

=$=
Burroughs

XE 500
CENTIX™
Kernel
Customizer
Operations
Guide
Copyright © 1986. Burroughs Corporation. Detroit. Michigan 48232
TMT rademark of Burroughs Corporation

Relative To Release Level 6.0
Priced Item
November 1986

Distribution Code SA
Printed in U S America
1207826

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any
product and related material disclosed herein are only furnished pursuant and subject
to the terms and conditions of a duly executed Program Product license or Agree­
ment to purchase or lease equipment. The only warranties made by Burroughs, if any,
with respect to the products described in this document are set forth in such license
or Agreement. Burroughs cannot accept any financial or other responsibility that !1lay
be the result of your use of the information or software material, including direct,
indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software
material complies with the laws, and regulations of the jurisdictions with respect 'to
which it is used.

The information contained herein is subject to change without notice. Revisions may
be issued to advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded, using the Product
Improvement Card at the back of this manual, or remarks may be addressed directly
to Burroughs Corporation, Corporate Product Information East, 209 W. lancaster
Ave., Paoli, PA 19301, U.S.A.

About This Guide

Purpose
This guide describes the procedures for customizing the
CENTIX kernel on the XE 500 computer.

Scope
This guide presents information necessary to customize the
CENTIX kernel on the XE 500 computer. For information on
programming in the CENTIX system, see your CENTIX
Programming Guide.

Audience
This guide is intended for the experienced CENTIX system
administrator.

Prerequisites

v

The system administrator who uses this guide should be very
familiar with the XE 500 operating system. The administrator
should also have a good understanding of programming on
the XE 500 computer.

How to Use This Document
Use this guide to customize the CENTIX kernel. Also use this
guide as a reference for operating system parameters.

1207826

vi About This Guide

Organization
This guide contains the following sections:

Section 1, Overview, briefly discusses the XE 500
CENTIX kernel customizer, the customizer shell script, the
/etc/master file, and the CENTIX File System Server.

Section 2, Tuning Parameters, discusses how tunable
CENTIX kernel parameters are modified, how the CENTIX
File System Server is affected, and how the new,
"customizedn kernel is created and compiled.

Section 3, Tunable Parameter Descriptions, describes in
detail the tunable parameters in the CENTIX kernel.

Section 4, Adding Device Drivers, describes how to use
the kernel customizer to add device drivers to your
system. This section assumes that you have already
developed a device driver for CENTIX.

A glossary and index follow Section 4.

Related Product Information
XE 500 CENTIX Administration Guide

This guide discusses how to administer the XE 500 CENTIX
operating system.

XE 500 CENT IX Programming Guide

This guide discusses how to program on the XE 500 CENTIX
system.

XE 500 CENTIX C Language Programming Reference Manual

This manual describes C, the programming language on which
the CENTIX operating system is structured.

XE 500 CENTIX Software Installation Guide

This guide presents the procedures for installing your CENTIX
operating system.

XE 500 CENTIX Operations Reference Manual

This manual lists and describes all CENTIX shell commands,
system calls, library functions, and special files.

About This Guide vii

Conventions Used in This Guide
D All commands within text are shown in boldface.

D Variables are shown in italics. For example, in the following
command, oldfile and newfile are both variables:

cp oldtlle newtlle

When you enter the actual command, you substitute the
names of the file that you are copying and the file to which
you are copying for oldfile and newfile.

D In command lines, optional fields are enclosed in brackets.

D Tunable parameters are in upper case (for example,
MAXUP).

1207826

Contents

About This Guide
Purpose .. .
Scope
Audience
Prerequisites .. .
How to Use This Document
Organization
Related Product Information
Conventions Used in This Guide

Section 1: Overview
The CENTIX Kernel Customizer

The /etc/master File .. .
The CENTIX File System Server

Section 2: Tuning Parameters
Modifying Tunable Parameters
Modifying CENTIX File System Server Parameters
Running the CENTIX Kernel Customizer Script
Recovering from an Invalid Customized Kernel

Section 3: Tunable Parameter Descriptions
System Resource Parameters

MAXFS .. .
MAXUP .. .
NANODE
NBUF
NCllST .. .
NFllE .;
NFlOCKS
NHBUF .. .
NlRGBlOCKS
NPROC .. .
NSWAP .. .
NSWBUF
NTEXT .. .
SMAPSIZ .. .

1207826

ix

v
v
v
v
v
v
vi
vi
vii

1-1
1-1
1-3
1-3

2-1
2-1
2-3
2-5
2-6

3-1
3-1
3-1
3-2
3-2
3-4
3-7
3-8
3-9
3-9

3-10
3-12
3-14
3-14
3-15
3-16

x Contents

Shared Memory Parameters 3-16
SHMEM ... 3-16
SHMALL .. 3-17
SHMBRK .. 3-17
SHMMAPSIZE .. 3-17
SHMMAX .. 3-17
SHMMIN .. 3-17
SHMMNI .. ~-17

SHMSEG .. 3-18
Message Parameters ... 3-19

MESG .. 3-19
MSGMAX ... 3-20
MSGMNB ... 3-20
MSGMNI .. 3-20
MSGTOL .. 3-20

Semaphore Parameters .. 3-22
SEMMAP .. 3-22
SEMMNI .. 3-23
SEMMNS .. 3-23
SEMMNU 3-23
SEMUME .. 3-24
SEMMSL .. 3-24
SEMOPM .. 3-24
SEMVMX .. 3-24
SEMAEM .. 3-24

A Sample CENTIX Kernel Customization Session 3-26

Section 4: Adding Device Drivers 4-1
Obtaining a Major Device Number 4-1

The jete/master File ... 4-1
Using the tete/master File to Choose a Major Device Number 4-5

Adding the Device Driver to the CENTIX Kernel 4-6

Illustrations
3-1
3-2
3-3

Shared Memory Implementation
IPC Message Implementation
IPC Semaphore Implementation

Tables

2-1
3-1

1201826

CENTIX File System Server Parameters
Recommended Values for NBUF and NHBUF

xi

- 3-18
. -- 3-21
__ 3-25

.. _ 2-3.
3-5

Section 1 1-1

Overview

The CENTIX Kernel Customizer
The XE 500 CENTIX Kernel Customizer allows you to
customize the CENTIX kernel by adding already-developed
device drivers to your system, and by tuning parameters that
control system resources. Some of these system resources
are the number of files the kernel can open, the number of
buffers in the buffer cache, and the number of file systems
the kernel can mount.

The kernel maintains information used to manage system
resources in tables that are fixed in size. Changing the sizes
of these tables (and the size of the kernel) can increase the
performance of your CENTIX system.

You can increase the memory of your kernel up to a
maximum of 420 K-bytes.

Note: Your kernel customizer matches the version of the kernel
that you have on your system (8 or 16 users). If your system
has a maximum of 8 users, your customizer will not allow the
operating system to be generated beyond 8 users.

The customizer software is located in the /usr/sys/oslib and
/usr/sys/cf directories. The customizer also uses the
/etc/master and /etc/config files.

In the /usr/sys/oslib directory:

o Five kernel libraries.

o Two object modules.

In the /usr/sys/cf directory:

o The configuration file dfile.normal.

o A shell script called custscript, which the CENTIX kernel
customizer uses to compile and link the customized kernel.

1207826

1-2 Overview

eustseript performs the following operations:

Runs the /etc/config program.

/etc/config first reads input from the file dfile.normal,
which you specify (see Section 2). If information is not
supplied in this file, then /etc/config defaults to the file
/etc/master for its input.

/etc/config then generates the information from these two
files (with information from dfile.normal overriding that in
/etc/master) into conf.c, a C program that defines the
configuration tables for the various devices on the system.

2 Runs ee, the C compiler.

conf.c is compiled, creating the object file conf.o.

3 Runs Id, the link utility.

eustseript takes information from conf.o, and from the five
kernel libraries, and generates it into the new kernel.

Note: When you run custscript the Id utility produces the
following warning message: "Id warning; resultant object
marking: 'cpu = 68020, fpu = 68881,' incompatable with
CENVIRON: 'cpu = 68020, fpu = software. '" This message
should be ignored.

The previous kernel, /unix, is saved off to a new file,
/oldunix, and the new kernel is linked to /unix.

4 Runs a mkboot operation.

Because the CENTIX kernel actually lives in the BTOS
system, mkboot takes a copy of /unix and creates a BTOS
file, [Sys]<sys>Centix.sys, which BTOS recognizes as the
CENTIX kernel.

For more on the customizer script, see "Running the CENTIX
Kernel Customizer Script" in Section 2.

Overview

The / etc / master File
The customizer package also includes the file /etc/master,
which is the configuration file used to create the CENTIX
kernel. The /etc/master file contains the master device
information. This file itself should be modified only when
adding device drivers.

1-3

Changing parameters should be done through the description
file dfile.normal (which is described in Section 2). Values
specified in dfile.normal override those in the /etc/master file.

See Section 4 for a more detailed explanation of the
/etc/master file.

The CENTIX File System Server
When tuning certain parameters in the CENTIX kernel, some
parameters in the CENTIX File System Server require
corresponding changes. The process for modifying CENTIX
File System Server parameters is described in Section 2.

The CENTIX File System Server is a BTOS-based system
service that controls all CENTIX disk I/O. All disk requests
must be processed through the CENTIX File System Server.
Increasing the amount of memory allocated to the CENTIX
File System Server, along with changing parameters in the
kernel, can help improve your system's performance. The
CENTIX File System Server can be configured by making
entries in [Sys]<sys>ConfigUFS.sys.

For a full description of the CENTIX File System Server, see
your XE 500 CENTIX Installation Guide.

1207826

Section 2 2-1

Tuning Parameters
Built into the CENTIX system kernel are parameters that
control system resources. This section describes how these
parameters are modified, how the CENTIX File System
Server is affected, and how the new "customized" CENTIX
kernel is created and compiled.

Section 3 describes the tunable parameters and provides a
sample CENTIX kernel customization session.

Modifying Tunable Parameters
The tunable parameters, along with their default values, are
listed in the /etc/master file (described in Section 4).

Caution: The /etc/master file contains the master device
information. It should be modified only when adding device
drivers (see Section 4).

Parameter changes are made through the file
/usr/sys/cf/dfile.normal. These changes override, but do not
change, the parameter values specified in the /etc/masterfile.

Note: dfile.normal is a default file that is used by the CENTIX
Kernel Customizer to tune parameters. It is supplied with your
XE 500 CENTIX System. You can, however, create a file other
than dfile.normal to be used by the customizer (this is described
under the subsection "Running the CENTIX Kernel Customizer
Script," later in this section). This "1e should have the same
characteristics as dfile.normal, as described below.

The dfile.normal file is divided into three parts. The first part
contains a list of devices that are present on the system.
This part of the file is modified to add device drivers to your
system (see Section 4, Adding Device Drivers).

The second part contains system-dependent information,.
including root, swap, arg, and pipe specifications. This part
of the dfile. normal file is supplied with the system and should
not be changed.

1207826

2-2 Tuning Parameters

The third part is used to specify values for the tunable
parameters that will override the default values defined in
/etc/master (more on this later).

The following is a sample dfile.normal file. Lines that begin
with an asterisk (*) are comments, which do not affect the file.

• 0 e v Ice d r I ve r I abe Is. The f 0 I I ow I n gel g h t
• I abe I s are r e qui red. DO NOT R EMOV E I I I I

bdlsk
cdlsk
prf
console
tape
Ip
tap
tsy

• Add user device driver labels here
• example:

• mx25

• Do NOT modi fy the following four entries

root
swap
arg
pipe

bdlsk
bdlsk
bdlsk
bdlsk

00
376
376

01

• add tunable parameters here

parameter #

2500

The first eight entries (up to and including tsy) make up the
first part of the file. The next four entries (root, swap, arg,
and pipe) make up the second part.

Tuning Parameters 2-3

Following the pipe entry is the third part (preceded in this
example by the comment "add tunable parameters here"), ,in
which you can add tunable parameters. To do this:

o Edit your dfile.normal file (using vi or ed).

o Append whatever parameter values you wish to specify.

Use the format given above, where parameter is the
parameter name and # is the value of the parameter,
separated from each other by one or more spaces. If
parameter values are not specified in this part of the file, the
default values, as they appear in the /etc/masterfile, are used.

Modifying CENTIX File System Server Parameters
Changes in certain parameters in the CENTIX kernel require
corresponding changes in the CENTIX File System Server
parameters. Specific kernel parameters that correspond to
CENTIX File System Server parameters are described in
Section 3, "Tunable Parameter Descriptions."

There are three CENTIX File System Server parameters that
are configurable: MESSAGE, BUFFER, and INODE.

Table 2-1 lists the defaults, ranges, and memory
requirements of the three configurable parameters for the
CENTIX File System Server.

Table 2-1 CENTIX File System Server Parameters

Parameter

MESSAGE

BUFFER

INODE

1207826

Default

40

15

200

Range

32-128

10-62

20-400

Size (bytes)

64

1080

160

2-4 Tuning Parameters

The above parameters can be defined by making entries in
the BTOS file [Sys]<sys>ConfigUFS.sys. This is a text file,
and it can be edited using the ofvi or ofed editor.

In the following segment from ConfigUFS.sys, the first three
entries show the root and swap specifications for the
system. The next five entries list the CENTIX File System
Server parameters. The first and second fields show the
parameter names and their values, respectively. The third
field shows the processors for which those parameters are
specified. This list can be changed or expanded upon as long
as each duplicate parameter specification corresponds to a
unique processor.

Note: The parameters specified are not processor parameters,
but server parameters. The processors listed below refer to the
processors on which servers happen to be running.

Root [d2)<sys>partltlon.0 FPOO 255
Swap [d1]<sys>swap.AP.00 APOO 254
Swap [d3]<sys>swap.AP.01 AP01 253
BUFFER 30 FPOO
INODE 300 FPOO
MESSAGE 100 FPOO
BUFFER 35 FP01
I NODE 400 DPOO

Note: Only the three configurable parameters (BUFFER, INODE,
MESSAGE) can be changed in [Sys}<sys>ConfigUFS.sys.

The parameter entries in ConfigUFS.sys affect only the
UFS.run that is running on the designated processor; default
values are used for any parameter that is not explicitly
defined in ConfigUFS.sys for UFS.run on a given FP/DP. In
the example, nondefault values for MESSAGE, BUFFER, and
INODE are specified for UFS.run on FPOO. A nondefault value
for BUFFER and default values for INODE and MESSAGE are
specified for UFS.run on FP01. A nondefault value for INODE
and default values for BUFFER and MESSAGE are specified
for UFS.run on DPOO.

Tuning Parameters 2-5

Use care when setting the CENTIX File System Server
parameters. When attempting to match kernel resources
with CENTIX File System Server resources, remember that
the total system-wide set-up must match. This is important
when dealing with multiple copies of CENTIX File System
Server and multiple APs. For example, if NANODES (a kernel
parameter) is set to 500 and there are two APs in the
system, the total number of potential open inodes in the
kernel is 1000. Hence, the total CENTIX File System Server
inode potential should be 1000 (possibly three FPs running
CENTIX File System Server with 335 inodes each).

Running the CENTIX Kernel Customizer Script
Note: To allow you to recover from possible errors during
customization, you should save the original unix kernel that is
supplied with the standard release. For example, before
customizing the kernel for the first time, enter "ep /unix
/unix.save ". If you are not certain whether your system was
previously customized, check with your system administrator or
search for the file /oldunix. If /oldunix exists, chances are that
the original kernel has been customized.

Once you have modified the desired tunable parameters and
changed any corresponding CENTIX File System Server
parameters, do the following to bring your customized
CENTIX kernel up and running:

1 Execute the halt command to bring your system down to
single-user mode.

2 Edit the file dfile.normal (or the file that you specify).

3 Compile and link the new, customized kernel.

To create the new kernel, change the directory (using cd)
to /usr/sys/cf and execute the customizer script

custscrlpt [filename)

where filename is an optional file name. If filename is not
specified, custscript uses the default file
/usr/sys/cf/dfile.normal to create the precompiled kernel.

1207826

2-6 Tuning Parameters

The customizer script saves a copy of the old kernel,
/unix, to /oldunix. The new kernel is then linked (via the Id
utility) to /unix. The script then runs a mkboot operation to
incorporate /unix into the BTOS file [Sys]<sys>Centix.sys.

4 Execute the following:

sync; sync; sync

and wait for· 1 5 seconds.

This flushes the buffers and updates the superblock on
disk with the modified kernel's superblock. With both
superblocks identical, no discrepancies should occur when
the file system is checked with fsck.

5 Reboot your system.

Recovering from an Invalid Customized Kernel
If your customized kernel is too big for physical memory, the
XE 500 will become deadlocked in its boot routine and the
front panel status display will cycle at code 13 or 14.

Also, if the CENTIX File System Server does not have
enough physical memory to load your customized kernel, the
system may either freeze at status display code 15 or crash.

Use the following procedure to restore the system to its
original kernel.

1 Reboot the system in REMOTE.

2 Mount the NORMAL root partition.

3 Change your directory to the NORMAL root.

4 Execute the following command:

cp oldunix unix

Tuning Parameters

5 Execute the following command:

mkboot -y unix '[Sys]<sys>centlx.sys'

6 Change your directory back to the REMOTE root.

7 Unmount the NORMAL root partition.

S Execute exit.

9 Enter the option in the menu for SHUTDOWN.

10 Reboot the system in NORMAL.

1207826

2-7

Section 3 3-1

Tunable Parameter Descriptions
The CENTIX kernel contains four sets of tunable parameters:
system resource, shared memory, message, and semaphore
parameters.

The following section describes the tunable parameters.
They can be modified as described in Section 2. Where
applicable, changes in CENTIX kernel parameters that require
corresponding changes in the CENTIX file system
configuration file are discussed.

All parameters will function properly if the default values are
used.

System Resource Parameters
The following parameters control system resources such as
buffer sizes, system table allocations, and memory
allocations.

MAXFS
The MAXFS parameter defines the maximum upper limit file
size. Its default value is 2113674 bytes. All files are created
in 512 byte blocks. However, two blocks are always
allocated for a file at a time.

For example, a file containing 1 byte of data will be allocated
two blocks (1024 bytes); a file containing 1024 bytes of
data will be allocated four blocks (2048 bytes).

This parameter need only be modified if an application on
your system utilizes a file greater than 2 megabytes.
Changing the value of MAXFS does not change the kernel size.

1207826

3-2 Tunable Parameter Descriptions

MAXUP
The MAXUP parameter defines the maximum number of
processes that a non-root user can execute at one time.
There is, of course, a limit to this number.

If a new process is created and the user has exceeded the
limit, an error message, Hmessage fork: too many
processes," may be displayed. The user can resolve this
problem by increasing the size of the parameter MAXUP. Its
default value is 25. Changing the value of MAXUP does not
change the kernel size.

NANODE
The NANODE parameter controls allocation of the system
anode (inode) table. The system uses an anode (inode) to
store file attributes.

Anodes are allocated for every open file, every directory file
being used by the system, and every directory being used as
a current user directory.

An anode is the CENTIX system data structure that contains
all the information about a file except its name and its
contents. Included are the file type, size, number of links,
owner, permissions, time of last access, time of last .
modification, and time of last anode change (an anode could
be changed by modifying any of the other attributes, such as
permissions) .

Also, an anode contains pointers for the data blocks of the
file. If this table fills up, a message such as Hinode table
overflow" might be displayed. In effect, no new processes
can be activated, and currently active processes might
become blocked.

Tunable Parameter Descriptions J-J

The default value of NANODE is 200. Because more than
one file can reference the same anode (for example, two files
linked together, or the same file opened by two programs),
the configured NANODE value is usually less than the
configured value for NFILE (explained below).

Because the NANODE parameter causes allocation of anode
structures in the anode (inode) table, each additional unit of
NANODE adds approximately 64 bytes to the kernel. A
formula for estimating your inode table value is to have 70
entries + 9 entries for each expected user.

Whenever the kernel NANODE parameter is modified, there
is a corresponding parameter in the
'[d 1]<sys>ConfigUFSosys' BTOS file that must also be
modified. This is the INODE parameter.

The INODE parameter allocates entries in the CENTIX File
System Server inode table. Note that the total AP potential
should agree with the total CENTIX File System Server
potential. The CENTIX File System Server can be loaded in
both the FP and DP with the run file, [sys]<sys>UFS.run.

The INODE parameter on a particular processor sets the size
of the INODE table for that processor only. It is best to
distribute the inodes in the CENTIX File System Server so
that the server controlling the largest number of commonly
accessed files has slightly more inodes than other servers.

Also, the inodes in the CENTIX File System Server are
cached (anodes in the kernel are not). As a result,
performance can increase by allocating more inodes for the
CENTIX File System Server. Use the fpsar command to gauge
the effect on the inode hit ratio.

If the kernel anode table fills up before the CENTIX File
System Server table does, an attempt to access another
anode results in a "No anode" error.

1207826

3-4 Tunable Parameter Descriptions

NBUF
The NBUF parameter can significantly improve system
performance when configured properly, in conjunction with
the tunable parameter NHBUF.

The CENTIX kernel utilizes system buffers for temporary
storage of data while data is transferred to and from disk.
This pool of block buffers is known as the buffer cache. .
Because the data resides in this buffer cache, the number of
disk accesses can be greatly reduced when accessing
information.

The kernel searches through the buffer cache for a block
containing the desired data for every read or write request. If
the desired block is located in the buffer cache, the process
can use that block immediately. Otherwise, the process must
wait until the data is read into the cache, which requires disk
I/O. The kernel determines the buffer to be replaced from
memory by using a "least recently used" algorithm. This
keeps the.. most heavily used buffers in memory.

The size of each block buffer is 1 K-byte, which is the same
as the system-wide blocksize. Therefore, there is a trade-off
between the kernel and user memory. For example, each
additional block buffer reduces the user memory by 1 K -byte.
The number of block buffers configured is dependent on the
available size of memory. Refer to Table 3-1 for
recommended values.

Note: The values given in Table 3-1 pertain only to operating
system software release level 6.0 or greater; if these values are
used with any other software level the user may exceed the
512 K-byte kernel limit.

Tunable Parameter Descriptions 3-5

Table 3-1 Recommended Values for NBUF and NHBUF

Memory Size NBUF NHBUF

1 megabyte 50 - 100 64

2 megabytes 250 - 500 128

3 megabytes 500 - 1000 256

>4 megabytes 1000 - 2000 512

The more block buffers, the greater the chance the desired
block will be found in the cache. This also means that less
swapping activity is required. However, resource allocation
cannot be increased without limit.

For example, dedicating additional memory to the kernel's
buffer cache makes this memory unavailable to the user.
Reducing available user memory may increase disk traffic due
to increased paging. A large buffer cache also takes more
CPU cycles to search and these CPU cycles are no longer
available to user programs.

A smaller buffer cache decreases paging disk traffic and
takes less CPU time to search. However, a smaller buffer
cache has less probability of containing a desired disk block
and hence, an increased probability of having to perform I/O
to bring the block into the buffer cache.

To optimize the size of the buffer cache, you must balance
paging traffic, buffer search CPU time, and buffer cache I/O.
If you choose a cache that is too large or too small,
performance will suffer. Fortunately, overall system
performance is relatively insensitive to buffer cache sizes
within a relatively large range.

Each block in the buffer cache has a buffer header. The
buffer header contains management information, as well as
I/O control/status. Because it causes allocation of buffer
headers and structures, each additional unit of NBUF adds
approximately 1122 bytes to the kernel. The default value
for NBUF is 48.

1207826

3-6 Tunable Parameter Descriptions

Whenever the kernel NBUF parameter is increased, there is a
corresponding parameter in the '[d 1]<sys>configufs.sys'

. BTOS file that should be increased to handle the added load.
This is the BUFFER parameter.

The BUFFER parameter allocates entries in the CENTIX File
System Server buffer cache. Because each buffer requires 1
K-byte of memory, increases in the BUFFER parameter'cause
a corresponding increase in the CENTIX File System Server
memory requirements. If possible, the CENTIX File System
Server should run in the primary partition of the FP lOP. The
Ipsar command can be used to measure the effectiveness of
your block buffer allocation.

Nots: The kernel buffers and the CENTIX File System Server
buffers are separate and serve different purposes.

The Kernel buffers are used for storing:

o Data blocks.

o Block device drivers.

o Some directory blocks.

The CENTIX File System Server buffers are used for storing:

o Superblocks.

o Inodes.

o Indirect blocks.

o Files accessed by more than one Application Processor.

o Some directory blocks.

If the user needs to increase the buffers to handle block
device drivers, only the kernel buffer NBUF would need to be
increased. Perhaps the CENTIX File System Server buffers
also need to be increased, but not to the same level as NBUF.

Tunable Parameter Descriptions 3-7

NeLiST
The NCLIST parameter controls allocation of the system
character list queue. This queue is used during I/O to
character devices, such as terminals and line printers.

The value of NCLIST is actually the number of available
cblocks. A cblock is the basic unit of work for character
devices. Each cblock contains a pointer to the next cblock in
the list (clist), an index to the array of the next character to
be read from the list (clist), an index to the next character to
be written to the list (clist), and the actual array containing
the list of characters.

The cblock is structured as follows:

#deflne CLSIZE 64
struct cblock {

struct cblock ·c_next;
char c_flrst;
char c_last;
char c_data[CLSIZE);

} ;

/. pointer to next cblock ./
/. next char to be read */
/. next char to be written */
/. array of CLSIZE chars ./

The default value for NCLIST is 150. Because it causes
allocation of clist structures in the character list queue, each
additional unit of NCLIST adds approximately 70 bytes to the
kernel.

1207826

3-8 Tunable Parameter Descriptions

NFILE
The NFILE parameter controls allocation of the system file
table. The file table is an array of file structures that reside in
kernel address space. The kernel makes an entry in this table
every time a process opens a file or pipe. Each entry
contains information about the file, such as open flags,
reference count, a pointer into the anode table, and the
current offset of the file pointer.

o The flag member indicates the open status for this entry
(that is, open for read, write, and so on).

o The reference count reflects the total number of file
descriptors that have been allocated by the process(es)
accessing the file.

o The pointer member points to the file's corresponding
inode and the next available file table entry.

o The file offset is used to reflect the current position within
a file that has been opened for I/O. This member is shared
by all processes that are accessing the inode through this
file table entry.

The default value of NFILE is 250. Each allocated file table
entry points to an entry in the inode table. However, since
more than one file can reference the same inode, the
configured NFILE value is usually greater than the configured
value for NANODE.

Note: If processes pass open files across forks (such as stdin,
stdout, stderr), both processes share one file table entry for the file.

Tunable Parameter Descriptions 3-9

NFLOCKS
The NFLOCKS parameter controls allocation of the lock table.
The kernel makes an entry in the lock table for each
"Iocking" system call (used for file record locking). File record
locking is essential in a multiprocess system to prevent two
tasks from updating a file simultaneously, thus producing
erroneous data.

Each entry in the lock table contains pertinent information
about the file, such as open flags, reference count, a pointer
into the anode table, and the current offset of the file pointer.

The default value for NFLOCKS is 200. Because it causes
allocation of lock structures in the lock table, each additional
unit of NFLOCKS adds approximately 20 bytes to the kernel.

NHBUF
The NHBUF parameter controls allocation of the system
buffer hash table. This table is accessed by a method called
"hashing." Hashing is a function that transforms a key into a
table index that is used for data searches. This allows fast
and direct access to desired information.

The buffer hash table is used when hashing into the system
buffer cache during buffer searches. Also, the allocation of
the system buffer hash table must be dependent on the
number of buffers configured in the kernel.

Refer to Table 3-1 for recommended NHBUF values.

Because the NHBUF parameter causes allocation of the hash
buffer structures in the hash table, each additional unit of
NHBUF adds approximately 12 bytes to the kernel. The
NHBUF parameter must always be a power of 2.

1207826

3-10 Tunable Parameter Descriptions

NLRGBLOCKS
The NLRGBLOCKS parameter defines the number of 4 K-byte
block units of heap space to be allocated from memory at
boot time.

The heap is an area on the AP in main memory used for
communications. The kernel uses its heap space for a variety
of purposes, including IPC (Inter-process communication) and
ICC (Inter-CPU communication).

User ICC routines tend to use the heap for the majority of
their data structures. The heap is used as a holding area for
the data structures for three reasons: .

1 The data placed on the heap can live past the life of the
given system call.

2 The heap provides a non-virtual memory area which is
contiguous. This simplifies the task of the BTOS board
when it attempts to write its response or read the request
from the AP's memory.

3 The sysbus routine currently cannot handle user I/O errors
(memory fault or page fault) while copying data offboard.

Tunable Parameter Descriptions 3-11

It is essential to have your system configured in such a way
that the heap space will never be depleted through ICC. If
user processes simultaneously send many requests to a user
created server, it can tie up a lot of heap space. If in turn the
server does not have time to respond quickly to the
requests, system performance may be seriously decreased;
the system may even crash or deadlock whille waiting for
heap for standard user I/O. Be sure that your processes will
not deplete the heap space.

As the kernel starts to reach its maximum size, it attempts
to compensate for lack of memory by taking memory away
from the heap. Thus, a system configured with NLRGBLOCKS
equal to 8 may boot and allocate only 28 K-bytes of heap
(instead of 32 K-bytes).

To determine the actual size of the heap, execute the
command "console -p I more". This displays the number of
K-bytes that were allocated to the heap at boot time.

The heap space should be increased when utilizing devices
that are constantly sending messages over the "bus." The
default value for NLRGBLOCKS is 6. Changing the value of
NLRGBLOCKS does not change the kernel size.

1201826

3-12 Tunable Parameter Descriptions

NPROC
The NPROC parameter controls allocation of the system
process table. The kernel makes an entry in this process
table for every active process. This is the first step during
process creation.

Each entry contains pertinent information about a process,
such as process id, parent process id, ownerships, CPU .
status, memory status, resident time, CPU usage, priority
class (the "nice" value), and priority (dynamic priority). Each
time a user executes a command, the shell creates a new
process with the forkO system call. It is at this point that a
process entry is made into the process table.

The amount of memory available to user processes and the
amount of swap space are significant factors when
determining the number of processes allowed in the system.
Another factor is the size of the process table itself. The
larger the process table and the more entries that exist in the
process table, the longer it takes to search through it.
System time may become very expensive when there is an
increased number of process entries in the process table.

The table size limit should be large enough that the process
table never runs out of slots, yet small enough so that you
never deplete your swap space or overpower your hardware.

Tunable Parameter Descriptions 3-13

Overpowering your hardware occurs when the ratio of
processes in swap space to processes in memory becomes
so large that most of the system time is spent copying
processes in and out of memory. Since processes can
execute only when they are loaded in memory, the
processes waiting in the swap space must be copied into
memory before they can be executed. This means that
processes already in memory that will not run immediately
must be copied out to free up space. When too many
processes exist, "thrashing" occurs. "Thrashing" is the
condition of spending more time copying processes between
swap space and memory than is spent actually executing them.

The NPROC parameter also affects other data structures in
the kernel. These data structures include:

o The exchange table (used in ICC).

o The table used for semaphore undo operations.

o A table of pointers to attached shared memory segments.

o A table that lists the available in-memory pages used for
shared memory attach points.

The default value for NPROC is 125. Because it causes
allocation of many data structures (as mentioned above),
each additional unit of NPROC adds approximately 260 bytes
to the kernel.

1207826

3-14 Tunable Parameter Descriptions

NSWAP
The NSW AP parameter defines the maximum number of
swap area disk blocks (a disk block is 4 K-bytes). The swap
space is actually secondary memory, which can be seen as
an extension of primary memory.

The kernel uses the swap space on the system disk to store
a process image when another process must use the primary
memory. When primary memory is not available, the
swapper process attempts to swap out a process to make
room. If the swapper is able to swap out a process, the
process is stored on the swap device until primary memory
is available.

In selecting a runnable process to be swapped out, the nice
value is considered. Also, a runnable process is swapped out
if the process that needs to be swapped in has spent at least
2 seconds on the swap device. The reason for the 2 second
wait is to avoid "thrashing. H

The kernel dynamically sizes the swap partition, then
configures itself for up to this maximum at boot time.
Therefore, the tunable parameter NSW AP is not necessary.
This happens automatically, and it is transparent to the user.
The default value for NSW AP is 2500. Changing the value of
NSW AP does not change the kernel size.

NSWBUF
NSWBUF controls allocation of three system tables used by
the swapper. The first is the swap I/O header table, and the
other two are arrays of integers (regular and short) that are
used during swap operations.

The size of NSWBUF should be modified in proportion to
NSWAP. The default value for NSWBUF is 24. Because it
causes allocation of the swap structures, each additional unit
of NSWBUF adds approximately 106 bytes to the kernel.

T unable Parameter Descriptions 3-15

NTEXT
The NTEXT parameter controls allocation of the system text
table. The system text table is used for shared text files that
are active processes. Shared text files represent programs
that have been separated into two pieces: the code and the
data area. Several processes can share the same code area.
A shared code area is called "text" or "shared text."
Implementation of shared text is through the text table.

A text table entry includes the disk inode number of the file,
disk address of the page table, reference counts, and the
size of the text. The swapping of a shared text is
independent of the swappping of processes executing from
it. It is possible that a process is swapped out but the shared
text from which it is executing remains in primary memory.

When you invoke a shared text program, the kernel makes
an entry in the text table. When another user requests the
same program, the kernel checks the table and notes that
the program has already been loaded into primary memory.
The kernel modifies the text table to designate that another
user is using the text area, and it creates a new data area for
the second user process. This approach makes it easy to
separate the code part of a program that does not change
from the data area that does change. Thus, only one
memory copy of the program code is required because many
processes can use the same code area. Each program,
however, maintains its own data area. This is explained in
more detail in "Shared Memory Parameters," below.

The default value for NTEXT is 40. Because it causes
allocation of text structures in the text table, each additional
unit of NTEXT adds approximately 92 bytes to the kernel.
Because many processes can share the same text segment,
the value of NTEXT is usually less than the value of NPROC.

1207826

3-16 Tunable Parameter Descriptions

SMAPSIZ
The SMAPSIZ parameter controls allocation of the swap
map, which is a map into the swap area (secondary
memory). The swap map is used by the kernel to map into
actual sections in the swap space.

The size of SMAPSIZ should be modified in proportion to
NSWAP. The default value for SMAPSIZ is 75. Because it
causes allocation of map structures in the swap map, each
additional unit of SMAPSIZ adds approximately 8 bytes to
the kernel.

Shared Memory Parameters
The shared memory parameters control inter-process shared
memory resources in the kernel, which can be accessed by
user processes through the shmctl, shmget, and shmop
system calls.

Shared memory allows communication between processes.
This involves the concept of mapping virtual shared memory
to an already allocated physical memory segment, rather
than allocating additional physical memory.,

The shmget system call sets up a resource table, a memory
map, and maps to physical memory. The shared memory
segment is physically removed only after the last detach (a
logical operation) is performed. This will determine that no
other processes are using the shared memory segment, and
the segment should be released. The following paragraphs
describe the shared memory parameters.

SHMEM
The SHMEM parameter is a flag to indicate whether or not
the shared memory facilities are available in the kernel.

o 1 = shared memory facilities are available.

o 0 = shared memory facilities are not available

Tunable Parameter Descriptions 3-17

SHMALL
The SHMALL parameter defines the maximum total
system-wide shared memory. It also controls allocation of
the incore memory page table entry.

The default value is 512 clicks. A click is the smallest unit of
physical memory with respect to allocation.

Each unit of SHMALL ,adds 4 bytes to the kernel.

SHMBRK
The SHMBRK parameter defines the gap used between data
and shared memory. The default value is 16 clicks.

SHMMAPSIZE
The SHMMAPSIZE parameter defines the size of the memory
page table entry allocation map for shared memory. The
default value is 32. Each unit of SHMMAPSIZE adds 8 bytes
to the kernel.

SHMMAX
The SHMMAX parameter defines the maximum size of a
shared memory segment in bytes. The default value is 48.

SHMMIN
The SHMMIN parameter defines the minimum size of a
shared memory segment in bytes. The default value is 1.

SHMMNI
The SHMMNI parameter defines the number of shared
memory identifiers in the system. It also controls allocation
of the system shared memory header table. The kernel
makes an entry in this table for each segment in the system.
The default value is 100. Each unit of SHMMNI adds 46
bytes to the kernel.

1207826

3-18 Tunable Parameter Descriptions

SHMSEG
The SHMSEG parameter defines the maximum number of
attached shared memory segments per process. It also
controls allocation of a table of pointers to attached shared
memory segments, and a table that lists the available
in-memory pages used for shared memory attach points.
Note that these tables are also addressed with the system
resource NPROC. The SHMSEG default value is 6. With a .
default NPROC value of 125, each unit of SHMSEG adds
2000 bytes to the kernel.

Figure 3-1 Shared Memory Implementation

TABLE OF
SHARED MEMORY

SEGMENT 10

SHMMNI

E7609

PHYSICAL
MEMORY

SHARED
SEGMENT

VIRTUAL
MEMORY

CODE
AND

DATA

SHARED
SEGMENT

STACK

CODE
AND

DATA

SHARED
SEGMENT

STACK

process
1

process
I 2

Tunable Parameter Descriptions 3-19

Message Parameters
The message parameters control inter-process message
resources in the kernel, which can be accessed by user
processes through the msgctl, msgget, and msgop system
calls.

The following paragraphs describe each tunable message
parameter and the resource it controls.

MESG
The MESG parameter is a flag to indicate whether or not the
message facilities are available· in the kernel.

o 1 = message facilities are available.

o 0= message facilities are not available.

Note: The centre WINDOW utility spawns user messages.

1207826

3-20 Tunable Parameter Descriptions

MSGMAX
The MSGMAX parameter indicates the maximum message
size in bytes. The default value is 4096. This parameter does
not affect the kernel size. The MSGMAX parameter cannot
have a value greater than 4096.

MSGMNB
The MSGMNB parameter indicates the maximum number of
bytes in a queue. This parameter should correspond to the
number of bytes that are being sent by an application. The
default value is 16384. This parameter does not affect the
kernel size.

MSGMNI
The MSGMNI parameter controls allocation of the message
queue header table. The kernel makes an entry in the
message queue header table for each message in the
system. The default value is 50. Each unit of MSGMNI
allocates 48 bytes of kernel memory for entries in the
message queue header table.

MSGTQL
The MSGTQL parameter controls allocation of the message
headers. This parameter actually declares the total message
resource size. The kernel makes an entry in the message
header table. for each message that may be in the system.
The default value is 40. Each unit of MSGTQL allocates 16
bytes of kernel memory for entries in the message header table.

Tunable Parameter Descriptions

Figure 3-2 IPC Message Implementation

MESSAGE
QUEUE
TABLE

(MSGMNI)

E7610

-

first

last

I
I

I

I

I
I

MESSAGE
HEADERS
(MSGTQL)

l

!
i
I

I
I

I
I

,
I

I
J

r--

3-21

MESSAGE
BUFFER

Messages are implemented by using the structures shown in
Figure 3-2. For every message that is in the system, there is
an entry in the message queue table that points to the
corresponding message headers. These message headers
are linked together using a singly linked list. The message
headers point to the corresponding buffers that contain the
actual message.

For every message that is in the system, there is also an
entry in the message header table. The message buffer area
is actually within the heap.

1207826

3-22 Tunable Parameter Descriptions

Semaphore Parameters
The semaphore parameters control inter-process semaphore
resources in the kernel, which can be accessed by user
processes through the semctl, semget, and semop system
calls.

Semaphores implement a Uwait" and Usignal" mechanism.
The following paragraphs describe the semaphore
parameters and the resources they control.

SEMA
The SEMA parameter is a flag to indicate whether or not the
semaphore facilities are available in the kernel.

o 1 = semaphore facilities are available.

o 0 = semaphore facilities are not available.

SEMMAP
SEMMAP Identifies the map associated with the pool of
semaphores. It controls allocation of the system semaphore
allocation map. Allocation of a semaphore set is performed
by the semget system call.

The SEMMAP parameter sets the size of the semaphore map
table. The default value is 10. Each unit of SEMMAP adds 8
bytes to the kernel.

Tunable Parameter Descriptions 3-23

SEMMNI
The SEMMNI parameter controls allocation of the system
semaphore id data structure table. The kernel makes an entry
in the semaphore id data structure table for each set of
semaphores in the system.

The default value for SEMMNI is 10. Each unit of SEMMNI
adds 32 bytes to the kernel.

SEMMNS
The SEMMNS parameter controls allocation of the system
semaphore table. The SEMMNS parameter sets the size of
the semaphore pool. The kernel makes an entry in the
semaphore table for each semaphore in the system.

The default value for SEMMNS is 60. Each unit of SEMMNS
adds 8 bytes to the kernel.

SEMMNU
The SEMMNU parameter controls allocation of the system
semaphore operation adjust-on-exit table. The kernel uses
this table when undoing semaphores in the system. This
adjust-on-exit table determines the total number of "undo"
structures. There is only one undo structure per process,
which contains a table of undo entries. The first allocation of
an undo entry causes allocation of an undo structure. The
structures are maintained in a singly linked list.

undo operations are implemented to ensure that a
terminating process cannot indefinitely "block other awaiting
processes. On process exit, the recorded undo operations
are performed on the related semaphore.

The default value is 30. The value of this parameter does
affect the size of the kernel. However, due to inconsistencies
in documentation, the proper formula has not been made
available.

1207826

3-24 Tunable Parameter Descriptions

SEMUME
The SEMUME parameter defines the maximum number of
semaphore "undo" entries per process. SEMUME determines
the size of the "undo" entry table. This parameter also
defines the value of the "undo" global SEMUSZ.

The size of SEMUSZ is computed by the formula:

(size of undo structure (8) • SEMUME) + size
of sem-undo structure (14)

Therefore, with the default value of SEMUME (which is 10),
SEMUSZ equals 94.

SEMMSL
SEMMSL defines the maximum number of semaphores per
id. This parameter also allocates an array that is used to
store semaphore data. The default value is 25. Each unit of
SEMMSL adds 2 bytes to the kernel.

SEMOPM
SEMOPM defines the maximum number of semaphore
operations per semop call. This parameter also allocates the
same array as SEMMSL, to store semaphore operations. The
default value is 10. Each unit of SEMOPM adds 6 bytes to
the kernel.

SEMVMX
SEMVMX defines the maximum value for a semaphore. The
default value is 32767. Changing this value does not change
the kernel size.

SEMAEM
SEMAEM defines the maximum value for a semaphore
adjust-on-exit value ("undo" value). The default value is
16384. Changing this value does not change the kernel size.

Tunable Parameter Descriptions

Figure 3-3 IPC Semaphore Implementation

POOL OF
SEMAPHORE

SEMAPHORE STRUCTURES
TABLE (SEMMNS)

base
0

1

SEMMNI- r-- 2

...
base

SEMMNI 0

1

•
SEMMNI

base
0

E7611

L
-

~

3-25

SEMAPHORE MAP
TABLE

(SEMMAP)

size address

unused free count

- 2

- 1

0 0

Semaphores are implemented by using the structures shown
in Figure 3-3.

1201826

3-26 Tunable Parameter Descriptions

A Sample CENTIX Kernel Customization Session
In the following sample CENTIX kernel customization session,
two parameters are modified:

o NBUF (a system resource parameter) is modified to
increase buffers to 60 (the default is 48).

o SHMMAX (a shared memory parameter) is modified to
increase the maximum allowable size of a shared memory
segment to 60 (the default is 48).

To run the CENTIX Kernel Customizer:

1 Run halt to bring the system down to single-user mode.

2 Use vi or ed to edit jusrjsysjcfjdfile.normal (or another file
that you specify). Add the following lines to the end of the file:

buffers 60
shnmax 60

3 Because the kernel NBUF parameter affects the CENTIX
File System Server, the server's BUFFERS parameter has
to be changed to correspond with the kernel. Use ofvi or
oled to append the following lines to
[Sys]<sys>ConfigUFS.sys:

BUFFER
BUFFER

60
60

FPOO
OPOO

Tunable Parameter Descriptions 3-27

4 Execute custscript. Unless you specify otherwise, custscript
will look in /usr/sys/cf/dfile.normal for the new parameter
specifications.

5 Execute the following:

sync; sync; sync

6 Reboot the system.

1207826

Section 4 4-1

Adding Device Drivers
The information in this section assumes that you have
developed a device driver for CENTIX and that you now want
to have the new driver incorporated into the kernel.

The procedure for adding device drivers to your kernel is as
follows:

1 Obtain a major device number for the driver.

2 Add the device driver entry to the first part of the
/etc/master file.

3 Append the corresponding device driver name to the
/usr/sys/cf/dfile.normal file.

2 Run custscript.

Obtaining a Major Device Number
A device driver requires a major device number so that the
kernel build process can place unique entries in the
appropriate device table. You include this number as part of
the device driver's entry in the file /usr/sys/cf/dfile.normal
(see next subsection).

To find the next available device number, look at your
/etc/master file. The following paragraphs describe the
/etc/master file.

The /etc/master File
The /etc/master file is divided into three sections. Each
section is separated by a line with a dollar sign ($) in the first
column. Section 1 contains device information. Section 2
contains names of devices that have aliases (or secondary
names). Section 3 contains information on the tunable
CENTIX parameters.

Section 1 of the /etc/master file contains lines consisting of
at least 6 fields, with the fields delimited by tabs and/or blanks:

o Field 1 contains the device name. Device names can have
a maximum of 8 characters.

1207826

4-2 Adding Device Drivers

o Field 2 is an octal device mask. Each "on" bit indicates that
the handler exists:

000100 initialization handler

000040 power-failure handler

000020 open handler

000010 close handler

000004 read handler

000002 write handler

000001 ioctl handler

o Field 3 is also an octal number denoting the device type
indicator, with each "on" bit specifying the following:

000200 allow only one of these devices

000100 suppress count field in the conf.c file

000040 suppress interrupt vector

000020 required device

000010 block device

000004 character device

000002 floating vector

000001 fixed vector

o Field 4 is the handler prefix. The prefix can be up to four
characters long.

o Field 5 is the major device number for a block-type device.

o Field 6 is the major device number for a character-type device.

Adding Device Drivers 4-3

Section 2 contains lines with 2 fields each:

o Field 1 contains alias names of devices. These names can
have a maximum of 8 characters.

o Field 2 contains reference names of devices. These names
can have a maximum of 8 characters.

Section 3 of the /etc/master file contains lines with 2 or 3
fields each:

o Field 1 contains the parameter name as it appears in the
description file dfile.normal, which is in the /usr/sys/cf
directory.

o Field 2 contains the parameter name as it appears in the
configuration file conf.c, which is in the /usr/sys/cf
directory.

o Field 3 contains the default parameter value.

If field 3 is omitted, then parameter specification is required,
which is done by modifying dfile.normal (see Section 2,
"Modifying Tunable Parameters").

The following is a sample /etc/master file. Lines preceded by
an asterisk (*) indicate comments that do not affect the file.

• The f 0 I I ow I n g de v Ice s are tho set hat can be specified
• I nth e s y stem des c rip t Ion f I Ie. The name
• specified must agree with the name shown.

bdlsk 036 270 fpb 0 0
cdlsk 036 264 fpc 0 1
tape 036 254 tape 2 4
console 037 264 con 0 5
p r f 007 244 prf 0 6
tpcp 037 264 tp 0 0
I P 033 244 Ip 0 7
mbsc 037 244 bsc 0 8
mbsm 037 244 bsm 0 9
mbst 035 244 bst 0 10
msna 037 244 sna 0 11
mx25 037 244 x25 0 12
tsy 037 244 tsy 0 13

1207826

4-4 Adding Device Drivers

tsp 037 244 tpy 0 14
Pseudo-terminal ports - up to 32

pts 037 045 pts 0 16 32
pte 037 245 pte 0 17

• The fol lowing devices must not be specl fled
• I nth e s y stem des c rip t Ion f I Ie. The y are her eta
• supply Information to the conflg program.

memory
tty
$$$

006
027

324
324

mm
sy

o
o

3
2

• The following entries form the alias table.

syq bdlsk
$$$

• The following entries form the tunable parameters table.

buffers NBUF 48
Inodes NANODE 200
f I I es NFllE 250
nf locks NFlOCKS 200
mounts NMOUNT 16
swapmap SMAPSIZ 140
nswap NSWAP 2500
ca II s NCAll 50
procs NPROC 125
texts NTEXT 40
cllsts NCLI ST 150

· n I r g - size of kernel heap. In 4K block units • I
nlrg NLRGBLOCKS 6
power POWER 0
maxproc MAXUP 25
nswbuf NSWBUF 24
• hashbuf must be a power of 2
hashbuf NHBUF 64
• maxfs - Max ullmlt file size In 512 byte blocks .,
maxfs MAXFS 2113674
mesg MESG

Adding Device Drivers 4-5

• msgmax must be
msgmax MSGMAX

<- Icc.h:SlLRG. max heap block size ./
4096

msgmnb
msgmn I
msgtql
sema
semmap
semmnl
semmns
semmnu
semmsl
semopm
semume
semvmx
semaem
shmem
shmmax
shmml n
shmmnl
shmseg
shmbrk
shma I I

MSGMNB
MSGMNI
MSGTQL
SEMA
SEMMAP
SEMMNI
SEMMNS
SEMMNU
SEMMSL
SEMOPM
SEMUME
SEMVMX
SEMAEM
SHMEM
SHMMAX
SHMMIN
SHMMNI
SHMSEG
SHMBRK
SHMALL

16384
50
40
1
10
10
60
30
25
10
10
32767
16384
1
48

100
6
16
512

• the f 0 I I ow I n 9 a I I ow the con fig u rat Ion 0 f net wo r kin 9
network NETWORK 0
Internet INTERNET 0
debugger DEBUGGER 1
subclock SUBCLOCK 0
nrslp NRSLP 200

Using the /etc/master File to Choose a Major Device Number
The first part of the /etc/master file contains device
information. The sixth (or last) field of this part of the file
contains the major device numbers for the devices on the
system. Find the last entry in this field, then choose the next
sequential number. For example, if the last entry in the sixth
field of the first part of the /etc/master file is 1 7, choose 1 8
as the major device number for your new driver.

Note: The major device numbers in the jete/master file are not
always in sequence. Make sure the number you choose doesn't
already exist earlier in the file. If it does already exist, choose
the next number.

1207826

4-6 Adding Device Drivers

Adding the Device Driver to the CENTIX Kernel
To add a device driver to the CENTIX kernel, you must add
an entry for the new device to the files /etc/master and
/usr/sys/cf/dfile.normal. (See "Modifying Tunable
Parameters" in Section 2 for more on the dfile.normal file.)
Then run the custscript program.

To add a new device driver to your CENTIX kernel:

1 Edit /etc/master using vi or ed.

2 Append the entry to the first part of the file (as described
above). For clarity, append this entry before the
pseudo-terminal port device entries (after the tsp entry).

New device entries in the /etc/master file should follow the
format of the default device entries already in the file.

A sample entry from the default /etc/master is:

console 037 264 con o 5

The device name is "console." The second field has bits
set to indicate that handlers exist for open, close, read,
write, and ioctl, but not for initialization or power-failure.
These handlers will be prefixed with "con" (field 4), that is,
conread, conioctl, conopen, and so on. The third field has
bits set to indicate that only one of these devices is
allowed, the interrupt vector is to be suppressed, it is a
required device, and an entry should be made in the
character device table, but not the block device table. The
fifth field is ignored since the proper bit was not set for
block device. The sixth field indicates that this device
driver should be character major device number 5.

A new entry might be as follows:

newdrlver 036 254 new 2 18

Adding Device Drivers 4-7

The device name is "newdriver." The second field indicates
that handlers exist for open, close, read, and write. The
third field indicates that only one of these devices is
allowed, the interrupt vector is to be suppressed, and
entries should be made in the block device table and the
character device table. The handler prefix is "new"
(newopen, newclose, and so on). The block major device
number is 2, and the character major device number is 18.

3 Add a corresponding entry to the file dfile.normal.

Although the new device driver has been added to the
/etc/master file, unless a corresponding entry exists in
dfile.normal, the appropriate entries will not be created in
the configuration files when dfile.normal is configured
(during the custscript program).

Add the device name to the first part of the dfile. normal
file,. after the last entry in that section of the file. Using the
above example, the name "newdriver" would be added
after the tsy entry in dfile.normal.

4 Run custscript.

The customizer script takes information from /etc/master
and dfile.normal, compiles it, and links it to the new kernel.
See "Running the CENTIX Kernel Customizer Script" in
Section 2.

1207826

Glossary-1

Glossary
anode. CENTIX system data structure that contains all the
information about a file except its name and its contents.

Applications Processor (AP). Processor board in the XE 500
system that runs the CENTIX operating system.

AP. See Applications Processor.

B 20. Burroughs microcomputer from the clustered
workstation series.

block. On a disk device, a 512-byte subdivision of data on
the disk. Also referred to as a sector.

block device. A hardware device that handles I/O data in
1024 bytes (1 kB) blocks. The I/O size is controlled by the
operating system's buffer size and is independent of the
user's I/O size. Disk and tape devices can be configured as
block devices.

BTOS. B 20· Operating System. All XE 500 boards except
the Applications Processor run a version of BTOS.
BTOS-based processors handle all of the actual data
transfers for CENTIX between the XE 500 and I/O devices
(such as disk drives, tape drives, terminals, and modems).

buffer cache. System buffers that the kernel utilizes for
temporary storage of data while data is transferred to and
from disk.

cc. The C compiler.

cd. The change directory command.

CENTIX. Burroughs version of the System V UNIX operating
system.

CENTIX C. Standard C Language adapted for use with
CENTIX operating system.

CENTIX File System Server. BTOS-based system service that
controls
all CENTIX disk I/O.

CENTIX shell. Command interpreter; program acting as
interface between operating system and users.

1207826

Glossary-2

character device. A hardware device that handles raw data
streams. The size of I/O transfers in raw data streams are
determined either by the software design of the device itself
(for terminals and printers) or by the program controlling the
device (for disks and tapes).

Cluster Processor (CP). Board in XE 500 system; runs
communications software and supports PT 1500 terminals,
820 workstations, a parallel printer, and up to three
RS-232-C serial devices.

conf.c. C program that defines the configuration tables for
the various devices on the system.

conl.o. Object file created when conf.c is compiled.

console. The terminal designated by the system software for
use by the system administrator.

CPo See Cluster Processor.

custscript. Shell script used by the CENTIX kernel customizer
to compile and link the customized kernel.

customizer. See kernel customizer.

device. A terminal, printer, disk, tape, or other input/output
medium that can be attached to the system. A device can be
physical or logical.

device driver. Program that controls a device.

device file. In the CENTIX file system, a file in the /dev
directory that represents a terminal, printer, disk, tape, or
other input/output device.

dfile.normal. File used by the CENTIX kernel customizer to
tune parameters and add device drivers to the system.

directory. In CENTIX, a directory is a list of files that are
assigned to the directory. A directory can also contain other
directories.

Disk Processor (DP). Processor board in an XE 500 system
that is formed by connecting SC to SP. The DP supports I/O
to half-inch magnetic tape drives and MD3 disks.

DP. See Disk Processor.

ed. CENTIX line editor.

G1ossary-3

/etc/config. Program used to configure the CENTIX operating
system.

/etc/master. T ext file that contains the master device
information.

File Processor (FP). Processor board in an XE 500 system that
supports I/O operations to disk devices.

file system. In CENTIX, a collection of files that are all stored
on the same logical disk device. A file system must be
attached to, or is "subordinate to," a directory. The file
system physically contains the files that are logically
contained in that directory. The term can also be used, as in
"the CENTIX file system," to describe the entire hierarchy of
directories, specific file systems, and files in a CENTIX system.

FP. See File Processor.

fsck. File system check.

halt. Program that cancels all running processes and brings
the system to single-user mode.

inode. In a CENTIX file system, there is one inode for each
file and directory in the file system. The inode contains
status information for its file or directory, such as the size, its
owner and permissions, its disk address list, and whether it
is a directory, an ordinary file, or a special file.

inter-CPU communication (ICC). Enables a process on one
processor to request a system service from a process on
another processor. ICC is an extension of the Inter-Process
Communications (IPC) facility.

inter-process communication (IPC). Facility that synchronizes
process execution and information transmission between
processes through the use of messages and exchanges.

I/O. Input/output.

kernel. Portion of the CENTIX operating system that controls
system processes and allocates system resources.

kernel customizer. Set of files and programs that allows you to
customize the CENTIX kernel by adding already-developed
device drivers to the system and by tuning parameters that
control system resources.

1207826

Glossary-4

Id. Link program for common object files.

major device number. Unique numbers assigned to the devices
listed in the /etc/master file.

message parameters. Parameters that control inter-process
message resources in the kernel, which can be accessed by
user processes through the msgctl, msgget, and msgop
system calls.

mixed system. An XE 500 system that contains a complete
BTOS operating system and a complete CENTIX operating
system.

mkboot. Program that reformats the CENTIX kernel and
copies it to BTOS. octal numbers. Base 8 numbering system
(0 through 7).

ofed. CENTIX program that allows you to use ed to edit
BTOS files.

ofvi. CENTIX program that allows you to use vi to edit BTOS
files.

/oldunix. Original/unix file, created when /unix is replaced by
the new customized kernel.

parameter. See tunable parameters.

partition. The name of a BTOS file that is associated with a
CENTIX logical disk device.

raw device. A block device configured to accept data one
character at a time, rather than in blocks.

root. The base directory of the CENTIX file system. Every
ENTIX directory must either be subordinate to root, or
subordinate to a directory that is subordinate to root, or
subordinate to a directory that is subordinate to a directory
that is subordinate to root, and so on. In a file path name,
root is represented by a slash (/).

semaphore parameters. Parameters that control inter-process
semaphore resources in the kernel, which can be accessed
by user processes through the semctl, semget, and semop
system calls.

shared memory parameters. Parameters that control
inter-process shared memory resources in the kernel, which
can be accessed by user processes through the shmctl,
shmget, and shmop system calls.

Glossary-5

shell. The portion of the CENTIX operating system that
provides a user interface to the kernel.

shell script. An executable CENTIX file that contains a
program comprised of shell commands.

single user mode. An operating state defined in the
/etc/inittabnn files. In single user mode, only the system
console can access the system.

SP. See Storage Processor.

Storage Processor (SP). Processor board in XE 500 system;
controls half-inch magnetic tape.

superblock. The portion of a CENTIX file system that contains
descriptions of the file system, including the file system
name, its size in blocks, the number of blocks reserved for
inodes, the free inode list, and the free block list.

superuser. The name by which the system administrator is
called in CENTIX documentation. To become superuser, the
administrator signs onto the system as "root".

[Sys]?sys?CENTIX.sys. BTOS file that represents the CENTIX
kernel.

[Sys]?sys?ConfigUFS.sys. CENTIX File System Server file.

system call. Function that causes the kernel to perform an
operation for a process.

system resource parameters. Parameters that control system
resources such as buffer sizes, system table allocations, and
memory allocations.

terminal. A device, usually equipped with a keyboard and a
display, which is capable of sending and receiving
information over a communication channel.

Terminal Processor (TP). Processor board in XE 500 system
that supports a parallel printer and up to ten RS-232-C serial
devices.

1207826

Glossary-6

TP. See Terminal Processor.

tunable parameters. Parameters that can be modified to
customize the CENTIX kernel.

UFS.run. CENTIX File System Server run file.

undo operations. Implemented to ensure that a terminating
process cannot indefinitely block other awaiting processes.

UNIX. AT&T Bell Laboratories operating system designed
for application program development on various computer
systems.

/unix. CENTIX file that represents the CENTIX kernel.

/usr/sys/cf. Directory that contains the configuration file
dfile.normal and the shell script custscript, which are used by
the CENTIX kernel customizer.

/usr/sys/cf/dfile.normal. See dfile.normal.

/usr/sys/oslib. CENTIX kernel customizer directory containing
five kernel libraries and two object modules.

vi. CENTIX screen-oriented visual editor.

volume. In BTOS, the complete file system unit of
information stored on a formatted disk.

XE 550 System. Burroughs multiprocessor computer; runs
CENTIX, a UNIX-based operating system.

Index
A
anode, 3-2, 3-3
anode (inode) table, 3-2, 3-3, 3-8, 3-9
Applications Processor (AP), 2-4, 2-5, 3-3, 3-6, 3-10
arg, 2-1, 2-2
arrays of integers, 3-14

B

block-type (block) device, 3-6, 4-2, 4-6, 4-7
BUFFER (CENTIX File System Server parameter), 2-3, 2-4, 3-6, 3-26
buffer cache, 1-1, 3-4, 3-5, 3-6, 3-9

c
cd command, 2-5

Index-1

CENTIX File System Server, 1-3, 2-1, 2-3, 2-4, 2-5, 3-3, 3-6, 3-26
CENTIX kernel, 1-1, 1-2, 1-3, 2-1, 2-3, 2-5, 2-6, 3-1 - 3-26, 4-1, 4-6, 4-7
character-type (character) device, 3-7, 4-2, 4-6,4-7
close handler, 4-2,4-6,4-7
conf.c file, 1-2, 4-2, 4-3
conf.o file, 1-2
count field, 4-2
custscript script, 1-1, 1-2, 2-5, 3-26, 4-1, 4-6, 4-7

o
devices, 1-1,2-1,3-7, 3-11,4-1,4-2,4-3,4-5,4-6,4-7
device drivers, 1-1, 1-3, 2-1, 2-2, 3-6, 4-1, 4-6, 4-7
device numbers, 4-1,4-2, 4-5, 4-6, 4-7
dfile.normal file, 1-1, 1-2, 1-3, 2-1, 2-2, 2-3, 2-5, 3-26,4-1,4-3,4-6, 4-7
disk I/O, 1-3, 3-4
Disk Processor (DP), 2-4, 3-3, 3-6, 3-26

E

ed editor, 2-3, 3-26, 4-6
/etc/master, 1-1, 1-2, 1-3, 2-1, 2-3, 4-1 - 4-7
exchange table, 3-13

1207826

Index-2

F

File Processor (FP), 2-4, 3-3, 3-6, 3-26
fixed vector, 4-2
floating vector, 4-2
fpsar command, 3-3, 3-6
fork system call, 3-12

H

halt command, 2-5, 3-26
handlers, 4-6, 4-7
handler prefIX, 4-2, 4-7
hashing, 3-9

incore memory page table, 3-17
initialization handler, 4-2,4-6
INODE (CENTIX File System server parameter), 2-3, 2-4, 3-3
inode table, 3-2, 3·3, 3·8
inter-CPU communication (ICC), 3·10,3·11,3·13
inter-process communication (lPC), 3-11, 3-16, 3·18, 3-19, 3-21, 3·22, 3-25
interrupt vector, 4-2,4-6, 4-7
iocd handler, 4-2, 4-6

L

Id utility, 1·2, 2-6
lock table, 3-9

M

maximum upper limit file size, 3·1
MESSAGE (CENTIX File System Server parameter), 2-3, 2-4
message headers, 3-20, 3·21
message header table, 3-20, 3·21
message parameters, 3-1, 3-19 • 3·21

MESG, 3-19, 4-4
MSGMAX, 3-20, 4-5
MSGMNB, 3-20, 4-5
MSGMNI, 3-20, 4-5
MSGTOl, 3-20, 4-5

message queue header table, 3-20, 3-21
memory page table entry allocation map, 3·17

N

nice value, 3-12

o

ofed editor, 2-4, 3-26
ofvi editor, 2-4, 3-26
/oldunix file, 1-2, 2-5, 2-6
open handler, 4-2

p

pipe, 2-1, 2-2, 2-3, 3-8
power-failure handler, 4-2

R

read handler, 4-2
reference count, 3-8, 3-9, 3·15
root, 2·1, 2-2, 2-4, 2·6, 2·1, 3·2

s
semaphore adjust-on-exit (undo) operations, 3·13, 3-23, 3-24
semaphore map table, 3·22
semaphore parameters, 3·1, 3·22 - 3·25

SEMA, 3-22, 4-5
SEMAEM, 3-24, 4-5
SEMMAP, 3-22, 3-25, 4-5
SEMMNI, 3-23, 3-25, 4-5
SEMMNS, 3-23, 3-25, 4-5
SEMMNU, 3-23,4-5
SEMMSL, 3-24, 4-5
SEMOPM, 3-24, 4-5
SEMUME, 3-24, 4-5
SEMUSZ, 3-24, 4-5
SEMVMX, 3-24, 4-5

shared memory parameters, 3-1, 3·16 • 3·18
SHMALL, 3-17, 4-5
SHMBRK, 3-17, 4-5
SHMEM, 3-16, 4-5
SHMMAPSIZE, 3-17, 4-5
SHMMAX, 3-17, 4-5
SHMMIN, 3-17, 4-5
SHMMNI, 3-17, 3-18, 4-5
SHMSEG, 3-18, 4-5

1207826

Index-3

Index-4

shared text, 3-12
shmcd (system call), 3-16
shmget (system call), 3-16
shmop (system call), 3-16
single-user mode, 2-5, 3-26
swap, 2-1, 2-2, 2-4
swap area, 3-14, 3-16
swap map, 3-16
swap I/O header table, 3-14
[Sys]<sys>Centix.sys, 1-2, 2-6, 2-7
[Sys]<sys>ConfigUFS.sys, 1-3, 2-4, 3-26
[Sys]<sys>UFS.run, 3-3
system buffer hash table, 3-9
system character list queue, 3-7
system file table, 3-8
system process table, 3-12
system resource parameters, 3-1, 3-1 - 3-16

MAXFS, 3-1,4-4
MAXUP, 3-2,4-4
NANODE, 3-2, 4-4
NBUF, 3-4, 4-4
NClIST, 3-7,4-4
NFllE, 3-8, 4-4
NFlOCKS, 3-9, 4-4
NHBUF, 3-9, 4-4
NLRGBlOCKS, 3-10, 4-4
NPROC, 3-12, 3-18, 4-4
NSWAP, 3-14,4-4
NSWBUF, 3-14,4-4
NTEXT, 3-15,4-4
SMAPSIZ, 3-16, 4-4

system semaphore allocation map, 3-22
system semaphore id data structure table, 3-23
system semaphore operation adjust-on-exit table, 3-23
system semaphore table, 3-23
system shared memory header table, 3·17
system text table, 3-15

T

table of availalile in-memory pages for shared memory attach points, 3-13, 3-18
table of pointers to attached shared memory segments, 3-13, 3-18
thrashing, 3-13, 3-14

u
/unix file, 1-2, 2-5, 2-6
/usr/sys/cf directory, 1-1
/usr/sys/oslib directory, 1-1

v
vi editor, 2-3, 3-26, 4-6

w
write handler, 4-2

1207828

Index-5

Title: __________________________ _

Form Number: ____________ _ Date:

Burroughs Corporation is interested in your comments and suggestions regarding
this manual. We will use them to improve the quality of your Product Information.

Please check type of suggestion: 0 Addition D Deletion D Revision
D Error

Comments:

Name
Title __________________________ _

Company

Address ___ ~-------~=_---_=~---~~---
Street City State Zip

Telephone Number () __________________ _
Area Code

Title: ___________________________ _

Form Number: ____________ _ Date:

Burroughs Corporation is interested in your comments and suggestions regarding
this manual. We will use them to improve the quality of your Product Information.

Please check type of suggestion: D Addition D Deletion D Revision
D Error
Comments: _________________________ ~--------

Name

Title

Company

Address _____ ~-------------~~------~--------~-------
Street City State Zip

Telephone Number () ________________ _.__---
Area Code

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 817 DETROIT, MI 48232

POSTAGE WILL BE PAID BY ADDRESSEE

Burroughs Corporation
Production Services - East
209 W. Lancaster Avenue
Paoli, Pa 19301 USA

ATTN: Corporate Product Information

1.1111111 I. II 1.1 •• II ••• 1.11.1111.111 1 ••• 1.1.11111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 817 DETROIT, MI4B232

POSTAGE WILL BE PAID BY ADDRESSEE

Burroughs Corporation
Production Services - East
209 W. Lancaster Avenue
Paoli, Pa 19301 USA

ATTN: Corporate Product Information

I. 1 •• 11 •• 1 ••• 1.1111111.1.11.1111.111 I ••• 1.1.111 •• 111

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

