
BTOS
C Compiler
Programming
Reference Manual

Relative to Release
Level 1.0

Priced Item

November 1987
Distribution Code SA
Printed in u s America
5016843

• UNISYS BTOS
C Compiler
Programming
Reference Manual

Copyright© 1987 Unisys Corporation
All Rights Reserved

Relative to Release
Level 1.0

Priced Item

November 1987
Distribution Code SA
Printed in U S America
5016843

The names, places and/or events used in this publication
are not intended to correspond to any individual, group, or
association existing, living or otherwise. Any similarity or
likeness of the names, places, and/or events with the
names of any individual living or otherwise, or that of any
group or association is purely coincidental and
unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY
THE DOCUMENT. Any product and related material
disclosed herein are only furnished pursuant and subject to
the terms and conditions of a duly executed Program
Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any,
with respect to the products described in this document are
set forth in such License or Agreement. Unisys cannot
accept any financial or other responsibility that may be the
result of your use of the information in this document or
software material, including direct, indirect, special or
consequencial damages.

You should be very careful to ensure that the use of this
information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of such
changes and/or additions.

Comments or suggestions regarding this document should
be submitted on a Field Communication Form (FCF) with
the CLASS specified as 2 (S.S.W.:System Software), the
Type specified as 1 (F.T.R.), and the product specified as
the 7-digit form number of the manual (for example,
5016843).

c

v

About This Manual

This manual contains procedures and reference information
on how to install and use the BTOS C Compiler, so that a
user can easily compile a C source program into object
code.

It also provides all the instructions necessary to install and
link the object code into an executable run file.

Who Should Use This Manual

This manual is designed for users who have a working
knowledge of the C programming language; it is not
intended to teach a user how to write a program in C.

The procedures are easier to perform if you are familiar
with BTOS operations. However, the necessary information
on how to install and operate the C Compiler,
supplemented with references to your
BTOS documentation, is included.

How to Use This Manual

If you are using the C Compiler for the first time, you
should read section 1. It provides a brief overview of the
product capabilities and features.

If you scan the contents and review the topics before you
start, you may find this manual easier to use. To find
definitions of unfamiliar words, use the glossary; to locate
specific information, turn to the index for an alphabetic
listing of topics.

How This Manual is Arranged

This manual contains seven sections, four appendixes, a
glossary, and an index.

5016843

vi About This Manual

Conventions

The following conventions apply throughout this manual:
D The term BTOS refers to BTOS II in this manual.
D Information you enter at your keyboard appears in

boldface.
D Executive commands appear in uppercase.
D When two keys are used together for an operation, their

names are hyphenated. For example, ACTION-GO means
you hold down ACTION and press GO.

Related Product Information

For information on the Operating System (BTOS), refer to
the BTOS II System Reference Manual.

For more information about BTOS II system calls and
structures, refer to the BTOS II System Procedural
Interface Reference Manual.

For information on system status codes, refer to the
BTOS II System Status Codes Reference Manual.

For information on Executive level commands, refer to the
BTOS II Standard Software Operations Guide.

For information on the Editor, refer to the BTOS II Editor
Operations Guide.

In addition, the following manuals are referenced in this
manual:
D BTOS II Language Development Linker and Librarian

Programming Guide (information and procedures for
using the LINK, BIND, and LIBRARIAN commands)

D BTOS II Customizer Programming Guide (information
and procedures for customizing an operating system and
creating a debugger)

D BTOS II Debugger Programming Guide (information and
procedures for debugging programs)

D BTOS II Language Development Assembler Programming
Guide (information and procedures for Assembly 8086
modules and the Assembler)

About This Manual

Additional Reference Material

For additional information on C, refer to The
C Programming Language, Kernighan and Ritchie,
Prentice-Hall, 1978.

5016843

vii

(
~

(

ix

Contents

About This Manual.. v
Who Should Use This Manual. v
How to Use This Manual . • . . v
How This Manual is Arranged............................ v
Conventions • . . • • • • vi
Related Product Information • .. vi
Additional Reference Material . • • • . . . • • . . vii

Section 1: Overview l·l
Using the C Compiler • l·l
Features. . • . • . . . • . . . • • . • • • . • . . . • • . . . l ·2
Memory Requirements.................................. 1·2

Section 2: BTOS C Compiler Installation............. 2-1
Installing C Compiler Software.......................... 2·1
Installing C Compiler Software on a BTOS Workstation... • • • • 2· l
Installing C Compiler Software on an XE520 Master • • • • • • • • • 2·2

Section 3: Using the C Compiler
Memory Utilization ••.••••..••.••.•..............•.•..••
Command Line Syntax .••••.••.....•.•..•.•...•••...•.•.
Frequently Used Command Line Options ••••••••••.••••••••

Controlling Compilation Activity Options ••••••.••.••.•••••
Specifying Memory Model Options •••••••••••••••••••••••
Preprocessor Control Options ••••••.••••••••••••••••••.•
Disk Usage Options ••••••••••••••.•.••.•••••••..••.•••.
Comment Control Option •••.••••••••••••••••••.•••••••.
Message Control Option •••••••••••••.••.•••••••••••••••

Advanced Options •••••••••••••••••••••.•••••••.•••••••••
8086 Support •••••••••••••••••••••••...•••...••••••••
8087 Support ••••••••••••••••••••••••••••••.•••••••••

Optimization Options •••••.••••••••••••••••••.••.••••••••
Lint Options ••••••.••.••••••••••••••••••••••••••••••••••
Debugging Options ••••••••••••••••••••••••••••••••••••••
Compatibility Options ••••.•••••••••••••••••••••••••••••••
Fast Calling Sequence Option
Segment Naming Options ••••••••••••••••••••••••••••••••
CCompiler.CFG .•..••..•.•..••.••.•...•..••...••......•.
linking a Program •••.......••.•....•.••..••..•..•..•.••
LINT Source File Comments•...•.
/* ARGSUSED* I
/*LINTUBRARY* / •••••••••••••••••.•••••••••••••••••••••
/* NOSTRICT* I .. .
/*NOTREACHED* / •••••••••.•••••.•.••••••••••••••••••••
/*VARARGSn* I ····················

5016843

3·1
3-1
3-2
3-2
3.3
3.3
3.5
3.5
3.5
3-6
3·6
3-6
3·6
3-8

3·10
3-14
3-15
3-17
3-19
3-20
3-21
3-23
3-23
3·24
3·24
3-24
3-25

x Contents

Compiler Operation. . . . • . • 3-25
Executing the Individual Passes • • • • . • • • . • • • • . • . • . • . • • 3-26
Temporary Files... 3-26

Section 4: Runtime Environment
Program Execution •••••.•••••••••••••••••••••••••••••••
Memory Organization ••••...••..•.....•..••••••.•••.•.•••
Pointer Arithmetic .•....••••••.•...•..•.•.•.••.••..•..•.•

4-1
4-1
4-3
4-4

Section 5: Assembly Language Interface.............. 5-1
External Variable Names • 5-1
The C and PL/M Function Calling Sequences • • • • • • • • • • • • • 5-1
Function Arguments • • . • • • • . • . . • • • • • • • • • • • • • • . • . • • • • 5-2
Calling Functions. • . • 5-4
Passing Return Values • • • • • • . • • . • . • . • . . . • . • • • . . • • • • • 5-5
Assembly Language File Structure • 5-6
Defining Functions • . . • . • • . • . • • • • • • • . • . . • . . • . • • • • • • . . . • • • 5-7
Defining Data Constants • • • • . • • • . • • • . • . . • • • • • • . . 5-7
Global Data • • • • • • . . • • • • . • . . • • • . • . • 5-8
Sample Assembly Language Modules. • 5-8
Small Model Version. • • • • . • • • • • • • • • • • • • • • • • • . • • . • • • . . • • • . 5-9
Medium, Large and Huge Model Version • • • • • • • • • • . • • • • • • • • 5-9

Section 6: Library Reference.......................... 6-1
Library Overview • 6-1
Runtime Support. • • • • • • • • • • • • • . • • • • • • • • • . • . . • • • • • • • • • • • . 6-1
Input/Output • • • • • • • . • • • • • • • • • • • • • • . • • • • • • • . • . • • . • • • . • . . 6-1
BTOS System Services • • • • • • • • . • • • . • . • • • • • . • • . • . . • • . . • . • 6-2
UNIX Compatible 1/0 . • • • • . • • • • . • . • • • . • . . • • . . • . • • • . • • . • • . 6-2
Standard 1/0 • • • . • • . • • . • • • • . • • • . • • • • • . . • • • . • • • • . • • . • . • • . 6-2
Mathematical Functions. • 6-3
Include Files • 6-4
ASSERT. H. • • . • • . • • . . • . • • • • . • . • • • • • • • • • • . • . • • • . . • • • . 6-4
CTxxx.H..... . • . . • • . • . • . • • • . • • • . • • • • . • . • • • • • . 6-4
CTYPE.H.. • . • . • . • . . . • • • • • • • . • . • • • . . . • . • . • • • • . 6-5
ERRNO.H........... . . • • • • • • • • . • • • • . • • • 6-5
FLOAT.H... 6-5
18086.H • • • • • • . • • . • 6-5
LIMITS.H... 6-6
MATH.H . . • . • . . • • . • . • • • . • • • • • . . . • . . . • . • • • . . • . • . . . • . . • . . 6-6
SETJMP.H • . . • • • • • . • • • • . • • • • • • • • • . • . • . • . • . . • . • • . . • . . • • • 6-6
SIGNAL.H.. .•.•• .•••••.. .••.•.•••. .•..•.•.. .. .•• . ..•• .• 6-7
STDARG. H • . • . . . • . • • • • . • • • • • • . • • • . • • • . • . • . • • . • • • • • • 6-7
STDDEF.H • . . . • • . • . • • • • • • • • • • • • • • • • • . • • . • . • • . • • • • • • 6-7
STDLIB.H . • . • • . . • • . • • • • . • . • • • . . • . • • . • • . • • • . • . • . . • • • 6-7
STDIO.H... 6-7
STRING.H.. 6-8
TIME.H.. 6-8
Principle C Functions.... . • . • • • . • • • . • . • . • • . . . • • • . . . • • . • • • 6-8

abs • • • • 6·9
assert . • . • • • 6-10
atof, atol, atol, strtod, strtol. • . 6-11
bsearch . • . 6-13
close. • • . . • • . • • . . • . . • • 6· 14
creat. • 6-15
ctlme, localtlme, asctlme, gmtlme•. ,............ 6-16
ecvt, fcvt, gcvt . • • . . . • • 6-18
exit, _exit • . • • • • 6-19
exp, log, loglO, pow, sqrt • 6-20
fclose, fflush • • . • • . . • . . . • . • . • • • . . . • • 6-22
feof, terror, clearerr • . 6-23
floor, cell, fmod, fabs . • • . . • . • . 6-24
fopen, freopen . • . . • • . . . • . • • . . . • . . • 6-25
fread, fwrlte . . . • . • • • • • . . 6-27
frexp, ldexp, modf. • . • 6-28
fseek, ftell, rewind. • • • • • • 6-29
getc, getchar, fgetc, getw • • 6-30
gets, fgets , • 6-31
Index, rlndex. • • • . • . • • • • . . • 6-32
lnport, lnportb • . . . • . • • • • . • . . . • • • • • . • . . . • • . . . • . • . • • • 6-33
lsalpha, lsupper, !slower, lsdlglt, lsxdlglt, lsalnum, lsspace,
lspunct, !sprint, lsgraph, lscntrl, lsascll • • • 6-34
!search • • . • . . • . • • . • • . • • . . • • • 6-36
!seek. • • • 6-37
malloc, calloc, free, cfree, realloc . • • • . 6-38
memcpy, memset, memcmp, memchr . . • 6-40
movmem • • • . • 6-41
open • • . • . . • . • • . . • . . . • 6-42
outport, outportb. . • • • • 6-43
peek, peekb. . . • . . • . . • . . . • • . . • 6-44
poke, pokeb . • . . . • . • • • . . . • . 6-45
prlntf, fprlntf, sprintf . . • . . • • • . • . . • . 6-46
putc, putchar, fputc, putw. • 6-50
puts, fputs. • . 6-51
qsort, ssort . • • 6-52
rand, srand . . • . 6-53
read • • • • • 6-54
scanf, fscanf, sscanf. . . • . • 6-55
segread . • • . • . . . • 6-59
setbuf, setvbuf • • . • • . . . • • • • 6-60
setjmp, longjmp • • . • . . . • • . . • . . • • . • • . • . • • . • 6-62
setmem • . • • • • . • • • . • • . . . • • • • 6-63
slnh, cosh, tanh • • . . • • . • . . . • . . • . • • • • • • • . • • • 6-64
sslgnal, gslgnal. • . . • . • . • • . . . • • • . • • . . • • 6-65
stlme.. • . . • • • . . • . . • • • • . . . • . 6-66
strcat, strncat. . • • . • • . . • • . . • . • • • • • • . . . • . . . • . . . • 6-67
strchr, strrchr, strpbrk . • • . . • . . • • • . • . . . • . • . . . • • . • . • • 6-68
strcmp, strncmp. • • • • . . • . • • • • . 6-69
strcpy, strncpy . . • • . . . • . • • • . • • 6· 70
strlen • • . . • . 6-71

5016843

xii

strspn, strcspn •••••••••••••••••••••.••••••••••••••••.••
strtok •••
swab •••.•.•.••.•••••••••••••••••••.•..••.•••.••••.•.••
time •••.••.•••••
toupper, tolower, _toupper, _tolower, toascil ••••••••••••••
sin, cos, tan, asin, acos, atan, atan2 •••••.•••••••••••••••
ungetc •••••••••••.••••••••••••••••••••••••••••••••••••
unlink ••.••.••.••••••••••••••••••••••••.•••••••••••••••
vprintf, vfprintf, vsprlntf •••.•.•.•••..•••••••••••••••••••
vscanf, vfscanf, vsscanf •••••••••••••••••••••••••••••••••
write •••••••••••••••••••••.••••••••••••••••••••••••••••

Section 7: Using the C Programming Language .••••.•
Language History and Features •••••••••••••••••••.••••••
Translation Phases and Limits ••••••• : •••••••••••••••••••
Preprocessor Translations ••••••••••••••••••••••••••••••••
Parser Translations ••••••••••••••••••••••••••••••••••••••
Optimizer Translations ••••••••••••••••••••.••••••••••••••
Code Generator Translations
Compiler Limits •••
Preprocessing ••.•
Source File Inclusion •••••••••••••••••••••••••••••••••••••
Define Macros ••
Conditional Compilation ••••••••••••••••••••••••••••••••••

Constant Expressions ••••••••••••••••••••••••••••••••••
Line Number Control ••••••••••••••••••••••••••••••••••••
#pragma Directives ••••••••••••••••••••••••••••••••••••••
#error Directives ••
Null Directive •••
Comments •••
lexical Conventions ••••••••••.•.•.....•••••..•.•.••••..
Source Text Conventions •••••••••••••••••••••••••••••••••
Identifiers ••
Keywords ••
Numerical Constants ••••••••••••••••••••••••••••••••••••

Integer Constants •••••••••••••••••••••••••••••••••••••
Character Constants •••••••••••••••••••••••••••••••••••
Escape Sequences ••••••••••••••••••••••••••••••••••••
Floating Constants •••••••••••••••••.••••••••••••••••••

Strings ••••••••••••••••••••••••••••••••••••••.••.•••••••
Operators ••
Punctuation ••
T rigraphs ••
Types ••.• • • • ••••
Basic Types ••
I ntegra I Types ••

Characters and Integers ••••••••••••••••••••••••••••••••
Unsigned ••
Floating ••
Void ••••••••••••••••••••• • • • • • • • • • · • • • • • • • • • • · • • • • • • •
Enumerated ••

Contents

6·72
6·73
5.74
6-75
6-76
6-77
6-79
6-80
6-81
6-82
6-83

7,1
7-1
7-4
7-4
7-4
7-5

. 7-5
7-5
7-6
7-6
7-7

7-11
7-12
7-13
7-14
7-14
7-14
7-14
7-15
7-15
7-16
7-17
7-17
7-18
7-19
7-19
7-20
7-21
7-21
7-22
7-22
7-23
7-23
7-23
7-24
7-24
7'24
7-24
7-25

Contents xiii

Composite Types.. 7-25
Pointers . . • • • • • • • 7 -25
Functions.. 7-26
Arrays • • . 7 -27
Structures and Unions................................. 7-27
Bitfields • . . . • • • • . • . . • • . 7 -27

Type Modifiers. . . . • • • . 7 -28
Declarations • . • . • . • • • • • • • • • • • • • • . • • • 7 ·29
Storage Class Specifiers. • • • 7 -30

Auto. • 7 -30
Extern... 7-31
Register • • • • • . . • • 7 -31
Static. . • • • • • . • • • 7 -32
Typedef. . • • • • • • . • • . • • . . • • • • • 7 ·32

Type Specifiers • . . • • . . • • . . . • • • • . . • • . . . 7 -32
Basic Arithmetic Types. • • . • . . • . . 7 ·32
Structures and Unions . • • . . . • • • . • 7 -33
Enumerations. . • . • . • • . . . • • . . • . . • • • • 7 -34
Void... 7.35

Declarators ••............•.......•...... ;...... . . . • 7-35
Pointer Declarators. . • • • • • • • • . 7 -36
Function Declarators................................... 7.37
Array Declarators. • . • . . . • • . . • . . • • . . • • • 7 .39

Bitfields . . • . . • • • • • • • • 7 -39
Type Names.. 7-40
Type Equivalence • . • • . . • . . . • . • . • . • • • . • • • • . . • 7-41
Initialization • • • . . • • • . . • • . . • • 7-41
Scope of Identifiers. . • . . • • • . • • • . • • • • • 7 -43
Linkage • • . • • • . • • • . . . • • . . . 7 -44
Expressions ••• ·• . • • • • • • • • • • • • • 7 -44
Lvalues . 7 -45
Primary Expressions • • • 7-45
Postfix Operators. • • • • 7 -46

Postfix Increment and Decrement Operators 7-46
Function Calls • • . • 7-46
Array Subscripts . • . • • . . . • . . 7 -51
Member Access Operations. • • . • • 7 -51

Unary Operators • • • • • . . 7 -52
Prefix Increment and Decrement Operators............... 7-52
Address and Indirection . • • • • • • 7 -52
Unary Arithmetic Operators. • • • 7 -53

Casts. • • • • • . . . • . • • • . • . . • • . • • 7 -54
Binary Op~rators. • • • • • • . • . • • • • • • • • . . . 7 -55

Normal Arithmetic Operators. . . • • • • • . • . • . • • • • • • • • . . . 7 -55
Shift Operators . • • • . • • • • • • • • • • • . . . 7 -56
Relational Operators. • • . • 7 .57
Bitwise Boolean Operators. • • • • . • • 7 -57
Logical Operators • . . • . . • • • • • . . . • • . . . • • • • . • . • . • • • 7 -57
Conditional Expressions . • • • • • • • . • • . . • • • • • • • • . • . . . 7 -58

5016843

xiv

Simple Assignment •••••••••••••••••••••••••••.•...••••
Compound Assignment •••••••••••••••••••••••••••••••••
Comma Operator ••.•...•••••....•.•••...•.•••........•

Constant Expressions ••••••••••••••.•••••••••••••••••••••
Conversions •••••••••••••••••••.••••••••••••••••.••••••
Integral Widening Conversions ••••••••••••••••••.•••••••••
Usual Arithmetic Conversions •••••••••••••••••.•.•••••••••
Other types •••••••••••••••••••••••••••••••••••.••••••••
Statements •••••••••••••••••••••••••••••••••••••...••.•
Labeled Statements •••••••••••••••••••••••••••.•••••••.•
Blocks ••.••
Expression Statement •••••••••.••..••••••••••••••••••••••
Null Statement ••••••••••••••••••••••••••••••••••••••.••
Alternation Statements •••••••••••••••••••••••••••••••••••
Iteration Statements ••••••••••••••••• : •.•••••••••••••••••
Jump Statements •••••••••••••••••••••••••••••••••••••••
lnline Assembly Statements •••••••••••••••••••••••••••••••
Using lnllne Assembly Language •••••••••••••••••••••••••
Instruction Opcodes •••••••••••••••••••••••••••••••.•••••
lnline Assembler References to Data and Functions ••••••••••
Using C Structure Members ••••••••••••••••••••••••••••••
Using Jump Instructions and Labels ••••••••••••••••••••••••
Comments on In line Assembly Statements ••••••••••••••••••
External Definitions •••••••••••••••••••••••••••••••••••••
Function Definitions ••.•••••••••.••••••••••••••••••.•••••
Data Definitions •••
Portability Considerations ••••••••••••••••••••••••••••••••
Obsolete Syntax •••

Contents

7-58
7-59
7-59
7-59
7-60
7-60
7-60
7-61
7-61
7-62
7-62
7-62
7-62
7-63
7-63
7-64
7-65
7-66
7-67
7-68
7-70
7-71
7-71
7-72
7-72
7-73
7-73
7-73

Appendix A: Diagnostic Messages..................... A-1
Fatal Messages • A-2
Error Messages • A-5
Warning Messages. • A-19

Appendix B: Command Line Options Summary........ B-1

Appendix C: Library Summary .••.......•••••••••••••.
Input/Output Functions •••••••••••••••••••••••••••••••••
Standard 1/0•.....................
UNIX 1/0 ..•..•..................•.•...................
Fiie Management •••••••••••••••••••••••••••••••••••••••
String Handling •••
Memory Management ••••••••••••••••••••••••••••••••••••
Miscellaneous Arithmetic ••••••••••••••••••••••••••••••••
Searching and Sorting ••••••••••••••••••••••••••••••••••
Program Control •••••••••••••••••••••••••••••••••••••••
Date and Time Management •••••••••••••••••••••••••••••
Hardware Functions ••••••••••••••••••••••••••••••••••••
Mathematical Library •••••••••••••••••••••••••••••••••••

C-1
C·l
C-1
C-3
C-3
C-3
C-5
C-6
C-6
C-6
C-7
C-7
C-8

/~
i
'<I

\ ..

Contents xv

Appendix D: C Grammar Summary................... D-1
Lexical Rules. • • • • • • • . • • • • • • . • . . • • • • • • . . • • • • • • . . . • . . • • • • D-3
Preprocessing Directives . . • • • • • . . . • • . . • . • • • • • • • • • • . D-5
Expressions • • • • • • • . . • . . • . • . . • • • • . . • . • • • • • • • . . . D· 7
Declarations • • • • • • • • • • • • • • • . • . • . . • • . . • . . • . • • • • • • . • . . • • • D-8
Statements • • • • • • • • • • • • • . • • . • . . • • • • • • • • • • • • • • • • . . • D-9
External Definitions. • • • • • • . . • • • • • • • • D-9

Glossary .. Glossary-1

Index... lndex-1

5016843

(

xvii

Illustrations

4-1 Small Model Segments . 4.3
4-2 Medium Model Segments. 4.4
4-3 Large Model Segments . 4.5
4-4 Huge Model Segments.......................... 4·6

Tables

3-1 Memory Models and Link Files.................. 3·22

5016843

(

\

c

Section 1 1-1

Overview

This section gives you an overview of the Unisys
BTOS C Compiler, with a look at capabilities, operations,
and features.

The BTOS C Compiler is capable of generating programs
with effectively unlimited amounts of instruction code and
data. A compilation switch that controls the amount of
code and data allowed in a program is available. The
compiler allows you to compile separate source files, that
you can:
o combine to produce an executable program with the

BTOS Linker
D generate a file to assemble with the BTOS Assembler

C, a robust and portable programming language, was
developed for a UNIX operating system in the early 1970s
by Dennis Ritchie at Bell Laboratories. Its flexibility and
efficient executing speed lends itself to structured
programming techniques.

Using the C Compiler

The C Compiler runs on a BTOS workstation (B26, B27,
B28, or B38) executing BTOS II 1.0 or higher. You can also
install it on an XE520 master system and execute it on any
BTOS cluster workstation.

You need to have the language development software on
your operating system, specifically you must have the
following:
D LINK command
D BIND command
o ASSEMBLE command (for use of the inline assembler

option)
D Temporary disk storage for intermediate results during

each compile
This is twice the size of the source file you compile when
you generate object fiies directly; three to four times its
size when you generate assembly language output.

5016843

1-2 Overview

You install the software from the three installation
diskettes (refer to section 2). Other files on the diskettes
include the complete source code for the runtime library
and the software installation submit files.

Features

The C Compiler provides you with the following features:
o Four memory models: Small, Medium, Large, and Huge

Huge models allow applications to exceed the normal
limitation of 64 Kb for data (globals, statics, and stack
area).

o Mixed-model programming
Mixed-model programming allows use of far data
pointers while compiling modules in the Medium Model.

o Numerous compile-time switches
These are provided to control compilation and code
generation.

o Built-in Lint facility
This can be used for examining a collection of source
files.

o BTOS II compatibility
o 8087 support and use of a floating point coprocessor
o UNIX-like support of input/output redirection and piping

Memory Requirements

BTOS C requires a minimum of 250 Kb to compile source
programs of moderate size.

Section 2 2-1

BTOS C Compiler Installation

You can use the procedures in this section to install your
BTOS C Compiler software. After you install the software,
you enter the CCOMPILER command at the Executive level
to run the compiler.

Installing C Compiler Software

You install the C Compiler software from three 5-1/4-inch
software diskettes, B25CE1-1, B25CE1-2, and B25CE1-3.
The diskettes are write-protected.

Note: Because C chains to other run files, all C files reside on
the [Sys]<Sys> and [Sys]<BtosC> directories. No directory
specification is allowed on the Software Installation command
form.

To install the C Compiler software on your system, you
must have BTOS II 1.0 or higher installed. To use the
BTOS C Compiler, you must have approximately 2200
sectors available.

Installing C Compiler Software on a BTOS
Workstation

To install the C Compiler software on a BTOS
workstation, use the following procedure:

1 Disable the cluster if the system is clustered (use the
Executive DISABLE CLUSTER command or power down
the other cluster units).

2 Insert the software diskette into the floppy drive [fO].
3 Enter SOFTWARE INSTALLATION at the Executive

command line.
4 Press GO.
5 Follow the instructions displayed.

When the system finishes software installation, the
highlighted message INSTALLATION OF
BTOS C COMPILER COMPLETE appears, followed by
an Executive command prompt.

5016843

2-2 BTOS C Compiler Installation

6 Remove the software diskette.
If your workstation is clustered, you can resume cluster
operations using the RESUME CLUSTER command.

The CCOMPILER command is now available at the
Executive level; you can use the command to compile
C programs.

Installing C Compiler Software on an XE520
Master

To install the C Compiler software on an XE520 master
system, use the following procedure:

1 Boot the cluster workstation you want to use for
software installation on the XE520.

2 Power down all other cluster workstations.
3 Insert the diskette into the floppy drive [fO] on your

workstation.
4 Enter XESOFTW ARE INSTALLATION at the

Executive command line.
5 Press GO.
6 Follow the instructions displayed.

Section 3 3-1

Using the C Compiler

The C Compiler software package allows you to compile
separate source files that can be combined to produce
executable programs using the BTOS Linker. It also
generates files that can be assembled using the BTOS
Assembler. The compiler itself produces a standard Object
file.

This section provides you with procedures and information
that you need to use the C Compiler. For more information
about the Linker, refer to the BTOS II Language
Development Linker and Librarian Programming Guide.

Memory Utilization

The compiler is capable of generating programs with
effectively .unlimited amounts of instruction code and data.
A compilation switch that controls the amount of code and
data allowed in a program is available.

A total of four memory models are supported. Four sets of
libraries are supplied, one set for each memory model. The
memory models are:

Small

Medium

Large

Huge

Maximum Code Maximum Data

64Kb

1 Mb

1 Mb

1 Mb

+ 64Kb

+ 64Kb

+ 1 Mb(64 Kb of
globals/statics and
stack)

+ 1 Mb(64 Kb of
globals/statics per
source file plus 64
Kb stack)

The smaller models use the workstation more efficiently,
while the larger models give the programmer complete
flexibility for constructing large applications.

5016843

3-2 Using the C Compiler

Command Line Syntax

The CCOMPILER command invokes each pass of the
compiler with appropriate options. The [options] line
consists of a series of options (each preceded by'-'), and
the Filename line specifies one source file to compile. If a
filename is provided with no extension, a .C extension is
supplied. If some other extension is given, the file is
treated as if it had a .C extension.

To compile your C program, use the following
procedure:

1 At the Executive level, enter £:Compiler. The following
form appears:
Command: CCOMPILER

[options]
Filename

2 Enter the options you need in the Options field.
If you supply more than one option, separate each by a
space. You can place options in any order, and you can
include any number of them as long as there is room in
the command line.

3 Enter the name of the C source file that you want to
compile in the filename field.

4 Press Go.
The system creates an output file using the same
filename, and appends a .obj for object files or .asm for
assembly language output files.

Frequently Used Command Line Options

The most frequently used compiler options are described in
this subsection. The options are organized by topic. For a
complete alphabetical list of the compiler options, refer to
appendix B.

Using the C Compiler 3-3

Controlling Compilation Activity Options

-S This option is required if you have
inline asm statements in your source
file. When present, the named source
file is compiled producing an assembly
language output file, but the resulting
assembly code is kept and not
assembled. This option is useful when
you wish to see the assembly language
output for a given compilation.

Without this option, the CCOMPILER
command fully compiles the named
source file to an object file, ready for
linking. This option requires you to use
the ASSEMBLE command to produce an
object file for linking.

Specifying Memory Model Options

C programs for the 8086 family of processors must be
built in a memory model. The memory model determines
the size of pointers in memory and as a result determines
the amount of memory a program can use. A program
should use the smallest memory model that the program
fits in, since the smaller memory models are much more
efficient than larger ones, both in execution speed and in
memory requirements.

BTOS C provides four memory models to choose from:
Small, Medium, Large, and Huge. All source files must be
compiled with the same memory model option.

Mixed model programming allows programmers, who are
not concerned with program portability, to gain finer
control over the manipulation of pointers. Because they use
special keywords, mixed model programs are not directly
portable to other environments, so they should be used
with caution. Used properly, mixed model programming
can provide high performance pointer manipulation even in
the larger memory models.

These compile options specify, for the Large and Huge
Memory Models (and for far pointers in any memory
model) which one of two forms of pointer arithmetic is to
be used for the files being compiled. Files compiled with

5016843

3-4 Using the C Compiler

the same memory model, but different pointer arithmetic
types, can be intermixed. Refer to section 4 for more
information about the runtime environment.

-mh

-mhf

-ml

-mlf

-mm

-mmf

-ms

-msf

This option causes the compiler to
produce Huge Memory Model output
code. The 20-bit pointer arithmetic is
performed using subroutines.

This option causes the compiler to
produce Huge Memory Model output
code. The 16-bit pointer arithmetic is
performed using inline instructions.

This option causes the compiler to
produce Large Memory Model output
code. The 20-bit pointer arithmetic is
performed using subroutines.

This option causes the compiler to
produce Large Memory Model output
code. The 16-bit pointer arithmetic is
performed using inline instructions.

This option causes the compiler to
produce Medium Memory Model output
code. Far pointers use full 20-bit
pointer arithmetic if they appear in the
files being compiled.

This option causes the compiler to
produce Medium Memory Model output
code. Far pointers use 16-bit pointer
arithmetic if they appear in the files
being compiled.

This option causes the compiler to
produce Small Memory Model output
code. Far pointers use full 20-bit
pointer arithmetic if they appear in the
files being compiled.

This option causes the compiler to
produce Small Memory Model output
code. Far pointers use 16-bit pointer
arithmetic if they appear in the files
being compiled.

r
l

Using the C Compiler 3-5

Preprocessor Control Options

These options control two things: the specification of
preprocessor #define macros and the specification of a
search directory for #include files.

-Didentifier

-Diden=string

-!directory

- Uidentifier

Disk Usage Options

Defines the named identifier to the
string consisting of the single character
'l'.

Defines the named identifier iden to the
string after the equal sign. The string
cannot contain any spaces or tabs.

The indicated directory is searched for
#include files in addition to the current
directory.

Undefines any previous definitions of
the named identifier.

These options change the directory used for temporary and
output files.

-nlpath Places any .$CC files in the directory
named by path.

-n2path

-nopath

Places any other temporary files in the
directory named by path.

Places any .OBJ or .ASM files in the
directory named by path.

Comment Control Option

This option controls comment usage of the compiler
operation.

-C

5016843

If present, comments can be nested.
Comments cannot normally be nested.

3-6 Using the C Compiler

Message Control Option

This option controls messages of compiler operation.

-w If present, no warnings messages are
printed.

Advanced Options

The compiler normally generates code for an 8088 with no
8087 coprocessor. Code generated in this mode is the most
portable to the full range of microprocessors. The default
mode does not make maximum use of the capabilities of the
more advanced processors.

8086 Support

For the 8086 family of processors, word-sized data items
stored at even addresses are more efficiently fetched or
stored than word-sized items at odd addresses. By default,
the compiler does not align data objects. The compiler can
be directed to align word-sized items on even addresses.
When not aligning, some care is needed to make sure that
data references do not become confused.

If a structure is used in more than one source file of a
program, all source files referencing that structure should
be compiled with the same alignment setting. The libraries
distributed with BTOS C can be used indiscriminately
with or without alignment.

Using alignment consumes slightly more storage, especially
for structures containing both char and non-char members,
but on microprocessors with 16-bit buses (the 8086, 80186,
80286, and 80386) the program runs faster.

-a

8087 Support

If present, integer size items are aligned
on a workstation word boundary. Extra
bytes are inserted in a structure to
ensure alignment of fields. Automatic
and global variables are aligned
properly.

By default, a BTOS C compiled program uses emulation
routines to perform floating point arithmetic. These
routines can take advantage of an 8087 or 80287 installed

Using the C Compiler 3-7

in the workstation when the program is run, even if the
workstation the program was compiled on did not have an
8087.

For programs that use the math library, you must rebuild
the library if you wish to use inline floating point
instructions.

-f If present, any floating point operations
are generated using 8087 instructions
rather than calls to runtime library
routines.

The -f compile time option causes the
compiler to generate 8087 instructions
inline rather than call an emulation
routine. When compiling files using
inline 8087 instructions, all files in a
program must use inline 8087
instructions. This is because the 8087
instructions use the chip itself to return
floating point values from functions,
rather than using 8086 registers in the
default code generation.

Programs compiled with the -f switch
(thus generating 8087 instructions
inline) should call Check8087() and
check its return value, the _8087 flag. If
the flag is zero, the program should
terminate. Compiling a program to use
inline 8087 instructions can result in
performance improvement by a factor of
two over using the library routines with
an 8087.

The C libraries supplied with this release have been
compiled using the emulation routines. The emulation
routines include the ability to exploit an 8087, 80287, or
80387 math coprocessor if one is present. Calling the
library function Check8087() from your main function
detects the presence or absence of a math coprocessor and
sets the _8087 flag. The library floating point routines
check this variable and use 8087 instructions if the chip is
present. The resulting speed improvement can be a factor
of five in floating point intensive applications.

5016843

3-8 Using the C Compiler

Optimization Options

There are three separate optimization switches with
BTOS C: -0, -G, and -Z. The first two switches, -0 and
-G, are always safe to apply. The -0 option slows the
compilation process by adding an extra pass to the
compilation. This extra pass eliminates redundant jump
instructions and reorganizes loop and switch statements,
causing a reduction in code size from a minimum of two to
a maximum of fifteen percent. The loop reorganizations can
speed up tight inner loops by as much as ten percent, even
though the space savings are not that great. The -G option
controls the tradeoff decisions between consuming more
memory with faster instructions.

The third optimization switch, the -Z option, causes the
code generator to remember the contents of registers and
use them if possible. If a variable A is loaded into register
DX, for example, it is retained. If A is later assigned a
value, the value of DX is reset to indicate that its contents
are no longer current. Unfortunately, if the value of A is
modified indirectly (by assigning through a pointer that
points to A), the compiler does not catch this and continues
to remember that DX contains the (now obsolete) value of
A. Refer to the following:

C Code Optimized Assembler

func ()
{
int A, *P, B;

A= 4; mov A,4

B =A; mov ax,A
mov B,ax

p =&A; lea bx,A
mov P,bx

*P = B + 5; mov dx,ax
add dx,5
mov [bx],dx

printf("%d\ n", A); push ax
}

·---

Using the C Compiler 3-9

The above artificial sequence illustrates both the benefits
and the drawbacks of this optimization. Note first that on
the statement *P = B + 5, the code generated uses a
move from ax to dx first. Without the -Z optimization the
move would be from B, generating a longer and slower
instruction. Second, the assignment into *P recognizes the P
is already in bx, so a move from P to bx after the add
instruction has been eliminated. These improvements are
harmless and generally useful. The call to printf, however,
is not correct. The compiler sees that ax contains the value
of A and so pushes the contents of the register rather than
the contents of the memory location. The printf then
displays a value of 4 rather than the correct 9. The
indirect assignment through P has hidden the change to A.
Note that if the prior statement had been written as
A = B + 5, the compiler would recognize a change in
value.

Note that the contents of registers are forgotten whenever
a function call is made or when a point is reached where a
jump could go (such as a label, a case statement, or the
beginning or end of a loop). Because of this limit and the
small number of registers in the 8086 family of processors,
most programs never behave incorrectly.

-G If present, the compiler changes its code
generation strategy. Normally the
compiler chooses the smallest code
sequence possible. With this option, the
compiler chooses the fastest sequence
for a given task when there is a choice.

-0

5016843

This mostly affects the instructions used
to clean up the arguments after a
function call.

When present, a jump optimizer
(CC2.run) is executed to optimize the
compiled C source file given in the
command.

3-10

-Z

Lint Options

Using the C Compiler

If present, the compiler performs extra
optimization to suppress redundant load
operations. This new optimization is
optional since there are circumstances
which can cause the optimized code to
work incorrectly. The optimization is
designed to suppress register loads
when the value being loaded is already
in a register. This can eliminate whole
instructions and also convert
instructions referring to memory
locations to use registers instead.

Checking the declarations of functions and variables across
multiple source files cannot be done by the compiler itself,
so the C Compiler supplies an additional mode of operation
(enabled with the-Land -Lxxx options) to perform those
checks. With this extra mode, the BTOS C Compiler
provides the full range of diagnostic checking found in Lint
under UNIX as well as in compilers for the language
Pascal.

If you had two source files (afile.c and bfile.c) that you
wished to cross-check, you might use the following
commands:

Command: CCOMPILER
[options] -Lafile.lnt
Filename afile.c

Command: CCOMPILER
[options] -Lbfile.lnt
Filename bfile.c

Command: CCOMPILER
[options] -L
Filename afile.lnt bfile.lnt [sys]<BtosC>clib.lnt

These commands compile both of the source files, then
cross-check the call and declaration information, including
any references to the Runtime Libraries, which are defined
in the release file CLIB.LNT.

If you have a library of commonly used routines that are
debugged, so that including them in the LINT execution
would be a waste of time, you can still check any code that

Using the C Compiler 3-11

calls the library. First, you need to prepare a Lint file that
describes the library. Then you can use this library in
subsequent LINT executions checking programs that call
the library.

Lint files are created using the -L option with a filename.
The name should include the .LNT extension. As each file
is compiled, data about functions, calls and global variables
is appended to the lint file, or replaced in the lint file if it
has already been placed there. The lint files supplied with
the compiler provides the definitions of the C library
functions (CLIB.LNT) and the CTOS/BTOS interface
procedures (CTOS.LNT). Similar lint files can be built for
user constructed libraries which can then be stored for
future compilations.

The following options control the level of messages issued
by the compiler. The compiler provides many warnings to
aid the programmer in writing and debugging code. You
can disable some or all of these warnings. These flags
provide control over such warnings.

-E

-L

5016843

If present, more elastic type conversions
are allowed in function arguments.
Normally, types must match exactly in
calls and function definitions. If this
option is given, signed and unsigned
integers of equal width are considered
compatible, as are pointers to different
types. Normally these combinations are
considered as distinct types and causes
error messages to be displayed.

If present, the compiler performs a LINT
compile for the named .LNT files. Note
that this is the only time that more than
one filename can be specified.

3-12 Using the C Compiler

-Lfilename If present, the compiler performs a LINT
compile for the named C source file.
The call, function definition and
variable declaration information is
written to the named filename. Only one
of these options is allowed per command
line. The named file should be written
with the .LNT extension by convention.
This output file can be included in
future LINT compiles when
cross-checking files. Note that multiple
.LNT files can be combined into one file
by using the BTOS APPEND command.

-Q If present with a -L option, only
definition information is output to the
lint file for cross-checking.

-T If present, any casts are checked for
suspicious conversions. Normally casts
are not checked and no warnings are
printed for them. Conversions caused
automatically, such as when assigning

"' between variables of different types, are
always checked for suspicious
situations. It is assumed that since the
programmer has specified a cast, no
warning is normally needed. This flag
forces warnings anyway. In particular,
converting a pointer to a different kind
of pointer and converting a long to an
integer type produces warnings.

-b If present, complaints about unreachable
break statements are suppressed.

-d When doing conversions from long to
int, -d prevents the compiler from
reporting back that you can lose some
significant digits in the conversion
process.

11'-

-h If present, heuristic tests that attempt \.t_

to report possible bugs, faulty style or
wasteful constructs are not performed.

Using the C Compiler 3-13

-q

-s

-x

If present, warnings about undefined
external symbols in executing LINT are
suppressed.

If present, any structure that is being
passed by value (rather than passing its
address) generates a warning message.
This allows programmers who wish to
enforce obsolete structure usage to see
any instances of inadvertently passing
structures by value. This can be a
frustrating bug to locate if you want to
pass structures by address and leaves
off the & operator, there is no message
and the structure is passed by value.
This switch at least flags the instances
where structures are passed, so any
errors can be discovered without going
through a full lint execution.

If present, report variables declared as
external, but never used.

The following options suppress all occurrences of the listed
warning message.

5016843

3-14

-wamb
-wamp
-wapt
-wasm
-waus

-wcln
-wept
-wdef

-wdgn
-wdup
-we ff
-wfun
-wign
-wpar
-wpia
-wrch
-wret
-wrpt
-wrvl
-wsig
-wstr
-wstu
-wstv
-wsus
-wuse
-wvoi
-wzst

Using the C Compiler

Ambiguous operators need parentheses.
Superfluous & with function or array.
Non-portable pointer assignment.
Unknown assembler instruction.
'XXXXXXXX' is assigned a value which
is never used.
Constant is long.
Non-portable pointer comparison.
Possible use of 'XXXXXXXX' before
definition.
Degenerate constant expression.
Duplicate definition of 'XXXXXXXX'.
Code has no effect.
Function 'XXXXXXXX' unused.
'XXXXXXXX' return value ignored.
Parameter 'XXXXXXXX' is never used.
Possibly incorrect assignment.
Unreachable code.
Both return and return of a value used.
Non-portable return type conversion.
Function should return a value.
Conversion can lose significant digits.
'XXXXXXXX' not part of structure.
Undefined structure 'XXXXXXXX'.
Structure passed by value.
Suspicious pointer conversion.
'XXXXXXXX' declared but never used.
Void functions cannot return a value.
Zero length structure.

The -w option (without any subsequent characters)
suppresses all warning messages.

Debugging Options

These options are useful in debugging programs. Stack
overflow checking has space and time costs in a program,
but when the stack does overflow, it can be a difficult bug
to discover. Generation of a standard stack frame is useful
when using a debugger to trace back through the stack of
called subroutines.

Using the C Compiler 3-15

-N

-Y

-y

If this option is present, stack overflow
logic is generated at the entry of each
function. If an overflow is detected, the
program exits with an error code of 400
(insufficient memory).

If this option is present, the compiler
generates standard function entry and
exit code. Normally, for maximum
efficiency, the compiler minimizes the
amount of information saved on entry to
a function. This practice can prevent the
BTOS debugger from displaying a
complete stack trace. To consistently
display the stack, the BTOS debugger
requires that this flag and the -r flag be
included in a compile.

If present, source line number debugging
records are inserted in the object code
output of the compiler. This does not
affect the size or speed of executable
code, but increases the size of an object
file on disk. This option is not useful for
the BTOS debugger.

Compatibility Options

These options are designed to provide facilities for moving
code between BTOS C and other C environments.

-A

5016843

If present, any of the BTOS extension
keywords are ignored and can be used
as normal identifiers. These keywords
include near, far, asm, plm, interrupt,
_es, _ds, _cs, _ss and _ES.

The -A option is designed to provide a
maximally portable 'ANSI' environment
where none of the BTOS C extensions
are usable. This also means that
applications programs written using the
BTOS C extended keywords as normal
identifiers can be compiled by using this
switch.

3-16

-K

-i#

Using the C Compiler

If present, this option causes the
compiler to treat all char declarations as
if they were unsigned char type. This
allows for compatibility with other
compilers that treat char declarations as
unsigned.

The -K option is designed to ease
conversion from C programs written for
other workstations to BTOS C.

If present, this option specifies the
number of significant characters in an
identifier. All identifiers, whether
variables, preprocessor macro names or
structure member names are treated as
distinct only if their first # characters
are distinct. The number given can be
any value from 1 to 32. The default
number of characters used if this option
is not given is 32.

The -i option allows you to set the ·"
number of significant characters in an ..
identifier. BTOS C uses 32 characters
per identifier. Other systems, including
UNIX, ignore characters beyond the
first 8. If you are porting to these other
environments, you can compile your
code with a smaller number of
significant characters to see if there are
any name conflicts in long identifiers
when they are truncated to a shorter
significant length.

Using the C Compiler 3-17

-r If present, this option suppresses the
use of register variables. Under this
option all register keywords are ignored.
If you have some Assembly Language
code that does not preserve the values
of the SI and DI registers, the -r option
allows you to call that code from
BTOS C. Suppressing register variables
does reduce the efficiency of generated
code, in general, but can be necessary to
use existing subroutines. Note that when
you are using the -r option, a source file
compiled with -r can call code in a
source file compiled without -r, such as
a routine in the Runtime Libraries. The
opposite is not true, so a file compiled
with -r can only be called from a file
also compiled with -r.

Fast Calling Sequence Option

This option allows you to specify for a whole program that
functions use the PL/M calling sequence. Functions
explicitly declared to use a variable number of arguments,
such as printf are clearly exempted. The advantage of this
calling sequence is smaller and faster function calls.

The major disadvantage of this calling sequence is greater
sensitivity to error. A function call can omit any unused
trailing arguments. In the PL/M calling sequence they
definitely cannot.

The 8086 family of chips works well with PL/M systems
programming language. This language is similar to PL/1,
Pascal and C in many ways. In one important respect,
PL/M differs from C: PL/M does not allow variable length
argument lists. This makes functions like printf and scanf
impossible to implement with the PL/M calling sequence.

PL/M handles function arguments by pushing the
arguments in the reverse order of the C argument
sequence. Then, where in C the calling code pops the
arguments, in PL/M the called routine uses a special return
instruction that returns and pops the arguments in one
stroke. If a function is called several times, this means only
one set of pop code in PL/M while several such pop
sequences in C.

5016843

3-18 Using the C Compiler

For programs that do not involve many calls to functions
like printf, a significant space savings can be gained by
using the PL/M calling sequence.

There is one other disadvantage to using the PL/M calling
sequence. Pointers in C are returned via the same registers
as integers (or long integers depending on the memory
model), while the PL/M calling sequence uses different
registers. Thus the manner in which some C programs tend
to move pointers to and from integers do not work in the
PL/M sequence.

The BTOS C Compiler normally generates the C calling
sequence. The -p flag causes the compiler to generate the
PL/M calling sequence. Using this sequence, programs must
be coded with greater care. LINT can help in this, since it
identifies all the circumstances where the PL/M calling
sequence might cause a problem. In particular, any
function defined to return a pointer must be so declared
everywhere it is called.

Second, all function calls must pass the exactly correct
number and type of arguments (in the C calling sequence,
excess arguments are ignored). This second class of error
can and often does cause the offending program to crash
the workstation. Function prototypes can help here as well.

Since the supplied libraries of BTOS C are built for the
C calling sequence, and particularly since recompiling the
libraries would not help printf and scanf, an escape is
allowed. Any function defined and declared with a
prototype containing an ellipsis(...) is compiled using the
C calling sequence. This escape allows mixing the calling
sequences in a single program.

Note that STDIO.H is written with declarations for the
printf and scanf functions declared as accepting a variable
number of arguments, so that including STDIO.H allows a
program compiled using the PL/M calling sequence to still
use printf and scanf. To build a program using this
sequence, the runtime libraries must be rebuilt using the
PL/M calling sequence as the default throughout.

I,

'~

Using the C Compiler 3-19

This option differs from declaring a plm function in that
register variables are not used in plm functions, but for
normal functions compiled with the -p option they are
used. Remember that when you call system functions they
must be declared as plm functions, even if the -p option is
used.

-p If present, the compiler generates all
subroutine calls and all functions using
the PL/M-86 calling sequence.

Segment Naming Options

For some complex applications, the ability to place pieces
of code or data into specific segments is desirable. For this
reason, BTOS C provides as flexible a set of facilities as
possible. Each C output file consists of three segments.
The instruction code for the source file is placed in the
first segment, the initialized static and global data is placed
in the second segment, and the uninitialized static and
global data is placed in the third. The Huge Model merges
the second and third segments into a single data segment.

Groups are generated depending on the memory models and
the switches present below. The code segment of a source
file is not given a group association unless a -zP option is
given. The data segments for all memory models are placed
in the DGROUP.

-g

-zAname

-zBname

5016843

If present, the compiler will declare all
segments as "public". This is most
useful when using the huge memory
model and it is desired that segments
from different modules be combined and
accessed with one selector.

If present, this option changes the name
of the code segment class to name. By
default, the code segment is assigned to
class 'CODE'.

If present, this option changes the name
of the data segments class to name. By
default, the data segment is assigned to
class 'ST ACK'.

3-20

-zCname

-zDname

-zGname

-zPname

Using the C Compiler

If present, this option changes the name
of the code segment to name. By default,
the code segment is named 'CODE',
except for the Medium and Large
Models, where the name is 'C_filename'.
(Filename here is the source filename).

If present, this option changes the name
of the uninitialized data segment to
name. The uninitialized data segment is
named 'BSS'.

If present, this option changes the name
of the data group to name. By default,
the data group is named 'DGROUP'.

If present, this option causes any output
files to be generated with a code group,
for the code segment, named name.

CCompiler. CFG

As an aid to programs requiring many command line
options in a single compile, a special file named
CCOMPILER.CFG can be created. This file is a simple text
file containing any number of compile options per line, and
spread over as many lines as desired.

The CCOMPILER command first reads this file and once all
of these options have been processed, the options given on
the command line are processed. Any option, such as a -w
or -f that has no associated string, acts as a toggle. If the
option is given once, it is turned on. If the option appears
more than once, it is toggled once for each appearance.
Thus if an option appears in the CCOMPILER.CFG file, it
can be suppressed for a compile by including it again on
the command line. Define macros supplied in the
CCOMPILER.CFG file can be undefined with the -U option.

Comments can be placed in the CCOMPILER.CFG file by
placing a semicolon (;) on any line. Any text appearing
after the semicolon up to the end of the current line is
considered a comment. Completely blank lines are allowed
and any amount of white space can appear before or after
an option string.

Using the C Compiler 3-21

The CCOMPILER.CFG file can appear in the current
directory or in the [sys]<sys> directory. By appropriately
creating CCOMPILER.CFG files in each directory, options
specific to a particular component of a large system under
development can be specified once and subsequently used
without extra effort.

Examples:

-I [sys]<BtosC>
-Y -r
-0
-1 -a -f

Preprocessor options
Debugging options
Use the optimizer
80186, with 8087 instructions

The -I option is used to tell the compiler where the
standard include files (like stdio.h) are located. The -Y and
-r options cause standard function entry and exit code to
be generated for debugging purposes.

The -0 option invokes the optimizer on all compiles. The
-1 and -a options are used for a 80186. Code executes
more quickly on an 80186 if word sized variables are
placed at even memory addresses (-a data alignment). This
example also assumes 8087 inline floating point
instructions are being generated (-f option).

Linking a Program

To produce a complete, executable program, the .OBJ files
made by the compiler and assembler must be combined
with the C runtime library using the BTOS Linker BIND
command.

C programs are often divided into multiple source files.
One source file functions refer to data and functions in
another file. Dividing source code like this is particularly
valuable in large programs. Even with small programs
contained entirely in a single source file, that program
usually refers to several functions in the C library. In fact,
a C program cannot be written which does not refer to at
least one library function and still accomplish any real
work.

The function main is the starting point of any C program
and it expects two arguments (arge, argu). A small amount
of code must be executed to set up these arguments and
call main. Linking is used to merge in that initialization
code.

5016843

3-22 Using the C Compiler

The object files cox.OBJ contain the necessary
initialization code for a C program using the appropriate
memory model. It must be listed first in the object modules
field entry of the BIND command. The corresponding
library files must be used in the [Libraries] field entry to ,,
incorporate the library routines for the appropriate '•
memory model (refer to table 3-1).

To link a program using the BTOS Linker, use the following
command:

Command: BIND
Object modules
Run file
[Map file]
[Publics?]
[Line Numbers?]
[Stack size]
[Max array, data, code]
[Min array, data, code]
[Protected capability]
[Version]
[Libraries]
[DS allocation?]
[Symbol file]

startup_file object_files
exec_file

stack_size (default is 8096)

libraries

This command executes the linker, combines the named
object files and produces as output the named exec_file.

Table 3-1 Memory Models and link Files

Model

Small
Medium
Large
Huge

Start-up File in
Object Module Field

COS.OBJ
COM.OBJ
COL.OBJ
COH.OBJ

[Libraries]

CUBS.LIB, MATHS.LIB
CLIBM.LIB, MATHM.LIB
CLIBL.UB, MATHL.LIB
CLISH.LIB, MATHH.LIB

Using the C Compiler 3-23

A stack size must be given if your program makes
extensive use of the stack or the heap in the Small and
Medium Memory Models. A default stack size of 8096 bytes
is used if you provide no other value. In the Small and
Medium models, calls to the malloc family of functions use
part of the stack space for the memory heap. You should
include any space needed for these calls in the stack size
figure you use. For the Large and Huge Memory Models,
the stack size value is used exclusively for stack space.
Malloc in the Large and Huge models uses Short-Lived
memory for any space it needs.

LI NT Source File Comments

Command line arguments are the usual means of
controlling the operation of the compiler. Certain pieces of
information about the source file are not suitable for
setting a single command line flag, so under UNIX the
convention has been adopted of defining special comments
which are interpreted by the compiler. This violates the
rule that comments can have any content and do not affect
the compilation. These extensions still do not affect the
code produced by the compiler or the error diagnostics
issued by the compiler.

The comments must be all in uppercase letters and there
can be no characters between the start of the comment (/*)
and the keyword of the comment. Although the forms
given below do not show it, any characters can be included
in the comment after the keyword as long as the keyword
is separated from any more letters or digits by white space.

/*ARGSUSED*/

This comment is placed before any function definition
where some of the function parameters declared are not
used. This suppresses the compiler warnings about unused
function parameters.

This is most often used when there are stub test routines
included for unfinished parts of a program. It can be useful
to force the calls to the unfinished functions to pass the
correct parameters while not actually placing any code in
them.

5016843

3-24 Using the C Compiler

/*UNTUBRARY* I
This comment is placed at the head of a file of declarations
of library functions. LINT normally issues warnings about
any functions in a program that are not called. This is
because such functions are wasting space in the program.
Library functions are not included by the linker, and
therefore no space is wasted by unused library functions.
LINT must be informed about which functions are in a
library so that unnecessary warnings are suppressed.

Once a library is built, rather than compile all the
functions in it and produce a large lint file with many calls
that need to be checked every time LINT is called, a special
file of just the function declarations (not the code in the
functions) is prepared. For assembly language subroutines
this is necessary, since the compiler cannot automatically
figure out what the function parameters are. These source
files are then compiled and compact lint files are produced
with just the function interfaces included. This is precisely
what has been done to create CLIB.LNT.

/* NOSTRICT* /

This comment is placed just ahead of a statement and
suppresses the strict type checking for that statement
alone. It has the same effect as the -h command line
argument but only on one statement.

/*NOTREACHED*/

This comment is placed in a function to notify the compiler
that the current point in the code is never reached in
executing the function. This affects the unreachable code
warning message.

This comment is usually placed after a call to a function
like exit which never returns, or after a looping construct
which never falls through (the compiler tries to recognize
such loops but cannot recognize all of them).

The compiler claims there is a return with no value at the
end of a function where the end is reachable. If the
function returns.a value explicitly elsewhere or is declared
to return some non-integer type, a warning message is
given at the end of the function. The NOTREACHED

Using the C Compiler 3-25

comment is placed just ahead of the end of the function to
suppress this message. The comment also serves to
document functions which don't return, or unending loops.

/*VARARGSn* I
C allows functions to accept a variable number of
parameter arguments. Printf and scanf are the prime
examples. C formerly did not provide any formal means of
notifying the compiler of this fact. The new ellipsis(...)
notation is now used to declare printf and scanf, but this
comment is provided for older code. The V ARARGS
comment notifies LINT that the following function accepts
a variable number of arguments, even though it does not
use the new ellipsis notation. If a number immediately
follows with no intervening white space, the number gives
the minimum number of fixed arguments that must be
present in the call. If no number is given then zero is
assumed.

Functions such as printf that accept a variable number of
arguments normally have a few required arguments at the
beginning of the parameter list. LINT checks the first n
arguments in each call for type compatibility and ignore
any excess. Without the V ARARGS comment, LINT prints
error diagnostics for each call which does not have the
exact number and type of arguments declared in the
function.

Compiler Operation

This subsection is provided for those interested in what the
CCOMPILER command does, or who are curious about what
temporary files the compiler uses. Normal use of the
compiler should not require that you read this.

A source file is compiled by running each of the passes,
CCO.RUN, CCI.RUN, CC2.RUN and CC3.RUN, in that order.
The options given to each pass are the same as the options
specified in the CCOMPILER command.

5016843

3-26 Using the C Compiler

Executing the Individual Passes

The CC2.RUN pass can be omitted. It is the optional
optimization pass invoked by the -0 switch.

The CC4.RUN pass does Lint cross-checking. It is only
executed when a -L option (with no trailing filename) is
given on the CCOMPILER command line.

Except for CC4.RUN, each pass of the compiler can be
given only one source file name, and wildcards are not
allowed. The CC4.RUN pass is given as many Lint
filenames as you like, and wildcards are allowed.

All passes of the compiler return -zero exit codes when they
complete, permitting submit files to continue processing.

Temporary Files

The individual passes produce the following temporary
files:

Pass

CCO.RUN
CCI.RUN

CC2.RUN

Temporary Files

srcfil.$CC
srcfil.$CD
srcfil.$CF
srcfil.$CG
srcfil.$CI
srcfil.$CS
srcfil.$CX

These temporary files are created in the current directory,
unless directed otherwise with a -nlpath or -n2path option.
The temporary files are normally deleted when the pass
that reads them is finished with them.

Section 4 4-1

Runtime Environment

Program Execution

The standard start-up code supplied with the
BTOS C Compiler performs the following steps whenever
a C program starts executing:
o The DS register is set to point at the Data segment.
o The SS register is set to point at the Stack segment.
o The SP register is set to point at the top of the Stack.
o The command parameters are copied into the program

data. These parameters are then pointed to by the argv
array.

D The files stdin, stdout and stderr are opened. Any
redirection and piping options are recognized.

o The function main is called.
o After main returns, if piping was not specified, exit is

called with an error code of zero. This is not in
accordance with the latest draft of the ANSI C Standard,
which specifies that exit should be called with the return
value from main.

o If piping was specified, the next program is activated
with the specified arguments.

When a C program is executed, before the function main is
called, the command line used to execute the program is
parsed into the form needed for argc and argv. Argv[O] is
set to the command name.

By default the standard I/O files are opened so that stdin
is set to the file [kbd], stdout is set to the file [vid] and
stderr is also set to [vid]. If, in any of the command
parameters, a parameter beginning with a left or right
angle-bracket('<' or'>') is encountered, that parameter
is treated as a file redirection. The parameter is not placed
in the argv array.

A redirection parameter beginning with a '<' character
provides an alternate filename for the stdin file. The
parameter string (excluding the leading'<' character) is
treated as a filename and opened for input. A redirection
parameter beginning with a'>' character provides an
alternate filename for the stdout file. The parameter
(excluding the leading'>' character) is treated as a

5016843

4-2 Runtime Environment

filename and opened for output. The file is created if it
does not exist, and is truncated to zero length if it does
exist. If the parameter begins with two'>' characters,
both are ignored to find the filename, and the file is
appended with the output of the program. In this second
case, the file is also created if it does not exist.

For example, the command (assuming XYZ is a
C program):
Command XYZ
params file 1 file2

Main is called with a value of 3 for argc, and argv[O] is set
to XYZ, argv[J] is filel and argv[.2] is file2. If main returns,
then exit is called with a zero argument.

Note that if the RUN command is used to start a
C program, argv[O] is set to the Command entry, and the
following argv[] entries are set to the Parameter n
entries. The argv array does not preserve the multi-line
structure of the original command entries. All
subparameters are strung together as if they were all
entered in one long parameter.

Emulation of UNIX pipes is performed by passing the
stdout output of a program to the stdin input of the next
program when the I symbol is processed.

For example, the command (assuming XYZ and ABC are
C programs):
Command XYZ
params pl p2 I ABC p3 p4

XYZ is run with parameters pl and p2, and its stdout
output is placed into [SYS]<$>pipe.file. After XYZ main
returns, ABC is run with parameters p3 and p4, and its
stdin comes from [SYS]<$>pipe.file. Note that ABC.run
must be in the current directory or in [SYS]<SYS>,
otherwise the directory must be specified in the params
line (e.g. I [Dl]<TEST>ABC). The space after the I is
optional, but the space before it must be present to
recognize piping. The number of piping specifications is
limited only by the size of the Variable Length Parameter
Block allocated by the Executive.

Runtime Environment

Memory Organization

Figures 4-1 through 4-4 illustrate the memory
organization of the various memory models.

4.3

Figures 4-1 through 4-4 illustrate the memory layout for
a BTOS C program in the various memory models. Where
a segment register name is given with an arrow pointing
into a figure, this represents the location where the
segment registers are assigned at program start-up. Note
that in the Medium, Large and Huge Models, CS changes
value as functions are called in different source files. In
the Huge Model, DS also changes value as functions are
called in different source files.

The heap is an area of storage used to dynamically allocate
memory as a program runs. The most common interface to
the heap is the function malloc, together with the related
free and other allocation functions. Each block of memory
allocated can be a different size. There are no restrictions
on the order in which objects are allocated and freed.

Figure 4-1 Small Model. Segments

PROO class 'CODE' code

OOFO.P:

DATA class 'STACK'
initialized data

BSS class 'STACK'
uninitialized data

Heap
SP.-.

Stack

CTOS.LIB data

I up to rest of
___ Far_H_e_a_p _______ __. shortlived memory

5016843

4.4 Runtime Environment

Figure 4-2 Medium Model Segments

cs_. C_sfile class 'CODE' code each up to 64 Kb

DS,SS_. DGRlP: up to 64 Kb

DATA class 'STACK'
initialized data

BSS class 'STACK'
uninitialized data

Heap
sp_.

Stack

CTOS,.LIB data

I up to rest of
___ Far_H_e_ap _________ shortlived memory

In the Small and Medium Models, the stack is located
higher in memory than the heap, sharing the data segment
with the static and global data. The heap grows higher in
memory, while the stack grows lower.

In the Large and Huge Models, the stack is located
independently of the heap, and grows downward towards
the start of the data segments. Note that the first data
segment still combines CTOS.LIB data with the stack. In
these models the heap can extend to fill all of short-lived
memory.

Pointer Arithmetic

In the Small and Medium Models, data pointers are two
bytes long, and arithmetic involving them is very much like
simple integer arithmetic. For the Large and Huge Memory
Models and for far pointers in the other Models, there are
added complexities.

Runtime Environment 4-5

Figure 4-3 Large Model Segments

cs_. each up to 64 Kb C_sfile class 'CODE' code

DGFO.JP:

DATA class 'STACK'
Initialized data

BSS class 'STACK'
uninitialized data

SP_.

Stack

CTOS.LIB data

I up to rest of
L...--H-eap _________ __. shortlived memory

The 8086 family of microprocessors supports a Segmented
Memory architecture. This means that programs may not
simply treat all of the workstation memory address space
as a single array of characters l megabyte long.

A memory address used by a program in unprotected mode
is constructed as a four-byte quantity. The high-order two
bytes are the segment part and the low-order two bytes
are the offset part. All 32 bits of these bytes are used to
find the physical memory location pointed to by the
address.

The segment part is shifted by 4 bits from the offset part
to produce a 20-bit result. The resulting segment and
offset values are added together to compute the internal
hardware location.

5016843

4-6 Runtime Environment

Figure 4-4 Huge Model Segments

cs_.

DS,SS_..

gp_.,

OS_.

Segment
Byte of pointer
Offset +
Byte of pointer

heap - short-lived
memory

C_sfilel class 'CODE' code

C_sfilen class 'CODE' code

OOR:l.J>:

Stack

CTOS.UB data

D_sfilel class 'STACK' data

D_sfilen class 'STACK' data

[xxxx xxxx xxxx xxxx l
3 2

up to remainder
of partition

each up to 64 Kb

up to 64 Kb

each up to 64 Kb

[YYYY YYYY YYYY YYYY]
1 0

Physical Address zzzz zzzz zzzz zzzz zzzz

There are restrictions on hardware addressing using this
scheme. If an instruction uses an index register and offset
to address; (for example an array element) the offset and
index register value is added together. If the result exceeds
64 Kb no carry bit is retained and the actual resulting
location is quite different from that intended.

The 8086 instruction set does not include suitable
instructions for easily computing segment/offset
combinations where the offset exceeds 64 Kb. However,
any carry from the offset must be propagated, not to the
low order bit of the segment, but to bit 12. In addition,

d
I •

Runtime Environment 4-7

because of the wrap-around problems of referencing
offsets in structures when the index register value is high,
one must severely restrict such references or else generate
extra code.

For these reasons, there are two pointer arithmetic options
for each of the four memory models. The slow version uses
subroutine calls for each pointer arithmetic operation. The
routines guarantee that the resulting offset is less than 16.
Also, when adding a long integer to such a pointer, the
operation simulates a large linear array. Individual
structures are still limited to 64 Kb because structure
offsets must be supplied as part of the workstation
instructions for efficiency.

Comparing two pointers in this mode always produces the
true relation of the pointers in memory. The difference of
two pointers is a signed long integer which reflects no
difference as if the two pointers pointed into a single large
array. This occurs even if the two pointers were pointing
into different unrelated places.

The fast pointer arithmetic option uses inline instructions
and assumes that the segment part of a pointer is never
changed when adding or subtracting integers to the
pointer. Also, comparing or taking the difference of two
pointers assumes that the pointers have the same segment
part. These limitations mean that an array must be less
than 64 Kb.

In fast pointer arithmetic, two pointers can only be
meaningfully compared or subtracted if they point into the
same array. Equality and inequality comparisons are
always valid.

The fast arithmetic option produces object files in the
Large Model that are only about 20 to 25% bigger and
slower than corresponding Small Model object files. Slow
arithmetic is not much bigger, but is considerably slower.
Pointer intensive loops can be up to five times slower and
overall programs are as much as twice as slow as Small
Model programs doing the same work. Modules compiled
with the two different forms of arithmetic may be
combined in a single program.

For programs to execute successfully in protected mode,
the fast arithmetic option must be specified.

5016843

Section 5 5-1

Assembly Language Interface

This section describes the workstation level interface used
by C programs, as well as a number of the constructs used
in the code generated by the compiler. Programmers
intending to write assembly language subroutines called
from C or which call C functions, as well as programmers
using the inline assembly feature, may use this information
to aid in writing their code.

Note that since the compiler can generate assembly output
it may be desirable to hand-optimize fragments of code
which are executed many times during a program. You
should use the inline assembly feature to substitute
assembly statements for C code wherever needed, and not
actually modify the assembler output. This way subsequent
changes to the source file do not require remodification of
the assembly output.

External Variable Names

Global symbols, whether a function name or data name,
ignore distinctions between upper- and lowercase letters.
Since C global variable names may have the same spelling
as an Assembler reserved word, there are some names you
may not be able to use in Assembly language. One library
function like this is ABS. Note that names longer than eight
characters in the C source are allowed and are not
truncated. If you used the compiler option to specify the
length of an identifier, the name is truncated to whatever
length you specified.

The C and Pl/M Function Calling
Sequences

The most common method of calling a function used in
C programs for the 8086 is called the C calling sequence.

The most important issue in function calling is how many
arguments may be supplied in a given call. PL/M, the
designed systems programming language for the 8086
family, requires that all calls to a given function have the
same number of parameters. C, particularly for printf and
scanf, allows different calls to a function to have different
numbers of parameters.

5016843

5-2 Assembly Language Interface

Special function return instructions are supplied to pop a
number of bytes from the stack after returning from a
function. This removes the function arguments and is used
to implement the PL/M calling sequence. C uses the
simpler return instruction that does nothing to the stack.
The calling function must contain code to remove the
arguments from the stack, since it is the only place where
the number of arguments are known.

The BTOS C Compiler allows you to produce programs
employing either calling sequence. The PL/M sequence
generates smaller programs but it is more sensitive to
errors in the function arguments. For example, in the
C calling sequence an extra argument is completely
harmless. Often, too few arguments cause erroneous
behavior but the program does not crash the workstation.
The PL/M calling sequence very frequently causes a system
crash when an incorrect number of arguments is given. The
libraries supplied with the compiler are built using the
C calling sequence .

.
function Arguments

Arguments are passed to a function on the stack. With the
C calling sequence, the arguments are pushed onto the
stack in a right to left order. For example:
int
long

= 5;
j = 7;

i, j ;
k· I

k = Ox1407aa;
funca(i, j, k)

would load the stack as follows at the entry point to funca
using the small memory model:

SP+ 08: 0014
SP+ 06: 07aa k
SP+ 04: 0007 j
SP+ 02: 0005
SP: return address

~
I'
\lj,

Assembly Language Interface 5-3

For the medium, large and huge memory models, the stack
appears as follows:

SP+ 10: 0014
SP+ 08: 07aa k
SP+ 06: 0007 j
SP+ 04: 0005
SP+ 02: return segment
SP: return address

An assembly function cannot determine the number of
arguments actually passed by the caller. The called
function should not pop any arguments when returning.
The calling function does that.

With the PL/M calling sequence, the arguments are pushed
onto the stack in a left to right order, the reverse of the
C sequence. For example:

int i, j;
long k;

= 5 j

j = 7;
k = Ox1407aa;
funca(i, j, k)

would load the stack as follows at the entry point to funca
using the small memory model:

SP+ 08: 0005
SP+ 06: 0007 j
SP+ 04: 0014
SP+ 02: 07aa k
SP: return address

For the medium, large and huge memory models, the stack
appears as follows:

SP+ 10: 0005
SP+ 08: 0007 j
SP+ 06: 0014
SP+ 04: 07aa k
SP+ 02: return segment
SP: return address

5016843

5-4 Assembly language Interface

An assembly function knows the number of arguments
because the number must be the same at all calls. The
function uses a RET instruction with an operand of 8. The
calling function needs no code to clean up the stack after
the call.

Calling Functions

To call a C function from assembly language using the
small memory model the following code is used:

EXTRN FUNCC:NEAR

CALL FUN CC

To call a C function using the medium, large or huge
memory models, the following code is used:

EXTRN FUNCC:FAR

CALL FUN CC

Obviously, only one EXTRN statement for each function
being called is needed in the assembly module. Also, the
EXTRN statement must be placed outside any segments
given in the file.

When calling a C function, arguments should be pushed in
right to left order. After the called function returns, the
caller should pop the number of words pushed. For more
than one or two arguments, the best method for popping
arguments is to add a constant to SP.

For example:

MOV
PUSH
LEA
PUSH
LEA
PUSH
CALL
ADD

AX,10
AX
AX,B
AX
AX,A
AX
MOVMEM
SP,6

; push ...
; argument 10
; push ...
; argument b
; push ...
; argument a
; movmem(a, b, 10)
; pop the arguments

[

Assembly Language Interface 5-5

would call the movmem function to copy 10 bytes from the
global array a to the global array b. Using the PL/M calling
sequence this same call becomes:

LEA
PUSH
LEA
PUSH
MOV
PUSH
CALL

AX,A
AX
AX,B
AX
AX,10
AX
MOVMEM

Passing Return Values

; push ...
; argument a
; push
; argument b
; push
; argument 10
; movmem(a, b, 10)

Integer, unsigned and enumeration values are returned in
AX. In the small memory model, pointers to functions are
returned in AX. In the small and medium memory models,
pointers to data are returned in AX.

Using the PL/M calling sequence, two-byte pointers are
returned in BX. This fact forces you to be very careful
when declaring C functions in the PL/M calling sequence.
You must make sure that all functions returning pointers
are explicitly declared as extern wherever such functions
are used.

Long and long unsigned values are returned in AX and DX,
with the low order bits in AX. The high order bits are in
DX. In the medium memory model, pointers to functions
are returned similarly. In the large and huge memory
models, all pointers are returned in AX and DX.

Using the PL/M calling sequence, four-byte pointers are
returned in ES:BX.

Double values are returned in AX, BX, CX and DX, where
AX contains the most significant bits of the double, and DX
the least significant.

Structure values are returned by placing the value in a
static data location and placing the address of that location
in BX. The calling function must copy that value to
wherever it is needed. In the large and huge memory
models, these values use ES:BX to address the static area.

5016843

5-6 Assembly language Interface

Assembly language File Structure

Assembly language modules may be included in a
C program if they conform to certain conventions used by 11

the compiler. AU such assembler modules should begin with ·."'
the following:

NAME filename

An assembly language module which defines code to be
used with a C program compiled for the small memory
models must begin with these statements:

PROG SEGMENT
ASSUME

BYTE PUBLIC 'CODE'
CS:PROG

For a C program compiled for the medium, large or huge
memory model, the following statements must be used:

C_filename
ASSUME

SEGMENT BYTE 'CODE'
CS:C_filename

Filename, by convention, is the name of the source file.

If you redefine the names of the segments generated by the
compiler, you may need different values if you have set up
your own segmentation scheme.

If you define data elements as follows:

DGROUP
DATA

GROUP
SEGMENT

DATA
WORD PUBLIC 'STACK'

then you must place the following statement at the
beginning of the code segment:

ASSUME DS:DGROUP

You may need to use different values if you have changed
the segment, group or class names generated by the
compiler.

Assembly Language Interface 5.7

Defining Functions

To define a function called from a C module using the
small memory model, the following declarations are needed
at the beginning of the function:

FUN CA

FUN CA

PUBLIC
PROC

FUN CA
NEAR

ENDP

For the medium, large or huge memory models, a slightly
different sequence is used:

FUN CA

FUN CA

PUBLIC
PROC

FUN CA
FAR

ENDP

An assembly function must preserve the values of the BP,
SI and DI registers. Note that when register variables have
been suppressed in the program, SI and DI need not be
preserved. The segment registers CS, DS and SS must
always be preserved. ES may be used as a scratch register
in all memory models.

Defining Data Constants

Initializing data constants is done in the usual way for
numeric constants. For pointers to data in the small and
medium memory models, use the following method to
define a word containing the address of xxx:

DW DGROUP:xxx

To define a pointer to a function in the small memory
model, use the following:

DW PROG:xxx

To define a pointer to a function in the medium or large
memory model, or any far pointer to a function, use the
following:

DD xxx

5016843

5-8 Assembly language Interface

To define a pointer to data in the large or huge memory
models, or any far pointer to data) use the following:

DD DGROUP:xxx

Global Data

To define a global variable, a PUBLIC statement must be
included in the DAT A segment of an assembly module. For
example, to define an integer variable A and initialize it to
zero, use the following example:

A PUBLIC A
DW 0

To define an external data variable, an EXTRN statement
must be included in the DAT A segment of an assembly
module, except for the huge model where the EXTRN
statement must be placed outside all segments. For
example, to define an external integer variable A, use the
following example:

EXT RN A: WORD

To define an external character variable B, use the
following example:

EXTRN B:BYTE

Sample Assembly Language Modules

The following sample Assembly Language source modules
implement the ABS function in the specified memory
models. The medium model version is the same as the large
and huge model versions because no global data or pointer
references are included in the function.

Assembly Language Interface 5-9

Small Model Version

PROG SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:PROG

PUBLIC ABS

ABS PROC NEAR
PUSH BP
MOV BP,SP
MOV AX,[BP+4]
OR AX,AX ; set condition codes
JNL ADO NE
NEG AX

ADO NE:
POP BP
RET

ABS ENDP
PROG ENDS

END

Medium, Large and Huge Model Version

C_ABS SEGMENT BYTE 'CODE'
ASSUME CS:C_ABS

PUBLIC ABS

ABS PROC FAR
PUSH BP
MOV BP,SP
MOV AX,[BP+6]
OR AX,AX ; set condition codes
JNL ADO NE
NEG AX

ADO NE:
POP BP
RET

ABS ENDP
C_ABS ENDS

END

5016843

Section 6 6-1

Library Reference

The C runtime library consists of a set of functions for
performing input/output, numerical calculation, and file
management. In addition to the functions in the library,
there are a set of #include files in the package designed to
be included in user source programs. These files provide
definitions of many constants needed by an application
program, as well as declaration of structures and functions
which may also be needed.

The first part of this section gives a broad overview of
each major component of the library. The second section of
this reference discusses each of the #include files. The
third section provides an alphabetical list of the functions
in the runtime library.

Library Overview

Runtime Support

Several standard C operations, particularly the floating
point arithmetic operations, are implemented as
subroutines. These subroutines are included from the
library as needed. The compiler generates the necessary
code to call the subroutines and cause them to be linked.
These functions do not obey normal C calling conventions
so C code may not call them explicitly. Documentation of
these functions is not included because their interface may
be changed without notice and the routines are not callable
from a C source program by the user.

The operators implemented as subroutines are: long shift,
long multiply, long divide and remainder, double addition,
subtraction, multiplication and division, conversion
routines between float and double and between long and
double, slow pointer arithmetic routines and structure copy
and parameter passing routines.

Input/Output

The B.TOS C Compiler library supports many ways of
performing input and output operations. BTOS Services
are callable from a C module directly, providing all of the

5016843

6-2 Library Reference

BTOS file access methods directly. The BTOS C Compiler
also provides UNIX compatible 1/0 services for accessing
sequential and random access files.

The method of I/0 functions usable with a file are
determined by which function was used to open the file.
An existing file may be opened using the appropriate open
operation, or a new file may be opened by using the
appropriate create operation.

Only one of the methods described below should be used to
access a single file at one time. Calls from one method
cannot be mixed with calls from another. Files opened with
BTOS 1/0 calls may not be used with the Standard 1/0
method, for example. Detailed documentation for each
function mentioned below is given in the individual library
entry pages. Refer to those pages for specific information.

BTOS System Services

These services are provided by means of directly calling
the procedures documented in the BTOS Reference Manual.
Header files (CTxxx.H) are provided for the different
services. You should use these header files, since the ·,j

services are accessed as external PL/M procedures and
BTOS C generates an incompatible calling mechanism as a
default.

UNIX Compatible 1/0

An existing file is opened using open, and a new file is
created using creat. Once opened, data may be read using
read or written using write. Random access can be gained
by using lseek. A file may be closed using close.

Disk file layouts for text files under BTOS are compatible
with those used by UNIX. No special translations are
needed by these routines under BTOS. For text files that
must be shared with MSDOS, the user is responsible for the
conversion of data formats.

Standard 1/0

An existing or new file is opened using fopen. Fopen
returns a file pointer used by the Standard I/0 package to
control I/O to a file.

Library Reference 6-3

Data may be read in Standard 1/0 using getc, getchar,
fgetc, getw, scanf, fscanf, fread and others. Data may be
written using putc, putchar, fputc, printf, fprintf and
others. Random access may be gained by using fseek or
rewind. A file may be closed using fclose.

The Standard 1/0 package is strongly oriented otward
character streams or free format sequential streams.
Buffering is used to make the operations reasonably
efficient even for programs which use getc or putc.
Standard I/O also is more cetain to be implemented on
some non-UNIX system, making programs using only
Standard I/0 the most portable to a new system.

Mathematical Functions

A collection of UNIX compatible math functions are
proavided for exponential, trigonometric, and hyperbolic
functions. The functions are listed below:

Function
a cos
as in
atan
atan2
ceil
cos
co sh
exp
fabs
floor
fmod
frexpa
ldexp
log
loglO
modf
pow.
sin
sinh
sqrt
tan
tanh

5016843

arc cosine
arc sine
arc tangent
full circle arc tangent
ceiling
cosine
hyperbolic cosine
exponential
absolute value
floor
remainder
return fraction and exponent
conbine fraction and exponent
natural logarithm
logarithm base 10
split integer and fractional
part
power
sine
hyperbolic sine
square root
tangent
hyperbolic tangent

6-4 Library Reference

Include Files

This subsection describes the include files available with
the C compiler.

ASSERT.H

This header file contains the definition of the assert
debugging macro.

CTxxx.H

The following files are the interface header file for
CTOS/BTOS:

ctclust.h
ctcomm.h
ctcont.h
ctdam.h
ctexch.h
ctfile.h
ctinter.h
ctkeybd.h
ctmem.h
ctmsg.h
ctos.h
ctparm.h
ctpart.h
ctproc.h
ctqueue.h
ctrsam.h
ctserv.h
ctspool.h
ctstam.h
ctstream.h
cttask.h
cttimer.h
ctvideo.h
ctvirt.h

cluster management routines
communications routines
contingency routines
DAM routines
exchange routines
file handling routines
interrupt service routines
keyboard handling routines
memory management routines
message passing routines
all interfaces in one file
parameter handling routines
partition management routines
process control routines
queue management routines
RSAM routines
system service routines
spooler management routines
standard access management routines
Sequential Access Method routines
task management routines
timer management routines
video management routines
virtual code segment routines

i1'
··.,.

Library Reference 6-5

CTYPE.H

This file is used for the character classification macros
such as isalpha. These macros provide a convenient means
for determining, for example, if a character is an uppercase
letter.

ERRNO.H

This file defines constant mnemonics for the error codes
returned by the math functions.

FLOAT.H

This file defines the characteristics of floating types and
provides values that describe BTOS C's implementation of
floating point arithmetic.

18086.H

The segread function fills in the structure SREGS. The
fields below correspond to the 8086 registers named.

struct XREG
short ax;
short bx;
short ex;
short dx;
short si;
short di;
} :

struct HREG {char al;
unsigned char ah;
unsigned char bl;
unsigned char bh;
unsigned char cl;
unsigned char ch;
unsigned char dl;
unsigned char dh;
unsigned
} :

5016843

6-6 Library Reference

union REGS {
struct XREG x·

' struct HREG h·
' } ;

struct SREGS
short es;
short cs;
short ss;
short ds;
} ;

LIMITS.H

This file provides some useful information about compile
time limitations of the BTOS implementation. This also
contains various values for ranges of integral quantities.

MATH.H

This file declares a number of mathematical functions to
return double values.

The functions perform trigonometric, hyperbolic,
exponential and logarithmic calculations.

The macro HUGEV AL evaluates to an expression whose
value is the maximum double precision floating point
number representable on an 8087.

SETJMP.H

The functions setjmp and longjmp need this file to define
a type used by the functions. The functions are useful for
error handling. They allow a program to bypass the normal
flow of call and return. A function nested several
call-levels deep may return in a single stroke to the top
level function. This is dangerous and should be avoided
except in limited situations since the return does not
automatically clean up open files or heap memory allocated
by any intervening code.

This file defines a type jmp_buf as an array used by the
longjmp and setjmp functions.

;'

\j

r

Library Reference 6-7

SIGNAL.H

This file is used by the ssignal and gsignal functions. In
UNIX this file is more important, but here the file is used
to define two constants, SIG_IGN and SIG_DFL needed by
these two functions.

STDARG.H

This file defines the macros used to read the list of
arguments in a function declared to accept a variable
number of arguments.

STDDEF.H

This file defines several data types and commonly used
macros.

STDLIB.H

This file defines several commonly used functions.

This file also defines a type size_t which is the type of the
sizeof operator.

STDIO.H

This file defines mnemonics, types and macros needed for
the standard 1/0 package.

This file also defines the type FILE used throughout the
Standard I/O system and the variables stdin, stdout and
stderr.

The macro NULL is defined as a suitably sized 0 for the
current memory model. The macro EOF is defined to be the
standard error and end of file return for Standard 1/0
functions (and has the value -1).

The macro SYS_OPEN is defined to be the maximum
number of FILEs that can be open simultaneously.

5016843

6-8 library Reference

STRING.H

This file defines the various string handling functions.

TIME.H

Time.h defines a structure filled in by the time conversion
routines localtime and gmtime. UNIX provides a
comprehensive set of time and date conversion routines.
See the function pages ctime, time and stime for the
treatment of time and date management in this library.

This file defines a type time_t which is the type of the time
value used by the time and stime functions. For maximum
compatibility with UNIX, this type is defined to be long int.

This file also defines the structure tm used by the various
ctime functions to hold time information.

Principle C Functions

Each of the following entries are organized the same way. ,,,,
The name of the function is the heading of the subsection. ·"

The format provides a C declaration of the functions or
global variables described by that entry. Arguments passed
to the functions must match the type declared. The
information under the Include Files heading lists each of
the include files which are needed if the described
functions are used. Return values include the range of
possible values returned by each function, in particular
any values indicating error. The information under
Portability gives an indication of whether the functions can
be found on UNIX systems, as a guide when portable
programs are desired. Functions mentioned as defined by
the ANSI standard are present in the Draft ANSI standard
as of June 1986 and are implemented as defined there,
except where noted.

Library Reference 6-9

abs

int abs(int i);

Abs returns the absolute value of the integer argument i.

Include Files

#include <stdlib.h>

Return Value

An integer in the range of 0 to 32767 is returned except for
an argument of -32768 which is returned as -32768.

Portability

Available on UNIX systems. This function is defined in the
ANSI Standard.

5016843

6-10 Library Reference

assert

void assert(int test);

Assert is a macro that tests a condition and expands to an
if statement which, if the test fails, prints a message and
terminates the program.

The message is:

Assertion failed: file xxx, line nnn

The filename and line number are the source file name and
line number where the assert macro appears.

If the macro NDEBUG is defined before assert.h is
included, the assert macro becomes null.

Include Files

#include <assert.h>

Return Value

This function does not return a value.

Portability

This macro is available on some UNIX systems.

Library Reference 6-11

atof, atoi, atol, strtod, strtol

double atof(char *nptr);

int atoi(char *nptr);

long atol(char *nptr);

long strtol(char *nptr, char **endptr, int base);

double strtod(char *nptr, char **endptr);

These functions convert an ASCII string pointed to by nptr
to the specified return value type.

Atof and strtod recognize:
o an optional string of tabs and spaces
o an optional sign
o a string of digits and an optional decimal point
o an optim~al e or E followed by an optional signed integer

Atoi, atol and strtol recognize:
o an optional string of tabs and spaces
o an optional sign
o a string of digits

The first unrecognized character ends the conversion.

There are no provisions for overflow.

The third parameter to strtol specifies the base for the
string of digits. The second parameter to strtod and strtol
is a pointer to an object into which a pointer to the
converted string is stored, provided the second parameter
is not a null pointer.

Include Files

#include <stdlib.h>

Return Value

Each function returns the appropriate value of the string.
If there are no characters at the beginning of the string
that match a number, each function returns zero.

5016843

6-12 Library Reference

Portability

Available on UNIX systems. All these functions are defined
in the ANSI Standard.

Note: For related information, refer to the scanf function.

Library Reference

bsearch

void *bsearch(void *key,
void *base,
int nelem,
int width,
int (*fcmp)());

6-13

Bsearch is a binary search algorithm designed to search an
arbitrary table of information. The address of the table to
be searched is passed in base. The table has nelem entries
and each entry is width bytes long. Bsearch makes
repeated calls to the function whose. address is passed in
fcmp to do the actual comparisons.

The entries in the table must be sorted into ascending order
before bsearch is called.

Fcmp is passed two arguments. The first argument is key
and the second argument is the address of some entry in
the table being searched. Fcmp must return an integer
greater than, equal to, or less than zero according to
whether the key is greater to, equal to or less than the
entry in the table. Fcmp is free to interpret key and the
table entries anyway it likes.

Include Files

#include <stdlib.h>

Return Value

Bsearch returns the address of the entry in the table which
matches the key. If no match is found, bsearch returns 0.

Portability

Available on UNIX systems. This function is defined in the
ANSI Standard.

Note: For related information, refer to the lsearch, qsort, ssort
functions.

5016843

6-14 Library Reference

close

int close(int handle);

Handle is a file handle obtained from a creat or open call.
Close closes the file handle indicated by handle.

Close fails if handle is not a valid open file handle.

Include Files

#include <errno.h>

Return Value

Upon successful completion, close returns zero. Otherwise a
value of -1 is returned.

Portability

Close is available on UNIX systems.

Note: For related information, refer to the creat and open
functions.

Library Reference 6-15

er eat

int creat(char *filename, int mode);

Creat creates a new file or prepares to rewrite an existing
file named by the string pointed to by filename.

If the file exists, the length is truncated to zero and the file
attributes are left unchanged.

The creat call accepts a UNIX-style access mode word,
which is ignored.

Upon successful creation, the file pointer is set to the
beginning of the file. The file is opened for both reading
and writing.

Include Files

#include <errno.h>

Return Value

Upon successful completion, the new file handle is
returned, a non-negative integer. Otherwise a -1 is
returned.

Portability

Creat is available on UNIX systems.

Note: For related information, refer to the close, lseek, open,
read, and write functions.

5016843

6-16 Library Reference

ctime, localtime, asctime, gmtime

char

struct

struct

*ctime(long *clock);

tm *localtime(long *clock);

tm •gmtime(long *clock);

char *asctime(struct tm *tm);

Ctime converts a time pointed to by clock, such as that
returned by the function time, into ASCII and returns a
pointer to a 26-character string in the following form. All
the fields have constant width.

Mon Nov 21 11:31:54 1983\n\0

Localtime returns a pointer to a structure containing the
broken-down time. Localtime uses the BTOS time of day
services to determine the values in the structure.

Asctime converts a broken-down time to ASCII and returns
a pointer to a 26-character string.

Gmtime always returns a null pointer. It is provided for
compatibility.

The structure declaration from the include file is:

struct
int
int
int
int
int
int
int
int
int
} j

tm
tm_sec;
tm_min;
tm_hour;
tm_mday;
tm_mon;
tm_year;
tm_wday;
tm_yday;
tm_isdst;

These quantities give the time on a 24-hour clock, day of
month (1-31), month (0-11), weekday (Sunday = 0), year
-1900, day of year (0-365), and a flag that is non-zero if
daylight savings time is in effect.

(f '4

Library Reference 6-17

Include Files

#include <time.h>

Return Value

Ctime and asctime return the ASCII string date and time.
Localtime returns the broken down time structure. This
structure is a static which is overwritten with each call.

Portability

All functions are available on UNIX systems. These
functions are defined in the ANSI Standard.

Note: For related information, refer to the stime and time
functions. ·

5016843

6-18 Library Reference

ecvt, f cvt, gcvt

char *ecvt(double value, int ndigit, int *decpt, int *sign);

char *fcvt(double value, int ndigit, int *decpt, int *sign);

char *gcvt(double value, int ndigit, char *buf);

Ecvt converts the value to a null-terminated string of
ndigit ASCII digits and returns a pointer to the string. The
position of the decimal point relative to the beginning of
the string is stored indirectly through decpt (negative
means to the left of the returned 'digits). If the sign of the
result is negative, the word pointed to by sign is non-zero,
otherwise it is zero. The low-order digit is rounded.

Fcvt is identical to ecvt, except that the correct digit has
been rounded for F-format output of the number of digits
specified by ndigit.

Gcvt converts the value to a null-terminated ASCII string
in buf and returns a pointer to buf. It attempts to produce
ndigit significant digits in F-format if possible, otherwise
E-format, ready for printing. Trailing zeros may be
suppressed.

Include Files

There are no include files required for this function.

Return Value

The return values point to static data whose content is
overwritten by each call to ecvt or fcvt. Gcvt returns the
string pointed to by buf.

Portability

These functions are available on UNIX.

Note: For related information, refer to the printf function.

Library Reference 6-19

exit, exit

void exit(int status);

void _exit(int status);

Exit terminates the current program and returns control to
BTOS. All files are closed and buffered output waiting to
be output is written before exiting.

_exit terminates without closing any files or flushing any
output.

In either case status is returned as the exit status of the
program.

Include Files

#include <stdlib.h>

Return Value

Exit does not return a value.

Portability

Available on UNIX. The exit function is defined in the
ANSI Standard.

5016843

6-20

exp, log, loglO, pow, sqrt

double exp(double x);

double log(double x);

double loglO(double x);

double pow(double x, double y);

double sqrt(double x);

library Reference

Exp provides exponential, logari~hm, power and square
root functions.

Exp returns the exponential function e ** x.

Log returns the natural logarithm of x.

LoglO returns the base 10 logarithm of x.

Pow returns x •• y . .
Sqrt returns the positive square root of x.

Include Files

#include <math.h>

Return Value

Exp and pow return a huge value when the correct value
would overflow. A large argument can result in errno being
set to ERANGE.

Log returns a huge negative value and sets errno to EDOM
when xis less than or equal to zero.

Pow returns a huge negative value and sets errno to EDOM
when xis less than zero and y is not a whole number.

Sqrt returns 0 and sets errno to EDOM when x is negative.

Library Reference 6-21

Portability

Available on UNIX. These functions are also defined in the
ANSI Standard.

Note: For related information, refer to the sinh and trig
functions.

5016843

6-22 library Reference

fclose, fflush

int fclose(FILE *stream);

int fflush(FILE *stream);

Fclose causes any buffers for the named stream to be
written and the files to be closed. Buffers allocated by
malloc are freed.

Fclose is performed automatically upon calling exit.

Fflush causes any buffered data .being output to a named
stream to be written out. The stream remains open.

Include Files

#include <stdio.h>

Return Value

These functions return 0 upon success, and EOF if any
errors were detected.

Portability

Available on UNIX Systems. These functions are defined in
the ANSI Standard.

Note: For related information, refer to the close, fopen, and
setbuf functions.

Library Reference 6-23

feof, ferror, clearerr

int feof(FILE •stream);

int ferror(FILE •stream);

void clearerr(FILE •stream);

Feof returns non-zero if an end-of-file was detected on
the last input operation on the named stream.

Ferror performs stream status inquiries. Ferror returns
non-zero if an error was detected on the named stream.

Clearerr resets the error indication on the named stream.

These are implemented as macros.

The end-of-file indicator is reset with each input
operation.

Portability

Available on UNIX. These macros are defined in the ANSI
Standard, although the Standard requires that they exist as
functions in addition to being defined as macros.

Note: For related information, refer to the open and fopen
functions.

5016843

6-24

floor, ceil, fmod, fabs

double floor(double x);

double ceil(double x);

double fmod(double x, double y);

double fabs(double x);

Library Reference

Floor returns the largest integer (as a double) not greater
than x.

Ceil returns the smallest integer (as a double) not less
than x.

Fmod returns the number f such that x = iy + f, for some
integer i, and 0 <= f < y.

Fahs returns the absolute value of x.

Include Files

#include <math.h>

Portability

Available on UNIX Systems. These functions are also
defined in the ANSI Standard.

Note: For related information, refer to the abs function.

',

'4

Library Reference 6-25

fopen, freopen

FILE *fopen(char *filename, char *type);

FILE *freopen(char *filename,char*type, FILE*stream);

Fopen opens the file named by filename and associates a
stream with it. Fopen returns a pointer to be used to
identify the stream in subsequent operations.

Freopen substitutes the named file in place of the open
stream. The original stream is closed, regardless of whether
the open succeeds.

Freopen is useful for changing the file attached to stdin,
stdout or stderr.

The type string used in each of these calls is one of the
following values:

"r" open for reading only

"w" create for writing

"a" append; open for writing at end of file, or create for
writing if the file does not exist

"r+" open an existing file for update (reading and
writing)

"w+" create a new file for update

"a+" open for append; open (or create if the file does not
exist) for update at the end of the file

When a file is opened for update, both input and output
may be done on the resulting stream. However, output may
not be directly followed by input without an intervening
fseek or rewind, and input may not be directly followed by
output without an intervening fseek, rewind, or an input
which encounters end of file.

5016843

6-26 Library Reference

Include Files

#include <stdio.h>

Return Value

On successful completion, each function returns the newly
open stream. Freopen returns the argument stream. In the
event of error each function returns NULL.

Portability

These functions are available on UNIX Systems and are
also defined in the ANSI Standard.

Note: For related information, refer to the open and fclose
functions.

Library Reference 6-27

fread, fwrite

int fread(void *ptr, int size, int nitems, FILE *stream);

int fwrite(void *ptr, int size, int nitems, FILE *stream);

Fread reads, into a block pointed to by ptr, nitems of data
of the type ptr pointed to from the named input stream.

Fwrite appends nitems of the type pointed to by ptr
beginning at ptr to the named output stream.

Ptr in the declarations is a pointer to any object. Size is the
size of the object ptr points to. The expression sizeof *ptr
produces the proper value.

Include Files

#include <stdio.h>

Return Value

On successful completion, each function returns the
number of items (not bytes) actually read or written. Fread
returns a short count (possibly zero) on end-of-file or
error. Fwrite returns a short count on error.

Portability

These functions are available on all UNIX systems. These
functions are also defined in the ANSI Standard.

Note: For related information, refer to the read, write, fopen,
getc, putc, gets, puts, printf, and scanf functions.

5016843

6-28

frexp, ldexp, modf

double frexp(double value, int *eptr);

double ldexp(double value, int exp);

double modf(double value, double *iptr);

Library Reference

Frexp returns the mantissa of a double value as a double
quantity, x, of magnitude less than 1 and stores an integer
n such that value = x * 2 ** n. The number n is stored in
the integer pointed to by eptr.

Ldexp returns the quantity value * 2 ** exp.

Modf returns the fractional part of value and stores the
integer part in the double pointed to by iptr.

Include Files

#include <math.h>

Portability

These functions are available on all UNIX systems. These
functions are also defined in the ANSI Standard.

Library Reference

fseek, ftell, rewind

int fseek(FILE *stream, long offset, int whence);

long ftell(FILE *stream);

int rewind(FILE *stream);

Fseek sets the file pointer for the next input or output
operation on the stream. The new position is at the
D signed distance off set bytes from the beginning
D current position
D end of the file

respectively, as whence has the value 0, 1, or 2.

6-29

Fseek discards any character pushed back using ungetc.

After fseek or rewind, the next operation on an update file
may be either input or output.

Ftell returns the current file pointer. The offset is
measured in bytes from the beginning of the file.

Rewind(stream) is equivalent to fseek(stream, OL, 0).

Include Files

#include <stdio.h>

Return Value

Fseek and rewind return non-zero for improper seeks,
otherwise zero. Ftell returns the current file position, or
EOF on an error.

Portability

These functions are available on all UNIX systems. These
functions are also defined in the ANSI Standard.

Note: For related information, refer to the lseek and fopen
functions.

5016843

6-30 library Reference

getc, getchar, fgetc, getw

int getc(FILE *stream);

int getchar(void);

int fgetc(FILE *stream);

int getw(FILE *stream);

Getc returns the next character on the named input stream.

Getchar() is a macro defined to be getc(stdin).

Fgetc behaves exactly like getc, except that it is a true
function while getc is a macro.

Getw returns the next integer in the named input stream.
Getw assumes no special alignment in the file.

Include Files

#include <stdio.h>

Return Value

Getc, getchar and fgetc return the next input character
upon success. On end-of-file or error, they return EOF.
Getw returns the next integer on the input stream. On
end-of-file or error, getw returns EOF. Because EOF is a
legitimate value for getw to return, feof or ferror should be
used to detect end-of-file or error.

Portability

All functions are available on UNIX systems. These macros
and functions are also defined in the ANSI Standard.

Note: For related information, refer to the ferror, fopen, tread, 1
gets, putc, and scanf functions. ''1

Library Reference 6-31

gets, fgets

char *gets(char *s);

char *fgets(char *s, int n, FILE *stream);

Gets reads a string into s from the standard input stream
stdin. The string is terminated by a newline character,
which is replaced ins by a null character.

Fgets reads n-1 characters, or up to a newline character
(which is retained), whichever comes first, from the stream
into the string s. The last character read into s is followed
by a null character. Fgets returns its first argument.

Include Files

#include <stdio.h>

Return Value

Each function, on success, returns the string argument s.

Each returns NULL on end-of-file or error.

Portability

Available on UNIX systems. These functions are also
defined in the ANSI Standard.

Note: For related information, refer to the ferror, fopen, fread,
getc, puts, and scanf functions.

5016843

6-32 Library Reference

index, rindex

int index(char *s, char *t);

int rindex(char *s, char *t);

Index returns the index of the leftmost occurrence of the
string tins (not counting the terminating null character).
The first character of sis numbered 0, so that subscripting
produces the correct result.

For example, a call of:

index(" four score and seven", " s'');

returns 4.

Rindex returns the index of the rightmost occurance of
tins.

Include Files

There are no Include Files required for this function.

Return Value

Both functions return a non-negative index if a character
was found, and -1 of no character was found.

Portability

These functions are not available under UNIX
System III or V.

Note: For related information, refer to the string function.

A
14

Library Reference 6-33

inport, inportb

int inport(int port);

int inportb(int port);

lnport reads the value of a word port and returns the value
read.

lnportb read the value of a byte port and returns the value
read.

Include Files

#include <i8086.h>

Portability

These functions are unique to the 8086 family of
microprocessors.

5016843

6-34 library Reference

isalpha, isupper, islower, isdigit,
isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, isascii

int isalpha(int c);

int isupper(int c);

int islower(int c);

int isdigit(int c);

int isxdigit(int c);

int isalnurn(int c);

int isspace(int c);

int ispunct(int c);

int isprint(int c);

int isgraph(int c);

int iscntrl(int c);

int isascii(int c);

These macros classify ASCII-coded integer values by table
lookup. Each is a predicate returning nonzero for true and
zero for false. Isascii is defined on all integer values; the
rest are defined only where isascii is true and on the single
non-ASCII value EOF.

Include Files

#include <ctype.h>

Return Value

isalpha

isupper

islower

Non-zero if c is a letter.

Non-zero if c is an uppercase letter.

Non-zero if c is a lowercase letter.

Library Reference

isdigit

isxdigit

isalnum

isspace

is pun ct

isprint

is graph

iscntrl

isascii

Portability

6-35

Non-zero if c is a digit.

Non-zero if c is a hexadecimal digit
[0-9], [A-F] or [a-f].

Non-zero if c is an alphanumeric.

Non-zero if c is a space, tab,
carriage-return, newline, vertical tab,
or form-feed.

Non-zero if c is a punctuation
character (neither control nor
alphanumeric).

Non-zero if c is a printing character,
code Ox20 (space) through Ox76
(tilde).

Non-zero if c is a printing, like
isprint, except that space is excluded.

Non-zero if c is a delete character
(Ox7f) or ordinary control character
(OxOO to Ox3f).

Non-zero if c is an ASCII character,
code in the range from OxOO to Ox7f.

All these macros are available on UNIX workstations.
These macros are defined in the ANSI Standard, although
the Standard requires that these be available as functions
as well as macros.

5016843

6-36 library Reference

I search

char *lsearch(void *key,void *base,int nelemp,int
width,int (*fcmp)());

Lsearch is a linear search algorithm that searches a table
for a specific key, and if not found inserts it at the end of
the table. The address of the table is given in base. Nelemp
points to a word containing the number of entries in the
table. Width contains the number of bytes in each entry.
Key points to the item to be searched for. Lsearch calls the
function pointed to by fcmp repeatedly until the item is
found or the end of the table is reached.

Fcmp is called with two arguments. The first is key, the
address of the item being searched for. The second is the
address of an entry in the table. Fcmp must return zero if
the two items are equal, and non-zero if they are not
equal.

If the search item is not found in the table, it is copied into
the end of the table and the word pointed to by nelemp is
incremented. The table must have enough room to add any
new entries. If there is not enough room, unpredictable
results may happen.

Include Files

There are no Include Files required for this function.

Return Value

Lsearch returns the address of the entry matching the
search key. If the item was not in the table, then !search
returns the address of the new entry.

Portability

This function is available on UNIX systems.

/\I

Library Reference 6-37

I seek

long lseek(int handle, long offset, int whence);

Handle is a file handle obtained from a creat or open call.
Lseek sets the file pointer associated with handle as
follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus
offset.

If whence is 2, the pointer is set to the size of the file plus
offset.

Return Value

Upon successful completion, a non-negative integer
indicating the file pointer value is returned. Otherwise, a
value of-1 is returned.

Portability

Available on UNIX systems.

Note: For related information, refer to the creat and open
functions.

6-38 library Reference

malloc, calloc, free, cfree, realloc

void "'malloc(unsigned size);

void "'calloc(unsigned nelem, unsigned elsize);

void free(void "'ptr);

void cfree(void "'ptr);

void "'realloc(void "'ptr, unsigned size)

These functions provide access to the C memory heap. The
heap is available for use for creating variable sized blocks
of memory. Many data structures such as trees and lists
naturally employ heap memory allocation.

Malloc returns a pointer to a memory block of length size.
If not enough memory is available to allocate the block,
malloc returns NULL (0). The contents of the block are left
unchanged.

Calloc allocates a block like malloc, except the block is of
size nelem times elsize. The block is cleared to zero.

Free deallocates a previously allocated block. Ptr must
contain the address of the first byte of the block.

Cfree is an alternative name for free. They each perform
the same work and may be used interchangeably.

Realloc changes the size of a block previously allocated. Ptr
is the address of the block. Size is the new size in bytes.

Blocks may be allocated and freed in any order.

Include Files

#include <stdlib.h>

Return Value

Malloc, realloc, and calloc return a null pointer (0) if there
is not enough space available to allocate the needed block.
When realloc returns 0, the block pointed to by ptr is
preserved.

/1!1

Library Reference 6-39

Portability

Calloc, malloc, realloc and free are available on UNIX
systems. Calloc, malloc, realloc and free are also defined in
the ANSI Standard.

5016843

6-40 Library Reference

memcpy, memset, memcmp, memchr

void *memcpy(void *dst, void *src, unsigned n);

void *memset(void *s, char c, unsigned n);

int memcmp(void *sl, void *s2, unsigned n);

void *memchr(void *s, char c, unsigned n);

These functions are portable memory functions.

Memcpy copies n bytes from the src to the dst array.

Memset sets all of the bytes of s to the char c. The size of
the s array is given by n.

Memcmp compares two strings, given by sl and s2 for a
length of n bytes.

Memchr searches the first n bytes of array s for c.

In all of these functions arrays are n bytes in length, even
if they contain null bytes.

Include Files

#include <string.h>

Return Value

Memcpy returns the value of dst.

Memset returns the value of s. Memcmp returns -1, 0 or 1
depending on whether the sl string is less than, equal to or
greater than the s2 string. Exactly n bytes are compared.
Memchr returns a pointer to the first occurrence of c in s,
or 0 if c does not occur in the s array.

Portability

Available on UNIX System V systems. These functions are
defined in the ANSI Standard.

Note: For related information, refer to movmem and setmem.

Library Reference 6-41

movmem

void movmem(void •src, void *dest, unsigned len);

Movmem moves a block of len bytes from src to dest using
the 8086 string move instruction. If the source and
destination strings overlap, the copy direction is chosen so
that the data is always copied correctly.

Include Files

#include <i8086.h>

Portability

These functions are unique to the 8086 family.

Note: For related information, refer to the memcpy and string
functions.

5016843

6-42 Library Reference

open

int open(char *filename, int oflag);

· This function opens a file for reading or writing.

Filename points to a string naming a file. The function
opens a handle for the named file according to the value of
oflag.

For open, the oflag values may be:

0 Read access only

1 Write access only

2 Both read and write access

Upon successful completion a non-negative integer, the file
handle, is returned.

The file pointer used to mark the current position in the
file is set to the beginning of the file.

The maximum number of simultaneously open files is 20.

Return Value

On successful completion, this function returns a
non-negative integer.

On error, open returns -1.

Portability

Open is available on UNIX systems.

Note: For related information, refer to the close, creat, lseek,
read, and write functions.

Library Reference

outport, outportb

void outport(int port, int value);

void outportb(int port, char value);

Outport writes value to the word port.

Outportb writes value to the byte port.

Include Files

#include <i8086.h>

Portability

These functions are unique to the 8086 family.

5016843

6-43

6-44 Library Reference

peek, peekb

int peek(int segment, int offset);

char peekb(int segment, int offset);

Peek returns the integer stored at the memory location
addressed by segment and offset. Segment is treated as a
paragraph address, while offset is a byte offset from the
segment.

Peekb returns the byte stored at the memory location
addressed by segment and offset:

Include Files

#include <i8086.h>

Portability

These functions are unique to the 8086 family.

Note: For related information, refer to poke.

Library Reference 6-45

poke, pokeb

void poke(int segment, int offset, int value);

void pokeb(int segment, int offset, char value);

Poke deposits the integer value at the memory location
addressed by segment and offset. Segment is a paragraph
address, while offset is a byte offset from that address.

Pokeb is the same as poke, except that a byte is deposited
instead of an integer.

Include Files

#include <i8086.h>

Portability

These functions are unique to the 8086 family.

Note: For related information, refer to the peek function.

5016843

6-46 Library Reference

printf, fprintf, sprintf

int printf(char *format, ...);

int fprintf(FILE *stream, char *format, ...);

int sprintf(char *s, char *format, ...);

These functions format output.

Printf places its output on the standard output stream
stdout. Fprintf places its output on the named stream.
Sprintf places output, followed by the null character (\0),
in consecutive bytes starting at the address s. With sprintf
it is the user's responsibility to ensure there is enough
space in s to hold the formatted output.

Each of these functions converts, formats and prints its
args under control of the format string. The format is a
character string containing two types of objects: plain
characters, which are simply copied to the output stream,
and conversion specifications, each of which results in
fetching zero or more arg's. The results are unpredictable if
there are insufficient args for the format. If the format is
exhausted while args remain, the excess args are ignored.

Each conversion specification is begun by the character %.
After the %, the following options appear in sequence.

1 An optional list of flag characters appears, in any
order:

Forces the result of the conversion to left-justified
within the field.

+
The result of a signed conversion always begins with a
sign (+ or-).
blank
If the first character of a signed conversion is positive,
a space is used instead, negative signs still show as a -.

Library Reference

Note: + takes precedence over blank if both flags are
present.

6-47

This flag specifies that the arg is to be converted using
an alternate form. For c, d, s, or u conversions, the flag
has no effect. For o conversion, it increases the
precision to force the first digit of the result to be zero.
For x (X) conversion, a non-zero arg has Ox (OX)
preceding it. Fore, E, f, g, and G conversions, the result
always contains a decimal point, even if no digits follow
the point (normally, a decimal point appears in the
result of these conversions only if a digit follows it).
For g and G conversions, trailing zeroes are not
removed from the result (as they are normally).

2 An optional width specifier, width is given either by a
decimal digit string or by the character asterisk (*). An
asterisk indicates that the width should be obtained by
using the next arg in the call (treating it as an integer).

3 An optional precision specifier. The precision, if
present, is preceded by a decimal point to separate it
from any preceding width specifier. The precision
specifier is either a decimal digit string or an asterisk.
The asterisk, as in the width specifier, indicates that
the precision should be gotten by using the next arg in
the call (treating it as an integer).

Note: If asterisks are used for width or precision specifiers,
the width arg must appear first, then the precision arg if any,
and finally the arg for the data to be converted.

4 An optional character l follows specifying that a
following d, o, u, x, or X conversion applies to a long
integer arg instead of an integer.

5 The conversion character itself then appears. The
conversion characters and their meanings are:
d,o,u, x,X
The integer (or long integer if I preceded the conversion
character) arg is converted to signed decimal, unsigned
octal, unsigned decimal, or hexadecimal (x or X),
respectively. For hexadecimal conversions the letters
abcdef are used if the conversion character was
lowercase x, and ABCDEF if the conversion was
uppercase X. The precision specifies the minimum
number of digits to appear; if the value being converted

5016843

6-48 library Reference

needs fewer digits, the output is padded with leading
zeroes. The default precision is 1. The result of
converting a zero value with a precision of zero is a null
string (unless the conversion is o, x, or X AND the#
flag is present).
A leading zero given with the width of the format spec
(for example a "%04d" format spec) forces printf to
display the number with zero fill instead of blank fill.
f

The float or double arg is converted to decimal notation
in the style "(-]ddd.ddd", where the number of digits
after the decimal point is equal to the precision
specification. If the precision is missing, 6 digits are
output; if the precision is explicitly 0, no decimal point
appears.
e,E
The float or double arg is converted in the style
"[-)d.ddde{ +-} ddd", where there is one digit before
the decimal point and the number of digits after it is
equal to the precision; when the precision is missing, 6
digits are produced; if the precision is zero, no decimal
point appears. The E format code produces a number
with E instead of e introducing the exponent. The
exponent always contains exactly three digits.
g,G
The float or double arg is printed in style f or e (or in
style E in the case of a G format code), with the
precision specifying the number of significant digits.
The style used depends on the value converted: style e
is used only if the exponent resulting from the
conversion is less than -4 or greater than the precision.
Trailing zeroes are removed from the result; a decimal
point appears only if it is followed by a digit.
c
The character arg is printed.
s
The arg is taken to be a string (character pointer) and
characters from the string are printed until a null
character (\0) is encountered or the number of
characters indicated by the precision is reached. If the
precision is missing, it is taken to be infinite, so all
characters up to the first null character are printed.

Library Reference 6-49

%

Print a %; no argument is converted.
In no case does a non-existent or small field width
cause truncation of a field; if the result of a conversion
is wider than the field width, the field is simply
expanded to contain the conversion result. Characters
generated by printf and fprintf are printed as if putc
had been called.

Include Files

#include <stdio.h>

Return Value

Each function returns the number of bytes output. Sprintf
does not include the null byte in the count.

In the event of error, these functions return EOF.

Portability

These functions are available on UNIX systems. The ANSI
Standard proyides a definition for these functions, but
with slightly greater functionality.

Note: For related information, refer to the ecvt, putc, and scanf
functions.

5016843

6-50 Library Reference

putc, putchar, fputc, putw

int putc(char c, FILE *stream);

int putchar(char c);

int fputc(char c, FILE *stream);

int putw(int w, FILE *stream);

Putc and fputc append the character c to the named output
stream. Putc is a macro, while fputc is a true function.

Putchar(c) is a macro defined to ·be putc (c, stdout).

Putw appends the integer w to the output stream. Putw
neither expects nor causes special alignment in the file.

The streams stdout and stderr are unbuffered, while all
other output files are by default buffered. Setbuf may be
used to change the buffering style being used. Unbuffered
means that characters written to a stream are immediately
output to the file or device, while buffered means that the
characters are accumulated and written as a block.

Include Files

#include <stdio.h>

Return Value

Putc, fputc and putchar return the character c on success.
Putw returns the integer w. On error all the functions
return EOF. Since EOF is a legitimate integer, ferror should
be used to detect errors with putw.

Portability

All functions are available on UNIX systems. All these
functions, except putw is defined in the ANSI Standard.

Note: For related information, refer to the ferror, fopen, fwrite,
getc, printf and puts functions.

library Reference 6-51

puts, fputs

int puts(char *s);

int fputs(char *s, FILE *stream);

Puts copies the null-terminated string s to the standard
output stream stdout and appends a newline character.

Fputs copies the null-terminated string s to the named
output stream, and does not append a newline character.

Include Files

#include <stdio.h>

Return Value

Upon successful completion, each function returns 0.
Otherwise a value of EOF is returned in the event of an
error.

Portability.

Both functions are available on UNIX systems. These
functions are also defined in the ANSI Standard.

Note: For related information, refer to the ferror, fopen, fwrite,
gets, printf, and putc functions.

5016843

6-52

qsort, ssort

void qsort(void *base,
int nelem,
int width,
int (*fcmp)());

void ssort(void *base,
int nelem,
int width,
int (*fcmp)());

Library Reference

Qsort is an implementation of the quicker-sort algorithm.
Ssort is an implementation of the shell-sort algorithm.
Base is a pointer to the table to be sorted. Nelem is the
number of entries in the table. Width is the size of each
entry in the table in bytes. Qsort and ssort sort the entrfes
into order by repeatedly calling the function pointed to by
fcmp.

Fcmp accepts two arguments, each the address of an entry
in the table. Fcmp returns a number greater than zero if
the first argument should appear after the second in the
final sequence. Fcmp returns a number less than zero if the
first argument should appear before then second in the
final sequence. Fcmp returns zero if the two arguments are
equal. If the table entries are already sorted, qsort requires
approximately (20*numberofentries) bytes of stack space.
Ssort always uses only 20 bytes of stack.

Include Files

#include <stdlib.h>

Return Value

These functions do not return a value.

Portability

Qsort is available on UNIX systems and is defined in the
ANSI Standard. Ssort is not portable.

Note: For related information, refer to the bsearch and !search
functions.

Library Reference 6-53

rand, srand

void srand(unsigned seed);

int rand(void);

Rand uses a multiplicative congruential random number
generator with period 2**32 to return successive
pseudo-random numbers in the range from 0 to 2**15 -1.

The generator is reinitialized by calling srand with an
argument value of 1. It can be set to a random starting
point by calling srand with whatever you like as argument.

Include Files

#include <stdlib.h>

Portability

Available on UNIX systems. These functions are defined in
the ANSI Standard.

5016843

6-54 Library Reference

read

int read(int handle, void *buf, int nbyte);

Read attempts to read nbyte bytes from the file associated
with handle into the buffer pointed to by buf.

Handle is a file handle obtained from a creat or open call.

On disk files, the read begins at the current file pointer. On
completion of the read, the file pointer is incremented by
the number of bytes read.

On devices the bytes are read directly from the device.

Upon successful completion, the functions return the
number of bytes read and placed in the buffer.

A value of zero is returned when an end-of-file has beeh
reached.

Include Files

#include <errno.h>

Return Value

Upon successful completion a positive integer is returned
indicating the number of bytes placed in the buffer.

On end of file, read returns zero.

On error, read returns -1.

Portability

Read is available on UNIX systems.

Note: For related information, refer to the creat and open
functions.

Library Reference

scanf, fscanf, sscanf

int scanf(char *format, ...);

int fscanf(FILE *stream, char *format, ...);

int sscanf(char *s, char *format, ...);

Scanf reads from the standard input stream stdin.

Fscanf reads from the named input stream.

Sscanf reads from the character string s.

6-55

Each function reads characters, interprets them according
to a format, and stores the results in its arguments. Each
expects as arguments a control string format, described
below, and a set of pointer arguments indicating where the
converted input should be stored.

The control string usually contains conversion
specifications, which are used to direct interpretation of
input sequences. The control string may contain:

Blanks, tabs, or newlines, which cause input to be
read up to the next non-white-space character.

An ordinary character (not%), which must match the
next character of the input stream.

Conversion specifications, consisting of the character
%, an optional assignment suppressing character *, an
optional numerical maximum field width, and a
conversion character.

A conversion specification directs the conversion of the
next input field; the result is placed in the variable pointed
to by the corresponding argument, unless argument
suppression was indicated by *. An input field is defined as
a string of non-space characters; it extends to the next
inappropriate character or until the field width, if
specified, is exhausted.

5016843

6-56 Library Reference

The conversion character indicates the interpretation of
the input field; the corresponding pointer argument must
usually be of a restricted type. The following conversion
characters are legal:

%

A single% is expected in the input. No assignment is done.

d

A decimal integer is expected. The corresponding argument
should be a pointer to an integer.

0

An octal integer is expected. The· corresponding argument
should be an integer pointer.

x

A hexadecimal integer is expected. The corresponding
argument should be an integer pointer.

i

An integer is expected. If it begins with Ox or OX it is
assumed to be hexadecimal. If it begins with 0 it is
assumed to be octal. Otherwise it is assumed to be decimal.
The corresponding argument should be a pointer to an
integer.

s

A character string is expected. The corresponding
argument should be a character pointer pointing to an
array of characters large enough to accept the string and a
terminating \0, which is added automatically. The input
field is terminated by a space or a newline.

c

A character is expected. The corresponding argument
should be a character pointer. The normal skip over space
characters is suppressed in this case. To read the next
non-space character, use %ls. If a field width is given, the

'•

corresponding argument should refer to a character array, ~
the indicated number of characters is read. "

library Reference 6-57

e,f

A floating point number is expected. The corresponding
argument should be a pointer to a float. The input format
for floating point numbers is an optionally signed string of
digits, possibly containing a decimal point, followed by an
optional exponent field consisting of an E or an e, followed
by an optionally signed integer.

Indicates a string that is not to be delimited by space
characters. The left bracket is followed by a set of
characters and a right bracket. The characters between the
brackets define a set of possible characters making up the
string. If the first character is a circumflex n, then the
search set of characters is inverted to include all ascii
characters EXCEPT those between the circumflex and the
right bracket. The input is scanned until a character not in
the search set is found. The corresponding argument
should point to a character array.

The conversion characters d, o, x and i may be capitalized
and/or preceded by the letter l or L to indicate that a
pointer to long rather than to int is in the argument list.
Similarly, the conversion characters e and f may be
capitalized and/or preceded by the letter 1 or L to indicate
a pointer to double rather than to float is in the argument
list.

Scanf conversion terminates at EOF, at the end of the
control string, or when an input character conflicts with
the control string. In the latter case, the offending
character is left unread in the input stream.

Trailing white space is left unread (including a newline)
unless explicitly matched in the control string.

A pointer to unsigned character, integer or long can be
used in any conversion where a pointer to a character,
integer or long is allowed.

The success of literal matches and suppressed assignments
is not directly determinable.

Sscanf does not change the source string s.

5016843

6-58 Library Reference

Include Files

#include <stdio.h>

Return Value

Upon successful completion these functions return the
number of successfully matched and assigned input items.
In the event of a conflict between the format string and the
input, a lesser count is returned, which may be zero if the
conflict occurs early enough. If the input ends before the
first conflict or conversion, EOF is returned.

Portability

These functions, except for the i (general integer)
conversion, are available on UNIX systems. These
functions, with slightly greater functionality, are defined
in the ANSI Standard.

Note: For related information, refer to the atof, getc, and printf
functions.

··'f'

Library Reference 6-59

segread

void segread(struct SREGS •segtbl);

This function reads segment registers and places the
current values into the segtbl structure. For the small
memory model, the value of the CS register does not
change during execution. For the medium, large, and huge
memory models, the CS register varies from one function to
another. Each source file is given a different CS register
value.

DS, ES and SS are the same and remain unchanged for the
duration of the execution of a program.

Include Files

#include <i8086.h>

Portability

This function is unique to BTOS C.

5016843

6-60 Library Reference

setbuf, setvbuf

void setbuf(FILE •stream, char *buf);

int setvbuf(FILE •stream, char *buf, int type, unsigned
size);

Setbuf and setvbuf are used after a stream is opened but
before any reading or writing is done on the stream. They
cause the buffer buf to be used instead of an automatically
allocated buffer.

In setvbuf, the type parameter is one of the following:

_IOFBF The file is fully buffered. When a buffer is
empty, the next input operation attempts to fill
the entire buffer. On output the buffer is
completely filled before any data is written to
the file.

_IOLBF

_IONBF

The file is line buffered. When a buffer is
empty, the next input operation still attempts
to fill the entire buffer. On output, however,
the buffer is flushed whenever a newline
character is written to the file.

The file is unbuffered. The buf and size
parameters are ignored. Each input operation
reads directly from the file and each output
operation immediately writes the data to the
file.

In setbuf, if buf is the constant pointer NULL, i/o is
unbuffered, otherwise it is fully buffered. In setvbuf, if buf
is the constant pointer NULL a buffer is allocated using
malloc using the size parameter as the amount allocated.In
setbuf the buffer must be BUFSIZ (specified in stdio.h)
bytes long. In setvbuf, the size parameter specifies the
buffer size, and must be greater than zero.

A common cause for error is to allocate the buffer as an
automatic variable and then failing to close the file before
returning from the function where the buffer was declared.

Library Reference 6-61

Setbuf produces unpredictable results if it is called for a
stream except immediately after opening the stream or any
call to fseek. Calling setbuf after a stream has been
unbuffered is legal and does not cause problems.

Include Files

#include <stdio.h>

Return Value

The setvbuf function returns non-zero if an invalid value
is given for type or size, or when buf is NULL if there is
not enough space to allocate a buffer.

Portability

Setbuf is available on UNIX systems. Both functions are
defined in the ANSI Standard.

Note: For related information, refer to the fopen, fseek, and
malloc functions.

5016843

6-62 Library Reference

setjmp, longjmp

int setjmp(jmp_buf env);

void longjmp(jmp_buf env, int val);

These routines are useful for dealing with errors and
interrupts encountered in a low-level subroutine of a
program.

Setjmp saves the current stack environment in env for later
use by longjmp. It preserves the current stack pointer,
register variable and automatic variable frame pointer as
well as the return instruction pointer. It returns zero when
it is initially called.

Longjmp restores the environment in env and then returns
in such a way that it appears that setjmp returned with
the value val. Longjmp cannot return the value O; if passed
0 in val, longjmp returns 1.

The routine that called setjmp, and set up env, cannot have
returned in the interim before calling longjmp. If this /1

happens the results are unpredictable. \ ..

Automatic variables and function arguments have values
as of the time longjmp was called. Any register variable is
restored to the value at the time of the call to setjmp.

Include Files

#include <setjmp.h>

Portability

Available on UNIX systems. These functions are defined in
the ANSI Standard.

Note: For related information, refer to the ssignal function.

Library Reference

setmem

void setmem(void *addr, int len, char value);

Setmem assigns the byte value to each character in the
string pointed to by addr. Len gives the number of
characters to assign. This function uses the 8086 stosb
instruction and is extremely fast.

Include Files

#include <i8086.h>

Portability

This function is unique to the 8086 family.

6-63

Note: For related information, refer to the movmem and string
functions.

5016843

6-64

sinh, cosh, tanh

double sinh(double x);

double cosh(double x);

double tanh(double x);

Library Reference

These functions compute the designated hyperbolic
functions for real arguments.

Include Files

#include <math.h>

Return Value

Sinh and cosh return a huge value of appropriate sign
when the correct value would overflow.

Portability

Available on UNIX systems. These functions are defined in
the ANSI Standard.

Library Reference 6-65

ssignal, gsignal

int (*ssignal(int sig, int (*action)()))();

int gsignal(int sig);

Ssignal and gsignal implement a software signalling
facility. Ssignal is used to establish an action routine for
servicing a signal. Gsignal is used to raise the signal and
execute the action routine.

Software signals are associated with integers in the range
from 1to15.

The first argument to ssignal is a number identifying the
type of signal for which an action is established. The
second argument defines the action; it is either the name of
a (user defined) action function or one of the manifest
constants SIG_DFL (default) or SIG_IGN (ignore). Ssignal
returns the action previously established or if the signal
number is illegal, ssignal returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that
action is reset to SIG_DFL and the action function is
entered with argument sig. Gsignal returns the value
returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1
and takes no other action.

If the action for sig is SIG_DFL, gsignal returns the value 0
and takes no other action.

If sig has an illegal value or no action was ever specified
for sig, gsignal returns the value 0 and takes no other
action.

Include Files

#include <signal.h>

Portability

These· functions are available on UNIX systems.

5016843

6-66 Library Reference

stime

int stime(time_t *tp);

Stime sets the system time and date. Tp points to the value
of time as measured in BTOS SimpleDate format.

Include Files

#include <time.h>

Return Value

A value of 0 is returned.

Portability

These functions are available on UNIX systems.

Note: For related information, refer to the time function.

Library Reference 6-67

strcat, strncat

char *strcat(char *dest, char *src);

char *strncat(char *dest, char *src, int maxlen);

Streat appends a copy of src to the end of dest. The length
of the resulting string is strlen(dest) + strlen(src).

Strncat copies at most maxlen characters of src to the end
of dest, and then appends a null-byte terminator. The
maximum length of the resulting string is strlen(dest) +
maxi en.

Include Files

#include <string.h>

Return Value

Both functions return the first argument.

Portability

This function is available on UNIX systems. These
functions are defined in the ANSI Standard.

Note: For related information, refer to the memcpy, movmem,
setmem, strchr, strcmp, strcpy, strlen, strspn, and strtok
functions.

5016843

6-68 Library Reference

strchr, strrchr, strpbrk

char *strchr(char *s, char c);

char *strrchr(char *s, char c);

char *strpbrk(char *sl, char *s2);

Strchr and strrchr scan a string for a specific character.
The null character terminating a string is considered to be
part of the string, so that for example:

strchr(s, 0)

returns a pointer to the terminating null byte of the string.

Strpbrk scans a string for one of several different
characters.

Include Files

#include <string.h>

Return Value

Strchr returns a pointer to the first occurrence of the
character c, or NULL if c does not occur in s. Strrchr
returns a pointer to the last occurrence of the character c,
or NULL if c does not occur in s. Strpbrk returns a pointer
to the first occurrence of any of the characters in s2, or
NULL if none of the s2 characters occurs in sl.

Portability

Available on UNIX systems. These functions are defined in
the ANSI Standard.

Note: For related information, refer to the memcpy, movmem,
setmem, strcat, strcmp, strcpy, strlen, strspn, and strtok '"'
fun~om. ~

Library Reference 6-69

strcmp, strncmp

int strcmp(char *sl, char *s2);

int strncmp(char *sl, char *s2, int maxlen);

Strcmp lexicographically compares its arguments up to the
terminating null-bytes.

Strncmp makes the same comparison but looks at no more
than maxlen characters.

Include Files

#include <string.h>

Return Value

These functions return -1 if sl is less than s2, 0 if sl
equals s2, and 1 if sl is greater than s2.

Portability

Available on UNIX systems. These functions are defined in
the ANSI Standard.

Note: For related information, refer to memcpy, movmem,
setmem, strcat, strchr, strcpy, strlen, strspn, strtok.

5016843

6-70 Library Reference

strcpy, strncpy

char •strcpy(char *dest, char •src);

char •stmcpy(char *dest, char •src, int maxlen);

Strcpy copies string src to dest, stopping after the null
character has been moved.

Strncpy copies exactly maxlen characters, truncating or
null-padding dest; the target may not be null-terminated if
the length of src is maxlen or more.

Include Flies

#include <string.h>

Return Value

Both functions return dest.

Portability

Available on UNIX systems. These functions are defined in
the ANSI Standard.

Note: For related information, refer to the memcpy, movmem,
setmem, strcat, strchr, strcmp, strlen, strspn, and strtok
functions.

Library Reference 6-71

strlen

int strlen(char *s);

Strlen returns the number of non-null characters in s.

Include Files

#include <string.h>

Portability

Available on UNIX systems. These functions are defined in
the ANSI Standard.

Note: For related information, refer to the memcpy, movmem,
setmem, strcat, strchr, strcmp, strcpy, strspn, and strtok
functions.

5016843

6-72 Library Reference

strspn, strcspn

int strspn(char *sl, char *s2);

int strcspn(char *sl, char *s2);

Strspn returns the length of the initial segment of string sl
which consists entirely of characters from string s2.

Strcspn returns the length of the initial segment of string
sl which consists entirely of characters not from string s2.

Include Files

#include <string.h>

Portability

Available on UNIX systems. These functions are defined in
the ANSI Standard.

Note: For related information, refer to the memcpy, movmem,
setmem, strcat, strchr, strcmp, strcpy, strlen, and strtok
functions.

/~
I
\ij

Library Reference 6-73

strtok

char •strtok(char *sl, char *s2);

Strtok considers the string sl to consist of a sequence of
zero or more text tokens separated by spans of one or more
characters from the separator string s2.

The first call (with pointer sl specified) returns a pointer
to the first character of the first token, and writes a NULL
character into sl immediately following the returned token.

Subsequent calls with zero for the first argument works
through the string sl in this way until no tokens remain.
The separator string s2 may be different from call to call.
When no tokens remain in sl a NULL is returned.

Include Flies

#include <string.h>

Portability

This functio~ is available on UNIX systems. This function
is defined in the ANSI Standard.

Note: For related information, refer to the memcpy, movmem,
setmem, strcat, strchr, strcmp, strcpy, strlen, and strspn
functions.

5016843

6-74 Library Reference

swab

void swab(char *from, char *to, int nbytes);

Swab copies bytes from the from string to the to string for
nbytes length. Adjacent even and odd byte positions are
swapped. This is useful for carrying data from one
workstation to another. Nbytes should be even.

Include Files

There are no include files required with this function.

Portability

This function is available on UNIX systems.

Library Reference

time

time_t time(time_t *tloc);

Time returns the value of time in BTOS SimpleDate
format.

6-75

If tloc is non-zero, the return value is also stored in the
location to which tloc points.

Include Files

#include <time.h>

Portability

Available on UNIX systems. This function is defined in the
ANSI Standard.

Note: For related information, refer to the stime function.

5016843

6-76 Library Reference

toupper, tolower, _toupper, _tolower,
toascii

int toupper(int c);

int tolower(int c);

int _toupper(int c);

int _tolower(int c);

int toascii(int c);

Toupper and tolower convert integers in the range EOF to
255. Toupper leaves the character unchanged, except for
lowercase letters which are converted to uppercase.
Tolower similarly converts uppercase letters to lower and
leaves all others unchanged.

_toupper and _tolower do the corresponding conversions,
except that _toupper only works for lowercase letters and
_to lower only works for uppercase letters. These are
implemented as macros and are therefore much faster than
the functions tolower and toupper.

Toascii yields its argument with all bits cleared except the
lower seven bits, giving a value in the range of 0 to 127. It
is intended for compatibility with other systems.

Include Files

#include <ctype.h>

Portability

All functions are available on UNIX systems. These
functions, except for toascii are defined in the ANSI
Standard.

Note: For related information, refer to isalpha.

(!

~

Library Reference

sin, cos, tan, asin, acos, atan, atan2

double sin(double x);

double cos(double x);

double tan(double x);

double asin(double x);

double acos(double x);

double atan(double x);

double atan2(double y, double x);

These calls perform trigonometric functions.

Sin, cos and tan return the corresponding trigonometric
functions. Angles are specified in radians.

6-77

Asin, acos and atan return the arc sine, arc cosine and arc
tangent respectively of the input value. Arguments to asin
and acos must be in the range -1 to 1. Arguments outside
that range causes asin or acos to return zero and set errno
to EDOM.

Atan2 returns the arc tangent of y /x and produces correct
results even when the resulting angle is near pi/2 or -pi/2
(x near zero).

Include Files

#include <math.h>

Return Value

Sin and cos return a value in the range -1 to 1. Tangent
returns any value for valid angles. For angles close to pi/2
or -pi/2, tangent returns zero and sets errno to ERANGE.

Asin returns a value in the range -pi/2 to pi/2.

Acos returns a value in the range 0 to pi.

Atan returns a value in the range -pi/2 to pi/2.

Atan2 returns a value in the range -pi to pi.

5016843

6-78 Library Reference

Portability

These functions are available on UNIX systems. These
functions are defined in the ANSI Standard.

Library Reference 6-79

ungetc

int ungetc(char c, FILE •stream);

Ungetc pushes the character c back onto the named input
stream. This character returns on the next call to getc or
fread for that stream. Ungetc returns c.

One character may be pushed back in all situations. A
second call to ungetc without a call to getc forces the
previous character to be forgotten.

Fseek erases all memory of a pushed back character.

Include Files

#include <stdio.h>

Return Value

Ungetc always returns the character pushed back.

Portablllty

This function is available on UNIX systems. This function
is defined in the ANSI Standard.

Note: For related information, refer to the fseek and getc
functions.

5016843

6-80 Library Reference

unlink

int unlink(char *filename);

Unlink deletes a file specified by the filename. Any
BTOS drive, directory and filename may be used as a
filename.

Return Value

On successful completion, a zero is returned. On error a -1
is returned.

Portability

This function is available on UNIX systems.

\'I

..

Library Reference 6-81

vprintf, vfprintf, vsprintf

int vprintf(char *format, va_list argp);

int vfprintf(FILE *stream, char *format, va_list argp);

int vsprintf(char *s, char *format, va_list argp);

These functions are alternate entry points for the printf
functions. They behave exactly like the corresponding
printf functions, except that instead of providing the
arguments to be formatted explicitly in the command line,
they are supplied in an array pointed to by argp.

The argp parameter is the vaelist array filled in by a call
to va_start.

Include Files

include

include

<stdio.h>

<stdarg.h>

Return Value

The return value is the same as for the corresponding
*printf function.

Portability

These functions are available on UNIX. These functions are
defined in the ANSI Standard.

5016843

6-82 Library Reference

vscanf, vfscanf, vsscanf

int vscanf(char *format, va_list ap);

int vfscanf(FILE *stream, char *format, va_list ap);

int vsscanf(char *s, char *format, va_list ap);

These functions are alternate entry points for the scanf
functions. They differ from the normal scanf functions in
that instead of supplying the list of arguments explicitly in
the call, a pointer to an array of arguments is supplied.

The ap parameter is actually the· array set up by a call to
va_start. The ap parameter then points to an array of
scanf parameter pointers. The pointers in this array must
correspond to the format specifiers in the format string.

Include Files

#include

#include

<stdio.h>

<stdarg.h>

Return Value

The return value is the same as for the corresponding
*scanf function.

Portability

These functions are available on UNIX.

Library Reference 6-83

write

int write(int handle, void *buf, int nbyte);

This function writes a buffer of data to the file or device
named by the given handle.

Handle is a file handle obtained from a creat or open call.

This function attempts to write nbyte bytes from the
buffer pointed to by buf to the file associated with handle.
If the number of bytes actually written is less than that
requested, the condition should be considered an error and
probably indicates a full disk.

For disk or diskette files, writing always proceeds from the
current file pointer (see lseek). For devices, bytes are
directly sent to the device.

Include Files

There are no include files required for this function.

Return Value

The number of bytes written are returned by write. In case
of error write returns -1.

Portability

Write is available on UNIX systems.

Note: For related information, refer to the creat, lseek, and
open functions.

5016843

Section 7 1-1

Using the C Programming
Language

This section gives you reference information on the
C programming language. It contains a brief history and
description of C with emphasis on the language
capabilities and advantages.

Language History and Features

The C programming language was developed for a UNIX
operating system in the early 1970s by Dennis Ritchie at
Bell Laboratories. (For more information, refer to The
C Programming Language, Kernighan and Ritchie,
Prentice-Hall, 1978. On the BTOS C Compiler you can run
the sample program given in book.)

The American National Standards Institute (ANSI) is
currently working on a C Language Standard. The
standard is sufficiently stable to safely implement features
of it. A summary of the major features that are not found
in the proposed ANSI standard are as follows:
o Comments can optionally be nested.
o The keywords interrupt, plm, _cs, _ds, _es, _ES, _ss,

near, and far have been added for special hardware
support.

o Inline assembly language code, using the keyword asm,
can be included in C source modules.

For users of BTOS C version 1.0, a list of features in the
language follows. The 8086 extensions are included in this
list for completeness.
o The preprocessor supports #pragma, #error, and

directives.
o The preprocessor supports the _DATE_ and _TIME_

macros.
o The preprocessor no longer expands macro arguments

inside strings and character constants.
o The preprocessor uses the # symbol in front of the

argument name in a macro expansion to support
'string-izing' macro arguments.

5016843

7-2 Using the C Programming Language

o The preprocessor uses the ## symbol between two other
tokens to support token-concatenating in macro
expansion.

o Comments are replaced with a single space character
after macro expansion.

o Nested macros mentioned in a macro definition string are
expanded only when the macro itself is expanded. This
mostly affects the interaction of #undef with nested
macros.

o The #include and #line directives can have macros on
them. If a macro is mentioned on the directive line it is
expanded before the directive is performed. This allows
using macros to define source file names.

o A progression of signed and unsigned types that an
integer constant could be, depending on the value and
radix of the constant.

o Floating point constants can contain F or L suffixes to'
specify float or long double constants.

o A keyword, signed, implies the integer object is signed.
This is important for char objects. A compile time switch
(-K) does not affect char objects explicitly declared as
signed char.

o There is a new floating type, long double. This type is
treated exactly like double.

o A type modifier, const, declares constant data objects.
You can use this to define ROMable data objects.

o A type modifier, volatile, declares objects that can be
modified in unseen ways. These objects include those
that can be modified by an interrupt processing routine,
and which may not be overly optimized.

o A function prototype is a function declarator that, unlike
the normal empty pair of parentheses, contains a list of
function parameter types. These types are used in two
ways. First, to check the validity of the parameters
actually given in a call. Second, to adjust the type of
function arguments to match the parameter types in the
prototype.

o Extern declarations given inside a function obey proper
block scope. The declarations are not recognized beyond
the scope of the block in which they are defined.

Using the C Programming Language 7-3

D The default conversion rules for mixed type expressions
have been modified slightly. This affects the type
conversions whenever unsigned char is present, or when
unsigned int is combined with signed long.

D A series of addressing type modifiers, near, far, _cs, _ds,
_es and _ss can be given with pointer declarations. These
modifiers declare the specific addressing the pointer uses
in the 8086 architecture.

D Definitions have been added for the following
pseudo-variables:

_AX BX _ex DX
- SI _DI BP _SP

-AL _AH -BL -BH

-CL _CH _DL _DH

-cs _DS _ES _ss

You can use these as unsigned int (or unsigned char for
the byte registers) variables. You should be careful when
you use these names, since most of these registers are not
saved across function calls. If a function uses the _ES
variable, the ES register is saved before each function
call and restored on return. Also, except for _SI, _DI,
_BP, _SP, _cs, _DS, and _SS, the registers are treated as
available scratch registers even in the same expression
where they are used. You should make sure that you use
them in simple statements as much as possible. If you
have any doubts about how an expression is generated,
have the compiler produce an assembly listing produced
by a given expression. That should reveal any problems.
In general, these pseudo-variables are most useful for
setting register parameters to non-C routines, like
assembly code routines.

D A function type modifier allows interrupt functions that
return a value. This change makes the syntax for
specifying non-standard functions a little more uniform.

D A series of function modifiers, near, far, plm, and
interrupt give greater flexibility in creating functions in
mixed model and mixed language environments.

D The Huge memory model has been implemented.
D All passes of the BTOS C Compiler run in protected

mode under BTOS II on a B28 or B38.
D Emulation of UNIX pipes has been implemented.

5016843

7-4 Using the C Programming language

Translation Phases and limits

Preprocessor Translations

This pass reads a source file, processing each source line
independently. Preprocessor statements are acted upon as
they are encountered. Include files are expanded inline.
The only factor limiting the nesting level of include files is
the maximum number of files which can be open
simultaneously. Since this number is 20, the maximum
include file nesting depth is 14.

Define macros can be expanded tp up to 4096 bytes in
length, and there is no particular limit on the number of
macro arguments.

Conditional compilation skips lines by replacing the input
line by a line containing nothing but white space. All
conditional compilation statements must be complete in the
source or include file in which they are begun.

Comments are removed.

The output file is a text string fully readable by any text
editor. Lines are placed in the output beginning with a '# '
character to indicate the correct line number and source
filename.

Parser Translations

The parser (CCI.Run) performs all of the C syntax
checking of the compiler. Declarations are recorded and
subsequently written to an intermediate file. A minimum of
memory allocation is performed at this stage. Automatic
storage and function arguments are deferred so that
intelligent allocation of register variables can be made.

Executable code is written as a series of expression trees,
punctuated by jump and label statements. All iteration and
conditional statements are transformed into simple tests
and jumps.

Constant subexpressions are evaluated and replaced by a
single constant. Both integer and floating point values are
calculated. Floating point values are computed using some
8087 emulating arithmetic, so that even with
cross-compilers on other hardware, the constant values are
computed in exactly the same manner.

Using the C Programming Language 7-5

A few limited special cases in expressions are reduced in
complexity (such as adding or subtracting a constant zero).
Conditional statements with a constant test are reduced to
either a no-op or an explicit jump.

Optimizer Translations

The optimizer (CC2.Run) makes a few simple reductions in
the code. Jumps to jumps are removed. Unreachable code is
eliminated. The condition and increment parts of a for loop
are moved to the bottom of the loop. The switch case table
is moved from the bottom of the switch to the top
(eliminating a jump). Two or more identical code sequences
are reduced to a single copy.

These optimizations are guaranteed to preserve the exact
execution sequence of the program, with the exception that
execution is somewhat faster and the code is almost always
smaller.

Code Generator Translations

The parser and/or optimizer output a series of expressions.
The Code Generator (CC3.Run) reads these expressions and
generates a code, a single expression at a time. Before code
is actually written to the output, enough code is held in
order to generate the shortest size jump instructions for
the given output file. As much as possible, the assembly
language output is designed to match the object code
output.

Compiler Limits

Other than the following limits, the compiler makes use of
all available memory to hold intermediate tables.

The maximum number of nested include files is 14.

The maximum size of a single macro definition is 4096
characters.

The maximum size of a single expression is limited to 1000
expression tree nodes. Each identifier and operator
consumes a single node. In addition, each function call
argument consumes one extra node. Implicit or explicit

5016843

7-6 Using the C Programming Language

conversions consume one node each. Structure member
references consume two extra nodes for arrow (->) and
three for dot (.).

The maximum number of cases in a switch is 256.

Preprocessing

The preprocessor (CCO.Run) scans the source text
character by character. Lines with an initial'#' character
are directives to be processed as encountered. White space
can appear before or after the '# ' character.

Preprocessor directives normally are limited to a single
line. Directives can be continued onto multiple lines by
ending all but the last line of a continuation with a
backslash(\) character. In general, any source line of a
C program can be continued in this way. Thus string
literals can use this technique to continue the literal onto
multiple source lines. The backslash and the following
newline are removed, effectively splicing the adjacent lines
together into a single long source line.

Source File Inclusion

The complete contents of a text file can be included in a
source file for compilation by means of the #include
preprocessor directive. The compiler treats the named file
as if it appeared in its entirety in place of the #include
directive. This directive is of the form:

#include "filename"

or

#include <filename>

In general, the quoted form is used to indicate application
specific include files, while the angle bracket form is
reserved for system supplied include files. This convention
is suggested, but not enforced.

The filename given does not have to be a complete
pathname. If one is given, regardless of the filename
delimiter used in the directive, the exact pathname is used.
If the file is not found, an error message is displayed.

Using the C Programming Language 7.7

If no pathname is given, or an incomplete one is given, the
file is searched for in a number of different directories. For
either delimiter form, the first location checked is the
current default directory. Then, each of the directories
given on the command line with the -I option are searched.
If the named directories do not exist, no error is reported.
If the include file cannot be found anywhere in the list of
directories searched, an error is displayed.

The pathname, including the delimiters, can be constructed
using macro-expansions. However, if a string is enclosed in
quotes it is not examined for embedded macros. Also, token
and string concatenation cannot be used in macros within
an include directive.

Trigraphs are replaced inside the pathname, but escape
characters are not translated (you can use "\" characters
in a pathname; they are not replaced).

Define Macros

The define macros are as follows:

#define

#define

#undef

identifier token-string newline

or

identifier (argument-list) token-string newline

identifier

The identifier named in a #define directive is defined as
either a define string or a macro. If the character
immediately following the identifier is a left parenthesis
(no white space is allowed) the definition is of a macro.
Otherwise, the definition is of a simple define string macro.
The definition applies from the line after the directive to
the end of the source file even across include files, or until
an #undef directive is encountered.

The following identifiers may not appear in a #define or
#undef directive: defined, _FILE_, _LINE_,
DATE, or _TIME_. These are names possessing
special significance to the preprocessor.

The #undef directive causes the current definition, if any,
of the identifier to be forgotten. In the case of a define
string', the identifier is replaced in all subsequent lines by
the token and the string given in the directive.

5016843

7-8 Using the C Programming Language

In the case of a macro, the argument-string is a list of
identifiers separated by commas. When the macro is
actually used, each of the arguments is substituted within
the macro. A macro invocation supplies a list of token and
strings, separated by commas and enclosed in parentheses.
The entire sequence from the macro identifier to the
closing parenthesis is replaced with the token and the
string in the macro definition.

Exactly the correct number of macro arguments must be
given. Commas can be given in a macro invocation
argument only if they are enclosed in parentheses, double
quotes, or single quotes.

When the #define directive is processed no macros and
define strings are expanded. Then, when the macro or
define string is activated, a scan is performed on the token
and the string, recursively expanding any more defined
names as they are encountered. The following example
should clarify this:

#define iszero(a)
#define isalnum(a)
#define islower(c)

isalnum(*p)

expands to:

((a)== 'O')
(iszero(a) 11 islower(a))
((c) >= 'a' && (c) <= 'z')

(((*p) = = 'O') 11 ((*p) > = 'a' && (*p) < = 'z'))

if then we have the following:

#undef islower

isalnum(*p)

expands to:

(((*p) = = '0') 11 islower(*p))

if then we have the following:

#undef iszero

isalnum(*p)

would expand to:

(iszero(*p) 11 islower(*p))

Identifiers inside comments, strings, or character constants
are never expanded, even if they are the same as defined
macros.

Using the C Programming Language 7-9

Identifiers inside strings or character constants never
expand during preprocessing. Since a common feature
programmers need is the ability to enclose a macro
argument inside quotes and display the string at runtime, a
macro argument identifier preceded by a # is converted to
a string by the preprocessor.

Thus, the following macro definition can be used:

#define DEBUG(a) printf(#a " = %d\n", a)

DEBUG(x + y);

would expand to:

printf("x + y" " = %d\n", x + y);

Note that the argument is replaced with the overt spelling
of the argument, before any macros in the argument are
expanded. Strings of white space are replaced with a single
space character, including comments.

Two tokens can be concatenated together in a macro
definition. Two tokens are separated by a ## plus optional
white space. The preprocessor removes the white space
and the ##, effectively combining the separate tokens.
Typically, this is used to construct identifiers. It is
notguaranteed to be portable to concatenate two things
that do not result in a single token distinguishable from
any adjacent tokens. For example:

#define V AR(i, j) (i ## j)

VAR(x, 6);

would expand to:

x6; /* Guaranteed ok *I
VAR(x +, 6);

would expand to:

x +6; /* Not portable * /

The second example does not port to other systems because
the sequence in which a compiler is required to process
input allows compilers to verify tokens in their input at an
early stage, and do the concatenating process later on as a
special case. If the two concatenated tokens do not form a
single simple token, the compiler may not produce the same
results as the C implementation.

5016843

7-10 Using the C Programming language

The definition of a replacement string is trimmed of all
leading and trailing spaces, so care must be taken when
using macros beginning or ending with operators. The
compiler can get confused if the macro identifier is used
with more operators immediately around it. In general,
enclosing the macro expansion string in parentheses
eliminates any problems.

FILE

This macro is automatically defined to be the current
source file being processed. This macro is changed
whenever a new #include directive is processed, when the
include file is completed, or a #line directive is processed.

This macro appears as a string in the processed text.
Backslashes expand to double backslashes, preventing
characters in a string from being improperly interpreted.

LINE

This macro is automatically defined to be the number of
the current source file line being processed. The first line
of a source file is defined to be 1.

DATE

This macro is automatically defined to be the date the
preprocessor began processing the current compiled source
file. Thus, each inclusion of the macro in a source file is
guaranteed to contain the same value, even near midnight.

The date appears as "Mmm dd yyyy", where Mmm is the
month (from Jan to Dec), and dd is the day (from 01 to 31)
including a leading zero for days less than ten, and yyyy is
the year.

TIME

This macro is automatically defined to be the time the
preprocessor began processing the current compiled source
file. Thus, each inclusion of the macro in a source file is
guaranteed to contain the same value.

The format of the replacement string of this macro is
"hh:mm:ss", where hh is the hour (from 00 to 23) using a
twenty-four hour clock, mm is the minutes (from 00 to 59)
and ss is the seconds (from 00 to 59).

Using the C Programming Language 7-11

SMALL

This macro is defined by the Small Memory Model selection
options. The value is 1.

MEDIUM

This macro is defined by the Medium Memory Model
selection options. The value is 1.

LARGE

This macro is defined by the Large Memory Model selection
options. The value is 1.

HUGE

This macro is defined by the Huge Memory Model selection
options. The value is 1.

Conditional Compilation

Six directives are defined that can be used to provide
conditional compilation of source text. One or more blocks
of text lines are delimited by these directives, an #if def,
#ifndef or #if directive to begin the sequence, then a series
of text lines to be compiled if the initial condition is true.
Next optionally appears a #elif or #else statement. If the
first condition is false, a subsequent #elif condition is
tested and if true, the following set of text lines compiled.
If a #else directive is encountered and all previous
condition directives in the sequence were false, then the set
of text lines following the #else are compiled. The entire
sequence is terminated by an #endif statement.

Other preprocessor directives can be nested within a
conditional compilation, including more conditional
compilation directives. The #else, #elif and #endif
directives associated with a leading #if def, #ifndef or #if
directive must appear in the same text file. They cannot be
spread across several include files.

When skipping text in a conditional sequence, the lines are
examined only to keep track of nesting of conditional
compilation directives and filename and line number
information.

5016843

7-12 Using the C Programming Language

Constant Expressions

In the following conditional directives the term "constant
expression" applies to any expression involving only
integer constants and excluding the sizeof operator and any
operators which involve side effects, such as increment,
decrement or the assignment operators. Macros and define
strings are expanded by the preprocessor. Any undefined
identifiers in the expression after expansion is complete
are replaced with a constant 0.

Only constant expressions in the preprocessor can
incorporate the following subexpression:

defined (identifier)

or

defined identifier

This operation has the value 1 if the identifier is a defined
macro or string, 0 otherwise. Thus the following pairs of
directives are equivalent:

#if defined (XYZ)

and

ifdef XYZ

#if !defined (XYZ)

and

#ifndef XYZ

#ifdef Directive

ifdef identifier

This directive causes the following text lines to be
compiled if the identifier is a defined string or macro. This
is considered a true condition. Otherwise the following text
lines are skipped.

#if ndef Directive

ifndef identifier

This directive causes the following text lines to be
compiled if the identifier is not a defined string or macro.
This is considered a true condition. Otherwise the following
text lines are skipped.

~

Using the C Programming Language 7-13

#if directive

if constant expression

This directive causes the following text lines to be
compiled if the constant expression evaluates to non-zero,
or true. Otherwise the following text lines are skipped.

#elif Directive

elif constant expression

If all of the preceding conditional directives of a sequence
are false, the constant expression is evaluated. If non-zero,
the following text lines are compiled, otherwise they are
skipped. A non-zero value is considered a true value.

#else Directive

else

If any of the preceding conditional directives in a sequence
are true, the text after the #else directive is skipped.
Otherwise, the following text is compiled. The #else
directive must be the last directive in a conditional
sequence to appear before the #endif directive.

#endif Directive

endif

An #endif directive completes a conditional compilation
sequence.

Line Number Control

line constant "filename"

line constant

This directive causes its warning messages, the line number
and source file name to be displayed on error. The filename
continues until the next #line directive, or the end of the
current include file. The line number of the next source line
is taken to be the constant, and subsequent lines have
progressively higher line numbers until a new #line
statement is encountered or the end of the current include
file is reached.

This directive is most useful when the compiler is used in
conjunction with a front-end language that translates to C.

Macros are expanded in this directive.

5016843

7-14 Using the C Programming language

#pragma Directives

pragma x_char_sequence new _line

This directive is intended to supply implementation specific
extensions. The C Compiler recognizes such directives, but '"'
does not process them. A comment which begins on this
directive can be continued onto another line, but any other
text must be continued using the backslash (\), newline
convention.

#error Directives

error x_char_sequence new _line

This directive causes the preprocessor to terminate
immediately. A fatal diagnostic is issued, formatted as
follows:

Fatal: filename line-no: Error directive: x_char_sequence

The text on the directive is scanned to remove comments,
but any remaining text is displayed. The text is not
examined for embedded macros.

Null Directive

new_line

This directive has no effect when processed. No other text
can appear between the # and the new _line, except white
space and comments.

Comments

Comments can be inserted between any adjacent tokens,
and have no effect on the compilation of a C program,
except for LINT comments that only affect diagnostic
messages displayed.

Comments are begun with the characters /* and continue
across text lines if necessary until a * / character sequence
is encountered. Comments are allowed in preprocessor
directives, and if a comment begins on the same line as a
directive, the comment can continue across multiple lines.

..

Using the C Programming language 7-15

Comments cannot be nested in the standard definition of
C and this is the default. A compile time option for the
preprocessor is provided which allows nested comments,
though it is not recommended where portability is a
concern.

Lexical Conventions

Source Text Conventions

A C program is specified as a sequence of ASCII text lines,
such as any text file produced by the BTOS editor and not
produced by the word processor. In this documentation we
use the term "newline" as if it were a single character
separating adjacent text lines. In UNIX and other systems
this is true, but under CP /M and MSDOS text lines are
separated by Carriage-return/ line-feed pairs.
BTOS C ignores all carriage-return characters in the
source program and treats the line-feed characters as
newlines.

There are no constraints on where items must appear on a
source line. C statements can be spread over as many
source lines as desired for readability. The only restriction
imposed is that keywords and other identifiers cannot be
split across source lines.

White space (spaces, tabs, formfeeds and newlines) can be
ignored and left out in most circumstances. In strings or
character constants spaces are significant. Also, spaces
must be used to separate adjacent identifiers, such as in
the expression 'sizeof x' or 'int i'. White space also cannot
be inserted in the middle of an identifier or operator.

Newlines can be placed anywhere between tokens. A
newline character by itself cannot be placed inside a
character constant or string unit. If you wish to include a
newline character in a program data, such as in a string or
character constant, you must use the escape sequence \ n.
If you wish to break up a long string across multiple source
lines, you must use multiple string units, or you must
precede any newlines inside the string with backslashes
(\). A 'backslash - newline sequence does not appear at all
in a string.

5016843

7-16 Using the C Programming language

Identifiers

An identifier is a sequence of upper- and lowercase letters,
digits and the underbar (_) character. An identifier must
begin with a letter or the underbar. Identifiers can be of
any length, but only the first 32 characters are significant.
Identifiers which differ only beyond the first 32 characters
are considered identical.

An identifier can name a global variable, a function, a
function argument, an automatic (local) variable, a
structure or union member, an enumeration constant, a
preprocessor macro or define string, a typedef, a structure
or union tag or a goto label. An identifier can be used only
within its scope. There are three kinds of scope defined in
BTOS C: file, function and block scope.

Identifiers declared in an external declaration have file
scope. An identifier with file scope can be used from the
point of the declaration to the end of the file being
compiled. These identifiers include global variables,
functions, structures and members, typedefs and
enumerations.

Be careful when you see the term external declaration. In
C there is a confusion in terminology. An external
declaration is simply a declaration that occurs outside any
function. Such a declaration can define an object, can
declare a typedef or can declare an external object. The
keyword extern is normally used to declare an external
object. An external object is one defined in a different
source file (and defined there in an external declaration).
The extern keyword can be used in two other special
circumstances: inside a function to declare an object that is
defined in an external declaration in the same source file,
or to declare an object that is defined later in the file in an
external declaration. In each of these last two cases, the
definition can be either global or static.

Identifiers declared as goto labels are the only identifiers
with file scope. These identifiers can be used anywhere in
the same function in which the label is located.

Identifiers with block scope include the same array of
objects and entities as in file scope. Block scope identifiers
are declared at the beginning of a block compound
statement. These identifiers can be used from the point of
declaration to the end of the block in which they are

Using the C Programming Language 7-17

defined. In addition, the arguments to a function have
block scope extending to the end of the main block of the
function. Upper- and lowercase letters are distinct for all
local variables, structure field names and preprocessor
define names. Thus two structure members, 'abc' and 'AbC'
are distinct.

The compiler itself treats upper- and lowercase letters as
distinct in global variables, but the BTOS linker does not
distinguish the two cases. Any symbol passed to the linker
is converted to uppercase. The linker indicates multiply
defined symbols if two identifiers differ only in the case of
the letters. Thus, the symbols 'strcpy' and 'Strcpy' are the
same to the linker.

Keywords

The following list of identifiers are the keywords of C.
These identifiers cannot be used to name any variable.

In theory you can use a keyword to define a macro or
define string, but this practice is extremely dangerous and
should be avoided.

asm auto break
case char const
continue default do
double else en um
extern far float
for fortran goto
if int interrupt
long near plm
register return short
signed sizeof static
struct switch typedef
union unsigned void
volatile while _cs
_ds _es _ss

Numerical Constants

C allows several different kinds of constants in a source
program.

5016843

7-18 Using the C Programming language

Integer Constants

Integer constants can be specified in decimal, octal or
hexadecimal. Normally, integer constants have type int,
but large valued integers, or constants with a trailing letter
L have type long.

Integer constants can be any length, but if the constant
overflows the size of a long integer there is no warning
given. Negative integer constants cannot be directly
specified. A source file containing, for example, a -34 is
actually specifying a positive constant of 34 which is then
negated with the standard negation operator. Such a
construction is treated as a constant expression evaluated
at compile time.

Any integer constant can be followed by an upper- or
lowercase letter L, and/or an upper- or lowercase letter U.
The L suffix forces the constant to have long type,
regardless of the magnitude of the constant. The U suffix
forces the constant to have unsigned type, regardless of
the magnitude of the constant.

A decimal integer constant is any string of digit characters
beginning with a non-zero digit. An unsuffixed decimal
constant that is greater than 32767 is treated as long,
greater than 2147483647 is treated as unsigned long, and
greater than 4294967295 overflows without warning and
the resulting constant is the low-order bits of the actual
value.

An octal integer constant is a string of octal digits (0
through 7) beginning with a zero. An unsuffixed octal
constant that is greater than 077777 is treated as unsigned,
·greater than 0177777 is treated as long, greater than
017777777777 is treated as unsigned long, and greater than
037777777777 overflows without warning and the
resulting constant is the low-order bits of the actual value.

A hexadecimal constant begins with a Ox or OX and
contains a string of digits plus the upper- and lowercase
letters A through F. An unsuffixed hex constant that is
greater than Ox7FFF is treated as unsigned int, greater
than OxFFFF is treated as long, greater than Ox7FFFFFFF
is treated as unsigned long, and greater than OxFFFFFFFF
overflows without warning and the resulting constant is
the low-order bits of the actual value.

Using the C Programming Language

A constant suffixed with a U is treated as unsigned or
unsigned long. If the constant is greater than 65535 the
constant is treated as unsigned long, regardless of the
radix of the constant.

Character Constants

7-19

A character constant is a mechanism for specifying integer
values that correspond to ASCII characters. A character
constant is a string of ASCII characters enclosed in single
quotes, such as 'x' or 'gh'. A character constant is always
an int quantity and is exactly equivalent to an integer
constant with the same value. Character constants cannot
contain newline characters. A double quote can be included
in a character constant, but a single quote must be given as
an escape sequence.

A character constant can be one or two characters long in
this implementation. Character constants longer than one
character are not portable and should be avoided. In
BTOS C the first character is placed in the low order byte
of the resulting integer, and the second character in the
high order byte. If only one character is given, then the
high order byte is zero.

Escape Sequences

In order to specify non-printable characters, escape
sequences are provided. All escape sequences begin with a
backslash character (\). The simplest escape sequences
consist of a backslash followed by a single letter. The
following table identifies each escape sequence and the
resulting character in hex and its ASCII abbreviation.

5016843

7-20 Using the C Programming Language

Sequence Value Character Name
\a Ox07 BEL Audible bell
\b Ox08 BS Backspace
\f OxOC FF Force
\n OxOA LF Newline
\r OxOD CR Carriage return
\t Ox09 HT Horizontal tab
\v OxOB VT Vertical tab
\\ Ox5C \ Backslash
\' Ox2C Single quote
\" Ox22 II Double quote
\? Ox3F ? Question mark

In addition, oc;tal escape sequences can be given by
following the ~kslash with from one to three octal
characters. A hexadecimal escape sequence can be given by
specifying a backslash, letter x (or X) followed by one to
three hex digits. Any 8-bit ASCII character value from 0 to
255 can be specified.

Valid escape sequences include \n, \v, \004, \xOA. A
character constant of '\058' would be treated as two
characters: an octal 05 and an ASCII '8', since 8 is not a
legal octal digit.

Floating Constants

A floating point constant is given as a mantissa followed
by an optional exponent and optionally terminated with a
type suffix. The mantissa consists of a string of digits with
a single decimal point. Legitimate mantissas can have the
decimal at the start or end of the digit string, or embedded
in the middle of digits. The exponent begins with an
upper- or lowercase letter E, followed by an optional sign
(plus or minus) and then a string of digits. The type suffix
can be an F or f, indicating float type, or an L or 1,
indicating long double type.

Floating point constants can contain up to 15 significant
decimal digits in the mantissa and can have an exponent in
the range plus or minus 306. Exponents beyond the range
given cause overflow but no error message are displayed.

4
' 4.

Using the C Programming Language 7-21

Strings

A string consists of one or more string units. Each string
unit is a sequence of ASCII characters and/or escape
sequences enclosed in double quotes. A newline cannot
occur in the middle of a string unit. A string unit can be
any length.

Multiple string units can be given, possibly on several
source lines. The units are concatenated together.

Note that Kernighan and Ritchie in a C Programming
Language allow only a single string unit in a string. The
addition of multiple units was designed to allow splitting
long strings among several source lines and still keep
flexible formatting of the strings on the page. For example,
the following string can be coded in BTOS C as:

"hello world, this is an example of "
"a long string\n"
"spread across source lines\n";

In C in the C Programming Language, this must be written
as:

"hello world, this is an example of \
a long string\n \
spread across source lines\n";

Operators

An operator specifies an operation to be done that
produces a value. The operators of C are built for the most
part out of punctuation and other special ASCII characters.
Sizeof is the only C operator that is a keyword. Operators
consisting of more than one character must not be divided
by white space. If more than one operator is given with no
intervening spaces, the compiler chooses the longest
operator to fit the initial sequence of characters. For
example, y---z is interpreted as y -- - z.

5016843

7-22 Using the C Programming Language

The C operators are:

[() ->
++ & ! %
* + !=
> < >= <= << >>
%= &= *= -- +=
<<= >>= ? I
/= sizeof

Note that [], (), and ? : are only found in matching pairs,
possibly enclosing expressions.

Punctuation

Punctuation is used to delimit or separate components of a
C declaration or statement without causing any actual
operations to be performed. The punctuation marks of
Care:

[()
*

Note that [], (), and { } occur only in matched pairs,
possibly enclosing other constructs.

Trigraphs

To support portability to workstations without certain
ASCII characters in their native character set, these
trigraphs were added to the language. They should be
thought of as substitutes for standard characters. Each
trigraph begins with a ?? pair, since this sequence is not
used in normal C programming. If a sequence of three
characters beginning with ?? is encountered that is not in
the following list, no translation is done on the characters.

Using the C Programming Language 7-23

The legal trigraphs, with the standard ASCII equivalents
are:

??= #
??([
??/ \
??) l
??' ~

??< {
??! I
??> }
??-

These trigraphs are recognized, but we do not recommend
using them unless the corresponding C character is not
available on your workstation.

Types

Every dat~ object in C has a type. In addition, operations
in expressions produce a value which also has a type. The
type of an object or expression determines the operations
allowed on it. For a data object the type also determines
how much memory the object takes up.

Basic Types

The following basic types are supported by this compiler:

char
short
int
long
float
long double
void

Integral Types

unsigned char
unsigned short
unsigned int
unsigned long
double
en um

The basic types correspond closely to the kinds of data
manipulated by the 8086 hardware. Char, short, int and
long types, plus the corresponding unsigned types, and
enum (enumerations) are called the integral data types.
Char, short, int and long are considered distinct types as

5016843

7-24 Using the C Programming Language

far as the abstract definition of C is concerned, but on
most workstations int type objects are the same as either
short or long objects. In this implementation int and short
objects are the same.

Characters and Integers

Character data in the BTOS C Compiler implementation is
treated as signed by default, in the range -128 to 127.
Unsigned character data falls in the range 0 to 255. A
character constant specified with an octal or hex escape
sign extends (unless the -K compile option is given), so the
value '\377' given in their book i~ represented as an integer
with the value of -1.

Unsigned

Unsigned quantities can be 8, 16, or 32 bits wide, just as
signed integral values are. All of the bits of the object are
magnitude bits. All unsigned values are numerically
non-negative and span a range of positive integers twice
that of signed integers occupying the same number of
bytes.

Floating

Float, double and long double types implement the IEEE
floating point standard data format used by the 8087 math
coprocessor. Float objects occupy 4 bytes, double and long
double objects occupy 8 bytes. Long double and double
types are treated identically.

Void

Void type only occurs in limited situations and is used to
signify that the operation produces no value at all. This
most commonly occurs when calling a certain function
which returns nothing. No actual objects are of void type.

Void functions are provided as a means for explicitly
documenting a certain function which does not return a
value. Under Kernighan and Ritchie C there is no
mechanism for describing this fact.

Using the C Programming Language 7-25

As a special construct, to explicitly indicate that the return
value of a function is being ignored, an expression can be
cast to void type. If the expression is a function call to a
function that returns a type, LINT processing reports that
the return value is being ignored unless such a void cast is
present.

Enumerated

Enumerated type data is used to describe a discrete set of
alternative values. In this implementation of C enumerated
type data can be used as if it were an integer without
restriction. The compiler does not even check whether an
enumeration constant is being assigned to a correct
enumerated variable.

Composite Types

In addition to the basic types, the following composite
types are supported:

pointer to data
function
structure

Pointers

pointer to a function
array
union

In the original Kernighan and Ritchie definition of C, there
was no distinction between pointers to different kinds of
objects, the assumption being that all pointers work more
or less alike. This assumption is not correct on BTOS
workstations. The two most basic classes of pointers are
pointers to data or pointers to functions.

Pointers to data are treated exactly as described by
Kernighan and Ritchie. The full range of pointer arithmetic
operators are available to these pointers. Pointers to
functions are restricted in their use. Function pointers can
only be copied or used to call the function pointed to.
Function pointers cannot be assigned to data pointers and
vice versa, though they can be cast appropriately.

Part of the reason for strongly distinguishing these
varieties of pointers is that, depending on the memory
model used in compiling a program, pointers are of

5016843

7-26 Using the C Programming Language

different sizes, and data pointers and function pointers
cannot be the same size as each other. Note that addressing
modifiers override the size of a pointer given by the
Memory Model in effect.

A pointer type must be declared to point to some other
specific type. A pointer can point to any other type. This
implementation allows you to mix pointers to different
kinds of data objects to be compared or assigned to one
another, but you are warned when this happens.

A special pointer declaration, a pointer to void, is allowed.
This does not mean a pointer to nothing. A pointer to void
is a mechanism adopted to avoid defining a new language
keyword. It means a pointer to any kind of data object, the
type of which is not necessarily known. You can assign any
pointer to a void pointer and vice versa without a cast. You
cannot use the indirection operator with a void pointer.

Functions

Functions are declared to return a specific type when
called. Functions can return any type except arrays, or
other functions (although returning a pointer to a function
is allowed).

As an extension introduced by BTOS C, a function
declaration can include a language specifier following the
function name. The allowed language specifiers are:
D interrupt for interfacing with workstation interrupts.
D plm for interfacing with PL/M modules.
D near for functions using near returns and calls.
D far for functions using far returns and calls.

Only one language modifier can be given for each function
declarator, except that near or far can be combined with
plm. The altered calling conventions have different effects
on a program (refer to Function Calls). Function calls must
match the language given with the function definition.

Interrupt functions are designed to be used with the 8086
interrupt vectors. An interrupt function saves all registers
on entry and restores them on return. A far pointer to an
interrupt function can be stored directly into an 8086
hardware interrupt vector, although under BTOS the
SetlntHandler procedure should be used instead (refer to
your BTOS documentation).

Using the C Programming Language 7-27

Arrays

Arrays are declared to be a collection of objects of a single
type. Arrays must be declared to be a fixed size at compile
time. An array occupies exactly the size of each object in
the array times the number of objects. No extra
information is maintained to check the bounds of the array
at runtime. Arrays can be constructed from any type
except void or a function type (but again pointers to
functions are allowed). C declares multi-dimensional
arrays by constructing an array of arrays as needed.

Structures and Unions

Structures and unions are similar to each other. A
structure allows the definition of a set of named members,
each with their own type. A structure takes up as much
memory as the sum of the sizes of the members. If the
structure is compiled with alignment selected (option -a),
padding bytes are added as needed to ensure that any
non-char members are an even offset from the beginning
of the structure, and a pad byte can be added to ensure
that the structure itself is an even number of bytes long.

Unions differ from structures in that the value of a union
is only one of the individual members at a time. The
members of a union are stored on top of one another so
that all members have an offset of zero. The size of a union
is the size of the largest member. If alignment is selected, a
union is padded to make an even size in bytes. Assigning a
value to one member of a union and then extracting the
value of a different member can produce unpredictable and
certainly non-portable results.

Bitfields

Structures, but not unions, can contain bitfields. Bitfields
normally allow packing of several objects into a single
workstation word. A bitfield can be either a signed or
unsigned int type, and can occupy from 1 to 16 bits.
Objects in the BTOS C implementation occupy a whole
number of bytes. Other implementations can have different
rules for allowed bitfield types and sizes.

5016843

7-28 Using the C Programming Language

Type Modifiers

The type modifiers are const and volatile. Any object can
be declared with these modifiers. The effect of the const
modifier is to prevent any assignments to the object, or
other side effects such as increment or decrement. A const
object can be initialized, even an auto const object.

Volatile objects have a less obvious effect. Volatile objects
can be modified in some invisible way, such as by an
interrupt routine, so the compiler is directed that these
objects cannot be specially optimized. These declarations
only affect a program if it is compiled using the -Z
optimization option. Volatile objects are always treated as
if no -Z optimization were in effect.

Pointers to const or volatile objects can be declared.
Without a cast a pointer to a non-const object can be
assigned to a pointer to a const object, but not the other '
way around. Similarly, a pointer to a non-volatile object
can be assigned to a pointer to a volatile object, but not the
reverse. Any pointer can always be explicitly cast to any
other pointer type.

The pointer type modifiers are const, volatile, and the
addressing modifiers.

The const modifier states that the pointer itself cannot be
modified, though the object pointed to can be.

The volatile modifier states that the pointer itself is
volatile.

Addressing modifiers have been introduced by
BTOS C implementations as an extension to support the
complex addressing capabilities of the 8086 family of
microprocessors. The addressing type modifiers are:
o Default Memory Model addressing (no modifier)
o near pointer
o far pointer
D _ds pointer (same as near)
o _es pointer
o _ss pointer
D _cs pointer
Note that _ds is fully equivalent to near for data pointers
in the Small and Medium Memory Models. Similarly _cs is
fully equivalent to near for function pointers in the Small

Using the C Programming language 7-29

Memory Model. Data pointers in the Large and Huge
Memory Models are equivalent to far pointers. Function
pointers in the Medium, Large and Huge Memory Models
are equivalent to far pointers.

Only one addressing qualifier can be present in a single
pointer. (Obviously, if a declaration contains more than one
pointer declarator, each can have its own addressing
modifier). Use addressing modifiers sparingly, since
understanding how they interact can be obscure at times.

Declarations

All declarations, whether of global variables, functions,
structure members or local variables use the same general
syntax. The purpose of a declaration is to do one of the
following:
o define a structure, union or enumeration
o define an alias for some type (A typedef)
o define a data object
o define a function
o describe a global data object or function defined in some

other source file

In addition to the components of a declaration itself, the
context of the declaration is important in determining the
exact nature of the objects being declared. There are six
contexts in which a declaration can occur:
o external context (outside of any function, structure, or

union definition)
o structure context (inside a structure)
o union context (inside a union)
D formal parameter context (after the function declarator

and before the function code block)
D block context (at the beginning of any block)
o function prototype context (inside a function declarator)

You begin with a storage-class. Then you can follow that
with a declarator and possibly an initializer. A declaration
can be as simple as a type by itself. The allowed
combinations of storage-class specifiers, types, declarators
and initializers depends on the context.

At least one of the type and storage-class specifiers must
be present in a declaration and/or type specifier.

5016843

7-30 Using the C Programming language

If a storage-class is allowed in a given context it can be
omitted. If it is omitted, a default storage-class is chosen
depending on the context. If a type is omitted, the default
type of int is supplied.

A declarator is used to name the identifier being declared '-4

and provide any additional type information such as
pointer, array or function types. The syntax of a declarator
was designed to mimic the use of the identifier. The rule of
thumb is that if an identifier is declared with some
declarator, the same string of tokens in an expression has
the same type as the type specifier of the declaration.
Thus, in the following example ip is declared to be an
array of 5 pointers to integers. The expression given
produces a value of type int

int * ip[5) ;

* ip[3] ;

After a declarator, external and block declaration contexts
allow an initializer to be supplied. This is a value to be
assigned to the object being declared. For simple, scalar ,.,
objects, the initializer is an expression. For arrays or ,
structures, an initializer is a set of expressions, as many as
one for each member of the composite object.

More than one declarator can be given in a single
declaration by separating the declarators with commas.
Thus in the following declaration, i is an int, j is a pointer
to an int initialized to the address of i, and k is an array of
7 ints:

int i, * j = &i, k[7] ;

Storage Class Specifiers

The allowed storage class specifiers are described.

Auto

The automatic (auto) storage class is the memory local to a
function, created on entry to the function and destroyed on
exit. This memory class is implemented on most
workstations as a stack, and this is true of the 8086

Using the C Programming Language 7-31

implementations. Auto variables can only be declared in
block declarations. If no storage class specifier is given in a
block declaration, the storage class is set to auto.

Extern

Extern storage is the storage class of objects defined in the
external definition context. These objects are defined in
one source file, and can be referred to in other source files.
The extern keyword is not used with the defining
occurrence of an object. In any referring declaration of a
data object, the extern keyword must be given. Referring
declarations to functions can omit the extern keyword. A
declaration containing the extern keyword can appear as
an external declaration or as a block declaration.

In the defining source file for an object, the object must be
declared with no storage-class specifier in an external
definition. In all other source files referring to an external
object, the storage class specifier extern must be included
in a declaration for the object.

Register

Register variables are automatic or parameter objects
which are kept in high-speed workstation registers during
the execution of the program. Like automatic storage,
register variables are created on entry to a function and
destroyed on return. The number of register variables are
limited by the hardware. In the BTOS C implementation,
two register variables are supported. If you do not provide
register keywords in a function, the compiler picks two
register variables for you.

Any formal parameter, function prototype or block
declaration can include the register storage class specifier.
The only limitation in the use of register variables is that
they have no workstation address, so the & operator
cannot be applied to a register variable. Within this
constraint any integer, short, or pointer object can be
placed in a register. Depending on the memory model used,
only pointers which are two bytes wide can be placed in a
register.

In register declarations beyond the first two, or on a
declaration of an object that cannot be placed in a register,
the register keyword is ignored. If the register keyword is
being ignored the declared object has auto storage class.

5016843

7-32 Using the C Programming Language

Static

Static declarations can be given in external definitions or
in block declarations. Static objects exist for the duration
of a program. The static keyword in an external definition /l'

limits the scope of the object so that it can not be referred '~
to in another source file. Static objects declared in a block
are known locally to the block containing the declaration.

Typedef

Typedef is not a true storage class. Any identifier declared
as a typedef can be used afterward in the source file as a
synonym for the type of the declaration. A typedef can
occur in external or block declarations.

Only one storage class specifier can be given in a single
declaration. Structure or union member declarations cannot
have a storage class specifier. External definitions can
have extern, static or typedef storage class specifiers.
Formal parameter declarations can only have the register
storage class. Block declarations can have any of the
storage class specifiers.

In general, you can refer to an object only after the object
has been declared in a file. In some situations you may
prefer or be required to define an object, most often a
function, after the first reference to the object. To do this,
you must give a forward declaration for the object. This is
only allowed for externally defined objects. A forward
declaration is simply the declaration of an object occurring
early in a source file and followed in the same file by the
definition of the object. Both the forward declaration and
the subsequent definition can include the static keyword.

Any declaration of a function, except for the function
definition itself, is implicitly considered to have the extern
storage class, even if the keyword is absent.

Type Specifiers

Basic Arithmetic Types

The seven keywords char, short, int, long, unsigned, float,
and double are used to declare the arithmetic data types.
These keywords can be given in any order and/or

Using the C Programming Language

combinations. You can use the list of combinations and
their duplicates as follows:

char
signed char
unsigned char
short
signed short
unsigned short
short int
unsigned short int
int
signed int
unsigned int
long
long int
signed long
unsigned long
unsigned long int
float
long float
double
long double

Structures and Unions

(same as char if -K not used)
(same as char if -K is used)

(same as short)

(same as short)
(same as unsigned short)

(same as int)

(same as long)
(same as long)

(same as unsigned long)

(same as double)

7-33

The word structure in this subsection refers to both
stuctures and unions, unless specifically stated otherwise.

Structures are defined by using the following:
o the keyword struct or union
D an optional identifier (the structure or union tag)
o the definitions of each of the members enclosed in curly

braces

Structures including a tag identifier in the definition can be
referred to in other declarations in the source file, possibly
before the structure definition is encountered.

Named structures can be referred to by giving a type
specifier of the struct or union keyword followed by only
the tag of the structure.

Each distinctly named structure is a distinct type. No two
structure definitions in the same scope can have the same
tag. In addition, all references to a tag in subsequent

5016843

7-34 Using the C Programming language

declarations must use the same struct or union keyword
used in the original definition.

Unnamed structures are each distinct types, even if two
structures have identically defined members.

The members of a structure are defined as a sequence of
declarations, each of which can be any previously defined
type, except the structure type being declared.

Normally, a member declaration is a normal declaration
with a type and a list of one or more declarators, separated
by commas. Storage class specifiers and initializers are not
allowed in a member declaration.

A structure type can be declared· containing only the tag
identifier before the tag has been defined. This is only
allowed in situations where the size of the structure is not
needed. By the time the size is needed, the structure tag
must have been defined. Typedefs defining a synonym for
the structure, pointers to a structure, or declarations (but
not definitions) of functions returning a structure are the
allowed declarations of an undefined structure tag. In
declaring a function returning a structure, the tag must be
defined before the function is called or defined.

A structure or union must not contain itself, but can
contain a pointer to itself.

Enumerations

An enumeration can be defined in a manner similar to that
of defining a structure. The enum keyword is followed by
an optional name, then a list of enumerator specifiers
separated by commas and enclosed in curly braces.

An enumerator specifier is either a simple identifier, or an
identifier followed by an = and a constant expression. For
example, the following are valid enumeration definitions:

enum day_of_week { sunday, monday, tuesday,
wednesday, thursday, friday, saturday }

enum coins { penny = 1, nickel= 5, dime = 10,
quarter = 25 }

The identifiers in enumerator specifiers are defined to be
integer valued constants (for all intents and purposes int
type objects). BTOS C does not restrict the use of
enumerators to objects. In effect, an enumeration is a

Using the C Programming Language

method for documenting a related set of constants and
could be defined (a little less conveniently) using a
preprocessor #define statement.

7.35

If no enumerators with = appear, the first identifier is
given the value 0 and each subsequent identifier increases
in value by 1. An identifier with = is assigned the value of
the constant expression and subsequent identifiers
continue the progression by 1 from the assigned value.

Void

The only declarations involving the void type specifier
allowed are functions returning void and pointers to void.
For example, to declare a function f returning void use the
following:

void f(...)

To declare a pointer to void, for example:

void *malloc();

Declarators

Declarators are probably the most confusing and least
understood aspect of C. Normally when one is discussing
C types, one uses an English description like 'array of
pointers to functions returning a pointer to a function

returning long'. In C, declaring the variable x to this type
is:

long (*(*x[])())();

This declaration is not at all clear. In fact, it is quite an
exercise to figure out which pair of empty parentheses
corresponds to which 'function' in the English-form type
description.

The simplest form of declarator is an unadorned identifier.
In this form, the identifier is declared to be of the type
given by the type specifier in the declaration.

5016843

7-36 Using the C Programming language

There are three basic type declarators which can
accompany an identifier. A* and perhaps some pointer
type modifiers before an identifier declares a pointer to
some type. A possibly empty pair of parentheses possibly
preceded by language modifiers after an identifier declares
a function returning some type. A pair of square brackets,
either empty or containing a constant expression, following
an identifier declares an array of some type. Extra
parentheses can be used to force grouping of declarators.
In the following example, the four lines declare a to be an
int, a pointer to an int, a function returning int, and an
array of 5 integers, respectively:

int
int
int
int

a·
' *a;

a();
a[5];

When more than one type declarator is used in a single
declarator, you must use an inside-out reading rule.
Beginning with the identifier, read each of the function or
array modifiers from left to right. After any such
modifiers, then read from right to left the pointer
modifiers. Parentheses can be used to group type
declarators and force precedence. Always read all the
modifiers inside a given set of parentheses before working
outside.

In the first example of a declarator, the [] are the array
and are read first. Then the inner-most * corresponds to
the first pointer in the description. So, inside the
inner-most parentheses, you have an array of pointers.
Then you reach the first (), corresponding to the first
function in the description. Then you turn to the first*,
which corresponds to the second pointer in the description.
At this point you have an array of pointers to functions
returning pointers. At last, you read the last (), and at last
the type specifier, giving you the full type description in
the example.

Pointer Declarators

A declarator beginning with a * optionally followed by
pointer type modifiers declares a pointer. The following
examples clarify the use of type modifiers.

char *cp;

.. '-ll

Using the C Programming Language

This specifies a pointer to a char (the memory model
determines the size).

int •far cp;

This specifies a far pointer to an integer.

const char •cp;

This specifies a pointer to a constant char.

long • far const xp ;

This specifies a constant far pointer to a long.

long (* near q) plm O ;

7.37

This specifies a near pointer to a plm function returning a
long.

int e near g) far 0 ;
This specifies a near pointer to a far function returning an
int.

Function Declarators

A function declarator is a declarator with a trailing
optional set of language modifiers and a pair of possibly
empty parentheses.

A function declarator with an empty parenthesis declares a
function with no parameter information given. This is the
only allowed function declarator.

All other legal function declarators are function
prototypes. These are declarators that include information
about the function parameters that are used by the
compiler to check function calls for validity.

A function declarator with a parenthesis containing the
single keyword void indicates a function that takes no
arguments at all.

Otherwise, the parenthesis of a function declarator
contains a list of parameter types separated by commas.
These types can be any type allowed in a function
parameter. The type declaration of a parameter can include
a declarator. The type can be in the form of a cast and not
include an identifier, or an identifier can be included. If an
identifier is included it has no effect except to be included
in the· diagnostic messages when a parameter type
mismatch occurs.

5016843

7-38 Using the C Programming language

A function prototype normally defines a function accepting
a fixed number of parameters. For C functions, such as
printf, that accept a variable number of parameters a
function prototype can end with an ellipsis(...). The fixed
initial function parameters are included with their types
and, after the las.t fixed parameter, the prototype is
finished with a comma and ellipsis. With this form of
prototype, the fixed parameters are checked at compile
time and the variable parameters are passed as if no
prototype were present.

The following examples should· clarify this:

int ro;
This specifies ~function returning an int with no
parameter information.

int p(int, long) ;

This specifies a function returning an int that accepts two
parameters, the first an int and the second a long.

int q plm(void) ;

This specifies a plm function returning an int that accepts
no parameters at all.

char •s far(char •source, int kind);

This specifies a far function returning a pointer to a char,
and accepting two parameters, the first a pointer to a char
and the second an int. The names source and kind appears
in diagnostics if there is a parameter type mismatch.

int printf(char *format, ...);

This specifies a function returning an int and accepting a
pointer to a char fixed parameter and any number of
additional parameters of unknown type.

int (*fp)(int);

This specifies a pointer to a function returning an int and
accepting a single int parameter.

Using the C Programming Language 7.39

Array Declarators

An array declarator is a declarator with a trailing pair of
square braces, possibly enclosing an integral constant
expression. If no expression is given the array has
unknown size. Otherwise, the expression is the number of
elements in the array.

These examples can help:

double d[5);

This specifies an array of five doubles.

char *p[4);

This specifies an array of four pointers to chars.

int x[5][6] ;

This specifies a two-dimensional array of five rows and
six columns of ints.

long z[][7] ;

This specifies a two-dimensional array with an unspecified
number of rows and 7 columns of longs. This declaration is
only legal if it is given as the declaration of a function
parameter (since it is converted to a pointer), or if the
declaration includes an extern keyword (since it does not
reserve storage), or if an initializer is included in the
declaration. In the last case, the unspecified dimension of
the array is determined from the number of initializers.

Bitfields

For structures only, not unions, special bit field
declarations are allowed. These can be declared to be of int
or unsigned int type only. The number of bits in a bit field
is given by following the declarator of the field with a
colon followed by a constant expression in the range from
1to16. Dummy, padding fields, can be defined by giving a
type, followed immediately by a colon and a constant
expression in the range from 1 to 16.

Unnamed bitfields ensure that the specified number of
unused bits are reserved within a word. This is useful for
defining externally specified bits in such things as
hardware status bytes.

5016843

7-40 Using the C Programming language

Bitfields are allocated from low-order to high-order bit
within a word. Thus the following declarations are
allocated as shown:

struct a
int
unsigned
int
unsigned
} ;

15 14 13 12 11
x

2 ;
j 5;

4;
k: 4;

10 9 8 7 6 5 4 3 2
xx xx xxxxx x x xx

<- k -> <-unused-> <- j ->

1 0
x x
<-i->

You can force the next bit fields in a sequence to align to
the next word by including a bit field declaration with a
width of 0.

Integer fields are stored in two's complement form with the
left-most bit being the sign bit. A signed integer bit field 1
bit wide can only hold the values -1 and 0, for example.

Type Names

A declaration with storage class typedef defines a typedef.
Subsequent declarations can then use the identifier just
declared as a synonym for the original type. For example,
the following declarations are legal:

typedef struct { double real, imaginary; } complex;

static complex z[5];

The effect of a typedef in a declaration is as if you were to
substitute the full type of the name into the declaration. In
general, there is no difference between using a typedef
name and explicitly including the full type in a declaration.
The exception is that a structure with no tag in a typedef
produces the same type in all uses of the typedef, but the
two tag-less structures separately defined are considered
distinct types. An example is the complex typedef. All
complex objects are of the same type.

Using the C Programming Language 7-41

Type Equivalence

Two types are equivalent if, after substituting the
definitions of all typedefs in the types, they are the same.
Named structures, unions or enums are considered the
same if the tags are the same. Unnamed structures, unions
or enums are the same in two different types only if the
structure, union or enum was defined under some typedef
common to the expansion of the two original types.

Thus, in the following example, types dog and cat are the
same, but bird is not.

typedef struct

typedef body
typedef body

typedef struct

Initialization

{ int legs; int ears; } body;

dog;
cat;

{ int legs; int ears; } bird;

An initial value can be given for block defined objects or
externally defined objects. After the declarator for a given
object, an initializer is represented by an = followed by
the initializer. Unions cannot be initialized.

The simplest initializer is a simple expression. When
initializing arrays or structures, the initializer can be a list
of other initializers enclosed in curly braces and separated
by commas. The array elements or structure members are
given in increasing element or member order. If an
aggregate object contains subaggregates, this rule applies
recursively to the members of the aggregate.

Curly braces can be omitted in an initializer if the
initializer begins with a left brace. Then the succeeding
comma-separated list of initializers initializes the members
of the aggregate. If however, the initializer does not begin
with a left brace, only as many initializers as needed to fill
the aggregate are used, and any extra initializers are used

5016843

7-42 Using the C Programming language

to initialize the next element of the parent aggregate of
which the current aggregate is a part. For example, the
following is a completely enclosed initializer:

double z[4] [3] = {
{ 1.5, 2.4,
{ 7, 5.0,
{ 45.55, le4,
}

3.3 } '
6.2 } '
100.0 } '

Note that in the above example, the list of initializers can
have a trailing comma. This comma has no effect but is
allowed for convenience in editing tables of initializers.

This initializer can be abbreviated as:

double [4] [3] =

{ 1.5, 2.4, 3.3, 7, 5.0, 6.2, 45.55, le4, 100.0 } ;

Note that the fourth row of the above array is set to zero.

If too few initializers are given to name all the members of
an aggregate, the remaining members are set to zero.

Static or global objects must be initialized to arithmetic
constant expressions, or to the address of a static or global
object or function plus or minus a constant offset. Static
initializations are stored at compile and link time into the
executable file of the program and are present when the
program is started. These values can be subsequently
changed during the execution of the program, unless the
object being initialized is declared with a const type
modifier.

Scalar (automatic or register) objects can be initialized to
any valid expression. Auto aggregate objects can be
initialized in exactly the same manner as static aggregates.
Auto aggregate initializers must be constant, or an address
of a static object plus or minus a constant. The
initialization occurs at the entry to each block as if an
assignment statement were being executed. Auto aggregate
initializations are accomplished by making a static image of
the initializer and then copying it into the auto on entry to
the block. If a block is entered via a goto or a switch
statement, the initializers are not executed.

Using the C Programming Language 7.43

When initializing a scalar object, such as an int or a
pointer, a single expression is given, possibly enclosed by
curly braces. The initial value of the object is the value of
the expression. The same conversions as for assignment are
performed.

When an initializer is present in the definition of an array,
the size of the array can be omitted. The size is set to the
number of elements in the initializer. For example:

int x[] = { 1, 3, 7 } ;

In this example, x has type array of 3 integers.

When initializing an array of characters you can use a
string literal as a shorthand. If the array has a definite size
given, the string literal can be up to as long as the array. If
the literal is exactly the same length as the array, a null
byte is not appended to the end of the array. If the array
has no size given, a null byte is appended to the literal and
the array size is set to the length of the literal plus one for
the null byte. For example:

char a[5] = "abcde"; /* array of 5 characters * /

char b[] = "sample"; /* array of 7 characters * /

Scope of Identifiers

This implementation is more liberal in allowing non-unique
identifiers than Kernighan and Ritchie specify in a
C Programming Language.

There are four distinct classes of identifiers in this
implementation as follows:

1 Variables, typedefs, and enumeration members
Each member must be unique within the block in which
they are defined. Externally declared identifiers must
be unique among externally declared variables.

2 Structure, union, and enumeration tags
Each tag must be unique within the block in which they
are defined. Tags declared outside of any function must
be unique within all tags defined externally.

5016843

7.44 Using the C Programming language

3 Structure and union members
Member names must only be unique within the
structure or union in which they are defined. There is
no restriction on the type or offset of members in
different structures with the same identifier.

4 Goto labels
Goto labels must be unique within the function in which
they are declared.

For identifiers declared within a block, an externally
declared identifier can be redeclared. This new identifier
masks the outer definition for the duration of the current
block. Similarly, inner blocks can redefine identifiers
declared in outer blocks.

Linkage

This implementation follows the external declaration rules
of Kernighan and Ritchie. In a multiple file program, each
global variable can be declared with the keyword extern in
any of the source files, but the global variable can only be
declared once without that keyword. The file in which the
variable declaration occurs without extern is the file where
space is reserved for the variable, and the only place
where an initializer can be supplied.

Global variables use the first thirty-two characters of the
identifier, just as local variables do (and this length can be
changed by the -i command line option). Because the linker
does not distinguish between upper- and lowercase, all
global variable identifiers have lowercase letters mapped
to uppercase. Care should be taken to ensure that
identifiers are kept unique.

Expressions

This implementation definitely evaluates subexpressions in
an order intended to minimize the number of registers
needed. For this reason side effects do not occur in an
easily predictable manner except for those operators
(comma, && and II) where the order of evaluation is
required by the language definition.

Operators involving side effects (such as assignments) can
be evaluated in any order the compiler chooses to produce
the most efficient code. The only constraint is that any side

Using the C Programming Language 7-45

effect is accomplished by the time the expression
evaluation is done. Function calls occurring within a
parameter to another function call are completed before
the outer function call is begun.

Because floating point computations are sensitive to
round-off errors, most floating point algorithms need to
control the order and grouping of operations. For this
reason, floating point operations are carried out as grouped
by parentheses and, for expressions without parentheses,
by operator precedence, even though the operations can be
commutative or associative.

Lvalues

The term lvalue is used to mean any expression which can
appear on the left-hand-side of an assignment.
Expressions of type array or function are never !values.

Simple non-array and non-function identifiers are !values.
In addition certain operators produce !values and other
operators require lvalues as operands. In the discussion of
specific operators that follows, any requirements with
regard to !values are specified.

Primary Expressions

A primary expression is the simplest component of an
expression in C.

An identifier is a primary expression, provided it has been
suitably declared. Any extern, auto, static or register
object, formal parameter or enumerator can appear as a
primary expression. The type of an identifier is the type
given in its declaration, except for functions and arrays.
Identifiers of these types are implicitly converted when
they are used. An identifier of type function is converted
to pointer to function. An identifier of type array of A is
converted to type pointer to A. This conversion is
performed in all contexts except when the identifier is an
operand of a sizeof operator.

A constant is a primary expression. Its type depends on its
form as described.

5016843

Using the C Programming language

A string is a primary expression. The type of a string is
'array of const char', and except in a sizeof expression is
converted to 'pointer to const char'. The value is a pointer
to the initial character of the string.

An expression within parentheses is a primary expression.
The type is the type of the enclosed expression.

A sizeof keyword followed by a cast is a primary
expression. The type is in bytes, of the type named by the
cast.

Postfix Operators

The postfix operators are + +, --, function call, subscript,
and member-access(. and->). These operators are
evaluated from left to right following the primary
expression which acts as the operand of the expression.

Postfix Increment and Decrement Operators

The operand of a postfix increment or decrement (+ + or
--) operator must have integral or pointer type and must
be an !value. The value of the expression is the value of
the operand.

After that value is extracted, the lvalue is incremented or
decremented by I.

Function Calls

A function call is a primary expression of type function
followed by a possibly empty list of assignment
expressions, separated by commas and enclosed in
parentheses. The list of expressions in parentheses are the
actual arguments to the function call. These arguments
correspond to the formal arguments declared in the
function definition being called. The value of a function
call is the value returned by the function. The type of a
function call is a if the type of the primary expression 1
operand is function returning a. ;'

The language modifiers for a function definition must
match the modifiers used in the declaration of the function
at all calls to the function.

Using the C Programming Language 7-47

If the primary expression in a function call is an identifier
that has not been declared previously, it is implicitly
declared as if it had been declared in the innermost block
containing the call with the following declaration:

extern int identifier();

Integral arguments to a function call when a function
prototype has not been previously declared are converted
according to the integral widening rules. Float type
arguments are converted to double before being passed.
(For more information, refer to Conversions.) When a
function prototype is in scope, the argument given is
converted to the type of the declared parameter as if by
assignment.

When a function prototype includes an ellipsis(...), all
function arguments given up to the ellipsis are converted
normally and any arguments given beyond the fixed
parameters are widened according to the normal rules for
function arguments when a prototype is not present.

A function can modify the values of its formal parameters,
but this has no effect on the actual arguments supplied,
except for interrupt functions. If a pointer is passed as an
argument, the object the pointer points to can be changed
in all functions.

If the type and number of arguments passed to a function
do not match the formal parameters of the function
without a function prototype, the results are unpredictable,
except that in this implementation extra arguments beyond
the formal parameters are ignored. In this implementation,
if fewer arguments are supplied than there are formal
parameters, there is no harm as long as the unsupplied
formal parameters are not actually accessed.

If a prototype is present the number of arguments must
match (unless an ellipsis is present in the prototype). The
types must be compatible only to the extent that an
assignment can legally convert them. An explicit cast can
always be used to convert an argument to a type
acceptable to a function prototype.

5016843

7-48 Using the C Programming language

The following example should clarify these points:

int strcmp(char *sl, char *s2);
/* Full prototype *I

char *strcpy();
/* No prototype *I

int sampl(float, int, ...);

samp2()
/* Full prototype * /

{
char *sx, *cp;
double z;
long a;
float q;

if (strcmp(sx, cp))
/* 1. Correct *I

strcpy(sx, cp, 44);

samp1(3, a, q);
strcpy(cp);
samp1(2);
}

/* 2. OK in C, not portable * /
/* 3. Correct *I
/* 4. Bad*/
/* 5. Compile Error * /

The five calls illustrate different points about function
calls as follows.
o In point 1, the use of strcmp exactly matches the

prototype and everything is proper.
o In point 2, the call to strcpy has an extra argument

(strcpy is defined for two arguments). In this case,
BTOS wastes a little time and code pushing an extra
argument but there is no syntax error because the
compiler has not been told about the arguments to strcpy.
A lint compile complains about the extra argument and it
is certainly not portable. In fact, if you compile this file
using the -p compile option (and recompile the library to
be compatible), the extra parameter almost certainly
causes the program to crash.

o In point 3, the prototype directs that the first argument
to sampl be converted to a float and the second 1
argument to an int. The compiler warns about possible 1'6
loss of significant digits because a conversion from long
to int chops the upper bits. An explicit cast to int
eliminates the warning. The third argument, q, lines up
with the ellipsis in the prototype so it is converted to
double according to the default rules and the whole call

Using the C Programming Language 7.49

is correct. Even if a -p compile option is used, this call
correctly passes the arguments.

D In point 4, strcpy is again called now with too few
arguments. This causes an execution error and knowing
how strcpy works it can crash the program. A lint
compile uncovers the error, but a normal compile says
nothing even though the number of parameters differs
from that in a previous call to the same function.

D In point 5, sampl is called with too few arguments. Since
sampl requires a minimum of two arguments, this
statement is an error and produces a message about too
few arguments in a call. This error happens both in lint
compiles and in normal compiles.

It should be noted that if any of the prototypes given do
not match the function definition, this fact is not known in
a normal compile. You must run a lint compile to be sure
that what you say a function accepts is really accurate.

PL/M Functions

A function declared with the plm language modifier uses
the PL/M calling sequence. This calling convention alters
several different aspects of function calling. The order the
arguments are pushed onto the stack is reversed from the
normal C calling conventions. Also, the registers used to
return certain data types (such as pointers) differ from the
C convention. Finally, the function itself is responsible for
removing the function arguments at return time where the
normal C calling convention has the caller remove the
arguments. This last point effectively eliminates the
possibility of using an ellipsis (i.e. a variable arguments
function) in a plm function definition.

Since PL/M does not support register variables, a
C function calling a plm function must save the values of
the register variables before each call and restore them on
each return.

Using the -p compile time option effectively turns all
non-variable arguments functions into plm functions with
one important exception. As long as a function does not
explicitly carry the plm language modifier it uses register
variables, even if the -p option is present in the compile.

5016843

7-50 Using the C Programming language

Interrupt Functions

Interrupt functions normally should be declared to be of
type void. An interrupt function is compiled with extra
function entry and exit code so that registers AX, BX, CX,
DX, SI, DI, ES and DS are preserved. The other registers of
BP, SP, SS, CS and IP are preserved as part of the
C calling sequence or as part of the interrupt handling
itself. A typical definition might be:

static
{

void handler interrupt()

Interrupt functions can be declared in any memory model.
As in the Huge model, DS is set to the program data
segment. Note that for Small and Medium Model programs,
there is no guarantee that SS is currently set to the
program data segment (if the interrupt is connected to a
device), since the interrupt could have occurred during the
execution of another program or during the execution of
BTOS itself.

For this reason, Small and Medium model programs must
observe the following restriction when coding functions
which are interrupt handlers, or can be called by interrupt
handlers. Interrupt handling code in the Small and Medium
model can assign the address of a function parameter or
automatic variable to a _ss or far pointer only. Most
runtime library routines obey this restriction, but notably
the printf family of functions do use an array on the stack
with unqualified pointers.

Floating point arithmetic can be used by interrupt handlers
in all memory models but should not use any 8087 without
saving the state of the chip and restoring it on exit from
the handler. If the handler is not using inline 8087
instructions, you can force use of the emulation routines by
setting _8087 to 0 at entry to the handler, and restoring
_8087 to its prior value on leaving the handler.

An interrupt handler routine can be defined with
parameters in order to access the registers of the
interrupted routine. This is particularly useful for

Using the C Programming Language

interrupt services designed to be called via INT
instructions. The layout of the parameters are:

7-51

void handler interrupt(bp, di, si, ds, es, dx, ex, bx,
ax, ip, cs, flags, caller stack)

An interrupt function can modify its parameters and
changing the declared parameters modify the
corresponding register when the interrupt handler returns.

Array Subscripts

A postfix expression followed by an expression enclosed in
square brackets is a subscripting expression. The postfix
expression preceding the square brackets must be of array
or pointer type (since arrays are implicitly cast to pointers
the two are equivalent). If the type of the postfix
expression operand is 'pointer to A', the type of the result
is 'A'.

The expression enclosed in square brackets is converted to
type int or long depending on the memory model used to
compile the program. If the -ml or -mh command line
options are used to compile the file, the expression is
converted to long, otherwise to int.

A subscripting expression is an lvalue unless the resulting
type is an array.

A subscripting expression El [E2] is defined to be
equivalent to the expression (* (El + E2)). The two
forms are freely interchangeable. As a degenerate case
El [0] is equivalent to (* El).

The value of the expression El [E2] is the E2-th element
of the El array (counting from zero).

Member Access Operations

An expression followed by a dot (.) or an arrow (->) and
an identifier is a postfix expression. The identifier
following the dot or arrow must be the name of a structure
or union member.

In the case of dot, the operand before the dot should have
structure or union type (although any type is accepted)
and must be an lvalue. In the case of an arrow, the operand
before' the arrow should be a pointer to a structure or a
union, but can be any pointer type. Proper usage requires

5016843

7-52 Using the C Programming Language

that the member name given be a valid member of the
structure given on the left. The value of the expression is
the value of the member named. The expression is an
lvalue.

If the member name does not belong to the structure on the
left (or the left-hand side is not a structure at all), the
expression may still be legal. If the named member is
unique among all structures defined in the current scope,
or if all members of the same name have the same type and
structure offset, only a warning is given and the expression
is allowed. The left-hand side is implicitly converted to the
appropriate structure type. If two or more members of the
same name, with different offsets or types, are known then
the reference is ambiguous and is an error.

Unary Operators

A postfix expression can be preceded by one or more unary
operators. Unary operators are evaluated from right to
left.

Prefix Increment and Decrement Operators

The operand of a prefix increment or decrement must have
integral or pointer type and must be an !value. The value 1
is added to or subtracted from (depending on the operator)
the operand. The value of the expression is the value of
the operand after the operation.

The + +i is fully equivalent to (i + = 1), and --i is
equivalent to (i -= 1).

Address and Indirection

The value of the unary & operator is the address of the
object that is the operand. Unary & requires an lvalue. A
register variable cannot be used with the unary & operator.
The type of the result is 'pointer to A' where the type of
the operand is 'A'.

Unary & is redundant with objects of type array or
function. While these types are not normally !values, you
can use unary & with objects of these types, but the
compiler warns you that the operat?r is superfluous.

The operand unary*, or indirection operator, must be a
pointer. The result is the object pointed to by the pointer.

Using the C Programming language 7-53

The expression is an lvalue. If the pointer points to a
function the result is an expression that can be used to call
the function.

If P is a pointer type, and *A is a valid lvalue, then *(P)A is
an lvalue of the type pointed to by P.

Another identity is that if A is an lvalue, *&A is an lvalue
equal to A. Similarly, if A has pointer type,&* A is equal
to A.

Unary Arithmetic Operators

The unary arithmetic operators are: unary + operator,
unary - operator, unary - operator, ! operator, and sizeof
operator. A description of how they function follows:
o The result of the unary + operator is the value of its

operand. The operand must have arithmetic type. The
integral widening conversions are performed and the
result has the widened type. The compiler does not
reorganize expressions across a unary plus. Normally the
compiler regroups expressions, rearranging commutative
operators such as binary + in an effort to create an
efficiently compilable expression. This means that a
floating point expression that is sensitive to precision
errors or overflow can becontrolled by means of a unary
+ operator, without having to be split up into separate
expressions involving assignments to temporaries.

o The unary - operator produces the arithmetic negative of
the operand. The normal arithmetic widening conversions
are performed and the result has the widened type. The
operand must have arithmetic type. Unary - of an
unsigned expression still has unsigned type.

o The unary - operator produces the bitwise complement
of the operand. The operand must have integral type.
The integral widening conversions are applied and the
result has the widened type. For signed objects, - E is
equivalent to (-E + 1). For unsigned types, -Eis
equivalent to (MAX_UNSIGNED - E) where
MAX_UNSIGNED is the maximum unsigned value for the
widened type. Its effect is to reverse each 0 bit to 1 and
each 1 bit to 0.

5016843

7-54 Using the C Programming language

o The! operator is the logical negation operator. If the
value of the operand is zero, the result is 1. If the value
of the operand is non-zero, the result is 0. The result is
always type int.

D The sizeof operator, with a cast following, can be used
with any prefix expression following. The result is of
type unsigned int and has the value of the size in bytes
of the type of the operand. The operand itself, even if it
contains a function call or other side effects, does not
produce executable code.

Casts

A cast is an abstract type enclosed in parentheses. Casts
can appear following a sizeof keyword or can be used as a
unary operator to convert the operand expression to the­
named type. Both the operand and the cast must have
scalar type.

In the following example, the usage is an error:

sizeof (int) x

This is an error because the (int) binds to the sizeof, and
the result appears as two consecutive primary expressions,
a syntax error.

An abstract type is a type specifier followed by an abstract
declarator. The abstract declarator can usually be formed
by first writing a normal declarator, then removing the
identifier. In the following example, this produces an
ambiguous result:

int (i);

(int())

must be coded as:

(int)

/* declares an int * /

/* constructs a function
returning int * /

In general, if the model declaration is written with a
minimum of parentheses, the result obtained by removing
the identifier is an abstract type producing the same type
as the model.

Using the C Programming language

Binary Operators

The binary operators bind unary expressions or other
binary expressions as left and right operands to form
binary expressions. The following is a table of the
operators and their precedences:

operator precedence

* 10
I 10
% 10
+ 9

9
<< 8
>> 8
< 7
> 7
<= 7
>= 7

6
!= 6
& 5

4
I 3
&& 2
II 1

7-55

When there is a choice of binding unary operands to one of
two binary operators, the operands bind first to the
operator with the highest precedence. If the two operators
have equal precedence, the left-hand operator binds first.

Normal Arithmetic Operators

Each of the operands must have an arithmetic type, except
for the % operator which must have integral type. The +
and - operators also allow pointer types as described. The
operands of the +, -, /, * and % operators are converted
according to the usual arithmetic conversions as follows:
o The * operator multiplies the two operands and produces

the product, with the type of the converted type of the
operands.

D The / operator divides the two operands and produces
the quotient, with the type of the converted type of the
operands.

5016843

7-56 Using the C Programming language

o The% operator divides the two operands and produces
the remainder, with the type of the converted type of the
operands.

o The + operator adds the two operands and produces the
sum, with the type of the converted type of the
operands.
The + operator can have one, but not both, of the
operands be of pointer type. The other operand must be
of integral type. The integral operand is multiplied by the
size of the object pointed to by the pointer operand and
then added to the pointer. The result has the type of the
pointer.

D The - operator subtracts the two operands and produces
the difference, with the type of the converted type of the
operands.
The - operator can have one or both of the operands be
of pointer type. If only one operand is of pointer type the
other operand must be of integral type. The integral
operand is multiplied by the size of the object pointed to
by the pointer operand and then subtracted from the
pointer. The result has the type of the pointer.
If both operands of - are pointers, they must be pointers
to the same type. The difference is computed and the
result is divided by the size of the object pointed to by
the pointers. The result has int or long type depending on
the memory model used. If the memory model option
given in the compile is -ml or -mh, the result type is
long.

Shift Operators

The operands of a shift operator must be of integral type.
The normal integral widening rules are applied to the
left-hand operand. The right-hand operand is converted to
int. The result is the widened type of the left-hand
operand.

Shift operators shift the bits of the integral quantity on the
left either to the left (<<)or right (> >) by the amount
given in the right side operand.

The largest meaningful shift value for an int object, signed
or not, is 15. The largest meaningful shift value for a long
object, signed or unsigned, is 31.

/~

·.""

Using the C Programming Language 7.57

A left shift zeroes fill on the right side. A right shift zeroes
fill on the left if the left operand is unsigned. A right shift
of a signed quantity fills from the left with the sign bit.

Negative shift values or values larger than the largest
meaningful value produces zero on all left shifts and
unsigned right shifts. Signed right shifts set all bits to the
value of the sign bit (thus giving a result of -1 or 0).

Relational Operators

The operands can have arithmetic type, or can both be
pointers. If one operand is the constant 0, the other can be
any kind of pointer. The result is always of type int and
has the value of either 0 or 1.

If both operands have arithmetic type, the usual arithmetic
conversions are applied.

If two pointers are compared, the result depends on the
relative positions of the objects pointed to. The comparison
is done as if they were unsigned integers. The only way to
guarantee that the comparison of two pointers is
meaningful is if they point to the same aggregate object.

Each of the operators < (less than), > (greater than), < =
(less than or equal), > = (greater than or equal), = =
(equal), and!= (not equal) produce the value 1 if the
relation is true, the value 0 if false.

Bitwise Boolean Operators

The binary & (and), A (exclusive-or) and I (inclusive-or)
operators perform boolean arithmetic. Both operands must
have integral type. The normal arithmetic conversions are
applied. The result is the converted type of the operands.

logical Operators

The && (logical and) and 11 (logical or) operators are used
to do logical testing, where the order of the tests is
important. The operands must have scalar type.

If the first operand of && is zero, the result of the
operation is 0 (false) and the right-hand operand is not
evaluated. If the result of the left-hand operand is
non-zero (true) the result is the result of the right-hand
operand.

5016843

7-58 Using the C Programming Language

If the first operand of I is non-zero (true), the result of
the operation is 1 (true) and the right-hand operand is not
evaluated. If the result of the left-hand operand is zero
(false) the result is the result of the right-hand operand.

Conditional Expressions

At a lower precedence than any previous operator, the ? :
ternary operator allows conditional computation of a value
in an expression. A conditional expression is of the form:

test ? true_expression : false_expression

Each of the operands can have any scalar type. If the value
is non-zero, the true_expression is evaluated, otherwise
the false_expression is evaluated. The true_expression and
false_expression have the usual arithmetic conversions ,
applied. The type of the result is the type of the converted
expressions. The value is the value of the true or false
expression actually evaluated.

Simple Assignment

The basic assignment operator (=) is used to copy a value
from one object or expression to a destination object. The
left-hand operand must be an lvalue.

The type of the right-hand side is converted to that of the
left.

Any arithmetic type can be assigned.

Assignment of a pointer must be to a pointer of the same
type. If not, the compiler produces a warning message.
Assigning a long quantity to an integer variable produces a
warning message about possible loss of significant digits.
On some computers integer quantities are the same size as
long quantities and when moving code from such a
workstation to an 8086, this can be a cause for error.

Structures and unions can be assigned. The structures or
unions being assigned must have the same type.

The type of the result is the type of the left-hand side, and
the value is the value of the right-hand side converted to
the type of the left.

Using the C Programming Language

Compound Assignment

The compound assignments correspond to the binary
operators as follows:

* *=
I /=
% %=
+ +

--
& &=

I=
<< <<=
>> >>=

7-59

An expression of the form A op= Bis equivalent to (A =
A op (B)), except that any side effects caused by operators
in A are performed only once.

The types allowed are the same as those allowed for the
binary operators. In addition, for + = and-= only, the
left-hand side can be a pointer. In this case, the right-hand
side must have integral type.

Comma Operator

At the lowest precedence of all operators, the comma
operator can be used to connect two other expressions. It is
guaranteed that the left-hand operand is executed first,
followed by the right-hand operand. The result value and
type is that of the right-hand operand.

In function call arguments a comma operator must be
enclosed in parentheses to distinguish it from an argument
separator. For example:

f(i, (t = 2, t - 5), c);

This call passes three arguments, the second with the
value -3.

Constant Expressions

Any expression exclusively involving constant operands
and/or sizeof operators are evaluated at compile time. A
function call, + +, --, unary*, array subscripting, member
access(. and->), the unary & or any assignment operator
cannot appearin a constant expression.

5016843

7-60 Using the C Programming Language

Integral constant expressions cannot include floating point
constants, unless the expression is explicitly cast to an
integral type.

Preprocessor directives involving constant expressions
cannot include the sizeof operator, any casts nor any
floating point constants.

Conversions

Conversion can be caused explicitly by means of a cast, or
implicitly as part of some operator. Some conversions do
not affect the actual bit value of.the object being
converted, such as converting from signed int to unsigned
int. Other conversions, such as from double to float cause a
transformation of the data.

Integral Widening Conversions

When converting a type according to the integral widening
rules, the following conversions are performed.

If the starting type is char, signed char, unsigned char,
short or any enumerated type, it is converted to int. Signed
char type data is sign extended to int size. Char type are
signed extended if the -K option is not used, otherwise it is
zero filled. Unsigned char type is always zero filled.

If the starting type is unsigned short, it is converted to
unsigned int.

Usual Arithmetic Conversions

When performing the usual arithmetic conversions, two
types are present. Before matching up the two types each
type is individually widened according to the following
rules:

If the starting type is char, signed char, unsigned char,
short or an enumerated type, it is converted to int. Char
and signed char type data is sign extended to int size.

Note that if the -K option is selected, converting char type
to int does not sign extend, instead they zero-fill.

If the starting type is unsigned short it is converted to
unsigned int.

:
~

(
I

Using the C Programming Language 7-61

If the starting type is float, is converted to double.

Once these conversions are performed, the following
conversions are performed (the order of the two types in
the operands is unimportant):
D If either operand is of type long double, the other

operand is converted to long double
o otherwise, if either operand is of type double, the other

operand is converted to double
D otherwise, if either operand is of type unsigned long, the

other operand is converted to unsigned long
D otherwise, if either operand is of type long, the other

operand is converted to long
D otherwise, if either operand is of type unsigned, the

other operand is converted to unsigned
D otherwise both operands are of type int

Other types

Pointers to functions and pointers to data cannot be
meaningfully converted to one another. Pointers to data
type can be freely converted from one to another. There
are no alignment restrictions on the 8086 family of
processors. On an 8086 word accesses on an odd address
boundary are somewhat slower, but work correctly. On an
8088, word accesses are always the same speed regardless
of alignment. The compiler makes no attempt to align data.
Structures, in particular, are not padded after an odd
number of bytes. If alignment is desired, the programmer
should take care to declare structures appropriately or use
the -a option.

Enumeration data is implicitly converted to or from int as
used. Enumerators are equivalent to integers in all
respects.

Statements

Statements are the executable instructions of a program.
Each statement is executed in order within a statement list
unless directed to otherwise by control-flow statements.

5016843

7-62 Using the C Programming Language

Labeled Statements

identifier :
case constant_expression:
default:

Any statement can be preceded by an identifier and a
colon, declaring the identifier to be a statement label. This
identifier can only be used as a target of a goto statement.
The identifier can be used in a goto anywhere in the
function where the label is defined.

Inside switch statements, only, you can supply case and/or
default labels. A case label begins with the case keyword,
is followed by an integral constant expression and a colon.
A default label consists of the default keyword followed by
a colon.

Blocks

{ declarations statements }

A block (or compound statement) allows you to group a
statement list into a single unit. Each block can also have
its own set of declarations. All of the declarations of a
block must precede any of the statements in the block.

Objects declared with automatic storage and initialized are
created and initialized on each entry to the block.

Expression Statement

expression ;

An expression statement is simply an expression followed
by a semicolon. This expression is evaluated for its side
effects (assignments and function calls).

Null Statement

A null statement is simply a semicolon with no expression
before or after it. It is most commonly used as the body of
an iteration statement. A null statement does nothing.

(~

\ ..

Using the C Programming Language

Alternation Statements

if (expression) statement

if (expression) statement
else statement

switch (expression) statement

7-63

The expression controlling an if statement must have
scalar type. An else is associated with the nearest previous
else-less if statement that is in the same block and not any
enclosing block.

The expression controlling a. switch statement must have
integral type and is converted to int. The switch body
statement is normally a block. Control is transferred to the
case label matching the value of the switch control
expression. If no case label matches, control transfers to
any default label supplied. If no default label is present,
control passes to the next statement after a switch.

Initializers ~n auto declarations in a block that is a switch
body have no effect since they occur before any case
labels.

Iteration Statements

while (expression) statement

do statement

while (expression) ;

for (exprl ; expr2 ; expr3) statement

In a while statement the controlling expression is
evaluated, and if non-zero, the statement body is executed.
The controlling expression is then evaluated again and this
is repeated until the controlling expression evaluates to
zero. If the controlling expression is zero on the first
evaluation, the loop body is not executed. The type of the
controlling expression must have scalar type.

In a do statement the loop body statement is executed, then
the controlling expression is evaluated, and if non-zero,
the statement body is repeated. This is repeated until the
controlling expression evaluates to zero. The loop body is
always executed at least once. The type of the controlling
expression must have scalar type.

5016843

7-64 Using the C Programming language

In a for statement, exprl is evaluated once. This is the
initialization expression. Then expr2 is evaluated as a loop
control expression. If non-zero, the loop body statement is
executed. Then expr3 is executed (the,increment part). The
control test expr2 is then re-evaluated and the loop
repeated until expr2 has value 0.

Exprl and expr3 can have any type, including void. Expr2
must have scalar type.

Any of the three expressions can be omitted. If exprl or
expr3 is omitted, nothing is done at that point in the loop.
If expr2 is omitted, there is no test performed and the loop
continues forever, unless some method is used to explicitly
exit the loop, such as a break or ·return.

A for loop is equivalent to the following sequence involving
a while loop:

exprl;
while (expr2){

statement;

expr3;
}

A for loop differs from this construct in that expr2 is
allowed to be null, where a while statement must have
some expression. Second, a continue statement within the
loop body transfers control to expr3 in a for loop, but to
expr2 in a while loop.

Jump Statements

The jump statements are as follows:
o goto identifier ;

A goto statement immediately transfers control to the
label given by identifier. The label must be within the
same function as the goto statement.

o break;
A break statement can only occur inside a switch, while,
do or for statement. The statement causes control to
immediately transfer to the statement following the
inner-most enclosing switch, while, do or for statement.

Using the C Programming Language 7-65

o continue;
A continue statement can only occur inside a while, do or
for loop statement. Control is immediately transferred to
the controlling expression in a do or while statement, and
to the increment expression of a for loop.

o return;
A return statement causes the current function to
immediately return to the caller. If control reaches the
closing curly brace of a function, an equivalent of a
return statement is executed with no return value.

o return expression ;
A return statement can include an expression. The value
of that expression is converted to the type of the
function and the value becomes the value of the function
call in the calling point of the program.
If a return with no expression is executed and the call to
the function expects a value to be returned, the results
are undefined.

lnline Assembly Statements

The two inline assembly statements are as follows:

asm char_sequence newline
asm char_sequence ;

The BTOS C Compiler supports the use of inline assembly
language. An inline assembly language statement is
introduced with the keyword asm. From the asm keyword
to either the end of the current source line or a semicolon
is treated as a single assembly statement. Assembly
statements cannot be continued across more than a single
line. The statement is passed through unmodified to the
assembly output file. Assembly statements count as a
statement when used with if or while. For example:

int i;
register int x·

'
if (i > 0)

asm mov x,4

else
i = 7;

5016843

7-66 Using the C Programming language

This construct is a valid C if statement. Asm statements
are the only statements in C which depend upon the
occurrence of an end-of-line. This is admittedly not in
keeping with the rest of the language, but this is the
convention adopted by most C compilers.

Assembly statements can be used as an executable
statement inside a function, or as an external declaration
outside a function. When used outside a function, the
assembly statements are inserted in the data segment
portion of the program, while assembly statements inside a
function are inserted in the code segment.

Variables can be referred to by name if the programmer
uses the following conventions. ·

Using lnline Assembly language

C is very good for most tasks, but for some things on the
8086, assembly language is necessary. Rather than force
the programmer to create a completely separate assembly
language module, BTOS C allows the programmer to
intermix assembly language statements in the C source.
Also, with these statements you can use C symbols,
including structure offsets.

The inline assembly facility of the compiler is intended for
the programmer who has some experience with assembly
language programming, especially the 8086
BTOS Assembler. How to include assembly language
programming in C source programs follows.

An inline assembly statement consists of the asm keyword
followed by white space, followed by an opcode, followed
by white space, then the instruction operands, if any.

The instructions are copied to the output, substituting any
C symbols with appropriate assembly language
equivalents. The inline assembly facility is not a complete
assembler so many errors are not immediately detected.
The -S option and the assembler must be used to compile
programs with inline assembly language. Any errors are
caught by the assembler. The assembler is not very good at
identifying the location of errors, since the original
C source line number is lost.

Inline assembly statements located outside any function are
placed in the DAT A segment, and assembly statements
located inside functions are placed in the CODE segment.

Using the C Programming Language 7-67

Instruction Opcodes

Any of the 8086 instruction opcodes can be included as
inline assembly statements. There are four classes of
instructions allowed by the BTOS C Compiler: normal
instructions, string instructions, jump instructions and
assembly directives. Regardless of instruction type,
operands are allowed by the compiler, even if they are
erroneous or disallowed by the assembler. The exact
format of the operands is not enforced by the compiler.

The following is a summary list of the opcodes which can
be used as normal instructions:

aaa aam aas adc add
and arpl bound call cbw
clc cld cli cmc cmp
cts cwd daa das dee
div enter f2xml fabs fad
faddp fbld fbstp fchs fclex
fcom fcomp fcompp fdecstp fdisi
fdiv fdivp fdivr fdivrp feni
ffree fiadd ficom ficomp fidiv
fidivr fist fimul fincstp finit
fild fistp fisub fisubr fld
fldl fl dew fldenv fldl2e fldl2t
fldig2 fldln2 fldpi fl de fmul
fmulp fnclex fndisi fneni fninit
fnop fnsave fnstcw fnstenv fmstsw
fpatan fprem fptan frndint frstor
fsave fscale fsqrt fst fstcw
fstenv fstp fstsw fsub fsubp
fsubr fsubrp ftst fwait fxam
fxch fxtract fyl2x fyl2xpl hlt
idiv imul in inc ins
int into iret lahf lar
Ids lea leave les lgdt
lidt lldt lmsw Isl ltr
mov mul neg not or
out outs pop pop a po pf
push pus ha pus hf rel rcr
ret rol ror sahf sal
sar sbb sgdt sh! shr
sidt sldt smsw stc std
sti str sub test verr
verw wait xchg xlat xor

5016843

7-68 Using the C Programming Language

Note that the assembler does not support 8087, 80286, or
80386 instruction mnemonics.

In addition to the opcodes the following string instructions
can be used alone or with repeat prefixes:

cmps cmpsb cmpsw lods
lodsw movs movsb movsw
scasb scasw stos stosb

The following repeat prefixes can be used:

rep repe repne repnz

lods
bscas
stosw

repz

Jump instructions are treated specially. Since a label
cannot be included on the instruction itself, jumps must go
to C labels. The allowed jump instructions are:

ja jae jb jbe jc
jcxz je jg jge jl
jle jmp jna jnae jnb
jnbe jnc jne jng jnge
jnl jnle jno jnp jns
jnz jo jp jpe jpo
js jz loop loope loopne
loopnz loopz

The following assembly directives are allowed in inline
assembly statements:

db dd dw extrn

lnline Assembler References to Data and
Functions

C symbols can be used in inline assembly code and are
automatically converted to appropriate assembly language
operands. Any symbol can be used, including automatic
variables, register variables and function parameters. In
general, a C symbol can be used in any position where an
address operand would be legal. A register variable can be
used wherever a register would be a legal operand.

If an identifier is encountered in parsing the operands of
an inline assembly instruction, the identifier is searched
for in the C symbol table. The names of the 8086 registers
are excluded from this search. Either upper- or lowercase
forms of the register names can be used.

Using the C Programming Language 7-69

The first two register declarations in a function are treated
as register variables and all subsequent register
declarations are treated as automatic variables. If the
register keyword occurs in a declaration which cannot be a
register, the keyword is ignored. Only short, integer (or the
corresponding unsigned types) or 2-byte pointer variables
can be placed in a register. SI and DI are the 8086 registers
used for register variables. Inline assembly code can freely
use SI or DI as scratch registers if no register declarations
are given in the function. The C function entry and exit
code automatically saves and restores the caller of the SI
and DI. If there is a register declaration in a function,
inline assembly can use or change the value of the register
variable by using SI or DI, but the preferred method is to
use the C symbol in case the internal implementation of
register variables ever changes.

The BP register is used in C functions as a base address
for arguments and automatic variables. Parameters have
positive offsets which vary depending on the memory
model and the number of registers saved on function entry.
BP always points to the saved previous BP value.
Functions that have no parameters and declare no
arguments do not use or save BP at all.

Automatic variables are given negative offsets from BP,
with the first automatic variables having the smallest
magnitude negative offset and subsequent variables given
increasing magnitude offsets.

For example, a function with the following automatic
declarations at the beginning of the function would
generate the corresponding offsets:

int
long
char
short

i·
' ii;

c[5];
*p;

BP-02
BP-06
BP-11
BP-13

Note that if the -a flag is present in the command line for
compiling the above declarations, the pointer p is given an
offset of BP-14, leaving one unused byte.

A programmer need not be concerned with the exact
offsets of local variables, however. Simply using the name
includes the correct offsets.

5016843

7-70 Using the C Programming language

It can be necessary to include appropriate WORD PTR,
BYTE PTR or other size overrides on assembly instruction.
These overrides are often needed when using static or
global C symbols (since the compiler defines all static and
global variables as BYTE objects). A DWORD PTR override
is needed on LES or indirect far call instructions.

Using C Structure Members

Any member of any C structure can be used in an inline
assembly statement (assuming the reference is in the scope
of the declaration). The member name can be used in any
position where a numeric constant is allowed in an
assembly statement operand. The structure member must
be preceded by a dot(.) to signal that a member name is
being used and not a normal C symbol.

Thus:

struct a
int
int

} ;

subroutine ()
{

asm

{
a_b;
a_c;

mov ax,[di].a_c

In the above sequence, the assembler statement would be
the equivalent of the following:

asm mov ax,2[di]

Member names are replaced in the assembly output by the
numeric offset of the structure member, but no type
information is retained. Thus members can be used
indiscriminately as compile time constants in assembly
statements.

Using the C Programming Language 7.71

Using Jump Instructions and Labels

Any of the conditional and unconditional jump instructions,
plus the loop instructions, can be used in inline assembly.
They are only valid inside a function. Since no labels can
be given in the asm statements, jump instructions must use
C goto labels as the object of the jump. Direct far jumps
cannot be generated.

Indirect jumps are also allowed. To use an indirect jump,
use either a register name as the operand of the jump
instruction or else include an operand defining the address
to jump to inside square brackets.

Thus in the following code the first jump goes to the
C goto label a. The second jump goes to the address
contained in the integer a.

int
{
int

a:

asm
asm

x()

a·
'

jmp
jmp

a
[a]

Comments on lnline Assembly Statements

Assembly style comments cannot be used. When
commenting inline assembly statements, you should use
C style comments. Assembly style comments begin with a
semicolon and continue to the end of the current line. Using
this convention can cause the compiler to become confused,
since it tries to interpret the comments as Assembly
language operands.

5016843

7-72 Using the C Programming language

External Definitions

External definitions are the function and data definitions
described.

Function Definitions

An old style function definition consists of a function
declaration, which is like any other declaration producing
type 'function returning A', except that instead of empty
parentheses to denote the function, the parentheses contain
the names of any formal parameters, listed separated by
commas. After the function declaration, an optional set of
declarations can be given for the formal parameters. After
the formal parameter declarations, the function body is
given.

In an old style function definition, a typedef name cannot
be given as a parameter name. If the compiler encounters a
typedef name in the parameter list it assumes that the
name is a type and begins some form of function prototype.

A formal parameter declaration can only include a register
storage class specifier. A formal parameter can be declared
to have any type, except void and function. Formal
parameters declared to be array of A are converted to
pointer to A. Sizeof reports the correct size of all formal
parameter types, except array declarations converted to
pointer. These return sizeof as the sizeof a pointer.

A formal parameter declared to be float is converted on
function entry, since the normal widening rules of function
arguments require that arguments of type float must be
passed as double. A float formal argument is converted
from double to float on function entry.

A formal parameter with no declaration is implicitly
declared to have type int.

As an alternative to the Kernighan and Ritchie syntax, a ,~
function can be defined using the function prototype ''"!

syntax. In this case, the list of types given with the
function declarator being defined must be accompanied by
the parameter name identifiers. The parameter name
identifiers are treated exactly like those of the old style
function definition.

Using the C Programming Language 7-73

The normal widening rules for function parameters apply
for most types. However, for float type parameters defined
using the new syntax the parameter passes as a float and
takes up less room on the stack. Note that when you define
a function using the new syntax, you should also declare it
using a prototype wherever the function is called. Float
types are the only types affected by this new syntax now.

In general, if all types in the prototype definition are
widened (that is, there are no char, short or float types,
either signed or unsigned), then the function can be called
without a prototype being in scope of the call.

The function body is a block containing the executable code
of the function.

Data Definitions

There must be one data definition for each object declared
with storage class specifier extern. This definition must be
given without the extern keyword.

If no initializer is given for a data object it is initialized to
zero.

Portability Considerations

This implementation supports two 16-bit register
variables, with excess register declarations ignored.

The size of each basic type is as follows:

char, unsigned char, signed char
short, unsigned short
int, unsigned
long, unsigned long
float
double, long float
far pointer
near pointer
enumerated data

Obsolete Syntax

1 byte
2 bytes
2 bytes
4 bytes
4 bytes
8 bytes
4 bytes
2 bytes
2 bytes

The obsolete syntax described in Kernighan and Ritchie is
not supported.

5016843

\j

Appendix A A-1

Diagnostic Messages

This appendix describes the diagnostic messages that you
may encounter while compiling or executing your
C program. Also refer to the BTOS II Systems Status
Codes Reference Manual for operating system and other
errors.

C Compiler diagnostic messages fall into three classes:
Fatal, Error and Warning Messages.

Fatal errors typically involve bad file names, disk write
errors or the compiler running out of core memory. A fatal
error may also indicate a compiler error of some sort.
When a fatal error occurs, compilation immediately stops.
Appropriate action must be taken and then compilation
may be restarted.

Errors will indicate some sort of syntax or semantic error
in the source program. The compiler will complete the
current phase of the compilation and then stop. An attempt
is made to find as many real errors in the source program
as possible during each phase.

Warnings do not prevent the compilation from finishing.
They indicate conditions which are suspicious, but which
are legitimate as part of the language. Also, use of obsolete
syntax or machine-dependent constructs will generate
warnings.

Messages are printed by the compiler with the message
class first, then the source file name and line number
where the condition was detected, and finally the text of
the message itself. In this appendix, messages are
presented alphabetically within message classes. With each
message a probable cause and remedy are provided.

Messages are only generated as they are detected. Because
C does not force any restrictions on placing statements on
a line of text, the true cause of the error may be one or
more lines before the line number mentioned. In the
following message list, the messages which often are
displayed on lines after the real cause are indicated.

5016843

A-2 Diagnostic Messages

Fatal Messages

Error directive: XXXX

This message is issued when a #error directive is
processed in the source file. The text of the directive is
displayed in the message.

Error writing assembler file

This indicates some sort of system error writing the
assembler output file. Most often this indicates a full disk
or diskette.

Error writing lint file

This error occurs most often when the work disk is full. It
could also indicate a faulty diskette. If the diskette is full,
try deleting unneeded files and restart the compilation.

Error writing output file

This error most often occurs when the work disk is full. It
could also indicate a faulty diskette. If the diskette is full,
try deleting unneeded files and restart the compilation.

Expression table full

An extremely complicated expression was parsed. You
should break the statement up into multiple expressions.
A total of 1000 expression tree nodes are allocated. (As
reference, a function call with two simple arguments
takes about 7 nodes).

Identifier table full

The compiler needs more memory to complete the
compilation. Either modify the source file to reduce the
number of symbols that caused this message, or
re-execute the compile in a partition with more memory
(at least 250 Kb).

Incorrect command line arguments

This error occurs if CCOMPILER is executed with
incorrect command line arguments.

lnline assembly cannot generate object code

This error occurs only in generating object files. It is
generated when an inline assembly language statement is
encountered. The object file·generator currently does not
have the facilities to translate assembly language
statements.

Diagnostic Messages A-3

Irreducible expression tree

This is a sign of some form of compiler error. Some
expression on the indicated line of the source file has
caused the code generator to be unable to generate code.
The offending expression should be avoided. Consult
Unisys Customer Support if this error is ever
encountered.

Lint file bad format

The lint file being read contains some bad information.
Either the file is not really a lint file or the file was
somehow corrupted.

Must have one filename

A source file was not specified in the CCOMPILER
command form. Re-execute the compile, specifying a
source file to be compiled.

Out of Memory

This error occurs when the total working storage has been
exhausted. You should try compiling this program on a
workstation with more memory.

Pass did not finish properly

This error indicates that some pass either was not run for
the named file or it encountered errors.

Register allocation failure

This is a sign of some form of compiler error. Some
expression on the indicated line of the source file was too
complicated for the code generator to be able to generate
code for it. Simplify the offending expression, and if this
fails, avoid it. Contact Unisys Customer Support if you
encounter this error.

Too many goto labels

The compiler needs more memory to complete the
compilation. Either modify the source file to reduce the
number of symbols that caused this message, or
re-execute the compile in a partition with more memory
(at least 250 Kb).

Too many members of structures/unions

5016843

The compiler needs more memory to complete the
compilation. Either modify the source file to reduce the
number of symbols that caused this message, or
re-execute the compile in a partition with more memory
(at least 250 Kb).

A-4 Diagnostic Messages

Too many structure/union tags

The compiler needs more memory to complete the
compilation. Either modify the source file to reduce the
number of symbols that caused this message, or
re-execute the compile in a partition with more memory
(at least 250 Kb).

Too many variables

Type table full

The compiler needs more memory to complete the
compilation. Either modify the source file to reduce the
number of symbols that caused this message, or
re-execute the compile in a partition with more memory
(at least 250 Kb).

The compiler needs more memory to complete the
compilation. Either modify the source file to reduce the
number of symbols that caused this message, or
re-execute the compile in a partition with more memory
(at least 250 Kb).

Unable to create assembler file 'XXXXXXXXX.XXX'

This is probably caused by a full disk or diskette directory,
or else the named assembler file already exists with the
read-only bit set on.

Unable to create output 'XXXXXXXXX.XXX'

This error occurs if the work directory is full. If the
directory is full, delete unneeded files and restart the
compilation.

Unable to create temp file 'XXXXXXXXX.XXX'

This error occurs if the work directory is full. lf the
directory is full, delete unneeded files and restart the
compilation.

Unable to open lint file 'XXXXXXXX.XXX'

This error occurs if the work directory is full. If the
directory is full, delete unneeded files and restart the
compilation.

Unable to open source file 'XXXXXXXXX.XXX'

This error occurs if the source file cannot be found.
Check the spelling of the name and whether the file is in ;j

the proper directory. ,~

unexpected end of file in intermediate file

A format problem was detected in the intermediate file
written by the parser. Try re-executing the compile to
recreate the intermediate file. If the problem persists,
notify Unisys Customer Support.

Diagnostic Messages A-5

Error Messages

operator not followed by macro argument name

In a macro definition, the# may be used to indicate
'string-izing' a macro argument. The # must be followed
by a macro argument name.

'XXXXXXXX' not an argument

The named identifier was declared as a function
argument but was not in the function argument list.

Ambiguous symbol 'XXXXXXXX'

The named structure field occurs in more than one
structure with different offsets and/or types. The variable
or expression used to refer to the field is not a structure
containing the field. Cast the structure to the correct
type, or correct the field name if it is wrong.

Argument ## in call to 'XXXXXXXX' has wrong type

The argument given by number (argument 1 is the
left-most in the call) disagrees with the type declared in
the function. The source filename and line number given
in the diagnostic is the location of the call.

Argument list syntax error

An argument was followed by a character other than
comma or right parenthesis. Arguments to a function call
must be separated by spaces and closed with a right
parenthesis.

Array bounds missing]

An array was declared in which the array bounds were
not terminated by a right bracket.

Array size too large

The declared array would be too large to fit in the
available memory of the processor.

Assembler statement too long

lnline assembly statements may not be longer than 512
bytes.

Bad filename format In include statement

5016843

#Include filenames must be surrounded by quotes or
angle brackets. The filename was missing the opening
quote or angle bracket.

A-6 Diagnostic Messages

Bad ifdef statement syntax

An #ifdef statement must contain a single identifier and
nothing else as the body of the statement.

Bad ifndef statement syntax

An #ifndef statement must contain a single identifier and
nothing else as the body of the statement.

Bad undef statement syntax

An #undef statement must contain a single identifier and
nothing else as the body of the statement.

Bit field size syntax

A bit field must be defined by a constant expression
between l and 16 bits in width.

Call of non-function

The function being called is declared as a non-function.
This is commonly caused by incorrectly declaring the
function or misspelling the function name.

Call to undefined function 'XXXXXXXX'

The named function has no declaration in the files.

Case outside of switch

A case statement was encountered outside a switch
statement. This is often caused by mismatched curly
braces.

Case statement missing

A case statement must have a constant expression
followed by a colon. The expression in the case statement
was either missing a colon or had some extra symbol
before the colon.

Cast syntax error

A cast contains some incorrect symbol.

Character constant too long

Character constants may only be one or two characters
long.

Compound statement missing

The end of the source file was reached and no closing
brace was found. This is most commonly caused by
mismatched braces.

Diagnostic Messages A-7

Conflicting type modifiers

This occurs when a declaration is given that includes, for
example, both near and far keywords on the same
pointer. Only one addressing modifier may be given for a
single pointer, and only one language modifier may be
given on a function.

Constant expression required

Arrays must be declared with constant size. This error is
commonly caused by misspelling a define constant.

Declaration missing ;

A struct or union field declaration was not followed by a
semi-colon.

Declaration needs type or storage class

A declaration must include at least a type or a storage
class. This means a statement like the following is not
legal:

i[] = { 4, 5, 6 }

Declaration syntax error

A declaration was missing some symbol or had an extra
symbol added to it.

Default outside of switch

A default statement was encountered outside a switch
statement. This is most commonly caused by mismatched
curly braces.

Define statement needs an identifier

The first non-white space characters after a #define
must be an identifier. A different character was found.

Division by zero

A divide or remainder in an #if statement has a zero
divisor.

Do statement must have while

The closing while keyword was missing from a do
statement.

Do-while statement missing

5016843

No left parenthesis was found after the while keyword in
a do statement.

A-8 Diagnostic Messages

Do-while statement missing)

No right parenthesis was found after the test expression
in a do statement.

Do-while statement missing ;

Duplicate case

No semi-colon was found after the closing parenthesis in
a do statement test expression.

Each case of a switch statement must have a unique
constant expression value.

Duplicate declaration of 'XXXXXXXX'

The named global variable is declared in more than one
source file. The source filename given in the diagnostic is
the source file of the second declaration found.

Duplicate declaration of function 'XXXXXXXX', also in
'XXXXXXXX.XXX'

The named function is declared in more than one file.
The two source filenames are given in the diagnostic.

Duplicate definition of 'XXXXXXXX'

The #define statement is for an already defined identifier.
The new definition supercedes the old.

Enum syntax error

An enum declaration did not contain a properly formed
list of identifiers.

Enumeration constant syntax error

The expression given for a enumerator value was not a
constant.

Expression syntax

This is a general error message that appears when an
expression is being parsed and some serious error was
encountered. This is most commonly caused by two
consecutive operators, mismatched or missing
parentheses, or a missing semi-colon on the previous
statement.

Expression syntax error In #ellf statement

The expression in an #elif statement is badly formed: a
mismatched parenthesis, extra or missing operator, or
missing or extra constant.

~
(.,

''I

Diagnostic Messages A-9

Expression syntax error in #if statement

The expression in an #if statement is badly formed due to
a mismatched parenthesis, extra or missing operator, or
missing or extra constant.

External declaration type mismatch for 'XXXXXXXX'

The external declaration on the given line of the named
source file disagrees with the declaration of the global
variable.

Extra parameter in call

A call to a function via a pointer defined with a prototype
had too many arguments given.

Extra parameter in call to XXXXXXXX

A call to the named function (which was defined with a
prototype) had too many arguments given in the call.

For statement missing (

No left parenthesis was found after the For keyword in a
For statement.

For statement missing)

No right parenthesis was found after the control
expressions in a For statement.

For statement missing ;

No semi-colon was found after one of the expressions in
a For statement.

Function 'XXXXXXXX' undefined

The named function is called or referred to and no
definition for the function was found in the files being
checked.

Function 'XXXXXXXX' return value declared inconsistently

The named function has been declared to return some
type in the calling file (indicated by the source filename
and line number) different from that declared with the
function itself. This is often caused by neglecting to
declare external functions which return non-integer
values, such as the math functions.

Function call missing)

5016843

The function call argument list had some sort of syntax
error such as a missing or mismatched closing
parenthesis.

A-10 Diagnostic Messages

Function declarator missing left parenthesis

A function declaration had a language modifier, but not
left parenthesis.

Function definition out of place

A function definition may not be placed inside another
function. Any declaration inside a function that looks like
the beginning of a function with an argument list is
considered a function definition.

Function doesn't take a variable number of arguments

The va_start macro was used inside a function that does
not accept a variable number of arguments.

Goto statement missing label

The goto keyword must be followed by an identifier.

If statement missing (

No left parenthesis was found after the if keyword in an if
statement.

If statement missing)

No right parenthesis was found after the test expression
in an if statement.

Illegal character 'C ' (OxXX)

Some invalid character was encountered in the input file.
The octal value of the offending character is printed.

Illegal character in constant expression 'X'

Some character not allowed in a constant expression was
encountered. If a letter is the character, this indicates a
probably misspelled identifier.

Illegal initialization

Initializations must be either constant expressions, or else
the address of a global, external or static variable plus or
minus a constant.

Illegal octal constant

An octal constant was found containing a digit of 8 or 9.

Illegal pointer subtraction

This is caused by attempting to subtract a pointer from a
non-pointer.

Diagnostic Messages A-11

Illegal storage class

Register or auto was used in a declaration outside a
function. Or typedef, extern, auto or static was used in a
function argument declaration.

Illegal structure operation

Structures may only be used with dot(.), address-of{&)
or assignment(=) operators, or be passed to or from a
function. A structure was encountered being used with
some other operator.

Illegal use of floating point

Floating point operands are not allowed in shift, bitwise
boolean, conditional (? :), indirection or certain other
operators. A floating point operand was found with one of
these prohibited operators.

Illegal use of pointer

Pointers may only be used with addition, subtraction,
assignment, comparison, indirection or arrow(->)

. operators. A pointer was used with some other operator.

Improper use of a typedef symbol

A typedef symbol was used where a variable should
appear in an expression. Check for the declaration of the
symbol and possible misspellings.

Incompatible storage class

The extern keyword was used on a function definition.
Only static or no storage class at all is allowed.

Incompatible type conversion

An attempt was made to convert one type to another
which were not convertible. These include converting a
function to or from a non-function, converting a structure
or array to or from a scalar type, or converting a floating
point value to or from a pointer type.

Incorrect macro call of 'XXXXXXXX'

The named #define macro was used without a left
parenthesis immediately following. Only white space may
occur between a macro name and its arguments, and the
arguments must be given with every call.

Incorrect number format

5016843

A decimal point was encountered in a hexadecimal
number.

A-12 Diagnostic Messages

Incorrect use of default

No colon was found after the default keyword.

Initializer syntax error

An initializer has a missing or extra operator, mismatched
parenthesis, or is otherwise malformed.

Invalid indirection

The indirection operator(*) requires a pointer as the
operand.

Invalid macro argument separator

In a macro definition arg1:1ments must be separated by
commas. Some other character was encountered after an
argument name.

Invalid pointer addition

An attempt was made to add two pointers together.

Invalid use of arrow

An identifier must immediately follow an arrow operator
(->).

Invalid use of dot

An identifier must immediately follow a dot operator (.).

Left side must be an address

The left hand side of an assignment operator must be an
addressable expression. These include numeric or pointer
variables, structure field references or indirection through
a pointer, or a subscripted array element.

Macro argument syntax error

An argument in a macro definition must be an identifier.
Some non-identifier character was encountered where an
argument was expected.

Macro expansion too long

A macro may not expand to more than 4096 characters.
This error often occurs if a macro recursively expands
itself. A macro cannot legally expand to itself.

Diagnostic Messages A-13

'main' needs 2 arguments: argc and argv

The function main is allowed to be declared in two ways;
with no parameters at all, or with argc and argv. The
following is a sample declaration of main using the
parameters:

main(argc, argv)

int argc;

char *argv[] ;

The two parameters do not have to be named argc and
argv, but their types must match.

Misplaced break

A break statement was encountered outside a switch or
looping construct.

Misplaced continue

A continue statement was encountered outside a switch
or looping construct.

Misplaced decimal point

A decimal point was encountered in a floating point
constant as part of the exponent.

Misplaced ellf statement

An #elif directive was encountered without any matching
#if, #ifdef or #ifndef directive.

Misplaced else

An else statement was encountered without a matching if
statement. This could be caused by an extra semi-colon,
missing curly braces, or some syntax error in a previous if
statement that is not just an extra else.

Misplaced else statement

An #else directive was encountered without any matching
#if, #ifdef or #ifndef directive.

Misplaced endlf statement

5016843

An #endif directive was encountered without any
matching #if, #ifdef or #ifndef directive.

A-14 Diagnostic Messages

Must take address of memory location

The address-of operator(&) was used with an expression
which cannot be used that way, for example a register
variable.

No filename ending

The filename in an include statement was missing the
correct closing quote or angle bracket.

Non-portable pointer assignment

An assignment was made of a pointer to a non-pointer,
or vice versa. An assignment of a constant zero to a
pointer is allowed as a special case. A cast should be
used to suppress this warning if the assignment is proper.

Non-portable pointer comparison

A comparison was made between a pointer and a
non-pointer other than the constant zero. A cast should
be used to suppress this warning if the comparison is
proper.

Non-portable return type conversion

The expression in a return statement was not the same
type as the function declaration. This is only triggered if
the function or the return expression is a pointer. The
exception to this is that a function returning a pointer
may return a constant zero. The zero will be converted to
an appropriate pointer value.

Not an allowed type

Some sort of forbidden type was declared, for example a
function returning a function or array.

Redeclaration of 'XXXXXXXX'

The named identifier was previous declared.

Size of structure or array not known

Some expression (such as a sizeof or storage declaration)
occurred with an undefined structure or array of empty
length. Structures may be referenced before they are
defined as long as their size is not needed. Arrays may be
declared with empty length if the declaration does not
reserve storage or if the declaration is followed by an
initializer giving the length.

Statement missing ;

An expression statement was encountered without a
semi-colon following it.

Diagnostic Messages A-15

Structure or union syntax error

The struct or union keyword was encountered without an
identifier or opening curly brace following it.

Structure size too large

A structure was declared which reserved too much
storage to fit in the memory available.

Subscripting missing]

A subscripting expression was encountered which was
missing its closing bracket. This could be caused by a
missing or extra operator or mismatched parentheses.

Switch statement missing (

No left parenthesis was found after the switch keyword in
a switch statement.

Switch statement missing)

No right parenthesis was found after the test expression
in a switch statement.

Too few arguments in call to 'XXXXXXXX'

The call to the named function has too few arguments.
For a function which takes a variable number of
arguments, this diagnostic implies that fewer than the
minimum number of arguments were passed. When too
few arguments are passed, only the arguments actually
passed are checked for consistency.

Too few parameters in call

A call to a function with a prototype via a function pointer
had too few arguments. Prototypes require that all
parameters are given.

Too few parameters in call to 'XXXXXXXX'

A call to the named function (declared using a prototype)
had too few arguments.

Too many arguments In call to 'XXXXXXXX'

The call to the named function contains more arguments
than were declared. Strictly speaking this will not cause a
program to fail if the function is a normal C function,
since any extra arguments are ignored, but this often
implies that the call was not coded correctly.

Too many cases

A switch statement is limited to 256 cases.

5016843

A-16 Diagnostic Messages

Too many decimal points

A floating point constant was encountered with more than
one decimal point.

Too many default cases

More than one default statement was encountered in a
single switch.

Too many exponents

More than one exponent was encountered in a floating
point constant.

Too many initializers

More initializers were encountered than were allowed by
the declaration being initialized.

Too many storage classes in declaration

A declaration may never have more than one storage
class.

Too many types in declaration

A declaration may never have more than one of the basic
types: char, int, float, double, struct, union, enum or
typedef-name.

Too much auto memory in function

More automatic storage was declared in the current
function than there is room for in the memory available.

Too much global data defined in file

The sum of the global data declarations exceeds 64 Kb.
Check the declarations for any array that may be too
large. Also consider reorganizing the program if all the
declarations are needed.

Two consecutive dots

An ellipsis contains three dots, and a decimal point or
member selection operator uses one dot. Two consecutive
dots cannot legally occur in a program.

Type mismatch in parameter ##

The function called via a function pointer was declared
with a prototype and the given parameter (counting
left-to-right from 1) could not be converted to the
declared parameter type.

Diagnostic Messages A-17

Type mismatch in parameter ## in call to 'XXXXXXXX'

The named function was declared with a prototype and
the given parameter (counting left-to-right from 1) could
not be converted to the declared parameter type.

Type mismatch In parameter 'XXXXXXXX'

The function called via a function pointer was declared
with a prototype and the named parameter could not be
converted to the declared parameter type.

Type mismatch in parameter 'XXXXXXXX' in call to 'XXXXXXXX'

The named function was declared with a prototype and
the named parameter could not be converted to the
declared parameter type.

Type mismatch in redeclaration

A variable was redeclared with a different type than was
originally declared for the variable. This can occur if a
function is called and subsequently declared to return a
value other than an integer. If this has happened, an
extern declaration of the function must be inserted before

· the first call to it.

Unable to open file •xxxxxxxx.xxx·
The lint file named in the command line argument could
not be opened. Check for misspellings.

Unable to open #Include file ·xxxxxxxxx.xxx•
The named file could not be found. This could also be
caused if an #include file included itself. Check whether
the named file exists.

Undefined label ·xxxxxxxx•
The named label has a goto in the function, but no label
definition.

Undefined structure 'XXXXXXXX'

The named structure was used in the source file on a line
previous to the indicated location of the error, probably
on a pointer to a structure, but had no definition in the
source file. This is probably caused by a misspelled
structure name or a missing declaration.

Undefined symbol 'XXXXXXXX'

5016843

The named identifier has no declaration. This could be
caused by a misspelling either at the point of the error or
at the declaration. This could also be caused if there was
an error in the declaration of the identifier.

A-18 Diagnostic Messages

Unexpected end of file in comment started on line #

The source file ended in the middle of a comment. This is
normally caused by a missing close of comment.

Unexpected end of file In conditional started on line #

The source file ended before a #endif was encountered.
The #endif was either missing or misspelled.

Unknown preprocessor statement

A # character was encountered at the beginning of a line,
and the statement name following was not define, undef,
line, if, ifdef, ifndef, include, else or endif.

Unterminated character constant

An unmatched apostrophe was encountered.

Unterminated string

An unmatched quote character was encountered.

Unterminated string or character constant

A string or character constant was begun and no
terminating quote was found.

Variable 'XXXXXXXX' undefined

External declarations were found for the named variable,
but no global declaration was found.

While statement missing (

No left parenthesis was found after the while keyword in
a while statement.

While statement missing)

No right parenthesis was found after the test expression
in a while statement.

Wrong number of arguments In call of 'XXXXXXXX'

The named macro was called with an incorrect number of
arguments.

Diagnostic Messages A-19

Warning Messages
'XXXXXXXX' declared but never used

The named variable was declared as part of the block just
ending, but was never used at all. The error is indicated
when the closing curly brace of the compound statement
or function is encountered. The declaration of the
variable occurs at the beginning of the compound
statement or function.

'XXXXXXXX' is assigned a value which is never used

The variable appears in an assignment, but is never used
anywhere else in the function just ending. The warning is
indicated only when the closing curly brace is
encountered.

'XXXXXXXX' not part of structure

The named field was not part of the structure on the left
hand side of the dot (.) or arrow (-> }, or else the left
hand side was not a structure or a pointer to a structure,
respectively.

'XXXXXXX' return value Is Ignored

This message is displayed if the function is declared to
return a value and the value is ignored by a function call.
The message is flagged on the call. Void functions will
produce no such warning, even if the call to the function
was not declared to be void. This warning message may
be suppressed by explicitly casting the return value to
void, such as the following:

(void)printf("hello world\ n");

Note that printf does return a value which is almost
always ignored. This can produce many extra warning
messages.

Ambiguous operators need parentheses

This warning is displayed whenever two shift, relational or
bitwise-boolean operators are used together without
parentheses. Also, if an addition or subtraction operator
appears unparenthesized with a shift operator this
warning appears.

Both return and return of a value used

5016843

This warning is issued when a return statement is
encountered which disagrees with some previous return
statement in the function. It is almost certainly an error
for a function to not return a value in only some of the
return statements.

A-20 Diagnostic Messages

Code has no effect

This warning is issued when a statement is found with
some operators which have no effect. For example the
statement:

a+ b;

has no effect on either variable. The operation is
unnecessary and probably indicates a bug.

Constant is long

A decimal constant greater than 32767 or an octal or
hexadecimal constant greater than 65535 was
encountered without a letter L following it. The constant
is treated as a long.

Conversion may lose significant digits

A conversion from long or unsigned long to int or
unsigned int type is required for an assignment operator
or other circumstance. Since on some workstations
integer type and long type variables have the same size,
this kind of conversion may alter the behavior of a
program being ported to a new workstation.

Degenerate constant expression

A comparison involving either two constant
sub-expressions, or one constant sub-expression which
was outside the range allowed by the other
sub-expression type. For example, comparing an
unsigned quantity to -1 makes no sense. To get an
unsigned constant greater than 32767 (in decimal), you
should either cast the constant to unsigned (i.e.
(unsigned)65535) or append a 'U' to the constant (i.e.
65535u).

Whenever this message is issued, the compiler will still
generate code to do the comparison. If this code ends up
always giving the same result, such as comparing a char
expression to 4000, the code will still perform the test.
This also means that comparing an unsigned expression
to -1 will do something useful, since an unsigned can
have the same bit pattern as a -1 on the 8086.

Duplicate definition of 'XXXXXXXX'

The named macro was redefined using text that was not
exactly the same as the first definition of the macro. The
new text replaces the old.

Function 'XXXXXXXX' unused

The named function is not called in the lint files given.
The function may be removed from the program to save
space.

Diagnostic Messages A-21

Function should return a value

The current function was declared to return some type
other than int or void, but a return with no value was
encountered. This is usually some sort of error.

Non-portable pointer assignment

An assignment was made of a pointer to a non-pointer,
or vice versa. An assignment of a constant zero to a
pointer is allowed as a special case. A cast should be
used to suppress this warning if the assignment is proper.

Non-portable pointer comparison

A comparison was made between a pointer and a
non-pointer other than the constant zero. A cast should
be used to suppress this warning if the comparison is
proper.

Non-portable return type conversion

The expression in a return statement was not the same
· type as the function declaration. This is only triggered if
the function or the return expression is a pointer. The
exception to this is that a function returning a pointer
may return a constant zero. The zero will be converted to
an appropriate pointer value.

Parameter 'XXXXXXXX' is never used

The named parameter, declared in the function, was
never used in the body of the function. This may or may
not be an error and is often caused by a misspelling of
the parameter. This warning can also occur if the
identifier is redeclared as an automatic variable in the
body of the function. The parameter is masked by the
automatic variable and remains unused.

Possible use of 'XXXXXXXX' before definition

5016843

The named variable was used in an expression before it
was assigned a value. The compiler performs a simple
scan of the program to determine this condition. If the
use of a variable occurs physically before any assignment,
this warning will be generated. Of course, the actual flow
of the program may assign the value before the use.

A-22 Diagnostic Messages

Possibly incorrect assignment

This warning is generated when an assignment operator is
encountered as the main operator of a conditional
expression (i.e. part of an if, while or do-while
statement). This more often than not is a typographical
error for the equality operator. If you wish to suppress
this warning, enclose the assignment in parentheses and
compare the whole thing to zero explicitly. For example:

if (a = b) should be rewritten as:

if ((a = b) != 0) ...

Structure passed by value

If the -s flag is provided on the compile command line,
this warning is generated' anytime a structure is passed
by value as an argument. It is a frequent error to leave an
& operator off a structure when passing it as an
argument. Because structures can be passed by value,
this omission is not an error. The -s flag provides a way
for the programmer to be warned of this mistake.

Superfluous & with function or array

An address-of-operator(&) is not needed with an array
name or function name. Any such operators are
discarded.

Suspicious pointer conversion

Some conversion of a pointer to point to a different type
was encountered. A cast should be used to suppress this
warning if the conversion is proper.

Undefined structure 'XXXXXXXX'

The named structure was used in the source file,
probably on a pointer to a structure, but had no definition
in the source file. This is probably caused by a misspelled
structure name or a missing declaration.

Unknown assembler Instruction

An inline assembly statement was encountered with a
disallowed opcode. Check the spelling of the opcode. Also
check the list of allowed opcodes to see if the instruction
is acceptable.

Unreachable Code

A break, continue, goto or return statement was not
followed by a label or the end of a loop or function.
While, do and for loops with a constant test condition are
checked and an attempt is made to recognize loops which
cannot fall through.

Diagnostic Messages A-23

Vold functions may not return a value

The current function was declared as returning void, but
a return statement with a value was encountered. The
value of the return statement will be ignored.

Zero length structure

5016843

A structure was declared whose total size was zero. Any
use of this structure would be an error.

Appendix B B-1

Command Line Options Summary

This appendix provides an alphabetical list of compiler
options beginning with uppercase, then lowercase, and then
numeric options. Each one is briefly described. Refer to
section 3 for a more detailed discussion of each option and
when to use it.

Note: Compiler options must be separated by one or more
spaces.

-A

-C

-Didentifier

-Di den= string

-E

-G

-!directory

-K

-L

-Lfilename

-N

-0

-Q

-S

-T

-Uidentifier

-Y

-Z

-a

5016843

Compile using no BTOS C extensions.

Allow nested comments.

Defines identifier to 'l '.

Defines identifier to string.

Allow elastic type matches.

Generate code for speed rather than
size.

Define an include directory.

Treat char type as unsigned.

Do a lint cross-check.

Do a lint compile to lint file filename.

Generate stack overflow logic.

Compile with optimizer.

Place only definitions in lint files.

Compile to assembly source and stop.

Warn about explicit casts.

Undefine identifier.

Generate full function entry and exit
code.

Suppress redundant register loads.

Force word alignment of integers.

B-2 Command Line Options Summary

-b Do not warn about unreachable
breaks.

-d Suppress long to int conversion
warnings. /~

-f Generate inline 8087 instructions.
~

-g Make all code and data segments
PUBLIC, allowing segments with the
same name to share the same
segment/selector.

-h Suppress heuristic test warnings.

-i# Set identifier length.

-mh Generate huge model, 20-bit pointer
arithmetic.

-mhf Generate huge model, 16-bit pointer
arithmetic.

-ml Generate large model, 20-bit pointer
arithmetic. ;f

I,

-mlf Generate large model, 16-bit pointer '"'\

arithmetic.

-mm Generate medium model, 20-bit
pointer arithmetic.

-mmf Generate medium model, 16-bit
pointer arithmetic.

-ms Generate small model, 20-bit pointer
arithmetic.

-msf Generate small model, 16-bit pointer
arithmetic.

-nlpath Place CCO output in named path
directory.

-n2path Place CCl output in named path ii
directory. \4

-nopath Place CC3 output in named path
directory.

Command line Options Summary B-3

-p

-q

-r

-s

-w

-wxxx

-x

-y

-zAname

-zBname

-zCname

-zDname

-zGname

-zPname

-1

-2

5016843

Generate PL/M calling sequence.

Suppress undefined symbols in lint
executions.

Suppress register variables.

Warn about passing structures as
arguments.

Suppress all warnings.

Suppress the specified warning.

Warn about unused externs.

Generate source line numbers in
object code.

Set code segment class.

Set data segment class.

Set code segment name.

Set uninitialized data segment name.

Set data group name.

Set code group name.

Generate 80186 instructions.

Generate 80286 code.

AppendixC C-1

Library Summary

This library summary provides a short description of each
function in the library, grouped by general category.

Input/Output Functions

Input/output can be done in any of several ways. It is
important to be consistent in the methods used for any
given file. For example, if a file is opened using UNIX I/O,
UNIX I/O should be used for all operations whenever
possible.

Standard 1/0
clearerr

fclose

feof

ferror

fflush

fgetc

fgets

fopen

fprintf

fputc

fputs

fread

freopen

fscanf

5016843

Clears the error status of a file.

Closes a file.

Returns whether end-of-file was reached on
the last input operation to a file.

Returns whether error status has been set on a
given file.

Flushes any incomplete output buffers by
writing them to the disk or device.

Reads a character from a file.

Gets a text line from a file.

Opens an existing or new file.

Does a formatted print to a file.

Writes a character to a file.

Writes a string to a file.

Reads one or more records from a file.

Closes and reopens a file using the same file
pointer.

Does a formatted read from a file.

C-2 library Summary

fseek Changes the position of the next read or write
in a file, for random access.

ftell Reports the current position of a file.

fwrite Writes one or more records to a file. \-\.

getc Reads a character from a file.

getchar Reads a character from the standard input file.

gets Gets a text line from the standard input file.

getw Reads a word (two bytes) from a file.

printf Does a formatted print to the standard output.

putc Writes a character to a file.

putchar Writes a character to the standard output.

puts Writes a line of text to the standard output.

putw Writes a word to a file.

rewind Returns the position of a file to the beginning. /If

scanf Does a formatted read from the standard input. 4

setbuf Sets a buffer for file activities.

setvbuf Sets buffering method for file operations.

ungetc Push a character back onto an input file to be
read later.

vfprintf Does a formatted print to a file with the
argument list supplied as an array.

vfscanf Extracts formatted values from a file with the
argument list supplied as an array.

vprintf Does a formatted print to the standard output
with the argument list supplied as an array.

vscanf Extracts formatted values from the standard "1

input with the argument list supplied as an ',"
array.

Library Summary C-3

UNIX 1/0
close

creat

ls eek

open

read

write

Closes a file.

Creates a file.

Changes the current position of a file for
random access.

Open an existing file or create a new one.

Reads from a file.

Writes to a file.

File Management
unlink Deletes a file.

String Handling

index

isalnum

isalpha

isascii

iscntrl

isdigit

is graph

islower

isprint

ispunct

is space

5016843

Searches a string for the first occurrence of a
second string.

Tests whether a character is alphanumeric.

Tests whether a character is alphabetic.

Tests whether a character is ASCII.

Tests whether a character is an ASCII control
character.

Tests whether a character is a digit.

Tests whether a character is a non-blank
printable character.

Tests whether a character is a lowercase
letter.

Tests whether a character is a printable
character.

Tests whether a character is a punctuation.

Tests whether a character is a space, tab or
newline.

C-4 library Summary

isupper Tests whether a character is an uppercase
letter.

isxdigit Tests whether a character is a hexadecimal
digit. !AJ

"" memchr Searches an array for a given character.

memcmp Compares to fixed size arrays.

memcpy Copies a fixed size block of memory.

memset Sets a block of memory to a given value.

movmem Copies a fixed size block of memory.

rind ex Sea1ches a string for the last occurance of a
second string.

setmem Sets a block of memory to a particular value.

sprintf Formats values into a string.

sscanf Extracts formatted values from a string.

strcat Concatenates two strings. ~

.'<

strchr Returns a pointer to the first occurrence of a
character in a string.

strcmp Compares two strings.

strcpy Copies a string into another.

strcspn Returns the length of the initial string not
containing any characters from a given set.

strlen Returns the length of a string.

strncat Concatenates two strings with a maximum
length.

strncmp Compares two strings up to a maximum
length.

strncpy Copies a string up to a maximum length into
' another string. \

strpbrk Returns the first occurrence of any of a set of
characters in a string.

Library Summary C-5

strrchr Finds the last occurrence of a character in a
string.

strspn Returns the length of the initial string
composed of characters from a given set.

strtok Scans through a string extracting tokens.

swab Swaps the bytes of a string. Used for moving
data between incompatible systems.

toascii Strips any eighth bit from a character to make
it a 7-bit ASCII character.

tolower Converts uppercase letters to lowercase and
leaves other values unchanged.

_tolower Converts uppercase letters to lowercase. Only
works for uppercase letters.

toupper Converts lowercase letters to uppercase and
leaves other values unchanged.

_toupper Converts lowercase letters to uppercase. Only
works for lowercase letters.

vsprintf Formats values into a string with the
argument list supplied as an array.

vsscanf Extracts formatted values from a string with
the argument list supplied as an array.

Memory Management

calloc

cfree

free

malloc

realloc

5016843

Allocate a block from the heap and clear it to
zero.

Free a block back to the heap.

Free a block back to the heap.

Allocate a block from the heap.

Change the size of a block on the heap.

C-6 library Summary

Miscellaneous Arithmetic
abs Computes the absolute value of a number.

atof

atoi

atol

ecvt

fcvt

gcvt

rand

srand

strtod

strtol

Converts an ASCII string to a floating point
number.

Converts an ASCII string to an integer.

Converts an ASCII string to a long integer.

Convert a floating point number to a string in
the printf %e form.

Convert a floating point number to a string in
the printf %f form.

Convert a floating point number to a string in
the printf %g form.

Returns a random integer.

Sets the random number generator seed.

Converts an ASCII string to a floating point
number.

Converts an ASCII string to a long integer.

Searching and Sorting
bsearch

lsearch

qsort

ssort

Performs a binary search of a table.

Performs a linear search of a table and updates
it.

Sorts a table using a quick-sort algorithm.

Sorts a table using a shell-sort algorithm.

Program Control
assert Debugging test macro, aborts program if a test

fails.

exit Exits the current program, closing all open files
and flushing any incomplete output buffers.

Library Summary C-7

_exit Exits the current program without closing files
and flushing output buffers.

gsignal

longjmp

setjmp

ssignal

Generate a software signal.

Perform a jump out of the normal function call
sequence.

Set a location for a long jump to later jump to.

Set to catch a software signal.

Date and Time Management
asctime Converts a date and time structure to an ASCII

string.

ctime Converts a BTOS date/time to an ASCII string.

gmtime Converts a BTOS date/time to a date and time
structure in Greenwich Mean Time.

localtime Converts a BTOS date/time to a date and time
structure in Local Mean Time.

stime Set the date and time using a BTOS date/time.

time Returns the current date and time as a
BTOS date/time.

Hardware Functions
check8087 Determine if 8087 or 80287 coprocessor is

present.

init8087 Initialize 8087 or 80287 coprocessor.

inport Input a word value from a hardware port.

inportb Input a byte value from a hardware port.

outport Output a word value to a hardware port.

outportb Output a byte value to a hardware port.

peek . Fetch a word value from anywhere in memory.

5016843

C-8 library Summary

peekb Fetch a byte value from anywhere in memory.

poke Set a word value anywhere in memory.

pokeb Set a byt~ value anywhere in memory. .1(,,
segread Store the segment registers in a C structure.

Mathematical Library
a cos Computes the arc-cosine of a floating point

number.

as in Computes the arc-sine of a floating point
number.

a tan Computes the arc-tangent of a floating point
number.

atan2 Computes the arc-tangent given a cartesian
point of two floating point numbers.

ceil Returns the smallest integer not less than the
parameter. Returns a floating point value. ..

cos Computes the cosine of a floating point
number.

cosh Computes the hyperbolic cosine of a floating
point number.

exp Computes the exponential function of a
floating point number.

fabs Returns the absolute value of the floating point
parameter.

floor Returns the largest integer not greater than the
parameter. Returns a floating point value.

fmod Returns the fractional part of x modulo y,
where x and y are the two parameters. :1

frexp Split a floating point number to fractional part 'l

and exponent.

ldexp Load an exponent and ,fractional part into a
single floating point number.

Library Summary C-9

log

loglO

modf

pow

sin

sinh

sqrt

tan

tanh

5016843

Computes the natural logarithm of a floating
point number.

Computes the base 10 logarithm of a floating
point number.

Splits a floating point number into integer and
fractional parts.

Computes the power function (x raised to the y
power) for two floating point numbers.

Computes the sine of a floating point number.

Computes the hyperbolic sine of a floating
point number.

Computes the square root of a floating point
number.

Computes the tangent of a floating point
number.

Computes the hyperbolic tangent of a floating
point value.

Appendix D D-1

C Grammar Summary

This appendix gives you a grammar summary for the
C language. The C grammar notation is derived from the
Backus-Naur Form commonly used to describe
programming languages.

A program conforms to the grammar given below if a
derivation can be constructed for the source program. A
derivation is a sequence of substitutions. All derivations
begin with a string consisting of the non-terminal symbol
'program'. A substitution consists of replacing any
non-terminal symbol in the derivation string. A
non-terminal symbol can be replaced by the right-hand
side of its own production in the grammar.

There are, in fact, two grammars used in C. The
C preprocessing grammar describes the substitutions
performed by the preprocessor. During preprocessing,
spaces and new lines are significant. After this phase the
parser does the C-formal grammar substitutions on the
output of the preprocessor. In this phase, spaces and new
lines are ignored. If the C source program conforms to
both grammars, BTOS C considers it syntactically correct.
Type checking and certain other semantic restrictions (such
as initializing an automatic array) are enforced by the
parser with separate checks after the syntax has been
verified.

The grammar below is described as a set of productions.
Each production consists of a single name, followed by a
:: = symbol, followed by a string of other symbols or
punctuation. All names on the left hand side of a::=
production are in normal text and are called non-terminal
symbols, because they are replaced in a real program by a
string of other symbols.

Any string of ASCII characters that are underlined must
appear literally in the source program. These literal strings
are the terminal symbols of the grammar.

The right-hand side of a production consists of a string of
non-terminals, terminals and punctuation. The right-hand
side is a list of alternative constructions. Each possibility
of an ~iternative is a unit separated by vertical bar
characters (I). A unit is a non-terminal or terminal symbol
or a sequence of symbols enclosed in parentheses, or

5016843

D-2 C Grammar Summary

square brackets. A unit can be followed by an ellipsis(...).
A sequence of symbols enclosed in parentheses must
appear as given. A sequence of symbols enclosed in square
braces can optionally appear. A unit followed by an ellipsis
can appear one or more times.

C Grammar Summary D-3

Lexical Rules

These lexical conventions are used in both the preprocessor
grammar and the C-formal grammar. Note that a symbol
can appear as either an operator or punctuation, depending
on context.

identifier
constant

int_constant

.. -

.. -

.. -

letter [letter I digit] ...
inLconstant I
float_constant I
char_constant I
enum_constant I
(dec_constant I octal_constant I

dec_constant
octal_constant •. •
hex_constant

::-

.. -
hex_constant) suffix

non_zero [digit •••]
o [octai_digit •••]
(Ox I OX) hex_digit ...
long_suffix I
unslgned_suffix I

suffix

long_suffix
unslgned_sufflx
float_constant
f_sufflx
fraction

.. -
long_suffix unsigned_suffix I
unsigned_suffix long_sufflx

... I I L
·•• u I u

fraction [exponent] f_suffix ::-
••• f I FI I I L
::- C digit ... J • digit ••• I

digit ••••
.. -exponent

enum_constant •••
C e I E)[+ I • l digit ...
Identifier

letter

digit
non_zero
operator

punctuator
octal....;digit
hex_digit

string_literal

5016843

···alblc dlelf
kll Im nlolp
ulvlw xlylz
AIBIC DIEIF
KILIM NIOIP
u1v1w XIYIZ

..• 01112 3!415
::· 1 I 2 I 3 4 I 5 Is

1i%1A &j*I+ ::-
I I < I > I I . I ?

...,_ I &· I *• I ·• I +­
<- I >- I ·> I && I 11
»• I - I ++ I sizeof

.. -(1)1{1}1(
::• o I 1 I 2 I 3 I 4
: :• digit I a I b I c

I A I B I c
. .• string_unit •••

)
5
d
D

g lh
q Ir

G IH
Q IR

I i
s I t

I I J I
s1r1

s I 7 I a I 9
7 I a I 9
- I - I : I - I
I I I- I o/.-1
I· I I· I - I
« I » I <<- I

• I . I : I • I ;
s I 7
e I t I
EI F

D-4

strlng_unit :-
char_constant :-
escape :-

f_char : :-
f2_char : :-
s_char : :-
c_char : :-
new_llne : :-
asm_char ::-
space : :-

commenLchar ::-

C Grammar Summary

• [s_char I escape) ••• •
• [c_char I escape J ••• ·'
\' I \" I \? I \\ I \a I \b I \f I \n
\r I \t I \v I
\ octal_dlglt octal_digit octal_dlglt
\x hex_dlglt hex_dlglt hex_digit

any ascil character except >
any ascll character except •
any ascil character except \, new_llne or •
any ascll character except \ new_llne or '
ascll new-line
any ascll character except new_llne
ascil space I asct1 tab I
ascil form-feed I
r commenLchar */ I
\ new_llne
any ascii character not Including •

followed by I

(
I,

C Grammar Summary

Preprocessing Directives

This is the preprocessor grammar.

include ::-
filename ::-

test ::-
def_test ::-

undefine ::-
if_test ::-
elif_test ::-
else_part : :-
endif_part ::-
text_llne ::-
whlte_space ::-
opt_ space : :-
p_const_expr ::-
p_conditional : :-

p_blnary : :-

include opLspace filename
<Lehar ... > I
• f2_char ••• •
control_preflx (def_test I lf_test)
(ifdef I lfndef) space •••

Identifier opLspace
undef space ••• Identifier opLspace
if p_consLexpr
control_preflx ellf p_const_expr
control_preflx else opLspace
control_prefix endlf opLspace
[token_strlng] new_llne
space I new_llne
[space •.• J
opLspace p_condltlonal
p_blnary [? opLspace p_blnary

:oPLspace p_condltlonal]
p_unary

[p_blnop oPLspace p_blnary J •••

D-5

p_blnop ::- +I· I *IJ 1%1&111"' l«I
»I 11 I && I 1-1 - I< I> I >-I

p_unary ::-

p_unop : :-
p_prlmary : :-

5016843

-[(p_unop opLspace) ••• J
p_prlmary opLspace

·l+l-11
slmple_call I
complex_call I
constant I
(p_consLexpr) I
defined space ••• Identifier I
defined opLspace (opLSpace

Identifier opLspace)

D-6 c Grammar Summary

program ::- [source_line] •••
source_line .. - control_line I texUine I conditional
control_line ::- control_prefix directive new_line
control_prefix ::- opt.space I opt.space
conditional ::- test new_line [source_line) •••

[elif_test [source_llne) •••] ••• ;t
[else_part [source_line) •••] :."
endif_part

directive ::- simple_macro I
complex_macro I
include I
undeflne

simple_macro ::- define space ••• identifier (
[token_string]

complex_macro : :- define space ••• Identifier
[identifier_list])
[m_token_String)

identifier_list ::- opt.space identifier
[(opt.space , opt.space
Identifier opt.space) •••)
opt.space

m_token_strlng ::- [m_token •••]
m_token ::- simple_call I

complex_catl I
Identifier I
constant I
string_llteral

' Identifier fl'
m_token II m_token I I

'<I
space

token_string : :- [token •••]
token ::- simple_catl I

complex_call I
Identifier I
constant I
strlng_llteral
space

slmple_call ::- Identifier
complex_ call ::- Identifier [white sm •••] (

[m_arg_lls])
m_arg_list ::- [n token strlni - r: n_to en_string] •••]
n_token_strlng .. - new_line I token_string

C Grammar Summary

Expressions

expression
assignment
asgop

: :- [expression ,] assignment
: :- conditional I (uanary asgop assignment)

: :• • I +- I •• I /. I %- I &· I I•
.._ I<<- I>-

constant_expr : :-
conditional : :•
binary : :-
blnop : :-

unary : :-
unop ::-

postfix ::-
postop ::-

conditional
binary [? binary : conditional]
unary [binop binary] •••
+I· l 0 lll%l&lllAl«I
» I I I I && I I- I - I < I > I - I
<-

[unop •••) postfix
&1°1-1+1-lllcastl++l-I
slzeof
primary (postop •••]
++ 1-1
([assignment [, assignment]]) I
[expression] I
• Identifier I
·> Identifier

primary : :- Identifier I
constant I
strlng_literal I
(expression) I
slzeof cast

cast : :- (type ••• [abstract.decl J)
abstract_decl : :• (ptr_decl •••) ((abstract_decl) J

(((constant expr] JI
tunc_decl > I
tunc_decl proto_parms) J •••

5016843

D-7

D-8 C Grammar Summary

Declarations

declaration .. - decl_specifiers
[lniLdecl [, iniLdecl J ...] ;

decl_specifiers ::- (storage_class I type) •••
storage_class ::- typedef I extern I static I auto I

register
type : :- char I short I Int I long I float I

double I unsigned I void I
const I volatile I
strucLunion I enum_type I typedef_name

type_modifier ::- near I far I _ss I _cs I _ds I _es I
const I volatile

struct_union ::- (struct I union) (identifier I
[Identifier] { struct.:..decl] •••))

struct_decl ::- type ••• sLdecl [, st_decl] .•• ;
st_decl ::- declarator I

[declarator] : constant_expr
enum_type ::- enum (Identifier I [Identifier] {

enum_decl [, enum_decl] .••
})

enum_decl ::• Identifier [• constanLexpr]
typedef_name : :- identifier
init_decl ::- declarator [• initializer J
declarator ::- fptr _decl •••] (Identifier I

(declarator))
[[[constant_1xpr]] I
func_decl)
func_decl proto_parms)] ..•

ptr_decl ::- • [type_111odifier ...]
proto_parms ::- void I

proto_parm [, proto_parm) .•.
proto_parm : :- type ••• declarator I

type ... abstract_decl
f_declarator ::- [ptr_dect •••) (Identifier I

(t_declarator))
[[I constant expr I] I

func_decl [lden_list]) I
func_decl proto_parms) J •.•

func_decl .. - (I
fortran (I
plm (I near plm (I far plm (I
plm near (I plm far (I
Interrupt (l
near((far((

iden_llst : :- identifier [, identifier] •.•
initializer : :- assigment I

{ initializer
[, initializer] ••• [,] } \

C Grammar Summary

Statements

block
statement
label

: :• { [declaration ...) (statement ...] }
: :- [label •••] basic_statement
: :- identifier : I

case constant_expr : I
default :

basic_statement • •• expression ; I
asm [asm_char ...) newJine I
asm [asm_char .•.] ; I
if (expression) statement f
if (expression) statement

else statement I
switch (expression) statement f
while (expression) statement f
do statement while (expression) ; f
for (expression ; expression ;

expression) statement f
goto Identifier ; I
continue; f
break; I
return [expression] :

External Definitions

program : :- [extemat_def .••]
external_def :.:- declaration f

asm [asm_char •••] new_line I
asm [asm_char ..•] : I
[decl_speclfiers] f_declarator

function_ body
functlon_body : :- [declaration •••] block

5016843

D-9

(
\

Glossary-1

Glossary

Application partition. An application partition is a section of
user memory reserved for the execution of an application.

Arithmetic operators. An arithmetic operator is a symbol used
in an arithmetic expression to indicate the type of arithmetic
operation to be performed: the standard operators are add (+),
subtract (·), multiply (*), and divide (/).

Array declarator. An array declarator is a declarator with a
trailing pair of square braces, possibly enclosing an integral
constant expression. If no expression is given, the array has
unknown size. Otherwise, the expression is the number of
elements in the array.

ASCII. ASCII, the American Standard Code for Information
Interchange, defines the character set codes used for information
exchange between equipment.

Assemble. . ASSEMBLE is the Executive command you use to
display the Assembler command form.

Assembler. The Assembler translates Assembly 8086 programs
into BTOS object modules (machine code).

Binary operators. A binary operator binds unary expressions or
other binary expressions as left and right operands to form binary
expressions.

Bind. Bind is a command that activates the Linker to create a
version 6 run file. Version 6 run files are required for protected
mode compatability.

BSWA. See Byte stream work area.

Byte stream work area. The Byte stream work area (BSWA) is
a 130-byte memory work area for the exclusive use of SAM
procedures.

Cast. A cast is an abstract type enclosed in parentheses. Casts
can appear following a sizeof keyword, or can be used as a unary
operator to convert the operand expression to the named type.
Both the operand and the cast must have scalar type.

Class name. A class name is a symbol used to designate a
class.

Code listing. A code listing is an English-language display of
compiled code.

5016843

Glossary-2

Code segment. A code segment is a variable-length (up to
64 Kb) logical entity consisting of reentrant code, and containing
one or more complete procedures.

Compiler. BTOS compilers translate high level language
programs into BTOS object modules (machine code).

Configuration file. Configuration files specify the options for
the C Compiler.

CTOS.lib. The CTOS.lib is part of the Language Development
software; it is a library of object modules that provide operating
system runtime suport.

DGroup. DGroup usually includes data, constant, and stack
Linker segments.

8086 assembly. 8086 assembly language is the low level
language you can use to write BTOS programs. You use the
BTOS Assembler to convert the programs into BTOS object
modules.

Executive. The Executive is the BTOS user interface program;
it provides access to. many convenient utilities for file
management.

Expressions. In a program, an expression is a combination of
various constants, variables, operators, and parentheses, used to
perform a desired computation.

External reference. An external reference is a reference from
one object module to variable and entry points of other object
modules.

File access methods. Several file access methods augment the
file management system capabilities. File access methods are
object module procedures located in the standard BTOS library.
They provide buffering and use the asynchronous input/output
capabilities of the file management system to overlap
inputjoutput and computation.

Function declarators. A function declarator is a declarator with
a trailing optional set of language modifiers and a pair of possibly
empty parentheses. (

Group. A group is a named collection of linker segments that
the BTOS loader addresses at runtime with a common hardware
segment register. To make the addressing work, all the bytes
within a group must be within 64 Kb of each other.

Glossary-3

Identifiers. An identifer is a sequence of upper- and lowercase
letters, digits, and the underbar U character. An identifier must
begin with a letter or the underbar. It can be of any length, but
only the first 32 characters are significant.

Language development. The BTOS Language development
software provides the Linker, librarian, and Assembler programs
(BIND, LINK, LIBRARIAN, and ASSEMBLE Executive commands) .

.lib. .lib is the standard file name suffix for library files.

Librarian. The Librarian is a program that creates and
maintains object module libraries. The Linker can search
automatically in such libraries to select only those object modules
that a program calls.

Library. A library is a stored collection of object modules
(complete routines or subroutines) that are available for linking
into run files.

Library file. A library file can contain one or more object
modules. The file name normally includes the suffix .lib.

Link. LINK is the Executive command that activates the linker
to create version 4 run filles. Version 4 run files are not protected
mode compatible.

Linked-list data structure. A linked-list data structure
contains elements that link words or link pointers connect.

Linker. The linker is a program that combines object modules
(files that Compilers and Assemblers produce) into run files.

Linker segment. A Linker segment is a single entity consisting
of all segment elements with the same segment name.

List file. The Linker list file (suffix .map) contains an entry for
each Linker segment, identifying the segment relative address
and length in the memory image. You can direct the linker to list
public symbols and line numbers.

Macros. A macro (short for macroinstruction) is a single
instruction that represents a given sequence of instructions. The
macro is defined to represent a set of instructions and can be
used each time to represent that set.

.map. .map is the standard file name suffix for Linker list files .

• obj. .obj is the standard file name suffix for object module
files.

5016843

Glossary-4

Object module. An object module is the result of a single
Compiler or Assembler function. You can link the object module
with other object modules into BTOS run files.

Overlay. An overlay is a code segment made up of the code
from one or more object modules. An overlay is loaded into
memory as a unit and is not permanently memory-resident. See
also Virtual code segment management.

Parameter. A parameter is a variable or constant that is
transferred to and from a subroutine or program.

Physical address. A physical address is an address that does
not specify a segment base and is relative to memory location O.

Pointer. A pointer is an address that specifies a storage
location for data.

Pointer declarators. A pointer declarator is a declaration
beginning with an asterisk (*), optionally followed by pointer type
modifiers.

Postfix expressions. A postfix expression is an expression
followed by a dot(.) or an arrow(-->) and an identifier. The
identifier must be the name of a structure or union member.

/f
Process. A process is a program that is running. (•

Public procedure. A public procedure is a procedure that has a
public address; a module other than the defining module can
reference the address.

Public symbol. A public symbol is an ASCII character string
associated with a public variable, a public value, or a public
procedure.

Public value. A public value is a value that has a public
address; a module other than the defining module can reference
the address.

Public variable. A public variable is a variable that has a public
address; a module other than the defining module can reference
the address.

Relocation. The BTOS Loader relocates a task image in
available memory by supplying physical addresses for the logical
addresses in the run file.

Relocation directory. The relocation directory is an array of
locators that the BTOS Loader uses to relocate the task image.

Resident. The resident portion of a program remains in memory
throughout execution.

Glossary-5

.run. .run is the standard file name suffix for run files.

Run file. A run file is a complete program: a memory image of
a task in relocatable form, linked into the standard format
BTOS requires. You use the Linker to create run files.

Run-file checksum. The Run-file checksum is a number the
Linker produces based on the summation of words in the file. The
system uses the checksum to check the validity of the run file.

Segment. A segment is a contiguous area of memory that
consists of an integral number of paragraphs. Segments are
usually classified into one of three types: cooe, static data, or
dynamic data. Each kind can be either shared or nonshared.

Segment address. The segment address is the segment base
address. For an 8086/80186 microprocessor, a segment address
refers to a paragraph (16 bytes).

Segmented address. A segmented address is an address that
specifies both a segment base and an offset.

Segment element. A segment element is a section of an object
module. Each segment element has a segment name.

Segment override. Segment override is operating code that
causes the 8086/80186 to use the segment register specified by
the prefix instead of the segment register that it would normally
use when executing an instruction.

Shift operators. A shift operator must have operands of
integral type. A shift operator shifts the bits of the integral
quantity on the left either to the left(<<) or right(>>) by the
amount given in the right side operand.

Short-lived memory. Short-lived memory is the memory area
in an application partition. When BTOS loads a task, it allocates
short-lived memory to contain the task code and data. A client
process can also load short-lived memory in its own partition.

Stack. A stack is a region of memory accessible from one end
by means of a stack pointer.

Stack frame. The stack frame is a region of a stack
corresponding to the dynamic invocation of a procedure. It
consists of procedural parameters, a return address, a
saved-frame pointer, and local variables.

Stack pointer. A stack pointer is the indicator to the top of a
stack. The stack pointer is stored in the registers SS:SP.

5016843

Glossary-6

Statements. A statement is an executable instruction. Each
statement is executed in order within a statement list unless
otherwise directed by control-flow statements .

• sym. .sym is the standard file name suffix for the symbol file.

Symbol. Symbols can be alphanumeric and/or any other
characters, such as underscore, period, dollar sign, pound sign, or
exclamation mark.

Symbol file. The Linker symbol file (suffix .sym) contains a list
of all public symbols.

Symbolic instructions. Symbolic instructions are instructions
containing mnenomic characters corresponding to Assembly
language instructions. These instructions cannot contain
user-defined public symbols.

Task. A task consists of executable code, data, and one or
more processes.

Task image. A task image is a program stored in a run file that
contains code segments and/or static data segments.

Text file. A text file contains bytes that represent printable
characters or control characters (such as tab, newline, etc.).

Virtual code segment management. Virtual code segment
management is the virtual memory method BTOS supports
(overlays).

The method works as follows: The Linker divides the code into
task segments that reside on disk (in the run file). As the run file
executes, only the task segments that are required at a particular
time reside in the application partition's main memory; the other
task segments remain on disk until the application requires them.
When the application no longer requires a task segment, another
task segment overlays it.

Index

A
abs 6-9
acos 6-77
Address 7-52
Advanced options 3-6
Alternation statements 7-63
Application partition Glossary-1
Arithmetic

miscellaneous C-6
operators Glossary-!

Array declarators 7-39, Glossary-!
Array subscripts 7-51
ASCII Glossary-1
asctlme 6-16
asin 6-77
Assemble command 1·1, Glossary-1
Assembler 1·1

optimized 3-8
Assembly lan·guage

file structure 5-6
interface 5-1
modules (sample) 5-8
output 1-1, 3-3
subroutines 5-1

assert 6-10, 6-4
atan 6-77
atan2 6-77
atof 6-11
atol 6-11
atol 6-11

B
Basic arithmetic types 7-32
Basic types 7-23
Binary operators 7-55, Glossary-1
BIND command 1-1, Glossary-1
Bltflelds 7-27, 7-39
Bitwise Boolean operators 7-57
Blocks 7-62
bsearch 6-13
BSWA Glossary-1

lndex-1

lndex-2

BTOS
APPEND command 3-12
C extensions 3-15
cluster workstation 1-1
extension keywords 3-15
Linker 3-22
system services 6-2
workstation 1-1

Byte stream work area Glossary-I
826 1-1
827 1-1
828 1-1
838 1-1

c
c

argument sequence 3-17
calling sequence 3-18
code 3-8
Compiler 1-1
Compiler installation 2-1
function calling sequences 5-1
grammar summary D-1
library functions (CLIB.LNT) 3-11
programming language 7-1
structure members 7-70

Call 3-12
function 3-9, 7-46

Calling
functions 5-4
sequence, C 3-18
sequence, PL/M 3-18

calloc 6-38
Calls

subroutine 3-19
Casts 7-54, Glossary-I
.$CC flies 3-5
CCOMPILER.CFG 3-21
CCOMPILER command 2-1
ceil 6-24
cfree 6-38
Character constants 7-19
Characters 7-24
Class name Glossary-1
clearerr 6-23
close 6-14

Code
c 3-8
debugging 3-11
generated 3-17
generator translations 7 -5
initialization 3-21
listing Glossary-1
pop 3-17
segment Glossary-2
start-up 4-1
writing 3-11

Command line
options 3-2, 8-1
syntax 3-2

Comma operator 7-59
Comment control option 3-5
Comments 7-14

Lint source file 3-23
Compatibility options 3-15
Compilation

activity options 3·3
conditional 7-11
switch 1-1

Compiler Glossary-2
limits 7-5
operation 3-25

Compile-time switches 1-2
Composite types 7-25
Compound assignment 7-59
Conditional compilation 7-11
Conditional expressions 7 ·58
Constant expressions 7-12, 7-59
Constants

character 7-19
floating 7-20
integer 7-18
numerical 7-17

Control options, preprocessors 3-5
Conventions vi

lexical 7-15
source text 7-15

Conversion 3-12
Conversions 7 -60

integral widening 7-60
usual arithmetic 7-60

cos 6-77
cosh 6-64
creat 6-15
Cross-check 3-10
C source file 3-12
ctlme 6-16

lndex-3

lndex-4

CTOS/BTOS Interface procedures (CTOS.LNn 3-11
CTOS.lib Glossary-2
CTxxx.H 6-4
CTYPE.H 6-5

D

Data definitions 7-73
Date management C-7
Debugging options 3-14
Declarations 7-29, D-8
Declarators 7-35

array 7-39
function 7 -37
pointer 7-36

Decrement operators 7-52
Define macros 7-7
#define macros 3.5
Defining

data constants 5-7
functions 5-7

Dennis Ritchie 1·1
DGroup Glossary-2
Diagnostic messages A-1
Dlden=string 3-5
Dldentlfler 3-5
Directives

#error 7-14
null 7-14
#pragma 7-14

Directory, Indicated 3-5
Disk usage options 3-5
.$CC files 3-5

E
ecvt 6-18
Ellipsis 3-18
Enumerated 7-25
Enumerations 7-34
ERRNO.H 6-5
#error directives 7-14
Error messages A-5
Escape sequences 7-19
Executive Glossary-2
exit 6-19
_exit 6-19
exp 6-20
Expressions 7-44, D-7, Glossary-2

conditional 7-58
constant 7-12, 7-59
primary 7-45

Expression statement 7-62

External

F

definitions 7-72, D-9
reference Glossary-2
variable names 5-1

fabs 6-24
Far pointer 3-4
Fast calling sequence option 3-17
Fatal messages A-2
fclose 6-22
fcvt 6-18
feof 6-23
terror 6-23
fflush 6-22
fgetc 6-30
fgets 6-31
Fiie access methods Glossary-2
Fiie management C-3
Filename 3-11
Flies

library 3-22
Link 3-22
object 3-22
temporary 3-26

FLOAT.H 6-5
Floating 7-24

constants 7-20
point arithmetic 7-50
point coprocessor 1-2

floor 6-24
fmod 6-24
fopen 6-25
fprintf 6-46
fputc 6-50,
fputs 6-51
tread 6-27
free 6-38
freopen 6-25
frexp 6-28
fscanf 6-55
fseek · 6-29
ftell 6-29
Function

arguments 5-2
call 3-9, 7-46
declarators 7 -37, Glossary-2
defini~ions 3-12, 7-72

Functions 7-26
fwrlte 6-27

lndex-5

lndex-6

G
gcvt 6-18
Generated code 3-17
getc 6-30
getchar 6-30
gets 6-31
getw 6-30
Global

data 5-8
symbols 5-1
variable names 5-1

gmtlme 6-16
Group Glossary-2
gsignal 6-65

H
Hardware functions C-7
Huge model 1-2, 5-9

segments 4-6

Identifiers 7-16, Glossary-3
scope of 7 -43

!directory 3-5
Include files 6-4
#include files 3-5
Index 6-32
Indicated directory 3-5
Indirection 7-52
Individual passes 3-26
Initialization 7-41
Initialization code 3-21
lnllne assembler references 7-68
lnllne assembly statements 7-65, 7-66

comments 7-71
inport 6-33
inportb 6-33
lnputjoutput 6-1

functions C-1
piping 1-2
redirection 1-2

Installation
C Compiler 2-1
software 1-2

Instruction opcodes 7-67
Insufficient memory 3-15
Integer constants 7-18
Integers 7-24
Integral types 7-23
Interrupt functions 7-50

lsalnum 6-34
lsalpha 6-34
lsascll 6-34
lscntrl 6-34
lsdlglt 6-34
lsgraph 6-34
islower 6-34
lsprlnt 6-34
lspunct 6-34
isspace 6-34
lsupper 6-34
lsxdlgit 6-34
Iteration statements 7 -63
18086.H 6-5

J
Jump

K

instructions 7 · 71
statements 7 -64

Keywords 7-17

L
Labels 7-71
Language development Glossary-3
Large model 1-2, 5-9

segments 4-5
ldexp 6-28
Lexi cal

conventions 7-15
rules D-3

.lib Glossary-3
Librarian Glossary-3
Libraries

runtime 3-17
user constructed 3-11

Library Glossary-3
c 3-11
file Glossary-3
files 3-22
mathematical C-8
overview 6-1
reference 6-1
summary C-1

LIMITS.H 6-6
Line number control 7-13
Linkage 7-44
LINK command 1-1, Glossary-3
Llnked-'list data structure Glossary-3
Linker 1-1, Glossary-3

lndex-7

lndex-8

Linker segment Glossary-3
Link files 3-22
Lint

facility 1-2
files 3-11
options 3-10
source file comments 3-23

List file Glossary-3
localtime 6-16
log 6-20
loglO 6-20
Logical operators 7-57
longjmp 6-62
!search 6-36
!seek 6-37
Lvalues 7-45

M
Macros Glossary-3

define 7-7
malloc 6-38
.map Glossary-3
Mathematical

functions 6-3
library C-8

MATH.H 6-6
Maximum code 3-1
Maximum data 3-1
Medium 5-9
Medium model 1-2

segments 4-4
Member access operations 7-51
memchr 6-40
memcmp 6-40
memcpy 6-40
Memory

insufficient 3-15
layout 4-3
management C-5
model options 3-3
models 1-2, 4-3
organization 4-3
requirements 1-2
utilization 3-1

memset 6-40
Message control option 3-6
Messages

diagnostic A-1
error A-5
fatal A-2
warning 3-13, A-19

Microprocessors
80186 3-6
80286 3-6
80386 3-6
8086 3-6

Mixed-model programming 1-2
modf 6-28
movmem 6-41

N
Nopath 3-5
Normal arithmetic operators 7-55
Null directive 7-14
Null statement 7-62
Numerical constants 7-17
Nlpath 3-5
N2path 3-5

0
.obj Glossary-3
Object

file 3-3
files 3-22
module Glossary-4

Obsolete syntax 7-73
Opcodes

instruction 7-67
open 6-42
Operation

compiler 3-25
Operators 7-21
Optimization options 3-8
Optimized assembler 3-8
Optimizer translations 7-5
Options

advanced 3-6
command line 3-2, B-1
comment control 3-5
compatibility 3-15
compilation activity 3-3
debugging 3-14
disk usage 3-5
fast calling sequence 3-17
Lint 3-10
memory model 3-3
message control 3-6
optimization 3-8
piping 4-1
prepr9cessor 3-21
redirection 4-1
segment naming 3-19

lndex-9

lndex-10

out port
outportb
Overlay

6-43
6-43

Glossary-4

p

Parameter Glossary-4
Passing

return values 5-5
peek 6-44
peekb 6-44
Physical address Glossary-4
Pl/M

calling sequence 3-17, 3-18
systems programming language 3-17

Pointer
arithmetic 3-3, 4-4
declarators 7-36, Glossary-4

Pointers 3-3, 7-25
poke 6-45
pokeb 6-45
Pop

code 3-17
sequences 3-17

Portability considerations 7-73
Postfix

expressions Glossary-4
operators 7 -46

pow 6-20
#pragma directives 7-14
Prefix increment 7-52
Preprocessing 7-6

directives D-5
Preprocessor

control options 3-5
options 3-21
translations 7-4

Primary expressions 7-45
Principle C functions 6-8
prlntf 6-46
Product information vi
Program

control C-6
execution 4-1

Public
procedure Glossary-4
symbol Glossary-4
value Glossary-4
variable Glossary-4

Punctuation 7-22
putc 6-50

putchar 6-50
puts 6-51
putw 6-50

Q
qsort 6-52

R
rand 6-53
read 6-54
realloc 6-38
Redirection parameter 4-1
Reference material vii
Relational operators 7-57
Relocation Glossary-4
Relocation directory Glossary-4
Requirements, memory 1-2
rewind 6-29
rlndex 6-32
Ritchie, Dennis 1-1
.run Glossary-5
RUN command 4-2
Run file Glossary-5
Run-file checksum Glossary-5
Runtime

s

environment 4-1
library 1-2, 3-17, 6-1
support 6-1

scant 6-55
Searching C-6
Segment Glossary-5

element Glossary-5
naming options 3-19
override Glossary-5

Segmented address Glossary-5
segread 6-59
setbuf 6-60
setjmp 6-62
SETJMP.H 6-6
setmem 6-63
setvbuf 6-60
Shift operators 7-56, Glossary-5
Short-lived memory Glossary-5
SIGNALH 6-7
Simple assignment 7-58
sin 6-77
sinh ~-64
Small model 1-2, 5-9

segments 4-3

lndex-11

lndex-12

Software installation 1-2
on a BTOS workstation 2-1
on an XE520 master 2-2

Sorting C-6
Source

code 1-2
file inclusion 7-6
text conventions 7-15

Specifiers
storage class 7-30
type 7-32

sprintf 6-46
sqrt 6-20
srand 6-53
sscanf 6-55
ssignal 6-65
ssort 6-52
Stack frame Glossary-5
Stack pointer Glossary-5
Standard 1/0 6-2, C-1
Start-up code 4-1
Statements 7-61, D-9, Glossary-6
STDARG.H 6-7
STDDEF.H 6-7
STDIO.H 6-7
STDLIB.H 6-7
stime 6-66
Storage class specifiers 7-30
strcat 6-67
strchr 6-68
strcmp 6-69
strcpy 6-70
strcspn 6-72
STRING.H 6-8
String handling C-3
Strings 7-21
strlen 6-71
strncat 6-67
strncmp 6-69
strncpy 6-70
strpbrk 6-68
strrchr 6-68
strspn 6-72
strtod 6-11
strtok 6-73
strtol 6-11
Structures 7-27, 7-33
Submit files 1-2
Subroutine calls 3-19
Subroutines 3-4
swab 6-74

\ ..

(

[

.sym Glossary-6
Symbol file Glossary-6
Symbolic Instructions Glossary-6

T

tan 6-77
tanh 6-64
Task Glossary-6
Task image Glossary-6
Temporary files 3-5, 3-26
Text file Glossary-6
time 6-75
TIME.H 6-8
Time management C-7
toascii 6-76
tolower 6-76
_tolower 6-76
toupper 6-76
_toupper 6-76
Translation

limits 7-4
parser 7-4
phases 7-4
preprocessor 7 -4

Translations
code generator 7 -5
optimizer 7-5

Trlgraphs 7-22
Type

u

basic 7-23
basic arithmetic 7-32
composite 7-25
equivalence 7-41
integral 7-23
modifiers 7 -28
names 7-40
specifiers 7 -32

Uidentifier 3-5
Unary arithmetic operators 7-53
Unary operators 7-52
ungetc 6-79
Unions 7-27, 7-33
UNIX 1-1
UNIX compatible 1/0 6-2
UNIX 1/0 C-3
unlink 6-80
Unsigned 7-24
User constructed libraries 3-11
Using the C Compiler 1-1

lndex-13

lndex-14

v
Variable declaration information 3-12
vfprintf 6-81
vfscanf 6-82
Virtual code segment management Glossary-6
Void 7-24, 7-35
vprintf 6-81
vscanf 6-82
vsprintf 6-81
vsscanf 6-82

w
Warning messages 3-13, A-19
write · 6-83

x
XE520 1-1

16-bit pointer arithmetic 4-4
20-bit pointer arithmetic 3-4
8086 assembly Glossary-2
8086 family of processors 3-3
8086 support 3-6
8087 support 3-6

Help Us To Help You
Publication Title

Form Number Date

Unisys Corporation is interested in your comments and suggestions regarding this manual. We will use them to

improve the quality of your Product Information. Please check type of suggestion:
D Addition D Deletion D Revision D Em

Comments

Name

Title Company

Address !Street, City, State, Zipl

Telephone Number

Help Us To Help You
Publication Title

Form Number Date

Unisys Corporation is interested in your comments and suggestions regarding this manual. We will use them to
improve the quality of your Product Information. Please check type of suggestion:
D Addition D Deletion D Revision D Err1

Comments

Name

Title Company

Address !Street, City, State,.Zipl

Telephone Number

BUSINESS REPLY MAIL
First Class Permit No. 817

Postage Will Be Paid By Addressee

Unisys Corporation
ATIN: Corporate Product Information
1300 John Reed Court
City of Industry, CA 91745-9987 USA

Detroit, Ml 48232

11.1 111 ... 1.1 .• 1.1.1.1.1 •. 1.1 .. 1 .. 1.1 •.. 1 ••• 111

BUSINESS REPLY MAIL
First Class Permit No. 817

Postage Will Be Paid By Addressee

Unisys Corporation
ATIN: Corporate Product Information
1300 John Reed Court
City of Industry, CA 91745-9987 USA

Detroit, Ml 48232

11.1 I 111 •• I I. I. I I. 1.1. 1.1 •• 1. 1 •• 1. I 1.1. I .1 ••• 111

No Postage
necessary
ii mailed in the
United States

No Postage
necessary
ii mailed in the
United States

