18-8 eTOS/Open Programming Practices and Standards - Part II

Table 18-2. Communications Configuration Descriptor
(Page 2 of 2)

Size
Offset Field (bytes) Description

11 RxMap The input new line mapping modes and
their values are

Binary 0

Newline

Carriage Return

Carriage Return/
Linefeed 2

12 TxTimeOut 2 Time in seconds before a timeout on a
transmission

14 RxTimeOut 2 Time in seconds if no characters are
received before a status code in-
dicating "Device not ready" is returned

16 fEOF TRUE indicates that bEOF is active

17 bEOF A character signifying the end of file

18 sTab The size (number of spaces) of the ex-
panded tab

19 cCharsPerLine The new line mode is generated (based
on TxMap) after this many bytes

20 sbTxltnFile (79) The character translation file name

99 fNRZI TRUE indicates Non Return to Zero
Inverted mode (NRZI). Not supported
on workstation port A or B.

100 RxBaudRate 2 The receive baud rate (0-19200 bits per
second)

Communications Programming 18-9

Listing 18-1 shows a code fragment that opens a serial communications
channel using AcquireByteStreamC.

/*
Set up the Communication Configuration Descriptor for
port A
*/
CommCfgBlk.Type = 3; /* Type = Communications */
CommCfgBlk.BaudRate 9600; /* Transmit at 9600 baud */
CommCfgBlk.StopBits = 1; /* 1 stop bit */
CommCfgBlk.CharSize = 8; /* 8 bits per character */
CommCfgBlk.Parity = 0; /* Parity = None */
CommCfgBlk.LineControl 1; /* XON/XOFF */
CommCfgBlk.TxMap = 2; /* CR/LF */
CommCfgBlk.RxMap = 1; /* Newline */
CommCfgBlk.TxTimeOut = 5; /* Tx timeout = 5 seconds */
CommCfgBlk.RxTimeOut = 5; /* Rx timeout = 5 seconds */
CommCfgBlk.fEOF = TRUE; /* bEOF is active */
CommCfgBlk.bEOF = 4; /* EOF Character */
CommCfgBlk.sTab = 8; /* Tab expansion */
CommCfgBlk.cCharsPerLine 132; /* 132 chars per line */
CommCfgBlk.sbTxltnFile[O] = 0; /* No translation file */
CommCfgBlk.fNRZI = FALSE; /* Not NRZI */
CommCfgBlk.RxBaudRate = 9600; /* Receive at 9600 baud */

/*
Allocate memory for the Port A BSWA and Queues

*/
selectorof(pBSCommA) = snMemArea;
CheckErc(ExpandAreaSL(130, snMemArea,

&(offsetof(pBSCommA» »;
selectbrof(pbTQA) = snMemArea;
CheckErc (ExpandAreaSL (1024, snMemArea,

&(offsetof(pbTQA» »;
selectorof(pbRQA) = snMemArea;
CheckErc (ExpandAreaSL (1024, snMemArea,

&(offsetof(pbRQA» »;
cbTQ (1024 - 12) / 2; /* wordsize with 12 rsvd bytes */
cbRQ = (1024 - 12) / 2;

/*
Open first port using AcquireByteStreamC

*/
CheckErc (AcquireByteStreamC (pBSCommA, rgbPortID, 7,

modeModify, &CommCfgBlk, pbTQA, cbTQ,
pbRQA, cbRQ, 0, 0»;

Listing 18-1. Opening a Channel with AcquireByteStreamC

18-10 eTOS/Open Programming Practices and Standards - Part II

Ability to Change Parameters Dynamically

The ReadByteStreamParameterC and WriteByteStreamParameterC
operations allow a program to query and change the values of various
communications line parameters dynamically.

Ability to Query and Set Status Lines

The RS-232-C standard defines some additional status lines which may be
needed when you are dealing with modems or special hardware.
Communications byte streams provides an interface to access or change
the state of these lines, using the ReadStatusC and WriteStatusC
operations.

Writing Synchronous Communications Applications

Access Below the Byte Stream Level (CommLine)

Communications byte streams does not support the use of the serial con­
troller in synchronous mode. To write an application that uses a
synchronous communication protocol, it is necessary to interface directly
with the operating system at a level below communications byte streams.

The following operations are part of the operating system's support for
serial ports. (Communications byte streams itself uses these requests.)

InitCommLine
ResetCommLine
ChangeCommLineBaudRate
TerminateCommLine
ReadCommLineStatus
WriteCommLineStatus

These operations address three objectives:

• workstation-independent applications that do not have to be relinked
for each new machine

• protected-mode-compatible raw interrupt routines

• XE/SRP compatibility

Communications Programming 18-11

The design of the CommLine-level interface places all workstation-specific
code inside the operating system Comm Nub. This allows applications to
use the interface without regard for the type of hardware on which they
run.

Guidelines for Compatible Synchronous Applications

The details of the CommLine interface and interrupt service routine calling
conventions are explained later in this chapter. The following checklist
enumerates the most important requirements for portability. Synchronous
communications applications should have:

• No code that parses or validates the device specification string
before it is passed to InitCommLine. Let InitCommLine validate
the string, so that the program will continue to work if the list of
valid device specifications recognized by the operating system is
expanded in the future.

• No knowledge of which serial port it is actually using. The purpose
of InitCommLine is to allow the application to work identically on
any port, on any type of workstation.

• No code that uses any input/output port addresses except the two
port addresses returned by InitCommLine. Using other port
addresses implies a machine dependency.

• No calls to GetpStructure or GetModuleId. It is not necessary to
know details of the hardware configuration when using
InitCommLine.

• No calls to MediateIntHandler, which should never be used in a
communications interrupt service routine.

• Calls to PSend only in mediated communications ISRs, not in raw
communications ISRs.

Applications that abide by these limits on their knowledge should be
portable.

18-12 eTOS/Open Programming Practices and Standards - Part II

The CommLine Interface

The following sections describe each of the procedures needed to open a
communications channel using the CommLine interface.

The procedural interfaces for the InitCommLine, ResetCommLine, and
ChangeCommLineBaudRate requests are described in detail in the
CTOS/Open Application Programming Interface Specification. Their use is
described next.

InitCommLine

InitCommLine assigns the caller to a physical channel on a serial
controller by parsing the device specification passed to it. You should
treat this specification as an uninterpreted string, so that your application
will continue to work when new hardware modules (with new forms of file
specifications) are introduced.

On success, InitCommLine returns a handle for the open communications
line. It also returns two port addresses, a control port and a data port, for
the channel. These addresses can be used to initialize the serial controller.

In some CTOS-based operating systems, InitCommLine also returns
additional information, such as the type of serial controller installed. This
additional information should be used with care, because it is only
available on certain operating system versions. See your operating system
documentation for more information.

Note that InitCommLine does not tell the caller which channel of the
serial controller it uses. The application does not need to know. The
InitCommLine interface performs all general serial controller operations
that could require knowledge about serial controller channels. For
example, the Comm Nub resets the serial controller after each interrupt.

The application must still perform some operations directly on the serial
controller, using the two returned port addresses. InitCommLine does not
fully initialize the channel (although it does reset it), since it does not
know all the parameters the application needs.

Note that the only parameters provided to InitCommLine are those dealing
with external hardware (outside the serial controller). This hardware
(baud rate timers and external control registers) is InitCommLine's

Communications Programming 18-13

responsibility because it varies from machine to machine. The serial
controller, however, is invariant: all CTOS machines use the same Intel
8274 (or software-equivalent) serial controllers.

In addition, the serial controllers on some CTOS machines (or option
modules) provide a superset of the standard Intel 8274 serial controller
interface. Care should be taken to ensure that such a controller is present
before using their additional features.

ResetCommLine

ResetCommLine closes a communications channel opened by
InitCommLine. The only parameter passed to ResetCommLine is a
handle returned by InitCommLine.

You cannot issue ResetCommLine until you have successfully completed
an InitCommLine operation for that channel. InitCommLine acquires the
channel for you (and resets it so you have a chance to initialize it to your
specifications before you start taking interrupts). ResetCommLine gives
the channel back to the operating system, making it available for other
users.

All channels opened by InitCommLine should be closed by
ResetCommLine before the program exits.

ChangeCommLineBaud Rate

ChangeCommLineBaudRate is used to change InitCommLine's baud rate
parameters dynamically. ChangeCommLineBaudRate should be used only
on channels that were opened using InitCommLine. SamC clients should
use WriteByteStreamParameterC, instead.

The serial controller is not affected by ChangeCommLineBaudRate.

CommLine Status Procedures

The procedures in the following sections are system-common procedures,
not requests. Therefore, they can be called from an interrupt service
routine as well as from the main program. The procedural interfaces for
these operations are described in detail in the CTOS/ Open Application
Programming Interface Specification.

18-14 CTOS/Open Programming Practices and Standards - Part II

These procedures should be used only on channels that were opened using
InitCommLine. SamC clients should use WritcByteStreamParameterC,
instead.

ReadCommLineStatus: This procedure allows certain RS-232-C signals,
whose function is not defined by the serial controller, to be queried by the
application in machine-independent fashion.

WriteCommLineStatus: This procedure allows certain RS-232-C signals,
whose function is not defined by the serial controller, to be raised or
lowered by the application in machine-independent fashion.

Opening a Serial Communications Channel with InitCommLine

There are three steps to opening a communications channel with
InitCommLine:

1. Building the Communications Line Control Block.

2. Calling InitCommLine and verifying that it was successful.

3. Performing any additional serial controller initialization required.

The following sections describe each of those functions.

Building a Communications Line Control Block

The Communications Line Control Block structure contains the
information required by InitCommLine to initialize the communications
channel. The format of the Communications Line Control Block is shown
as part of the description of InitCommLine in the eTaS/Open Application
Programming Interface Specification.

The following sample procedure builds a Communications Line Control
Block. The variable type F1cbType is a Frame Level Control Block
structure defined by the program. It contains various items of information
about the communications channel. For a more complete listing of the
program from which this example (and the following two) are drawn, see
Appendix D.

Communications Programming 18-15

void PrepCornrnBlk(FlcbType *pflcb, char iSizeRetBlk)
{

cbcommlcb = sClcbTypeMax;
if (iSizeRetBlk == BTOS)

cbcommlret = sInitCommLineRetTypeMax; /* 23 bytes */
else if(iSizeRetBlk == BTOSII2)

cbcommlret sBTOSII2RetTypeMax; /* 19 bytes */
else

cbcommlret = sInitCommLineRetType; /* 6 bytes */

/* set some not-always-supported fields to FALSE */
commlret.dmahardware = 0;
commlret.chiptype = 0;
/* set up the config. block */
commlcb.pdsbx = (char _far *)pflcb;

commlcb.fdma = false;
commlcb.ptxisr = (void
commlcb.prxisr = (void
commlcb.psprxisr =(void
commlcb.pextisr = (void

_far *)plsrTxData;
far *)plsrRxData;

-far *) plsrRxSpec;
-far *)plsrExStat;

commlcb.frawtx true;
commlcb.frawext true;
commlcb.frawrx true;
commlcb.frawsprx true;
commlcb.baudtx = iBaudRate;
commlcb.baudrx = iBaudRate;
commlcb.fnrzi = false;

commlcb.fx2l = false;
commlcb.ftdi = false;
commlcb.ftdixlat= false;

/* 0 for ext clocks */
/* 0 for ext clocks */

Listing 18-2. Building a Communications Line Control Block

Initializing the Communications Line

All CTOS-based operating systems return the same information in the first
six bytes of the InitCommLine return information. These six bytes are
defined as follows:

18-16 eTOS/Open Programming Practices and Standards - Part II

Offset

o

2

4

Description

CommLine Handle (Word)

Control Port Address (Word)

Data Port Address (Word)

Because different CTOS-based operating systems return different amounts
of information after the first six bytes, a portable program should allocate
space for the largest possible returned block (currently 23 bytes) even if it
only makes use of the six standard bytes.

The example calls InitCommLine with each possible returned size in turn,
from largest to smallest. This allows the program to make use of whatever
extra information may be available.

char InitComm(FlcbType *pFlcb)
{

Word commerc i
char iSizeRetBlk;

fdoinitcomm = true;
iSizeRetBlk = BTOSII2;

while (fdoinitcomm) { /* InitCommLoop */
if (cbcommspec == sFourPortChannel)

iSizeRetBIk = BTOS;
PrepCommBlk (pFIcb, iSizeRetBIk)i

commerc=InitCommLine(&commspec[O], cbcommspec,
&commlcb, cbcommlcb, &commlret,cbcommlret);

if (commerc == ercRetArea2Large) {
iSizeRetBIk = BTOS;
PrepCommBlk (pFIcb, iSizeRetBlk);
commerc = InitCommLine(&commspec[O], cbcommspec,

&commlcb, cbcommlcb, &commlret,cbcommlret);

if (commerc == ercRetArea2Large)
iSizeRetBlk = CTOS;
PrepCommBlk (pFIcb, iSizeRetBlk)i
commerc = InitCommLine(&commspec[O] , cbcommspec,

&commlcb, cbcommlcb,
&commlret,cbcommlret)i

continued ...

Communications Programming 18-17

CheckErc(commerc);
fdoinitcomm = false;
)

return (true);
)

Listing 18-3. Opening a Channel with InitCommLine

Initializing the Serial Controller

In addition to calling InitCommLine, the program must perform a certain
amount of serial controller initialization. The example below performs
some basic initialization functions both for the normal 8274-type
controllers and for the 82530 controllers used in some port expansion
modules.

The procedure uses a conditional flag in the extended InitCommLine
return information to determine whether an 82530 is present. The program
should be sure to initialize this flag to zero, so that it only becomes
non-zero if the operating system explicitly makes it so.

For information on serial controller registers and their use, refer to the
technical reference documentation for your workstation, or to the
technical reference for the controller itself.

void
[
Word
char

InitFdxlo(FlcbType *pFlcb)

port;
i;

i = InitComm (pFlcb);

pFlcb->iocommctl = commlret.iocommctl;
pFlcb->iocommdata = commlret.iocommdata;
wcommlinehandle = commlret.commlinehandle;
wchiptype = commlret.chiptype;

port = pFlcb->iocommctl;
pFlcb->fxmitcomplete = false;
frxspec false;
frcvmsg = false;

continued ...

18-18 eTaS/Open Programming Practices and Standards - Part II

rgpflcb = pFlcbi

/* turn off interrupts */
CLli
/* set chip to bit-sync mode */
LockOut(port,commWr4)i
LockOut(port,comm4X1+comm4BitSync)i
/* set end of frame flag */
LockOut(port,commWr6)i
LockOut(port,zFlag)i
LockOut(port,commWr7)i
LockOut(port,zFlag)i
/* enable interrupts. Receive int on first char or

on special condition
*/
LockOut(port,commWr1)i
LockOut(port,comm1RxEnable+comm1TxlntEnb + comm1ExlntEnb

+ comm1StatVect)i
/* 8-bit chars, other receive params */
LockOut(port,commWr3)i
LockOut(port,comm3Rx8 + comm3AutEnb + comm3RxEnb +

comm3RxCrcEnb + comm3Hunt)i
/* enable int on next receive, set next write to reg 5 */
LockOut(port,commRxint)i
LockOut(port,commRxint+commWr5)i
/* set transmit params */
LockOut(port,comm5Dtr + comm5Tx8 + comm5CrcCcitt +

comm5TxEnb + comm5TxCrcEnb)i
/* error reset and set next write to reg 4 */
LockOut(port,commErrRes+commWr4)i
LockOut(port,comm4X1+comm4BitSync)i

if (wchiptype == 1) [/* 82530 only */
LockOut(port,commWr10)i
LockOut(port,comm10CrcPreset)i /* not NRZI */
LockOut(port,commWr15)i
LockOut(port,comm15AbrtIE + comm15TxUndIE +

comm15CtsIE + comm15DcdIE + comm15SyncHuntIE)i
LockOut(port,commWr11)i
LockOut(port,comm11RxRTxC+comm1lTxTRxC)i
)

/* restore interrupts */
STli
)

Listing 18-4. Initializing the Serial Controller for Synchronous
Communication

Communications Programming 18 -19

CommLine Interrupt Service Routines

This section describes the interrupt handlers needed for successful
CommLine-level communications.

The part of the operating system that dispatches communications
interrupts is called the Comm Nub. The Comm Nub receives control
directly from the serial communications hardware interrupt. The Comm
Nub then transfers control to your interrupt service routine, according to
the instructions your program gave the operating system when it
performed the InitCommLine operation. When your ISR has completed
processing the interrupt, it returns to the Comm Nub.

Communications ISRs differ somewhat from other types of ISRs, because
the Comm Nub performs some extra services for them. This section
describes these special communications-oriented ISRs.

The Four Interrupt Service Routines for a Communications Channel

Each channel that uses the CommLine interface must have four interrupt
service routines defined for it. They are:

1. A transmit ISR, to transmit characters and manage the transmit
buffer.

2. A receive ISR, to receive characters.

3. A "receive special" ISR to handle receive errors and end-of-frame
conditions.

4. An external status ISR to handle RS-232 signal transitions and error
conditions.

Listing 18-5 shows an example of a raw receive ISR. Examples of the
other three ISRs for a communications channel can be found in Appendix
D.

Note that the example uses a macro, ZIN, instead of the normal processor
IN instruction. This macro flushes the processor's prefetch queue, then
executes the IN instruction. Its counterpart, ZOUT, performs the same
function for the OUT instruction. Use of these nlacros ensures that all
previous INs and OUTs have been completed before beginning a new one.
The macro definitions for ZIN and ZOUT can be found in Appendix D.

18-20 eTOS/Open Programming Practices and Standards - Part II

i--
Receive data

routine to handle receive char available interrupt.
Input:

[DS:BX] - point to FLCB
Output:

None
i--
IsrRxData PROC FAR

MOV
%ZIN
MOV
CMP
JGE
TEST
JNZ
LES
ADD
MOV

DX,WORD PTR[BX+flcbioCommData]
(AL,DX) i receive a char

CX,WORD PTR[BX+flcbiRcvData] icheck for full buffer
CX,WORD PTR[BX+flcbcbRcvMax]
IsrRxData x
fRCVmsg, Offh
IsrRxData_y

iif not full
icheck for end of text

SI,DWORD PTR[BX+flcbpRcvData] iPut data in buffer
SI,CX
ES:BYTE PTR[SI],AL

IsrRxData x:
INC WORn PTR[BX+flcbiRcvData] iincrement buffer pos.

IsrRxData_y:
JMP IsrTxData_O

IsrRxData

ichecks for empty send buffer, returns
iif buffer is not empty

ENDP

Listing 18-5. A Receive Interrupt Service Routine

Raw Communications Interrupt Service Routines

Raw communications interrupt service routines can be written only in
assembly language. Partly because they are in assembly language, and
partly because the operating system does less work dispatching them, they
are much more efficient than mediated interrupt service routines. If it is
worth the extra'work required to use the CommLine interface, it is almost
always worth the extra work to write raw communications ISRs, as well.

In real mode, a raw interrupt handler uses the stack of whatever process
happened to be running when the interrupt occurred. For this reason, raw
interrupts must carefully control their stack depth. A raw interrupt that

Communications Programming 18-21

uses too much stack space can overwrite the memory of any process in the
machine, including the operating system processes. This behavior can be
very hard to trace to its source, because it is so hard to reproduce exactly.

In protected mode, raw interrupt handlers use one of the operating
system's stacks. Therefore, the stack depth restriction is somewhat
relaxed, but raw ISRs should still keep their stack usage to a minimum.

Conditions on Entry. The new Comm Nub saves all the registers before it
passes control to the ISR. In addition, the Comm Nub performs two
other services for the ISR. It loads DS:BX with the pDsBx value that was
specified in the InitCommLine request and it puts the port address of the
channel's control port in DX.

Interrupts must remain disabled throughout a raw interrupt handler's
execution.

Exiting From the Raw ISR. When it transfers control to the ISR, the nub
performs a CALL to the raw ISR. Therefore, the ISR must always exit
with a RET to the nub. The nub then restores all the interrupted
program's registers.

All end-of-interrupt functions are handled by the Comm Nub. The nub
always sends EOI to the serial controller and to the interrupt controller(s).

In addition, the ISR can request the nub to perform a PSend operation for
it by leaving values in certain registers when it exits.

If AX is non-zero when the ISR exits, the Comm Nub performs a
MediateIntHandler call followed by a PSend operation on behalf of the
ISR. For this to occur, the ISR should leave the following values in the
registers listed below:

AX

DS:BX

destination exchange for the PSend operation

value of the pMsg parameter of the PSend operation
(the address of the message)

The ISR should never call MediateIntHandler on its own.

18-22 eTOS/Open Programming Practices and Standards - Part II

Mediated Interrupt Service Routines

Mediated interrupt handlers can be written in higher-level compiled
languages. In general, however, communications ISRs should be raw. If
the extra performance is worth the trouble of using the CommLine
interface, the extra performance gained by using raw ISRs is equally worth
the trouble.

Conditions on Entry. A mediated interrupt procedure takes a single
pointer argument, as described in its function declaration:

void fooISR(Pointer pDsBx);

The pDsBx pointer is the one supplied to InitCommLine. This value is
also placed in DS:BX, as with raw interrupt handlers. In most high-level
languages the contents of BX are irrelevant, but in medium model the
contents of DS can be vital.

Typically, pDsBx is the address of some global variable in the application's
DGroup. However, there is no requirement that this be the case unless
the ISR needs to reference the application's data segment. If a
medium-model mediated interrupt handler references any static variables at
all, pDsBx must be a pointer to something in DGroup so that DS will be
set up correctly.

Exiting From the Mediated ISR. As with raw interrupts, the Comm Nub
performs all EOI processing.

In a mediated ISR you can perform your own PSend operation(s) to wake
up processes. Unlike the case with raw ISRs, there is no way to ask the
Comm Nub to do this for you upon return from a mediated interrupt.

Inside CTOS: A Guide to Performance Enhancement

This section describes what the operating system has to do to support your
interrupt service routines. Familiarity with what is actually going on inside
the operating system can help you write more efficient code.

Communications Programming 18-23

Interrupt Dispatching (The Comm Nub)

The Comm Nub is the operating system's communications interrupt
dispatcher. Because a single hardware interrupt vector supports multiple
channels, which may belong to different applications, the operating system
must be involved in vectoring each hardware interrupt to its proper
interrupt service routine.

Raw Interrupts

The most direct form of vectoring takes place with raw interrupts. With
raw interrupts, the Comm Nub acts simply as a short prologue and
epilogue to the interrupt service routine itself.

The Comm Nub saves the registers, reads the serial controller's status to
determine which channel the interrupt is for and what type of interrupt it
is, and calls the appropriate raw interrupt service routine.

Arguments to the interrupt service routine, and results from it, are passed
in registers.

Upon return from the interrupt service routine, the Comm Nub can wake
up a process (using PSend) for the interrupt service routine if it is
requested to do so. If this is not required, the Comm Nub simply
performs EOI for the serial controller and the interrupt controller(s), then
restores the interrupted process's registers and does an IRET to the
interrupted process.

To write efficient raw interrupt service routines, observe the following
guidelines:

• The overhead of the PSend, which involves a process scheduling and
context switch operation, usually exceeds the overhead of the rest of
the Comm Nub and of the interrupt service routine itself. For this
reason, an interrupt service routine should awaken a process only
when necessary, not on every interrupt.

Thus the interrupt service routine should communicate with the
process associated with it only as much as is absolutely necessary.
For example, the receive interrupt service routine usually has a
multi-character buffer that it fills before waking the process, and the
transmit interrupt service routine has a buffer that it empties.

18-24 eTaS/Open Programming Practices and Standards - Part II

A typical mistake is for a transmit ISR to wake the transmitting
application process (which is waiting for buffer space to become
available) as soon as one byte of space is available in the transmit
buffer. When the buffer is full, this results in a context switch after
each character is sent. A better scheme is to wait until the buffer is
a third or half empty, and refilling the buffer with characters at that
time .

• Code the interrupt service routines as tightly as possible. One of the
ISRs runs every time a character is sent or received, and a few
instructions can make a visible difference in performance at a high
baud rate or when multiple channels are in use simultaneously. Let
the Comm Nub set up DS and BX for you so that the ISR can
quickly locate the data structure that it needs when it services the
interrupt.

• Code the entire ISR in assembly language. Calling procedures
written in higher-level languages from inside a raw ISR may defeat
the benefit of writing a raw ISR in the first place.

Mediated Interrupts

Mediated interrupts suffer the overhead of raw interrupts plus additional
costs, because a mediated interrupt begins its life as a raw interrupt.
Instead of calling a raw interrupt service routine, the Comm Nub calls the
Mediated Interrupt Nub, which switches control to the operating system's
interrupt stack. Then the user's mediated interrupt service routine is
called. Thus, a mediated ISR always runs on the operating system's
interrupt stack, in both real and protected mode.

The costs of writing an interrupt service routine in a higher-level language
should also be considered. Assembly language is usually more efficient.

In addition, mediated interrupt handlers can themselves be interrupted,
because they run with interrupts enabled (unless the ISR explicitly disables
them). This fact can have serious consequences in heavily-loaded systems.
Note however, that another interrupt of the same type (for example,
another communications interrupt) cannot occur until the first interrupt is
completely finished, because end-of-interrupt (EOI) acknowledgment is not
sent to the serial controller and the interrupt controller(s) until the ISR
returns to the Comm Nub.

Communications Programming 18-25

The advantage of having interrupts enabled during mediated ISRs is that
an interrupt of a different type, having a higher hardware priority, can
occur during servicing of a lower-priority interrupt. In this case, the fixed
priority associated with the attachment of peripherals to interrupt levels on
the interrupt controller determines which ISRs can interrupt other ISRs;
eTOS process priority plays no role. This arrangement permits
peripherals with less patience to be serviced during execution of a less
critical ISR and makes it less important to keep such ISRs brief. (Patience
is the amount of time that can safely elapse before a interrupt is serviced
by its ISR.) A communications ISR, for example, can run during
execution of a keyboard or disk ISR. This use of priorities may be
especially important if the disk ISR takes a comparatively long time to
complete.

This benefit is not a good argument for making communications ISRs
mediated, however. Communications ISRs must be brief in order to
sustain high baud rates. Mediated interrupts are more appropriate for
devices that interrupt less frequently, such as DMA devices or the
keyboard.

18-26 eTaS/Open Programming Practices and Standards - Part II

19
Interrupt Handlers

This chapter describes the types of interrupt handlers available under
CTOS, and gives some guidelines for writing each type.

Interrupts and Exceptions

There are several related mechanisms which can interrupt CTOS program
execution. These mechanisms fall into two broad groups: interrupts, and
exceptions.

An interrupt is an asynchronous event, typically triggered by an external
device which needs attention.

An exception is the CPU's response when it detects certain conditions in
the course of executing an individual instruction.

Both interrupts and exceptions cause the processor to suspend the
currently-executing program. The processor then transfers control to a
special routine, written to handle that particular interrupt or exception.

The main difference between an interrupt and an exception is its origin.
An exception is (at least indirectly) software-generated, and can be
reproduced by re-running the program that caused it. An interrupt,
however, is hardware-generated and therefore independent of any
particular program.

Types of Interrupts

True interrupts come in two flavors: maskable and nonmaskable. Both
are caused by external hardware.

Interrupt Handlers 19-1

Maskable interrupts are the most common type of interrupt, and are
generated by the interrupt controller hardware in response to a request
from a peripheral device. Maskable interrupts can be suppressed
temporarily (masked) by software, hence the name.

It is this type of interrupt that most hardware device interrupt handlers
service. For example, when a program installs, an interrupt handler to
process interrupts from a line printer, it services a maskable interrupt.

Nonmaskable interrupts are also generated by the interrupt controller
hardware, but in response to a disastrous hardware event, such as a
memory parity fault. This type of interrupt is handled by the operating
system (generally by crashing the system), and is almost never serviced by
an installed interrupt handler.

Types of Exceptions

Exceptions come in several flavors. The ones that could be useful to an
application programmer are programmed exceptions, faults and traps. All
three are caused by software.

A programmed exception is the result of an explicit software action. For
example, the INT instruction causes a programmed exception. This type
of exception is also sometimes called a pseudo-interrupt or a software
interrupt. These events are actually treated as exceptions by the
processor, though, not as true interrupts. For consistency with other
eTaS documentation, programmed exceptions are called
pseudo-interrupts elsewhere in this manual.

A fault is an exception that is reported before the instruction which
caused the exception. When the processor reports a fault, it has detected
a problem either before or during execution of the offending instruction.
The processor restores itself to the state it was in before the instruction,
so that the instruction can be restarted if desired. An example of a fault
is the General Protection fault, wherein the processor detects that a
program is trying to load an illegal value into a segment register.

A trap is an exception that is reported immediately after the instruction
which caused the exception. Because it is reported after the instruction
executed, it is not possible for the processor to restore itself to a previous
state. An example of a trap is the Overflow exception, which can be

19-2 eTaS/Open Programming Practices and Standards - Part II

caused when the product of an addition instruction overflows the register
that should contain it.

When to Use an Interrupt or Exception Handler

Interrupt handlers and exception handlers should be used frugally. There
are few circumstances that truly require using one, and their use should be
limited to those circumstances. Some of the uses for interrupt and
exception handlers are:

• Low-level communication with peripheral devices

• Special fault-handling routines in application software

• System-wide fault or pseudo-interrupt handling routines.

Types of Interrupt and Exception Handlers

Not only are there multiple types of interrupts and exceptions, there are
multiple types of interrupt handlers to process them. This section maps
the types of interrupt handler to the appropriate interrupt and exceptions
for them to handle.

In protected mode, the essential dividing line is drawn between interrupts
and exceptions. In eTOS, interrupt handlers which service true hardware
interrupts are called interrupt handlers. Those which service exceptions
are called trap handlers or pseudo-interrupt handlers.

Types of Interrupt Handlers

Two primary types of hardware interrupt handlers can be installed: raw
and mediated. Both are installed by a call to the SetIntHandler
procedure. The program specifies which type of interrupt handler it is
installing when it calls SetlntHandler.

Any interrupt handler which is installed using SetlntHandler is global in
scope. That is, it services all occurrences of its interrupt throughout the
system, no matter what their source.

Interrupt Handlers 19-3

Only those interrupts which were defined to CTOS at operating system
generation (SYSGEN) can be serviced by interrupt handlers. If you want
to establish a routine to handle an interrupt that was previously undefined
to CTOS, you must make it an exception handler. See the description of
"low memory allocation" in your operating system documentation to
determine which interrupts are defined in your system.

Raw Interrupt Handlers

A raw interrupt handler is a traditional-style interrupt handler, and should
be written in assembly language. Interrupts are disabled when a raw
interrupt handler receives control, and should remain disabled throughout
the interrupt handler's execution.

The only registers that are defined on entry to a raw interrupt handler are
CS, IP and DS. In real mode, all other registers must be saved before
they are used. In protected mode, the registers need not be saved,
because the processor saves them when it switches context to the interrupt
handler.

A raw interrupt handler must also perform any needed end-of-interrupt
processing, such as resetting the programmable interrupt controller and
the device that requested service. Also, a raw interrupt handler must
return using an interrupt-return (IRET) instruction, instead of procedural­
return (RET) instruction.

A raw interrupt handler can make only one operating system call,
MediateIntHandler. This call converts the interrupt handler to the
mediated type. After a raw interrupt handler calls MediateIntHandler, it
must follow the guidelines for mediated interrupt handlers.

Mediated Interrupt Handlers

A mediated interrupt handler is, as its name implies, mediated by the
operating system. When a mediated interrupt handler receives control,
interrupts are enabled, and the contents of all registers have been saved
by the operating system.

Mediated interrupt handlers can be written in a high-level language and
can make operating system calls. They should still be kept as brief as
possible, though. Also, because interrupts are enabled, mediated

19-4 eTOS/Open Programming Practices and Standards - Part II

interrupt handlers can be interrupted. This fact should be kept in mind
when writing them.

On exit from a mediated interrupt handler, the operating system restores
the contents of all registers and sends an end-of-interrupt signal (EOI) to
the programmable interrupt controller. However, if the interrupt handler
controls a device, it must send any required end-of interrupt signal to that
device before exiting.

A mediated interrupt handler returns using a procedural-return (RET)
instruction. This allows a mediated interrupt handler to be a standard
high-level language procedure.

Communications Interrupt Handlers

The interrupt handlers used for synchronous communications are a special
case, and are not covered in this chapter. Communications interrupt
handlers are special because all serial port interrupts are first routed
through the operating system's Comm Nub. The Comm Nub performs
some setup before transferring control to the interrupt handler, then
performs some cleanup and EOI processing after the interrupt handler
returns.

For detailed information on communications interrupt handlers, see
Chapter 18, "Communications Programming."

Types of Exception Handlers

An exception handler can be considered either a trap handler or a
pseudo-interrupt handler. Whether a given piece of code is considered a
trap handler or a pseudo-interrupt handler depends mainly on the event
that causes it to execute.

Trap Handlers and Pseudo-Interrupt Handlers

If a program deliberately executed the code (by calling the INT n
instruction, for example), the code is a pseudo-interrupt handler. If a
program accidentally executed the code (by loading an invalid segment
descriptor and causing a GP fault, for example), the code is a trap
handler.

Interrupt Handlers 19-5

For the rest of this chapter, the term exception handler refers to both trap
handlers and pseudo-interrupt handlers.

Exception handlers are installed using the TrapHandler operations,
SetTrapHandler, SetDefaultTrapHandler, and Set386TrapHancUer. Each
of these operations is described in the CTOS/ Open Application

. Programming Interface Specification. Most set a local exception handler,
which only traps those faults and/or pseudo-interrupts generated in its
partition. SetDefaultTrapHandler, however, establishes a global trap
handler which processes all traps of a given type, no matter what their
source.

State of the System on Entry to an Exception Handler

On entry, exception handlers encounter conditions similar to those for
raw interrupt handlers, but with two important differences.

First, on entry to an exception handler interrupts are enabled. This
means that exception handlers can make calls to the operating system. It
also means that exception handlers must be reentrant, because the same
trap or pseudo-interrupt could occur while the exception handler is
processing a previous one.

Second, the contents of all registers other than CS and IP are undefined,
and must be saved before use. Exception handlers use the interrupted
program's stack. The operating system does not provide a stack for their
use. Note also that while the operating system sets up DS for a raw
interrupt handler, it does not do so for an exception handler. This
requires virtually all exception handlers to contain at least some assembly
language.

System Pseudo-Interrupt Handlers

Certain commonly-used exceptions have additional support in the
operating system. For example, if a program needs to use the
programmable interval timer (PIT), it sets up a pseudo-interrupt handler
to process timer pseudo-interrupts.

The entry conditions for a system pseudo-interrupt handler are identical to
those for a mediated hardware interrupt handler.

19-6 CTOS/Open Programming Practices and Standards - Part II

Writing Raw Interrupt Handlers

The following conditions apply to all raw interrupt handlers:

1. In real mode, the interrupt handler must save all registers before
using them. In protected mode, this requirement does not apply.

2. On entry, DS is set to the value requested on the SetIntHandler call.
The contents of ES are undefined.

3. On entry, the stack may have either of two values.

In real mode, the interrupt handler uses the interrupted process's
stack. It should therefore keep its stack use to an absolute
minimum.

In protected mode, the interrupt handler uses one of the operating
system's stacks, but its stack use should still be kept low.

Note that in a raw interrupt handler, SS never equals DS.

4. On entry, interrupts are disabled. They must remain disabled
throughout the execution of the interrupt handler.

5. The interrupt handler can make no operating system calls other than
MediateIntHandler, which converts the raw interrupt handler to a
mediated interrupt handler.

6. The interrupt handler must send a Non-Specific End-of-Interrupt
signal to one or both programmable interrupt controllers. It must
also perfornl any end-of-interrupt processing required by the device it
serves.

7. Raw interrupt handlers must restore any saved registers, then exit
using the IRET instruction.

8. In protected mode, the IRET instruction must be followed
immediately by a JMP to the beginning of the interrupt handler.

It is rarely advisable to write a raw interrupt handler. The performance
improvement, especially in protected mode, can be negligible and the
difficulty in writing one can be substantial. When you need a
high-performance interrupt handler, you should usually use a mediated
interrupt handler written in assembly language.

Interrupt FIandlers 19-7

If a particular situation absolutely requires the use of a raw interrupt
handler, the best strategy is usually first to perform the work that required
the handler to be raw, then to call MediateIntHandler. This forces the
operating system to reset the programmable interrupt controller when the
interrupt handler exits, freeing the programmer from responsibility for
this hardware-dependent task.

Writing Mediated Interrupt Handlers

Mediated interrupt handlers are the preferred method for processing
hardware interrupts. In protected mode, the overhead imposed by using a
mediated interrupt handler instead of a raw one is approximately two
machine instructions. In real mode, the overhead is somewhat larger.

The following conditions apply to all mediated interrupt handlers:

1. The operating system saves all registers before passing control to the
interrupt handler.

2. On entry, DS is set to the value requested on the SetIntHandler call.
The contents of ES are undefined.

3. The interrupt handler uses one of the operating system's stacks, but
its stack use should still be kept low. Note that SS never equals DS.

4. On entry, interrupts are enabled. They should generally remain
enabled throughout the execution of the interrupt handler, but they
can be disabled briefly to protect critical sections.

5. The interrupt handler can make operating system calls. It should
usually restrict itself to PSend, SetTimer Int and ResetTimer Int,
however.

6. If the interrupt handler was installed with fDeviceInt equal to TRUE
(OxFF), the operating system performs the end-of-interrupt processing
for the programmable interrupt controller.

7. The interrupt handler must perform any end-of-interrupt processing
required by the device it serves.

8. Mediated interrupt handlers should exit using the RET instruction.
The operating system restores the previous contents of all registers
after the interrupt handler exits.

19-8 eTOS/Open Programming Practices and Standards - Part II

When writing a mediated interrupt handler in a high level language, you
can usually just make the interrupt handler a procedure that takes no
parameters, and returns nothing to the caller.

However, in some models of compilation (particularly the Medium
model), some compilers may assume that DS and SS are equal. Acting
on that assumption usually causes a protection fault. If this problem
occurs, you can usually remedy it by changing the way the program
references the offending variable. See your compiler documentation for
more information on the compiler you use.

Writing System Pseudo-Interrupt Handlers

All system pseudo-interrupt handlers are of the mediated type. See the
preceding section for information about mediated interrupt handlers in
general. For an example of a system pseudo-interrupt handler, see Listing
15-7 "A Timer Interrupt Handler."

Writing Exception Handlers

Exception handlers are usually used to invoke a cleanup routine when a
program encounters a fatal error, such as a GP fault. For example, the
CTOS Editor uses an exception handler to save its recovery typescript file
when it encounters a GP fault. See "Trapping Protection Faults" in
Chapter 3 for an example of a GP fault handler.

The following conditions apply to all exception handlers:

1. The exception handler must always save all registers before using
them. This restriction applies in both real and protected mode.

2. On entry, the contents of all registers except CS and IP are
undefined.

3. On entry, the stack segment and stack pointer are those of the
interrupted program. Exception handlers use the stack of the
interrupted program, and should therefore keep their stack use to an
absolute minitnum.

4. On entry, interrupts are enabled. The exception handler can disable
them briefly to protect critical sections.

Interrupt Handlers 19-9

5. The exception handler can make operating system calls, but care
should be taken not to usc too much stack space.

6. There is no end-of-interrupt signal associated with a trap. Trap
handlers do not need to perform any special tasks to indicate
completion of their work.

7. Exception handlers must restore any saved registers, then exit using
the IRET instruction.

8. Unlike raw interrupt handlers, exception handlers do not need to
follow the IRET with a JMP.

When an exception handler is contained within a program, all these
restrictions still apply, but the programmer has more control over the
environment the exception handler inherits. For example, if an exception
handler uses a lot of stack space, the programmer can increase the
program's stack size so that the exception handler is sure to have enough.

Listing 19-1 shows a useful trick to use when exception handlers are
contained within a program. The assembly language part of the exception
handler is just a stub which saves all registers and then transfers control
to a high-level language procedure, MyTrapHandler. That procedure can
then do whatever it wants. Remember, though, that exception handlers
should be reentrant.

iA trap handler. Needs underbars for C language.
_asmTrapHandler segment word 'code'
assume cs: _asmTrapHandler
public asmTrapHandler
asmTrapHandler proc far

pusha
push ds
push es
mov ax,DGROUP
mov ds,ax
call TrapHandler
pop es
pop ds
popa
iret

asmTrapHandler endp
_asmTrapHandler ends

Listing 19-1. An Assembly Language Stub for an Exception Handler

19-10 eTOS/Open Programming Practices and Standards - Part II

Writing 80386 Exception Handlers

The Set386TrapHandler creates an 80386-only exception handler. The
normal style of exception handler works on an 80386 processor, but an
80386-only exception handler has access to more information about the
interrupted program.

A program should never install an 80386 exception handler unless it is
running on an 80386 processor. Any program that uses an 80386
exception handler should be. labelled as running only on 80386-based
workstations.

An 80386 exception handler is almost identical to a standard (80286) one.
The difference is that while the operating system pushes 16-bit values for
the interrupted program's CS, IP and flags on the stack for a standard
exception handler, it pushes 32-bit values for an 80386 exception handler.
This allows the exception handler to gain access to the upper 16 bits of
the 80386 flags register.

When you write an 80386 exception handler, you must make sure that the
handler executes a 32-bit return, instead of the normal 16-bit return.
Otherwise, the operating system will pop only half of the interrupted
program's CS, IP and flags information, leaving three extra words on the
program's stack. This will cause the program to fail at some later point in
its execution.

Listing 19-2 shows two assembly-language stubs for an 80386 exception
handler, one for an assembler that understands 80386 instructions, the
other for an assembler that does not.

;386 trap handlers. Underbars are for C language
_asmTrapHandler386 segment word 'code'
assume cs: _asmTrapHandler386

public asmTrapHandler386
asmTrapHandler386 proc far

pusha
push ds
push es
mov ax,DGROUP
mov ds,ax
call TrapHandler386
pop es

continued ...

Interrupt Handlers 19-11

pop ds
popa
Only code one of the two choices below
1. Use the 386 32-bit return instruction, or
iretd

2. Set an instruction prefix to force a 32-bit return
db 66h
iret

i Normal segment and procedure end stuff
asmTrapHandler386 endp
_asmTrapHandler386 ends

Listing 19-2. An Assembly Language Stub for an 80386 Exception
Handler

19-12 eTOS/ Open Programming Practices and Standards - Part II

20
Inter-Module Communication

This chapter discusses low-level communication with workstation add-on
modules. These modules attach to the workstation expansion bus, called
the X-Bus. The topics addressed in this chapter are of use primarily to
people who build X-Bus modules, but may also be of interest to those who
want to write drivers for existing modules.

This chapter assumes that you are familiar with the NGEN workstation
architecture, and with basic X-Bus concepts. For more information on
these topics, see your hardware and operating system documentation.

Introduction

In general, the only programs that communicate directly with X-Bus
modules are the system services that manage those modules. For
example, the video portion of the operating system manages all
communication between application programs and a workstation's
graphics module, and VoicelData Services manages all communications
between applications and a Voice Processor module.

eTOS provides several mechanisms to assist the builders of X-Bus
modules in writing the system software that manages those modules. The
three most commonly used ones are:

• the X-Bus 1/0 mechanism

• the X-Bus memory window mechanism

• the X-Bus interrupt mechanism

Inter-Module Communication 20-1

The X-Bus I/O mechanism assigns a range of I/O addresses to each
X-Bus module. A program running on the main processor can perform
I/O to a module by reading from (or writing to) the appropriate range of
addresses.

The X-Bus memory window mechanism allows a program to map an
X-Bus module's memory address space to a portion of the main
processor's address space. The program can then access this mapped
X-Bus module memory as if it were physically part of the processor's main
memory. When the program reads or writes to this mapped memory, the
operating system updates the X-Bus module's memory accordingly, and
does so in a way that is transparent to the application.

The X-Bus interrupt mechanism allows an X-Bus module to notify the
main processor that it needs attention. The processor can then transfer
control to a custom-written interrupt handler that performs the needed
work.

The X-Bus also supports DMA transfers between X-Bus modules and
main processor memory, and provides a bus-mastering capability for
intelligent X-Bus modules. However, a discussion of these topics is
beyond the scope of this chapter.

More extensive documentation on X-Bus interface software and on X-Bus
hardware module development is available to X-Bus licensees. Contact
Unisys Network Computing Group for more information about X-Bus
licensing.

Information Required

Before a program can communicate with an X-Bus module at all, its
programmer must have some basic information about that module. The
programmer needs:

1. The type code assigned to that X-Bus module.

These one-byte codes are assigned by CTOS/BTOS technical
support, and are unique to each type of hardware module. See your
operating system documentation for a list of currently-defined
module type codes. Or, see the documentation for a particular
module to determine its type code.

20-2 eTOSIOpen Programming Practices and Standards - Part II

2. A list of valid I/O addresses for the module (between 0 and 255)

Each type of module may use any or all of the 256 possible I/O
addresses for an X-Bus module. These addresses are assigned by
the designers of each module. See the documentation for individual
modules to determine which addresses are used by that module, an.4
for what purpose. '

3. The size of the X-Bus memory window supported by the module, if
any.

X-Bus windows come in several sizes. Which size a module uses is
determined by the designers of that module. The possible X-Bus
window sizes are 96K, 224K, and 480K.

These three items of information allow the programmer to establish
communication with the module. What type of communication or
programming is appropriate for the module depends entirely on its
intended use and on its hardware design.

Performing 1/0 to X-Bus Modules

Performing I/O is the simplest method of communicating with an X-Bus
module. It is also a useful mechanism for transferring small chunks of
information between a module and its driver program.

The X-Bus 1/0 Base Address

Each X-Bus module has 256 I/O port addresses available to it. A
program can address anyone of these addresses by adding the desired
port address number (0 - 255) with an II 0 base address for the module.
These two numbers together uniquely specify the port address which the
program wants to access.

The I/O base address is a number that defines the range of addresses for
an X-Bus module in a given position on the X-Bus. I/O base addresses
are assigned to modules from left to right, starting at 256 (100h) and
incrementing by 256 (100h). So, the first module (immediately to the right
of the main processor) has an I/O base address of 100h, the next module
has an I/O base address of 200h, and so on.

Inter-Module Communication 20-3

So, if a program wants to read port 6 from the second module on the
X-Bus, it reads port 206h.

You may wonder at this point how the program discovers the position of
the module it needs to address. The operating system provides a
mechanism, QueryModulePosition, that automatically obtains the position
of a given module type.

Determining a Module's 110 Base Address

To determine the base address for an X-Bus module in a particular
system, the programmer must first have a way to find that module's
position on the X-Bus.

The following code fragment gets the position of an imaginary Foo module
using the Foo module's type code, then calculates the 1/0 base address
for the module.

/* Find the position of a module with the right type code
*/
erc = QueryModulePosition(&iPosition, 2, FOOTYPE, 0);
if(erc == 35) { /* no such module */

printf("\nNo Foo module found.");
ErrorExit(erc);
}

else
CheckErc(erc);

/* figure the base address */
iBaseAddress = (iPosition-l) * OxlOO;

Listing 20-1. Calculating an X-Bus Module's Base Address

Performing the 110

Once the I/O base address for a module for a module has been
calculated, the program can perform 1/0 to the module using the
processor's IN and OUT instructions. The 1/0 port number used should
be the module's base address plus the desired I/O port number. The
following code fragment shows an example of reading from the Faa
module's 1/0 space.

20-4 eTOSIOpen Programming Practices and Standards - Part II

/* Read a byte from the X-Bus module by adding the module
port number to the base address

*/
bWhatlslt = Lockln(iBaseAddress+iXBPortIWant);

Listing 20-2. Performing 110 to an X-Bus Module

Accessing Memory in X-Bus Modules

Accessing memory in X-Bus modules via an X-Bus window allows a
program to transfer large amounts of data to and from the module
quickly, with a minimum of effort.

Of course, the module must be designed to support an X-Bus window
before a program can use one with it.

Setting Up an X-Bus Window

Setting up an X-Bus window requires that the programmer know three
things: the module type code, the window size supported by the module,
and the I/O port which controls the module's window mapping register.

The operating system uses the module's window mapping register to make
that module's window uniquely addressable on the X-Bus. Which port ID
in an X-Bus module controls its window mapping register is determined by
the module's designers.

The following code fragment establishes an X-Bus window. It assumes
that the type code, window size, and window mapping control port have
been previously defined.

/* array of pointers to 64K chunks of X-Bus window
ie 8 64K chunks (Sl2K total) for a 480K window.

*/
Pointer rgpWindowSegs[CWINDOWSEGS];
Word srgpWindowSegs = CWINDOWSEGS * sizeof(Pointer);
/* wEAR is top bits of X-Bus window address. Only needed

for ISRs.
*/
Word wEAR = 0;

continued ...

Inter-Module Communication 20-5

/* Establish an X-Bus window with our Foo module */
CheckErc(MapXBusWindowLarge(FOOTYPE, 1, &rgpWindowSegs,

srgpWindowSegs, &cWindowSegsRet, FOOWINDOWSIZE,
&wEAR, FOOWINDOWMAPPORT»;

if(cWindowSegsRet != CWINDOWSEGS) {
printf("\nUnexpected number of window segments");
exi t () ;
)

Listing 20-3. Setting Up an X-Bus Window

Reading and Writing to Module Memory

Once the X-Bus window has been set up, that memory can be read and
written as if it resided in main processor memory. For example, if the
window was initialized as shown in the example above, the program could
then execute the following instructions:

pFirstWindowSeg = rgpWindowSegs[O]; /
/* store a value in X-Bus memory */
*pFirstWindowSeg = 5;

Servicing X-Bus Module Interrupts

Many X-Bus modules incorporate microprocessors into their design,
allowing them to perform certain functions independently of the main
processor. These modules usually communicate with their control
software on the main processor by means of interrupts.

Three X-Bus interrupts are available: XINTO, XINTl, and XINT4.
XINTO and XINTI are usually used by disk drive modules. The one most
commonly used by third-party module designers is XINT4. This interrupt
is multiplexed by the operating system among all programs that request to
service it. This allows any number of modules to use XINT4 on the same
computer system.

20-6 eTOS/ Open Programming Practices and Standards - Part II

The XINT4 mechanism requires a system service called the X-Bus
Interface (XBIF) service. The XBIF service implements a round-robin
polling scheme for all XINT4 interrupt handlers. It also performs
additional, operating-system-related X-Bus management services.

The Elements of Your Program

Generally, a program that makes use of the X-Bus interrupt mechanism
must do three things:

1. Initialize the module it controls and install its interrupt handler.

2. Handle the X-Bus interrupts generated by the module, using an
X-Bus interrupt handler.

3. Perform the 'work implied by each interrupt.

Item one should be performed in the program's initialization sequence.

Item two should be performed by a customized interrupt handler, written
for that module.

Item three constitutes the program's main work.

Establishing Communication with an X-Bus Module

Modules that have enough intelligence to generate X-Bus interrupts usually
are also able to access memory on the main processor. This section
assumes that is the case.

The initialization process for modules that cannot access main processor
memory is likely to be similar to the one presented here. The main
difference would be that any control structures would reside in the
module's memory or I/O space.

The operating system provides an area of memory that programs can use
when initializing the modules they control. This area of memory, called
the X-Bus Interface Structure (XBIS), is a 16-byte structure of undefined
contents. A program can gain exclusive access to this structure by calling
the LockXbis procedure. The XBIS is always located at physical address
O:0400h, so that modules can know in advance where to read from during
initialization.

Inter-Module Communication 20-7

In general, the steps to initialize an intelligent module using the XBIS are:

1. Allocate a control structure in the program's memory, which will be
used for communication with the X-Bus module.

2. Install the ISR that will serve the module's interrupts, using
SetXbusMISR.

3. Call LockXbis to reserve the XBIS structure. LockXbis returns a
pointer to the XBIS structure, if it is not currently in use.

4. Place the type code of the module in byte 0 of the XBIS.

5. Call PaFromP to get the physical address of the control structure,
then place the lower-order 24 bits of the physical address in bytes one
to three of the XBIS.

6. Place any other needed information in the XBIS.

7. Output an I/O command to the module, telling it to read the contents
of the XBIS. (The module must know the location of the XBIS and
what to do with its contents. This is up to the module designers.)

8. Query the module's status, and unlock the XBIS if the module read
its contents successfully.

After completion of these steps, the program should be able to
communicate with the module through the shared control structure.

The X-Bus Interrupt Handler

The multiplexed X-Bus interrupt mechanism works in a round-robin
fashion. Each installed X-Bus interrupt handler is called in turn, until one
of them identifies the interrupt as belonging to its module.

All X-Bus multiplexed interrupt handlers should return a boolean status
code. If the current X-Bus interrupt was generated by the module it
controls, the interrupt handler should process the interrupt and return
TRUE (OxFF). If the current interrupt was generated by another module,
the interrupt handler should do nothing, and return FALSE (OxOO).

20-8 eTOS/Open Programming Practices and Standards - Part II

The module must implement a notification mechanism so that its ISR can
determine whether that module generated the interrupt. One common
method is for the module to set or clear a byte in the shared control area
just prior to generating the interrupt. The ISR can then check the status
of this byte to see if its module generated the interrupt.

Note that when this method is used, it is possible that the module set the
status byte and intended to generate an interrupt, but another module
generated an X-Bus interrupt first. This can result in a race condition if
the interrupt handler is improperly designed. The fragment shown in
Listing 20-1 correctly handles this potential exception.

Listing 20-1 shows a code fragment which contains the module­
independent portion of an X-Bus interrupt handler.

Isr_Code SEGMENT PUBLIC 'CODE'

PUBLIC Isr
Isr PROC FAR

ASSUME CS: Isr_Code
ASSUME ES: NOTHING
ASSUME DS: DGroup
ASSUME SS: NOTHING

MOV CL, 0 RETURN FALSE if not for us.

see if module set byte in control structure indicating
it generated an interrupt

MOV BL, OFFh
LOCK XCHG BL, Cstruct intStatus

CMP BL, OFFh -
JE IsrRet ; not for us if status is FF

If it's for us, perform module-specific work

<Module-specific processing>

; Wake up main program when we're done with module.
;
DoWakeup:

PUSH exchange
LEA AX, IsrMsg

continued ...

Inter-Module Communication 20-9

PUSH DS
PUSH AX
CALL PSend
Mav CL, OFFh

IsrRet:

RETURN TRUE

turn off module interrupt and return. Clear isr
even if not for us just in case

Mav DX, IoPort
IN AL, DX
MaV AX, CX
RET

Isr ENDP
Isr Code ENDS

END

Listing 20-4. Skeleton of an X-Bus Multiplexed Interrupt Service
Routine

20-10 eTOS/Open Programming Practices and Standards - Part II

Appendixes

A
Accessing eTOS Operations From

Assembly Language

This appendix describes (1) accessing eTOS operations from programs
written in assembly language and (2) the conventions for argument-passing,
register usage, and segments, classes, and groups. Assembly language
examples illustrate both operating system access and the conventions.

Argument Passing

The operating system and object module procedures (such as byte streams)
deal with data items and structures of many different sizes ranging from
single-byte items, such as Boolean flags, to multibyte structures, such as
request blocks and Byte Stream Work Areas.

Three of these are special: I-byte, 2-byte, and 4-byte data items. Only
these are passed as arguments on the stack or returned as results in the
registers.

When it is necessary to pass a data structure as an argument, the 4-byte
logical memory address of (pointer to) the data structure is used as the
argument.

Note that pointers are arranged in memory with the low-order part, the
offset, at the lower memory address and the high-order part, the segment
base, at the higher memory address. However, the processor architecture
of the workstation is such that stacks grow from high memory addresses
toward low memory addresses. Hence, the high-order part of a pointer is
pushed before the low-order part.

Accessing eTOS Operations From Assembly Language A -1

Also note that byte arguments are pushed on to the stack as words, with
the low-order byte of the word being the argument.

If the argument is Boolean, the convention is to use a byte value of OFFh
for true and 0 for false. This is not simply nonzero or 0, since the actual
test used is to see if the least significant bit is set or clear.

Register Usage

The contents of the registers for the current code segment (CS), data
segment (DS), stack segment (SS), stack pointer (SP), and base pointer
(BP) are preserved across calls: they are the same on return as they were
just prior to the pushing of the first argument onto the stack. It is
assumed that SS and SP point, respectively, to the base of the stack and
the top of the stack, and this stack is used, in general, by the called
service. None of the other registers or the flags is preserved across calls.

If the procedure called is a function (that is, if it returns a value), the
return value is placed in one or more registers, according to the type of
value.

If the value is a byte, it is returned in AL (the low byte of register AX).

If the value is a word (two bytes), it is returned in AX (most of the object
module procedures return a value of type ercType, which is actually a
word).

If the value is a doubleword (a pointer or a logical file address), the most
significant word (or segment part of a pointer) is returned in ES and the
least significant word (or offset of a pointer) is returned in BX.

A - 2 eTOS/ Open Programming Practices and Standards - Appendixes

BP Register

The above conventions place no particular requirement on the contents of
BP. However, the Debugger cannot trace the stack of a procedure being
debugged if BP is not used according to one of the two standard BP usage
conventions.

The most common convention uses BP as a pointer to the stack, just
above the stack space assigned for local variables. All references to
arguments and local variables are then made relative to BP. References to
parameters have a positive offset from BP. References to local variables
have a negative offset from BP. Each procedure has a prologue and an
epilogue that looks like the following:

PUSH
MOV
SUB

MOV
POP
RET

BP
BP, SP
SP, sLocalFrame

SP,BP
BP
sArgumentFrame

The values for sLocalFrame and sArgumentFrame are always even.
sLocalFrame is the number of bytes of local variables, and
sArgumentFrame is the number of bytes pushed on to the stack by the
calling service (each PUSH instruction adds two bytes).

The other convention also uses BP as a pointer to the stack, but just below
the stack space assigned for local variables. All references to arguments
and local variables are then made as positive offsets to BP. Each
procedure has a prologue and an epilogue that looks like the following:

SUB
PUSH
MOV

POP
RET

SP, sLocalFrame
BP
BP, SP

BP
sArgumentFrame + sLocalFrame

Accessing eTaS Operations From Assembly Language A - 3

Segments, Classes, and Groups

Object module procedures assume that the registers SS and DS are set to
DGroup, because all the object modules are compiled as medium model.
The registers are set automatically for a high-level language main program,
when it uses the medium model. However, an assembly language main
program must explicitly set the registers. The program should include
code similar to the following:

EXTRN Exit
PUBLIC Main

Stack SEGMENT STACK 'Stack'
DB sStack DUP (?)

raStackLim LABEL BYTE
Stack ENDS

DGroup GROUP Stack

YourCode SEGMENT
ASSUME CS:YourCode
Main PROC FAR

MOV
MOV
MOV
MOV

CALL
Main ENDP
YourCode ENDS
END Main

AX, DGroup
DS, AX
SS, AX
SP, OFFSET DGroup:raStackLim

Exit

A -4 eTOS/ Open Programming Practices and Standards - Appendixes

The segments included in the group DGroup are

Segment Class

Const Const
Statics Const
Data Data
Stack Stack
Memory Memory

Example Program

The TypeSector program copies the first sector of a file to the video
display, using CTOS file system operations to open and read the file and
SAM (the Sequential Access Method) to write to the video display. The
file specification used is obtained from the Executive. The program
assumes the file name is specified in a form like

Command TypeSector
TypeSector

Fi Ie name J.l.Sal!!mJ..!ILJD1"""e.o,LE.uilLe _____________ _

The TypeSector program calls Error Exit and returns to the Executive if an
error is detected.

The program consists of two modules, TypeSector and TypeArg. The
modules are assembled and linked as follows:

Command Assemble
Assemble

Source fi les ..L,r,t:JvD:!fe:....zSBec<.!.!to!.!!r~A:J..is!.LJmCL.-___________ _

Accessing eTOS Operations From Assembly Language A - 5

Command Assemble
Assemble

Source files

Command Link
Link

Object modules TrpeSector. Obi TyveArg.Obj
Run fi Ie ..4..T.,.Lrp~e~S~e~cuto~r R..l..!lollm.!:-____________ _

;TypeSector.Asm

;Public and external declarations.

Public Main
EXTRN RgParam:FAR, OpenFile:Far, Read:FAR
EXTRN WriteByte:FAR, WriteBSRecord:FAR, BSVid:Byte
EXTRN TypeArg:FAR, CloseFile:Far
EXTRN Exit:FAR, ErrorExit:FAR

;Segrnent declarations.

;All Segments used are mentioned in the order they
;are linked.

TypeCode SEGMENT PUBLIC 'Code'
TypeCode ENDS

Const SEGMENT PUBLIC 'Const'
Const ENDS

Data SEGMENT PUBLIC 'Data'
Data ENDS

Stack SEGMENT STACK 'Stack'
Stack ENDS

A -6 eTOS/Open Programming Practices and Standards - Appendixes

;Group the segments together for compatibility
;with Convergent object modules.

DGroup GROUP Const, Data, Stack

;Stack declaration.

iDeclare 200h bytes (IOOh words) in this module.
iSee the Linker Librarian Manual for combining
istack segments in different modules.
iraStackLim is placed so that the stack is the
isize of the sum of all stack declarations.

Stack SEGMENT
DW lOOh DUP (?)
raStackLim LABEL BYTE
Stack ENDS

;Data declarations.

iAII of the variables used in this module are
ideclared here.

Data SEGMENT
sDataRet DW ?

sdRet DB 6 DUP (?)

This is the variable
that the the CTOS Read
calls and the byte
stream WriteBSRecord
uses to fill in the
actual count of bytes
read.

This is the structure
used to obtain
pararmeters from the
Executive. The sdRet
structure is defined as
a pointer (four bytes)
followed by a count
(two bytes.)

Accessing eTaS Operations From Assembly Language A -7

fh DW ?

EVEN
rgBuf DB 512 Dup (?)

DATA ENDS

File handle for the
source file

Word-aligned input
buffer.

;Macro definition for checking errors.

A procedure of ErcType returns the erc in
register AX. If AX is nonzero then simply call
ErrorExit.

$SAVE NOGEN
%*DEFINE (CheckErc)LOCAL ok (

AND
JE
PUSH
CALL

%ok:
)

%RESTORE

;Main code segment follows.

TypeCode SEGMENT
ASSUME CS: TypeCode
Main PROC FAR

AX, AX
%ok
AX
ErrorExit

A - 8 eTOS/ Open Programming Practices and Standards - Appendixes

Initialization.

Set the segment registers (SS, OS) and stack.
Since the CPU chip disables interrupts for one
instruction following a move to a segment
register, there is no problem initializing the
stack pointer (SP).

Since the segment registers SS and OS are being
initialized to OGroup, OGroup must be explicitly
specified when referring to the offset of a
variable. If this is not done, then the offset
of a variable is from the start of the segment
in which it is declared, not from the start of
the group of segments.

MOV AX, OGroup Set SS
MOV SS, AX

ASSUME SS:OGroup
MOV SP, OFFSET OGroup:raStackLim
mov BP, SP Set BP for

compatibility with
Convergent object
modules.

PUSH SS
POP OS Set OS.

ASSUME OS:OGroup

Type the parameter to the video display using
TypeArg.

erc := TypeArg (iParam, jParam)i

MOV AX, 1 iParam (1) .
PUSH AX

XOR AX, AX jParam (0).
PUSH AX

CALL TypeArg
%CheckErc

Accessing eTOS Operations From Assembly Language A - 9

Type a ":" and a new line character.

erc := WriteByte (pBSWA,B);

PUSH DS ; pBSWA (pBSVid) .
MOV AX, OFFSET DGroup:bsVid
PUSH AX

MOV AL, , : ' ; B (:) .
PUSH AX

CALL WriteByte
%CheckErc
PUSH DS ; pBSWA (pBsVid) .
MOV AX, OFFSET DGroup:bsVid
PUSH AX

MOV AL, OAh ; b (new
PUSH AX

CALL WriteByte
%CheckErc

Get the file name from the Executive.
(parameter 1, subparameter 0)

line) .

erc := RgParam (iParam, jParam, pSdRet)

MOV AX, 1 iParam (1).
PUSH AX

XOR AX, AX jParam (0) .

PUSH AX

PUSH DS pSdRet.
MOV AX, OFFSET DGroup:SdRet
PUSH AX

CALL RgParam
%CheckErc

Open the file for mode read.

erc := OpenFile (pFh, pbFileSpec, cbFileSpec,
pbPassword, cbPassword, mode);

A -10 eTaS/Open Programming Practices and Standards - Appendixes

PUSH DS i pFh
MOV AX, OFFSET DGroup:fh
PUSH AX
PUSH WORD PTR sdRet + 2 pbFileSpee
PUSH WORD PTR sdRet
PUSH WORD PTR sdRet + 4 ebFileSpee
XOR AX, AX i pbPassword (null).
PUSH AX
PUSH AX
PUSH AX ebPassword (0) •

MOV AX, 'mr' modeRead
PUSH AX
CALL OpenFile
%CheekEre

iRead in the first sector (512 bytes).

ere .= Read (fh, pBufferRet, sBufferMax,
lfa, psDataREt)i

PUSH fh fh.
PUSH DS pBufferRet.
MOV AX, OFFSET DGroup:rgBuf
PUSH AX
MOV AX, 512 sBufferMax.
PUSH AX
XOR AX, AX lfa (0) .

PUSH AX
PUSH AX
PUSH DS i psDataRet.
MOV AX, OFFSET DGroup:sDataRet
PUSH AX
CALL Read
%CheekEre

Accessing eTOS Operations From Assembly Language A -11

;write the buffer to the video display.

erc := WriteBsRecord (pBSWA, pb, cb, pcbRet);

PUSH DS ; pBSWA (pBsVid).
MOV AX, OFFSET DGroup:bsVid
PUSH AX
PUSH DS
MOV AX, OFFSET DGroup:rgBuf
PUSH AX
PUSH sDataRet ;cb
MOV AX, OFFSET DGroup:sDataRet
PUSH DS
PUSH AX
CALL WriteBSRecord
%CheckErc

Return to the Executive.

CALL Exit

Main ENDP End of Main.

TypeCode ENDS End of segment.

END Main End of module (specify
;starting point as Main.)

The TypeArg procedure types a parameter passed from the Executive to
the video display. It is called with two parameters, iParam and jParam,
and is of the type ercType. It can be called from C as follows:

erc = TypeArg (iParam, jParam);

The procedure returns 0 if no errors were encountered; otherwise it
returns the error in register AX.

The procedure is reentrant and uses no static variables.

This is not a main program but a procedure. It is assumed that the
segment registers are properly set before calling this procedure, with DS
and SS set to DGroup.

A -12 eTOS/Open Programming Practices and Standards - Appendixes

;TypeArg.Asm

; Public and external declarations.

PUBLIC TypeArg
EXTRN RgParam:FAR, WriteBSRecord:FAR, BsVid:BYTE

The procedure uses 18 bytes of stack for itself,
not counting calls to other procedures, as
follows:

four bytes for parameters passed to it,
four bytes for the return address of the
calling service

two bytes to store the BP of the calling
service

eight bytes of local variables.

Stack SEGMENT STACK 'Stack'
DB 18 DUP (?)

Stack ENDS
DGroup GROUP Stack

TypeArgCode SEGMENT
ASSUME CS:TypeArgCode, DS:DGroup, ES:NOTHING, SS:Dgroup
TypeArg PROC FAR

; Set the local variables and parameters as EQUs.

SArgFrame EQU 4

SLocalFrame EQU 8

PUSH BP

MOV BP, SP

SUB SP, SLocalFrame

Parameters to argument
are two words (four
bytes) .
Eight bytes of local
variables.

Save the calling
service's BP.
Use BP as a frame
pointer.

Accessing eTOS Operations From Assembly Language A -13

iParam EQU WORD PTR [BP + 8]

jParam EQU WORD PTR [BP + 6]

sdRet EQU BYTE PTR [BP - 6]
pbArg EQU DWORD PTR [BP - 6]
cbArg EQU WORD PTR [BP - 2]

sDataRet EQU WORD PTR [BP - 8]

First parameter on
stack.

Second parameter on
stack

sdRet is a 6 byte
structure consisting
of a pointer (pbArg;
four bytes) and a count
(cbArg; two bytes)
located on the stack at
SS:[BP - 6] to
SS:[BP - 2] .

sDataRet is the count
of bytes actually
written to the video
display, and is
ignored in this
procedure.

erc := RgParam (iParam, jParam, pSdRet);

PUSH
PUSH
LEA
PUSH
PUSH
CALL
AND
JNZ

iParam
jParam
AX, sdRet
SS
AX

RgParam
AX, AX

Finish

iParam.
jParam.
pSdRet.

Check for errors.

A -14 eTOS/ Open Programming Practices and Standards - Appendixes

erc := WriteBsRecord (pBSWA, pb, cb, pcbRet)i

PUSH DS i pBSWA (pBSWA (pBsVid) .
MOV AX, OFFSET DGroup:bsVid
PUSH AX
LES AX, pbArg i

PUSH ES
PUSH AX
PUSH cbArg
LEA AX, sDataRet
PUSH SS
PUSH AX
CALL WriteBsRecord

All done, so return erc in AX.

Finish:

MOV SP,BP

POP BP

RET sArgFrame

TypeArg ENDP
TypeArgCode ENDS
END

pb.

cb.
pcbRet.

Remove the local
variables from the
stack.
Restore the BP of the
calling service.
Return with arguments
(four bytes) removed
from the stack.

Accessing eTOS Operations From Assembly Language A -15

B
NLS Templates

The currently defined formats and default templates, along with a
description, examples, and maximum length, are listed in Figure B-l. The
maximum lengths given refer to the length of the actual date/time string
produced by NlsFormatDateTime, not the format string.

NOTE: When changing the templates and the various strings used to
construct the dates, do not exceed the maximum string length. Allow for
the maximum length when using one of the defined formats.

The following rules summarize how NlsFormatDateTime interprets the
templates below:

1. Text contained within exclamation marks (!) gets expanded
according to the date and time as passed to NlsStdFormatDateTime.
Other text is reproduced. verbatim.

2. Letters expand to attributes of the specified date and time, as
follows:

Letter

a:
d:
h:
m:
n:
0:
s:
t:
w:
y:

Date and Time

am, pm, noon, or midnight
day of the month (numeric)
hour (numeric, 12 hour clock)
minute (numeric)
month of year (alphabetic)
month of year (numeric)
second (numeric)
hour (numeric, 24-hour clock)
day of week (alphabetic)
year (numeric)

NLS Templates B-1

The actual letters may be selected via the NLS data tables. This
provides the ability for application programs to accept template
specifications from users in a natural fashion based on country.

3. The attributes expand to as many character positions as are held by
adjacent identical letters. For example, lyyyyl expands to "1985" and
lyyl expands to "85". Left truncation is used for numeric fields; right
truncation is used for alphabetic fields. By default, template fields
that are longer than the attribute filled in are padded with spaces.
Numbers are padded to the left; strings to the right.

4. Template letters that are capitalized result in capitalization of the
corresponding letters in the expanded string. For example, IAAI
expands to "AM", laal expands to "am", and IAal expands to "Am".

5. An asterisk (*) before a template letter defines a variable format
repetition. The asterisk causes the next format character to be used
repetitively until the entire expansion is complete. For example,
l*dl results in "1" or "12". Also, !*n! results in "september" while
!*N! results in "SEPTEMBER".

6. An asterisk may be preceded by a series of like format characters
(case may differ). IN*n! is an example. This is useful in controlling
the case of the leading character in variable length fields. The
example, !N*n!, would result in "September".

7 . Zeroes before a template letter result in leading zeroes preceding the
significant part of the number. For example, JOdI results in "09" or
"12".

8. The first numeric digit (and first character) within a template field,
such as the digit "2" in !2*wl, causes the selection of a date name
table. In this case, date name table number 2 is selected. This
selection remains in effect until a new table is selected or the
date/name string is complete.

This type of template is used, for example, to select alternate
spellings for the case where the abbreviation for a month or day
name is not merely the left-most letters of the full name. A leading
o is not a table identifier. A template with a leading 0 that is to
result in a string is illegal.

B-2 eTaS/Open Programming Practices and Standards - Appendixes

Templates are processed left to right. The first table (number 1) is
assumed at the start of processing for a template. If a change of
table number is found within a template, it takes effect immediately
and remains in effect until changed or until the end of the template
is reached. Appearance of a numeric digit within a template field
has no effect on formatting. If a template calls for a date name
table that does not exist, the message, "Invalid template index," is
returned to the user.

A small set of options is standardized to handle the varying requirements
of application programs for different types of date and time formats.
These date and time formats are selected by an ID code. ID codes 0
through 32767 are reserved; 32768 through 65535 are available for
definition.

NLS Templates B-3

Description Identifier Default Templates Examples
Maximum

Length

Columnar numeric 0 !oo!/lOdll!Oy! !hh!:!Om!!2*A!
date and time of day

Numeric date and
time of day

!*o!/!Od!/!Oy! !*h!:!Om!!2*A!

Columnar date and 2 INnnl Iddl !yyyyl Ihh!:!Oml 12*AI
time of day

Date and time of day 3 !Nnn! I*dl, Iyyyyl l*h!:IOml 12*AI

7/18/85 9:03AM
10/08/85 11 :13PM

7/18/85 9:03AM
10/08/85 11 :13PM

Jul 1, 1985 9:03 AM
Jul 18, 1985 11 :13 PM

Jul 1, 1985 9:03AM
Jul18,1985 11:13PM

16

16

26

26

Columnar day, date,
and time of day

4 !WwwllNnnllddl, lyyyyllhhl:IOml !2*AI Mon Jul 1,1985 9:03 AM 30
Mon Jul 18, 1985 11 :13 PM

Day, date, and time
of day

5 IWwwl !Nnnl I*d!, !yyyyl !*h!:!Om! !2*AI Mon Jul1, 1985 9:03 AM 30
Mon Jul 18, 1985 11 :13 PM

Columnar 24-hour
time of day*

24-hour
timeof day*

Columnar time
of day

Time of day

6 10tl:IOm!

7 !*t!:IOml

8 !hhl:!Om! !2*AI

9 !"h!:!Oml !2*A!

Columnar numeric 10 1001/lOdll10yl
date

Numeric date 11 l*ol/l*dllIOyl

Time 12 !Ohl:!Oml:IOs!

Temporary file name 13 !Ot!:IOm!:!Osl.tmp
23:03:05.tmp

Long day and date 14 !W*w! !N*n! !*dl, tOy!

Long date 15 !N"n! I"dl, tOy!

Columnal'-date/time 16 !00!/lOd!/lOy!-!Oh!:!Om!:!Os!!2*AI
for file namest

Abbreviated date 17 INnn! I*d! IYYYYI

*For applications that want 24-hour time regardless of country.

23:43
07:00

23:43
7:00

11:43PM
7:00AM

11 :43PM
7:00AM

11/18/85
01/01/01

11/18/85
1/1/01

09:03:05

09:03:05.tmp

Monday June 3, 1985

June 3, 1985

01/01/01-07:09:05AM

Jun 3,1985

tVarious strings are normally appended to construct file names. No spaces should be allowed.

Figure B-1. NLS Templates (Page 1 of 1)

B-4 eTOS/Open Programming Practices and Standards - Appendixes

5

5

8

8

8

8

8

30

45

30

40

30

c
Message File Macro Definitions

To allow added flexibility in outputing messages, the messages in a
message file can contain macros. Message file macros serve as place
holders in a message for data that is to be inserted into the message at run
time.

The macros may be expanded with data supplied by using message file
operations such as ExpandLocalMsg, GetMsg, GetAltMsg, PrintMsg, or
PrintAltMsg or by programs calling such operations.

Macros Not Under Program Control

Macro

%Dn.

Meaning

Insert the workstation user name in the message.
Note that % U expands to NULL if the user
name in the Application System Control Block is
of 0 length.

Insert the system date/time in the message
formatted with template number n.

See Appendix B for the date/time template formats, descriptions, and
examples. The templates are defined in the NlsDateTables.Asm file.

Insert the keycap text string for key cap index
number n into the message.

See the description of GetNlsKeycapText in the CTOS/Open Application
Programming Interface Specification for the key cap index numbers and
their corresponding text strings. Keycap text is defined in the
keycaptexLasm file.

Message File Macro Definitions C-J

Macros Under Program Control

Macro Meaning

Insert the program-supplied parameter number n.
T is a string denoting format options for the
number n.

T can be any of the following values:

Value

Dm

N

H

S

Meaning

date/time (where m is the
template ID code)

unsigned decimal-based
integer

unsigned hexadecimal­
based integer (See format
options below.)

string

If T is not specified, S is the default.

The macro %6D4, for example, means the sixth array element will be
expanded as a date using template ID code 4 in the date/time templates.

See the descriptions of ExpandLocalMsg, GetMsg, GetAltMsg, PrintMsg
and PrintAltMsg in the CTOS/ Open Application Programming Interface
Specification. pRgSd and sRgSd describe the array that you include in
your program for supplying the parameters to be inserted into messages.

Format Options for Macro Option H

The hexadecimal macro option (H) expands the string to a fixed number
of places based on the count of bytes (1, 2, or 4) in the string descriptor
array element. As an example, a value of 100 can return one of three
different strings, depending on the string size, as shown at the top of the
next page.

C - 2 CTOS/ Open Programming Practices and Standards - Appendixes

Value

100

100

100

String Size
(in bytes)

2

4

Returned String

64

0064

00000064

For other format options, use OutputWord or OutputQuad described in
the CTOS/ Open Application Programming Interface Specification.

Message File Macro Definitions C-3

o
Source Code Listings

This appendix contains the source code listings for each of the sample
programs that appear in this manual. Not all the listings in the manual
are part of sample programs. Some are independent code fragments.

In general, the listings are grouped based on the chapter in which they
first appear. For example, if parts of a sample program appear both in
Chapter 2, and in Chapter 7, the listing appears under the heading for
Chapter 2. There is, however, a reference to that listing under the
heading for Chapter 7.

The listings appear in the order in which they are used in a given chapter.
If the first example in a chapter is extracted from Foo.c, then Foo.c
appears first in the listings for that chapter. Foo.c does not reappear
anywhere else in this appendix.

The sample programs in this appendix have been tested and should work
on most hardware-software configurations, if they are compiled and linked
correctly. However, they are not guaranteed to work in any configuration.

Chapter 1

Chapter 1 contains no listings.

Source Code Listings D-1

Chapter 2

The program listings for Chapter 2 are listed in this section. Before each
program is a paragraph which identifies the listings in which portions of it
appear.

BSGeneric.c

This sample program is referenced by Listings 2-1, 2-2, 2-3, and 2-5.

/***/
/* */
/* File Name: BsGeneric.c */
/* Compiler: Metaware C * /
/* Date: 04/27/89 */
/* Author: A. Coleman/J. Crook */
/* */
/* This source file provides examples of byte stream operations. The*/
/* program asks for a byte stream from the user. Once the byte stream*/
/* is opened, the user is asked to enter strings from the keyboard. */
/* Each string is written to the byte stream with an echo of each */
/* character to the video monitor. Entry of strings is completed when*/
/* the user enters a null string (by pressing the Return key). */
/* */
/* If the user specifies a disk byte stream (a file), it is open in */
/* modify mode. Once the user completes the entry of the strings, the*/
/* file is reset and all line feeds are replaced by form feed */
/* characters. */
/* */
/* If the user specifies a video byte stream ([Vid), it is open in */
/* write mode. */
/* */
/* If the user specifies an invalid byte stream, (e.g., [Kbd), an */
/* error is returned. */
/* */
/***/

/* file access constants */
#define WRITEMODE Ox6D77
#define READMODE Ox6D72
#define MODIFYMODE Ox6D6D

/* allocation sizes */
#define STRSIZE 128
#define ALLOC_SIZE OxlOO

/* input characters */
#define LINEFEED OxOA
#define FORMFEED OxOC

/* key definitions */
#define FINISH
#define CANCEL
#define RETURN
#define GO

Ox04
Ox07
OxOA
OxlB

/* 'mw' */
/* 'mr' */
/* 'rom' */

D-2 eTOS/Open Programming Practices and Standards - Appendixes

/* error codes */
Udefine ERCOK OxOO
Udefine ERCEOF OxOl
Udefine ERCOPERATOR Ox04
Udefine ERCNOTIMPLEMENTED Ox07
Udefine ERCINVALIDBSWA Ox915
Udefine ERCBOGUS OxFFFF

Udefine Syslit

/* define CTOS procedures to be used */
Udefine Beep
Udefine CheckErc
Udefine CheckPointBs
Udefine CloseByteStream
Udefine ErrorExit
Udefine GetBsLfa
Udefine NlsClass
Udefine OpenByteStream
Udefine ReadBSRecord
Udefine ReadByte
Udefine SetBsLfa
Udefine WriteBsRecord
Udefine WriteByte

Uinclude <ctoslib.h>
Uinclude <stdlib.h>
Uinclude <string.h>
Uinclude <ctype.h>

/* define the pre-opened byte streams */
extern char bsVid[];
extern char bsKbd[];

/* define my global variables */
char rgbString[STRSIZE]; /* general purpose string */
char MyBSWA [130] ;
int cbString;
Word rgMyBuffer [512] ;

char rgbBsPrompt[] =
"\nType a device or file spec for the Byte stream you want."
"\nPress CANCEL if you make a mistake: ";

char rgbExi t [] =
"\n\nPress GO to confirm FINISH, or CANCEL to continue.";

char rgbInvalidBs [] =
"\n\nBytestream is invalid for output: ";

char rgbPrompt[] =
"\n\nType a character string, then press RETURN: ";

/***/
/* */
/* HandleFinishKey * /
/* */
/* This procedure determines whether the user would like to */
/* discontinue processing input strings. It is called when the */
/* user presses the FINISH key. A GO key causes the program to Exit, */
/* a Cancel returns to the point of invocation of this procedure. */
/* */
/***/

Source Code Listings D-3

HandleFinishKey (char *BSWA)
{
char bIn;
ErcType erc;
Word cbRet;

CheckErc (WriteBsRecord (bsVid, rgbExit, strlen(rgbExit), &cbRet»;
erc = ERCOK;
while (erc == ERCOK)

{
erc = ReadByte (BSWA, &bIn);
switch (erc)

(
case ERCOK: /* user pressed key other than FINISH, CANCEL */
case ERCEOF: /* user pressed FINISH */

if (bIn == GO) ErrorExit (0);
else Beep ();
break;

case ERCOPERATOR: /* user pressed CANCEL key */
return (-1);

default: /* error occurred on read */
ErrorExit (erc);
}

/***/
/* */
/* GetString */
/* */
/* This procedure returns an input string to the caller. The string */
/* will either be the name of the byte stream or the name of an input*/
/* string being written to the byte stream previously opened. */
/* */
/***/

GetString (char *BSWA, char *rgb, Word cbMax)
(
char bIni
char class;
char i = 0;
ErcTypeerc;

/* zero the string */
while «rgb[i] != 0) && (i < cbMax»

rgb[i++] = 0;

/* collect the chars */
i = 0;
while (TRUE)

(
erc = ReadByte (BSWA, &bIn);
if (erc == ERCEOF) HandleFinishKey (BSWA); /* FINISH key */

else if (erc == ERCOPERATOR) return (-1); /* CANCEL key */

else
(
switch (bIn)

D-4 eTOS/Open Programming Practices and Standards - Appendixes

case GO:
case RETURN:

return (i)i
default:
/* check if it's a letter, digit, or keyboard special char */

CheckErc (NlsClass (NULL, bIn, &class»i
if (class <= 2)

{ /* valid character, echo it out */
CheckErc (WriteByte (bsVid, bIn»i
rgb[i] = bIni
if (i < STRSIZE) i++i
}

else Beep ()i /* invalid character entered, don't echo it*/
breaki

} /* end of switch */
/* end of else */

} /* end of while */
return(O)i
}

/***/
/* */
/* ReplaceLineFeeds */
/* */
/* This procedure searches through the open byte stream replacing */
/* each line feed with a form feed */
/* */
/***/

void ReplaceLineFeeds (char *BSWA)
{
char bIni
ErcType erCi
long Lfai

/* flush my buffers */
CheckErc (CheckPointBs (BSWA»i
erc = GetBsLfa (BSWA, &Lfa)i

if (ere == ERCOK)
{ /* it's a file */
CheckErc (SetBsLfa (BSWA, O»i
erc = ReadByte (BSWA, &bIn)i
while (erc ERCOK)

{
if (bIn LINEFEED)

{ /* change this to a form feed just for fun */
CheckErc (GetBsLfa (BSWA, &Lfa»i
CheckErc (SetBsLfa (BSWA, (Lfa - l»)i
CheckErc (WriteByte (BSWA, FORMFEED»i
}

/* get the next character */
erc = ReadByte (BSWA, &bIn)i

else if (erc != ERCINVALIDBSWA) ErrorExit (erc)i /* eat this one */

/* flush the buffer and close the file */
CheckErc (CloseByteStream(BSWA»i
}

Source Code Listings D-5

/***/
/* */
/* GetByteStream */
/* */
/* This procedure asks the user to enter the name of the desired byte*/
/* stream. Once the user enters the string, it used in attempting to*/
/* open the corresponding byte stream in modify mode. If an error */
/* occurs, the same byte stream is opened in write mode. If another */
/* error occurs, it is not a valid byte stream for output and the */
/* user is told so. The procedure then loops back for another name. */
/* */
/***/

void GetByteStream (char *BSWA)
{
ErcType erCi
Word cbReti

do
{
CheckErc (WriteBsRecord (bsVid,rgbBsPrompt,sizeof(rgbBsPrompt),

&cbRet»i
cbString = Getstring(bsKbd, rgbString, STRSIZE)i
if (cbstring > 0)

{
erc = OpenByteStream (BSWA, rgbString, cbString, NULL, 0,

MODI FYMODE, rgMyBuffer, sizeof(rgMyBuffer»i
if (erc == ERCNOTIMPLEMENTED)

{ /* Mode modify not applicable, check write */
erc = OpenByteStream (BSWA, rgbString, cbString, NULL, 0,

WRITEMODE, rgMyBuffer, sizeof(rgMyBuffer»i
if (erc == ERCNOTIMPLEMENTED)

{ /* Mode write not applicable */
CheckErc (WriteBsRecord (bsVid, rgbInvalidBs,

strlen(rgbInvalidBs),&cbRet»i
CheckErc (WriteBsRecord (bsVid, rgbString, cbString,

&cbRet»i
CheckErc (WriteByte (bsVid,LINEFEED»;
erc = ERCBOGUSi/* set bogus error so we can loop back */
}

else CheckErc (erc)i
}

else /* empty string, go get another one */
{
CheckErc (WriteByte (bsVid,LINEFEED»i
erc = ERCBOGUSi /* set bogus error so we can loop back */
}

}
while (erc != O)i /* if they make a mistake, ask again */
}

/***/
/* */
/* main */
/* */
/***/

maine)

D-6 eTOS/Open Programming Practices and Standards - Appendixes

(
Word cbRet;

GetByteStream (MyBSWA);

/* read input with echo, then output it */
/* single RETURN stops the input request */
do

(
CheckErc (WriteBsRecord (bsVid, rgbPrompt, sizeof(rgbPrompt),

&cbRet»;
cbString = Getstring (bsKbd, rgbString, STRSIZE);
if (cbString > 0)

(
Check Ere (WriteByte (MyBSWA, LINEFEED»;
CheckErc (WriteBsRecord (MyBSWA,rgbString,cbString, &cbRet»;
}

}
while (cbString != 0);

ReplaceLineFeeds (MyBSWA);

return(O);
}

BSVidEscape.c

This sample program is referenced by Listing 2-4.

/***/
/* */
/* File Name:BsVidEscape.c */
/* Compiler:Metaware C */
/* Date:04/29/89 */
/* Author:A. Coleman/J. Crook */
/* */
/* This source file provides several examples of video byte stream */
/* operations. The user is asked to enter video escape sequences from*/
/* the keyboard. Each sequence starts with an introductory */
/* character, 'E'. All characters must be separated by a space, and */
/* the end of the escape sequence is indicated by a RETURN key. */
/* */
/* Two video frames are used in this program. Frame 0 (the working */
/* frame) is the same frame as the Executive uses for enabling user */
/* input. This frame is used for managing the user entered video byte*/
/* streams. Frame 1 (the status frame) is the same frame as the */
/* Exeuctive title frame. This frame is used for informing the user */
/* of the action to be taken. */
/* */
/***/

/* define constants
#define WRITEMODE
#define READMODE
#define STRSIZE
#define LINEFEED
#define ESCAPE
#define ZERO

*/
Ox6D77 /*
Ox6D72 /*
128
OxOA
OxFF
o

'mw'
'mr'

*/
*/

Source Code Listings D-7

#define ONE 1

/* escape sequence characters */
#define COLSET 'c'
#define ERASE 'E'
#define FRAME 'F'
#define OFF 'F'
#define PAUSE 'P'
#define REDIRECT 'X'

/* key definitions */
#define FINISH Ox04
#define CANCEL Ox07
#define RETURN OxOA
#define GO OxlB

/* error codes */
#define ERCOK OxOO
#define ERCEOF OxOl
#define ERCOPERATOR Ox04
#define ERCINVALIDVIDESCAPE Ox2336

#define Syslit

/* define CTOS procedures to be used */
#define Beep
#define CheckErc
#define CloseByteStream
#define ErrorExit
#define NlsClass
#define OpenByteStream
#define QueryVidBs
#define ReadBSRecord
#define ReadByte
#define WriteBsRecord
#define WriteByte

#include <ctoslib.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

typedef struct
char nFrame;
char cLines;
char cCols;
char nLine;
char nCol;
char fCurVisible;
char fPause;
char bAttr;
char fLiteral;
char rgbReserved[7];
} VidStatusType;

/* define the pre-opened byte streams */
externcharbsVid[];
externcharbsKbd[];

/* define my global variables */
int cbString;
char rgbString[STRSIZE]; /* general purpose string */

D-8 eTaS/Open Programming Practices and Standards - Appendixes

char rgbEscape[STRSIZE)i
VidStatusTypestrVidStatusi

/* escape sequences */
charescToFrameO [) =[ESCAPE, REDIRECT, ZERO)i
charescToFramel [) -{ ESCAPE, REDIRECT, ONE)i
charescNoPause () =(ESCAPE, PAUSE, OFF);
charescInitcursor [) =(ESCAPE, COLSET, ZERO, ZERO);
charescClearFrame [) =(ESCAPE, ERASE, FRAME);

/* message arrays */
char rgbExi t [) =

"\nPress GO to confirm FINISH, or CANCEL to continue.";
char rgbIntro [) =

"\nTo use this program, type lEI followed by the escape II

"sequence you want. ";
char rgbInvEscape [)

"\nInvalid video escape sequence. ";
char rgbPrompt[] =

"\nType an escape sequence separated by spaces, then press II

"RETURN: II;
char rgbTest []

"*** Testing ***11;

/***/
/* */
/* ClearFrames */
/* */
/* This procedure sets the cursor at the origin and clears the frame.*/
/* */
/***/

ClearFrames ()
{
int i;
Word cbRet;

for (i = 0; i < 2; i++)
{
switch (i)

(/* set the frame number */
case 0:

CheckErc(WriteBsRecord(bsVid,escToFrameO, sizeof(escToFrameO),
&cbRet»;

break;
case 1:

CheckErc(WriteBsRecord(bsVid,escToFramel, sizeof(escToFramel),
&cbRet» i

/* turn off pause */
CheckErc(WriteBsRecord (bsVid, escNoPause, sizeof(escNoPause),

&cbRet»;
break;
]

/* set the cursor at the origin */
CheckErc(WriteBsRecord(bsVid,escInitcursor,sizeof(escInitCursor),

&cbRet»;
/* clear the frame */
CheckErc(WriteBsRecord(bsVid,escClearFrame,sizeof(escClearFrame),

&cbRet»;

Source Code Listings D - 9

return (O)j
}

/***/
/* */
/* HandleFinishKey */
/* */
/* This procedure determines whether the user wants to discontinue */
/* processing input strings. It is called when the user presses the */
/* Finish key. A Go key causes the program to Exit, a Cancel returns*/
/* to the point of invocation of this procedure */
/* */
/***/

HandleFinishKey (char *BSWA)
{
char bInj
ErcType erc j
Word cbRetj

CheckErc (WriteBsRecord (bsVid, rgbExit, strlen(rgbExit), &cbRet»j
erc = ERCOKj
while (erc == ERCOK)

{
erc = ReadByte (BSWA, &bIn)j
switch (erc)

{

case ERCOK: /* user pressed key other than FINISH, CANCEL */
case ERCEOF: /* user pressed FINISH */

if (bIn == GO) ErrorExit (O)j
else CheckErc (Beep (»j
breakj

case ERCOPERATOR: /* user pressed CANCEL key */
return (-1);

default: /* error occurred on read */
ErrorExit (erc)j
}

/*************************************~*******************************/
/* . */
/* GetString */
/* */
/* This procedure returns an input string to the caller. The string */
/* will either be the name of the byte stream or the name of an input*/
/* string being written to the byte stream previously opened. */
/* */
/***/

GetString(char *BSWA, char *rgb, Word cbMax)
{
char
char
char
ErcType

bInj
classj
i = OJ
ercj

/* zero the string */
while «rgb[i} != 0) && (i < cbMax»

rgb[i++] = OJ

/* collect the chars */

D-JO eTOS/Open Programming Practices and Standards - Appendixes

i = 0;
while (TRUE)

(
erc = ReadByte (BSWA, &bln);
if (erc == ERCEOF) HandleFinishKey (BSWA); 1* Finish key *1

else if (erc == ERCOPERATOR) return(-l);

else
(
switch (bIn)

(
case GO:
case RETURN:

return (i);
default:

1* Cancel key *1

1* check for a letter, digit or keyboard special char *1
CheckErc (NlsClass (NULL, bIn, &class»;
if (class (= 2)

(1* valid character, echo it out *1
CheckErc (WriteByte (bsVid, bIn»;
rgb[i] = bIn;
if (i (STRSIZE) i++;
]

else Beep (); 1* invalid char entered, don't echo it *1
break;

} 1* end of switch *1
} 1* end of else *1

} 1* end of while *1
return(O);
}

1***1
1* *1
1* PrintEscape *1
1* *1
1* This procedure reads the video status buffer from QueryVidBs to *1
1* get the current cursor position, saves it, performs the specified *1
1* byte stream operation, and restores the cursor position. *1
1* *1
1***1

PrintEscape (char *rgbEscape, char cbEscape)
(
char
char
ErcType
Word

i;
nCol, nFrame, nLine;
erc;
cbRet;

1* save the current cursor location *1
CheckErc (QueryVidBs (bsVid, &strVidStatus»;
nFrame strVidStatus.nFrame;
nCol strVidStatus.nCol;
nLine strVidStatus.nLine;

1* change to frame 0 (working frame) *1
CheckErc (WriteBsRecord (bsVid, escToFrameO, sizeof(escToFrameO),

&cbRet»;

1* now print out the user entered escape sequence *1
CheckErc (WriteByte (bsVid, ESCAPE»;

Source Code Listings D -11

for (i
(

0; i < cbEscape; i++)

erc writeByte (bsVid, *(rgbEscape+i»;
if (erc == ERCINVALIDVIDESCAPE)

{
/* change to frame 1 (title frame) */
CheckErc(WriteBsRecord(bsVid,escToFramel,sizeof(escToFramel),

&cbRet»;
/* print out error message */
CheckErc (WriteBsRecord (bsVid, rgbInvEscape,

strlen(rgbInvEscape), &cbRet»;
return (-1);
)

/* output the sample string */
CheckErc (WriteBsRecord (bsVid, rgbTest, strlen(rgbTest), &cbRet»;

/* reset the frame just in case, can't use a canned sequence */
rgbEscape[O] ESCAPE;
rgbEscape[l] = REDIRECT;
rgbEscape[2] = nFrame;
CheckErc (WriteBsRecord (bsVid, rgbEscape, 3, &cbRet»;

/* reset the cursor post ion */
rgbEscape[l] = COLSET;
rgbEscape[2] = nCol;
rgbEscape[3) = nLine;
CheckErc (WriteBsRecord (bsVid, rgbEscape, 4, &cbRet»;
return (0);
)

/***/
/* */
/* main */
/* */
/***/

main ()
{
char
char
Word

i, j;
*pstring;
cbRet;

ClearFrames ();
CheckErc (WriteBsRecord(bsVid, rgbIntro, sizeof(rgbIntro), &cbRet»;

/* get escape sequence, do it, ask for a new one */
do

{
i = 0;
j = 0;
CheckErc (WriteBsRecord (bsVid, rgbPrompt, sizeof(rgbPrompt),

&cbRet»;
cbString = Getstring(bsKbd, rgbString, STRSIZE);

if (cbString > 0)
if (rgbString[i] == 'E')

{ /* we have the start of an escape sequence */
i++;
while (rgbString[i] != 0)

{

D-12 eTaS/Open Programming Practices and Standards - Appendixes

if (isalpha (rgbString[i]) != FALSE)
{
rgbEscape[j] = rgbString[i];
i++;
j++;
)

else if (isdigit (rgbString[i]) != FALSE)
{
pString = &(rgbString[i]);
rgbEscape[j] = atoi (pstring);
j++;
while (isdigit (rgbString[i]) != FALSE) i++;
)

else i++;
) /* end while rgbString[i] */

rgbEscape[j] = 0; /* null-terminate it just for fun */
PrintEscape(rgbEscape, j);
) /* end if it starts with E */

else CheckErc (Beep (»;
) /* end if strsize > 0 */

while (cbString != 0);

return(O);
}

FileCalls.c

This sample program is referenced by Listings 2-6 and 2-7.

/***/
/* */
/* File Name:FileCalls.c */
/* Compiler:Metaware C */
/* Date:05/2/89 */
/* Author:A. Coleman */
/* */
/* This source file provides examples of direct file operations. The*/
/* program asks for a file name from the user. Once the file */
/* is opened, the user is asked to enter strings from the keyboard. */
/* Each string is written to the file along with an echo of each */
/* character to the video monitor. Entry of strings is completed when*/
/* the user enters a null string (by pressing the Return key). */
/* */
/* Once the user completes the entry of the strings, all line feed */
/* characters in the file are replaced by form feed characters. */
/* */
/***/

/* file access constants */
#define WRITEMODE Ox6D77 /* 'mw' */
#define READMODE Ox6D72 /* 'mr' */
#define MODIFYMODE Ox6D6D /* 'rom' */

/* allocation sizes */
#define STRSIZE 256
#define ALLOC SIZE OxlOO
#define SMYBUFFER 512

Source Code Listings D-13

#define MYBUFFERMAX 511

/* input characters */
#define LINEFEED OxOA
#define FORMFEED OxOC

/* key definitions */
#define FINISH Ox04
#define CANCEL Ox07
#define RETURN OxOA
#define GO OxlB

/* error codes */
#define ERCOK OxOO
#define ERCEOF OxOl
#define ERCOPERATOR Ox04
#define ERCNOTIMPLEMENTED Ox07
#define ERCNOSUCHFILE OxOcb /* 203 decimal */
#define ERCINVALIDBSWA Ox9l5
#define ERCBOGUS OxFFFF

#define Syslit

/* define CTOS procedures to be used */
#define Beep
#define ChangeFileLength
#define CheckErc
#define CheckPointBs
#define CloseByteStream
#define CloseFile
#define CreateFile
#define ErrorExit
#define GetBsLfa
#define GetFileStatus
#define NlsClass
#define OpenByteStream
#define OpenFile
#define Read
#define ReadBSRecord
#define ReadByte
#define SetBsLfa
#define setFileStatus
#define write
#define WriteBsRecord
#define WriteByte

#include <ctoslib.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

/* define the pre-opened byte streams */
extern char bsVid[]i
extern char bsKbd[]i

/* define my global variables */
charrgbString[STRSIZE]i/* general purpose string */
int cbString i
char rgbMyBuffer [SMYBUFFER] i

char rgbBsPrompt[]
"\nType a file spec for the file you want."

D-14 eTOS/Open Programming Practices and Standards - Appendixes

"\nPress CANCEL if you make a mistake: ";
char rgbExi t [] =

"\n\nPress GO to confirm FINISH, or CANCEL to continue.";
char rgbInvalidBs [] =

"\n\nFilespec is invalid. ";
char rgbPrompt[] =

"\n\nType a character string, then press RETURN: ";
char rgbCancel[] =

"\n\nPress any key to continue, or press CANCEL to exit.";

/***/
/* */
/* HandleFinishKey * /
/* */
/* This procedure determines whether the user would like to quit */
/* processing input strings. It is called when the user presses the */
/* FINISH key. A GO key causes the program to Exit, a Cancel returns*/
/* to the point of invocation of this procedure. */
/* */
/***/

HandleFinishKey (char *BSWA)
[
char bIn;
ErcTypeerc;
Word cbRet;

CheckErc (WriteBsRecord (bsVid, rgbExit, strlen(rgbExit), &cbRet»;
erc = ERCOK;
while (erc == ERCOK)

{
erc = ReadByte (BSWA, &bIn);
switch (erc)

[
case ERCOK: /* user pressed key other than FINISH, CANCEL */
case ERCEOF: /* user pressed FINISH */

if (bIn == GO) ErrorExit (0);
else Beep ();
break;

case ERCOPERATOR: /* user pressed CANCEL key */
return (-1);

default: /* error occurred on read */
ErrorExit (erc);
]

/***/
/* */
/* GetString */
/* */
/* This procedure returns an input string to the caller. The string */
/* will either be the name of the byte stream or the name of an input*/
/* string being written to the byte stream previously opened. */
/* */
/***/

GetString (char *BSWA, char *rgb, Word cbMax)
[
char
char
char

bIn;
class;
i = 0;

Source Code Listings D-15

ErcType erc;

/* zero the string */
while « rgb [iJ ! = 0) && (i < cbMax»

rgb[i++J = OJ

/* collect the chars */
i = 0;
while (TRUE)

{
erc = ReadByte (BSWA, &bIn);
if (erc == ERCEOF) HandleFinishKey (BSWA); /* FINISH key */

else if (erc == ERCOPERATOR) return (-1); /* CANCEL key */

else
{
switch (bIn)

case GO:
case RETURN:

return (i);
default:

/* check for a letter, digit, or keyboard special char */
CheckErc (NlsClass (NULL, bIn, &class»;
if (class <= 2)

{ /* valid character, echo it out */
CheckErc (WriteByte (bsVid, bIn»;
rgb[iJ = bIn;
if (i < STRSIZE) i++;
}

else Beep (); /* invalid char entered, don't echo it */
break;

} /* end of switch */
/* end of else */

} /* end of while */
return(O);
]

/***/
/* */
/* GetFile */
/* */
/* This procedure asks the user to enter the name of the desired file*/
/* Once the user enters the string, it used in attempting to */
/* open the corresponding file in modify mode. */
/* If the user enters a null string, the procedure asks again. */
/* */
/***/

Word GetFile ()
{
ErcType erc;
Word fh = 0;
Word cbRet;
DWord qZero = 0;

do
{
CheckErc (WriteBsRecord (bsVid,rgbBsPrompt,sizeof(rgbBsPrompt),

D-16 eTaS/Open Programming Practices and Standards - Appendixes

&cbRet»i
cbString = Getstring(bsKbd, rgbString, STRSIZE)i
if (cbString > 0)

{
erc=OpenFile(&fh,rgbstring,strlen(rgbString),NULL,O,

MODIFYMODE)i
if(erc == ERCNOSUCHFILE) {

/* create the file if it doesn't exist */
CheckErc(CreateFile(rgbString,strlen(rgbString),NULL,O ,O»i
CheckErc(OpenFile(&fh,rgbString,strlen(rgbString) ,NULL ,0,

else {
CheckErc(erc)i

MODIFYMODE)) i

/* reset file size and EOF pointer */
CheckErc(SetFileStatus(fh, 6, &qZero, sizeof(qZero»)i
CheckErc(ChangeFileLength(fh, qZero))i
}

else /* empty string, go get another one */
{

}

CheckErc (WriteByte (bsVid,LINEFEED»i
erc ERCBOGUSi /* set bogus error so we can loop back */
}

while (erc != O)i /* if they make a mistake, ask again */
return(fh)i
}

/***/
/* store the data */
/* Receives a file handle and a count of bytes. stores that many */
/* bytes at the end of the file associated with the handle. Adds */
/* to the file size to accomodate the new data, and resets the */
/* EOF pointer. */
/***/

void StoreData(Word fhMyHandle, Word cBytes) {
DWord qEOFPtri
DWord lfai
Word sDataReti
/* get current lfa and EOF pointer */
CheckErc(GetFileStatus(fhMyHandle, 0, &lfa, sizeof(lfa»)i
CheckErc(GetFileStatus(fhMyHandle, 6, &qEOFPtr, sizeof(qEOFPtr»)i
/* increase file size */
lfa += 512 i
CheckErc(ChangeFileLength(fhMyHandle, lfa))i
CheckC~c(Write(fhMyHandle,rgbMyBuffer,SMYBUFFER,qEOFPtr,

&sDataRet))i
/* reset EOF pointer */
qEOFPtr += cBytesi
CheckErc(SetFileStatus(fhMyHandle, 6, &qEOFPtr, sizeof(qEOFPtr)))i

/***/
/* */
/* main */
/* */
/***/

main()

Source Code Listings D-17

ErcType
Word
Word
Word
Word
Byte

ercj
cbRetj
fhMyHandlej
iCharCount OJ
iTemp = OJ
bMyCharj

fhMyHandle = GetFile ()j

do {
/* read input with echo, then output it */
/* single RETURN stops the input request */
do

{
CheckErc(WriteBsRecord(bsVid,rgbPrompt,sizeof(rgbPrompt),

&cbRet»j
cbString = GetString (bsKbd, rgbString, STRSIZE)j
if (cbString > 0)

}

{
rgbMyBuffer[iCharCount] = LINEFEEDj
iCharCount++j
for(iTemp=OjiTemp<cbStringjiTemp++)

if(iCharCount == SMYBUFFER) [
StoreData(fhMyHandle, iCharCount)j
iCharCount = OJ
}

rgbMyBuffer[iCharCount] = rgbString[iTemp]j
iCharCount++j
}

while (cbString != O)j

CheckErc(WriteBsRecord(bsVid,rgbCancel,sizeof(rgbCancel),&cbRet»j
erc = ReadByte(bsKbd, &bMyChar)j
if(erc == ERCOPERATOR)

breakj
}
while(TRUE)j

StoreData(fhMyHandle, iCharCount)j
CheckErc(CloseFile(fhMyHandle))j

return(O)j
}

WildCard.c

This sample program is referenced by Listing 2-8.

/***/
/* */
/* File Name:WildCard.c */
/* Compiler:Metaware C */
/* Date:04/30/89 */
/* Author:A. Coleman/J. Crook */
/* */

D-18 eTaS/Open Programming Practices and Standards - Appendixes

/* This program asks for a file specification from the user. If the */
/* file specification contains wild card characters, they are */
/* expanded and the resulting files are displayed to the video. */
/* */
/***/

/* define CTOS calls */
#define Beep
#defineCheckErc
#defineErrorExit
#defineExi t
#defineNlsClass
#defineReadKbd
#defineWildCardInit
#defineWildCardNext
#defineWriteBsRecord
#defineWriteByte
#defineSysLit

#define STRSIZE
#define MEMSI ZE
#define FINISH
#define CANCEL
#define RETURN
#define GO

80
800
Ox04
Ox07
OxOA
OxIB

#define ERCOK 0
#define ERCEOF OxOI
#define ERCOPERATOR Ox07
#define ERCINSUFFMEM Oxl90

#include<ctoslib.h>
#include<stdlib.h>
#include<string.h>

typedef struct { Pointer pbj Word cbj } sdTypej

extern char *bsVidj

char rgbExi t {] =
"\nPress GO to confirm FINISH, or CANCEL to continue."j

char rgbPrompt{] =
"\nType a file specification, then press RETURN: "j

/***/
/* */
/* GetString */
/* */
/* This procedure returns an input string containing the file spec */
/* entered by the user. */
/* */
/***/

GetString(char *rgb)
{
char bInj
char classj
char i = OJ
Word cbRetj

/* zero the string */
while (rgb{i] != 0)

Source Code Listings D-19

rgb[i++] = 0;

/* collect the chars */
i=O;
while (TRUE)

(
CheckErc (ReadKbd (&bIn»;
switch (bIn)

(
case CANCEL:

return (-1);
case FINISH:

CheckErc (WriteBsRecord (&bsVid, rgbExit, strlen(rgbExit),
&cbRet»;

CheckErc (ReadKbd (&bIn»;
if (bIn == GO) ErrorExit (0);
else if (bIn != CANCEL) Beep ();
return (-1);

case GO:
case RETURN:

CheckErc (WriteByte (&bsVid, RETURN»;
return (i);

default:
CheckErc (NlsClass (NULL, bIn, &class));
/* check if it's a letter, digit, or keyboard special char */
if(class <= 2)

(
CheckErc (WriteByte (&bsVid, bIn»;
rgb[i] = bIn;
if (i < STRSIZE) i++;
}

else Beep (); /* invalid character entered, don't echo it */
break;

} /* end of switch */
} /* end of while */

return (0);
}

/***/
/* */
/* ListMatches */
/* */
/* This procedure performs the expansion of the file specification */
/* and lists all files matching the input expression. */
/* */
/***/

ErcType ListMatches (char *pFs)
(
ErcTypeerc = 0;
sdTypesd Fs;
Word *pBuffer;
Word cbRet;

sdFs.pb
sdFs.cb

NULL;
0;

if «pBuffer = malloc (MEMSIZE» == NULL) ErrorExit (ERCINSUFFMEM);

/* initialize the wild card expansion environment */
CheckErc (WildCardInit (pFs, strlen(pFs), pBuffer, MEMSIZE»;

D-20 eTaS/Open Programming Practices and Standards - Appendixes

while (erc == ERCOK)
{
/* get the next file matching the wild carded specification */
erc = wildCardNext (pBuffer, &sdFs);
if (erc == ERCOK)

{
CheckErc (WriteBsRecord (&bsVid, sdFs.pb, sdFs.cb, &cbRet»;
CheckErc (WriteByte (&bsVid, RETURN»;
)

else if (erc == ERCEOF) return(O);
else return (erc);
)

/***/
/* */
/* main */
/* */
/***/

main()
(

char
Word

rgbString[STRSIZE);
cbRet, cbString;

while (TRUE)
{
CheckErc (WriteBsRecord (&bsVid, rgbPrompt, strlen(rgbPrompt),

&cbRet»;
cbString = GetString (rgbstring);
if (cbString != 0)

CheckErc (ListMatches (rgbString»;
else break;
) /* end of while */

return(O);
)

VAMText.c

This sample program is referenced by Listings 2-9 and 2-10.

/***~***********/
/* */
/* File Name:VAMText.C */
/* Compiler:Metaware C */
/* Date:05/04/89 */
/* Author:A. Coleman/J. Crook */
/* */
/* This program asks for a list of strings from the user. Each string*/
/* is added to a linked list. When the user enters a null string, the*/
/* list is printed out in reverse order. */
/* */
/* The main areas to look at in this are the InitVideo routine which */
/* initializes the video environment and the GetString routine which */
/* uses the TextEdit routine for processing user input. */
/* */
/***/

Source Code Listings D-21

/* define constants */
#define STRSIZE20
#define MAXBUFS60 /* enough buffer for 7 lines */

/* Key definitions */
#define HELP OxOO
#define FINISH Ox04
#define CANCEL Ox07
#define RETURN OxOA
#define FI OxlS
#define F2 Oxl6
#define F3 Oxl7
#define F4 OxlS
#define FS Oxl9
#define F6 OxlA
#define GO OxlB
#define F7 OxIC
#define FS OxlD
#define F9 OxlE
#define FlO OxlF
#define ESCAPE OxFF

/* Screen characters */
#define VERTICALBAR Oxl6
#define THINBORDERCHAR OxDA
#define THICKBORDERCHAR OxCE

/* Frame definitions */
#define MAINFRAME 0
#define MSGFRAME 1
#define TITLEFRAME 2
#define FKEYFRAME 3
#define HELPFRAME 4

/* Character-Screen attributes */
#define REFRESH 1
#define HALFBRITEREVERSE S

/* define CTOS procedures to be used */
#define Sysli t

#define Beep
#define CheckErc
#define Delay
#define ErrorExit
#define InitCharMap
#define InitvidFrame
#define PosFrameCursor
#define PutFrameChars
#define PutFrameCharsAndAttrs
#define PutFrameAttrs
#define QueryFrameBounds
#define QueryFrameCharsAndAttrs
#define QueryFrameCursor
#define QueryVidHdw
#define ReadKbd
#define ResetFrame
#define Resetvideo
#define ScrollFrame
#define SetScreenVidAttr
#define TextEdit

D-22 eTOS/Open Programming Practices and Standards - Appendixes

#include <ctoslib.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/* TextEdit buffer type */
typedef struct

{ char _far*prgch;
Word cchMax;
Word cchMac;
Word ichCursor;
TdbType;

/* a linked list to store stuff in */
typedef struct LListType *LListptr;

typedef struct LListType
LListptrnext;
char str[STRSIZE];
LListType;

char
Word
Word
Word
int

str[STRSIZE+I];/* general purpose string */
iCurCol, iCurLine;/* cursor position in frame 0 */
nCols, nLines; /* lines/cols on screen */
sFrameO; /* lines in frame 0 */
strsize;

LListPtrllElement;
LListPtrllRoot;
TdbType textBlock;
TdbType *tbPtr;

/* frame buffers for Help */
Byte pbTextBuf [MAXBUF] ;
Byte pbAttrBuf [MAXBUF] ;

/* arrays */
char rgbOut[80];
char rgbTi tIe [] =

"VAM and VDM Initialization Program";
char rgbFkeys []

FI F2 F3 F4 F5
F6 F7 F8 F9 FlO" ;

char rgbFuncKeyMsg []
"You pressed a function key. Press any key to continue.";

char rgbExi tString [] =
"Press GO to confirm FINISH, or CANCEL to continue. ";

char rgbIntro [] =

"An empty string on input will display all the strings "
"entered to that point.";

char rgbPrompt [] =
"Type some characters, then press RETURN: ";

char rgbContinueMsg [] =

"Press GO to display output, or press CANCEL "
"to enter more input.";

char rgbHelpMsg [] =
"You Pressed the HELP key. Press CANCEL to continue.";

/* forward procedure declarations */
void PrintMsg (char *pMessage);

Source Code Listings D-23

/***/
/* */
/* DisplayHelp */
/* */
/* This procedure displays a help message, when the user responds to */
/* the message, the original screen is restored. */
/* */
/***/

void DisplayHelp()
{
char bIn;
Word sFrameBuf;

sFrameBuf = nCols * 3;
CheckErc (QueryFrameCharsAndAttrs (HELPFRAME, 0, 0, pbTextBuf,

sFrameBuf,pbAttrBuf,sFrameBuf»;
CheckErc (ResetFrame(HELPFRAME»;

/* display the frame border and message */
memset (&rgbOut, THINBORDERCHAR, nCols);
CheckErc (PutFrameChars (HELPFRAME, 0, 0, rgbOut, nCols));
CheckErc (PutFrameChars (HELPFRAME, 0, 2, rgbHelpMsg,

sizeof(rgbHelpMsg»);

CheckErc (ReadKbd (&bIn»;
while (bIn != CANCEL)

{
CheckErc (Beep (»;
CheckErc (ReadKbd (&bIn»;
}

CheckErc (PutFrameCharsAndAttrs (HELPFRAME, 0, 0, pbTextBuf,
sFrameBuf, pbAttrBuf, sFrameBuf));

/***/
/* */
/* DisplaySoftKeys */
/* */
/* This procedure displays the function key menu */
/* */
/***/

void DisplaySoftKeys ()
[
Word cbOut, i;
structFunctionKeyType

[
Byte FKeyStart;
Byte FKeyCount;
} rgCol[} = [[0,23}, {24,3l}, [56,23} };

/* construct the function key display */
for (i = 0; i < 80; i++)

switch (i)
[

case 7 :
case 15:
case 31:
case 39:

D - 24 eTaS/Open Programming Practices and Standards - Appendixes

case 47:
case 63:
case 71:

rgbOut[i] VERTICALBAR;
break;

default:
rgbOut[i] = rgbFkeys[i];
)

/* display the function keys */
cbOut = sizeof (rgbOut);
CheckErc (PutFrameChars (FKEYFRAME, 0, 2, rgbOut, cbOut»;

/* display the frame border */
memset (&rgbOut, THICKBORDERCHAR, cbOut);
CheckErc (PutFrameChars (FKEYFRAME, 0, 0, rgbOut, cbOut»;

for (i = 0; i <= 2; i++)
CheckErc (putFrameAttrs (FKEYFRAME, rgCol[i).FKeyStart, 2,

HALFBRITEREVERSE, rgCol[i] .FKeyCount»;

/***/
/* */
/* Getstring */
/* */
/* This procedure reads a string from the keyboard and echoes it to */
/* one of the video frames. */
/* */
/***/

int Getstring (char *str, int iFrame)
{
char bIn; /* the character */
char i = 0;
ErcTypeerc;

/* set up buffer for TextEdit */
tbPtr = &textBlock;
textBlock.prgch= str;
textBlock.cchMax= STRSIZE;
textBlock.cchMac= 0;
textBlock.ichCursor= 0;

/* initialize string */
while «str[i] != 0) && (i < STRSIZE»

str[i++] = 0;

/* make cursor visible */
CheckErc (PosFrameCursor (iFrame, iCurCol, iCurLine»;

/* get the chars */
while (TRUE)

{
CheckErc (ReadKbd (&bIn»;
switch (bIn)

{
case FINISH:

PrintMsg (rgbExitString);
CheckErc (ReadKbd (&bIn»;

Source Code Listings D - 25

if (bIn == GO)ErrorExit(O);
else PrintMsg (NULL);
break;

case CANCEL:
return(-l);

case GO:
case RETURN:

/* make cursor invisible */
CheckErc (PosFrameCursor (iFrame, ESCAPE, ESCAPE»;
return (textBlock.cchMac);

case HELP:
/* turn off cursor */
CheckErc (PosFrameCursor(iFrame, ESCAPE, ESCAPE»;
DisplayHelp ();
/* turn it back on */

CheckErc(PosFrameCursor(iFrame, (iCurCol+textBlock.ichC ursor),
iCurLine»;

break;
case Fl:
case F2:
case FJ:
case F4:
case F5:
case F6:
case F7:
case F8:
case F9:
case FlO:

/* tell them they pressed a function key */
PrintMsg (rgbFuncKeyMsg);
CheckErc (ReadKbd (&bIn));
PrintMsg (NULL);
break;

default:
/* add the char to the string if it's a valid char */
ere = TextEdit (bIn, tbPtr);
/* beep if it isn't */
if (ere ! = 0)

{
CheckErc (Beep (»;
break;
}

/* display modified TextEdit buffer, and move the cursor */
CheckErc (PutFrameChars (iFrame, iCurCol, iCurLine,

textBlock.prgch, textBlock.cchMax»;
CheckErc (PosFrameCursor(iFrame,(iCurCol+textBlock.ichCursor),

iCurLine)) ;
break;
} /* end of switch */

} /* end of while */
return(O);
}

/***/
/* */
/* InitVideo */
/* */
/* This procedure initializes the video display frames: the main */
/* working frame, the title frame, the message frame and the function*/
/* key frame. */
/* */
/***/

D-26 eTOS/Open Programming Practices and Standards - Appendixes

void Initvideo ()
{
Word
Byte

cb, sMapi /* counter, char map */
rgbVidHdw[31i

/* find out the screen size */
CheckErc (QueryVidHdw (&rgbVidHdw, sizeof(rgbVidHdw»)i
nLines rgbVidHdw[lli
nCols rgbVidHdw[21i

/* reset the screen */
CheckErc (ResetVideo (nCols, nLines, TRUE, Ox20, &SMap»i

/* set the size of frame ° */
sFrameO = nLines - 6i

/* Initialize the frames */
CheckErc (InitVidFrame (MAINFRAME,0,3,nCols,sFrameO,0,

THINBORDERCHAR,O,O,O»i
CheckErc (InitVidFrame (TITLEFRAME,0,0,nCols,3,0,

THICKBORDERCHAR,O,O,O»i
CheckErc (InitVidFrame (MSGFRAME,0,nLines-2,nCols,l,0,0,0,0,0))i
CheckErc (InitVidFrame (FKEYFRAME,0,nLines-3,nCols,3,0,0,0,0,0))i
CheckErc (InitVidFrame (HELPFRAME,0,nLines-6 ,nCols, 3,0,0,0,0,0»i

CheckErc (InitCharMap (0, sMap»i
CheckErc (SetScreenVidAttr (REFRESH, TRUE»i

/* reset the frames */
CheckErc (ResetFrame (MAINFRAME»i
CheckErc (ResetFrame (TITLEFRAME»i
CheckErc (ResetFrame (MSGFRAME»i
CheckErc (ResetFrame (FKEYFRAME»i

/* display the title */
cb = sizeof (rgbTitle)i
CheckErc (PutFrameChars(TITLEFRAME,«nCols-cb)/2),0,rgbTitle,cb»i

/* display the frame border */
cb = sizeof (rgbOut)i
memset (&rgbOut, THINBORDERCHAR, Cb)i
CheckErc (PutFrameChars (TITLEFRAME, 0, 2, rgbOut, Cb»i

/* display the function keys */
DisplaySoftKeys()i
} /* end Ini tVideo* /

/***/
/* */
/* PrintMsg */
/* */
/* This procedure displays a message in the message frame. If the */
/* message pointer is null, the message frame is cleared. */
/* */
/***/

void PrintMsg (char *pMessage)
{
if (pMessage == NULL)

CheckErc (ResetFrame(MSGFRAME))i
else

Source Code Listings D-27

CheckErc(PutFrameChars(MSGFRAME,O,O,pMessage,strlen(pMessage»)i

/***/
/* */
/* PrintLinewithscroll */
/* */
/* This procedure displays a line of text and scrolls the screen if */
/* necessary. */
/* */
/***/

void PrintLineWithScroll (Word iFrame, Word *iCol, Word *iLine,
char *pMsg, Word cbMsg)

WordnCols, nLinesi

/* find out the maximum lines and cols */
CheckErc (QueryFrameBounds (iFrame, &nCols, &nLines»i
nCols--i nLines--i

/* display the message */
CheckErc (PutFrameChars (iFrame, *iCol, *iLine, pMsg, cbMsg»i

/* increment line counter if we're not on last line, else scroll */
if (*iLine < nLines) (*iLine)++i
else CheckErc (ScrollFrame (iFrame, 0, ESCAPE, 1, TRUE»i
}

/***/
/* main */
/***/
main()

{
Word cbPrompti
char bIni

llRoot = NULLi
InitVideo()i

/* display the introduction */
CheckErc (PutFrameChars (MAINFRAME, iCurCol, iCurLine++,

rgbIntro, sizeof(rgbIntro»)i

cbPrompt = strlen (rgbPrompt)i
while (TRUE)

{

/* display the prompt */
CheckErc (PutFrameChars (MAINFRAME, iCurCol, iCurLine,

rgbPrompt, cbPrompt»i

/* put the cursor after the prompt, then get the input string */
iCurCol cbPrompti
strsize = GetString (str, MAINFRAME)i

/* reset cursor and scroll if necessary */
iCurCol = Oi
if (iCurLine < (sFrameO - 1» iCurLine++i
else CheckErc (ScrollFrame (MAINFRAME, 0, OxFF, 1, TRUE»i

/* if the string is not empty */

D-28 eTaS/Open Programming Practices and Standards - Appendixes

if (strsize > 0)
{ /* put it in the linked list */
llElement = malloe (sizeof (LListType»;
strepy (llElement->str, str);
llElement->next = llRoot;
llRoot = llElcment;
}

else
{
PrintMsg (rgbContinueMsg);

while (TRUE)
{
CheekEre (ReadKbd (&bIn»;
if «bIn == GO) I I (bIn == CANCEL»

(
PrintMsg (NULL);
break;
}

else CheekEre (Beep (»;
}

if (bIn == GO) break;
}

/* end of while */

llElement = llRoot;

/* print the strings we got */
while (llElement != NULL)

(
PrintLineWithSeroll(MAINFRAME,&iCurCol,&iCurLine,llElement->str,

strlen (llElement->str»;
llElement = llElement->next;
}

CheekEre (Delay (30»;
return(O);
}

Source Code Listings D-29

Chapter 3

Chapter 3 contains the following listings.

Erc80Handler.c

This sample program is referenced by Listings 3-1 and 3-2.

/***/
/* */
/* File Name:Erc80Handler.c */
/* Compiler:Metaware C */
/* Date:04/30/89 */
/* Author:A. Coleman/J. Crook */
/* */
/* This program is a generic Erc 80 handler. */
/* */
/* Bind this object module with FautlHander.obj and LogMessage.obj to*/
/* create ErcHandler.run. */
/* */
/***/

~define HEX

~define CheckErc
~define Delay

OxlO

~define ErrorExit
~define FatalError
~define FProtectedMode
~define PutPointer
~define SetTrapHandler
~define WriteBsRecord
~define Syslit

~include <stdlib.h>
~include <string.h>
~include <erc.h>
~include <ctoslib.h>

typedef void (*PF) ()i/* pointer to function */

extern LogMessage ()i
extern void _fault_handler ()i/* our assembly function */
extern bsVid[]i

PF p_fault_handler = Oi/* pointer to fault handler */
Pointer BadCSIP = NULLi/* used to store address where fault was */

/***/
/* */
/* set fault_handler */
/* */
/* This procedure is the protection fault handler. The input */
/* parameter is a pointer to the function that handles fault */
/* recovery or exit. * /
/***/

D-30 eTaS/Open Programming Practices and Standards - Appendixes

PF set_fault_handler (PF handler)
{
PF old_handler;
ErcType erc;

/* check to see if we are operating in protected mode */
if «FProtectedMode (» == FALSE) return 0;

/* save old fault handler so we can restore it later */
old_handler = p_fault_handler;
p_fault_handler = handler;

/* set the new handler as the erc 80 handler for this program */
CheckErc (SetTrapHandler (13, (Pointer) _fault_handler»;
return (old_handler);
}

/***/
/* */
/* handle_fault */
/* */
/* This procedure deals with the protection fault. */
/* */
/***/

void handle_fault()
{
Word cb, erc;
char pMsgLog[}
char pMsgVid[]

"Erc 80 (Protection Fault) in ErcHandler.run";
"Bad Pointer at CS: IP: ";

/* tell 'em about it */
CheckErc (WriteBsRecord (bsVid, pMsgVid, strlen (pMsgVid), &cb»;
PutPointer (BadCSIP, HEX);

do { /* keep trying to output the message to the log */
erc = LogMessage (&pMsgLog, strlen(pMsgLog));
if (erc == 290) Delay(l); /* delay then retry */
} while(erc == 290);

/* now exit */
ErrorExit(80);
}

/***/
/* */
/* string_length */
/* */
/* This procedure returns the length of the string input parameter */
/* */
/***/

Word string_length(char *pstr)
{
Wordcb = 0;

while(*pstr 1= 0)
{
pstr++;
cb++;
}

Source Code Listings D-31

return (cb) i
}

/***/
/* */
/* CheckEofErc */
/* */
/* This procedure indicates whether an EOF occurred. */
/* */
/***/

CheckEofErc (ErcType erc)
{
if(erc == ercOK) return(FALSE)i
else if(erc == ercEOF) return(TRUE)i
elseFataIError(erc)i
}

/***/
/* */
/* main */
/* */
/***/

void maine)
{
PF
char
Word

OldHandleri
*pstrDeathi
Cbi

pstrDeath = NULLi

/* set address of Handle Fault as erc 80 handler */
OldHandler = set fault_handler (&handle_fault)i

/* try to get length from a null pointer. Causes erc 80 */
cb = string_length (pstrDeath)i

/* if we don't use a null pointer, this happens. */
CheckErc (WriteBsRecord (bsVid, pstrDeath, cb, &Cb»i

set_fault_handler (OldHandler)i
}

FaultHandler.asm

This sample program is referenced by Listing 3-3.

FaultHandler.asm -- generic GP fault handler

extrn ErrorExit:far

DGroup group Data
assume ds: DGroup

Data segment word public 'Data'

D-32 eTOS/Open Programming Practices and Standards - Appendixes

extrn p_fault_handler:WORDitell the Assembler about p_fault_handler
extrn BadCSIP:WORDitell it about CSIP pointer
Data ends

stack segment stack 'stack'
db 4 dup(7)

Stack ends

FaultHandler segment word 'code'
assume cs: FaultHandler

public _Fault_Handler
_Fault_Handler proc far

mov ax, dgroup
mov ds, ax
mov ax, ds:word ptr
mov dx, ds:word ptr
or ax, dx
jz exit
mov bx,sp
mov cx,ss: [bx+2]
mov BadCSIP,cx
mov cx, ss: [bx+4]
mov BadCSIP+2,cx

p_fault_handler
p_fault_handler + 2 iload p_fault_handler

iis p_fault_handler NULL?
iif it is, exit
ielse
iget CS:IP of fault

jmp dword ptr p_fault_handler ithen jump to fault handler

exit:
mov ax, 80
push ax
call ErrorExi t

_Fault_Handler endp
FaultHandler ends
end i FaultHandler.asm

LogMessage.c

This sample program is referenced by Listing 3-4.

/***/
/* */
/* File Name:LogMessage.c */
/* Compiler:Metaware C */
/* Date:04/30/89 */
/* Author:A. Coleman/J. Crook */
/* */
/* This module logs a text message to the system log. */
/* */
/***/

#define writeLog

#include <ctoslib.h>
#include <string.h>

Source Code Listings D-33

Word LogMessage (Pointer pbMessage, Word cbMessage)
{
struct

{
Word TextCodej /* value to indicate text msg to Plog */
Word cbTextj
Byte rgbText[l20]j
} LogMsgj

LogMsg.TextCode = OxFFF7j /* ASCII message code */
LogMsg.cbText = cbMessagej
memcpy (&(LogMsg.rgbText), pbMessage, cbMessage)j
return (WriteLog (&LogMsg, cbMessage + 4))j
}

D - 34 eTaS/Open Programming Practices and Standards - Appendixes

Chapter 4

Chapter 4 contains the following listing.

Params.c

This sample program is referenced by Listings 4-1 and 4-3.

/***/
/* */
/* File Name:Params.c */
/* Compiler:Metaware C */
/* Date:05/05/89 */
/* Author:A. Coleman/J. Crook */
/* */
/* This program accepts input parameters from the Executive when the */
/* Run command is issued. It then prompts the user for additional */
/* parameters and chains to itself using the new parameters. */
/* */
/* Bytestreams are used rather than mixing byte streams and YAM */
/* because it is easier keeping track of cursors with byte streams */
/* when using printf's (as these utilize bytestreams). */
/* */
/***/

/* define constants */
#define ALLOC SIZE OxlOO
#define STRSIZE 20
#define MAXPARAMS 12

#define EXECFRAME 0
#define PRIORITY Ox40
#define ESCAPE OxFF

#define CURSOR 'c'

#define FINISH Ox04
#define CANCEL Ox07
#define RETURN OxOA
#define GO OxlB

#define ERCNOPARAM 2440
#define ERCNOSUBPARAM 2450

#define Syslit

/* define CTOS procedures to be used */
#define AllocMemoryLL
#define Beep
#define Chain
#define CheckErc
#define CParams
#define CSubParams
#define ErrorExit
#define InitYidFrame
#define QueryYidBs
#define ReadKbd

Source Code Listings D-35

#define ResetFrame
#define ResetMemoryLL
#define RgParam
#define RgParamInit
#define RgParamSetEltNext
#define RgParamSetListstart
#define TextEdit
#define WriteBsRecord

#include <ctoslib.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/* define the pre-opened byte streams */
extern char bsVid[);

typedef struct
char iFrame;
char nLines;
char nCols;
char iLine;
char iCol;
char fCurVisible;
char fPause;
char bAttr;
char fLiteral;
char rgbReserved[7);
} vidStatusType;

/* pointer and size */
typedef struct {

char _far *pb;
short cb;
} pbcbtype;

typedef struct {
char _far *prgch;
Word cchMax;
Word cchMac;
Word ichCursor;
} TdbType;

char rgStr[STRSIZE);

TdbType textBlock;
TdbType *tbPtr;

/* general purpose string */

VidStatusType strvidStatus;

char pChainFile [) = "Params. run";

char pMsgChaining [) =
"\n\n Chaining ... ";

char pMsgIntro [) =

"To exit this program, press FINISH at any time.";
char pMsgParam [) =

"\nType a subparameter value, then press RETURN: ";

/* forward procedure declarations */
int Getstring (char *pStr, char *pPrompt);

D-36 eTOS/Open Programming Practices and Standards - Appendixes

1***1
1* *1
1* DisplayTextBuffer *1
1* *1
1* Displays the text entered by the user in the TextEdit *1
1* buffer. The cursor must be reset after the string is written back*1
1* to the original location because the next call may overwrite this *1
1* string (dependent on the editing desired). *1
1* *1
1***1

void DisplayTextBuffer (Word iCol, Word iLine)
{
char rgbVid [4];
Word cbRet;

1* display our string *1
CheckErc (WriteBsRecord (bsVid, textBlock.prgch, textBlock.cchMax,

&cbRet»;

1* set up array for video escape *1
rgbVid [0] ESCAPE;
rgbVid [1] CURSOR;
rgbVid [2] iCol;
rgbVid [3] iLine;

1* reset the cursor *1
CheckErc (WriteBsRecord (bsVid, rgbVid, sizeof(rgbVid), &cbRet»i
}

1***1
1* *1
1* GetNewParams *1
1* *1
1* This procedure prompts the user for the entry of a parameter. A GO*I
1* enables the user to enter subparams for the specified parameter. *1
1* A RETURN creates a null parameter. A CANCEL completes the VLPB and*1
1* causes a chain back to this program with the entered parameters. A*I
1* FINISH exits the program. *1
1* *1
1* Each string entered results in a new subparameter. *1
1* *1
1***1

void GetNewParams()
{
char bIn, fSkip;
int cbStri
pbcbtype pParami
Word iParam = 1, jParam = 0;

while (iParam <= MAXPARAMS)
{
printf ("\n\nPress GO to enter parameter %d, RETURN to skip, "

"CANCEL to Chain, or FINISH.\n", iParam);
fSkip = FALSE;

1* loop until we get one of the above characters *1
while (TRUE)

{
CheckErc (ReadKbd (&bIn»;
if (bIn == FINISH) ErrorExit(O);

Source Code Listings D-37

else if (bIn
else if (bIn
else if (bIn

CANCEL) returni
GO) breaki
RETURN)

{
fSkip = TRUEi
breaki
}

else CheckErc (Beep (»i
}

/* we don't want to skip this parameter, collect subparameters */
if (fSkip != TRUE)

{

/* initialize the subparameter list for this parameter */
CheckErc (RgParamSetListStart (iParam»i
while (jParam <= MAXPARAMS)

{

/* get the next subparameter */
cbStr = GetString(rgStr, pMsgParam)i
if (cbStr > 0)

{

pParam.pb = rgStri
pparam.cb = cbStri

/* store it in the VLPB */
CheckErc (RgParamSetEltNext (&pParam»i
jParam++i
}

/* we do not have a subparameter entry */
else breaki
} /* end of while jParam */

} /* end of if fSkip */
iParam++i
} /* end of while iParam */

/***/
/* */
/* GetString */
/* */
/* This procedure performs the input of the parameter string from the*/
/* user. The cursor position must be retreived from the video status*/
/* buffer to restore it after text editing the string. */
/* */
/***/

int GetString (char *pStr, char *pPrompt)
{
char i = Oi
char bIni
ErcType erCi
Word iCol, iLinei

/* clear the string */
while (i < STRSIZE) pStr[i++] = Oi

/* set up buffer for TextEdit */
tbPtr = &textBlocki
textBlock.prgch= pstr;

D-38 eTOS/Open Programming Practices and Standards - Appendixes

textBlock.cchMax= STRSIZEj
textBlock.cchMac= OJ
textBlock.ichCursor= OJ

/* prompt for a parameter */
printf (pPrompt)j

/* get the cursor postion before we enter and echo characters */
CheckErc (QueryVidBs (bsVid, &strVidStatus»j
iCol strVidStatus.iColj
iLine strVidStatus.iLinej

while(TRUE)
[
CheckErc (ReadKbd (&bln»j
switch (bIn)

[
case FINISH:

ErrorExit (O)j
case CANCEL:

return (-l)j
case GO:
case RETURN:

return (textBlock.cchMac)j
default:

erc = TextEdit (bIn, tbPtr)j
if (erc ! = 0)

{
CheckErc (Beep(»j
breakj
)

DisplayTextBuffer (iCol, iLine)j
breakj
) /* end of switch */

} /* end of while */
return(O)j
}

/***/
/* */
/* ListParams */
/* */
/* This procedure pulls out each subparam from the variable length */
/* parameter block. The routine stops when a No Such Parameter error*/
/* is returned. */
/* */
/* Parameter O's subparameters are not looked at to not get confused */
/* with the retype buffer (displaying it would not look good). */
/* */
/***/

void ListParams ()
[
char i = 0, fOut OJ
ErcType erCj

pbcbtype pParamj
Word cParam, cSubParamj /* count of params */
Word iParam, jParamj/* parameter indices */

/* get input param count */
cParam = CParams ()j

Source Code Listings D-39

/* scan through each parameter, forget parameter 0 */
for (iParam = 1; iParam < cParam; iParam++)

{

/* get the count of subparameters for this parameter */
cSubParam = CSubParams (iParam);
if (cSubParam > 0)

{
fOut = TRUE;
printf("\n\nParameter %d has %d subparameter(s).",

iParam, cSubParam);

/* if the subparam count is greater than 0, print each one */
for (jParam = 0; jParam < cSubParam; jParam++)

}

{
erc = RgParam (iParam, jParam, &pParam);

/* quit if no parameter, break if no subparameter */
if (erc == ERCNOPARAM) return;
else if (erc == ERCNOSUBPARAM) breaki
else CheckErc (erc)i

for (i = Oi i < pParam.cb i++)
rgStr[i] = *(pParam.pb + i);

rgStr[i] = Oi
printf(

"\nThe entry in parameter %d, subparameter %d is I%SI",
iParam, jParam, rgStr)i

/* end of for jParam */

/* end of for iParam*/
/* we have no parameters passed to us (other than parameter 0) */
if (fOut != TRUE)

printf ("\n\nNo parameters passed to %s.", pChainFile)i

void maine) {
Pointer pVLPBi /* used to build new VLPB */

/* initialize the video */
CheckErc (ResetFrame (EXECFRAME»i

printf (pMsgIntro);

/* display all the parameters passed to me */
ListParams ()i

/* reset long-lived memory, then allocate a new VLPB */
CheckErc (ResetMemoryLL (»;
CheckErc (AllocMemoryLL (ALLOC_SIZE, &pVLPB»i

/* Init the parameter block */
CheckErc (RgParamInit (pVLPB, ALLOC_SIZE, (MAXPARAMS-l»);

/* fill it in */
GetNewParams ()i

/* tell the user I am chaining to myself */
printf (pMsgChaining)i
CheckErc (Chain (pChainFile, strlen(pChainFile),

NULL, 0, PRIORITY, 0, FALSE»;

D-40 eTOS/Open Programming Practices and Standards - Appendixes

Chapter 5

Chapter 5 contains the following listing.

SegAccess.c

This sample program is referenced by Listings 5-1 and 5-3.

/***/
/* */
/* File Name: SegAccess.c */
/* Compiler: Metaware C */
/* Date: 05/10/89 */
/* Author: A. Coleman/J. Crook */
/* */
/* This program takes a data pointer, creates an alias pointer in the*/
/* program's Local Descriptor Table (LDT). At the end, the data */
/* pointer and the alias pointer are compared to verify they referenc*/
/* the same physical location. */
/* */
/* The CTOS/Open documentation for FComparePointer states that a TRUE*/
/* is returned if two pointers reference the same physical location, */
/* that TRUE is not equal to a 'c' TRUE (OxOFF vs. 1) so a check for */
/* not false is made rather than a check for a true condition. */
/* */
/* A union is used in this program because casting of structures to *1
/* pointers is not allowed. With the union, we redieine a pointer as*/
/* a structure of two words so we can play with both the selector and*/
/* the offset to construct our own specific pointer. */
/* */
/***/

#define SysLit
#define CheckErc
#define CreateAlias
#define ErrorExit
#define FComparePointer
#define SetSegmentAccess

#include <ctoslib.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

Pointer pData;
Selector sgCode;
Word offset;

union{
POINTERWords Ptrstr;
Pointer ptr;
} u;

char pTestMsg [] =

"\"This is a test\"\n";

char pCodeMsg [] =

Source Code Listings D-41

"The string referenced by the code pointer ";
char pDataMsg [1

"The string referenced by the data pointer ";

char pDi f fMsg [1
"\nAlias Code Pointer and Data Pointer reference different locations";

char pSameMsg [1
"\nAlias Code Pointer and Data Pointer reference the same location";

void main ()
{

/* get the offset of our Test Message array within DS */
pData = &pTestMsg;
offset = offsetof (pData);
printf (pDataMsg);
printf (pData);

/* now we want an alias based on the start of our DS */
offsetof (pData) = 0;

/* create the alias and define it as executable code */
CheckErc (CreateAlias (pData, &sgCode»;
CheckErc (SetSegmentAccess (sgCode, 10»;

/* now construct a pointer to our code and print the string */
u.PtrStr.ra = offset;
u.PtrStr.sa = sgCode;
printf (pCodeMsg);
printf (u.ptr);

/* finally compare the data pointer and the code pointer */
pData = &pTestMsg;
if (FComparePointer (pData, u.ptr, 1) != FALSE)

printf (pSameMsg);
else

printf (pDiffMsg);
ErrorExit (0);
}

D-42 eTOS/Open Programming Practices and Standards - Appendixes

Chapter 6

Chapter 6 contains the following listings.

AsNeededMsg.c

This sample program is referenced by Listings 6-2 and 6-3.

1***1
1* *1
1* File Name:AsNeededMsg.c *1
1* Compiler:Metaware C *1
1* Date:05/13/89 *1
1* Author:A. Coleman/J· Crook *1
1* *1
1* This program uses message files, however, it loads the message as *1
1* needed rather than preloading. *1
1* *1
1***1

#define CheckErc
#define ErrorExitString
#define ErrorExit
#define GetUCB
#define InitMsgFile
#define PrintMsg
#define ReadDirSector
#define WriteBsRecord
#define WriteByte

#define syslit
#define sdType

#include <ctoslib.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#define ERCEOF 1
#define ERCINSUFFMEMORY 400
#define ERCMSGNOTFOUND 13503

#define FINISH Ox04
#define CANCEL Ox07
#define RETURN OxOA
#define NIL OxO
#define MSGMAX 5
#define MAXMSGLENGTH 80
#define MAXINT OxOFFFF

#define MSGFILECOUNT 56004

typedef struct { Word Reserverdj char sbVol[13]j char sbDir[13]j
] ucbTypej

extern char *bsVidj

Source Code Listings D-43

char pMFileName [] ="SampleMsg. bin ";
char pMsgMFileError [] ="Cannot open message file. ";
char pMsgMNotFound [] ="Message not found. ";

ucbType Ucb;

1* define the message info structure and the message number array *1

1* define the message and cache buffers, these must be word aligned *1
Word rgMsgBuffer [512];
Word rgMsgCache [1024];

1* define the directory page buffer *1
char rgbDirBuffer [512];

1* define the directory name and file name arrays *1
char rgbDirectory [13] ;charrgbFile[80];

1***1
1* *1
1* CheckMsgErc *1
1* *1
1* This procedure validates the error condition when using the *1
1* message routines. A message not found condition displays an *1
1* internal message, all other non-zero errors result in a *1
1* program abort. *1
1* *1
1***1

void CheckMsgErc (ErcType erc)
{

if (erc == ERCMSGNOTFOUND)
{
1* display the internal message not found string *1
printf ("\n");
printf (pMsgMNotFound);
}

else CheckErc (ere);
}

1***1
1* *1
1* GetFileCount *1
1* *1
1* This procedure gets the default directory spec from the *1
1* User Control Block. It then attempts to read the directory pages *1
1* finding how many files are present in the directory. Each file *1
1* is listed out followed by a message indicating the total count of *1
1* files in the directory. The message has two macros for expansion:*1
1* the name of the directory and the count of files. *1
1* *1
1***1

Word GetFileCount ()
{
ErcType ere = ercOK;
Pointer pb;
Word cb, i, isector = 0, nFile = 0;

1* get the ucb so we can get the default path and store it *1
CheckErc (GetUCB (sUcb, sizeof (Ucb»);

D-44 eTOS/Open Programming Practices and Standards - Appendixes

memset (rgbDirectory, NIL, sizeof (rgbDirectory»;
cb = Ucb.sbDir[O];
pb = &Ucb.sbDir[l];
memcpy (rgbDirectory, pb, cb);

for (iSector = 0; isector < MAXINT; iSector++)
[

/* read a directory sector, stop when hit EOF */
erc = ReadDirSector (rgbDirectory, strlen(rgbDirectory), NULL, 0,

iSector, &rgbDirBuffer);
if (erc == ERCEOF) break;
else CheckErc (ere);

/* scan sector, an entry is sbtype and file header number */
i = 1;
while (i < 512)

[

/* first check for another entry in directory page */
if (rgbDirBuffer[i] == 0) break;

/* get the file name */
memset (rgbFile, NIL, sizeof (rgbFile»;

cb = rgbDirBuffer[i];
pb = &rgbDirBuffer[i+l];
memcpy (rgbFile, pb, cb);

/* list the file */
printf (rgbFile);
printf ("\n");

/* increment file count and adjust scan index */
nFile = nFile + 1;

/* add length byte and file header index to the entry index */
i += cb + 3;
]

}
return (nFile);
}

/***/
/* */
/* InitMsgEnvironment */
/* */
/* This procedure initializes the message handling environment. The */
/* name of the message file, the message buffer and the message cache*/
/* are all needed. If we have an error, then we have to use one of */
/* our internal messages. */
/* */
/***/

void InitMsgEnvironment ()
[
ErcType erc;

/* initialize the message environment */
erc = InitMsgFile (pMFileName, strlen(pMFileName), 0, 0,

&rgMsgBuffer, sizeof(rgMsgBuffer),
&rgMsgCache, sizeof(rgMsgcache»;

Source Code Listings D-45

/* if we have a problem, exit with an error */
if (erc != ercOK)

ErrorExitString(erc, &pMsgMFileError, strlen(pMsgMFileError»;

void main()
{
sdType rgSdMsg [2]; /* sized to max parameters in msg */
Word nFile;

/* initialize the message handling environment */
InitMsgEnvironment ();

/* get the count of files in the local directory */
nFile = GetFileCount ();

/* set up message parameter block */
rgSdMsg[O] .pb (char _far *) &nFile;
rgSdMsg[O] .cb sizeof(nFile);
rgSdMsg[l] .pb = (char _far *) &rgbDirectory;
rgSdMsg[l] .cb = strlen(rgbDirectory);

/* print out the file count message, system expands it */
printf ("\n");
CheckMsgErc(PrintMsg(MSGFILECOUNT,&rgSdMsg,sizeof(rgSdMsg),&bsVid»;

ErrorExit (0);
]

PreLoadMsg.c

This sample program is referenced by Listing 6-4.

/***/
/* */
/* File Name:PreLoadMsg.c */
/* Compiler: Metaware C * /
/* Date:05/l3/89 */
/* Author:A. Coleman/J. Crook */
/* */
/* This program preloads and uses message files. */
/* */
/***/

#define Beep
#define CheckErc
#define ErrorExitstring
#define ErrorExit
#define ExpandLocalMsg
#define GetDateTime
#define GetMsgUnexpanded
#define InitMsgFile
#define ReadKbd
#define WriteBsRecord
#define WriteByte

D-46 eTaS/Open Programming Practices and Standards - Appendixes

#define Sysli t
#define sdType

#inc1ude <ctos1ib.h>
#inc1ude <string.h>
#inc1ude <std1ib.h>
#inc1ude <stdio.h>

#define ERCOK
#define ERCINSUFFMEMORY
#define ERCMSGNOTFOUND

#define FINISH
#define CANCEL
#define RETURN
#define MSGMAX
#define MAXMSGLENGTH

#define MSGPRESSFINISH
#define MSGDATETIME

o
400
13503

Ox04
Ox07
OxOA
5
80

56001
56002

typedef struct [Pointer pb; Word cb; } pbcbType;

extern char *bsVid;

char pMFi1eName [] =" SampleMsg . bin" ;
char pMsgMFileError [] ="Cannot open message file.";
char pMsgMNotFound [] ="Message not found.";

pbcbType pbcbMacro;

/* define the message info structure and the message number array */
Word nMsg;
struct[Word iMsg; sdType sdMsg; } rgMsgInfo [MSGMAX];
static Word rgMsgNum [] = [MSGPRESSFINISH, MSGDATETIME };

/* define the message and cache buffers, these must be word aligned */
Word rgMsgBuffer [512];
Word rgMsgCache [1024];

/* define the temporary and expansion buffers */
char rgbTempBuffer [MAXMSGLENGTH];
char rgbExpBuffer [MAXMSGLENGTH];
/***/
/* */
/* CheckMsgErc */
/* */
/* This procedure validates error conditions when using the message */
/* routines. A message not found condition displays an internal */
/* message, all other non-zero errors result in a program abort. */
/* */
/***/

void CheckMsgErc (ErcType erc)
[
Word cbRet;

if (erc == ERCMSGNOTFOUND)
{
/* display the internal message not found string */
CheckErc (WriteByte (&bsVid, RETURN»;
CheckErc(WriteBsRecord(&bsVid,pMsgMNotFound,

Source Code Listings D-47

strlen(pMsgMNotFound), &cbRet»;
}

else CheckErc (erc);
}

/***/
/* */
/* DisplayMessage */
/* */
/* This procedure expands the specified message and then displays it.*/
/* */
/***/

void DisplayMessage (Word wMsg)
{
Pointer pbMsg;
Word cbMsg, cbRet, iMsg;

/* get the index of the proper message in the message structure */
for (iMsg = 0; iMsg < nMsg; iMsg++)

if (wMsg == rgMsgNum[iMsg) break;

/* check to see if we did not find the message */
if (iMsg == nMsg) CheckMsgErc (ERCMSGNOTFOUND);

/* use a temporary pointer and count to store message info */
pbMsg = rgMsgInfo[iMsg) .sdMsg.pb;
cbMsg = rgMsgInfo[iMsg) .sdMsg.cb;

/* expand the message */
CheckMsgErc (ExpandLocalMsg (&pbcbMacro, sizeof(pbcbMacro),

pbMsg, cbMsg, &rgbExpBuffer,
sizeof(rgbExpBuffer), &cbRet, FALSE»;

/* now display the message */
CheckErc (WriteByte (&bsVid, RETURN»;
CheckErc (WriteBsRecord (&bsVid, &rgbExpBuffer, cbRet, &cbRet»;
CheckErc (WriteByte (&bsVid, RETURN»;
)

/***/
/* */
/* InitMsgEnvironment */
/* */
/* This procedure initializes the message handling environment. The */
/* name of the message file, the message buffer and the message cache*/
/* are all needed. If we have an error, then we have to use one of */
/* our internal messages. */
/* */
/***/

void InitMsgEnvironment ()
{
ErcType erc;
Pointer pbMsg;
Word cbMsg, iMsg;

/* initialize the message environment */
erc = InitMsgFile (pMFileName, strlen(pMFileName), 0, 0,

&rgMsgBuffer, sizeof(rgMsgBuffer),
&rgMsgCache, sizeof(rgMsgCache»;

D-48 eTaS/Open Programming Practices and Standards - Appendixes

/* if we have a problem, exit with an error */
if (ere != ERCOK)

ErrorExitString(erc, &pMsgMFileError, strlen(pMsgMFileError»i

/* get the count of messages we have */
nMsg = sizeof (rgMsgNum) / 2i
for (iMsg = Oi iMsg < nMsgi iMsg++)

{

/* retrieve a messages */
CheckMsgErc (GetMsgUnexpanded (rgMsgNum[iMsg], &rgbTempBuffer,

MAXMSGLENGTH, &cbMsg»i

/* allocate some memory to hold the unexpanded message */
if «pbMsg = malloc(cbMsg+I» == NULL)

ErrorExit (ERCINSUFFMEMORY)i

/* transfer the message into the allocated area */
memcpy (pbMsg, rgbTempBuffer, cbMsg)i

/* now update the message info structure */
rgMsgInfo[iMsg] .iMsg = rgMsgNum[iMsg]i
rgMsgInfo[iMsg] .sdMsg.pb pbMsgi
rgMsgInfo[iMsg] .sdMsg.cb = cbMsgi
]

void maine)
{
char bKeYi
long DateTimei

InitMsgEnvironment ()i

while (TRUE)
{

/* first of all, set the date/time Macro expansion structure */
pbcbMacro.pb = &DateTimei
pbcbMacro.cb = sizeof (DateTime)i

/* get the system date and time */
CheckErc (GetDateTime (&DateTime»i

/* display the date/time message and insert the date/time */
Disp~aYMessage (MSGDATETIME)i

/* ask user to press FINISH to get out, or CANCEL to continue */
DisplayMessage (MSGPRESSFINISH)i

while (TRUE)
{
CheckErc (ReadKbd (&bKeY»i
if (bKey == FINISH) ErrorExit (O)i
else if (bKey == CANCEL) breaki
else CheckErc (Beep (»i
}

Source Code Listings D-49

ServerMsgs.c

This sample program is referenced by Listing 6-4.

/***/
/* */
/* File Name:ServerMsgs.c */
/* Compiler: Metaware C * /
/* Date:05/l3/89 */
/* Author:A. Coleman/J. Crook */
/* */
/* Simple example of a program that uses server message files. */
/* */
/***/
#define CheckErc
#define CloseServerMsgFile
#define ErrorExitstring
#define Exit
#define FatalError
#define GetDateTime
#define GetDirstatus
#define GetServerMsg
#define InitMsgFile
#define OpenServerMsgFile
#define PrintMsg
#define ReadKbd
#define Syslit
#define WriteBsRecord
#define WriteByte
#define sdType

Hnclude <ctoslib.h>
#include <string.h>
Hnclude <stdlib. h>

#define ercOK 0
#define Finish Ox04
#define Go OxlB
#define NewLine OxOA

char bsvid [] ;

/*
/*

filled
filled

extern
extern FlagType fDevelopement;

box */
circle */

char
char

rgbCantAccessMsgFile[] = "Cannot open message file.";
rgbMsgNotFound[] = "Message not found.";

InitServerMsgEnvironment(Pointer pbMsgFileName, Word cbMsgFileName)
{
ErcType erc;

erc = OpenServerMsgFile(pbMsgFileName, cbMsgFileName, 0, 0, FALSE);
if(erc != ercOK)

ErrorExitString(erc, &rgbCantAccessMsgFile,
strlen(rgbCantAccessMsgFile));

return(erc);
}

MsgErc(ErcType erc)
{
Word i;

D-50 eTOS/Open Programming Practices and Standards - Appendixes

if(erc != ercOK) {
WriteByte(bsVid, NewLine)i
erc = WriteBsRecord(bsVid, &rgbMsgNotFound,

strlen(rgbMsgNotFound), &i)i

return(erc)i
}

main()
{
sdType
Word
Word
char
char

sdMsgReti
iMsgNum = 56100i
cbReti
inkeYi
rgMsgFileName[] "ServerMsg.bin"i

fDevelopement = TRUEi

InitServerMsgEnvironment(&rgMsgFileName, strlen(rgMsgFileName))i

MsgErc(GetServerMsg(iMsgNum, &sdMsgRet))i

WriteByte(&bsVid, NewLine)i
WriteBsRecord(&bsVid, sdMsgRet.pb, sdMsgRet.cb, &cbRet)i

iMsgNum = 56101i
MsgErc(GetServerMsg(iMsgNum, &sdMsgRet))i

WriteByte(&bsVid, NewLine)i
WriteBsRecord(&bsVid, sdMsgRet.pb, sdMsgRet.cb, &cbRet)i

CheckErc(ReadKbd(&inkey))i

return(O)i
}

SampleMsg.txt

This file is not referenced in a listing. It is the text file that contains the
messages used by the previous examples.

:56000: "Press %K9 to confirm %K8, or press %K4 to continue."
:56001: "Press %K8 to exit, or any other key to continue."
:56002: "The date and time are: %OD5"
:56003: "All %ON messages retrieved."
:56004: "There are %ON files in the directory named %lS."

Source Code Listings D-51

Chapter 7

Chapter 7 contains the following listings.

The sample program referenced by Listing 7-1 is VamText.c. That
program appears in the listings for Chapter 2, "Basic Input and Output."

The sample program referenced by Listing 7-2 is CoedProc.c. That
program appears in the listings for Chapter 12, "Writing Multi-Process
Programs."

D - 52 eTOS/ Open Programming Practices and Standards - Appendixes

Chapter 8

Chapter 8 contains the following listings.

F ooServerRq.c

This sample program is referenced by Listings 8-1 through 8-7.

/***/
/* */
/* File Name:FooServerRq.C */
/* Compiler:Metaware C */
/* Date:05/ll/89 */
/* Author:A. Coleman/J. Crook */
/* */
/* This is a sample connection-oriented system service that returns */
/* data in a field for a program. The service uses wait to receive */
/* requests. No queueing of requests is performed, the order is */
/* first-in-first-out. */
/* */
/* Note - this program must be linked with LogMessage.obj. */
/* */
/*****************'**/

#define Syslit
#define RqHeaderType
#define rqlnfoType

#include "ctostypes.h"

#define AllocExch
#define CheckErc
#define ChangePriority
#define ConvertToSys
#define Changepriority
#define Check
#define Crash
#define Delay
#define ErrorExit
#define ErrorExitString
#define ExitAndRemove
#define FatalError
#define ForwardRequest
#define GetUserNumber
#define GetPartitionHandle
#define QueryRequestlnfo
#define RemovePartition
#define RequestDirect
#define Respond
#define Send
#define SetMsgRet
#define SetPartitionLock
#define SetPartitionName
#define ServeRq
#define VacatePartition
#define Wait

Source Code Listings D-53

nclude <ctoslib.h>
nclude <string.h>
nclude <stdlib.h>

/* opt out not needed library routines to conserve space */
#include <server.h>

#define RqDATA
#define RqDEINST
#define RqOPEN
#define RqCLOSE
#define RqSWAP
#define RqTERMINATE

OxEFOO
OxEFOl
OxEF02
OxEF03
OxEF04
OxEF05

#define MAXCONNECTIONS 5

#define ERCINCONSISTENCY 3
#define ERCINVALIDHANDLE 63004
#define ERCNOHANDLES 63005
#define ERCOPENCONNECTIONS 63006

typedefstruct {
RqHeaderType RqHead;
Word wHandle;
Pointer pbDataRet;
Word cbDataRet;
Pointer psDataRet;
Word ssDataRet;
} RqDataType;

typedefstruct {
RqHeaderType RqHead;
Word wSyslnfo;
} SystemRqType;

typedefstruct {
RqHeaderType RqHead;
Word wHandle;
} CloseRqType;

typedefstruct {
RqHeaderType RqHead;
Word *pHandleRet;
Word sHandleRet;
} OpenRqType;

rqlnfoType rqlnfo[lO];

Word srqlnfo = 4;
Word rgHandles [MAXCONNECTIONS] ;
Word cOpenConnections = 0;
Word erc;
Word exchServe;
Word usernum;
Word phRet;
Word nRequests;

static Word rgRequestTable [] =
{ RqSWAP, RqTERMINATE, RqDATA, RqDEINST, RqCLOSE, RqOPEN };

char pServerName [] ="Foo Server";

D-54 eTaS/Open Programming Practices and Standards - Appendixes

char pMsgInstalledOk [] ="Foo Server Installed";
char pMsgInstallError [] ="Unable to install the Foo Server";
char pMsgPrevInstall [) ="Foo Server Already Installed";

char pMsgError [] ="Foo Server Deinstalled due to error";
char pMsgRet [] =" I'm the Foo Server, and I'm OK. \n" ;

/* External Procedures */
externLogMessage (Pointer, Word);

/* Forward Procedure Declarations */
void ProcessRequest (Pointer pRq);
void ProcessSwapRequest (SystemRqType *pRq);
voidProcessTerminationRequest (SystemRqType *pRq);
voidTerminateIfErcNotok (Word ere, RqHeaderType *pRq);

/***/
/* */
/* CrashIfErcNotOk */
/* */
/* This procedure is used to crash the sytem if an error occurs which*/
/* we can't recover from once we are a system service. */
/* , */
/***/

void CrashIfErcNotOk (Word ere)
{
if (ere != ercOK) Crash (ere);
}

/***/
/* */
/* CloseConnection */
/* */
/* This procedure closes a connection with the user. An assumption is*/
/* made that all outstanding requests have already been served. */
/* */
/***/

void CloseConnection (CloseRqType *pRq)
(

/* check to see if the user matches a value in the handle array */
if (rgHandles[pRq-)wHandle) == pRq-)RqHead.userNum)

{

/* reset the handle and decrement the connection count */
rgHandles[pRq-)wHandle] = OJ
cOpenConnections--;
pRq-)RqHead.ercRet = 0;
]

else pRq-)RqHead.ercRet = ERCINVALIDHANDLE;
}

/***/
/* */
/* DeInstal1 */
/* */
/* This procedure checks for open connections. Pending messages on */
/* the local service exchange are processed. The partition is then */

Source Code Listings D-55

/* unlocked and the server exits. */
/* */
/***/

void Delnstall (pRq)
RqHeaderType * pRq i

{
RqHeaderType *pWaitingRqi
int ii

/* pRq is null unless a deinstall request was received */
if (pRq != NULL)

/* check to see if we have open connections */
if (cOpenConnections) 0)

{
pRq-)ercRet = ERCOPENCONNECTIONSi
return;
)

/* restore the requests */
for (i = Oi i < nRequestsi i++)

CrashlfErcNotOk (ServeRq (rgRequestTable[i], rqlnfo[i] .exch»i

/* loop here. to clear all messages on this exchange */
while (Check (exchServe, &pWaitingRq) == ercOK)

ProcessRequest (pWaitingRq)i

/* all done, unlock partition, and deinstall */
CrashlfErcNotOk (SetPartitionLock (FALSE»i
CrashlfErcNotOk (Respond (pRq»i
ExitAndRemove ()i

/* if we get here, there is something wrong with the OS */
Crash (ERCINCONSISTENCY)i
)

/***/
/* */
/* OpenConnection */
/* */
/* This procedure searches for an available handle and assigns it to */
/* the user issuing the open request, it then returns the handle. */
/* */
/***/

void OpenConnection (OpenRqType *pRq)
{
Word wHandlei

/* find an available handle */
wHandle = Ii
while «rgHandles[wHandle] != 0) && (wHandle < MAXCONNECTIONS»

wHandle++i

/* check to see if all the handles are in use */
if (wHandle == MAXCONNECTIONS)

pRq-)RqHead.ercRet = ERCNOHANDLESi
else

{

/* put the handle number in the returned handle field */

D - 56 eTOS/ Open Programming Practices and Standards - Appendixes

*pRq->pHandleRet = wHandle;

/* put client's usernum in the array at position wHandle */
rgHandles[wHandle] = pRq->RqHead.userNum;

/* return ercOK and increment connection count */
pRq->RqHead.ercRet = 0;
cOpenConnections++;
}

/***/
/* */
/* preTerminateIfErcNotOk */
/* */
/* This procedure is used to clean up and exit if an error */
/* which we can recover from occurs after we are a system service. */
/* */
/***/

void preTerminateIfErcNotOk (Word erc)
{
int i;

if (erc != ercOK)
{
LogMessage (pMsgError, strlen(pMsgError»;

/* restore the requests to their initial states */
for (i = 0; i < nRequests; i++)

CrashIfErcNotOk (ServeRq (rgRequestTable[i], rqInfo[i].exch»;

/* unlock my partition and get out */
CrashIfErcNotOk (SetPartitionLock (FALSE»;
ExitAndRemove ();

/* OS problem if we ever get here */
Crash (ERCINCONSISTENCY);
}

/***/
/* */
/* ProcessDataRequest */
/* */
/* This procedure processes all the data requests which come in. */
/* */
/***/

void ProcessDataRequest (RqDataType *pRq)
{
Word i = 0;

/* check for valid handle */
if (pRq->RqHead.userNum != rgHandles[(pRq->wHandle)])

{
pRq->RqHead.ercRet ERCINVALIDHANDLE;
return;
}

/* calculate the maximum string size */
if (pRq->cbDataRet < strlen (pMsgRet»

Source Code Listings D-57

i
else

i

pRq->cbDataRet;

strlen (pMsgRet);

/* put the message and the size in the user's buffer */
memcpy (pRq->pbDataRet, &pMsgRet, i);
*«Word *)(PRq->psDataRet» = i;

/* return an error OK condition */
pRq->RqHead.ercRet = 0;
}

/***/
/* */
/* ProcessRequest */
/* */
/* This procedure preprocesses all the requests which come in. */
/* */
/***/

void ProcessRequest (Pointer pRq)
{

/* identify request, then take appropriate action */
switch(«RqHeaderType *) pRq)->rqCode)

{
case RqDEINST:

DeInstall(pRq);
break;

case RqDATA:
ProcessDataRequest (pRq);
break;

case RqOPEN:
OpenConnection (pRq);
break;

case RqSWAP:
ProcessSwapRequest(pRq);
break;
case RqTERMINATE:
ProcessTerminationRequest(pRq);
break;

case RqCLOSE:
CloseConnection(pRq);
break;

default:
TerminateIfErcNotOk(3l, NULL); /* "No such request code" */
}

/***/
/* */
/* ProcessSwapRequest */
/* */
/* This procedure tells the OS that it is OK to swap the user out. */
/* It assumes that all outstanding requests have already been served.*/
/* */
/***/

void ProcessSwapRequest (SystemRqType *pRq)
{

/* just return an error OK condition */

D-58 eTaS/Open Programming Practices and Standards - Appendixes

pRq-)RqHead.ercRet OJ
}

/***/
/* */
/* ProcessTermination Request */
/* */
/* This procedure tells the OS that it is OK to terminate the user. */
/* It assumes that all outstanding requests have already been served.*/
/* */
/***/

void ProcessTerminationRequest (SystemRqType *pRq)
(
Word ij

/* remove all the users open connections */
for (i = OJ i < MAXCONNECTIONSj i++)

if (rgHandles[i] == pRq-)RqHead.userNum)
(
rgHandles[i] = OJ
cOpenConnections--j
}

/* return an error OK condition */
pRq-)RqHead.ercRet = OJ
}

/***/
/* */
/* TerminateIfErcNotOk */
/* */
/* This procedure is used to clean up the environment when an error */
/* occurs which does not prevent us from deinstalling ourselves. */
/* */
/***/

void TerminateIfErcNotOk (Word erc, RqHeaderType *pRq)
(

if (erc != ercOK)
(
LogMessage(pMsgError, strlen(pMsgError»j

/* check to see if we do not have a null pointer */
if (pRq != NULL) pRq-)ercRet 33j /* service not available */

/* now attempt to deinstall */
DeInstall (pRq)j
}

/***/
/* */
/* Main */
/* */
/* set up the partition as a server. First, though, we have to check*/
/* to see if another copy of the server is running. If one is, we */
/* must terminatej otherwise proceed with the installation. */
/* */
/***/

Source Code Listings D - 59

void main ()
{
int i;
RqHeaderType *pRq;

/* first get my user number, I need this later */
CheckErc (GetUserNumber (&usernum»;

/* allocate the exchange I will be using */
CheckErc(AllocExch(&exchServe»;

/* check to see if another copy of me is running */
erc = GetPartitionHandle (pServerName, strlen(pServerName), &phRet);
if (erc == ercOK)

ErrorExitString(O, pMsgPrevlnstall, strlen(pMsgPrevlnstall»;

/* query the requests, if any are undefined, then get out */
nRequests = sizeof(rgRequestTable) / 2;
for (i = 0; i < nRequests; i++)

CheckErc(QueryRequestlnfo(rgRequestTable[i],&rqlnfo[i],srqlnfo»;

/* inform the user I've installed */
CheckErc (SetMsgRet (pMsglnstalledOk, strlen(pMsglnstalledOk»);
erc = ConvertToSys ();
if (erc ! = 0)

ErrorExitString(erc, pMsglnstallError, strlen(pMsglnstallError»;
else ErrorExit (0);

/* Servers must run at priority less than 40 to prevent deadlock */
preTerminatelfErcNotOk (ChangePriority (12»;

/* Set the partition name so deinstallation can occur */
preTerminatelfErcNotOk (SetPartitionName (0, pServerName,

strlen(pServerName»);

/* Now serve the requests */
for (i = 0; i < nRequests; i++)

preTerminatelfErcNotOk (ServeRq (rgRequestTable[i], exchServe»;

/* now loop waiting for a request, serve it when I get one */
while (TRUE)

{
/* wait for an incoming request */
CrashlfErcNotOk (Wait (exchServe, &pRq»;
/* process the request */
ProcessRequest(pRq);
/* now respond to the user */
CrashlfErcNotOk (Respond (pRq»;
}

D - 60 eTOS/ Open Programming Practices and Standards - Appendixes

FooServerRequest.txt

This sample program is referenced by Listing 8-8.

:WsAbortRq: OEFOSh
:TerminationRq:OEFOSh
:SwappingRq: OEF04h
:ChgUserNumRq: OEF06h

: RequestCode: OEFOOh
: RequestName: GetFooText
:Version: 2
:LclSvcCode: OOOOh
:ServiceExch: exchlnstalledMastr
:sCntlnfo: 2
:nReqPbCb: 0
:nRespPbcb: 2
:Params: w(12), p(14), w(18), p(20), c(2,24)
: NetRouting: rFh
:SrpRouting: NoRouting

: RequestCode: OEFOlh
:RequestName: DeinstallFooServer
:Version: 1
:LclSvcCode: OOOOh
:ServiceExch: exchlnstalledMastr
:sCntlnfo: 0
:nReqPbCb: 0
:nRespPbcb: 0
:Params: none
: NetRouting: noRouting
:SrpRouting: NoRouting

: RequestCode: OEF02h
: RequestName: OpenFooServer
:version: 1
:LclSvcCode: OOOOh
:ServiceExch: exchlnstalledMastr
:sCntlnfo: 0
:nReqPbCb: 0
:nRespPbcb: 1
:Params: p(12), c(2,16)
: NetRouting: OpenFh,CloseAtTermination
:SrpRouting: NoRouting

: RequestCode: OEF03h
: RequestName: CloseFooServer
:Version: 1
: LclSvcCode: OOOOh
:ServiceExch: exchlnstalledMastr
:sCntlnfo: 2
:nReqPbCb: 0
:nRespPbcb: 0
:Params: w(12)
: NetRouting: CloseFh,rFh
:SrpRouting: NoRouting

: RequestCode: OEF04h
: RequestName: SwapClientFooServer
:Version: 1

Source Code Listings D-61

:LclSvcCode: OOOOh
:ServiceExch: exchlnstalledMastr
:sCntlnfo: 2
:nReqPbCb: 0
:nRespPbcb: 0
:Params: none
:NetRouting: noRouting
:SrpRouting: NoRouting

: RequestCode: OEF05h
: RequestName: TerminateClientFooServer
:Version: 1
:LclSvcCode: OOOOh
:ServiceExch: exchlnstalledMastr
:sCntlnfo: 2
:nReqPbCb: 0
:nRespPbcb: 0
:Params: none
:NetRouting: noRouting
:SrpRouting: NoRouting

: RequestCode: OEF06h
: RequestName: ChangeUserClientFooServer
:Version: 1
:LclSvcCode: OOOOh
:ServiceExch: exchlnstalledMastr
:sCntlnfo: 2
:nReqPbCb: 0
:nRespPbcb: 0
:Params: none
:NetRouting: noRouting
:SrpRouting: NoRouting

FooServerRqLabel.asm

This sample program is referenced by Listing 8-9.

i request labels for the requests in FooServerRq.c
i FooServerRqLabel.asm

$INCLUDE([Sys] <Sys>RqLabl.mdf)

%RqName(OEFOOh, IGetFooText")
%RqName(OEFOlh, IDeinstallFooServer")
%RqName(OEF02h, IOpenFooServer")
%RqName(OEF03h, ICloseFooServer")

QueryFooServerRq.c

This sample program is not referenced. It sends a request to the Faa
service and displays the response.

/***/
/* */

D-62 eTaS/Open Programming Practices and Standards - Appendixes

/* File Name: QueryFooServerRq.c */
/* Compiler: Metaware C * /
/* Date: 05/11/89 */
/* Author: A. Coleman/J. Crook */
/* */
/* This is a sample connection-oriented program which opens a */
/* connection with a system service. It then loops receiving */
/* messages from the service. The program closes the connection */
/* when any keyboard action is taken. */
/* Link with FooServerRqLabel.obj. */
/* */
/***/

#define CheckErc
#define Delay
#define ErrorExit
#define OutputToVidO
#define ReadKbdDirect

#include <ctoslib.h>
#include <string.h>

pragma Calling_convention (CTOS_CALLING_CONVENTIONS)i

extern ErcType CloseFooServer(Word wHandle)i
extern ErcType GetFooText(Word wHandle, Pointer pbDataRet,

Word cbDataRet, Pointer psDataRet)i
extern ErcType OpenFooServer (Pointer pHandleRet)i

pragma Calling_convention ()i

#define CHECKONLY 1
#define DELAYRATE 10
#define ERCNOCHARAVAIL 602

Word hConnect i
Word cbReti

char bKeYi
char rgbServerDa ta [80] i

char pMsgIntro [] =
"Press any key to close the connection with the server.\n\n"i

void main ()
{

/* open my connection with the foo server */
CheckErc(OpenFooServer (&hConnect»i

/* display the intra message */
OutputToVidO (pMsglntro, strlen(pMsglntro»i

/* loop checking for a keyboard character, anyone */
while (ReadKbdDirect (CHECKONLY, &bKey) == ERCNOCHARAVAIL)

{

/* get a message from the server */
CheckErc (GetFooText (hConnect, &rgbServerData,

sizeof(rgbServerData), &cbRet))i

/* display the message */

Source Code Listings D-63

outputToVidO (&rgbServerData, cbRet);

/* now wait awhile before continuing */
CheckErc (Delay (DELAYRATE»;
}

/* close my connection */
CheckErc (CloseFooServer (hConnect»;
ErrorExit (0);
}

D-64 eTaS/Open Programming Practices and Standards - Appendixes

Chapter 9

Chapter 9 contains the following listings.

FooServerSc.c

This sample program is referenced by Listings 9-1, 9-2, and 9-3.

/***/
/* */
/* File Name:FooServerSc.C */
/* Compiler:Metaware C */
/* Date:05/11/89 */
/* Author:A. Coleman/J. Crook */
/* */
/* This is a sample connection less system cornmon service that returns*/
/* data in a field for a program. */
/* */
/* Note - this program must be compiled LARGE so that DS is pushed */
/* on entry to GetFooText. */
/* */
/* Note - the object module must be linked with LogMessage.obj. */
/* */
/***/

#define Syslit
#define RqHeaderType
#define rqlnfoType

#include <ctostypes.h)

#define AllocExch
#define CheckErc
#define ChangePriority
#define ConvertToSys
#define ChangePriority
#define Check
#define Crash
#define Delay
#define ErrorExit
#define ErrorExitString
#define Exit
#define ExitAndRemove
#define FatalError
#define ForwardRequest
#define GetUserNurnber
#define GetPartitionHandle
#define QueryRequestlnfo
#define RemovePartition
#define RequestDirect
#define Respond
#define Send
#define SetMsgRet
#define SetPartitionLock
#define SetPartitionName
#define ServeRq
#define SystemCornmonQuery

Source Code Listings D-65

#define SystemCommonlnstall
#define VacatePartition
#define wait

#include <ctoslib.h>
#include <string.h>
#include <stdlib.h>

/* opt out not needed library routines to conserve space */
#include <server.h>

#define ERCINCONSISTENCY
#define RqDEINST
#define ScID

3
OxOEFOl
26005

/* external procedures */
extern LogMessage(char *, int);

/* forward procedures */
void DeInstall () ;

struct rgSysComInfo {
Byte fDefined i
Pointer pProc;
Word orgbParamDef;
Word srgbParamDef;
Byte rgbParamDef [20] ;
} rgSysComInfoi

rqInfoType rqInfo;

Word sSysComInfo 29;
Word erc;
Word exchServe;
Word usernum;
Word phRet;

char pServerName[] ="Foo SysCom";

char pMsgInstalledOk [] ="Foo Server Installed";
char pMsgInstallError [] ="Unable to install the Foo Server";
char pMsgPrevInstall [] ="Foo Server Already Installed";
char pMsgScInUse [] ="System Common Number already in Use";

char pMsgError [] ="Foo Server Deinstalled due to error";
char pMsgRet [] =" I'm the Foo Server, and I'm OK. \n" ;

char pParams [] = "pcp";

/***/
/* */
/* CrashIfErcNotOk */
/* */
/* This procedure is used to crash the sytem if an error occurs which*/
/* we can't recover from once we are a system service. */
/* */
/***/

void CrashIfErcNotOk (Word erc)
{
if (erc != ercOK) Crash (erc);

D-66 eTOS/Open Programming Practices and Standards - Appendixes

/***/
/* */
/* DeInstall */
/* */
/* This procedure restores the requests and system common procedures */
/* to their initial values. The partition is then unlocked and the */
/* server exits. */
/* */
/***/

void DeInstall (pRq)
RqHeaderType *pRq;

(

/* restore the requests */
CrashIfErcNotOk (ServeRq (RqDEINST, rqInfo.exch»;

/* restore the system commons */
CrashIfErcNotOk (SystemCommonInstall (ScID, rgsysComInfo.pProc,

rgSysComInfo.rgbParamDef,
rgSysComInfo.srgbParamDef, 1,
NULL, 0));

/* All done, unlock partition, and deinstall */
CrashIfErcNotOk (SetPartitionLock (FALSE»;
CrashIfErcNotOk (Respond (pRq»;
ExitAndRemove ();

/* if we get here, something is wrong with the OS */
Crash(ERCINCONSISTENCY);
}

/***/
/* */
/* GetFooText */
/* */
/* This procedure processes calls to the system common procedure from*/
/* client processes. */
/* */
/***/

/* Don't use the C calling convention, use CTOS style */
pragma Calling_convention(CTOS_CALLING_CONVENTIONS);

ErcType GetFooText(Pointer pbDataRet,Word cbDataRet, Pointer psDataRet)
{

Word i;

/* get the maximum size of the message */
if (cbDataRet < strlen (pMsgRet»

i cbDataRet;
else

i strlen (pMsgRet);

/* put the message in the user's buffer */
memcpy (pbDataRet, pMsgRet, i);
*«Word *) psDataRet) = i;

/* return ercOK */
returneD);

Source Code Listings D-67

/* restore C calling convention */
pragma Calling_convention();

/***/
/* */
/* preTerminateIfErcNotOk */
/* */
/* This procedure is used to clean up and exit if an error */
/* which we can recover from occurs after we are a system service. */
/* */
/***/

void preTerminateIfErcNotOk (Word erc)
[
if (erc != ercOK)

[
LogMessage (pMsgError, strlen(pMsgError»;

/* restore the requests */
CrashIfErcNotOk (ServeRq (RqDEINST, rqInfo.exch»;

/* restore the system commons */
(¢ CrashIfErcNotOk (SystemCommonInstall (ScID, rgSysComInfo.pProc,

rgSysComInfo.rgbParamDef,
rgSysComInfo.srgbParamDef, 1,
NULL, 0));

/* unlock my partition and get out */
CrashIfErcNotOk (SetPartitionLock (FALSE»;
ExitAndRemove ();

/* OS problem if we ever get here */
Crash (ERCINCONSISTENCY);
}

/***/
/* */
/* TerminateIfErcNotOk */
/* */
/* This procedure is used to clean up the environment when an error */
/* occurs which does not prevent us from deinstalling ourselves. */
/* */
/***/

void TerminateIfErcNotOk(erc, pRq)
Word erc;
RqHeaderType *pRq;

[
if (erc != ercOK)

{
LogMessage (pMsgError, strlen(pMsgError»;

/* check to see if we do not have a null pointer */
if (pRq != NULL) pRq->ercRet 33; /* service not available */

/* now attempt to deinstall */
DeInstall(pRq);
}

D-68 eTaS/Open Programming Practices and Standards - Appendixes

/***/
/* */
/* Main */
/* */
/* Set up the partition as a server. First, though, we have to check*/
/* to see if another copy of the server is running. If one is, we */
/* must terminatei otherwise proceed with the installation. */
/* */
/***/

void main ()
{
RqHeaderType *pRqi

/* first get my user number, I need this later */
CheckErc (GetUserNumber (&usernum»i

/* allocate the exchange I will be using */
CheckErc(AllocExch(&exchServe»i

/* check to see if another copy of me is running */
erc = GetPartitionHandle (pServerName, strlen(pServerName), &phRet)i
if (erc == ercOK)

ErrorExitString(O, pMsgPrevlnstall, strlen(pMsgprevlnstall»~

/* query the system common procedure. If itls in use, error exit. */
CheckErc (SystemCommonQuery (ScID, &rgSysComlnfo, sSysComlnfo»i
if (rgSysComlnfo.fDefined != FALSE)

ErrorExitString(O, pMsgSclnUse, strlen(pMsgSclnUse»i

/* query the request. If it is in use, error exit. */
CheckErc (QueryRequestlnfo(RqDEINST, &rqlnfo, sizeof(rqlnfo»)i

/* inform the user live installed */
CheckErc (SetMsgRet (pMsglnstalledOk, strlen(pMsglnstalledOk»);
erc = ConvertToSys ()i
if (erc ! = 0)

ErrorExitString (erc,pMsglnstallError, strlen(pMsglnstallError»i
else ErrorExit (O)i

/* Servers must run at a priority below 40 to prevent a deadlock */
preTerminatelfErcNotOk (ChangePriority (12»i

/* Set the partition name so deinstallation can occur */
preTerminatelfErcNotOk (SetPartitionName (0, pServerName,

strlen(pServerName»)i

/* Now serve the requests */
preTerminatelfErcNotOk (ServeRq (RqDEINST, exchServe»;

/* Now server the system common */
preTerminatelfErcNotok(SystemCommonlnstall(ScID,

(Pointer) GetFooText, pParams,
strlen(pParams), 0, NULL, 0»;

/* now loop waiting for a request, serve it when I get one */
while (TRUE)

{
Wait (exchServe, &pRq)i

/* the only one I service is a deinstallation request */

Source Code Listings D - 69

Delnstall (pRq);
}

FooSysCommonLabeLasm

This sample progratn is referenced by Listings 4-1 and 4-3.

; FooSysCommonLabel.asm Sys common proc label for FooServerSc.c
STACK SEGMENT STACK 'STACK' i default stack so programs won't crash!

DB 512 DUP (?)
STACK ENDS

$include([Sys] <Sys>ossub.mdf)

%OsSubLab(26005, "GetFooText")

QueryFooServerSc.c

This sample program is not referenced. It calls the Faa system common
service.

/***/
/* */
/* File Name: QueryFooServerSc.c */
/* Compiler: Metaware C */
/* Date: 05/11/89 */
/* Author: A. Coleman/J. Crook */
/* */
/* This is a sample program which issues a system common call to */
/* receive a message to print. The program terminates when any */
/* keyboard action is taken. */
/* Link with FooSysCommonLabel.obj. */
/* */
/*************************'***/

#define CheckErc
#define Delay
#define ErrorExit
#define OutputToVidO
#define ReadKbdDirect

#include <ctoslib.h>
#include <string.h>

pragma Calling_convention(CTOS_CALLING_CONVENTIONS)i

extern ErcType GetFooText (Pointer pbDataRet, Word cbDataRet,
Pointer psDataRet);

pragma Calling_convention();

#define CHECKONLY 1
#define DELAYRATE 10

D-70 eTOS/Open Programming Practices and Standards - Appendixes

#define ERCNOCHARAVAIL 602

Word cbRet;

char bKey;
char rgbServerDa ta [80] ;

char pMsglntro [] =

"Press any key to discontinue use of the Foo Server.\n\n";

void main ()
{

/* display the intro message */
OutputToVidO (pMsglntro, strlen(pMsglntro»;

while (ReadKbdDirect (CHECKONLY, &bKey) == ERCNOCHARAVAIL)
{

/* get a message from the server */
CheckErc (GetFooText (&rgbServerData, sizeof (rgbServerData),

&cbRet»;

/* display the message */
OutputToVidO (&rgbServerData, cbRet);

/* now wait awhile before continuing */
CheckErc (Delay (DELAYRATE»;
}

ErrorExit (0);
}

Source Code Listings D-71

Chapter 10

Chapter 10 contains no listings.

Chapter 11

Chapter 11 contains the following listings.

Mediator.asm

This sample program is referenced by Listing 11-1.

i Filename: Mediator.asm. Implements a mediator for WriteBsRecord

extrn WriteBsRecord:far

Data segment word public 'Data'
Data ends

stack segment stack 'stack'
db 24 dup(?)

Stack ends

DGroup group Data
assume ds: DGroup
assume ss: DGrOup

MedWriteBsRecord segment word 'code'
assume cs: MedWriteBsRecord

on entry
bp+18
bp+16
bp+14
bp+12
bp+lO
bp+8
bp+6

stack has:
sn(pcbRet)
o(pcbRet)
cb
sn(pb)
o(pb)
sn(pBSWA)
o(pBSWA)

Needs to be:
sn(pBSWA)
o(pBSWA)
sn(pb)
o(pb)
cb
sn(pcbRet)
o(pcbRet)

We need to reverse the positions of the parameters

public MedWriteBsRecord
public _MedWriteBsRecord
_MedWriteBsRecord proc far

push bp
mov bp, sp

push [bp+8]
push [bp+6]

push pBSWA, seg and offset

D-72 eTaS/Open Programming Practices and Standards - Appendixes

push [bp+12] push pb, seg and offset
push [bp+IO]

push [bp+14] push cb

push [bp+18] push pcbRet, seg and offset
push [bp+16]

call WriteBsRecord ; make the call

mov sp,bp
pop bp
ret ;don't pop original stack. caller does it.

MedWriteBsRecord endp
MedWriteBsRecord ends
end; Mediator.asm

TestMediator.c

This sample program is not referenced in the text.
Mediator.asm.

It exercises

/***/
/* */
/* File Name: TestMediator.c */
/* Compiler: Metaware C */
/* Date: 09/6/89 */
/* Author: A. Coleman */
/* */
/* This file tests a mediator for the C language calling */
/* conventions. The CTOS procedure it mediates is WriteBsRecord. */
/* */
/* The mediator is in the file Mediator.asm. It should be Linked */
/* with this file's object module. */
/* */
/***/

~include <stdlib.h>
~include <string.h>

~define Syslit
~include <ctostypes.h>

/* preopened vid bytestream */
extern char *bsVid[];

/* our mediated procedure. Note that we use C calling convention */
extern ErcType MedWriteBsRecord(Pointer pBSWA, Pointer pb, Word cb,

Pointer pcbRet);

char *rgbMessage
Word cbMessage;
Word cbCharsRet;
ErcType erCj

"\nThis is a test message for MedWriteBsRecord."j

Source Code Listings D-73

main() {
ebMessage = strlen(rgbMessage);

while(TRUE)
ere = MedWriteBsReeord(bsVid, rgbMessage, ebMessage, &ebCharsRet);

return(O);
}

D-74 eTaS/Open Programming Practices and Standards - Appendixes

Chapter 12

Chapter 12 contains the following listings. The three listings together
form a single program, which demonstrates multiple-processes and
disposable initialization code. The three modules should be linked in the
following order:

main.obj multiproc.obj coedproc.obj

Main.obj must appear first so that the Linker can arrange the code, coed,
and DGROUP segments of the program in the correct order.

Multiproc.c

This sample program is referenced by Listings 12-1, and 12-2.

/***/
/* */
/* File Name: MultiProc.c */
/* Compiler: Metaware C */
/* Date: 05/16/89 */
/* Author: J. Crook */
/* */
/* This program is an interesting little example showing the multi- */
/* processing capabilities of CTOS. The main process initiates three*/
/* asynchronous processes and then waits for a FINISH key depression */
/* from the user (basically going to sleep). */
/* */
/* The first child process is a clock process. This process does */
/* nothing more than update a time display about once a second. */
/* */
/* The second child process puts dots on the screen at one of two */
/* pre-determined rates. The third childprocess erases dots from the*/
/* screen also at two pre-determined rates. */
/* */
/* Note - the stacks are in my DGroup segment rather than allocating */
/* them from the memory pool. This is because I want my child */
/* processes to have addressability of data elements in DGroup. I */
/* allocate them using the ExpandAreaSL call by expanding my DGroup. */
/* The run file must be bound with DS Allocation specified. */
/* */
/* Note - bind this with Main.obj. This module declares the proper */
/* ordering of the segments so that the COED segment is deallocated */
/* correctly. Additionally, there is no Main IC I routine as the IC I */
/* run time preamble does an expansion of DGroup before the program */
/* code is executed. Therefore, a stub which simply jumps to */
/* the real main routine is coded in assembly language. Main.obj */
/* must be the first object module in the link list. */
/* */
/***/

#define Sysli t

#define AllocExch

Source Code Listings D -75

#define AllocMemorySL
#define Beep
#define CheckErc
#define CreateProcess
#define DeallocMemorySL
#define Delay
#define ErrorExit
#define ExpandAreaSL
#define GetDateTime
#define NlsStdFormatDateTime
#define PutFrameChars
#define QueryFrameBounds
#define ReadKbd

#include <ctoslib.h>
#include <string.h>
#include <stdio.h>

#define BLANK
#define FINISH
#define GO
#define MAXCH
#define STACKSZ

Ox20
Ox04
Oxlb
80
1024

typedef void (*PF) (); 1* pointer to function *1

typedef struct
{ PF pEntry;

Selector saData;
Selector saExtra;
Selector saStack;
Offset oStackInit;
Byte priority;
Flag fSys;
Word defaultExch;
Flag fSuspend;
ProcDescType;

1* external declarations *1
extern Initialize ();

char rgchTime [32];
char rgchPath [MAXCH];

long sysTime;

Word cchTime, nCols

char *rgchFrame;
char *rgchSpaces;

Word *rgProlStack;
Word *rgPro2Stack;
Word *rgTimeStack;

ProcDescType ProlDesc;
ProcDescType Pro2Desc;
ProcDescType TimeDesc;

char rgMsgTitle [] =

0, nLines 0, cChars 0;

"Multi-Tasking Example (Press FINISH to exit)";

D-76 eTOS/Open Programming Practices and Standards - Appendixes

/***/
/* */
/* AdjustScreenParams */
/* */
/*This routine updates the column and line parameters for the display*/
/* and erasure of the dots from the video. Also, the increment */
/* flags may be modified to vary the rate of display. */
/* */
/***/

void AdjustScreenParams (Word *piC, Word *piL, Flag *pfC, Flag *pfL)
{

/* update column */
if (*pfC == TRUE) *piC = (*piC + 1);
else *piC = (*piC + nCols - 1);
*pic %= nCols;

if (*pic
if (*pic

0) *pfC = TRUE;
nCols - 1) *pfC

/* update line */

FALSE;

if (*pfL == TRUE) *piL = (*piL + 1);
else *piL = (*piL + nLines - 1);
*piL %= nLines;

if (*piL
if (*piL
}

0) *pfL = TRUE;
nLines - 1) *pfL FALSE;

/***/
/* */
/* AllocateArrays */
/* */
/* This routine allocates a few of the arrays I need. A blank array */
/* is used to clear the status line when updating the clock. A frame*/
/*cell array is used to hold count information to prohibit holes from*/
/* appearing when dot erasure is being performed. */
/* */
/***/

void AllocateArrays ()
{
Offset raData;
Pointer pData;
Selector snData;
Word cb, i;

/* get the limits on frame 0, needed for memory allocation */
CheckErc (QueryFrameBounds (0, &nCols, &nLines»;

/* we must get the selector DGROUP */
pData = &raData;
snData = selectorof (pData);

/* call ExpandAreaSL to get the segment limit offset */
CheckErc (ExpandAreaSL (0, snData, &raData»;

/* now expand the data segment to its maximum size */
cb = (nCols * nLines) + (STACKSZ * 6) + MAXCHi
CheckErc (ExpandAreaSL (cb, snData, &raData»;

Source Code Listings D -77

/* set the offset for the three stacks */
for (i = 0; i < 3; i++)

{
switch (i)

{
case 0:

selectorof
offsetof
break;

case 1:
selectorof
offsetof
break;

case 2:

(rgTimeStack)
(rgTimeStack)

(rgProlStack)
(rgProlStack)

selectorof (rgPro2Stack)
offsetof (rgPro2Stack)
break;
}

raData += (STACKSZ * 2);
}

snData;
raData;

snData;
raData;

snData;
raData;

/* set the offset for the array for video frame a */
selectorof (rgchFrame) snData;
offsetof (rgchFrame) = raData;
cb = nCols * nLines;
memset (rgchFrame, 0, cb);

/* set the offset for the spaces array */
raData += nCols * nLines;
selectorof (rgchSpaces) = snData;
offsetof (rgchSpaces) = raData;
memset (rgchSpaces, BLANK, nCols);
}

/***/
/* */
/* Procl */
/* */
/* This routine is the process for displaying dots to the video. */
/* */
/***/

void Procl ()
{
char ch = GO;
Flag fIncCol = TRUE, fIncLine = TRUE;
Word iCol = 0, iLine 0, iCell;

/* build the snake */
while (TRUE)

{
/* put out a single dot */
CheckErc (PutFrameChars (0, iCol, iLine, &ch, 1»;

/* increment the frame cell counter, character counter */
iCell = iLine * nCols + icol;
rgchFrame [iCell]++;
cChars ++;

/* get ready to go to the next cell */
AdjustScreenParams (&iCol, &iLine, &fIncCol, &fIncLine);

D-78 eTOS/Open Programming Practices and Standards - Appendixes

/* additional delay when we are moving up to the left */
CheckErc (Delay (1»;
if«(flncCol != TRUE) && (flncLine != TRUE» I I (cChars > MAXCH»

CheckErc (Delay (1»;

/***/
/* */
/* Proc2 */
/* */
/* This routine is the process for erasing dots to the video. */
/* */
/***********.**/

void Proc2 ()
{
char ch = BLANK;
Flag flncCol = TRUE, flncLine = TRUE;
Word iCol = 0, iLine 0, iCell;

/* shrink the snake */
while (TRUE)

{
/* we can erase a cell with a
iCell = iLine * nCols + iCol;
if (rgchFrame [iCell] == 1)

cell count 1, next decrement */

CheckErc (PutFrameChars (0,
rgchFrame [iCell]--;

iCol, iLine, &ch, 1»;

cChars--;

/* get ready to go to the next cell */
AdjustScreenParams (&iCol, &iLine, &flncCol, &flncLine);

/* additional delay when we are not moving up to the left */
CheckErc (Delay (1»;
if«(flncCol == TRUE) I I (flncLine == TRUE» && (cChars < MAXCH»

CheckErc (Delay (1»;

/***/
/* */
/* StartProcess */
/* */
/* This routine implements a general routine for creating processes. */
/* */
/***/

void StartProcess (PF pProc, Pointer pStack, Word cbStack,
ProcDescType *ProcDesc)

{
Offset raStack;
Selector saStack;
Word exch;

/* allocate the default response exchange for the clock process */
CheckErc (AllocExch (&exch»;

/* get the selector and offset of the stack */
sastack = selectorof (pStack);

Source Code Listings D-79

raStack = offsetof

/* set up the process
ProcDesc->pEntry
ProcDesc->saData
ProcDesc->saExtra
ProcDesc->saStack
ProcDesc->oStackInit
ProcDesc->priority
ProcDesc->fSys
ProcDesc->defaultExch
ProcDesc->fSuspend

(pStack);

descriptor */
pProc;
saStack;
0;
saStack;
raStack + cbStack;
Ox7F;
0;
exch;
OxOO;

/* create the process */
CheckErc (CreateProcess (ProcDesc»;
}

/***/
/* */
/* TimeProc */
/* */
/* This routine is the process for updating the time display */
/* */
/***/

void TimeProc ()
{
Word cSpaces, iCol;

while (TRUE)
{

/* get the system date and time, expand and then display it */
CheckErc (GetDateTime (&sysTime»;
checkErc (NIsStdFormatDateTime (NULL, OxFFFF, sysTime, &rgchTime,

sizeof (rgchTime), &cchTime»;
CheckErc(PutFrameChars(l, nCols-cchTime, 1, &rgchTime, cchTime»;

/* now fill in the blank space from the path to the time */
icol = strlen (rgchPath);
cSpaces = nCols - cchTime - iCol;
CheckErc (putFrameChars (1, iCol, 1, rgchSpaces, cSpaces»;

/* now wait awhile */
CheckErc (Delay (10»; /* set to 10, for 1 second */
}

void StartIt ()
{
char Chi
Pointer pInit;

/* initialize everything */
Initialize ();

/* now dispose of the COED segment */
pInit = (Pointer *) Initialize;
offsetof (pInit) = 0;
CheckErc (DeallocMemorySL (pInit, OxFFFF»;

/* now allocate all my arrays */

D-80 eTOS/Open Programming Practices and Standards - Appendixes

AllocateArrays ();

/* start the clock */
StartProcess (&TimeProc, rgTimeStack, (STACKSZ*2), &TimeDesc);

/* start my display processes */
StartProcess (&Procl, rgProlStack, (STACKSZ*2), &Pr01Desc);
StartProcess (&Proc2, rgPr02Stack, (STACKSZ*2), &Pr02Desc);

/* wait for a FINISH key, beep if any other key pressed */
while (TRUE)

[
CheckErc (ReadKbd (&ch»;
if (ch == FINISH) ErrorExit (0);
CheckErc (Beep (»;
}

ErrorExit (0);
}

Coedproc.c

This sample program is not referenced in the text. It performs
initialization for Multiproc.c, and is then deallocated. For Multiproc.c to
run properly, this file must be made into a COED segment using the
ObjMunge (or similar) utility. Chapter 10, "Stack Format and Calling
Conventions" gives more information about disposable initialization code.

/***/
/* */
/* File Name: CoedProc.c */
/* Compiler: Metaware C */
/* Date: 05/16/89 */
/* Author: J. Crook */
/* */
/* This program is the initialization code for MultiProc.run. The */
/* code has been put in a separate module so it can be deallocated to*/
/* shrink the code space after the program is initialized. */
/* */
/***/

/* force the code to go in the coed segment */
pragma Cgroup ("CoedGroup");
pragma Code ("Coed");

#define Syslit
#define CheckErc
#define CreateExecScreen
#define Getpstructure
#define PutFrameAttrs
#define PutFrameChars
#define QueryVidHdw
#define Resetvideo

#include <ctoslib.h>
#include <string.h>

Source Code Listings D-8J

#include <stdio.h>

#define BLANK
#define BOLD
#define MAXCH
#define TYPEPARTITION
#define SYSCONFIG
#define VMPARTITION

Ox20
OxlO
80
36
Ox2C8
3

pragma Calling_convention(CTOS_CALLING_CONVENTIONS)i
extern ErcType BuildFileSpec(Word UserNum, Pointer pbOutputSpec,

Pointer pcbOutputSpec, Pointer pcbOutputSpecNoPw,
Word cbOutputSpecMax, Byte fDefaultPath, Pointer
pbNode, Word cbNode, Pointer pbVol, Word cbVol,
Pointer pbDir, Word cbDir, Pointer pbFile, Word
cbFile, Pointer pbPassword, Word cbPassword, Byte
fDefaultPrefix, Byte fCanonical, Byte bMode)i

pragma Calling_convention()i

extern char rgchPath []i
extern Word nCols, nLinesi
extern char rgMsgTitle []i

/***/
/* */
/* Initialize */
/* */
/* This routine is used to initialize the entire video environment. I*/
/* am using the CreateExecScreen routine to make the display like the*/
/* Executive's screen. I am displaying the current path and a message*/
/* informing the user how to exit. */
/* */
/***/

void Initialize ()
{
Byte rgbVidHdw[3]i
char *pSCBi
Word sMap, cbNoPw, cb, ichi

/* find out the screen size */
CheckErc (QueryVidHdw (&rgbVidHdw, sizeof(rgbVidHdw»)i
nLines rgbVidHdw[l]i
nCols rgbVidHdw[2]i

/* reset the screen, set up screen similar to the Exec */
CheckErc (ResetVideo (nCols, nLines, TRUE, BLANK, &SMap»i
CheckErc (CreateExecScreen (sMap, nCols, nLines»i

/* display the title */
cb = strlen (rgMsgTitle)i
CheckErc (PutFrameChars (1, 0, 0, rgMsgTitle, Cb»i

/* now hi-lite the string, only if we are on CTOS/VM */
CheckErc (GetpStructure (SYSCONFIG, 0, &pSCB»i
offsetof (pSCB) += TYPEPARTITIONi
if (*pSCB == VMPARTITION)

CheckErc (putFrameAttrs (1, 0, 0, BOLD, Cb»i

/* start the string to display the path */
strcpy (&rgchPath, "Path: ")i
ich = 6i

D-82 eTaS/Open Programming Practices and Standards - Appendixes

/* build the path spec with the node, volume, and directorYi */
/* we want the default path, so O's are in all the path fields */
CheckErc (BuildFileSpec (0, &rgchPath[ich], &cb, &cbNoPw,

MAXCH-ich, ONES, NULL, 0, NULL, 0,
NULL, 0, NULL, 0, NULL, 0, 0, 0, 0» i

ich += cbNoPw;

/* null terminate the string and display it */
rgchPath[ich] = 0;
CheckErc (PutFrameChars (1, 0, 1, rgchPath, strlen (rgchPath»);
}

/* braked the coed segment directive */
pragma Code ();

Main.asm

This sample program is not referenced in the text. It arranges the
program's segments in the correct order, and bypasses the Meta Ware C
initialization code. This bypass is needed only for disposable initialization
code .

. ***. , I

;* *;
; * File Name: Main. asm *;
;* Compiler: Assembler *i
;* Date: OS/25/89 *;
;* Author: J. Crook *i
i* *i
;* This program is the main stub for MultiProc.run. It predeclares *i
;* the order of the segments so the COED segment may be deallocated *i
;* after initialization. Also, a stub entry routine is coded to *;
;* prevent the 'c' run time preamble from expanding DGroup, so COED *i
i* deallocation can be done correctly. *;
;* *i
.***. I I

; declare my external 'Main' routine
EXTRN StartIt:FAR

; now declare the segments and their order
Coed SEGMENT PARA PUBLIC 'Coed'
Coed ENDS
Const SEGMENT WORD PUBLIC'CONST'
Const ENDS
Data SEGMENT WORD PUBLIC'DATA'
Data ENDS
Memory SEGMENT WORD PUBLIC 'MEMORY'
Memory ENDS

; declare my stack segment
Stack SEGMENT WORD PUBLIC'STACK'

DW 20 OH DUP (?)
wStack EQU THIS WORD
Stack ENDS

Source Code Listings D-83

i group all my DGroup stuff
DGroup GROUP Const, Data, Memory, Stack
; declare the code segment
Main SEGMENT WORD PUBLIC' CODE'
Main ENDS
; declare an extra segment needed for the linker ('C' run time)
_MWAHSEGMENT SEGMENT PARA PUBLIC 'AHSHIFT'
_MWAHSEGMENT ENDS

; now code the entry point
Main SEGMENT
ASSUME CS:Main
Begin:

MOV AX, DGroup
MOV SS, AX

ASSUME SS:DGroup
MOV SP, OFFSET DGroup:wStack
MOV DS, AX

ASSUME DS:DGroup
CALL StartIt

Main ENDS
END Begin

load DGroup into SS

initialize stack pointer
load DGroup into DS

go to my 'c' code

D-84 eTOS/Open Programming Practices and Standards - Appendixes

Chapter 13

Chapter 13 contains the following listings.

QueryFooServerAsync.c

This sample program is referenced by Listings 13-1, 13-2, and 13-3.

/***/
/* */
/* File Name: QueryFooServerRq.Async.c */
/* Compiler: Metaware C * /
/* Date: 05/11/89 */
/* Author: A. Coleman * /
/* */
/* This is a sample connection-oriented program which opens a */
/* connection with a system service. It then loops receiving */
/* messages from the service. The program closes the connection */
/* when any keyboard action is taken. */
/* This program uses the asynchronous Check primitive, allowing */
/* it to perform other work while it waits for the response from */
/* the service */
/* */
/***/

#define AllocExch
#define Check
#define CheckErc
#define Delay
#define ErrorExit
#define GetUserNumber
#define OutputToVidO
#define putByte
#define PutChar
#define ReadKbdDirect
#define Request

#define kernelErc
#define Sysli t
#define RqHeaderType

#include <stdlib.h>
#include <stdarg.h>
#include <ctoslib.h>
#include <string.h>
hnclude <erc.h>

pragma Calling_convention (CTOS_CALLING_CONVENTIONS)i

extern ErcType CloseFooServer(Word wHandle)i
extern ErcType GetFooText(Word wHandle, Pointer pbDataRet,

Word cbDataRet, Pointer psDataRet)i
extern ErcType OpenFooServer (Pointer pHandleRet)i

pragma Calling_convention ()i

ErcType BuildRequestBlock(RqHeaderType *pRq, Byte sCntInfo, Byte

Source Code Listings D-85

nReqPbCb, Byte nRespPbCb, Word exchResp, Word RqCode,
char *pParamstring, ...) ;

1
10
602
OxEFOO

#define
#define
#define
#define
#define

CHECKONLY
DELAYRATE
ERCNOCHARAVAIL
RQGETFOOTEXT
MAXRQSIZE 64 /* 64 bytes is maximum rq block size */

PointerpRqBlockContents;
Pointer pMyRq;

Word hConnect;
Word cbRet;

char bKeYi
char rgbServerData [80] ;

char pMsglntro [] =
"Press any key to close the connection with the server.\n\n"i

void main ()
{
Word exchMine;

if«pMyRq = malloc(MAXRQSIZE»
ErrorExit(400);

CheckErc(AllocExch(&exchMine»;

NULL)

/* open my connection with the foo server */
CheckErc(OpenFooServer (&hConnect»;

/* display the intro message */
OutputTovidO (pMsglntro, strlen(pMsglntro»;

/* build the request block */
CheckErc(BuildRequestBlock(pMyRq, 2, 0, 2, exchMine, RQGETFOOTEXT,

"%W %P %W %P %W", hConnect, &rgbServerData,
sizeof(rgbServerData), &cbRet, 2))i

/* loop checking for a keyboard character, anyone */
while (ReadKbdDirect (CHECKONLY, &bKey) ERCNOCHARAVAIL)

{
/* request a message from the server */
CheckErc (Request(pMyRq))i

/* do some other stuff while the rq is outstanding */
while(Check(exchMine, &pMyRq) == ercNoMessage) {

PutChar(Ox2E)i /* Ox2E */
}

/* display the message */
OutputToVidO (&rgbServerData, cbRet)i

/* now wait awhile before continuing */
CheckErc (Delay (DELAYRATE»i
}

/* close my connection */
CheckErc (CloseFooServer (hConnect»;
ErrorExit (O)i

D-86 eTOS/Open Programming Practices and Standards - Appendixes

/***/
/* this procedure builds a request block. It accepts a variable- */
/* length argument list, and builds the request block appropriately.*/
/* The request-block parameter string types are: */
/* %Ba Byte type */
/* %Da DoubleWord type */
/* %Oan Offset type (same as Word) */
/* %Pa Pointer type */
/* %Sa Selector type */
/* %Wa Word type */
/***/
ErcType BuildRequestBlock(RqHeaderType *pRq, Byte sCntInfo,

Byte nReqPbCb, Byte nRespPbCb, Word exchResp,
Word rqCode, char *pParamString, ...)

va_list pArgsj/* points to each arg in turn */
Word userNumi
ErcType erCj

/* get user number */
CheckErc(GetUserNumber(&userNum»j

/* fill in request block header */
pRq->sCntInfo = sCntInfo;
pRq->RtCode = OJ
pRq->nReqPbCb = nReqPbCbj
pRq->nRespPbCb = nRespPbCbj
pRq->userNum = userNumj
pRq->exchResp = exchRespj
pRq->ercRet OJ
pRq->rqCode = rqCodej

/* fill in variable part */

/* set up argument list */
va_start(pArgs, pParamString)j

/* set pointer to first byte of request block contents */
pRqBlockContents = pRqj
offsetof(pRqBlockContents) += 12j

while(*pParamstring) {
if(*pParamString != '%')

pParamString++j
else switch(*(++pParamstring»
case 'b':
case 'B':

*(Byte *) pRqBlockContents = va_arg(pArgs, Byte)j
offsetof(pRqBlockContents) += sizeof(Byte)j
breakj

case 'd':
case 'D':

*(DWord *) pRqBlockContents = va_arg(pArgs, DWord)j
offsetof(pRqBlockContents) += sizeof(DWord)j
breakj

case 'p':
case 'p':

*(Pointer *) pRqBlockContents = va_arg(pArgs, Pointer)j
offsetof(pRqBlockContents) += sizeof(Pointer)j

Source Code Listings D - 87

break;
case I s I:
case I S I:

*(Selector *) pRqBlockContents = va_arg(pArgs, Selector);
offsetof(pRqBlockContents) += sizeof(Selector);
break;

case 10
1

:

case 10 I:
case IWI:
case IW I :

*(Word *) pRqBlockContents = va_arg(pArgs, Word);
offsetof(pRqBlockContents) += sizeof(Word);
break;

default:
break;

}
} /* end of while */
return(O);

D-88 eTOS/Open Programming Practices and Standards - Appendixes

Chapter 14

Chapter 14 contains the following listings.

The listings in this section form one overlayed program. They should
appear on the Linker's object module field as follows:

vcsm.obj overlayO.obj/o overlay1.obj/o overlay2.obj/o

VCSM.c

This sample program is referenced by Listing 14-1.

/***/
/* */
/* File Name: VCSM.c */
/* Compiler: Metaware C */
/* Date: 08/7/89 */
/* Author: S. Emmons/A. Coleman/J. Crook */
/* */
/* This program shows an example of how to use virtual Code Segment */
/* Management calls, including: */
/* */
/* Initoverlays */
/* EnableSwapperOptions */
/* GetCParasOvlyZone */
/* GetovlyStats */
/* MakePermanent */
/* ReleasePermanence */
/* */
/***/
#include <stdio.h>

#define Syslit
#include <CTOSTypes.h>

#define AllocMemorySL
#define CheckErc
#define InitLargeOverlays
#define InitOverlays
#define EnableSwapperoptions
#define GetCParasOvlyZone
#define GetOvlyStats
#include <CTOSLib.h>

extern GetSystemlnfo()i
extern DoSwapperStuff()i

typedef struct {
Word cbOvMax i
Word cbOv2ndMaxi
Word cbParMaxi
} OverlayStatsTypei

void main () {

Source Code Listings D-89

Word
Word
Pointer
OverlayStatsType

cbOvlyZone;
cSwapParas;
pSwapBuffer;
OverlayStats;

/*
Determine the size of our overlays

*/
CheckErc (GetOvlyStats (&OverlayStats, 6»;

printf("Overlay stats: Largest = %d, 2nd Largest = %d, Total %d.\n",
OverlayStats.cbOvMax, OverlayStats.cbOv2ndMax,
OverlayStats.cbParMax * 16);

/* convert bytes to paragraph count */
cSwapParas = (OverlayStats.cbOvMax + OverlayStats.cbOv2ndMax) » 4;

/* round it up to a S12-byte disk sector boundary */
cSwapParas = «cSwapParas + OxOOlF) & OxFFEO);

/* add an extra sector */
cSwapParas += Ox0020;

/*

*/

Allocate memory for the Swap Buffer; Swap buffer needs to be
large enough to accomodate both the largest and second largest
overlays.

CheckErc (AllocMemorySL((cSwapParas * 16), &pSwapBuffer»;

/*
Initialize the virtual Code Management facility

*/
CheckErc (InitLargeOverlays (pSwapBuffer, cSwapParas»;

/*

*/

Get the size of the overlay zone (in paragraphs) and display the
number of bytes; NOTE that 1 paragraph = 16 bytes.

cbOvlyZone = (GetCParasOvlyZone () * 16);
printf ("\nThe overlay zone size is %d bytes.\n", cbOvlyZone);

/*
Call a procedure in the first overlay

*/
printf ("\nCalling procedure GetSystemInfo in OverlayO ... ");
GetSystemInfo();
printf("\nOne overlay in memory. ");
/*

Call a procedure in the second overlay
*/
printf ("\nCalling procedure DoSwapperStuff in Overlayl ... ");
DoSwapperStuff ();
}

D-90 eTOS/Open Programming Practices and Standards - Appendixes

OverlayO.c

This sample program is not referenced in the text. It is called during
execution of VCSM.c.

/***/
/* */
/* File Name: OverlayO. c * /
/* Compiler: Metaware C */
/* Date: 08/7/89 */
/* Author: S. Emmons/A. Coleman */
/* */
/* Called by vcsm.c */
/* */
/***/
#include <stdio.h)
#include <ctype.h)

#define ParDescType
#define Syslit
#define Syscom
#define SysConfigType
#include <CTOSTypes.h)

#define CheckErc
#define GetPartitionstatus
#define GetpStructure
#include <CTOSLib.h)

void GetSystemlnfo ()
SysConfigType*pSysCnfgBlk;

checkErc (GetpStructure (ATpConfiguration, 0, &pSysCnfgBlk»;
printf ("\nSystem information follows:\n");
printf("\nSystemBuildType: O%OXH\t\t",

pSysCnfgBlk-)SystemBuildType);
printf ("Operating system type: O%OXH", pSysCnfgBlk-)OsType);
printf ("\nSaMinLL: O%OXH\t\t\t", pSysCnfgBlk-)SaMinLL);
printf ("SaCurrLL: O%OXH", pSysCnfgBlk-)SaCurrLL);
printf ("\nSaCurrSL: O%OXH\t\t", pSysCnfgBlk-)SaCurrSL);
printf ("SaMaxSL: O%OXH", pSysCnfgBlk-)SaMaxSL);
printf ("\nSaMemMax: O%OXH\t\t", pSysCnfgBlk-)SaMemMax);
printf ("cPcb: O%OXH", pSysCnfgBlk-)cPcb);
printf ("\ncExch: O%OXH\t\t\t", pSysCnfgBlk-)cExch);
printf ("cLinkBlk: O%OXH", pSysCnfgBlk-)cLinkBlk);
printf ("\ncLinkBlkRes: O%OXH\t\t", pSysCnfgBlk-)cLinkBlkRes);
printf ("cTrb: O%OXH", pSysCnfgBlk-)cTrb);
printf ("\nclob: O%OXH\t\t\t", pSysCnfgBlk-)clob);
printf ("cFcb: O%OXH", pSysCnfgBlk-)cFcb);
printf ("\ncVhb: O%OXH\t\t\t", pSysCnfgBlk-)cVhb);
printf ("cUcb: O%OXH", pSysCnfgBlk-)cUcb);
printf ("\ncUfb: O%OXH\t\t\t", pSysCnfgBlk-)cUfb);
printf ("HardwareType: O%OXH", pSysCnfgBlk-)HardwareType);
printf ("\nClusterConfiguration: O%OXH\t",

Source Code Listings D-9J

pSysCnfgBlk->ClusterConfiguration);
printf ("fNoFileSystem: O%OXH", pSysCnfgBlk->fNoFileSystem);
printf ("\nfCommIOP: O%OXH\t\t\t", pSysCnfgBlk->fCommIOP);
printf ("fMultipartition: O%OXH", pSysCnfgBlk->fMultipartition);
printf ("\nnParDesc: O%OXH\t\t\t", pSysCnfgBlk->nParDesc);
printf ("oRgUcb: O%OXH", pSysCnfgBlk->ORgUcb)i
printf ("\noRgOExUcb: O%OXH\t\t", pSysCnfgBlk->oRgOExUcb);
printf ("userNumVid: O%OXH\n", pSysCnfgBlk->userNumVid);

/* end of GetSystemlnfo () */

void TryToSwapln () {
ParDescTypePartDesci

CheckErc (GetPartitionStatus (0, 0, &PartDesc, 33»i
printf("\nGot Partition status in TryToSwapln()")i

/* end of TryToSwapln () */

Overlay1.c

This sample program is not referenced in the text. It is called during
execution of VCSM.c.

/***/
/* */
/* File Name: Overlayl.c */
/* Compiler: Metaware C */
/* Date: 08/7/89 */
/* Author: S. Emmons/A. Coleman */
/* */
/* Called by vcsm.c */
/* */
/***/
#include <stdio.h>
#include <ctype.h>

#define Sysli t
#include <CTOSTypes.h>

#define CheckErc
#define MakePermanent
#define MakePermanentp
#define MaplovlyCS
#define ReleasePermanence
#define UpdateOverlayLRU
#include <CTOSLib.h>

extern DoOtherSwapperStuff ();
extern TryToSwapln ()i

void DoSwapperStuff () (
Selector CSi

Pointer pProclnfo;

printf("\n2nd Overlay in memory. ");

D-92 eTOS/Open Programming Practices and Standards - Appendixes

/* Make this overlay permanent. */
CheckErc (MakePermanent (»;

/* Get the CS of the third overlay; Remember, zero-based, so the first
parameter, 2, means the third overlay */

CheckErc (MaplovlyCS (2, &Cs»;
selectorof (pProclnfo) = Cs;

/* Make call to procedure in the third overlay. */
printf ("\nCalling procedure DoOtherSwapperStuff in Overlay2 ... ");
DoOtherSwapperStuff ();

/* Make third overlay permanent. */
CheckErc (MakePermanentP (pProclnfo»;

CheckErc (ReleasePermanence (»;

UpdateOverlayLRU (pproclnfo);

/* Try to swap OverlayO back into memory; Should succeed since we did
the ReleasePermanence call. */

printf ("\nCalling procedure TryToSwapln in OverlayO ... ");

TryToSwapln ();

/* end of DoSwapperstuff () */

Overlay2.c

This sample program is not referenced in the text. It is called during
execution of VCSM.c.

/***/
/* */
/* File Name: overlay2.c */
/* Compiler: Metaware C */
/* Date: 08/7/89 */
/* Author: S. Emmons/A. Coleman */
/* */
/* Called by vcsm. c * /
/* */
/***/
#include <stdio.h>
#include <string.h>
#include <ctype.h>

#define Sysli t
#define UCBType
#include <CTOSTypes.h)

#define CheckErc
#define GetUCB
#include <CTOSLib.h)

void DoOtherSwapperStuff () {
UCBType UCB;
Byte rgbTmp[40);

Source Code Listings D-93

printf("\nln DoOtherSwaperStuff() - third overlay.")i

CheckErc (GetUCB (&UCB, 95»i

memcpy (rgbTmp, UCB. rgbVol , UCB.cbVol)i
rgbTmp[UCB.cbVolj = '\O'i
printf ("\n\nDefault volume: %s", rgbTmp)i

memcpy (rgbTmp, UCB.rgbDir, UCB.cbDir);
rgbTmp[UCB.cbDirj = '\O'i
printf ("\nDefault directory: %s", rgbTmp)i

memcpy (rgbTmp, UCB.rgbPswd, UCB.cbPswd)i
rgbTmp [UCB. cbPswdj = '\O'i
printf ("\nDefault password: %s", rgbTmp)i

memcpy (rgbTmp, UCB.rgbPrefix, UCB.cbprefix)i
rgbTmp[UCB.cbPrefixj = '\0';
printf ("\nDefault prefix: %s", rgbTmp)i

memcpy (rgbTmp, UCB.rgbNode, UCB.cbNode)i
rgbTmp[UCB.cbNodej = '\0';
printf ("\nDefault node: %s", rgbTmp)i

/* end of DoOtherSwapperstuff () */

D-94 eTOS/Open Programming Practices and Standards - Appendixes

Chapter 15

Chapter 15 contains the following listings.

The sample program referenced by Listing 15-1 is Multiproc.c. That
program appears in the listings for Chapter 12, "Writing Multi-Process
Programs."

RtcTimer.c

This sample program is referenced by Listings 15-2 and 15-3.

/***/
/* */
/* File Name: RTCTimer. c * /
/* Compiler: Metaware C */
/* Date: 06/28/89 */
/* Author: A. Coleman */
/* */
/* This program illustrates the use of the CTOS Real-Time Clock. */
/* It contains a procedure to initialize and start the clock. */
/* It's main loop illustrates a good way to build timing-dependent */
/* loops. It ensures that all ticks are processed once and only */
/* once. It also minimizes the size of the timing window in which */
/* the RTC may reset cEvents when the application is not ready for */
/* it. Even if that happens, the algorithm recovers. */
/* */
/***/

#define Sysli t
#define ProcDescType

#define AllocExch
#define CheckErc
#define CloseRTClock
#define ErrorExit
#define GetDateTime
#define NlsFormatDateTime
#define OpenRTClock
#define Wait
#define WriteBsRecord
#define WriteByte

#define LINEFEED OxOA
#define DateTimeLength 80
#define kernelErc
#include <erc.h>

#include <stdio.h>
#include <time.h>
#include <ctoslib.h>
#include <stdlib.h>

typedef struct TRBType
Word counter, counterReloadi

Source Code Listings D - 95

short int
Word
ErcType
Word
} TRBType;

cEvents;
exchResp;
ercRet;
rqCode;

/* define the pre-opened byte streams */
extern char bsVid[];

/* define external ss12.0 procedure */
extern ErcType ShortDelay(Word n);

Word fPopTick;
charrgbTemplate[] = II!WWW! !Nnn! !*d!, !yyyy! !*h!:!Om!:!Os! !2*A!II;
Word sTemplate = 45;
char rgbTimeMsg [] = liThe system time is: II;
Word sTimeMsg = 22;

/* Build a timer block, then start the timer. */
Word InitTimer(TRBType *pTimerblock, Word cPeriods, Word rqCode)
{

Word exchTimer;

/* build the TRB */
pTimerblock-)cEvents = 0;
pTimerblock-)ercRet = 0;
pTimerblock-)counter = cPeriods;
pTimerblock-)counterReload = cPeriods;
pTimerblock-)rqCode = rqCode;

/* allocate an exchange, and put it in the TRB */
CheckErc(AllocExch(&exchTimer»;
pTimerblock-)exchResp = exchTimer;

/* open the timer. It starts ticking if counter field != 0 */
CheckErc(OpenRTClock(pTimerblock»;

/* return the exchange for future communication with the timer */
return(exchTimer);

/* Get date and
/* while */
void DoMyWork ()
{

time, then print it. If we're not behind, delay a */

DateTimeType
char
Word
Word
int

IDateTime = 0;
szDateTime[DateTimeLength];
cLengthRet = 0;
cBytesRet = 0;
i;

CheckErc(GetDateTime(&lDateTime»;
CheckErc(NlsFormatDateTime(NULL, IDateTime, &rgbTemplate, sTemplate,

&szDateTime, DateTimeLength, &cLengthRet»;
if(cLengthRet < 26)

printf(IIWierd length returned by NlsFormatDateTime\n ll
);

WriteBsRecord(bsVid, rgbTimeMsg, sTimeMsg, &cBytesRet);
WriteBsRecord(bsVid, szDateTime, cLengthRet, &cBytesRet);
WriteByte(bsVid, LINEFEED);

if(fPopTick==FALSE) {
i = (rand() % 100);

D-96 eTOS/Open Programming Practices and Standards - Appendixes

ShortDelay(i)i
}

main()
{
Word
Word
TRBType
TRBType

iTimeCount, iMaxIterations, exchMyTimer, wMyRqCodei
iIterations = 0;

Timerblock;
*pTRBRet;

fPopTick = FALSE;

wMyRqCode = Ox5451i
printf("Enter time interval for RealTime Clock (1 = 100 msec): ");
scanf("%d", &iTimeCount);
printf("\nEnter number of times RTC should fire: ");
scanf("%d", &iMaxIterations);

/* start the real-time clock */
exchMyTimer = InitTimer(&Timerblock, 0 /* iTimeCount */, wMyRqCode);
if(exchMyTimer == 0)

ErrorExit(lO);

/* 1/6/89 Start Timer */
/* Load reload field first, in case interval is short */

Timerblock.counterReload = iTimeCount;
Timerblock.counter = iTimeCount;

/* loop forever */
while(TRUE) {

/* wait for a message from the RTC */
CheckErc(Wait(exchMyTimer, &pTRBRet»i
if(pTRBRet->rqCode != wMyRqCode)

printf("Received wrong timer block from RTC.\n");
/* do the work, then make sure we haven't missed a tick */
/* if we have, loop until cEvents is o. */

do {
DoMyWork();
if(++iIterations >= iMaxIterations) {

CheckErc(CloseRTClock(pTRBRet»;
return(O);
}

/* note: If processor is slow, loop might not keep up with
timer. Would therefore drop a tick occasionally. */
if(pTRBRet->cEvents > 1) {

else

printf("Missed a tick\n");
fPopTick = TRUE;
}

fPopTick = FALSE;
/* if we're up to date (cEvents == 0), go back to the wait */
} while(--pTRBRet->cEvents > 0);

Source Code Listings D-97

RtcTimer.Single.c

This sample program is referenced by Listing 15-4.

/***/
/* */
/* File Name: RTCTimer.Single.c */
/* Compiler: Metaware C * /
/* Date: 06/28/89 * /
/* Author: A. Coleman * /
/* */
/* This program illustrates the use of the CTOS Real-Time Clock */
/* to time a single, rather than a repeating, interval. */
/* It contains a procedure to initialize and start the clock. */
/* It's main loop illustrates a good way to build timing-dependent */
/* loops. It ensures that all ticks are processed once and only */
/* once. It also minimizes the size of the timing window in which */
/* the RTC may reset dEvents when the application is not ready for */
/* it. Even if that happens, the algorithm recovers. */
/* */
/***/

#define Sysli t
#define ProcDescType

#define AllocExch
#define Check
#define CheckErc
#define CloseRTClock
#define DeallocExch
#define ErrorExit
#define GetDateTime
#define NlsFormatDateTime
#define OpenRTClock
#define wait
#define WriteBsRecord
#define WriteByte

#define LINEFEED OxOA
#define DateTimeLength 80
#define ercNoMessage 14
#define kernelErc
#include <erc.h>

#include <stdio.h>
#include <time.h>
#include <ctoslib.h>
#include <stdlib.h>

typedef struct
Word
short
Word
ErcTypeerc
Word
} TRBType;

TRBType
counter, counterReload;
int cEvents;
exchResp;
Ret;
rqCode;

/* Build a timer block, then start the timer. */
Word InitTimer(TRBType *pTimerblock, Word cPeriods, Word rqCode)

D-98 eTOS/Open Programming Practices and Standards - Appendixes

Word exchTimer;

/* build the TRB */
pTimerblock->cEvents = 0;
pTimerblock->ercRet = 0;
pTimerblock->counter = cPeriods;
pTimerblock->counterReload = cPeriods;
pTimerblock->rqCode = rqCode;

/* allocate an exchange, and put it in the TRB */
CheckErc(AllocExch(&exchTimer»;
pTimerblock->exchResp = exchTimer;

CheckErc(OpenRTClock(pTimerblock»;
/* return the exchange for future communication with the timer */
return(exchTimer);

/* Print a value in a static variable. Increments with each call. */
void DoMyWork()
{

static long i=O;
i++;
printf("\n i=%lu",i);

main()
{
Word iTimeCount, exchMyTimer, wMyRqCode;
ErcTypeerc=O;
TRBType Timerblock;
TRBType *pTRBRet;

wMyRqCode = Ox5457;

/* get the interval */
printf("Enter time interval for RealTime Clock (1
scanf("%d", &iTimeCount);

100 msec): ");

/* set up the real-time clock, but don't start it */
exchMyTimer = InitTimer(&Timerblock, 0, wMyRqCode);
if(exchMyTimer == 0)

ErrorExit(lO);

/* start the clock */
Timerblock.counter = iTimecount;

/* loop until timer expires */
while(TRUE) {

/* wait for a message from the RTC */
erc = Check (exchMyTimer , &pTRBRet);
if(erc == ercNoMessage)

DoMyWork();
else if(erc == 0)

break;
else

CheckErc(erc);
}

CheckErc(CloseRTClock(pTRBRet»;
CheckErc(DeallocExch(exchMyTimer»;
}

Source Code Listings D-99

PitTimeout.c

This sample program is referenced by Listings 15-5, 15-6, 15-7 and 15-8.

/***/
/* */
/* File Name: PITTimeOut.c */
/* Compiler: Metaware C */
/* Date: 08/5/89 */
/* Author: A. Coleman * /
/* */
/* This program illustrates use of the CTOS Programmable Interval */
/* Timer. It contains a procedure to initialize and start the timer.*/
/* It's main loop illustrates a good way to build timing-dependent */
/* loops. It performs work until the work is completed or until a */
/* timeout occurs. */
/* */
/***/

#define Syslit
#define ProcDescType

#define AllocExch
#define Check
#define CheckErc
#define Crash
#define ErrorExit
#define FatalError
#define FComparePointer
#define GetDateTime
#define NlsFormatDateTime
#define PSend
#define PutChar
#define PutWord
#define ResetTimerInt
#define SetTimerInt
#define Wait
#define WriteBsRecord
#define WriteByte

#define LINEFEED OxOA
#define DateTimeLength 80
#define NUMCLIENTS 5
#define kernelErc
#include <erc.h>

#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <ctoslib.h>

typedef void _far (*pFunc)();

typedefstruct
unsigned
pFunc
unsigned
unsigned
Pointer
unsigned

TPIBType {
long linkl, link2;
pIntHandler;
saData;
cIntervals;
pRqBlkRet;
footprint;

D-IOO eTOS/Open Programming Practices and Standards - Appendixes

unsigned delta;
unsigned long resl, res2;

TPIBType;

typedef TPIBType *TPIBPtrType;

TPIBPtrType pTimerTPIB;

1* define the pre-opened byte streams *1
externchar bsVid[];

1* public exchange for use by timer int */
Word exchPublic i
1* count of timeouts */
Word cTimeouts;
1* number of times timer should fire *1
Word iIterations;
Word iMaxIterationsi
1* count of calls to subroutine from main loop *1
Word iSubIterations;
1* Flag to indicate whether work is done */
Word fWorkDone = FALSE;

charrgbTemplate[] = "!Www! !Nnn! !*d!, !yyyy! !*h!:!Om!:!Os! !2*A!";
Word sTemplate = 45;
char rgbTimeMsg [] = "The system time is: ";
Word sTimeMsg = 22;
Word iCount;

1* Timer int handler */
void _far HandleTimer()
{
ErcType erc;

1* if work is not done, indicate timeout. Else do nothing. */
if(fWorkDone==FALSE) {

1* Log the event *1
cTimeOuts++;
1* notify the client */
erc = PSend(exchPublic, (Pointer) OxOOOOOOOI);
if(erc != 0)

Crash(erc);

1* Build a timer block, then start the timer. */
Word InitPIT(TPIBType *pTimerblock, Word cPeriods, pFunc pFunction,

Word fStart)

PointerpData=&exchPublic;

1* build the TPIB *1
pTimerblock-)linkl = 0;
pTimerblock-)link2 = 0;
pTimerblock-)pIntHandler = pFunction;
pTimerblock-)saData = selectorof(pData);
/* assumes DGROUP for int handler's DS */
pTimerblock-)cIntervals = cPeriods;
pTimerblock-)pRqBlkRet = &pTimerTPIB;
pTimerblock-)footprint = 0;
pTimerblock-)delta = 0;
pTimerblock-)resl = 0;

Source Code Listings D-10l

pTimerblock-)res2 = 0;

/* allocate an exchange */
CheckErc(AllocExch(&exchPublic»;

if(fStart != FALSE)
CheckErc(SetTimerInt(pTimerblock»;

return(exchPublic);

/* Get date and time, then print it. If we're not behind, delay a */
/* while */
Word DoMyWork ()
{

if(iCount < iSubIterations),
PutWord(iCount, 10);
PutChar(' ');
iCount++;
return(FALSE);
}

else {
iCount=O;
return(TRUE);
}

void maine)
{

Word
Word
Word
Word
long
TPIBType
pFunc
ErcType

iTimeCount;
exchMyTimer;
cBytesRet = 0;
fStartUp = FALSE;
fTimeOut;
Timerblock;

pTimerIntFunc;
erc=O;

pTimerIntFunc = &HandleTimer;

printf("Enter time interval for the PIT (1 = 50 microsec): ");
scanf("%d", &iTimeCount);
printf("\nEnter number of times main loop should execute: ");
scanf("%d", &iMaxIterations);
printf("\nEnter number of times subroutine should be called: ");
scanf("%d", &iSubIterations);

/* set up the Timer */
exchMyTimer = InitPIT(&Timerblock, iTimeCount, pTimerIntFunc,

fStartUp);
if(exchMyTimer == 0)

ErrorExit(lO);

/* loop as many times as we want */
while(ilterations < iMaxIterations)

/* start the timer */
CheckErc(SetTimerInt(&Timerblock»;
putchar('\n');
PutWord(iIterations, 10);

D -102 eTaS/Open Programming Practices and Standards - Appendixes

putchar(' ');
while(TRUE) {

/* do the work */
fWorkDone = DoMyWork();
/* check for a message from the PIT */
erc = Check (exchMyTimer, &fTimeout);
if (erc == 0) {

WriteBsRecord(bsVid, "\nA timeout occurred", 19,
&cBytesRet);

iCount=O;
break;
}

else if(erc != ercNoMessage)
CheckErc(erc);

if(fWorkDone == TRUE) {
/* if timer went off after we finished, we don't care */

erc = ResetTimerInt(&Timerblock);
if(erc == ercOK)

break;
/* if timer went off during timing window */
else if(erc == ercBadQueue) {

printf("\nTimer event in window.");
break;
}

else
FatalError(erc);

}
} /* end of while TRUE */

iIterations++;
}

printf("\nExecution Complete.");
printf("\nPerformed %d iterations. %d timeouts occurred.",

iIterations, cTimeouts);

Source Code Listings D -103

Chapter 16

The listings in Chapter 16 contain all the actual code in the sample
programs. The only parts of the sample programs not shown in that
chapter are the #defines of the called procedures.

Chapter 17

Chapter 17 contains no listings.

Chapter 18

Chapter 18 contains the following listings.

SamC.c

This sample program is referenced by Listing 18-1.

/***/
/* */
/* File Name: SamC. c * /
/* Compiler: Metaware C */
/* Date: 07/27/89 */
/* Author: S. Emmons/A. Coleman */
/* */
/* This program shows use of SAMC calls for asynchronous comm. */
/* */
/* It uses the following SAMC calls: */
/* AcquireByteStreamC */
/* CheckPointBsC */
/* FillBufferC */
/* FlushBufferC */
/* OpenByteStreamC */
/* ReadByteStreamParameterC */
/* ReleaseByteStreamC */
/* SetImageModeC */
/* WriteByteStreamParameterC */
/* */
/* A sample configuration file, SAMCInt>CommBConfig.Sys is */
/* needed for the program and must reside in the */
/* [Sys] <Sys> directory. The file should be set up with the same */
/* parameters used in the InitializePorts() procedure. */
/* A crossed RS-232 cable must */
/* be attached to communication ports [Comm]A and [Comm]B */
/* on the workstation on which the program is to be run. */
/* */
/* This program must be linked with SamGenAII.obj, or it won't run */
/* */
/***/
#include <stdio.h>

D-104 eTOS/Open Programming Practices and Standards - Appendixes

#include <string.h>
#include <ctype.h>

#define Sysli t
#include <CTOSTypes.h>

#define AcquireByteStreamC
#define AllocAreaSL
#define CheckErc
#define CheckPointBsC
#define Exit
#define ExpandAreaSL
#define FillBufferC
#define FlushBufferC
#define NlsULCmpB
#define OpenByteStreamC
#define ReadByteStreamParameterC
#define ReadKbd
#define ReleaseByteStreamC
#define SetImageModeC
#define WriteByteStreamParameterC
#include <CTOSLib.h>

#define FINISH Ox04

/* function definitions */
void SendData(char PortID, Pointer pBSSend, Pointer pBSReceive)i
void InitializePorts(void)i
void PassData(void)i

/*
See Table 4-3 in the CTOS/VM Reference (Volume 2) for description
of each field in the Communication Configuration Descriptor.

*/
typedef struct {

Byte Typei
Word BaudRatei
Word StopBitsi
Byte CharSizei
Byte ParitYi
Byte LineControli
Word Unusedi
Byte TxMapi
Byte RxMapi
Word TxTimeOuti
Word RxTimeOuti
FlagType fEOFi
Byte bEOFi
Byte sTabi
Byte cCharsPerLinei
Byte sbTxltnFile[79]i
FlagType fNRZIi
Word RxBaudRatei
) CCDTypei

Pointer
Pointer
Word
Word
Word
Word
Selector

pBSCommAi
pBSCommBi
cbReti
cbTQi
cbRQi
cbBufferi
snMemAreai

Source Code Listings D-105

Pointer
Pointer
Pointer
Pointer
CCDType
char
char

pbTQAi
pbRQAi
pBufferAreai
pbReti
ConunCfgBlki
rgbError[20]i
rgbMessage[]

void main () {

ErcType
Word
Word
Word

Erci
wComparei
wParami
ii

"This is a Test Message"i

/* Open the byte streams, allocate memory, etc. */
InitializePorts()i

/* set the image mode to binarYi This is not really necessary in this
example, but if we were transmitting a binary file this would have
to be done. */

CheckErc (SetImageModeC (pBSConunA, 2»i
CheckErc (SetImageModeC (pBSConunB, 2»i

/* Use ReadByteStreamParameterC to check one parameter for input BSWAi
Verify the Line Control for the input BSWA.*/

CheckErc (ReadByteStreamParameterC (pBSConunB, 8, &wParam»i
if (wParam != 1)

printf ("\nLine control for [Conun]B is not set to XON/XOFF")i

/* Use WriteByteStreamParameterC to change one parameter for output
BSWAiChange the tab expansion to zero (treat tab literally) */

CheckErc (WriteByteStreamParameterC (pBSConunA, 12, O»i

/* Use ReadBytestreamParameterC to check one parameter for output BSWAi
Verify that the tab expansion was changed from 8 to 0.*/

CheckErc (ReadByteStreamParameterC (pBSConunA, 12, &wParam»i
if (wParam != 0)

printf ("\nTab expansion should have been changed to zero.")i

/* call my interactive routine */
PassData()i

CheckErc (ReleaseByteStreamC (pBSConunB»i
CheckErc (ReleaseByteStreamC (pBSConunA»i

/* End of main () */

void PassData(void) {
char bPort, bJunki

while(TRUE) {
printf("\nEnter sending port letter: ")i
do {

/* get char */
CheckErc(ReadKbd(&bPort»i
if(isalpha(bPort»

putchar(bPort)i
else if(bPort FINISH)

Exit(O)i
else bPort=Oi
} while(bPort O)i

D-I06 eTOS/Open Programming Practices and Standards - Appendixes

/* get carriage return */
CheckErc(ReadKbd(&bJunk»;

if(toupper(bPort) == 'A') (
SendData('A', pBSCommA, pBSCOmmB);
}

else if(toupper(bPort) == 'B') (
SendData('B' ,pBSCommB, pBSCommA);
}

else (
printf("\nPort must be A or B. Press any key to Continue.");
CheckErc(ReadKbd(&bJunk»;
}

void SendData(char PortID, Pointer pBSSend, Pointer pBSReceive) {
Pointer plncomingData;
ErcType Erc;
Byte bJunk;

CheckErc(FlushBufferC (pBSSend, rgbMessage, strlen(rgbMessage),
&cbRet»;

/* block till the chars get shipped */
if«Erc = CheckPointBsC (pBSSend, FALSE» != 0) (

printf("\nUnable to send data. Press any key to Continue.");
sprintf(rgbError, "Erc = %u", Erc);
printf ("\n%s", rgbError);
CheckErc(ReadKbd(&bJunk»;
}

else if«Erc=FillBufferC(pBSReceive,512,&plncomingData,&cbRet» != 0)
printf("\nUnable to receive data. Press any key to Continue.");
sprintf(rgbError, "Erc = %u", Erc);
printf("\n%s", rgbError);
CheckErc(ReadKbd(&bJunk»;
}

else (
printf("\nSent from Port %c.", PortID);
*((char *)plncomingData + cbRet) = 0; /* terminate string */
printf("\n%s", plncomingData);
}

void InitializePorts(void)
char rgbPort[40};
char rgbPortID[40];

/*
*/

Set up the Communication Configuration Descriptor for port A

1;

CommCfgBlk.Type = 3;
CommCfgBlk.BaudRate 9600;
CommCfgBlk.StopBits = 1;
CommCfgBlk.CharSize = 8;
CommCfgBlk.Parity = 0;
CommCfgBlk.LineControl
CommCfgBlk.TxMap = 2;
CommCfgBlk.RxMap = 1;
CommCfgBlk.TxTimeOut = 5;
CommCfgBlk.RxTimeOut = 5;
CommCfgBlk.fEOF TRUE;
CommCfgBlk.bEOF = 4;

/* Type = Communications */
/*Transmit at 9600 baud */
/* 1 stop bit */
/* 8 bits per character */
/* Parity = None */
/* XON/XOFF */
/* CR/LF */
/* Newline * /
/* Transmit timeout = 10 seconds */
/* Receive timeout = 10 seconds */
/* bEOF is active */
/* EOF Character */

Source Code Listings D-107

commCfgBlk.sTab = 8; /* Tab expansion */
commCfgBlk.cCharsPerLine 132; /* 132 characters per line */
CommCfgBlk.sbTxltnFile[O] = 0; /* No translation file */
CommCfgBlk.fNRZI = FALSE; /* Not XC-002 hardware */
CommCfgBlk.RxBaudRate = 9600; /* Receive at 9600 baud */

/* Get the port ID for the first port */
printf("Type a port identifier for the first communications port: ");
gets(rgbPort);
rgbPortID[O]=O;
strcpy(rgbPortID, II [Comm] ");
strncat(rgbPortID, rgbPort, 2);

/* Allocate memory for the Port A BSWA and Queues */
CheckErc (AllocAreaSL(130, &pBSCommA»;
snMemArea = selectorof(pBSCommA);
selectorof(pbTQA) = snMemArea;
CheckErc (ExpandAreaSL (1024, snMemArea, &(offsetof(pbTQA» »;
selectorof(pbRQA) = snMemArea;
CheckErc (ExpandAreaSL (1024, snMemArea, &(offsetof(pbRQA» »;
cbTQ = (1024 - 12) / 2;
cbRQ = (1024 - 12) / 2;

/* Open first port using AcquireByteStreamC */
CheckErc (AcquireByteStreamC (pBSCommA, rgbPortID, 7, modeModify,
&CommCfgBlk,

pbTQA, cbTQ, pbRQA, cbRQ, 0, 0»;

/* Allocate memory for the Port B BSWA, and its buffer area. */
selectorof(pBSCommB) = snMemArea;
CheckErc (ExpandAreaSL (130, snMemArea, &(offsetof(pBSCommB» »;
selectorof(pBufferArea) = snMemArea;
CheckErc (ExpandAreaSL (2048, snMemArea, &(offsetof(pBufferArea» »;
cbBuffer = 2048;

/* Get the port ID for the second port */
printf("Type a port identifier for the second communications port: ");
gets(rgbPort);
rgbPortID[O]=O;
strcpy(rgbPortID, II [Comm] ");
strncat(rgbPortID, rgbPort, 2);
strcat(rgbPortID, "&[syS] <Sys>SAMC>CommBConfig.sys");

/* Open a second port with the specified parameters, using
* OpenByteStreamC. NOTE: SAMC>CommBConfig.Sys is identical to the
* Communication Configuration Descriptor described above, but was
* created using the Create Configuration File command. This
* configuration file must be in [Sys] <sys>.
*/
CheckErc(OpenByteStreamC(pBSCommB, rgbPortID, strlen(rgbPortID), NULL,
0, modeModify, pBufferArea, cbBuffer»;
}

D-I08 eTOS/Open Programming Practices and Standards - Appendixes

Fdxlni.c

This sample program module is referenced by Listings 18-2, 18-3, and
18-4.

/*
* FileName: FDXINI.c
* Compiler:Metaware C
* Date: 07/27/89
* Author:B. Hsueh/A. Coleman
* - Bit Synchronous FDX I/O Handler Initialization
*/

#define false 0
#define true OxFF
#define NIL ((char *) 0)

/* cases for InitcommLine returned info size */
#define BTOSII2 2
#define BTOS I
#define CTOS 0

#define Syslit
#include <CtosTypes.h>
#define LockOut
#define LockIn
#define CheckErc
#define InitcommLine
#define ResetCommLine
#include <Ctoslib.h>
#include <interrupts.cf>

#include <comm.h>
#include <fdx.h>

#define zFlag Ox7e
#define commWrl1 Oxb
#define commWrlO Oxa
#define commWrl4 Oxe
#define commWrl5 Oxf
#define commlRxEnable OxlO
#define commlOCrcPreset Ox80
#define commlOMark Ox8
#define commllRxRTxC OxO
#define commllTxTRxC Ox9
#define comml5AbrtIE Ox80
#define comml5TxUndIE Ox40
#define comml5CtsIE Ox20
#define comml5SyncHuntIE OxlO
#define comml5DcdIE Ox8
#define commlSpecOnly Oxl8
#define comml 720lRxInt Ox8
#define commlDma OxeO
#define comml4Req Ox4
#define ercRetArea2Large 67
#define sFourPortChannel 8

pragma Calling_convention(CTOS_CALLING_CONVENTIONS)i

Source Code Listings D -109

/** External Functions **/
extern void IsrTxData();
extern void IsrRxData();
extern void IsrExStat();
extern void IsrRxSpec();

/** External Variables **/
extern char conunspec[];
extern Word cbconunspec;
extern char frxspec;
extern char frcvmsg;
extern Word iBaudRate;

/** Global Variables **/
FlcbType *rgpflcb;
ClcbType conunlcb;
InitConunLineRetType conunlret;
Word wconunlinehandle;
Word wchiptype;
char fdoinitconun;

void
void
void
void

(*pIsrRxData)()
(*pIsrExStat) ()
(*pIsrTxData)()
(*pIsrRxSpec)()

{IsrRxData}
{IsrExStat}
{IsrTxData}
{IsrRxSpec};

/** Local Variables **/
static Word cbconunlcb;
static Word cbconunlret;

void PrepConunBlk(pflcb, iSizeRetBlk)
FlcbType *pflcb;
char iSizeRetBlk;
{

cbconunlcb = sClcbTypeMax;
if (iSizeRetBlk == BTOS)

cbconunlret = sInitConunLineRetTypeMax;
else if(iSizeRetBlk == BTOSII2)

cbconunlret sBTOSII2RetTypeMax;
else

cbconunlret = sInitConunLineRetType;

conunlret.dmahardware = 0;
conunlret.chiptype = 0;
conunlcb.pdsbx = (char _far *)pflcb;

conunlcb.fdma = false;
conunlcb.ptxisr = (void
conunlcb.prxisr = (void
conunlcb.psprxisr =(void
conunlcb.pextisr = (void

far *)pIsrTxData;
far *)pIsrRxData;
far *) pIsrRxSpec;
far *)pIsrExStat;

conunlcb.frawtx true;
conunlcb.frawext true;
conunlcb.frawrx true;
conunlcb.frawsprx true;
conunlcb.baudtx = iBaudRate /* 0 */;
conunlcb.baudrx = iBaudRate /* 0 */;
conunlcb.fnrzi = false;

conunlcb.fx2l = false;

/* external clocks */
/* external clocks */

D-II0 eTaS/Open Programming Practices and Standards - Appendixes

/*

*/

commlcb.ftdi = false;
commlcb.ftdixlat= false;

NAME : Initcomm

FUNCTION : Initializes comm i/o

char InitComm(pFlcb)
FlcbType *pFlcb;
{

Word
char

commerc ;
iSizeRetBlk;

fdoinitcomm
iSizeRetBlk

true;
BTOSII2 ;

while (fdoinitcomm) { /* InitCommLoop */
if (cbcommspec == sFourPortChannel)

iSizeRetBlk = BTOS;
PrepCommBlk (pFlcb, iSizeRetBlk);

commerc = InitCommLine(&commspec[O],cbcommspec,&commlcb,cbcommlcb,
&commlret,cbcommlret);

if (commerc == ercRetArea2Large)
iSizeRetBlk = BTOS;
PrepCommBlk (pFlcb, iSizeRetBlk);
commerc InitcommLine(&commspec{O],cbcommspec,&commlcb,

cbcommlcb,&commlret,cbcommlret);

if (commerc == ercRetArea2Large)
iSizeRetBlk = CTOS;
PrepCommBlk (pFlcb, iSizeRetBlk);
commerc InitcommLine(&commspec[O),cbcommspec,&commlcb,

cbcommlcb, &commlret,cbcommlret);

CheckErc(commerc);
fdoinitcomm = false;
]

return (true);
]

/*

NAME : InitFdxIo

FUNCTION : Initializes comm i/o

*/
void InitFdxIo(pFlcb)
FlcbType *pFlcb;
{

Source Code Listings D -111

Word
char

port;
i;

i = Initcomm (pFlcb);

pFlcb-)iocommctl = commlret.iocommctl;
pFlcb-)iocommdata = commlret.iocommdata;
wcommlinehandle = commlret.commlinehandle;
wChiptype = commlret.chiptype;

port = pFlcb-)iocommctl;
pFlcb-)fxmitcomplete = false;
frxspec false;
frcvmsg false;

rgpflcb pFlcb;

CLI;
/* set chip to bit-sync mode */
LockOut(port,commWr4);
LockOut(port,comm4Xl+comm4BitSync);
/* set end of frame flag */
LockOut(port,commWr6);
LockOut(port,zFlag);
LockOut(port,commWr7);
LockOut(port,zFlag);
/* enable interrupts. Receive int on first char or special condition */
LockOut(port,commWrl);
LockOut(port,commlRxEnable+commlTxlntEnb+commlExlntEnb+commlStatvect);
/* 8-bit chars, other receive params */
LockOut(port,commWr3);
LockOut (port ,comm3Rx8+comm3AutEnb+comm3RxEnb+comm3RxCrcEnb +comm3Hunt);
/* enable int on next receive, set next write to reg. 5 */
LockOut(port,commRxint);
LockOut(port,commRxint+commWr5);
/* set transmit params */
LockOut(port,comm5Dtr+comm5Tx8+comm5CrcCcitt+comm5TxEnb+comm5TxCrcEnb);
/* error reset and set next write to reg 4 */
LockOut(port,commErrRes+commWr4);
LockOut(port,comm4Xl+comm4BitSync);

if (wchiptype == 1) { /* 82530 only */
LockOut(port,commWrlO);
LockOut(port,commlOCrcPreset); /* not NRZI */
LockOut(port,commWr15);
LockOut(port,

comm15AbrtIE+comm15TxUndIE+comm15CtsIE+comm15DcdIE+comm15SyncHuntIE);
LockOut(port,commWrll);
LockOut(port,commllRxRTxC+commllTxTRXC);
}

STI;
}

D-112 eTOS/Open Programming Practices and Standards - Appendixes

Fdxlsr.asm

This sample program module is referenced by Listing 18-5 .

. --I

FILE NAME: FDXISR.ASM
Date: 7/27/89
Author: B. Hsueh

.--I

$EJECT
i ZIN and ZOUT are IN and OUT for Z80-SIO to ensure separation from DMA

%*DEFINE (ZIN(a,b»(
JMP $+2
DB OFOh, 3Eh
IN %a, %b

%*DEFINE (ZOUT(a,b»(
JMP $+2
DB OFOh, 3Eh
OUT %a, %b

TRUE EQU OFFh
FALSE EQU OOh

commWrl EQU 1
commWr3 EQU 3
commWr4 EQU 4
commWr5 EQU 5
commRr2 EQU 2
commSabt EQU 8
commResCh EQU O18h
commReti EQU 038h
commErrRes EQU 030h
commRxInt EQU OlOh
commResTxInt EQU 028h
commResTxUnd EQU OcOh
commResTxCrc EQU 080h
commResRxCrc EQU 040h
commOTxRdy EQU 4
commORxRdy EQU 1
commODcd EQU 8
commOCts EQU 020h
commOTxEom EQU 040h
commOAbort EQU 080h
commOSync EQU OlOh
commlRxEof EQU 80h
commlCrcErr EQU 040h
commlRxOverrun EQU 20h
commlReadDma EQU 060h
commlWriteDma EQU 040h
commlDmaEnb EQU 080h
commlExIntEnb EQU 1
commlTxIntEnb EQU 2
commlRxIntlst EQU 8

Source Code Listings D-113

comm3Srch
comm3Rx8
comm3RxCrcEnb
comm3Hunt
comm3AutEnb
comm3RxEnb
comm4BitSync
comm5Dtr
comm5Tx8
comm5TxEnb
comm5TxCrcEnb
comm5CrcCcitt
commExct1DcdEnb
commExCt1XmitReq

ercBufferOverrun
ercLostC1ear2Send
ercLostcarrier
ercOverrun
ercCrc
ercLostData

; s10.0
f1cbLineErc
f1cbExchRet
flcbpXmitBuf
f1cbsXmitBuf
flcbixmitBuf
f1cbpRcvData
f1cbiRcvData
f1cbcbRcvMax
f1cbpRecvRgOBuf
flcbiocommCt1
f1cbioCommData
f1cbfXmitcomp1ete

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

data buffer offsets

bufBPrev
bufBNum
bufBNext
bufFInUse
bufSize
bufErcRet
bMsg
bufDataBuf

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

o
1
2
3
4
6
8
9

4
OcOh
8
010h
020h
1
020h
080h
060h
OAh
1
o
8
4

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

DGroup
Data

GROUP DATA
SEGMENT PUBLIC 'DATA'

EXTRN rgPFLcb:DWORD

fRxSpec
fRCVmsg
ercBuf

Data

DB
DB
DW

ENDS

1
OOh
o

8001
8002
8003
8005
8217
8550

00
02
04 ;f1cb.pCurrentXmitBuf
08 ;f1cb.sCurrentXmitBuf
10 ;f1cb.iCurrentXmitBuf
16 ;f1cb.pRcvData
20 ;f1cb.cbRcvData
22 ;f1cb.cbRcvMax
24 ;f1cb.pRecvRgObuf
32 ;f1cb.ioCommCt1
34 ;f1cb.ioCommData
36 ;f1cb.fXmitComp1ete

PUBLIC
PUBLIC

IsrRxData, IsrTxData, IsrExStat, IsrRxSpec
fRxSpec, fRCVmsg

D-114 eTOS/Open Programming Practices and Standards - Appendixes

FdxIsrCode SEGMENT PUBLIC 'CODE'
ASSUME CS: FdxIsrCode, DS: Dgroup

.--I

Receive data
routine to handle receive character available interrupt.

Input:
[DS:BX] - point to FLCB

Output:
None

.--I

IsrRxData PROC FAR
MOV
%ZIN
MOV
CMP
JGE
TEST
JNZ
LES
ADD
MOV

DX,WORD PTR[BX+flcbioCommData]
(AL,DX)

CX,WORD PTR[BX+flcbiRcvData]
CX,WORD PTR[BX+flcbcbRcvMax]
IsrRxData_x
fRCVmsg, Offh
IsrRxData_y
SI,DWORD PTR[BX+flcbpRcvData]
SI,CX
ES:BYTE PTR[SI],AL

receive a char
check for full buffer

if not full
check for end of message

put data in Rcv. buffer

IsrRxData x:
INC WORD PTR[BX+flcbiRcvData] iincrement buffer position

IsrRxData_y:
JMP IsrTxData_O

IsrRxData ENDP

.--I

IsrRxSpec:
interrupt on parity error, Rx overrun, Frame error or
End of Frame.

Notes:
possible LineErc values:

ercOverrun, ercCRC, 0
ercBufferOverrrun

receive EOF and CRC OK, but iRcvData > cbRcvMax
ercLostData

receive EOF and CRC OK , but no buffer available
.--I

IsrRxSpec PROC FAR

MOV
%ZIN
TEST
JNZ
MOV
%ZOUT
TEST
JZ
JMP

DX, WORD PTR[BX+flcbIoCommCtl]
(AL,DX) read status register 0
AL, commODcd IF DCD is Lost THEN DOi
IsrRxSpec_2
AL,commErrRes In case of CD failure
(DX,AL) i issue ERROR RESET.
WORD PTR[BX+flcbLineErc] ,OFFFFh
IsrRxSpec_l IF Flcb.LineErc <> 0 THEN
IsrRxSpec_w RETURN

IsrRxSpec_l: i ELSE DOi
MOV WORD PTR[BX+flcbLineErc] ,ercLostcarrier
JMP IsrRxSpec_v Inform The Exchange and RETURN

ENDi
END;

Source Code Listings D-115

IsrRxSpec_2:
MOV ercBuf,O Reset temporary variable.
MOV AL,1
%ZOUT (DX,AL)
%ZIN (AL,DX) ; read status register I
MOV AH,AL
TEST AH, commlRxEof+commlRxOverrun
JNZ IsrRxSpec_S ; IF Not (Rx EOF or Rx Overrun) THEN RETURN
MOV BYTE PTR[fRxSpec), false
JMP IsrRxSpec_y

ELSE /* Rx EOF or Rx Overrun */
IsrRxSpec_S:

MOV AL,commErrRes+commResRxCrc
%ZOUT (DX,AL)
TEST AH, commlRxOverrun
JZ IsrRxSpec_6 IF Rx Overrun THEN DO;

the corrupted data ;**
MOV
%ZIN
%ZIN
%ZIN
%ZIN
MOV

clean up
DX, WORD

(AL,DX)
(AL,DX)
(AL,DX)
(AL,DX)

Ptr [BX+FlcbIoCommData) ; get the data port

Read Data Port
,

DX, WORD PTR[BX+flcbIoCommCtl)
Set AutoEnable, Hunt Phase,

MOV AL,commWr3
%ZOUT (DX ,AL)

8 bits/char, Enable Receiver,
Set Address Search,

; Enable CRC Receiver.
MOV AL,comm3AutEnb+comm3Hunt+comm3Rx8+comm3RxEnb

IsrRxSpec_5a:
%ZOUT (DX, AL)
MOV ercBuf,ercOverrun
JMP IsrRxSpec_7 END

IsrRxSpec_6: ELSE DO;
TEST AH,commlCrcErr IF Rx EOF THEN
JZ IsrRxspec_7
MOV ercBuf,ercCrc error code

MOV DX,WORD PTR[BX+flcbIoCommData)
%ZIN (AL,DX) read input data
JMP IsrRxSpec_8 ; CRC takes precedence over Overrun

MOV
%ZIN
MOV
CMP
JLE
MOV

END;

DX,WORD PTR[BX+flcbIoCommData)
(AL,DX) ; read input data

AX,WORD PTR[BX+flcbiRcvData)
AX,WORD PTR[BX+flcbCbRcvMax)
IsrRxSpec_8 ; IF flcb.iRcvData
ercBuf,ercBufferOverrun

END
IsrRxSpec_8:

LES SI,DWORD PTR[BX+flcbpRcvData)

> flcb. bRcvMax

SUB SI,bufDataBuf ; ES:SI Point to the beginning of Buffer
MOV AX,ercBuf
MOV ES:WORD PTR[SI+bufErcRet) ,AX
MOV AX,WORD PTR[BX+flcbiRcvData]
DEC AX
MOV ES:WORD PTR[SI+bufSize) ,AX
MOV ES:BYTE PTR[SI+bufFInUse) ,TRUE
MOV BYTE PTR[fRxSpec), TRUE

D-116 eTOS/Open Programming Practices and Standards - Appendixes

; Reinitialize a buffer for next frame reception.
IsrRxSpec_y:

MOV WORD PTR[BX+flcbiRcvData],O
JMP IsrTxData_O

IsrRxSpec_w:
MOV WORD PTR[BX+flcbiRcvData],O
XOR AX,AX
RET

IsrRxSpec_v:
MOV WORD PTR[BX+flcbiRcvData],O
MOV WORD PTR[BX+flcbiXmitBuf],OFFFFh
MOV BYTE PTR[BX+flcbfXmitComplete] ,TRUE

MOV
MOV
MOV

AX,WORD PTR[BX+flcbExchRet]
BX,O i pMsg = °
DS,BX

i(aX) will have exchange

RET
IsrRxSpec ENDP

.--I

IsrExStat:
Routine to handle interrupt on DCD, CTS transition,
Tx EOM, Break/abort

.--I

IsrExStat PROC FAR

MOV DX, WORD PTR[BX+flcbIoCommCtl]
%ZIN (AL,DX) read status register °
MOV AH,AL save the contents in (ah)
MOV AL,commRxInt reset the external/status interrupt
%ZOUT (DX,AL)
%ZIN (AL,DX) read the status register after reset

;** TEST THE STATUS REGISTER VALUE BEFORE RESET
TEST AH,commOAbort ;
JZ IsrExStat_Sy ; If Receive ABORT THEN
CMP WORD PTR[BX+flcbiRcvData],O ;
JE IsrExStat_Sy ; Don't abort if no frame recvd
MOV WORD PTR[BX+flcbiRcvData],O

IsrExStat_Sy:
TEST AH, commOSync
JZ IsrExStat 1 i If Receive SYNC THEN
MOV WORD PTR[BX+flcbiRcvData], °
;** TEST THE STATUS REGISTER VALUE AFTER RESET

IsrExStat 1:
TEST AL,-commODcd ; IF DCD is Lost THEN DO;
JNZ IsrExStat 2 i
MOV WORD PTR[BX+flcbiRcvData],O
MOV AL,commErrRes
%ZOUT (DX,AL) ; RESET ERROR

TEST WORD PTR[BX+flcbLineErc] ,OFFFFh

Source Code Listings D-117

JNZ IsrExStat_w IF Flcb.LineErc <> a THEN RETURN
; ELSE DO;

MOV WORD PTR[BX+flcbLineErc),ercLostCarrier
JMP IsrExStat_y Inform The Exchange and RETURN

END;
END;

IsrExStat_2:
TEST AL, commOCts IF CTS is Lost THEN DO;
JNZ IsrExStat x
TEST WORD PTR[BX+flcbLineErc),OFFFFh
JNZ IsrExStat_w IF Flcb.LineErc <> a THEN RETURN

; ELSE DO;
MOV WORD PTR[BX+flcbLineErc) ,ercLostClear2Send
JMP IsrExstat_y Inform The Exchange and RETURN

END;
END;

IsrExStat_x:
MOV CX,WORD PTR[BX+flcbiXmitBuf]
CMP CX,WORD PTR[BX+flcbsXmitBuf)
JAE IsrExStat w
MOV AL,OS -

check for early underrun
that is, buffer not totaly sent
if not, do nothing, return

; if so,
%ZOUT (DX,AL) send an abort then stop transmission
JMP IsrExStat_z

IsrExStat_y:
MOV CX,WORD PTR[BX+flcbiXmitBuf)
CMP CX,WORD PTR[BX+flcbsXmitBuf)
JAE IsrExStat z
MOV AL,OS -

check for early underrun
that is, buffer not totaly sent
if not, stop Xmit, return

; if so,
%ZOUT (DX,AL) send an abort then stop transmission

IsrExStat_z:
MOV WORD PTR[BX+flcbiXmitBuf),OFFFFh
MOV BYTE PTR[BX+flcbfXmitComplete) ,TRUE
MOV AX,WORD PTR[BX+flcbExchRet] ; (ax) will have exchange
MOV BX,O ; pMsg = a
MOV DS,BX

RET

IsrExStat_w:
XOR AX,AX
RET

IsrExStat ENDP

.--,
IsrTxData:

Routine to handle transmit buffer empty interrupt.
It will transmit one character at a time.

Input:
[DS:BX) - point to FLCB

Output:
None

.--,

IsrTxData PROC FAR

IsrTxData_O:
MOV DX, WORD PTR[BX+flcbIoCommCtl)
%ZIN (AL,DX)

D-118 eTOS/Open Programming Practices and Standards - Appendixes

MOV
TEST
JZ

AH,AL
AH,corrunOTxRdy
IsrTxData_x

If Tx Buffer is Not Empty then
RETURN

MOV CX, WORD PTR[BX+flcbiXmitBuf]
CMP CX, OFFFFh IF flcb.iXmitDuf=OFFFFh THEN DOi
JNE IsrTxData_l /* No Characters To Send */
MOV AL, corrunResTxInt
%ZOUT (DX,AL) Reset Tx Interrupt
JMP IsrTxData_x

END
IsrTxData_l:

CMP CX, WORD PTR[BX+flcbsXmitBuf]
JNE IsrTxData 2 IF flcb.iXmitBuf=flcb.sXmitBuf

- THEN DOi /* Last Char of Frame */
MOV AL,corrunResTxInt
%ZOUT (DX,AL) Reset Tx Interrupt
TEST AH,corrunOTxEom
JZ IsrTxData_x

IF CRC has not been sent THEN
RETURN

i ELSE DOi /* CRC has beensent*/
MOV WORD PTR[BX+flcbLineErc] ,0
JMP IsrTxData_y Inform The Exchange and

RETURN
ENDi

ENDi
IsrTxData 2:

CMP CX,-l
ELSE DOi /* Not Last Character */
reset Tx Underrun if first char

JNE IsrTxData 22
MOV AL,corrunResTxUnd
%ZOUT (DX,AL)

Reset Tx Underrun

IsrTxData 22:
INC CX - i flcb.iXmitBuf++
MOV WORD PTR[BX+flcbiXmitBuf], CX
MOV DX,WORD PTR[BX+flcbioCorrunData]
LES SI,DWORD PTR[BX+flcbpXmitBuf]
ADD SI,CX
MOV AL,ES:BYTE PTR[SI-l]
%ZOUT (DX,AL) Transmit the Data

MOV DX,WORD PTR[BX+flcbioCorrunCtl]
CMP CX,WORD PTR[BX+flcbsXmitBuf]
JNE IsrTxData_3 IF flcb.iXmitBuf=flcb.sXmitBuf

THEN DOi /* Last Character */

JMP IsrTxData_x

IsrTxData_3:
JMP IsrTxData_O

ENDi

IsrTxData x:
CMP BYTE PTR[fRxSpec], TRUE
JE IsrTxData_w
XOR AX,AX
RET

IsrTxData_w:
MOV BYTE PTR[fRCVmsg], TRUE
JMP IsrTxData_z
RET

RETURN
ENDi
ELSE

Loop Back

Source Code Listings D-119

MOV WORD PTR[BX+flcbiXmitBuf],OFFFFh
MOV BYTE PTR[BX+flcbfXmitComplete],TRUE

IsrTxData Z:
MOV BYTE PTR[fRxSpec], FALSE

i inform the main process to process the message
MOV AX,WORD PTR[BX+flcbExchRet] (ax) will have exchange
MOV BX,O i pMsg = 0
MOV DS,BX

RET
IsrTxData

FdxIsrCode
END

FdxMain.c

ENDP

ENDS

This sample program is not referenced in the text. It is the main module
for a synchrOIious communications 'Program. The program also includes
the following modules and include files:

FdxlnLc

FdxParams.c

FdxSub.c

Fdxlsr.asm

Fdx.h

Comm.h

The interface to the program is documented in the header for this file.

/*
* FileName: FDXMAIN.c
* - Full Duplex Main Loop

* * Date: 7/21/89
* Author: Brian Hsueh, A. Coleman
* Compiler: Metaware C 1. 0

* * Inputs from the command line
* [Parameter 1] communication channel port, A or B.
* [Parameter 2] : Data to be transmitted.
* [Parameter 3] : Baud rate. Defaults to 0 for Ext Clock
* * In order to run this program correctly, Following the steps

. * below.

D-120 eTOS/Open Programming Practices and Standards - Appendixes

1t
1t

1.) Activate the program by running fdx.run with the proper
parameters.

1t 2.)
1t

After both sides are setup, Hit GO key to synchronize both
processes.

1t 3.) Hit GO key again to kick off both processes.
1t 4.)
1t

From now on, every time a GO hit, the user data will be
transmitted from one workstation to the other.

1t
1t
1t/

/1t

5.) To exit the process, Simply hit FINISH key.

1
----------------1 Keyboard Input

1-------,11
1
_-------------1 Video output

I----~I\
Main Process

----I
V

Wait(Exch)
Interrupt R

1t/
#include <stdio.h>

#define false
#define true
#define NIL

° OxFF
((char 1t) 0)

#define
#include
#define
#define
#define
#define
#define
#define
#define
#define
#include

Syslit
<CtosTypes.h>
CheckErc
Beep
Delay
ErrorExit
Request
ReadKbd
AllocExch
wait
<Ctoslib.h>

#include <corom.h>
#include <fdx.h>

<----> Handlers <---> S
2
3
2

pragma Calling_convention(CTOS_CALLING_CONVENTIONS);

extern void
extern void

InitParams();
StartFrameXmission(char

extern char frcvmsg;
extern FlcbType 1tpflcb;
extern char rcvbuf[];

exch;

*pbuf, Word sbuf);

Word
KbdType kbd = {6,0,0,I,O,O,O,53,O,0,O,O,0,O,0,1};

Source Code Listings D-121

char
char
Word
char

*pmsg;
userdata[512];
cbuserdata;
keychar;

static BufType *pbuf = {(BufType *) &rcvbuf[O]];

/********************************/
/** Program starts from here **/
/********************************/
void maine) {

int i;

/**
Allocate the EXCHANGE for the main process to interact with
communication interrupt service routines and the keyboard
inputs.

**/
CheckErc(AllocExch(&exch»;

InitParams(); /** see fdxparams.c **/

pflcb->exchret = exch; /* save the exchange for ISR */
kbd.pcharret &keychar;/* initialize the ReadKbd request block */
kbd.exchresp = exch;

/**

**/

Wait until the GO key is depressed to manually synchronize both
programs simutaneously.

printf("\nPress Go to synchronize with remote program. ");
key char = 00;
while (keychar != OxIB) {

CheckErc(ReadKbd(&keychar»;

/**
Kick off the main loop by issuing a read request.

**/
printf("\nPress Go to transmit message.\n");
keychar= 00;
CheckErc(Request(&kbd»;

/** MAIN LOOP **/
while (true) [

CheckErc(Wait(exch, &pmsg»;

if (pmsg != NIL) {/** Data from keyboard **/
if (keychar == OxIB) {/** GO key just hit, start transmitting

keychar = 0; data supplied by user **/
while (pflcb->fxmitcomplete != true) {

CheckErc(pflcb->lineerc);
Delay(l);
]

StartFrameXmission(&userdata[O] , cbuserdata)j
]

else {
if (keychar == Ox04) /** FINISH **/

ErrorExit(O);

D-122 eTOS/Open Programming Practices and Standards - Appendixes

else { /** process data received from interrupt handler **/
if (frcvmsg == true) {/** real data from remote side **/

frcvmsg = false;
CheckErc(Beep(»;/** Beep and print out the data received **/
pbuf->databuf[pbuf->size) = 0;/** add the null terminator **/
i = puts(&pbuf->databuf{O);

keychar = 0; /** Make another read request **/
CheckErc(Request(&kbd»;
/** end of main loop **/

ErrorExit(I);
)

FdxParams.c

This program module is not referenced in the text.

/*
* FileName: FDXPARAMS.c
* Compiler:Metaware C
* Date: 07/27/89
* Author:B. Hsueh
* - Full Duplex Parameters Initialization

*
*/

#define false 0
#define true OxFF
#define NIL «char *) 0)
#include <string.h>

#define Syslit
#include <CtosTypes.h>
#define CheckErc
#define RgParam
#include <Ctoslib.h>
#include <comm.h>
#include <fdx.h>

pragma Calling_convention(CTOS_CALLING_CONVENTIONS);

extern void InitFdxIo(FlcbType *ptr);
extern
extern
extern

static

static

static

char
char
Word

frcvmsg;
userdata[);
cbuserdata;

FlcbType flcb;
FlcbType *pflcb
BufType *buf;

= &flcb;

SdType commchannelsd;
char rgchanA[) = {"[comm)A"};

Source Code Listings D-123

static char
char
Word
SdType

rgchanB[] = {I[comm]B"};
commspec[lO];
cbcommspec;

sdBaudRate;
iBaudRate = 0;

void
Word
Word

Word

char
char

InitParams()

rcvbuf[512];
xmtbuf[512];

bufsize, sxmitbufarea, srecvbufarea, i;
suserdatamax, sxmitbuffmax, srecvbuffmin;

memcpy(commspec, rgchanB, 7); /** Default to Channel B **/
cbcommspec = 7;
/** Get the Channel Port **/
if (RgParam(LocCommChan, 0, &commchannelsd) 0) {

if «commchannelsd.pb[O] & Ox5f) == 'A')
memcpy(commspec, rgchanA, 7);

else if «commchannelsd.pb[O] & Ox5f) != 'B') {
if (commchannelsd.cb <= 2) (

memcpy(&commspec[6],commchannelsd.pb,commchannelsd.cb);
cbcommspec = commchannelsd.cb + 6;
}

else (
memcpy(commspec, commchannelsd.pb, commchannelsd.cb);
cbcommspec = commchannelsd.cb;
}

cbuserdata = 256;
for (i = 0; i < 256
userdata[i] = i;

i++) (/* Default Xmit-Data */

)
/** Get the User data supplied from parameter 2 **/
if (RgParam(LocXmtData, 0, &commchannelsd) == 0) (

memcpy(&userdata[O] , commchannelsd.pb, commchannelsd.cb);
cbuserdata = commchannelsd.cb;
}

/** Get the baud rate from parameter 3 **/
if(RgParam(LocBaudRate, 0, &sdBaudRate) 0)

iBaudRate = atoi(sdBaudRate.pb);

sxmitbuffmax 1;
srecvbuffmin 1;
suserdatamax 259;

flcb.cbrcvmax = suserdatamax + 4;
bufsize = suserdatamax + 4 + 1 + 11;

sxmitbufarea
srecvbufarea

sxmitbuffmax * bufsize + 2;
srecvbuffmin * bufsize + 2;

D-124 eTaS/Open Programming Practices and Standards - Appendixes

/** Initialize the receive buffer pointer **/
flcb.precvrgobuf = (char _far *) &rcvbuf[O]j
memset(flcb.precvrgobuf, 0, srecvbufarea)j

buf = (BufType *) flcb.precvrgobufj
buf->bprev = OJ
buf->bnum = OJ
buf->bnext = OJ
buf->finuse = falsej

flcb.prcvdata = (char
flcb.cbrcvdata = OJ

far *) &buf->databuf[O]j

/** Initialize the transmit buffer pointer **/
flcb.pxmitrgobuf = xmtbufj
memset(flcb.pxmitrgobuf, 0, sxmitbufarea)j

buf = (BufType *) flcb.pxmitrgobufj
buf->bprev = OJ
buf->bnum = OJ
buf->bnext = OJ
buf->finuse = falsej

InitFdxlo(pflcb)j
flcb.fxmitcomplete
frcvmsg = falsej

FdxSub.c

truej

This program module is not referenced in the text.

/*
* FileName: FDXSUB.c
* - Bit Synchronous FDX I/O handler subroutine
* Date: 7/21/89
* Author: Brian Hsueh, A. Coleman
* Compiler: Metaware C 1.0
*/

#define false
#define true
#define NIL

o
OxFF
«char *) 0)

#define
#include
#define
#define
#define
#define
#include
#include

Syslit
<CtosTypes.h>
LockOut
Lockln
CheckErc
Delay
<Ctoslib.h>
<interrupts.cf>

#include <corom.h>
#include <fdx.h>

Source Code Listings D-125

pragma Calling_convention(CTOS_CALLING_CONVENTIONS);

/** External Variables **/
extern FlcbType *rgpflcb;

/**
This routine invokes the transmitter interrupt handler to
transmit data received from upper user.

**/
void StartFrameXmission(pbuffer, cbuffer)

char *pbuffer;
Word cbuffer;

{
FlcbType
char

*flcb;
stat;

CLI; /** Disable interrupt **/
flcb rgpflcb;
if (-(flcb->fxmitcomplete) == true)

STI;
CheckErc(ercBusyBitlo);
}

flcb-)pcurrentxmitbuf = pbuffer;
flcb-)scurrentxmitbuf = cbuffer;

/** Inconsistency?? **/

Lockout(flcb-)iocommctl, commResTxCrc)i /** Reset transmitter CRC **/

stat = LockIn(flcb-)iocommctl); /** Read in comm. port status **/
if «stat & commOCts) == 0) (/** Line disconnected **/

flcb-)fxmitcomplete = true;
STI;
CheckErc(ercLostclear2Send);
}

else (/** Line is connected normally. **/
while«stat & commOTxRdy) ==0) (/**Check till Txmitter is ready**/

Delay(l);
stat = LockIn(flcb-)iocommctl);
}

flcb-)icurrentxmitbuf = 1;
LockOut(flcb-)iocommdata, *pbuffer);
flcb-)fxmitcomplete = false;
}

STI;

Fdx.h

This include file is not referenced in the text.

/**
*
* File Name fdx.h

*
**/

#define LocCommChan 1
#define LocXmtData 2

D-126 eTOS/Open Programming Practices and Standards - Appendixes

#define LocBaudRate 3

/* Internal ercs */
#define ercBufferOverrun
#define ercLostClear2Send
#define ercLostcarrier
#define ercOverrun
#define ercCrc
#define ercBusyBitIo
#define ercLostData
#define ercTimeout

/* buffer block */
typedef struct {

char
char
char
char
Word
Word

bprev;
bnum;
bnext;
finuse;
size;
ercret;

8001
8002
8003
8005
8217
8105
8550
8100

char
char

bmsg;
databuf[128]} BufType;

/* Frame level Line Control Block */
typedef struct {

/* Offset values (0,2,4,8) */
Word 1ineerc;
Word exchret;
char far *pcurrentxmitbuf;
Word scurrentxmitbuf;

/* Offset values (10,12,16,20,22) */
Word icurrentxmitbuf;
char far *pcurrentrcvbuffer;
char far *prcvdata;
Word cbrcvdata;
Word cbrcvmax;

/* Offset values (24,28) */
char _far *precvrgobuf;
char _far *pxmitrgobuf;

/* Offset values (32,34,36,37) */
Word iocommct1;
Word iocommdata;
char fxmitcomp1ete;
char fi11[3]} FlcbType;

scntinfo;
recode;
nreqpbcb;
nresppbcb;
usernum;
exchresp;
ercret;
rqcode;
reserved[6];

typedef struct
char
char
char
char
Word
Word
Word
Word
char
char
Word

_far *pcharret;
scharret} KbdType;

typedef struct {
char far
Word

*pb;
cb } SdType;

Source Code Listings D-127

typedef struct {
char far
void far
void far
void far
void far
char
char
char
char
Word
Word
char
char
char
char
char

*pdsbx;
*ptxisr;
*pextisr;
*prxisr;
*psprxisr;

frawtx;
frawext;
frawrx;
frawsprxi
baudtx;
baudrx;
fnrzi;
fx21;
ftdi;
ftdixlat;
fdma;

char
char
char

fptrxlat;
bunisysreserved;
fproctype;} ClcbType;

#define
#define

sClcbTypeMax
sClcbType

36
29

typedef struct {
Word commlinehandle;
Word iocommctl;
Word iocommdata;
Word chiptype;
Word pitresolution;
Word dmahardware;
char fxlatarea;
char _far *pxlatarea;
Word cbxlatare;
Word iox21;
Word wlinetype} InitCommLineRetTypei

#define
#define
#define

Comm.h

sInitCommLineRetTypeMax
sBTOSII2RetTypeMax
sInitCommLineRetType

23
19
6

This include file is not referenced in the text.

/* File: Comm.h

*/

This file defines the common parameter block formats
for all communications devices

#define dmaClearMask OxOl
#define dmaModeRead Ox49
#define dmaModeWrite Ox45
#define dmaSetMask Ox05
#define dmaStatusComplete Ox02 /*comm channel TC*/
#define ioDmaAdr Ox04
#define ioDmaAdrExt Ox68

D-128 eTOS/Open Programming Practices and Standards - Appendixes

#define ioDmaClearFf Ox18
#define ioDmaMask Ox14
#define iODmaMode Ox16
#define ioDmaStatus OxlO
#define iODmaWct Ox06
#define iolntMask Ox22
#define intClearMask OxFD
#define intEOI Ox20
#define iolntCtl Ox20
#define ioCommExtCtl Ox60
#define ioCommlntAck Ox30
#define commWrO 0
#define commWrl 1
#define commWr2 2
#define commWr3 3
#define commWr4 4
#define commWr5 5
#define commWr6 6
#define commWr7 7
#define commRrl 1
#define commRr2 2
#define commNull 0
#define commSabt 1*8
#define commRxint 2*8
#define commResCh 3*8
#define commResExtlnt OxlO
#define commEnNxRxlnt 4*8
#define commResTxlnt 5*8
#define commErrRes 6*8
#define commReti 7*8
#define commResRxCrc 1*64
#define commResTxCrc 2*64
#define commResTxUnd 3*64
#define commVectExtlnt Oxl
#define commOcts Ox20
#define commODcd 8
#define commOTxRdy 4
#define commOlntPnd 2
#define commORxRdy 1
#define commOHunt OxlO
#define commOTxEom Ox40
#define commOTxUndr Ox40
#define commOAbort Ox80
#define commOBrk Ox80
#define commlRxlntlst 8
#define commlRxEof Ox80
#define commlRxlntEnb Ox18
#define commlStatVect 4
#define commlTxlntEnb 2
#define commlExlntEnb 1
#define commlWriteDma Ox40
#define commlReadDma Ox60
#define commlDmaEnb Ox80
#define commlError Ox30
#define commlFrEnd Ox80
#define commlCrcErr Ox40
#define commlParErr OxlO
#define commlRxOverrun Ox20
#define commlFrErr Ox40
#define comm3AutEnb Ox20
#define comm3Rx8 3*64
#define comm3RxEnb 1

Source Code Listings D-129

#define cornrn3Hunt OxlO
#define cornrn3RxCrcEnb Ox8
#define cornrn3Srch Ox4
#define cornrn3Synlnh Ox2
#define cornrn4Syncl 0
#define cornrn4BitSync Ox20
#define cornrn4Xl 0
#define cornrn4Asyl Ox4
#define comm4Xl6 Ox40
#define comm5TxCrcEnb Oxl
#define comm5Rts Ox2
#define comm5Crcl6 Ox4
#define comm5Crcccitt OxO
#define comm5TxEnb Oxa
#define cornrn5Tx8 3*32
#define cornrn5Dtr Ox80
#define cornrnExCtlXmitReq Ox4
#define commExCtlXmitDis OxO
#define commExCtlDcdEnb Ox8
#define commExCtlStd Oxl
#define commExCtlRng Ox4
#define commExCtlDsr Ox2
#define cornrnExCtlSrd Oxl
#define cornrnExStatXmtEnb Ox8000
#define baudRateModeCtr2 Ox80
#define baudRateModeCtrl Ox40
#define baudRateMode3 Ox36

#define parNone OxO
#define parEven Oxl
#define parOdd Ox2

D-J30 eTOS/Open Programming Practices and Standards - Appendixes

Chapter 19

Chapter 19 contains the following listings.

Genlnt.asm

This sample program is referenced by Listings 19-1 and 19-2.

File Name: GenInt.asm
Date: 07/29/89
Author:Alan Coleman

This file implements a procedure to generate an software
pseudo-interrupt. Also contains interrupt stubs.

i Enable use of 386 instructions
$MOD386

extrn TrapHandlerl:far
extrn TrapHandler2:far
extrn TrapHandler386:far
extrn PIntHandlerl:far

ConstSEGMENT WORD PUBLIC'CONST'
Cons tENDS
Data SEGMENT WORD PUBLIC'DATA'
Data ENDS
MemorySEGMENT WORD PUBLIC 'MEMORY'
MemoryENDS
StackSEGMENT WORD PUBLIC'STACK'
StackENDS

i group all my DGroup stuff
DGroupGROUP Const, Data, Memory, Stack

_CallInt21 segment word 'code'
assume cs: CallInt21
public Call1nt21
CallInt21 proc far

int 2lh
ret

CallInt21 endp
_CallInt21 ends

_CallInt28 segment word 'code'
assume cs: CallInt28
public Call1nt28
CallInt28 proc far

int 28h
ret

CallInt28 endp
_CallInt28 ends

Source Code Listings D-131

_asmTrapHandlerl segment word 'code'
assume cs: _asmTrapHandlerl
public asmTrapHandlerl
asmTrapHandlerl proc far

mov bx,sp
add WORD PTR ss: [bx] ,4
pusha
call TrapHandlerl
papa
iret

asmTrapHandlerl endp
_asmTrapHandlerl ends

_asmTrapHandler2 segment word 'code'
assume cs: _asmTrapHandler2
public asmTrapHandler2
asmTrapHandler2 proc far

push a
push ds
push es
mov ax,DGROUP
mov ds,ax
call TrapHandler2
pop es
pop ds
papa
iret

asmTrapHandler2 endp
_asmTrapHandler2 ends

_asmTrapHandler386 segment word 'code'
assume cs: _asmTrapHandler386
public asmTrapHandler386
asmTrapHandler386 proc far

pusha
push ds
push es
mov ax,DGROUP
mov ds,ax
call TrapHandler386
pop es
pop ds
papa
iset an instruction prefix for a 32-bit return
db 66h
iret
do it the 386 way with 12.0 Assembler
iretd

asmTrapHandler386 endp
_asmTrapHandler386 ends

_asmPlntHandlerl segment word 'code'
assume cs: _asmPlntHandlerl

D-132 eTaS/Open Programming Practices and Standards - Appendixes

public asmPIntHandlerl
asmPIntHandlerl proc far

pusha
call PIntHandlerl
popa
iret

asmPIntHandlerl endp
_asmPIntHandlerl ends

end i GenInt.asm

Testlnts.c

This sample program is not referenced in the text.
Genlnt.asm.

It exercises

/***/
/* */
/* File Name: TestInts.c */
/* Compiler: Metaware C */
/* Date: 07/28/89 */
/* Author: A. Coleman */
/* */
/* This file installs and attempts to use a number of different */
/* types of interrupt and exception handler. */
/* */
/* NOTE: If you try to use a 386 trap handler on a non-386, a */
/* truly spectacular crash results. Set f386 to False on non-386s. */
/* */
/* */
/***/

#include <string.h>
#include <stdio.h>

#define Sysli t

#define CheckErc
#define ErrorExit
#define nPrint
#define Set386TrapHandier
#define SetDefaultTrapHandler
#define SetIntHandler
#define SetTrapHandler
#include <ctoslib.h>

/* externs */
extern void CalIInt21(void)i
extern void CaIIInt28(void)i
extern void ReturnFromInt(void)i
extern void asmTrapHandlerl(void)i
extern void asmTrapHandler2(void)i
extern void asmTrapHandler386(void)i
extern void asmTrapHandler386II(void)i
extern void asmPIntHandlerl(void)i

Source Code Listings D-133

/* globals */

PointerpFaultMessage;
char rgbFaultMessage[128];
FlagType f386 = FALSE;
PointerpOldTrapHandler;
PointerpJunkTrapHandler;
int x, y, z;

/* handles divide-by-zero fault */
void TrapHandlerl(void) [

strcpy(pFaultMessage, "Did TrapHandlerl() procedure. Divide by
0") ;

/* set z to non-zero so instruction can restart */
z=l;
}

void TrapHandler2(void) (
strcpy(pFaultMessage, "Did TrapHandler2() procedure");
nPrint("\nTraps, oh my!!\n", 16);
}

void TrapHandler386(void) (
strcpy(pFaultMessage, "Did TrapHandler386() procedure");
z=l;
nPrint ("\n386 Traps, oh my! ! \n", 20);
}

void PlntHandlerl(void) (

*/
/* we're mediated and DS is set up, so we can use rgbFaultMessage

strcpy(rgbFaultMessage, "Did PlntHandlerl() procedure");
nPrint ("\nlnterrupts, oh my! ! \n", 21);
}

main () [

pFaultMessage = rgbFaultMessage;

CheckErc(SetDefaultTrapHandler(O, (Pointer) asmTrapHandlerl,
&pOldTrapHandler»i

CheckErc(SetTrapHandler(Ox21, (Pointer) asmTrapHandler2»;
CheckErc(SetlntHandler(Ox28, (Pointer) asmPlntHandlerl,

selectorof(pFaultMessage), FALSE, FALSE»;

Call1nt21 () ;
printf("\n%s", pFaultMessage);
CallInt28 () ;
printf("\n%s", pFaultMessage);

/* generate a divide-by-zero fault */
y=5;
x = y/z;
z=O;

/* are we on a 386? */
/* Set f386 to false if you run this on a non-386 */

f386 = TRUE;
if(f386 == TRUE)

D-134 eTOS/Open Programming Practices and Standards - Appendixes

CheckErc(Set386TrapHandler(Ox21, (Pointer) asmTrapHandler386»;

/* call the various trap handlers or generate faults, etc. */
Call1nt21() ;
printf("\n%s" " pFaultMessage);
Call1nt28 () ;
printf("\n%s", pFaultMessage);

/* generate a divide-by-zero fault */
y=5;
x = y/z;

/* restore the global ones before leaving */
CheckErc(SetDefaultTrapHandler(O, pOldTrapHandler, &pOldTrapHandler»;

return(O);
}

Source Code Listings D-135

Chapter 20

Chapter 20 contains no full-program listings.

D-136 eTaS/Open Programming Practices and Standards - Appendixes

%DevDepProc macro, 17-4, 17-14
%DeviceOpen macro, 17-4, 17-12
%OsSubLab macro, 9-13
%RqName macro, 8-40
%tagProcs macro, 17-4,17-13
* character, 2-16
80386 exception handlers, 19-11
<$> directory, 2-17
? character, 2-16

abort requests, 8-14
AcquireByteStreamC procedure,

18-7
Action-Finish key, 7-3
active, process state, 12-4
addresses, types of, 5-2
agent

client agent operation, 8-26
general information, 8-25
handle processing, 8-26
request-passing guidelines, 8-28
server agent operation, 8-27

AL register, 11-4
alias pointers, 5-8

and system-common service, 9-7
AllocAreaSL procedure, 16-3
allocatable memory, 1-10
allocating memory, 16-1
AllocMemorySL procedure, 16-2,

16-5
application program

adding NLS tables, 6-8
function key menus, 7-6
guidelines for writing, 7-1
help, 7-7

Index

keyboard use conventions, 7-3
linking NLS tables with, 6-7
memory organization, 1-9
screen layout conventions, 7-6
status display, 7-8
swapping to disk, 16-10
system service connection handle,

8-9
trapping protection faults, 3-3
unexpected keyboard input, 7-6
use of NLS tables, 6-6
using Executive screen layout, 7-8

Application System Control Block
{ASCB), 1-14

and parameter management, 4-2
AquireByteStreamC procedure,

18-10
ASCB. See Application System

Control Block.
assembly language

and overlays, 14-15
and overlays, 14-4
argument passing, A-1
calling CTOS procedures from, A-1
register usage, A-2

asterisk (*), 2-16
asynchronous communication, 18-1
asynchronous requests, 13-3

and Check primitive, 13-7
usage example, 13-12

AX register, 11-2, 11-4

background processing, 12-2
binary message file, 6-9
binary mode, 17-25

Index I-I

Bound key, 7-5
BP register

addressing parameters as offsets
from, 10-14

convention for use, A-3
bsKbd, 2-3
bsVid, 2-3
building a request block, 13-8
busy-wait loop, 5-10, 12-1
BX register, 11-4
byte stream. See also byte streams;

Sequential Access Method
(SAM).

closing, 2-5
definition of, 2-2
device name, 17-2
device specifications, 2-4
for file access, 2-8
for keyboard access, _2-12
for video access, 2-9
internal components of, 17-1
mode, 2-5
opening, 2-5
other uses for, 2-14
preopened, 2-3
tag name, 17-4
types supported, 2-2

byte stream buffer area, 17-10
buffering schemes used with, 17-11

byte stream work area (BSWA)
definition of, 2-2
ibRead field, 17-18
ibWrite field, 17-20
internal structure, 17-9

byte streams. See also byte stream;
Sequential Access Method
(SAM).

%DevDepProc macro, 17-14
%DeviceOpen macro, 17-12
%tagProcs macro, 17-13
creating new types of, 17-6
device specification parsing, 17-12
excluding from SAM, 17-4
including in SAM, 17-6
internal procedures, 17-6
null routines available to

developers, 17-14
open mode, 17-15
substituting, in SamGen, 17-7
tag byte checking, 17-15

tag name, 17-14
byte, xxvii

call
far, 10-2
near, 10-2

Cancel key, 7-4
status code returned to byte

streams, 2-12
Check primitive, 13-7

used for asynchronous requests,
13-7

CheckErc procedure, 3-1
use with keyboard byte streams,

2-12
CheckPointProc SAM internal

procedure, 17-6, 17-13
procedure description, 17-22

child process, 12-6
class of object module, 10-2
client agent, 8-26
client application

relationship to system service, 8-8
client, 8-7
close request, 8-12
cluster, 1-8
Code key, 7-4
code segment (CS) register, 10-5
Code segments, 5-7
code sharing, 10-7
COED segment, 5-7, 10-8

creating, 10-8
Comm Nub, 18-20

interrupt dispatching mechanism,
18-24

services provided to mediated
ISRs, 18-23

services provided to raw ISRs,
18-22

command forms, 4-1
CommLine interface for

synchronous communications,
18-11

interrupt service routines for, 18-20
communications byte stream, 2-3,

18-1
Communications Configuration

Descriptor, 18-8

[-2 eTOS/Open Programming Practices and Standards

communications ISRs for
synchronous applications

mediated type, 18-23
raw type, 18-21

communications line control block,
18-15

communications programming
asynchronous communications,

18-1, 18-5
configuration files, 18-4
customizing SAM for, 18-4
excluding generic SAM, 18-6
guidelines for synchronous

applications, 18-12
initializing serial controller for

synchronous communications,
18-13, 18-18

levels of interface, 18-1
opening a device, 18-10
SamC device control operations,

18-11
synchronous communications, 18-2
synchronous performance

enhancement, 18-23
compatibility between protected and

real mode, 5-1
compiler memory organization, 10-7
connection, 8-8

opening, 8-10
tracking by agents, 8-27

connection handle, 8-9
connectionless requests, 8-13
Context Manager, 1-7
ConvertToSys procedure, 8-17, 9-9
count, xxvii
CParams procedure, 4-4
Crash procedure, 3-2

when to use, 3-3
Create Configuration File utility,

18-4
Create Message File utility, 6-9
CreateExecScreen procedure, 7-8
CreateProcess procedure, 12-6
CSubParams procedure, 4-4
CTOS

assembly language interface, A-1
asynchronous requests, 13-3
code segment names allowed, 10-8
communications interfaces, 18-1
distributed environment, 1-8
error log file, 3-6

extensibility, 1-4
kernel primitives, 13-1
library procedures, 11-1
library procedures, model, 11-3
library procedures, parameters,

11-4
library procedures, returned values,

11-4
major features, 1-1
medium model, 10-3
memory allocation rules, 16-1
memory used by request codes, 8-6
message-passing, 1-3
parameter management, 4-1
procedure parameter passing

convention, 10-12 '
procedure prolog and epilog, 10-13
process scheduling scheme, 12-4
processing of RTC events, 15-5
requests to system services, 8-13
RS-232 driver interface, 18-1
standard stack format, 10-12
support for X-Bus modules, 20-1
synchronous communications,

18-11
system memory organization, 1-8
timing services, 15-1
variable-naming convention, xxvi
wildcard characters, 2-16

CTOS calling convention
mediation to, 11-5

CTOS procedures
declaring, 1-13
making calls to, 1-11, 1-13
model, 11-3
returned values, 11-4

CTOS.lib, 7-2
CTOS/Open, 1-1
CTOSTooIKit.lib, 7-2
customizing SAM, 17-3

deallocating memory, 16-1
DeallocMemorySL procedure, 16-5
Debugger

and non-public procedures, 14-3
default response exchange

and process control block, 12-5
defining request codes, 8-30

Index 1-3

deinstalling a system service, 8-20
deinstalling a system-common

service, 9-11
delay operations, 15-1

granularity, 15-2
using, 15-2

Delay procedure, 15-2
device name, 17-2
device specifications

and InitCornrnLine, 18-12
device-independent 110, 2-1
device-specific 110, 2-14
DOroup, 1-11, 10-3

and overlays, 14-2
disk thrashing, 14-16
display. See video.
disposable initialization code, 10-8
distributed computing, 1-8
DS allocation, 10-9

and process stacks, 12-9
and program static data, 16-7
gaining access to memory reserved

by, 16-7
in protected mode, 10-10
in protected mode, 5-5
in real mode, 10-10
location of DS-relative memory,

16-7
segment type, 10-10

duplex, 18-5
DX register, 11-4
dynamic memory, 1-10
dynamically allocatable memory,

16-1. See also memory.

encoded mode, 2-18
end-of-file pointer, 2-14
end-of-file status code, 3-1
error checking, 3-1
error logging, 3-6
error reporting for requests, 8-11
ErrorExit procedure, 3-2
ErrorExitString procedure, 3-2
ES register, 11-4
escape codes, 2-9
event frame, 7-9
event-driven scheduling, 12-4

exception handlers. See also trap
handlers.

32-bit, 19-11
conditions on entry, 19-6, 19-9
for 80386-only programs, 19-11
rules for writing, 19-9
stack use by, 19-9
state of interrupts on entry, 19-9
types of, 19-5
using assembly language stubs for,

19-10
when to use, 19-3

exceptions, 19-1
fault, 19-2
trap, 19-2
types of, 19-2

exchange, 1-3
number, 1-5
use in message passing, 1-5
use in semaphores, 13-13
used by real-time clock, 15-3

Executive, 1-7
clock process, 12-1
command forms, 4-1
wildcard processing, 2-16

Executive screen
creating, 7-8
display frames, 7-8
frame 0, 7-9

exit run file, 1-14
passing parameters to, 4-6

Exit procedure, 3-2
ExpandAreaSL procedure

use of in protected mode, 5-5
external procedures, 1-11
external status ISR, 18-20

far procedure calls, 11-3
far reference or call, 10-2
FatalError procedure, 3-1

effect of IDevelopernent on, 3-2
fault, 19-2
FComparePointer procedure, 5-3
IDevelopernent flag, 3-2
IDeviceInt flag, 19-8
file byte stream, 2-3

device-dependent procedures, 2-8

1-4 eTaS/Open Programming Practices and Standards

file handle, 8-10
file management operations

description, 2-14
for temporary files, 2-17
opening a file, 2-15
reasons to use, 2-14
writing to a file, 2-16

file specification parsing, 2-4
filename suffixes, 7-10
files stored on scratch volume, 7-11
FlllBufferProc SAM internal

procedure, 17-6, 17-13
procedure description, 17-18

filter
exchange number manipulation,

8-24
general information, 8-23
keyboard filter, 8-25
one-way, 13-5
requirements for, 8-24
two-way, 13-5
types of, 8-23
use of kernel primitives, 13-5

Finish key, 7-4
status code returned to byte

streams, 2-12
fixed-size data segments, 16-2

contiguous relation between, 16-9
initial offset value, 16-2
when to use, 16-5

flag, xxvii
floating-point numbers, 11-7
FlushProc SAM internal procedure,

17-6, 17-13
procedure description, 17-20

ForwardRequest primitive, 8-24, 13-5
FProtectedMode procedure, 5-8,

5-12
function key menus, 7-6
function pointer, 12-11

GDT. See Global Descriptor Table
(GDT).

GDTprotected run file mode, 7-3
GetBsLfa procedure, 2-8
GetOvlyStats procedure, 14-11
Global Descriptor Table (GDT), 7-3

and system-common services, 9-3

Go key, 7-4
groups, 10-3

declaring in assembly language, A-4
guidelines

application help, 7-7
checking ercs on Request calls,

13-12
filename suffixes, 7-10
for synchronous communications,

18-12
keyboard conventions, 7-3
mediated communications ISRs,

18-26
memory allocation, 16-1
multi-process program design,

12-12
process priority levels, 12-11
raw communications ISRs, 18-24
request-passing by agents, 8-28
screen layout, 7-6
use of scratch volume, 7-11
video memory, 7-9

handle
file handle, 8-10
for system service connection, 8-9
format of, 8-10
processing by agents, 8-26
special cases for SRP/XE routing

8~9 '
Help key, 7-7

I/O
device independent, 2-1
device-specific, 2-14
to X-Bus modules, 20-3

image mode, 17-25
index, xxvii
InitCharMap procedure, 2-21
InitCommLine procedure

detailed description, 18-13
information returned by, 18-16

initialization code
deallocating, 10-8

InitLargeOverlays procedure, 14-8

Index 1-5

InitMsgFile procedure, 6-11
InitVidFrame procedure, 2-21
input frame, 7-9
installing a system service, 8-17
installing a system-common service,

9-9
instruction pointer (IP), 10-5
Intel 8274 serial controller, 18-14
Intel manual titles, 5-1
internationalization, 6-1. See also

Native Language Support.
interrupt handlers, 19-1. See also

interrupt service routines (ISRs).
mediated, rules for writing, 19-8
overlay restrictions on, 14-3
raw, rules for writing, 19-7
sending messages from, 13-4

interrupt service routines (ISRs)
for communications, 19-5
for synchronous communications,

18-20
for X-Bus interrupts, 20-8
general information, 19-1
interrupts and exceptions, 19-1
interrupts served by, 19-4
mediated, 19-4
raw, 19-4
scope of, 19-3
types of, 19-3
when to use, 19-3

interrupts, 19-1
generated by X-Bus module, 20-8
maskable, 19-2
non-maskable, 19-2
software-generated, 19-2
types of, 19-1

interval timing operations, 15-1,
15-10

ISRs for synchronous
communications

mediated type, 18-23
raw type, 18-21

kernel
and system events, 12-5
request processing, 8-7

kernel primitives
Check, 13-7

FonvardRequest, 13-5
general description, 13-1
Request, 13-5
RequestDirect, 13-5
Respond, 13-5
semaphore using, 13-13
types of, 13-1
usage examples, finding, 13-11
use of, 13-3
Wait, 13-7

keyboard polling, 12-1
keyboard byte stream, 2-3

CheckErc and, 2-12
device-dependent status codes,
. 2-12

keyboard codes, 2-18
keyboard management

key usage conventions, 7-3
keyboard filters, 8-25
response to unexpected input, 7-6

keyboard management operations
and TextEdit, 2-18
encoded mode, 2-18
general description, 2-18
reading a string, 2-20
unencoded mode, 2-18
using, 2-18

languages, national. See Native
Language Support.

languages, programming. See
programming languages.

Large model
system-common service and, 9-5

LDT. See Local Descriptor Table
(LDT).

LFA. See Logical File Address.
Librarian, 14-14
linear addressing, 5-2
Linker, 7-2

call/return violation errors, 14-16
DS allocation option, 10-9
location of DS-allocated memory,

16-7
map file, 14-13
Run File Mode parameter, 7-2
specifying overlays with, 14-9

loadable request set, making, 8-39

1-6 eTOS/ Open Programming Practices and Standards

Local Descriptor Table (LDT), 7-3
LockXbis procedure, 20-7
logical address, 5-2
Logical File Address (LFA), 2-8
long-lived memory, 16-1

and the VLPB, 4-6
definition of, 1-10

Make Request Set utility, 8-30, 8-39
MakePermanent procedure, 14-12
MakeRecentlyUsed procedure, 14-13
MapCsIOvly procedure, 14-14
Mark key, 7-5
maskable interrupts, 19-2
master

definition of, 1-8
flag bits in file handle, 8-10

mediated communications ISR
Comm Nub interrupt dispatching,

18-25
conditions on entry, 18-23
end-of-interrupt processing, 18-23
guidelines for, 18-26
sending a message from, 18-23

mediated interrupt handlers, 19-4
conditions on entry, 19-8
rules for writing, 19-8
state of DS and SS, 19-9

MediatclntHandler procedure, 19-4
restriction on communications

ISRs, 18-12
mediator

between procedure calls, 11-5
for multiple procedures, 11-6

medium model, 10-3
memory organization in, 10-3
values of DS and SS, 10-6

memory
allocation, 16-1
contiguous segments of, 16-9
deallocation of segments, 16-3
DS allocation, 16-7
fixed-size segments, 16-2, 16-5
in X-Bus modules, 20-5
long-lived, 1-10, 16-1
protected mode operations, 5-4

restrictions on variable-size
segments, 16-3

short-lived, 1-10, 16-1
structures that require more than

64K,16-9
unallocated, 10-5
variable-size segments, 16-2
which type of segment to use, 16-5

memory allocation rules, 16-1
memory array option, 5-5
memory deallocation rules, 16-1
message file, 6-1

cache buffer, 6-13
creating, 6-9
date/time formatting templates, B-1
description, 6-8
displaying date and time, C-l
displaying keycap text, C-l
displaying user names, C-l
displaying variable information, C-2
initializing for use, 6-12
macros available, C-1
macros, 6-13
message not found, 6-10
message parameters, 6-13, 6-14
overwriting linked-in messages,

6-16
pre-loading messages, 6-15
procedures, 6-11
sdType parameters, 6-14
special use by system services, 6-16
storage formats, 6-9
strategies for using, 6-9

messages, 1-3
between processes, 1-5
receiving, 13-7
sending from interrupt handler,

13-4
sending, 13-4

mixing programming languages, 11-1
DS and SS, 11-7
floating-point number formats, 11-7
mediators, 11-5
model of computation, 11-7
parameters and returned values,

11-7
register contents on procedure

entry, 11-7
run-time initialization, 11-7

Index 1-7

model of computation
and overlays, 14-3
medium, 10-3
mixing, 11-7

multiple processes
management of, 12-2
reason for, 12-2
reasons to use, 12-1
to avoid busy loop, 12-1
to perform background work, 12-2

multiprocess programs
overlay restrictions on, 14-4

multiprocessing, 1-2.
reason for, 12-2

multiprogramming, 1-2
multitasking, 1-2
multithreading. See multitasking.

naming convention, xxvi
nationalization, 6-1. See also Native

Language Support (NLS).
Native Language Support (NLS), 1-4

alternative NLS tables, 6-7
date/time formatting templates, B-1
files used by, 6-2
introduction to, 6-1
message file macros, C-1
message file routines, 6-11
message files, 6-1
message files, using, 6-8
NLS tables, content, 6-2
NLS tables, using, 6-5
pNlsTableArea, 6-4
procedures, using, 6-4
table IDs, 6-3
tables and routines, 6-1

near reference or call, 10-2
network

error reporting for requests, 8-11
flag bit in file handle, 8-10

network routing
of requests, 8-35, 8-37
Send primitive not supported, 13-4

NewProcess procedure, 12-6
Next key, 7-4

NLS. See Native Language Support
(NLS).

NLS files, 6-2
NLS procedures, 6-4
NLS tables, 6-2, 6-5

creating additional, 6-8
linking with a program, 6-7
table signatures, 6-7

NlsVerifySlgnatures procedure, 6-7
non-blocking requests, 13-3
non-maskable interrupt (NMI), 19-2
non-public procedures, 14-3
Not Present fault, 14-5
NRZI encoding, 18-4
null device, 2-4
Null pointers, 5-6
numeric coprocessor, 11-7

object modules, 7-2
created by different languages, 11-1
grouping into overlays, 14-7
identifying modules in a library,

14-13
Linking as overlays, 14-9
segment elements, 10-2

offset, xxvii, 10-1
definition of, 5-2

one-way filter, 8-23
OpenNlsFile procedure, 6-8
OpenProc SAM internal procedure,

17-6
procedure description, 17-16

OpenRTClock procedure, 15-3
OpenS~rverMsgFile procedure, 6-17
operating system. See CTOS.
OsSub.mdf file, 9-13
OutputToVidO procedure, 2-10
overlapping computation and I/O,

13-3
overlay management structures, 14-2
overlay zone, 14-1

enlarging, 14-11
minimum size, 14-7
moving, 14-12
optimizing size of, 14-10
shrinking, 14-11

1-8 eTOS/ Open Programming Practices and Standards

overlays, 14-1. See also Virtual
Code Management.

algorithm used to discard, 14-13
and library modules, 14-9
debugging, 14-16
determining size of, 14-11
forcing into memory, 14-14
identifying to Linker, 14-9
making permanently resident, 14-12
mapping overlay number to code

segment, 14-14
maximum number in memory, 14-7
maximum size of each, 14-10
minimum content, 14-7
reinitializing, 14-11
thrashing, 14-16

paragraph number, 5-2
parameter

pass by reference, 10-12
pass by value, 10-12
passing between programming

languages, 11-1
parameter management

creating a VLPB, 4-6
iParam, 4-2
jParam, 4-2
overview, 4-1
passing parameters to the exit run

file, 4-6
reading input parameters, 4-4
sample VLPB, 4-3
the Variable-Length Parameter

Block, 4-2
parameters, 4-1

addressing relative to BP, 10-14
pass by value and pass by

reference, 11-2
popping, for C,10-14
removal from the stack, 11-2

parent process, 12-6
partition, 1-7, 1-9
pbcb, 1-13
physical address, 5-1
piecemealing, 8-28
PL/M language, 10-4, 11-1
pNlsTableArea, 6-4

pointer, xxvii
aliases, 5-8
definition of, 5-1
physical layout in memory, A-1

pointer arithmetic, 5-3
preemptive scheduling, 12-5
printer byte stream, 2-3
priority, 12-5

setting, for a process, 12-10
levels of, 12-10

procedural interface for requests,
8-7, 8-34

procedure, 7-2
indirect calls to, 14-3
parameter passing, 10-12
prolog and epilog, for C, 10-14
returned value, 11-2
system-common, 9-2
to set up a semaphore, 13-14
types that can be overlaid, 14-3

procedure calls
mediators, 11-5
to CTaS procedures, 1-11

procedure pointer, 12-11
process

allocating stack for, 12-8
and Send primitive, 13-4
communication between, 12-13
control structure, 12-5
creating, 12-6
message passing, 1-5
multiple, 12-1
permanently suspending, 12-12
priority, 1-2
scheduling, 1-2, 12-4
setting priority, 12-10
starting, 12-11
synchronization, 13-3
termination, 12-12
typical activity of, 12-2

process control block, 12-5
process descriptor, 12-6

contents, 12-7
process management, 12-2
process states, 12-3
program

adding NLS tables, 6-8
allocating DS-relative memory,

10-10
allocating memory, 16-1

Index 1-9

program (cont.)
building a request block, 13-8
changing memory organization for,

10-7
code overlays, 14-1
code sharing, 10-7
deaUocating initialization code,

10-8
definition of, 1-7
design guidelines, 7-1
designs that create and destroy

many processes, 12-12
displaying a message, 6-14
DS allocation, 16-7
elements, 7-1
error checking, 3-1
exit modes, 3-2
exit run file, 1-14
initializing message file, 6-12
input parameters, 4-1
linking NLS tables with, 6-7
loading, 1-14
location in physical memory, 1-14
memory organization in protected

mode, 10-4
memory organization in real mode,

10-3
multi-process, 12-6
parameter passing to procedures,

10-12
reading input parameters, 4-4
responsibilities with real-time

clock, 15-6
segmentation, 1-11, 10-2
stack, 10-11
swapping to disk, 16-10
termination, 1-14
trapping protection faults, 3-3
use of NLS tables, 6-6
using overlays, 14-6

programmable interval timer (PIT)
general information, 15-10
granularity, 15-10
interrupt handler for, 15-10
overlay restrictions on, 14-3
sample use of, 15-13
timer pseudo-interrupt block

(TPIB), 15-10
writing interrupt handler for, 15-13

programmed exception, 19-2

programming languages
floating-point numbers, 11-7
mixing, 11-1
supported by Virtual Code

Management, 14-4
protected mode

addressing, 5-3
Code segments, 5-7
Coed segments, 5-7
comparing pointers, 5-3
DS allocation, 10-10
memory management operations,

5-4
Null pointer problems, 5-11
overlays, 14-2
program memory organization, 10-4
restriction on pointer arithmetic,

5-3
restriction on writable code

segments, 5-8
run file mode, 7-3
segment register use, 5-6
stack use by ISRs, 19-7

protection faults, trapping, 3-3
PSend primitive, 13-4
pseudo-interrupt, 19-2
pseudo-interrupt handlers, 19-5

conditions on entry, 19-6
system-defined, 19-6
writing, 19-9

PUSH SP processor instruction,
5-10

quad,xxvii
QueryModulePosition procedure,

20-4
QueryRequestInfo procedure, 8-18
QueryVidBs procedure, 2-9
QueryVidHdw procedure, 2-20, 7-8
question mark (?), 2-16

raw communications ISR
Comm Nub interrupt dispatching,

18-24
conditions on entry, 18-22

[-10 eTOS/Open Programming Practices and Standards

raw communications ISR (cont.)
end-of-interrupt processing, 18-22
guidelines for, 18-24
sending a message from, 18-22

raw interrupt handlers, 19-4
JMP after IRET, 19-7
rules for writing, 19-7
stack use, 19-7

real mode
addressing, 5-2
DS allocation restrictions, 10-10
multiprocess overlay restrictions,

14-4
overlays, 14-2
program memory organization, 10-3
run file mode, 7-2
stack use by ISRs, 19-7

real-time clock operations, 15-1
avoiding timing windows, 15-7
client's responsibilities, 15-6
conditions when message sent to

client, 15-5
exchange needed for, 15-3
precision, 15-3
processing of, 15-5
repetitive timing, 15-7
single-interval timing, 15-8
special case for first interval, 15-3
timer request block (TRB), 15-3
using, 15-3

receive ISR, 18-20
receive special ISR, 18-20
receiving messages, 13-7
reentrance, 9-5
register

returned values in, 11-2
returned values in, 11-4

register usage in assembly language,
A-2

registering request codes, 8-4
RelnitLargeOverlays procedure,

14-11
relative address, 5-2
ReleaseProc SAM internal

procedure, 17-6, 17-13
procedure description, 17-23

replacement filter, 8-23
request, 1-6

abort, 8-14
asynchronous, example, 13-12

close request, 8-12
cluster routing, 1-8
connectionless, 8-13
defining system requests, 8-34
definition file, 8-31
description of, 8-1
filtering, 8-23
load able request set, 8-39
maximum size, 8-11
network routing directives, 8-37
network routing, 1-8, 8-35
piecemealing, 8-28
procedural interface, 8-34
processing by server agent, 8-27
request code, 8-2
restoring on service deinstallation,

8-21
SRP/XE routing directives, 8-38
swapping, 8-16
symbolic names for, 8-40
termination, 8-14

request block
building, 13-8
defining, 8-31
exchange field, 8-7
format, 8-2
piece mealing, 8-28
request data, 8-3
response data, 8-3
role of LFA in piecemealing, 8-29
status code field, 8-7

request code, 1-6, 8-3
conserving, 8-6
defining, 8-30
levels, 8-3
memory used by, 8-6
registering, 8-4
with procedural interface, 8-4

request definition file, 8-31
converting to loadable form, 8-39
structure of entries, 8-32
system request entries, 8-34

request label object file, 8-40
Request primitive, 13-5

use by system service clients, 8-7
using CheckErc with, 13-12

request procedural interface, 8-7,
8-34

parameter directives, 8-36
request label object file, 8-40

Index 1-11

request procedural interface (cont.)
versus kernel primitives, 13-3

request routing, defining, 8-35
request/response model, 1-6
RequestDirect primitive, 8-24, 13-5
requests. See request.
ResetCommLlne procedure, 18-14
ResetVldeo procedure, 2-21
Respond primitive, 13-5

use by system services, 8-7
response data, 8-3
Ret variable-name suffix, 11-4
returned value, from procedure, 11-2
RgParam procedure, 4-4
RgParamSetSimple procedure, 4-6
RqLabl.mdf file, 8-40
RS-232

interface, 18-1
status lines and SamC, 18-11

run file mode
GDTprotected, 7-3
protected, 7-3
real, 7-2

SAM. See Sequential Access
Method (SAM). '

SamC
asynchronous interface to, 18-6
avoiding configuration file, 18-7
communications configuration

descriptor, 18-8
communications device

specifications, 18-2
configuration files, 18-4
device control, 18-11
excluding generic SAM from, 18-6
general information, 18-1
low-level open procedure, 18-7
uses of, 18-5

SamGen, 17-2
SamGenAll.asm file, 17-3

%DeviceOpen macro, 17-4
%tagProcs macro, 17-4

SamGenAll.obj file, 17-2
scheduled, process state, 12-3
scheduling of processes, 12-4
scratch volume, 7-11
screen layout, 7-6

screen. See video.
sector boundary, 14-8
segment

and selector, 10-2
class, 10-2
code, 10-5
COED, 10-8
declaring in assembly language, A-4
definition of, 1-9
group, 10-3
loading when DS != SS, 10-6
multi-segment data structures, 16-9
Not Present fault, 14-5
significance of order in memory,

10-7
segment address, 5-2
segment arithmetic, 5-3
Segment class name, 5-7
segment registers, 5-6
segmentation, of program, 1-11
segmented addressing, 5-2, 10-1
selector, xxviii, 10-1

definition of,5-3
semaphore, 13-3

example of, 13-13
Send primitive

restrictions on, 13-4
use in semaphores, 13-13
use of, 13-4

Sequential Access Method (SAM)
adding new device types, 17-6
communications device

specifications, 18-2
customizing for communications,

18-4
customizing, 17-1
default configurations, 17-2
device specification parsing, 17-12
device specifications, 2-4
excluding devices from, 17-4
file specification parsing, 2-4
including new devices in, 17-6
introduction to, 2-1
SAM for communications (SamC),

18-1
usage considerations, 2-1
using for file operations, 2-8
using for keyboard operations, 2-12
using for video operations, 2-9
using, 2-5, 2-14

1-12 eTOS/ Open Programming Practices and Standards

serial controller
82530 type, 18-18
procedure to initialize, 18-18
type used, 18-13

serial port ID
avoiding dependencies on, 18-12

server agent, 8-26, 8-27
service not completed, status code

37, 8-16
SctBsLfa procedure, 2-8
SctImagcModcProc SAM internal

procedure, 17-6, 17-13
procedure description, 17-24

SctScgmcntAcccss procedure, 5-8
SctTlmcrlnt procedure, 15-10
SctXbusMISR procedure, 20-8
ShortDclay procedure, 15-2
short-lived memory, 16-1

definition of, 1-10
single process, 12-3
sleep, 15-2
software interrupt, 19-2
spooler byte streams, 17-8
SRP/XE routing of requests 8-35

~38 ' ,
SS,10-6
stack, 10-5

addressing parameters on, 10-14
and

1
r-lxed-Ianguage programming,

for a new process, 12-8
general description, 10-11
order of parameters, 11-2
procedure prolog and epilog, 10-13
removal of parameters, 11-2
standard format, 10-12

stack overflow, 10-6
stack pointer (SP), 10-5
stack prolog, 10-12
standard. See guidelines.
starting a process, 12-11
status code, 3-1

returned on piecemealed requests
8-11 '

status frame, 7-9
status information display, 7-8
subparameter, 4-1
swapping

from application's perspective
16-10 '

swapping requests, 8-16
synchronous communications

CommLine connection handle,
18-17

CommLine interface, 18-11
CommLine support procedures,

18-14
communications line control block,

18-15
control port and data port, 18-13,

18-17
CTOS support for, 18-11
initializing the serial controller for,

18-13
initializing the serial controller for,

18-18
interrupt service routines for, 18-20
opening a channel, 18-15
performance enhancement, 18-23

system error log, 3-6, 8-22
system event, 12-4

prevented by infinite loops, 12-5
system service

agents, 8-25
choosing an appropriate type, 9-4
communication with clients, 8-7
connection handle format, 8-10
connection handle, 8-9
connection opening, 8-10
connection termination, 8-12
connection, 8-8
contrast with system-common

services, 9-1
defining request routing, 8-35
deinstallation on error, 8-22
deinstallation, 8-20
filters, 8-23
initializing message file, 6-18
installing, 8-17
life cycle, 8-17
procedural interface for, 8-34
purpose of, 1-4
relationship to client application,

8-8
request block piecemealing, 8-28
resource allocation by, 8-18
rules for building handles, 8-10
swapping request processing, 8-16
termination and abort request

processing, 8-14
threads of execution, 9-2

Index 1-13

system service (cont.)
use of message files, 6-16
operating system requests, 8-13
request-based, 8-1
types of, 8-1

SystemCommonQuery procedure, 9-8
system-common label object file,

9-13
system-common procedures

accessing global data from, 9-5
defining parameters for, 9-6
defining procedure numbers, 9-12
label object file, 9-13
registering procedure numbers,

9-12
system-common service

accessing global data in, 9-5
contrast with request-based

services, 9-1
defining procedure numbers, 9-12
deinstallation, 9-11
detection of duplicate procedure

numbers, 9-8
features of, 9-3
GDTProtected requirement, 9-4
general information, 9-1
installation, 9-8
issues when deinstalling, 9-11
model of operation, 9-1
parameter definition for

procedures, 9-6
performance advantages, 9-3
registering procedure numbers,

9-12
restrictions on, 9-3
system-common procedure, 9-2
threads of execution, 9-2
work performed by, 9-3

tagName, 17-14
tagProcs macro, 17-1
tape byte stream, 2-3
Task State Segment (TSS), 12-5
temporary files, 2-17

and scratch volume, 7-11
terminating a process, 12-12
termination requests, 8-14
text message file, 6-9

text mode, 17-24
TextEdit procedure, 2-18
thrashing, 14-16
thread. See process.
timer interrupt handler, 15-13
timer pseudo-interrupt block (TPIB),

15-10
building, 15-12
format of, 15-11

timer request block (TRB), 15-3
building, 15-5
format of, 15-4
significance of cEvents field, 15-5
significance of cEvents field, 15-7
significance of counterReload field,

15-8
timing loops, 5-10
timing services

delay operations, 15-1
interval-timing operations, 15-1
real-time clock operations, 15-1

timing window, 15-7
TPIB. See timer pseudo-interrupt

block (TPIB).
transmit ISR, 18-20
trap handlers, 19-5

for protection faults, 3-5
rules for writing, 19-9
when to use, 19-3

trap, 19-2
TRB. See timer request block

(TRB).
TSS. See Task State Segment

(TSS).
two-way filter, 8-24
type code, 20-2

unencoded mode, 2-18
user number

and process control block, 12-5

V AM. See Video Access Method
(VAM).

Variable-Length Parameter Block
(VLPB),4-2

creating, 4-6

/-14 eTOS/Open Programming Practices and Standards

variable-naming convention, xxvi
variable-size data segments, 16-2

de allocation of, 16-3
direction of expansion, 16-3
initital offset value, 16-3
restrictions on, 16-3
shrinking, 16-3
when to use, 16-5

VDM. See Video Display
Management.

video
escape codes, 2-9
frame 0, 2-10
initializing, 2-21
memory, 7-9
rows and columns, 2-21
simple output, 2-10

Video Access Method (VAM), 2-20
video byte stream, 2-2

device-dependent procedures, 2-9
Video Display Management (VDM),

2-20
video frames, 2-20
video management

cleanliness, 7-9
displaying help, 7-7
Executive screen display frames,

7-8
screen layout conventions, 7-6

video management operations
general description, 2-20
using, 2-20

Virtual Code Management. See also
overlays.

and procedure pointers, 14-3
call/return convention required,

14-5
defining overlay contents, 14-7
disk reads by, 14-8
general information, 14-1
initializing, 14-8
Linker support for, 14-9
management structures, 14-2
memory vs. performance trade-offs,

14-5
models of compilation supported,

14-3
number of overlaid segments, 14-2
overhead, 14-5
overlay zone, 14-1

real and protected mode operation,
14-2

segment types supported, 14-4
software design, 14-4
steps to using, 14-6
changing overlay zone size, 14-11
getting overlay size statistics, 14-11
mapping overlay number to code

segment, 14-14
maximum overlay size, 14-10
moving the overlay zone, 14-12
overlay time stamping, 14-13
permanence, 14-12
tuning performance, 14-10

VLPB. See Variable-Length
Parameter Block.

volumes
scratch volume ([Scr]), 7-11

Wait primitive, 13-7
consequences of calling after

unsuccessful Request, 13-12
use in semaphores, 13-13

wait, process state, 12-3
wildcard processing, 2-16
word, xxvii
'VritcLog procedure, 3-6
writing your own byte streams, 17-6

XCHG instruction, 15-8
XINT4 X-Bus interrupt, 20-7
X-Bus, 20-1

bus-mastering capability, 20-2
DMA support, 20-2
110 mechanism, 20-2
interrupt handlers, 20-8
interrupt levels, 20-6
interrupt mechanism, 20-2
licensing, 20-2
memory window mechanism, 20-2

X-Bus Interface service (XBIF), 20-7
X-Bus Interface Structure (XBIS),

20-7
X-Bus module

110 address range, 20-3

Index 1-15

X-Bus module (cont.)
110 base address, 20-3
interrupts, 20-6
type code, 20-2
window mapping register, 20-5
X-Bus window size, 20-3

X-Bus programming
calculating 110 base address, 20-3
initializing an X-Bus module, 20-7
performing 110 to an X-Bus

. module, 20-4

preventing ISR race conditions,
20-9

steps to using X-Bus interrupts,
20-7

using an X-Bus window, 20-5
X-Bus interrupt handler, 20-8

X-Bus window, 20-3

ZIN macro, 18-20

/-16 eTOS/Open Programming Practices and Standards

Programming Practices
and Standards
Application Design

ISBN 0-13-194382-0

9 7801 1 943827

