

)

B . urroughs

'. Macro
Assembler
Manual

Ptlced Item
Printed In U.S.A March 1984 • 1166378

Inforlluition in this document is subject to'change without notice and 'does not represent a
commitment on the part of Microsoft Corporation. The software described in this docu­
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance ~th the terms of the agreement. It is against
the law to copy the Microsoft Macro Assembler Manual on magnetic tape, disk, or any
other medium for any purpose other than the purchaser's personal use.

© Microsoft Corporation 1981, 1983

Comments about this documentation may be sent to:

Microsoft Corporation
Microsoft Building
10700 Northup Way
Bellevue, WA 98004

Microsoft is a registered trademark of Microsoft Corporation.

MS is a trademark of Microsoft Corporation.

Intel is a trademark of Intel Corporation.

The names used in this publication are not of any individual, group, association or other
,entity living, existing or otherwise. Any similarity or likeness of the names used in this
publication with the names of individuals, groups, associations or other entity living,
existing or otherwise, is purely coincidental and not intentional.

There are NO warranties of any nature, expressed or Implied, made or extended by the use,
possession or purchase of the attached material.

The Customer should exercise care to assure that use of the information in this publica­
tion will be in full compliance with laws, rules and regu'ations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change. Revisions may be issued from time
to time to advise of changes and/or additions.'

Correspondence regarding this document should be forwarded directly to Burroughs
Corporation, Burroughs Place, Detroit, Michigan 48232.

(

(

(

contents

I disk, with the following files:
M86.EXE
LINK.EXE
LIB~EXE
CREF.EXE
DEBUG.EXE

1 binder (titled Microsoft ~ Assembler Manual) with S
manuals:

Microsoft Macro Assembler Utility Manual
Microsoft LINK Linker Utility Manual (Technical
Information Only)
MIcrosoft LIB Library Manager Manual
Microsoft CREF Cross-Reference Utility Manual
Microsoft DEBUG Utility Manual

System Requirements

Each utility requires different amounts of memory.

·Macro Assembler - 96K bytes of memory minimum:
64K bytes for code and static data
32K bytes for run space

Microsoft LINK - SOK bytes of memory minimum:
40K bytes for code
10K bytes for run 'space

Microsoft LIB - 38K bytes of memory minimum:
28K bytes for code
10K bytes for run space

Microsoft CREF - 24K bytes of memory minimum:
14K bytes for code
10K bytes for run space

Microsoft DEBUG - Memory minimum program-dependent
13K bytes for code
Run space program-dependent

Disk drive(s)
One disk drive if and only if output is sent to the
same physical disk from which the input was taken.
None of the utility programs allows time to swap
disks during operation on a one-drive
configuration. Therefore, two disk drives is a
more practical configuration.

Microsoft

Welcome" to the Microsoft(R) family of products.

Microsoft Corporation continues to supply
high-quality software for all types of users.

consistently

In addition to the Macro Assembler and Microsoft BASIC
interpreter, Microsoft sells other full-feature language
compilers, language subsets, and operating system products.
Microsoft offers a "family" of software products that both
look alike from one product to the next, and ~an be used
together for effective program development.

For more information about other
contact:

Microsoft Corporation
10700 Northup Way
Bellevue, WA 98004
(206) 828-8080

Microsoft ~ products,

(

(

(

)

)

Contents

General Introduction

Major Features
Using These Manuals
Syntax Notation
Learning More about Assembly Language Programming
Overview of Program Development

Microsoft Macro Asse.bler Utility

Introduction

Chapter 1 Creating a Macro Assembler Source File

Chapter 2 Names: Labels, Variables, and Symbols

Chapter 3 Expressions: Operands and Operators

Chapter 4 Action: Instructions and Directives

Chapter 5 Assembling a Macro Assembler Source File

Chapter 6 8087 Support

Chapter 7 Macro Assembler Messages

Appendices

Index for Macro Assembler

Microsoft LINK Linker Utility

Chapter 1 Introduction

Chapter 2 MS-LINK Technical Information

Addendum

Index for MS-LINK

Microsoft LIB Library Manager

Chapter 1

Chapter 2

Introduction

Running MS-LIB

Chapter 3 Error Messages

Index for MS-LIB

Microsoft CREF Cross Reference utility

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Introduction

Running MS-CREF

Error Messages

Format of MS-CREF Compatible Files

Index for MS-CREF

Microsoft DEBUG utility

Chap'ter 1 Introduction

Chapter 2 Commands

Index for DEBUG

(

(

\
)

).

)

GENERAL INTRODUCTION

The Microsoft Macro Assembler Manual includes utility
programs used for developing assembly language programs. In
addition, the Microsoft LINK Linker Utility and DEBUG are
used with of Microsoft's l6-bit language compilers.

Major Features

Macro Assembler Utility

Microsoft's Macro Assembler is a powerful assembler for
8086 based computers.

Macro Assembler supports most of the directives found in
Microsoft's Macro Assembler for the 8080. Macros and
conditionals are Intel 8080 standard.

Macro Assembler
ASM-86, except
directives.

is upward compatible with Intel's
Intel codemacros, macros, and a few $

Macro Assembler offers relaxed typing so that if you
enter a typeless operand for an instruction that accepts
only one type of operand, Macro Assembler assembles the
statement correctly instead of returning an error
message.

GENERAL INTRODUCTION Page 2

Microsof~ LINK Linker Utility (Technical Information Only)

MS-LINK is a virtual linker, which can link programs
that are larger than available mem?ry.

MS-LINK prodtices relocatable executable object code.

MS~LINK processes overlays that you define.

MS-LINK can perform multiple library searches, using a
dictionary library search method.

MS-LINK prompts you for input ,and output modules and
other link session parameters.

MS-LINK can be run wi th an autom'atic response file to
answer the Linker promp~s.

Microsoft LIB Library Manager

MS-LIB can add, delete, and extract modules in your
lihrary of program files.

MS-LIB prompts you for input and output file and module
names.

MS-LIB can be run with an automatic response file to
answer tile library prompts.

MS-LIB produces a cross-reference of symbols in the
library modules.

Microsoft CREF Cross-Reference Utility

MS-CREF produces a cross-reference listing of all
symbolic names in the Macro Assembler source program,
giving both the source line number of the definition and
the source line numbers of all other references to the
symbols.

Microsoft DEBUG Utility

DEBUG provides a controlled testing environment for
binary and executable object files.

DEBUG eliminates the need to reassemble a program to see
if a problem has been fixed by a minor change.

(

(

(

GENERAL INTRODUCTION Page 3

riEBUG allows you to alter the contents of a file or the
contents of a CPU register, and then immediately
reexecute a program to check on the validity of the
changes.

Using These Manuals

These manuals are designed to be used as a set and
individually. Each manual is mostly self-contained and
refers to the other manuals only at junctures in the
software. The overview given below describes the flow 'of
program development from creating a 'source file through
program execution. The processes described in this ov~rview
are echoed and expanded in overviews in each of the manuals
contained in the ~icrosoft Macro Assembler Manual.

Also, note that each manual has its own index.

Figure 1 illustrates an overview of the Micro~oft Macro
Assemhler Manual. -_._--------- ----

GENERAL INTRODUCTION

Rf:>fer to
DEBUG

Refer to
MS-LINK

Refer to
MS-CREF

Refer to
MS-LIB

Macro
Assembler

Manual

.. DEBUG
Manual

.. .. MS-LINK
Manual

..-_~.... MS-CREF
.. Manual

MS-LIB
Manual

Figure 1. Overview, Macro Assembler Manual

Page 4

Each of these manuals is used independently. References
between manuals reflect junctures in the software.

(
\

(

(

)

)

GENERAL INTRODUCTION Page 5

Syntax Notation

The following notation is used throughout this manual in
descriptions of command and statement syntax:

[1 Square brackets indicate that the enclosed entry is
optional.

< > Angle brackets indicate data you must enter. When
the angle brackets enclose lower case text, you
must type in an entry defined by the text: for
example, <filename>. When the angle brackets
enclose upper case text, you must press the key
named by the text: for example, <RETURN>.

{} Braces indicate that you have a choice between two
or more entries. At least one of the entries
enclosed in braces must be chosen unless the
entries are also enclosed in square brackets.

Ellipses indicate that an entry may be repeated. as
many times as needed or desired.

CAPS Capi tal .letters indicate portions of statements or
commands that must be entered, exactly as shown.

All other punctuation, such as commas, coloqs, slash marks,
and equal signs, must be entered exactly as shown.

Figure 2 illustrates the syntax notation used in this
manual.

GENERAL INTRODUCTION

You have an option,
you may stop here,
or enter more.

Enter a value
here to replace the Enter as many more
-dummy· entry and parameters as you

Page 6

the angle braIkets want, up to!end of line

CALL «parameter> [,<parameter> •••]) <RETURN>

1 ~nctulion d ·r
Enter CAPS Upper case
exactly as inside .angle

shown Figure 2. Syntax Notationbr~ckets, press
thlS key

(

(

(

)

)

GENERAL INTRODUCTION Page 7

Learning More about Assembly Language Programming

These manuals explain how to use
features, but they do not teach
assembly language.

MS-DOS utilities and
you how to program in

We assume that you have had some experience programming in
assembly language. If you do not have any experience, we
suggest two courses:

1. Gain some experience on a less
assembler.

sophisticated

2. Refer to any or all of the following books for
assistance:

Morse, stephen P. The 8086 Primer. Rochelle Park,
NJ: Hayden Publishing Co., 1980.

Rector, Russell and George Alexy. The 8086 Book.
Berkeley, CA: Osbourne/McGraw-Hill, 1980.----

The 8086 Family us~r's Manual.
Intel Corporatlon, 1979.

8086/8087/8088 Macro
Manual. Santa
1980.

Assembly
Clara, CA:

N~E

santa Clara, CA:

Language Reference
Intel Corporation,

Some of the information in
these books was based on
preliminary data and may not
reflect the final functional
state of the microprocessors.
Information in your Microsoft
manuals was based on
Microsoft's development of its
l6-bit software for the 8086
and 8088.

GENERAL INTRODUCTION Page 8

Overview of Program Development

This overview describes generally the steps of program
development. Each step is described fully in the individual
product manuals. The numbers in the descriptions match the
numbers in the facing diagram.

1. Use EDLIN (the editor in Microsoft's MS-DOS), or
other MS-DOS editor, to create an 8086 assembly
language source file. Give the source file the
filename extension .ASM (Macro Assembler recognizes
.ASM as the default).

2. Assemble the source file with Macro Assembler,
which outputs ~n assembled object file with the
default filename extension .OBJ (2a). Assembled
files, your program files (2b), can be linked
together in step 3.

Macro Assembler (optionally) creates two types of
listing file:

(2c)a normal listing file which shows assembled
code with relative addresses, source
statements, and full symbol table:

(2d)a cross-reference file, a special file with
special control characters that allow MS-CREF
(2e) to create a list showing the source line
number of every symbol's definition and all
references to it (2f)'. When a cross-reference
file is created, the normal listing file (with
the .LST extension) has line numbers placed
into it as references for line numbers
following symbols in the cross-reference
listing.

3. Link one or more .OBJ modules together, using
MS-LINK, to produce an executable object file with
the default filename extension .EXE (3a).

While developing your program, you may want to
create a library file .for MS-LINK to search to
resolve external references. Use MS-LIB (3b) to
create user library file (s) (3c) from existing
library files (3c) and/or user program object files
(2b) •

(

(

(

)

)

GENERAL INTRODUCTION Page 9

4. Run yotir assembled and linked program, the .EXE
file (3a), under MS-DOS (4). If your program does
not run properly, use the DEBUG utility to locate
any errors.

GENERAL INTRODUCTION Page 10 (

1. EDLIN
.... ..

•
source

.ASM

• (2c) listing
... .. .LST

2.
Macro

Assembler
. listing -(2d) ~CRF -.

(2a) object •• (2b) userprog -.OBJOBJ
(2e) MS-CREF (

(3b) ~ ~
3. • ..

MS-LIB MS-LINK
~ listing (2 f) .REF.

* ~

(3c) userlib (3a) object
.LIB .EXE

~-

4. MS-DOS ... Program .. complete

+ If it doesn't work

t
5. DEBUG •

(

\
)

)

Microsoft®
Macro Assembler
Utility

for 8086 and 8088 Microprocessors

Microsoft Corporation

(

(

"

.. (

Syste. Requiroaents

The Macro Assembler Utility requires 96K bytes of memory
minimum:

64K bytes for code and static data
32K bytes for run space

Disk drivels)
One disk drive if and only if output is sent to the
same physical disk from which the input was taken.
The Macro Assembler Utility does not allow time to
swap disks during operation on a one-drive
configuration. Therefore, two disk drives is a
more practical configuration.

(

.I

~\

(

)

\
)

)

Contents

Introduction

Features of Macro Assembler 1
Overview of Macro Assembler Operation 8

Chapter 1 Creating a Macro Asse.bler Source pile

1.1
1.2
1.3
1.4
1.5
1.6

General Facts about Source Files
Statement Line Format 1-5
Names 1-6
Comments 1-8
Action 1-9
Expressions 1-10

1-1

Chapter 2 Naaes: Labels, Variables, and Syabols

2.1
2.2
2.3

Chapter 3

3.1
3.2
3.3

Chapter 4

Labels 2-2
Variables 2-5
Symbols 2-7

Expressions: Operands and Operators

Memory Organization 3-2
Operands 3-8
Operators 3-17

Action: Instructions and Directives

4.1 Instructions 4-2
4.2 Directives 4-3

Chapter 5 Assembling a Macro Asse.bler Source Pile

5.1 How to Start Macro Assembler 5-1
5.2 Macro Assembler Command Characters 5-4
5.3 Macro Assembler Command Prompts 5-5
5.4 Macro Assembler Command Switches 5-7
5.5 Formats of Listings and Symbol Tables 5-10

Chapter 6

6.1

Chapter 7

7.1
·7.2

8087 Support

Switches 6-1

Macro Assembler Messages

Operating Messages 7-1
Error Messages 7-2

Appendix A ASCII Character Codes (
Appendix B Table of Macro Assembler Directives

Appendix C Table of 8086 and 8087 Instructions

. Index

(

)

\
)

)

INTRODUCTION

Features of Macro Assembler

Microsoft's Macro Assembler is a very powerful assembler for
8086-based computers. Macro Assembler incorporates many
features usually found only in large computer assemblers.
Macro assembly, conditional assembly, and a variety of
assembler directives provide . all the tools necessary to
derive full use and full power from an 8086, 8087, or 8088
microprocessor. Although Macro Assembler is more complex
than any other microcomputer assembler, it is easy to use.

Macro Assembler produces relocatable object code. Each
instruction and directive statement is given a relative
offset from its segment base. The assembled code can then
be linked using Microsoft's MS-LINK utility to produce
relocatable, executable object code. Relocatable code can
be loaded anywhere in memory. Thus, the program can execute
where it is most efficient, instead of in some fixed range
of memory addresses.

In addition, relocatable code means that programs can be
created in modules, each of which can be assembled, tested,
and perfected individuilly. This saves recoding time
because testing and assembly are performed on smaller pieces
of program code. Also, all modules can be error-free before
being linked together into larger modules or into the whole
program.

INTRODUCTION

MOD 1

no

MOD 2

Macro
Assembler

MOD 3

Individual modules
can be edited and

~----~----~ assembled until they

MS-LINK

full or part
prO<} ram file

work correctly.

When the individual
modules are ready,
they can be linked
singly or into one
or more larger
modules.

Figure 1. The Assembly Process

Page 2 (

(

\.

(

) INTRODUCTION page 3

Macro Assembler supports Microsoft's complete 8080 macro
facility, which is Intel 8080 standard. The macro facility
permits the writing of blocks of code for a set of
instructions used frequently. The need for recoding these
instructions each time they are required in the program is
eliminated.

These blocks of code are called macros. The instructions
are the macro definition. Each time the set of instructions
is needed, instead of recoding the set of instructions, a
simple "call" to a macro is placed in .the source file.
Macro Assembler expands the macro call by assembling the
block of instructions into the program automatically. The
macro call al~o pas~es parameters to the assembler for use
during macro expansion. The use of macros reduces the size
of a source module because the macro definitions are given
only once; other occurrences are one-line calls.

Macros can be "nested,"
inside another macro
only by memory.

that is, a macro can be called from
block. Nesting of macros is limited

The macro facility includes repeat, indefinite repeat, and
indefinite repeat character directives for programming
repeat block operations. The MACRO directive can also be
used to alter the action of any instruction or directive by
using its name as the macro name. When any instruction or
directive statement is placed in the program, Macro
AssembLer first checks the symbol table it created to see if
the instruction or directive is a macro name. If it is,
Macro Assembler "expands"· the macro call statement by
replacing it with the body of instructions in the macro's
definition. If the name is not defined as a macro, Macro
Assembler tries to match the name with an instruction or
directive. The MACRO directive also supports local symbols
and conditional exiting from the block if further expansion
is unnecessary.

INTRODUCTION

statement
statement
statement
macro call
statement

,

~

When the assembler
encounters a macro
call, it finds the
MACRO block and
replaces the call
with the block of
statements that
define the macro.

name MACRO x

ENDM

name MACRO x

-

Nested MACRO call:
name defined else-

name l,2"-~ __________ where as a macro,
is "expanded"
during assembly,
as shown above.

ENDM

Figure 2. Assembler Macros

Page 4 (

(

(

)
INTRODUCTION Page 5

Macro Assembler supports an expanded set of conditional
directives. Directives for evaluating a variety of assembly
conditions can test assembly results and branch where
required. Unneeded or unwanted portions of code will be
left unassembled. Macro Assembler can test for blank or
nonblank arguments, for defined or undefined symbols, for
equivalence, for first assembly pass or second, and can
compare strings for identity or difference. The conditional
directives simplify the evaluation of assembly results, and
make programming the testing code for conditions easier.

Macro Assembler's conditional assembly facility also
supports conditionals inside conditionals ("nesting").
Conditional assembly blocks can be nested up to 255 levels.

INTRODUCTION

If condition·
is true, IF
block is
assembled up
to ELSE, then
skips to ENDIF.
If no ELSE,
IF block
assembles en­
tire condi­
tional block.

statement
statement
statement
IF <exp true>

ELSE

..
ENDIF
statement
statement

IF ...
·

IF ...
·

bJ ENDIF

ELSE

· · ENDIF

· · ENDIF

If condition
is false,
program skips
to ELSE, then
resumes at the
next statement.
tf no ELSE,
IF block skips
to ENDIF and
resumes with
next statement.

Nesting of
conditionals
is allowed up to
2SS levels.

Figure 3. Conditional Statements

Page 6

(

(

)

)
I

)

INTRODUCTION Page 7

Macro Assembler supports all the major 8080 directives found
in Microsoft's Macro Assembler for the 8080 processor. This
means that any conditional, macro, or repeat blocks
programmed under the 8080 Macro Assembler can be used under
Macro Assembler for the 8086. Processor instructions and
some directives (e.g., .PHASE, CSEG, DSEG) within the blocks
will need to be converted to the 8086 instruction set. All
the major Macro Assembler directives (pseudo-ops) for the
8080 that are supported under Macro Assembler for the 8086
will assemble as is, as long as the expressions to the
directives are correct for the processor and the program.
The syntax of directives is unchanged. Macro Assembler is
upwardly-compatible, Macro Assembler for the 8080 processor
and with Intel's ASM86(R), except Intel codemacros and
macros.

Some 8086 instructions take only one operand type. If a
type less operand is entered for an instruction that accepts
only one type of operand (e.g., in the instruction PUSH
[BX), [BX) has no size, but PUSH only takes· a word), it
would be wasteful to return an error for a lapse of memory
or a typographical error. When the wrong type choice is
given, Macro Assembler displays an error message but
generates the "correct" code. That is, it always outputs
instructions, not just NOP instructions. For example, if
you enter:

You may have
meant one of
three instructions:

MO/V AL'WOR~:~)
MOV AL,BYTE

(3)
MOV AL,<other>

(1)
MOV AX,WORDLBL

PTR WORDLBL

Macro Assembler generates instruction (2) because it assumes
that when you specify a register, you mean that register and
that size: therefore, the other operand is the "wrong
size." Macro Assembler accordingly modifies the "wrong"
operand to fit the register size (in this case) or the Size
of whatever is the most likely "correct" operand in an
expression. This eliminates some mundane debugging chores.
An error message is still returned, however, because you may
have misstated the operand the Macro Assembler assumes is
"correct."

INTRODUCTION Page 8

OVerview of Macro Assembler Operation

The first task in developing a program is to create a source
file. Use EDLIN (the resident editor in Microsoft's MS-DOS
operating system), or any other 8086 editor compatible with
your operating system, to create the Macro Assembler source
file. Macro Assembler assumes a default filename extension
of .ASM for the source file. Creating the source file
involves creating instruction and directive statements that
follow the rules and constraints described in Chapters 1-4
in this manual.

When the source file is ready, run Macro Assembler as
described in Chapter 5, "Assembling a Macro Assembler Source
File." Refer to Chapter 7, "Macro Assembler Messages r " for
explanations of any messages displayed during or immediately
after assembly.

EDLIN ... Ch 1-4

!
source

.ASH

!
(messages) ... Macro .. ~ Ch 5 ? ~ Assembler

1 1
Ch 7 object

.ASM

Figure 4. Overview of Macro Assembler Operation

(

(
"

(

INTRODUCTION page 9

Macro Assembler is a two-pass assembler. This means that
the source file is assembled twice. But slightly different
actions occur during each pass. During the first pass, the
assembler:

evaluates the statements and expands macro call
statements

calculates the amount of code it will generate

builds.a symbol table where all symbols, variables,
labels, and macros are assigned values

During the second pass, the assembler

fills in the symbol, variable, label, and
expression values from the symbol table

expands macro call statements

emits the relocatable object co.de into a file with
the default filename extension .OBJ

The .OBJ file i~ suitable for processing with the Microsoft
LINK utility (MS-LINK). The .OBJ file can be stored as part
of the user's library of object programs, which later can be
linked with one or more .OBJ modules by MS-LINK (refer to
the M~-LINK utility for further explanation and
instructions). The .OBJ modules can also be processed with
the Microsoft LIB Library Manager (refer to the Microsoft
~ ~ibrary Manager Manual for further explanation and
InstructIons).

The source file can also be assembled without creating an
.OBJ file. All the other assembly steps are performed, but
the object code is not sent to disk. Only erroneous source
statements are displayed on the terminal screen. This
practice is useful for checking the source code for errors.·
It is faster than creating an .OBJ file because no file is·
created or written. Modules can be test assembled quickly
and errors· corrected before the object code is put on disk.
Modules that assemble without errors do not clutter the
disk. .

INTRODUCTION Page 10

(
PASS 1

source
.ASM

statement
statement
macro call

Macro .. -----
Assembler ..

statement

· · · , ·
symbol -- def
symbol -- d~f 1 variable -- def
variable -- def exact amount
label -- def ... of code to
macro name be generated

· · · (
PASS 2

source
.ASM

1 symbol
table

Macro ..
Assembler .. · · ·

1)

object
.OBJ

Figure 5. Pass 1 and Pass 2

(

)

INTRODUCTION Page 11

Macro Assembler will create, on command, a listing file and
a cross-reference file. The listing file contains the
beginning relative addresses (offsets from segment base)
assigned to each instruction, the machine code translation
of each statement (in hexadecimal values), and the statement
itself. The listing also contains a symbol table which
shows the values of all symbols, labels, and variables, plus
the names of all macros. The listing file receives the
default filename extension .LST.

The cross-reference file contains a compact representation
of variables, labels, and symbols. The cross-reference file
receives the default filename extension .CRF. When this
cross-reference file is processed by Microsoft CREF
(MS-CREF), the file is convert~d into an expanded symbol
table that lists all the variables, labels, and symbols in
alphabetical orderJ followed by the line number in the
source program where each is defined; followed by the line
numbers where each is used in the program. The final
cross-reference listing receives the filename extension
.REF. (Refer to the Microsoft CREF Cross-Reference Utility
Manual for further explanation and instructions.)

Figure 6 illustrates the files that Macro Assembler can
produce.

source
.ASH

1
list ing

.. • LfiT·

Macro
Assembler

~

listing

1
.CRF

object
,

.08.1 list ing .. 'MS-CREF .REF ,.

Figure 6. Files That Macro Assembler Produces

(

(

Chapter 1

1.1

1.2
1.3
1.4
1.5
1.6

Contents

Creating a Macro Assembler Source Pile

General Facts about Source Files
Naming Your Source File 1-1
Legal Characters 1-2
Numeric Notation 1-3
What's in a Source File? 1-4

Statement Line Format 1-5
Names 1-6

. Comments 1-8
Action 1-9
Expressions 1-10

1-1

(

(

(

)

)

)

CDAPTBR 1

CREATING A MACRO ASSEMBLER SOURCE FILE

To create a source file for Macro Assembler, you need to use
an editor. program, such as EDLIN in Microsoft's MS-DOS. You
simply create a program file as you would for any other
assembly or high-level programming language. Use the
general facts and specific descriptions in this chapter" and
the three following chapters when creating the file.

This chapter discusses the statement format and introduces
descriptions of its components. In Chapter 2, you will find
"full descriptions of names: variables, labels, and symbols.
Chapter 3 provid~s full descriptions of expressions and
their components, operands and operators. Chapter 4
includes full descriptions of the assembler directives.

1.1 GENERAL FACTS ABOO'l' SOURCE FILES

Naming Your Source Pile

When you create a source file, you must name it. A filename
may be any name that is legal for your operating system.
When you run Macro Assembler to assemble your source file,
Macro Assembler assumes that your source filename has the
extension .ASM.

You do not need to give YOUf source filename the .ASM
extension. However, if your source filename has has an
extension other than .ASM, you ~st specify the extension
name when you run Macro Asse~bler. (You do not need to
specify the .ASM extension if your source fil~name has an
extension of .ASM. Macro Assembler will supply the default
extension for you.)

CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-2

Note that Macro Assembler gives the object file it outputs
the default extension .OBJ. To avoid confusion or the
destruction of your source file, you should avoid giving a
sourc"e file an extension of .OBJ. For similar reasons, you
should also avoid the extensions .EXE, .LST, .CRF, and .REF.

Legal Characters

The legal characters for your symbol names are:

A-Z 0-9 ? @ $

Only the numerals (0-9) cannot appear as the first character
of a name (a numeral must appear as the first character of a
numeric value).

Additional special
delimiters:

characters act as operators or

(colon)--segment override operator

(period)--operator for field name of Record or
Structure1 may be used in a filename only if
it is the first character

[] (square brackets--around register names to
indicate value in address in register, not
value (data) in register

() (parentheses) --operator in DUP expressions and
operator to change precedence of operator
evaluation

< > (angle brackets) operators used around
initialization values for Records or Structure,
around parameter"s in IRP macro blocks, and to
indicate literals

The square brackets and angle brackets are also
used for syntax notation in the discussions of the
assembler directives (Section 4.2, "Directives").
When these characters are operators and not syntax
notation, you are told explicitlY1 for example,
"angle brackets must be coded as shown."

(

(

(

)
I

CREATING A MACRO ASSEMBLER SOURCE FILE

Numeric Notation

The default input radix for all numeric v~lues is decimal.
The output radix for all listings is hexadecimal' for code
and data items and decimal for line numbers.' The output
radix can only be changed to octal radix by giving the /0
switch when Macro Assembler is run (see Section 5.(, "Macro
Assembler Com~and Switches"). There are two ways to change
the input radix: '

1. With the .RADIX directive (see Section 4.2.1,
"Memory Directives")

2. By special notation appended to a numeric value:

Radix Range Notation Example

Binary 0-1 B 01110l00B

Octal 0-7 0 or 0 7350 or 6210

Decimal 0-9 none or D 9384 (default)
81490*

Hexadecimal 0-9 H OFFH or 80H**
A-F

* When .RADIX directive changes default radix to not
decimal.
·*First character must be numeral from O~9.

CREATING A MACRO ASSEMBLER SOURCE. FILE Page 1-4

What's in a Source File?

A source file for Macro Assembler consists of instruction
statements and directive statements. Ins~ruction statements
are made of 8086 instruction mnemonics and their operands,
which command specific processes diiectly to the 8086
processor. Directive statements are command5 to Macro
Assembler to prepare data for use in and by instructions.

Statement line format is described in Section 1.2. The
parts of a statement are described in sections 1.3-1.6 anrl
in Chapters 2-4. Statements are usually placed in blocks of
code assigned to a specific segment (code, data, stack,.
~xtra). The segments may appear in any order in the source
file. Within the segments, generally. speaking, statementR
may appear in any order that ~reates a valid program. Some
exceptions to random ordering do exist, which will be.
discussed under the affected assembler directives.

Every segment must end with an end segment statement (ENDS):
every procedure must end with an end procedure statement
(ENDP): and every structure must end with an end structure
statement (ENDS). Likewise, the source file must end with
an END statement that tells Macro Assembler where program
execution ~hould begin.

Section 3.1, "Memory Organization," describes how segments,
groups, the ASSUME directive, and the SEG operator relate to
one another and to your programming as a whole. This
information is important and helpful for developing your
programs. The information is presented in Chapter 3 as a
prelude to the discussion of operands and operators.

(

(
"

(

CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-5

1.2 STATEMENT LINE FORMAT

Statements in source files follow a strict format, which
allows some variation.

Macro Assembler directive statements consist of four
"fields": Name, Action, Expression, Comment. For example:

Faa DB·

I I
Name Action

005E

1
Expression

;create variable Fad
;containing the value 005EH

:Comment

Macro Assembler instruction statements usually consist of
three "fields": Action, Expression, comment. For example:

MOV CX,FOO ;here's the count number
I

Action
:1

Expression
1

:Comment

An instruction statement may have a Name field under certain
circumstances; see the discussion in Section 1.3, "Names."

CREATING A MACRO ASSEMBLER SOURCE FILE

1.3 lIAMBS

The name field, when present, is the first entry on ·the
statement line. The name may begin in any column, although
normally names are st~rted in column 1.

Names may be any length' you choose. However, Macro
Assembler considers only the first 31 charac~ers significant
when your source file is assembled.

One other significant use for names is with the MACRO'
directive. Although all the rules covering names, described
in Chapter 2, apply to MACRO names, the discussion of macro
names is better left to the section describing the macro
facility. .

Macro Assembler supports the use of names in a statement
line for three purposes: to represent code, to represent
data, and to represent coristants.

To make a name represent code, use:

NAME: followed by a directive, instruction, or
nothing at all

NAME LABEL NEAR 'for use inside' its own segment
only)

NAME LABEL FAR (for use outside its own segment)

EXTRN NAME:NEAR (for use outside its own module but
inside its own segment only)

EX~RN NAME:FA~ (for use outside its own module and
segment)

To make a name represent data, use:

NAME LABEL <size> (BYTE, WORD, etc.)

NAME Ox <exp>

EXTRN NAME:<size> (BYTE, WORD, etc.)

(

(

(

)

CREATING A MACRO ASSEMBLER SOURCE FILE

To make a name represent a constant, use:

NAME EOU <constant>

'NAME = <constant>

NAME SEGMENT <attributes>

NAME GROUP <segment-names>

Page 1-7

CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-8

1.4 COMMBlft'S

Comments are never required for the successful operation of
an assembly language program, but they are strongly
recommended.

If you use comments in your program, every comment on every
line must be preceded by a semicolon. If you want to place
a very long comment in your program, you can use the COMMENT
directive. The COMMENT directive releases you from the
required semicolon on every line (refer to COMMENT in
Section 4.2.1, "Memory Directives").

Comments document the processing that is supposed to happen
at a particular point iil a program •.. When comments are' used
in .this manner, they can be useful for debugging, for
alteriJ'lg, code, or for updating code. ,'Consider putting
comments at the beg inning of each segment, . procedu re,
structure, module, and after each line in the code that
begins a step in the processing.

Comments are ignored by Macro Assembler. Comments do not
add to the memory required to assemble or to run your
program, except in macro blocks where. comments are stored
with the code.

(

(

(

CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-9

1.5 ACTION

The action field contains either an 8086 instruction
mnemonic or a Macro Assembler assembler di~ective. Refer to
Section 4.1, "Instructions," for a general discussion and to
Appendix C for a list of 8086 instruction mnemonics. The
Macro Assembler directives are described in detail in
Section 4.2, "Directives."

If the name field is blank, the action field will be the
first entry in the statement format. In this case, 'the
acti'on may appear in any column, 1 through maximum line
length (minus columns for action and expression).

The entry in the action field either directs the processor
to perform a specific function or it directs the assembler
to perform ,one of its functions. In~tructions tell the
processor to perform some action. An instruction may have
the data and/or addresses it needs built into it, or data
and/or addresses may be found in the expression part of an
instruction. For example:

I opcode I I operand I I da~a II data I

~~CYr
supplied supplied or found

supplied = part of the instruction

found = assembler inserts data and/or address' from the
information provided by expression in instruction
statements

(opcode is the action part of an instruction)

Directives give the assembler directions
organization, conditional assembly,
cross-reference control, and definitions.,

for I/O, memory
listing and

. '

CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-10

. 1.6 EXPRBSSICMS

The expression field contains ·entries which are operands
and/or combinations of operands and operators.

Some instructions take no operands 1 some take one, and
.others ,take two. For two-operand instructions, the
expression field ·.consists of a destination: operand and a
source operand, in that order, separated by a comma. For
example:

lopcodel !dest-operandl,!source-operandl

For one-operand instructions, the operand is a source or a
destination operand, depending on the instruction. If one
or both of the operands is omitted, the instruction carries
that information in its internal coding.

Source operands are immediate operands, register operands,
memory operands, or attribute operands. Destination
operands are register operands and memory operands.

For directives, the expression field usually consists of a
single operand. For example:

!directivel loperandl

A directive operand is a data operand, a
operand, or a constant, depending on
directive. .

code (addressing)
the nature of the

For many instructions and directives, operands may be
connected with operators to form a longer operand that looks
like a mathematical expression. These operands are called
complex operands. Use of a complex operand permits you to
specify addresses or data derived from several places. For
example:

MOV FOO(BX1,AL

(

(

(

CREATING A'MACRO ASSEMBLER SOURCE FILE Page 1-11

The destination operand is the result of adding the address
represented by the variable ,FOO and the address found in
register BX. The processor -is instructed to move the value
in register AL to the destination calculated from these two
operand elements. Another example:

MOV AX,FOO+5(BX]

In this case, the source operand is the result of adding the
value represented by the symbol FOO plus 5 plus the value
found in the BX register.

GREATING A MACRO ASSEMBLER SOURCE FILE Page 1-12

Macro Assembler supports the
operators in the expression
precedence):

Operands

Immediate
. (incl. symbols)
Register
Memory

label

following
field (shown

Operators

operands
in order

LENGTH, SIZE, WIDTH, MASK,
FIELD (], (), <. >

segment override(:)

and
of

variables
simple
indexed
structures

PTR, OFFSET, SEG, TYPE, THIS

Attribute
override

PTR
: (seg)
SHORT
HIGH
LOW

value returning
OFFSET
SEG
THIS
TYPE
• TYPE
LENGTH
SIZE

record specifying
FIELD
MASK
WIDTH

•

HIGH, LOW

*, I, MOD, SHL, SHR

+, -(unary), -(binary)

EQ, NE, LT, LE, GT, GE

Nar

AND

OR, XOR

SHORT, • TYPE

NarE

Some operators can be used as operands or as
part of an operand expression. Refer to
Sections 3.2, "Operands," and 3.3, ·Operators,·
for details 6f operands and operators.

(

(

(

Chapter 2

2.1
2.2
2.3

Contents

Names: Labels, Variables, and Symbols

Labels 2-2
Variables 2-5
Symbols 2-7

(

(

(

)

CBAPrER 2

NAMES: LABELS, VARIABLES, AND' SYMBOLS

Names are used in several ways throughout Macro Assembler,
wherever any naming is allowed or required.

Names are symbolic representations of values. . The values
may be addresses, data, or constants.

Names may be any length you choose. However, Macro
Assembler will truncate names longer than 31 characters when
your source file is assembled.

Names may be defined and used in a number of ways. This
chapter introduces you to the basic ways to define and use
names. You will discover additional uses as you study the
chapters on Expressions and Action, and as you use Macro
Assembler.

Macro Assembler supports three types of names in statement
lines: labels, variables, and symbols. This chapter covers
how to define and use these three types of names.

NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-2

2.1 LABELS

Labels are names used as targets for JMP,; CALL, and LOOP
instructions. Macro Assembler assigns an address to each
label as it is defined. When you use,'a label as an operand
for JMP, CALL, or LOOP, Macro Assembler can substitute the
attributes of the label for the label name, sending
processing to the appropriate place.

Labels are defined in one of four ways:

1. <name>:

Use a name followed' immediately by a colon. This
defines the name as a NEAR label. <name>: may be
prefixed to any i"nstruction and to all directives
that allow a Name field. <nam~>~ may also be
placed on a line by itself.

Examples:

CLEAR SCREEN: MOV
FOO: - DB OFH
SUBROUTINE3:

AL,20H

2. <name>
<name>

LABEL
LABEL

NEAR
FAR

Use the LABEL directive. Refer to the discussion
of the LABEL directive in Section 4.2.1, "Memory
Directives."

NEAR and FAR are discussed under, ,the Type Attr ibute
below.

Examples:

FOO
GOO

3. <name>
<name>

LABEL"
LABEL

PROC
PROC

NEAR,
FAR

NEAR
FAR

Use the PROC directive.
,the PROC directive
Directives."

Refer to the discussion of
in Section 4.2.1, "Memory

NEAR is optional because it is the default if you
enter only <name> PROC. NEAR and FAR are discussed
under the Type Attribute below.

(

(

(

\

)

)

NAMES: LABELS, VARIABLES; AND SYMBOLS Page 2-3

Examples:'

REPEAT
CHECKING
FIND_CHR

PROC
PROC
PROC

NEAR
,same as CHECKING PROC NEAR
FAR

4. EXTRN <name>, :NEAR
EXTRN <name>:FAR

Use the EXTRN directive.

NEAR and FAR are discussed under the Type Attribute
below.

Refer to the discussion of the EXTRN directive in
Section 4.2.1, -Memory Directives.-

Examples:

EXTRN FOO: NEAR
EXTRN ZOO:FAR

A label has four, attributes: segment, offset, type, and the
CS ASSUME in effect when the label is defined. Segment is
the segment where the label is defined.' Offset is the
distance from the beginning of the segment to the label's
location. 'rype is either NEAR or FAR.

p..!!9.l1lent

Labels are defined inside segments. The segment must be
assigned to the CSsegment'register to be addressable. The
segment may be assigned to a group, in which case the group
must be addressable, through CS. Macro ,Assembler requires
that a label be addressable through the CS register.
Therefore, the segment (or group) attribute of a symbol is
the base address of the segment (or group) where it is
defined.

QJ~~et '

The offset attribute is the num~er of bytes from the
beginning of the· label's segment to where the label is
defined. The offset is a l6-bit unsigned number.

NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-4

~

Labels are one of two types: NEAR or FAR. NEAR labels are
used for references from within the segment where the label
is defined. NEAR labels may be referenced from more than
one module, as long as the references are from a segment
with the same name and attributes and have the same CS
ASSUME.

FAR labels are used for references from segments with a
different CS ASSUME, or when there are more than 64K bytes
between the label reference and the label definition.

NEAR and FAR cause Macro Assembler to generate slightly
different code. NEAR labels supply their offset attribute
only (a 2-byte pointer). FAR labels supply both their
segment and offset attributes (a 4-byte pointer).

(

"

(

(

)
NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-5

2.2 VARIABLES

Variables are names used in expressions as operands to
instructions and directives. A variable represents an
address where a specified value may be found.

Variables look much like labels and are defined alike in
some ways. The differences are important.

Variables are defined three ways:

1. <name> <define-dir> :no colon!
<name> <struc-name> <expre~sion>
<name> <rec-name> <expression>

<define-dir> is any of the five Define directives:
DB, OW, DO, OQ, DT

Example:

START MOVE OW ?

<struc-name> is a structure name defined by the
STRUC directive.

<rec-name> is a record name defined by the RECORD
directive.

Examples:

CORRAL STRUC

ENOS
HORSE CORRAL <'SADDLE'>

Note that HORSE will have the same size as the
structure CORRAL.

GARAGE RECORD CAR:8='P'

SMALL GARAGE 10 DUP«'Z'»

Note that SMALL will have the same size as the
record GARAGE.

See the OEFINE,STRUC, and· RECORD directives in
Section 4.2.1, "Memory Directives."

2. <name> LABEL <size>

Use the LABEL directive with one of the size

NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-6

specifiers.

<size> is one of the following size specifiers:

BYTE - specifies 1 byte
WORD - specifies 2 bytes
DWORD - specifies 4 bytes
QWORD - specifies 8 bytes
TBYTE - specifies 10 bytes

Example:

CURSOR LABEL WORD

See LABEL directive in Section 4.2.1, "Memory
Directives."

3. EXTRN <name>:<size>

Use the EXTRN directive with one of the size
specifiers described above. See EXTRN directive in
Section 4.2.1, "Memory Directives."

Example:

EXTRN FOO:DWORD

Variables also have the three attributes segment, offset,
and type (as do labels).

Segment and Offset are the same for variables as for labels.
The Type attribute is different.

The type attribute is the size of the variable's location,
as specified when the variable is defined. The size depends
on which Define directive was used or which size specifier
was used to define the variable.

Directive ~ Size

DB BYTE 1 byte
OW WORD 2 bytes
DO WORD 4 bytes
DQ QWORD 8 bytes
DT TBYTE 10 bytes

(

(

(

NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-7

2.3 SYMBOLS

Symbols are names defined without reference to a Define
directive or to code. Like variables, symbols are also used
in expressions as operands to instructions and directives.

Symbols are defined three ways:

1. <name> EQU <expression>

Use the EQU directive. See EOU directive in
Section 4.2.1, "Memory Directives."

<expression> may be another symbol, an instruction
mnemonic, a valid expression, or any other entry
(such as text or indexed references).

Examples:

FOO
ZOO

EOU
EOU

7H
FOO

2. <name> = <expression>

Use the equal sign directive. See Equal Sign
directive in Section 4.2.1, "Memory Directives."

<expression> may be any valid expression.

Examples:

GOO
GOO
GOO

=
=

OFH
$+2
GOO+Foo

3.. EXTRN <name> :ABS

Use the EXTRN directive with type ABS. See EXTRN
directive in Section 4.2.1, "Memory Directives."

Example:

EXTRN BAZ:ABS

BAZ must be defined by an EOU or = directive to a
valid expression.

(

(

(

)

)

Chapter 3

3.1
3.2
3.2.1

3.2.2
3.2.3

3.3
3.3.1

3.3.2
3.3.3
3.3.4
3.3.5

Contents

Expressions: Operands and Operators

Memory Organization 3-2
Operands 3-8

Immediate Operands 3-9
Data Items 3-9
Symbols 3-9

Register Operands 3-10
Memory Operands 3-13

Direct Memory Operands 3-13
Indexed Memory Operands 3-14
Structure Operands 3-15

Operators 3-17
Attribute Op~rators 3-17

Override Operators 3-18
Value Returning Operators 3-23
Record Specific Operators 3-29

Arithmetic Operators 3-33
Relational Operators 3-34
Logical Operators 3-35
Expression Evaluation 3-36

Precedence of Operators 3-36

· (

(

CHAPTER 3

EXPRESSIONS: OPERANDS AND OPERATORS

Chapter 1 provided a brief introduction to expressions.
Basically, expression is the term used to indicate values on
which an instruction or directive performs its functions.

Every expression consists of at least one operand (a value).
An expression may consist of two or more operands. Multiple
operands are joined by operators. The result is a series of
elements that looks like a mathematical expression.

This chapter describes the types of operands and operators
that Macro Assembler supports. The discussion of memory
organization in a Macro Assembler program acts as a preface
to the descriptions of operands and operators, and as a link
to topics discussed in Chapter 2.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-2

3.1 MEMORY ORGANIZ~IOR

Most of your assembly language program is written in
segments. In the source file, a segment is a bloc~ of code
that begins with a SEGMENT directive statement and ends with
an ENDS directive. In an assembled and linked file, a
segment is any block of code that is addressed through the
same segment register and is not more than 64K bytes long.

You should note that Macro Assembler leaves everything
relating to segments to MS-LINK. MS-LINK resolves all
references. For that reason, Macro Assembler does not check
(because it cannot) to see if your references are entered
with the correct distance type. Values such as OFFSET are
also left to MS-LINK to resolve.

Although a segment may not be more than 64K bytes long, you
'may, as long as you observe the 64K limit, divide a segment
among two or more modules. (The SEGMENT statement in each
module must be the same.)

When the modules are linked together, the several segments
become one. References to labels, variables, and symbols
within each module acquire the offset from the beginning of
the. whole segment, not just from the beginning of their
portion of the whole segment. (All divisions are removed.)

You have the option of grouping several segments into a
group using the GROUP directive. When you group segments,
you tell Macro Assembler that you want to be able to refer
to all of these segments as a single entity. (This does not
eliminate segment identity, nor does it make values within a
particular segment less immediately accessible. It does
make value relative to a group base.) The advantage of
grouping is that you can refer to data items without
worrying about segment overrides or changing segment
registers.

With this in mind, you should note that references within
segments or groups are relative to a segment register.
Thus, until ,linking is completed, the final offse~ of a
reference is relocatable. For this reason, the OFFSET
operator does not return a constant. The major purpose of
OFFSET is to cause Macro Assembler to generate an immediate
instruction: that is, to use the address of the value
instead of the value itself.

(

(

(

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-3

There are two kinds of references in a program:

1. Code references JMP, CALL, LOOPxx These
. references are relative to the address in the CS
register. (You cannot override this assignment.)

2. Data references - all other references These
references are usually relative to the OS register,
but this assignment may be overridden.

When you give a forward reference in a program statement,
for example:

MOV AX,<ref>

Macro Assembler first looks for the segment of the
. reference. Macro Assembler scans the segment registers for
the SEGMENT of the reference, then the GROUP (if any) of the
reference.

However, the use of the OFFSET operator always returns the
offset relative to the segment. If you want the offset
relative to a GROUP, you must override this restriction by
using the GROUP name and the colon operator. For ~xample:

MOV AX,OFFSET <group-name>:<ref>

If you set a segment register to a group with the ASSUME
directive, then you may also override the restriction on
OFFSET by using the register name. For example:

MOV AX,OFFSET DS:<ref>

The result of both of these statements is the same.

Code labels have four attributes:

1. Segment - what segment the label belongs to

2. Offset - the number of bytes from the beginning of
its segment

3. Type - NEAR or FAR

4. CS ASSUME - the ct ASSUME the label was coded under

When you enter a NEAR JMP or NEAR CALL, you are changing the
offset (IP) in CS. Macro Assembler compares the CS ASSUME
of the targe~ (where the label is defined) with the current
CS ASSUME. If they are different, Macro Assembler returns
an error (you must use a FAR JMP or FAR CALL).

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-4

When you enter a FAR JMP or. FAR CALL, you are changing both
the offset (IP) in CS and the paragrapH number. The
paragraph number is changed to the CS ASSUME of the target
address.

Let's take a common case, a segment called CODE, and a group
(called DGROUP) that contains three segments (called DATA,

CONST, and STACK).

The program statements would be:

DGROUP GROUP
ASSUME
MOV
MOV

DATA,CONST,STACK
CS :CODE,DS :DGROUP ,SS :.DGROUP, ES: DGROUP
AX,DGROUP :CS initialized by entry:
DS,AX ;you initialize OS, do this

;as soon as possible,
;especially before any
;DS relative references

As a diagram, this arrangement could be represented as
follows:

--------------~------------------~------------CS

COD E

4~
DS,ES,SS

D A T A ..

<64K CON S T

•

S T A C K

, ,

(

(

(

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-5

Given this arrangement, a statement like

MOV AX,<variable>

causes Macro Assembler to find the best segment register to
reach this variable. (The "best" register is the one that
requires no segment overrides.)

A statement like

MOV AX,OFFSET <variable>

tells Macro Assembler to return the offset of the variable
relative to the beginning of the variable's segment.

If this <variable> is in the CONST segment and you want to
reference its offset from the beginning of DGROUP, you need
a statement like the following:

MOV AX,OFFSET DGROUP:<variable>

Macro Assembler is a two-pass assembler. During pass 1, it
builds a symbol table and calculates how much code is
generated, but does not produce object code. If undefined
items are found (including forward references), assumptions
are made about the reference so that the correct number of
bytes are generated on pass 1. Only certain types of errors
are displayed: errors involving items that must be defined
on pass 1. No listing is produced unless a /0 switch is
given when you run the assembler. The /0 switch produces a
listing for both passes.

On pass 2, the assembler uses the values defined in pass 1
to generate the object code. Definitions of references
during pass 2 are checked against the pass 1 value, which is
in the symbol table. Also, the amount of code gener~ted
during pass 1 must match the amount generated during pass 2.
If either is different, Macro Assembler returns a phase
error.

Because pass 1 must keep correct track of the relative
offset, some references must be known on pass 1. If they
are not known, the relative offset will not be correct.

The following references must be known on pass 1:

1. IF/IFE <expression>
If <expression> is' not known on pass 1, Macro
Assembler does not know to assemble the conditional
block (or which part to assemble if ELSE is used).
On pass 2, the assp.mbler would know and would
assemble, resulting in a phase error.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-6

2. <expression> DUP(•••)
This operand explicitly changes the relative
offset, so <expression> must be known on pass 1.
The value in parentheses need not be known because
it does not affect the number of bytes generated.

3. .RADIX <expression>
Because this directive changes the input radix,
constants could have a different value, which could
cause Macro Assembler to evaluate IF or DUP
statements incorrectly.

The biggest problem for the assembler is handling forward
references. How can it know the kind of a reference when it
still has not seen the definition? This is one of the main
reasons for two passes. And, unless Macro Assembler can
tell from the slatement containing the forward reference
what the size, the distance, or any other of its ~ttr~butes
are, the assembler can only take the safe route (generate
the largest 'possible instruction in some cases, except for
segment override or FAR). This results in extra code that
does 'nothing. (Macro Assembler figures this out by pass 2,
but il cannot reduce the size of the instructions without
causing an error, so it puts out NOP instructions (9011).

For this reason, Macro Assembler includes a number of
operators to help the assembler. These operators tell Macro
Assembler what size instruction to generate when it is faced
with an ambiguous choice. As a benefit, you can also reduce
the size of your program by using these operators to change
the nature of the arguments to the instructions.

(

(

(

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-7

Examples:

MOV AX,FOO ~FOO = forward constant

This statement causes Macro Assembler to generate a move
from memory instruction on pass 1. By using the OFFSET
operator, we can cause Macro Assembler to generate an
immediate operand instruction.

MOV AX,OFFSET FOO ~OFFSET says use the address
~of FOO

Because OFFSET tells Macro Assembler to use the address of
FOO, the assembler knows that the value is immediate. This
method saves a byte of code.

Similarly, if you have a CALL statement that calls to a
label that may be in a different CS ASSUME, you can prevent
problems by attaching the PTR operator. to the label:

CALL FAR PTR <forward-label>

At the opposite extreme, you may have a JMP forward that is
less than 127 bytes. You can save yourself a byte if you
use the SHORT operator.

JMP SHORT <forward-label>

However, you must be sure that the target is indeed· within
127 bytes or Macro Assembler will not find it.

The PTR operator can be used another way to save yourself a
byte when using forward references. If you defined FOO as a
forward constant, you might enter the statement:

MOV [BXl ,FOO

You may want to refer to FOO as a byte immediate. In this
case, you could enter either of these statements (they are
equivalent):

MOV BYTE PTR [BX1 ,FOO

MOV [BX) ,BYTE· PTR FOO

These statements tell Macro Assembler that FOC is a byte
immediate. A smaller instruction is generated.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-8

3.2 OPERANDS

An operand may be anyone of
Register, or Memory operands.
combining the types of operands.

three types: Immediate,
There is no restriction on

The following list shows all the types and the items that
comprise them:

Immediate operands
Data items
Symbols

Register operands

Memory operands
Direct

Labels
Variables
Offset (fieldname)

Indexed
Base register
Index register
(constant]
,:tdisplacement

Structure

(

(

(

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-9

3.2.1 Imaediate Operands

Immediate operands are constant values that yOll supply when
you type a statement line. The value may be typed either as
a data item or as a symbol.

Instructions that take two operands permit an immediate
cperand as the source operand only (the second operand in an
instruction statement). For example:

MOV· AX,9

Data Items

Macro. Assembler recognizes values in forms other than
decimal when special notation is appended. The default
input radix is decimal. Any numeric values entered without
numeric notation appended will be treated as a decimal
value. These other values include ASCII characters as well
as numeric values.

Data Form

Binary

Octal

Decimal

Hexadecimal

ASCII

10 real

16 real

Symbols

Format

xxxxxxxxB

xxxO
xxxO

xxxxx
xxxxxD

xxxxH

'xx,
"xx"

xx.xxE&+xx

x ••• xR

Example

01110001B

7350 (ietter 0)
4120

65535 (default)
10000 (when .RADIX changes input

radix to nondecima1)

OFFFFH (1st digit must be 0-9)

'OM' (more than two with DB only;
"OM" both forms are synonymous)

25.23E-7 (floating point format)

8F76DEA9R (1st digit must be 0-9:
the total number of digits
must be 8, 16, or 20; or 9,
17, 21 if first digit is 0)

Symbol names equated with some form of constant information
(see Section 2.3, "Symbols") may be used as immediate
operands. Using a symbol constant in a statement is the
same as using a numeric constant. Therefore, using the
sample statement above, you could type:

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-10

MOV AX,FOO

assuming FOO was defined as a constant symbol. For example:

FOO EQU 9

3.2.2 Register Operands

The 8086 processor contains a number of registers. These
registers are identified by two-letter symbols that the
processor recognizes (the symbols are reserved).

The registers are appropriated to different tasks: general
registers, pointer r.egisters, counter registers, index
registers, segment registers, and a flag register.

The general registers are two sizes: 8-bit and 16-bit. All
other registers are 16-bit.

The general registers are both 8-bit and 16-bit registers.
Actually, the 16-bit general registers are composed of a
pair of a-bit registers, one for the low byte (bits 0-7) and
one for the high byte (bits 8-15)~ Note, however, that each
8-bit general register can be used independently from its
mate. In this case, each 8-bit register contains bits 0-7.

Segment registers are initialized by the user and contain
segment base values. The segment register names (CS, DS,
SS, BS) can be used with the colon segment override operator
to inform Macro Assembler that an operand is in a different
segment than specified in an ASSUME statement. (See the
segment override operator in Section 3.3.1, "Attribute
Operators.)"

The flag register is one 16-bit register containing nine
I-bit flags (six arithmetic flags and three control flags).

Each of the registers (except segment registers and flags)
can be an operand in arithmetic and logical operations.

(

(

(

)

)

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-11

Register/Memory Field Encoding:

MOD=ll Register Mode

R/M W=O W=l

000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
10 1 CH BP
110 DH SI
III BH DI

EFFECTIVE ADDRESS CALCULATION

RIM MOD=OO MOD=Ol MOD=10

000 [BX]+[SI] [BX]+[SI]+D8 [BX1+[SI]+D16
001 JBX]+[DI] [BX]+[DI]+D8 [BX]+[DI]+D16
010 [BP]+[SI] [BP]+[SI]+D8 [BP]+[SI]+D16
011 [BP]+[DI] [BP]+[D1]+D8 [BP]+[D1]+D16
100 [SI] [SIJ+D8 [S1]+D16
101 [D1] [D1] +D8 [D1]+016
110 DIRECT ADDRESS [BP]+D8 [BP]+016
111 [BX] [BX]+D8 [BX]+D16

Note: D8 = a byte value; D16 = a word value

Other Registers:

Segment:CS
DS
SS
ES

Flags:

cod e segmen t
data segment
stack segmen t
extra segmen t

I-bit arithmetic flags 3 I-bit control flags

CF
PF

AF
ZF
SF

carry flag DF
pa r it y flag I F

auxiliary flag TF
zero flag
sign flag

d irec tion flag
in terrupt-enab1e
flag
trap flag

EXPRESSIONS: OPERANDS AND OPERATORS

N~E

The BX, BP, SI, and DI
registers are also used as
memory operands. The
distinction is: when these.
registers are enclosed in
square brackets [·1, they are
memory operands; when they
are not enclosed in. square
brackets, they are reqister
operands (see Section 3.2.3,
"Memory Operands").

Page 3~12

(

(

(

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-13

3.2.3 Memory Operands

A memory operand represents an address in memory. When you
use a· memory operand, you direct Macro Assembler to an
address to find some data or instruction.

A memory operand always consists of an offset from a base
address.

Memory operands fit into three categories: those that do
not use a register. (direct memory operands), those that use
a base or index register (indexed memory operands), and
structure operands.

Direct Memory Operands

Direct memory operands do not use a register, and consist of
a single offset value. Direct memory operands are labels,
simpl~ variables, and offsets.

Memory operands can be used as destination operands as well
as source operands for instructions that take two operands.
For example:

MOV AX,FOO
MOV FOO,CX

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-14

Indexed Memory Operands

Indexed memory operands use base and index registers,
constants, displacement values, and variables, often in
combination. When you combine indexed operands, you create
an address expression.

Indexed .emory operands use square brackets to indicate
indexing (by a register or by registers) or subscripting
(for example, FOO[S]). The square brackets are treated like
plus signs (+). Therefore,

Foo[S] is equivalent to FOO+S
S[F001 is equivalent to S+FOO

The only difference between square brackets and
occurs when a register name appears inside
brackets. Then, the operand is indexed.

The types of indexed memory operands are:

Base registers: [BX1 (BP1

plus signs
the square

BP has SS as its default segment register;
all others have OS as default.

Index registers: [01] [51]

[constant 1 Immediate in square brackets [8], [FOOl

+Oisplacement 8-bit or 16-bit value.
Used only with another indexed operand.

These elements may be combined
restriction is that two base
registers cannot be combined:

[BX+BP] :illegal
[SI+DI1 : illegal

in any order. The only
registers. and two indexed

Some examples of indexed memory operand combinations:

(BP+8)
[SI+BX1 [41
l6[OI+BP+3)
8[Foo1-8

More examples of equivalent forms:

S [BX] (511
BX+S] [511
(BX+SI+5]
(BX15[SI]

(

(

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-15

Structure Operands

Structure operands take the form <variable>.<field>.

<variable> i~ any name you give when coding a statement line
that initializes a Structure field. The <variable> may be
an anonymous variable, such as an indexed memory operand.

<field> is a name defined by a DEFINE directive within a
STRUC block. <field> is a typed constant.

The period C.) must be included.

Example:

ZOO
GIRAFFE
ZOO

LONG_NECK

STRUC
DB ?
ENDS

ZOO <16>

MOV AL,LONG_NECK.GIRAFFE

MOV AL,[BX] .GIRAFFE :anonymous variable

The use of structure operands can be helpful in stack
opeiations. If you set up the stack segment as a structure,
setting BP to the top of the stack CBP equal to SP), then
you can access any value in the stack structure by field
name indexed through BPi for example:

lBP] .FL06 .,0;

BP--': +--SP
FLOl

FLD3 I FL02

STRUC FL04

FL06 J FLD5

FL07
...

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-16

This method makes all values on the stack available all the
time, not just the value at the top. Therefore, this method
makes. the stack a handy place to pass parameters to
subroutines.

(

EXPRESSIONS: OPERANDS AND OPERATORS

3.3 OPERATORS

An operator may be one of four
arithmetic, relational, or logical.

Page 3-17

types: attribute,

Attribute operators are used with operands to override their
attributes, return the value of the attributes, or to
isolate fields of records.

Arithmetic, relational, and logical operators are used to
combine or compare operands.

3.3.1 Attribute Operators

Attribute operators used as operands perform one of three
functions:

Override an operand's attributes

Return the values of operand attributes

Isolate record fields (record specific operators)

The following list shows all the attribute operators by
type:

Override operators
PTR
colon (:) (segment override)
SHORT
THIS
HIGH
LOW

Value returning operators
SEG
OFFSET
TYPE
.TYPE
LENGTH
SIZE

Record specific operators
Shift count (Field name)
WIDTH
MASK

EXPRESSIONS: OPERANDS AND OPERATORS Page 3~l8·

OVerride Operators

T·hese operators are used to override the seg~ent, offset,
type, or distance of variables and labels.

Pointer (PTR)

<attribute> PTR<expression>

The PTR operator overrides the type (BYTE, WORD,
DWORD) or the distance (NEAR, FAR) of an operand.

<attribute> is the new attribute: the new ty'pe or
new distance.

<expression> is the operand whose attribute is' to
be overridden.

The most important and frequent use for PTR is to
assure that Macro Assembler understands what
attribute the expression .is supposed to have. This
is. especially true for the type attribute.
Whenever you place forward references in your
program, PTR will make cle,ar the distance or type
of the expression. This way you can avoid phase
errors.

The second use of PTR is to access qata by type
other than the type in the variable definition.
Most often this occurs in structures. If the
structure is defined as WORD but you want to access
an item as a byte, PTR is the operator for this.
However, a much easier method is to enter a second'
statement that defines the structure in bytes, too.
This eliminates the need to use PTR for every
reference to the s·tructure. Refer to the LABEL
directive in Section 4.2.1, "Memory Directives."

Examples:

CALL WORD'PTR (BX] (SI]
MOV BYTE PTR ARRAY

ADD BYTE PTR FOO, 9

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-19

Segment Override (:) (colon)

<segment-register>:<address-expression>
<segment-name>: <address-expression>
<group-name>: <address-expression>

The segment override .operator overrides the assumed
segment of an address expression (which may be a
labe1~ a variable, or other memory operand) •

The colon operator helps with forward references by
telling the assembler to what a reference is
relative (segment, group, or segment register).

Macro Assembler assumes that labels are addressable
through the current CS register. Macro Assembler
also assumes that variables are addressable through
the current OS register, or possibly the ES
register, by default. If the operand is in another
segment and you have not alerted Macro Assembler
through the ASSUME directive, you will need to use
a segmen~ override operator. Also, if you want to
use a nondefault relative base (that is, not the
default segment register), you will neerl to use the
segment overr~de operator for forward references.
Note that if Macro Assembler can reach an operand
through a nondefault segment register, it will use
it, but the reference cannot be forward in this
case.

<segment-register> is one of the four segment
register names: CS, OS; SS, ES.

<segment-name> is a name defined by the SEGMENT
directive.

<group-name> is a name defined by the
directive.

Examples:

MOV AX,ES: [BX+SI]

MOV CSEG:FAR_LABEL,AX

MOV AX,OFFSET DGROUP:VARIABLE

GROUP

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-20

SHORT

SHORT <label>

SHORT overrides NEAR distance attributes of labels
used as targets for the JMP instruction. SHORT
tells Macro Assembler that the distance between the
JMP statement and the <label> specified as its
operand is not more than 127 bytes either
direction.

The major advantage of using the SHORT operator is
to save a by.te. Normally, the <label> car r ies a
2-byte pointer to its offset in its segment.
Because a range of 256 bytes can be handled in a
single byte, the SHORT operator eliminates the need
for the extra byte (which would carry 00 orFF
anyway). However, you must be sure that the target
.is within +127 bytes of the JMP instruction before
using SHORT: .

Example:

JMP SHORT REPEAT

REPEAT:

(

(

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-21

THIS

THIS <distance>
THIS <type>

The THIS operator creates an operand. The value of
the operand depends on which argument you give
THIS.

The argument to THIS may be:

1. A distance (NEAR or FAR)

2. A type "(BYTE, WORD, or DWORD)

THIS <distance> creates an operand with the
distance attribute you specify, an offset equal to
the current location counter, and the segment
attribute (segment base address) of the enclosing
segment.

THIS <type> creates an operand with the type
attribute you specify, an offset equal to the
current location counter, and the segment attribute
(segment base address) of the enclosing segment.

Examples:

TAG EOU THIS BYTE same as TAG LABEL BYTE

SPOT CHECK THIS NEAR same as
SPOT:CHECK LABEL NEAR

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-22

HIGH,LOW

HIGH <expression>
LOW <expression>

HIGH and LOW are provided for 8080
language compatibility. HIGH and LOW
isolation operators.

assembly
are byte

HIGH isolates the high 8 bits of an absolute l6-bit
value or address expression.

LOW isolates the low 8 bits of an absolute 16-bit
value or address exp~ession.

Examples:

MOV AH,HIGH WORD VALUE 1get byte with sign bit

MOV AL,LOW OFFFFH

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-23

Value Returning Operators

These operators return the attribute values of the 'Qperands
that follow them but do not override :the attributes.

'The value returning op~iators'take labels and variables as
~heir arguments.

. '. ',.'

Beca~se variables in Macro Assembler have three attributes,
you need to use value returning operators to isolate,slngle
'attributes, as follows:

SEG isolates the segment base address
OFFSET isolates the offset value
TYPE i~olates either type or distance
LENGTH and SIZE isolate the memory allocation

SEG

SEG <label>
SEG <variable>

SEG returns
address) of
variable.

Example:

the
the

segment
segment

value (segment. base
enclosing the label or

MOV AX,SEG VARIABLE NAME ,
MOV AX,<segment-varIable>:<variable>

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-24

OFFSET

OFFSET <label>
OFFSET <variable>

OFFs~r returns the offset value of the variable or
label within its segment (the number of bytes
between the segment base address and the address
where. the label or variable is defined).

OFFSET is chiefly used to tell the assembler that
the operand is an immediate operand.

NOTES

OFFSET does not make the value a constant.
Only MS-L!NK-can resolve the final value.

OFFSET is not required with uses of the OW
or DO directives. The assembler applies an
implicit OFFSET to variables in address
expressions following OW and DO.

Example:

MOV BX,OFFSET FOO

If you use an ASSUME to GROUP, OFFSET will not
automatically return the offset of a variable from
the base address of the group. Rather, OFFSET will
return the segment offset, unless you use the
segment override operator (group-name version). If
the variable GOB is defined in a segment placed in
DGROUP, and you want the offset of GOB in the
group, you need to enter a statement like:

MOV BX,OFFSET OGROUP:GOB

You must be sure that the GROUP directive precedes
any reference to a group name, including its use
with OFFSET.

(

(

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-25

TYPE

TYPE <label>
TYPE <variable>

If the operand is a variable, the TYPE operator
returns a value equal to the number of bytes of the
variable type, as follows:

BYTE = 1
WORD = 2
DWORD = 4
QWORD 8
TBYTE = 10
STRUC = bhe number of bytes declared by STRUC

If the operand is
returns NEAR (PFFFH)

Examples:

a label, the TYPE
or FAR (FPFEH).

MOV AX, (TYPE FOO_BAR) PTR (BX+SI1

operator

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-26

.TYPE .<variable>

The .TYPE oper.ator returns a byte that describes
two characteristics of the <variable>: 1) the
mode, and 2) whether it is External or not. The
argument to .TYPE may be any expression (string,
numeric, logical). If the expression is invalid,
.TYPE returns zero.

The byte that is returned is configured as follows:

The lower two bits are the mode. If the lower two
bits are:

o the mode is Absolute
1 the mode is Program Related
2 the mode is Data Related

The ~high bit (SOH) is the External bit. If the
high bit is on, the expression contains an
External. If the high bit is off,· the expression
is not-External.

The Defined bit is 20R. This bit is on if the
expression is locally defined, and it is off'if the
expression is undefined or external. If neither
bit is on, the expression is invalid •

• TYPE is usually used inside macros, where an
argument type may need to be tested to make a
decision regarding program floWf for example, when
conditional assembly is involved.

Example:

FOO MACRO X
LOCAL Z

Z = .TYPE X
IF Z •••

• TYPE tests the mode and type of X. Depending on
the evaluation of X, the block of code beginning
with IF Z ••• may be assembled or omitted.

I
\
\

(

EXPRESSIONS: OPERANDS AND OPERATORS page 3-21

LENGTH

LENGTH <variable>

LENGTH accepts only one variable as its argument.

LENGTH returns the number of type units (BYTE,
WORD, DWORD,QWORD, TBYTE) allocated for that
variable.

If the variable is defined by a DUP· expression,
LENGTH returns· the number of type units dupl icated i
that is, the number that precedes the first DUP in
the expression.

If the variable is not defined by a DUP expression,
LENGTH returns 1.

Examples:

FOO OW 100 DUP(l)

MOV CX,LENGTH FOO iget number of elements
;in array
iLENGTH returns 100

BAZ OW 100 DUP(l,lO DUpe?»)

LENGTH BAZ is still 100, regardless
expression following DUP.

GOO DO (?)

of the

LENGTH GOO returns 1 because, only one unit is
involved.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-28

SIZE

SIZE <variable>

SIZE returns' the total numbe,r . of bytes allocated
for a variable.

SIZE is the product of the value of LENGTH times
the value of TYPE.

Example:

FOO OW 100 DUP(l)

MOV BX,SIZE FOO :get total bytes in array

SIZE
SIZE
SIZE
SIZE =

LENGTH X TYPE
100 X WORD
100 X 2

200

(

(

EXPRESSIONS: OPERANDS AND OPERATORS page 3-29

Record Specific Operators

Record specific operators are used to isolate fields in a
record. .

Records are defined by the RECORD directive (see Section
4.2.1, "Memory Directives·). A record may be up to 16 bits
long. The record is defined by fields, which may be from
one to 16 bits long. To isolate one of the three
characteristics of a record field, you use one of the record
specific operators, as follows:

Shift count Number of bits from low end of record to low
end of field (number of bits to right shift the
record to lowest bits of record)

WIDTH The number of bits wide the field or record is
(number of bits the field or record contains)

MASK Value of record if field contains its maximum
value and all other fields ~re zero (all bits
in field contain 1; all other bits contain 0)

In th~ following discussions of the record
operators, the following symbols are used:

specific.

FOO a record defined by the RECORD directive
FOO RECORD FIELDI:3,FIELD2:6,FIELD3:7

BAZ a variable used to allocate FOO
BAZ FOO < >

FIELD1, FIELD2, and FIELD3 are the fields of the
record FOO.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-30

Shift-count - (record-fieldname)

<record-fieldname>

The shift count is derived from
fieldname to be isolated.

the record

The shift count is the. number of bits the field
must be shifted right to place the lowest bit of
the field in the lowest bit of the record byte or
word.

If a l6-bit record (FOO) contains three fields
(FIELDl, FIELD2, and FIELD3),the record can be
diagrammed as follows:

I. II I .1
WIDTH = 6

.FIELDI has a shift count of 13.
FIELD2 has a shift count of 7.
FIELD3 has a shift count of O.

When you want to isolate the value in one of
fields, you enter its name as an operand.

Example:

MOV DX,BAZ
MOV CL,FIELD2
SHR DX,CL

FIELD2 is now right shifted, ready for access.

these

(

(

EXPRESSIONS: OPERANDS AND OPERATORS

WIDTH <record-fieldname>
WIDTH <record>

page 3-31

When a <record-fieldname> is given as the argument,
WIDTH returns the width of a record field as the
number of bits in the record field.

When a <record> is given as the ar9u~ent, WIDTH
returns the width of a record as the number of bits
in the record.

Using the diagram under shift count, ~IDTH can be
diagrammed as:

I I
FIELDl FIELD2 FIELD)

The WIDTH of FIBLDl equals 3.
The WIDTH of FIBLD2 equals 6.
The WIDTH of FIELD] equals 7.

Example:

MOV CL,WIDTB FIBLD2

The number of bits in FIELD2 is now in the count
register.

EXPRESSIONS: OPERANDS AND OPERATORS page 3-32

MASK

MASK <record-fieldname>

MASK accepts a field name as its only argument~

MASK returns a bit-mask defined by 1 for bit
positions included by the field and 0 for bit
positions not included. The value return
represents the maximum value for the record when
the field is masked.

Using the diagram used for shift count, MASK can be
diagrammed as:

II I I I I I I I I I I I I I I I
o 0 0 1 11 1 1 1 11 0 0 0 I 0 0 0 0 _~SK

1 F 8 0

The MASK of FIELD2 equals lF80H.

Example:

MOV DX,BAZ
AND DX,MASK FIELD2

FIELD2 is now isolated.

(

(

)

)

EXPRESSIONS: OPERANDS AND OPERATORS page 3-33

3.3.2 Arithmetic Operators

Eight arithmetic operators provide the
functions (add, subtract, divide,
negation), plus two shift operators.

common mathematical
multiply, modulo,

The arithmetic operators are used to combine operands to
form an expression that results in a data item or an
address.

Except for + and - (binary), operands must be constants.

For plus (+), one operand must be a constant.

For minus (-) ,. the first (left) operand may be a
nonconstant, or both operands may be nonconstants. The
right must be a constant if the left is a constant.

*
/

MOD

. SHR

SHL

Multiply

Divide

Modulo. Divide the left operand by the right
operand and return the value of the remainder
(modulo). Both operands must be absolute.

Example:

MOV AX,lOO MOD 17

The value moved into AX will be OFH (decimal
15) •

Shift Right. SHR is followed by an integer
which specifies the number of bit positions
the value is to be shifted right.

Example:

MOV AX,lIOOOOOB SHR 5

The ~alue moved into AX will be lIB (03)~

Shift Left. SHL is followed by an integer
which specifies the number of bit positions
the value is to be shifted left.

Example:

MOV AX,OllOB SHL 5

The value moved into AX will be 011000000B
(OeOIl)

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-34

- (Unary Minus) Indicates that following value is negative,
as in a negative integer.

+ Add. One operand must be a constant1
maybe anonconstant.

one

Subtract the right operand from the . left
operand. The first (left) operand may be a
nonconstant, or both operands may be
nonconstants. But the right may be a
nonconstant only if the left is also a
nonconstant and in the same segment.

3.3.3 Relational Operators

Relational operators compare two constant operands.

If the relationship between the two operands matche~ the
operator,FFFFH is returned.

If the relationship between the two operands does not match
the operator, a zero is returned.

Relational operators are most often used with conditional
directives and conditional' ·instructions to direct program
control.

EO

HE

LT

LE

GT

GE

Equal. Returns true if the operands equal
each other.

Not Equal. Returns true if the operands are
not equal to each other.

Less Than. Returns true if the left operand
is less than the right operand.

Less than or Equal. Returns true if the left
operand is less than or equal to the right'
operand.

Greater Than. Returns true if the left
operand is greater than the right operand.

Greater than or Equal. Returns true if the
left operand is greater than or equal .to the
right operand.

(

(

(

) EXPRESSIONS: OPERANDS AND OPERATORS page 3-35

3.3.4 Logical Operators

Logical operators compare two constant operands bitwise.

Ldgical operators compare the binary values of corresponding
bit positions of each operand to evaluate the logical
relationship defined by the logical operator.

Logical operators can be used two ways:

1. To combine operands in a logical relationship. In
this case, all bits in the operands will have the
same value (either 0000 or FFFFH). In fact, it is
best to use these values for true (FFFFH) and false
(0000) for the symbols you will use as operands,
because in conditionals anything nonzero is true.

2. In bitwise operations. In this case, the bits are
different, and the logical operators act the same
as the instructions of the same name.

NOT Logical NOT. Returns true if left operand is
true and right is false or if right is true
and left is false. Returns false if both are
true or both are false.

AND Logical AND. Returns true if both operators
are true. Returns false if either operator
is false or if both are false. Both operands
must be absolute values.

OR Logical OR. Returns true if either operator
is true or if both are true. Returns false
if both operators are false. Both operands
must be absolute values.

XOR Exclusive OR. Returns true if either
operator is true and the other is false.
Returns false if both operators are true or
if both operators are false. Both operands
must be absolute values.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-36

3.3.5 ~xpression Evaluation: Precedence Of Operators

Expressions are evaluated higher preceden"ce operators first,
then left to right for equal precedence operators.

Parentheses can be used to alter precedence.

For example:

MOV AX,lOlB SHL 2*2 MOV AX,OOlOlOOOB

MOV AX,lOlB SHL (2*2) = MOV AX,OlOlOOOOB

SHL and * are, equal precedence. Therefore, their functions
are performed in the order the operators are encountered
(left .to right).

Precedence of Operators

All operators in a single item have the same
regardless bf the order listed within the item.
line breaks are used for visual clarity, not
functional relations.

1. LENGTH, SIZE, WIDTH, MASK
Entries inside: parentheses (")

angle brackets < >
square brackets (1

precedence,
Spacing and

to indicate

Structure variable operand: <variable>.<field>

2. Segment override operator: colon (:)

3. PTR, OFFSET , SEG, TYPE, THIS

4. HIGH, LOW

5. * , /, MOD, SHL, SHR

6. +, - (both unary and binary)

7. EQ, NE, LT, LE, GT, GE

8. Logical NOT

9. Logical AND

10. Logical OR, XOR

11. SHORT, • TYPE

(

(

(

Chapter 4

4.1
4.2
4.2.1
4.2.2
4.2.3

4.2.4

Contents

Action: Instructions and Directives

Instructions 4-2
Directives 4-3

Memory Directives 4-5
Conditional Directives 4-37
Macro Directives 4-41

Repeat Directives 4-49
Special Macro Operators 4-53

Listing Directives 4-57

(

(

. (

CJlAPTBR 4

AC'l'IOR: IHS".rROCTIORS AND DIRECTIVES

The action field contains either an 8086 instruction
mnemonic or a Macro Assembler assembler directive.

Following a name field entry (if any), action field entries
may begin in any column. Specific spacing is not required.
The only benefit of consistent spacing is improved
readability. If a statement does not have a name field
entry, the action field is the first entry.

The entry in the action field either directs the processor
to perform a specific function or directs the assembler to
perform one of its functions.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-2

4. 1 INSTRUCTIOHS

Instructions tell the command processor to perform some
action. An instruction may have the data and/or addresses
it needs built into it, or data and/or addresses may be
found in the expression part of an instruction. For
example:

I opcode II operand II data II data I
lopre Iloperotl ~ ~
supplied supplied or found

supplied = part of the instruction

found = assembler inserts data and/or address from the
information provided by expressions in instruction
statements.

(opcode equates to the binary code for the action
of an instruction)

Note that this manual does not contain detailed descriptions
of the 8086 instruction mnemonics and their characteristics.
For this, you will need to consult other texts. The
following texts are recommended:

1. Morse, Stephen P. The 8086 Primer. Rochelle Park,
NJ: Hayden publishing Co:--;- 1980. -

2. Rector, Russell and George Alexy. The 8086 Book.
Berkeley, CA: Osbourne/McGraw-Hill:-I980: --.

3 • ~he 8086 Fa~i.!.l User' s ~~I!ual. Santa Clara, CA:
Intel Corporation, 1980.

Appendix C contains both an alphabetical listing and a
grouped listing of the instruction mnemonics. The
alphabetical listing shows the full name of the instruction.
Following the alphabetical list is a list that groups the
instruction mnemonics by the number and type of arguments
they take. Within each group, the instruction mnemonics are
arranged alphabetically.

(

(

(

)

)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-3

4.2 DIRBC'l'IVES

Directives give the assembler directions and information
about input and output, memory organization, conditional
assembly, listing and cross-reference control, and
definitions.

The directives have been divided into groups by the function
they perform. Within each group, the directives are
described alphabetically.

The groups are:

Memory Directives
Directives in this group are used to organize
memory. Because there is no "miscellaneous"
group, the memory directives ,group contains
some directives that do not, strictly speaking,
organize memory (for example, COMMENT).

Conditional Directives
Directives in this group are used to test
conditions of assembly before proceeding with
assembly of a block of statements. This group
contains all of the IF (and related)
directives.

Macro Directives
Directives in this group are used to create
blocks of code called macros.' This group also
includes some special operators and directives
that are used only inside macro blocks. The
repeat directives are considered macro
directives for descriptive purposes.

Listing Directives
Directives in this group are used to control
the format and, to some extent, the content of
listings that the assembler produces.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-4

Appendix B contains a table of assembler directives, also
grouped by function. Below is an alphabetical list of all
the directives that Macro Assembler supports:

ASSUME EVEN IRPC .RADIX
EXITM RECORD

COMMENT EXTERN LABEL REPT
.CREF .LALL

GROUP .LFCOND .SALL
DB .LIST SEGMENT
DO IF .SFCOND
DO IFB MACRO STRUC
DT IFDEF SUBTTL
OW IFDIF NAME

IFE .TFCOND
ELSE IFIDN ORG TITLE
END IFNB 'OUT
ENDIF IFNDEF .XALL
ENDM PAGE • XC REF
ENDP IFl PROC .XLIST
ENDS IF2 PUBLIC
EQU IRP PURGE

(

(

(

)
ACTION:

4.2.1

ASSUME

ASSUME

or

ASSUME

)

INSTRUCTIONS AND DIRECTIVES Page 4-5

Me.ary Directives

<seg-reg>:<seg-name>[, •••]

NOTHING

ASSUME tells the assembler that the symbols in the
segment or group can be accessed using this segment
register. When the assembler encounters a
variable, it automatically assembles the variable
reference under the proper segment register. You
may enter from 1 to 4 arguments to ASSUME.

The valid <seg-reg> entries are:

CS, OS, ES, and SS.,

The possible entries for <seg-name> are:

1. The name of a segment declared with the SEGMENT
directive

2. The name of a group declared with the GROUP
directive

3. An expression: either SEG <variable-name> or
SEG <label-name> (see SEG operator, Section
3.3)

4. The key word NOTHING. ASSUME NOTHING cancels
all register assignments made by a previous
ASSUME statement

If ASSUME is not used or if NOTHING is typed for
<seg-name>, each reference to variables, symbols,
labels, and so forth in a particular segment must
be prefixed by a segment register. For example,
type DS:FOO instead of simply FOO.

Example:

ASSUME DS:DATA,SS:DATA,CS:CGROUP,ES:NOTHING

ACTION: INSTRUCTIONS AND DIRECTIVES . Page 4-6

COMMENT -_._.-
COMMENT<delim><text><delim>

The first non-blank character encountered after
COMMENT is the delimiter. The following <text>
comprises a comment. block which continues until the
next occurrence of <delimiter>.

COMMENT permits you to enter
program without entering a
each line.

comments about your
semicolon (;) before

If you use COMMENT inside a macro block, the
comment block will not appear on your listing
unless you also place the .LALL directive in your
source file.

Example:

Using an asterisk as the delimiter, the format of
the comment block would be:

COMMENT *
"any amount of text entered
here as the comment block

* ;return to normal mode

(

(

(

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-7

DEFIN~ BYTE
DEFINE WORD
DEFINE DOUB~E,,!9RD
DEFINE QUADWORD
~EFi){E ,!:~NBiTES

<varname>
<varname>
<varname>
<varname>
<varname>

DB
OW
DO
DO
DT

<exp>[,<exp>, ••• 1
<exp>[,<exp>, •••]

I <exp>[,<exp>, •••]
<exp>[,<exp>, •••]
<exp>[,<exp>, •••]

The DEFINE directives are used to define variables
or to initialize portions of memory.

If the optional <varname> is entered, the DEFINE
directives define the name as· a variable. If
<varname> has a colon, it becomes a NEAR label
instead of a variable. (See also, Section 2.1,
"Labels," and Section 2.2, "Variables.")

The DEFINE directives allocate memory in units
specified by the second letter of the directive
(each DEFINE .directive may allocate one or more of
its units at a time):

DB allocates one byte (8 bits)
OW allocates one word (2 bytes)
DO allocates two words (4 bytes)
DO allocates four words (8 bytes)
DT allocates ten bytes

<exp> may be one or more of the following:

1. A constant expression

2. The character ? for indeterminate
initialization. usually the? is used to
reserve space without placing any particular
value into it. (It is the equivalent of the OS
pseudo-op in MACRO-80) •

3. An address expression (for OW and DO only)

4. An ASCII string (longer than two characters for
DB only)

5. <exp>OUP(?)
When this type of expression is the only
argument to a define directive, the define
directive produces an uninitialized data block.
This expression with the? instead of a value
results in a smaller object file because only
the segment offset is changed to reserve space.

ACTION: INSTRUCTIONS AND DIRECTIVES page 4-8

Example -

NUM BASE
FILLER

ONE CHAR
MULT CHAR
MSG

BUFFER
TABLE

NEW PAGE
ARRAY

6. <exp> DUP«exp>[, •••])
This expression, like item 5, produces a data
block, but initialized with the value of the
second <exp>. The first <exp>· must be a
constant greater than zero and must not be a
forward reference.

Define Byte (DB) :

DB 16
DB ? :initialize with

:indeterminate value
DB 'M'
DB 'TOM JEROME EDWARD BOB DEAN'
DB 'MSGTEST',13,10 :message, carriage return

:and linefeed
DB 10 DUP(?) ,indeterminate block
DB 100 DUP(5 DUP(4),7)

:100 copies of bytes
,with values 4,4,4,4,4,7

DB OCR ,form feed character
DB 1,2,],4,5,6,7

Example - Define Word (DW):

ITEMS
SEGVAL
BSIZE
LOCATION
AREA
CLEARED
SERIES

DISTANCE

DW TABLE,TABLE+10,TABLE+20
DW OFFFOH
OW 4 * 128
DW TOTAL + 1
DW 100 DUP(?)
OW 50 DUP(O)
OW 2 DUP(2,3 DUP(BSIZE»
,two words with the byte values
:2,BSIZE,BSIZE,BSIZE,2,BSIZE,BSIZE,BSIZE
DW START TAB -END TAB
;difference 07 two labels is a constant

(

(

(

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-9

Example - Define Doub1eword (DO):

DBPTR DD TABLE ~16-bit OFFSET,
:then 16-bit
;SEG base value

SEC_PER_DAY

LIST

DD 60*60*24 ~arithmetic is performed

HIGH
FLOAT

Example -

LONG REAL

STRING

HIGH
LOW
SPACER

DD
DD
DD

;by the assembler
'XY',2 DUP(?)
4294967295 ;maximum
6.735E2· ; floating point

Define Ouadword (DO) :

DO 3.141597 ;decima1 makes
~it real

DO 'AB' ;no more than
;characters

DO 18446744073709661615 ;maximum
DO -18446744073709661615 ;minimum
DO 2 DUP(?) ;uninit.data

2

FILLER DO 1 DUP(?,?) ~inita1ized w /
; indeterminate
;va1ue

HEX REAL DO OFDCBA9A98765432105R

Example - Define Tenbytes (OT):

ACCUMULATOR
STRING

DT
DT

PACKED DECIMAL DT
FLOATING POINT DT

?
'CD'

1234567890
3.1415926

:no more than 2
;characters

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-10

END «exp>]

The END statement specifies the end of the program.

If <exp> is present, it is the start address of the
program. If several modules are to be linked, only
the main module may specify the start of the
program with the END <exp> statement.

If <exp> is not present, then no start address is
passed to MS-LINK for that program or module.

Example:

END :START is a label somewhere in the
: program

(

(

(

)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-11

<name> EQU '<exp>

EQU assigns the value of <exp> to <name>. If <exp>
is an external symbol, an error is generated. If
<name> already has a value, an error is generated.
If you want to be able to redefine a <name> in,your
program, use the equal sign (=) directive instead.

In many cases, EQU is used as a primitive text
substitution, like a macro.

<exp> may be anyone of the following:

1. A symbol. <name>
symbol in <exp>.
symbol table.

becomes
Shown

an
as

alias for the
an Alias in the

2. An instruction name. Shown as an Opcode in the
symbol table.

3. A valid expression. Shown as a Number or L
(label) in the symbol table.

4. Any other entry, including text,
references, segment prefix and operands.
as Text in the symbol table~

index
Shown

Example:

FOO EQU BAZ :must be defined in this
:module or an error
:results

B EQU [BP+8] :index reference (Text)
P8 EQU OS: (BP+8] :segment prefix

land operand (Text)
CBO EQU AAD ian instruction name

: (Opcode)
ALL EQU OEFREC<2,3,4> :DEFREC = record name

:<2,3,4> = initial values
: for fields of record

EMP EQU 6 :constant value
FPV EQU 6.3E7 :floating point (text)

ACTION: INSTRUCTIONS AND DIRECTIVES page 4-12

<name> <exp>

<exp> must be a valid expression. It is .shown as a
Number or L (label) in the symbol table (same as
<exp> type 3 under the EOU directive above).

The equal sign (=) allows the user to set and to
redefine symbols. The equal sign is like the EOU
directive, except the user can redefine the symbol
without generating an error. Redefinition may take
place more than once, and redefinition may refer to
a previous definition.

Example:

FOO
FOO

FOO

FOO

EOU

=

5
6:

7

FOO+3

:the same as FOO EOU 5
:error, FOO cannot be
;redefined by EOU
~FOOcanbe redefined
;only by another =
:redefinition may refer
ito a previous definition

(

(

"

(

)

).

)

ACTION: INSTRUCTIONS AND DIRECTIVES page 4.;.13

EVEN

EVEN

The EVEN directive causes the program counter to go
to an even boundary, that is, to an address that
begins a word. If the program counter is not
already at an even boundary, EVEN causes the
assembler to add a NOP instruction so that the
counter will reach an even boundary.

An error results if EVEN is
byte-aligned segment.

Example:

used with

Before: The PC points to 0019 hex (25 decimal)

EVEN

After: The PC points to 1A hex (26 decimal)
0019 hex. now.contains a NOP instruction

a

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-14

EXT~~

EXTRN <name>:<type>(, •••]

<name> is a symbol that is defined in another
module. <name> must have been declared PUBLIC in
the module where <name> is defined.

<type> may be anyone of the following, but must be
~ valid type for <name>:

1. BYTE, WORD, or DWORD

2. NEAR or FAR for labels or procedures (defined
under a PROC directive)

3. ABS for pure numbers (implicit size is WORD,
but includes BYTE)

Unlike the 8080 assembler, placement of the EXTRN
directive is significant. If the directive is
given with a segment, the assembler assumes that
the symbol is located within that segment. If the
segment is not known, place the directive outside
all segments, then use either

ASSUME <seg-reg>:SEG <name>

or an explicit segment prefix.

N~E

If a mistake is made and the symbol is not
in the segment, MS-LINK will take the
offset relative to the given segment, if
possible. If the real segment is less than
64K bytes away from the reference, MS-LINK
may find the definition. If the real
segment is more than 64K bytes away,
MS-LINK will fail to make the-link between
the reference and the definition and will
return an error messa~e.

(

(

(

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-15

Example:

In Same Segment: In Another Segment:

In Module 1: In Module 1:

CSEG . SEGMENT CSEGA SEGMENT
PUBLIC TAGN PUBLIC TAGF

TAGN: TAGF:

CSEG ENDS CSEGA ENDS

In Module 2: In Module 2:

CSEG SEGMENT EXTRN TAGF:FAR
EXTRN TAGN:NEAR CSEGB SEGMENT

JMP TAGN JMP TAGF
CSEG ENDS CSEGB ENDS

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-16

<name> GROUP <seg-name>(, •••]

The GROUP directive collects the segments named
after GROUP «seg-name>s) under one name. The
GROUP is used by MS-LINK'so ,that it knows which
segments should be loaded together (the order the
segments are named here does not influence the
order in which the segments are loaded. The order
in which the segments are loaded is determined by'
the CLASS designation of the SEGMENT directive, or
by the order you name object modules in response to
the MS-LINK Object Module: prompt).

All segments in a GROUP must fit into 64K bytes of
memory. The assembler does not check this at all,
but leaves the checking to MS-LINK.

<seg-name> may be one of the following:

1.

2.

A segment
directive.
reference.

name,
The

assigned
name may

by
be

An expression: either SEG <var>
or SEG <label>

a
a

SEGMENT
forward

Both of these entries resolve themselves to a
segment name (see SEG operator, Section 3.3).

Once you have defined a group name, you can use the
name:

1. As an immediate value:

MOV AX,DGROUP
MOV DS,AX

DGROUP is the paragraph address of the base of
DGROUP.

2. In ASSUME statements:

ASSUME OS:DGROUP

The OS register can now be used, to' reach any
symbol in any segment of the group.

(

(

(

)

)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-17

3. As an operand prefix (for segment override):

MOV BX,OFFSET DGROUP:FOO
DW DGROUP:FOO
DD DGROUP:FOO

DGROUP: forces the offset to be relative to
DGROUP, instead of to the segment in which FOO
is defined.

Example (Using GROUP to combine segments):

In Module A:

CGROUP GROUP XXX,yyy
XXX SEGMENT

ASSUME CS:CGROUP

XXX ENDS
yyy SEGMENT

yyy ENDS
END

In Module B:

CGROUP GROUP ZZZ
ZZZ SEGMENT

ASSUME CS:CGROUP

zzz ENDS
END

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-18

INCLUDE <filename>

The INCLUDE directive inserts source code from an
alternate assembly language source f.ile into the
current source file during assembly. Use of the
INCLUDE direptive eliminates the need to repeat an
often-used sequence of statements in the current
source file.

The <filename> is any valid file specification for
the operating system. If the device designation is
other than the default, the source filename
specification must include it. The default device
designation is the currently logged drive or
device.

The included file is opened and assembled into th~

current source file immediately following the
INCLUDE directive statement. When end-of-file is
reached, assembly resumes with the next statement
f.ollowing the INCLUDE directive.

Nested INCLUDES are allowed (the file inserted with
an INCLUDE statement may contain an INCLUDE
directive). However, this is not a recommended
practice with small systems because of. the amount
of memory that may be required.

The file specified must exist. If the file is not
found, an error is displayed, and the assembly
aborts.

On a Macro Assembler listing, the letter C is
printed between the assembled code and the source
line on each line assembled from an included file.
See Section 5.5, "Formats of Listings and Symbol
Tables," for a description of listing file formats.

Example:

INCLUDE ENTRY
INCLUDE B:RECORD.TST

(

(

(

\

)

)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-19

LABEL

<name> LABEL <type>

By using LABEL to define a <name>, you cause the
assembler to associate the current segment offset
with <name>.

The item is assigned a length of 1.

<type> varies depending on the use of <name>.
<name> may be used for code or for data.

1. For code (for example, as a JMP or CALL operand):

<type> may be either NEAR or FAR. <name> cannot be
used in data manipulation instructions without
using a type override.

If you wish, you can define a NEAR label using th~
<name>: form (the LABEL directive is not used in
this case). If you are defining a BYTE or WORD
NEAR label, you can place the <name>: in front of
a Define directive.

When using a LABEL for code (NEAR or FAR),
segment must be addressable through the
register.

Example - For Code:

LABEL FAR

the
CS

SUBRTF
SUBRT: (first instruction) ;colon = NEAR label

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-20

2. For data:

<type> may be BYTE, WORD, DWORD, <structure-name>,
or <record-name>. When STRUC or RECORD name is
used, <name> is assigned the size of the structure
or record.

Example - For Data:

BARRAY LABEL
ARRAY DW

ADD
ADD

BYTE
100 DUP(O)

AL,BARRAY[99}
AX,ARRAY[98)

~ADD lOOth byte to AL
:ADD 50th word to AX

By defining the array two ways, you can access
entries either by byte or by word. Also, you can
use this method for STRUC. It allows you to place
you~ data in memory as a table, and to access it
without the offset of the STRUC.

Defining the array two ways also permits you to
avoid using the PTR operator. The double defining
method is especially effective if you access the
data different ways. It is easier to give the
array a second name than to remember to use PTR.

(

(

ACTION: INSTRUCTIONS AND DIRECTIVES page 4-21

NAME

NAME <module-name>

<module-name> must not be a reserved word. The
module name may be any length, but Macro Assembler
uses only the first six characters and truncates
the rest.

The module name is passed to MS-LINK, but otherwise
has no significance for the assembler. Macro
Assembler does check to see if more than one module
name has been declared.

Every module has a name. Macro Assembler derives
the module name from:

1. A valid NAME direc~ive statement

2. ·If the module does not contain a NAME
statement, . Macro Assembler uses the first six
characters of a TITLE directive statement. The
first six characters must be legal as a name.

Example:

NAME CURSOR

ACTION: INSTRUCTIONS AND DIRECTIVES page 4-22

ORG

ORG <exp>

The location counter is set to the value of <exp>,
and the assembler assigns generated code starting
with that value.

All names used in <exp> must be known on pass 1.
The value of <exp> must either evaluate to an
absolute or must be in the same segment as the
location counter.

Example:

ORG

ORG

l20H

$+2

:2-byte absolute value
:maximum=OFFFFH
:skip two bytes

Example - ORG to a boundary (conditional):

CSEG
BEGIN

SEGMENT PAGE
= $

IF ($-BEGIN) MOD 256 :if not already on

ENDIF

:256-byte boundary
ORG ($-BEGIN)+256-«$-BEGIN) MOD 256)

See Section 4.2.2, ·Conditional Directives,· for an
explanation of conditional assembly~

(

(

ACTION: INSTRUCTIONS AND DIRECTIVES

<procname>

<procname>

PROC (NEAR]

RET
ENDP

or (FAR]

Page 4-23

The default, if no operand is specified, is NEAR.
Use FAR if:

1. The procedure name is an operating system entry
point

2. The procedure will be called from code which
has another ASSUME CS value

Each PROC block should contain a RET statement.

The PROC directive serves as a structuring device
to make your programs more understandable.

The PROC directive, through the NEAR/FAR option,
informs CALLs to the procedure to generate a NEAR
or a FAR CALL, and RETs to generate a NEAR or a FAR
RET. PROC is used, therefore, for coding
simplification so that the user does not have to
worry about NEAR or FAR for CALLs and RETs.

A NEAR CALL or RETURN changes the IP but not the CS
register. A FAR CALL or RETURN changes both the IP
and the CS registers.

Procedures are executed either in line, from a JMP,
or from a CALL.

PROCs may be nested, which means that they are put
in line.

Combining the PUBLIC directive with a PROC
statement (both NEAR and FAR), permits you to make
external CALLs to the procedure or to make other
external references to the procedure.

ACTION: INSTRUCTIONS AND DIRECTIVES

Example:

PUBLIC
FAR NAME

- CALL
RET

FAR NAME

PUBLIC
NEAR NAME

RET
NEAR NAME

FAR NAME
PROC- FAR

NEAR NAME

ENDP

NEAR NAME
PROC - NEAR

ENDP

Page 4-24

The second subroutine above can be called directly
from a NEAR segment (that is, a segment addressable
through the same CS and within 64K):

CALL NEAR_NAME

A FAR segment (that is, any other segment that is
not a NEAR segment) must call to the first
subroutine, which then calls the second (an
indirect call):

CALL FAR NAME

(

(

(

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-25

PUBLIC

PUBLIC <symbol>(, •••]

Place a PUBLIC directive statement in any module
that contains symbols you want to use in other
modules without defining the symbol again. PUBLIC
makes the listed symbol(s), which are defined in·
the module where the PUBLIC statement appears,
available for use by other modules to be linked
with the module that defines the symbo1(s). This
information is passed to MS-LINK.

<symbol> may be a number, a variable, a label
(including PROC labels).

<symbol> may not be a register name or a symbol
defined (with EQU) by floating point numbers or by
integers larger than two bytes.

Example:

PUBLIC
GETINFO PROC

PUSH
MOV

POP
RET

GETINFO ENDP

GET INFO
FAR
BP
BP,SP

BP

1save caller's register
1get address parameters
,body of subroutine
,restore caller's reg
,return to caller

Example - illegal PUBLIC:

PUBLIC PIE BALD,HIGH VALUE
PIE BALD EQU- 3.1416
HIGH_VALUE EQU 999999999

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-26

.RADI~

• RADIX <exp>

The default input base (or radix) for all constants
is decimal. The .RADIX directive. permits you to
change the input radix to any base in the range 2
to 16.

<exp> is always in decimal radix, regardless of the
current input radix.

Example:

MOV
• RADIX

MOV

BX,OFFH
16
BX,OFF

The two MOVs in this example are identical.

The .RADIX directive does not affect the generated
code values placed in the .OBJ, .LST, or .CRF
output files.

The .RADIX directive does not affect the DD, DQ, or
DT directives. Numeric values entered in the
expression of these directives are always evaluated
as decimal unless a data type suffix is appended to
the value.

Example:

.RADIX 16
NUM HAND DT
HOT-HAND DO
COOL_HAND DD

773 :773 = decimal
773Q :773 = octal here only
7738 inow 773 = hexadecimal

(

(

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-27

RECORD

<recordname> RECORD <fieldname>:<width> [=<exp>] ,[•••]

the name of the field. <width>
number of bits in the field defined

<exp> contains the initial (or
for the field. Forward references

in a RECORD statement.

<fieldname> is
specifies the
by <fieldname>.
default) value
are not allowed

<fieldname> becomes a value that can be used in
expressions. When you use <fieldname> in an
expression, its value is the shift count to move
the field to the far right. Using the MASK
operator with the <fieldname> returns a bit mask
for that field.

<width> is a constant in the range 1 to 16 that
specifies the number of bits contained in the field
defined by <fieldname>. The WIDTH operator returns
this value. If the total width of all declared
fields is larger than 8 bits, then the assembler
uses two bytes. Otherwise, only one byte is used.

The first field you declare goes into the most
significant bits of the record. Successively
declared fields are placed in the succeeding bits
to the right. If the fields you declare do not
total exactly 8 bits or exactly 16 bits, the entire
record is shifted right so that the last bit of the
last field is the lowest bit of the record. Unused
bits will be in the high end of the record.

Example:

FOO RECORD HIGH:4,MID:3,LOW:3

Initially, the bit map would be:

I I

Total bits >8 means use a word: but total bits <16
means right shift, place undeclared bits at high
end of word. Thus:

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-28

o 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 +-MASK

<exp> contains the initial value for the field. If
the field is at least 7 bits wide, you can use an
ASCII character as the <exp>.

Example:

HIGH:7='O'

To initialize records, use the same method used for
DB. The format is:

[<name>] <recordname> < [exp] [, •••]>

or

«name>] <recordname> [<exp> DUP«[exp1 (, •••]»

The name is optional. When given, name is a label
for the first byte or word of the record storage
area.

The recordname is the name used as a label for the
RECORD directive.

The [exp1 (both forms) contains the values you want
placed into the fields of the record. In the
latter case, the parentheses and angle brackets are
required only around the second [exp1 (following
DUP). If [exp1 is left blank, either the default
value applies (the value given in the original
record definition), or the value is indeterminate
(when not initialized in the original record
definition). For fields that are already
initialized to values you want, place consecutive
commas to skip over (use the default values of)
those fields.

For example:

FOO <,,7>

From the previous example, the 7 would
into the LOW field of the record FOO.

be placed
The fields

(

(

(

)

)

)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-29

HIGH and MID would be left as declared (in this
case, uninitialized).

Records may be used in expressions· (as an operand)
in the form:

recordname«value(, •••]]>

The value entry is optional. The angle brackets
must be coded as shown, even if the optional values
are not given. A value entry is the value to be
placed into a field of the record. For fields that
are already initialized to values you want, place
consecutive commas to skip over (use the default
values of) those fields, as shown above.

Example:

FOO RECORD HIGH:5,MID:3,LOW:3

BAX
JANE

FOO
FOO

<> ,leave undeterminate here
10 DUP«16,8» ,HIGH-16,MID-8,
1 LOW=?

MOV DX,OFFSET JANE[2]
,get. beginning record address

AND DX,MASK MID
MOV CL,MID
SHR DX,CL
MOV CL,WIDTH MID

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-30

<segname> SEGMENT [<al ign» [<combine» [<' class' > 1

<segname> ENDS

At runtime, all instructions that generate code and
data are in (separate) segments. Your program may
be a segment, part of a segment, several segments,
parts of several segments, or a combination of
these. If a program has no SEGMENT statement, an
KS-LINK error (invalid object) will result at link
time.

The <segment name> must be a unique, legal name.
The segment name must not be a reserved word.

<align> may be PARA (paragraph
WORD, or PAGE.

default), BYTE,

<combine> may be PUBLIC, COMMON, AT <exp>, STACK,
MEMORY, or no entry (which defaults to not
combinable, called Private in the Microsoft LINK
section of the ~~~ Assem~~er Manual).

<class> name is used to group segments at link
time.

All three operands are passed to MS-LINK.

The a1ignm~nt type tells the Linker on what kind of
boundary you want the segment to begin. The first
address of the segment will be, for each alignment
type:

PAGE - address is xxxOOH (low byte is 0)
PARA - address is xxxxOH (low nibble is 0)

bit map - \x\x\xlxlo\ololol
WORD - address is xxxxeH (e=even number;low bit
. is 0)

bit map - Ix\xlxlxlx\x\x\O\
BYTE - address is xxxxxH (place anywhere)

(

(

)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-31

The combi~~ type tells MS-LINK how to arrange the
segments of a particular class name. The segments
are mapped as follows for each combine type:

None (not combinable or Private)

Public

Common

o Private segments are loaded separately

tB
and remain separate. They may be

A physically contiguous but not logically,
even if the segments have the same name.

A' 0 Each private segment has its own base
address.

and Stack Public segments of the same name and
o class name are loaded contiguously.

B Offset is from beginning of first segment
loaded through last segment loaded.

A There is only one base address for all
public segments of the same name and
class name. (Combine type stack is
treated the same as public. However, the
Stack Pointer is set to the first address
of the first stack segment. MS-LINK
requires at least one stack segment.)

o 0

Common segments of the same name and
class name are loaded overlapping one
another. There is only one base address
for all common segments of the same name.
The length of the common area is the
length of the longest segment.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-32

Memory

The memory combine type causes the segment(s) to be
placed as the highest segments in memory. The
first memory combinable segment encounter is placed
as the highest segment in memory. Subsequent
segments are treated the same as Common segments.

NOTE

This feature is not supported by MS-LINK.
MS-LINK treats Memory segments the same as
Public segments.

A.T <exp>

The segment is placed at the PARAGRAPH address
specified in <exp>. The expression may not be a
forward reference. Also, the AT type may not be
used to force loading at fixed addresses. Rather,
the AT combine type permits labels and variables to
be defined at fixed offsets within fixed areas of
storage, such as ROM or the vector space in low
memory.

. NOTE

This restriction is imposed by MS-LINK
MS-DOS.

and
i

Class names must be enclosed in quotation marks.
Class names may be any legal name. Refer to
Chapter 9 in the MS-DOS User's Guide for more
discussion. ----- ----

Segment definitions may be nested. When segments
are nested, the assembler acts as if they are not
and handles them sequentially by appending the
second part of the split segment to the first. At
ENDS for the split segment, the assembler takes up
the nested segment as the next segment, completes
it, and goes on to subsequent segments.
Overlapping segments are not permitted.

(

(

(

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-33

Example:

For example:

A SEGMENT

B SEGMENT

B ENDS

--->

A SEGMENT

A ENDS
B SEGMENT

B ENDS
A SEGMENT

A ENDS .
A ENDS

The following arrangement is not allowed:

A SEGMENT

B SEGMENT

A ENDS JThis is illegall

BENDS

In module A:

SEGA SEGMENT PUBLIC 'CODE'
ASSUME CS:SEGA

SEGA ENDS
END

In module B:

SEGA

SEGA

SEGMENT
ASSUME

.
ENDS
END

PUBLIC 'CODE'
CS:SEGA

JMS-LINK adds this segment to same
1named segment in module A (and
lathers) if class name is the same •

ACTION: INSTRUCTIONS AND DIRECTIvES Page 4-34

<structurename> STRUC

<structurename> ENDS

The STRUC directive is very much like RECORD,
except 'STRUC has a multiple byte capability. The
allocation and initialization of a STRUC block are
the same as for RECORDs.

Inside the STRUC!ENDS block, the Define directives
(DB, DW, DO, DO, DT) may be used to allocate space.

The Define directives and Comments set off by
semicolons (;) are the only statement entries
allowed inside a STRUC block.

Any label on a Define directive inside a STRUC!ENDS
block becomes a <fieldname> of the structure.
(This is how structure fieldnames are defined.)
Initial values given to· fieldnames in the
STRUC/ENDS block are default values for the various
fields. These field values are of two types:
overridable or not overridab1e. A simple field, a
field with only one entry (but not a DUP
expression), is overridable. A multiple field, a
field with more than one entry, is not overridable.
For example:

FOO DB 1,2 ;is not
overridable
BAZ DB 10 DUP(?) ;is not
overridable
ZOO DB 5 ;is overridable

If the <exp> following the Define directive
contains a string, it may be overridden by anoth:r
string. However, if the overriding string 1S
shorter than the initial string, the assembler will
pad with spaces. If the overriding string is
longer, the assembler will truncate the extra
characters.

(

(

(

)

)

)

ACTION: INSTRUCTIONS AND DIRECTIVES page 4-35

Usually, structure fields are used as operands in
some expression. The format for a reference to a
structure field is:

<variable>.<field>

<variable> represents an anonymous variable,
usually set up when the structure is allocated. To
allocate a structure, use the structure name as a
directive with a label (the anonymous variable of a
structure reference) and any override values in
angle brackets:

FOO STRUCTURE

FOO ENDS

GOO FOO < , 7 , , 'JOE' >

.<field> represents a label given to a DEFINE
directive inside a STRUC/ENDS block (the period
must be coded as shown). The value of <field> will
be the offset within the addressed structure.

Example:

To define a structure:

S STRUC
FIELDI
FIELD2
FIELD3
FIELD4
S

DB
DB
DB
DB
ENDS

1,2
10 DUP(?)
5
'DOBOSKY'

lnot overridable
lnot overridable
;overridable
loverridable

The Define directives in this example define the
fields of the structure, and the order corresponds
to the order values are given in the initialization
list when the structure is allocated. Every Define
directive statement line inside ~ STRUC block
defines a field, whether or not the field is named.

To allocate the structure:

DBAREA S
4th

< , , 7 , , ANDY' > ;overrides 3rd and

;fields only

ACTION: INSTRUCTIONS AND DIRECTIVES page 4-36 (
To refer to a structure: .

MOV AL,[BX].FIELD3
MOV AL,DBAREA.FIELD3

(

(

)

)

)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-37

4.2.2 Conditional Directives

Conditional directives allow users to design blocks of code
which test for specific conditions.

All conditionals follow the format:

IFxxxx [argument]

(ELSE

.]
ENDIF

Each IFxxxx must have a matching ENDIF to terminate the
conditional. Otherwise, an 'Unterminated conditional'
message is generated at the end of each pass. An ENDIF
without a matching IF causes a Code 8, "Not in conditional
block" err~r.

Each conditional block may include the optional ELSE
directive, which allows alternate code to be generated when
the opposite condition exists. Only one ELSE is permitted
for a given·IF. An ELSE is always bound to the most recent,
open IF. A conditional with more than one ELSE or an ELSE
without a conditional will cause a Code 7, "Already had ELSE
clause" error.

Conditionals may be nested up to 255 levels. Any argument
to a cond~tional must be known on pass 1 to avoid Phase
errors and incorrect evaluation. For IF and IFE the
expression must involve values which were previously
defined, and the expression must be absolute. If the name
is defined after an IFDEF or IFNDEF, pass 1 considers the
name to be undefined, but it will be defined on pass 2.

The assembler evaluates the conditional statement to TRUE
(which equals any non-zero value), or to FALSE (which equals
OOOOH). If the evaluation matches the condition defined in
the conditional statement, the assembler either assembles
tne whole conditional block or, if the conditional block
contains the optional ELSE directive, assembles from IF to
ELSE; the ELSE to ENDIF portion of the block is ignored.
If the evaluation does not match, the assembler either
ignores the conditional block completely or, if the
conditional block contains the optional ELSE directive,
assembles only the ELSF to ENDIF portion; the IF to ELSE
portion is ignored.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-38

The following is a list of Macro Assembler conditional
directives: IF <exp>

IFE <exp>

If <exp> evaluates to nonzero, the statements
within the conditional block are assembled.

If <exp> evaluates to 0, the statements in the
conditional block are assembled.

IFl Pass 1 Conditional

If the assembler is in pass 1, the statements in
the conditional block are assembled. IFl takes no
expression.

IF2 Pass 2 Conditional

If the assembler is in pass 2, the statements in
the conditional block are assembled. IF2 takes no
expression.

IFDEF <symbol>

If the <symbol> is defined or has been declared
External, the statements in the conditional block
are assembled.

IFNDEF <symbol>

If the <symbol> is not defined or not declared
External, the statements in the conditional block
are assembled.

(

(

(

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-39

IFB <arg>

The angle brackets around <arg> are required.

If the <arg> is blank (none given) or null (two
angle brackets with nothing in between, <», the
statements in the conditional block are assembled.

IFB (and IFNB) are normally used inside macro
blocks. The expression following the IFB directive
is typically a dummy symbol. When the macro is
called, the dummy will be replaced by a parameter
passed by the macro call. If the macro call does
not specify a parameter to replace the dummy
following IFB, the expression is blank, and the
block will be assembled. (IFNB is the opposite
case.) Refer to Section 4.2.3, "Macro Directives,"
for a full explanation.

tFNO <arq~

The angle brackets around <arg> are required.

If <arg> is not blank, the statements in the
conditional block are assembled.

IFNB (and IFB) are normally used inside macro
blocks. The expression following the IFNB
directive is typically a dummy symbol. When the
macro is called, the dummy will be replaced by a
parameter passed by the macro call. If the macro
call specifies a parameter to replace the dummy
following IFNB, the expression is not blank, and
the block will be assembled. (IFS is the opposite
case.) Refer to Section 4.2.3, "Macro Directives,"
for a full explanation.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-40

IFIDN <arg1>,<arg2>

The angle brackets around <argl> and <arg2> are
required.

If the string <argl> is identical to the string
<arg2>, the statements in the conditional block are
assembled.

IFIDN (and IFDIF) are normally used inside macro
blocks. The expression following the IFIDN
directive is typically two dummy symbols. When the
macro is called, the dummys will be replaced by
parameters passed by the macro call. If the macro
call specifies two identical parameters to replace
the dumrnys, the block wi 11 be as·semb1ed. (IFDIF is
the opposite case.) Refer to Section 4.2.3, "Macro
Directives," for a full explanation.

IFDIF <arg1>,<arg2>

ELSE

ENDIF

The angle brackets around <argl> and <arg2> are
required.

If the string <ar91> is different from the string
<arg2>, the statements in the conditional block are
assembled.

IFDIF (and IFIDN) are normally used inside macro
blocks. The expression following the IFDIF
directive is typically two dummy symbols. When the
macro is called, the dummys will be replaced by
parameters passed by the macro call. If the macro
call specifies two different parameters to replace
the dummys, the block will be assembled. (IFIDN is
the opposite case.)

The ELSE directive allows you to generate alternate
code when the opposite condition exists. ELSE may
be used with any of the conditional directives.
Only one ELSE is allowed for each IFxxxx
conditional directive. ELSE takes no expression.

This directive terminates a conditional block. An
ENDIF directive must be given for every IFxxxx
directive used. ENOIF takes no expression. ENDIF
closes the most recent, unterminated IF.

(

(

(

)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-41

4.2.3 Macro Directives

The macro directives allow you to write blocks of code which
can be repeated without r~coding. The'blocks of code begin'
with either the macro definitio'n directive or one of the
repetition directives,. and end with the ENDM directive. All
of the macro direc.tives may be used inside a macro block.
In facit, nesting of macros is limited only by memory.

The macro directives of the Macro Assembler include)

macro definition:
MACRO

termination: .
ENDM
EXITM

unique symbols within macro blocks:
LOCAL .

undefine a macro:
PURGE

repetitions:
REPT (repeat)
IRP (indefinite repeat)
IRPC (indefinite repeat character)

The macro directives also include some special
operators:

& (ampersand)

17 (double semicolon)

(exclamation mark)

, (percent sign)

macro

ACTION: INSTRUCTIONS AND DIRECTIVES page 4-42

~ Definition

<name> MACRO [<dummy>, •••]

ENDM

The block of statements from the MACRO statement
line to the ENDM statement line comprises the body
of the macro, or the macro's definition.

<name> is like a label and conforms to the rules
for forming symbols. After the macro has been·
defined, <name> is used to invoke the macro.

A <dummy> is formed as any other name is formed. A
<dummy> is a place holder that is replaced by a
parameter in a one-for-one text substitution when
the macro block is used. You should include all
<dummy>s used inside the macro block on this line.
The number of <dummy>s is limited only by the
length of a line. If you specify more· than one
<dummy>, they must be separated by commas. Macro
Assembler interprets a series of <dummy>s the same
as any list of symbol names •

. NOTE

A <dummy> is always recognized exclusively
as a dummy. Even if a register name (such
as AX or BH) is used as a <dummy>, it will
be replaced by a parameter during
expansion.

One alternative is to list no <dummy>s:

<name> MACRO

This type of macro block allows you to call the
block repeatedly. even if you do not want or ·need
to pass parameters to the block. In this case, the
block will not contain any <dummy>s.

A macro block is not assembled when it is
encountered. Rather, when you call a macro, the
assembler "expands" the macro call statement by
bringing in and assembling the appropriate macro
block.

MACRO is an extremely powerful directive.
you can change the value and effect

With it,
of any

(

(

(

)

ACTION: INSTRUCTIONS AND DIRECTIVES

instruction mnemonic, directive, label, variable,
or symbol. When Macro Assembler evaluates a
statement, it first looks at the macro table it
builds during pass 1. If it sees a name there that
matches an entry in a statement, it acts
accordingly. (Remember: Macro Assembler evaluates
macros, then instruction mnemonics/directives.)

If you want to use the TITLE, SUBTTL, or NAME
directives for the portion of your program where a
macro block appears, you should be careful about
the form of the statement. If, for example, you
enter SUBTTL MACRO DEFINITIONS, Macro Assembler
will assemble the statement as a macro definition
with SUBTTL as the macro name and DEFINITIONS as
the dummy. To avoid this problem, alter the word
MACRO in some way~ e.g., - MACRO, MACROS, and so
on.

ACTION: INSTRUCTIONS AND DIRECTIVES . Page 4-44

Calling a Macro

To use a macro, enter a macro call statement:

<name> «parameter>, •••]

<name> is the <name> of the macro block. A
<parameter> replaces a <dummy> on a one-for-one
basis. The number of parameters is limited only by
the length of a line. If .you enter more than one
parameter, they must be separated by commas,
spaces, or tabs. If you place angle brackets
around parameters separated by commas, the
assembler will pass all the items inside the angle
brackets as a single parameter. For example:

FOO 1,2,3,4,5

passes five parameters to the macro, but

FOO <1,2,3,4,5>

passes only one.

The number of parameters in the macro call
statement need not be the same as the number of
<dummy>s in the MACRO definition. If there are
more parameters than <dummy>s, the extras are
ignored. If there are fewer, the extra <dummy>s
will be made null. The assembled code will include
the macro block after each macro call statement.

Example:

GEN MACRO
MOV
ADD
MOV
ENDM

XX,YY,ZZ
AX,XX
AX,YY
ZZ,AX

If you then enter a macro call statement:

GEN DUCK,DON,FOO

the assembler generates the statements:

MOV AX,DUCK
ADD AX,DON
MOV FOO,AX

On your program listing, these statements will be
preceded by a plus sign (+) to indicate that they
came from a macro block. .

(

(

(

)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-45

End Macro ----
ENDM

ENDM tells the assembler that the MACRO or Repeat
block is ended.

Every MACRO, REPT, IRP,"and IRPC must be terminated
with the ENDM directive. Otherwise, the
"Unterminated REPT/IRP/IRPC/MACRO" message is
generated at the end of each pass. An unmatched
ENDM also causes an error.

If you wish to be able to exit
repeat block befcre expansion
EXITM.

from a MACRO or
is completed, use

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-46

EXITM

The EXITM directive is used inside a MACRO or
Repeat block to terminate an expansion when some
condition makes the remaining expansion unnecessary
or undesirable. Usually EXITM is used in
conjunction with a conditional directive.

When an EXITM is assembled, the expansion is exited
immediately. Any remaining expansion or repetition
is not generated. If the block containing the
EXITM is nested within another block, the outer
level continues to be expanded.

Example:

FOO
X

x

MACRO
=
REPT

IFE
EXITM
ENDIF
DB
ENDM
ENDM

x
o
X
X+l
X-OFFH :test X
fif true, exit REPT

X

(

(

(

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-47

LOCAL

LOCAL <dummy>(,<dummy> •••]

Example:

The LOCAL directive is allowed only inside a macro
definition block. A LOCAL statement must precede
all other types of statements in the macro
definition.

When LOCAL is executed, the assembler creates a
unique symbol for each <dummy> and substitutes that
symbol for each occurrence of the <dummy> in the
expansion. These unique symbols are usually used
to define a label within a macro, thus eliminating
multiple-defined labels on successive expansions of
the macro. The symbols created by the assembler
range from 770000 to 7?FFFF. Users should avoid
the form 77nnnn for their own symbols.

0000 FUN SEGMENT
ASSUME CS:FUN,DS:FUN

FOO MACRO NUM,Y
LOCAL A,B,C,D,E

A: DB 7
B: DB .8
C: DB Y
0: OW Y+l
E: OW NUM+l

JMP A
ENDM
FOO OCOOH,OBEH

0000 07 + 770000: DB 7
0001 08 + ??0001: DB 8
0002 BE + 770002: DB OBEH
0003 OOBF + 770003: OW OBEH+l
0005 OCOI + 770004: OW OCOOH+l
0007 EB F7 + JMP 770000

FOa 03COH,OFFH
0009 07 + 770005: DB 7
OOOA 08 + 770006: DB 8
OOOB FF + 770007: DB OFFH
OOOC 0100 + 770008: OW OFFH+l
OOOE 03Cl + 770009: OW 03COH+l
0010 EB F7 + JMP 770005
0012 FUN ENDS

END

Notice that Macro Assembler has substituted LABEL
names in the form ??nnnn for the instances of the
dummy symbols.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-48

PURGE <macro-name>(, •••]

'PURGE deletes the definition of the macro(s) listed
after it.

PURGE provides three benefits:

1. It frees text space of the macro body.

2. It returns any instruction mnemonics or
directives that were redefined by macros to
their original function.

3. It allows you to "edit outft macros from a macro
library file. You may find it useful to create
a file that contains only macro definitions.
This method allows you to use macros repeatedly
with easy access to their definitions.
Typically, you would then place an INCLUDE
statement in your program file. Following the
INCLUDE statement, you could place a PURGE
statement to delete any macros you will not use
in this program.

It is not necessary to PURGE a macro
redefining it. Simply place another
statement in your program, reusing the
name.

Example:

INCLUDE MACRO.LIB
PURGE MAC 1
MACl ;tries to invoke purged macro

;returns a syntax error

before
MACRO
macro

(

(

(

)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-49

Repeat Directives

The directives in this group allow the operations in a block
of code to be repeated for the number of times you specify.
The major differ,ences between the Repeat directives and
MACRO directive are:

1. MACRO gives the block a name by which to call in
the code wherever and whenever neededj the macro
b~ock can be used in many different programs by
simply entering a macro call statement.

2. MACRO allows parameters to be passed to the macro
block when a MACRO is called, hence, parameters
can be changed.

Repeat directive parameters must be assigned as a part of
the code block. If the parameters are known in advance and
will not change, and if the repetition is to be .performed
for every program execution, then Repeat directives are
convenient. with the MACRO directive, you must call in the
MACRO each time it is needed.

Note that each Repeat ,directive must be matched with the
ENDM directive to terminate the repeat block.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-50

Repeat

REPT <exp>

ENDM

Repeat. block of statements between REPT
<exp> times. <exp> is evaluated as
unsigned number. If <exp> contains an
symbol or undefined operands, an
generated.

Example:

X = 0

and ENDM
a 16-bit
External

error is

REPT 10 1generates
:DB 1 - DB

10
X X+l

DB X
ENDM

assembles as:

0000 X 0
REPT 10 :generates

iDB 1 - DB
10

X X+1
DB X
ENDM

0000' 01 + DB X
0001' 02 + DB X
0002' 03 + DB X
0003' 04 + DB X
0004' 05 + DB X
00·05 ' 06 + DB X
0006' 07 + DB X
0007' 08 + DB X
0008' 09 + DB X
0009' OA + DB X

END

(

(

(

\

)

)

)

ACTION: INSTRUCTIONS AND DIRECTIVES· Page 4-Sl

. Indefinit! Repeat

IRP <dummy>,<parameters inside angle brackets>

..
ENDM

Parameters must be enclosed in angle brackets.
Parameters may --be any legal symbol, string,
numeric, or character constant. The block of
statements is' repeated for 'each parameter. Each
repetition substitutes the next parameter for every
occurrence of <dummy> in the,block. If a parameter
is null (i.e., <», the block is processed once
with a null parameter.

Example:

IRP
DB
ENDM

X,<1,2,3~4,S,6,7,8,9,10>

X

This example generates the same bytes (DB 1 to DB
10) as the REPT example.

When IRP is used inside a MACRO definition block,
angle brackets around parameters in the macro call
statement are removed before the parameters are
passed to the macro block. An example, which
generates the same code as above, illustrates the
removal of one level of brackets from the
parameters:

FOO MACRO
IRP
DB
ENDM
ENDM

X
Y,<X>
Y

When the macro call statement

FOO <1,2,3,4,S,6,7,8,9,10>

is assembled, the macro expansion becomes:

IRP
DB
ENDM

Y,<1,2,3,4,5,6,7,8,9,10>
Y

The angle brackets around the
removed, and all items are
parameter.

parameters will be
passed as a single

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-52

Indefinite Repeat Character

IRPe <dummy>,<string>

..
£NDM

The statements in the block are repeated once for
each character in the string. Bach repetition
substitutes the next character in the string for
every occurrence ~f <dummy> in the block.

Example:

tRPC X,0123456789
DB X+1
£NDM

This example generates the same code (08 1 to DB
10) as the two previous examples. I

(

\

(

(

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-53

Special Macro Operators

Several special operators can be used in a macro block to
select additional assembly functions.

& Ampersand concatenates text or symbols. (The
ampersand may not be used in a macro call
statement.) A dummy parameter in a quoted string
will not be substituted in expansion unless
preceded immediately by an ampersand. To form a
symbol from text and a dummy, put an ampersand
between them.

For example:

ERRGEN MACRO X
ERROR&X:

MOV
JMP
ENDM

PUSH BX
BX,"X'
ERROR

The call ERRGEN A will then generate:

ERRORA: PUSH
MOV
JMP

B
BX,'A'
ERROR

In Macro Assembler, the ampersand will not appear
in the expansion. One ampersand is removed each
time a dummy& or &dummy is found. For complex
macros, where nesting is involved, extra ampersands
may be needed. You need to supply as many
ampersands as there are levels of nesting.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-54

For example:

Correct form

FOO

X&&Z

MACRO
IRP
DB
ENDM
ENDM

X
Z,<1,2,3>
Z

Incorrect form -- --
Faa MACRO

IRP
X&Z DB

ENDM
ENDM

X
Z,<1,2,3>
Z

When called, for example, by Faa BAZ, the expansion
would be (correctly in the left column, incorrectly
in the right):

1. MACRO build, find <dummy>s and change to dl

IRP Z,<1,2,3> IRP Z,<1,2,3>
dl&Z DB Z dlZ DB Z

ENDM ENDM

2. MACRO expansion, substitute parameter text for
dl

IRP
BAZ&Z DB

ENDM

Z,<l,2,3> IRP
ZBAZZ DB Z

ENDM

Z,<l,2,3>

3. IRP build, find dummys and change to dl

BAZ&dl DB dl BAZZ DB dl

4. IRP expansion, substitute parameter text for dl

BAZl
BAZ2
BAZ3

DB
DB
DB

1
2
3

BAZZ
BAZZ
BAZZ

DB
DB
DB

1
2
3

I;here it's an error,
;multi-defined symbol

(

(

(

)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-55

<text> Angle brackets cause Macro Assembler to treat the
text between the angle brackets as a single
literal. Placing parameters to a macro call inside
angle brackets; or placing the list of parameters
following the IRP directive inside angle brackets
causes two results:

1. All text within the angle brackets is seen as a
single parameter, even if commas are used.

2. Characters that have special functions are
taken as literal characters. For example, the
semicolon inside angle brackets <;> becomes a
character, not the indicator that a comment
follows.

One set of angle brackets is removed each time the
parameter is used in a macro. When using nested
macros, you will need to supply as many sets of
angle brackets around parameters as there are
levels of nesting.

In a macro or repeat block, a comment
two semicolons is not saved as a
expansion.

preceded by
part of the

The default listing condition for macros is .XALL
(see Section 4.2.4, "Listing Directives," below).
Under the influence of .XALL, comments in macro
blocks are not listed because they do not generate
code.

If you decide to place the .LALL listing directive
in your program, then comments inside macro and
repeat blocks are saved and listed. This can be
the cause of an "out of memory error." To avoid
this error, place double semicolons before comments
inside macro and repeat blocks, unless you
specifically want a comment to be retained.

An exclamation point may be entered in an argument
to indicate that the next character is to be taken
literally. Therefore,!; is equivalent to <;>.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-56

, The percent sign is used only in a macro argument
to convert the expression that follows it (usually
a symbol) to a number in the current radix. During
macro expansion, the number derived from converting
the expression" is substituted for the dummy. Using
the , special operator allows a macro call by
value. (Usually, a macro call is a call by
reference, with the text of the macro argument
substituting exactly for the dummy.)

The expression following the , must evaluate to an
absDlute (non-relocatable) constant.

Example:

PRINTE

SYMl
SYM2

MACRO
'OUT
ENDM
EOU
EOU
PRINTE

MSG,N
* MSG,N *

100
200
<SYMl + SYM2 = >,'(SYMl + SYM2)

Normally, the macro call statement would cause the
string (SYMl + SYM2) to be substituted for the
dummy N. The result would be:

'OUT * SYMl + SYM2 = (SYM1 + SYM2) *
When the' is placed in front of the parameter,
the assembler generates:

'OUT * SYMl + SYM2 = 300 *

(

(

(

)

)

)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-57

4.2.4 Listing Directives

Listing directives perform two general functions: format
control and listing control. Format control directives
allow the programmer to insert page breaks and direct page
headings. Listing directives turn on and off the listing of
all or part of the assembled file.

PAGE

PAGE «length>] (,<width>]
PAGE (+)

PAGE with no arguments or with the optional .(,+]
argument causes the assembler to start a new output
page. The assembler puts a form feed character in
the listing file at the end of the page.

The PAGE directive with either the length or width
arguments does not start a new listing page.

The value of <length>, if included, becomes the new
page length (measured in lines per page) and must
be in the range 10 to 255. The default page length
is 50 lines per page. .

The value of <width>, if included, becomes the new
page width (measured in characters) and must be in
the range 60'to 132. The default page width is 80
characters.

The plus sign (+) increments the major page number
and resets the minor page number to one. Page
numbers are in the form major-minor. The PAGE
directive without the + increments only the minor
portion of the page number.

Example:

PAGE + ,increment major,set minor to 1

.
PAGE 58,60 Jpage length-58 lines,

,width-60 characters

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-58

TITLE <text>

TITLE specifies a title to be listed on the first
line of each page. The <text> may be up to 60
characters long. If mere than one TITLE is given,
an error results. The first six characters of the
title, if legal, are used as the module name,
unless a NAME directive is used.

Example:

TITLE PROGl -- 1st Program

If the NAME directive is not used, the module name
is now PROG1--lst Program. This title text will
appear at the top of every page of the listing.

(

(

(

)

)

)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-59

SUBTITLE

SUBTTL <text>

SUBTTL specifies a subtitle to be listed in
page heading on the line after the title.
<text> is truncated after 60 characters.

each
The

Any number of SUBTTLs may be given in a program.
Each time the assembler encounters SUBTTL, it
replaces the <text> from the previous SUBTTL with
the <text> from the most recently encountered
SUBTTL. To turn off SUBTTL for part of the output,
enter a SUBTTL with a null string for <text>.

Example:

SUBTTL SPECIAL I/O ROUTINE

SUBTTL

The first SUBTTL causes the subtitle SPECIAL I/O
ROUTINE to be printed at the top of every page.
The second SUBTTL turns off subtitle (the subtitle
line on the listing is left blank).

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-60

'OUT

'OUT <text>

The text is listed on the terminal during assembly •
. 'OUT is useful for. displaying progress through a
long assembly or for displaying the value of
conditional assembly switches.

'OUT will output on both passes. If only one
printout is desired, use the IFl or IF2 directive,
depending on which pass you want displayed. See
Section 4.2.2, ·Conditional Directives,· for
descriptions of the IFl and IF2 directives.

Example:

'OUT *Assembly halfdone*

The assembler will send this message to the
terminal screen when encountered.

IFl
'OUT *Pass 1 started*
ENDIF

IF2
'OUT *Pass· 2 started*
ENDIF

(

(

(

)

)

)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-61

.LIST
:xLfST

.LIST lists all lines with their code (the default
condition) •

• XLIST suppresses all listing.

If you specify a listing file following the
Listing: prompt, a listing file with all the
source statements included will be printed.

When .XLIST is encountered in the source file,
source and object code will not be listed. .XLIST
remains in effect until a .LIST is encountered •

• XLIST overrides all other listing directives.
Nothing will be listed, even if another listing
directive (other than .LIST) is encountered.

Example:

.XLIST :listing suspended here

.
.LIST :listing resumes here

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-62

• LFCOND

• TFCOND

• XALL

.SFCOND suppresses portions of the listing that
contain conditional false expressions •

.LFCOND assures
expressions that
default condition •

the listing of
evaluate false.

conditional
This is the

.TFCOND toggles the current setting. .TFCOND
operates independently from .LFCOND and .SFCOND •
• TFCOND toggles the default setting, which is set
by the presence or absence of the IX switch when
the assembler is running. When IX is used, .TFCOND
will cause false conditionals to list. When IX is
not used, .TFCOND will suppress false conditionals •

.XALL is the default •

• XALL lists source code and object code produced by
a macro, but source lines which do not generate
code are not listed •

• LALL lists the complete
expansions, including lines
code. Comments preceded by
will not be listed •

macro text for all
that do not generate

two semicolons (;;)

• SALL suppresses listing of all text and object
code produced by macros.

(

(

(

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-63

.CREF
:xcREF

.CREF

.XCREF «variable list>]

.CREF is the default condition. .CREF remains in
effect until Macro Assembler encounters .XCREF •

. XCREF without arguments turns off the .CREF
(default) directive. .XCREF remains in effect
until Macro Assembler encounters .CREF. Use .XCREF
to suppress the creation of cross-references in
selected portions of the file. Use .CREF to
restart the creation of a cross-reference file
after using the .XCREF directive.

If you include one or more variables following
.XCREF, these variables will not be placed in the
listing or cross-reference file. All other
cross-referencing, however, is not affected by an
.XCREF directive with arguments. Separate the
variables with commas.

Neither .CREF nor .XCREF without arguments takes
effect unless you specify a cross-reference file
when running the assembler. .XCREF <variable list>
suppresses the variables from the symbol table
listing regardless of the creation of a
cross-reference file.

Example:

.XCREF CURSOR,FOO,GOO,BAZ,ZOO
;these variables will not be
;in the listing or cross-reference file

(

(

(

Chapter 5

5.1
5.1.1
5.1.2
5.2
5.3
5.4

5.5
5.5.1
5.5.2

5.5.3

Contents

Asse.bling a Macro Asse.bler Source Pile

How to Start Macro Assembler 5-1
Method 1: Prompts 5-2
Method 2: Command Line 5-3

Macro Assembler Command Characters 5-4
Macro Assembler Command Prompts 5-5
Macro Assembler Command Switches 5-7

Summary of Command Switches 5-9
Formats of Listings and Symbol Tables 5-10

Program Listing 5-10
Differences Between Pass 1 and
Pass 2 Listings 5-16
Symbol Table· Format 5-17

(

(

(

CBAPl'BR 5

ASSEMBLING A MACRO ASSEMBLER SOURCB FILE

Assembling a program with Macro Assembler requires two types
of commands: a command to start Macro Assembler, and
answers to command prompts. In addition, four switches
control alternate Macro Assembler features. Usually, you
will type all the commands to Macro Assembler on the
terminal keyboard. As an option, answers to the command
prompts and any switches may be contained in response
(batch). file. Two command characters are provided to assist
you while entering assembler commands. These command
characters are described in Section 5.2, "Command
Characters."

5.1 BOW TO START MACRO ASSEMBLER

Macro Assembler may be started in two ways. By the first
method, you type the commands in response to individual
prompts. By the second method, you type all commands on the
line used to start Macro Assembler.

Summary of Methods to Start Macro Assembler
===

Method 1

Method 2

MASH

MASM <source>,<object>,<listing>,
<cross-ref> [/switch •••]

===============a===================a======c==~=============

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-2

5.1.1 Method 1: Prompts

Type:

MASM

Macro Assembler will be loaded into memory. Then, Macro
Assembler returns a series of four text prompts that appear
one at a time. You answer the prompts as commands to Macro
Assembler to perform specific tas~s.

At the end of each line, you may specify one or more
switches, each of which must be preceded by a forward slash
<I) •

The command prompts are summarized here
more detail in Section 5.3, "Macro
Prompts."

and described in
Assembler Command

Summary of Command Prompts
==

PROMPT RESPONSES
==

Source filename (.ASM]: List .ASM file to be
assembled. (There is no
default: a filename
response is required.)

-------------------------------+----------------------------
Object filename [source.OBJ List filename for

relocatable object code.
(The default is
source-filename.OBJ)

-------------------------------+----------------------------
Source listing [NUL.LST): List filename for listing.

(The default is no listing
file.)

-------------------------------+---------------------~------
Cross reference [NUL.CRF): List filename for

cross-reference file (used
with MS-CREF to create a
cross-reference listing).
(The default is no
cross-reference file.)

==

(

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-3

5.1.2 Method 2: Command Line

Type:

MASM <source>,<object>,<listing>,<cross-ref>(/switch •..)

Macro Assembler will be loaded into memory. Then Macro
Assembler immediately begins assembly. The entries
following MASM are responses to the command prompts. The
entry fields for the different prompts must be separated by
commas.

where: ~ource is the source filename

object is the name of the file to receive the
relocatable output

listing is the name of the file to receive the
listing

cross-ref is the name of the file to receive the
cross-reference output

/switch are optional switches, which may be placed
following any of the response entries (just before
any of the commas or after the the <cross-ref>, as
shown) .

To select the default for a field, simply enter a second
comma without spac~ in between (see the example below).

Example:

MASM FUN"FUN/D/X,FUN

This example causes Macro Assembler to be loaded, then
causes the source file FUN.ASM to be assembled. Macro
Assembler then outputs the relocatable object code to a file
named FUN.OBJ (default caused by two commas in a row),
creates a listing file named FUN.LST for both assembly
passes but with false conditionals suppressed, .and creates a
cross-reference file named FUN.CRF. If names were not
listed for listing and cross-reference, these files would
not be created. If listing file switches are given but no
filename, the switches are ignored.

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-4

5.2 MACRO ASSEMBLER COMMAND CHARACTERS

Macro Assembler provides two command characters.·

Semicolon

CONTROL-C

Use a single semicolon (:), followed
immediately by a carriage return, at any
time after responding to the first prompt
(from Source filename: on) to select
default responses to the remaining prompts.
This feature saves time and eliminates the
need to enter a series of carriage returns.

N~E

Once the semicolon has been entered,
you can no longer respond to any of
the prompts for that assembly.
Therefore, do not use the semicolon
to skip over some prompts. For
this, use the <RETURN> key.

Example:

Source filename [.ASM]: FUN
Object filename [FUN.OBJ):

The remaining prompts will not appear, and
Macro Assembler will use the default values
(including no listing file and no
cross-reference file).

To achieve the same result, you could type:

Source filename [.ASM]: FUN ~

This response produces the same files as the
previous example.

Use <CONTROL-C> at any time to abort the
assembly. If you enter an erroneous
response, such as the wrong filename or an
incorrectly spelled filename, you must press
<CONTROL-C> to exit Macro Assembler. You
can then restart Macro Assembler. If the
error has been typed and not entered, you
may del~te the erroneous characters, but for
that line only.

(

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-5

5.3 MACRO ASSEMBLER COMMAND PROMPTS

Macro Assembler is commanded by entering responses to four
text prompts. When you have typed a response to the current
prompt, the next appears. When the last prompt has been
answered, Macro Assembler begins assembly automatically
without further command. When assembly is finished, Macro
Assembler e·xits to the operating system. When the operating
system prompt is displayed, Macro Assembler has finished
successfully. If the assembly is unsuccessful, Macro
Assembler displays the appropriate error message.

Macro Assembler prompts you for the names of source, object,
listing; and cross-reference files.

All command prompts accept a file specification as a
response. You may type:

A filename only

A dcvic~ denignation only

A filename and an extension

A device designation and filename, or

A device designation, filename, and extension.

Do not type only a filename extension.

The following is a discussion of the command prompts that
are displayed when you start Macro Assembler with Method 1:

Type the filename of your source program. Macro
Assembler assumes by default that the filename
extension is .ASM, as shown in square brackets in
the prompt text. If your source program has any
other filename .extension, you must specify it along
with the filename. Otherwise, the extension may be
omitted.

filename [source.OBJ]:
-'l'ypp-Ehefilename you want to receive the generated

object code. If you simply press the carriage
return key when this prompt a~pears, the object
file will be given the same name as the source
file, but with the filename extension .OBJ. If you
want your object file to have a different name or a
different filename extension, you must type your
choice in response to this prompt. If you want to

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-6

change only the filename but keep the .OBJ
extension, type the filename only. To change the
extension only, you must type both the filename and
the extension.

Sou...£.<:e. ~ i ~_!: i ng [NUf:._. LS,!:L!.

Cross

Type the name of the file you want to receive the
source listing. If you press the carriage return
key, Macro Assembler does not produce this listing
file. If you type d filename only, the listing is
created and placed in a file with the name you typ~
plus the filename extension .LST. You may also
type your own extension.

The source listing f(le will contain a list of all
the s~atements in your source program and will show
the code and offsets generated for each statement.
The listing will also show any error messages
qrnerat00 durinq th~ session.

reference [NUL.CRF1:
-- Type the-name of-""the file you want tu receive the

cross-reference file. If you press only the
<RETURN> key, Macro Assembler does not produce this
cross-reference file. If you type a filename only,
the cross-reference file is created and placed in a
file with the name you type plus the filename
extension .CRF. You may also type your own
extension.

The cross-reference file is u~ed as the source file
for the Microsoft CREF Cross-Reference Utility
(MS-CREF). MS-CREF converts this cross-reference
file into a cross-reference listing, which you can
use to aid you uuring program debugging.

The cross-reference file contains a series of
control symbols that identify records in the file.
MS-CREF uses these control symbols to create a
~isting that shows all occurrences of every symbol
1n your program. The occurrence that defines the
symbol is also identified.

(

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-7

5.4 MACRO ASSEMBLER COMMAND SWITCHES

The three Macro Assembler switches control assembler
functions. Switches must be typed at the end of a prompt
response, regardless of which method is used to start Macro
Assembler. Switches may be grouped at the end of anyone of
the responses, or may be scattered at the end of several.
If more than one switch is typed at the end of one response,
each switch must be preceded by a forward slash (/). Do not
specify only a switch as a response to a command prompt.

Switch Function

/0 Produces a source listing on both assembler passes.
The listings will, when compared, show where in the
program phase errors occur and will, possibly, give
you a clue to why the errors occur. The /0 switch
does not take effect unless you command Macro
Assembler to create a source listing (type a
filename in response to· the Source listing:
command prompt).

/0 Outputs the listing file in octal radix. The
generated code and the offsets shown on the listing
will all be given in octal. The actual code in the
object file will be the same as if the /0 switch
were not given. The /0 switch affects only the
listing file.

/X Suppresses the listing of false conditionals. If
your program contains conditional blocks, the
listing file will show the source statements, but
no code if the condition evaluates false. To avoid
the clutter of conditional blocks that do not
generate code, use the /X switch to suppress the
blocks that evaluate false from your listing.

The /X switch does not affect any block of code in
your file that is controlled by either the .SFCONO
or .LFCONO directives.

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page S~8

If your source program contains the .TFCOND
directive, the IX switch has the opposite effect.
That is, normally the .TFCOND directive causes
listing or suppressing of blocks of- code that it
controls. The first .TFCOND directive suppresses
false conditionals, the second restores listing of
false conditionals, and so on. When you use the IX
switch, raIse conditionals are already suppressed.
When Macro Assembler encounters the first .TFCOND
directive, listing of false conditionals is
restored. When the second .TFCOND is encountered
(and the IX switch is used), false conditionals are
again suppressed from the listing. -

Of course, the IX switch has no· effect if no
listing is created. See additional discussion
under the .TFCOND directive in Section 4.2.4,
"Listing Directives."

The following chart illustrates the various effects
of the conditional listing directives in
combination with the IX switch.

(

(

(

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 1)-9

Pseudo-op No LX ~

(none) ON OFF

.SFCONO OFF OFF

.LFCONO ON ON

.TFCONO OFF ON

.TFCONO ON OFF

.SFCONO OFF OFF

.TFCONO OFF ON

.TFCONO ON OFF

.TFCONO OFF ON

'Summary of Command Switches
==

SWITCH ACTION
==

/0 Produce a listing on both assemhler
passes.

-------------------+---------------------------------------~
/0 Show gener~ted object code and offsets

in octal radix on listing.
-------------------+---------------------------------------~

/X Suppress the listing of false
conditionals. Also used with the
.TFCONO directive.

==

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-10

5.5 FORMATS OF LISTINGS AND SYMBOL TABLES

The source listing produced by Macro Assembl~r (created when
you specify a filename in response to the Source listing:
prompt) is divided into two parts.

The first part of the listing shows:

The line number for each line of the source file,
if "a cross-reference file is also being created.

The offset of each source line that generate~ code.

The code generated by each source line.

A plus sign (+), if the code came from a macro, or
a letter C, if the code came from an INCLUDE file.

The source statement line.

The second part of the listing shows:

Macros--name and length in bytes

Structures and records--name, width and fields

Segments and groups--name, size, align, combine,
and class

Symbols--name, type, value, and attributes

The number of warning errors and severe errors

5.5.1 program Listing

The program portion of the listing is essentially your
source program file with the line numbers, offsets,
generated code, and (where applicable) a plus sign to
indicate that the source statements are part of a macro
block, or a letter C to indicate that the source statements
are from a file input by the INCLUDE directive.

If any errors occur during assembly, the error message will
be printed directly below the statement where the error
occurred.

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-11

Part of a listing file follows this discussion, with notes
explaining what the various entries represent.

The comments have been· moved down qne line because of format
restrictions. If you print your listing on 132
column-paper, the comments shown here will easily fit on the
same line as the rest of the statement.

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-12

Explanatory notes are spliced into the listing at points of
special interest.

Summary of Listing Sy.bols

R

E

nn:

nn/

xx

+

C

Linker resolves entry to left of R

= External

= Segment name, group name, or segment variable
used in MOV AX,<---->, DO <---->, JMP <---->,
and so on.

Statement has an EOU or = directive

Statement contains a segment override

REPxx or LOCK prefix instruction. Example:

003C F3/ AS

T
~P

T
MOVSW :move DS:SI to ES:DI

:until CX=O

DUP expression:xx is the value in parentheses
following DUP: for example: DUpe?) places ??
where xx is shown here

Line comes from a macro expansion

Line comes from file named in INCLUDE directive
statement

(

(

(

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-13

Microsoft Macro Assembler I-Dec-81 PAGE 1-3

EXTX PASCAL entry for initializing programs

0000 STACK
= 0000 HEAP beg
~Indicates EOU or

SEGMENT WORD STACK 'STACK'
EQ~ THIS BYTE

directive
~Base of heap before init

0000 14 [DB 20 DUP (?)~
value in parentheses J

= 0014
0014

0000

0000
0000

0003

0005

T
Offset

OOOC

??~Shows
]

Indicates DUP expression
SKTOP EOU THIS BYTE
STACK ENDS

MAINSTARTUP SEGMENT 'MEMORY'
DGROUP GROUP DATA,STACK<CONST,HEAP,MEMORY

BEGXOQ

ASSUME CS:MAINSTARTUP,DS:DGROUP,
ES:DGROUP,SS:DGROUP

PUBLIC BEGXOO :Main entry

PROC FAR
B8 R MOV AX,DGROUP

:Get data segment value
8E 08 MOV DS,AX :Set DS seg

MOV CESXOO,ES '"
~. "J\ .~ Action ExpresSion Comment

8C 06 0022 R

Generated Name

26c 8B lE 0002 MOV BX,ES:2

~~--------------se9ment overrid~
~Highest

:paragraph

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-14

Microsoft Macro Assembler l-Dec-al PAGE 1-4

ENTX PASCAL entry for initializing programs

0011
0013
0017
0019

OOlC

0024

0069

006E

007E

0000

2B D8 SUB BX,AX :Get • paras for DS
81 FB 1000 CMP BX,.4096 :More than 64K?
7E 03 JLE SMLSTK :No, use what we have
BB 1000 MOV BX,4096 :Can only address 64k

SMLSTK: +> REPT 4
SHL BX,l

:Convert para to offset
ENDM

SHL BX,l
:Convert para to offset

SHL BX,l
:Convert para to offset

SHL BX,l
:Convert para to offset

3 'SHL BX,l
:Convert para to offset

these lines macro number of
from macro directive repetitions

8B E3 MOV SP,BX
:Set stack to top of memory

EA~OOO !. JMP

signal to linker

FAR PTR STARTmain

•
linker resolves: indicates

or segment variable used in
DD <---->: JMP <---->,etc.
examples in this listing.)

segment variable

segment name, group name,
MOV AX,<---->:

BEGXOO

MAIN_STARTUP

ENTXCM
ASSUME
PUBLIC

(See other

ENDP

ENDS

SEGMENT WORD 'CODE'
CS:ENTXCM .
ENDXOO,DOSXOO

(

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-15

Microsoft Macro Assembler I-Dec-al PAGE 1-5

ENTX PASCAL entry for initializing programs

0000 STARTmain PROC FAR ~This code remains
0000 9A 0000 ---- E

~
0005 ENDXOO

0005 9A 0000 -- E

OOOA 9A 0000 --E

OOOF 9A 0000 --E

0014 C1 06 0020 R '0000

linker
signal,
goes with

CALL ENTGOQ
~call main program

LABEL FAR
;termination entry point

CALL ENDOQO
;user system termination

CALL ENDYOQ
;close all open files

CALL ENDUOQ

External
symbol

HOV

,file system
; termination

OOSOFF,O

number to left; shows DOSOFP is in segment

00 2E 0020 R JMp

OOlE STARTmain ENDP

.
0031 ENTXCM ENDS

END BEGXOQ

DWORD PTR DOSOFF
,return to DOS

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-16

5.5.2 Differences Between Pass 1 And Pass 2 Listings

If you specify the /0 switch when you run Macro Assembler to
assemble your file, the assemb1erproduces a listing for
both passes. The option is especially helpful for finding
the sour~e of phase errors.

The following example was taken from a source file that
assembled without reporting any errors. When the source
file was reassembled using the /0 switch, an error was
produced on pass 1, but not on pass 2 (which is when errors
are usually reported).

Example:

During Pass 1 a jump with a forward reference produces:

0017 7E 00
Err 0 r

0019 BB 1000
001C SMLSTK: REPT

JLE SMLSTK :No, use what we have
9:Symbol not defined
MOV BX,4096 :Can only address 64k
4

During Pass 2 this same instruction is fixed up and does not
return an error.

0017
0019
OOIC

7E 03
BB 1000

SMLSTK: REPT

JLE
MOV
4

SMLSTK :No, use what we have
BX,4096 :Can only address 64k

Notice that the JLE instruction's code now contains 03
instead of 00: this is a jump of 3 bytes.

The same amount of code was produced dur in'g both passes, so
there was no phase error. The only difference in this case
is one of content instead of size,

(

(

(

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-17

S.S.3 Symbol Table Format

The symbol table portion of a listing separates all
"symbols" into their respective categories, showing
appropriate descriptive data. This data gives you an idea
how your program is using various symbolic values. and is
useful when you debug.

Also, you can use a cross-reference listing, produced by
MS-CREF, to help you locate uses of the various "symbols" in
your program.

On the next page is a complete symbol table listing.
Following the complete listing, sections from different
symbol tables are shown with explanatory notes.

For all sections of symbol tables, this rule applies: if
there are no symbolic values in your program for a
particular category, the heading for the category will be
omitted from the symbol table listing. For example, if you
use no macros in your program, you will not see a macro
section in the symbol table.

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE

Microsoft Macro Assembler MACRO
Assembler date PAGE Symbols-l
CALLER - SAMPLE ASSEMBLER ROUTINE (EXMPlM.ASM)

Macros:

Name

BIOSCALL · DISPLAY.
DOSCALL. · · · · · · KEYBOARD · LOCATE · SCROLL · · · · ·
Structures and records:

Name

PARMLIST · · · · · · BUFSIZE.
NAMESIZE •
NAMETEXT · TERMINATOR •

Segments and groups:

Name

CSEG . · · · STACK. · WORKAREA ·
Symbols:

Name

CLS. • ••
MAXCHAR.
MESSG. •
PARMS. •
RECEIVR.
START. • •

· ·

Warning Sevt!re
Errors Errors
o 0

· · ·

Length

0002
0005
0002
0003
0003
0004

Width • fields
Shift Width Mask

OOlC 0004
0000
0001
0002
OOlB

Size align combine

0044 PARA PUBLIC
0200 PARA STACK
0031 PARA PUBLIC

Type Value Attr

N PROC 0036 CSEG
Number 0019
L BYTE OOlC WORKAREA
L OOIC 0000 WORKAREA
L FAR 0000
F PROC 0000 CSEG

Page 5-18 (

Initial

(

class

'CODE'
'STACK'
'DATA'

Length -OOOE

External
Length -0036

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-19

Macros:

Name

BrOSCALL •
DISPLAY.
DOSCALL.
KEYBOARD •
LOCATE •
SCROLL

i
names of macros

Length ~number of 32-byte blocks
macro occupies in memory

0002
0005
0002
0003
0003
0004

This section of the symbol table tells you the names of your
macros and how big they a~e in 32-byte block units. "In this
listing, the macro DISPLAY is 5 blocks long or (5 X 32 bytes
=) 160 bytes long.

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-20

Structures and records:

~xample for Structures

Name Width I fields ~ *

PARMLIST • • • • • •

~
BUFSIZE ••••
NAMESIZE •
NAMETEXT •
TERMINATOR

field names of
PARMLIST Structure

Example fo~ Records

BAZ. • •

FLOI .
FLD2 .

Name

FL03 ••
BAZI • • .

BZl. •

BZ2.

Shift Width Mask Initial ~**

OOle 0004

0000 ~ 0001

0002 \
0018

**.
Offset of field

into structure

Width
Shift

0008

0006
0003

0000
OOOB
0003

0000

The number of bytes
wide of Structure:

t' fields
Width Mask I ni tial +-- *

0003~number of fields
in Record

0002 OOCO 0040
0003 0038 OOOO~initial

value
0003 0007 0003
0002 '-MASK of field
0008 07F8 0400 maximum

value
0003 0007 0002

number of shift. number of
bits in Record count bits in field

to right

* This line applies to Structure Names (begin in column 1).
** This line for fields of Records (indented).
***Number of fields in Structure.

This section lists your Structures and/or Records and their
fields. The upper line of column headings applies to
Structure names, Record names, and field names of
Structures. The lower line of column headings applies to
field names of Records.

I

\

(

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-21

For Structures:

Widt~ (upper line) shows the number of bytes your
Struclure occupies in memory.

! fields shows how many fields comprise your
Structure.

For Records:

width (upper line) shows the number of bits the
Record occupies.

t fields shows how many fields comprise your
Recordo.-

For Fields of Structures:

For

Shift shows the number of bytes the fields are
offset into the Structure.

The other columns are not used for fields of
Structures.

Fields of Records:

Shift is the shift count to the right.

Width (lower line) shows the number of bits this
field occupies.

Mask shows the maximum value of the record,
expressed in hexadecimal, if one field is masked
and ANDed (the field is set to alII's and all
other fields are set to all O's).

Using field BZl of the Record BAZI above to
illustrate:

o 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 4-MASK ,. 07F8

I I I I I II I I I I I I II II

WIDTH 0008

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-22

Initial shows the value specified as the initial value for
the field, if any.

When naming the field, you specified:
fie1dname:1 = value

Fie1dname is the name of the field

t is the width of the field in bits

Value is the initial value you
hold. The symbol table shows
is placed in the field and all
masked (equal 0). Using the
from above:

want this field to
this value as if it
other fields are

example and diagram

o 0 000 o 0 0 0 Initial'" 0400

Init.ial BOtt
80H 128 decimal

Segments and groups:

Name

AAAXQQ ..
DGROUP ..

DATA.
STACK.
CONST.
HEAP .
MEMORY •

ENTXCM .
MAIN STARTUP •

Size align combine class
/---ca11ed Private

/ in MS-LINK manual
WORD NONE 'CODE'<--segment 0000

GROUP
0024
0014
0000
0000
0000
0037
007E

<-------------------------group

length
of

segment

WORD PUBLIC 'DATA'
WORD STACK 'STACK'
WORD PUBLIC 'CONST'
WORD PUBLIC 'MEMORY'
WORD PUBLIC 'MEMORY'
WORD NONE 'CODE'
PARA NONE 'MEMORY'

statement line entries

segments
of'

DGROUP

(

(

(

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-23

For Groups:

The name of the group will appear under the Name column,
beginning in column 1 with the applicable Segment names
indent"ed 2 spaces. The word Group will appear under the
Size column.

For Segments:

The segment names may appear in column I (as here) if you do
not declare them part of a group. If you declare a group,
the segment names will appear indented under their group
name.

For all Segments, whether a part of a. group or not:

Size is the number of bytes the Segment occupies.

Align is the type of boundary where the segment
begins:

PAGE = page - address is xxxOOH (low byte - O)~
begins on a 256-byte boundary

PARA • paragraph - address is xxxxOH
(low nibble • 0): default

WORD • word - address is xxxxeH
(e • even number:
low bit of low byte • 0)

bit map - Ixlxlxlxlxlxlxlol

BYTE • byte - address is xxxxxH (anywhere)

Combine describes how the Microsoft LINK Linker
Utility will combine the various segments. (See.
the Microsoft LINK Linker Utility Manual for a full
descr iption.)

Class is the class name under which MS-LINK will
combIne segments in memory_ (See MS-LINK Linker
Utility Manual and Chapter 9 of the MS-DOS User's
~ for a full description.)

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-24

Symbols:

Name Type Value Attr

Foo. • • • • •
FOOl.
Foo2 ••
Foo3 •
Foo4
FOO5 •

Number
Text
Number
Alias
Text
Opcode

0005
1. 234
0008
FOO
5 lBP1 [01]

all formed by
EQU or =
directive

Symbols:

Name Type

BEGRQQ • • L WORD
BEGOQQ • • • • L FAR
BEGXQQ • • F PROC
CESXQQ • • • • L WORD
CLNEQQ • • L WORD
CRCXQQ • • • • L WORD
CRDXQQ • • L WORD
CSXF.OO • • L WORD
CURROQ •• L WORD
DOSOFF • • • • L WORD
DOSXQQ • • • • F PROC
ENDRQQ • • • • L WORD
ENDOQQ • • • • L FAR
ENDUQQ • L FAR
ENDXQQ • • • • L FAR
ENDYQQ • • • • L FAR
ENTGQQ • • • • L FAR
FREXQQ • F PROC
HDRFQQ • • • • L WORD
HDRVQO • L WORD
HEAPBEG. • BYTE
HEAP LOW • BYTE
INIUOO • L FAR
PNUXQQ • • • • L WORD
RECEOQ • • L WORD
REFEQO • L WORD
REPEQQ • • L WORD
RESEQO • • L WORD
SKTOP. • BYTE
SMLSTK • • L NEAR
STARTMAIN. F PROC
STKBOQ • L WORD
STKHQQ • • • • L WORD

Value Attr

0012
0000
0000
0022
0002
OOlC
OOlE
0000
0014
0020
001E
0016
0000
0000
0005
0000
0000
006E
0006
0008
0000
0000
0000
0004
0010
OOOC
OOOE
OOOA
0014
OOlC
0000

. 0018
001A

DATA Global
External

MAIN STARTUP Global
DATA- Global
DATA Global
DATA Global
DATA Global
DATA Global
DATA Global

Length=006E

Llength
of PROC

DATA
ENTXCM
DATA

Global Length =0019
Global
External
External

ENTXCM Global
External
External

MAIN STARTUP Global Length=0010
DATA- Global
DATA Global
STACK E I EQU statements
HEAP E - showing segment

DATA
DATA
DATA
DATA
DATA
STACK

External
Global
Global
Global
Global
Global

MAIN STARTUP
ENTXCM Length=OOlE
DATA Global
DATA Global

L:If Macro Assembler knows this length as one of the
type lengths (BYTE, WORD, DWORD, QWORD,
TBYTE), it shows that type name here.

(

(

(

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-25

This section lists all other symbolic values in your program
that do not fit under the other categories.

Tvpe shows the symbol's type:
L ~ Label
F = Far
N = Near
PROC = Procedure
Number I
Alias -----all defined by EOU or = directive
Text I
Opcode

These entries may be combined to form the various
types shown in the example.

For all procedures, the length of the procedure is
given after its attribute (segment).

You may also see an entry under Type like:

L 0031

This entry results from code such as the following:

BAZ LABEL FOO

where FOO is a STRUC that is 31 bytes long.

BAZ will be shown in the symbol table with the L
0031 entry. Basically, Number (and some other
similar entries) indicates that the symbol was
defined by an EQU or = directive.

Value (usually) shows the numeric value the symbol
represents. (In some cases, the Value column will show some
text -- when the symbol was defined by EQU or = directive.)

Attr always shows the segment of the symbol, if known.
Otherwise, the Attr column is blank. Following the segment
name, the table will show either External, Global, or a
blank (which means not declared with either the EXTRN or
PUBLIC directive). The last entry applies to PROC types
only. This is a length = entry, which is the length of the
procedure.

ASSEMBLING A MACRO ASSEMBLER SOURCB PILE page 5-26

If Type is Number, Opcode, Alias, or ~, the SyJlbols
section of the listing will be structured differently.
Whenever you see one of these four entries under Type, the
symbol was created by.an EQU directive or an • directive.
All information that follows one of these entries Is
considered its -value,- ev~n if the -value- is simple text.

Each of the four types shows a value as follows:

Number shows a constant numeric value.

Opcode shows a blank. The syabol is an alias for
an instruction ane.anic.

Saaple directive stateaent: roo BQU ADD

Alias shows a 8yabol noe which the n ... d 8yabol
equals.

Sample directive state .. ntl POO IQU 8~

~ shows the -text- the syabol represents.
-Text- is any other operand to an BOD directive
that does not fit one of· the other three categories
above.

Sample directive statementsl
GOO BOU • WOW • BAZ EQO DS:8(BX)
ZOO BQU 1.234

(

(

(

)

Chapter 6

6.1

Contents

8087 Support

Switches 6-1

(

(

(

CHAPTER 6

8087 SUPPORT

Macro Assembler supports standard Intel 8087 instructions
and operands. A list of the instructions and opcodes can be
found in Appendix C of this manual.

6.1 SWITCBBS

There are two switches t,hat are used when running Macro
Assembler with an 8087. These switches are /R (for Real)
and /E (for Emulate). The /R and /E switches are described
below.

Switch

/R

,IE

Function

Use the /R switch when the code being produced by
Macro Assembler is going to be run on a real 8087
machine (not an emulated machine). Code produced
with the /R switch will only run on real 8087
machines. '

Use the /E switch when the code being produced by
Macro Assembler is going to be run on an emulated
8087 machine. Code produced with the /E switch
will also run on real 8087 machines with the
appropriate emulator library.

The emulator library is provided with ,some MS-DOS language
products. It contains specific 8087 emulation routines.
Refer to your language compiler user's guide for information
on the emulator library that has been provided. If your
code is going to run on an emulated 8087 machine, you must
specify :the appropriate emulator library when you link your
code with MS-LINK. If the library is not specified, MS-LINK
will return errors for those unresolved symbols that are
defined in the emulator library.

(

(

(

Chapter 7

7.1
7.2

Contents

Macro Assembler Messages

Operating Messages 7-1
Error Messages 7-2

Assempler Errors 7-2
I/O Handler Errors 7-13
Runtime Errors 7-14
Numerical Order List
of Error Messag~s 7-15

(

CllAPrER 7

MACRO ASSEMBLER MBSSAGBS

Most of the messages output by Macro Assembler are error
messages. The nonerror messages output by Macro Assembler
are the banner Macro Assembler displays when first started,
the command prompt messages, and the end of (succ~ssful)
assembly message. These nonerror messages are classified
here as operating messages. The error messages are
classified as assembler errors, I/O handler errors, and
runtime errors.

7.1 OPERATING MESSAGES

Banner Message and Command Prompts:

Macro Assembler v2.0 Copyright (C) Microsoft, Inc.

Source filename [.ASM1:
Object filename [source.OBJ1:
Source listing [NUL~LST]:
Cross reference [NUL.CRF1:

End of Assembly Message:

Warning
Errors
n

Fatal
Errors
n (n-number of errors)

(your disk operating system's prompt)

MACRO ASSEMBLER MESSAGES Page 7-2

7.2 BRROR MESSAGES

If the assembler encounters errors, error messages are
output, along with the numbers of warning and fatal errors,
and control is returned to your disk operating system. The
message is output either to your terminal screen or to the
listing file if you command one be created.

Error messages are divided into three categories: assembler
errors, I/O handler errors, and runtime errors. In each
category, messages are listed in alphabetical order with a
short explanation where necessary. At the end of this
chapter, the error messages are listed in a single numerical
order list but without explanations.

Assembler Brrors

Already defined locally (Code 23)

Tried to define a symbol as EXTERNAL that had
already been defined locally.

Already had ELSE clause (Code 7)

Attempt to define an ELSE clause within an existing
ELSE clause (you cannot nest ELSE without nesting
IF ••• ENDIF).

Already have base register (Code 46)

Trying to double base register.

Already have index register (Code 47)

Trying to double index address

Block nesting error (Code 0)

Nested procedures, segments, structures, macros,
IRC, IRP, or REPT are not properly terminated. An
example of this error is close of an outer level of
nesting with inner level(s) still open.

(

(

(

)

MACRO ASSEMBLER MESSAGES Page 7-3

Byte register is illegal (Code 58)

Use of one of the byte registers in context where
it is illegal. For example, PUSH AL.

Can't override ES segment (Code 67)

Trying to override the ES segment in an instruction
where this override is not legal. For example,
store string.

Can't reach with segment reg (Code 68)

There is no ASSUME that makes
reachable.

Can't use EVEN on BYTE segment (Code 70)

the variable

Segment was declared to be byte segment and attempt
to use EVEN was made.

Circular chain of EOU aliases (Code 83)

An alias EOU eventually points to itself.

Constant was expected (Code 42)

Expecting a constant and received something else.

CS register illegal usage (Code 59)

Trying to use the CS register illegally. For
example, XCHG CS,AX.

Directive illegal in STRUC (Code 78)

All statements within STRUC blocks must either be
comments preceded by a semicolon (,), or one of the
Define directives.

Division by 0 or overflow (Code 29)

An expression is given that results in a divide by
o.

MACRO ASSEMBLER MESSAGES Page 7-4

DUP is too large for linker (Code 74)

Nesting of DUP's was such that too large a record
was created for the linker.

8087 opcode can't be emulated (Code 84)

Either the 8087 opcode or the operands you used
with it produce an instruction that the emulator
cannot support.

Extra characters on line (Code 1)

This occurs when sufficient information to define
the instruction directive has been received on a
line and superfluous characters beyond are
received.

Field cannot be overridden (Code 80)

In a STRUC initialization statement, you tried to
give a value to a field that cannot be overridden.

Forward needs override (Code 71)

This message is not currently used.

Forward reference is illegal (Code 17)

Attempt to forward reference something that must be
defined in pass 1.

Illegal register value (Code 55)

The register value specified does not fit into the
"reg" field (the reg field is greater than 7).

Illegal size for item (Code 57)

Size of referenced item is illegal.
shift of a double word.

For example,

(

(

(

MACRO ASSEMBLER MESSAGES Page 7-5

Illegal use of external (Code 32)

Use of an external in some illegal manner. For
example, DB M DUP(?) where M is declared external.

Illegal use of register (Code 49)

Use of a register with an instruction where there
is no 8086 or 8088 instruction possible.

Illegal value for DUP count (Code 72)

DUP counts must be a constant that is not 0 or
negative.

Improper operand type (Code 52)

Use of an operand such that the opcode cannot be
generated.

Improper use of segment reg (Code 61)

Specification of a segment register where this is
illegal. For example, an immediate move to a
segment register.

Index displ. must be constant (Code 54)

Illegal use of index display.

Label can't have seg. override (Code 65)

Illegal use of segment override.

Left operand must have segment (Code 38)

Used something in right operand that required a
segment in the left operand. (For example, ":.")

M'ore values than defined with (Code 76)

Too many fields given in REC or STRUC allocation.

MACRO ASSEMBLER MESSAGES Page 7-6

Must be associated with code (Code 45)

Use of data related item where code item was
expected.

Must be associated with data (Code 44)

Use of code related item where data related item
was exected. For example, MOV AX,<code-label>.

Must be AX or AL (Code 60)

Specification of some register other than AX or AL
where only these are acceptable. For example, the
IN instruction •

. Must be index or base register (Code 48)

Instruction requires a base or index register and
some other register was specifi~~ in square
brackets, r].

Must be declared in pass 1 (Code 13)

Assembler expecting a constant value but got
something else. An example of this might be a
vector size being a forward reference.

Must be in segment block (Code 69)

Attempt to generate code when not ina segment.

Must be record field name (Code 33)

Expecting a record field name but got something
else.

Must be record or field name (Code 34)

Expecting a record name or field name and received
something else.

Must be register (Code 18)

Register unexpected as operand but you furnished a
symbol -- was not a register.

(

(

(

MACRO ASSEMBLER MESSAGES Page 7-7

Must be segment or group (Code 20)

Must be

Must be

Expecting segment or group and something else was
specified.

structure field name (Code 37)

Expecting a structure field name but received
something else.

symbol type (Code 22)

Must be WORD, DW, OW, BYTE, or TB but received
something else.

Must be var, label or constant (Code 36)

Expecting a variable, label, or constant but
received something else.

Must have opcode after prefix (Code 66)

Use of one of the prefix instructions without
specifying any opcode after it.

Near JMP/CALL to different CS (Code 64)

Attempt to do a NEAR jump or call to a location in
a different CS ASSUME.

No immediate mode (Code 56)

Immediate mode specified or an opcode that cannot
accept the immediate. For example, PUSH.

No or unreachable CS (Code 62)

Trying to jump to a label that is unreachable.

Normal type operand expected (Code 41)

Received S~RUCT, FIELDS, NAMES, BYTE, WORD, or OW
when expecting a variable label.

MACRO ASSEMBLER MESSAGES page 7-8

Not in conditional block (Code 8)

An ENDIF or ELSE is specified without a previous
conditional assembly directive active.

Not proper align/combine type (Code 25)

SEGMENT parameters are incorrect.

One operand must be const (Code 39)

This is an illegal use of the addition operator.

Only initialize list legal (Code 77)

Attempt to use STRUC name without angle brackets,
< >.

Operand combination illegal (Code 63)

Specification of a two-operand instrucion where the
combination specified is illegal.

Operands must be same or 1 abs (Code 40)

Illegal use of the subtraction operator.

Operand must have segment (Code 43)

Illegal use of SEG directive.

Operand must have size (Code 35)

Expected operand to have a size, but it did not.

Operand not in IP segment (Code 51)

Access of operand is impossible because it is not
in the current IP segment.

Operand types must match (Code 31)

Assembler gets
arguments in a
example, MOV.

different kinds or sizes
case where they must match.

of
For

(

(

(

)

)

MACRO ASSEMBLER MESSAGES Page 7-9

Operand was expected (Code 27)

Assembler is expecting an operand but an operator
was received.

Operator was expected (Code 28)

Assembler was expecting an operator but an operand
was received.

Override is of wrong type (Code 81)

In a STRUC initialization statement, you tried to
use the wrong size on override. For example,
'HELLO' for DW field.

Override with DUP is illegal (Code 79)

In a STRUC initialization statement, you tried to
use DUP in an override.

Phase error between passes (Code 6)

The program has ambiguous instruction directives
such that the location of a label in the program
changed in value between pass 1 and pass 2 of the
assembler. An example of this is a forward
reference coded without a segment override where
one is required. There would be an additional byte
(the code segment override) generated in pass 2
causing the next label to change. You can use the
/0 switch to produce a listing to aid in resolving
phase errors between passes (see Section 5.4,
"Macro Assembler Command Switches").

Redefinition of symbol (Code 4)

This error occurs on pass 2
definitions of a symbol.

Reference to mult defined (Code 26)

and succeeding

The instruction references something that has been
multi-defined.

MACRO ASSEMBLER MESSAGES Page 7-10

Register already defined (Code 2)'

This will only occur if the assembler has internal
logic errors.

Register can't be forward ref (Code 82)

Relative jump out of range (Code 53)

Relative jumps must be within the range -128 +127
of the current instruction, and the specific jump
is beyond this range.

Segment parameters are changed (Code 24)

List of arguments to SEGMENT were not identical to
the first time this segment was used.

Shift count is negative (Code 30)

A shift expression is generated that results in a
negative shift count.

Should have been group name (Code 12)

Expecting a group name but something other than
this was given.

Symbol already different kind (Code IS)

Attempt to define a symbol differently from a
previous definition.

Symbol already external (Code 73)

Attempt 'to define a symbol as local that is already
external.

Symbol has no segment (Code 21)

Trying to use a variable with SEG, and the variable
has no known segment.

(

(

(

)

MACRO ASSEMBLER MESSAGES Page 7-11

Symbol is multi-defined (Code 5)

This error occurs on a symbol that is later
redefined.

Symbol is reserved word (Code 16)

Attempt to use
illegally. (For
variable.)

Symbol not defined (Code 9)

an assembler reserved word
example, to declare MOV as a

A symbol is used that has no definition.

Symbol type usage illegal (Code 14)

Illegal use of a PUBLIC symbol.

Syntax error (Code 10)

The syntax of the statement does not match any
recognizable syntax.

Type illegal in context (Code 11)

The type specified is of an unacceptable size.

Unknown symbol type (Code 3)

Symbol statement has something in the type field
that is unrecognizable.

Usage of ? (indeterminate) bad (Code 75)

Improper use of the "?". For example, ?+5.

Value is out of range (Code 50)

Value is too large for expected use. For example,
MOV AL,5000.

MACRO ASSEMBLER MESSAGES

Wrong type of register (Code 19)

Directive
register,
INC CS.

or instruction expected
but another was specified.

Page 7-12

one type of
For example,

(

(

(

MACRO ASSEMBLER MESSAGES Page 7-13

I/O Handler Brroes

These error messages are generated by the I/O handlers.
These messages appear in a different format from the
Assembler Errors:

MASM Error -- error-message-text
in: filename .

The filename is the name of the file being handled when the
error occurred.

The error-message-text is one of the following messages:

Data format (Code 114)

Device full (Code 108)

Device name (Code 102)

Device offline (Code 105)

File in use (Code 112)

File name (Code 107)

File not found (Code 110)

File not open (Code 113)

File system (Code 104)

Hard data (Code 101)

Line too long (Code llS)

Lost file (Code 106)

Operation (Code 103)

Protected file (Code 111)

Unknown device (Code 109)

MACRO ASSEMBLER MESSAGES Page 7-14

Runti.e Brrors

These messages may be displayed as your assembled program is
being executed.

Internal Error

Usually caused by an arithmetic check.
occurs, notify Microsoft Corporation.

Out of Memory

If it

This message has no corresponding number. Either
the source was too big or too many labels are in
the symbol table.

(

(

(

MACRO ASSEMBLER MESSAGES

Nu.erical Order List of Error Messages

Code Messa~~

o Block nesting error
1 Extra characters on line
2 Register already defined
3 Unknown symbol type
4 Redefinition of symbol
5 Symbol is multi-defined
6 Phase error between passes
7 Already had ELSE clause
8 Not in conditional block
9 Symbol not defined

10 Syntax error
11 Type illegal in context
12 Should have been group name
13 Must be declared in pass 1
14 Symbol type usage illegal
15 Symbol already different kind
16 Symbol is reserved word
17 Forward reference is illegal
18 Must be register
19 Wrong type of register
20 Must be segment or group
21 Symbol has no segment
22 Must be symbol type
23 Already defined locally
24 Segment parameters are changed
25 Not proper align/combine type
26 Reference to mult defined
27 Operand was expected
28 Operator was expected
29 Division by 0 or overflow
30 Shift count is negative
31 Operand types must match
32 Illegal use of external
33 Must be record field name
34 Must be record or field name
35 Operand must have size
36 Must be var, label or constant
37 Must be structure field name
38 Left operand must have s~gment
39 One operand must be const
40 Operands must be same or 1 abs
41 Normal type operand expected
42 Constant was expected
43 Operand must have segment
44 Must be associated with data
45 Must be associated with code
46 Already have base register
47 Already have index register
48 Must be index or base register
49 Illegal use of register
50 Value is out of range

Page 7-15

MACRO ASSEMBLER MESSAGES Page 1-16

51 Operand not in IP segment
52 Improper operand type
53 Relative jump out of range
54 Index displ. must be constant
55 Illegal register value
56 No immediate mode
57 Illegal size for item
58 Byte register is illegal
59 CS register illegal usage
60 Must be AX or AL
61 Improper use of segment reg
62 No or unreachable CS
63 Operand combination illegal
64 Near JMP/CALL to different CS
65 Label can't have seg. override
66 Must have opcode after prefix
67 Can't override ES segment
68 Can't reach with segment reg
69 Must be in segment block
70 Can't use EVEN on BYTE segment
71 Forward needs override
12 Illegal value for DUP count
73 Symbol already external
74 DUP is too large for linker
75 Usage of ? (indeterminate) bad (Code 75)
76 More values than defined with
77 Only initialize list legal
78 Directive illegal in STRUC
79 Override with DUP is illegal
80 Field cannot be overridden .
81 Override is of wrong type
82 Register can't be forward ref
83 Circular chain of EQU aliases
84 8087 opcode can't be emulated

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

Hard data
Device name
Operation
File system
Device offline
Lost file
File name
Device full
Unknown device
File not found
Protected file
File in use
File not open
Data format
Line too long

(

(

(

)

Contents

Appendix A ASCII Character Codes

Appendix B Table of Macro Assembler Directives

B.l Memory Directives B-1
B.2 Macro Directives B-2
B.3 Conditional Directives B-2
B.4 Listing Directives B-2
B.5 Attribute Operators B-3
B.6 Precedence of Operators B-4

Appendix C Table of 8086 and 8087 Instructions

C.l 8086
C.2 8087
C.3 8086

Type
C.4 8087

Type

Instruction Mnemonics, Alphabetical
Instruction Mnemonics, Alphabetical
Instruction Mnemonics by Argument

C-6
Instruction Mnemonics by Argument

C-IO

C-l
C-4

(

(

(

ASCII CHARACTER CODES

APPENDIX A

ASCII CIlARACTER CODBS

Dec Hex CRR Dec Rex CHR
000 OOH NUL 033 21H 1
001 01H SOH 034 22H "
002 0211 STX 035 23H I
003 03H ETX 036 24H $
004 04H EOT 037 25H ,
005 05H ENO 038 26H ,
006 06H ACK 039 27H ,
007 07R BEL 040 28H (
008 08R BS 041 29H)

009 09R HT 042 2AH *
010 OAH LF 043 2BH +
011 OBH VT 044 2CH
012 OCH FF 045 2DH
013 ODH CR 046 2EH .
014 OEH SO 047 2FH /
015 OFH 51 048 30H 0
016 10H OLE 049 31H 1
017 11M DC1 050 32H 2
018 12H DC2 051 33M 3
019 13H DC3 052 34H 4
020 14H DC4 053 35H 5
021 iSH NAK 054 36H 6
022 16H 5YN 055 37H 7
023 17H ETB 056 38H 8
024 18H CAN 057 39H 9
025 19H EM 058 3AH
026 1AH SUB 059 3BH
027 1Bn ESCAPE 060 3CH <
028 lCH FS 061 3DH
029 1011 GS 062 3EH >
030 1EH RS 063 3FH ?
031 1FH U5 064 40H @
032 20H SPACE

Oec=decima1, Hex=hexadecimal (H), CHR=character.
LF=Line Feed, FF=Form Feed, CR=Carriage Return, OEL=Rubout

ASCII CHARACTER CODES (
Dec Hex CHR Dec Hex CHR
065 41H A 097 61H a
066 42H B 098 62H b
067 43H C 099 63H c
068 44H 0 100 64H d·
069 45H E 101 65H e
070 46H F 102 66H f
071 47H G 103 67H 9
072 48H H 104 68H h
073 49H I 105 69H i
074 4AH J 106 6AH j
075 4BH K 107 6BH k
076 4CH L 108 6CH 1
077 40H M 109 6DH m
078 4EH N 110 6EH n
079 4FH 0 III 6FH 0

080 SOH p 112 70H P
081 51H Q 113 71H q
082 52H R 114 72H r
083 53H S 115 73H s
084 54H T 116 74H t
085 55H U 117 75H u
086 56H V 118 76H v
087 57H W 119 77H w
088 58H X 120 78H x
089 59H y 121 79H Y (090 5AH Z 122 7AH z
091 5BH [123 7BH

1 092 5CH \ 124 7CH
093 SOH] 125 7DH
094 5EH

,..
126 7EH

095 5FH 128 7FH DEL
096 60H T

Dec=decima1, Hex=hexadecimal (H), CHR=character.
LF=Line Feed, FF=Form Feed, CR=Carriage Return, OEL=Rubout

(

APPBRDIX B

'l'ABLB OP MACRO ASSBMBLBR DIRBC'l'IVBS

B.1 MEMORY DIRBC'l"IVES

ASSUMB <seg-reg>:<seg-name> [,<seg-reg>:
<8eg-name> •• ~] .

ASSUME NOTHING
COMMENT <delim><text><delim>

<name> DB <exp>
<name> DO <exp>
<name> DO <exp>
<name> DT <.exp>
<name> OW <exp>

END [<exp>]
<name> EOU <exp>
<name> II <exp>

EXTRN <name>:<type>[,<name>:<type> •••]
PUBLIC <name>[,<name> •••]

<name> LABEL <type>
NAME <module-name>

<name> PROC [NEAR]
<name> PROC [FAR]

I
<proc-name> ENDP

.RADIX <exp>
<name> RECORD < field>: <width> [=<exp>] (, •••]

<name> GROUP <segment-name>[, •••]
<name> SEGMENT «align>] «combine>] «class>]

I
<seg-name> ENDS

EVEN
ORG <exp>

<name> STRUC
I

<struc-name> ENDS

8. 2 MACRO DIRECTIVES

ENDM
EXITM

Page B-2

IRP <dummy>,<parameters in angle brackets>
IRPC <dummy>,string
LOCAL <parameter>[,<parameter> •••]

<name> MACRO <parameter>[,<parameter> •••]
PURGE <macro-name>[, ••• 1
REPT <exp> .

Special Macro Operators
& (ampersand) - concantenation
<text> (angle brackets - single literal)
:: (double semicolons) - suppress comment
! (exclamation point) - next character literal
, (percent sign) - convert expression to number

8.3 CONDITIONAL DIRECTIVES

ELSE
IF <exp>
IFB <arg>
IFDEF <symbol>
IFDIF <argl>,<arg2>
IFE <exp>
IFIDN <argl>,<arg2>
IFNB <arg>
IFNDEF <symbol>
IF!
IF2

8.4 LISTING DIRECTIVES

.CREF

.LALL

.LFCOND

.LIST
'OUT <text>
PAGE <exp> .
• SALL
.SFCOND
SUBTTL <text>
.TFCOND
TITLE <text>
.XALL
.XCREF
.XLIST

(

(

(

Page B-3

B.5 A~RIB~B OPBRATORS

Override operators

Pointer (PTR)
<attribute> PTR <expression>

segment Override (:) (colon)
<segment-register>:<address-expression>
<segment-name>:<address-expression>
<group-name>: <address-expression>

SHORT
SHORT <label>

THIS
THIS <distance>
THIS <type>

Value Returning Operators

SEG
SEG <label>
SEG <variable>

OFFSET
OFFSET <label>
OFFSET <variable>

TYPE
TYPE <label>
TYPE <variable>

.TYPE
.TYPE <variable>

LENGTH
LENGTH <variable>

SIZE
SIZE <variable>

Record Specific operators

Shift-count - (Record fieldname)
<record-fieldname>

MASK
MASK <record-fieldname>

WIDTH
WIDTH <record-fieldname>
WIDTH <record>

8.6 PRECEDENCB OF OPERATORS

All operators in a single item have the same
regardless of the order listed within the item.
line breaks are used for visual clarity, not
functional relations.

1. LENGTH, SIZE, WIDTH, MASK
Entries inside: parenthesis ()

angle brackets < >
square brackets [J

Page B-4

precedence,
Spacing and

to indicate

structure variable operand: <variable>.<field>

2. segment override operator: colon (:)

3. PI'R, OFFSET, SEG, TYPE, THIS

4. HIGH, LOW

s. *, I, MOD, SHL, SHR

6. +, - (both unary and binary)

7. EO, NE, LT, LE, GT, GE

8. Logical NOT

9. Logical AND

10. Logical OR, XOR

II. SHORT, • TYPE

APPENDIX C

TABLE OF 8086 AND 8087 INSTRUCTIONS

Macro Assembler supports both the 8086 and 8087 mnemonics.
The mnemonics are listed alphabetically with their full
names. The 8086 instructions are also listed in groups
based on the type of arguments the instruction takes.

C.1 8086 INSTRUCTION MNEMONICS, ALPHABETICAL

Mnemonic

AAA
AAD
AAM
AAS
AOC
ADD
AND
CALL
CBW
CL~

'CLO
CLI
CMC
CMP
CMPS
CMPSB
CMPSW
CWO
DAA
DAS
DEC
OIV
ESC
HLT
IDIV
IMUr.
IN
INC
INT
INTO

Full Name

ASCII adjust for addition
ASCII adjust for division
ASCII adjust for multiplication
ASCII adjust for subtraction
Add with carry
Add
AND
CALL
Convert byte to word
Clear carry flag
Clear direction flag
Clear interrupt flag
Complement carry flag
Compare
Compare byte or word (of string)
Compare byte string
Compare word string
Convert word to double word
Decimal adjust for addition
Decimal adjust for subtraction
Decrement
Divide
Escape
Halt
Integer divide
Integer multiply
Input byte or word
Increment
Interrupt
Interrupt on overflow

Page C-2

I RET Interrupt return
JA Jump on above
JAE Jump on above or equal
JB Jump on below
JBE Jump on below or equal
JC Jump on carry
JCXZ Jump on CX zero
JE Jump on equal
JG Jump on greater
JGE Jump on greater or equal
JL Jump on less than
JLE Jump on less than or equal
JMP Jump
JNA Jump on not above
JNAE Jump on not above or equal
JNB Jump on not below
JNBE Jump on not below or equal
JNC Jump on no carry
JNE Jump on not equal
JNG Jump on not greater
JNGE Jump on not greater or equal
JNL Jump on not less than
JNLE Jump on not less than or equal
JNO Jump on not overflow
JNP Jump on not parity
JNS Jump on not sign
JNZ Jump on not zero
JO Jump on overflow
JP Jump on parity
JPE Jump on parity even
JPO Jump on parity odd
JS Jump on sign
JZ Jump on zero
LAHF Load AH with flags
LOS Load pointer into OS
LEA Load effective address
LES Load pointer into ES
LOCK LOCK bus
LOOS Load byte or word (of string)
LOOSB Load byte (string)
LOOSW Load word (string)
LOOP LOOP
LOOPE LOOP while equal
LOOPNE LOOP while not equal
LOOPNZ LOOP while not zero
LOOPZ LOOP while zero
MOV Move
MOVS Move byte or word (of string)
MOVBS Move byte (string)
MOVSW Move word (string)
MUt Multiply
NEG Negate
NOP No operation
NOT NOT
OR OR

OUT
POP
POPF
PUSH
PUSHF
RCL
RCR
REP
RET
ROL
ROR
SAHF
SAL
SAR
SBB
SCAS
SCASB
SCASW
SHL
SHR
STC
STD
STI
STOS
STOSB
STOSW
SUB
TEST
WAIT
XCHG
XLAT
XOR

Output byte or word
POP
POP flags
PUSH
PUSH flags
Rotate through carry left
Rotate through carry right
Repeat
Return
Rotate left
Rotate right
Store AH into flags
Shift arithmetic left
Shift arithmetic right
Subtract with borrow
Scan byte or word (of string)
Scan byte (string)
Scan word (string)
Shift left
Shift right
Set carry flag
Set direction flag
Set interrupt flag
Store byte or word (of string)
Store byte (string)
Store word (string)
Subtract
TEST
WAIT
Exchange
Translate
Exclusive OR

Page C-3

Page C-4

C.2 8087 INSTRUCTION MNEMONICS, ALPHABETICAL

Mnemonic

F2XMl

F}\BS
FADD
FADDP

FBLO
FBSTP

FCHS
FCLEX
FCOM
FCOMP
FCOMPP

FOECSTP
FOISI
FDIV
FDIVP
FDIVR
FDIVRP

FEN!

FFREE

FIADD
FICOM
FICOMP
FIDIV
FIDIVR

FILD
FIMUL
FINCSTP
FINIT
FIST
FISTP
FISUB
FISUBR

FLO
FLDI
FLDCW
FLDENV
FLOL2E
FLOL2T
FLDLG2
FLDLN2
FLDPI
FLOZ

Full Name

Calculate 2X-l

Take absolute value of top of stack
Add real
Add real and pop stack

Load packed decimal onto top of stack
Store packed decimal and pop stack

Change sign on the top stack element
Clear exceptions after WAIT
Compare real
Compare real and pop stack
Compare real and pop stack twice

Decrement stack pointer
Disable interrupts after WAIT
Divide real
Divide real and Pop stack
Reversed real divide
Reversed real divide and pop stack twice

Enable interrupts after WAIT

Free stack element

Add integer
Integer compare
Integer compare and pop stack
Integer divide
Reversed integer divide

Load integer onto top of stack
Integer multiply
Increment stack pointer
Initialize processor after WAIT
Store integer
Store integer and pop stack
Integer subtract
Reversed integer subtract

Load real onto top of stack
Load +1.0 onto top of stack
Load control word
Load 8087 environment
Load log 2 e onto top of stack
Load log 2 10 onto top of stack
Load log 10 2 onto top of stack
Load log e 2 onto top of stack
Load pi onto top of stack
Load +0.0 onto top of stack

FMUL
FMULP

FNCLEX
FNDISI
FNENI
FNINIT
FNOP
FNSAVE
FNSTCW
FNSTENV
FNSTSW

FPATAN
FPREM
FPTAN

FRNDINT
FRSTOR

FSAVE
FSCALE
FSQRT
FST
FSTCW
FSTENV
FSTP
FSTSW
FSUB
FSUBP
FSUBR
FSUBRP

FTST

FWAIT

FXAM
FXCH

FXTRACT

FYL2X
FYL2PI

Multiply real
Multiply real and pop stack

Clear exceptions with no WAIT
Disable interrupts with no WAIT
Enable interrupts with no WAIT
Initialize processor, with no WAIT
No operation
Save 8087 state with no WAIT
Store control word without WAIT
Store 8087 environment with no WAIT
Store 8087 status word with on WAIT

Partial arctangent function
Partial remainder
Partial tangent function

Round to integer
Restore state

Save 8087 state after WAIT
Scale
Square root
Store real'
Store ·control word with WAIT
Store 8087 environment after WAIT
Store real and pop stack
Store 8087 status word after WAIT
Subtract real
Subtract real and pop stack
Reversed real subtract
Reversed real subtract and pop stack

Test top of stack

Page C-S

Wait for last 8087 operation to complete

Examine top of stack element
Exchange contents of stack element and stack
top
Extract exponent and significand from number
in top of stack

Calculate Y:log 2 X
Calculate Y:log 2 (x+l)

Page C-6

C.3 8086 INSTRUCTION MNEMONICS BY ARGUMENT TYPE

In this section, the instructions are g~ouped according to
the type of argument(s) they take. In each group the
instructions are listed alphabetically in the first column.
The formats of the instructions with the valid argument
types are shown in the second column. If a format shows OP,
that format is legal for all the instructions shown in that
group. If a format is specific to one mnemonic, the
mnemonic is shown in the format instead of OPe

The following abbreviations are used in these lists:

OP opcode: instruction mnemonic

reg byte register (AL,AH,BL,BH,CL,CH,DL,DH)
or word register (AX,BX,CX,DX,SI,DI,BP,SP)

rim register or memory address or indexed andlor based

accum AX or AL register

immed immediate

mem memory operand

segreg segment register (CS,DS,SS,ES)

General I ~erand instructions

Mnemonics

ADC
ADD
AND
CMP
OR
SBB
SUB
TEST
XOR

Argument Types

OP reg,rlm
OP rim, reg
OP accum, immed
OP rim, immed

In addition, add to the arguments a sign extent for word
immediate.

CALL and JUMP ~ instructions

Mnemonics

CALL
JMP

Argument Types

OP mem {NEAR}{FAR} direction
OP rim (indirect data -­
DWORD, WORD)

Argument Type

OP addr (+129 or -126 of IP at start, or
+127 at end of jump instruction)

Mnemonics

JA JC JZ JNGE JNP
JNBE JNAE JG JLE JPO
JAE JBE JNLE JNG JNS
JNB JNA JGE JNE JO
JNC JCXZ JNL JNZ JP
JB JE JL JNO JPE

JS

Loop instructions ~ same ~ Relative jumps

LOOP LOOPE LOOPZ LOOPNE LOOPNZ

Return instruction

Mnemonic Argument Type

RET [immed 1 (optional, number of words to POP)

~2 operand instructions

Mnemonics

AM CLD DAA LODSB PUSHF STI
AAD CLI DAS LODSW SAHF STOSB
AAM CMC HLT MOVSB SCASB STOSW
AAS CMPSB INTO MOVSW SCASW WAIT
CBW CMPSW I RET NOP STC XLATB
CLC CWO LAHF POPF STD

Mnemonics Argument Type

LOS OP rIm (except that OP reg is illegal)
LEA
LES

Page C-7

Move instructions

Mnemonic

MOV

Mnemonics

PUSH
POP

Mnemonics

RCL
RCR
ROL
ROR
SAL
SHL
SAR
SHR

Argument Types

OP mem,accum
OP accum,mem
OP segreg,r/m
(except CS is illegal)

0P r/m,segreg
OP r/m,reg
OP reg,r/m
OP reg, immed
OP r /m, immed

Argument Types

OP word-reg
OP segreg
(POP CS is illegal)

OP rim

Argument Types

OP r/m,l
OP r/m,CL

Input/output instructions

Mnemonics

IN

OUT

Argument Types

IN accum,byte-immed
(immed = port 0-255)
IN accum,DX
OUT immed,accum
OUT DX,accum

Page C-8

(

(

Increment/decrement instructions

Mnemonics

INC
DEC

Argument Types

OP word-reg
OP rim

Arith. mul~iply/d~vision/negate/not

Mnemonics

DIV
IDIV
MUL
IMUL
NEG
NOT

Argument Type

OP rIm (implies AX OP
rIm, except NEG)

(NEG implies AX OP NOP)

In~!~~~ instruction

Mnemonic

INT

Argument Types

INT 3 (value 3 is
one-byte instruction)
INT byte-immed

Exchange instruction

Mnemonic

XCHG

Argument Types

XCHG accum,reg
XCHG reg,accum
XCHG reg, rIm
XCHG r/m, reg

Page C-9

Mnemonics

XLAT

Argument Types

XLAT byte-mem (only checks argument,
not in opcode)

ESC ESC 6-bit-number,r/m

String primitives

Page C-lO

These instructions .have ·bi ts
operand(s), if they are byte
override is involved.

to record only their
or word, and if a segment

Mnemonics

CMPS

LODS

MOVS

SCAS

STOS

Argument Types

CMPS byte-word, byte-word
(CMPS right operand is ES)
LOOS byte/word,byte/word
(LaDS one argument = no ES).

MOVS byte/word,byte/word
(MOVS left operand is ES)
SCAS byte/word,byte/word
(SCAS one argument = ES)
STOS byte/word,byte/word
(STOS one argument = ES)

Repeat prefix to string instructions

Mnemonics

LOCK
REP
REPE
REPZ
REPNE
REPNZ

C.4 8087 INS'rRlJCTIOR MHEMOHICS BY ARGUNElft TYPE

No oEerands

F2XMl FABS Fcns FCLEX FCOMPP FOECSTP
FOISI FENI F!NCSTP FINIT FLOl FL02E
FL02T FLOLG2 FLOLN2 FLOPI FLDZ .FNCLEX
FNDISI FNENI FNINIT FNOP FPATAN FPREM
FPTAN FRNOINT FSCALE FSQRT FTST FXAM
FXTRACT FYL2X FYL2XPl FWAIT

Mnemonics

FADD
FDIV
FDIVR
FMUL
FSUB
FSUBR

Argument Types

Blank
mem 4,8 bytes
ST ,ST (i)
ST (i) ,ST

Stack only floati~ ~ arithmatic

Mnemonics

FADDP
FDIVP
FDIVRP
FMULP
FSUBP
FSUBRP

Argument Types

ST (i)
ST

Compare and ~ using stack

Mnemonics Argument Types

FCOM ST
FCOMP ST (1)
FST blank

Stack

Mnemonics Argument Types

FFREE ST (i)
FXCH blank

Integer arithmatic

Mnemonics

FIADD
FICOM
FICOMP
FIDIV
FIDIVR
FIMUL
FIST
FISUB
FISUBR

Argument Types

mem 2,4 bytes

Page C-ll

f..1_~C!1:.in9 ~!.~.! load/store memory

Mnemonics

FLO
FSTP

Argument Types

mem 4,8, or 10 bytes

Integer load/store mem~

Mnemonics

FILD
FISTP

Argument Types

mem 2,4, or 8 bytes

Load/~ore control or status

Mnemonics

FLOCW
FNSTCW
FNSTSW
FSTCW
FSTSW

Mnemonics

FLOENV
FNSTENV
FSTENV

Mnemonics

FNSAVE
FRSTOR
FSAVE

BCD load/store

Mnemonics

FBLO
FBSTP

Argument Types

mem 2 bytes

Argument Types

mem 14 bytes

Argument Types

mem 94 b~·tes

Argument Types

mem 10 bytes

Page C-12

INDBX

• 4-53
, • • • • • • 4-56
'OUT • • • • 4-60
& • 4-53
.CREF . • • • • 4-63
.LALL ••••••••••• 4-62
.LFCOND • • • • • • • 4-62
.LIST • • • • . • 4-61
.RADIX • • • • • 4-26
.SALL . 4-62
.SFCOND • • • • • • 4-62
.TFCOND • • • • • • 4-62
.TYPE ••••• • 3-26
.XALL ••••• • 4-62
.XCREF ••••• • 4-63
.XLIST •••••• • 4-61
/0 (assembler switch) • 5-9 7-9
/0 (assembler switch) • 5-9
/X (assembler switch) • 5-9
8087 support • • • • • • • 6-1
: (colon - segment override operator). 3-19
; (command character) . 5-4
:: (macro operator). . • • • • 4-55
<record-fieldname

(shift count) •••••. 3-30
= (equal sign directive) • 4-12

Action ••.••.•
Arithmetic operators
Assembler errors •

· 1-10, 4-1
• 3-33
• 7-2

Calling a Macro . 4-44
Colon (: - segment override operator) 3-19
Command Characters

,
CONTROL-C

Command Characters •
Command Prompts

Cross-reference .•
Object filename
Source filename •.
Source listing
Summary of

COMMENT

5-4
· 5-4

. • 5-4

5-2
5-2
5-2
5-2

Comments .••••••.•

5-2
4-6
1-9
5-4 CONTROL-C (command character)

Data items 3-9

DB - Define Byte · · · · 4-7 to 4-8
DO - Define Doub1eword · 4-9
DO - Define Doub1eword · · 4-7
Direct memory operands · · 3-13
Directives

'OUT · · · · · 4-60
.CREF · · · · 4-63
.LALL · · · · · · · · · · 4-62
.LFCOND · · · · · · · · · 4-62
.LIST 4-61
.RADIX · 4-26
.SALL · · 4-62
.SFCOND · · · · · 4-62
.TFCOND · · · · · · · 4-62
.XALL · 4-62
.XCREF 4-63
.XLIST 4-61
= (equal sign) · · · · · 4-12
COMMENT · · · 4-6
Conditional · 4-37
DB - Define Byte · · · 4-7 to 4-8
DO - Define Doub1eword 4-9
00 - Define Ouadword · 4-9
DT - Define Tenbytes · 4-7, 4-9
OW - Define Word · · · · · 4-8
ELSE · · · · · 4-40
END · · · · · · · · · 4-10
EN DC · · · · · 4-40
ENDIF · · · · · 4-40
ENDM · · · · · · · · 4-45
ENDP · 4-23
EOU · · · · · · · · 4-11

. EVEN · · · · · 4-13
EXITM · · · · · 4-46
EXTRN · · · · · · 4-14
GROUP · · · · 4-16
IF · · 4-38
IFI · · · · · · 4-38
IF2 · · · · · · 4-38
IFB · · · · · 4-39
IFDEF · · · · · 4-38
IFDIF · · · · · 4-40
IFE · · · · · · 4-38
IFIDN · · · · · 4-40
IFNB · 4-39
IFNDEF · 4-38
INCLQDE · · · · · 4-18
IRP · · · · · · · · · 4-51
IRPC · 4-52
LABEL · · · · · · · 4-19
Listing · · · · · 4-57
LOCAL · 4-47
MACRO · · · · · 4-42
Memory · · · · · 4-5

NAME · · 4-21
PAGE · · 4-57
PROC · 4-23
PUBLIC · · · · · · · · 4-25
PURGE · · · · · · · 4-48
RECORD · · 4-27
REPT · · · · · 4-50
SEGMENT · · 4-30
STRUCTURE · · · 4-34
SUBTTL · · 4-59
TITLE · · · 4-21,

Directives
DD - Define Doub1eword · · · 4-7
DO - Define Ouadword · 4-7
DW - Define Word · · · 4-7

Directives . · · · · 4-1,
DO - Define Ouadword · · · · · 4-9
DO - Define Ouadword · · · · · 4-7
DT- Define Tenbytes ". · · 4-7,
DW - Define Word · · 4-8
DW - Define Word · · 4-7

ELSE • 4-40
• • 4-10 END

ENDC • • • • • • 4-40
ENDIF • • • • •
ENDM

• • • • • • • 4-40

ENDP
ENDS
EOU •••••••
Equal sign directive
Error messages

numerical list
EVEN •• •••
EXITM • • • • • • •
Expression evaluation
Expressions
EXTRN •••••

Formats

· . .
(=)

• • 4-45
• • 4-23

• 4-34
4-11

• 4-12

• 7-15
4-13
4-46
3-36

• • 1-11,
• 4-14

program listing •••••• 5-10

4-58

4-3

4-9

3-1

symbol table ••••••• 5-17
Formats of listings and symbol tables 5-10

General Facts about Source Files 1-1
GROUP • • 4-16

HIGH

I/O Handler errors •
IF
IFI
IF2
IFB

• • • 3-22

• • 7-13
4-38

• • • 4-38
• 4-38

• • • 4-39

IFDEF • • • • • • 4-38
IFDIF • • • • • • • • 4-40
IFE • 4-38
IFIDN • • 4-40
IFNB • • • • • • 4-39
IFNDEF • • • • • • • 4-38
Immediate operands • • • 3-9
INCLUDE •••••••••• 4-18
Indexed memory operands 3-14
Instructions •••.••••• 4-1 to 4-2
Instructions by argument type (Appendices) C-6
Instructions, alphabetical (Appendices) C-l
IRP ••••• • 4-51
IRPC •••••••••••• 4-52

LABEL • • • • • • • 4-19
Labels • •• • • • • • • • 2-2
Legal characters • • • • 1-3
LENGTH •••••••• • 3-27
LOCAL ••••• • • • 4-47
Logica~ operators • • • 3-35
LOW •••• • • 3-22

MACRO
MASK . . .
Memory directives

4-42
• 3.:.32

Memory operands • • • •
Memory organization

• 4-5
3-13

• • • 3-2

NAME
Names • • • • •
Names •••••

• 4-21
• 1-7
• 2-1

Numeric notation • • 1-4, 3-9

OFFSET
Offset attribute
Operand summary
Operands
Operator summary
Operators

• 3-24
• • • • • • 2-3
• • • • •• 1-13

• • • • • • • 3-8
• • • •• 1-13

3-17
ORG ••••••••••• • 4-22
Override operators •
Overviews .

• 3-18

MACRO-86 operation • • 8

PAGE ••••••• • 4-57
Pass 1 listing versus pass 2 listing 5-16
Pointer (PTR) ••••• 3-18
Precedence of operators • 3-36
PROC •••••••••••• 4-23
Program listing format • • • • 5-10
PTR • • • • • • 3-18
PUBLIC • • • • • • 4-25
PURGE • • • • • • • • • 4-48

RECORD • • • • • 4-27
Register operands
Relational operators •

3-10

REPT ••••••••••
Runtime errors • • • • • •

• • 3-34
4-50
7-14

SEG •••• 3-23
SEGMENT • • • • • • • • 4-30
Segment attribute •••••• 2-3
Segment override operator (:) 3-19
Shift count • • • 3-30
SHORT •••• • • 3-20
SIZE •••• • 3-28
Source file contents • 1-5
Source file naming • 1-1
Special Macro Operators
- I .• • • • • , ,

, ,
Special Macro Operators
State~ent Format

Action

• • 4-53
• 4-56

4-53
4-53

• 4-53

1-10
Comments • • • • • 1-9
Directives' ••••• ' 1-6
Expressions • • • 1-11
Instructions • • • • • • • • 1-6
Names • • • 1-7

Statement line format • • 1-6
STRUCTURE • 4-34
Structure operands • • 3-15
SUBTTL •••• 4-59
Summary

• 1-13
1-13

symbols • • 5-12
to invoke MACRO

Operands •••••
Operators • • •

Summary of listing
Summary of methods
Switches

MACRO-86
Summary of •

MACRO-86
/0
/0
/X

5-9

• 5-9,
• • • 5-9

• • • • • 5-9
Switches • •
Symbol table
Symbols

• • . • • • • 5-7
format ••• 5-17

2-7

3-21

5-1

7-9

THIS
TITLE
TYPE ••••
Type attribute ••

4-21, 4-58
••• 3-25

2-4, 2-6

Value returning operators 3-23

Variables • • 2-5

WIDTH • • 3-31

Microsoft® Link
Linker Utility

for 8086 and 8088 Microprocessors

Microsoft Corporation

System Require.ents

The Microsoft LIB Library Manager requires:

38K bytes of memory minimum:
28K bytes for code
10K bytes for run space

Disk drive(s):
One disk drive if and only if output is sent to the
same physical disk from which the input was taken.
The Microsoft LIB Library Manager does not allow
time to swap disks during operation on a one-drive
configuration. Therefore, two disk drives is a
more practical configuration.

Contents

Chapter 1

1.1
1.2

Chapter 2

2.1

2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.5
2.6

Addendum

Index

INTRODUCTION

overview of MS-LINK Operation 1-2
Definitions 1-4

MS-LINK TECHNICAL INFORMATION

How MS-LINK Combines and Arranges
Segments 2-1

Segment Addresses 2-4
How MS-LINK Assigns Addresses 2-4
Relocation Fixups 2-5

Short References 2-5
Near Self-Relative References 2-5
Near Segment-Relative References 2-6
Long References 2-6

Sample MS-LINK Session 2-7
Error Messages 2-9

(

(

(

CBAPrER 1

IHrRODOC'l'IOR

The Microsoft Linker Utility (MS-LINK) is a relocatable
linker designed to link separately produced modules of 8086
object code. The input to MS-LINK is a subset of the Intel
object module format standard.

MS-LINK prompts you for all MS-LINK commands. Your answers
to these prompts are the commands for MS-LINK.

The output file from MS-LINK (a Run file) is not bound to
specific memory addresses and, therefore, can be loaded and
executed at any convenient address by the operating system.

MS-LINK uses a dictionary-indexed library search method,
which substantially reduces link time for sessions involving
library searches.

MS-LINK is able to link files totaling 1 megabyte.

NOTE

This manual describes some of
the technical information
about MS-LINK. It is
recommended that this manual
be read in conjunction with
Chapter 9, "The Linker Program
eMS-LINK)," in the MS-DOS
User's Guide.

INTRODUCTION Page 1-2

1.1 OVBRVYBW OP MS-LIRIt OPBRATIOlI

MS-LINK performs the following steps to combine object
m9dules and produce a Run file:

1. Reads segments in object modules

2. Assigns addresses to segments

3. Assigns public symbol addresses

4. Reads data in segments

S. Reads all relocation references in object modules

6. Resolves references and
information

7. Outputs a Run file
relocation information

determines

(executable

relocation

image) and

As it combines modules, MS-LINK can search multiple library
files for definitions of any external references left
unresolved.

MS-LINK also produces a List file that shows external
references resolved and any error messages.

MS-LINK uses available memory as much as possible. When
available memory is exhausted, MS-LINK then creates a disk
file (VM.TMP) to use as temporary me.ary.

INTRODUCTION Page 1-3

The following figure illustrates the MS-LINK operation.

object object object
module module module

.. ~ ~

Microsoft
Linker Utility

~,

Executable Image

Relocation Information

Figure 1. MS-LINK Operation

The executable image contains the concatenated object
modules that make the Run file. The relocation information
is a list of long addresses that must change when the
executable image is relocated in memory. Refer to Section
1.7.4, "Long References,· for an explanation of long
addresses.

INTRODUCTION Page 1-4

1.2 DEFINITIONS

The following terms describe the functioning of MS-LINK. An
understanding of the concepts that define these terms will
provide a basic understanding of the way MS-LINK works.
Refer to the MS-DOS User's Guide for more information on
these definitions. -----

1. Segment
A segment is a contiguous area of memory up to
64K bytes in length. A segment may be located
anywhere in 8086 memory_ The contents of a
segment are addressed by a canonical frame
address and offset within that frame. Refer to
Section 1.5, "Segment Addresses," for further
discussion of canonical frames.

2. Group
A group is a collection of segments that fit
within 64K bytes of memory. The segments are
named to the group by the assembler, by the
compiler, or by you. You give the group name
in the assembly language program. For the
high-level languages (BASIC, FORTRAN, COBOL,
Pascal), the naming is carried out by the
compiler.

The group is used for addressing segments in
memory. Each group is addressed by a common
canonical frame. This frame is the lowest
canonical frame of the segments that belong to
the group. It is a usual practice in assembler
and higher languages for the canonical frame
address to be contained in a segment register.
MS-LINK checks to see that the Object modules
of a group meet the 64K-byte constraint.

3. Class
-----A class is a collection of segments. The

naming of segments to a class controls the
order and relative placement of segments in
memory. You give the class name in the
assembly language program. For the high-level
languages (BASIC, FORTRAN, COBOL, Pascal), the
naming is carried out by the compiler. The
segments are named to a class at compile time
or assembly time.

The segments of a class are loaded into memory
contiguously. The segments are ordered within
a class in the order the Linker encounters the
segments in the object files. One class
precedes another in memory only if a segment

(

(

(

INTRODUCTION Page 1-5

for the first class precedes all segments for
the second class in the input to MS-LINK.
Classes may be loaded across 64K-byte
boundaries. Groups may span classes.

4. Alignment
Alignment refers to certain segment boundaries.
These can be byte, word, or paragraph
boundaries.

Byt~ Alignment:: A segment can begin on any
byte boundary.

Word Alignment: The beginning address of a
segment must occur on an even address.

Paragraph Alignment:
of a segment must
(l6-byte) boundary.

5. Combi'ne!.Y.E~

The beginning address
occur on a segment

A combine type is an attribute of a segment:
it tells the Linker how to combine segments of
a. like name or it relays other information

·about the properties of a segment. Combine
types are: stack, public, private, and common.
The way MS-LINK arranges these combine types is
discussed in the next section.

CBAP'l'ER 2

MS-LINK TECHNICAL INFORMATION

2.1 BOW MS-LINK COMBINES AND ARRANGES SEGMENTS

MS-LINK works with four combine types, which are declared in
the source module for the assembler or compiler: private,
public, stack, and common. The memory combine type
available in Microsoft's ,Macro Assembler is processed the
same as public combine type. MS-LINK does not automatically
place memory combine type as the highest segments (as
defined in the Intel standard).

MS-LINK arranges these combine types as follows:

private

[B:

Public and Stack

EI

Private segments are loaded separately
and remain separate. They may be
physically (but not logically) con­
tiguous even if the segments have the
same name. Each private segment has
its own canonical frame.

Public and stack segments of the
same name and class name are loaded
contiguously. Offset is from the
beginning of the first segment loaded
through the last segment loaded.
There is only one canonical frame for
all public segments of the same name
and class name. Stack and memory com­
bine types are treated the same as
public. However, the Stack Pointer
is s.t to the last address of the
first stack segment.

MS-LINK TECHNICAL INFORMATION Page 2-2

Common

o 8°
G

Common segments of the same name and
class name are loaded overlapping one
another. There is only one canonical
frame for all common segments of the
same name. The length of the common
area is the length of the longest
segment.

Placing segments in a group in the assembler provides offset
addressing of items from a single canonical frame for all
segments in that group.

DS:DGROUP--->XXXXOH •••••••••• O

Any number of =§A
other segments B
may intervene ------- FOO
between segments c
of a group. Thus, .
the offset of FOO
may be greater than
the size of segments
in the group combined,
but no larger than 64K.

-- relative offset

An operand of
DGROUP:FOO in assembly
language returns the
offset of FOO from the
beginning of the first
segment (segment A
here).

Segments are partitioned by declared class names. The
Linker loads all the segments belonging to the first class
name encountered, then loads all the segments of the next
class name encountered, and so on until all classes have
been loaded.

If your program contains:

A SEGMENT 'FOO'
B SEGMENT 'BAZ'
C SEGMENT 'BAZ'
D SEGMENT' ZOO'
E SEGMENT' FOO'

They will be loaded as:

'FOO'
A
E

'BAZ'
B
C

'ZOO'
D

(

(

(

MS-LINK TECHNICAL INFORMATION Page 2-3

If you are writing
control the order
module and listing
Modules: prompt.
classes in the order

assembly language programs, you' can
of classes in memory by writing a dummy
it first after the MS-LINK Object

The dummy module declares segments into
you want the classes loaded.

Example:

A
A
B
B
C
C
D
0
E
E

WARNING

Do not use this method with
BASIC, COBOL, FORTRAN, or
Pascal programs. Allow the
compiler and the Linker to
perform their tasks in the
normal way.

SEGMENT 'CODE'
ENDS
SEGMENT 'CONST'
ENDS
SEGMENT 'DATA'
ENDS
SEGMENT STACK 'STACK'
ENDS
SEGMENT 'MEMORY'
ENDS

Make sure you declare all classes to be used in your program
in this module. If you do not, you lose absolute control
over the ordering of classes.

Also, if you want memory combine type to be loaded as the
last segments of your program, you can use this method.
Simply add MEMORY between SEGMENT and 'MEMORY' in the E
segment line above. Note, however, that these segments are
loaded last only because you imposed this control on them~
not because of any inherent capability in the Linker or
assembler operations.

KS-LINK TECHNICAL INFORMATION Page 2-4

2.2 SEGMENT ADDRESSES

The 8086 must be able to address all segments in memory.
Any 20-bit number can be addressed. The 8086 represents
these numbers as two l6-bit numbers: for example, HEX F:12.
The F represents a canonical frame address and the 12 is the
offset. The canonical frame address is the largest frame
address or segment address that can contain the segment. An
offset is the segment's location, offset from the beginning
of the canonical frame.

The Linker recognizes a segment by its canonical frame
address and its offset within the frame.

To convert the segmented address F:12 to a 20-bit number,
shift the frame address left 4 bits, and add the offset.
Using the above example:

FO
+ 12

F:12 = 102 (20-bit address)

2.3 BOW MS-LINK ASSIGNS ADDRESSES

To assign addresses to segments, KS-LINK:

1. Orders each segment by segment and class name.

2. On the basis of the alignment and size of each
segment (assuming they are contiguous), the Linker
assigns a frame address and an offset to each
segment. This information is used for resolving
relocatable references. The addresses start at
0:0.

(

(

(

,MS-LINK TECHNICAL INFORMATION Page 2-5

2.4 RELOCATIOR FlXUPS

MS-LINK performs relocation fixups (i.e., resolves) on four
types of references in object modules:

Short

Near Self-Relative

Near Segment-Relative

Long

These references and the Linker's fixups are described in
the next sections.

2.4.1 Short References

Short references are all self-relative. The implication is
that the frame address of the target and source frames are
the same. MS-LINK will generate the fixup error message

Fixup offset exceeds field width

under the following conditions:

1. The target and
different.

source frame addresses are

2. The target is more than 128 bytes before or after
the source frame address.

The resulting value of the short reference must fit into one
signed byte.

2.4.2 Near Self-Relative References

When near self-relative
address of the target
MS-LINK will generate the
following conditions:

1. The target and
different.

references are used, the frame
and source frames are the same.

fixup error message under the

source frame addresses are

MS-LINK TECHNICAL INFORMATION Page 2-6

2. The target is more than 32K before or after the
source frame address.

The resulting value of the near self-relative reference must
fit into one signed word (16 bits).

2.4.3 Rear Segaent-Relative References

Given the target's canonical frame, anotHer frame is
specified (via an ASSUME directive or the: operator in
assembly language; or via a high-level language
convention). The target must be addressaple through the
canonical frame specified. MS-LINK will generate the fixup
error message under the following conditions:

1. The offset of the target within the specified frame
is greater than 64K or less than zero.

2. The beginning of the canonical frame of the target
is not addressable by the specified frame.

The resulting value of a near segment-relative reference
must be an unsigned l6-bit quantity.

2.4.4 Long References

Long references have a target and another frame (specified
by an ASSUME or by a high-level language). The target must
be addressable through the canonical frame specified.
MS-LINK will generate ,the fixup error message under the
following conditions:

1. The offset of the target within the specified frame
is greater than 64K or less than zero.

2. The beginning of the canonical frame of the target
is not addressable by the specified frame.

The resulting value of a long reference must be a frame
address and an offset.

(

(

(

MS-LINK TECHNICAL INFORMATION Page 2-7

2.5 SAMPLE MS-LINK SESSION

The following example illustrates the type of information
that is displayed during an MS-LINK session.

In response to the MS-DOS prompt (», the system responds
with the following messages and prompts. Answers to the
prompts are underlined. Note ·that pathnames are supported
under MS-DOS 2.0. Therefore, you.r answer~ to MS-LINK
prompts can be full pathnames instead of filenames.

Notes:

Microsoft Object Linker V.2.00
(C) Copyright 1982 by Microsoft Inc.

Object Modules (.OBJ): 10 SYSINIT
Run File (IO.EXE):
List File [NUL.MAP): 10 ~
Libraries (.LIB): i

1. By specifying /MAP, you can get both a sorted
alphabetic listing and a sorted address listing of
public symbols.

2. By responding PRN to the List File: prompt, you
can redirect your output to the printer.

3. By specifying the LLINE switch, MS-LINK gives you a
listing of all line numbers for all modules. (Note
that the /LINE switch can generate a large volume
of output.)

4. By pressing <RETURN> in response to the Libraries:
prompt, an automatic library search is performed.

Once MS-LINK locates all libraries, the linker map displays
a list of segments in the order of their appearance within
the l~ad module. The list might look like this:

Start
OOOOOH
009FOH

Stop
009ECH
01166H

Length
09EDH
0777H

Name
CODE
SYSINITSEG

The information in the Start and Stop columns shows the
20-bit hex address of each segment relative to location
zero. Location zero is the beginning of the load module.

MS-LINR TECHNICAL INFORMATION Page 2-8

Because the /MAP switch was used, MS-LINK displays the
public symbols by name and value. For example:

ADDRESS
009F:OOl2
009F:OOOS
009F:OOll
009F:OOOB
009F:OOl3
009F:0009
009F:OOOF
009F:OOOO

ADDRESS
009F:OOOO
009F:OOOS
009F:0009
009F:OOOB
009F:OOOF
009F:OOll
009F:OOl2
009F:OOl3

PUBLICS BY NAME
BUFFERS
CURRENT DOS LOCATION
DEFAULT-DRIVE
DEVICE LIST
FILES -
FINAL DOS LOCATION
MEMORY SIZE
SYSINIT

PUBLICS BY VALUE
SYSINIT
CURRENT DOS LOCATION
FINAL DOS LOCATION
DEVICE LIST
MEMORY-SIZE
DEFAULT DRIVE
BUFFERS-
FILES

The addresses of the public symbols are in the frame:offset.
format, showing the location relative to zero as the
beginning of the load module. In some cases, an entry may
look like this:

780:A2

This entry appears to be the address of a load module that
is almost one megabyte in size. Actually, the area being
referenced is relative to a segment base that is pointing to
a segment below the relative zero beginning of the load
module. This condition produces a pointer that has
effectively gone negative.

When MS-LINK has completed processing, the following message
is displayed:

Program entry point at 0009F:OOOO

(

(

(

MS-LINK. TECHNICAL INFORMATION Page 2-9

2.6 ERROR MESSAGES

All messages, except for the warning messages, cause the
MS-LINK session to end. After you locate and correct a
problem, you must rerun MS-LINK.

Messages appear in the List file and are displayed on the
screen. If you direct the List file to CON, the error
messages ~ill not be displayed on the screen.

MS-LINK error messages are described in Chapter 9 of the
MS-DOS User's Guide.

(

(

(

ADDENDUM to the Microsoft MS-DOS
Macro Assembler Manual

MS-LINK

N~E

References in the Macro
Assembler Manual to the MS=OOS
User's Guide refer to this
addendum:---You may want to
place thfs addendum before the
MS-LINK section in this
manual.

Page 3-2

1.0 DEPINITIORS

Some of the terms used in the MS-LINK section of this manual
are explained below to help you understand how MS-L!NK
works. Generally, if you are linking object modules
compiled from BASIC, Pascal, or a high-level language, you
will not need to know these terms. If you are writing and
compiling programs in assembly language, however, you will
need to understand MS-LINK and the definitions described
below.

In MS-DOS, memory can be divided into segments, ci'asses, and
groups. Figure 1 illustrates these concepts.

.' .

'~:: ',"/ .. ::}\ ~f" •• ·,~.:~'.i::;j;;~ Segment Segment
Segment 3 4 S

~~~-L-_.i: '.~. 

Segment 6 Segment 7 Segment 8 Segment 9 Segment 10 

MemorYH----

S~gment 

11 

Segment 17 Segment 18 

Segment 14 

Segment 19 
Segment 

20 

Segment Segment 
1S 16 

Segment 
2l 22 

shaded area a group (64K bytes addressable) 

Figure 1. How Memory Is Divided 

( 

( 

( 



Example: 

Segment 1 
Segment 2 
Segment 12 

Note that segments 
but mayor may 
Segments 1, 2, and 
the lowest address 
memory). 

Segment Name 

PROG.l 
PROG.2 
PROG.3 

Page 3-3 

Segment Class 
Name 

CODE 
CODE 
DATA 

1, 2, and 12 have different segment names 
not have the same segment class name. 
12 form a ~, with a group address of 
of segment 1 (i.e., the lowest address in 

Each segment has a segment name and a class name. MS-LINK 
loads all segments into memory by class name, from the first 
segment encountered to the last. All segments assigned to 
the same class are loaded into memory contiguously. 

During processing, MS-LINK references segments by their 
addresses in memory (where they are located). MS-LINK does 
this by finding groups of segments. 

A ~ is a collection of segments that fit within a 64K 
byte area of memory. The segments do not need to be 
contiguous to form a group (see Figure 1). The address of 
any group is the lowest address of the segments in that 
group. At link time, MS-LINK analyzes the groups, then 
references the segments by the address in memory of that 
group. A program may consist of one or more groups. 

If you are writing in assembly language, you may assign the 
group and class names in your program. In high-level 
languages (BASIC, COBOL, FORTRAN, Pascal), the naming is 
done automatically by the compiler. 



Page 3-4 

2.0 FILES THAT MS-LINK USES 

MS-LINK performs the following functions: 

Works with one or more input files 

Produces two output files 

May create a temporary disk file 

May be directed to search up to eight library files 

For each type of file, you can give a three-part file 
specification. The format of MS-LINK file specifications is 
the same as that of a disk file: 

[d:)<filename>[<.ext» 

where: d: is the drive designation. Permissible drive 
designations for MS-LINK are A: through 0:. The 
colon is always required as part of the drive 
designation. 

filename is any leqal filename of one to eight 
characters. 

.ext is a one- to three-character extension to the 
filename. The period is always required as part of 
the extension. 

2.1 Input File Extensions 

If no filename extensions are given in the input (object) 
file specifications, MS-LINK will recognize the following 
extensions by default: 

.OBJ Object 

.LIB Library 

2.2 Output File Extensions 

MS-LINK appends the following default extensions to the 
output (run and ~ist) files: 

.EXE Run (may not be overridden) 

.MAP List (may be overridden) 

( 

( 



Page 3-5 

2.3 VM.THP (Temporary) File 

MS-LINK us~s available memory for the link session. If the 
files to be linked create an output file that exceeds 
available memory, MS-LINK will create a temporary file, name 
it VM.TMP, and put it on the disk in the default drive. If 
MS-LINK creates VM.TMP, it will display the message: 

VM.TMP has been created. 
Do not change diskette in drive, <d:> 

Once this message has been displayed, you must not remove 
the nisk from the default drive until the link session ends. 
If the disk is removed, the operation of MS-LINK will be 
unpredictable~ and MS-LINK might display the error message: 

Unexpected end of file on VM.TMP 

The contents of VM.TMP are written to the file named 
following the Run File: prompt. VM.TMP is a working file 
only and is deleted at the end of the linking session. 

WARNING 

Do not use VM.TMP as a 
filename for any file. If you 
have a file named VM.TMP on 
the default drive and MS-LINK 
needs to create a VM.TMP file, 
MS-LINK will delete the VM.TMP 
already on disk and create a 
new VM.TMP. Thus, the 
contents of the previous 
VM.TMP file will be lost. 



3.0 BOW TO START MS-LINK 

MS-LINK requires two types of input: a command 
MS-LINK and responses to command prompts. In 
seven switches control MS-L.INK features. Usually, 
type all the commands t.o. MS-LINK on the terminal 
As an option, answers to the command prompts 
switches may be contained in a response file. 
characters can be used to assist you while giving 
to MS-LINK. 

Page 3-6 

to start 
addition, 
you will 
keyboard. 

and any 
Command 

commands 

MS-LINK can be started in any of three ways. The first 
method is to type the comma~ds in response to individual 
prompts. In the second method, you type all commands and 
switches on the line used to start MS-LINK. To start 
MS-LINK by the third method, you must create a response file 
that .contains all the necessary commands, and then tell 
MS-LINK where that file is when you start MS-LINK. 

summary of Methods·to Start MS-LINK 

===============================z:=========:==::=:=: 
Method 1 LINK 

Method 2 LINK <filenames>(/switches) 

Method 3 LINK @<filespec> 

==================================================== 



Page 3-7 

3.1 Method 1: Pra.pts 

To start MS-LINK with Method 1, type: 

LINK 

MS-LINK will be loaded into memory. MS-LINK will then 
display four text prompts that appear one at a time. You 
answer the prompts to command MS-LINK to perform specific 
tasks. 

At the end of each line, you may type one or more switches, 
preceded by the switch character, a forward slash (I). 

The command prompts are summarized below. 

PROMPT 

Object Modules (.OBJ1: 

Run File f.EXE]: 

List File (NUL.MAP1: 

Libraries (.LIB]: 

RESPONSES 

List .OBJ files to be 
linked. They must be 
separated by blank spaces 
or plus signs (+). If a 
plus sign is the last 
character typed, the 
prompt will reappear. 
There is no default: a 
response is required. 

Give filename for 
executable object code. 
The default is 
first-object-filename.EXE. 
(You cannot change the 
output extension.) 

Give filename for listing. 
The default is NUL.MAP. 

List filenames to be 
searched, separated by 
blank spaces or plus signs 
(+). If a plus sign is 
the last character typed, 
the prompt will reappear. 
The default is to search 
for default libraries in 
the object modules. 
(Extensions will be 
changed to .LIB.) 



Page 3-8 

3.2 Method 2: Ca..and Line 

To start MS-LINK using Method 2, type all commands on one 
line. The entries following LINK are responses to the 
command prompts. The entry fields for the different prompts 
must be sepa~ated by commas;" Use the following syntax: 

LINK <object-list>,<runfile>,<listfile>,<lib-list>[/switchl 

where: object-list is a list of object 
separateo by plus signs. 

modules, 

runfile is the name of the" file that receives 
the executable output. 

listfile is the name of the file th~t receives 
the listing. 

lib-list is a list of library modules to be 
searched. 

Iswitch refers to optional switches, which may 
be placed following any of the response entries 
(just before any of the commas or after the 
<lib-list>, as shown). 

To select the default for a field, simply type a second 
comma with no spaces between the two commas. 

Example: 

LINK 
FUN+TEXT+TABLE+CARE/P/M"FUNLIST,COBLIB.LIB 

This command causes MS-LINK to be loaded: then the object 
modules FUN.OBJ, TEXT.OBJ, TABLE.OBJ, and CARE.OBJ are 
loaded. MS-LINK then pauses (as a result of using the Ip 
switch). MS-LINK links the object modules when you press 
any key, and produces a global symbol map (the 1M switch). 
MS-LINK then defaults to the FUN.EXE run file: creates a 
list file named FUNLIST.MAP: and searches the library file 
COBLIB.LIB. 

( 

( 



Page 3-9 

3.3 Method 3: Response rile 

To start MS-LINK with Method 3, type: 

LINK @<fi1espec> 

where: filespec is the name of a response file. A response 
file contains answers to the MS-LINK prompts (shown 
in Method 1) and may also contain any of the 
switches. When naming a response file, use of the 
filename extension is optional. Method 3 permits 
the command that starts MS-LINK to be entered from 
the keyboard or within a batch file, without 
requiring you to make any further responses. 

To use this option, you must create a response file 
containing several lines of text, each of which is the 
response to an MS-LINK prompt. The responses must be in the 
same order as the MS-LINK prompts discussed in Method 1. If 
desired, a long response to the Object Modules: or 
Libraries: prompt may be typed on several lines by using a 
plus sign (+) to continue the same response onto the next 
line. 

Switches and command characters can be used in the response 
file the same way as they are used for responses typed on 
the terminal keyboard. 

When the MS-LINK session begins, each prompt will be 
displayed in order with the responses from the response 
file. If the response file does not contain answers for all 
the prompts (in the.form of filenames, the semicolon command 
character, or carriage returns), MS-LINK will display the 
prompt which does not have a response, then wait for you to 
type a legal response. When a legal response has been 
typed, MS-LINK continues the link session. 



Example: 

FUN TEXT TABLE CARE 
/PAUSE/MAP 
FUNLIST 
COBLIB.LIB 

Paqe 3-10 

This response file tells MS-LINK to load the four object 
modules named FUN, TEXT, TABLE, and CARE. MS-LINK pause~ to 
permit you to swap disks before producinq a public symbol 
map (see discussion under /PAUSE in the "Switches" section 
before usinq this feature). When you press any key, the 
output files will be named FUN.EXE and FUNLIST.MAP. MS-LINK 
will then search the library file COBLIB.LIB, and will use 
default settinqs for the switches. 

( 



Page 3-11 

4 • 0 COMMAND CBARAC"l'ERS 

MS-LINK recognizes three command characters. 

Plus sign Use the plus sign (+) to separate 
entries and to extend the current line 
in response to the Object Modules: and 
Libraries: prompts. (A blank space 
may -be used to separate object 
modules.) To type a large number of 
responses (each may be very long), type 
a plus sign/<RETURN> at the end of the 
line to extend it. If the plus 
sign/<RETURN> is the last entry 
following these two prompts, MS-LINK 
will prompt you for more module names. 
When the Object Modules: or Libraries: 
prompt appears a9ain, continue to type 
responses. When all the modules to be 
link~d and libraries to be searched 
have been listed, be sure the response 
line ends with a module name and a 
<RETURN> and riot a plus sign/<RETURN>. 

Example: 

Object Modules [.08J): FUN TEXT TABLE 
CARE+<RETURN> 
Object Modules (.08J): 
FOO+FLIPFLOP+JUNQUE+<RETURN> 
Object Modules (.OBJ): CORSAIR<RETURN> 



Semicolon 

Page 3-12 

To select default responses to the 
remaining prompts, use a single semicolon 
(:) followed immediately by a carriage 
return at any time after the first prompt 
(Run File:). This feature saves time and 
overrides the need to press a series of 
<RETURN> keys. 

NOTE 

Once the semicolon has been entered 
(by pressing the <RETURN> key), you 
can no longer respond to any of the 
prompts for that link session. 
Therefore, do not use the semicolon 
to skip some prompts. To skip 
prompts, use the <RETURN> key. 

Example: 

Object Modules [.OBJ1: FUN TEXT TABLE 
CARE<RETURN> 
Run Module [FUN.EXE): ;<RETURN> 

No other prompts will appear, and MS-LINK 
will use the default values (including 
FUN.MAP for the list file). 

<CONTROL-C> Use the <CONTROL-C> key to abort the link 
session at any time. If you type an 
erroneous response, such as the wrong 
filename or an incorrectly spelled 
filename, you must press <CONTROL-C> to 
exit MS-LINK, then you must restart 
MS-LINK. If the error has been -typed but 
you have not pressed the <RETURN> key, you 
may delete the erroneous characters with 
the backspace key, but for that line only. 

( 

( 



Page 3-13 

5.0 MS-LINK SWITCHES 

The seven MS-LINK switches control various MS-LINK 
functions. Switches must be typed at the end of a prompt 
response, regardless of which method is used to start 
MS-LINK. Switches may be grouped at the end of any 
response, or may be scattered at the end of several. If 
more than one switch is typed at the end of a response, each 
switch must be preceded by a forward sJash (I). 

All switches may be abbreviated. 
that an abbreviation must be 
letter through the last typed: 
are allowed. For example: 

The only 
sequential 

no gaps or 

Legal 

10 
los 
10SA 
10SALLOCA 

IDSALLOGATE 

Illegal 

IDSL 
10AL 
IDLC 
IDSALLOCT 

restriction is 
from the first 
transpositions 

Using the IDSALLOCATE switch tells MS-LINK to 
load all data at the high end of the Data 
Segment. Otherwise, MS-LINK loads all data at 
the low end of the Data Segment. At runtime, 
the OS pointer is set to the lowest possible 
address to allow the entire OS segment to be 
used. Use of the /OSALLOCATE switch in 
combination with the default load low (that 
is, the IHIGH switch is not used) permits the 
user application to dynamically allocate any 
available memory below the area specifically 
allocated within DGroup, yet to remain 
addressable by the same OS pointer. This 
dynamic allocation is needed for Pascal and 
FORTRAN programs. 

NOTE 

Your application program may 
dynamically allocate up to 64K bytes 
(or the actual amount of memory 
available) less the amount allocated 
within DGroup. 



/HIGH 

Page 3-14 

Use of the /HIGH switch causes MS-LINK to 
place the run file as high as possible in 
memory. Otherwise, MS-LINK places the run 
file as low as possible. 

IMPORTANT 

Do not use the /HIGH switch with 
Pascal or FORTRAN programs. 

/LINENUMBERS 

/MAP 

The /LINENUMBERS switch tells MS-LINK to 
include in the list file the line numbers and 
addresses of the source statements in the 
input modules. Otherwise, line numbers are 
not included in the list file. 

NOTE 

Some compilers produce object modules 
that do not contain line number 
information. In these cases, of 
course, MS-LINK cannot include line 
numbers. 

/MAP directs MS-LINK to list all public 
(global) symbols defined in the input modules. 
If /MAP is not given, MS-LINK will list only 
errors (including undefined globals). 

The symbols are listed alphabetically at the 
end of the list file. For each symbol, 
MS-LINK lists its value and its segment:offset 
location in the run file. 

( 

( 



/PAtTSE 

Page 3-15 

The /PAUSE ~witch causes MS-LINK to pause in the 
link seSSlon when the switch is encountered. 
Normally, MS-LINK performs the linking session from 
beginning to end without stopping. This switch 
allows the user to swap disks before MS-LINK 
outputs the run (.EXE) file. 

When MS-LINK encounters the /PAUSE switch, it 
displays the message: 

About to generate .EXE file 
Change disks <hit any key> 

MS-LINK resumes processing when you press any key. 

CAUTION 

Do not remove the disk which 
will receive the list file, or 
the disk used for the VM.TMP 
file, if one has been created. 

/STACK: <number> 
number represents any positive numeric value (in 
hexadecimal radix) up to 65536 bytes. If a value 
from 1 to 511 is typed, MS-LINK will use 512. If 
the /STACK switch is not used for a link session, 
MS-LINK will calculate . the necessary stack size 
automatically. 

All compilers and assemblers should provide 
information in the object modules that allow the 
linker to compute the required stack size. 

At least one object (input) module must contain a 
stack allocation statement. If not, MS-LINK will 
display the following error message: 

WARNING: NO STACK STATEMENT 



INO 

Page 3-16 

INO is short for NODEFAULTLIBRARYSEARCH. This 
switch tells MS-LINK to not search the default 
(product) libraries in the object modules. For 
example, if· you are linking object modules in 
Pascal, specifying the INO switch tells MS-LINK to 
not automatically search the library named 
PASCAL. LIB to resolve external references. 

( 

( 



Page 3-17 

6.0 ERROR MESSAGES 

All errors cause the link session to abort. After the cause 
has been found and corrected, MS-LINK must be rerun. The 
following error messages are displayed by MS-LINK: 

ATTEMPT TO ACCESS DATA OUTSIDE OF SEGMENT BOUNDS, POSSIBLY 
BAD OBJECT MODULE 

There is probably a bad object file. 

BAD NUMERIC PARAMETER 
Numeric value is not in digits. 

CANNOT OPEN TEMPORARY FILE 
MS-LINK is unable to create the file VM.TMP because 
the disk directory is full. Insert a new disk. Do 
not remove the disk that will receive the List.MAP 
file. 

ERROR: DUP RECORD TOO COMPLEX 

ERROR: 

The DUP record in the assembly language module is 
too complex. Simplify the DUP record in your 
assembly language program. 

FIXUP OFFSET EXCEEDS FIELD WIDTH 
An assembly language instruction refers 
address with a short instruction instead of 
instruction. Edit your assembly language 
and reassemble. 

to an 
a long 
source 

INPUT FILE READ ERROR 
There is probably a bad object file. 

INVALID OBJECT MODULE 
An object module(s) 
incomplete (as when 
middle). 

SYMBOL DEFINED MORE THAN ONCE 

is incorrectly formed or 
assembly is stopped in the 

MS-LINK found two or more modules that define a 
single symbol name. 

PROGRAM SIZE OR NUMBER OF SEGMENTS EXCEEDS CAPACITY OF 
LINKER 

The total size may not exceed 384K bytes, and the 
number of segments may not exceed 255. 



Pa9~ 3-18 

REQUESTED STACK SIZE EXCEEDS 64K 
Specify a size greater than or equa~ to 64K bytes 
with the /STACK switch. 

SEGMENT SIZE EXCEEDS 64K 
64K pytes is 'the addressing system limit. 

SYMBOL TABLE CAPACITY EXCEEDED 
Very many and/or very long names were typed, 
exceeding the limit of approximately 25K bytes. 

TOO MANY EXTERNAL SYMBOLS IN ONE MODULE 
The limit is 256 external symbols·per module. 

TOO MANY GROUPS 
The limit is 10 groups. 

TOO MANY LIBRARIES SPECIFIED 
The limit is 8 libraries. 

TOO MANY PUBLIC SYMBOLS 
The limit is 1024 public symbols. 

TOO MANY SEGMENTS OR CLASSES 
The limit is 256 (segments and classes taken 
together). 

UNRESOLVED EXTERNALS: <list> 
The external symbols listed have no defining module 
among the modules or library files specified. 

VM READ ERROR 
This is a disk error: it is not caused by MS-LINK. 

WARNING: NO STACK SEGMENT 
None of the object modules 
statement allocating stack 
/STACK switch was specified. 

specified contains a 
space, although the 

WARNING: SEGMENT OF ABSOLUTE OR UNKNOWN TYPE 
There is a bad object module, or an attempt has 
been made to link modules 'that MS-LINK cannot 
handle (e.g., an absolute object module). 

( 

( 

( 



Page 3-19 

WRITE ERROR IN TMP FILE 
No more disk space remains to expand the VM.TMP 
file. 

WRTTE ERROR ON RUN FILE 
Usually, there is not enough disk space for the run 
file. 



( 

( 

( 



INDBX 

Alignment • 1-5 

Canonical frame address 
Class •••• . • • • • • 

2-4 
1-4 

• • 2-2 Class names • • • r • 

Combine type • • • • • • 

Error messages • 
Executable image • 

Fixup error 

Group 

• • • 1-5 

• 2-9 
• • 1-2 to 1-3 

• 2-5 

• 1-4 

How MS-LINK combines and arranges segments 2-1 

Library files •••••• 1-2 
List file •••• • 1-2 
Long addresses • • • • • • • • 1-3 
Long references • • 2-6 

Near segment-relative references 2-6 
Near self-relative references 2-5 

Offset • • • • • • • 
Offset addressing 
Overviews 

MS-LINK operation 

• 2-4 
2-2 

• 1-2 

Pathnames • • • • • • • • • • 2-7 
Public symbols • • • • 2-8 

Relocation fixups 
long • • • • • • • 
near segment-relative 
near self-relative • 
short 

Run file ••• 

Sample MS-LINK session 
Segment 

• 2-5 
• 2-5 
• 2-5 

2-5 
2-5 
1-1 to 1-3 

• • 2-7. 
• 1-4 

Segment addresses 
Short references • 

• • • • • • 2-4 
• • • • • • 2-5 

VM.TMP • • . • • • • 1-2 

Page Index-l 





Microsoft® Lm 
Library Manager 

for 8086 and 8088 Microprocessors 

Microsoft Corporation 



( 



System. Requireaents 

The Microsoft Linker Utility requires: 

50K bytes of memory minimum: 
40K bytes for code and data 
10K bytes for run space 

Disk drive(s): 
1 disk drive if and only if output is sent to the 
same physical disk from which the inpu~ was taken. 
MS-LINK does not allow time to swap disks during 
operation on a one-drive configuration. Therefore, 
two disk drives is a more practical configuration. 



! 
\ 

( 

( 



Contents 

Chapter 1 

1.1 
1.2 

Chapter 2 

2.1 
2.1.1 
2.1. 2 
2.1.3 
2.2 
2.3 

Chapter 3 

Index 

INTRODUCTION 

Features of MS-LIB 1-1 
Overview of MS-LIB Operation 

RUNNING MS-LIB 

How to Start MS-LIB 2-1 
Method 1: Prompts 2-2 
Method 2: Command Line 2-3 
Method 3: Response File 2-5 

Command Prompts 2-7 
Command Characters 2-9 

+ - append 2-9 
delete 2-9 

* - extract 2-10 

1-2 

- default remaining promtts 2-10 
& - continuation 2-11 
CONTROL-C - program abort 2-12 

ERROR MESSAGES 



( 

( 



CIIAPl'ER 1 

INTRODUCTION 

1.1 FEATURES OF MS-LIB 

Microsoft LIB is a library manager. With MS-LIB, you ca~: 

Create and modify library files that are used with 
Microsoft's MS-LINK linker utility 

Add object files to a library 

Delete modules from a library 

Extract modules from a library and place the 
extracted modules into separate object files 

MS-LIB can create either general or special libraries, for a 
variety of programs or for specific programs. With MS-LIB 
you can create a library, or you can create a library for 
one program only. The result is fast linking and more 
efficient execution for a language compiler or for one 
program. 

You can modify individual modules within a library by 
extracting the modules, making changes, then adding the 
modules to the library again. You can also replace an 
existing module with a different module or with a new 
version of an existing module. 

The command scanner in MS-LIB is also used in Microsoft 
MS-LINK, MS-Pascal, MS-FORTRAN, and other 16-bit Microsoft 
products. If you have used any of these products, using 
MS-LIB should be familiar to you. Command syntax is 
straightforward, and MS-LIB prompts you for commands that 
you have not supplied. 



INTRODUCTION Page 1-2 

1.2 OVERVIEW OF MS-LIB OPBRATION 

MS-LIB performs five library manager functions: 

Deletes modules 

Extracts a module and places it in a separate 
object file 

Appends an object file as a module of a library 

Replaces a module in the library file with a new 
module 

Creates a library file 

During each library session, MS-LIB deletes or extracts 
modules, then appends new ones to.the library file. MS-LIB 
reads each module into memory, checks it for consistency, 
and writes it back to the file. If you delete a module, 
MS-LIB reads that module into memory but does not write it 
back to the file. When MS-LIB writes back the next module 
to be retained, it places that module at the end of the last 
module written. This procedure effectively "closes up" the 
disk space to keep the library file from growing too large. 

When MS-LIB has read the library file, it appends any new 
modules to the end of the file. Finally, MS-LIB creates the 
index, which MS-LINK uses to find modules and symbols in the 
library file. MS-LIB will output a cross-reference listing 
of the PUBLIC symbols in the library, if you request such a 
listing. 

Example: 

LIBx PASCAL+HEAP-HEAP: 

This command first deletes the library module HEAP from the 
library file, then adds the file HEAP.OBJ as the last module 
in the librpry. Note that the replace function is simply 
the delete-append functions in succession. Also note that 
you can specify delete, append, or extract functions in any 
order. This order of execution prevents confusion in MS-LIB 
when a new version of a module replaces a version in the 
library file. 

The following figure illustrates the MS-LIB operation. 

( , 

( 

( 



INTRODUCTION 

Consistency 
check only 

De le te 
Module C; 
Module D 
written to 
space of 
Module C 

Append 
object file 
E.OBJ as new 
Module E at 
end of 
library file 

Page 1-3 

MS-LIB B C 

-----------(-)----------~ 

MS-LIB B 

MS-LIB B D 

~--------------/+\-------------



INTRODUCTION 

Extract . 
Module E: 
place in a 
separa te 
object file: 
return to 
library 

Page 1-4 

----------------(*)--------------~ 

MS-LIB B D 

~ __ .~_B_J __ ~~(*)--------------------------------~ 

Consistency 
check, then 
output a 
cross­
reference 
listing of 
PUBLIC 
symbols 

~, ~ ,. ~ , + 
MS-LIB A 

.. ~ 

I 

Figure 1. MS-LIB Operation 

B D E 
.. ~ ~~ ~~ 

... CROSSLST ... 

( 

( 

( 



CHAPTER 2 

RUNNING MS-LIB 

Running MS-LIB requires two types of commands: a command to 
start MS-LIB and answers to command prompts. Usually you 
will type all the commands to MS-LIB on a command line or in 
response to ~S-LIB prompts. As an option, answers to the 
command prompts may be contained in a respons~ file. 
Command characte~s can be used to assist you while giving 
commands to MS-LIB. 

2.1 HOW TO START MS-LIB 

There are three ways to start MS-LIB. With the first 
method,· you typ~ the commands as answers to individual 
prompts. By the second method, you type all commands on the 
line used to start MS-LIB. As a third option, you can 
create a response file that contains all the necessary 
commands. 

Summary of Methods to Start MS-LIB 

================================================~~==== 

Method LIB 

Method 2 LIB <library><operations>,<li~ting' 

Method 3 LIB @<filespec> 

===========================~==~===~=~============~===: 



RUNNING MS-LIB Page 2-2 

2.1.1 Method 1: P~.pts 

To start MS-LIB with method 1, type: 

LIB 

MS-LIB will be loaded into memory. MS-LIB will then display 
three text prompts that appear one at a time. You answer 
the prompts, commanding MS-LIB to perform specific tasks. 

The command prompts are summarized here and described more 
fully in the Section 2.2, "Command Prompts." 

Summary of Command Prompts 

PROMPT 

Library File: 

Operation: 

List file: 

RESPONSES 

List filename of library to be 
manipulated. (The default is the 
filename extension .LIB.) 

List command character(s) followed by 
module name(s) or object filename(s). 
(The default is no changes. The 
default object filename extension is 
.OBJ. ) 

List filename 
listing file. 
Le., no file.) 

NOTE 

for a 
(The 

The distinction between an 
object file and a module (or 
object module) is that the 
file possesses a drive 
designation (even if it is the 
default drive) and a filename 
extension. Object modules 
possess neither of these. 

cross-reference 
default is NUL: 

( 

( 

( 



RUNNING MS-LIB Page 2-3 

2.1.2 Method 2: Comaand Line 

Type: 

LIB <library><operations>,<listing> 

The entries following LIB are responses to the 
command prompts. The <library> and <operations> 
fields and all operations entries must be separated 
by one of the command characters plus, minus, or 
aster isk (+, -, or *). I f a cross-reference 
listing is wanted, the name of the file must be 
separated from the last operations entry by a 
comma. 

where: <library> is the name of a library file. MS-LIB 
assumes that the filename extension is .OBJ, which 
you may override by specifying a different 
extension. If the filename given for the <library> 
field does not exist, MS-LIB will prompt you: 

Library file does not exist. Create? 

Type Yes to create a new library file. Type No to 
abort the library session. 

<operations> is a command to delete a module, 
append an object file as a modul'e, or extract a 
module as an object file from the library file. 
Use the three command characters plus, minus, and 
asterisk to direct MS-LIB to append, delete, or 
extract modules and object files. 

<listing> is the name of the file you want to 
receive the cross-reference listing of PUBLIC 
symbols in the modules in the library. The list is 
compiled after all module manipulation has taken 
place. 

If you type a library filename followed immediately 
by a semicolon, MS-LIB will read through the 
library file and perform a consistency check. No 
changes will be made to the modules in the library 
file. 

If you type a library filename followed immediately 
by a comma and a listing filename, MS-LIB will 
perform its consistency check of the library file, 
then produce the cross-reference listing file. 

Examples: 

LIB PASCAL-HEAP+HEAP7 



RUNNING MS-LIB Page 2-4 

This example causes MS-LIB to delete the module 
HEAP from the library file PASCAL.LIB, then append 
the object file HEAP.OBJ as the last module of 
PASCAL. LIB (the module will be named HEAP). The 
MS-LIB semicolon command character indicates that 
MS-LIB should use the default responses for the 
remaining prompts. Refer to Section 2.3, "Command 
Characters," for more information. 

LIB PASCAL 

This example causes MS-LIB to perform a consistency 
check of the library file PASCAL. LIB. No other 
action is performed. 

LIB PASCALiPASCROSS.PUB 

This example causes MS-LIB to perform a consistency 
check of the library file PASCAL.LIB, then output a 
cross-reference listing file named PASCROSS.PUB. 

If you have many operations to perform during a library 
seSSIon, use the ampersand (&) command character to extend 
the line so that you can type additional object filenames 
and module names. Be sure to always include one of the 
command characters for operations (+, -, *) before the name 
of each module or object filename. 



RUNNING MS-LIB Page 2-5 

2.1.3 Method 3: Response File 

Type: 

LIB @<filespec> 

where: <filespec> is the name of a response file. A 
response file contains answers to the MS-LIB 
prompts. Method 3 permits you to conduct the 
MS-LIB session without user responses to the MS~LIB 
prompts. 

IMPORTANT 

Before usina method 1 to start MS-LIB, you 
must first create a response file. 

A response file has one text line for each prompt. 
Responses must appear in the same order as the 
command prompts appear. 

Use command characters in 
same way you would for 
keyboard. 

the response file the 
responses typed on the 

When the library session begins, each prompt will 
be displayed with the responses from the response 
file. If the response file does not contain 
answers for all the prompts, MS-LIB will us~ the 
default responses. (No changes will be made to the 
modules currently in the library file, ana no 
cross~reference listing file will be created.> 

If you type a iibrary filename followed immediately 
by a semicolon, MS-LIB will read through the 
library file and perform a consistency check. No 
changes will be made to the modules in the library 
file. 

If you type a library filename, a carriage return, 
a comma, and then a list filename, MS-LIB will 
perform its consistency check of the library file, 
then produce the cross-reference listing file. 



RUNNING MS-LIB 

Example: 

PASCAL 
+CURSOR+HEAP-HEAP*FOIBLES 
CROSSLST 

Page 2-6 

This response file causes MS-LIB to delete the 
module HEAP from the PASCAL.LIB library file; 
extract the module FOIBLES and place it in an 
object file named FOIBLES.OBJ1 then append the 
object files CURSOR.OBJ and HEAP.OBJ as the last 
two modules in the library. Then, MS-LIB will 
create a cross-reference file named CROSSLST. 

( 

( 

( 



RUNNING HS-LIB Page 2-7 

2.2 COMMAND PROMPTS 

You command HS-LIB by typing responses to three text 
prompts. After you have typed your response to the current 
prompt, the next appears. When the last prompt has been 
~nswered, MS-LIB performs its library management functions 
without· further command. You will see the operating system 
prompt when ·MS-LIB has finished the library session 
successfully. If the library session is unsuccessful, 
MS-LIB will display the appropriate error message. 

MS-LIB prompts you for the name of the library file, the 
operation(s) you want to perform, and the name you want to 
give to a cross-reference listing file (if any) ~ 

Command Prompts 

Library File: 
~ipe the name of the library file that you want to 
manipulate. HS-LIB assumes that the filenam~ 
extension is .LIB. You can override this 
assumption by giving a filename extension when you 
type the library filename. Because MS-LIB can 
manage only one library file at a time, only one 
filename is allowed in response to this prompt. 
Additional responses, except the semicolon command 
character, are ignored. 

If you type a library filename and follow it 
immediately with a semicolon command character, 
MS-LIB will perform a consistency check only, then 
return to the operating system. Any errors in the 
file will be displayed. 

If the filename you type does not exist, HS-LIB 
will display.the prompt: 

Library file does not exist. Create? 

You must type either Yes or No. 



RUNNING MS-LIB Page 2-8 

Operation: 

List 

Type one of the three command characters for 
manipulating modules (+,' -, *)i followed 
immediately (no space) by the module name or the 
object filename. The plus sign appends an object 
file as the last module in the library file (see 
further discussion under the description of plus 
sign in the next section). The minus sign deletes 
a module from the library file. The asterisk 
extracts a module from the library and places it in 
a separate object file, with the filename taken 
from the module name and a filename extension .OBJ. 

When you have a large number of modules to 
manipulate (more than can be typed on one lin~), 
type an ampersand (&) as the last character, on th~ 
line. MS-LIB will repeat the Operation: prompt, 
which permits you to type additional module names 
and object filenames. 

MS-LIB allows you to perform operations on modules 
and object files in any order you want.' 

More information about modules is given in the 
description of each command character. 

file: 
,--- 'If you want a PUBLIC symbols cross-reference list 

for the modules in the library file, type the name 
of a file in which you want MS-LIB to place the 
cross-reference listing. If you do not type a 
filename, no cross-reference listing is generated. 

The response to the List file: prompt is a file 
specification. You can specify a drive (or device) 
designation and a filename extension with the 
filename. The list file is not given a default 
filename extension. If you want the file to have a 
filename extension, you must specify it when typing 
the filename. 

The cross-reference listing file contains two 
lists. The first list is an alphabetical listing 
of all' PUBLIC symbols. Each symbol name is 
followed by the name of its module. The second 
list is an alphabetical list of the modules in the 
library. Under each module name is an alphabetical 
listing of the PUBLIC symbols in that module. 

( 

( 

( 



RUNNING MS-LIB Page 2-9 

2. 3 COMMAND CHARACTERS 

MS-LIB provides six command characters. Three of the 
command characters are required in response to the 
Operation: prompt~ The other three command characters 
provide you with helpful commands to MS-LIB. 

Plus sign Use the plus· sign (+), followed by an 
object filename, to append the object 
file as the last module in the library 
named in response to the Library File: 
prompt. When MS-LIB sees the plus 
sign, it assumes that the filename 
extension is .~BJ. You may override 
this assumption by specifying a 
different filename extension. 

MS-LIB strips the drive designation and 
the ~xtension from the object file 
specification, leaving only the 
filename. For example, if the objl.'ct 
file to be appended as a module to a 
library is 

B:CURSOR.OBJ 

a response to the Operation: prompt of 

+B:CURSOR.OBJ 

will cause MS-LIB to stlip off thp 
B: and the .OBJ, leaving only CURSOR. 
This becomes a module name~ CURSOR in 
the library. 

Minus sign Use the minus sign, followe~ hy ~ 
module name, to delete a module from 
the library file. MS-LIB then "closes 
up" the disk space left empt·y by the 
deletion. This cleanup action keeps 
the library file from growing larger 
than necessary. Remember that new 
modules, even replacement modules, are 
added to the end of the file, not put 
into space vacated by deleting modules. 



RUNNING MS-LIB Page 2-10 

Asterisk Use the asterisk, followed by a module 
name, to extract the module from the 
library file and place it into a 
separate object file. The module will 
still exist in the library. (The 
extraction process copies the module to 
a separate object file.) The module 
name is used as the filename. MS-LIB 
adds the default drive designation and 
the filename extension .OBJ. For 
example, if the module to be extracted 
is 

Semicolon 

CURSOR 

and the current default disk drive is 
A:, a reponse to the Operation: prompt 
of 

*CURSOR 

causes MS-LIB to extract the module 
named CURSOR from the library file and 
make it an object file with· the file 
specification of: 

A:CURSOR.OBJ 

The drive designation and filename 
extension cannot be overridden. You 
can, however, rename the file, giving a 
new filename extension: and/or copy 
the file to a new disk drive, giving a 
new filename and/or filename 
extension. 

Use a single semicolon (:), followed 
immediately by a carriage return at ~ny 
time after responding to the f.irst 
prompt (i.e., from Library File: on),· 
to select default responses to the 
remalnlng prompts. This feature saves 
time and overrides the need to answer 
additional prompts. 



RUNNING MS-LIB 

Ampersand 

N~E 

Once the semicolon has been 
typed, you can no longer 
respond to any of the prompts 
for that library session. 
Therefore, do not URe the 
semicolon to· skip over prompts. 
To skip prompts, use carriage 
return. 

Example: 

Library file: FUN 
Operation: +CURSOR; 

Page 2-11 

The remaining prompt will not appear, 
and MS-LIB will use the default value 
(no cross-reference file). 

Use the ampersand to extend the current 
line. This command character is only 
used in response to the Operation: 
prompt. The number of modules you can 
append is limited only by disk space. 
The number of modules you can replace 
or extract is also limited only by disk 
space. The number of modules you can 
delete is limited by the number of 
modules in the library file. 

The line length for a response to any 
prompt is limited to the line length of 
your system. For a large number of 
responses to the Operation: prompt, 
place an ampersand at the end of. a 
line. MS-LIB will display the 
Operation: prompt again, and then you 
can type more responses. For example: 

Library File: FUN 
Operation: +CURSOR-HEAP+HEAP*FOIBLES& 
Operation: *INIT+ASSUME+RIDE; 

MS-LIB will delete the module HEAP: 
extract the modules FOIBLES and INIT 
(creating two files, FOIBLES.OBJ and 
INIT.OBJ): then append the object 
files CURSOR, HEAP, ASSUME, and RIDE. 
Note that MS-LIB allows you to type 
your Operation: reponses in any order. 
You may use the ampersand character as 



RUNNING MS-LIB 

CONTROL-C 

Page 2-12 

many times as needed. 

Use <CONTROL-C> to abort the library 
session at any time. If you type an 
incorrect respon~e, such as the wrong 
filename or ~odule name, or an 
incorrectly spelled filename or module 
name, you must press <CONTROL-C> to 
exit MS-LIB1 then you must restart 
MS-LIB. If the error has been typed 
and you have not pressed the <RETURN> 
key, you may delete the erroneous 
characters for that line only. 



RUNNING MS-LIB Page 2-13 

Summary of Command Cha,racters 

Character 

+ 

* 

CONTROL-C 

Action 

Appends an object file as the last 
module 

Deletes a module from the library 

Extracts a module and places in an 
object file 

Use default responses 
prompts 

to 

Extends current physical line: 
command prompt 

Aborts library session 

remaining 

repeats 



( 

( 

( 



CHAPTER 3 

ERROR MESSAGES 

The following are MS-LIB error messages: 

<symbol> is a multiply defined PUBLIC. Proceed? 
Cause: Two modules define the same public symbol. 

You are asked to confirm the removal of the 
definition of the old symbol. 

Cure: Remove the PUBLIC declaration from one of 
the object modules and recompile or reassemble. 
If you respond No, the library will be left in 
an indeterminate state. 

Allocate error on VM.TMP 
Cause: Out of disk space 

Cannot create extract file 
Cause: No room in directory for extract file 

Cannot create list file 
Cause: No room in directory for library file 

Cannot nest response file 
Cause: @filespec in response (or indirect) file 

MS-LIB cannot open VM.TMP 
Cause: There is no room for VM.TMP in disk 

directory 

Cannot write library file 
Cause: Out of disk space 

Close error on extract file 
Cause: Out of disk space 

Error: An internal error has occurred 
Contact Microsoft Corporation 

Fatal Error: Cannot open input file 
Cause: You mistyped an object filename 



ERROR MESSAGES Page 3-2 

Fatal Error: Module is not in the library 
Cause: You tried to delete a module that is not in 

the library 

Input file read error 
Cause: Bad object module or faulty disk 

Invalid object module/library 
,Cause: Bad object module and/or library 

Library Disk is full 
Cause: No more room on disk 

Listing file write error 
Cause: Out of disk space 

No library file specified 
Cause: No response to Library File: prompt 

Read error on VM.TMP 
Cause: Disk not ready for read 

Symbol table capacity exceeded 
Cause: Too many public symbols (about 30R chars in 

symbols) 

Too many object modules 
Cause: More than 500 object modules 

Too many public symbols 
Cause: 1024 public symbols maximum 

Write error on library/extract file 
Cause: Out of disk space 

Write error on VM.TMP 
Cause: Out of disk space 

( 



INDBX 

& (command character)" 
* (command character) 
+ (command character) 
- (command character) 

(command character) 

• 2-11, 2-13 
2-10, 2-13 

• • 2-9, 2-13 
•••• 2-9, 2-13 

• 2-10, 2-13 

Command Characters • • • 2-9 
& • • • • 2-11, 2-13 
* ..•. . • . . . • 2-10, 2-13 
+ •••••••• • • 2-9, 2-13 

• • • • • •• 2-9, 2-13 
• • • • 2-13 

CONTROL-C • • 2-12 
Control-C • • • • • • 2-13 
Summary of • • 2-13 

Command Prompts • • 2-7 
Library file. • • 2-2, 2-7 
List file • 2-2, 2-8 
Operation • 2-2, 2-8 
Summary of • • • • • 2-2 

Consistency check •• 2-3, 2-5 
CONTROL-C (command character) 2-12 
Control-C (command character) 2-13 
Creating a new library. • 2-3, 2-7 

Er ror messages • • • • • • 3-1 

Library file (command prompt) 2-2, 2-7 
List file (command prompt) •• 2-2, 2-8 

Method 1 • 
Method 2 • 
Method 3 • 

Operation (command prompt) 
Overviews 

MS-LIB operation • • 

Response File 
Running MS-LIB • • 

Startinq 
Methorl 1 • 
Method 2 • .• • • 

• 2-2 
• 2-3 

2-5 

2-2, 2-8 

• 1-2 

• 2-5 
2-1 

• 2-2 
• 2-3 

Method 3 • ••• • • • • 2-5 
Summary of Methods • 

Startinq MS-LIB •••••• 
Summary of methods to start 

• 2-1 
• 2-1 
• 2-1 



( 

( 

. ( 



Microsoft® CREF 
Cross-Reference Utility 

for 8086 and 8088 Microprocessors 

Microsoft Corporation 





System Requirements 

The Microsoft CREF Cross-Reference Utility requires: 

24K bytes of memory minimum: 
14K bytes for code 
10K bytes for run space 

Disk drive(s): 
1 disk drive if and only if output is sent to the 
same physical disk from which the input was taken. 
The Microsoft CREF Cross-Reference Utility does not 
allow time to swap disks during operation on a 
one-drive configuration. Therefore, two disk 
drives is a more practical configuration. 





Contents 

Chapter 1 

1.1 
1.2 

Chapter 2 

2.1 
2.2 
2.2.1 
2.2.2 
2.3 
2.4 
2.4.1 

Chapter 3 

Chapter 4 

. Index 

4.1 
4.2 
4.2.1 
4.2.2 

IIft'RODUCTIOR 

Features of MS-CREF 1-1 
Overview of MS-CREF Operation 1-2 

ROHltIlIG MS-CRBP 

How to Create a Cross-Reference File 2-1 
How to Start MS-CREF 2-2 

Method 1: Prompts 2-3 
Method 2: Command Line 2-4 

Command Characters 2-6 
Format of Cross-Reference Listings. 2-6 

Example of Cross-Reference Listing 2-1 

ERROR MBSSAGBS 

FORMAT OP MS-CRBP COMPATIBLE PILES 

MS-CREF File Processing 4-1 
For.at of Source Files 4-2 

Pirst Three Bytes 4-2 
Control Symbols 4-2 



( 



CHAPTER 1 

INTRODUCTION 

1.1 FEATURES OF MS-CREP 

The Microsoft CREF Cross-Reference Utility can help you in 
debugging your assembly language programs. MS-CREF outputs 
an alphabetical listing of all the symbols to a special file 
created by your assembler. With this listing, you can 
quickly locate all occurrences of any symbol in your source 
program by line number. 

The cross-reference listing produced by MS-CREF gives. you 
symbol locations, speeding your search and allowing faster 
debugging. 

The MS-CREF listing is used with the symbol table produced 
by your assembler. 

The symbol table listing shows the value, type, and length 
of each symbol. This information is needed to correct 
erroneous symbol definitions or uses. 



INTRODUCTION Page 1-2 

1.2 OVERVIEW OF MS-CREP OPERATION 

MS-CREF produces a file with cross-references for symbolic 
names in your program. 

First, you must create a cross-reference file with the 
assembler. Then, MS-CREF converts this cross-reference file 
(which has the filename extension .CRF) into an alphabetical 
listing of the symbols in the file. The cross-reference 
listing file is given the default filename extension .REF. 

Beside each symbol in the listing, MS-CREF lists the line 
numbers where the symbol occurs in the source program. The 
line numbers are listed in ascending sequence. The line 
number where the symbol is defined is indicated by a pound 
sign (I). 

( 

( 



INTRODUCTION Page 1-3 

Figure 1 illustrates the MS-CREF operation. 

sou ree 
.ASM 

1 
Assembler r-----. list ing ~ MS-CREF 

.CRF 

1 
listing 

.REF 

1 
FOO 20 64 123' 145 ••• 
GAD 21 451 49 120 ... 
. 

Figure 1. MS-CREF Operation 





CHAPTER 2 

RUNNING MS-CRBP 

Running MS-CREF requires two types of commands: a command 
to start MS-CREF and answers to command prompts. You type 
all the commands to MS-CREF on a command line or in response 
to MS-CREF prompts. Command characters can be used to 
assist you while giving commands to MS-CREF. 

Before you can use MS-CREF to create the cross-reference 
listing, you must first create a cross-reference file using 
your assembler. This step is described in the next section. 

2.1 BOW TO CREATE A CROSS-REFERENCE FILE 

A cross-reference file is created during an assembly 
session. To create a cross-reference file, use the 
Microsoft Macro Assembler and answer the fourth command 
prompt with the name of the cross-reference file you want to 
create. 

The fourth assembler prompt is: 

Cross-reference [NUL.CRF]: 

If you do not type a filename in response to this prompt, or 
if you use the default response, the assembler will not 
create a cross-reference file. Therefore, you must type a 
filename if you want to create a cross-reference file. 

You may also specify which drive or device you want the file 
saved on, and the filename extension (if different from 
.CRF). If you assign a" filename extension other than .CRF, 
you must specify .the filename extension when naming the file 
in response to the first MS-CREF prompt. (Refer to Section 
2.2, "How to Start MS-CREF," for a description of MS-CREF 
p~ompts.) . 



RUNNING MS-CREF 

You are now ready to use 
cross-reference file produced 
cross-reference listing. 

2.2 BOW TO START MS-CREF 

MS-CREF 
by the 

Page 2-2 

to convert the 
assembler into a 

MS-CREF may be started two ways. By the first method, you 
type the commands as answers to individual prompts. By the 
second method, you type all commands on the line used to 
s ta r t MS-CREF.· 

Summary of Methods to Start MS-CREF 

============================================ 
Method 1 CREF 

Method 2 CREF <crffile>,<listing> 

=========================================== 

( 

( 



RUNNING MS-CREF Page 2-3 

2.2.1 Method 1: Prompts 

To start MS-CREF using prompts, type: 

CREF 

MS-CREF will be loaded into memory. Then, MS-CREF displays 
two text prompts that appear one at a time. You answer the 
prompts to command MS-CREF to convert a cross-reference file 
into a cross-reference listing •. 

Command Prompts 

Cross reference (.CRF]: 
Type the name of the cross-reference file you want 
MS-CREF to convert to a cross-reference listing. 
The filename i.5 tbe ·name you specified' when you 
directed the assembler to produce the 
cross-reference file. 

MS-CREF assumes that the filename extension is 
.CRF. If you do not specify a filename extension 
when you type the cross-reference filename, MS-CREF 
will look for a file with the name you specify and 
the filename extension .CRF. If your 
cross-reference file has a different extension, 
specify that extension when typing the filename. 

Refer to Chapter 4, "Format of MS-CREF Compatible 
Files,· for a description of what MS-CREF expects 
to see in the cross-reference file. You will need 
this information only if your cross-reference file 
was not produced by a Microsoft assembler. 

Listing (crffile.REF): 
Type the name you want the cross-reference listing 
file to have. MS-CREF will automatically give the 
cross-reference listing the filename extension 
.REF. 

If you want you cross-reference listing to have the 
same filename as the cross-reference file but with 
the filename extension .REF, simply press the 
<RETURN> key when the Listing: prompt appears. If 
you want your cross-reference listing file to be 
named anything else, or to have any other filename 
extension, you must type a response following the 
Listing: prompt. 

If you want the listing file placed on a drive or 
device other than the default drive, specify that 
drive or device when typing your response to the 
Listing: prompt. 



RUNNING MS-CREF Page 2-4 

2.2.2 Method 2: Caa.and Line 

To start MS-CREF using the command line, type: 

CREF <crffile>,<listing> 

MS-CREF will ,be loaded into memory. Then MS-CREF converts 
your cross-reference file into a cro.ss-reference listing. 

The entries following CREF 
prompts. The <crffile> 
separated by a comma. 

are 
and 

responses 
<listing> 

to the 
fields 

command 
must be 

where: <crffile> is the name of the cross-refer'ence file 
produced by you·[ assembler. MS-CREF 'assumes that 
t·he filename extension is .CRF. You may overr ide 
this default by specifying a different extension. 
If the file named for the <crffile> does not exist, 
MS-CREF will display the message.: 

Fatal I/O Error 110 

i·n File·: <cr£Ofi.le> .CRF 

MS-CREJ.t ~ill be aborted and the operating system 
prompt will appear. 

<listing> is the name of the file you want to 
con~aln the croRs-reference listing of symbols in 
your program. 

To select the default filename and extension for 
the listing file, type a semicolon after the 
<crffile> name. Refer to the "Command Characters" 
section for more information on how to use the 
semicolon. 

Examples: 

C~EF FUN, 

Th 1s example causes MS-C.REF 
cross-rEl!ference file FUN.CRP 
listing file named FUN.REF. 

to process the 
and to produce a 



RUNNING MS-CREF Page 2-5 

To give the listing file a different filename, 
extension, or destination, simply specify it when 
you type the command line. 

CREF FUN.B:WORK.ARG 

This example causes MS-CREF to process the 
cross-reference file named RUN.eRP and to produce a 
listing file named WORK.ARG, which will be placed 
on the disk in drive B:. 



RUNNING MS-CREF Page 2-6 

2.3 COMMAND CHARACTERS 

MS-CREF provides two command characters. 

Semicolon 

CONTROL-C 

Use a single semicolon (;), followed 
immediately by a carriage return, at any 
time after responding to the Cross 
reference: prompt to select the default 
response to the Listing: prompt. This 
feature saves time and overrides the need to 
answer the Listing: prompt • 

.. 
If you use the semicolon, MS-CREF gives the 
listing file the filename of the 
cross-reference file and the default 
filename extension .REF. 

Example: 

Cross reference (.CRF]: FUN: 

MS-CREF will process the cross-reference 
file named FUN.CRF and output a listing file 
named FUN.REF. 

Use <CONTROL-C> at any time to abort the 
MS-CREF session. If you make a mistake (for 
example, typing the wrong filename or 
incorrectly spelling a filename), you must 
press <CONTROL-C> to exit MS-CREF, and then 
restart MS-CREF. If the error has been 
typed but you have not pressed the <RETURN> 
key, you may delete the erroneous 
characters, but for that line only. 

2.4 FORMAT OF CROSS-REFERENCE LISTINGS 

The cross-reference listing is an alphabetical list of all 
the symbols in your program. Each page begins with the 
title of the program or program module. Then the symbols 
are listed. Following each symbol name is a list of the 
line numbers where the symbol occurs in your program. The 
line number for the definition has a pound sign (I) appended 
to it. 

An example of a cross-reference listing appears in the next 
section. 

( 

! 

\ 



RUNNING MS-CREF Page 2-7 

2.4.1 Example Of Cross-Reference Listing 

MS-CREF (vers no.) (date) 

ENTX PASCAL entry for initializing programs<--comes from 
TITLE directive 

Symbol Cross-Reference (I is definition) Cref-1 

AAAXQQ • 371 38 

BEGHQQ • 83 841 154 176 
BEGOQQ • 33 162 
BEGXQQ • · · 113 126. 164 223 

CESXQQ • 97 99. 129 
CLNEQQ • 67 68' 
CODE . 37 182 
CONST. · 104 104 105 110 
CRCXQQ • 93 941 210 215 
CRDXQQ 95 961 216 
CSXEQQ 65 66' 149 
CURHQQ . 85 86' 155 

DATA . 641 64 100 110 
DGROUP • · 1101 111 III 111 127 153 171 172 
DOSOFF . 981 198 199 
DOSXQQ • 184 2041 219 

ENDHQQ • 87 881 158 
ENDOQQ • 331 195 
ENDl1QQ • 31' 197 
ENDXQQ • · · 184 1941 
EN.DYQQ • 32. 196 
ENTGQQ • 301 187 
ENTXCM • 1821 183 221 

FREXQQ • · 169 1701 178 

HDRFQQ • 71 72' 151 
HDRVQQ • 73 74' 152 
HEAP . . · · · 42 44 110 
HEAPBEG. 541 153 172 
HEAPLOW. 43 171 

TNIUQQ 31 161 

MAIN STARTUP 1091 III 180 
MEMORY 42 48' 48 49 109 110 

PNUXQQ 69 70 150 

RF.CEQQ • 81 821 



RUNNING MS-CREP' 

• • •• 77 78' 
• . .. 79 80' 

REFEOO 
REPEOQ 
RESEOQ 
ENTX 

• • •. 75 76. 148 
PASCAL entry for initializing programs 

Symbol Cross-Reference (. is definition) 

SKTOP. · · 59. 
SMLSTK • · · • 135 137' 
STACK. · · · · 53. 53 60 110 
STARTMAIN. 163 186' 200 
STKBQQ · · · · 89 90' 146 
STICHOQ • · 91 92' 160 

Page 2-8 
( 

Cref-2 

( 



CHAPTER J 

ERROR MESSAGES 

All errors cause MS-CREF to abort. Control is returned to 
the operating system. 

All error messages are displayed in the following format: 

Fatal I/O Error <error number> 
in File: <filename> 

where: <filename> is the name of the file where the error 
occurs. 

<error number> is one of the numbers in the 
following list of errors: 



ERROR MESSAGES 

Number 

101 

101 

Error 

Hard data error 
Unrecoverable disk I/O error 

Device name ecror 
Illegal device specification (for 
X:FOO.CRF) 

103 Internal error 
Report to Microsoft Corporation 

104 Internal error 
Report to Microsoft Corporation 

105 Device offline 

Page 3-2 

example, 

Disk drive door open, no printer attached, or 
similar device is offline. 

106 Internal error 
Report to Microsoft.Corporation 

108 Disk full 

110 File not found 

111 Disk is write protected 

112 Internal error 
Report to Microsoft Corporation 

113 Internal error 
Report to Microsoft Corporation 

114 Internal error 
Report to Microsoft Corporation 

115 Internal error 
Report to Microsoft Corporation 



CHAPTER 4 

FORMAT OF MS-CREP COMPATIBLE FILES 

MS-CREF will process files other than those generated by 
Microsoft's assembler, as long as the file conforms to the 
valid MS-CREF format. 

4.1 MS-CRBP FILE PROCESSING 

MS-CREF reads a stream of bytes 
file (or source file), sorts 
printable listing file (the .REF 
held in memory as a sorted tree. 
are held in a linked list. 

from the cross-reference 
them, then emits them as a 
file) • The symbols are 
References to the symbols 

MS-CREF keeps track of line numbers in the source file by 
the number of end-of-line characters it encounters. 
Therefore, every line in the source file must contain at 
least one end-of-line character (see chart below). 

MS-CREF places a heading at the top of every page of th~ 
listing. The name MS-CREF uses is passed by your assembler 
from a TITLE (or similar) directive in your .source program. 
The title must be followed by a title symbol (see chart 
below). If MS-CREF encounters more than one title symbol in 
the source file, it will use the last title read for all 
page headings. If MS-CREF does not encounter a title symbol 
in the file, the title line on the listing will be blank. 



FORMAT OF MS-CREF COMPATIBLE FILES 

4.2 FORMAT OP SOURCE PILES 

MS-CREF uses the first three bytes of the source 
format specification data. The rest of the 
processed as a series of records that either begin 
with a byte that identifies the type of record. 

4.2.1 Pirst Three Bytes 

Page 4-2 

file as 
file is 
or end 

The PAGE directive in your assembler, which takes arguments 
for page length and line length, will pass the following 
information to the cross-reference file: 

First Byte 
The number of lines to be printed per page (page 
length range is from 1 to 255 lines). 

Second Byte 
The number of characters per line (line length 
range is from 1 to 132 characters). 

Third Byte 
The Page Symbol (07) that tells MS-CREF that the 
two preceding bytes define listing page size. 

If MS-CREF does not see these first three bytes in the file, 
it uses default values for page size (page length is 58 
lines: line length is 80 characters). 

4.2.2 Control Syabols 

The two tables below show the types of records that MS-CREF 
recognizes and the byte values and placement it uses to 
recognize record types. 

Records have a control symbol (which identifies the record 
type) either as the first byte of the record or as the last 
byte. . 



FORMAT OF MS-CREF COMPATIBLE FILES Page 4-3 

Records That Begin with a Control Symbol 

Byte 
Value* Control Symbol Subsequent Bytes 

========================================================== 
01 Reference symbol Record is a reference 

to a symbol name 
(1 to 80 characters) 

02 Define symbol Record is a definition 
of a symbol name 
(1 to 80 characters) 

04 End-of-line (none) 

05 End-of-file lAH 
========================================2================= 

Records That End with a Control Symbol 

Byte 
'Value* Control Symbol Preceding Bytes 

========================================================== 
06 

07 

Title defined 

Page length/ 
line length 

Record is title text 
(1 to 80 ~haracters) 

One byte for page length 
followed by one byte 
for line length 

=========================================================== 

*For all record types, the byte value represents a control 
character, as follows: 

01 Control-A 
02 Control-B 
04 Control-D 
05 Control-E 
06 Control-F 
07 Control-G 



FORMAT OF MS-CREF COMPATIBLE FILES Page 4-4 

The Control Symbols are defined as follows: 

Reference symbol 

Define 

Record contains the name of a symbol that is 
referenced. The name may be from 1 to 80 ASCII 
characters long. Additional characters are 
truncated. 

symbol 
Record contains the name of a symbol that is 
defined. The name may be from 1 to. 80 ASCII 
characters long. Additional characters are 
truncated. 

End-of-line 
Record is an end-of-line symbol character only (04H 
or Control-D). 

End-of-file 
Record is the end-of-file character (lAH). 

Title defined 
ASCII characters of the title are to be printed at 
the top of each listing page. The title may be 
from 1 to 80 characters long. Additional 
characters are truncated. The last title 
definition record encountered is used for the title 
placed at the top of all pages of the listing. If 
a title definition record is not encountered, the 
title line on the listing will be left blank. 

Page length/line length 
The first byte of the record contains the number of 
lines to be printed per page (range is from I to 
255 lines). The second byte contains the number of 
characters to be printed per page (range is from 1 
to 132 characters). The default page length is .58 
lines. The default line length is 80 characters. 

The following table illustrates CRF file record contents by 
byte and length of record. 



FORMAT OF MS-CREF COMPATIBLE FILES page 4-5 

Summary of CRF File Record Contents 

Byte Contents Length of Record 
==================================u======= 

01 symbol_name 2-81 bytes 

02 symbol_name 2-81 bytes 

04 1 byte 

05 1A 2 bytes 

title text 06 2-81 bytes 

PL LL 07 3 bytes 
=============================~===a======= 



( 
" 



.CRF (default extension) 

.REF (default extension) 
r (command character) 

Command Characters • 
J •••••••• 

DmSX 

1-2 
1-2 

• • 2-6 

2-6 
• 2-6 

CONTROL-C • • • • • • • • • 2-6 
Command Prompts 

Cross-reference [.CRF1 • 2-3 
Listing [crffile.REF1 ••• 2-3 

Control symbols • • • • • • • 4-2, 4-4 
CONTROL-C (command character) 2-6 
Creating a cross-reference file 2-1 
Cross reference [.CRFl (command prompt) 2-3 

Default extensions 
.CRF • • • • • 
• REF • • • • • • • • 

Error messages • 

1-2 
1-2 

• • 3-1 

Format of cross-reference listings 2-6 
Format of MS-CREF compatible files 4-1 

Listing (crffile .REF) (command prompt) 2-3 

Method 1 • • • • • • 
Method 2 • • • • • • • 

Overviews 
MS-CREF operation 

Running MS-CREF 

Starting 

• • 2-3 
• • 2-4 

• • • 1-2 

2-1 

Method 1 • • • • • • . • • • 2-3 
Method 2 • • • •.• • •• 2-4 

Starting MS-CREF • • • • ••• 2-2 
Summary of CRF file record contents 4-5 
Summary of methods to start • 2-2 





Microsoft® DEBUG 
Utility 

for 8086 and 8088 Microprocessors 

Microsoft Corporation 



( 



System Require.ents 

The Microsoft DEBUG Utility requires: 

A memory minimum that is program-dependent: 
13K bytes for code 
Run space is program-dependent 

Disk drivels): 
1 disk drive if and only if output is sent to the 
same physical disk from which the input was taken. 
Microsoft DEBUG does not allow time to swap disks 
during operation on a one-drive configuration. 
Therefore, two disk'· drives is a more practical 
configuration. 





Contents 

Chapter 1 

1.1 
1.2 
1.2.1 
1.2.2 

Chapter 2 
2.1 
2.2 
2.3 

Index 

INTRODUCTION 

Overview of DEBUG 1-1 
How to Start DEBUG 1-1 

Method 1: DEBUG 1-2 
Method 2: Command Line 

COMMANDS 
Command Information 2-1 
Parameters 2-3 
Error Messages 2-36 

1-2 



( 

( 



CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW OF DEBUG 

The Microsoft DEBUG Utility (DEBUG) is a debugging program 
that provides a controlled testing environment for binary 
and executable object files. Note that EDLIN is used to 
alter source files: DEBUG is EDLIN's counterpart for binary 
files. DEBUG eliminates the need to reassemble a program to 
see if a problem has been fixed by a minor change. It 
allows you to alter the contents of a file or the contents 
of a CPU register, and then to immediately reexecute a 
program to check on the validity of the changes. 

All DEBUG commands may be aborted at any time by pressing 
<CONTROL-C>. <CONTROL-S> suspends the display, so that you 
can read it before the output scrolls away. Entering any 
key other than <CONTROL-C> or <CONTROL-S> restarts the 
display. All of these commands· are consistent with the 
control character functions available at the MS-DOS command 
level. 

1.2 HOW TO START DEBUG 

DEBUG may be started two ways. By the first method, you 
type all commands in response to the DEBUG prompt (a 
hyphen). By the second method, you type all commands on the 
lfne used to start DEBUG. 

Summary of Methods to Start DEBUG 

=~==================================================:= 

Method 1 DEBUG 

Method 2 DEBUG [<filespec> [<arglist>]] 

====================================================== 



INTRODUCTION Page 1-2 

1.2.1 Method 1: DEBUG 

To start DEBUG using method 1, type: 

DEBUG 

DEBUG responds with the hyphen (-) prompt, signaling that it 
is ready to accept your commands. Since no filename has 
been specified, current memory, disk sectors, or disk files 
can be worked on by using other commands. 

Warnings 

1. When DEBUG (Version 2.0) is started, it sets up a 
program header at offset 0 in the program work 
area. On previous versions of DEBUG, you could 
overwrite this header. You can still overwrite the 
default header if no <filespec> is given to DEBUG. 
If you are debugging a .COM or .EXE file, however, 
do not tamper with the program header below address 
5CH, or DEBUG will terminate. 

2. Do not restart a p~ogram after the "Program 
terminated normally" message is displayed. You 
must reload the program with the Nand L commands 
for it to run properly. 

1.2.2 Method 2: Command Line 

To start DEBUG using a command line, type: 

DEBUG [<filespec> [<arglist>] 

For example, if a <filespec> is specified, then the 
following is a typical command to start DEBUG: 

DEBUG FIuE.EXE 

DEBUG then loads FILE.EXE into memory starting at 100 
hexadecimal in the lowest available segment. The BX:CX 
registers are loaded with the number of bytes placed into 
memory. 

An 'arglist> may be specified if <filespec> is present. The 
<arglist> is a list of filename parameters and switches that 
are to be passed to the program <filespec>. Thus, when 
<filespec> is loaded into memory, it is loaded as if it had 
been started with the command: 



INTRODUCTION Page 1-3 

<filespec> <arglist> 

Here, <filespec> 1s the file to be debugged, and the 
<arglist> is the rest of the command line that is used when 
<filespec> is invoked and loaded into memory. 



( 



CBAPTER 2 

2.1 C(XI;HANJ) INP'ORMATIOM 

Each DEBUG command consists of a single letter followed by 
one or more parameters. Additionally, the control 
characters and the special editing functions described in 
the MS-DOS User's Guide, apply inside DEBUG. 

If a syntax error occurs in a DEBUG command, DEBUG reprints 
the command line and indicates the error with an up-arrow 
(A) and the word "error." 

For example: 

dcs:lOO cs:110 
.... error 

Any combination of uppercase and lowercase letters may be 
used in commands and parameters. 

The DEBUG commands are summarized in Table 
described in detail, with examples, 
description of command parameters. 

2.1 and 
following 

are 
the 



COMMANDS Page 2-2 

Table 2.1 DEBUG Commands 

DEBUG·Command I Function 
===============================~==========~========== 
A[<address>] 

C<range> <address> 

D[<range>] 

E<address> «list>] 

F<range> <list> 

G[=<address> «address> ••• ]) 

H<value> <value> 

I<value> 

L«address> [<drive><record><record>]) 

M<range> <address> 

N<filename> [<filename>1 

O<value> <byte> 

o 
R«register-name>] 

S<range> <list> 

T [=<address>] [ <value>] 

U[<range>] 

W[<address> «drive><record><record>]] 

Assemble 

Compare 

Dump 

Enter 

Fill 

tio 

Hex 

Input 

Load 

Move 

Name 

Output 

Quit 

Register 

Search 

Trace 

Unassemble 

Write 

( 

( 

( 



COMMANDS' Page 2~3 

2.2 PARAMETERS 

All DEBUG commands accept parameters, except the Quit 
command. Parameters may be separated by delimiters (spaces 
or commas), but a delimiter is required only between two 
consecutive hexadecimal values. Thus, the following 
commands are equivalent: 

dcs:lOO 110 
d cs:100 110 
d,cs:100,110 

PARAMETER 

<drive> 

<byte> 

<record> 

<value> 

<address> 

DEFINITION 

A one-digit hexadecimal value to indicate which 
drive a file will be loaded from or written to. 
The valid values are 0-3. These values 
designate the drives as follows: O=A:, 1=8:, 
2=C:, 3=0:. 

A two-digit hexadecimal value to be placed in or 
read from an address or register. 

A 1- to 3-digit hexadecimal value used to 
indicate the logical record number on the disk 
and the number of disk sectors to be written or 
loaded. Logical records correspond to sectors. 
However, their numbering differs since they 
represent the entire disk space. 

A hexadecimal value up to four digits used to 
specify a port number or the number of times a 
command should repeat its functions. 

A two-part designation consisting of either an 
alphabetic segment register designation or a 
four-digit segment address plus an offset value. 
The segment designation or segment address may 
be omitted, in which case the default segment is 
used. OS is the default segment for ali 
commands except G, L, T, U, and W, for which the 
default segment is CS. All numeric values are 
hexadecimal. 

For example: 

CS:OlOO 
04BA:OlOO 

The colon is required between a segment 
designation (whether numeric or alphabetic) and 
an offset. 



COMMANDS 

<range> 

<list> 

<string> 

Page 2-4 

Two <address>es: e.g., <address> <address>; or 
one <address>, an L, and a <value>: e.g., 
<address> L <value> where <value> is the number 
of lines the command should operate on, and LSO 
is assumed. The last form cannot be used if 
another hex value follows the <range>, since the 
hex value would be interpreted as the second 
<address> of the <range>. 

Examples: 

CS:lOO 110 
CS:lOO L 10 
CS:lOO 

The following is illegal: 

CS:lOO CS:110 
.... error 

The limit for <range> is 10000 hex. To specify 
a <value> of 10000 hex within four digits, type 
0000 (or 0). 

A series of <byte> values or of <string>s. 
<list> must be the last parameter on the command 
line. 

Example: 

fcs:100 42 45 52 54 41 

Any number of characters enclosed in quote 
marks. Quote marks may be either single (') or 
double("). If the delimiter quote marks must 
appear within a <string>, the quote marks must 
be doubled. For example, the following string5 
are legal: 

'This is a "string" is okay.' 
'This is a "string" is okay.' 

However, this string is illegal: 

'This is a 'string' is not.' 

Similarly, these strings are legal: 

"This is a 'string' is okay." 
"This is a ""string"" is okay." 

( 

( 



COMMANDS Page 2-5 

However, this string is illegal: 

"This is a "string" is not." 

Note that the double quote ·marks are not 
necessary in the following strings: 

. "This is a "string" is not necessary." 
'This is a ""string"" is not necessary.' 

The ASCII values of the characters in the string 
are used as a <list> of byte values. 



DEBUG CA) ssemble Page 2-6 

NAME 
,Assemble 

PURPOSE 

SYNTAX 

COMMENTS 

Assembles 8086/8087/8088 mnemonics 
into memory. 

directly 

A [<adclress>] 

If,a, syntax error is found, DEBUG responds with 

..... Error 

and redisplays ,the cur rent' assembly' address. 

All numeric values are hexadecimal and must be 
entered as 1-4. characters. Prefix mnemonics 
must be specified in front of the opcode to 
which they refer. ,They may also be 'entered on 
a separate line~, 

The segment overrid~ mnemonics are,CS:, OS:, 
ES:, and SS:. The mnemonic: for the far return 
is RETF. String manipulation mnemonics must 
explicitly state the string size. For example, 
use MO,VSW to move word strings 'and' MOVSB to 
move byte strings. 

The assembler will automatically assemble 
short, near or far jumps and calls, depending 
on byte displacement to the destination 
address. These may be over~idden with the NEAR 
or FAR prefix. For example: 

0100:0500,JMP. 
0100:0502 JMP 
0100:505 JMP 

502 .' 
NEAR 50'5. 
FAR 50A 

.a _2-byte short jump 

.~ 3~byte n~ar jump 
a 5-byte far jump 

The NEAR prefix may be abbreviated to NE, but 
~he FA~ prefix cannot be abbreviated.> 

DEBUG cannot tell whether some operands refer 
to a word memory location or to a byte memory 
location. In this case, the data type must be 
explicitly stated with the prefix "WORD PTR" or 
"BYTE PTR". Acceptable abbreviations are "Won 
and "BY". For example: . 

NEG BYTE PTR [128] 
DEC WO (SI] 



DEBUG (A) ssemble Page 2-7 

DEBUG also cannot tell whether an operand 
refers to a memory location or to an immediate 
operand. DEBUG uses the common convention that 
operands enclosed in square brackets refer to 
memory. For example: 

MOV 
MOV 

AX,21 
. AX, [21] 

Load AX with 2lH 
Load AX with the 
contents 
of memory location 2lH 

Two popular pseudo-instructions are available 
with Assemble. The· DB opcode will assemble 
byte values directly into memory. The DW 
opcode will assemble word values directly into 
memory. For example: 

DB 1,2,3,4,"THIS IS AN EXAMPLE" 
DB 'THIS IS A QUOTE: "' 
DB "THIS IS A QUOTE: '" 

DW 1000,2000,3000,"BACH~ 

Assemble supports 
indirect commands. 

all forms' 
For example: 

ADD 
POP 
PUSH 

BX,34[BP+2].[SI-l] 
[BP+Dll 
[51] 

of register 

All opcode synonyms are also supported. For 
example: 

LOOPZ 100 
LOOPE 100 

JA 200 
JNBE 200 

For 8087 opcodes, the WAIT or FWAIT ~ust be 
explicitly specified. For example: 

FWAIT FADD ST,ST(3) 

LD TBYTE PTR (BX] 

This line will'assemble 
an FWAIT prefix 
This line will not 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

(C)ompare Page 2-8 

Compare 

Compares the portion of memory specified by 
<range> to a portion of the same size beginning 
at <address>. 

C<range> <address> 

COMMENTS 

EXAMPLE 

If the two areas of memory are identical, there 
is no display and DEBUG returns with the MS-DOS 
prompt. If there are differences, they are 
displayed in this format: 

<addressl> <byte!> <byte2> <address2> 

The following commands have the same effect: 

ClOO,lFF 300 

or 

ClOOL100 300 

Each command compares the block of memory from 
100 to lFFH with the block,of memory from 300 
to 3FFH. 

( 

( 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

(D)ump Page ° 2-9 

Dump 

Displays the contents of the specified region 
of memory. 

D[<range>1 

COMMENTS 

If a range of addresses is specified, the 
contents of the range are displayed. If the 0 
command is typed without parameters~ 128 bytes 
are displayed at the first address (DS:100) 
after the address displayed by the previous 
Dump command. . 

The dump is displayed in two portions: a 
hexadecimal dump (each byte is shown in 
hexadecimal value) and an ASCII dump (the bytes 
are shown in ASCII characters). Nonprinting 
characters are denoted by a period e.) in the 
ASCII portion of the display. Each display 
line shows 16 bytes with a hyphen between the 
eighth and ninth bytes. At times, displays are 
spilt in this manual to fit them on the page. 
Each displayed line begins on a 16-byte 
boundary. 

If you type 'the command: 

dcs:100 110 

DEBUG displays the dump in the 
format: 

following 

04BA:0100 42 45 52 54 41 ••• 4E 44 TOM SAWYER 

If you type the following command: 

D 

the display is formatted as described above. 
Each line of the display begins with an 
address, incremented by 16 from the address on 
the previous line. Each subsequent D (typed 
without parameters) displays the bytes 
immediately following those last displayed. 



DEBUG (D) ump Page 2-10 

If you type the command: 

DCS:IOO L 20 

th'e display is formatted as described above, 
but 20H bytes are displayed. 

If then you type the command: 

DCS:IOO 115 

the display is formatted as described above, 
but all the bytes in~the range of lines from 
100H to 115H in the CS segment are displayed. 



DEBUG 

N~E 

PURPOSE 

SYNTAX 

COMMENTS 

(E)nter Page 2-11 

Enter 

Enters byte values into memory at the specified 
<address>. 

E<address> ( <list>} 

If the optional <list> 
replacement of 
automatically. (If an 
values are changed.) 

of values is typed, the 
byte values occurs 
error occurs, no byte 

If the <address> is typed without the optional 
<list>, DEBUG displays the address and its 
contents, then repeats the address on the next 
line and waits for your input. At this point, 
the Enter command waits for you to perform one 
of the following action~: 

1. Replace a byte value with a value you type. 
Simply type the value after the current 
value. If the value typed in is not a 
legal hexadecimal value or if more than two 
digits are typed, the illegal or extra 
character is not echoed. 

2. Press the <SPACE> bar to advance to the 
next byte. To change the value, simply 
type the new value as described in (1.) 
above. If you space beyond an a-byte 
boundary, DEBUG starts a new display line 
with the address displayed at the 
beginning. 

3. Type a hyphen (-) to return to the 
preceding byte. If you decide to change a 
byte behind the current position, typing 
the hyphen returns the current position to 
the previous byte. When the hyphen is 
typed, a new line is started with the 
address and its byte value displayed. 

4. Press the <RETURN> key to terminate the 
Enter command. The <RETURN> key may be 
pressed at any byte position. 



DEBUG 

EXAMPLE 

(E) nter Page 2-12 

Assume that the following command is typed: 

ECS:100 

DEBUG displays: 

04BA:0100 EB._ 

To change this value to 41, type 41 as shown: 

.04BA:0100 EB.41 

To step through the subsequent bytes, press the 
<SPACE> bar to see: 

04BA:0100 EB.41 10. 00. BC. 

To change BC to 42: 

04BA:0100 EB.41 10. 00. 

Now, realizing that 10 should be 6F, type the 
hyphen as many times as needed to return to 
byte 0101 (value 10), then replace 10 with 6F: 

04BA:0100 
04BA:0102 
04BA:010l 

EB.41 
00.';' 
10.6F_ 

10. 00. BC .'42-

pressing the <RETURN> key ends the Enter 
command and returns to the DEBUG command level. 



DEBUG (P) ill Page 2-13 

NAME 
rill 

PURPOSB 
Fills the addresses in the <range> with the 
values in the <list>. 

SYNTAX 
P<range> <list> 

COMMENTS 

EXAMPLE 

If the <range> contains more bytes than the 
number of values in the <list>, the <list> will 
be used repeatedly until all bytes in the 
<range> are filled. If the <list> contains 
more values than the number of bytes in the 
<range>, the extra values in the <list> will be 
ignored. If any of the memory in the <range> 
is not valid (bad or nonexistent), the error 
will occur in all succeeding locations. 

Assume that the following command is typed: 

F04BA:100 L 100 42 4S S2 S4 41 

DEBUG fills memory locations 04BA:100 through 
04BA: IPF with ~- .t~!!. bytes specified. The five 
values are repeated until all 100H bytes are 
filled. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

(G)o Page 2-14 

Go 

Executes the program currently in memory. 

G{=<address>( <address> ••• ]) 

If only the Go command is typed, the program 
executes as if the program had run outside 
DEBUG. 

If =<address> is set, execution begins at the 
address specified. The equal si9n (=) is 
required, so that DEBUG can distinguish the 
start =<address> from the breakpoint 
<address>es. 

With the other optional addresses set, 
execution stops at the first <address> 
encountered~ regardless of that address' 
position in the list of addresses to halt 
execution or proqram branching_ When program 
execution reaches a breakpoint, the registers, 
flags, and decoded instruction are displayed 
for the last instruction executed. (The result 
is the same as if you had typed the Reqister 
command for the breakpoint address.) 

Up to ten breakpoints may be set. Breakpoints 
may be set only at addresses containing the 
first byte of an 8086 opcode. If more than ten 
breakpoints are set, DEBUG returns the BP Error 
message. 

The user stack pointer must be valid and have 6 
bytes available for this command. The G 
command uses an IRET instruction to cause a 
jump to the program under test. The user stack 
pointer is set, and the user flags, Code 
Segment register, and Instruction Pointer are 
pushed on the user stack. (Thus, if the user 
stack is not valid or is too small, the 
operating system may crash.) An interrupt code 
(OCCH) is placed ~t the specified breakpoint 
addressees). 

When an instruction with the breakpoint code is 
encountered, all breakpoint addresses are 
restored to their original instructions. If 

( 

( 

( 



DEBUG· 

EXAMPLE 

(G)o Page 2-15 

execution is not halted at one'.' of the 
breakpoints, the interrupt codes are not 
replaced with the original instructions. 

Assume that the following command is typed: 

GCS:7SS0 

The. program currently in memory executes up to 
the address 7550 in the CS segment. DEBUG then 
displays registers and flags, after which the 
Go command is terminated. 

After a breakpoint has been encountered, if you 
type the Go command again, then the program 
executes just as if you had typed the filename 
at the MS-DOS command level. The only 
difference is that program execution begins at 
the instruction after the breakpoint rather 
than at the usual start address. 



DEBUG (H) ex Page 2-16 

NAME 
Hex 

PURPOSE 

SYNTAX 

COMMENTS 

EXAMPLE 

Performs hexadecimal arithmetic on the two 
parameters specified. 

H<va1ue> <value> 

First, DEBUG adds the two parameters, then 
subtracts the second parameter from the first. 
The results of the arithmetic are displayed on 
one line; first the sum, then the difference. 

Assume that the following command is typed: 

H19F lOA 

DEBUG performs the calculations 
displays the result: 

02A9 0095 

and then ( 

( 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

(I) nput Page 2-17 

Input 

Inputs and displays one byte from the port 
specified by <value>. 

I<va1ue> 

COMMENTS 

EXAMPLE 

A l6-bit port address is allowed. 

Assume that you type the following command: 

I2F8 

Assume ,also that the byte at the port is 42H. 
DEBUG inputs the byte and displays the value: 

42 



DEBUG 

NME 

PURPOSE 

SYNTAX 

COMMENTS 

EXAMPLE 

(L)oad Page 2-18 

Load 

Loads a file into memory. 

L[<address> [<drive> <record> <record>]1 

Set BX:CX to the number of bytes read. 'The 
file must have been named either when DEBUG was 
started or with the N command. Both the DEBUG 
invocation and the N command format a filename 
properly in the normal format of a file control 
block at CS:5C. 

If the L command is typed without any 
parameters, DEBUG loads the file into memory 
beginning at address CS:100 and sets BX:CX to 
the number of bytes loaded. If the L command 
is typed with an address parameter, loading 
begins at the memory <address> specified. If L' 
is typed with all parameters, absolut~ disk 
sectors are loaded, not a file. The ~record>s 
are taken from the <drive> specified (the drive 
designation is numeric here--O=A:, l=B:, 2=C:, 
etc.); DEBUG begins loading with ~he first 
<record> specified, and continues until the 
number of sectors specified in the second 
<record> have been loaded. 

Assume that the following commands are typed: 

A>DEBUG 
-NFILE.COM 

Now, to load·FILE.COM, type: 

L 

DEBUG loads the file and then displays the 
DEBUG prompt. Assume that you want to load 
only portions of a file or certain records from 
a disk. T~ do this, type: 

L04BA:IOO 2 OF 6D 

DEBUG then loads 109 (6D hex) records beginning 
with logical record number 15 into memory 

( 

( 



DEBUG 

) 

(L)oad Page 2-19 

beginning at address 04BA:0100. When the 
records have been loaded, DEBUG simply returns 
the - prompt. 

If the file has a .EXE extension, it is 
relocated to the load address specified in the 
header of the .EXE file: the <address> 
parameter is always i9nored for .EXE files. 
The header itself is stripped off the .EXE file 
before it is loaded into memory. Thus the size 
of an .EXE file on disk will differ from its 
size in memory. 

If the file named by the Name command or 
specified when DEBUG is started is a .HEX file, 
then typing the L command with no parameters 
causes DEBUG to load the file be9innin9 at the 
address specified in the .HEX file. If the L 
command includes the option <address>, DEBUG 
adds the <address> specified in the L command 
to the address found in the .HEX file to 
determine the start address for loadin9 the 
file. 



eSUG 

NMtE 

}JURPOSE 

SYNTAX 

eM) ove Page 2-20 

Move 

Moves the block of memory specified by <range> 
to the location beginning at the <address> 
specified. 

M<range~ <address> 

COMMENTS 

EXAMPLE 

Overlapping moves (i.e., moves where part of 
the block overlaps some of the current 
addresses) are always performed without loss 'of 
data. Addresses that could be overwritten are 
moved first. The sequence for moves from 
higher addresses' to lower addresses is to move 
the data beginning at the block's lowest 
address and then to work towards the hi'ghest. 
The sequence for moves from lower addres$es to 
higher addresses is to move the data beginning 
at the block's highest address and to work 
towards the lowest. 

Note that if the addresses in the block being 
moved will not have new data written to them, 
the data there before the move will remain. 
The M command copies the data from one area 
into another, in the sequence described, and 
writes over the new addresses. This is why the 
sequence of the move is important. 

Assume that you type: 

MCS:lOO 110 CS:500 

DEBUG first moves address CS:ll0 to address 
CS:5l0, then CS:IOF to CS:SOF, and so on until 
CS:lOO is moved to CS:500. You should type the 
D command, using the <address> typed for the M 
command, to review the results of the move. 

c 



DEBUG (N) arne Page 2-21 

NAME 
Name 

PURPOSE 
Sets filenames. 

SYNTAX 
N<filename>[<filename> ••• ] 

COMMENTS 
The Name command performs two functions. 
First, Name is used to assign a filename for a 
later Load or Write command. Thus, if you 
start DEBUG without naming any file to be 
debugged, then the N<filename> command must be 
typed before a file can be loaded. Second, 
Name is used to assign filename parameters to 
the file being. debugged. In this case, Name 
accepts a list of parameters that are used by 
the file being debugged. 

These two functions overlap. Consider the 
following set of DEBUG commands: 

-NFILEl. EXE 
-L 
-G 

Because of the effects of the Name command, 
Name will perform the following steps: 

1. (N)ame assigns the filename FILEl.EXE to 
the filename to be used in any later Load 
or Write commands. 

2. (N)ame also assigns the filename FILEl.EXE 
to the first fi~ename parameter used by any 
program that is later debugged. 

3. (L)oad loads FILEl.EXE into memory. 

4. (G)o causes FILE1.EXE to be executed with 
FILEl.EXE as the single filename parameter 
(that is, FILE1.EXE is executed as if 
FILE1.EXE had been typed at the command 
level) • 



DEBUG 

EXAMPLE 

(N)ame Page 2-22 

A more useful chain of commands might look like 
this: 

-NFILEl.EXE 
-L 
-NFILE2.DAT FILE3.DAT 
-G 

Here, Name sets FILEl.EXE as the filename, for 
the subsequent Load command. The Load' command 
loads FILEl.EXE into memory, and then the Name 
command is used again, this time to specify the 
parameters to be used by FILEl.EXE. Finally, 
when the Go command is executed, FILEl.EXE is 
executed as if FILEl FILE2.DAT FILE3.DAT had 
been typed at the MS-DOS command level. Note 
that if a Write command were executed at this 
point, then FILEI.EXE--the file being 
debugged--would be saved with the name 
FILE2.DATI To avoid such undesired results, 
you should always execute a Name command before 
either a Load or a Write. 

There are four regions of memory 
affected by the Name command: 

CS:5C 
CS:6C 
CS:80 
CS:81 

PCB for file I 
PCB for file 2 
Count of characters 
All characters typed 

that can 

A File Control Block (FCB) for the first 
filename parameter given to the Name command is 
set up at CS:SC. If a second filename 
parameter is typed, then an FCB is set up for 
it beginning at CS:6C. The number of 
characters typed in the Name command (exclusive 
of the first character, WNW) is given at 
location CS:80. The actual stream of 
characters given by the Name command (again, 
exclusive of the letter WNW) begins at CS:8l. 
Note that this st~eam of characters may contain 
switches and delimiters that would be legal in 
any command typed at the MS-DOS command level. 

A typical use of the Name command is: 

DEBUG PROG.COM 
-NPARAMl PARAM2/C 
-G 

( 

( 



DEBUG (N) ame Page 2-23 

In this case, the Go command executes the file 
in memory as if the following command line had 
been typed: 

PROG FARAHl PARAM2/C 

Testing and debugging therefore reflect a 
normal runtime environm~nt for PROG.COM. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

(0) utput Page 2-24 

Output 

Sends the <byte> specified to the output port 
specified by <value>. 

O<value> <byte> 

COMMENTS 

EXAMPLE 

A l6-bit port address is allowed. 

Type: 

02F8 4F 

DEBUG outputs the byte value 4F to output port 
2F8. 

( 

( 



DEBUG (0) ui t Page 2-25 

NAME 
Quit 

PURPOSE 
Terminates the DEBUG utility. 

SYNTAX 
o 

COMMENTS-

EXAMPLE 

The 0 command takes no parameters and exits 
DEBUG without saving the file currently being 
operated on. You are returned to the MS-DOS 
command level. 

To end the debugging session, type: 

O<RETURN> 

DEBUG has been terminated, and control returns 
to the MS-DOS command level. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

(R)egister Page 2-26 

Register 

Displays the contents of one or more CPU 
registers. 

R[<register-name» 

If no <register-name> is typed, the R command 
dumps the register save area and displays the 
contents of all registers and flags. 

If a register name is typed, the l6-bit value 
of that register is displayed in hexadecimal, 
and then a colon·appears as a prompt. You then 
either type a <value> to change the register, 
or simply press the <RETURN> key if no change 
is wanted. 

The only valid <register-name>s are: 

AX 
BX 
CX 
OX 
SP 

BP 
SI 
01 
OS 
ES 

SS 
CS 
IP 
PC 
F 

(IP and PC both refer 
to the Instruction 
Pointer.) 

Any other entry for <register-name> results in 
a BR Error message. 

If F is entered as the <register-name>, DEBUG 
displays each flag with a two-character 
alphabetic code. To alter any flag, type the 
opposite two-letter code. The flags are either 
set or cleared. 

( 

( 



DEBUG (R)egister Page 2-27 

The flags are listed below with their codes for 
SET and CLEAR: 

FLAG NAME SET CLEAR 
======================================= 
Overflow 

Direction 

Interrupt 

Sign 

Zero 

Auxiliary 
Carry 

Parity 

Carry 

OV 

DN Decrement 

EI Enabled 

NG Negative 

ZR 

AC 

PE Even 

CY 

NV 

UP Increment 

DI Disabled 

PL Plus 

NZ 

NA 

PO Odd 

NC 

Whenever you type the command RF, the flags are 
displayed in the order shown above in a row at 
the beginning of a line. At the end of the 
list of flags, DEBUG displays a hyphen (-). 
You may enter new flag values as alphabetic 
pairs. .The new flag values can be entered in 
any order. You do not have to leave spaces 
between the flag entries. To exit the R 
command, press the <RETURN> key. Flags for 
which new values were not entered remain 
unchanged. 

If more than one value is entered for a flag, 
DEBUG returns a DF Error message. If you enter 
a flag code other than those shown above, DEBUG 
returns a BF Error message. In both cases, the 
flags up to the error in the list are changed; 
flags at and after the error are not. 

At startup, the segment registers are set to 
the bottom of free memory, the Instruction 
Pointer is set to OlOOH, all flags are cleared, 
and the remaining registers are set to zero. 



DEBUG 

EXAMPLE 

(R)egister Page 2-28 

Type: 

R 

DEBUG displays all registers, flags, and the 
decoded instruction for the current location. 
If the location is CS:llA, then the display 
will look similar to this: 

AX=OEOO BX=OOFF CX=0007 DXaOlFF SP=039o BP=OOOO 
SI=OOSC 01=0000 DS=04BA ES=04BA SS=04BA CS=04BA 
IP=OllA NV UP 01 NG NZ AC PE NC 
04BA:OllA CD2l INT 21 

If you type: 

RF 

DEBUG will display the flags: 

NV UP 01 NG NZ AC PE NC -

Now, type any valid flag designation, in any 
order, with or without spaces. 

For example: 

NV UP 01 NG NZ AC PE NC - PLEICY<RETURN> 

DEBUG responds only with the DEBUG prompt. To 
see the changes, type either the R or RF 
command: 

RF 
NV UP EI PL NZ AC PE CY -

Press <RETURN> to leave the flags this way, or 
to specify different flag values. 

( 

( 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

EXAMPLR 

(S) earch Page 2-29 

Search 

Searches the <range> specified for the <list> 
of bytes specified. 

S<range> <list> 

The <list> may contain one or more bytes, each 
separated by a space or comma. If the <list> 
contains more than one byte, only the first 
address of the byte string is returned. If the 
<list> contains only one byte, all addresses of 
the byte in thp. <ranQe> are displayed. 

If you type: 

SCS:lOO 110 41 

DEBUG will display a response similar to this: 

04BA:Ol04 
04BA:OlOD 
-type: 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

EXAMPLE 

(T) race Page 2-30 

Trace 

Executes one instruction and displays the 
contents of all registers and flags, and the 
decoded instruction. 

T[=<address>] [ <value>] 

If the optional =<address> is typed, tracing 
occurs at the =<address> specified. The 
optional <value> causes DEBUG to execute and 
trace the number of steps specified by <value>. 

The T command uses the hardware trace mode of 
the 8086 or 8088 microprocessor. Consequently, 
you may also trace instructions stored in ROM 
(Read Only Memory). 

Type: 

T 

DEBUG returns a display of the registers, 
flags, and decoded instruction for that one 
instruction. Assume that the current position 
is 04BA:OllA: DEBUG might return the display: 

AX=OEOO BX=OOFF CX=0007 DX=OlFF SP=039D BP-OOOO 
SI=OOSC 01=0000 DS=04BA ES=04BA SS=04BA CS=04BA 
IP=OllA NV UP DING NZ AC PE NC 
04BA:OIlA CD2l INT 21 

If you type 

T=OllA 10 

( 

( 



DEBUG (T) race Page 2-31 

DEBUG executes sixteen (10 hex) instructions 
beginning at OllA in the current segment, and 
then displays all registers and flags for each 
instruction as it is executed. The display 
scrolls away until the last instruction is 
executed. Then the display stops, and you can 
see the register and flag values for the last 
few instructions performed. Remember that 
<CONTROL-S> suspends the display at any point, 
so that you can study the registers and flags 
for any instruction. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

EXAMPLE 

(U) nassemble Page 2-32 

Unassemble 

Disassembles bytes and displays 
statements that correspond to 
addresses and byte values. 

the source 
them, with 

U[<range>] 

The display of disassembled code looks like a 
listing for an assembled file. If you type the 
U command without parameters, 20 hexadecimal 
bytes are disassembled at the first address 
after that displayed by the previous Unassemble 
command. If you type the U command with the 
<range> parameter, then DEBUG disassembles all 
bytes in the range. If the <range> is given as 
an <address> only, then 20H bytes are 
disassembled instead of 80H. 

Type: 

U04BA:100 LlO 

DEBUG disassembles 16 bytes beginning at 
address 04BA:OlOO: 

04BA:OlOO 206472 AND [SI+72] ,AH 
04BA:Ol03 69 DB 69 
04BA:Ol04 7665 JBE 016B 
04BA:0106 207370 AND [BP+DI+70] ,DH 
04BA:Ol09 65 DB 65 
04BA:OlOA 63 DB 63 
04BA:OlOB 69 DB 69 
04BA:OlOC 66 DB 66 
04BA:010D 69 DB 69 
04BA:010E 63 DB 63 
04BA:OlOF 61 DB 61 

If you type 

U04ba:OlOO 0108 

( 

( 



DEBUG (U) nassemble Page 2-33 

The display will show: 

04BA:OlOO 
04BA:Ol03 
04BA:Ol04 
04BA:OI06 

206472 
69 
7665 
207370 

AND - [S1+72J ,A" 
DB 69 
JBE 0168 
AND [BP+D1+70J ,0" 

If the bytes in some addresses are altered, the 
disassembler alters the instruction statements. 
The U command can be typed for the changed 
locations, the new instructions viewed, and the 
disassembled code used to edit the source file. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

(W)rite Page 2-34 

Write. 

Writes the file being debugged to a disk file. 

W[<address> [ <d~ive> <record> <record>]] 

If you type W with no. parameters, BX:CX must 
already be set to the·number of bytes to be 
written; the file is written beginnin~ from 
CS:lOO. If the W·command is typed with Just an 
address, then the file is written beginning at 
that address. If a· G or T command has been 
used, BX:CX must be· reset before using the 
Write command without parameters. Note that if 
a file is loaded and modified, the name, 
length, and starting address are all set 
correctly to save the modified file (as long as 
the length has not changed)~ 

The file must have been named either with the 
DEBUG invocation command or with the N command 
(refer to the Name command earlier in this 
manual) • Both the DEBUG in.vocation and the N 
command format a filename properly in the 
normal format of a file control block at CS:5C. 

If the W command is ~yped with parameters, the 
write begins from the memory address specified: 
the file is written to the <drive> specified 
(the drive designation is numeric here--O=A:, 
l=B:, 2=C:, etc.)} DEBUG writes the file 
beginning at the logical record number 
specified by the first <record>1 DEBUG 
continues to write the file until the number of' 
sectors specified in the. second <record> have 
been written. 

WARNING 

Writing to absolute sectors is 
EXTREMELY dangerous because the process 
bypasses the file handler. 

( 

( 



DEBUG 

EXAMPLE 

(W) rite 

Type: 

W 

DEBUG will write the· file to 
display the DEBUG prompt. 
shown below. 

W 

WCS:lOO 1 37 2B 

Page 2-35 

disk and then 
Two examples are 

DEBUG writes out the contents of memory, 
beginning with the address CS:lOO to the disk 
in drive B:. The data written out starts in 
disk logical record number 378 and consists of 
2BH records. When the write is complete, DEBUG 
displays the prompt: . 

WCS:IOO 1 37 2B 



DEBUG Error Messages Page 2-36 

2.3· ERROR MESSAGES 

During the DEBUG session, you may receive any of the 
following error messages. Each error terminates the DEBUG 
command under which it occurred, but does not terminate 
DEBUG itself. 

ERROR CODE 

BF 

BP 

BR 

OF 

DEFINITION 

Bad flag 
You attempted to alter 
characters typed were 
acceptable pairs of flag 
Register command for 
acceptable flag entries. 

a flag, 
not one 
values. 

the 

but 
of 

See 
list 

the 
the 
the 
of 

Too many breakpoints 
You specified more than ten breakpoints as 
parameters to the G command. Retype the 
Go command with ten or fewer breakpoints. 

Bad register 
You typed the R command with an invalid 
register name. See the Register command 
for the list of valid register names. 

Double flag 
You typed two values for one flag. You 
may specify a flag value only once per RF 
command. 

( 

( 



) 

DEBUG Commands 
(A) ssemb1e • 
.(e) ompare 
(D) ump • 
(E)nter 
(Fill) •••••• 
(G) 0 • • • 

(H)ex 
(I)nput 
(L) oad • 
(M) ove • 
(N) ame • 
(0) utput • 
(Q)uit ••• 
(R)egister • 
(S)earch • 
(T) race ••• 
(U)nassemble • 
(W) rite 

DEBUG Errors 
BF - Bad flag •• 

INDEX 

2-6 
• 2-8 

2-9 
• • • 2-11 

• 2-13 
.• 2-14 
• 2-16 

••••• 2-17 
2-1'8 
2-19 

• 2-21 
• 2-24 
• 2-25 

2-26 
2-29 

• 2-30. 
2-32 
2-34 

2-36 
BP - Too many breakpoints 
BR - Bad register 

• 2-36 
2-36 
2-36 OF - Double flag 

EXE files 

Flags 

• • 2-19 

• 2-27 

Page Index-1 



( 

( 


