US005606685A
United States Patent [(1] Patent Number: 5,606,685
Frandeen 451 Date of Patent: Feb. 25, 1997
[54] COMPUTER WORKSTATION HAVING OTHER PUBLICATIONS

(75]
(73]
(21}

(22]

(51]
(52]

(58]

[56]

DEMAND-PAGED VIRTUAL MEMORY AND
ENHANCED PREFAULTING

Exploring CTOS, by E. 1. Miller, et al.,, Prentice Hall,
Englewood Cliffs, New Jersey, 1991.

Operating System Concepts, by Peterson and Silberschatz,
Addison-Wesley Publishing Co., Reading, MA, 1985, p.

Primary Examiner—Eddie P. Chan
Assistant Examiner—Hiep T. Nguyen
Attorney, Agent, or Firm—Nathan Cass; Mark T. Starr

ABSTRACT

A CTOS network comprised of a plurality of workstations
provides for virtual demand paging transparently across the
network in a manner which permits a large virtual memory
to efficiently be provided for each of a plurality of concur-
rently running applications on a CTOS workstation. Each
application running on the workstation is provided with
assigned pages and a local clock which operates based on the
well known clock algorithm. A unique combination of local
policy and global policy is used for page replacement which
results in significantly more efficient management of avail-
able memory pages. The global policy includes an “elbow
room” enhancement which permits the global page replace-
ment policy to better take into account the individual activity
of the concurrently running applications. In addition,
enhanced prefaulting and page cleaning are provided,
whereby it is made significantly more likely that a running
application will find a requested page in its local clock.

Inventor: James W. Frandeen, Soquel, Calif.
Assignee: Unisys Corporation, Blue Bell, Pa. 125.
Appl. No.: 174,855
Filed: Dec. 29, 1993
Int. CL® GoeF 1208 7]
US. Cl .. 395/444; 395/464; 395/463;
395/497.02
Field of Search 395/400, 425,
395/444, 464, 460, 486, 440, 445, 463,
487, 497.02
References Cited
U.S. PATENT DOCUMENTS
4,422,145 12/1983 Sacco et al.ccoeevveveerveerennnn 364/300
4,467,411 8/1984 Fryetal. ... 395/250
4,722,047 1/1988 Chanet al. 395/400
4,742,447 5/1988 Duvall et al. .. 395/375
4,918,688 4/1990 Krause et al. . 370/76
4972316 1171990 Dixon et al. ... 395/425
5,193,172 3/1993 Arai et al. ..ccceeervererveenrivennennnns 395/478
5,237,673 8/1993 Orbits et al. ..cceerveeerrrerrrerennens 395/425
5,269,013 12/1993 Abramson et al.ccovvveneene 395/425
5,276,840 1/1994 Yu 395/425
5,388,242 2/1995 Jemnettceeceeeereeveerecrnennns 395/425

11 Claims, 19 Drawing Sheets

FROM FIG.R20

THE “NOT PRESENT*

EXAMINE PAGE ENTRIES IN
APPLN 'S PAGE TABLE THAT
BOTH PRECEDE AND FOLLOV

[™~2100

PAGE .

i

PRESENT *

SELECT AS CANDIDATES FOR
PREFAULTING ADJACENT “NOT
PAGES WHICH ARE
FROM THE SAME FILE.

2102

ARE
ERE ANY

FOR
PREFA}P.LTIMS

THI
CANDIDATE PAGES

2104

TO STEP
2006 IN
FI1G.20

TO A MAXIMUM DOF

LIMIT PAGES TO BE PREFAULTED

2106

14.

1

FOR STARTING THE

SEARCH VS MEMORY TO FIND A
BLOCK OF CONTIGUOUS PAGES

PRESENT " PAGE AND THE PAGES
TO BE PREFAULTED.

“NOT
2108

1

READ IN FROM THE DISK DRIVE THE
PAGES TO BE PREFAULTED ALDNG
VITH THE *NOT PRESENT* PAGE INTO
CORRESPONDING CONTIGUOUS PAGES
IN THE WS MEMORY FOR USE BY THE
APPLICATION.

~2atio

RESTART APPLICATION r"\2112

5,606,685

WS*N

U.S. Patent Feb. 25, 1997 Sheet 1 of 19
WS*1 WSH¥D |mm oo
B
FIG. I

CTOS WORKSTATION
////us

DISK MAIN MEMORY
D/ 1 M/
FREE
PAGE CTOS
LIST
FPL
Al A2 A3
Pl P2 P3
PAGE
PCQ | CLEANING ACTIYITY " ag
QUEUE

FIG.2

U.S. Patent Feb. 25, 1997 Sheet 2 of 19 5,606,685

PAGE TABLE
PAGE NO.| ACCESS | DIRTY { OTHER PAGE

BIT BIT INFO
pl al dl ol
pe ol de oc
i i | i
| | i |
[I i [
| I I |
! ! | |
pn an dn on

T e —

U.S. Patent Feb. 25, 1997 Sheet 3 of 19 5,606,685
LOCAL CLOCK
SEARCH
200 \ l< A A

ADVANCE CLOCK

POINTER TO
NEXT PAGE
RESET ACCESS
BIT at
504
SIOW
PLACE PAGE
ON CLEANING

QUEUE PCQ

DESIGNATE
PAGE AS 508
REPLACEABLE

FIG.S

U.S. Patent Feb. 25, 1997 Sheet 4 of 19 5,606,685

APPLICATION
MEMORY REQUEST

CHECK ‘APPLN | ~ 600
PAGE TABLE

602

IS

PAGE

PRESENT
?

PAGE FAULT)

YES

ACCESS

PAGE ~—~ 604

FIG.6

U.S. Patent Feb. 25, 1997 Sheet 5 of 19 5,606,685

(:PAGE FAULTj)

700 l
\
INVOKE VIRTUAL

BEMAND-PAGING
SERVICE

708\\ l

SUSPEND
APPLICATION

704

HAS
APPLN
OR WS
PAGE MAX
BEEN
REA%HED

PAGE REPLACEMENT
FIG.8 OR FIG.9

706

ASSIGN FREE WS PAGE
TO APPLN. AND READ
IN REQUESTED

"NOT PRESENT® PAGE

l

RESTART
APPLN | 708

FIG.7

U.S. Patent Feb. 25, 1997

Sheet 6 of 19

PAGE REPLACEMENT
VHEN APPLN.MAX REACHED

SEARCH APPLN 'S
LOCAL CLOCK TO FIND
REPLACEABLE PAGE

800
808

802

REPLACEABLE
PAGE
FDQND

YES

—

/

5,606,685

GO AROUND LOCAL
CLOCK 2nd TIME
AND DESIGNATE
FIRST CLEAN PAGE
FOUND AS
REPLACEABLE PAGE

804\\ #

READ IN REQUESTED
"NOT PRESENT® PAGE
TO REPLACE FOUND
REPLACEABLE PAGE

'

RESTART
APPLN.

806\

FIG.8

81

IS
THERE A
PAGE BEING
CLEANED WHICH
APPLN . CAN
VAII?FDR

2

WAIT FOR PAGE
TO BE CLEANED
AND DESIGNATE
AS REPLACEABLE

814

U.S. Patent Feb. 25, 1997

PAGE REPLACEMENT
VHEN WS MAX REACHED

CHECK WS AQ TO DETERMINE

LEAST ACTIVE OTHER APPLN

902 IS

LEAST
ACTIVE OTHER
APPLN.IN THE

FOREGROUND
?

NO

SEARCH IN CHOSEN APPLN'S

LOCAL CLOCK FOR A REPLACEABLE

PAGE TO STEAL

908

REPLACEABLE NO
PAGE
FOUND

910 YES

STEAL REPLACEABLE
PAGE FROM CHOSEN
APPLN; ASSIGN TO
APPLN.WHICH CAUSED
THE PAGE FAULT AND
THEN READ IN
REQUESTED "NOT
PRESENT * PAGE

RESTART APPLN
WHICH CAUSED
PAGE FAULT

912

Sheet 7 of 19 5,606,685
FIG.9
900
904
YES DETERMINE NEXT
LEAST ACTIVE
APPLN .
906
914
TRY TO
STEAL A
PAGE FROM
ANOTHER
APPLN . 916
yd
YES RepLaceaBLE NO
PAGE
FOUND
?
918
TRY TO FIND

A REPLACEABLE
PAGE IN OWN CLOCK

920

YES REPLACEABLE

PAGE
FDQND

NO
ERROR

U.S. Patent Feb. 25, 1997 Sheet 8 of 19 5,606,685

CTOS WORKSTATION

WS’
DISK MAIN MEMORY
7 o
FREE
PAGE CTOS
LIST
FPL
Al A2 A3
P1 P2 P3
AQ
[
PAGE
PCQ ~] CLEANING SﬁgﬂngY GT
QUEUE

FIG.10

5,606,685

Sheet 9 of 19

Feb. 25, 1997

U.S. Patent

I[1 914
37gvL w4019
S b 9 aMg NV
2 I g aMg £V
¥ > L ao4 2y
€ 2 2 aMd 1y
INTIVA EL] aNnoandIvd |
1INY4 39vd | S39vd 3394 NOILly2Iddy
WOO¥ mOg73 | L0898 S8e. /ONNDOYD3N0 4
%) ¥I 9% 29 12

REQUESTED "NOT*
PRESENT PAGE

|

RESTART APPLN
WHICH CAUSED

PAGE FAULT
/
1014
FIG.12B
FIG.12A
FIG.12B

U.S. Patent Feb. 25, 1997 Sheet 10 of 19
S P
1012
/4 1020
STEAL REPLACEABLE N '
PAGE FROM CHOSEN - -
APPLN;ASSIGN TO TRY TO FI
APPLN WHICH CAUSED A REPLACEAELE
| THE PAGE FAULT AND PAGE IN OV
THEN READ .IN cLOCK

REPLACEABLE
PAGE
FD%ND

1022

ERROR

FIG.12

5,606,685

U.S. Patent Feb. 25, 1997 Sheet 11 of 19 5,606,685

PAGE REPLACEMENT
WHEN WS MAX REACHED FIG IEA

CHECK WS AQ TO
DETERMINE LEAST 1000
ACTIVE OTHER APPLN

1002 1004

IS
LEAST

ACTIVE OTHER vyes DETERMINE NEXT
APPLN IN THE LEAST ACTIVE
FOREGROUND APPLN .

?

1006
IS

CHOSEN APPLN'S
‘ELBOW ROOM™ VALUE YES
GREATER THEN IT'S
FREEPAGE VALUE
?

1008
YES

SEARCH IN CHOSEN APPLN’S
LOCAL CLOCK FOR A
REPLACEABLE PAGE TO STEAL

1016
‘ TRY TO STEAL
REPLACEABLE NO A PAGE FROM
PoCE ANOTHER APPLN.
?
1010 1018
YES REPLACEABLE
PAGE
FOLND

NO

U.S. Patent Feb. 25, 1997 Sheet 12 of 19 5,606,685

PAGE CLEANING QUEUE

PCQ
/ FIG.13

CONTIGUOUS
PAGE GROUP #]

CONTIGUOUS
PAGE GROUP =2

CONTIGUOUS
PAGE GROUP #3

APPLICATION WAITING QUEUE
AVO;;7

A4

A7

FIG.14

AN

U.S. Patent Feb. 25, 1997 Sheet 13 of 19

1500

IS
CLEANING
IN PROGRESS FOR

AT LEAST ONE
PAGE OF
APPLN.
?

APPLN'S DIRTY
PAGE THRESHOLD

YES

END

BEEN R';:ACHED

INITIATE PAGE
CLEANING

FIG.15

5,606,685

U.S. Patent Feb. 25, 1997 Sheet 14 of 19

HAS

PAGE

CLEANING
PERIOD

EXPIRED
?

1600

IS
PAGE
CLEANING
CURRENTLY
BEING
PERFOURMED
?

YES

1602

DOES
PCQ

HAVE

SUFFICIENT

INITIATE
PAGE CLEANING

FIG.16

5,606,685

U.S. Patent Feb. 25, 1997 Sheet 15 of 19 5,606,685

INITIATE PAGE |~
CLEANING 1800

CAN

PAGE CLEANING

BE PERFORMED

AT THIS TIME
?

YES

FIND OPTIMUN STRING
OF PAGES FDOR CLEANING [1804

$

WRITE STRING ON
DISK DRIVE ~ 1806

'

DISTRIBUTE CLEAN
FIG.18 PAGES TO APPLNS.

APPLN. CHOOSES TO VAIT
FOR A PAGE TD BE CLEANED [1700

1702

IS

CLEANING

IN PROGRESS FOR

AT LEAST ONE

PAGE OF

APPLN.,
?

NO

FIG. 17 [INITIATE PAGEJ

CLEANING

U.S. Patent Feb. 25, 1997 Sheet 16 of 19 5,606,685

APPLICATION
MEMORY REQUEST

|

CHECK APPLN
PAGE TABLE

—~1900

1902

IS

PAGE

PRESENT
2

PAGE FAULT
FIG.20

YES

ACCESS

N\
PAGE 1304

FIG.19

U.S. Patent

Feb. 25, 1997

(PaGE FauLT)
Y

INVOKE VIRTULAL
DEMAND-PAGING
SERVICE

'

SUSPEND
APPLICATION

2004

HAS
APPLN [OR WS
PAGE MAX
BEEN
REA%HED

2006

HAS
PREFAULTING
BEEN SELECTED
FOR THE
AP?LN

NO

3,606,685

Sheet 17 of 19

T7~2000

~— 2002

PAGE
REPLACEMENT
FI1G.8,9 OR 12

PREFAULTING
FIG.21

ASSIGN FREE WS PAGE
TO APPLN.AND READ
IN REQUESTED
“NOT PRESENT" PAGE

|~ 2008

'

RESTART
APPLN

—~ 2010

FIG.20

U.S. Patent Feb. 25, 1997 Sheet 18 of 19 5,606,685

(Frow ;’IG.EO) FIG 21

EXAMINE PAGE ENTRIES IN
APPLN’'S PAGE TABLE THAT
BOTH PRECEDE AND FOLLOV [~2100
THE "NOT PRESENT" PAGE.

Y

SELECT AS CANDIDATES FOR
PREFAULTING ADJACENT *NOT }—5;q2
PRESENT " PAGES WHICH ARE

FROM THE SAME FILE.

2104

ARE
THERE ANY
CANDIDATE PAGES
FOR
PREFAULTING

TO STEP
2006 IN
FIG.20

LIMIT PAGES TO BE PREFAULTED +— 2106
TO A MAXIMUM OF 14.

'

SEARCH WS MEMORY TO FIND A
BLOCK OF CONTIGUOUS PAGES
FOR STARTING THE *NOT
PRESENT " PAGE AND THE PAGES [2108

TO BE PREFAULTED.

'

READ IN FROM THE DISK DRIVE THE
PAGES TO BE PREFAULTED ALONG
WITH THE "NOT PRESENT" PAGE INTO |
CORRESPONDING CONTIGUOUS PAGES 2110
IN THE WS MEMORY FOR USE BY THE
APPLICATION.

Y

RESTART APPLICATION [T M2112

U.S. Patent Feb. 25, 1997 Sheet 19 of 19 5,606,685

PAGE
PAGE NO. PRESENT FILE #

o & o o
-— e e e o

14
15
16
17
18
19
20
2l
ee
23

O O o o o o O O

5
5
6
6
6
6
6
6
9
9

o o & @
® ® & e »r—

FIG.22

5,606,685

1

COMPUTER WORKSTATION HAVING
DEMAND-PAGED VIRTUAL MEMORY AND
ENHANCED PREFAULTING

RELATED U.S. PATENT APPLICATIONS

This patent application contains subject matter related to
my copending patent applications Ser. No. 017,068, filed
Feb. 12, 1993, Ser. No. 08/100,826, filed Aug. 2, 1993, and
Ser. No. 08/176,139 filed concurrently herewith.

BACKGROUND OF THE INVENTION

The present invention relates generally to improved meth-
ods and apparatus for providing a demand-paged virtual
memory in a computer workstation.

Modern-day workstations are typically capable of running
a plurality of applications at one time. Each application
normally requires its own memory in order to run the
application. If a running application should use up all of the
workstation’s available memory, the application will usually
be caused to wait or terminate, which may significantly slow
up performance of the application, or require that the appli-
cation be rerun when sufficient memory becomes available.
An additional problem that can occur with a workstation
running a plurality of applications is that, when a new
application is initiated at the workstation and there is insuf-
ficient memory available, a running application will be
forced to terminate and be swapped out in order to permit the
new application to run. Such situations make it important
that a workstation provide sufficient memory to run all of the
applications which the user intends be run at the same time.
As a result, a workstation normally has to be provided with
sufficient total memory to run all of the applications that a
user may wish to run at the same time without the work-
station’s memory becoming oversubscribed.

One known way of increasing the memory available to a
computer workstation is to provide a virtual memory
arrangement which permits the workstation to use memory
which is not currently available in the workstation’s main
memory. For example, it is known to use a paging arrange-
ment wherein the workstation’s main memory is capable of
storing a prescribed number of pages, one or more of which
may be swapped with those contained, for example, on a
disk drive attached to the workstation. When an application
running on the workstation requests a page which is “not
present” in the workstation’s main memory, a situation
commonly known as a page fault occurs. The workstation’s
operating system resolves this page fault by reading in the
“not present” page from the disk into a free page (i.e., a page
not currently in use) in the workstation’s main memory. If
the workstation does not have a free page, then the “not
present” page is caused to replace a page in the worksta-
tion’s memory. The particular workstation page which is
replaced is determined based on an algorithm that attempts
to choose for replacement a page which is not likely to be
needed. One well known algorithm for this purpose is the
“least recently used” (LRU) algorithm which replaces a page
in a workstation’s main memory based on the page which
has been least recently used. This algorithm is typically
implemented by providing a stack which links pages based
upon usage.

A significant disadvantage of such an (LRU) algorithm is
that it requires a significant amount of processing overhead
for its implementation. In addition, this LRU algorithm does
not work well when a workstation is running a plurality of
applications, since the “least recently used” approach does

10

15

20

30

35

40

45

50

55

60

65

2

not take application priorities into account and thus can
cause pages to be replaced from a running application at an
inappropriate time.

Another known type of page replacement algorithm is
commonly referred to as a “clock” algorithm, wherein
memory pages are arranged in a single circular list (like the
circumference of a clock). The clock pointer (or hand) points
to the last page replaced, and moves clockwise when the
algorithm is invoked to find the next replacement page.
When a page is tested for replacement, the access bit in the
corresponding page table entry is tested and reset. If the page
has been referenced since the last test, the page is considered
to be part of the current working set, and the pointer is
advanced to the next page. If the page has not been accessed,
and is not “dirty” (i.e., does not need to be written back to
its backup store) it is eligible for replacement. While this
clock algorithm requires less overhead than the LRU algo-
rithm, it still does not perform well for a workstation running
a plurality of applications at the same time.

SUMMARY OF THE INVENTION

A broad object of the present invention is to provide
improved methods and apparatus for providing memory in a
workstation capable of running a plurality of applications.

A more specific object of the invention in accordance with
the foregoing object is to provide improved demand-paged
virtual memory for a workstation running a plurality of
applications.

Another object of the invention, in accordance with one or
more of the foregoing objects, is to provide an improved
demand-paged virtual memory for a workstation connected
in a network comprised of a plurality of workstations.

A farther object of the invention, in accordance with one
or more of the foregoing objects, is to provide an improved
demand-paged virtual memory in a CTOS network com-
prised of a plurality of workstations.

In my copending patent application Ser. No. 08/017,068,
filed Feb. 12, 1993, a highly advantageous embodiment of a
demand-paged virtual memory is disclosed as applied to a
CTOS network of workstations wherein the networking
capability is built into the operating system. An operating
system of this type is currently available from Unisys
Corporation, Blue Bell, Pa. and is designated by the regis-
tered trademark CTOS®. Hardware, software and program-
ming details for CTOS are available from Unisys Corpora-
tion. Also, a basic description of CTOS can be found in the
book, Exploring CTOS, by E. 1. Miller, et al., Prentice Hall,
Englewood Cliffs, N.J., 1991. The contents of this book are
incorporated herein.

In the preferred embodiment disclosed in my aforemen-
tioned application Ser. No. 08/017,068, a virtual demand-
paged virtual memory is transparently provided for a work-
station in a CTOS operating system. Each application
running on the workstation is provided with assigned pages
and a local clock. A unique combination of local policy and
global policy is then used for page replacement in a manner
which permits an efficient, very large virtual memory
employing demand paging to be seamlessly provided for
each of a plurality of applications running on the worksta-
tion. In addition, pages which are not present at the work-
station may be transparently obtained across the network
from a disk drive located at a server. This facilitates use of
a diskless CTOS workstation if desired.

In my aforementioned copending patent application Ser.
No. 08/100,826, a very significant improvement is provided

5,606,685

3
in the demand-paged virtual memory system disclosed in
Ser. No. 08/017,068, wherein the combined local and global
page replacement is greatly enhanced by the provision of an
“elbow room” capability for each application which permits
the global page replacement policy to better take into
account the individual activity of the running applications.

The aforementioned copending concurrently filed patent
application Ser. No. 08/176,139 provides a further improve-
ment in the demand-paged virtual memory systems dis-
closed in the aforementioned applications, wherein
enhanced page cleaning is provided in association with the
combined local and global page replacement in a highly
advantageous manner, whereby a greater number of pages
are made available for use by running applications.

The present invention provides a still further improve-
ment in the demand-paged virtual memory systems dis-
closed in the aforementioned cepending applications,
wherein enhanced page prefaulting is provided in associa-
tion with the combined local and global page replacement in
a highly advantageous manner, whereby it is made signifi-
cantly more likely that a running application will find a
requested page in its local clock.

The specific nature of the invention as well as other
objects, features, advantages and uses thercof will become
evident from the following description of a preferred
embodiment taken in conjunction with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a CTOS cluster comprising
a plurality of workstations.

FIG. 2 is a block and schematic diagram illustrating a
preferred embodiment of a CTOS workstation having a
demand-paged virtual memory.

FIG. 3 illustrates a typical page table used by each
application running on the CTOS workstation in FIG. 2.

FIG. 4 schematically illustrates the arrangement of a local
clock provided for each application running on the CTOS
workstation in FIG. 2.

FIG. 5 is a flowchart illustrating the operation of the local
clock illustrated in FIG. 4.

FIG. 6 is a flowchart illustrating the occurrence of a page
fault as a result of an application requesting a “not present”
ImMemory page. :

FIG. 7 is a flowchart illustrating operations occurring in
response to the occurrence of a page fault.

FIG. 8 is a flowchart illustrating how a page fault is
handled when the application which caused the page fault
has reached its maximum number of assigned pages.

FIG. 9 is a flowchart illustrating how a page fault is
handled when an application which causes a page fault has
not reached its page maximum, but the workstation has used
up its maximum number of assignable pages.

FIG. 10 is a block and schematic diagram of a workstation
having a global table GT used in providing an “elbow room”
capability for global page replacement purposes in accor-
dance with the invention.

FIG. 11 illustrates the global table GT of FIG. 10 having
exemplary values.

FIG. 12 is a flowchart illustrating how the “elbow room”
capability of the invention operates during page replace-
ment.

FIG. 13 is a schematic diagram of a page cleaning queue
PCQ.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 14 is a schematic diagram of an application waiting
queue AWQ.

FIG. 15-17 are flow diagrams illustrating how page
cleaning is initiated in a preferred embodiment.

FIG. 18 is a flowchart illustrating various page cleaning
steps performed in a preferred embodiment.

FIG. 19 is a flowchart illustrating the occurrence of a page
fault as a result of an application requesting a “not present”
memory page.

FIG. 20 is a flowchart illustrating operations occurring in
response to a page fault in a demand-paged system provid-
ing prefaulting.

FIG. 21 is a flowchart illustrating how enhanced prefault-
ing is provided in a preferred embodiment of the invention.

FIG. 22 is a schematic diagram of a page table portion for
illustrating operation of FIG. 21 for a specific example.

DESCRIPTION OF A PREFERRED
EMBODIMENT

Like numbers and characters, correspond to like elements
throughout the figures of the drawings.

A preferred embodiment of the present invention will be
described as applied to the embodiments disclosed in my
aforementioned patent applications Ser. No. 08/017,068 and
08/100,826, and 08/176,139. Accordingly, the embodiments
disclosed in these applications will initially be described, the
preferred embodiment of Ser. No. 08/017,068 being
described with reference to FIGS. 1-9, the elbow room
enhancement provided by the preferred embodiment dis-
closed in Ser. No. 08/100,826 being described with refer-
ence to FIGS. 10-12, and the page cleaning enhancement
provided by the preferred embodiment disclosed in the
concurrently filed Ser. No. 08/176,139 being described with
reference to FIGS. 13-18.

FIG. 1 illustrates a CTOS cluster comprised of a network
of N desktop workstations WS#1 - - - WS#N, wherein one
of the workstations (e.g., WS#1) is designated as the server
workstation. CTOS runs on these workstations using the
Intel® family of 80X86 microprocessors. CTOS is a modu-
lar, message-based operating system having a built-in net-
working capability which is transparent to the user.

The CTOS cluster illustrated in FIG. 1 is implemented
through a simple bus topology B with RS-422/485 connec-
tions. Alternatively, the CTOS cluster may be implemented
using twisted pair (telephone wiring) as described in U.S.
Pat. No. 4,918,688.

CTOS has a very small kemel, or group of primitive
operations. Most of the CTOS system environment is made
up of modules called system services. These system services
manage resources (the file system, communication, etc.) and
provide services that are requested by application program
processes and by other system service processes.

A system running CTOS has multiple processes or threads
of execution. A process is an independent thread of execu-
tion, together with the hardware and software context nec-
essary to that thread. A message is passed from one process
to another via an exchange. An exchange is like a mailbox
where processes wait to receive messages, or where mes-
sages are deposited to wait to be processed. Each process is
allocated an exchange when it is created. CTOS uses a
special type of message, the request for service, which is the
most commonly used CTOS message. These requests are
specially formatted messages that include a request block
header having a request code which identifies the desired

5,606,685

5

system service, along with other information that will be
needed by the service, such as where to send the response
and who is sending the request. With the help of the CTOS
kernel, the request travels transparently to the user or
application program across the network to locate any special
service.

An application running on a CTOS workstation may
include a plurality of processes. For example, an electronic
mail application may typically have at least two processes.
One process allows the user to edit a mail message, while the
other process monitors incoming mail. These electronic mail
processes compete with each other for use of the workstation
microprocessor as well as with processes from other running
applications (such as a word processor application and a
compiler application). Since a CTOS workstation typically
contains only a single microprocessor (e.g., a 80486 Intel®
processor), process scheduling is required in order to permit
a plurality of applications to run on the workstation at the
same time. This is performed by the CTOS kernel scheduler.
Each process (thread of execution) within CTOS is assigned
a priority and is scheduled for execution by the micropro-
cessor based upon that priority. Process scheduling is driven
by events. Whenever an event occurs during execution of a
process, such as an input/output event, the executing process
can lose control of the processor in favor of a higher-priority
process. This type of scheduling is called event-driven,
priority-ordered scheduling.

In CTOS, the functions normally associated with an
operating system are performed by system services which
manage resources and provide services that are requested by
application program processes and other system service
processes. They communicate with their application pro-
gram clients using the previously described messages.
Examples of CTOS system services include opening or
closing disk files or accepting keyboard input. Because of
their standard message-based interfaces, system services can
be loaded dynamically, substituted for, or removed as
desired. The manner of providing a system service in a
CTOS operating system is well known to those familiar with
CTOS.

A particular advantage made possible by CTOS’s built-in
networking is that a system service can operate transparently
across a network to the process that requests its service. For
example, an application process on one workstation can
send off a request message to a system service to have a
certain job performed without knowledge of where the
system service resides. If the service does not reside on the
local workstation, the request message is automatically
routed across the network to the workstation where the
service resides. The response message returns in the same
way.

In prior art CTOS systems, each application running on a
workstation resides in a particular assigned partition of the
workstation memory. In addition, a particular portion of the
workstation memory is assigned to each application for use
in running the application. Although it has been generally
recognized that virtual demand-paging could be provided on
CTOS systems using 80386 Intel® (and later) microproces-
sors, it was not provided due to the belief that overall
performance would not be sufficiently enhanced. While
virtual demand-paging is applicable to other types of oper-
ating systems, it is particularly advantageous when used in
a CTOS system, since it significantly enhances CTOS per-
formance at a workstation running a plurality of applica-
tions.

An advantageous way of providing virtual demand-pag-
ing for a CTOS workstation will next be described. Prefer-

20

25

35

40

45

50

55

60

65

6

ably, this paging capability is provided for CTOS as a system
service that is used by all applications running at a work-
station. The manner in which such a CTOS system service
may be designed for implementing virtual-demand paging
will become evident from the description provided herein.
For this purpose, all available physical memory may be
considered as divided, for example, into 4 KB (4,000-byte)
pages.

FIG. 2 schematically illustrates three applications Al, A2
and A3 and their associated pages running on a CTOS
workstation WS having a main memory M and a local disk
D. For example, A1 may be a word processor application
program, A2 may be a compiler application program (such
as used by a programmer for program development), and A3
may be a mail program for sending and receiving messages.
As mentioned previously herein, an application may com-
prise one or more processes or threads. Accordingly, it is to
be understood that the term “application” used herein is to
be considered as also meaning an application processor
thread of an application comprised of a plurality of pro-
cesses or threads, each such application processor thread
being able to employ demand paging as described herein for
an application.

Each application (A1,A2,A3) in FIG. 2 is provided with
a respective page table (P1,P2,P3) and a respective local
clock (C1,C2,C3) for controlling page replacement. Each
application typically is allowed a maximum number of
assignable memory pages which it may use during execu-
tion. For example, word processor application program Al
may be allowed a maximum of 100 assigned pages, compiler
application program A2 may be allowed a maximum of 70
assigned pages, and mail application program A3 may be
allowed a maximum of 50 assigned pages. If memory M has
a total of 120 assignable pages, the sum of the pages
assigned to all running applications at any time cannot
exceed 120 pages, regardless of whether an application has
been assigned its maximum number of pages. Note that
workstation WS in FIG. 2 also illustrates a free page list FPL
for keeping track of page assignments, a page cleaning
queue PCQ for cleaning dirty pages, and an activity queue
AQ for indicating relative application activity. These will be
further described hereinafter.

FIG. 3 illustrates a typical page table (P1,P2,P3 in FIG. 2)
which may be used by each application. As shown, each
entry in the page table of FIG. 3 includes page identifying
data p; identifying a particular assigned memory page, an
access bit a, indicating whether the page was referenced by
its application since the last test, and a “dirty” page bit d;
indicating whether the page contains written-to data which
must be written back to its source location, such as a disk
drive. Each page table entry may also include other infor-
mation indicated by o,, such as its disk storage address, the
application to which the page is assigned, whether the page
is in the process of being cleaned, etc.

CTOS allocates a maximum number of assignable pages
to an application when the application is started. CTOS also
creates a local clock (C1,C2,C3 in FIG. 2) for the application
at that time for use in determining which page of the
application should be replaced when replacement is
required. The basic arrangement of such a local clock is
schematically illustrated in FIG. 4, wherein memory pages
Pgl, Pg2, - - - PgN designating pages which have been
assigned to the application are arranged in a circular list, like
the circumference of a clock. The number of assigned
memory pages is not permitted to exceed the maximum
assignable pages for that application. The clock pointer (or
hand) cp points to the last page replaced, and advances

5,606,685

7

clockwise when the local clock is invoked to scarch for a
replaceable page.

Operation during a local clock search for a replaceable
page is illustrated by the flowchart in FIG. 5. When the clock
pointer cp is advanced to the next page (Step 500), the
setting of the access bit a, in the corresponding page table
entry is tested (Step 502) to determine whether the page was
referenced by the application since the last test. If this access
bit a, is found to be set (Step 502), the page is considered to
be a page of the currently active working pages of the
application, and is thereby not eligible for replacement. In
such case, this access bit a, is reset (Step 504), and the flow
proceeds back to Step 500 to continue the search.

If, on the other hand, access bit a, of the next page is found
not to be set in Step 502, the setting of the dirty page bit d,
is then examined (Step 506). If bit d, is not set, indicating
that the page is clean (i.c., it need not be written back to its
source location, such as a disk), then the page is designated
as being eligible for replacement (Step 508). However, if it
is found in Step 506, that bit d, is set, indicating that the page
is dirty, then the page is placed on the page cleaning queue
PCQ (FIG. 2) (Step 510) and the flow returns to Step 500 to
continue the search. A preferred way of accomplishing this
page cleaning in accordance with the present invention will
be described hereinafter with reference to FIGS. 13-15. A
priority may be provided for pages in the cleaning queue
PCQ so that certain pages in PCQ are cleaned ahead of
others. After a page is cleaned, its bit d, in the page table of
its respective application is reset to indicate that the page is
now clean.

Next to be described is the implementation of FIGS. 6-9
wherein a combined global and local page replacement
policy is provided using a local clock for each rumning
application, as described above in connection with FIGS. 4
and 5. It will be assumed, as before, that a CTOS worksta-
tion having a maximum of 120 assignable pages has con-
currently running thereon a word processor application Al,
a compiler application A2 and a mail application A3 having
assignable page maximums of 100, 50 and 30, respectively.
When all three of these applications are running on a
workstation, one of the applications will be running in the
foreground (the foreground application being the one which
controls the keyboard and usually at least some portion of
the display screen), while the other two applications will be
running in the background. For example, the word processor
application could be running in the foreground, permitting a
user to control the keyboard and display io perform word
processing operations as if no other applications were run-
ning. The compiler and mail applications would then be
running in the background. The compiler application could,
for example, be compiling a special-purpose program pre-
viously developed by a user, while the mail application
could be waiting for receipt of a mail message. If a mail
message arrives, the user could be signaled of the receipt of
this message by a flashing marker on the screen. The user
may then, by appropriate keyboard entry, switch to the mail
application program to read the message. The mail applica-
tion would then be in the foreground while the word
processor application would run in the background along
with the compiler application.

As illustrated in the flowchart of FIG. 6, whenever one of
the running applications requests a memory access, the page
table is checked (Step 600) to determine whether the page
containing the information to be accessed is present in one
of the application’s assigned pages. If the page is found to
be present (Step 602), the page is accessed by the application
(Step 604). Otherwise, a page fault occurs causing operation

10

15

20

25

30

40

45

50

55

60

65

8

to proceed to the flowchart of FIG. 7, which illustrates how
a page fault is handled. :

As illustrated in FIG. 7, the occurrence of a page fault
invokes the virtual demand-paging service (Step 700) which
suspends performance of the application which caused the
fault (Step 702). The paging service then checks to deter-
mine whether either the application or workstation page
maximum has been reached (Step 704). If not, the paging
service causes a free (unassigned) workstation memory page
(indicated in the free page list FPL in FIG. 2) to be assigned
to the application which experienced the fault, following
which the requested page is read into this newly assigned
page (Step 706). The application is then restarted (Step 708).
Since a CTOS system is being used, this page may advan-
tageously be obtained from a local disk at the workstation or
transparently across the network from the server worksta-
tion.

If, on the other hand, Step 704 in FIG. 8 finds that either
an application or workstation page maximum had been
reached, then page replacement is required, which is per-
formed as illustrated in FIG. 8 or FIG. 9, depending on
whether a page maximum was found for the application
(FIG. 8) or for the workstation (FIG. 9). The application
page maximum situation illustrated in FIG. 8 will be con-
sidered first.

As illustrated in FIG. 8, page replacement for the situation
where the application has reached its assigned page maxi-
mum begins with the search for a replaceable page in the
application’s local clock (Step 800). This scarch is accom-
plished as previously described in connection with FIGS. 4
and 5. If a replaceable page is found in the application’s
local clock (Step 802), the “not present” page requested by
the application is obtained (e.g., from the local or server
disk) and read into the designated replaceable page (Step
804), following which the application is restarted (Step 806).

If, on the other hand, Step 802 in FIG. 7 finds no
replaceable page after going all the way around the appli-
cation’s local clock, a second go-around of the local clock
isinitiated (Step 808). Since each page access bit a, was reset
during the first go-around, the search for a replaceable page
on the second go-around is based on finding the first
occurring clean page (i.e., a page which does not have d,
set). If a clean page is found, it is designated as a replaceable
page (Step 810). The flow then proceeds to the previously
described (Steps 804 and 806), wherein the “not present”
page is read in to replace the found replaceable page, and the
application restarted.

As illustrated in FIG. 8, if Step 810 indicates that no clean
page was found during the second go-around of the appli-
cation’s local clock, the flow then proceeds to Step 812 to
determine whether there is a page in the page cleaning queue
PCQ (FIG. 2) for which the application can wait 10 be
cleaned. If so, the application waits (Step 814) until the page
is cleaned. A preferred way of accomplishing this page
cleaning will be described hereinafter with reference to
FIGS. 13-15. The cleaned page is then designated as
replaceable and the flow then proceeds to Steps 804 and 806,
as before, to read in the requested “not present” page to
replace this designated replaceable page, and to restart the
application. However, if Step 812 indicates that there is no
page being cleaned which the application can wait for, an
error indication is provided.

FIG. 9 illustrates how page replacement is handled for the
second type of replacement situation where a page fault
cannot be satisfied (even though the application’s assigned
page maximum has not been reached) because the worksta-

5,606,685

9

tion has used up its maximum number of assignable pages.
It will be remembered that the previous example assumed
that the workstation had a maximum of 120 assignable
pages, while the word processor application Al was allowed
a maximum of 100 assigned pages, the compiler application
A2 was allowed a maximum of 50 assigned pages and the
mail application A3 was allowed a maximum of 30 assigned
pages. For example, if applications A1, A2 and A3 have been
assigned 80 pages, 30 pages and 10 pages, respectively, and
a page fault occurs because the word processor application
Al requests a “not present” page, the workstation will not be
able to satisfy this page fault because the workstation page
maximum of 120 pages (80+30+10) has been reached. This
is the type of page replacement situation to which FIG. 9 is
directed.

Basically, the flow in FIG. 9 tries to steal a page from
another application. For this purpose, the workstation activ-
ity queue AQ (FIG. 2) is first checked (Step 900) to
determine which of the other applications running on the
workstation is the least active. In the preferred embodiment
being described, this activity queue AQ is designed to queue
running applications in an order based on which application
least recently experienced a page fault. For example, if word
processor application A1 most recently had a page fault, and
mail application A3 least recently had a page fault, then A3
will be the least active application, followed by A2 and lastly
by Al. In such case, Step 900 in FIG. 9 will select A3 as the
least active application from which to try to steal a page.

Step 902 in FIG. 9 checks whether the least active
application selected in Step 900 is in the foreground (i.e.,
currently being used by the user) and, if so, chooses the next
most active application (Step 904) from which to steal a
page. The reason for not using a foreground application is
that a foreground application, because of its foreground use,
may imminently require access to its pages, and thus should
not be subject to having one of its pages stolen.

Having thus identified the application from which a page
is to be stolen (Steps 900,902,904), the flow in FIG. 9
proceeds to the chosen application’s local clock (Step 906)
to search for a replaceable page, which may be accom-
plished in a similar manner to that previously described in
connection with FIGS. 4, 5 and 8. This search may be
modified in various respects. For example, for the purpose of
Step 906 in FIG. 9, the local clock page replacement search
may be limited to just a single go-around of the local clock.

If a replaceable page is found (Step 908), the flow
proceeds to Step 910 wherein the replaceable page found in
Step 906 is stolen and assigned to the application which
caused the page fault. The requested “not present” page is
then read into this newly assigned page, and the application
which caused the page fault is then restarted (Step 912).

If no replaceable page is found in Step 908, an attempt is
made to steal a page from another application (Step 914).
This is preferably accomplished by searching the local
clocks of other applications (in a manner similar to that
performed in Step 906) beginning with the next least active
application which is not a foreground application, and so on
to other applications until a replaceable page is found. The
flow then returns to Step 910 to complete the steal. If a
replaceable page is still not found (Step 916), then an
attempt is made to find a replaceable page in the local clock
of the application which caused the page fault (Step 918), as
previously described in connection with FIG. 8. If Step 918
finds a replaceable page in the local clock of the application
which caused the page fault, the flow proceeds to Step 910
wherein this replaceable page is used for reading in the

10

15

20

25

30

40

45

50

55

60

65

10

requested “not present” page, and the application is then
restarted (Step 912). However, if even Step 918 proceeds to
Step 920 does not result in finding a replaceable page, the
flow proceeds to Step 920 to provide an error indication.
Alternatively, another search of the other applications could
be made, as before, since a page that was previously not
replaceable could have become replaceable. Such a repeat
search could be performed before searching the local clock
of the application which caused the fault.

It will be evident that the performance of the above
disclosed global page replacement policy of the aforemen-
tioned patent application Ser. No. 08/017,068 is highly
dependent upon the manner in which running applications
steal pages from one another based on the global page
replacement policy. In the embodiment described in the
aforementioned copending patent application Ser. No.
08/100,826, performance is significantly enhanced by addi-
tionally providing an “elbow room” capability for each
application which permits the global page replacement
policy disclosed in Ser. No. 08/017,068 to better take into
account the paging activity of each of the running applica-
tions. The preferred embodiment disclosed in Ser. No.
08/100,826 will next be described.

Initially, consider the situation where a background pro-
gram (call it Thrasher) in the implementation of Ser. No.
08/017,068 is continually scanning through a huge memory
array, causing a page fault on almost every access. Since
Thrasher is causing continuous page faults, it may steal
pages from every other background application that is
accessing its pages relatively infrequently. When a user
activates such a background application, the activated appli-
cation may have few if any pages in memory, and its pages
will need to be faulted in. While these pages are being
faulted in, Thrasher should not be allowed to steal pages
from this activated application. The “elbow room’ approach
provided by Ser. No. 08/100,826 solves this problem in a
particularly advantageous manner, as will next be described
with reference to FIGS. 10-12.

FIG. 10 illustrates a CTOS workstation WS', similar to
that shown in FIG. 2, wherein a giobal table GT is used with
an application activity queue AQ for determining the order
for selecting candidate applications for stealing pages from
applications running on the workstation WS'.

FIG. 11 illustrates typical values contained in a global
table GT, such as indicated in FIG. 10. As shown, the first
column C1 of the global table GT lists applications Al, A2,
A3 - - - AN running on the workstation, WS'".

The second column C2 in FIG. 11 indicates whether an
application is running in the foreground Fgd or background
Bgd. As shown by column Cl1, application A2 is the fore-
ground application.

The third column C3 in FIG. 11 indicates the number of
free pages available to an application in the application’s
local clock. A free page is one which has been assigned to
an application, but which is not currently in use or dirty (i.e.,
neither a; nor d, in FIG. 3 is set for that page). As shown by
column C3, applications A1, A2, A3, AN have 2,7, 5, 6 free
pages, respectively.

Column C4 in FIG. 11 represents the application order
provided by the activity queue AQ in FIG. 10, which is
based on the application having the least most recent (oldest)
page fault. The application order indicated in column C4 is
2, 3, 1, 4, wherein A3 is the application having the least
recent (oldest) page fauit.

Column CS5 in FIG. 11 indicates the “elbow room” value
currently in effect for each application. In order to under-

5,606,685

11

stand the significance of this “elbow room” value, it is
necessary to understand how it is provided. In a preferred
embodiment, each application has an “clbow room” value
associated with it, which may typically range from 2 to 7.
Operation in accordance with the present invention is such
that, during searching for an application from which to steal
a page, an application will be skipped as a candidate if it
does not have more free pages (column C3) than its current
“elbow room” value (column CS5). For example, in the
global table GT illustrated in FIG. 11, it will be understood
that application A1 would be skipped during a page stealing
search, since it has only 2 free pages (column C3), which is
less than its current “elbow room” value of 3 (column CS5).
This “elbow room” test would therefore prevent the problem
presented by the previously considered Thrasher applica-
tion, since Thrasher will not be able to steal a page from an
application which does not have sufficient “elbow room”.

Note that the other illustrated applications A2, A3 and AN
in FIG. 11 have more {ree pages than their respective current
“elbow room” values, and thus these applications would not
be skipped when searching for a page to steal.

The “elbow room” value of an application is made to vary
based on its page faulting activity. In a preferred embodi-
ment, this is accomplished by increasing an application’s
“elbow room” value to its maximum value each time a page
fault occurs. The maximum “elbow room” value may be the
same for all running applications (e.g., seven), or some
applications may be given greater “elbow room”. If an
application goes for a predetermined amount of time (e.g.,
five seconds) without a page fault, then its “elbow room”
value is decreased by one, which continues until the mini-
mum “elbow room” value is reached. This minimum value
may, for example, be 2, and each application may have a
different minimum.

FIG. 12 is a flow chart illustrating how the previously
described flow chart of FIG. 9 may be modified in accor-
dance with the present invention when “elbow room” is
provided as described above. It will be remembered that the
flow chart of FIG. 9 corresponds to the page stealing
situation arising when an application’s page fault cannot be
satisfied (even though the application’s assigned page maxi-
mum has not been reached) because the workstation has
used up its maximum number of assignable pages. The page
faulting application thus tries to steal a page from another
application.

Initially it is to be understood that Steps 1000, 1002 and
1004 in FIG. 12 may typically correspond to Steps 900, 902
and 904, respectively in FIG: 9. More specifically, in Step
1000, the workstation activity queue AQ' is checked to
determine which of the other running applications least
recently experienced a page fault. If, for example, applica-
tion Al experienced a page fault and is trying to steal a page
from another application, the least active other application
would be application A3, since column C4 in FIG. 11 shows
a “1” for application A3.

The next Step 1002 in FIG. 12 corresponds to Step 902 in
FIG. 9, wherein a check is made to determine whether the
application selected for stealing by the previous Step 1000
is operating in the foreground. f so, operation detours to
Step 1004 (as occurs with respect to Step 904 in FIG. 9) in
order to select the application (other than application Al
which is trying to steal a page) having the next most recent
page fault. Since column C2 of FIG. 11 shows that appli-
cation A3 chosen in Step 1000 is not in the foreground, the
flow proceeds to Step 1006 in FIG. 12, which is where the
“elbow room” factor of the present invention is taken into
account.

10

15

20

25

30

35

40

45

50

55

60

65

12

Step 1006 in FIG. 12 determines whether the application
selected as a candidate for stealing in the previous steps has
an “elbow room” value which is greater than the chosen
application’s number of free pages. For example, application
A3 in FIG. 11 has § free pages (column C3) and an “elbow
room” value of 2 (column CS5). Thus, if application A3 is the
chosen application, the flow will proceed to Step 1008 in
FIG. 12 to try and steal a page therefrom.

If on the other hand, application Al is the one chosen in
Step 1002 (or Step 1004), the number of free pages (2 in
column C3 of FIG. 11) will not exceed its “elbow room”
value (3 in column C5), in which case application A1 would
be skipped for page stealing. The flow in FIG. 12 would then
proceed to Step 1016 to try other approaches for selecting an
application for page stealing. These other approaches will be
considered hereinafter.

For now, it will be assumed that Step 1006 in FIG. 12
selects application A3 as the candidate application for page
stealing, in which case the flow in FIG. 12 proceeds 1o Step
1008. In Step 1008 (similar to Step 906 in FIG. 9), a search
for a replaceable page is made in the local clock of appli-
cation A3, which may be accomplished in a similar manner
to that previously described in connection with FIGS. 3-5
and 8. ‘

If Step 1010 determines that a replaceable page was found
in Step 1008 of FIG. 12, then the flow proceeds to Steps
1012 and 1014 in FIG. 12, which may be similar to Steps
910 and 912, respectively, in FIG. 9. In Step 1012, a page is
stolen from application A3 sclected for page stealing and
assigned to application Al which caused the page fault,
following which the requested “not present” page is then
read in. In Step 1014, application Al is restarted, since the
page fault has been resolved.

However, if Step 1010 in FIG. 12 determines that a
replaceable page was not found in the local clock of appli-
cation A3 (which was chosen for page stealing) then the flow
proceeds to Step 1016 to determine another application from
which to try to steal a page. Note that the fiow also proceeds
to Step 1016 as a result of the previously considered Step
1008 in FIG. 12 determining that there is insufficient “elbow
room” in the application selected for page stealing by Steps
1000, 1002 and 1004.

Various strategies may be employed in Step 1016 in FIG.
12 for selecting the next application for page stealing. One
approach is to select the next application for page stealing by
repeating the previously described Steps 1000, 1002, 1004
and 1006, beginning with the application which next least
recently experienced a page fault, and repeating until a
suitable application is found for page stealing. Step 1018
determines whether a replaceable page can be found using
this approach. If so, the fiow proceeds to Steps 1012 and
1014 to satisfy the page fault, as previously described.

However, if Step 1018 in FIG. 12 determines that no
replaceable page can be found in any other application
suitable for page stealing, then the flow proceeds to Steps
1020 and 1022 in FIG. 12, wherein an attempt is made to
find a replaceable page in the local clock of the application
which caused the page fault, as previously described in
connection with Steps 918 and 920 in FIG. 9. If even this
does not result in finding a replaceable page, then Step 1022
in FIG. 12 provides an error indication. Alternatively, before
producing this error indication, another search of the other
applications could be made, in the same manner as previ-
ously described with respect to FIG. 9, since a page that was
not previously replaceable might have become replaceable.
Such a search could be performed before searching the local
clock of the application which caused the fault.

5,606,685

13

It will be evident from the foregoing description of
preferred embodiments of the inventions disclosed in the
aforementioned applications Ser. Nos. 08/017,068 and
08/100,186 that page cleaning performance can significantly
affect paging effectiveness, since dirty pages cannot be used
for page replacement, as described previously herein. The
aforementioned application Ser. No. 08/176,139 provides a
particularly advantageous way of achieving this page clean-
ing so as to increase page availability, as will now be
described with respect to the preferred embodiment dis-
closed therein.

It will be remembered that a “dirty” page is a page on
which new data has been written, but which page and its new
data has not been written back onto permanent storage, such
as a disk drive located either at the workstation or at the
workstation server. Since a page is normally stored in a
volatile RAM memory, any new data written on the page can
be lost if not returned to permanent storage. Thus, until a
dirty page is written back to permanent memory, the page
table (FIG. 3) maintains the dirty bit d, set to indicate that the
page contains written-to data which must be written back to
permanent storage.

Refer again to the flowchart of FIG. 5§ which illustrates
how an application searches its local clock for a replaceable
page when the application has already used up its maximum
number of assigned pages. As previously described, each
time the local clock pointer cp advances to a new page (Step
500), the page access bit a; is tested (Step 502) to determine
whether the page was referenced by the application since the
last test. If a; is not set, the setting of the dirty bit d; of the
page is then examined (Step 506). If d, is found to be set, the
page is dirty and is therefore not replaceable. The page is
then placed on the page cleaning queue PCQ (Step 510), d;
of the page is reset, and the page is marked as being cleaned,
such as by providing a “cleaning in progress” indication in
the “Other Page Info” portion of the page table shown in
FIG. 3. The clock pointer cp then advances to the next page.
While a page is being cleaned, it remains available for use
by the application. Although d; of the page has been reset,
the page will not be allowed to be replaced because the
page’s “cleaning in progress” indication is also checked and
will prevent replacement while the page is being cleaned.
Dirty pages are placed on the page cleaning queue PCQ in
a similar manner by other applications running on the
workstation.

Referring next to FIG. 13, illustrated therein is a block and
schematic diagram illustrating the manner in which
addresses of pages to be cleaned are ordered in the page
cleaning queue PCQ. As indicated by the consecutive page
groups #1, #2 and #3 in FIG. 13, the pages to be cieaned are
ordered based on their physical permanent storage address.
Since the CTOS operating system allocates contiguous
pages to applications in the largest blocks possible, such
groups of contiguous pages typically occur in the page
cleaning queue. The advantage of having such groups of
contiguous strings will become evident shortly.

Associated with the page cleaning queue PCQ is an
application waiting queue AWQ, such as illustrated in FIG.
14 which shows applications A4, A1l, A6 and AN waiting
therein. An application is placed in AWQ when the appli-
cation searches for a replaceable page, fails to find one, and
chooses to wait for a page to be cleaned, such as illustrated
at Step 812 in FIG. 8. A first-in-first-served priority is
normally provided for queued applications. However, it is
within the scope of the present invention to provide different
priorities.

Having described the ordering of pages in the page
cleaning queue PCQ with reference to FIG. 13, and the

10

20

25

30

35

45

50

55

60

65

14
queuing in AWQ of applications waiting for a page to be
cleaned with reference to FIG. 14, the manner in which page
cleaning is initiated will next be described with reference to
FIGS. 15-17.

It is important in determining when to initiate page
cleaning to provide adequate page cleaning without exces-
sively burdening the system with page cleaning operations.
The preferred embodiment achieves an appropriate balance
by providing for initiating page cleaning in three different
ways. A first way is illustrated in FIG. 15 and is based on
determining when an application reaches a certain threshold
of dirty pages.

As shown in FIG. 15, when an application experiences

a page fault, a determination is made (Step 1500) as to
whether the application is currently requesting a clean page.
This may be accomplished by checking the page cleaning
PCQ to see if cleaning is in progress for at least one page for
that application. If a page is not currently being cleaned, the
routine ends without initiating page cleaning (Step 1502).

If a page is not currently being cleaned, then the flow
proceeds to Step 1504 in FIG. 15 to determine whether the
application’s dirty page threshold has been reached. If Step
1504 determines that the application’s dirty page threshold
has been exceeded, page cleaning is initiated, as shown. It is
advantageous to base this threshold determination in Step
1502 on determining whether a predetermined dirty page
minimum or a predetermined proportional dirty page mini-
mum has been reached. For example, the predetermined
dirty page minimum for an application may be set at 5 dirty
pages, and the predetermined proportional dirty page mini-
mum may be set at one-out-of-eight dirty pages. Thus, for an
application having 50 total pages, the dirty page threshold
would be 6 (i.e., 50/8), since 6 is greater than the dirty page
minimum of 5. For an application having 20 pages, the dirty
page threshold would be 5, since 5 is greater than the
proportional dirty size minimum of 2 (i.e., 20/8).

A second way of initiating page cleaning is illustrated in
FIG. 16. Step 1600 continuously tests whether a predeter-
mined time period has expired. This predetermined time
period may typically be one second. If Step 1600 determines
that this predetermined time period has expired, then the
flow proceeds to Step 1602 to determine whether page
cleaning is currently being performed. If so, the routine
ends. If not, the flow proceeds to Step 104 which checks the
page cleaning queue PCQ to determine whether there are a
sufficient number of pages in the PCQ to justify initiating
page cleaning. If not, the routine ends without initiating page
cleaning. If there are sufficient pages, page cleaning is
initiated, as shown.

FIG. 17 illustrates a third way of initiating page cleaning.
This third way occurs in response to the situation where an
application searches for a replaceable page, but falls to find
one, and then chooses to wait for a page to be cleaned, as
illustrated at Step 812 in FIG. 8. It will be remembered, as
described previously in connection with FIG. 14, that this
situation causes the application to be placed on the appli-
cation waiting queue AWQ shown in FIG. 14. In addition,
when an application chooses to wait for a page to be cleaned
(Step 1700 in FIG. 18), a check is made (Step 1702) as to
whether or not the application has a page which is currently
being cleaned. If so, the routine ends, since there is no need
to initiate page cleaning. However, if the application has no
page which is currently being cleaned, then page cleaning is
initiated, as shown by Step 1704 in FIG. 17.

Having described the various ways that page cleaning is
initiated in the preferred embodiment, reference is next

5,606,685

15

directed to the flowchart of FIG. 18 which illustrates how the
thus initiated page cleaning operation is advantageously
accomplished in the preferred embodiment.

In FIG. 18, page cleaning initiation occurs in block 1800.
This initiation of page cleaning may occur in any one of the
three ways previously described in connection with FIGS.
15-17. After page cleaning is initiated, a test is made (Step
1802) to determine whether page cleaning can be performed
in view of other system operations. If page cleaning can not
be performed at that time, a waiting loop is entered. If page
cleaning can be performed, operation proceeds to Step 1804
wherein the page cleaning queue PCQ (FIG. 13) is searched
to find an optimum string of contiguous pages for writing in
permanent storage.

The optimum string for page cleaning is chosen in a
particularly advantageous manner in the preferred embodi-
ment. It will be understood that the writing of data in
permanent storage, such as a disk drive, is most expedi-
tiously performed by writing a relatively large amount of
contiguous data at one time. Typically, the largest size string
of contiguous pages which can be written in a single
operation on a system disk drive is 64,000 bytes, which in
the preferred embodiment corresponds to 15 pages. Accord-
ingly, for maximum writing efficiency, block 1804 in FIG.
18 searches the groups of pages in the cleaning queue PCQ
for a string of 15 contiguous pages (i.c., pages having
contiguous addresses) for writing on the disk drive in a
single operation. As previously pointed out in connection
with FIG. 13, dirty pages in PCQ are stored in sorted order
so that contiguous pages can be casily formed into a string
for writing.

If Step 1804 in FIG. 18 can not find a string of 15
contiguous dirty pages in PCQ, then the groups of dirty
pages in PCQ are searched to determine whether a string of
15 contiguous pages can be formed by including clean pages
in the string. For example, assume that a first group of
contiguous pages contain pages having addresses 1000,
1001, and 1002, that a second group of contiguous pages
contain pages having addresses 104, 105, 106, 107 and 108,
and a third group of contiguous pages contain pages having
addresses 111, 112, 113 and 114. In such case, a string for
writing is formed comprised of the 15 pages 100 10 114
inclusive, which includes clean pages 103, 109 and 110.
These clean pages are known as gap pages and may be any
page in the system, a free page or a page in some applica-
tion’s local clock. Each corresponding page in its respective
page lable is marked “gap page.” If this string including
these gap pages were not formed, three separate writing
operations (instead of only one) would be required in order
to write these three groups of pages on the disk drive. Of
course, lesser numbers of contiguous pages can be formed
inlo a string for writing (with or without including clean
pages) if 15 contiguous pages are not available.

The string of pages formed in Step 1804 (as described
above) is written on the disk drive in a conventional manner
(Step 1806). After writing, the resulting cleaned pages of the
siring are then appropriately distributed to the applications
(Step 1808). Gap pages in the written string are freed as soon
as the writing operation completes. Cleaned pages are given
to waiting applications on the application waiting queue
AWQ on a first-in-first-served basis. If a different priority is
provided, this different priority will determine the distribu-
tion order. The remaining cleaned pages are returned to their
applications. If a page has been dirtied during cleaning, its
dirty bit di gets set again. If the application to which a
cleaned page corresponds has been deactivated, the cleaned
page is returned to the workstation’s frec page storage and
entered on the free page list FPL (FIG. 10).

20

25

30

35

40

45

50

55

60

65

16

The present invention is directed to a still further
improvement in the above described demand-paged virtual
memory systems by providing for prefaulting in a novel and
particularly advantageous manner such that it is made sig-
nificantly more likely that a running application will find a
requested page in its local clock.

The previous descriptions herein describe how, in
response to an application experiencing a page fault, a “not
present” page is brought into the application’s local clock.
Prefaulting, to which the present invention is directed, refers
to additionally reading in one or more pages that were not
requested with the speculation that these additionally read-in
pages are likely to be requested by the application. The
particularly advantageous manner in which this prefaulting
is provided in accordance with the present invention will
next be described with reference to the preferred embodi-
ment illustrated in FIGS. 19-22.

FIG. 19 is a flowchart illustrating how a page fault
typically occurs for a running application. As shown in FIG.
19, whenever a running application requests an access, the
application’s page table is checked (Step 1900) to determine
whether the page containing the information to be accessed
is present in one of the application’s assigned pages. If the
page is found to be present (Step 1902), the page is accessed
by the application (Step 1904). Otherwise, a page fault
occurs causing operation to proceed to the flowchart of FIG.
20, which illustrates how a page fault is handled with the
enhanced prefaulting provided by the present invention.

As illustrated in FIG. 20, the occurrence of a page fault
invokes the virtual demand-paging service (Step 2000)
which suspends performance of the application that caused
the fault (Step 2002). The paging service then checks to
determine whether either the application or workstation page
maximum has been reached (Step 2004). If so, prefaulting
would not be appropriate since, in either case, there is
insufficient room for prefaulted pages. In such case opera-
tion proceeds to provide for page replacement as previously
described herein in connection with FIGS. 8, 9 and 12.

If Step 2004 in FIG. 20 finds that neither the application
nor workstation page maximum has been reached, operation
then proceeds o Step 2006 wherein a check is made to
determine whether prefaulting has been selected for the
application which experienced the page fault, since it may be
chosen not to provide prefaulting for a particular applica-
tion. If prefaulting is not selected for the application which
experienced the page fault, operation then proceeds to Step
2008, wherein a free (unassigned) workstation memory page
(indicated in the free page list FPL in FIGS. 2 and 10) is
assigned to the application’s local clock, following which
the requested “not present” page is read into the assigned
page and the application then restarted (Step 2010). On the
other hand, if prefaulting has been selected for the applica-
tion which caused the page fault then, as indicated in FIG.
20, operation proceeds to FIG. 21, which is a flowchart
illustrating how enhanced prefaulting is provided in a pre-
ferred embodiment.

It will be understood {rom the foregoing that the flowchart
of FIG. 21 is reached when an application experiences a
page {ault, when neither the application nor the workstation
has reached its page maximum, and when the application has
been selected for prefaulting. As indicated in Step 2100 of
FIG. 21, prefaulting begins by examining page entries in the
application’s page table that both precede and follow the
page found to be “not present.” Then, as indicated in Step
2102 in FIG. 21, consecutive adjacent “not present” pages
from the same file are selected as candidates for prefaulting.

5,606,685

17

FIG. 22 is an exemplary portion of a page table which will
be used to illustrate the operations indicated in Steps 2100
and 2102 of FIG. 21. In FIG. 22, the “Page Present” and
“File” columns may, for example, be part of the “Other Page
Info” column in the page table shown in FIG. 3. A“1” in the
“Page Present” column indicates that the page is “present”,
while a “0” indicates that the page is “not present”. The
“File” column identifies the file from which each page was
obtained.

It is assumed in FIG. 22 that page 18 is the page which the
application found to be “not present” and which produced
the page fault. Pages 14-17 in FIG. 22 are representative of
adjacent pages which precede the “not present” page 18,
while pages 19-23 are representative of adjacent pages
which follow the “not present” page 18. Such adjacent page
entries are examined in Step 2100 in FIG. 21. The selection
of pages for prefaulting in accordance with Step 2102
requires that the adjacent pages be “not present” and in the
same file. Note in FIG. 22 that only the six pages 16-21 meet
these requirements, and will thus be chosen as candidates for
prefaulting.

Following Step 2102 in FIG. 21, operation proceeds to
Step 2104 which determines whether any candidate pages
have been found for prefaulting, that is, whether there is any
page or pages besides the requested “not present” page (page
18 in FIG. 22) which meets the requirements of Step 2102.
If not, operation proceeds to Step 2008 and 2010 in FIG. 20,
which provide for resolving the page fault without prefault-
ing, as described previously.

If Step 2104 in FIG. 21 finds that there is at least one
candidate page for prefauiting, then operation proceeds to
Step 2106 which limits the pages to be prefaulted to a
predetermined maximum number, which may typically be
14 pages. The number 14 is chosen since it is assumed that
the reading operation in the preferred embodiment provides
for reading a maximum of 15 pages from an associated disk
drive (or a disk drive on a remote server). Adding the
requested “not present” page to these 14 prefaulted pages
provides the desired maximum of 15 pages for reading from
a disk drive. Preferably, when there are more than 14
candidate pages for prefaulting candidate pages following
the requested “not present” page are chosen ahead of those
preceding the requested “not present” page. For example, if
there are 10 candidate pages following the requested “not
present” page and 8 candidate pages preceding the requested
“not present” page, the 10 following candidate pages along
with the nearest 4 of the preceding candidate pages will be
selected for prefaulting.

Following Step 2106 in FIG. 21, the flow proceeds to Step
2108 wherein the workstation memory M (FIGS. 2 and 10)
is searched to find a block of contiguous pages in memory
for storing the “not present” page and the pages selected for
prefaulting in Step 2106. If less than the desired number of
contiguous pages are found, the number of pages to be
prefaulted is reduced accordingly with the pages following
the “not present” page being given preference as before.

In the next following Step 2110, the pages to be prefaulted
and the not present page are read from the disk drive where
they reside into the corresponding contiguous pages found in
the workstation memory for use by the application which
produced the page fault. For the example shown in FIG. 22,
the pages read into contiguous pages of the workstation
memory in Step 2110 would be pages 16-21. The applica-
tion is then restarted, as indicated by Step 2112 in FIG. 21.

The manner described above for providing prefaulting has
been found to be highly advantageous. One important

20

25

55

60

65

18

advantage is that the pages selected for prefaulting have
been found to be highly likely to be requested by the
application. A further important advantage is that providing
for reading of a block of prefaulted pages into corresponding
contiguous pages of the workstation memory, up to the
maximum number of pages that can be read by the system,
permiits a relatively large number of pages to be prefaulted
in essentially the same time as would be required to read in
a single requested “not present” page.

It is to be understood that the above description of
enhanced prefaulting in a CTOS system providing virtual
demand paging is only exemplary, since many modifications
and variations in construction, arrangement and use are
possible within the scope of the invention.

Accordingly, the present invention is to be considered as
encompassing all possible modifications and variations
coming within the scope of the appended claims.

What is claimed is:

1. A method of controlling paging on a workstation
capable of concurrently running a plurality of applications,
said method comprising the steps of:

providing a workstation memory;

dividing said workstation memory into a plurality of
pages having files stored therein;

maintaining a page table for each running application
indicating corresponding files and pages and also
whether each page is present;

providing non-volatile storage for storing not present
pages;

assigning pages of said workstation memory to each
running application;

providing a page fault when a running application
requests access to a page which said page table indi-
cates is not present;

determining whether a free page is available for storing
the not present page of the page faulting application;

when a free page is determined to be available to store the
not present page, then examining the page tabie of the
page faulting application with respect to adjacent pages
both preceding and following the not present page
which caused the page fauit;

selecting as candidate pages for prefaulting consecutive
not present adjacent pages both following and preced-
ing said not present page which are also from the same
file as the not present page;

searching said workstation memory to find an available
block of contiguous pages for storing the not present
page and the adjacent candidate pages; and

reading in from said non-volatile storage the not present

page which produced the page fault and the maximum
number of adjacent candidate pages that can be accom-
modated by the block found by said searching.

2. The method of claim 1, including the step of selectively
providing a prefetching capability for a running application,
and wherein the steps of examining, selecting, searching and
reading are performed for an application when the applica-
tion has been provided with a prefaulting capability.

3. The method of claim 1, including the step of:

when the step of examining does not find any candidate

pages for prefaulting, then reading the not present page

from said non-volatile storage into the free page found

by said determining without performing the steps of
selecting and searching.

4. The method of claim 1, including the step of limiting

said candidate pages to a predetermined maximum number.

5,606,685

19

5. The method of claim 4, wherein said predetermined
maximum number is chosen based on the maximum number
of pages which can be read from said non-volatile storage
during a reading operation.

6. The method of claim 4, wherein the step of limiting
chooses candidate pages for prefaulting such that candidate
pages following the not present page are chosen ahead of
those preceding the not present page.

7. The method of claim 1, including the steps of:

when a free page is determined not to be available to store
the not present page of a faulting application, then
searching the pages of the page faulting application
using a clock algorithm to locate a page which is
replaceable; and

when said searching does not find a replaceable page in
the page faulting application, then searching the pages
of other running applications to locate a replaceable
page for use by the page faulting application for storing
the not present page;

said searching of said other running applications occur-
ring in a selection order based on their page faulting
activity; and

10

15

20

20

reading in from said non-volatile storage the not present

page into the located replaceable page.

8. The method of claim 7, wherein said searching of said
other running applications begins with the one of said other
running applications which least recently experienced a page
fault.

9. The method of claim 8, wherein said searching of said
other running applications includes selecting a next one of
said other running applications for searching when no avail-
able replaceable page is found in a previously searched
application.

10. A method in accordance with claim 7, wherein said
selection order is additionally based on whether any of said
other running applications is running in the background
foreground.

11. A method in accordance with claim 7, wherein said
workstation is a CTOS workstation.

