
c:
RESEARCH J INC.

CRAY X-MP AND CRAY-1®
COMPUTER SYSTEMS

CAL ASSEMBLER VERSION 1
REFERENCE MANUAL

SR-OOOO

Copyright© 1976, 1977, 1978, 1979, 1980, 1981, 1983,
1985 by CRAY RESEARCH, INC. This manual or parts
thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SR-OOOO

Each time this manual is revised and reprinted, all chan~es issued against the previous version in the form of change packets are
incorporated into the new version and the new version IS assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a numeric designator, starting with
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has' been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:

CRAY RESEARCH, INC.,
1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision

B

C

D

D-Ol

E

F

F-Ol

SR-OOOO

Description
April 1975 - Original printing

June 1975 - This revision corrects various typographical and
technical errors.

December 1975 - This revision corrects various typographical
errors. Changes have been made to the block transfer
instructions. The title of this manual has been changed to
the Preliminary CAL Assembler Reference Manual.

July 1976 - This manual describes CAL Version i, which
executes on the CRAY-l. The manual replaces all previous
versions of this publication. Since the manual has been
completely rewritten, change bars are not used to indicate
changes to the manual.

December 1976 - This revision provides much of the information
relating to conditional pseudo instructions and macr%pdef
operations that was missing from revision C.

June 1977 - Changes in this revision include the addition of
the 042iOO instruction, START pseudo instruction, changes to
the exchange package format, and additional minor technical
changes.

August 1977 - This printing is a reprint of revision D with
the D-Ol packet incorporated. There a~e no additional changes.

April 1978 - Changes in this revision include the addition of
DFI and EFI instructions, the MICSIZE pseudo instruction,
changes to the mode (M) register, the addition of DEBUG to the
CAL control statement, provision for up to 10 system texts,
and other minor technical changes.

July 1978 - This revision includes minor technical changes to
bring documentation in line with released version 1.02 of the
CAL assembler.

ii J

Revision Description

F-02 October 1978 - This revision brings documentation in line with
released version 1.03 of the CAL assembler.

G January 1979 - This revision is the same as Revision F with
change packets F-Ol and F-02 incorporated.

G-Ol April 1979 - This change packet adds LIST options XNS, NXNX,
WEM, and NWEM, describes the Vector Population Instructions
Option and the Monitor Mode Interrupt Option, describes the
instructions associated with these options, and includes other
technical changes that bring the document into agreement with
version 1.06 of the CAL assembler.

G-02 July 1979 - This revision includes minor technical changes to
bring the document into agreement with version 1.06 of the CAL
assembler.

G-03 December 1979 - This rev~s~on includes minor technical changes
to bring the document into agreement with version 1.07 of the
CAL assembler.

G-04 April 1980 - This revision supports all models of the CRAY-l,
including the CRAY-1A, CRAY-lB, and CRAY-l S Series Computer
Systems.

H

H-Ol

I

1-01

SR-OOOO

The publication number has been changed from 2240000 to
SR-OOOO.

April 1980 - This reprint is the same as Revision G with
change packets G-Ol, G-02, G-03, and G-04 incorporated.

October 1980 - This change packet brings the manual into
agreement with the released version 1.09. Major changes
include binary system text generation with the T parameter in
the CAL control statement and new CAL messages.

February 1981 - This reprint is the same as Revision H with
change packet H-Ol incorporated.

June 1981 - This change packet brings the manual into
agreement with the released version 1.10. Errata corrections
are also included. Major changes include the addition of
TEXT, ENDTEXT, and MODULE pseudo instructions.

iii J

1-02

J

J-Ol

K

SR-OOOO

April 1982 - This change packet brings the manual into
agreement with version 1.11 of the assembler. Major changes
include the following additions: the ALIGN pseudo instruction,
the WRP, NWRP, WMR, and NWMR options to the CAL control
statement and the LIST pseudo instruction, the predefined
micro $QUAL, two warning errors: Yl - EXTERNAL DECLARATION
ERROR and Y2 - MACRO REDEFINED, and a logfile message.
Miscellaneous technical and editorial changes are also
included.

February 1983 - This rewrite obsoletes all previous versions
of the manual. The manual is reorganized; hardware
information has been deleted and can be found in the
appropriate Cray mainframe reference manual. Changes include
adding CRAY X-MP symbolic machine instructions; the CPu=type
CAL control statement parameter; and the $CPU predefined
micro. This rewrite brings the manual into agreement with the
released version 1.12 of the CAL Assembler.

July 1983 - This change packet brings the manual into
agreement with version 1.12 of the assembler. Major changes
were the correction of errata.

March 1985 - This reprint incorporates reV1S10n J with change
packet J-Ol. No other changes have been made.

iv K

PREFACE

The CAL Assembler Version I allows the user to express symbolically all
hardware functions of a mainframe for a Cray Research, Inc., CRAY-Ior
CRAY X-MP computer. This detailed and precise level of programming is of
special aid in tailoring programs to the architecture of a Cray mainframe
and writing programs requiring code that is optimized to the hardware.

Augmenting the instruction repertoire of CAL is a versatile set of pseudo
instructions that provides the user with a variety of options for
generating macro instructions, controlling list output, organizing
programs, etc.

Except where indicated the content of this manual applies to all series
of Cray Research, Inc., computers. Detailed information concerning a
specific Cray mainframe is given in one of the following Cray mainframe
reference manuals:

HR-0029 CRAY-I S Series Mainframe Reference Manual
HR-0032 CRAY X-MP Series Mainframe Reference Manual
HR-0064 CRAY-I M Series Mainframe Reference Manual

Detailed information about the Cray Operating System (COS) is presented
in separate Cray Research, Inc., publications.

The system macro instructions available with CAL are described in the
Macros and Opdefs Reference Manual, CRI publication SR-OOl2.

SR-OOOO v J-Ol

CONTENTS

PREFACE

1.

2.

INTRODUCTION •

EXECUTION OF THE CAL ASSEMBLER •

CRAY ASSEMBLY LANGUAGE

SOURCE LINE FORMAT •
Continuation line
Comment statement •

STATEMENT FORMAT
Location field
Result field
Operand field •

.Comment field.
CODING CONVENTIONS
LINE EDITING •

Concatenation •
Micro SUbstitution

NAMES
REGISTER DESIGNATORS
SYMBOLS

Symbol definition •
Symbol attributes

Word address, parcel address, or value
Relocatable, external, or absolute
Common •
Redefinable

SYMBOL REFERENCE
Qualified symbols

GLOBAL DEFINITIONS
SPECIAL ELEMENTS
DATA NOTATION

Numeric constants
Character constants
Data items
Literals

PREFIXED SYMBOLS, CONSTANTS, OR SPECIAL ELEMENTS
P.
W.

Parcel-address prefix
Word-address prefix

SR-OOOO vii

v

1-1

1-2

2-1

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-4
2-5
2-6
2-6
2-6
2-7
2-7
2-7
2-8
2-8
2-8
2-9
2-9
2-9
2-11
2-12
2-13
2-14
2-14
2-15

J

2. CRAY ASSEMBLY LANGUAGE (continued)

EXPRESSIONS
Adding operators
Multiplying operators •
Elements
Terms •
Term attributes.

EXPRESSION EVALUATION
EXPRESSION ATTRIBUTES

Re1ocatable, external, or absolute
Parcel address, Word address, or value

CHART METHOD OF EXPRESSION ATTRIBUTE EVALUATION

3. SYMBOLIC MACHINE INSTRUCTIONS

INSTRUCTION FORMAT •
I-parcel instruction format with

discrete j and k fields
I-parcel instruction format with

combined j and k fields
2-parcel instruction format with

combined j, k, and m fields
2-parcel instruction format with

combined i, j, k, and m fields
SPECIAL REGISTER VALUES
SYMBOLIC NOTATION

SR-OOOO

General requirements
Register designators •
Location field •
Result field •
Operand field

Special syntax forms
Register entry instructions •

Entries into A registers •
Entries into S registers •
Entries into V registers •
Entries into Semaphore register

Inter-register transfer instructions
Transfers to A registers •
Transfers to S registers •
Transfers to intermediate registers
Transfers to V registers •
Transfer to Vector Mask register •
Transfer to Vector Length register •
Transfer to Semaphore register •

Memory transfers
Bidirectional memory transfers •
Memory references
Stores •
Loads

viii

2-15 . 2-16
2-16
2-16
2-16
2-17
2-18
2-19
2-19
2-19
2-21

3-1

3-1

3-1

3-2

3-3

3-4
3-4
3-5
3-5
3-7
3-7
3-7
3-8
3-8
3-9
3-9
3-10
3-15
3-16
3-18
3-18
3-23
3-29
3-31
3-33
3-33
3-35
3-35
3-35
3-36
3-37
3-40

J

3. SYMBOLIC MACHINE INSTRUCTIONS (continued)

4.

Integer arithmetic operations •
24-bit integer arithmetic
64-bit integer arithmetic

Floating-point arithmetic •
Normalized floating-point number •
Floating-point range errors
Floating-point addition and subttaction
Floating-point multiplication
Reciprocal iteration •
Reciprocal approximation •

Logical operations
Logical products •
Logical sums •
Logical differences
Logical equivalence
Vector mask
Merge

Shift instructions
Bit count instructions

Scalar population count
Vector population count
Scalar population count parity •
Vector populatio~ count parity •
Scalar leading zero count

Branch instructions •
Unconditional branch instructions
Conditional branch instructions
Return jump
Normal exit
Error exit •

Monitor instructions
Channel control
Set exchange address •
Set real-time clock
Programmable clock interrupt instructions
Interprocessor interrupt instructions
Cluster number instructions
Operand range error interrupt instructions •

PSEUDO INSTRUCTIONS

INTRODUCTION •
RULES FOR PSEUDO INSTRUCTIONS
INSTRUCTION DESCRIPTIONS •

Program control •
IDENT - Identify program module
END - End program module •
ABS - Assemble absolute binary •
COMMENT - Define Program Descriptor Table comment

SR-OOOO ix

3-45
3-45
3-47
3-51
3-52
3-52
3-53
3-57
3-62
3-64
3-66
3-67
3-70
3-72
3-74
3-75
3-76
3-80
3-88
3-88
3-89
3-89
3-90
3-91
3-91
3-91
3-92
3-94
3-94
3-95
3-96
3-96
3-99
3-99
3-100
3-102
3-103
3-104

4-1

4-1
4-1
4-2
4-2
4-2
4-3
4-3
4-3

J

4. PSEUDO INSTRUCTIONS (continued)

SR-OOOO

Loader linkage • • • • • • • • • •
ENTRY - Specify entry symbols ••••••
EXT - Specify external symbols • • • • •
MODULE - Define program module type for loader •
START - Specify program entry • • • •

Mode control • • • • • • • • • • • •
BASE - Declare base for numeric data
QUAL - Qualify symbols •••••••••••

Block control • • • • • • • • • • • •
Origin counter
Location counter •
Word-bit-position counter
Force word boundary • • • •
Parcel-bit-position counter
Force parcel boundary • • • •
BLOCK - Local block assignment •
COMMON - Common block assignment •
ORG Set *0 counter
BSS - Block save • • • • •
LOC - Set * counter
BITW - Set *W counter
BITP - Set *p counter
ALIGN - Align "on an instruction buffer boundary

Error control • • • • • • • • • • • • • • • •
ERROR - Unconditional error generation
ERRIF - Conditional error generation • •

Listing control • • • • • • • •
LIST - List control • • • • •
SPACE List blank lines • • • •
EJECT - Begin new page •
TITLE - Specify listing title • • • • •
SUBTITLE - Specify listing subtitle • • • •
TEXT - Declare beginning of global text source •
ENDTEXT - Terminate global text source

Symbol definition • • • • • • • •
= - Equate symbol
SET - Set symbol •
MICSIZE - Set redefinable symbol to micro size

Data definition ••••••••••
CON - Generate constant
BSSZ - Generate zeroed block •
DATA - Generate data words • •
VWD Variable word definition • • • •

. .

REP - Loader replication directive • • • • • • • •

x

4-4
4-4
4-5
4-6
4-6
4-7
4-7
4-8
4-10
4-12
4-12
4-12
4-12
4-13
4-13
4-13
4-14
4-15
4-17
4-17
4-18
4-19
4-19
4-20
4-20
4-21
4-22
4-22
4-26
4-26
4-26
4-27
4-27
4-28
4-29
4-29
4-30
4-31
4-31
4-31
4-32
4-33
4-34
4-35

J

4. PSEUDO INSTRUCTIONS (continued)

5.

Conditional assembly • • • • • • • • • • • • • •
IFA - Test expression a~tribute for assembly

. . .
condition • • • • • • • • • • • • • • •

IFE - Test expressions for assembly condition
IFC - Test character strings for assembly

condition • • • • • • • • • • • • •
SKIP - Unconditionally skip statements •
ENDIF - End conditional code sequence
ELSE - Toggle assembly condition •
Examples of conditional assembly •

Instruction definition
Definition header
Definition body
Definition end
Assembly source stack • • • • • •
Formal parameters
MACRO - Macro definition
Macro calls ••• • • • • • • • •
OPDEF - Operation definition
Symbolic instruction syntax
Expressions
Registers • • ••••
Combinations • • • • •
Exceptions • • • • • • • • • •
LOCAL - Specify local symbols
ENDM - End macro or opdef definition •
Opdef calls • • • • • • • • • • • •

. .

Examples of macro and opdef definitions and calls
OPSYN - Synonymous operation

Code duplication ••••• • • •
DUP - Duplicate code • • • • • • • •
ECHO - Duplicate code with varying arguments
END~UP - End duplicated code • • • • • •
STOP~UP - Stop duplication • • • • • • • • • • • •
Examples of duplicated sequences

Micro definition ••••• • • • •
Micro references • • •
MICRO - Micro definition •
OCTMIC and DECMIC - Octal and decimal micros •
Predefined micros

CAL EXECUTION

CAL CONTROL STATEMENT
SYSTEM TEXT
BINARY SYSTEM TEXT • • • . . . ·0 •

SR-OOOO xi

4-36

4-36
4-38

4-40
4-41
4-41
4-42
4-43
4-43
4-44
4-44
4-45
4-45
4-46
4-46
4-47
4-49
4-49
4-50
4-50
4-51
4-52
4-52
4-53
4-53
4-54
4-57
4-58
4-58
4-59
4-60
4-61
4-61
4-63
4-63
4-64
4-65
4-66

5-1

5-1
5-5
5-5

J

APPENDIX SECTION

A. INSTRUCTION SUMMARIES
INSTRUCTION SUMMARY FOR CRAY-l COMPUTERS •
INSTRUCTION SUMMARY FOR CRAY X-MP COMPUTERS

B. PSEUDO INSTRUCTION INDEX •

C. ASSEMBLY ERRORS

D. LOGFILE MESSAGES •

E. FORMAT OF ASSEMBLER LISTING

SOURCE STATEMENT LISTING •
CROSS REFERENCE LISTING

F. CHARACTER SET

G. CODING EXAMPLES

LONG VECTORS • • •
LOOP COUNTER • •

. . .

. .
ALTERNATE TESTS ON THE CONTENTS OF S REGISTERS •

H.

CIRCULAR SHIFTS • • • •

CONDITIONS AND SPECIAL MACROS

CONDITIONS • • •
Conditions on AO and SO • • • • •
Conditions on A and S registers •
Relational conditions • •
Bit set conditions
Compound conditions •

SPECIAL MACROS •
$IF macro ••
$GOTO macro • • •

I. DATA GENERAL CAL

.

. . . .

. . .
. . . .

. . .

.

SUMMARY OF DIFFERENCES BETWEEN CPU CAL AND DATA GENERAL CAL

FIGURES

3-1
3-2
3-3

General form for instructions
I-parcel instruction format with discrete j and k fields
I-parcel instruction format with combined j and k fields

SR-OOOO xii

A-I

A-I
A-13

B-1

C-l

D-l

E-1

E-l
E-3

F-l

G-l

G-1
G-2
G-2
G-3

H-l

H-l
H-l
H-1
H-2
H-2
H-3
H-3
H-3
H-5

I-I

I-I

3-1
3-2
3-2

J

FIGURES (continued)

3-4

3-5

3-6
3-7

TABLES

3-1
C-l
C-2

INDEX

2-parcel instruction format with combined j, k,
and m fields • • • • • • • • • • • • • • • •
2-parcel instruction format with combined i, j, k,
and m fields • • • • • • • • •
Integer data formats • • • •
Floating-point data formats

Instruction summary by functional unit
Fatal assembly errors ••••
Warning assembly errors • • • • • • • •

SR-OOOO xiii

3-3

3-4
3-43
3-49

3-6
C-l
C-5

J

INTRODUCTION

The Cray Research, Inc., Cray Assembly Language (CAL) provides the user
with a powerful symbolic language for generation of object code to be
loaded and executed on the mainframe of a CRAY-l or CRAY X-MP Computer
System.

CAL source statements consist of symbolic machine instructions and pseudo
instructions. The symbolic machine instructions provide a means of
expressing symbolically all functions of a Cray mainframe. Pseudo
instructions allow programmer control of the assembly process.

Features inherent to CAL include:

• Free-field source statement format. Size and location of source
statement fields are largely controlled by the user.

• Control of local and common blocks. The programmer can assign
code or data segments to specific areas.

• Preloaded data. Data areas can be defined during assembly and
loaded with the program.

• Data notation. Data can be designated in integer, floating-point,
and character code notation.

• Word and parcel address arithmetic. Addresses can be specified as
either word or parcel addresses.

• Binary control. The programmer can specify object code as either
absolute or relocatable.

• Listing control. The programmer can control the content of the
assembler listing.

• Micro coding. A character string can be defined in a program and
substituted for each occurrence of its micro name in the program.

• Macro coding. Sequences of code are defined in a program or on a
library, are substituted for each occurrence of the macro name in
the program, and use parameters supplied with the macro call.

SR-OOOO 1-1 J

1

EXECUTION OF THE CAL ASSEMBLER

The CAL assembler executes under control of the Cray Operating System
(COS). It has no hardware requirements beyond those required for the
minimum system configuration.

The assembler is loaded and begins executing as a result of the CAL
control statement called from a user job deck. Control statement
parameters specify characteristics of an assembler run such as the
dataset containing source statements and list output. See section 5 of
this publication for a description of the CAL control statement.

The source statements can include more than one CAL program module. The
assembler assembles each program module as it is encountered on the
source dataset. Two passes are made by the assembler for each program
module to be assembled. During the first pass, the assembler reads each
source language statement instruction, expands sequences such as macro
instructions, generates the machine function codes, and assigns memory.
During the second pass, the assembler assigns block origins, substitutes
values for symbolic operands and addresses, and generates the object code
and an associated listing.

The loader is called to load the program module and begin its execution
through a control statement in the user's job deck. If the program is
relocatable, the loader performs any loading and linking of program
modules required to complete the program in memory. These program
modules are linked through references to external symbols.

SR-OOOO 1-2 J

CRA y ASSEMBLY LANGUAGE

This section presents the general rules and statement syntax for coding a
Cray Assembly Language (CAL) program.

SOURCE LINE FORMAT

A CAL source statement consists of one to eight source lines. A source
line is a maximum of 90 characters. The entire line is recorded in the
list output dataset generated during a CAL assembly. The assembler
interprets only the first 72 columns of a line. Remaining character
positions may be ignored.

CONTINUATION LINE

2

A comma in column 1 indicates a continuation line. Columns 2 through 72
are then a continuation of the previous line. Up to seven continuation
lines are allowed. Additional lines beyond seven are treated as comments.

COMMENT STATEMENT

An asterisk in column 1 indicates a comment statement. The assembler
lists comment statements, but they have no effect on the program.

STATEMENT FORMAT

With the exception of the comment statement, each statement consists of a
location field, a result field, an operand field, and a comment field.
Fields are described in the following paragraphs and are separated by one
or more blank characters. Statement format is essentially free field.

SR-OOOO 2-1 J

LOCATION FIELD

The location field begins in column 1 or 2 of a line and is terminated by
a blank. The location field has no entry if columns land 2 are blank.
The content of the location field consists of a name, symbol, or error
code and depends upon the requirements of the result field.

RESULT FIELD

The result field begins with the first nonblank character following the
location field. It cannot begin before column 3 or after column 34. A

I blank terminates the result field. The result field has no entry if only
blank characters occur between the location field and column 35. A blank
result field following a nonblank location field produces an informative
error.

OPERAND FIELD

The operand field begins with the first nonblank character following a
nonempty result field and is terminated by one or more blanks. If the
result field terminates before column 33, the operand field must begin
before column 35; otherwise, the field is considered empty. However, if
the result field extends beyond column 32, the operand field must follow
one blank separator and can begin after column 35.

COMMENT FIELD

The comment field is optional and begins with the first nonblank
character following the operand field or if the operand field is empty,
does not begin before column 35. If the result field extends beyond
column 32 and no operand entry is provided, two or more blanks must
precede the comment field. The comment field can be the only field
supplied in a statement.

CODING CONVENTIONS

Although CAL statements are essentially free field, adoption of a
convention such as is suggested here provides more uniform and more
readable listings.

SR-OOOO 2-2 J-Ol

Beginning
Column

1
1-8
9
10-18
19
20-33
34
35

LINE EDITING

Field

Blank, asterisk, or comma
Location field entry, left-justified
Blank
Result field entry, left-justified
Blank
Operand field entry, left-justified
Blank
Beginning of comment field

CAL processes source statements sequentially from the source dataset. A
macro or opdef definition is not immediately interpreted but is saved and
interpreted each time it is called. Before interpreting a statement, CAL
performs two operations referred to as editing: concatenation and micro
sUbstitution.

CONCATENATION

CAL examines each line for the underscore (concatenation) character and
deletes it so that the two adjoining columns are linked before the
statement is interpreted.

MICRO SUBSTITUTION

The CAL assembler searches for quotation marks (") which serve to delimit
micro names. The first quotation mark indicates the beginning of a micro
name; the second quotation mark identifies the end of a micro name.
Before a statement is interpreted, CAL replaces the micro name by the
character string comprising the micro.

NAMES

A name is one to eight characters. The first character of a name must be
alphabetic (A through Z), a dollar sign ($), a percent sign (%), or an at
sign (@). Characters other than the first can also be decimal digits
(0 through 9).

SR-OOOO 2-3 J

Names are used to identify the following types of information:

• Program modules
• Blocks
• Macro instructions
• Micro character strings
• Conditional sequences
• Duplicated sequences

Unlike symbols, a name does not have a value or an attribute associated
with it and cannot be used in expressions.

Different types of names do not conflict with each other or with
symbols. For example, a micro can have the same name as a macro and a
program module can have the same name as a block.

REGISTER DESIGNATORS

A Cray computer system supports the following groups of operating
registers:

•
•
•

•
•
•

•
•

8 address registers represented by An or A.x

64 intermediate address registers represented by Bn or B.x

8 sh1red intermediate address registers represented. by SBn or
SB.x

8 scalar registers represented by Sn or S.x

64 intermediate scalar registers represented by Tn or T.x

8 shared intermediate scaler registers represented by STn or
ST.Xt

8 vector registers represented by Vn or V.x

32 semaphore registers represented by SMn or SM.x t

For the A, SB, S, ST, and V registers, n is a single digit in the range
o through 7 and x is a symbol or a numeric constant. The. value is
truncated and an error is generated if x does not have a value in the
range 0 through 7.

t Supported on CRAY X-MP Computer Systems only

SR-OOOO 2-4 J

For the Band T registers, n is one or two octal digits in the range
o through 77 (octal) and x is a symbol or a numeric constant. The
value is truncated and an error is generated if x does not have a value
in the range 0 through 77 (octal).

For the SM registers, n is one or two octal digits in the range 0
through 37 (octal) and x is a symbol or a numeric constant. The value
is truncated and an error is generated if x does not have a value in
the range 0 through 37 (octal).

If x is a symbol, it can be used before it is defined but must be
defined before program end. The symbol is evaluated during pass 2.

For additional information on registers, see the appropriate Cray
mainframe reference manual.

SYMBOLS

A symbol is one to eight characters that identifies a value and its
associated attributes (see following description of symbol attributes) •
The first character of a symbol must be alphabetic (A through Z), a
dollar sign ($), a percent sign (%), or an at sign (@). Characters other
than the first can also be decimal digits (O through 9).

A warning error is issued if a symbol is defined as one of the following
register designators. CRAY X-MP specific registers get a warning error
only when CAL is generating code for a CRAY X-MP mainframe (see
CPU=type option on the CAL control statement).

An, FAn
Bn, Bnn
SBnt

sn, FSn, PSn, ZSn, QSn
Tn, Tnn
STnt
vn, FVn, pvn, ZVn, QVn
SMn, t SMnnt

t t RT, VM, CA, CL, CE, XA, VL, CI, SB, SM, MC

In the above, n is a single octal digit.

t Supported on CRAY X-MP Computer Systems only

SR-OOOO 2-5 J

SYMBOL DEFINITION

The process of associating a symbol with a value and attributes is known
as symbol definition. This association can occur in the following ways.

• A symbol used in the location field of a symbolic machine
instruction or certain pseudo instructions is defined as an
address having the current value of the location counter and
having parcel-address or word-address attributes and relocatable
or absolute attributes.

• A symbol used in the location field of a symbol-defining pseudo
instruction is defined as having the value and attributes derived
from an expression in the operand field of instruction. The type
of symbol-defining pseudo instruction can cause the symbol to have
a redefinable attribute. When a symbol is redefinable, a second
attempt to define it must be through use of a redefinable pseudo
instruction causing the symbol to be assigned a new value and
attributes.

• A symbol defined in a program module other than the module being
currently assembled can be defined as having the attribute of
external in the current program module. The true value of an
external symbol is not known within the current program module.

SYMBOL ATTRIBUTES

Two or more attributes are assigned to a symbol when it is defined.
These attributes are described in the following paragraphs.

Word address, parcel address, or value

Each symbol is assigned an attribute of word address, parcel address, or
value. A symbol is assigned a word-address attribute if it appears in
the location field of a pseudo instruction such as a BSS or BSSZ which
defines words or if it is equated to an expression having a word-address
attribute. A 22-bit value is associated with a word-address symbol.

A symbol is assigned a parcel-address attribute if it appears in the
location field of a symbolic machine instruction or certain pseudo
instructions. A 24-bit value is associated with a parcel-address symbol.

A symbol has a value attribute if it does not have a word-address or
parcel-address attribute. A 64-bit value is associated with a value
symbol.

SR-OOOO 2-6 J

Relocatable, external, or absolute

Each symbol is assigned the attribute of relocatable, external, or
absolute.

A symbol is assigned an attribute of relocatable if it appears in a
relocatable assembly in the location field of a machine instruction, BSS
pseudo instruction, or data generation pseudo instruction such as BSSZ,
CON, etc. A symbol is also relocatable if it is equated to an expression
that is relocatable.

A symbol is assigned the attribute of external if it is defined by an EXT
pseudo instruction. An external symbol defined in this manner has a
value attribute and a value of O. A symbol is also assigned the
attribute of external if it is equated to an expression that is
external. Such a symbol assumes the value of the expression and can have
an attribute of parcel address, word address, or value.

If a symbol is neither relocatable nor external, it is assigned the
attribute of absolute in a relocatable assembly. In an absolute
assembly, symbols that would be relocatable in a relocatable assembly are
assigned the attribute of absolute. An exception occurs when the
absolute program module is divided into local blocks through use of BLOCK
pseudo instructions. In this case, symbols defined in local blocks other
than the initial (nominal) block are assigned an attribute of relocatable
during pass I and absolute during pass 2. The use of blocks is described
further under Block Control in section 4.

Common

A relocatable symbol is assigned an additional attribute of common if it
is defined in a common block rather than a local block. Common blocks
are allowed only in relocatable assemblies. The use of common blocks is
described under Block Control in section 4.

Redefinable

In addition to its other attributes, a symbol is assigned the attribute
of redefinable if it is defined by certain pseudo instructions such as
SET. A redefinable symbol can be defined more than once in a program
module and can have different values and attributes at different times
during an assembly. When such a symbol is referenced, its most recent
definition is used by the assembler.

SR-OOOO 2-7 J

SYMBOL REFERENCE

The occurrence of a symbol in a field other than the location field
constitutes a reference to the symbol and causes the value and attributes
of the symbol to be used in place of the symbol.

A symbol reference can contain a prefix which causes the usual value and
attributes associated with the symbol to be altered according to the
prefix. The prefix affects only the specific reference with which it
occurs. For details, refer to Prefixed Symbols or Constants later in
this section.

QUALIFIED SYMBOLS

A symbol other than a global symbol can be rendered unique to a code
sequence by specifying a symbol qualifier to be appended to all symbols
defined within the sequence. The option to qualify symbols is initiated
by one QUAL pseudo instruction and terminated by the next. If a symbol
defined in the code sequence is referred to from within the sequence, it
can be referred to without qualification. If, however, the symbol is
referred to from outside of the code sequence in which it was defined, it
must be referred to in the form /qualifiep/symbol, where qualifiep is
a I-character to 8-character name and is defined through the use of a
QUAL pseudo instruction.

GLOBAL DEFINITIONS

Before the first IDENT pseudo instruction and between program modules
(that is, between the END pseudo that terminates one program module and
the IDENT that begins the next program module), CAL recognizes sequences
of instructions that do not generate code but define symbols, macro and
opdef instructions, and micros.

Definitions occurring before an IDENT pseudo instruction are considered
global and can be referred to without redefinition from within any of the
program modules that occur subsequent to the definition. Micros,
redefinable symbols, and symbols of the form %%xxxxxx, where x is any
nonblank character, represent an exception. While they can occur in such
sequences, they are local to the program module that follows and are not
known to the assembler after the next END pseudo instruction is
encountered. Global symbols cannot be qualified.

SR-OOOO 2-8 J

SPECIAL ELEMENTS

The following designators can occur as elements of expressions and have
special meaning to the assembler.

*

*0

*w

*P

Denotes a value equal to the current location counter with
parcel-address attribute and absolute or relocatable attribute,
depending on type of assembly

Denotes a value equal to the current value of the origin counter
with parcel-address attribute and absolute or relocatable
attribute

Denotes a value equal to the current value of the
word-bit-position counter with absolute and value attributes

Denotes a value equal to the current value of the
parcel-bit-position counter with absolute and value attributes

Expression elements are described later in this section. Counters are
described under Block Control in section 4.

DATA NOTATION

In this publication, italicized lowercase letters, numbers, or symbols
indicate variable information. Use of underlining in presenting
parameter options indicates default options. Use of parenthesis ()
indicates optional information; use of brackets [] indicates required
information.

Data can be in the form of numeric or character constants, data items, or
literals. These forms are described and illustrated in the following
paragraphs.

NUMERIC CONSTANTS

A numeric constant can be expressed in integer or floating-point
notation. An integer constant has the following format:

(ppefix) [integep] (binapy seaZe)

SR-OOOO 2-9 J

A floating-point constant has the following format:

[intege~.]
(p~efix) [intege~.fmotion] (deoima"L exponent) (bina~y 80a "L e)

[·f~aotion]
or
(p~efix) [intege~] [deoima"L exponent] (bina~y 8oa"Le)

Numeric base used for the intege~, f~aotion, deoima"L
exponent, and bina~y 8oa"Le. If no prefix is used, base
is determined by the default mode of the assembler or by
the BASE pseudo instruction. p~efix can be one of the
following:

0' Octal (integer only)
0' Decimal (default mode)
X, Hexadecimal (integer only)

intege~ and/or f~aotion
A non-empty string of digits as required by p~efix

deoima"L exponent
Power of 10 by which the intege~ and/or f~aotion is to
be multiplied; indicates whether the constant is to be
single precision (one 64-bit word) or double precision (two
64-bit words). n is an integer in the base specified by
p~efix. If no deoimaZ exponent is provided, the
constant occupies one word.

En or E+n positive decimal exponent, single precision

E-n Negative decimal exponent, single precision

On or D+n Positive decimal exponent, double precision

O-n Negative decimal exponent, double precision

bina~y 8oa"Le
The intege~ and/or f~aotion is to be multiplied by a power
of 2. n is an integer in the base specified by p~efix.

Sn or S+n Positive binary exponent

S-n Negative binary exponent

SR-OOOO 2-10 J

I
I

An integer constant is evaluated as a 64-bit twos-complement integer.
Refer to figure 3-6 in section 3 for the twos-complement integer
formats. A floating-point constant is evaluated as a l-word or 2-word
quantity, depending on the precision specified. See figure 3-7 in
section 3 for the floating-point data formats.

Example:

Location Result Operand Conunent
1 10 20 35

CON D'1.5
A4 0'50
CON D'1.OE-6
VWD 40/0,D' 24/ADDR

SYM = 0'1777752
CON lS63 sign bit

CHARACTER CONSTANTS

Character constants are expressed using the following format:

(ppefix) ['ehapaetep stping'] (suffix)

Character set used for stored constant:

A ASCII character set (default)
C Control Data Display Code
E EBCDIC character set

ehapaetep stping

sUffix

Appendix F lists the character set.

A string of zero or more characters from the ASCII character
set. Two consecutive apostrophes (excluding the delimiting
apostrophes) indicate a single apostrophe.

Justification and fill of character string:

H Left-justified, blank fill (default)
L Left-justified, zero fill
R Right-justified, zero fill
Z Left-justified, zero fill, at least one trailing binary

zero character guaranteed

SR-OOOO 2-11 J-Ol

Example:

Location Result Operand Comment
1 10 20 35

S3 '·'R
CON A'ABC'L
VWD 24/'OUT'

DATA ITEMS

A character or data item can be used in the operand field of the DATA,
CON, and VWD pseudo instruction and in literals. The length of the data
field occupied by a data item is determined by its type and size.

An integer data item has the following format:

(8ign) (ppefi~) [integep] (binapy 8cale)

A floating-point data item has the following format:

[integep.]
(sign) (ppefi~) [integep • [paction] (decimal e~ponent) (binapy 8cale)

[·fpaction]
or

(8ign) (ppef~) [integep] [decimal e~ponent] (binapy 8cale)

An integer data item occupies one 64-bit word. A floating-point data
item occupies one word if single precision and two words if double
precision.

A character string data item has the following format:

(ppef~) ['chapactep 8tping'] (coun~ (8uffi~)

In the above notation, descriptions given for numeric and character
constants apply. The two added options, 8ign for numeric data items
and count for character string data items, have the following
significance:

8ign Data item is to be stored ones or twos complemented or
uncomplemented

+ or omitted

SR-OOOO

Uncomplemented
Negated (twos complemented)
Ones complemented

2-12 J

I

~ount

Example:

Location
1

LITERALS

Length of the field in number of characters into which the
data item is to be placed. ~ount can only be used with a
DATA pseudo instruction. If ~ount is not supplied, the
length is the number of words needed to hold the character
string. If a count field is present, the length is the
character count times the character width, so length is not
necessarily an integral number of words. The character
width is 8 bits for ASCII or EBCDIC, 6 bits for Control
Data Displ~y Code.

If an asterisk is in the count field, then the actual
number of characters in the string is used as the count.
The case where two apostrophes are used to represent a
single apostrophe is counted as a single character.

If the base is M (mixed), CAL assumes that count is
decimal. Refer to section 4 for a description of mixed
base.

Result Operand Comment
~ 20 35

DATA 'ERROR IN DSN'
DATA -D'1.5E2
DATA +0'20
WD 40/0,24/0'200

A literal is a read-only constant and has the following format when used
as an element of an expression. data item represents any of the
formats for data items previously described.

= [data item]

The first use of a literal value in an expression causes the assembler to
store the data item in one or more words in a special, local block known
as the literals block. The value used in the expression in place of the
literal data item is the address at which the literal is stored. A
subsequent reference to the literal value in an expression does not cause
another store into the literals block1 the address of the previously
stored value is again used. This process avoids duplication of read-only
data. A reference to a literal does not cause generation of new entries
if the bit pattern of words previously stored in the literals block
matches the bit pattern of the new data.

SR-OOOO 2-13 J-Ol

I

Because the address of literal, rather than its value, is used in
evaluating expression elements, a literal has an attribute of relocatable
in a relocatable assembly and during pass 1 of an absolute assembly.
However, a literal has an attribute of absolute on pass 2 of an absolute
assembly.

Examples of literals:

Location Result Operand COmment
1 10 20 35

A2 =0'101 Load address of word
containing 101

S3 ='A'
S4 =-2.1E2,0 Load -2.lE2 to S4

PREFIXED SYMBOLS, CONSTANTS, OR SPECIAL ELEMENTS

A symbol, constant, or special element can be prefixed by a P. or a W.
causing the value to assume an attribute of parcel address or word
address, respectively, in the expression in which the reference appears.

A prefix does not permanently alter the attribute of a symbo11 the effect
of a prefix is for the current reference only.

P. - PARCEL-ADDRESS PREFIX

A symbol, special element, or constant can be prefixed by P. to specify
the attribute of parcel address. If a symbol, sym, has the attribute
of word address, the value of p.sym is the value of sym multiplied by
four. A P. prefix to a symbol with value attribute or to a constant does
not cause the value to be multiplied by four but it can be used to assign
the parcel-address attribute.

Example:

Location Result Operand Comment
1 10 20 35

ADDR CON P.ADDR
JAZ *+P.10

SR-OOOO 2-14 J-Ol

I

W. - WORD-ADDRESS PREFIX

A symbol, special element, or constant can be prefixed by W. to specify
the attribute of word address. If a symbol, sym, has the attribute of
parcel address, the value of w.sym is the value of sym divided by
four. A W. prefix to a symbol with value-address attribute or to a
constant does not cause the value to be divided by four but it can be
used to assign the word-address attribute to the symbol or constant.

Examples:

Location Result Operand Comment
1 10 20 35

AO W.ADDR
A4 W.BUFF+O'IOO

EXPRESSIONS

The result and operand fields for many source statements consist of
entries known to CAL as expressions. An expression consists of one or
more terms joined by special characters referred to as adding operators.
A blank or a comma terminates an expression. A term consists of one or
more elements joined by special characters referred to as multiplying
operators. Thus, an expression can be diagrammed as follows:

Add Terml Add Term2- . . Add TerIllyz comma
oPl oP2 °Pn or

(optional) blank

Any term in an expression can be diagrammed as follows:

Elementl Mult Element2 . . . Mult Elementm
oPl °Pm

The multiplying operators complete all multiplication and division before
the adding operators complete addition or subtraction.

SR-OOOO 2-15 J-Ol

I

ADDING OPERATORS

An adding operator joins two terms or precedes the first term of an
expression. The two adding operators are:

+ Addition
Subtraction

MULTIPLYING OPERATORS

A multiplying operator joins two elements. Multiplying operators are:

* Multiplication
/ Division

ELEMENTS

An element is a symbol, constant, literal, or special element. It can
also be one of these preceded by a complement (i) operator. However, an
element preceded by i must be absolute. Examples of elements follow.

SIGMA

*
*W

Symbol
Special element
Special element

0' 77S3
A'ABC'R
=A'ABC'

Numeric constant
Character constant
Literal

Attributes of elements are assigned by using the SET or = pseudo
instructions to define the attributes or by implication when the element
is used.

TERMS

A term is an element or two or more elements joined by multiplying
operators. Only one relocatable or external element can occur in a
term. The following rules apply for terms.

• Two consecutive elements are illegal.

• The element to the right of / must be an absolute element, that
is, it must be a constant or an absolute symbol or, in an absolute
assembly, a literal or a special element as well as a constant or
an absolute symbol.

• An external symbol, if present, must be the only element of the
term and if preceded by an adding operator, that operator must
be +.

SR-OOOO 2-16 J-Ol

• An element cannot be null; that is, two consecutive multiplying
operators or a multiplying operator not followed by an element is
illegal.

• A term containing / must have an attribute of absolute up to the
point at which the / is encountered (see the description of term
attributes).

• Division by 0 produces an error.

TERM ATTRIBUTES

Attributes assigned to a term depend on the elements and operators
comprising the term.

Every term is assigned an attribute of either external, absolute, or
relocatable. A term assumes the attribute of external if it consists of
a single external symbol. A term assumes the attribute of absolute if it
contains only absolute elements. A term assumes an attribute of
relocatable if it contains one relocatable element and no external
symbols.

Every term assumes an attribute of parcel address, word address, or
value. The term attribute can vary as each element in the term is
evaluated. The term's final attribute is the attribute in effect when
the final (rightmost) element of the term is evaluated. As CAL
encounters each element in the left-to-right scan of a term, it assigns
an attribute to the term based on the operator, if any, preceding the
element, the attribute of any previous partial term, and the attribute of
the element currently being evaluated.

In the following rules, consider that P, Wand V denote an element being
incorporated into the term and having an attribute of parcel address,
word address, or value, respectively. Consider, also, that ptepm,
wtepm, and vtePm denote the attribute of the partial term resulting
from all elements evaluated before the current element. The following
rules can then be stated.

• Following evaluation of the element, a new partial term is
assigned a parcel-address attribute if the partial term, operator,
and new element are one of the following combinations:

SR-OOOO

p

ptepm*V
ptepm/v
vtepm*p

2-17 J

• Following evaluation of the element, a new partial term is
assigned a word-address attribute if the partial term, operator,
and new element are one of the following combinations:

w
wte~m*V
wte~m/V

vte~W

• Following evaluation of the element, a new partial term is
assigned a value attribute if the partial term, operator, and new
element are one of the following combinations:

v
vte~m*V
pte~m/p

wte~
vte~mVV

• In addition, any of the following combinations results in an
attribute of value being assigned but is accompanied by a warning
error.

pte~m*W
wte~m*P

pte~mVW
wte~m/p

vte~mVP
vte~m/w

pte~P
wte~m*W

EXPRESSION EVALUATION

Expressions are evaluated from left to right. Each term is evaluated
from left to right, with CAL performing 64-bit integer multiplication or
division as each multiplying operator is encountered. When a complete
term has been evaluated, it is added or subtracted from the sum of the
previous terms.

The assembler treats each element as 64-bit twos-complement integer.
Sign extension is performed for elements with 22-bit (word-address) or
24-bit (parcel address) values. Character constants are left-justified
or right-justified within a field width equal to the destination field.
Complemented elements are complemented in the rightmost bits in a field
width equal to the destination field.

SR-OOOO 2-18 J

A relocatable term has a 64-bit integer coefficient associated with it,
equal to the value of the term obtained when a one is substituted for the
relocatable element. The value of a relocatable term is the value of the
relocatable element multiplied by the coefficient.

The coefficient of each relocatable term is added to the coefficient or
subtracted from the coefficient-maintained for the corresponding
relocatable block represented in the expression.

EXPRESSION ATTRIBUTES

Expressions can be assigned the following attributes by the assembler.

• Relocatable, external, or absolute

• Parcel address, word address, or value

RELOCATABLE, EXTERNAL, or ABSOLUTE

An expression is relocatable if the coefficient for every block
represented in the expression is 0, except for one block which must have
a coefficient of +1 (positive relocation). An expression error occurs if
a coefficient does not equal 0 or +1, or if more than one coefficient is
nonzero.

An expression is external if the expression contains one external term
and if the coefficients of all relocatable blocks are O. An expression
error occurs if more than one external term is present.

An expression is absolute if no external terms are present and the
coefficients of all relocatable blocks are O.

PARCEL ADDRESS, WORD ADDRESS, OR VALUE

An expression has parcel-address attribute if at least one term has
parcel-address attribute and all other terms have value or parcel-address
attributes.

An expression has word-address attribute if at least one term has
word-address attribute and all other terms have value or word-address
attributes.

All other expressions have value attributes. - A warning error occurs if
an expression has terms with both word-address attributes and
parcel-address attributes.

SR-OOOO 2-19 J

I

An expression value is truncated to the field size of the expression
destination. A warning error occurs if the leftmost bits lost in
truncation are not all zeros or all ones with the leftmost remaining bit
also I (that is, a negative quantity).

A null (empty) expression is treated as an absolute value of O.

If an error other than a warning error occurs in evaluating an
expression, the expression is treated as an absolute value of O.

Examples of expressions:

ALPHA An expression consisting of a single term

*W+BETA Two terms~ *W and BETA.

GAMMA/4+DELTA*5 Two terms, each consisting of two elements

MU-NU*2+* Three terms; the first consisting only of MU, the
second consisting of NU*2, and the third consisting
only of the special element *.

0'100+=0'100 Two terms; a constant and the address of a literal.

In the following examples, Rand S are relocatable symbols in the same
block, COM is relocatable in a common block, X and Yare external, and A
and B are absolute. The location counter is currently in the block
containing Rand S.

The following expressions are relocatable:

*
W.*+B
R+2
COM+R-S
3**-R-S
=A'LITERAL'
X+R
R+S
R/16*l6

Rand S cancel
3** cancels -R and -S
Relocatable except in an absolute assembly, pass 2
Error; external and relocatable.
Error; relocation coefficient of 2.
Error; division of relocatable element is illegal.

The following expressions are external:

X+2
Y-IOO
X+R-*
X+2**-R-S
-X+2
X+Y
x/z

SR-OOOO

R, -* cancel relocation
Relocatable terms 2**, -R, -S cancel each other
Error; external cannot be negated.
Error; more than one external.
Error; division of an external element is illegal.

2-20 J-Ol

The following expressions are absolute:

A+B
'A'R-l
2*R-S-*
1/2*R
A* (R-S)

Relocation of terms all cancel
Equivalent to O*R
Error: parentheses not allowed

CHART METHOD OF EXPRESSION ATTRIBUTE EVALUATION

As shown in the following charts, if a symbol, literal, special element, or
constant has the attribute of the left column (1st Term) and is added,
subtracted, multiplied,or divided by a symbol, literal, special element, or
constant,with the attribute of the top horizontal row (2nd Term), then the
resulting attribute is determined at the intersection of the column and row by
the arithmetic operator position (upper left corner of table).

m * /

V

P

W

1st
Term

SR-OOOO

V

* v v

*
* w w

P

*3 p v

*
v;lv;
v v

W

-* w v 3

v;lv3
v v 3

~31v

2-21

2nd Term

V - Value
P - Parcel
W - Word
3 - Warning Message

J

tf-7 * /

v

P

W

1st
Term

SR-OOOO

v P

* v v ?i?

-;+; :31; *

* x x X~IV~ x x

W

$ x x

XiIX;
x x

* Wx x x

2-22

2nd Term

v - Value
P - Parcel
W - Word
X - Error Message
3 - Warning Message
* - Absolute

J

SYMBOLIC MACHINE INSTRUCTIONS 3

Each CRAY-l or CRAY X-MP mainframe machine instruction can be represented
symbolically in Cray Assembly Language (CAL). The assembler identifies a
symbolic instruction according to its syntax and generates a binary
machine instruction in the object code. An instruction is generated in
the block in use when the instruction is interpreted.

INSTRUCTION FORMAT

, Each instruction is either a I-parcel (16-bit) instruction or a 2-parcel
(32-bit) instruction. Instructions are packed four parcels per word.
Parcels are numbered 0 through 3 from left to right and any parcel
position can be addressed in branch instructions. A 2-parcel instruction
begins in any parcel of a word and can span a word boundary. For
example, a 2-parcel instruction beginning in the fourth parcel of a word
ends in the first parcel of the next word. No padding to word boundaries
is required. Figure 3-1 illustrates the general form of instructions.

First parcel Second parcel

g h i j k m

4 3 3 3 3 16 Bits

Figure 3-1. General form for instructions

Four variations of this general format use the fields differently; two
forms are I-parcel formats and two are 2-parcel formats. The formats of
these four variations are described below.

I-PARCEL INSTRUCTION FORMAT WITH DISCRETE j AND k FIELDS

The most cornmon of the I-parcel instruction formats uses the i, j,
and k fields as individual designators for operand and result registers
(see figure 3-2). The g and h fields define the operation code. The
i field designates a result register and the j and k fields designate

SR-OOOO 3-1 J

operand registers. Some instructions ignore one or more of the i, j,
and k fields. The following types of instructions use this format.

• Arithmetic
• Logical
• Double shift
• Floating-point constant

g h i j k

4 I 3 3 3 I 3 Bits

Operation Register
code designators

Figure 3-2. I-parcel instruction format
with discrete j and k fields

I-PARCEL INSTRUCTION FORMAT WITH COMBINED j AND k FIELDS

Some I-parcel instructions use the j and k fields as a combined 6-bit
field (see figure 3-3). The g and h fields contain the operation
code, and the i field is generally a destination register identifier.
The combined j and k fields generally contain a constant or a B or T
register designator. The branch instruction 005 and the following types
of instructions use the I-parcel instruction format with combined j and
k fields.

• Constant
• Band T register block memory transfer
• Band T register data transfer
• Single shift
• Mask

g h i jk

4 3 3 6 I Bits

f i Operation
code

Result Constant or
register register

designator

Figure 3-3. I-parcel instruction format
with combined j and k fields

SR-OOOO 3-2 J

2-PARCEL INSTRUCTION FORMAT WITH COMBINED j, k, AND m FIELDS

The instruction type for a 22-bit immediate constant uses the combined
j, k, and m fields to hold the constant. The 7-bit gh field
contains an operation code, and the 3-bit i field designates a result
register. The instruction type using this format transfers the 22-bit
jkm constant to an A or S register.

The instruction type used for scalar memory transfers also requires a
22-bit jkm field for an address displacement. This instruction type
uses the 4-bit g field for an operation code, the 3-bit h field to
designate an address index register, and the 3-bit i field to designate
a source or result register. (See special register values.)

Figure 3-4 shows the two general applications for the 2-parcel
instruction format with combined j, k, and m fields.

SR-OOOO

First parcel

g h i j

4 I 3 I 3
f

Operation Result
code register

First parcel

g

Operation
code

h i j

k

k

Second parcel

m

22

Constant

Second parcel

m

22

Address or
displacement

Address Source or
register result register
used as
index

Bits

Bits

Figure 3-4. 2-parcel instruction format
with combined j, k, and m fields

3-3 J

NOTE

When using an immediate constant having a parcel value,
and that is relocatable, the result of the relocation
will be incorrect if the loader-determined actual
address within the user's field length is greater than
1,048,575 because the resulting relocated value will
have more than 22 significant bits.

2-PARCEL INSTRUCTION FORMAT WITH COMBINED i, j, k, AND m FIELDS

The 2-parcel branch instruction type uses the combined i, j, k, and
m fields to contain a 24-bit address that allows branching to an
instruction parcel (see figure 3-5). A 7-bit operation code (g~ is
followed by an ijkm field. The high-order bit of the i field is
unused.

First parcel Second parcel
""

g h i j k m

4 3 III 12 I Bits
J ,

Operation 1 Address Parcel
code unused select

bit

Figure 3-5. 2-parcel instruction format
with combined i, j, k, and m fields

SPECIAL REGISTER VALUES

If the SO and AO registers are referenced in the j or k fields of
certain instructions, the contents of the respective register are not
used7 instead, a special operand is generated. The special value is
available regardless of existing AO or SO reservations (and in this case
are not checked). This use does not alter the actual value of the SO or
AO register. If SO or AO is used in the i field as the operand, the
actual value of the register is provided. The table below shows the
special register values.

SR-OOOO 3-4 J

Field Operand value

Ah, h=o 0

Ai, i=o (AO)

Aj, j=0 0

Ak, k=o 1

si, i=o (SO)

sj, j=O 0

Sk, 7<.=0 2**63

SYMBOLIC NOTATION

This section describes the notation used for coding symbolic machine
instructions. Instructions are described in the following functional
categories:

• Register entries
• Inter-register transfers
• Memory transfers
• Integer arithmetic operations
• Floating-point arithmetic operations
• Logical operations
• Bit counts
• Shift operations
• Program branches and exits
• Monitor operations

Within each functional category, each instruction is presented,
explained, and followed by an example. Instructions are summarized by
functional category below. Appendix A of this publication contains a
cross reference to this section with the octal machine code as the
primary index. For descriptions of functional units, see the appropriate
Cray mainframe reference manual.

GENERAL REQUIREMENTS

Register designators and the location, result, and operand fields have
the following general requirements.

SR-OOOO 3-5 J

en
l'
o
o
o
o

W
I

0'1

~
I

o
......

LOGICAL OPERATIONS

si sj&Sk vi sj&vk vi
si Sj&SB
si SB&Sj

si #Sk&sj
si #SB&Sj

si sj:sk vi sj:vk vi
si Sj!SB
si SB!Sj

si sJ"\sk vi sj\Vk vi
Si Sj\SB
si SB\sj

si #sj\sk
si #Sj\SB
si #SB\Sj

VM vj ,Z
VM Vj,N
VM vj,P
VM Vj,M

si sj!Si&Sk
si sj:Si&SB vi sj:Vk&VM vi

vi #VM&vk

INTER-REGISTER TRANSFERS

Ai Ak si sk
Ai -Ak si -sk

si #sk
Ai sj si Ak

si +Ak
Ai VLt si +FAk

Ai Bjk Si Tjk
Ai SBjt si STjt

Ai CI si vj,Ak
Ai CA,Aj si VM
Ai CE,Aj si RT

si SMt

si sRjt

Ai si Bjk Tjk
SBj Ait STj Sit

vi vk
vi -vk
Vi,Ak sj

VL Ak VM sj
VL 1 VM 0

SM sit

t CRAY X-MP Computer Systems only
tt CRAY-l Computer Systems only

SYMBOLIC MACHINE INSTRUCTIONS

INTEGER ARITHMETIC OPERATIONS SHIFT INSTRUCTIONS REGISTER ENTRY INSTRUCTIONS

vj&vk Ai Aj+Ak SO Si<exp SO si>exp Ai exp si <exp
Ai Aj+l si si<exp si si>exp Ai -1 si #>exp
Ai Aj-Ak si >exp
Ai Aj-l si Si,Sj<Ak si Sj,Si>Ak si exp si #<exp
Ai Aj*Ak si Si,Sj<l si Sj,Si>l

si Si<Ak si Si>Ak si 0 si SB
si sj+sk vi sj+vk vi vj+vk si I si #SB

vj:vk si sj-sk vi sj-vk vi vj-Vk Vi vj<Ak vi vj>Ak si -1

vi vj<l vi vj>l si l. Vi,Ak 0

si 2. vi 0

vi vj,vj<Ak vi vj,vj>Ak si 4.
vj\vk FLOATING-POINT OPERATIONS vi vj,vj<l vi vj,Vj>l si 0.4 sMjk 1 TSt

si 0.6 sMjk Of
EFI sMjk It
DFI

si Sj+Fsk vi sJ+Fvk vi vj+Fvk
PROGRAM BRANCHES AND EXITS si +Fsk vi +FVk BIT COUNT INSTRUCTIONS

si J exp Ai psj vi pvj sJ-Fsk vi sj-FVk vi vj-Fvk
Ai Qsj vi Qvj si -Fsk vi -FVk J Bjk
Ai zsj

JAZ exp JSZ exp si sj*Fsk vi sj*Fvk vi Vj*Fvk
vj:Vk&VM si sj*Hsk vi sj*Hvk vi vj*HVk JAN exp JSN exp

si sj*Rsk vi sj*Rvk vi vj*Rvk
JAP exp JSP exp

si sj*Isk vi sj*Ivk vi vj*IVk JAM exp JSM exp MONITOR OPERATIONS

si /HSj vi /HVj
CA,Aj Ak CCl R exp
CL,Aj Ak ECI

EX ERR Cl,Aj DCI

EX exptt ERR exlt MC,Ajt ERlt
MEMORY TRANSFERS

XA Aj DRlt

DBMt RT sj CLN ot

EBMt PCI sj CLN It
IP It CLN 2t

CMRt
IP ot CLN 3t

(store) (load)
,AO Bjk,Ai Bjk,Ai ,AO
O,AO Bjk,Ai Bjk,Ai O,AO

,AO Tjk,Ai Tjk,Ai ,AO REGISTER VALUE
O,AO Tjk,Ai Tjk,Ai O,AO LOGICAL OPERATORS

exp,Ah Ai Ai exp,Ah Ah, h=o 0 & 0101
exp,o Ai Ai exp,O 1100
exp, Ai Ai exp, Ai, i=o (AO) 0100
,M Ai Ai ,Ah

Aj, j=O 0 ! 0101
exp,Ah si si exp,Ah 1100
exp,o si si exp,O Ak, k=O 1 1101
exp, si si exp,

\ ,M si si ,Ah si, i=O (SO) 0101
1100

,AO,Ak Vj vi ,AO,Ak sj, j=O 0 1001
,AO,l vj vi ,AO,l

sk, k=O 263

Register designators

A, B, sat, S, T, STt, SMt, and V registers can be referenced
with numeric or symbolic designators as described in section 2.

In the symbolic notation, the h, i, j, and k designators indicate
the field of the machine instruction into which the register designator
constant or symbol value is placed. An expression (exp) occupies the
jk, ijk, jkm, or ijkm fields depending on the operation code and
magnitude of the expression value.

Supporting registers have the following designators:

CA Current Address
CL Channel Limit
CI Channel Interrupt flag
CE Channel Error flag
RT Real-time Clock
sa Sign bit (Sk, with k=O)
VL Vector Length
VMt Vector Mask
XA Exchange Address
MCt Master Clear
SM t Semaphore

Location field

The location field of a symbolic instruction optionally contains a
location symbol. When a symbol is present, it is assigned a parcel
address as indicated by the value of the location counter after the force
to parcel boundary occurs.

Result field

The result field of a symbolic machine instruction can consist of one,
two, or three subfields separated by commas. A subfield can be null or
can contain a.register designator or an expression specifying a memory
address which indicates the register or memory location to receive the
results of the operation. The result field, in some cases, contains a
mnemonic indicating the function being performed (for example, J for jump
or EX for exit).

t CRAY X-MP Computer Systems only

SR-OOOO 3-7 J

Operand field

The operand field of a symbolic machine instruction consists of no
subfield or one or more subfields separated by commas. A subfield can be
null, can contain an expression (with no register designators), or can
consist of register designators and operators.

The following special characters can appear in the operand field of
symbolic machine instructions and are used by the assembler in
determining the operation to be performed.

+ Arithmetic sum of adjoining registers
Arithmetic difference of adjoining registers

* Arithmetic product of adjoining registers
/ Reciprocal of approximation
i Use ones complement
> Shift value or form mask from left to right
< Shift value or form mask from right to left
& Logical product of adjoining registers

Logical sum of adjoining registers
\ Logical difference of adjoining registers

In some instructions, register designators are prefixed by the following
letters which have special meaning to the assembler:

F Floating-point operation
H Half-precision operation
R Rounded operation
I Reciprocal iteration
P Population count
Q Parity count
Z Leading-zero count

SPECIAL SYNTAX FORMS

The CAL instruction repertoire has been expanded for the convenience of
programmers to allow for special forms of symbolic instructions. Because
of this expansion, certain Cray machine instructions can be generated
from two or more different CAL instructions. For example, both of the
following instructions

VL Ak
VL 1

(where k=0)

generate an instruction 00200, which causes a 1 to be entered into the VL
register. The first instruction is the basic form of the Enter VL
instruction and takes advantage of the special case where (Ak)=l if
k=O, the second instruction is a special syntax form providing the
programmer with a more convenient notation for the special case.

SR-OOOO 3-8 J

Any of the operations performed by special instructions can be performed
using instructions in the basic set. Instructions having a special
syntax form are identified as such in the instruction description
described later in this section.

In several cases, a single syntax form of an instruction can result in
any of several different machine instructions being generated. In these
cases, which provide for entering the value of an expression into an A
register or into an S register or for shifting S register contents, the
assembler determines which instruction to generate from characteristics
of the expression. For details, refer to the Entries into A registers
and Entries into S registers instructions and to the shift instruction.

REGISTER ENTRY INSTRUCTIONS

Instructions in this category provide for entering values such as
constants, expression values, or masks directly into registers.

Entries into A registers

The following syntax and its special form enter a quantity into Ai.
This syntax differs from most CAL symbolic instructions in that the
assembler generates any of four Cray machine instructions depending on
the form, value, and attributes of the expression.

Result Operand Description Machine
instruction

Ai exp Enter exp into Ai 020ijkm or
02lijkm or
022ijk

t Ai -1 Enter -1 into Ai 031 ioO

If the form of the expression is explicitly -1, the assembler generates
an instruction 03lioO to efficiently enter the value -1. This
instruction executes in the Address Add functional unit.

t Special syntax format

SR-OOOO 3-9 J

The assembler generates an instruction 022ijk where the jk fields
contain the 6-bit value of the expression if the following conditions are
true:

• The value of the expression is positive and less than 64.

• All symbols are previously defined and neither relocatable nor
external.

If either of the conditions is not true, the assembler generates either
the 2-parcel instruction 020ijkm or 02lijkm. If the expression has a
positive value or is external, instruction 020ijkm is generated with
the value entered in the 22-bit jkm field. If the expression value is
negative, instruction 02lijkm is generated with the ones complement of
the expression value entered into the 22-bit jkm field.

Example:

I Code generated Location Result Operand Comment
I i 10 20 35

022310 A3 0'10
0212 00000010 A2 10 1 10

AREG = 2
0212 00000007 A.AREG -0'10
0202 00000130 A2 0'130
0203 00000021 A3 VAL+l VAL=20 (octal)
0204 01777777 A4 0'1777777
0205 00051531 A5 A'SY'R
0206 00000000 A6 IMINUSI MINUSl=-l
031300 A3 -1

EXT X
0204 17777777 A4 X-I 020ijkm used i

expression
external

Entries into S registers

Several instructions can be used to enter a quantity into S registers.
The following syntax enters a quantity into si. Either the 2-parcel
040ijkm instruction or the 2-parcel 0"41 ijkm instruction is generated
depending on the value of the expression.

SR-OOOO 3-10

is

J

f

Result Operand Description Machine
instruction

5i exp Enter exp into 5i 040ijkm or
04lijkm

If the expression has a positive value or is external, instruction
040ijkm is generated with the 22-bit jkm field containing the
expression value. If the expression has a negative value, instruction
04lijkm is generated with the 22-bit jkm field containing the ones
complement of the expression value.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

0402 00000130 52 0'130
5REG = 3

0403 00000021 5.5REG VAL+l VAL=20 (octal)
0404 01777777 54 0'1777777
0405 00051531 55 A'5Y'R
0406 00000000 56 iMINU5l MINUSl=~l
0412 00000000 52 -1
0413 00000002 53 i2
0414 01777776 54 -0'1777777
0404 00000003 S4 iVAL2 VAL2=3

EXT X
0401 17777777 51 X-I 040 ijkm used

expression
external

The following syntax forms are initially recognized by the assembler as
the symbolic instruction 5i exp. The assembler then checks the
expression to see if it has any of the following forms. If it finds one
of the forms in the exact syntax shown, it generates the corresponding
Cray machine instruction. If none of these forms is found, instruction
040ijkm or 04lijkm is generated as previously described. These
special forms allow more efficient instructions for entering often used
values into 51.

5R-0000 3-11 J

is
i f

Result Operand Description Machine
instruction

t si 0 Clear si 043iOo

t si 1 Enter 1 into si 042i77

t si -1 Enter -1 into Si 042iOo

si 1. Enter 1 into si as normalized 07li50
floating-point constant

si 2. Enter 2 into si as normalized 07li60
floating-point constant

si 4. Enter 4 into si as normalized 071 i70
floating-point constant

si 0.4 Enter 0.5 into si as normalized 071 i40
floating-point constant

si 0.6 Enter 0.75*(2**48) into si as 071 i30
normalized floating-point constant

The syntax form si 0.6 is useful for extracting the integer part of a
floating-point quantity (that is, fix) as illustrated in .the examples.

Instructions 043ioo, 042i77, and 042ioO execute in the Scalar
Logical functional unit.

t Special syntax form

SR-OOOO 3-12 J

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

FIX = 6
071630 5.FIX 0.6
071240 52 0.4
071350 53 1.
071460 54 2.
071570 55 4.
043600 56 0 Clear 56
042677 56 1 5et 56 to 1

* Fix a floating-point number in 51

* 5eparate integer and fractional parts

071230 52 0.6
062312 53 5l+F52
023130 Al 53 Integer part
063332 53 53-F52 Floating-point

integer part
063113 51 5l-F53 Fractional par

The following syntax and its special form generate a mask of ones from
the right. The assembler evaluates the expression to determine the mask
length. All symbols in the expression must be previously defined.

Result Operand Description Machine
instruction

5i <exp Form ones mask in 042ijk
t 5i #>exp 5 i from right

In the 'first form, the mask length is the value of the expression. In
the second form, the mask length is 64 minus the expression value. The
mask length must be a positive integer not exceeding 64: 64 minus the
mask length is inserted into the jk fields of the instruction. If the
value of the expression is 0 for the first form or 64 for the second
form, the assembler generates instruction 043iOO.

Instruction 042ijk executes in the 5calar Logical functional unit.

t 5pecial syntax form

5R-OOOO 3-13 J

t

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

042273 52 <5
042273 52 #>0'73
042366 53 <D'10
042400 54 <0 '100
043500 55 <0

The following syntax and its special form generate a mask of ones from
the left. The assembler evaluates the expression to determine the mask
length. All symbols in the expression must be previously defined.

Result Operand Description Machine
instruction

5i >exp Form ones mask in 043ijk
t 5i i<exp 5i from left

In the first form, the mask length is the value of the expression. In
the second form, the mask length is 64 minus the expression value. The
mask length must be a positive integer not exceeding 64 and is inserted
into the jk fields of the instruction. If the expression value is 64
for the first form or 0 for the second form, the assembler generates
instruction 042ioo.

Instruction 043ijk executes in the 5calar Logical functional unit.

Examples:

I Code generated Location Result Operand Comment
r 1 10 20 35

043205 52 >5
043205 52 #<0' 73
043312 53 <D'10
042400 54 <0 '100
043500 55 <0

t 5pecial syntax form

5R-0000 3-14 J

The following syntax can be used to set or clear the sign bit of Si.
The first syntax sets the sign bit of si and zeros all other bits.

Result Operand Description Machine
instruction

t si SB Enter sign bit into si 051 iOo
t si #SB Enter ones complement of sign bit 047ioo

in si

The second syntax clears the sign bit and sets all other bits.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

1 = 1
051100 S.l SB
047200 S2 #SB

Entries into V registers

Two instructions can be used to enter a quantity into V registers.

The following syntax zeros element (A~ of register vi. The
low-order 6 bits of Ak determine which element is zeroed. The second
element of register vi is zeroed (that is, element 1) if the k
designator is o.

Result Operand Description Machine
instruction

t Vi,Ak 0 Clear element (Ak) of register vi 077iOk

t Special syntax form

SR-OOOO 3-15 J

Example:

I Code generated Location Result O~erand Comment
I 1 10 20 35

077602 V6,A2 0

The following syntax zeros elements of vi. The number of elements
zeroed is determined by the contents of the VL register.

Result Operand Description Machine
instruction

t vi 0 Clear vi l45iii

The l45iii instruction executes in the Vector Logical functional unit.

Example:

l Codeg ene rated Location Result 012erand Comment
L 1 10 20 35

140500 V5 0

Entries into Semaphore register tt

Three instructions can be used to test and set, clear, or set a semaphore.

The following syntax tests and sets the semaphore designated by jk. If
the semaphore is set, issue is held until another CPU clears that
semaphore. If the semaphore is clear, instruction 0034jk issues and
sets the semaphore.

Result Operand Description Machine
instruction

SMjk 1,TS Test and set semaphore jk, 0034jk
0~jk<3ll0

t Special syntax form
tt CRAY X-MP Computer Systems only

SR-OOOO 3-16 J

If all CPUs in a cluster are holding issue on a test and set, the DL flag
is set in the Exchange Package (if not in monitor mode) and an exchange
occurs. If an interrupt occurs while a test and set instruction is
holding in the CIP register, the WS flag in the Exchange Package sets,
CIP and NIP registers clear, and an exchange occurs with the P register
pointing to the test and set instruction.

The SM register is 32 bits with SMO being the most significant bit.

Example:

l Code generated Location Result Operand Comment
I 1 10 20 35

003407 SM7 1,TS

The following syntax clears the semaphore designated by jk.

Result Operand Description Machine
instruction

sMjk 0 Clear semaphore jk, O~jk<3110 0036jk

Example:

I Code generated Location Result O~erand Comment
1 1 10 20 35

003607 SM7 0

The following syntax sets the semaphore designated by jk.

Result Operand Description Machine
instruction

SMjk 1 Set semaphore jk, o <jk<3110 0037jk

SR-OOOO 3-17 J

Example:

L Code generated Location I Result Operand Comment
I 1 10 20 35

003707 SM7 1

INTER-REGISTER TRANSFER INSTRUCTIONS

Instructions in this group provide for transferring the contents of one
register to another register. In some cases, the register contents can
be complemented, converted to floating-point format, or sign extended as
a function of the transfer.

Transfers to A registers

The machine instructions and related CAL syntax for transferring the
contents from one register to A registers are described below.

The following syntax enters the contents of register Ak into register
Ai. The value 1 is entered if the k designator is O.

Result Operand Description Machine
instruction

t Ai Ak Transmit (Ak) to Ai 030iOk

Instruction 030iok executes in the Address Integer Add functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

030602 A6 A2

t Special syntax form

SR-OOOO 3-18 J

Result Operand Description Machine
instruction

t Ai -Ak Transmit negative of (Ak) to Ai 031 iO k

The following syntax enters the negative (twos complement) of the contents
of register Ak into register Ai. The value -1 is entered into Ai if
the k designator is o.

Instruction 03liok executes in the Address Integer Add functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

031703 A7 -A3

The following syntax transmits the low-order 24 bits of the contents of
register Sj to register Ai. Ai is zeroed if the j designator is o.

Result Operand Description Machine
instruction

Ai Sj Transmit (sj) to Ai 023ijO

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

023420 A4 S2

t Special syntax form

SR-OOOO 3-19 J

The following syntax enters the contents of the VL register into Ai.

Result Operand Description Machine
instruction

t Ai VL Transmit (VL) to Ai 023iol

Example:

Code generated Location Result Operand Comment
1 10 20 35

023201 A2 VL

The following syntax transfers the contents of register Bjk to Ai.

Result Operand Description Machine
instruction

Ai Bjk Transmit (Bjk) to Ai 024ijk

Example:

Code generated Location Result Operand Comment
1 10 20 35

024517 A5 B17
SVNTN = 0'17

024517 A5 B.SVNTN

t CRAY X-MP Computer Systems only

SR-OOOO 3-20 J

The following syntax transfers the contents of the SBj register shared
between the CPUs to Ai.

Result Operand Description Machine
instruction

t Ai SBj Transfer (SBj) to Ai 026iJI

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

026007 AO SBO
026017 AO SBI

The following syntax enters the channel number of the highest priority
interrupt request into Ai.

Result Operand Description Machine
instruction

Ai CI Channel number to Ai 033iOo

Example:

l Code generated Location Result Operand Comment
1 1 10 20 35

033100 Al CI

t CRAY X-MP Computer Systems only

SR-OOOO 3-21 J

The following syntax enters the contents of the Current Address (CA)
register for the channel specified by the contents of Aj into register
Ai.

Result Operand Description Machine
instruction

Ai CA,Aj Address of channel (Aj) to Ai 033ijo

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

033230 A2 CA,A3

The following syntax enters the error flag for the channel specified by
the contents of Aj into the low-order 7 bits of Ai. The high-order
bits of Ai are cleared. The error flag can be cleared only in monitor
mode using the CI,Aj instruction.

Result Operand Description Machine
instruction

Ai CE,Aj Error flag of channel (AJ) to Ai 033iJl

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

033341 A3 CE,A4

SR-OOOO 3-22 J

Transfers to S registers

The machine instructions and related CAL syntax for transferring the
contents from one register to S registers are described below.

The following syntax enters the contents of register sk into register
si. The sign bit is entered into si if the k designator is o.

Result Operand Description Machine
instruction

t si sk Tran'smit (Sk) to si 05liok

Instruction 05liok executes in the Scalar Logical functional unit •

. Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

051701 S7 Sl

The following syntax enters the negative (twos complement) of the
contents of sk into si. The sign bit is entered if the k designator is o.

Result Operand Description Machine
instruction

t si -sk Transmit negative of (Sk) to si 06liOk

Instruction 06liok uses the Scalar Integer Add functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

061506 S5 -S6

t Special syntax form

SR-OOOO 3-23 J

The following syntax forms the ones complement of the contents of
register sk and enters the value into si. The complement of the sign
bit is entered into si if the k designator is o.

Result Operand Description Machine
instruction

t si Isk Transmit ones complement of 047iOk
(Sk) to si

Instruction 047iok uses the Scalar Logical functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

047203 S2 IS3

The following syntax transfers the 24-bit value in register Ak into the
low-order 24 bits of register si. The value is treated as an unsigned
integer. The high-order bits of si are zeroed. A value of 1 is
entered into si when the k designator is o.

Result Operand Description Machine
instruction

si Ak Transmit (Ak) to si without sign 071iOk
extension

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

071707 S7 A7

t Special syntax form

SR-OOOO 3-24 J

The following syntax transfers the 24-bit value in register Ak into the
low-order 24 bits of register si. The value is treated as a signed
integer and the sign bit of the contents of register Ak is extended to
the high-order bits of si. A value of 1 is entered into si when the
k designator is o.

Result Operand Description Machine
instruction

si +Ak Transmit (Ak) to si with sign 071 ilk
extension

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

071717 S7 +A7

The following syntax transmits the contents of register Ak to si as
an unnormalized floating-point value. The result can then be added to 0
to normalize. When the k designator is 0, an unnormalized
floating-point 1 is entered into si.

Result Operand Description Machine
instruction

si +FAk Transmit (Ak) to si as an 07li2k
unnormalized floating-point value

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

071324 S3 +FA4

SR-OOOO 3-25 J

The following syntax enters the contents of register Tjk into register
si.

Result Operand Description Machine
instruction

si Tjk Transmit (Tjk) to si 074ijk

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

074306 S3 T6
074566 S5 T66
074541 S.ARG T.TEMP ARG= 5, TEMP=41

(octal)

The following syntax enters the contents of register STj into register
si.

Result Operand Description Machine
instruction

t si STj Read (STj) register to si 072ij3

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

072003 SO STO
072013 SO STl

t CRAY X-MP Computer Systems only

SR-OOOO 3-26 J

The following syntax enters the contents of the element of vj indicated
by the contents of the low-order 6 bits of Ak into si. The second
element, that is, element 1, is selected if the k designator is o.

Result Operand Description Machine
instruction

si vj,Ak Transmit (vj, element (Ak)) to si 076ijk

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

076456 S4 V5,A6
1 = 4
J = 5
K = 6

076456 S.l V.J,A.K

The following syntax enters the 64-bit contents of the VM register into
register si. The VM register is normally read after having been set by
instruction l750jk.

Result Operand Description Machine
instruction

si VM Transmit (VM) to si 073iOo

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

073200 S2 VM

SR-OOOO "3-27 J

The following syntax enters the 64-bit contents of the real-time clock
into register si. The clock is incremented by one each clock period.
The real-time clock can be reset only when in monitor mode using
instruction 072ioo.

Result Operand Description Machine
instruction

si RT Transmit (RTC) to si 072iOO

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

072700 S7 RT

The following syntax enters the values of all of the semaphores into si.
The 32-bit SM register is left justified in si with SMOO occupying the
sign bit.

Result Operand Description Machine
instruction

t si SM Read semaphore to si 072io2

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

072002 SO SM
072602 S6 SM

t CRAY X-MP Computer Systems only

SR-OOOO 3-28 J

The following syntax enters the contents of the Status register into si.

Result Operand Description Machine
instruction

t si SRj Transmit (SRj) to Si1 j=0 073ijl

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

073001 SO SRO
073301 S3 SRO

Transfers to intermediate registers

The machine instructions and related CAL syntax for transferring the
contents from one register to intermediate registers are described below.

The following syntax enters the contents of register Ai into register
Bjk.

Result Operand Description Machine
instruction

Bjk Ai Transmit (Ai) to Bjk 025ijk

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

025634 B34 A6
025634 B.THRTY4 A6 THRTY4=34 (oct

t CRAY X-MP Computer Systems only

SR-OOOO 3-29 J

al)

The following syntax transfers the contents of register Ai into
register SBj, which is shared between the CPUs in the same cluster.

Result Operand Description Machine
instruction

t SBj Ai Transfer (Ai) to SBj 027ij7

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

027007 SBO AO
027107 SBO Al

The following syntax enters the contents of register si into register
Tjk.

Result Operand Description Machine
instruction

Tik si Transmit (Si) to Tjk 075ijk

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

075306 T6 S3
075566 T66 S5
075541 T.TEMP S5 TEMP=41 (octal

The following syntax transfers the contents of register si into register
STj, which is shared between the CPUs in the same cluster.

t CRAY X-MP Computer Systems only

SR-OOOO 3-30 J

Result Operand Description Machine
instruction

t STj si Transfer (Si) to STj 073ij3

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

073003 STO SO
073103 STO Sl

Transfers to V registers

The machine instructions and related CAL syntax for transferring the
contents from one register to V registers are described below.

The following syntax transmits the contents of the elements of register
vk to the elements of register vi. The number of elements involved
is determined by the contents of the VL register.

Result Operand Description Machine
instruction

tt vi vk. Transmit (Vk) to vi l42iok

Instruction l42iOk executes in the Vector Logical functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10

142102 VI

t CRAY X-MP Computer Systems only
tt Special syntax form

SR-OOOO

20 35

V2

3-31 J

The following syntax transmits the twos complement of the contents of
elements of register vk to the elements of register vi. The number
of elements involved is determined by the contents of the VL register.

Result Operand Description Machine
instruction

t vi -vk Transmit twos complement of (vk) l56iOk
to vi

Instruction l56iok executes in the Vector Integer Add functional unit.

Example:

I Code generated Location Result Operand Comment
l 1 10 20 35

156102 VI -V2

The following syntax transmits the contents of register Sj to an element
of vi as determined by the low-order 6 bits of the contents of Ak.
Element 1, the second element of vi, is selected if the k designator
is o.

Result Operand Description Machine
instruction

Vi,Ak Sj Transmit (sj) to vi element (Ak) 077ijk

Example:

I Code generated Location Result Operand Comment
l 1 10 20 35

077167 Vl,A7 S6

t Special syntax form

SR-OOOO 3-32 J

Transfer to Vector Mask register

The following syntax and its special form transmit the contents of
register Sj to the VM register. The VM register is zeroed if the j
designator is 0; the special form accommodates this case.

Result Operand Description Machine
instruction

VM sj Transmit (Sj) to VM 0030jO
t VM 0 Clear VM 003000

This instruction may be used in conjunction with the vector merge
instructions where an operation is performed depending on the contents of
the VM register.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

003040 VM S4
003000 VM 0 Clear VM

Transfer to Vector Length register

The following syntax and its special form enters the low-order 7 bits of
the contents of register Ak into the VL register.

Result Operand Description Machine
instruction

VL Ak Transmit (Ak) to VL 00200k
t VL 1 Enter 1 into VL 002000

The contents of the VL register determines the number of operations
performed by a vector instruction. Since a vector register has 64
elements, from 1 to 64 operations can be performed. The number of
operations is (VL) modulo 64. A special case exists such that when (VL)
modulo 64 is 0, then the number of operations performed is 64.

t Special syntax form

SR-OOOO 3-33 J

In this publication, a reference to register vi implies operations
involving the first n elements where n is the vector length unless a
single element is explicitly noted as in the instructions si vj,Ak
and Vi,Ak sj.

Vector operations controlled by the contents of VL begin with element 0
of the vector registers.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 3!i

002003 VL A3

If (A3)=6, then (VL)=6 following instruction execution and subsequent
vector instructions operate on elements 0 through 5 of vector registers.

I Code generated Location Result Operand Comment
I 1 10 20 35

002000 VL 1

Since the k designator is 0, (VL)=l and vector instructions operate on
only one element, element O.

I Code generated Location Result Operand Comment
I 1 10 20 35

002005 VL A5

If (A5)=0, then (VL)=64 and vector instructions operate on all 64
elements of the vectors.

SR-OOOO 3-34 J

Transfers to Semaphore register

The following syntax sets the semaphores from 32 high-order bits of
si~ SMOO receives the sign bit of si.

Result Operand Description Machine
instruction

t SM si Load semaphores from si 073£02

Example:

I Code generated Location Result Operand .. Comment
I 1 10 20 35

073002 SM SO
073102 SM Sl
073502 SM S5

MEMORY TRANSFERS

This category includes instructions that transfer data between registers
and memory, enable and disable concurrent block memory transfers, and
assure completion of memory references.

Bidirectional memory transfers t

The following syntax forms disable and enable the bidirectional memory
mode. Block reads and writes can operate concurrently in bidirectional
memory mode. If the bidirectional memory mode is disabled, only block
reads can operate concurrently.

t CRAY X-MP Computer Systems only

SR-OOOO 3-35 J

Result Operand Description Machine
instruction

DBM Disable bidirectional memory 002500
transfers

EBM Enable bidirectional memory 002600
transfers

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

002500 DBM
002600 EBM

Memory references t

The following syntax assures completion of all memory references within a
particular CPU issuing the instruction. This instruction does not issue
until all memory references before this instruction are at the stage of
execution where completion occurs in a fixed amount of time. For
example, a load of any data that has been stored by the CPU issuing
instruction CMR is assured of receiving the updated data if the load is
issued after the CMR instruction. Synchronization of memory references
between processors can be done by this instruction in conjunction with
semaphore instructions.

Result Operand Description Machine
instruction

CMR Complete memory references 002700

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

002700 CMR

t CRAY X-MP Computer Systems only

SR-OOOO 3-36 J

Stores

Several instructions store data from registers into memory.

Either of the following syntax forms can be used to store words from B
registers directly into memory. AO contains the address of the first
word of memory to receive data. The jk designator specifies the first
B register to be used in the transfer. Subsequent B register contents
are stored in consecutive words of memory.

Result Operand Description Machine
instruction

,AO Bjk,Ai Store (Ai) words starting at 035ijk
t O,AO Bjk,Ai Bjk to memory starting at (AO)

Processing of B registers is circular. BOO is processed after B77 if the
count specified in Ai is not exhausted after B77 is processed. The
low-order 7 bits of the contents of Ai specify the number of words
transmitted. If l28>(Ai»64, wraparound occurs.

If (Ai)=o, no words are transferred. Note also that if i=O, (AO) is
used for the block length as well as the starting memory address. The
CAL assembler issues a warning message in this case.

Examples:

I Code generated Location Result O~erand Comment
I 1 10 20 35

035522 ,AO B22,A5
BB = 0'22
FWAR = 5

035522 O,AO B.BB,A.EWAR

Either of the following syntax forms can be used to store words from T
registers directly into memory. AO contains the address of the first
word of memory to receive data. The jk designator specifies the first
T register to be used in the transfer. Subsequent T register contents
are stored in consecutive words of memory. Processing of T registers is
circular. TOO is processed after T77 if the count specified in Ai is
not exhausted after T77 is processed. The low-order 7 bits of the
contents of register Ai specify the number of words transmitted. If
l28>(Ai»64, wraparound occurs.

t Special syntax form

SR-OOOO 3-37 J

I

Result Operand Description Machine
instruction

-
,AO Tjk,Ai Store (Ai) words starting at 037ijk

t O,AO Tjk,Ai Tjk' to memory starting at (AO)

If (Ai)=o, no words are transferred. Note also that if i=o, (AO) is
used for the block length as well as the starting memory address. CAL
issues a warning message in this case.

Examples:

I Code generated Location Result Operand Conunent
l 1 10 20 35

37522 ,AO T22,A5
TT = 0'22
EWAR = 5

037522 O,AO T. TT ,A. FWAR

The following syntax forms store 24 bits from register Ai directly into
memory. The high-order bits of the memory word are zeroed. The memory
address is determined by adding the address in register Ah to the
expression value.

Result Operand Description Machine
instruction

exp,Ah Ai Store (Ai) to (Ah) + exp llhijkm
t exp, 0 Ai Store (Ai) to exp 110ijkm
t exp, Ai Store (Ai) to exp 110ijkm
t ,M Ai Store (Ai) to (Ah) llhiooo

Only the value of the expression is used if the h designator is 0 or a
zero or blank field is used in place of Ah. Only the contents of Ah
is used if the expression is omitted. An expression, if present, must not
have a parcel-address attribute or an assembly error occurs.

t Special syntax form

SR-OOOO 3-38 J-Ol

I

I

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

1101 00004520 CON1,AO . A1
1102 00004520 CON1,0 A2
1113 00004521 CON1+1,A1 A3
1124 17777777 -1,A2 A4
1105 00003000 ADDR, A5
1146 00004647 CON,A4 A6
1146 00000000 ,A4 A6
1161 00000001 1,A6 A1
1172 00000177 0'177,A7 A2

The following syntax forms store the contents of register si directly
into memory. The memory address is determined by adding the address in
register Ah to the expression value.

Result Operand Description Machine
instruction

exp,Ah si Store (Si) to (Ah) + exp 13hijkm
t exp,o si Store (Si) to exp 130ijkm
t exp, si Store (Si) to exp 130ijkm
t ,Ah si Store (Si) to (Ah) 13hiooo

Only the value of the expression is used if the h designator is 0 or if
a zero or blank field is used in place of Ah. Only the contents of
Ah is used if the expression is omitted. An expression, if present,
must not have a parcel-address attribute or an assembly error occurs.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

1301 00004520 CON1,AO Sl
1302 00004520 CON1,0 S2
1346 00000000 ,A4 S6
1324 17777777 -1,A2 S4
1305 00003000 ADDR, S5

t Special syntax form

SR-OOOO 3-39 J-01

The following syntax and its special form store words from elements of
register vj directly into memory. AO contains the starting memory
address. This address is incremented by the contents of register Ak
for each word transmitted. The contents of Ak can be positive or
negative allowing both forward and backward streams of references. If
the k designator is 0 or if 1 replaces Ak in the result field of the
instruction, the address is incremented by 1.

Result Operand Description Machine
instruction

,AO,Ak vj Store (vj) to memory starting at l770jk
(AO) incremented by (Ak)

t ,AO,l vj Store (vj) to a memory in l770jO
consecutive addresses starting
with (AO)

The number of elements transferred is determined by the contents of the
VL register.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

177032 ,AO,A2 V3
177030 ,AO,1 V3

Loads

Several instructions can be used to load data from memory into registers.

Either of the following syntax forms can be used to transfer words from
memory directly into B registers. AO contains the address of the first
word of memory to be transferred. The jk designator specifies the
first B register to be used in the transfer. The low-order 24 bits of
consecutive words of memory are loaded into consecutive B registers.

t Special syntax form

SR-OOOO 3-40 J

I

I

Result Operand Description Machine
instruction

Bjk,Ai ,AO Read (Ai) words starting at 034ijk
t Bjk,Ai O,AO Bjk from memory starting at (AO)

Processing of B registers is circular. BOO is loaded after B77 if the
count specified in Ai is not exhausted after B77 is loaded. The
low-order 7 bits of the contents of Ai specify the number of words
transmitted. If 128>(Ai»64, wraparound occurs.

If (Ai)=O, no words are transferred. Note also that if i=o, (AO) is
used for the block length as well as the starting memory address. The
CAL assembler ·issues a warning message in this case.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

034407 B7,A4 ,AO
BB = 0'22
FWAR = 5

034522 B.BB,A.FWAR O,AO

Either of the following syntax forms can be used to transfer words from
memory directly into T registers. AO contains the address of the first
word of memory to be transferred. The jk designator specifies the
first T register to be used in the transfer. The loading of T registers
is circular. TOO is loaded after T77 if the count specified in Ai is
not exhausted after T77 is loaded. The low-order 7 bits of the contents
of Ai specify the number of words transmitted. If 128>(Ai»64,
wraparound occurs.

t Special syntax form

SR-OOOO 3-41 J-Ol

I
I

Result Operand Description Machine
instruction

Tjk,Ai ,AO Read (Ai) words starting at 036ijk
t Tjk,Ai O,AO Tjk from memory starting at (AO)

If (Ai)=o, no words are transferred. If i=o, (AO) is used for the
block length and for the starting memory address. The CAL assembler
issues a warning message in this case.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

036407 T7,A4 ,AO
TT = 0'22
EWAR = 5

036522 T.TT,A.EWAR O,AD

The following syntax forms load the low-order 24 bits of a memory word
directly into an A register. The memory address is determined by adding
the address in the register Ah to the expression value. Only the value
of the expression is used if the h designator is 0 or a zero or blank
field is used in place of Ah. Only the contents of Ah is used if the
expression is omitted. An expression, if present, must not have a
parcel-address attribute or an assembly error occurs.

Result Operand Description Machine
instruction

Ai exp,Ah Read from ((Ah) + exp) to Ai 10hijkm
t Ai exp,O Read from (exp) to Ai 100ijkm
t Ai exp, Read from (exp) to Ai 100ijkm
t Ai ,Ah Read from (Ah) to Ai lohiooo

t Special syntax form

SR-OOOO 3-42 J-Ol

I

Examples:

I Code generated Location Result Operand Comment
r 1 10 20 35

1001 00004520 Al CONl,AO
1002 00004520 A2 CONl,O
1013 00004521 A3 CONl+l,Al
1024 17777777 A4 -1,A2
1005 00003000 A5 ADDR,
1046 00004647 A6 CON,A4
1046 00000000 A6 ,A4
1061 00000001 Al 1,A6
1072 00000177 A2 O'177,A7

The following syntax forms load the contents of a memory word directly
into an S register. The memory address is determined by adding the
address in register Ah to the expression value. Only the value of the
expression is used if the h designator is 0 or a zero or blank field is
used in place of Ah. Only the contents of Ah is used if the
expression is omitted. An expression, if present, must not have a
parcel-address attribute or an assembly error occurs.

Result Operand Description Machine
instruction

si exp,Ah Read from ((Ai) + exp) to si l2hijkm
t si exp,o Read from (exp) to si l20ijkm
t si exp, Read from (exp) to si l20ijkm
t si ,Ah Read from (Ah) to si l2hiooo

t Special syntax form

SR-OOOO 3-43 J-Ol

I

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

1201 00004520 Sl CONl,AO
1202 00004520 S2 CONl,O
1213 00004521 S3 CONl+l,Al
1224 17777777 S4 -1,A2
1205 00003000 S5 ADDR,
1246 00004647 S6 CON,A4
1246 00000000 S6 ,A4
1261 00000001 Sl 1,A6
1272 00000177 S2 O'177,A7

The following syntax and its special form load words into elements of
register vi directly from memory. AO contains the starting memory
address. This address is incremented by the contents of register Ak
for each word transmitted. The contents of Ak can be positive or
negative allowing both forward and backward streams of references. If
the k designator is 0 or if 1 replaces Ak in the operand field of the
instruction, the address is incremented by 1.

Result Operand Description Machine
instruction

vi ,AO,Ak Read from memory starting at (AO) 176iok
incremented by (M) and load
into vi

t vi ,AO,l Read from consecutive memory l76ioO
addresses starting with (AO) and
load into vi

The number of elements transferred is determined by the contents of the VL
register.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

176201 V2 ,AO,Al
176500 V5 ,AO,l

t Special syntax form

SR-OOOO 3-44 J-Ol

IN'l'EGER ARITHMETIC OPERATIONS

Integer arithmetic operations obtain operands from registers and return
results to registers. No direct memory references are allowed.

The assembler recognizes several special syntax forms for incrementing or
decrementing register contents, such as the operands Ai+l and Ai-I;
however, these references actually result in register references such
that the I becomes a reference to Ak with k=O.

All integer arithmetic, whether 24-bit or 64-bit, is twos complement and
is so represented in the registers as illustrated in figure 3-6 (the zero
bit is the sign). The Address Add functional unit and Address Multiply
functional unit perform 24-bit arithmetic. The Scalar Add functional
unit and the Vector Add functional unit perform 64-bit arithmetic.

No overflow is detected by Integer Functional units.

Multiplication of two fractional operands can be accomplished using the
floating-point multiply instruction. The Floating-point Multiply
functional unit recognizes the conditions where both operands have zero
exponents as a special case and returns the high-order 48 bits of the
result as an unnormalized fraction. Division of integers would require
that they first be converted to floating-point format and then divided
using the floating-point units.

Twos complement integer
o

I I
Sign

(24 bits)
23

Twos complement integer (64 bits)

o

I I
Sign

Figure 3-6. Integer data formats

24-bit integer arithmetic

63

The machine instructions and related CAL syntax for performing 24-bit
integer arithmetic operations are described in the following paragraphs.

The following syntax and its special form add the contents of register
Aj to the contents of register Ak and enter the result into register
Ai. Ak is transmitted to Ai when the j designator is 0 and the

SR-OOOO 3-45 J

k designator is nonzero. One is transmitted to Ai when the j and k
designators are both O. (Aj)+l is transmitted to Ai when the j
designator is nonzero and the k designator is o. The assembler allows
an alternate form of the instruction when the k designator is o.

Result Operand Description Machine
instruction

Ai Aj+Ak Integer sum of (AJ) and (Ak) to Ai 030ijk
t Ai Aj+l Integer sum of (AJ) and 1 to Ai 030ijO

Instruction 030ijk executes in the Address Integer Add functional unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

030123 Al A2+A3
030102 Al A2
030230 A2 A3+l

The following syntax and its special form subtract the contents of
register Ak from the contents of register Aj and enter the result into
register Ai. The negative of Ak is transmitted to Ai when the j
designator is 0 and the k designator is nonzero. A -1 is transmitted to
Ai when the j and k designators are both o. (A~-l is transmitted
to Ai when the j designator is nonzero and the k designator is o.

Result Operand Description Machine
instruction

Ai Aj-Ak Integer difference of (AJ) less 03lijk
(Ak) to Ai

t Ai Aj-l Integer difference of (Aj) less 03lijO
1 to Ai

t Special syntax form

SR-OOOO 3-46 J

The special form represents the case where (Ak)=l if k=O.

Instruction 03lijk executes in the Address Integer Add functional unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

031456 A4 A5-A6
031102 Al -A2
031450 A4 AS-AI

The following syntax forms the integer product of the contents of
register Aj and register Ak and enters the low-order 24 bits of the
result into Ai. Ai is cleared when the j designator is o. Aj is
transmitted to Ai when the k designator is 0 and the j designator
is nonzero.

Result Operand Description Machine
instruction

Ai Aj*Ak Integer product of (Aj) and 032ijk
(Ak) to Ai

Instruction 032ijk executes in the Address Integer Multiply functional
unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

032712 A7 Al*A2

64-bit integer arithmetic

The machine instructions and related CAL syntax for performing 64-bit
integer arithmetic operations are described in the following paragraphs.

SR-OOOO 3-47 J

The following syntax adds the contents of register sk to the contents
of register sj and enters the result into si. sk is transmitted to
si if the j designator is 0 and the k designator is nonzero. The
high-order bit of si is set and all other bits of si are cleared if
the j and k designators are both o.

Result Operand Description Machine
instruction

si sj+sk Integer sum of (SJ) and (Sk) to si 060ijk

Instruction 060ijk executes in the Scalar Integer Add functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

060237 S2 S3+S7
060405 S4 SO+S5

The following syntax adds the contents of sj to each element of vk
and enters the results into elements of vi. Elements of vk are
transmitted to vi if the j designator is o.

Result Operand Description Machine
instruction

vi sj+vk Integer sums of (sJ) and (vk) l54ijk
to vi

The number of operations performed is determined by the contents of the
VL register.

Instruction l54ijk executes in the Vector Integer Add functional unit.

SR-OOOO 3-48 J

Example:

I Code _g_enerated Location Result Operand Comment
I 1 10 20 35

154213 V2 Sl+V3

The following syntax adds the contents of elements of register vj to
the contents of corresponding elements of register vk and enters the
results into elements of register vi.

Result Operand Description Machine
instruction

vi vj+vk Integer sums of (vJ) and (Vk) l55ijk
to vi

The number of operations performed is determined by the contents of the
VL register.

Instruction l55ijk executes in the Vector Integer Add functional unit.

Example:

I Code generated Location Result O~erand Comment
I 1 10 20 35

155456 V4 V5+V6

The following syntax subtracts the contents of register sk from the
contents of register sj and enters the result into si. The
high-order bit of si is set and all other bits of si are cleared when
the j and k designators are both O. The negative (twos complement)
of sk is transmitted to si if the j designator is 0 and the k
designator is nonzero.

Result Operand Description Machine
instruction

si Sj-Sk Integer difference of (SJ) less 06lijk
(Sk) to si

SR-OOOO 3-49 J

Instruction 06lijk executes in the Scalar Integer Add functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

061123 Sl S2-S3

The following syntax subtracts the contents of each element of vk from
the contents of register sj and enters the results into elements of
register vi. The negative (twos complement) of each element of vk is
transmitted to vi if the j designator is o.

Result Operand Description Machine
instruction

vi sj-vk Integer differences of (Sj) and l56ijk
(Vk) to vi

The number of operations performed is determined by the contents of the
VL register.

Instruction l56ijk executes in the Vector Integer Add functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

156712 V7 Sl-V2

The following syntax subtracts the contents of elements of register vk
from the contents of corresponding elements of register vj and enters
the results into elements of register vi.

Result Operand Description Machine
instruction

vi vj-vk Integer differences of (VJ) less l57ijk
(vk) to vi

SR-OOOO 3-50 J

The number of operations performed is determined by the contents of the
VL register.

Instruction l57ijk executes in the Vector Integer Add functional unit.

Example:

l Code generated Location Result Operand Comment
I 1 10 20 35

157345 V3 V4-V5

FLOATING-POINT ARITHMETIC

All floating-point arithmetic operations use registers as the source of
operands and return results to registers.

Floating-point numbers are represented in a standard format throughout
the CPU. This format is a packed representation of a binary coefficient
and an exponent or power of two. The coefficient is a 48-bit signed
fraction. The sign of the coefficient is separated from the rest of the
coefficient as shown in figure 3-7. Since the coefficient is signed
magnitude, it is not complemented for negative values.

Single-precision, floating-point number

o 1 15 16 63

I I
Sign Exponent Coefficient

Double-precision, floating-point number

o 1 15 16 63

I I
Sign Exponent Coefficient, 48 most significant bits

Coefficient, 48 least significant bits

Figure 3-7. Floating-point data formats

SR-OOOO 3-51 J

the floating-point format is represented as a biased The exponent of
integer in bits 1 through 15. The bias that is added to the exponents is
40000 (octal).
57777 (octal).
20000 (octal).

The positive range of exponents is 40000 (octal) through
The negative range of exponents is 37777 (octal) through
Thus, the unbiased range of exponents is the following:

2_200008 through 2+177778

In terms of decimal values, the floating-point format of the Cray
computer allows the expression of numbers accurate to about 15 decimal
digits in the approximate decimal range of 10-2466 through 10+2466•

Double-precision floating-point numbers are represented in two 64-bit
words. The format is a software convention, as there is no hardware for
double-precision floating-point arithmetic.

The format of the first word as defined and used in the Cray Operating
System (COS) is the same as a single-precision floating-point number,
with the low-order 48 bits of the second word providing the least
significant bits of a 96-bit coefficient. The high-order 16 bits of the
second word are normally 0 and are not used.

Normalized floating-point number

A nonzero floating-point number in packed format is normalized if the
most significant bit of the coefficient is nonzero. This condition
implies that the coefficient has been shifted to the left as far as
possible and therefore, the floating-point number has no leading zeros in
the coefficient.

When a floating-point number has been created by inserting an exponent of
40060 (octal) into a word containing a 48-bit integer, the result should
be normalized before being used in a floating-point operation.
Normalization is accomplished by adding the unnormalized floating-point
operand to o. Since SO provides a 64-bit zero value when used in the
Sj field of an instruction, a normalize of an operand in sk can be
performed using the si +Fsk instruction and a normalize of operands
in vk can be performed using the vi +Fvk instruction.

Floating-point range errors

Overflow of the floating-point range is indicated by an exponent value of
60000 (octal) or greater in packed format. Underflow is indicated by an
exponent value of 17777 (octal) or less in packed format. Detection of
the overflow condition initiates an interrupt if the Floating-point Mode
flag is set in the Mode register and monitor mode is not in effect.
Detection of these conditions by the floating-point units is described in
detail in the appropiate Cray mainframe reference manual.

SR-OOOO 3-52 J

Result Operand Description Machine
instruction

EFI Enable floating-point interrupt 002lxx
DFI Disable floating-point interrupt 0022xx

The EFI and DFI instructions provide for setting and clearing the
interrupt flag in the Mode register. These instructions do not check the
previous state of the flag; there is no testing of the flag.

Floating-point addition and subtraction

The machine instructions and related CAL syntax for performing
floating-point addition and subtraction are described in the following
paragraphs.

The following syntax and its special form produce the floating-point sum
of the contents of Sj and the contents of sk registers and enter the
result into si. The result is normalized even if the operands are
unnormalized. The k designator is not normally O. In the special
form, the j designator is assumed to be 0 so that the normalized
contents of Skare entered into S i.

Result Operand Description Machine
instruction

si sj+Fsk Floating-point sum of (sj) and 062ijk
(Sk) to si

t si +FSk Normalize (Sk) to si 062iok

Instruction 062ijk executes in the Floating-point Add functional unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

062345 S3 S4+FS5
062404 S4 +FS4

t Special syntax form

SR-OOOO 3-53 J

The following syntax forms the floating-point sums of the contents of
. Sj and elements of register vk to elements of register vi. The results
are normalized even if the operands are unnormalized. The number of
operations performed depends on the contents of the VL regis~er. The
special form of the instruction normalizes the contents of the elements
of vk and enters the results into elements of vi.

Result Operand Description Machine
instruction

vi sj+Fvk Floating-point sums of (sj) and l70ijk
(vk) to vi

t vi +Fvk Normalize (vk) to vi l70iok

Instruction l70ijk executes in the Floating-point Add functional unit.

Examples:

I Code generated Location Result Operand Comment
1 1 10 20 35

170712 V7 Sl+FV2
170501 V5 +FVl Normalize

to V5

The following syntax forms the floating-point sums of the contents of
elements of Vj and elements of vk and enters the results into the
elements of register vi. The results are normalized even if the
operands are unnormalized. The number of operations performed is
determined by the contents of the VL register.

Result Operand Description Machine
instruction

vi vj+Fvk Floating-point sums of (vj) and l7lijk
(vk) to vi

Instruction l7lijk executes in the Floating-point Add functional unit.

t Special syntax form

(VI)

SR-OOOO 3-54 J

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

171234 V2 V3+FV4

The following syntax forms the floating-point difference of the contents
of register Sj less the contents of register sk and enters the
normalized result into si. The result is normalized even if the
operands are unnormalized.

Result Operand Description Machine
instruction

si sj-Fsk Floating-point difference of (SJ) 063ijk
less (Sk) to si

t si -Fsk Transmit the negative of (Sk) as 063iok
a normalized floating-point value

The negative (twos complement) of the floating-point quantity in sk is
transmitted to si as a normalized floating-point number if the j
designator is 0 and the k designator is nonzero. The special form
accommodates this special case. The k designator is normally nonzero.

Instructions 063ijk and 063iok execute in the Floating-point Add
functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

063761 S7 S6-FSl

The following syntax forms the floating-point differences of the contents
of Sj and elements of register vk and enters the results into register vi.
The results are normalized even if the operands are unnormalized. The
negatives (twos complements) of floating-point quantities in elements of
Vk are transmitted to vi if the j designator is O. The special form
accommodates this special case. The number of operations performed is
determined by the contents of the VL register.

t Special syntax form

SR-OOOO 3-55 J

Result Operand Description Machine
instruction

vi Sj-FVk Floating-point differences of l72ijk
(sj) less (Vk) to vi

t vi -Fvk Transmit normalized negative of l72iOk
(vk) to vi

Instruction l72ijk and l72iOk execute in the Floating-point Add
functional unit.

Example:

Code generated Location Result Operand Comment
1 10 20 35

172516 V5 Sl-FV6

The following syntax forms the floating-point differences of the contents
of elements of register vj less the contents of elements of registers
vk and enters the results into elements of register vi. The results
are normalized even if the operands are unnormalized. The number of
operations performed is determined by the contents of the VL register.

Result Operand Description Machine
instruction

vi vj-Fvk Floating-point differences of l73ijk
(vj) less (Vk) to vi

Instruction l73ijk executes in the Floating-point Add functional unit.

Example:

Code generated Location Result Operand Comment
1 10 20 35

173712 V7 Vl-FV2

t Special syntax form

SR-OOOO 3-56 J

Floating-point multiplication

The machine instructions and related CAL syntax for performing
floating-point multipication are described in the following paragraphs.

The following syntax forms the floating-point product of the contents of
Sj and sk and enters the result into si. The result is not normalized
if either operand is unnormalized.

Result Operand Description Machine
instruction

si sj*Fsk Floating-point product of (sj) 064ijk
and (Sk) to si

Instruction 064ijk executes in the Floating-point Multiply functional
unit.

Example:

Code generated Location Result Operand Comment
1 10 20 35

064234 52 53*F54

The following syntax forms the floating-point products of the contents of
Sj and elements of vk and enters the results into elements of vi.
The results are not normalized if. the operands are unnormalized. The
number of operations performed is determined by the contents of the VL
register.

Result Operand Description Machine
instruction

vi sj*Fvk Floating-point products of (sj) l60ijk
and (vk) to vi

5R-0000 3-57 J

Instruction l60ijk executes in the Floating-point Multiply functional
unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

160727 V6 S2*FV7

The following syntax forms the floating-point products of the contents of
elements of vj and elements of vk and enters the results into
elements of vi. The results are not normalized if the operands are
unnormalized. The number of operations performed is determined by the
contents of the VL register.

Result Operand Description Machine
instruction

vi vj*Fvk Floating-point products of (vj) l6lijk
and (vk) to vi

Instruction l6lijk executes in the Floating-point Multiply functional
unit.

Example:

I Code generated Location Result Operand Comment
l 1 10 20 35

161123 VI V2*FV3

The following syntax forms the half-precision rounded floating-point
product of the contents of the Sj and sk registers and enters the
result into si. The result is not normalized if the operands are
unnormalized. The low-order 18 bits of the result are zeroed. This
instruction can be used in a divide algorithm when only 30 bits of
accuracy are required.

SR-OOOO 3-58 J

Result Operand Description Machine
instruction

si sj*Hsk Half-precision rounded 065ijk
floating-point product of (sj)
and (Sk) to si

Instruction 065ijk executes in the Floating-point Multiply functional
unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

065167 Sl S6*HS7

The following syntax forms the half-precision rounded floating-point
products of the contents of the Sj register and the contents of
elements of the vk register and enters the results into elements of
vi. The results are not normalized if the operands are unnormalized.
The low-order 18 bits of the results are zeroed.

Result Operand Description Machine
instruction

vi sj*Hvk Half-precision rounded l62ijk
floating-point products of (sj)
and (vk) to vi

The number of operations performed by this instruction is determined by
the contents of the VL register. This instruction can be used in a
divide algorithm when only 30 bits of accuracy are required.

Instruction l62ijk executes in the Floating-point Multiply functional
unit.

SR-OOOO 3-59 J

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

162456 V4 S5*HV6

The following syntax forms the half-precision rounded floating-point
products of the contents of elements of the vj register and elements of
the vk register and enters the results into elements of vi. The
results are not normalized if the operands are unnormalized. The
low-order 18 bits of the results are zeroed.

Result Operand Description Machine
instruction

vi vj*Hvk Half-precision rounded l63ijk
floating-point products of (vj)
and (vk) to vi

The number of operations performed by this instruction is determined by
the contents of the VL register. This instruction can be used in a
divide algorithm when only 30 bits of accuracy are required.

Instruction l63ijk executes in the Floating-point Multiply functional
unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

163712 V7 Vl*HV2

The following syntax forms the rounded floating-point product of the
contents of the Sj register and the contents of the sk register and
enters the result into si. The result is not normalized if the
operands are unnormalized.

SR-OOOO 3-60 J

Result Operand Description Machine
instruction

si Sj*RSk Rounded floating-point product of 066ijk
(sj) and (Sk) to si

Instruction 066ijk executes in the Floating-point Multiply functional
unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

066147 Sl S4*RS7

The following syntax forms the rounded floating-point products of the
contents of the Sj register and the contents of elements of vk and
enters the results into elements of vi. The results will not be
normalized if the operands are unnormalized. The number of operations
performed by this instruction is determined by the contents of the VL
register.

Result Operand Description Machine
instruction

vi sj*Rvk Rounded floating-point products of l64ijk
(sj) and (Vk) to vi

Instruction l64ijk executes in the Floating-point Multiply functional
unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

164314 V3 Sl*RV4

SR-OOOO 3-61 J

The following syntax forms the rounded floating-point products of the
contents of elements of vj and elements of vk and enters the results
into elements of vi. The results will not be normalized if the
operands are unnormalized. The number of operations performed by this
instruction is determined by the contents of the VL register.

Result Operand Description Machine
instruction

vi vj*Rvk Rounded floating-point products of l65ijk
(vj) and (Vk) to vi

Instruction l65ijk executes in the Floating-point Multiply functional
unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

165567 V5 V6*RV7

Reciprocal iteration

The machine instructions and related CAL syntax for performing
floating-point reciprocal iteration are described in the following
paragraphs.

The following syntax forms 2 minus the floating-point
contents of Sj and sk and enters the result into si.
not normalized if the operands are unnormalized. The
in the divide sequence illustrated in the example for
approximation instruction si /HSj.

Result Operand Description

product of the
The result is
instruction is used
the reciprocal

Machine
instruction

si sj*Isk 2-floating-point product of (sj) 067ijk
and (Sk) to si

SR-OOOO 3-62 J

Instruction 067ijk executes in the Floating-point Multiply functional
unit.

Example:

I Code _<Ienerated Location Result Operand Comment
I 1 10 20 35

67323 S3 S2*IS3

The following syntax forms 2 minus the floating-point products of the
contents of sj and the contents of elements of vk and enters the
results into elements of vi. The results are not normalized if the
operands are unnormalized. The number of operations performed by this
instruction is determined by the contents of the VL register.

Result Operand Description Machine
instruction

vi sj*Ivk 2-floating-point products of (SJ) l66ijk
and (Vk) to vi

Instruction l66ijk executes in the Floating-point Multiply functional
unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

166123 VI S2*IV3

The following syntax forms 2 minus the floating-point products of
contents of elements of vj and elements of vk and enters the results
into elements of vi. The results are not normalized if the operands
are unnormalized. This instruction is used in the divide sequence. The
number of operations performed by this instruction is determined by the
contents of the VL register.

SR-OOOO 3-63 J

Result Operand Description Machine
instruction

vi vj*Ivk 2-floating-point products of (VJ) l67ijk
and' (vk) to vi

Instruction l67ijk executes in the Floating-point Multiply functional
unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

167456 V4 V5*IV6

Reciprocal approximation

The machine instructions and related CAL syntax for forming an
approximation to the reciprocal of a floating-point value are described
in the following paragraphs.

The following syntax forms an approximation to the reciprocal of the
floating-point value in Sj and enters the result into si. The result
is meaningless if the contents of sj is unnormalized or O. This
instruction is used in the divide sequence as illustrated in the
following example.

Result Operand Description Machine
instruction

si /HSj Floating-point reciprocal 070ijO
approximation of (sj) to si

Instruction 070ijo executes in the Floating-point Reciprocal functional
unit.

SR-OOOO 3-64 J

Example:

I Code generated Location
I 1

*
070320

064113
067223
064112

*

070320
065313

*
*

071222
071121
062202
062101
070220

065110

071230
062112
023310

Result Operand Comment
10 20 35

Divide 51 by 52; result to 51
53 /H5?

51 51*F53
52 52*153
51 51*F52

Divide 51 by 52 with
bits
53 /H52
53 51*H53

Integer divide Al by
Result to A3
52 +FA2
51 +FA1
52 50+F52
51 50+F51
52 /H52

51 51*H52

52 0.6
51 51+F52
A3 51

Approximate
reciprocal
Approximate re
Correction fac

result accurate to 30

A2;

Denominator
Numerator
Normalize

Reciprocal

suIt
tor

approximation to
1/0
Rounded
half-precision
multiply

Fix quotient
24-bit signed
result to A3

The following syntax forms the approximations to the reciprocals of the
floating-point values in elements of vj and enters the results into elements
of vi. The results are meaningless if the contents of elements are
unnorma1ized or O. This instruction is used in the divide sequence. The
number of operations performed by the instruction is determined by the
contents of the VL register.

5R-0000 3-65 J

Result Operand Description Machine
instruction

vi /HVj Floating-point reciprocal l74ijO
approximation of (vj) to vi

Instruction l74ijO executes in the Floating-point Reciprocal functional
unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

* Divide elements of VI by elements of V2;
* Result to V6

174320 V3 /HV2
161413 V4 Vl*FV3
167532 V5 V3*IV2
161645 V6 V4*FV5

Divide elements of VI by elements of V2;
* Results accurate to 30 bits, results to V6

174320 * V3 I/HV2 I 165613 V6 Vl*HV3
* Divide Sl by elements of V2;
* Result to V6

174320 V3 /HV2
160413 V4 Sl*FV3
167532 V5 V3*IV2
161645 V6 V4*FV5

LOGICAL OPERATIONS

The Scalar and Vector Logical functional units perform bit-by-bit
manipulation of 64-bit quantities. Operations provide for logical
products, logical differences, logical sums, logical equivalence, and
merges.

A logical product (& operator) is the AND function:

Operand 1 1010
Operand 2 1100
Result 1000

SR-OOOO 3-66 J

A logical difference (\ operator) is the exclusive OR function:

Operand 1 1010
Operand 2 1100
Result 0110

A logical sum (: operator) is the inclusive OR function:

Operand 1 1010
Operand 2 1100
Result 1110

A logical equivalence function:

Operand 1 1010
Operand 2 1100
Result 1001

A logical merge combines two operands depending on a ones mask in a third
operand. The result is defined by (operand 2 & mask) !(operand 1 & #mask)
as in the following example:

Mask
Operand 1
Operand 2
Result

11110000
11001100
10101010
10101100

Logical products

The machine instructions and related CAL syntax for forming logical
products are described in the following para9raphs.

The following syntax forms the logical product of the contents of Sj
and sk and enters the result into si. If the j and k designators
have the same nonzero value, the contents of sj is transmitted to
si. If the j designator is 0, register si is zeroed. If the j
designator is nonzero and the k designator is 0, the sign bit of the
contents of sj is extracted.

SR-OOOO 3-67 J

Result Operand Description Machine
instruction

si sj&Sk Logical product of (Sj) and (Sk) 044ijk
to si

t si Sj&SB Sign bit of (Sj) to si 044ijO
t si SB&Sj Sign bit of (Sj) to si; jFO 044ijO

The two special forms of the instruction accommodate this case. The two
forms perform identical functions; however, j must not be equal to 0 in
the second form; if j is equal to 0, an error results.

Instruction 044ijk executes in the Scalar Logical functional unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

044235 S2 S3&S5
044655 S6 S5&S5 S5 to S6
044307 S3 SO&S7 Clear S3
044160 Sl S6&SB Get sign of
044160 Sl SB&S6 Get sign of

The following syntax forms the logical products of the contents of Sj and
the contents of elements of vk and enters the results into elements of
vi. If the j designator is 0, elements of register vi are zeroed. The
number of operations performed by this instruction is determined by the
contents of the VL register.

Result Operand Description Machine
instruction

vi sj&Vk Logical products of (SJ) and (Vk) l40ijk
to vi

Instruction l40ijk executes in the Vector Logical functional unit.

t Special syntax form

SR-OOOO 3-68 J

S6
S6

Example:

1 Code generated Location Result Operand Comment
I 1 10 20 35

140123 VI S2&V3

The following syntax forms the logical products of the contents of
elements of register vj and elements of register vk and enters the
results into elements of vi. If the j designator is the same as the
k designator, the contents of vj elements is transmitted to vi
elements.

The number of operations performed by this instruction is determined by
the contents of the VL register.

Result Operand Description Machine
instruction

vi Vj&vk Logical products of (VJ) and (vk) l4lijk
to vi

Instruction l4lijk executes in the Vector Logical functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

141257 V2 V5&V7
141033 VO V3&V3

The following syntax forms the logical product of the contents of sj
and the ones complement of the contents of sk and enters the result
into si. If the j and k designators have the same value or if the
j designator is 0, register si is zeroed. If the j designator is
nonzero and the k designator is 0, the contents of sj with the sign
bit cleared is transmitted to si.

The special syntax form accommodates this case.

SR-OOOO 3-69 J

Result Operand Description Machine
instruction

si 4sk&sj Logical product of (sj) and 4 (Sk) 045ijk
to si

t si 4SB&Sj (Sj) with sign bit cleared to si 045ijO

Instruction 045ijk executes in the Scalar Logical functional unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

045271 S2 4S1&S7
045430 S4 4SB&S3 Clear S4
045506 S5 4S6&SO Clear S5
045670 S6 4SB&S7 Clear sign

Logical sums

The machine instructions and related CAL syntax for forming logical sums
are described in the following paragraphs.

The following syntax forms the logical sum of the contents of Sj and
the contents of sk and enters the result into si. If the j and k
designators have the same nonzero value, the contents of Sj is
transmitted to si. If the j designator is 0 and the k designator
is nonzero, the contents of sk is transmitted to si.

Result' Operand Description Machine
instruction

si sj!Sk Logical sum of (Sj) and (Sk) to si 051ijk
t si Sj!SB Logical sum of (SJJ and sign bit 051ijO

to si
t si SB!Sj Logical sum of sign bit and (SJ) 051ijO

to si; ;j:IO

t Special syntax form

SR-OOOO 3-70 J

bit

If the j designator is nonzero and the k designator is 0, the
contents of sj with the sign bit set to 1 are transmitted to si. The
two special syntax forms provide for this case. If the j and k
designators are both 0, a ones mask consisting of only the sign bit is
entered into si.

The two special forms perform an identical function but in the second
form, j must not equal 0; if j equals 0, an error results.

Instruction 05lijk executes in the Scalar Logical functional unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

051472 S4 S7!S2
051366 S3 S6!S6
051710 S7 SB!Sl

The following syntax forms the logical sums of the contents of Sj and
the contents of elements of vk and enters the results into elements of
vi. The contents of vj elements are transmitted to vi elements if
the j designator is O. The number of operations performed by this
instruction is determined by the contents of the VL register.

Result Operand Description Machine
instruction

vi Sj:vk Logical sums of (SJ) and (vk) to l42ijk
vi

Instruction l42ijk executes in the Vector Logical functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

142615 V6 Sl!V5

SR-OOOO 3-71 J

The following syntax forms the logical sums of the contents of elements
of vj and elements of vk and enters the results into elements of vi.

Result Operand Description Machine
instruction

vi vj!Vk Logical sums of (V;;) and (Vk) to l43ijk
vi

If the j and k designators are equal, the contents of vj elements
are transmitted to vi. The number of operations performed by this
instruction is determined by the contents of the VL register.

Instruction l43ijk executes in the Vector Logical functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

143714 V7 Vl!V4

Logical differences

The machine instructions and related CAL syntax for forming logical
differences are described in the following paragraphs.

The following syntax forms the logical difference of the contents of Sj
and the contents of sk and enters the result into si. If the j and
k designators are the same nonzero value, si is zeroed. If the j
designator is 0 and the k designator is nonzero, the contents of sk
is transmitted to si. If the j designator is nonzero and the k
designator is 0, the sign bit of the contents of Sj is complemented and
the result is transmitted to si.

The two special syntax forms provide for this case. The two forms
perform identical functions; however, in the second form, j must not
equal 0; if j equals 0, an error results.

SR-OOOO 3-72 J

Result Operand Description Machine
instruction

si sj\j3k Logical difference of (sj) and 046ijk
(Sk) to si

t Si Sj\SB Enter (sj) into si with sign bit 046ijO
toggled

t Si SB\Sj Enter (Sj) into si with sign bit 046ijO
toggled 1 jFO

Instruction 046ijk executes in the Scalar Logical functional unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

046123 Sl S2\S3
046455 S4 S5\S5 Clear S4
046506 S5 SO\S6 S6 to S5
046770 S7 S7\SB Toggle sign

The following syntax forms the logical differences of the contents of
Sj and the contents of elements of vk and enters the results into
elements of vi. If the j designator is 0, the contents of vk
elements are entered into vi elements. The number of operations
performed by this instruction is determined by the contents of the VL
register.

Result Operand Description Machine
instruction

vi SJ\Vk Logical differences of (sj) and l44ijk
(vk) to vi

Instruction l44ijk executes in the Vector Logical functional unit.

t Special syntax form

SR-OOOO 3-73 J

bi t

Example:

r Code generated Location Result Operand Comment
I 1 10 20 35

144267 V2 S6\V7

The following syntax forms the logical differences of the contents of
elements of vj and elements of vk and enters the results into
elements of vi. If the j and k designators are equal, the vi
elements are zeroed. The number of operations performed by this
instruction is determined by the contents of the VL register.

Result Operand Description Machine
instruction

vi vj\vk Logical differences of (vj) and 145ijk
(Vk) to vi

Instruction l45ijk executes in the Vector Logical functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

145513 V5 Vl\V3

Logical equivalence

The following syntax forms the logical equivalence of the contents of
Sj and the contents of sk and enters the result into si. Bits of
si are set to 1 when the corresponding bits of the contents of sj and
the contents of sk are both 1 or both o.

If the j and k designators have the same nonzero value, the contents
of si is set to all ones. If the j designator is 0 and the k
designator is nonzero, the ones complement of the contents of sk is
transmitted to si. If the j designator is nonzero and the k
designator is 0, all bits other than the sign bit of the contents of sj
are complemented and the result transmitted to si.

The two special forms of the instruction accommodate this case. The two
forms perform identical functions; however, in the second form, j must
not equal 0; if j equals 0, an error results.

SR-OOOO 3-74 J

Result Operand Description Machine
instruction

si #sJ\sk Logical equivalence of (sj) and 047ijk
(Sk) to si

t Si #Sj\SB Logical equivalence of (Sj) and 047ijO
sign bit to si

t si #SB\Sj Logical equivalence of sign bit 047ijO
and (sj) to SiJ ;ff0

Instruction 047ijk executes in the Scalar Logical functional unit.

Examples:

I Code generated Location Result Operand I Comment
I 1 10 20 35

047345 S3 #S4\S5
047260 S2 #S6\SB
047260 S2 #SB\S6

Vector mask

The following syntax forms create a mask in the VM register. The 64 bits
of the VM register correspond to the 64 elements of vj. Elements of
vj are tested for the specified condition and if the condition is true
for an element, the corresponding bit is set to 1 in the VM register. If
the condition is not true, the bit is zeroed.

Result Operand Description Machine
instruction

VM vj,Z Set VM bits for zero elements of l750jO
vj

VM Vj,N Set VM bits for nonzero elements l750jl
of vj

VM Vj,P Set VM bits for positive elements l750j2
of vj

VM Vj,M Set VM bits for negative elements l750j3
of vj

t Special syntax form

SR-OOOO 3-75 J

The number of elements tested is determined by the contents of the VL
register; however, the entire VM register is zeroed before elements of
vj are, tested. If the contents of an element is 0, it is considered
positive. Element 0 corresponds to bit 0, element 1 to bit 1, etc. from
left to right in the register.

These instructions execute in the Vector Logical functional unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

175050 VM V5,Z
175061 VM V6,N
175072 VM V7,P
175013 VM V1,M

Merge

The machine instructions and related CAL syntax for performing merge
operations are described in the following paragraphs.

The following syntax merges the contents of sj with the contents of
si depending on the ones mask in sk.

Result Operand Description Machine
instruction

si sj!si&sk Scalar merge of (Si) and (Sj) 050ijk
to si

t si sj!Si&SB Scalar merge of (Si) and sign 050ijO
bit of (sj) to si

The result is defined by (Sj&S~ !(Si&#S~ as in the following
example:

(Sk) = 11110000
(Si) = 11001100
(Sj) = 10101010
(Si) = 10101100

t Special syntax form

SR-OOOO 3-76 J

This instruction is intended for merging portions of 64-bit words into a
composite word. Bits of si are cleared when the corresponding bits of
sk are 1 if the j designator is 0 and the k designator is nonzero.
The sign bit of sj replaces the sign bit of si if the j designator
is nonzero and the k designator is 0 as provided for by the special
syntax form of the instruction. The sign bit of si is cleared if the
j and k designators are both O.

Instruction 050ijk executes in the Scalar Logical functional unit.

Examples:

I Code generated Location Result Operand Comment
l 1 10 20 35

050123 Sl S2!Sl&S3
050760 S7 S6!S7&SO

The following syntax transmits the contents of sj or the contents of
element n of vk to element n of vi depending on the ones mask in
the VM register. The contents of sj is transmitted if bit n of VM is
Ii the contents of element n of vk is transmitted if bit n of VM is
o.

Element n of vi is zeroed if the j designator is 0 and bit n of
VM is 1. The number of merge operations performed is determined by the
contents of the VL register.

Result Operand Description Machine
instruction

vi Sj!Vk&VM Vector merge of (Sj) and (Vk) l46ijk
to vi

Instruction l46ijk executes in the Vector Logical functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

146726 V7 S2!V6&VM

SR-OOOO 3-77 J

For the above instruction, assume the following initial register
conditions exist:

(VL) = 4
(VM) = 0 60000 0000 0000 0000 0000
(S2) = -1

Element 0 of V6 = 1
Element 1 of V6 = 2
Element 2 of V6 = 3
Element 3 of V6 = 4

After instruction execution, the first four elements of V7 are modified
as follows:

Element 0 of V7 = 1
Element 1 of V7 = -1
Element 2 of V7 = -1
Element 3 of V7 = 4

The remaining elements of V7 are unaltered.

The following syntax transmits the contents of element n of vj or
element n of vk to element n of vi depending on the ones mask in
the VM register. The contents of the vj element is transmitted if bit
n of VM is 1: the contents of the vk element is transmitted if bit
n of VM is O. The number of merge operations performed is determined
by the contents of the VL register.

Result Operand Description Machine
instruction

vi Vj!Vk&VM Vector merge of (VJ) and (Vk) l47ijk
to vi

Instruction 147ijk executes in the Vector Logical functional unit.

Example:

I Code generated Location Result O~erand Comment
I 1 10 20 35

147123 VI V2!V3&VM

SR-OOOO 3-78 J

Assume the following initial register conditions exist for the above
instruction:

(VL) = 4
(VM) = 0 60000 0000 0000 0000 0000

Element o of V2 = 1
Element 1 of V2 = 2
Element 2 of V2 = 3
Element 3 of V2 = 4
Element o of V3 = -1
Element 1 of V3 = -2
Element 2 of V3 = -3
Element 3 of V3 = -4

After instruction execution, the first four elements of vi have been
modified as follows:

Element 0 of VI
Element 1 of VI
Element 2 of VI
Element 3 of VI

=
=
=
=

-1
2

3
-4

The remaining elements of VI are unaltered.

The following syntax zeros element n of register vi or transmits the
contents of element n of vk to element n of vi depending on the
ones mask in the VM register. If bit n of the VM is 1, element n of
vi is zeroed: if bit n is 0, element n of vk is transmitted. The
number of operations performed by this instruction is determined by the
contents of the VL register.

Result Operand Description Machine
instruction

t vi #VM&vk vector merge of (vk) and zero to l46iok
vi

Instruction l46iok executes in the Vector Logical functional unit.

t Special syntax form

SR-OOOO 3-79 J

Example:

I Code generated Location Result Op_erand Comment
I 1 10 20 35

146607 V6 iVM&V7

Assume the following initial register conditions for the above
instruction:

(VL) = 4
(VM) = 0 50000 0000 0000 0000 0000

Element 0 of V7 = 1
Element 1 of V7 = 2
Element 2 of V7 = 3
Element 3 of V7 = 4

After instruction execution, the first four elements of V6 have been
modified as follows:

Element 0 of V6 = 1
Element 1 of V6 = 0
Element 2 of V6 3
Element 3 of V6 = 0

SHIFT INSTRUCTIONS

The Scalar Shift functional unit and Vector Shift functional unit shift
64-bit quantities or l28-bit quantities. A l28-bit quantity is formed by
concatenating two 64-bit quantities. The number of bits a value is
shifted left or right is determined by the value of an expression for
some instructions and by the contents of an A register for other
instructions. If the count is specified by an expression, the value of
the expression must not exceed 64.

The following syntax shifts the contents of si left by the amount
specified by the expression and enters the result into so. The shift
count must be a positive integer value not exceeding 64. If the shift
count is 64, an instruction 053ijk is generated. The shift is end off
with zero fill. The contents of si is not altered.

Result Operand Description Machine
instruction

so 5 i<exp Shift (Si) left exp places to so 052ijk

SR-OOOO 3-80 J

Instruction 052ijk executes in the Scalar Shift functional unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

052305 SO S3<5
052724 SO 57 <VAL+4
053200 SO 52<n'64

The following syntax shifts the contents of si right by the amount
specified by the expression and enters the result into So. The shift
count must be a positive integer value not exceeding 64. The assembler
stores 64 minus the shift count in the jk field of the instruction. If
the shift count is 0, instruction 052ijk is generated. The shift is
end off with zero fill. The contents of si is not altered.

Result Operand Description Machine
instruction

SO Si>exp Shift (Si) right exp places to SO 053ijk

Instruction 053ijk executes in the Scalar Shift functional unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

053373 SO 53>5
053066 SO 50>0'10
053754 SO 57>VAL+4
052100 SO 51>0

The following syntax shifts the contents of si left by the amount
specified by the expression and enters the result into si. The shift
count must be a positive integer value not exceeding 64. If the shift
count is 64, instruction 055ijk is generated. The shift is end off
with zero fill.

SR-OOOO 3-81 J

Result Operand Description Machine
instruction

si Si<exp Shift (Si) left exp places to si 054ijk

Instruction 054ijk executes in the Scalar Shift functional unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

054703 S7 S7<3
054622 S6 S6<vAL+2
055300 S3 S3<D'64

The following syntax shifts the contents of si right by the amount
specified by the expression and enters the result into si. The shift
count must be a positive integer value not exceeding 64. The assembler
stores 64 minus the shift count in the jk field of the instruction. If
the shift count is 0, instruction 054ijk is generated. The shift is
end off with zero fill.

Result Operand Description Machine
instruction

si Si>exp Shift (Si) right exp places to si 055ijk

Instruction 055ijk executes in the Scalar Shift functional unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

055775 S7 S7>3
055656 S6 S6>VAL+2
054300 S3 S3>0

SR-OOOO 3-82 J

The following syntax and its special forms form a l28-bit quantity by
concatenating the contents of si and the contents of Sj, shift the
quantity left by an amount specified by the low-order bits of Ak and
enter the high-order bits of the result into si. The shift is end off
with zero fill.

Replacing the Ak reference with 1 is the same as setting the k
designator to 0; a reference to AO provides a shift count of 1. Omitting
the Sj reference is the same as setting the j designator to 0; the
contents of si are concatenated with a word of zeros.

Result Operand Description Machine
instruction

si Si,Sj<Ak Left shift by (Ak) of (Si) and 056ijk
(Sj) to si

t Si Si,Sj<l Left shift by 1 of (Si) and (Sj) 056ijO
to si

t Si Si<Ak Left shift by (Ak) of (Si) to si 056iok

Si is cleared if the shift count exceeds 127. The shift is a left
circular shift of the contents of si if the shift count does not exceed
64 and the i and j designators are equal and nonzero. The
instruction produces the same result as the si Si<exp instruction if
the shift count does not exceed 63 and the designator is o.

Instruction 056ijk executes in the Scalar Shift functional unit.

Examples:

J Code generated Location Result Operand Comment
I 1 10 20 35

056235 S2 S2,S3<A5
056340 S3 S3, S4<1 Left 1 place
056604 S6 S6<A4

t Special syntax form

SR-OOOO 3-83 J

The following syntax and its special forms produce a l28-bit quantity by
concatenating the contents of sj and the contents of si, shift the
quantity right by an amount specified by the low-order 7 bits of the
contents of Ak and enter the low-order bits of the result into Si.
The shift is end off with zero fill.

Result Operand Description Machine
instruction

si Sj,Si>Ak Right shift by (Ak) of (sj) and 057ijk
(Si) to si

t Si Sj,Si>l Right shift by 1 of (sj) and (Si) 057ijO
to si

t si Si>Ak Right shift by (Ak) of (Si) to si 057iok

Replacing the Ak reference with 1 is the same as setting the k
designator to 0; a reference to AO provides a shift count of 1. Omitting
the Sj reference is the same as setting the j designator to 0; the
contents of si is concatenated with a word of zeros.

si is cleared if the shift count exceeds 127. The shift is a right
circular shift of the contents of si if the shift count does not exceed
64 and the i and j designators are equal and nonzero. The instruction
produces the same result as the si si>exp instruction if the shift
count does not exceed 63 and the j designator is o.

Instruction 057ijk executes in the Scalar Shift functional unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

057235 S2 S3,S2>A5
057604 S6 S6>A4
057340 S3 S4,S3>1 Right 1 place

The following syntax and its special form shift the contents of the
elements of register vj to the left by the amount specified by the
contents of Ak and enter the results into the elements of vi. The
number of elements involved is determined by the contents of the VL
register. For each element, the shift is end off with zero fill.
Elements of vi are zeroed if the shift count exceeds 63. Element
contents are shifted left 1 place if the k designator is 0; this can be
specified through the special form of the instruction.

t Special syntax form

SR-OOOO 3-84 J

Result Operand Description Machine
instruction

vi vj<Ak Shift (vj) left (Ak) places to vi l50ijk
t vi Vj<l Shift (vj) left 1 place to vi l50ijO

Instruction l50ijk executes in the Vector Shift functional unit.

Examples:

l Code generated Location Result Operand Comment
I 1 10 20 35

150123 Vl V2<A3
150450 V4 V5<1 Left 1 place

The following syntax and its special form shift the contents of the
elements of register vj to the right by the amount specified by the
contents of Ak and enter the results into the elements of vi. The
number of elements involved is determined by the contents of the VL
register. For each element, the shift is end off with zero fill.
Elements of vi are zeroed if the shift count exceeds 63. Element
contents are shifted right one place if the k designator is 0: a
special form of the instruction accommodates this feature.

Result Operand Description Machine
instruction

vi vj>Ak Shift (vj) right (Ak) places to vi l5lijk
t vi Vj>l Shift (vj) right 1 place to vi l5lijO

Instruction l5lijk executes in the Vector Shift functional unit.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

151341 V3 V4>Al
151450 V4 V5>1 Right 1 place

t Special syntax form

SR-OOOO 3-85 J

The following syntax and its special form shift 128-bit quantities from
elements of vj by the amount specified in Ak and enter the result
into elements of vi. Element n of vj is concatenated with element
n+l and the 128-bit quantity is shifted left by the amount specified in
Ak. The shift is end off with zero fill. The high-order 64 bits of
the results are transmitted to element n of vi.

Result Operand Description Machine
instruction

vi vj,Vj<Ak Double shift (vj) left (Ak) 152ijk
places to vi

t vi vj, Vj<l Double shift (VJ) left one place 152ijO
to vi

The number of elements involved is determined by the contents of the VL
register. The last element of vj, as determined by VL, is concatenated
with 64 bits of zeros. The 128-bit quantities are shifted left 1 place
if the k designator is 0, the special form of the instruction
accommodates this feature.

Instruction 152ijk executes in the Vector Shift functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

152541 V5 V4,V4<Al

Assume the following initial register conditions for the above
instruction:

(VL) = 4
(AI) = 3

Element a of V4 = a 00000 0000 0000 0000 0007
Element 1 of V4 = a 60000 0000 0000 0000 0005
Element 2 of V4 = 1 00000 0000 0000 0000 0006
Element 3 of V4 = 1 60000 0000 0000 0000 0007

t Special syntax form

SR-OOOO 3-86 J

After instruction execution, the first four elements of V5 have been
modified as follows:

Element 0 of V5 = 0 00000 0000 0000 0000 0073
Element 1 of V5 = 0 00000 0000 0000 0000 0054
Element 2 of V5 = 0 00000 0000 0000 0000 0067
Element _3 of V5 = 0 00000 0000 0000 0000 0070

The remaining elements of VS are unaltered.

The following syntax and its special form shift l28-bit quantities from
elements of vj by the amount specified in Ak and enter the result
into elements of vi. Element n-l of vj is concatenated with element
n and the l28-bit quantity is shifted right by the amount specified in
Ak. The shift is end off with zero fill. The low-order 64 bits are
transmitted to element n of vi.

Result Operand Description Machine
instruction

vi vj,vj>Ak Double shift (vj) right (Ak) l53ijk
places to vi

t vi Vj,Vj>l Double shift (vj) right one place l53ijO
to vi

The number of elements involved is determined by the contents of the VL
register. The first element of vj is concatenated with 64 bits of
zeros. The l28-bit quantities are shifted right one place if the k
designator is 0; the special form of the instruction accommodates this
feature.

Instruction l53ijk executes in the Vector Shift functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

153026 VO V2,V2>A6

t Special syntax form

SR-OOOO 3-87 J

Assume the following initial register conditions for the above
instruction.

(VL) = 4
(A6) = 3

Element o of V2 = 0 00000 0000 0000 0000 0017
Element 1 of V2 = o 60000 0000 0000 0000 0005
Element 2 of V2 = 1 00000 0000 0000 0000 0006
Element 3 of V2 = 1 60000 0000 0000 0000 0007

After instruction execution, the first four elements of VO have been
modified as follows:

Element 0 of VO = 0 00000 0000 0000 0000 0001
Element 1 of VO = 1 66000 0000 0000 0000 0000
Element 2 of VO = 1 30000 0000 0000 0000 0000
Element 3 of VO = 1 56000 0000 0000 0000 0000

The remaining elements of VO are unaltered.

BIT COUNT INSTRUCTIONS

The instructions described in .this category provide for counting the
number of bits in an S or V register or counting the number of leading 0
bits in an S or V register.

Scalar population count

The following syntax counts the number of 1 bits in the contents of sj
and enters the result into Ai. Ai is zeroed if the j designator is o.

Result Operand Description Machine
instruction

Ai psj Population count of (SJ) to Ai 026ijO

Instruction 026ijO executes in the Scalar Leading Zero/Population Count
functional unit.

SR-OOOO 3-88 J

Example:

J Code generated Location Result Operand Comment
I 1 10 20 35

026720 A7 PS2

Vector population count

The following syntax counts the number of 1 bits in the elements of
register vj and enters the result into the elements of register vi.
The number of elements involved is determined by the VL register.

Result Operand Description Machine
instruction

t vi pvj Population count of (vj) to (Vi) 174ij1

Instruction 174ij1 executes in the Reciprocal Approximation functional
unit.

Example:

I Code generated Locat"ion Result Operand Comment
I 1 10 20 35

174311 V3 PV1 "Pop count
to V3

Scalar population count parity

of V

The following syntax enters a 0 in Ai if Sj has an even number of 1 bits
in sj and enters a 1 in sj if it has an odd number of 1 bits.

Result Operand Description Machine
instruction

t Ai QSj Population count parity of (sj) 026ij1
to Ai

t The lnstruction is optional on the CRAY-1 models A and B.

SR-OOOO 3-89 J

1

Instruction 026ijl executes in the Scalar Leading Zero/Population Count
functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

026271 A2 QS7 Pop count
to A2

Vector population count parity

The following syntax enters a 0 or 1 into the elements of vi depending
on whether the elements of vj have an even or odd number of 1 bits. A
o is entered into element n of vi if there is an even number of 1
bits in element n of vj, a 1 is entered into element n of vi if
there is an odd number of 1 bits in element n of vj. The number of
elements involved is determined by the VL register.

Result Operand Description Machine
instruction

t vi Qvj Population count parity of (vJ) l74ij2
to (Vi)

Instruction l74ij2 executes in the Reciprocal Approximation functional
unit.

Example:

I Code _generated Location Result Operand Comment
I 1 10 20 35

of S

174502 V5 QV2 Pop count pari
of V2 to VS

t The instruction is optional on the CRAY-l models A and B.

SR-OOOO 3-90 J

7

ty

Scalar leading zero count

The following syntax counts the number of leading zeros in the contents
of Sj and enters the result into Ai. Ai is set to 64 if the j designator
is o.

Result Operand Description Machine
instruction

Ai zsj Leading zero count of (SJ) to Ai 027ijO

Instruction 027ijO executes in the Scalar Leading Zero/Population Count
functional unit.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

027130 Al ZS3

BRANCH INSTRUCTIONS

Instructions in this category include conditional and unconditional
branch instructions. The branch address is specified by an expression
for some instructions and by the contents of a B register for other
instructions. An address is always taken to be a parcel address when the
instruction is executed. If an expression has a word-address attribute,
the assembler issues an error message.

Unconditional branch instructions

There are two unconditional branch instructions. The following syntax
sets the P register to the parcel address specified by the low-order 24
bits of the expression. Execution continues at that address.

SR-OOOO 3-91 J

Result Operand Description Machine
instruction

J exp Jump to exp 006ijkm

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

006 00002l24b J TAGI
006 00001753a J LDY3+1
006 00004533c J *+3

The following syntax sets the P register to the parcel address specified
by the contents of register Bjk. Execution continues at that address.

Result Operand Description Machine
instruction

J Bjk Jump to (Bjk) 0050jk

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

005017 J B17
005017 J B.RTNADDR RTNADDR=17 (oc

Conditional branch instructions

There are several conditional branch instructions. The following syntax
forms test the contents of AO for the specified condition. If the
condition is satisfied, the P register is set to the parcel address
specified by the low-order 24 bits of the expression. Execution
continues at that address. If the condition is not satisfied, execution
continues with the instruction following the branch instruction. For the
JAP and JAM instructions, a zero value in AO is considered positive.

SR-OOOO 3-92 J

tal)

Result Operand Description Machine
instruction

JAZ exp Branch to exp if (AO)=O OlOijkm
JAN exp Branch to exp if (AO)fO Ollijkm
JAP exp Branch to exp if (AO) positive 012ijkm
JAM exp Branch to exp if (AO) negative 013ijkm

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

010 00002243d JAZ TAG3+2
011 00004520a JAN P.CONI
012 0000222lc JAP TAG 2
013 00002l24b JAM TAG 1

The following syntax'forms test the contents of SO for the specified
condition. If the condition is satisfied, the P register is set to the
parcel address specified by the low-order 24 bits of the expression.
Execution continues at that address.

If the condition is not satisfied, execution continues with the
instruction following the branch instruction. For the JSP and JSM
instructions, a zero value in SO is considered positive.

Result Operand Description Machine
instruction

JSZ exp Branch to exp if (SO)=O 014ijkm
JSN exp Branch to exp if (SO)fO 015ijkm
JSP exp Branch to exp if (SO) positive 016ijkm
JSM exp Branch to exp if (SO) negative O17ijkm

SR-OOOO 3-93 J

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

014 0000222lc JSZ TAG 2
015 00002l24d JSN TAGl+2
016 00004533c JSP *+3
017 00002367c JSM TAG 4

Return jump

The following syntax sets register BOO to the address of the parcel
following the instruction. The P register is then set to the parcel
address specified by the low-order 24 bits of the expression. Execution
continues at that address.

Result Operand Description Machine
instruction

R exp Return jump to exp; set BOO to 007ijkm
(P)+2

The purpose of the instruction is to provide a return linkage for
subroutine calls. The subroutine is entered via a return jump." The
subroutine returns to the caller at the instruction following the call by
executing a branch to the contents of the B register containing the saved
address.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

007 00001142d R HELP

Normal exit

The following syntax and its special form cause an exchange sequence.
The contents of the instruction buffers are voided by the exchange
sequence. If monitor mode is not in effect, the Normal Exit flag in the
F register is set. All instructions issued before this instruction are
run to completion.

SR-OOOO 3-94 J

Result Operand Description Machine
instruction

EX Normal exit 004000
t tt EX exp Normal exit 004ijk

When the results of previously issued instructions have arrived at the
operating registers, an exchange occurs to the Exchange Package
designated by the contents of the Exchange Address (XA) register. The
program address stored in the Exchange Package is advanced one parcel
from the address of the normal exit instruction. This instruction is
used to issue a monitor request from a user program.

The expression in the operand field is optional and has no effect on
instruction execution1 the low-order 9 bits of the expression value are
placed in the ijk fields of the instruction.

Examples:

I Code generated Location Result 01>erand Comment
I 1 10 20 35

004000 EX
004027 EX 27

Error exit

The following syntax and its special form are treated as an error
condition and an exchange sequence occurs. The contents of the
instruction buffers are voided by the exchange sequence. If monitor mode
is not in effect, the Error Exit flag in the F register is set. All
instructions issued before this instruction are run to completion.

Result Operand Description Machine
instruction

ERR Error exit 000000
t tt ERR exp Error exit OOOijk

t Special syntax form
tt CRAY-l Computer Systems only

SR-OOOO 3-95 J

When the results of previously issued instructions have arrived at the
operating registers, an exchange occurs to the Exchange Package
designated by the contents of the Exchange Address (XA) register. The
program address stored in the Exchange Package on the terminating
exchange sequence is advanced by one parcel from the address of the error
exit instruction.

The error exit instruction is not generally used in program code. This
instruction is used to halt execution of an incorrectly coded program
that branches to an unused area of memory or into a data area.

The expression in the operand field is optional and has no effect on
instruction execution; the low-order 9 bits of the expression value are
placed in the ijk fields of the instruction.

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

000000 ERR
000017 ERR D'15

MONITOR INSTRUCTIONS

Instructions described in this category are executed only when the CPU is
in monitor mode. An attempt to execute one of these instructions when
not in monitor mode is treated as a no-ope

The instructions perform specialized functions useful to the operating
system.

Channel control

The machine instructions and related CAL syntax for channel control are
described in the following paragraphs.

The following syntax sets the Current Address (CA) register for the
channel indicated by the contents of Aj to the value specified in
Ak. It then activates the channel.

SR-OOOO 3-96 J

Result Operand Description Machine
instruction

CA,Aj Ak Set the channel (Aj) current OOlOjk
address to (Ak) and begin the
I/O sequence

Before this instruction is issued~ the Channel Limit (CL) register should
be initialized. As the transfer progresses, the address in CA is
incremented. When the contents of CA equals the contents of CL, the
transfer is complete for the words at the initial address in CA through
one less than the address in CL.

When the j designator is 0 or when the contents of Aj is less than 2
or greater than 25, the instruction executes as a pass instruction. When
the k designator is 0, CA is set to 1.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

001035 CA,A3 AS

The following syntax sets the Channel Limit (eL) register for the channel
indicated by the contents of Aj to the address specified in Ak.

Result Operand Description Machine
instruction

CL,Aj Ak Set the channel (Aj) limit address OOlljk
to (Ak)

The instruction is usually issued before issuing the CA,Aj Ak
instruction.

When the j designator is 0 or when the contents of Aj is less than 2
or greater than 25, the instruction is executed as a pass instruction.
When the k designator is 0, CL is set to 1.

SR-OOOO 3-97 J

Example:

I Code _generated Location Result Operand Comment
I 1 10 20 35

001134 CL,A3 A4

The following syntax clears the interrupt flag and error flag for the
channel indicated by the contents of Aj.

Result Operand Description Machine
instruction

CI,Aj Clear channel (Aj) interrupt flag 0012jO

When the i designator is 0 or when the contents of Aj is less than 2
or greater than 25, the instruction is executed as a pass instruction.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

001210 CI,Al

The following syntax clears the device Master Clear. If (Aj) represents
an output channel, the master clear is setJ if (Aj) represents an input
channel, the ready flag is cleared.

Result Operand Description Machine
instruction

t MC,Aj Clear channel (AJ) interrupt flag 0012J1.
and error flagJ set device
master-clear (output channel) J
clear device ready-held
(input channel)

t CRAY X-MP Computer Systems only

SR-OOOO 3-98 J

Examples:

I Code _qenerated Location Result Operand Comment
1 1 10 20 35

001241 MC,A4
001201 MC,AO

Set exchange address

The following syntax transmits bits 12 through 19 of register Aj to the
Exchange Address (XA) register.

Result Operand Description Machine
instruction

XA Aj Enter XA register with (Aj) 0013jO

If the j designator is 0, the XA register is cleared.

A monitor program activates a user job by initializing the XA register
with the address of the user job's Exchange Package and then executing a
normal exit (EX).

Example:

I Code generated Location Result Operand Comment
1 1 10 20 35

001350 XA A5

Set real-time clock

The following syntax transmits the contents of register Sj to the
Real-Time clock register. When the j designator is 0, the Real-Time
Clock register is cleared.

SR-OOOO 3-99 J

Result Operand Description Machine
instruction

RT sj Enter RTC with (SJJ 0014jO

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

,
001420 RT S2
001400 RT SO

Programmable clock interrupt instructions

These instructions are supported on Cray computers only if the
Programmable Clock Interrupt Option is included.

The following syntax loads the low-order 32 bits from the Sj register
into the Interrupt Interval register (II) and the Interrupt Countdown
counter (ICD). The interrupt countdown counter is a 32-bit counter that
is decremented by one each clock period until the contents of ,the counter
is equal to O. At this time, it sets the real-time clock (RTC) interrupt
request. The counter is then set to the interval value held in the
Interrupt Interval register and repeats the countdown to zero cycle.
When an RTC interrupt request is set, it remains set until a clear clock
interrupt (CCI) instruction is executed.

Result Operand Description Machine
instruction

PCI sj Set program interrupt interval 0014j4

SR-OOOO 3-100 J

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

001434 PCI 83 Load the
low-order 32
from (S3) to

The following syntax clears a real-time clock (RTC) interrupt.

Result Operand Description Machine
instruction

CCI Clear clock interrupt 001405

Example:

I Code generated Location Result Operand Comment
I "1 10 20 35

001405 CCI Clear clock
interrupt

The following syntax enables real-time clock (RTC) interrupts at a rate
determined by the value in the Interrupt Interval (II) register.

Result Operand Description Machine
instruction

ECI Enable clock interrupts 001406

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

001406 ECI Enable clock
interrupt

SR-OOOO 3-101 J

b
(
its
II)

The following syntax disables real-time clock (RTC) interrupts until an
enable clock interrupt (ECI) instruction is executed.

Result Operand Description Machine
instruction

DCI Disable clock interrupts 001407

Example:

I Code _generated Location Result Operand Comment
I 1 10 20 35

001407 DCI Disable clock
interrupt

Interprocessor interrupt instructions t

The following syntax handles interprocessor interrupt requests. When the
k designator is 1, the instruction sets the internal CPU interrupt
request in the other CPU. If the other CPU is not in monitor mode, the
ICP (Interrupt from Internal CPU) flag sets in the F register causing an
interrupt. The request remains until cleared by the receiving CPU.

Result Operand Description Machine
instruction

IP 1 Set interprocessor interrupt 001401
request of other processor

IP 0 Clear interprocessor interrupt 001402
request from other processor

When the k designator is 2, the instruction clears the internal CPU
interrupt request set by another CPU.

t CRAY X-MP Computer Systems only

SR-OOOO 3-102 J

Examples:

I Code generated Location Result Operand Comment
I 1 10 20 35

001401 IP 1 Set
interprocessor
interrupt requ

001402 IP 0 Clear
interprocessor
interrupt requ

Cluster number instructions t

The following syntax sets the cluster number to j to make the following
cluster selections:

CLN = 0 No cluster; all shared register and semaphore operations are
no-ops, (except SB, ST, or SM register reads, which return a 0
value to Ai or Si).

CLN = 1 Cluster 1

CLN = 2 Cluster 2

CLN = 3 Cluster 3

Each of clusters 1, 2, and 3 has a separate set of SM, SB, and ST
registers.

Result Operand Description Machine
instruction

CLN 0 Cluster number = 0 001403
CLN 1 Cluster number = 1 001413
CLN 2 Cluster number = 2 001423
CLN 3 Cluster number = 3 001433

t CRAY X-MP Computer Systems only

SR-OOOO 3-103 J

est

est

Examples:

I Code ~enerated Location Result Operand Comment
I 1 10 20 35

001403 CLN 0
001413 CLN 1
001423 CLN 2
001433 CLN 3

Operand range error interrupt instructions t

The following syntax forms set and clear the Operand Range Mode flag in
the M register. The two instructions do not check the previous state of
the flag. When set, the Operand Range Mode flag enables interrupts on
operand (address) range errors.

Result Operand Description Machine
instruction

ERI Enable interrupt on (address) 002300
range error

DRI Disable interrupt on (address) 002400
range error

Examples:

f Code generated Location Result Operand Comment
I 1 10 20 35

002300 ERI
002400 DRI

t CRAY X-MP Computer Systems only

SR-OOOO 3-104 J

PSEUDO INSTRUCTIONS 4

INTRODUCTION

The Cray Assembly Language (CAL) includes a set of instructions known as
pseudo instructions that direct the assembler in its task of interpreting
the source statements and generating an object program.

Some pseudo instructions are required by the assembler1 others are
optional. If certain optional instructions are not used, the assembler
uses a default setting.

RULES FOR PSEUDO INSTRUCTIONS

Each program module begins with an IDENT instruction and ends with an END
instruction. Symbol, micro, macro, and opdef definitions occurring
within the program module are cleared before assembling the next program
module.

A symbol, macro, or opdef can be defined before the first IDENT pseudo
instruction or between an END and a subsequent IDENT pseudo instruction.
Such a definition is considered global and can be referenced in any
subsequent program module. (Refer to Global Definitions, section 2.)

Micros and redefinable symbols can be defined locally only. Micros and
redefinable symbols appearing before the first IDENT or between an END
and subsequent IDENT are cleared after assembling the next program module.

Symbolic machine instructions and the pseudo instructions listed below
must appear within a program module. They are allowed outside of an
IDENT to END sequence only within opdef or macro definitions.

ABS
ALIGN
BITP
BITW
BLOCK

BSS
BSSZ
COMMENT
COMMON
CON

DATA LOC
ELSE LOCAL
ENDTEXT MICSIZE
ENTRY MODULE
EXT ORG

QUAL
REP
SKIP
START
TEXT

VWD

In an absolute program module, the ABS pseudo instruction must appear
before any symbolic machine instruction or any of the other above pseudo
instructions. The LOCAL pseudo instruction must occur after a macro or
opdef prototype statement or DUP or ECHO pseudo instructions, except for
intervening comment statements. All other pseudo instructions, macro
definitions, and opdef definitions can appear anywhere.

SR-OOOO 4-1 J

INSTRUCTION DESCRIPTIONS

Pseudo instructions are classified according to their applications, as
follows:

Class

Program control
Loader linkage
Mode control
Block control
Error control
Listing control
Symbol definition
Data definition
Conditional assembly
Instruction definition
Code duplication
Micro definition

PROGRAM CONTROL

Pseudo instructions

IDENT, END, ABS, COMMENT
ENTRY, EXT, MODULE, START
BASE, QUAL
BLOCK, COMMON, ORG, LOC, BITW, BITP, BSS, ALIGN
ERROR, ERRIF
LIST, SPACE, EJECT, TITLE, SUBTITLE, TEXT, ENDTEXT
=, SET, MICSIZE
CON, BSSZ, DATA, VWD, REP
IFA, IFC, IFE, ENDIF, SKIP, ELSE
MACRO, LOCAL, OPDEF, OPSYN, ENDM
DUP, ENDDUP, STOPDUP, ECHO
MICRO, OCTMIC, DECMIC

The pseudo instructions described in this subsection define the limits of
a program module and define the type of assembly to be performed.

IDENT - Identify program module

The IDENT pseudo instruction identifies a program module and marks its
beginning. The name of the module appears in the heading of the listing
produced by CAL (if the title pseudo has not been used) and in the
Program Descriptor Table (PDT) of the binary load module.

Format:

name

SR-OOOO

I Operend

name

Name of the program module; a name must meet the
requirements for names given in section 2.

4-2 J

Example:

Location Result Operand Comment
1 10 20 35

I DENT WOQXF

END - End program module

The END pseudo instruction is the final statement of a program module.
It causes the assembler to take the following actions:

• Reset the numeric base for assembly to decimal.

• Clear the base, list, qualification, and block stacks.

• Terminate any skipping, macro or opdef definitions, or repeated
code.

• Reset the list control options to those determined by the CAL
control statement.

Format:

loeerand

ABS - Assemble absolute binary

The ABS pseudo instruction designates that a program module is to be
assembled as an absolute rather than a relocatable load module.

Format:

Location Result Operand

ignoped ABS ignoped

COMMENT - Define Program Descriptor Table comment

The COMMENT pseudo instruction defines a character string to be entered
as an informational comment in the Program Descriptor Table (PDT) of the
binary load data. The character string is entered as 0 to 10 words of
left-justified, blank-filled ASCII data.

SR-OOOO 4-3 J

I

If a subprogram contains more than one COMMENT pseudo, the character
string from the last COMMENT pseudo is inserted in the PDT.

Format:

ignored COMMENT 'character string'

'character stping'
An ASCII character string of 0 to 80 characters

Example:

Location Result Operand Comment
1 10 20 3_S

I DENT CAL
COMMENT 'COPYRIGHT CRAY RESEARCH, INC. 1976'

LOADER LINKAGE

The pseudo instructions described in this subsection provide for loading
multiple object program modules and linking them into a single executable
program (ENTRY and EXT); defining the contents of the PDT module type
field (MODULE); and specifying the main program entry (START).

ENTRY - Specify entry symbols

The ENTRY pseudo instruction specifies symbolic addresses or values which
can be referred to by other program modules linked by the loader. Each
entry symbol must be a relocatable or absolute symbol defined within the
program module.

Format:

Lo d

ignored ENTRY

An unqualified symbol

SR-OOOO 4-4 J-Ol

Example:

Location Result Operand Comment
1 10 20 35

ENTRY EPTNME,TREG

· · · EPTNME = *
TREG = 0'17

EXT - Specify external symbols

The EXT pseudo instruction specifies linkage to symbols that are defined
as entry symbols in other program modules. They can be referred to from
within the program module but must not be defined within the program
module. Symbols specified on the EXT instruction are assembled as having
absolute and value attributes with a value of O. An EXT pseudo
instruction is flagged with a warning error and treated as a do-nothing
instruction in an absolute assembly.

Format:

Location Result Operand

ignoped EXT

symi An unqualified symbol

Examples:

Location Result Operand
1 10 20

I DENT A

· · ·
ENTRY VALUE

VALUE = -2.0

· · · IDENT B
EXT VALUE
CON VALUE

SR-OOOO 4-5

Comment
35

The 64-bit exte
will be stored

rnal value -2.0
here by the loader

J

I

MODULE - Define program module type for loader

The MODULE pseudo instruction defines the contents of the Program
Descriptor Table (PDT) module-type field.

Format:

I ~ocationlResult I Operand

modtype

modtype Value of the PDT type field:

modtype Significance

RELOCOVL Module is a relocatable overlay.

START - Specify program entry

The START pseudo instruction specifies the main program entry. A
relocatable program uses the START psuedo as the symbolic address where
execution begins following the loading of the program. The named symbol
can optionally be an entry symbol specified in an ENTRY pseudo
instruction.

If the loader encounters more than one main entry in the program modules
being loaded, then execution of the program begins at the first
encountered main program entry.

Only one main program entry can be named in a program module.

Format:

I ~cationlReSUlt I Operaoo

symbol

symbol An unqualified symbol

SR-OOOO 4-6 J-Ol

MODE CONTROL

Mode control pseudo instructions define the characteristics of an
assembly. The BASE pseudo determines whether notation for numeric data
is assumed to be octal or decimal. The QUAL pseudo instruction permits
symbols to be defined as qualified or unqualified.

BASE - Declare base for numeric data

The BASE pseudo instruction allows specification of the base of numeric
data as being octal, decimal, or mixed, when the base is not explicitly
specified by an 0' or D' prefix. The default is decimal.

Format:

Location Result Operand

ignoped BASE base

base

SR-OOOO

Required single character as follows:

o Octal; all numeric data is assumed to be octal.
D Decimal; all numeric data is assumed to be decimal.
M Mixed; numeric data is assumed to be octal, except for

numeric data used for the following, which is assumed

*

to be decimal:

• Statement counts in DUP and conditional statements

• Line count in SPACE

• Bit position or count in BITW, BITP, or VWD

• Character counts as in MICRO, OCTMIC, DECMIC, and
data items

Reverts to use of the previous base in the stack.
Each occurrence of a BASE pseudo instruction other
than BASE * causes an entry in the stack. Each BASE *
removes an entry from the stack and causes the base in
use before the current base to be resumed. If the
stack is empty when BASE * is encountered, the CAL
default mode (decimal) is used.

4-7 J

Example:

Location Result Operand
1 10 20

BASE 0
VWD 50/12

· ·
· · · · BASE D
VWD 40/10

· · · · · · BASE M
VWD 40/12

· · · · · · BASE *
BASE *
BASE *

QUAL - Qualify symbols

Comment
35

Change base fro m default to octal
constant Field size and

value both octa 1

Change base fro m octal to decimal
constant Field size and

value both deci mal

Change from dec imal to mixed base
mal~ constant Field size deci

value octal.

Resume decimal
Resume octal ba
Stack empty~ re

base
se
sume decimal base

A QUAL pseudo instruction begins or ends a code sequence in which all
symbols defined are either qualified by a qualifier specified by the QUAL
or are unqualified. Until the first use of a QUAL pseudo instruction,
symbols are defined as unqualified. Global symbols cannot be qualified.
Thus, QUAL pseudo instructions must not occur before IDENT.

A qualifier applies to symbols only. Names used for blocks, conditional
sequences, duplicated sequences, macros, micros, externals, and formal
parameters are not affected.

Format:

Location Result Operand

igno~ed QUAL quaLification

quaLification

SR-OOOO

Symbol qualifier. Indicates whether symbols are to be
qualified or unqualified and, if qualified, indicates the
qualifier to be used. The field can contain a quaLifiep,
* , or no entry.

4-8 J

SR-OOOO

quaLifie~

*

A I-character to 8-character name; causes all symbols
defined until the next QUAL pseudo instruction to be
qualified. Being qualified means that such a symbol
can be referenced with or without the qualifier within
any sequence in which the qualifier is in effect;
however, if the symbol is referenced while some other
qualifier is in effect, the reference must be in the
form:

/quaLifie~/8ymboL

When a symbol is referenced without a quaLifie~, CAL
first attempts to find it qualified by the quaLifie~
in effect. If the qualified symbol is not defined,
CAL attempts to find it in the list of unqualified
symbols. The symbol is undefined if both of these
searches fail.

An * resumes use of the qualifier in effect previous
to the current qualification. Each occurrence of a
QUAL other than a QUAL * causes an entry in a
qualification stack. Each QUAL * removes an entry
from the stack and causes the qualification in effect
to be resumed. If the stack is empty when QUAL * is
encountered, symbols are defined unqualified.

No entry
If the operand field of the QUAL is empty, symbols are
defined as unqualified until the next occurrence of a
QUAL pseudo instruction. An unqualified symbol can be
referenced without qualification from any place in the
program module, or in the case of global symbols, from
any program module assembled after the symbol
definition.

4-9 J

Example:

Location Result
1 10

· · · ABC =
QUAL

ABC =
J

XYZ Sl

· · · QUAL
ABC =

J

· · · QUAL

· · ·
QUAL

A IFA
B IFA
C IFA

BLOCK CONTROL

Operand
20

1
JVR
2
XYZ
+FA2

DCK
3
/JVR/XYZ

*

DEF,ABC
DEF,/JVR/ABC
DEF,/DCK/ABC

Comment
35

System default

ABC is defined
Symbols will be

Symbols will be

Resume use of J

Symbols will be
Test for ABC be

is unqualified

unqualified
qualified by JVR

qualified by DCK

VR

unqualified
ing defined

Test for
Test for

/JVR/ ABC being defined
ABC being defined /DCK/

A program, whether assembled into absolute binary or relocatable binary,
can be divided into sections called blocks. As assembly of a program
proceeds, the user explicitly or implicitly assigns code to specific
blocks or reserves areas of a block. The assembler assigns locations in
a block consecutively as it encounters instructions or data destined for
the block.

By dividing a program into blocks, a programmer can conveniently separate
executable sequences of code from nonexecutable data. When no BLOCK or
COMMON pseudo instructions are used, all assignment of code is implicitly
designated. Two blocks are used, the nominal block and the literals
block. In this case, the nominal block is used for all code other than
that generated by the occurrence of a literal reference as described in
section 2 of this manual. The first occurrence of a reference to a
specific literal causes an entry for that literal to be made in the

SR-OOOO 4-10 J

literals block. At program end, these two blocks are concatenated to
form a single program block that is identified to the loader by the name
of the program as given on the IDENT pseudo instruction.

When a BLOCK pseudo instruction is used, all code generated or memory
reserved (other than literals) from the occurrence of one BLOCK
instruction up to the occurrence of the next BLOCK or COMMON instruction
is assigned to the designated block. Until the first BLOCK or COMMON
instruction, the nominal block is used. Blocks defined by BLOCK
instructions are referred to as local blocks because at program end, all
of the blocks are concatenated with the nominal block and literals block
to form the program block. That is, blocks exist local to the assembly
and are invisible to the relocatable loader.

The nominal block is always the first block in the program block. All
other local blocks including the literals block are appended in the order
that the blocks are first referenced in 'a BLOCK instruction. The
location of the literals block is determined by the first occurrence of a
literal. Data is generated in the literals block implicitly by the
occurrence of a literal. Explicit data generation or memory reservation
is not allowed in the literals block.

For a relocatable assembly, COMMON pseudo instructions are allowed. When
a COMMON instruction is used, all code (other than literals) generated or
memory reserved from the occurrence of one COMMON instruction up to the
occurrence of the next COMMON or BLOCK instruction is assigned to the
designated common block. At program end, each common block is identified
to the loader by its COMMON name and is available for reference by
another program. A common block that is named (labeled) can contain
data; a common block that is unnamed (blank) cannot contain data; only
memory reservation instructions can be used with this block.

CAL maintains a pushdown stack of block names. It makes an entry in the
stack each time a BLOCK or COMMON pseudo instruction names a block to be
used and deletes an entry from the stack each time a BLOCK or COMMON
pseudo contains * to indicate resumption of the block previously in use.
The block in use is always the top entry in the stack. The size of the
stack is an assembler option. If the size is exceeded, entries are
deleted from the bottom to make room for new entries and an error flag is
issued. If the program contains more BLOCK * or COMMON * instructions
than there are entries in the stack, the assembler uses the nominal block.

For each block used in a program, CAL maintains an origin counter, a
location counter, and a bit position counter. When a block is first
established or its use is resumed, CAL uses the counters for that block.
During pass 1 of the assembler, the origin and location counters for a
block are initially o. During pass 2, as the assembler constructs the
program, it assigns an initial value to each local block origin
counter and location counter. Thus, expressions containing relocatable
symbols are evaluated differently in pass 2 than in pass 1.

SR-OOOO 4-11 J

Origin counter

The origin counter controls the relative location of the next word to be
assembled or reserved in the block. It is possible to reserve blank
memory areas simply by using either the ORG or BSS pseudo instructions to
advance the origin counter. When the special element *0 is used in an
expression, the assembler replaces it with the current parcel-address
value of the origin counter for the block in use. W.*O can be used to
obtain the word-address value of the origin counter.

Location counter

The location counter is normally the same value as the or1g1n counter and
is used by the assembler for defining symbolic addresses within a block.
The counter is incremented whenever the origin counter is incremented.
It is possible through use of the LOC pseudo instruction to adjust the
location counter so that it differs in value from the origin counter or
so that it refers to the address relative to a block other than the one
currently in use. When the special element * is used in an expression,
the assembler replaces it by the current parcel-address value of the
location counter for the block in use. W.* can be used to obtain the
word-address value of the location counter.

Word-bit-position counter

As instructions and data are assembled and placed into a word, CAL
maintains a pointer indicating the next available bit within the word
currently being assembled. This pointer is known as the
word-bit-position counter. It is 0 when a new word is begun and is
incremented by 1 for each completed bit in the word. Its maximum value
is 63 for the rightmost bit in the word. When a word is completed, the
origin and location counters are incremented by 1 and the
word-bit-position counter is reset to 0 for the next word.

When the special element *W is used in an expression, the assembler
replaces it with the current value of the word-bit-position counter. The
normal advancement of the word-bit-position counter is in increments of
16, 32, and 64 as I-parcel and 2-parcel instructions or words are
generated. This normal advancement can be altered, however, through use
of the ~ITW, BITP, and VWD pseudo instructions.

Force word boundary

The assembler completes a partial word and sets the word-bit-position and
parcel-bit-position counters to 0 if either of the following conditions
is true:

• The current instruction is an ORG, LOC, BSS, BSSZ, CON, or ALIGN
pseudo instruction.

SR-OOOO 4-12 J

• The current instruction is a DATA or VWDpseudo instruction and
the instruction has an entry in the location field.

If an ALIGN pseudo instruction is used, unused parcels are zero filled~
otherwise, unused parcels are filled with pass instructions if the last
code generating instruction in the current block is not a DATA or VWD
instruction. If the last code generating instruction in the current
block is DATA or VWD, the unused parcels are zero filled. The Sl Sl&Sl
instruction is used as the pass instruction.

Parcel-bit-position counter

In addition to the word-bit-position counter, CAL also maintains a
counter that points to the next bit to be assembled in the 'current
parcel. This pointer is known as the parcel-bit-position counter. It is
o when a new parcel is begun and advances by 1 for each completed bit in
the parcel. Its maximum value is 15 for the rightmost bit in a parcel.
When a parcel is completed, the parcel-bit-position counter is reset to o.

When the special element *p is used in an expression, CAL replaces it
with the current value of the parcel-bit-position counter.

The parcel-bit-position counter will be set to 0 following assembly of
most instructions. The pseudo instructions BITW, BITP, DATA, and VWD can
cause the counter to be nonzero.

Force parcel boundary

The assembler completes a partially filled parcel and sets the
parcel-bit-position counter to 0 if the current instruction is a symbolic
machine instruction.

BLOCK - Local block assignment

A BLOCK pseudo instruction establishes or resumes use of a block of code
(a local block) within a program module. Each block has its own
location, origin, and bit position counters.

Format:

I ~ocationlResult I Operand

name

SR-OOOO 4-13 J

name The content of this field indicates which block will be
used for assembling code until the occurrence of the next
BLOCK or COMMON pseudo instruction.

name Name of local block

* Resume use of block in use prior to current block

blank Resume use of nominal block

Example:

Location Result Operand Comment
1 10 20 35

• Nominal block i n use
•
· BLOCK A Use block A

· · ·
BLOCK Use nominal blo ck

· · · BLOCK * Return to use 0 f block A

COMMON - Common block assignment

A COMMON pseudo instruction establishes or resumes use of a common block
for a relocatable assembly. COMMON is illegal in an absolute assembly.

Data cannot be defined in the blank common block, only storage
reservation can be defined.

Format:

I Operand

name

SR-OOOO 4-14 J

name Common block to be defined

name Name of a labeled common block

* Resumes use of block in use before current block
(cannot be a common block)

blank Blank common block

Example:

Location Result Operand Comment
1 10 20 35

· Nominal block

· · COMMON FIRST Labeled common block FIRST

· · · COMMON Blank common

· · ·
COMMON * Return to FIRST

ORG - Set *0 counter

The ORG pseudo instruction resets the location and origin counters to the
value specified. The expression must have a value or word-address
attribute. If the expression has a value attribute, it is assumed to be
a word address.

The first occurrence of the ORG instruction in an absolute assembly
indicates the address at which binary output begins, and subsequent ORG
instructions cannot specify a value lower than the first ORG value. If
ORG is omitted, an origin of 0 is assumed.

Format:

I Location I Result

ignoped ORG

I Operand

exp

SR-OOOO 4-15 J

exp Relocatable expression with positive relocation within
block currently in use. In an absolute assembly, exp

Example:

Location
1

must be absolute if in the nominal block. If the
expression is blank, the word address of the next available
word in the block is used.

All symbols used in the expression must be previously
defined. A force to word boundary occurs before the
expression is evaluated.

Result Operand Comment
10 20 35

ORG 0'200 Absolute assemb ly
ORG W.*+o'200

BSS - Block save

The BSS pseudo instruction reserves a block of memory in a program or a
common block. A force to word boundary occurs and then the number of
words specified by the operand field expression is reserved. Data is not
generated by this pseudo instruction. The block of memory is reserved by
increasing the location and origin counters.

Format:

I Location I Result I Operand

exp

symboL

exp

Optional symbol. Assigned the word address of the location
counter after the force to word boundary occurs.

An absolute expression with word-address or value attribute
and with all symbols previously defined. The expression
value must be positive. A force to word boundary occurs
before the expression is evaluated.

The left margin of the listing shows the octal word count.

SR-OOOO 4-16 J

Example:

Location Result Operand Comment
1 10 20 35

BSS 4

A CON 'NAME'
CON 1
CON 2
BSS A+16-W.* reserve 13 more words

LOC - Set * counter

The LOC pseudo instruction resets the location counter to the first
parcel of the word address' specified. The location counter is used for
assigning address values to location field symbols. Changing the
location counter allows code to be assembled and loaded at one location,
controlled by the origin counter, then moved and executed at another
address, controlled by the location counter.

Format:

I Location/Result I Operand

exp

exp

SR-OOOO

Relocatable expression with positive relocation, not
necessarily within the block currently in use. The
expression can also be absolute. All symbols used in the
expression must be previously defined. A force word
boundary occurs before the expression is evaluated.

4-17 J

Example:

Location Result Operand Comment
1 10 20 35

*
*
*

In this example, the code is generated and loaded at
location 10000 and must be moved by the user to 200

A

before execution
ABS
ORG
LOC
Al

J

10000
200
o

A

BITW - Set *W counter

The BITW pseudo instruction sets the current bit position relative to the
current word to the value specified. A value of 64 indicates the
following instruction is to be assembled at the beginning of the next
word (force word boundary). If the counter is set lower than its current
value, any code previously generated in the overlapping portion of the
word is ORed with any new code.

Format:

exp An expression with absolute value attribute with positive

Example:

Location
1

SR-OOOO

value less than or equal to 64. When the base is M
(mixed), CAL assumes that exp is decimal.

Result Operand Comment
10 20 35

BI'lW 0'39

4-18 J

BITP - Set *p counter

The BITP pseudo instruction sets the bit position relative to the current
parcel to the value specified. A value of 16 forces a parcel boundary.
If the current position is in the middle of a parcel with a value of 16,
the bit position is set to the beginning of the next parcel~ otherwise,
the bit position is not changed. If the counter is set lower than its
current value, any code previously generated in the overlapping portion
of the word is ORed with any new code.

Format:

Location Result Operand

ignoped BITP exp

exp An expression with absolute value attribute with positive
value less than or equal to 16. When the base is M
(mixed), CAL assumes that exp is decimal.

Example:

Location Result Operand Comment
1 10 20 35

BITP D'14

ALIGN - Align on an instruction buffer boundary

The ALIGN pseudo instruction ensures that the code following the
instruction is aligned on an instruction buffer boundary. An offset is
calculated to determine the next 20 (octal) or 40 (octal) word boundary
from the current location counter, depending on the machine for which CAL
is targeting code (see CPU=type option on the CAL control statement).
The offset is added to the location and origin counter for the current
block. Code is not generated within this offset.

The offset is calculated relative to the beginning of a block. Each
local block encountering an ALIGN pseudo by means of the location counter
is aligned. The loader is notified to align the program block on an
instruction buffer boundary. For each common block encountering an ALIGN
pseudo, information is sent to the loader to align that specific block on
an instruction buffer boundary.

SR-OOOO 4-19 J

I

Format:

I LocationlResult

ignored

symbol, An optional symbol, it is assigned the parcel address of
the location counter after alignment.

The octal value in the output listing immediately to the left of the
location field indicates the number of full parcels skipped.

Example using a CRAY-l Computer:

I Code generated Location Result Operand Comment
I 1 10 20 35

4d+ L = *
d 006 00000020a+ J A

20a 53 A ALIGN

ERROR CONTROL

Two pseudo instructions, ERROR and ERRIF, allow the programmer to
generate an assembly error condition.

ERROR,- Unconditional error generation

The ERROR pseudo instruction unconditionally sets an assembly error flag.

Format:

error ERROR ignored

SR-OOOO

A valid error flag character as defined in Appendix C. P
is used if this field is null.

4-20 J-Ol

Example:

Location Result Operand Comment
1 10 20 35

IFE ABC,LT,DEF,l
ERROR

· · ·
ERRIF - Conditional error generation

The ERRIF pseudo instruction conditionally sets an assembly error flag.

Format:

Location Result Operand

op

SR-OOOO

ERRIF

A valid error flag character(s) as defined in Appendix C.
P is used if this field is null.

Expressions to be compared. Any symbols must have
been defined previously.

Expressions are evaluated in pass 2, whereas expressions in
other conditional pseudo instructions are evaluated in pass
1. In pass 2, address expressions in local blocks have
been relocated relative to the beginning of the program
block rather than relative to the local block.

Operator. Specifies a relation to be satisfied by eXPl
and eXP2 that causes generation of an error. For LT,
LE, GT, and GE, only the values of the expressions are
examined. The word-address, parcel-address or value
attributes and the relocatable, external, or absolute
attributes are not compared.

E.'£ Significance

LT Less than; the value of exP.l must be less than
the value of eXP2.

LE Less than or equal to; the value of eXPl must be
less than or equal to the value of eXP2.

4-21 J

EE.. S ignif icance

GT Greater thanJ the value of exPl must be greater
than the value of eXP2-

GE Greater than or equal tOJ the value of eXPl must
be greater than or equal to the value of eXP2-

EQ EqualJ the value of eXPl must be equal to the
value of eXP2- The expressions must both be
absolute, or both be external relative to the same
external symbOl, or both be relocatable in the
program block or the same common block_ The
word-address, parcel-address or value attributes must

Example:

Location
1

P

be the same.

NE Not equal_ The two expressions, eXPl and
eXP2' do not satisfy the conditions required for
EQ described above.

Result Operand Comment
10 20 35

ERRIF ABC,LT,DEF

LISTING CONTROL

Listing control pseudo instructions allow the programmer to control the
content and format of the listing produced by the assembler_ The LIST,
SPACE, EJECT, TITLE, SUBTITLE, TEXT, and ENDTEXT listing control pseudo
instructions are described in the following paragraphs. These pseudo
instructions are not ordinarily listed.

LIST - List control

The LIST pseudo instruction controls the listing. An END pseudo
instruction causes options to be reset to the default values.

Format:

Location Result Operand

name LIST

SR-OOOO. 4-22 J

name

optioni

[
XNS]
NXNS

SR-OOOO

Optional list name. If a name is present, the instruction
is ignored unless a matching name is specified on a LIST
parameter on the CAL control statement. For example, if
LIST=name appears on the CAL control statement, LIST
pseudos with a matching name are not ignored. LIST pseudos
with a blank location field are always processed. All of
the option names given below can be specified as CAL
control statement parameters. The selection of an option
on the CAL control statement overrides the enabling or
disabling of the corresponding feature by a LIST pseudo.

If L=O is specified' on the CAL control statement, listing
output is not generated. In this case, LIST pseudos and
list options specified on the CAL control statement have no
effect.

Listing option. Specifies that a particular listing
feature be enabled or disabled. There can be zero, one, or
more options specified or an *. The options allowed are
listed below. Defaults are underlined. If no options are
specified, OFF is assumed.

*
ON

Return to the preceding LIST pseudo.

Enable source statement listing. Source
statements and code generated are listed.

OFF or blank operand field

XRF

Disable source statement listing. Only statements
with errors are listed while this option is
selected. Listing control pseudo instructions are
also listed if LIS option is enabled.

Enable cross reference. Symbol references are
accumulated and a cross reference listing is
produced.

NXRF Disable cross reference. Symbol references are not
accumulated. If this option is selected when the
END pseudo is encountered, no cross reference is
produced. This does not affect the $XRF written by
CAL.

XNS Include nonreferenced local symbols in the
reference. Local symbols that were not referenced
in the listing output are included in the cross
reference listing.

4-23 J

[
DUP]
NDUP

[
MIF]
NMIF

[
MIC]
NMIC

SR-OOOO

NXNS Exclude nonreferenced local symbols in the cross
reference. If this option is selected when the END
pseudo is encountered, local symbols that were not
referenced in the listing output are not included
in the cross reference.

DUP Enable listing of duplicated statements.
Statements generated by DUP and ECHO expansions are l

listed. Conditional statements and skipped
statements generated by DUP and ECHO are not listed
unless the macro conditional list feature is
enabled (MIF).

NDUP Disable listing of duplicated statements.
Statements generated by DUP and ECHO are not listed.

MAC .Enable listing of macro expansions. Statements
generated by macro and opdef calls are listed.
Conditional statements and skipped statements
generated by macro and opdef calls are not listed
unless the macro conditional list feature is
enabled (MIF).

NMAC Disable listing of macro expansions. Statements
generated by macro calls are not listed.

Conditional statements and skipped statements in source
code are listed regardless of whether this option is
enabled or disabled.

MIF Enable macro conditional listing. Conditional
statements and skipped statements generated by a
macro or opdef call, or by a DUP or ECHO pseudo
instruction, are listed. The listing of macro
expansions or the listing of duplicated statements
must also be enabled.

NMIF Disable macro conditional listing. Conditional
statements and skipped statements are not listed.

Source statements containing a micro reference or a
concatenation character are listed before editing
regardless of whether this option is enabled or disabled.

MIC Enable listing of generated statements before
editing. Statements which are generated by a macro
or opdef call, or by a DUP or ECHO pseudo
instruction, and which contain a micro reference or
concatenation character are listed before and after
editing. The listing of macro expansions or the
listing of duplicated statements must also be
enabled.

4-24 J

I [
LIS]
~

I

[
TXT]
NTXT

[~]

SR-OOOO

NMIC Disable listing of generated statements before
editing. Statements generated by a macro or opdef
call, or by a DUP or ECHO pseudo instruction, are
not listed before editing.

LIS Enable listing·of the pseudo instructions LIST,
SPACE, EJECT, TITLE, and SUBTITLE. These
statements are listed regardless of whether the
source statement listing is enabled.

NLIS Disable listing of these pseudo instructions.

WEM Enable warning errors. Each statement
containing a warning error is written to the source
listing and the error listing. A logfile message
is issued giving the number of warning errors.

NWEM Disable warning errors. Warning errors are
ignored.

TXT Enable global text source listing. Each
statement following a TEXT pseudo instruction is
listed through the ENDTEXT instruction, if the
listing is otherwise enabled.

NTXT Disable global text source listing. Statements
following a TEXT pseudo instruction through the
following ENDTEXT instruction are not listed.

WRP Enable warning error message for a relocatable
parcel address within a 22-bit expression of an
instruction 020, 021, 040, or 041.

NWRP Disable warning error message for a relocatable
parcel address within a 22-bit expression of an
instruction 020, 021, 040, or 041.

WMR Enable warning error message for macro and opdef
redefinition. If the name of a macro is the same
as a currently defined pseudo instruction or macro,
a warning message is issued. If an opdef syntax is
being redefined, a warning message is also issued.

NWMR Disable warning error message for macro and opdef
redefinition.

4-25 J-Ol

SPACE - List blank lines

The SPACE pseudo instruction specifies the number of blank lines to b~
inserted in the listing.

Format:

Location Result Operand

ignoraed SPACE count

count An absolute expression specifying the number of blank lines
to insert in the listing. When the base is M (mixed), CAL
assumes that count is decimal.

EJECT - Begin new page

The EJECT pseudo instruction causes a page eject on the output listing.

Format:

Location Result Operand

ignoped EJECT ignoped

TITLE - Specify listing title

The TITLE pseudo instruction specifies the main title to be printed on
the listing.

Format:

Location Result Operand

ignoraed TITLE

'chapactep stping'
A character string to be printed as the main title on
subsequent pages of the listing. A maximum of 64
characters is allowed.

SR-OOOO 4-26 J

SUBTITLE ~ Specify listing subtitle

The SUBTITLE pseudo instruction specifies the subtitle to be printed on
the listing. The instruction also causes a page eject.

Format:

Location Result

ignoped SUBTITLE

'ehapaetep stping'
A character string to be printed as the subtitle on
subsequent pages of the listing. A maximum of 64
characters is allowed.

TEXT - Declare beginning of global text source

Source lines following the TEXT pseudo instruction through the next
ENDTEXT pseudo instruction are treated as text source statements.
These statements are listed only when the TXT listing option is enabled.
A symbol defined in text source is treated as a system text symbol for
cross reference purposes. That is, such a symbol is not listed in the
cross reference unless there is a reference to the symbol from a listed
statement. The /bZoek/ or system text name column of the cross
reference listing contains the text name, unless the symbol is a COMMON
block symbol. In this case the COMMON block name appears in this column.

Symbols defined in text source are global if the text appears before an
IDENT pseudo instruction. Symbols in text source are local to a
program module if the text appears between IDENT and END pseudo
instructions.

The TEXT pseudo instruction is listed if the listing is on or if the LIS
listing option is enabled regardless of other listing options.

The TEXT and ENDTEXT pseudo instructions have no effect within system
text.

Format:

Location Result Operand

n~e TEXT

SR-OOOO 4-27 J

name Optional name of text. name is used as the name of the
text source following until the next ENDTEXT pseudo
instruction. It is associated with any symbols defined in
the text, and is listed in the name column of the cross
reference listing.

'~hapa~tep stping'
An optional character string to be printed as the subtitle
on subsequent pages of the listing. This operand and the
TXT option cause a page eject. A maximum of 64 characters
is allowed. If the operand field is blank then the
subtitle is not affected and no page eject occurs. If the
operand field is nonblank then the preceding subtitle is
lost and replaced by the character string in the operand
field.

ENDTEXT - Terminate global text source

The ENDTEXT pseudo instruction terminates text source initiated by a
TEXT instruction. An IDENT or END pseudo instruction also terminates
text source. ~he ENDTEXT instruction is not listed unless the TXT
option is enabled with the exception that if the LIS option is enabled,
the ENDTEXT instruction is listed regardless of other listing options.

Format:

I ~ocationlResult I Operand

Example (with TXT option off) :

Source listing:

Location Result Operand Comment
1 10 20 35

I DENT TEXT
A = 2
TXTNAME TEXT 'AN example. ,
B = 3
C = 4

ENDTEXT
Al A
A2 B
END

SR-OOOO 4-28 J

Output listing:

, Code generated Location Result Operand 'Comment
I 1 10 20 35

I DENT TEXT
2 A = 2

TXTNAME TEXT 'An example. '
Oa 022102

b 022203

Cross reference:

Value
2
3

SYMBOL DEFINITION

Symbol
A
B

/block/
or

Name

TXTNAME

Al
A2

Symbol references
1: 2 D 1: 4
1: 5

A
B
END

The pseudo instructions =, SET, and MICSIZE define symbols used in the
program.

Requirements for symbols are given in section 2 of this publication.

= - Equate symbol

The = pseudo instruction defines a symbol with the value and attributes
determined by the expression. The symbol is not redefinable.

Format:

Location Result Operand

symbol

symbol

exp

SR-OOOO

= exp,attraibute

An unqualified symbol. The symbol is implicitly qualified
by the current qualifier. The symbol must not be defined
already. The location field can be blank.

Any expression

4-29 J

attpibute P, W, or V indicating parcel, word, or value attribute

Example:

Location
1

SYMB

(optional). Attribute, if present, is used instead of the
expression's attribute. An expression with word-address
attribute is multiplied by four if a parcel-address
attribute is specified; an expression with parcel-address
attribute is divided by four if word-address attribute is
specified. A relocatable expression cannot be specified as
having value attribute.

Result Operand Comment
10 20 35

= A*B+IOO/4

SET - Set symbol

The SET pseudo instruction resembles the = pseudo instruction. However,
a symbol defined by SET is redefinable.

Format:

Location Result Operand

symboL SET exp,attpibute

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

100 SIZE = 0'100
22 PARAM SET D'18
10 WORD SET *W
10 PARCEL SET *p

SIZE = SIZE+l (Illegal)
24 PARAM SET PARAM+2 (Legal)

SR-OOOO 4-30 J

MICSIZE - Set redefinable symbol to micro size

The MICSIZE pseudo instruction defines the symbol in the location field
as an absolute symbol with a value equal to the number of characters in
the micro string whose name is in the operand field. Another SET or
MICSIZE instruction with the same symbol redefines the symbol to the new
value.

Format:

Location Result Operand'

symbol, MICSIZE name

symbol, An unqualified symbol. The symbol is implicitly qualified
by the current qualifier. The location field can be blank.

name The name of a micro string previously defined.

DATA DEFINITION

Data definition instructions are the only pseudo instructions that
generate object binary. The only other instructions that are translated
into object binary are the symbolic machine instructions. An instruction
that generates binary cannot be used in a blank common block.

• CON Places an expression value into one or more words

• BSSZ Generates words of zero

• DATA Generates one or more words of numeric or character data

• VWD Generates a variable-width field of word-oriented data

• REP Generates loader duplication table entries

CON - Generate constant

The CON pseudo instruction generates one or more full words of binary
data. This pseudo always forces to a word boundary.

Format:

Location Result Operand

symbol, CON

SR-OOOO 4-31 J

symbol

Example:

Optional symbol assigned the word-address value of the
location counter after the force to word boundary occurs.

An expression whose value is to be inserted into a
single 64-bit word. If an expression is null, a single
zero word is generated. A force word boundary occurs
before any operand field expressions are evaluated. A
double-precision, floating-point constant is not allowed.

I Code generated Location Result Operand Comment
l 1 10 20 35

0000000000000007777017
A CON 0'7777017

CON A

BSSZ - Generate zeroed block

The BSSZ pseudo instruction causes a block of words containing zeros to
be generated. A force to word boundary occurs, and then the number of
zero words specified by the operand field expression is generated.

Format:

Location Result Operand

symbol

symbol

exp

BSSZ exp

Optional symbol. Assigned the word-address value of the
location counter after the force to word boundary occurs.

An absolute expression with word-address
and with all symbols previously defined.
value must be positive and specifies the
words containing zeros to be generated.
field results in no data generation.

or value attribute
The expression

number of 64-bit
A blank operand

The left margin of the listing shows the octal word count.

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

144 BSSZ D'IOO

SR-OOOO 4-32 J

DATA - Generate data words

The DATA pseudo instruction generates data from the items listed. The
length of the field generated for each data item depends on the type of
constant involved. A word boundary is not forced between data items.

Format:

Location Result Operand

symbol, DATA

symbol, Optional symbol assigned the address value of the location
counter after a force to word boundary. If no symbol is
present, a force to word boundary does not occur.

A numeric or character data item

Example:

I Code generated Location Result Operand Comment
I 1 10 20 35

0000000000000000005252 DATA O'5252,A'ABC'R
0000000000000020241103
0405022064204010020040 DATA 'ABCD'
0425062164404010020040 DATA 'EFGH'
040502206420 DATA 'ABCD'*

10521443510 DATA 'EFGH'*
0000000000000000000000 DATA 'ABCD'12R
040502206420

10521443510 DATA 'EFGHIJ'*
044512
0405022064204010020040 LL2 DATA 'ABCD'

0000000000000000000144 DATA 100
0377435274616704302142 DATA 1.25E-9

0521102225144022251440 DATA 'THIS IS A MESSAGE'*L
0404402324252324640507
0424

000 VWD 8/0

SR-OOOO 4-33 J

VWD - Variable word definition

The VWD pseudo instruction allows data to be generated in fields from 0
to 64 bits wide. Fields can cross word boundaries. Data begins at the
current bit position unless a symbol is used. If a symbol is used, a
force word boundary occurs and the data begins at the new current bit
position.

Format:

Location Result Operand'

symbol VWD

symbol Optional symbol. If present, a force word boundary occurs.

Field width, specifying the number of bits in the field. A
numeric constant or symbol, with absolute and value
attributes. The value of ni must be positive and less
than or equal to 64. When the base is M (mixed), CAL
assumes that ni is decimal.

An expression whose value is to be inserted in the field.

Example:

In the following example, the value of SIGN is 1, the value of FC is 0,
the value of ADD is 653 (octal), and the value of DSN is SIN in ASCII
code.

l Code generated Location Result Operand Comment
I 1 10 20 35

BASE M
PDT BSS 0

1000000000000023440515 VWD l/SIGN, 3/0, 60/A I "NAM" I R
10000000653 VWD 1/1,6/FC,24/ADD

41 REMDR = 64-*W
00011044516 VWD REMDR/DSN

SR-OOOO 4-34 J

REP - Loader replication directive

The REP pseudo instruction generates loader duplication table entries
which direct the loader to load one or more copies of a block of binary
data words. The loader generates the copies immediately upon
encountering the table. The data words to be copied must have been
generated by previous assembler statements and cannot contain any
external or relocatable fields.

The REP pseudo instruction is allowed only in relocatable assemblies and
cannot be used in a blank common block.

Storage for all copies of the source data word must be reserved by the
user with BSS, ORG, or other pseudo instructions. The source data words
and all copies must be within the current program block or common block.

A force word boundary occurs before evaluating the operand field
expressions.

Format:

Location Result Operand

ignoped REP ct,swa,inc,bsz

ct Duplication count. An absolute expression with word
address or value attribute, value greater than O. The
duplication count specifies the number of times the data
words are to be copied.

swa Source word address. A relocatable expression with
word-address attribute, specifying the first word address
of the data words to be copied.

inc Increment. An absolute expression with word-address or
value attribute with positive value. The loader stores
copies of the source data words at swa+inc, swa+2*inc, •••
until the duplication count is exhausted.

Default value is I if the third subfield is null or
missing. The loader does no duplication if the increment
has zero value. The increment must have a value less than
256.

bsz Block size. An absolute expression with word address or
value attribute and with a positive value not greater than
the value of inc. The block size specifies the number of
words in the block at swa which are to be copied. The

SR-OOOO

default value for bsz is I if the fourth subfield is null
or missing.

4-35 J

Example:

Location Result Operand Comment
1 10 20 35

N = D'64
A DATA ' , Word or space c haracters

REP N-l,A
BSS N-l

Fill the array with spaces
for the array Reserve storage

B CON
CON
BSS
ORG
REP

CONDITIONAL ASSEMBLY

1.0
2.0
18
B
9,B,2,2

Complex cons tan t (1.0,2.0)
th complex Fill array B wi

constant

The instructions described in this section permit optional assembly or
skipping of source code. The conditional pseudo instructions IFA, IFC,
or IFE determine whether a sequence of instructions following the test is
to be skipped or assembled. The end of the conditional sequence is
determined by a count of instructions provided on the test instruction or
by an ENDIF pseudo instruction with a matching location field name.

The ELSE pseudo instruction provides a means of reversing the effect of a
previous IFA, IFE, IFC, SKIP, or ELSE instruction. The SKIP pseudo
instruction unconditionally skips following statements.

When skipping under control of a statement count, comment statements
(asterisk in column 1) and continuation lines (comma in column 1) are not
included in the statement count.

IFA - Test expression attribute for assembly condition

The IFA pseudo instruction tests an attribute of an expression. If the
expression has the specified attribute, assembly continues with the next
statement. If the attribute test is failed, then subsequent statements
are skipped. If a location field name is present, skipping stops when an
ENDIF or ELSE pseudo instruction with the same name is encountered.
Otherwise, skipping stops when the statement count is exhausted.

If an assembly error is detected, assembly continues with the next
instruction.

SR-OOOO 4-36 J

Formats:

Location Result Operand

ifname

ifname

count

IFA
IFA

attpibute,exp
attpibute,exp,count

Optional name of conditional sequence of code

Statement count. An absolute expression with positive
value. When the ba'se is M (mixed), CAL assumes that count
is decimal. A count parameter is required if ifname is
missing, otherwise it is ignored. A missing or null count
subfield gives a zero count if ifname is not present.

attpibute A mnemonic signifying an attribute of exp. An
expression has only one of the attributes PA, WA, or VAL
and has only one of the attributes EXT, REL, or ABS.

SR-OOOO

An attribute can also be any of the following letters
preceded by a complement sign (#) indicating that the
second subfield does not satisfy the correspo~ding
condition.

Mnemonic

PA

WA

VAL

EXT

REL

ABS

COM

DEF

SET

REG

Attribute

Parcel address

Word address

Value

External

Relocatable

Absolute

Relocatable: relative to a common block.

All symbols in the expression exp have
been previously defined.

The symbol in the second subfield is a
redefinable symbol.

The second subfield contains a valid A, B,
S, T, or V register designator.

MIC The name in the second subfield is a micro
name.

4-37 J

exp Express~on. The second subfield must either be a valid
express10n, symbol, name, or character string depending on
the attribute mnemonic.

For PA, WA, VAL, EXT, REL, ASS, and COM, the second
subfield must be a valid expression with all symbols
previously defined.

For DEF, the second subfield must be a valid expression.

For SET, the second subfield must be a valid defined symbol.

For REG, the second subfield can be a string of any
characters except blank or comma.

For MIC, the second subfield must be a valid name.

Expressions are evaluated in pass 1. Expressions that are
relocatable addresses in local blocks have values relative
to the beginning of the local block rather than the program
block. Address expressions in a local block other than the
nominal block on an absolute assembly are considered
relocatable in pass 1.

IFE - Test expressions for assembly condition

The IFE pseudo instruction tests a pair of expressions for a condition
under which code is to be assembled if the relation specified by the
operation (op) is satisfied. That is, if the relationship is true,
then assembly resumes with the next statement. If the relationship is
not satisfied (is false), then subsequent statements are skipped. If a
location field name is present, skipping stops when an ENDIF or ELSE
pseudo instruction with the same name is encountered. Otherwise,
skipping stops when the statement count is exhausted.

If an assembly error is detected, assembly continues with the next
statement.

Formats:

Location Result Operand

ifname IFE eXPl,op,exP2
IFE eXPl'oP, eXP2' count

ifname Optional name of a conditional sequence of code

SR-OOOO 4-38 J

count

op

SR-OOOO

Expressions to be compared. All symbols in the expression
must be previously defined.

Expressions are evaluated in pass 1. Expressions that are
relocatable addresses in local blocks have values relative
to the beginning of the local block rather than the program
block. Address expressions in a local block other than the
nominal block in an absolute assembly are considered
relocatable in pass 1.

Statement count1 must be an absolute expression with
positive value. When the base is M, mixed, CAL assumes
that count is decimal. A count parameter is required if
ifname is missing, otherwise it is ignored. A missing or
null count subfield gives a zero count.

Specifies relation to be satisfied by eXPl and eXP2.
It must be one of the following:

!!E.. Significance

LT Less than1 the value of exPl must be less than
the value of eXP2.

LE Less than or equal t01 the value of eXPl must be
less than or equal to eXP2.

GT Greater than1 the value of eXPl must be greater
than the value of eXP2·

GE Greater than or equal t01 the value of eXPl must
be greater than or equal to eXP2.

EQ Equal 1 the value of eXPl must be equal to the
value of eXP2. The expressions must both be
absolute, or both be external relative to the same
external symbol, or both be relocatable in the same
block. The word-address, parcel-address or value
attributes must be the same.

NE Not equa11 the expressions eXPl and eXP2 do
not satisfy the conditions required for EQ described
above.

4-39 J

IFC - Test character strings for assembly condition

The IFC pseudo instruction tests a pair of character strings for a
condition under which code is to be assembled if the relation specified
by the operation (op) is satisfied. That is, if the relationship is
not satisfied (is false), then subsequent statements are skipped. If a
location field name is present, skipping stops when an ENDIF or ELSE
pseudo instruction with the same name is encountered. Otherwise,
skipping stops when the statement count is exhausted.

If an assembly error is detected, assembly continues with the next
statement.

Formats:

Location Result Operand

ifname

ifname

op

'chaPI' ,
'chap ,

2

IFC
IFC

Optional name of a conditional sequence of code

Operator.
and chaP2.

Specifies relation to be satisfied by cha~
op must be one of the following:

E:E. Significance

LT Less than
LE Less than or equal to
GT Greater than
GE Greater than or equal to
EQ Equal to
NE Not equal to

Character strings to be compared. The first and third
subfields can be null (empty) indicating a null
character string.

The ASCII character code value of each character in
chaPI is compared with the value of each character in
chap2, beginning at the left and continuing until an
inequality is found or until the longer string is
exhausted. A zero value is substituted for missing
characters in the shorter string.

Refer to Appendix F for the ASCII character code values.

SR-OOOO

Micros and formal parameters can be contained in the
character strings.

4-40 J

count

A character string can be delimited by a character other
than an apostrophe. Any ASCII character other than a
comma or space can be used. Two consecutive occurrences
of the delimiting character indicate a single such
character. For example,

AIF IFC =O'lOO=,EQ,*ABCD***

compares the character strings 0'100 and ABCD*.

Statement count; must be an absolute expression with
positive value. A missing or null count subfield gives a
zero count. If the base is M (mixed), CAL assumes that
count is decimal. A count parameter is required if
ifname is missing; otherwise, it is ignored.

SKIP - Unconditionally skip statements

The SKIP pseudo instruction unconditionally skips subsequent statements.
If a location field name is present, skipping stops when an ENDIF or ELSE
with the same name is encountered. Otherwise, skipping stops when the
statement count is exhausted.

Format:

Location Result Operand

ifname

ilname

count

SKIP count

Optional name of conditional sequence of code

Statement count; must be an absolute expression with
positive value. If the base is M (mixed), CAL assumes that
count is decimal. A count parameter is required if
ilname is missing; otherwise, it is ignored. A missing
or null count subfield gives a zero count.

ENDIF - End conditional code sequence

The ENDIF pseudo instruction terminates skipping initiated by an IFA,
lFE, IFC, ELSE, or SKIP pseudo instruction with the same location field
name. Otherwise, ENDIF acts as a do-nothing pseudo instruction. ENDIF
has no effect on skipping, which is controlled by a statement count.

SR-OOOO 4-41 J

Format:

I LocationlResult I Operand

ifname Required name of conditional code sequence

. NOTE

While skipping, an END statement is recognized and
terminates skipping.

ELSE - Toggle assembly condition

The ELSE pseudo instruction terminates skipping initiated by an IFA, IFe,
IFE, ELSE, or SKIP pseudo instruction with the same location field name.
If statements are currently being skipped under control of a statement
count, ELSE has no effect.

If the assembler is not currently skipping statements, ELSE initiates
skipping. Skipping is terminated by an ENDIF or ELSE pseudo instruction
with a matching location field name.

Format:

I Location I Result

ifname Required name of conditional sequence of code

SR-OOOO 4-42 J

Examples of conditional assembly

Location Result Operand Comment
1 10 20 35

IFA
A =

#DEF,A,l
10 Define A if not already defined

BTEST
X

BTEST

BTEST

*
*

*

*

X

Y

*
Z

*

IFA
ERR

ELSE
Al
ENDIF

ABS,SYM

SYM

Generate X error if SYM is
absolute

Assemble if SYM not absolute

Assemble BSSZ instruction if W.* is less than BUF,
otherwise assemble ORG
IFE W.*,LT,BUF,2
BSSZ BUF-W.*'

SKIP
ORG

IFC
ERR

1
BUF

, liLli' ,EQ, ,1

Generate words of zero to
address BUF
Skip next statement

Error if micro string
defined by L is empty

IFC 'ABCD',GT,'ABC' ABCD is greater than ABC

IFC , ',GT,

IFC , , , , ,EQ, *' *

Single space is greater
than null string
Single apostrophe equals
single apostrophe

INSTRUCTION DEFINITION

The CAL assembler allows a programmer to identify a sequence of
instructions to be saved for assembly at a later point in the source
program. When the sequence is defined, CAL stores it in a list of
definitions but does not assemble the sequence. Each time the defined
sequence is referenced, it is placed in the source program and is
assembled. Four types of defined sequences are recognized: macro,
opdef, dup, and echo.

A macro or opdef definition identifies a sequence of instructions that is
referenced at a later point in the source program by a single
instruction, the macro, or opdef call. Each time the macro or opdef call
occurs, the definition sequence is placed in the source program. For a
macro call, the name in the result field matches the name associated with

SR-OOOO 4-43 J

the macro. For an opdef call, the syntax, or form, of the instruction
matches the syntax associated with the opdef definition. Thus, a macro
call resembles a pseudo instruction and an opdef call resembles a
symbolic machine instruction.

A dup or echo definition identifies a sequence of instructions that is
assembled repeatedly, immediately following the definition. The number
of times the sequence is assembled depends on the parameters on the DUP
or ECHO pseudo.

A macro or opdef is defined as global if it occurs before the IDENT that
begins the program module. Macro' and opdef definitions are local if they
occur within an IDENT, END sequence. Every local definition is removed
from the assembler tables at the end of a program module. A global
definition can be referenced in any program module following the
definition.

Dup and echo definitions are removed from the assembler tables as soon as
the definition sequence has been assembled the proper number of times.

A definition has three parts: a header, a body, and an end.

Definition header

The header consists of a MACRO, OPDEF, DUP, or ECHO instruction, a
prototype statement for a macro or opdef definition, and, optionally,
LOCAL pseudo instructions. For a macro, the prototype statement provides
a name and a list of formal parameters and default arguments. For an
opdef, the prototype statement supplies the syntax and the formal
parameters. LOCAL pseudo instructions identify symbols that CAL must
render unique to the assembly each time the definition sequence is placed
in the source program.

Definition body

The body of the definition begins with the first instruction following
the header. The body consists of a series of CAL instructions other than
END and can include other definitions and calls. However, a definition
used within another definition is not recognized until the definition in
which it is contained is called. Therefore, an inner definition cannot
be called before the outer definition is called for the first time.

A comment statement identified by an asterisk in column I is ignored in
the definition header or definition body. Such comments are not saved as
a part of the definition sequence. Comment fields on other statements in
the body of a definition are saved.

SR-OOOO 4-44 J

The body of the definition is saved before editing for micros,
concatenation marks, and lowercase comments. Editing occurs when the
definition is assembled each time it is called. An inner nested
definition is not edited until it is called. ENDDUP, ENDM, END, and
LOCAL pseudo instructions and prototype statements cannot contain any
micros or concatenation characters. These statements are not edited when
they occur in a definition.

Definition end

The end of a macro or opdef definition is signaled by an ENDM pseudo
instruction with the proper name in the location field. The end of a dup
or echo definition is signaled by a statement count or by an ENDDUP with
the proper name in the location field.

Assembly source stack

Each time a definition sequence of code is referenced (called), an entry
is made in a pushdown stack, called the assembly source stack. The most
recent entry indicates the current source of statements to be assembled.
When a definition is called within a definition sequence being assembled,
another entry is made in the stack, and assembly continues with the new
definition sequence belonging to the inner, or nested, call. When the
end of a definition sequence is reached, the most recent stack entry is
removed and assembly continues with the previous stack entry. When the
stack becomes empty, assembly continues with statements from the source
file.

An inner nested call can be recursive, that is, it can reference the same
definition that is referenced by an outer call.

The depth of nested calls permitted by CAL is limited only by the amount
of memory available.

An inner definition must be entirely contained within the next outer
definition.

Skipping of statements due to conditional assembly must not extend beyond
the end of a definition sequence being assembled. An error is generated
and skipping is terminated if this condition occurs.

The sequence field in the right margin of the listing shows the
definition name and nesting depth for definition sequences being
assembled.

SR-OOOO 4-45 J

I

Formal parameters

Formal parameters are defined in the definition header. Three types of
formal parameters are recognized: positional, keyword, and local.
Formal parameters are recognized in the definition body whenever they are
delimited by a space, comma, beginning or end of a statement, or any of
the following characters:

"i&' ()*+- / < = > _(underline)

There can be from 0 to 511 formal parameters. Positional, keyword, and
local parameters must all have unique names within a given definition.

Formal parameter names should not be END, ENDM, ENDDUP, or LOCAL. When
the definition is referenced, substitution of actual arguments occur in
any pseudo instruction with these names contained in any inner definition.

MACRO - Macro definition

The MACRO pseudo instruction is the first statement of a macro
definition. The macro header consists of the MACRO pseudo instruction, a
prototype statement, and optional LOCAL pseudo instructions.

Format:

Location Result

ignored MACRO
tip name

LOCAL

name ENDM

Ooerand

HEADER:
Pl'P2' ••• 'Pn,el=dl,e2=d2, ••• ,em=~ Prototype

statement
syml, ••• ,symp Optional

LOCAL pseudo
instructions
DEFINITION BODY

DEFINITION END

Prototype statement parameters:

tip Optional location field parameter. It must be a valid
name. If present, it is a positional parameter.

name Name of the macro, must be valid name. If the name is the
same as a currently defined pseudo instruction or macro,
then this definition redefines the operation associated
with the name, and a warning messfge is issued to the
logfile (see Appendixes C and D).

8R-0000 4-46 J-Ol

Pi

e .
1"

positional parameter, must be a valid name. There can be
none, one, or more positional parameters.

Keyword parameter, must be a valid name. There can be
none, one, or more keyword parameters.

Default argument for keyword parameter ei. An argument
string can consist of any string of ASCII characters except
comma or blank.

If the first character of the default argument di is a
left parenthesis, then the string must be terminated by a
matching right parenthesis. Such an argument is called an
embedded argument, and consists of all characters between
the enclosing parentheses. An embedded string can contain
commas and blanks, and can also contain pairs of matching
left and right parentheses.

A space or comma following the equal sign specifies a null
(empty) character string as the default argument.

The default argument for a positional parameter is an empty string.

An inner macro definition must be entirely contained within the outer
definition.

Macro calls

A macro definition can be called by an instruction of the following
format:

Location Result Operand

Zoe name

Zoe Location field argument; must be a valid name. If a
location field parameter is specified on the macro
definition, this symbol is optional. It is sUbstituted
wherever the location field parameter occurs in the
definition.

name

If no location field parameter is specified in the
definition, this field must be empty.

Macro name; must match the name specified in the macro
definition.

t Warning error depends on the WMR and NWMR features of the CAL control
statement or the LIST pseudo instruction.

SR-OOOO 4-47 J

a· 1., Actual argument string corresponding to positional
parameters in the definition prototype statement.

The first argument, aI' is sUbstituted for the first
positional parameter, PI' in the prototype operand
field, the second argument, a2' is sUbstituted for the
second positional parameter, P2' etc. If the number of
operand subfields is less than the number of positional
parameters, null argument strings are used for the missing
arguments.

Two consecutive commas indicate a null (empty) argument
string.

A keyword parameter. Each keyword parameter fi must
match a keyword parameter in the macro definitlon. The
keyword parameters can be listed in any order1 they do not
need to match the order given in the macro definition. The
default arguments specified in the macro definition are
used as the actual argument for missing keyword parameters.

Keyword parameters are not recognized until after n
subfields (n commas), where n is the number of
positional parameters in the operand field of the macro
definition.

Actual argument string for keyword parameter fie A
space or comma following the equal sign indicates a null
(empty) argument string.

An actual argument string can consist of any ASCII characters except
comma or blank. A comma separates subfields and a blank terminates the
operand field.

If the first character of the actual argument is a left parenthesis, then
the string must be terminated by a matching right parenthesis. Such an
argument is called an embedded argument and consists of all characters
between the enclosing parentheses. An embedded string can contain commas
and blanks, and can also contain pairs of matching left and right
parentheses.

The actual argument string for each positional and keyword parameter is
substituted in the definition sequence wherever the formal parameter
occurs. Embedded argument strings are substituted without the enclosing
parentheses.

SR-OOOO 4-48 J

OPDEF - Operation definition

The OPDEF pseudo instruction is the first statement of an opdef
definition.

Format:

Location Result Operand

name
lfp

name

name

lfp

synpes

synop

OPDEF
synpes
LOCAL

ENDM

synop
syml,···,symp

HEADER:
Macro pseudo
Prototype statement
Optional LOCAL pseudo
instructions

DEFINITION BODY
DEFINITION END

Name of the OPDEF definition. This name is used as an
identification of the definition and has no association
with names appearing in the result field of instructions.
The name must match the name in the location field of the
ENDM pseudo instruction which ends the definition. This
name is also listed in the sequence of lines generated by
an OPDEF call.

Optional location field parameter~ must be a valid symbol.
If present, the location field parameter is a positional
parameter.

Result field syntax~ must be one, two, or three subfields
specifying a valid result field syntax. Positional
parameters are indicated by register symbols and expression
designators.

Operand field syntax~ must be one, two, or three subfields
specifying a valid operand field syntax. Positional
parameters are indicated by register symbols and expression
designators.

Symbolic instruction syntax

The symbolic instruction syntax forms allowed by CAL can be described in
terms of italic letters defining possible character strings representing
registers, expressions, mnemonics, operators, and combinations of these
strings.

SR-OOOO 4-49 J

If the syntax is the same as a currently defined opdef, the definition
redefines the operation associated ~ith the syntax and a warning message
is issued (see Appendixes C and D).

An OPDEF must match the syntax formed by combining one of the pa"tterns
from the result field syntax with any of the patterns in the operand
field syntax as shown below.

Result
field
syntax

p

c
c,w
c,w,W
w,w
W,W,W
m

Expressions

Operand
field
syntax

f
f,g
f,m
f,g,w

The letter x represents an expression. It is signified in the
prototype statement by a name whose first character is @. The name is
taken as a formal parameter.

Registers

b b tt tt tt The letters a, , s, s, t, st, sm, and V represent the A, B,
SB,tt S, T, ST,tt SM,tt and V register designators, which must be signified
in the opdef prototype statement by one of the following character
strings.

a

b
sb:
s :
t :
st:
sm:
V . .

A.sym

B.sym
SB.symtt
S.sym
T.sym
ST.symtt
SM.symtt
v.sym

where sym is a valid symbol and is used as a
positional parameter

t Warning error depends on the WMR and NWMR features of theCAL control
statement or the LIST pseudo instruction

tt For CRAY X-MP Computer Systems only

SR-OOOO 4-50 J

The letters P, d, and e represent sets of registers and are defined
as follows:

P: a
b
8
SB
t
V
8b
8t
8m

d: a
8

SB
V

e: 8

V
SB

The letter C represents the special register designators.

c: CA
CE
CI
CL
MC
RT
SM
VL
VM
XA

The letter m represents a mnemonic, such as JAZ, which is
one, two, or three alphabetic characters, A-Z, except for
strings represented by c and SB.

Combinations

w: null y: p z: P
p :x :x
:x VM

i: p j: < y k: &Z
c > Y \Z
< Y &2 !z
> Y \2
i< Y :2 Z: < y
i> y +y > Y
ip -y
iVM *p f: null
+p /p :x
-p +Fe i
+Fd -Fe ij
-Fd *Fe ijk
/He *He
Pe *Re g: null
Z8 *Ie y
ZSB /Fe yZ

/Re

SR-OOOO 4-51

signified by
those character

J

Exceptions

1. An expression x, occurring in a string f or g, must
terminate the string.

2. The form f,m in the operand field is allowed only if the
result field is VM.

Examples of prototype statements (examples of the form w,W f,g):

Location Result Operand Comment
1 10 20 35

@l,A.AREGI ,A.AREG2 Formal paramete rs @l,AREGl and
AREG2

,A.REG @X,S.SREG Formal paramete rs REG, @X, SREG

LOCAL - Specify local symbols

The LOCAL pseudo instruction specifies symbols that are defined only
within the macro or opdef definition. The LOCAL pseudo instruction also
defines any of the named symbols used within an inner definition or call
that are not defined as local to that inner usage.

On each macr%pdef call and each repetition of a dup or echo definition
sequence, the assembler creates a unique symbol for each local parameter
and substitutes the created symbol for the local parameter on each
occurrence within the definition. The symbol created for local
parameters has the form %%nnnnnn, where n is an octal digit.

A symbol not defined as local in a definition can be referenced outside
an assembly of the definition sequence.

One or more LOCAL pseudo instructions can appear in a macro, opdef, dup,
or echo definition. The LOCAL pseudo instructions must immediately
follow the macro or opdef prototype statement or DUP or ECHO pseudo
instructions, except for intervening comment statements.

Format:

Location Result Operand

ignoped LOCAL

symi Symbols that are to be rendered local to the definition

SR-OOOO 4-52 J

ENDM - End macro or opdef definition

The body of a macro or opdef definition is terminated by an ENDM pseudo
instruction.

Format:

name

Opdef calls

Name of a macro or opdef definition sequence. The name
must match the name appearing in the result field of the
macro prototype or the location field name in an OPDEF
instruction.

An opdef definition can be called by an instruction with the same result
and operand field syntax as specified in the opdef prototype statement.

Format:

I LocationlResult

sym synp

sym Location field argument, must be a valid symbol. If a
location field parameter is specified in the opdef
definition, this symbol is optional. sym is sUbstituted
wherever the location field parameter occurs in the

synp

definition.

If no location field parameter is specified in the opdef
definition, this field must be empty.

Result field, consisting of one, two, or three subfields
with the same syntax as specified in the opdef prototype
statement

syno Operand field, consisting of none, one, two, or three
subfields with the same syntax as specified in the opdef
prototype statement

The character strings synp and syno must be exactly as specified in
the opdef definition, except where an expression x or a register p is
indicated.

SR-OOOO 4-53 J

An expression must appear wherever an expression x is indicated in the
prototype statement. The actual argument string consists of the
characters in the expression up to the terminating space or comma. The
actual argument string is substituted in the definition sequence wherever
the corresponding formal parameter x occurs.

An A, B, SB,t S, T, ST,t SM,t or V register designator must appear wherever
the ch~racter string A.sym, B.sym, SB.sym,t S.sym, T.sym, ST.sym,t
SM.sym , or v.sym, respectively, appeared in the prototype statement.

If tge register designator is of the form An, Bn, SBn,t Sn, Tn, STn,t
SMn, or Vn, then the actual argument string is n, where n is a single octal
digit or two octal digits (B, T, and SMt only). If the refister
designator is of the form A.x, B.x, SB.X,t S.x, T.X, ST.X, SM.X,t or
V.x, where x is a symbol or numeric constant, then the actual argument
string is x.

Examples of macro and opdef definitions and calls

Example 1. Macro with positional parameters.

Macro definition:

Location Result Operand Comment
1 10 20 35

MACRO
LBL READ DN,UDA,CT
LBL Al DN+I

A2 UDA
A3 CT
R $RWDR
EXT $RWDR

READ ENDM

Macro call and expansion. The second argument in the call is an embedded
argument. The expansion starts on line two.

Location Result Operand Comment
1 10 20 35

READ FILE, (BUF,O) ,3
Al FILE+l

A2 BUF,O
A3 3
R $ RWDR
EXT $RWDR

t For CRAY X-MP Computer Systems only.

SR-OOOO 4-54 J

Note that the location field parameter was omitted on the macro call.
The result and operand fields of the first line of the expansion were
shifted left three character positions because a null argument was
sUbstituted for the 3-character parameter, LBL.

If only one space appeared between the location field parameter and
result field in the macro definition and if a null argument were
sUbstituted for the location parameter, the result field would be shifted
into the location field in column 2. Therefore, at least two spaces
should always appear between a parameter in the location field and the
first character in the result field in a definition.

Example 2. Macro with positional and keyword parameters.

Macro definition:

Location Result O~erand Comment
1 10 20 35

MACRO
TABLE TABN,VALl=#0,VAL2=,VAL3=0
BLOCK TABLES

TABN CON 'TABN'L
CON VALl
CON VAL 2
CON VAL 3
BLOCK * resume use of p revious block

TABLE ENDM

Macro call and expansion. The expansion starts on line 2.

Location Result Operand Comment
1 10 20 35

TABLE TABA,VAL3=4,VAL2=A
BLOCK TABLES

TABA CON 'TABA'L
CON #0
CON A
CON 4
BLOCK * resume use of p revious block

SR-OOOO 4-55 J

Example 3. Opdef illustrating a scalar floating-point divide sequence.

Opdef definition:

Location Result Operand Comment
1 10 20 35

FDV OPDEF Scalar floating -point
L S.RI S.R2/FS.R3 divide prototyp e statement

ERRIF Rl,EQ,R2
ERRIF Rl,EQ,R3

L S.Rl /HS.R3
S.R2 S.R2*FS.Rl
S.R3 S.R3*IS.RI
S.Rl S.R2*FS.R3

FDV ENDM

Opdef call and expansion. The expansion starts on line 2.

Location Result Operand Comment
1 10 20 35

A S4 S3/FS2 Divide 53 by 52 , result to 54
ERRIF 4,EQ,3
ERRIF 4,EQ,2

A 5.4 /H5.2
S.3 S.3*FS.4
S.2 S.2*IS.4
5.4 S.3*FS.2

Example 4. Opdef defining a conditional jump where a jump occurs if the
A register values are equal.

Opdef definition:

Location Result Operand Comment
1 10 20 35

JEQ OPDEF
L JEQ A.Al,A.A2,@TAG

AO A Al-A A2 - -JAZ @TAG
JEQ ENDM

5R-0000 4-56 J

Opdef call and expansion. The expansion starts on line 2.

Location Result Operand I Comment
1 10 20 35

JEQ A3,A6,GO
AO A3-A5
IJAZ IGO

OPSYN - Synonymous operation

The OPSYN pseudo instruction defines or redefines a name in the location
field as being 'the same as the named operation in the operand field. A
previous definition with a name matching the location field name is no
longer available. Any pseudo instruction or macro can be redefined in
this manner.

An operation defined by OPSYN is global if the OPSYN pseudo occurs before
the IDENT pseudo that begins 'a program module, and it is local if the
OPSYN pseudo appears with an IDENT, END sequence. Global operations can
be referenced in any program module following the definition. Every
local operation is removed at the end of a program module, making any
previous global definition with the same name available again.

Format:

I LocationlReSUlt

name 1 OPSYN

l D2erand

name 2

name 2

SR-OOOO

A valid name or the name of a defined operation such as a
pseudo instruction or macro. namel must not be blank.

The name of a defined operation. If name2 is blank,
then namel becomes a do-nothing pseudo instruction.

4-57 J

Example:

OPSYN with a macro definition to redefine the pseudo instruction IDENT.

OPSYN definition:

Location Result Operand Comment
1 10 20 35

IDENTT OPSYN I DENT
MACRO
I DENT NAME
LIST OFF,NXRF

NAME LIST ON,XRF Processed if LI ST=NAME on CAL
statement

IDENTT NAME
I DENT ENDM

OPSYN call and expansion. The expansion starts on line 2.

Location Result Operand Comment
1 10 20 35

IDENT A
LIST OFF,NXRF

A LIST ON,XRF
IDENTT A

CODE DUPLICATION

CAL provides a set of four instructions (DUP, ECHO, ENDDUP, and STOPDUP)
that allow multiple assemblies of sequences of source statements.

DUP - Duplicate code

The DUP pseudo instruction introduces the definition of a sequence of
code that is assembled repetitively immediately following the definition.
The dup sequence is assembled the number of times specified on the DUP
pseudo instruction. The dup sequence to be repeated consists of
statements following the DUP pseudo instruction and any optional LOCAL
pseudo instructions. Comment statements are ignored. The dup sequence
ends when the statement count is exhausted or when ENDDUP with a matching
location field name is encountered.

A nested inner dup definition must be entirely contained in the outer
definition.

SR-OOOO 4-58 J

STOPDUP can be used to override the repetition count.

Formats:

Location Result Qperand

dupname DUP
DUP

times
times,eount

dupname

times

eount

Name of the dup sequence; required if the count field is
null or missing. dupname is used to match an ENDDUP name
if no count field is present. dupname is also used in
the sequence field of the listing for the dup expansion.

An absolute expression with positive value specifying
number of times to repeat the code sequence. If the value
is 0, the code is skipped.

Optional absolute expression with positive value specifying
the number of statements to be duplicated. LOCAL pseudo
instructions and comment statements (* in column 1) are
ignored for the purpose of this count. Statements are
counted before expansion of nested macro or opdef calls or
dup or echo sequences.

ECHO - Duplicate code with varying arguments

The ECHO pseudo instruction introduces the definition of a sequence of
code that is assembled repetitively immediately following the definition.
On each repetition, the actual arguments are substituted for the formal
parameters until the longest argument list is exhausted. Null characters
are substituted for the formal parameters once shorter argument lists are
exhausted. The echo sequence to be repeated consists of statements
following the ECHO pseudo instruction and any optional LOCAL pseudo
instructions. Comment statements are ignored. The echo sequence ends
with an ENDDUP that has a matching location field name.

A nested inner echo definition must be entirely contained in the outer
definition.

STOPDUP can be used to override the repetition count determined by the
number of arguments in the longest argument list.

Format:

Location Result Operand

dupname ECHO

SR-OOOO 4-59 J

dupname Name of the echo sequence, must not be empty. dupname
must match the location field name in the ENDDUP
instruction that terminates the echo sequence.

Formal parameter name. There can be none, one, or more
formal parameters, ei.

List of actual arguments. The list can be a single
argument ail or a parenthesized list of arguments
ail,ai2, ••• ,aim where each aij is an actual
argument to be substituted for ei in the echo sequence.
Each actual argument aij can be an ASCII character
string not containing blanks or commas or can itself be an
embedded argument containing a list of arguments aij
enclosed in matching parentheses. An embedded argument can
contain blanks or commas and matched pairs of parentheses.

The argument ail is substituted for ei in the echo
sequence on the first repetition, ai2 is substituted
for ei on the second repetition, etc.

A comma immediately followed by another comma or closing
right parenthesis specifies a null (empty) character string
as the argument.

ENDDUP - End duplicated code

The ENDDUP pseudo instruction ends the definition of the code sequence to
be repeated. An ENDDUP pseudo instruction terminates a dup or echo
sequence with the same name. ENDDUP has no effect on dup or echo
sequences terminated by a statement count.

Format:

I LocationlResult

dupname Name of a dup sequence

SR-OOOO 4-60 J

STOPDUP - Stop duplication

The STOPDUP pseudo instruction stops duplication of a code sequence
indicated by a DUP or ECHO pseudo instruction. It overrides the
repetition count. Assembly of the current repetition of the dup sequence
is terminated immediately. STOPDUP terminates the innermost dup or echo
sequence with the same name. STOPDUP does not affect the definition of
the code sequence to be duplicated.

Format:

I LocationreSUlt I Operand

dupname Name of a dup sequence

Examples of duplicated seguences

Example 1. Use DUP pseudo instruction to define an array with values
0,1,2,3.

DUP definition:

Location Result Operand Comment
1 10 20 35

S = w. *
DUP 3,1
CON w.*-S

DUP expansion:

Code generated Location Result Operand Comment
1 10 20 35

(writer commen ti
by not generated

CAL)
CON W.*-S (W. *-5=0)

0000000000000000000000 CON W.*-S (W. *-S=l)
0000000000000000000001 CON W.*-S (W. *-S=2)
0000000000000000000002 CON W.*-S (W.*-S=3)

SR-OOOO 4-61 J

Example 2. Illustration of nested duplication.

ECHO definition:

Location Result Operand Comment
1 10 20 35

ECHO ECHO RI=(A,S),RJK=(B,T)
I SET 0
DUPI DUP 8
JK SET 0
DUPJK DUP 64

RI.I RJK.JK
JK SET JK+l
DUPJK ENDDUP
I SET 1+1
DUPI ENDDUP
ECHO ENDDUP

ECHO and DUP expansion:

Location Result Operand Comment
1 10 20 35

(writer comment not generated
by CAL)

A.I B.JK I=O,JK=O
A.I B.JK I=O,JK=1

· · · · · · · · · A.I B.JK I=8,JK=64
S.I T.JK I=O,JK=O
S.I T.JK I=O,JK=l

· · · · · · · · · S.I T.JK I=8,JK=64

SR-OOOO 4-62 J

Example 3. Use STOPDUP to terminate duplication.

STOPDUP definition:

Location Result Operand Comment
1 10 20 35

T SET 0
A DUP 1000
T SET T+l

IFE T,EQ,3,1 Terminate dupli cation when T=3
A STOPDUP

CON T
A ENDDUP

STOPDUP expansion:

Location Result Operand Comment
1 10 20 35

T SET T+l
CON T

T SET T+l
CON T

T SET T+l
A STOPDUP

MICRO DEFINITION

Through the use of micros, a programmer is able to assign a name to a
character string and subsequently refer to the character string through
use of its name. A reference to a micro results in the character string
being substituted for the name before assembly of the source statement
containing the reference. Boldface indicates a CAL response.

Micro references

A programmer refers to a micro by using the micro name enclosed by
quotation marks anywhere in a source statement other than a comment
line. If column 72 of a line is exceeded as a result of a micro
substitution, the assembler creates additional continuation lines. No
replacement takes place if the micro name is unknown or if one of the
micro marks has been omitted.

SR-OOOO 4-63 J

Example:

A micro named PFX is defined as 10. A reference to PFX is in the
location field of a line:

Location Result Operand Comment
1 10 20 35

"PFX"TAG SO Sl

However, before the line is interpreted, CAL sUbstitutes the definition
for PFX producing the following line:

Location Result Operand Comment
1 10 20 35

IOTAG SO Sl

MICRO - Micro definition

The MICRO pseudo instruction assigns a name to a character string.

Formats:

Location Result Operand

name
name
name

name

MICRO
MICRO
MICRO

'chapactep stping',exPl,exP2
'chapactep stping',exPl
'chapactep stping'

Micro name. If name is previously defined, the previous
micro definition is lost.

'chapactep stping'

SR-OOOO

A character string, which can include previously defined
micros

To specify a single apostrophe in a character string, use
two adjacent apostrophes. These are counted as a single
character in the string.

A character string can be delimited by a character other
than an apostrophe. Any ASCII character other than a comma
or space can be used. Two consecutive occurrences of the
delimiting character indicate a single such character. For
example, a micro consisting of the single character * could
be specified as '*' or ****

4-64 J

eXPl Absolute expression indicating number of characters in the
micro character string.

The micro character. string is terminated either by the
character count or the final apostrophe of the character
string, whichever occurs first. The string is considered
empty if eXPl has a 0 or negative value. eXPl is
considered very large if it is null. In this case the
string is terminated by the final apostrophe.

eXP2 Absolute expression indicating starting character. The
micro character string is considered to begin with the
first character of the character string if eXP2 is null
or has the value of 0 or 1 or is negative.

Example:

Location Result
1 10

MIC MICRO
MICI MICRO
MIC2 MICRO

MIC2 MICRO
MIC4 MICRO

MIC4 MICRO
MIC5 MICRO

Operand Comment
20 35

'THIS IS A MICRO STRING'

'''MIC''',l

Micro string is
Micro consistin

1 asterisk
g of 1st

character of th e micro string
MIC represented by

'THIS IS A MICRO STRING',l
'''MIC''',2,2 Micro consistin

characters of m
9 of 2nd and 3rd
icro string

represented by MIC
'THIS IS A MICRO STRING',2,2

IBlank operand f
empty string

ield defines an

OCTMIC and DECMIC - Octal and decimal micros

These pseudo instructions convert the value of an expression into a
character string that is assigned a micro name.

Format:

Location Result

name
name

SR-OOOO

OCTMIC
DECMIC

Opera~d

exp,count
exp,count

4-65 J

name

exp

count

Micro name

An absolute expression to be converted to up to 8
characters representing the octal (or decimal) value

An expression providing an optional character count less
than or equal to 8. If this parameter is present, leading
zeros are supplied to provide the requested number of
characters.

Example of MICSIZE and DECMIC:

I Code generated Location Result Operand Comment
I 1 10 20 35

26 V MICSIZE MIC The value of V is

2 VOCT DECMIC V,2

Example of OCTMIC:

I Code generated Location Result Operand
l 1 10 20

IP =
VAL OCTMIC
MSG DATA

DATA

Predefined micros

the number of
characters in the
micro string
represented by MIC

VOCT is a rnicr o
name
There are "VOC T"

MIC characters in
There are 26
characters in MIC

Comment
35

0'20
IP
'THE VALUE OF IP
IS "VAL'"
'THE VALUE OF IP
IS 20'

In addition to the above micros, the CAL assembler provides the following
predefined micros.

$ DATE

$JDATE

SR-OOOO

Current date 'mm/dd/yy'

Julian date 'yy/ddd'

4-66 J

$TIME Time of day 'hh:rrun:ss'

$MIC Micro character (ASCII 042)

$CNC COncatenation character (ASCII 137)

$ QUAL Name of qualifier in effect, if none, then null string.

$CPU Target machine: 'CRAY I' or 'CRAY XMP'

Example: Use of predefined micro $DATE

Location Result Operand Comment
1 10 20 35

DATA 'THE DATE IS
DATA ITBB DATE IS

SR-OOOO 4-67

"$ DATE" ,
/23/82 1 06

J

CAL EXECUTION 5

The CAL assembler is loaded and executed on the Cray mainframe through
placement of a CAL control statement in the job control statement file of
a Cray Operating System (COS) job deck. Loading and executing of the
assembled program is initiated by a call to the loader through an LDR
control statement as described in the CRAY-OS Version 1 Reference Manual,
pUblication SR-OOll. ASSIGN control statements for datasets used by the
assembled program must be placed in the job deck before the LDR control
statement.

Sample job deck order:

eod
/
I Data

IEOF
/~---------------

ICAL Source statements
I/EOF

I LDR.
I CAL.

IJOB,JN=CALJOB.P=lO,T=20.
I job statement

Default datasets are $IN
for source statements,
$OUT for list output, and
$BLD for binary load data.

The CAL control statement, system text, and binary system text are
described in this section.

CAL CONTROL STATEMENT

A CAL control statement has the following format:

CAL,Cpu=type,I=idn,L=ldn,B=bdn,E=edn,ABORT,DEBUG,options ,LIST=name,

s=sdn,SYM=sym,T=bst,X=xdn.

SR-OOOO 5-1 J

Parameters are order independent and are optional. Parameters are
processed in the order they appear. In the case of duplication or
contradictory specification of parameters, the latter specification is
used.

Parameters:

CPU=type Cray computer to execute CAL source code. The default is
the machine on which CAL is executing. type can be
CRAY-I or CRAY-XMP.

I=idn Name of dataset containing source statement input. The
default is $IN. CAL reads source statements from dataset
idn until an end-of-file is encountered.

L=Zdn Name of dataset into which list output is written. The
default is $OUT. CAL writes one file of output. If L=O,
no listing is written.

B=bdn

E=edn

ABORT

DEBUG

SR-OOOO

Name of dataset to receive binary load data. The default
is $BLD. CAL writes binary load data to this dataset, one
record per program module. An end-of-file is not written.
If B=O, no binary load data is written.

Name of dataset on which error listing is written. The
default is no error listing if the list output is on $OUT,
otherwise, the default is $OUT. CAL writes source
statements containing errors to this dataset as one file.
Specifying E causes an error listing to be generated on a
dataset named $OUT. If the error dataset name, edn, is
the same as the listing dataset name, then list output is
written.

Abort mode. If this parameter is present, CAL aborts the
job after assembling all program modules if any fatal
errors were encountered during assembly. If this parameter
is omitted or if fatal errors were not encountered, CAL
exits normally and job processing continues with the next
control statement in the job deck.

Debug mode. If this parameter is omitted and fatal errors
occur in a program, CAL writes a binary record containing
only a Program Description Table (PDT) with the Fatal Error
flag set. The loader ignores a program module that has
this flag set.

When the DEBUG parameter is present, CAL writes a full
binary record with the fatal error flag clear, whether or
not fatal errors are encountered. The loader will attempt
to load and execute the module.

5-2 J

options

SR-OOOO

Listing control options. Any of the following listing
control options can be specified to enable or disable a
listing feature. The selection of an option on the CAL
control statement overrides the enabling or disabling of
the corresponding feature on a LIST pseudo instruction.
Refer to the description of the LIST pseudo in section 4
for more details about these options.

Defaults are underlined.

ON
OFF

XRF
NXRF

XNS
NXNS

DUP
NDUP

LIS
NLIS

MAC
NMAC

MIC
NMIC

MIF
NMIF

WEM
NWEM

TXT
NTXT

WRP
NWRP

WMR

NWMR

Enables source statement listing
Disables source statement listing

Enables cross reference
Disables cross reference

Includes non-referenced symbols in cross reference
Does not include non-referenced symbols in cross
reference

Enables listing of duplicated statements
Disables listing of duplicated statements

Enables listing of listing control pseudo instructions
Disables listing of listing control pseudo
instructions

Enables listing of macro expansions
Disables listing of macro expansions

Enables listing of generated statements before editing
Disables listing of generated statements before
editing

Enables macro conditional listing
Disables macro conditional listing

Enables warning errors
Disables warning errorS

Enables global text source listing
Disables global text source listing

Enables relocatable parcel-address warning error
Disables relocatable parcel-address warning error

Enables warning error message for macro and opdef
redefinitions
Disables warning error message for macro and opdef
redefinitions

5-3 J

LIST=name Name of LIST pseudo instructions to be processed. A LIST
pseudo instruction with a matching location field name is
not ignored. A LIST pseudo with a nonblank location field
name that does not match a name specified on the CAL
control statement is ignored. A name can be a single
name or can be a list of names separated by colons, (for
example, LIST=TASKI:TASK2:TASK7). If just LIST is
specified, all LIST pseudo instructions are processed,
regardless of the location field name.

S=8dn Name of dataset containing system text file. The default
is $SYSTXT. If S=O is specified, no system text is used.
8dn can be a single dataset name or can be a list of up
to ten dataset names separated by colons, (for example,
S=$SYSTXT:OURTXT:MYTXT). The system texts are processed in
the order of appearance. (See description of system text
later in this section.)

SYM=8ym Name of dataset where the optional symbol table is to be
written. The default is no symbol table dataset generated
by CAL. If SYM is specified without a value, the symbol
text is written to the same dataset as the binary load data.

T=b8t Binary system text. Specifies dataset name to which all
global macros, opdefs, symbols, and OPSYN assignments are
written. The default, equivalent to specifying T=O, is no
binary system text written. If T is specified without a
value, the binary dataset is written to $BST.

X=xdn Binary symbol table for the global cross reference
generator, SYSREF. Each record contains cross reference
information for the global symbols in one particular
program unit. The default, equivalent to specifying X=O,
is to write no global cross reference records. If X is
specified without a value, the information is written to
$XRF. (See description of binary system text later in this
section.)

Example of CAL statement:

CAL,I=$IN,E,ABORT.

This CAL statement specifies that source statements are on $IN, errors
are written on $OUT, list output is suppressed, binary load data is
written on $BLD, the system text is on $SYSTXT, and no binary system text
is written. The job aborts if fatal errors are encountered.

SR-OOOO 5-4 J

N~E

Input datasets and system text datasets (such as
$SYSTEXT) that are permanent datasets having the same
names as the local datasets need not be accessed (via
the ACCESS control statement) before calling CAL. Note
also that the IDs for these datasets must be null.

SYSTEM TEXT

System text allows for definition of global macros, opdefs, micros, and
symbols that are commonly used. These macros, opdefs, micros, and
symbols are defined in a system text that is separate from the user's
source statement input and that is assembled before the user's source.
All global definitions contained in the system text are preserved for
reference in the user's programs.

System text symbols referenced by the user are identified in the cross
reference listing by the system text dataset name.

System text can contain any CAL statements that are allowed in normal
source input. Typically however, a system text consists of macro, opdef,
micro, and symbol definitions followed by an IDENT and END pseudo. While
assembling system text, CAL suppresses writing binary load data and list
output, except for statements that contain errors.

An IDENT and an END pseudo are not required at the end of a system text,
but, if present, facilitate assembling the system text separately as a
program module for the purpose of obtaining a listing.

BINARY SYSTEM TEXT

A binary system text is a preassembled version of a source system text.
A binary system text is generated as a result of the presence of the T
option on the CAL control statement. When T is specified, all global
macros, opdefs, symbols, and OPSYN assignments are written to the
specified dataset in an internal CAL format.

The specified dataset can thereafter be used with the S option, as if
using the source system text. CAL determines whether a system text is in
source or in binary format. When multiple system texts are used, binary
and source versions can be mixed. The effect is as if all of the source
versions were present.

SR-OOOO 5-5 J

Examples:

NOTE

Use of binary system text generally reduces assembly
time.

1. CAL,I=SOURCE1,S=0,T=BINARY1.

2. CAL,I=SOURCE3,S=0,T=BINARY3.

3. CAL,I=MYPROG,S=BINARY1:SOURCE2:BINARY3.

In examples 1 and 2, binary versions of source system texts SOURCEl and
SOURCE3 are created. If S=O had not been specified, CAL would have
assembled $SYSTXT by default. The global macros, opdefs, and symbols in
$SYSTXT would have been copied into the binary system texts being
generated.

In example 3, the binary texts generated by examples land 2 are used.
The effect is as if the following statement had been written instead of
example 3:

CAL,I=MYPROG,S=SOURCE1:SOURCE2:S0URCE3.

SR-OOOO 5-6 J

APPENDIX SECTION

INSTRUCTION SUMMARIES A

This appendix includes an instruction summary for CRAY-l mainframes
(Models A and B, CRAY-l S Series, and CRAY-l M Series) and an instruction
summary for CRAY X-MP mainframes.

INSTRUCTION SUMMARY FOR CRAY-l COMPUTERS

CRAY-l CAL Page Unit

OOOxxx ERR 3-95

tooOijk ERR exp 3-95

tt0010jk CA,Aj Ak 3-97

ttOOlljk CL,Aj Ak 3-97

tt0012jx CI,Aj 3-98

tt0013jx XA Aj 3-99

tt0014jO RT Sj 3-100

ttS0014j4 PCI sj 3-100

ttS0014x5 CCI 3-101

tts0014x6 ECI 3-101

ttS0014x7 DCI 3-102

t Special syntax form
tt Privileged to monitor mode

Description

Error exit

Error exit

Set the channel (AJ)
current address to (Ak)
and begin the I/O sequence

Set the channel (AJ)
limit address to (Ak)

Clear channel (AJ)
interrupt flag

Enter XA register with
(AJ)

Enter RTC register with
(Sj)

Enter interval register
with (SJ)

Clear PCI request

Enable PCI request

Disable PCI request

S Programmable clock (optional on CRAY-l Models A and B)

SR-OOOO A-l J

CRAY-l CAL Page Unit DescriEtion
\

0020~k VL Ak 3-33 Transmit (Ak) to VL
register

t0020~ VL 1 3-33 Transmit 1 to VL register

002l~~ EFI 3-53 Enable interrupt on
floating-point error

0022xx DFI 3-53 Disable interrupt on
floating-point error

003~j~ VM Sj 3-33 Transmit (SJ) to VM
register

t003:t'O~ VMO 3-33 Clear VM register

004~~~ EX 3-95 Normal exit

to04ijk EX exp 3-95 Normal exit

005~jk J Bjk 3-92 Jump to (Bjl<)

006ijkm J exp 3-92 Jump to e~p

007ijkm R exp 3-94 Return jump to e~p; set
BOO to P.

OlOijkm JAZ e~p 3-93 Branch to e~p if (AO) =0

Ollijkm JAN e~p 3-93 Branch to e~p if (AO)~O

Ol2ijkm JAP e~p 3-93 Branch to e~p if (AO) .:.0

Ol3ijkm JAM e~p 3-93 Branch to e~p if (AO) <0

Ol4ijkm JSZ e~p 3-93 Branch to e~p if (SO) =0

Ol5ijkm JSN e~p 3-93 Branch to e~p if (SO) ~O

Ol6ijkm JSP e~p 3-93 Branch to e~p if (SO) .:.0

Ol7ijkm JSM e~p 3-93 Branch to e~p if (SO) <0

ttt020ijkm Ai e~p 3-9 Tr ansmi t e~p= jkm to Ai

t Special syntax form
ttt Instruction is generated depending on the value of the expression as

described in section 3.

SR-OOOO A-2 J

CRAY-l

ttt02lijkm Ai exp

ttt022ijk Ai exp

023ijx Ai sj

024ijk Ai Bjk

02sijk Bjk Ai

026ijO Ai PSj

§§026ijl Ai QSj

027ijx Ai ZSj

030ijk Ai Aj-tAk

t030iok Ai Ak

t030ijo Ai Aj+l

03lijk Ai Aj-Ak

t ttt03lioo Ai -1

t03l iok Ai -Ak

t03l ijO Ai Aj-l

032ijk Ai Aj*Ak

033iOx Ai CI

t Special syntax form

3-9

3-9

3-19

3-20

3-29

3-88 Pop/LZ

3-89 Pop/LZ

3-91 Pop/LZ

Description

Transmit exp=ones
complement of jkm to Ai

Transmit exp=jk to Ai

Transmit (SJ) to Ai

Transmit (Bjk) to Ai

Transmit (Ai) to Bjk

Population count of (SJ)
to Ai

Population count parity
of (SJ) to Ai

Leading zero count of
(SJ) to Ai

3-46 A Int Add Integer sum of (AJ) and
(Ak) to Ai

3-18 A Int Add Transmit (Ak) to Ai

3-46 A Int Add Integer sum of (AJ) and
1 to Ai

3-46 A Int Add Integer difference of
(AJ) less (Ak) to Ai

3-9 A Int Add Transmit -1 to Ai

3-19 A Int Add Transmit the negative
of (Ak) to Ai

3-46 A Int Add Integer difference of
(Aj) less 1 to Ai

3-47 A Int Mult Integer product of (AJ)
and (Ak) to ~i

3-21 Channel number to Ai
(j=O)

ttt Instruction is generated depending on the value of the expression as
described in section 3.

§§ Vector Population Count (optional on CRAY-! Models A and B)

SR-OOOO A-3 J

CRAY-l CAL Page Unit DescriEtion

033ijO Ai CA,Aj 3-22 Address of channel (AJ)
to Ai (#0; k=0)

033ijl Ai CE,Aj 3-22 Error flag of channel (AJ)
to Ai (#0; 1<=1)

034ijk Bjk,Ai ,AO 3-41 Memory Read (A i) words to B
register jk from (AO)

t034ijk Bjk,Ai O,AO 3-41 Memory Read (Ai) words to B
register jk from (AO)

035ijk ,AO Bjk,Ai 3-37 Memory Store (Ai) words at B
register jk to (AO)

t035ijk O,AO Bjk,Ai 3-37 Memory Store (Ai) words at B
register jk to (AO)

036ijk Tjk,Ai ,AO 3-41 Memory Read (A i) words to T
register jk from (AO)

t036ijk Tjk,Ai O,AO 3-41 Memory Read (A i) words to T
register jk from (AO)

037ijk ,AO Tjk,Ai 3-38 Memory Store (Ai) words at T
reg ister jk to (AO)

t037ijk O,AO Tjk,Ai 3-38 Memory Store (Ai) words at T
register jk to (AO)

040ijkm si exp 3-11 Transmit jkm to si

04lijkm si exp 3-11 Transmit exp=ones
complement of jkm to si

042ijk si <exp 3-13 S Logical Form ones mask
exp=64-jk bits in si
from the right

t042ijk si t>exp 3-13 S Logical Form ones mask
exp=64- jk bits in si
from the right

t042i77 si 1 3-12 S Logical Enter 1 into si

t042iOO si -1 3-12 S Logical Enter -1 into si

t Special syntax form

SR-OOOO A-4 J

CRAY-l CAL

043ijk si >exp

t043ijk si # <exp

t043iOo si 0

044ijk si sj&Sk

t044ijo si Sj&SB

t044ijO si SB&Sj

045ijk si #sk&Sj

t045ijo si #SB&Sj

046ijk si Sj'.$k

t046ijO si Sj\SB

t046ijo si SB\Sj

047ijk si #sJ\sk

t047iok si #Sk

t047ijo si #SJ\SB

t047ijO si #SB\Sj

t047ioo si #SB

t Special syntax form

SR-OOOO

Description

3-14 S Logical Form ones mask exp=jk
bits in si from the left

3-14 S Logical Form ones mask exp=jk
bits in si from the left

3-12 S Logical Clear si

3-68 S Logical Logical product of (S~
and (Sk) to si

3-68 S Logical Sign bit of (sj) to si

3-68 S Logical Sign bit of (SJ) to Si
(#0)

3-70 S Logical Logical product of (sj)
and ones complement of
(Sk) to si

3-70 S Logical (sj) with sign bit
cleared to si

3-73 S Logical Logical difference of
(Sj) and (S k) to S i

3-73 S Logical Toggle sign bit of sj,
then enter into Si

3-73 S Logical Toggle sign bit of sj,
then enter into S i (jlO)

3-75 S Logical Logical equivalence of
(Sk) and (SJ) to Si

3-24 S Logical Transmit ones complement
of (Sk) to si

3-75 S Logical Logical equivalence of
(Sj) and sign bit to Si

3-75 S Logical Logical equivalence of (S~
and sign bit to si (jlO)

3-15 S Logical Enter ones complement of
sign bit into si

A-5 J

CRAY-! CAL

I 050ijk si sj!si&sk

t05oijo si sj!Si&SB

05lijk si sj:sk

t05liok si sk

t05lijo si Sj!SB

t05lijo si SB!Sj

t05lioo si SB

o 52ijk so si<exp

053ijk SO si>exp

054ijk si si<exp

055ijk si si>exp

056ijk si si,sj<Ak

t056ijO si Si,Sj<l

t056iok si si<Ak

057ijk si sj,si>Ak

t057ijO si Sj,Si>l

t Special syntax form

SR-OOOO

Description

3-76 S Logical Logical product of (Si)
and (Sk) complement ORed
with logical product
of (sj) and (Sk) to si

3-76 S Logical Scalar merge of (Si) and
sign bit of (sj) to si

3-70 S Logical Logical sum of (sj) and
(Sk) to si

3-23 S Logical Transmit (Sk) to si

3-70 S Logical Logical sum of (Sj) and
sign bit to si

3-70 S Logical Logical sum of (Sj) and
sign bit to si (j~O)

3-15 S Logical Enter sign bit into si

3-80 S Shift Shift (Si) left exp=jk
places to SO

3-81 S Shift Shift (Si) right
exp=64-jk places to SO

3-82 S Shift Shift (Si) left exp=jk
places

3-82 S Shift Shift (Si) right
exp=64-jk places

3-83 S Shift Shift (Si and Sj)
left (Ak) places to si

3-83 S Shift Shift (Si and Sj) left
one place to si

3-83 S Shift Shift (Si) left
(Ak) places to si

3-84 S Shift Shift (Sj and Si) right
(Ak) places to si

3-84 S Shift Shift (Sj and Si) right
one place to si

A-6 J-Ol

CRAY-l CAL Page Unit DescriEtion

t057iOk si Si>Ak 3-84 S Shift Shift (Si) right (Ak)
places to si

060ijk si Sj+sk 3-48 S Int Add Integer sum of (SJ) and
(Sk) to si

06lijk si Sj-sk 3-49 S Int Add Integer difference of (SJJ
and (Sk) to si

t06liOk si -sk 3-23 S Int Add Transmit negative of (Sk)
to si

062ijk si sj+Fsk 3-53 Fp Add Floating-point sum of (SJ)
and (Sk) to si

t062iOk si +Fsk 3-53 Fp Add Nor~alize (S k) to Si

063ijk si sj-Fsk 3-55 Fp Add Floating-point difference
of (SJ) and (S k) to si

t063iOk si -Fsk 3-55 Fp Add Transmit normalized negativ
of (Sk) to si

064ijk si sj*Fsk 3-57 Fp Mult Floating-point product of
(SJ) and (S k) to si

065ijk si sj*Hsk 3-59 Fp Mult Half-precision rounded
floating-point product of
(Sj) and (S k) to si

066ijk si sj*Rsk 3-61 Fp Mult Full-precision rounded
floating-point product of
(SJ) and (S k) to si

067ijk si sj*Isk 3-62 Fp Mult 2-floating-point product
of (SJ) and 'S k) to si

070ijx si /HSj 3-64 Fp Repl Floating-point reciprocal
approximation of (S J) to Si

07liok si Ak 3-24 Transmit (Ak) to si with
no sign extension

07lilk si +Ak 3-25 Transmit (Ak) to S i with
sign extension

t Special syntax form

SR-OOOO A-7 J

CRAY-l CAL Page Unit Description

07li2k si +FAk 3-25 Transmit (Ak) to si as
unnormalized floating-poin
number

07li3x si 0.6 3-12 Transmit constant
0.75*2**48 to S i

07li4x si 0.4 3-12 Transmit constant 0.5
to si

07li5x si 1. 3-12 Transmit constant 1.0
to si

071 i6x si 2. 3-12 Transmit constant 2.0
to si

07li7x si 4. 3-12 Transmit constant 4.0
to si

072ixx si RT 3-28 Transmit (RTC) to si

073ixx si VM 3-27 Transmit (VM) to si

074ijk si Tjk 3-26 Transmit (Tjk) to Si

075ijk Tjk si 3-30 Transmit (S i) to Tjk

076ijk si vj,Ak 3-27 Transmit (vj, element
(Ak)) to si

077ijk Vi,Ak sj 3-32 Transmit (SJ) to vi
element (Ak)

t077iOk Vi,Ak 0 3-15 Clear vi element (Ak)

lohijkm Ai exp,Ah 3-42 Memory Read from ((Ah) +exp) to
Ai (AO=O)

tlOOijkm Ai exp,O 3-42 Memory Read from (exp) to Ai

tlOOijkm Ai exp, 3-42 Memory Read from (exp) to Ai

tlohiooo Ai ,Ah 3-42 Memory Read from (Ah) to Ai

llhijkm exp,Ah Ai 3-38 Memory Store (Ai) to
(Ah) +exp (AO=O)

t Special syntax form

SR-OOOO A-8 J

CRAY-l CAL Page Unit DescriEtion

tllOijkm exp,O Ai 3-38 Memory Store (Ai) to exp

tllOijkm exp, Ai 3-38 Memory Store (Ai) to exp

tllhiooo ,Ah Ai 3-38 Memory Store (Ai) to (Ah)

l2hijkm si exp,Ah 3-43 Memory Read from ((Ah) +exp) to
si (AO=O)

t120ijkm si exp,O 3-43 Memory Read from (exp) to S"'Z

t120ijkm si exp, 3-43 Memory Read from (exp) to Si

t12hiooo si ,Ah 3-43 Memory Read from (Ah) to si

l3hijkm exp,Ah si 3-39 Memory Store (Si) to (Ah) +exp
(AO=O)

t130ijkm exp,O si 3-39 Memory Store (S i) to exp

t130ijkm exp, si 3-39 Memory Store (S i) to exp

t13hiooo ,Ah si 3-39 Memory Store (S i) to (Ah)

l40ijk vi sj&vk 3-68 V Logical Logical products of (SJ)
and (Vk) to vi

l4lijk vi vj&Vk 3-69 V Logical Logical products of (vJ)
and (Vk) to vi

l42ijk vi sj:vk 3-71 V Logical Logical sums of (SJ) and
(vk) to vi

t142iok vi vk 3-31 V Logical Transmit (vk) to vi

l43ijk vi vj!Vk 3-72 V Logical Logical sums of (V J) and
(vk) to vi

l44ijk vi Sj\Vk 3-73 V Logical Logical differences of
(SJ) and (Vk) to vi

l45ijk vi vj\Vk 3-74 V Logical Logical differences of
(V j) and (Vk) to vi

t145iii vi 0 3-16 V Logical Clear vi

t Special syntax form

SR-OOOO A-9 J

CRAY-I CAL Page Unit Description

146ijk vi Sj!Vk&VM 3-77 V Logical Transmit (Sj) if VM
bit=l: (vk) if VM bit=O
to vi.

tl46iok vi iVM&Vk 3-79 V Logical Vector merge of (vk) and
o to vi

147ijk vi Vj!Vk&VM 3-78 V Logical Transmit (vj) if VM
bit=l: (Vk) if VM bit=O
to vi.

150ijk vi vj<Ak 3-85 V Shift Shift (VJ) left (Ak)
places to vi

tl50ijO vi Vj<l 3-85 v Shift Shift (VJ) left one place
to vi

15lijk vi vj>Ak 3-85 V Shift Shift (vj) right (Ak)
places to vi

tl51 ijO vi Vj>l 3-85 V Shift Shift (VJ) right one
place to vi

152ijk vi vj,vj<Ak 3-86 V Shift Double shift (VJ) left
(Ak) places to vi

tl52ijO vi Vj,Vj<1 3-86 V Shift Double shift (VJ) left
one place to vi

153ijk vi vj,vj>Ak 3-87 V Shift Double shift (vJ) right
(Ak) places to vi

tl53ijO vi Vj,vj>l 3-87 V Shift Double shift (VJ) right
one place to vi

154ijk vi Sj+vk 3-48 V Int Add Integer sums of (SJ) and
(vk) to vi

155ijk vi vj+vk 3-49 V Int Add Integer sums of (V J) and
(vk) to vi

156ijk vi sj-vk 3-50 V Int Add Integer differences of
(Sj) and (vk) to vi

tl56iOk vi -vk 3-32 V Int Add Transmit negative of (Vk)
to vi

157ijk vi vj-vk 3-50 V Int Add Integer differences of
(vJ) and (Vk) to vi

t Special syntax form

SR-OOOO A-IO J

CRAY-l CAL Page Unit Description

160ijk vi Sj*Fvk 3-57 Fp Mult Floating-point products
of (SJ) and (Vk) to vi

161ijk vi vj*Fvk 3-58 Fp Mult Floating-point products
of (VJ) and (Vk) to vi

162ijk vi sj*Hvk 3-59 Fp Mult Half-precision rounded
floating-point products
of (SJ) and (vk) to Vi

163ijk vi vj*Hvk 3-60 Fp Mult Half-precision rounded
floating-point products
of (VJ) and (Vk) to vi

164ijk vi sj*Rvk 3-61 Fp Mult Rounded floating-point
products of (SJ) and
(Vk) to vi

165ijk vi vj*Rvk 3-62 Fp Mult Rounded floating-point
products of (VJ) and
(Vk) to vi

166ijk vi sj*Ivk 3-63 Fp Mult 2-floating-point products
of (SJ) and (Vk) to vi

167ijk vi vj*Ivk 3-63 Fp Mult 2-floating-point products
of (VJ) and (vk) to vi

170ijk vi sj+Fvk 3-54 Fp Add Floating-point sums of
(sj) and (Vk) to Vi

t170iok vi +Fvk 3-54 Fp Add Normalize (Vk) to vi

171ijk vi vj+Fvk 3-54 Fp Add Floating-point sums of
(VJ) and (Vk) to vi

172ijk vi sj-Fvk 3-56 Fp Add Floating-point differences
of (SJ) and (Vk) to vi

t172iOk vi -Fvk 3-56 Fp Add Transmit normalized
negatives of (Vk) to vi

173ijk vi vj-Fvk 3-56 Fp Add Floating-point differences
of (VJ) and (vk) to vi

t Special syntax form

SR-OOOO A-II J

CRAY-I CAL Page Unit Description

174ijO vi /HVj 3-66 Fp Rcpl Floating-point reciprocal
approximations of (V J) to
vi

§§174ijl vi pvj 3-89 v Pop Population counts of (VJ)
to vi

§§174ij2 vi Qvj 3-90 v Pop Population count parities
of (vJ) to vi

175xjO VM vj,z 3-75 V Logical VM=1 where (V J) =0

175xjl VM Vj,N 3-75 V Logical VM=1 where (V J):fO

175xj2 VM vj,p 3-75 V Logical VM=1 where (VJ) positive

175xj3 VM Vj,M 3-75 V Logical VM=l where (VJ) negative

176ixk vi ,AO,Ak 3-44 Memory Read (VL) words to vi
from (AO) incremented by
(Ak)

tl76ixO vi ,AO,1 3-44 Memory Read (VL) words to vi
from (AO) incremented by I

l77xjk ,AO,Ak vj 3-40 Memory Store (VL) words from vj
to (AO) incremented by
(Ak)

tl77xjO ,AO,1 vj 3-40 Memory Store (VL) words from vj
to (AO) incremented by 1

Legend:

A Address
Fp Floating-point
Int Integer
Pop Population/Parity
Pop/LZ Population/Leading Zero
Rcpl Reciprocal Approximation
S Scalar
V Vector

t Special syntax form
§§ Vector Population Count (optional on CRAY-I Models A and B)

SR-OOOO A-l2 J

INSTRUCTION SUMMARY FOR CRAY X-MP COMPUTERS

CRAY X-MP CAL Page Unit

000000 ERR 3-95

tt0010jk CA,Aj Ak 3-97

ttOOlljk CL,Aj Ak 3-97

tt0012jO CI,Aj 3-98

tt0012jl MC,Aj 3-98

tt0013jO XA Aj 3-99

tto014jO RT sj 3-100

tt001401 IP 1 3-102

tto01402 IP 0 3-102

tt001403 CLN 0 3-103

tt001413 CLN 1 3-103

tt001423 CLN 2 3-103

tto01433 CLN 3 3-103

tt0014j4 PCI Sj 3-100

tto01405 CCI 3-101

tt001406 ECI 3-101

tt001407 DCI 3-102

00200k VL Ak 3-33

tt Privileged to monitor mode

SR-OOOO A-13

Description

Error exit

Set the channel (AJ)
current address to (A~ and
begin the I/O sequence

Set the channel (AJ) limi t
address to (Ak)

Clear channel (AJ)
interrupt flag~ clear device
master-clear (output channel)

Clear channel (AJ)
interrupt flag~ set device
master-clear (output
channel) ~ clear device
ready-held (input channel) •

Enter XA register with (AJ)

Enter RTC register with (SJ)

Set interprocessor interrupt

Clear interprocessor interrup

Enter CLN register with 0

Enter CLN register with 1

Enter CLN register with 2

Enter CLN register with 3

Enter II register with (SJ1

Clear PCI request

Enable PCI request

Disable PCI request

Transmit (A~ to VL register

J

CRAY X-MP ~

to 02000

002100

002200

002300

002400

002500

002600

002700

0030jO

t003000

0034jk

0036jk

0037jk

004000

0050jk

006ijkm

007ijkm

010ijkm

VL 1

EFI

DFI

ERI

DRI

DBM

EBM

CMR

VM sj

VM 0

SMjk 1,TS

SMjk 0

SMjk 1

EX

J Bjk

J exp

R exp

JAZ exp

t Special syntax form

SR-OOOO

3-33

3-53

3-53

3-104

3-104

3-36

3-36

3-36

3-33

3-33

3-16

3-17

3-17

3-95

3-92

3-92

3-94

3-93

A-14

Description

Transmit 1 to VL register

Enable interrupt on
floating-point error

Disable interrupt on
floating-point error

Enable operand range
interrupts

Disable operand range
interrupts

Disable bidirectional memory
transfers

Enable bidirectional memory
transfers

Complete memory references

Transmit (Sj) to VM
register

Clear VM register

Test & set semaphore jk in
SM

Clear semaphore jk in SM

Set semaphore jk in SM

Normal exit

Jump to (Bjk)

Jump to exp

Return jump to expi set
BOO to P.

Branch to exp if (AO)=O

J

CRAY X-MP CAL Page Unit Description

Ollijkm JAN exp 3-93 Branch to exp if (AO) ~O

012ijkm JAP exp 3-93 Branch to exp if (AO)
positive1 o is positive.

013ijkm JAM exp 3-93 Branch to exp if (AO)
negative

014ijkm JSZ exp 3-93 Branch to exp if (SO) =0

olsijkm JSN exp 3-93 Branch to exp if (SO) ~O

016ijkm JSP exp 3-93 Branch to exp if (SO)
positive1 o is positive.

017ijkm JSM exp 3-93 Branch to exp if (SO)
negative

ttt020ijkm Ai exp 3-9 Transmit exp=jkm to Ai

ttt021 iikm Ai exp 3-9 Transmit exp=ones
complement of jkm to Ai

ttt022ijk Ai exp 3-9 Transmit exp= jk to Ai

023ijO Ai Sj 3-19 Transmit (SJ) to Ai

023iOl Ai VL 3-20 Transmit (VL) to Ai

024ijk Ai Bjk 3-20 Transmit (Bjk) to Ai

02sijk Bjk Ai 3-29 Transmit (Ai) to Bjk

026iiO Ai PSj 3-88 Pop/LZ Population count of (SJ1
to Ai

026ijl Ai Qsj 3-89 Pop/LZ Population count parity of
(Sj) to Ai

026i;j7 Ai SBj 3-21 Transmit (SBJ) to Ai

027ijo Ai ZSj 3-91 Pop/LZ Leading zero count of (SJ)
to Ai

027ij7 SBj Ai 3-30 Transmit (Ai) to SBj

ttt Instruction is generated depending on the value of the expression as
described in section 3.

SR-OOOO A-IS J

CRAY X-MP CAL

030ijk

t030iok

t030ijO

031ijk

t ttt031 ioo

t031iok

t031 ijO

032ijk

033ioo

033ijo

033ij1

034ijk

t034ijk

035ijk

t035ijk

036ijk

Ai Aj+Ak

Ai Ak

Ai Aj+1

Ai Aj-Ak

Ai -1

Ai -Ak

Ai Aj-1

Ai Aj*Ak

Ai CI

Ai CA,Aj

Ai CE,Aj

Bjk,Ai ,AO

Bjk,Ai O,AO

,AO Bjk,Ai

O,AO Bjk,Ai

Tjk,Ai ,AO

t Special syntax form

Description

3-46 A Int Add Integer sum of (Aj) and (Ak)

3-18 A Int Add Transmit (Ak) to Ai

3-46 A Int Add Integer sum of (AJ) and 1 to

3-46 A Int Add Integer difference of (AJ) Ie
(Ak) to Ai

3-9 A Int Add Transmit -1 toAi

3-19 A Int Add Transmit the negative
of (Ak) to Ai

3-46 A Int Add Integer difference of (Aj)
less 1 to Ai

3-47 A Int Mult Integer product of (AJ)
and (Ak) to Ai

3-21

3-22

3-22

3-41 Memory

3-41 Memory

3-37 Memory

3-37 Memory

3-41 Memory

Channel number to Ai (J=O)

Address of channel (AJ) to
Ai (#0; k(0)

Error flag of channel (AJ)
to Ai (j:l0; k(1)

Read (Ai) words to B

register jk from (AD)

Read (Ai) words to B
register jk from (AO)

Store (Ai) words at B
reg ister jk to (AO)

Store (Ai) words at B

reg ister jk to (AO)

Read (Ai) words to T
register jk from (AO)

ttt Instruction is generated depending on the value of the expression as
described in section 3.

SR-OOOO A-16 J

CRAY X-MP CAL

t036ijk Tjk,Ai O,AO

037ijk ,AO Tjk,Ai

t037ijk O,AO Tjk,Ai

040ijkm Si exp

04lijkm si exp

042ijk si <exp

t042ijk si #>exp

t042i77 si 1

t042ioo si -1

043ijk si >exp

t043ijk si # <exp

t043ioo si 0

044ijk si sj&Sk

t044ijO si Sj&SB

t044ijo si SB&Sj

t Special syntax form

SR-OOOO

3-41 Memory

3-38 Memory

3-38 Memory

3-11

3-11

Description

Read (Ai) words to T
register jk from (AO)

Store (Ai) words at T
register jk to (AO)

Store (Ai) words at T
reg ister jk to (AO)

Tr ansmi t jkm to S i

Transmit exp=ones complement
of jkm to si

3-13 S Logical Form ones mask exp bits in si
from the right; jk field gets
64-exp.

3-13 S Logical Form zeros mask exp bits in S~
from the left; jk field gets
64-exp.

3-12 S Logical Enter 1 into si

3-12 S Logical Enter -1 into si

3-14 S Logical Form ones mask exp bits in
S i from the left; jk field

3-14

gets exp.

S Logical Form zeros mask exp bits
in si from the right; jk
field gets 64-exp.

3-12 S Logical Clear si

3-68 S Logical Logical product of (SJ)
and (Sk) to S i

3-68 S Logical Sign bit of (SJ) to si

3-68 S Logical Sign bit of (SJ) to si
(jlO)

A-17 J

CRAY X-MP CAL

045ijk. si iSk.&Sj

t045ijo si iSB&Sj

046ijk. si sj\sk.

t046ijo si SJ'PB

t046ijo si SB\Sj

047ijk. si isj\sk.

t047iok. si isk

t047ijo si iSJ'PB

t047ijO si iSB\Sj

t047ioO si iSB

050ijk. si sj!si&Sk.

t050ijo si sj!Si&SB

051 ijk. si Sj: sk.

t05l iOk. si sk

t Special syntax form

SR-OOOO

Page Unit Description

3-70 S Logical Logical product of (Sj) and
ones complement of (S7<.) to
si

3-70 S Logical (sj) with sign bit cleared
to si

3-73 S Logical Logical difference of (S~
and (s7<.) to Si

3-73 S Logical Toggle sign bit of Sj,
then enter into si

3-73 S Logical Toggle sign bit of sj,
then enter into si (~O)

3-75 S Logical Logical equivalence of
(s7<.) and (SJ) to si

3-24 S Logical Transmit ones complement
of (S7<.) to si

3-75 S Logical Logical equivalence of
(Sj) and sign bit to Si

3-75 S Logical Logical equivalence of
(SJ) and sign bit to si
(jFO)

3-15 S Logical Enter ones complement of
sign bit into si

3-76 S Logical Logical product of (Si)
and (S~ complement ORed
with logical product of
(SJ) and (S 7<.) to Si

3-76 S Logical Scalar merge of (Si) and
sign bit of (SJ) to si

3-70 S Logical Logical sum of (SJ) and
(s7<.) to si

3-23 S Logical Transmit (sk.) to si

A-18 J

CRAY X-MP CAL Page Unit Description

t05lijO si Sj!SB 3-70 S Logical Logical sum of (sj) and
sign bit to si

t05lijo si SB!Sj 3-70 S Logical Logical sum of (Sj) and
sign bit to si (jFO)

t05lioo si SB 3-15 S Logical Enter sign bit into si

o 52ijk SO si<exp 3-80 S Shift Shift (Si) left exp=jk
places to SO

053ijk SO si>exp 3-81 S Shift Shift (Si) right exp=64-jk
places to SO

054ijk si si<exp 3-82 S Shift Shift (Si) left exp=jk places

ossijk si si>exp 3-82 S Shift Shift (Si) right exp=64-jk
places

056ijk si si,sj<Ak 3-83 S Shift Shift (Si and Sj) left
(Ak) places to si

t056ijO si Si,Sj<l 3-83 S Shift Shift (Si and Sj) left
one place to si

t056iok si si<Ak 3-83 S Shift Shift (Si) left (M)
places to si

I 057ijk si sj,si>Ak 3-84 S Shift Shift (Sj and Si) right
(Ak) places to si

I t057ijo si sj,si>l 3-84 S Shift Shift (sj and Si) right
one place to si

I t057iok si si>Ak 3-84 s Shift Shift (Si) right (M)
places to si

060ijk si sj+sk 3-48 S Int Add Integer sum of (Sj) and
(Sk) to si

06lijk si sj-sk 3-49 S Int Add Integer difference of (sj)
and (Sk) to si

t061iok si -sk 3-23 S Int Add Transmit negative of (Sk)
to si

t Special syntax form

SR-OOOO A-19 J-Ol

CRAY X-MP CAL Page Unit Description

062ijk si Sj+FSk 3-53 Fp Add Floatin9-point sum of (Sj)
and (Sk) to si

t062iOk si +Fsk 3-53 Fp Add Normalize (Sk) to Si

063ijk si sj-Fsk 3-55 Fp Add Floatin9-point difference
of (SJ) and (Sk) to Si

t063iok si -Fsk 3-55 Fp Add Transmit normalized ne9ative
of (Sk) to si

064ijk si sj*Fsk 3-57 Fp Mult Floatin9-point product of
(SJ) and (Sk) to si

065ijk si Sj*Hsk 3-59 Fp Mult Half-precision rounded
floatin9-point product of
(SJ) and (Sk) to si

066ijk si sj*Rsk 3-61 Fp Mult Full-precision rounded
floatin9-point product of
(Sj) and (Sk) to si

067ijk si sj*Isk 3-62 Fp Mult 2-floatin9-point product of
(SJ) and (Sk) to si

070ijO si /HSj 3-64 Fp Rcpl Floatin9-point reciprocal
approximation of (SJ) to Si

07liok si Ak 3-24 Transmit (Ak) to si with
no si9n extension

07lilk si +Ak 3-25 Transmit (Ak) toSiwith
si9n extension

071 i2k si +FAk 3-25 Transmit (Ak) to si as
unnormalized floatin9-point
number

071 i30 si 0.6 3-12 Transmit constant 0.75*2**48
to si

07li40 si 0.4 3-12 Transmit constant 0.5 to si

07li50 si 1. 3-12 Transmit constant 1.0 to si

t Special syntax form

SR-OOOO A-20 J

CRAY X-MP CAL Page Unit Descri:etion

07li60 si 2. 3-12 Transmit constant 2.0 to si

07li70 si 4. 3-12 Transmit constant 4.0 to si

072ioo si RT 3-28 Transmit (RTC) to si

072i02 si SM 3-28 Transmit (SM) to si

072ij3 si STj 3-26 Transmit (STj) to Si

073ioo si VM 3-27 Transmit (VM) to si

073ijl si sRj 3-29 Transmit (SRj) to si (j=O),

073i02 SM si 3-35 Transmit (Si) to SM

073ij3 STj si 3-31 Transmit (Si) to STj

074ijk si Tjk 3-26 Transmit (Tjk) to si

075ijk Tjk si 3-30 Transmit (Si) to Tjk

076ijk si vj,Al<. 3-27 Transmit (vj, element
(Al<.)) to si

o 77ijk vi,AI<. sj 3-32 Transmit (sj) to vi
element (Al<)

t077iok vi,Ak 0 3-15 Clear vi element (Al<)

10hijkm Ai exp,Ah 3-42 Memory Read from ((Ah) +exp) to
Ai (AO=O)

tlOOijkm Ai exp,O 3-42 Memory Read from (exp) to Ai

tlooijkm Ai exp, 3-42 Memory Read from (exp) to Ai

tlohioO 0 Ai ,Ah 3-42 Memory Read from (Ah) to Ai

llhijkm exp,Ah Ai 3-38 Memory Store (Ai) to (Ah)+exp
(AO=O)

tllOijkm exp,O Ai 3-38 Memory Store (Ai) to exp

I tlloijkm exp, Ai 3-38 Memory Store (Ai) to exp

t Special syntax form

SR-OOOO A-2l J-Ol

CRAY X-MP ~ Page Unit Descril2tion

tllhioo 0 ,Ah Ai 3-38 Memory Store (Ai) to (M)

l2h:ijkm si exp,Ah 3-43 Memory Read from «Ah) +exp) to
si (AO=O)

t120ijkm si exp,o 3-43 Memory Read from exp to si

t120ijkm si exp, 3-43 Memory Read from exp to si

t12hioo 0 si ,M 3-43 Memory Read from (Ah) to si

l3hijkm exp,Ah si 3-39 Memory Store (Si) to (Ah)+exp (AO=O)

t130ijkm exp,o si 3-39 Memory Store (Si) to exp

I t130ijkm exp, si 3-39 Memory Store (Si) to exp

t13hioo 0 ,AA si 3-39 Memory Store (Si) to (Ah)

l40ijk vi sj&Vk 3-68 V Logical Logical products of (sj)
and (Vk) to vi

l4lijk vi vj&vk 3-69 V Logical Logical products of (vj)
and (vk) to vi

l42ijk vi sj!vk 3-71 V Logical Logical sums of (Sj) and
(vk) to vi

t142iok vi vk 3-31 V Logical Transmit (Vk) to vi

l43ijk vi vj:vk 3-72 V Logical Logical sums of (vj) and
(Vk) to vi

1 44ijk vi sj vk 3-73 V Logical Logical differences of
(sj) and (Vk) to vi

l4Sijk vi vj vk 3-74 V Logical Logical differences of
(vj) and (vk) to vi

t14Siii vi 0 3-16 V Logical Clear vi

l46ijk vi Sj!Vk&VM 3-77 V Logical Transmit (Sj) if VM bit=11
(Vk) if VM bit=O to vi.

t146iok vi iVM&vk 3-79 V Logical Vector merge of (Vk) and
o to vi

t Special syntax form

SR-OOOO A-22 J-Ol

CRAY X-MP CAL

l47ijk vi vj!Vk&VM

l50ijk vi vj<Ak

tl50ijo vi vj<l

I l5lijk vi vj>Ak

tl5lijO vi vj>l

l52ijk vi vj,vj<Ak

tl52ijO vi vj,vj<l

l53ijk vi vj,vj>Ak

tl53ijO vi vj,vj>l

l54ijk vi sj+vk

l55ijk vi vj+vk

l56ijk vi sj-vk

tl56iok vi -vk

l57ijk vi vj-vk

l60ijk vi sj*Fvk

t Special syntax form

SR-OOOO

Page Unit Description

3-78 V Logical Transmit (vj) if VM bit=l;
(Vk) if VM bit=O to vi.

3-85 v Shift Shift (vj) left (Ak)
places to vi

3-85 v Shift Shift (vj) left one place
to vi

3-85 v Shift

3-85 v Shift

3-86 v Shift

3-86 v Shift

3-87 v Shift

3-87 v Shift

Shift (vj) right (Ak)
places to vi

Shift (vj) right one place
to vi

Double shift (Vj) left
(Ak) places to vi

Double shift (Vj) left one
place to vi

Double shift (Vj) right
(Ak) places to vi

Double Shift (Vj) right
one place to vi

3-48 V Int Add Integer sums of (Sj) and (Vk)
to vi

3-49 V Int Add Integer sums of (vj) and (Vk)
to vi

3-50 V Int Add Integer differences of (sj)
and (Vk) to vi

3-32 V Int Add Transmit negative of (Vk)
to vi

3-50 V Int Add Integer differences of
(vj) and (Vk) to vi

3-59 Fp Mult

A-23

Floating-point products of
(sj) and (Vk) to vi

J-Ol

CRAY X-MP CAL Page Unit Description

161ijk vi vj*Fvk 3-58 Fp Mult Floating-point products of
(vj) and (Vk) to vi

162ijk vi sj*Hvk 3-59 Fp Mult Half-precision rounded
floating-point products of
(sj) and (Vk) to vi

163ijk vi vj*Hvk 3-60 Fp Mult Half-precision rounded
floating-point products of
(VJ) and (Vk) to vi

164ijk vi sj*Rvk 3-61 Fp Mult Rounded floating-point
products of (SJ) and
(Vk) to vi

165ijk vi vj*Rvk 3-62 Fp Mult Rounded floating-point
products of (V~ and
(Vk) to vi

166ijk vi sj*Ivk 3-63 Fp Mult 2-floating-point products of
(Sj) and (Vk) to vi

167ijk vi vj*Ivk 3-63 Fp Mult 2-floating-point products of
(vj) and (Vk) to vi

170ijk vi sj+Fvk 3-54 Fp Add Floating-point sums of
(SJ) and (vk) to vi

t170iok vi +Fvk 3-54 Fp Add Normalize (Vk) to vi

171ijk vi vj+Fvk 3-54 Fp Add Floating-point sums of (VJ)
and (Vk) to vi

172ijk vi sj-Fvk 3-56 Fp Add Floating-point differences
of (SJ) and (Vk) to vi

t172iOk vi -Fvk 3-56 Fp Add Transmit normalized
negatives of (Vk) to vi

173ijk vi vj-Fvk 3-56 Fp Add Floating-point differences
of (vj) and (Vk) to vi

174ijO vi !HVj 3-66 Fp Rcpl Floating-point reciprocal
approximations of (VJ) to vi

t Special syntax form

SR-OOOO A-24 J

CRAY X-MP CAL Page

174ijl vi pvj 3-89

174ij2 vi Qvj 3-90

1750jO VM vj,z 3-75

1750jl VM Vj,N 3-75

l750j2 VM vj,P 3-75

1750j3 VM Vj,M 3-75

l76iok vi ,AO,Ak 3-44

tl76ioO vi ,AO,1 3-44

1770jk ,AO,Ak vj 3-40

tl770jO ,AO,1 vj 3-40

Legend:

A Address
Fp Floating-point
Int Integer
Pop Population/Parity
Pop/LZ Population/Leading Zero
Rcpl Reciprocal Approximation
S Scalar
V Vector

t Special syntax form

SR-OOOO A-25

Unit

V Pop

V Pop

V Logical

V Logical

V Logical

V Logical

Memory

Memory

Memory

Memory

Description

Population counts of (Vj)
to vi

Population count parities of
(vj) to vi

VM=1 where (V J) =0

VM=1 where (V J) FO

VM=l if (V~ positive: 0
is positive.

VM=1 if (V J) negative

Read (VL) words to vi
from (AO) incremented by (Ak)

Read (VL) words to vi from
(AO) incremented by I

Store (VL) words from vj
to (AO) incremented by (Ak)

Store (VL) words from vj
to (AO) incremented by I

J

PSEUDO INSTRUCTION INDEX

=
ABS
ALIGN
BASE
BITP
BITW
BLOCK
BSS
BSSZ
COMMENT
COMMON
CON
DATA
DECMIC
DUP
ECHO
EJECT
ELSE
END
ENDDUP
ENDIF
ENDM
ENDTEXT
ENTRY
ERRIF
ERROR
EXT
IDENT
IFA
IFC
IFE
LIST
LOC
LOCAL
MACRO
MICRO
MICSIZE
MODULE
OCTMIC
OPDEF
OPSYN

SR-OOOO

Definition

Equate symbol
Assemble absolute binary
Align on an instruction buffer boundary
Declare base for numeric data
Set *p counter
Set *W counter
Local block assignment
Block save
Generate zeroed block
Define Program Descriptor Table comment
Common block assignment
Generate constant
Generate data words
Decimal micros
Duplicate code
Duplicate code with varying arguments
Begin new page
Toggle assembly condition
End program module
End duplicated code
End conditional code sequence
End macro or opdef definition
Terminate global text source
Specify entry symbols
Conditional error generation
Unconditional error generation
Specify external symbols
Identify program module
Test expression attribute for assembty condition
Test character strings for assembly condition
Test expressions for assembly condition
List control
Set * counter
Specify local symbols
Macro definition
Micro definition
Set redefinable symbol to micro size
Define program module type for loader
Octal micros
Operation definition
Synonymous operation

B-1

4-29
4-3
4-19
4-7
4-19
4-18
4-13
4-16
4-32
4-3
4-14
4-31
4-33
4-65
4-58
4-59
4-26
4-42
4-3
4-60
4-41
4-53
4-28
4-4
4-21
4-20
4-5
4-2
4-36
4-40
4-38
4-22
4-17
4-52
4-46
4-64
4-31
4-6
4-65
4-49
4-57

J

B

Name Definition Page

ORG Set *0 counter 4-15
QUAL Qualify symbols 4-8
REP Loader replication directive 4-35
SET Set symbol 4-30
SKIP Unconditionally skip statements 4-41
SPACE List blank lines 4-26
START Specify program entry 4-6
STOPDUP Stop duplication 4-61
SUBTITLE Specify listing subtitle 4-27
TEXT Declare beginning of global text source 4-27
TITLE Specify listing title 4-26
VWD Variable word definition 4-34

SR-OOOO B-2 J

ASSEMBLY ERRORS c

Two types of errors, fatal errors and warning errors, can occur during
assembly. Table C-l lists fatal errors and table C-2 lists warning
errors. Fatal errors cause CAL to abort the job unless a DEBUG parameter
is present on the CAL control statement. Warning errors have no effect
on the assembly process. The error code consists of a single alpha
character or an alpha character and a digit.

Table C-l. Fatal assembly errors

Error
type Definition

C NAME, SYMBOL, CONSTANT OR DATA ITEM ERROR

Indicates any of a number of possible errors

Examples:

• Illegal character, too many characters, or illegal
separator in a name, symbol, constant, or data item

• Floating-point exponent underflow or overflow
• Double-precision floating-point in an expression
• Count field in character constant exceeds 800
• Missing right apostrophe in a character string
• Parentheses in an embedded parameter not matched properly
• Embedded argument not followed by blank or comma

D DOUBLE DEFINED SYMBOL OR DUPLICATE PARAMETER NAME

Examples:

• Symbol previously defined; the first definition holds. No
error is given if the second definition results in the
same value and attributes.

• A formal parameter in a definition has the same name as a
previously defined parameter. The parameter is ignored.

E DEFINITION OR CONDITIONAL SEQUENCE ILLEGALLY NESTED

SR-OOOO C-l J

Table C-l. Fatal errors (continued)

Error
type Definition

F TOO MANY ENTRIES

Examples:

• Number of local and common blocks exceeds 1024

• Number of common blocks exceeds 125

• Number of external names exceeds 4095

• Number of entry names exceeds 5461

• Location or origin counter word address exceeds 4,194,303

I INSTRUCTION PLACEMENT ERROR

Treats the instruction as a null (blank) pseudo instruction

Examples:

• COMMON not allowed in an absolute assembly
• ABS not allowed after a symbolic machine instruction or

restricted pseudo instruction
• IDENT not allowed after IDENT without an intervening END
• Symbolic machine instruction, restricted pseudo

instruction, or literal appears outside an IDENT, END
sequence

• Illegal instruction in blank common
• END pseudo instruction within a macro expansion

L LOCATION FIELD ERROR

Indicates an invalid name in the location field of a pseudo
instruction or macro or opdef call or prototype statement

N RELOCATABLE FIELD ERROR

Indicates an error in a relocatable field. More than one
main program entry is named in a program module.

o OPERAND FIELD ERROR

SR-OOOO

Indicates any of a number of possible errors in the operand
field

C-2 J

Table C-l. Fatal errors (continued)

Error
type Definition

Examples:

• Error in operand field of a pseudo instruction
• Syntax error in operand field of a symbolic machine

instruction

P PROGRAMMER ERROR

Indicates error generated by ERROR or ERRIF pseudo instruction

R RESULT FIELD ERROR

Indicates a syntax error in result field of a symbolic
machine instruction

S SYNTAX ERROR

Indicates a syntax error in an instruction

Examples:

• Undefined pseudo instruction or symbolic machine
instruction

• A or S register not SO when required
• Registers not the same when required

T TYPE ERROR

Word address, parcel address, or value type not as required
for an expression or constant

U UNDEFINED SYMBOL OR OPERATION

Examples:

• Reference to a symbol that is not defined
• Undefined operation in operand field of OPSYN pseudo

instruction

V REGISTER EXPRESSION OR FIELD WIDTH ERROR

SR-OOOO

Indicates an inconsistency between an expression attribute
and field width defined

C-3 J

Table C-l. Fatal errors (continued)

Error
type Definition

Examples:

• Relocatable attribute not allowed for field width or
register expression

• External attribute not allowed for field width or A, S, or
V register expression

• Word-address or parcel-address attribute not allowed for
field width or register expression

• Field width symbol or constant (in VWD) not terminated by
a slash (/).

X EXPRESSION ERROR

SR-OOOO

Expression contains illegal attribute, separator value, etc.,
for application.

Examples:

• Expression element not terminated by space, comma, or
expression operator

• Complement (#) of external or relocatable element not
allowed

• Negative expression value in BSS, BSSZ, ORG, or LOC pseudo
instruction

• Expression in ORG not relative to current block
• Shift or mask count exceeds 64 or is negative in symbolic

machine instruction
• Expression relocatable or external when relocatable or

external attribute is not allowed
• More than one element in a term is external or

relocatable, or external element is not the only element
in a term.

• More than one external element in an expression, or minus
sign precedes an external element.

• Expression relocatable relative to more than one block
after cancellation of relocatable terms with opposite signs

• Expression is both external and relocatable.

C-4 J

Table C-2. Warning assembly errors

Error
type Definition

W PROGRAMMER WARNING ERROR

Error can be generated by the ERROR or ERRIF pseudo
instruction.

WI LOCATION FIELD SYMBOL IGNORED

Location symbol not used in a pseudo instruction and is
ignored

W2 BAD LOCATION SYMBOL

Examples:

• Illegal character or too many characters

• Symbol is the same as a register designator with or
without a special prefix (that is, FVn or ZSn) or the
same as a sign bit designator (SB). Refer to SYMBOLS,
section 2 for details.

W3 EXPRESSION ELEMENT TYPE ERROR

Value, parcel-address, or word-address attribute not allowed
for an element in an expression

W4 POSSIBLE SYMBOLIC MACHINE INSTRUCTION ERROR

Register usage is unconventional.

Examples:

• Vi=Vj or vi=vk constituting a recursive vector
operation t

• AO used for length and address register in instructions
034 through 037

t Assembling for a CRAY-l Computer System only

SR-OOOO C-5 J

Table C-2. Warning errors (continued)

Error
type Definition

WS TRUNCATION ERROR

Examples:

• Expression value exceeds field size, result truncated
• Relocatable expression with parcel-address attribute

appears in the 22-bit field of instruction 020, 021, 040,
or 04l. t

• Division by zero (zero result)
• External expression in zero-width field
• Value of register symbol or constant exceeds 7 for A, S,

or V, or 77 for B or T
• Double-precision floating-point constant in an

expression. The result is truncated to one 64-bit word.

W6 LOCATION FIELD SYMBOL NOT DEFINED

Examples:

• Illegal character or too many characters
• Expression defining the symbol contains an undefined symbol
• Micro name on a MICSIZE instruction is not previously

defined

W7 MICRO SUBSTITUTION ERROR

A quotation mark encountered in CAL source was not followed
by a previously defined micro name or was not terminated by a
second quotation mark.

W8 ADDRESS COUNTER BOUNDARY ERROR

Examples:

• * (or *0) used in an expression when the location (or
origin) counter is not a parcel boundary

• W.* (or W. *0) used in an expression when the location (or
origin) counter is not a word boundary

t Warnlng error depends on the WRP and NWRP features of the CAL control
statement or the LIST pseudo instruction

SR-OOOO C-6 J

Table C-2. Warning errors (continued)

Error
type Definition

Yl EXTERNAL DECLARATION ERROR

EXT not allowed in an absolute assembly; statement ignored.

Y2 MACRO OR OPDEF REDEFINEDt

A macro name has been previously defined, or syntax has been
previously defined for this opdef.

t Warnlng error depends on the WMR and NWMR features of the CAL control
statement or the LIST pseudo instruction

SR-OOOO C-7 J

I

I

LOGFILE MESSAGES

CAL supports four classes of logfile messages: abort, fatal,
informative, and warning. Each class is defined below.

Abort: CAL aborts
Fatal:

ABORT
optlon

off

off

on

on

DEBUG
option

off

on

off

on

Result

PDT fatal error flag set

PDT fatal error flaq clear

CAL aborts when assembly of
all modules in the current
input is complete

CAL aborts when assembly of
all modules in the current
input is complete

Warning: Possible error detected, no action taken.
Informative: Informative message

D

The following messages to the job and system logfiles are issued by CAL.

CAOOO - [CAL] INTERNAL 'CAL' ERROR DETECTED AT P =paddress

CLASS: Abort (immediate)

CAUSE: CAL has detected an internal error at parcel address
paddress and is unable to proceed.

ACTION: Refer the problem to a Cray Research analyst.

SR-OOOO D-l J-Ol

CAOOI - [CAL] CAL VERSION x.xx (mm/dd/yy) - cpu

CLASS: Informative

CAUSE: A message issued at the beginning of each assembly
indicating the version number x.xx, the date
mm/dd/yy CAL was assembled, and the type of Cray
computer, cpu, for which CAL is targeting the generated
code.

ACTION: Not applicable

CA002 - [CAL] ASSEMBLY TIME: nnnnn.nnnn CPU SECONDS

CLASS: Informative

CAUSE: All programs in the current file of the source dataset have
been assembled. nnnnn.nnnn is the assembly time in
floating-point CPU seconds.

ACTION: Not applicable

CA003 - [CAL] MEMORY WORDS: mwopds + I/O BUFFERS: iobuffeps

CLASS: Informative

CAUSE: All programs in the current file of the source dataset have
been assembled. mwopds is the decimal number of memory
words required in the user portion of the job field.
iobuffeps is the decimal number of words needed for the
I/O table and buffer area of this job field.

ACTION: Not applicable

CA004 - [CAL] ASSEMBLY ERRORS

CLASS: Abort

CAUSE: User set the ABORT flag on the CAL control statement and CAL
encountered fatal errors during assembly.

ACTION: Either remove the ABORT flag from the CAL control statement
or correct all fatal errors found by CAL.

SR-OOOO 0-2 J

CAOIO - [CAL] 1 WARNING ERROR, PROGRAM MODULE pname
or
CAOIO - [CAL] n WARNING ERRORS, PROGRAM MODULE pname

CLASS:

CAUSE:

Warning

CAL issues this message for all source lines from the
previous program module (if any) through program module
pname, in which warning errors have been detected.
pname is equivalent to the name used on a particular
IDENT pseudo statement.

ACTION: Correct all warning errors. See Appendix C for a list of
warning errors.

CAOll - [CAL] I FATAL ERROR, PROGRAM MODULE pname
or
CAO 11 - [CAL] n FA'llAL ERRORS, PROGRAM MODULE pname

CLASS:

CAUSE:

Fatal

CAL issues this message for all source lines from the
previous program module (if any) through program module
pname, in which fatal errors have been detected. pname
is equivalent to the name used on a particular IDENT pseudo

ACTION:

statement.

Correct all fatal errors. See Appendix C for a list of
fatal errors.

CA012 = [CAL] MISSING IDENT STA'llEMENT

CLASS:

CAUSE:

ACTION:

SR-OOOO

Warning

An END pseudo on the source dataset occurred before an
IDENT pseudo instruction.

Check the source dataset for matching IDENT and END pseudo
instructions.

D-3 J

CAOl3 - [CAL] MISSING END STATEMENT, PROGRAM MODULE pname

CLASS:

CAUSE:

ACTION:

Warning

On the source dataset, an end-of-file occurred before an
END pseudo instruction corresponding to the IDENT pseudo in
program module pname. pname is equivalent to the name
used on that IDENT pseudo statement.

Check the source dataset for matching IDENT and END pseudo
instructions.

CAOl4 - [CAL] EMPTY SOURCE FILE, DN = dname

CLASS:

CAUSE:

ACTION:

Warning

An end-of-file or end-of-data was encountered on the source
dataset before any source statements.

Check the job control statements and the source dataset for
a problem that causes a null file.

CAOlS - [CAL] 1 LINE EXCEEDS 90 CHARACTERS, DN = dname
or
CAOlS - [CAL] n LINES EXCEED 90 CHARACTERS, DN = dname

CLASS:

CAUSE:

ACTION:

Warning

The given number of records in the named dataset contain
more than 90 characters. The most typical cause is UPDATE
sequence numbers that extend past column 90. (CAL
truncates the long records to 90 characters). This message
may also be issued when a binary dataset is erroneously
read.

If the records exceed 90 characters, break up the long
records with continuation lines.

CAOl6 - [CAL] OPEN ERROR, DN = dname

CLASS:

CAUSE:

ACTION:

SR-OOOO

Abort

The dataset dname was not found in the user's local
environment or in the system directory.

Access or create the dataset dname.

D-4 J

CA017 - [CAL] INVALID CPU TYPE SPECIFIED: cpu

CLASS:

CAUSE:

ACTION:

Warning

An invalid CPU parameter cpu was passed on the CAL
control statement. CAL defaults to the mainframe on which
it is currently executing.

Correct the CPU type on the CAL job control statement.

CA030 - [CAL] BAD BINARY TEXT, ON = dname, (ERROR CODE = cc)

CLASS:

CAUSE:

ACTION:

SR-OOOO

Fatal

An error (see below) was discovered in the binary system
text dname.

Error
cooe

PI
P2
P3
P4

HI

H2
H3
H4
Ml
M2

M3
M4
M5
Sl
S2

S3
El
E2

Meaning
Prologue field BSTTT~l
Prologue field BSTWC less than LE@BSTPR
EOR encountered while prologue was being read
EOF, EOD, or null record encountered while prologue
was being read
EOF, EOD, or null record encountered while subtable
header was being read
Header field BSTTT~l
Header field BSTWC less than 1
Header field BSTID not recognized
EOR encountered while TMDF was being read
EOF, EOD, or null record encountered while TMDF was
being read
Length of TMDF entry less than 0
Length of TMDF entry=O
Global word count exceeded during TMDF processing
EOR encountered while TSYM entry was being read
EOR, EOD, or null record encountered while TSYM
entry was being read
Global word count exceeded during TSYM processing
Epilogue field BSTWC~l
Global word count not equal to sum of subtable word
counts

Generate a new binary system text from the original source
system text and rerun the job with the new binary system
text; or rerun the job with the source system text in place
of the binary system text; or show listing and DSDUMP
output of offending binary system text to a Cray Research
analyst.

0-5 J

CA03l - [CAL] symboL DOUBLY-DEFINED IN BINARY TEXT dname

CLASS:

CAUSE:

ACTION:

Fatal

The named symboL is defined in the named binary system
text but was defined differently in a previous system text.

Remove one of the offending definitions from the source
system texts, generate a new binary system text, and
resubmit job.

CA032 - [CAL] MACRO opsyn NOT FOUND, BINARY TEXT dname

CLASS:

CAUSE:

ACTION:

Fatal

The named binary system text contains an OPSYN pseudo
instruction of the form name OPSYN opsyn, but no macro or
pseudo-op with the name opsyn is known to the assembler.

Correct the spelling of opsyn; or remove the OPSYN pseudo
instruction from the named system text; or define the
offending macro in a previous system text or before the
OPSYN directive in the named system text.

CA033 - [CAL] MACRO mname REDEFINED IN BINARY TEXT dname

CLASS:

CAUSE:

ACTION:

Warning

A definition for the named macro appears in the named
dataset, but the macro has been previously defined.

The new definition will be used; if not intentional, remove
the unwanted macro definition.

CA0034 - [CAL] OPDEF oname REDEFINED IN BINARY TEXT dname

CLASS:

CAUSE:

ACTION:

SR-OOOO

Warning

A definition for the named opdef appears in the named
dataset, but the opdef's syntax has been previously defined.

The new definition will be used; if not intentional, remove
the unwanted opdef definition.

D-6 J

I

FORMAT OF ASSEMBLER LISTINGS

The CAL assembler generates a source statement listing and a cross
reference listing as determined by list pseudo instructions and by
options on the CAL control statement as discussed in section 4 and
section 5.

Every page of list output produced by the CAL assembler contains two
l32-character header lines. The first line contains the title, type of
Cray mainframe, version of CAL, date and time of assembly, and a global
page number over all programs assembled by the current CAL assembly.

The title is taken from a TITLE pseudo instruction if present or from the
operand field of the IDENT pseudo instruction. The second line contains
the subtitle specified by a SUBTITLE pseudo if present, a local block
name if other than the nominal block, a symbol qualifier if in effect,
and a local page number which is reset for each new program until the
local page number is used in the cross-reference listings generated by
CAL and SYSREF.

Example of page header:

1 66 76 96 105 115

Isubtitle
Icpu type ICAL vepsion Idate I time I Page n Ititle
I unused IBlock:bname I Quaulifier:qualname I (n)

SOURCE STATEMENT LISTING

The listing for the source statements of a CAL program is organized into
five columns of information.

title line

eppop
code

subt1"tle line
location
addpess

octal code soupce line sequence

E

SR-OOOO E-l J-Ol

Eppop codes
The first column contains up to seven characters indicating
errors that have been detected for the current statement.
If all the errors do not fit in seven columns, the seventh
character is a +, indicating that all errors are not
shown. Error codes are described in Appendix C.

Location addpesses
The second column gives the parcel or word address at which
the current statement is assembled. If the statement is a
machine instruction, the address is listed as a parcel
address with the parcel identifier a, b, c, or d appended
to the word address. Parcels are lettered from left to
right in the word.

OctaL code The third 'column of information contains the octal
equivalent of the instruction or value.

If the instruction or value represents an address, the
octal code has a suffix as follows:

+ Positive relocation in program block
Negative relocation in program block

C Common block
X External symbol

None Absolute address

For a symbol defined through the SET, MICSIZE, or = pseudo
instruction, the column contains the octal value of the
symbol.

For a BSS or BSSZ instruction, the column contains the
octal value of the number of words reserved.

For an ALIGN instruction, the column contains the octal
value of the number of full parcels skipped.

For a MICRO, OCTMIC, or DECMIC instruction, the column
contains the octal value of the number of characters in the
micro string.

Soupce Line
The fourth column presents columns 1 through 72 of each
source line.

Sequence fieLd
The rightmost columns either contain the information taken

SR-OOOO

from columns 73 through 90 of the source line image or
contain an identifier if the line is an expansion of a
macro or opdef.

E-2 J

CROSS REFERENCE LISTING

The assembler generates a cross reference table with the following
format. Symbols are listed alphabetically and grouped by qualifier.
Each qualified group of symbols is headed by the message SYMBOL QUALIFIER
IS qua Lname.

Global symbols which are not referenced are not listed in the cross
reference. Symbols of the form %%xxxxxx, where x is any ASCII
character, are not listed in the cross reference.

titLe Line
subtitLe Line

vaLue

-
V--

vaLue

symboL

IbLoakl

name

symboL IbLoak! symboL pefepenaes
or

name
~

~- - ~ -
Octal value of symboL

A symbol with parcel-address attribute has a, b, c, or d
appended to indicate the parcel in the word. A relocatable
symbol has a + suffix if it has positive relocation
relative to the pr'ogram block, a - suffix if negative
relocation relative to the program block, and a C suffix if
it is relocated relative to a common block. An external
symbol has an X suffix. An undefined symbol has a U suffix.

A relocatable symbol relocated relative to a common block
has the common block name enclosed in slant bars. Blank
common is indicated by II.

A global symbol defined by the user is indicated by
GLOBAL. A global symbol defined in a system text is
indicated by the system text dataset name. A symbol
defined in text between TEXT and ENDTEXT pseudo
instructions is indicated by the associated TEXT name.

symboL pefepenaes

SR-OOOO

One or more references to the symbol in the following
format:

page: Line x

page Local decimal number, of page containing
reference. The local page number appears in
parentheses at the right end of the second title
line, which is also called the subtitle line.

E-3 J

Line

SR-OOOO

Decimal number of line containing reference

Type of reference, as follows:

blank

D

E

F

R

S

Symbol value is used at this point.

Symbol defined at this reference; that
is, it appears in the location field of
an instruction or is defined by a SET,
=, or EXT pseudo instruction.

Declares the symbol as an entry name.

Symbol used in an expression on an IFE,
IFA, or ERRIF conditional pseudo
instruction.

Symbol used in an address expression in
a memory read instruction or as a B or
T register symbol in an instruction
which reads the B or T register.

Symbol used in an address expression in
a memory store instruction or as a B or
T register symbol in an instruction
which stores a new value in the B or T
register.

E-4 J

CHARACTER SET F

ASCII ASCII
CHARACTER OCTAL PUNCHED-CARD EBCDIC CDC DISPLAY

CODE CODE CODE

NUL 000 12-0-9-8-1 00 None

SOH 001 12-9-1 01 None

STX 002 12-9-2 02 None

ETX 003 12-9-3 03 None

EOT 004 9-7 37 None

ENQ 005 0-9-8-5 2D None

ACK 006 0-9-8-6 2E None

BEL 007 0-9-8-7 2F None

BS 010 11-9-6 16 None

HT 011 12-9-5 05 None

LF 012 0-9-5 25 None

VT 013 12-9-8-3 OB None

FF 014 12-9-8-4 OC None

CR 015 12-9-8-5 OD None

SO 016 12-9-8-6 OE None

SI 017 12-9-8-7 OF None

DLE 020 12-11-9-8-1 10 None

DCl 021 11-9-1 11 None

DC2 022 11-9-2 12 None

DC3 023 11-9-3 13 None

DC4 024 9-8-4 3C None

NAK 025 9-8-5 3D None

SYN 026 9-2 32 None

ETB 027 0-9-6 26 None

SR-OOOO F-l J

ASCII ASCII
CHARACTER OCTAL PUNCHED-CARD EBCDIC CDC DISPLAY

CODE CODE CODE

CAN 030 11-9-8 18 None

EM 031 11-9-8-1 19 None

SUB 032 9-8-7 3F None

ESC 033 0-9-7 27 None

FS 034 11-9-8-4 lC None

GS 035 11-9-8-5 ID None

RS 036 11-9-8-6 IE None

US 037 11-9-8-7 IF None

Space 040 None 40 55

I 041 12-8-7 SA 66 .
.. 042 8-7 7F 64

* 043 8-3 7B 60

$ 044 11-8-3 5B 53

% 045 0-8-4 6C 63

& 046 12 50 67

I 047 8-5 7D 70

(050 12-8-5 4D 51

) 051 11-8-5 5D 52

* 052 11-8-4 5C 47

+ 053 12-8-6 4E 45

, 054 0-8-3 6B 56

- 055 11 60 46

. 056 12-8-3 4B 57

/ 057 0-1 61 50

0 060 0 FO 33

1 061 1 Fl 34

2 062 2 F2 35

3 063 3 F3 36

4 064 4 F4 37

SR-OOOO F-2 J

ASCII ASCII
CHARACTER OCTAL PUNCHED-CARD EBCDIC CDC DISPLAY

CODE CODE CODE

5 065 5 F5 40

6 066 6 F6 41

7 067 7 F7 42

8 070 8 F8 43

9 071 9 F9 44

. 072 8-2 7A 00 .
; 073 11-8-6 5E 77

< 074 12-8-4 4C 72

= 075 8-6 7E 54

> 076 0-8-66E 6E 73

? 077 0-8-7 6F 71

@ 100 8-4 7C 74

A 101 12-1 Cl 01

B 102 12-2 C2 02

C 103 12-3 C3 03

D 104 12-4 C4 04

E 105 12-5 C5 05

F 106 12-6 C6 06

G 107 12-7 C7 07

H 110 12-8 C8 10

I III 12-9 C9 11

J 112 11-1 Dl 12

K 113 11-2 D2 13

L 114 11-3 D3 14

M 115 11-4 D4 15

N 116 11-5 D5 16

0 117 11-6 D6 17

P 120 11-7 D7 20

Q 121 11-8 D8 21

SR-OOOO F-3 J

ASCII ASCII
CHARACTER OCTAL PUNCHED-CARD EBCDIC CDC DISPLAY

CODE CODE CODE

R 122 11-9 D9 22

S 123 0-2 E2 23

T 124 0-3 E3 24

U 125 0-4 E4 25

V 126 0-5 E5 26

W 127 0-6 E6 27

X 130 0-7 E7 30

Y 131 0-8 E8 31

Z 132 0-9 E9 32

[133 12-8-2 AD 61

\ 134 0-8-2 EO 75

] 135 11-8-2 BD 62

1\ 136 11-8-7 5F 76

137 0-8-5 6D 65 -,
140 8-1 79 None

a 141 12-0-1 81 None

b 142 12-0-2 82 None

c 143 12-0-3 83 None

d 144 12-0-4 84 None

e 145 12-0-5 85 None

f 146 12-0-6 86 None

9 147 12-0-7 87 None

h 150 12-0-8 88 None

i 151 12-0-9 89 None

j 152 12-11-1 91 None

k 153 12-11-2 92 None

1 154 12-11-3 93 None

m 155 12-11-4 94 None

n 156 12-11-5 95 None

SR-OOOO 'F-4 J

ASCII ASCII
CHARACTER OCTAL PUNCHED-CARD EBCDIC CDC DISPLAY

CODE CODE CODE

0 157 12-11-6 96 None

p 160 12-11-7 97 None

q 161 12-11-8 98 None

r 162 12-11-9 99 None

s 163 11-0-2 A2 None

t 164 11-0-3 A3 None

u 165 11-0-4 A4 None

v 166 11-0-5 A5 None

w 167 11-0-6 A6 None

x 170 11-0-7 A7 None

y 171 11-0-8 A8 None

z 172 11-0-9 A9 None

{ 173 12-0 CO None
I
I 174 12-11 6A None

} 175 11-0 DO None

- 176 11-0-1 Al None

DEL 177 12-9-7 07 None

SR-OOOO F-5 J

CODING EXAMPLES

This appendix gives examples of efficient coding methods for long
vectors, a loop counter, alternate tests on the contents of S registers,
and circular shifts.

LONG VECTORS

When vectors have more than 64 elements, the vector should be segmented
into groups of 64 elements and a residue before processing. The
following example shows an efficient way to do this.

Location Result Operand
1 10 20

Al FWA
A2 LWA+l
AO AI-A2
A3 AI-A2
S2 <6
Sl A3
JAP ERROR
Sl #Sl&S2
A3 Sl

A3 A3+1
LOOP VL A3

...

Al Al+A3
AO AI-A2
A3 0 1 64
JAN LOOP

SR-OOOO G-l

Comment
35

Vector first wo
Vector last wor
-vector length

Error if vector

(A3)=63 if vect
multiple of 64

rd address
d address+l

length<O

or length is

First segment 1 ength
Set vector leng
segment, and pe

th, read vector
rform vector

computations

Store result

Increment curre nt position

Loop for all se gments

J

G

LOOP COUNTER

The following example shows an efficient way to count the number of
passes through loops when the number of passes does not exceed 64.

Location Result Oj2erand Comment
1 10 20 35

SO > COUNT (mask with leng th:::loop count)
LOOP SO SO<l Shift mask

Perform computa tions
...

JSM LOOP Loop required n umber of times

ALTERNATE TESTS ON THE CONTENTS OF S REGISTERS

Usually SO is used to test the contents of S registers to determine if
the contents are positive, negative, zero, or nonzero. The population
count and leading zero count instructions can be used to test the
contents of S registers for these conditions in AO. This is useful when
the contents of SO cannot be destroyed or when one S register test needs
to be made right after another.

Location Result Operand Comment
1 10 20 35

AO PS3
JAZ SZR If S3:::0

AO PS3
JAN SNZ If S3FO

AO ZS3
JAN SPL If S3>0 -
AO ZS3
JAZ SMI If S3<0

SR-OOOO G-2 J

CIRCULAR SHIFTS

The double shift instructions (056 and 057) can be used to shift an S
register circularly.

Location Result Operand Comment
1 10 20 35

S7 S7,S7<A2
or:

S7 S7,S7>A2

SR-OOOO G-3 J

I

STRUCTURED PROGRAMMING MACROS

The following structured programming macros which are contained in
$SYSTXT and are available for use in programs written in CAL are
described in the Macros and Opdefs Reference Manual, CRI publication
SR-OOl2.

• SGOSUB
• $GOTO
• $IF, $ELSEIF, $ELSE, and $ENDIF
• SJUMP
• $LOOP, $EXITLP, and $ENDLOOP
• $RETURN
• $SUBR

SR-OOOO H-l

H

J-Ol

operand is specified, an instruction is generated to set the indicated
register to the operand's value. If an operand contains embedded commas
or blanks, then the entire assignment must be enclosed in parentheses.
For example, A3,Minus is true if (A3) is less than 0; AO=PS2,Zero is true
if the population count of (S2) is 0; (SO=JOE,O),Plus is true if the
content of memory word JOE is positive.

RELATIONAL CONDITIONS

Relational conditions are of the following forms:

Am[=operand],relation,An[=operand] and
sm[=operand],relation,Sn[=operand]

The m and n are integers between 1 and 7 inclusive, operands are as
described in conditions on A and S registers, and relation is one of EQ,
NE, LT, LE, GT, or GE and has the same meaning as in FORTRAN.

For example, A2,EQ,A3 is true if (A2) equals (A3); (Sl=JOE,0),LT,S2=4 is
true if the content of memory word JOE is less than 4.

BIT SET CONDITIONS

Condition

constant,IN,Sm[=operand]

Sn[=operand],ALLIN,So[=operand]

Sn[=operand],ONEIN,SO[=operand]

Meaning

True if bit number constant is
set in reg ister "Sm". Bits are
numbered sequentially, with the
sign bit being o.

True if every bit set in register
"Sn" is also set in register
"So" •

True if at least one bit set in
"Sn" is also set in "So".

In the above, constant is any CAL expression yielding an integer
constant; m is any integer between 0 and 7 inclusive; nand 0 are
any integers between 1 and 7 inclusive; and operands are as described in
Conditions on A and S registers. For example, D'63,IN,SO=T.JOE is true
if the content of T.JOE is odd; S2<3,ALLIN,S3 is true if the last 3
bits of S3 are set; Sl,ONEIN, (S2=ERROR,0) is true if any bit set in Sl 'is
also set in memory word ERROR.

SR-OOOO B-2 J

COMPOUND CONDITIONS

Conditions on AO and SO, conditions on A and S registers, relational
conditions, and bit set conditions are called simple conditions. Both
simple and compound conditions can be combined in various ways to form
new compound conditions:

Condition Meaning

NOT, (cond) cond is not true

condl is true, cond2 is true, or both are true.

In the above, cond, condl , and cond2 are any conditions, simple or
compound. The parentheses are required. For example, NOT,(Sl,EQ,S2) is true
if (Sl) is not equal to S2; (AMinus) ,OR,(SMinus) is true if (AO) is less than
o or (SO)is less than 0 or both; and «Al,GE,A2='A'R) ,AND, (Al,LE,A2='Z'R» ,
OR «Al,GE,A2='a'R) ,AND, (Al,LE,A2='z'R» is true if Al contains an uppercase
or lowercase letter.

SPECIAL MACROS

The following macros are contained in $SYSTXT and are available for use
in programs written in CAL. Unlike the majority of macros in $SYSTXT,
these are independent of the operating system.

$IF MACRO

The $IF macro operates in the same manner as the similar structure in
FORTRAN when used with the attendant $ELSEIF, $ELSE, and $ENDIF macros.
The $ELSEIF and $ELSE macros are optional. If both are included, an
$ELSEIF macro cannot follow a $ELSE macro.

The conditions that can be used with $IF or $ELSEIF are described under
conditions of this appendix.

$IF groups can be nested within other $IF groups up to a level of 10 deep.

The value of an IF or ELSEIF condition is treated as either true or
false. If true, the block that follows is executed; if false, it is
skipped. The ELSE statement, if present, must follow any ELSEIF
statements that belong to the same IF group. within each IF group, no

SR-OOOO H-3 J

more than one block is executed (once a block is executed, the remaining
blocks in the same IF group are skipped). If none of the blocks in a
group have been executed when an ELSE statement is encountered, then the
ELSE block is executed if present. A block can be null (that is, it can
contain no statements to be executed).

Example:

Location Result Operand
1 10 20

$IF condition

assembly
code

· · · $ELSEIF condition

assembly

code

·
· ·

$ELSE

assembly
code

·
· · $ENDIF

Comment
·35

This code
condition

is
is

ex ecuted if the $IF
ue. tr

If the $IF cond ition is false
and
the $ELSEIF con dition is true,

ecuted. this code is ex

If both of
are false,
executed.

the
this

above conditions
code is

Examples of conditions used with $IF, $ELSEIF, and $ELSE are shown below.

SR-OOOO H-4 J

Example 1:

$IF AZ
51 A3
52 A4

$EL5EIF 5Z
Al 52
A2 53
$IF AP

Al A2
A3 54

$ENDIF
$EL5E

51 52*F53
$ENDIF

Example 2:

$IF 52,LT,54
Al 2

$EL5EIF A5,GE,Al
Al 5

$EL5EIF 5l,EQ,57=123
A2 6

$EL5E
$IF A2, NE ,A5=ABC

A3 4
$EL5EIF S5,GT,57=LABEL

Al 5
$ENDIF

$ENDIF

$GOTO MACRO

The $GOTO macro offers CAL users a computed GO TO statement.

SR-OOOO

NOTE

Unlike the I-based FORTRAN computed GO TO, this GO TO
statement is O-based.

H-5 J

Example:

Location Result Operand Comment
1 10 20 35

$GOTO Ai, (labelO' labell···labeln), Aj

Register Ai is a scratch register, and register Aj holds a value that
determines to which label the jump takes place. For instance, if Aj=l
the jump is to labell. If Aj is greater than n, no jump takes
place, and control falls through to the next instruction.

SR-OOOO H-6 J

DATA GENERAL CAL

Data General CAL is a development tool used by Cray Research, Inc. and is
not a CRI supported product. It may be used on the MCU for the CRAY-l
Model A and B systems and for Models S/250, S/500 and S/lOOO of the S
Series CRAY-l Computer Systems.

SUMMARY OF DIFFERENCES BETWEEN CPU CAL AND DATA GENERAL CAL

• Expression evaluation

Data General CAL evaluates expressions from left to right without
regard for term operators. CPU CAL forms elements into a term and
incorporates the term into the sum of previously evaluated terms.

• Continuation lines

Data General CAL does not allow continuation lines.

• Operand field

CPU CAL handles the case where a result field extends beyond column
34 and an operand field begins after column 35. Data General CAL
does not handle this case.

• Line editing

Data General CAL does not support concatenation and micros.

• Qualified symbols

Data General CAL does not support qualified symbols.

• Special elements

The only special element supported by Data General CAL is *

• Data notation

SR-OOOO

Data elements in Data General CAL can be octal integers (0 prefix),
decimal integers (D prefix), or a character string (A prefix) that
can fit into 64 or fewer bits. The only suffix supported is for
character justification and fill (H, L, or R).

I-I J

• Numeric base

For Data General CAL, if the 0 or D prefix is omitted from a
numeric element, it is assumed to be octal. For CPU CAL, the
default can be set by a BASE pseudo but is decimal if no BASE
pseudo is supplied.

• Register designators

The designators for A, S, and V registers for Data General CAL
must be numeric, not symbolic. Designators for Band T registers
may be symbolic but must be defined before their use in an
instruction.

• Pseudo instructions

Data General CAL supports the following subset of pseudo
instructions.

ABS Optional in Data General CAL which assembles only absolute
code

BSS Unused parcels are padded with pass instructions (Sl Sl&Sl)
not with zeros as in CPU CAL

BSSZ No differences

CON The operand field can contain only one entry in Data
General CAL

EJECT No differences

END No differences

ENTRY In Data General CAL, the operand field can contain only one
entry

IDENT In Data General CAL, statements preceding IDENT and between
END and IDENT are taken as comments

LIST A non-empty operand field enables the listing for Data
General CAL

ORG No differences for absolute assembly

• Symbolic machine instructions

SR-OOOO

Data General CAL symbol instructions are a subset of CPU CAL
symbolic machine instructions except for the following which are
recognized by Data General CAL but not by CPU CAL.

1-2 J

Location Result Operand Comment
1 10 20 35

, Bjk,Ai
, Tjk,Ai
Bjk,Ai ,
Tjk,Ai ,
,,1 vi
, ,AO vi
vi , ,AO
vi , ,1

Special syntax forms for Data General CAL are a subset of CPU CAL
symbolic machine instructions. The following symbolic machine
instructions are recognized by CPU CAL but not by Data General CAL.

Location Result Operand Comment
1 10 20 35

ERR exp
VL 1
VM 0
EX exp
Ai -1
Bjk,Ai O,AO
O,AO Bjk,Ai
Tjk,Ai D,AO
O,AO Tjk,Ai
si Sj&SB
si iSB&Sj
si Sj\SB
si SB\Sj
si iSj\SB
si iSB\Sj
si iSB
si sj!Si&SB
si Sj!SB
si SB!Sj
si SB
si Si,Sj<l
si sj ,Si>l
si +Fsk
si -FSk

SR-OOOO 1-3 J

Location Result Operand Comment
1 10 20 35

Vi,Ak 0
Ai exp,
Ai ,Ah
exp, Ai
,Ah Ai
si exp,
si ,Ah
ex

h
, si

,A si
vi 0
vi vk
vi #VM&vk
vi vj<l
vi vj>l
vi vj,vj<1
vi vj,vj>l
vi vj-Vk
vi +FVk
vi -Fvk
VM vj,z
vi ,AO,I
,AO,1 vj

• Execution of Data General CAL assembler

Name:

Format:

Purpose:

Switches:

Global:

SR-OOOO

CAL

CAL fiZename

To assemble a CAL assembly language source file.
Output can be an absolute binary file, a listing
file, or both.

By default, output of an assembly is an absolute
binary file (no listing file). Switches other than
those specified are ignored.

IE - List only lines with errors on listing file; no
effect if L or P switches not selected.

IL - ~isting file is produced on fiZename.LS.

IN - No absolute binary file is produced.

I-4 J

Local:

Extensions:

Examples:

/0 - Qverride effect of LIST pseudo-instructions; no
effect if L or P switches not selected.

/P - Listing on £rinter; overridden by L switch.

/X - Produce cross referencing of symbol table; no
effect if L or P switches not selected.

None

On input, search for filename.

On output, produce filename.sv for absolute binary
and filename.LS for listing (global L switch
selected).

The source file name specified on the call cannot
have an extension and is limited to ten characters.

In these examples, each statement must be terminated
with a carriage return.

CAL Z

This example causes assembly of CAL source file Z,
producing an absolute binary file called Z.SV.

CAL/N/L A

This example causes assembly of file A, producing as
output a listing file A.LS. No binary file is
produced.

CAL/P/X EXAMP

This example causes assembly of file EXAMP, producing
an assembly listing with cross-referenced symbol
table, output to the line printer, and an absolute
binary file EXAMP.SV.

• Execution of generated binary under COS

SR-OOOO

A binary generated by Data General CAL can execute on the CRAY-I
under COS if the following steps are taken.

1-5 J

SR-OOOO

1. Block the binary as a separate dataset using the B option.
(See BLOCK utility in Data General Station (DGS) Operator's
Guide, CR1 publication SG-0006.)

2. Stage the dataset to the CRAY-l.

3. Access the dataset from a job.

4. Execute the dataset by specifying the dataset name as the verb
of a control statement. (Note that the LDR utility is not
able to load the dataset.)

1-6 J

INDEX

INDEX

24-bit integer arithmetic, 3-45
64-bit integer arithmetic, 3-48

pseudo, 4-29

A registers
24-bit integer arithmetic operations,

3-45
bit count instructions, 3-88
entry instructions, 3-9
inter-register transfer instructions,

3-15
load instructions, 3-42
special values, 3-4
store instructions, 3-38

ABS psuedo, 4-3
Absolute assembly, 4-3
Absolute expression, 2-19
Absolute symbol attribute, 2-6
Adding operators, 2-16
Addition

floating-point, 3-53
integer, 3-45

Address registers, see A registers or
B registers

ALIGN pseudo, 4-19
Arithmetic operation designator, 3-8
Arithmetic, floating-point, 3-51

addition, 3-53
description, 3-51
multiplication, 3-57
normalization, 3-52
range errors, 3-52
reciprocal approximation, 3-64
reciprocal iteration, 3-62
subtraction, 3-53

Arithmetic instruction format, 3-1
Arithmetic, integer

24-bit, 3-45
64-bit, 3-48
description, 3-45

Assembler
description, 1-1
execution, 1-2, 5-1
features, 1-1
listing format, E-l

cross reference listing, E-3
page headers, E-l
source statement listing, E-l

Assembly errors, C-l
fatal, C-l
warning, C-5

Assembly source stack, 4-45
Asterisk

first column, 2-1

SR-OOOO Index-l

multiplying operator, 2-16
special element, 4-12

Attribute
expression, 2-19
symbol, 2-5, 2-6
term, 2-17

B registers
inter-register transfer instructions,

3-29
load instructions, 3-40
store instructions, 3-37

BASE pseudo, 4-7
Bidirectional memory transfers, 3-35
Binary system text, 5-5
Bit count instructions, 3-88
BITP pseudo, 4-19
BITW pseudo, 4-18
Blank, name terminator, 2-4
Block control, 4-10

ALIGN pseudo, 4-19
BITP pseudo, 4-19
BITW pseudo, 4-18
BLOCK pseudo, 4-13
BSS pseudo, 4-16
COMMON pseudo, 4-14
counters, 4-12
force parcel boundary, 4-13
force word boundary, 4-12
LOC pseudo, 4-17
location counter, 4-12
ORG pseudo, 4-15
origin counter, 4-12
parcel-bit-position counter, 4-13
word-bit-position counter, 4-12

Block name, 4-10
BLOCK pseudo, 4-13
Blocks

blank common, 4-11
description, 4-10
labeled common, 4-11
literals, 4-10
local, 4-10
nominal, 4-10

Branch instructions
conditional format, 3-92
description, 3-91
error exit, 3-95
normal exit, 3-94
return jump, 3-94
unconditional format, 3-91

BSS pseudo, 4-16
BSSZ pseudo, 4-32

J-Ol

CA register, see Current Address register
CAL, see Cray Assembly Language
CE register, see Channel Error Flag register
Channel control monitor instruction, 3-96
Channel Error Flag register (CE)

clearing, 3-98
designator, 3-7

Channel Interrupt Flag register (CI)
clearing, 3-98
designator, 3-7

Channel Limit register
designator, 3-7
setting, 3-96

Character constants, 2-11
Character set, F-l
Chart method of expression attribute

evaluation, 2-21
CI register, see Channel Interrupt Flag

register
Circular shift coding examples, G-3
CL register, see Channel Limit register
Cluster number instructions, 3-103
Code duplication, 4-58

DUP pseudo, 4-58
ECHO pseudo, 4-59
ENDDUP pseudo, 4-60
examples, 4-61
STOPDUP pseudo, 4-61

Coding
alternate tests on contents of S

registers, G-2
circular shifts, G-3
conventions, 2-2
data notation, 2-9, 2-14
examples, G-l
general rules, 2-1
long vectors, G-l
loop counter, G-2
symbolic notation, 3-5

Comma
continuation, 2-1
name terminator, 2-4

Comment field, 2-1, 2-2
COMMENT pseudo, 4-3
Comment statement, 2-1
COMMON pseudo, 4-14
Common relocatable symbol, 2-7
CON pseudo, 4-31
Concatenation, 2-3
Conditional assembly, 4-36

ELSE pseudo, 4-42
ENDIF pseudo, 4-41
examples, 4-44
IFA pseudo, 4-36
IFC pseudo, 4-40
IFE pseudo, 4-38
SKIP pseudo, 4-41

Conditional branch instructions, 3-92
Constants

character, 2-11
numeric, 2-10
prefixed, 2-14

Continuation line, 2-1
Counters, block control, 4-12
Cray Assembly Language (CAL), 2-1

SR-OOOO Index-2

control statement, 5-1
parameters, 5-2

description, 1-1
execution, 1-2, 5-1
features, 1-1
line editing, 2-1
listing format, E-l

cross reference listing, E-3
page headers, E-l
source statement listing, E-l

names, 2-3
register designators, 2-4
source line format, 2-1

comment statement, 2-1
continuation line, 2-1

statement format, 2-1
comment field, 2-2
location field, 2-2
operand field, 2-2
result field, 2-2

symbols, 2- 5
attributes, 2-6
definition, 2-6

Cross reference listing, E-3
Current Address register (CA)

designator, 3-7
setting, 3-96

Data definition, 4-31
BSSZ pseudo, 4-32
CON pseudo, 4-31
DATA pseudo, 4-33
REP pseudo, 4-35
VWD pseudo, 4-34

Data General CAL, I-I
Data items, 2-12
Data notation

character constants, 2-11
format, 2-11

data items, 2-12
format, 2-12

description, 2-9
literals, 2-13
numeric constants, 2-9

format, 2-9
DATA pseudo, 4-33
DECMIC pseudo, 4-65
Division

floating-point, 3-52
integer, 3-53

DUP pseudo, 4-58
Duplicated sequences, 4-62

examples, 4-62

ECHO pseudo, 4-59
Editing, 4-25
EJECT pseudo, 4-26
Elements

description, 2-16
example, 2-16
expression, 2-16
special, 2-9

ELSE pseudo, 4-42

J-Ol

END pseudo
description, 4-3
required, 4-1

ENDDUP pseudo, 4-60
ENDIF pseudo, 4-41
ENDM pseudo, 4-53
ENDTEXT pseudo, 4-28
Entry instructions

description, 3-9
into A registers, 3-9
into S registers, 3-10
into Semaphore register, 3-16
into V registers, 3-15

ENTRY pseudo, 4-4
Equate pseudo, see = pseudo
ERRIF pseudo, 4-21
Error control, 4-20

ERR IF pseudo, 4-21
ERROR pseudo, 4-20

Error exit instruction, 3-95
ERROR pseudo, 4-20
Errors, assembly

fatal, C-l
warning, C- 5

Exchange Address register (XA)
clearing, 3-99
designator, 3-7
setting, 3-99

Execution of the CAL assembler, 1-2
Expression
Expressions, 2-15, 4-50

adding operators, 2-16
attributes, 2-19

absolute, 2-19
external, 2-19
parcel address, 2-19
relocatable, 2-19
value, 2-19
word address, 2-19

chart method of evaluation, 2-21
diagramming, 2-15
elements, 2-9, 2-16
evaluation, 2-18
multiplying operators, 2-16
registers, 3-6, 4-50
term attributes, 2-17
terms, 2-16

EXT pseudo, 4-5
External expression attribute, 2-19
External symbol attribute, 2-7

Fatal assembly errors, C-l
Field

comment, 2-1, 2-2
location, 2-1, 2-2, 3-7
operand, 2-1, 2-2, 3-8
result, 2-1, 2-2, 3-7

Floating-point
addition, 3-53
arithmetic, 3-51
data formats, 3-51
data notation, 2-10
designator, 3-8
instructions, 3-52

SR-OOOO Index-3

Interrupt flag, 3-53
multiplication, 3-57
range errors, 3-52
subtraction, 3-53

Force parcel boundary, 4-13
Force word boundary, 4-12
Functional categories, 3-6

g field, 3-1
General form for instructions, 3-1
Global definitions, 2-8

h field, 3-1
Half-precision designator, 3-8
Header

macro, 4-38
opdef, 4-38

i field, 3-1
IDENT pseudo

description, 4-2
in program module, 4-1
required, 4-1

IFA pseudo, 4-36
IFC pseudo, 4-40
IFE pseudo, 4-38
Immediate constant instruction, 3-3
Instruction definition, 4-43

assembly source stack, 4-45
Instruction definition (continued)

body, 4-45
combinations, 4-51
definition body, 4-44
definition end, 4-45
definition header, 4-44
ENDM pseudo, 4-53
exceptions, 4-52
expressions, 4-50
formal parameters, 4-46
header, 4-45
LOCAL pseudo, 4-52
macro calls, 4-47

examples, 4-54
MACRO pseudo, 4-46
opdef calls, 4-53

examples, 4-54
OPDEF pseudo, 4-49
OPSYN pseudo, 4-57
registers, 4-50
symbolic instruction syntax, 4-49

Instruction descriptions, 4-2
Instruction format, 3-1

I-parcel instruction format, 3-1
2-parcel instruction format, 3-3

Instruction, pseudo
block control, 4-10
definition, 4-1
listing, 4-2
loader linkage, 4-4
macro, 4-36
mode control, 4-7
program control, 4-2

J-Ol

required, 4-1
similar to macro, 4-36

Instruction summaries, A-I
Instruction summary by functional category,

3-6
Instruction summary for CRAY X-MP

computers, A-13
Instruction summary for CRAY-l computers,

A-l
Instruction, symbolic machine

definition, 3-1
format, 3-1
location field, 3-7
notation, 3-5
operand field, 3-8
register designators, 3-7
required, 4-1
result field, 3-7

Integer arithmetic operations, 3-45
Integer data formats, 3-45
Integer difference instruction

24-bit, 3-46
64-bit, 3-49

Integer product instructions
24-bit, 3-46

Integer sum instructions
24-bit, 3-46

Integer sum instructions (continued)
64-bit, 3-48

Inter-register transfer instructions, 3-18
to A registers, 3-18
to intermediate registers, 3-29
to S registers, 3-23
to Semaphore register, 3-35
to V registers, 3-31
to Vector Length register, 3-33
to Vector Mask register, 3-33

Intermediate registers, see B registers or
T registers

Interprocessor interrupt instructions
clear, 3-102
set, 3-102

Interrupt flag, 3-53

j field, 3-1

k field, 3-1

Leading zero count
designator, 3-8
instruction, 3-78

Line
comment, 2-1
continuation, 2-1
source, 2-1

Line editing, 2-3
concatenation, 2-3
micro substitution, 2-3

LIST pseudo, 4-22
Listing control, 4-22

EJECT pseudo, 4-26
ENDTEXT pseudo, 4-28

SR-OOOO Index-4

LIST pseudo, 4-22
SPACE pseudo, 4-26
SUBTITLE pseudo, 4-27
TEXT pseudo, 4-27
TITLE pseudo, 4-26

Literals
description of block, 4-10
notation, 2-13

Load instructions, 3-40
Loader Linkage, 4-4

ENTRY pseudo, 4-4
EXT pseudo, 4- 5
MODULE pseudo, 4-6
START pseudo, 4-6

LOC pseudo, 4-17
LOCAL pseudo, 4-52
Location counter, 4-12
Location field

description, 2-2
symbolic instruction, 3-7

Logfile messages, D-l
Logical operations

description, 3-66
designator, 3-8
differences, 3-72
equivalence, 3-74
merge, 3-76
products, 3-67
sums, 3-70
Vector Mask, 3-75

Long vector coding examples, G-l
Loop counter coding examples, G~2

m :t;ield, 3-1
Macro calls, 4-47
Macroinstruction

description, 4-42
examples, 4-54
expansion, 4-54
global, 2-9, 4-1, 4-36
header, 4-1
in program module, 4-1
structured, H-l

MACRO pseudo, 4-46
Mask instruction, 3-2
Master Clear

clear ing, 3-98
designator, 3-7
setting, 3-98

Memory references, 3-35
Memory transfers

bidirectional, 3-35
description, 3-35
loads, 3-40
memory references, 3-36
stores, 3-37

Merge instruction, 3-76
Micro definition, 4-63

DECMIC pseudo, 4-65
MICRO pseudo, 4-64
OCTMIC pseudo, 4-65
predefined, 4-66

Micro references, 4-63
Micro substitution, 2-3

J-Ol

Micros
description, 4-60
global, 2-9, 4-1
in program module, 4-1
predefined, 4-66
references, 4-63

MICSIZE pseudo, 4-31
Mode control, 4-7

BASE pseudo, 4-7
QUAL pseudo, 4-8

MODULE pseudo, 4-6
Monitor instructions

channel control, 3-96
cluster number, 3-103
interprocessor interrupt, 3-102
operand range error interrupt, 3-104
programmable clock interrupt, 3-100
set exchange address, 3-99
set real-time clock, 3-99

Multiplication
address, 3-36
floating-point, 3-57

Multiplying operators, 2-16

Names, 2-3
Normal exit instruction, 3-94
Normalized floating-point number, 3-52
Numeric constants, 2-9

OCTMIC pseudo, 4-65
Ones complement operation designator, 3-8
Opdef calls, 4-53
Opdef instruction

definition, 4-49
examples, 2-9, 4-1, 4-54
expansion, 4-56
global, 4-52
header, 4-50
in program module, 4-1

OPDEF pseudo, 4-49
Operand field

description, 2-2
special characters, 3-8
symbolic instruction, 3-8

Operand range error interrupt instructions
disable, 3-104
enable, 3-104

Operation definition, see opdef
Operator

adding, 2-16
multiplying, 2-16

OPSYN pseudo, 4-57
ORG pseudo, 4-15
Origin counter, 4-12

Page header, E-l
Parameters

CAL control statement, 5-2
formal, 4-41

Parcel "''idress
expression attribute, 2-19
pr~fix - .P, 2-14

SR-OOOO Index-S

symbol attribute, 2-6
Parcel-bit-position counter, 4-13
Pass one

expression evaluation, 4-11
function, 1-2

Pass two
expression evaluation, 4-12
function, 1-2

Population count
designator, 3-8
instructions

scalar, 3-76
vector, 3-76

Population count parity
designator, 3-8
instructions

scalar, 3-77
vector, 3-77

Position counter
description, 4-12
parcel bit, 4-13
word bit, 4-12

Predefined micros, 4-67
Prefix

parcel address - P., 2-14
word address - W., 2-15

Prefixed constants, 2-14
Prefixed special elements, 2-14
Prefixed symbols, 2-14
Program control, 4-2

ABS pseudo, 4~3
COMMENT pseudo, 4-3
END pseudo, 4-3
IDENT pseudo, 4-2

Programmable clock interrupt instructions
clear, 3-101
disable, 3-102
enable, 3-101
set, 3-100

Pseudo instructions
classifications, 4-2
descriptions, 4-2
index, B-1
rules, 4-1

QUAL pseudo, 4-8
Qualified symbols, 2-8

Range errors, floating-point, 3-52
Real-time Clock register (RT)

clearing, 3-99
designator, 3-7
setting, 3-99

Reciprocal approximation, 3-64
Reciprocal iteration

description, 3-62
designator, 3-8

Redefinable symbol, 2-7
Register designators, 2-4, 3-7

special prefixes, 3-8
supporting registers, 3-7

Register entry instructions
A registers, 3-9

J-Ol

description, 3-9
S registers, 3-10
V registers, 3-15

Registers, 4-51
Relocatable expression attributes, 2-19
Relocatable symbol attribute, 2-7
REP pseudo, 4-35
Result field

description, 2-2
symbolic instruction, 3-7

Return jump branch instructions, 3-94
Rounded operation designator, 3-8
RT register, see Real-time Clock register
Rules for pseudo instructions, 4-1

S registers
64-bit integer arithmetic operations,

3-45
alternate tests on the contents, G-2
as special values, 3-4
bit count instructions, 3-88
entry instructions, 3-10
floating-point arithmetic operation!,?,

3-51
inter-register transfer instructions,

3-23
load instructions, 3-43
logical operations, 3-66
shift instructions, 3-80
store instructions, 3-39

SB, see Shared B registers
SB, see Sign bit
Scalar leading zero count, 3-91
Scalar population count, 3-88
Scalar population count parity, 3-89
Semaphore register (SM)

designator, 3-7
entry instructions, 3-16
inter-register transfer instructions,

3-35
Set exchange address monitor instruction,

3-99
SET pseudo, 4-30
Set real-time clock monitor instruction,

3-99
Shared B registers (SB),

inter-register transfer instructions,
3-30

Shared T registers (ST),
inter-register transfer instructions,

3-31
Shift instructions, 3-80
Shift operation designator, 3-8
Sign bit designator, 3-7
SKIP pseudo, 4-41
SM register, see Semaphore register
Source line format

comment statement, 2-1
continuation line, 2-1

Source statement listing, E-l
SPACE pseudo, 4-26
Special characters, 3-8

symbolic instruction syntax, 4-42
Special elements

SR-OOOO Index-6

force parcel boundary, 4-13
force word boundary, 4-13
general description, 2-14
location counter, 4-12
origin counter, 4-12
position counter, 4-12
prefixed, 2-14

Special expression elements 2-9
Special macros, H-3
Special register values, 3-4
Special syntax forms, 3-8
ST registers, see Shared T registers
START pseudo, 4-6
Statement format, 2-1

comment field, 2-1, 2-2
listing, E-l
location field, 2-2
operand field, 2-2
result field, 2-2

STOPDUP pseudo, 4-59, 4-61
Store instructions, 3-37
SUBTITLE pseudo, 4-27
Subtraction, floating-point, 3-53
Summary of differences between CPU CAL and

Data General CAL, I-l
Symbol attributes, 2-6
Symbol definition 2-6, 4-29

= pseudo, 4-29
MICSIZE pseudo, -4-31
SET pseudo, 4-30

Symbol reference, 2-8
Symbolic notation, 3-5

general requirements, 3-5
location field, 3-7
operand field, 3-8
register designators, 3-7
result field, 3-7

special characters, 3-8
Symbolic instruction syntax, 4-49
Symbolic machine instructions, 3-1
Symbols, 2-5

attributes, 2-6
absolute, 2-7
common, 2-7
external, 2-7
parcel address, 2-6
redefinable, 2-7
relocatable, 2-7
value, 2-6
word address, 2-6

definition, 2-6
global, 2-9, 4-1
prefixed, 2-14
qualified, 2-8

Syntax forms, 3-8
System text, 5-5

T registers
inter-register transfer instructions,

3-30
load instructions, 3-41
store instructions, 3-37

Terms, 2-16
attributes, 2-17

J-Ol

TEXT pseudo, 4-27
TITLE pseudo, 4-26
Transfer instructions

inter-register, 3-18
memory, 3-27
to A registers, 3-18
to intermediate registers, 3-29
to S registers, 3-23
to Semaphore register, 3-35
to V registers, 3-31
to Vector Length register, 3-33
to Vector Mask register, 3-33

Unconditional branch instructions, 3-91

V registers
64-bit integer arithmetic operations,

3-45
bit count instructions, 3-88
entry instructions, 3-15
floating-point arithmetic operations,

3-51
inter-register transfer instructions,

3-31
load instructions, 3-44
logical operations, 3-66
shift instructions, 3-80
store instructions, 3-40

Value address expression, 2-19
Value symbol attribute, 2-6
Values, special register, 3-5
Vector Length register (VL)

designator, 3-7
example, 3-8
inter-register transfer instructions,

3-33
Vector Mask register (VM)

designator, 3-7
inter-register transfer instructions,

3-33
logical operations, 3-75

Vector population count, 3-89
Vector population count parity, 3-90
Vector registers, see V registers
VL register, see Vector Length register
VM register, see Vector Mask register
VWD pseudo, 4-34

Warning assembly errors, C-5
Word Address

expression attribute, 2-19
prefix - W., 2-15
symbol attribute, 2-6

Word-bit-position counter, 4-12

XA register, see Exchange Address register

SR-OOOO Index-7 J-Ol

READER COMMENT FORM

CAL Assembler Version 1 Reference Manual SR-OOOO K

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ________________ ~-------------------

JOB TITLE _______________ _

FIRM _____________________________ _
RESEARCH. INC.

ADDRESS ________________________________ __

CITY ______________ STATE ______ ZIP _____ _

---~

'""'

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL MN

POSTAGE Will BE PAID BY ADDRESSEE

RESEARCH. INC.

2520 Pilot Knob Road
Attention: Suite 350
PUBLICATIONS Mendota Heights, MN 55120

U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---~

STAPLE

()
C
-i
»
r o
z
Gl
-i
I
Ui
r
Z
m

