
c:
RESEARCH, INC.

CRAY X-MP AND CRAY-1®
COMPUTER SYSTEMS

FORTRAN (CFT)
INTERNAL REFERENCE MANUAL

SM-0017

Copyright@ 1980, 1981, 1983, 1984, 1986 by CRAY RESEARCH, INC.
This manual or parts thereof may not be reproduced in any form
without permission of CRAY RESEARCH, INC.

'~ ___ Ii:::ai~~
RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER 8M-0017

Each time this manual is revised and reprinted. all changes issued against the previous version are incorporated into the new version
and the new version is assigned an alphabetic level.

Every page changed by a reprint with revision has the revision level in the lower righthand corner. Changes to part of a page are noted
by a change bar in the margin directly opposite the change. A change bar in the margin opposite the page number indicates that the
entire page is new. If the manual is rewritten. the revision level changes but the manual does not contain change bars.

Requests for copies of Cray Research. Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH. INC.
2520 Pilot Knob Road
Suite 310
Mendota Heights. Minnesota 55120

Revision

A

A-Ol

A-02

B

SM-0017

Description

October 1980 - Original printing.

June 1981 - This reprint with revision includes implementation
of the character data type and other miscellaneous changes
that bring the manual into agreement with the version 1.10
release. All previous printings are obsolete.

May 1983 - This change packet brings the manual into agreement
with the CFT 1.11 release. Major changes include the addition
of intrinsic function processing, the tCL Text Table
(TBCLTXT), the Substring Definition Table (TBSB), the
Intrinsic Function Name Table (TBJ), the Intrinsic Function
Attribute Table (TBK) , calling sequence information, and the
following subroutines: CCAT, CCLA, CCLO, CCRS, CCTB, CKRF,
CLCF, CLGA, CLOF, CLOG, CLRS, CLSZ, CLTG, CPOP, FRTG, FSHD,
FSUB, IPRN, IRST, MSAR, MVOP, NARG, SIN, and SOPT. The
register numbers were moved to tables 4-1 and B-1.
Miscellaneous technical and editorial changes are also
included.

July 1983 - This change packet, along with A-Ol, brings the
manual into agreement with the CFT 1.11 release. The default
of IF optimization is changed from OPT=PARTIALIFCON to
OPT=NOIFCON on the CFT control statement.

November 1983 - This reprint with revision incorporates
revision A and change packets A-Ol and A-02. No other changes
have been made.

ii B

B-Ol

B-02

B-03

February 1984 - This change packet brings the manual into
agreement with the CFT 1.13 release. The CFT release has been
numbered 1.13 in conjunction with the 1.13 COS release. Major
changes include the addition of reentrancy support, new
instruction scheduler information, the Entry/Exit Address
Table (TBEE), the Call-by-value Reference Table (TBFR), the
Program Description Table (TBH), the Plus Dependency Table
(TBPD), the Sequence Number Table (TBSN), the Saved Variable
Table (TBSV), the following subroutines: ABRA, ARUS, ASVL,
ASVM, BLCN, BTD, COPR, CRAR, CRRG, CRVR, DORP, EVOP, FLVS,
FSTK, GCRF, GIXA, GSBS, ISRF, LSOM, LSOV, MCEX, NICV, NOCV,
PMRT, PMST, PPDP, RBIN, RBLI, RBRG, RCCK, RSTB, SAST, SASO,
SDCO, SPFH, SPFR, TPRU, ZMEM, and Appendixes D and E.
Miscellaneous technical and editorial changes are also
included.

December 1984 - This change packet brings the manual into
agreement with the CFT 1.14 release. Major changes include
the addition of the Block Definition Table (TBBK), the
Register Variables to Restore After a CALL Table (TBCALL), the
Character Length Table (TBCLEN), the Conjunctive Term Table
(TBCT), the Disjunctive Term Table (TBDT), the Label Usage
Table (TBLB), the TBT Index of Variables Not Assignable to B/T
Register Table (TBNOBT), the TBX Extension Table (TBXX), and
the following subroutines: AIBF, CDPR, CEXP, CFBI, CIDN,
CQYL, CRMV, CRNK, CTTY, DOUN, EBSN, EBXR, EBXS, ECNT, ECNU,
EDJT, EDJU, ERTX, ESBK, ESNL, ETBX, FPAR, GBAT, GCBS, GLBD,
GTCB, IGXF, IVTX, LBLK, NOBTVAR, PBLK, PCIV, PCST, PLDP, RBMV,
RDPT, ROSR, SDPF, SFMN, SGES, SPRN, TFBK, and VLAN.
Miscellaneous technical and editorial changes are also
included.

January 1986 - This change packet brings the manual into
agreement with the CFT 1.15 release and supports the COS 1.15
and UNICOS t 1.0 releases. Major features affecting this
revision are code and data separation, generalized segment
length, vector temporary storage, vectorized search loops,
DO-loop table enhancements, LOOPMARK utility, and generalized
loop CIVs; routines added or changed are BOFG, CDSP, DLTB,
ENST, GCBS, GDEX, GDLB, GRLD, GRRL, GRST, GRSV, LLIV, LMRK,
MIAR, MSST, RBVT, RBVU, RVLR, UCIV, and UCDI. Miscellaneous
technical and editorial changes are also included.

t UNICOS is derived from the AT&T UNIX System; UNIX is a trademark of
AT&T Bell Laboratories.

SM-0017 iii B-03

PREFACE

This publication is part of a set of manuals written for programmers,
analysts, and field engineers who have the responsibility of installing,

I debugging, and modifying the Cray operating system COS or UNICOS.

I

I

I

I

I

This manual describes the internal design of the Cray FORTRAN Compiler
(CFT) , Version 1.

Section 1 briefly introduces the compiler and describes CFT conventions.

Sections 2 and 3 provide a basis for understanding the compiler's
operation. These sections describe the general flow of the compiler
through Passes 1 and 2, respectively.

Section 4 describes table management and gives the specifications for the
tables used by the compiler.

Section 5 gives the details of the major subroutines within the compiler.

Section 6 provides information about CFT I/O.

The appendix section gives additional information about the compiler's
internal design, including pertinent reference information and sample
code.

Related publications are:

SR-OOOO CAL Assembler Version 1 Reference Manual
SM-0007 IDS Table Descriptions Internal Reference Manual
SR-OOll COS Version 1 Reference Manual
SM-0040 COS EXEC/STP/CSP Internal Reference Manual
SM-0041 COS Products Set Internal Reference Manual
SM-0042 COS Front-end Protocol Internal Reference Manual
SM-0043 COS Operational Procedures Reference Manual
SM-0044 Operational Aids Reference Manual
SM-0045 COS Table Descriptions Internal Reference Manual
SM-0046 105 Software Internal Reference Manual

SM-OOI7 v B-03

I

Manuals designated as internal describe the internal design of the
software whereas the other manuals in the set define procedures and
external features of tools needed for installing and maintaining CRI
software.

All values specified in this manual are expressed in octal unless
otherwise noted.

SM-OOI7 vi B-03

CONTENTS

PREFACE •

1.

2.

3.

COMPILER OVERVIEW . · · · ·
1.1

1.2
1.3

PASS

2.1
2.2

2.3
2.4
2.5
2.6
2.7

2.8

GENERAL DESCRIPTION
1.1.1 Pass 1 · · · · 1.1.2 Pass 2 · · · TABLE NAMES AND INDEXES
CFT MEMORY ORGANIZATION

1 FLOW
INTRODUCTION •
INITIALIZATION •

· · . .

2.2.1 Initialization at BGIN •
2.2.2 Initialization at BGIO •
READ SOURCE STATEMENT
DETERMINE STATEMENT TYPE
STATEMENT PROCESSING • •
NON-EXECUTABLE STATEMENT PROCESSING
EXECUTABLE STATEMENT PROCESSING • • • •
2.7.1 Input/output operations statements •••••
2.7.2 Program control statements.
2.7.3 Assignment statements •••••
2.7.4 Statement termination •••••••••
2.7.5 Intrinsic function processing ••••
END PROCESSING • • • • • • • • • • •• • • • • •

PASS 2 FLOW

3.1
3.2

INTRODUCTION •
LOCATE AND ANALYZE CODE BLOCK
3.2.1 Define next code block to be processed •••
3.2.2 Mark constant increment variables
3.2.3 Analyze array references for dependencies
3.2.4 Promote constants within subscript expressions.
3.2.5 Examine array references and function

references • • • • • • • • • • •
3.2.6 Transfer to vector control •••••••

SM-0017 vii

v

1-1

1-1
1-3
1-5
1-8
1-8

2-1

2-1
2-1
2-2
2-2
2-2
2-4
2-6
2-8
2-10
2-13
2-14
2-14
2-15
2-15
2-16

3-1

3-1
3-2
3-2
3-3
3-3
3-4

3-5
3-6

B-03

3. PASS 2 FLOW (continued)

4.

5.

6.

3.3
3.4
3.5
3.6

GENERATE INTERMEDIATE CODE •
SCHEDULING •
GENERATE LOADER TABLES •
END PROCESSING •

COMPILER TABLES

4.1
4.2

4.3

INTRODUCTION •
TABLE MANAGEMENT •
4.2.1 Sequential table management
4.2.2 Sorted table management
TABLE DESCRIPTIONS •
4.3.1
4.3.2
4.3.3
4.3.4

Notational conventions •
Tag definitions
Mode flags
TL field •

SUBROUTINES

CFT I/O

6.1
6.2
6.3

INPUT TO CFT •
OUTPUT FROM CFT
I/O DATASETS/FILES

APPENDIX SECTION

A. CHARACTER SET

B. REGISTER USAGE •

C. DEBUGGING AIDS

D. STACK FRAME FORMAT •

E. CFT INSTRUCTION BUFFERS

FIGURES

1-1
1-2
1-3
1-4

CFT's two-pass philosophy.
Pass 1 overview •
Pass 2 overview •
CFT memory organization •

SM-0017 viii

3-6
3-9
3-10
3-11

4-1

4-1
4-3
4-4
4-6
4-7
4-8
4-9
4-11
4-11

5-1

6-1

6-1
6-2
6-3

A-I

B-1

C-l

0-1

E-l

1-2
1-4
1-7
1-9

B-03

FIGURES (continued)

2-1
4-1
6-1
6-2
D-l

TABLES

2-1
2-2
4-1
4-2
B-1

INDEX

Required order of lines and statements · Compiler table memory locations · I/O datasets used during compilation under
I/O datasets used during compilation under
Stack frames

Statement Type Table
Non-executable statement processors •
Table descriptions
TGB tag descriptions
Register numbers

. ·

SM-0017 ix

· · · · · · COS
UNlCOS . .
· · · . .

. . .

.

2-7
4-2
6-2
6-3
D-l

2-5
2-9
4-7
4-9
B-4

B-03

I

COMPILER OVERVIEW

1.1 GENERAL DESCRIPTION

The CRAY-l FORTRAN Compiler (CFT) is a two-pass compiler that
converts statements from the FORTRAN language to the binary machine
language of the CRAY-l Computer Systems. CFT constructs CRAY-l
machine-language instruction sequences that cause the full range of
CRAY-l features and capabilities to be applied during program
execution.

CFT is written in CRAY-l Assembly Language
the Cray operating systems COS and UNICOS.
requirements beyond those required for the
configuration.

(CAL) and executes under
It has no hardware

minimum system

CFT analyzes and compiles source code one program unit (main
program, subroutine, function, or block data subroutine) at a time.
No information is retained from one program unit to the next.

During compilation, CFT constructs a number of tables in the user
area. A table is basically a list of information kept for
referencing by the compiler. Examples of the tables maintained by
CFT are a list of the symbols used in the source program and a list
of constants encountered.

The compiler tables are located at the high end of user memory
immediately below the user Dataset Parameter Area. Space is
allocated to each table as needed. Table length is variable, with
most tables expanding as compilation proceeds. If the table area
overflows its allotted memory, CFT requests additional memory from
the operating system.

Figure 1-1 illustrates the two-pass philosophy of CFT. The input to
Pass 1 of CFT is the source input dataset consisting of the source
code file and the accompanying control statement. The principal
output from Pass 1 is a copy of the source program translated to an
internal format and a symbol table describing the attributes of the
symbols encountered in the source program. The Pass 1 output
becomes the input to Pass 2. Pass 2 finishes compilation and
provides as its output the loader tables, suitable for loading and
execution.

SM-0017 1-1

1

B-03

I

I

I

I

SM-0017

SOURCE INPUT TO eFT

+

p-==--==== -====--4
Source code 1

1

'1

file ','I ~----------------~~

CFT Pass 1
(build intermediate form of text)

/
/

eFT Pass 2
(compile, schedule, assign registers,

generate loader tables)

I~O' A

Figure 1-1. eFT's two-pass philosophy

1-2 B-03

I

I

The compiler is loaded in the user field by the operating system
when it encounters a eFT command or control statement. Each user
receives a copy of the compiler in the user field. The compiler
itself is not re-entrant. Parameters of the eFT command or control
statement specify characteristics of the compiler run, such as the
datasets or files containing source statements and list output.

1.1.1 PASS 1

Basically, Pass 1 of eFT converts the source code to an intermediate
form to facilitate Pass 2 activities. Figure 1-2 illustrates the
general flow of Pass 1. A brief summary of Pass 1 activity
follows. Section 2 of this manual provides a more detailed
description of the flow through Pass 1.

After eFT reads and interprets the CFT command or control statement,
it initializes the tables, presets default values, and opens the
files or datasets required by the job. The preset defaults retain
their values for any options not specified by the user on the eFT
command or statement.

At this point, the main loop of the compiler begins. Most pointers
are cleared and the tables are set to empty. The statement sequence
number is initialized at O. This procedure is executed at the start
of each program unit. Then, compilation begins by calling CFT's
card reader driver. The card reader driver reads the source input
file statement by statement, checking for continuation lines and
comment lines.

As each statement is read, it is copied into the compiler's
statement buffer, where it is examined and classified by type.
Then, depending on statement type, control transfers to one of the
many unique statement ppocessops. A unique statement ppocessop
is a handler for only one specific FORTRAN statement; for example,
there is a unique statement processor for WRITE statements and
another for DIMENSION statements.

Each FORTRAN statement is classified as either executable or
non-executable. An executable statement specifies an action,
while a non-executable statement is an inactive descriptor of data
(declarative) or program form.

with few exceptions, statements are completely processed as they are
encountered. Exceptions to this are the DO and EQUIVALENCE
statements. DO statements generate table entries that trigger
additional processing when the terminal statement is encountered.
EQUIVALENCE statements are packed into a table as they are
encountered and are processed when the first executable statement
(that is, the last declarative statement) is encountered.

SM-0017 1-3 B-03

INITIALIZATION

,~

... READ NEXT STATEMENT

It

DETERMINE STATEMENT TYPE

,

STATEMENT PROCESSING

~ .--

/ !\ / 1\

Non-executable END Executable
statement statement

'--
statement

'--- r---
processing / \ processing V \

processing

I

to Pass 2
IY08

Figure 1-2. Pass 1 Overview

Many FORTRAN statements have similar syntax. For example, the syntaxes
of READ, WRITE, and PRINT statements are similar, as are those of REAL,
DIMENSION, and COMMON statements. In such cases, one of the unique
statement processors is called to process the initial keyword. This
unique statement processor then branches to an appropriate common syntax
ppocessop to handle the syntax held in common by the statements.

8M-0017 1-4 A

YES

SM-0017

Identify next code
block to be processed

Analyze code block

Generate
intermediate code

Schedule instructions

Assign registers

Generate Loader tables

Another
block

?

NO

END statement
processing

Figure 1-3. Pass 2 Overview

1-7

/'10"

A

1.2 TABLE NAMES AND INDEXES

CFT maintains nearly 50 tables during compilation. Initially, all
the tables are empty. Then, as compilation proceeds, the tables
expand in memory.

Several conventions exist for naming tables. Each table has a
unique name, often a mnemonic for the function the table performs.
The form is TBX, where x is the table identifier. For example,
a table that maintains array information is TBA, the Array Table.

The index to a table is of the form KTX. For example, the index
to TBA is KTA. Pointer words to the CFT tables are maintained in
register V7. The pointer word contains the first word address (FWA)
and the last word address + 1 (LWA+l) for the table. (Refer to
Appendix B for more information.)

Table indexes are relative to the beginning address of the
appropriate table. Except for the Symbol Table, the Tag Buffer
Table (TBG) , and the Program Unit Name Table (TBPN), the FWA of a
table is always a multiple of 100a, while the LWA+l changes as
necessary.

Refer to the section entitled Compiler Tables for table descriptions
and a summary of table management.

1.3 CFT MEMORY ORGANIZATION

I The compiler is loaded for each CFT command or control statement and
is reinitialized rather than reloaded for each program unit. In a
multiprogramming environment, several copies of the compiler can be
in memory at one time because a copy goes in the field of each CFT
user.

Figure 1-4 illustrates the organization of the memory area occupied
by one FORTRAN user job. CFT code is at the low end of the user
field, with the various routines comprising CFT arranged in
approximately alphabetical order. Immediately above that is an area
allocated for two compiler tables, the Library Name Table (TBL) and
the Library Macro Table (TBM). Above that is the Record Image
Buffer (RIB), which contains one source line at a time, followed by
the library routines. During Pass 1, the statement currently being
processed by CFT is stored in the Character Buffer (CBB), which is
at the low end of blank common.

SM-0017 I-a B-03

PASS 1 FLOW

2.1 INTRODUCTION

Pass I of the CRAY-I FORTRAN Compiler performs the following
functions:

• Compiler initialization

• Statement-by-statement processing of the source file:

Read source statement
Determine statement type
Process statement

• END processing for Pass 1

The input to Pass 1 is the source input file. The main output from
Pass 1 is the information contained in three tables:

• The Symbol Table (TBS) - contains the names of all symbols in
the source program

• The Tag Table (TBT) - Holds the attributes of all of the
symbols listed in TBS

• The Tag Buffer Table (TBG) - Contains a copy of the source
program translated into an internal tag-and-operator format

2.2 INITIALIZATION

Routine BGIN (begin compilation) handles both initialization at the
beginning of processing and initialization at the start of each
program unit. Control transfers to BGIN at the start of processing
to initialize the compiler. Then, each time processing begins on a
new program unit, control transfers to BGIO, a location within the
routine BGIN, to reinitialize for that program unit.

SM-0017 2-1

2

A

I

I

2.2.1 INITIALIZATION AT BGIN

BGIN calls the control card cracking routine CARD to read the CFT
command or control statement. A copy of the CFT command or statement
is stored in words 5 through 77 of the operating system's Job
Communication Block. Once the CFT command or statement is decoded,
CARD determines which datasets or files are required and opens them.

CARD also collects the list options and error processing options in
the CFT command or statement and sets indicator bits in register T.OCW
to show whether the corresponding options are on or off. Any options
not specified by the user on the CFT command or control statement are
set to the default values. The default options are generally
contained in the block of constants at the front of the compiler and
can be changed at compiler assembly time.

2.2.2 INITIALIZATION AT BGIO

The main loop of the compiler begins at label BGIO. Control returns
to BGIO at the start of each program unit to reinitialize CFT.
Pointers are cleared and table pointers are reset to indicate that the
tables are empty except for the Program Unit Name Table and the Page
Number Table (TBPN and TBPG), which are saved from pass to pass.
Storage registers are zeroed and the statement sequence number is
initialized at O.

Compilation begins with a call to routine RNXT.

2.3 READ SOURCE STATEMENT

Routine RNXT (read next statement) is the compiler's card reader
driver. RNXT reads the input dataset ($IN or its equivalent)
statement by statement, checking for statement continuation and
comments. An internal buffer builds one complete FORTRAN statement at
a time into a buffer. If a source listing is requested, lines are
written to the listing file as they are read.

Two buffer areas are used to assemble a statement. The Record Image
Buffer (RIB) can accommodate one card image and contains the image of
the next card to be processed. The Character Buffer (CHB) contains
one complete FORTRAN statement character image including an initial
line and up to 19 continuation lines.

The First Card Buffer (FCB) is maintained if no source listing was
requested. The FeB receives the first line of each statement so that
the line can be printed out if an error occurs during processing.

SM-0017 2-2 B-03

I

encountered, variables are assigned addresses. By the end of Pass
1, all variables are known. Variables occurring in EQUIVALENCE
statements have already been given addresses by this time, since
they are handled at the end of nonexecutable statement processing.
Local variables, however, must be assigned addresses. ENST resolves
all EQUIVALENCEs and assigns addresses to all variables in TBT.

DATA statement entries are also made in TBB, the Loader's Text
Table. Then ENST begins building TBH, the Loader Program
Description Table. TBH holds program name, common block name and
length information. Following this are ENTRY names and EXTERNAL
names.

Each statement having a statement number also has a pointer in bits
1 through 17 of the statement header entry in TGB that points to the
corresponding TBT statement number entry. At the end of Pass 1, all
statement number references are linked together, and unreferenced
statement numbers are deleted. The index to the TBT entry for an
unreferenced statement number is cleared from the TGB statement
header entry. Although the statement number still exists in TBS and
TBT, no pointers to these table entries exist. An unreferenced
statement number is transparent to eFT Pass 2.

ENST copies intermediate code generated as a result of variable
dimension declarators from TBQ to immediately after each ENTRY
statement header. ENST also links all statement numbers and
references. Any statement number having no reference is deleted.
If a statement number is never referenced, the pointer to TBT in the
statement entry header word is cleared and, although the statement
number is still in TBT, there is no pointer to it. This means
statement numbers cannot be used only to break up blocks of code.
Finally, the Intermediate Tag Buffer (TGB) is moved to the Tag
Buffer Table (TBG) and actual addresses relative to the appropriate
block are filled in for all symbols. The move is done
word-for-word. As each item is moved, its tag is examined and
looked up in TBT and the actual address or offset is put into the
tag.

At ENSl, some of the tables are cleared and released in preparation
for Pass 2.

The final step of pass 1, if extended memory addressing (EMA) is
enabled, is to change all 602 program block tags to 607 block tags.
This allows CFT to separate the code from the data and to reference
up to 16 million words of local data.

SM-OOI7 2-17 B-03

Statement numbers encountered during Pass 2 are not limited to those
that were included in the original source code. During Pass I
processing, CFT inserts made-up statement numbers for processing
logical IF and block IF statements when it is necessary to jump from
a block. CFT also inserts made-up statement numbers at both the
beginning and the end of a DO loop when processing a DO. A made-up
statement number is also inserted immediately following an ENTRY
other than the primary. These made-up statement numbers go through
Pass 2 analysis the same as any programmer-defined statement numbers.

I 3.2.2 MARK CONSTANT INCREMENT VARIABLES

The section of code beginning at AB20 builds TBZ. TBZ contains an
entry for each variable defined within the code block. The
information in TBZ is used later in Pass 2 in handling constant
increment variables and in building the Cross Reference Overflow
Table (TBV).

Starting at AB40 is a section of code that finds and marks all
constant increment integers in TBG. In loop mode, a constant
incpement vapiabLe (CIV) is a variable that is incremented by an
invariant expression at only one point in the loop. An example of a
CIV is the DO control variable in a DO block where the index is an
integer. CIVs are located for two reasons:
in general and vectorization in particular.
be INTEGER or REAL.

subscript optimization
The type of a CIV can

In a replacement statement, a CIV can be either a function of itself
(for example, 1=1+1) or a function of another variable that is a CIV
(for example, I=J+l, where J is a CIV). The only operators allowed
in a CIV expression are + and -. One operand may be variant, but
all others must be invariant within the loop.

When a CIV is identified, a flag is set in the TBZ entry for the
variable. All references in TBG made to that variable also have a
flag set to indicate that that variable is a CIV.

3.2.3 ANALYZE ARRAY REFERENCES FOR DEPENDENCIES

Routine ADEP (analyze dependencies) checks for dependencies within
arrays. Vectorization is inhibited if a dependency exists; however,
the programmer can override this with the CDIR$ IVDEP directive.

ADEP builds the Plus Dependency Table (TBPD). TBPD is used in code
generation to move a vector load before a vector store.

SM-OOI7 3-3 B-03

ADEP is a double loop. The outer loop, which drives ADEP, takes
each successive definition entry from the Defined Variable Table
(TBZ). A definition entry is one in which the defined item appears

on the left-hand side of a replacement statement, or the item is
used in an input statement or is an argument in a subroutine or
function that might have side effects. For each definition entry,
the inner loop of the routine searches the entire block for
references to the item defined. ADEP compares the definition with
subsequent definitions and other references made to it in the block,
looking for dependencies (EQUIVALENCE overlapping, for example). If
ADEP finds an ambiguous dependency with a condition for safe
vectorization, the condition is entered into the Conjunctive Term
Table (TBCT). If ADEP finds an unambiguous dependency or an
ambiguous dependency with no condition for safe vectorization, the
Vector Loop flag (VLF) is turned off. The VLF is global to a block
and is located in register S7.

ADEP builds TBY, which is used by the optimizer in load-and-store
operations. Each variable within a loop has a definition entry
followed by an entry for each reference made to the variable. ADEP
proceeds through the entire block, even if not in loop mode or if a
dependency has been found, because TBY must be completely built for
the instruction scheduler and the load/store generation routines.

3.2.4 PROMOTE CONSTANTS WITHIN SUBSCRIPT EXPRESSIONS

Basically, routine PCON (promote constants) has as its task the
cleanup of all subscripts within the code block. PCON cycles
through the code block looking for array references. Each time PCON
finds an array reference, it cycles through the reference looking
for constants within subscripts. Each constant occurring within a
subscript is multiplied by the appropriate dimension multiplier and
then added into the initial term of a subscript expression where it
acts like a bias.

For example, if the dimension is A(lO,lO,lO), the subscript

A(I,3,J+2)

is processed as follows:

Pass 1 expands the subscript to

@ A + 0 + 1 * (I-I) + 10 * (2) + 100 * (J+l).

PCON extracts the constants, leaving

@ A + 119 + 1 * (I) + 100 * (J).

SM-0017 3-4 B-02

I
I

As a result of PCON, an array reference looks like a base address
plus a constant plus terms that involve variables within the
subroutine for the rest of the subscript. The constant is the sum
of all constants from all subscripts. PCON calls routine SVEC to
locate possible scalar temporary definitions in a vector loop. SVEC
then sets the vector array flag (VAF) in subsequent references to
the scalar temporary within the TBG block.

3.2.5 EXAMINE ARRAY REFERENCES AND FUNCTION REFERENCES

Array and function references are examined by routine EAFR. For
each statement in a block, EAFR does a backward scan looking for
array and function references. within a statement, it scans from
right to left so that it can sort out the parentheses within the
statement.

Array references are checked by EAFR to determine whether they are
vectorizable. An array element is a candidate for vectorization if
its subscripts meet the following general rules:

1. The variant subscripts can contain only linear references to
a CIV.

2. The only operators allowed in the variant subscript are +,
-, and * on either side of the CIVi otherwise, +, - *, I,
and ** are allowed.

If all of these conditions are met, then EAFR sets a flag called the
vector array flag (VAF) for this particular array reference. This
flag is set on a term-by-term basis.

EAFR also sets the variant subscript flag (DSF) in the array tag if
the subscript has any variants. A vectorizable array has this flag
set, but a non-vectorizable array might also have a variant
subscript. A subscript is invariant if it is not changed within a
loop and there are no stores anywhere into the array. A subscript
is variant if it is changed within the loop or if there is any
store into the array.

SM-0017 3-5 B-03

I

EAFR looks at function references to ensure all arguments are proper
vector arguments. It checks a flag in the function tag for a vector
version available for the function. If a vector version exists,
EAFR looks at each argument of the function to see if it is
invariant and to see if its VAF is set. If either condition is met,
then the function reference is vectorizable.

3.2.6 TRANSFER TO VECTOR CONTROL

If processing is in loop mode, control is transferred next to
routine VCTL (vector control). VCTL consists of three main sections.

The first section of VCTL copies several flags including the VAF
from TBG into TBZ.

The second section of routine VCTL searches each tag in order.
Whenever VCTL finds a condition that turns off vectorization, it
turns off the vector loop mode flag (VLF) and returns to the Compile
Block routine (CBLK). If the tag is that of a variant (the variant
bit is set from ABLK) , then it is a vector.

A scalar temporary, even though it is not an array, has had its VAF
set by GVEC; VCTL thus treats it as an array. VCTL also looks for
recursive sums.

When VCTL is done, it generates the necessary calculations at the
beginning of the loop to set the vector length register and then
returns to CBLK. CBLK generates vector instructions because the VLF
is set.

I The third part of VCTL generates the incrementation for the CIVs
found in the code block. It is called when CBLK finishes the loop.
The information in TBZ is used for this purpose.

3.3 GENERATE INTERMEDIATE CODE

As a result of Pass 1, the number of different FORTRAN statements in
a program is reduced to very few. By the end of the pass, CFT has
restructured the program unit so that it contains the following
types of statements: replacement statements, CALLs, IFs, GO TOs,
and ENTRY statement headers.

8M-0017 3-6 B-03

I

Generating intermediate code is driven by routine CBLK (compile
block). CBLK handles CALL statements and replacement statements.
IF statements are handled by the code beginning at IFSO and GO TO
statements cause control to transfer to GT30: however, this transfer
does not occur until after CBLK generates the code for all
expressions associated with the statements.

All expressions are handled by CBLK as general-purpose expressions
even if they are basic I-term expressions (for example, each
argument of a CALL statement or the expression in the parentheses in
an IF statement).

CBLK calls PBLK to find the next statement to be compiled. CBLK
tries to compile the located statement by finding the innermost set
of parentheses. The innermost set of parentheses is compiled, the
parentheses are removed, and the process is repeated until all
parentheses have been removed. Final statement processing occurs
when the parentheses processing ends. Then, any remaining stores
are compiled and IF statements or GO TO statements are completed.

When CBLK finds an open parenthesis, it begins a series of forward
scans within the parentheses. By definition, the first open
parenthesis found in a backward scan is the innermost. CBLK puts
itself in a loop and calls routine OLEV (operator level), which
makes repeated scans through the expression, looking for operators
in precedence order.

CBLK calls PTRI (process triad) for each operator OLEV finds in the
expression. PTRI checks for index processing, and either calls CTRI
or extracts the index increment.

When CBLK determines it is processing an intrinsic function
reference, it evaluates each of the function parameters and calls
routine INFN (intrinsic function generator) to expand the skeleton
for the function and generate instructions. INFN returns to CBLK.

Intermediate code is generated one word at a time in PIB, the Pseudo
Instruction Buffer. Most of the code inserted in PIB is generated
by routine CTRI. As each instruction is generated, one word is
stored into PIB. Register A7 contains the address where the next
instruction can be stored: A7 is incremented by I after each store
to prepare for the next instruction.

SM-OOI7 3-7 B-03

The format of a stored instruction is:

01

Field

I

J

K

Flags:

OP

Flags:

15

I

Bits

1-14

15-30

31-44

45-50

45

46

47

50

52-60

31

J K

flags
451 52
I I OP

61

Description

I field of instruction, pseudo register
number, or parameter number

J field of instruction, pseudo register
number, or parameter number

K field of instruction, pseudo register
number, or parameter number

flags

If set, I field is result or is unused, if
clear, I field is operand pseudo register
or constant.
If set, J field is result or is unused, if
clear, J field is operand pseudo register
or constant.
If set, K field is result or is unused, if
clear, K field is operand pseudo register
or constant.
If set, I is both an operand and a result
(as in shift operations)

Opcode for instruction to be generated

Two special cases exist for the FLG and OP fields. If
FLG bits 45, 46, and 47 are set and OP=005, the entry
represents an entry or exit sequence. If FLG=O, OP=O,
and I=O, the entry represents a special-case
instruction sequence.

61-77

75

77

If set, instruction can be delayed to
postamble
If set, J and K are invariants and
instruction can be removed to preamble

When instructions are generated, pseudo registers are assigned
instead of real registers. A pseudo register is an imaginary
register not corresponding to any hard (real) register. Pseudo

8M-0017 3-8

77

B-Ol

4.3.2 TAG DEFINITIONS

Each entity (variable, statement number, external name, etc.) within a
statement is converted to a descriptive tag during Pass 1 processing.
The first three octal digits (9 bits) of a tag describe the basic type of
entity.

Tags are used in many compiler tables. Table 4-2 describes tag types.

Table 4-2. TGB Tag Descriptions

Tag Description

100 Pseudo tag. Used primarily in DO statement processing when a tag
is desired but no memory needs to be assigned. Only used in TGB.

101 Statement number tag

102 External function tag

103 Inline function tag

104 Statement function tag: arithmetic statement function.

106 Subroutine entry name tag

107 Function entry name tag: also used for implied-DO variables in
DATA statements.

110- Dummy argument tags. Assigned in consecutive order: 110 is
577 assigned the first dummy argument allowing for over 300 arguments

per subroutine or function,
or
Pointee tags. Assigned in consecutive order: 110 is assigned the
first pointee tag.

600q Constant tag: refers to a constant rather than a variable. The
digit immediately following the tag (q) is the subtype for the
type of constant. Subtypes are as follows:

SM-0017

q value
o
1

4
6

Explanation
Refer to TBB: the offset field is an index into TBB.
Constant can be machine-generated using an 071
machine instruction
Immediate constant: 22-bit constant is supplied.
Shifted constant; 22-bit constant entered in S
register and shifted left 51 bits.

4-9 B-Ol

Table 4-2. TGB Tag Descriptions (continued)

Tag Description

601 Used for dummy argument addresses. The offset field gives the
offset from the address in BOI to the address passed in for a
dummy argument.

602 Program block; positive relocation with respect to the or1g1n of
the current program. The program block is used for generated
code, static variables and arrays, and constants.

603 In static mode, iTB holds temporary variables local to a code
(ITS) block; space in iTB is reused from block to block. ITB is not

used in stack mode.

604 In static mode, ieL holds argument lists and the space into which
(teL) passed-in argument lists are copied for multiple-entry routines.

In stack mode, leL holds argument list headers only (the headers
are built as compile-time constants) •

605 1ST is not used in static mode. In stack mode, all stacked
(1ST) entities except the BIT save area are in iST (including entities

in iTB and most entities in ieL in static mode). The offset
field gives the offset from the run time address in B03 to the
first word of the stacked entity.

606 Used for variables globally assigned to the Band T registers
(tRG)

I 607 Holds data (constants and static arrays and variables not in
(iDA) common)

I

610-
777

SM-0017

Tags 601, 605 (#ST), and 606 (iRG) are used internally by eFT; no
loader tables are generated for them. Tags 602, 603 (tTB), 604
(#eL), and 607 (iDA) are treated as local blocks by the loader; a
program unit using one of these blocks is assigned a unique
(nonshared) area of memory.

User-declared common block tags. Assigned in consecutive order;
610 is assigned the first common block. This assignment allows
up to 120 common blocks per subroutine or function. The loader
treats these tags as common blocks; references to the same common
block by two program units are treated as references to a single
(shared) area of memory.

4-10 B-03

I

4.TBBK TBBK - BLOCK DEFINITION TABLE

TBBK describes the characteristics of each statement in a block, such as
the beginning of the block, the end of the block, and factors that can
inhibit vectorization.

Format before compilation:

01

Field

% LWA+l 1-30

%FWA 31-56

Flags: 60-77

BSR 60

BNM 61

BOT 62

BVL 63

BLS 64

BUB 65

BBR 66

BET 67

BVF 70

BLF 71

BFE 72

BND 73

BXE 74

BEX 75

31 57 60

% LWA+l %FWA 1////1 flags

Description

%LWA+l statement in TBG (before compilation)

%FWA statement in TBG (before compilation)

Statement has search exit

Statement cannot have vectorizable minus
dependency

Statement not part of loop

vectorizable function reference

ELSE block

Unconditional branch

Change in flow of control

Block is executed every time

Nonvectorizable function reference

Block in loop

Forward entry within group

End of group

Enter from outside group

Calls function or subroutine

77

SM-0017 4.TBBK-l B-03

Field Bits DescriEtion

BSP 76 Sub-block has a plus dependency

BSM 77 Sub-block has a minus dependency

Format after compilation:

0 17 37 57 77

I %FR I %TBW 1 %TBX 11/1111111111111111111

Field Bits Description

%FR 0-16 Length of TBFR (after compilation)

%TBW 17-36 Length of TBW (after compilation)

%TBX 37-56 Length of TBX (after compilation)

SM-0017 • 4.TBBK-2 B-03

4. TBD TBD - DO LOOP TABLE

I TBD contains a 10-word entry for each DO loop encountered by the compiler.

I
Format:

01 12 20 25 50 61 77
SLN I LBL

/1 DLI I ELN

NLVL I NLVLI Ipi I %TBS

TBDOF

TBDNF

o
1

2

3

4

5

6

7

//1 TBD@RIN

10

11

Field Word

SLN 0

LBL 0

DLI 1

ELN 1

NLVL 2

NLVLI 2

POTVECT (P) 2

SM-OOI7

Bits

0-17

20-77

1-60

61-77

0-11

12-25

26

TBDNAME

TBDISNI

TBDISN2

TBDMISC

Description

Starting line number; keyed to the
source listing line number.

Label that ends the DO loop; 6 ASCII
characters, right-justified, and
zero-filled.

DO-loop index; 8 compressed (6-bit)
ASCII characters, left-justified. A
bias of 40B is used for compression.

Ending line number, keyed to the
source listing line number

Maximum depth of DO loops nested in
this one, ignoring implied DOs.

Maximum depth of DO loops nested in
this one, including implied DOs.

Set if this loop is potentially
vectorizab1e (that is, if this is an
innermost DO loop or all loops nested
in this one are unrolled).

4.TBD-l B-03

Field

%TBS 2

TBDOF 3

TBDNF 4

TBD@RIN 5

TBDNAME 6

TBDINSI 7

TBDINS2 10

TBDMISC 11

SM-0017

Bits

50-77

0-77

0-77

0-77

0-77

0-77

0-77

0-77

Description

Index into TBS for the label that is
the start of the DO loop. The TBS
entry for the end-of-loop label is
always the next TBS entry.

Each bit set indicates an
optimization done on the loop.

Each bit set indicates a reason the
loop did not vectorize.

Address of where SETTBD was called to
fill in this TBD entry. This address
is used so that NOVECTOR messages can
print parcel addresses.

Holds an 8-bit ASCII character name
to be inserted into a NOVECTOR
message.

Holds an 8-bit ASCII character
sequence number to be inserted into a
NOVECTOR message.

Holds a second 8-bit ASCII character
sequence number to be inserted into a
NOVECTOR message.

Contains the number of a dependency
message. Used only if the TBDNDEPI
or TBDNDEP2 bit is set in TBDNF.

4.TBD-2 B-03

•

I

I

I

Format of a TBT primary entry for a statement label during Pass 2:

01

SB I TBBL

Field Bits

SB o

TBBL 1-20

LDI 21-41

SNDF 54

SNRF 55

TBGL 56-77

SNDF SNRF
21 56 77

LDI I I TBGL

Description

Sign bit; set for statement numbers with
secondary entries. This bit is set between Pass
1 and Pass 2 when the initial jump instruction
is generated to the label and stored at the
offset specified by the secondary entry.

This bit is set for other labels when the
statement number definition is compiled and
entered in TBB.

TBB last reference index. TBBL is the index of
the last reference to this label in TBB relative
to T.PBS. TBBL is updated for each reference
compiled and is the head of the chain of
references in TBB.

Label definition index; initially an index
relative to the LWA+l of TBG pointing to the
statement header of the statement where the
label is defined. When the statement number
definition is compiled, it becomes the index of
the definition in TBB.

Statement number defined flag; set until the
label definition is compiled and entered in TBB.

Statement number referenced flag; set for
referenced statement numbers.

TBG last reference index. TBGL is the index to
the last reference of the label in TBG relative
to the LWA+l of TBG. TBLG serves as the head of
the chain of references in TBG.

A TBT secondary entry exists for statement numbers whose parcel address
must be read into a register at run time. User-defined statement numbers
appearing in ASSIGN statements or END= or ERR= branches of I/O statements
require secondary TBT entries. Compiler generated labels also have
secondary entries when associated with the first word address of a jump
table generated for alternate return subroutine calls and computed GOTOs.

SM-0017 4.TBT-2.l B-03

4.TBZ TBZ - DEFINED VARIABLE TABLE

During Pass 2, each variable that is defined in a block is entered in
TBZ. Each entry consists of two words. The first word, word 0, contains
the variable tag. The second word, word 1, contains the tag location
index, tag definition index, and a number of flags pertaining to constant
integer analysis.

TBZ is cleared at the beginning of each new block that does not have a
drop-through entry.

I Word 0 Format:

01 12 45 50 64 77
o \II TAG OFS I11I TBF TL

Field Bits Description

TAG 1-11 Tag

OFS 12-44 Offset

TBF 50-63 Tag Buffer flags (refer to 4.TGB)

TL 64-77 Type and length

I Word 1 Format:

I 01 17 26 42 61 77
1 klllllllllill flags I IPR I TDI I TLI I

Field Bits Description

Flags: 17-25

INPRF 17 Processed, set if update has been compiled

INCNF 20 Conditional increment

INTYP 21 Set for S register increment

INTRP 22 Trip count

INSLF 23 Self reference

SM-0017 4.TBZ-l B-03

Field Bits

Flags (continued) :

I lNAMB 24

lNSUB 25

lPR 26-41

TDl 42-60

TLl 61-77

SM-0017

Description

Ambiguous increment if clear

Subtract increment

Increment pseudo register

Tag definition index. For a replacement
definition, TDl equals the block index of
beginning of next statement in TBG: otherwise,
TDl=TLl.

Tag location index: equal to block index of tag
location in TBG.

4.TBZ-2 B-03

4.TGB TGB - TAG BUFFER

During Pass 1, a TGB statement entry begins with a statement header
word. This header word has its sign bit set, whereas none of the entry
words do, the header word's sign bit is set so that during Pass 2, where
things are processed on a statement-by-statement basis, a quick search
will locate the head of each statement unit. The statement header word
has the following format:

01 20 37 50 64

HFJI %TBT I ISN I STF I BWI I FWI

Field Bits Description

HF 0 Flag set to indicate header word

77

%TBT 1-17 Index into statement number entry in TBT, if one

ISN 20-36

STF 37-47

BWI 50-63

FWI 64-77

SM-0017

exists. If header is for an entry (ENF set),
the field is the index into TBH of the entry
name.

Internal sequence number in binary, as it
appears on FORTRAN source listing on left margin

Statement type flags, as follows:

Bit Flag Description

37 ENF ENTRY statement
40 DBF Beginning of a DO
41 CSF Conditional statement
42 RPF Replacement statement
43 CAF CALL statement
44 ISF IF statement
45 GTF GO TO statement
46 CNF CONTINUE statement
47 IDF Ignore Vector Dependency flag

If the header is for an entry (ENF set), bits
40-47 give the number of arguments associated
with this entry.

Backward offset relative to the location of this
header to previous statement header in TGB

Forward offset relative to the location of this
header to next statement header in TGB

4.TGB-l B-Ol

I

I

Following the header word for a statement is a I-word entry for each of
the elements in the statement. This entry can be a tag, an operator, or
a separator. A tag is derived from the TBT entry for the corresponding
symbol. It contains an index to the TBT entry. Operators and separators
are translated to 6-bit codes that reflect processing precedence.

Tag Buffer flags are as follows:

Field

Flags:

DAF

EQF

FNF

INF

RDF

IVF

CIF

VAF

SM-0017

o 50 64 77

V///I/////////////////I////////////I flags TL

50-63

50

51

52,
53-55

56

56

57

60

61

Description

Dummy Argument flag

Equivalence flag

If DAF and EQF are set, the tag is a pointer
reference

Function flag: if flag is set, the symbol name
is a function and bits 53-55 are as follows.

53 Call-by-value flag (CBV)
54 Function/subroutine Call flag (FSC)
55 Single/multiple Result Function flag (SMR)

If flag is clear and bits 53-55 are zeros, then
the symbol name is a simple variable. Otherwise,
the symbol name is an array: bit 52 is clear and
bits 53-55 contain the number of dimensions in
the array (up to 7). If bits 51 and 52 are set,
the function has side effects and cannot be
optimized.

Internal Statement Function flag
or
Defined flag: set if variable is defined
(assigned a value). This bit is set on a
block-by-block basis.

variant/invariant flag: set if variable is a
variant within the block. This bit is set on a
block-by-block basis.

Constant Increment Variable (CIV) flag

Vector Array flag or Function flag: set if this
array reference or function call can be

4.TGB-2 B-03

I

Field Bit

VAF (continued)

SAF 62

KSF 62

MAF 63

SCF 63

TL 64-77

Pseudo entry

Description

vectorized. Vectorization is possible if the
subscripting is acceptable, if the vector array
or function is in a vectorizable form, or if it
is a known vector library routine with a vector
argument.

Intrinsic function special processing bit; bit
is checked only in function headers with VAF
set. If SAF is also set, a call is made to SPFH
from CBLK and to SPFR to handle special
processing for intrinsic functions such as SHIFT
and CSMG.
or
Known Sign flag; set if the sign of a number is
known. Used for constant tags (600) only.

Sign bit, if known (if bit 62 is set)
or
Subsequent ambiguous reference

Type and length

A pseudo tag is used to represent a temporary value which is not to be
allocated a memory location. The pseudo tag (100) is used only in TGB
and TBG. Fields conform to function and variable. Pseudo entry for a
function is only used for RETURN statements, while that for a variable is
used throughout.

Format:

01 12 15 45 50 64 77

101 100 ITypl OFS 1//1 TBF I TL I

Field Bits Description

TAG 1-11 Tag; 100 (constant tag) •

TYP 12-14 Constant tag subtype

OFS 15-44 Offset

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

SM-0017 4.TGB-3 B-03

Statement number definition entry

Format:

I 01 20 37 50 64 77

III %TBT I ISN I STF I BSI I FSI I

Field Bits Description

%TBT 1-17 Index into TBT

ISN 20-36 Internal sequence number

STF 37-47 Statement Type flags

BSI 50-63 Backward statement index

FSI 64-77 Forward statement index

Statement number reference entry

Format:

I 01 12 31 50 64 77

10 I 101 1111111111111111 %TBT I TBF 1 0017 I

Field Bits Description

TAG 1-11 Tag; 101 (statement number tag).

%TBT 31-47 Index into TBT

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length; 0017.

Format number reference entry

Format:

I 01 12 31 50 64 77

10 I 602 1111111111111111 %TBT 1 TBF 1 TL I

SM-0017 4.TGB-4 B-03

I

I

Field Bits

TAG 1-11

%TBT 31-47

TBF 50-63

TL 64-77

External function entry

Description

Tag; 602 (program block, positive relocation
tag).

Index into TBT

Tag Buffer flags

Type and length; 2017 for 24-bit ASCII value,
2077 for 64-bit ASCII value.

(An external intrinsic function has an entry in TBL and TBM.)

Format:

01 12 31 50 64

10 I 102 PCT %TBT TBF TL

Field Bits Description

TAG 1-11 Tag; 102 (external function tag).

PCT 12-30 Parameter count; number of arguments to the
function (taken from TBM).

%TBT 31-47 Index into TBT

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

Intrinsic function entry

Format:

01 12 31 50 64

10 I 103 1//////////////1 %TBL TBF TL

Field Bits Description

TAG 1-11 Tag; 103 (intrinsic function tag).

SM-0017 4.TGB-5

77

77

B-03

Field Bits Description

%TBL 31-47 Index into TBL entry

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

Dummy argument entry (Pass 1)

Format:

I 31 01 12 50 64 77

101110-577 I %TBT %TBA TBF TL

Field Bits Description

TAG 1-11 Tag; a number from 110 to 577 (dummy argument
tag).

%TBA 12-30 Index into TBA (for array references)

%TBT 31-47 Index into TBT

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

Dummy argument entry (Pass 2)

Format:

I 01 12 31 50 64 77
10 1110-577 I OF8 TBF TL

Field Bits Description

TAG 1-11 Tag; a number from 110 to 577 (dummy argument tag).

OF8 12-47 Offset in block

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

8M-0017 4.TGB-6 B-03

I

I

Variable in program and common block (Pass 1)

Format:

01 12

101601-777 1

Field Bits

TAG 1-11

%TBA 12-30

%TBT 31-47

TBF 50-63

TL 64-77

31 50 64 77

%TBA %TBT TBF TL

Description

Tag; one of the following:
601 Offset from BOI (dummy argument addresses)
602 Program block, positive relocation
603 (iTB) Temporary block tag
604 (iCL) Argument list block tag
605 (iST) Offset from B03; stack tag.
606 (iRG) BIT register tag
607 (iDA) Data block tag
610-777

Common block tag (assigned in ascending
order)

Index into TBA (for array references)

Index into TBT

Tag Buffer flags

Type and length

Variable in program and common block (Pass 2)

Format:

01 12

101601-777 1

Field

TAG 1-11

SM-0017

31 50 64 77
OFS TBF TL

Description

Tag; one of the following:
601 Offset from BOI (dummy argument addresses)
602 Program block, positive relocation
603 (iTB) Temporary block tag
604 (iCL) Argument list block tag
605 (iST) Offset from B03; stack tag.
606 (iRG) BIT register tag

4.TGB-7 B-03

I

I

Field Bits

TAG (continued)

OFS 12-47

TBF 50-63

TL 64-77

Constant entry

Description

607 (fDA) Data block tag
610-777

Common block tag (assigned in ascending
order)

Offset in block

Tag Buffer flags

Type and length

An entry is made in TGB for each constant encountered. Four constant tag
subtypes are available. Their formats follow.

A subtype a constant tag gives TBB entry information.

Format:

01 12 15 41 50 64 77

10 I 600 I a I %TBB 1//////1 TBF TL

Field Bits Description

TAG 1-11 Tag; 600 (constant tag).

8UB 12-14 Constant tag subtype; a (constant in TBB) •

%TBB 15-41 Index into TBB

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

A subtype 1 constant tag signals a machine-generated constant. (The 071
machine instruction allows generation of a number of different constants.)

Format:

01 12 15 45 50 64 77
10 I 600 I 1 I J 1////1 TBF TL

8M-00l7 4.TGB-8 B-03

I

Field Bits

TAG 1-11

SUB 12-14

Description

Tag; 600 (constant tag).

Constant tag subtype; 1 (machine-generated
constant).

J 15-44 J holds a value that corresponds to the opcode's
J value as follows:

Opcode Constant J value

071i4x 0.5 4
07liSx 1.0 5
07li6x 2.0 6
07li 7X 4.0 7

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

A subtype 4 constant tag is used for a 22-bit immediate constant.

Format:

01 12 15 45 50 64

10 I 600 I 4 I CON 1///1 TBF I TL

Field Bits Description

TAG 1-11 Tag; 600 (constant tag) •

SUB 12-14 Constant tag subtype; 4 (immediate) •

CON 15-44 22-bit immediate constant (preceded by 2 sign
bits)

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

A subtype 6 constant tag contains a 22-bit intermediate shifted
constant. The 22-bit constant is shifted left 51 places. This subtype
is used to generate floating-point constants.

77

I

SM-0017 4.TGB-9 B-03

I
Format:

Field

TAG

SUB

CON

TBF

TL

Operator

Format:

Field

OPC

TBF

TL

01 12 15 45 50 64

\01 600 I 6 I

Bits

1-11

12-14

15-44

50-63

64-77

entry

0 12

/;1/11111/11 OPC

Bits

12-20

50-63

64-77

CON 11111 TBF I TL

Description

Tag; 600 (constant tag) •

Constant tag subtype; 6 (shifted constant) •

22-bit intermediate shifted constant

Tag Buffer flags

Type and length

21 50 64

11/1111111111111/11111111 TBF I TL

Description

TGB representation of operator or separator in
6-bit code form. OPC codes are given in table
4.TGB-l.

Tag Buffer flags

Type and length

77

I

77

I

The following bits are used when the OPC field is 53, 54, or 55.

Field Bits

20-37

34-47

SM-0017

Description

Size of the parenthesis group if OPC is 53 or 54

%TBW of subscript increment if OPC is 53 or 54
Number of arguments if OPC is 53 or 54
Number of subscripts if OPC is 53, 54, or 55
Argument number if OPC is 53, 54, or 55

4.TGB-lO B-03

SUBROUTINES

This section includes brief descriptions of the major subroutines
that comprise the eFT compiler. These routines are listed in
alphabetical order according to routine name.

SM-0017 5-1

5

A

ROUTINE:

PASS:

DESCRIPTION:

I

SM-0017

ABLK - Analyze block

2

ABLK is the main driver for Pass 2. It divides TBG
into segments, called blocks, which are then
compiled into code, one at a time.

During Pass 1, all extraneous statement numbers are
deactivated. Thus, at the beginning of Pass 2, each
statement number in TBG is a target.

Each time ABLK is called, it searches through TBG to
find the next block boundary. A block boundary is
an ENTRY statement, a loop begin, or a statement
referenced from outside the block.

ABLK does the following:

• Builds TBZ, the list of variables defined
within the block

• Sets the variant bit in all references to
variant elements, including variables used in
EQUIVALENCE statements and common or dummy
arguments (if there is an external reference
to them)

• Locates all constant increment variable (CIV)
variables and creates a TBZ entry for each CIV

The ABLK sequence is:

1. ABLK
2. Analyze dependency conditions (ADEP)
3. Promote constants from subscripts (PCON)
4. Set Vector Array flag in all probable scalar

temporary vectors (SVEC)
5. Examine array or function references (EAFR)
6. Vector loop control (VCTL)
7. Compile block (CBLK)

5-2 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-0017

BDST - BLOCK DATA statement processor

I

Routine BDST processes BLOCK DATA statements and
enters SRST at SR04.

BFST - BUFFER IN and BUFFER OUT statement processor

I

This routine processes BUFFER IN and BUFFER OUT
statements. It also does some syntax checking and
branches to routine lOST (at 1066).

BGIN - Begin compilation

I

Routine BGIN initializes CFT and calls the control
statement cracking routine, CARD.

The code beginning at BGIO performs partial
initialization at the start of Pass I for each block
compiled.

BKST - BACKSPACE statement processor

I

Routine BKST is the BACKSPACE statement processor.
Upon recognition of 'BACKSPACE', control is passed
to RWOI in RWST for further processing.

5-7 B-02

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-0017

BLCN - Blank count

1,2

Routine BLCN returns the number of bits occupied by
the leading blanks in the right-justified,
blank-filled, 8-bit ASCII symbol in Sl. The caller
can use this bit count to left-justify the symbol.

BLFL - Blank fill a word

1,2

This routine blank fills an ASCII word in register
Sl.

BOFG - Check branches out of loop

2

BOFG checks all branches out of a potential vector
loop for being candidates for vector search. If a
vector search does not occur, the vector loop flag
is cleared. If"a vector search occurs, the address
is entered into the search table.

5-8 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

• SM-0017

BTD - Convert binary value to ASCII decimal value

1,2

BTD converts a binary value (Sl) to the ASCII
representation of its decimal value (returned in
Sl). The contents of AO-A7 and S7 are saved, the
external library routine $BTD does the conversion,
and AO-A7 and S7 are restored.

CADR - Compile address

2

CADR compiles the address of a tag. It compiles the
code needed to load an address into an A register.

5-8.1 B-03

DESCRIPTION:
(continued)

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-0017

Certain conditions must be met before optimization
occurs. Optimization must first be enabled by
specifying OPT=FULLIFCON or OPT=PARTIALIFCON on the
CFT control card. (Optimization is disabled by
specifying OPT=NOIFCON on the CFT control card
(default) or using the CDIR$ NOIFCON compiler
directive.) If the optimization level is partial-IF
conversion (OPT=PARTIALIFCON), the replacement
expression cannot involve division or an external
function reference. The last requirement for
optimization is that the type of the replacement
variable must be integer, logical, or real.

CCTB - Convert character constant operand

2

CCTB converts a character constant operand to a
Boolean operand when the character constant operand
is used as an arithmetic operator operand.

CDIR - Compiler directive processor

1

CDIR processes the CDIR$ directives during Pass 1.

CDPR - Compiler directive processor

2

CDPR processes the ALIGN, BL, BLOCK, CODE, CVL,
FASTMD, NOBL, NOCODE, NOCVL, NODOREP, NOIFCON,
NO RECURRENCE , NOVECTOR, RESUMEDOREP, RESUMEIFCON,
ROLL, SAFE IF , SLOWMD, and UNSAFEIF compiler
directives during Pass 2.

5-11 B-02

ROUTINE:

PASS:

DESCRIPTION:

I SM-0017

CDSP - Code and data separation

1

CDSP separates code and data. CDSP operates at the
end of pass 1, just prior to analysis of branch
statements (ABRA). CDSP performs the following
functions:

• Converts 602 program block tags to 607 data
block tags in TBT and TBG to allow addressing
of up to 16 million words in EMA mode, and to
ensure that data references are to the data
block and not to the program block throughout
code generation

• Puts constants, DATA initialization, and local
storage in the data block by adjusting loader
table TXT header block indices in TBB

• Puts any secondary entries and NAMELIST tables
in the data block by adjusting loader table TXT
header block indices in TBB

• Puts any externals passed as parameters in the
data block by adjusting loader table XRT header
block indices in TBE

• Puts any BRT loader table entries in the data
block by adjusting BRT header block indices in
TBR and creates a BRT header for program block
entries. TBR entries at this point are for
secondary entries and/or NAMELIST table.

• Puts pointers in the data block by converting
602 tags to 607 tags in TBC

• Changes the program block tag (602) in T.PB to
the block data tag (607)

• Calculates the size of the data block for the
loader table PDT and checks for data block
overflow, and sets the current parcel address
(T.PA) and the program base address (T.PBS) to
zero.

5-12 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

• SM-0017

CEXX - Check EQUIVALENCE overlap

2

These routines check for EQUIVALENCE overlap,
looking for EQUIVALENCE dependencies between two tags.

CExx checks all references against the definitions
in TBZ. CEOV selects exact matches for the
references in TBZ and then begins an analysis of the
subscripts. Because all constants are packed
together at the end of the subscript expression
during Pass 1, all scans proceed from right to
left. If the constant add-ins do not match, a flag
is set.

CEXP - Constant expression evaluation

1,2

CEXP examines the tag buffer for a simple constant
expression inside parentheses. If the tag buffer
contains (constantl opepatop constant2)
where the constant tags are of the form 06004 ••• and
the operator must be KAP, KAS, or KAD, this
expression is evaluated to a single constant and
stored back into the tag buffer.

CFBI - Correct forward and backward indices

1,2

CFBI examines a section of the tag buffer to ensure
that all statement header forward and backward
indices are correct.

5-12.1 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

I
PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-0017

DDXX - Implied DO processor

1

These routines process implied DOs during the second
section of DATA statement processing. They
calculate and maintain trip counts and increment the
DO variable pseudo register in TBY.

DETB - Build Debug Symbol Table

2

DETB builds the Debug Symbol Table for the loader.

DLTB - Initialize and print DO-loop table

END processing for Pass 1; 2

DLTB inserts and retrieves information about a DO
loop into/from TBD and prints the table of loops
encountered.

DMST - DIMENSION statement processor

1

DMST processes DIMENSION statements and then sets up
for routine DCLR.

5-23 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-OOI7

DORP - DO-loop replacement

I

DORP checks for the replacement of a I-line DO-loop
with a call to a $SCILIB routine which performs the
same operation more efficiently. When DORP is
called from STTR, DOST expanded the DO-loop preamble
and body in TBG. DORP parses the TGB for an
equation match and evaluates the equation to
determine if a $SCILIB routine can do the same
operation. If a $SCILIB routine is chosen, the
DO-loop preamble is rewritten and the $SCILIB call
macro is expanded by OPSI. Control returns to STTR
where the DO terminator label is checked. If the
I-line DO-loop cannot be replaced, control returns
to STTR before TGB is altered and DO-loop termination
continues normally.

DOST - DO statement processor

I

DOST processes DO statements and does the following:

• Checks syntax

• Calls AT44 to process the DO list

• Builds the termination package in TBR

• Calls OPSI to expand the Pass I macro for a DO
statement

• Processes implied DOs in I/O statements

0022 is called from STTR to expand TBR into the DO
termination macro.

DOUN - DO-loop unrolling

I

DOUN attempts to unroll an inner DO-loop with known
iteration counts. The following conditions must be
met before a DO-loop is unrolled.

5-24 B-02

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-OOl7

ECNT - Enter conjunctive term

2

ECNT copies the term from TBDT to TBCT if it is not
already in TBCT.

ECNU - Enter simple term

2

ECNT forms and enters a simple relational term into
TBCT.

ECST - ENCODE statement processor

1

This routine processes ENCODE statements and then
sets up for routine lOST.

EDJT - Enter disjunctive term

2

EDJT forms and adds one condition for safe
vectorization of a dependency to the conditions
already found. Terms are simplified and duplicates
are removed before entry.

5-27 B-02

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-OOl7

EDJU - Enter test for differing CIVs

2

EDJU forms and adds one condition for safe
vectorization of subscripts with CIVs which do not
match.

EFST - ENDFILE statement processor

1

EFST processes ENDFILE statements. Upon recognition
of 'ENDFILE', control is passed to RWOl in RWST for
further processing.

EHOL - Enter Hollerith string

1

EHOL enters a Hollerith/character string in TBB (or
TBE for a DATA statement). The string can be longer
than one word. It is packed, eight characters per
word, and any trailing H, L, or R is processed.
Character or Hollerith constants with an H suffix
are padded from the right with blanks to a word
boundary. A zero word in TBB terminates a character
or Hollerith string that appears in an argument list.

EIDL - Examine implied DO-loop list

1

Routine EIDL examines the implied DO-loop list. It
examines subscript expressions in DATA statements to
see if subscripting is linear; if it is, the implied
DO-loop is compressed into a loader DUP Table.

5-28 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

I

ROUTINE:

PASS:

DESCRIPTION:

SM-0017

ELWD - Enter last word

1,2

ELWD is the main table manager. It is used in
creating table entries for all sequential tables.
ELWD enters a value from register S4 into the last
word of a table (KTX in AI).

When making an entry, ELWD detects whether the entry
would cause the table to overflow. If this is the
case, ELWD calls routine MTAB to expand the table.
If there is a memory move, all the table pointer
words (in V7) of the moved tables are adjusted.

EMPR - Error message processor

1,2

EMPR is the error message processor. It prints out
any error messages, with the message number as its
argument.

Normally, for a fatal error during Pass 1, EMPR
exits to STTR, for a fatal Pass 2 error, it exits to
ABLK. It can optionally return to the caller on
fatal errors.

NOVECTOR messages are issued by LMRK, not by EMPR.

EMPR always returns for nonfatal errors. Before
returning, EMPR restores all registers.

ENST - END statement processor

1

ENST terminates Pass 1 and processes FLOWEXIT, $END,
or implied RETURN.

5-29 B-03

I

DESCRIPTION:
(continued)

ROUTINE:

PASS:

DESCRIPTION:

SM-0017

ENOl begins termination of Pass 1 and sets up for
Pass 2. It performs the following functions:

• Allocates actual addresses for blocks
• Processes DATA statements
• Initializes the loader tables
• Links statement number references in TGB
• Counts the number of declared task common

blocks and prepares the required number of
reserved B registers

• Incorporates TBQ into the entries in TGB
• Moves TGB to TBG; as TGB is moved, the tags are

transformed to contain actual offset addresses
rather than pointers into TBT.

• If EMA mode is enabled, converts 602 program
block tags to 607 data block tags to separate
code from data and to allow reference to up to
16 million words of local data.

If fatal errors have occurred, the last three steps
are skipped. After ABLK has compiled the last
block, the LDR tables are closed and written to the
binary file. The symbol table is printed if
specified and control then transfers to BGlO.

When RNXT detects end of file, control transfers to
EN78. CFT issues logfile messages and exits.

EQST - EQUIVALENCE statement processor

1

Routine EQST processes EQUIVALENCE statements.
EQUIVALENCE processing is done in three steps.
First, as EQUIVALENCE statements are encountered
they are packed up, 8 characters per word, and moved
from CHB to TBR. Control then returns to RNXT.
Further processing is postponed until all other
declaratives are processed, when the first
executable statement or statement function is
found. Finally, storage is assigned.

When the first nondeclarative is encountered,
control transfers to EQlO. At this point, TBP
contains an entry for each common block entity
consisting of the %TBT for that entity. EQ replaces
each common block entry in TBP with an entry of the

5-30 B-03

•

DESCRIPTION:
(continued)

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-00l7

form described in 4.TBP. TBH is updated reflecting
each common block length. The corresponding TBT
entry for each TBP entry is updated with %TBP for
that entity.

Next, the packed equivalenced entities are extracted
one by one from TBR. A corresponding TBP entry is
created for each equivalenced entity. This ends the
actions occurring at EQlO.

At the end of Pass 1 (at ENlO) , a pass is made
through TBP to perform two functions for each
equivalenced entity: (1) Detect a common block
lengthened through an equivalence, in which case,
TBH is updated; (2) Assign storage to equivalenced
entities that are part of the static or stack
blocks. The information in TBP is saved until the
end of Pass I when all storage allocations are done.

At the end of Pass 1, all variable tags within a
block are represented by a base tag and an offset
field. This means that during Pass 2, eFT can
accurately determine whether there is a conflict
between EQUIVALENCE variables.

ERTX - Invalidate old TBX entries

2

ERTX marks TBX entries which are no longer valid due
to a transfer of control.

ESBK - Enter new sub-block

2

ESBK enters the statement description into TBBK.

5-31 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-OOI7

ESNL - Enter statement number reference

2

ESNL checks the the statement number reference for a
previous definition in the block. If a previous
definition is found, the block is terminated and
loop is compiled. If a previous definition is not
found, the reference is entered into TBBK.

ESTB - Enter Symbol Table

I

Routine ESTB makes an entry in the Symbol Table
(TBS). ESTB is called only after SSTB has
determined that the symbol name in question is not
yet in TBS. SSTB makes an alphabetical search of
TBS and locates the slot that the new symbol name
should occupy. ESTB then makes the entry at that
point in TBS.

ESTB checks to make sure that there is space in TBS
for each new entry. If ESTB finds that more space
is required, it calls for a memory move upward or
downward, depending on whether the new symbol
belongs in the upper or lower half of TBS. (Refer
to the section on Table Management in this
publication for a detailed description.) Then ESTB
completes making the new entry.

ETBX - Make TBX entry

2

ETBX generates the TBX entry and a parallel TBXX
entry with a Valid or Invalid flag.

5-32 B-02

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-OOI7

FRTG - Locate argument tag

I

FRTG locates the argument tag if it is a single tag
and returns the argument tag to the caller.

FSHD - Find statement header

2

FSHD is given the address of a TBG entry and finds
the statement header of the entry.

FSTK - Force compiler-generated variables onto stack

I

FSTK is called in stack mode to force
compiler-generated variables onto the run time stack
(see Appendix D for the stack frame format). This
procedure is done by inserting the stack block tag
into each static-tagged TBT entry without a
corresponding TBS entry (that is, it moves anonymous
variables to the stack).

Two classes of compiler-generated variables are not
forced by FSTK. The first class occurs when the
space into which argument lists are copied for
multiple-entry routines is assigned to the stack by
ENIO. The second class is function result tags made
into special cases by EN84.

5-35 B-02

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:
I

I

8M-0017

FSUB - Find substring

2

FSUB locates the substring for the character operand.

GBAT - Generate B to A register transfer instruction

2

GBAT adds a 024ijk (Ai Bjk) instruction to PIB.
TBX is searched for a matching entry to the B pseudo
register in Sl. If a matching entry is found, the
pseudo register is returned. If a matching entry is
not found, a register tag entry is made and entered
into TBX. An 024ijk (Ai Bjk) instruction is
generated using a new pseudo register. The resulting
A pseudo register is then returned in Sl.

GCBS - Get common or data block base pseudo register

2

GCBC adds instructions to PIB to address the base (0
word) of a common block or data block. GCB8 is used
by Pass 2 addressing routines to address extended
memory common blocks and data blocks.

84 contains the tag buffer entry. The offset in 84 is
zeroed to create a new table entry. TBX is searched
for a matching entry. If a match is found, the
matching pseudo register is returned. If a matching
entry is not found, a new pseudo register is assigned
to 84 and the new entry is added to TBX. Using the
new TBX entry, a 020 load instruction is generated and
the new pseudo register is returned. If extended
memory addressing is used, all 020 loads with common
block or data block relocation will be changed to an
extended memory Olh lijkm load. The ijkm field
is 24 bits long to allow for very large addresses.

5-36 B-03

DESCRIPTION:
(continued)

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-0017

If the offset in S4 is positive and longer than 22
bits, the offset is left in the new TBX entry and the
original TBX entry is zeroed. This allows the olh
lijkm load to be generated with the very large
offset.

GCRF - Generate code-and-result tag

2

GCRF generates the code-and-result tag for a 22-bit
constant deferred in Pass 2.

GDEX - Get dimension extent

1

GDEX finds the permissible range of a subscript in an
array in order to estimate the maximum likely trip
count for a loop.

GDLB - Get dimension lower bound

1

GDLB determines the lower bound of an array dimension
in order to check for negative values being used in
subscript calculations.

GIXA - Generate index address

2

GIXA generates pseudo registers for an address on a
stack and computes the address.

5-37 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-DOl7

GLBD - Get label definition

2

GLBD generates an internal label for use in Pass 2
code generation.

GMEM - Get memory

1,2

Routine GMEM gets more memory from the operating
system. COS inserts the memory between the tables
and the I/O buffers. GMEM moves the tables and
adjusts the table pointer words in V7.

GRLD - Generate reductions and load secondary
registers

2

GRLD initializes vector reductions, performs the
initial load of items kept in secondary registers
for the duration of a loop, and sets up scalar
recurrence variables.

GRRL - Generate reload of item from secondary
register

2

GRRL reloads an item that was assigned to a
secondary register during the execution of a loop.

5-38 B-D3

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-0017

GRST - Generate reset of secondary register

2

GRST resets a secondary register for a recurrence
variable.

GRSV - Generate save of recurrence variable

2

GRSV saves the value of a recurrence variable, one
of whose stores is conditional.

GSBS - Get stack base tag

2

GSBS finds the pseudo register holding the address
of the stack base.

GTCB - Get task common block base pseudo register

2

GTCB adds instructions to PIB to address the base
(word 0) of a task common block. GTCB is used by
Pass 2 addressing routines to address task common
blocks.

5-38.1 B-03

•

DESCRIPTION:
(continued)

SM-0017

The corresponding common block attribute entry
(COMTAG) is obtained based on the S4 tag. If the B
pseudo register field is nonzero, a call is made to
GBAT to generate a B to A register transfer. If the
B register field is 0, the base address of the
common block must be calculated. A new TBX entry is
created by zeroing the offset. TBX is searched for
a matching entry. If a match is found, the matching
pseudo register is returned. If a matching entry is
not found, a new pseudo register is assigned and the
new TBX entry is added to TBX. A 100-10ad
instruction is generated and the base pseudo
register is returned.

If the S4 offset is positive and longer than 22
bits, a check is made for extended memory
addressing. If extended memory addressing is not
requested, an error message is issued. If EMA is
being used, the offset for the original TBX entry is
zeroed and a 020 load instruction is generated (it
will become a Olh ijkm extended memory load). An
A register add is then generated to add the original
task common block base PR to the very large offset
PRe The pseudo register used as the result of the
add is then returned.

5-38.2 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-OOI7

LBLK - Locate sub-block definition

2

LBLK locates the TBBK entry and the TBG address.

LOIV - Integer divide processor

2

LOIV generates a function call to process the 64-bit
integer divide. LOIV is called by CTRI.

LGCL - Logical and relational operator processor

2

Routine LGCL generates code to process relational and
logical operators. It is called by CTRI and it may
call CTRI or INFN to generate code.

LGST - LOGICAL statement processor

I

This routine processes LOGICAL statements and then
sets up a call to routine DCLR.

LLIV - Load CIV value

2

LLIV loads the value of a constant increment variable
(CIV) for a loop.

5-43 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

I
DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-OOI7

LMRK - LOOPMARK processor

END processing after pass 2

LMRK draws brackets around DO loops in the source
code listing and prints messages for loops that did
not vectorize. LMRK does not use EMPR to issue
messages.

LSOM - Load store overlap move

2

LSOM inserts a vector-to-scalar transfer before a
vector instruction which could cause memory overlap
on the CRAY X-MP Computer System.

LSOV - Load/store overlap check

2

LSOV checks for vector load/vector store overlaps on
the CRAY X-MP Computer System.

LTXX - Loader Table generator

2

The LTxx routines build the loader tables.

LTST initializes the loader tables called by END at
the start of Pass 2. It takes all the instructions
from RASN and packs them into the format required by
the loader. It adds indicator bits used by the
loader to indicate what to relocate, whether an
instruction references an external, common block
information, and so on.

LTGN builds the loader tables for each block. It is
called after routine RASN has assigned registers.

5-44 B-03

DESCRIPTION:
(continued)

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-0017

LTGN exits to ABLK to fetch the next block. It
packs each instruction into TBB. Since the actual
target address for jumps may not be known, all jump
instructions are linked in TBB. LTGN also builds
the External Reference Table (TBE) and the Block
Relocation Table (TBR) for variable references and
jumps. If the generated code listing is requested,
LTGN calls the appropriate OUTxx routine to format
the output.

LTFU can be called to force pass instructions until
a word boundary is reached. It is normally used at
the end of a routine or before an entry.

LTND is called at the end of Pass 2 to terminate the
loader tables. The actual number of Band T
registers needed to be saved/restored is inserted in
all of the EXIT/ENTRY sequences. Actual statement
label addresses are inserted in jump instructions.

MAP - Map block names and lengths

2

MAP prints the block names and lengths list in the
symbol table, if _requested.

MCEX - Special case handling for scheduler

2

MCEX expands the instruction sequence after the
sequence is scheduled.

MIAR - Change variables to short integers

2

MIAR changes the type of all variables that are used
only as subscripts or to update a CIV to short
integer, forcing those variables into A registers.

5-45 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-00l7

MMEM - Manage memory

1,2

MMEM is a general memory management routine that
does memory moves through the vector registers. It
can move a block of memory either up or down. The
source and destination blocks specified may overlap.

ELWD determines that a move is necessary, MTAB
determines which way and where to move, and MMEM
does the actua·l move.

MSAR - Move S to A register

2

MSAR generates the TBW entry to move the S to the A
register. MSAR returns the PR found in TBW if one
exists; otherwise, the next entry in TBW is returned
and generates code moving the S to the A register.

MSST - Save store preceding vector search branch

2

MSST saves stores preceding a vector search branch
until after the branch, at which point the vector
length (VL) for the store is known.

MTAB - Move table

1,2

MTAB moves tables in memory. It is called by ELWD
or ESTB. Each time an addition must be made to a
table (a table has overflowed), MTAB looks at
adjacent table pointer words in V7 to see what kind
of table move is necessary.

5-46 B-03

•

DESCRIPTION:
(continued)

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-0017

First, MTAB looks above the current table for any
gaps; if there are, tables are moved upward to fill
the gaps (rather than moving down and taking more
memory). If no gaps exist above this table, MTAB
moves the table and all tables below it down 100S
words of memory and allocates 100S words to the
table that overflowed. If the downward move gets
close to the top of TGB or PIB, GMEM is called to
get more memory. MTAB calls MMEM to do the actual
move. Table pointers in V7 are updated by MTAB.

MVOP - Move operands

1,2

MVOP moves operands and uses the pointers set up by
SOPT.

NARG - Return number of arguments

2

NARG is a function returning the number of arguments
in a tag-and-operator-format subroutine or function
call.

5-46.1 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-OOI7

OUTXX - Pseudo-CAL output generator

2

OUTxx generates the pseudo CAL output. It
converts instructions to ASCII and writes them on
the output or pseudo CAL file, if requested.

OUTBB - Output BLOCK BEGINS

2

This routine writes the "BLOCK BEGINS" message.

PAST - PAUSE statement processor

I

Routine PAST processes PAUSE statements.

PA02 is the code common for processing STOP and
PAUSE.

PAlO is common for STOP and PAUSE.

PBLK - Select and prepare compilation of next
statement

2

PBLK invalidates the TBX entries, if necessary, and
selects the next statement to be compiled. At the
end of the block, the block is transferred to SKED.
Prepare the compressed index sub-blocks and compile
any statement number definitions.

5-53 B-02

I ROUTINE:

PASS:

I DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-0017

PCIV - Process conditional constant increment variables

2

PCIV examines the conditional block for CIV references
and moves the load of CIV from the conditional block.

PCON - Promote constants

2

PCON promotes the constants that have been retained
thus far intact in subscript expressions. It scans
through the subscript references in TBG and collects
all possible constants into a single offset term.

PCST - Process conditional store

2

PCST invalidates the TBX entries made unusable by a
conditional store.

PEXP - Process exponent

2

PEXP is the exponentiation processor. It is called
from CBLK if OLEV finds an exponentiation operation.
It searches for the last ** in a sequence (for
example, in the expression A**B**C, the B**C would be
processed first).

This routine handles special casing of **2, **3, and
**4 by calling routine CTRI to do the multiplies.
Otherwise, PEXP builds the name of the external
routine that does the operation and calls CTRI; CTRI
then calls PE90 to generate the actual CALL (through
CB32 and CB42A).

5-54 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-OOl7

RBRG - Initialize register times

2

RBRG assigns initial times to registers.

RBVT - Schedule store of vector temporary

2

RBVT delays the store of a vector temporary variable
until after completion of the vector loop.

RBVU - Issue store of vector temporary

2

RBVU stores the value of a vector temporary variable;
the store can take place either in or outside of a
loop.

RCCK - Register chain check

2

RBRG determines if the result of one operation is
needed for the evaluation of a specified pseudo
register.

RDPT - Remove duplicate terms

2

RDPT compares two terms and removes duplicate additive
expressions from both terms. Duplicate expressions
are replaced by nulls.

5-59 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

• SM-0017

RDST - READ statement processor

1

RDST processes READ statements. It sets unit to 100
if the READ is in short form and goes to lOST.

REST - REAL statement processor

1

REST processes REAL statements and then sets up for
routine DCLR.

RNXT - Read next statement

1

Routine RNXT reads the next statement from the input
file, checks for comment and continuation cards, and
(if necessary) drives the source output listers.

RNXT places the statement in the Character Buffer
(CHB). It skips comment lines and concatenates
continuation lines. Columns 1 through 6 and 72
through the end of line are discarded. All blanks are
removed from CHB except on FORMAT statements.
Hollerith/character text characters are flagged by
setting their sign bits. RNXT converts lowercase
characters to uppercase.

FORMAT and END statements are special cases. RNXT
also checks to ensure all parentheses are matched
pairs. See section 2 for a detailed description of
RNXT.

End of statement is indicated by a zero word.

5-60 B-03

I ROUTINE:

PASS:

I DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-0017

ROSR - Convert an invariant **CIV

1

ROSR reduces the strength of an invariant **CIV by
converting it to a multiply operation.

RPST - Replacement statement processor

1

This routine processes the replacement statement.
It sets up and transfers to AT36 to convert to
tag-operator format.

If array bounds checking is in effect and the
left-hand side of the replacement statement is an
array, RPST sets up for OP02 to do the actual bounds
checking.

RSTB - Restore table pointers

1,2

RSTB restores a dynamic table pointer to a previous
state given the current and previous pointers.

RTC - Real-time clock

End of compilation

This routine calculates compile time and formats the
logfile message.

5-61 B-03

ROUTINE:

PASS:

DESCRIPTION:

I
ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-0017

RTST - RETURN statement processor

1

RTST processes the RETURN statement.

RVLR - Restore value to VL register

2

RVLR restores the value of the VL register.

RWST - REWIND statement processor

1

This routine processes the REWIND statement. RWOl
is common for REWIND, ENDFILE, and BACKSPACE.
Subroutines at 1010 and 1020 are called and control
is passed to 1067 for final processing.

5-62 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-OOl7

SYMADD - Add symbol to cross-reference

1

SYMADD updates cross-reference tables TBU and TBV.

SYTB - Print Symbol Table

2

SYTB prints out the Symbol Table in either the short
form or the full cross-reference form, if requested.

TFBK - Transfer between sub-blocks in a conditional
loop

2

TFBK controls compilations of various sub-blocks in
a conditional vector loop. TFBK inserts a transfer
around a block and the definitions for the generated
statement numbers of the loop. TFBK replaces the
statement number definitions in a second block with
the generated statement numbers.

TPRU - Tally PR usage

2

TPRU makes a list of PRs to be used after the end of
the instruction group.

5-69 B-02

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

SM-OOI7

TRAN - Do type conversion

2

This routine compiles code for type conversion. If
the two operands are not the same type, TRAN
generates code converting the operand of lowest type
to match the code of the higher type operand.

TRUN - Truncate after each floating-point operation

2

TRUN compiles code to do truncation after each
floating-point operation, if TRUNC=nn is specified.

UCIV - Udpate CIV value

2

UCIV computes the value of a constant increment
variable (CIV) for the current iteration of a loop.

UDCI - Update conditional CIV value

2

UDCI computes the value of a constant increment
variable (CIV) defined in prior conditional code.

VCTL - vector loop control

2

This routine provides vector loop control.

5-70 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

• SM-0017

VEXX - VECTOR/NOVECTOR directive processor

1

VEOO processes the VECTOR compiler directive. VEOl
processes the NOVECTOR directive.

VLAN - Vector loop analysis

2

VLAN analyzes the loop for vector hazards such as
vector temporaries defined in conditional code,
transfers out of the loop, and dependencies.

WRST - WRITE statement processor

1

This routine processes WRITE statements. It sets
unit to 101 for the short form of WRITE and branches
to lOST.

XCOO - Execute code

1

This routine interpretively executes the code
compiled by CXOO for constant expressions.

5-71 B-03

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE:

PASS:

DESCRIPTION:

• SM-0017

XXOO - Set of interpreters for instructions compiled
by CXOO

1

This routine consists of a set of interpreters for
the instructions compiled by CXOO. It is driven by
XCOO.

ZMEM - Clear a block of memory

1,2

ZMEM clears a block of memory. ZMEM is called to
clear the tag buffer between compilation units and
clear additional tag buffer space when the tag
buffer grows. ZMEM is also called to clear scratch
tag buffer space after restructuring IF statements.

5-72 B-03

eFT I/O 6

CFT converts a user program written in FORTRAN to the binary machine
language of the CRAY-l and CRAY X-MP Computer Systems. Under COS, the
compiler is loaded and begins processing when a CFT control statement is
encountered in a user job deck. Under UNICOS, the compiler is loaded and
begins processing when a CFT command line is received.

CFT requires two types of input: the user program to be compiled and a
user control statement or command that gives instructions for controlling
compilation. The output provided by CFT includes the user's compiled
FORTRAN program in relocatable binary and a printable record of the
compilation.

Figure 6-1 illustrates the I/O datasets used by CFT during compilation
under COS. The dataset names $IN, $OUT, and $BLD are defaults~ different
dataset names are used if they are specified in the CFT control statement.

Figure 6-2 illustrates the I/O files used by CFT during compilation under
UNICOS. The file names filename.f, filename.l, and filename.o are
defaults~ different file names are used if they are specified in the CFT
command.

6 .1 INPUT TO CFT

A user's FORTRAN program submitted to CFT must comply with certain
program specifications. The syntactic and notational guidelines outlined
in the CRAY-l FORTRAN (CFT) Reference Manual must be observed.

A user may select compiler options through the CFT control statement or
command and through use of compiler directives. (Refer to the CRAY-l
FORTRAN (CFT) Reference Manual for descriptions of both the CFT statement
and CFT directives.)

SM-0017 6-1 B-03

6.2 OUTPUT FROM CFT

The output obtained from CFT is dependent on the options selected by the
user. The principal output obtained is the compiled FORTRAN program in
relocatable form. Optional output consists of a printable record of the
compilation, including the FORTRAN source code, the assembly language
equivalent generated by CFT, the cross-reference lists, the Debug Symbol
Table, and more.

,---l
I I
I $CFTLMl I
I I
L __ _

$IN

$OUT

r---l /-- ,
I I / \
I $IN ~ CAL \
I 1\)
L __ ---.1 "

pseudo
CAL
dataset

$BLD

$FTLIB

~----~EXECUTABLE

PROGRAM

\"12 A

Figure 6-1. I/O Datasets Used During Compilation Under COS

SM-0017 6-2 B-03

I

,----, '----l --

I I / "-
I I I \

I Ipmkq,otmp I I filename. f I---l CAL I $FTLIB

I I I I
\ I
\ /

L _____ L ____ -.J "- /

filename. f I---~ filename.o r---~ r--~~EXECUTABLE

PROGRAM

filename. 1
pseudo
CAL file
filename.s

',"02

Figure 6-2. I/O Files Used During Compilation Under UNICOS

6.3 I/O DATASETS/FILES

As many as five I/O data sets or files are in use during compilation.
These are:

• The text input, default $IN under COS, default filename.f under
UN ICOS

• The source output listing, default $OUT under COS, default
filename.l under UNICOS

• The binary load-and-go module, default $BLD under COS, default
filename.o under UNICOS

• The pseudo-CAL output (if requested by the user), default
filename.s under UNICOS

• A scratch dataset or file used by the LOOPMARK utility (if
requested by the user), default $CFTLMI under COS, default
lpmk%tmp under UNICOS

SM-0017 6-3 B-03

After cracking the CFT control statement or command, CFT opens the
datasets or files it will need, using system default parameters. If the
datasets or files are already open, the system ignores the redundant OPEN
request.

The compiler references a set of library routines to aid the user in
manipulating dataset or file buffers. These logical I/O routines do all
the driving of the buffers, make the system calls to fill the buffers,
and keep track of the IN and OUT pointers. The I/O routines read or
write strings of words or characters and make the system calls that allow
physical I/O to be transparent to the user.

CFT first writes out the generated code in binary to a dataset or file.
This is used as input to the loader LDR or SEGLDR. Using the FORTRAN
support library $FTLIB, the loader produces an executable program version
of the information in the binary file.

CFT also produces a source listing containing a copy of the source input,
compiler messages, and other information supplied by the compiler.
Optionally, the user can also obtain a pseudo-CAL listing of the code in
a form almost completely acceptable to the assembler. This allows the
user to manually optimize portions of the code using CAL.

eFT uses the standard $SYSLIB routines $RCW and $WOW to perform all I/O.

SM-OOI7 6-4 B-03

I

DEBUGGING AIDS C

The organization of CFT generally allows errors to be isolated. This
appendix gives some information and methods that may be useful in
debugging code.

Because CFT is almost completely reinitialized at the start of each
program unit compilation, it is highly unlikely that a compilation bug in
one routine was caused by compiler failure in a previous routine.

During compilation, CFT makes two passes through the source code.

PASS 1

Pass 1 reads the input deck, translating it into an internal notation,
and then produces the source listing. Any syntax errors detected are
listed immediately after the line in error. Generally, Pass 1 bugs can
be reproduced by combining the line causing the error with any
declaratives that refer to variables used in that line. The statements
preceding or following usually have no effect on syntax bugs1 an
exception to this includes bugs related to blocking sequences
(DO-CONTINUE or IF-ENDIF).

PASS 2

Pass 2 is the code generation pass. The optimizer breaks the program
unit into code blocks and processes these blocks one at a time.
Generally, if CFT makes an error in one block, all of the other blocks
can be deleted from a test program and CFT will still fail.

An easy way to determine the block structure of a routine is to use the
ON=B option on the COS CFT statement, or the -e b option on the UNICOS
CFT command. This procedure is especially useful if the error is an
operand range error occurring during compilation.

8M-DOl7 C-l B-D3

I

The method eFT uses to divide a program unit into code blocks is
relatively straightforward. A code block begins either:

• with a statement that has a label referenced elsewhere in the
program unit, or

• At an entry statement, or

• After a loop ends.

A code block ends just before the next one begins or on a statement that
causes a backward branch to the start of the current block.

Some I/O statements that have unusual side effects also cause a new block
to start. Examples are NAMELIST and BUFFER IN. Also, IF statements
often force the start of a block because they implicitly jump around code.

The block that immediately precedes an innermost DO loop is usually
considered to be part of the DO-loop preamble for optimization purposes.

Pass 2 bugs generally consist of:

• Variables or intermediate results being saved in B or T registers
across subroutine calls by mistake, or

• Calculations being mistakenly removed from a DO loop, or

• Loop quantities not being properly saved for relooping.

SM-OOI7 C-2 B-03

INDEX

ABLK (analyze block)
description, 5-2
main driver Pass 2, 3-2
searches for active statement in field,

3-3
used in scheduling, 3-9

ABRA (analyze branch statements), 5-3
ACAL (assemble alphabetic character

string), 5-3
ACAN (assemble alphanumeric character group)

assemble symbol name, 2-12
description, 5-3

ACGR (assemble general character string),
5-3

ACNU (assemble numeric character string),
5-3

Active label, 1-6, 3-2
Actual arguments, 1-5
Add symbol to cross reference (SYMADD), 5-69
Address

index, 5-37
insert in TBY (IATY), 5-39

ADEP (analyze dependencies)
builds

TBPD, 3-3
TBY, 3-4, 4.TBY-l

description, 5-4
double loop, 3-4

Adjust block for external entries (EBXS),
5-26

AIBF (analyze internal block flow), 5-5
Alternate returns, 5-49
Ambiguous dependencies, 1-6, 3-4
Analyze

block (ABLK)
description, 5-2
main driver Pass 2, 3-2
searches for active statement field,

3-3
branch statements (ABRA), 5-3
dependencies (ADEP)

builds TBY, 3-4, 4.TBY-l
checks for dependency in arrays, 3-4
description, 5-4
double loop, 3-4

internal block flow (AIBF), 5-5
register usage (ARUS), 5-5

Argument
list, 5-14
tags, dummy, 4-9, 5-49

Arguments used in intrinsic function
processing, 2-15, 2-16

Arithmetic statement function definition
processor (SFST), 5-64

SM-0017 Index-l

Array
Bounds Checking Table (TBO), 4.TBO-l
processed in DCLR, 5-22
references scanned by EAFR, 3-15
subscript evaluation, 2-12

Array Table (TBA)
DCLR makes entries in, 5-22
description, 4.TBA-l
index, 4.TBA-l, B-2

ARUS (analyze register usage), 5-5
Assemble

alphanumeric character group (ACAN)
assemble symbol name, 2-12
description, 5-3

character string (ACAL, ACAN, ACGR,
ACNG), 5-3

Tag Buffer (AT xx)
description, 5-6
expression handler, 2-11

Assign
loop boundaries (ASVM), 5-6
short-loop registers (ASVL), 5-5
statement processor (ASST), 5-5

Assignment statement
define variables and array elements,

2-14
processing, 2-14

ASST (assign statement processor), 5-5
ASVL (assign short-loop registers), 5-5
ASVM (assign loop boundaries), 5-6
ATxx (assemble Tag Buffer)

description, 5-6
determines end of statement, 2-12
expression handler, 2-11
process subscripts and expressions, 2-14

BACKSPACE statement processor (BKST), 5-7
BDST (BLOCK DATA statement processor), 5-7
Begin compilation (BGIN), 5-7
BFIRST memory word, 3-10
BFST (BUFFER IN/BUFFER OUT statement

processor), 5-7
BGIN (begin compilation)

description, 5-7
initialization, 2-1, 2-2

Binary
file

Debug Symbol Table written to, 3-11
LTND writes loader tables to, 3-11
relocatable, 6-1

search, C-2
BKST (BACKSPACE statement processor), 5-7

B-03

Blank
common

CBB location, 1-8
TGB location, 1-10

count (BLCN), 5-8
fill a word (BLFL), 5-8

BLCN (blank count), 5-8
SBLD, as binary load-and-go dataset, 6-2
BLFL (blank fill a word), 5-8
Block

boundary, 5-2
common, 4.TBX-l
program, 4.TBX-l

BLOCK DATA statement processor (BDST), 5-7
Block Definition Table (TBBK)

description, 4.TBBK-l
initialized with LWA+l=FWA, 3-2

Block Relocation Table (BRT)
generated in TBR

description, 4.TBR-l
entries received from LTGN, 3-11

BOFG (check branches out of loop), 5-8
Boundary

block, 5-2
loop, 1-6, 3-2
subprogram, 1-6

B-register Associates Table (TBBR), 4.TBBR-l
BRT (Block Relocation Table)

generated in TBR, 4.TBR-l
BTO (convert binary value to ASCII decimal

value), 5-8
BTLIM memory word, 3-10
BTSIZE, 0-3
BUFFER IN/BUFFER OUT statement processor

(BFST), 5-7
Buffers, CFT instruction, E-l
Build

Debug Symbol Table (DETB), 5-23
loader tables (LTGN)

description, 5-44
processing, 3-10

CADR (compile address), 5-8
CADW (compile dummy argument address), 5-9
Call-by-value Reference Table (TBFR),

4.TBFR-l
CALL statement

compiled, 4.TBCALL-l
handled by CBLK, 3-7
I/O operations converted to, 2-13
processor (CLST), 5-15
TBCALL restores T register variables

after a, 4.TBCALL-l
Calling sequence, non-stack, 5-50
Calls

data processing, 2-13
final, 2-13
initial, 2-13

CARD (crack CFT control statement)
collects options, 2-2
description, 5-9
sets

default values, 2-2
register indicator bits, 2-2

SM-0017 Index-2

card reader driver, 1-3, 2-2
CBLK (compile block)

calls OLEV, 3-7
description, 5-9
handles CALL statements, 3-7
intermediate code driven by, 3-7
uses TBX, 4.TBX-l

CCAT (compile concatenation), 5-10
CCLA (construct character operand address),

5-10
CCLO (convert character constant), 5-10
CCRS (convert conditional replacement

statement), 5-10
CCTB (convert character constant operand),

5-11
COIR (compiler directive processor), 5-11
CDIR$ ROLL, 5-25
CDPR (compiler directive processor), 5-11
CDSP (code and data separation), 5-12
CEXX (check EQUIVALENCE overlap), 5-12
CEXP (constant expression evaluation), 5-12
CFBI (correct forward and backward indices),

5-12
CFT

command, 1-3
compiler loaded for, 1-8
error processing options in, 2-2
read by CARD routine, 2-2

control statement, 1-3
compiler loaded for, 1-8
error processing options in, 2-2
read by CARD routine, 2-2

OUMP (post mortem debugger), 4-3
instruction buffers, E-l
memory organization

description, 1-8
flow, 1-9

Character
buffer (CHB)

at low end of blank common, 1-8
holds one FORTRAN statement, 2-2

functions, 5-49
Length Table (TBCLEN), 4.TBCLEN-l
set, A-I

CHARACTER statement processor (CHST), 5-13
CBB (character buffer)

at low end of blank common, 1-8
holds one FORTRAN statement, 2-2

Check
branches out of loop (BOFG), 5-8
EQUIVALENCE overlap (CExx), 5-12
function arguments for special cases

(SPFR), 5-66
identifier names (CIDN), 5-13
register assignment (CRAR), 5-17
triad type (CTTY), 5-20

CRST (CHARACTER statement processor), 5-13
CION (check identifier names), 5-13
CIV (constant increment variable)

analysis, 4.TB2-1
examined for vectorization, 3-5
in a replacement statement, 3-3
incrementation, 3-6
load value, 5-47

B-03

CIV (constant increment variable)
(continued)

marked, 3-3
operators allowed, 3-3

CKRF (examine IF statements), 5-13
tCL Text Table (TBCLTXT), 4.TBCLTXT-l
CLAT (process external function and

subroutine calls), 5-13
CLCF (process external function and

subroutine calls), 5-13
Clear

a block of memory (ZMEM), 5-72
assigned registers at end of loop

(CRRG), 5-18
CLGA (process external function and

subroutine calls), 5-13
CLOF (process external function and

subroutine calls), 5-13
CLOG (process external function and

subroutine calls), 5-13
CLOS (CLOSE statement processor), 5-15
CLOSE statement processor (CLOS), 5-15
Close up ranks (CRNK), 5-17
CLRS (process external function and

subroutine calls), 5-13
CLST (CALL statement processor), 5-15
CLSZ (process external function and

subroutine calls), 5-13
CLTG (process external function and

subroutine calls), 5-13
CMST (COMMON statement processor), 5-15
CNST (CONTINUE statement processor), 5-15
CNTB (convert constant to tag), 5-16
CNTD (convert constant to tag), 5-16
CNTG (convert constant to tag), 5-16
Code

and data separation, 5-12
block

analysis, 3-2
code generated for, 1-6
entry point, 1-6
exit point, 1-6
generated code listed, 1-10
identified and handled during Pass 2,

1-5, 1-6
optimizer breaks program into, C-l,2
PCON cleans up subscripts within, 3-4
vector analysis of, 1-6

generation
in Pass 2, C-l

generator an9 optimizer, 1-6
scheduling (SKED)

description, 5-65
schedule instructions, 3-9
TBY built for, 3-4
uses TBY, 4.TBY-l

Code-and-result tag, 5-37
Comment cards, card reader driver checks

for, 1-3, 2-2
Common

and Equivalence/Dummy Argument Address
Table (TBP), 4.TBP-l

Band T register definitions, B-8

8M-00l7 Index-3

Common (continued)
block

attribute entry (COMTAG), 5-38
base pseudo register, 5-36
table, 3-11

syntax processor
definition, 2-6
STTP transfers to, 2-4

task, block base pseudo register, 5-38
COMMON statement processor (CMST), 5-15
Compare operands for equality (CPOP), 5-16
Compile

address (CADR), 5-8
block (CBLK)

calls OLEV, 3-7
description, 5-9
handles CALL statements, 3-7
intermediate code driven by, 3-7
uses TBX, 4.TBX-l

concatenation (CCAT), 5-10
constant expression (CXOO), 5-21
dummy argument address (CADW) , 5-9
scalar read (CSRD)

description, 5-18
uses TBY, 4.TBY-l

scalar write (CSWR)
description, 5-19
uses TBY, 4.TBY-l

statement number (CSNR), 5-18
triad (CTRI)

description, 5-19
generates code, 3-7

Compiler
directive processors (CDIR and CDPR) ,

5-11
in multiprogramming environment, 1-8
initialization, 2-1
loaded, 1-8
main loop, during Pass 1, 1-3
overview, 1-1
processing precedence, 2-11
table, 1-1

construction, 4-1
location, 1-1
memory locations, 4-2
storing, B-1

tables, 1-8
COMPLEX statement processor (CPST), 5-16
COMTAG (common block attribute entry), 5-38
Copy loop (CQYL), 5-17
Conditional vector loop, 1-6
Conjunctive Term Table (TBCT)

description, 4.TBCT-l
used by ADEP, 3-4

Constant
expression evaluation (CEXP), 5-12
increment variable (CIV)

analysis, 4.TBZ-l, B-1
examined for vectorization, 3-5
in a replacement statement, 3-3
incrementation, 3-6
marked, 3-3
operators allowed, 3-3

integer operations (CUXX), 5-20

B-03

Constant (continued)
load variable, 5-43
multiplied by dimension multipler, 3-4
PCON looks for, 3-4
Table (TBB)

converted constant entered into, 2-12
description, 4.TBB-l

Construct character operand address (CCLA),
5-10

Continuation cards, card reader driver
checks for, 1-3, 2-2

CONTINUE statement processor (CNST), 5-15
Control

card cracking routine (CARD)
collects options, 2-2
sets default values, 2-2
sets register indicator bits, 2-2

statement parameters, 1-3
Conventions, 4-8
Convert

an invariant **CIV (ROSR), 5-61
binary value to ASCII decimal value

(BTD), 5-8
character

constant (CCLO), 5-10
constant operand (CCTB), 5-11

conditional replacement statement
(CCRS), 5-10

constant
tag to value (CVAL), 5-20
to tag (CNTB, CNTD, CNTG), 5-16

COPR (returns and enters calculations into
TBW), 5-16

Correct forward and backward indices
(CFBI), 5-12

COS operating system, 1-1, 6-1
CPOP (compare operands for equality), 5-16
CPST (COMPLEX statement processor), 5-16
CQYL (copy loop), 5-17
Crack CFT control statement (CARD), 5-9
CRAR (check register assignment), 5-17
CRAY Assembly Language (CAL), 1-1
CRAY-l

CFT executes under, 1-1
FORTRAN compiler (CFT), 1-1
Operating System (COS), 1-1

CRMV (issue a register transfer), 5-17
CRNK (close up ranks), 5-17
Cross-reference map, DO-loop table printed

on, 5-23
Cross Reference Overflow Table (TBV),

4.TBV-l
CRRG (Clear assigned registers at end of

loop), 5-18
CRVR (process vector recursion), 5-18
CSNR (compile statement number), 5-18
CSRD (compile scalar read)

description, 5-18
uses TBY, 4.TBY-l

CSWR (compile scalar write)
description, 5-19
uses TBY, 4.TBY-l

CTRI (compile triad)
description, 5-19
generates code, 3-7

SM-00l7 Index-4

CTTY (check triad type), 5-20
cuxx (constant integer operations), 5-20
CVAL (convert constant tag to value), 5-20
CXOO (compile constant expression), 5-21

DAST (DATA or NAMELIST statement
processor), 5-21

DATA or NAMELIST statement processor
(DAST), 5-21

DATA statement
entries made in TSB, 2-17
processed in two steps, 2-10
processor (DPOO), 5-25

Dataset Parameter Area, 1-1
Datasets

binary load-and-go, 6-2
I/O, 6-2
pseudo-CAL output, 6-2
source output, 6-2
text input, 6-2

DBLE (double-precision operator processor),
5-21

DBST (DOUBLE or DOUBLE PRECISION statement
processor), 5-22

DCLR (declarative processor)
description, 5-22
DMST sets up for, 5-23

DCST (DECODE statement processor), 5-22
DDXX (implied DO processor), 5-23
Debug Symbol Table

built by DETB, 5-23
created, 3-11
specified on CFT control statement,

4.TBI-l
Debugging aids

for Pass 1, C-l
for Pass 2, C-l

Declarative
processing, end of, 4.TBR-l
processor (DCLR)

description, 5-22
DMST sets up for, 5-23

DECODE statement processor (DCST), 5-22
Default values

CFT presets, 1-3
unspecified CFT statement options are

set to, 2-2
Defined Variable Table (TBZ)

ADEP takes definition entry from, 3-4
description, 4.TBZ-l
flag set for CIV, 3-3
initialized with LWA+l=FWA, 3-2

Definition entry
description, 3-4
followed by reference entry, 3-4
taken from TBZ, 3-4

Definitions, register, B-7, B-8
Dependencies

ADEP looks for, 3-4
ambiguous, 1-6
vector analysis, 1-6

Dependent Reference Table (TBY)
built for

instruction scheduler, 3-4
load/store generation, 3-4

B-03

Dependent Reference Table (TBY) (continued)
description, 4.TBY-l
initialized with LWA+l=FWA, 3-2

Descriptions
field, format, 4-8.1
table, 4-7

DETB (build Debug Symbol Table), 5-23
Dimension

extent, 5-37
lower bound, 5-37
multiplier, 3-4

DIMENSION statement processor (DMST), 5-23
Disjunctive Term Table (TBDT), 4.TBDT-l
DLTB (print DO-loop table), 5-23
DMST (DIMENSION statement processor), 5-23
DO-loop

innermost, 1-6
I-line, 2-15, 5-24, 5-68
preamble, C-2
process implied, 2-13
replacement (DORP), 5-24
termination

check, 2-15
sequence, 2-15
STTR detects, 5-68

unrolling (DOUN), 5-24
DO-loop Table (TBD)

description, 4.TBD-l
end processing, 3-11

DO statement
control variable, 3-3
generate table entries, 1-3
processor (DOST)

description, 5-24
processes implied DO-loops, 2-13

DORP (DO-loop replacement)
called by STTR, 2-15
description, 5-24

DOST (DO statement processor)
description, 5-24
processes implied DO-loops, 2-13

DOUBLE or DOUBLE PRECISION statement
processor (DBST), 5-22

Double-precision operator processor (DBLE),
5-21

DOUN (DO-loop unrolling), 5-24
DPOO (DATA statement processor), 5-25
DSF (variant subscript flag), 3-5
Dummy argument

in FUNCTION and SUBROUTINE statements,
2-10

statement function reference, 1-5
tags, 4-9, 5-49

Dummy Argument Address Table (TBP), 4.TBP-l

EAFR (examine array or function reference),
3-5, 5-25

EBSN (process statement number definition
within block), 5-26

EBXR (examine block for external
references), 5-26

EBXS (adjust block for external entries),
5-26

ECNT (enter conjunctive term), 5-27

8M-0017 Index-5

ECNU (enter simple term), 5-27
ECST (ENCODE statement processor), 5-27
EDJT (enter disjunctive term), 5-27
EDJU (enter test for differing CIVs) , 5-28
EFST (ENDFILE statement processor), 5-28
EHOL (enter Hollerith string), 5-28
EIDL (examine implied DO-loop list), 5-28
ELSE and ELSE IF statement processor

(IELS), 5-39
ELWD (enter last word)

calls MTAB, 4-4
description, 5-29
makes entries to TBT, 4.TBT-l
sequential table entries made by, 4-4

EMA see extended memory advertising
EMPR (error message processor), 5-29
ENCODE statement processor (ECST), 5-27
End-of-file encountered, 1-5
END processing during Pass 2, 1-5, 2-16,

3-11
END statement

also see process END statement
encountered

Pass 1, 1-5
Pass 2, 1-5

processing, 1-6, 2-16, 4.TBQ-l
processor (ENST), 5-29
special case treatment, 2-3

ENDFILE statement processor (EFST), 5-28
ENDIF statement processor (lEND), 5-40
ENST (END statement processor)

assigns TBT addresses, 2-17
called, 2-16
copies intermediate code, 2-17
description, 5-29
generates

call to $END, 2-16
RETURN, 2-16

resolves equivalences, 2-17
Enter

conjunctive term (ECNT), 5-27
disjunctive term (EDJT), 5-27
Hollerith string (EHOL), 5-28
last word (ELWD)

calls MTAB, 4-4
description, 5-29
makes entries to TBT, 4.TBT-l
sequential table entries made by, 4-4

new sub-block (ESBK), 5-31
simple term (ECNU), 5-27
statement number reference (ESNL), 5-32
Symbol Table (ESTB)

description, 5-32
entry procedure, 4-6

TBT index into table KTNOBT (NOBTVAR),
5-48

test for differing CIVs (EDJU), 5-28
Entry/Exit Address Table (TBEE), 4.TBEE-l
ENTRY statement, 1-6, 3-2
ENTRY statement processor (NTRY), 5-48
EQST (EQUIVALENCE statement processor), 5-30
EQUIVALENCE statement

processing, 2-8
processor (EQST), 5-30
stored in TBP, 4.TBP-l

B-03

Error message processor (EMPR), 5-29
ERTX (invalidate old TBX entries), 5-31
ESBK (enter new sub-block), 5-31
ESNL (enter statement number reference),

5-32
ESTB (enter Symbol Table)

description, 5-32
entry procedure, 4-6

ETBX (make TBX entry), 5-32
Evaluate operand (EVOP), 5-33
EVOP (evaluate operand), 5-33
Examine

array or function reference (EAFR),
3-5, 5-25

block for external references (EBXR),
5-26

IF statements (CKRF), 5-13
implied DO-loop list (EIDL), 5-28

Executable statements
converted to internal notation, 1-5
processing, 2-10
terminates through STTR, 2-15
three types, 2-12

Execute code (XCOO), 5-71
EXST (EXTERNAL statement processor), 5-33
Extended memory addressing, 2-17, 5-30
External

Library Tag Table (TBL)
description, 4.TBL-l
location in memory area, 1-8, 4-1

Reference Table (TBE)
description, 4.TBE-l
entries received from LTGN, 3-11

Relocation Table (XRT), TBE contains,
4.TBE-l

EXTERNAL statement processor (EXST), 5-33

FCB (first card buffer), holds first line
of statement, 2-2

FIB (Final Instruction Buffer)
description, 3-10, E-l
formats, E-4

Field description format, 4-8.1
Final Instruction Buffer (FIB)

description, 3-10, E-l
formats, E-4

Find
last vector store (FLVS), 5-34
statement header (FSHD), 5-35
substring (FSUB), 5-36

First

Flag

card buffer (FCB), holds first line of
statement, 2-2

word address (FWA), printer word
contains, 1-8

generation mode, 4-11, B-2
mode, 4-11
parenthesis group type, 4-11, B-2
statement type, 4-11
TBT and Tag Buffer, 4-11
variant subscript (DSF), 3-5

FLVS (find last vector store), 5-34

SM-0017

FMST (FORMAT statement processor), 5-34
FNST (FUNCTION statement processor), 5-34
Force

compiler-generated variables onto stack
(FSTK), 5-35

pass instructions (LTFU), 5-44
FORMAT statement

parser (FPAR), 5-34
processor (FMST), 5-34
treated as special case, 2-3, 2-4

Formats
FIB, E-4
field description, 4-8.1
PIB, E-l
stack frame, D-l

FPAR (FORMAT statement parser), 5-34
Frames, stack, D-l
FRTG (locate argument tag), 5-35
FSHD (find statement header), 5-35
FSTK (force compiler-generated variables

onto stack), 5-35
FSUB (find substring), 5-36
Function

character, 5-49
processing, intrinsic, 2-15
reference vectorizable, 3-5
references checked by EAFR, 3-5
skeletons, 4.TBM-l
tag, internal, 2-16
tag checked for flag, 3-5
vector definition, 4.TBM-l

FUNCTION statement processor (FNST), 5-34
FWA (first word address), pointer word

contains, 1-8

GBAT (generate B to A register transfer
instruction), 5-36

GCBS (get cornmon block base pseudo
register), 5-36

GCRF (generate code-and-result tag), 5-37
GDEX (get dimension extent), 5-37
GDLB (get dimension lower bound), 5-37
Generate

Get

B to A register transfer instruction
(GBAT), 5-36

code-and-result tag (GCRF), 5-37
index address (GlXA), 5-37
loader tables, 3-10, 5-44
output table (OTBL), 5-52
pseudo CAL output (OUT XX) , 5-53
reductions and load secondary registers,

(GRLD), 5-38
reload of item from secondary register

(GRRL), 5-38
reset of secondary register (GRST),

5-38.1
save of recurrence variable (GRSV),

5-38.1
statement number (SNGN), 5-65

common block base pseudo register
(GCBS), 5-36

dimension extent (GDEX), 5-37

Index-6 B-03

Get (continued)
dimension lower bound (GDLB), 5-37
label definition (GLBD), 5-38
memory (GMEM), 5-38
stack base tag (GSBS), 5-38
task common block base pseudo

register (GTCB), 5-38
GIXA (generate index address), 5-37
GLBD (get label definition), 5-38
GMEM (get memory), 5-38
GO TO statement processor (GTST), 5-39
GRLD (generate reductions and load secondary

register), 5-38
GRRL (generate reload of of item from

secondary register), 5-38
GRST (generate reset of secondary register),

5-38.1
GRSV (generate save of recurrence variable),

5.38.1
GSBS (get stack base tag), 5-38.1
GTCB (get task common block base pseudo

register), 5-38.1
GTST (GO TO statement processor), 5-39

Hard (real) register
assignment, 1-6, 3-9
contrasted to pseudo register, 3-8
pseudo converted to, 3-9

Hardware instructions
packed, transferred to loader text

tables, 1-6
HOLD (Hollerith data assembler), 5-39
Hollerith data assembler (HOLD), 5-39

IATY (insert address in TBY), 5-39
IELS (ELSE and ELSE IF statement

processor), 5-39
lEND (END IF statement processor), 5-40
IF statement processor (IFST), 5-40
IFST (IF statement processor), 5-40
IGXF (intergroup transfer), 5-40
IMPLICIT statement processor (IMST), 5-40
Implicit type determiner (ITYP), 5-42
Implied

DO-loop name list, search (SIDL), 5-65
DO processor (DDXX) , 5-23

IMST (IMPLICIT statement processor), 5-40
$IN, as text input dataset, 6-2
Index address, generate (GlXA), 5-37
Indicator hits set by CATD routine, 2-2
INFN

intrinsic function
expander, 5-41
generator, 3-7

Initialize
loader table (LTST), 5-44
register times (RBRG), 5-59

Input/output
CFT, 6-1
datasets, 6-2
statements, 2-13

INQUIRE statement processor (OPEN), 5-52

SM-0017 Index-7

Insert
address in TBY (IATY), 5-39
parentheses (IPRN), 5-41
subscripted reference (ISRF), 5-42

Instruction
buffers, CFT, E-l
hardware, 1-6
primary level, 4.TBX-l
stored, 3-7

Integer divide processor (LDIV), 5-43
Intergroup transfer (IGXF), 5-40
Intermediate

cooe
code block translated to, 1-6
generated, 3-6, 3-7

tag buffer (TGB)
description, 4.TGB-l
executable statement put into, 2-10
location in memory area, 1-10
tag entered into, 2-12

Internal
buffer, builds statement, 2-2
function tag, 2-16
notation, executable statement

converted to, 1-5
statement function facility, compiles

library calling sequences, 2-13
Interpreters for CXOO (XXOO), 5-71
Intrinsic function

CBLK checks for, 3-7
expander (INFN), 5-41
generator (INFN), 3-7
processing, 2-15
references to, 1-6
TBL contains names of, 4.TBL-l

Intrinsic Function Attribute Table (TBK),
4.TBK-l

Intrinsic Function Name Table (TBJ)
description, 4.TBJ-l
use in intrinsic function processing,

2-15
Intrinsic Type Table, type determined from,

2-10
Invalidate

I/O

old TBX entries (ERTX), 5-31
TBX entries (IVTX), 5-42

buffer, location in user field, 1-8
statement processor (lOST), 5-41

lOST (I/O statement processor)
DCST sets up for, 5-22
description, 5-41
ECST sets up for, 5-27
generates entries in TBS and TBT, 2-13
processes I/O list, 2-13

IPRN (insert parentheses), 5-41
IRST (process INTRINSIC statement), 5-42
ISRF (insert subscripted reference), 5-42
Issue

register transfer (CRMV), 5-17
store of vector temporary (RBVU) , 5-59

ITYP (implicit type determiner), 5-42
IVTX (invalidate TBX entries), 5-42

B-03

Job Communication Block (JCB), CFT
statement stored in, 2-2

Label
active, 1-6
definition, get (GLBD), 5-37

Label Usage Table (TBLB)
description, 4.TBLB-l
initialized with LWA+l=FWA, 3-2

Language, binary machine, 6-1
Last word address (LWA), pointer word

contains, 1-8
LBLK (locate sub-block definition), 5-43
LDIV (integer divide processor), 5-43
Lexical entity, tag for, 1-5
LGCL (logical and relational operator

processor), 5-43
LGST (LOGICAL statement processor), 5-43
Library

calling sequence, compiled, 2-13
functions, calls to, 1-6
Macro Table (TBM)

description, 4.TBM-l
location in memory area, 1-8, 4-1

List
argument, 5-14
output, 1-3

Listing file, 2-2
LLIV (load CIV value), 5-43
LMRK (LOOPMARK processor), 5-44
Load/store overlap check (LSOV), 5-44
Load

CIV value (LLIV), 5-43
store overlap move (LSOM), 5-44

Loader Program Description Table (TBH)
description, 4.TBH-l
ENST builds, 2-17

Loader table
as output from Pass 2, 1-1
closed and written to binary file

(ENST), 5-30
generated, 1-5, 3-10
processed during END statement

processing, 2-10
saved in memory, 1-10

Loader table generator (LTxx)
builds loader tables, 3-10
description, 5-44

Loader's Text Table (TXT)
contained in TBB, 4.TBB-l
DATA statement entries made in, 2-17
description, 4.TBB-l

Load/store generation routines
TBY built for, 3-4
vector, 4-4

Locate
argument tag (FRTG), 5-35
sub-block definition (LBLK), 5-43

LOCLEN, D-3
Logical

and relational operator processor
(LGCL), 5-43

I/O routines, 6-2
LOGICAL statement processor (LGST), 5-43

SM-OOl7

Loop
boundary, 1-6, 3-2
conditional vector, 1-6
made, control transferred to VCTL, 3-6
scalar, 1-6
vector, 1-6

LOOPMARK processor (LMRK), 5-44
LSOM (load store overlap move), 5-44
LSOV (load/store overlap check), 5-44
LTXX (loader table generator)

builds loader tables, 3-10
description, 5-44

LTFU (force pass instructions), 5-44
LTGN (build loader tables)

description, 5-44
processing, 3-10

LTND (terminate loader tables)
builds header word for TBR, TBB, 3-11
description, 5-44
processing, 3-10

LTST (initialize loader table), 5-44
LWA (last word address), pointer word

contains, 1-8

Main driver
Pass 1, STTP branch for expansion

processing, 2-15
Pass 2, ABLK routine, 3-2

Make TBX entry (ETBX), 5-32
Manage memory (MMEM)

description, 5-46
memory move procedure, 4-4

MAP (map block names and lengths), 5-45
Map block names and lengths (MAP), 5-45
Mapping of registers by RASN, 3-10
MAXTAGS, 5-25
MCEX (special case handling for scheduler),

5-45
Memory

bank conflicts, 4-6
get (GMEM), 5-37
high, 4-4
low, 4-4
management routine, 4-4
move, 4-3
request, 1-10
words

BFIRST, 3-10
BTLIM, 3-10

MIAR (change variables to short integers),
5-45

MMEM (manage memory)
description, 5-46
memory move procedure, 4-4

Mode

Move

stack, 5-14, 5-35, D-l
static, 5-14

operands (MVOP), 5-46.1
S to A register (MSAR) , 5-46
table (MTAB), 4-4, 5-46

MSAR (move S to A register), 5-46
MSST (save store preceding vector search

branch), 5-46

Index-8 B-03

MTAB (move table), 4-4, 5-46
Multiprogramming environment, 1-8
Multipurpose scratch registers, B-6
MVOP (move operands), 5-46.1

NAMELIST statement processor (NLST), 5-47
NARG (return number of arguments), 5-46.1
$NICV (numeric input conversion), converts

ASCII to CRAY internal, 2-12
NICV (numeric input conversion), 5-47
NLST (NAMELIST statement processor), 5-47
NMTB (write statement number table), 5-47
NOBTVAR (enter TBT index into table

KTNOBT), 5-48
NOCV (numeric output conversion), 5-48
Non-stack calling sequence, 5-50
NTRY (ENTRY statement processor), 5-48
Numbers, register, B-4
Numeric

constant, 2-12
input conversion

$NICV, converts, ASCII to CRAY
internal, 2-12

NICV, 5-47
output conversion (NOCV), 5-48

OLEV (operator level)
called by CBLK, 3-7
description, 5-51
scans expressions for operators, 3-7

I-line DO-loop, 2-15, 5-24, 5-68
opxx (operator processor)

description, 5-52
expression handler, 2-11
maintains parenthesis stack, 2-12
process subscripts and expressions, 2-14
sets flags, 2-12

OPEN (OPEN, CLOSE, and INQUIRE statement
processor), 5-52

OPEN, CLOSE, and INQUIRE statement
processor (OPEN), 5-52

OPEN statement processor (OPEN), 5-52
Operation code, requires pseudo register

assignment, 1-6
Operator

converted to precedence code, 2-12
level (OLEV)

called by CBLK, 3-7
description, 5-51
scans expressions for operators, 3-7

one-word entry, 2-11
processing precedence of, 1-5
processor (Opxx)

description, 5-52
expression handler, 2-11

Optimizer with code block, 1-6, 3-2
OTBL (output table generator), 5-52
$OUT

as source output dataset, 6-2
line copied to, 2-3

OUT routine, 3-11
OUTxx (pseudo-CAL output generator), 5-53

8M-DDl7 Index-9

OUTBB (output BLOCK BEGINS), 5-53
Output

BLOCK BEGINS (OUTBB), 5-53
pseudo CAL, generator (OUTxx), 5-53
table generator (OTBL), 5-52

Overflow
area

TBBR acts as, 4.TBBR-l
TBTR acts as, 4.TBTR-l
TBWR acts as, 4. TBWR-l

table
for TBU, 4.TBU-l
for TBV, 4.TBV-l

Packed Equivalence Table (TBR) , 4.TBR-l
Page Number Table (TBPG)

description, 4.TBPG-l
saved, 2-2

PARAMETER statement processor (PRST), 5-57
Parentheses, insert (IPRN), 5-41
Parenthesis stock, maintained by OPxx,

2-12
Parsed operations

as triads, 1-6
parentheses forcing, 2-11

Parser, FORMAT statement (FPAR), 5-34
Pass 1

auxiliary tables produced during, 3-1
current statement storage, 1-8
end of, 1-5, 10
function of, 1-3, 2-1
general flow of, 1-2
goal of, 2-8
input to, 1-1, 2-1
intermediate text form, 1-10
output from, 1-1, 2-1
source listing produced, 1-10

Pass 2
code generation, C-l
function of, 1-5
general flow of, 1-7
input to, 1-1, 3-1
output from, 1-1, 3-1
parameters initialized for, 1-5
PIB replaces CBB and TGB, 1-10

PAST (PAUSE statement processor), 5-53
PAUSE statement processor (PAST), 5-53
PBLK (select and prepare compilation of next

statement)
called by CBLK, 3-7
description, 5-53

PCIV (process conditional CIVs),
5-54

PCON (promote constants)
description, 3-4, 5-54
looks for constants, array references,

3-4
PCST (process conditional store), 5-54
PDT (Program Description Table), generated

in TBH, 4.TBH-l
Permanent registers, B-6
PEXP (process exponent), 5-54
PGST (PROGRAM statement processor), 5-55
PHDL (print header line), 5-55

B-D3

PIB (pseudo instruction buffer)
actual code generated in, 3-2
format, E-l
replaces CBB and TGB, 1-10

PIST (PRINT statement processor), 5-55
PLOP (process loop dependencies), 5-55
Plus Dependency Table (TBPD)

built by ADEP, 3-3
description, 4.TBPD-l

PMRT (process memory reference time), 5-55
PMST (process memory set time), 5-56
PNST (POINTER statement processor), 5-56
Pointer

backward and forward, 2-15
for statement number, 3-2
to source and result, B-1
words to CFT tables, 1-8, 4-3, 4-4

POINTER statement processor (PNST), 5-56
Pointer Variable Table (TBC), 4.TBC-l
Postmortem debugger (CFTDUMP), 4-3
PPDP (process plus dependency), 5-56
PPGN (print page number list), 5-56
Print

DO-loop table (DLTB), 5-23
header line (PHDL), 5-55
page number list (PPGN), 5-56
Symbol Table (SYTB), 5-69

PRINT statement processor (PIST), 5-55
Process

conditional CIVs (PCIV), 5-54
conditional store (PesT), 5-54
END statement (ENST)

assigns TBT addresses, 2-17
called, 2-16
copies intermediate code, 2-17
description, 5-29
generates call to $END, 2-16
generates RETURN, 2-16
resolves equivalences, 2-17

exponent (PEXP), 5-54
external function and subroutine calls

(CLAT, CLCF, CLGA, CLOF, CLOG, CLRS,
CLSZ, CLTG), 5-13

INTRINSIC statement (IRST), 5-42
I/O statement (lOST)

DCST sets up for, 5-22
description, 5-41
ECST sets up for, 5-27
process I/O list, 2-13

loop dependencies (PLDP), 5-55
memory

reference time (PMRT), 5-55
set time (PMST), 5-56

plus dependency (PPDP), 5-56
secondary register clear (PSRC), 5-57
statement number definition within

block (EBSN), 5-26
tr iad (PTRI)

called by CBLK, 3-7
description, 5-57

vector recursion (CRVR), 5-18
Processing, intrinsic function, 2-15
Processor

arithmetic statement function
definition (SFST), 5-64

SM-OOI7 Index-IO

Processor (continued)
ASSIGN statement (ASST), 5-5
BACKSPACE statement (BKST), 5-7
BLOCK DATA statement (BDST), 5-7
BUFFER IN and BUFFER OUT statement

(BFST), 5-7
CALL statement (CLST), 5-15
CHARACTER statement (CHST), 5-13
CLOSE statement (CLOS), 5-15
COMMON statement eCMST), 5-15
compiler directive (CDIR and CDPR), 5-11
COMPLEX statement (CPST), 5-16
CONTINUE statement (CNST), 5-15
DATA statement (DPOO), 5-25
DATA or NAMELIST statement (DAST), 5-21
Declarative (DCLR), 5-22
DECODE statement (DesT), 5-22
DTIMENSION statement (DMST), 5-23
DO statement (DOST), 5-24
DOUBLE or DOUBLE-PRECISION statement

(DBST), 5-22
double-precision operator (DBLE), 5-21
ELSE and ELSE IF statement (IELS), 5-39
ENCODE statement (EesT), 5-27
END statement (ENST), 5-29
ENDFILE statement (EFST), 5-28
ENDIF statement (lEND), 5-40
ENTRY statement eNTRY), 5-48
EQUIVALENCE statement (EQST), 5-30
error message (EMPR), 5-29
exponentiation (PEXP), 5-54
EXTERNAL statement (EXST), 5-33
FORMAT statement (FMST), 5-34
FUNCTION statement (FNST), 5-34
GO TO statement (GTST), 5-39
IF statement (IFST), 5-40
IMPLICIT statement (IMST), 5-40
implied DO (DDxX), 5-23
integer divide (LDIV), 5-43
lOST (I/O statement), 5-41
logical and relational operator (LGCL),

5-43
LOGICAL statement (LGST), 5-43
NAMELIST statement (NLST), 5-47
OPEN, CLOSE, and INQUIRE statements

(OPEN), 5-52
operator (OPXX), 5-52
PARAMETER statement (PRST), 5-57
PAUSE statement (PAST), 5-53
POINTER statement (PNST), 5-56
PRINT statement (PIST), 5-55
PROGRAM statement (PGST), 5-55
PUNCH statement (PUST), 5-58
READ statement (ROST), 5-59
REAL statement (REST), 5-59
replacement statement (RPST), 5-60
RETURN statement (RTST), 5-61
REWIND statement (RWST), 5-61
SAVE statement (SAST, SA50) , 5-62
STOP statement (STST), 5-67
SUBROUTINE statement (SRST), 5-67
VECTOR/NOVECTOR directive (VExx) , 5-70

Program control statement, processing, 2-14
Program Description Table (PDT), generated

in TBH, 4.TBH-l

B-03

PROGRAM statement processor (PGST), 5-55
Program unit, 1-1

compiler reinitialized for, 1-8, 2-1
definition, 1-1
END processing for, 1-5
name, 4-6
process next, 1-6
start of, 1-3, 2-1, 2-2
TBBG and PBPN keep track of, 4.TBPG-l

Program Unit Name Table (TBPN)
description, 4.TBPN-l
entries in 6-bit ASCII, 4-6
maintained in sorted order, 4-3, 4-6
saved, 2-2
search, 4-6

Promote constants (PCON)
description, 3-4, 5-54
looks for constants, array references,

3-4
PRST (PARAMETER statement processor), 5-57
Pseudo instruction buffer (PIB)

actual code generated in, 3-2
format, E-l
intermediate code generated in, 3-7
replaces CBB and TGB, 1-10

Pseudo-CAL output generator (OUTXX), 5-53
Pseudo registers

assigned, 1-6
common block base, 5-36
converted to hard, 3-9
definition, 3-8
task common block base, 5-38

PSRC (process secondary register clear),
5-57

PTRI (process triad)
called by CBLK, 3-7
description, 5-57

PUNCH statement processor (PUST), 5-58
PUST (PUNCH statement processor), 5-58

RASN (register assignment)
converts pseudo to hard, 3-9, 3-10
description, 5-58
initialization (RBIN), 5-58

RBIN (RASN initialization), 5-58
RBLI (reissue bottom-load instructions),

5-58
RBMV (remove the inserted save from the

IF-block), 5-58
RBRG (initialize register times), 5-59
RBVT (schedule store of vector temporary),

5-59
RBVU (issue store of vector temporary), 5-59
RCCK (register chain check), 5-59
RDPT (remove duplicate terms), 5-59
RDST (READ statement processor), 5-60
Read next statement (RNXT)

compilation begins with, 2-2
description, 5-60

READ statement processor (RDST) , 5-60
Real (hard) registers, contrasted with

pseudo register, 3-8
REAL statement processor (REST), 5-60

SM-QOI7 Index-II

Real-time clock (RTC), 5-61
Record image buffer (RIB)

holds next card to be processed, 2-2
location in memory area, 1-8

Register
assigned, 1-5, 1-6, 3-9
assignment (RASN)

converts pseudo to hard, 3-9
description, 5-58

chain check (RCCK), 5-59
definitions, B-7, B-8
general purpose, B-1
hard (real), 3-8, 3-9, 3-10
index pseudo, 4.TBX-l
intermediate, B-1
multipurpose scratch, B-6
numbers, B-4
permanent, B-6
permanent secondary, B-7
primary, B-1
pseudo, 1-6, 3-8, 4.TBX-l
pseudo converted to hard, 3-9
secondary, B-6
secondary, volatile, B-6.l
short term scratch, B-6.l
temporary, B-6
temporary secondary, B-6
usage, B-1
Variables to Restore After a CALL Table

(TBCALL), 4.TBCALL-l
vector, 4-4, 4-6

Reissue bottom-load instructions (RBLI),
5-58

Remove duplicate terms (RDPT), 5-59
Remove the inserted save from the IF-block

(RBMV) , 5-58
Replacement statement processor (RPST), 5-61
REST (REAL statement processor), 5-60
Restore value to VL register (RVLR), 5-62
Restore table pointers (RSTB), 5-61
Return

alternate, 5-49
number of arguments (NARG), 5-46.1

RETURN statement processor (RTST), 5-62
Returns and enters calculations into TBW

(COPR), 5-16
REWIND statement processor (RWST), 5-62
RIB (record image buffer)

holds next card to be processed, 2-2
location in memory area, 1-8

RNXT (read next statement)
branched from STTR, 2-15
compilation begins with, 2-2
description, 5-60

ROSR (convert an invariant **CIV), 5-61
RPST (replacement statement processor), 5-61
RSTB (restore table pointers), 5-61
RTC (real-time clock), 5-61
RTST (RETURN statement processor), 5-62
Run-time test, 1-6
RVLR (restore value to VL register), 5-62
RWST (REWIND statement processor), 5-62

SAF (special processing) bit, 5-66

8-03

SAST, SA50 (SAVE statement processors), 5-62
SAVE statement processors (SAST, SA50), 5-62
Save store preceding vector search branch

(MSST), 5-46
Saved Variable Table (TBSV), 4.TBSV-l
SBLS (search backward, shift left, string),

4-5, 5-62
SBLT (search backward, shift left, table),

4-5, 5-62
SBMS (search backward, masked, string),

4-5, 5-62
SBOP (scan buffer for operator), 5-62
SBRS (search backward, shift right,

string), 4-5, 5-62
SBRT (search backward, shift right,

string), 4-5, 5-62
SBUF (scan buffer for match or end of

statement), 5-63
Scalar

loop, 1-6
temporary

located by SVEC, 3-5
VAF set to, 3-5

Scan
buffer

for match or end of statement
(SBUF), 5-63

for operator (SBOP), 5-62
for end of operand (SOPT), 5-66

Schedule store of vector temporary (RBVT),
5-59

Scheduling
code (SKED), 5-65
description, 3-9
in Pass 2, 1-6

SCILIB routine, 2-15
Scratch registers

multipurpose, B-6
short term, B-6.l

SDCO (suppress dead code), 5-63
SDPF (set Dependency flags), 5-63
SDPN (search double-precision function name

table), 5-63
Search

backward, 4-5, 5-62
double-precision function name table

(SDPN), 5-63
for Intrinsic Function Name Table

(SIN), 5-65
forward, 4-5, 5-64
forward for nonzero field (SFMN), 5-64
general purpose, 4-5
group for equality in string (SGES),

5-64
implied DO-loop name list (SIDL), 5-65
masked, 4-5, 4-6, 5-62, 5-64
normal, 4-5
sequential table, 4-5
sorted table (SSTB)

description, 5-67
technique, 4-6

table
backward (SBLS, SBLT, SBMS, SBRS,

SBRT), 5-62

8M-OOl7 Index-l2

Search
table (continued)

forward (SFLS, SFLT, SFMS, SFRS,
SFRT), 5-64

targets, 4-5
Secondary registers

description, B-6
temporary, B-6
volatile, B-6.l

Select and prepare compilation of next
statement (PBLK), 5-53

Separation of code and data (CDSP), 5-12
Separator

converted to precedence code, 2-12
I-word entry, 2-11

Sequence
calling, non-stack, 5-50
Number Table (TBSN), 4.TBSN-l
numbers initialized, 1-3, 2-2

Sequential Table
entries into, 4-4
FWA for, 4-4
released or collapsed, 4-5
searches, 4-5
space allocated for, 4-4

Set Dependency flags (SDPF), 5-63
Set of interpreters for instructions

compiled by CXOO (XXOO), 5-71
Set Vector Array flag (SVEC), 5-68
SFLS (search forward, shift left, string),

4-5, 5-64
SFLT (search forward, shift left, table),

4-5, 5-64
SFMN (search forward for nonzero field),

5-64
SFMS (search forward, masked, string), 4-'5,

5-64
SFRS (search forward, shift right, string),

4-5, 5-64
SFRT (search forward, shift right, table),

4-5, 5-64
SFST (arithmetic statement function

definition processor), 5-64
SGES (search group for. equality in string),

5-64
Short term scratch registers, B-6.1
SIDL (search implied DO-loop name list),

5-65
SIN (search for Intrinsic Function Name

Table (TBJ), 5-65
SKED (code scheduling)

description, 5-65
schedules instructions, 3-9
users TBY, 4.TBY-l

SNGN (statement number generator), 5-65
SOPT (scan for end of operand), 5-66
Source

code, 1-1
at low end of user field, 1-8
minor mention, 1-1

input dataset, 1-1
as input to Pass 1, 1-1

listing, 2-2

B-03

Source (continued)
program, 1-1

as output from Pass 1, 1-1
statements, 1-3

Special
case handling for scheduler (MCEX), 5-45
processing bit (SAF), 5-66

Special-case intrinsic function header
based on its arguments (SPFH), 5-66

SPFH (special-case intrinsic function
header based on its arguments), 5-66

SPFR (check function arguments for special
cases), 5-66

SPRN (suppress redundant parentheses
groups), 5-66

SRST (SUBROUTINE statement processor), 5-67
SSTB (search sorted table)

description, 5-67
technique, 4-6

Stack
base tag, get (GSBS), 5-38
frame format, D-l
mode, 5-14, 5-35, D-l
parenthesis, B-2
push-down pop up, B-2

Statement
buffer, statement copied into, 1-3
declarative, 2-8
executable, 1-3
function

definition in TBG, TBF, 2-15, 4.TBF-l
skeleton, 2-15, 4.TBF-l
translated, 1-5

Function Skeleton Table (TBF), 4.TBF-l
group numbers, in increasing order, 2-6
nonexecutable, 1-3, 2-8
number

assemble, 2-3
at beginning of code block, 3-3
deleted, 2-17
generator (SNGN), 5-65
linked with references, 2-17
location, 2-3
made-up, 3-3
pointer, 3-2
processing, 3-10
programmer-defined, 3-3
STTR examines, 2-15
table, 3-11, 5-47
TL field, 4-11

processing te~minator (STTR)
description, 5-68
minor mention, 2-12
terminate executable statement, 2-14

processor
common syntax, 1-4
form of names, 2-7
non-executable, 2-9
terminate on close parenthesis, 2-11
unique, 1-3

required order, 2-7
terminated (STTR), terminate executable

statement, 2-15

8M-0017 Index-13

Statement (continued)
type determination (STTP)

branch to main driver, 2-15
description, 5-67
in Pass 1, 2-4

Type Table
corresponding with STTP entry, 2-4
entry format, 2-6
group and statement type, 2-5

when processed, 1-3
Static mode, 5-14
STOP statement processor (STST), 5-67
Store

preceding vector search branch, 5-46
of vector temporary, 5-59

STST (STOP statement processor), 5-67
STTP (statement type determination)

branch to main driver, 2-15
description, 5-67
determines statement type, 2-4

STTR (statement processing terminator)
description, 5-68
terminate

executable statement, 2-15
statement processing, 2-12

Subprogram
begin, 3-2
boundary, 1-6
end, 3-2

SUBROUTINE statement processor (SRST), 5-67
Subroutines, 5-1
Subscripting, vector analysis check, 1-6
Substring Definition Table (TBSB), 4.TBSB-l
Suppress

dead code (SDOO), 5-63
redundant parentheses groups (SPRN),

5-66
SVEC (set Vector Array flag)

called by PCON, 3-5
description, 5-68
locates scalar temporary, 3-5
sets VAF to scalar temporary, 3-5

SYMADD (add symbol to cross reference), 5-69
Symbol

Cross Reference Table (TBU), 4.TBU-l
name, 4-6
Table (TBS)

as output from Pass 1, 2-1
contents of, 1-5
description, 4.TBS-l
dummy arguments entered into, 2-10
end processing, 3-11
entries in 6-bit ASCII, 4-6
location, 4-1
maintained in sorted order, 4-3
search, 4-6
statement number entries made in, 2-2

Symbolic
B register definitions, B-7
T register definitions, B-8

SYTB (print Symbol Table), 5-69

Table
area, 4-1
compiler, 1-8, 4-1, B-1

B-03

Table (continued)

Tag

conventions for presentation, 4-8
definition, 1-1
descriptions, 4-7
dynamic, 4-3
elements, 4-5
expansion, 4-1, 4-5
identifier, 1-8
index form KTX, 1-8
intrinsic type, B-2
length, 1-1
maintained during compilation, 1-8
management

description, 4-3
sequential, 4-4
sorted, 4-6

names and indexes, 1-8
new entry, 4-4
null, 4-3
overflow, 4-4
parameter words, 4-3, B-4
pointers, 2-2, 4-4, B-3
search, 4-5
sequential, 4-3, 4-4
sorted, 4-3
working, B-1

buffer
internal notation stored in, 1-5
represents operator, 1-5

Buffer Table (TBG)
arranged in alphabetical order, 4-6
as output from Pass 1, 2-1
contents of tag buffer transferred

to, 1-5
contents of TGB moved to, 1-10
DATA statement entered into, 2-10
description, 4.TBG-l
primary input to Pass 2, 3-1
tag buffer string in, 3-1

constant, 4-9
contents, 2-11
data type codes, 4-11
definition index, TBZ entry contains,

4.TBZ-l
definitions, 4-9
derived from TBT, 2-11
descriptions, 4-9
dummy argument, 4-9, 5-49
dummy argument address, 4-10
external function, 4-9, 4.TBM-l
function entry name, 4-9
holds data, 4-10
inline function, 4-9
internal function, 2-16
location index, TBZ entry contains,

4.TBZ-l
offset field, 4.TBX-l
one-word entry, 2-11
pointer, 4-9
program block, 4-10
pseudo, 4-9
statement

function, 4-9
number, 4-9

8M-0017 Index-14

Tag (continued)
subroutine entry name, 4-9
Table (TBT)

as output from Pass 1, 2-1
description, 4.TBT-l
dummy argument given a tag in, 2-10
location, 4-1
statement number entries made in, 2-2
tag derived from, 2-11

TL field, 4-11
type, 4-9
type determined, 4.TBT-l
user-declared common block, 4-10
variables globally assigned, 4-10

Tag-and-operator sequence
statement function translated to, 1-5
TBG translated to, 2-1

Tag-operator
sequence, DATA statements translated

to, 2-10
string, skeleton consists of, 4.TBF-l

Tally PR usage (TPRU), 5-69
TBA (Array Table)

DCLR makes entries in, 5-22
description, 1-8, 4.TBA-l

TBA Index Table (TBI)
DCLR makes entries in, 5-22
description, 4.TBI-l

TBB (Constant, Binary Table)
converted constant entered into, 2-12
DATA statement entries made in, 2-17
description, 4.TBB-l
instructions packed into, 3-11
loader Text Table (TXT), 4.TBB-l

TBBK (Block Definition Table)
description, 4.TBBK-l
initialized with LWA+l=FWA, 3-2

TBBR (B-register Associates Table), 4.TBBR-l
TBC (Pointer Variable Table), 4.TBC-l
TBCALL (Register Variables to Restore After

a CALL Table), 4.TBCALL-l
TBCLEN (Character Length Table), 4.TBCLEN-l
TBCLTXT (tCL Text Table), 4.TBCLTXT-l
TBCT (Conjunctive Term Table)

description, 4.TBCT-l
used by ADEP, 3-4

TBD (DO-loop Table)
description, 4.TBD-l
end processing, 3-11

TBDT (Disjunctive Term Table), 4.TBDT-l
TBE (External Reference Table)

description, 4.TBE-l
entries received from LTGN, 3-11

TBEE (Entry/Exit Address Table), 4.TBEE-l
TBF (Statement Function Skeleton Table),

4.TBF-l
TBFR (Call-by-value Reference Table),

4.TBFR-l
TBG (Tag Buffer Table)

DATA statement entered into, 2-10
description, 4.TBG-l
primary input to Pass 2, 3-1
Tag Buffer string in, 3-2

B-03

TBH (Loader Program Description Table)
description, 4.TBH-l
ENST builds, 2-17

TBI (TBA Index Table)
DCLR makes entries in, 5-22
description, 4.TBI-l

TBJ (Intrinsic Function Name Table)
description, 4.TBJ-l
search (SIN), 5-65

TBK (Intrinsic Function Attribute Table),
4.TBK-l

TBL (External Library Tag Table)
description, 4.TBL-l
location in memory area, 1-8, 4-1

TBLB (Label Usage Table)
description, 4.TBLB-l
initialized with LWA+l=FWA, 3-2

TBM (Library Macro Table)
description, 4.TBM-l
location in memory area, 1-8, 4-1

TBNOBT (TBT Index of Variables Not
Assignable to B/T Register Table),
4.TBNOBT-l

TBO (Array Bounds Checking Table), 4.TBO-l
TBP (Common and Equivalence/Dummy Argument

Address Table), 4.TBP-l
TBPD (Plus Dependency Table)

built by ADEP, 3-3
description, 4.TBPD-l

TBPG (Page Numbers Table)
description, 4.TBPG-l
saved, 2-2

TBPN (Program unit Name Table)
description, 4.TBPN-l
entries in 6-bit ASCII, 4-6
maintained in sorted order, 4-3, 4-6
saved, 2-2
search, 4-6

TBQ (Variable Declarator Table)
DCLR makes entries in, 5-22
description, 4.TBQ-l

TBR (Packed Equivalence/Block Relocation
Table)

description, 4.TBR-l
entries received from LTGN, 3-11
LTND builds header word, 3-11

TBS (Symbol Table)
as output from Pass 1, 2-1
DCLR adds names to, 5-22
description, 4.TBS-l
dummy arguments entered into, 2-10
entries in 6~bit ASCII, 4-6
location, 4-1
maintained in sorted order, 4-3
search, 4-6
statement number entries made in, 2-2

TBSB (Substring Definition Table), 4.TBSB-l
TBSN (Sequence Number Table), 4.TBSN-l
TBSV (Saved Variable Table), 4.TBSV-l
TBT (Tag Table)

as output from Pass 1, 2-1
DCLR adds names to, 5-22
description, 4.TBT-l
dummy argument given a tag in, 2-10

8M-OOl7 Index-IS

TBT (Tag Table) (continued)
location, 4-1
statement number entries made in, 2-2
tag derived from, 2-11

TBT Index of Variables Not Assignable to
B/T Register Table (TBNOBT), 4.TBNOBT-l

TBTR (T-register Associates Table), 4.TBTR-l
TBU (Symbol Cross Reference Table), 4.TBU-l
TBV (Cross Reference Overflow Table),

4.TBV-l
TBW (Triad Table)

description, 4.TBW-l
initialized with LWA+l=FWA, 3-2

TBWR (W-register Associates Table), 4.TBWR-l
TBX (Variable Reference Table)

description, 4.TBX-l
initialized with LWA+l=FWA, 3-2

TBX Extension Table (TBXX) , 4.TBXX-l
TBXX (TBX Extension Table), 4.TBXX-l
TBY (Dependent Reference Table)

built
for instruction scheduler, 3-4
for load/store generation, 3-4

description, 4.TBY-l
initialized with LWA+l=FWA, 3-2

TBZ (Defined Variable Table)
ADEP takes definition entry from, 3-4
description, 4.TBZ-l
flag set for CIV, 3-3
initialized with LWA+l=FWA, 3-2

Temporary
register, B-6
secondary register, B-6

Terminal statement encountered, 1-3
Terminate

loader table (LTND)
builds header word for TBR and TBB,

3-11
description, 5-44
processing, 3-10

statement processing (STTR), 5-68
Termination, DO-loop, 5-68
Text Input Dataset ($IN), 6-2
Text Table (TXT)

description, 4.TBB-l
instructions packed into, 3-11
DATA statement entries made in, 2-17

TFBK (transfer between sub-blocks in a
conditional loop), 5-69

TGB (Intermediate Tag Buffer)
description, 4.TGB-l
executable statements put into, 2-10
location in memory area, 1-10
tag entered into, 2-12

TL data
length values, 4-11
type codes, 4-11

TPRU (tally PR usage), 5-69
TRAN (type conversion), 5-70
Transfer

between sub-blocks in a conditional
loop (TFBK), 5-69

intergroup (IGXF), 5-40
T-register Associates Table (TBTR), 4.TBTR-l

B-03

Triad
description, 5-19
entered in TBW, 4.TBW-l
operation parsed as, 1-6
process, routine (PTRl), 3-7
Table (TBW)

description, 4.TBW-l
initialized with LWA+l=FWA, 3-2

TRUN (truncate after each floating-point
operation), 5-70

Truncate after each floating-point operation
(TRUN), 5-70

Two-pass philosophy, 1-2
TXT (Text Table)

Type

DATA statement entries made in, 2-17
description, 4.TBB-l
instructions packed into, 3-11

code, implicit, B-3
conversion (TRAN), 5-70

UCIV (update CIV value), 5-70
UDCI (update conditional CIV value), 5-70
UNICOS operating system, 1-1, 6-1
Unique statement processor

assignment statements, 2-14
definition, 2-6
input/output, 2-13
program control, 2-14
STTP transfers to, 2-4

Unit, logical, 4-6
UNROLL parameter, 5-25
Update

CIV value (UCIV), 5-70
conditional CIV value (unCI), 5-70

User
area, tables constructed in, 4-1
field, compiler loaded into, 1-3
job deck, 1-3

V7 table parameter words, B-4
VAF (vector array flag), set by EAFR, 3-5
Variable

Declarator Table (TBQ)
DCLR makes entries in, 5-22
description, 4.TBQ-l

dimension declarators, TBQ used for,
4.TBQZ-l

Reference Table (TBX)
description, 4.TBX-l
initialized with LWA+l=FWA, 3-2

tag
as a scalar variable, 5-19
TBZ entry contains, 4.TBZ-l

Variant subscript flag (DSF), 3-5
VCTL (vector loop control)

checks for recursive sums, 3-6
control transferred to, 3-6
copies VAF from TBG to TBZ, 3-6
description, 5-70
generated CIV incrementation, 3-6
searches tags, 3-6
sets vector length register, 3-6

8M-0017 Index-16

VExx (VECTOR/NOVECTOR directive
processor), 5-71

Vector
analysis

of a code block, 1-6
subscript check during, 1-6

array flag (VAF), set by EAFR, 3-5
loads and stores, 3-3, 4-4
loop

ambiguous dependencies, 1-6
analysis (VLAN), 5-71
conditional, 1-6

loop control (VCTL)
checks for recursive sums, 3-6
control transferred to, 3-6
copies VAF from TBG to TBZ, 3-6
description, 5-70
generated ClV incrementation, 3-6
searches tags, 3-6
sets vector length register, 3-6

loop mode flag (VLF)
description, 3-4
turned off, 3-4

mask, 4-5
register, 4-4, 4-6
search, 5-8,46

VECTOR/NOVECTOR directive processor
(VEXX), 5-71

VLAN (vector loop analysis), 5-71
VLF (Vector Loop Mode flag)

description, 3-4
turned off, 3-4

Volatile secondary registers, B-6.1

Words
statement header, 4.TGB-l
table parameter, B-3
V7 table parameter, B-4

W register, 3-10
W-register Associates Table (TBWR), 4.TBWR-l
Write statement number table (NMTB), 5-47
WRITE statement processor (WRST), 5-7l
WRST (WRITE statement processor), 5-7l

XCOO (execute code), 5-71
XRT (External Relocation Table), TBE

contains, 4.TBE-l
XXOO (set of interpreters for instructions

compiled by CXOO), 5-72

Zero-argument functions, 2-16
Zero word

in TBB, 5-28
indicates end of statement, 2-4, 5-60
SBUF terminates, 5-63
terminated string, 2-3

ZMEM (clear a block of memory), 5-72

B-03

READER COMMENT FORM

FORTRAN (CFT) Internal Reference Manual 8M-OOI7 B-03

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ ___

JOB TITLE _________________________ _

FI R M ______________________________________ _
RESEARCH. INC.

ADDRESS ________________________________ __

CITY __________ STATE ______ ZIP ___ _

DATE --

---~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL MN

POSTAGE Will BE PAID BY ADDRESSEE

RESEARCH. INC.

2520 Pilot Knob Road
Attention: Suite 350
PUBLICATIONS Mendota Heights, MN 55120

U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---~

STAPLE

()

C
-I
»
r o
Z
G)

-I
:J:
en
r
Z
m

READER COMMENT FORM

FORTRAN (eFT) Internal Reference Manual SM-OOI7 B-03

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ ___

JOB TITLE ________________ _

FIRM ____________________________ _
RESEARC INC.

ADDRESS ________________ _

CITY __________ STATE ____ ZIP ___ _

DATE --

---~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL MN

POSTAGE WILL BE PAID BY ADDRESSEE

RESEARCH, INC.

2520 Pilot Knob Road
Attention: Suite 350
PUBLICATIONS Mendota Heights, MN 55120

U.S.A.

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

---~

STAPI J=

()
C
-I
~
r o
Z
G)

-I
I
Ui
r
Z
m

PUBLICATION CHANG;E NOTICE
E
~ESEA~CH, INC.

March 1986

TITLE: FORTRAN (CFT) Internal Reference Manual

PUBLICATION NO. SM-0017 REV. CHANGE PACKET NO. B-03

This change packet brings the manual into agreement with the CFT 1.15
release. Please make the following changes to your manual.

Replace:

Add:

Title page through ix
1-1 through 1-4
1-7 and 1-8
2-1 and 2-2
2-17
3-3 through 3-8
4-9 and 4-10
4.TBBK-l and 4.TBBK.2
4.TBD-l

4.TBD-2

Replace:
4.TBT-2.l

Add:

4.TBZ-l through 4.TGB-lO
5-1 and 5-2
5-7 and 5-8

5-8.1

Replace:
5-11 and 5-12

Add:
5-12.1

Replace:

Add:

5-23 and 5-24
5-27 through 5-32
5-35 through 5-38

5-38.1 and 5-38.2

Replace:
5-43 through 5-46

Add:
5-46.1

Replace:
5-53 and 5-54
5-59 through 5-62
5-69 through 5-72
6-1 through 6-4 (all of section 6)
C-l and C-2
Index

