CORVUS SYSTEMS

* CORVUS DISK SYSTEM TECHNICAL REFERENCE MANUAL

PART NO. : 7100-03289
DOCUMENT NO. : CCC/10-99/1.0

RELEASE DATE : November, 1982

CORVUS CONCEPT (TM) is a trademark of Corvus Systems, Inc.

CORVUS DISK SYSTEM
TECHNICAL REFERENCE MANUAL
COPYRIGHT 1982

NOVEMBER 19, 1982

{This page left intentionally blank}

- ii -

CORVUS DISK SYSTEM
TECHNICAL REFPERENCE MANUAL

TABLE OF CONTENTS

CORVUS flat cable description

1
l‘
1

- .
w N

1.4

General

Cable wire assignments
Cable timing

1.3.1 General case

1.3.2 Special conditions
Cable connector description

Disk Controller

2.1
2.2
2.3

2.4 Contro

System area
User area
Controller commands (numerical order)
2.3.1 Controller command notation
2.3.2 Normal mode commands
Read sector (02h)
Write sector (03h)
Get drive parameters (10h)
Diagnostic mode select (1lh)
Read chunk (12h or 22h or 32h)
Write.chunk (13h or 23h or 33h)
Boot (1l4h)
tic mode commands
1 Reset drive (00h)
2 Format drive (01h)
3 Verify (07h)
4 Read Corvus firmware (32h)
5 Write Corvus firmware (33h)
ore Commands
1 Semaphore initialize (1lAh,10h)
2 Semaphore lock (0Bh,1llh)
3
4
o)
1l
2
3
4
5

[\
.
w
.

[/ N e NS IS PV I S

Qe o o ¢ o o

MWWWWWINDPDPDDODNDDN

S'e ¢ o o o

Semaphore unlock (0Bh,1lh)

Semaphore status (lAh,4lh)
mmands

Pipe read (1Ah,20h)

Pipe write (lAh,21h)

Pipe close (1Ah,40h)

Pipe status (lAh,41h)

Pipe open write (1Bh,80h)
6 Pipe area initialize (1Bh,AOh)
7 Pipe open read (1Bh,COh)
status codes

e o o o o o & () o o o o

(S MO RO O RO N Y] O -

- iii -

1 Normal mode command status codes
2 Diagnostic mode command status codes
3 Semaphore command status codes
4 Pipe command status codes
roller theory of operation
1 Disk operations

2.5.1.1 CRC operation

2.5.1.2 Format operation
2.5.2 Semaphores
2.5.3 Pipes
2.5.4
2.5.5

3]
-
Ui

Spare tracks
Virtual drives

3, Mirror

3.1 General

3.2 Mirror functional description
3.2.1 Features
3.2.2 Mirror operating modes
3.2.3 Data format

3.3 Mirror commands {(numerical order)
3,3.1 Mirror command notation

3.3.2 Backup (08h)
3.3.3 Restore (09h)
3.3.4 Identify (0Ah,05h)
3.3.5 Verify (0Ah,0lh)
3.3.6 Verify error report (0Ah,02h)
3.3,7 Remote operation select (0Ah,04h)
3.3.7.1 Remote status (0Ah,05h)
3.3.7.2 Verify retry (0Ah,06h)
3.3.7.3 Jump forward (0Ah,07h)
3.3.7.4 Jump reverse (0Ah,08h)
3.3.7.5 Find present location (0Ah,09%h)
3.3.7.6 Find image trailer (0Ah,0Ah)
3.3.8 Restore retry (0Ch,00h)
3.3.9 Error report for backup, restore, verify,
retry (0Ch,01lh)
3.3.10 Partial restore (0Dh)
3.4 Mirror status codes
3.5 Mirror theory of operation

Appendix A DISK COMMAND SUMMARY

Appendix B STATUS CODE SUMMARY

- iy -

{This page left intentionally blank}

1. DISK HARDWARE INTERFACE
1.1 General

All cable assignments are TTL.

1.2 Cable wire assignments

NAME ORIGINATOR FLAT CABLE WIRE
Data Bit 0 bi-directitonal 25

Data Bit 1 bi-directitonal 26

Data Bit 2 bi-directitonal 23

Data Bit 3 bi-directitonal - 24

Data Bit 4 bi-directitonal 21

Data Bit 5 bi-directitonal 22

Data Bit 6 bi-directitonal 19

Data Bit 7 bi-directitonal 20

DIRC (bus dir) drive 9

READY drive 27

-STROBE computer 29

-RESET drive 31

+5 volts drive 3,4,34

Ground drive : 6,8,10,17,28,30,32
Unused ——— 1,2,5,7,11-16,18, 33

1.3 Cable timing

1.3.1 General case

Command initionation and computer to drive data transfer.

READY =====m—————————- + T + +=
| I I I
fmm————— + fmm—————— +
-STROBE --=--==-——-- 4 Hmmmmmmmm e + Ammmmmmmmmmmee
I I
-t +==+
e \ [mmmmmmmmmm e \
DATA —-——-—--- < N < N
\--mmmmmmmm e / \m=mmmmmmm - /

The drive indicates its readiness to accept a command by raising
the READY line. The computer then puts a command byte to the
data lines and pulses ~STROBE (the command byte is to be latched
by the drive on the rising edge of -STROBE). Upon seeing the
-STROBE pulse, the drive drops the READY line as an
acknowledgement to the computer. When ready for the next command
byte the drive again raises the READY line.

At the end of the command sequence, the drive will keep the READY
line low until the desired operation has been performed. Upon
completion of the operation, the drive will lower the DIRC line,
raise the READY line and then allow the computer to read data and
status information. Note that all commands .consist of a write
phase (during which command and data information is sent to the
drive), followed by a read phase (during which status and data
information is received from the drive).

Drive to computer data transfer.

Fmmmmm— + tmmm— e + +=
READY —mmmt N ; R yy—— :
-STROBE -=-===- + Femmmmmmm—eeee——e— ¥ Ammmmmmm————eeme /)======
s bt
[==mm—mmmm——— \ /=== mmm————— \
DATA =—----- < deme——— < Semmmm—— /) ==
\======m————- / \=======m——= /
DIRC ----+ R
S — ——————- //---l

The drive starts a computer read sequence by lowering the DIRC
line. The drive then puts a byte to the data lines and raises
the ready line. The computer then pulses the -STROBE line,
capturing the data on the rising edge. The drive then lowers the
READY line until the next data byte is ready to send. After the
last byte is transferred, the drive raises the DIRC line prior to
raising the READY line. :

1.3.2 Special conditions

There are two special conditions which deviate from the general
cable timing information presented and must be accounted for ov
the computer/disk controller or by the computer ‘disk handlzr.

Case 1 -- READY line glitch after the last byte of command.

After the last command byte is received by the drive, tne READY
line will go high (for 20 uSEC. or less). Since this occurs
prior to the completion of the command operation, it must Dbe
ignored. Since the glitch occurs while the DIRC line 1s high,
it is easy to detect either in hardware (by gating) or in
software (by the procedure shown below in Pascal pseudo-code).

REPEAT UNTIL (DIRC = LOW) AND (READY = HIGH);

Case 2 -- DIRC line glitches after last byte of Mirror command.

After the last command byte of a Mirror command is received, the
DIRC line will repeatedly alternate between high and low (while
the drive talks to the Mirror). Since these changes occur while
the READY line is low, they are easy to detect either in
hardware (by gating) or in software (by the procedure shown
below in Pascal pseudo-code).

REPEAT UNTILL (READY = HIGH) AND (DIRC = LOW);

Note that the two glitch cases are resolved with a single fix.

1.4 Cable connector description
17 x 2 female connector on cable, red stripe on cable is pin 1.

$m—mtmmtomtmmpmmpmmpmm b mm b mm b mmpmm b m e b m
| 1] 31 51 7] 9111113115117119121123125127129131133]
e s mt S TEl Ll el el il
| 2] 4] 6] 8110112114116118120122124]126128(30(32134]|
S S S et et L e e Tt

Pin 1 is normally designated by a square pin on the cicuit side
of the interface card.

{This page left intentionally blank}

2. Disk Controller

2.1 System area

The first 2 cvlinders on all drives are allocated as a system
area, the second cylinder being a backup copy of the first.
There are no spare tracks allowed in this region; 21l blocks
must be good. The usage for the blocks within a cylinder are
shown below.

Block O Boot Block.

Block 1 Disk parameter block.

Spare track table (see 2.5.4)
Interleave information.

Step time

Virtual drive track offset
table (see 2.5.5).

Block 2 Diagnostic block.

Block 3 Constellation parameter block

(see 2.5.3).

Blocks 4 through 5

Dispatcher code.

Blocks 6 through 7 Pipes and semaphores (see 2.5.3).

Mirror controller code.

Blocks 8 through 17

Blocks 18 and 19 LSI-11 controller code,

Blocks 20 and 21

Pipes controller code.
Blocks 22 through 39 = Reserved for future use.
Blocks 40 through 59 = Reserved for boot command.
Blocks 60 through :

remainder of cylinder = Unused.
The paragraphs that follow provide brief descriptions of the

content of each of the system area regions.

Boot block -- Contains Z-80 code.

Disk parameter block -- Contains disk related information as
shown below:

fommm—————————————————— +
| spare track table ?
| (see 2.5.4) i
o e e o e -+
[interleave factor I
| (default = 9) |
e +
| unused l
o ————————————— +
| VDO table !
| (see 2.5.5) l
o ——————————— +
| LSI-11 VDO table I
| (see 2.5.5) |
fmm——————— e ———————— +
| unused !
fmmm e ———————— +

Diagnostic block -- This area contains code used by the Z-80
(in the controller) during diagnostic mode commands (format,

verify, etc).

Constellation parameter block -- Contains multiplexer polling
parameters and the pipe area definition, as shown below:

| multiplexer poll l
| parameters |

| pipe area define |
| (see 2.5.3) |

Dispatcher code -- This area contains code used by the Z-80 (in
the controller) during normal mode commands.

Pipes and semaphores -- This block contains code for the
dispatcher and support utilities for pipes and semaphores, an
also contains the semaphore table.

frmm e ——— e ———————— o=t
| dispatcher code b
| for pipes and | +-block 6
| semaphores -
o ——————————— e ot
fmmm e ———————— -t
| semaphore table oo
[(see 2.5.2) b
frmmm——————————————— - +--+=-block 7
| pipe and semaphore | |
| utilities code !
frm— e ————— e ———————— =

Mirror controller code =-- XX.
LSI-11 controller code =-- XX.
Pipes controller code -- XX.
Reserved area == XX.

Boot extension -- Blocks 40 through 43 are currently used to
support the Apple.

2.2 User area

The user area always starts at the third cylinder. The user
area can be viewed as logical or physical sectors. '

Logical sector numbers range from 0 to the size of the drive.
The sizes are:

11220 for the 6 Mbyte drive.
21220 for the 10 Mbyte drive.
38460 for the 20 ‘Mbyte drive.

Physical sector numbers are given as head, cylinder, sector #.

The algorithm for converting logical sector numbers to physical
sector numbers would be as shown below, if it were not for the
system area, virtual devices and spare tracks (the real algorithm
will be explained immediately following the simplified form):

disk sector # = block # modulo track size.
disk track # = block # div track size.

disk head # = disk track # modulo surfaces.
disk cylinder # = disk track # div surfaces.

Note that the disk track # is a temporary result and is not a
directly addressable entity in the drive; a given block is
addressed physically by sector #, head # and cylinder #.

The real algorithm for converting logical sector numbers to
physical sector numbers is shown below:

disk sector # = block # modulo track size.

relative track # = block # div track size.

physical' track # = relative track # plus system area

offset plus virtual drive offset.

physical track # = physical' track # plus one for every
. spare track preceding.’

disk head # = physical track # modulo surfaces.

disk cylinder # = physical track # div surfaces.

Where the following sizes apply:

SIZE Model 6 Mb Model 11 Mb Model 20 Mb
Sectors/track 20 20 20
Surfaces (heads) 4 3 5
Cylinders 144 358 388
Total tracks '

per drive 576 1074 1940
Usable tracks

per drive 561 1061 1923

2.3 Controller commands (numerical order)

2.3.1 Controller command notation .

All of the controller commands are discribed in this section.
The notation for each command is as follows: COMMAND NAME
followed by (xxh : xxd), where xxh is the hex value of the
command code, and where xxd is the equivalent decimal value of
the same command code.

In some instances, a command code will consist of a primary code
along with an additional command modifier. For these cases the
notation is as follows: COMMAND NAME followed by (xxh,yyh
xxd,yyd), where xxh,yyh is the command code and the command
modifier, respectively, and where and where xxd,yyd is the
equivalent decimal value of the same command and command
modifier.

2.3.2 Normal mode commands

2.

()

a1
L ow ok Re

W

d sector (02h : 24)
This command reads a 256 byte sector from the disk.

Send 4 bvtes:

byte 1 = 02h (command).

byte 2 = logical drive #.
bvte 3 = sector # (lsb).
byte 4 = sector # (msb).

Receive 257 bytes:
byte 1 = disk status.
byte 2-257 = sector data.
2.3.2.2 Write sector (03h : 34)
This command writes a 256 byte sector to the disk.

Send 260 bytes:

byte 1 = 03h (command).

byte 2 = logical drive #.
byte 3 = sector # (1lsb).
byte 4 = sector # (msb).

byte 5-260 = sector data.
Receive 1 byte:

byte 1 = disk status.

2.3.2.3 Get drive parameters (10h : 164)
This command returns certain drive parameters.
Send 2 bytes:

byte 1
byte 2

10h (command).
logical drive #.

Receive 129 bytes:

byte 1-= status.

byte 2-32 = ASCII text (31 bytes).
byte 33 = firmware version.

byte 34 = ROM version.

byte
byte
byte
byte
byte

byte
byte

byte
by te
by te
byte
byte
byte
byte
byte
byte

by te
byte
byte

sectors/track.

35 =

36 = tracks/cylinder.

37 = cylinders/drive (lsb).

38 = " (msb) .

39 = capacity of physical drive in 512 byte
blocks (1lsb).

4C = capacity of physical drive in 512 byte
blocks.

41 = capacity of physical drive in 512 byte
blocks (msb). '

42-57 = spare track list (see 2.5.4 for format).

58 = interleave factor.

59-70 = Constellation parameters.

71-76 = pipe parameters (see 2.5.3 for format).

77-90 = VDO table (see 2.5.5 for format).

91-98 = LSI-11 VDO table (see 2.5.5 for format).

99-106 = LSI-11 spare track list.

107 = physical drive number.

108 = capacity of logical drive in 512 byte
blocks (1lsb).

109 = capacity of logical drive in 512 byte
blocks.

110 = capacity of logical drive in 512 byte
blocks (msb).

111-129 = filler.

2.3.2.4 Diagnostic mode select (11h : 174)

This command takes the drive out of normal mode and sets it to
diagnostic mode.

Send 514 bytes:

byte 1
byte 2
byte 3-514 = executable %Z-80 code (execution starts at

Receive 1 byte:

byte 1

l1l1h (command).
logical drive #.

first byte). This code is the monitor for
diagnostic mode which interprets the rest
of the diagnostic mode commands. Normally,
this block is the same as block 2 of the
firmware.

= disk status.

2.3.2.5 Read chunk (12h or 22h or 32h : 18d or 34d or 504)

This command reads a 128, 256 or 512 byte "chunk" from the

- 10 -

disk. The three read chunk command formats are shown below:

Send 4 bytes:

byte 1 = 12h (command).
byte 2 = logical drive *#.
byte 3 = chunk # (lsb).
byte 4 = chunk # (msb).

Receive 129 bytes:

byte 1 = disk status.,
byte 2~129 = data (128 bytes).

Send 4 bytes:

byte 1 = 22h (command).
byte 2 = logical drive #.
byte 3 = chunk # (1lsb).
byte 4 = chunk # (msb).

Receive 257 bytes: .

byte 1 = disk status.
byte 2-257 = data (256 bytes).

Send 4 bytes:

byte 1 = 32h (command).
byte 2 = logical drive #.
byte 3 = chunk # (1lsb).
byte 4 = chunk # (msb).

Receive 513 bytes:
byte 1 = disk status.
byte 2-513 = data (512 bytes).
2.3.2.6 Write chunk (13h or 23h or 33h : 194 or 354 or 514)

This command writes a 128, 256 or 512 byte "chunk" to the disk.
The three write chunk command formats are shown below:

Send- 132 bytes:

byte 1 = 13h (command).

byte 2 = logical drive #.

byte 3 = chunk # (1lsb).

byte 4 = chunk # (msb).

byte 5-132 = data (128 bytes).

- 11 -

Receive 1 byte:
byte 1

disk surface.

Send 260 bytes:

byte 1 = 23h (command).

byte 2 = logical drive #.

byte 3 = chunk # (1lsb).

byte 4 = chunk # (msb).

byte 5-260 = data (256 bytes).

Receive 1 byte:

byte 1 disk status.

Send 516 bytes:

byte 1 = 33h (command).

byte 2 = logical drive #.

byte 3 = chunk # (1lsb).

byte 4 = chunk # (msb).

byte 5-516 = data (512 bytes).

Receive 1 byte:

byte 1 = disk status.

2.3.1.7 Boot (l4h : 204)

This command returns the contents of the specified sector of
firmware on track #2.

Send 2 bytes:

byte 1
byte 2

l4h (command).
sector # (0-19).

Receive 513 bytes:

byte 1-= disk status.
byte 2-513 = boot data (512 bytes).

2.3.3 Diagnostic mode commands
2.3.2.1 Reset drive (00h : 0d)

This command takes the drive out of diagnostic mode and sets it

- 12 =

in normal mode.

Send byte :

Byte 1 00h (command).

Receive 1 byte:

1
o

Byte 1

2.3.3,2 Format drive (0lh : 14)

This command formats a drive if the FORMAT switch is ON, else
returns an error status.

Send 513 bytes:

byte 1 = 0lh (command).
byte 2-513 = format pattern data (512 bytes).

Receive 1 byte:

byte 1 = disk status.

2.,3.3.3 Verify (07h : 74)
" This command performs a CRC check of every sector on the disk.
Send 1 byte.

byte 1 = 07h (command) .

Receive n*4+2 bytes (n = errors):

byte 1 = status. .

byte 2 = number of bad sectors * 4.

byte 3 = head number of 1lst bad sector.
byte 4 = cylinder of lst bad sector (lsb).
byte 5 = cylinder of lst bad sector (msb).
byte 6 = sector number of lst bad sector.

L

byte n*4-1 head number of nth bad sector.

byte n*4+0 = cylinder of nth bad sector (lsb).
byte n*4+l = cylinder of nth bad sector (msb).
byte n*4+2 = sector number of nth bad sector.

2.3.3.4 Read Corvus firmware (32h : 504)

- 13 -

This command reads a block of data from the system area.
Send 2 bytes:

byte 1 = 32h (command)
byte 2 + head (3 bits), sector (5 bits).

Receive 513 bytes:

byte 1 = disk status.

byte 2-513 = contents of block (512 bytes).
2.3.3.5 Write Corvus firmware (33h : 514)
This command writes a block of data to the system area.
Send 514 bytes:

byte 1 33h (command).

byte 2 head (3 bits), sector (5 bits).
byte 3-514 = data (512 bytes).

Receive 1 byte:

byte 1 = disk status.

2.3.4 Semaphore Commands

The principal reason for using semaphores is to avoid a situation
where two or more users are simultaneously accessing the same
volume.

There is no problem if two users are merely reading from the same
volume. However, if one user is writing to a volume, another
user simultaneously accessing that volume may cause inconsistant
data to be read. A more serious problem occurs if multiple users
are writing to a file or volume at the same time,

This problem arises because the operating system in each
processor has a copy of the directory for each active disk
volume. The directory is usually updated on the disk only when
the local operating system thinks it is necessary. Since each
user can be adding, deleting, or changing files, the directory
may be different in two or more processor's memory. This leads
to two users writing out their files or directories and only the
last user to write actually updating the directory on the disk.

To avoid this problem, there are several alternatives useful in
specific instances. Read-only access to system utilities or data

- 14 =

bases avoids the problem on shared disks. Read-write access to
shared volumes can be made safe if all writes are made to
existing pre-allocated files and the file is locked while any
program has write access to it.

Semaphores can be used to keep two or more programs from writing
to the same file or section of a file at the same time. User
application programs that need shared read-write access to a data
base can be configured to test the status of a semaphore before
allowing access to a file. The semaphore is used to indicate
that a particular file is being written to.

Each processor may, at any time, request to lock a semarhore.

The request is granted if no other processor has already locked
that particular semaphore., The label for the semaphore can be
any eight character name that is agreed upon by the programs that
wish to share access.)

The Lock and Unlock commands send an eight byte name, called the
semaphore, that is either placed into or removed from the
semaphore table managed by the Corvus disk controller. If the
semaphore table is full or if a semaphore has already been
entered, a locked semaphore status is returned. The application
program using the semaphores can continue to poll the semaphore
table until a space is available or the desired semaphore is no
longer locked. The status of the semaphore prior to each
operation is also returned to provide for a full test-set or
test-clear operation.

The semaphore table can be initialized by any processor, but this
should only be performed on system-wide initialization or for
recovery from error conditions.

2.3.4.1 Semaphore Initialize (1Ah,10h : 26d4,164)

For command explanation see the table above.

Send 5 bytes:

byte 1 = 1Ah (command).
byte 2 = 10h (command modifier).
byte 3-5 = filler.

Receive 1 byteE

byte 1 = disk status.

2.3.4.2 Semaphore lock (0Bh,0lh : 114,14d)

- 15 -

For command explination see the table above.
Send 10 bytes:
byte 1 0Bh (command).

byte 2 0lh (command modifier).
byte 3-10 = semiphore key (8 byte name).

Receive 2 bytes:

byte 1
byte 2

disk status.
semaphore status.

2.3.4.3 Semaphore unlock (0Bh,1lh: 114,174d)
Send 10 bytes:
byte 1 0Bh (command).

byte 2 .= 11h (command modifier).
byte 3-10 = semaphore key (8 byte name).

Receive 2 bytes:

byte 1
byte 2

disk status,
semaphore status.

2.3.4.4 Semaphore status (lAh,4l1h : 264,65d)
Send 5 bytes '

byte 1 = 1Ah (command).
byte 2 = 4lh (command modifier).
byte 3 = 03h (command modifier).

byte 4-5 = filler (0's).

Receive 257 bytes:

byte 1 -disk status.
byte 2-257 = semaphore table (256 bytes).

See section 2.5.2 for the format of the semaphore table.

2.3.5 Pipe commands
The Corvus disk controller provides a method, called Pipes, by

which different computers or programs can send data to each
other. A Pipe is a FIFO (first-in-first-out) buffer that is

- ls'_

written by a sender and is read by a receiver. Pipe commands
control writing data to and reading data from the FIFO buffer.
Senders and receivers may be different programs on different
computers (with the Constellation network) running at different
times. The only restriction on the sender,/receiver combiraticn
is that the sender must send z11 data tefore the data Is
available to the receiver,

Before a Pipe can be utilized, it must be opened for write. The
program that is sending data issues an Open Write command which
creates, names, and gives a number to a Pipe.

After the Pipe is successfully opened for writing, the Pipe is
ready to receive data. Pipe Write commands are used to write
data to the Pipe. The Pipe Write command contains the Pipe
number returned by the Open Write command. A maximum of 512
bytes may be written with one Pipe Write command.

After all the desired data has been written to a Pipe, a Close
Write command is issued, The Close Write command closes a Pipe
for writing and makes the Pipe available for reading.

A Pipe cannot be read until it has been written in the sequence
described above., To read a Pipe, an Open Read command is issued
which opens the specified Pipe for reading.

After the Pipe is successfully opened for reading, the Pipe is
ready to transmit data. Pipe Read commands are used to read data
from the Pipe. The Pipe Read command contains the Pipe number
returned by the Open Read command. A maximum of 512 bytes may be
read with one Pipe Read command.

After all the data from the Pipe has been read, a Close Read
command is issued. The Close Read command closes a Pipe for
reading. If all the data from a Pipe has been read when it is
closed for read, the resources allocated for that Pipe are
released and may be used by other Pipes. :

The Pipe Initialization command initializes a Pipes area on the
. disk. It contains the starting disk block number and the number
of disk blocks to allocate for Pipe processing.

The Purge Pipe command is used to purge unwanted Pipes by Pipe
number.

The Pipe Status command returns two data blocks (512 bytes each).
The first data block contains a4 name table of active Pipes. The
second block is the pointer table, which contains state
information and pointers for both ends of each active Pipe.

In a Corvus network, Pipes provide a general communications

- 17 -

mechanism that can be used to build more sophisticated network
applications, Pipes can serve as a utility that enables
different computers connected to the same Corvus disk system to
communicate with each other or share common peripheral equipment.

2.3.5.1 Pipe read (1lAh,20h : 26d,324)

Send 5 bytes

byte 1 = 1Ah (command).

byte 2 = 20h (command modifier).

byte 3 = pipe number from opén command (1-62).
byte 4 = 0.

byte 5 = 2,

Receive 516 bytes

byte 1 = disk status
byte 2 = pipe status
byte 3 = length of data returned (1lsb).
byte 4 = length of data returned (msb).

byte 5-516 = data (512 bytes)

2.3.5.2 Pipe write (1Ah,21h : 16d4,334d)

Send 5 + data length bytes

byte 1 = 1Ah (command).

byte 2 = 21h (command modifier).

byte 3 = pipe number from the open command (1-62).
byte 4 = length of data actually written (1sb).
byte 5 = length of data actually written (msb) .
byte 6-n = data.

Receive 12 bytes,

‘disk status.

byte 1 =

byte 2 = pipe status.

byte 3 = length of data actually written (1sb).
byte 4.-= length of data actually written (msb).

byte 5-12 = filler.

2.3.5.3 Pipe close (lAh,40h : 26d,64d)
Send 5 bytes:

byte 1
byte 2

1Ah (command).
40h (command modifier).

- 18 -

byte 3 = pipe number from the open command (1-62).
byte 4 = action code.
byte 5 = filler.

Receive 12 bytes.

byte 1 disk status.
byte 2 pipe status.
byte 3-12 = filler,

2.3.4.4 Pipe status (lAh,41lh : 264,65d)

Send 5 bytes:

byte 1 = 1Ah (command).

byte 2 = 41h (command modifier).

byte 3 = 1 for name table status (read 512 bytes).
2 for pipe pointer table (read 512 bytes).
0 for both of above (read 1024 bytes).

byte 4-5 = filler (0's). .

Receive 513 or 1025 bytes:
byte 1 = disk status.
byte 2-513 = name table status or pipe pointer table.
byte 514-1025 = pipe pointer table, if specified.

See section 2.5.3 for the formats for the pipe tables.

2.3.5.5 Pipe open write (1Bh,80h : 274,128d)
Send 10 bytes:
byte 1 = 1Bh (command).
byte 2. = 80h (command modifier).
byte 3-10 = pipe name (8 bytes).

Receive 12 bytes:

byte 1 = disk status,
bvyte 2 = pipe status.
byte 3 = pipe number assigned (1-62).

byte 4-= pipe state.
byte 5-12 = filler.

2.3.5.6 Pipe area initialize (1Bh,AO0h : 274,1604)

Send 10 bytes:

- 19 -

byte 1 = 1Bh (command).

byte 2 = AOh (command modifier).

byte 3 = pipe area disk block number {lsb).

byte 4 = pipe area disk block number (msb).

byte 5 = pipe area size —- number of blocks (1lsb;.
byte 6 = pipe area size -- number ot blocks (msb).
byte 7-10 = filler.

Receive 12 bytes:

byte 1 disk status.
byte 2 pipe status.
byte 3-12 = filler.

2.3.5.7 Pipe open read (1Bh,COh : 274,1924)
Send 10 bytes:
byte 1 1Bh (command).

byte 2 CO0h (command).
byte 3-10 = pipe name (8 bytes).

Receive 12 bytes.

byte 1 = disk status.

byte 2 = pipe status.

byte 3 = pipe number assigned (1-62).
byte 4 = pipe state.

byte 5-12 = filler,

2.4 Controler status codes

2.4.1 Normal mode command status codes

Error codes returned by the Corvus disk controller contain the
type of error and error severity. Error severity is coded as
follows:

Bit 7 set = Fatal error
Bit 6 set = Verify error
Bit 5 set = Recoverable error

- 20 -

Mon-fatal
Recov-
erable Verify
Error Error
dc hx dc hx
32 20 64 40
33 21 65 41
34 220 66 42
35 23 67 43
36 24 66 44
37 25 67 45
38 26 68 46
39 27 69 47
40 28 70 48
41 29 71 49
42 2A 72 4A
43 2B 73 4B
44 2C 74 4AC
45 2D 75 4D
46 2E 76 4E
47 2F 77 4F
48 30 78 50
49 31 79 51
50 32 80 52
51 33 81 53
52 34 .82 54
53 3% 83 55
54 36 84 56
55 37 85 57
56 38 86 58
57 39 87 59
58 3A 88 5A
59 3B 89 5B
60 3C 90 5C
61 3D 91 5D

Disk Status Codes

Fatal (>= 128)

Recov- i
erable Verify
Irror Error

dec hx dec hx dec hx

128 80 160 A0 192 CO Header fault
129 .81 161 Al 193 Cl1 Seek timeout
130 82 162 A2 194 C2 Seek fault
131 83 163 A3 195 C3 Seek error

132 84 164 A4 196 C4 Header CRC error
133 85 165 A5 197 C5 Rezero fault

134 86 166 A6 198 C6 Rezero timeout
135 87 167 A7 199 C7 Drive not online

136 88 168 A8 200 C8 Write fault

137 89 169 A9 201 C9 ~--

138 8A 170 AA 202 CA Read data fault
139 8B 171 AB 203 CB Data CRC error

140 8C 172 AC 204 CC Sector locate error

141 8D 173 AD 205 CD Write protected

142 8E 174 AE 206 CE 1Illegal sector address
143 8F 175 AF 207 CF 1Illegal command op code

144 90 176 BO 208 DO Drive not acknowledged
145 91 177 Bl 209 D1 Acknowledge stuck active
146 92 178 B2 210 D2 Timeout

147 - 93 179 B3 211 D3 Fault

148 94 180 B4 212 D4 CRC

149 95 181 B5 213 D5 Seek

150 96 182 B6 214 D6 Verification

151 97 183 B7 215 D7 Drive speed error

152 98 184 B8 216 D8 Drive illegal address error
153 99 185 B9 217 D9 Drive r/w fault error

154 9A 186 BA 218 DA Drive servo error

155 9B 187 BB 219 DB Drive guard band

156 9C 188 BC 220 DC Drive PLO error
157 9D 189 BD 221 DD Drive r/w unsafe

2.4,2 Diagnostic mode disk status codes

- 21 -

2.4.,3 Semaphore command status codes

DECIMAL

128
253
254

2.4.,4 Pipe command status codes

DECIMAL

10
11
12
13
14

DECIMAL

128
129
130

SEMAPHORE

HEX

00
80
FD
FE

STATUS CODES

MEANING

Prior semaphore state
Prior semaphore state
Semaphore table full.
Disk error.

set.

PIPE STATUS CODES

MEANING

Successful pipe request.

Tried to read an empty pipe.
Pipe was not open for read or
write,

Tried to write to a full pipe.

Tried to open an open pipe.
Pipe does not exist.

No room for new pipe.
Illegal command.

Pipe area not initialized.

PIPE STATE CODES

HEX

0l
02
80
81
82

MEANING

Open for write, file empty.
Open for read, file empty.
Full, not open.

Full, open for write.

Full, open for read.

2.5 Controller theory of operation

2.5.1 Disk operations

= 22 -

not set.

2.5.1.1 CRC operations

On a data read, if the first try produces no CRC error the data
is returned to the computer and no furtherlaction is taken.
Yowever, if the first try produces a CRC error then one of two
“nings will happen: 1) if the data is read successfully within
10 tries then the data is rewritten to the disk and a soft error
is reported or 2) if the data cannot be read successfully within
10 tries then the data read on the last try is rewritten to the
disk (along with a new CRC) and a hard error is reported.

2.5.1.2 Format operation

2.5.2 Semaphores

Semaphores provide a method for communicating between independent
programs and/or systems. The disk controller provides for up to
32 named semaphores, each key (name) being from 1 to 8 characters
in length.

The semaphores are implemented using a lookup table containing an
8 byte entry for each of the 32 possible semaphore keys. The
presence of a key indicates that the semaphore is locked, and the
absence of a key indicates that the semaphore is unlocked.

Unused table entries (and unlocked semaphores) are represented by
8 bytes of blank ASCII code (20h).

The format of the semaphore table on disk (block 7) is shown
below:

tm e e—a + byte 1
| key #1 |
e —— +

| key #2 |
fmmm +

l I

! l
fomm——————— +

| key #31 |
et +

| key #32 |
fmmmm——————— + byte 256

- 23 =

Each of the key entries has the form shown below:

fomm e ——————— +

| lst byte | relative byte 1
+- —

| 2nd byte

+- -+

| 3rd byte |

- -+

| 4th byte |

+= -+

! 5th byte l

+= -+

I 6th byte |

+= -+

| 7th byte |

+- -+

l 8th byte | relative byte 8
fm———————————— +

2.5.3 Pipes

There is a 6 byte region in the Constellation parameter block
(see section 2.1) which provides pipe parameters, specifically a
pipe area definition. The format for the pipe parameters is
shown below:

fm—————— e ————————— +
| block # of (lsb) |
+- pipe names -+
[table (msb) |
o ——————————————— +
| block # of (lsb) |
+- pipe pointer -+
| table (msb) |
e T +
| number of (1lsb) |
+- blocks in the -+
| pipes area (msb) |
o e e o e e e e e e e e e +

The three pipe parameters are intially set to 1lllh, 2222h and
3333h,, which indicates an uninitialized pipe area. The pipe
area may be defined by the user using the Pipe Initialize
command (section 2.3.5.6).

- 24 -

The format of the pipe area is shown below:

o ————————————— +

| pipe names | 1 block
I table }

fm e ——————————— +

l pipe pointer | 1 block
! table l

fr e ————————————— +

! pipe data |

| area |

= = n blocks
! |

| I

Y +

The pipe names table contains 64 entries of 8 bytes each. The
first and last names in the table are reserved for system use.
The first name is "WOOFWOOF" and the last name is "FOOWFOOW",

The pipe pointer table also contains 64 entries of 8 bytes each,
each entry being formatted as shown below:

byte 1 = pipe number.

byte 2 = starting byte address (1lsb).
byte 3 = starting byte address.

byte 4 = starting byte address (msb).
byte 5 = ending byte address (1lsb).
byte 6 = ending byte address.

byte 7 = ending byte address (msb).
byte 8 = pipe status (see 2.4.4).

Individual pipe disk space allocation
Definitions:

Active hole -- a contiguous aea of unused disk space

- 25 -

bounded on‘the low address end by an open for writing pipe.

fmmm e ————————— +

! open for I

| writing |

l pipe |

fomm e ———————————— +

l active | the open pipe in front of the hole
l hole | can grow into this region.

fomm e ——————— +

! pipe l

frmm e —————————— +

Inactive hole -- a contiguous area of unused disk space

bounded on the low address end by the pipe area limit,
the end of a closed pipe or the end of an open for
reading pipe.

[open for |
| reading or
| closed pipe |

fomm e ——— +

| inactive | the pipe in front of the hole
| hole | cannot grow into this region,
tmmm e ———— + ‘

| pipe |

fommm e —————— +

New pipe allocations are made by first examining all of the holes
in the pipe area. The allocator looks for the larger of: 1) the
largest inactive hole or 2) 1/2 the size of the largest active
hole. A new pipe starts at the beginning of an inactive hole or
at the midpoint of an active hole. All pipes grow in the same
direction, by increasing address.

2.5.4 Spare tracks

There is a 16 byte region in the disk parameter block (see
section 2.2.3.2) which provides for the sparing of up to 7

- 26 =

tracks. The format for the spare track list is shown below:

b ————————————— +
| track number (lsb) |
+= of lst -+
| spare track (msb) |
fm e ————————————— +
| track number (lsb) |
+- of 2nd -+
| spare track (msb) |
e ——————— +
| !
- -
I l
fmm e ———————— +
| track number (lsb)|
+- of 7th -+
| spare track (msb) |
fm e ——————— +
| FFh end |
+=- of -+
| FFh list |
e ———————— +

The first entry with a track number equal to FFFFh will indicate
the logical end of the list,

2.5,5 Virtual drives

There is a 14 byte region in the disk parameter block (see

section 2.,1) which provides for the definition of up to 7 virtual
(logical) drives. The format for the virtual drive list is shown

- 27 -

below:

| track offset (lsbh)|
+=- of 1lst virtual -+
| drive (msb) |

| track offset (lsb)]|
+- of 2nd virtual -+
| drive (msb) |

| track offset (lsb)]|
+- of 2nd virtual -+
| drive (msb) |

| track offset (lsb)]|

+= of 2nd virtual -+
| drive (msb) |

An entry with a track offest equal to FFFh will indicate the
absence of the corresponding virtual drive.

- 28 -

3.1 General

The Corvus Systems MIRROR is an inexpensive interface that adds
the capability to provide backup and archival storage for the
Corvus disk system. This data formatting interface converts data
from a digital signal on the disk to a video signal that can be
recorded on a standard video cassette recorder (VCR) at the
Standard Play (SP) speed. The MIRROR is compatible with all
present hardware and software -- all programs and peripherals
that work with the Corvus disk system will work with the MIRROR
installed. '

The MIRROR allows over 100 megabytes of storage on an
inexpensive, removable, and transportable media, a video cassette
tape.

Redundancy and CRC error detection assure the ability to recover
data. Because of redundancy and built in error checking, it is
possible to recover data reliably even when errors are
encountered that could not be recovered on conventional tape
storage media. The result is reliable backup of mass storage.
This method generally produces a few soft errors during the
backup process. An error may occur in one block of a set of
multiple blocks, however, by having multiple copies of each block
a single good block can normally be restored.

When data is being restored to the disk, the MIRROR uses the
redundant blocks to reconstruct a good block of data. :

With the MIRROR, the user can make a video tape copy of an entire
Corvus disk, a virtual device, or a single file (contiguous area

on the disk). In approximately fifteen minutes, the contents of

an entire ten million byte disk can be transferred to a standard

video cassette.

The normal format creates four images of each block being backed
up. Since there are four images of each block, the possibility
of unrecoverable errors is minimal.

3.2 Mirror functional description
backup
restore
redundant recording

error checking
high speed search

3.3 Mirror commands (numerical order)

- 29 -

3.3.1 Mirror command notation

All of the Mirror commands are discribed in this section. The
notation for each command is as follows: -:COMMAND NAME followed by
(xxh : xxd), where xxh is the hex value of thé command code, and
wnere xxd is the equivalent decimal value of the same command
code,

In some instances, a command code will consist of a primary code
along with an additional command modifier. For these cases the
notation is as follows: COMMAND NAME followed by (xxh,vyyh
xxd,yyd), where xxh,yyh is the command code and the command
modifier, respectively, and where and where xxd,yyd is the
equivalent decimal value of the same command and comma:id
modifier.

3.3.2 Backup (08h : 84)

Send 520 bytes:

byte 1 = 08h (command).

byte 2 = logical drive number.

byte 3 = image I.D. ’ :

byte 4 = number of 512 byte blocks to backup (1lsb).

byte 5 = number of 512 byte blocks to backup (msb).

byte 6 = number of first block to backup (1lsb).

byte 7 = number of first block to backup (msb).

byte 8 = format type: 0 = fast, 1 = normal, 2 = compatible,
' (for 6 MB drive).

byte 9-5

20 = user defined header (512 bytes).
Receive 2 bytes: .
disk status.

number of disk read errors, if byte 1 < 80h;
Mirror status, if byte 1 = FFh;

byte 1
byte 2

3.3.3 Restore (09h : 94)

Send 8 bytes:

byte 1 = 09h (command).

byte 2 = logical drive number.

byte 3 = image I.D.

byte 4 = number of 512 byte blocks to restore (lsb).
byte 5 = number of 512 byte blocKs to restore (msb).
byte 6 = number of first block to restore (lsb).
byte 7 = number of first block to restore (msb).
byte 8 = filler.

- 30 -

Receive 2 bytes:

disk status.
number of disk write errors, if byvte 1 < 8Ch;
Mirror status, if byte 1 = FFh;

byte 1
byte 2

3.3.4 Identify (0Ah,00h : 104,04)

Send 4 bytes:

byte 1 = 0Ah (command).

byte 2 = 00h (comand modifier).

byte 3 = image I.D. to read: 0 = next header, else as
specified.

byte 4 = 0.

Receive 516 bytes

byte 1 = disk status.

byte 2 = image I.D., if byte 1 = 0;
unused, if byte <> 0.

byte 3 = number of blocks for image (lsb).

byte 4 = number of blocks for image (msb).

byte 5-516 = image header (512 bytes).

3.3.5 Verify (0Ah,0lh : 104,14)
Send 4 bytes:

byte 1 = 0Ah (command).

byte 2 = 0lh (comand modifier).
byte 3 = image I.D. to verify.
byte 4 = 0

Receive 2 bytes

disk status.
number of disk read errors, if byte 1 < 80h;
Mirror status, if byte 1 = FFh;

byte 1
byte 2

3.3.6 Verify error report (0Ah,02h : 10d4d,2d)
Send 4 bytes:

byte 1
byte 2

0Ah (command).
02h (command modifier).

- 31 -

Receive

byte 3

0
byte 4 0

5 + 2 * hard errors bytes:

byte 1 = number of soft errors (lsb).

byte 2 = number of soft errors (msb).

byte 3 = number of CRC failures.

byte 4 = number of disk verify errors.

byte 5 = number of hard errors.

byte 6-n = hard error block numbers (lsb,msb)

3.3.7 Remote operation select (0Ah,04h : 104,44)

Send 4 bytes:

Receive

byte 1 = 0Ah (command).

byte 2 = 04h (command modifier).

byte 3 = operation code (see table below).
byte 4 = 0.

1 byte:

byte 1 = command status.

Operations codes:

3.3.7.1

J3 pin 2 (PLAY) pulsed low.

J3 pin 3 (FAST FORWARD) pulsed low.
J3 pin 4 (REWIND) pulsed low.

J3 pin 5 (STOP) pulsed low.

14 = J3 pin 1 (RECORD) is set high.

15 = J3 pin 1 (RECORD) is set low.

0
1
2
3

Remote status (0Ah,05h : 104,5d)

Send 4 bytes:

Receive

byte 1 = 0Ah (command).

byte 2 = 05h (command modifier).
byte 3 = 0.

byte 4 = 0.

one byte:

byte ‘1 = status (see table below).

Status bits (0 is lsb, 7 is msb):

- 32 -

.
-

bit
bit
bit
bit
bit
bit
bit

[T I (| I I 1}

A=W O

bit

\]
|

-

3.3.7.2 Verify r
Send 4 bytes:

byte
byte
byte
byte

W N

Receive 2 bytes:

byte 1
byte 2

CRC generator status; 0 = no error, 1 = error.
unused.

unused.

unused.

J3 pin 14 (REWIND status); 1 = tape rewinding.
unused.

J3 pin 13 (FRAME SYNC); 1 pulse per every 2

frames.

= J3 pin 11 (START OF TAPE); 0 = start of tape.

etry (0Ah,06h : 10d,6d)

0Ah (command).

06h (command modifier).
image I.D. to verify.
0.

disk status.
number of tape read errors, if byte 1 < 80h;
Mirror status, if byte 1 = FFh;

3.3.7.3 Jump forward (0Ah,07h : 104,7d)

Requires a model

Send 4 bytes:

byte 1 =
byte 2 =
byte 3 =
byte 4 =

Receive 1 byte:

byte 1

3.3.7.4 Jump rev
Requires a model
Send 4 bytes:

byte 1
byte 2

NV8200 Panasonic VCR and remote option.

0Ah (command).

07h (command modifier). ,

number of blocks to jump / 256 (lsb).
number of blocks to jump / 256 (msb).

0.

erse (0Ah,08h : 104d,84)

NV8200 Panasonic VCR and remote option.

0Ah (command).
08h (command modifier). -

- 33 -

56 {(lsb).

bvte 3 = number of blocks to jump / 2
- {msb).

byte 4 number of blocks to jump / 2

J
(9]
(@)

Receive 1 byte:

il
(@]

byte 1

3.3.7.5 Find present location (0Ah,08h : 104,94}

Send 4 bytes:

" byte 1 = 0Ah (command).
byte 2 = 09h (command modifier).
byte 3 = 0.
byte 4 = operation code (see table with Remote operation

command, section 3.36).

Receive 8 bytes:

byte 1 = disk status.
byte 2 = image I.D.
byte 3 = image format (0-2).
byte 4 = block type found: F8h = image header, Fl = image
: trailer, F6h,06h = data bloc
byte 5 = block number (1lsb).
byte 6 = block number (msb).
byte 7 = image size in blocks (1lsb).
byte 8 = image size in blocks (msb).

3.3.7.6 Find image trailer (0Ah,0Ah : 10d4,104)
Send 4 bytes:

byte 1 = 0Ah (command).

byte 2 = 0Ah (command modifier).
byte 3 = 0.

byte 4 = 0.

Receive 2 bytes:

byte 1
byte 2

disk status.
image I.D.

3.3.8 Restore retry (0Ch,00h : 12d4,04)
Send 4 bytes:

- 34 -

byte 1 = 0Ch (command).

byte 2 = logical drive number.
byte 3 = 00h (command modifier).
byte 4 = filler.

Receive 2 bytes:

byte 1
byte 2

disk status. .
number of disk read errors, if byte 1 = 00h;
Mirror status, if byte 1 = FFh.

[l

3.3.9 Error report for backup, restore, verify, retry
(0Ch,01h : 124,14d)

Send 4 bytes:

byte 1 = 0Ch (command).

byte 2 = logical drive number.
byte 3 = 0lh (command modifier).
byte 4 = filler.

Receive 5 + 2 * hard errors bytes:

byte 1

number of soft errors (lsb).
(recovered errors / rebuild attempts)
byte 2 = number of soft errors (msb).

(recovered errors / search misses)
byte 3 = number of CRC failures,

(tape read errors / rebuild failures)
byte 4 = number of disk verify errors.

(disk write errors)
byte 5 = number of hard errors.

(disk read errors / bad blocks)
byte 6-n = hard. error block numbers (1sb,msb) .

3.3.10 Partial restore (0Dh : 13d)

Send 10 bytes:

byte 1 = 0Dh (command). .

byte 2 = logical drive number.

‘byte 3 = image I.D.

byte 4 = number of 512 byte blocks to restore (1sb).

byte 5 = number of 512 byte blocks to restore (msb) .

byte 6 = destination of first block to restore (1sb).
byte 7 = destination of first block to restore (msb) .
byte 8 = offset within image (lsb).

byte 9 = offset within image (msb).

byte 10 = filler.

- 35 -

Receive 2 bytes:

byte 1
byte 2

disk status.
number of disk read errcrs, if pyte 1 = 30a;
Mirror status, if byte 1 = FFh.

3.4 Mirror status code

MIRRCR STATUS CODES

DECIMAL HEX MEANING

0 00 Successful Mirror request,

1 01 Image I.D. mismatch.

2 02. Illegal restore command.

3 03 Illegal retry command (retry not
enabled).

4 04 Image size mismatch.

5 05 Illegal opcode.

7 07 Start of image not found (30 second
timeout).

8 08 Position error.

134 86 Tape dropout duirng playback operation

(5 second timeout).

3.5 Mirror theory of operation

R + e —— + prmm e +
| Computer | | | | Disk |
[- or +=—==+ Mirror +----+ Controler|
| Mux [| | | [
fomm——————— + tomm e ——— + . +
|

fom— e ——— +

| |

| vcr |

| |

pmm——————— +

VCR cable.(jé) description

- The control cable that connects the Mirror to the VCR has the
command and status lines below:

pin 1 = RECORD low (pulse).
pin 2 = PLAY low (pulse).
pin 3 = FAST FORWARD low (pulse).

- 36 -

pin 4 = REWIND low (pulse).
pin 5 = STOP low (pulse).

pin 11 = START OF TAPE status.
pin 13 = FRAME SYNC status.
pin 14 = REWIND status.

Format cf a tape frame

Images on tape consist of a number of frames, each frame
corresponding to one commplete TV picture scan. Frames are
recorded on tape at a rate of 60 per second, and have the
general format shown below.

fomm——————————— +
| sync |
e ———————— +
| image I.D. |
fmm——————————— +

F8h = image header,, Flh = image
trailer, F6h or 06h = image
data.

number of disk blocks.

within image.

512 bytes.

Format of a tape image

Each image on tape is comprised of groups of the three frame
types (header, data and trailer) as shown below:

e — e ——————————— +
| image | image | image I
| header | data | trailer |
| frames | frames | frames l
e e —————————— +

Image header

The image header consists of approximately 4 seconds of header
frames (240 frames), with the data portion of each frame
containing the 512 byte user I.D.

Image data

The image data is recorded in one of two formats: slow (4
copies of each disk block) or fast (2 - copies of each disk
block). For both formats, a given data frame contains two
copies each of three disk blocks, as shown below:

o}
=
o]
Q
~
E
+
—

- 38 =

Slow format data frames are grouped as shown below:

A o e e e e
| blocks m

| thru m+2

e e e o e e
| blocks m

| thru m+2

: + ———————————————
| blank

| blocks

o o e e o e
| blocks m+3

| thru m+5

+ _______________
| blocks m+3

| thru m+5

o e o o e e
| blank

| blocks

+ ———————————————
e ot o e o e o e e e o e e
| blocks n-=2

| thru n

o e o e o e e e
| blocks n-2

| thru n

o o o e e o o o o
| blank

| blocks
e

2 copies of each block.

2 copies of each block (4 total).

3 to n of these frames,
by disk timing.

- 39 -~

as necessitated

Fast format data frames are grouped as shown below:

S
| blocks m

| thru m+2

e e o e o e e
| blocks m+3

| thru m+5

o ———————————
| blank

| blocks

o o ot e o o e e o
| blocks m+6

| thru m+8

+ _______________
| blocks m+9

| thru m+10
e]
| blank

| blocks
B
O S
| blocks n-5

| thru n-3
e
| blocks n-2

| thru n

B e
| blank

| blocks

+ ———————————————

Image trailer

2 copies of each block.

2 copies of each block

3 to n of these frames,

as necessitateu

by disk timing.

The image trailer consists of approximately 2 seconds of trailer

frames

Format of images on tape

(120 frames).

(archival Mirror)

Images (each of which consists of many frames) are stored on
tape sequentially, as shown below.

| directory | image
| (image l %1
I #0) I

- 40 -

| image | image |
| #n-1 | #n !

The directory is maintained by external software and the
directory data is read and written using the same commands as any
other image. The directory contains 16 bytes of information for
each of up to 32 images, as shown below:

fom——————— +
| date | 2 bytes.
fommm————— +

| size | 2 bytes.
fmmm—————— +

I name | 12 bytes.
fommm———— +

{This page left intentionally blank}

- 42 -

Appendix A
DISK COMMAND SUMMARY

Number of Data Bytes

- 43 -

Command Code:Modifier Sent Received
Normal Mode Commands:
Read Sector 02 4 257
Write Sector 03 260 1
Get Drive Parameters 10 2 129
Diagnostic Mode Select ' 11 514 1
Read Chunk (128 Bytes) 12 4 129
Read Chunk (256 Bytes) 22 4 257
Read Chunk (512 Bytes) 32 4 513
Write Chunk (128 Bytes) 13 132 1
Write Chunk (256 Bytes) 23 260 1
Write Chunk (512 Bytes) 33 516 1
Boot 14 2 513
Diagnostic Mode Commands:
Reset Drive 00 1 1
Format Drive 0l 513 1
Verify 07 1 4n+2
Read Corvus Firmware 32 2 513
Write Corvus Firmware 33 514 1
Semaphore Commands:
Semaphore Initialize 1A:10 5 1
Semaphore Lock 0B:01 10 2
Semaphore Unlock 0B:11 10 2
Semaphore Status 1A:41 5 257
Semaphore Initialize (Rev A) 10:0A 5 12
Pipe Commands:
Pipe Read 1A:20 5 516
Pipe Write 1A:21 X+5 12
Pipe Close 1A:40 5 12
Pipe Status 1 1A:41 5 513
Pipe Status 2 1A:4]1 5 513
Pipe Status 0 1A:41 5 1025
Pipe Open Write 1B:80 10 12
Pipe Area Initialize 1B:AQ 10 12
Pipe Open Read 1B:CO 10 12

Mirror Commands:

Backup 08 520
Restore 09 8
Read Image Header 0A:00 4
Verify Image 0A:01 4
Report Errors After Verify 0A:02 4
Remote Operation 0A:04 4
Remote Status 0A:05 4
Verify Retry : 0A:06 4
Jump Forward 0A:0Q07 4
Jump Reverse 0A:08 4
Find Present Location 0A:09 4
Find Image Trailer 0A:0A 4
Restore Retry 0C:00 4
Restore Error Report 0C:01 4
Partial Restore . 0D 10

n = number of errors x = number of data length bytes

- 44 -

NHENDNNDOHPFNDHEEFEIDANDDND

Appendix B

STATUS CODE SUMMARY

Error codes returned by the Corvus disk controller contain the
type of error and error severity. Error severity 1s coded as
follows:

Fatal error
Verify error
Recoverable error

Bit 7 set
Bit 6 set
Bit 5 set

Normal mode command status codes

Non-fatal
Recov~-
erable Verify
Error Error
dc hx dc hx
32 20 64 40
33 21 65 41
34 22 66 42
35 23 67 43
36 24 66 44
37 25 67 45
38 26 68 46
39 27 69 47
40 28 70 48
41 29 71 49
42 2A 72 4A
43 2B 73 4B
44 2C 74 4C
45 2D 75 4D
46 2E 76 4E
47 2F 77 A4F
48 30 78 50
49 31 79 51
50 32 80 52
51 33 81 53
52 34 82 54
53 35 83 55
54 36 84 56
55 37 85 57
56 38 86 58
57 39 87 59
58 3A 88 5A
59 3B 89 5B
60 3C 90 5C
61 3D 91 SD

Disk Status Codes

Fatal (>= 128)

——— . > — D CED WED WE» Gmf . TUE W S GER A N G S L G P . T W S G . ——— O —— - —

Recov-
erable Verifvy
Error Error

dec hx dec hx dec hx

128 80 160 A0 192 CO Header fault
129 81 161 Al 193 Cl Seek timeout
130 82 162 A2 194 C2 Seek fault
131 83 163 A3 195 C3 Seek error

132 84 164 A4 196 C4 Header CRC error
133 85 165 A5 197 C5 Rezero fault

134 86 166 A6 198 C6 Rezero timeout
135 87 167 A7 199 C7 Drive not online

136 88 168 A8 200 C8 Write fault

137 89 169 A9 201 C9 ~--

138 8A 170 AA 202 CA Read data fault
139 88 171 AB 203 CB Data CRC error

140 8C 172 AC 204 CC Sector locate error

141 8D 173 AD 205 CD Write protected

142 8E 174 AE 206 CE 1Illegal sector address
143 8F 175 AF 207 CF 1Illegal command op code

144 90 176 BO 208 DO Drive not acknowledged
145 91 177 Bl 209 D1 Acknowledge stuck active
146 92 178 B2 210 D2 Timeout

147 93 179 B3 211 D3 Fault

148 94 180 B4 212 D4 CRC

149 95 181 B5 213 D5 Seek

150 96 182 B6 214 D6 Verification

151 97 183 B7 215 D7 Drive speed error

152 98 184 B8 216 D8 Drive illegal address error
153 99 185 B9 217 D9 Drive r/w fault error

154 9A 186 BA 218 DA Drive servo error

155 9B . 187 BB 219 DB Drive guard band

156 9C 188 BC 220 DC Drive PLO error
157 9D 189 BD 221 DD Drive r/w unsafe

- 46 -

DECIMAL

DECIMAL

(Yo le e N an]

10

12
13
14
15

DECIMAL

HEX

00

FD
FE

HEX

00
08
09
oA

0C
0D

oF

SEMAPHORE STATUS CODES

MEAN ING

Prior semaphore state = not set,
Prior semaphore state = set.
Semaphore table full.
Disk error.

PIPE STATUS CODES

MEANING

Successful pipe request.

Tried to read an empty pipe.
Pipe was not open for read or
write,

Tried to write to a full pipe.
Tried to open an open pipe.
Pipe does not exist,

No room for new pipe.

Illegal command. '

Pipe area not initialized.

PIPE STATE CODES

MEANING

Open for write, file empty.
Open for read, file empty.
Full, not open.

Full, open for write.

Full, open for read.

- 47 -

DECIMAL

134

MIRROR STATUS CODES

HEX MEANING

01 File ID mismatch.

02 Illegal restore command (usually
checksum error).

03 Illegal retry command (retry not
enabled, or checksum error).

04 File size mismatch.

05 Illegal opcode.

07 Start of image not found (30
sec., timeout).

08 Position error.

86 Tape dropout during playback

operation (5 sec. timeout).

- 48 -

	000
	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48

