

•
UNISYS BTOS

Protected
Mode

Programming
Guide

Copyright © 1987, Unisys Corporation
Detroit, Michigan 48232

Relative to Release
Level 1.0

Priced Item

February 1987
Distribution Code SA

5026065

Unisys believes that the software described in this manual is
accurate. and much care has been taken in its preparation.

The customer's attention is drawn to the provisions of the Trade
Practices Act 1974 (as amended) ('the Act') which imply conditions
and warranties into certain contracts for the supply of goods and
services. Where such conditions and warranties are implied
Unisys liability shall be limited (subject to the provision of
Section 68A of the Act) to the replacement or repair of the goods
or the supply of equivalent goods.

The customer should exercise care to assure that use of this manual
and the software will be in full compliance with the laws. rules and
regulations of the jurisdiction in which it is used.

The information contained herein is subject to change. Revisions
may be issued from time to time to advise of changes and/or
additions.

Comments or suggestions regarding this document should be submitted on
a Field Communication Form (FCF) with the CLASS specified as 2 (S.SW:
System Software). the type specified as 1 (F.T.R.), and the product
specified as the 7-digit form number of the manual (for example, 5023906).

v

About This Guide
Protected mode allows you to address up to 4 Mb of
memory on B 28 and B 38 workstations that have BTOS
8.0 installed, limit damage caused by erroneous programs,
and dynamically allocate memory more effectively than in
real-address mode. This guide describes the protected
mode capabilities of the Intel 80286 and 80386
microprocessors. It includes examples specific to BTOS and
the B 28 and B 38 workstations.

Who Should Use This Guide
This guide will help you if you are an experienced BTOS
programmer. To understand the information in this guide,
you must be familiar with BTOS 8.0.

How to Use This Guide
If you are using the protected mode for the first time, you
should read section 1. It contains information you will
need to understand basic protected mode concepts.

In any case, if you scan the table of contents and review
the topics before you start, you may find this guide easier
to use. To find definitions of unfamiliar words or
mnemonics, use the glossary; to locate specific
information, use the Index.

How This Guide is Arranged
This material is divided into sections, with related subjects
grouped together. Section 1 describes the basic concepts
involved in protected mode operations.

Sections 2 and 3 describe how to write and debug
protected mode programs. Section 4 describes the
RAM-disk cache facility that the Protected Mode Operating
System Service (PMOSS) provides.

Appendixes A and B describe programming interfaces
discussed in this guide.

5026065

vi About This Guide

Conventions
The Intel 80386 microprocessor is a proper superset of the
80286 microprocessor. Unless otherwise stated, references
to the 80286 microprocessor in this guide include the
80386 microprocessor.

What this guide refers to as a process, Intel refers to as a
task. This guide uses the term task to mean an entire
executing program, which may contain multiple processes.
This guide uses the Intel terminology only when referring
to a specific hardware-defined control structure, the task
state segment (TSS), which you may think of as a process
state segment.

The following conventions are also used in this guide:

Convention Meaning

LOT Local Descriptor Table, which PMOSS
constructs and maintains for each run file
executing in protected mode.

RA Relative address, which comprises one-half
of the linear address. Often referred to as
an offset from the segment address.

SA Segment address, which comprises one-half
of the linear address.

SN A segment address that is in protected mode.

SR A segment address that is a paragraph
number (a real-address mode SA).

When two keys are used together for an operation, their
names are hyphenated. For example, ACTION-GO means
you hold down ACTION and press GO.

About This Guide

Related Documentation
For information on protected mode addressing with the
80286 microprocessor, refer to the iAPX 286
Programmer's Reference Manual, published by Intel
Corporation.

For information on protected mode addressing with the
8038() microprocessor, refer to the 80.'386 Programmer's
Reference Manual, published by Intel Corporation.

vii

For information on the System Performance Accelerator
(SPA), refer to the BTOS Syste'm Performance Accelerator
(SPA) Installation Guide.

5026065

ix

Contents

About This Guide v
Who Should Use This Guide v
How to Use This Guide v
How This Guide is Arranged v
Conventions .. vi
Related Documentation vii

Section 1: Introduction to Protected Mode 1-1
Overview of Protected Mode 1-1
Reviewing Segmented Addressing 1-2
Reviewing Real Address Mode 1-3
Protected Mode Addresses 1-4
The Selector .. 1-7
Descriptor Tables 1-7
Descriptor Cache Registers 1':8
Faults ... 1-9
Descriptor Types 1-10
Segment Descriptors 1-1 0
Gate Descriptors .. 1-12
Protection .. 1-14
DPl versus RPl ... 1-19
Current Privilege level (CPl) 1-19
Switching Privilege levels with Call Gates 1-20
IOPl .. 1-21
General Protection Faults 1-21
Processes and Process Switching 1-21
Interrupts .. 1-24

Section 2: Guide to Compatible Programming 2-1
80286 Real Mode Issues 2-1
Guidelines for Addressing Schemes 2-1
Linking .. 2-15
Version 6 Run File Format 2-15
Marking the Run File 2 -15
Contiguous Code and Data 2-17
Remedies for Incompatibilities 2-18
Checking for Protected Mode at Run Time 2-18
PMOSS limitations 2 -18
Naming Conventions 2-19
New Machine Instructions 2-20
80286 Instructions 2-20
80186 Instructions 2-20

5026065

x Con~ms

Section 3: Debugging Protected Mode Programs 3-1
Overview ... 3-1
The PR Value and Its Meaning 3-1
Looking at Processes: CODE-S 3-4
Entering the Debugger 3-5
Accessing 80286 Registers 3-6
Mnemonics .. 3-6
Warnings 3-7
Finding the BTOS Process 3-7
Breakpoints ... 3-8
CODE-B Breakpoints 3-8
CODE-I Breakpoints 3-9
Descriptors: CODE-V 3-10
Segment Descriptors 3-10
Gate Descriptors .. 3-11
Effect of Call Gates on Debugging 3-12
Behavior at a Fault 3-13
Debugging PMOSS Interrupt Service Routines 3-14
Allowing the System to Enter the Debugger 3-15
locking the Debugger in Memory 3-16

Section 4: SPA Mover Interface 4-1
Procedural Interfaces 4-1
Mover Segments 4-2
Validation Checks 4-4

Appendix A: New Procedural Interfaces A-1
AliocAIiMemorySL A-2
AliocAreaSL .. A-4
AllocMemoryLL .. A-6
AllocMemorySL .. A-7
AllocMoverSegment A-9
DeallocMemoryLL A-11
DeallocMemorySL A-12
DeallocMoverSegment A-13
ExpandAreaLL ... A-15
ExpandAreaSL ... A-16
FComparePointer A-18
ForwardRequest A-20
FProcessorSupportsProtectedMode A-21

Contents xi

FProtectedMode A-22
MovbMoverSegment A-23
QueryBigMemAvaii A-25
QueryMemAvaii .. A-27
SetPStructure ... A-28
ShrinkAreaLL .. A-31
ShrinkAreaSL ... A-32

Appendix B: Summary of GetPStructure Interfaces 8-1
Access to System Data Structures 8-1
Limitations in Protected Mode 8-1
GetPStructure Codes 8-2
SetPStructure Cases Supported 8-2

5026065

xiii

Illustrations

1-1 Real Address Mode 1-4
1-2 Protected Mode 1-6
1-3 Anatomy of a Selector 1-7
1-4 Segment Descriptor 1-11
1-5 Gate Descriptor 1-13
1-6 Separate Address Spaces Protection Model 1-15
1-7 PMOSS' Simplified Use of Separate Address

Space Protection Model 1-16
1-8 Ring Protection Model 1-17
1-9 PMOSS' Simplified Use of Ring Model 1-18
1-10 Task State Segment (TSS) 1-22
2-1 BTOS Partition Using DS Allocation 2-4
2-2 Two-way Filter Process (no change required for

protected mode) 2-8
2-3 One-way Filter Process (change as shown for

protected mode) 2-10
4-1 32-bit Address 4-3

5026065

Tables

B-1
B-2

5026065

GetPStructure Cases Supported
SetPStructure Cases Supported

xv

B-3
B-4

Section 1 1-1

Introduction to Protected Mode
This section summarizes protected mode addressing
concepts. It serves as an introduction to the Intel iAPX 286
Programmer's Reference Manual and 80386 Programmer's
Reference Manual.

Note: This guide refers to some Intel conventions differently than the way
Intel refers to them. For more information, refer to Conventions, in the introduction.

Overview of Protected Mode
Intel microprocessors beginning with 80286 (for B 28
workstations) and including the 80386 (for B 38
workstations) support protected mode operation. Their
predecessors, 8086 (for B 21 and B 22 workstations) and
80186 (for B 26 workstations), support the real address
mode only.

Protected mode offers the following advantages over real
address mode:

o a much larger address space (memory) is available,
eliminating the 1 Mb constraint of real address mode

o program execution is subject to protection checks that
limit damage from erroneous programs

o on-chip memory management hardware is available,
allowing an operating system to dynamically allocate
memory more effectively

o with the Protected Mode Operating System Server
(PMOSS), the code segments of the system services can
be executed in protected mode

Note: PMOSS develops system services that will run on the fully protected
mode operating system. It also frees memory space in the real address range.

Two constraints when using protected mode are:

o Because addressing concepts are different and the
protection hardware encapsulates programs are in
private address spaces, you must modify most programs
to make them compatible with protected mode.

5026065

1-2 Introduction to Protected Mode

o Major enhancements to the operating system are
required, in part to support descriptor tables and
partially to process state structures that the hardware
expects to access directly wh~n it is running in
protected mode.

Because of compatibility problems, Unisys B 28 and B 38
workstations support concurrent execution of protected
mode and real-mode software.

PMOSS also addresses the second protected mode
constraint by enhancing BTOS to manage global and local
descriptor tables (GDT /LDT), Task State Segments (TSS),
an Interrupt Descriptor Table (lDT), and the memory
beyond 1 Mb that is accessible only in protected mode.

Reviewing Segmented Addressing
With Intel microprocessors, instructions do not accept
physical addresses as operands; they accept only SA:RA
logical addresses. A linear address is formed from two
16-bit parts:

o the segment address (SA)
o the relative address (RA)

Together, these two parts comprise a logical address.
When using the Assembler or Debugger, the syntax SA:RA
writes a logical address.

As each instruction executes, the linear address forms
from the logical address and addresses physical memory.
There is no alternative use of logical addresses, because
there is no way to address physical memory directly with
an instruction.

The Intel architecture is referred to as a segmented
addressing model because every address is always relative
to some SA. Observe the contrast to a linear addressing
model such as the Motorola architecture, where
instructions accept 32-bit linear addresses rather than
SA:RA pairs.

Introduction to Protected Mode 1-3

When an SA is a real address mode SA, it may be referred
to as an SR to distinguish it from a protected mode SA
(which is sometimes called an SN). The term SA applies to
either real address or protected mode. In real address
mode, all logical addresses are actually SR:RA addresses.
In protected mode, they are actually SN :RA addresses. The
following text describes the difference between an SR and
an SN.

Reviewing Real Address Mode
Real address mode is the only mode in which 8086 and
80186 microprocessors operate. However, 80286
microprocessors execute initially in real address mode
when powered-up or reset, but can switch to protected
mode (if the operating system software necessary to
support protected mode is present).

In real mode, to arrive at a 20-bit linear address result, the
SR shifts left by four binary places (effectively
multiplying by 16) and the RA is added. For example,
figure 1-1 shows the logical address 3A02:235 in
hexadecimal notation.

The resulting 20-bit quantity can only address 1 Mb of
memory (2 exp 20 locations). A 16-byte unit of memory
aligned on a 16-byte boundary is called a paragraph. The
real address mode SR is a paragraph number, because it
denotes a particular 16-byte boundary in the physical
address space.

The RA is often referred to as an offset from the SA. In
real address mode, the segment registers CS, DS, ES, and
SS contain the paragraph numbers corresponding to the
base of the current code, data, extra, and stack segments
respectively.

These segments are always aligned to start on 16-byte
boundaries.

5026065

1-4 Introduction to Protected Mode

Figure 1-1. Real Address Mode

real address 3A02:235

13A0210
+ 102351

3A255

SR

RA

20-bit linear
address

Protected Mode Addresses
The 80286 microprocessor can address up to 16 Mb of
memory (2 exp 24) in protected mode, but it requires a
24-bit linear. The 80386 can address up to 4 gigabytes
(Gb) of memory (2 exp 32).

No Intel microprocessor, including the 80286, can address
more than one Mb in real mode, because only a 20-bit
address is formed by the address calculation described in
Reviewing Real Address Mode, in this section.

To achieve this longer address compatibly and allow other
features of protected mode to be implemented, the same
two-part addressing scheme (the segmented addressing
model) is used. The address still consists of an SA:RA, but
the SA part of the logical address is interpreted
differently. The RA part has the same meaning as in real
mode.

Introduction to Protected Mode 1-5

In protected mode, the 16-bit SA that is held in the CS, DS,
ES, or SS register is not a paragraph number; rather, it is
an index into a special type of table (called a descriptor
table) that is accessible only to the operating system and
the hardware. This index is called a selector (SN).

Note: An SN is an SA that is a paragraph number (a real address mode SA).

Paragraph numbers address segments in real mode and
selectors address segments in protected mode. For each
run file executing in protected mode, PMOSS builds and
maintains such a table, called a Local Descriptor Table
(LDT) from information that the Linker provides in the
header portion of the V6 run file.

Note: This is why you must use the Bind command, which produces the new
VB run file format, to link programs that will run in protected mode.

Each code or data segment in the program has a unique
selector, which the Linker assigns, and a corresponding
unique entry in the LDT. The LDT is an array of these
entries, called descriptors, which are eight bytes long and
contain segment information. The selector is, in fact, an
offset into the LDT, with some additional bits used for
special purposes.

When an instruction loads a segment register in a
protected mode program, the hardware uses the selector to
find the descriptor and retrieve a segment base address
from the descriptor. This base address is 24 bits long on
the 80286. When an instruction refers to an operand
(using the segment register and an RA), the RA is added to
the base address to obtain a 24-bit operand address.
Unlike real address mode, this base address does not shift;
it is not a paragraph number, but a true byte address.

Figure 1-2 shows this process schematically. The example,
18:235, is equivalent to the previous example of real
address mode shown in figure 1-1.

This time, the descriptor holds the linear base address,
03A020. Instead of the segment register holding the
paragraph number 03A02, it holds a selector value, 18,
which is used to index into the descriptor table.

Note: A logical address (SA:RA) consists of two lB-bit parts in both real and
protected modes, the only difference being the value of the SA part.

5026065

1-6 Introduction to Protected Mode

The protected mode SN :RA logical address is referred to as
a virtual address because the SN refers only indirectly to
memory via a descriptor table entry. By changing the
descriptor table entry, the operating system can make the
virtual address refer to different physical memory (for
example, to move the segment transparently to the
program).

Figure 1-2. Protected Mode

virtual address 18:235

SNl0018
descriptor table

r~ 1~~~I~~II~llolololol J
20~ __
28~
30~~"""",,,,,,,,,,",,,,,,,~,,,,

+1 02351

03A255

RA

24-bit linear
address

The real address mode SR:RA logical address is referred to
as a real address because it always corresponds to the
same physical memory address.

Most incompatibilities between real mode and protected
mode arise from this difference between paragraph
numbers (SRs) and selectors (SNs), which can be subtle.

Introduction to Protected Mode 1-7

The Selector
Figure 1-3 shows the anatomy of the 16-bit selector (SN).
The high-order 13 bits form the offset that indexes into
the descriptor table. The next bit discriminates between
two kinds of descriptor tables (LDT and GDT), and the
low-order two bits (the Requested Prvilege Level, or RPL)
concern a seldom-used feature of the protection scheme.
To find the descriptor, the hardware assumes the
low-order 3 bits are zero and uses the selector as an offset
(since descriptors are 8 bytes long).

The 13 index bits of the selector can generate 2 exp 13, or
8192, possible values. Thus the hardware permits 8192
entries in the LDT and in the GDT. In practice, this means
each run file can have a private virtual address space of
up to 8192 segments (or other elements).

Descriptor Tables
Two kinds of descriptor tables address segments: Local
Descriptor Tables (LDTs) and the Global Descriptor Table
(GDT). There must be a separate descriptor table for each
run file executing in protected mode, including PMOSS.
Each user run file has an LDT. PMOSS has the GDT, which
you can think of as PMOSS' own LDT.

Figure 1-3. Anatomy of a Selector

SN 100181

0000000000011 0 00
descriptor index L rpl

L = 1 for LOT
L = 0 for GOT

5026065

1-8 Introduction to Protected Mode

At anyone time, a particular LDT is the current LDT.
Each protected mode process is associated permanently
with an LDT when the process is created. (Several
processes can share the same LDT if they are part of the
same program.) When process switching occurs, the
firmware changes the current LDT automatically.

The GDT is special because it is never switched.
Regardless of which LDT is in effect, the single GDT is
always in effect as well. The GDT is PMOSS' LDT and the
descriptors in it are only usable when PMOSS' code is
executing, never when user code is executing.

Note: If the system designer wants, the hardware allows user programs to
implement GOT descriptors. PMOSS, however, does not usually use this feature.

Because both the GDT and the current LDT are in effect at
the same time, PMOSS can use the descriptors in both the
GDT and the currently executing user program's LDT. This
allows PMOSS to access the memory of user programs.

Because it has its own always-available descriptor table
(the GDT), PMOSS can be called at certain entry points, at
any time, as a user process subroutine. The operating
system services known as kernel primitives and system
common procedures are implemented this way.

Note: A protected mechanism known as the call gate limits the user program
to calling at legitimate entry points and provides a convenient way to bind the
user program to those entry points at program load time.

Descriptor Cache Registers
When one of the registers CS, DS, ES, or SS is loaded with
a selector value, the machine fetches the appropriate
descriptor from the GDT or LDT and loads it into an
associated descriptor cache register. This internal register
is not visible to software.

The presence of these invisible registers alleviates the
hardware from fetching information from the descriptor
table for every memory operand of an instruction. Instead,
descriptors are examined only when segment registers are
loaded.

Introduction to Protected Mode 1-9

Note: Loading a segment register is more time-consuming in protected mode
than real mode, because of the memory accesses needed to load the descriptor
cache register. Ordinary instructions, however, are not more time-consuming.

The descriptor cache register holds the entire contents of
the descriptor, which includes other information besides
the segment base address. Although descriptors are always
eight bytes long, only six bytes are actually used on the
80286.

Faults
Several checks are associated with loading a segment
register and its descriptor cache register. There must be an
entry in the descriptor table for the selector that was
loaded; the system knows the size of the descriptor table
(which varies from table to table) and verifies that the
selector does not index beyond the end of the table. The
system uses information from the descriptor to perform
other checks. In addition to the base address, the
descriptor contains the size of the segment, the type of
segment, and other protection-related information. You
cannot access accidentally beyond the end of the segment
in protected mode, execute data segments, and write to
code segments. You can protect certain data segments from
being written and certain code segments from being read.

Not all descriptors describe memory segments. There are
other uses for selectors than as components of SN:RA
memory addresses. PMOSS uses nonsegment descriptors for
many purposes but, except for gate descriptors, they
seldom involve user programmers.

If the selector is invalid, a fault results. Faults transfer
control automatically to PMOSS. Conceptually, there are
two type of faults: restartable faults and exceptions.
Restartable faults are, in theory, recoverable; an exception
is an error that prevents a program from further
executing. .

An example of a restartable fault is the not-present fault
that occurs when the operating system marks a segment's
descriptor to indicate that the segment is not resident, but
is swapped out on disk.

5026065

1-10 Introduction to Protected Mode

A restartable fault lets the operating system:

o read the missing segment into any available free
memory

o load the base address in the descriptor
o mark the descriptor present
o return to the interrupted program (which again tries the

instruction that faulted, since the value of IP still points
to that instruction)

An example of an exception is a bad selector due to a
programming error.

Because PMOSS does not support virtual memory, it treats
faults as exceptions. Any fault or exception causes the
system to enter the Debugger and displays a diagnostic
message.

As a result, you cannot load values other than selectors
into the ES register. When you do, the hardware tries to
fetch the associated descriptor, resulting in a fault - even
before you try to use the segment register to reference
anything.

The selector value 0 is special. It can be loaded into a
segment register, but causes a fault if it is subsequently
used in an address calculation. The 0 value allows the
passing of, for example, pbPassword = 0 and
cbPassword = 0 in a BTOS OpenFile call. Although you
can use 0, do not use the value to calculate an address.

Additional exceptions that can occur later, when using a
valid segment register in an address calculation. Trying to
address beyond the end of a segment is this type of an
exception, called a limit exception.

Descriptor Types

Segment Descriptors

The segment descriptor is involved with SN:RA virtual
addresses. Figure 1-4 shows the segment descriptor format
used on the 80286.

Introduction to Protected Mode 1-11

Figure 1-4 Segment Descriptor

limit field

P DPL type A

The meanings of the various fields are as follows:

Field Meaning

P

DPL

Type

A

Base
Limit

5026065

Present bit. This bit, used in virtual memory management, is 0
when the segment is swapped out. When a register is loaded
with a selector that fetches this descriptor, if this bit is 0, a
fault occurs and the operating system can read the segment in
and mark it present.

Descriptor Privilege Level. This field is used for protection (refer
to Protection, in this section).

Several types of code and data segments are possible. This field
also identifies the descriptor as a segment descriptor (as opposed
to a call gate, for example).

Accessed bit. This bit, used by the least recently used (LRU)
algorithms in virtual memory management, is set the first time
the descriptor loads into a descriptor cache.

The 24-bit base address.

The maximum RA value that can be used in an SN:RA, where the
SN denotes this descriptor. The minimum RA value is zero. A
fault occurs if the program tries to access out of segment
bounds. The limit is one less than the size of the segment. This
field has a different interpretation for some stack segments.

1-12 Introduction to Protected Mode

Note: For data segments of a special type called expand-down or grow-down
segments, the maximum is always 65535. The limit denotes the minimum
allowable RA, which is one less than the minimum legal RA. These segments
generally contain stacks, although stacks can also reside in ordinary expand-up
segments. For expand-down segments, the base field does not point to the
low-order end of the segment; rather, the base plus 65536 points to the
high-order end of the segment.

On the 80286 in protected mode, a code segment is
implicitly executable and also implicitly not writable. In
addition, it may be designated as readable or not readable
(for example, to prevent user programs from examining
operating system code in a secure system).

A data segment can be designated as writable or not, but
cannot be executed.

Gate Descriptors

The gate descriptor is a structure that uses indirection to
allow programs to call routines whose addresses they
cannot know until the program loads. Generally, any
program address that lies outside the run file is unknown
until load time. For example, a program can call a system
common procedure or kernel call in BTOS, the location of
which the Linker cannot supply when resolving the
reference.

In the protected mode run file, the Linker resolves this
reference as a call via a gate. At load time, PMOSS fills in
the gate with the SN :RA virtual address of the desired
routine. The actual CALL instructions in the calling code
segment do not need to be modified at load time.

In the program code, these calls appear to call an SN :RA
address, using an ordinary far CALL instruction. When
this call executes, the selector obtains the associated
descriptor (as before). The 80286 or 80386 examines the
descriptor, which turns out to be a gate descriptor (refer
to figure 1-5), and uses the destination fields in place of
the original SN :RA to reach to the appropriate routine.
The SN from the gate, not the original SN, winds up in the
CS register. The original RA is ignored, because the gate
destination fields provided a new SN :RA address.

Introduction to Protected Mode 1-13

Figure 1-5 Gate Descriptor

destination

selector

P DPL type

The gate descriptor is also used as part of the protection
mechanism. Among other uses, it is a more powerful
alternative to the supervisor CALL instruction found on
some other processor architectures that feature memory
protection. Calls from one run file to another (including
operating system calls) use call gates so that entry to the
destination program occurs only at certain well-defined
entry points that the call receiver establishes. This is why
the system ignores the RA supplied by the caller.

5026065

1-14 Introduction to Protected Mode

The gate descriptor fields are as follows:

Field Meaning

P
DPL

Type

we

Selector

Offset

Protection

Present bit.
Descriptor privilege level. This field determines only who can use
the gate, not the privilege level at which the called code will run
(the DPL of the code segment descriptor to which the gate points
determines the privilege level).
Gates that programs use can be call gates or TSS gates. Only
PMOSS uses TSS gates. TSS gates also are involved in interrupt
processing, as are two additional types of gates: interrupt gates
and trap gates.
Word count. Number of words of arguments for procedure being
called. This field is only used when the call is to software at a
higher level of privilege (such as from a user program to PMOSS).
The SN of the procedure entry point. Must identify a code
segment descriptor with an appropriate DPL. May not identify
another call gate descriptor; only one level of call gate indirection
is allowed.
The RA of the procedure entry point.

Protected mode on Intel microprocessors uses two models
of protection:

o Protection by separate address spaces, shown in figures
1-6 and 1-7, in which a program is restricted to one
virtual address space and cannot another address space
location. This protection model provides isolation of one
run file from another.

o Protection by privilege level, in which every program
executes at one of several levels of authority. This is a
ring protection model, shown in figures 1-8 and 1-9. It
allows an operating system (like PMOSS) to
conveniently protect itself from its clients. A program
with a numerically lower privilege level has greater
privilege, and can therefore access more restricted
locations than a program with a numerically higher
privilege.

Both protection models are in effect when in protected
mode and both must be satisfied to allow access.

Introduction to Protected Mode 1-15

Figure 1-6 Separate Address Spaces Protection Model

On 80286 microprocessors, neither model or protection
applies to real mode programs, even when PMOSS is
installed. However, the physical memory above 992 Kb is
inaccessible to real mode programs.

Each pie slice in figures 1-6 and 1-7 represents a separate
address space, described by a separate LDT (the first
protection model). Figure 1-6 shows the domain of each
des~riptor table.

A program in one address space is a ware of and can
describe only those locations for which it can load (and
use) selectors. Only the LDT associated with the current
process is in effect at one time. The GDT is in effect all
the time. Therefore, the process can only address objects
for which there exist descriptors in its own LDTor the GDT.

5026065

1-16 Introduction to Protected Mode

The LDT describes only those objects that it is legitimate
for the program to access: the program'" code and data,
the gates it can use to call other programs, and data that
has been received in requests from other programs (if the
program is a server).

In PMOSS, the user program generally cannot use the GDT
descriptors. PMOSS uses and thinks of the GDT as its own
LDT. The existence of this special LDT allows user
programs to call PMOSS via call gates, and for PMOSS to
access the user program's memory directly (using the
user's LDT at the same time as its own LDT, the GDT).
Figure 1-7 shows how PMOSS uses the G DT.

Pri vilege levels regulate calls from user programs to
PMOSS (the second protected model). The rings in figure
1-8 correspond to privilege levels. 0 is the level of highest
authority or privilege, and 3 is the least privileged level.
Each entity in the current address space (everything
described by a descriptor in the current LDT or the GDT)
is marked with a Descriptor Privilege Level (DPL), which
determines its usability.

Figure 1-7 PMOSS' Simplified Use of Separate Address Space
Protection Model

Introduction to Protected Mode

Figure 1-8 Ring Protection Model

privile

1-17

dir tion of
ard calls

through gates

For example, most GDT descriptors are marked 0 in
PMOSS, which means that only a program running at
privilege level 0 can use them. Most LDT descriptors are
marked 3, indicating that any program in the address
space can use them.

Note: A level 0 program can use not only level 0 descriptors, but also
descriptors with numerically greater DPl. This means that, in figure 1-7, a
program in the inner circle can see objects in the outer circles, but a program on
the periphery may not see into the protected center.

5026065

1-18 Introduction to Protected Mode

Each process has a separate stack segment for each
privilege level. By using call gate selectors, a program can
call inwardly to a more privileged level, but only in ways
that allowed the system allows. Control switches to the
stack for the inner level when this occurs.

PMOSS uses only levels 0 and 3, as shown in figure 1-9.
Levels 1 and 2 are reserved for future expansion.
Currently, therefore, only two stacks per process are
required, not four. Most PMOSS procedures run at level O.
Level 0 includes only code and data structures that are
part of PMOSS (including structures that PMOSS creates to
manage user programs, such as LDTs).

Figure 1-9 PMOSS' Simplified Use of Ring Model

privile

k

dir ion of
ard calls

through gates

User programs run only at privilege level 3 in PMOSS.
Most descriptors in LDTs are marked level 3.

Introduction to Protected Mode 1-19

In effect, the way PMOSS currently employs the privilege
level mechanism by dividing the world into supervisor
(PMOSS) and user castes. PMOSS can use both its own
level 0 descriptors and the current user's level 3
descriptors.

The following text summarize the most important
protection rules. The protection hardware has many
additional features described in the Intel iAPX 286
Programmer's Reference Manual and 80386 Programmer's
Reference Manual.

DPL versus RPL

Every descriptor contains a DPL in the range 0 through 3
and every selector contains an RPL in the same range, in
the low-order two bits.

The RPL bits of the DS and ES registers are not important
in user programs and usually remain at zero, as the Linker
set them, even in level 3 programs. The DPL, not the RPL,
is the final arbiter of privilege. RPL bits have a special
function only PMOSS uses, which is beyond the scope of
this discussion.

Current Privilege Level (CPL)

The current privilege level (CPL) is the level at which th~
process is currently running (essentially, the privilege
level of the currently executing code). CPL is stored in the
RPL bits of the es register; it can be displayed by using
the Debugger to examine es. This is true because a
process' current privilege level normally is the DPL of the
code segment it is executing and, in the case of CS, the
RPL bits are copies of the DPL bits in the descriptor for
the currently executing code segment.

Note: Except in the special case of conforming code segments (not present in
user programs).

5026065

1-20 Introduction to Protected Mode

The SS register has RPL bits that match the CS register's
RPL bits (usually 3 in a BTOS user program). Since only
PMOSS usually loads SS, user programs are ordinarily not
concerned with the SS RPL bits; however, in medium
model programs, they are not the same as the RPL bits of
DS, which are normally O. The DS and SS selector values
will be identical, except for their RPL bits in a medium
model program; in real mode medium model programs,
they are identical in all 16 bits, which is why the new
procedure FComparePointer is required.

Switching Privilege Levels with Call Gates

Call gates support only call statements, not jumps or data
accesses. As with any descriptor, the call gate must have a
DPL at least as great numerically as the caller's CPL.
However, the destination code segment (the descriptor that
the call gate descriptor refers to) must have a DPL
numerically equal to or less than the caller's CPL because
only sideways and inward calls are allowed; outward calls
are never allowed. The inner (numerically lower) levels
are trustworthy and are therefore compromised if they
surrender control to an outer level by calling it.

On an inward call, the hardware switches stacks (saving
SS and SP and reloading them to point to the high-order
end of a stack reserved for the level being called). It also
copies parameters automatically from the caller's stack to
the new stack, making them accessible to the called
procedure in the normal way. The stack switch prevents a
situation in which a call to a routine that is known to
function correctly fails because the caller's stack was too
short. It also leads to the need for multiple stacks for each
process. In PMOSS, there are two stacks per process
because only two privilege levels - 0 and 3 - are used.
Stacks are not switched on sideways calls, even when
using a call gate.

A return can be to the same privilege level (sideways) or
to one of greater numeric privilege (outwards). The return
examines the RPL of the saved CS in the return address to
determine whether a stack switch is necessary.

Introduction to Protected Mode 1-21

IOPL

The 10PL flag specifies the maximum CPL (numerically)
for which I/O and HALT instructions are valid. 10PL is a
property of each process (part of the flags word). Under
PMOSS, 10PL is always 3 so any process can perform these
instructions.

General Protection Faults

Breaking any of the protection rules generates a general
protection fault, exception 13. Under PMOSS, general
protection faults activate the Debugger.

Processes and Process Switching
Associated with every process is a Task State Segment
(TSS). The TSS, shown in figure 1-10, contains the
complete register state of the process.

The advantage of the TSS is that it permits extremely
rapid process switching, despite the protection boundaries
between programs. In protected mode, process switching is
implemented in hardware and firmware, in response to
interrupts or single instructions.

To use a BTOS example, suppose one program does a SEND
to an exchange where a program of higher priority is
waiting. The kernel can start the waiting process with a
single CALL instruction to SN :RA, where SN is the selector
of its TSS (the RA is ignored).

This causes the microprocessor to perform an entire
process switch:

o store the entire register state of the current process in
the current TS (which is identified by a special
hardware register - TR)

o switch TR to point to the new TSS, and set the new TSS'
back-link field to point to the old TSS

5026065

1-22 Introduction to Protected Mode

Figure 1-10. Task State Segment (TSS)

LOTR (LOT selector)

OS

SS

CS

ES

01

SI

BP

SP

BX

OX

ex
AX

FL (flags)

IP

Initial SS level 2

Initial SP level 2

Initial SS level 1

Initial SP level 1

Initial SS level 0

Initial SP level 0

back-link to prev TSS

Introduction to Protected Mode 1-23

o load the entire register state of the new process from
the new TSS

o set the NT (nested TSS) flag bit

Execution then continues. The operating system does not
have to save and load each register.

Using a structure called a TSS gate, you can arrange for an
interrupt to perform a process switch automatically (in
effect, an automatic CALL to a TSS).

Conversely, when a BTOS process executes a Wait, the
kernel can put away the register state of the process in its
TSS and resume execution of the next highest priority
(NHP) process using a single instruction that reverses the
TSS process switch.

Note: The IRET that reverses the TSS process switch has different semantics
than the real mode IRET instruction. A special flag bit, NT, selects the
appropriate IRET - either IRET (the familiar instruction) or TRET (for 7SS
RETurn) - at any time in protected mode. When the NT bit is 1, IRET does a
TRET. User programs do not use either IRET or TRET. Therefore, IRET in
protected mode is really two unrelated instructions.

The back link field of the TSS permits nesting of saved
states that interrupts or TSS CALL instructions cause.
When one interrupt cycle completes, or when a process
wants to surrender the processor, execution reverts to the
previous TSS via a process switch back to the TSS
identified by the back link.

JMP instructions can also be used to cause TSS switches,
but PMOSS does not use them.

TSSs have other functions connected with the stack
switching operations that call gates perform. This guide is
not intended to explain TSSs. For information about TSSs,
refer to the Intel iAPX 286 Programmer's Reference
Manual and the 80386 Programmer's Reference Manual.

5026065

1-24 Introduction to Protected Mode

Interrupts
There are two kinds of interrupts: internal and external.
Internal interrupts, initiated synchronously as a result of
the execution of an instruction, include software
interrupts (which occur when an INT instruction
executes), exceptions such as interrupt type 4 (division by
zero), and faults including protection faults (type 13).
External interrupts, initiated by an asynchronous event
outside the processor, include I/O interrupts such as disk
and real-time clock interrupts, among others.

Every interrupt has an interrupt type number in the range ° to 255, which is an index into a special descriptor table,
the Interrupt Descriptor Table CIDT). There is one IDT per
system. Unlike the analogous structure in real mode (the
Interrupt Vector Table, or IVT), it need not be located at
physical address 0, but can be anywhere in memory (it is
based by a special register, the IDTR). The IDT contains
only gate descriptors. For a given interrupt type number,
the IDT can contain one of three types of gates:

o a TSS gate
o an interrupt gate
o a trap gate

The type of gate and its contents determine how the
interrupt is handled.

When an interrupt is routed through a TSS gate, the
hardware switches to the new process indicated by a TSS
selector contained in the TSS gate. The process switch is
identical to the one that occurs with a TSS CALL
instruction (refer to Processes and Process Switching, in
this section). All the register state of the interrupted
process is saved automatically and the NT bit is set. After
the Interrupt Service Routine (ISR) executes, a special
instruction switches back and resume the interrupted
process.

Note: This instruction is the conceptual TRET type of the IRET instruction
(lRET when NT = 1).

Introduction to Protected Mode 1-25

If the entry in the IDT for a given interrupt type is in
interrupt or trap gate, the effect as if an automatic CALL
via a call gate executed. Fewer registers are saved
automatically; this type of gate may therefore be faster
for very simple ISRs. Like real mode interrupts, interrupt
and trap gates push the flag word on the stack then clear
the NT bit.

Note: Clearing the NT bit records that the last interrupt was the interrupt
gate or trap gate type, rather than the TSS gate type. After the ISR executes,
the same special instruction (lRET) resumes the interrupted procedure. However,
since NT = 0, IRET reverses the effect of the call-gate-like interrupt or trap
gate, rather than performing a full process switch. Because IRET has two
entirely different semantics, depending on the current setting of the NT bit, the
same ISR can be installed using either type of lOT mechanism without changing
its code. Alternatively, it can be installed in a real mode system.

5026065

Section 2 2-1

Guide to Compatible Programming

Programs compatible with protected mode can execute on
any Intel microprocessor in real address mode or on the
80286 and subsequent Intel microprocessors in protected
mode. This section describes how to create compatible
programs or adapt existing programs to be compatible.

This section also describes general rules for protected
mode programming.

80286 Real Mode Issues
The following incompatibilities arise between the B 28 and
B 38 (80286) workstations and the B 26 and
B 27 (80186) workstations, even when the former operate
exclusively in real mode:

o differences in I/O port addresses (which should be
corrected by using GetPStructure)

o timing races with certain peripheral chips due to the
80286 faster execution speed and instruction pipelining
(which should be corrected by adding delaying
instructions)

Guidelines for Addressing Schemes
These guidelines arise from the differences between
segment addresses SAs in real mode (paragraph numbers,
called SRs) and protected mode (selectors, called SNs).

You can use real mode SRs as short (16-bit) versions of
long pointers, if the objects they address are aligned on
16-byte boundaries. In a certain sense, SRs form a
16-byte-granular linear address space (of up to 1 Mb). In
real mode, you may want to subtract two SRs, or add a
value to an SR to get another SR.

Protected mode selectors do not form a linear address
space because selectors are merely indexes to objects, not
object addresses. In protected mode, you never want to
add or subtract SNs because there is no relationship
between the values of SN and the location of segments in
the linear address space.

5026065

2-2 Guide to Compatible Programming

In real mode, when segments are contiguous in memory,
you can detect that contiguity by comparing pointers. For
example, the segment at 5000:0 of length 20h is contiguous
with the segment at 5002:0 because
50000h + 20h + 50020h + Oh.

In protected mode, there is no relationship between the
ascending numerical value of selectors and the ordering of
segments in memory. A user program cannot know which
segments are adjacent. In fact, the operating system
reserves the right to move them from time to time without
informing the user program.

Observe the following for addressing:

o Do not use contiguous data objects larger than 64 Kb.
For example, in real mode, the compiled BASIC
runtime takes over all remaining memory in the
partition for heap space (potentially more than
64 Kb). Heap nodes are paragraph-aligned and are
addressed by use of SRs. Therefore, a future compiled
BASIC requires some reimplementation of its heap
logic to make it compatible with protected mode.
In protected mode, multisegment objects are not
necessarily contiguous in memory. Also, selectors
cannot be generated arithmetically.
Compatible programs must use a multisegment rather
than a contiguous data object and the segments must
be addressed internally using offsets, not paragraph
numbers.

o Use compatible memory management interfaces.
New memory management requests support programs
that are targeted for execution in both real and
protected mode:
AllocAreaSL
ExpandAreaLL
ExpandAreaSL
QueryBigMemAvail
ShrinkAreaLL
ShrinkAreaSL

Guide to Compatible Programming

Refer to appendix A for information on these new
memory management requests, as well as revised
descriptions of the following previously existing
memory management requests:
AllocAllMemorySL
AllocMemory LL
AllocMemorySL
DeallocMemory LL
DeallocMemorySL
Query MernA vail

2-3

Programs should not generally depend on the
descending or ascending nature of segment addresses
that memory management operations return.
A void using AllocMemory calls for very small,
numerous, fixed-length segments. This is a common,
harmless practice in real mode because there is no
system memory overhead for each segment. However,
in protected mode, a 16-byte segment, for example,
consumes more system memory for its overhead than
for the segment itself.

o Do not use SAs as paragraph-aligned (short) pointers.
Some programs convert addresses of objects that are
known to be paragraph-aligned into short pointers. A
short pointer is an SR made by combining the SR and
RA of a long pointer arithmetically. The implied RA of
a short pointer is O. This technique does not work in
protected mode.
Compatible programs that require zero offsets for
dynamically allocated memory should continue to use
AllocMemorySL; however, they cannot depend on the
contiguity of segments.
Compatible programs that do not care about zero
offsets but do care about contiguity between
separately allocated chunks of memory should use
AllocAreaSL and ExpandAreaSL. This provides up to
64 Kb of contiguous memory.

5026065

2-4 Guide to Compatible Programming

o Use ExpandAreaSL to allocate DS-relative memory.
The Linker's DS allocation feature lets you
dynamically increase the size of the statically
allocated DGroup segment (in which all statically
allocated data reside in a medium model program). It
does so by locating the statically created data at the
high-order end of the 64 Kb range of the DS register,
so that the segment may be expanded downwards
dynamically (assuming that the program is linked so
that DGroup is at the low-order end of the program
image). Figure 2-1 shows this arrangement. It permits
memory dynamically allocated by the program to be
addressable by DS-relative offsets. (Refer to the
BTOS Linker/Librarian Programming Reference
Manual for a further explanation of DS allocation.)
When using DS allocation in protected mode, the
Linker and PMOSS cooperate to allocate an
expand-down segment for DGroup. Compatible
PL/M-86 programs must declare doubleword types
that are not virtual addresses as DWORD and
incorrect hard-coded occurrences pointer. Pascal
programs must use the integer4 type. C programs
must use long.
Compatible assembly code must not load ES (or other
segment registers) with data. Use DX:AX to return a
DWORD function result, and ES:BX only for a
POINTER result.

Figure 2-1 BrOS Partition Using OS Allocation

free

code

static data

ExpandAreaSL
expansion

'-'--~I-----4

]

DGroup (64Kb
range of DS)

(SL) memory expansion

Guide to Compatible Programming

o Do not base program variables on system common
pointers located at absolute addresses - use
GetPStructure instead.

2-5

Under PMOSS, many system data structures are the
same as for the underlying version of BTOS, but they
must be accessed through calls to GetPStructure
rather than through pointers initialized to
low-memory paragraph-number addresses.
The obsolete way of accessing a system common data
structure is to declare a pointer at an absolute address
in the scat and base a variable (usually another
pointer) on it. You can still use these absolute
addresses as arguments to GetPStructure, but do not
use them to initialize pointers directly. For more
information, refer to Access to System Data
Structures, in appendix B.
Pointers contained within system structures are
usually real mode pointers, even when the structure is
correctly accessed using the GetPStructure. Normally,
therefore, protected mode programs cannot retrieve
and use pointers from system data structures.

o You must use a special operation when performing
pointer comparison operations.

A pointer is a PL/M-86 type that is equivalent to
Pascal's ADS type (refer to the BTOS Pascal Compiler
Programming Reference Manual). With BTOS 8.0 and
PMOSS, call FComparePointer to compare pointers in
protected mode. For example, instead of using If
pI =p2, use If FCornparePointer (pI, p2).

Note: In protected mode, FComparePointer is the only valid way to
compare pointers.

For most applications use FComparePointer with the
bCompareMode parameter set to mode 0 or 1 (refer to
FComparePointer, in appendix A).

o Code segments must have classname code.
Protected mode code segments must have the
classname code. Different types of descriptors are
built for code and data segments; data segments
cannot be executed and code segments cannot be
written (usually, both can be read).

5026065

2-6 Guide to Compatible Programming

Assembly language routines that omit the code
classname from the segment directive work in real
mode, but fault in protected mode.

o Writable code segments are not permitted.
Compatible programs cannot have writable variables
in the code segment or self-modifying code.
Compatible programs can, however, use
SetSegmentAccess to change segment type. For
example, COBOL must do so to load an intermediate
file (as data) and execute it (as code).

o Use SetPStructure when modifying system structures.
In real mode, as some programs do, you can directly
modify operating system structures (especially per
partition data structures that the operating system
maintains).
In protected mode, access to operating system data
structures is only possible using GetPStructure, which
returns a pointer based on a read-only descriptor for
most structures. Therefore, GetPStructure alone is not
sufficient when you need to modify this kind of
structure.
PMOSS supports the SetPStructure call for user
programs that have a legitimate reason for modifying
specific fields in certain data structures.
SetPStructure is not present in BTOS real mode BTOS
and therefore must be used only in protected mode.
(Refer to SetPStructure and FProtectedMode, in
appendix A.)

o A void timing loops.
Protected mode compatible programs cannot contain
timing loops that depend on instruction execution
speed. Certain instructions execute slowly in protected
mode (refer to the iAPX 286 Programmer's Reference
Manual and the 80386 Programmer's Reference
Manual).

Guide to Compatible Programming 2-7

o Use only compatible instructions.
Programs that are to remain B 21 and B 22 compatible
as well as B 26, B 28, and B 38 compatible can use
only the 8086 instruction set. Programs that are to be
compatible only among the various B 26, B 28, and
B 38 processors can use the full 80186 instruction set,
but none of the 80286 extensions.
Unisys-supplied compilers normally use only the 8086
instruction set. SRT PL/M-86 use the 80186
instructions (but not the 80286) if the $MOD186
directive is used. These programs can be recognized
with the Debugger because each procedure includes
ENTER and LEAVE instructions near its entry and
exit points, respectively.
You cannot use the PUSH SP instruction because it
differs between the 80186 and the 80286.

o You can still encode system calls using CS:IP hack.
Compatible programs can continue to encode trap
instructions using alternate CS:IP addends to arrive at
the same 20-bit address.
This is how to call BTOS for procedural requests,
kernel calls, and system common procedure calls. Use
exactly the same CS:IP values in programs compatible
with protected mode as have always been used in real
mode programs.
The Linker, BTOS, and PMOSS support these encoded
instructions in both real and protected mode programs
for compatibility, but are supported only for
compatibility purposes in protected mode. Since these
addresses fault in protected mode, they are altered
before executing. You cannot use CS:IP hack in
protected mode.
The virtual code segment facility (the overlay
manager) cannot use the CS:IP hack in protected mode.

5026065

2-8 Guide to Compatible Programming

o Filter processes may require a change.
Servers that filter (intercept) requests destined for
other servers are called filter processes. A common
use of filter processes is to enhance the semantics of
an existing request without changing an existing
server. Since BTOS is a set of servers, you can use the
filter process technique to enhance BTOS by allowing
BTOS to load run files in protected mode.
Filter processes commonly use one of two techniques
for passing through requests to the original server.
One of these techniques does not work in protected
mode in its original form and therefore requires the
new kernel primitive, ForwardRequest, to make filter
processes using those techniques compatible with
protected mode.
Servers that pass through requests by issuing a
second request primitive (or RequestDirect) continue
to work in protected mode, without change. This type
of two-way filter process, shown in figure 2-2,
intercepts the request on its way to the original
server and also on its return (the response).

Figure 2-2 Two-way Filter Process (no change required for protected mode)

Request

Respond I

.... Re .. spo __ n-.d __ -.It I . -
RequestDirect

Guide to Compatible Programming

The following is the sequence of typical events of a
two-way filter process:

o Client process issues Request.
o Filter processes proceeds from its Wait.

2-9

o Filter process changes exchResp field to its own
exchange and issues RequestDirect to original server's
exchange, then Wait.

o Original server proceeds from its Wait.
o Original server issues Respond.
o Filter processes proceeds from its Wait.
o Filter process changes exchResp field back to client

exchange and issues Respond.
o Client process proceeds from its Wait.

Servers that intercept the request only on its way to the
original server, but not on its return trip to the client,
traditionally use the Send primitive (or occasionally, the
RequestDirect primitive) to forward the request to the
original server. This type of one-way filter process, shown
in figure 2-2, does not work in protected mode unless
modified.

The following is the traditional sequence of events:

o Client process issues Request.
o Filter processes proceeds from its Wait.
o Filter process issues Send (or RequestDirect) to original

server's exchange.
D Original server proceeds from its Wait.
o Original server issues Respond.
o Client process proceeds from its Wait.

5026065

2-10 Guide to Compatible Programming

Figure 2-3 One-way Filter Process (change as shown for protected mode)

Request

tResPOnd

ForwardRequest

To make the traditional sequence compatible with
protected mode, use the new kernel primitive
ForwardRequest in place of Send or RequestDirect. This
new primitive (described in appendix A) is similar to Send
in that no response is expected; by issuing it, the filter
process discharges its responsibility for the request as if it
performed a Respond. Like RequestDirect, its argument
must always be a pointer to a request block.

o Using the Send and PSend kernel primitives are subject
to restrictions.

Use the pMsg operand of Send and PSend only to send
an actual pointer. In particular, the SN of the pMsg
must be a valid segment selector or the null selector
(zero). There are no restrictions on the RA value when
the SN is zero, so you can use Send and PSend rather
than a pOinter to send two bytes of arbitrary data.
Otherwise, you can use Send and PSend exactly as
they are in real mode, provided that the sender and
receiver are part of the same task. Thatis, two
processes sharing the same LDT can communicate
using Send, or an interrupt service routine can use
PSend to communicate with a process using the same
LDT.

Guide to Compatible Programming 2-11

You can only use Send between tasks (when one or
both is a protected mode task) if the receiving task
already has addressability to the segment that pMsg
references. That is, the receiving task must either be a
real mode task or already possess a descriptor for the
segment that the SN of the pMsg identifies. For
example, the following sequence is legal in protected
mode:

o Process A issues Request.
o Process B receives the request. The system builds

alias descriptors in the LDT of process B for the
request block and a pb/cb, then process B proceeds
from its Wait.

o Process B issues one or more Send process A, where
the pMsg operand is a pointer to the request block, a
pb from the request block, or a pointer to something
wholly contained within one of the pb/cb fields (in
other words, a pointer to something for which
process A is known to already have a descriptor).

o Process A receives each pMsg which, upon receipt, is
translated to a pointer containing the selector of the
descriptor that process A already has in its LDT.

o Process B issues Respond and the alias descriptors
are removed from its LDT.

After this, process B cannot issue a Send command
using pointers related to that request block.
The restriction occurs because alias descriptors are
constructed only upon receiving block sent with
Request, RequestDirect, or ForwardRequest. When a
pMsg from Send is received, an appropriate descriptor
must already exist. (The system finds the descriptor,
if it exists.)
This restriction is necessary because there is no
paired equivalent to Send (equivalent to Respond)
that enables the system to know when to deallocate
the alias descriptor, if one was created.

5026065

2-12 Guide to Compatible Programming

Only interrupt service routines, use PSend when
communicating with a process. Both the interrupt
service routine and the process are usually in the
same task. Therefore, this restriction for using
intertask pMsg does not occur with PSend.
PMOSS imposes additional restrictions on the use of
Send and PSend.

o Load the SS and CS registers properly to avoid a fault.
Assembly language code that loads SS, or any code
that causes CS to be loaded with a value other than a
previous value of CS (for example, by manually
storing a segment address on the stack and then
returning to it), must adhere to special rules of RPL
usage.
The Request Privilege Level (RPL) bits are bits 0 and
1 of the selector. The Linker emits selectors that have
zero in these bits, even though most programs run at
privilege level 3.
In fact, the RPL bits use only the operating system.
The DPL bits in the descriptor, not the RPL bits in the
selector, protect against unauthorized use of
descriptors. The RPL bits have no effect when they
are zero, or when the program using the descriptor is
running at level 3. When nonzero, they weaken the
selector. For example, a program running at level 0
faults if the RPL of the selector is numerically greater
than the DPL of the descriptor. The RPL bits are
provided so that operating system procedures
occasionally can tag selectors they receive (as
arguments from the user program) with the user's
privilege level. This ensures that the operating system
procedure will not successfully access data to which
the user is not entitled. This occurs even when the
operating system procedure is running at a higher
privilege level, which would legalize these accesses if
the RPL bits were zero.
When selectors are loaded into DS or ES, the RPL bits
remain as the Linker set them (zero). The RPL bits of
these segment registers do not usually represent the
DPL of the segment to which they refer. (To
determine the DPL with the Debugger, use the
CODE-V command.)

Guide to Compatible Programming 2-13

However, when CS is loaded during a far CALL or
JMP instruction, the DPL of the destination code
segment is placed in the RPL bits of the CS register.
Although the Linker puts 0 in the RPL bits of all
segment addresses (including those in CALL
instructions), after a CALL to a user procedure
executes, the CS register's RPL bits are 3, not O.
This occurs so the RET instruction can determine if
the return is to be to the same privilege level or not.
This requirement exists because RET, like CALL, can
be interlevel. Interlevel CALLs are only possible using
call gates.
At any time, the RPL bits of the CS register (the
current CS) are by definition the current privilege
level (CPL), the privilege level at which the processor
is executing now.
The SS register's RPL bits are required to match the
CS register's RPL bits exactly. Therefore, code that
loads SS, like code that manufactures saved CS values,
carefully must set these RPL bits to the DPL of the
stack segment before loading SS, to avoid a fault.
Moreover, the DPL of the stack segment must match
CPL exactly.

o NIL pointer problems can occur as a result of certain
coding sequences.

In protected mode, it is valid to put 0 in a segment
register, but not valid to use it to address data. A
segment register with 0 in it is out of action
temporarily.
Trying to reference data at paragraph number 0 in
real mode usually causes an error in a user program.
However, the following construct may be valid in real
mode, but fault in protected mode due to the kind of
code that the compiler generates:
DECLARE

pFoo POINYRT
. foo BASED pFoo WORD

IF (pFoo <> 0) AND (foo- 1). THEN
DO;

END;

5026065

2-14 Guide to Compatible Programming

In PL/M-86, the above construct allows the compiler
to test pFoo and foo in either order. However, the
access to foo must never occur if pFoo is nil;
otherwise a general protection fault occurs. In this
case, the code should be rewritten as:

IF pFoo <> 0 THEN
IF foo - 1 THEN

DO;

END:

o Pascal programs may require a work around for a fault
that results from an incompatible code generation
practice.

Unisys' Pascal compiler can generate code that
violates the limit restriction in protected mode when
accessing a segment.
This occurs because Pascal sometimes does full-word
operand fetches from memory, even when the object
being accessed is a byte; it then discards the
high-order byte. When the object being accessed is the
last byte in a segment, a limit fault occurs. This form
of code generation is improper in protected mode.
The problem can occur in servers that are written in
Pascal and try to read a byte located at the very end
of a pb/cb field passed to them by a client. These
fields are always tightly encapsulated segments to the
server, even through they may not be located at the
end of the client's data segment because PMOSS gives
the server its own descriptor for each pb/cb field
when the request arrives.
One workaround is to expand the segment or field by
padding it with an additional byte. With the pb/cb,
this means increasing the cb by 1. Another
workaround is to access the last word of the
structure, rather than the last byte, and then
manually shift to obtain the last byte.

Note: For more information on this restriction refer to the BTOS Pascal
Compiler Programming Reference Manual.

Guide to Compatible Programming 2-15

Linking

Version 6 Run File Format

Programs compatible with protected mode must use
version 6 run file format, which is designed to be loaded
in either real mode or protected mode. It supports
protected mode while preserving single run file
compatibility with real mode.

PMOSS never tries to load version 4 run files in protected
mode.

Note: In the SystemBuild field of the BIND command, you must specify PM
for protected mode or PMOSS for PMOSS (refer to the BTOS
Linker/Librarian Programming Reference Manual).

The BIND command (an alternate command case
invocation of the Linker version S.O and later) produces
version 0 run file format. The LINK command produces
version 4 run files. V6Link is a synonym for BIND.

Version 6 run file format is acceptable to:

o BTOS workstations 5.0 and later
o XE520s that support MSS, which allows the XE520 to

accept version 6 run file format

Earlier BTOS versions accept only version 4 run file
format, which is not compatible with protected mode.

Marking the Run File

PMOSS will not load a V6 run file in protected mode unless
it has been marked executable-in-protected-mode by
setting the high-order bit of the verAlt field at offset 20th
in the runfile header.

Future versions of the Linker (the BIND command)
support an option to accomplish this marking.

5026065

2-16 Guide to Compatible Programming

Currently, however, you must use the following Debug
File command sequence to mark the run file after linking:

With the system at the Executive level, type Debug File.
2 Press RETURN.

The Debug File command form appears with the
cursor in the File name field.

3 Type My File.run.
4 Press RETURN.

The cursor moves to the [Write?] field.
5 Type yes.
6 Press RETURN.

The cursor moves to the [Image mode?] field.
7 Type yes.
8 Press GO.

The prompt Debugger 8.0 (File Mode) appears and
the cursor appears next to the % on the line below
the prompt.

9 Type 20.
10 Press Right Arrow.

An arrow (~) appears, followed by a four-digit
number, which is part of the run file header.

Note: The old value of the verAlt field is usually 0001, as shown. If
another value is displayed, the run file is probably a V4 run file.

11 Type 800 l.
12 Press RETURN.

The cursor moves to the %.
13 Press FINISH.

The system returns to the Executive level.
14 Type Debug File.
15 Press RETURN.

The Debug File command form appears with the
cursor in the File name field.

16 Type My File.run.
17 Press RETURN.

The cursor moves to the [Write?] field.

Guide to Compatible Programming

18 .Type yes.
19 Press GO.

2-17

The prompt Debugger 8.0 (File Mode) appears and
the cursor appears next to the % on the line below
the prompt.

20 Press FINISH.

Note: Unless the run file is already marked, you must use the Debug File
utility twice: the first time to modify one bit of the header and the second time
without modifying anything. This is necessary because when you specify [Image
mode?], the system does not recalculate the run file checksum when you finish.
Activating the Debug File utility a second time, with [Write?] specified but
[Image mode?] left 'blank, stores the correct run file checksum.

Contiguous Code and Data

All code segments and all data segments, respectively,
must be contiguous in the run file.

PMOSS requires all the code segments in a run file to be
physically adjacent. Similarly, all the static data segments
must be adjacent to each other. The code and data
portions of the run file can occur in either order, however.

The Linker tries to order code and data segments in
separate, contiguous regions in the run file. However,
improperly classed segments can prevent the Linker from
ordering segments properly.

Failing to keep all the code segments together can prevent
PMOSS from reclaiming the command to compare the
memory consumption of the program when it is running in
real mode versus protected mode. The used number should
differ by the total amount of code in the program. (These
numbers reflect only consumption of real mode memory.)

If they do not (for example, if no code space was saved in
protected mode), examine the Linker map for
noncontiguous code or data. Pay particular attention to
??SEG segments that the Assembler generates. The
ordering of the segment does not matter if it has a length
of zero, but can cause a problem if the segment has
anything in it. These segments are emitted automatically
when code or data appears outside of any segment/ends
pair in an assembly language program.

5026065

2-18 Guide to Compatible Programming

Refer to the BTOS Linker/Librarian Programming
Reference Manual to resolve any problems with segment
ordering.

Remedies for Incompatibilities
The following text describes remedies for a program that
cannot conform to the guidelines described in this section.

Checking for Protected Mode at Run Time
Occasionally, there may be good reason for you to use two
different algorithms in real and protected modes. You can
package these programs as a single run file by including
both algorithms with run-time checks in the code to choose
between them.

Refer to FProtectedMode, in appendix A, which you can
use to make the run-time check.

PMOSS Limitations

If making a program compatible with protected mode
seriously impairs its usefulness as a real mode program,
you can port the program to protected mode as a separate
run file to preserve the appearance of a single program.
This technique requires renaming of the real mode
program and that the protected mode version replace it.
The protected mode program calls FProtectedMode after
executing and if it finds itself in real mode, chains to the
real mode run file. This technique handles both the case of
a processor that cannot support protected mode and a
system on which PMOSS is not running.

You might find this technique useful, for example, as an
interim measure enabling a program to continue using
some facility that increases performance or decreases
program size in real mode, but which protected mode does
not support, such as the virtual code segment facility
(overlays).

Guide to Compatible Programming 2-19

Naming Conventions
Unisys source code uses conventional prefixes and suffixes
for variable and function names. These conventions make
source code easily readable by acting as an extension to
the type system of the language. Unisys documentation of
procedural interfaces also uses these prefixes to name
parameters.

The previously existing prefixes listed below are
interpreted as indicated with respect to protected mode
concepts.

Prefix

sa

ra

p

Meaning

Segment address. Deliberately ambiguous; can be either an sn or
an sr prefix (described below). Used when the code is to operate
in either real or protected mode, or anywhere that the distinction
between real and protected mode operation is not relevant to
understanding the variable's role.

Relative address. An offset from a segment address (sa). Exactly
the same meaning as sa.

Pointer (logical address). An sa:ra pair. Deliberately ambiguous in
the same sense as sa.

The following new prefixes deal with protected versus real
mode distinctions.

Prefix

sn

sr

pn

pr

sg

sl

5026065

Meaning

Selector. Refers specifically to the protected mode form of
segment address. Used only when it is important to understand
that the variable is not a paragraph number.

Paragraph number. Refers specifically to the real mode form of
segment address. Used only when it is important to understand
that the variable is a paragraph number.

An sn:ra pair (virtual address).

An sr:ra pair (real address).

A global (GOT) selector. More specific than an sn. Used when it
is important to understand that the variable is a GOT selector, as
opposed to just any selector.
A local (lOT) selector. More specific than an sn. Used when it is
important to understand that the variable is an LOT selector, as
opposed to just any selector.

2-20

pg
pi

la

Guide to Compatible Programming

An sg:ra pair (global virtual address).
An sl:ra pair (local virtual address).

linear address. On the 80286, a DWORD containing a 24-bit
physical address and a high-order zero byte. A linear address is
stored in the base field of a segment descriptor. You cannot use
a linear address directly in an instruction, but the Debugger
accepts linear addresses (any numeric address that does not
contain a : is interpreted as an la).

New Machine Instructions

80286 Instructions

80286 instructions are used in PMOSS, but not in user
programs that must remain compatible with real mode. To
be compatible with protected mode, user programs do not
require a new version of the Assembler that supports
these instructions.

The operating system Debugger accompanying BTOS 8.0
supports 80286 instructions. The Debug File utility that is
part of standard language development software 8.0 does
not, however. The Debug File utility usually disassembles
80286 instructions as ILLEGAL.

There are 80286 instructions in eTOS.lib 8.0 that
conditionally execute only when running on 80286-based
CPU modules.

PMOSS is built from source partially by using an enhanced
Assembler that supports the new 80286 instructions. This
version of the Assembler is not a part of 8.0 standard
language development software.

80186 Instructions

PMOSS also uses 80186 instructions (instructions found on
the 80186 and 80286, but not the 8086). BTOS 8.0 and
standard language development software 8.0. fully
support these instructions.

Section 3

Debugging Protected Mode Programs

Overview
Debugger versions 8.0 and later support debugging of
protected mode programs. This section explains the new
Debugger facilities and how to use them.

3-1

This section describes differences you will encounter when
using the Debugger. For more information on the
Debugger, refer to the BTOS Debugger Programming
Reference Manual.

Most important Debugger 8.0 operations work with
protected mode programs. The Debugger facilitates
portation of existing servers to protected mode.

In addition to supporting familiar operations such as
setting and clearing breakpoints and checking the contents
of registers in protected mode, the Debugger adds
protected mode Task State Segments (TSS) to the CODE-S
display of processes and exchanges. It also supports a new
command, CODE-V, which displays the contents of the
descriptor corresponding to a selector (refer to
Descriptors: CODE-V, in this section).

The PR Value and Its Meaning
PR is a Debugger variable that identifies the process
currently being examined. Only the Debugger user needs to
know about PR. Unlike other registers, PR can be changed
without affecting the outcome of execution; however, PR
can affect Debugger commands. The meaning of PH differs
between real and protected modes.

In real mode, before PMOSS is installed, the command
CODE-S displays a summary of information about all
processes and exchanges in the system. The first column
on the left in this display has the heading id. These
entries are the process identification numbers for all
processes of which the system (real mode BTOS) is aware.
The id value is an index into a list of processes, so the
values do not become very large; DOh - 2Fh are typical
examples.

5026065

3-2 Debugging Protected Mode Programs

In real mode, any of these process numbers can be
assigned to PRo PR thus identifies a process and:

o implies a load offset to which the Debugger is to
relocate any subsequently loaded symbol file (when the
CODE-F command is used)

o indicates which set of saved registers the Debugger
should display or modify when you display or modify
hardware registers

o indicates which process should be single-stepped when
using the CODE-X command

When PMOSS is installed, PR can be assigned either a real
mode process number or a TSS selector. A TSS selector
corresponds to the descriptor that contains the address of
the Task State Segment (TSS) of a protected mode process.
The values of these TSS selectors are generally much
larger than the values of the real mode process
identification numbers; 5AO or 608 are typical examples.

Note: Although user programs do not use TSS selectors, PMOSS uses some
TSS selectors that are small; for example, the PMOSS process TSS is 18h.

When a breakpoint is taken, the system automatically sets
PR to the process that encountered the breakpoint (except
for a CODE-I breakpoint). The same is true of faults and
exceptions.

In the Debugger, PR not only identifies a process but also
determines whether the debugging is for a real mode
program or a protected mode program.

The first sign of a change in PR is the Debugger prompt:

o An asterisk appears when debugging a real mode
process (except when inside BTOS or at interrupt level).

o A solid square prompt appears when debugging a
protected mode process (a TSS).

Debugging Protected Mode Programs 3-3

The second effect of this enhancement is the way CODE-F
behaves:

o When a symbol file is loaded while PR is set to a real
mode process, the segment addresses associated with
the symbols are paragraph numbers, which are
relocated to correspond to the load offset (base address)
where the program's code was loaded.

Note: When debugging a real mode program, some programs may need to
.specify an explicit numeric load offset as a parameter to the CODE-F
command (though the Debugger can often manage without this parameter).
When debugging a protected mode program, a load offset is never required,
and should never be used, or the Debugger assumes it is dealing with a real
mode symbol file (for example, that symbol addresses are paragraph numbers).

o When a symbol file is loaded while PR is set to a TSS,
the segment addresses associated with the symbols
become selectors. No relocation is necessary because the
selectors are not relative to actual memory addresses,
since they are really indexes into the program's LDT.
Every program has its own LDT, which the Debugger
finds by looking in the TSS (that is, by knowing PR).

The third effect is the way that SA:RA addresses of the
are decoded:

o When PR points to a real mode process, the Debugger
interprets the SA portion of the address as a paragraph
number (an SR).

o When PR points to a TSS, the Debugger interprets the
SA as a selector (an SN).

Note: Numeric addresses that do not contain a colon (:) are interpreted the
same way, regardless of the PR setting. These addresses refer to linear
addresses, such as absolute memory locations on the 80286.

For example, the address 0 always refers to the first byte
in physical memory, regardless of PRo If PR points to a
real mod~ process, the address 0:0 also refers to this same
byte. However if PR points to a TSS, the address 0:0 is
invalid and, if used, generates the message Non-existent
memory if used because 0 is not a valid selector.

Note: Zero is never a valid selector; in protected mode, this distinguished,
reserved selector value is called the null selector and never refers to an actual
segment. This is a hardware-enforced, rather than a software, convention.

5026065

3-4 Debugging Protected Mode Programs

Looking at Processes: CODE-S
If PMOSS is installed and no other protected mode
program is loaded, the command ACTION-A causes the
system to enter the Debugger.

Sending the command CODE-S shows the display of real
mode processes (PCBs) and exchanges, followed by a new
display: the GDTR register, IDTR register, and the
protected mode Task State Segments (TSS). At this point,
all the TSS segmeI)ts are internal PMOSS processes or
exception handlers.

To choose a TSS selector from the display of protected
mode processes, use the following procedure:

Set PR equal to the SgTss value.
2 Press RETURN.

A solid square Debugger prompt appears, showing
that the Debugger mode is protected mode.

3 If you are debugging PMOSS, load the associated symbol
file in the usual way, type [sys] <sys>PMOSS.sym.

4 Press CODE-F.

The GDTR register locates the base of the Global
Descriptor Table (GDT). Although this information may be
useful, you can use the CODE-V command to conveniently
examine part or all of the GDT (refer to Descriptors:
CODE-V, in this section).

Debugging Protected Mode Programs 3-5

Entering the Debugger
Use caution when you work with protected mode programs
and enter the Debugger with the ACTION-A and
ACTION-B commands. Although you can use these
commands to activate the Debugger at any time, the value
of PR may not be the expected one. Even worse, trying to
set PR to the appropriate value may not provide access to
the process' current registers and stack. Unfortunately,
TSS stores the state of the protected mode process only
after a:

o breakpoint
o CODE-X, CODE-GO, or INT 3 instruction
o fault

Therefore, when you use ACTION-A or ACTION-B to
enter the Debugger, the values in the TSS you select (by
setting PR) may be old.

You can enter the Debugger at the outset of the run by
using CODE-GO to begin execution rather than GO.

After you enter the Debugger and receive the square
prompt, load the symbol file and place breakpoints in your
protected mode program in the usual way.

There is also a new way to enter the Debugger in
protected mode: the fault. A fault is a condition that
prevents the hardware from completing an instruction,
such as a protection violation. In PMOSS, all faults cause
the system to enter the Debugger and display an
appropriate message.

Not all faults are errors. Faults also occur in virtual
memory systems when the Debugger tries to access a
segment that is not in memory; this fault is not an error,
but a signal for the operating system to read the segment
from disk and restart the program. PMOSS does not use
faults this way. Programs that are not debugged will fault
at or soon after the error. Therefore, one of the protected
mode benefits is how it facilitates debugging.

5026065

3-6 Debugging Protected Mode Programs

Accessing 80286 Registers
You can enter registers common to the 80286, 80186 and
8086 using the commands in the BTOS Debugger
Programming Reference Manual. In addition, the Debugger
lets you access the registers peculiar to the 80286 (MSW,
SSO, etc.), including all the TSS fields.

Note: The Debugger does not support the additional 80386 registers.

Mnemonics

To display or modify a register, use the two-letter
mnemonic register name that the Debugger recognizes.

The following list shows the new register mnemonics:

Intel mnemonics Debugger mnemonics

MSW MS
TR TR
LDTR LD
SSO SO
SPO PO
SSI SI
SPI PI
882 82
8P2 P2
Back-link field of TSS LK

The GDTR and IDTR values have no Debugger mnemonics,
but appear when you use the CODE-S command.

Debugging Protected Mode Programs

Warnings

The Debugger shows incorrect IDTR and TR values and
prevents the TR from being modified.

3-7

When PR is set to a TSS, the Debugger fetches from the
TSS all the registers except GDTR, IDTR, MSW, and TR. If
you change a register, the Debugger stores the new value
in the TSS. Thus, if PMOSS is not currently using the TSS
for storing register values, the registers appear incorrectly
and commands to modify them do not take effect. In
PMOSS, this may happen when you use ACTION-A or
ACTION-B to enter the Debugger. It never happens when
you enter the Debugger by:

o taking a breakpoint
o an INT 3 instruction
o an exception or fault
o the CODE-GO command
o single-stepping (the CODE-X command)

Finding the BTOS Process
Each Task State Segment (TSS) is associated with a BTOS
real mode Process Control Block (PCB). The TSS is used
when the process is in protected mode and the PCB is used
for real mode.

You may want to examine the current TSS and determine
the PCB associated with it because when a process waits
at an exchange, it waits in real mode; therefore, the
process is a PCB that is waiting, exactly as in normal real
mode debugging.

You cali find the PCB for your protected mode process
any time you are at a square prompt by using the
following procedure:

1 Type sO.
2 Press Right-Arrow.

A four-digit value appears.
3 Type nnnn:Offca, where nnnn is the four-digit value

that appeared in step 1.

5026065

3-8 Debugging Protected Mode Programs

4 Press Right Arrow.
The value that appears should be the same as the TSS
number (the current PR value). If it is not, or if the
message Non-existent memory appears, you are
looking at a non-user TSS (a special PMOSS internal
TSS) and cannot use this procedure to find the PCB.
If it is the value of PR, press Down-Arrow.
The value that appears (at offset OFFCCh) is the
process' default response exchange number. The
process mayor may not be waiting at this exchange.
To find the PCB, press CODE-S; the value appears in
the exch column of the PCB display.

Breakpoints
You can set breakpoints in the usual way. You can set up
to 16 breakpoints, but only up to six breakpoints can be
broken at once.

Note: Reaching a seventh breakpoint causes a system crash. However,
multiple concurrent breakpoints can occur only when mUltiple processes with
breakpoints set in them are running concurrently.

CODE-B Breakpoints

You use the CODE-B command to set breakpoints in
processes Gust as you do in real mode).

If you reach a CODE-B breakpoint and enter the
Debugger, the message Break at [address] in process [n]
appears. In a protected mode process, the prompt is
square, indicating that the process number is a TSS selector.

To clear breakpoints, use the CODE-C command.

Debugging Protected Mode Programs 3-9

CODE-I Breakpoints

You set and clear breakpoints in interrupt service routines
using the CODE-I and CODE-C commands, respectively.

However, the following special restrictions apply when
debugging protected mode interrupt service routines with
PMOSS:

o These breakpoints can be taken, but it is not possible to
proceed (CODE-P or GO) or single-step (CODE-X)
afterwards.

o Upon taking the breakpoint, the value of the Debugger's
LD register (the LDTR) is erroneous. You must change
this value manually to the correct one before code or
data may be examined.

Note: Real mode interrupt service routines fully support CODE-I breakpoints.

You can display the correct value of LD any time the
process that created the interrupt service routine is
running - for example, by starting the program with the
CODE-GO command. Remember this value when setting a
CODE-I breakpoint and set LD to it immediately when the
CODE-I breakpoint occurs.

Note: The PR value appearing at the breakpoint differs from that of the
original process because all interrupt service routines use a special system TSS
when running. Manually change LD only, not PRo

The IP value can also be incorrect (usually one greater
than it should be, making it appear that execution was
interrupted in mid-instruction). You will have better
results trying to disassemble the code at the breakpoint
works if you first back up IP to the actual IP value of the
breakpoint.

After you examine code and data at the CODE-I
breakpoint, reboot the workstation.

5026065

3-10 Debugging Protected Mode Programs

Descriptors: CODE-V
If you press CODE-V without supplying an argument, the
Debugger displays the entire GDT, IDT, and current LDT.
The IDT display, however, is meaningless in this version
of the Debugger. You can access the IDT while debugging
through GDT descriptor 10h. To display an IDT descriptor,
display the six bytes of memory at lO:n, where n is the
interrupt vector number times eight.

If you supply a selector value and press CODE-V, the
Debugger displays the descriptor that corresponds to the
supplied selector. You can also supply any symbol or
virtual address; the CODE-V command uses the SA
portion of the SA:RA only.

An 80286 descriptor is an eight-byte structure, of which
only six bytes are used. The format of the display is
different for different types of descriptors.

Segment Descriptors

To display a segment descriptor, use the following
procedure:

Type InitRqTables, where InitRqTables is a procedure
name in this example (an internal PMOSS procedure).

2 Press CODE-V.
The following segment descriptor information appears:
iSn sn base limit ar p
0060 0300 OFC1FO 02F2 98 0
code,non-conforming,readable

Debugging Protected Mode Programs 3-11

The fields that appear are:
iSn the most-significant 13 bits of the selector

is the array index into the descriptor table
(considered an array of eight-byte
structures)

sn the selector value you entered with the
low-order 2 bits (the RPL) zeroed; that is,
the offset of the descriptor in the descriptor
table, plus 4 if the descriptor table is the
LDT, as opposed to the GDT (the example
above is a GDT descriptor)

base the linear address (which is the absolute
physical address on the 80286) of the
segment, except for the expand-down
segment

limit the segment size, minus one (except for an
expand-down segment)

ar

p

the access rights byte, in its entirety, with
the text appearing to the right of the
descriptor fields disassembling this byte
(for more information on how this affects
the 80286 and 80386 microprocessors, refer
to the iAPX 286 Programmer's Reference
Manual and 80386 Programmer's Reference
Manual, respectively)
the Descriptor Privilege Level (DPL), which
is bits 5-6 of ar

Gate Descriptors

To display a gate descriptor, use the following procedure:

Type CreateProcess, where CreateProcess is a kernel
call reached by a call gate from a user program.
Press CODE-V.

The following gate descriptor information appears:
iSn sn sn : ra wc ar p
0072 0394 02E8:0C48 02 E4 3 call gate

'5026065

3-12 Debugging Protected Mode Programs

The fields that differ from the segment descriptor
display are:

sn:ra the destination address of the gate (sn
refers to yet another descriptor)

wc word count - in a call gate only, the
number of words to be copied from the top
of the caller's stack to the new stack if the
call is to a more privileged level (which·
corresponds to the number of argument
words in the procedure call)

Effect of Call Gates on Debugging
If a procedure is reached through a gate, trying to
disassemble the procedure code displays the message
Non-existent memory. For example, typing the procedure
name CreateProcess and pressing MARK produces this
message because Create Process is a kernel call reached via
a gate.

Typing CreateProcess and pressing CODE-V displays the
call gate. Then, typing the sn:ra value shown in the gate
and pressing MARK disassembles the first instruction of
the procedure:

2E8:0C48 MARK PUSH DS

As with all kernel calls and system common procedures,
CreateProcess is a large model procedure. (Most user
programs use the medium model of segmentation.)

PMOSS uses the PL/M-86 $MOD186 option, which instructs
the compiler to use the instructions not available on
processors prior to the 80186. The most common 80186
instructions you may see while debugging are ENTER and
LEAVE, found near the entry and exit of PMOSS internal
procedures. These replace familiar MOV BP ,SP, and PUSH
BP instructions.

Debugging Protected Mode Programs

Behavior at a Fault
A fault occurs when a protected mode hardware check
detects a condition that prevents execution from
continuing (refer to Faults, in section 1).

3-13

To clear a fault condition, you can exit by pressing
ACTION-FINISH if the program has not executed
ConvertToSys. If a server program executed ConvertToSys,
however, you must reboot the system.

The message restatable condition indicates restartable
faults. You can patch around this fault in some
circumstances by correcting the data that caused the fault
(usually, an invalid selector value). These faults can also
repeat. If you proceed from a fault (CODE-P or GO)
without correcting the problem, the same fault occurs again.

The Debugger recognizes faults or DEBUG (INT 3)
instructions that occur inside PMOSS because the CS value
denotes a GDT selector (bit 2 = 0). This event may not
necessarily indicate a PMOSS bug. When the user process
is executing, it may call the Debugger because an invalid
argument (for example, an invalid request block or pointer
operand) passed to PMOSS.

To find the cause of this event, check for an internal
PMOSS error condition. When PMOSS gets an unexpected
error code from an inner procedure, it issues a DEBUG
(INT 3) to enter the Debugger and the message Debugger
call at ... appears. Debugger entry occurs in a PMOSS
procedure called CheckErc (a special PMOSS version of
this procedure, not the standard version from CTOS.lib).

Use the following procedure to load the PMOSS symbol
file and check the CS:IP value to determine if the
Debugger was entered from CheckErc:

1 Type [Sys]<Sys>PMOSS.sym.
2 Press CODE-F.
3 Type cs:ip.
4 Press MARK.

5026065

3-14 Debugging Protected Mode Programs

If the procedure that called the Debugger is named
CheckErc, the value in AX is the error code. This
represents an internal PMOSS error or an invalid argument
that PMOSS could not detect.

If a fault or a Debugger call from some place other than
CheckErc occurs, the problem may still not be a PMOSS
internal error. Trace the stack back to where execution
left the user program and entered PMOSS (usually via a
call gate). To do so, you must understand the call gate
mechanism.

When control passes through a call gate to a more
privileged level, the stack switches. To perform stack
tracing when a fault occurs inside PMOSS, examine
memory beginning at SS:SP; do not use CODE-T, which
does not:

o work for most PMOSS procedures because they are large
models

o know how to follow an interlevel return back to the
user stack

Debugging PMOSS Interrupt Service Routines
PMOSS supports only two types of protected mode
interrupt service routines (lSRs):

Draw RS-232 comm ISRs
o programmable interval time (PIT) ISRs

You cannot activate the Debugger when a fault occurs in
an ISR because:

o the nonresident portion of the Debugger is not yet in
memory

o to bring the Debugger into memory, you must reenable
interrupts to use the disk process

Note: If you reenable the interrupts in an ISR before reaching the end of the
ISR (and the operating system issues an end-of-interrupt instruction to the
device and interrupt controller), the system does not respond to your commands.

Debugging Protected Mode Programs 3-15

To avoid this situation, PMOSS does not enter the
Debugger when a fault or fatal error occurs during an ISR.
Instead, it calls CRASH with error code 14108 (if a fault
occurred) or with a fatal error code (refer to the BTOS
Status Codes Reference Manual).

You can make the Debugger work properly by installing
PMOSS and then locking the Debugger in memory before a
fault occurs. You can then use the Debugger when a fault
or fatal error occurs.

Allowing the System to Enter the Debugger

There are two ways to have the system enter the
Debugger when installing PMOSS:

o Using the RUN command, type PmAgent.run in the Run
file field and no yes in the [Param 4] field.

o Using the Command File Editor, add the following
fourth line to the INSTALL PROTECTED MODE
command:

[Enter debugger (during installation, on isr fault)?]
and type no yes before activating the INSTALL
PROTECTED MODE command.

The yes selection in the RUN and INSTALL PROTECTED
MODE commands lets you debug faults and fatal errors
that occur in PMOSS interrupt service routines.

The no selection prevents PMOSS from entering the
Debugger when you install PMOSS; otherwise, PM ass
enters the Debugger twice:

o once after the system enters protected mode, but before
it performs the upper-memory test

o again after the system performs the memory test,
relocating Pmoss.img to the upper megabytes

5026065

3-16 Debugging Protected Mode Programs

Note: Enter PMOSS in the Debugger only when debugging PMOSS.

Locking the Debugger in Memory

After you allow the system to enter the Debugger, you
lock the Debugger in memory before a fault occurs.

There are three ways you can lock the Debugger in
memory, depending on whether:

o servers fault during installation, or you are using
protected mode programs

o servers fault after you install them, and you do not
need to run the Executive or an application program on
the workstation

o you want to use the Executive or an application
program with CODE-I breakpoints

Using Protected Mode Programs and Servers That Fault
during Installation

The following procedure describes how to lock the
Debugger in memory when using protected mode programs
or servers that fault when you install them.

This procedure requires CODE-I breakpoints, which
prevent the system from ending the primary partition (for
example, the Executive). If this occurs, you must wait
until after the server installs before setting the
breakpoint, since a termination occurs when the server
calls ConvertToSys and then Exit.

If you type Executive commands that load run files while
the CODE-I breakpoint is in effect, you may get a 401
error code or the system may not respond because the
Executive tries to terminate. (You can alternatively use
the procedure described in Using the Executive or
Application Program with the CODE-I Breakpoint, in this
section.)

Debugging Protected Mode Programs 3-17

To lock the Debugger in memory when using protected
mode programs or servers that fault during installation,
use the following procedure:

Press CODE-GO to run the affected program.
2 Insert a CODE-I breakpoint anywhere in real or

protected mode code that will never execute.
If a fault occurs, the system enters the Debugger and
reports the fault. You can then use the Debugger, but
cannot use symbols.

3 If you must use the Executive or another application,
but you receive a 401 error, press ACTION-A.

The system activates the Debugger.
4 Press CODE-C.

The system removes the CODE-I breakpoint.
5 Press GO.

The system exits the Debugger.
6 Use the Executive, if you desire.
7 Set the CODE-I breakpoint again.

The system reenters the Debugger.

Note: If a fault occurs while you perform this procedure, the system will not
respond to your commands.

Servers That Fault After Installation

The following procedure describes how to lock the
Debugger in memory when using servers that fault after
you install them. Use this procedure when you do not need
to run the Executive or an application program on the
workstation to cause the fault.

This procedure requires CODE-I breakpoints, which
prevent the system from ending the primary partition (for
example, the Executive). If this occurs, you must wait
until after the server installs before setting the
breakpoint, since a termination occurs when the server
calls ConvertToSys and then Exit.

5026065

3-18 Debugging Protected Mode Programs

If you type Executive commands that load run files while
the CODE-I breakpoint is in effect, you may get a 401
error code or the system may not respond because the
Executive tries to terminate. (You can alternatively use
the procedure described in Using the Executive or
Application Program with the CODE-I Breakpoint, in this
section.)

If a fault occurs after installing a server, use the
following procedure to lock the Debugger in memory:

After installing the server, wait for the system to return
to the Executive level.

2 Press ACTION-A.
The system enters the Debugger.

3 Set the CODE-I breakpoint at a location that will not
execute.

Using the Executive or Application Program with the
CODE-I Breakpoint

You can use the Executive or an application program
while the CODE-I breakpoint is in effect by running the
programs under BTOS Context Manager (refer to the BTOS
Context Manager Administration Guide). However, you
must have:

o enough memory for your servers
o enough memory for BTOS Context Manager, with 80 Kb

reserved for the Debugger
o at least one application partition of sufficient size

To use the Executive or application program with
CODE-I breakpoints, use the following procedure:

Using the BTOS Context Manager Configuration File
Editor, reserve at least 80 Kb of memory for the
Debugger (refer to the BTOS Context Manager
Administration Guide).

2 Install BTOS Context Manager.
3 Set the CODE-I breakpoint.

The Debugger locks into the reserved memory and
does not interfere with the Executive or any other
application.

Section 4 4-1

SPA Mover Interface

PMOSS is compatible with, replaces, and subsumes the
functionality of the SPA Mover Server (Mover. run). This
allows PMOSS to have as clients the RamDisk Server
(RamDisk.run) and BTOS Context Manager, as well as
other clients of the SPA request interface. PMOSS uses the
identical request interfaces that Mover.run uses.

However, PMOSS uses these interfaces differently than
SPA uses them, which may have implications for some
clients.

Although correctly written client programs do not notice
the difference, you can write client programs that use the
Mover Server interface and work with the SPA Mover.run,
but not with PMOSS' implementation of the same
interface. This section explains how to write programs
that work in either environment.

For more information on SPA, refer to the System
Performance Accelerator (SPA) Installation Guide. For
more information on BTOS Context Manager, refer to the
BTOS Context Manager Administration Guide.

Procedural Interfaces
SPA does not provide a procedural interface to the Mover
Server requests. Clients are required to build, send, and
wait for their own request blocks.

This restriction is due only to the choice of request code
numbers (in an odd-level request code range where the
automatic procedural interface is not available). PMOSS
adds new request codes that are semantically equivalent to
the old codes (in a new, even-level range where a
procedural interface is automatically provided). PMOSS
also recognizes the old codes, for compatibility with
existing clients.

5026065

4-2 SPA Mover Interface

Appendix A describes the following Mover Segment
request interfaces:

D AllocMoverSegment: Obtains a variable-length segment
of memory for use as a cache.

D MovbMoverSegment: Moves bytes between two locations,
either or both of which can be in a previously allocated
cache memory segment or in real mode memory.

D DeallocMoverSegment: Frees a previously allocated
cache memory segment.

D QueryVersionMoverSegment: Obtains the Mover Server
version number.

Mover Segments
PMOSS performs various checks that SPA does not
perform. For example, SPA lets the client write to any
part of protected mode memory, without checking that the
client has already allocated the memory.

PMOSS uses mover segments, which let clients read or
write only those portions of protected mode memory that
they have previously been allocated. Each
AllocMoverSegment request creates one such segment.
Mover segments are similar to the program segments that
protected mode programs use, except:

D Individual mover segments can be up to 2 Mb in size.
D Client programs cannot access mover segments directly.

Like SPA, mover segments can be accessed only via the
MovbMoverSegment request.

D Addresses of mover segments, or objects within mover
segments, are called mover addresses (refer to
figure 4-1). Mover addresses are not SA:RA addresses
that programs use. They are 32 bits long, and consist of
an II-bit handle and a 21-bit displacement. Mover
addresses are not physical addresses (unlike SPA). They
are a new kind of logical address compatible, within
certain limits, with the physical addresses that SPA uses.

The AllocMoverSegment request returns a mover address
(with PMOSS) or a physical address (with SPA).
Compatible programs must not depend on one or the other
address form.

SPA Mover Interface

Figure 4-1 32-bit Address

31 21 20 0

handle I displacement I

11 bits
(max 2048 segs)

21 bits
(2 Mb max

seg size)

4-3

A PMOSS mover address uses the high-order 11 bits for
the handle. Each AllocMoverSegment request returns a
unique handle, but two successive requests may not return
consecutive handles. AllocMoverSegment never returns a
handle of zero; the handle zero is reserved and has a
special meaning when used in the MovbMoverSegment
request.

PMOSS always returns zeroes in the low-order 21 bits (the
displacement), but the client must not depend on this
because SPA does not usually return zeroes in these bits.

5026065

4-4 SPA Mover Interface

Validation Checks
The MovbMoverSegment request takes a source and
destination operand, each consisting of a mover address
and a byte count. Either operand can refer to real mode
memory or cache memory (and both operands can refer to
the same kind of memory). PMOSS performs the following
checks on this request:

D For each operand, the mover address handle must be
either zero, indicating that the displacement part refers
to real mode memory, or an existing mover segment handle.

D If the operand refers to real mode memory (zero
handle), the displacement and count must specify that
all the indicated bytes lie in the range 0 to 992 Kb.

D If the operand refers to a mover segment (nonzero
handle part), the userNum field of the
MovbMoverSegment request block must match the
userNum field in the AllocMoverSegment request block
previously used to allocate the mover segment. This is
the case when using the procedural interface, provided
the allocation and the move are issued from the same
partition.

D Each operand that refers to a mover segment can
specify part or all of only one mover segment. The
request may not span mover segments, even when the
segments are allocated to the same userNum (because
they are not necessarily adjacent physically).

D Any alignment is allowed, but using odd mover
addresses slows byte transfer.

Appendix A A-1

New Procedural Interfaces

This section lists new BTOS interfaces added to support
protected mode compatibility. This section also describes
certain existing interfaces to explain their behavior in
protected mode.

5026065

A-2 New Procedural Interfaces

AliocAIiMemorySL
AllocAllMemorySL (pcParagraphRet, ppSegmentRet):
ercType

Description

AllocAllMemorySL creates a short-lived segment and
allocates all free memory available to the program.

In protected mode, if the size of allocated memory is
greater than 64 Kb, the region beyond 64 Kb is not
addressable using the returned memory address.

For this reason, programs that run in both real and
protected modes should use the following short-lived
memory allocation operations:

o AllocMemorySL
o AllocAreaSL
o Expand9AreaSL

Procedural Interface

AllocAllMemorySL (pcParagraphRet, ppSegmentRet):
ercType

where

pcParagraphRet is the memory address of a word where
the count of bytes available (divided by
16) returns.

ppSegmentRet is the memory address into which the
4-byte memory address of the allocated
segment returns. The offset, which is
always 0, returns in the low-order 2 bytes.
The segment address returns in the
high-order 2 bytes.

Request Block

scParagraphMax is always 2 and spSegmentMax is always 4.

New Procedural Interfaces A-3

Size
Offset Field (bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 2
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 46
12 reserved 6
18 pcParagraphRet 4
22 scParagraphMax 2 2
24 ppSegmentRet 4
28 spSegmentMax 4 4

5026065

A-4 New Procedural Interfaces

AliocAreaS L
AllocAreaSL(cBytes, ppSegmentRet): ercType

Description

AllocAreaSL creates a short-lived segment and allocates
memory of the specified size at the end of the segment.

This operation differs from AllocMemorySL in that the
offset portion of the allocated segment's address is not
necessarily zero. (Refer to AllocMemorySL, in this section.)

In protected mode, this operation also allocates a new
expand-down data segment descriptor.

Programs that run in both real and protected modes
should use AllocAreaSL if the program allocates additional
memory in the short-lived segment. A program should use
ExpandAreaSL to allocate additional memory.

Procedural Interface

AllocAreaSL(cBytes, ppSegmentRet): ercType

where

cBytes is the count of bytes to be allocated.

ppSegmentRet is the memory address into which the ~
4-byte memory address of the allocated
segment returns.

The offset, which is not necessarily 0, returns in the
low-order 2 bytes. The segment address returns in the
high-order 2 bytes.

New Procedural Interfaces A-5

Request Block

Size
Offset Field (bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 278
12 cBytes 2
14 reserved 4
18 ppSegmentRet 4
22 spSegmentMax 2 4

5026065

A-6 New Procedural Interfaces .

AllocMemoryLL
AllocMemoryLL (cBytes, ppSegmentRet): ercType

Description

AllocMemoryLL creates a long-lived segment and allocates
memory of the specified size at the beginning of the segment.

In protected mode, this operation also allocates a new
expand-up data segment descriptor.

Programs that run in both real and protected modes
should use ExpandAreaLL to allocate additional memory
within the segment that AllocMemoryLL creates.

Procedural Interface

AllocMemoryLL (cBytes, ppSegmentRet): ercType

where

cBytes is the desired segment size.

ppSegmentRet is the memory address into which the
4-byte memory address of the allocated
segment returns. The offset, which is
always 0, returns in the low-order 2 bytes.
The segment address returns in the
high-order 2 bytes.

Request Block

spSegmentMax is always 4.

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb

nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 cBytes
14 reserved
18 ppSegmentRet
22 spSegmentMax

Size
(bytes)

1
1
1
1
2

2
2
2
4
4
2

Contents

6
o
o
1

44

4

New Procedural Interfaces

AllocMemorySL
AllocMemorySL (cBytes, ppSegmentRet): ercType

Description

A-7

AllocMemorySL creates a short-lived segment and allocates
memory of the specified size at the beginning of the
segment. AllocMemorySL differs from AllocAreaSL in that
the offset portion of the allocated segment's address is
always O. (Refer to AllocAreaSL, in this section.)

In protected mode, this operation also allocates a new
expand-up data segment descriptor.

Programs that run in both real and protected modes
should use this operation only if additional memory will
not be allocated in the segment. A program should use
AllocAreaSL if additional memory will be allocated.

Procedural Interface

AllocMemorySL (cBytes, ppSegmentRet): ercType

where

cBytes is the desired segment size.

ppSegmentRet is the memory address into which the
4-byte memory address of the allocated
segment returns. The offset, which is
always 0, returns in the low-order 2 bytes.
The segment address returns in the
high-order 2 bytes.

Request Block

spSegmentMax is always 4.

5026065

A-a New Procedural Interfaces

Size
Offset Field (bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 42
12 c8ytes 2
14 reserved 4
18 ppSegmentRet 4
22 spSegmentMax 2 4

New Procedural Interfaces

AllocMoverSegment
AllocMoverSegment (qb, pMaRet): ercType

Description

A-9

AllocMoverSegment allocates a variable-length segment of
protected mode memory for caching. It is typically used in
real mode programs to escape the 1 Mb address space
limitation of real address mode, although it is valid in
either mode.

The requested segment can be up to 2 Mb in size if there is
sufficient protected mode memory available. The segment
is uninitialized memory.

The segment allocated is not directly addressable. You
must use the MovbMoverSegment request to write and
read the segment.

The System Performance Accelerator (SPA) Mover Server
or PMOSS implements this operation. One of these servers
must be installed to use the operation.

Procedural Interface

AllocMoverSegment (qb, pMaRet): ercType

where

qb is the desired segment size, in bytes (a 4-byte
quantity, in the range zero to 200000h).

pMaRet is the address of the 4-byte memory location into
which the mover segment address returns.

Note: PMOSS supports the procedural interface, but SPA does not. SPA
clients must build their own request blocks.

Request Block

sMaMax is always 4.

5026065

A-l0

Offset

o
1
2
3
4
6
8
10
12
16
20

Field

sCntlnfo
RtCode
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode
qb
pMaRet
sMa Max

Size
(bytes)

1
1
1
1
2
2
2
2
4
4
2

New Procedural Interfaces

Contents

4
o
o
1

4124*

4

* PMOSS supports the alias request code 32949, but SPA
does not. This is the request code that the procedural
interface uses.

New Procedural Interfaces

OeallocMemoryLL
DeallocMemoryLL (pSegment, cBytes): ercType

Description

A-11

DeallocMemoryLL deallocates the specified long-lived
segment containing memory of the specified size. Segments
must be deallocated in a sequence exactly opposite to how
they were allocated (that is, last allocated, first
deallocated).

In protected mode, this operation de allocates the segment
descriptor.

Procedural Interface

DeallocMemoryLL (pSegment, cBytes): ercType

where

pSegment is the memory address of the segment to
deallocate. The offset portion must be O.
pSegment should be the same memory address
that the corresponding AllocMemoryLL
operation returned.

cBytes is the size, in bytes, of the segment to deallocate.
cBytes should be the same value that passed to
the corresponding AllocMemoryLL operation.

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 cBytes
14 pSegment

5026065

Size
(bytes)

1
1
1
1
2
2
2
2
2
4

Contents

6
o
o
o

45

A-12 New Procedural Interfaces

DeallocMemorySL
DeallocMemorySL (pSegment, cBytes): ercType

Description

DeallocMemorySL deallocates the specified short-lived
segment containing memory of the specified size. Segments
must be deallocated in a sequence exactly opposite to how
they were allocated (that is, last allocated, first
deallocated).

In protected mode, this operation deallocates the segment
descriptor.

Procedural Interface

DeallocMemorySL (pSegment, cBytes): ercType

where

pSegment is the memory address of the segment to
deallocate. The offset portion must be O.
pSegment should be the same memory address
that the corresponding AllocMemorySL
operation returned.

cBytes is the size (in bytes) of the segment to deallocate.
cBytes should be the same value that passed to
the corresponding AllocMemorySL operation.

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 c8ytes
14 pSegment

Size
(bytes)

1
1
1
1
2
2
2
2
2
4

Contents

6
o
o
o

43

New Procedural Interfaces

DeallocMoverSegment
DeallocMoverSegment (qb, pMaRet): ercType

Description

A-13

DeallocMoverSegment frees a variable-length segment of
protected mode memory that AllocMoverSegment allocated.

The SPA Mover Server or PMOSS implements this
operation. One of these servers must be installed to use
the operation.

For compatibility with all versions of the SPA and PMOSS,
the exact same mover address that AllocMoverSegment
returns must be used to deallocate the segment. The qb
must also be identical to the one used with
AllocMoverSegment. It is incompatible to free a portion of
a mover segment.

Procedural Interface

DeallocMoverSegment (rna, qb): ercType

where

·ma is the 4-byte mover segment address that a previous
AllocMoverSegment request returns.

qb is the segment size, in bytes (a 4-byte quantity, in the
range zero to 200000h).

Note: PMOSS supports the procedural interface, but SPA does not. SPA
clients must build their own request blocks.

5026065

A-14

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNurn
6 exchResp
8 ercRet
10 rqCode
12 rna
16 qb

Size
(bytes)

1
1
1
1
2
2
2
2
4
4

New Procedural Interfaces

Contents

8
o
o
o

4125*

* PMOSS supports the alias request code 32954, but SPA
does not. This is the request code that the procedural
interface uses.

New Procedural Interfaces

ExpandAreaLL
ExpandAreaLL(cBytes, sa, pRaRet): ercType

Description

A-15

ExpandAreaLL allocates additional memory of the
specified size within the specified long-lived segment. A
prior call to AllocMemoryLL creates the specified segment.

Programs that run in both real and protected modes
should use the ExpandAreaLL operation to allocate
additional memory in a long-lived segment.

Procedural Interface

ExpandAreaLL(cBytes, sa, pRaRet): ercType

where

cBytes is the amount, in bytes, by which the segment
will expand. The system returns status code 400
(Memory not available) if the resulting segment is
larger than 64 Kb.

sa is the segment address (high-order 2 bytes of a
memory address) of the segment to be expanded.

pRaRet is the memory address of a word in which the
offset (low-order 2 bytes of a memory address) of
the newly allocated memory returns.

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 cBytes
14 sa
16 reserved
18 pRaRet
22 sRaRetMax

5026065

Size
(bytes)

1
1
1
1
2
2
2
2
2
2
2
4
2

Contents

6
o
o
1

280

2

A-16 New Procedural Interfaces

ExpandAreaSL
ExpandAreaSL(cBytes, sa, pRaRet): ercType

Description

ExpandAreaSL allocates additional memory of the
specified size within the specified short-lived segment. A
prior call to AllocAreaSL creates the specified segment.·
The segment grows by expanding downward (toward
lower offsets).

Programs that run in both real and protected modes
should use ExpandAreaSL to allocate additional memory in
a short-lived segment.

Procedural Interface

ExpandAreaSL(cBytes, sa, pRaRet): ercType

where

cBytes is the amount, in bytes, by which the segment
will expand. The system returns status code 400
(Memory not available) if the resulting segment is
larger than 64 Kb.

sa is the segment address (high-order 2 bytes of a
memory address) of the segment to be expanded.

pRaRet is the memory address of a word in which the
offset (low-order 2 bytes of a memory address) of
the newly allocated memory returns.

New Procedural Interfaces A-17

Request Block

Size
Offset Field (bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 279
12 cBytes 2
14 sa 2
16 reserved 2
18 pRaRet 4
22 sRaRetMax 2 2

5026065

A-18 New Procedural Interfaces

FComparePointer
FComparePointer(pI, p2, bCompareMode): FlagType

Descri ption

FComparePointer returns TRUE if the pointers pI and p2
are equal. The bCompareMode parameter defines the
meaning of pointer equality:

o Returns TRUE only if pI and p2 have the same 32-bit
binary value.
Returns TRUE if pI and p2 address the same byte
location in the linear address space.
For example, in real mode, the pointers 10:8 and 0:108
are equal. In protected mode, the pointers 88:4 and
9C:2AO are equal only if the linear base address stored
in the GDT segment descriptor identified by selector
88h, plus 4, equals the linear base address stored in the
LDT descriptor identified by selector 9Ch, plus 2AOh.
(Refer to the note.)
This comparison is expensive. Use it only when there is
a possibility of alias addresses.

2 If in real mode, returns TRUE only if pI and p2 have
the same 32-bit binary value.
In protected mode, returns TRUE if pI and p2 have the
same binary value, except for possible differences in the
RPL field of the selectors.
This is the typical meaning of pointer equality.

Procedural Interface

FComparePointer(pI, p2, bCompareMode): FlagType

where

pI is the first pointer for comparison.

p2 is the second pointer for comparison.

bCompareMode determines how the test for equality is
made.

New Procedural Interfaces A-19

Request Block

FComparePointer is an object module procedure.

Note: This version of FComparePointer does not fully implement the
bCompareMode = 1 option in protected mode. Normalized comparison of real
mode paragraph numbers is supported, but protected mode treats
bCompareMode = 1 like bCompareMode = 2. This should not affect programs
since no facilities exist in PMOSS for a protected mode user program to create
two alias pointers visible to the same task.

5026065

A-20

ForwardRequest
ForwardRequest(exch, prq): ercType

Description

New Procedural Interfaces

Filter processes use the ForwardRequest primitive to
forward a request block to another server for further
processing. Use it only in filter processes that intercept a
request on its way to the original server, but not on its
return trip to the client. In real mode, these filter
processes traditionally use the Send or RequestDirect
primitive to forward the request to the original server. To
make this program compatible with protected mode, use
ForwardRequest in place of Send or RequestDirect.
ForwardRequest is similar to Send in that no response is
expected; by issuing it, the filter processes discharges its
responsibility for the request as if it had done a Respond.
It is similar to RequestDirect in that its argument must
always be a pointer to a request block.

Procedural Interface

ForwardRequest(exch, pRq): ercType

where

exch is the exchange where the request block is to be sent.

pRq is the request block memory address.

Request Block

ForwardRequest is a Kernel primitive.

New Procedural Interfaces

FProcessorSupportsProtectedMode
FProcessorSupportsProtectedMode: FlagType

Description

A-21

FProcessorSupportsProtectedMode returns TRUE on an
80286 or subsequent microprocessor (a processor capable
of protected mode execution).

FProcessorSupportsProtectedMode returns FALSE on an
8086 or 80186 microprocessor.

The actual mode in which the processor is executing (real
or protected) has no effect on the result.

FProcessorSupportsProtectedMode does not indicate
whether PMOSS is installed or not; it indicates the
microprocessor's capabilities only.

Procedural Interface

FProcessorSupportsProtectedMode: FlagType

Request Block

FProcessorSupportsProtectedMode is an object module
procedure.

5026065

A-22

FProtectedMode
FProtectedMode: FlagType

Description

New Procedural Interfaces

FProtectedMode returns TRUE if the microprocessor is
executing in protected mode. It returns FALSE if the
microprocessor is executing in real mode.

You can use FProtectedMode on any Intel microprocessor.
FProtectedMode always returns FALSE on microprocessors
that do not support protected mode execution.

Procedural Interface

FProtectedMode: FlagType

Request Block

FProtectedMode is an object module procedure.

New Procedural Interfaces

MovbMoverSegment
MovbMoverSegment (maFrom, maTo, cb): ercType

Description

A-23

MovbMoverSegment reads and/or writes data in a mover
segment (a cache segment) that a AllocMoverSegment
request created.

With this request, you can move bytes:

o from real mode memory to a mover segment
o from a mover segment to real mode memory
o within a mover segment
o between two mover segments
o between two real mode locations

The SPA Mover Server or PMOSS implements this
operation. One of these servers must be installed to use
the operation.

Procedural Interface

MovbMoverSegment (maFrom, maTo, cb): ercType

where

maFrom is the source mover address.

maTo is the destination mover address.

cb is the number of bytes to move. (The maximum
number of bytes that can be moved in one request is
65535, even though the maximum mover segment size
is larger.)

Note: PMOSS supports the procedural interface, but SPA does not. SPA
clients must build their own request blocks.

The following rules must be followed to ensure
compatibility with SPA and PMOSS.

The maFrom and maTo operands can refer to a real mode
memory address, a mover segment address, or an address
within a mover segment. They can be of the same or
different types.

5026065

A-24 New Procedural Interfaces

For real mode addresses, the operand is a 20-bit physical
address and the high-order 12 bits must be zero.

For mover addresses, the operand can be the mover
segment address that an AllocMoverSegment request
returns, or such an address plus a displacement to any
byte location within the mover segment.

Do not assume that the AllocMoverSegment value is a
physical address. The only property of such values
common to all SPA and PMOSS implementations is that
they are never zero in the high-order 12 bits (so you can
never confuse them with real mode memory addresses).

Operands cannot span mover segments. The displacement
(if any) plus the cb operand must not overlap beyond the
end of a mover segment. Two AllocMoverSegment requests
always return two separate mover segments (even if
issued consecutively), which cannot be treated as a
combined segment.

Odd maFrom or maTo addresses slows byte transfer in
some implementations.

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 maFrom
16 maTo
20 cb

Size
(bytes)

1
1
1
1
2
2
2
2
4
4
2

Contents

10
o
o
o

4123*

* PMOSS supports the alias request code 32948, but SPA
does not. This is the request code that the procedural
interface uses.

New Procedural Interfaces

QueryBigMemAvail
QueryBigMemAvail(pqRet): ercType

Descri ption

A-25

QueryBigMemAvail returns the size, in bytes, of free
memory that is available to the program. Size is a function
of the following:

o physical memory size
o limits specified in the run file containing the

Query BigMemA vail operation
o limits specified at partition creation time

The following operations allocate free memory:

AllocAllMemorySL
AllocAreaSL
AllocMemory LL
AllocMemorySL
ExpandMemoryLL
ExpandAreaSL

Programs that operate in both real and protected modes
should use this operation rather than QueryMemAvail
because the latter operation reports a maximum size of
only 1 Mb.

Procedural Interface

QueryBigMemAvail(pqRet): ercType

where

pqRet is the memory address where the 4-byte amount of
memory available returns.

5026065

A-26 New Procedural Interfaces

Request Block

Size
Offset Field (bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 283
12 reserved 6
18 pqRet 4
22 sqMax 2 4

New Procedural Interfaces

QueryMemAvail
Query MernA vail (pcParagraphRet): ercType

Description

A-27

QueryMemAvail returns the size,in 16-byte paragraphs, of
free memory that is available to the program.

The following operations allocate free memory:

. AllocAllMemorySL
AllocAreaSL
AllocMemoryLL
AllocMemorySL
ExpandMemoryLL
ExpandAreaSL

Programs that operate in both real and protected modes
should use·QueryBigMemAvail rather than this operation
because Query MernA vail report a maximum size of only 1 Mb.

Procedural Interface

Query MernA vail (pcParagraphRet): ercType

where

pcParagraphRet is the memory address of a word where
the count of bytes available (divided by
16) returns.

Request Block

scParagraphMax is always 2.

Size
Offset Field (bytes)

0 sCntlnfo 1
1 RtCode 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2
12 reserved 6
18 pcParagraphRet 4
22 scParagraphMax 4

5026065

Contents

6
o
o
1

48

2

A-28 New Procedural Interfaces

SetPStructure
SetPStructure(wStructCode, ph, oField, pb, cb): ErcType

Description

SetPStructure provides controlled write-access to selected
fields of certain system data structures that user programs
can modify legitimately.

Object module procedures in CTOS.lib use SetPStructure
primarily to perform system-related functions. In most
cases, it is unnecessary for a user program to use
SetPStructure directly.

In real mode, a user program can modify and examine a
system data structure once a pointer to the structure has
been acquired using GetPStructure. This is not possible in
protected mode because GetPStructure returns pointers
based on read-only descriptors (for most structures) in
keeping with the protected mode's primary obejective:
protecting system structures against accidental damage.

SetPStructure provides write-access on a field-by-field
basis. You can use SetPStructure to modify only certain
fields and validate the values placed in these fields.

You must use a separate call to SetPStructure for setting
each field to be modified, except for adjacent pbjcb fields,
which are modified by a single call to SetPStructure. In
this way, SetPStructure is unlike its counterpart,
GetPStructure, which returns a pointer to the entire
system data structure.

Procedural Interface

SetPStructure(wStructCode, ph, oField, pb, cb): ErcType

wStructCode identifies the system data structure. This
parameter is identical to the corresponding
parameter of GetPStructure.

ph is the partition handle. If ph = 0, the operation
applies to the calling partition.

New Procedural Interfaces A-29

oField is the offset, within the system data structure, of
the field to be modified. This parameter must
correspond to the first byte of a field. (For
information on which fields are supported, refer
to SetPStructure Cases Supported, in appendix B.)

pb a pointer. This parameter's meaning depends on the
type of field being addressed.

cb a count of bytes. This parameter's meaning depends
on the type of field being addressed.

SetPStructure is extended to support access to additional
fields and new system data structures as necessary,
without introducing new procedural interfaces. Because of
this generality, the pb and cb parameters are interpreted
differently, depending on the type of field being modified:

p The system data structure field is a 32-bit SA:RA
logical address.

The pb parameter is the pointer value to be placed in
the structure (not the address of the value). The cb
parameter is unused.

sa The field is a 16-bit segment address (in real mode, a
paragraph number; in protected mode, a selector).

The SA portion of the pb parameter (the high-order 16
bits) replaces the field. The RA portion of pb (the
low-order 16 bits), and cb, are unused.

pbjcb A pb and cb pair occur as adjacent, related fields
in a system data structure.

5026065

The pb and cb operands replace the fields. This is
the only instance in which a single call to
SetPStructure modifies two fields.

The oField parameter should be the offset of the
pb field.

A-30 New Procedural Interfaces

sb The field takes a variable-length string value. The
first byte of the field is the current length of the
string (excluding the length byte).

The pb parameter is the address of the new string
value (without a length byte). The new string value
copies to the field, beginning at the second byte of the
field. The cb parameter is the length of the string
value and placed in the first byte of the field; it
cannot exceed the maximum size of the field minus one.

other Any other fixed-length field, including byte, word,
dword, or larger fixed-length fields.

The pb parameter is the address of the new value
(not the value itself) and cb must exactly match
the size of the field.

Request Block

SetPStructure is a system common procedure.

New Procedural Interfaces

ShrinkAreaLL
ShrinkAreaLL(p, cBytes): ercType

Description

A-31

ShrinkAreaLL de allocates memory of the specified size
within the specified long-lived segment. Memory must be
deallocated in a sequence exactly opposite to how it was
allocated (that is, last allocated, first deallocated).

ShrinkAreaLL differs from DeallocMemoryLL in that the
offset portion of the memory pointer can be nonzero.

Use ShrinkAreaLL for a program that runs in both real
and protected modes if the program de allocates memory in
a long-lived segment.

Procedural Interface

ShrinkAreaLL(p, cBytes): ercType

where

p is the memory address of the memory to be deallocated.

cBytes is the count of bytes of memory to be deallocated.

Request Block

Offset

o
1
2
3
4
6
8
10
12
14

5026065

Field

sCntlnfo
RtCode
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode
cBytes
p

Size
(bytes)

1
1
1
1
2
2
2
2
2
4

Contents

6
o
o
o

282

A-32

ShrinkAreaSL
ShrinkAreaSL(p, cBytes): ercType

Description

New Procedural Interfaces

ShrinkAreaSL deallocates memory of the specified size
within the specified short-lived segment. Memory must be
deallocated in a sequence exactly opposite to how it was
allocated (that is, last allocated, first deallocated).

ShrinkAreaSL differs from DeallocMemorySL in that the
offset portion of the memory pointer may be nonzero.

Use ShrinkAreaSL for a program that runs in both real
and protected modes if the program de allocates memory in
a short-lived segment.

Procedural Interface

ShrinkAreaSL(p, cBytes): ercType

where

p is the memory address of the memory to be deallocated.

cBytes is the count of bytes of memory to be deallocated.

Request Block

Size
Offset

0
1
2
3
4
6
8
10
12
14

Field

sCntlnfo
RtCode
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode
cBytes
p

(bytes)

1
1
1
1
2
2
2
2
2
4

Contents

6
o
o
o

281

Appendix B

Summary of GetPStructure Interfaces

Access to System Data Structures
The GetPStructure system common procedure lets
programs obtain pointers to certain system data
structures.

8-1

GetPStructure is the only ways to obtain this access in
protected mode. You cannot obtain a pointer directly from
the System Common Address Table (SCAT) at an absolute
address in low memory. However, GetPStructure accepts
offsets into this table (as well as small-integer codes of its
own) as a parameter identifying the desired pointer.

Limitations in Protected Mode
The GetPStructure interface is documented in the BTOS
Reference Manual. This description applies to both real
and protected mode. Table B-1 shows how access is limited
in protected mode. There are several ways in which access
is limited in protected mode:

D Not all the structCode cases of GetPStructure are
implemented in protected mode. Unsupported codes
(shown in table B-1) return an error code.

D The pointers that GetPStructure returns usually include
a selector that references a read-only descriptor, so the
user program cannot modify the system data structure.
(Exceptions that return read/write descriptors are
footnoted in table B-1.) A new system common
procedure, SetPStructure, must be used to set fields in
read-only system data structures. SetPStructure is valid
only for appropriate fields.

D The descriptor base and limit fields permit access only
to the designated data structure, not to adjacent data
structures in the same segment. For example, a pointer
to an object traditionally located in BTOS' DGroup (such
as the system date-time structure) cannot address other
objects in BTOS' DGroup (such as the array of file
control blocks), even for read-only access. Also, refer to
the Size column of table B-1.

5026065

8-2 Summary of GetPStructure Interfaces

However, when GetPStructure returns a pointer that
addresses an offset, or an array of offsets, the user can
assume that these offset(s) are located in the same
segment as the object(s) they point to, and that the
descriptor that GetPStructure returns encloses both the
offset(s) and the object(s) to which they point.

GetPStructure Codes
The Code(S) column of table B-1 shows the wStructCode
parameter value for GetPStructure.

The Size column shows the number of bytes accessible
using the pointer that is returned.

Unless otherwise noted, all descriptors are read-only
expand-up data segments.

SetPStructure Cases Supported
The SetPStructure interface is described in appendix A.

SetPStructure is defined for only those fields to which
object module procedures in BTOS 8.0 required
write-access. SetPStructure allows additional fields to be
supported in the future, without adding new procedural
interfaces.

Table B-2 shows the supported SetPStructure cases.

Summary of GetPStructure Interfaces B-3

Table 8-1 GetPStructure Cases Supported

Code(s) Size Structure

0 171 Extended Partition Desc I
UNSUPPORTED OS Video Character Map

2 or 244h • VCB (Video Control Block)2
3 or 250h 304 ASCB
4 VLPB
5 1489 BCB (Batch Control Block)
6 UNSUPPORTED Type-ahead Buffer
7 UNSUPPORTED RgPVidMemline
8 UNSUPPORTED RglineMap
9 UNSUPPORTED Partition Swap Status
10 UNSUPPORTED RgUserReadCount
11 UNSUPPORTED RgPDebuggerState
12 UNSUPPORTED Graphicslnfo
13 ECB (Event Control Block)
14 84 NGEN Port Structure
20 32 RgPRcLookUp (request table)
21 32 RgPRclookUpBase (ditto)
22 32 RgRcMax (ditto)

32 42 PARD (Partition Descriptor)3
240h 6 System Date/Time Structure4

2C8h 37 System Configuration Block

• Variable-sized. System builds an appropriate descriptor based on the size of the structure.

I First four fields only

2 Writable descriptor

3 BTOS 8.0 does not support code 32 in real mode. Both modes support GetPartitionStatus.

4 This selector does not include the entire BTOS DGroup, only the 6-byte date/time
structure.

5026065

B-4 Summary of GetPStructure Interfaces

Table B-2 SetPStructure Cases Supported

Cod. Struct Offset Field Size

3 ASCB 10 pbMsgRet/ cbMsgRet 6
13 ECB 2 qMailid 4

6 sbNodeMail 13
32 PARD 16 sbPartitionName 13

Glossary-1

Glossary

Alias Descriptor. An alias descriptor allows one user program (for example, a
server) to see an object in another program's segment. PMOSS constructs the alias
descriptor in the server's LOT for this purpose.

Call Gate. A call gate is a protection mechanism that limits the user program to
calling at legitimate entry points and provides a convenient way to bind the user
program to those entry points at program load time.

Current Privilege Level (CPL). The Current Privilege Level is the level at which
the process is currently running (essentially, the privilege level of the currently
executing code), which is stored in the CS register and can be displayed by using the
Debugger to examine the CS register.

Descriptor Cache Register. The descriptor cache register is an internal register
associated with the CS, OS, ES, and SS segment registers, but does not appear to
the software. It holds the entire contents of the descriptor, including segment base
address and other information.

Descriptor Privilege Level (DPL). The Descriptor Privilege Level marks each
entity in the current address space (everything described by a descriptor in the current
LOT or GOT), which determines its usability.

Descriptors. Descriptors are eight bytes long and contain various information
about a segment. They are basically an offset into the Logical Descriptor Table, with
some additional bits used for special purposes.

Descriptor Table. A descriptor table is a special type of table that only the
operating system and hardware can access. In protected mode, the CS, OS, ES, and
SS registers hold a l6-bit SA that is an index into the descriptor table.

Exception. An exception is an error that prevents the program from executing.

External Interrupt. An external interrupt is initiated by an asynchronous event
outside the processor. External interrupts are I/O interrupts such as disk and real-time
clock interrupts.

Fault. A fault is a condition (such as a protection violation) that prevents the
hardware from completing an instruction.

Gate Descriptor. A gate descriptor is a structure that uses indirection to allow
programs to call routines whose addresses they cannot know until the program is
loaded.

5026065

Glossary-2

General Protection Faults. General protection faults are generated by breaking
any of the protection rules, which activate the Debugger.

Global Descriptor Table (GOT). The Global Descriptor Table is a special table that
is PMOSS' LOT and the descriptors in it are used only when PMOSS' code is
executing, never when user code is executing. The single Global Descriptor Table is
never switched; it is always in effect, no matter what Local Descriptor Table is in
effect.

Internal Interrupt. An internal interrupt is initiated synchronously as a result of an
instruction executing. Internal interrupts include software interrupts, (which happen
when an INT instruction executes), exceptions (such as interrupt type 4), and faults
(including protection faults).

Interrupt Descriptor Table (lOT). An Interrupt Descriptor Table is a special
descriptor table that contains the interrupt type numbers corresponding to every
interrupt. There is one Interrupt Descriptor Table per system.

IOPL Flag. The 10PL flag specifies the maximum CPL (numerically) for which I/O
and HALT instructions are valid.

Limit Exception. A limit exception is an exception that occurs when using a valid
segment register in an address calculation (such as when you try to address beyond
the end of a segment).

Linear Address. A linear address is formed from the logical address as an
instruction executes and then addresses physical memory.

Linear Address Model. A linear address model refers to an architecture (such as
the Motorola architecture) in which instructions accept 32-bit linear addresses
(instead of SA:RA pairs, as with the segmented addressing model).

Logical Address. A logical address is composed of the segment address (SA) and
the relative address (RA). You use the SA:RA syntax to write a logical address when
using the Debugger or Assembler.

Local Descriptor Table (LOT). The Logical Descriptor Table is an array of
descriptors. PMOSS constructs and maintains the Logical Descriptor Table for each
run file executing in protected mode.

Paragraph. A paragraph is a l6-byte unit of memory aligned on a l6-byte
boundary.

Paragraph Number. A paragraph number is a real address mode SR, which
denotes a particular l6-byte boundary in the physical address space.

Glossary-3

Protected Mode Operating System Server (PMOSS). Protected Mode
Operating System Server installs on BTOS and lets you write system services that are
compatible with protected mode (the 3 Mb over the 1 Mb of real mode).

Real Address. The real address is the real address mode SR:RA logical address
because it always corresponds to the same physical memory address.

Real Address Mode. Real address mode is the mode in which 8086 and 80186
microprocessors operate all the time. 80286 microprocessors operate in real address
mode when powered-up or reset, but can switch to protected mode if the operating
system software supports protected mode.

Relative Address (RA). The relative address comprises one-half of the linear
address. It is often referred to as an offset from the segment address.

Restartable Fault. A restartable fault is a fault (such as a not-present fault) that
is, in theory, recoverable.

Ring Protection Model. A ring protection model affords protection by privilege
level, in which every program executes at one of several levels of authority. It is
intended to allow an operating system (such as PMOSS) to conveniently protect itself
from its clients.

Segment Address (SA). The segment address comprises one-half of the linear
address.

Segmented Address Model. A segmented address model refers to the Intel
architecture in which every address is always relative to some segment address (SA).

Segment Registers. Segment registers contain the paragraph numbers
corresponding to the vase of the current code leS), data (OS), extra (ES), and stack
segments (SS). These segments are always aligned to start on 16-byte boundaries.

SN. The SN is a segment address that is in protected mode.

SR. The SR is a segment address that is a paragraph number (a real-address mode
SA).

System Performance Accelerator (SPA). The System Performance Accelerator
is an installed system service that improves the response time for workstations
performing file-system operations and also provides a caching mechanism.

5026065

Glossary-4

Task State Segment (TSS). The Task State Segment is associated with every
process and contains the complete register state of the process. It permits extremely
rapid process switching, despite protection boundaries between programs.

TSS Gate. A TSS gate lets you arrange for an interrupt to perform a process
switch automatically (in effect, an automatic Call to a TSS).

Virtual Address. The virtual address is the protected mode SN:RA logical address
because the SN refers only indirectly to memory via a descriptor table entry ~

Index

A
Accessing 80286 registers, 3-6
Access to system data structures, B-1
Addressing schemes

guidelines for, 2-1
Alias descriptor, Glossary-1
AliocAIiMemorySL, A-2
AliocAreaSL, A-4
AllocMemoryLL, A-6
AllocMemorySL, A-7
AllocMoverSegment, A-9
Allowing the system to enter the Debugger, 3-15
Anatomy of a selector, 1-7

B
Behavior at a fault, 3-13
Breakpoints, 3-8

CODE-B, 3-8
CODE-I, 3-9

BTOS process
finding the, 3-7

C
Call gates, Glossary-1

effect of them on debugging, 3-12
switching privilege levels with, 1-20

Checking for protected mode at run time, 2-18
CODE-B breakpoints, 3-8
CODE-I breakpoints, 3-9
CODE-S

looking at processes, 3-4
CODE-V descriptors, 3-10
Compatible programming

guide to, 2-1
Contiguous code and data, 2-17
Conventions

naming, 2-19
Current privilege level (CPU, 1-19, Glossary-1

5026065

Index-1

Index-2

o
DeallocMemoryLL, A-11
DeallocMemorySL, A-12
DeallocMoverSegment, A-13
Debugger

allowing the system to enter the, 3-15
entering the, 3-5
locking it in memory, 3-16

Debugging
effect of call gates on, 3-12
PMOSS interrupt service routines, 3-14
protected mode programs, 3-1

Descriptor cache registers, 1-8, Glossary-1
Descriptor privilege level (DPL), Glossary-1
Descriptors, Glossary-1

CODE-V, 3-10
gate, 1-12, 3-11
segment, 1-10, 3-10

Descriptor tables, 1-7, Glossary-1
Descriptor types, 1-10
DLP versus RPL, 1-19

E
Effect of call gates on debugging, 3-12
80186 instructions, 2-20
80286

accessing registers, 3-6
instructions, 2-20
real mode issues, 2-1

Entering the Debugger, 3-5
Exception, Glossary-1
ExpandAreaLL, A-15
ExpandAreaSL, A-16
External interrupt, Glossary-1

F
Faults, 1-9, Glossary-1

behavior at, 3-13
general protection, 1-21

FComparePointer, A-18
Finding the BIOS process, 3-7
ForwardRequest, A-20
FProcessorSupportsProtectedMode, A-21
FProtectedMode, A-22

G
Gate descriptors, 1-12, 3-11, Glossary-1
General protection faults, 1-21, Glossary-2
GetPStructure codes, 8-2
GetPStructure interfaces

summary of, 8-1
Global Descriptor Table (GOT), Glossary-2
Guidelines for addressing schemes, 2-1
f?uide to compatible programming, 2-1

Incompatibilities
remedies for, 2-18

Instructions
80186, 2-20
80286, 2-20
new machine, 2-20

Internal interrupt, Glossary-2
Interrupt Descriptor Table (lOT), Glossary-2
Interrupts, 1-24
IOPL flag, 1-21, Glossary-2
Issues (80286 real mode), 2-1

L
Limitations

in protected mode, 8-1
PMOSS, 2-18

Limit exception, Glossary-2
Linear address, Glossary-2
Linear address model, Glossary-2
Linking, 2-15
local Descriptor Table (lOT), Glossary-2
Locking the Debugger in memory, 3-16
logical address, Glossary-2
Looking at processes: CODE-S, 3-4

M
Marking the run file, 2-15
Memory

locking the Debugger in, 3-16
Mnemonics, 3-&
MovbMoverSegment, A-23
Mover segm.nts, 4-2

5026065

Index-3

Index-4

N
Naming conventions, 2-19
New

o

machine instructions, 2-20
procedural interfaces, A-1

Overview, 1-1
p

Paragraph, Glossary-2
Paragraph number, G1ossary-2
PMOSS interrupt service routines

debugging, 3-14
PMOSS limitations, 2-18
Procedural interfaces, 4-1

new, A-1
Process

finding the BTOS, 3-7
Processes and process switching, 1-21
Process switching

and processes, 1-21
Protected mode

checking for it at run time, 2-18
limitations in, B-1
addresses, 1-4

Protected Mode Operating System Server (PMOSS), Glossary-l
Protected mode programs

debugging, 3-1
Protection, 1-14
PH value, 3-1

Q

QueryBigMemAvail, A-25
QueryMemAvail, A-27

R
Real Address, Glossary-3
Real address mode, Glossary-3

reviewing, 1-3
Real mode issues (8028&), 2-1
Registers

accessing 80286, 3-6
Relative address (RA), Glossary-3
Remedies for incompatibilities, 2-18
Restartable fault, Glossary-3
. Reviewing

real address mode, 1-3
segmented addressing, 1-2

Ring protection model, Glossary-3
Run file

marking the, 2-15
Run time

checking for protected mode at, 2-18

S
Segment address (SA), Glossary-3
Segment descriptors, 1-10, 3-10
Segmented addressing

reviewing, 1-2
Segmented address Model, Glossary-3
Segment registers, Glossary-3
Selector, 1-7

anatomy of a, 1-7
SetPStructure, A-28

cases supported, 8-2
ShrinkAreaLL, A-31
ShrinkAreaSL, A-32
SN, Glossary-3
SPA Mover interface, 4-1
SR, Glossary-3
Summary of GetPStructure interfaces, B-1
Switching privilege levels with call gates, 1-20
System data structures

access to, 8-1
System Performance Accelerator (SPA), Glossary-3

T
Task State Segment (TSS), Glossary-4
TSS gate, Glossary-4

5026065

Index-5

Index-6

V
Validation checks, 4-4
Version 6 run file format, 2-15
Virtual address, Glossary-4

W
Warnings, 3-7

Title: __________ _

Form Number: ____________ _ Date:

Unisys Corporation is interested in your comments and suggestions regarding
this manual. We will use them to improve the quality of your Product Information.

Please check type of suggestion: D Addition D Deletion D Revision
D Error
Comments: ________________________ _

Name _______________________________ ___

Title ___ _

Company __ _

Address ----=--:-----------::::c::___---_=:_::___---_:::_----
Street City State Zip

Telephone Number () ___ " _______________ _
Area Code

Title: __________________________ _

Form Number: Date:

Unisys Corporation is interested in your comments and suggestions regarding
this manual. We will use them to improve the quality of your Product Information.

Please check type of suggestion: D Addition D Deletion D Revision
D Error
Comments: __ _

Name
Title __________________________ _

Company

Address ___ =-~-------_=_:__---_=:_::___---_:::_----
Street City State Zip

Telephone Number () __________________ ~
Area Code

· BUSINESS REPLY CARD
FIRST ClASS PERMIT NO. 817 DETROIT, MI 48232

POSTAGE WILL BE PAID BY ADDRESSEE

Unisys Corporation
1300 John Reed Court
City of Industry, CA 91745 USA

ATTN: Corporate Product Information

1.1 •• 11 •• 1 ••• 1.1 •• 11"11.11.1 •• 1.1 •• 1"11.1.1 •.••• 111

BUSI,NESS REPLY CARD
FIRST CLASS PERMIT NO. 817 DETROIT, MI48232

POSTAGE WILL BE PAID BY ADDRESSEE

Unisys Corporation
1300 John Reed Court
City of Industry, CA 91745 USA

A TIN: Corporate Product Information

1.1 •• 11 •• 1 ••• 1.1 •• 11'111.11.1 •• 1.1 •• 1'111.1.1 •••• 111

9-85

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

Burroughs

	000
	001
	002
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	B-01
	B-02
	B-03
	B-04
	G-01
	G-02
	G-03
	G-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	replyA
	replyB

