RESEARCH, INC.

CRAY X-MP AND CRAY-1®
COMPUTER SYSTEMS

SYMBOLIC MACHINE INSTRUCTIONS
REFERENCE MANUAL

SR-0085

Copyright® 1986 by CRAY RESEARCH, INC. This manual or
parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

CRRANY

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SR-0085

Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new version
and the new version is assigned an alphabetic level.

Every page changed by a reprint with revision has the revision level in the lower righthand corner. Changes to partlof a page are noted
by a change bar in the margin directly opposite the change. A change bar in the margin opposite the page number indicates that the
entire page is new. If the manual is rewritten, the revision level changes but the manual does not contain change bars.

Requests for copies of Cray Research, Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH, INC.

2520 Pilot Knob Road

Suite 310

Mendota Heights, Minnesota 55120

Revision Description
January 1986 - Original printing.

[l
e

SR-0085

PREFACE

This manual provides information on CRAY X-MP and CRAY-1 Symbolic Machine

Instructions, and is intended to be used as a reference with CAL
Assembler Version 2.

Specific information on CAL Assembler Version 2 can be found in the
following manual:

SR-2003 CAL Assembler Version 2 Reference Manual

SR-0085 iii

CONTENTS

PREFACE .

1.

INTRODUCTION

INSTRUCTION SYNTAX . .

2.
2.1
2.2
2.3
2.4
3.

INSTRUCTION FORMAT

2.1.1 l-parcel
k fields
2.1.2 l-parcel
k fields
2.1.3 2-parcel
and m fie
2.1.4

j. k, and

instruction
instruction
instruction
1ds

m fields .

SPECIAL REGISTER VALUES . .

SYMBOLIC NOTATION
2.3.1
2.3.1.1

e Jde .

N NN
W w w

1
1
1

»w N

2.3.1.5
2.3.2

General syntax
designators .
field

Register
Location

format with
format with

format with

.

2-parcel instruction format with

. ¢ e . . .

Result field
Operand field
Comment field . . .

Special syntax forms

MONITOR MODE INSTRUCTIONS .

MACHINE INSTRUCTION DESCRIPTIONS .

APPENDIX SECTION

A. SYMBOLIC INSTRUCTION SUMMARY . . .

A.l
A.2
A.3

SR-0085

FUNCTIONAL UNITS

.

CRAY-1 SYMBOLIC MACHINE INSTRUCTIONS . .
CRAY X-MP SYMBOLIC MACHINE INSTRUCTIONS

discrete j and

.

combined j and

combined j,
combined 1,

. -

. -

k,

iii

NN NNDNDNNNNDNNN
| [
O 0O NNNOOT OO

|

:D':rb'
(S0

B. FUNCTIONAL INSTRUCTION SUMMARY . . . « « « + .+ &

B.1

SR-0085

REGISTER ENTRY INSTRUCTIONS

B.1.1 Entries into A registers
B.1.2 Entries into S registers
B.1.3 Entries into V registers
B.1.4 Entries into semaphore registers .
INTER-REGISTER TRANSFER INSTRUCTIONS . . .
B.2.1 Transfers to A registers
B.2.2 Transfers to S registers
B.2.3 Transfers to V registers
B.2.4 Transfer to Vector Mask register .
B.2.5 Transfer to Vector Length register
B.2.6 Transfer to Semaphore register . .
MEMORY TRANSFERS ¢« ¢ ¢ ¢ o o« + &
B.3.1 Bidirectional memory transfers . .
B.3.2 Memory references
B.3.3 Stores 0 0 0 e e e .

B.3.4 Loads . . ¢ ¢ ¢« ¢ ¢ o o o o o o &
INTEGER ARITHMETIC OPERATIONS
B.4.1 24-bit integer arithmetic
B.4.2 64-bit integer arithmetic
FLOATING-POINT ARITHMETIC . . « « « o« « &

FT INSTRUCTIONS ¢ & « o s o o »
COUNT INSTRUCTIONS . ¢ &« ¢ o « & & o« &
.1 Scalar population count
.2 Vector population count
.3 Scalar population count parity .

.4 Scalar leading zero count
BRANCH INSTRUCTIONS . . o ¢« + o & o o + &

B.5.1 Floating-point range errors . . .
B.5.2 Floating-point addition and subtraction
B.5.3 Floating-point multiplication . .
B.5.4 Reciprocal iteration
B.5.5 Reciprocal approximation
LOGICAL OPERATIONS . . . « &« &« o o o o & &
B.6.1 Logical products «
B.6.2 Logical sums . . « « + o « o o o« &
B.6.3 Logical differences . . « « « o« .
B.6.4 Logical equivalence
B.6.5 Vector mask « . . « . .
B.6.6 Merge . . . ¢« ¢ ¢ ¢ ¢ e o o o o
SHI

T

8

8

8

8

B.9.1 Unconditional branch instructions
B.9.2 Conditional branch instructions .
B.9.3 Return jump . . . « + ¢« ¢« « « & &
B.9.4 Normal exit . . . ¢ . ¢ ¢ o« o « &
B.9.5 Error exit « ¢« + + o .
MONITOR INSTRUCTIONS . . ¢ &« ¢ ¢ o « o o @
B.10.1 Channel control « . .
B.10.2 Set real-time clock
vi

.

.

.

v
[

| T T N I

|
WORONOTOTODO NN WWWN R

| Y I
=
[l ==]

cummmmwwwwmmw?mmmmwmwwwwww

|
[
N

B-12
B-13
B-13
B-14
B-14
B-15
B-15
B-16
B-16
B-17
B-18
B-18
B-18
B-18
B-18
B-19
B-19
B-19
B-20
B-20
B-20
B-20
B-21

B.10 MONITOR INSTRUCTIONS (continued)

B.10.3 Programmable clock interrupt instructions . . . B-21
B.10.4 Interprocessor interrupt instructions B-21
B.10.5 Cluster number instructions B-22
B.10.6 Operand range error interrupt instructions . . . B-22

B.10.7 Performance counters . . o « o+ « o o+ o o o o o o B-22

FIGURES

2-1 General Form for Imnstructions 2-1
2-2 l1-parcel Instruction Format with Discrete j and k Fields . . 2-2
2-3 l-parcel Instruction Format with Combined j and k Fields . . 2-3
2-4 2-parcel Instruction Format with Combined j, k, and m Fields 2-4
2-5 2-parcel Instruction Format with Combined i, j, k,

and M Fields . « & ¢ ¢ ¢ ¢ ¢ o ¢ o o o e 4 e e 4 0 e 0 e . . 2-4
2-6 2-parcel Instruction Format for a 24-bit Immediate Constant
with Combined I, j, k, and m Fields « « « ¢« &« « .« . 2-5

2-1 Special Register ValuesS . . . « ¢ « o ¢ « o o o o s o o o o« 2-6

SR-0085 vii

INTRODUCTION 1

Each Cray mainframe (CRAY X-MP and CRAY-1) machine instruction can be
represented symbolically in Cray Assembly Language (CAL). This manual
provides information on the Symbolic Machine Instructions used with the
CRAY X-MP and CRAY-1.

For a general description of the Cray mainframe, refer to the appropriate
Reference Manual:

® HR-0004 CRAY-1 Hardware Reference Manual
e HR-0029 CRAY-1 S Series Mainframe Reference Manual
¢ HR-0064 CRAY-1 M Series Mainframe Reference Manual

e HR-0088 CRAY X-MP Series Models 11, 12, and 14 Mainframe
Reference Manual

e HR-0032 CRAY X-MP Series Models 22 and 24 Mainframe Reference
Manual

e HR-0097 CRAY X-MP Series Model 48 Mainframe Reference Manual

Section 2 of this manual provides information on Symbolic Machine
Instruction format for a l1l-parcel (16-bit) instruction or a 2-parcel
(32-bit) instruction. It also describes special register values that may
be referenced by the instructions and the symbolic notation used for
coding the machine instructions.

Section 3 provides detailed information on the CAL instructions that
operate on the CRAY X-MP and CRAY-1l. Each instruction begins with boxed
information consisting of the CAL syntax format, an operand if required,
a brief description of each instruction, and the machine instruction.

Following the boxed information is a detailed description of the
instruction and an example.

Appendix A provides a summary of functional units and the symbolic
machine instructions. Appendix B lists the instructions by function.
References to section 3 for a detailed description of the instruction are
provided.

SR-0085 1-1

INSTRUCTION SYNTAX 2

Each CRAY X-MP and CRAY-1 mainframe machine instruction can be
represented symbolically in Cray Assembly Language (CAL). The assembler
identifies a symbolic instruction according to its syntax and generates a
corresponding binary machine code. An instruction is generated in the
assembly section in use when the instruction is interpreted.

This section describes the format of symbolic machine instructions,

special register values, and notation used for coding symbolic machine
instructions for CAL Assembler Version 2 on a CRAY X-MP and CRAY-1.

2.1 INSTRUCTION FORMAT

Each instruction is either a l-parcel (16-bit) instruction or a 2-parcel
(32-bit) instruction. Instructions are packed 4 parcels per word.
Parcels are numbered 0 through 3 from left to right and any parcel
position can be addressed in branch instructions. A 2-parcel instruction
begins in any parcel of a word and can span a word boundary. For
example, a 2-parcel instruction beginning in parcel 3 of a word, ends in
parcel 0 of the next word. No padding to word boundaries is required.
Figure 2-1 illustrates the general form of instructions.

First Parcel Second Parcel
g h 1 j k m
] 4 | 3 13131 3] 16 | Bits

Figure 2-1. General Form for Instructiomns

Four variations of this general format use the fields differently. The
formats of the following variations are described in this section:

e 1l-parcel instruction format with discrete j and k fields

e 1-parcel instruction format with combined j and k fields

SR-0085 2-1

¢ 2-parcel instruction format with combined j, k, and m fields

® 2-parcel instruction format with combined i, j, k, and m
fields

2.1.1 1-PARCEL INSTRUCTION FORMAT WITH DISCRETE j AND k FIELDS

The most common of the l-parcel instruction formats uses the i, j,

and k fields as individual designators for operand and result registers
(see figure 2-2). The ¢ and h fields define the operation code. The

I field designates a result register and the j and k fields

designate operand registers. Some instructions ignore one or more of the
i, j, and k fields. The following types of instructions use this

format:

Arithmetic

Logical

Double shift
Floating-point constant

® & 0 O

g h 1 j k

l 4 |1 3]3]31]3]1 Bits
Operation Register
Code Designators

Figure 2-2. 1-parcel Instruction Format
with Discrete j and k Fields

2.1.2 1-PARCEL INSTRUCTION FORMAT WITH COMBINED j AND k FIELDS

Some 1l-parcel instructions use the j and k fields as a combined 6-bit
field (see figure 2-3). The ¢ and h fields contain the operation

code, and the I field is generally a destination register. The
combined j and k fields generally contain a constant or a B or T
register designator. The branch instruction 005 and the following types
of instructions use the l-parcel instruction format with combined j and
k fields:

Constant

B and T register block memory transfer
B and T register data transfer

Single shift

Mask

® & o ¢ o

SR-0085 2-2

g h 1 jk

|4 13 }131] 6 | Bits
N — —

Operation

Code

Result Constant or
Register Register
Designator

Figure 2-3. 1-parcel Instruction Format
with Combined j and k Fields

2.1.3 2-PARCEL INSTRUCTION FORMAT WITH COMBINED j, k, AND m FIELDS

The instruction type for a 22-bit immediate constant uses the combined
j. k, and m fields to hold the constant. The 7-bit gh field contains
an operation code, and the 3-bit i field designates a result register.
The instruction type using this format transfers the 22-bit jkm
constant to an A or S register.

The instruction type used for Scalar Memory transfers also requires a
22-bit jkm field for an address displacement. This instruction type
uses the 4-bit ¢g field for an operation code, the 3-bit h field to
designate an address index register, and the 3-bit I field to designate
a source or result register. (See special register values.)

Figure 2-4 shows the two general applications for the 2-parcel
instruction format with combined j, k, and m fields.

NOTE

When using an immediate constant which has both
relocatable and parcel attributes, the result of the
relocation will be incorrect if the loader-determined
actual address (within the user's field length) is
greater than 1,048,575. This is because the resulting
relocated value will have more than 22 significant
bits. A CAL caution message is issued if this occurs.
The exception to this is when "Ah exp" executes on a
CRAY X-MP/48.

SR-0085 2-3

First Parcel Second Parcel

A~

g h i j k m

| ¢ 13131 22 | Bits

Operation Result Constant

Code Register
First Parcel Second Parcel
g h i j k m
|4 |1 313] 22 | Bits
Operation i
Code Address or

Displacement
Address Source or
Register Result Register
Used as
Index

Figure 2-4. 2-parcel Instruction Format
with Combined j, k, and m Fields

2.1.4 2-PARCEL INSTRUCTION FORMAT WITH COMBINED i, j, k, AND m
FIELDS

The 2-parcel branch instruction type uses the combined i, j, k, and
m fields to contain a 24-bit address that allows branching to an
instruction parcel (see figure 2-5). A 7-bit operation code (gh) is
followed by an ijkm field. The high-order bit of the i field is
unused.

First Parcel Second Parcel
g h i j k m
| ¢4 | 3 |/} 22 12 | Bits
Operation 1 Address Parcel
Code Unused Select
Bit

Figure 2-5. 2-parcel Instruction Format with
Combined i, j, k, and m Fields

SR-0085 2-4

The 2-parcel instruction type for a 24-bit immediate constant (figure
2-6) uses the combined i, j, k, and m fields to hold the constant.
This instruction type uses the 4-bit ¢ field for an operation code and
the 3-bit h field to designate the result address register. The
high-order bit of the iI field is set.

First Parcel Second Parcel
g h i J k m
| 4 | 3 |1} 24 | Bits

Operation| High-bit Constant
Code Set

Result
Register
Figure 2-6. 2-parcel Instruction Format for a 24-bit Immediate

Constant with Combined i, j, k, and m Fields

2.2 SPECIAL REGISTER VALUES

If the SO and A0 registers are referenced in the j or k fields of
certain instructions, the contents of the respective register is not
used; instead, a special operand is generated. The special operand is
available regardless of existing A0 or SO reservations (and in this case
is not checked). This use does not alter the actual value of the SO or
A0 register. If SO or A0 is used in the i field as the operand, the
actual value of the register is provided. Table 2-1 shows the special
register values.

2.3 SYMBOLIC NOTATION

The following information describes the notation used for coding symbolic
machine instructions. CAL contains two syntax forms: general and
special.

2.3.1 GENERAL SYNTAX

Register designators and the location, result, operand, and comment
fields have the following general syntax requirements.

SR-0085 2-5

2.3.1.1 Register designators

a, B, sBt, s, T, stt, sut, ana v registers can be referenced with
numeric or symbolic designators. The symbolic designators can be entered
uppercase, lowercase, or any mixture of case.

In the symbolic notation, the h, i, j, and k designators indicate

the field of the machine instruction into which the register designator
constant or symbol value is placed. An expression (exXxp) occupies the
jk., ijk, jkm, or ijkm fields depending on the operation code and
magnitude of the expression value.

Supporting registers have the following designators:

Designator Register
CA Current Address
CL Channel Limit
CI Channel Interrupt Flag
CE Channel Error Flag
RT Real-time Clock
MC Master Clear
SB Sign Bit (Sk, with k=0)
smt Semaphore
VL Vector Length
VM Vector Mask
XA Exchange Address

Table 2-1. Special Register Values

I | |
Field	Operand
	Value
I I I	
ah, h=0	0
I	
ai, i=0	(A0)
L	
aj, =0	0
I I	
Ak, k=0	1
I	
si, i=0	(so)
b	
83, j=0	0 I
I	I
Sk, k=0	2%%63
I | |

+ CRAY X-MP Computer Systems only

SR-0085 2-6

2.3.1.2 Location field

The location field of a symbolic instruction optionally contains a
symbol. When a symbol is present, it is assigned a parcel address as
indicated by the current value of the location counter after any required
force to parcel boundary occurs.

2.3.1.3 Result field

The result field of a symbolic machine instruction can consist of one,
two, or three subfields separated by commas. A subfield can be null or it
can contain a register designator or an expression. The expression
specifies a memory address which indicates the register or memory location
to receive the results of the operation. The result field may contain a
mnemonic indicating the function being performed (for example, J for jump
or ex for exit). The mnemonics are case sensitive and must be entered in
either all uppercase or all lowercase letters, they cannot be mixed. For
example, EX is a valid mnemonic for exit, while Ex is not.

2.3.1.4 Operand field

The operand field of a symbolic machine instruction consists of no
subfield or one, two, or three subfields separated by commas. A subfield
can be null, contain an expression (with no register designators), or
consist of register designators and operators.

The following special characters can appear in the operand field of
symbolic machine instructions and are used by the assembler in determining

the operation to be performed.

Character Operation

+

Arithmetic sum of specified registers
Arithmetic difference of specified registers
Arithmetic product of specified registers
Reciprocal of approximation

Use ones complement

Shift value or form mask from left to right
Shift value or form mask from right to left
Logical product of specified registers
Logical sum of specified registers

Logical difference of specified registers

- A vV N ¥ |

rd

SR-0085 2-17

In some instructions, register designators are prefixed by the following
letters which have special meaning to the assembler. These letters can
be entered either uppercase or lowercase (case insensitive).

Floating-point operation
Half-precision floating-point operation
Rounded floating-point operation
Reciprocal iteration

Population count

Parity count

Leading-zero count

NO YHRX DM

2.3.1.5 Comment field

The comment field of the symbolic machine instructions begins in column
35. By convention, the comment should be preceded by a semicolon (;) in
column 35, and a space.

2.3.2 SPECIAL SYNTAX FORMS

The CAL instruction repertoire has been expanded for the convenience of
programmers to allow for special forms of symbolic instructions. Because
of this expansion, certain Cray machine instructions can be generated
from two or more different CAL instructions. For example, both of the
following instructions generate instruction 00200, which causes a 1 to be
entered into the VL register:

VL A0
VL 1

The first instruction is the basic form of the Enter VL instruction,
which takes advantage of the special case where (Ak)=1 if k=0; the

second instruction is a special syntax form providing the programmer with
a more convenient notation for the special case.

Any of the operations performed by special instructions can be performed
using instructions in the basic set. Instructions having a special
syntax form are identified as such in the instruction description found
later in this section.

In several cases, a single syntax form of an instruction can result in
any of several different machine instructions being generated. In these
cases, which provide for entering the value of an expression into an A
register or into an S register or for shifting S register contents, the
assembler determines which instruction to generate from characteristics
of the expression.

SR-0085 2-8

2.4 MONITOR MODE INSTRUCTIONS

The monitor mode instructions (channel control, set real-time clock, and
programmable clock interrupts) perform specialized functions that are
useful to the operating system. These instructions execute only when the
CPU is operating in the monitor mode. If an instruction is executed
while not in the monitor mode, it is treated as a no-op.

SR-0085 2-9

This section contains detailed information about individual instructions
or groups of related instructions. Each instruction begins with boxed
information consisting of the Cray Assembly Language (CAL) syntax
format. This consists of a result field description, an operand field
description, a brief description of each instruction, and the machine
instruction (octal code sequence defined by the gh fields). The
appearance of an m in a format description designates an instruction
consisting of two parcels. An x in the format description signifies
that the field containing the X is ignored during CRAY-1 instruction
execution. CAL will insert a 0 for each occurrence of X.

Following the boxed information is a detailed description of the
instruction or instructions, and an example using the instruction.

oo Jo e Jo K Fe Jo Je de o Je e dc do o e do Jo e to de e B de Jo B Fo e Ko Bo Fo e de e e B I Fe de B do Fe B Ko Ko de e Ko B e dede K e N

CAUTION

Instructions with g, h, i, j, k, and m fields not
explicitly described in the following instructions may
produce indeterminate results.

Sode Je Jo K Ko Fe o de o de Je e e Jo o de I e e Ko Ko dede de Te do Fo o o o e e e e B e Bu e de do o Ko e e o e B B de e de Ko de e

Specific information about the CPU parameter (including the primary and
charac options) of the CAL invocation statemeat is found in the
following manual:

SR-2003 CAL Assembler Version 2 Reference Manual

SR-0085 3-1

INSTRUCTION 000

I I I I

| Result | Operand | Description | Machine

] | | | Instruction
I | | |

| | I I

| ERR | | Error exit | 000000

I I | I

| errt | exp | Error exit | 000ijk

|]

-’-

Special CAL syntax on CRAY-1 Computer Systems only

The 000 instruction is treated as an error condition and an exchange
sequence occurs. The contents of the instruction buffers are voided by
the exchange sequence. If monitor mode is not in effect, the Error Exit
flag in the Flag (F) register is set. All instructions issued before
this instruction are run to completion.

When the results of previously issued instructions have arrived at the
operating registers, an exchange occurs to the Exchange Package
designated by the contents of the Exchange Address (XA) register. The
program address stored in the Exchange Package on the terminating
exchange sequence is advanced by 1 parcel from the address of the error
exit instruction.

The error exit instruction is not generally used in program code. This
instruction is used to halt execution of an incorrectly coded program
that branches to an unused area of memory or into a data area.

The expression in the operand field is optional and has no effect on
instruction execution; the low-order 9 bits of the expression value are
placed in the ijk fields of the instruction.

Example:

|Code generated {Location]|Result |Operand | Comment
| 11 110 120 135

I I | | |

] 000000 | | ERR] |

I | | | I

000017 I | ERR ID'15 I

SR-0085 3-2

INSTRUCTION 0010

Privileged to monitor mode
Special CAL syntax

I I | |

| Result | Operand | Description | Machine
| | | | Instruction
| |]]

| I I I

| ca,ajt | Ak | Set the Current Address (CA) | 00107k

| | | register, for the channel]

!] | indicated by (Aj), to (Ak) !

| | | and activate the channel |

| | l I

| passtt | | Pass | 001000

| l | |

1‘

+

The 0010jk instruction sets the Current Address (CA) register for the
channel indicated by the contents of Aj to the value specified in
Ak. It then activates the channel.

Before this instruction is issued, the Channel Limit (CL) register should
be initialized. As the transfer progresses, the address in CA is
increased. When the contents of CA equals the contents of CL, the
transfer is complete for the words at the initial address in CA through 1
less than the address in CL.

When the j designator is 0 or when the contents of Aj is less than 2
or greater than 25, the instruction executes as a pass instruction. When
the k designator is 0, CA is set to 1.

Example:

|Code generated {Location|Result | Operand | Comment
I 11 110 120 135

I I I | |

|001035 | |CA,A3 |AS |

| I I [I

1001000 | |Pass | |

SR-0085 3-3

INSTRUCTION 0011

I I | i

| Result | Operand | Description] Machine

| | | | Instruction
|] | |

| | | |

| cL,ajt | Ak | Set the channel (Aj) limit | 0011jk

| | | address to (Ak) |

| l 1 |

1.

Privileged to monitor mode

The 0011jk instruction sets the Channel Limit (CL) register for the
channel indicated by the contents of Aj to the address specified in Ak.

The instruction is usually issued before issuing the CA,Aj Ak
instruction.

When the j designator is 0 or when the contents of Aj is less than 2
or greater than 25, the instruction is executed as a pass instruction.
When the k designator is 0, CL is set to 1.

Example:

| Code generated | Location]|Result |Operand |Comment
| 11 110 120 135

| | I | |

001134 | [CL,A3 | A4 I

SR-0085 3-4

INSTRUCTION 0012

1

J

flag and Error flag; set device
master-clear (output channel):;

clear device ready-held

(input channel)

| |
Result | Operand | Description Machine

| | Instruction
]]
I I

CI,Aj+ | | Clear Channel (Aj) Interrupt 001230
| | flag
| |

MC,Aj** | | Clear Channel (Aj) Interrupt 0012j1
| I
| I
| I
! |

+ Privileged to monitor mode
++ Privileged to monitor mode on CRAY X-MP Computer Systems only

Instruction 0012j0 clears the Interrupt flag and Error flag for the
channel indicated by the contents of Aj.

When the j designator is 0 or when the contents of Aj is less than 2
or greater than 25, the instruction is executed as a pass instruction.

Instruction 0012j1 sets the device Master Clear.

If (Aj) represents

an output channel, the master clear is set; if (Aj) represents an input
channel, the ready flag is cleared.

Example:

|Code generated | Location|Result |Operand | Comment
| 11 110 120 135

| | | I I
1001210 | |CI,Al | |

| | | I |
|001241 | |MC, A4 | i

| | | [|
001201 | |MC, A0 | {
SR-0085 3-5

INSTRUCTION 0013

| | I !

| Result | Operand | Description | Machine

|] | | Instruction
| | | |

| | I |

| xat | Aj | Enter XA register with (AjJ) | 001330

| l | |

+ Privileged to monitor mode

The 0013j0 instruction tramsmits bits 12 through 19 of register Aj to
the Exchange Address (XA) register.

If the j designator is 0, the XA register is cleared.
A monitor program activates a user job by initializing the XA register

with the address of the user job's Exchange Package and then executing a
normal exit (EX).

Example:

|Code generated |Location|Result]Operand |Comment
' 11 110 120 |35

| | | I |
1001350 | | XA |aS |

SR-0085 3-6

INSTRUCTION 0014

| | | I

| Result | Operand | Description | Machine
| | | | Instruction
| | |]

I I I I

| RT | sj | Enter RTC with (Sj) | 00140
| | | I

| sip1t | exp | Set interprocessor interrupt | 001471
| | | request of CPU exp; O¢exp<3 |

I | I I

| siprt tt | | Set interprocessor interrupt | 001401
| | | request |

I I | I

| ciert | | Clear interprocessor interrupt | 001402
| | I I

| coat T+t | exp | Cluster number = exp | 001433
| | | where 0<exp«<5 |

| I I |

| pc1¥ | Sj | Set program interrupt interval | 0014374
| | I |

| ccrY I | Clear clock interrupt | 001405
I I | I

| ectY | | Enable clock interrupts | 001406
| | I |

| pcrd | | Disable clock interrupts | 001407
I 1 1 l

+ CRAY X-MP Computer Systems with two or four CPUs. This
instruction is available when the numeric trait NUMCPUS, which is
specified on the CPU parameter of the CAL invocation statement, is
greater than one.

++ Special CAL syntax

+++ CRAY X-MP Computer Systems only. This instruction is available
when the numeric trait NUMCLSTR, which is specified on the CPU
parameter of the CAL invocation statement, is greater than zero.

l Programmable clock (optional on CRAY-1 Models A and B). This
instruction is available through the logical trait PC specified on
the CPU parameter of the CAL invocation statement.

NOTE

Instruction 0014 is privileged to monitor mode and is
treated as a pass instruction if the monitor mode bit
is not set.

SR-0085 3-7

INSTRUCTION 0014 (continued)

The 0014j0 instruction transmits the contents of register Sj to the
Real-time Clock register. When the j designator is 0, the Real-time
Clock register is set to 0.

The 001401 and 001402 instructions handle interprocessor interrupt
requests. When the k designator is 1, the instruction sets the

internal CPU interrupt request in another CPU. If the other CPU is not
in monitor mode, the ICP (Interrupt from Internal CPU) flag sets in the F
register, causing an interrupt. The request remains until cleared by the
receiving CPU.

When the k designator is 2, the instruction clears the internal CPU
interrupt request set by another CPU.

The 0014373 instruction sets the cluster number to j to make the
following cluster selections:

CLN = 0 No cluster; all shared register and semaphore operations are
no-ops, (except SB, ST, or SM register reads, which return a

0 value to Al or Si).

CLN

L}
[

Cluster 1

CLN

1}
N

Cluster 2
CLN = 3 Cluster 3
CLN = 4 Cluster 4
CLN = 5 Cluster 5

Each of clusters 1, 2, 3, 4, and 5 has a separate set of SM, SB, and ST
registers.

The 0014j4 instruction loads the low-order 32 bits from the Sj

register into the Interrupt Interval register (II) and the Interrupt
Countdown counter (ICD). The Interrupt Countdown counter is a 32-bit
counter that is decreased by one each clock period until the contents of
the counter is equal to 0. At this time, the real-time clock (RTC)
interrupt request is set. The counter is then set to the interval value
held in the Interrupt Interval register and repeats the countdown to 0
cycle. When an RTC interrupt request is set, it remains set until a
clear clock interrupt (CCI) instruction is executed.

The 001405 instruction clears an RTC interrupt.

SR-0085 3-8

INSTRUCTION 0014 (continued)
The 001406 instruction enables RTC interrupts at a rate determined by the
value in the Interrupt Interval (II) register.

The 001407 instruction disables RTC interrupts until an enable clock
interrupt (ECI) instruction is executed.

Example:

|Code generated |Location]Result |Operand | Comment

] . L1 {10 120 135

I | | | |

1001420 | | RT |S2 |2 Set clock to

| | | | |: low-order 32

[| | [|; bits

| | I | |

]001400 | | RT |S0 |: Set clock to O

! | I | |

[001401 I | SIPI (1 |; Set

| | | I | ; interprocessor

| I | | |: interrupt

| | | | |; request

I | I | |

|001402 I | CIPI | |; Clear

| | | | |7 interprocessor

| I I I |; interrupt

| | | | |; request

I | | | I

j001403 | | CLN |0 |

| I | I I

|]001413 | | CLN |1 |

I I | I I

001423 | | CLN |2 |

I I | | I

001433 I | CLN |3 |

| | | | I

|001434 I | PCI |S3 |: Load the

i | | | |; low-order 32

| | | | | bits from (S3)

! I I I |; to (II)

| | I | |

1001405 | |CCI | | Clear clock

| | | | |; interrupt

I I | | I

|001406 | |ECI | | : Enable clock

| | | i |; interrupt

| | | I |

|001407 | | DCI | | ; Disable clock
I I |

N No

interrupt

SR-0085 3-9

INSTRUCTION 0015t

| | | |

| Result | Operand | Description | Machine
| i | | Instruction
| | 1 i

I | I I

|) | Select performance monitor | 001530

| I | I

| | | Set maintenance read mode | 001501

I I |]

| | | Load diagnostic checkbyte | 001511

| | | with S1 |

I | I |

| | | Set maintenance write mode 1 | 001521

| | I I

| | | Set maintenance write mode 2 | 001531

I]] |

NOTE

The 0015 instructions are not supported by CAL at this
time.

Instruction 0015j0 selects one of four groups of hardware related events
to be monitored by the performance counters.

Instructions 001501 through 001531 check the operation of the modules
concerned with SECDED and to verify error detection and correction.

Instructions 001501 and 001521 verify check bit memory storage.
Instructions 001511 and 001531 verify error detection and correction.

+ CRAY X-MP Computer Systems only

SR-0085 3-10

INSTRUCTION 0020

| | | |

| Result | Operand | Description | Machine

| | | | Instruction
|]] |

| I I |

| VL | Ak | Transmit (Ak) to VL | 00200k

| | I |

| vut | 1 | Enter 1 into VL | 002000

|] 1 |

+ Special CAL syntax

Instruction 00200k and its special form (002000) enter the low-order 7
bits of the contents of register Ak into the VL register.

The contents of the VL register determines the number of operations
performed by a vector instruction. Since a vector register has 64
elements, from 1 to 64 operations can be performed. The number of
operations is (VL) modulo 64. When (VL) is 0, the number of operations
performed is 64.

In this publication, a reference to register Vi implies operations
involving the first n elements where n is the vector length unless a
single element is explicitly noted as in the instructions Si Vj,Ak
and Vi,Ak Sj.

Vector operations controlled by the contents of VL begin with element 0
of the vector registers and operate on consecutive elements.

Examples:

In the first example, if (A3)=6 then (VL)=6 following instruction

execution and subsequent vector instructions operate on elements 0
through 5 of vector registers.

|]Code generated JLocationjResult |Operand | Comment
I L1 110 120 135

| | I | |
|002003 | |VL |A3 |

SR-0085 3-11

INSTRUCTION 0020 (continued)

In the second example, since the k designator is assembled as 0, (VL)=1
and vector instructions operate on only one element, element O.

|Code generated |Location|Result | Operand | Comment
| 11 110 |20 135

| I ! I |
|002000 | JVL |1 |

Lastly, if (A5)=0, then (VL)=64 and vector instructions operate on all 64
elements of the vectors.

|Code generated |Location]Result |Operand | Comment
| 11 110 120 135

| I | | |

1002005 | | VL | AS |

SR-0085 3-12

INSTRUCTIONS 0021 - 0027

| | i |

| Result | Operand | Description | Machine
] | | | Instruction
| i] |

| | | |

| EFI | | Enable floating-point interrupt | 002100
| | | |

| DFI | | Disable floating-point interrupt | 002200
| | | |

| Er1t | | Enable interrupt on address | 002300
| | | range error |

| | | |

| prit | | Disable interrupt on address] 002400
| | | range error |

| | | |

| peMY | | Disable bidirectional memory | 002500
| | | transfers |

| | | |

| Mt | | Enable bidirectional memory | 002600
| | | transfers |

| | | |

| cmrt | | Complete memory references | 002700
| |

1.

CRAY X-MP Computer Systems only

The EFI and DFI instructions provide for setting and clearing the
Floating-point Interrupt flag in the Mode register. These instructions
do not check the previous state of the flag.

Je e de Je e de e de de e S do e e e Fe e e e e de e de de e de de e Jo e de Ko Je e e de Je e de e e do de de A e Ko e de de de e de e S

CAUTION

The operating system has status bits reflecting whether
interrupts on floating-point range errors are enabled
or disabled. Such software status bits need to be
modified to agree with the Floating-point Mode flag.

e de de Je Je e de J¢ Je de Fe de Je Fe e Je de e de Jo e Je e de v e de de de e e Je e de e de de de e de de de de fe e dedededede e dede dede

The ERI and DRI instructions set and clear the Operand Range Mode flag in
the Mode register. The two instructions do not check the previous state
of the flag. When set, the Operand Range Mode flag enables interrupts on
operand address range errors.

SR-0085 3-13

INSTRUCTIONS 0021 -0027 (continued)

The DBM and EBM instructions disable and enable the bidirectional memory
mode. Block reads and writes can operate concurrently in bidirectional
memory mode. If the bidirectional memory mode is disabled, only block
reads can operate concurrently.

The CMR instruction assures completion of all memory references within a
particular CPU issuing the instruction. This instruction does not issue
until all memory references before this instruction are at the stage of
execution where completion occurs in a fixed amount of time. For
example, a load of any data that has been stored by the CPU issuing
instruction CMR is assured of receiving the updated data if the load is
issued after the CMR instruction. Synchronization of memory references
between processors can be done by this instruction in conjunction with
semaphore instructionms.

Example:

|Code generated |Location|Result | Operand |Comment
| 11 110 120 135
| | | I I
|002300 i |ERI] |

| | | | |
1002400 | | DRI | I

I | | I I
|002500 } | DBM | |

I | I | |
1002600 | | EBM | |

| I I I |
1002700 | | CMR | |

SR-0085 3-14

INSTRUCTIONS 0030, 0034, 0036, and 0037

Special CAL syntax
+ CRAY X-MP Computer Systems only

I I I [

| Result | Operand | Description | Machine
| | | | Instruction
| | | |

I I ! I

| ™ | s7 | Transmit (Sj) to VM | 0030370

| | I |

| vt | 0 | Clear VM | 003000

I | | |

| sMjktt | 1,TS | Test and set semaphore jk, | 0034jk

| | | 0<jk<31 (decimal) |

| | I |

| smjktt | 0 | Clear semaphore jk, 0<jk<31 | 0036jk

| | | (decimal) |

| | | |

| sMjkt | 1 | Set semaphore jk, 0<jk<31 | 0037jk

| | | (decimal) |

| | 1 |

-'-

1-

Instruction 0030j0 and its special form transmit the contents of
register Sj to the VM register. The VM register is zeroed if the j
designator is 0; the special form accommodates this case.

This instruction may be used in conjunction with the vector merge
instructions where an operation is performed depending on the contents of
the VM register.

Instruction 0034jk tests and sets the semaphore designated by jk. If
the semaphore is set, issue is held until another CPU clears that
semaphore. If the semaphore is clear, the instruction issues and sets
the semaphore.

If all CPUs in a cluster are holding issue on a test and set, the DL flag
is set in the Exchange Package (if it is not in monitor mode) and an
exchange occurs. If an interrupt occurs while a test and set instruction
is holding in the CIP register, the WS flag in the Exchange Package sets,
CIP and NIP registers clear, and an exchange occurs with the P register
pointing to the test and set instruction.

The SM register is 32 bits with SM0 being the most significant bit.

The 0036jk instruction clears the semaphore designated by jk.

Instruction 0037jk sets the semaphore designated by jk.

SR-0085 3-15

INSTRUCTIONS 0030, 0034, 0036,

and 0037 (continued)

Example:

|Code generated |Location]Result |Operand | Comment
| 11 110 120 135

| | | I I
|003040 I |vM IS4 |

| | | | I
|]003000 | | VM |0 | Clear VM
I | | | I

| | | | |
1003407 | | SM7 |1,TS I

| | | I |

I | | | |
1003607 I | SM7 |0 I

| | | | |

| | I | |
|003707 | | SM7 |1 |
SR-0085 3-16

INSTRUCTION 0040

l
Special CAL syntax on CRAY-1 Computer Systems only

I | | | I
| Result | Operand | Description | Machine |
| | | | Instruction |
]] |] |
I I I | |
| EX | | Normal exit | 004000 |
I | | I |
| ext | exp | Normal exit | 004ijk I
|]] |
1.

Instruction 004000 and its special form cause an exchange sequence. The
contents of the instruction buffers are voided by the exchange sequence.
If monitor mode is not in effect, the Normal Exit flag in the F register is
set. All instructions issued before this instruction are run to completion.

When the results of previously issued instructions have arrived at the
operating registers, an exchange occurs to the Exchange Package designated
by the contents of the Exchange Address (XA) register. The program address
stored in the executing Exchange Package is advanced 1 parcel from the
address of the normal exit instruction. This instruction is used to issue
a monitor request from a user program, or to transfer control from a
monitor program to another program.

The expression in the operand field is optional and has no effect on
instruction execution; the low-order 9 bits of the expression value are
placed in the ijk fields of the instruction.

Example:

|Code generated |Location]Result |Operand | Comment
| 11 110 120 135

| | | | |

| 004000 i |EX | |

| | | | I
004027 | |EX |27 |

SR-0085 3-17

INSTRUCTION 0050

	I I		
Result	Operand	Description	Machine
			Instruction
]]		
I I	I		
J	Bjk	Jump to (Bjk)	00505k
]	

The 0050jk unconditional branch instruction sets the P register to the

parcel address specified by the contents of register Bjk. Execution
continues at that address.

Example:

|Code generated |Location|Result {Operand | Comment

| 11 110 120 135

| | I I |

|]005017 | |J |B17 |

| | I | |

1005003 | |J | B. RTNADDR | RTNADDR=03 (octal

SR-0085 3-18

INSTRUCTION 0060

| I | |

| Result | Operand | Description] Machine

| | | | Instruction
| | |]

| | | |

| J | exp | Jump to exp | 0061ijkm

|]]]

The 006ijkm unconditional branch instruction sets the P register to the
parcel address specified by the low-order 24 bits of the expression.
Execution continues at that address.

Example:
|Code generated |Location]|Result |Operand | Comment
11 L10 120 [35
I | | |
{006 00002124b+ | |J | TAG1 |
I I I |
|006 00001753a+ | |J |LDY3+1
| I I I
| 006 00004533c+ | |J | *+3 |
SR-0085 3-19

INSTRUCTION 0070

(P)+2

I | | I

| Result | Operand | Description | Machine

| | | | Instruction
I] | |

I | I I

| R | exp] Return jump to exp; set BOO to | 007ijkm

I I I |

I l | I

Instruction 007ijkm sets register B0O to the address of the parcel
following the instruction. The P register is then set to the parcel
address specified by the low-order 24 bits of the expression. Execution
continues at that address.

The purpose of the instruction is to provide a return linkage for
subroutine calls. The subroutine is entered via a return jump. The
subroutine returns to the caller at the instruction following the call by
executing a branch to the contents of the B register containing the saved
address.

Example:

| Code generated | Location]|Result | Operand | Comment
] 11 110 120 135

I | | I I

|007 000011424+ | IR | HELP |

SR-0085 3-20

INSTRUCTIONS 010 - 013
| | I |
| Result | Operand | Description | Machine
| |] | Instruction
| | | |
| | | |
| JAZ | exp | Branch to exp if (A0)=0 | 010ijkm
I I | I
| JAN | exp | Branch to exp if (A0)#0 | 011ijkm
| I I |
| Jap | exp | Branch to exp if (A0) positive | 012ijkm
| ! I |
| JAM | exp | Branch to exp if (AO0) negative | 013ijkm
I | |]

NOTE

When executing the above instructions on CRAY X-MP/48,
the high-order bit of I must be 0.

The above instructions test the contents of A0 for the specified

condition.

If the condition is satisfied, the P register is set to the

parcel address specified by the low-order 24 bits of the expression.
Execution continues at that address.

If the condition is not satisfied,
instruction following the branch instruction.

instructions, a 0 value in A0 is considered positive.

execution continues with the
For the JAP and JAM

Example:
|Code generated |Location|Result | Operand | Comment
11 110 120 135
I I | |
|010 000022434+ I | JAZ | TAG3+2 |
I I I |
|011 00004520a+ | | JAN |P.CON1 |
I | | I
|012 00002221c+ | | JAP | TAG2 I
I | | I
]013 00002124b+ | | JAM | TAG1 |

SR-0085

INSTRUCTION 014 - 017

| | I |

| Result | Operand | Description | Machine
| | | | Instruction
! |] |

| | I |

| Jsz | exp | Branch to exp if (S0)=0 | 014ijkm

I | | I

| JSN | exp | Branch to exp if (S0)#0 | 015ijkm

I I | |

| JSP | exp | Branch to exp if (S0) positive | 0161ijkm

| I I I

| JSM | exp | Branch to exp if (S0) negative | 017ijkm

| | | |

NOTE

When executing the above instructions on CRAY X-MP/48,

the high-order bit of I must be 0.

The above instructions test the contents of SO for the specified
condition. If the condition is satisfied, the P register is set to the
parcel address specified by the low-order 24 bits of the expression.

Execution continues at that address.

If the condition is not satisfied, execution continues with the
instruction following the branch instruction. For the JSP and JSM

instructions, a zero value in SO is considered positive.

Example:

|Code generated |Location]Result |Operand |Comment
I 11 [10 120 135
I | | I I
|014 00002221c+ | |JSz | TAG2 |

| | | ! |
|]015 000021244+ | | JSN | TAG1+2 |

| | I I |
]016 00004533c+ | | JSP | %43 |

| | I I |
|017 00002367c+ I | JSM | TAG4 I

SR-0085 3-22

INSTRUCTION Ol1h

high-order bit of i is 1

|

| ! | |

| Result | Operand | Description | Machine

| | | | Instruction
| |] |

| | | I

| ant | exp | Transmit ijkm to Ah; where the | Olhijkm

I I | |

| |

+ CRAY X-MP Computer Systems only.

This instruction is available

through the logical trait EMA specified on the CPU parameter of the
CAL invocation statement, and CAL will then generate one of these

instructions: O01h, 022,

or 031.

Instruction 01h will not be generated if NOEMA is specified.

This instruction enters a 24-bit value into Ah that is composed of the

low-order 24 bits of the 1Ijkm field.

The high-order bit of the ijkm

field must be set to distinguish the 01h instruction from the 010 to

017 branches.

Example:

|Code generated |Location]|Result |Operand | Comment
11 110 120 135
I I | I

|0a 0114 00000200 | ja1 |0*'200 |
I | | I

| ¢ 0174 00001001 I |A7 | SYMBOL I
I I I I
|SYMBOL |= {0'1001 |

SR-0085

INSTRUCTIONS 020 - 022

! I I |

| Result | Operand | Description | Machine

| | | | Instruction
| | | |

I I l |

| ait | exp | Enter exp into Al | 020ijkm or
| | I | 021ijkm or
I I I | 022ijk

|

¥ These instructions are available through the logical trait NOEMA
specified on the CPU parameter of the CAL invocation statement, and
CAL will generate one of these imstructions: 020, 021, 022, 031.

Instructions 020 and 021 wil not be generated of EMA is specified.

The above instruction enters a quantity into AI. The syntax differs
from most CAL symbolic instructions in that the assembler generates any
of three Cray machine instructions depending on the form, value, and
attributes of the expression.

The assembler generates an instruction 022ijk where the jk fields
contain the 6-bit value of the expression if all of the following
conditions are true:

¢ The value of the expression is positive and less than 64
¢ All symbols (if any) are previously defined within the expression
¢ The expression has a relative attribute of absolute

If any of the conditions are not true, the assembler generates either the
2-parcel instruction 020ijkm or 021ijkm. If the expression has a
positive value, or has a relative attribute of either relocatable or
external, instruction 020ijkm is generated with the value entered in

the 22-bit jkm field. If the expression value is negative and has a
relative attribute of absolute, instruction 021ijkm is generated with

the ones complement of the expression value entered into the 22-bit jkm
field except where the exp value is explicitly "-1".

SR-0085 3-24

INSTRUCTION 020 - 022 (continued)

expression is
external

Example:
| Code generated |Location]Result |Operand | Comment
i 11 |10 120 135
| | I] I
022310 | |A3 [0'10 |
I | | | I
|]0212 00000010 | |A2 |#0°' 10 |
| | I | |
I | AREG | = |2 |
[|0212 00000007 | |A.AREG |-0°10 I
0202 00000130		A2]0*130	
0203 00000021		A3	VAL+1
			I
0204 01777777		A4 {0'1777777	
]0205 00051531		AS	A*SY'R
	I	I	
0226 00000000		A6	#MINUS1
		!	
	EXT IX I		
0204 17777777		A4	X-1

e %o “No

SR-0085 3-25

INSTRUCTION 023

I ! | |

| Result | Operand | Description] Machine

| | | | Instruction
|]] |

| I I |

| AL | Sj | Transmit (Sj) to Al | 023ij0

| I I |

| ait | VL | Transmit (VL) to Ai | 023i01

| | |

-'.

CRAY X-MP Computer Systems only

Instruction 023ij0 transmits the low-order 24 bits of the contents of
register Sj to register AiI. AI is zeroed if the j designator is O.

Instruction 023i01 enters the contents of the VL register into Ai.

Example:

|Code generated |Location|Result |Operand | Comment
| L1 110 | 20] 35

| | | | |
[023420 | | A4 |S2 |

| | | | |

| | | | |
j023201 I |A2 |VL |

SR-0085 3-26

INSTRUCTIONS 024 - 025

| I I | |
| Result | Operand | Description | Machine]
| I | | Instruction |
|] | | |
| I | I I
| Al | Bjk | Transmit (Bjk) to Ai | 024ijk |
| | | | I
| Bjk | Al | Transmit (AI) to Bjk | 025ijk |
| | | | I

Instruction 024ijk enters the contents of register Bjk into

register Ai.

Instruction 025ijk enters the contents of register Al into register Bjk.

Example:

|Code generated | Location|Result |Operand | Comment
I 11 110 120 135

| I I I I
024517 I |AS | B17 [

| | I I |

| [SUNTN |= [0'17 |

024517 I |AS5 | B. SUNTN I

| | I | I
]025634 | |B34 | A6 |

I I I | |
|025634 | |B.THRTY4 |A6 |; THRTY4=34 (octal
SR-0085 3-27

INSTRUCTION 026

Result	Operand	Description	Machine
			Instruction
] 1]			
AL	PSj	Population count of (Sj) to Ai	0261ij0
ait	QSj	Population count parity of (Sj)	026ij1
		to Al	
I	I	I	
aitt	SBj	Transfer (SBj) to Ai	026177
	1		

+ Population Count (optional on CRAY-1 Models A and B)
++ CRAY X-MP Computer Systems only

Instruction 026ij0 counts the number of 1 bits in the contents of Sj
and enters the result into Ai. Ai is zeroed if the j designator is 0.

Instruction 026ijl enters a 0 in Ai if Sj has an even number of 1
bits in Sj and enters a 1 in Sj if it has an odd number of 1 bits.

These two instructions execute in the Scalar Leading Zero/Population

Count functional unit.

Instruction 026ij7 transfers the contents of the SBj register shared

between the CPUs to Al.

Example:

| Code generated |Location{Result | Operand |Comment

| 11 110 120 135

| I | I I

1026720 | | A7 | PS2 |; Pop count of
| I I I |: S2 to A7
I | | | |

1026271 | |a2 |QS7 | : Pop count
| | | | |; parity of
| I | | |: S7 to A2
I | | [[

|]026007 | |AO | SBO |

| | | I |

1026017 | |AO | SB1 |

SR-0085 3-28

INSTRUCTION 027

CRAY X-MP Computer Systems only

| | | |

| Result | Operand | Description | Machine

| | | | Instruction
| | | |

| | | |

| Al | 253 | Leading zero count of (Sj) to Ai | 027ij0

| | l |

| sBjt | Ai | Transfer (Ai) to SBj | 027ij7

| |

1-

Instruction 027ij0 counts the number of leading zeros in the contents

of Sj and enters the result into Ai.

designator is 0, or if the Sj register contains 0.

Al is set to 64 if the j

This instruction executes in the Scalar Leading Zero/Population Count

functional unit

Instruction 027ij7 transfers the contents of register Al into
register SBj, which is shared between the CPUs in the current cluster.

Example:

|Code generated |Location|Result |Operand {Comment
| 11 110 20 135

| | | | |

027130 | |Al |2S3 |

| | | | |

027007 | | SBO | A0 I

| | | i !

027107 | |SBO |Al |
SR-0085 3-29

INSTRUCTIONS 030 - 031

| | | I

| Result | Operand | Description | Machine
| | | | Instruction
|] | |

I | I I

| AL | Aj+Ak | Integer sum of (Aj) and (AK) | 030ijk
| | | to Al |

I I | I

I ait | Aj+l | Integer sum of (Aj) and 1 to AI | 030ij0O
| | | |

| ait | Ak | Transmit (Ak) to Al | 03010k
I | | I

| Al | Aj-Ak | Integer difference of (Aj) less | 031ijk
| | | (Ak) to Ai |

| I I |

| ait | Aj-1 | Integer difference of (Aj) less | 031ijo0
| | | 1 to Al]

| I I |

| ait | -Ak | Transmit negative of (Ak) to Ai | 031i0k
I I | I

| ait | -1 | Enter -1 into Ai | 031i00
| | | |

+ Special CAL syntax

Instruction 030ijk and its special form (030ij0) add the contents of
register Aj to the contents of register Ak and enter the result into
register Ai. Ak is transmitted to Ai when the j designator is 0

and the k designator is nonzero. The value 1 is transmitted to Al
when the j and k designators are both 0. (Aj)+1l is transmitted to
Al when the j designator is nonzero and the k designator is 0. The
assembler allows an alternate form of the instruction when the k
designator is 0.

The instruction executes in the Address Integer Add functional unit.

Instruction 030i0k enters the contents of register Ak into register
Ai. The value 1 is entered if the k designator is 0.

The instruction 030i0k executes in the Address Integer Add functional
unit.

SR-0085 3-30

INSTRUCTIONS 030 - 031 (continued)

Instruction 031ijk and its special form (031ij0) subtract the
contents of register Ak from the contents of register Aj and enter
the result into register Ai. The negative of Ak is transmitted to
Al when the j designator is 0 and the k designator is nonzero. A
-1 is transmitted to Ai when the j and k designators are both 0.
(Aj)-1 is transmitted to AI when the j designator is nonzero and
the k designator is 0.

The instruction 031ijk executes in the Address Integer Add functional
unit.

The special form represents the case where (Ak)=1 if k=0.
Instruction 031i0k enters the negative (twos complement) of the
contents of register Ak into register Ai. The value -1 is entered

into Ai if the k designator is 0.

The instruction 031i0k executes in the Address Integer Add functional
unit.

Instruction 031i00 is generated in place of instruction 020ijkm if
the operand is explicitly -1.

This instruction executes in the Address Add functional unit.

Example:

|Code generated |Location|Result |Operand | Comment
| 11 110 120 135
I I | I I
(030123 [|a1 |A2+A3 I
! | [| I
1030102 | lal |A2 |
I | I | I
1030230 | jaz2 |A3+1 |
I I | | |
1030602 | | A6 |a2]
I I | I |
031456 [| A4 |A5-A6 I
| I I | |
|]031102 | la1 |-A2 i
| | I I I
[031450 | |A4 |A5-A1 |
| | | | |
1031703 | | A7 | -A3 |
| | I | |
|031300 | |a3 |-1 |

SR-0085 3-31

INSTRUCTION 032

(Ak) to Al

I I | I

| Result | Operand | Description | Machine

| | | | Instruction
|]]]

I | | |

| Al | Aj*Ak | Integer product of (Aj) and | 032ijk

| | I |

I I |]

Instruction 032ijk forms the integer product of the contents of
register Aj and register Ak and enters the low-order 24 bits of the
result into Ai. Ai is cleared when the j designator is 0. Aj is
transmitted to AI when the k designator is 0 and the j designator
is nonzero.

The instruction executes in the Address Integer Multiply functional
unit. There is no overflow detection.

Example:

|Code generated |Location|Result | Operand | Comment
| 11 110 120 {135

| | | | I
1032712 | | A7 |A1%A2 |

SR-0085 3-32

INSTRUCTION 033

| | | |

| Result | Operand | Description | Machine
| | | | Instruction
|] | |

| | I |

| Al | CI | Channel number of highest | 033i00

| | | priority interrupt request to Ai |

I | | |

| AL | CA,Aj | Address of channel (Aj) to Ai | 0331ij0

| I | (j#£0) |

| | I |

| AL | CE,Aj | Error flag of channel (Aj) to Ai | 033ij1

| 1 |]

Instruction 033i00 enters the channel number of the highest priority
interrupt request into AI.

Instruction 033ijO0 enters the contents of the Current Address (CA)
register for the channel specified by the contents of Aj into register

Al.

Instruction 033ijl enters the error flag for the channel specified by
the contents of Aj into the low-order 7 bits of Ai. The high-order
bits of Ai are cleared. The error flag can be cleared only in monitor
mode using the CI,Aj instruction, or the CRAY X-MP instruction MC,Aj.

Example:

|Code generated |Location|Result | Operand] Comment
I L1 110 120 135
| | | | |
{033100 | |al |CI |

| | I | |

| | | | |
1033230 | |a2 |CA, A3 |

| | | I |

| ! | | |
]033341 | |A3 |CE, A4 |

SR-0085 3-33

INSTRUCTIONS 034 - 037

| | I

i Result Operand | Description | Machine
| | | | Instruction
| [] |

| | | |

| Bjk,Al | A0 | Read (Ai) words starting at | 034ijk
|] | Bjk from memory starting at (A0) |

| | I I

| Bjk,Ai* | 0,A0 | Read (AI) words starting at | 034ijk
] | | Bjk from memory starting at (AO0) |

| | | |

| ,A0 | Bjk.,AI | Store (Ai) words starting at | 035ijk
| | | Bjk to memory starting at (A0) |

I I | I

| o,a0t | Bjk,Ai | Store (Ai) words starting at | 035ijk
] | | Bjk to memory starting at (A0) |

| | | |

| Tjk,ai | ,a0 | Read (Al) words starting at | 036ijk
| | | Tjk from memory starting at (A0) |

| I | I

| Tjk,ait | 0,A0 | Read (Ai) words starting at | 036ijk
| | | Tjk from memory starting at (AO0) |

| | I I

| ,A0 | Tjk,ALi | Store (Ai) words starting at | 037ijk
| | | Tjk to memory starting at (A0) |

| | I I

| 0,20t | Tjk,AL | Store (Ai) words starting at | 037ijk
] | | Tjk to memory starting at (A0) |

| | | |

+ Special CAL syntax

Instruction 034ijk and its special form are used to transfer words from
memory directly into B registers. A0 contains the address of the first
word of memory to be transferred. The jk designator specifies the
first B register to be used in the transfer. The low-order 24 bits of
consecutive words of memory are loaded into consecutive B registers.

Processing of B registers is circular. BOO is loaded after B77 if the
count specified in Ai is not exhausted after B77 is loaded. The
low-order 7 bits of the contents of Al specify the number of words
transmitted. Wraparound occurs if the low-order 7-bits of (Ai) are
greater than 64.

If (Ai)=0, no words are transferred. Note also that if i=0, (AO) is

used for the block length as well as the starting memory address. The
CAL assembler issues a warning message in this case.

SR-0085 3-34

INSTRUCTIONS 034 - 037 (continued)

Instruction 035ijk and its special form are used to store words from B
registers directly into memory. A0 contains the address of the first
word of memory to receive data. The jk designator specifies the first
B register to be used in the transfer. Subsequent B register contents
are stored in consecutive words of memory.

Processing of B registers is circular. BOO is processed after B77 if the
count specified in Ai is not exhausted after B77 is processed. The
low-order 7 bits of the contents of Al specify the number of words
transmitted. Wraparound occurs if the low-order 7-bits of Ai are

greater than 64.

If (Ai)=0, no words are transferred. Note also that if i=0, (AQ) is
used for the block length as well as the starting memory address. The
CAL assembler issues a warning message in this case.

Instruction 036ijk and its special form are used to transfer words from
memory directly into T registers. AO0 contains the address of the first
word of memory to be transferred. The jk designator specifies the

first T register to be used in the transfer. The loading of T registers
is circular. TOO is loaded after T77 if the count specified in Ai is
not exhausted after T77 is loaded. The low-order 7 bits of the contents
of Al specify the number of words transmitted. Wraparound occurs if

the low-order 7-bits of Al are greater than 64.

If (Ai)=0, no words are transferred. If i=0, (AO) is used for the
block length and the starting memory address. The CAL assembler issues a
warning message in this case.

Instruction 037ijk and its special form are used to store words from T
registers directly into memory. AO contains the address of the first
word of memory to receive data. The jk designater specifies the first
T register to be used in the transfer. Subsequent T register contents
are stored in consecutive words of memory. Processing of T registers is
circular. TO0O is processed after T77 if the count specified in Ai is
not exhausted after T77 is processed. The low-order 7 bits of the
contents of register AI specify the number of words transmitted.
Wraparound occurs if the low-order 7-bits of AI are greater than 64.

If (Ai)=0, no words are transferred. Note also that if i=0, (AQ) is

used for the block length as well as the starting memory address, and CAL
issues a warning message.

SR-0085 3-35

INSTRUCTIONS 034 - 037 (continued)

Example:

|Code generated |Location|Result |Operand | Comment
| 11 110 120 135
| I I I |
|034407 [|B7,A4 | ,A0 I
| I | | I
| | BB | = |0'22 |
| | FWAR | = 15 |
|034522 I |B.BB,A.FWAR| 0, A0 I
| I | | |
| I | | I
]035522 | |,A0 {B22,A5 |
	BB =	0'22	
	FWAR =	5	
035522 I	0,A0	B.BB,A.FWAR	
I I	I		
[I I	I		
[036407		T7,A4	,AQ
		I	
]	TT =	0’ 22	
	FWAR = IS		
1036522		T.TT,A.FWAR	O0,AQ]
I	I		
I I I			
37522		,AO	T22,A5
I	I	I	
	TT	=	0*22
	FWAR	=	5
1037522 | |10,a0 |T.TT,A.FWAR |
SR-0085 3-36

INSTRUCTIONS 040 -~ 041

I I I | |
Result	Operand	Description	Machine
]	Instruction	
]		
I			
si	e	Enter exp into Si	040ijkm or
I		041ijkm	
]			

The above instruction enters a quantity into Si.

Either the 2-parcel

040ijkm instruction or the 2-parcel 041ijkm instruction is generated,
depending on the value of the expression.

If the expression has a positive value or a relative attribute of either
relocatable or external, instruction 040ijkm is generated with the

22-bit jkm field containing the expression value.

If the expression

has a negative value and a relative attribute of absolute, instruction
041ijkm is generated with the 22-bit jkm field containing the ones
complement of the expression value.

Refer to the 042-043 instructions for additional information on Si exp

instructions.

Example:

|Code generated |Location|Result |]Operand | Comment

| 11 110 120 135

| | | | |

| 0402 00000130 | |s2 |0*130 |

| l | I |

| | SREG | = |3 I

| 0403 00000021 i | S.SREG |VAL+1 | s+ VAL=20 (octal)
| | | | |

| 0404 01777777 [|S4 j0'1777777 I

| | | I |

| 0405 00051531 I |S5 |A'SY'R I

| | | |3 |

| 0406 00000000 | |s6 | #MINUS1 | MINUS1=-1

I | | | |

0413 00000002 I |S3 |42 |

| | | | |

|0414 01777776 | |S4 [-0'1777777 |

I | | | |

|0414 00000003 | |s4 | #VAL2 | VAL2=3

| | | | |

| | | EXT X |

10401 17777777 | |S1 |X-1 |2 040ijkm used
! | | | | if expression
| | | | |; is external
SR-0085 3-37

INSTRUCTIONS 042 -043

| | | I

] Result | Operand | Description | Machine
| |] | Instruction
|] | L

| | | I

| Si | <exp | Form ones mask in Si | 042ijk
| | | from right |

I | I I

| sit | #>exp | Form zeros mask in Si | 042ijk
| | | from left |

| | | |

| sit | 1 | Enter 1 into Si | 042i77
| I I I

| sit | -1 | Enter -1 into Si | 042i00
I | | |

| sit | 0 | Clear Si | 043i00
| | | I

| si | >exp | Form ones mask in Si from left | 043ijk
| | | |

| sit | #<exp | Form zeros mask in Si from right | 043ijk
| |] |

+ Special CAL syntax

Instruction 042ijk generates a mask of ones from the right. The
assembler evaluates the expression to determine the mask length.

In the first instruction, the mask length is the value of the
expression. In the second instruction, the mask length is 64 minus the
expression value. The mask length must be a positive integer not
exceeding 64; 64 minus the mask length is inserted into the jk fields
of the instruction. If the value of the expression is 0 for the first
instruction or 64 for the second instruction, the assembler generates
instruction 043i00.

Instruction 042ijk executes in the Scalar Logical functional unit.

Instructions 042i77, 042i00, and 043i00 are initially recognized by

the assembler as the symbolic instruction Si exp. The assembler then
checks the expression to see if it has one of these three forms. If it
finds one of the forms in the exact syntax shown, it generates the
corresponding Cray machine instruction. If none of these forms is found,
instruction 040ijkm or 041ijkm is generated. These special forms

allow more efficient instructions for entering often used values into S1.

Instructions 043i00, 042i77, and 042i00 execute in the Scalar Logical
functional unit.

SR-0085 3-38

INSTRUCTIONS 042 - 043 (continued)

Instruction 043ijk generates a mask of ones from the left. The
assembler evaluates the expression to determine the mask length.

In instruction 043ijk, the mask length is the value of the expression.
In the special syntax form, the mask length is 64 minus the expression
value. The mask length must be a positive integer not exceeding 64 and
is inserted into the jk fields of the instruction. If the expression
value is 64 for the first instruction or 0 for the second instruction,
the assembler generates instruction 042i00.

Instruction 043ijk executes in the Scalar Logical functional unit.

Example:

|Code generated |Location]|Result |Operand | Comment
| 11 110 20 135

I | I | |

042200 I |S2 |-1 I

I | I I I

1042273 | |s2 <5 i

I I | | |

1042273 | |Ss2 |#>0'73 |

| | I I |

1042366 | |S3 |<D'10 |

I | I | I

1042400 | | S4 | <0100 |

I | I | I

1043500 | | S5 | <O |

| | | | |

1043600 | | S6 |0 | Clear S6
I | I | |

1042677 | | S6 |1 j; Set S6 to 1
| | I I |

1043205 | |s2 |>5 l

| | | | I

| 043205 | 1S2 |#<0*'73 |

| | | | |

1043500 | | S5 | <0 |

SR-0085 3-39

INSTRUCTIONS 044 - 051

SR-0085

| I I I

| Result | Operand | Description | Machine
| | | | Instruction
| |] 1

I I | I

| si | Sj&Sk | Logical product of (Sj) and (Sk) | 044ijk
| | | to Si |

| I I I

| sit | Sj&SB | Sign bit of (Sj) to Si | 044ijo
I I I I

| sit | SB&Sj | Sign bit of (Sj) to Si; j£0 | 044ij0
! I | I

| si | #Sk&Sj | Logical product of (Sj) and | 045ijk
| | | #(Sk) to Si [

I I | |

| sit | #SB&Sj | (Sj) with sign bit cleared to Si | 045ij0
| I | |

| si | Sj\Sk | Logical difference of (Sj) and | 046ijk
| | | (Sk) to si I

| I I I

| sit | Sj\SB | Enter (Sj) into Si with sign bit | 046ij0
| I | toggled I

I | I |

| sit | SB\Sj | Enter (Sj) into Si with sign bit | 046ij0
| | | toggled; j£0 |

I | | I

| si | #Sj\Sk | Logical equivalence of (Sj) and | 047ijk
| I | (Sk) to Si [

I I I I

| sit | #Sj\SB | Logical equivalence of (Sj) and | 0471ij0
| i | sign bit to Si I

| | I I

| sit | #SB\Sj | Logical equivalence of sign bit | 047ij0
| | | and (Sj) to Si; j#£0]

| | | |

+ Special CAL syntax

NOTE

When the above instructions execute on a CRAY X-MP, SB
with no register designator is the sign bit, not
Shared Address register.

INSTRUCTIONS 044 - 051 (continued)

I I | |

| Result | Operand | Description | Machine
| | | | Instruction
|] | i

I | | |

| sit | #Sk | Transmit ones complement of | 047i0k
I | | (Sk) to si |

I I | |

| sit | #SB | Enter ones complement of sign | 047i00
| | | bit in Si |

| I I |

| si | Sj!'si&Sk| Scalar merge of (Si) and (Sj) | 050ijk
| | | to SI |

| I I |

| sit | Sj!Si&SB| Scalar merge of (Si) and sign | 050ij0
| | | bit of (Sj) to Si |

I I I |

| si | Sj'sk | Logical sum of (Sj) and (Sk) | 051ijk
| | | to Si |

| I | |

| sit | Sj!'SB | Logical sum of (Sj) and sign bit | 051ij0
I I | to Si |

I | I |

| sit | SB!Sj | Logical sum of sign bit and (Sj) | 051ij0
| | | to Si; j#£0 |

I I I |

| sit | Sk | Transmit (Sk) to SiI | 051i0k
! I I |

| sit | SB | Enter sign bit into Si | 051i00
| |] 1

+ Special CAL syntax

NOTE

When the above instructions execute on a CRAY X-MP, SB
with no register designator is the sign bit, not
Shared Address register.

Instruction 044ijk forms the logical product of the contents of Sj
and Sk and enters the result into Si. If the j and k designators
have the same nonzero value, the contents of Sj is transmitted to Si.

SR-0085 3-41

INSTRUCTIONS 044 - 051 (continued)

If the j designator is 0, register Si is zeroed. If the j

designator is nonzero and the k designator is 0, the sign bit of the
contents of Sj is extracted. The two special forms of the instruction
accommodate this case. The two forms perform identical functioms, but
Jj must not be equal to 0 in the second form. If j is equal to 0, an
assembly error results.

Instruction 045ijk forms the logical product of the contents of Sj
and the ones complement of the contents of Sk and enters the result
into Si. If the j and k designators have the same value or if the
j designator is 0, register Si is zeroed.

If the j designator is nonzero and the k designator is 0, the
contents of Sj with the sign bit cleared is transmitted to Si. The
special syntax form accommodates this case.

Instruction 046ijk forms the logical difference of the contents of Sj
and the contents of Sk and enters the result into Si. If the j and
k designators have the same nonzero value, SI is zeroed.

If the j designator is 0 and the k designator is nonzero, the
contents of Sk is transmitted to Si. If the j designator is

nonzero and the k designator is 0, the sign bit of the contents of Sj
is complemented and the result is transmitted to Si. The two special
syntax forms provide for this case. The two forms perform identical
functions; however, in the second form, j must not equal 0. If j
equals 0, an assembly error results.

Instruction 047ijk forms the logical equivalence of the contents of
Sj and the contents of Sk and enters the result into Si. Bits of

Si are set to 1 when the corresponding bits of the contents of Sj and
the contents of Sk are both 1 or both 0.

If the j and k designators have the same nonzero value, the contents

of Si is set to all ones. If the j designator is 0 and the k
designator is nonzero, the ones complement of the contents of Sk is
transmitted to Si. If the j designator is nonzero and the k

designator is 0, all bits other than the sign bit of the contents of Sj
are complemented and the result is transmitted to Si.

The two special forms of the instruction accommodate this case. The two

forms perform identical functions; however, in the second form, j must
not equal 0. If j equals 0, an error results.

SR-0085 3-42

INSTRUCTIONS 044 - 051 (continued)

Instruction 047i0k forms the ones complement of the contents of
register Sk and enters the value into Si. The complement of the sign
bit is entered into Si if the k designator is 0.

Instruction 047i00 clears the sign bit and sets all other bits.

Instructions 050ijk and 050ijO0 merge the contents of Sj with the
contents of Si depending on the ones mask in Sk.

The result is defined by (Sj&Sk)!(Si&#Sk) as in the following
example:

(Sk) = 11110000
(Si) = 11001100
(Sj) = 10101010
(si) = 10101100

This instruction is intended for merging portions of 64-bit words into a
composite word. Si bits are cleared when the corresponding Sk bits

are 1 if the j designator is 0 and the k designator is nonzero. The
sign bit of Sj replaces the sign bit of Si if the j designator is
nonzero and the k designator is 0 as provided for by the special syntax
form of the instruction. The sign bit of Si is cleared if the j and

k designators are both 0.

Instruction 051ijk forms the logical sum of the contents of Sj and
the contents of Sk and enters the result into Si. If the j and k
designators have the same nonzero value, the contents of Sj are
transmitted to Si. If the j designator is O and the k designator
is nonzero, the contents of Sk are transmitted to Si.

If the j designator is nonzero and the X designator is 0, the

contents of Sj with the sign bit set to 1 are transmitted to Si. The
two special syntax forms provide for this case. If the j and k
designators are both 0, a ones mask consisting of only the sign bit is
entered into Si.

The two special forms perform an identical function but in the second
form j£0; if j=0, an assembly error results.

Instruction 051i0k enters the contents of register Sk into register
Si. The sign bit is set to 1 in Si if the k designator is 0.

Instruction 051i00 can be used to set the sign bit of Si and zero all
other bits.

Instructions 044ijk through 051 execute in the Scalar Logical
functional unit.

SR-0085 3-43

INSTRUCTIONS 044 - 051 (continued)

Example:

[Code generated |Location|Result |Operand | Comment

| 11 110 120 135

| I | | |

| 044235 | |S2 |S38&S5 I

| | | I I

| 044655 | | S6 | S5&S5 |: S5 to S6

| | | | I

|044160 I |s1 | S6&SB |: Get sign of S6
| I I | I

1044160 | |S1 | SB&S6 |: Get sign of S6
I I I I I

|045271 | |S2 | #S18&S7 I

I I I I |

[045430 | | S4 | #SB&S3 | ; Clear sign bit
| | l | |: of S3 and

i I | | | enter into S4
| I | I I

1045506 | | S5 | #S6&S0 |7 Clear S5

I I | I I

| 045670 | |S6 | #SB&S7 |; Clear sign bit
| | I | I

046123 I |s1 |S2\S3 I

I I | | |

| 046455 | | S4 | S5\S5 | ; Clear S4

I I | | |

| 046506 | | S5 | SO\S6 |; S6 to S5

| | I | |

| 046770 | | S7 | S7T\SB | Toggle sign

| I | | |; bit

I | I ! |

|047345 | |S3 | #S4\S5 I

I ! I I |

|047260 | |S2 | #S6\SB |

I I I I |

1047260 | |s2 | #SB\S6 |

| I I I |

047203 | |S2 | #S3 I

| I | | I

| 047200 I |S2 | #SB |

| | | I |

050123 | IS1 [S2!S1&S3 I

| I I I |

|050760 I |S7 |S6!S75&S0 I

SR-0085 3-44

Example (continued):

INSTRUCTIONS 044 - 051 (continued)

|Code generated | Location|Result |Operand | Comment
| 11 110 120 135
| | | | |
|051472 | | S4 |S7!s2 |

| | | | |
|051366 | |83 156!S6 i

| | | | |
]051710 | |87 |SB!S1 |

| | I | |
|051701 | |87 |s1 |

| | | | I

| I I= Il |
1051100 I [S.I |SB |
SR-0085 3-45

INSTRUCTIONS 052 - 055

to Si

| | | I

| Result | Operand | Description | Machine
| | | | Instruction
| |] |

| | | |

| so | Si<exp | Shift (Si) left exp places | 052ijk

| | | to SO |

| I | |

| SO | Si>exp | Shift (Si) right exp places | 053ijk

| ' | | to SO |

| | | |

| si | Si<exp | Shift (Si) left exp places | 054ijk

| | | to Si |

| | | I

| si | Si>exp | Shift (Si) right exp places | 055ijk

I | I |

| | i l

Instruction 052ijk shifts the contents of SiI to the left by the amount
specified by the expression and enters the result into SO. The shift
count must be a positive integer value not exceeding 64. The shift is
end off with zero £ill. If the shift count is 64, instruction 053000 is
generated and S0 is zeroed.

Instruction 053ijk shifts the contents of Si to the right by the amount
specified by the expression and enters the result into SO. The shift
count must be a positive integer value not exceeding 64. The assembler
stores 64 minus the shift count in the jk field of the instruction.

The shift is end off with zero fill. If the shift count is O,
instruction 052000 is generated and the contents of SO is not altered.

Instruction 054ijk shifts the contents of Si to the left by the amount
specified by the expression and enters the result into Si. The shift

count must be a positive integer value not exceeding 64. The shift is
end off with zero fill. If the shift count is 64, instruction 055i00

is generated and Si is zeroed.

Instruction 055ijk shifts the contents of Si to the right by the amount
specified by the expression and enters the result into Si. The shift
count must be a positive integer value not exceeding 64. The assembler
stores 64 minus the shift count in the jk field of the instruction. If
the shift count is 0, instruction 054i00 is generated and the contents
of Si is not altered. The shift is end off with zero fill.

Instructions 052ijk, 053ijk, 054ijk, and 055ijk execute in the Scalar
Shift functional unit.

SR-0085 3-46

INSTRUCTIONS 052 - 055 (continued)

Example:

|{Code generated |Location|Result |Operand | Comment
l 11 110 [20 135
| I I | I
|052305 | | SO |S3¢5 |
| | | | I
1052724 | |S0 |S7<VAL+4 |
! | | | |
1053373 | |so |S3>5 |
I | I I |
|053066 | |so |SO>D*10 |
I | | | |
|053754 | |so |S7>VAL+4 }
I I I I |
|052100 | |So |S1>0 |
I | | | !
j054703] |s7 |S7<3 |
I I I I I
|]054622 | |56 |S6<VAL+2 |
| | | I |
1055775 | Is7 |1S7>3 |
I | I | I
| 055656 | |S6 |S6>VAL+2 |

SR-0085 3-47

INSTRUCTIONS 056 - 057

I I |

] Result | Operand | Description | Machine
| | | | Instruction
| | |]

I | I I

| si | Si,Sj<Ak| Left shift by (Ak) of (Si) and | 056ijk
| [| (8j) to Si |

I | I |

| sit | Si,Sj<1 | Left shift by 1 of (Si) and (Sj) | 056ij0
| | | to Si |

| | I I

| sit | Si<Ak | Left shift by (Ak) of (Si) to Si | 056i0k
I I I I

| si | Sj,Si>Ak| Right shift by (Ak) of (Sj) and | 057ijk
I | | (8i) to Si |

I | I I

| sit | Sj,Si>1 | Right shift by 1 of (Sj) | 057ij0
i | | and (Si)to Si |

I | I |

| sit | si>ak | Right shift by (Ak) of (Si) | 057i0k
| i | to si |

| 1] |

+ Special CAL syntax

Instruction 056ijk and its special forms produce a 128-bit quantity by
concatenating the contents of Si and the contents of Sj, shifting the
resulting value to the left by an amount specified by the low-order bits
of Ak and entering the high-order bits of the result into Si. The

shift is end off with zero fill.

Replacing the Ak reference with 1 is the same as setting the k

designator to 0; a reference to A0 provides a shift count of 1. Omitting
the Sj reference is the same as setting the j designator to 0; the
contents of Si are concatenated with a word of zeros.

Si is cleared if the shift count exceeds 127. The shift is a left
circular shift of the contents of Si if the shift count does not exceed
64 and the i and j designators are equal and nonzero. The instruction
produces the same result as the Si Sicexp instruction if the shift
count does not exceed 63 and the k designator is 0. The contents of

Sj are not affected if the I and j designators are unequal.

Instruction 057ijk and its special forms produce a 128-bit quantity by
concatenating the contents of Sj and the contents of Si, shifting the
resulting value to the right by an amount specified by the low-order 7
bits of the contents of Ak and entering the low-order bits of the
result into Si. The shift is end off with zero fill.

SR-0085 3-48

INSTRUCTIONS 056 - 057 (continued)

Replacing the Ak reference with 1 is the same as setting the k

designator to 0; a reference to A0 provides a shift count of 1. Omitting
the Sj reference is the same as setting the j designator to 0; the
contents of Si are concatenated with a word of zeros.

Si is cleared if the shift count exceeds 127. The shift is a right
circular shift of the contents of Si if the shift count does not exceed
64 and the I and j designators are equal and nonzero. The instruction
produces the same result as the Si Si>exp instruction if the shift
count does not exceed 63 and the j designator is 0. The contents of

Sj are not affected if the i and j designators are unequal.

Instruction 056ijk and 057ijk executes in the Scalar Shift functional
unit.

Example:

|Code generated |Location}jResult |Operand | Comment

| 11 110 120 135

| | | | |

1056235 I IS2 |S2,S3¢A5 |

| l | | |

1056340 | |S3 |S3,84«¢1 |: Left 1 place
| | | | I

1056604 | |S6 |S6¢A4 |

| | | | |

|057235 | |S2 |S3,S2>A5 |

| | | I |

|057604 I |S6 |S6>A4 I

| | | | |

|057340 I IS3 |S4,S3>1 |; Right 1 place

SR-0085 3-49

INSTRUCTIONS 060 - 061

Instruction 060ijk adds the contents of register Sk to the contents
of register Sj and enters the result into Si. Sk is transmitted to
Si if the j designator is 0 and the k designator is nonzero. The
sign bit is entered in Si and all other bits of Si are cleared if the
j and k designators are both 0.

Instruction 061ijk subtracts the contents of register Sk from the
contents of register Sj and enters the result into Si. The
high-order bit of Si is set and all other bits of Si are cleared when
the j and k designators are both 0. The negative (twos complement)
of Sk is transmitted to Si if the j designator is 0 and the k
designator is nonzero.

Instruction 061i0k enters the negative (twos complement) of the
contents of Sk into Si. The sign bit is set if the k designator is 0.

Instructions 060ijk, 061ijk, 061i0k execute in the Scalar Integer
Add functional unit.

| I I |

| Result | Operand | Description | Machine
|] | | Instruction
|]]]

| I | I

| si | Sj+Sk | Integer sum of (Sj) and (Sk) | 060ijk

| | | to Si |

| I | |

| si | Sj-Sk | Integer difference of (Sj) less | 061ijk

I | | (Sk) to Si |

| I I |

| sit | -Sk | Transmit negative of (Sk) to Si | 061i0k

| I] |

+ Special CAL syntax

Example:

|Code generated |Location|Result |Operand | Comment
| 11 110 120 135
| | | | |
1060237 | Is2 |S3+S7 |

| | | | |
|]060405] | s4 |S0+S5 |

| | | | |
061123 I |s1 |S2-S3 |

| | | [|
|061506 | | S5 |-S6 |

SR-0085 3-50

INSTRUCTIONS 062 - 063

I | |

| Result Operand | Description i Machine
| | | | Instruction
| | L |

I I I I

| si | Sj+FSk | Floating-point sum of (Sj) and | 062ijk

| | | (Sk) to Si |

I | | I

| sit | +FSk | Normalize (Sk) to Si | 062i0k

| I | |

| si | Sj-FSk | Floating-point difference of | 063ijk

| | | (sj) less (Sk) to Si |

I I | |

| sit | -FSk | Transmit the negative of (Sk) | 063i0k

| | | as a normalized floating-point |

|] | value |

| | |]

+ Special CAL syntax

Instruction 062ijk and its special form produce the floating-point sum
of the contents of the Sj and Sk registers and enters the result into
SI. The result is normalized even if the operands are unnormalized.
The k designator is not normally 0. 1In the special form, the j
designator is assumed to be O so that the normalized contents of Sk are
entered into Si.

Instruction 063ijk forms the floating-point difference of the contents
of register Sj less the contents of register Sk, and enters the
normalized result into Si. The result is normalized even if the
operands are unnormalized.

The negative (twos complement) of the floating-point quantity in Sk is
transmitted to Si as a normalized floating-point number if the j
designator is 0 and the k designator is nonzero. The special form
accommodates this special case. The k designator is normally nonzero.

Instructions 062ijk, 063ijk, and 063i0k execute in the Floating-point
Add functional unit.

SR-0085 3-51

INSTRUCTIONS 062 - 063 (continued)

Example:

|Code generated |Location|Result | Operand | Comment
| |1 110 120 135
I ! I | I
|]062345 | |S3 | S4+FS5 |

I I I | I
1062404] |S4 | +FS4 |

I I I I I
|063302 | |S3 | -FS2 |

I I I ! I
063761 | |87 | S6-FS1 |
SR-0085 3-52

INSTRUCTIONS 064 - 067

and (Sk) to Si

| | i |

| Result | Operand | Description | Machine
| | | | Instruction
|] | |

| | | |

| Si | Sj*FSk | Floating-point product of (Sj) | 064ijk

| | | and (Sk) to Si |

| | | |

| Si | Sj*HSk | Half-precision rounded | 065ijk

| | | f£loating-point product of (Sj) |

| | | and (Sk) to Si i

| I | |

| Si | Sj*RSk | Rounded floating-point product | 066ijk

| | | of (Sj) and (Sk) to Si |

| | | |

| Si | Sj*ISk | 2-floating-point product of (Sj) | 067ijk

| | | |

| |] l

Instruction 064ijk forms the floating-point product of the contents of
Sj and Sk and enters the result into Si. The result is not normalized
if either operand is unnormalized.

Instruction 065ijk forms the half-precision rounded floating-point
product of the contents of the Sj and Sk registers and enters the
result into Si. The result is not normalized if either operand is
unnormalized. The low-order 18 bits of the result are zeroed. This
instruction can be used in a divide algorithm when only 30 bits of
accuracy are required.

Instruction 066ijk forms the rounded floating-point product of the
contents of the Sj and Sk registers and enters the result into Si.
The result is not normalized if either operand is unnormalized. This
operation is used in the reciprocal approximation sequence.

Instruction 067ijk forms 2 minus the floating-point product of the
contents of Sj and Sk and enters the result into Si. The result is

not normalized if either operand is unnormalized.

Instructions 064ijk, 065ijk, 066ijk, and 067ijk execute in the
Floating-point Multiply functional unit.

SR-0085 3-53

INSTRUCTIONS 064 - 067 (continued)

Example:

|Code generated |Location|Result | Operand | Comment
| 11 110 120 135
| | I | |
|064234 | |S2 | S3*FS4 I

| | | | |
1065167 I |s1 | S6*HS7 |

| | | I I
1066147 I |s1 | S4*RS7 I

| | | | |
1067324 I |s3 | S2*IS4 I

SR-0085 3-54

INSTRUCTION 070

approximation of (Sj)to Si

| | | |

| Result | Operand | Description ! Machine

| | | | Instruction
I |] |

| I | I

| si | /7HSJ | Floating-point reciprocal | 070ij0

I ! | |

| | |]

Instruction 070ij0 forms an approximation to the reciprocal of the
floating-point value in Sj and enters the result into Si. The result
is meaningless if the contents of Sj is unnormalized or 0. This
instruction is used in the divide sequence as illustrated in the
following example.

Instruction 070ij0 executes in the Floating-point Reciprocal functional
unit.

Example:

| Code generated {Location|{Result |Operand |Comment

| 11 110 120 135

| | | | |

| | * |Divide S1 by S2:; result to S1

070320 | |S3 | /7HS2 |; Approximate
| | | | |; reciprocal
| I I | I

1064113 | |S1 | S1*FS3 | : Approximate
| | | | | result

I | | | |

1067223 | |S2 | S2%1S3 | Correction
| | | | | ; factor

| | | I |

064112 | |s1 |S1*FS2 |

| I | | |

| | | | |

| | % [Divide S1 by S2 with result accurate to
| | * |30 bits | |

|070320 | |83 | /7HS2 |

| | | | |

065313 | |S3 | S1*HS3 |

SR-0085 3-55

INSTRUCTION 070 (continued)

Example (continued):

|Code generated |Location|Result | Operand | Comment

| 11 110 120 135

| I | ! I

| | * | Integer divide Al by A2; Result to A3
071222 | |82 | +FA2 ; Denominator

I I I | I

j071121] |S1 | +FAl | ; Numerator

| I | | I

|062202 | |S2 | SO+FS2 | : Normalize

| | I | |

1062101 | |S1 | SO+FS1 |

| | I I |

1070220 | |S2 | 7HS2 | ; Reciprocal

| | | I | ; approzimation
| I | | |: to 1/D

I | I I I

065110 I |s1 | S1*HS2 | ; Rounded

| | | | | half-precision
I | I | |; multiply

I | ! | |

[071230 | |S2]10.6 |

I I | | I

1062112 | |s1 | S1+FS2 |; Fix quotient
| I | | I

023310 | |A3 |Ss1 |: 24-bit signed
| I I |

“e “e

result to A3

SR-0085 3-56

INSTRUCTION 071

| | | |

| Result | Operand | Description | Machine
| | | | Instruction
| | |]

[I | |

| Si | Ak | Transmit (Ak) to Si without sign | 071i0k
| | | extension |

| I I |

| Si | +Ak | Transmit (Ak) to Si with | 071i1k
| | | sign extension |

| | | |

| si | +FAk | Transmit (AK) to Si as an | 071i2k
| | | unnormalized floating-point |

| | | value I

I | | |

| si | 0.6 | Enter 0.75%(2%%48) into Si as | 071130
| | | normalized floating-point |

| | | constant |

I | | |

| Si] 0.4 | Enter 0.5 into Si as normalized | 071i40
| | | floating-point constant |

I | | |

| Si | 1. | Enter 1 into SiI as normalized | 071i50
| | | floating-point constant |

[| | I

| si | 2. | Enter 2 into Si as normalized | 071i60
| | | floating-point constant |

| | | |

| si | 4. | Enter 4 into Si as normalized | 071170
| | | floating-point constant |

I | 1 I

Instruction 071i0k transfers the 24-bit value in register Ak into the
low-order 24 bits of register Si. The value is treated as an unsigned
integer. The high-order bits of Si are zeroed. A value of 1 is
entered into Si when the k designator is 0.

Instruction 071ilk transfers the 24-bit value in register Ak into the
low-order 24 bits of register Si. The value is treated as a signed
integer and the sign bit of the contents of register Ak is extended to
the high-order bits of Si. A value of 1 is entered into Si when the

k designator is 0.

Instruction 071i2k transmits the contents of register Ak to Si as an
unnormalized floating-point value. The result can then be added to 0 to
normalize. When the k designator is 0, an unnormalized floating-point 1
is entered into Si.

SR-0085 3-57

Instructions 071i3k through 071i7k are initially recognized by
the assembler as the symbolic instruction Si exp.

INSTRUCTION 071 (continued)

The assembler then

checks the expression to see if it has any of the indicated forms. If it

finds one of the instructions in the exact syntax shown,
the corresponding Cray machine instruction.

previously described.

it generates

If none of the indicated
forms are found, instruction 040ijkm or 041ijkm is generated as

These special forms allow more efficient
instructions for entering commonly used values into Si.

The syntax form Si 0.6 (071i30) is useful for extracting the integer
part of a floating-point quantity (that is, fix) as illustrated in the

examples.

Example:

|Code generated |Location|Result | Operand | Comment

| |1 110 120 135

| I | ! I

{071707 | |87 |A7 |

I | | I |

[071717 | [s7 | +A7 |

I | | I I

1071324 | |83 | +FA4 |

I | | | |

| |FIX = |6 |

071630 | |S.FIX 0.6 I

| I | | I

071240 I |S2 |0.4 I

| I I I I

|071350 | |S3 |1. |

| I I I |

071460 | |s4 l2. |

I I I | I

|071570 | |85 |4.]

I I I | I

| | * |Fix a floating-point number in S1

| | * | Separate integer and fractional parts

| I | I I

[071230 | |S2 |10.6 I

I I | I [

(062312 I |S3 |S1+FS2 I

I I | | |

|]023130 | |al Is3 | Integer part
I | I I |

1063332 | |83 |S3-FS2 | ; Floating-point
| | | | | 7 integer part
I | | I |

|063113 | |s1 |S1-FS3 | Fractional
| | | | | part
SR-0085 3-58

INSTRUCTIONS 072 - 075

I | I I

| Result | Operand | Description | Machine
| | | | Instruction
I | | |

I | | |

| Si | RT | Transmit (RTC) to Si | 072100
I | | I

| sit | SM | Read semaphore to Si | 072102
I | I |

| sit | STj | Read (STj) register to Si | 072ij3
I I I I

| sitt | M | Transmit (VM) to Si | 073i00
I | | I

| | | Read performance counter into Si | 073il1
| I I I

| | | Increased performance counter | 073i21
! I I |

| | | Clear all maintenance modes | 073131
| | | I

| sittt | SRj | Transmit (SRj) to Si; j=0 | 073ij1
| I | |

| smt | si | Load semaphores from Si | 073i02
! I I I

| stjt | Si | Transfer (Si) to STj | 073ij3
I I | I

| si | Tjk | Transmit (Tjk) to Si | 074ijk
! | I I

| Tjk | si | Transmit (Si) to Tjk | 075ijk
I

| I 1

+ CRAY X-MP Computer Systems only. This instruction is available
when the numeric trait NUMCLSTR, which is specified on the CPU
parameter of the CAL invocation statement, is greater than zero.

++ Not supported by CAL at this time

+++ CRAY X-MP computer systems only. This instruction is available
through the logical trait STATRG specified on the CPU parameter of
the CAL invocation statement.

Instruction 072i00 enters the 64-bit contents of the real-time clock
into register Si. The clock is increased by 1 each clock period. The
real-time clock can be reset only when in monitor mode using instruction
072i00.

Instruction 072i02 enters the values of all of the semaphores into Si.
The 32-bit SM register is left justified in Si with SMOO occupying the
sign bit.

Instruction 072ij3 enters the contents of register STj into register Si.

SR-0085 3-59

INSTRUCTIONS 072 - 075 (continued)

Instruction 073100 enters the 64-bit contents of the VM register into
register Si. The VM register is normally read after having been set by
instruction 1750jk.

Instruction 073ijl enters the contents of the Status register into Si.

Instruction 073i02 sets the semaphores from 32 high-order bits of Si.
SMO0 receives the sign bit of Si.

Instruction 0731ij3 transfers the contents of register Si into register
STj, which is shared between the CPUs in the current cluster.

Instruction 074ijk enters the contents of register Tjk into register Si.

Instruction 075ijk enters the contents of register Si into register Tjk.

Example:

| Code generated |Location]Result |Operand |Comment
| 11 110 120 L35
| I I | |
1072700 I |87 |RT |
| I | | |
]072002 | | S0 | SM I
| | | | |
1072602 | | s6 | SM]
I | | | I
|072003 | | SO | STO I
| | | I |
]072013 | |so |ST1 |
I | I | i
1073200 | |s2 | VM |
I | I | |
|073001 | | SO | SRO |
I | | | |
[073301 I |S3 | SRO |
I I | | |
]073002 | | SM | SO |
I I | | |
[073102 [| SM |s1 I
I | I | |
073502 I | SM IS5 I
I I | | I
|073003 I | STO |so |
I | | | I
|073103 | | STO |s1 |

SR-0085 3-60

Example: (continued)

INSTRUCTIONS 072 - 075 (continued)

|Code generated |Location|Result |Operand | Comment
| |1 110 120 135
! ! ! | |
1074306 I I83 IT6 |

I | | I |
1074566 | | S5 |T66 |

I | | | |
|075306 | | T6 |S3 |

| | I | |
|075567 I | T67 |SS |
SR-0085 3-61

INSTRUCTIONS 076 - 077

| | | |

| Result | Operand | Description i Machine
|] | | Instruction
|] |]

| I | |

| si | Vi.Ak | Transmit (Vj, element (Ak) | 076ijk

] | | to Si]

| | | |

| Vi,Ak | 87 | Transmit (Sj) to VI element (Ak) | 077ijk

| | | I

| Vi,Ak* | O | Clear element (Ak) of register | 077i0k

| | | vi |

| 1 | |

4+ Special CAL syntax

Instruction 076ijk enters the contents of the element of Vj indicated
by the contents of the low-order 6 bits of Ak into Si. The second
element (that is, element 1) is selected if the k designator is 0.

Instruction 077ijk transmits the contents of register Sj to an element
of Vi as determined by the low-order 6 bits of the contents of Ak.
Element 1, the second element of Vi, is selected if the k designator
is 0.

Instruction 077i0k zeros element (AKk) of register Vi. The low-order
6 bits of Ak determine which element is zeroed. The second element of
register Vi is zeroed (that is, element 1) if the k designator is 0.

Example:

|Code generated |Location]|Result | Operand | Comment
I 11 |10 [20 135
| | I | |
1076456 | | S4 | V5,76 |

| I I I I

| I I= 14 |

|) | = 5 I

| IK |= 16 I
|076456 [|S.1I |V.J,A.K I

| | I I |
1077167 I |V1,A7 |S6 |

| I I I |
077602 I |V6,A2 |0 I

SR-0085 3-62

INSTRUCTIONS 10h - 13h

SR-0085

| I I |

| Result | Operand | Description | Machine
| I | | Instruction
|]] |

| I | |

| AL | exp,Ah | Read from ((Ah) + exp) to Al | 10hijkm
| | I |

| ait | exp,0 | Read from (exp) to Ai | 100ijkm
I | | |

| ait | exp, | Read from (exp) to Ai | 100ijkm
I | | |

| ait | ,Ah | Read from (Ah) to AL | 10hi000
| | | |

| | | i

| exp.,Ah | AL | Store (Ai) to (Ah) + exp | 11hijkm
| I I |

| exp,ot | AL | Store (Ai) to exp | 110ijkm
| | I |

| exp,t | AL | Store (Ai) to exp | 110ijkm
| | I !

| ,ant | Af | Store (Ai) to (Ah) | 11hi000
I I I |

I I I I

| si | exp,Ah | Read from ((AI) + exp) to Si | 12hijkm
| | I |

| sit | exp.,0 | Read from (exp) to Si | 120ijkm
| | | |

| sit | exp, | Read from (exp) to Si | 120ijkm
| | | |

| sit | ,Ah | Read from (Ah) to Si | 12hi000
I | | |

I I | I

| exp,Ah | si | Store (Si) to (Ah) + exp | 13hijkm
| I I |

| exp,of | si | Store (Si) to exp | 130ijkm
I | | |

| exp,t | si | Store (Si) to exp | 130ijkm
| | I |

| ,ant | si | Store (Si) to (Ah) | 13hi000
|] |]

+ Special CAL syntax

INSTRUCTIONS 10h - 13h (continued)

For these instructions, only the value of the expression is used if the
h designator is 0 or if a zero or blank field is used in place of

Ah. Only the content of Ah is used if the expression is omitted. An
expression, if present, must not have a parcel-address attribute or an
assembly error occurs.

Instructions 10hijkm through 10hi000 load the low-order 24 bits of a
memory word directly into an A register. The memory address is
determined by adding the address in the register Ah to the expression
value. Only the value of the expression is used if the h designator is
0, or a 0 or blank field is used in place of Ah. Only the contents of
Ah is used if the expression is omitted. An assembler error will occur
if an expression has a parcel-address attribute

Instructions 11hijkm through 11hi000 store 24 bits from register Ai
directly into memory. The high-order bits of the memory word are
zeroed. The memory address is determined by adding the address in
register Ah to the expression value.

Instructions 12hijkm through 12hi000 load the contents of a memory
word directly into an S register. The memory address is determined by
adding the address in register Ah to the expression value. Only the
value of the expression is used if the h designator is 0 or a zero or
blank field is used in place of Ah. Only the contents of Ah is used
if the expression is omitted. An assembler error will occur if an
expression has a parcel-address attribute.

Instructions 13hijkm through 13hi000 store the contents of register

Si directly into memory. The memory address is determined by adding
the address in register Ah to the expression value.

SR-0085 3-64

INSTRUCTIONS 10h - 13h (continued)

| |
|CON1+1,A1 |A3

1113 00004521+

1124 17777777+ |-1,A2 |A4

:ADDR, :AS
1146 00004647+ :CON,A4 :Aﬁ
1146 00000000+ :,A4 :AG
1161 00000001+ :I,AG :Al

| |
|0'177,A7 |A2

Example:
| Code generated |Location|Result]Operand | Comment
| 11 110 120 135
| | | | |
]1001 00004520+ | |Al {CON1,A0 |
| | | | |
}1002 00004520+ | |a2 |CON1,0 |
| | | | I
}]1013 00004521+ | |A3 J]CON1+1,A1 |
| | i | I
11024 17777777+ | | Ad |-1,A2 |
| | | | I
] 1005 00003000+ | |AS | ADDR, i
| | | | |
j1046 00004647+ i jA6 iCON, A4 i
| I | | |
]1046 00000000+ | |A6 | A4 |
| | | | |
]1061 00000001+ | |Aa1 |11,A6 |
| | | | |
]1072 00000177+ | |A2 |0'177,A7 |
| | | | I
I | | |
1101 00004520+ | | CON1, A0 |al |
I | | |
1102 00004520+ I |CON1,0 |A2 I
I |
I |
| |
| |
| |
| I
| I
| I
| |
| |
| |
| |
| |
I |

I
l
|
I
|
I
I
I
I
|1105 00003000+
|
I
I
I
I
|
|
|

1172 00000177+

SR-0085 3-65

INSTRUCTIONS 10h - 13h (continued)

Example: (continued)

|Code generated |Location]Result |Operand [Comment
| 11 110 120 135
:1201 00004520+ : :s1 :CONl,AO :
:1202 00004520+ : :SZ :CONI,O :
:1213 00004521+ : :sa :CON1+1,A1 {
:1224 17777777+ : :54 :-l,AZ :
:1205 00003000+ : :ss :ADDR, :
:1246 00004647+ : :SG :CON,A4 :
:1246 00000000+ : :86 :,A4 :
:1251 00000001+ : :31 :I.Aﬁ :
:1272 00000177+ : :sz :0’177,A7 :

| I | | I

| I | | !
1301 00004520+ | | CON1, AO Is1 I
:1302 00004520+ : :CONl,O :sz :
:1346 00000000+ : :,A4 :86 :
:1324 17777777+ : :—I,AZ :54 :
:1305 00003000+ : :ADDR, :ss :

SR-0085 3-66

INSTRUCTIONS 140 - 147

Instruction 140ijk forms the logical products

[| | |

| Result | Operand | Description | Machine
| | | | Instruction
| l | |

| | I |

| Vi | Sjsvk | Logical products of (Sj) and | 140ijk
| | | (Vk) to Vi |

[| | |

| Vi | Visvk | Logical products of (Vj) and | 141ijk
| | | (VKk) to Vi |

| | | |

| Vi | Sj'Vk | Logical sums of (Sj) and (Vk) | 142ijk
| | | to Vi |

| | | |

{ vit | Vk | Transmit (Vk) to Vi | 142i0k
[| [|

| Vi | Vi'Vk | Logical sums of (Vj) and (Vk) to | 143ijk
| | | Vi |

| | | |

| vi | SF\Vk | Logical differences of (Sj) and | 144ijk
| | | (VK) to Vi |

| | | I

| vi | Vi\Vvk | Logical differences of (Vj) and | 145ijk
| | | (Vk) to Vi |

| | [|

| vit | 0 | Clear Vi | 145iii
I | | |

| VI | Sj'Vk&VM| Vector merge of (Sj) and (Vk) | 146ijk
| | | to Vi |

| | | I

| vit | #¥VM&Vk | Vector merge of (Vk) and zero | 146i0k
| | | to Vi |

| | [|

| Vi | Vj!'Vk&VM| Vector merge of (Vj) and (Vk) | 147ijk
| | | to Vi |

I |] |

+ Special CAL syntax

of the contents of Sj

and the contents of elements of Vk and enters the results into elements
of Vi. 1If the j designator is 0, elements of register Vi are zeroed.

The number of operations performed by this instruction is determined by
the contents of the VL register.

SR-0085

INSTRUCTIONS 140 - 147 (continued)

Instruction 141ijk forms the logical products of the contents of
elements of register Vj and elements of register Vk and enters the
results into elements of Vi. If the j designator is the same as the
k designator, the contents of the Vj elements are transmitted to the
Vi elements.

The number of operations performed by this instruction is determined by
the contents of the VL register.

Instruction 142ijk forms the logical sums of the contents of Sj and

the contents of elements of Vk and enters the results into elements of
Vi. The contents of the Vk elements are transmitted to the Vi elements
if the j designator is 0. The VL register determines the number of
operations performed by this instruction.

Instruction 142i0k transmits the contents of the elements of register
Vk to the elements of register Vi. The VL register determines the
number of elements performed by this instruction.

Instruction 143ijk forms the logical sums of the contents of elements
of Vj and elements of Vk and enters the results into elements of Vi.

If the j and k designators are equal, the contents of the Vj elements
are transmitted to Vi. The VL register determines the number of
operations performed by this instruction.

Instruction 144ijk forms the logical differences of the contents of Sj
and the contents of elements of Vk and enters the results into elements
of Vi. If the j designator is 0, the contents of the Vk elements

are entered into the Vi elements. The VL register determines the
number of operations performed by this instruction.

Instruction 145ijk forms the logical differences of the contents of
elements of Vj and elements of VK and enters the results into elements
of Vi. If the j and k designators are equal, the Vi elements are
zeroed. The VL register determines the number of operations performed
by this instruction.

Instruction 145iii zeros elements of Vi. The VL register determines
the number of elements performed by this instruction.

Instruction 146ijk transmits the contents of Sj or the contents of
element n of Vk to element n of Vi depending on the ones mask in the
VM register. The content of Sj is transmitted if bit n of VM is 1; the
content of element n of Vk is transmitted if bit n of VM is 0.

SR-0085 3-68

INSTRUCTIONS 140 - 147 (continued)

Element n of Vi is 0 if the j designator is 0 and bit n of VM is 1.
The VL register determines the number of operations performed by this
instruction.

Instruction 146i0k zeroes element n of register Vi or transmits the
contents of element n of Vk to element n of Vi depending on the ones
mask in the VM register. If bit n of VM is 1, element n of Vi is
zeroed; if bit n is 0, element n of Vk is transmitted. The VL register
determines the number of operations performed by this instrction.

Instruction 147ijk transmits the contents of element n of Vj or element

n of Vk to element n of Vi depending on the ones mask in the VM

register. The content of the Vj element is transmitted if bit n of VM is
1; the content of the Vk element is transmitted if bit n of VM is 0. The
VL register determines the number of operations performed by this
instruction.

Instructions 140ijk through 147ijk execute in the Vector Logical
functional unit.

For these instructions (except 145iii), a warning level message is

issued if the logical trait VRECUR is specified on the CPU parameter of
the CAL invocation statement and either i=j or i=k (for V registers
only). A comment level message is issued of NOVRECUR is specified on the
CPU parameter of the CAL invocation statement.

Examples:

|Code generated |Location|Result jOperand | Comment
| 11 _110 120 135
| I I | |
|140123 | |vi [S2&V3 |
I | | | |
1141257 | |v2 |v5&V7 |
| I | | |
| 141033 | |vO jv3&v3 |
I | | | |
|142615 | | V6 }S1tvs |
| | | | |
|142102 | jvi |v2

| | | | |
1143714 | | V7 jvitvse |
| | | | |
1144267 | |v2 | S6\V7 |
| | I I I
145513		V5	V1\V3
145500]	VS	0	

SR-0085 3-69

INSTRUCTIONS 140 - 147 (continued)

Examples: (continued)

|Code generated | Location]Result |Operand |Comment
] 11 110 120 135

| | | | I
1146726 I |v7 |S2!1V6&VM |

For the above instruction, assume the following initial register
conditions exist:

(VL) = 4
(VM) = 0 60000 0000 0000 0000 0000
(s2) -1

Element 0 of V6 =
Element 1 of V6 =
Element 2 of V6
Element 3 of V6 =

D WN R

After instruction execution, the first four elements of V7 are modified
as follows:

Element 0 of V7 = 1
Element 1 of V7 = -1
Element 2 of V7 = -1

Element 3 of V7 = 4

The remaining elements of V7 are unaltered.

Examples: (continued)

|Code generated |Location|Result | Operand | Comment
| 11 110 [20 135

| | | | I
]146607 | |vé | #VM&V7 |

Assume the following initial register conditions for the above
instruction:

(VL) =
(W) =
Element 0 of V7 =
Element 1 of V7 =
Element 2 of V7 =
Element 3 of V7 =

50000 0000 0000 0000 0000

B W N O B

SR-0085 3-70

INSTRUCTIONS 140 -~ 147 (continued)

After instruction execution, the first four elements of V6 have been
modified as follows:

Element 0 of V6
Element 1 of V6 =
Element 2 of V6
Element 3 of V6 =

H

|
O woR

Examples: (continued)

|Code generated |Location]|Result | Operand | Comment

| 11 110 |20 |35

| | | | I
147123 | |v1 [V21V3sUM I

Assume the following initial register conditions exist for the above
instruction:

(VL) = 4
(VM) = 0 60000 0000 0000 0000 0000
Element 0 of V2 = 1
Element 1 of V2 = 2
Element 2 of V2 = 3
Element 3 of V2 = 4
Element 0 of V3 = -1
Element 1 of V3 = -2
Element 2 of V3 = -3
Element 3 of V3 = -4

After instruction execution, the first four elements of Vi have been
modified as follows:

Element 0 of V1 = -1
Element 1 of V1 = 2
Element 2 of V1 = 3
Element 3 of V1 = -4

The remaining elements of V1 are unaltered.

SR-0085 3-71

INSTRUCTIONS 150 - 151

I I | I I
| Result | Operand | Description | Machine |
| | | | Instruction |
| | | | I
I | I I |
| Vi | Vi<ak | shift (Vj) left (Ak) places | 150ijk |
I | | to Vi I !
I | I I I
| vit | Vi<« | Shift (Vj) left one place to Vi | 150ij0 |
! | | | I
| Vi | Vi>ak | Shift (Vj) right (Ak) places | 151ijk |
I | | to Vi I I
I | | | |
| vit | vji>l | Shift (Vj) right ome place to Vi | 151ij0 |
| |] | |
+ Special CAL syntax

Instruction 150ijk and its special form shift the contents of the
elements of register Vj to the left by the amount specified by the
contents of Ak and enter the results into the elements of Vi. The VL
register determines the number of elements performed by this
instruction. For each element, the shift is end off with zero fill,
Elements of Vi are zeroed if the shift count exceeds 63. Element
contents are shifted left one place if the k designator is 0; this can
be specified through the special form of the instruction.

Instruction 151ijk and its special form shift the contents of the
elements of register Vj to the right by the amount specified by the
contents of Ak and enter the results into the elements of Vi. The VL
register determines the number of elements performed by this
instruction. For each element, the shift is end off with zero fill.
Elements of Vi are zeroed if the shift count exceeds 63. Element
contents are shifted right one place if the k designator is 0; a
special form of the instruction accommodates this feature.

Instructions 150ijk and 151ijk execute in the Vector Shift functional
unit.

Example:

|Code generated | Location|Result |Operand | Comment

[[1 [10 120 135

| I I | I

|150123 | |Vl |V2<¢A3 |

| I | | I

|150450 | |Va |V5<1 | Left 1 place

SR-0085 3-72

INSTRUCTIONS 150 - 151 (continued)

Examples: (continued)

|Code generated | Location]Result |Operand | Comment

| 11 110 |20 L35

| | | | I

151341 | |v3 |V4>A1 |

I | | | |

1151450 | |va |V5>1 |: Right 1 place

SR-0085 3-73

INSTRUCTIONS 152 - 153

| I I |

| Result | Operand | Description | Machine
| | | | Instruction
| | | |

I I I |

| vi | Vj.Vj<ak| Double shift (Vj) left (Ak) | 152ijk

| | | places to Vi |

I I | I

| vit | Vj,Vj<l | Double shift (Vj) left one place | 152ij0

] | | to Vi |

| | I |

| Vi | Vj,Vj>Ak| Double shift (Vj) right (Ak) | 153ijk

| | | places to Vi |

! | I |

| vit | Vj,Vj>1 | Double shift (Vj) right one | 153ij0

| | | place to Vi |

| | | I

+ Special CAL syntax

Instruction 152ijk and its special form shift 128-bit quantities from
elements of Vj by the amount specified in Ak and enter the result

into elements of Vi. Element n of Vj is concatenated with element

n+1 and the 128-bit quantity is shifted left by the amount specified in
Ak. The shift is end off with zero fill. The high-order 64 bits of
the results are transmitted to element n of Vi.

The VL register determines the number of elements performed by this
instruction. The last element of Vj, as determined by VL, is
concatenated with 64 bits of zeros. The 128-bit quantities are shifted
left one place if the k designator is 0; the special form of the
instruction accommodates this feature.

Instruction 153ijk and its special form shift 128-bit quantities from
elements of Vj by the amount specified in Ak and enter the result
into elements of Vi. Element n-1 of Vj is concatenated with

element n and the 128-bit quantity is shifted right by the amount
specified in Ak. The shift is end off with zero fill. The low-order
64 bits are transmitted to element n of Vi.

The VL register determines the number of elements performed by this
instruction. The first element of Vj is concatenated with 64 bits of
zeros. The 128-bit quantities are shifted right one place if the k
designator is 0; the special form of the instruction accommodates this
feature.

Instructions 152ijk and 153ijk execute in the Vector Shift functional
unit.

SR-0085 3-74

INSTRUCTIONS 152 - 153 (continued)

Example:

| Code generated |Location|Result |Operand | Comment
| 11 {10 120 {35

| | | | |
[152541 | |VS |V4,vacal |

Assume the following initial register conditions for the above
instruction:

(VL) = 4

(al) = 3
Element 0 of V4 = 0 00000 0000 0000 0000 0007
Element 1 of V4 = 0 60000 0000 0000 0000 0005
Element 2 of V4 = 1 00000 0000 0000 0000 0006
Element 3 of V4 = 1 60000 0000 0000 0000 0007

After instruction execution, the first four elements of V5 have been
modified as follows:

Element 0 of V5 0 00000 0000 0000 0000 0073
Element 1 of V5 = 0 00000 0000 0000 0000 0054
Element 2 of V5 = 0 00000 0000 0000 0000 0067
Element 3 of V5 0 00000 0000 0000 0000 0070

The remaining elements of V5 are unaltered.

SR-0085 3-75

INSTRUCTIONS 152 - 153 (continued)

Example:

| Code generated |Location|Result |Operand | Comment
| 11 110 120 135

| | | I |

1153026 | |vo |V2,V2>A6 |

Assume the following initial register conditions for the above
instruction.

(VL) 4
(a6) = 3
0 00000 0000 0000 0000 0017
0 60000 0000 0000 0000 0005
1 00000 0000 0000 0000 0006
1 60000 0000 0000 0000 0007

Element 0 of V2
Element 1 of V2
Element 2 of V2
Element 3 of V2

After instruction execution, the first four elements of VO have been
modified as follows:

0 00000 0000 0000 0000 0001
1 66000 0000 0000 0000 0000
1 30000 0000 0000 0000 0000
1 56000 0000 0000 0000 0000

Element 0 of VO
Element 1 of VO
Element 2 of VO
Element 3 of VO

The remaining elements of VO are unaltered.

SR-0085 3-76

INSTRUCTIONS 154 - 157

| | | |

i Result | Operand | Description | Machine
| | | | Instruction
|]] |

| I | I

| vi | Sj+vk | Integer sums of (Sj) and (VKk) | 154ijk
| | | to Vi |

I | | I

| Vi | Vi+Vk | Integer sums of (Vj) and (VK) | 155ijk
| | | to Vi |

I I | |

| vi | 8j-Vk | Integer differences of (Sj) and | 156ijk
I | | (Vk) to Vi I

| | I |

| vit | -Vk | Transmit twos complement of (Vk) | 156i0k
| | | to Vi |

| | | |

| vi | Vj-vk | Integer differences of (Vj) less | 157ijk
| | | (Vk) to Vi |

| | l]

+ Special CAL syntax

Instruction 154ijk adds the contents of Sj to each element of Vk
and enters the results into elements of Vi. Elements of Vk are
transmitted to Vi if the j designator is 0.

The VL register determines the number of operations performed by this
instruction.

Instruction 155ijk adds the contents of elements of register Vj to
the contents of corresponding elements of register Vk and enters the
results into elements of register Vi.

The VL register determines the number of operations performed by this
instruction.

Instruction 156ijk subtracts the contents of each element of Vk from
the contents of register Sj and enters the results into elements of
register Vi. The negative (twos complement) of each element of Vk is
transmitted to Vi if the j designator is 0.

The VL register determines the number of operations performed by this
instruction.

SR-0085 3-77

INSTRUCTIONS 154 - 157 (continued)

Instruction 156i0k transmits the twos complement of the contents of
elements of register Vk to the elements of register Vi. The VL register
determines the number of elements performed by this instruction.

Instruction 157ijk subtracts the contents of elements of register Vk
from the contents of corresponding elements of register Vj and enters
the results into elements of register Vi.

The VL register determines the number of operations performed by this
instruction.

Instructions 154ijk through 157ijk execute in the Vector Integer Add
functional unit.

Example:

| Code generated |Location|Result |Operand |Comment
| 11] 10 120 |35
| I | I I
154213 I |v2 |S1+V3 I

| I | I !

| 155456 | {va |V54V6 |

| | I I |
1156712 | |v7 |S1-v2 I

| | | I |
1156102 | |vi | -v2 I

| | I I I
1157345 | |v3 |V4-V5 |

SR-0085 3-78

INSTRUCTIONS 160 -167

(Vj) and (Vk) to Vi

| | | |

| Result | Operand | Description | Machine
| | | | Instruction
| | | 1

| I | |

| Vi | Sj*FVk | Floating-point products of (Sj) | 160ijk
| | | and (Vk) to Vi |

| | | |

| vi | Vj*FVk | Floating-point products of (Vj) | 161ijk
| | | and (Vk) to Vi |

| | | |

| vi | Sj*HVk | Half-precision rounded | 162ijk
| | | floating-point products of (Sj) |

| | | and (Vk) to VI |

| | | |

| vi | Vj*HVK | Half-precision rounded | 163ijk
| | | floating-point products of (Vj) |

| | | and (Vk) to Vi |

| | | |

| vi | Sj*RVk | Rounded floating-point products | 164ijk
| | | of (Sj) and (Vk) to Vi |

| ! [|

| Vi | Vj*RVk | Rounded floating-point products | 165ijk
| | | of (Vj) and (Vk) to Vi

| | | |

| Vi | Sj*IVk | 2-floating-point products of | 166ijk
] | | (§j) and (Vk) to Vi |

| | [|

| vi | Vj*Ivk | 2-floating-point products of | 167ijk
| | | |

| | | |

Instruction 160ijk forms the floating-point products of the contents of
Sj and elements of Vk and enters the results into elements of Vi. The
results are not normalized if either operand is unnormalized. The number
of operations performed is determined by the contents of the VL register.

Instruction 161ijk forms the floating-point products of the contents of
elements of Vj and elements of Vk and enters the results into elements
of Vi. The results are not normalized if either operand is unnormalized.
The number of operations performed is determined by the contents of the
VL register.

SR-0085 3-79

INSTRUCTIONS 160 -167 (continued)

Instruction 162ijk forms the half-precision rounded floating-point
products of the contents of the Sj register and the contents of
elements of the Vk register and enters the results into elements of
Vi. The results are not normalized if either operand is unnormalized.
The low-order 18 bits of the results are zeroed.

The number of operations performed by this instruction is determined by
the contents of the VL register. This instruction can be used in a
divide algorithm when only 30 bits of accuracy are required.

Instruction 163ijk forms the half-precision rounded floating-point
products of the contents of elements of the Vj register and elements of
the Vk register and enters the results into elements of Vi. The
results are not normalized if either operand is unnormalized. The
low-order 18 bits of the results are zeroed.

The VL register determines the number of operations performed by this
instruction. This instruction can be used in a divide algorithm when
only 30 bits of accuracy are required.

Instruction 164ijk forms the rounded floating-point products of the
contents of the Sj register and the contents of elements of Vk and

enters the results into elements of Vi. The results will not be
normalized if either operand is unnormalized. The VL register determines
the number of operations performed by this instruction.

Instruction 165ijk forms the rounded floating-point products of the
contents of elements of Vj and elements of VK and enters the results
into elements of Vi. The results will not be normalized if either
operand is unnormalized. The VL register determines the number of
operations performed by this instruction.

Instruction 166ijk forms 2 minus the floating-point products of the
contents of Sj and the contents of elements of Vk and enters the
results into elements of Vi. The results are not normalized if either
operand is unnormalized. The VL register determines the number of
operations performed by this instruction.

Instruction 167ijk forms 2 minus the floating-point products of
contents of elements of Vj and elements of VK and enters the results
into elements of Vi. The results are not normalized if either operand
is unnormalized. This instruction is used in the divide sequence. The
VL register determines the number of operations performed by this
instruction.

Instructions 160ijk through 167ijk execute in the Floating-point
Multiply functional unit.

SR-0085 3-80

INSTRUCTIONS 160 -167 (continued)

Example:

|Code generated |Location|Result |Operand jComment
| 11 110 120 135
| | | | |
1160627 I | V6 | S2%FV7 |

| | I | I
1161123 | |vi |V2*FV3 |

| I | I |
|162456 | |va | S5%HV6 |

I I | I |
1163712 I |v7 | V1*HV2 |

| I | | |
1164314 | |v3 | SL*RV4 |

| | | | |
1165567 I |V5 | V6*RV7 |

| | | | |
1166123 | |vi |S2%*1V3 |

| | | I |
1167456 | |va |V5*IV6 |

SR-0085 3-81

INSTRUCTION 170 - 173

| | | |

j Result | Operand | Description | Machine
| | | | Instruction
| |] |

| | | |

| vi | Sj+FVk | Floating-point sums of (Sj) and | 170ijk
| | | (Vk) to Vi]

| | | |

| vit | +FVk | Normalize (Vk) to Vi | 170i0k
| | | |

| Vi | Vj+FVk | Floating-point sums of (Vj) and | 171ijk
| | | (VKk) to Vi]

| I | I

| Vi | Sj-FVk | Floating-point differences of | 172ijk
| | | (Sj) less (Vk) to VI |

| | | |

| vit | ~-FVk | Transmit normalized negative of | 17210k
| | | (Vk) to Vi |

] | | |

| vi | Vj-FVk | Floating-point differences of | 173ijk
| | | (Vj) less (Vk) to Vi I

|]] |

+ Special CAL syntax

Instruction 170ijk forms the floating-point sums of the contents of

Sj and elements of register Vk to elements of register Vi. The results
are normalized even if the operands are unnormalized. The VL register
determines the number of operations performed by this instruction.

The special form of the instruction (170i0k) normalizes the contents
of the elements of Vk and enters the results into elements of Vi.

Instruction 171ijk forms the floating-point sums of the contents of
elements of Vj and elements of Vk and enters the results into the
elements of register Vi. The results are normalized even if the
operands are unnormalized. The number of operations performed is
determined by the contents of the VL register.

Instruction 172ijk forms the floating-point differences of the contents
of Sj and elements of register Vk and enters the results into register
Vi. The results are normalized even if the operands are unnormalized.
The negatives (twos complements) of floating-point quantities in elements
of Vk are transmitted to Vi if the j designator is 0. The special

form (172i0k) accommodates this special case. The number of

operations performed is determined by the contents of the VL register.

SR-0085 3-82

INSTRUCTION 170 - 173 (continued)

Instruction 173ijk forms the floating-point differences of the contents
of elements of register Vj less the contents of elements of registers
Vk and enters the results into elements of register Vi. The results
are normalized even if the operands are unnormalized. The VL register
determines the number of operations performed by this instruction.

Instructions 170ijk through 173ijk execute in the Floating-point Add
functional unit.

Example:

|Code generated |Location]Result |Operand | Comment
| 11 110 120 135

I | | I |
[170712 | | V7 |S1+FV2 |

| [I I |
|170501 | | V5 | +FV1 | ; Normalize (V1)
| | | I |; to VS
| | I | |
171234 | |v2 |V3+FV4 |

| | I I I
[172516 l | V5 |S1-FV6 [

| | I | |
1173712 [| V7 |[V1-FV2 |

SR-0085 3-83

INSTRUCTION 174

approximation of (Vj) to Vi

I I I I

| Result | Operand | Description | Machine

| | | | Instruction
|] |]

! I I |

| vi | 7HVJ | Floating-point reciprocal | 1741ij0

| I I I

| | I |

Instruction 174ij0 forms the approximations to the reciprocals of the
floating-point values in elements of Vj and enters the results into
elements of Vi. The results are meaningless if the contents of elements
are unnormalized or 0. This instruction is used in the divide sequence.
The VL register determines the number of operations performed by this
instruction.

Instruction 174ij0 executes in the Floating-point Reciprocal functional
unit.

Example:

|Code generated |Location|Result | Operand | Comment

| 11 110 120 135

| I | I |

| | * |Divide elements of V1 by elements of V2;
| | % |Result to V6 |

1174320 | V3 | /HV2 I

| | I | I

1161413 | |va | V1*FV3 |

| I I I I

1167532 | | VS |V3*IV2 |

| | I | |

1161645 | |Vé | V4*FV5 |

| | | I I

| | % |Divide elements of V1 by elements of V2;
| | % |Results accurate to 30 bits, result to V6
1174320 | iv3 | 7HV2 |

| I I I |

1165613 | IvVé | V1*HV3 |

| | I | |

| | * |Divide S1 by elements of V2; Result to V6
| 174320 I V3 | /HV2 |

| I | | |

1160413 | 2! | S1*FV3 |

| I | | |

1167532 | |vs [V3*IV2 |

| I | | |

1161645 | Ivé | V4*FV5 |

SR-0085 3-84

INSTRUCTIONS 174ij1 - 174ij2

I I | | |
| Result | Operand | Description i Machine |
| | | | Instruction |
|] L] |
| ! | | |
| vit | PVj | Population count of (Vj) to (Vi) | 174ij1 I
I I | I |
| vit | Qvj | Population count parity of (Vj) | 174ij2 |
| | | to (Vi) I |
| | | l I
+ Vector Population Count (optional on CRAY-1 Models A and B)

Instruction 174ij1 counts the number of 1 bits in the elements of
register Vj and enters the result into the elements of register Vi.
The VL register determines the number of elements performed by this

instruction.

Instruction 174ij2 enters a 0 or 1 into the elements of Vi depending

on whether the elements of Vj have an even or odd number of 1 bits. A
0 is entered into element n of Vi if there is an even number of 1 bits
in element n of Vj; a 1 is entered into element n of Vi if there is an

0odd number of 1 bits in element n of Vj.

is determined by the VL register.

The number of elements involved

Instructions 174ijl1 and 174ij2 execute in the Reciprocal Approximation
functional unit.

Example:

|Code generated |Location|Result |Operand | Comment

| 11 110 120 135

I I I I I

|174311 | |v3 |PV1 | Pop count of
| | |] | V1 to V3

| I I | I

1174522 | | VS |Qv2 | Pop count

| I | | | parity of V2
I | | | |; to VS
SR-0085 3-85

INSTRUCTION 175

Vj, for negative elements of Vj

|

| | | |

| Result | Operand | Description | Machine
| | | | Instruction
|] 1]

| | | |

| V™ | vj,2 | Set VM bits for zero elements of | 175030
| I | vj |

I | | |

| VM | Vj.N | Set VM bits for nonzero elements | 175071
| I | of Vj |

| | | |

| VM | vj,P | Set VM bits for positive | 175032
| | | elements of Vj |

| I | |

| V™ | Vi.M | Set VM bits for negative | 175033
| | | elements of Vj |

| | | |

| vi,vMt | vj,2 | Set VM bits and register Vi | 175ij4
| | | to Vj, for zero elements of Vj |

| | I |

| vi,vmM} | Vvj,N | Set VM bits and register Vi to | 175ij5
| | | Vj, for nonzero elements of Vj]

| | | |

| vi,vMt | vj,P | Set VM bits and register Vi to | 175ij6
] | | Vj, for positive elements of Vj |

i | | I

| vi,vMt | Vj. M | Set VM bits and register Vi to | 175ij7
| I | |

| I

1-

CRAY X-MP Computer Systems only

Instructions 1750j0 through 1750j3 create a mask in the VM register.
The 64 bits of the VM register correspond to the 64 elements of Vj.
Elements of Vj are tested for the specified condition. If the
condition is true for an element, the corresponding bit is set to 1 in
the VM register. If the condition is not true, the bit is zeroed.

The number of elements tested is determined by the contents of the VL
register; however, the entire VM register is zeroed before elements of
Vj are tested. If the contents of an element is 0, it is considered
positive. Element 0 corresponds to bit 0, element 1 to bit 1, and so on,
from left-to-right in the register.

Instructions 175ij4 through 175ij7 create an identical vector mask as

in the above instructions, and in addition create a compressed index list
in register Vi based on the results of testing the contents of the
elements of register Vj.

SR-0085 3-86

INSTRUCTION 175 (continued)

These instructions execute in the Vector Logical functional unit.

Example:

|Code generated |Location|Result | Operand | Comment
| |1 110 120 135
I I | I |
}175050 | | VM |vs, 2 |

| I | I I
|175061 | | vM |V6,N |

I I | | I

| 175072 | jvM |v7,P |

| I | I I
}175013 | | VM |V1i,M |

SR-0085 3-87

INSTRUCTIONS 176 - 177

memory address (A0) + (Vk)
|

Special CAL syntax
4+ CRAY X-MP Computer Systems only

I | I |

| Result | Operand | Description | Machine
| | | | Instruction
|]] |

I | | |

| Vi | ,A0,Ak | Read from memory starting at | 176i0k
| | | (AO) increased by (Ak) and load |

| | | into Vi |

| | | |

| vit | ,A0,1 | Read from consecutive memory | 176i00
| | | addresses starting with (A0) |

|] | and load into Vi |

I | | |

| vitt | -A0,Vk | Read from memory using memory | 17611k
| | | address (A0) + (Vk) and load |

| | | into VI |

| | | |

| ,A0,Ak | vj | Store (Vj) to memory starting | 1770jk
| | | at (AO0) increased by (Ak) |

| | | |

| ,A0,1 | Vj | Store (Vj) to memory in | 1770j0
| | | consecutive addresses starting |

| | | with (AO0) |

| I | |

| ,a0,vktt | vj | Store (Vj) to memory using | 1771jk
| | | |

I] |

.’-

-’-

Instruction 176i0k and 176100 load words into elements of register

Vi directly from memory. AO contains the starting memory address. This
address is increased by the contents of register Ak for each word
transmitted. The contents of Ak can be positive or negative allowing
both forward and backward streams of references. If the k designator

is 0 or if 1 replaces Ak in the operand field of the instruction, the
address is increased by 1.

The number of elements transferred is determined by the contents of the
VL register.

For instruction 176ilk, register elements begin with 0 and are increased
by 1 for each transfer. The low-order 24 bits of each element of Vk
contain a signed 24-bit integer which is added to (A0) to obtain the
current memory address.

SR-0085 3-88

INSTRUCTIONS 176 - 177 (continued)

The VL register determines the number of words transferred.

Instructions 1770jk and 1770j0 store words from elements of register
Vj directly into memory. A0 contains the starting memory address.
This address is increased by the contents of register Ak for each word
transmitted. The contents of Ak can be positive or negative allowing
both forward and backward streams of references. If the k designator
is 0 or if 1 replaces Ak in the result field of the instruction, the
address is increased by 1.

The VL register determines the number of elements transferred.

For instruction 1771jk, register elements begin with 0 and are increased
by 1 for each transfer. The low-order 24 bits of each element of Vk
contains a signed 24-bit integer which is added to (A0) to obtain the

current memory address.

The VL register determines the number of elements transferred.

Example:

|Code generated |Location]Result |Operand jComment
| 11 110 120 135
[I | | |
1176201 | |v2 |,A0,A1 |

| I | | |
176500 | | VS |,A0,1 |

I | I I |
(177032 | | ,AD0,A2 |V3 I

| | | | |
|177030 | |.,A0,1 |v3 |

SR-0085 3-89

APPENDIX SECTION

SYMBOLIC INSTRUCTION A
SUMMARY

This appendix contains two (CRAY X-MP and CRAY-1) symbolic instructions
summary charts. It also lists the functional units for both the CRAY X-MP
and CRAY-1 Computer Systems.

A.1 FUNCTIONAL UNITS

Instructions other than simple transmits or control operations are
performed by specialized hardware known as functional units. Each unit
implements an algorithm or a portion of the instruction set. For more
information on Functional Units, refer to the appropriate hardware
reference manual.

Clock Periods

Functional Unit CRAY-1 CRAY X-MP Instructions
Address Integer Add 2 2 030, 031
Address Integer Multiply 6 4 032
Scalar Integer Add 3 3 060, 061
Scalar Logical 1 1 042-051
Scalar Shift 2 2 052-055
3 3 056, 057
Scalar Pop/Parity/ at 4 026
Leading Zero 3 3 027
Vector Integer Add 3 3 154-157
Vector Logical 2 2 140-147, 175
Second Vector Logical - 4 140-145
Vector Shift 4 3 150, 151, 153
- 4 152
Vector Pop/Parity 6F 5 174ij1, 174ij2
Floating-point Add 6 6 062, 063, 170-173
Floating-point Multiply 7 7 064-067, 160-167
Floating-point Reciprocal 14 14 070, 1741ij0
Memory (Scalar) 11+ 14ttt 100-130
- 17Y 100-130
Memory (Vector) ahl - 176, 177

+ Only with vector population

++ For Serial 1: scalar 10, vector 6
+++ 2-and 4-processor X-MP

1 Single-processor X-MP

199 For CRAY-1 M Series: 8, 9, or 10

SR-0085 A-1

A.2 CRAY-1 SYMBOLIC MACHINE INSTRUCTIONS

Si
Si
Si

Si
Si

Si
Si
Si

Si
Si
Si

Si
Si
Si

Si
Si

EFI
DFI

Si
Si

Si
Si

LOGICAL OPERATIONS

sjssk Vi Sjsvk vi
Sj&SB
SB&Sj
$Sk&Sj
#SB&Sj
Sj'sk vi Sj!vk Vi
Sj!SB
SB!Sj
Sj\sk Vi Sj\Vk vi
Sj\SB
SB\Sj
$Sj\Sk
#Sj\SB
¥SB\Sj
VM Vj,Z
VM Vj,N
VM Vj,P
VM Vj,M
Sj!sissk
Sj!'Si&SB Vi Sj!Vks&vM Vi
Vi $VM&Vk

FLOATING-POINT OPERATIONS

Vj!vk

Vi\Vk

V7! Vks&VM

Vj+FVk

Vj-FVk

Vj*FVk
Vj*HVK
Vj*RVk
Vj*IVk
/HVj

Sj+FSk Vi Sj+FVk Vi
+FSk Vi +FVk

Sj-FSk Vi Sj-FVk Vi
-FSk Vi -FVk

Sj*FSk Vi Sj*FVk Vi
Sj*HSk Vi Sj*HVK vi
SJj*RSk Vi Sj*RVk Vi
Sj*ISk Vi Sj*IVk Vi
/HSJ Vi

I o o o o L e e e e _
A-2

SR-0085

SO
Si

Si
Si
Si

Vi
Vi

Vi
Vi

J B

JAZ
JAN
JAP
JAM

R

SHIFT INSTRUCTIONS

Sicexp
Sicexp

Si,Sj<Ak
Si,sj<1
Si<cAk

Vj<Ak
Vi<l

Vj,Vj<ak
vVji.,vj<1

J exp

jk

exp
exp
exp
exp

exp

PROGRAM BRANCHES AND EXITS

Al
Al
Al
Al
Al

REGISTER ENTRY INSTRUCTIONS

|
I
I
S0 Si>exp | Ai exp Si <exp
Si Si>exp | Al -1 Si #>exp
|
Si Sj,Si>ak | Si »>exp
Si 8j,Si>1 i Si exp Si #<exp
SI Si>Ak |
| si o Si SB
Vi Vj>Ak | Si 1 Si #SB
Vi Vj»1 | Si -1
| si 1 Vi, Ak O
Vi Vj,Vvj>Ak | Si 2 Vi o0
vi Vj,vi>t | Si 4 Si 0.4
| Si 0.6
_________________ !l . ___
|
| BIT COUNT INSTRUCTIONS
I
| Al PSj Vi PVj
| Al QSj Vi QVj
, | Al 2Sj
JSZ exp V- - - - _ _ _ __ __ _____
JSN exp |
JSP exp | MONITOR OPERATIONS
JSM exp |
| CA,Aj Ak ccI
| CL,Aj Ak ECI
| CI,Aj DCI
ERR |
ERR exp | XA Aj
| RT Sj
| PCI Sj
_________________ l -
INTEGER ARITHMETIC OPERATIONS
Aj+Ak
Aj+1
Aj-Ak
Aj-1
Aj*Ak

Sj+Sk VI Sj+Vk Vi Vj+Vk
Sj-Ssk Vi Sj-Vk Vi Vj-Vk

SR-0085

INTER-REGISTER TRANSFERS MEMORY TRANSFERS

| I

| I

| |

i Al Ak Si Sk | (store) (load)

| Al -Ak Si -Sk | ,AO Bjk,Al Bjk,ai ,A0

I Si #sk | 0,A0 Bjk,ai Bjk,Ai 0,A0
| Al Sj Si Ak]

| Si +Ak i ,AO Tjk,Ai Tjk,Ai ,A0

| Si +Fak | ,A0 Tjk,Ai Tjk,Ai 0,A0
| |

i Ai Bjk Si Tjk | exp,Ah Al Al exp,Ah
| | exp,0 Al Al exp,0
| Al CI Si Vj,Ak | exp, Al Al exp,

| AL CA,Aj Si VM | ,Ah Al Al ,Ah

| Ai CE,AJ Si RT |

| | exp,Ah Si Si exp,Ah
| | exp,0 Si Si exp,0
| Bjk Ai Tjk Si | exp, Si Si exp,

| | ,Ah Si Si ,Ah

| I

I vi vk | ,AO0,Ak Vj vi ,A0,AK
| Vi -Vk | ,A0,1 Vj Vi ,A0,1
| Vi,Ak Sj |

| VL Ak VM Sj |

| VL 1 VM 0 |

L o _____ l _ o _______
|

|

| I | | I |

| | REGISTER | VALUE | | LOGICAL OPERATORS |

| |] I I |

| | | | I I

| | Ah, h=0 | O | | & 0101]

| | | | | AND 1100 |

| | AL, iI=0 | (A0) | | 0100 |

| | | | I |

| | A5, j=0 | 0 | I |

| | | | [! 0101 |

| | Ak, k=0 | 1 | | OR 1100 |

| I | I [1101 |

| | si, i=0 | (S0) | | |

| | | I I |

| | sj, j=0 | o0 | I \ 0101 |

| | | | | XOR 1100 |

I | sk, k=0 | 203 | | 1001 I

| I | | | |

SR-0085 A-4

A.3 CRAY X-MP SYMBOLIC MACHINE INSTRUCTIONS

LOGICAL OPERATIONS

|

|

|

| Si Sj&Sk Vi Sj&Vk Vi Vj&vVk
| Si Sj&SB

| Si SB&Sj

I

| Si #Sk&Sj

| Si #SB&Sj

|

| Si Sj'!'Sk Vi Sj'Vk vi Vjlvk
| Si Sj!'SB

| Si SB!Sj

|

| Si Sj\sk Vi Sj\Vk Vi Vj\Vk
| Si Sj\SB

| Si SB\Sj

I

| Si #Sj\Sk

| Si #Sj\SB

| Si #SB\Sj

| VM Vj,2 vVi,vM Vj.,Z
| VM Vj.,N vi,vM Vj,N
| VM Vj,P vi,vM Vj,P
| VM Vj,M vVi,vM Vj,M
| Si Sj'si&sk

| Si Sj!Si&SB Vi Sj!Vk&VM Vi V71 Vk&UM
| Vi #VMsVk

FLOATING-POINT OPERATIONS

|

|

|

| EFI

| DFI

|

| Si Sj+FSk Vi Sj+FVk Vi Vj+FVk
| Si +FSk Vi +FVk

I

| si Sj-FSk Vi Sj-FVk Vi Vj-FVk
| si -FSk Vi -FVk

|

| Si Sj*FSk Vi Sj*FVk Vi VJ*FVk
| Si Sj*HSk Vi Sj*HVk Vi Vj*HVkK
| Si Sj*RSk Vi Sj*RVk Vi Vj*RVk
| Si Sj*ISk Vi Sj*IVk Vi Vj*IVk
| Si /HSjJ Vi /HVj

SR-0085 A-5

SO
si

Si
si
Si

Vi
Vi

Vi
Vi

J
J

JAZ
JAN
JAP
JAM

EX
PASS

SHIFT INSTRUCTIONS

Sicexp
Sicexp

Si,Sj<Ak
Si,sj<1
Si<Ak

Vj<Ak
Vj<c1

Vj.Vj<Ak
Vi, Vi<l

exp
Bjk

exp
exp
exp
exp

exp

PROGRAM BRANCHES AND

Al
Al
Al
Al
Al

REGISTER ENTRY INSTRUCTIONS

I
I
|
S0 Si>exp | Ah exp Si <exp
Si Si>exp | Al -1 Si #>exp
| Si »exp
Si Sj,Si>ak | Si exp Si #<cexp
si sj,si»>1 |
Si Si>Ak | si o0 Si SB
| si 1 Si #SB
Vi Vj>aAk [si -1
vi vjl | si 1 Vi,Ak 0
[Si 2 vi 0
Vi Vj,vj>ak | Si 4
Vi Vvj,vj>1 | si 0.4 sMjk 1,TS
| Si 0.6 SMjk ©
| SMjk 1
l .
I
EXITS | BIT COUNT INSTRUCTIONS
|
| ai PSj Vi PVj
| AL QSj Vi QVj
| AL ZSj
JSZ exp
JSN exp |
JSP exp | MONITOR OPERATIONS
JSM exp |
| CA,Aj Ak cCI
| CL,Aj Ak ECI
| CI,Aj DCI
ERR | MC,Aj ERI
| XA Aj DRI
| RT Sj CLN exp
| PCI Sj
| SIPI exp
| SIPI
| CIPI
l
INTEGER ARITHMETIC OPERATIONS
Aj+Ak
Aj+1
Aj-Ak
Aj-1
Aj*Ak
Sj+Sk Vi Sj+Vk Vi Vj+Vk
Sj-sk Vi Sj-Vk Vi Vj-Vk
I o o e e e e e e e e e e e — -
A-6

SR-0085

INTER-REGISTER TRANSFERS MEMORY TRANSFERS

I I

| I

I |

| AL Ak Si Sk | DBM

| Al -Ak Si -8k | EBM

I si #Sk | CMR

| Al Sj Si Ak |

| Si +Ak | (store) (load)

| aAi VL Si +FAk | ,A0 Bjk,Al Bjk,Ai ,AO

| | 0,A0 Bjk,Al Bjk,Ai 0,A0

| Al Bjk Si Tik |

| Ai SBj Si STj | ,A0 Tjk,Al Tjk,Ai ,A0

| | 0,A0 Tjk,Al Tjk,Ai 0,A0

| Al CI Si Vj,Ak |

| Al CA,Aj Si VM | exp,Ah Al Al exp,Ah
| Al CE,Aj Si RT | exp,0 Ai Al exp,0
| Si SM | exp, Al Al exp,

| Si SRj | ,Ah Al Al ,Ah

I I

| Bjk Al Tjk Si | exp,Ah Si Si exp,Ah
| SBj AL STj Si | exp,0 Si Si exp,0
] | exp, Si Si exp,

| vi vk | ,Ah Si Si ,Ah

| vi -Vk |

| vi,Ak Sj | .A0,Ak Vj vi ,A0,2k
| VL Ak VM Sj | ,A0,1 Vj Vi ,AO0,1
| VL 1 UM 0 |

I | .,A0,Vk Vj vi ,A0,Vk
| SM Si |

- o __ . __ !l _ o _____
I

|

| | | I I I

| | REGISTER | VALUE | | LOGICAL OPERATORS |

| I | I I I

| I | | | I

| | Ah, h=0 | 0] | & 0101 |

| I I I I AND 1100 I

| | Aai, i=0 | (a0) | | 0100 |

| | I | I |

| | aj, j=0 | 0O | | I

| | | | | ! 0101 |

| | Ak, k=0 | 1 | I OR 1100 |

| I I | I 1101 I

| | si, i=0 | (s0) | | |

I I | | I I

| | Sj, j=0 | 0 | | \ 0101 |

| | I I | XOR 1100 I

| | Sk, k=0 | 203 | | 1001 |

I | | | | I

SR-0085 A-7

UNCTIONAL INSTRUCTION
U RY

This appendix contains an instruction summary, listed by function, for

CRAY X-MP and CRAY-1 Computer Systems.

found on the referenced pages.

B.1 REGISTER ENTRY INSTRUCTIONS

Instructions in this category provide for entering values such as

constants, expression values, or masks directly into registers.

B.1.1 ENTRIES INTO A REGISTERS

Machine

Instruction CAL
Olhijkm* Ah exp
020ijkm or Al exp
021ijkm or
022ijk
o31ioott Al -1

B.1.2 ENTRIES INTO S REGISTERS

Machine

Instruction CAL
040ijkm or Si exp
041ijkm
oa2ioo0tt si -1

Description

Transmit ijkm to Ah, where the
high-order bit of i is 1

Enter exp into Ai

Enter -1 into Al

Description

Enter exp into Si

Enter -1 into Si

+ CRAY X-MP Computer Systems only

++ Special CAL syntax

SR-0085

A detailed description may be

Machine
Instruction

042ijk
042ijkt
042i77%
oa3ioot
043ijk

043ijkt
0a7ioot
os1ioot
071130
071i40
071150
071160

071170

B.1.3 ENTRIES INTO V

Machine
Instruction

077io0kt

145iiit

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

CAL

Vi,

Vi

+ Special CAL syntax

SR-0085

CAL

<exp
$>exp
1

0
>exp

#<exp

#SB

SB

REGISTERS

Ak 0

Description

Form ones mask in SiI from right
Form zeros mask in Si from left
Enter 1 into SI

Clear Si

Form ones mask in Si from left

Form zeros mask in Si from
right

Enter ones complement of sign
bit in Si

Enter sign bit into Si

Enter 0.75%(2%%48) into Si

as normalized floating-point

constant

Enter 0.5 into Si as normalized
floating-point constant

Enter 1 into SiI as normalized
floating-point constant

Enter 2 into SI as normalized
floating-point constant

Enter 4 into SI as normalized
floating-point constant

Description

Clear element (Ak) of register
Vi

Clear Vi

3-41

3-57

3-57

B.1.4 ENTRIES INTO SEMAPHORE REGISTER

Machine
Instruction CAL Description Page
0034jk* SMjk 1,TS Test and set semaphore jk, 3-15
0<jk<31 (decimal)
0036jk* SMjk O Clear semaphore jk, 3-15
0¢<jk<31 (decimal)
0037kt SMjk 1 Set semaphore jk, 3-15

0<jk<31 (decimal)

B.2 INTER-REGISTER TRANSFER INSTRUCTIONS

Instructions in this group provide for transferring the contents of one
register to another register. In some cases, the register contents can
be complemented, converted to floating-point format, or sign extended as
a function of the transfer.

B.2.1 TRANSFERS TO A REGISTERS

Machine

Instruction CAL Description Page
023ij0 Al Sj Transmit (Sj) to Al 3-26
023i01t ai VL Transmit (VL) to Al 3-26
024ijk Al Bjk Transmit (Bjk) to Ai 3-27
0261j7? Al SBj Transfer (SBj) to Al 3-28
030iokTt Al Ak Transmit (Ak) to AI 3-30
031ioktt Al -Ak Transmit negative of (Ak) to Al 3-30
033100 Al CI Channel number to AL 3-33
033130 Al CA,Aj Address of channel (Aj) to Al 3-33
033ij1 Ai CE,Aj Error flag of channel (Aj) to Aij 3-33

4+ CRAY X-MP Computer Systems only
4+ Special CAL syntax

SR-0085 B-3

B.2.2

TRANSFERS TO S REGISTERS

Machine
Instruction CAL Description

025ijk Bjk Al Transmit (Ai) to Bjk

027ij7t SBj Ai Transfer (Ai) to SBj

0a7ioktt Si #Sk Transmit ones complement of (Sk)
to Si

os1ioktt Si Sk Transmit (Sk) to Si

o61io0ktt Si -Sk Transmit negative of (Sk) to Si

071i0k Si Ak Transmit (Ak) to Si without sign
extension

071i1k Si +Ak Transmit (Ak) to Si with sign
extension

071i2k Si +FAk Transmit (Ak) to Si as an
unnormalized floating-point value

072100 Si RT Transmit (RTC) to Si

072i02% Si SM Read semaphore to Si

0721j3* Si STj Read (STj) register to Si

073100 Si VM Transmit (VM) to Si

073ij1t Si SRj Transfer (SRj) to Sj: j=0

073ij3t STj Si Transmit (Si) to STj

074ijk Si Tjk Transmit (Tjk) to Si

075ijk Tjk Si Transmit (Si) to Tjk

076ijk Si Vj,Ak Transmit (Vj, element (Ak))

to Si

+ CRAY X-MP Computer Systems only
++ Special CAL syntax

SR-0085 B-4

B.2.3 TRANSFERS TO V REGISTERS

Machine
Instruction CAL Description
077ijk Vi,Ak Sj Transmit (Sj) to Vi element (Ak)
142i0kt Vi Vk Transmit (VK) to Vi
1560kt Vi -Vk Transmit twos complement of

(Vk) to Vi

B.2.4 TRANSFER TO VECTOR MASK REGISTER

Machine

Instruction CAL Description
003030 VM Sj Transmit (Sj) to VM
003000t VM 0 Clear VM

B.2.5 TRANSFER TO VECTOR LENGTH REGISTER

Machine

Instruction CAL Description
00200k VL Ak Transmit (Ak) to VL
002000% VL 1 Enter 1 into VL

B.2.6 TRANSFER TO SEMAPHORE REGISTER

Machine
Instruction CAL Description
o73io2tt SM Si Load semaphores from Si

+ Special CAL syntax
¥t CRAY X-MP Computer Systems only

SR-0085 B-5

B.3 MEMORY TRANSFERS

This category contains instructions that transfer data between registers
and memory, enable and disable concurrent block memory transfers, and
assure completion of memory references.

B.3.1 BIDIRECTIONAL MEMORY TRANSFERS

Machine
Instruction

0025007

002600t

CAL

DBM

EBM

B.3.2 MEMORY REFERENCES

Machine
Instruction

0o02700%

B.3.3 STORES

Machine
Instruction

0351ijk

035ijktt

037ijk

037ijktt

CAL

CMR

CAL

,A0 Bjk,Ai

0,A0 Bjk,Ai

,A0 Tjk,Ai

0,A0 Tjk,Ai

Description

Disable bidirectional memory
transfers

Enable bidirectional memory
transfers

Description

Complete memory references

Description

Store (Ai) words starting at
Bjk to memory starting at (AO0)

Store (Al) words starting at
Bjk to memory starting at (A0)

Store (AlL) words starting at
Tjk to memory starting at (AO0)

Store (Ai) words starting at
Tjk to memory starting at (a0)

+ CRAY X-MP Computer Systems only
++ Special CAL syntax

SR-0085

Machine
Instruction

11hijkm

11hicoot
1105 jkmt
1101 jkmt
13hijkm

1304 jkmt
130ijkmt
13niooot

17705k

1770j0%

17715t

B.3.4 LOADS

Machine
Instruction

034ijk

03aijxt

036ijk

036ijkt

CAL

exp,Ah Ai
,Ah Al
exp,0 Al
exp, Ai
exp,Ah Si
exp,0 Si
exp, Si
.Ah SI

,A0,Ak Vj

,A0,1 Vj

,A0,Vk Vj

CAL

Bjk,Ai ,A0

Bjk,Ai 0,A0

Tjk,Ai ,A0

Tjk,Ai 0,A0

+ Special CAL syntax
++ CRAY X-MP Computer Systems only

SR-0085

Description

Store (Ai) to (Ah) + exp

Store (AlI) to (Ah)

Store (Ai) to exp

Store (Ai) to exp

Store (Si) to (Ah) + exp

Store (Si) to exp

Store (Si) to exp

Store (Si) to (Ah)

Store (Vj) to memory starting
at (A0) incremented by (Ak)

Store (Vj) to a memory in
consecutive addresses starting

with (A0)

Store (Vj) to a memory using

memory address (A0)+(Vk)

Description

Read (Ai) words
Bjk from memory

Read (Ai) words
Bjk from memory

Read (Ai) words
Tjk from memory

Read (Ai) words
Tjk from memory

starting
starting

starting
starting

starting
starting

starting
starting

at
at

at
at

at
at

at
at

(20)

(a0)

(20)

(a0)

Machine
Instruction

10hijkm

10hiooot
1001 jkmt
100ijkm?
12hijkm

1201 jkmt
120ijkmt
12hiooot

176i0k

176i00t

176i1ktt

CAL
Al
Al
Al
Al
Si
Si
Si
Si

Vi

Vi

vi

exp,Ah
,Ah
exp,0
exp,
exp,Ah
exp,0
exp
.Ah

.A0,Ak

,A0,1

,A0,VEk

Description

Read

Read

Read

Read

Read

Read

Read

Read

" Read

from

from

from

from

from

from

from

from

((AR) + exp) to Al
(Ah) to Al
(exp) to Al
(exp) to Al
((Ai) + exp) to Si
(exp) to Si
(exp) to Si

(Ah) to Si

from memory starting at (A0)
incremented by (Ak) and load
into Vi

Read from consecutive memory
addresses starting with (A0) and
load into Vi

Read from memory using memory
address (A0) + (Vk) and load into

Vi

B.4 INTEGER ARITHMETIC OPERATIONS

3-63

3-63

3-63

3-63

3-89

Integer arithmetic operations obtain operands from registers and return
No direct memory references are allowed.

results to registers.

The assembler recognizes several special syntax forms for increasing or
decreasing register contents, such as the operands Ai+l and Ai-1;

however, these references actually result in register references such

that the 1 becomes a reference to Ak with k=0.

All integer arithmetic, whether 24-bit or 64-bit, is twos complement and

is so represented in the registers.

+ Special CAL syntax
¥+ CRAY X-MP Computer Systems only

SR-0085

The Address Add functional unit and

Address Multiply functional unit perform 24-bit arithmetic.

The Scalar

Add functional unit and the Vector Add functional unit perform 64-bit

arithmetic.

No overflow is detected by Integer functional units.

Multiplication of two fractional operands can be accomplished using the

floating-point multiply instruction.

The Floating-point Multiply

functional unit recognizes the conditions where both operands have zero
exponents as a special case and returns the high-order 48 bits of the

result as an unnormalized fraction.

Division of integers would require

that they first be converted to floating-point format and then divided
using the floating-point units.

B.4.1 24-BIT INTEGER ARITHMETIC

Machine
Instruction
030ijk
o3o0ijot
031ijk

031ijot

032ijk

CAL

Al

Al

Al

Al

B.4.2 64-BIT INTEGER

Machine
Instruction

060ijk

061ijk

Aj+Ak

Aj+1

Aj-Ak

i Aj-1

Aj*Ak

ARITHMETIC

CAL

Si

Si

+ Special CAL syntax

SR-0085

Sj+Sk

Sj-Sk

Description

Integer
to Al

Integer
Al

Integer
(Ak) to

Integer
1 to AL

Integer
(Ak) to

sum of (Aj) and (Ak)
sum of (Aj) and 1 to
difference of (Aj) less
Al

difference of (Aj) less

product of (Aj) and
Al

Description

Integer
to Si

Integer
(Sk) to

sum of (Sj) and (Sk)

difference of (Sj) less
Si

3-30

3-50

Machine

Instruction CAL Description Page
154ijk Vi Sj+Vk Integer sums of (Sj) and (Vk) 3-77
to Vi
1551ijk Vi Vj+Vk Integer sums of (Vj) and (Vk) 3-77
to Vi
1561ijk Vi Sj-Vk Integer differences of (Sj) and 3-77
(Vk) to Vi
157ijk Vi Vj-Vk Integer differences of (Vj) less 3-77
(Vk) to Vi

B.5 FLOATING-POINT ARITHMETIC

All floating-point arithmetic operations use registers as the source of
operands and return results to registers.

Floating-point numbers are represented in a standard format throughout
the CPU. This format is a packed representation of a binary coefficient
and an exponent or power of 2. The coefficient is a 48-bit signed
fraction. The sign of the coefficient is separated from the rest of the
coefficient. Since the coefficient is signed magnitude, it is not
complemented for negative values.

B.5.1 FLOATING-POINT RANGE ERRORS

Machine

Instruction CAL Description Page
002100 EFI Enable floating-point interrupt 3-13
002200 DFI Disable floating-point interrupt 3-13

B.5.2 FLOATING-POINT ADDITION AND SUBTRACTION

Machine
Instruction CAL Description Page
062ijk Si Sj+FSk Floating-point sum of (Sj) 3-51

and (Sk) to Si

SR-0085 B-10

Machine
Instruction

062io0kt

063ijk

063i0kT

170ijk

17030kt

171ijk

17215k

172i0kT

173ijk

CAL

si

Si

Si

vi

Vi

Vi

Vi

Vi

Vi

B.5.3 FLOATING-POINT

Machine
Instruction

064ijk

065ijk

066ijk

+FSk

Sj-FSk

-Fsk

Sj+FVk

+FVk

Vj+FVk

Sj-FVk

~-FVk

Vj-FVk

Description

Normalize (Sk) to Si

Floating-point difference of
(Sj) less (Sk) to Si

Transmit the negative of (Sk)
as a normalized floating-point

value

Floating-point sums of (Sj)
and (Vk) to Vi

Normalize (Vk) to Vi

Floating-point sums of (Vj)
(Vk) to Vi

Floating-point differences of
(Sj) less (Vk) to Vi

Transmit normalized negative of
(Vk) to Vi

Floating-point differences
of (Vj) less (Vk) to Vi

MULTIPLICATION

CAL

Si

Si

Si

+ Special CAL syntax

SR-0085

Sj*FSk

Sj*HSk

Sj*RSk

Description

Floating-point product of (Sj)
and (Sk) to Si

Half-precision rounded floating-
point product of (Sj) and (Sk)
to Si

Rounded floating-point product
of (Sj) and (Sk) to Si

Machine

Instruction CAL
160ijk Vi Sj*FVk
161ijk Vi Vj*FVk
162ijk Vi Sj*HVk
163ijk Vi Vj*HVk
164ijk Vi Sj*RVk
165ijk Vi Vj*RVk

B.5.4 RECIPROCAL ITERATION

Machine

Instruction CAL
067ijk Si Sj*ISk
166ijk Vi Sj*IVk
1671ijk Vi Vj*IVk

B.5.5 RECIPROCAL APPROXIMATION

Machine

Instruction CAL
0701j0 Si /HSjJ
174ij0 Vi /HVJ

SR-0085

Description

Floating-point products of (Sj)
and (Vk) to Vi

Floating-point products of (Vj)
and (Vk) to Vi

Half-precision rounded floating-
point products of (Sj) and (Vk)
to Vi

Half-precision rounded floating-
point products of (Vj) and (Vk)
to Vi

Rounded floating-point products
of (Sj) and (VKk) to Vi

Rounded floating-point products
of (Vj) and (Vk) to Vi

Description

2-floating-point product of
(sj) and (Sk) to Si

2-floating-point products of
(Sj) and (Vk) to Vi

2-floating-point products of
(Vj) and (Vk) to Vi

Description

Floating-point reciprocal
approximation of (Sj) to Si

Floating-point reciprocal
approximation of (Vj) to Vi

3-79

3-79

3-79

3-79

3-84

B.6 LOGICAL OPERATIONS

The Scalar and Vector Logical functional units perform bit-by-bit
manipulation of 64-bit quantities. Operations provide for logical
products, logical differences, logical sums, logical equivalence, and
merges.

A logical product (& operator) is the AND function.

A logical difference (\ operator) is the EXCLUSIVE OR function.

A logical sum (! operator) is the INCLUSIVE OR function.

A logical merge combines two operands depending on a ones mask in a third
operand. The result is defined by (operand 2 & mask)!(operand 1 & #mask).

B.6.1 LOGICAL PRODUCTS

Machine
Instruction CAL Description Page

044ijk Si Sj&Sk Logical products of (Sj) and (Sk) 3-40
to Si

oa4ijot Si Sj&SB Sign bit of (Sj) to Si 3-40

oaaijot Si SB&Sj Sign bit of (Sj) to Si; j#0 3-40

0451jk Si #Sks&Sj Logical product of (Sj) 3-40
and #(Sk) to Si

045ijot Si #SB&Sj (Sj) with sign bit cleared to Si 3-40

1401ijk Vi Sj&vk Logical products of (Sj) and (Vk) 3-67
to Vi

141ijk Vi Vj&vk Logical products of (Vj) and (Vk) 3-67
to Vi

+ Special CAL syntax

SR-0085 B-13

B.6.2 LOGICAL SUMS

Machine

Instruction

051ijk
os1ijot
os1ijot
142ijk

143ijk

CAL

Si Sj!sk

Si Sj!'SB

Si SB!Sj

Vi Sj!Vk

Vi Vjtvk

B.6.3 LOGICAL DIFFERENCES

Machine

Instruction

046ijk
o4a6ijot
0a6ijot
144ijk

145ijk

CAL

Si Sj\sk

Si Sj\SB

Si SB\Sj

Vi Sj\vk

Vi Vj\Vk

+ Special CAL syntax

SR-0085

Description

Logical sum of (Sj) and (Sk) to
Si

Logical sum of (Sj) and sign bit
to Si

Logical sum of sign bit and (Sj)
to Si; j#£0

Logical sums of (Sj) and (VKk)
to Vi

Logical sums of (Vj) and (Vk)
to Vi

Description

Logical differences of (Sj) and
(Sk) to Si

Enter (Sj) into Si with sign
bit toggled

Enter (Sj) into Si with sign
bit toggled:; j#0

Logical differences of (Sj) and
(Vk) to Vi

Logical differences of (Vj) and
(Vk) to Vi

3-67

B.6.4 LOGICAL EQUIVALENCE

Machine
Instruction
0471ijk

0a7ijot

0a7ijot

B.6.5 VECTOR MASK

Machine
Instruction

1750350
1750351
175032
175033
175ijatt
175ijstt
175ij6tt

175ij7Ht

CAL

Si #Sj\sk

Si #Sj\SB

Si #SB\Sj

CAL

VM Vj,z

VM Vj,N

VM Vj,P

V™ Vj,M

Vi, vj,z

Vi, VM Vj,N

Vi, VM Vj,P

Vi, VM Vj,M

+ Special CAL syntax
++ CRAY X-MP Computer Systems only

SR-0085

Description

Logical equivalence of (Sj) and

(Sk) to Si

Logical equivalence of (Sj) and

sign bit to Si

Logical equivalence of sign bit

and (Sj) to Si; j#0

Description

Set VM bits for zero elements of

vy

Set VM bits for nonzero elements

of Vj

Set VM bits for positive
of Vj

Set VM bits for negative
of Vj

Set VM bits and register
Vj, for zero elements of

Set VM bits and register
Vj, for nonzero elements

Set VM bits and register

elements
elements
Vi to

vj

Vi to
of Vj

Vi to

Vj, for positive elements of Vj

Set VM bits and register

Vi to

Vj, for negative elements of Vj

3-87

3-87

3-87

B.6.6 MERGE

Machine
Instruction CAL Description Page

050ijk Si Sj'SisSk Scalar merge of (Si) and 3-41
(Sj) to si

050ij0? Sj!Si&SB Scalar merge of (Si) and sign 3-41
bit of (Sj) to Si

1461ijk Vi Sj!'Vk&VM Vector merge of (Sj) and 3-67
(Vk) to Vi

146i0kt Vi $VM&Vk Vector merge of (Vk) and zero 3-67
to Vi

1471ijk Vi Vj!Vk&VM Vector merge of (Vj) and 3-67
(Vk) to Vi

B.7 SHIFT INSTRUCTIONS

The Scalar Shift functional unit and Vector Shift functional unit shift
64-bit quantities or 128-bit quantities. A 128-bit quantity is formed by
concatenating two 64-bit quantities. The number of bits a value is
shifted left or right is determined by the value of an expression for
some instructions and by the contents of an A register for other
instructions. If the count is specified by an expression, the value of
the expression must not exceed 64.

Machine
Instruction CAL Description Page
052ijk SO Sicexp Shift (Si) left exp places 3-46
to SO
0531ijk S0 Si>exp Shift (Si) right exp places 3-46
to SO
054ijk Si Sicexp Shift (Si) left exp places 3-46
to Si
0551ijk SiI Si>exp Shift (Si) right exp places 3-46
to Si
056ijk Si Si,Sj<Ak Left shift by (Ak) of 3-48

(Si) and (Sj) to Si

+ Special CAL syntax

SR-0085 B-16

Machine
Instruction
oseijot
os6iokt
057ijk
os7ijot

0s7io0kt

150ijk
150ijot

15115k

151ijot

152ijk
152ijot
153ijk

153ijot

CAL

Si

Si

Si

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Si,Sj<1

SicAk

Sj.,Si>Ak

Sj,si>1

Si>Ak

Vj<ak
Vjcl

Vj>Ak

Vji>1

Vj,Vj<ak

Vj,vj<i

Vi, Vjs>ak

vVj,vj>l

B.8 BIT COUNT INSTRUCTIONS

The instructions described in this category provide for counting the

Description

Left shift by one of (Si) and

(Sj) to SI

Left shift by (Ak) of (Si) to

S1

Right shift by (Ak)
of (Sj) and (Si) to Si

Right shift by one of (Sj)
and (Si) to Si

Right shift by (Ak) of (Si) to

Si

Shift

Shift

Shift
to Vi

Shift

(vj)
(vj)

(vj)

(vj)

left (Ak) places to Vi
left one place to Vi

right (Ak) places

right one place to Vi

Double shift (Vj) left (Ak)
places to Vi

Double shift (Vj) left one

place to Vi

Double shift (Vj) right
(Ak) places to Vi

Double shift (Vj) right
one place to Vi

number of bits in an S or V register or counting the number of leading 0
bits in an S or V register.

+ Special CAL syntax

SR-0085

B-17

B.8.1 SCALAR POPULATION COUNT

Machine
Instruction CAL Description Page
0261j0 Al PSj Population count of (Sj) to Al 3-28

B.8.2 VECTOR POPULATION COUNT

Machine
Instruction CAL Description Page
174ij1f Vi PVj Population count of (Vj) to (Vi) 3-86

B.8.3 SCALAR POPULATION COUNT PARITY

Machine
Instruction CAL Description Page
0261j1+ Al QSj Population count parity of (Sj) 3-28
to Al
174ij2* Vi QVj Population count parity of (Vj) 3-86
to (Vi)
B.8.4 SCALAR LEADING ZERO COUNT
Machine
Instruction CAL Description Page
0271ijo Al z8j Leading zero count of (Sj) to Al 3-29

B.9 BRANCH INSTRUCTIONS

Instructions in this category include conditional and unconditional
branch instructions. An expression or the contents of a B register
specify the branch address. An address is always taken to be a parcel
address when the instruction is executed. If an expression has a
word-address attribute, the assembler issues an error message.

+ Optional on CRAY-1 (Models A and B)

SR-0085 B-18

B.9.1 UNCONDITIONAL BRANCH INSTRUCTIONS

Machine
Instruction

0050 jk

006ijkm

B.9.2 CONDITIONAL

Machine
Instruction

010ijkm
011ijkm
012ijkm
013ijkm
014ijkm
015ijkm
0161 jkm

0174ijkm

B.9.3 RETURN JUMP

Machine
Instruction

oo1o000t

0071jkm

CAL

J Bjk

J exp

Description

Jump to (Bjk)

Jump to exp

BRANCH INSTRUCTIONS

CAL
JAZ
JAN
JAP
JAM
JSZ
JSN
JSP

JSM

CAL

PASS

exp

exp

exp

exp

exp

exp

exp

exp

R exp

+ Special CAL syntax

SR-0085

Description

Branch to exp i

Branch

Branch

Branch

Branch

Branch

Branch

Branch

to

to

to

to

to

to

to

exp

exp

exp

exp

exp

exp

exp

Description

Pass

if

if

if

if

if

if

if

(a0)=0
(A0)#£0
(A0) positive
(A0) negative
(s0)=0
(S0)#£0
(S0) positive

(S0) negative

Return jump to exp; set BOO
to (P)+2

B.9.4 NORMAL EXIT

Machine

Instruction CAL Description Page
004000 EX Normal exit 3-17
004i;jkt EX exp Normal exit 3-17

B.9.5 ERROR EXIT

Machine

Instruction CAL Description Page
000000 ERR Error exit 3-2
000ijkt ERR exp Error exit 3-2

B.10 MONITOR INSTRUCTIONS

Instructions described in this category are executed only when the CPU is
in monitor mode. An attempt to execute one of these instructions when
not in monitor mode is treated as a no-op.

The instructions perform specialized functions useful to the operating
system.

B.10.1 CHANNEL CONTROL

Machine
Instruction CAL Description Page
0010k CA,Aj Ak Set the Current Address (CA) 3-3
register, indicated by (Aj), to
(Ak) and activate the channel
0011jk CL,Aj Ak Set the channel (Aj) limit 3-4

address to (Ak)

+ Special CAL syntax on CRAY-1 Computer Systems only

SR-0085 B-20

Machine

Instruction CAL Description
001230 CI,Aj Clear Channel (Aj) Interrupt flag
0012j1* MC,Aj Clear Channel (Aj) Interrupt flag

and Error flag: set device
master-clear (output channel):;
clear device ready-held (input

channel)
001330 XA Aj Enter XA register with (Aj)
B.10.2 SET REAL-TIME CLOCK
Machine
Instruction CAL Description
001430 RT Sj Enter RTC with (Sj)

B.10.3 PROGRAMMABLE CLOCK INTERRUPT INSTRUCTIONSTT

Machine
Instruction CAL Description
001474 PCI Sj Set program interrupt interval
001405 CCI Clear clock interrupt
001406 ECI Enable clock interrupts
001407 DCI Disable clock interrupts

B.10.4 INTERPROCESSOR INTERRUPT INSTRUCTIONST

Machine
Instruction CAL Description
0014j1 SIPI exp Set interprocessor interrupt

request of CPU exp; O<exp3

+ CRAY X-MP Computer Systems only
¥+ Optional on CRAY-1 (Models A and B)

SR-0085 B-21

Machine

Instruction CAL Description
oo1401t SIPI Set interprocessor interrupt
request
001402 CIPI Clear interprocessor interrupt

B.10.5 CLUSTER NUMBER INSTRUCTIONSHY

Machine
Instruction CAL Description
001433 CLN exp Cluster number = exp

B.10.6 OPERAND RANGE ERROR INTERRUPT INSTRUCTIONSTT

Machine
Instruction CAL Description
002300 ERI Enable interrupt on (address)
range error
002400 DRI Disable interrupt on (address)

range error

B.10.7 PERFORMANCE COUNTERstt t+

Machine
Instruction CAL Description
001530 Select performance monitor
001501 Set maintenance read mode
001511 Load diagnostic checkbyte with
S1
001521 Set maintenance write mode 1

+ Special CAL syntax
++ CRAY X-MP Computer Systems only
+++ Instructions not supported by CAL at this time

SR-0085 B-22

Machine

Instruction CAL

001531

073i11

073i21

073i31

SR-0085

Description

Set maintenance write mode 2
Read performance counter into Si
Increment performance counter

Clear all maintenance modes

INDEX

INDEX

l-parcel instruction format with combined
j and k fields, 2-3

l-parcel instruction format with discrete
j and k fields, 2-2

16-bit instruction, 2-1

2-parcel branch instruction, 2-4

2-parcel instruction format for a 24-bit
immediate constant with combined i,
Jj., k, and m fields, 2-5

2-parcel instruction format with combined
i, j, k, and m fields, 2-4

2-parcel instruction format with combined
j. k, and m fields, 2-4

22-bit immediate constant, 2-3

24-bit integer arithmetic, B-9

32-bit instruction, 2-1

64-bit integer arithmetic, B-9

A registers, B-1, B-3

Address Integer Add functional unit, 3-30,
3-31

Address Integer Multiply functional unit,
3-32

Arithmetic instructions, 2-2

B registers, 3-34, 3-35
Bidirectional memory
mode, 3-14
transfers, B-6
Binary machine code, 2-1
Bit count instructions, B-17
CRAY-1, A-3
CRAY-XMP, A-6
scalar leading zero count, B-18
scalar population count, B-18
scalar population count parity, B-18
vector population count, B-18
Branch instructions, 2-1, B-18
conditional, B-19
error exit, B-20
normal exit, B-20
return jump, B-19
unconditional, B-19

Channel control, B-20

Channel Limit (CL) register, 3-3, 3-4
Channel number, 3-33

Check bit memory storage, 3-10

CIP register, 3-15

Clear clock interrupt (CCI) instruction, 3-8

SR-0085

Cluster number, 3-8
instructions, B-22
CMR, 3-14
Composite word, 3-43
Compressed index, 3-88
Conditional branch instructions, B-19
CRAY-1 symbolic machine instructions, A-2

CRAY X-MP symbolic machine instructions, A-5

Current Address (CA) register, 3-3, 3-33

DBM, 3-14

DFI, 3-13

Disable floating-point interrupt, 3-13
DL flag, 3-15

Double shift instructions, 2-2

DRI, 3-13

EBM, 3-14
EFI, 3-13
Enable floating-point interrupt, 3-13
ERI, 3-13
Error condition, 3-2
Error detection and correction, 3-10
Error Exit flag, 3-2
Error exit, B-20
Error flag, 3-5, 3-33
Exchange Address (XA) register, 3-2, 3-17
Exchange
package, 3-2, 3-15
sequence, 3-2, 3-17

Flag (F) register, 3-2, 3-8, 3-17
Floating-point
Add functional unit, 3-51, 3-83
addition and subtraction, B-10
arithmetic, B-10
addition and subtraction, B-10
multiplication, B-11
range errors, B-10
reciprocal approximation, B-12
reciprocal iteration, B-12
constant instructions, 2-2
difference, 3-51, 3-82
Interrupt flag, 3-13
multiplication, B-11
Multiply functional unit, 3-53, 3-80
operations
CRAY-1, A-2,
CRAY X-MP, A-5

Floating-point (continued) Instruction (continued)

product half-precision rounded of, monitor, B-20
3-53 channel control, B-20
products half-precision rounded, cluster number, B-22
3-80 interprocessor interrupt, B-21
products, 3-80 operand range error interrupt, B-22
quantity, 3-51 performance counters, B-22
range errors, B-10 programmable clock interrupt, B-21
reciprocal approximation value, 3-55 set real-time clock, B-21
Reciprocal functional unit, 3-55, 3-84 shift, A-3, A-6, B-16
reciprocals, 3-84 summary, B-1
sum, 3-51, 3-82 syntax, 2-1
Functions format, 2-1
AND, B-13 monitor mode, 2-9
EXCLUSIVE OR, B-13 special register values, 2-5
INCLUSIVE OR, B-13 symbolic notation, 2-5
Functional instruction summary, B-1 types, 2-2
Functional units, A-1 vector, 3-11
merge, 3-15
Integer arithmetic operations
Gather, 3-87 CRAY-1, A-3
General instruction form, 2-1 CRAY-XMP, A-6

operations, B-8
24-bit integer arithmetic, B-9

ICP flag, 3-8 64-bit integer arithmetic, B-9
Instruction buffers, 3-2, 3-17 Integer-register transfers, B-3
Instruction format, 2-1 A registers, B-3
l-parcel instruction format with CRAY-1 A-4
discrete j and k fields, 2-2 CRAY-XMP, A-7
l-parcel instruction format with S registers, B-4
combined j and k fields, 2-2 semaphore register, B-5
2-parcel instruction format with V registers, B-5
combined j, k, and m fields, 2-3 vector Length register, B-5
2-parcel instruction format with vector Mask register, B-5
combined i, j, k, and m Internal CPU interrupt request, 3-7, 3-8
fields, 2-4 Interprocessor interrupt
Instruction instructions, B-21
32-bit, 2-1 requests, 3-7
arithmetic, 2-2 Interrupt Countdown counter (ICD), 3-8
bit count, B-17 Interrupt flag, 3-5
CRAY-1, A-3 Interrupt Interval register (II), 3-8
CRAY-XMP, A-6 Introduction, 1-1

scalar leading zero count, B-18
scalar population count, B-18

scalar population count parity, B-18 JAM instructions, 3-21

vector population count, B-18 JAP instruction, 3-21
branch, 2-1, B-18 JSM instructions, 3-22

conditional, B-19 JSP instruction, 3-22

error exit, B-20
normal exit, B-20

return jump, B-19 Loads, B-7

unconditional, B-19 Logical
buffers, 3-2, 3-17 differences, 3-42, B-14
clear clock interrupt, 3-8 equivalence, B-15
cluster number, B-22 instructions, 2-2
conditional branch, B-19 operations, B-13
double shift, 2-2 CRAY-1, A-2, A-4
functional summary, B-1 CRAY-XMP, A-5, A-7
general form, 2-1 differences, B-14
JaM, 3-21 equivalence, B-15
JAP, 3-22 merge, B-16
JSM, 3-22 products, 3-41, 3-42, B-13
JSP, 3-22 sums, B-14

vector mask, B-15

SR-0085 Index-2

Logical (continued)
products, B-13
sums, 3-43, B-14

Mask length, 3-38, 3-39
Master Clear, 3-5
Memory
references, B-6
completion, 3-14
transfers, B-6
bidirectional, B-6
CRAY-1, A-4
CRAY-XMP, A-7
loads, B-7
references, B-6
stores, B-6
Merge, B-16
Mode register, 3-13
Monitor instructions, B-20
channel control, B-20
cluster number, B-22
interprocessor interrupt, B-21
operand range error interrupt, B-22
performance counters, B-22
programmable clock interrupt, B-21
set real-time clock, B-21
Monitor mode, 3-2, 3-17
instructions, 2-9
operations
CRAY-1, A-3
CRAY-XMP, A-
3

6
Monitor program, 6

NIP register, 3-15
Normal Exit flag, 3-17
Normal exit, B-20

Operand range error interrupt instructions,
B-22
Operand Range Mode flag, 3-13

P register, 3-15, 3-18, 3-19, 3-20, 3-21,
3-22
Parcel address, 3-18, 3-19, 3-20
Parcel-address attribute, 3-64
Parcels, 2-1
Pass, 3-3
Performance counters, 3-10, B-22
Population count
scalar, B-18
scalar parity, B-18
vector, B-18
Program branches and exits
CRAY-1, A-3
CRAY-XMP, A-6
Programmable clock interrupt instructions,
B-21

Ready flag, 3-5
Real-time clock (RTC) interrupt request, 3-8

SR-0085

Index-3

Real-time Clock register, 3-7
Real-time clock, 3-59
Reciprocal
approximation, B-12
iteration, B-12

Reciprocal Approximation functional unit,

3-85

Register entry instructions, B-1

A registers, B-1
CRAY-1, A-3
CRAY-XMP, A-6
S registers, B-1
V registers, B-2
semaphore registers, B-3
Register values
CRAY-1, A-4
CRAY-XMP, A-7
Return jump, B-19
Return linkage, 3-20

S registers, B-1, B-4
Scalar
leading zero count, B-18
parity, B-18
population count, B-18
Scalar Integer Add functional

unit, 3-50

Scalar Leading Zero/Population Count, 3-29
Scalar Leading Zero/Population, 3-28
Scalar Logical functional unit, 3-38, 3-39,

3-43
Scalar Memory transfers, 2-3
Scalar Shift functional unit,
Scatter, 3-87
SECDED, 3-10
Semaphore registers, B-3, B-5
Set real-time clock, B-21
Shift count, 3-46, 3-48, 3-49
Shift instructions, B-16
CRAY-1, A-3
CRAY-XMP, A-6
Sign bit, 3-43, 3-50
SM register, 3-15, 3-59
Special characters, 2-7
Special register values, 2-5,
Status register, 3-60
Stores, B-6
Summary, B-1
Symbolic instruction summary,
functional units, A-1

3-46, 3-49

2-6

A-1

CRAY-1 symbolic machine instructions,

A-2
CRAY X-MP symbolic machine
instructions, A-5
Symbolic notation, 2-5
general syntax, 2-5
special syntax forms, 2-8
Syntax, 2-5
comment field, 2-8
location field, 2-7
operand field, 2-7
register designators, 2-6
result field, 2-7

T register, 3-35
Twos complement, 3-50, 3-77

Unconditional branch instruction, 3-18,
3-19, B-19
Unnormalized floating-point value, 3-57

V registers, B-2, B-5
Vector instruction, 3-11
Vector Integer Add functional unit, 3-78
Vector length register, B-5
Vector Logical functional unit, 3-69
Vector mask, 3-86, B-15
register, B-5
Vector merge instruction, 3-15
Vector population, B-18
Vector Shift functional unit, 3-72, 3-74
VL register, 3-11, 3-26, 3-67, 3-69, 3-77,
3-78, 3-80, 3-82, 3-90
VM register, 3-15, 3-60, 3-69, 3-87

Word boundary, 2-1
WS flag, 3-15

XA register, 3-6

SR-0085

Index-4

READER COMMENT FORM

CRAY X-MP and CRAY-1 Symbolic Machine Instructions SR-0085
Reference Manual ‘

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME

JOB TITLE
FRM CRRANY

ADDRESS
CITY STATE 2IP.
DATE

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
R ———
.|
R
.|
.|
.}
.]
L]
BUSINESS REPLY CARD —_—
FIRST CLASS PERMIT NO 6184 ST PAUL, MN I —
POSTAGE WILL BE PAID BY ADDRESSEE S ——————
]
.]
2520 Pilot Knob Road ———
Attention: Suite 350 ————
PUBLICATIONS Mendota Heights, MN 55120 ———
U. SA .]

I
l
l
|
I
I
I
|
I
|
I
I
|
I
I
I
I
I
I
I
I
|
I
I
e

———— L

QTAPI E

INIT SIHL ONOTV 1ND

READER COMMENT FORM

CRAY X-MP and CRAY-1l Symbolic Machine Instructions SR-0085
Reference Manual

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME

JOB TITLE
. CRRANY

ADDRESS
city STATE Z21P
DATE

NG POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY CARD

FIRST CLASS PERMIT NG 6184 ST PAUL. MN

POSTAGE WILL BE PAID BY ADDRESSEE

=R A

2520 Pilot Knob Road

I
I
|
I
I
|
|
I
I
|
I
I
I
|
I
I
I
I
|
|
|
I
I
I
|
|
I
|
I
I
|
I
e

Attention: Suite 350
PUBLICATIONS Mendota Heights, MN 55120
USA.

—————

3NIT SIHL ONOTV LND

