Burroughs

Macro
Assembler
WV ELTTE]

Priced Item 1166378
Printed in U.S.A.
March 1984



Burroughs

" Macro

Assembler
Manual



Information in this document is subject to-change without notice and does not represent a
commitment on the part of Microsoft Corporation. The software described in this docu-
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. It is against
the law to copy the Microsoft Macro Assembler Manual on magnetic tape, disk, or any
other medium for any purpose other than the purchaser’s personal use.

©Microsoft Corporation 1981, 1983

Comments about this documentation may be sent to:

Microsoft Corporation
Microsoft Building
10700 Northup Way
Bellevue, WA 98004

Microsoft is a registered trademark of Microsoft Corporation.
MS is a trademark of Microsoft Corporation.

Intel is a trademark of Intel Corporation.

The names used in this publication are not of any individual, group, association or other
entity living, existing or otherwise. Any similarity or likeness of the names used in this
publication with the names of individuals, groups, associations or other entity living,
existing or otherwise, is purely coincidental and not intentional.

There are NO warranties of any nature, expressed or implied, made or oxhndod by the use,
possession or purchase of the attached material. :

The Customer should exercise care to assure that use of the information in this publica-
tion will be in full compliance with laws, rules and regulations of the jurisdictions with
respect to which it is used.

" The information contained herein is subject to change. Revisions may be issued from time -
to time to advise of changes and/or additions.’

Correspondence regarding this document should be forwarded directly to Burroughs
Corporation, Burroughs Place, Detroit, Michigan 48232. ' ‘



Contents

1 disk, with the following files:
M86 .EXE
LINK.EXE
LIB.EXE
CREF .EXE
DEBUG.EXE

1 binder (titled Microsoft Macro Assembler Manual) with 5
manuals:

Microsoft Macro Assembler Utility Manual

Microsoft LINK Linker Utility Manual (Technical
Information Only)

Microsoft LIB Library Manager Manual

Microsoft CREF Cross-Reference Utility Manual
Microsoft DEBUG Utility Manual

System Requirements
Each utility requires different amounts of memory.

‘Macro Assembler - 96K bytes of memory minimum:
64K bytes for code and static data
32K bytes for run space

Microsoft LINK - 50K bytes of memory minimum:
40K bytes for code
10K bytes for run space

Microsoft LIB -~ 38K bytes of memory minimum:
28K bytes for code
10K bytes for run space

Microsoft CREF - 24K bytes of memory minimum:
14K bytes for code
10K bytes for run space

Microsoft DEBUG - Memory minimum program-dependent
13K bytes for code
Run space program-dependent

Disk drive (s)

One disk drive if and only if output is sent to the
same physical disk from which the input was taken.
None of the utility programs allows time to swap
disks during operation on a one-drive
configuration. Therefore, two disk drives is a
more practical configuration.



Microsoft
Welcome to the Microsqft(R) family of products.

Microsoft Corporation continues to supply consistently
high-quality software for all types of users. :

In addition to the Macro Assembler and Microsoft BASIC
interpreter, Microsoft sells other full-feature language
compilers, language subsets, and operating system products.
Microsoft offers a "family" of software products that both
look alike from one product to the next, and <an be used
together for effective program development.

For more information about other Microsoft . products,
contact:

Microsoft Corporation
10700 Northup Way
Bellevue, WA 98004
(206) 828-8080



Contents

General Introduction

Major Features

Using These Manuals

Syntax Notation

Learning More about Assembly Language Programming
Overview of Program Development

Microsoft Macro Assembler Utility

Introduction

Chapter 1 ' Creating a Macro Assembler Source File
Chapter 2 Names: Labels, Variables, and Symbols
Chapter 3 Expressions: Operands and Operators
Chapter 4 Action: Instructions and Directiyes
Chapter 5 Assembling a Macro Assembler Source File
Chapter 6 8087 Support

Chapter 7 Macro Assembler Messages

.Appendices

Index for Macro Assembler

Microsoft LINK Linker Utility

Chapter 1 Introduction
Chapter 2 MS-LINK Technical Information
Addendum

. Index for MS-LINK



Microsoft LIB Library Manager

Chapter 1 Introduction
Chapter 2 Running MS-LIB
Chapter 3 Error Messages

Index for MS-LIB

Microsoft CREF Cross Reference Utility

Chapter 1 Introduction

Chapter 2 Running MS-CREF

Chapter 3 Error Messages

Chapter 4 Format of MS-CREF Compatible Files

Index for MS-CREF

Microsoft DEBUG Utility
Chapter 1 Introduction
Chapter 2 Commands

Index for DEBUG



~—

The

GENERAL INTRODUCTION

Microsoft Macro Assembler Manual includes utility

programs used for developing assembly language programs. In
addition, the Microsoft LINK Linker Utility and DEBUG are
used with of Microsoft's 16-bit language compilers.

Major Peatures

Macro Assembler Utility

Microsoft's Macro Assembler is a powerful assembler for
8086 based computers.

Macro Assembler supports most of the directives found in
Microsoft's Macro Assembler for the 8080. Macros and
conditionals are Intel 8080 standard.

Macro Assembler 1is upward compatible with Intel's
ASM-86, except Intel codemacros, macros, and a few §
directives.

Macro Assembler offers relaxed typing so that if you
enter a typeless operand for an instruction that accepts
only one type of operand, Macro Assembler assembles the
statement correctly instead of returning - an error
message.



GENERAL INTRODUCTION Page 2

Microsoft LINK Linker Utility (Technical Information Only)

MS-LINK is a virtual linker, which can link programs
that are larger than available memory. :

MS-LINK produces relocatable executable object code.
MS~LINK processes overlays that you define.

MS-LINK can perform multiple libfary searches, using a
dictionary library search method.

MS-LINK prompts you for input and output modules and
other link session parameters.

MS-LINK can be run with an automatic response file to
answer the Linker prompts.

Microsoft LIB Library Manager

MS~LIB can add, delete, and extract modules in vyour
library of program files. '

MS-LIB prompts you for input and output file and module
names. :

MS-LIB can be run with an automatic response file to
answer the library prompts.

MS-LIB produces a cross-reference of symbols in the
library modules.

Microsoft CREF Cross-Reference Utility

MS-CREF produces a cross-reference 1listing of all
symbolic names in the Macro Assembler source program,
giving both the source line number of the definition and
the source 1line numbers of all other references to the
symbols.

Microsoft DEBUG Utility

DEBUG provides a controlled testing environment for
binary and executable object files.

DEBUG eliminates the need to reassemble a program to see
if a problem has been fixed by a minor change.



GENERAL INTRODUCTION Page 3

DEBUG allows you to alter the contents of a file or the
contents of a CPU register, and then immediately
reexecute a program to check on the validity of the
changes.

Using These Manuals

These -manuals are designed to be used as a set and
individually. Each manual is mostly self-contained and
refers to - the other manuals only at Jjunctures in the
software. The overview given below describes the flow of
program development from creating a -‘source file through
program execution. The processes described in this ov~rview
are echoed and expanded in overviews in each of the manuals
contained in the Microsoft Macro Assembler Manual.

Also, note that each manual has its own index.

Figure 1 illustrates an overview of the Microsoft Macro
Assembler Manual.




GENERAL INTRODUCTION

Refer to
DEBUG

Refer to
MS- LINK

Refer to
MS-CREF

Refer to
MS-LIB

DEBUG

4

Manual

MS-LINK

Manual

MS-CREF

Manual

MS-LIB
Manual

Macro
Assembler
Manual

Figure 1. Overview, Macro Assembler Manual

Each of these manuals
between manuals reflect junctures in the software.

used

independently.

Page 4

References

TN



GENERAL INTRODUCTION ) Page 5

Syntax Notation

The following notation is used throughout this manual in
descriptions of command and statement syntax:

(|

CAPS

Square brackets indicate that the enclosed entry is
optional.

Angle brackets indicate data you must enter. When
the angle brackets enclose 1lower case text, you
must type in an entry defined by the text; for
example, <filename>. When the angle brackets
enclose upper case text, you must press the key
named by the text; for example, <RETURN>.

Braces indicate that you have a choice between two
or more entries. At least one of the entries
enclosed in braces must be chosen unless the
entries are also enclosed in square brackets.

Ellipses indicate that an entry may be repeated. as
many times as needed or desired.

Capital letters indicate portions of statements or
commands that must be entered, exactly as shown.

All other punctuation, such as commas, colons, slash marks,
and equal signs, must be entered exactly as shown.

Figure 2

manual.

illustrates the syntax notation used in this



GENERAL INTRODUCTION

Page 6
You have an option;
you may stop here,
or enter more.
Enter a value '
here to replace the Enter as many more
*dummy”™ entry and parameters as you
the angle brackets want, up to end of line

CALL (<parameter> [,<parameter>...]) <RETURN>

1

Enter punctuation as shown

Enter CAPS Upper case
exactly as inside angle
shown

Figure 2. Syntax NotationPrackets; press
this key



GENERAL INTRODUCTION Page 7

Learning More about Assembly Language Proqraﬁming

These manuals explain how to use MS-DOS utilities and
features, but they do not teach you how to program in
assembly language.

We assume that you have had some experience programming in
assembly language. If you do not have any experience, we
suggest two courses:

l. Gain some experience on a less sophisticated
assembler.

2. Refer to any or all of the following books for
assistance:
Morse, Stephen P. The 8086 Primer. Rochelle Park,
: NJ: Hayden Publishing Co., 1980.

Rector, Russell and George Alexy. The 8086 Book.
Berkeley, CA: Osbourne/McGraw-Hill, 1980.

The 8086 Family User's Manual. Santa Clara, CA:
Intel Corporation, 1979.

8086/8087/8088 Macro Assembly Language Reference
Manual. Santa Clara, CA: Intel Corporation,
1980.

NOTE

Some of the information in
these books was based on
preliminary data and may not
reflect the final functional
state of the microprocessors.
Information in your Microsoft
manuals was based on
Microsoft's development of its
16-bit software for the 8086
‘and 8088.



GENERAL INTRODUCTION Page 8

Overview of Program Development

This overview describes generally the steps of program
development. Each step is described fully in the individual
product manuals. The numbers in the descriptions match the
numbers in the facing diagram.

1.

Use EDLIN (the editor in Microsoft's MS-DOS), or
other M5-DOS editor, to create an 8086 assembly
language source file. Give the source file the

filename extension .ASM (Macro Assembler recognizes
.ASM as the default).

Assemble the source file with Macro Assembler,
which outputs an assembled object file with the
default filename extension .OBJ (2a). Assembled
files, your program files (2b), can be linked
together in step 3.

Macro Assembler (optionally) creates two types of
listing file:

(2c)a normal listing file which shows assembled
code with relative addresses, source
statements, and full symbol table;

(2d)a cross-reference file, a special file with
special control characters that allow MS-CREF
(2e) to create a list showing the source line
number of every symbol's definition and all
references to it (2f). When a cross-reference
file is created, the normal listing file (with
the .LST extension) has 1line numbers placed
into it as references for 1line numbers
following symbols in the cross-reference
listing.

Link one or more .0OBJ modules together, using
MS-LINK, to produce an executable object file with
the default filename extension .EXE (3a).

While developing your program, you may want to
create a library file for MS~LINK to search to
resolve external references. Use MS-LIB (3b) to
create user library file(s) (3c) from existing

library files (3c) and/or user program object files
(2b).



GENERAL INTRODUCTION Do Page 9

4.

Run your assembled and 1linked program, the .EXE
file (3a), under MS5-DOS (4). If your program does
not run properly, use the DEBUG utility to 1locate
any errors. :



GENERAL  INTRODUCTION

Page 10

1.] EDLIN |e
source
.ASM
(2¢c)| listing
TEE— +LST
Macro
2. Assembler
listing
T (2d) .CRF
2by| USeTProg (2a){ object ‘
(2b) .OBJ .0BJ
(2e)|] MS-CREF
on g I
3. l
' L »
MS-LIB MS-LINK
U Coe s
listing
¥ ~ T (2£) .REF .
userlib object
Ge)l ™ L1 (3a) \EXE
4 MS-DOS Program
) complete

If it doesn't work

DEBUG

7N



e .

_ MiCrOSOft®

Macro Assembler

Utility

for 8086 and 8088 Microprocessors

Microsoft Corporation



N



System Requi:o-gnts

The Macro Assembler Utility requires 96K bytes of memory
minimum:

64K bytes for code and static data
32K bytes for run space

Disk drive(s)
One disk drive if and only if output is sent to the
same physical disk from which the input was taken.
The Macro Assembler Utility does not allow time to
swap disks during operation on a one-drive
configuration. Therefore, two disk drives is a
more practical configquration.






N’

Contents

Introduction

Features of Macro Assembler 1l
Overview of Macro Assembler Operation 8

Chapter 1 Creating a Macro Assembler Source File
1.1 General Facts about Source Files 1-1
1.2 Statement Line Format 1-5
1.3 Names 1-6
1.4 Comments 1-8
1.5 Action 1-9
1.6 Expressions . 1-10

Chapter 2 Names: Labels, Variables, and Symbols

2.1 Labels 2-2
2.2 Variables 2-5
2.3 Symbols 2-7

Chapter Expressions: Operands and Operators

.1 Memory Organization 3-2
.2 Operands 3-8
.3 Operators 3-17

Chapter 4 Action: Instructions and Directives

Instructions 2

4.1 4-

4.2 Directives 4-3
Chapter 5 . Assembling a Macro Assembler Source File

5.1 How to Start Macro Assembler 5-1

. 5.2 Macro Assembler Command Characters 5-4

5.3 Macro Assembler Command Prompts 5-5

5.4 Macro Assembler Command Switches 5-7

5.5 " Formats of Listings and Symbol Tables 5-10
Chapter 6 8087 Support

6.1 Switches 6-1

Chapter Macro Assembler Messages

.1 Operating Messages 7-1
.2 Error Messages 7-2



Appendix A

Appendix B

Appendix C

" Index

ASCII Character Codes
Table of Macro Assembler Directives

Table of 8086 and 8087 Instructions

VR



N

_ INTRODUCTION

Features of Macro Assembler

Microsoft's Macro Assembler is a very powerful assembler for
8086-based computers. Macro Assembler incorporates many
features usually found only in large computer assemblers.
Macro assembly, conditional assembly, and a variety of
assembler directives provide "all the tools necessary to
derive full use and full power from an 8086, 8087, or 8088
microprocessor. Although Macro Assembler is more complex
than any other microcomputer assembler, it is easy to use.

Macro Assembler produces relocatable object code. Each
instruction and directive statement is given a relative
offset from its segment base. The assembled code can then
be 1linked using Microsoft's MS-LINK utility to produce
relocatable, executable object code. Relocatable code can
be loaded anywhere in memory. Thus, the program can execute
where it is most efficient, instead of in some fixed range
of memory addresses.

In addition, relocatable code means that programs can be
created in modules, each of which can be assembled, tested,
and perfected individually. This saves recoding time
because testing and assembly are performed on smaller pieces
of program code. Also, all modules can be error-free before
being 1linked together into larger modules or into the whole
program,



INTRODUCTION

L
MOD 1 MOD 2 MOD 3
Macro
"| Assembler |
- Individual modules
can be edited and
assembled until they
work correctly.
Does
no module
assemble

correctly
?

When the individual
modules are ready,
they can be linked
singly or into one
or more larger
modules.

MS-LINK

full or part
program file

Figure 1. The Assembly Process

Page 2

N\



INTRODUCTION Page 3

Macro Assembler supports Microsoft's complete 8080 macro
facility, which is Intel 8080 standard. The macro facility
permits the writing of blocks of code for a set of
instructions used frequently. The need for recoding these
instructions each time they are required in the program is
eliminated.

These blocks of code are called macros. The instructions
are the macro definition. Each time the set of instructions
is needed, instead of recoding the set of instructions, a
simple "call"™ to a macro is placed in the source file.
Macro Assembler expands the macro call by assembling the
block of instructions into the program automatically. The
macro call also passes parameters to the assembler for use
during macro expansion. The use of macros reduces the size
of a source module because the macro definitions are given
only once; other occurrences are one-line calls.

Macros can be "nested," that is, a macro can be called from
inside another macro block. Nesting of macros is limited
only by memory.

The macro facility includes repeat, indefinite repeat, and
indefinite repeat character directives for programming
repeat block operations. The MACRO directive can also be
used to alter the action of any instruction or directive by
using its name as the macro name. When any instruction or
directive statement is placed in the program, Macro
Assembler first checks the symbol table it created to see if
the instruction or directive 1is a macro name. If it is,
Macro Assembler "expands" the macro call statement by
replacing it with the body of instructions in the macro's
definition. If the name is not defined as a macro, Macro
Assembler tries to match the name with an instruction or
directive. The MACRO directive also supports local symbols
§nd conditional exiting from the block if further expansion
is unnecessary.



INTRODUCTION

statement
statement
statement

macro call
statement

name MACRO x

ENDM

name MACRO x

when the assembler
encounters a macro
call, it finds the
MACRO block and
replaces the call
with the block of
statements that
define the macro.

Nested MACRO call:
name defined else-

.
name 1’2‘________where as a macro,

is "expanded"
during assembly,
as shown above.

Figure 2. Assembler Macros

Page 4

N



s

INTRODUCTION Page 5

Macro Assembler supports an expanded set of conditional
directives. Directives for evaluating a variety of assembly
conditions can test assembly results and branch where
required. Unneeded or unwanted portions of code will be
left unassembled. Macro Assembler can test for blank or
nonblank arguments, for defined or undefined symbols, for
equivalence, for first assembly pass or second, and can
compare strings for identity or difference. The conditional
directives simplify the evaluation of assembly results, and
make programming the testing code for conditions easier.

Macro Assembler's conditional assembly facility also
supports conditionals inside conditionals ("nesting").
Conditional assembly blocks can be nested up to 255 levels.



INTRODUCTION

statement
statement
statement l—b ‘
If condition f—J IF <exp true> |[¢—If condition
is true, 1F . is false,
block is . program skips
assembled up . to ELSE, then
to ELSE, then ELSE " [#—resumes at the
skips to ENDIF. . next statement.
1f no ELSE, . 1f no ELSE,
IF block . HP-IF block skips
assembles en- ENDIF to ENDIF and
tire condi- statement resumes with
tional block. statement next statement.
IF ...
IF ...
IF ... Nesting of
. conditionals
. is allowed up to
ENDIF - 255 levels.
ELSE
ENDIF
ENDIF -
Figure 3. Conditional Statements

Page 6

VAR



N~

N

INTRODUCTION i Page 7

Macro Assembler supports all the major 8080 directives found
in Microsoft's Macro Assembler for the 8080 processor. This
means that any conditional, macro, or repeat blocks
programmed under the B080 Macro Assembler can be used under
Macro Assembler for the B8086. Processor instructions and
some directives (e.g., .PHASE, CSEG, DSEG) within the blocks
will need to be converted to the 8086 instruction set. All
the major Macro Assembler directives (pseudo-ops) for the
8080 that are supported under Macro Assembler for the 8086
will assemble as 1is, as 1long as the expressions to the
directives are correct for the processor and the program,
The syntax of directives is unchanged. Macro Assembler is
upwardly~compatible, Macro Assembler for the 8080 processor
and with 1Intel's ASM86(R), except Intel codemacros and
macros.

Some 8086 instructions take only one operand type. If a
typeless operand is entered for an instruction that accepts
only one type of operand (e.g., in the instruction PUSH
[BX], [BX] has no size, but PUSH only takes a word), it
would be wasteful to return an error for a lapse of memory
or a typographical error. When the wrong type choice is
given, Macro Assembler displays an error message but
generates the "correct"™ code. That is, it always outputs
instructions, not just NOP instructions. For example, if
you enter:

MoV AL ,WORDLBL

You may have (2)
meant one of MOV AL,BYTE PTR WORDLBL
three instructions: (3)

MOV AL,<other>
(1)
MOV AX,WORDLBL

Macro Assembler generates instruction (2) because it assumes
that when you specify a register, you mean that register and
that size; therefore, the other operand is the *"wrong
size." Macro Assembler accordingly modifies the "wrong"
operand to fit the register size (in this case) or the size
of whatever is the most 1likely "correct" operand in an
expression. This eliminates some mundane debugging chores.
An error message is still returned, however, because you may
have misstated the operand the Macro Assembler assumes |is
"correct.”



INTRODUCTION Page 8

Overview of Macro Assembler Operation

The first task in developing a program is to create a source
file. Use EDLIN (the resident editor in Microsoft's MS-DOS
operating system), or any other 8086 editor compatible with
your operating system, to create the Macro Assembler source
file. Macro Assembler assumes a default filename extension
of .ASM for the source file. Creating the source file
involves creating instruction and directive statements that
follow the rules and constraints described in Chapters 1-4
in this manual.

When the source file 1is ready, run Macro Assembler as
described in Chapter 5, "Assembling a Macro Assembler Source
File." Refer to Chapter 7, "Macro Assembler Messages," for
explanations of any messages displayed during or immediately
after assembly.

EDLIN Ch 1-4

source
+ASM

Macro
s
(messgge ) Assembler ch

object
ch 7 <ASM

Figure 4. Overview of Macro Assembler Operation

77\



INTRODUCTION " Page 9

Macro Assembler is a two-pass assembler. This means that
the source file is assembled twice. But slightly different
actions occur during each pass. During the first pass, the
assembler: .

evaluates the statements and expands macro call
statements :

calculates the amount of code it will generate

builds .a symbol table where all symbols, variables,
labels, and macros are -assigned values

During the second pass, the assembler

fills in the symbol, variable, label, and
expression values from the symbol table

expands macro call statements

emits the relocatable object code into a file with
the default filename extension .OBJ

The .OBJ file is suitable for processing with the Microsoft
LINK utility (MS-LINK). The .OBJ file can be stored as part
of the user's library of object programs, which later can be
linked with one or more .OBJ modules by MS-LINK (refer to
the MS-LINK utility for further explanation and
instructions). The .0BJ modules can also be processed with
the Microsoft LIB Library Manager (refer to the Microsoft
LIB Library Manager Manual for further explanation and
instructions).

The source file can also be assembled without creating an
.OBJ file. All the other assembly steps are performed, but
the object code is not sent to disk. Only erroneous source
statements are displayed on the terminal screen. This
practice is useful for checking the source code for errors.:
It 1is faster than creating an .0OBJ file because no file is’
created or written. Modules can be test assembled gquickly
and errors corrected before the object code is put on disk.
Modules that assemble without errors do not clutter the
disk. ’



INTRODUCTION

PASS 1

source
+ASM

Macro

statement
statement
macro call

Assembler

symbol <~ def

symbol -~ def
variable -~ def
variable -- def.
label -- def
macro name

statement

PASS 2

source
.ASM

' exact amount

H—-——-—-—-—of code to

be generated

Macro
Assembler

symbol

table

object
.0BJ

Figure 5, Pass 1 and Pass 2

Page 10



INTRODUCTION  page 11

Macro Assembler will create, on command, a listing file and
a cross-reference file. The 1listing file contains the
beginning relative addresses (offsets from segment base)
assigned to each instruction, the machine code translation
of each statement (in hexadecimal values), and the statement
itself, The 1listing also contains a symbol table which
shows the values of all symbols, labels, and variables, plus
the names of all macros. The listing file receives the
default filename extension .LST.

The cross-reference file contains a compact representation
of variables, labels, and symbols. The cross-reference file
receives the default filename extension .CRF. Wwhen this
cross-reference file is processed by Microsoft CREF
(MS~CREF), the file is converted into an expanded symbol
table that 1lists all the variables, labels, and symbols in
alphabetical order; followed by the 1line number in the
source program where each is defined; followed by the line
numbers where each is used in the program. The final
cross-reference 1listing receives the filename extension
.REF. (Refer to the Microsoft CREF Cross-~Reference Utility
Manual for further explanation and instructions.)

Figure 6 illustrates the files that Macro Assembler can
produce. :

source
+ASM
listing
.LST
Macro
Assembler
listing
.CRF
object
.0BJ <
listing ‘MS-
REF MS-CREF

Figure 6. Files That Macro Assembler Produces






Contents

Chapter 1 Creating a Macro Assembler Source File

1.1 General Facts about Source Files 1-1
Naming Your Source File 1-1
Legal Characters 1-2
Numeric Notation 1-3
What's in a Source File? 1-4
1.2 Statement Line Format 1-5
1.3 Names 1-6
1.4 " Comments 1-8
1.5 Action 1-9
1.6 Expressions 1-10






CHAPTER 1

CREATING A MACRO ASSEMBLER SOURCE FILE

To create a source file for Macro Assembler, you need to use
an editor program, such as EDLIN in Microsoft's MS-DOS. You
simply create a program file as you would for any other
assembly or high-level programming 1language. Use the
general facts and specific descriptions in this chapter and
the three following chapters when creating the file.

This chapter discusses the statement format and introduces
descriptions of its components. In Chapter 2, you will find
full descriptions of names: variables, labels, and symbols.
Chapter 3 provides full descriptions of expressions and
their components, operands and operators. Chapter 4
includes full descriptions of the assembler directives.

1.1 GENERAL FACTS ABOUT SOURCE FILES
Naming Your Source Pile

When you create a source file, you must name it. A filename
may be any name that is legal for your operating system.
When you run Macro Assembler to assemble your source file,
Macro Assembler assumes that your source filename has the
extension .ASM. . :

You do not need to give your ~source filename the .ASM
extension. However, if your source filename has has an
extension other than .ASM, you must specify the extension
name when you run Macro Assenbler. (You do not need to
specify the .ASM extension if your source filéname has an
extension of .ASM. Macro Assembler will supply the default
extension for you.)



CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-2

Note that Macro Assembler gives the object file it outputs
the default extension .OBJ. To avoid confusion or the
destruction of your source file, you should avoid giving a
source file an extension of .0BJ. For similar reasons, you
should also avoid the extensions .EXE, .LST, .CRF, and .REF.

Legal Characters
‘The legal characters for your symbol names are:
A-Z 0-9 ? e _ $

Only the numerals (0-9) cannot appear as the first character
of a name (a numeral must appear as the first character of a
numeric value).

Additional special characters act as operators or
delimiters:

: (colon)--segment override operator

. (period)--operator for field name of Record or
Structure; may be used in a filename only if
it is the first character

[ 1 (square brackets--around register names to
indicate wvalue in address in register, not
value (data) in register

( ) (parentheses)--operator in DUP expressions and
operator to change precedence of operator
evaluation :

< > (angle brackets) operators used around
initialization values for Records or Structure,
around parameters in IRP macro blocks, and to
indicate literals

The square brackets and angle brackets are also
used for syntax notation in the discussions of the
assembler directives (Section 4.2, "Directives").
When these characters are operators and not syntax
notation, you are told explicitly; for example,
"angle brackets must be coded as shown."



N

CREATING A MACRO ASSEMBLER SOURCE FILE ’ Page '1-3

Numgtic Notation

The default input radix for all numeric values is decimal.
The output radix for all listings is hexadecimal for code
and data items and decimal for 1line numbers.’ The output
radix can only be changed to octal radix by giving the /O
switch when Macro Assembler is run (see Section 5.4, "Macro
Assembler Command Switches"). There are two ways to change
the input radix: ' '

1. With the .RADIX directive (see Section 4.2.1,
"Memory Directives")

2. By special notation appendéd to a numeric value:

Radix Range Notation Example

Binary 0~1 B 01110100B

Octal 0-7 Qor O 735Q or 6210

Decimal 0-9 none or D 9384 (default)
: 8149D*

Hexadecimal g-g H OFFH or 80H**

* When .RADIX directive changes default radix to not
decimal.

**First character must be numeral from 0-9.



CREATING A MACRO ASSEMBLER SOURCE FILE | Page 1-4

What's in a Source File?

A source file for Macro Assembler consists of instruction
statements and directive statements. Instruction statements
are made of 8086 instruction mnemonics and their operands,
which command specific processes directly to - the 8086
processor. Directive statements are commands to. Macro
Assembler to prepare data for use 'in and by instructions.

Statement line format is described in Section 1.2. The
parts of a statement are described in Sections 1.3-1.6 and
in Chapters 2-4. . Statements are usually placed in blocks of

code assigned to a specific segment (code, data, stack,

extra). The segments may appear in any order in the source
‘file. Within the segments, generally speaking, statements
may appear in any order that <reates a valid program. Some

exceptions to random ordering do exist, which will be.

discussed under the affected assembler directives.

Every segment must end with an end segment statement (ENDS);
every procedure must end with an end procedure statement
(ENDP); and every structure must end with an end  structure
statement (ENDS). Likewise, the source file must ‘end with
an END statement that tells Macro Assembler where  program
execution should begin. :

Section 3.1, "Memory Organization,"” describes how segments,
groups, the ASSUME directive, and the SEG operator relate to
one another and to your programming as a whole. This
information is . important and helpful for developing your
programs. The information is presented in Chapter 3 as a
prelude to the discussion of operands and operators.

-



CREATING A MACRO ASSEMBLER SOURCE FILE : >Page 1-5

1.2 STATEMENT LINE FORMAT

Statements in source files follow a strict format, which"
allows some variation.

Macro Assembler directive statements consist of four
"fields": Name, Action, Expression, Comment. For example:

FOO DB- . ODSE ;create variable FOO v
;containing the value ODSEH
| |

Name Action Expression :Comment

Macro Assembler instruction statements wusually consist of
three "fields"™: Action, Expression, Comment. For example:

MOV CX,FOO0 shere's the count number
Action Ekptessidn ;Comment

An instruction statement may have a Name field under certain
circumstances; see the discussion in Section 1.3, "Names."



CREATING A MACRO ASSEMBLER SOURCE FILE . . Page 1-6
1.3 NAMES

The name field, wheh present, is .the first entry on -the

statement 1line. The name may begin in any column, although
normally names are started in column 1.

Names may be any length you choose. However, - Macro
Assembler considers only the first 31 characters significant
when your source file IS assembled

One other significant use for names is with the MACRO

directive. Although all the rules covering names, described
.in Chapter 2, apply to MACRO names, the discussion of macro
.names is better 1left to the section describing the macro
facility. o '

Macro Assémbler supports the use of ‘names iﬁ a statement
line for three purposes: to represent code, to represent
~data, and .to represent constants, .
To make a name‘represént code, use:
NAME: followed by a directive, instruction, or
nothing at all » _
‘NAME LABEL NEAR (for use inside its own segment
only)
NAME LABEL FAR (for use outside its own segment)

EXTRN NAME:NEAR (for use outside its own module but
inside its own segment only)

EXTRN NAME:FAR (for use outside its own module and
segment)
To make a name repfesent data, use:
NAME LABEL <size> (BYTE, WORD, etc.)
NAME Dx <exp>

EXTRN NAME:<size> (BYTE, WORD, etc.)



CREATING A MACRO ASSEMBLER SOURCE FILE Page

To make a name represent a constant, use:
NAME EQU <constant>
"NAME = <constant>
NAME SEGMENT <attributes>

NAME GROUP <segment-names>

1-7



CREATING A MACRO ASSEMBLER SOURCE FILE J Page 1-8
1.4 COMMENTS

,Comments'are never required for the successful operation of
an assembly language program, but they are strongly
recommended. ‘ .

If you use comments in your program, every comment on every
line must be preceded by a semicolon. If you want to place
a very long comment in your program, you can-use the COMMENT
directive. The COMMENT directive releases you from the
required semicolon on every 1line (refer to COMMENT in
Section 4.2.1, "Memory Directives").

Comments document the processing that is supposed to happen
at a particular point in a program. When comments are used
in this manner, they can be wuseful for debugging, for
. alteripg code, or for updating code. - Consider. putting
comments at the beginning of each segment, procedure,
structure, module, and after each 1line in the code that
begins a step in the processing.

Comments are ignored by Macro Assembler. Comments do not
add to. the memory required to assemble or to run your
‘program, except in macro blocks where comments are stored
with the code. ’

VEERN



CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-9
1.5 ACTION

The action field contains either an 8086 instruction
mnemonic or a Macro Assembler assembler directive. Refer to
Section 4.1, "Instructions," for a general discussion and to
Appendix C for a list of 8086 instruction mnemonics. The
" Macro . Assembler directives are described in detail in
Section 4.2, "Directives."

If the name field is blank, the action field will be the
first entry in the statement format. 1In this case, the
action may appear in any column, 1 through maximum line
length (minus columns for action and expression).

The entry in the action field either directs the processor
to perform a specific function or it directs the assembler
to perform one of its functions. Ingstructions tell the
processor to perform some action. An instruction may have
the data and/or addresses it needs built into it, or data
and/or addresses  may be found in the expression part of an
instruction. For example:

[opcote ] [operana] | asta | [Taara |
r°P°,°"9J [opéraq;l [ addﬂ Laddr ]
1 T 1 1

supplied supplied or found

supplied = part of the instruction

found = assembler inserts data and/or address  from the
information provided by expression in instruction
statements .

(opcode is the action part of an instruction)

Directives give the assembler diréctions for I/0, memory
organization, conditional - assembly, listing and
cross-reference control, and definitions. .



CREATING A MACRO ASSEMBLER SOURCE FILE " page 1-10
1.6 EXPRESSIONS

The expression field containsb-entries 'whichA afe operands
and/or combinations of operands and operators.

Some instructions take no operands; some take one, and
..others . take two. For two-operand instructions, the
expression field consists of a destination: operand and a
source operand, in that order, separated by a comma. For
example:

[ppcode] [dest-operaan,[soutce-opetandl

For one-operand instructions, the operand is a source or a

destination operand, depending on the instruction. If one
or both of the operands is omitted, the instruction carries
that information in its internal coding.

Source operands are immediate operands, register operands,
memory operands, or attribute operands. Destination
operands are register operands and memory operands.

For directives, the expression field usually consists of a
single operand. For example: :

[directive] Ioperandl

A directive operand is a data operand, a code (addressing)

operand, or a constant, depending on the nature of the
directive.

For many instructions and directives, operands may be
connected with operators to form a longer operand that looks
like a mathematical expression. These operands are called
complex operands. Use of a complex operand permits you to
specify addresses or data derived from several places. For
example: :

MOV FOO [BX] ,AL



CREATING A  MACRO ASSEMBLER SOURCE FILE Page 1-11

The destination operand is the result of adding the address
represented by the variable FOO and the address found in
register BX. The processor is instructed to move the value
in register AL to the destination calculated from these two
operand elements. Another example:

MOV AX,F00+5 [BX])
In this caée, the source operand is the result of adding the

value represented by the symbol FOO plus 5 plus the value
found in the BX register.



CREATING A HACRO ASSEMBLER SOURCE FILE Page 1-12

Macro Assembler supports the following operands and

operators in the expression field (shown in order of
precedence) :

Operands Operators
Immediate LENGTH, SIZE, WIDTH, MASK,
~ (incl. symbols) FIELD [ ], (), < >
Register .
Memory segment override(:)
label )
variables PTR, OFFSET, SEG, TYPE, THIS
simple
indexed HIGH, LOW
structures
Attribute *, /. MOD, SHL, SHR
override
PTR +, -(unary), -(binary)
: (seq)
SHORT EQ, NE, LT, LE, GT, GE
HIGH
LOW NOT
value returning
OFFSET AND
SEG
THIS OR, XOR
TYPE
.TYPE SHORT, .TYPE
LENGTH .
SIZE
record specifying
FIELD
MASK
WIDTH
NOTE

Some operators can be used as operands or as
part of an operand expression. Refer to
Sections 3.2, "Operands,” and 3.3, “"Operators,”
for details of operands and operators.



Contents

Chapter 2 Names: Labels, Variables, and Symbols
2.1 Labels 2-2
2.2 Variables 2-5
2.3 Symbols 2-7






CHAPTER 2

NAMES: LABELS, VARIABLES, AND' SYMBOLS

Names are used in several ways throughout Macro Assembler,
~ wherever any naming is allowed or required.

Names are symbolic representations of values. . The values
may be addrgsses, data, or constants.

Names may be any 1length you choose. However, Macro
Assembler will truncate names longer than 31 characters when
your source file is assembled.

Names may be defined and used in a number of ways. This
chapter introduces you to the basic ways to define and use
names. You will discover additional uses as you study the
chapters on Expressions and Action, and as you use Macro
Assembler.

Macro Assembler supports three types of names in statement
lines: 1labels, variables, and symbols. This chapter covers
how to define and use these three types of names. :



NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-2

2.1 LABELS

Labels are names used as targets for JMP,. CALL, and LOOP
instructions. Macro Assembler assigns an address to each
label as it is defined. When you use:. a label as an operand
for JMP, CALL, or LOOP, Macro Assembler can substitute the
attributes of the 1label for the label name, sending
processing to the appropriate place.

Labels are defined in one of four ways:
1. <name>:

Use a name followed' immediately by a colon. This
defines the name as a NEAR label. <name>: may be
prefixed to any instruction and to all directives
that allow a Name field. <name>: may also be
placed on a line by itself.

Examples:

CLEAR_SCREEN: MOV AL, 20H
FOO: DB OFH
SUBROUTINE3:

2. <name> LABEL NEAR
<name> LABEL FAR

Usé the LABEL directive. Refer to the discussion
of the LABEL directive in Section 4.2.1, "Memory
Directives."”

NEAR and FAR are discussed under the Type Attribute
below. .

FExamples:

FOO LABEL" NEAR.
GO0 LABEL FAR

3. <name> PROC NEAR
<name> PROC FAR

Use the PROC directive. Refer to the discussion of
the PROC directive in Section '4.2.1, "Memory
Directives.” : ’

NEAR is optional because it is the default if you

enter only <name> PROC. NEAR and FAR are discussed
under the Type Attribute below.



~—

N

NAMES : LABELS, VARIABLES, AND SYMBOLS . ’ Page 2-3

Examples:

REPEAT PROC NEAR
CHECKING PROC ;same as CHECKING PROC NEAR

FIND_ CHR PROC  FAR

‘4. EXTRN <name> :NEAR
EXTRN <name>:FAR

Use the EXTRN directive.

NEAR and FAR are discussed under the Type Attribute
below.

Refer to the discussion of the EXTRN directive in
Section 4.2.1, "Memory Directives."

Examples:

EXTRN FOO:NEAR
EXTRN 200:FAR

A label has four. attributes: segment, offset, type, and the
CS ASSUME in effect when the label is defined. Segment is
the segment where the 1label is defined. Offset is the
distance from the beginning of the segment to the label's
location. Type is either NEAR or FAR.

Segment

Labels are defined inside segments. The segment must be

‘assigned to the CS segment register to be addressable. The

segment may be assigned to a group, in which case the group
must be addressable through CS. Macro Assembler requires
that a label be addressable through the CS register.
Therefore, - the segment (or group) attribute of a symbol is
the base address of the segment (or group) where it |is

defined.

Offset:

The offset attribute is the numter of bytes from the
beginning of the . label's segment to where the label is
defined. The offset is a 16-bit unsigned number.



NAMES: LABELS, VARIABLES, AND SYMBOLS ' Page 2-4

Type

" Labels are one of two types: NEAR or FAR. NEAR labels are
used for references from within the segment where the label
is defined. NEAR labels may be referenced from more than
one module, as long as the references are from a segment
with the same name and attributes and have the same CS
ASSUME,

FAR labels are used for references from segments with a
different CS ASSUME, or when there are more than 64K bytes
between the label reference and the label definition.

NEAR and FAR cause Macro Assembler to generate slightly
different code. NEAR labels supply their offset attribute
only (a 2-byte pointer). FAR 1labels supply both their
segment and offset attributes (a 4-byte pointer).

VRN



NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-5

2.2 VARIABLES

Variables are names used in expressions as operands
instructions and directives. A variable ' represents
address where a specified value may be found.

Variables look much like labels and are defined alike
some ways. .The differences are important.

Variables are defined three ways:
1. <name> <define-dir> ;no colon!

; <name> <struc-name> <expression>
<name> <rec-name> <expression>

to

an

in

<define~dir> is any of the five Define directives:

DB, DW, DD, DQ, DT
Example:

START_MOVE DW ?

<struc-name> is a structure name ‘defined by the

STRUC directive.

<rec-name> is a record name defzned by the RECORD

directive.
Ekamples:

CORRAL STRUC

: ENDS .
HORSE CORRAL <'SADDLE'>

Note that HORSE will have the same size as the

sttucture CORRAL.

GARAGE RECORD CAR:8='p'

SMALL GARAGE 10 DUP(<'Z2'>)

Note that SMALL will have the same size as the

record GARAGE.

See the DEFINE, STRUC, and RECORD directives

Section 4.2.1, "Memory Directives."
2. <name> LABEL <size>

Use the LABEL directive with one of 'the

in

size



NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-6

specifiers.
<size> is one of the following size specifiers:

BYTE - specifies 1 byte
WORD - specifies 2 bytes

DWORD - specifies 4 bytes

QWORD -~ specifies 8 bytes

TBYTE ~ specifies 10 bytes
Example:

CURSOR LABEL WORD

See LABEL directive in Section 4.2.1, ' "Memory
Directives.”

3. EXTRN <name>:<size>

Use the EXTRN directive with one of the size
specifiers described above. See EXTRN directive in
Section 4.2.1, "Memory Directives."”

Example:

EXTRN FOO:DWORD

Variables also have the three attributes segment, offset,
and type (as do labels).

Segment and Offset are the same for variables as for labels.
The Type attribute is different.

Type

The type attribute is the size of the variable's 1location,
as specified when the variable is defined. The size depends
on which Define directive was used or which size specifier
was used to define the variable.

Directive Type Size

DB BYTE 1 byte
DW WORD 2 bytes
DD WORD 4 bytes
DQ QWORD 8 bytes

DT TBYTE 10 bytes



NAMES:

LABELS, VARIABLES, AND SYMBOLS Page 2-7

2.3 SYMBOLS

Symbols are names defined without reference to a Define
directive or to code. Like variables, symbols are also used
in expressions as operands to instructions and directives.

Symbols are defined three ways:

1.

<name> EQU <expression>

Use the EQU directive. See EQU directive in
Section 4.2.1, "Memory Directives."

<expression> may be another symbol, an instruction
mnemonic, a valid expression, or any other entry
(such as text or indexed references).

Examples:
FOO EQU 7H
200 EQU FOO
<name> = <expression>

Use the equal sign directive. See Equal Sign
directive in Section 4.2.1, "Memory Directives.”

<expression> may be any valid expression.

Examples:
GOO = OFH
GOO = $+2
GoOo = GOO+FO00

EXTRN <name>:ABS

_Use the EXTRN directive with type ABS. See EXTRN

directive in Section 4.2.1, "Memory Directives."
Example:
EXTRN BAZ:ABS

BAZ must be defined by an EQU or = directive to a
valid expression.






Chapter 3

Contents

Expressions: Operands and Operators

Memory Organization 3-2
Operands 3-8
Immediate Operands 3-9
Data Items 3-9
Symbols 3-9
Register Operands 3-10
Memory Operands 3-13
Direct Memory Operands 3-13
Indexed Memory Operands 3-14
Structure Operands 3-15
Operators 3-17
Attribute Opeérators 3-17
Override Operators 3-18
Value Returning Operators 3-23
Record Specific Operators 3-29
Arithmetic Operators 3-33
Relational Operators 3-34
Logical Operators 3-35
Expression Evaluation 3-36
Precedence of Operators 3-36






CHAPTER 3

EXPRESSIONS: OPERANDS AND OPERATORS

Chapter 1 provided a brief introduction to expressions.
Basically, expression is the term used to indicate values on
which an instruction or directive performs its functions.

Every expression consists of at least one operand (a value).
An expression may consist of two or more operands. Multiple
operands are joined by operators. The result is a series of
elements that looks like a mathematical expression.

This chapter describes the types of operands and operators
that Macro Assembler supports. The discussion of memory
organization in a Macro Assembler program acts as a preface
to the descriptions of operands and operators, and as a link
to topics discussed in Chapter 2.



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-2

3.1 MEMORY ORGANIZATIOR

Most of your assembly language program is written in
segments. In the source file, a segment is a block of code
that begins with a SEGMENT directive statement and ends with
an ENDS directive. In an assembled and linked file, a
segment is any block of code that is addressed through the
same segment register and is not more than 64K bytes long.

You should note that Macro Assembler leaves everything
relating to segments to MS-LINK. MS-LINK resolves all
references. For that reason, Macro Assembler does not check
(because it cannot) to see if your references are entered
with the correct distance type. Values such as OFFSET are
also left to MS-LINK to resolve.

Although a segment may not be more than 64K bytes long, you
‘may, as long as you observe the 64K limit, divide a segment
among two or more modules. (The SEGMENT statement in each

module must be the same,) -

When the modules are linked together, the several segments
become one. References to labels, variables, and symbols
within each module acquire the offset from the beginning of
the whole segment, not Jjust £from the beginning of their
portion of the whole segment., (All divisions are removed.)

You have the option of grouping several segments into a
group using the GROUP directive. When you group segments,
you tell Macro Assembler that you want to be able to refer
to all of these segments as a single entity. (This does not
eliminate segment identity, nor does it make values within a
particular segment 1less immediately accessible. 1t does
make value relative to a group base.) The advantage of
grouping is that you can refer to data items without
worrying about segment overrides or changing segment
registers.

With this in mind, you should note that references within
segments or groups are relative to a segment register.
Thus, until linking is completed, the final offset of a
reference is relocatable. For this reason, the OFFSET
operator does not return a constant. The major purpose of
OFFSET is to cause Macro Assembler to generate an immediate
instruction; that is, to use the address of the value
instead of the value itself. v



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-3

There are two kinds of references in a program:

1. Code references - JMP, CALL, LOOPxx - These
references are relative to the address in the CS
register. (You cannot override this assignment.)

2. Data references - all other references - These
-references are usually relative to the DS register,
but this assignment may be overridden.

When you give a forward reference in a program statement,
for example:

MOV AX,<ref>

Macro Assembler first 1looks for the segment of the

. reference. Macro Assembler scans the segment registers for
the SEGMENT of the reference, then the GROUP (if any) of the
reference.

However, the use of the OFFSET operator always returns the
offset relative to the segment. If you want the offset
relative to a GROUP, you must override this restriction by
using the GROUP name and the colon operator. For éxample:

MOV AX,OFFSET <group-name>:<ref>

If you set a segment register to a group with the ASSUME
directive, then you may also override the restriction on
OFFSET by using the register name. For example:

MOV AX,OFFSET DS:<ref>

—

The result of both of these statements is the same.
Code labels have four attributes:
1. Segment - what segment the label belongs to

2. Offset - the number of bytes from the beginning of
its segment

3. Type - NEAR or FAR
4. CS ASSUME - the CS ASSUME the label was coded under

When you enter a NEAR JMP or NEAR CALL, you are changing the
offset (IP) in CS. Macro Assembler compares the CS ASSUME
of the target (where the label is defined) with the current
CS ASSUME. If they are different, Macro Assembler returns
an error (you must use a FAR JMP or FAR CALL).



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-4

When you enter a FAR JMP or FAR CALL, you are changing both
the offset (IP) in CS and the paragraph number. The
paragraph number is changed to the CS ASSUME of the target
address. )

Let's take a common case, a segment called CODE, and a group
(called DGROUP) that contains three segments (called DATA,
CONST, and STACK). .

The program statements would be:

DGROUP GROUP DATA CONST ,STACK
ASSUME CS:CODE,DS:DGROUP,SS:DGROUP, ES DGROUP
MOV AX ,DGROUP ;CS initialized by entry;
MOV DS,AX ;you initialize DS, do this
;as soon as possible,
sespecially before any
;DS relative references

As a diagram, this arrangement could be represénted as
follows:

CODE

DS,ES,SS

DATA

<64K CONST

STACK




EXPRESSIONS: OPERANDS AND OPERATORS Page 3-5

Given this arrangement, a statement like
MOV AX,<variable>

causes Macro Assembler to find the best segment register to
reach this wvariable. (The "best" register is the one that
requires no segment overrides.)

A statement like
MOV AX,OFFSET <variable>

tells Macro Assembler to return the offset of the variable
relative to the beginning of the variable's segment.

If this <variable> is in the CONST segment and you want to
reference its offset from the beginning of DGROUP, you need
a statement like the following:

MOV AX,OFFSET DGROUP:<variable>

Macro Assembler is a two-pass assembler. During pass 1, it
builds a symbol table and calculates how much code is
generated, but does not produce object code. I1f undefined
items are found (including forward references), assumptions
are made about the reference so that the correct number of
bytes are generated on pass 1. Only certain types of errors
are displayed: errors involving items that must be defined
on pass 1. No listing is produced unless a /D switch is
given when you run the assembler. The /D switch produces a
listing for both passes.

On pass 2, the assembler uses the values defined in pass 1
to generate the object code. Definitions of references
during pass 2 are checked against the pass 1 value, which is
in the symbol table. Also, the amount of code generated
during pass 1 must match the amount generated during pass 2.
If either 1is different, Macro Assembler returns a phase
error.

Because pass 1 must keep correct track of the relative
offset, some references must be known on pass 1. If they
are not known, the relative offset will not be correct.

The following references must be known on pass 1l:

1. IF/IFE <expression»>
I1f <expression> is ' not known on pass 1, Macro
Assembler does not know to assemble the conditional
block {(or which part to assemble if ELSE is used).
On pass 2, the assembler would know and would
assemble, resulting in a phase error.



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-6

2. <expression> DUP(...)
This operand explicitly changes the ' relative
offset, so <expression> must be known on pass 1.
The value in parentheses need not be known because
it does not affect the number of bytes generated.

3. .RADIX <expression> :
Because this directive changes the input radix,
constants could have a different value, which could
cause Macro Assembler to evaluate IF or DUP
statements incorrectly.

The biggest problem for the assembler is handling forward
references. How can it know the kind of a reference when it
still has not seen the definition? This is one of the main
reasons for two passes. And, unless Macro Assembler can
tell from the statement containing the forward reference
what the size, the distance, or any other of its attributes
are, the assembler can only take the safe route (generate
the largest "possible instruction in some cases, except for
segment override or FAR). This results in extra code that
does ‘nothing. (Macro Assembler figures this out by pass 2,
but it cannot reduce the size of the instructions without
causing an error, so it puts out NOP instructions (90H).

For this reason, Macro Assembler includes a number of
operators to help the assembler. These operators tell Macro
Assembler what size instruction to generate when it is faced
with an ambiguous choice. As a benefit, you can also reduce
the size of your program by using these operators to change
the nature of the arguments to the instructions.



EXPRESSIONS: OPERANDS AND OPERATORS  page 3-7

. Examples:
MOV AX,FOO ;FOO = forward constant

This statement causes Macro Assembler to generate a move
from memory instruction on pass 1. By using the OFFSET
operator, we can cause Macro Assembler to generate = an
immediate operand instruction.

MOV AX,OFFSET FOO ;OFFSET says use the address
;of FOO

Because OFFSET tells Macro Assemblei to use the address of

FOO, the assembler knows that the value is immediate. This
method saves a byte of code.

Similarly, if you have a CALL statement that calls to a
label that may be in a different CS ASSUME, you can prevent
problems- by attaching the PTR operator to the label:

CALL FAR PTR <forward-label>
At the opposite extreme, you may have a JMP forward that is

less than 127 bytes. You can save yourself a byte if you
use the SHORT operator. .

JMP SHORT <forward-label>

However, you must be sure that the target is indeed within
127 bytes or Macro Assembler will not find it.

The PTR operator can be used another way to save yourself a
byte when using forward references. If you defined FOO as a
forward constant, you might enter the statement:

MOV [BX] ,FOO
You may want to refer to FOO as a byte immediate. In this
case, you could enter either of these statements (they are
equivalent): .

MOV BYTE PTR [BX],FOO

MOV [BX],BYTE PTR FOO

These statements tell Macro Assembler that FOO is a byte
immediate. A smaller instruction is generated. : :



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-8

3.2 OPERANDS

An operand may be any one of three types: Immediate,
Register, or Memory operands. There is no restriction on
combining the types of operands.

The following list shows all the types and the items that
comprise them:

Immediate operands
Data items
Symbols

Register operands

Memory operands
Direct
Labels
Variables
Offset (fieldname)

Indexed
Base register
Index register
[constant]
+displacement

Structure



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-9

3.2.1 Immediate Operands

Immediate operands are constant values that you supply when
you type a statement line. The value may be typed either as
a data item or as a symbol.

Instructions that take two operands permit an immediate
cperand as the source operand only (the second operand in an
instruction statement). For example:

MOV AX,9

Data Items

Macro Assembler recognizes values in forms other than
decimal when special notation is appended. The default
input radix is decimal. Any numeric values entered without
numeric notation appended will be treated as a decimal
value. These other values include ASCII characters as well
as numeric values. .

Data Form Format Example.
Binaryv XXXXXXXXB 01110001B
Octal xxx0 7350 (letter 0)
XXXQ 412Q
Decimal XXXXX 65535 (default)
XXXXXD 1000D (when .RADIX changes input
radix to nondecimal)
Hexadecimal xxxxH OFFFFH (1st digit must be 0-9)
ASCII "xx* 'OM' (more than two with DB only;
"xx" "OM" both forms are synonymous)
10 real XX .XXE&+xx 25.23E~7 (floaging point format)
16 real X...XR 8F76DEAYR (1lst digit must be 0-9;

the total number of digits
must be 8, 16, or 20; or 9,
17, 21 if first digit is 0)

Symbols

Symbol names equated with some form of constant information
(see Section 2.3, "Symbols") may be wused as immediate
operands. Using a symbol constant in a statement is the
same as wusing a numeric constant. Therefore, using the
sample statement above, you could type:



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-10

MOV AX,FOO
assuming FOO was defined as a constant symbol. For example:

FOO EQU 9

3.2.2 Register Operands

The 8086 processor contains a number of registers. These
registers are identified by two-letter symbols that the
processor recognizes (the symbols are reserved).

The registers are appropriated to different tasks: general
registers, pointer registers, counter registers, index
registers, segment registers, and a flag register.

The general registers are two sizes: B8-bit and lé6-bit. All
other registers are 16-bit.

The gencral registers are both 8-bit and 16-bit registers.
Actually, the 16-bit general registers are composed of a
pair of 8-bit registers, one for the low byte (bits 0-7) and
one for the high byte (bits 8-15). Note, however, that each
8~bit general register can be used independently from its
mate. In this case, each 8-bit register contains bits 0-7.

Segment registers are initialized by the wuser and contain
segment base values. The segment register names (CS, DS,
SS, ES) can be used with the colon segment override operator
to inform Macro Assembler that an operand is in a different
segment than specified in an ASSUME statement. (See the
segment override operator in Section 3.3.1, "“Attribute
Operators.)"

The flaqg register is one 16-bit register containing nine
1-bit flags (six arithmetic flags and three control flags).

Each of the registers (except segment réqisters and flags)
can be an operand in arithmetic and logical operations.



EXPRESSIONS: OPERANDS AND OPERATORS

Register/Memory Field Encoding:

MOD=11
R/M | w=0 [ w=1
000 | AL AX
001 | cL | cx
010 DL DX
011 | BL BX
100 | AH SP
101 | cH BP
110 | on S1
111 | BH DI

Register Mode

Page 3-11

EFFECTIVE ADDRESS CALCULATION )
R/M MOD=00 MOD=01 MOD=10
000 [BX]+([SI]) (BX}+[SI]+D8 |[BX]+[SI}+D1l6
001 | [(BX]+I[DI] {BX]+[DI]+D8 |[BX]+[DI]+D16
010 [BP]+[SI] [BP]+[S1]+D8 |[BP])+[SI]+D16
011 [BP]+([DI) (BP}+[DI)+D8 |[BP]+[DI])+D1l6
100 [SI]) [S1]+D8 {S1)+D16
101 | [DI] [DI]+D8 [DI])+D16
110 DIRECT ADDRESS [BP]+D8 {BP]+D1l6
111 (BX) {BX]+D8 [BX]+D16
Note: D8 = a byte value; D16 = a word value
Other Registers:
Segment:CS code segment
DS data segment
SS stack segment
ES extra segment
Flags:
1-bit arithmetic flags | 3 1-bit control flags
CF carry flag DF direction flag
PF parity flag IF interrupt-enable
flag
AF auxiliary flag | TF trap flag
ZF zero flag
SF sign flag




EXPRESSIONS: OPERANDS AND OPERATORS Page 3-12

NOTE

The BX, BP, SI, and DI
registers are also wused as
memory operands. The
distinction is: when these.
registers are enclosed in
square brackets [ ], they are
memory operands; when they
are not enclosed in . square
brackets, they are register
operands (see Section 3.2.3,
"Memory Operands").



‘EXPRESSIONS: OPERANDS AND OPERATORS Page 3-13

3.2.3 Hemoty Operands

A memory operand represents an address in memory. Wwhen you
~use a -memory operand, you direct Macro Assembler to an
address to find some data or instruction., .

A memory operand always consxsts of an offset from a Dbase
address.

Memory operands fit into three categories: those that do
not use a register (direct memory operands), those that use
a base or index register (indexed memory operands), and
structure operands. : '

Direct Memory Operands

Direct memory operands do not use a register, and consist of
a single offset value. Direct memory operands are labels,
sxmple variables, and offsets.

Memory operands can be used as destinatxon operands as well
as source operands for instructions that take two operands.
For example:

MOV AX,FOO
MOV FOO,CX



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-14

Indexed Memory Operands

Indexed memory operands use base and index registers,
constants, displacement values, and variables, often in
combination. When you combine indexed operands, you create
an address expression.

Indexed memory operands use square brackets to indicate

indexing (by a register or by registers) or subscripting
(for example, FOO{5]). The square brackets are treated like
plus signs (+). Therefore,

FOO([5] is equivalent to FOO+5
5{FO0] is equivalent to 5+FQ0

The only difference between square brackets and plus signs
occurs when a register name appears inside the square
brackets. Then, the operand is indexed.

The types of indexed memory operands are:
Base registers: [BX) [BP}

BP has SS as its default segment register;
all others have DS as default.

Index registers: (DI] [SI]
{constant] - Immediate in square brackets [8], [FOO}

+Displacement 8-bit or 16-bit value.
Used only with another indexed operand.

These elements may be combined in any order. The only
restriction is that two base registers and two indexed
registers cannot be combined:

[BX+BP)] :;illegal
[S1+DI]) ;illegal

Some examples of indexed memory operand combinations:

(BP+8]
[SI+BX] (4]
16 [DI+BP+3)
8 [FOO] -8

More examples of equivalent forms:

5 [BX] [S1]
BX+5] [SI]
[BX+SI+5)
[BX]5[SI]

N



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-15

Structure Operands

Structure operands take the form <variable>.<field>.
<variable> is any name you give when coding a statement line
that 1initializes a Structure field. The <variable> may be
an anonymous variable, such as an indexed memory operand.

<field> is a name defined by a DEFINE directive within a
STRUC block. <field> is a typed constant.

The period (.) must be included.

Example:

200 STRUC
GIRAFFE DB ?
200 ENDS

LONG_NECK 200 <16>

MOV AL,LONG_NECK.GIRAFFE

MOV AL, [BX].GIRAFFE ;anonymous variable
The use of structure operands can be helpful in stack
operations. If you set up the stack segment as a structure,
setting BP to the top of the stack (BP equal to SP), then

you can access any value in the stack structure by field
name indexed through BP; for example:

[BP] .FLD6

Bp'——"r ¢——-SP
- FLD1

FLD3 FLD2

STRUC < FLD4

FLD6 FLD5

FLD7




EXPRESSIONS: OPERANDS AND OPERATORS Page 3-16

This method makes all values on the stack available all the
time, not just the value at the top. Therefore, this method

makes the stack a handy place to pass parameters to
subroutines.



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-17

3.3 OPERATORS

An operator may be one of four types: attribute,
arithmetic, relational, or logical.

Attribute operators are used with operands to override their
attributes, return the value of the attributes, or to
isolate fields of records.

Arithmetic, relational, and logical operators are used to
combine or compare operands.

3.3.1 Attribute Operators

Attribute operators used as operands perform one of three
functions:

Override an operand's attributes
Return the values of operand attributes

Isolate record fields (record specific operators)

The following list shows all the attribute operators by
type: '

Override operators
PTR
colon (:) (segment override)
SHORT
THIS
HIGH
LOW

Value returning operators
SEG
OFFSET
TYPE
.TYPE
LENGTH
SIZE

Record specific operators
Shift count (Field name)
WIDTH
MASK



EXPRESSIONS: OPERANDS AND OPERATORS . ‘ Page 3-18.

" Override Operators

. 'These operatofs are used to override the segment, offset,
" type, or distance of variables and labels. ' ) : :

Pointer (PTR)
<attribute> PTR  <expression>

The PTR 6perator overrides the type  (BYTE. WORD,
DWORD) or the distance (NEAR, FAR) of an operand.

<attribute> is the new attribute; the new type or
new distance.‘ . ‘ .

<expression> is the operand whose attribute is’ to
be overridden.

The most important and frequent use for PTR is to
assure that Macro Assembler understands what
attribute the expression is supposed to have. This
is. especially true for the type attribute.
Whenever you place forward references in your
program, PTR will make clear the distance or type
of the expression. This way you can avoid phase
errors. : ' ' .

The second use of PTR is to access ~data by type’
other than the type in the variable definition.
Most often this occurs in structures,. If the
structure is defined as WORD but you want to access
.an item as a byte, PTR is the operator for this.
However, a much easier method is to enter a second"
* statement that defines the structure in bytes, too.
This eliminates the need to use PTR for every
reference to the structure. Refer to the LABEL
directive in Section 4.2.1, "Memory Directives.”

Examples:

CALL WORD PTR [BX] [SI]
MOV BYTE PTR ARRAY

ADD BYTE PTR FOO,9



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-19

Segment Override (:) (colon)

<segment-register>:<address-expression>
<segment-name>:<address-expression>
<group-name>:<address—-expression>

The segment override operator overrides the assumed
segment of an address expression (which may be a
.label, a variable, or other memory operand).

The colon operator helps with forward references by
telling the assembler to what a reference is
relative (segment, group, or segment register).

Macro Assembler assumes that labels are addressable
through the current CS register. Macro Assembler
also assumes that variables are addressable through
the current DS register, or possibly the ES
register, by default. 1If the operand is in another
segment and you have not alerted Macro Assembler
through the ASSUME directive, you will need to use
a segment override operator. Also, if you want to
use a nondefault relative base (that 1is, not the
default segment register), you will need to use the
segment override operator for forward references.
Note that if Macro Assembler can reach an operand
through a nondefault segment register, it will use
it, but the reference cannot be forward in this
case.

<segment-register> is one of the four segment
register names: CS, DS, SS, ES.

<segment-name> is a name defined by the SEGMENT
directive.

<group-name> is a name defined by the GROUP
directive.

Examples:
MOV AX,ES: [BX+SI]
MOV CSEG:FAR_LABEL,AX

MOV AX,OFFSET DGROUP:VARIABLE



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-20

SHORT
SHORT <label>

SHORT overrides NEAR distance attributes of 1labels
used as targets for the JMP instruction. SHORT
tells Macro Assembler that the distance between the
JMP statement and the <label> specified as its
operand is not more than 127 bytes either
direction.

The major advantage of using the SHORT operator is
to save a byte. Normally, the <label> carries a
2-byte pointer to its offset in its segment,
Because a range of 256 bytes can be handled in a
single byte, the SHORT operator eliminates the need
for the extra byte (which would carry 00 or . FF
anyway). However, you must be sure that the target
.is within +127 bytes of the JMP instruction before
using SHORT. )

Example:

JMP SHORT REPEAT

REPEAT:



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-21

THIS

THIS <distance>
THIS <type> .

The THIS operator creates an operand. The value of
the operand depends on which argument you give
THIS.

The argument to THIS may be:
1. A distance (NEAR or FAR)
2. A type (BYTE, WORD, or DWORD)
THIS <distance> creates an operand with the
distance attribute you specify, an offset equal to
the current 1location counter, and the segment

attribute (segment base address) of the enclosing
segment.

THIS <type> creates an operand with the type
attribute you specify, an offset egqual to the
current location counter, and the segment attribute
(segment base address) of the enclosing segment.

Examples:
TAG EQU THIS BYTE same as TAG LABEL BYTE

SPOT_CHECK = THIS NEAR same as
SPOT_CHECK LABEL NEAR



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-22

HIGH,LOW

HIGH <expression>
LOW <expression>

HIGH and LOW are provided for 8080 assembly
language compatibility. HIGH and LOW are byte
isolation operators.

HIGH isolates the high 8 bits of an absolute 16-bit
value or address expression.

LOW isolates the low 8 bits of an absolute 16-bit
value or address exp;ession.

Examples:
MOV AH,HIGH WORD_VALUE ;get byte with sign bit

MOV AL,LOW OFFFFH



EXPRESSIONS: OPERANDS AND OPERATORS S page 3-23

Value Returning Operators

These operators return the attribute ﬁalues of the ' operands
-that-follow them but do not override the attributes.

' The value returning operato:s ‘take labels and variables as
‘their. arguments. : C

Because variables in Macro Assembler have three attributes,
you need to use value returning operators to isolate single
‘attrxbutes. as follows:

SEG isolates the segment base address
OFFSET isolates the offset value
TYPE isolates either type or distance

LENGTH and SIZE isolate the‘memory allocation

SEG

SEG <label>
SEG <variable>

SEG returns the segment value (segment . base
address) of the segment enclosing the label or
variable. .

Example:

MOV AX,SEG VARIABLE_NAME
MOV AX <segment—vat1able>'<var1able>



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-24

OFFSET

OFFSET <label>
OFFSET <variable>

OFFSEY returns the offset value of the variable or
label within its segment (the number of bytes
between the segment base address and the address
where the label or variable is defined).

OFFSET is chiefly used to tell the assembler that
the operand is an immediate operand.

NOTES

OFFSET does not make the value a constant.
Only MS-LINK can resolve the final value.

OFFSET is not required with uses of the DW
or DD directives. The assembler applies an
implicit OFFSET to variables in address
expressions following DW and DD.

Example:

MOV BX,OFFSET FOO

If you use an ASSUME to GROUP, OFFSET will not
automatically return the offset of a variable from
the base address of the group. Rather, OFFSET will
return the segment offset, unless you use the
segment override operator (group-name version). 1If
the variable GOB is defined in a segment placed in
DGROUP, and you want the offset of GOB in the
group, you need to enter a statement like:

MOV BX,OFFSET DGROUP:GOB
You must be sure that the GROUP directive precedes

any reference to a group name, including its use
with OFFSET.



EXPRESSIONS: OPERANDS AND OPERATORS ' Page 3-25

TYPE

TYPE <label>
TYPE <variable>

If the operand is a vériable, the TYPE operator
returns a value equal to the number of bytes of the
variable type, as follows: )

BYTE =1

WORD = 2

DWORD = 4

QWORD = 8

TBYTE = 10 \

STRUC = the number of bytes declared by STRUC

If the operand is a 1label, the TYPE operator
returns NEAR (FFFFH) or FAR (FFFEH).

Examples:

! MOV AX, (TYPE FOO_BAR) PTR [BX+S1]



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-26

.TYPE
.TYPE <variable>

The .TYPE operator returns a byte that describes
two characteristics of the <variable>: 1) the
mode, and 2) whether it is External or not. The
argument to. .TYPE may be any expression (string,
numeric, logical). If the expression is invalid,
.TYPE returns zero.

The byte that is returned is configured as follows:

The lower two bits are the mode. If the lower two

bits are:

0 the mode is Absolute

1 the mode is Program Related
2 the mode is Data Related

The 'high bit (80H) is the External bit. If the
high bit is on, the expression contains an
External. If the high bit is off, the expression
is not-External.,

The Defined bit is 20H. This bit is on if the
expression is locally defined, and it is off if the
expression is undefined or external. If neither
bit is on, the expression is invalid.

.TYPE is wusually used inside macros, where an
argument type may need to be tested to make a
decision regarding program flow; for example, when
conditional assembly is involved.

Example:
FOO MACRO X
LOCAL 2
2 = .TYPE X
IF z."

.TYPE tests the mode and type of X. Depending on
the evaluation of X, the block of code begxnning
with IF Z... may be assembled or omitted.

27N



EXPRESSIONS: OPERANDS AND OPERATORS v Page 3-27

LENGTH

LENGTH <variable>
LENGTH accepts'only one variable as its argument.
LENGTH returns the number of ¢type units (BYTE,
WORD, DWORD, QWORD, TBYTE) allocated for that
variable.
If the variable is defined by a DUP expression,
LENGTH returns the number of type units duplicated;
that is, the number that precedes the first DUP in
the expression.

If the variable is not defined by a DUP expression,
LENGTH returns 1.

Examples:
FOO DW 100 DUP(1)
MOV CX,LENGTH FOO ;get number of elements

sin array
;s LENGTH returns 100

BAZ DW 100 DUP(1,10 DUP(?))

LENGTH BAZ 1is still 100, regardless of the
expression following DUP. .

GOO DD (?)

" LENGTH GOO returns 1 because only one unit is
involved.



EXPRESSIONS: OPERANDS AND OPERATORS . page 3-28

SIZE
SIZE <variable>

SIZE returns the total number - of bytes allocated
for a variable. . :

SIZE is the product of the value of LENGTH times
the value of TYPE. ) - :

Example:
FOO DW 100 DUP (1)
MOV BX,SIZE FOO ;get total bytes in array

SIZE = LENGTH X TYPE
SIZE = 100 X WORD
SIZE = 100 X 2
SIZE = 200



EXPRESSIONS: OPERANDS AND OPERATORS . pPage 3-29

Record Specific Operators

Record specific operators are used to isolate fields in a
record.

Records are defined by the RECORD directive (see Section
4.2.1, "Memory Directives™). A record may be up to 16 bits
long. The record is defined by fields, which may be from
one to 16 bits 1long. To 1isolate one of the three
characteristics of a record field, you use one of the record
specific operators, as follows:

Shift count Number of bits from low end of record to 1low
end of field (number of bits to right shift the
record to lowest bits of record)

WIDTH The number of bits wide the field or record |is
(number of bits the field or record contains)

MASK Value of record if field contains its maximum
value and all other fields are zero (all bits
in field contain 1; all other bits contain 0)

In the following discussions of the record specific .
operators, the following symbols are used: :

FOO a record defined by the RECORD directive
FOO RECORD FI1ELD1l:3,FIELD2:6,FIELD3:7

BAZ a variable used to allocate FO0O
BAZ FOO < >

FIELD1, FIELD2, and FIELD3 are the fields of the
record FOO.



EXPRESSIONS: OPERANDS AND OPERATORS v Page 3-30

Shift-count - (record-fieldname)

<record-fieldname>

The shift count is derived from the record
fieldname to be isolated. :

The shift count is the number of bits the field
must be shifted right to place the lowest bit of

the field in the lowest bit of the record byte or
word. .

If a 16-bit record (FOO) contains three fields
(FIELDl, FIELD2, and FIELD3), ‘the record can be
diagrammed as follows:

[T I T T I

WIDTH = 6

'FIELDl has a shift count of 13.
FIELD2 has a shift count of 7.
FIELD3 has a shift count of 0.

When you want to isolate the value in one of these
fields, you enter its name as an operand.

Example:
MOV DX,BAZ

MOV CL,FIELD2
SHR DX,CL

FIELD2 is now right shifted, ready for access.



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-31

WIDTH

WIDTH <record-fieldname>
WIDTH <record>

When a <record-fieldname> is given as the argument,
WIDTH returns the width of a record field as the
number of bits in the record field.

When a <record> is given as the argqument, WIDTH

returns the width of a record as the number of bits
in the record.

Using the diagram under shift count, WIDTH can be
diagrammed as:

[T T ITT]

FIELD1 FIELD2 FIELD3

The WIDTH of FIELD1l equals 3.
The WIDTH of FIELD2 equals 6.
The WIDTH of FIELD3 equals 7.
Example:

MOV CL,WIDTH PIELD2

The number of bits in FIELD2 is now in the count
register.



EXPRESSIONS: OPERANDS AND OPERATORS ' Page 3-32

MASK
MASK <record-fieldname>
MASK accepts a field name as its only argument.

MASK returns a bit-mask defined by 1 for bit
positions included by the field and 0 for bit
positions not  included. The value return
represents the maximum value for the record when
the field is masked. .
Using the diagram used for shift count, MASK can be
diagrammed as:

HEEEERREEEREER

oo0o0l1 1111 1l0 00,0 0 0 ofe¢MASK

1 F 8 0

The MASK of FIELD2 equals 1FB80H.

Example:

MOV DX,BAZ
AND DX,MASK FIELD2

FIELD2 is now isolated.



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-33

3.3.2 Arithmetic Operators

Eight arithmetic operators provide the common mathematical
functions (add, subtract, divide, multiply, modulo,
negation), plus two shift operators.

The arithmetic operators are used to combine operands to
form an expression that results in a data item or an
address.

Except for + and - (binary), operands must be constants,

For plus (+), one operand must be a constant.

For minus (-), the first (left) operand may be a

nonconstant, or both operands may be nonconstants. The
right must be a constant if the left is a constant.

* Multiply
/ Divide
MOD Modulo. Divide the left operand by the right

operand and return the value of the remainder
(modulo). Both operands must be absolute.

Example:
MOV AX,100 MOD 17

The value moved into AX will be OFH (decimal
15). .

SHR Shift Right. SHR is followed by an integer
which specifies the number of bit positions
the value is to be shifted right.

Example:
MOV AX,1100000B SHR 5
The value moved into AX will be 11B (03).

SHL Shift Left. SHL is followed by an integer
which specifies the number of bit positions
the value is to be shifted left.

Example:

MOV AX,0110B SHL 5

The value moved into AX will be 011000000B
(0COH)



EXPRESSIONS: OPERANDS AND OPERATORS » Page‘3—34

- (Unary Minus)Indicates that following value is negative,
as in a negative integer.. .

+ ~ Add.  One operand must be a constant; one
may be a nonconstant.

- Subtract the . right operand from the left
" operand. The first (left) operand may be a
nonconstant, .or both operands may . be

nonconstants., But the right may ‘be a

nonconstant only if the left is also a

nonconstant and in the same segment.

3.3.3 Relational Operators
,Reiational opefators éompare two constant Operands.l

If the relationship between the two operands matches 'the
operator, FFFFH is returned. '

If the relétionship between the two operands does not match
the operator, a zero is returned.

Relational operators are most often used with conditional
directives and conditional ' instructions to direct program
control.

EQ Equal. Returns true if the operands equal
' ~ each other.

NE Not Equal. Returns true if the opetands are
‘ not equal to each other.

LT Less Than. Returns true if the left operand
is less than the right operand. -

LE ' Less than or Equal. Returns true if the left

‘ operand is 1less than or equal to the right
operand. ~

GT Greater Than. Returns“true if the 1left

operand is greater than the right operand.

GE . Greater than or Equal. Returns true if the
left operand is greater than or equal to the
right operand.



EXPRESSIONS: OPERANDS AND OPERATORS i Page 3-35

3.3.4 Logical Operators
Logical operators compare two constant operands bitwise.

Ldgical operators compare the binary values of corresponding
bit positions of each operand to evaluate the logical
relationship defined by the logical operator.

Logical operators can be used two ways:

1. To combine operands in a logical relationship. In
this case, all bits in the operands will have the
same value (either 0000 or FFFFH). 1In fact, it is
best to use these values for true (FFFFH) and false
(0000) for the symbols you will use as operands,
because in conditionals anything nonzero is true.

2. 1In bitwise operations. 1In this case, the bits are
different, and the logical operators act the same
as the instructions of the same name.

NOT Logical NOT. Returns true if left operand is
. true and right is false or if right is true
and left is false. Returns false if both are

true or both are false.

AND Logical AND. Returns true if both operators
are true. Returns false if either operator
is false or if both are false. Both operands
must be absolute values.

OR Logical OR. Returns true if either operator
is true or if both are true. Returns false
if both operators are false. Both operands
must be absolute values.

XOR Exclusive OR. Returns true if either
operator 1is true and the other is false.
Returns false if both operators are true or
if both operators are false. Both operands
must be absolute values. .



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-36

3.3.5 Expression Evaluation: Precedence Of Operators

Expressions are evaluated higher precedence operators first,
then left to right for equal precedence operators.

Parentheses can be uéed to alter precedence.
For example:
MOV AX,101B SHL 2*2 = MOV AX,00101000B
MOV AX,101B SHL (2%*2) = MOV AX,01010000B
SHL and * are.equal precedence. Therefore, their functions

are performed 1in the order the operators are encountered
(left to right).

Precedence of Operators
All operators in a single item have the same precedence,
regardless of the order listed within the item. Spacing and

line breaks are used for visual clarity, not to indicate
functional relations.

1. LENGTH, SIZE, WIDTH, MASK
Entries inside: parentheses (')
angle brackets < >
square brackets [ 1
Structure variable operand: <variable>.<field>
2. Segment override operator: colon (:)
3. PTR, OFFSET, SEG, TYPE, THIS
4., HIGH, LOW
5. *, /, MOD, SHL, SHR
6. +, - (both unary and binary)
7. EQ, NE, LT, LE, GT, GE
8. Logical NOT
9. Logical AND
10. Logical OR, XOR

11. SHORT,.TYPE



Chapter 4

Contents

Action: Instructions and Directives

Instructions 4-2
Directives 4-3
Memory Directives 4-5
Conditional Directives 4-37
Macro Directives 4-41
Repeat Directives 4-49
Special Macro Operators 4-53
Listing Directives 4-57






CHAPTER 4
ACTION: INSTRUCTIONS AND DIRECTIVES

The action field contains either an 8086 instruction
mnemonic or a Macro Assembler assembler directive.

Following a name field entry (if any), action field entries
may begin in any column. Specific spacing is not required.
The only benefit of consistent spacing is improved
readability. If a statement does not have a name field
entry, the action field is the first entry.

The entry in the action field either directs the processor
to perform a specific function or directs the assembler to
perform one of its functions.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-2

4.1 INSTRUCTIONS

Instructions tell the command processor to perform some
action. An instruction may have the data and/or addresses
it needs built into it, or data and/or addresses may be
found in the expression part of an instruction. For
example:

[opeote | [everana] [saea | [oaes |
[opeoae | [operana] [sone | [aer |
i T 1 1

supplied supplied or found

supplied = part of the instruction

found = assembler inserts data and/or address from the
information provided by expressions in instruction
statements. .

(opcode equates to the binary code for the action
of an instruction)

Note that this manual does not contain detailed descriptions
of the 8086 instruction mnemonics and their characteristics.
For this, you will need to. consult other texts. The
following texts are recommended:

l. Morse, Stephen P. The 8086 Primer. Rochelle Park,

NJ: Hayden Publishing Co., 1980.

2. Rector, Russell and George Alexy. The 8086 Book.

Berkeley, CA: Osbourne/McGraw-Hill, 1980. ~

3. The 8086 Family User's Manual. Santa Clara, CA:
Intel Corporation, 1980.

Appendix C contains both an alphabetical 1listing and a
grouped listing of the instruction mnemonics. The
alphabetical listing shows the full name of the instruction.
Following the alphabetical 1list is a list that groups the
instruction mnemonics by the number and type of arguments
they take. Within each group, the instruction mnemonics are
arranged alphabetically.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-3

4.2 DIRECTIVES

Directives give the assembler directions and information
about input and output, memory organization, conditional
assembly, listing and cross-reference control, and
definitions.

The directives have been divided into groups by the function
they perform. Within each group, the directives are
described alphabetically. .

The groups are:

Memory Directives
Directives in this group are used to organize
memory. Because there is no "miscellaneous"
group, the memory directives .group contains
some directives that do not, strictly speaking,
organize memory (for example, COMMENT).

Conditional Directives
Directives in this group are used to test
conditions of assembly before proceeding with
assembly of a block of statements. This group
contains all of the IF (and related)
directives.

Macro Directives
Directives in this group are used to create
blocks of code called macros. This group also
includes some special operators and directives
that are used only inside macro blocks. The
repeat directives are considered macro
directives for descriptive purposes.

Listing Directives
Directives in this group are wused to control
the format and, to some extent, the content of
listings that the assembler produces.



ACTION:

INSTRUCTIONS AND DIRECTIVES

Appendix B contains a table of

grouped by

function.

Page 4-4

assembler directives, also

Below is an alphabetical list of all

the directives that Macro Assembler supports:

ASSUME

COMMENT
.CREF

DB
DD
DQ
DT
DW

ELSE
END
ENDIF
ENDM
ENDP
ENDS
EQU

EVEN IRPC
EXITM
EXTERN LABEL
.LALL
GROUP .LFCOND
.LIST
IF
IFB MACRD
IFDEF
IFDIF NAME
IFE
IFIDN ORG
IFNB $OUT
IFNDEF
PAGE
IF1 PROC
IF2 PUBLIC
IRP PURGE

-RADIX
RECORD
REPT

+SALL
SEGMENT
.SFCOND
STRUC
SUBTTL

.TFCOND
TITLE

.XALL
-XCREF
<XLIST



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-5

4.2.1 Memory Directives

ASSUME

ASSUME <seg-reg>:<seg-name>[,...]
or

ASSUME NOTHING

ASSUME tells the assembler that the symbols in the
segment or group can be accessed using this segment
register. When the assembler encounters a
variable, it automatically assembles the variable
reference under the proper segment register. You .
may enter from 1 to 4 arguments to ASSUME.

The valid <seg-reg> entries are:
Cs, DS, ES, and SS..
The possible entries for <seg-name> are:

1. The name of a segment declared with the SEGMENT
directive

2. The name of a group declared with the GROUP
directive

3. An expression: either SEG <variable-name> or
SEG <label-name> (see SEG operator, Section
3.3)

4. The key word NOTHING. ASSUME NOTHING cancels
all register assignments made by a previous
ASSUME statement

If ASSUME is not used or if NOTHING is typed for
<seg-name>, each reference to variables, symbols,
labels, and so forth in a particular segment must
be prefixed by a segment register. For example,
type DS:FOO instead of simply FOO.

Example:

ASSUME DS:DATA,SS:DATA,CS:CGROUP,ES:NOTHING



ACTION:

COMMENT

INSTRUCTIONS AND DIRECTIVES . Page 4-6

COMMENT <delim><text><delim>

The first non-blank character encountered after
COMMENT is the delimiter. The following <text>
comprises a comment block which continues until the
next occurrence of <delimiter>.

COMMENT permits you to enter comments about your
program without entering a semicolon (;) before
each line. :

If you use COMMENT inside a macro block, the
comment block will not appear on your listing
unless you also place the .LALL directive in your
source file.

Example:

Using an asterisk as the delimiter, the format of
the comment block would be:

COMMENT *
‘any amount of text entered
here as the comment block

. * ;return to normal mode



ACTION} INSTRUCTIONS AND DIRECTIVES Page 4-7

DEFINE BYTE

DEFINE WORD

DEFINE DOUBLEWORD

DEFINE QUADWORD

DEFINE TENBYTES

<varname> DB <exp>[,<exp>,...]
<varname> DW <exp>[,<exp>,...]
<varname> DD " <exp>[,<exp>,...]
<varname> DQ <exp>[,<exp>,...])
<varname> DT <exp>[,<exp>,...]

The DEFINE directives are used to define variables
or to initialize portions of memory.

I1f the optional <varname> is entered, the DEFINE
directives define the name as- a variable. 1If
<varname> has a colon, it becomes a NEAR label
instead of a variable. (See also, Section 2.1,
"Labels," and Section 2.2, "Variables.")

The DEFINE directives allocate memory in units
specified by the second letter of the directive
(each DEFINE directive may allocate one or more of
its units at a time):

DB allocates one byte (8 bits)
DW allocates one word (2 bytes)
DD allocates two words (4 bytes)
DQ allocates four words (8 bytes)
DT allocates ten bytes

<exp> may be one or more of the following:

1. A constant expression

2. The character ? for indeterminate
initialization. Usually the ? is used to
reserve space without placing any particular
value into it. (It is the equivalent of the DS
pseudo-op in MACRO-80).

3. An address expression (for DW and DD only)

4. An ASCII string (longer than two characters for
DB only)

5. <exp>DUP(?) : .
When this type of expression 1is the only
argument to a define directive, the define
directive produces an uninitialized data block.
This expression with the ? instead of a value
results in a smaller object file because only
the segment offset is changed to reserve space.



ACTION:

INSTRUCTIONS AND DIRECTIVES ) Page 4-8

6. <exp> DUP(<exp>[,...])
This expression, like item 5, produces a

block, but initialized with the value of the
second <exp>. The first <exp> must be
constant greater than zero and must not be a

forward reference.

Example - Define Byte (DB):

NUM_BASE DB 16
FILLER DB ? sinitialize with
; indeterminate value
ONE_CHAR DB '™
MULT CHAR DB 'TOM JEROME EDWARD BOB DEAN'
MSG DB *MSGTEST',13,10 ;message, carriage return
sand linefeed
BUFFER DB .10 DUP({?) ;sindeterminate block
TABLE DB 100 DUP(5 DUP(4),7)
3100 copies of bytes
;swith values 4,4,4,4,4,7
NEW_PAGE DB OCH . jform feed character
ARRAY DB 112'3'405,6'7

Example - Define Word (DW):

ITEMS
SEGVAL
BSIZE
LOCATION
AREA
CLEARED
SERIES

DISTANCE

DW TABLE, TABLE+10,TABLE+20
DW OFFFOH

DW 4 * 128

DW TOTAL + 1

DW 100 DUP(?)

oW 50 DUP (0)

oW 2 DUP(2,3 DUP(BSIZE))

stwo words with the byte values

1 2,BSIZ2E,BSIZE,BSI2E,2,BSIZ2E,BSIZE,BSIZE
DW START_TAB -END_TAB

;difference of two labels is a constant



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-9

Example - Define Doubleword (DD):

DBPTR DD TABLE ;16-bit OFFSET,
sthen 16-bit
;SEG base value

SEC_PER_DAY DD 60*60*24 ;arithmetic is performed
_ ;by the assembler

LIST DD 'XY',2 DUP(?)

HIGH DD 4294967295 ;maximum

FLOAT DD 6.735E2 :floating point

Example - Define Quadword (DQ):

LONG_REAL DQ 3.141597 ;decimal makes
} ;it real

STRING DQ ‘AB' ;no more than 2
scharacters

HIGH DQ 18446744073709661615 ;maximum

LOW DQ -18446744073709661615 ;minimum

SPACER DQ 2 DUP(?) ;uninit.data

FILLER DQ 1 puP(?2,?) ;initalized w /
;indeterminate

' ;value
HEX_REAL DQ OFDCBA9AR98765432105R

Example - Define Tenbytes (DT):

ACCUMULATOR pT ?

STRING DT '‘cp’ ;no more than 2
scharacters

PACKED DECIMAL DT 1234567890

FLOATING _POINT DT 3.1415926



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-10

END

END {<exp>]
The END statement specifies the end of the program.
If <exp> is present, it is the start address of the
program. If several modules are to be linked, only
the main module may specify the start of the
program with the END <exp> statement.

If <exp> is not present, then no start address is
passed to MS-LINK for that program or module.

Example:

END START :+START is a label somewhere in the
;program



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-11

EQU
<name> EQU <exp>

EQU assigns the value of <exp> to <name>. If <exp>’
is an external symbol, an error is generated. 1If
<name> already has a value, an error is generated.
If you want to be able to redefine a <name> in. your
program, use the equal sign (=) directive instead.

In many cases, EQU is used ‘as a primitive text
substitution, like a macro.

<exp> may be any one of the following:

1. A symbol. <name> becomes an alias for the
symbol in <exp>. Shown as an Alias in the
symbol table.

2. An instruction name. Shown as an Opcode in the
symbol table.

3. A valid expression. Shown as a Number or L
(label) in the symbol table.

4. Any other entry, including text, index
references, segment prefix and operands. Shown
as Text in the symbol table.

Example:

FOO EQU BAZ smust be defined in this
;module or an error
;results

B EQU {BP+8} ;index reference (Text)

P8 EQU DS: [BP+8] ;segment prefix
;and operand (Text)

CBD EQU AAD ;an instruction name
; (Opcode)

ALL EQU DEFREC<2,3,4> ;DEFREC = record name

3<2,3,4> = initial values
; for fields of record

EMP EQU 6 ;jconstant value

FPV EQU 6.387 ;floating point (text)



ACTION: INSTRUCTIONS AND DIRECTIVES ' Page 4-12
Equal Sign
<name> = <exp>

<exp> must be a valid expression. It is shown as a
Number or L (label) in the symbol table (same as
<exp> type 3 under the EQU directive above).

The equal sign (=) allows the user to set and to
redefine symbols. The equal sign is like the EQU
directive, except the user can redefine the symbol
without generating an error. Redefinition may take
place more than once, and redefinition may refer to
a previous definition.

Example:

FOO = 5 ;the same as FOO EQU 5

FOO EQU 6; serror, FOO cannot be
;redefined by EQU

FOO = 7 ;FOO can be redefined
;only by another =

FOO = FOO+3 sredefinition may refer

;to a previous definition

VRN



ACTION: INSTkUCTIONS AND DIRECTIVES - Page 4-13

EVEN

EVEN

The EVEN directive causes the program counter to go

" to an even boundary; that is, to an address that
~begins a word. If the program counter is not

already at an even boundary, EVEN causes the
assembler to add a NOP instruction so0o that the
counter will reach an even boundary.

An error results if EVEN is wused with a
byte-aligned segment.

Example: -
Before: The PC points to 0019 hex (25 decimal)
EVEN

After: The PC points to 1A hex (26 decimal)
0019 hex now .contains a NOP instruction



ACTION: INSTRUCTIONS AND DIRECTIVES ) Page 4-14

EXTRN
EXTRN <name>:<type>[(,...]

<name> is a symbol that is defined 1in another
module. <name> must have been declared PUBLIC in
the module where <name> is defined.

<type> may be any one of the following, but must be
a valid type for <name>:

1. BYTE, WORD, or DWORD

2. NEAR or FAR for labels or procedures (defined
under a PROC directive)

3. ABS for pure numbers (implicit size is WORD,
but includes BYTE)

Unlike the 8080 assembler, placement of the EXTRN
directive 1is significant, If the directive is
given with a segment, the assembler assumes that
the symbol is located within that segment. If the
segment is not known, place the directive outside
all segments, then use either

ASSUME <seg-reg>:SEG <name>

or an explicit segment prefix.

NOTE

If a mistake is made and the symbol is not
in the segment, MS-LINK will take the
offset relative to the given segment, {if
possible. If the real segment is less than
64K bytes away from the reference, MS-LINK
may find the definition, If the real
segment is more than 64K bytes away,
MS-LINK will fail to make the-link between
the reference and the definition and will
return an error message.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-15

Example:

In Same Segment: In Another Segment:

In Module 1: In Module 1:

CSEG .SEGMENT CSEGA SEGMENT
PUBLIC TAGN PUBLIC TAGF

TAGN: ‘ TAGF: '

CSEG ENDS CSEGA ENDS

In Module 2: In Module 2:

CSEG SEGMENT EXTRN TAGF:FAR
EXTRN TAGN:NEAR CSEGB SEGMENT
Jh:lP TAGN JMP TAGF

CSEG ENDS CSEGB  ENDS



"ACTION: INSTRUCTIONS AND DIRECTIVES ' ‘ Page 4-16

GROUP _
<name> GROUP - <seg-name>{,...]

The GROUP directive collects the segments named
after GROUP (<seg-name>s) under one name. The
GROUP is used by MS-LINK so - that it knows which
segments should be loaded together (the order the
segments are named here does not influence the
order in which the segments are loaded. The order
in which the segments are loaded is determined by
the CLASS designation of the SEGMENT directive, or
by the order you name object modules in response to
the MS-LINK Object Module: prompt)}.

All segments in a GROUP must fit into 64K bytes of
memory. The assembler does not check this at all,
but leaves the checking to MS-LINK.

<seg-name> may be one of the following:

1. A segment. name, assigned ' by a SEGMENT
directive,. The name may be a forward
reference. : )

2. An expression: either SEG <var>
or SEG <label>
Both of these entries resolve themselves to a
segment name (see SEG operator, Section 3.3).

Once you have defined a group name, you can use the
name:

1. As an immediate value:

MOV AX,DGROUP
MOV DS,AX

DGROUP is the paragraph address of the base of
DGROUP.

2. In ASSUME statements:
'~ ASSUME DS:DGROUP

The DS register can now be used to: reach any
symbol in any segment of the group.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-17

3. As an operand prefix (for segment override):

MOV BX,OFFSET DGROUP:FOO
DW DGROUP:FOO
DD DGROUP:FOO

DGROUP: forces the offset to be relative to

DGROUP, instead of to the segment in which FOO
is defined.

Example (Using GROUP to combine segments):
.In Module A:

CGROUP GROUP XXX, YYY
XXX SEGMENT
ASSUME CS:CGROUP

XXX ENDS

Yyy SEGMENT

YYY ENDS
END

In Module B:
CGROUP GROUP 222

222 SEGMENT
ASSUME CS:CGROUP

222 ENDS



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-18

INCLUDE
INCLUDE <filename>

The INCLUDE directive inserts source code from an
alternate assembly 1language source file into the
current source file during assembly. Use of the
INCLUDE directive eliminates the need to repeat an
often-used sequence of statements in the current
source file.

The <filename> is any valid file specification for
the operating system. If the device designation is
other than the default, the source filename
specification must include it. The default device
designation is the currently 1logged drive or
device. ‘

- The included file is opened and assembled into the
current source file immediately following the
INCLUDE directive statement. When end-of-file is
reached, assembly resumes with the next statement
following the INCLUDE directive.

Nested INCLUDES are allowed (the file inserted with
an INCLUDE statement may contain an INCLUDE
directive). However, this 1is not a recommended
practice with small systems because of. the amount
of memory that may be required.

The file specified must exist. If the file is not
found, an error is displayed, and the assembly
aborts.

On a Macro Assembler 1listing, the 1letter C is
printed between the assembled code and the source
line on each line assembled from an included file.
See Section 5.5, "Formats of Listings and Symbol
Tables," for a description of listing file formats.

Example:

INCLUDE ENTRY
INCLUDE B:RECORD.TST



\ ‘ .

) ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-19
LABEL
<name> LABEL <type>

By using LABEL to define a <name>, you cause the
assembler to associate the current segment offset
with <name>.

The item is assigned a length of 1.

<type> varies depending on the use of <name>.
<name> may be used for code or for data.

For code (for example, as a JMP or CALL operand):

<type> may be either NEAR or FAR. <name> cannot be
used in data manipulation instructions without
using a type override.

If you wish, you can define a NEAR label using the
<name>: form (the LABEL directive is not used in
this case). 1If you are defining a BYTE or WORD
NEAR 1label, you can place the <name>: in front of
a Define directive.

When using a LABEL for code (NEAR or FAR), the
segment must be addressable through the CS
register.

Example - For Code:

SUBRTF LABEL FAR
SUBRT: (first instruction) ;colon = NEAR label



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-20

2.

For data:

<type> may be BYTE, WORD, DWORD, <structure-name>,
or <record-name>. When STRUC or RECORD name is
used, <name> is assigned the size of the structure
or record.

Example - For Data:

BARRAY LABEL BYTE
ARRAY DW 100 DUP({0)

-

ADD  AL,BARRAY[99] ;ADD 100th byte to AL
ADD AX,ARRAY [98] sADD 50th word to AX

By defining the array two ways, you can access
entries either by byte or by word. Also, you can
use this method for STRUC. It allows you to place
your data in memory as a table, and to access it
without the offset of the STRUC.

pPefining the array two ways also permits you to
avoid wusing the PTR operator. The double defining
method is especially effective if you access the
data different ways. It is easier to give the
array a second name than to remember to use PTR.

77N



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-21

NAME
NAME ‘<module-name>

<module-name> must not be a reserved word. The

module name may be any length, but Macro Assembler
uses only the first six characters and truncates

the rest.

The module name is passed to MS-LINK, but otherwise
has no significance for the assembler. Macro
Assembler does check to see if more than one module
name has been declared.

Every module has a name. Macro Assembler derives
the module name from:

1. A valid NAME directive statement
2., - If the module does not contain a NAME
statement, - Macro Assembler uses the first six

characters of a TITLE directive statement. The
firs: six characters must be legal as a name.

Example:

NAME CURSOR



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-22

ORG
ORG <exp>

The location counter is set to the value of <exp>,
and the assembler assigns generated code starting
with that value. :

All names used in <exp> must be known on pass 1.
The value of <exp> must either evaluate to an
absolute or must be in the same segment as the
location counter. :

Example:

ORG 120H :2-byte absolute value
smaximum=0FFFFH
ORG $+2 :skip two bytes

Example - ORG to a boundary (conditional):

CSEG SEGMENT PAGE
BEGIN = $

IF ($-BEGIN) MOD 256 ;if not already on
; 256-byte boundary
ORG ($-BEGIN)+256-( ($~-BEGIN) MOD 256)
ENDIF

See Section 4.2.2, "Conditional Directives}' for an
explanation of conditional assembly.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-23
PROC
<procname> PROC [NEAR]
or [FAR]
RET
<procname> ENDP

The default, if no operand is specified, is NEAR,
Use FAR if:

l. The procedure name is an operating system entry
point

2. The procedure will be called from code which
has another ASSUME CS value

Each PROC block should contain a RET statement.

The PROC directive serves as a structuring device
to make your programs more understandable.

The PROC directive, through the NEAR/FAR option,
informs CALLs to the procedure to generate a NEAR
or a FAR CALL, and RETs to generate a NEAR or a FAR
RET. PROC is used, therefore, for coding
simplification so that the user does not have to
worry about NEAR or FAR for CALLs and RETs.

A NEAR CALL or RETURN changes the IP but not the CS

" register. A FAR CALL or RETURN changes both the IP

and the CS registers.

Procedures are executed either in line, from a JMP,
or from a CALL.

PROCs may be nested, which means that they are put
in line.

Combining the PUBLIC directive with a PROC
statement (both NEAR and FAR), permits you to make
external CALLs to the procedure or to make other
external references to the procedure.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-24

Example:
PUBLIC FAR_NAME
FAR_NAME PROC FAR
CALL NEAR_NAME
. RET
FAR_NAME ENDP
PUBLIC NEAR_NAME
NEAR_NAME PROC NEAR
RET
NEAR_NAME ENDP

The second subroutine above can be called directly

from a NEAR segment (that is, a segment addressable
through the same CS and within 64K):

CALL NEAR_NAME

A FAR segment (that is, any other segment that is

not a NEAR segment) must call to the first
subroutine, which then calls the second (an
indirect call):

CALL FAR_NAME



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-25

PUBLIC
PUBLIC <symbol>([,...]

Place a PUBLIC directive statement in any module
that contains symbols you want to use in other
modules without defining the symbol again. PUBLIC
makes the 1listed symbol(s), which are defined in
the module where the PUBLIC statement appears,
available for use by other modules to be linked
with the module that defines the symbol(s). This
information is passed to MS-LINK.

<symbol> may be a number, a variable, a 1label
{including PROC labels).

<symbol> may not be a register name or a symbol
defined (with EQU) by floating point numbers or by
integers larger than two bytes.

_ Example:

PUBLIC GETINFO
GETINFO PROC FAR

PUSH BP ;save caller's register

MOV BP,SP ;sget address parameters
;body of subroutine

POP BP srestore caller's reg

RET jreturn to caller

GETINFO ENDP
Example -~ illegal PUBLIC:
PUBLIC PIE_BALD,HIGH_VALUE

PIE_BALD EQU 3.1416
HIGH_VALUE EQU 999999999



ACTION: INSTRUCTIONS AND DIRECTIVES ) Page 4-26

«RADIX
-RADIX <exp>

The default input base (or radix) for all constants
is decimal. The .RADIX directive permits you to
change the input radix to any base in the range 2
to 16.

<exp> is always in decimal radix, regardless of the
current input radix.

Example:
MOV BX, OFFH
.RADIX 16
~ MOV BX, OFF

The two MOVs in this example are identical.

The .RADIX directive does not affect the generated
code values placed in the .0BJ, .LST, or .CRF
output files.

The .RADIX directive does not affect the DD, DQ, or
DT directives. Numeric values entered in the
expression of these directives are always evaluated
as decimal unless a data type suffix is appended to
the value,

Example:

.RADIX 16
NUM_HAND DT 773 ;773 = decimal
HOT_HAND DQ 773Q ;773 = octal here only

COOL_HAND DD 7738 ;now 773 = hexadecimal



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-27

RECORD
<recordname> RECORD <fieldname>:<width> [=<exp>],[...]

<fieldname> is the name of the field. <width>
specifies the number of bits in the field defined
by <fieldname>. <exp> contains the initial (or
default) value for the field. Forward references
are not allowed in a RECORD statement.

<fieldname> becomes a value that can be used in
expressions. When you use <fieldname> in an
expression, its value is the shift count to move
the field to the far right. Using the MASK
operator with the <fieldname> returns a bit mask
for that field.

<width> is a constant in the range 1 to 16 that
specifies the number of bits contained in the field
defined by <fieldname>. The WIDTH operator returns
this wvalue. If the total width of all declared
fields is larger than 8 bits, then the assembler
uses two bytes. Otherwise, only one byte is used.

The first field you declare goes into the most
significant bits of the record. Successively
declared fields are placed in the succeeding bits
to the right. If the fields you declare do not
total exactly 8 bits or exactly 16 bits, the entire
record is shifted right so that the last bit of the
last field is the lowest bit of the record. Unused
bits will be in the high end of the record.

Example:
FOO RECORD HIGH:4,MID:3,LOW:3

Initially, the bit map would be:

EEEEENEREEEEEEN

<HIGH-> <MID> | <LOW>

~ Total bits >8 means use a word; but total bits <16

means right shift, place undeclared bits at high
end of word. Thus:



ACTION:

INSTRUCTIONS AND DIRECTIVES ' Page 4-28

© 00 000111100000 0 «MASK
HEEEEEERREENN!

not <HIGH-> | <MID> | <LOW>_

declared WIDTH shift count

<exp> contains the initial value for the field. If
the field is at least 7 bits wide, you can use an
ASCII character as the <exp>.

Example:

HIGH:7='Q’

To initialize records, use the same method used for
DB. The format is:

[<name>] <recordname> <f{expl{,...]>
or
[<name>] <recordname> ([<exp> DUP({<{expif(,...]>)

The name is optional. When given, name is a 1label
for the first byte or word of the record storage
area.

The recordname is the name used as a label for the
RECORD directive.

The [exp] (both forms) contains the values you want
placed into the fields of the record. 1In the
latter case, the parentheses and angle brackets are
required only around the second {[exp] (following
DUP). If [exp] is left blank, either the default
value applies (the value given in the original
record definition), or the value is indeterminate
(when not initialized in the original record
definition). For fields that are already
initialized to values you want, place consecutive
commas to skip over (use the default values of)
those fields. .

For example:
FOO <,,7>

From the previous example, the 7 would be placed
into the LOW field of the record FOO. The fields



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-29

HIGH and MID would be left as declared (in this
case, uninitialized).

Records may be used in expressions (as an operand)
in the form: :

recordname<({valuel,...]}>

The value entry is optional. The angle brackets
must be coded as shown, even if the optional values
are not given. A value entry is the value to be
placed into a field of the record. For fields that
are already initialized to values you want, place
consecutive commas to skip over (use the default
values of) those fields, as shown above.

Example:
FOO RECORD HIGH:5,MID:3,LOW:3
BAX FOO <> j;leave undeterminate here
JANE FOO 10 DUP(<16,8>) ;HIGH=16,MID=8,
;LOW=?
MOV DX ,OFFSET JANE([2)
;get beginning record address
AND DX,MASK MID
MOV CL ,MID
SHR DX,CL

MOV CL,WIDTH MID



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-30

SEGMENT
<segname> SEGMENT ([<align>] [<combine>] [<'class'>]
<segname> EﬁDs

At runtime, all instructions that generate code and
data are in (separate) segments. Your program may
be a segment, part of a segment, several segments,
parts of several segments, or a combination of
these. If a program has no SEGMENT statement, an
MS-LINK error (invalid object) will result at link
time.

The <segment name> must be a unigue, legal name.
The segment name must not be a reserved word.

<align> may be PARA (paragraph - default), BYTE,
WORD, or PAGE.

<combine> may be PUBLIC, COMMON, AT <exp>, STACK,
MEMORY, or no entry (which defaults to not
combinable, called Private in the Microsoft LINK
section of the Macro Assembler Manual}.

<class> name is used to group segments at 1link
time.

All three operands are passed to MS-LINK.

The alignment type tells the Linker on what kind of
boundary you want the segment to begin. The first
address of the segment will be, for each alignment
type: ’

PAGE - address is xxx00H (low byte is 0)
PARA - address is xxxx0H (low nibble is 0)
bit map - |x|x|x|x|ojojo|0]|
WORD - address is xxxxeH (e=even number;low bit
) is 0)
bit map - |x|x|x|x|x]x|x]o0]|
BYTE - address is xxxxxH (place anywhere)



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-31

The combine type tells MS-LINK how to arrange the
segments of a particular class name. The segments
are mapped as follows for each combine type:

None (not combinable or Private)

o Private segments are loaded separately
and remain separate. They may be
physically contiguous but not logically,
even if the segments have the same name.

A' |0 Each private segment has its own base

A' address.

A A

Public and Stack pyplic segments of the same name and

0 class name are loaded contiguously.

A Offset is from beginning of first segment
loaded through last segment loaded.

—A=1 There is only one base address for all
public segments of the same name and

Al class name. (Combine type stack is
treated the same as public. However, the
Stack Pointer is set to the first address
of the first stack segment. MS-LINK
requires at least one stack segment.)

Common

o Common segments of the same name and
class name are loaded overlapping one

A another. There is only one base address

for all common segments of the same name.

The length of the common area is the

Al length of the longest segment.




ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-32

Memory

The memory combine type causes the segment(s) to be
placed as the highest segments in memory. The
first memory combinable segment encounter is placed
as the highest segment in memory. Subsequent
segments are treated the same as Common segments.

NOTE

This feature is not supported by MS-LINK.
MS-LINK treats Memory segments the same as
Public segments. )

AT <exp>

The segment is placed at the PARAGRAPH address
specified in <exp>. The expression may not be a
forward reference. Also, the AT type may not be
used to force loading at fixed addresses. Rather,
the AT combine type permits labels and variables to
be defined at fixed offsets within fixed areas of
storage, such as ROM or the vector space in low
memory. .

' NOTE

This restriction is imposed by MS-LINK and
MS-DOS.

Class names must be enclosed in gquotation marks.
Class names may be any legal name. Refer to

Chapter 9 in the MS-DOS User's Guide for more
discussion.

Segment definitions may be nested. When segments
are nested, the assembler acts as if they are not
and handles them sequentially by appending the
second part of the split segment to the first. At
ENDS for the split segment, the assembler takes up
the nested segment as the next segment, completes
it, and goes on to subsequent segments.
Overlapping segments are not permitted.



ACTION: INSTRUCTIONS

For example:

A

AND DIRECTIVES

SEGMENT A

SEGMENT A
. B
. ——=>

ENDS
. B
. A

ENDS

A

The following arrangement is

A

Example:
In module A:

SEGA SEGM

SEGMENT

SEGMENT

ENDS ;This is

ENT PUBLIC ‘CODE'

ASSUME CS:SEGA

SEGA  ENDS
END

In module B:

SEGA SEGMENT PUBLIC 'CODE'

ASSUME CS:SEGA
sMS-LINK adds this segment to same
;named segment. in module A (and
jothers) if class name is the same.

SEGA  ENDS
END

Page
SEGMENT
ENDS
SEGMENT
ENDS
SEGMENT
ENDS

not allowed:

illegall

4-33



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-34

STRUC
<structurename> STRUC
<structurename> ENDS

The STRUC directive 1is very much 1like RECORD,
except °‘STRUC has a multiple byte capability. The
allocation and initialization of a STRUC block are
the same as for RECORDs.

Inside the STRUC/ENDS block, the Define directives
(DB, DW, DD, DQ, DT) may be used to allocate space.
The Define directives and Comments set off by
semicolons (;) are the only statement entries
allowed inside a STRUC block.

Any label on a Define directive inside a STRUC/ENDS
block becomes a <fieldname> of the structure.
(This is how structure fieldnames are defined.)
Initial values given to - fieldnames in the
STRUC/ENDS block are default values for the various
fields. These field values are of two types:
overridable or not overridable. A simple field, a
field with only one entry (but not a DUP
expression), is overridable. A multiple field, a
field with more than one entry, is not overridable,
For example:

FOO DB 1,2 ;is not
overridable

BAZ DB 10 DUP(?) ;is not
overridable

200 DB 5 ;is overridable

If the <exp> following the Define directive
contains a string, it may be overridden by another
string. However, if the overriding string is
shorter than the initial string, the assembler will
pad with spaces. If the overriding string is
longer, the assembler will truncate the extra
characters.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-35

Usually, structure fields are'used as operands in
some expression. The format for a reference to a
structure field is:

<variable>.<field>

~ <variable> represents an anonymous variable,
usually set up when the structure is allocated. To
allocate a structure, use the structure name as a
directive with a label (the anonymous variable of a
structure reference) and any override values in
angle brackets:

FOO STRUCTURE
FOO ENDS
GOO FOO <y7,,'JOE*'>

.<field> represents a label given to a DEFINE
directive inside a STRUC/ENDS block (the period
must be coded as shown). The value of <field> will
be the offset within the addressed structure.

Example:

To define a structure:

S STRUC

FIELD1l DB 1,2 snot overridable
FIELD2 DB 10 DUP(?) : ;not overridable
FIELD3 DB 5 soverridable
FIELD4 DB 'DOBOSKY" ;overridable

] ENDS

The Define directives in this example define the
fields of the structure, and the order corresponds
to the order values are given in the initialization
list when the structure is allocated. Every Define
directive statement 1line inside a STRUC block
defines a field, whether or not the field is named. .

To allocate the structure:
DBAREA S ‘ <,,7,'ANDY'> soverrides 3rd and

4th
;fields only



ACTION: INSTRUCTIONS AND DIRECTIVES . » " page 4-36

To refer to a structure:

MOV AL, [BX] .FIELD3
MOV  AL,DBAREA.FIELD3



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-37

4.2.2 Conditional Directives

Conditional directives allow users to design blocks of code
which test for specific conditions,

All conditionals follow the format:

IFxxxx [argqument]

ENDIF

Each IFxxxx must have a matching ENDIF to terminate the
conditional. Otherwise, an ‘'Unterminated conditional'
message is generated at the end of each pass. An ENDIF
without a matching IF causes a Code 8, "Not in conditional
block" error. ’

Each conditional block may include the optional ELSE
directive, which allows alternate code to be generated when
the opposite condition exists. Only one ELSE is permitted
for a given-IF. An ELSE is always bound to the most recent,
open IF., A conditional with more than one ELSE or an ELSE
without a conditional will cause a Code 7, "Already had ELSE
clause" error.

Conditionals may be nested up to 255 levels. Any argument
to a conditional must be known on pass 1 to avoid Phase
errors and incorrect evaluation. For IF and 1IFE the
expression must involve values which were previously
defined, and the expression must be absolute. If the name
is defined after an IFDEF or IFNDEF, pass 1 considers the
name to be undefined, but it will be defined on pass 2.

The assembler evaluates the conditional statement to TRUE
(which equals any non-zero value), or to FALSE (which equals
0000H). If the evaluation matches the condition defined in
the conditional statement, the assembler either assembles
the whole conditional block or, if the conditional block
contains the optional ELSE directive, assembles from IF to
ELSE; the ELSE to ENDIF portion of the block 1is 1ignored.
If the evaluation does not “match, the assembler either
ignores the conditional block completely or, if the
conditional block contains the optional ELSE directive,
assembles only the ELSE to ENDIF portion; the IF to ELSE
portion is ignored.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-38

The following is a 1list of Macro Assembler conditional
directives: 1IF <exp> '

If <exp> evaluates to nonzero, the statements
within the conditional block are assembled.

IFE <exp>

If <exp> evaluates to 0, the statements in the
conditional block are assembled.

IFl APass 1 Conditional

If the assembler is in pass 1, the statements in
the conditional block are assembled. 1F1 takes no
expression.

IF2 Pass 2 Conditional

If the assembler is in pass 2, the statements in

the conditional block are assembled. 1IF2 takes no
expression.

IFDEF <symbol>

If the <symbol> is defined or has been declared
External, the statements in the conditional block
are assembled.

IFNDEF <symbol>

If the <symbol> is not defined or not declared
External, the statements in the conditional block
are assembled.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-39

IFB <arg>
The angle brackets around <arg> are required.

I1f the <arg> is blank (none given) or null (two
angle brackets with nothing in between, <>), the
statements in the conditional block are assembled.

IFB (and 1IFNB) are normally used 1inside macro
blocks. The expression following the IFB directive
is typically a dummy symbol. When the macro |is
called, the dummy will be replaced by a parameter
passed by the macro call. If the macro call does
not specify a parameter to replace the dummy
following IFB, the expression 1is blank, and the
block will be assembled. (IFNB is the opposite
case.) Refer to Section 4.2.3, "Macro Directives,"
for a full explanation.

IFNB <arg»>
The angle brackets around <arg> are required.

If <arg> is not blank, the statements in the
conditional block are assembled.

IFNB (and 1IFB) are normally used inside macro
blocks. The expression following the 1IFNB
directive is typically a dummy symbol. When the
macro is called, the dummy will be replaced by a
parameter passed by the macro call. If the macro
call specifies a parameter to replace the dummy
following IFNB, the expression is not blank, and
the block will be assembled. (IFB is the opposite
case.) Refer to Section 4.2.3, "Macro Directives,”
for a full explanation.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-40

IFIDN <argl>,<arg2>

The angle brackets around <argl> and <arg2> are
required. /

If the string <argl> is identical to the string
<arg2>, the statements in the conditional block are
assembled.

IFIDN (and IFDIF) are normally used inside macro
blocks. The expression following the IFIDN
directive is typically two dummy symbols. When the
macro is called, the dummys will be replaced by
parameters passed by the macro call. If the macro
call specifies two identical parameters to replace
the dummys, the block will be assembled. (IFDIF is
the opposite case.) Refer to Section 4.2.3, "Macro
Directives," for a full explanation.

IFDIF <argl>,<arg2>

The angle brackets around <argl> and <arg2> are
required.

If the string <argl> is different from the string

<arg2>, the statements in the conditional block are
assembled.

IFDIF (and IFIDN) are normally used inside macro
blocks. The expression following the IFDIF
directive is typically two dummy symbols. When the
macro 1is called, the dummys will be replaced by
parameters passed by the macro call, If the macro
call specifies two different parameters to replace
the dummys, the block will be assembled. (IFIDN is
the opposite case.) i

ELSE
The ELSE directive allows you to generate alternate
code when the opposite condition exists, ELSE may
be used with any of the conditional directives.
Only one ELSE is allowed for each IFxxXxx
conditional directive. ELSE takes no expression.
ENDIF

This directive terminates a conditional block. An
ENDIF directive must be given £o0r every IFxxxx
directive used. ENDIF takes no expression. ENDIF
closes the most recent, unterminated IF.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-41

4;2.3 Macro Directives

The macro directives allow you to write blocks of code. which
can be repeated without recoding. The blocks of code begin
with either  the macro definition directive or one of the
repetition directives, and end with the ENDM directive. All
of the macro directives may be used inside a macro block.
In fact, nesting of macros is limited only by memory.

The macro directives of the Macro Assembler include:

 macro definition:
MACRO

termination: .
ENDM
EXITM

unique symbols within macro blocks:
LOCAL '

undefine a macro:
PURGE

repetitions:
REPT (repeat)

IRP (indefinite repeat)
IRPC (indefinite repeat character)

The macro directives also include some special macro
operators:

& (ampersand)

;: (double semicolon)

! (exclamation mark)

% (percent sign)



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-42

Macro Definition

<name> MACRO [<dummy>,...]

ENDM -

The block of statements from the. MACRO statement
line to the ENDM statement line comprises the body
of the macro, or the macro's definition.

<namé>'is like a label and conforms to the rules
for forming "symbols. After the macro has been '
defined, <name> is used to invokg the macro.

A <dummy> is formed as any other name is formed. A
<dummy> is a place holder that is replaced by a
parameter in a one-for-one text substitution when
the macro block is used. You should include all
<dummy>s used inside the macro block on this 1line.
The number of <dummy>s is 1limited only by the
length of a line. If you specify more than one
<dummy>, they must be separated by commas. Macro
Assembler interprets a series of <dummy>s the same
as any list of symbol names.

" NOTE

A <dummy> is always recognized exclusively

as a dummy. Even if a register name (such
as AX or BH) is used as a <dummy>, it will

be replaced by a parameter during
expansion.

One alternative is to list no <dummy>s:

<name> MACRO

This type of macro block allows you to call the
block repeatedly, even if you do not want or need
to pass parameters to the block. 1In this case, the
block will not contain any <dummy>s.

A macro block is not assembled when it is
encountered.  Rather, when you call a macro, the
assembler "expands" the macro call statement by

bringing in and assembling the appropriate macro
block. ) )

MACRO is an extremely powerful directive. With it,
you can change the value and effect of any



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-43

instruction mnemonic, directive, label, variable,
or symbol. When Macro Assembler evaluates a
statement, it first looks at the macro table it
builds during pass 1. If it sees a name there that
matches an entry in a statement, it acts
accordingly. (Remember: Macro Assembler evaluates
macros,. then instruction mnemonics/directives.)

If you want to use the TITLE, SUBTTL, or NAME
directives for the portion of your program where a
macro block appears, you should be careful about
the form of the statement. If, for example, you
enter SUBTTL MACRO DEFINITIONS, Macro Assembler
will assemble the statement as a macro definition
with SUBTTL as the macro name and DEFINITIONS as
the dummy. To avoid this problem, alter the word
MACRO in some way; e.g., - MACRO, MACROS, and so
on.



ACTION: INSTRUCTIONS AND DIRECTIVES ' : " Page 4-44

Calling a Macro
To use a macro, enter a macro call statement:
<name> [<parameter>,...]

<name> is the <name> of -the macro block. A
<parameter> replaces a <dummy> on a one-for-one
basis. The number of parameters is limited only by
the length of a line. -If you enter more than one
parameter, they must be separated by commas,
spaces, or tabs. If you place angle brackets
around parameters separated by commas, the
assembler - will pass all the items inside the angle
brackets as a single parameter. For example:

FOO 1,2,3,4,5
passes five parameters to the macro, but
FOO <1,2,3,4,5> '
passes only one.

The number of parameters in the macro call
statement need not be the same as the number of
<dummy>s in the MACRO definition. If there are
more. parameters than <dummy>s, the extras are
ignored. If there are fewer, the extra <dummy>s
will be made null. The assembled code will include
the macro block after each macro call statement.

Example:
GEN MACRO XX,YY, 22
MOV AX , XX
ADD AX,YY
MOV 22 ,AX
ENDM

If you then enter a macro call statement:
GEN DUCK ,DON, FOO

the assembler generates the statements:

MOV AX,DUCK
ADD AX ,DON
MOV FOO,AX

Oon your'program listing, these statements will be

preceded by a plus sign (+) to indicate that they
came from a macro block.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-45

End Macro
ENDM

ENDM tells the assembler that the MACRO or Repeat
block is ended.

Every MACRO, REPT, IRP, and IRPC must be terminated
with the ENDM directive. Otherwise, the
"Unterminated REPT/IRP/IRPC/MACRO" message is
generated at the end of each pass. An unmatched
ENDM also causes an error.

If you wish to be able to exit from a MACRO or
repeat block befcre expansion is completed, use
EXITM. :



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-46

Exit Macro
EXITM

The EXITM directive is wused inside a MACRO or
Repeat block to terminate an expansion when some
condition makes the remaining expansion unnecessary
or undesirable. Usually EXITM is used in
conjunction with a conditional directive.

When an EXITM is assembled, the expansion is exited
immediately. Any remaining expansion or repetition
is not generated. If the block containing the
EXITM 1is nested within another block, the outer
level continues to be expanded.

Example:

FOO MACRO X

X = 0
REPT X

X = X+1

- IFE " X-0FFH ;test X

EXITM :+if true, exit REPT
ENDIF
DB X
ENDM

ENDM



ACTION:

LOCAL

INSTRUCTIONS AND DIRECTIVES Page 4-47

LOCAL <dummy> [,<dummy>...)

Example:

The LOCAL directive is allowed only inside a macro
definition block. A LOCAL statement must precede
all other types of statements in the macro
definition.

When LOCAL is executed, the assembler creates a
unique symbol for each <dummy> and substitutes that
symbol for each occurrence of the <dummy> in the
expansion. These unique symbols are usually used
to define a label within a macro, thus eliminating
multiple-defined labels on successive expansions of
the macro. The symbols created by the assembler
range from 2?2?0000 to ??FFFF. Users should avoid
the form ??nnnn for their own symbols.

0000 FUN SEGMENT
ASSUME CS:FUN,DS:FUN
FOO MACRO NUM, Y
LOCAL A,B,C,D,E

A: DB 7
B: DB .8
C: DB Y
D: DW Y+1
E: DW NUM+1
JMP A
ENDM
FOO 0COO0OH,0BEH
0000 07 + 2?20000: DB 7
0001 08 + 2?20001: DB 8
0002 BE + 2?20002: DB OBEH
0003 00BF + 2?20003: DW 0BEH+1
0005 0Co01 + 2?20004: DW 0COO0H+1
0007 EB F7 + JIMP 220000
FOO 03COH,O0FFH
0009 07 + 2?20005: DB 7
000A 08 + 220006: DB 8
000B FF + ?2?20007: DB OFFH
000C 0100 + ?220008: DW OFFH+1
000E 03C1 + 720009 Dw 03C0H+1
0010 EB F7 + JIMP 220005
0012 FUN ENDS
END

Notice that Macro Assembler has substituted LABEL
names in the form ??nnnn for the instances of the
dummy symbols.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-48

PURGE

PURGE <macro-name>{,...]

PURGE deletes the definition of the macro(s) listed
after it.

PURGE provides three benefits:

1.

2.

It frees text space of the macro body.

It returns any instruction mnemonics or
directives that were redefined by macros to
their original function.

It allows you to "edit out”™ macros from a macro
library file. You may find it useful tc create
a file that contains only macro definitions.
This method allows you to use macros repeatedly
with easy access to their definitions.
Typically, you would then place an INCLUDE
statement in your program file. Following the
INCLUDE statement, you could place a PURGE
statement to delete any macros you will not use
in this program.

It is not necessary to PURGE a macro before
redefining it. Simply place another MACRO
statement in your program, reusing the macro
name.

Example:

INCLUDE MACRO.LIB
PURGE MAC1
MAC1 ;tries to invoke purged macro

;returns a syntax error



ACTION: INSTRUCTIONS AND DIRECTIVES . Page 4-49

Repeét Directives

The directives in this group allow the operations in a block
of code to be repeated for the number of times you specify.
The major differences between the Repeat directives and
MACRO directive are: :

1. MACRO gives the block a name by which to call in

) the code wherever and whenever needed; the macro
block can be used in many different programs by
simply entering a macro call statement.

2. MACRO allows parameters to be passed to the macro
‘ block when a MACRO is called; hence, parameters
can be changed. :

Repeat directive parameters must be assigned as a part of
the code block. If the parameters are known in advance and
will not change, and if the repetition is to be . performed
for every program. execution, then ' Repeat directives are
" convenient. With the MACRO directive, you must call in the
MACRO each time it is needed.

Note that each Repeat directive must be matched with the
ENDM directive to terminate the repeat block.



ACTION: INSTRUCTIONS AND DIRECTIVES " page 4-50

Regeat

REPT <exp>

ENDM

Repeat. block of statements between REPT and ENDM
<exp> times. <exp> 1is evaluated as a 16-bit
unsigned number. If <exp> contains an External
symbol or undefined operands, an error is
generated.

Example:
X = 0
REPT 10 ;generates
;DB 1 - DB
10 .
X = X+1
DB X
ENDM
assembles as:
0000 X = 0
REPT 10 ;generates
;DB 1 - DB
10
X = X+1
DB X
ENDM
0000°* 01 + DB X
0001’ 02 + DB X
0002°* 03 + DB X
0003° 04 + DB X
0004"* 05 + DB X
0005°* 06 + DB X
0006" 07 + DB X
0007°* 08 + DB X
0008' 09 + DB X
0009’ 0A + DB X



~—

ACTION: INSTRUCTIONS AND DIRECTIVES - - °  Page 4-51

"Indefinite Repeat

IRP <dummy>,<parameters inside angle braékets>

ENDM

Parameters must be enclosed in angle brackets.
Parameters may be any legal ' symbol, string,
numeric, or character constant. <The block of
statements is ‘' repeated for each parameter. Each
repetition substitutes the next parameter for every
occurrence of <dummy> in the block. If a parameter
is null (i.e., <>), the block is processed once
with a null parameter.

Example: -
. IRP X,<1,2,3,4,5,6,7,8,9,10>
DB X ’
. ENDM

This example generateé’the same bytes (DB 1 to DB
10) as the REPT example.

When IRP is used inside a MACRO definition block,
angle brackets around parameters in the macro call
gstatement are removed before the parameters are
passed to the macro block. An example, which
generates the same code as above, illustrates the
removal of one level of brackets from  the
parameters:

FOO MACRO X

IRP Y, <X>
DB Y
ENDM

ENDM

When the macro call statement
FOO <«1,2,3,4,5,6,7,8,9,10>

is assembled, the macro expansion becomes:

IRP ) Y'<1'2'3'4'5'61718'9I10>
DB Y )
ENDM

The angle brackets around the parameters will be

removed, and all items are passed as a single
parameter.



"~ ACTION: INSTRUCTIONS AND DIRECTIVES .. Page 4-52

Indefinite Repeat Character

IRPC <dummy>,<string>

The statements in the block are repeated once for
each <character in the string. Bach repetition
substitutes the next character in the string for
every occurrence »>f <dummy> in the block.

Example:
IRPC  X,0123456789
DB X+1
ENDM

This example generates the same code (DB 1 to DB
10) as the two previous examples. '

77N\



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-53

Special Macro Operators

Several special operators can be used in a macro block to
select additional assembly functions.

& ampersand concatenates text or symbols. (The
ampersand may not be used in a macro call
statement.) A dummy parameter in a quoted string
will not be substituted 1in expansion unless
preceded immediately by an ampersand. To form a
symbol from text and a dummy, put an ampersand
between themn.

For example:

ERRGEN MACRO X

ERROR&X: PUSH BX
MOV BX,'s&X'
JMpP ERROR
ENDM

The call ERRGEN A will then generate:

ERRORA: PUSH B :
MOV BX,'A'
JMP ERROR

In Macro Assembler, the ampersand will not appear
in the expansion. One ampersand is removed each
time a dummy& or &Jdummy is found. For ocomplex
macros, where nesting is involved, extra ampersands
may be needed. You need to supply as many
ampersands as there are levels of nesting.



ACTION:

INSTRUCTIONS AND DIRECTIVES Page 4-54

For example:

Incorrect form

Correct form

FOO MACRO X FOO MACRO X

IRP 2,<1,2,3> IRP Z2,<1,2,3>
X&&2 DB 2 X&Z DB Z

ENDM ENDM

ENDM ENDM

When called, for example, by FOO BAZ, the expansion
would be (correctly in the left column, incorrectly
in the right):

1. MACRO build, find <dummy>s and change to dl

IRP 2,<1,2,3> IRP 2,<1,2,3>
dlsZ DB z dlz DB 2

ENDM ENDM
2. MACRO expansion, substitute parameter text for
dal

IRP 2,<1,2,3> IRP 2,<1,2,3>
BAZ&Z DB 2BAZZ DB 2

ENDM ENDM
3. IRP build, find dummys and change to 4l
BAZ&d1 DB di BAZZ DB d1
4. IRP expansion, substitute parameter text for 4l
BAZ1 DB 1 BAZZ DB 1
BAZ2 DB 2 BAZ2Z DB 2
BAZ3 DB 3 BAZ2Z DB 3

L_' here it's an error,
;multi-defined symbol



N

<text>

~e

ACTION:

~e

INSTRUCTIONS AND DIRECTIVES Page 4-55

Angle brackets cause Macro Assembler to treat the
text between the angle brackets as a single
literal. Placing parameters to a macro call inside
angle brackets; or placing the list of parameters
following the IRP directive inside angle brackets
causes two results:

1. All text within the angle brackets is seen as a
single parameter, even if commas are used.

2. Characters that have special functions are
taken as literal characters. For example, the
semicolon inside angle brackets <;> becomes a
character, not the indicator that a comment
follows.

One set of angle brackets is removed each time the
parameter 1is used in a macro. When using nested
macros, you will need to supply as many sets of
angle brackets around parameters as there are
levels of nesting.

In a macro or repeat block, a comment preceded by
two semicolons is not saved as a part of the
expansion.

~The default listing condition for macros is .XALL

(see Section 4.2.4, "Listing Directives,” below).
Under the influence of .XALL, comments in macro
blocks are not listed because they do not generate
code.

If you decide to place the .LALL listing directive
in your program, then comments inside macro and
repeat blocks are saved and listed. This can be
the cause of an "out of memory error." To avoid
this error, place double semicolons before comments
inside macro and repeat blocks, unless you
specifically want a comment to be retained.

An exclamation point may be entered in an argument
to indicate that the next character is to be taken
literally. Therefore, !; 1is equivalent to <;>.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-56

] The percent sign is used only in a macro argument
to convert the expression that follows it (usually
a symbol) to a number in the current radix. During
macro expansion, the number derived from converting
the expression is substituted for the dummy. Using
the % special operator allows a macro call by
value. (Usually, a macro call is a call by
reference, with the text of the macro argument
substituting exactly for the dummy.)

The expression following the % must evaluate to ‘an
absolute (non-relocatable) constant.
Example:

PRINTE MACRO MSG,N
*OUT * MSG,N *

. ENDM
SYM1 EQU 100
SYM2 EQU 200

PRINTE <SYM1l + SYM2 = >,%(SYM1l + SYM2)

Normally, the macro call statement would cause the
string (SYM1 + SYM2) to be substituted for the
dummy N. The result would be:

souT * SYM1 + SYM2 = (SYM1l + SYM2) *

When the % is placed in front of the parameter,
the assembler generates:

souT * SYM1 + SYM2 = 300 *



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-57

4.2.4 Listing Directives

Listing directives perform two general functions: format
control and 1listing control. Format control directives
allow the programmer to insert page breaks and direct page
headings. Listing directives turn on and off the listing of
all or part of the assembled file.

PAGE

PAGE (<length>][,<width>]
PAGE (+])

PAGE with no arguments or with ‘the optional [,+]
argument causes the assembler to start a new output
page. The assembler puts a form feed character in
the listing file at the end of the page.

The PAGE directive with either the length or width
arguments does not start a new listing page.

The value of <length>, if included, becomes the new
page length (measured in lines per page) and must
be in the range 10 to 255. The default page length
is 50 lines per page. ’

The value of <width>, if included, becomes the new
page width (measured in characters) and must be in
the range 60°to 132. The default page width is 80
characters. :

The plus sign (+) increments the major page number
and resets the minor page number to one. Page
numbers are in the form major-minor. The PAGE
directive without the + increments only the minor
portion of the page number.

Example:

PAGE + iincrement major,set minor to 1

PAGB 58,60’ ;Page length=58 lines,
swidth=60 characters



ACTION: INSTRUCTIONS AND .DIRECTIVES Page 4-58

TITLE
TITLE <text>

TITLE specifies a title to be listed on the first
line of each page. The <text> may be up to 60
characters long. If mcre than one TITLE is given,
an error results. The first six characters of the
title, if legal, are wused as the module name,
unless. a NAME directive is used. .

Example:

TITLE PROGl -- 1lst Program

"If the NAME directive is not used,‘the module name
is now PROGl--1lst Program.  This title text will
appear at the top of every page of the listing.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-59

SUBTITLE
SUBTTL <text>

SUBTTL specifies a subtitle to be 1listed in each

page heading on the 1line after the title, The
<text> is truncated after 60 characters. )

Any number of SUBTTLs may be given in a program.
Each time the assembler encounters SUBTTL, it
replaces the <text> from the previous SUBTTL with
the <text> from the most recently encountered
SUBTTL. To turn off SUBTTL for part of the output,
enter a SUBTTL with a null string for <text>.

Example:

SUBTTL SPECIAL I/O ROUTINE

.

SUBTTL

-
.

The first SUBTTL causes the subtitle SPECIAL 1I/0
ROUTINE to be printed at the top of every page.
The second SUBTTL turns off subtitle (the subtitle
line on the listing is left blank).



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-60

30UT
fOUT <text>

The text is listed on the terminal during assembly.
.$0UT is 'useful for displaying progress through a
long assembly or for displaying the value of
conditional assembly switches.

S0UT will output on both passes. If only one
printout- is desired, use the IF1l or IF2 directive,
depending on which pass you want displayed. See
Section 4.2.2, "Conditional Directives," for
descriptions of the IF1l and IF2 directives.

Bxample:

R0UT *Assembly half done*

The aséembler will  send this message to the
' terminal screen when encountered. '

IFl
S0UT *Pass 1 started*

ENDIF

IF2 .
SOUT *Pass 2 started*
ENDIF



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-61

.LIST
«XLIST

.LIST lists all lines with their code (the default
condition).

.XLIST suppresses all listing.

If you specify a 1listing file following the
Listing: prompt, a listing file with all the
source statements included will be printed.

When .XLIST is encountered in the source file,
source and object code will not be listed. .XLIST
remains in effect until a .LIST is encountered.
.XLIST overrides all other 1listing directives.
Nothing will be 1listed, even if another listing
directive (other than .LIST) is encountered.

Example:

.X£IST ;listing suspended here

.LIST ;listing resumes here



ACTION:

. SFCOND

.LFCOND

.TFCOND

< XALL

.LALL

.SALL

INSTRUCTIONS AND DIRECTIVES Page 4-62

.SFCOND suppresses portions of the 1listing that
contain conditional false expressions.

.LFCOND assures the listing ~of conditional
expressions that evaluate false. This is the
default condition.

.TFCOND toggles the current setting. .TFCOND
operates independently from .LFCOND and .SFCOND,
.TFCOND toggles the default setting, which is set
by the presence or absence of the /X switch when
the assembler is running. When /X is used, .TFCOND
will cause false conditionals to list. When /X is
not used, .TFCOND will suppress false conditionals.

.XALL is the default.

.XALL lists source code and object code produced by
a macro, but source 1lines which do not generate
code are not listed.

.LALL lists the complete macro text for all
expansions, 1including 1lines that do not generate
code. Comments preceded by two semicolons (;;
will not be listed.

.SALL suppresses listing of all text and object
code produced by macros.



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-63

-CREF
«XCREF

.CREF
. XCREF I<variab1e list>])

.CREF is the default condition. .CREF remains in
effect until Macro Assembler encounters .XCREF.

.XCREF without arguments turns off the .CREF
{default) directive. .XCREF remains in effect
until Macro Assembler encounters ,CREF. Use .XCREF
to suppress the creation of cross-references in
selected portions of the file. Use LCREF to
restart the creation of a cross-reference file
after using the .XCREF directive.

I1f you include one or more variables following
.XCREF, these variables will not be placed in the
listing or cross-reference file. All other
cross~referencing, however, 1is not affected by an
.XCREF directive with arguments. = Separate the
variables with commas.

Neither .CREF nor .XCREF without arguments takes
effect unless you specify a cross-reference file
when running the assembler. .XCREF <variable list>
suppresses the variables from the symbol table
listing regardless  of the creation of a
cross-reference file.

Example:
.XCREF CURSOR,F00,G0O0O,BAZ, 200

;these variables will not be
;in the listing or cross-reference file






Contents

Chapter Assembling a Macro Assembler Source FPile
How to Start Macro Assembler 5-1

Method 1: Prompts 5-2

Method 2: Command Line 5-3
Macro Assembler Command Characters 5-4
Macro Assembler Command Prompts 5-5
Macro Assembler Command Switches 5=-7

Summary of Command Switches 5-9

Formats of Listings and Symbol Tables 5-10

Program Listing 5-10

Differences Between Pass 1 and

Pass 2 Listings 5-16

Symbol Table Format 5-17

yuon & W N
L)
N -

. .
N =

w
.
w
.
w






CHAPTER 5
ASSEMBLING A MACRO ASSEMBLER SOURCE FILE

Assembling a program with Macro Assembler requires two types
of commands: a command to start Macro Assembler, and
answers to command prompts. In addition, four switches
control alternate Macro Assembler features. Usually, you
will type all the commands to Macro Assembler on the
terminal keyboard. As an option, answers to the command
prompts and any switches may be contained in response
(batch). file. Two command characters are provided to assist
you while entering assembler commands. These command
characters are descr ibed in Section 5.2, "Command
Characters.”

5.1 HOW TO START MACRO ASSEMBLER

Macro Assembler may be started in two ways. By the first
method, you type the commands in response to individual
prompts. By the second method, you type all commands on the
line used to start Macro Assembler.

Summary of Methods to Start Macro Assembler

- i+ 1 1 Pt t 1ttt 1ttt 11ttt ittt ittt 1t + 3+ttt -+t i iitii]
Method 1 MASM
Method 2 MASM <source>,<object>,<listing>,

<crogs-ref>(/switch...]

e e b R 4 2t 2 3 s E R ]



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-2

5.1.1 Method 1l: Prompts

Type:
MASM

Macro Assembler will be loaded into memory. Then, Macro
Assembler returns a series of four text prompts that appear
one at a time. You answer the prompts as commands to Macro
Assembler to perform specific tasks.

At the end of each 1line, you may specify one or more
switches, each of which must be preceded by a forward slash

(/).

The command prompts are summarized here and described in
more detail in Section 5.3, "Macro Assembler Command
Prompts."

Summary cf Command Prompts

Source filename [.ASM]: List .ASM file to be
assembled. (There is no
default: a filename
response is required.)

_______________________________ G

Object filename [source.OBJ List filename for

. relocatable object code.
(The default is
source~-filename.OBJ)

Source listing [NUL.LST]: List filename for listing.
(The default is no listing
file.)

——————————————————————————————— +-_........—-—_——————————_-:—-—_——_

Cross reference [NUL.CRF]: List filename - - for
cross-reference file (used
with MS~CREF to create a
cross-reference 1listing).
(The default is no
cross-reference file.)



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-3

5.1.2 Method 2: Command Line
Type:
MASM <source>,<object>,<listing>,<cross-ref>[/switch...]

Macro Assembler will be loaded into memory. Then Macro
Assembler immediately begins assembly. The entries
following MASM are responses to the command prompts. The
entry fields for the different prompts must be separated by
commas.

where: source is the source filename

object is the name of the file to receive the
relocatable output

listing is the name of the file to receive the
listing

cross-ref is the name of the file to receive the
cross-reference output

/switch are optional switches, which may be placed
following any of the response entries (just before

any of the commas or after the the <cross-ref>, as
‘'shown) .

To select the default for a field, simply enter a second
comma without space in between (see the example below).

Example:
MASM FUN, ,FUN/D/X,FUN

This example causes Macro Assembler to be loaded, then
causes the source file FUN.ASM to be assembled. Macro
Assembler then outputs the relocatable object code to a file
named FUN.OBJ (default caused by two commas in a row),
creates a listing file named FUN.LST for both assembly
passes but with false conditionals suppressed, and creates a
cross-reference file named FUN.CRF. If names were not
listed for 1listing and cross-reference, these files would
not be created. If listing file switches are given but no
filename, the switches are ignored.



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-4

5.2 MACRO ASSEMBLER COMMAND CHARACTERS

Macro Assembler provides two command characters. -

Semicolon

CONTROL-C

Use a single semicolon (:), followed
immediately . by a carriage return, at any
time after responding to the first prompt
(from Source filename: on) to select
default responses to the remaining prompts.
This feature saves time and eliminates the
need to enter a series of carriage returns.

NOTE

Once the semicolon has been entered,
you can no longer respond to any of
the prompts for that assembly.
Therefore, do not use the semicolon
to skip over some prompts. For
this, use the <RETURN> key.

Example:

Source filename [.ASM]: FUN
Object filename (FUN.OBJ}: ;

The remaining prompts will not appear, and
Macro Assembler will use the default values
{including no listing file and no
cross~-reference file).

To achieve the same result, you could type:
Source filename [.ASM]: FUN ;

This response produces the same files as the
previous example.

Use <CONTROL-C> at any time to abort the
assembly. If you enter an erroneous
response, such as the wrong filename or an
incorrectly spelled filename, you must press
<CONTROL-C> to exit Macro Assembler. You
can then restart Macro Assembler. If the
error has been typed and not entered, you
may delete the erroneous characters, but for
that line only.



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-5

5.3 MACRO ASSEMBLER COMMAND PROMPTS

Macro Assembler is commanded by entering responses to four
text prompts. When you have typed a response to the current
prompt, the next appears. When the 1last prompt has been
answered, Macro Assembler begins assembly automatically
without further command. When assembly is finished, Macro
Assembler exits to the operating system. When the operating
system prompt is displayed, Macro Assembler has finished
successfully. If the assembly 1is unsuccessful, Macro
Assembler displays the appropriate error message.

Macro Assembler prompts you for the names of source, object,
listing, and cross-reference files.

All command prompts accept a file specification as a
response. You may type:

A filename only

A device designation only

A filename and an extension

A device designation and filename, or

A device designation, filename, and extension.

Do not type only a filename extension.

The following is a discussion of the command prompts that
are displayed when you start Macro Assembler with Method 1:

Source filename [.ASM]:

Type the filename of your source program. Macro
Assembler assumes by default that the filename
extension is ,ASM, as shown in square brackets in
the prompt text. If your source program has any
other filename extension, you must specify it along
with the filename. Otherwise, the extension may be
omitted.

Object filename [source.OBJ]:
Type the filename you want to receive the generated
object code. If you simply press the carriage
return key when this prompt appears, the object
file will be given the same name as the source
file, but with the filename extension .OBJ. 1If you
want your object file to have a different name or a
different filename extension, you must type vyour
choice 1in response to this prompt. If you want to




ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-6

change only the filename but keep the .OBJ

extension, type the filename only. To change the
extension only, you must type both the filename and
the extension.

Source listing [NUL.LST]:
Type the name of the file you want to receive the

source listing. If you press the carriage return
key, Macro Assembler does not produce this 1listing
file. If you type a filename only, the listing is

created and placed in a file with the name you type
plus the filename extension .LST. You may also
type your own extension.

The source listing file will contain a list of all
the statements in your source program and will show
the code and offsets generated for each statement.
The 1listing will also show any error messages
generated during the session.

Cross reference [NUL.CRF]:

- Type the name of the file you want tu receive the
cross-reference file. If you press only the
<RETURN> key, Macro Assembler does not produce this
cross-reference file. 1If you type a filename only,
the cross-reference file is created and placed in a
file with the name you type plus the filename
extension .CRF. You may also type your own
extension,

The cross-reference file is used as the source file
for the Microsoft CREF Cross-Reference Utility
(MS-CREF). MS-CREF converts this cross-reference
file 1into a cross-reference listing, which you can
use to aid you during program debugging.

The cross-reference file contains a series of
control symbols that identify records in the file.
MS-CREF uses these control symbols to create a
listing that shows all occurrences of every symbol
in your program. The occurrence that defines the
symbol is also identified.



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-7

5.4 MACRO ASSEMBLER COMMAND SWITCHES

The three Macro Assembler switches control assembler
functions. Switches must be typed at the end of a prompt
response, regardless of which method is used to start Macro
Assembler. Switches may be grouped at the end of any one of
the responses, or may be scattered at the end of several.
If more than one switch is typed at the end of one response,
each switch must be preceded by a forward slash (/). Do not.
specify only a switch as a response to a command prompt.

Switch Function

/D Produces a source listing on both assembler passes.
The listings will, when compared, show where in the
program phase errors occur and will, possibly, give
you a clue to why the errors occur. The /D switch
does not take effect unless you command Macro
Assembler to create a source listing (type a
filename 1in response to  the Source listing:
command prompt).

/0 Outputs the 1listing file in octal radix. The
generated code and the offsets shown on the listing
will all be given in octal. The actual code in the
object file will be the same as if the /O switch
were not given. The /O switch affects only the
listing file.

/X Suppresses the listing of false conditionals. 1f
your program contains conditional blocks, the
listing file will show the source statements, but
no code if the condition evaluates false. To avoid
the clutter of conditional blocks that do not
generate ¢ode, use the /X switch to suppress the
blocks that evaluate false from your listing.

The /X switch does not affect any block of code in
your file that is controlled by either the .SFCOND
or .LFCOND directives.



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-8

If your source program contains the .TFCOND
directive, the /X switch has the opposite effect.
That is, normally the .TFCOND directive causes
listing or suppressing of blocks of code that it
controls, The first .TFCOND directive suppresses
false conditionals, the second restores listing of
false conditionals, and so on. When you use the /X
switch, ralse conditionals are already suppressed.
When Macro Assembler encounters the first .TFCOND
directive, listing of false conditionals is
restored. When the second .TFCOND is encountered
(and the /X switch is used), false conditionals are
again suppressed from the listing.

Of course, the /X switch has no . effect if no
listing 1is created. See additional discussion
under the .TFCOND directive in Section 4.2.4,
"Listing Directives.”

The following chart illustrates the various effects
of the conditional listing directives in
combination with the /X switch.



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-9

Pseudo-op No /X /X
(none) ON OFF
.%ﬁconn O%F O%F
.éFcono oé Oé
.ércono oéF oé
.éFCOND Oé OéF
.épcowo OéF OéF
.éPCOND OéF oé
.TFCOND ON OFF
.érconn OéF Oé

‘Summary of Command Switches

Produce a listing on both assembler
passes.

___________________ o e e e e e e e e -

/0

Show generated object code and offsets
in octal radix on listing.

Suppress the listing of falsé
conditionals. Also used with the
.TFCOND directive.



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-10

5.5 PORMATS OF LISTINGS AND SYMBOL TABLES

The source 1istiﬁg produced by Macrb Assembler (created when
you specify a filename in response to the Source listing:
prompt) is divided into two parts.

The first part of the listing shows:

The line number for each line of the source file,
if 'a cross-reference file is also being created.

The offset of each source line that generates code.
The code generated by each source line.

A plus sign (+), if the code came from a macro, or
a letter C, if the code came from an INCLUDE file.

The source statement line.
The second part of the listing shows:
Macros--name and length in bytes
Structures and records--name, width and fields

Segments and groups—--name, size, align, combine,
and class

Symbols~-name, type, value, and attributes

The number of warning errars and severe errors '

5.5.1 Program Listing

The program portion of the 1listing 1is essentially your
source program file with the 1line numbers, offsets,
generated code, and (where applicable) a plus sign to
indicate that the source statements are part of a macro
block, or a letter C to indicate that the source statements
are from a file input by the INCLUDE directive.

If any errors occur during assembly, the error message will
be printed directly below the statement where the error
occurred.



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-11

Part of a listing file follows this discussion, with notes
explaining what the various entries represent.

The comments have been moved down one line because of format
restrictions. If you print your listing on 132
column-paper, the comments shown here will easily fit on the
same line as the rest of the statement.



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-12

Explanatory notes are spliced into the listing at points of
special interest.

Summary of Listing Symbols

nn:

nn/

XX

Linker resolves entry to left of R
External

Segment name, group name, or segment variable
used in MOV AX,<=--->, DD <====>, JMP <---->,
and so on.

Statement has an EQU or = directive
Statement contains a segment override
REPxx or LOCK prefix instruction. Example:

003C F3/ A5 REP MOVSW ;move DS:SI to ES:DI

“I: :]' ‘ suntil CX=0

DUP expression;xx is the value in parentheses
following DUP; for example: DUP(?) places ??
where xx is shown here

v

Line comes from a macro expansion

Line comes from file named in INCLUDE directive
statement



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-13

Microsoft Macro Assembler 1l-Dec-81 PAGE 1-3

EXTX PASCAL entry for initializing programs

0000 STACK SEGMENT WORD STACK 'STACK'
= 0000 HEAPbeg EQU«& THIS BYTE
Indicates EQU or = directive
:Base of heap before init

0000 14 [ DB 20 DUP (?)ﬂ
??7€Shows value in parentheses

Indicates DUP expression

= 0014 SKTOP EQU THIS BYTE
0014 STACK ENDS
0000 MAINSTARTUP SEGMENT °'MEMORY’
DGROUP - GROUP DATA,STACK<CONST ,HEAP,MEMORY
ASSUME CS:MAINSTARTUP,DS:DGROUP,
ES :DGROUP, SS :DGROUP

PUBLIC BEGXQQ ;Main entry

0000 BEGXQQ PROC FAR
0000 BB ~--- R MOV AX ,DGROUP
;1Get data segment value

0003 BE D8 Mov DS,AX ;Set DS seg
0005 8C 06 0022 R MOV CESXQQ,ES

l Generated Name Action Expression Comment
Offset
000C 26: 8B 1lE 0002 MOV BX,ES:2 ;Highest

;paragraph

Segment override



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-14

‘Microsoft Macro Assembler l-Dec-~81 PAGE 1-4

ENTX PASCAL entry for initializing programs

0011 2B D8 SuB BX,AX ;Get § paras for DS
0013 81 FB 1000 CMP BX 4096 ;More than 64K?
0017 7E 03 JLE SMLSTK ;No, use what we have
0019 BB 1000 MOV BX,4096 ;Can only address 64k
001C SMLSTK: +> REPT 4 <«
SHL BX,1
;Convert parajto offset
ENDM
001C DI1-E3 SHL BX,1 .
:Convert parajto offset
00lE DIl}E3 SHL BX,1
sConvert parajto offset
0020 DI1}E3 SHL BX,1
;Convert paralto offset
0022 Dl}E3 ‘SHL BX,1
;Convert parajto offset
Lmnacro >these lines “>macro —3> number of
block from macro directive repetitions
0024 8B E3 MOV SP,BX

;Set stack to top of memory

0069 EA 0000 R - JMP FAR PTR STARTmain

—_—
signal to linker segment variable

linker resolves: indicates segment namé, group name,

or segment variable used in MOV AX,<====>;
DD <====>; JMP <---=->,etc. (See other
examples in this listing.)
- 006E BEGXQQ ENDP
007E MAIN_STARTUP ENDS
0000 ENTXCM SEGMENT WORD 'CODE'

ASSUME CS:ENTXCM
PUBLIC ENDXQQ,DOSXQQ



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-15

Microsoft Macro Assembler 1-Dec-81 PAGE 1-5
ENTX PASCAL entry for initializing programs

0000 STARTmain PROC PAR ;This code remains

0000 9A 0000 E CALL ENTGQQ
;call main program

0005 ENDXQQ LABEL FAR

i stermination entry point

0005 9Aa 0000 E CALL ENDOQQ
;user system termination

000A 9A 0000 E CALL ENDYQQ
;clogse all open files

000F 9A 0000 E €&— CALL ENDUQQ

;file system
;termination

0014 C7 06 0020 R 0000 MoV DOSOFF, 0

‘~ T
oIfset .

linker External
signal; symbol
goes with

number to left; shows DOSOFF is in segment

00 2E 0020 R Jup DWORD PTR DOSOFF
sreturn to DOS

001E STARTmain ENDP

0037 ENTXCM ENDS

END BEGXQQ



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-16

5.5.2 Differences Between Pass 1 And Pass 2 Listings

If you specify the /D switch when you run Macro Assembler to
assemble your file, the assembler produces a listing for
both passes. The option is especially helpful for €£inding
the source of phase errors.

The following example was taken from a source file that
assembled without reporting any errors. When the source
file was reassembled using the /D switch, an error was
produced on pass 1, but not on pass 2 (which is when errors
are usually reported).

FExample:

During Pass 1 a jump with a forward reference produces:

0017 7E 00 JLE SMLSTK ;No, use what we have

Error —-—— 9:Symbol not defined
0019 BB 1000 MOV BX,4096 ;Can only address 64k
001C SMLSTK: REPT 4

During Pass 2 this same instruction is fixed up and does not
return an error.

0017 7E 03 JLE SMLSTK ;No, use what we have
0019 BB 1000 Mov BX,4096 ;Can only address 64k
001C SMLSTK: REPT 4

Notice that the JLE 1instruction's code now contains 03
instead of 00; this is a jump of 3 bytes.

The same amount of code was produced during both passes, so
there was no phase error. The only difference in this case
is one of content instead of size,



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-17

5.5.3 Symbol Table Format

The symbol table portion of a 1listing separates all
"symbols" into their respective categories, showing
appropriate descriptive data. This data gives you an idea
how your program is using various symbolic values. and is
useful when you debug.

Also, you can use a cross-reference 1listing, produced by
MS-CREF, to help you locate uses of the various "symbols" in
your program.

On the next page 1is a complete symbol table 1listing.
Following the complete 1listing, sections from different
symbol tables are shown with explanatory notes.

For all sections of symbol tables, this rule applies: if
there are no symbolic values in your program for a
particular category, the heading for the category will be
omitted from the symbol table listing. For example, if you
use no macros in your program, you will not see a macro
section in the symbol table. .



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-18

Microsoft Macro Assembler MACRO
PAGE

Assembler

date

Symbols-1

CALLER ~ SAMPLE ASSEMBLER ROUTINE (EXMP1M.ASM)

Macros:
Name

BIOSCALL
DISPLAY.
DOSCALL.
KEYBOARD
LOCATE .
SCROLL .

e o o e ¢ o
e o o & v o

¢« ° e v 0
e o e o o o
e & e o o o
" e e ¢ o o

Structures and records:

Name

PARMLIST . .
BUFSIZE. .
NAMESIZE .
NAMETEXT .
TERMINATOR

' Segments and
Name

CSEG . . . .
STACK. . . .
WORKAREA . .

Symbols:
Name

CLs. . .
MAXCHAR.
MESSG. .
PARMS. .
RECEIVR.
START. .

* s o e o
o o s o o
o o o o o
e o o o 0

groups:

e s s o v 0
e s ¢ e o @
e 2 v e o 0
e o o & o o

Warning Severe
Errors Errors

0 0

Length

0002
0005
0002
0003
0003
0004

width
Shift

001lC
0000
0001
0002
0018

Size

0044
0200
0031

Type

N PROC
Number
L BYTE
L 001C
L FAR
F PROC

4 fields

Width Mask Initial

0004

align combine class

PARA PUBLIC ‘'CODE'

PARA STACK 'STACK'

PARA PUBLIC ‘DATA'

Value Attr

0036 CSEG Length =000E
0019

001C WORKAREA

0000 WORKAREA

0000 External
0000 CSEG Length =0036



ASSEMBLING A

Macros:

Name

BIOSCALL
DISPLAY.
DOSCALL.
KEYBOARD
LOCATE .
SCROLL .

names of

e & o s o e
¢ o o o o &
¢ ¢ o s s o

macros

* s e 8 s .

MACRO

e ¢ 4 s o o

ASSEMBLER SOURCE FILE

® e e v e e

0002
0005
0002
0003
0003
0004

Page 5-19

Length é——-number of 32-byte blocks

macro occuples in memory

This section of the symbol table tells you the names of your
macros and how big they are in 32-byte block units. 'In this
listing, the macro DISPLAY is S5 blocks long or (5 X 32 bytes
=) 160 bytes long.



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-20

Structures and records:

Example for Structures

Name Width # fields €«— *
Shift width Mask 1Initial €—*«
PARMLIST . .+ « . . " 001C 0004
BUFSIZE. . + + + 0000
NAMESIZE . . . . . 0001
NAMETEXT . . . . . 0002
TERMINATOR . . . . 0018
LX & ]
field names of Offset of field
PARMLIST Structure into structure

The number of bytes
wide of Structure.

Example for Records

Name Width # fields
Shift Width Mask Initial €&—*

BAZ. « ¢« ¢ « ¢ o o @ —> 0008 0003 €«—number of fields

in Record
FLDl . . . . . . . 0006 0002 00C0 0040
FLD2 . . . « « « & 0003 0003 0038 0000€—initial
value
FLD3 . . + o « « & 0000 0003 0007 0003
BAZL . . . . . . . . [>0008|]| 0002 \-MASK of field
BZl. « +« « « « o« 0003 0008 07F8 0400 maximum
value
BZ2:. v « v o s o 0000 0003 0007 0002
number of shift  number of
bits in Record count bits in field

to right

* This line applies to Structure Names (begin in column 1).
** This line for fields of Records (indented).
***Number of fields in Structure.

This section lists your Structures and/or Records and their
fields. The upper 1line of column headings applies to
Structure names, Record names, and field names of
Structures. The lower line of column headings applies %o
field names cf Records.



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-21

For Structures:

Width (upper line) shows the number of bytes your
Structure occupies in memory.

fields shows how many fields comprise your
tructure. .

i
S
For Records:

Width (upper line) shows the number of bits the
Record occupies.

4 fields shows how many fields comprise your
Record. .

For Fields of Structures:

Shift shows the number of bytes the fields are
offset into the Structure.

The other columns are not used for fields of
Structures.

For Fields of Records:
Shift is the shift count to the right.

Width (lower line) shows the number of bits this
field occupies. :

Mask shows the maximum value of the record,
expressed in hexadecimal, if one field is masked
and ANDed (the field is set to all 1l's and all
other fields are set to all 0's).

Using field B2zl of the Record BAZl above to
illustrate:

0000 0111111110 0 0«4MASK=07F8

ENENEENENEEREEEE
15 11{1c 413 0

—|
shift count = 0003

WIDTH = 0008



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-22
Initial shows the value specified as the initial value for
the field, if any.

When naming the field, you specified:
fieldname:# = value

Fieldname is the name of the field
# is the width of the field in bits

value is the initial value you want this field to
hold. The symbol table shows this value as if it
is placed in the field and all other fields are
masked (equal 0). Using the example and diagram
from above:

000001000'00000001nitia1=0400

ANEENEEEEEEEREEE

Initial = 80H
80H = 128 decimal

Segments and groups:

Name Size align combine class
/---called Private
/ in MS-LINK manual

AAAXQQ . . . . 0000 WORD NONE 'CODE'<--segment
DGROUP, . . . . GROUP C-mmmmmmmm e e e e group
DATA . . . 0024 WORD PUBLIC 'DATA
STACK. . . . 0014 WORD STACK 'STACK' segments
CONST. . . . 0000 WORD PUBLIC 'CONST' of
HEAP . . . . 0000 WORD PUBLIC ‘MEMORY ' DGROUP
MEMORY . . . 0000 WORD PUBLIC 'MEMORY"
ENTXCM . . . . 0037 WORD NONE ‘CODE'
MAIN_ STARTUP . 007E PARA NONE ‘MEMORY '

length statement line entries
of
segment

VAR



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-23

For Groups:

The name of the group will appear under the Name column,
beginning in column 1 with the applicable Segment names
indented 2 spaces. The word Group will appear under the
Size column.

For Segments:

The segment names may appear in column 1 (as here) if you do
not declare them part of a group. If you declare a group,
the segment names will appear indented under their group
name.

For all Segments, whether a part of a group or not:
Size is the number of bytes the Segment occupies,.

Align is the type of boundary where the segment
begins:
PAGE = page - address is xxx00H (low byte = 0);
begins on a 256-byte boundary
PARA = paragraph - address is xxxxOH
(low nibble = 0); default

WORD = word - address is xxxxeH
(e = even number;

low bit of low byte = 0)

bit map - |x|xlx|x|x|x|x|0|

BYTE = byte - address is xxxxxH (anywhere)

Combine describes how the Microsoft LINK Linker
Utility will combine the various segments. (See.
the Microsoft LINK Linker Utility Manual for a full
description.)

Class is the class name under which MS-LINK will
combine segments in memory. (See MS-LINK Linker
Utility Manual and Chapter 9 of the MS-DOS User's
Guide for a full description.)




ASSEMBLING A MACRO ASSEMBLER SOURCE FILE

Page 5-24

Symbols:
Name Type Vvalue Attr
FOO. « « « « & Number 0005
FOOl . . . « o« Text 1.234
FOO2 . . . . Number 0008 all formed by
FOO3 . . . . . Alias FOO EQU or =
FOO4 . . . . . Text 5{BP] [DI] directive
FOO5 . . . . . Opcode
Symbols:
Name Type Value Attr

BEGHQQ . . . . L, WORD 0012 DATA Global
BEGOQQ . . . . L FAR 0000 External
BEGXQQ . . . . F PROC 0000 MAIN STARTUP Global Length=006E
CESXQQ . . . . L WORD 0022 DATA™ Global [:——-——-
CINEQQ . . . . L WORD 0002 DATA Global length
CRCXQQ . . . . L WORD 001C DATA Global of PROC
CRDXQQ . . . . L WORD OOlE DATA Global
CSXEQQ . . . . L WORD 0000 DATA Global
CURHQQ . . . . L WORD 0014 DATA Global
DOSOFF . . . . L WORD 0020 DATA
DOSXQQ . . . . F PROC O0OClE ENTXCM Global Length =0019
ENDHQQ . . . . L WORD 0016 DATA Global
ENDOQQ . . . . L FAR 0000 External
ENDUQQ . . . . L FAR 0000 External
ENDXQQ . . . . L FAR 0005 ENTXCM Global
ENDYQQ . . . . L FAR 0000 External
ENTGQQ . . . . L FAR 0000 External
FREXQQ . . . . F PROC 006E MAIN STARTUP Global Length=0010
HDRFQQ . . . . L WORD 0006 DATA Global
HDRVQQ . . . . L WORD 0008 DATA Global .
HEAPBEG. . . . BYTE 0000 STACK EQU statements
HEAPLOW. . . . BYTE 0000 HEAP (f::::rshowing segment
INIUQQ . . . . L FAR 0000 External
PNUXQQ . . . . L WORD 0004 DATA Global
RECEQQ . . . . L WORD 0010 DATA Global
REFEQQ . . . . L WORD 000C DATA Global
REPEQQ . . . . L WORD O0OOE DATA Global
RESEQQ . . . . L WORD 000A DATA Global
SKTOP. . . . . BYTE 0014 STACK
SMLSTK . . . . L NEAR 001C MAIN_STARTUP
STARTMAIN. . . F PROC 0000 ENTXCM Length=001E
STKBQQ . . . L WORD ' 0018 DATA Global
STKHQQ . . . . L WORD 0O0lA DATA Global

L1f Macro Assembler knows this length as one of the

type lengths (BYTE, WORD, DWORD, QWORD,
TBYTE), it shows that type name here.



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-25

This section lists all other symbolic values in your program
that do not fit under the other categories.

Tvpe shows the symbol's type:
L = Label
F = Far
N = Near
PROC = Procedure
Number
Alias
Text '
Opcode

----- all defined by EQU or = directive

These entries may be combined to form the various
types shown in the example.

For all procedures, the length of the procedure is
given after its attribute (segment).

You may also see an entry under Type like:
L 0031

This entry results from code such as the following:
BAZ LABEL FOQO
where FOO is a STRUC that is 31 bytes long.

BAZ will be shown in the symbol table with the L
0031 entry. Basically, Number (and some other
similar entries) indicates that the symbol was
defined by an EQU or = directive.

Value (usually) shows the numeric value the symbol
represents. (In some cases, the Value column will show some
text -- when the symbol was defined by EQU or = directive.)

Attr always shows the segment of the symbol, if known.
Otherwise, the Attr column is blank. Following the segment
name, the table will show either External, Global, or a
blank (which means not declared with either the EXTRN or
PUBLIC directive). The last entry applies to PROC types
only. This is a length = entry, which is the length of the
procedure.



ASSEMBLING A MACRO ASSEMBLER SOURCE PFILE Page 5-26

If Type is Number, Opcode, Alias, or Text, the Symbols
section of the 1listing will be structured differently.
Whenever you see one of these four entries under Type, the
symbol was created by.an EQU directive or an = directive.
All information that follows one of these entries 1is
considered its "value," even if the "value" is simple text.

Bach of the four types shows a value as follows:
Number shows a constant numeric value.

Opcode shows a blank. The symbol is an alias for
an instruction mnemonic.

Sample directive statement: FOO EQU ADD

Alias shows a symbol name which the named symbol
equals.

Sample directive statement: FOO BQU BAX

Text shows the ®text®™ the symbol represents.
"Text” is any other operand to an EQU directive
that does not fit one of the other three categories
above.

Sample directive statements:
GOO EQU ‘wWOW'
BAZ EQU DS:8 (BX)
200 BQU 1.234



Contents

Chapter 6 8087 Support

6.1 Switches 6-1






CHAPTER 6
8087 SUPPORT

Macro Assembler supports standard Intel 8087 instructions
and operands. A list of the instructions and opcodes can be
found in Appendix C of this manual.

6.1 SWITCHES

There are two switches that are used when running Macro
Assembler with an 8087. These switches are /R (for Real)
and /E (for Emulate). The /R and /E switches are described
below.

Switch Function

/R Use the /R switch when the code being produced by
Macro Assembler is going to be run on a real 8087
machine (not an emulated machine). Code produced
with the /R switch will only run on real 8087
machines. :

/E Use the /E switch when the code being produced by

o Macro Assembler is going to be run on an emulated

8087 machine. Code produced with the /E switch

will also run on real 8087 machines with the
appropriate emulator library.

The emulator library is provided with some MS-DOS language
products. . It contains specific 8087 emulation routines.
Refer to your lanquage compiler user's guide for information
on the emulator 1library that has been provided. If your
code is going to run on an emulated 8087 machine, you must
specify :the appropriate emulator library when you link your
code with MS-LINK. If the library is not specified, MS-LINK
will return errors for those unresolved symbols that are
defined in the emulator library.






Contents

Chapter 7 Macro Assembler Messages
7.1 Operating Messages 7-1
7.2 Error Messages 7-2
Assembler Errors 7-2
1/0 Handler Errors 7-13
Runtime Errors 7-14
Numerical Order List
of Error Messag«s 7-15






CHAPTER 7
MACRO ASSEMBLER MESSAGES

Most of the messages output by Macro Assembler are error
messages. The nonerror messages output by Macro Assembler
are the banner Macro Assembler displays when first started,
the command prompt messages, and the end of (successful)
assembly message. These nonerror messages are classified
here as operating messages. The error messages are

classified as assembler errors, I/0 handler errors, and
runtime errors.

7.1 OPERATING MESSAGES
Banner Message and Command Prompts:

Macro Assembler v2.0 Copyright (C) Microsoft, Inc.

Source filename [.ASM]:
Object filename [source.OBJ]:
Source listing [NUL.LST]:
Cross reference [NUL.CRF]:

End of Assembly Message:
Warning Fatal
Errors Errors
n n (n=number of errors)

(your disk operating system's prompt)



MACRO ASSEMBLER MESSAGES ‘ Page 7-2

7.2 ERROR MESSAGES

If the assembler encounters errors, error messages are
output, along with the numbers of warning and fatal errors,
and control is returned to your disk operating system. The
message is output either to your terminal screen or to the
listing file if you command one be created.

Error messages are divided into three categories: assembler
errors, I/0 handler errors, and runtime errors. 1In each
category, messages are listed in alphabetical order with a
short explanation where necessary. At the end of this

chapter, the error messages are listed in a single numerical
order list but without explanations.

Assembler Errors

Already defined localiy (Code 23)
Tried to define a symbol as EXTERNAL that had
already been defined locally.

Already had ELSE clause (Code 7)
Attempt to define an ELSE clause within an existing
ELSE clause (you cannot nest ELSE without nesting
IF...ENDIF).

Already have base register (Code 46)

Trying to double base register.

Already have index register (Code 47)

Trying to double index address

Block nesting error (Code 0)

Nested procedures, segments, structures, macros,
IRC, IRP, or REPT are not properly terminated. An
example of this error is close of an outer level of
nesting with inner level(s) still open.



MACRO ASSEMBLER MESSAGES Page 7-3

Byte register is illegal (Code 58)
Use of one of the byte registers in context where
it is illegal., For example, PUSH AL.

Can't override ES segment (Code 67)

. Trying to override the ES segment in an instruction
where this override is not legal. For example,
store string.

Can't reach with segment reg (Code 68)
There 1is no ASSUME that makes the variable
reachable.

Can't use EVEN on BYTE segment (Code 70)
Segment was declared to be byte segment and attempt
to use EVEN was made.

Circular chain of EQU aliases (Code 83)

An alias EQU eventually points to itself.

. Constant was expected (Code 42)

Expecting a constant and received something else.

CS register illegal usage (Code 59)
Trying to use the CS register illegally. For
example, XCHG CS,AX.

Directive illegal in STRUC (Code 78)
All statements within STRUC blocks must either be
comments preceded by a semicolon (;), or one of the
Define directives.

Division by 0 or overflow (Code 29)

An expression is given that results in a divide by
0.



MACRO ASSEMBLER MESSAGES Page 7-4

DUP is too large for linker (Code 74)
Nesting of DUP's was such that too large a record
was created for the linker.

8087 opcode can't be emulated (Code B84)
Either the 8087 opcode or the operands you used
with it produce an instruction that the emulator
cannot support.

Extra characters on line (Code 1)
This occurs when sufficient information to define
the instruction directive has been received on a
line and super fluous characters beyond are
received.

Field cannot be overridden (Code 80)
In a STRUC initialization statement, you tried to
give a value to a field that cannot be overridden.

Forward needs override (Code 71)

This message is not currently used.

Forward reference is illegal (Code 17)
Attempt to forward reference something that must be
defined in pass 1.

Illegal register value (Code 55)

The register value specified does not fit into the
"reg” field (the reg field is greater than 7).

Illegal size for item (Code 57)

Size of referenced item is illegal. For example,
shift of a double word.



MACRO ASSEMBLER MESSAGES . Page 7-5

Illegal use of external (Code 32)

Use of an external in some illegal manner. For
example, DB M DUP(?) where M is declared external.

Illegal use of register (Code 49)
Use of a register with an instruction where there
is no 8086 or 8088 instruction possible.

Illegal value for DUP count (Code 72)

DUP counts must be a constant that 1is not 0 or
negative.

Improper operand type (Code 52)

Use of an operand such that the opcode cannot be
generated.

Improper use of segment reg (Code 61)

Specification of a segment register where this |is
illegal. For example, an immediate move to a

segment register.
Index displ. must be constant (Code 54)

Illegal use of index display.

Label can't have seg. override (Code 65)

Illegal use of segment override.

Left operand must have segment (Code 38)

Used something in right operand that required a
segment in the left operand. (For example, ":.")

More values than defined with (Code 76)

Too many fields given in REC or STRUC allocation.



MACRO ASSEMBLER MESSAGES Page 7-6

Must be associated with code (Code 45)

Must

Must

Must

Must

Must

Must

Must

Must

be

bhe

be

be

be

Use of data related item where code item was
expected.

associated with data (Code 44)

Use of code related item where data related item
was exected. For example, MOV AX,<code~label>.
AX or AL (Code 350)

Specification of some register other than AX or AL

where only these are acceptable. For example, the
IN instruction.

index or base register (Code 48)
Instruction requires a base or index register and
some other register was specified in square
brackets, [ ]. .
declared in pass 1 (Code 13)
Assembler expecting a constant value but got
something else. An example of this might be a
vector size being a forward reference.

in segment block (Code 69)

Attempt to generate code when not in a segment.

record field name (Code 33)

Expecting a record field name but got something
else. :

record or‘field name (Code 34)

Expecting a record name or field name and received
something else.

register (Code 18)

Register unexpected as operand but you furnished a
symbol -- was not a register.



~—

MACRO ASSEMBLER MESSAGES Page 7-7

Must be segment or group (Code 20)
Expecting segment or group and something else was
specified.

Must be structure field name (Code 37)
Expecting a structure field name but received
something else.

Must be symbol type (Code 22)
Must be WORD, DW, QW, BYTE, or TB but received
something else.

Must be var, label or constant (Code 36)
Expecting a variable, 1label, or constant but
received something else.

Must have opcode after prefix (Code 66)
Use of one of the prefix instructions without
specifying any opcode after it.

Near JMP/CALL to different CS (Code 64)
Attempt to do a NEAR jump or call to a location in
a different CS ASSUME,

No immediate mode (Code 56)
Immediate mdde specified or an opcode that cannot
accept the immediate. For example, PUSH. :

No or unreachable CS (Code 62)
Trying to jump to a label that is unreachable.

Normal type operand expected (Code 41)

Received STRUCT, FIELDS, NAMES, BYTE, WORD, or DW
when expecting a variable label.



. MACRO ASSEMBLER MESSAGES Page 7-8

Not in conditional block (Code 8)
An ENDIF or ELSE is specified without a previous
conditional assembly directive active.

Not proper align/combine type (Code 25)

SEGMENT parameters are incorrect.

One operand must be const (Code 39)

This is an illegal use of the addition operator,

Only initialize lfst legal (Code 77) -
Attempt to use STRUC name without angle brackets,

< >,

Operand combination illegal (Code 63)

Specification of a two-operand instrucion where the
- combination specified is illegal.
Operands must be same or 1 abs (Code 40)

Illegal use of the subtraction operator.

OperAnd must have segment (Code 43)

Illegal use of SEG directive.

Operand must have size (Code 35)

Expected operand to have a size, but it did not.

Operand not in IP segment (Code 51)
Access of operand is impossible because it is not
in the current IP segment.

Operand types must match (Code 31)
Assembler gets different kinds or sizes of

arguments in a case where they must match. For
example, MOV,



MACRO ASSEMBLER MESSAGES ‘ Page 7-9

Operand was expected (Code 27)

Operator

Override

Override

Assembler is expecting an operand but an operator
was received.

was expected (Code 28)

Assembler was expecting an operator but an operand
was received.

is of wrong type (Code 81)

In a STRUC initiaiization statement, you tried to
use the wrong size on override. For example,
'HELLO' for DW field.

with DUP is illegal (Code 79)

In a STRUC initialization statement, you tried to
use DUP in an override. :

Phase error between passes (Code 6)

The program has ambiguous  instruction directives
such that the 1location of a label in the program
changed in value between pass 1 and pass 2 of the
assembler. An example of this is a forward
reference coded without a segment override where
one is required. There would be an additional byte
(the code segment override) generated in pass 2
causing the next label to change. You can use the
/D switch to produce a listing to aid in resolving
phase errors between passes (see Section 5.4,
"Macro Assembler Command Switches").

Redefinition of symbol (Code 4)

This error occurs on pass 2 and succeeding
definitions of a symbol.

Reference to mult defined (Code 26)

The instruction references something that has been
multi-defined.



MACRO ASSEMBLER MESSAGES ' Page 7-10

Register already defined (Code 2)-
This will only occur if the assembler has internal
logic errors.

Register can't be forward ref (Code 82)

Relative jump out of range (Code 53)
Relative jumps must be within the range -128 +127
of the current instruction, and the specific jump
is beyond this range.

Segment parameters are changed (Code 24)

List of arguments to SEGMENT were not identical to
the first time this segment was used.

Shift count is negative (Code 30)
A shift expression is generated that results in a
negative shift count.

Should have been group name (Code 12)
Expecting a group name but something other than
this was given. ' :

Symbol already different kind (Code 15)

Attempt to define a symbol differently from a
previous definition.

Symbol already external (Code 73)
Attempt to define a symbol as local that is already
external.

Symbol has no segment (Code 21)

Trying to use a variable with SEG, and the variable
has no known segment.



MACRO ASSEMBLER MESSAGES Page 7-11

Symbol is multi-defined (Code 5)
This error occurs ‘on a symbol that 1is 1later
redefined.

Symbol is reserved word (Code 16)

Attempt to use an assembler reserved word
illegally. (For example, to declare MOV as a
variable.)

Symbol not defined (Code 9)
A symbol is used that has no definition.

Symbol type usage illegal (Code 14)
Illegal use of a PUBLIC symbol.

Syntax error (Code 10)

The syntax of the statement does not match any
recognizable syntax.

Type illegal in context (Code 11)

The type specified is of an unacceptable size.

Unknown symbol type (Code 3)
Symbol statement has something in the type field
that is unrecognizable.

Usage of ? (indeterminate) bad (Code 75)

Improper use of the "?". For example, ?+5.

Value is out of range (Code 50)

value is too large for expected use. For example,
MOV AL,S5000.



MACRO ASSEMBLER MESSAGES ‘ pPage 7-12

Wrong type of register (Code 19)

Directive or instruction -expected one type of
register, but another was specified. For example,
INC CS.



MACRO ASSEMBLER MESSAGES

I/0 Handler Errors

These error messages are generated by the 1/0
These messages appear in a different format
Assembler Errors:

MASM Error -- error-message~text
in: filename

Page 7-13

handlers.
from the

The filename is the name of the file being handled when the

error occurred.

The error-message-text is one of the following messages:

Data format (Code 114)
Device full (Code 108)
Device name (Code 102)
Device offline (Code 105)
File in use (Code 112)
File name (Code 107)

File not found (Code 110)
File not open (Code 113)
File system (Code 104)
Hard data (Code 101)

Line too long (Code 115)
Lost file (Code 106)
Operation (Code 103)
Protected file (Code 1l11)

Unknown device (Code 109)



MACRO ASSEMBLER MESSAGES Page 7-14

Runtime Brrors

These messages may be displayed as your assembled program is
being executed.

Internal Error

Usually caused by an arithmetic check. If it
occurs, notify Microsoft Corporation.

Out of Memory

This message has no corresponding number. Either
the source was too big or too many labels are in
the symbol table.



MACRO ASSEMBLER MESSAGES

Numerical Order List of Error Messages

Code Message

0

Block nesting error

1 Extra characters on line

[
CWEBJIAAUSE WN

[y
N&WN -

WWANNNNNNNNDND N -
HOWVWONAOAUVSEWNHOOVODION

Wiw W
L XN S

wWww
~Novwm

- b WW
V-~ OW D

UV b o bbb
Qwuwao~Nounaeaw

Register already defined
Unknown symbol type
Redefinition of symbol

Symbol is multi-defined

Phase error between passes
Already had ELSE clause

Not in conditional block
Symbol not defined

Syntax error

Type illegal in context

Should have been group name
Must be declared in pass 1
Symbol type usage illegal
Symbol already different kind
Symbol is reserved word
Forward reference is illegal
Must be register

Wrong type of register

Must be segment or group
Symbol has no segment

Must be symbol type

Already defined locally
Segment parameters are changed
Not proper align/combine type
Reference to mult defined
Operand was expected

Operator was expected

Division by 0 or overflow
shift count is negative
Operand types must match
Illegal use of external

Must be record field name
Must be record or field name
Operand must have size

Must be var, label or constant
Must be structure field name
Left operand must have segment
One operand must be const
Operands must be same or 1 abs
Normal type operand expected
Constant was expected

Operand must have segment
Must be associated with data
Must be associated with code
Already have base register
Already have index register
Must be index or base register
Illegal use of register

Value is out of range

Page 7-15



MACRO ASSEMBLER MESSAGES

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

Operand not in IP segment
Improper operand type
Relative jump out of range
Index displ. must be constant
Illegal register value

No immediate mode

Illegal size for item

Byte register is illegal

CS register illegal usage
Must be AX or AL

Improper use of segment reg
No or unreachable CS

Operand combination illegal
Near JMP/CALL to different CS
Label can't have seg. override
Must have opcode after prefix
Can't override ES segment
Can't reach with segment reg
Must be in segment block
Can't use EVEN on BYTE segment
Forward needs override
Illegal value for DUP count
Symbol already external

DUP is too large for linker
Usage of ? (indeterminate) bad. (Code 75)
More values than defined with
Only initialize list legal
Directive illegal in STRUC
Override with DUP is illegal
Field cannot be overridden
Override is of wrong type
Register can't be forward ref
Circular chain of EQU aliases

84 8087 opcode can't be emulated
101 Hard data

102 Device name
103 Operation

104 File system
105 Device offline
106 Lost file

107 File name

108 Device full
109 Unknown device
110 File not found
111 Protected file
112 File in use
113 File not open

114

bData format

115 Line too long

Page 7-16



Appendix A

Appendix B

Wowoww
IR
AV d W

Contents

ASCII Character Codes

Table of Macro Assembler Directives

Memory Directives B-1
Macro Directives B-2
Conditional Directives B-2
Listing Directives B-2
Attribute Operators B-3
Precedence of Operators B-4

Table of 8086 and 8087 Instructions

8086 Instruction Mnemonics, Alphabetical
8087 Instruction Mnemonics, Alphabetical
8086 Instruction Mnemonics by Argument
Type C-6

8087 Instruction Mnemonics by Argument
Type Cc-10

c-1
Cc-4






ASCII CHARACTER CODES

APPENDIX A

ASCII CHARACTER CODES

Dec Hex CHR Dec Hex CHR
000 00H NUL 033 21H !
001 01H SOH 034 22H "
002 021 STX 035 23H #
003 03H ETX 036 24H S
004 04H EOT 037 25H L 3
005 0SH ENQ 038 26H &
006 06H ACK 039 274 R
007 07H BEL 040 28H (
008 08H BS 041 29H )
009 09H HT 042 2AH *
0l0 OAH LF 043 2BH +
011 0BH VT 044 2CH R
012 OCH FF 045 2DH -
013 ODH CR 046 2EH .
014 OEH SO 047 2FH /
015 OFH SI 048 30H 0
016 10H DLE 049 31H 1
017 11H DC1 050 32H 2
018 12H DC2 051 33H 3
019 13H DC3 052 34H 4
020 144 DC4 053 35H 5
021 isH NAK 054 36H 6
022 16H SYN 055 374 7
023 174 ETB 056 38H 8
024 18H CAN 057 39H 9
025 19H EM 058 3AH :
026 1AH SUB 059 3BH H
027 1BH ESCAPE 060 3CH <
028 1CH FS 061 3DH =
029 1DH GS 062 3EH >
030 1EH RS 063 3FH ?
031 1FH us 064 40H e

032 20H SPACE

Dec=decimal, Hex=hexadecimal (H), CHR=character.
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout



ASCII CHARACTER CODES

Dec Hex CHR Dec Hex CHR
065 41H A 097 61H a
066 42H B 098 62H b
067 43H C 099 63H c
068 44H D 100 64H 4
069 45H E 101 65H e
070 46H F 102 ' 66H £
071 474 G 103 . 67H g
072 48H H 104 68H h
073 49H I 105 69H i
074 4AH J 106 6AH 3
075 4BH K 107 6BH k
076 4CH L 108 6CH 1l
077 4DH M 109 6DH m
078 4EH N 110 6EH n
079 4FH (o] 111 6FH [o]
080 SOH P 112 70H p
08l S1H Q 113 71H q
082 52H R 114 72H r
083 S3H S 115 73H s
084 S4H T 116 74H t
085 55H 4] 117 75H u
086 S6H \' 118 76H v
087 STH 12 119 77H w
088 S8H X 120 78H x
089 S9H Y 121 79H Yy
090 SAH 2 122 7AH z
091 SBH [ 123 7BH

092 S5CH \ 124 7CH

093 SDH ] 125 7DH

094 S5EH ~ 126 7EH =
095 SFH _ 128 TFH DEL
096 60H '

Dec=decimal, Hex=hexadecimal (H), CHR=character.
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout



B.l MEMORY

<name>
<name>
<name>
<name>
<name>

<name>

<name>.

<name>

<name>
<name>

<proc-name>

<name>

<name>
<name>

<seg-name>

<name>

<struc-name>

APPENDIX B

TABLE OF MACRO ASSEMBLER DIRECTIVES

DIRECTIVES

ASSUME <seg-reg>:<seg-name> [, <seg-reg>-
<seg-name>...]

ASSUME NOTHING

COMMENT <delim><text><delim>

DB <exp>
DD <exp>
DQ <exp>
DT <exp>
DW <exp>

END {<exp>]

EQU <exp>

2 <exp>

EXTRN <name>:<type>[,<name>:<type>...]
PUBLIC <name>{,<name>...]

LABEL <type>

NAME <module~-name>

PROC ([NEAR]
PROC [FAR]

ENDP

+-RADIX <exp>
RECORD <field>:<width>[=<exp>]{,...]

GROUP <segment-name>[,...]
SEGMENT (<align>][<comb1ne>][<class>]

ENDS
EVEN
ORG <exp>
STTUC

ENDS



Page B-2

B.2 MACRO DIRECTIVES

<name>

ENDM

EXITM

IRP <dummy>,<parameters in angle brackets>
IRPC <dummy>,string

LOCAL <parameter>{,<parameter>...]

MACRO <parameter>|[,<parameter>...]

PURGE <macro-name>(,...]

REPT <exp> o

Special Macro Operators

& (ampersand) - concantenation

<text> (angle brackets - single literal)

:; (double semicolons) - suppress comment

! (exclamation point) - next character literal
% (percent sign) - convert expression to number

B.3 CONDITIONAL DIRECTIVES

B.4 LISTING

ELSE

IF <exp>

IFB <arg>

IFDEF <symbol>
IFDIF <argl>,<arg2>
IFE <exp> .
IFIDN <argl>,<arg2>
IFNB <arg>

IFNDEF <symbol>

IFl

IF2

DIRECTIVES

.CREF

.LALL
.LFCOND
.LIST

SOUT <text>
PAGE <exp>
.SALL
.SFCOND
SUBTTL <text>
.TFCOND
TITLE <text>
.XALL

. XCREF

. XLIST



Page B-3

ATTRIBUTE OPERATORS
Override operators

Pointer (PTR)
<attribute> PTR <expression>
Segment Override (:) (colon)
<segment-register>:<address-expression>
<segment-name>:<address-expression>
<group-name>:<address-expression>
SHORT
SHORT <label>
THIS
THIS <distance>
THIS <type>

Value Returning Operators

SEG -

SEG <label>

SEG <variable>
OFFSET

OFFSET <label>

OFFSET <variable>
TYPE

TYPE <label>

TYPE <variable>

-.TYPE

.TYPE <variable>
LENGTH

LENGTH <variable>
SIZE )

SIZE <variable>

Record Specific operators

Shift-count - (Record fieldname)
<record-fieldname>

MASK
MASK <record-fieldname>

WIDTH :
WIDTH <record-fieldname>
WIDTH <record>



Page B-~4
B.6 PRECEDENCE OF OPERATORS

All operators in a single item have the same precedence,
regardless of the order listed within the item. Spacing and
line breaks are used for visual clarity, not to indicate
functional relations.

1. LENGTH, SIZE, WIDTH, MASK
Entries inside: parenthesis ( )
" angle brackets < >
square brackets ([ |}
structure variable operand: <variable>.<field>
2. segment override operator: colon (:) '
3. PTR, OFFSET, SEG, TYPE, THIS
4. HIGH, LOW »
5. *, /, MOD, SHL, SHR
6. +, - (both unary and binary)
7. EQ, NE, LT, LE, GT, GE .
8. - Logical NOT
9. Logical AND
10. Logical OR, XOR

11. SHORT,.TYPE



APPENDIX C
TABLE OF 8086 AND 8087 INSTRUCTIONS
Macro Assembler supports both the 8086 and 8087 mnemonics.
The mnemonics are 1listed alphabetically with their full

names. The 8086 instructions are also 1listed in groups
based on the type of argquments the instruction takes.

C.1 8086 INSTRUCTION MNEMONICS, ALPHABETICAL

Mnemonic Full Name
AAA ASCII adjust for addition
AAD ASCII adjust for division
AAM ASCI1 adjust for multiplication
AAS ASCII adjust for subtraction
ADC Add with carry’
ADD Add
AND AND
CALL CALL
CBW Convert byte to word
CLC Clear carry flag
‘CLD Clear direction flag
CLI1 Clear interrupt flag
CMC Complement carry flag
CMP- Compare
CMPS Compare byte or word (of string)

CMPSB Compare byte string
CMPSW Compare word string

CWD Convert word to double word
DAA Decimal adjust for addition
DAS Decimal adjust for subtraction
DEC Decrement

D1V Divide

ESC Escape

HLT Halt

IDIV Integer divide

IMUL Integer multiply

IN Input byte or word

INC Increment

INT Interrupt

INTO Interrupt on overflow



JzZ
LAHF
LDS
LEA
LES
LOCK
LODS
LODSB
LODSW
LOoP
LOOPE
LOOPNE
LOOPNZ
LOOPZ
MOV
MOVS
MOVBS
MOVSW
MUL
NEG
NOP
NOT
OR

Interrupt return

Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Jump
Load
Load
Load
Load
LOCK
Load
Load
Load
Loopr
LooP
LOOP
LOOP
LOOP
Move
Move
Move
Move

on above

on above or equal
on below

on below or equal
on carry

on CX zero

on equal

on greater

on greater or equal
on less than

on less than or equal

on not above

on not above or equal
on not below

on not below or equal
on no carry

on not equal

on not greater

on not greater or equal
on not less than

on not less than or equal
on not overflow

on not parity

on not sign

on not zero

on overflow

on parity

on parity even

on parity odd

on sign

on zero

AH with flags

pointer into DS
effective address
pointer into ES

bus

byte or word (of string)
byte (string)

word (string)

while equal
while not equal
while not zero
while zero

byte or word (of string)
byte (string)
word (string)

Multiply
Negate
No operation

NOT
OR

Page C-2



ouT
POP
POPF
PUSH
PUSHF
RCL
RCR
REP
RET
ROL
ROR
SAHF
SAL
SAR
SBB
SCAS
SCASB
SCASW
SHL
SHR
STC
STD
STI
STOS
STOSB
STOSW
suB
TEST
WAIT
XCHG
XLAT
XOR

Output byte or word

POP

POP flags

PUSH

PUSH flags

Rotate through carry left
Rotate through carry right
Repeat

Return .

Rotate left

Rotate right

Store AH into flags

Shift arithmetic left
Shift arithmetic right

-Subtract with borrow

Scan byte or word (of string)
Scan byte (string)

Scan word (string)

shift left

Shift right

Set carry flag

Set direction flag

Set interrupt flag

Store byte or word (of string)
Store byte (string)

Store word (string)

Subtract

TEST

WAIT

Exchange

Translate

Exclusive OR

Page C-3



Page C-4

C.2 8087 INSTRUCTION MNEMONICS, ALPHABETICAL

Mnemonic Full Name
F2XM1 Calculate 2X-1
FABS Take absolute value of top of stack
FADD Add real
FADDP Add real and pop stack
FBLD Load packed decimal onto top of stack
FBSTP Store packed decimal and pop stack
FCHS Change sign on the top stack element
FCLEX Clear exceptions after WAIT
FCOM Compare real
FCOMP Compare real and pop stack
FCOMPP Compare real and pop stack twice
FDECSTP Decrement stack pointer
FDISI Disable interrupts after WAIT
FDIV Divide real
FDIVP Divide real and Pop stack
FDIVR Reversed real divide
FDIVRP Reversed real divide and pop stack twice
FENI Enable interrupts after WAIT
FFkEE . Free stack element
FIADD Add integer
FICOM Integer compare
FICOMP Integer compare and pop stack
FIDIV Integer divide
FIDIVR Reversed integer divide
FILD Load integer onto top of stack
FIMUL Integer multiply
FINCSTP Increment stack pointer
FINIT Initialize processor after WAIT
FIST Store integer
FISTP Store integer and pop stack
FISUB - Integer subtract
FISUBR Reversed integer subtract
FLD Load real onto top of stack
FLD1 Load +1.0 onto top of stack
FLDCW Load control word

FLDENV Load 8087 environment
FLDL2E Load log 2 e onto top of stack
FLDL2T Load log 2 10 onto top of stack

FLDLG2 Load log 10 2 onto top of stack
FLDLN2 Load log e 2 onto top of stack
FLDPI Load pi onto top of stack

FLDZ Load +0.0 onto top of stack



Page C-5

FMUL Multiply real

FMULP Multiply real and pop stack

FNCLEX Clear exceptions with no WAIT
FNDISI Disable interrupts with no WAIT
FNENI Enable interrupts with no WAIT
FNINIT Initialize processor, with no WAIT
FNOP No operation

FNSAVE Save 8087 state with no WAIT

FNSTCW Store control word without WAIT
FNSTENV Store 8087 environment with no WAIT
FNSTSW Store 8087 status word with on WAIT

FPATAN Partial arctangent function
FPREM Partial remainder

FPTAN Partial tangent function

FRNDINT Round to integer
FRSTOR Restore state

FSAVE Save 8087 state after WAIT

FSCALE Scale
- FSQRT Square root

FST Store real

FSTCW Store -control word with WAIT

FSTENV Store 8087 environment after WAIT

FSTP Store real and pop stack

FSTSW Store 8087 status word after WAIT

FSUB Subtract real

FSuBp Subtract real and pop stack

FSUBR Reversed real subtract

FSUBRP Reversed real subtract and pop stack
FTST Test top of stack

FWAIT Wait for last 8087 operation to complete
FXAM Examine top of stack element

FXCH Exchange contents of stack element and stack

top

FXTRACT Extract exponent and significand from number
in top of stack

FYL2X Calculate Y:log 2 X
FYL2PI Calculate Y:log 2 (x+1)



Page C-6

C.3 8086 INSTRUCTION MNEMONICS BY ARGUMENT TYPE
In this section, the instructions are grouped according to
the type of argument(s) they take. In each group the
instructions are listed alphabetically in the first column.
The formats of the instructions with the valid argument
types are shown in the second column., If a format shows OP,
that format is legal for all the instructions shown in that
group. If a format 1is specific to one mnemonic, the
mnemonic is shown in the format instead of OP.
The following abbreviations are used in these lists:

OP = opcode; instruction mnemonic

reg = byte register (AL,AH,BL,BH,CL,CH,DL,DH)
or word register (AX,BX,CX,DX,SI,DI,BP,SP)

r/m = register or memory address or indexed and/or based
accum = AX or AL register
immed = immediate

mem = memory operand

segreg = segment register (CS,DS,SS,ES)

General 2 operand instructions

Mnemonics Argument Types
ADC OP reg,r/m
ADD OP r/m,reg

AND OpP accum, immed
CMP OP r/m,immed
OR

SBB

SUB

TEST

XOR

In addition, add to the arguments a sign extent for word
immediate.

CALL and JUMP type instructions

Mnemonics Argument Types
CALL orp mem {NEAR}{FAR] direction
JMP OP r/m (indirect data =--

DWORD, WORD)



Relative jumps
Argument Type

OP addr (+129 or -126 of IP at start, or
+127 at end of jump instruction)

Mnemonics

JA Jc Jz JNGE JNP
JNBE JNAE JG JLE JPO
JAE JBE JNLE JNG JNS
JNB JNA JGE JNE Jo

JNC JCX2 JNL JINZ Jp

JB JE JL JNO JPE

Js

Loop instructions : same as Relative jumps

1L.0OOoP LOOPE LOOP?Z LOOPNE LOOPN2Z

Return instruction

Mnemonic Argument Type

RET {immed) (optional, number of words to POP)

No operand instructions

Mnemonics

AAA CLD DAA LODSB PUSHF ST1
AAD CLI DAS LODSW SAHF STOSB
AAM CMC HLT MOVSB SCASB STOSW
AAS CMPSB INTO MOVSW SCASW WAIT
CBW CMPSW IRET NOP STC XLATB
CLC CWD LAHF POPF STD

Load instructions

Mnemonics Argument Type
LDS OP r/m (except that OP reg is illegal)
LEA

LES

Page C-7



Move instructions

Mnemonic

MOV

Argument Types

OP mem,accum

OP accum,mem

OP segreg,r/m

(except CS is illegal}
OP r/m,segreg

OP r/m,reg

OP reg,r/m

OP reg,immed

OP r/m,immed

Push and pop instructions

Mnemonics

PUSH
POP

Argument Types

OP word-reg

OP segreg

(POP CS is illegal)
OP r/m

shift/rotate type instructions

Mnemonics

RCL
RCR
ROL
ROR
SAL
SHL
SAR
SHR

Argument Types

OP r/m,1l
OP r/m,CL

Input/output instructions

Mnemonics

IN

ouT

Argument Types

IN accum,byte-~immed
(immed = port 0-255)
IN accum,DX

OUT immed,accum

OUT DX,accum

Page C-8



Increment/decrement instructions

Mnemonics Argument Types
INC OP word-reg
DEC OP r/m

Arith. multiply/division/negate/not

Mnemonics Argument Type

1)) 474 OP r/m (implies AX OP
IDIV r/m, except NEG)

MUL

- IMUL

NEG (NEG implies AX OP NOP)
NOT

Interrupt instruction

Mnemonic Argument Types
INT INT 3 (value 3 is

one-byte instruction)
INT byte-immed

Exchange instruction

Mnemonic Argument Types

XCHG XCHG accum,reg
XCHG reg,accum
XCHG reg,r/m
XCHG r/m,reg

Page C-9



Page C~-10

Miscellaneous instructions
Mnemonics Argument Types
XLAT XLAT byte-mem (only checks argument,

) not in opcode)
ESC ESC 6-bit-number,r/m

String.ggimitives

These instructions have ‘bits to record only their
operand(s), if they are byte or word, and if a segment
override is involved.

Mnemonics Argument Types

CMPS CMPS byte-word,byte-word
(CMPS right operand is ES)

LODS LODS byte/word,byte/word
(LODS one argument = no ES).

MOvs MOVS byte/word,byte/word
(MOVS left operand is ES)

SCAS SCAS byte/word,byte/word
(SCAS one argument = ES)

STOS STOS byte/word,byte/word

(STOS one argument = ES)

Repeat prefix to string instructions
Mnemonics

LOCK
REP
REPE
REPZ
REPNE
REPNZ

C.4 8087 INSTRUCTION MNEMONICS BY ARGUMENT TYPE

No operands

F2XM1 FABS FCHS PCLEX FCOMPP FDECSTP
FDISI FENI FINCSTP FINIT FLD1 FLD2E
FLD2T FLDLG2 FLDLN2 FLDPI FLDZ .FNCLEX
FNDISI FNENI FNINIT FNOP FPATAN FPREM
FPTAN FRNDINT PSCALE FSQRT FTST FXAM
PXTRACT FYL2X FYL2XP1 FWAIT



Page C-11

2-Arqument Floating Arithmatic

Mnemonics Argument Types
FADD Blank

FD1IV mem 4,8 bytes
FDIVR ST,ST (1)

FMUL ST (i),ST

FSUB

FSUBR

Stack only floating point arithmatic

Mnemonics Argument Types

FADDP ST (i)
FDIVP ST
FDIVRP

FMULP

FSUBP

FSUBRP

Compare and store using stack

Mnemonics Argument Types
FCOM ST

FCOMP ST (i)

FST blank

Stack

Mnemonics Argument Types
FFREE : ST (1)

FXCH blank

Integer arithmatic

Mnemonics Argument Types

FIADD . mem 2,4 bytes
FICOM

FICOMP

FIDIV

FIDIVR

FIMUL

FIST

FISUB

FISUBR



Floating point load/store memory

Mnemonics Argument Types
FLD ) mem 4,8, or 10 bytes
FSTP :

Integer load/store memory

Mnemonics Argument Types
FILD mem 2,4, or 8 bytes
FISTP

Load/store control or status

Mnemonics Argument Types

FLDCW mem 2 bytes
FNSTCW
FNSTSW
FSTCW
FSTSW

Save/Restore 8087 environment

Mnemonics Argument Types
FLDENV mem 14 bytes
FNSTENV

FSTENV

94-byte memory (8087 Save/Restore entire state)

Mnemonics Argument Types
FNSAVE mem 94 bytes
FRSTOR

FSAVE

BCD load/store

Mnemonics Argument Types
FBLD mem 10 bytes

FBSTP

Page C-12



INDEX

! s e s e e e e e o s o o . 4-53
% o o o « s e . . . 4-56
0UT e e e s s s s e o o« s . 4-60
& e e o« o o o s s s o s s « A4=53
.CREF e e e e & o s e s & o 4-63
.LALL e e e e 4 e o e o o o 4-62
LLFCOND v v ¢ ¢ ¢ o o o « » o 4-62
.LIST e e e o o o o o o o« o 4-61
.RADIX e 4 e e o s o o « « o 4=26
.SALL e e e e e o s o o« « o 4-62
SFCOND + « « =« o« o« o o « o« « 4-62
TFCOND & ¢ « o o« o o s « o « 4-62
.TYPE s e e e e e e s e « o 3-26
+«XALL e e e e o o o s« s+ o o+ 4-62
. XCREF e e e e o o s s s« s o 4-63
<XLIST . . e e o« o« o .« 4-61
/D (assembler sthch) e s+ « 59 7-9
/O (assembler switch) . . . . 5-9
/X (assembler switch) . . . . 5-9
8087 support . . . . . . . . 6-1
: (colon - segment overrxde operator). . .
; (command character) . . . . 5-4
:: (macro operator). . . . . . 4-55
<record-fieldname
(shift count) e + o + « o 3=30

= (equal sign directive) . . . 4-12

Action e e s o o o s o e & « 1-10, 4-1
Arithmetic operators « o o o 3-33
Assembler errors . . . .« « . . 1-2

‘calling a Macro . . . . . . . 4-44
Colon (: - segment override operator) 3-19
Command Characters
H e e e e s e e e 4 e « « 5=-4
CONTROL-C « « ¢« &« ¢« o« « « « 5-4
Command Characters . . . . . . 5-4
Command Prompts
Cross-reference .
Object filename . .
Source filename . -.
Source listing N
summary of . e e
COMMENT e s e e
Comments e s e e .
CONTROL-C (command cha

.
o o o

Data items e e e e e e e+« 379



DD - Define Doubleword
DD - Define Doubleword
Direct memory operands .

DB -~ Define Byte .
Directives

. 4-60

.

30UT

. . . 4-63
4-62

4-62

4-61

4-26

4-62

. 4-62

. 4-62

.CREF

-LALL
.LFCOND
.LIST

.

.RADIX
+SALL
.SFCOND
. TFCOND
- XALL

4-62
4-63

«XCREF

S—
-]
[
T 9
m <
-~ . OO0 ONMAHMUITVOIOODNANDODORNDOANNNNN
CA O PO RN TN A ATEAMNOMMNOIMTOETONM A NN AN SN
L L N L A L T L T T T T O A T A L L T L I T I |
T T T T TN T YU I I CCTPCCCOC TN
e o 5 4 8 6 s s s e 8 b s s e e e s e ® s e 6 s e v w e s e s s s e a8 v s
® 9 & e 8 s & & 4 8 2 P » 0 & 0 ° 2 e e P F & s 6 o s o s 3 ° &+ » o o 4
* & 8 & ¢ & B 2 8 8 & 2 s 2 6 & 2 2 P e T s+ e & B @ e s o e+ & 2 & 0+ 2 s 0
* ¢« e s gy e ® & 2 s & & e 2 3 e 8 2 % e e P s s e ¢ e e e s s 2 s e
-
® e s s QMO Y + s s s e s s s e s s e 2 e s P e 0+ B T 3 e T 2 s s e s s
- O]
. v s s O O W S e s 8 6 8 & 2 s s e s s e s s & e e ¢ 0 0+ e s ¢ s s 0 0
- X >
e o s s QNTCLOM * * * * o v 4 2 s s s e s s s s 2 e s T e s s s e s 0 e
- R
D N - I I+ T T T e e S S T R R R I N
[+ MAOKNX
LI« I @ e + 5 8 s s 4 & e s 0 s s 6 s 3 e+ s s e s s s s s e
-t ~ U0 0QQ
)] B COLLEL o ¢ s 0 6 0 o o 85 6 a5 o 0 0 8 5 8 0 8 o 5 o 0 0 ¢ s 0
(= R R R ]
L I o BT T W O o L I I IR I N e o o
am.leeeee ] o
HoZPsyaononn B Q c >
n o -~ <N MmP By Z B Tt O M
Ier.....E WIMP ZEHD e O@0O-1 ORSLXKO
1 E wna DDDUWITO lzBDDEINNCPPBsMCm
ted OOBDQTWLNWNNNQ XX bk ZEXL<0C0O
VLV ALALOMMKKEARMEREREEROMMHFEHRMHMEMMRHHAHA QDO



NAME
PAGE
PROC
PUBLIC
PURGE
RECORD
REPT
SEGMENT
STRUCTURE
SUBTTL .
TITLE .
Directives
DD - Define Doubleword
DQ - Define Quadword
DW - Define Word .
Directives « e e e
DQ - Define Quadword .
DQ - Define Quadword .

. o o o o o

¢ ¢ o o s o 0 0 0 s &

.
.
.
.
.
.
.
.
.
.
.

e 6 5 o o ¢ s o s o o
@ o o o o o o s 0 o o
@ o o o ¢ 0 0 0 e ¢
© e 5 o 9 ¢ 0 e s o o
® o o 8 s e e e s 0 o
e o o 0 e 0 0 0 0 o
® o ® o e e o o ¢ v o

DT - Define Tenbytes -
DW - Define Word .
DW

* & 0 o o 8 o & o
" e e e ¢ 0 o o o
¢ o o o o o 8 o s

e o o o o o o

Define Word .

ELSE .
END .
ENDC .
ENDIF .
ENDM .
ENDP .

ENDS .
EQU c e e e .
Equal sign direct
Error messages
numerical list .« .
EVEN e o e e o o o o
EXITM . . « « ¢ « o &
Expression evaluation

— . . . L] e o .
~e 6 o 0 s o e @
] . . L ) . o e .
. . . . . . LI .
. L] . . . LN L]

« e o ¢ o o
¢ o o o o o
s 8 o o o o

Expressions e e e
EXTRN s e e s e o o
Formats

program listing . . . . . .
symbol table e o e e o s e
Formats of listings and symbol

4-21
4-57
4-23
4-25
4-48
4-27
4-50
4-30
4-34
4-59
4-21, 4-58

#bbb?b#hb
NONNOYRSNSS

[ LU
- -
© e o>
) ]
o w

4-40
4-10
4-40
4-40
4-45
4-23
4-34
4-11
4-12

7-15
4-13
4-46
3-36
1-111 3-1
4-14

5-10
5-17
tables 5-10

General Facts about Source Files 1-1

GROUP e e 4 e o s e o o o
HIGH e e e s s s e e s e e s

I/0 Handler errors

IF T T T T
IFL . v ¢ o ¢ ¢ o o o o o « &
IF2 . . v v v v e e e e e e s
IFB . . . . « 4 e e e e e

4-16
3-22

7-13
4-38
4-38
4-38
4-39



IFDEF . & « & o« ¢« o« « « « » « 4-38

IFDIP . . & ¢ ¢ ¢ ¢ « o « « « 4-40

IFE e o o o o o o a4 o e o o 4-38

IFIDN . . ¢ ¢ ¢ o o « « « « « 4=-80

IFNB e e s e e o s e s e o o 4-39
IFNDEF . . . « o o o o« o o« 4-38
Immediate operands e e o o & o 3-9
INCLUDE e ¢ s e ¢ o o s o o 4-18
Indexed memory operands . . . 3-14
Instructions c e s e e o s o 4-1 to 4-2
Instructions by argument type (Appendices) C-~-6

Instructions, alphabetical (Appendices) C-1
IRP e s e e e s o s s s . . 4=51
IRPC e o o o s s s e o v « o« 4-52

LABEL . . . ¢« . ¢« ¢ ¢ v + + « 4-19
Labels . . . . e e e s e s o 2=2
Legal characters e e e o o 4 o 1-3
LENGTH e e e e s o s o s o o 3=27
LOCAL . . e s e e o o 4« . 4-47
Logical operators e« e + o+ o o 3=35
LOW e o e s 4 e e s o o o . 3=22
MACRO e e e e e e e o« o . 4-42
MASK e e e e s e e e e & o 3:32
Memory directives . . . . ., . 4-5
Memory operands . . . . . . . 3-13
Memory organization . ., . . . 3-2
NAME e e e e e e e e e e . . 4-21
NameS . . ¢ « ¢ o s o o o o o 1=7
Names . . « + « o o o s o o o 2=1
Numeric notation . . . . , ., ., 1-4, 3-9
OFFSET . . . e e« o o o 3-24

Offset attrxbute e e o o o o 2-3
Operand summary e e s e ¢ o 1-13

Operands e e o « o o o s+ « . 3-8
Operator summary . . . « « . . 1-13
Operators . . . « ¢« ¢ « « & o 3-17
ORG e e e e e e e e e e . . 4-22
Override operators e e o o » o 3-18
Overviews

MACRO-86 operation e« « ¢+ s . B

PAGE . & &+ & ¢ o o o o o«
Pass 1 listing versus pass
Pointer (PTR) e o . .
Precedence of operators
PROC e s s s e o o o
Program listing format
PTR e e s e e e e
PUBLIC . v & ¢« ¢ o o« &
PURGE . . . ¢« ¢ + « &

. 4-57
listing 5-16
. 3-18
. 3-36
. 4-23
. 5-10
. 3-18
. 4-25
. 4-48

s o s s s s e N



RECORD « s e e e e
Register operands .
Relational. operators
REPT e e e e e e
Runtime errors . . .

s o s o 0
« o o o

SEG « e o o o o s &
SEGMENT e e s s o e o
Segment attribute . .

Segment override operator (

Shift count “ e o o
SHORT e e & s o e o
SIZE e o o o s s e o
Source file contents . .
Source file naming . .
Special Macro Operators
T

o e e« o o o

. .
e o o e o o o o
e o e s s e
. .

.
.
.
°« e o e o o o

Special Macro Operators
Statement Format
Action « o e
Comments o o
Directives * .
Expressions .
Instructions .
Names . e .
Statement line fo
STRUCTURE . . . .
Structure operands
SUBTTL « o s e
Summary
Operands e s e e e
Operators . . . . .

M e o o o o o
¢ ¢ o o o o
¢ o e ¢ o 0 s o e .

3
e o s e o o s o o
(24

@ o & & ¢ s o s s o

* o o o o

-

Summary of listing symbols
Summary of methods to xnvoke

Switches
MACRO0-86
Summary of . . . . .
MACRO-86
/D . .
/0 . .
/X ..
Switches . .
Symbol table
Symbols . .

e s ¢ o
e s o e o @
e o o s e o

format
THIS e e o
TITLE . . . .

TYPE . . .
Type attrxbute

" e e e
e o o o

Value returning operators

* s o o o o

e e o o o e o o & o et e o o e+ e o 0

e & & o o s s e @

e o o o o o

4-27
3-10
3-34
4-50
7-14

e o o o o

3-23
. 4-30

3-19
3-30
3-20
3-28
1-5
1-1

~
.

4-53
4~-56
4-53
4-53
4-53

1-10
1-9
1-6
1-11
1-6
1-7
1-6
4-34
3-15
. 4-59

s o s o o o o

. 1-13
. 1-13
. 5-12
MACRO 5-1

. 5-9

5-9, 7-9
5-9
5-9
5-7
5-17
2-7

e o o o o o

3-21

4-21, 4-58
3-25

2-4, 2-6

. 3-23



Variables

WIDTH

ooooooooooo



Microsoft. Link

Linker Utility

for 8086 and 8088 Microprocessors

Microsoft Corporation






System Requirements

The Microsoft LIB Library Manager requires:

38K bytes of memory minimum:
28K bytes for code
10K bytes for run space

Disk drive(s):
One disk drive if and only if output is sent to the
same physical disk from which the input was taken.
The Microsoft LIB Library Manager does not allow
time to swap disks during operation on a one-drive
configuration. Therefore, two disk drives 1is a
more practical configuration.






Contents

Chapter 1 INTRODUCTION
1.1 Overview of MS-LINK Operation 1-2
1.2 Definitions 1-4
Chapter 2 MS-LINK TECHNICAL INFORMATION
2,1 How MS-LINK Combines and Arranges
Segments 2-1
2.2 Segment Addresses 2-4
2.3 How MS-LINK Assigns Addresses 2-4
2.4 Relocation Fixups 2-5
2.4.1 short References 2-5
2.4.2 Near Self-Relative References 2-5
2.4.3 Near Segment-Relative References 2-6
2.4.4 Long References 2~-6
2.5 Sample MS-LINK Session 2-7
2.6 Error Messages 2-9
Addendum

Index






CHAPTER 1
INTRODUCTION

The Microsoft Linker Utility (MS-LINK) is a relocatable
linker designed to link separately produced modules of 8086
object code. The input to MS-LINK is a subset of the Intel
object module format standard.

MS-LINK prompts you for all MS-LINK commands. Your answers
to these prompts are the commands for MS-LINK.

The output file from MS-LINK (a Runvfile) is not bound to
specific memory addresses and, therefore, can be loaded and
executed at any convenient address by the operating system.

MS-LINK uses a dictionary-indexed 1library search method,
which substantially reduces link time for sessions involving
library searches.

MS-LINK is able to link files totaling 1 megabyte.

NOTE
This manual describes some of
the technical information
about MS-LINK. It is

recommended that this manual
be read in conjunction with
Chapter 9, "The Linker Program
(MS-LINK) ," in the MS-DOS
User's Guide.



INTRODUCTION Page 1-2

1.1 OVERVIEW OF MS-LINK OPERATION
MS-LINK performs the following steps to combine object
modules and produce a Run file:

1. Reads segments in object modules

2. Assigns addressés to segments

3. Assigns public symbol addresses

4. Reads data in segments

5. Reads all relocation references in object mddﬁles

6. Resolves references and determines relocation
information

7. Outputs a Run file (executable image) and
relocation information

As it combines modules, MS-LINK can search multiple 1library
files for definitions of any external references left
unresolved.

MS-LINK also produces a List file that shows external
references resolved and any error messages.

MS-LINK uses available memory as much as possible. When
available memory 1is exhausted, MS-LINK then creates a disk
file (VM.TMP) to use as temporary memory.



INTRODUCTION Page 1-3

The following figure illustrates the MS-LINK operation.

object object object
module module module
Microsoft

Linker Utility

:

Executable Image

Relocation Information

Figure 1. MS-LINK Operation

The executable image contains the concatenated object
modules that make the Run file. The relocation information
is a 1list of 1long addresses that must change when the
executable image is relocated in memory. Refer to Section

1.7.4, "Long References," for an explanation of long
addresses.




INTRODUCTION Page 1-4

1.2 DEFINITIONS ~

The following terms describe the functioning of MS-LINK. An
understanding of the concepts that define these terms will
provide a basic understanding of the way MS-LINK works.
Refer to the MS-DOS User's Guide for more information on
these definitions.

1. Segment: .

A segment is a contiguous area of memory up to
64K bytes in length. A segment may be located
anywhere in 8086 memory. The contents of a
segment are addressed by a canonical frame
address and offset within that frame. Refer to
Section 1.5, "Segment Addresses," for further
discussion of canonical frames.

2. Group .
A group is a collection of segments that fit

within 64K bytes of memory. The segments are
named to the group by the assembler, by the
compiler, or by you. You give the group name
in the assembly language program. For the
high-level 1languages (BASIC, FORTRAN, COBOL,
Pascal), the naming 1is <carried out by the
compiler.

The group is used for addressing segments in
memory. Each group is addressed by a common
canonical frame. This frame is the lowest
canonical frame of the segments that belong to
the group. It is a usual practice in assembler
and higher languages for the canonical frame
address to be contained in a segment register.
MS-LINK checks to see that the obiect modules
of a group meet the 64K-byte constraint.

3. Class

A class is a collection of segments. The
naming of segments to a class controls the
order and relative placement of segments in
memory. You give the class name in the
assembly language program. For the high-level
languages (BASIC, FORTRAN, COBOL, Pascal), the
naming is carried out by the compiler. The
segments are named to a class at compile time
or assembly time.

The segments of a class are loaded into memory
contiguously. The segments are ordered within
a class in the order the Linker encounters the
segments in the object files. One class
precedes another in memory only if a segment



INTRODUCTION

Page 1-5

for the first class precedes all segments for
the second <class in the input to MS-LINK.
Classes may be loaded across 64K-byte
boundaries. Groups may span classes.

4. Alignment

5. Combine Type

Alignment refers to certain segment boundaries.
These can be byte, word, or paragraph
boundaries.

Byte Alignment: A segment can begin on any
byte boundary.

Word Alignment: The beginning address of a
segment must occur on an even address.

Paragraph Alignment: The beginning address
of a segment must occur on a segment
(16-byte) boundary.

v

A combine type is an attribute of a segment;
it tells the Linker how to combine segments of
a like name or it relays other information

-about the properties of a segment. Combine

types are: stack, public, private, and common.
The way MS-LINK arranges these combine types is
discussed in the next section.






CHAPTER 2

MS-LINK TECHNICA!, INFORMATION

2.1 HOW MS-LINK COMBINRS AND ARRANGES SEGMENTS

MS-LINK works with four combine types, which are declared in
the source module for the assembler or compiler: private,
public, stack, and common. The memory combine type
available in Microsoft's  Macro Assembler is processed the
same as public combine type. MS-LINK does not automatically
place memory combine type as the highest segments {(as
defined in the Intel standard).

MS-LINK arranges these combine types as follows:

Private
0 Private segments are loaded separately
A A and remain separate. They may be
physically (but not logically) con-
, tiguous even if the segments have the
At A' |0 same name. Each private segment has
its own canonical frame.

Public and Stack
0 Public and stack segments of the

A same name and class name are loaded
contiguously. Offset is from the
—A— beginning of the first segment loaded
. through the last segment loaded.
A -There is only one canonical frame for

all public segments of the same name
and class name. Stack and memory com-
bine types are treated the same as
public. However, the Stack Pointer

is set to the last address of the
first stack segment.



MS-LINk TECHNICAL INFORMATION Page 2-~-2

Common

0 Common segments of the same name and
A class name are loaded overlapping one
another. There is only one canonical
frame for all common segments of the
same name. The length of the common
area is the length of the longest
segment.

Al

Placing segments in a group in the assembler provides offset
addressing of items from a single canonical frame for all
segments in that group.

DS :DGROUP-—->XXXX0H..........0 -- relative offset
Any number of > A
other segments B
may intervene ------=-—§1————F00 An operand of
between segments ) c DGROUP:FOO in assembly
of a group. Thus, language returns the
the offset of FOO offset of FOO from the
may be greater than beginning of the first
the size of segments segment (segment A
in the group combined, here).

but no larger than 64K.

Segments are partitioned by declared class names. The
Linker loads all the segments belonging to the first class
name encountered, then loads all the segments of the next
class name encountered, and so on until all classes have
been loaded.

If your program contains: They will be loaded as:

A SEGMENT 'F00' 'FOO'
B SEGMENT 'BAZ' A
C SEGMENT 'BAZ' E
D SEGMENT 'Z00' i 'BAZ’
E SEGMENT 'F0O' B

. C

'zool

D



MS-LINK TECHNICAL INFORMATION Page 2-3

If you are writing assembly language programs, Yyou can
control the order of classes in memory by writing a dummy
module and 1listing it first after the MS-LINK Object
Modules: prompt. The dummy module declares segments into
classes in the order you want the classes loaded.

WARNING

Do not use this method with
BASIC, COBOL, FORTRAN, or
Pascal programs. Allow the
compiler and the Linker to
perform their tasks in the
normal way.

Example:
A SEGMENT 'CODE'
A ENDS
B SEGMENT ‘'CONST'
B ENDS
C SEGMENT 'DATA'
C ENDS
D SEGMENT STACK 'STACK'
D ENDS
E SEGMENT 'MEMORY’
E ENDS

Make sure you declare all classes to be used in your program
in this module. If you do not, you lose absolute control
over the ordering of classes.

Also, if you want memory combine type to be 1loaded as the
last segments of your program, you can use this method.
Simply add MEMORY between SEGMENT and 'MEMORY' in the E
segment 1line above. Note, however, that these segments are
loaded last only because you imposed this control on them,
not because of any inherent capability in the Linker or
assembler operations.



MS-LINK TECHNICAL INFORMATION Page 2-4

2.2 SEGMENT ADDRESSES

The 8086 must be able to address all segments in memory.
Any 20-bit number can be addressed. The 8086 represents
these numbers as two 16-bit numbers; for example, HEX F:12.
The F represents a canonical frame address and the 12 is the
offset. The canonical frame address is the largest frame
address or segment address that can contain the segment. An
offset is the segment's location, offset from the beginning
of the canonical frame.

The Linker recognizes a segment by its canonical frame
address and its offset within the frame.

To convert the segmented address F:12 to a 20-bit number,
shift the frame address left 4 bits, and add the offset.
Using the above example: :

FO
+ 12

F:12 = 102 (20-bit address)

2.3 HOW MS-LINK ASSIGNS ADDRESSES

To assign addresses to segments, MS-LINK:

1. Orders each segment by segment and class name.

2. On the basis of the alignment and size of each
segment (assuming they are contiguous), the Linker
assigns a frame address and an offset to each
segment. This information is used for resolving
relocatable references. The addresses start at
0:0.



MS-LINK TECHNICAL INFORMATION Page 2-5

2.4 RELOCATION FIXUPS

MS-LINK performs relocation fixups (i.e., resolves) on four
types of references in object modules:

Short
Near Self-Relative
Near Segment-Relative

Long

These references and the Linker's fixups are described in
the next sections. ’

2.4.1 Short References

Short references are all self-relative. The implication is

that the frame address of the target and source frames are

the same. MS-LINK will generate the fixup error message
Fixup offset exceeds field width

under the following conditions:

1. The target and source frame addresses are
different.

2. The target is more than 128 bytes before or after
the source frame address.

The resulting value of the short reference must fit into one
signed byte.

2.4.2 Near Self-Relative References

When near self-relative references are wused, the frame
address of the target and source frames are the same.
MS-LINK will generate the fixup error message under the
following conditions: '

1. The target and source frame addresses are
different.



MS-LINK TECHNICAL INFORMATION - Page 2-6

2. The target is more than 32K before or after the
source frame address.

The resulting value of the near self-relative reference must
fit into one signed word (16 bits).

2.4.3 Near Segment-Relative References

Given the target's canonical frame, another frame is
specified (via an ASSUME directive or the : operator in
assembly language; or via a high-level language
convention). The target must be addressable through the
canonical frame specified. MS-LINK will generate the fixup
error message under the following conditions:

1. The offset of the target within the specified frame
is greater than 64K or less than zero.

2. The beginning of the canonical frame of the target
is not addressable by the specified frame.

The resulting value of a near segment-relative reference
must be an unsigned 16-bit quantity.

2.4.4 Long References

Long references have a target and another frame (specified
by an ASSUME or by a high-level language). The target must
be addressable through the canonical frame specified.
MS-LINK will generate the fixup error message under the
following conditions:

1. The offset of the target within the specified frame
is greater than 64K or less than zero.

A

2., The beginning of the canonical frame of the target
is not addressable by the specified frame.

The resulting value of a long reference must be a frame
address and an offset.



MS-LINK TECHNICAL INFORMATION . Page 2-7

2.5 SAMPLE MS-LINK SESSION

The following example illustrates the type of information
that is displayed during an MS-LINK session.

In response to the MS-DOS prompt (>), the system responds
with the following messages and prompts. Answers to the
prompts are underlined. Note that pathnames are supported
under MS-DOS 2,0. Therefore, your answers to MS-LINK
prompts can be full pathnames instead of filenames.

Microsoft Object Linker V.2,00
(C) Copyright 1982 by Microsoft Inc. -

Object Modules [.0BJ]: IO SYSINIT
Run File [IO.EXE]:

List File [NUL.MAP]: IO ZEAP
Libraries [.LIB]: ;

Notes:

1. By specifying /MAP, you can get both a sorted
alphabetic listing and a sorted address listing of
public symbols.

2. By responding PRN to the List File: prompt, you
can redirect your output to the printer.

3. By specifying the /LINE switch, MS-LINK gives you a
listing of all line numbers for all modules. (Note
that the /LINE switch can generate a 1large volume
of output.)

4. By pressing <RETURN> in response to the Libraries:
prompt, an automatic library search is performed.

Once MS-LINK locates all libraries, the linker map dispiays

a list of segments in the order of their appearance within
the load module. The list might look like this:

Start Stop Length Name
00000H 009ECH 09EDH CODE
009FO0H 01166H 0777H SYSINITSEG

The information in the Start and Stop columns show$s the
20-bit hex address of each segment relative to location
zero. Location zero is the beginning of the load module.



Because the /MAP

MS-LINK TECHNICAL INFORMATION ' - Page 2-8

switch was wused, MS-LINK displays the
public symbols by name and value. For example:

ADDRESS PUBLICS BY NAME
009F:0012 BUFFERS

009F:0005 CURRENT_DOS_LOCATION
009F:0011 DEFAULT_DRIVE
009F:000B DEVICE_LIST
009F:0013 FILES

009F:0009 FINAL_DOS_LOCATION
009F:000F MEMORY_ SIZE
009F:0000 SYSINIT

ADDRESS PUBLICS BY VALUE
009F:0000 SYSINIT

009F:0005 CURRENT _DOS_LOCATION
009F:0009 FINAL_DOS_LOCATION
009F:000B DEVICE_LIST

009F : 000F MEMORY SIZE
009F:0011 DEFAULT DRIVE
009F:0012 BUFFERS

009F:0013 FILES

The addresses of the public symbols are in the

showing

frame:of fset

location relative to zero as the
beginning of the load module. In some cases, an entry may

look like this:
780:A2

This entry appears to be the address of a load module that
is almost one megabyte in size. Actually, the area being
referenced is relative to a segment base that is pointing to
a segment below the relative zero beginning of the load
module. This condition produces a pointer that has
effectively gone negative. .

When MS-LINK has completed processing, the following message
is displayed:

Program entry point at 0009F:0000



MS-LINK TECHNICAL INFORMATION Page 2-9

2.6 ERROR MESSAGES

All messages, except for the warning messages, cause the

MS-LINK
problem,

Messages
screen.
messages

session to end. After you locate and correct a
you must rerun MS-LINK.

appear in the List file and are displayed on the
If you direct the List file to CON, the error
will not be displayed on the screen.

MS-LINK error messages are described in Chapter 9 of the
MS-DOS User's Guide.







ADDENDUM to the Microsoft MS-DOS
Macro Assembler Manual

MS-LINK

NOTE

References in the Macro

Assembler Manual to the MS-DOS

User's Guide refer to this

addendum. You may want to
place this addendum before the

MS-LINK section in this

manual.




Page 3-2

1.0 DEFINITIONS

Some of the terms used in the MS-LINK section of this manual
are explained below to help you understand how MS-LINK
works. Generally, if you are 1linking object modules
compiled from BASIC, Pascal, or a high-level language, you
will not need to know these terms. If you are writing and
compiling programs in assembly language, however, you will
need to understand MS-LINK and the definitions described
below.

In MS5-DOS, memory can be divided into segments, classes, and
groups. Figure 1 illustrates these concepts.

Segment ]} Segment
4 S

Segment 8 | Segment 9 Segment 10

Segment 7

Segment 6

Memory<

Segment | Segment
15 16

Segment

11 Segment 14

Segment | Segment Eegmen;
20 21 22

Segment 17| Segment 18 | Segment 19

shaded area = a group (64K bytes addressable)

Figure 1. How Memory Is Divided



Page 3-3

Example:
Segment Class
Segment Name Name
Segment 1 PROG.1 CODE
Segment 2 PROG. 2 CODE
Segment 12 PROG.3 DATA

Note that segments 1, 2, and 12 have different segment names
but may or may not have the same segment class name.
Segments 1, 2, and 12 form a group, with a group address of
the lowest address of segment 1 (i.e., the lowest address in
memory) .

£ach segment has a segment name and a class name. MS-LINK
loads all segments into memory by class name, from the first
segment encountered to the last. All segments assigned to
the same class are loaded into memory contiguously.

During processing, MS-LINK references segments by their
addresses in memory (where they are located). MS-LINK does
this by finding groups of segments.

A group is a collection of segments that fit within a 64K
byte area of memory. The segments do not need to be
contiguocus to form a group (see Figure 1). The address of
any group 1is the lowest address of the segments in that
group. At link time, MS-LINK analyzes the groups, then
references the segments by the address in memory of that
group. A program may consist of one or more groups.

If you are writing in assembly language, you may assign the
group and class names in your program. In high-~level
languages (BASIC, COBOL, FORTRAN, Pascal), the naming is
done automatically by the compiler.



Page 3-4

2.0 PFPILES THAT MS-LINK USES
MS-LINK performs the following functions:
Works with one or more input files
Produces two output files
May create a temporary disk file
May be directed to search up to eight library files
For each type of file, you can give a three-part file
specification. The format of MS-LINK file specifications is
the same as that of a disk file:
[d:])<filename> [<.ext>)
where: d: 1is the drive designation. Permissible drive
designations for MS-LINK are A: through O:. The
colon is always required as part of the drive

designation.

filename is any leqal filename of one to eight
characters. i

.ext is a one-~ to three-character extension to the

filename. The period is always required as part of
the extension.

2.1 Input File Extensions

If no filename extensions are given in the input (object)
file specifications, MS-LINK will recognize the following
extensions by default:

.OBJ Object
.LIB Library

2.2 Output File Extensions

MS-LINK appends the following default extensions to the
output (run and list) files:

.EXE Run (may not be overridden)
.MAP List (may be overridden)



Page 3-5

2.3 VM.TMP (Temporary) File

MS-LINK uses available memory for the link session. If the
files to be linked create an output file that exceeds
available memory, MS-LINK will create a temporary file, name
it VM.TMP, and put it on the disk in the default drive. 1If
MS-LINK creates VM.TMP, it will display the message:

VM.TMP has been created.
Do not change diskette in drive, <d:>

Once this message has been displayed, you must not remove
the disk from the default drive until the link session ends.
If the disk is removed, the operation of MS-LINK will be
unpredictable, and MS-LINK might display the error message:

Unexpected end of file on VM,TMP

The contents of VM.TMP are written to the file named
following the Run File: prompt. VM.TMP is a working file
only and is deleted at the end of the linking session.

WARNING

Do not use VM.TMP as a
filename for any file. If you
have a file named VM.TMP on
the default drive and MS-LINK
needs to create a VM.TMP file,
MS~LINK will delete the VM.TMP
already on disk and create a
new VM.TMP, Thus, the
contents of the previous
VM.TMP file will be lost.



Page 3-6

3.0 HOW TO START MS-LINK

MS-LINK requires two types of input: a command to start
MS-LINK and responses to command prompts. In addition,
sevén switches control MS-LINK features., Usually, you will
type all the commands to. MS-LINK on the terminal keyboard.
As an option, answers to the command prompts and any
switches may be contained in a response file. Command
characters can be used to assist you while giving commands
to MS-LINK.

MS-LINK can be started in any of three ways. The first
method is to type the commands in response to individual
prompts. In the second method, you type all commands and
switches on the 1line wused to start MS-LINK. To start
MS-LINK by the third method, you must create a response file
that .contains all the necessary commands, and then tell
MS-LINK where that file is when you start MS-LINK.

Summary of Methods  to Start MS-LINK

F I Ittt T it P i X ittt ittt xi ittt it - 3+t %41
Method 1 LINK
Method 2 LINK <filenames>[/switches]
Method 3 LINK @<filespec>

i1 1ttt 1 -t s A 2t i 2 it i -+ 1 ¢ 1 F 5 2+ 1 1 T 1 2 LT ET



Page 3-7

3.1 Method 1: Prompts
To start MS-LINK with Method 1, type:

LINK

MS-LINK will be loaded into memory. MS-LINK will then
display four text prompts that appear one at a time. You
answer the prompts to command MS-LINK to perform specific

tasks.

At the end of each line, you may type one or more switches,
preceded by the switch character, a forward slash (/).

The command prompts are summarized below.

PROMPT RESPONSES

Object Modules [.OBJ]}: List .0BJ files to be
linked. They must be
separated by blank spaces
or plus signs (+). If a
plus sign is the last
character typed, the
prompt will reappear.
There 1is no default; a
response is required.

Run File [.EXE]: Give filename for
executable object code,
The default is

first-object-filename.EXE.
(You cannot change the
output extension.)

List File [NUL.MAP]: Give filename for listing.
The default is NUL.MAP.

Libraries {[.LIB]: List filenames to be
searched, separated by
blank spaces or plus signs
(+). If a plus sign is
the last character typed,
the prompt will reappear.
The default is to search
for default 1libraries in
the object modules.
(Extensions will be
changed to .LIB.)



Page 3-8

3.2 Method 2: Command Line

To start MS-LINK using Method 2, type all commands on one
line. The entries following LINK are responses to the
command prompts. The entry fields for the different prompts
must be separated by commas. Use the following syntax:

LINK <object-list>,<runfile>,<listfile>,<lib-list>[/switch]

where: object-list is a 1list of object modules,
separated by plus signs.

runfile is the name of the file that receives
the executable output.

listfile is the name of the file that receives

the listing.

lib-list is a list of 1library modules to be
searched.

/switch refers to optional switches, which may
be placed following any of the response entries
(just before any of the commas or after the
<lib-list>, as shown). :

To select the default for a field, simply type a second
‘comma with no spaces between the two commas.

Example:

LINK .
FUN+TEXT+TABLE+CARE/P/M, ,FUNLIST ,COBLIB.LIB

This command causes MS-LINK to be loaded; then the object
modules FUN.OBJ, TEXT.OBJ, TABLE.OBJ, and CARE.OBJ are
loaded. MS-LINK then pauses (as a result of using the /P
switch). MS-LINK 1links the object modules when you press
any key, and produces a global symbol map (the /M switch).
MS-LINK then defaults to the FUN.EXE run file; creates a
list file named FUNLIST.MAP; and searches the library file
COBLIB.LIB.



Page 3-9

3.3 Method 3: Response File
To start MS-LINK with Method 3, type:
LINK @<filespec>

where: filespec is the name of a response file. A response
file contains answers to the MS-LINK prompts (shown
in Method 1) and may also contain any of the
switches, When naming a response file, use of the
filename extension is optional. Method 3 permits
the command that starts MS-LINK to be entered from
the keyboard or within a batch file, without
requiring you to make any further responses.

To use this option, you must create a response file
containing several 1lines of text, each of which is the
response to an MS-LINK prompt. The responses must be in the
same order as the MS-LINK prompts discussed in Method 1. 1If
desired, a 1long response to the Object Modules: or
Libraries: prompt may be typed on several lines by using a
plus sign (+) to continue the same response onto the next
line.

Switches and command characters can be used in the response
file the same way as they are used for responses typed on
the terminal keyboard.

When the MS-LINK session begins, each prompt will be
displayed in order with the responses from the response
file. If the response file does not contain answers for all
the prompts (in the form of filenames, the semicolon command
character, or carriage returns), MS-LINK will display the
prompt which does not have a response, then wait for you to
type a legal response. When a 1legal response has been
typed, MS-LINK continues the link session.



Page 3-10

Example:

FUN TEXT TABLE CARE
/PAUSE/MAP

FUNLIST

COBLIB.LIB

This response file tells MS-LINK to 1load the four object
modules named FUN, TEXT, TABLE, and CARE. MS-LINK pauses to
permit you to swap disks before producing a public symbol
map (see discussion under /PAUSE in the "Switches" section
before using this feature). When you press any key, the
output files will be named FUN.EXE and FUNLIST.MAP. MS-LINK
will then search the library file COBLIB.LIB, and will use
default settings for the switches.



Page 3-11

4.0 COMMARD CHARACTERS
MS-LINK recognizes three command characters.

Plus sign Use the plus sign (+) to separate
entries and to extend the current line
in response to the Object Modules: and
Libraries: prompts. (A blank space
may ‘be used to separate object
modules.) To type a large number of
responses (each may be very long), type
a plus sign/<RETURN> at the end of the
line to extend it. 1If the plus
sign/<RETURN> is - the last entry
following these two prompts, MS-LINK
will prompt you for more module names.
When the Object Modules: or Libraries:
prompt appears again, continue to type
responses. When all the modules to be
linked and 1libraries to be searched
have been listed, be sure the response
line ends with a module name and a
<RETURN> and not a plus sign/<RETURN>.

Example:

Object Modules [.0BJ): FUN TEXT TABLE
CARE+<RETURN>

Object Modules [.OBJ]:
FOO+FLIPFLOP+JUNQUE+<RETURN>

Object Modules [.0BJ]: CORSAIR<RETURN>



Page 3-12

Semicolon To select default responses to the
remaining prompts, use a single semicolon
(;) followed immediately by a carriage
return at any time after the first prompt
(Run File:). This feature saves time and
overrides the need to press a series of
<RETURN> keys.

NOTE

Once the semicolon has been entered
(by pressing the <RETURN> key), you
can no longer respond to any of the
prompts for that 1link session.
Therefore, do not use the semicolon
to skip some prompts. To skip
prompts, use the <RETURN> key.

Example:

Object Modules [.OBJ)}: FUN TEXT TABLE
CARE<RETURN>
Run Module [FUN.EXE]: ;<RETURN>

No other prompts will appear, and MS-LINK
will wuse the default values (including
FUN.MAP for the list file).

<CONTROL-C> Use the <CONTROL-C> key to abort the 1link

session at any time. If you type an
erroneous response, such as the wrong
filename or an incorrectly spelled

filename, you must press <CONTROL-C> to
exit MS-LINK, then you must restart
MS-LINK. If the error has been .typed but
you have not pressed the <RETURN> key, you
may delete the erroneous characters with
the backspace key, but for that line only.



Page 3-13

5.0 MS-LINK SWITCHES

The seven MS-LINK switches control various MS-LINK
functions. Switches must be typed at the end of a prompt
response, regardless of which method is used to start
MS-LINK. Switches may be grouped ‘at the end of any
response, or may be scattered at the end of several. If
more than one switch is typed at the end of a response, each
switch must be preceded by a forward slash (/).

All switches may be abbreviated. The only restriction is
that an abbreviation must be sequential from the first
letter through the last typed; no gaps or transpositions
are allowed. For example:

Legal Illeqal

/D /DSL

/DS /DAL

/DSA /DLC

/DSALLOCA /DSALLOCT
/DSALLOCATE

Using the /DSALLOCATE switch tells MS-LINK to
load all data at the high end of the Data
Segment. Otherwise, MS-LINK loads all data at
the 1low end of the Data Segment. At runtime,
the DS pointer is set to the lowest possible
address to allow the entire DS segment to be
used. Use of the /DSALLOCATE switch in
combination with the default load low (that
is, the /HIGH switch is not used) permits the
user application to dynamically allocate any
available memory below the area specifically
allocated within DGroup, yet to remain
addressable by the same DS pointer. This
dynamic allocation is needed for Pascal and
FORTRAN programs.

NOTE

Your application program may
dynamically allocate up to 64K bytes
(or the actual amount of memory
available) 1less the amount allocated
within DGroup.



/HIGH

Page 3-14

Use of the /HIGH switch causes MS-LINK to
place the run file as high as possible in
memory. Otherwise, MS-LINK places the run
file as low as possible..

IMPORTANT

Do not use the /HIGH switch with
Pascal or FORTRAN programs.

/LINENUMBERS

/MAP

The /LINENUMBERS switch tells MS-LINK to
include in the list file the line numbers and
addresses of the source statements in the
input modules. Otherwise, line numbers are
not included in the list file. -

NOTE

Some compilers produce object modules
that do not contain 1line number
information. In these cases, of
course, MS-LINK cannot include line
numbers.

/MAP directs MS-LINK to 1list all public
(global) symbols defined in the input modules.
If /MAP is not given, MS-LINK will 1list only
errors (including undefined globals).

The symbols are listed alphabetically at the
end of the 1list file. For each symbol,
MS-LINK lists its value and its segment:offset
location in the run file.



Page 3-15

/PAUSE
The /PAUSE switch causes MS-LINK to pause in the
link session when the switch is encountered.
Normally, MS-LINK performs the linking session from
beginning to end without stopping. This switch
allows the user to swap disks before MS-LINK
outputs the run (.EXE) file.
‘When MS-LINK encounters the /PAUSE switch, it
displays the message:
About to generate .EXE file
Change disks <hit any key>
MS-LINK resumes processing when you press any key.
CAUTION
Do not remove the disk which
will receive the list file, or
the disk used for the VM.TMP
file, if one has been created.
/STACK: <number>

number represents any positive numeric value (in
hexadecimal radix) up to 65536 bytes. If a value
from 1 to 511 is typed, MS-LINK will use 512, If
the /STACK switch is not used for a link session,
MS-LINK will calculaté the necessary stack size
automatically.

All compilers and assemblers should provide
information in the object modules that allow the
linker to compute the required stack size.

At least one object (input) module must contain a
stack allocation statement. If not, MS-LINK will
display the following error message:

WARNING: NO STACK STATEMENT



/NO

Page 3~16

/NO is short for NODEFAULTLIBRARYSEARCH. This
switch tells MS-LINK to not search the default
(product) libraries in the object modules. For
example, if you are 1linking object modules in
Pascal, specifying the /NO switch tells MS-LINK to
not  automatically search the library named
PASCAL.LIB to resolve external references.



Page 3-17

6.0 ERROR MESSAGES

All errors cause the link session to abort. After the cause
has been found and corrected, MS-LINK must be rerun. The
following error messages are displayed by MS-LINK:

ATTEMPT TO ACCESS DATA OUTSIDE OF SEGMENT BOUNDS, POSSIBLY

BAD OBJECT MODULE
There is probably a bad object file.

BAD NUMERIC PARAMETER
Numeric value is not in diqits.

CANNOT OPEN TEMPORARY FILE
MS-LINK is unable to create the file VM.TMP because
the disk directory is full. 1Insert a new disk. Do
not remove the disk that will receive the List.MAP
file.

ERROR: DUP RECORD TOO COMPLEX
The DUP record in the assembly language module is
too complex. Simplify the DUP record in your
assembly language program.

ERROR: FIXUP OFFSET EXCEEDS FIELD WIDTH
An assembly 1language instruction refers to an
address with a short instruction instead of a long
instruction. Edit your assembly language source
and reassemble.

INPUT FILE READ ERROR
There is probably a bad object file.

INVALID OBJECT MODULE
An object module(s) 1is incorrectly formed or
incomplete (as when assembly is stopped in the
middle).

SYMBOL DEFINED MORE THAN ONCE
MS-LINK found two or more modules that define a
single symbol name.

PROGRAM SIZE OR NUMBER OF SEGMENTS EXCEEDS CAPACITY OF

LINKER
The total size may not exceed 384K bytes, and the

number of segments may not exceed 255.



Page 3-18

’

REQUESTED STACK SIZE EXCEEDS 64K
Specify a size greater than or equal to 64K bytes
with the /STACK switch.

SEGMENT SIZE EXCEEDS 64K
64K bytes is the addressing system limit.

SYMBOL TABLE CAPACITY EXCEEDED ,
Very many and/or very long names were typed,
exceeding the limit of approximately 25K bytes.

TOO MANY EXTERNAL SYMBOLS IN ONE MODULE
The limit is 256 external symbols  per module.

TOO MANY GROUPS
The limit is 10 groups.

TOO MANY LIBRARIES SPECIFIED
The limit is 8 libraries.

TOO MANY PUBLIC SYMBOLS
The limit is 1024 public symbols.

TOO MANY SEGMENTS OR CLASSES
The 1limit 1is 256 (segments and classes taken
together).

UNRESOLVED EXTERNALS: <list>
The external symbols listed have no defining module
among the modules or library files specified.

VM READ ERROR
This is a disk error; it is not caused by MS-LINK.

WARNING: NO STACK SEGMENT
None of the object modules specified contains a
statement allocating stack space, although the
/STACK switch was specified.

WARNING: SEGMENT OF ABSOLUTE OR UNKNOWN TYPE
There is a bad object module, or an attempt has
been made to 1link modules ‘that MS-LINK cannot
handle (e.g., an absolute object module).



Page 3-19

WRITE ERROR IN TMP FILE
No more disk space remains to expand the VM.TMP
file. :

WRTTE ERROR ON RUN FILE
Usually, there is not enough disk space for the run
file.






Page Index-1l

INDEX

Alignment . . . . . . . « .« . 1-5

Canonical frame address . . . 2-4
ClaSS « ¢ « o o « o o o s+ o o« 1-4
Class NAMES .« « o o o o & « o« 2=2
Combine type . . « ¢« « « « + o 1=5

Error messages . . + « « o+ o o 2=9
Executable image ., . . . . . . 1-2 to 1-3

FiXup error . . . « « « o« s « 2=5
GIOUP ¢« + « « = o s o o o + o« 1-4
How MS-LINK combines and arranges segmenﬁs 2-1
Library files . .
List file ., . . .

Long addresses .
Long references

s e o o
o o o
o s o o
o o o o

-
.
.
.

Near segment-relative references 2-6
* Near self-relative references 2-5

Offset . . . . ¢« ¢« ¢« ¢ ¢« o« o« o 2-4
Offset addressing . . . . . . 2-2
Overviews

MS-LINK operation . . . . . 1=2

Pathnames . . . . = « « « . . 2=7
Public symbols . . . . . . . . 2-8

Relocation fixups . . . . . . 2-5

long . & . ¢ ¢ 4 ¢« s e« 4o o . 2-5

near segment-relative . . . 2-5

near self-relative . . . . . 2-5

short . . . . ¢« ¢« ¢« ¢« &« « . 2=5
Run file . . . . . . . ¢« « « « 1-1 to 1-3
Sample MS-LINK session . . . . 2-7
Segment . . . . ¢ ¢ s s . o o 1=4
Segment addresses . . . . . . 2-4
short references . . . . . . . 2-5

VM.TMP & . . & ¢ ¢ ¢ o o o« « o 1=2






Microsoft. LIB

Library Manager

for 8086 and 8088 Microprocessors

Microsoft Corporation






System Requirements

The Microsoft Linker Utility requires:

50K bytes of memory minimum:
40K bytes for code and data
10K bytes for run space

Disk drive(s):
1 disk drive if and only if output is sent to the

same physical disk from which the input was taken,
MS-LINK does not allow time to swap disks during
operation on a one-drive configuration. Therefore,
two disk drives is a more practical configuration.



S



Contents

Chapter 1

Chapter 2

Chapter 3

Index

INTRODUCTION

Features of MS-LIB 1-1
Overview of MS-LIB Operation 1-2

RUNNING MS-LIB

How to Start MS-LIB 2-1
Method 1: Prompts 2-2
Method 2: Command Line 2-3
Method 3: Response File 2-5
Command Prompts 2-7
Command Characters 2-9
+ - append 2-9
- = delete 2-9
* - extract 2-10
;s - default remaining prompts 2-10
& - continuation 2-11
CONTROL-C -~ program abort 2-12

ERROR MESSAGES






CHAPTER 1

INTRODUCTION

1.1 FEATURES OF MS-LIB
Microsoft LIB is a library manager. With MS-LIB, you can:

Create and modify library files that are used with
Microsoft's MS-LINK linker utility

Add object files to a library
Delete modules from a library

Extract modules from a library and place the
extracted modules into separate object files

MS-LIB can create either general or special libraries, for a
variety of programs or for specific programs. With MS-LIB
you can create a library, or you can create a library for
one program only. The result is fast linking and more
efficient execution for a language compiler or for one
program.

You can modify individual modules within a 1library by
extracting the modules, making changes, then adding the
modules to the library again. You can also replace an
existing module with a different module or with a new
version of an existing module.

The command scanner in MS-LIB is also used in Microsoft
MS-LINK, MS-Pascal, MS-FORTRAN, and other 16-bit Microsoft
products. If you have used any of these products, using
MS-LIB should be familiar to you. Command syntax is
straightforward, and MS-LIB prompts you for commands that
you have not supplied.



INTRODUCTION ' Page 1-2

1.2 OVERVIEW OF MS-LIB OPERATION
MS-LIB performs five library manager functions:
Deletes modules

Extracts a module and places it in a separate
object file

Appends an object file as a module of a library

Replaces a module in the library file with a new
module

Creates a library file

During each library session, MS-LIB deletes or extracts
modules, then appends new ones to.the library file. MS-LIB
reads each module into memory, checks it for consistency,
and writes it back to the file. If you delete a module,
MS-LIB reads that module into memory but does not write it
back . to the file, When MS-LIB writes back the next module
to be retained, it places that module at the end of the last
module written. This procedure effectively "closes up" the
disk space to keep the library file from growing too large.

When MS-LIB has read the library file, it appends any new
modules to the end of the file. Finally, MS-LIB creates the
index, which MS-LINK uses to find modules and symbols in the
library file. MS-LIB will output a cross-reference listing
of the PUBLIC symbols in the library, if you request such a
listing. )

Example:
LIBx PASCAL+HEAP-HEAP;

This command first deletes the library module HEAP from the
library file, then adds the file HEAP.OBJ as the last module
in the library. Note that the replace function 1is simply
the delete-append functions in succession. Also note that
you can specify delete, append, or extract functions in any
order. This order of execution prevents confusion in MS-LIB
when a new version of a module replaces a version in the
library file.

The following figure illustrates the MS-LIB operation.



INTRODUCT ION Page 1-3

Consistency MS-LIB A B c D
check only

\")
Delete + l ‘
Module C;
Module D I l
- A B D
written to MS-LIB Q l;jc/ b
space of ;
Module C
E
.OBJ (“'1 I
Append ‘
object file
E.OBJ as new
Module E at MS-LIB A B é] E]
~end of
library file ]

[




INTRODUCTION

Extract
Module E;
place in a
separate
object fil
return to
library

Page 1-4

L

MS-LIB
e;

;

| I—

.0OBJ

E(*)

Consistency

(Ll

check, the
output a
cross-
reference
listing of
PUBLIC '
symbols

MS-LIB

Figure 1. MS-LIB Operation

D{ CROSSLST




CHAPTER 2
RUNNING MS-LIB

Running MS-LIB requires two types of commands: a command to
start MS-LIB and answers to command prompts. Usually you
will type all the commands to MS~LIB on a command line or in
response to MS-LIB prompts. As an option, answers to the
command prompts may be .contained in a response file.
Command characters can be used to assist you while giving
commands to MS-LIB.

2.1 HOW TO START MS-LIB

There are three ways to start MS-LIB. With the first
method, you type the commands as answers to individual
prompts. By the second method, you type all commands on the
line used to start MS-LIB. As a third option, you can
create a response file that contains all the necessary
commands. ‘

Summary of Methods to Start MS-LIB

!
] Method 1 LIB
i Method 2 LIB <library><operations>,<listing>

Method 3 LIB @<filespec>



RUNNING MS-LIB Page 2-2

2.1.1 Method 1: Prompts
To start MS-LIB with method 1, type:
LIB
MS-LIB will be loaded into memory. MS-LIB will then display
three text prompts that appear one at a time. You answer

the prompts, commanding MS-LIB to perform specific tasks.

The command prompts are summarized here and described more
fully in the Section 2.2, "Command Prompts."

Summary of Command Prompts

PROMPT RESPONSES

Library File: List filename of library to be
manipulated. (The default 1is the
filename extension .LIB.)

Operation: List command character (s) followed by
module name(s) or object filename(s).
(The default is no changes. The
default object filename extension is
.OBJ.)

List file: List filename for a cross-reference

listing file. (The default is NUL;
i.e., no file.) .

NOTE

The distinction between an
object file and a module (or
object module) 1is that the
file possesses a drive
designation (even if it is the
default drive) and a filename
extension. Object modules
possess neither of these.



RUNNING MS-LIB Page 2-3

2.1.2 Method 2: Command Line

Type:

where:

LIB <library><operations>,<listing>

The entries following LIB are rtesponses to the
command prompts. The <library> and <operations>
fields and all operations entries must be separated
by one of the command characters plus, minus, or
asterisk (+, -, or ¥*). If a cross-reference
listing is wanted, the name of the file must be
separated from the last operations entry by a
comma.

<library> is the name of a 1library file. MS-LIB
assumes that the filename extension ig .OBJ, which
you may override by specifying a different
extension. If the filename given for the <library>
field does not exist, MS-LIB will prompt you:

Library file does not exist. Create?

Type Yes to create a new library file. Type No to
abort the library session.

<operations> is a command to delete a module,
append an object file as a module, or extract a
module as an object file from the 1library file.
Use the three command characters plus, minus, and
asterisk to direct MS~-LIB to append, delete, or
extract modules and object files.

<listing> is the name of the file you want to
receive the cross-reference 1listing of PUBLIC
symbols in the modules in the library. The list is
compiled after all module manipulation has taken
place.

If you type a library filename followed immediately
by a semicolon, MS-LIB will read through the
library file and perform a consistency check. No
changes will be made to the modules in the library
file.

I1f you type a library filename followed immediately
by a comma and a listing filename, MS-LIB will
perform its consistency check of the library file,
then produce the cross-reference listing file.

Examples:

LIB PASCAL-HEAP+HEAP;



RUNNING MS-LIB : " Page 2-4

This example causes MS-LIB to delete the module
HEAP from the library file PASCAL.LIB, then append
the object file HEAP.OBJ as the last module of
PASCAL.LIB (the module will be named HEAP). The
MS~LIB semicolon command character indicates that
MS-LIB should use the default responses for the
remaining prompts. Refer to Section 2.3, "Command
Characters," for more information.

LIB PASCAL

This example causes MS-LIB to perform a consistency
check of the library file PASCAL.LIB. No other
action is performed. '

LIB PASCAL;PASCROSS.PUB

This example causes MS-LIB to perform a consistency
check of the library file PASCAL.LIB, then output a
cross-reference listing file named PASCROSS.PUB.

If you have many operations to perform during a library
session, wuse the ampersand (&) command character to extend
the line so that you can type additional object filenames
and module names. Be sure to always include one of the
command characters for operations (+, -, *) before the name
of each module or object filename.



RUNNING MS-LIB Page 2-5

2.1.3 Method 3: Response File

Type:

where:

LIB @<filespec>

<filespec> is the name of a response file. A
response file contains answers to the MS-LIB
prompts. Method 3 permits you to conduct the
MS-LIB session without user responses to the MS-LIB
prompts.

IMPORTANT

Before using method 3 to start MS-LIB, vyou
must first create a response file.

A response file has one text line for each prompt.
Responses must appear in the same order as the
command prompts appear. :

Use command characters in the response file the
same way you would for responses typed on the
keyboard.

When the library session begins, each prompt will
be displayed with the responses from the response
file. If the response file does not contain
answers for all the prompts, MS-LIB will use the
default responses. (No changes will be made to the
modules currently in the library f£file, and no
cross-reference listing file will be created.)

I1f you type a library filename followed immediately
by a semicolon, MS-LIB will read through the
library file and perform a consistency check. No
changes will be made to the modules in the library
file.

If you type a library filename, a carriage return,
a comma, and then a 1list filename, MS-LIB will
perform its consistency check of the library file,
then produce the cross-reference listing file.



RUNNING MS-LIB

Example:

PASCAL
+CURSOR+HEAP-HEAP*FOIBLES
CROSSLST

Page 2-6

This response file causes MS-LIB to delete the
module HEAP from the PASCAL.LIB 1library file;

extract the module FOIBLES and place it

in an

object file named FOIBLES.OBJ; then append the
object files CURSOR.OBJ and HEAP.OBJ as the last
two modules in the library. Then, MS-LIB will
create a cross-reference file named CROSSLST.



RUNNING MS-LIB Page 2-7

2.2 COMMAND PROMPTS

You command MS-LIB by typing responses to three text
prompts. After you have typed your response to the current
prompt, the next appears. When the 1last prompt has been
answered, MS-LIB performs its library management functions
without' further command. You will see the operating system
prompt when "MS-LIB has finished the 1library session
successfully. If the 1library session 1is unsuccessful,
MS-LIB will display the appropriate error message.

MS-LIB prompts you for the name of the 1library file, the
operation(s) you want to perform, and the name you want to
give to a cross-reference listing file (if any).

Command Prompts

Library File:

Type the name of the library file that you want to
manipulate. MS-LIB assumes that the filename
extension is .LIB. You can override this
assumption by giving a filename extension when you
type the 1library filename. Because MS-LIB can
manage only one library file at a time, only one
filename is allowed in response to this prompt.
Additional responses, except the semicolon command
character, are ignored.

If you type a 1library filename and follow it
immediately with a semicolon command character,
MS-LIB will perform a consistency check only, then
return to the operating system. Any errors in the
file will be displayed.

1f the filename you type does not exist, MS-LIB
will display. the prompt:

Library file does not exist. Create?

You must type either Yes or No.



RUNNING MS-LIB Page 2-8

Operation:
Type one of the three command characters for
manipulating modules (+, - *); followed

immediately (no space) by the module name or the
object filename. The plus sign appends an object
file as the last module in the 1library file (see
further discussion under the description of plus
sign in the next section). The minus sign deletes
a module from the library file. The asterisk
extracts a module from the library and places it in
a separate object file, with the filename taken
from the module name and a filename extension .0OBJ.

When you have: a large number of modules to
manipulate (more than can be typed on one line),
type an ampersand (&) as the last character on the
line. MS-LIB will repeat the Operation: prompt,
which permits you to type additional module names
and object filenames.

MS-LIB allows you to perform operations on modules
and object files in any order you want.

More information about modules 1is given in the
description of each command character.

List file:
If you want a PUBLIC symbols cross-reference list
for the modules in the library file, type the name
of a f£ile in which you want MS-LIB to place the
cross~-reference listing. If you do not type a
filename, no cross-reference listing is generated.

The response to the List file: prompt 1is a file
specification. You can specify a drive (or device)
designation and a filename extension with the
filename. The 1list file is not given a default
filename extension. If you want the file to have a
filename extension, you must specify it when typing
the filename.

The cross-reference listing €file contains two
lists. The first list is an alphabetical listing
of all PUBLIC symbols. Each symbol name is
followed by the name of its module. The second
list is an alphabetical list of the modules in the
library. Under each module name is an alphabetical
listing of the PUBLIC symbols in that module.



RUNNING MS-LIB Page 2-9

2.3 COMMAND CHARACTERS

MS-LIB provides six command characters. Three of the
command characters are required in response to the
Operation: prompt. The other three command characters
provide you with helpful commands to MS-LIB.

Plus sign Use the plus sign (+), followed by an
object filename, to append the object
file as the last module in the 1library
named in response to the Library File:
prompt. When MS-LIB sees the plus
sign, it assumes that the filename
extension is .OBJ. You may override
this assumption by specifying a
different filename extension.

MS-LIB strips the drive designation and
the extension from the object file
specification, leaving only the
filename. For example, if the object
file to be appended as a module to a
library is

B:CURSOR.0OBJ
a response to the Operation: prompt of
+B:CURSOR.OBJ

will cause MS-LIB to strip off the
B: and the .0OBJ, leaving only CURSOR.
This becomes a module named CURSOR in
the library.

Minus sign Use the minus sign, followed by a
module name, to delete a module from
the library file. MS-LIB then  "closes
up" the disk space left empty by the
deletion. This cleanup action keeps
the library file from growing larger
than necessary. Remember - that new
modules, even replacement modules, are
added to the end of the file, not put
into space vacated by deleting modules.



RUNNING MS-LIB Page 2-10

Asterisk Use the asterisk, followed by a module
name, to extract the module from the
library file and place it into a
separate object file. The module will
still exist 1in the library. (The
extraction process copies the module to
a separate object file.) The module
name is used as the filename. MS-LIB
adds the default drive designation and
the filename extension .OBJ. For
example, if the module to be extracted
is

CURSOR
and the current default disk drive is

A:, a reponse to the Operation: prompt
of

*CURSOR

causes MS-LIB to extract the module
named CURSOR from the library file and
make it an object file with the file
specification of:

A:CURSOR.OBJ

The drive designation and filename
extension cannot be overridden. You
can, however, rename the file, giving a

new filename extension; and/or copy
the file to a new disk drive, giving a
new filename and/or filename

extension.

Semicolon Use a single semicolon (;), followed
immediately by a carriage return at ‘*any
time after responding to the first
prompt (i.e., from Library File: on),’
to select default responses to the
remaining prompts. This feature saves
time and overrides the need to answer
additional prompts.



RUNNING MS-LIB pPage 2-11

NOTE

Once the semicolon has been
typed, you can no longer
respond to any of the prompts
for that library session.
Therefore, do not use the
semicolon to skip over prompts.
To skip prompts, use carriage
return.

Example:

Library file: FUN
Operation: +CURSOR;

The remaining prompt will not appear,
and MS-LIB will use the default value
{no cross-reference file).

Amper sand Use the ampersand to extend the current
line. This command character is only
used 1in response to the Operation:
prompt. The number of modules you can
append is limited only by disk space.
The number of modules you can replace
or extract is also limited only by disk
space. The number of modules you can
delete is 1limited by the number of
modules in the library file.

The line length for a response to any
prompt is limited to the line length of
your system. For a large number of
responses to the Operation: prompt,
place an ampersand at the end of . a
line. MS-LIB will display the
Operation: prompt again, and then you
can type more responses. For example:

Library File: FUN
Operation: +CURSOR~-HEAP+HEAP*FO1BLES&
Operation: *INIT+ASSUME+RIDE;

MS-LIB will delete the module HEAP;
extract the modules FOIBLES and INIT
{creating two files, FOIBLES.OBJ and
INIT.OBJ); then append the object
files CURSOR, HEAP, ASSUME, and RIDE.
Note that MS-LIB allows you to type
your Operation: reponses in any order.
You may use the ampersand character as



RUNNING MS~LIB Page 2-12
many times as needed.

CONTROL-C Use <CONTROL-C> to abort the 1library
session at any time. 1If you type an
incorrect response, such as the wrong
filename or module name, or an
incorrectly spelled filename or module
name, Yyou must press <CONTROL-C> to
exit MS-LIB; then you must restart
MS-LIB. If the error has been typed
and you have not pressed the <RETURN>
key, you may delete the erroneous
characters for that line only.



RUNNING MS-LIB

Page 2-13

Summary of Command Characters

Character

+

CONTROL-C

Action

Appends an object file as the last
module

Deletes a module from the library

Extracts a module and places in an
object file

Use default responses to remaining
prompts : ’

Extends current physical line; repeats
command prompt

Aborts library session






CHAPTER 3
ERROR MESSAGES

The following are MS-LIB error messages:

<symbol> is a multiply defined PUBLIC. Proceed?
Cause: Two modules define the same public symbol.
You are asked to confirm the removal of the
definition of the old symbol.

Cure: Remove the PUBLIC declaration from one of
the object modules and recompile or reassemble.
If you respond No, the library will be left in
an indeterminate state.

Allocate error on VM.TMP
Cause: Out of disk space

Cannot create extract file .
Cause: No room in directory for extract file

Cannot create list file
Cause: No room in directory for library file

Cannot nest response file
Cause: @filespec in response (or indirect) file

MS-LIB cannot open VM.TMP
Cause: There is no room for VM.TMP in disk
directory

Cannot write library file
Cause: Out of disk space

Close error on extract file
Cause: Out of disk space

Error: An internal error has occurred
Contact Microsoft Corporation

Patal Error: Cannot open input file
Cause: You mistyped an object filename



ERROR MESSAGES Page 3-2

AFatal Error: Module is not in the library
Cause: You tried to delete a module that is not in
the library .

Input file read error
Cause: Bad object module or faulty disk

Invalid object module/library
.Cause: Bad object module and/or library

Library Disk is full
Cause: No more room on disk

Listing file write error
Cause: Out of disk space

No library file specified )
Cause: No response to Library File: prompt

Read error on VM.TMP
Cause: Disk not ready for read

Symbol table capacity exceeded
Cause: Too many public symbols (about 30K chars in

symbols)

Too many object modules
.Cause: More than 500 object modules

Too many public symbols
Cause: 1024 public symbols maximum

Write error on library/extract file
Cause: Out of disk space

Write error on VM.TMP
Cause: Out of disk space



INDEX

character)’
character)
character)
character)
character)

(command
(command
(command
(command
(command

1 4+ *m>
« e e e
“ e e s e
e e 0 e s
- L] . . L]

Command Characters

- e, s & o

1+ »2

CONTROL-C
Control-~C
Summary of .
Command Prompts
Library file .
List file . .
Operation . .
Summary of . .
Consistency check . . . . .
CONTROL-C (command character)
Control-C (command character)
Creating a new library . . . .

* & o s s o
e & o o o o o

® * 6 o ° s 6 & ¢ o e & o

e & o & o o ¢ o ¢ s o e s »
* e & o e o o

® s 8 & e+ 4 s o e e s s e .

@ 8 ® e % s e o e & o s o @

e 8 e o o ¢ 4 o o o s e o @

.
.
.
.
-
.
.

ECfror mesSSages . « o« o « ¢ o o

Library file (command prompt)
List file (command prompt) . .

Method 1 . . . . . . +« « « . &
Method 2 . . . . ¢« ¢ ¢ ¢ o o &
Method 3 . . . . . . . «. « . .

Operation (command
Overviews
MS-LIB operation . . . . . .

Response File . . .
Running MS-LIB . . . . . « .+ .

Starting
Method 1 . . . . . .
Method 2 . . . . . .
Method 3 . . . . . .
Summary of Methods .
Starting MS-LIBR . . .
Summary of methods to sta

¢ & o o »
* e e« o

e e & o o o

.
r

t

2-11,
2-10,
2-9,
2-9'
2-10,

2-13

2-13
2-13
2-13

2-13

2-9
2"11'
2-10,
2-9'
2-9,
2-13
2-12
2-13
2-13
2-7
2-2, 2
2-2, 2-
2-2, 2
2-2
2"3|
2-12
2-13
2-3'

2-13

2-13
2-13
2-13

3-1

2-2,
2-2,

2-7

NN Lo t;) NN N
- ~N ~ VW N
-

Nrun:w)n:m
- W N






Microsoft. CREF

Cross-Reference Utility

for 8086 and 8088 Microprocessors

Microsoft Corporation






System Requirements

The Microsoft CREF Cross-Reference Utility requires:

24K bytes of memory minimum:
14K bytes for code
10K bytes for run space

Disk drive(s): .
1 disk drive if and only if output is sent to the

same physical disk from which the input was taken.
The Microsoft CREF Cross-Reference Utility does not
allow time to swap disks during operation on a
one-drive configuration. Therefore, two disk
drives is a more practical configuration.






Contents

Chapter

Chapter

Chapter

Chapter

. Index

w

4.1
4.2
4.2.1
4.2.2

INTRODUCTION

Features of MS~-CREF 1-1
Overview of MS-CREF Operation 1-2

RUNNING MS-CREFP

How to Create a Cross—-Reference File
How to Start MS-CREF 2-2
Method 1: Prompts 2-3
Method 2: Command Line 2-4
Command Characters 2-6
Format of Cross-Reference Listings.
Example of Cross-Reference Listing

ERROR MESSAGES

FORMAT OF MS—-CREF COMPATIBLE FILES

MS~-CREF File Processing 4-1

Format of Source Files 4-2
Pirst Three Bytes 4-2
Control Symbols 4-2

2-6

2-7






CHAPTER 1

INTRODUCTION

1.1 FEATURES OF MS-CREF

The Microsoft CREF Cross-Reference Utility can help vyou in
debugging your assembly language programs. MS-CREF outputs
an alphabetical listing of all the symbols to a special file
created by vyour assembler. With this 1listing, you can
quickly locate all occurrences of any symbol in your source
program by line number.

The cross-reference listing produced by MS-CREF gives. you
symbol 1locations, speeding your search and allowing faster
debugging.

The MS-CREF listing is used with the symbol table produced
by your assembler.

The symbol table listing shows the value, type, and 1length
of each symbol. This information 1is needed to correct
erroneous symbol definitions or uses.



INTRODUCTION Page 1-2

1.2 OVERVIEW OF MS-CREF OPERATION

MS-CREF produces a file with cross-references for symbolic
names in your program.

First, you must create a cross-reference file with the
assembler. Then, MS-CREF converts this cross-reference file
(which has the filename extension .CRF) into an alphabetical
listing of the symbols in the file. The cross-reference
listing file is given the default filename extension .REF.

Beside each symbol in the listing, MS-CREF 1lists the line
numbers where the symbol occurs in the source program. The
line numbers are listed in ascending sequence. The 1line
number where the symbol is defined is indicated by a pound
sign (¥). . '



INTRODUCTION

Figure 1 illustrates the MS-CREF operation.

source
.ASM
9
listing
A bler ~CREF
ssemble _CRF MS E
L
listing
.REF

FOO 20 64 123% 145 ...
GAD 21 45% 49 120 ...

Figure 1. MS-CREF Operation

Page 1-3






CHAPTER 2
RUNNING MS-CREF

Running MS-CREF requires two types of commands: a command
to start MS-CREF and answers to command prompts. You type
all the commands to MS-CREF on a command line or in response
to MS-CREF prompts. Command characters can be used to
assist you while giving commands to MS-CREF.

Before you can use MS-CREF to create the cross-reference
listing, vyou must first create a cross-reference file using
your assembler. This step is described in the next section.

2.1 HOW TO CREATE A CROSS-REFERENCE FILE

A cross-reference file is created during an assembly
session. To create a cross-reference file, use the
Microsoft Macro Assembler and answer the fourth command
prompt with the name of the cross-reference file you want to
create.

The fourth assembler prompt is:
Cross-reference [NUL.CRF):

If you do not type a filename in response to this prompt, or
if you use the default response, the assembler will not
create a cross-reference file. Therefore, you must type a
filename if you want to create a cross-reference file.

You may also specify which drive or device you want the file
saved on, and the filename extension (if different from
.CRF). 1If you assign a  filename extension other than .CRF,
you must specify the filename extension when naming the file
in response to the first MS-CREF prompt. (Refer to Section
2.2, "How to Start MS-CREF," for a description of MS-CREF
prompts.)



RUNNING MS-CREF Page 2-2

You are now ready to use MS-CREF to convert the
cross-reference file produced by the assembler into a
cross-reference listing.

2.2 HOW TO START MS—CREF

MS-CREF may be started two ways. By the first method, you
type the commands as answers to individual prompts. By the
second method, you type all commands on the 1line wused to
start MS-CREF.

Summary of Methods to Start MS-CREF

B T L

Method 1 ' CREF
Method 2 CREF <crffile>,<listing>



RUNNING MS-CREF Page 2-3

2.2.1 Method 1l: Prompts
To start MS-CREF using prompts, type:
CREF

MS-CREF will be loaded into memory. Then, MS-CREF displays
two text prompts that appear one at a time. You answer the
prompts to command MS-CREF to convert a cross-reference file
into a cross-reference listing. .

Command Prompts

Cross reference [.CRF]:
Type the name of the cross-reference file you "want
MS~-CREF to convert to a cross-reference listing.
The filename is the mame you specified' when you
directed the assembler to produce the
cross-reference file. :

MS-CREF assumes that the filename extension is
.CRF. If you do not specify a filename extension
when you type the cross-reference filename, MS-CREF
will 1look for a file with the name you specify and
the filename extension .CRF. If your
cross-reference file has a different extension,
specify that extension when typing the filename.

Refer to Chapter 4, "Format of ' MS-CREF Compatible
Files,” for a description of what MS-CREF expects
to see in the cross-reference file. You will need
this information only if your cross~reference file
was not produced by a Microsoft assembler.

Listing {[crffile.REF]:
Type the name you want the cross-reference 1listing
file to have. MS-CREF will automatically give the
cross-reference 1listing the filename extension
<REF. .

If you want you cross-reference listing to have the
same filename as the cross-reference file but with
the filename extension .REF, simply press the
<RETURN> key when the Listing: prompt appears. If
you want your cross-reference listing file to be
named anything else, or to have any other filename
extension, you must type a response following the
Listing: prompt. :

If you want the listing file placed on a drive or
device other than the default drive, specify that
drive or device when typing your response to the
Listing: prompt.



RUNNING MS-CREF Page 2-4

2.2.2 HMethod 2: Command Line
To start MS-CREF using the command line, type:
CREF <crffile>,<listing>

MS-CREF will be loaded into memory. Then MS-CREF converts
your cross-reference file into a cross-reference listing.

The entries following CREF are responses to the command
prompts. The <crffile> and <listing> fields must be
separated by a comma.

where: <crffile> is the name of the cross-reference file
produced by your assembler. MS-CREF assumes that
the filename extension is .CRF. You may override
this default by specifying a different extension.
If the file named for the <crffile> does not exist,
MS-CREF will display the message:

Fatal 1/0 Error 110
in Pile: <crffile>.CRF

MS-CREF will be aborted and the operating system
prompt will appear.

<listing> is the name of the file you want to
concain the cross-reference listing of symbols in
your program.

To select the default filename and extension for
the 1listing file, type a semicolon after the
<crffile> name. Refer to the "Command Characters”
section for more information on how to use the
semicolon.

Examples:
CREF FUN;
This example causes MS-CREF to process the

cross-reference file FUN.CRF and to produce a
listing file named FUN.REF.



RUNNING MS-CREF Page 2-5

To give the 1listing file a different filename,
extension, or destination, simply specify it when
you type the command line.

CREF FUN,B:WORK.ARG

This example causes MS-CREF to process the
cross~reference file named RUN.CRFP and to produce a
listing file named WORK.ARG, which will be placed
on the disk in drive B:,



RUNNING MS~CREF Page 2-6

2.3 COMMAND CHARACTERS
MS-CREF provides two command characters.

Semicolon Use a single semicolon (), followed
immediately by a carriage return, at any
time after responding to the Cross
reference: prompt to select the default
response to the Listing: prompt. This
feature saves time and overrides the need to
answer the Listing: prompt.

If you use the semicolon, MS-CREF gives the
listing file the filename of the
cross-reference file and the default
filename extension .REF.

Example:
Cross reference [.CRF]: FUN;

MS-CREF will process the cross-reference
file named FUN.CRF and output a listing file
named FUN.REF.

CONTROL-C Use <CONTROL-C> at any time to abort the
MS-CREF session. If you make a mistake (for
example, typing the wrong filename or
incorrectly spelling a filename), you must
press <CONTROL-C> to exit MS-CREF, and then
restart MS-CREF. If the error has been
typed but you have not pressed the <RETURN>
key, you may delete the erroneous
characters, but for that line only.

2.4 FORMAT OF CROSS—REFERENCE LISTINGS

The cross-reference listing is an alphabetical list of all
the symbols in your program. Each page begins with the
title of the program or program module. Then the symbols
are listed. Following each symbol name is a list of the
line numbers where the symbol occurs in your program. The
line number for the definition has a pound sign (#) appended
to it.

An example of a cross-reference listing appears in the next
section.



RUNNING MS-CREF Page 2-7

2.4.1 Example Of Cross-Reference Listing

MS-CREF (vers no.) (date)

ENTX PASCAL entry for initializing programs<--comes from
) TITLE directive

Symbol Cross-Reference (# is definition) Cref-1

AAAXQQ . . . . 37% 38

BEGHQQ . . . . 83 84% 154 176
BEGOQQ . . . . 33 162

BEGXQQ . . . . 113  126% 164 223
CESXQQ . . . . 97 994 129
CLNEQQ . . . . 67 684

CODE . . . . . 37 182

CONST. . . . . 104 104 105 110
CRCXQQ . . . . 93 94% 210 215
CRDXQQ . . . . 95 968 216
CSXEQQ . . . . 65 668 149
CURHQQ . . . . 85 86% 155

DATA . . . . . 64% 64 100 110
DGROUP . . . . 1104 111 111 111 127 153 171 172
DOSOFF . . . . 98% 198 199
DOSXQQ . . . . 184 2044 219
ENDHQQ . . . . 87 884 158
ENDOQQ . . . . 33% 195

ENDUQQ . . . . 31% 197

ENDXQQ . . . . 184  194%

ENDYQQ . . . . 32§ 196

ENTGQQ . . . . 304 187

ENTXCM . . . . 182% 183 221
FREXQQ . . . . 169 1704 178
HDRFQQ . . . . 71 724 151
HDRVQQ . . . . 73 744 152

HEAP . . . . . 42 44 110
HEAPBEG. . . . 54% 153 172
HEAPLOW. . . . 43 171

INIUQQ . . . . 31 161

MAIN_STARTUP 1094 111 180
MEMORY . . . . 42  48% 48 49 109 110

PNUXQQ . . . . 69 70 150

RECEQQ . . . . 81 824%



RUNNING MS-CREP Page 2-8

REFEQQ . . . . 77 76%

REPEQQ . . . . 79 80#

RESEQQ . . . . 75 76% 148

ENTX PASCAL entry for initializing programs

Symbol Cross-Reference (# is definition) Cref-2

SKTOP. . . . . 59¢

SMLSTK . . . . 135 137¢

STACK. . . . . 53% 53 60 110
STARTMAIN. . . 163 1868 200
STKBQQ . . . . 89 90% 146

STKHQQ . . 91 92 160



CHAPTER 3

ERROR MESSAGES

All errors cause MS-CREF to abort. Control is returned to
the operating system.

All error messages are displayed in the following format:

where:

Fatal I/0 Error <error number>
in File: <filename>

<filename> is the name of the file where the error
occurs.

<error number> 1is one of the numbers in the
following list of errors:



ERROR MESSAGES Page 3-2

Number Error

101 Hard data error
Unrecoverable disk I/0 error

101 Device name error
Illegal device specification (for example,
X:FOO.CRF)

103 Internal error

Report to Microsoft Corporation

104 Internal error
Report to Microsoft Corporation

105 Device offline
Disk drive door open, no printer attached, or
similar device is offline.

106 Internal error
Report to Microsoft .Corporation

108 Disk full
110 File not found
111 Disk is write protected

112 Internal error
Report to Microsoft Corporation

113 Internal error
Report to Microsoft Corporation

114 Internal error
Report to Microsoft Corporation

115 Internal error
Report to Microsoft Corporation



CHAPTER 4

FORMAT OF MS-CREF COMPATIBLE FILES

MS-CREF will process files other than those generated by
Microsoft's assembler, as long as the file conforms to the
valid MS-CREF format.

4.1 MS-CREF FILE PROCESSING

MS-CREF reads a stream of bytes from the cross-reference
file (or source file), sorts them, then emits them as a
printable listing file (the .REF file). The symbols are
held in memory as a sorted tree. References to the symbols
are held in a linked list.

MS-CREF keeps track of line numbers in the source file by
the number of end-of-line characters it encounters.
Therefore, every line in the source file must contain at
least one end-of-line character (see chart below).

MS-CREF places a heading at the top of every page of the
listing. The name MS-CREF uses is passed by your assembler
from a TITLE (or similar) directive in your .source program.
The title must be followed by a title symbol (see chart
below). If MS-CREF encounters more than one title symbol in
the source file, it will use the last title read for all
page headings. If MS-CREF does not encounter a title symbol
in the file, the title line on the listing will be blank.



FORMAT OF MS-CREF COMPATIBLE FILES Page 4-2

4.2 FORMAT OF SOURCE FILES

MS-CREF uses the first three bytes of the source file as
format specification data. The rest of the file |is
processed as a series of records that either begin or end
with a byte that identifies the type of record.

4.2.1 PFirst Three Bytes

The PAGE directive in your assembler, which takes arguments
for page 1length and 1line length, will pass the following
information to the cross-reference file:

First Byte
The number of lines to be printed per page (page
length range is from 1 to 255 lines).

Second Byte
The number of characters per 1line (line 1length
range is from 1 to 132 characters).

Third Byte
The Page Symbol (07) that tells MS-CREF that the
two preceding bytes define listing page size.

If MS-CREF does not see these first three bytes in the file,
it uses default values for page size (page length is 58
lines; 1line length is 80 characters).

4.2.2 Control Symbols

The two tables below show the types of records that MS-CREF
recognizes and the byte values and placement it uses to
recognize record types.

Records have a control symbol (which identifies the record

type) either as the first byte of the record or as the last
byte. )



FORMAT OF MS-CREF COMPATIBLE FILES Page 4-3

Records That Begin with a Control Symbol

Byte
Value* Control Symbol Subsequent Bytes
e e e S e e
01 Reference symbol Record is a reference
to a symbol name
(1 to 80 characters)
02 Define symbol Record is a definition
of a symbol name
(1 to 80 characters)
04 End-of-line (none)
05 End-of-file 1AH

EXE S R - P P i e

Records That End with a Control Symbol

Byte
‘Value* Control Symbol Preceding Bytes
06 B Title defined Record is title text
(1 to 80 characters)
07 Page length/ One byte for page length
line length followed by one byte
for line length

*For all record types, the byte value represents a control
character, as follows:

0l Control-A
02 Control-B
04 Control-D
05 Control-E
06 Control-F
07 Control-G



FORMAT OF MS-CREF COMPATIBLE FILES Page 4-4

The Control Symbols are defined as follows:

Reference symbol . :
Record contains the name of a symbol that is
referenced. The name may be from 1 to 80 ASCII
characters long. Additional characters are
truncated.

Define symbol
Record contains the name of a symbol that is
defined. The name may be from 1 to 80 ASCII
characters long. Additional characters are
truncated.

End-of-line
Record is an end-of-line symbol character only (04H
or Control-D).

End-of-file
Record is the end-of-file character (lAH).

Title defined

ASCII characters of the title are to be printed at
the top of each 1listing page. The title may be
from 1 to 80 characters long. Additional
characters are truncated. The last title
definition record encountered is used for the title
placed at the top of all pages of the listing. If
a ‘title definition record is not encountered, the
title line on the listing will be left blank.

Page length/line length
The first byte of the record contains the number of
lines to be printed per page (range is from 1 to
255 lines). The second byte contains the number of
characters to be printed per page (range is from 1
to 132 characters). The default page length is .58
lines. The default line length is 80 characters.

The following table illustrates CRF file record contents by
byte and length of record.



FORMAT OF MS-CREF COMPATIBLE FILES Page 4-5

Summary of CRF File Record Contents

Byte Contents " Length of Record
“01 symbol mame  2-81 bytes
Oi symboi_name 2-81 bytes

04 1 byte

05 1A 2 bytes
title_text 06 2-81 bytes

PL LL 07 3 bytes

R RTINS SRS E S SIasSs T IsEEED






INDEX

.CRF (default extension) . . . 1-2
.REF (default extension) . . . 1-2
; (command character) e s« o o+ 2=6

Command Characters . . « « « « 2-6
’ . . . . . . 3 . . . . . . 2-6
CONTROL-C .« 4 o « « o s o o 2=6

Command Prompts
Cross-reference [.CRF] . . . 2-3
Listing [crffile.REF] . . . 2-3

Control symbols . . . « . « . 4-2,

CONTROL-C (command character 2-6

Creating a cross-reference file 2-1}

4-4

Cross reference [.CRF] (command prompt)

Default extensions
CRF & & ¢ ¢ o ¢ o« o o o o & 1=2
REF + & ¢ ¢ ¢ o o « o o » o 1=2

Error messages . . « .« o o+ o o 3-1

Format of cross-reference listings
Format of MS-CREF compatible files

2-6
4-1

Listing [crffile.REF] (command prompt)

Method 1 . . . . . . ... .. 2-3
Method 2 . . . . . . . .. . . 24

Overviews
MS-CREF operation . . . . . 1-2

Running MS-CREF . ., . . . . . 2=-1

Starting
Method 1 . . . . . . . . . . 2-3
Method 2 . . . ... . . . . . 2-4
Starting MS-CREF . . . . « « o« 2=2
Summary of CRF file record contents
Summary of methods to start . 2-2

4-5

2-3






Microsoft. DEBUG

Utility

for 8086 and 8088 Microprocessors

Microsoft Corporation






System Requirements

The Microsoft DEBUG Utility requires:

A memory minimum that is program-dependent:

13K bytes for code
Run space is program-dependent

Disk drive(s):
1 disk drive if and only if output is sent to the

same physical disk from which the input was taken.
Microsoft DEBUG does not allow time to swap disks
during operation on a one-drive configuration.
Therefore, two disk* drives is a more practical

configuration,






Contents

Chapter 1

Chapter

Index

INTRODUCTION

Overview of DEBUG 1-1

How to Start DEBUG 1-1
Method 1: DEBUG 1-2
Method 2: Command Line

COMMANDS

Command Information 2-1
Parameters 2-3

Error Messages 2-36






CHAPTER 1

INTRODUCTION

1.1 OVERVIEW OF DEBUG

The Microsoft DEBUG Utility (DEBUG) is a debugging program
that provides a controlled testing environment for binary
and executable object files. Note that EDLIN 1is used to
alter source files; DEBUG is EDLIN's counterpart for binary
files. DEBUG eliminates the need to reassemble a program to
see if a problem has been fixed by a minor change. It
allows you to alter the contents of a file or the contents
of a CPU register, and then to immediately reexecute a
program to check on the validity of the changes.

All DEBUG commands may be aborted at any time by pressing
<CONTROL-C>. <CONTROL~S> suspends the display, so that you
can read it before the output scrolls away. Entering any
key other than <CONTROL-C> or <CONTROL-S> restarts the
display. All of these commands are consistent with the
control character functions available at the MS-DOS command
level.

1.2 HOW TO START DEBUG

DEBUG may be started two ways. By the first method, you
type all commands in response to the DEBUG prompt (a
hyphen). By the second method, you type all commands on the
line used to start DEBUG.

Summary of Methods to Start DEBUG

Method 1 DEBUG

Method 2 DEBUG [<filespec> [<arglist>]]



INTRODUCTION _ ' Page 1-2

1.2.1 Method l: DEBUG
To start DEBUG using method 1, type:
DEBUG '

DEBUG responds with the hyphen (-) prompt, signaling that it
is ready to accept your commands. Since no filename has
been specified, current memory, disk sectors, or disk files
can be worked on by using other commands.

Warnings

1. When DEBUG (Version 2.0) is started, it sets up a
program header at offset 0 in the program work
area. On previous versions of DEBUG, you could
overwrite this header. You can still overwrite the
default header if no <filespec> is given to DEBUG.
If you are debugging a .COM or .EXE file, however,
do not tamper with the program header below address
SCH, or DEBUG will terminate.

2. Do not restart a program after the "Program
terminated normally" message is displayed. You
must reload the program with the N and L commands
for it to run properly.

1.2.2 Method 2: Command Line
To start DEBUG using a command line, type:
DEBUG [<filespec> [<arglist>)

For example, 1if a '<filespec> is specified, then the
following is a typical command to start DEBUG:

DEBUG FILE.EXE

DEBUG then 1loads FILE.EXE into memory starting at 100
hexadecimal in the lowest available segment. The BX:CX
registers are loaded with the number of bytes placed into
memory.

An carglist> may be specified if <filespec> is present. The
<arglist> is a list of filename parameters and switches that
are to be passed to the program <filespec>. Thus, when
<filespec> is loaded into memory, it is loaded as if it had
been started with the command:



INTRODUCTION

<filespec> <arglist>

Here, <filespec> is the
<arglist> is the rest of
<filespec> is invoked and

Page 1-3

file to be debugged, and the
the command line that is used when
loaded into memory.






CHAPTER 2
COMMANDS

2.1 COMMAND INPORMATION

Each DEBUG command consists of a single letter -followed by
one or more parameters, Additionally, the control
characters and the special editing functions described in
the MS-DOS User's Guide, apply inside DEBUG.

If a syntax error occurs in a DEBUG command, DEBUG reprints
the command 1line and indicates the error with an up-arrow
(") and the word "error."

For example:

dcs:100 cs:110
~ error

Any combination of uppercase and lowercase 1letters may be
used in commands and parameters.

The DEBUG commands are summarized in Table 2.1 and are
described in detail, with examples, following the
description of command parameters.



COMMANDS Page 2-2

Table 2.1 DEBUG Commands

- o o > - - - - ——— - - —— " T T - 5 = " - - - - - - -

DEBUG - Command | Function
=zmm=zorzoscsssscsosszszssossssassEosoossopoooosaooos
A[<address>] Assemble
C<range> <address> Compare
D([<range>} ' Dump
E<address> [<list>] Enter
F<range> <list> Fill
G[=<address> ([<address>...]] Go
H<value> <value> Hex
I<value> Input

L{<address> {[<drive><record><record>]] Load

M<range> <address> Move
N<filename>[<filename>] Name
O<value> <byte> Output

Q Quit
R(<register-name>] Register
S<range> <list>> Search

T [=<address>] [ <value>] Trace
Ul<range>] Unassemble

‘W{<address> [<drive><record><record>]} Write



COMMANDS Page 2-3

2.2 PARAMETERS

All DEBUG commands accept parameters, except the Quit
command. Parameters may be separated by delimiters (spaces
or commas), but a delimiter is required only between two
consecutive hexadecimal values. Thus, the following
commands are equivalent: . .

decs:100 110
d ¢s:100 110
d,cs:100,110

PARAMETER DEFINITION

<drive> A one-digit hexadecimal value to indicate which
drive a file will be loaded from or written to.
The wvalid wvalues are 0~3. These values

designate the drives as follows: O0=A:, 1=B:,
2=C:, 3=D:.

<byte> A two-digit hexadecimal value to be placed in or
read from an address or register.

<record> A 1- to 3-digit hexadecimal value used to
indicate the 1logical record number on the disk
and the number of disk sectors to be written or
loaded. Logical records correspond to sectors.
However, their numbering differs since they
represent the entire disk space.

<value> A hexadecimal value up to four digits used to
specify a port number or the number of times a
command should repeat its functions.

<address> A two-part designation consisting of either an
alphabetic segment register designation or a
four-digit segment address plus an offset value.
The segment designation or segment address may
be omitted, in which case the default segment is
used. DS 1is the default segment for all
commands except G, L, T, U, and W, for which the
default segment is CS. All numeric values are
hexadecimal.

For example:

CS:0100
04BA: 0100

The colon 1is required between a segment
designation (whether numeric or alphabetic) and
an offset.



COMMANDS

<range>

<list>

<string>

Page 2-4

Two <address>es: e.g., <address> <address>; or
one <address>, an L, and a <value>: e.g.,
<address> L <value> where <value> is the number
of lines the command should operate on, and L80
is assumed. The last form cannot be wused if
another hex value follows the <range>, since the
hex value would be interpreted as the second
<address> of the <range>.

Examples:

CS:100 110

CS:100 L 10
CS:100

The following is illegal: -

CS:100 CS:110
~ error

The limit for <range> is 10000 hex. To specify
a <value> of 10000 hex within four digits, type
0000 (or 0).

A series of <byte> values or of <string>s.
<list> must be the last parameter on the command
line.

Example:

fcs:100 42 45 52 54 41
Any number of characters enclosed in quote
marks. Quote marks may be either single (') or
double("). If the delimiter quote marks must
appear within a <string>, the guote marks must
be doubled. For example, the following strings
are legal:

'This is a "string" is okay.'
'This is a ''string'' is okay.'

However, this string is illegal:
'This is a 'string' is not.'
Similarly, these strings are legal:

"This is a 'string' is okay."
"This is a ""string"" is okay."



COMMANDS

Page 2-5

However, this string is illegal:
"This is a "string” is not."

Note that the double quote marks are not
necessary in the following strings:

"This is a ''string'' is not necessary."
'This is a ""string"" is not necessary.'

The ASCII values of the characters in the string
are used as a <list> of byte values.



DEBUG (A)ssemble Page 2-6

NAME = . .
.Assemble -

PURPOSE

Assembles 8086/8087/8085 mnemonics ‘ directly
into memory. o

SYNTAX .
Af<address>]

COMMENTS o A o
If a syntax error is found, DEBUG responds with

“Error
and rédiéplays‘the current 'assembly address.

All numeric values are hexadecimal and must be
entered as - 1-4 . characters. Prefix mnemonics
must be specified in front of the opcode to
which they refer. ,They -may also be:entered on
a separate line, o . N

The segment override mnemonics are . CS:, DS:,
ES:, and SS:. The mnemonic for the far return
is RETF. String manipulation mnemonics must
explicitly state the string size. For example,
use MOVSW to move word strings -and- MOVSB to
move byte strings. oo

The assembler will automatically assemble
short, near or far jumps and calls, depending
on byte displacement to the destination
address. These may be overridden with the NEAR
or FAR prefix. For example:

0100:0500.JMP. . 502 - . .. 3.a _2-byte short jump
0100:0502 JMP NEAR 505. - ;-a 3-byte near jump
0100:505 JMP FAR 50A ; a 5-byte far jump

_The NEAR prefix may be abbreviated to NE, but
the FAR prefix cannot be abbreviated.

DEBUG cannot tell whether some operands refer
to a word memory location or to a byte memory
location. In this case, the data type must be
explicitly stated with the prefix "WORD PTR" or
"BYTE PTR". Acceptable abbreviations are "WO"
and "BY". For example:

NEG BYTE PTR ([128])
DEC WO {[sI}



DEBUG (A)ssemble Page 2-7

DEBUG also cannot tell whether an operand
refers to a memory location or to an immediate
operand. DEBUG uses the common convention that
operands enclosed in square brackets refer to
memory. For example:

MOV AX,21
MoV ‘ax, [21)

Load AX with 21H

Load AX with the
contents

of memory location 21H

e wo we e

Two popular pseudo-instructions are available
with Assemble. The DB opcode will assemble
byte values directly into memory. The: DW
opcode will assemble word values directly into
memory. For example:

DB 1,2,3,4,"THIS IS AN EXAMPLE"
DB 'THIS IS A QUOTE: "'
DB "THIS IS A QUOTE: '"
DW  1000,2000,3000,"BACH"

Assemble supports all forms  of register
indirect commands. For example: ‘

ADD BX,34[BP+2).[SI-1)

pPOP [BP+DI])

PUSH (s1]
All opcode synonyms are  also supported. For
example: .

LOOPZ 100

LOOPE 100

Ja - 200

JNBE 200

For 8087 opcodes, the WAIT or FWAIT must be
‘explicitly specified. For example:

FWAIT FADD ST,ST (3) ; This line will assemble
; an FWAIT prefix
7

LD TBYTE PTR [BX] This line will not



DEBUG {C)ompare Page 2-8

NAME
Compare
PURPOSE
Compares the portion of memory specified by
<range> to a portion of the same size beginning
at <address>.
SYNTAX
C<range> <address>
COMMENTS
If the two areas of memory are identical, there
is no display and DEBUG returns with the MS-DOS
prompt. If there are differences, they are
displayed in this format:
<addressl> <bytel> <byte2> <address2>
EXAMPLE

The following commands have the same effect:
C100,1FF 300
or
C100L100 300
Each command compares the block of memory from

100 to 1FFH with the block of memory from 300
to 3FFH.



DEBUG (D)ump Page 2-9

NAME
Dump

PURPOSE
Displays the contents of the specified region
of memory.

SYNTAX
Dl<range>]

COMMENTS

If a range of addresses 1is specified, the
contents of the range are displayed. If the D
command is typed without parameters, 128 bytes
are displayed at the first address (DS:100)
after the address displayed by the previous
Dump command.

The dump {8 displayed in two portions: a
hexadecimal dump (each byte is shown in
hexadecimal value) and an ASCII dump (the bytes
are shown in ASCII characters). Nonprinting
characters are denoted by a period (.) in the
ASCII portion of the display. Each display
line shows 16 bytes with a hyphen between the
eighth and ninth bytes. At times, displays are
split in this manual to fit them on the page.
Each displayed line begins on a 1l6-byte
boundary.

If you type the command:
dcs:100 110

DEBUG displays the dump in the following
format:

04BA:0100 42 45 52 54 41 ... 4E 44 TOM SAWYER
If you type the following command:
D

the display is formatted as described above.
Each line of the display begins with an
address, incremented by 16 from the address on
the previous 1line. Each subsequent D (typed
without parameters) displays the bytes
immediately following those last displayed.



DEBUG

(D) ump ‘ Page 2-10

If you type the command:
DCS:100 L 20

the display is formatted as described above,
but 20H bytes are displayed.

If then you type the command:
DCS:100 115
the display is formatted as described above,

but all the bytes in“the range of lines from
100H to 115H in the CS segment are displayed.



DEBUG (E)nter Page 2-11

NAME
Enter

PURPOSE .
Enters byte values into memory at the specified
<address>.

SYNTRX
E<address>[ <list>]

COMMENTS
If the optional <list> of values is typed, the
replacement of byte values occurs

automatically. (If an error occurs, no byte
values are changed.)

If the <address> is typed without the optional
<list>, DEBUG displays the address and its
contents, then repeats the address on the next
line and waits for your input. At this point,
the Enter command waits for you to perform one
of the following actions:

1. Replace a byte value with a value you type.
Simply type the value after the current
value. If the value typed in is not a
legal hexadecimal value or if more than two
digits are typed, the illegal or extra
character is not echoed.

2. Press the <SPACE> bar to advance to the
next byte. To change the value, simply
type the new value as described in (1l.)
above. If you space beyond an B8-byte
boundary, DEBUG starts a new display 1line
with the address displayed at the
beginning.

3. Type a hyphen (-) to return to the
preceding byte. If you decide to change a
byte behind the current position, typing
the hyphen returns the current position to
the previous byte. When the hyphen is
typed, a new line 1is started with the
address and its byte value displayed.

4. Press the <RETURN> key to terminate the
Enter command. The <RETURN> key may be
pressed at any byte position.



DEBﬁG (E)nter Page 2-12
EXAMPLE
Assume that the following command is typed:
ECS:100
DEBUG displays:
04BA:0100 EB._
To change this value to 41, type 41 as shown:
.04BA:0100 EB.41_

To step through the subsequent bytes, press the
<SPACE> bar to see:

04BA:0100 EB.41  10.  00.  BC._
To change BC to 42:
04BA:0100 EB.41  10.  00.  BC.42_

Now, realizing that 10 should be 6F, type the
hyphen as many times as needed to return to
byte 0101 (value 10), then replace 10 with 6F:

04BA:0100 EB.41 10. 00. BC.42-
04BA:0102 00.-_
04BA:0101 10.6F_

Pressing the <RETURN> key ends the Enter
command and returns to the DEBUG command level.



DEBUG (F) 111 Page 2-13

NAME
Fill

PURPOSE
Fills the addresses in the <range> with the
values in the <list>.

SYNTAX
F<range> <list>

COMMENTS
If the <range> contains more bytes than the
number of values in the <list>, the <list> will
be used repeatedly until all bytes in the
<range> are filled. If the <list> contains
more values than the number of bytes in the
<range>, the extra values in the <list> will be
ignored. 1If any of the memory in the <range>
is not wvalid (bad or nonexistent), the error
will occur in all succeeding locations.

EXAMPLE

Assume that the following command is typed:
FO4BA:100 L 100 42 45 52 54 41

DEBUG fills memory locations 04BA:100 through
04BA:1FF with  the bytes specified. The five
values are repeated until all 100H bytes are
filled.



DEBUG {G)o Page 2-1¢

NAME
Go
PURPOSE
Executes the program currently in memory.
SYNTAX
G{=<address>[ <address>...]]}
COMMENTS

If only the Go command is typed, the program
executes as if the program' had run outside
DEBUG.

If =<address>» is set, execution begins at the
address specified. The equal sign (=) |is
required, so that DEBUG can distinguish the
start =<address> from "the breakpoint
<address»>es,

With the other optional addresses set,
execution stops at the first <address>
encountered, regardless of that address’
position in the 1list of addresses to halt
execution or program branching. When program
execution reaches a breakpoint, the registers,
flags, and decoded instruction are displayed
for the last instruction executed. (The result
is the same as if you had typed the Register
command for the breakpoint address.)

Up to ten breakpoints may be set. Breakpoints
may be set only at addresses containing the
first byte of an 8086 opcode. If more than ten
breakpoints are set, DEBUG returns the BP Error
message.

The user stack pointer must be valid and have 6
bytes available for this command. The G
command uses an IRET instruction to cause a
jump to the program under test. The user stack
pointer is set, and the wuser flags, Code
Segment register, and Instruction Pointer are
pushed on the user stack. (Thus, if the |user
stack 1is not wvalid or is too small, the
operating system may crash.) An interrupt code
(OCCH) 1is placed at the specified breakpoint
address (es). :

When an instruction with the breakpoint code is
encountered, all breakpoint addresses are
restored to their original instructions. If



DEBUG (Glo - Page 2-15

execution is not ‘halted at one’  of the
breakpoints, the interrupt codes are not
replaced with the original instructions. '

EXAMPLE
‘ Assume that the following command is typed:

GCS:7550

The program currently in memory executes up to
the address 7550 in the CS segment. DEBUG then
displays registers and flags, after which the
Go command is terminated.

After a breakpoint has been encountered, if you
type the Go command again, then the program
executes just as if you had typed the filename
at the MS-DOS command 1level. The only
difference is that program execution begins at
the instruction after the breakpoint rather
than at the usual start address.



DEBUG . (Hyex Page 2-16

NAME
Hex
PURPOSE
Performs hexadecimal arithmetic on the two
parameters specified.
SYNTAX
H<value> <value>
COMMENTS
First, DEBUG adds the two parameters, then
subtracts the second parameter from the first.
The results of the arithmetic are displayed on
one line; first the sum, then the difference.
EXAMPLE

Assume that the following command is typed:
H19F 10A

DEBUG performs the calculations and then
displays the result:

02a9 0095



DEBUG (I)nput Page
NAME
. Input
PURPOSE
Inputs and displays one byte from the port
specified by <value>.
SYNTAX
I<value>
COMMENTS
A 16-bit port address is allowed.
EXAMPLE

Assume that you type the following command:
I2F8

Assume also that the byte at the port is 42H.
DEBUG inputs the byte and displays the value:

42

2-17



DEBUG ’ (L)oad ~ Page 2-18

NAME
Load

PURPOSE
Loads a file into memory.

SYNTAX
L{<address> [<drive> <record> <record>}]}

COMMENTS
Set BX:CX to the number of bytes read. ' The
file must have been named elther when DEBUG was
started or with the N command. Both the DEBUG
invocation and the N command format a filename
properly in the normal format of a file control
block at CS:5C.

If the L command is typed without any
parameters, DEBUG 1loads the file into memory
beginning at address CS:100 and sets BX:CX to
the number of bytes loaded. If the L command
is typed with an address parameter, loading
begins at the memory <address> specified. If L-
is typed with all parameters, absolute disk
sectors are loaded, not a file. The <record»>s
are taken from the <drive> specified (the drive
designation is numeric here--0=A:, 1=B:, 2=C:,
etc.); DEBUG begins loading with the first
<record> specified, and continues until the
number of sectors specified in the second
<record> have been loaded.

EXAMPLE
Assume that the following commands are typed:

A>DEBUG
-NFILE.COM

Now, to load FILE.COM, type:

L
DEBUG loads the file and then displays the
DEBUG prompt. Assume that you want to load
only portions of a file or certain records from
a disk. To do this, type:

LO4BA:100 2 OF 6D

DEBUG then loads 109 (6D hex) records beginning
with logical record number 15 into memory



DEBUG {L)oad Page 2-19

beginning at address 04BA:0100. When the
records have been loaded, DEBUG simply returns

the ~ prompt.

If the file has a .EXE extension, it |is
relocated to the load address specified in the
header of the .EXE file: the <address>
parameter is always ignored for .EXE files.
The header itself is stripped off the .EXE file
before it is loaded into memory. Thus the size
of an .EXE file on disk will differ from its
size in memory.

If the file named by the Name command or
specified when DEBUG is started is a .HEX file,
then typing the L command with no parameters
causes DEBUG to locad the file beginning at the
address specified in the .HEX file. If the L
command includes the option <address>, DEBUG
adds the <address> specified in the L command
to the address found in the .HEX file to
determine the start address for 1loading the

file.



EBUG (M)ove Page 2-20

NAME
Move

FURPOSE
Moves the block of memory specified by <range>

to the 1location beginning at the <address>
specified.

SYNTAX .
M<range> <address>

COMMENTS

Overlapping moves (i.e., moves where part of
the block overlaps some of the current
addresses) are always performed without loss of
data. Addresses that could be overwritten are
moved first, The sequence for moves from
higher addresses to lower addresses is to move
the data beginning at the block's lowest
address and then to work towards the highest.
The sequence for moves from lower addresses to
higher addresses is to move the data beginning
at the block's highest address and to work
towards the lowest.

Note that if the addresses in the block being
moved will not have new data written to them,
the data there before the move will remain.
The M command copies the data from one area
into another, in the sequence described, and
writes over the new addresses. This is why the
sequence of the move is important.

EXAMPLE
Assume that you type:

MCS:100 110 CS:500

DEBUG first moves address CS:110 to address
CS:510, then CS:10F to CS:50F, and so on until
CS:100 is moved to CS:500. You should type the
D command, using the <address> typed for the M
command, to review the results of the move.



DEBUG (N)ame Page 2-21

NAME
Name

PURPOSE
‘Sets filenames.

SYNTAX
N<filename>[<filename>...]

COMMENTS

The Name command performs two functions.
First, Name is used to assign a filename for a
later Load or Write command. Thus, if you
start DEBUG without naming any file to be
debugged, then the N<filename> command must be
typed before a file can be loaded. Second,
Name is used to assign filename parameters to
the file being. debugged. 1In this case, Name
accepts a list of parameters that are used by
the file being debugged.

These two functions overlap. Consider the
following set of DEBUG commands:

~NFILEl.EXE
-L .
-G

Because of the effects of the Name command,
Name will perform the following steps:

1. (N)ame assigns the filename FILEl.EXE to
the filename to be used in any later Load
or Write commands.

2. (N)ame also assigns the filename FILEl.EXE
to the first filename parameter used by any
program that is later debugged.

3. {L)oad loads FILEl.EXE into memory.

4. (G)o causes FILEl.EXE to be executed with
FILE1.EXE as the single filename parameter
(that is, FILEl.EXE 1is executed as if
FILE1.EXE had been typed at the command
level).



DEBUG (N) ame Page 2-22

A more useful chain of commands might look like
this:

~NFILEl.EXE

-L

~NFILE2.DAT FILE3.DAT
-G

Here, Name sets PILE1.EXE as the filename - for
the subseguent Load command. The Load command
loads FILEl.EXE into memory, and then the Name
command is used again, this time to specify the
parameters to be used by FILEl.EXE. Finally,
when the Go command is executed, FILEl.EXE is
executed as if FILEl FILE2.DAT FILE3.DAT had
been typed at the MS-DOS command level. Note
that if a Write command were executed at this
point, then FILEl.EXE--the file being
debugged--would be saved with the name
FILE2.DAT! To avoid such undesired results,
you should always execute a Name command before
either a Load or a Write,

There are four regions of memory that can be
affected by the Name command:

CS:5C FCB for file 1

CS:6C FCB for file 2

CS:80 Count of characters
CS:81 All characters typed

A File Control Block (FCB) for the first
filename parameter given to the Name command is
set up at CS:5C. If a second filename
parameter is typed, then an FCB is set up for
it beginning at CS:6C. The number of
characters typed in the Name command (exclusive
of the first character, "N") 1is given at
location CS:80. The actual stream of
characters given by the Name command (again,
exclusive of the letter "N") begins at CS:81.
Note that this stream of characters may contain
switches and delimiters that would be legal in
any command typed at the MS-DOS command level.

EXAMPLE
A typical use of the Name command is:

DEBUG PROG.COM
-NPARAM1 PARAM2/C
-G



DEBUG ' (N) ame Page 2;23

In this case, the Go command executes the file
in memory as if the following command line had

been typed:
PROG PARAM1 PARAM2/C

Testing and debugging therefore reflect a
normal runtime environment for PROG.COM.



DEBUG (O)utput

NAME
Output

PURPOSE
Sends the <byte> specified to the output
specified by <value>.

SYNTAX ‘
O<value> <byte>

COMMENTS
A 16-bit port address is allowed.

EXAMPLE
Type:

O2F8 4F

DEBUG outputs the byte value 4F to output
2F8.

Page 2-24

port

port



DEBUG (Q)uit Page
NAME
Quit
PURPOSE
Terminates the DEBUG utility.
SYNTAX
Q
COMMENTS -
The Q command takes nd parameters and exits
DEBUG without saving the file currently being
operated on. You are returned to the MS-DOS
command level.
EXAMPLE

To end the debugging session, type:

Q<RETURN>

DEBUG has been terminated, and control returns
to the MS-DOS command level.

2-25



DEBUG (R)egister

NAME
Register

PURPOSE

Page 2-26

Displays the contents of one or more CPU

registers.

SYNTAX
Rl<register-name>]

COMMENTS
If no <register-name> is typed, the R
dumps the register save area and displ
contents of all registers and flags.

If a register name is typed, the 16-bit
of that register is displayed in hexad

command
ays the

value
ecimal,

and then a colon appears as a prompt. You then
either type a <value> to change the register,

or simply press the <RETURN> key if no change
is wanted.
The only valid <register-name>s are:
AX BP SS
BX SI Cs
CX DI Ip (IP and PC both refer
DX DS PC to the Instruction
SP ES F Pointer.)
Any other entry for <register-name> results in
a BR Error message.
If F is entered as the <register-name>, DEBUG

displays each flag with a two-character
alphabetic code. To alter any flag, type the
opposite two-letter code. The flags are either

set or cleared.



DEBUG (R)egister Page 2-27

The flags are listed below with their codes for
SET and CLEAR:

Direction DN Decrement UP Increment

Interrupt EI Enabled DI Disabled

sign NG Negative  PL Plus

zero = Nz

Auxiliary ac M
Carry

parity  PE Even PO 0dd

carry o N

Whenever you type the command RF, the flags are
displayed in the order shown above in a row at
the beginning of a line. At the end of the
list of flags, DEBUG displays a hyphen (-).
You may enter new flag values as alphabetic
pairs. The new flag values can be entered in
any order. You do not have to 1leave spaces
between the flag entries. To exit the R
command, press the <RETURN> key. Flags for
which new values were not entered remain
unchanged.

If more than one value is entered for a flag,
DEBUG returns a DF Error message. If you enter
a flag code other than those shown above, DEBUG
returns a BF Error message. 1In both cases, the
flags up to the error in the list are changed;
flags at and after the error are not.

At startup, the segment registers are set to
the bottom of free memory, the Instruction
Pointer is set to 0100H, all flags are cleared,
and the remaining registers are set to zero.



DEBUG . (R)egister Page 2-28

EXAMPLE
Type:
R
DEBUG displays all registers, flags, and the
decoded instruction for the current location.

If the location is CS:11A, then the display
will look similar to this:

AX=0E00 BX=00FF CX=0007 DX=0lFF SP=039D BP=0000
S1=005C DI=0000 DS=04BA ES=04BA SS=04BA CS=04BA
IP=011A NV UP DI NG NZ AC PE NC

04BA:011A CD21 INT 21

If you type:
RF
DEBUG will display the flags:

NV UP DI NG NZ AC PE NC - _

Now, type any valid flag designation, in any
order, with or without spaces.

For example:
NV UP DI NG NZ AC PE NC - PLEICY<RETURN>

DEBUG responds only with the DEBUG prompt. To
see the changes, type either the R or RF
command:

RF
NV UP EI PL NZ AC PE CY ~ _

Press <RETURN> to leave the flags this way, or
to specify different flag values.



DEBUG (S)earch Page 2-29

NAME
Search

PURPOSE
Searches the <range> specified for the <list>
of bytes specified.

SYNTAX
S<range> <list>

COMMENTS
The <list> may contain one or more bytes, each
separated by a space or comma. If the <list>
contains more than one byte, only the first
address of the byte string is returned. If the
<list> contains only one byte, all addresses of
the byte in the <range> are displayed.

EXAMPLF

If you type:
SCS:100 110 41
DEBUG will display a response similar to this:

04BA:0104
04BA:010D
- -type:



DEBUG (T)race ‘ Page 2-30

NAME
Trace

PURPOSE
Executes one instruction and displays the
contents of all registers and flags, and the
decoded instruction. :

SYNTAX
T [=<address>] [ <value>]

COMMENTS
If the optional =<address> is typed, tracing
occurs at the =<address> specified. The
optional <value> causes DEBUG to execute and
trace the number of steps specified by <value>.
The T command uses the hardware trace mode of
the 8086 or 8088 microprocessor. Consequently,
you may also trace instructions stored in ROM
(Read Only Memory).

EXAMPLE
Type:

T

DEBUG returns a display of the registers,
flags, and decoded instruction for that one
instruction. Assume that the current position
is 04BA:011A; DEBUG might return the display:

AX=0EOO0 BX=00FPF CX=0007 DX=01lFF SP=039D BP=0000
SI=005C DI=0000 DS=04BA ES=04BA SS=04BA CS=04BA
IP=011A NV UP DI NG NZ AC PE NC

04BA:011A CD21 INT 21

If you type

T=011lA 10



DEBUG (T) race Page 2-31

DEBUG executes sixteen (10 hex) instructions
beginning at O01]1lA in the current segment, and
then displays all registers and flags for each
instruction as it 1is executed. The display
scrolls away until the 1last instruction is
executed. Then the display stops, and you can
see the register and flag values for the 1last
few instructions performed. Remember that
<CONTROL-S> suspends the display at any point,
so that you can study the registers and flags
for any instruction.



DEBUG

NAME

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

(U)nassemble Page 2-32

Unassemble

Disassembles bytes and displays the source
statements that correspond to them, with
addresses and byte values.

Ul<range>]

The display of disassembled code looks 1like a
listing for an assembled file. If you type the
U command without parameters, 20 hexadecimal
bytes are disassembled at the first address
after that displayed by the previous Unassemble
command. If you type the U command with the
<range> parameter, then DEBUG disassembles all
bytes in the range. If the <range> is given as
an <address> only, then 20H bytes are
disassembled instead of 80H.

Type:
U04BA:100 L10O

DEBUG disassembles 16 bytes beginning at
address 04BA:0100:

04BA:0100 206472 °  AND [SI+72],AH

04BA:0103 69 DB 69

04BA:0104 7665 JBE 016B
04BA:0106 207370 AND [BP+DI+70],DH
04BA:0109 65 DB 65

04BA:010A 63 DB 63

04BA:010B 69 DB 69

04BA:010C 66 DB 66

04BA:010D 69 DB 69

04BA:010E 63 DB 63

04BA:010F 61 DB 61

If you type
U04ba:0100 0108



DEBUG (U)nassemble Page 2-33

The display will show:

04BA:0100 206472 AND - [SI+72],AH
04BA:0103 69 DB 69

04BA:0104 7665 JBE 016B
04BA:0106 207370 AND [BP+DI+70],DH

If the bytes in some addresses are altered, the
disassembler alters the instruction statements.
The U command can be typed for the changed
locations, the new instructions viewed, and the
disassembled code used to edit the source file.



DEBUG

NAME

PURPOSE

SYNTAX

COMMENTS

(Write Page 2-34

Write
Writes the file being debugggd to a disk file.
W({<address>| <drive> <record> <record>]}]

If you type W with no. parameters, BX:CX must
already be Set to the number of bytes to be
written; the file is written beginning from
CS:100. If the W.command is typed with just an
address, then the file is written beginning at
that address. If a . G or T command has been
used, BX:CX must be reset before using the
Write command without parameters. Note that if
a file is loaded and modified, the name,
length, and starting address are all set
correctly to save the modified file (as long as
the length has not changed).

The file must have been named either with the
DEBUG invocation command or with the N command
(refer to the Name - command earlier in this
manual). Both the DEBUG invocation and the N
command format a filename ' properly in the
normal format of a file control block at CS:5C.

If the W command is typed with parameters, the
write begins from the memory address specified;
the file is written to the «<drive> specified
(the drive designation is numeric here--0=A:,
1=B:, 2=C:, etc.): DEBUG writes the file
beginning at the logical record number
specified by the first - <record>; DEBUG
continues to write the file until the number of-
sectors specified in the second . <record> have
been written.

WARNING
Writing to absolute sectors is

EXTREMELY dangerous because the process
bypasses the file handler.



DEBUG (Write Page 2-35

EXAMPLE
Type:

W

DEBUG will write the. file to disk and .then
display the DEBUG prompt. Two examples are
shown below.

LJ

WCS:100 1 37 2B

DEBUG writes out the contents of - memory,

beginning with the address CS:100 to the disk

in drive B:. The data written out starts in

disk logical record number 37H and consists of

2BH records. When the write is complete, DEBUG
- displays the prompt: "

WCS:100 1 37 2B



DEBUG ' Error Messages Page 2-36

2.3 ERROR MESSAGES

During the DEBUG session, you may receive any of the
following error messages. Each error terminates the DEBUG
command under which it occurred, but does not terminate
DEBUG itself.

ERROR CODE DEFINIT IGN

BF Bad flag
You attempted to alter a flag, but the
characters typed were not one of the
acceptable pairs of flag values. See the
Register command for the list of
acceptable flag entries. :

BP Too many breakpoints
You specified more than ten breakpoints as
parameters to the G command. Retype the
Go command with ten or fewer breakpoints.

BR Bad register
You typed the R command with an invalid
register name. See the Register command
for the list of valid register names.

DF Double flag
You typed two values for one flag. You

may specify a flag value only once per RF
command.



Page Index-1

INDEX
DEBUG Commands

(A)ssemble . . . . . . . . . 2-6

{C)ompare . . . . . . . . . 2-8

Dlump « ¢« « v ¢ ¢ ¢ ¢ & « o« 2-9

(E)nter . . . . . ¢ ¢ ¢ o o 2=11
(Fill) . . « ¢ v v ¢ « v « & 2-13
(G)O ¢ v v ¢ ¢ ¢t o o o« «.0 2=14
(H)ex « ¢« o v v ¢ ¢« ¢« ¢« o« o 2=16
(Input . . . . . ¢ ¢ ¢ . . 2=17
(L)oad . . . ¢« ¢« ¢« ¢« &« « « . 2-18
(MJove « . .« ¢« ¢ ¢ v 4« o « o 2-19
(NJame . . . . ¢ ¢ ¢« ¢ o « o 2=21
(Ojutput . . . . . . . . . . 2-24
(Quit . . . . . . ¢+ ¢ o . 2=-25
(R)egister . . . . . . . . . 2-26
(Slearch . . . . . . . . . . 2=29
(Tlrace . . . + « ¢« « « « « 2=30
(U)nassemble . . . . . . . . 2-32
(W)rite . . . . . . . . . . 2-34

DEBUG Errors

BF - Bad flag . ... . . . 2-36
BP - Too many breakpoints . 2-36
BR - Bad register . . . . . 2-36
DF - Double flag .. . . . . 2-36

EXE files . . . ¢« ¢ ¢ « « « . 2-19

FlagS . « o o o o o « o o o« o 2=27







